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Chapter 1

Preface
This is not a book. It is a collection of topics. If you are not interested in something
past Page 1000, you should not read it here. Instead, see ”Real and Abstract Analysis” or
”Analysis of Functions of Complex and Many Variables” two books on this web page. If
you are reading something after page 2000 and want to review some elementary topic, I
often have a link so you can quickly go to it. That is the only reason elementary topics are
present in this conglomeration of topics. You should not read this book to learn standard
topics in Advanced calculus or Linear Algebra for example. Also, the presentation tends to
be ad hoc and not as well developed as it is elsewhere.
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Part I

Review Of Advanced Calculus
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This is a collection of topics and the presentation is not done as well as in Real and
Abstract Analysis. If you are not interested in something after Page 1000, you will
probably find it done better in this other book. You should avoid this pile of topics if
at all possible. I have elementary material in it only for the convenience of the reader
who wants a quick review. It has not been as well maintained as the other books either.
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Chapter 2

Set Theory
2.1 Basic Definitions

A set is a collection of things called elements of the set. For example, the set of integers,
the collection of signed whole numbers such as 1,2,−4, etc. This set whose existence
will be assumed is denoted by Z. Other sets could be the set of people in a family or the
set of donuts in a display case at the store. Sometimes parentheses, { } specify a set by
listing the things which are in the set between the parentheses. For example the set of
integers between−1 and 2, including these numbers could be denoted as {−1,0,1,2}. The
notation signifying x is an element of a set S, is written as x ∈ S. Thus, 1 ∈ {−1,0,1,2,3}.
Here are some axioms about sets. Axioms are statements which are accepted, not proved.

1. Two sets are equal if and only if they have the same elements.

2. To every set A, and to every condition S (x) there corresponds a set, B, whose ele-
ments are exactly those elements x of A for which S (x) holds.

3. For every collection of sets there exists a set that contains all the elements that belong
to at least one set of the given collection.

4. The Cartesian product of a nonempty family of nonempty sets is nonempty.

5. If A is a set there exists a set, P (A) such that P (A) is the set of all subsets of A.
This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3,1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some “condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no
way to determine to everyone’s satisfaction whether a given judge is an activist. Also,
just because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

So what is a condition?

29
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We will leave these sorts of considerations and assume our conditions make sense.
The axiom of unions states that for any collection of sets, there is a set consisting of all
the elements in each of the sets in the collection. Of course this is also open to further
consideration. What is a collection? Maybe it would be better to say “set of sets” or, given
a set whose elements are sets there exists a set whose elements consist of exactly those
things which are elements of at least one of these sets. If S is such a set whose elements
are sets,

∪{A : A ∈S } or ∪S

signify this union.
Something is in the Cartesian product of a set or “family” of sets if it consists of a single

thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×{4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by ×.
Also, this is the notation for the Cartesian product of finitely many sets. If S is a set whose
elements are sets,

∏
A∈S

A

signifies the Cartesian product.
The Cartesian product is the set of choice functions, a choice function being a function

which selects exactly one element of each set of S . You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

A is a subset of B, written A ⊆ B, if every element of A is also an element of B. This
can also be written as B ⊇ A. A is a proper subset of B, written A ⊂ B or B ⊃ A if A is a
subset of B but A is not equal to B,A ̸= B. A∩B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as /0. A∪B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set which is a set which contains the
one whose complement is being taken. Thus, the complement of A, denoted as AC ( or
more precisely as X \A) is a set obtained from using the axiom of specification to write

AC ≡ {x ∈ X : x /∈ A}

The symbol /∈ means: “is not an element of”. Note the axiom of specification takes place
relative to a given set. Without this universal set it makes no sense to use the axiom of
specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
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that there are symbols for them. The symbol ∀ is read as “for all” or “for every” and the
symbol ∃ is read as “there exists”. Thus ∀∀∃∃ could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of which
is contained in some universal set, U . Then

∪
{

AC : A ∈S
}
= (∩{A : A ∈S })C

and
∩
{

AC : A ∈S
}
= (∪{A : A ∈S })C .

These laws follow directly from the definitions. Also following directly from the definitions
are:

Let S be a set of sets then

B∪∪{A : A ∈S }= ∪{B∪A : A ∈S } .

and: Let S be a set of sets show

B∩∪{A : A ∈S }= ∪{B∩A : A ∈S } .

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if this is so, it qualifies for inclusion in A so it is an element of
itself and so this can’t be true either. Thus the most basic of conditions you could imagine,
that of being an element of, is meaningless and so allowing such a set causes the whole
theory to be meaningless. The solution is to not allow a universal set. As mentioned by
Halmos in Naive set theory, “Nothing contains everything”. Always beware of statements
involving quantifiers wherever they occur, even this one.

2.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 2.2.1 Let X and Y be sets.

X×Y ≡ {(x,y) : x ∈ X and y ∈ Y}

A relation is defined to be a subset of X ×Y . A function, f , also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f , then
y = y1. The domain of f is defined as

D( f )≡ {x : (x,y) ∈ f} ,

written as f : D( f )→ Y .
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It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output, y,denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem.

Theorem 2.2.2 Let f : X → Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof: Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.

It only remains to verify that g(D) = B.
Suppose x ∈ B = X \ A. Then A∪ {x} does not satisfy P and so there exists y ∈

Y \ f (A∪{x}) ⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A satisfies P , it
follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D) and this proves the theorem.
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Theorem 2.2.3 (Schroder Bernstein) If f : X→Y and g : Y → X are one to one, then there
exists h : X → Y which is one to one and onto.

Proof: Let A,B,C,D be the sets of Theorem2.2.2 and define

h(x)≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping.
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 2.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice function
written as

f ∈∏
i∈I

Xi

if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set, then

∏
i∈I

Xi ̸= /0.

Sometimes the two functions, f and g are onto but not one to one. It turns out that with
the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 2.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then

y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists

h : X → Y which is one to one and onto.

Definition 2.2.6 A set S, is finite if there exists a natural number n and a map θ which
maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, this will be written as θ : A→ B in the future.) Here N≡ {1,2, · · · the natural
numbers. S is at most countable if there exists a map θ : N→S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.
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Theorem 2.2.7 If X and Y are both at most countable, then X×Y is also at most countable.
If either X or Y is countable, then X×Y is also countable.

Proof: It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)
↓ ↗

(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 2.2.5, there exists a one to one and onto mapping
from X×Y to N. This proves the theorem.

Theorem 2.2.8 If X and Y are at most countable, then X ∪Y is at most countable. If either
X or Y are countable, then X ∪Y is countable.

Proof: As in the preceding theorem,

X = {x1,x2,x3, · · ·}

and
Y = {y1,y2,y3, · · ·} .

Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 2.2.5 yields the conclusion. This proves the theorem.



2.3. EQUIVALENCE RELATIONS 35

2.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 2.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the following
axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 2.3.2 [x] denotes the set of all elements of S which are equivalent to x and [x] is
called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 2.3.3 Let∼ be an equivalence class defined on a set, S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x∼ y
and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

2.4 Partially Ordered Sets
Definition 2.4.1 Let F be a nonempty set. F is called a partially ordered set if there is a
relation, denoted here by ≤, such that

x≤ x for all x ∈F .

If x≤ y and y≤ z then x≤ z.

C ⊆F is said to be a chain if every two elements of C are related. This means that if
x,y ∈ C , then either x≤ y or y≤ x. Sometimes a chain is called a totally ordered set. C is
said to be a maximal chain if whenever D is a chain containing C , D = C .

The most common example of a partially ordered set is the power set of a given set
with ⊆ being the relation. It is also helpful to visualize partially ordered sets as trees. Two
points on the tree are related if they are on the same branch of the tree and one is higher
than the other. Thus two points on different branches would not be related although they
might both be larger than some point on the trunk. You might think of many other things
which are best considered as partially ordered sets. Think of food for example. You might
find it difficult to determine which of two favorite pies you like better although you may
be able to say very easily that you would prefer either pie to a dish of lard topped with
whipped cream and mustard. The following theorem is equivalent to the axiom of choice.
For a discussion of this, see the appendix on the subject.
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Theorem 2.4.2 (Hausdorff Maximal Principle) Let F be a nonempty partially ordered
set. Then there exists a maximal chain.



Chapter 3

Continuous Functions Of One Variable
There is a theorem about the integral of a continuous function which requires the notion of
uniform continuity. This is discussed in this section. Consider the function f (x) = 1

x for
x ∈ (0,1) . This is a continuous function because, it is continuous at every point of (0,1) .
However, for a given ε > 0, the δ needed in the ε,δ definition of continuity becomes very
small as x gets close to 0. The notion of uniform continuity involves being able to choose
a single δ which works on the whole domain of f . Here is the definition.

Definition 3.0.1 Let f : D⊆R→R be a function. Then f is uniformly continuous if for ev-
ery ε > 0, there exists a δ depending only on ε such that if |x− y|< δ then | f (x)− f (y)|<
ε.

It is an amazing fact that under certain conditions continuity implies uniform continuity.

Definition 3.0.2 A set, K ⊆R is sequentially compact if whenever {an} ⊆K is a sequence,
there exists a subsequence,

{
ank

}
such that this subsequence converges to a point of K.

The following theorem is part of the Heine Borel theorem.

Theorem 3.0.3 Every closed interval, [a,b] is sequentially compact.

Proof: Let {xn} ⊆ [a,b] ≡ I0. Consider the two intervals
[
a, a+b

2

]
and

[ a+b
2 ,b

]
each

of which has length (b−a)/2. At least one of these intervals contains xn for infinitely
many values of n. Call this interval I1. Now do for I1 what was done for I0. Split it in half
and let I2 be the interval which contains xn for infinitely many values of n. Continue this
way obtaining a sequence of nested intervals I0 ⊇ I1 ⊇ I2 ⊇ I3 · · · where the length of In is
(b−a)/2n. Now pick n1 such that xn1 ∈ I1, n2 such that n2 > n1 and xn2 ∈ I2,n3 such that
n3 > n2 and xn3 ∈ I3, etc. (This can be done because in each case the intervals contained
xn for infinitely many values of n.) By the nested interval lemma there exists a point, c
contained in all these intervals. Furthermore,∣∣xnk − c

∣∣< (b−a)2−k

and so limk→∞ xnk = c ∈ [a,b] . This proves the theorem.

Theorem 3.0.4 Let f : K→ R be continuous where K is a sequentially compact set in R.
Then f is uniformly continuous on K.

Proof: If this is not true, there exists ε > 0 such that for every δ > 0 there exists a pair
of points, xδ and yδ such that even though |xδ − yδ | < δ , | f (xδ )− f (yδ )| ≥ ε. Taking a
succession of values for δ equal to 1,1/2,1/3, · · · , and letting the exceptional pair of points
for δ = 1/n be denoted by xn and yn,

|xn− yn|<
1
n
, | f (xn)− f (yn)| ≥ ε.

37
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Now since K is sequentially compact, there exists a subsequence,
{

xnk

}
such that xnk →

z ∈ K. Now nk ≥ k and so ∣∣xnk − ynk

∣∣< 1
k
.

Consequently, ynk → z also. ( xnk is like a person walking toward a certain point and
ynk is like a dog on a leash which is constantly getting shorter. Obviously ynk must also
move toward the point also. You should give a precise proof of what is needed here.) By
continuity of f

0 = | f (z)− f (z)|= lim
k→∞

∣∣ f (xnk

)
− f

(
ynk

)∣∣≥ ε,

an obvious contradiction. Therefore, the theorem must be true.
The following corollary follows from this theorem and Theorem 3.0.3.

Corollary 3.0.5 Suppose I is a closed interval, I = [a,b] and f : I→R is continuous. Then
f is uniformly continuous.

3.1 Exercises
1. A function, f : D⊆R→R is Lipschitz continuous or just Lipschitz for short if there

exists a constant, K such that

| f (x)− f (y)| ≤ K |x− y|

for all x,y ∈ D. Show every Lipschitz function is uniformly continuous.

2. If |xn− yn| → 0 and xn→ z, show that yn→ z also.

3. Consider f : (1,∞)→ R given by f (x) = 1
x . Show f is uniformly continuous even

though the set on which f is defined is not sequentially compact.

4. If f is uniformly continuous, does it follow that | f | is also uniformly continuous? If
| f | is uniformly continuous does it follow that f is uniformly continuous? Answer the
same questions with “uniformly continuous” replaced with “continuous”. Explain
why.

3.2 Theorems About Continuous Functions
In this section, proofs of some theorems which have not been proved yet are given.

Theorem 3.2.1 The following assertions are valid

1. The function, a f +bg is continuous at x when f , g are continuous at x ∈D( f )∩D(g)
and a,b ∈ R.

2. If and f and g are each real valued functions continuous at x, then f g is continuous
at x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.
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3. If f is continuous at x, f (x) ∈ D(g) ⊆ R, and g is continuous at f (x) ,then g ◦ f is
continuous at x.

4. The function f : R→ R, given by f (x) = |x| is continuous.

Proof: First consider 1.) Let ε > 0 be given. By assumption, there exist δ 1 > 0
such that whenever |x− y| < δ 1, it follows | f (x)− f (y)| < ε

2(|a|+|b|+1) and there exists
δ 2 > 0 such that whenever |x− y| < δ 2, it follows that |g(x)−g(y)| < ε

2(|a|+|b|+1) . Then
let 0 < δ ≤min(δ 1,δ 2) . If |x− y|< δ , then everything happens at once. Therefore, using
the triangle inequality

|a f (x)+b f (x)− (ag(y)+bg(y))|

≤ |a| | f (x)− f (y)|+ |b| |g(x)−g(y)|

< |a|
(

ε

2(|a|+ |b|+1)

)
+ |b|

(
ε

2(|a|+ |b|+1)

)
< ε.

Now consider 2.) There exists δ 1 > 0 such that if |y− x|< δ 1, then

| f (x)− f (y)|< 1.

Therefore, for such y,
| f (y)|< 1+ | f (x)| .

It follows that for such y,

| f g(x)− f g(y)| ≤ | f (x)g(x)−g(x) f (y)|+ |g(x) f (y)− f (y)g(y)|

≤ |g(x)| | f (x)− f (y)|+ | f (y)| |g(x)−g(y)|
≤ (1+ |g(x)|+ | f (y)|) [|g(x)−g(y)|+ | f (x)− f (y)|] .

Now let ε > 0 be given. There exists δ 2 such that if |x− y|< δ 2, then

|g(x)−g(y)|< ε

2(1+ |g(x)|+ | f (y)|)
,

and there exists δ 3 such that if |x−y|< δ 3, then

| f (x)− f (y)|< ε

2(1+ |g(x)|+ | f (y)|)

Now let 0 < δ ≤min(δ 1,δ 2,δ 3) . Then if |x−y|< δ , all the above hold at once and so

| f g(x)− f g(y)| ≤

(1+ |g(x)|+ | f (y)|) [|g(x)−g(y)|+ | f (x)− f (y)|]

< (1+ |g(x)|+ | f (y)|)
(

ε

2(1+ |g(x)|+ | f (y)|)
+

ε

2(1+ |g(x)|+ | f (y)|)

)
= ε.



40 CHAPTER 3. CONTINUOUS FUNCTIONS OF ONE VARIABLE

This proves the first part of 2.) To obtain the second part, let δ 1 be as described above and
let δ 0 > 0 be such that for |x−y|< δ 0,

|g(x)−g(y)|< |g(x)|/2

and so by the triangle inequality,

−|g(x)|/2≤ |g(y)|− |g(x)| ≤ |g(x)|/2

which implies |g(y)| ≥ |g(x)|/2, and |g(y)|< 3 |g(x)|/2.
Then if |x−y|< min(δ 0,δ 1) ,∣∣∣∣ f (x)

g(x)
− f (y)

g(y)

∣∣∣∣= ∣∣∣∣ f (x)g(y)− f (y)g(x)
g(x)g(y)

∣∣∣∣
≤ | f (x)g(y)− f (y)g(x)|(

|g(x)|2
2

)
=

2 | f (x)g(y)− f (y)g(x)|
|g(x)|2

≤ 2

|g(x)|2
[| f (x)g(y)− f (y)g(y)+ f (y)g(y)− f (y)g(x)|]

≤ 2

|g(x)|2
[|g(y)| | f (x)− f (y)|+ | f (y)| |g(y)−g(x)|]

≤ 2

|g(x)|2

[
3
2
|g(x)| | f (x)− f (y)|+(1+ | f (x)|) |g(y)−g(x)|

]
≤ 2

|g(x)|2
(1+2 | f (x)|+2 |g(x)|) [| f (x)− f (y)|+ |g(y)−g(x)|]

≡M [| f (x)− f (y)|+ |g(y)−g(x)|]

where M is defined by

M ≡ 2

|g(x)|2
(1+2 | f (x)|+2 |g(x)|)

Now let δ 2 be such that if |x−y|< δ 2, then

| f (x)− f (y)|< ε

2
M−1

and let δ 3 be such that if |x−y|< δ 3, then

|g(y)−g(x)|< ε

2
M−1.

Then if 0 < δ ≤min(δ 0,δ 1,δ 2,δ 3) , and |x−y|< δ , everything holds and∣∣∣∣ f (x)
g(x)

− f (y)
g(y)

∣∣∣∣≤M [| f (x)− f (y)|+ |g(y)−g(x)|]
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< M
[

ε

2
M−1 +

ε

2
M−1

]
= ε.

This completes the proof of the second part of 2.)
Note that in these proofs no effort is made to find some sort of “best” δ . The problem

is one which has a yes or a no answer. Either is it or it is not continuous.
Now consider 3.). If f is continuous at x, f (x) ∈ D(g) ⊆ Rp, and g is continuous at

f (x) ,then g◦ f is continuous at x. Let ε > 0 be given. Then there exists η > 0 such that if
|y− f (x)|< η and y ∈ D(g) , it follows that |g(y)−g( f (x))|< ε. From continuity of f at
x, there exists δ > 0 such that if |x−z|< δ and z ∈ D( f ) , then | f (z)− f (x)|< η . Then if
|x−z|< δ and z ∈ D(g◦ f )⊆ D( f ) , all the above hold and so

|g( f (z))−g( f (x))|< ε.

This proves part 3.)
To verify part 4.), let ε > 0 be given and let δ = ε. Then if |x−y| < δ , the triangle

inequality implies

| f (x)− f (y)|= ||x|− |y||
≤ |x−y|< δ = ε.

This proves part 4.) and completes the proof of the theorem.
Next here is a proof of the intermediate value theorem.

Theorem 3.2.2 Suppose f : [a,b]→ R is continuous and suppose f (a)< c < f (b) . Then
there exists x ∈ (a,b) such that f (x) = c.

Proof: Let d = a+b
2 and consider the intervals [a,d] and [d,b] . If f (d) ≥ c, then on

[a,d] , the function is ≤ c at one end point and ≥ c at the other. On the other hand, if
f (d) ≤ c, then on [d,b] f ≥ 0 at one end point and ≤ 0 at the other. Pick the interval on
which f has values which are at least as large as c and values no larger than c. Now consider
that interval, divide it in half as was done for the original interval and argue that on one of
these smaller intervals, the function has values at least as large as c and values no larger than
c. Continue in this way. Next apply the nested interval lemma to get x in all these intervals.
In the nth interval, let xn,yn be elements of this interval such that f (xn)≤ c, f (yn)≥ c. Now
|xn− x| ≤ (b−a)2−n and |yn− x| ≤ (b−a)2−n and so xn→ x and yn→ x. Therefore,

f (x)− c = lim
n→∞

( f (xn)− c)≤ 0

while
f (x)− c = lim

n→∞
( f (yn)− c)≥ 0.

Consequently f (x) = c and this proves the theorem.

Lemma 3.2.3 Let φ : [a,b]→R be a continuous function and suppose φ is 1−1 on (a,b).
Then φ is either strictly increasing or strictly decreasing on [a,b] .
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Proof: First it is shown that φ is either strictly increasing or strictly decreasing on
(a,b) .

If φ is not strictly decreasing on (a,b), then there exists x1 < y1, x1,y1 ∈ (a,b) such that

(φ (y1)−φ (x1))(y1− x1)> 0.

If for some other pair of points, x2 < y2 with x2,y2 ∈ (a,b) , the above inequality does not
hold, then since φ is 1−1,

(φ (y2)−φ (x2))(y2− x2)< 0.

Let xt ≡ tx1 +(1− t)x2 and yt ≡ ty1 +(1− t)y2. Then xt < yt for all t ∈ [0,1] because

tx1 ≤ ty1 and (1− t)x2 ≤ (1− t)y2

with strict inequality holding for at least one of these inequalities since not both t and
(1− t) can equal zero. Now define

h(t)≡ (φ (yt)−φ (xt))(yt − xt) .

Since h is continuous and h(0) < 0, while h(1) > 0, there exists t ∈ (0,1) such that
h(t) = 0. Therefore, both xt and yt are points of (a,b) and φ (yt)−φ (xt) = 0 contradicting
the assumption that φ is one to one. It follows φ is either strictly increasing or strictly
decreasing on (a,b) .

This property of being either strictly increasing or strictly decreasing on (a,b) carries
over to [a,b] by the continuity of φ . Suppose φ is strictly increasing on (a,b) , a similar
argument holding for φ strictly decreasing on (a,b) . If x > a, then pick y ∈ (a,x) and from
the above, φ (y)< φ (x) . Now by continuity of φ at a,

φ (a) = lim
x→a+

φ (z)≤ φ (y)< φ (x) .

Therefore, φ (a)< φ (x) whenever x ∈ (a,b) . Similarly φ (b)> φ (x) for all x ∈ (a,b). This
proves the lemma.

Corollary 3.2.4 Let f : (a,b)→ R be one to one and continuous. Then f (a,b) is an open
interval, (c,d) and f−1 : (c,d)→ (a,b) is continuous.

Proof: Since f is either strictly increasing or strictly decreasing, f (a,b) is an open
interval, (c,d) . Assume f is decreasing. Now let x ∈ (a,b). Why is f−1 is continuous at
f (x)? Since f is decreasing, if f (x)< f (y) , then y≡ f−1 ( f (y))< x≡ f−1 ( f (x)) and so
f−1 is also decreasing. Let ε > 0 be given. Let ε > η > 0 and (x−η ,x+η)⊆ (a,b) . Then
f (x) ∈ ( f (x+η) , f (x−η)) . Let δ = min( f (x)− f (x+η) , f (x−η)− f (x)) . Then if

| f (z)− f (x)|< δ ,

it follows
z≡ f−1 ( f (z)) ∈ (x−η ,x+η)⊆ (x− ε,x+ ε)

so ∣∣ f−1 ( f (z))− x
∣∣= ∣∣ f−1 ( f (z))− f−1 ( f (x))

∣∣< ε.

This proves the theorem in the case where f is strictly decreasing. The case where f is
increasing is similar.



Chapter 4

The Riemann Stieltjes Integral
The integral originated in attempts to find areas of various shapes and the ideas involved
in finding integrals are much older than the ideas related to finding derivatives. In fact,
Archimedes1 was finding areas of various curved shapes about 250 B.C. using the main
ideas of the integral. What is presented here is a generalization of these ideas. The main
interest is in the Riemann integral but if it is easy to generalize to the so called Stieltjes
integral in which the length of an interval, [x,y] is replaced with an expression of the form
F (y)−F (x) where F is an increasing function, then the generalization is given. However,
there is much more that can be written about Stieltjes integrals than what is presented here.
A good source for this is the book by Apostol, [4].

4.1 Upper And Lower Riemann Stieltjes Sums
The Riemann integral pertains to bounded functions which are defined on a bounded in-
terval. Let [a,b] be a closed interval. A set of points in [a,b], {x0, · · · ,xn} is a partition
if

a = x0 < x1 < · · ·< xn = b.

Such partitions are denoted by P or Q. For f a bounded function defined on [a,b] , let

Mi ( f )≡ sup{ f (x) : x ∈ [xi−1,xi]},
mi ( f )≡ inf{ f (x) : x ∈ [xi−1,xi]}.

Definition 4.1.1 Let F be an increasing function defined on [a,b] and let ∆Fi ≡ F (xi)−
F (xi−1) . Then define upper and lower sums as

U ( f ,P)≡
n

∑
i=1

Mi ( f )∆Fi and L( f ,P)≡
n

∑
i=1

mi ( f )∆Fi

respectively. The numbers, Mi ( f ) and mi ( f ) , are well defined real numbers because f
is assumed to be bounded and R is complete. Thus the set S = { f (x) : x ∈ [xi−1,xi]} is
bounded above and below.

In the following picture, the sum of the areas of the rectangles in the picture on the left
is a lower sum for the function in the picture and the sum of the areas of the rectangles in
the picture on the right is an upper sum for the same function which uses the same partition.
In these pictures the function, F is given by F (x) = x and these are the ordinary upper and
lower sums from calculus.

1Archimedes 287-212 B.C. found areas of curved regions by stuffing them with simple shapes which he knew
the area of and taking a limit. He also made fundamental contributions to physics. The story is told about how he
determined that a gold smith had cheated the king by giving him a crown which was not solid gold as had been
claimed. He did this by finding the amount of water displaced by the crown and comparing with the amount of
water it should have displaced if it had been solid gold.

43
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y = f (x)

x0 x1 x2 x3 x0 x1 x2 x3

What happens when you add in more points in a partition? The following pictures
illustrate in the context of the above example. In this example a single additional point,
labeled z has been added in.

y = f (x)

x0 x1 x2 x3z x0 x1 x2 x3z

Note how the lower sum got larger by the amount of the area in the shaded rectangle
and the upper sum got smaller by the amount in the rectangle shaded by dots. In general
this is the way it works and this is shown in the following lemma.

Lemma 4.1.2 If P⊆ Q then

U ( f ,Q)≤U ( f ,P) , and L( f ,P)≤ L( f ,Q) .

Proof: This is verified by adding in one point at a time. Thus let

P = {x0, · · · ,xn}

and let

Q = {x0, · · · ,xk,y,xk+1, · · · ,xn}.

Thus exactly one point, y, is added between xk and xk+1. Now the term in the upper sum
which corresponds to the interval [xk,xk+1] in U ( f ,P) is

sup{ f (x) : x ∈ [xk,xk+1]}(F (xk+1)−F (xk)) (4.1.1)
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and the term which corresponds to the interval [xk,xk+1] in U ( f ,Q) is

sup{ f (x) : x ∈ [xk,y]}(F (y)−F (xk))

+sup{ f (x) : x ∈ [y,xk+1]}(F (xk+1)−F (y))

≡M1 (F (y)−F (xk))+M2 (F (xk+1)−F (y))

(4.1.2)

All the other terms in the two sums coincide. Now

sup{ f (x) : x ∈ [xk,xk+1]} ≥max(M1,M2)

and so the expression in 4.1.2 is no larger than

sup{ f (x) : x ∈ [xk,xk+1]}(F (xk+1)−F (y))

+sup{ f (x) : x ∈ [xk,xk+1]}(F (y)−F (xk))

= sup{ f (x) : x ∈ [xk,xk+1]}(F (xk+1)−F (xk)) ,

the term corresponding to the interval, [xk,xk+1] and U ( f ,P) . This proves the first part of
the lemma pertaining to upper sums because if Q⊇ P, one can obtain Q from P by adding
in one point at a time and each time a point is added, the corresponding upper sum either
gets smaller or stays the same. The second part about lower sums is similar and is left as
an exercise.

Lemma 4.1.3 If P and Q are two partitions, then

L( f ,P)≤U ( f ,Q) .

Proof: By Lemma 4.1.2,

L( f ,P)≤ L( f ,P∪Q)≤U ( f ,P∪Q)≤U ( f ,Q) .

Definition 4.1.4
I ≡ inf{U ( f ,Q) where Q is a partition}
I ≡ sup{L( f ,P) where P is a partition}.

Note that I and I are well defined real numbers.

Theorem 4.1.5 I ≤ I.

Proof: From Lemma 4.1.3,

I = sup{L( f ,P) where P is a partition} ≤U ( f ,Q)

because U ( f ,Q) is an upper bound to the set of all lower sums and so it is no smaller than
the least upper bound. Therefore, since Q is arbitrary,

I = sup{L( f ,P) where P is a partition}
≤ inf{U ( f ,Q) where Q is a partition} ≡ I

where the inequality holds because it was just shown that I is a lower bound to the set of
all upper sums and so it is no larger than the greatest lower bound of this set. This proves
the theorem.
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Definition 4.1.6 A bounded function f is Riemann Stieltjes integrable, written as

f ∈ R([a,b])

if
I = I

and in this case, ∫ b

a
f (x) dF ≡ I = I.

When F (x) = x, the integral is called the Riemann integral and is written as∫ b

a
f (x)dx.

Thus, in words, the Riemann integral is the unique number which lies between all upper
sums and all lower sums if there is such a unique number.

Recall the following Proposition which comes from the definitions.

Proposition 4.1.7 Let S be a nonempty set and suppose sup(S) exists. Then for every
δ > 0,

S∩ (sup(S)−δ ,sup(S)] ̸= /0.
If inf(S) exists, then for every δ > 0,

S∩ [inf(S) , inf(S)+δ ) ̸= /0.

This proposition implies the following theorem which is used to determine the question
of Riemann Stieltjes integrability.

Theorem 4.1.8 A bounded function f is Riemann integrable if and only if for all ε > 0,
there exists a partition P such that

U ( f ,P)−L( f ,P) < ε. (4.1.3)

Proof: First assume f is Riemann integrable. Then let P and Q be two partitions such
that

U ( f ,Q)< I + ε/2, L( f ,P)> I− ε/2.
Then since I = I,

U ( f ,Q∪P)−L( f ,P∪Q)≤U ( f ,Q)−L( f ,P)< I + ε/2− (I− ε/2) = ε.

Now suppose that for all ε > 0 there exists a partition such that 4.1.3 holds. Then for
given ε and partition P corresponding to ε

I− I ≤U ( f ,P)−L( f ,P)≤ ε.

Since ε is arbitrary, this shows I = I and this proves the theorem.
The condition described in the theorem is called the Riemann criterion .
Not all bounded functions are Riemann integrable. For example, let F (x) = x and

f (x)≡
{

1 if x ∈Q
0 if x ∈ R\Q (4.1.4)

Then if [a,b] = [0,1] all upper sums for f equal 1 while all lower sums for f equal 0.
Therefore the Riemann criterion is violated for ε = 1/2.
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4.2 Exercises
1. Prove the second half of Lemma 4.1.2 about lower sums.

2. Verify that for f given in 4.1.4, the lower sums on the interval [0,1] are all equal to
zero while the upper sums are all equal to one.

3. Let f (x) = 1+ x2 for x ∈ [−1,3] and let P =
{
−1,− 1

3 ,0,
1
2 ,1,2

}
. Find U ( f ,P) and

L( f ,P) for F (x) = x and for F (x) = x3.

4. Show that if f ∈ R([a,b]) for F (x) = x, there exists a partition, {x0, · · · ,xn} such that
for any zk ∈ [xk,xk+1] ,∣∣∣∣∣

∫ b

a
f (x) dx−

n

∑
k=1

f (zk)(xk− xk−1)

∣∣∣∣∣< ε

This sum, ∑
n
k=1 f (zk)(xk− xk−1) , is called a Riemann sum and this exercise shows

that the Riemann integral can always be approximated by a Riemann sum. For the
general Riemann Stieltjes case, does anything change?

5. Let P=
{

1,1 1
4 ,1

1
2 ,1

3
4 ,2
}

and F (x) = x. Find upper and lower sums for the function,
f (x) = 1

x using this partition. What does this tell you about ln(2)?

6. If f ∈ R([a,b]) with F (x) = x and f is changed at finitely many points, show the
new function is also in R([a,b]) . Is this still true for the general case where F is only
assumed to be an increasing function? Explain.

7. In the case where F (x) = x, define a “left sum” as

n

∑
k=1

f (xk−1)(xk− xk−1)

and a “right sum”,
n

∑
k=1

f (xk)(xk− xk−1) .

Also suppose that all partitions have the property that xk− xk−1 equals a constant,
(b−a)/n so the points in the partition are equally spaced, and define the integral
to be the number these right and left sums get close to as n gets larger and larger.
Show that for f given in 4.1.4,

∫ x
0 f (t) dt = 1 if x is rational and

∫ x
0 f (t) dt = 0

if x is irrational. It turns out that the correct answer should always equal zero for
that function, regardless of whether x is rational. This is shown when the Lebesgue
integral is studied. This illustrates why this method of defining the integral in terms
of left and right sums is total nonsense. Show that even though this is the case, it
makes no difference if f is continuous.
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4.3 Functions Of Riemann Integrable Functions
It is often necessary to consider functions of Riemann integrable functions and a natural
question is whether these are Riemann integrable. The following theorem gives a partial
answer to this question. This is not the most general theorem which will relate to this
question but it will be enough for the needs of this book.

Theorem 4.3.1 Let f ,g be bounded functions and let

f ([a,b])⊆ [c1,d1] , g([a,b])⊆ [c2,d2] .

Let H : [c1,d1]× [c2,d2]→ R satisfy,

|H (a1,b1)−H (a2,b2)| ≤ K [|a1−a2|+ |b1−b2|]

for some constant K. Then if f ,g ∈ R([a,b]) it follows that H ◦ ( f ,g) ∈ R([a,b]) .

Proof: In the following claim, Mi (h) and mi (h) have the meanings assigned above with
respect to some partition of [a,b] for the function, h.

Claim: The following inequality holds.

|Mi (H ◦ ( f ,g))−mi (H ◦ ( f ,g))| ≤

K [|Mi ( f )−mi ( f )|+ |Mi (g)−mi (g)|] .

Proof of the claim: By the above proposition, there exist x1,x2 ∈ [xi−1,xi] be such that

H ( f (x1) ,g(x1))+η > Mi (H ◦ ( f ,g)) ,

and
H ( f (x2) ,g(x2))−η < mi (H ◦ ( f ,g)) .

Then
|Mi (H ◦ ( f ,g))−mi (H ◦ ( f ,g))|

< 2η + |H ( f (x1) ,g(x1))−H ( f (x2) ,g(x2))|
< 2η +K [| f (x1)− f (x2)|+ |g(x1)−g(x2)|]
≤ 2η +K [|Mi ( f )−mi ( f )|+ |Mi (g)−mi (g)|] .

Since η > 0 is arbitrary, this proves the claim.
Now continuing with the proof of the theorem, let P be such that

n

∑
i=1

(Mi ( f )−mi ( f ))∆Fi <
ε

2K
,

n

∑
i=1

(Mi (g)−mi (g))∆Fi <
ε

2K
.

Then from the claim,

n

∑
i=1

(Mi (H ◦ ( f ,g))−mi (H ◦ ( f ,g)))∆Fi
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<
n

∑
i=1

K [|Mi ( f )−mi ( f )|+ |Mi (g)−mi (g)|]∆Fi < ε.

Since ε > 0 is arbitrary, this shows H ◦ ( f ,g) satisfies the Riemann criterion and hence
H ◦ ( f ,g) is Riemann integrable as claimed. This proves the theorem.

This theorem implies that if f ,g are Riemann Stieltjes integrable, then so is a f +
bg, | f | , f 2, along with infinitely many other such continuous combinations of Riemann
Stieltjes integrable functions. For example, to see that | f | is Riemann integrable, let
H (a,b) = |a| . Clearly this function satisfies the conditions of the above theorem and so
| f | = H ( f , f ) ∈ R([a,b]) as claimed. The following theorem gives an example of many
functions which are Riemann integrable.

Theorem 4.3.2 Let f : [a,b]→ R be either increasing or decreasing on [a,b] and suppose
F is continuous. Then f ∈ R([a,b]) .

Proof: Let ε > 0 be given and let

xi = a+ i
(

b−a
n

)
, i = 0, · · · ,n.

Since F is continuous, it follows from Corollary 3.0.5 on Page 38 that it is uniformly
continuous. Therefore, if n is large enough, then for all i,

F (xi)−F (xi−1)<
ε

f (b)− f (a)+1

Then since f is increasing,

U ( f ,P)−L( f ,P) =
n

∑
i=1

( f (xi)− f (xi−1))(F (xi)−F (xi−1))

≤ ε

f (b)− f (a)+1

n

∑
i=1

( f (xi)− f (xi−1))

=
ε

f (b)− f (a)+1
( f (b)− f (a))< ε.

Thus the Riemann criterion is satisfied and so the function is Riemann Stieltjes integrable.
The proof for decreasing f is similar.

Corollary 4.3.3 Let [a,b] be a bounded closed interval and let φ : [a,b]→ R be Lipschitz
continuous and suppose F is continuous. Then φ ∈ R([a,b]) . Recall that a function, φ , is
Lipschitz continuous if there is a constant, K, such that for all x,y,

|φ (x)−φ (y)|< K |x− y| .

Proof: Let f (x) = x. Then by Theorem 4.3.2, f is Riemann Stieltjes integrable. Let
H (a,b) ≡ φ (a). Then by Theorem 4.3.1 H ◦ ( f , f ) = φ ◦ f = φ is also Riemann Stieltjes
integrable. This proves the corollary. In fact, it is enough to assume φ is continuous,
although this is harder. This is the content of the next theorem which is where the difficult
theorems about continuity and uniform continuity are used. This is the main result on the
existence of the Riemann Stieltjes integral for this book.
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Theorem 4.3.4 Suppose f : [a,b]→ R is continuous and F is just an increasing function
defined on [a,b]. Then f ∈ R([a,b]) .

Proof: By Corollary 3.0.5 on Page 38, f is uniformly continuous on [a,b] . Therefore, if
ε > 0 is given, there exists a δ > 0 such that if |xi− xi−1|< δ , then Mi−mi <

ε

F(b)−F(a)+1 .

Let
P≡ {x0, · · · ,xn}

be a partition with |xi− xi−1|< δ . Then

U ( f ,P)−L( f ,P) <
n

∑
i=1

(Mi−mi)(F (xi)−F (xi−1))

<
ε

F (b)−F (a)+1
(F (b)−F (a))< ε.

By the Riemann criterion, f ∈ R([a,b]) . This proves the theorem.

4.4 Properties Of The Integral
The integral has many important algebraic properties. First here is a simple lemma.

Lemma 4.4.1 Let S be a nonempty set which is bounded above and below. Then if −S ≡
{−x : x ∈ S} ,

sup(−S) =− inf(S) (4.4.5)

and
inf(−S) =−sup(S) . (4.4.6)

Proof: Consider 4.4.5. Let x ∈ S. Then −x ≤ sup(−S) and so x ≥ −sup(−S) . It
follows that −sup(−S) is a lower bound for S and therefore, −sup(−S) ≤ inf(S) . This
implies sup(−S)≥− inf(S) . Now let−x∈−S. Then x∈ S and so x≥ inf(S) which implies
−x≤− inf(S) . Therefore, − inf(S) is an upper bound for −S and so − inf(S)≥ sup(−S) .
This shows 4.4.5. Formula 4.4.6 is similar and is left as an exercise.

In particular, the above lemma implies that for Mi ( f ) and mi ( f ) defined above

Mi (− f ) =−mi ( f )and mi (− f ) =−Mi ( f ) .

Lemma 4.4.2 If f ∈ R([a,b]) then − f ∈ R([a,b]) and

−
∫ b

a
f (x) dF =

∫ b

a
− f (x) dF.

Proof: The first part of the conclusion of this lemma follows from Theorem 4.3.2 since
the function φ (y)≡−y is Lipschitz continuous. Now choose P such that∫ b

a
− f (x) dF−L(− f ,P)< ε.
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Then since mi (− f ) =−Mi ( f ) ,

ε >
∫ b

a
− f (x) dF−

n

∑
i=1

mi (− f )∆Fi =
∫ b

a
− f (x) dF +

n

∑
i=1

Mi ( f )∆Fi

which implies

ε >
∫ b

a
− f (x) dF +

n

∑
i=1

Mi ( f )∆Fi ≥
∫ b

a
− f (x) dF +

∫ b

a
f (x) dF.

Thus, since ε is arbitrary, ∫ b

a
− f (x) dF ≤−

∫ b

a
f (x) dF

whenever f ∈ R([a,b]) . It follows∫ b

a
− f (x) dF ≤−

∫ b

a
f (x) dF =−

∫ b

a
−(− f (x)) dF ≤

∫ b

a
− f (x) dF

and this proves the lemma.

Theorem 4.4.3 The integral is linear,∫ b

a
(α f +βg)(x) dF = α

∫ b

a
f (x) dF +β

∫ b

a
g(x) dF.

whenever f ,g ∈ R([a,b]) and α,β ∈ R.

Proof: First note that by Theorem 4.3.1, α f +βg ∈ R([a,b]) . To begin with, consider
the claim that if f ,g ∈ R([a,b]) then∫ b

a
( f +g)(x) dF =

∫ b

a
f (x) dF +

∫ b

a
g(x) dF. (4.4.7)

Let P1,Q1 be such that

U ( f ,Q1)−L( f ,Q1)< ε/2, U (g,P1)−L(g,P1)< ε/2.

Then letting P≡ P1∪Q1, Lemma 4.1.2 implies

U ( f ,P)−L( f ,P)< ε/2, and U (g,P)−U (g,P)< ε/2.

Next note that

mi ( f +g)≥ mi ( f )+mi (g) , Mi ( f +g)≤Mi ( f )+Mi (g) .

Therefore,

L(g+ f ,P)≥ L( f ,P)+L(g,P) , U (g+ f ,P)≤U ( f ,P)+U (g,P) .
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For this partition,∫ b

a
( f +g)(x) dF ∈ [L( f +g,P) ,U ( f +g,P)]

⊆ [L( f ,P)+L(g,P) ,U ( f ,P)+U (g,P)]

and ∫ b

a
f (x) dF +

∫ b

a
g(x) dF ∈ [L( f ,P)+L(g,P) ,U ( f ,P)+U (g,P)] .

Therefore, ∣∣∣∣∫ b

a
( f +g)(x) dF−

(∫ b

a
f (x) dF +

∫ b

a
g(x) dF

)∣∣∣∣≤
U ( f ,P)+U (g,P)− (L( f ,P)+L(g,P))< ε/2+ ε/2 = ε.

This proves 4.4.7 since ε is arbitrary.
It remains to show that

α

∫ b

a
f (x) dF =

∫ b

a
α f (x) dF.

Suppose first that α ≥ 0. Then∫ b

a
α f (x) dF ≡ sup{L(α f ,P) : P is a partition}=

α sup{L( f ,P) : P is a partition} ≡ α

∫ b

a
f (x) dF.

If α < 0, then this and Lemma 4.4.2 imply∫ b

a
α f (x) dF =

∫ b

a
(−α)(− f (x)) dF

= (−α)
∫ b

a
(− f (x)) dF = α

∫ b

a
f (x) dF.

This proves the theorem.
In the next theorem, suppose F is defined on [a,b]∪ [b,c] .

Theorem 4.4.4 If f ∈ R([a,b]) and f ∈ R([b,c]) , then f ∈ R([a,c]) and∫ c

a
f (x) dF =

∫ b

a
f (x) dF +

∫ c

b
f (x) dF. (4.4.8)

Proof: Let P1 be a partition of [a,b] and P2 be a partition of [b,c] such that

U ( f ,Pi)−L( f ,Pi)< ε/2, i = 1,2.

Let P≡ P1∪P2. Then P is a partition of [a,c] and

U ( f ,P)−L( f ,P)
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=U ( f ,P1)−L( f ,P1)+U ( f ,P2)−L( f ,P2)< ε/2+ ε/2 = ε. (4.4.9)

Thus, f ∈ R([a,c]) by the Riemann criterion and also for this partition,

∫ b

a
f (x) dF +

∫ c

b
f (x) dF ∈ [L( f ,P1)+L( f ,P2) ,U ( f ,P1)+U ( f ,P2)]

= [L( f ,P) ,U ( f ,P)]

and ∫ c

a
f (x) dF ∈ [L( f ,P) ,U ( f ,P)] .

Hence by 4.4.9,∣∣∣∣∫ c

a
f (x) dF−

(∫ b

a
f (x) dF +

∫ c

b
f (x) dF

)∣∣∣∣<U ( f ,P)−L( f ,P)< ε

which shows that since ε is arbitrary, 4.4.8 holds. This proves the theorem.

Corollary 4.4.5 Let F be continuous and let [a,b] be a closed and bounded interval and
suppose that

a = y1 < y2 · · ·< yl = b

and that f is a bounded function defined on [a,b] which has the property that f is either
increasing on

[
y j,y j+1

]
or decreasing on

[
y j,y j+1

]
for j = 1, · · · , l−1. Then f ∈ R([a,b]) .

Proof: This follows from Theorem 4.4.4 and Theorem 4.3.2.
The symbol,

∫ b
a f (x) dF when a > b has not yet been defined.

Definition 4.4.6 Let [a,b] be an interval and let f ∈ R([a,b]) . Then

∫ a

b
f (x) dF ≡−

∫ b

a
f (x) dF.

Note that with this definition,∫ a

a
f (x) dF =−

∫ a

a
f (x) dF

and so ∫ a

a
f (x) dF = 0.

Theorem 4.4.7 Assuming all the integrals make sense,

∫ b

a
f (x) dF +

∫ c

b
f (x) dF =

∫ c

a
f (x) dF.
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Proof: This follows from Theorem 4.4.4 and Definition 4.4.6. For example, assume

c ∈ (a,b) .

Then from Theorem 4.4.4,∫ c

a
f (x) dF +

∫ b

c
f (x) dF =

∫ b

a
f (x) dF

and so by Definition 4.4.6,∫ c

a
f (x) dF =

∫ b

a
f (x) dF−

∫ b

c
f (x) dF

=
∫ b

a
f (x) dF +

∫ c

b
f (x) dF.

The other cases are similar.
The following properties of the integral have either been established or they follow

quickly from what has been shown so far.

If f ∈ R([a,b]) then if c ∈ [a,b] , f ∈ R([a,c]) , (4.4.10)∫ b

a
α dF = α (F (b)−F (a)) , (4.4.11)∫ b

a
(α f +βg)(x) dF = α

∫ b

a
f (x) dF +β

∫ b

a
g(x) dF, (4.4.12)∫ b

a
f (x) dF +

∫ c

b
f (x) dF =

∫ c

a
f (x) dF, (4.4.13)∫ b

a
f (x) dF ≥ 0 if f (x)≥ 0 and a < b, (4.4.14)∣∣∣∣∫ b

a
f (x) dF

∣∣∣∣≤ ∣∣∣∣∫ b

a
| f (x)| dF

∣∣∣∣ . (4.4.15)

The only one of these claims which may not be completely obvious is the last one. To show
this one, note that

| f (x)|− f (x)≥ 0, | f (x)|+ f (x)≥ 0.

Therefore, by 4.4.14 and 4.4.12, if a < b,∫ b

a
| f (x)| dF ≥

∫ b

a
f (x) dF

and ∫ b

a
| f (x)| dF ≥−

∫ b

a
f (x) dF.

Therefore, ∫ b

a
| f (x)| dF ≥

∣∣∣∣∫ b

a
f (x) dF

∣∣∣∣ .
If b < a then the above inequality holds with a and b switched. This implies 4.4.15.
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4.5 Fundamental Theorem Of Calculus
In this section F (x) = x so things are specialized to the ordinary Riemann integral. With
these properties, it is easy to prove the fundamental theorem of calculus2. Let f ∈R([a,b]) .
Then by 4.4.10 f ∈R([a,x]) for each x∈ [a,b] . The first version of the fundamental theorem
of calculus is a statement about the derivative of the function

x→
∫ x

a
f (t) dt.

Theorem 4.5.1 Let f ∈ R([a,b]) and let

F (x)≡
∫ x

a
f (t) dt.

Then if f is continuous at x ∈ (a,b) ,

F ′ (x) = f (x) .

Proof: Let x ∈ (a,b) be a point of continuity of f and let h be small enough that x+h ∈
[a,b] . Then by using 4.4.13,

h−1 (F (x+h)−F (x)) = h−1
∫ x+h

x
f (t) dt.

Also, using 4.4.11,

f (x) = h−1
∫ x+h

x
f (x) dt.

Therefore, by 4.4.15,∣∣h−1 (F (x+h)−F (x))− f (x)
∣∣= ∣∣∣∣h−1

∫ x+h

x
( f (t)− f (x)) dt

∣∣∣∣
≤
∣∣∣∣h−1

∫ x+h

x
| f (t)− f (x)| dt

∣∣∣∣ .
Let ε > 0 and let δ > 0 be small enough that if |t− x|< δ , then

| f (t)− f (x)|< ε.

Therefore, if |h|< δ , the above inequality and 4.4.11 shows that∣∣h−1 (F (x+h)−F (x))− f (x)
∣∣≤ |h|−1

ε |h|= ε.

Since ε > 0 is arbitrary, this shows

lim
h→0

h−1 (F (x+h)−F (x)) = f (x)

2This theorem is why Newton and Liebnitz are credited with inventing calculus. The integral had been around
for thousands of years and the derivative was by their time well known. However the connection between these
two ideas had not been fully made although Newton’s predecessor, Isaac Barrow had made some progress in this
direction.
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and this proves the theorem.
Note this gives existence for the initial value problem,

F ′ (x) = f (x) , F (a) = 0

whenever f is Riemann integrable and continuous.3

The next theorem is also called the fundamental theorem of calculus.

Theorem 4.5.2 Let f ∈ R([a,b]) and suppose there exists an antiderivative for f ,G, such
that

G′ (x) = f (x)

for every point of (a,b) and G is continuous on [a,b] . Then∫ b

a
f (x) dx = G(b)−G(a) . (4.5.16)

Proof: Let P = {x0, · · · ,xn} be a partition satisfying

U ( f ,P)−L( f ,P)< ε.

Then

G(b)−G(a) = G(xn)−G(x0)

=
n

∑
i=1

G(xi)−G(xi−1) .

By the mean value theorem,

G(b)−G(a) =
n

∑
i=1

G′ (zi)(xi− xi−1)

=
n

∑
i=1

f (zi)∆xi

where zi is some point in [xi−1,xi] . It follows, since the above sum lies between the upper
and lower sums, that

G(b)−G(a) ∈ [L( f ,P) ,U ( f ,P)] ,

and also ∫ b

a
f (x) dx ∈ [L( f ,P) ,U ( f ,P)] .

Therefore, ∣∣∣∣G(b)−G(a)−
∫ b

a
f (x) dx

∣∣∣∣<U ( f ,P)−L( f ,P)< ε.

Since ε > 0 is arbitrary, 4.5.16 holds. This proves the theorem.
3Of course it was proved that if f is continuous on a closed interval, [a,b] , then f ∈ R([a,b]) but this is a hard

theorem using the difficult result about uniform continuity.



4.5. FUNDAMENTAL THEOREM OF CALCULUS 57

The following notation is often used in this context. Suppose F is an antiderivative of
f as just described with F continuous on [a,b] and F ′ = f on (a,b) . Then∫ b

a
f (x) dx = F (b)−F (a)≡ F (x) |ba.

Definition 4.5.3 Let f be a bounded function defined on a closed interval [a,b] and let
P ≡ {x0, · · · , xn} be a partition of the interval. Suppose zi ∈ [xi−1,xi] is chosen. Then the
sum

n

∑
i=1

f (zi)(xi− xi−1)

is known as a Riemann sum. Also,

||P|| ≡max{|xi− xi−1| : i = 1, · · · ,n} .

Proposition 4.5.4 Suppose f ∈ R([a,b]) . Then there exists a partition, P ≡ {x0, · · · ,xn}
with the property that for any choice of zk ∈ [xk−1,xk] ,∣∣∣∣∣

∫ b

a
f (x) dx−

n

∑
k=1

f (zk)(xk− xk−1)

∣∣∣∣∣< ε.

Proof: Choose P such that

U ( f ,P)−L( f ,P)< ε

and then both
∫ b

a f (x) dx and ∑
n
k=1 f (zk)(xk− xk−1) are contained in [L( f ,P) ,U ( f ,P)]

and so the claimed inequality must hold. This proves the proposition.
It is significant because it gives a way of approximating the integral.
The definition of Riemann integrability given in this chapter is also called Darboux

integrability and the integral defined as the unique number which lies between all upper
sums and all lower sums which is given in this chapter is called the Darboux integral . The
definition of the Riemann integral in terms of Riemann sums is given next.

Definition 4.5.5 A bounded function, f defined on [a,b] is said to be Riemann integrable if
there exists a number, I with the property that for every ε > 0, there exists δ > 0 such that
if

P≡ {x0,x1, · · · ,xn}

is any partition having ||P||< δ , and zi ∈ [xi−1,xi] ,∣∣∣∣∣I− n

∑
i=1

f (zi)(xi− xi−1)

∣∣∣∣∣< ε.

The number
∫ b

a f (x) dx is defined as I.

Thus, there are two definitions of the Riemann integral. It turns out they are equivalent
which is the following theorem of of Darboux.
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Theorem 4.5.6 A bounded function defined on [a,b] is Riemann integrable in the sense of
Definition 4.5.5 if and only if it is integrable in the sense of Darboux. Furthermore the two
integrals coincide.

The proof of this theorem is left for the exercises in Problems 10 - 12. It isn’t essential
that you understand this theorem so if it does not interest you, leave it out. Note that it
implies that given a Riemann integrable function f in either sense, it can be approximated
by Riemann sums whenever ||P|| is sufficiently small. Both versions of the integral are
obsolete but entirely adequate for most applications and as a point of departure for a more
up to date and satisfactory integral. The reason for using the Darboux approach to the
integral is that all the existence theorems are easier to prove in this context.

4.6 Exercises
1. Let F (x) =

∫ x3

x2
t5+7

t7+87t6+1 dt. Find F ′ (x) .

2. Let F (x) =
∫ x

2
1

1+t4 dt. Sketch a graph of F and explain why it looks the way it does.

3. Let a and b be positive numbers and consider the function,

F (x) =
∫ ax

0

1
a2 + t2 dt +

∫ a/x

b

1
a2 + t2 dt.

Show that F is a constant.

4. Solve the following initial value problem from ordinary differential equations which
is to find a function y such that

y′ (x) =
x7 +1

x6 +97x5 +7
, y(10) = 5.

5. If F,G ∈
∫

f (x) dx for all x ∈ R, show F (x) = G(x)+C for some constant, C. Use
this to give a different proof of the fundamental theorem of calculus which has for
its conclusion

∫ b
a f (t)dt = G(b)−G(a) where G′ (x) = f (x) .

6. Suppose f is Riemann integrable on [a,b] and continuous. (In fact continuous implies
Riemann integrable.) Show there exists c ∈ (a,b) such that

f (c) =
1

b−a

∫ b

a
f (x) dx.

Hint: You might consider the function F (x) ≡
∫ x

a f (t) dt and use the mean value
theorem for derivatives and the fundamental theorem of calculus.

7. Suppose f and g are continuous functions on [a,b] and that g(x) ̸= 0 on (a,b) . Show
there exists c ∈ (a,b) such that

f (c)
∫ b

a
g(x) dx =

∫ b

a
f (x)g(x) dx.
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Hint: Define F (x)≡
∫ x

a f (t)g(t) dt and let G(x)≡
∫ x

a g(t) dt. Then use the Cauchy
mean value theorem on these two functions.

8. Consider the function

f (x)≡
{

sin
( 1

x

)
if x ̸= 0

0 if x = 0
.

Is f Riemann integrable? Explain why or why not.

9. Prove the second part of Theorem 4.3.2 about decreasing functions.

10. Suppose f is a bounded function defined on [a,b] and | f (x)| < M for all x ∈ [a,b] .
Now let Q be a partition having n points,

{
x∗0, · · · ,x∗n

}
and let P be any other partition.

Show that

|U ( f ,P)−L( f ,P)| ≤ 2Mn ||P||+ |U ( f ,Q)−L( f ,Q)| .

Hint: Write the sum for U ( f ,P)− L( f ,P) and split this sum into two sums, the
sum of terms for which [xi−1,xi] contains at least one point of Q, and terms for
which [xi−1,xi] does not contain any points of Q. In the latter case, [xi−1,xi] must be
contained in some interval,

[
x∗k−1,x

∗
k

]
. Therefore, the sum of these terms should be

no larger than |U ( f ,Q)−L( f ,Q)| .

11. ↑ If ε > 0 is given and f is a Darboux integrable function defined on [a,b], show
there exists δ > 0 such that whenever ||P||< δ , then

|U ( f ,P)−L( f ,P)|< ε.

12. ↑ Prove Theorem 4.5.6.
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Chapter 5

Some Important Linear Algebra
This chapter contains some important linear algebra as distinguished from that which is
normally presented in undergraduate courses consisting mainly of uninteresting things you
can do with row operations.

5.1 Subspaces Spans And Bases
Definition 5.1.1 Let

{
x1, · · · ,xp

}
be vectors in Fn. A linear combination is any expression

of the form
p

∑
i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span(x1, · · · ,xn) . If V ⊆ Fn, then V is called a subspace if whenever α,β are scalars and
u and v are vectors of V, it follows αu+βv ∈V . That is, it is “closed under the algebraic
operations of vector addition and scalar multiplication”. A linear combination of vectors
is said to be trivial if all the scalars in the linear combination equal zero. A set of vectors
is said to be linearly independent if the only linear combination of these vectors which
equals the zero vector is the trivial linear combination. Thus {x1, · · · ,xn} is called linearly
independent if whenever

p

∑
k=1

ckxk = 0

it follows that all the scalars, ck equal zero. A set of vectors,
{

x1, · · · ,xp
}
, is called linearly

dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars, ci, i = 1, · · · ,n, not all zero such that ∑

p
k=1 ckxk = 0.

Lemma 5.1.2 A set of vectors
{

x1, · · · ,xp
}

is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that
{

x1, · · · ,xp
}

is linearly independent. If

xk = ∑
j ̸=k

c jx j,

then
0 = 1xk + ∑

j ̸=k
(−c j)x j,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is
{

x1, · · · ,xp
}

linearly
independent? If it is not there exist scalars, ci, not all zero such that

p

∑
i=1

cixi = 0.

61
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Say ck ̸= 0. Then you can solve for xk as

xk = ∑
j ̸=k

(−c j)/ckx j

contrary to assumption. This proves the lemma.
The following is called the exchange theorem.

Theorem 5.1.3 (Exchange Theorem) Let {x1, · · · ,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · · ,ys) . Then r ≤ s.

Proof: Define span{y1, · · · ,ys} ≡V, it follows there exist scalars, c1, · · · ,cs such that

x1 =
s

∑
i=1

ciyi. (5.1.1)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +

∑
r
i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve (5.1.1) for yk and obtain

yk ∈ span

x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · · ,yk−1,yk+1, · · · ,ys

 .

Define {z1, · · · ,zs−1} by

{z1, · · · ,zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span{x1,z1, · · · ,zs−1}=V because if v∈V, there exist constants c1, · · · ,cs such
that

v =
s−1

∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors,

{x1,z1, · · · ,zs−1}

to obtain
v ∈ span{x1,z1, · · · ,zs−1} .

The vector yk, in the list {y1, · · · ,ys} , has now been replaced with the vector x1 and the re-
sulting modified list of vectors has the same span as the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that

span(x1, · · · ,xl ,z1, · · · ,zp) =V
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where the vectors, z1, · · · ,zp are each taken from the set, {y1, · · · ,ys} and l + p = s. This
has now been done for l = 1 above. Then since r > s, it follows that l ≤ s < r and so
l +1≤ r. Therefore, xl+1 is a vector not in the list, {x1, · · · ,xl} and since

span
{

x1, · · · ,xl ,z1, · · · ,zp
}
=V,

there exist scalars, ci and d j such that

xl+1 =
l

∑
i=1

cixi +
p

∑
j=1

d jz j. (5.1.2)

Now not all the d j can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combi-
nation of the others. Therefore, (5.1.2) can be solved for one of the zi, say zk, in terms of
xl+1 and the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span

x1, · · ·xl ,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · ·zk−1,zk+1, · · · ,zp

=V.

Continue this way, eventually obtaining

span(x1, · · · ,xs) =V.

But then xr ∈ span(x1, · · · ,xs) contrary to the assumption that {x1, · · · ,xr} is linearly in-
dependent. Therefore, r ≤ s as claimed.

Definition 5.1.4 A finite set of vectors, {x1, · · · ,xr} is a basis for Fn if

span(x1, · · · ,xr) = Fn

and {x1, · · · ,xr} is linearly independent.

Corollary 5.1.5 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.

Proof: From the exchange theorem, r ≤ s and s≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · · ,0,1,0 · · · ,0)

for i = 1,2, · · · ,n are a basis for Fn. This proves the corollary.

Lemma 5.1.6 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span(v1, · · · ,vr) is a sub-
space.

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as
in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.



64 CHAPTER 5. SOME IMPORTANT LINEAR ALGEBRA

Proof: Suppose α,β are two scalars and let ∑
r
k=1 ckvk and ∑

r
k=1 dkvk are two elements

of V. What about

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk?

Is it also in V ?

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk =
r

∑
k=1

(αck +βdk)vk ∈V

so the answer is yes. This proves the lemma.

Definition 5.1.7 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace, V of Fn if
span(x1, · · · ,xr) =V and {x1, · · · ,xr} is linearly independent.

Corollary 5.1.8 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r≤ s and s≤ r. Therefore, this proves the corollary.

Definition 5.1.9 Let V be a subspace of Fn. Then dim(V ) read as the dimension of V is
the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 5.1.10 Suppose v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose ∑
k
i=1 ciui +dv = 0. It is required to verify that each ci = 0 and that d =

0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors, {u1, · · · ,uk},

v =−
k

∑
i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then ∑
k
i=1 ciui = 0 and the linear indepen-

dence of {u1, · · · ,uk} implies each ci = 0 also. This proves the lemma.

Theorem 5.1.11 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span{v1} = V, stop. {v1} is a basis for V . Oth-
erwise, there exists v2 ∈ V which is not in span{v1} . By Lemma 5.1.10 {v1,v2} is a lin-
early independent set of vectors. If span{v1,v2} = V stop, {v1,v2} is a basis for V. If
span{v1,v2} ̸= V, then there exists v3 /∈ span{v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n+ 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. This proves the theorem.

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.
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Corollary 5.1.12 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.

Proof: This follows immediately from the proof of Theorem 59.16.4. You do exactly
the same argument except you start with {v1, · · · ,vr} rather than {v1}.

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 5.1.13 Let V be a subspace of Fn and suppose span(u1 · · · ,up) = V where the
ui are nonzero vectors. Then there exist vectors, {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆{

u1 · · · ,up
}

and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set,

{v1 · · · ,vr} ⊆
{

u1 · · · ,up
}
, span(v1 · · · ,vr) =V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r− 1 vectors
would still span V contrary to the definition of r. This proves the theorem.

5.2 An Application To Matrices
The following is a theorem of major significance.

Theorem 5.2.1 Suppose A is an n×n matrix. Then A is one to one if and only if A is onto.
Also, if B is an n×n matrix and AB = I, then it follows BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · ,Aen} where ek is
the column vector which is all zeros except for a 1 in the kth position. This set of vectors is
linearly independent because if

n

∑
k=1

ckAek = 0,

then since A is linear,

A

(
n

∑
k=1

ckek

)
= 0

and since A is one to one, it follows
n

∑
k=1

ckek = 02

which implies each ck = 0. Therefore, {Ae1, · · · ,Aen} must be a basis for Fn because
if not there would exist a vector, y /∈ span(Ae1, · · · ,Aen) and then by Lemma 5.1.10,
{Ae1, · · · ,Aen,y}would be an independent set of vectors having n+1 vectors in it, contrary
to the exchange theorem. It follows that for y ∈ Fn there exist constants, ci such that

y =
n

∑
k=1

ckAek = A

(
n

∑
k=1

ckek

)
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showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 5.1.2 on Page 61, one of the columns
is a linear combination of the others and so the span of the columns of A equals the span of
the n−1 other columns. This violates the exchange theorem because {e1, · · · ,en} would be
a linearly independent set of vectors contained in the span of only n−1 vectors. Therefore,
the columns of A must be independent and this equivalent to saying that Ax = 0 if and
only if x = 0. This implies A is one to one because if Ax = Ay, then A(x−y) = 0 and so
x−y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since oth-
erwise, there would exist, x ̸= 0 such that Bx = 0 and then ABx = A0 = 0 ̸= Ix. Therefore,
from what was just shown, B is also onto. In addition to this, A must be one to one because
if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing y = 0. Now from
what is given to be so, it follows (AB)A = A and so using the associative law for matrix
multiplication,

A(BA)−A = A(BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. This proves the theorem.

This theorem shows that if an n× n matrix, B acts like an inverse when multiplied on
one side of A it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =

 1 0
0 1
1 0

 , B =

(
1 0 0
1 1 −1

)
(5.2.3)

Then

BA =

(
1 0
0 1

)
but

AB =

 1 0 0
1 1 −1
1 0 0

 .

5.3 The Mathematical Theory Of Determinants
5.3.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 5.3.1 There exists a function, sgnn which maps each ordered list of numbers from
{1, · · · ,n} to one of the three numbers, 0,1, or −1 which also has the following properties.

sgnn (1, · · · ,n) = 1 (5.3.4)

sgnn (i1, · · · , p, · · · ,q, · · · , in) =−sgnn (i1, · · · ,q, · · · , p, · · · , in) (5.3.5)
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In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by−1. Also, in the case where n > 1 and {i1, · · · , in}= {1, · · · ,n}
so that every number from {1, · · · ,n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in)≡

(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (5.3.6)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: Define sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1)≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in)≡ sign

(
∏
r<s

(is− ir)

)

This delivers either −1,1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as ( j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p,q} , jr = ir. See the following illustration

i1
1

i2
2

· · · ip

p
· · · iq

q
· · · in

n

i1
1

i2
2

· · · iq
p

· · · ip

q
· · · in

n

j1
1

j2
2

· · · jp

p
· · · jq

q
· · · jn

n
Then

sgnn ( j1, · · · , jn)≡ sign

(
∏
r<s

( js− jr)

)

= sign

 both p,q
(ip− iq)

one of p,q︷ ︸︸ ︷
∏

p< j<q
(i j− iq) ∏

p< j<q
(ip− i j)

neither p nor q

∏
r<s,r,s/∈{p,q}

(is− ir)


The last product consists of the product of terms which were in the un-switched product
∏r<s (is− ir) so produces no change in sign, while the two products in the middle both
introduce q− p−1 minus signs. Thus their product produces no change in sign. The first
factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) . Therefore, this
switch introduced a minus sign and

sgnn ( j1, · · · , jn) =−sgnn (i1, · · · , in)
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Now consider the last claim. In computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) there will
be the product of n−θ negative terms

(iθ+1−n) · · ·(in−n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) are those
which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms of the
form (n− i j) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) = (−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■

Lemma 5.3.2 Every ordered list of distinct numbers from {1,2, · · · ,n} can be obtained
from every other such ordered list by a finite number of switches. Also, sgnn is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1
elements. Take two ordered lists of numbers, P1,P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches

in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 5.3.4 and
5.3.5, you could start with f (1, · · · ,n) = g(1, · · · ,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g(i1, · · · , in) . If any numbers are repeated,
then 5.3.5 gives both functions are equal to zero for that ordered list. ■

Definition 5.3.3 When you have an ordered list of distinct numbers from {1,2, · · · ,n} , say

(i1, · · · , in) ,

this ordered list is called a permutation. The symbol for all such permutations is Sn. The
number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1,2, · · · ,n} to {1,2, · · · ,n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.
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5.4 The Determinant
Definition 5.4.1 Let f be a function which has the set of ordered lists of numbers from
{1, · · · ,n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · ·kn)

to be the sum of all the f (k1 · · ·kn) for all possible choices of ordered lists (k1, · · · ,kn) of
numbers of {1, · · · ,n} . For example,

∑
(k1,k2)

f (k1,k2) = f (1,2)+ f (2,1)+ f (1,1)+ f (2,2) .

5.4.1 The Definition
Definition 5.4.2 Let (ai j) = A denote an n× n matrix. The determinant of A, denoted by
det(A) is defined by

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·ankn

where the sum is taken over all ordered lists of numbers from {1, · · · ,n}. Note it suffices
to take the sum over only those ordered lists in which there are no repeats because if there
are, sgn(k1, · · · ,kn) = 0 and so that term contributes 0 to the sum.

5.4.2 Permuting Rows Or Columns
Let A be an n×n matrix, A = (ai j) and let (r1, · · · ,rn) denote an ordered list of n numbers
from {1, · · · ,n}. Let A(r1, · · · ,rn) denote the matrix whose kth row is the rk row of the
matrix A. Thus

det(A(r1, · · · ,rn)) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (5.4.7)

and
A(1, · · · ,n) = A.

Proposition 5.4.3 Let
(r1, · · · ,rn)

be an ordered list of numbers from {1, · · · ,n}. Then

sgn(r1, · · · ,rn)det(A)

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (5.4.8)

= det(A(r1, · · · ,rn)) . (5.4.9)
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Proof: Let (1, · · · ,n) = (1, · · · ,r, · · ·s, · · · ,n) so r < s.

det(A(1, · · · ,r, · · · ,s, · · · ,n)) = (5.4.10)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kr, · · · ,ks, · · · ,kn)a1k1 · · ·arkr · · ·asks · · ·ankn ,

and renaming the variables, calling ks,kr and kr, ks, this equals

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,ks, · · · ,kr, · · · ,kn)a1k1 · · ·arks · · ·askr · · ·ankn

= ∑
(k1,··· ,kn)

−sgn

k1, · · · ,
These got switched︷ ︸︸ ︷

kr, · · · ,ks , · · · ,kn

a1k1 · · ·askr · · ·arks · · ·ankn

=−det(A(1, · · · ,s, · · · ,r, · · · ,n)) . (5.4.11)

Consequently,

det(A(1, · · · ,s, · · · ,r, · · · ,n)) =

−det(A(1, · · · ,r, · · · ,s, · · · ,n)) =−det(A)

Now letting A(1, · · · ,s, · · · ,r, · · · ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det(A(r1, · · · ,rn)) = (−1)p det(A)

where it took p switches to obtain(r1, · · · ,rn) from (1, · · · ,n). By Lemma 5.3.1, this implies

det(A(r1, · · · ,rn)) = (−1)p det(A) = sgn(r1, · · · ,rn)det(A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · ,rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 5.4.10 -5.4.11 shows that detA(r1, · · · ,rn) = 0 and also sgn(r1, · · · ,rn) = 0 so
the formula holds in this case also. ■

Observation 5.4.4 There are n! ordered lists of distinct numbers from {1, · · · ,n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n−1 choices for the second. Thus there are n(n−1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · ,n} as
stated in the observation.
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5.4.3 A Symmetric Definition
With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det(A) = det

(
AT
)
.

Corollary 5.4.5 The following formula for det(A) is valid.

det(A) =
1
n!
·

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn . (5.4.12)

And also det
(
AT
)
= det(A) where AT is the transpose of A. (Recall that for AT =

(
aT

i j

)
,

aT
i j = a ji.)

Proof: From Proposition 5.4.3, if the ri are distinct,

det(A) = ∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

Summing over all ordered lists, (r1, · · · ,rn) where the ri are distinct, (If the ri are not
distinct, sgn(r1, · · · ,rn) = 0 and so there is no contribution to the sum.)

n!det(A) =

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

5.4.4 The Alternating Property Of The Determinant
Corollary 5.4.6 If two rows or two columns in an n×n matrix A, are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det(A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · ,xan + ybn). Then

det(A) = xdet(A1)+ ydet(A2)

where the ith row of A1 is (a1, · · · ,an) and the ith row of A2 is (b1, · · · ,bn) , all other rows of
A1 and A2 coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 5.4.3 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 5.4.5 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det(A) = det
(
AT )=−det

(
AT

1
)
=−det(A1) .
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If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) =−det(A) and so det(A) = 0.

It remains to verify the last assertion.

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·
(
xaki + ybki

)
· · ·ankn

= x ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·aki · · ·ankn

+y ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·bki · · ·ankn

≡ xdet(A1)+ ydet(A2) .

The same is true of columns because det
(
AT
)
= det(A) and the rows of AT are the columns

of A. ■

5.4.5 Linear Combinations And Determinants
Linear combinations have been discussed already. However, here is a review and some new
terminology.

Definition 5.4.7 A vector w, is a linear combination of the vectors {v1, · · · ,vr} if there
exists scalars, c1, · · ·cr such that w =∑

r
k=1 ckvk. This is the same as saying

w ∈ span(v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 5.4.8 Suppose A is an n×n matrix and some column (row) is a linear combina-
tion of r other columns (rows). Then det(A) = 0.

Proof: Let A =
(

a1 · · · an
)

be the columns of A and suppose the condition that
one column is a linear combination of r of the others is satisfied. Then by using Corollary
5.4.6 the determinant of A is zero if and only if the determinant of the matrix B, which has
this special column placed in the last position, equals zero. Thus an = ∑

r
k=1 ckak and so

det(B) = det
(

a1 · · · ar · · · an−1 ∑
r
k=1 ckak

)
.

By Corollary 5.4.6

det(B) =
r

∑
k=1

ck det
(

a1 · · · ar · · · an−1 ak
)
= 0.

because there are two equal columns. The case for rows follows from the fact that det(A) =
det
(
AT
)
. ■
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5.4.6 The Determinant Of A Product
Recall the following definition of matrix multiplication.

Definition 5.4.9 If A and B are n×n matrices, A = (ai j) and B = (bi j), AB = (ci j) where

ci j ≡
n

∑
k=1

aikbk j.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 5.4.10 Let A and B be n×n matrices. Then

det(AB) = det(A)det(B) .

Proof: Let ci j be the i jth entry of AB. Then by Proposition 5.4.3,

det(AB) =

∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)c1k1 · · ·cnkn

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)

(
∑
r1

a1r1br1k1

)
· · ·

(
∑
rn

anrnbrnkn

)
= ∑

(r1··· ,rn)
∑

(k1,··· ,kn)

sgn(k1, · · · ,kn)br1k1 · · ·brnkn (a1r1 · · ·anrn)

= ∑
(r1··· ,rn)

sgn(r1 · · ·rn)a1r1 · · ·anrn det(B) = det(A)det(B) . ■

5.4.7 Cofactor Expansions
Lemma 5.4.11 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
(5.4.13)

or

M =

(
A 0
∗ a

)
(5.4.14)

where a is a number and A is an (n−1)× (n−1) matrix and ∗ denotes either a column
or a row having length n− 1 and the 0 denotes either a column or a row of length n− 1
consisting entirely of zeros. Then det(M) = adet(A) .

Proof: Denote M by (mi j) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in
the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det(M)≡ ∑
(k1,··· ,kn)

sgnn (k1, · · · ,kn)m1k1 · · ·mnkn
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Letting θ denote the position of n in the ordered list, (k1, · · · ,kn) then using Lemma 5.3.1,
det(M) equals

∑
(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · ,kθ−1,

θ

kθ+1, · · · ,
n−1
kn

)
m1k1 · · ·mnkn

Now suppose 5.4.14. Then if kn ̸= n, the term involving mnkn in the above expression equals
zero. Therefore, the only terms which survive are those for which θ = n or in other words,
those for which kn = n. Therefore, the above expression reduces to

a ∑
(k1,··· ,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet(A) .

To get the assertion in the situation of 5.4.13 use Corollary 5.4.5 and 5.4.14 to write

det(M) = det
(
MT )= det

((
AT 0
∗ a

))
= adet

(
AT )= adet(A) .■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.

Definition 5.4.12 Let A = (ai j) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof(A) is defined by cof(A) = (ci j) where to obtain ci j delete the ith row and the
jth column of A, take the determinant of the (n−1)× (n−1) matrix which results, (This
is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. To make the
formulas easier to remember, cof(A)i j will denote the i jth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outra-
geous totally unjustified assertion was made that the same number would be obtained by
expanding the determinant along any row or column. The following theorem proves this
assertion.

Theorem 5.4.13 Let A be an n×n matrix where n≥ 2. Then

det(A) =
n

∑
j=1

ai j cof(A)i j =
n

∑
i=1

ai j cof(A)i j . (5.4.15)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · ,ain) be the ith row of A. Let B j be the matrix obtained from A by
leaving every row the same except the ith row which in B j equals

(0, · · · ,0,ai j,0, · · · ,0) .

Then by Corollary 5.4.6,

det(A) =
n

∑
j=1

det(B j)
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Denote by Ai j the (n−1)× (n−1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof(A)i j ≡ (−1)i+ j det
(
Ai j
)
. At this point, recall that from Proposition

5.4.3, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 5.4.11,

det(B j) = (−1)n− j (−1)n−i det
((

Ai j ∗
0 ai j

))
= (−1)i+ j det

((
Ai j ∗
0 ai j

))
= ai j cof(A)i j .

Therefore,

det(A) =
n

∑
j=1

ai j cof(A)i j

which is the formula for expanding det(A) along the ith row. Also,

det(A) = det
(
AT )= n

∑
j=1

aT
i j cof

(
AT )

i j

=
n

∑
j=1

a ji cof(A) ji

which is the formula for expanding det(A) along the ith column. ■

5.4.8 Formula For The Inverse
Note that this gives an easy way to write a formula for the inverse of an n×n matrix.

Theorem 5.4.14 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(

a−1
i j

)
where

a−1
i j = det(A)−1 cof(A) ji

for cof(A)i j the i jth cofactor of A.

Proof: By Theorem 5.4.13 and letting (air) = A, if det(A) ̸= 0,
n

∑
i=1

air cof(A)ir det(A)−1 = det(A)det(A)−1 = 1.

Now consider
n

∑
i=1

air cof(A)ik det(A)−1

when k ̸= r. Replace the kth column with the rth column to obtain a matrix Bk whose
determinant equals zero by Corollary 5.4.6. However, expanding this matrix along the kth

column yields

0 = det(Bk)det(A)−1 =
n

∑
i=1

air cof(A)ik det(A)−1
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Summarizing,
n

∑
i=1

air cof(A)ik det(A)−1 = δ rk.

Using the other formula in Theorem 5.4.13, and similar reasoning,

n

∑
j=1

ar j cof(A)k j det(A)−1 = δ rk

This proves that if det(A) ̸= 0, then A−1 exists with A−1 =
(

a−1
i j

)
, where

a−1
i j = cof(A) ji det(A)−1 .

Now suppose A−1 exists. Then by Theorem 5.4.10,

1 = det(I) = det
(
AA−1)= det(A)det

(
A−1)

so det(A) ̸= 0. ■
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.

Corollary 5.4.15 Let A be an n×n matrix and suppose there exists an n×n matrix B such
that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n×n matrix such that
AC = I, then A−1 exists and A−1 =C.

Proof: Since BA = I, Theorem 5.4.10 implies

detBdetA = 1

and so detA ̸= 0. Therefore from Theorem 5.4.14, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1)= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n×n matrices.
Theorem 5.4.14 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

5.4.9 Cramer’s Rule

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y
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thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n

∑
j=1

a−1
i j y j =

n

∑
j=1

1
det(A)

cof(A) ji y j.

By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det

 ∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector (y1 · · · ·,yn)
T , and the

determinant of this modified matrix is taken and divided by det(A). This formula is known
as Cramer’s rule.

5.4.10 Upper Triangular Matrices
Definition 5.4.16 A matrix M, is upper triangular if Mi j = 0 whenever i > j. Thus such a
matrix equals zero below the main diagonal, the entries of the form Mii as shown.

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 5.4.13.

Corollary 5.4.17 Let M be an upper (lower) triangular matrix. Then det(M) is obtained
by taking the product of the entries on the main diagonal.

5.5 The Cayley Hamilton Theorem∗

Definition 5.5.1 Let A be an n×n matrix. The characteristic polynomial is defined as

qA (t)≡ det(tI−A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p(t) = tn +
an−1tn−1 + · · ·+a1t +a0, denote by p(A) the matrix defined by

p(A)≡ An +an−1An−1 + · · ·+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.
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The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra3. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 5.5.2 Suppose for all |λ | large enough,

A0 +A1λ + · · ·+Amλ
m = 0,

where the Ai are n×n matrices. Then each Ai = 0.

Proof: Multiply by λ
−m to obtain

A0λ
−m +A1λ

−m+1 + · · ·+Am−1λ
−1 +Am = 0.

Now let |λ | → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 +A1λ

−m+2 + · · ·+Am−1 = 0.

Now let |λ | → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ → ∞ to
obtain that all the Ai = 0. ■

With the lemma, here is a simple corollary.

Corollary 5.5.3 Let Ai and Bi be n×n matrices and suppose

A0 +A1λ + · · ·+Amλ
m = B0 +B1λ + · · ·+Bmλ

m

for all |λ | large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai,Bi then one can
substitute an n×n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 5.5.4 Let A be an n×n matrix and let q(λ )≡ det(λ I−A) be the characteristic
polynomial. Then q(A) = 0.

Proof: Let C (λ ) equal the transpose of the cofactor matrix of (λ I−A) for |λ | large.
(If |λ | is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ , (λ I−A)−1 exists.) Therefore, by Theorem 5.4.14

C (λ ) = q(λ )(λ I−A)−1 .

Say
q(λ ) = a0 +a1λ + · · ·+λ

n

3A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time
later and a proof was given by Frobenius in 1878.
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Note that each entry in C (λ ) is a polynomial in λ having degree no more than n− 1. For
example, you might have something like

C (λ ) =

 λ
2−6λ +9 3−λ 0
2λ −6 λ

2−3λ 0
λ −1 λ −1 λ

2−3λ +2



=

 9 3 0
−6 0 0
−1 −1 2

+λ

 −6 −1 0
2 −3 0
1 1 −3

+λ
2

 1 0 0
0 1 0
0 0 1


Therefore, collecting the terms in the general case,

C (λ ) =C0 +C1λ + · · ·+Cn−1λ
n−1

for C j some n×n matrix. Then

C (λ )(λ I−A) =
(

C0 +C1λ + · · ·+Cn−1λ
n−1
)
(λ I−A) = q(λ ) I

Then multiplying out the middle term, it follows that for all |λ | sufficiently large,

a0I +a1Iλ + · · ·+ Iλ
n =C0λ +C1λ

2 + · · ·+Cn−1λ
n

−
[
C0A+C1Aλ + · · ·+Cn−1Aλ

n−1
]

=−C0A+(C0−C1A)λ +(C1−C2A)λ
2 + · · ·+(Cn−2−Cn−1A)λ

n−1 +Cn−1λ
n

Then, using Corollary 5.5.3, one can replace λ on both sides with A. Then the right side is
seen to equal 0. Hence the left side, q(A) I is also equal to 0. ■

5.5.1 An Identity of Cauchy

Theorem 5.5.5 Both the left and the right sides in the following yield the same polynomial
in the variables ai,bi for i≤ n.

∏
i, j

(ai +b j)

∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

...
1

an+b1
· · · 1

an+bn

∣∣∣∣∣∣∣= ∏
j<i

(ai−a j)(bi−b j) . (5.5.16)

Proof: The theorem is true if n = 2. This follows from some computations. Suppose it
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is true for n−1, n≥ 3.∣∣∣∣∣∣∣∣∣∣

1
a1+b1

1
a1+b2

· · · 1
a1+bn

...
... · · ·

...
1

an−1+b1
1

an−1+b2
1

an−1+bn
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

an−a1
(a1+b1)(b1+an)

an−a1
(a1+b2)(b2+an)

· · · an−a1
(a1+bn)(an+bn)

...
... · · ·

...
an−an−1

(an−1+b1)(an+b1)
an−an−1

(b2+an)(b2+an−1)
an−an−1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
Continuing to use the multilinear properties of determinants, this equals∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)(b1+an)

1
(a1+b2)(b2+an)

· · · 1
(a1+bn)(an+bn)

...
... · · ·

...
1

(an−1+b1)(an+b1)
1

(b2+an)(b2+an−1)
1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
n−1

∏
k=1

(an−ak)

and this equals ∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
(a1+bn)

...
... · · ·

...
1

(an−1+b1)
1

(b2+an−1)
1

(bn+an−1)

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now take −1 times the last column and add to each previous column. Thus it equals∣∣∣∣∣∣∣∣∣∣

bn−b1
(a1+b1)(a1+bn)

bn−b2
(a1+b2)(a1+bn)

· · · 1
(a1+bn)

...
... · · ·

...
bn−b1

(b1+an−1)(bn+an−1)
bn−b2

(b2+an−1)(bn+an−1)
1

(an−1+bn)

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now continue simplifying using the multilinear property of the determinant.∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
...

... · · ·
...

1
(b1+an−1)

1
(b2+an−1)

1
0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

Now, expanding along the bottom row, what has just resulted is∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1
... · · ·

...
1

an−1+b1
· · · 1

an−1+bn−1

∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)
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By induction this equals

∏
n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

∏ j<i≤n−1 (ai−a j)(bi−b j)

∏i, j≤n−1 (ai +b j)

=
∏ j<i≤n (ai−a j)(bi−b j)

∏i, j≤n (ai +b j)
■

5.6 Block Multiplication Of Matrices
Consider the following problem (

A B
C D

)(
E F
G H

)
You know how to do this. You get(

AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E,F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =

 A11 · · · A1m
...

. . .
...

Ar1 · · · Arm

 (5.6.17)

where Ai j is a si× p j matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · ,r. Such
a matrix is called a block matrix, also a partitioned matrix. How do you get the block
Ai j? Here is how for A an m×n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×p j︷ ︸︸ ︷ 0
Ip j×p j

0

. (5.6.18)

In the block column matrix on the right, you need to have c j− 1 rows of zeros above the
small p j × p j identity matrix where the columns of A involved in Ai j are c j, · · · ,c j + p j
and in the block row matrix on the left, you need to have ri− 1 columns of zeros to the
left of the si× si identity matrix where the rows of A involved in Ai j are ri, · · · ,ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. There is no overlap between the
blocks of A. Thus the identity n×n identity matrix corresponding to multiplication on the
right of A is of the form  Ip1×p1 0

. . .
0 Ipm×pm
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these little identity matrices don’t overlap. A similar conclusion follows from consideration
of the matrices Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form  B11 · · · B1p

...
. . .

...
Br1 · · · Brp

 (5.6.19)

and A is a block matrix of the form A11 · · · A1m
...

. . .
...

Ap1 · · · Apm

 (5.6.20)

and that for all i, j, it makes sense to multiply BisAs j for all s ∈ {1, · · · , p}. (That is the two
matrices, Bis and As j are conformable.) and that for fixed i j, it follows BisAs j is the same
size for each s so that it makes sense to write ∑s BisAs j.

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way is
to partition both matrices, formally multiply the blocks to get another block matrix and this
one will be BA partitioned. Before presenting this theorem, here is a simple lemma which
is really a special case of the theorem.

Lemma 5.6.1 Consider the following product. 0
I
0

( 0 I 0
)

where the first is n× r and the second is r×n. The small identity matrix I is an r× r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form 0 0 0

0 I 0
0 0 0


Proof: From the definition of the way you multiply matrices, the product is  0

I
0

0 · · ·

 0
I
0

e1 · · ·

 0
I
0

er

 0
I
0

0 · · ·

 0
I
0

0


which yields the claimed result. In the formula e j referrs to the column vector of length r
which has a 1 in the jth position. This proves the lemma.
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Theorem 5.6.2 Let B be a q× p block matrix as in 5.6.19 and let A be a p×n block matrix
as in 5.6.20 such that Bis is conformable with As j and each product, BisAs j for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the i jth block is of the form

∑
s

BisAs j. (5.6.21)

Proof: From 5.6.18

BisAs j =
(

0 Iri×ri 0
)

B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0


where here it is assumed Bis is ri× ps and As j is ps×q j. The product involves the sth block
in the ith row of blocks for B and the sth block in the jth column of A. Thus there are the
same number of rows above the Ips×ps as there are columns to the left of Ips×ps in those two
inside matrices. Then from Lemma 5.6.1 0

Ips×ps

0

( 0 Ips×ps 0
)
=

 0 0 0
0 Ips×ps 0
0 0 0


Since the blocks of small identity matrices do not overlap,

∑
s

 0 0 0
0 Ips×ps 0
0 0 0

=

 Ip1×p1 0
. . .

0 Ipp×pp

= I

and so
∑
s

BisAs j =

∑
s

(
0 Iri×ri 0

)
B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0


=
(

0 Iri×ri 0
)

BIA

 0
Iq j×q j

0

=
(

0 Iri×ri 0
)

BA

 0
Iq j×q j

0


Hence the i jth block of BA equals the formal multiplication according to matrix multipli-
cation,

∑
s

BisAs j.

This proves the theorem.

Example 5.6.3 Let an n×n matrix have the form

A =

(
a b
c P

)
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where P is n−1×n−1. Multiply it by

B =

(
p q
r Q

)
where B is also an n×n matrix and Q is n−1×n−1.

You use block multiplication(
a b
c P

)(
p q
r Q

)
=

(
ap+br aq+bQ
pc+Pr cq+PQ

)
Note that this all makes sense. For example, b = 1× n− 1 and r = n− 1× 1 so br is a
1×1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this the-
orem, pM (t) denotes the characteristic polynomial, det(tI−M) . Thus the zeros of this
polynomial are the eigenvalues of the matrix, M.

Theorem 5.6.4 Let A be an m×n matrix and let B be an n×m matrix for m≤ n. Then

pBA (t) = tn−m pAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues.

Proof: Use block multiplication to write(
AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)
(

I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore, (
I A
0 I

)−1( AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

Since the two matrices above are similar it follows that
(

0 0
B BA

)
and

(
AB 0
B 0

)
have

the same characteristic polynomials. Therefore, noting that BA is an n× n matrix and AB
is an m×m matrix,

tm det(tI−BA) = tn det(tI−AB)

and so det(tI−BA) = pBA (t) = tn−m det(tI−AB) = tn−m pAB (t) . This proves the theorem.
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5.7 Exercises
1. Show that matrix multiplication is associative. That is, (AB)C = A(BC) .

2. Show the inverse of a matrix, if it exists, is unique. Thus if AB = BA = I, then
B = A−1.

3. In the proof of Theorem 5.4.14 it was claimed that det(I) = 1. Here I = (δ i j) . Prove
this assertion. Also prove Corollary 5.4.17.

4. Let v1, · · · ,vn be vectors in Fn and let M (v1, · · · ,vn) denote the matrix whose ith

column equals vi. Define

d (v1, · · · ,vn)≡ det(M (v1, · · · ,vn)) .

Prove that d is linear in each variable, (multilinear), that

d (v1, · · · ,vi, · · · ,v j, · · · ,vn) =−d (v1, · · · ,v j, · · · ,vi, · · · ,vn) , (5.7.22)

and
d (e1, · · · ,en) = 1 (5.7.23)

where here e j is the vector in Fn which has a zero in every position except the jth

position in which it has a one.

5. Suppose f : Fn×·· ·×Fn→ F satisfies 5.7.22 and 5.7.23 and is linear in each vari-
able. Show that f = d.

6. Show that if you replace a row (column) of an n× n matrix A with itself added to
some multiple of another row (column) then the new matrix has the same determinant
as the original one.

7. If A = (ai j) , show det(A) = ∑(k1,··· ,kn) sgn(k1, · · · ,kn)ak11 · · ·aknn.

8. Use the result of Problem 6 to evaluate by hand the determinant

det


1 2 3 2
−6 3 2 3
5 2 2 3
3 4 6 4

 .

9. Find the inverse if it exists of the matrix, et cos t sin t
et −sin t cos t
et −cos t −sin t

 .

10. Let Ly = y(n)+ an−1 (x)y(n−1)+ · · ·+ a1 (x)y′+ a0 (x)y where the ai are given con-
tinuous functions defined on a closed interval, (a,b) and y is some function which
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has n derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1,2, · · · ,n.
The Wronskian of these functions, yi is defined as

W (y1, · · · ,yn)(x)≡ det


y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y(n−1)
1 (x) · · · y(n−1)

n (x)


Show that for W (x) =W (y1, · · · ,yn)(x) to save space,

W ′ (x) = det


y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y(n)1 (x) · · · y(n)n (x)

 .

Now use the differential equation, Ly = 0 which is satisfied by each of these func-
tions, yi and properties of determinants presented above to verify that

W ′+an−1 (x)W = 0.

Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a,b) or never.

11. Two n× n matrices, A and B, are similar if B = S−1AS for some invertible n× n
matrix, S. Show that if two matrices are similar, they have the same characteristic
polynomials.

12. Suppose the characteristic polynomial of an n×n matrix, A is of the form

tn +an−1tn−1 + · · ·+a1t +a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix, A. Show that
A−1 exists if and only if a0 ̸= 0.

13. In constitutive modeling of the stress and strain tensors, one sometimes considers
sums of the form ∑

∞
k=0 akAk where A is a 3×3 matrix. Show using the Cayley Hamil-

ton theorem that if such a thing makes any sense, you can always obtain it as a finite
sum having no more than n terms.

5.8 Shur’s Theorem
Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Shur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 5.8.1 Let
{x1, · · · ,xn}
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be a basis for Fn. Then there exists an orthonormal basis for Fn,

{u1, · · · ,un}

which has the property that for each k ≤ n,

span(x1, · · · ,xk) = span(u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) =
span(x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (u j ·ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1 ·u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1 ·u j)u j

∣∣∣ , (5.8.24)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 5.8.24 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 ·ul) = C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)(u j ·ul)

)

= C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)δ l j

)
= C ((xk+1 ·ul)− (xk+1 ·ul)) = 0.

The vectors,
{

u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length.

The process by which these vectors were generated is called the Gram Schmidt process.
Recall the following definition.

Definition 5.8.2 An n×n matrix, U, is unitary if UU∗ = I =U∗U where U∗ is defined to
be the transpose of the conjugate of U.

Theorem 5.8.3 Let A be an n×n matrix. Then there exists a unitary matrix, U such that

U∗AU = T, (5.8.25)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation.
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Proof: Let v1 be a unit eigenvector for A . Then there exists λ 1 such that

Av1 = λ 1v1, |v1|= 1.

Extend {v1} to a basis and then use Lemma 5.8.1 to obtain {v1, · · · ,vn}, an orthonormal
basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the above, it follows U0
is unitary. Then U∗0 AU0 is of the form

λ 1 ∗ · · · ∗
0
... A1
0


where A1 is an n− 1× n− 1 matrix. Repeat the process for the matrix, A1 above. There
exists a unitary matrix Ũ1 such that Ũ∗1 A1 Ũ1 is of the form

λ 2 ∗ · · · ∗
0
... A2
0

 .

Now let U1 be the n×n matrix of the form(
1 0
0 Ũ1

)
.

This is also a unitary matrix because by block multiplication,(
1 0
0 Ũ1

)∗( 1 0
0 Ũ1

)
=

(
1 0
0 Ũ∗1

)(
1 0
0 Ũ1

)
=

(
1 0
0 Ũ∗1 Ũ1

)
=

(
1 0
0 I

)
Then using block multiplication, U∗1 U∗0 AU0U1 is of the form

λ 1 ∗ ∗ · · · ∗
0 λ 2 ∗ · · · ∗
0 0
...

... A2
0 0


where A2 is an n−2×n−2 matrix. Continuing in this way, there exists a unitary matrix,
U given as the product of the Ui in the above construction such that

U∗AU = T

where T is some upper triangular matrix. Since the matrix is upper triangular, the charac-
teristic equation is ∏

n
i=1 (λ −λ i) where the λ i are the diagonal entries of T. Therefore, the

λ i are the eigenvalues.
What if A is a real matrix and you only want to consider real unitary matrices?
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Theorem 5.8.4 Let A be a real n×n matrix. Then there exists a real unitary matrix, Q and
a matrix T of the form

T =

 P1 · · · ∗
. . .

...
0 Pr

 (5.8.26)

where Pi equals either a real 1× 1 matrix or Pi equals a real 2× 2 matrix having two
complex eigenvalues of A such that QT AQ = T. The matrix, T is called the real Schur form
of the matrix A.

Proof: Suppose
Av1 = λ 1v1, |v1|= 1

where λ 1 is real. Then let {v1, · · · ,vn} be an orthonormal basis of vectors in Rn. Let Q0 be
a matrix whose ith column is vi. Then Q∗0AQ0 is of the form

λ 1 ∗ · · · ∗
0
... A1
0


where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 5.8.3 up to
this point.

Now in case λ 1 = α + iβ , it follows since A is real that v1 = z1 + iw1 and that v1 =
z1− iw1 is an eigenvector for the eigenvalue, α − iβ . Here z1 and w1 are real vectors. It
is clear that {z1,w1} is an independent set of vectors in Rn. Indeed,{v1,v1} is an indepen-
dent set and it follows span(v1,v1) = span(z1,w1) . Now using the Gram Schmidt theorem
in Rn, there exists {u1,u2} , an orthonormal set of real vectors such that span(u1,u2) =
span(v1,v1) . Now let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a uni-
tary matrix whose ith column is ui. Then Au j are both in span(u1,u2) for j = 1,2 and so
uT

k Au j = 0 whenever k ≥ 3. It follows that Q∗0AQ0 is of the form
∗ ∗ · · · ∗
∗ ∗
0
... A1
0


where A1 is now an n−2×n−2 matrix. In this case, find Q̃1 an n−2×n−2 matrix to put
A1 in an appropriate form as above and come up with A2 either an n−4×n−4 matrix or
an n−3×n−3 matrix. Then the only other difference is to let

Q1 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... Q̃1
0 0
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thus putting a 2×2 identity matrix in the upper left corner rather than a one. Repeating this
process with the above modification for the case of a complex eigenvalue leads eventually
to 5.8.26 where Q is the product of real unitary matrices Qi above. Finally,

λ I−T =

 λ I1−P1 · · · ∗
. . .

...
0 λ Ir−Pr


where Ik is the 2×2 identity matrix in the case that Pk is 2×2 and is the number 1 in the
case where Pk is a 1× 1 matrix. Now, it follows that det(λ I−T ) = ∏

r
k=1 det(λ Ik−Pk) .

Therefore, λ is an eigenvalue of T if and only if it is an eigenvalue of some Pk. This proves
the theorem since the eigenvalues of T are the same as those of A because they have the
same characteristic polynomial due to the similarity of A and T.

Definition 5.8.5 When a linear transformation, A, mapping a linear space, V to V has
a basis of eigenvectors, the linear transformation is called non defective. Otherwise it is
called defective. An n×n matrix, A, is called normal if AA∗ = A∗A. An important class of
normal matrices is that of the Hermitian or self adjoint matrices. An n×n matrix, A is self
adjoint or Hermitian if A = A∗.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 5.8.6 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: Since T is normal, T ∗T = T T ∗. Writing this in terms of components and using
the description of the adjoint as the transpose of the conjugate, yields the following for the
ikth entry of T ∗T = T T ∗.

∑
j

ti jt∗jk = ∑
j

ti jtk j = ∑
j

t∗i jt jk = ∑
j

t jit jk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above.

∑
j

∣∣t1 j
∣∣2 = ∑

j

∣∣t j1
∣∣2 = |t11|2

You see, t j1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 

∗ 0 · · · 0
0 ∗ · · · ∗
...

. . . . . .
...

0 · · · 0 ∗

 .

Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above,

∑
j

∣∣t2 j
∣∣2 = ∑

j

∣∣t j2
∣∣2 = |t22|2 ,
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showing that t2 j = 0 if j > 2 which means T has the form
∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · ∗
...

...
. . . . . .

...
0 0 0 0 ∗

 .

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3 rows
and columns are concerned. Continuing in this way it follows T is a diagonal matrix.

Theorem 5.8.7 Let A be a normal matrix. Then there exists a unitary matrix, U such that
U∗AU is a diagonal matrix.

Proof: From Theorem 5.8.3 there exists a unitary matrix, U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
being normal is preserved under unitary similarity transformations. That is, verify that if A
is normal and if B =U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU =U∗A∗AU

= U∗AA∗U =U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 5.8.6 it must be a
diagonal matrix. This proves the theorem.

Corollary 5.8.8 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗=U∗A∗U =U∗AU =
D showing D is real.

Finally, let
U =

(
u1 u2 · · · un

)
where the ui denote the columns of U and

D =

 λ 1 0
. . .

0 λ n


The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun
)

= UD =
(

λ 1u1 λ 2u2 · · · λ nun
)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λ iui
and since the matrix is unitary, the i jth entry of U∗U equals δ i j and so

δ i j = uT
i u j = uT

i u j = ui ·u j.

This proves the corollary because it shows the vectors {ui} form an orthonormal basis.
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Corollary 5.8.9 If A is a real symmetric matrix, then A is Hermitian and there exists a real
unitary matrix, U such that UT AU = D where D is a diagonal matrix.

Proof: This follows from Theorem 5.8.4 and Corollary 5.8.8.

5.9 The Right Polar Decomposition
The right polar decomposition involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. First here are
some lemmas.

Lemma 5.9.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix, A1/2 such that A1/2 has all nonnegative eigenvalues
and

(
A1/2

)2
= A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real non-
negative entries and a unitary matrix U such that A = U∗DU. Then denote by D1/2 the
matrix which is obtained by replacing each diagonal entry of D with its square root. Thus
D1/2D1/2 = D. Then define

A1/2 ≡U∗D1/2U.

Then (
A1/2

)2
=U∗D1/2UU∗D1/2U =U∗DU = A.

Since D1/2 is real, (
U∗D1/2U

)∗
=U∗

(
D1/2

)∗
(U∗)∗ =U∗D1/2U

so A1/2 is Hermitian. This proves the lemma.
There is also a useful observation about orthonormal sets of vectors which is stated in

the next lemma.

Lemma 5.9.2 Suppose {x1,x2, · · · ,xr} is an orthonormal set of vectors. Then if c1, · · · ,cr
are scalars, ∣∣∣∣∣ r

∑
k=1

ckxk

∣∣∣∣∣
2

=
r

∑
k=1
|ck|2 .

Proof: This follows from the definition. From the properties of the dot product and
using the fact that the given set of vectors is orthonormal,∣∣∣∣∣ r

∑
k=1

ckxk

∣∣∣∣∣
2

=

(
r

∑
k=1

ckxk,
r

∑
j=1

c jx j

)

= ∑
k, j

ckc j (xk,x j) =
r

∑
k=1
|ck|2 .

This proves the lemma.
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property

stated in the next lemma.
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Lemma 5.9.3 Suppose
{

w1, · · · ,wr,vr+1, · · · ,vp
}

is a linearly independent set of vectors
such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let
{

u1, · · · ,up
}

be the orthonormal set delivered by the Gram Schmidt process.
Then u1 = w1 because by definition, u1 ≡ w1/ |w1| = w1. Now suppose u j = w j for all
j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1−∑

k+1
j=1 (wk+1,u j)u j∣∣∣wk+1−∑
k+1
j=1 (wk+1,u j)u j

∣∣∣
By induction, u j = w j and so this reduces to wk+1/ |wk+1|= wk+1. This proves the lemma.

This lemma immediately implies the following lemma.

Lemma 5.9.4 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an orthonormal
set of vectors in V . Then this orthonormal set of vectors may be extended to an orthonormal
basis for V, {

w1, · · · ,wr,yr+1, · · · ,yp
}

Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is
orthonormal it follows from Lemma 5.9.3 the result is of the desired form, an orthonormal
basis extending {w1, · · · ,wr}. This proves the lemma.

Here is another lemma about preserving distance.

Lemma 5.9.5 Suppose R is an m×n matrix with m > n and R preserves distances. Then
R∗R = I.

Proof: Since R preserves distances, |Rx| = |x| for every x. Therefore from the axioms
of the dot product,

|x|2 + |y|2 +(x,y)+(y,x)
= |x+y|2

= (R(x+y) ,R(x+y))
= (Rx,Rx)+(Ry,Ry)+(Rx,Ry)+(Ry,Rx)
= |x|2 + |y|2 +(R∗Rx,y)+(y,R∗Rx)

and so for all x,y,
(R∗Rx−x,y)+(y,R∗Rx−x) = 0

Hence for all x,y,
Re(R∗Rx−x,y) = 0

Now for a x,y given, choose α ∈ C such that

α (R∗Rx−x,y) = |(R∗Rx−x,y)|
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Then

0 = Re(R∗Rx−x,αy) = Reα (R∗Rx−x,y)
= |(R∗Rx−x,y)|

Thus |(R∗Rx−x,y)|= 0 for all x,y because the given x,y were arbitrary. Let y = R∗Rx−x
to conclude that for all x,

R∗Rx−x = 0

which says R∗R = I since x is arbitrary. This proves the lemma.
With this preparation, here is the big theorem about the right polar decomposition.

Theorem 5.9.6 Let F be an m×n matrix where m≥ n. Then there exists a Hermitian n×n
matrix, U which has all nonnegative eigenvalues and an m× n matrix, R which preserves
distances and satisfies R∗R = I such that

F = RU.

Proof: Consider F∗F. This is a Hermitian matrix because

(F∗F)∗ = F∗ (F∗)∗ = F∗F

Also the eigenvalues of the n×n matrix F∗F are all nonnegative. This is because if x is an
eigenvalue,

λ (x,x) = (F∗Fx,x) = (Fx,Fx)≥ 0.

Therefore, by Lemma 5.9.1, there exists an n×n Hermitian matrix, U having all nonnega-
tive eigenvalues such that

U2 = F∗F.

Consider the subspace U (Fn). Let {Ux1, · · · ,Uxr} be an orthonormal basis for U (Fn) ⊆
Fn. Note that U (Fn) might not be all of Fn. Using Lemma 5.9.4, extend to an orthonormal
basis for all of Fn,

{Ux1, · · · ,Uxr,yr+1, · · · ,yn} .

Next observe that {Fx1, · · · ,Fxr} is also an orthonormal set of vectors in Fm. This is
because

(Fxk,Fx j) = (F∗Fxk,x j) =
(
U2xk,x j

)
= (Uxk,U∗x j) = (Uxk,Ux j) = δ jk

Therefore, from Lemma 5.9.4 again, this orthonormal set of vectors can be extended to an
orthonormal basis for Fm,

{Fx1, · · · ,Fxr,zr+1, · · · ,zm}

Thus there are at least as many zk as there are y j. Now for x ∈ Fn, since

{Ux1, · · · ,Uxr,yr+1, · · · ,yn}
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is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · ,cr,dr+1, · · · ,dn

such that

x =
r

∑
k=1

ckUxk +
n

∑
j=r+1

dkyk

Define

Rx≡
r

∑
k=1

ckFxk +
n

∑
j=r+1

dkzk (5.9.27)

Then also there exist scalars bk such that

Ux =
r

∑
k=1

bkUxk

and so from 5.9.27,applied to Ux in place of x

RUx =
r

∑
k=1

bkFxk = F

(
r

∑
k=1

bkxk

)

Is F (∑r
k=1 bkxk) = F (x)?(

F

(
r

∑
k=1

bkxk

)
−F (x) ,F

(
r

∑
k=1

bkxk

)
−F (x)

)

=

(
(F∗F)

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U2

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U

(
r

∑
k=1

bkxk−x

)
,U

(
r

∑
k=1

bkxk−x

))

=

(
r

∑
k=1

bkUxk−Ux,
r

∑
k=1

bkUxk−Ux

)
= 0

Therefore, F (∑r
k=1 bkxk) = F (x) and this shows

RUx = Fx.

From 5.9.27 and Lemma 5.9.2 R preserves distances. Therefore, by Lemma 5.9.5 R∗R = I.
This proves the theorem.

Here is a useful fact from Linear algebra.
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Lemma 5.9.7 Suppose det(A) = 0. Then for all sufficiently small nonzero ε, det(A+ εI) ̸=
0.

Proof: First suppose A is a p× p matrix. Suppose also that det(A) = 0. Thus, the
constant term of det(λ I−A) is 0. Consider εI+A≡ Aε for small real ε . The characteristic
polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +ap−1 (λ − ε)p−1 + · · ·+(λ − ε)m am

where the a j are the coefficients in the characteristic equation for A and m is the largest such
that am ̸= 0. The constant term of this characteristic polynomial for Aε must be nonzero for
all positive ε small enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε)

which shows that εI +A is invertible for all ε small enough but nonzero. ■



Chapter 6

Multi-variable Calculus
6.1 Continuous Functions

In what follows, F will denote either R or C. It turns out it is more efficient to not make
a distinction. However, the main interest is in R so if you like, you can think R whenever
you see F.

6.2 Open And Closed Sets
Eventually, one must consider functions which are defined on subsets of Fn and their prop-
erties. The next definition will end up being quite important. It describe a type of subset of
Fn with the property that if x is in this set, then so is y whenever y is close enough to x. In
all of this, for x a vector, |x| is given by (x,x)1/2 where this denotes the square root of the
inner product of the vector with itself as described earlier. Then the distance between the
vectors x and y is defined as |x−y|.

Definition 6.2.1 Let U ⊆ Fn. U is an open set if whenever x ∈U, there exists r > 0 such
that B(x,r)⊆U. More generally, if U is any subset of Fn, x ∈U is an interior point of U if
there exists r > 0 such that x ∈ B(x,r)⊆U. In other words U is an open set exactly when
every point of U is an interior point of U.

If there is something called an open set, surely there should be something called a
closed set and here is the definition of one.

Definition 6.2.2 A subset, C, of Fn is called a closed set if Fn \C is an open set. They
symbol, Fn \C denotes everything in Fn which is not in C. It is also called the complement
of C. The symbol, SC is a short way of writing Fn \S.

To illustrate this definition, consider the following picture.

x U

B(x,r)

You see in this picture how the edges are dotted. This is because an open set, can
not include the edges or the set would fail to be open. For example, consider what would
happen if you picked a point out on the edge of U in the above picture. Every open ball
centered at that point would have in it some points which are outside U . Therefore, such a
point would violate the above definition. You also see the edges of B(x,r) dotted suggesting

97
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that B(x,r) ought to be an open set. This is intuitively clear but does require a proof. This
will be done in the next theorem and will give examples of open sets. Also, you can see
that if x is close to the edge of U, you might have to take r to be very small.

It is roughly the case that open sets don’t have their skins while closed sets do. Here is
a picture of a closed set, C.

B(x,r)
xC

Note that x /∈C and since Fn \C is open, there exists a ball, B(x,r) contained entirely
in Fn \C. If you look at Fn \C, what would be its skin? It can’t be in Fn \C and so it must
be in C. This is a rough heuristic explanation of what is going on with these definitions.
Also note that Fn and /0 are both open and closed. Here is why. If x ∈ /0, then there must
be a ball centered at x which is also contained in /0. This must be considered to be true
because there is nothing in /0 so there can be no example to show it false1. Therefore, from
the definition, it follows /0 is open. It is also closed because if x /∈ /0, then B(x,1) is also
contained in Fn \ /0 = Fn. Therefore, /0 is both open and closed. From this, it follows Fn is
also both open and closed.

Theorem 6.2.3 Let x ∈ Fn and let r ≥ 0. Then B(x,r) is an open set. Also,

D(x,r)≡ {y ∈ Fn : |y−x| ≤ r}

is a closed set.

Proof: Suppose y ∈ B(x,r) . It is necessary to show there exists r1 > 0 such that
B(y,r1)⊆ B(x,r) . Define r1 ≡ r−|x−y| . Then if |z−y|< r1, it follows from the above
triangle inequality that

|z−x| = |z−y+y−x|
≤ |z−y|+ |y−x|
< r1 + |y−x|= r−|x−y|+ |y−x|= r.

1To a mathematician, the statment: Whenever a pig is born with wings it can fly must be taken as true. We
do not consider biological or aerodynamic considerations in such statements. There is no such thing as a winged
pig and therefore, all winged pigs must be superb flyers since there can be no example of one which is not. On
the other hand we would also consider the statement: Whenever a pig is born with wings it can’t possibly fly, as
equally true. The point is, you can say anything you want about the elements of the empty set and no one can
gainsay your statement. Therefore, such statements are considered as true by default. You may say this is a very
strange way of thinking about truth and ultimately this is because mathematics is not about truth. It is more about
consistency and logic.
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Note that if r = 0 then B(x,r) = /0, the empty set. This is because if y ∈ Fn, |x−y| ≥ 0 and
so y /∈ B(x,0) . Since /0 has no points in it, it must be open because every point in it, (There
are none.) satisfies the desired property of being an interior point.

Now suppose y /∈ D(x,r) . Then |x−y|> r and defining δ ≡ |x−y|− r, it follows that
if z ∈ B(y,δ ) , then by the triangle inequality,

|x− z| ≥ |x−y|− |y− z|> |x−y|−δ

= |x−y|− (|x−y|− r) = r

and this shows that B(y,δ )⊆ Fn \D(x,r) . Since y was an arbitrary point in Fn \D(x,r) , it
follows Fn \D(x,r) is an open set which shows from the definition that D(x,r) is a closed
set as claimed.

A picture which is descriptive of the conclusion of the above theorem which also im-
plies the manner of proof is the following.

yx

r
r1

B(x,r)

yx

r
r1

D(x,r)

6.3 Continuous Functions
With the above definition of the norm in Fp, it becomes possible to define continuity.

Definition 6.3.1 A function f : D(f)⊆ Fp→ Fq is continuous at x ∈D(f) if for each ε > 0
there exists δ > 0 such that whenever y ∈ D(f) and

|y−x|< δ

it follows that
|f(x)− f(y)|< ε.

f is continuous if it is continuous at every point of D(f) .

Note the total similarity to the scalar valued case.

6.3.1 Sufficient Conditions For Continuity
The next theorem is a fundamental result which will allow us to worry less about the ε δ

definition of continuity.

Theorem 6.3.2 The following assertions are valid.

1. The function, af+bg is continuous at x whenever f, g are continuous at x ∈ D(f)∩
D(g) and a,b ∈ F.
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2. If f is continuous at x, f(x) ∈ D(g) ⊆ Fp, and g is continuous at f(x) ,then g ◦ f is
continuous at x.

3. If f = ( f1, · · · , fq) : D(f)→ Fq, then f is continuous if and only if each fk is a contin-
uous F valued function.

4. The function f : Fp→ F, given by f (x) = |x| is continuous.

The proof of this theorem is in the last section of this chapter. Its conclusions are not
surprising. For example the first claim says that (af+bg)(y) is close to (af+bg)(x) when
y is close to x provided the same can be said about f and g. For the second claim, if y
is close to x, f(x) is close to f(y) and so by continuity of g at f(x), g(f(y)) is close to
g(f(x)) . To see the third claim is likely, note that closeness in Fp is the same as closeness
in each coordinate. The fourth claim is immediate from the triangle inequality.

For functions defined on Fn, there is a notion of polynomial just as there is for functions
defined on R.

Definition 6.3.3 Let α be an n dimensional multi-index. This means

α = (α1, · · · ,αn)

where each α i is a natural number or zero. Also, let

|α| ≡
n

∑
i=1
|α i|

The symbol, xα ,means
xα ≡ xα1

1 xα2
2 · · ·x

αn
3 .

An n dimensional polynomial of degree m is a function of the form

p(x) = ∑
|α|≤m

dα xα.

where the dα are complex or real numbers.

The above theorem implies that polynomials are all continuous.

6.4 Exercises
1. Let f(t) = (t,sin t) . Show f is continuous at every point t.

2. Suppose |f(x)− f(y)| ≤ K |x−y| where K is a constant. Show that f is everywhere
continuous. Functions satisfying such an inequality are called Lipschitz functions.

3. Suppose |f(x)− f(y)| ≤ K |x−y|α where K is a constant and α ∈ (0,1). Show that
f is everywhere continuous.

4. Suppose f : F3→ F is given by f (x) = 3x1x2+2x2
3. Use Theorem 6.3.2 to verify that

f is continuous. Hint: You should first verify that the function, πk : F3 → F given
by πk (x) = xk is a continuous function.
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5. Generalize the previous problem to the case where f : Fq→ F is a polynomial.

6. State and prove a theorem which involves quotients of functions encountered in the
previous problem.

6.5 Limits Of A Function
As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points, x, which are limit points of D(f) and this concept is defined next.

Definition 6.5.1 Let A ⊆ Fm be a set. A point, x, is a limit point of A if B(x,r) contains
infinitely many points of A for every r > 0.

Definition 6.5.2 Let f : D(f) ⊆ Fp→ Fq be a function and let x be a limit point of D(f) .
Then

lim
y→x

f(y) = L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < |y−x|< δ , and y ∈ D(f)

then,
|L− f(y)|< ε.

Theorem 6.5.3 If limy→x f(y) = L and limy→x f(y) = L1, then L = L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x|< δ and y∈D(f) ,
then

|f(y)−L|< ε, |f(y)−L1|< ε.

Pick such a y. There exists one because x is a limit point of D(f) . Then

|L−L1| ≤ |L− f(y)|+ |f(y)−L1|< ε + ε = 2ε.

Since ε > 0 was arbitrary, this shows L = L1.
As in the case of functions of one variable, one can define limy→x f (x) =±∞.

Definition 6.5.4 If f (x) ∈ F, limy→x f (x) = ∞ if for every number l, there exists δ > 0
such that whenever |y−x|< δ and y ∈ D(f) , then f (x)> l.

The following theorem is just like the one variable version presented earlier.

Theorem 6.5.5 Suppose limy→x f(y) = L and limy→x g(y) = K where K,L ∈ Fq. Then if
a, b ∈ F,

lim
y→x

(af(y)+bg(y)) = aL+bK, (6.5.1)

lim
y→x

f ·g(y) = LK (6.5.2)
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and if g is scalar valued with limy→x g(y) = K ̸= 0,

lim
y→x

f(y)g(y) = LK. (6.5.3)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦ f(y) = h(L) . (6.5.4)

Suppose limy→x f(y) = L. If |f(y)−b| ≤ r for all y sufficiently close to x, then |L−b| ≤ r
also.

Proof: The proof of 6.5.1 is left for you. It is like a corresponding theorem for con-
tinuous functions. Now 6.5.2is to be verified. Let ε > 0 be given. Then by the triangle
inequality,

|f ·g(y)−L ·K| ≤ |fg(y)− f(y) ·K|+ |f(y) ·K−L ·K|
≤ |f(y)| |g(y)−K|+ |K| |f(y)−L| .

There exists δ 1 such that if 0 < |y−x|< δ 1 and y ∈ D(f) , then

|f(y)−L|< 1,

and so for such y, the triangle inequality implies, |f(y)| < 1 + |L| . Therefore, for 0 <
|y−x|< δ 1,

|f ·g(y)−L ·K| ≤ (1+ |K|+ |L|) [|g(y)−K|+ |f(y)−L|] . (6.5.5)

Now let 0 < δ 2 be such that if y ∈ D(f) and 0 < |x−y|< δ 2,

|f(y)−L|< ε

2(1+ |K|+ |L|)
, |g(y)−K|< ε

2(1+ |K|+ |L|)
.

Then letting 0 < δ ≤min(δ 1,δ 2) , it follows from 6.5.5 that

|f ·g(y)−L ·K|< ε

and this proves 6.5.2.
The proof of 6.5.3 is left to you.
Consider 6.5.4. Since h is continuous near L, it follows that for ε > 0 given, there exists

η > 0 such that if |y−L|< η , then

|h(y)−h(L)|< ε

Now since limy→x f(y) = L, there exists δ > 0 such that if 0 < |y−x|< δ , then

|f(y)−L|< η .

Therefore, if 0 < |y−x|< δ ,

|h(f(y))−h(L)|< ε.
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It only remains to verify the last assertion. Assume |f(y)−b| ≤ r for all y close enough
to x. It is required to show that |L−b| ≤ r. If this is not true, then |L−b| > r. Consider
B(L, |L−b|− r) . Since L is the limit of f, it follows f(y) ∈ B(L, |L−b|− r) whenever
y ∈ D(f) is close enough to x. Thus, by the triangle inequality,

|f(y)−L|< |L−b|− r

and so

r < |L−b|− |f(y)−L| ≤ ||b−L|− |f(y)−L||
≤ |b− f(y)| ,

a contradiction to the assumption that |b− f(y)| ≤ r.

Theorem 6.5.6 For f : D(f)→ Fq and x ∈ D(f) a limit point of D(f) , f is continuous at x
if and only if

lim
y→x

f(y) = f(x) .

Proof: First suppose f is continuous at x a limit point of D(f) . Then for every ε > 0
there exists δ > 0 such that if |y−x|< δ and y∈D(f) , then |f(x)− f(y)|< ε. In particular,
this holds if 0 < |x−y| < δ and this is just the definition of the limit. Hence f(x) =
limy→x f(y) .

Next suppose x is a limit point of D(f) and limy→x f(y) = f(x) . This means that if ε > 0
there exists δ > 0 such that for 0 < |x−y|< δ and y ∈ D(f) , it follows |f(y)− f(x)|< ε.
However, if y = x, then |f(y)− f(x)| = |f(x)− f(x)| = 0 and so whenever y ∈ D(f) and
|x−y|< δ , it follows |f(x)− f(y)|< ε, showing f is continuous at x.

The following theorem is important.

Theorem 6.5.7 Suppose f : D(f)→ Fq. Then for x a limit point of D(f) ,

lim
y→x

f(y) = L (6.5.6)

if and only if
lim
y→x

fk (y) = Lk (6.5.7)

where f(y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp) .

Proof: Suppose 6.5.6. Then letting ε > 0 be given there exists δ > 0 such that if
0 < |y−x|< δ , it follows

| fk (y)−Lk| ≤ |f(y)−L|< ε

which verifies 6.5.7.
Now suppose 6.5.7 holds. Then letting ε > 0 be given, there exists δ k such that if

0 < |y−x|< δ k, then

| fk (y)−Lk|<
ε
√

p
.



104 CHAPTER 6. MULTI-VARIABLE CALCULUS

Let 0 < δ < min(δ 1, · · · ,δ p) . Then if 0 < |y−x|< δ , it follows

|f(y)−L| =

(
p

∑
k=1
| fk (y)−Lk|2

)1/2

<

(
p

∑
k=1

ε2

p

)1/2

= ε.

This proves the theorem.
This theorem shows it suffices to consider the components of a vector valued function

when computing the limit.

Example 6.5.8 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.

It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1) .

Example 6.5.9 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all observe the domain of the function is F2 \{(0,0)} , every point in F2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit
may not exist. In fact, this is the case here. To see this, take points on the line y = 0. At
these points, the value of the function equals 0. Now consider points on the line y= x where
the value of the function equals 1/2. Since arbitrarily close to (0,0) there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You can’t be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and it is the case there are no easy ways to do limit problems
for functions of more than one variable. It is what it is and you will not deal with these
concepts without agony.

6.6 Exercises
1. Find the following limits if possible

(a) lim(x,y)→(0,0)
x2−y2

x2+y2

(b) lim(x,y)→(0,0)
x(x2−y2)
(x2+y2)

(c) lim(x,y)→(0,0)
(x2−y4)

2

(x2+y4)
2 Hint: Consider along y = 0 and along x = y2.

(d) lim(x,y)→(0,0) xsin
(

1
x2+y2

)
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(e) The limit as (x,y)→ (1,2) of the expression

−2yx2 +8yx+34y+3y3−18y2 +6x2−13x−20− xy2− x3

−y2 +4y−5− x2 +2x
.

Hint: It might help to write this in terms of the variables (s, t) = (x−1,y−2) .

2. In the definition of limit, why must x be a limit point of D(f)? Hint: If x were not a
limit point of D(f), show there exists δ > 0 such that B(x,δ ) contains no points of
D(f) other than possibly x itself. Argue that 33.3 is a limit and that so is 22 and 7
and 11. In other words the concept is totally worthless.

6.7 The Limit Of A Sequence
As in the case of real numbers, one can consider the limit of a sequence of points in Fp.

Definition 6.7.1 A sequence {an}∞

n=1 converges to a, and write

lim
n→∞

an = a or an→ a

if and only if for every ε > 0 there exists nε such that whenever n≥ nε ,

|an−a|< ε.

In words the definition says that given any measure of closeness, ε, the terms of the
sequence are eventually all this close to a. There is absolutely no difference between this
and the definition for sequences of numbers other than here bold face is used to indicate an
and a are points in Fp.

Theorem 6.7.2 If limn→∞ an = a and limn→∞ an = a1 then a1 = a.

Proof: Suppose a1 ̸= a. Then let 0 < ε < |a1−a|/2 in the definition of the limit. It
follows there exists nε such that if n ≥ nε , then |an−a| < ε and |an−a1| < ε. Therefore,
for such n,

|a1−a| ≤ |a1−an|+ |an−a|
< ε + ε < |a1−a|/2+ |a1−a|/2 = |a1−a| ,

a contradiction.
As in the case of a vector valued function, it suffices to consider the components. This

is the content of the next theorem.

Theorem 6.7.3 Let an =
(
an

1, · · · ,an
p
)
∈ Fp. Then limn→∞ an = a≡(a1, · · · ,ap) if and only

if for each k = 1, · · · , p,
lim
n→∞

an
k = ak. (6.7.8)
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Proof: First suppose limn→∞ an = a. Then given ε > 0 there exists nε such that if n> nε ,
then

|an
k−ak| ≤ |an−a|< ε

which establishes 6.7.8.
Now suppose 6.7.8 holds for each k. Then letting ε > 0 be given there exist nk such that

if n > nk,
|an

k−ak|< ε/
√

p.

Therefore, letting nε > max(n1, · · · ,np) , it follows that for n > nε ,

|an−a|=

(
n

∑
k=1
|an

k−ak|2
)1/2

<

(
n

∑
k=1

ε2

p

)1/2

= ε,

showing that limn→∞ an = a. This proves the theorem.

Example 6.7.4 Let an =
(

1
n2+1 ,

1
n sin(n) , n2+3

3n2+5n

)
.

It suffices to consider the limits of the components according to the following theorem.
Thus the limit is (0,0,1/3) .

Theorem 6.7.5 Suppose {an} and {bn} are sequences and that

lim
n→∞

an = a and lim
n→∞

bn = b.

Also suppose x and y are numbers in F. Then

lim
n→∞

xan + ybn = xa+ yb (6.7.9)

lim
n→∞

an ·bn = a ·b (6.7.10)

If bn ∈ F, then
anbn→ ab.

Proof: The first of these claims is left for you to do. To do the second, let ε > 0 be
given and choose n1 such that if n≥ n1 then

|an−a|< 1.

Then for such n, the triangle inequality and Cauchy Schwarz inequality imply

|an ·bn−a ·b| ≤ |an ·bn−an ·b|+ |an ·b−a ·b|
≤ |an| |bn−b|+ |b| |an−a|
≤ (|a|+1) |bn−b|+ |b| |an−a| .

Now let n2 be large enough that for n≥ n2,

|bn−b|< ε

2(|a|+1)
, and |an−a|< ε

2(|b|+1)
.
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Such a number exists because of the definition of limit. Therefore, let

nε > max(n1,n2) .

For n≥ nε ,

|an ·bn−a ·b| ≤ (|a|+1) |bn−b|+ |b| |an−a|

< (|a|+1)
ε

2(|a|+1)
+ |b| ε

2(|b|+1)
≤ ε.

This proves 6.7.9. The proof of 6.7.10 is entirely similar and is left for you.

6.7.1 Sequences And Completeness
Recall the definition of a Cauchy sequence.

Definition 6.7.6 {an} is a Cauchy sequence if for all ε > 0, there exists nε such that when-
ever n,m≥ nε ,

|an−am|< ε.

A sequence is Cauchy means the terms are “bunching up to each other” as m,n get
large.

Theorem 6.7.7 Let {an}∞

n=1 be a Cauchy sequence in Fp. Then there exists a unique a∈Fp

such that an→ a.

Proof: Let an =
(
an

1, · · · ,an
p
)
. Then

|an
k−am

k | ≤ |an−am|

which shows for each k = 1, · · · , p, it follows
{

an
k

}∞

n=1 is a Cauchy sequence in F. This
requires that both the real and imaginary parts of an

k are Cauchy sequences in R which
means the real and imaginary parts converge in R. This shows

{
an

k

}∞

n=1 must converge to
some ak. That is limn→∞ an

k = ak. Letting a =(a1, · · · ,ap) , it follows from Theorem 6.7.3
that

lim
n→∞

an = a.

This proves the theorem.

Theorem 6.7.8 The set of terms in a Cauchy sequence in Fp is bounded in the sense that
for all n, |an|< M for some M < ∞.

Proof: Let ε = 1 in the definition of a Cauchy sequence and let n > n1. Then from the
definition,

|an−an1 |< 1.

It follows that for all n > n1,
|an|< 1+ |an1 | .

Therefore, for all n,

|an| ≤ 1+ |an1 |+
n1

∑
k=1
|ak| .

This proves the theorem.
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Theorem 6.7.9 If a sequence {an} in Fp converges, then the sequence is a Cauchy se-
quence.

Proof: Let ε > 0 be given and suppose an→ a. Then from the definition of convergence,
there exists nε such that if n > nε , it follows that

|an−a|< ε

2

Therefore, if m,n≥ nε +1, it follows that

|an−am| ≤ |an−a|+ |a−am|<
ε

2
+

ε

2
= ε

showing that, since ε > 0 is arbitrary, {an} is a Cauchy sequence.

6.7.2 Continuity And The Limit Of A Sequence
Just as in the case of a function of one variable, there is a very useful way of thinking of
continuity in terms of limits of sequences found in the following theorem. In words, it says
a function is continuous if it takes convergent sequences to convergent sequences whenever
possible.

Theorem 6.7.10 A function f : D(f)→ Fq is continuous at x∈D(f) if and only if, whenever
xn→ x with xn ∈ D(f) , it follows f(xn)→ f(x) .

Proof: Suppose first that f is continuous at x and let xn→ x. Let ε > 0 be given. By
continuity, there exists δ > 0 such that if |y−x|< δ , then |f(x)− f(y)|< ε. However, there
exists nδ such that if n≥ nδ , then |xn−x|< δ and so for all n this large,

|f(x)−f(xn)|< ε

which shows f(xn)→ f(x) .
Now suppose the condition about taking convergent sequences to convergent sequences

holds at x. Suppose f fails to be continuous at x. Then there exists ε > 0 and xn ∈ D( f )
such that |x−xn|< 1

n , yet
|f(x)−f(xn)| ≥ ε.

But this is clearly a contradiction because, although xn→ x, f(xn) fails to converge to f(x) .
It follows f must be continuous after all. This proves the theorem.

6.8 Properties Of Continuous Functions
Functions of p variables have many of the same properties as functions of one variable.
First there is a version of the extreme value theorem generalizing the one dimensional case.

Theorem 6.8.1 Let C be closed and bounded and let f : C→ R be continuous. Then f
achieves its maximum and its minimum on C. This means there exist, x1,x2 ∈C such that
for all x ∈C,

f (x1)≤ f (x)≤ f (x2) .
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There is also the long technical theorem about sums and products of continuous func-
tions. These theorems are proved in the next section.

Theorem 6.8.2 The following assertions are valid

1. The function, af+bg is continuous at x when f, g are continuous at x ∈D(f)∩D(g)
and a,b ∈ F.

2. If and f and g are each F valued functions continuous at x, then f g is continuous at
x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f(x) ∈ D(g) ⊆ Fp, and g is continuous at f(x) ,then g ◦ f is
continuous at x.

4. If f = ( f1, · · · , fq) : D(f)→ Fq, then f is continuous if and only if each fk is a contin-
uous F valued function.

5. The function f : Fp→ F, given by f (x) = |x| is continuous.

6.9 Exercises
1. f : D ⊆ Fp → Fq is Lipschitz continuous or just Lipschitz for short if there exists a

constant, K such that
|f(x)− f(y)| ≤ K |x−y|

for all x,y∈D. Show every Lipschitz function is uniformly continuous which means
that given ε > 0 there exists δ > 0 independent of x such that if |x−y| < δ , then
|f(x)− f(y)|< ε.

2. If f is uniformly continuous, does it follow that |f| is also uniformly continuous? If
|f| is uniformly continuous does it follow that f is uniformly continuous? Answer the
same questions with “uniformly continuous” replaced with “continuous”. Explain
why.

6.10 Proofs Of Theorems
This section contains the proofs of the theorems which were just stated without proof.

Theorem 6.10.1 The following assertions are valid

1. The function, af+bg is continuous at x when f, g are continuous at x ∈D(f)∩D(g)
and a,b ∈ F.

2. If and f and g are each F valued functions continuous at x, then f g is continuous at
x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f(x) ∈ D(g) ⊆ Fp, and g is continuous at f(x) ,then g ◦ f is
continuous at x.
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4. If f = ( f1, · · · , fq) : D(f)→ Fq, then f is continuous if and only if each fk is a contin-
uous F valued function.

5. The function f : Fp→ F, given by f (x) = |x| is continuous.

Proof: Begin with 1.) Let ε > 0 be given. By assumption, there exist δ 1 > 0 such that
whenever |x−y| < δ 1, it follows |f(x)− f(y)| < ε

2(|a|+|b|+1) and there exists δ 2 > 0 such
that whenever |x−y| < δ 2, it follows that |g(x)−g(y)| < ε

2(|a|+|b|+1) . Then let 0 < δ ≤
min(δ 1,δ 2) . If |x−y|< δ , then everything happens at once. Therefore, using the triangle
inequality

|af(x)+bf(x)− (ag(y)+bg(y))|

≤ |a| |f(x)− f(y)|+ |b| |g(x)−g(y)|

< |a|
(

ε

2(|a|+ |b|+1)

)
+ |b|

(
ε

2(|a|+ |b|+1)

)
< ε.

Now begin on 2.) There exists δ 1 > 0 such that if |y−x|< δ 1, then

| f (x)− f (y)|< 1.

Therefore, for such y,
| f (y)|< 1+ | f (x)| .

It follows that for such y,

| f g(x)− f g(y)| ≤ | f (x)g(x)−g(x) f (y)|+ |g(x) f (y)− f (y)g(y)|

≤ |g(x)| | f (x)− f (y)|+ | f (y)| |g(x)−g(y)|
≤ (1+ |g(x)|+ | f (y)|) [|g(x)−g(y)|+ | f (x)− f (y)|] .

Now let ε > 0 be given. There exists δ 2 such that if |x−y|< δ 2, then

|g(x)−g(y)|< ε

2(1+ |g(x)|+ | f (y)|)
,

and there exists δ 3 such that if |x−y|< δ 3, then

| f (x)− f (y)|< ε

2(1+ |g(x)|+ | f (y)|)

Now let 0 < δ ≤min(δ 1,δ 2,δ 3) . Then if |x−y|< δ , all the above hold at once and

| f g(x)− f g(y)| ≤

(1+ |g(x)|+ | f (y)|) [|g(x)−g(y)|+ | f (x)− f (y)|]

< (1+ |g(x)|+ | f (y)|)
(

ε

2(1+ |g(x)|+ | f (y)|)
+

ε

2(1+ |g(x)|+ | f (y)|)

)
= ε.
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This proves the first part of 2.) To obtain the second part, let δ 1 be as described above and
let δ 0 > 0 be such that for |x−y|< δ 0,

|g(x)−g(y)|< |g(x)|/2

and so by the triangle inequality,

−|g(x)|/2≤ |g(y)|− |g(x)| ≤ |g(x)|/2

which implies |g(y)| ≥ |g(x)|/2, and |g(y)|< 3 |g(x)|/2.
Then if |x−y|< min(δ 0,δ 1) ,∣∣∣∣ f (x)

g(x)
− f (y)

g(y)

∣∣∣∣= ∣∣∣∣ f (x)g(y)− f (y)g(x)
g(x)g(y)

∣∣∣∣
≤ | f (x)g(y)− f (y)g(x)|(

|g(x)|2
2

)
=

2 | f (x)g(y)− f (y)g(x)|
|g(x)|2

≤ 2

|g(x)|2
[| f (x)g(y)− f (y)g(y)+ f (y)g(y)− f (y)g(x)|]

≤ 2

|g(x)|2
[|g(y)| | f (x)− f (y)|+ | f (y)| |g(y)−g(x)|]

≤ 2

|g(x)|2

[
3
2
|g(x)| | f (x)− f (y)|+(1+ | f (x)|) |g(y)−g(x)|

]
≤ 2

|g(x)|2
(1+2 | f (x)|+2 |g(x)|) [| f (x)− f (y)|+ |g(y)−g(x)|]

≡M [| f (x)− f (y)|+ |g(y)−g(x)|]

where
M ≡ 2

|g(x)|2
(1+2 | f (x)|+2 |g(x)|)

Now let δ 2 be such that if |x−y|< δ 2, then

| f (x)− f (y)|< ε

2
M−1

and let δ 3 be such that if |x−y|< δ 3, then

|g(y)−g(x)|< ε

2
M−1.

Then if 0 < δ ≤min(δ 0,δ 1,δ 2,δ 3) , and |x−y|< δ , everything holds and∣∣∣∣ f (x)
g(x)

− f (y)
g(y)

∣∣∣∣≤M [| f (x)− f (y)|+ |g(y)−g(x)|]
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< M
[

ε

2
M−1 +

ε

2
M−1

]
= ε.

This completes the proof of the second part of 2.) Note that in these proofs no effort is
made to find some sort of “best” δ . The problem is one which has a yes or a no answer.
Either it is or it is not continuous.

Now begin on 3.). If f is continuous at x, f(x) ∈ D(g) ⊆ Fp, and g is continuous at
f(x) ,then g◦ f is continuous at x. Let ε > 0 be given. Then there exists η > 0 such that if
|y− f(x)|<η and y∈D(g) , it follows that |g(y)−g(f(x))|< ε. It follows from continuity
of f at x that there exists δ > 0 such that if |x− z|< δ and z∈D(f) , then |f(z)− f(x)|< η .
Then if |x− z|< δ and z ∈ D(g◦ f)⊆ D(f) , all the above hold and so

|g(f(z))−g(f(x))|< ε.

This proves part 3.)
Part 4.) says: If f = ( f1, · · · , fq) : D(f)→ Fq, then f is continuous if and only if each fk

is a continuous F valued function. Then

| fk (x)− fk (y)| ≤ |f(x)− f(y)|

≡

(
q

∑
i=1
| fi (x)− fi (y)|2

)1/2

≤
q

∑
i=1
| fi (x)− fi (y)| . (6.10.11)

Suppose first that f is continuous at x. Then there exists δ > 0 such that if |x−y| < δ ,
then |f(x)− f(y)| < ε. The first part of the above inequality then shows that for each k =
1, · · · ,q, | fk (x)− fk (y)| < ε. This shows the only if part. Now suppose each function, fk
is continuous. Then if ε > 0 is given, there exists δ k > 0 such that whenever |x−y|< δ k

| fk (x)− fk (y)|< ε/q.

Now let 0 < δ ≤min(δ 1, · · · ,δ q) . For |x−y|< δ , the above inequality holds for all k and
so the last part of 6.10.11 implies

|f(x)− f(y)| ≤
q

∑
i=1
| fi (x)− fi (y)|

<
q

∑
i=1

ε

q
= ε.

This proves part 4.)
To verify part 5.), let ε > 0 be given and let δ = ε. Then if |x−y| < δ , the triangle

inequality implies

| f (x)− f (y)|= ||x|− |y||
≤ |x−y|< δ = ε.
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This proves part 5.) and completes the proof of the theorem.
Here is a multidimensional version of the nested interval lemma.
The following definition is similar to that given earlier. It defines what is meant by a

sequentially compact set in Fp.

Definition 6.10.2 A set, K ⊆ Fp is sequentially compact if and only if whenever {xn}∞

n=1
is a sequence of points in K, there exists a point, x ∈ K and a subsequence,

{
xnk

}∞

k=1 such
that xnk → x.

It turns out the sequentially compact sets in Fpare exactly those which are closed and
bounded. Only half of this result will be needed in this book and this is proved next. First
note that C can be considered as R2. Therefore, Cp may be considered as R2p.

Theorem 6.10.3 Let C ⊆ Fp be closed and bounded. Then C is sequentially compact.

Proof: Let {an} ⊆ C. Then let an =
(
an

1, · · · ,an
p
)
. It follows the real and imaginary

parts of the terms of the sequence,
{

an
j

}∞

n=1
are each contained in some sufficiently large

closed bounded interval. By Theorem 3.0.3 on Page 37, there is a subsequence of the
sequence of real parts of

{
an

j

}∞

n=1
which converges. Also there is a further subsequence of

the imaginary parts of
{

an
j

}∞

n=1
which converges. Thus there is a subsequence, nk with the

property that ank
j converges to a point, a j ∈ F. Taking further subsequences, one obtains

the existence of a subsequence, still called nk such that for each r = 1, · · · , p, ank
r converges

to a point, ar ∈ F as k→ ∞. Therefore, letting a≡ (a1, · · · ,ap) , limk→∞ ank = a. Since C is
closed, it follows a ∈C. This proves the theorem.

Here is a proof of the extreme value theorem.

Theorem 6.10.4 Let C be closed and bounded and let f : C→ R be continuous. Then f
achieves its maximum and its minimum on C. This means there exist, x1,x2 ∈C such that
for all x ∈C,

f (x1)≤ f (x)≤ f (x2) .

Proof: Let M = sup{ f (x) : x ∈C} . Recall this means +∞ if f is not bounded above
and it equals the least upper bound of these values of f if f is bounded above. Then there
exists a sequence, {xn} such that f (xn)→M. Since C is sequentially compact, there exists
a subsequence, xnk , and a point, x ∈ C such that xnk → x. But then since f is continuous
at x, it follows from Theorem 6.7.10 on Page 108 that f (x) = limk→∞ f

(
xnk

)
= M. This

proves f achieves its maximum and also shows its maximum is less than ∞. Let x2 = x.
The case of a minimum is handled similarly.

Recall that a function is uniformly continuous if the following definition holds.

Definition 6.10.5 Let f : D(f)→ Fq. Then f is uniformly continuous if for every ε > 0 there
exists δ > 0 such that whenever |x−y|< δ , it follows |f(x)− f(y)|< ε.

Theorem 6.10.6 Let f :C→ Fq be continuous where C is a closed and bounded set in Fp.
Then f is uniformly continuous on C.
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Proof: If this is not so, there exists ε > 0 and pairs of points, xn and yn satisfying
|xn−yn|< 1/n but |f(xn)− f(yn)| ≥ ε. Since C is sequentially compact, there exists x ∈C
and a subsequence,

{
xnk

}
satisfying xnk → x. But

∣∣xnk −ynk

∣∣ < 1/k and so ynk → x also.
Therefore, from Theorem 6.7.10 on Page 108,

ε ≤ lim
k→∞

∣∣f(xnk

)
− f
(
ynk

)∣∣= |f(x)− f(x)|= 0,

a contradiction. This proves the theorem.

6.11 The Space L (Fn,Fm)

Definition 6.11.1 The symbol, L (Fn,Fm) will denote the set of linear transformations
mapping Fn to Fm. Thus L ∈L (Fn,Fm) means that for α,β scalars and x,y vectors in Fn,

L(αx+βy) = αL(x)+βL(y) .

It is convenient to give a norm for the elements of L (Fn,Fm) . This will allow the
consideration of questions such as whether a function having values in this space of linear
transformations is continuous.

6.11.1 The Operator Norm
How do you measure the distance between linear transformations defined on Fn? It turns
out there are many ways to do this but I will give the most common one here.

Definition 6.11.2 L (Fn,Fm) denotes the space of linear transformations mapping Fn to
Fm. For A ∈L (Fn,Fm) , the operator norm is defined by

||A|| ≡max{|Ax|Fm : |x|Fn ≤ 1}< ∞.

Theorem 6.11.3 Denote by |·| the norm on either Fn or Fm. Then L (Fn,Fm) with this
operator norm is a complete normed linear space of dimension nm with

||Ax|| ≤ ||A|| |x| .

Here Completeness means that every Cauchy sequence converges.

Proof: It is necessary to show the norm defined on L (Fn,Fm) really is a norm. This
means it is necessary to verify

||A|| ≥ 0 and equals zero if and only if A = 0.

For α a scalar,
||αA||= |α| ||A|| ,

and for A,B ∈L (Fn,Fm) ,

||A+B|| ≤ ||A||+ ||B||
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The first two properties are obvious but you should verify them. It remains to verify the
norm is well defined and also to verify the triangle inequality above. First if |x| ≤ 1, and
(Ai j) is the matrix of the linear transformation with respect to the usual basis vectors, then

||A|| = max


(

∑
i
|(Ax)i|

2

)1/2

: |x| ≤ 1


= max


∑

i

∣∣∣∣∣∑j
Ai jx j

∣∣∣∣∣
2
1/2

: |x| ≤ 1


which is a finite number by the extreme value theorem.

It is clear that a basis for L (Fn,Fm) consists of linear transformations whose matrices
are of the form Ei j where Ei j consists of the m×n matrix having all zeros except for a 1 in
the i jth position. In effect, this considers L (Fn,Fm) as Fnm. Think of the m×n matrix as
a long vector folded up.

If x ̸= 0,

|Ax| 1
|x|

=

∣∣∣∣A x
|x|

∣∣∣∣≤ ||A|| (6.11.12)

It only remains to verify completeness. Suppose then that {Ak} is a Cauchy sequence in
L (Fn,Fm) . Then from 6.11.12 {Akx} is a Cauchy sequence for each x ∈ Fn. This follows
because

|Akx−Alx| ≤ ||Ak−Al || |x|

which converges to 0 as k, l→ ∞. Therefore, by completeness of Fm, there exists Ax, the
name of the thing to which the sequence, {Akx} converges such that

lim
k→∞

Akx = Ax.

Then A is linear because

A(ax+by) ≡ lim
k→∞

Ak (ax+by)

= lim
k→∞

(aAkx+bAky)

= a lim
k→∞

Akx+b lim
k→∞

Aky

= aAx+bAy.

By the first part of this argument, ||A||<∞ and so A∈L (Fn,Fm) . This proves the theorem.

Proposition 6.11.4 Let A(x) ∈ L (Fn,Fm) for each x ∈ U ⊆ Fp. Then letting (Ai j (x))
denote the matrix of A(x) with respect to the standard basis, it follows Ai j is continuous at
x for each i, j if and only if for all ε > 0, there exists a δ > 0 such that if |x−y|< δ , then
||A(x)−A(y)||< ε . That is, A is a continuous function having values in L (Fn,Fm) at x.
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Proof: Suppose first the second condition holds. Then from the material on linear
transformations, ∣∣Ai j (x)−Ai j (y)

∣∣ =
∣∣ei · (A(x)−A(y))e j

∣∣
≤ |ei|

∣∣(A(x)−A(y))e j
∣∣

≤ ||A(x)−A(y)|| .

Therefore, the second condition implies the first.
Now suppose the first condition holds. That is each Ai j is continuous at x. Let |v| ≤ 1.

|(A(x)−A(y))(v)| =

∑
i

∣∣∣∣∣∑j
(Ai j (x)−Ai j (y))v j

∣∣∣∣∣
2
1/2

(6.11.13)

≤

∑
i

(
∑

j

∣∣Ai j (x)−Ai j (y)
∣∣ ∣∣v j

∣∣)2
1/2

.

By continuity of each Ai j, there exists a δ > 0 such that for each i, j∣∣Ai j (x)−Ai j (y)
∣∣< ε

n
√

m

whenever |x−y|< δ . Then from 6.11.13, if |x−y|< δ ,

|(A(x)−A(y))(v)| <

∑
i

(
∑

j

ε

n
√

m
|v|
)2
1/2

≤

∑
i

(
∑

j

ε

n
√

m

)2
1/2

= ε

This proves the proposition.

6.12 The Frechet Derivative
Let U be an open set in Fn, and let f : U → Fm be a function.

Definition 6.12.1 A function g is o(v) if

lim
|v|→0

g(v)
|v|

= 0 (6.12.14)

A function f : U → Fm is differentiable at x ∈ U if there exists a linear transformation
L ∈L (Fn,Fm) such that

f(x+v) = f(x)+Lv+o(v)

This linear transformation L is the definition of Df(x). This derivative is often called the
Frechet derivative. .
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Usually no harm is occasioned by thinking of this linear transformation as its matrix
taken with respect to the usual basis vectors.

The definition 6.12.14 means that the error,

f(x+v)− f(x)−Lv

converges to 0 faster than |v|. Thus the above definition is equivalent to saying

lim
|v|→0

|f(x+v)− f(x)−Lv|
|v|

= 0 (6.12.15)

or equivalently,

lim
y→x

|f(y)− f(x)−Df(x)(y−x)|
|y−x|

= 0. (6.12.16)

Now it is clear this is just a generalization of the notion of the derivative of a function of
one variable because in this more specialized situation,

lim
|v|→0

| f (x+ v)− f (x)− f ′ (x)v|
|v|

= 0,

due to the definition which says

f ′ (x) = lim
v→0

f (x+ v)− f (x)
v

.

For functions of n variables, you can’t define the derivative as the limit of a difference
quotient like you can for a function of one variable because you can’t divide by a vector.
That is why there is a need for a more general definition.

The term o(v) is notation that is descriptive of the behavior in 6.12.14 and it is only
this behavior that is of interest. Thus, if t and k are constants,

o(v) = o(v)+o(v) , o(tv) = o(v) , ko(v) = o(v)

and other similar observations hold. The sloppiness built in to this notation is useful be-
cause it ignores details which are not important. It may help to think of o(v) as an adjective
describing what is left over after approximating f(x+v) by f(x)+Df(x)v.

Theorem 6.12.2 The derivative is well defined.

Proof: First note that for a fixed vector, v, o(tv) = o(t). Now suppose both L1 and L2
work in the above definition. Then let v be any vector and let t be a real scalar which is
chosen small enough that tv+x ∈U . Then

f(x+ tv) = f(x)+L1tv+o(tv) , f(x+ tv) = f(x)+L2tv+o(tv) .

Therefore, subtracting these two yields (L2−L1)(tv) = o(tv) = o(t). Therefore, dividing
by t yields (L2−L1)(v) = o(t)

t . Now let t → 0 to conclude that (L2−L1)(v) = 0. Since
this is true for all v, it follows L2 = L1. This proves the theorem.
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Lemma 6.12.3 Let f be differentiable at x. Then f is continuous at x and in fact, there
exists K > 0 such that whenever |v| is small enough,

|f(x+v)− f(x)| ≤ K |v|

Proof: From the definition of the derivative, f(x+v)− f(x) = Df(x)v+o(v). Let |v|
be small enough that o(|v|)

|v| < 1 so that |o(v)| ≤ |v|. Then for such v,

|f(x+v)− f(x)| ≤ |Df(x)v|+ |v|
≤ (|Df(x)|+1) |v|

This proves the lemma with K = |Df(x)|+1.

Theorem 6.12.4 (The chain rule) Let U and V be open sets, U ⊆ Fn and V ⊆ Fm. Suppose
f : U → V is differentiable at x ∈U and suppose g : V → Fq is differentiable at f(x) ∈ V .
Then g◦ f is differentiable at x and

D(g◦ f)(x) = Dg(f(x))Df(x) .

Proof: This follows from a computation. Let B(x,r)⊆U and let r also be small enough
that for |v| ≤ r, it follows that f(x+v) ∈ V . Such an r exists because f is continuous at x.
For |v|< r, the definition of differentiability of g and f implies

g(f(x+v))−g(f(x)) =

Dg(f(x))(f(x+v)− f(x))+o(f(x+v)− f(x))
= Dg(f(x)) [Df(x)v+o(v)]+o(f(x+v)− f(x))
= Dg(f(x))Df(x)v+o(v)+o(f(x+v)− f(x)) . (6.12.17)

It remains to show o(f(x+v)− f(x)) = o(v).
By Lemma 6.12.3, with K given there, letting ε > 0, it follows that for |v| small enough,

|o(f(x+v)− f(x))| ≤ (ε/K) |f(x+v)− f(x)| ≤ (ε/K)K |v|= ε |v| .

Since ε > 0 is arbitrary, this shows o(f(x+v)− f(x))= o(v) because whenever |v| is small
enough,

|o(f(x+v)− f(x))|
|v|

≤ ε.

By 6.12.17, this shows

g(f(x+v))−g(f(x)) = Dg(f(x))Df(x)v+o(v)

which proves the theorem.
The derivative is a linear transformation. What is the matrix of this linear transforma-

tion taken with respect to the usual basis vectors? Let ei denote the vector of Fn which has
a one in the ith entry and zeroes elsewhere. Then the matrix of the linear transformation is
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the matrix whose ith column is Df(x)ei. What is this? Let t ∈ R such that |t| is sufficiently
small.

f(x+ tei)− f(x) = Df(x) tei +o(tei)

= Df(x) tei +o(t) .

Then dividing by t and taking a limit,

Df(x)ei = lim
t→0

f(x+ tei)− f(x)
t

≡ ∂ f
∂xi

(x) .

Thus the matrix of Df(x) with respect to the usual basis vectors is the matrix of the form f1,x1 (x) f1,x2 (x) · · · f1,xn (x)
...

...
...

fm,x1 (x) fm,x2 (x) · · · fm,xn (x)

 .

As mentioned before, there is no harm in referring to this matrix as Df(x) but it may also
be referred to as Jf(x) .

This is summarized in the following theorem.

Theorem 6.12.5 Let f : Fn→ Fm and suppose f is differentiable at x. Then all the partial
derivatives ∂ fi(x)

∂x j
exist and if Jf(x) is the matrix of the linear transformation with respect

to the standard basis vectors, then the i jth entry is given by fi, j or ∂ fi
∂x j

(x).

What if all the partial derivatives of f exist? Does it follow that f is differentiable?
Consider the following function.

f (x,y) =
{ xy

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.

Then from the definition of partial derivatives,

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0

and

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 6.12.3 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.
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6.13 C1 Functions
However, there are theorems which can be used to get differentiability of a function based
on existence of the partial derivatives.

Definition 6.13.1 When all the partial derivatives exist and are continuous the function is
called a C1 function.

Because of Proposition 6.11.4 on Page 115 and Theorem 6.12.5 which identifies the
entries of Jf with the partial derivatives, the following definition is equivalent to the above.

Definition 6.13.2 Let U ⊆Fn be an open set. Then f :U→Fm is C1 (U) if f is differentiable
and the mapping

x→Df(x) ,

is continuous as a function from U to L (Fn,Fm).

The following is an important abstract generalization of the familiar concept of partial
derivative.

Definition 6.13.3 Let g : U ⊆ Fn×Fm→ Fq, where U is an open set in Fn×Fm. Denote
an element of Fn×Fm by (x,y) where x ∈ Fn and y ∈ Fm. Then the map x→ g(x,y) is a
function from the open set in Fn,

{x : (x,y) ∈U}

to Fq. When this map is differentiable, its derivative is denoted by

D1g(x,y) , or sometimes by Dxg(x,y) .

Thus,
g(x+v,y)−g(x,y) = D1g(x,y)v+o(v) .

A similar definition holds for the symbol Dyg or D2g. The special case seen in beginning
calculus courses is where g : U → Fq and

gxi (x)≡
∂g(x)

∂xi
≡ lim

h→0

g(x+hei)−g(x)
h

.

The following theorem will be very useful in much of what follows. It is a version of
the mean value theorem. You might call it the mean value inequality.

Theorem 6.13.4 Suppose U is an open subset of Fn and f : U → Fm has the property that
Df (x) exists for all x in U and that, x+t (y−x) ∈U for all t ∈ [0,1]. (The line segment
joining the two points lies in U.) Suppose also that for all points on this line segment,

||Df(x+t (y−x))|| ≤M.

Then
|f(y)− f(x)| ≤M |y−x| .
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Proof: Let
S≡ {t ∈ [0,1] : for all s ∈ [0, t] ,

|f(x+ s(y−x))− f(x)| ≤ (M+ ε)s |y−x|} .

Then 0 ∈ S and by continuity of f, it follows that if t ≡ supS, then t ∈ S and if t < 1,

|f(x+ t (y−x))− f(x)|= (M+ ε) t |y−x| . (6.13.18)

If t < 1, then there exists a sequence of positive numbers, {hk}∞

k=1 converging to 0 such
that

|f(x+(t +hk)(y−x))− f(x)|> (M+ ε)(t +hk) |y−x|

which implies that
|f(x+(t +hk)(y−x))− f(x+ t (y−x))|

+ |f(x+ t (y−x))− f(x)|> (M+ ε)(t +hk) |y−x| .

By 6.13.18, this inequality implies

|f(x+(t +hk)(y−x))− f(x+ t (y−x))|> (M+ ε)hk |y−x|

which yields upon dividing by hk and taking the limit as hk→ 0,

|Df(x+ t (y−x))(y−x)| ≥ (M+ ε) |y−x| .

Now by the definition of the norm of a linear operator,

M |y−x| ≥ ||Df(x+ t (y−x))|| |y−x|
≥ |Df(x+ t (y−x))(y−x)| ≥ (M+ ε) |y−x| ,

a contradiction. Therefore, t = 1 and so

|f(x+(y−x))− f(x)| ≤ (M+ ε) |y−x| .

Since ε > 0 is arbitrary, this proves the theorem.
The next theorem proves that if the partial derivatives exist and are continuous, then the

function is differentiable.

Theorem 6.13.5 Let g : U ⊆ Fn×Fm→ Fq. Then g is C1 (U) if and only if D1g and D2g
both exist and are continuous on U. In this case,

Dg(x,y)(u,v) = D1g(x,y)u+D2g(x,y)v.

Proof: Suppose first that g ∈C1 (U). Then if (x,y) ∈U ,

g(x+u,y)−g(x,y) = Dg(x,y)(u,0)+o(u) .

Therefore, D1g(x,y)u =Dg(x,y)(u,0). Then∣∣(D1g(x,y)−D1g
(
x′,y′

))
(u)
∣∣=
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∣∣(Dg(x,y)−Dg
(
x′,y′

))
(u,0)

∣∣≤∣∣∣∣Dg(x,y)−Dg
(
x′,y′

)∣∣∣∣ |(u,0)| .
Therefore, ∣∣D1g(x,y)−D1g

(
x′,y′

)∣∣≤ ∣∣∣∣Dg(x,y)−Dg
(
x′,y′

)∣∣∣∣ .
A similar argument applies for D2g and this proves the continuity of the function, (x,y)→
Dig(x,y) for i = 1,2. The formula follows from

Dg(x,y)(u,v) = Dg(x,y)(u,0)+Dg(x,y)(0,v)
≡ D1g(x,y)u+D2g(x,y)v.

Now suppose D1g(x,y) and D2g(x,y) exist and are continuous.

g(x+u,y+v)−g(x,y) = g(x+u,y+v)−g(x,y+v)

+g(x,y+v)−g(x,y)
= g(x+u,y)−g(x,y)+g(x,y+v)−g(x,y)+

[g(x+u,y+v)−g(x+u,y)− (g(x,y+v)−g(x,y))]
= D1g(x,y)u+D2g(x,y)v+o(v)+o(u)+

[g(x+u,y+v)−g(x+u,y)− (g(x,y+v)−g(x,y))] . (6.13.19)

Let h(x,u)≡ g(x+u,y+v)−g(x+u,y). Then the expression in [ ] is of the form,

h(x,u)−h(x,0) .

Also
D2h(x,u) = D1g(x+u,y+v)−D1g(x+u,y)

and so, by continuity of (x,y)→ D1g(x,y),

||D2h(x,u)||< ε

whenever ||(u,v)|| is small enough. By Theorem 6.13.4 on Page 120, there exists δ > 0
such that if ||(u,v)||< δ , the norm of the last term in 6.13.19 satisfies the inequality,

||g(x+u,y+v)−g(x+u,y)− (g(x,y+v)−g(x,y))||< ε ||u|| . (6.13.20)

Therefore, this term is o((u,v)). It follows from 6.13.20 and 6.13.19 that

g(x+u,y+v) =

g(x,y)+D1g(x,y)u+D2g(x,y)v+o(u)+o(v)+o((u,v))
= g(x,y)+D1g(x,y)u+D2g(x,y)v+o((u,v))

Showing that Dg(x,y) exists and is given by

Dg(x,y)(u,v) = D1g(x,y)u+D2g(x,y)v.

The continuity of (x,y)→Dg(x,y) follows from the continuity of (x,y)→Dig(x,y). This
proves the theorem.

Not surprisingly, it can be generalized to many more factors.
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Definition 6.13.6 Let g : U ⊆∏
n
i=1Fri → Fq, where U is an open set. Then the map xi→

g(x) is a function from the open set in Fri ,

{x : x =(x1, · · · ,xi−1,x,xi+1, · · · ,xn) ∈U}

to Fq. When this map is differentiable, its derivative is denoted by Dig(x). To aid in the
notation, for v ∈ Fri , let θ iv ∈∏

n
i=1Fri be the vector (0, · · · ,v, · · · ,0) where the v is in the

ith slot and for v ∈∏
n
i=1Fri , let vi denote the entry in the ith slot of v. Thus, by saying

xi→ g(x) is differentiable is meant that for v ∈ Fri sufficiently small,

g(x+θ iv)−g(x) = Dig(x)v+o(v) .

Note Dig(x) ∈L (Fri ,∏n
i=1Fri) .

Here is a generalization of Theorem 6.13.5.

Theorem 6.13.7 Let g,U,∏n
i=1Fri , be given as in Definition 6.13.6. Then g is C1 (U) if

and only if Dig exists and is continuous on U for each i. In this case,

Dg(x)(v) = ∑
k

Dkg(x)vk (6.13.21)

where v = (v1, · · · ,vn) .

Proof: Suppose then that Dig exists and is continuous for each i. Note that ∑
k
j=1 θ jv j =

(v1, · · · ,vk,0, · · · ,0). Thus ∑
n
j=1 θ jv j = v and define ∑

0
j=1 θ jv j ≡ 0. Therefore,

g(x+v)−g(x) =
n

∑
k=1

[
g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)]
(6.13.22)

Consider the terms in this sum.

g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)
= g(x+θ kvk)−g(x)+ (6.13.23)

(
g

(
x+

k

∑
j=1

θ jv j

)
−g(x+θ kvk)

)
−

(
g

(
x+

k−1

∑
j=1

θ jv j

)
−g(x)

)
(6.13.24)

and the expression in 6.13.24 is of the form h(vk)−h(0) where for small w ∈ Frk ,

h(w)≡ g

(
x+

k−1

∑
j=1

θ jv j +θ kw

)
−g(x+θ kw) .

Therefore,

Dh(w) = Dkg

(
x+

k−1

∑
j=1

θ jv j +θ kw

)
−Dkg(x+θ kw)
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and by continuity, ||Dh(w)|| < ε provided |v| is small enough. Therefore, by Theorem
6.13.4, whenever |v| is small enough, |h(vk)−h(0)| ≤ ε |vk| ≤ ε |v| which shows that
since ε is arbitrary, the expression in 6.13.24 is o(v). Now in 6.13.23

g(x+θ kvk)−g(x) = Dkg(x)vk +o(vk) = Dkg(x)vk +o(v) .

Therefore, referring to 6.13.22,

g(x+v)−g(x) =
n

∑
k=1

Dkg(x)vk +o(v)

which shows Dg exists and equals the formula given in 6.13.21.
Next suppose g is C1. I need to verify that Dkg(x) exists and is continuous. Let v ∈ Frk

sufficiently small. Then

g(x+θ kv)−g(x) = Dg(x)θ kv+o(θ kv)
= Dg(x)θ kv+o(v)

since |θ kv|= |v|. Then Dkg(x) exists and equals

Dg(x)◦θ k

Since x→ Dg(x) is continuous and θ k : Frk →∏
n
i=1Fri is also continuous, this proves the

theorem
The way this is usually used is in the following corollary, a case of Theorem 6.13.7

obtained by letting Fr j = F in the above theorem.

Corollary 6.13.8 Let U be an open subset of Fn and let f :U → Fm be C1 in the sense that
all the partial derivatives of f exist and are continuous. Then f is differentiable and

f(x+v) = f(x)+
n

∑
k=1

∂ f
∂xk

(x)vk +o(v) .

6.14 Ck Functions
Recall the notation for partial derivatives in the following definition.

Definition 6.14.1 Let g : U → Fn. Then

gxk (x)≡
∂g
∂xk

(x)≡ lim
h→0

g(x+hek)−g(x)
h

Higher order partial derivatives are defined in the usual way.

gxkxl (x)≡
∂ 2g

∂xl∂xk
(x)

and so forth.
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To deal with higher order partial derivatives in a systematic way, here is a useful defi-
nition.

Definition 6.14.2 α = (α1, · · · ,αn) for α1 · · ·αn positive integers is called a multi-index.
For α a multi-index, |α| ≡ α1 + · · ·+αn and if x ∈ Fn,

x =(x1, · · · ,xn),

and f a function, define

xα ≡ xα1
1 xα2

2 · · ·x
αn
n , Dα f(x)≡ ∂ |α|f(x)

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

.

The following is the definition of what is meant by a Ck function.

Definition 6.14.3 Let U be an open subset of Fn and let f : U → Fm. Then for k a nonneg-
ative integer, f is Ck if for every |α| ≤ k, Dα f exists and is continuous.

6.15 Mixed Partial Derivatives
Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact is due to Euler in 1734.

Theorem 6.15.1 Suppose f : U ⊆ F2→R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x,y) ∈U, it follows

fxy (x,y) = fyx (x,y) .

Proof: Since U is open, there exists r > 0 such that B((x,y) ,r)⊆U. Now let |t| , |s|<
r/2, t,s real numbers and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ t,y+ s)− f (x+ t,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ s)− f (x,y))}. (6.15.25)

Note that (x+ t,y+ s) ∈U because

|(x+ t,y+ s)− (x,y)| = |(t,s)|=
(
t2 + s2)1/2

≤
(

r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h(t) ≡ f (x+ t,y+ s)− f (x+ t,y). Therefore, by the mean value theo-
rem from calculus and the (one variable) chain rule,

∆(s, t) =
1
st
(h(t)−h(0)) =

1
st

h′ (αt) t

=
1
s
( fx (x+αt,y+ s)− fx (x+αt,y))
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for some α ∈ (0,1) . Applying the mean value theorem again,

∆(s, t) = fxy (x+αt,y+β s)

where α,β ∈ (0,1).
If the terms f (x+ t,y) and f (x,y+ s) are interchanged in 6.15.25, ∆(s, t) is unchanged

and the above argument shows there exist γ,δ ∈ (0,1) such that

∆(s, t) = fyx (x+ γt,y+δ s) .

Letting (s, t)→ (0,0) and using the continuity of fxy and fyx at (x,y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x,y) = fyx (x,y) .

This proves the theorem.
The following is obtained from the above by simply fixing all the variables except for

the two of interest.

Corollary 6.15.2 Suppose U is an open subset of Fn and f : U → R has the property that
for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both continuous
at x ∈U. Then fxkxl (x) = fxlxk (x) .

By considering the real and imaginary parts of f in the case where f has values in F
you obtain the following corollary.

Corollary 6.15.3 Suppose U is an open subset of Fn and f : U → F has the property that
for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both continuous
at x ∈U. Then fxkxl (x) = fxlxk (x) .

Finally, by considering the components of f you get the following generalization.

Corollary 6.15.4 Suppose U is an open subset of Fn and f : U → F mhas the property that
for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both continuous
at x ∈U. Then fxkxl (x) = fxlxk (x) .

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [6].

Example 6.15.5 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

From the definition of partial derivatives it follows immediately that

fx (0,0) = fy (0,0) = 0.
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Using the standard rules of differentiation, for (x,y) ̸= (0,0) ,

fx = y
x4− y4 +4x2y2

(x2 + y2)2 , fy = x
x4− y4−4x2y2

(x2 + y2)2

Now

fxy (0,0) ≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0) ≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that although the mixed partial derivatives do exist at (0,0) , they are not equal
there.

6.16 Implicit Function Theorem
The implicit function theorem is one of the greatest theorems in mathematics. There are
many versions of this theorem. However, I will give a very simple proof valid in finite
dimensional spaces.

Theorem 6.16.1 (implicit function theorem) Suppose U is an open set in Rn×Rm. Let
f : U → Rn be in C1 (U) and suppose

f(x0,y0) = 0, D1f(x0,y0)
−1 ∈L (Rn,Rn) . (6.16.26)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f(x(y) ,y) = 0. (6.16.27)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).

Proof: Let

f(x,y) =


f1 (x,y)
f2 (x,y)

...
fn (x,y)

 .
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Define for
(
x1, · · · ,xn

)
∈ B(x0,δ )

n
and y ∈ B(y0,η) the following matrix.

J
(
x1, · · · ,xn,y

)
≡

 f1,x1

(
x1,y

)
· · · f1,xn

(
x1,y

)
...

...
fn,x1 (x

n,y) · · · fn,xn (xn,y)

 .

Then by the assumption of continuity of all the partial derivatives, there exists δ 0 > 0 and
η0 > 0 such that if δ < δ 0 and η < η0, it follows that for all

(
x1, · · · ,xn

)
∈ B(x0,δ )

n
and

y ∈ B(y0,η) ,
det
(
J
(
x1, · · · ,xn,y

))
> r > 0. (6.16.28)

and B(x0,δ 0)× B(y0,η0) ⊆U . Pick y ∈ B(y0,η) and suppose there exist x,z ∈ B(x0,δ )
such that f(x,y) = f(z,y) = 0. Consider fi and let

h(t)≡ fi (x+ t (z−x) ,y) .

Then h(1) = h(0) and so by the mean value theorem, h′ (ti) = 0 for some ti ∈ (0,1) . There-
fore, from the chain rule and for this value of ti,

h′ (ti) = D fi (x+ ti (z−x) ,y)(z−x) = 0. (6.16.29)

Then denote by xi the vector, x+ ti (z−x) . It follows from 6.16.29 that

J
(
x1, · · · ,xn,y

)
(z−x) = 0

and so from 6.16.28 z−x = 0. Now it will be shown that if η is chosen sufficiently small,
then for all y ∈ B(y0,η) , there exists a unique x(y) ∈ B(x0,δ ) such that f(x(y) ,y) = 0.

Claim: If η is small enough, then the function, hy (x)≡ |f(x,y)|2 achieves its minimum
value on B(x0,δ ) at a point of B(x0,δ ) .

Proof of claim: Suppose this is not the case. Then there exists a sequence ηk→ 0 and
for some yk having |yk−y0| < ηk, the minimum of hyk occurs on a point of the boundary
of B(x0,δ ), xk such that |x0−xk| = δ . Now taking a subsequence, still denoted by k, it
can be assumed that xk → x with |x−x0| = δ and yk → y0. Let ε > 0. Then for k large
enough, hyk (x0)< ε because f(x0,y0) = 0. Therefore, from the definition of xk,hyk (xk)<
ε. Passing to the limit yields hy0 (x)≤ ε. Since ε > 0 is arbitrary, it follows that hy0 (x) = 0
which contradicts the first part of the argument in which it was shown that for y ∈ B(y0,η)
there is at most one point, x of B(x0,δ ) where f(x,y) = 0. Here two have been obtained,
x0 and x. This proves the claim.

Choose η < η0 and also small enough that the above claim holds and let x(y) denote
a point of B(x0,δ ) at which the minimum of hy on B(x0,δ ) is achieved. Since x(y) is an
interior point, you can consider hy (x(y)+ tv) for |t| small and conclude this function of t
has a zero derivative at t = 0. Thus

Dhy (x(y))v = 0 = 2f(x(y) ,y)T D1f(x(y) ,y)v

for every vector v. But from 6.16.28 and the fact that v is arbitrary, it follows f(x(y) ,y)= 0.
This proves the existence of the function y→ x(y) such that f(x(y) ,y) = 0 for all y ∈
B(y0,η) .



6.16. IMPLICIT FUNCTION THEOREM 129

It remains to verify this function is a C1 function. To do this, let y1 and y2 be points of
B(y0,η) . Then as before, consider the ith component of f and consider the same argument
using the mean value theorem to write

0 = fi (x(y1) ,y1)− fi (x(y2) ,y2)
= fi (x(y1) ,y1)− fi (x(y2) ,y1)+ fi (x(y2) ,y1)− fi (x(y2) ,y2)
= D1 fi

(
xi,y1

)
(x(y1)−x(y2))+D2 fi

(
x(y2) ,yi

)
(y1−y2) .

Therefore,
J
(
x1, · · · ,xn,y1

)
(x(y1)−x(y2)) =−M (y1−y2) (6.16.30)

where M is the matrix whose ith row is D2 fi
(
x(y2) ,yi

)
. Then from 6.16.28 there exists a

constant, C independent of the choice of y ∈ B(y0,η) such that∣∣∣∣∣∣J (x1, · · · ,xn,y
)−1
∣∣∣∣∣∣<C

whenever
(
x1, · · · ,xn

)
∈ B(x0,δ )

n
. By continuity of the partial derivatives of f it also fol-

lows there exists a constant, C1 such that ||D2 fi (x,y)||<C1 whenever, (x,y) ∈ B(x0,δ )×
B(y0,η) . Hence ||M|| must also be bounded independent of the choice of y1 and y2 in
B(y0,η) . From 6.16.30, it follows there exists a constant, C such that for all y1,y2 in
B(y0,η) ,

|x(y1)−x(y2)| ≤C |y1−y2| . (6.16.31)

It follows as in the proof of the chain rule that

o(x(y+v)−x(y)) = o(v) . (6.16.32)

Now let y ∈ B(y0,η) and let |v| be sufficiently small that y+v ∈ B(y0,η) . Then

0 = f(x(y+v) ,y+v)− f(x(y) ,y)
= f(x(y+v) ,y+v)− f(x(y+v) ,y)+ f(x(y+v) ,y)− f(x(y) ,y)

= D2f(x(y+v) ,y)v+D1f(x(y) ,y)(x(y+v)−x(y))+o(|x(y+v)−x(y)|)

= D2f(x(y) ,y)v+D1f(x(y) ,y)(x(y+v)−x(y))+
o(|x(y+v)−x(y)|)+(D2f(x(y+v) ,y)v−D2f(x(y) ,y)v)

= D2f(x(y) ,y)v+D1f(x(y) ,y)(x(y+v)−x(y))+o(v) .

Therefore,
x(y+v)−x(y) =−D1f(x(y) ,y)−1 D2f(x(y) ,y)v+o(v)

which shows that Dx(y) = −D1f(x(y) ,y)−1 D2f(x(y) ,y) and y→Dx(y) is continuous.
This proves the theorem.

In practice, how do you verify the condition, D1f(x0,y0)
−1 ∈L (Fn,Fn)?

f(x,y) =

 f1 (x1, · · · ,xn,y1, · · · ,yn)
...

fn (x1, · · · ,xn,y1, · · · ,yn)

 .
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The matrix of the linear transformation, D1f(x0,y0) is then
∂ f1(x1,··· ,xn,y1,··· ,yn)

∂x1
· · · ∂ f1(x1,··· ,xn,y1,··· ,yn)

∂xn
...

...
∂ fn(x1,··· ,xn,y1,··· ,yn)

∂x1
· · · ∂ fn(x1,··· ,xn,y1,··· ,yn)

∂xn


and from linear algebra, D1f(x0,y0)

−1 ∈L (Fn,Fn) exactly when the above matrix has an
inverse. In other words when

det


∂ f1(x1,··· ,xn,y1,··· ,yn)

∂x1
· · · ∂ f1(x1,··· ,xn,y1,··· ,yn)

∂xn
...

...
∂ fn(x1,··· ,xn,y1,··· ,yn)

∂x1
· · · ∂ fn(x1,··· ,xn,y1,··· ,yn)

∂xn

 ̸= 0

at (x0,y0). The above determinant is important enough that it is given special notation.
Letting z = f(x,y) , the above determinant is often written as

∂ (z1, · · · ,zn)

∂ (x1, · · · ,xn)
.

Of course you can replace R with F in the above by applying the above to the situation
in which each F is replaced with R2.

Corollary 6.16.2 (implicit function theorem) Suppose U is an open set in Fn×Fm. Let
f : U → Fn be in C1 (U) and suppose

f(x0,y0) = 0, D1f(x0,y0)
−1 ∈L (Fn,Fn) . (6.16.33)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f(x(y) ,y) = 0. (6.16.34)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).

The next theorem is a very important special case of the implicit function theorem
known as the inverse function theorem. Actually one can also obtain the implicit function
theorem from the inverse function theorem. It is done this way in [84] and in [4].

Theorem 6.16.3 (inverse function theorem) Let x0 ∈U ⊆ Fn and let f : U → Fn . Suppose

f is C1 (U) , and Df(x0)
−1 ∈L (Fn,Fn). (6.16.35)

Then there exist open sets, W, and V such that

x0 ∈W ⊆U, (6.16.36)

f : W →V is one to one and onto, (6.16.37)

f−1 is C1. (6.16.38)
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Proof: Apply the implicit function theorem to the function

F(x,y)≡ f(x)−y

where y0 ≡ f(x0). Thus the function y→ x(y) defined in that theorem is f−1. Now let

W ≡ B(x0,δ )∩ f−1 (B(y0,η))

and
V ≡ B(y0,η) .

This proves the theorem.

6.16.1 More Continuous Partial Derivatives

Corollary 6.16.2 will now be improved slightly. If f is Ck, it follows that the function which
is implicitly defined is also in Ck, not just C1. Since the inverse function theorem comes
as a case of the implicit function theorem, this shows that the inverse function also inherits
the property of being Ck.

Theorem 6.16.4 (implicit function theorem) Suppose U is an open set in Fn×Fm. Let
f : U → Fn be in Ck (U) and suppose

f(x0,y0) = 0, D1f(x0,y0)
−1 ∈L (Fn,Fn) . (6.16.39)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f(x(y) ,y) = 0. (6.16.40)

Furthermore, the mapping, y→ x(y) is in Ck (B(y0,η)).

Proof: From Corollary 6.16.2 y→ x(y) is C1. It remains to show it is Ck for k > 1
assuming that f is Ck. From 6.16.40

∂x
∂yl =−D1 (x,y)−1 ∂ f

∂yl .

Thus the following formula holds for q = 1 and |α|= q.

Dα x(y) = ∑
|β |≤q

Mβ (x,y)Dβ f(x,y) (6.16.41)

where Mβ is a matrix whose entries are differentiable functions of Dγ (x) for |γ| < q and
Dτ f(x,y) for |τ| ≤ q. This follows easily from the description of D1 (x,y)−1 in terms of the
cofactor matrix and the determinant of D1 (x,y). Suppose 6.16.41 holds for |α| = q < k.
Then by induction, this yields x is Cq. Then

∂Dα x(y)
∂yp = ∑

|β |≤|α|

∂Mβ (x,y)
∂yp Dβ f(x,y)+Mβ (x,y)

∂Dβ f(x,y)
∂yp .
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By the chain rule
∂Mβ (x,y)

∂yp is a matrix whose entries are differentiable functions of Dτ f(x,y)
for |τ| ≤ q+ 1 and Dγ (x) for |γ| < q+ 1. It follows since yp was arbitrary that for any
|α|= q+1, a formula like 6.16.41 holds with q being replaced by q+1. By induction, x is
Ck. This proves the theorem.

As a simple corollary this yields an improved version of the inverse function theorem.

Theorem 6.16.5 (inverse function theorem) Let x0 ∈U ⊆ Fn and let f : U → Fn . Suppose
for k a positive integer,

f is Ck (U) , and Df(x0)
−1 ∈L (Fn,Fn). (6.16.42)

Then there exist open sets, W, and V such that

x0 ∈W ⊆U, (6.16.43)

f : W →V is one to one and onto, (6.16.44)

f−1 is Ck. (6.16.45)

6.17 The Method Of Lagrange Multipliers
As an application of the implicit function theorem, consider the method of Lagrange mul-
tipliers from calculus. Recall the problem is to maximize or minimize a function subject to
equality constraints. Let f : U → R be a C1 function where U ⊆ Rn and let

gi (x) = 0, i = 1, · · · ,m (6.17.46)

be a collection of equality constraints with m < n. Now consider the system of nonlinear
equations

f (x) = a

gi (x) = 0, i = 1, · · · ,m.

x0 is a local maximum if f (x0)≥ f (x) for all x near x0 which also satisfies the constraints
6.17.46. A local minimum is defined similarly. Let F : U×R→ Rm+1 be defined by

F(x,a)≡


f (x)−a
g1 (x)

...
gm (x)

 . (6.17.47)

Now consider the m+1×n Jacobian matrix,
fx1 (x0) · · · fxn (x0)

g1x1 (x0) · · · g1xn (x0)
...

...
gmx1 (x0) · · · gmxn (x0)

 .
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If this matrix has rank m+1 then some m+1×m+1 submatrix has nonzero determinant.
It follows from the implicit function theorem that there exist m+1 variables, xi1 , · · · ,xim+1
such that the system

F(x,a) = 0 (6.17.48)

specifies these m+ 1 variables as a function of the remaining n− (m+1) variables and a
in an open set of Rn−m. Thus there is a solution (x,a) to 6.17.48 for some x close to x0
whenever a is in some open interval. Therefore, x0 cannot be either a local minimum or a
local maximum. It follows that if x0 is either a local maximum or a local minimum, then
the above matrix must have rank less than m+ 1 which requires the rows to be linearly
dependent. Thus, there exist m scalars,

λ 1, · · · ,λ m,

and a scalar µ, not all zero such that

µ

 fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 . (6.17.49)

If the column vectors  g1x1 (x0)
...

g1xn (x0)

 , · · ·

 gmx1 (x0)
...

gmxn (x0)

 (6.17.50)

are linearly independent, then, µ ̸= 0 and dividing by µ yields an expression of the form fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (6.17.51)

at every point x0 which is either a local maximum or a local minimum. This proves the
following theorem.

Theorem 6.17.1 Let U be an open subset ofRn and let f : U→R be a C1 function. Then if
x0 ∈U is either a local maximum or local minimum of f subject to the constraints 6.17.46,
then 6.17.49 must hold for some scalars µ,λ 1, · · · ,λ m not all equal to zero. If the vectors
in 6.17.50 are linearly independent, it follows that an equation of the form 6.17.51 holds.
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Chapter 7

Metric Spaces and Topological Spaces
7.1 Metric Space

Definition 7.1.1 A metric space is a set, X and a function d : X×X→ [0,∞) which satisfies
the following properties.

d (x,y) = d (y,x)
d (x,y)≥ 0 and d (x,y) = 0 if and only if x = y

d (x,y)≤ d (x,z)+d (z,y) .

You can check that Rn and Cn are metric spaces with d (x,y) = |x−y| . However, there
are many others. The definitions of open and closed sets are the same for a metric space as
they are for Rn.

Definition 7.1.2 A set, U in a metric space is open if whenever x ∈U, there exists r > 0
such that B(x,r) ⊆U. As before, B(x,r) ≡ {y : d (x,y)< r} . Closed sets are those whose
complements are open. A point p is a limit point of a set, S if for every r > 0,B(p,r)
contains infinitely many points of S. A sequence, {xn} converges to a point x if for every
ε > 0 there exists N such that if n≥ N, then d (x,xn)< ε. {xn} is a Cauchy sequence if for
every ε > 0 there exists N such that if m,n≥ N, then d (xn,xm)< ε.

Lemma 7.1.3 In a metric space, X every ball, B(x,r) is open. A set is closed if and only
if it contains all its limit points. If p is a limit point of S, then there exists a sequence of
distinct points of S,{xn} such that limn→∞ xn = p.

Proof: Let z ∈ B(x,r). Let δ = r−d (x,z) . Then if w ∈ B(z,δ ) ,

d (w,x)≤ d (x,z)+d (z,w)< d (x,z)+ r−d (x,z) = r.

Therefore, B(z,δ )⊆ B(x,r) and this shows B(x,r) is open.
The properties of balls are presented in the following theorem.

Theorem 7.1.4 Suppose (X ,d) is a metric space. Then the sets {B(x,r) : r > 0, x ∈ X}
satisfy

∪{B(x,r) : r > 0, x ∈ X}= X (7.1.1)

If p ∈ B(x,r1)∩B(z,r2), there exists r > 0 such that

B(p,r)⊆ B(x,r1)∩B(z,r2) . (7.1.2)

Proof: Observe that the union of these balls includes the whole space, X so 7.1.1 is
obvious. Consider 7.1.2. Let p ∈ B(x,r1)∩B(z,r2). Consider

r ≡min(r1−d (x, p) ,r2−d (z, p))

and suppose y ∈ B(p,r). Then

d (y,x)≤ d (y, p)+d (p,x)< r1−d (x, p)+d (x, p) = r1

135
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and so B(p,r) ⊆ B(x,r1). By similar reasoning, B(p,r) ⊆ B(z,r2). This proves the theo-
rem.

Let K be a closed set. This means KC ≡ X \K is an open set. Let p be a limit point of
K. If p ∈ KC, then since KC is open, there exists B(p,r)⊆ KC. But this contradicts p being
a limit point because there are no points of K in this ball. Hence all limit points of K must
be in K.

Suppose next that K contains its limit points. Is KC open? Let p ∈ KC. Then p is not
a limit point of K. Therefore, there exists B(p,r) which contains at most finitely many
points of K. Since p /∈ K, it follows that by making r smaller if necessary, B(p,r) contains
no points of K. That is B(p,r)⊆ KC showing KC is open. Therefore, K is closed.

Suppose now that p is a limit point of S. Let x1 ∈ (S\{p})∩B(p,1) . If x1, · · · ,xk have
been chosen, let

rk+1 ≡min
{

d (p,xi) , i = 1, · · · ,k, 1
k+1

}
.

Let xk+1 ∈ (S\{p})∩B(p,rk+1) . This proves the lemma.

Lemma 7.1.5 If {xn} is a Cauchy sequence in a metric space, X and if some subsequence,{
xnk

}
converges to x, then {xn} converges to x. Also if a sequence converges, then it is a

Cauchy sequence.

Proof: Note first that nk ≥ k because in a subsequence, the indices, n1,n2, · · · are strictly
increasing. Let ε > 0 be given and let N be such that for k > N,d

(
x,xnk

)
< ε/2 and for

m,n≥ N,d (xm,xn)< ε/2. Pick k > n. Then if n > N,

d (xn,x)≤ d
(
xn,xnk

)
+d
(
xnk ,x

)
<

ε

2
+

ε

2
= ε.

Finally, suppose limn→∞ xn = x. Then there exists N such that if n >N, then d (xn,x)< ε/2.
it follows that for m,n > N,

d (xn,xm)≤ d (xn,x)+d (x,xm)<
ε

2
+

ε

2
= ε.

This proves the lemma.
A useful idea is the idea of distance from a point to a set.

Definition 7.1.6 Let (X ,d) be a metric space and let S be a nonempty set in X. Then

dist(x,S)≡ inf{d (x,y) : y ∈ S} .

The following lemma is the fundamental result.

Lemma 7.1.7 The function, x→ dist(x,S) is continuous and in fact satisfies

|dist(x,S)−dist(y,S)| ≤ d (x,y) .



7.2. OPEN AND CLOSED SETS, SEQUENCES, LIMIT POINTS 137

Proof: Suppose dist(x,y) is as least as large as dist(y,S). Then pick z ∈ S such that
d (y,z)≤ dist(y,S)+ ε. Then

|dist(x,S)−dist(y,S)| = dist(x,S)−dist(y,S)
≤ d (x,z)− (d (y,z)− ε)

= d (x,z)−d (y,z)+ ε

≤ d (x,y)+d (y,z)−d (y,z)+ ε

= d (x,y)+ ε.

Since ε > 0 is arbitrary, this proves the lemma.

7.2 Open and Closed Sets, Sequences, Limit Points
It is most efficient to discus things in terms of abstract metric spaces to begin with.

Definition 7.2.1 A non empty set X is called a metric space if there is a function d : X ×
X → [0,∞) which satisfies the following axioms.

1. d (x,y) = d (y,x)

2. d (x,y)≥ 0 and equals 0 if and only if x = y

3. d (x,y)+d (y,z)≥ d (x,z)

This function d is called the metric. We often refer to it as the distance also.

Definition 7.2.2 An open ball, denoted as B(x,r) is defined as follows.

B(x,r)≡ {y : d (x,y)< r}

A set U is said to be open if whenever x ∈ U, it follows that there is r > 0 such that
B(x,r) ⊆U. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x− y|.
Then the first thing to show is the following.

Proposition 7.2.3 An open ball is an open set.

Proof: Suppose y ∈ B(x,r) . We need to verify that y is an interior point of B(x,r). Let
δ = r−d (x,y) . Then if z ∈ B(y,δ ) , it follows that

d (z,x)≤ d (z,y)+d (y,x)< δ +d (y,x) = r−d (x,y)+d (y,x) = r

Thus y ∈ B(y,δ )⊆ B(x,r). ■

Definition 7.2.4 Let S be a nonempty subset of a metric space. Then p is a limit point
(accumulation point) of S if for every r > 0 there exists a point different than p in B(p,r)∩S.
Sometimes people denote the set of limit points as S′.
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The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 7.2.5 A point x is a limit point of the nonempty set A if and only if every B(x,r)
contains infinitely many points of A.

Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{d (ai,x) , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn) . Thus

every B(x,r) contains B(x,rn) for all n large enough and hence it contains ak for k ≥ n
where the ak are distinct, none equal to x. ■

A related idea is the notion of the limit of a sequence. Recall that a sequence is really
just a mapping from N to X . We write them as {xn} or {xn}∞

n=1 if we want to emphasize
the values of n. Then the following definition is what it means for a sequence to converge.

Definition 7.2.6 We say that x = limn→∞ xn when for every ε > 0 there exists N such that
if n≥ N, then

d (x,xn)< ε

Often we write xn→ x for short. This is equivalent to saying

lim
n→∞

d (x,xn) = 0.

Proposition 7.2.7 The limit is well defined. That is, if x,x′ are both limits of a sequence,
then x = x′.

Proof: From the definition, there exist N,N′ such that if n≥N, then d (x,xn)< ε/2 and
if n≥ N′, then d (x,xn)< ε/2. Then let M ≥max(N,N′) . Let n > M. Then

d
(
x,x′
)
≤ d (x,xn)+d

(
xn,x′

)
<

ε

2
+

ε

2
= ε

Since ε is arbitrary, this shows that x = x′ because d (x,x′) = 0. ■
Next there is an important theorem about limit points and convergent sequences.

Theorem 7.2.8 Let S ̸= /0. Then p is a limit point of S if and only if there exists a sequence
of distinct points of S,{xn} none of which equal p such that limn→∞ xn = p.

Proof: =⇒ Suppose p is a limit point. Why does there exist the promissed convergent
sequence? Let x1 ∈B(p,1)∩S such that x1 ̸= p. If x1, · · · ,xn have been chosen, let xn+1 ̸= p
be in B(p,δ n+1)∩S where

δ n+1 = min
{

1
n+1

,d (xi, p) , i = 1,2, · · · ,n
}
.

Then this constructs the necessary convergent sequence.
⇐= Conversely, if such a sequence {xn} exists, then for every r > 0, B(p,r) contains

xn ∈ S for all n large enough. Hence, p is a limit point because none of these xn are equal
to p. ■
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Definition 7.2.9 A set H is closed means HC is open.

Note that this says that the complement of an open set is closed. If V is open, then the
complement of its complement is itself. Thus

(
VC
)C

=V an open set. Hence VC is closed.
Then the following theorem gives the relationship between closed sets and limit points.

Theorem 7.2.10 A set H is closed if and only if it contains all of its limit points.

Proof: =⇒ Let H be closed and let p be a limit point. We need to verify that p ∈ H. If
it is not, then since H is closed, its complement is open and so there exists δ > 0 such that
B(p,δ )∩H = /0. However, this prevents p from being a limit point.
⇐= Next suppose H has all of its limit points. Why is HC open? If p ∈ HC then it is

not a limit point and so there exists δ > 0 such that B(p,δ ) has no points of H. In other
words, HC is open. Hence H is closed. ■

Corollary 7.2.11 A set H is closed if and only if whenever {hn} is a sequence of points of
H which converges to a point x, it follows that x ∈ H.

Proof: =⇒ Suppose H is closed and hn→ x. If x ∈ H there is nothing left to show. If
x /∈ H, then from the definition of limit, it is a limit point of H because none of the hn are
equal to x. Hence x ∈ H after all.
⇐= Suppose the limit condition holds, why is H closed? Let x ∈ H ′ the set of limit

points of H. By Theorem 7.2.8 there exists a sequence of points of H, {hn} such that
hn → x. Then by assumption, x ∈ H. Thus H contains all of its limit points and so it is
closed by Theorem 7.2.10. ■

Next is the important concept of a subsequence.

Definition 7.2.12 Let {xn}∞

n=1 be a sequence. Then if n1 < n2 < · · · is a strictly increasing
sequence of indices, we say

{
xnk

}∞

k=1 is a subsequence of {xn}∞

n=1.

The really important thing about subsequences is that they preserve convergence.

Theorem 7.2.13 Let
{

xnk

}
be a subsequence of a convergent sequence {xn} where xn→ x.

Then
lim
k→∞

xnk = x

also.

Proof: Let ε > 0 be given. Then there exists N such that

d (xn,x)< ε if n≥ N.

It follows that if k ≥ N, then nk ≥ N and so

d
(
xnk ,x

)
< ε if k ≥ N.

This is what it means to say limk→∞ xnk = x. ■
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7.3 Cauchy Sequences, Completeness
Of course it does not go the other way. For example, you could let xn = (−1)n and it has a
convergent subsequence but fails to converge. Here d (x,y) = |x− y| and the metric space
is just R.

However, there is a kind of sequence for which it does go the other way. This is called
a Cauchy sequence.

Definition 7.3.1 {xn} is called a Cauchy sequence if for every ε > 0 there exists N such
that if m,n≥ N, then

d (xn,xm)< ε

Now the major theorem about this is the following.

Theorem 7.3.2 Let {xn} be a Cauchy sequence. Then it converges if and only if any sub-
sequence converges.

Proof: =⇒ This was just done above.⇐= Suppose now that {xn} is a Cauchy sequence
and limk→∞ xnk = x. Then there exists N1 such that if k > N1, then d

(
xnk ,x

)
< ε/2. From

the definition of what it means to be Cauchy, there exists N2 such that if m,n ≥ N2, then
d (xm,xn)< ε/2. Let N ≥max(N1,N2). Then if k ≥ N, then nk ≥ N and so

d (x,xk)≤ d
(
x,xnk

)
+d
(
xnk ,xk

)
<

ε

2
+

ε

2
= ε (7.3.3)

It follows from the definition that limk→∞ xk = x. ■

Definition 7.3.3 A metric space is said to be complete if every Cauchy sequence converges.

There certainly are metric spaces which are not complete. For example, if you consider
Q with d (x,y) ≡ |x− y| , this will not be complete because you can get a sequence which
is obtained as xn defined as the n decimal place description of

√
2. However, if a sequence

converges, then it must be Cauchy.

Lemma 7.3.4 If xn→ x, then {xn} is a Cauchy sequence.

Proof: Let ε > 0. Then there exists nε such that if m ≥ nε , then d (x,xm) < ε/2. If
m,k ≥ nε , then by the triangle inequality,

d (xm,xk)≤ d (xm,x)+d (x,xk)<
ε

2
+

ε

2
= ε

showing that the convergent sequence is indeed a Cauchy sequence as claimed. ■
Another nice thing to note is this.

Proposition 7.3.5 If {xn} is a sequence and if p is a limit point of the set S = ∪∞
n=1 {xn}

then there is a subsequence
{

xnk

}
such that limk→∞ xnk = x.
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Proof: By Theorem 7.2.8, there exists a sequence of distinct points of S denoted as
{yk} such that none of them equal p and limk→∞ yk = p. Thus B(p,r) contains infinitely
many different points of the set D, this for every r. Let xn1 ∈ B(p,1) where n1 is the first
index such that xn1 ∈ B(p,1). Suppose xn1 , · · · ,xnk have been chosen, the ni increasing and
let 1 > δ 1 > δ 2 > · · ·> δ k where xni ∈ B(p,δ i) . Then let

δ k+1 < min
{

1
2k+1 ,d

(
p,xn j

)
,δ j, j = 1,2 · · · ,k

}
Let xnk+1 ∈ B(p,δ k+1) where nk+1 is the first index such that xnk+1 is contained B(p,δ k+1).
Then

lim
k→∞

xnk = p. ■

Another useful result is the following.

Lemma 7.3.6 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).

Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so
d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y)

Similarly
d (xn,yn)−d (x,y)≤ d (x,xn)+d (yn,y)

and so
|d (xn,yn)−d (x,y)| ≤ d (x,xn)+d (yn,y)

and the right side converges to 0 as n→ ∞. ■

7.4 Closure Of A Set
Next is the topic of the closure of a set.

Definition 7.4.1 Let A be a nonempty subset of (X ,d) a metric space. Then A is defined to
be the intersection of all closed sets which contain A. Note the whole space, X is one such
closed set which contains A. The whole space X is closed because its complement is open,
its complement being /0. It is certainly true that every point of the empty set is an interior
point because there are no points of /0.

Lemma 7.4.2 Let A be a nonempty set in (X ,d) . Then A is a closed set and

A = A∪A′

where A′ denotes the set of limit points of A.
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Proof: First of all, denote by C the set of closed sets which contain A. Then

A = ∩C

and this will be closed if its complement is open. However,

AC
= ∪

{
HC : H ∈ C

}
.

Each HC is open and so the union of all these open sets must also be open. This is because
if x is in this union, then it is in at least one of them. Hence it is an interior point of that
one. But this implies it is an interior point of the union of them all which is an even larger
set. Thus A is closed.

The interesting part is the next claim. First note that from the definition, A ⊆ A so if
x ∈ A, then x ∈ A. Now consider y ∈ A′ but y /∈ A. If y /∈ A, a closed set, then there exists
B(y,r)⊆ AC

. Thus y cannot be a limit point of A, a contradiction. Therefore,

A∪A′ ⊆ A

Next suppose x ∈ A and suppose x /∈ A. Then if B(x,r) contains no points of A different
than x, since x itself is not in A, it would follow that B(x,r)∩A = /0 and so recalling that
open balls are open, B(x,r)C is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x ∈ A. Hence if x /∈ A, then x ∈ A′ and so

A∪A′ ⊇ A ■

7.5 Separable Metric Spaces
Definition 7.5.1 A metric space is called separable if there exists a countable dense subset
D. This means two things. First, D is countable, and second, that if x is any point and
r > 0, then B(x,r)∩D ̸= /0. A metric space is called completely separable if there exists a
countable collection of nonempty open sets B such that every open set is the union of some
subset of B. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of B namely the empty subset.

Theorem 7.5.2 A metric space is separable if and only if it is completely separable.

Proof: ⇐= Let B be the special countable collection of open sets and for each B ∈B,
let pB be a point of B. Then let P ≡ {pB : B ∈B}. If B(x,r) is any ball, then it is the
union of sets of B and so there is a point of P in it. Since B is countable, so is P .

=⇒ Let D be the countable dense set and let B ≡{B(d,r) : d ∈ D,r ∈Q∩ [0,∞)}.
Then B is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y ∈ B(y,δ ) ⊆ B(x,R) . Then there exists d ∈ B

(
y, δ

10

)
. Let ε ∈ Q and δ

10 < ε < δ

5 . Then
y ∈ B(d,ε) ∈B. Is B(d,ε) ⊆ B(x,R)? If so, then the desired result follows because this
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would show that every y∈ B(x,R) is contained in one of these sets of B which is contained
in B(x,R) showing that B(x,R) is the union of sets of B. Let z∈ B(d,ε)⊆ B

(
d, δ

5

)
. Then

d (y,z)≤ d (y,d)+d (d,z)<
δ

10
+ ε <

δ

10
+

δ

5
< δ

Hence B(d,ε) ⊆ B(y,δ ) ⊆ B(x,r). Therefore, every ball is the union of sets of B and,
since every open set is the union of balls, it follows that every open set is the union of sets
of B. ■

Definition 7.5.3 Let S be a nonempty set. Then a set of open sets C is called an open cover
of S if ∪C ⊇S . (It covers up the set S. Think lilly pads covering the surface of a pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 7.5.4 A metric space has the Lindeloff property if whenever C is an open cover
of a set S, there exists a countable subset of C denoted here by B such that B is also an
open cover of S.

Theorem 7.5.5 Every separable metric space has the Lindeloff property.

Proof: Let C be an open cover of a set S. Let B be a countable basis. Such exists by
Theorem 7.5.2. Let B̂ denote those sets of B which are contained in some set of C . Thus
B̂ is a countable open cover of S. Now for B ∈B, let UB be a set of C which contains B.
Letting Ĉ denote these sets UB it follows that Ĉ is countable and is an open cover of S. ■

Definition 7.5.6 A Polish space is a complete separable metric space. These things turn
out to be very useful in probability theory and in other areas.

7.6 Compactness In Metric Space
Many existence theorems in analysis depend on some set being compact. Therefore, it is
important to be able to identify compact sets. The purpose of this section is to describe
compact sets in a metric space.

Definition 7.6.1 Let A be a subset of X. A is compact if whenever A is contained in the
union of a set of open sets, there exists finitely many of these open sets whose union contains
A. (Every open cover admits a finite subcover.) A is “sequentially compact” means every
sequence has a convergent subsequence converging to an element of A.

In a metric space compact is not the same as closed and bounded!

Example 7.6.2 Let X be any infinite set and define d (x,y) = 1 if x ̸= y while d (x,y) = 0 if
x = y.
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You should verify the details that this is a metric space because it satisfies the axioms
of a metric. The set X is closed and bounded because its complement is /0 which is clearly
open because every point of /0 is an interior point. (There are none.) Also X is bounded
because X = B(x,2). However, X is clearly not compact because

{
B
(
x, 1

2

)
: x ∈ X

}
is a

collection of open sets whose union contains X but since they are all disjoint and nonempty,
there is no finite subset of these whose union contains X . In fact B

(
x, 1

2

)
= {x}.

From this example it is clear something more than closed and bounded is needed. If
you are not familiar with the issues just discussed, ignore them and continue.

Definition 7.6.3 In any metric space, a set E is totally bounded if for every ε > 0 there
exists a finite set of points {x1, · · · ,xn} such that

E ⊆ ∪n
i=1B(xi,ε).

This finite set of points is called an ε net.

The following proposition tells which sets in a metric space are compact. First here is
an interesting lemma.

Lemma 7.6.4 Let X be a metric space and suppose D is a countable dense subset of X . In
other words, it is being assumed X is a separable metric space. Consider the open sets of
the form B(d,r) where r is a positive rational number and d ∈ D. Denote this countable
collection of open sets by B. Then every open set is the union of sets of B. Furthermore,
if C is any collection of open sets, there exists a countable subset, {Un} ⊆ C such that
∪nUn = ∪C .

Proof: Let U be an open set and let x∈U. Let B(x,δ )⊆U. Then by density of D, there
exists d ∈ D∩B(x,δ/4) . Now pick r ∈ Q∩ (δ/4,3δ/4) and consider B(d,r) . Clearly,
B(d,r) contains the point x because r > δ/4. Is B(d,r) ⊆ B(x,δ )? if so, this proves the
lemma because x was an arbitrary point of U . Suppose z ∈ B(d,r) . Then

d (z,x)≤ d (z,d)+d (d,x)< r+
δ

4
<

3δ

4
+

δ

4
= δ

Now let C be any collection of open sets. Each set in this collection is the union of
countably many sets of B. Let B′ denote the sets of B which are contained in some set
of C . Thus ∪B′ = ∪C . Then for each B ∈ B′, pick UB ∈ C such that B ⊆ UB. Then
{UB : B ∈B′} is a countable collection of sets of C whose union equals ∪C . Therefore,
this proves the lemma.

Proposition 7.6.5 Let (X ,d) be a metric space. Then the following are equivalent.

(X ,d) is compact, (7.6.4)

(X ,d) is sequentially compact, (7.6.5)

(X ,d) is complete and totally bounded. (7.6.6)
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Proof: Suppose 7.6.4 and let {xk} be a sequence. Suppose {xk} has no convergent
subsequence. If this is so, then no value of the sequence is repeated more than finitely
many times. Also {xk} has no limit point because if it did, there would exist a subsequence
which converges. To see this, suppose p is a limit point of {xk} . Then in B(p,1) there
are infinitely many points of {xk} . Pick one called xk1 . Now if xk1 ,xk2 , · · · ,xkn have been
picked with xki ∈ B(p,1/i) , consider B(p,1/(n+1)) . There are infinitely many points of
{xk} in this ball also. Pick xkn+1 such that kn+1 > kn. Then {xkn}

∞

n=1 is a subsequence which
converges to p and it is assumed this does not happen. Thus {xk} has no limit points. It
follows the set

Cn = ∪{xk : k ≥ n}

is a closed set because it has no limit points and if

Un =CC
n ,

then
X = ∪∞

n=1Un

but there is no finite subcovering, because no value of the sequence is repeated more than
finitely many times. This contradicts compactness of (X ,d). Note xk is not in Un whenever
k > n. Thus 7.6.4 implies 7.6.5.

Now suppose 7.6.5 and let {xn} be a Cauchy sequence. Is {xn} convergent? By se-
quential compactness xnk → x for some subsequence. By Lemma 7.1.5 it follows that {xn}
also converges to x showing that (X ,d) is complete. If (X ,d) is not totally bounded, then
there exists ε > 0 for which there is no ε net. Hence there exists a sequence {xk} with
d (xk,xl)≥ ε for all l ̸= k. By Lemma 7.1.5 again, this contradicts 7.6.5 because no subse-
quence can be a Cauchy sequence and so no subsequence can converge. This shows 7.6.5
implies 7.6.6.

Now suppose 7.6.6. What about 7.6.5? Let {pn} be a sequence and let {xn
i }

mn
i=1be a 2−n

net for n = 1,2, · · · . Let
Bn ≡ B

(
xn

in ,2
−n)

be such that Bn contains pk for infinitely many values of k and Bn ∩ Bn+1 ̸= /0. To do
this, suppose Bn contains pk for infinitely many values of k. Then one of the sets which
intersect Bn,B

(
xn+1

i ,2−(n+1)
)

must contain pk for infinitely many values of k because all
these indices of points from {pn} contained in Bn must be accounted for in one of finitely
many sets, B

(
xn+1

i ,2−(n+1)
)

. Thus there exists a strictly increasing sequence of integers,
nk such that

pnk ∈ Bk.

Then if k ≥ l,

d
(

pnk , pnl

)
≤

k−1

∑
i=l

d
(

pni+1 , pni

)
<

k−1

∑
i=l

2−(i−1) < 2−(l−2).
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Consequently {pnk} is a Cauchy sequence. Hence it converges because the metric space is
complete. This proves 7.6.5.

Now suppose 7.6.5 and 7.6.6 which have now been shown to be equivalent. Let Dn be
a n−1 net for n = 1,2, · · · and let

D = ∪∞
n=1Dn.

Thus D is a countable dense subset of (X ,d).
Now let C be any set of open sets such that ∪C ⊇ X . By Lemma 7.6.4, there exists a

countable subset of C ,
C̃ = {Un}∞

n=1

such that ∪C̃ = ∪C . If C admits no finite subcover, then neither does C̃ and there exists
pn ∈ X \∪n

k=1Uk. Then since X is sequentially compact, there is a subsequence {pnk} such
that {pnk} converges. Say

p = lim
k→∞

pnk .

All but finitely many points of {pnk} are in X \∪n
k=1Uk. Therefore p ∈ X \∪n

k=1Uk for each
n. Hence

p /∈ ∪∞
k=1Uk

contradicting the construction of {Un}∞
n=1 which required that ∪∞

n=1Un ⊇ X . Hence X is
compact. This proves the proposition.

Consider Rn. In this setting totally bounded and bounded are the same. This will yield
a proof of the Heine Borel theorem from advanced calculus.

Lemma 7.6.6 A subset of Rn is totally bounded if and only if it is bounded.

Proof: Let A be totally bounded. Is it bounded? Let x1, · · · ,xp be a 1 net for A. Now
consider the ball B(0,r+1) where r > max(|xi| : i = 1, · · · , p) . If z ∈ A, then z ∈ B(x j,1)
for some j and so by the triangle inequality,

|z−0| ≤
∣∣z−x j

∣∣+ ∣∣x j
∣∣< 1+ r.

Thus A⊆ B(0,r+1) and so A is bounded.
Now suppose A is bounded and suppose A is not totally bounded. Then there exists

ε > 0 such that there is no ε net for A. Therefore, there exists a sequence of points {ai}
with

∣∣ai−a j
∣∣≥ ε if i ̸= j. Since A is bounded, there exists r > 0 such that

A⊆ [−r,r)n.

(x ∈[−r,r)n means xi ∈ [−r,r) for each i.) Now define S to be all cubes of the form

n

∏
k=1

[ak,bk)

where
ak =−r+ i2−pr, bk =−r+(i+1)2−pr,
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for i ∈ {0,1, · · · ,2p+1 − 1}. Thus S is a collection of
(
2p+1

)n non overlapping cubes
whose union equals [−r,r)n and whose diameters are all equal to 2−pr

√
n. Now choose

p large enough that the diameter of these cubes is less than ε . This yields a contradiction
because one of the cubes must contain infinitely many points of {ai}. This proves the
lemma.

The next theorem is called the Heine Borel theorem and it characterizes the compact
sets in Rn.

Theorem 7.6.7 A subset of Rn is compact if and only if it is closed and bounded.

Proof: Since a set in Rn is totally bounded if and only if it is bounded, this theorem
follows from Proposition 7.6.5 and the observation that a subset of Rn is closed if and only
if it is complete. This proves the theorem.

Proposition 7.6.8 If K is a closed, nonempty subset of a nonempty compact set H, then K
is compact.

Proof: Let C be an open cover for K. Then C ∪
{

KC
}

is an open cover for H. Thus
there are finitely many sets from this last collection of open sets, U1, · · · ,Um which covers
H. Include only those which are in C . These cover K because KC covers no points of K. ■

7.7 Some Applications Of Compactness
The following corollary is an important existence theorem which depends on compactness.

Theorem 7.7.1 Let X be a compact metric space and let f : X → R be continuous. Then
max{ f (x) : x ∈ X} and min{ f (x) : x ∈ X} both exist.

Proof: First it is shown f (X) is compact. Suppose C is a set of open sets whose union
contains f (X). Then since f is continuous f−1 (U) is open for all U ∈ C . Therefore,{

f−1 (U) : U ∈ C
}

is a collection of open sets whose union contains X . Since X is com-
pact, it follows finitely many of these,

{
f−1 (U1) , · · · , f−1 (Up)

}
contains X in their union.

Therefore, f (X)⊆ ∪p
k=1Uk showing f (X) is compact as claimed.

Now since f (X) is compact, Theorem 7.6.7 implies f (X) is closed and bounded.
Therefore, it contains its inf and its sup. Thus f achieves both a maximum and a mini-
mum.

Definition 7.7.2 Let X ,Y be metric spaces and f : X → Y a function. f is uniformly con-
tinuous if for all ε > 0 there exists δ > 0 such that whenever x1 and x2 are two points of X
satisfying d (x1,x2)< δ , it follows that d ( f (x1) , f (x2))< ε .

A very important theorem is the following.

Theorem 7.7.3 Suppose f : X → Y is continuous and X is compact. Then f is uniformly
continuous.
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Proof: Suppose this is not true and that f is continuous but not uniformly continuous.
Then there exists ε > 0 such that for all δ > 0 there exist points, pδ and qδ such that
d (pδ ,qδ ) < δ and yet d ( f (pδ ) , f (qδ )) ≥ ε . Let pn and qn be the points which go with
δ = 1/n. By Proposition 7.6.5 {pn} has a convergent subsequence,

{
pnk

}
converging to a

point, x ∈ X . Since d (pn,qn)<
1
n , it follows that qnk → x also. Therefore,

ε ≤ d
(

f
(

pnk

)
, f
(
qnk

))
≤ d

(
f
(

pnk

)
, f (x)

)
+d
(

f (x) , f
(
qnk

))
but by continuity of f , both d

(
f
(

pnk

)
, f (x)

)
and d

(
f (x) , f

(
qnk

))
converge to 0 as k→∞

contradicting the above inequality. This proves the theorem.
Another important property of compact sets in a metric space concerns the finite inter-

section property.

Definition 7.7.4 If every finite subset of a collection of sets has nonempty intersection, the
collection has the finite intersection property.

Theorem 7.7.5 Suppose F is a collection of compact sets in a metric space, X which has
the finite intersection property. Then there exists a point in their intersection. (∩F ̸= /0).

Proof: First I show each compact set is closed. Let K be a nonempty compact set and
suppose p /∈ K. Then for each x ∈ K, let Vx = B(x,d (p,x)/3) and Ux = B(p,d (p,x)/3) so
that Ux and Vx have empty intersection. Then since V is compact, there are finitely many Vx
which cover K say Vx1 , · · · ,Vxn . Then let U = ∩n

i=1Uxi . It follows p ∈U and U has empty
intersection with K. In fact U has empty intersection with ∪n

i=1Vxi . Since U is an open set
and p ∈ KC is arbitrary, it follows KC is an open set.

Consider now the claim about the intersection. If this were not so,

∪
{

FC : F ∈F
}
= X

and so, in particular, picking some F0 ∈F ,{
FC : F ∈F

}
would be an open cover of F0. Since F0 is compact, some finite subcover, FC

1 , · · · ,FC
m exists.

But then
F0 ⊆ ∪m

k=1FC
k

which means ∩m
k=0Fk = /0, contrary to the finite intersection property. To see this, note that

if x ∈ F0, then it must fail to be in some Fk and so it is not in ∩m
k=0Fk. Since this is true for

every x it follows ∩m
k=0Fk = /0.

Theorem 7.7.6 Let Xi be a compact metric space with metric di. Then ∏
m
i=1 Xi is also a

compact metric space with respect to the metric, d (x,y)≡maxi (di (xi,yi)).

Proof: This is most easily seen from sequential compactness. Let
{

xk
}∞

k=1 be a se-
quence of points in ∏

m
i=1 Xi. Consider the ith component of xk, xk

i . It follows
{

xk
i
}

is a
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sequence of points in Xi and so it has a convergent subsequence. Compactness of X1 im-
plies there exists a subsequence of xk, denoted by

{
xk1
}

such that

lim
k1→∞

xk1
1 → x1 ∈ X1.

Now there exists a further subsequence, denoted by
{

xk2
}

such that in addition to this,
xk2

2 → x2 ∈ X2. After taking m such subsequences, there exists a subsequence,
{

xl
}

such
that liml→∞ xl

i = xi ∈ Xi for each i. Therefore, letting x≡(x1, · · · ,xm), xl → x in ∏
m
i=1 Xi.

This proves the theorem.

7.8 Ascoli Arzela Theorem
Definition 7.8.1 Let (X ,d) be a complete metric space. Then it is said to be locally com-
pact if B(x,r) is compact for each r > 0.

Thus if you have a locally compact metric space, then if {an} is a bounded sequence, it
must have a convergent subsequence.

Let K be a compact subset of Rn and consider the continuous functions which have
values in a locally compact metric space, (X ,d) where d denotes the metric on X . Denote
this space as C (K,X) .

Definition 7.8.2 For f ,g ∈C (K,X) , where K is a compact subset of Rn and X is a locally
compact complete metric space define

ρK ( f ,g)≡ sup{d ( f (x) ,g(x)) : x ∈ K} .

Then ρK provides a distance which makes C (K,X) into a metric space.

The Ascoli Arzela theorem is a major result which tells which subsets of C (K,X) are
sequentially compact.

Definition 7.8.3 Let A ⊆ C (K,X) for K a compact subset of Rn. Then A is said to be
uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that whenever x,y∈K
with |x−y|< δ and f ∈ A,

d ( f (x) , f (y))< ε.

The set, A is said to be uniformly bounded if for some M < ∞, and a ∈ X ,

f (x) ∈ B(a,M)

for all f ∈ A and x ∈ K.

Uniform equicontinuity is like saying that the whole set of functions, A, is uniformly
continuous on K uniformly for f ∈ A. The version of the Ascoli Arzela theorem I will
present here is the following.
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Theorem 7.8.4 Suppose K is a nonempty compact subset of Rn and A ⊆C (K,X) is uni-
formly bounded and uniformly equicontinuous. Then if { fk} ⊆ A, there exists a function,
f ∈C (K,X) and a subsequence, fkl such that

lim
l→∞

ρK
(

fkl , f
)
= 0.

To give a proof of this theorem, I will first prove some lemmas.

Lemma 7.8.5 If K is a compact subset of Rn, then there exists D≡ {xk}∞

k=1 ⊆ K such that
D is dense in K. Also, for every ε > 0 there exists a finite set of points, {x1, · · · ,xm} ⊆ K,
called an ε net such that

∪m
i=1B(xi,ε)⊇ K.

Proof: For m∈N, pick xm
1 ∈K. If every point of K is within 1/m of xm

1 , stop. Otherwise,
pick

xm
2 ∈ K \B(xm

1 ,1/m) .

If every point of K contained in B(xm
1 ,1/m)∪B(xm

2 ,1/m) , stop. Otherwise, pick

xm
3 ∈ K \ (B(xm

1 ,1/m)∪B(xm
2 ,1/m)) .

If every point of K is contained in B(xm
1 ,1/m)∪B(xm

2 ,1/m)∪B
(
xm

3 ,1/m
)
, stop. Other-

wise, pick
xm

4 ∈ K \ (B(xm
1 ,1/m)∪B(xm

2 ,1/m)∪B(xm
3 ,1/m))

Continue this way until the process stops, say at N (m). It must stop because if it didn’t,
there would be a convergent subsequence due to the compactness of K. Ultimately all terms
of this convergent subsequence would be closer than 1/m, violating the manner in which
they are chosen. Then D = ∪∞

m=1 ∪
N(m)
k=1

{
xm

k

}
. This is countable because it is a countable

union of countable sets. If y ∈ K and ε > 0, then for some m, 2/m < ε and so B(y,ε) must
contain some point of

{
xm

k

}
since otherwise, the process stopped too soon. You could have

picked y. ■

Lemma 7.8.6 Suppose D is defined above and {gm} is a sequence of functions of A having
the property that for every xk ∈ D,

lim
m→∞

gm (xk) exists.

Then there exists g ∈C (K,X) such that

lim
m→∞

ρ (gm,g) = 0.

Proof: Define g first on D.

g(xk)≡ lim
m→∞

gm (xk) .

Next I show that {gm} converges at every point of K. Let x ∈ K and let ε > 0 be given.
Choose xk such that for all f ∈ A,

d ( f (xk) , f (x))<
ε

3
.
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I can do this by the equicontinuity. Now if p,q are large enough, say p,q≥M,

d (gp (xk) ,gq (xk))<
ε

3
.

Therefore, for p,q≥M,

d (gp (x) ,gq (x)) ≤ d (gp (x) ,gp (xk))+d (gp (xk) ,gq (xk))+d (gq (xk) ,gq (x))

<
ε

3
+

ε

3
+

ε

3
= ε

It follows that {gm (x)} is a Cauchy sequence having values X . Therefore, it converges. Let
g(x) be the name of the thing it converges to.

Let ε > 0 be given and pick δ > 0 such that whenever x,y∈K and |x−y|< δ , it follows
d ( f (x) , f (y))< ε

3 for all f ∈ A. Now let {x1, · · · ,xm} be a δ net for K as in Lemma 7.8.5.
Since there are only finitely many points in this δ net, it follows that there exists N such
that for all p,q≥ N,

d (gq (xi) ,gp (xi))<
ε

3
for all {x1, · · · ,xm} . Therefore, for arbitrary x ∈ K, pick xi ∈ {x1, · · · ,xm} such that

|xi−x|< δ .

Then

d (gq (x) ,gp (x)) ≤ d (gq (x) ,gq (xi))+d (gq (xi) ,gp (xi))+d (gp (xi) ,gp (x))

<
ε

3
+

ε

3
+

ε

3
= ε.

Since N does not depend on the choice of x, it follows this sequence {gm} is uniformly
Cauchy. That is, for every ε > 0, there exists N such that if p,q≥ N, then

ρ (gp,gq)< ε.

Next, I need to verify that the function, g is a continuous function. Let N be large
enough that whenever p,q≥ N, the above holds. Then for all x ∈ K,

d (g(x) ,gp (x))≤
ε

3
(7.8.7)

whenever p≥ N. This follows from observing that for p,q≥ N,

d (gq (x) ,gp (x))<
ε

3

and then taking the limit as q→ ∞ to obtain 7.8.7. In passing to the limit, you can use the
following simple claim.

Claim: In a metric space, if an→ a, then d (an,b)→ d (a,b) .
Proof of the claim: You note that by the triangle inequality, d (an,b)− d (a,b) ≤

d (an,a) and d (a,b)−d (an,b)≤ d (an,a) and so

|d (an,b)−d (a,b)| ≤ d (an,a) .
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Now let p satisfy 7.8.7 for all x whenever p > N. Also pick δ > 0 such that if |x−y|<
δ , then

d (gp (x) ,gp (y))<
ε

3
.

Then if |x−y|< δ ,

d (g(x) ,g(y)) ≤ d (g(x) ,gp (x))+d (gp (x) ,gp (y))+d (gp (y) ,g(y))

<
ε

3
+

ε

3
+

ε

3
= ε.

Since ε was arbitrary, this shows that g is continuous.
It only remains to verify that ρ (g,gk)→ 0. But this follows from 7.8.7. ■
With these lemmas, it is time to prove Theorem 7.8.4.
Proof of Theorem 7.8.4: Let D = {xk} be the countable dense set of K gauranteed by

Lemma 7.8.5 and let {(1,1) ,(1,2) ,(1,3) ,(1,4) ,(1,5) , · · ·} be a subsequence of N such
that

lim
k→∞

f(1,k) (x1) exists.

This is where the local compactness of X is being used. Now let

{(2,1) ,(2,2) ,(2,3) ,(2,4) ,(2,5) , · · ·}

be a subsequence of {(1,1) ,(1,2) ,(1,3) ,(1,4) ,(1,5) , · · ·} which has the property that

lim
k→∞

f(2,k) (x2) exists.

Thus it is also the case that

f(2,k) (x1) converges to lim
k→∞

f(1,k) (x1) .

because every subsequence of a convergent sequence converges to the same thing as the
convergent sequence. Continue this way and consider the array

f(1,1), f(1,2), f(1,3), f(1,4), · · · converges at x1
f(2,1), f(2,2), f(2,3), f(2,4) · · · converges at x1 and x2

f(3,1), f(3,2), f(3,3), f(3,4) · · · converges at x1, x2, and x3
...

Now let gk ≡ f(k,k). Thus gk is ultimately a subsequence of
{

f(m,k)
}

whenever k > m and
therefore, {gk} converges at each point of D. By Lemma 7.8.6 it follows there exists g ∈
C (K;X) such that

lim
k→∞

ρ (g,gk) = 0. ■

Actually there is an if and only if version of it but the most useful case is what is
presented here. The process used to get the subsequence in the proof is called the Cantor
diagonalization procedure.
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7.9 Another General Version
This will use the characterization of compact metric spaces to give a proof of a general
version of the Arzella Ascoli theorem. See Naylor and Sell [100] which is where I saw this
general formulation.

Definition 7.9.1 Let (X ,dX ) be a compact metric space. Let (Y,dY ) be another complete
metric space. Then C (X ,Y ) will denote the continuous functions which map X to Y . Then
ρ is a metric on C (X ,Y ) defined by

ρ ( f ,g)≡ sup
x∈X

dY ( f (x) ,g(x)) .

Theorem 7.9.2 (C (X ,Y ) ,ρ) is a complete metric space.

Proof: It is first necessary to show that ρ is well defined. In this argument, I will just
write d rather than dX or dY . To show this, note that

x→ d ( f (x) ,g(x))

is a continuous function because f ,g are continuous and

|d ( f (x) ,g(x))−d ( f (y) ,g(y))| ≤ d ( f (x) , f (y))+d (g(x) ,g(y))

This follows from the triangle inequality. Say d ( f (x) ,g(x)) ≥ d ( f (y) ,g(y)) . Otherwise
just replace x with y and repeat the argument. Then in this case, it reduces to the claim that

d ( f (x) ,g(x))≤ d ( f (x) , f (y))+d (g(x) ,g(y))+d ( f (y) ,g(y))

However, by the triangle inequality, the right side of the above is at least as large as

d ( f (x) , f (y))+d (g(x) , f (y))≥ d ( f (x) ,g(x)) .

It follows that ρ ( f ,g) is just the maximum of a continuous function defined on a compact
set.

Clearly ρ ( f ,g) = ρ (g, f ) and

ρ ( f ,g)+ρ (g,h) = sup
x∈X

d ( f (x) ,g(x))+ sup
x∈X

d (g(x) ,h(x))

≥ sup
x∈X

(d ( f (x) ,g(x))+d (g(x) ,h(x)))

≥ sup
x∈X

(d ( f (x) ,h(x))) = ρ ( f ,h)

so the triangle inequality holds.
It remains to check completeness. Let { fn} be a Cauchy sequence. Then from the

definition, { fn (x)} is a Cauchy sequence in Y and so it converges to something called
f (x) . I have to verify that x→ f (x) is continuous. Define

ρ
′ ( f , fn)≡ lim sup

m→∞

ρ ( fm, fn) .
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Then if n is sufficiently large, ρ ′ ( f , fn)< ε/3. Also,

d ( f (x) , fn (x)) = lim
m→∞

d ( fm (x) , fn (x))

≤ lim sup
m→∞

ρ ( fm, fn) = ρ
′ ( f , fn)<

ε

3
(7.9.8)

Then picking such an n,

d ( f (x) , f (y))≤ d ( f (x) , fn (x))+d ( fn (x) , fn (y))+dn ( fn (y) , f (y))

≤ ρ
′ ( f , fn)+d ( fn (x) , fn (y))+ρ

′ ( f , fn)<
2ε

3
+d ( fn (x) , fn (y))

which is less than ε provided d (x,y) is small enough, this by continuity of fn. Therefore,
f is continuous. By 7.9.8 this shows that, since x is arbitrary, ρ ( f , fn) < ε whenever n is
large enough. ■

Here is a useful lemma.

Lemma 7.9.3 Let S be a totally bounded subset of (X ,d) a metric space. Then S is also
totally bounded.

Proof: Suppose not. Then there exists a sequence {pn} ⊆ S such that d (pm, pn) ≥ ε

for all m ̸= n. Now let qn ∈ B
(

pn,
ε

8

)
∩S. Then it follows that

ε

8
+d (qn,qm)+

ε

8
≥ d (pn,qn)+d (qn,qm)+d (qm, pm)≥ d (pn,qm)≥ ε

and so d (qn,qm)>
ε

2 . This contradicts total boundedness of S. ■
Next, here is an important definition.

Definition 7.9.4 Let A ⊆C (X ,Y ) where (X ,dX ) and (Y,dY ) are metric spaces. Thus A
is a set of continuous functions mapping X to Y . Then A is said to be equicontinuous
if for every ε > 0 there exists a δ > 0 such that if dX (x1,x2) < δ then for all f ∈ A ,
dY ( f (x1) , f (x2))< ε . (This is uniform continuity which is uniform in A .) A is said to be
pointwise compact if { f (x) : f ∈A } has compact closure in Y .

Here is the Ascoli Arzela theorem.

Theorem 7.9.5 Let (X ,dX ) be a compact metric space and let (Y,dY ) be a complete metric
space. Thus (C (X ,Y ) ,ρ) is a complete metric space. Let A ⊆C (X ,Y ) be pointwise com-
pact and equicontinuous. Then A is compact. Here the closure is taken in (C (X ,Y ) ,ρ).
The converse also holds.

Proof: The more useful direction is that the two conditions imply compactness of A .
I prove this first. Since A is a closed subset of a complete space, it follows that A will
be compact if it is totally bounded. In showing this, it follows from Lemma 7.9.3 that it
suffices to verify that A is totally bounded. Suppose this is not so. Then there exists ε > 0
and a sequence of points of A , { fn} such that ρ ( fn, fm)≥ ε whenever n ̸= m.
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By equicontinuity, there exists δ > 0 such that if d (x,y) < δ , then d ( f (x) , f (y)) < ε

8
for all f ∈ A . Let {xi}m

i=1 be a δ/2 net for X . Since there are only finitely many xi, it
follows from pointwise compactness that there exists a subsequence, still denoted by { fn}
which converges at each xi. There exists xmn such that

ρ ( fn, fm)−
ε

8
< d ( fn (xmn) , fm (xnm))

≤ d ( fn (xnm) , fn (xi))+d ( fn (xi) , fm (xi))+d ( fm (xi) , fm (xnm))

<
ε

8
+d ( fn (xi) , fm (xi))+

ε

8
(7.9.9)

where here xi is such that xnm ∈ B(xi,δ ). From the convergence of fn at each xi, there exists
N such that if m,n > N, then for all xi,

d ( fn (xi) , fm (xi))<
ε

8
.

Now 7.9.9 results in the contradiction,

ε− ε

8
<

ε

8
+

ε

8
+

ε

8

It follows that A and hence A is totally bounded. This proves the more important direc-
tion.

Next suppose A is compact. Why must A be pointwise compact and equicontinuous?
If it fails to be pointwise compact, then there exists x ∈ X such that { f (x) : f ∈A } is not
contained in a compact set of Y . Thus there exists ε > 0 and a sequence of functions in A
{ fn} such that d ( fn (x) , fm (x)) ≥ ε . But this implies ρ ( fm, fn) ≥ ε and so A fails to be
totally bounded, a contradiction. Thus A must be pointwise compact. Now why must it be
equicontinuous? If it is not, then for each n ∈ N there exists ε > 0 and xn,yn ∈ X such that
d (xn,yn) < 1/n but for some fn ∈ A , d ( fn (xn) , fn (yn)) ≥ ε. However, by compactness,
there exists a subsequence

{
fnk

}
such that limk→∞ ρ

(
fnk , f

)
= 0 and also that xnk ,ynk →

x ∈ X . Hence

ε ≤ d
(

fnk

(
xnk

)
, fnk

(
ynk

))
≤ d

(
fnk

(
xnk

)
, f
(
xnk

))
+d
(

f
(
xnk

)
, f
(
ynk

))
+d
(

f
(
ynk

)
, fnk

(
ynk

))
≤ ρ

(
fnk , f

)
+d
(

f
(
xnk

)
, f
(
ynk

))
+ρ

(
f , fnk

)
and now this is a contradiction because each term on the right converges to 0. The middle
term converges to 0 because f

(
xnk

)
, f
(
ynk

)
→ f (x). ■

7.10 The Tietze Extension Theorem
It turns out that if H is a closed subset of a metric space, (X ,d) and if f : H → [a,b] is
continuous, then there exists g defined on all of X such that g = f on H and g is continuous.
This is called the Tietze extension theorem. First it is well to recall continuity in the context
of metric space.
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Definition 7.10.1 Let (X ,d) be a metric space and suppose f : X → Y is a function where
(Y,ρ) is also a metric space. For example, Y = R. Then f is continuous at x ∈ X if for
every ε > 0 there exists δ > 0 such that ρ ( f (x) , f (z)) < ε whenever d (x,z) < δ . As is
usual in such definitions, f is said to be continuous if it is continuous at every point of X .

The following lemma gives an important example of a continuous real valued function
defined on a metric space, (X ,d) .

Lemma 7.10.2 Let (X ,d) be a metric space and let S⊆ X be a nonempty subset. Define

dist(x,S)≡ inf{d (x,y) : y ∈ S} .

Then x→ dist(x,S) is a continuous function satisfying the inequality,

|dist(x,S)−dist(y,S)| ≤ d (x,y) . (7.10.10)

Proof: The continuity of x→ dist(x,S) is obvious if the inequality 7.10.10 is estab-
lished. So let x,y ∈ X . Without loss of generality, assume dist(x,S) ≥ dist(y,S) and pick
z ∈ S such that d (y,z)− ε < dist(y,S) . Then

|dist(x,S)−dist(y,S)| = dist(x,S)−dist(y,S)≤ d (x,z)− (d (y,z)− ε)

≤ d (z,y)+d (x,y)−d (y,z)+ ε = d (x,y)+ ε.

Since ε is arbitrary, this proves 7.10.10.

Lemma 7.10.3 Let H,K be two nonempty disjoint closed subsets of a metric space, (X ,d) .
Then there exists a continuous function, g : X → [−1,1] such that g(H) = −1/3, g(K) =
1/3,g(X)⊆ [−1/3,1/3] .

Proof: Let

f (x)≡ dist(x,H)

dist(x,H)+dist(x,K)
.

The denominator is never equal to zero because if dist(x,H) = 0, then x ∈ H becasue H is
closed. (To see this, pick hk ∈ B(x,1/k)∩H. Then hk → x and since H is closed, x ∈ H.)
Similarly, if dist(x,K) = 0, then x ∈ K and so the denominator is never zero as claimed.
Hence, by Lemma 7.10.2, f is continuous and from its definition, f = 0 on H and f = 1 on
K. Now let g(x)≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired properties.

Definition 7.10.4 For f a real or complex valued bounded continuous function defined on
a metric space, M

|| f ||M ≡ sup{| f (x)| : x ∈M} .

Lemma 7.10.5 Suppose M is a closed set in X where (X ,d) is a metric space and suppose
f : M→ [−1,1] is continuous at every point of M. Then there exists a function, g which is
defined and continuous on all of X such that || f −g||M < 2

3 .
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Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 7.10.3 there exists
g such that g is a continuous function defined on all of X and g(H) =−1/3, g(K) = 1/3,
and g(X)⊆ [−1/3,1/3] . It follows || f −g||M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
This proves the lemma.

Lemma 7.10.6 Suppose M is a closed set in X where (X ,d) is a metric space and suppose
f : M→ [−1,1] is continuous at every point of M. Then there exists a function, g which is
defined and continuous on all of X such that g = f on M and g has its values in [−1,1] .

Proof: Let g1 be such that g1 (X)⊆ [−1/3,1/3] and || f −g1||M ≤ 2
3 . Suppose g1, · · · ,gm

have been chosen such that g j (X)⊆ [−1/3,1/3] and∣∣∣∣∣
∣∣∣∣∣ f − m

∑
i=1

(
2
3

)i−1

gi

∣∣∣∣∣
∣∣∣∣∣
M

<

(
2
3

)m

. (7.10.11)

Then ∣∣∣∣∣
∣∣∣∣∣
(

3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)∣∣∣∣∣
∣∣∣∣∣
M

≤ 1

and so
( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)
can play the role of f in the first step of the proof.

Therefore, there exists gm+1 defined and continuous on all of X such that its values are
in [−1/3,1/3] and ∣∣∣∣∣

∣∣∣∣∣
(

3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∣∣∣∣∣
∣∣∣∣∣
M

≤ 2
3
.

Hence ∣∣∣∣∣
∣∣∣∣∣
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−
(

2
3

)m

gm+1

∣∣∣∣∣
∣∣∣∣∣
M

≤
(

2
3

)m+1

.

It follows there exists a sequence, {gi} such that each has its values in [−1/3,1/3] and for
every m 7.10.11 holds. Then let

g(x)≡
∞

∑
i=1

(
2
3

)i−1

gi (x) .

It follows

|g(x)| ≤

∣∣∣∣∣ ∞

∑
i=1

(
2
3

)i−1

gi (x)

∣∣∣∣∣≤ m

∑
i=1

(
2
3

)i−1 1
3
≤ 1

and since convergence is uniform, g must be continuous. The estimate 7.10.11 implies
f = g on M.

The following is the Tietze extension theorem.
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Theorem 7.10.7 Let M be a closed nonempty subset of a metric space (X ,d) and let f :
M→ [a,b] is continuous at every point of M. Then there exists a function, g continuous on
all of X which coincides with f on M such that g(X)⊆ [a,b] .

Proof: Let f1 (x) = 1 + 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

7.10.6 and so there exists g1 : X → [−1,1] such that g is continuous on X and equals f1 on
M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+b. This works.

7.11 Some Simple Fixed Point Theorems
The following is of more interest in the case of normed vector spaces, but there is no harm
in stating it in this more general setting. You should verify that the functions described in
the following definition are all continuous.

Definition 7.11.1 Let f : X →Y where (X ,d) and (Y,ρ) are metric spaces. Then f is said
to be Lipschitz continuous if for every x, x̂ ∈ X , ρ ( f (x) , f (x̂)) ≤ rd (x, x̂). The function is
called a contraction map if r < 1.

The big theorem about contraction maps is the following.

Theorem 7.11.2 Let f : (X ,d)→ (X ,d) be a contraction map and let (X ,d) be a complete
metric space. Thus Cauchy sequences converge and also d ( f (x) , f (x̂)) ≤ rd (x, x̂) where
r < 1. Then f has a unique fixed point. This is a point x ∈ X such that f (x) = x. Also, if x0
is any point of X , then

d (x,x0)≤
d (x0, f (x0))

1− r

Also, for each n,

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
,

and x = limn→∞ f n (x0).

Proof: Pick x0 ∈ X and consider the sequence of iterates of the map,

x0, f (x0) , f 2 (x0) , · · · .

We argue that this is a Cauchy sequence. For m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0))≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)
≤

∞

∑
k=m

rkd ( f (x0) ,x0)

The reason for this last is as follows.

d
(

f 2 (x0) , f (x0)
)
≤ rd ( f (x0) ,x0)

d
(

f 3 (x0) , f 2 (x0)
)
≤ rd

(
f 2 (x0) , f (x0)

)
≤ r2d ( f (x0) ,x0)
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and so forth. Therefore,

d ( f m (x0) , f n (x0))≤ d ( f (x0) ,x0)
rm

1− r

which shows that this is indeed a Cauchy sequence. Therefore, there exists x such that

lim
n→∞

f n (x0) = x

By continuity,
f (x) = f

(
lim
n→∞

f n (x0)
)
= lim

n→∞
f n+1 (x0) = x.

Also note that this estimate yields

d (x0, f n (x0))≤
d (x0, f (x0))

1− r

Now d (x0,x)≤ d (x0, f n (x0))+d ( f n (x0) ,x) and so

d (x0,x)−d ( f n (x0) ,x)≤
d (x0, f (x0))

1− r

Letting n→ ∞, it follows that

d (x0,x)≤
d (x0, f (x0))

1− r

It only remains to verify that there is only one fixed point. Suppose then that x,x′ are
two. Then

d
(
x,x′
)
= d

(
f (x) , f

(
x′
))
≤ rd

(
x′,x
)

and so d (x,x′) = 0 because r < 1. ■
The above is the usual formulation of this important theorem, but we actually proved a

better result.

Corollary 7.11.3 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
and so it will remain in B if

d (x0, f (x0))

1− r
< δ .
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Proof: By assumption, the sequence of iterates stays in B. Then, as in the proof of the
preceding theorem, for m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0) =
rm

1− r
d ( f (x0) ,x0)

Hence the sequence of iterates is Cauchy and must converge to a point x in X . However, B
is closed and so it must be the case that x ∈ B. Then as before,

x = lim
n→∞

f n (x0) = lim
n→∞

f n+1 (x0) = f
(

lim
n→∞

f n (x0)
)
= f (x)

As to the sequence of iterates remaining in B where B is a ball as described, the inequality
above in the case where m = 0 yields

d (x0, f n (x0))≤
1

1− r
d ( f (x0) ,x0)

and so, if the right side is less than δ , then the iterates remain in B. As to the fixed point be-
ing unique, it is as before. If x,x′ are both fixed points in B, then d (x,x′)= d ( f (x) , f (x′))≤
rd (x,x′) and so x = x′. ■

Sometimes you have the contraction depending on a parameter λ . Then there is a prin-
ciple of uniform contractions.

Corollary 7.11.4 Suppose f : X ×Λ→ X where Λ is a metric space and X is a complete
metric space. Suppose f satisfies

1. d ( f (x,λ ) , f (y,λ ))≤ rd (x,y) for each λ ∈ Λ.

2. λ → f (x,λ ) is continuous as a map from Λ to X .

Then if x(λ ) is the fixed point, it follows that λ → x(λ ) is continuous.

Proof: Pick x0 ∈ X and consider the above sequence of iterates, { f n (x,λ )} . Let ρ be
the metric on Λ. Then there is a fixed point and if x(λ ) is this unique fixed point,

d (x(λ ) ,x0)≤
d ( f (x0,λ ) ,x0)

1− r

In particular, you could start with x0 = x(µ) and conclude that

d (x(λ ) ,x(µ))≤ d ( f (x(µ) ,λ ) ,x(µ))
1− r

≤ d ( f (x(µ) ,λ ) , f (x(µ) ,µ))
1− r

+
d ( f (x(µ) ,µ) ,x(µ))

1− r

=
d ( f (x(µ) ,λ ) , f (x(µ) ,µ))

1− r
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Now by continuity of λ → f (x,λ ) , it follows that if ρ (λ ,µ) is small enough, the above is
no larger than

ε (1− r)
1− r

= ε

Hence, if ρ (λ ,µ) is small enough, we have

d (x(λ ) ,x(µ))< ε. ■

This is called the uniform contraction principle.
The contraction mapping theorem has an extremely useful generalization. In order to

get a unique fixed point, it suffices to have some power of f a contraction map.

Theorem 7.11.5 Let f : (X ,d)→ (X ,d) have the property that for some n ∈ N, f n is a
contraction map and let (X ,d) be a complete metric space. Then there is a unique fixed
point for f . As in the earlier theorem the sequence of iterates { f n (x0)}∞

n=1 also converges
to the fixed point.

Proof: From Theorem 7.11.2 there is a unique fixed point for f n. Thus

f n (x) = x

Then
f n ( f (x)) = f n+1 (x) = f (x)

By uniqueness, f (x) = x.
Now consider the sequence of iterates. Suppose it fails to converge to x. Then there is

ε > 0 and a subsequence nk such that

d ( f nk (x0) ,x)≥ ε

Now nk = pkn+ rk where rk is one of the numbers {0,1,2, · · · ,n−1}. It follows that there
exists one of these numbers which is repeated infinitely often. Call it r and let the further
subsequence continue to be denoted as nk. Thus

d
(

f pkn+r (x0) ,x
)
≥ ε

In other words,
d ( f pkn ( f r (x0)) ,x)≥ ε

However, from Theorem 7.11.2, as k→ ∞, f pkn ( f r (x0))→ x which contradicts the above
inequality. Hence the sequence of iterates converges to x, as it did for f a contraction map.
■

Definition 7.11.6 Let f : (X ,d)→ (Y,ρ) be a function. Then it is said to be uniformly
continuous on X if for every ε > 0 there exists a δ > 0 such that whenever x, x̂ are two
points of X with d (x, x̂)< δ , it follows that ρ ( f (x) , f (x̂))< ε.

Note the difference between this and continuity. With continuity, the δ could depend
on x but here it works for any pair of points in X .
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Lemma 7.11.7 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).

Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so
d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y)

Similarly
d (xn,yn)−d (x,y)≤ d (x,xn)+d (yn,y)

and so
|d (xn,yn)−d (x,y)| ≤ d (x,xn)+d (yn,y)

and the right side converges to 0 as n→ ∞. ■
There is a remarkable result concerning compactness and uniform continuity.

Theorem 7.11.8 Let f : (X ,d)→ (Y,ρ) be a continuous function and let K be a compact
subset of X. Then the restriction of f to K is uniformly continuous.

Proof: First of all, K is a metric space and f restricted to K is continuous. Now
suppose it fails to be uniformly continuous. Then there exists ε > 0 and pairs of points xn, x̂n
such that d (xn, x̂n) < 1/n but ρ ( f (xn) , f (x̂n)) ≥ ε . Since K is compact, it is sequentially
compact and so there exists a subsequence, still denoted as {xn} such that xn→ x∈K. Then
also x̂n→ x also and so

ρ ( f (x) , f (x)) = lim
n→∞

ρ ( f (xn) , f (x̂n))≥ ε

which is a contradiction. Note the use of Lemma 7.11.7 in the equal sign. ■
Next is to consider the meaning of convergence of sequences of functions. There are

two main ways of convergence of interest here, pointwise and uniform convergence.

Definition 7.11.9 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces. Then { fn} is
said to converge poinwise to a function f : X → Y if for every x ∈ X ,

lim
n→∞

fn (x) = f (x)

{ fn} is said to converge uniformly if for all ε > 0, there exists N such that if n≥ N, then

sup
x∈X

ρ ( fn (x) , f (x))< ε

Here is a well known example illustrating the difference between pointwise and uniform
convergence.

Example 7.11.10 Let fn (x) = xn on the metric space [0,1] . Then this function converges
pointwise to

f (x) =
{

0 on [0,1)
1 at 1

but it does not converge uniformly on this interval to f .
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Note how the target function f in the above example is not continuous even though
each function in the sequence is. The nice thing about uniform convergence is that it takes
continuity of the functions in the sequence and imparts it to the target function. It does this
for both continuity at a single point and uniform continuity. Thus uniform convergence is
a very superior thing.

Theorem 7.11.11 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces and suppose
each fn is continuous at x ∈ X and also that fn converges uniformly to f on X. Then f is
also continuous at x. In addition to this, if each fn is uniformly continuous on X , then the
same is true for f .

Proof: Let ε > 0 be given. Then

ρ ( f (x) , f (x̂))≤ ρ ( f (x) , fn (x))+ρ ( fn (x) , fn (x̂))+ρ ( fn (x̂) , f (x̂))

By uniform convergence, there exists N such that both ρ ( f (x) , fn (x)) and ρ ( fn (x̂) , f (x̂))
are less than ε/3 provided n≥ N. Thus picking such an n,

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

Now from the continuity of fn, there exists δ > 0 such that if d (x, x̂)< δ , then

ρ ( fn (x) , fn (x̂))< ε/3.

Hence, if d (x, x̂)< δ , then

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))<

2ε

3
+

ε

3
= ε

Hence, f is continuous at x.
Next consider uniform continuity. It follows from the uniform convergence that if x, x̂

are any two points of X , then if n≥ N, then, picking such an n,

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

By uniform continuity of fn there exists δ such that if d (x, x̂) < δ , then the term on the
right in the above is less than ε/3. Hence if d (x, x̂)< δ , then ρ ( f (x) , f (x̂))< ε and so f
is uniformly continuous as claimed. ■

7.12 General Topological Spaces
It turns out that metric spaces are not sufficiently general for some applications. This sec-
tion is a brief introduction to general topology. In making this generalization, the properties
of balls which are the conclusion of Theorem 7.1.4 on Page 135 are stated as axioms for
a subset of the power set of a given set which will be known as a basis for the topology.
More can be found in [83] and the references listed there.
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Definition 7.12.1 Let X be a nonempty set and suppose B ⊆P (X). Then B is a basis
for a topology if it satisfies the following axioms.

1.) Whenever p ∈ A∩B for A,B ∈B, it follows there exists C ∈B such that p ∈C ⊆
A∩B.

2.) ∪B = X.
Then a subset, U, of X is an open set if for every point, x ∈U, there exists B ∈B such

that x ∈ B ⊆U. Thus the open sets are exactly those which can be obtained as a union of
sets of B. Denote these subsets of X by the symbol τ and refer to τ as the topology or the
set of open sets.

Note that this is simply the analog of saying a set is open exactly when every point is
an interior point.

Proposition 7.12.2 Let X be a set and let B be a basis for a topology as defined above
and let τ be the set of open sets determined by B. Then

/0 ∈ τ, X ∈ τ, (7.12.12)

If C ⊆ τ, then ∪C ∈ τ (7.12.13)

If A,B ∈ τ, then A∩B ∈ τ. (7.12.14)

Proof: If p ∈ /0 then there exists B ∈B such that p ∈ B⊆ /0 because there are no points
in /0. Therefore, /0 ∈ τ . Now if p ∈ X , then by part 2.) of Definition 7.12.1 p ∈ B ⊆ X for
some B ∈B and so X ∈ τ .

If C ⊆ τ, and if p ∈ ∪C , then there exists a set, B ∈ C such that p ∈ B. However, B is
itself a union of sets from B and so there exists C ∈B such that p ∈C ⊆ B ⊆ ∪C . This
verifies 7.12.13.

Finally, if A,B∈ τ and p∈A∩B, then since A and B are themselves unions of sets of B,
it follows there exists A1,B1 ∈B such that A1 ⊆ A,B1 ⊆ B, and p ∈ A1∩B1. Therefore, by
1.) of Definition 7.12.1 there exists C ∈B such that p ∈C⊆ A1∩B1 ⊆ A∩B, showing that
A∩B ∈ τ as claimed. Of course if A∩B = /0, then A∩B ∈ τ . This proves the proposition.

Definition 7.12.3 A set X together with such a collection of its subsets satisfying 7.12.12-
7.12.14 is called a topological space. τ is called the topology or set of open sets of X.

Definition 7.12.4 A topological space is said to be Hausdorff if whenever p and q are
distinct points of X, there exist disjoint open sets U,V such that p ∈U, q ∈ V . In other
words points can be separated with open sets.

Hausdorff

·
p

U

·
q

V
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Definition 7.12.5 A subset of a topological space is said to be closed if its complement is
open. Let p be a point of X and let E ⊆ X. Then p is said to be a limit point of E if every
open set containing p contains a point of E distinct from p.

Note that if the topological space is Hausdorff, then this definition is equivalent to
requiring that every open set containing p contains infinitely many points from E. Why?

Theorem 7.12.6 A subset, E, of X is closed if and only if it contains all its limit points.

Proof: Suppose first that E is closed and let x be a limit point of E. Is x ∈ E? If x /∈ E,
then EC is an open set containing x which contains no points of E, a contradiction. Thus
x ∈ E.

Now suppose E contains all its limit points. Is the complement of E open? If x ∈ EC,
then x is not a limit point of E because E has all its limit points and so there exists an open
set, U containing x such that U contains no point of E other than x. Since x /∈ E, it follows
that x ∈U ⊆ EC which implies EC is an open set because this shows EC is the union of
open sets.

Theorem 7.12.7 If (X ,τ) is a Hausdorff space and if p ∈ X, then {p} is a closed set.

Proof: If x ̸= p, there exist open sets U and V such that x ∈U, p ∈ V and U ∩V = /0.
Therefore, {p}C is an open set so {p} is closed.

Note that the Hausdorff axiom was stronger than needed in order to draw the conclusion
of the last theorem. In fact it would have been enough to assume that if x ̸= y, then there
exists an open set containing x which does not intersect y.

Definition 7.12.8 A topological space (X ,τ) is said to be regular if whenever C is a closed
set and p is a point not in C, there exist disjoint open sets U and V such that p ∈U, C⊆V .
Thus a closed set can be separated from a point not in the closed set by two disjoint open
sets.

Regular

·
p

U
C

V

Definition 7.12.9 The topological space, (X ,τ) is said to be normal if whenever C and K
are disjoint closed sets, there exist disjoint open sets U and V such that C ⊆U, K ⊆ V .
Thus any two disjoint closed sets can be separated with open sets.

Normal

C
U

K
V
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Definition 7.12.10 Let E be a subset of X. E is defined to be the smallest closed set con-
taining E.

Lemma 7.12.11 The above definition is well defined.

Proof: Let C denote all the closed sets which contain E. Then C is nonempty because
X ∈ C .

(∩{A : A ∈ C })C = ∪
{

AC : A ∈ C
}
,

an open set which shows that ∩C is a closed set and is the smallest closed set which
contains E.

Theorem 7.12.12 E = E ∪{limit points of E}.

Proof: Let x∈ E and suppose that x /∈ E. If x is not a limit point either, then there exists
an open set, U ,containing x which does not intersect E. But then UC is a closed set which
contains E which does not contain x, contrary to the definition that E is the intersection of
all closed sets containing E. Therefore, x must be a limit point of E after all.

Now E ⊆ E so suppose x is a limit point of E. Is x ∈ E? If H is a closed set containing
E, which does not contain x, then HC is an open set containing x which contains no points
of E other than x negating the assumption that x is a limit point of E.

The following is the definition of continuity in terms of general topological spaces. It
is really just a generalization of the ε - δ definition of continuity given in calculus.

Definition 7.12.13 Let (X ,τ) and (Y,η) be two topological spaces and let f : X →Y . f is
continuous at x ∈ X if whenever V is an open set of Y containing f (x), there exists an open
set U ∈ τ such that x ∈U and f (U)⊆V . f is continuous if f−1(V ) ∈ τ whenever V ∈ η .

You should prove the following.

Proposition 7.12.14 In the situation of Definition 7.12.13 f is continuous if and only if f
is continuous at every point of X.

Definition 7.12.15 Let (Xi,τ i) be topological spaces. ∏
n
i=1 Xi is the Cartesian product.

Define a product topology as follows. Let B = ∏
n
i=1 Ai where Ai ∈ τ i. Then B is a basis

for the product topology.

Theorem 7.12.16 The set B of Definition 7.12.15 is a basis for a topology.

Proof: Suppose x ∈ ∏
n
i=1 Ai∩ ∏

n
i=1 Bi where Ai and Bi are open sets. Say

x =(x1, · · · ,xn) .

Then xi ∈ Ai∩Bi for each i. Therefore, x ∈ ∏
n
i=1 Ai∩Bi ∈B and ∏

n
i=1 Ai∩Bi ⊆ ∏

n
i=1 Ai.

The definition of compactness is also considered for a general topological space. This
is given next.
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Definition 7.12.17 A subset, E, of a topological space (X ,τ) is said to be compact if when-
ever C ⊆ τ and E ⊆∪C , there exists a finite subset of C ,{U1 · · ·Un}, such that E ⊆∪n

i=1Ui.
(Every open covering admits a finite subcovering.) E is precompact if E is compact. A
topological space is called locally compact if it has a basis B, with the property that B is
compact for each B ∈B.

In general topological spaces there may be no concept of “bounded”. Even if there is,
closed and bounded is not necessarily the same as compactness. However, in any Hausdorff
space every compact set must be a closed set.

Theorem 7.12.18 If (X ,τ) is a Hausdorff space, then every compact subset must also be a
closed set.

Proof: Suppose p /∈ K. For each x ∈ X , there exist open sets, Ux and Vx such that

x ∈Ux, p ∈Vx,

and
Ux∩Vx = /0.

If K is assumed to be compact, there are finitely many of these sets, Ux1 , · · · ,Uxm which
cover K. Then let V ≡ ∩m

i=1Vxi . It follows that V is an open set containing p which has
empty intersection with each of the Uxi . Consequently, V contains no points of K and is
therefore not a limit point of K. This proves the theorem.

A useful construction when dealing with locally compact Hausdorff spaces is the notion
of the one point compactification of the space.

Definition 7.12.19 Suppose (X ,τ) is a locally compact Hausdorff space. Then let X̃ ≡
X ∪{∞} where ∞ is just the name of some point which is not in X which is called the point
at infinity. A basis for the topology τ̃ for X̃ is

τ ∪
{

KC where K is a compact subset of X
}
.

The complement is taken with respect to X̃ and so the open sets, KC are basic open sets
which contain ∞.

The reason this is called a compactification is contained in the next lemma.

Lemma 7.12.20 If (X ,τ) is a locally compact Hausdorff space, then
(

X̃ , τ̃
)

is a compact

Hausdorff space. Also if U is an open set of τ̃, then U \{∞} is an open set of τ .

Proof: Since (X ,τ) is a locally compact Hausdorff space, it follows
(

X̃ , τ̃
)

is a Haus-
dorff topological space. The only case which needs checking is the one of p ∈ X and ∞.
Since (X ,τ) is locally compact, there exists an open set of τ, U having compact closure
which contains p. Then p ∈U and ∞ ∈UC and these are disjoint open sets containing the
points, p and ∞ respectively. Now let C be an open cover of X̃ with sets from τ̃ . Then ∞

must be in some set, U∞ from C , which must contain a set of the form KC where K is a
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compact subset of X . Then there exist sets from C , U1, · · · ,Ur which cover K. Therefore,
a finite subcover of X̃ is U1, · · · ,Ur,U∞.

To see the last claim, suppose U contains ∞ since otherwise there is nothing to show.
Notice that if C is a compact set, then X \C is an open set. Therefore, if x ∈U \{∞} , and
if X̃ \C is a basic open set contained in U containing ∞, then if x is in this basic open set
of X̃ , it is also in the open set X \C ⊆U \{∞} . If x is not in any basic open set of the form
X̃ \C then x is contained in an open set of τ which is contained in U \{∞}. Thus U \{∞}
is indeed open in τ .

Definition 7.12.21 If every finite subset of a collection of sets has nonempty intersection,
the collection has the finite intersection property.

Theorem 7.12.22 Let K be a set whose elements are compact subsets of a Hausdorff
topological space, (X ,τ). Suppose K has the finite intersection property. Then /0 ̸= ∩K .

Proof: Suppose to the contrary that /0 = ∩K . Then consider

C ≡
{

KC : K ∈K
}
.

It follows C is an open cover of K0 where K0 is any particular element of K . But then
there are finitely many K ∈K , K1, · · · ,Kr such that K0⊆∪r

i=1KC
i implying that∩r

i=0Ki = /0,
contradicting the finite intersection property.

Lemma 7.12.23 Let (X ,τ) be a topological space and let B be a basis for τ . Then K is
compact if and only if every open cover of basic open sets admits a finite subcover.

Proof: Suppose first that X is compact. Then if C is an open cover consisting of basic
open sets, it follows it admits a finite subcover because these are open sets in C .

Next suppose that every basic open cover admits a finite subcover and let C be an open
cover of X . Then define C̃ to be the collection of basic open sets which are contained in
some set of C . It follows C̃ is a basic open cover of X and so it admits a finite subcover,{

U1, · · · ,Up
}

. Now each Ui is contained in an open set of C . Let Oi be a set of C which
contains Ui. Then

{
O1, · · · ,Op

}
is an open cover of X . This proves the lemma.

In fact, much more can be said than Lemma 7.12.23. However, this is all which I will
present here.

7.13 Connected Sets
Stated informally, connected sets are those which are in one piece. More precisely,

Definition 7.13.1 A set, S in a general topological space is separated if there exist sets,
A,B such that

S = A∪B, A,B ̸= /0, and A∩B = B∩A = /0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.

One of the most important theorems about connected sets is the following.
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Theorem 7.13.2 Suppose U and V are connected sets having nonempty intersection. Then
U ∪V is also connected.

Proof: Suppose U ∪V = A∪B where A∩B = B∩A = /0. Consider the sets, A∩U and
B∩U. Since

(A∩U)∩ (B∩U) = (A∩U)∩
(
B∩U

)
= /0,

It follows one of these sets must be empty since otherwise, U would be separated. It follows
that U is contained in either A or B. Similarly, V must be contained in either A or B. Since
U and V have nonempty intersection, it follows that both V and U are contained in one of
the sets, A,B. Therefore, the other must be empty and this shows U ∪V cannot be separated
and is therefore, connected.

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

V

Theorem 7.13.3 Let f : X → Y be continuous where X and Y are topological spaces and
X is connected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that f (X) =
A∪B where A and B separate f (X) . Then consider the sets, f−1 (A) and f−1 (B) . If z
∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A. Therefore, there exists an
open set, U containing f (z) such that U ∩A = /0. But then, the continuity of f implies that
f−1 (U) is an open set containing z such that f−1 (U)∩ f−1 (A) = /0. Therefore, f−1 (B)
contains no limit points of f−1 (A) . Similar reasoning implies f−1 (A) contains no limit
points of f−1 (B). It follows that X is separated by f−1 (A) and f−1 (B) , contradicting the
assumption that X was connected.

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 7.13.4 Let S be a set and let p ∈ S. Denote by Cp the union of all connected
subsets of S which contain p. This is called the connected component determined by p.

Theorem 7.13.5 Let Cp be a connected component of a set S in a general topological
space. Then Cp is a connected set and if Cp∩Cq ̸= /0, then Cp =Cq.
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Proof: Let C denote the connected subsets of S which contain p. If Cp = A∪B where

A∩B = B∩A = /0,

then p is in one of A or B. Suppose without loss of generality p ∈ A. Then every set of
C must also be contained in A also since otherwise, as in Theorem 7.13.2, the set would
be separated. But this implies B is empty. Therefore, Cp is connected. From this, and
Theorem 7.13.2, the second assertion of the theorem is proved.

This shows the connected components of a set are equivalence classes and partition the
set.

A set, I is an interval in R if and only if whenever x,y ∈ I then (x,y)⊆ I. The following
theorem is about the connected sets in R.

Theorem 7.13.6 A set, C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈C. You need to show (p,q)⊆C. If

x ∈ (p,q)\C

let C∩ (−∞,x) ≡ A, and C∩ (x,∞) ≡ B. Then C = A∪B and the sets, A and B separate C
contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A and
y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S≡ {t ∈ [x,y] : [x, t]⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if
l /∈ B, then for some δ > 0,

(l, l +δ )∩B = /0

contradicting the definition of l as an upper bound for S. Therefore, l ∈ B which implies
l /∈ A after all, a contradiction. It follows I must be connected.

The following theorem is a very useful description of the open sets in R.

Theorem 7.13.7 Let U be an open set in R. Then there exist countably many disjoint open
sets, {(ai,bi)}∞

i=1 such that U = ∪∞
i=1 (ai,bi) .

Proof: Let p ∈U and let z ∈Cp, the connected component determined by p. Since U is
open, there exists, δ > 0 such that (z−δ ,z+δ )⊆U. It follows from Theorem 7.13.2 that

(z−δ ,z+δ )⊆Cp.

This shows Cp is open. By Theorem 7.13.6, this shows Cp is an open interval, (a,b) where
a,b ∈ [−∞,∞] . There are therefore at most countably many of these connected compo-
nents because each must contain a rational number and the rational numbers are countable.
Denote by {(ai,bi)}∞

i=1 the set of these connected components. This proves the theorem.
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Definition 7.13.8 A topological space, E is arcwise connected if for any two points, p,q∈
E, there exists a closed interval, [a,b] and a continuous function, γ : [a,b]→ E such that
γ (a) = p and γ (b) = q. E is locally connected if it has a basis of connected open sets. E is
locally arcwise connected if it has a basis of arcwise connected open sets.

An example of an arcwise connected topological space would be the any subset of
Rn which is the continuous image of an interval. Locally connected is not the same as
connected. A well known example is the following.{(

x,sin
1
x

)
: x ∈ (0,1]

}
∪{(0,y) : y ∈ [−1,1]} (7.13.15)

You can verify that this set of points considered as a metric space with the metric from R2

is not locally connected or arcwise connected but is connected.

Proposition 7.13.9 If a topological space is arcwise connected, then it is connected.

Proof: Let X be an arcwise connected space and suppose it is separated. Then X =
A∪B where A,B are two separated sets. Pick p ∈ A and q ∈ B. Since X is given to be
arcwise connected, there must exist a continuous function γ : [a,b]→ X such that γ (a) = p
and γ (b) = q. But then we would have γ ([a,b]) = (γ ([a,b])∩A)∪ (γ ([a,b])∩B) and the
two sets, γ ([a,b])∩A and γ ([a,b])∩B are separated thus showing that γ ([a,b]) is separated
and contradicting Theorem 7.13.6 and Theorem 7.13.3. It follows that X must be connected
as claimed.

Theorem 7.13.10 Let U be an open subset of a locally arcwise connected topological
space, X. Then U is arcwise connected if and only if U if connected. Also the connected
components of an open set in such a space are open sets, hence arcwise connected.

Proof: By Proposition 7.13.9 it is only necessary to verify that if U is connected and
open in the context of this theorem, then U is arcwise connected. Pick p ∈U . Say x ∈U
satisfies P if there exists a continuous function, γ : [a,b]→ U such that γ (a) = p and
γ (b) = x.

A≡ {x ∈U such that x satisfies P .}

If x ∈ A, there exists, according to the assumption that X is locally arcwise connected,
an open set, V, containing x and contained in U which is arcwise connected. Thus letting
y ∈ V, there exist intervals, [a,b] and [c,d] and continuous functions having values in U ,
γ,η such that γ (a) = p,γ (b) = x,η (c) = x, and η (d) = y. Then let γ1 : [a,b+d− c]→U
be defined as

γ1 (t)≡
{

γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that V ⊆ A.
Therefore, A is open. A ̸= /0 because there is an open set, V containing p which is contained
in U and is arcwise connected.

Now consider B ≡U \A. This is also open. If B is not open, there exists a point z ∈ B
such that every open set containing z is not contained in B. Therefore, letting V be one of
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the basic open sets chosen such that z ∈V ⊆U, there exist points of A contained in V. But
then, a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0,
then U = B∪A and so U is separated by the two sets, B and A contradicting the assumption
that U is connected.

It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking V an arcwise connected open set
which contains z and is contained in U, Cp ∪V is connected and contained in U and so it
must also be contained in Cp. This proves the theorem.

As an application, consider the following corollary.

Corollary 7.13.11 Let f : Ω→ Z be continuous where Ω is a connected open set. Then f
must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set.

7.14 Exercises
1. Let d (x,y) = |x− y| for x,y ∈ R. Show that this is a metric on R.

2. Now consider Rn. Let ∥x∥
∞
≡max{|xi| , i = 1, · · · ,n} . Define

d (x,y)≡ ∥x−y∥
∞
.

Show that this is a metric on Rn. In the case of n = 2, describe the ball B(0,r). Hint:
First show that ∥x+y∥ ≤ ∥x∥+∥y∥ .

3. Let C ([0,T ]) denote the space of functions which are continuous on [0,T ] . Define

∥ f∥ ≡ sup
t∈[0,T ]

| f (t)|= max
t∈[0,T ]

| f (t)|

Verify the following. ∥ f +g∥ ≤ ∥ f∥+∥g∥ . Then use to show that d ( f ,g)≡ ∥ f −g∥
is a metric and that with this metric, (C ([0,T ]) ,d) is a metric space.

4. Recall that [a,b] is compact. This was done in single variable advanced calculus.
That is, every sequence has a convergent subsequence. (We will go over it in here as
well.) Also recall that a sequence of numbers {xn} is a Cauchy sequence means that
for every ε > 0 there exists N such that if m,n>N, then |xn− xm|< ε . First show that
every Cauchy sequence is bounded. Next, using the compactness of closed intervals,
show that every Cauchy sequence has a convergent subsequence. It is shown later
that if this is true, the original Cauchy sequence converges. Thus R with the usual
metric just described is complete because every Cauchy sequence converges.
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5. Using the result of the above problem, show that (Rn,∥·∥
∞
) is a complete metric

space. That is, every Cauchy sequence converges. Here d (x,y)≡ ∥x−y∥
∞

.

6. Suppose you had (Xi,di) is a metric space. Now consider the product space

X ≡
n

∏
i=1

Xi

with d (x,y) = max{d (xi,yi) , i = 1 · · · ,n} . Would this be a metric space? If so,
prove that this is the case.

Does triangle inequality hold? Hint: For each i,

di (xi,zi)≤ di (xi,yi)+di (yi,zi)≤ d (x,y)+d (y,z)

Now take max of the two ends.

7. In the above example, if each (Xi,di) is complete, explain why (X ,d) is also com-
plete.

8. Show that C ([0,T ]) is a complete metric space. That is, show that if { fn} is a Cauchy
sequence, then there exists f ∈C ([0,T ]) such that

lim
n→∞

d ( f , fn) = lim
n→∞
∥ f − fn∥= 0

Hint: First, you know that { fn (t)} is a Cauchy sequence for each t. Why? Now
let f (t) be the name of the thing to which fn (t) converges. Recall why the uni-
form convergence implies t → f (t) is continuous. Give the proof. It was done in
single variable advanced calculus. Review and write down proof. Also show that
∥ f − fn∥→ 0.

9. Let X be a nonempty set of points. Say it has infinitely many points. Define d (x,y) =
1 if x ̸= y and d (x,y) = 0 if x = y. Show that this is a metric. Show that in (X ,d)
every point is open and closed. In fact, show that every set is open and every set is
closed. Is this a complete metric space? Explain why. Describe the open balls.

10. Show that the union of any set of open sets is an open set. Show the intersection of
any set of closed sets is closed. Let A be a nonempty subset of a metric space (X ,d).
Then the closure of A, written as Ā is defined to be the intersection of all closed sets
which contain A. Show that Ā = A∪A′. That is, to find the closure, you just take the
set and include all limit points of the set.

11. Let A′ denote the set of limit points of A, a nonempty subset of a metric space (X ,d) .
Show that A′ is closed.

12. A theorem was proved which gave three equivalent descriptions of compactness of
a metric space. One of them said the following: A metric space is compact if and
only if it is complete and totally bounded. Suppose (X ,d) is a complete metric space
and K ⊆ X . Then (K,d) is also clearly a metric space having the same metric as X .
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Show that (K,d) is compact if and only if it is closed and totally bounded. Note the
similarity with the Heine Borel theorem on R. Show that on R, every bounded set is
also totally bounded. Thus the earlier Heine Borel theorem for R is obtained.

13. Suppose (Xi,di) is a compact metric space. Then the Cartesian product is also a
metric space. That is (∏n

i=1 Xi,d) is a metric space where d (x,y)≡max{di (xi,yi)}.
Show that (∏n

i=1 Xi,d) is compact. Recall the Heine Borel theorem for R. Explain
why

n

∏
i=1

[ai,bi]

is compact in Rn with the distance given by d (x,y) = max{|xi− yi|}. Hint: It suf-
fices to show that (∏n

i=1 Xi,d) is sequentially compact. Let {xm}∞

m=1 be a sequence.

Then {xm
1 }

∞

m=1 is a sequence in Xi. Therefore, it has a subsequence
{

xk1
1

}∞

k1=1

which converges to a point x1 ∈ X1. Now consider
{

xk1
2

}∞

k1=1
the second compo-

nents. It has a subsequence denoted as k2 such that
{

xk2
2

}∞

k2=1
converges to a point

x2 in X2. Explain why limk2→∞ xk2
1 = x1. Continue doing this n times. Explain

why limkn→∞ xkn
l = xl ∈ Xl for each l. Then explain why this is the same as say-

ing limkn→∞ xkn = x in (∏n
i=1 Xi,d) .

14. If you have a metric space (X ,d) and a compact subset of (X ,d) K, suppose that L
is a closed subset of K. Explain why L must also be compact. Hint: Go right to the
definition. Take an open covering of L and consider this along with the open set LC

to obtain an open covering of K. Now use compactness of K. Use this to explain
why every closed and bounded set in Rn is compact. Here the distance is given by
d (x,y)≡max1≤i≤n {|xi− yi|}.

15. Show that compactness is a topological property in the following sense. If

(X ,d) ,(Y,ρ)

are both metric spaces and f : X → Y has the property that f is one to one, onto,
and continuous, and also f−1 is one to one onto and continuous, then the two metric
spaces are compact or not compact together. That is one is compact if and only if the
other is.

16. Consider R the real numbers. Define a distance in the following way.

ρ (x,y)≡ |arctan(x)− arctan(y)|

Show this is a good enough distance and that the open sets which come from this
distance are the same as the open sets which come from the usual distance d (x,y) =
|x− y|. Explain why this yields that the identity mapping f (x) = x is continuous with
continuous inverse as a map from (R,d) to (R,ρ). To do this, you show that an open
ball taken with respect to one of these is also open with respect to the other. However,
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(R,ρ) is not a complete metric space while (R,d) is. Thus, unlike compactness.
Completeness is not a topological property. Hint: To show the lack of completeness
of (R,ρ) , consider xn = n. Show it is a Cauchy sequence with respect to ρ .

17. A very useful idea in metric space is the following distance function. Let (X ,d) be a
metric space and S⊆ X ,S ̸= /0. Then dist(x,S)≡ inf{d (x,y) : y ∈ S} . Show that this
always satisfies

|dist(x,S)−dist(z,S)| ≤ d (x,z)

This is a really neat result.

18. If K is a compact subset of (X ,d) and y /∈ K, show that there always exists x ∈ K
such that d (x,y) = dist(y,K). Give an example in R to show that this is might not be
so if K is not compact.

19. You know that if f : X → X for X a complete metric space, then if d ( f (x) , f (y))<
rd (x,y) it follows that f has a unique fixed point theorem. Let f : R→ R be given
by

f (t) = t +
(
1+ et)−1

Show that | f (t)− f (s)|< |t− s| , but f has no fixed point.

20. If (X ,d) is a metric space, show that there is a bounded metric ρ such that the open
sets for (X ,d) are the same as those for (X ,ρ).

21. Let (X ,d) be a metric space where d is a bounded metric. Let C denote the collection
of closed subsets of X . For A,B ∈ C , define

ρ (A,B)≡ inf{δ > 0 : Aδ ⊇ B and Bδ ⊇ A}

where for a set S,

Sδ ≡ {x : dist(x,S)≡ inf{d (x,s) : s ∈ S} ≤ δ} .

Show x→ dist(x,S) is continuous and that therefore, Sδ is a closed set containing S.
Also show that ρ is a metric on C . This is called the Hausdorff metric.

22. ↑Suppose (X ,d) is a compact metric space. Show (C ,ρ) is a complete metric space.
Hint: Show first that if Wn ↓W where Wn is closed, then ρ (Wn,W )→ 0. Now let
{An} be a Cauchy sequence in C . Then if ε > 0 there exists N such that when
m,n≥ N, then ρ (An,Am)< ε. Therefore, for each n≥ N,

(An)ε
⊇ ∪∞

k=nAk.

Let A≡ ∩∞
n=1∪∞

k=nAk. By the first part, there exists N1 > N such that for n≥ N1,

ρ
(
∪∞

k=nAk,A
)
< ε, and (An)ε

⊇ ∪∞
k=nAk.

Therefore, for such n, Aε ⊇Wn ⊇ An and (Wn)ε
⊇ (An)ε

⊇ A because

(An)ε
⊇ ∪∞

k=nAk ⊇ A.
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23. ↑ Let X be a compact metric space. Show (C ,ρ) is compact. Hint: Let Dn be a 2−n

net for X . Let Kn denote finite unions of sets of the form B(p,2−n) where p ∈ Dn.
Show Kn is a 2−(n−1) net for (C ,ρ) .



Chapter 8

Normed Linear Spaces
The thing which is missing in the above material about metric spaces is any kind of algebra.
In most applications, we are interested in adding things and multiplying things by scalars
and so forth. This requires the notion of a vector space, also called a linear space. The
simplest example is Rn which is described next.

In this chapter, F will refer to either R or C. It doesn’t make any difference to the
arguments which it is and so F is written to symbolize whichever you wish to think about.
In multivariable calculus, the main example is where F= R. However, it is nice to observe
that things work more generally. The big changes take place when you start to consider
the derivative. As to notation, when it is desired to emphasize that certain quantities are
vectors, bold face will often be used. This is not necessarily done consistently. Sometimes
context is considered sufficient.

8.1 Algebra in Fn, Vector Spaces
There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the
scalars always come from F in either case.

Definition 8.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a(x1, · · · ,xn)≡ (ax1, · · · ,axn) . (8.1.1)

This is known as scalar multiplication. If x,y ∈ Fn then x+y ∈ Fn and is defined by

x+y = (x1, · · · ,xn)+(y1, · · · ,yn)

≡ (x1 + y1, · · · ,xn + yn) (8.1.2)

the points in Fn are also referred to as vectors.

With this definition, the algebraic properties satisfy the conclusions of the following
theorem. These conclusions are called the vector space axioms. Any time you have a set
and a field of scalars satisfying the axioms of the following theorem, it is called a vector
space.

Theorem 8.1.2 For v,w ∈ Fn and α,β scalars, (real numbers), the following hold.

v+w = w+v, (8.1.3)

the commutative law of addition,

(v+w)+ z = v+(w+ z) , (8.1.4)

the associative law for addition,
v+0 = v, (8.1.5)

177
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the existence of an additive identity,

v+(−v) = 0, (8.1.6)

the existence of an additive inverse, Also

α (v+w) = αv+αw, (8.1.7)

(α +β )v =αv+βv, (8.1.8)

α (βv) = αβ (v) , (8.1.9)

1v = v. (8.1.10)

In the above 0 = (0, · · · ,0).

You should verify these properties all hold. For example, consider 8.1.7

α (v+w) = α (v1 +w1, · · · ,vn +wn)

= (α (v1 +w1) , · · · ,α (vn +wn))

= (αv1 +αw1, · · · ,αvn +αwn)

= (αv1, · · · ,αvn)+(αw1, · · · ,αwn)

= αv+αw.

As usual subtraction is defined as x−y≡ x+(−y) .

8.2 Subspaces Spans And Bases
As mentioned above, Fn is an example of a vector space and this is what is studied in linear
algebra. The concept of linear combination is fundamental in all of linear algebra. When
one considers only algebraic considerations, it makes no difference what field of scalars
you are using. It could be R, C, Q or even a field of residue classes. However, go ahead
and think R or C since the subject of interest here is analysis.

Definition 8.2.1 Let
{

x1, · · · ,xp
}

be vectors in a vector space, Y having the field of scalars
F. A linear combination is any expression of the form

p

∑
i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span(x1, · · · ,xn) . A vector v is said to be in the span of some set S of vectors if v is a linear
combination of vectors of S. This means: finite linear combination. If V ⊆ Y, then V
is called a subspace if whenever α,β are scalars and u and v are vectors of V, it follows
αu+βv ∈ V . That is, it is “closed under the algebraic operations of vector addition and
scalar multiplication” and is therefore, a vector space. A linear combination of vectors
is said to be trivial if all the scalars in the linear combination equal zero. A set of vectors
is said to be linearly independent if the only linear combination of these vectors which
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equals the zero vector is the trivial linear combination. Thus {x1, · · · ,xn} is called linearly
independent if whenever

p

∑
k=1

ckxk = 0

it follows that all the scalars, ck equal zero. A set of vectors,
{

x1, · · · ,xp
}
, is called linearly

dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars, ci, i = 1, · · · ,n, not all zero such that ∑

p
k=1 ckxk = 0.

Lemma 8.2.2 A set of vectors
{

x1, · · · ,xp
}

is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that
{

x1, · · · ,xp
}

is linearly independent. If

xk = ∑
j ̸=k

c jx j,

then
0 = 1xk + ∑

j ̸=k
(−c j)x j,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is
{

x1, · · · ,xp
}

linearly
independent? If it is not, there exist scalars, ci, not all zero such that

p

∑
i=1

cixi = 0.

Say ck ̸= 0. Then you can solve for xk as

xk = ∑
j ̸=k

(−c j)/ckx j

contrary to assumption. This proves the lemma. ■
The following is called the exchange theorem.

Theorem 8.2.3 If
span(u1, · · · ,ur)⊆ span(v1, · · · ,vs)≡V

and {u1, · · · ,ur} are linearly independent, then r ≤ s.

Proof: Suppose r > s. Let Fp denote the first p vectors in {u1, · · · ,ur}. In case p= 0,Fp
will denote the empty set. Let Ep denote a finite list of vectors of {v1, · · · ,vs} and let

∣∣Ep
∣∣

denote the number of vectors in the list. For 0≤ p≤ s, let Ep have the property

span(Fp,Ep) =V

and
∣∣Ep
∣∣ is as small as possible for this to happen. I claim

∣∣Ep
∣∣≤ s− p if Ep is nonempty.



180 CHAPTER 8. NORMED LINEAR SPACES

Here is why. For p = 0, it is obvious because there are s vectors from {v1, · · · ,vs}
which span V, namely those vectors. Of course there might be a smaller list which does so,
and so

∣∣Ep
∣∣≤ s. Suppose true for some p < s. Then

up+1 ∈ span(Fp,Ep)

and so there are constants, c1, · · · ,cp and d1, · · · ,dm where m≤ s− p such that

up+1 =
p

∑
i=1

ciui +
m

∑
j=1

diz j

for
{z1, · · · ,zm} ⊆ {v1, · · · ,vs} .

Then not all the di can equal zero because this would violate the linear independence of
the {u1, · · · ,ur} . Therefore, you can solve for one of the zk as a linear combination of{

u1, · · · ,up+1
}

and the other z j. Thus you can change Fp to Fp+1 and include one fewer
vector in Ep. Thus

∣∣Ep+1
∣∣≤ m−1≤ s− p−1. This proves the claim.

Therefore, Es is empty and span(u1, · · · ,us) = V. However, this gives a contradiction
because it would require

us+1 ∈ span(u1, · · · ,us)

which violates the linear independence of these vectors.
Alternate proof: Recall from linear algebra that if you have A an m×n matrix where

m < n so there are more columns than rows, then there exists a nonzero solution x to the
equation Ax = 0. Recall why this was. You must have free variables. Then by assumption,
you have

u j =
s

∑
i=1

ai jvi

If s < r, then the matrix (ai j) has more columns than rows and so there exists a nonzero
vector x ∈ Fr such that ∑

r
j=1 ai jx j = 0. Then consider the following.

r

∑
j=1

x ju j =
r

∑
j=1

x j

s

∑
i=1

ai jvi = ∑
i

∑
j

ai jx jvi = ∑
i

0v j = 0

and since not all x j = 0, this contradicts the independence of the vectors {u1, · · · ,ur}. ■

Definition 8.2.4 A finite set of vectors, {x1, · · · ,xr} is a basis for a vector space V if

span(x1, · · · ,xr) =V

and {x1, · · · ,xr} is linearly independent. Thus if v∈V there exist unique scalars, v1, · · · ,vr
such that v =∑

r
i=1 vixi. These scalars are called the components of v with respect to the

basis {x1, · · · ,xr}.
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Corollary 8.2.5 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.
More generally, if you have two bases for a vector space V then they have the same number
of vectors.

Proof: From the exchange theorem, if {x1, · · · ,xr} and {y1, · · · ,ys} are two bases for
V, then r ≤ s and s≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · · ,0,1,0 · · · ,0)T

for i = 1,2, · · · ,n are a basis for Fn. This proves the corollary. ■

Lemma 8.2.6 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span(v1, · · · ,vr) is a sub-
space.

Proof: Suppose α,β are two scalars and let ∑
r
k=1 ckvk and ∑

r
k=1 dkvk are two elements

of V. What about

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk?

Is it also in V ?

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk =
r

∑
k=1

(αck +βdk)vk ∈V

so the answer is yes. This proves the lemma. ■

Definition 8.2.7 Let V be a vector space. Then dim(V ) read as the dimension of V is the
number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace of a finite di-
mensional vector space even has a basis. In fact it does and this is in the next theorem.
First, here is an interesting lemma.

Lemma 8.2.8 Let v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent. Then
{u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose ∑
k
i=1 ciui +dv = 0. It is required to verify that each ci = 0 and that d =

0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors, {u1, · · · ,uk},

v =−
k

∑
i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then ∑
k
i=1 ciui = 0 and the linear indepen-

dence of {u1, · · · ,uk} implies each ci = 0 also. ■

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as
in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Theorem 8.2.9 Let V be a nonzero subspace of Y a finite dimensional vector space having
dimension n. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span{v1} = V, stop. {v1} is a basis for V . Oth-
erwise, there exists v2 ∈ V which is not in span{v1} . By Lemma 8.2.8 {v1,v2} is a lin-
early independent set of vectors. If span{v1,v2} = V stop, {v1,v2} is a basis for V. If
span{v1,v2} ̸= V, then there exists v3 /∈ span{v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n+ 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 8.2.3, and the assumed dimension of Y . ■

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 8.2.10 Let V be a subspace of Y, a finite dimensional vector space of dimension
n and let {v1, · · · ,vr} be a linearly independent set of vectors in V . Then either it is a basis
for V or there exist vectors, vr+1, · · · ,vs such that

{v1, · · · ,vr,vr+1, · · · ,vs}

is a basis for V.

Proof: This follows immediately from the proof of Theorem 8.2.9. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. ■

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 8.2.11 Let V be a subspace of Y, a finite dimensional vector space of dimension
n and suppose span(u1 · · · ,up) = V where the ui are nonzero vectors. Then there exist
vectors, {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆

{
u1 · · · ,up

}
and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set,

{v1, · · · ,vr} ⊆
{

u1, · · · ,up
}
,

span(v1, · · · ,vr) =V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r− 1 vectors
would still span V contrary to the definition of r. ■

8.3 Inner Product And Normed Linear Spaces
8.3.1 The Inner Product In Fn

To do calculus, you must understand what you mean by distance. For functions of one
variable, the distance was provided by the absolute value of the difference of two numbers.
This must be generalized to Fn and to more general situations.
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Definition 8.3.1 Let x,y ∈ Fn. Thus x = (x1, · · · ,xn) where each xk ∈ F and a similar for-
mula holding for y. Then the inner product of these two vectors is defined to be

(x,y)≡∑
j

x jy j ≡ x1y1 + · · ·+ xnyn.

Sometimes it is denoted as x ·y.

Notice how you put the conjugate on the entries of the vector, y. It makes no difference
if the vectors happen to be real vectors but with complex vectors you must involve a conju-
gate. The reason for this is that when you take the inner product of a vector with itself, you
want to get the square of the length of the vector, a positive number. Placing the conjugate
on the components of y in the above definition assures this will take place. Thus

(x,x) = ∑
j

x jx j = ∑
j

∣∣x j
∣∣2 ≥ 0.

If you didn’t place a conjugate as in the above definition, things wouldn’t work out cor-
rectly. For example,

(1+ i)2 +22 = 4+2i

and this is not a positive number.
The following properties of the inner product follow immediately from the definition

and you should verify each of them.
Properties of the inner product:

1. (u,v) = (v,u)

2. If a,b are numbers and u,v,z are vectors then ((au+bv) ,z) = a(u,z)+b(v,z) .

3. (u,u)≥ 0 and it equals 0 if and only if u = 0.

Note this implies (x,αy) = α (x,y) because

(x,αy) = (αy,x) = α (y,x) = α (x,y)

The norm is defined as follows.

Definition 8.3.2 For x ∈ Fn,

|x| ≡

(
n

∑
k=1
|xk|2

)1/2

= (x,x)1/2

8.3.2 General Inner Product Spaces
Any time you have a vector space which possesses an inner product, something satisfying
the properties 1 - 3 above, it is called an inner product space.

Here is a fundamental inequality called the Cauchy Schwarz inequality which holds
in any inner product space. First here is a simple lemma.
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Lemma 8.3.3 If z ∈ F there exists θ ∈ F such that θz = |z| and |θ |= 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z
|z|

. Recall that for z = x+ iy,z = x− iy

and zz = |z|2. In case z is real, there is no change in the above. ■

Theorem 8.3.4 (Cauchy Schwarz)Let H be an inner product space. The following inequal-
ity holds for x and y ∈ H.

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 (8.3.11)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ F such that |θ |= 1 and

θ (x,y) = |(x,y)|

Consider p(t)≡
(
x+θ ty,x+ tθy

)
where t ∈ R. Then from the above list of properties of

the inner product,

0 ≤ p(t) = (x,x)+ tθ (x,y)+ tθ (y,x)+ t2 (y,y)
= (x,x)+ tθ (x,y)+ tθ(x,y)+ t2 (y,y)
= (x,x)+2t Re(θ (x,y))+ t2 (y,y)
= (x,x)+2t |(x,y)|+ t2 (y,y) (8.3.12)

and this must hold for all t ∈R. Therefore, if (y,y) = 0 it must be the case that |(x,y)|= 0
also since otherwise the above inequality would be violated. Therefore, in this case,

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 .

On the other hand, if (y,y) ̸= 0, then p(t) ≥ 0 for all t means the graph of y = p(t) is a
parabola which opens up and it either has exactly one real zero in the case its vertex touches
the t axis or it has no real zeros. From the quadratic formula this happens exactly when

4 |(x,y)|2−4(x,x)(y,y)≤ 0

which is equivalent to 8.3.11.
It is clear from a computation that if one vector is a scalar multiple of the other that

equality holds in 8.3.11. Conversely, suppose equality does hold. Then this is equivalent
to saying 4 |(x,y)|2−4(x,x)(y,y) = 0 and so from the quadratic formula, there exists one
real zero to p(t) = 0. Call it t0. Then

p(t0)≡
(
x+θ t0y,x+ t0θy

)
=
∣∣x+θ ty

∣∣2 = 0

and so x =−θ t0y. This proves the theorem. ■
Note that in establishing the inequality, I only used part of the above properties of the

inner product. It was not necessary to use the one which says that if (x,x) = 0 then x = 0.
Now the length of a vector can be defined.
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Definition 8.3.5 Let z ∈ H. Then |z| ≡ (z,z)1/2.

Theorem 8.3.6 For length defined in Definition 8.3.5, the following hold.

|z| ≥ 0 and |z|= 0 if and only if z = 0 (8.3.13)

If α is a scalar, |αz|= |α| |z| (8.3.14)

|z+w| ≤ |z|+ |w| . (8.3.15)

Proof: The first two claims are left as exercises. To establish the third,

|z+w|2 ≡ (z+w,z+w)

= (z,z)+(w,w)+(w,z)+(z,w)

= |z|2 + |w|2 +2Re(w,z)
≤ |z|2 + |w|2 +2 |(w,z)|
≤ |z|2 + |w|2 +2 |w| |z|= (|z|+ |w|)2 .

Note that in an inner product space, you can define

d (x,y)≡ |x−y|

and this is a metric for this inner product space. This follows from the above since d
satisfies the conditions for a metric,

d (x,y) = d (y,x) , d (x,y)≥ 0 and equals 0 if and only if x = y

d (x,y)+d (y,z) = |x−y|+ |y− z| ≥ |x−y+y− z|= |x− z|= d (x,z) .

It follows that all the theory of metric spaces developed earlier applies to this situation.

8.3.3 Normed Vector Spaces
The best sort of a norm is one which comes from an inner product. However, any vector
space, V which has a function, ||·|| which maps V to [0,∞) is called a normed vector space
if ||·|| satisfies 8.3.13 - 8.3.15. That is

||z|| ≥ 0 and ||z||= 0 if and only if z = 0 (8.3.16)

If α is a scalar, ||αz||= |α| ||z|| (8.3.17)

||z+w|| ≤ ||z||+ ||w|| . (8.3.18)

The last inequality above is called the triangle inequality. Another version of this is

|||z||− ||w||| ≤ ||z−w|| (8.3.19)

To see that 8.3.19 holds, note

||z||= ||z−w+w|| ≤ ||z−w||+ ||w||
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which implies
||z||− ||w|| ≤ ||z−w||

and now switching z and w, yields

||w||− ||z|| ≤ ||z−w||

which implies 8.3.19.
Any normed vector space is a metric space, the distance given by

d (x,y)≡ ∥x−y∥

This satisfies all the axioms of a distance. Therefore, any normed linear space is a metric
space with this metric and all the theory of metric spaces applies.

Definition 8.3.7 When X is a normed linear space which is also complete, it is called a
Banach space.

8.3.4 The p Norms
Examples of norms are the p norms on Cn for p ̸= 2. These do not come from an inner
product but they are norms just the same.

Definition 8.3.8 Let x ∈ Cn. Then define for p≥ 1,

||x||p ≡

(
n

∑
i=1
|xi|p

)1/p

The following inequality is called Holder’s inequality.

Proposition 8.3.9 For x,y ∈ Cn,

n

∑
i=1
|xi| |yi| ≤

(
n

∑
i=1
|xi|p

)1/p( n

∑
i=1
|yi|p

′
)1/p′

The proof will depend on the following lemma shown later.

Lemma 8.3.10 If a,b≥ 0 and p′ is defined by 1
p +

1
p′ = 1, then

ab≤ ap

p
+

bp′

p′
.

Proof of the Proposition: If x or y equals the zero vector there is nothing to prove.

Therefore, assume they are both nonzero. Let A= (∑n
i=1 |xi|p)1/p and B=

(
∑

n
i=1 |yi|p

′)1/p′

.
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Then using Lemma 8.3.10,

n

∑
i=1

|xi|
A
|yi|
B

≤
n

∑
i=1

[
1
p

(
|xi|
A

)p

+
1
p′

(
|yi|
B

)p′
]

=
1
p

1
Ap

n

∑
i=1
|xi|p +

1
p′

1
Bp

n

∑
i=1
|yi|p

′

=
1
p
+

1
p′

= 1

and so

n

∑
i=1
|xi| |yi| ≤ AB =

(
n

∑
i=1
|xi|p

)1/p( n

∑
i=1
|yi|p

′
)1/p′

. ■

Theorem 8.3.11 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that ||·||p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||·|| in place of ||·||p in
what follows. Note also that p

p′ = p−1. Then using the Holder inequality,

||x+y||p =
n

∑
i=1
|xi + yi|p

≤
n

∑
i=1
|xi + yi|p−1 |xi|+

n

∑
i=1
|xi + yi|p−1 |yi|

=
n

∑
i=1
|xi + yi|

p
p′ |xi|+

n

∑
i=1
|xi + yi|

p
p′ |yi|

≤

(
n

∑
i=1
|xi + yi|p

)1/p′
( n

∑
i=1
|xi|p

)1/p

+

(
n

∑
i=1
|yi|p

)1/p


= ||x+y||p/p′
(
||x||p + ||y||p

)
so dividing by ||x+y||p/p′ , it follows

||x+y||p ||x+y||−p/p′ = ||x+y|| ≤ ||x||p + ||y||p(
p− p

p′ = p
(

1− 1
p′

)
= p 1

p = 1.
)
. ■

It only remains to prove Lemma 8.3.10.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:
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b

a

x

t

x = t p−1

t = xq−1

ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

Note equality occurs when ap = bq. ■
Alternate proof of the lemma: First note that if either a or b are zero, then there is

nothing to show so we can assume b,a > 0. Let b > 0 and let

f (a) =
ap

p
+

bq

q
−ab

Then the second derivative of f is positive on (0,∞) so its graph is convex. Also f (0)> 0
and lima→∞ f (a) = ∞. Then a short computation shows that there is only one critical point,
where f is minimized and this happens when a is such that ap = bq. At this point,

f (a) = bq−bq/pb = bq−bq−1b = 0

Therefore, f (a)≥ 0 for all a and this proves the lemma. ■
Another example of a very useful norm on Fn is the norm ∥·∥

∞
defined by

∥x∥
∞
≡max{|xk| : k = 1,2, · · · ,n}

You should verify that this satisfies all the axioms of a norm. Here is the triangle inequality.

∥x+y∥
∞

= max
k
{|xk + yk|} ≤max

k
{|xk|+ |yk|}

≤ max
k
{|xk|}+max

k
{|yk|}= ∥x∥∞

+∥y∥
∞

It turns out that in terms of analysis, it makes absolutely no difference which norm you
use. This will be explained later. First is a short review of the notion of orthonormal bases
which is not needed directly in what follows but is sufficiently important to include.

8.3.5 Orthonormal Bases

Not all bases for an inner product space H are created equal. The best bases are orthonor-
mal.
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Definition 8.3.12 Suppose {v1, · · · ,vk} is a set of vectors in an inner product space H. It
is an orthonormal set if

(vi,v j) = δ i j =

{
1 if i = j
0 if i ̸= j

Every orthonormal set of vectors is automatically linearly independent.

Proposition 8.3.13 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is lin-
early independent.

Proof: Suppose ∑
k
i=1 civi = 0. Then taking inner products with v j,

0 = (0,v j) = ∑
i

ci (vi,v j) = ∑
i

ciδ i j = c j.

Since j is arbitrary, this shows the set is linearly independent as claimed.
It turns out that if X is any subspace of H, then there exists an orthonormal basis for X .

The process by which this is done is called the Gram Schmidt process.

Lemma 8.3.14 Let X be a subspace of dimension n which is contained in an inner prod-
uct space H. Let a basis for X be {x1, · · · ,xn} . Then there exists an orthonormal ba-
sis for X , {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span(u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for X . Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) =
span(x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (u j,ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1,u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1,u j)u j

∣∣∣ , (8.3.20)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 8.3.20 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k, then denoting by C the scalar
∣∣∣xk+1−∑

k
j=1 (xk+1,u j)u j

∣∣∣−1
,

(uk+1,ul) = C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)(u j,ul)

)

= C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)δ l j

)
= C ((xk+1,ul)− (xk+1,ul)) = 0.
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The vectors,
{

u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.

8.4 Equivalence Of Norms
As mentioned above, it makes absolutely no difference which norm you decide to use. This
holds in general finite dimensional normed spaces. First are some simple lemmas featuring
one dimensional considerations. In this case, the distance is given by d (x,y) = |x− y| and
so the open balls are sets of the form (x−δ ,x+δ ).

Also recall the Theorem 3.0.3 which is stated next for convenience.

Lemma 8.4.1 The closed interval [a,b] is sequentially compact.

Corollary 8.4.2 The set Q≡ [a,b]+ i [c,d]⊆ C is compact, meaning

{x+ iy : x ∈ [a,b] ,y ∈ [c,d]}

Proof: Let {xn + iyn} be a sequence in Q. Then there is a subsequence such that

lim
k→∞

xnk = x ∈ [a,b] .

There is a further subsequence such that liml→∞ ynkl
= y ∈ [c,d]. Thus, also

lim
l→∞

xnkl
= x

because subsequences of convergent sequences converge to the same point. Therefore,
from the way we measure the distance in C, it follows that liml→∞

(
xnkl

+ ynkl

)
= x+ iy ∈

Q. ■
The next corollary gives the definition of a closed disk and shows that, like a closed

interval, a closed disk is compact.

Corollary 8.4.3 In C, let D(z,r)≡ {w ∈ C : |z−w| ≤ r}. Then D(z,r) is compact.

Proof: Note that

D(z,r)⊆ [Rez− r,Rez+ r]+ i [Imz− r, Imz+ r]

which was just shown to be compact. Also, if wk → w where wk ∈ D(z,r) , then by the
triangle inequality,

|z−w|= lim
k→∞

|z−wk| ≤ r

and so D(z,r) is a closed subset of a compact set. Hence it is compact by Proposition 7.6.8.
■

Recall that sequentially compact and compact are the same in any metric space which
is the context of the assertions here.
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Lemma 8.4.4 Let Ki be a nonempty compact set in F. Then P≡∏
n
i=1 Ki is compact in Fn.

Proof: Let {xk} be a sequence in P. Taking a succession of subsequences as in the
proof of Corollary 8.4.2, there exists a subsequence, still denoted as {xk} such that if xi

k is
the ith component of xk, then limk→∞ xi

k = xi ∈ Ki. Thus if x is the vector of P whose ith

component is xi,

lim
k→∞

|xk−x| ≡ lim
k→∞

(
n

∑
i=1

∣∣xi
k− xi∣∣2)1/2

= 0

It follows that P is sequentially compact, hence compact. ■
A set K in Fn is said to be bounded if it is contained in some ball B(0,r).

Theorem 8.4.5 A set K ⊆ Fn is compact if it is closed and bounded. If f : K→ R, then f
achieves its maximum and its minimum on K.

Proof: Say K is closed and bounded, being contained in B(0,r). Then if x ∈ K, |xi|< r
where xi is the ith component. Hence K ⊆ ∏

n
i=1 D(0,r) , a compact set by Lemma 8.4.4.

By Proposition 7.6.8, since K is a closed subset of a compact set, it is compact. The last
claim is just the extreme value theorem, Theorem 7.7.1. ■

Definition 8.4.6 Let {v1, · · · ,vn} be a basis for V where (V, ||·||) is a finite dimensional
normed vector space with field of scalars equal to either R or C. Define θ : V → Fn as
follows.

θ

(
n

∑
j=1

α jv j

)
≡ α ≡(α1, · · · ,αn)

T

Thus θ maps a vector to its coordinates taken with respect to a given basis.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let

f (α)≡

∥∥∥∥∥∑i
α ivi

∥∥∥∥∥≡ ∥∥θ
−1

α
∥∥

Then it is clear that f is a continuous function defined on Fn. This is because α → ∑i α ivi
is a continuous map into V and from the triangle inequality x→∥x∥ is continuous as a map
from V to R.

Lemma 8.4.7 There exists δ > 0 and ∆≥ δ such that

δ = min{ f (α) : |α|= 1} , ∆ = max{ f (α) : |α|= 1}

Also,

δ |α| ≤
∥∥θ
−1

α
∥∥≤ ∆ |α| (8.4.21)

δ |θv| ≤ ∥v∥ ≤ ∆ |θv| (8.4.22)
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Proof: These numbers exist thanks to Theorem 8.4.5. It cannot be that δ = 0 because if
it were, you would have |α|= 1 but ∑

n
j=1 αkv j = 0 which is impossible since {v1, · · · ,vn}

is linearly independent. The first of the above inequalities follows from

δ ≤
∥∥∥∥θ
−1 α

|α|

∥∥∥∥= f
(

α

|α|

)
≤ ∆

the second follows from observing that θ
−1

α is a generic vector v in V . ■
Note that these inequalities yield the fact that convergence of the coordinates with re-

spect to a given basis is equivalent to convergence of the vectors. More precisely, to say
that limk→∞ vk = v is the same as saying that limk→∞ θvk = θv. Indeed,

δ |θvn−θv| ≤ ∥vn−v∥ ≤ ∆ |θvn−θv|

Now we can draw several conclusions about (V,∥·∥) for V finite dimensional.

Theorem 8.4.8 Let (V,∥·∥) be a finite dimensional normed linear space. Then the compact
sets are exactly those which are closed and bounded. Also (V,∥·∥) is complete. If K is
a closed and bounded set in (V,∥·∥) and f : K → R, then f achieves its maximum and
minimum on K.

Proof: First note that the inequalities 8.4.21 and 8.4.22 show that both θ
−1 and θ are

continuous. Thus these take convergent sequences to convergent sequences.
Let {wk}∞

k=1 be a Cauchy sequence. Then from 8.4.22, {θwk}∞

k=1 is a Cauchy sequence.
Thanks to Theorem 8.4.5, it converges to some β ∈ Fn. It follows that limk→∞ θ

−1
θwk =

limk→∞ wk = θ
−1

β ∈V . This shows completeness.
Next let K be a closed and bounded set. Let {wk} ⊆ K. Then {θwk} ⊆ θK which is

also a closed and bounded set thanks to the inequalities 8.4.21 and 8.4.22. Thus there is a
subsequence still denoted with k such that θwk→ β ∈ Fn. Then as just done, wk→ θ

−1
β .

Since K is closed, it follows that θ
−1

β ∈ K.
This has just shown that a closed and bounded set in V is sequentially compact hence

compact.
Finally, why are the only compact sets those which are closed and bounded? Let K be

compact. If it is not bounded, then there is a sequence of points of K,{km}∞

m=1 such that
∥km∥ ≥

∥∥km−1
∥∥+ 1. It follows that it cannot have a convergent subsequence because the

points are further apart from each other than 1/2. Indeed,∥∥km−km+1∥∥≥ ∥∥km+1∥∥−∥km∥ ≥ 1 > 1/2

Hence K is not sequentially compact and consequently it is not compact. It follows
that K is bounded. If K is not closed, then there exists a limit point k which is not in K.
(Recall that closed means it has all its limit points.) By Theorem 7.2.8, there is a sequence
of distinct points having no repeats and none equal to k denoted as {km}∞

m=1 such that
km→ k. Then this sequence {km} fails to have a subsequence which converges to a point
of K. Hence K is not sequentially compact. Thus, if K is compact then it is closed and
bounded.

The last part is the extreme value theorem, Theorem 7.7.1. ■
Next is the theorem which states that any two norms on a finite dimensional vector

space are equivalent.



8.5. EXERCISES 193

Theorem 8.4.9 Let ||·|| , |||·||| be two norms on V a finite dimensional vector space. Then
they are equivalent, which means there are constants 0 < a < b such that for all v,

a ||v|| ≤ |||v||| ≤ b ||v||

Proof: In Lemma 8.4.7, let δ ,∆ go with ||·|| and δ̂ , ∆̂ go with |||·|||. Then using the
inequalities of this lemma,

||v|| ≤ ∆ |θv| ≤ ∆

δ̂
|||v||| ≤ ∆∆̂

δ̂
|θv| ≤ ∆

δ

∆̂

δ̂
||v||

and so
δ̂

∆
||v|| ≤ |||v||| ≤ ∆̂

δ
||v||

Thus the norms are equivalent. ■
It follows right away that the closed and open sets are the same with two different

norms. Also, all considerations involving limits are unchanged from one norm to another.

Corollary 8.4.10 Consider the metric spaces (V,∥·∥1) ,(V,∥·∥2) where V has dimension
n. Then a set is closed or open in one of these if and only if it is respectively closed or open
in the other. In other words, the two metric spaces have exactly the same open and closed
sets. Also, a set is bounded in one metric space if and only if it is bounded in the other.

Proof: This follows from Theorem 7.6.5, the theorem about the equivalent formulations
of continuity. Using this theorem, it follows from Theorem 8.4.9 that the identity map
I (x)≡ x is continuous. The reason for this is that the inequality of this theorem implies that
if ∥vm−v∥1→ 0 then ∥Ivm− Iv∥2 = ∥I (vm−v)∥2→ 0 and the same holds on switching
1 and 2 in what was just written.

Therefore, the identity map takes open sets to open sets and closed sets to closed sets.
In other words, the two metric spaces have the same open sets and the same closed sets.

Suppose S is bounded in (V,∥·∥1). This means it is contained in B(0,r)1 where the
subscript of 1 indicates the norm is ∥·∥1 . Let δ ∥·∥1 ≤ ∥·∥2 ≤ ∆∥·∥1 as described above.
Then

S⊆ B(0,r)1 ⊆ B(0,∆r)2

so S is also bounded in (V,∥·∥2). Similarly, if S is bounded in ∥·∥2 then it is bounded in
∥·∥1. ■

One can show that in the case of R where it makes sense to consider sup and inf, con-
vergence of Cauchy sequences can be shown to imply the other definition of completeness
involving sup, and inf.

8.5 Exercises
1. Let K be a nonempty closed and convex set in an inner product space (X , |·|) which is

complete. For example, Fn or any other finite dimensional inner product space. Let
y /∈ K and let λ = inf{|y− x| : x ∈ K} . Let {xn} be a minimizing sequence. That is



194 CHAPTER 8. NORMED LINEAR SPACES

λ = limn→∞ |y− xn| . Explain why such a minimizing sequence exists. Next explain
the following using the parallelogram identity in the above problem as follows.∣∣∣∣y− xn + xm

2

∣∣∣∣2 = ∣∣∣ y2 − xn

2
+

y
2
− xm

2

∣∣∣2
=−

∣∣∣ y
2
− xn

2
−
( y

2
− xm

2

)∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

Hence ∣∣∣∣xm− xn

2

∣∣∣∣2 = −
∣∣∣∣y− xn + xm

2

∣∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

≤ −λ
2 +

1
2
|y− xn|2 +

1
2
|y− xm|2

Next explain why the right hand side converges to 0 as m,n→ ∞. Thus {xn} is a
Cauchy sequence and converges to some x ∈ X . Explain why x ∈ K and |x− y|= λ .
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two x1,x2 and consider x1+x2

2 using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

2. Let K be a closed convex nonempty set in a complete inner product space (H, |·|)
(Hilbert space) and let y ∈ H. Denote the closest point to y by Px. Show that Px is
characterized as being the solution to the following variational inequality

Re(z−Py,y−Py)≤ 0

for all z ∈ K. That is, show that x = Py if and only if Re(z− x,y− x) ≤ 0 for all
z ∈ K. Hint: Let x ∈ K. Then, due to convexity, a generic thing in K is of the form
x+ t (z− x) , t ∈ [0,1] for every z ∈ K. Then

|x+ t (z− x)− y|2 = |x− y|2 + t2 |z− x|2− t2Re(z− x,y− x)

If x = Px, then the minimum value of this on the left occurs when t = 0. Function
defined on [0,1] has its minimum at t = 0. What does it say about the derivative
of this function at t = 0? Next consider the case that for some x the inequality
Re(z− x,y− x)≤ 0. Explain why this shows x = Py.

3. Using Problem 2 and Problem 1 show the projection map, P onto a closed convex
subset is Lipschitz continuous with Lipschitz constant 1. That is |Px−Py| ≤ |x− y| .



Chapter 9

Weierstrass Approximation Theorem
9.1 The Bernstein Polynomials

This short chapter is on the important Weierstrass approximation theorem. It is about ap-
proximating an arbitrary continuous function uniformly by a polynomial. It will be as-
sumed only that f has values in C and that all scalars are in C. First here is some notation.

Definition 9.1.1 α = (α1, · · · ,αn) for α1 · · ·αn positive integers is called a multi-index.
For α a multi-index, |α| ≡ α1 + · · ·+αn and if x ∈ Rn,

x =(x1, · · · ,xn) ,

and f a function, define
xα ≡ xα1

1 xα2
2 · · ·x

αn
n .

A polynomial in n variables of degree m is a function of the form

p(x) = ∑
|α|≤m

aα xα .

Here α is a multi-index as just described. You could have aα have values in a normed
linear space.

The following estimate will be the basis for the Weierstrass approximation theorem. It
is actually a statement about the variance of a binomial random variable.

Lemma 9.1.2 The following estimate holds for x ∈ [0,1].

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m

Proof: By the Binomial theorem,

m

∑
k=0

(
m
k

)(
etx
)k
(1− x)m−k =

(
1− x+ etx

)m
. (9.1.1)

Differentiating both sides with respect to t and then evaluating at t = 0 yields

m

∑
k=0

(
m
k

)
kxk (1− x)m−k = mx.

Now doing two derivatives of 9.1.1 with respect to t yields

∑
m
k=0
(m

k

)
k2 (etx)k (1− x)m−k = m(m−1)(1− x+ etx)m−2 e2tx2

+m(1− x+ etx)m−1 xet .

195
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Evaluating this at t = 0,

m

∑
k=0

(
m
k

)
k2 (x)k (1− x)m−k = m(m−1)x2 +mx.

Therefore,

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k = m(m−1)x2 +mx−2m2x2 +m2x2

= m
(
x− x2)≤ 1

4
m.

This proves the lemma.
Now for x =(x1, · · · ,xn) ∈ [0,1]n consider the polynomial,

pm (x)≡
m

∑
k1=0
· · ·

m

∑
kn=0

(
m
k1

)(
m
k2

)
· · ·
(

m
kn

)
xk1

1 (1− x1)
m−k1 xk2

2 (1− x2)
m−k2

· · ·xkn
n (1− xn)

m−kn f
(

k1

m
, · · · , kn

m

)
. (9.1.2)

where f is a continuous function which takes [0,1]n to a normed linear space. Also define
if I is a compact set in Rn

||h||I ≡ sup{∥h(x)∥ : x ∈ I} .

Thus pm converges uniformly to f on a set I if

lim
m→∞
||pm− f||I = 0.

Also to simplify the notation, let k = (k1, · · · ,kn) where each ki ∈ [0,m], k
m ≡

(
k1
m , · · · , kn

m

)
,

and let (
m
k

)
≡
(

m
k1

)(
m
k2

)
· · ·
(

m
kn

)
.

Also define
||k||

∞
≡max{ki, i = 1,2, · · · ,n}

xk (1−x)m−k ≡ xk1
1 (1− x1)

m−k1 xk2
2 (1− x2)

m−k2 · · ·xkn
n (1− xn)

m−kn .

Thus in terms of this notation,

pm (x) = ∑
||k||∞≤m

(
m
k

)
xk (1−x)m−k f

(
k
m

)

Lemma 9.1.3 For x ∈ [0,1]n , f a continuous function defined on [0,1]n , and pm given in
9.1.2, pm converges uniformly to f on [0,1]n as m→ ∞.
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Proof: The function, f is uniformly continuous because it is continuous on a compact
set. Therefore, there exists δ > 0 such that if ∥x−y∥< δ , then

∥f(x)− f(y)∥< ε.

Denote by G the set of k such that (ki−mxi)
2 < η2m2 for each i where η = δ/

√
n. Note

this condition is equivalent to saying that for each i,
∣∣∣ ki

m − xi

∣∣∣< η . By the binomial theorem,

∑
||k||∞≤m

(
m
k

)
xk (1−x)m−k = 1

and so for x ∈ [0,1]n ,

∥pm (x)− f(x)∥ ≤ ∑
||k||∞≤m

(
m
k

)
xk (1−x)m−k

∥∥∥∥f
(

k
m

)
− f(x)

∥∥∥∥
≤ ∑

k∈G

(
m
k

)
xk (1−x)m−k

∥∥∥∥f
(

k
m

)
− f(x)

∥∥∥∥
+ ∑

k∈GC

(
m
k

)
xk (1−x)m−k

∥∥∥∥f
(

k
m

)
− f(x)

∥∥∥∥ (9.1.3)

Now for k ∈ G it follows that for each i∣∣∣∣ki

m
− xi

∣∣∣∣< δ√
n

(9.1.4)

and so
∥∥f
( k

m
)
− f(x)

∥∥< ε because the above implies
∣∣ k

m −x
∣∣< δ . Therefore, the first sum

on the right in 9.1.3 is no larger than

∑
k∈G

(
m
k

)
xk (1−x)m−k

ε ≤ ∑
||k||∞≤m

(
m
k

)
xk (1−x)m−k

ε = ε.

Letting M ≥max{∥f(x)∥ : x ∈ [0,1]n} it follows

∥pm (x)− f(x)∥

≤ ε +2M ∑
k∈GC

(
m
k

)
xk (1−x)m−k

≤ ε +2M
(

1
η2m2

)n

∑
k∈GC

(
m
k

) n

∏
j=1

(k j−mx j)
2 xk (1−x)m−k

≤ ε +2M
(

1
η2m2

)n

∑
||k||∞≤m

(
m
k

) n

∏
j=1

(k j−mx j)
2 xk (1−x)m−k

because on GC,

(k j−mx j)
2

η2m2 < 1, j = 1, · · · ,n.



198 CHAPTER 9. WEIERSTRASS APPROXIMATION THEOREM

Now by Lemma 9.1.2,

∥pm (x)− f(x)∥ ≤ ε +2M
(

1
η2m2

)n(m
4

)n
.

Therefore, since the right side does not depend on x, it follows

lim sup
m→∞

∥pm− f∥[0,1]n ≤ ε

and since ε is arbitrary, this shows limm→∞ ∥pm− f∥[0,1]n = 0. This proves the lemma.
The following is not surprising.

Lemma 9.1.4 Let f be a continuous function defined on [−M,M]n having values in a
normed linear space. Then there exists a sequence of polynomials, {pm} converging uni-
formly to f on [−M,M]n.

Proof: Let h(t) =−M+2Mt so h : [0,1]→ [−M,M] and let h(t)≡ (h(t1) , · · · ,h(tn)) .
Therefore, f◦h is a continuous function defined on [0,1]n . From Lemma 9.1.3 there exists
a polynomial, p(t) such that ∥pm− f◦h∥[0,1]n < 1

m . Now for x ∈ [−M,M]n , h−1 (x) =(
h−1 (x1) , · · · ,h−1 (xn)

)
and so∥∥pm ◦h−1− f

∥∥
[−M,M]n

= ∥pm− f◦h∥[0,1]n <
1
m
.

But h−1 (x) = x
2M + 1

2 and so pm is still a polynomial. This proves the lemma.
A similar argument proves the following corollary.

Corollary 9.1.5 Let f be a continuous function defined on ∏
n
i=1 [ai,bi] having values in

a normed linear space. Then there exists a sequence of polynomials, {pm} converging
uniformly to f on ∏

n
i=1 [ai,bi].

Proof: You just let hi (t) map [0,1] one to one and onto [ai,bi] such that h−1
i (x) is a

polynomial. Then apply the same argument. ■
The classical version of the Weierstrass approximation theorem involved showing that a

continuous function of one variable defined on a closed and bounded interval is the uniform
limit of a sequence of polynomials. This is certainly included as a special case of the above.
Now recall the Tietze extension theorem found on Page 158. In the general version about to
be presented, the set on which f is defined is just a compact subset of Rn, not the Cartesian
product of intervals. For convenience here is the Tietze extension theorem.

Theorem 9.1.6 Let M be a closed nonempty subset of a metric space (X ,d) and let f :
M→ [a,b] is continuous at every point of M. Then there exists a function, g continuous on
all of X which coincides with f on M such that g(X)⊆ [a,b] .

The Weierstrass approximation theorem follows. Here it is assumed the function f has
values in Rp. In more general situations, we would need an extension theorem to extend
the function off a closed set. There are such theorems, but they have not been presented at
this point.
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Theorem 9.1.7 Let K be a compact set in Rn and let f be a continuous function defined
on K having values in Rp. Then there exists a sequence of polynomials {pm} converging
uniformly to f on K.

Proof: Choose M large enough that K ⊆ [−M,M]n and let f̃ denote a continuous func-
tion defined on all of [−M,M]n such that f̃ = f on K. Such an extension exists by the Tietze
extension theorem, Theorem 9.1.6 applied to the components of f. By Lemma 9.1.4 there
exists a sequence of polynomials, {pm} defined on [−M,M]n such that

∥∥f̃−pm
∥∥
[−M,M]n

→
0. Therefore,

∥∥f̃−pm
∥∥

K → 0 also. This proves the theorem.

9.2 Stone Weierstrass Theorem
9.2.1 The Case Of Compact Sets
There is a profound generalization of the Weierstrass approximation theorem due to Stone.

Definition 9.2.1 A is an algebra of functions if A is a vector space and if whenever
f ,g ∈A then f g ∈A .

To begin with assume that the field of scalars is R. This will be generalized later.
Theorem 9.1.7 implies the following very special case.

Corollary 9.2.2 The polynomials are dense in C ([a,b]).

The next result is the key to the profound generalization of the Weierstrass theorem
due to Stone in which an interval will be replaced by a compact or locally compact set and
polynomials will be replaced with elements of an algebra satisfying certain axioms.

Corollary 9.2.3 On the interval [−M,M], there exist polynomials pn such that

pn (0) = 0

and
lim
n→∞
||pn−|·|||∞ = 0.

Proof: By Corollary 9.2.2 there exists a sequence of polynomials, {p̃n} such that p̃n→
|·| uniformly. Then let pn (t)≡ p̃n (t)− p̃n (0) . This proves the corollary.

Definition 9.2.4 An algebra of functions, A defined on A, annihilates no point of A if for
all x ∈ A, there exists g ∈A such that g(x) ̸= 0. The algebra separates points if whenever
x1 ̸= x2, then there exists g ∈A such that g(x1) ̸= g(x2).

The following generalization is known as the Stone Weierstrass approximation theorem.

Theorem 9.2.5 Let A be a compact topological space and let A ⊆C (A;R) be an algebra
of functions which separates points and annihilates no point. Then A is dense in C (A;R).

Proof: First here is a lemma.
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Lemma 9.2.6 Let c1 and c2 be two real numbers and let x1 ̸= x2 be two points of A. Then
there exists a function fx1x2 such that

fx1x2 (x1) = c1, fx1x2 (x2) = c2.

Proof of the lemma: Let g ∈A satisfy

g(x1) ̸= g(x2).

Such a g exists because the algebra separates points. Since the algebra annihilates no point,
there exist functions h and k such that

h(x1) ̸= 0, k (x2) ̸= 0.

Then let
u≡ gh−g(x2)h, v≡ gk−g(x1)k.

It follows that u(x1) ̸= 0 and u(x2) = 0 while v(x2) ̸= 0 and v(x1) = 0. Let

fx1x2 ≡
c1u

u(x1)
+

c2v
v(x2)

.

This proves the lemma. Now continue the proof of Theorem 9.2.5.
First note that A satisfies the same axioms as A but in addition to these axioms, A is

closed. The closure of A is taken with respect to the usual norm on C (A),

|| f ||
∞
≡max{| f (x)| : x ∈ A} .

Suppose f ∈A and suppose M is large enough that

|| f ||
∞
< M.

Using Corollary 9.2.3, let pn be a sequence of polynomials such that

||pn−|·|||∞→ 0, pn (0) = 0.

It follows that pn ◦ f ∈A and so | f | ∈A whenever f ∈A . Also note that

max( f ,g) =
| f −g|+( f +g)

2

min( f ,g) =
( f +g)−| f −g|

2
.

Therefore, this shows that if f ,g ∈A then

max( f ,g) , min( f ,g) ∈A .

By induction, if fi, i = 1,2, · · · ,m are in A then

max( fi, i = 1,2, · · · ,m) , min( fi, i = 1,2, · · · ,m) ∈A .
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Now let h ∈ C (A;R) and let x ∈ A. Use Lemma 9.2.6 to obtain fxy, a function of A
which agrees with h at x and y. Letting ε > 0, there exists an open set U (y) containing y
such that

fxy (z)> h(z)− ε if z ∈U(y).

Since A is compact, let U (y1) , · · · ,U (yl) cover A. Let

fx ≡max
(

fxy1 , fxy2 , · · · , fxyl

)
.

Then fx ∈A and
fx (z)> h(z)− ε

for all z ∈ A and fx (x) = h(x). This implies that for each x ∈ A there exists an open set
V (x) containing x such that for z ∈V (x),

fx (z)< h(z)+ ε.

Let V (x1) , · · · ,V (xm) cover A and let

f ≡min( fx1 , · · · , fxm).

Therefore,
f (z)< h(z)+ ε

for all z ∈ A and since fx (z)> h(z)− ε for all z ∈ A, it follows

f (z)> h(z)− ε

also and so
| f (z)−h(z)|< ε

for all z. Since ε is arbitrary, this shows h ∈A and proves A =C (A;R). This proves the
theorem.

9.2.2 The Case Of Locally Compact Sets
Definition 9.2.7 Let (X ,τ) be a locally compact Hausdorff space. C0 (X) denotes the space
of real or complex valued continuous functions defined on X with the property that if f ∈
C0 (X) , then for each ε > 0 there exists a compact set K such that | f (x)|< ε for all x /∈ K.
Define

|| f ||
∞
= sup{| f (x)| : x ∈ X}.

Lemma 9.2.8 For (X ,τ) a locally compact Hausdorff space with the above norm, C0 (X)
is a complete space.

Proof: Let
(

X̃ , τ̃
)

be the one point compactification described in Lemma 7.12.20.

D≡
{

f ∈C
(

X̃
)

: f (∞) = 0
}
.
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Then D is a closed subspace of C
(

X̃
)

. For f ∈C0 (X) ,

f̃ (x)≡
{

f (x) if x ∈ X
0 if x = ∞

and let θ : C0 (X)→D be given by θ f = f̃ . Then θ is one to one and onto and also satisfies
|| f ||

∞
= ||θ f ||

∞
. Now D is complete because it is a closed subspace of a complete space

and so C0 (X) with ||·||
∞

is also complete. This proves the lemma.
The above refers to functions which have values in C but the same proof works for

functions which have values in any complete normed linear space.
In the case where the functions in C0 (X) all have real values, I will denote the resulting

space by C0 (X ;R) with similar meanings in other cases.
With this lemma, the generalization of the Stone Weierstrass theorem to locally com-

pact sets is as follows.

Theorem 9.2.9 Let A be an algebra of functions in C0 (X ;R) where (X ,τ) is a locally
compact Hausdorff space which separates the points and annihilates no point. Then A is
dense in C0 (X ;R).

Proof: Let
(

X̃ , τ̃
)

be the one point compactification as described in Lemma 7.12.20.

Let Ã denote all finite linear combinations of the form{
n

∑
i=1

ci f̃i + c0 : f ∈A , ci ∈ R

}

where for f ∈C0 (X ;R) ,

f̃ (x)≡
{

f (x) if x ∈ X
0 if x = ∞

.

Then Ã is obviously an algebra of functions in C
(

X̃ ;R
)

. It separates points because this is
true of A . Similarly, it annihilates no point because of the inclusion of c0 an arbitrary ele-
ment of R in the definition above. Therefore from Theorem 9.2.5, Ã is dense in C

(
X̃ ;R

)
.

Letting f ∈ C0 (X ;R) , it follows f̃ ∈ C
(

X̃ ;R
)

and so there exists a sequence {hn} ⊆ Ã

such that hn converges uniformly to f̃ . Now hn is of the form ∑
n
i=1 cn

i f̃ n
i + cn

0 and since
f̃ (∞) = 0, you can take each cn

0 = 0 and so this has shown the existence of a sequence of
functions in A such that it converges uniformly to f . This proves the theorem.

9.2.3 The Case Of Complex Valued Functions
What about the general case where C0 (X) consists of complex valued functions and the
field of scalars is C rather than R? The following is the version of the Stone Weierstrass
theorem which applies to this case. You have to assume that for f ∈A it follows f ∈A .
Such an algebra is called self adjoint.
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Theorem 9.2.10 Suppose A is an algebra of functions in C0 (X) , where X is a locally
compact Hausdorff space, which separates the points, annihilates no point, and has the
property that if f ∈A , then f ∈A . Then A is dense in C0 (X).

Proof: Let ReA ≡ {Re f : f ∈A }, ImA ≡{Im f : f ∈A }. First I will show that
A =ReA + i ImA = ImA + iReA . Let f ∈A . Then

f =
1
2
(

f + f
)
+

1
2
(

f − f
)
= Re f + i Im f ∈ ReA + i ImA

and so A ⊆ ReA + i ImA . Also

f =
1
2i

(
i f + i f

)
− i

2

(
i f +(i f )

)
= Im(i f )+ iRe(i f ) ∈ ImA + iReA

This proves one half of the desired equality. Now suppose h ∈ ReA + i ImA . Then
h = Reg1 + i Img2 where gi ∈ A . Then since Reg1 =

1
2 (g1 +g1) , it follows Reg1 ∈ A .

Similarly Img2 ∈ A . Therefore, h ∈ A . The case where h ∈ ImA + iReA is similar.
This establishes the desired equality.

Now ReA and ImA are both real algebras. I will show this now. First consider ImA .
It is obvious this is a real vector space. It only remains to verify that the product of two
functions in ImA is in ImA . Note that from the first part, ReA , ImA are both subsets
of A because, for example, if u ∈ ImA then u+ 0 ∈ ImA + iReA = A . Therefore, if
v,w ∈ ImA , both iv and w are in A and so Im(ivw) = vw and ivw ∈A . Similarly, ReA
is an algebra.

Both ReA and ImA must separate the points. Here is why: If x1 ̸= x2, then there exists
f ∈A such that f (x1) ̸= f (x2) . If Im f (x1) ̸= Im f (x2) , this shows there is a function in
ImA , Im f which separates these two points. If Im f fails to separate the two points,
then Re f must separate the points and so you could consider Im(i f ) to get a function in
ImA which separates these points. This shows ImA separates the points. Similarly ReA
separates the points.

Neither ReA nor ImA annihilate any point. This is easy to see because if x is a
point there exists f ∈ A such that f (x) ̸= 0. Thus either Re f (x) ̸= 0 or Im f (x) ̸= 0. If
Im f (x) ̸= 0, this shows this point is not annihilated by ImA . If Im f (x) = 0, consider
Im(i f )(x) = Re f (x) ̸= 0. Similarly, ReA does not annihilate any point.

It follows from Theorem 9.2.9 that ReA and ImA are dense in the real valued func-
tions of C0 (X). Let f ∈C0 (X) . Then there exists {hn} ⊆ReA and {gn} ⊆ ImA such that
hn→ Re f uniformly and gn→ Im f uniformly. Therefore, hn + ign ∈A and it converges
to f uniformly. This proves the theorem.

9.3 The Holder Spaces
We consider these spaces as spaces of functions defined on an interval [0,1] although one
could have [0,T ] just as easily. A slightly more general version is in the exercises. They
are a very interesting example of spaces which are not separable.
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Definition 9.3.1 Let p > 1. Then f ∈C1/p ([0,1]) means that f ∈C ([0,1]) and also

ρ p ( f )≡ sup

{
| f (x)− f (y)|
|x− y|1/p : x,y ∈ X , x ̸= y

}
< ∞

Then the norm is defined as ∥ f∥C([0,1])+ρ p ( f )≡ ∥ f∥1/p.

It is an exercise to verify that C1/p ([0,1]) is a complete normed linear space.
Let p > 1. Then C1/p ([0,1]) is not separable. Define uncountably many functions, one

for each ε where ε is a sequence of −1 and 1. Thus εk ∈ {−1,1}. Thus ε ̸= ε
′ if the two

sequences differ in at least one slot, one giving 1 and the other equaling −1. Now define

fε (t)≡
∞

∑
k=1

εk2−k/p sin
(

2k
πt
)

Then this is 1/p Holder. Let s < t.

| fε (t)− fε (s)| ≤ ∑
k≤|log2(t−s)|

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

+ ∑
k>|log2(t−s)|

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

If t = 1 and s= 0, there is really nothing to show because then the difference equals 0. There
is also nothing to show if t = s. From now on, 0 < t− s < 1. Let k0 be the largest integer
which is less than or equal to |log2 (t− s)| = − log2 (t− s). Note that − log(t− s) > 0
because 0 < t− s < 1. Then

| fε (t)− fε (s)| ≤ ∑
k≤k0

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

+ ∑
k>k0

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

≤ ∑
k≤k0

2−k/p2k
π |t− s|+ ∑

k>k0

2−k/p2

Now k0 ≤ − log2 (t− s) < k0 + 1 and so −k0 ≥ log2 (t− s) ≥ −(k0 +1). Hence 2−k0 ≥
|t− s| ≥ 2−k02−1 and so 2−k0/p ≥ |t− s|1/p ≥ 2−k0/p2−1/p. Using this in the sums,

| fε (t)− fε (s)| ≤ |t− s|Cp + ∑
k>k0

2−k/p2k0/p2−k0/p2

≤ |t− s|Cp + ∑
k>k0

2−k/p2k0/p
(

21/p |t− s|1/p
)

2
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≤ |t− s|Cp + ∑
k>k0

2−(k−k0)/p
(

21/p |t− s|1/p
)

2

≤ Cp |t− s|+
(

21+1/p
) ∞

∑
k=1

2−k/p |t− s|1/p

= Cp |t− s|+Dp |t− s|1/p ≤Cp |t− s|1/p +Dp |t− s|1/p

Thus fε is indeed 1/p Holder continuous.
Now consider ε ̸= ε

′. Suppose the first discrepancy in the two sequences occurs with
ε j. Thus one is 1 and the other is −1. Let t = i+1

2 j+1 ,s =
i

2 j+1

| fε (t)− fε (s)− ( fε ′ (t)− fε ′ (s))|=∣∣∣∣∣ ∑
∞
k= j εk2−k/p sin

(
2kπt

)
−∑

∞
k= j εk2−k/p sin

(
2kπs

)
−
(

∑
∞
k= j ε ′k2−k/p sin

(
2kπt

)
−∑

∞
k= j ε ′k2−k/p sin

(
2kπs

)) ∣∣∣∣∣
Now consider what happens for k > j. Then sin

(
2kπ

i
2 j+1

)
= sin(mπ) = 0for some integer

m. Thus the whole mess reduces to∣∣∣∣(ε j− ε
′
j
)

2− j/p sin
(

2 jπ (i+1)
2 j+1

)
−
(
ε j− ε

′
j
)

2− j/p sin
(

2 jπi
2 j+1

)∣∣∣∣
=

∣∣∣∣(ε j− ε
′
j
)

2− j/p sin
(

π (i+1)
2

)
−
(
ε j− ε

′
j
)

2− j/p sin
(

πi
2

)∣∣∣∣
= 2

(
2− j/p

)
In particular, |t− s|= 1

2 j+1 so 21/p |t− s|1/p = 2− j/p

| fε (t)− fε (s)− ( fε ′ (t)− fε ′ (s))|= 2
(

21/p
)
|t− s|1/p

which shows that

sup
0≤s<t≤1

| fε (t)− fε ′ (t)− ( fε (s)− fε ′ (s))|
|t− s|1/p ≥ 21/p (2)

Thus there exists a set of uncountably many functions in C1/p ([0,T ]) and for any two of
them f ,g, you get

∥ f −g∥C1/p([0,1]) > 2

so C1/p ([0,1]) is not separable.

9.4 Exercises
1. Let (X ,τ) ,(Y,η) be topological spaces and let A⊆ X be compact. Then if f : X→Y

is continuous, show that f (A) is also compact.
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2. ↑ In the context of Problem 1, suppose R= Y where the usual topology is placed on
R. Show f achieves its maximum and minimum on A.

3. Let V be an open set in Rn. Show there is an increasing sequence of compact sets,
Km, such that V = ∪∞

m=1Km. Hint: Let

Cm ≡
{

x ∈ Rn : dist
(
x,VC)≥ 1

m

}
where

dist(x,S)≡ inf{|y−x| such that y ∈ S}.

Consider Km ≡Cm∩B(0,m).

4. Let B(X ;Rn) be the space of functions f, mapping X to Rn such that

sup{|f(x)| : x ∈ X}< ∞.

Show B(X ;Rn) is a complete normed linear space if

||f|| ≡ sup{|f(x)| : x ∈ X}.

5. Let α ∈ [0,1]. Define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+ ||f|| ≡ ||f||
α
< ∞}

where
||f|| ≡ sup{|f(x)| : x ∈ X}

and

ρα (f)≡ sup{ |f(x)− f(y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) , ||·||
α
) is a complete normed linear space.

6. Let {fn}∞
n=1 ⊆Cα (X ;Rn) where X is a compact subset of Rp and suppose

||fn||α ≤M

for all n. Show there exists a subsequence, nk, such that fnk converges in C (X ;Rn).
The given sequence is called precompact when this happens. (This also shows the
embedding of Cα (X ;Rn) into C (X ;Rn) is a compact embedding.) Note that it is
likely the case that Cα (X ;Rn) is not separable although it embedds continuously
into a nice separable space. In fact, Cα ([0,T ] ;Rn) can be shown to not be separable.
See Definition 9.3.1 and the discussion which follows it.

7. Use the general Stone Weierstrass approximation theorem to prove Theorem 9.1.7.



Chapter 10

Brouwer Fixed Point Theorem Rn∗

This is on the Brouwer fixed point theorem and a discussion of some of the manipulations
which are important regarding simplices. This here is an approach based on combinatorics
or graph theory. It features the famous Sperner’s lemma. It uses very elementary concepts
from linear algebra in an essential way. However, it is pretty technical stuff. This elemen-
tary proof is harder than those which are based on other approaches like integration theory
or degree theory.

10.0.1 Simplices and Triangulations
Definition 10.0.1 Define an n simplex, denoted by [x0, · · · ,xn], to be the convex hull of the
n+1 points, {x0, · · · ,xn} where {xi−x0}n

i=1 are linearly independent. Thus

[x0, · · · ,xn]≡

{
n

∑
i=0

tixi :
n

∑
i=0

ti = 1, ti ≥ 0

}
.

Note that
{

x j−xm
}

j ̸=m are also independent. I will call the {ti} just described the coordi-
nates of a point x.

To see the last claim, suppose ∑ j ̸=m c j (x j−xm) = 0. Then you would have

c0 (x0−xm)+ ∑
j ̸=m,0

c j (x j−xm) = 0

= c0 (x0−xm)+ ∑
j ̸=m,0

c j (x j−x0)+

(
∑

j ̸=m,0
c j

)
(x0−xm) = 0

= ∑
j ̸=m,0

c j (x j−x0)+

(
∑
j ̸=m

c j

)
(x0−xm)

Then you get ∑ j ̸=m c j = 0 and each c j = 0 for j ̸= m,0. Thus c0 = 0 also because the sum
is 0 and all other c j = 0.

Since {xi−x0}n
i=1 is an independent set, the ti used to specify a point in the convex hull

are uniquely determined. If two of them are

n

∑
i=0

tixi =
n

∑
i=0

sixi

Then
n

∑
i=0

ti (xi−x0) =
n

∑
i=0

si (xi−x0)

so ti = si for i≥ 1 by independence. Since the si and ti sum to 1, it follows that also s0 = t0.
If n ≤ 2, the simplex is a triangle, line segment, or point. If n ≤ 3, it is a tetrahedron,
triangle, line segment or point.

207
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Definition 10.0.2 If S is an n simplex. Then it is triangulated if it is the union of smller
sub-simplices, the triangulation, such that if S1,S2 are two simplices in the triangulation,
with

S1 ≡
[
z1

0, · · · ,z1
m
]
, S2 ≡

[
z2

0, · · · ,z2
p
]

then
S1∩S2 =

[
xk0 , · · · ,xkr

]
where

[
xk0 , · · · ,xkr

]
is in the triangulation and{

xk0 , · · · ,xkr

}
=
{

z1
0, · · · ,z1

m
}
∩
{

z2
0, · · · ,z2

p
}

or else the two simplices do not intersect.

The following proposition is geometrically fairly clear. It will be used without comment
whenever needed in the following argument about triangulations.

Proposition 10.0.3 Say [x1, · · · ,xr] , [x̂1, · · · , x̂r] , [z1, · · · ,zr] are all r−1 simplices and

[x1, · · · ,xr] , [x̂1, · · · , x̂r]⊆ [z1, · · · ,zr]

and [z1, · · · ,zr,b] is an r+1 simplex and

[y1, · · · ,ys] = [x1, · · · ,xr]∩ [x̂1, · · · , x̂r] (10.0.1)

where
{y1, · · · ,ys}= {x1, · · · ,xr}∩{x̂1, · · · , x̂r} (10.0.2)

Then
[x1, · · · ,xr,b]∩ [x̂1, · · · , x̂r,b] = [y1, · · · ,ys,b] (10.0.3)

Proof: If you have ∑
s
i=1 tiyi + ts+1b in the right side, the ti summing to 1 and nonneg-

ative, then it is obviously in both of the two simplices on the left because of 10.0.2. Thus
[x1, · · · ,xr,b]∩ [x̂1, · · · , x̂r,b]⊇ [y1, · · · ,ys,b].

Now suppose xk = ∑
r
j=1 tk

j z j, x̂k = ∑
r
j=1 t̂k

j z j, as usual, the scalars adding to 1 and non-
negative.

Consider something in both of the simplices on the left in 10.0.3. Is it in the right? The
element on the left is of the form

r

∑
α=1

sα xα + sr+1b =
r

∑
α=1

ŝα x̂α + ŝr+1b

where the sα , are nonnegative and sum to one, similarly for ŝα . Thus

r

∑
j=1

r

∑
α=1

sα tα
j z j + sr+1b =

r

∑
α=1

r

∑
j=1

ŝα t̂α
j z j + ŝr+1b (10.0.4)

Now observe that

∑
j
∑
α

sα tα
j + sr+1 = ∑

α

∑
j

sα tα
j + sr+1 = ∑

α

sα + sr+1 = 1.
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A similar observation holds for the right side of 10.0.4. By uniqueness of the coordinates
in an r+1 simplex, and assumption that [z1, · · · ,zr,b] is an r+1 simplex, ŝr+1 = sr+1 and
so

r

∑
α=1

sα

1− sr+1
xα =

r

∑
α=1

ŝα

1− sr+1
x̂α

where ∑α
sα

1−sr+1
= ∑α

ŝα

1−sr+1
= 1, which would say that both sides are a single element of

[x1, · · · ,xr]∩ [x̂1, · · · , x̂r] = [y1, · · · ,ys] and this shows both are equal to something of the
form ∑

s
i=1 tiyi,∑i ti = 1, ti ≥ 0. Therefore,

r

∑
α=1

sα

1− sr+1
xα =

s

∑
i=1

tiyi,
r

∑
α=1

sα xα =
s

∑
i=1

(1− sr+1) tiyi

It follows that
r

∑
α=1

sα xα + sr+1b =
s

∑
i=1

(1− sr+1) tiyi + sr+1b ∈ [y1, · · · ,ys,b]

which proves the other inclusion. ■
Next I will explain why any simplex can be triangulated in such a way that all sub-

simplices have diameter less than ε .
This is obvious if n ≤ 2. Supposing it to be true for n− 1, is it also so for n? The

barycenter b of a simplex [x0, · · · ,xn] is 1
1+n ∑i xi. This point is not in the convex hull of

any of the faces, those simplices of the form [x0, · · · , x̂k, · · · ,xn] where the hat indicates xk
has been left out. Thus, placing b in the kth position, [x0, · · · ,b, · · · ,xn] is a n simplex also.
First note that [x0, · · · , x̂k, · · · ,xn] is an n−1 simplex. To be sure [x0, · · · ,b, · · · ,xn] is an n
simplex, we need to check that certain vectors are linearly independent. If

0 =
k−1

∑
j=1

c j (x j−x0)+ak

(
1

n+1

n

∑
i=0

xi−x0

)
+

n

∑
j=k+1

d j (x j−x0)

then does it follow that ak = 0 = c j = d j?

0 =
k−1

∑
j=1

c j (x j−x0)+ak
1

n+1

(
n

∑
i=0

(xi−x0)

)
+

n

∑
j=k+1

d j (x j−x0)

0 =
k−1

∑
j=1

(
c j +

ak

n+1

)
(x j−x0)+ak

1
n+1

(xk−x0)+
n

∑
j=k+1

(
d j +

ak

n+1

)
(x j−x0)

Thus ak
n+1 = 0 and each c j +

ak
n+1 = 0 = d j +

ak
n+1 so each c j and d j are also 0. Thus, this is

also an n simplex.
Actually, a little more is needed. Suppose [y0, · · · ,yn−1] is an n− 1 simplex such that

[y0, · · · ,yn−1] ⊆ [x0, · · · , x̂k, · · · ,xn] . Why is [y0, · · · ,yn−1,b] an n simplex? We know the
vectors

{
y j−y0

}n−1
k=1 are independent and that y j = ∑i ̸=k t j

i xi where ∑i̸=k t j
i = 1 with each

being nonnegative. Suppose

n−1

∑
j=1

c j (y j−y0)+ cn (b−y0) = 0 (10.0.5)
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If cn = 0, then by assumption, each c j = 0. The proof goes by assuming cn ̸= 0 and deriving
a contradiction. Assume then that cn ̸= 0. Then you can divide by it and obtain modified
constants, still denoted as c j such that

b =
1

n+1

n

∑
i=0

xi = y0 +
n−1

∑
j=1

c j (y j−y0)

Thus

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s (xi−xs) =

n−1

∑
j=1

c j (y j−y0) =
n−1

∑
j=1

c j

(
∑
s ̸=k

t j
s xs−∑

s ̸=k
t0
s xs

)

=
n−1

∑
j=1

c j

(
∑
s ̸=k

t j
s (xs−x0)−∑

s ̸=k
t0
s (xs−x0)

)
Modify the term on the left and simplify on the right to get

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s ((xi−x0)+(x0−xs)) =

n−1

∑
j=1

c j

(
∑
s ̸=k

(
t j
s − t0

s
)
(xs−x0)

)

Thus,

1
n+1

n

∑
i=0

(
∑
s ̸=k

t0
s

)
(xi−x0) =

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s (xs−x0)

+
n−1

∑
j=1

c j

(
∑
s ̸=k

(
t j
s − t0

s
)
(xs−x0)

)

Then, taking out the i = k term on the left yields

1
n+1

(
∑
s ̸=k

t0
s

)
(xk−x0) =−

1
n+1 ∑

i̸=k

(
∑
s ̸=k

t0
s

)
(xi−x0)

1
n+1

n

∑
i=0

∑
s̸=k

t0
s (xs−x0)+

n−1

∑
j=1

c j

(
∑
s ̸=k

(
t j
s − t0

s
)
(xs−x0)

)
That on the right is a linear combination of vectors (xr−x0) for r ̸= k so by independence,
∑r ̸=k t0

r = 0. However, each t0
r ≥ 0 and these sum to 1 so this is impossible. Hence cn = 0

after all and so each c j = 0. Thus [y0, · · · ,yn−1,b] is an n simplex.
Now in general, if you have an n simplex [x0, · · · ,xn] , its diameter is the maximum of

|xk−xl | for all k ̸= l. Consider
∣∣b−x j

∣∣ . It equals∣∣∣∣∣ n

∑
i=0

1
n+1

(xi−x j)

∣∣∣∣∣=
∣∣∣∣∣∑i̸= j

1
n+1

(xi−x j)

∣∣∣∣∣≤ n
n+1

diam(S)
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Next consider the kth face of S
[x0, · · · , x̂k, · · · ,xn]

By induction, it has a triangulation into simplices which each have diameter no more than
n

n+1 diam(S). Let these n− 1 simplices be denoted by
{

Sk
1, · · · ,Sk

mk

}
. Then the simplices{[

Sk
i ,b
]}mk,n+1

i=1,k=1 are a triangulation of S such that diam
([

Sk
i ,b
])
≤ n

n+1 diam(S). Do for[
Sk

i ,b
]

what was just done for S obtaining a triangulation of S as the union of what is

obtained such that each simplex has diameter no more than
( n

n+1

)2 diam(S). Continuing
this way shows the existence of the desired triangulation. You simply do the process k
times where

( n
n+1

)k diam(S)< ε.

10.0.2 Labeling Vertices

Next is a way to label the vertices. Let p0, · · · , pn be the first n+ 1 prime numbers. All
vertices of a simplex S = [x0, · · · ,xn] having {xk−x0}n

k=1 independent will be labeled with
one of these primes. In particular, the vertex xk will be labeled as pk if the simplex is
[x0, · · · ,xn]. The “value” of a simplex will be the product of its labels. Triangulate this S.

Consider a 1 simplex whose vertices are from the vertices of S, the original n simplex[
xk1 ,xk2

]
, label xk1 as pk1 and xk2 as pk2 . Then label all other vertices of this triangulation

which occur on
[
xk1 ,xk2

]
either pk1 or pk2 . Note that by independence of {xk−xr}k ̸=r , this

cannot introduce an inconsistency because the segment cannot contain any other vertex of
S. Then obviously there will be an odd number of simplices in this triangulation having
value pk1 pk2 , that is a pk1 at one end and a pk2 at the other. Next consider the 2 simplices[
xk1 ,xk2 ,xk3

]
where the xki are from S. Label all vertices of the triangulation which lie

on one of these 2 simplices which have not already been labeled as either pk1 , pk2 , or pk2 .
Continue this way. This labels all vertices of the triangulation of S which have at least one
coordinate zero. For the vertices of the triangulation which have all coordinates positive,
the interior points of S, label these at random from any of p0, ..., pn. (Essentially, this is the
same idea. The “interior” points are the new ones not already labeled.) The idea is to show
that there is an odd number of n simplices with value ∏

n
i=0 pi in the triangulation and more

generally, for each m simplex
[
xk1 , · · · ,xkm+1

]
,m≤ n with the xki an original vertex from S,

there are an odd number of m simplices of the triangulation contained in
[
xk1 , · · · ,xkm+1

]
,

having value pk1 · · · pkm+1 . It is clear that this is the case for all such 1 simplices. For
convenience, call such simplices

[
xk1 , · · · ,xkm+1

]
m dimensional faces of S. An m simplex

which is a subspace of this one will have the “correct” value if its value is pk1 · · · pkm+1 .
Suppose that the labeling has produced an odd number of simplices of the triangulation

contained in each m dimensional face of S which have the correct value. Take an m dimen-
sional face

[
x j1 , . . . ,x jk+1

]
. Consider Ŝ ≡

[
x j1 , . . .x jk+1 ,x jk+2

]
. Then by induction, there is

an odd number of k simplices on the sth face[
x j1 , . . . , x̂ js , · · · ,x jk+2

]
having value ∏i ̸=s p ji . In particular, the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of

simplices with value ∏i≤k+1 p ji .
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No simplex in any other face of Ŝ can have this value by uniqueness of prime factoriza-
tion. Pick a simplex on the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
which has correct value ∏i≤k+1 p ji

and cross this simplex into Ŝ. Continue crossing simplices having value ∏i≤k+1 p ji which
have not been crossed till the process ends. It must end because there are an odd number
of these simplices having value ∏i≤k+1 p ji . If the process leads to the outside of Ŝ, then
one can always enter it again because there are an odd number of simplices with value
∏i≤k+1 p ji available and you will have used up an even number. Note that in this process,
if you have a simplex with one side labeled ∏i≤k+1 p ji , there is either one way in or out
of this simplex or two depending on whether the remaining vertex is labeled p jk+2 . When
the process ends, the value of the simplex must be ∏

k+2
i=1 p ji because it will have the addi-

tional label p jk+2 . Otherwise, there would be another route out of this, through the other
side labeled ∏i≤k+1 p ji . This identifies a simplex in the triangulation with value ∏

k+2
i=1 p ji .

Then repeat the process with ∏i≤k+1 p ji valued simplices on
[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
which

have not been crossed. Repeating the process, entering from the outside, cannot deliver a
∏

k+2
i=1 p ji valued simplex encountered earlier because of what was just noted. There is either

one or two ways to cross the simplices. In other words, the process is one to one in select-
ing a ∏i≤k+1 p ji simplex from crossing such a simplex on the selected face of Ŝ. Continue
doing this, crossing a ∏i≤k+1 p ji simplex on the face of Ŝ which has not been crossed pre-
viously. This identifies an odd number of simplices having value ∏

k+2
i=1 p ji . These are the

ones which are “accessible” from the outside using this process. If there are any which are
not accessible from outside, applying the same process starting inside one of these, leads to
exactly one other inaccessible simplex with value ∏

k+2
i=1 p ji . Hence these inaccessible sim-

plices occur in pairs and so there are an odd number of simplices in the triangulation having
value ∏

k+2
i=1 p ji . We refer to this procedure of labeling as Sperner’s lemma. The system of

labeling is well defined thanks to the assumption that {xk−x0}n
k=1 is independent which

implies that {xk−xi}k ̸=i is also linearly independent. Thus there can be no ambiguity in
the labeling of vertices on any “face” the convex hull of some of the original vertices of S.
The following is a description of the system of labeling the vertices.

Lemma 10.0.4 Let [x0, · · · ,xn] be an n simplex with {xk−x0}n
k=1 independent, and let

the first n+ 1 primes be p0, p1, · · · , pn. Label xk as pk and consider a triangulation of
this simplex. Labeling the vertices of this triangulation which occur on

[
xk1 , · · · ,xks

]
with

any of pk1 , · · · , pks , beginning with all 1 simplices
[
xk1 ,xk2

]
and then 2 simplices and so

forth, there are an odd number of simplices
[
yk1 , · · · ,yks

]
of the triangulation contained in[

xk1 , · · · ,xks

]
which have value pk1 · · · pks . This for s = 1,2, · · · ,n.

A combinatorial method

We now give a brief discussion of the system of labeling for Sperner’s lemma from the
point of view of counting numbers of faces rather than obtaining them with an algorithm.
Let p0, · · · , pn be the first n+ 1 prime numbers. All vertices of a simplex S = [x0, · · · ,xn]
having {xk−x0}n

k=1 independent will be labeled with one of these primes. In particular,
the vertex xk will be labeled as pk. The value of a simplex will be the product of its labels.
Triangulate this S. Consider a 1 simplex coming from the original simplex

[
xk1 ,xk2

]
, label

one end as pk1 and the other as pk2 . Then label all other vertices of this triangulation which
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occur on
[
xk1 ,xk2

]
either pk1 or pk2 . The assumption of linear independence assures that

no other vertex of S can be in
[
xk1 ,xk2

]
so there will be no inconsistency in the labeling.

Then obviously there will be an odd number of simplices in this triangulation having value
pk1 pk2 , that is a pk1 at one end and a pk2 at the other. Suppose that the labeling has been
done for all vertices of the triangulation which are on

[
x j1 , . . .x jk+1

]
,{

x j1 , . . .x jk+1

}
⊆ {x0, . . .xn}

any k simplex for k≤ n−1, and there is an odd number of simplices from the triangulation
having value equal to ∏

k+1
i=1 p ji . Consider Ŝ ≡

[
x j1 , . . .x jk+1 ,x jk+2

]
. Then by induction,

there is an odd number of k simplices on the sth face[
x j1 , . . . , x̂ js , · · · ,x jk+1

]
having value ∏i̸=s p ji . In particular the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of

simplices with value ∏
k+1
i=1 p ji := P̂k. We want to argue that some simplex in the triangu-

lation which is contained in Ŝ has value P̂k+1 := ∏
k+2
i=1 p ji . Let Q be the number of k+ 1

simplices from the triangulation contained in Ŝ which have two faces with value P̂k (A k+1
simplex has either 1 or 2 P̂k faces.) and let R be the number of k+ 1 simplices from the
triangulation contained in Ŝ which have exactly one P̂k face. These are the ones we want
because they have value P̂k+1. Thus the number of faces having value P̂k which is described
here is 2Q+R. All interior P̂k faces being counted twice by this number. Now we count the
total number of P̂k faces another way. There are P of them on the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
and by induction, P is odd. Then there are O of them which are not on this face. These
faces got counted twice. Therefore,

2Q+R = P+2O

and so, since P is odd, so is R. Thus there is an odd number of P̂k+1 simplices in Ŝ.
We refer to this procedure of labeling as Sperner’s lemma. The system of labeling is

well defined thanks to the assumption that {xk−x0}n
k=1 is independent which implies that

{xk−xi}k ̸=i is also linearly independent. Thus there can be no ambiguity in the labeling
of vertices on any “face”, the convex hull of some of the original vertices of S. Sperner’s
lemma is now a consequence of this discussion.

10.1 The Brouwer Fixed Point Theorem
S ≡ [x0, · · · ,xn] is a simplex in Rn. Assume {xi−x0}n

i=1 are linearly independent. Thus a
typical point of S is of the form

n

∑
i=0

tixi

where the ti are uniquely determined and the map x→ t is continuous from S to the com-
pact set

{
t ∈ Rn+1 : ∑ ti = 1, ti ≥ 0

}
. The map t→ x is one to one and clearly continuous.

Since S is compact, it follows that the inverse map is also continuous. This is a general con-
sideration but what follows is a short explanation why this is so in this specific example.
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To see this, suppose xk → x in S. Let xk ≡ ∑
n
i=0 tk

i xi with x defined similarly with tk
i

replaced with ti, x≡∑
n
i=0 tixi. Then

xk−x0 =
n

∑
i=0

tk
i xi−

n

∑
i=0

tk
i x0 =

n

∑
i=1

tk
i (xi−x0)

Thus

xk−x0 =
n

∑
i=1

tk
i (xi−x0) , x−x0 =

n

∑
i=1

ti (xi−x0)

Say tk
i fails to converge to ti for all i ≥ 1. Then there exists a subsequence, still denoted

with superscript k such that for each i = 1, · · · ,n, it follows that tk
i → si where si ≥ 0 and

some si ̸= ti. But then, taking a limit, it follows that

x−x0 =
n

∑
i=1

si (xi−x0) =
n

∑
i=1

ti (xi−x0)

which contradicts independence of the xi− x0. It follows that for all i ≥ 1, tk
i → ti. Since

they all sum to 1, this implies that also tk
0 → t0. Thus the claim about continuity is verified.

Let f : S→ S be continuous. When doing f to a point x, one obtains another point of
S denoted as ∑

n
i=0 sixi. Thus in this argument the scalars si will be the components after

doing f to a point of S denoted as ∑
n
i=0 tixi.

Consider a triangulation of S such that all simplices in the triangulation have diameter
less than ε . The vertices of the simplices in this triangulation will be labeled from p0, · · · , pn
the first n+1 prime numbers. If [y0, · · · ,yn] is one of these simplices in the triangulation,
each vertex is of the form ∑

n
l=0 tlxl where tl ≥ 0 and ∑l tl = 1. Let yi be one of these

vertices, yi = ∑
n
l=0 tlxl . Define r j ≡ s j/t j if t j > 0 and ∞ if t j = 0. Then p(yi) will be the

label placed on yi. To determine this label, let rk be the smallest of these ratios. Then the
label placed on yi will be pk where rk is the smallest of all these extended nonnegative real
numbers just described. If there is duplication, pick pk where k is smallest.

Note that for the vertices which are on [xi1 , · · · ,xim ] , these will be labeled from the list
{pi1 , · · · , pim} because tk = 0 for each of these and so rk = ∞ unless k ∈ {i1, · · · , im} . In
particular, this scheme labels xi as pi.

By the Sperner’s lemma procedure described above, there are an odd number of sim-
plices having value ∏i ̸=k pi on the kth face and an odd number of simplices in the triangu-
lation of S for which the product of the labels on their vertices, referred to here as its value,
equals p0 p1 · · · pn ≡ Pn. Thus if [y0, · · · ,yn] is one of these simplices, and p(yi) is the label
for yi,

n

∏
i=0

p(yi) =
n

∏
i=0

pi ≡ Pn

What is rk, the smallest of those ratios in determining a label? Could it be larger than
1? rk is certainly finite because at least some t j ̸= 0 since they sum to 1. Thus, if rk > 1,
you would have sk > tk. The s j sum to 1 and so some s j < t j since otherwise, the sum of the
t j equalling 1 would require the sum of the s j to be larger than 1. Hence rk was not really
the smallest after all and so rk ≤ 1. Hence sk ≤ tk.
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Let S ≡ {S1, · · · ,Sm} denote those simplices whose value is Pn. In other words, if
{y0, · · · ,yn} are the vertices of one of these simplices in S , and

ys =
n

∑
i=0

ts
i xi

rks ≤ r j for all j ̸= ks and {k0, · · · ,kn} = {0, · · · ,n}. Let b denote the barycenter of Sk =
[y0, · · · ,yn].

b≡
n

∑
i=0

1
n+1

yi

Do the same system of labeling for each n simplex in a sequence of triangulations where
the diameters of the simplices in the kth triangulation is no more than 2−k. Thus each of
these triangulations has a n simplex having diameter no more than 2−k which has value Pn.
Let bk be the barycenter of one of these n simplices having value Pn. By compactness, there
is a subsequence, still denoted with the index k such that bk→ x. This x is a fixed point.

Consider this last claim. x = ∑
n
i=0 tixi and after applying f, the result is ∑

n
i=0 sixi. Then

bk is the barycenter of some σ k having diameter no more than 2−k which has value Pn. Say
σ k is a simplex having vertices

{
yk

0, · · · ,yk
n
}

and the value of
[
yk

0, · · · ,yk
n
]

is Pn. Thus also

lim
k→∞

yk
i = x.

Re ordering these if necessary, we can assume that the label for yk
i is pi which implies that,

as noted above, for each i = 0, · · · ,n,
si

ti
≤ 1, si ≤ ti

the ith coordinate of f
(
yk

i
)

with respect to the original vertices of S decreases and each i is
represented for i = {0,1, · · · ,n} . As noted above,

yk
i → x

and so the ith coordinate of yk
i , t

k
i must converge to ti. Hence if the ith coordinate of f

(
yk

i
)

is denoted by sk
i ,

sk
i ≤ tk

i

By continuity of f, it follows that sk
i → si. Thus the above inequality is preserved on taking

k→ ∞ and so
0≤ si ≤ ti

this for each i. But these si add to 1 as do the ti and so in fact, si = ti for each i and so
f(x) = x. This proves the following theorem which is the Brouwer fixed point theorem.

Theorem 10.1.1 Let S be a simplex [x0, · · · ,xn] such that {xi−x0}n
i=1 are independent.

Also let f : S→ S be continuous. Then there exists x ∈ S such that f(x) = x.

Corollary 10.1.2 Let K be a closed convex bounded subset of Rn. Let f : K→ K be con-
tinuous. Then there exists x ∈ K such that f(x) = x.
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Proof: Let S be a large simplex containing K and let P be the projection map onto K.
Consider g(x)≡ f(Px) . Then g satisfies the necessary conditions for Theorem 10.1.1 and
so there exists x ∈ S such that g(x) = x. But this says x ∈ K and so g(x) = f(x). ■

Definition 10.1.3 A set B has the fixed point property if whenever f : B→ B for f contin-
uous, it follows that f has a fixed point.

The proof of this corollary is pretty significant. By a homework problem, a closed
convex set is a retract of Rn. This is what it means when you say there is this continuous
projection map which maps onto the closed convex set but does not change any point in
the closed convex set. When you have a set A which is a subset of a set B which has the
property that continuous functions f : B→ B have fixed points, and there is a continuous
map P from B to A which leaves points of A unchanged, then it follows that A will have the
same “fixed point property”. You can probably imagine all sorts of sets which are retracts
of closed convex bounded sets. Also, if you have a compact set B which has the fixed point
property and h : B→ h(B) with h one to one and continuous, it will follow that h−1 is
continuous and that h(B) will also have the fixed point property. This is very easy to show.
This will allow further extensions of this theorem. This says that the fixed point property
is topological.

10.2 Invariance Of Domain
As an application of the inverse function theorem is a simple proof of the important invari-
ance of domain theorem which says that continuous and one to one functions defined on an
open set in Rn with values in Rn take open sets to open sets. You know that this is true for
functions of one variable because a one to one continuous function must be either strictly
increasing or strictly decreasing. This will be used when considering orientations of curves
later. However, the n dimensional version isn’t at all obvious but is just as important if you
want to consider manifolds with boundary for example. The need for this theorem occurs
in many other places as well in addition to being extremely interesting for its own sake. The
inverse function theorem gives conditions under which a differentiable function maps open
sets to open sets. The following lemma, depending on the Brouwer fixed point theorem is
the thing which will allow this to be extended to continuous one to one functions. It says
roughly that if a continuous function does not move points near p very far, then the image
of a ball centered at p contains an open set.

Lemma 10.2.1 Let f be continuous and map B(p,r) ⊆ Rn to Rn. Suppose that for all
x ∈ B(p,r),

|f(x)−x|< εr

Then it follows that
f
(

B(p,r)
)
⊇ B(p,(1− ε)r)

Proof: This is from the Brouwer fixed point theorem, Corollary 10.1.2. Consider for
y ∈ B(p,(1− ε)r)

h(x)≡ x− f(x)+y
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Then h is continuous and for x ∈ B(p,r),

|h(x)−p|= |x− f(x)+y−p|< εr+ |y−p|< εr+(1− ε)r = r

Hence h : B(p,r)→ B(p,r) and so it has a fixed point x by Corollary 10.1.2. Thus

x− f(x)+y = x

so f(x) = y. ■
The notation ∥f∥K means supx∈K |f(x)|. If you have a continuous function h defined on

a compact set K, then the Stone Weierstrass theorem implies you can uniformly approxi-
mate it with a polynomial g. That is ∥h−g∥K is small. The following lemma says that you
can also have h(z) = g(z) and Dg(z)−1 exists so that near z, the function g will map open
sets to open sets as claimed by the inverse function theorem.

Lemma 10.2.2 Let K be a compact set in Rn and let h : K→ Rn be continuous, z ∈ K is
fixed. Let δ > 0. Then there exists a polynomial g (each component a polynomial) such
that

∥g−h∥K < δ , g(z) = h(z) , Dg(z)−1 exists

Proof: By the Weierstrass approximation theorem, Theorem 9.2.5, (apply this theorem
to the algebra of real polynomials) there exists a polynomial ĝ such that

∥ĝ−h∥K <
δ

3

Then define for y ∈ K
g(y)≡ ĝ(y)+h(z)− ĝ(z)

Then
g(z) = ĝ(z)+h(z)− ĝ(z) = h(z)

Also

|g(y)−h(y)| ≤ |(ĝ(y)+h(z)− ĝ(z))−h(y)|

≤ |ĝ(y)−h(y)|+ |h(z)− ĝ(z)|< 2δ

3

and so since y was arbitrary,

∥g−h∥K ≤
2δ

3
< δ

If Dg(z)−1 exists, then this is what is wanted. If not, let

0 < η < {|λ | : λ is an eigenvalue of Dg(z) ,λ ̸= 0}

Then if η is small enough, g(y) could be replaced with g(y)+η (y− z) and it will still
be the case that ∥g−h∥K < δ along with g(z) = h(z) but now Dg(z) would have no zero
eigenvalues and would therefore be invertible. Simply use the modified g. ■

The main result is essentially the following lemma which combines the conclusions of
the above.
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Lemma 10.2.3 Let f : B(p,r)→ Rn where the ball is also in Rn. Let f be one to one, f
continuous. Then there exists δ > 0 such that

f
(

B(p,r)
)
⊇ B(f(p) ,δ ) .

In other words, f(p) is an interior point of f
(

B(p,r)
)

.

Proof: Since f
(

B(p,r)
)

is compact, it follows that f−1 : f
(

B(p,r)
)
→ B(p,r) is con-

tinuous. By Lemma 10.2.2, there exists a polynomial g : f
(

B(p,r)
)
→ Rn such that∥∥g− f−1∥∥

f(B(p,r)) < εr, ε < 1, Dg(f(p))−1 exists, and g(f(p)) = f−1 (f(p)) = p

From the first inequality in the above,

|g(f(x))−x|=
∣∣g(f(x))− f−1 (f(x))

∣∣≤ ∥∥g− f−1∥∥
f(B(p,r)) < εr

By Lemma 10.2.1,

g◦ f
(

B(p,r)
)
⊇ B(p,(1− ε)r) = B(g(f(p)) ,(1− ε)r)

Since Dg(f(p))−1 exists, it follows from the inverse function theorem that g−1 also exists
and that g,g−1 are open maps on small open sets containing f(p) and p respectively. Thus
there exists η < (1− ε)r such that g−1 is an open map on B(p,η)⊆ B(p,(1− ε)r). Thus

g◦ f
(

B(p,r)
)
⊇ B(p,(1− ε)r)⊇ B(p,η)

So do g−1‘ to both ends. Then you have g−1 (p) = f(p) is in the open set g−1 (B(p,η)) .
Thus

f
(

B(p,r)
)
⊇ g−1 (B(p,η))⊇ B

(
g−1 (p) ,δ

)
= B(f(p) ,δ ) ■

p
q◦ f

(
B(p,r)

)B(p,(1− ε)r))

p = q(f(p))

With this lemma, the invariance of domain theorem comes right away. This remark-
able theorem states that if f : U → Rn for U an open set in Rn and if f is one to one and
continuous, then f(U) is also an open set in Rn.

Theorem 10.2.4 Let U be an open set in Rn and let f : U → Rn be one to one and contin-
uous. Then f(U) is also an open subset in Rn.
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Proof: It suffices to show that if p ∈ U then f(p) is an interior point of f(U). Let
B(p,r) ⊆ U. By Lemma 10.2.3, f(U) ⊇ f

(
B(p,r)

)
⊇ B(f(p) ,δ ) so f(p) is indeed an

interior point of f(U). ■
The inverse mapping theorem assumed quite a bit about the mapping. In particular it

assumed that the mapping had a continuous derivative. The following version of the inverse
function theorem seems very interesting because it only needs an invertible derivative at a
point.

Corollary 10.2.5 Let U be an open set in Rp and let f : U →Rp be one to one and contin-
uous. Then, f−1 is also continuous on the open set f(U). If f is differentiable at x1 ∈U and
if Df(x1)

−1 exists for x1 ∈U, then it follows that Df(f(x1)) = Df(x1)
−1.

Proof: |·| will be a norm on Rp, whichever is desired. If you like, let it be the Euclidean
norm. ∥·∥ will be the operator norm. The first part of the conclusion of this corollary is
from invariance of domain. From the assumption that Df(x1) and Df(x1)

−1 exists,

y− f(x1) = f
(
f−1 (y)

)
− f(x1) = Df(x1)

(
f−1 (y)−x1

)
+o
(
f−1 (y)−x1

)
Since Df(x1)

−1 exists,

Df(x1)
−1 (y− f(x1)) = f−1 (y)−x1 +o

(
f−1 (y)−x1

)
by continuity, if |y− f(x1)| is small enough, then

∣∣f−1 (y)−x1
∣∣ is small enough that in the

above, ∣∣o(f−1 (y)−x1
)∣∣< 1

2

∣∣f−1 (y)−x1
∣∣

Hence, if |y− f(x1)| is sufficiently small, then from the triangle inequality of the form
|p−q| ≥ ||p|− |q|| ,∥∥∥Df(x1)

−1
∥∥∥ |(y− f(x1))| ≥

∣∣∣Df(x1)
−1 (y− f(x1))

∣∣∣
≥

∣∣f−1 (y)−x1
∣∣− 1

2

∣∣f−1 (y)−x1
∣∣

=
1
2

∣∣f−1 (y)−x1
∣∣

|y− f(x1)| ≥
∥∥∥Df(x1)

−1
∥∥∥−1 1

2

∣∣f−1 (y)−x1
∣∣

It follows that for |y− f(x1)| small enough,∣∣∣∣∣o
(
f−1 (y)−x1

)
y− f(x1)

∣∣∣∣∣≤
∣∣∣∣∣o
(
f−1 (y)−x1

)
f−1 (y)−x1

∣∣∣∣∣ 2∥∥∥Df(x1)
−1
∥∥∥−1

Then, using continuity of the inverse function again, it follows that if |y− f(x1)| is possibly
still smaller, then f−1 (y)−x1 is sufficiently small that the right side of the above inequality
is no larger than ε . Since ε is arbitrary, it follows

o
(
f−1 (y)−x1

)
= o(y− f(x1))



220 CHAPTER 10. BROUWER FIXED POINT THEOREM Rn∗

Now from differentiability of f at x1,

y− f(x1) = f
(
f−1 (y)

)
− f(x1) = Df(x1)

(
f−1 (y)−x1

)
+o
(
f−1 (y)−x1

)
= Df(x1)

(
f−1 (y)−x1

)
+o(y− f(x1))

= Df(x1)
(
f−1 (y)− f−1 (f(x1))

)
+o(y− f(x1))

Therefore,

f−1 (y)− f−1 (f(x1)) = Df(x1)
−1 (y− f(x1))+o(y− f(x1))

From the definition of the derivative, this shows that Df−1 (f(x1)) = Df(x1)
−1 . ■
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Chapter 11

Abstract Measure And Integration
11.1 σ Algebras

This chapter is on the basics of measure theory and integration. A measure is a real valued
mapping from some subset of the power set of a given set which has values in [0,∞]. Many
apparently different things can be considered as measures and also there is an integral
defined. By discussing this in terms of axioms and in a very abstract setting, many different
topics can be considered in terms of one general theory. For example, it will turn out that
sums are included as an integral of this sort. So is the usual integral as well as things which
are often thought of as being in between sums and integrals.

Let Ω be a set and let F be a collection of subsets of Ω satisfying

/0 ∈F , Ω ∈F , (11.1.1)

E ∈F implies EC ≡Ω\E ∈F ,

If {En}∞
n=1 ⊆F , then ∪∞

n=1 En ∈F . (11.1.2)

Definition 11.1.1 A collection of subsets of a set, Ω, satisfying Formulas 11.1.1-11.1.2 is
called a σ algebra.

As an example, let Ω be any set and let F = P(Ω), the set of all subsets of Ω (power
set). This obviously satisfies Formulas 11.1.1-11.1.2.

Lemma 11.1.2 Let C be a set whose elements are σ algebras of subsets of Ω. Then ∩C is
a σ algebra also.

Be sure to verify this lemma. It follows immediately from the above definitions but it
is important for you to check the details.

Example 11.1.3 Let τ denote the collection of all open sets in Rnand let σ (τ) ≡ inter-
section of all σ algebras that contain τ . σ (τ) is called the σ algebra of Borel sets . In
general, for a collection of sets, Σ, σ (Σ) is the smallest σ algebra which contains Σ.

This is a very important σ algebra and it will be referred to frequently as the Borel sets.
Attempts to describe a typical Borel set are more trouble than they are worth and it is not
easy to do so. Rather, one uses the definition just given in the example. Note, however, that
all countable intersections of open sets and countable unions of closed sets are Borel sets.
Such sets are called Gδ and Fσ respectively.

Definition 11.1.4 Let F be a σ algebra of sets of Ω and let µ : F → [0,∞]. µ is called a
measure if

µ(
∞⋃

i=1

Ei) =
∞

∑
i=1

µ(Ei) (11.1.3)

whenever the Ei are disjoint sets of F . The triple, (Ω,F ,µ) is called a measure space
and the elements of F are called the measurable sets. (Ω,F ,µ) is a finite measure space
when µ (Ω)< ∞.
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Note that the above definition immediately implies that if Ei ∈F and the sets Ei are
not necessarily disjoint,

µ(
∞⋃

i=1

Ei)≤
∞

∑
i=1

µ (Ei) .

To see this, let F1 ≡ E1, F2 ≡ E2 \E1, · · · ,Fn ≡ En \∪n−1
i=1 Ei, then the sets Fi are disjoint sets

in F and

µ(
∞⋃

i=1

Ei) = µ(
∞⋃

i=1

Fi) =
∞

∑
i=1

µ (Fi)≤
∞

∑
i=1

µ(Ei)

because of the fact that each Ei ⊇ Fi and so

µ (Ei) = µ (Fi)+µ (Ei \Fi)

which implies µ (Ei)≥ µ (Fi) .
The following theorem is the basis for most of what is done in the theory of measure

and integration. It is a very simple result which follows directly from the above definition.

Theorem 11.1.5 Let {Em}∞
m=1 be measurable sets in a measure space (Ω,F ,µ). Then if

· · ·En ⊆ En+1 ⊆ En+2 ⊆ ·· · ,
µ(∪∞

i=1Ei) = lim
n→∞

µ(En) (11.1.4)

and if · · ·En ⊇ En+1 ⊇ En+2 ⊇ ·· · and µ(E1)< ∞, then

µ(∩∞
i=1Ei) = lim

n→∞
µ(En). (11.1.5)

Stated more succinctly, Ek ↑ E implies µ (Ek) ↑ µ (E) and Ek ↓ E with µ (E1) < ∞ implies
µ (Ek) ↓ µ (E).

Proof: First note that ∩∞
i=1Ei = (∪∞

i=1EC
i )

C ∈F so ∩∞
i=1Ei is measurable. Also note

that for A and B sets of F , A \B ≡
(
AC ∪B

)C ∈F . To show 11.1.4, note that 11.1.4 is
obviously true if µ(Ek) = ∞ for any k. Therefore, assume µ(Ek)< ∞ for all k. Thus

µ(Ek+1 \Ek)+µ(Ek) = µ(Ek+1)

and so
µ(Ek+1 \Ek) = µ(Ek+1)−µ(Ek).

Also,
∞⋃

k=1

Ek = E1∪
∞⋃

k=1

(Ek+1 \Ek)

and the sets in the above union are disjoint. Hence by 11.1.3,

µ(∪∞
i=1Ei) = µ(E1)+

∞

∑
k=1

µ(Ek+1 \Ek) = µ(E1)

+
∞

∑
k=1

µ(Ek+1)−µ(Ek)
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= µ(E1)+ lim
n→∞

n

∑
k=1

µ(Ek+1)−µ(Ek) = lim
n→∞

µ(En+1).

This shows part 11.1.4.
To verify 11.1.5,

µ(E1) = µ(∩∞
i=1Ei)+µ(E1 \∩∞

i=1Ei)

since µ(E1) < ∞, it follows µ(∩∞
i=1Ei) < ∞. Also, E1 \ ∩n

i=1Ei ↑ E1 \ ∩∞
i=1Ei and so by

11.1.4,
µ(E1)−µ(∩∞

i=1Ei) = µ(E1 \∩∞
i=1Ei) = lim

n→∞
µ(E1 \∩n

i=1Ei)

= µ(E1)− lim
n→∞

µ(∩n
i=1Ei) = µ(E1)− lim

n→∞
µ(En),

Hence, subtracting µ (E1) from both sides,

lim
n→∞

µ(En) = µ(∩∞
i=1Ei).

This proves the theorem.
It is convenient to allow functions to take the value +∞. You should think of +∞,

usually referred to as ∞ as something out at the right end of the real line and its only
importance is the notion of sequences converging to it. xn→ ∞ exactly when for all l ∈ R,
there exists N such that if n≥ N, then

xn > l.

This is what it means for a sequence to converge to ∞. Don’t think of ∞ as a number. It
is just a convenient symbol which allows the consideration of some limit operations more
simply. Similar considerations apply to −∞ but this value is not of very great interest. In
fact the set of most interest is the complex numbers or some vector space. Therefore, this
topic is not considered.

Lemma 11.1.6 Let f : Ω→ (−∞,∞] where F is a σ algebra of subsets of Ω. Then the
following are equivalent.

f−1((d,∞]) ∈F for all finite d,

f−1((−∞,d)) ∈F for all finite d,

f−1([d,∞]) ∈F for all finite d,

f−1((−∞,d]) ∈F for all finite d,

f−1 ((a,b)) ∈F for all a < b,−∞ < a < b < ∞.

Proof: First note that the first and the third are equivalent. To see this, observe

f−1([d,∞]) = ∩∞
n=1 f−1((d−1/n,∞]),

and so if the first condition holds, then so does the third.

f−1((d,∞]) = ∪∞
n=1 f−1([d +1/n,∞]),
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and so if the third condition holds, so does the first.
Similarly, the second and fourth conditions are equivalent. Now

f−1((−∞,d]) = ( f−1((d,∞]))C

so the first and fourth conditions are equivalent. Thus the first four conditions are equivalent
and if any of them hold, then for −∞ < a < b < ∞,

f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈F .

Finally, if the last condition holds,

f−1 ([d,∞]) =
(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈F

and so the third condition holds. Therefore, all five conditions are equivalent. This proves
the lemma.

This lemma allows for the following definition of a measurable function having values
in (−∞,∞].

Definition 11.1.7 Let (Ω,F ,µ) be a measure space and let f : Ω→ (−∞,∞]. Then f is
said to be measurable if any of the equivalent conditions of Lemma 11.1.6 hold. When
the σ algebra, F equals the Borel σ algebra, B, the function is called Borel measurable.
More generally, if f : Ω→ X where X is a topological space, f is said to be measurable if
f−1 (U) ∈F whenever U is open.

Theorem 11.1.8 Let fn and f be functions mapping Ω to (−∞,∞] where F is a σ algebra
of measurable sets of Ω. Then if fn is measurable, and f (ω) = limn→∞ fn(ω), it follows
that f is also measurable. (Pointwise limits of measurable functions are measurable.)

Proof: First it is shown f−1 ((a,b)) ∈F . Let

Vm ≡
(

a+
1
m
,b− 1

m

)
, V m =

[
a+

1
m
,b− 1

m

]
.

Then for all m, Vm ⊆ (a,b) and

(a,b) = ∪∞
m=1Vm = ∪∞

m=1V m.

Note that Vm ̸= /0 for all m large enough. Since f is the pointwise limit of fn,

f−1(Vm)⊆ {ω : fk(ω) ∈Vm for all k large enough} ⊆ f−1(V m).

You should note that the expression in the middle is of the form

∪∞
n=1∩∞

k=n f−1
k (Vm).

Therefore,
f−1((a,b)) = ∪∞

m=1 f−1(Vm)⊆ ∪∞
m=1∪∞

n=1∩∞
k=n f−1

k (Vm)
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⊆ ∪∞
m=1 f−1(V m) = f−1((a,b)).

It follows f−1((a,b)) ∈F because it equals the expression in the middle which is measur-
able. This shows f is measurable.

The following theorem considers the case of functions which have values in a metric
space. Its proof is similar to the proof of the above.

Theorem 11.1.9 Let { fn} be a sequence of measurable functions mapping Ω to (X ,d)
where (X ,d) is a metric space and (Ω,F ) is a measure space. Suppose also that f (ω) =
limn→∞ fn (ω) for all ω. Then f is also a measurable function.

Proof: It is required to show f−1 (U) is measurable for all U open. Let

Vm ≡
{

x ∈U : dist
(
x,UC)> 1

m

}
.

Thus

Vm ⊆
{

x ∈U : dist
(
x,UC)≥ 1

m

}
and Vm ⊆Vm ⊆Vm+1 and ∪mVm =U. Then since Vm is open,

f−1 (Vm) = ∪∞
n=1∩∞

k=n f−1
k (Vm)

and so

f−1 (U) = ∪∞
m=1 f−1 (Vm)

= ∪∞
m=1∪∞

n=1∩∞
k=n f−1

k (Vm)

⊆ ∪∞
m=1 f−1 (Vm

)
= f−1 (U)

which shows f−1 (U) is measurable. This proves the theorem.
Now here is a simple observation.

Observation 11.1.10 Let f : Ω→ X where X is some topological space. Suppose

f (ω) =
m

∑
k=1

xkXAk (ω)

where each xk ∈ X and the Ak are disjoint measurable sets. (Such functions are often
referred to as simple functions.) The sum means the function has value xk on set Ak. Then
f is measurable.

Proof: Letting U be open, f−1 (U) = ∪{Ak : xk ∈U} , a finite union of measurable
sets.

There is also a very interesting theorem due to Kuratowski [82] which is presented next.
To summarize the proof, you get an increasing sequence of 2−n nets Cn and you obtain

a corresponding sequence of simple functions {sn} such that {sn (ω)}∞

n=1 is a Cauchy se-
quence, and the maximum value of x→ ψ (x,ω) for x ∈ Cn equals ψ (sn (ω) ,ω) . Then
you let f (ω)≡ limn→∞ sn (ω) . Thus f (ω) is measurable and

sup
x∈E

ψ (x,ω)≥ ψ ( f (ω) ,ω) = lim
n→∞

ψ (sn (ω) ,ω)≥ sup
x∈Cn

ψ (x,ω)
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Thus, by continuity in the first entry,

sup
x∈E

ψ (x,ω) ≥ ψ ( f (ω) ,ω)≥ lim
n→∞

ψ (sn (ω) ,ω)

≥ sup
n

sup
x∈Cn

ψ (x,ω) = sup
x∈∪nCn

ψ (x,ω) = sup
x∈E

ψ (x,ω)

Theorem 11.1.11 Let E be a compact metric space and let (Ω,F ) be a measure space.
Suppose ψ : E×Ω→R has the property that x→ψ (x,ω) is continuous and ω→ψ (x,ω)
is measurable. Then there exists a measurable function, f having values in E such that

ψ ( f (ω) ,ω) = sup
x∈E

ψ (x,ω) .

Furthermore, ω → ψ ( f (ω) ,ω) is measurable.

Proof: Let C1 be a 2−1 net of E. Suppose C1, · · · ,Cm have been chosen such that Ck is
a 2−k net and Ci+1 ⊇Ci for all i. Then consider E \∪

{
B
(

x,2−(m+1)
)

: x ∈Cm

}
. If this set

is empty, let Cm+1 =Cm. If it is nonempty, let {yi}r
i=1 be a 2−(m+1) net for this compact set.

Then let Cm+1 =Cm∪{yi}r
i=1 . It follows {Cm}∞

m=1 satisfies Cm is a 2−m net and Cm ⊆Cm+1.

Let
{

x1
k

}m(1)
k=1 equal C1. Let

A1
1 ≡

{
ω : ψ

(
x1

1,ω
)
= max

k
ψ
(
x1

k ,ω
)}

For ω ∈ A1
1, define s1 (ω)≡ x1

1. Next let

A1
2 ≡

{
ω /∈ A1

1 : ψ
(
x1

2,ω
)
= max

k
ψ
(
x1

k ,ω
)}

and let s1 (ω)≡ x1
2 on A1

2. Continue in this way to obtain a simple function, s1 such that

ψ (s1 (ω) ,ω) = max{ψ (x,ω) : x ∈C1}

and s1 has values in C1.
Suppose s1 (ω) ,s2 (ω) , · · · ,sm (ω) are simple functions with the property that if m > 1,

d (sk (ω) ,sk+1 (ω)) < 2−k,

ψ (sk (ω) ,ω) = max{ψ (x,ω) : x ∈Ck}
sk has values in Ck

for each k+ 1 ≤ m, only the second and third assertions holding if m = 1. Letting Cm =
{xk}N

k=1 , it follows sm (ω) is of the form

sm (ω) =
N

∑
k=1

xkXAk (ω) , Ai∩A j = /0. (11.1.6)
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meaning that sm (ω) has value xk on Ak. Denote by {y1i}n1
i=1 those points of Cm+1 which

are contained in B(x1,2−m) . Letting Ak play the role of Ω in the first step in which s1 was
constructed, for each ω ∈ A1 let sm+1 (ω) be a simple function which has one of the values
y1i and satisfies

ψ (sm+1 (ω) ,ω) = max
i≤n1

ψ (y1i,ω)

for each ω ∈ A1. Next let {y2i}n2
i=1 be those points of Cm+1 different than {y1i}n1

i=1 which are
contained in B(x2,2−m). Then define sm+1 (ω) on A2 to have values taken from {y2i}n2

i=1
and

ψ (sm+1 (ω) ,ω) = max
i≤n2

ψ (y2i,ω)

for each ω ∈ A2. Continuing this way defines sm+1 on all of Ω and it satisfies

d (sm (ω) ,sm+1 (ω))< 2−m for all ω ∈Ω (11.1.7)

It remains to verify

ψ (sm+1 (ω) ,ω) = max{ψ (x,ω) : x ∈Cm+1} . (11.1.8)

To see this is so, pick ω ∈Ω. Let

max{ψ (x,ω) : x ∈Cm+1}= ψ (yr j,ω) (11.1.9)

where yr j ∈ {yri}nr
i=1 ⊆ Cm+1 and out of all the balls B(xl ,2−m) , let the first one which

contains yr j be B(xk,2−m). Then by the construction, sm+1 (ω) = yr j because ψ (yr j,ω) is
at least as large as ψ (ys j,ω) for all the other ys j. This and 11.1.9 verifies 11.1.8.

From 11.1.7 it follows sm (ω) converges uniformly on Ω to a measurable function,
f (ω) . Then from the construction, ψ ( f (ω) ,ω) ≥ ψ (sm (ω) ,ω) for all m and ω . Now
pick ω ∈Ω and let z be such that ψ (z,ω) =maxx∈E ψ (x,ω). Letting yk→ z where yk ∈Ck,
it follows from continuity of ψ in the first argument that

max
x∈E

ψ (x,ω) = ψ (z,ω) = lim
k→∞

ψ (yk,ω)

≤ lim
m→∞

ψ (sm (ω) ,ω) = ψ ( f (ω) ,ω)≤max
x∈E

ψ (x,ω) .

To show ω → ψ ( f (ω) ,ω) is measurable, note that since E is compact, there exists a
countable dense subset, D. Then using continuity of ψ in the first argument,

ψ ( f (ω) ,ω) = sup
x∈E

ψ (x,ω)

= sup
x∈D

ψ (x,ω)

which equals a measurable function of ω because D is countable. ■

Theorem 11.1.12 Let B consist of open cubes of the form

Qx ≡
n

∏
i=1

(xi−δ ,xi +δ )

where δ is a positive rational number and x∈Qn. Then every open set in Rn can be written
as a countable union of open cubes from B. Furthermore, B is a countable set.
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Proof: Let U be an open set and let y ∈U. Since U is open, B(y,r)⊆U for some r > 0
and it can be assumed r/

√
n ∈Q. Let

x ∈ B
(

y,
r

10
√

n

)
∩Qn

and consider the cube, Qx ∈B defined by

Qx ≡
n

∏
i=1

(xi−δ ,xi +δ )

where δ = r/4
√

n. The following picture is roughly illustrative of what is taking place.

y
x

Qx

B(y,r)

Then the diameter of Qx equals(
n
(

r
2
√

n

)2
)1/2

=
r
2

and so, if z ∈ Qx, then

|z−y| ≤ |z−x|+ |x−y|

<
r
2
+

r
2
= r.

Consequently, Qx ⊆U. Now also,(
n

∑
i=1

(xi− yi)
2

)1/2

<
r

10
√

n

and so it follows that for each i,
|xi− yi|<

r
4
√

n

since otherwise the above inequality would not hold. Therefore, y ∈ Qx ⊆U . Now let BU
denote those sets of B which are contained in U. Then ∪BU =U.
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To see B is countable, note there are countably many choices for x and countably many
choices for δ . This proves the theorem.

Recall that g : Rn→ R is continuous means g−1 (open set) = an open set. In particular
g−1 ((a,b)) must be an open set.

Theorem 11.1.13 Let fi : Ω→R for i = 1, · · · ,n be measurable functions and let g :Rn→
R be continuous where f≡ ( f1 · · · fn)

T . Then g◦ f is a measurable function from Ω to R.

Proof: First it is shown
(g◦ f)−1 ((a,b)) ∈F .

Now (g◦ f)−1 ((a,b))= f−1
(
g−1 ((a,b))

)
. Since g is continuous, it follows that g−1 ((a,b))

is an open set which is denoted as U for convenience. Now by Theorem 11.1.12 above, it
follows there are countably many open cubes, {Qk} such that

U = ∪∞
k=1Qk

where each Qk is a cube of the form

Qk =
n

∏
i=1

(xi−δ ,xi +δ ) .

Now

f−1

(
n

∏
i=1

(xi−δ ,xi +δ )

)
= ∩n

i=1 f−1
i ((xi−δ ,xi +δ )) ∈F

and so

(g◦ f)−1 ((a,b)) = f−1 (g−1 ((a,b))
)
= f−1 (U)

= f−1 (∪∞
k=1Qk) = ∪∞

k=1f−1 (Qk) ∈F .

This proves the theorem.

Corollary 11.1.14 Sums, products, and linear combinations of measurable functions are
measurable.

Proof: To see the product of two measurable functions is measurable, let g(x,y) = xy,
a continuous function defined on R2. Thus if you have two measurable functions, f1 and
f2 defined on Ω,

g◦ ( f1, f2)(ω) = f1 (ω) f2 (ω)

and so ω → f1 (ω) f2 (ω) is measurable. Similarly you can show the sum of two mea-
surable functions is measurable by considering g(x,y) = x+ y and you can show a linear
combination of two measurable functions is measurable by considering g(x,y) = ax+by.
More than two functions can also be considered as well.

The message of this corollary is that starting with measurable real valued functions you
can combine them in pretty much any way you want and you end up with a measurable
function.

Here is some notation which will be used whenever convenient.
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Definition 11.1.15 Let f : Ω→ [−∞,∞]. Define

[α < f ]≡ {ω ∈Ω : f (ω)> α} ≡ f−1 ((α,∞])

with obvious modifications for the symbols [α ≤ f ] , [α ≥ f ] , [α ≥ f ≥ β ], etc.

Definition 11.1.16 For a set E,

XE(ω) =

{
1 if ω ∈ E,
0 if ω /∈ E.

This is called the characteristic function of E. Sometimes this is called the indicator
function which I think is better terminology since the term characteristic function has an-
other meaning. Note that this “indicates” whether a point, ω is contained in E. It is exactly
when the function has the value 1.

Theorem 11.1.17 (Egoroff) Let (Ω,F ,µ) be a finite measure space,

(µ(Ω)< ∞)

and let fn, f be complex valued functions such that Re fn, Im fn are all measurable and

lim
n→∞

fn(ω) = f (ω)

for all ω /∈ E where µ(E) = 0. Then for every ε > 0, there exists a set,

F ⊇ E, µ(F)< ε,

such that fn converges uniformly to f on FC.

Proof: First suppose E = /0 so that convergence is pointwise everywhere. It follows
then that Re f and Im f are pointwise limits of measurable functions and are therefore
measurable. Let Ekm = {ω ∈Ω : | fn(ω)− f (ω)| ≥ 1/m for some n > k}. Note that

| fn (ω)− f (ω)|=
√

(Re fn (ω)−Re f (ω))2 +(Im fn (ω)− Im f (ω))2

and so, By Theorem 11.1.13, [
| fn− f | ≥ 1

m

]
is measurable. Hence Ekm is measurable because

Ekm = ∪∞
n=k+1

[
| fn− f | ≥ 1

m

]
.

For fixed m,∩∞
k=1Ekm = /0 because fn converges to f . Therefore, if ω ∈ Ω there exists k

such that if n > k, | fn (ω)− f (ω)|< 1
m which means ω /∈ Ekm. Note also that

Ekm ⊇ E(k+1)m.
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Since µ(E1m)< ∞, Theorem 11.1.5 on Page 224 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m)< ε2−m and let

F =
∞⋃

m=1

Ek(m)m.

Then µ(F)< ε because

µ (F)≤
∞

∑
m=1

µ
(
Ek(m)m

)
<

∞

∑
m=1

ε2−m = ε

Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈ FC, then

ω ∈
∞⋂

m=1

EC
k(m)m.

Hence ω ∈ EC
k(m0)m0

so

| fn(ω)− f (ω)|< 1/m0 < η

for all n > k(m0). This holds for all ω ∈ FCand so fn converges uniformly to f on FC.

Now if E ̸= /0, consider {XEC fn}∞

n=1 . Each XEC fn has real and imaginary parts mea-
surable and the sequence converges pointwise to XE f everywhere. Therefore, from the
first part, there exists a set of measure less than ε,F such that on FC,{XEC fn} converges
uniformly to XEC f . Therefore, on (E ∪F)C , { fn} converges uniformly to f . This proves
the theorem.

Finally here is a comment about notation.

Definition 11.1.18 Something happens for µ a.e. ω said as µ almost everywhere, if there
exists a set E with µ(E) = 0 and the thing takes place for all ω /∈ E. Thus f (ω) = g(ω) a.e.
if f (ω) = g(ω) for all ω /∈ E where µ(E) = 0. A measure space, (Ω,F , µ) is σ finite if
there exist measurable sets, Ωn such that µ (Ωn)< ∞ and Ω = ∪∞

n=1Ωn.

11.2 Exercises
1. Let Ω = N={1,2, · · ·}. Let F = P(N) and let µ(S) = number of elements in S.

Thus µ({1}) = 1 = µ({2}), µ({1,2}) = 2, etc. Show (Ω,F ,µ) is a measure space.
It is called counting measure. What functions are measurable in this case?

2. Let Ω be any uncountable set and let F = {A⊆Ω : either A or AC is countable}. Let
µ(A) = 1 if A is uncountable and µ(A) = 0 if A is countable. Show (Ω,F ,µ) is a
measure space. This is a well known bad example.
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3. Let F be a σ algebra of subsets of Ω and suppose F has infinitely many elements.
Show that F is uncountable. Hint: You might try to show there exists a countable
sequence of disjoint sets of F , {Ai}. It might be easiest to verify this by contradiction
if it doesn’t exist rather than a direct construction. Once this has been done, you can
define a map, θ , from P (N) into F which is one to one by θ (S) = ∪i∈SAi. Then
argue P (N) is uncountable and so F is also uncountable.

4. Prove Lemma 11.1.2.

5. g is Borel measurable if whenever U is open, g−1(U) is Borel. Let f : Ω→ Rn and
let g : Rn → R and F is a σ algebra of sets of Ω. Suppose f is measurable and g
is Borel measurable. Show g◦ f is measurable. To say g is Borel measurable means
g−1 (open set) = (Borel set) where a Borel set is one of those sets in the smallest σ

algebra containing the open sets of Rn. See Lemma 11.1.2. Hint: You should show,
using Theorem 11.1.12 that f−1 (open set) ∈F . Now let

S ≡
{

E ⊆ Rn : f−1 (E) ∈F
}

By what you just showed, S contains the open sets. Now verify S is a σ algebra.
Argue that from the definition of the Borel sets, it follows S contains the Borel sets.

6. Let (Ω,F ) be a measure space and suppose f : Ω → C. Then f is said to be
mesurable if

f−1 (open set) ∈F .

Show f is measurable if and only if Re f and Im f are measurable real-valued func-
tions. Thus it suffices to define a complex valued function to be measurable if the
real and imaginary parts are measurable. Hint: Argue that f−1 (((a,b)+ i(c,d))) =
(Re f )−1 ((a,b))∩ (Im f )−1 ((c,d)) . Then use Theorem 11.1.12 to verify that if Re f
and Im f are measurable, it follows f is. Conversely, argue that (Re f )−1 ((a,b)) =
f−1 ((a,b)+ iR) with a similar formula holding for Im f .

7. Let (Ω,F ,µ) be a measure space. Define µ : P(Ω)→ [0,∞] by

µ(A) = inf{µ(B) : B⊇ A, B ∈F}.

Show µ satisfies

µ( /0) = 0, if A⊆ B, µ(A)≤ µ(B),

µ(∪∞
i=1Ai) ≤

∞

∑
i=1

µ(Ai), µ (A) = µ (A) if A ∈F .

If µ satisfies these conditions, it is called an outer measure. This shows every mea-
sure determines an outer measure on the power set.

8. Let {Ei} be a sequence of measurable sets with the property that

∞

∑
i=1

µ(Ei)< ∞.
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Let S = {ω ∈Ω such that ω ∈ Ei for infinitely many values of i}. Show µ(S) = 0 and
S is measurable. This is part of the Borel Cantelli lemma. Hint: Write S in terms of
intersections and unions. Something is in S means that for every n there exists k > n
such that it is in Ek. Remember the tail of a convergent series is small.

9. ↑ Let fn, f be measurable functions. fn converges in measure if

lim
n→∞

µ(x ∈Ω : | f (x)− fn(x)| ≥ ε) = 0

for each fixed ε > 0. Prove the theorem of F. Riesz. If fn converges to f in measure,
then there exists a subsequence { fnk} which converges to f a.e. Hint: Choose n1
such that

µ(x : | f (x)− fn1(x)| ≥ 1)< 1/2.

Choose n2 > n1 such that

µ(x : | f (x)− fn2(x)| ≥ 1/2)< 1/22,

n3 > n2 such that
µ(x : | f (x)− fn3(x)| ≥ 1/3)< 1/23,

etc. Now consider what it means for fnk(x) to fail to converge to f (x). Then use
Problem 8.

11.3 The Abstract Lebesgue Integral
11.3.1 Preliminary Observations
This section is on the Lebesgue integral and the major convergence theorems which are the
reason for studying it. In all that follows µ will be a measure defined on a σ algebra F of
subsets of Ω. 0 ·∞ = 0 is always defined to equal zero. This is a meaningless expression
and so it can be defined arbitrarily but a little thought will soon demonstrate that this is the
right definition in the context of measure theory. To see this, consider the zero function
defined on R. What should the integral of this function equal? Obviously, by an analogy
with the Riemann integral, it should equal zero. Formally, it is zero times the length of the
set or infinity. This is why this convention will be used.

Lemma 11.3.1 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Proof: Note that for all a,b, f (a,b)≤ supb∈B supa∈A f (a,b) and therefore, for all a,

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Therefore,
sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeating the same argument interchanging a and b, gives the conclusion of the lemma.
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Lemma 11.3.2 If {An} is an increasing sequence in [−∞,∞], then sup{An}= limn→∞ An.

The following lemma is useful also and this is a good place to put it. First
{

b j
}∞

j=1 is
an enumeration of the ai j if

∪∞
j=1
{

b j
}
= ∪i, j

{
ai j
}
.

In other words, the countable set,
{

ai j
}∞

i, j=1 is listed as b1,b2, · · · .

Lemma 11.3.3 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j. Also if

{
b j
}∞

j=1 is any
enumeration of the ai j, then ∑

∞
j=1 b j = ∑

∞
i=1 ∑

∞
j=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is written as the answer.

∞

∑
j=1

∞

∑
i=1

ai j ≥ sup
n

∞

∑
j=1

n

∑
i=1

ai j = sup
n

lim
m→∞

m

∑
j=1

n

∑
i=1

ai j

= sup
n

lim
m→∞

n

∑
i=1

m

∑
j=1

ai j = sup
n

n

∑
i=1

∞

∑
j=1

ai j =
∞

∑
i=1

∞

∑
j=1

ai j. (11.3.10)

Interchanging the i and j in the above argument the first part of the lemma is proved.
Finally, note that for all p,

p

∑
j=1

b j ≤
∞

∑
i=1

∞

∑
j=1

ai j

and so ∑
∞
j=1 b j ≤ ∑

∞
i=1 ∑

∞
j=1 ai j. Now let m,n > 1 be given. Then

m

∑
i=1

n

∑
j=1

ai j ≤
p

∑
j=1

b j

where p is chosen large enough that
{

b1, · · · ,bp
}
⊇
{

ai j : i≤ m and j ≤ n
}
. Therefore,

since such a p exists for any choice of m,n,it follows that for any m,n,

m

∑
i=1

n

∑
j=1

ai j ≤
∞

∑
j=1

b j.

Therefore, taking the limit as n→ ∞,

m

∑
i=1

∞

∑
j=1

ai j ≤
∞

∑
j=1

b j

and finally, taking the limit as m→ ∞,

∞

∑
i=1

∞

∑
j=1

ai j ≤
∞

∑
j=1

b j

proving the lemma.
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11.3.2 The Lebesgue Integral Nonnegative Functions
The following picture illustrates the idea used to define the Lebesgue integral to be like the
area under a curve.

h

2h

3h

hµ([h < f ])

hµ([2h < f ])

hµ([3h < f ])

You can see that by following the procedure illustrated in the picture and letting h get
smaller, you would expect to obtain better approximations to the area under the curve1

although all these approximations would likely be too small. Therefore, define∫
f dµ ≡ sup

h>0

∞

∑
i=1

hµ ([ih < f ])

Lemma 11.3.4 The following inequality holds.

∞

∑
i=1

hµ ([ih < f ])≤
∞

∑
i=1

h
2

µ

([
i
h
2
< f
])

.

Also, it suffices to consider only h smaller than a given positive number in the above defi-
nition of the integral.

Proof:
Let N ∈ N.

2N

∑
i=1

h
2

µ

([
i
h
2
< f
])

=
2N

∑
i=1

h
2

µ ([ih < 2 f ])

=
N

∑
i=1

h
2

µ ([(2i−1)h < 2 f ])+
N

∑
i=1

h
2

µ ([(2i)h < 2 f ])

=
N

∑
i=1

h
2

µ

([
(2i−1)

2
h < f

])
+

N

∑
i=1

h
2

µ ([ih < f ])

≥
N

∑
i=1

h
2

µ ([ih < f ])+
N

∑
i=1

h
2

µ ([ih < f ]) =
N

∑
i=1

hµ ([ih < f ]) .

Now letting N→ ∞ yields the claim of the lemma.

1Note the difference between this picture and the one usually drawn in calculus courses where the little rect-
angles are upright rather than on their sides. This illustrates a fundamental philosophical difference between the
Riemann and the Lebesgue integrals. With the Riemann integral intervals are measured. With the Lebesgue
integral, it is inverse images of intervals which are measured.
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To verify the last claim, suppose M <
∫

f dµ and let δ > 0 be given. Then there exists
h > 0 such that

M <
∞

∑
i=1

hµ ([ih < f ])≤
∫

f dµ.

By the first part of this lemma,

M <
∞

∑
i=1

h
2

µ

([
i
h
2
< f
])
≤
∫

f dµ

and continuing to apply the first part,

M <
∞

∑
i=1

h
2n µ

([
i

h
2n < f

])
≤
∫

f dµ.

Choose n large enough that h/2n < δ . It follows

M < sup
δ>h>0

∞

∑
i=1

hµ ([ih < f ])≤
∫

f dµ.

Since M is arbitrary, this proves the last claim.

11.3.3 The Lebesgue Integral For Nonnegative Simple Functions
Definition 11.3.5 A function, s, is called simple if it is a measurable real valued function
and has only finitely many values. These values will never be ±∞. Thus a simple function
is one which may be written in the form

s(ω) =
n

∑
i=1

ciXEi (ω)

where the sets, Ei are disjoint and measurable. s takes the value ci at Ei.

Note that by taking the union of some of the Ei in the above definition, you can assume
that the numbers, ci are the distinct values of s. Simple functions are important because it
will turn out to be very easy to take their integrals as shown in the following lemma.

Lemma 11.3.6 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function with the ai

the distinct non zero values of s. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (11.3.11)

Also, for any nonnegative measurable function, f , if λ ≥ 0, then∫
λ f dµ = λ

∫
f dµ. (11.3.12)



11.3. THE ABSTRACT LEBESGUE INTEGRAL 239

Proof: Consider 11.3.11 first. Without loss of generality, you can assume 0 < a1 <
a2 < · · ·< ap and that µ (Ei)< ∞. Let ε > 0 be given and let

δ 1

p

∑
i=1

µ (Ei)< ε.

Pick δ < δ 1 such that for h < δ it is also true that

h <
1
2

min(a1,a2−a1,a3−a2, · · · ,an−an−1) .

Then for 0 < h < δ

∞

∑
k=1

hµ ([s > kh]) =
∞

∑
k=1

h
∞

∑
i=k

µ ([ih < s≤ (i+1)h])

=
∞

∑
i=1

i

∑
k=1

hµ ([ih < s≤ (i+1)h])

=
∞

∑
i=1

ihµ ([ih < s≤ (i+1)h]) . (11.3.13)

Because of the choice of h there exist positive integers, ik such that i1 < i2 < · · · ,< ip and

i1h < a1 ≤ (i1 +1)h < · · ·< i2h < a2 <

< (i2 +1)h < · · ·< iph < ap ≤ (ip +1)h

Then in the sum of 11.3.13 the only terms which are nonzero are those for which i ∈{
i1, i2 · · · , ip

}
. To see this, you might consider the following picture.

a1

a2

a3

i1h

i3h

i2h

When ih and (i+1)h are both in between two of the ai the set [ih < s≤ (i+1)h] must
be empty because the only values of the function are one of the ai. At an ik, ikh is smaller
than ak while (ik +1)h is at least as large. Therefore, the set [ih < s≤ (i+1)h] equals Ek
and so

µ ([ikh < s≤ (ik +1)h]) = µ (Ek) .

Therefore,
∞

∑
k=1

hµ ([s > kh]) =
p

∑
k=1

ikhµ (Ek) .
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It follows that for all h this small,

0 <
p

∑
k=1

akµ (Ek)−
∞

∑
k=1

hµ ([s > kh])

=
p

∑
k=1

akµ (Ek)−
p

∑
k=1

ikhµ (Ek)≤ h
p

∑
k=1

µ (Ek)< ε.

Taking the inf for h this small and using Lemma 11.3.4,

0 ≤
p

∑
k=1

akµ (Ek)− sup
δ>h>0

∞

∑
k=1

hµ ([s > kh])

=
p

∑
k=1

akµ (Ek)−
∫

sdµ ≤ ε.

Since ε > 0 is arbitrary, this proves the first part.
To verify 11.3.12 Note the formula is obvious if λ = 0 because then [ih < λ f ] = /0 for

all i > 0. Assume λ > 0. Then∫
λ f dµ ≡ sup

h>0

∞

∑
i=1

hµ ([ih < λ f ])

= sup
h>0

∞

∑
i=1

hµ ([ih/λ < f ])

= sup
h>0

λ

∞

∑
i=1

(h/λ )µ ([i(h/λ )< f ])

= λ

∫
f dµ.

This proves the lemma.

Lemma 11.3.7 Let the nonnegative simple function, s be defined as

s(ω) =
n

∑
i=1

ciXEi (ω)

where the ci are not necessarily distinct but the Ei are disjoint. It follows that∫
s =

n

∑
i=1

ciµ (Ei) .

Proof: Let the values of s be {a1, · · · ,am}. Therefore, since the Ei are disjoint, each ai
equal to one of the c j. Let Ai ≡ ∪

{
E j : c j = ai

}
. Then from Lemma 11.3.6 it follows that∫

s =
m

∑
i=1

aiµ (Ai) =
m

∑
i=1

ai ∑
{ j:c j=ai}

µ (E j)

=
m

∑
i=1

∑
{ j:c j=ai}

c jµ (E j) =
n

∑
i=1

ciµ (Ei) .
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This proves the lemma.
Note that

∫
s could equal +∞ if µ (Ak) =∞ and ak > 0 for some k, but

∫
s is well defined

because s≥ 0. Recall that 0 ·∞ = 0.

Lemma 11.3.8 If a,b≥ 0 and if s and t are nonnegative simple functions, then∫
as+bt = a

∫
s+b

∫
t.

Proof: Let

s(ω) =
n

∑
i=1

α iXAi(ω), t(ω) =
m

∑
i=1

β jXB j(ω)

where α i are the distinct values of s and the β j are the distinct values of t. Clearly as+bt is
a nonnegative simple function because it is measurable and has finitely many values. Also,

(as+bt)(ω) =
m

∑
j=1

n

∑
i=1

(aα i +bβ j)XAi∩B j(ω)

where the sets Ai∩B j are disjoint. By Lemma 11.3.7,∫
as+bt =

m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j)

= a
∫

s+b
∫

t.

This proves the lemma.

11.3.4 Simple Functions And Measurable Functions
There is a fundamental theorem about the relationship of simple functions to measurable
functions given in the next theorem.

Theorem 11.3.9 Let f ≥ 0 be measurable. Then there exists a sequence of nonnegative
simple functions {sn} satisfying

0≤ sn(ω) (11.3.14)

· · · sn(ω)≤ sn+1(ω) · · ·

f (ω) = lim
n→∞

sn(ω) for all ω ∈Ω. (11.3.15)

If f is bounded the convergence is actually uniform.

Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X[k/n≤ f<(k+1)/n](ω)+nXI(ω).
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Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) = n
for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0≤ f (ω)− tn (ω)≤ 1
n
. (11.3.16)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 11.3.14-11.3.15.
To verify the last claim, note that in this case the term nXI(ω) is not present. Therefore,

for all n large enough, 11.3.16 holds for all ω . Thus the convergence is uniform. This
proves the theorem.

Although it is not needed here, there is a similar theorem which applies to measurable
functions which have values in a separable metric space. In this context, a simple function
is one which is of the form

m

∑
k=1

xkXEk (ω)

where the Ek are disjoint measurable sets and the xk are in X . I am abusing notation some-
what by using a sum. You can’t add in a general metric space. The symbol means the
function has value xk on the set Ek.

Theorem 11.3.10 Let (Ω,F ) be a measure space and let f : Ω→ X where (X ,d) is a sep-
arable metric space. Then f is a measurable function if and only if there exists a sequence
of simple functions,{ fn} such that for each ω ∈Ω and n ∈ N,

d ( fn (ω) , f (ω))≥ d ( fn+1 (ω) , f (ω)) (11.3.17)

and
lim
n→∞

d ( fn (ω) , f (ω)) = 0. (11.3.18)

Proof: Let D = {xk}∞

k=1 be a countable dense subset of X . First suppose f is measur-
able. Then since in a metric space every open set is the countable intersection of closed
sets, it follows f−1 (closed set) ∈F . Now let Dn = {xk}n

k=1 . Let

A1 ≡
{

ω : d (x1, f (ω)) = min
k≤n

d (xk, f (ω))

}
That is, A1 are those ω such that f (ω) is approximated best out of Dn by x1. Why is this
a measurable set? It is because ω → d (x, f (ω)) is a real valued measurable function,
being the composition of a continuous function, y→ d (x,y) and a measurable function,
ω → f (ω) . Next let

A2 ≡
{

ω /∈ A1 : d (x2, f (ω)) = min
k≤n

d (xk, f (ω))

}
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and continue in this manner obtaining disjoint measurable sets, {Ak}n
k=1 such that for ω ∈

Ak the best approximation to f (ω) from Dn is xk. Then

fn (ω)≡
n

∑
k=1

xkXAk (ω) .

Note
min

k≤n+1
d (xk, f (ω))≤min

k≤n
d (xk, f (ω))

and so this verifies 11.3.17. It remains to verify 11.3.18.
Let ε > 0 be given and pick ω ∈Ω. Then there exists xn ∈D such that d (xn, f (ω))< ε .

It follows from the construction that d ( fn (ω) , f (ω))≤ d (xn, f (ω))< ε. This proves the
first half.

Now suppose the existence of the sequence of simple functions as described above.
Each fn is a measurable function because f−1

n (U) = ∪{Ak : xk ∈U}. Therefore, the con-
clusion that f is measurable follows from Theorem 11.1.9 on Page 227.

In the context of this more general notion of measurable function having values in a
metric space, here is a version of Egoroff’s theorem.

Theorem 11.3.11 (Egoroff) Let (Ω,F ,µ) be a finite measure space,

(µ(Ω)< ∞)

and let fn, f be X valued measurable functions where X is a separable metric space and
for all ω /∈ E where µ(E) = 0

fn (ω)→ f (ω)

Then for every ε > 0, there exists a set,

F ⊇ E, µ(F)< ε,

such that fn converges uniformly to f on FC.

Proof: First suppose E = /0 so that convergence is pointwise everywhere. Let

Ekm = {ω ∈Ω : d ( fn (ω) , f (ω))≥ 1/m for some n > k}.

Claim:
[
ω : d ( fn (ω) , f (ω))≥ 1

m

]
is measurable.

Proof of claim: Let {xk}∞

k=1 be a countable dense subset of X and let r denote a positive
rational number, Q+. Then

∪k∈N,r∈Q+ f−1
n (B(xk,r))∩ f−1

(
B
(

xk,
1
m
− r
))

=

[
d ( f , fn)<

1
m

]
(11.3.19)

Here is why. If ω is in the set on the left, then d ( fn (ω) ,xk)< r and

d ( f (ω) ,xk)<
1
m
− r.
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Therefore,

d ( f (ω) , fn (ω))< r+
1
m
− r =

1
m
.

Thus the left side is contained in the right. Now let ω be in the right side. That is
d ( fn (ω) , f (ω))< 1

m . Choose 2r < 1
m−d ( fn (ω) , f (ω)) and pick xk ∈ B( fn (ω) ,r). Then

d ( f (ω) ,xk) ≤ d ( f (ω) , fn (ω))+d ( fn (ω) ,xk)

<
1
m
−2r+ r =

1
m
− r

Thus ω ∈ f−1
n (B(xk,r))∩ f−1

(
B
(
xk,

1
m − r

))
and so ω is in the left side. Thus the two sets

are equal. Now the set on the left in 11.3.19 is measurable because it is a countable union
of measurable sets. This proves the claim since[

ω : d ( fn (ω) , f (ω))≥ 1
m

]
is the complement of this measurable set.

Hence Ekm is measurable because

Ekm = ∪∞
n=k+1

[
ω : d ( fn (ω) , f (ω))≥ 1

m

]
.

For fixed m,∩∞
k=1Ekm = /0 because fn (ω) converges to f (ω). Therefore, if ω ∈ Ω there

exists k such that if n > k, | fn (ω)− f (ω)|< 1
m which means ω /∈ Ekm. Note also that

Ekm ⊇ E(k+1)m.

Since µ(E1m)< ∞, Theorem 11.1.5 on Page 224 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m)< ε2−m and let

F =
∞⋃

m=1

Ek(m)m.

Then µ(F)< ε because

µ (F)≤
∞

∑
m=1

µ
(
Ek(m)m

)
<

∞

∑
m=1

ε2−m = ε

Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈ FC, then

ω ∈
∞⋂

m=1

EC
k(m)m.
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Hence ω ∈ EC
k(m0)m0

so
d ( f (ω) , fn (ω))< 1/m0 < η

for all n > k(m0). This holds for all ω ∈ FCand so fn converges uniformly to f on FC.
Now if E ̸= /0, consider {XEC fn}∞

n=1 . Then XEC fn is measurable and the sequence
converges pointwise to XE f everywhere. Therefore, from the first part, there exists a
set of measure less than ε,F such that on FC,{XEC fn} converges uniformly to XEC f .
Therefore, on (E ∪F)C , { fn} converges uniformly to f . This proves the theorem.

11.3.5 The Monotone Convergence Theorem
The following is called the monotone convergence theorem. This theorem and related
convergence theorems are the reason for using the Lebesgue integral.

Theorem 11.3.12 (Monotone Convergence theorem) Let f have values in [0,∞] and sup-
pose { fn} is a sequence of nonnegative measurable functions having values in [0,∞] and
satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·
Then f is measurable and ∫

f dµ = lim
n→∞

∫
fndµ.

Proof: From Lemmas 11.3.1 and 11.3.2,∫
f dµ ≡ sup

h>0

∞

∑
i=1

hµ ([ih < f ])

= sup
h>0

sup
k

k

∑
i=1

hµ ([ih < f ])

= sup
h>0

sup
k

sup
m

k

∑
i=1

hµ ([ih < fm])

= sup
m

sup
h>0

∞

∑
i=1

hµ ([ih < fm])

≡ sup
m

∫
fmdµ

= lim
m→∞

∫
fmdµ.

The third equality follows from the observation that

lim
m→∞

µ ([ih < fm]) = µ ([ih < f ])

which follows from Theorem 11.1.5 since the sets, [ih < fm] are increasing in m and their
union equals [ih < f ]. This proves the theorem.

To illustrate what goes wrong without the Lebesgue integral, consider the following
example.
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Example 11.3.13 Let {rn} denote the rational numbers in [0,1] and let

fn (t)≡
{

1 if t /∈ {r1, · · · ,rn}
0 otherwise

Then fn (t) ↑ f (t) where f is the function which is one on the rationals and zero on the irra-
tionals. Each fn is Riemann integrable (why?) but f is not Riemann integrable. Therefore,
you can’t write

∫
f dx = limn→∞

∫
fndx.

A meta-mathematical observation related to this type of example is this. If you can
choose your functions, you don’t need the Lebesgue integral. The Riemann integral is just
fine. It is when you can’t choose your functions and they come to you as pointwise limits
that you really need the superior Lebesgue integral or at least something more general
than the Riemann integral. The Riemann integral is entirely adequate for evaluating the
seemingly endless lists of boring problems found in calculus books.

11.3.6 Other Definitions
To review and summarize the above, if f ≥ 0 is measurable,∫

f dµ ≡ sup
h>0

∞

∑
i=1

hµ ([ f > ih]) (11.3.20)

another way to get the same thing for
∫

f dµ is to take an increasing sequence of non-
negative simple functions, {sn} with sn (ω)→ f (ω) and then by monotone convergence
theorem, ∫

f dµ = lim
n→∞

∫
sn

where if sn (ω) = ∑
m
j=1 ciXEi (ω) ,∫

sndµ =
m

∑
i=1

cim(Ei) .

Similarly this also shows that for such nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
which is the usual way of defining the Lebesgue integral for nonnegative simple functions
in most books. I have done it differently because this approach led to an easier proof of the
Monotone convergence theorem. Here is an equivalent definition of the integral. The fact
it is well defined has been discussed above.

Definition 11.3.14 For s a nonnegative simple function,

s(ω) =
n

∑
k=1

ckXEk (ω) ,
∫

s =
n

∑
k=1

ckµ (Ek) .

For f a nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.
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11.3.7 Fatou’s Lemma
Sometimes the limit of a sequence does not exist. There are two more general notions
known as limsup and liminf which do always exist in some sense. These notions are
dependent on the following lemma.

Lemma 11.3.15 Let {an} be an increasing/decreasing in [−∞,∞] . Then limn→∞ an exists.

Proof: Suppose first {an} is increasing. Recall this means an ≤ an+1 for all n. If the
sequence is bounded above, then it has a least upper bound and so an → a where a is its
least upper bound. If the sequence is not bounded above, then for every l ∈ R, it follows l
is not an upper bound and so eventually, an > l. But this is what is meant by an→ ∞. The
situation for decreasing sequences is completely similar.

Now take any sequence, {an} ⊆ [−∞,∞] and consider the sequence {An} where

An ≡ inf{ak : k ≥ n} .

Then as n increases, the set of numbers whose inf is being taken is getting smaller. There-
fore, An is an increasing sequence and so it must converge. Similarly, defining the sequence
Bn ≡ sup{ak : k ≥ n} , it follows Bn is decreasing and so {Bn} also must converge. With
this preparation, the following definition can be given.

Definition 11.3.16 Let {an} be a sequence of points in [−∞,∞] . Then define

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n}

and
lim sup

n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

In the case of functions having values in [−∞,∞] ,(
lim inf

n→∞
fn

)
(ω)≡ lim inf

n→∞
( fn (ω)) .

A similar definition applies to limsupn→∞ fn.

Lemma 11.3.17 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case, the limit equals the common value of these two numbers.

Proof: Suppose first limn→∞ an = a∈R. Then, letting ε > 0 be given, an ∈ (a− ε,a+ ε)
for all n large enough, say n ≥ N. Therefore, both inf{ak : k ≥ n} and sup{ak : k ≥ n} are
contained in [a− ε,a+ ε] whenever n ≥ N. It follows limsupn→∞ an and liminfn→∞ an are
both in [a− ε,a+ ε] , showing∣∣∣∣lim inf

n→∞
an− lim sup

n→∞

an

∣∣∣∣< 2ε.
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Since ε is arbitrary, the two must be equal and they both must equal a. Next suppose
limn→∞ an = ∞. Then if l ∈ R, there exists N such that for n≥ N,

l ≤ an

and therefore, for such n,

l ≤ inf{ak : k ≥ n} ≤ sup{ak : k ≥ n}

and this shows, since l is arbitrary that

lim inf
n→∞

an = lim sup
n→∞

an = ∞.

The case for −∞ is similar.
Conversely, suppose liminfn→∞ an = limsupn→∞ an = a. Suppose first that a∈R. Then,

letting ε > 0 be given, there exists N such that if n≥ N,

sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

therefore, if k,m > N, and ak > am,

|ak−am|= ak−am ≤ sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

showing that {an} is a Cauchy sequence. Therefore, it converges to a ∈ R, and as in the
first part, the liminf and limsup both equal a. If liminfn→∞ an = limsupn→∞ an = ∞, then
given l ∈ R, there exists N such that for n≥ N,

inf
n>N

an > l.

Therefore, limn→∞ an = ∞. The case for −∞ is similar. This proves the lemma.
The next theorem, known as Fatou’s lemma is another important theorem which justi-

fies the use of the Lebesgue integral.

Theorem 11.3.18 (Fatou’s lemma) Let fn be a nonnegative measurable function with val-
ues in [0,∞]. Let g(ω) = liminfn→∞ fn(ω). Then g is measurable and∫

gdµ ≤ lim inf
n→∞

∫
fndµ .

In other words, ∫ (
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
fndµ

Proof: Let gn(ω) = inf{ fk(ω) : k ≥ n}. Then

g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) ∈F .

Thus gn is measurable by Lemma 11.1.6 on Page 225. Also g(ω) = limn→∞ gn(ω) so g is
measurable because it is the pointwise limit of measurable functions. Now the functions
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gn form an increasing sequence of nonnegative measurable functions so the monotone con-
vergence theorem applies. This yields∫

gdµ = lim
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The last inequality holding because∫
gndµ ≤

∫
fndµ.

(Note that it is not known whether limn→∞

∫
fndµ exists.) This proves the Theorem.

11.3.8 The Righteous Algebraic Desires Of The Lebesgue Integral
The monotone convergence theorem shows the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 11.3.19 Let f ,g be nonnegative measurable functions and let a,b be nonnegative
numbers. Then ∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (11.3.21)

Proof: By Theorem 11.3.9 on Page 241 there exist sequences of nonnegative simple
functions, sn → f and tn → g. Then by the monotone convergence theorem and Lemma
11.3.8, ∫

(a f +bg)dµ = lim
n→∞

∫
asn +btndµ

= lim
n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ.

As long as you are allowing functions to take the value +∞, you cannot consider some-
thing like f +(−g) and so you can’t very well expect a satisfactory statement about the
integral being linear until you restrict yourself to functions which have values in a vector
space. This is discussed next.

11.4 The Space L1

The functions considered here have values in C, a vector space.

Definition 11.4.1 Let (Ω,S ,µ) be a measure space and suppose f : Ω→ C. Then f is
said to be measurable if both Re f and Im f are measurable real valued functions.

Definition 11.4.2 A complex simple function will be a function which is of the form

s(ω) =
n

∑
k=1

ckXEk (ω)
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where ck ∈ C and µ (Ek)< ∞. For s a complex simple function as above, define

I (s)≡
n

∑
k=1

ckµ (Ek) .

Lemma 11.4.3 The definition, 11.4.2 is well defined. Furthermore, I is linear on the vector
space of complex simple functions. Also the triangle inequality holds,

|I (s)| ≤ I (|s|) .

Proof: Suppose ∑
n
k=1 ckXEk (ω) = 0. Does it follow that ∑k ckµ (Ek) = 0? The suppo-

sition implies
n

∑
k=1

ReckXEk (ω) = 0,
n

∑
k=1

ImckXEk (ω) = 0. (11.4.22)

Choose λ large and positive so that λ +Reck ≥ 0. Then adding ∑k λXEk to both sides of
the first equation above,

n

∑
k=1

(λ +Reck)XEk (ω) =
n

∑
k=1

λXEk

and by Lemma 11.3.8 on Page 241, it follows upon taking
∫

of both sides that
n

∑
k=1

(λ +Reck)µ (Ek) =
n

∑
k=1

λ µ (Ek)

which implies ∑
n
k=1 Reckµ (Ek) = 0. Similarly, ∑

n
k=1 Imckµ (Ek) = 0 so

n

∑
k=1

ckµ (Ek) = 0

Thus if
∑

j
c jXE j = ∑

k
dkXFk

then ∑ j c jXE j +∑k (−dk)XFk = 0 and so the result just established verifies ∑ j c jµ (E j)−
∑k dkµ (Fk) = 0 which proves I is well defined.

That I is linear is now obvious. It only remains to verify the triangle inequality.
Let s be a simple function,

s = ∑
j

c jXE j

Then pick θ ∈ C such that θ I (s) = |I (s)| and |θ | = 1. Then from the triangle inequality
for sums of complex numbers,

|I (s)| = θ I (s) = I (θs) = ∑
j

θc jµ (E j)

=

∣∣∣∣∣∑j
θc jµ (E j)

∣∣∣∣∣≤∑
j

∣∣θc j
∣∣µ (E j) = I (|s|) .

This proves the lemma.
With this lemma, the following is the definition of L1 (Ω) .
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Definition 11.4.4 f ∈ L1(Ω) means there exists a sequence of complex simple functions,
{sn} such that

sn (ω)→ f (ω) for all ω ∈Ω

limm,n→∞ I (|sn− sm|) = limn,m→∞

∫
|sn− sm|dµ = 0 (11.4.23)

Then
I ( f )≡ lim

n→∞
I (sn) . (11.4.24)

Lemma 11.4.5 Definition 11.4.4 is well defined.

Proof: There are several things which need to be verified. First suppose 11.4.23. Then
by Lemma 11.4.3

|I (sn)− I (sm)|= |I (sn− sm)| ≤ I (|sn− sm|)
and for m,n large enough this last is given to be small so {I (sn)} is a Cauchy sequence in C
and so it converges. This verifies the limit in 11.4.24 at least exists. It remains to consider
another sequence {tn} having the same properties as {sn} and verifying I ( f ) determined
by this other sequence is the same. By Lemma 11.4.3 and Fatou’s lemma, Theorem 11.3.18
on Page 248,

|I (sn)− I (tn)| ≤ I (|sn− tn|) =
∫
|sn− tn|dµ

≤
∫
|sn− f |+ | f − tn|dµ

≤ lim inf
k→∞

∫
|sn− sk|dµ + lim inf

k→∞

∫
|tn− tk|dµ < ε

whenever n is large enough. Since ε is arbitrary, this shows the limit from using the tn is
the same as the limit from using sn. This proves the lemma.

What if f has values in [0,∞)? Earlier
∫

f dµ was defined for such functions and now
I ( f ) has been defined. Are they the same? If so, I can be regarded as an extension of

∫
dµ

to a larger class of functions.

Lemma 11.4.6 Suppose f has values in [0,∞) and f ∈ L1 (Ω) . Then f is measurable and

I ( f ) =
∫

f dµ.

Proof: Since f is the pointwise limit of a sequence of complex simple functions, {sn}
having the properties described in Definition 11.4.4, it follows f (ω) = limn→∞ Resn (ω)
and so f is measurable. Also∫ ∣∣(Resn)

+− (Resm)
+
∣∣dµ ≤

∫
|Resn−Resm|dµ ≤

∫
|sn− sm|dµ

where x+ ≡ 1
2 (|x|+ x) , the positive part of the real number, x. 2Thus there is no loss of

generality in assuming {sn} is a sequence of complex simple functions having values in
2The negative part of the real number x is defined to be x− ≡ 1

2 (|x|− x) . Thus |x|= x++x− and x = x+−x−.
.
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[0,∞). Then since for such complex simple functions, I (s) =
∫

sdµ,∣∣∣∣I ( f )−
∫

f dµ

∣∣∣∣≤ |I ( f )− I (sn)|+
∣∣∣∣∫ sndµ−

∫
f dµ

∣∣∣∣
< ε +

∣∣∣∣∫
[sn− f≥0]

sndµ−
∫
[sn− f≥0]

f dµ

+
∫
[sn− f<0]

sndµ−
∫
[sn− f<0]

f dµ

∣∣∣∣
≤ ε +

∣∣∣∣∫
[sn− f≥0]

(sn− f )dµ

∣∣∣∣+ ∣∣∣∣∫
[sn− f<0]

(sn− f )dµ

∣∣∣∣
≤ ε +

∫
[sn− f≥0]

|sn− f |dµ +
∫
[sn− f>0]

|sn− f |dµ

= ε +
∫
|sn− f |dµ

whenever n is large enough. But by Fatou’s lemma, Theorem 11.3.18 on Page 248, the last
term is no larger than

lim inf
k→∞

∫
|sn− sk|dµ < ε

whenever n is large enough. Since ε is arbitrary, this shows I ( f ) =
∫

f dµ as claimed.
As explained above, I can be regarded as an extension of

∫
dµ so from now on, the

usual symbol,
∫

dµ will be used. It is now easy to verify
∫

dµ is linear on L1 (Ω) .

Theorem 11.4.7
∫

dµ is linear on L1 (Ω) and L1 (Ω) is a complex vector space. If f ∈
L1 (Ω) , then Re f , Im f , and | f | are all in L1 (Ω) . Furthermore, for f ∈ L1 (Ω) ,∫

f dµ =
∫

(Re f )+ dµ−
∫

(Re f )− dµ + i
(∫

(Im f )+ dµ−
∫

(Im f )− dµ

)
Also the triangle inequality holds, ∣∣∣∣∫ f dµ

∣∣∣∣≤ ∫ | f |dµ

Proof: First it is necessary to verify that L1 (Ω) is really a vector space because it makes
no sense to speak of linear maps without having these maps defined on a vector space. Let
f ,g be in L1 (Ω) and let a,b ∈ C. Then let {sn} and {tn} be sequences of complex simple
functions associated with f and g respectively as described in Definition 11.4.4. Consider
{asn +btn} , another sequence of complex simple functions. Then asn (ω) + btn (ω)→
a f (ω)+bg(ω) for each ω. Also, from Lemma 11.4.3∫

|asn +btn− (asm +btm)|dµ ≤ |a|
∫
|sn− sm|dµ + |b|

∫
|tn− tm|dµ
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and the sum of the two terms on the right converge to zero as m,n→ ∞. Thus a f + bg ∈
L1 (Ω) . Also ∫

(a f +bg)dµ = lim
n→∞

∫
(asn +btn)dµ

= lim
n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a lim

n→∞

∫
sndµ +b lim

n→∞

∫
tndµ

= a
∫

f dµ +b
∫

gdµ.

If {sn} is a sequence of complex simple functions described in Definition 11.4.4 corre-
sponding to f , then {|sn|} is a sequence of complex simple functions satisfying the condi-
tions of Definition 11.4.4 corresponding to | f | . This is because |sn (ω)| → | f (ω)| and∫

||sn|− |sm||dµ ≤
∫
|sm− sn|dµ

with this last expression converging to 0 as m,n→ ∞. Thus | f | ∈ L1 (Ω). Also, by similar
reasoning, {Resn} and {Imsn} correspond to Re f and Im f respectively in the manner
described by Definition 11.4.4 showing that Re f and Im f are in L1 (Ω). Now (Re f )+ =
1
2 (|Re f |+Re f ) and (Re f )− = 1

2 (|Re f |−Re f ) so both of these functions are in L1 (Ω) .

Similar formulas establish that (Im f )+ and (Im f )− are in L1 (Ω) .
The formula follows from the observation that

f = (Re f )+− (Re f )−+ i
(
(Im f )+− (Im f )−

)
and the fact shown first that

∫
dµ is linear.

To verify the triangle inequality, let {sn} be complex simple functions for f as in Defi-
nition 11.4.4. Then∣∣∣∣∫ f dµ

∣∣∣∣= lim
n→∞

∣∣∣∣∫ sndµ

∣∣∣∣≤ lim
n→∞

∫
|sn|dµ =

∫
| f |dµ.

This proves the theorem.
The following description of L1 (Ω) is the version most often used because it is easy to

verify the conditions for it.

Corollary 11.4.8 Let (Ω,S ,µ) be a measure space and let f : Ω→ C. Then f ∈ L1 (Ω)
if and only if f is measurable and

∫
| f |dµ < ∞.

Proof: Suppose f ∈ L1 (Ω) . Then from Definition 11.4.4, it follows both real and
imaginary parts of f are measurable. Just take real and imaginary parts of sn and observe
the real and imaginary parts of f are limits of the real and imaginary parts of sn respectively.
Why is

∫
| f |dµ < ∞? It follows from Theorem 11.4.7. Recall why this was so. Let {sn} be

a sequence of simple functions attached to f as in the definition of what it means to be L1.
Then from the definition of I (s) for s simple,

|I (|sn|− |sm|)| ≤ I (|sn− sm|)



254 CHAPTER 11. ABSTRACT MEASURE AND INTEGRATION

which converges to 0. Since {I (|sn|)} is a Cauchy sequence, it is bounded by a constant C
and also {|sn|} is a sequence of simple functions of the right sort which converges pointwise
to | f | and so by definition, ∫

| f |dµ = I ( f ) = lim
n→∞

I (|sn|)≤C.

This shows the only if part.
The more interesting part is the if part. Suppose then that f is measurable and

∫
| f |dµ <

∞. Suppose first that f has values in [0,∞). It is necessary to obtain the sequence of com-
plex simple functions. By Theorem 11.3.9, there exists a sequence of nonnegative simple
functions, {sn} such that sn (ω) ↑ f (ω). Then by the monotone convergence theorem,

lim
n→∞

∫
(2 f − ( f − sn))dµ =

∫
2 f dµ

and so

lim
n→∞

∫
( f − sn)dµ = 0.

Letting m be large enough, it follows
∫
( f − sm)dµ < ε and so if n > m∫

|sm− sn|dµ ≤
∫
| f − sm|dµ < ε.

Therefore, f ∈ L1 (Ω) because {sn} is a suitable sequence.
The general case follows from considering positive and negative parts of real and imag-

inary parts of f . These are each measurable and nonnegative and their integral is finite so
each is in L1 (Ω) by what was just shown. Thus

f = Re f+−Re f−+ i
(
Im f+− Im f−

)
and so f ∈ L1 (Ω). This proves the corollary.

Theorem 11.4.9 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose

f (ω) = lim
n→∞

fn(ω),

and there exists a measurable function g, with values in [0,∞],3 such that

| fn(ω)| ≤ g(ω) and
∫

g(ω)dµ < ∞.

Then f ∈ L1(Ω) and ∫
f dµ = lim

n→∞

∫
fndµ .

3Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Proof: f is measurable by Theorem 11.1.8. Since | f | ≤ g, it follows that

f ∈ L1(Ω) and | f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 11.3.18),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ

=
∫

2gdµ− lim sup
n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ ,

0≤− lim sup
n→∞

∫
| f − fn|dµ.

Hence

0 ≥ lim sup
n→∞

(
∫
| f − fn|dµ)≥ lim sup

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣
≥ lim inf

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Lemma 11.3.17 on Page 247 because the limsup and liminf
are equal.

Corollary 11.4.10 Suppose fn ∈ L1 (Ω) and f (ω) = limn→∞ fn (ω) . Suppose also there
exist measurable functions, gn, g with values in [0,∞] such that

lim
n→∞

∫
gndµ =

∫
gdµ,

gn (ω)→ g(ω) µ a.e. and both
∫

gndµ and
∫

gdµ are finite. Also suppose | fn (ω)| ≤
gn (ω) . Then

lim
n→∞

∫
| f − fn|dµ = 0.

Proof: It is just like the above. This time g+gn−| f − fn| ≥ 0 and so by Fatou’s lemma,∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ =

lim inf
n→∞

∫
(gn +g)− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
((gn +g)−| f − fn|)dµ ≥

∫
2gdµ

and so − limsupn→∞

∫
| f − fn|dµ ≥ 0.

Definition 11.4.11 Let E be a measurable subset of Ω.∫
E

f dµ ≡
∫

f XEdµ.
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If L1(E) is written, the σ algebra is defined as

{E ∩A : A ∈F}

and the measure is µ restricted to this smaller σ algebra. Clearly, if f ∈ L1(Ω), then

f XE ∈ L1(E)

and if f ∈ L1(E), then letting f̃ be the 0 extension of f off of E, it follows f̃ ∈ L1(Ω).

11.5 Vitali Convergence Theorem
The Vitali convergence theorem is a convergence theorem which in the case of a finite
measure space is superior to the dominated convergence theorem.

Definition 11.5.1 Let (Ω,F ,µ) be a measure space and let S ⊆ L1(Ω). S is uniformly
integrable if for every ε > 0 there exists δ > 0 such that for all f ∈S

|
∫

E
f dµ|< ε whenever µ(E)< δ .

Lemma 11.5.2 If S is uniformly integrable, then |S| ≡ {| f | : f ∈ S} is uniformly inte-
grable. Also S is uniformly integrable if S is finite.

Proof: Let ε > 0 be given and suppose S is uniformly integrable. First suppose the
functions are real valued. Let δ be such that if µ (E)< δ , then∣∣∣∣∫E

f dµ

∣∣∣∣< ε

2

for all f ∈S. Let µ (E)< δ . Then if f ∈S,∫
E
| f |dµ ≤

∫
E∩[ f≤0]

(− f )dµ +
∫

E∩[ f>0]
f dµ

=

∣∣∣∣∫E∩[ f≤0]
f dµ

∣∣∣∣+ ∣∣∣∣∫E∩[ f>0]
f dµ

∣∣∣∣
<

ε

2
+

ε

2
= ε.

In general, if S is a uniformly integrable set of complex valued functions, the inequalities,∣∣∣∣∫E
Re f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ , ∣∣∣∣∫E
Im f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ ,
imply ReS ≡ {Re f : f ∈S} and ImS ≡ {Im f : f ∈S} are also uniformly integrable.
Therefore, applying the above result for real valued functions to these sets of functions, it
follows |S| is uniformly integrable also.
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For the last part, is suffices to verify a single function in L1 (Ω) is uniformly integrable.
To do so, note that from the dominated convergence theorem,

lim
R→∞

∫
[| f |>R]

| f |dµ = 0.

Let ε > 0 be given and choose R large enough that
∫
[| f |>R] | f |dµ < ε

2 . Now let µ (E)< ε

2R .
Then ∫

E
| f |dµ =

∫
E∩[| f |≤R]

| f |dµ +
∫

E∩[| f |>R]
| f |dµ

< Rµ (E)+
ε

2
<

ε

2
+

ε

2
= ε.

This proves the lemma.
The following theorem is Vitali’s convergence theorem.

Theorem 11.5.3 Let { fn} be a uniformly integrable set of complex valued functions,

µ(Ω)< ∞and fn(x)→ f (x)

a.e. where f is a measurable complex valued function. Then f ∈ L1 (Ω) and

lim
n→∞

∫
Ω

| fn− f |dµ = 0. (11.5.25)

Proof: First it will be shown that f ∈ L1 (Ω). By uniform integrability, there exists
δ > 0 such that if µ (E)< δ , then ∫

E
| fn|dµ < 1

for all n. By Egoroff’s theorem, there exists a set, E of measure less than δ such that on
EC, { fn} converges uniformly. Therefore, for p large enough, and n > p,∫

EC

∣∣ fp− fn
∣∣dµ < 1

which implies ∫
EC
| fn|dµ < 1+

∫
Ω

∣∣ fp
∣∣dµ.

Then since there are only finitely many functions, fn with n ≤ p, there exists a constant,
M1 such that for all n, ∫

EC
| fn|dµ < M1.

But also, ∫
Ω

| fm|dµ =
∫

EC
| fm|dµ +

∫
E
| fm|

≤ M1 +1≡M.
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Therefore, by Fatou’s lemma,∫
Ω

| f |dµ ≤ lim inf
n→∞

∫
| fn|dµ ≤M,

showing that f ∈ L1 as hoped.
Now S∪{ f} is uniformly integrable so there exists δ 1 > 0 such that if µ (E) < δ 1,

then
∫

E |g|dµ < ε/3 for all g ∈ S∪{ f}. By Egoroff’s theorem, there exists a set, F with
µ (F) < δ 1 such that fn converges uniformly to f on FC. Therefore, there exists N such
that if n > N, then ∫

FC
| f − fn|dµ <

ε

3
.

It follows that for n > N,∫
Ω

| f − fn|dµ ≤
∫

FC
| f − fn|dµ +

∫
F
| f |dµ +

∫
F
| fn|dµ

<
ε

3
+

ε

3
+

ε

3
= ε,

which verifies 11.5.25.

11.6 Measures and Regularity
It is often the case that Ω has more going on than to simply be a set. In particular, it is often
the case that Ω is some sort of topological space, often a metric space. In this case, it is
usually if not always the case that the open sets will be in the σ algebra of measurable sets.
This leads to the following definition.

Definition 11.6.1 A Polish space is a complete separable metric space. For a Polish space
E or more generally a metric space or even a general topological space, B (E) denotes the
Borel sets of E. This is defined to be the smallest σ algebra which contains the open sets.
Thus it contains all open sets and closed sets and compact sets and many others.

Don’t ever try to describe a generic Borel set. Always work with the definition that it
is the smallest σ algebra containing the open sets. Attempts to give an explicit description
of a “typical” Borel set tend to lead nowhere because there are so many things which can
be done.You can take countable unions and complements and then countable intersections
of what you get and then another countable union followed by complements and on and
on. You just can’t get a good useable description in this way. However, it is easy to see

that something like
(
∩∞

i=1∪∞
j=i E j

)C
is a Borel set if the E j are. This is useful. This said,

you can look at Hewitt and Stromberg in their discussion of why there are more Lebesgue
measurable sets than Borel measurable sets to see the kind of technicalities which result by
describing Borel sets.

For example, R is a Polish space as is any separable Banach space. Amazing things
can be said about finite measures on the Borel sets of a Polish space. First the case of a
finite measure on a metric space will be considered.
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Definition 11.6.2 A measure µ defined on B (E) will be called inner regular if for all
F ∈B (E) ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed} (11.6.26)

A measure, µ defined on B (E) will be called outer regular if for all F ∈B (E) ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open} (11.6.27)

When a measure is both inner and outer regular, it is called regular. Actually, it is more
useful and likely more standard to refer to µ being inner regular as

µ (F) = sup{µ (K) : K ⊆ F and K is compact} (11.6.28)

Thus the word “closed” is replaced with “compact”. A complete measure defined on a σ

algebra F which includes the Borel sets which is finite on compact sets and also satisfies
11.6.27 and 11.6.28 for each F ∈F is called a Radon measure.

For finite measures, defined on the Borel sets of a metric space, the first definition of
regularity is automatic. These are always outer and inner regular provided inner regularity
refers to closed sets.

Lemma 11.6.3 Let µ be a finite measure defined on B (X) where X is a metric space.
Then µ is regular.

Proof: First note every open set is the countable union of closed sets and every closed
set is the countable intersection of open sets. Here is why. Let V be an open set and let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V. Thus

µ (V ) = sup{µ (K) : K ⊆V and K is closed} .

If U is open and contains V, then µ (U)≥ µ (V ) and so

µ (V )≤ inf{µ (U) : U ⊇V, U open} ≤ µ (V ) since V ⊆V.

Thus µ is inner and outer regular on open sets. In what follows, K will be closed and V
will be open.

Let K be the open sets. This is a π system. Let

G ≡ {E ∈B (X) : µ is inner and outer regular on E} so G ⊇K .

For E ∈ G , let V ⊇ E ⊇ K such that µ (V \K) = µ (V \E)+µ (E \K)< ε . Thus KC ⊇ EC

and so µ
(
KC \EC

)
= µ (E \K)< ε. Thus µ is outer regular on EC because

µ
(
KC)= µ

(
EC)+µ

(
KC \EC)< µ

(
EC)+ ε, KC ⊇ EC
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Also, EC ⊇ VC and µ
(
EC \VC

)
= µ (V \E) < ε so µ is inner regular on EC and so G is

closed for complements. If the sets of G {Ei} are disjoint, let Ki⊆Ei⊆Vi with µ (Vi \Ki)<
ε2−i. Then for E ≡ ∪iEi,and choosing m sufficiently large,

µ (E) = ∑
i

µ (Ei)≤
m

∑
i=1

µ (Ei)+ ε ≤
m

∑
i=1

µ (Ki)+2ε = µ (∪m
i=1Ki)+2ε

and so µ is inner regular on E ≡ ∪iEi. It remains to show that µ is outer regular on E.
Letting V ≡ ∪iVi,

µ (V \E)≤ µ (∪i (Vi \Ei))≤∑
i

ε2−i = ε.

Hence µ is outer regular on E since µ (V ) = µ (E)+µ (V \E)≤ µ (E)+ ε and V ⊇ E.
By Dynkin’s lemma, G = σ (K )≡B (X). ■
One can say more if the metric space is complete and separable. In fact in this case the

above definition of inner regularity can be shown to imply the usual one where the closed
sets are replaced with compact sets.

Lemma 11.6.4 Let µ be a finite measure on a σ algebra containing B (X) , the Borel sets
of X , a separable complete metric space. Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, µ is inner regular
in the sense that for all F ∈B (X) ,

µ (F) = sup{µ (K) : K ⊆ F and K is compact}

Proof: Let {ak} be a countable dense subset of C. Thus ∪∞
k=1B

(
ak,

1
n

)
⊇C. Therefore,

there exists mn such that

µ

(
C \∪mn

k=1B
(

ak,
1
n

))
≡ µ (C \Cn)<

ε

2n .

Now let K =C∩ (∩∞
n=1Cn) . Then K is a subset of Cn for each n and so for each ε > 0 there

exists an ε net for K since Cn has a 1/n net, namely a1, · · · ,amn . Since K is closed, it is
complete and so it is also compact since it is complete and totally bounded, Theorem 7.6.5.
Now

µ (C \K)≤ µ (∪∞
n=1 (C \Cn))<

∞

∑
n=1

ε

2n = ε.

Thus µ (C) can be approximated by µ (K) for K a compact subset of C. The last claim
follows from Lemma 11.6.3. ■

An important example is the case of a random vector and its distribution measure.

Definition 11.6.5 A measurable function X : (Ω,F ,µ)→ Z a metric space is called a
random variable when µ (Ω)= 1. For such a random variable, one can define a distribution
measure λ X on the Borel sets of Z as follows.

λ X (G)≡ µ
(
X−1 (G)

)
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This is a well defined measure on the Borel sets of Z because it makes sense for every G
open and G ≡

{
G⊆ Z : X−1 (G) ∈F

}
is a σ algebra which contains the open sets, hence

the Borel sets. Such a random variable is also called a random vector when Z is a vector
space.

Corollary 11.6.6 Let X be a random variable with values in a separable complete metric
space Z. Then λ X is an inner and outer regular measure defined on B (Z).

What if the measure µ is defined on a Polish space but is not finite. Sometimes one can
still get the assertion that µ is regular. In every case of interest in this book, the measure
will also be σ finite.

Definition 11.6.7 Let (E,B (E) ,µ) be a measurable space with the measure µ. Then µ is
said to be σ finite if there is a sequence of disjoint Borel sets {Bi}∞

i=1 such that ∪∞
i=1Bi = E

and µ (Bi) < ∞. More generally, if (X ,F ,µ) is a measure space, it is σ finite if there are
Xn ∈F with ∪nXn = X and µ (Xn)< ∞.

One such example of a complete metric space and a measure which is finite on compact
sets is the following where the closures of balls are compact. Thus, this involves finite di-
mensional situations essentially. Note that if you have a metric space in which the closures
of balls are compact sets, then the metric space must be separable. This is because you can
pick a point ξ and consider the closures of balls B(ξ ,n). Then B(ξ ,n) is complete and
totally bounded so it has a countable dense subset Dn. Let D = ∪nDn.

Corollary 11.6.8 Let Ω be a complete metric space which is the countable union of com-
pact sets Kn and suppose, for µ a Borel measure, µ (Kn) is finite. Then µ must be regular.
In particular, if Ω is a metric space and the closure of each ball is compact, and µ is finite
on balls, then µ must be regular.

Proof: Let the compact sets be increasing without loss of generality, and let µn (E) ≡
µ (Kn∩E) . Thus µn is a finite measure defined on the Borel sets of a Polish space so
it is regular. Letting l < µ (E) , there exists n such that l < µn (E) ≤ µ (E) . By what
was shown above in Lemma 11.6.4, there exists H compact, H ⊆ E such that also for
a large n, µn (H) > l. Hence µ (H ∩Kn) > l and so µ is inner regular. It remains to
verify that µ is outer regular. If µ (E) = ∞, there is nothing to show. Assume then that
µ (E) < ∞. Let Vn ⊇ E with µn (Vn \E) < ε2−n so also µ (Vn) < ∞. We can assume also
that Vn ⊇ Vn+1 for all n. Thus µ ((Vn \E)∩Kn) < 2−nε . Let G = ∩kVk. Then G ⊆ Vn so
µ ((G\E)∩Kn) < 2−nε. Letting n→ ∞,µ (G\E) = 0 and G ⊇ E. Then, since V1 has
finite measure, µ (G\E) = limn→∞ µ (Vn \E) and so for all n large enough, µ (Vn \E)< ε

so µ (E)+ ε > µ (Vn) and so µ is outer regular. In the last case, if the closure of each ball
is compact, then Ω is automatically complete because every Cauchy sequence is contained
in some ball and so has a convergent subsequence. Since the sequence is Cauchy, it also
converges by Theorem 7.3.2 on Page 140. ■
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11.7 Regular Measures in a Metric Space
In this section X will be a metric space in which the closed balls are compact. The extra
generality involving a metric space instead of Rp would allow the consideration of mani-
folds for example. However, Rp is an important case.

Definition 11.7.1 The symbol Cc (V ) for V an open set will denote the continuous functions
having compact support which is contained in V . Recall that the support of a continuous
function f is defined as the closure of the set on which the function is nonzero. L : Cc (X)→
C is called a positive linear functional if it is linear, L(α f +βg) =αL f +βLg and satisfies
L f ≤ Lg if f ≤ g. Also, recall that a measure µ is regular on some σ algebra F containing
the Borel sets if for every F ∈F ,

µ (F) = sup{µ (K) : K ⊆ F and K compact}
µ (F) = inf{µ (V ) : V ⊇ F and V is open}

A complete measure, finite on compact sets, which is regular as above, is called a Radon
measure. A set is called an Fσ set if it is the countable union of closed sets and a set is
Gδ if it is the countable intersection of open sets. If K is compact and V is open, we say
K≺ φ ≺V if φ is continuous, has values in [0,1] ,φ (x)= 1 for all x∈K, and {x : φ (x) ̸= 0}
called spt(φ) is contained in V .

Remarkable things happen in the above context. Some are described in the following
proposition. First is a lemma.

Lemma 11.7.2 Let (Ω,d) be a metric space in which closed balls are compact. Then if K
is a compact subset of an open set V, then there exists φ such that K ≺ φ ≺V.

Proof: Since K is compact, the distance between K and VC is positive, δ > 0. Other-
wise there would be xn ∈ K and yn ∈VC with d (xn,yn)< 1/n. Taking a subsequence, still
denoted with n, we can assume xn→ x and yn→ x but this would imply x is in both K and
VC which is not possible. Now consider {B(x,δ/2)} for x ∈ K. This is an open cover and
the closure of each ball is contained in V . Since K is compact, finitely many of these balls
cover K. Denote their union as W . Then W is compact because it is the finite union of the
closed balls. Hence K ⊆W ⊆W ⊆V . Now consider

φ (x)≡
dist
(
x,WC

)
dist(x,K)+dist(x,WC)

the denominator is never zero because x cannot be in both K and WC. Thus φ is continuous
because the denominator is never 0 and the functions of x are continuous. Also if x ∈ K,
then φ (x) = 1 and if x /∈W, then φ (x) = 0. ■

Proposition 11.7.3 Suppose (X ,d) is a metric space in which the balls are compact and X
is a countable union of closed balls. Also suppose (X ,F ,µ) is a complete measure space,
F contains the Borel sets, and that µ is regular and finite on finite balls. Then
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1. For each E ∈ F , there is an Fσ set F and a Gδ set G such that F ⊆ E ⊆ G and
µ (G\F) = 0.

2. Also if f ≥ 0 is F measurable, then there exists g≤ f such that g is Borel measurable
and g = f a.e. and h≥ f such that h is Borel measurable and h = f a.e.

3. If E ∈ F is a bounded set contained in a ball B(x0,r) = V , then there exists a
sequence of continuous functions in Cc (V ) {hn} having values in [0,1] and a set
of measure zero N such that for x /∈ N,hn (x)→XE (x) . Also

∫
|hn−XE |dµ → 0.

Letting Ñ be a Gδ set of measure zero containing N,hnXÑC →XF where F ⊆ E and
µ (E \F) = 0.

4. If f ∈ L1 (X ,F ,µ) , there exists g ∈Cc (X) , such that
∫

X | f −g|dµ < ε. There also
exists a sequence of functions in Cc (X) {gn} which converges pointwise to f .

Proof: 1. Let Rn ≡ B(x0,n) ,R0 = /0. If E is Lebesgue measurable, let En ≡ E ∩
(Rn \Rn−1) . Thus these En are disjoint and their union is E. By outer regularity, there
exists open Un ⊇ En such that µ (Un \En) < ε/2n. Now if U ≡ ∪nUn, it follows that
µ (U \E) ≤ ∑

∞
n=1

ε

2n = ε . Let Vn be open, containing E and µ (Vn \E) < 1
2n ,Vn ⊇ Vn+1.

Let G ≡ ∩nVn. This is a Gδ set containing E and µ (G\E) ≤ µ (Vn \E) < 1
2n and so

µ (G\E)= 0. By inner regularity, there is Fn an Fσ set contained in En with µ (En \Fn)= 0.
Then let F ≡ ∪nFn. This is an Fσ set and µ (E \F)≤ ∑n µ (En \Fn) = 0. Thus F ⊆ E ⊆ G
and µ (G\F)≤ µ (G\E)+µ (E \F) = 0.

2. If f is measurable and nonnegative, there is an increasing sequence of simple func-
tions sn such that limn→∞ sn (x) = f (x) . Say ∑

mn
k=1 cn

kXEn
k
(x) . Let mp

(
En

k \Fn
k

)
= 0 where

Fn
k is an Fσ set. Replace En

k with Fn
k and let s̃n be the resulting simple function. Let

g(x) ≡ limn→∞ s̃n (x) . Then g is Borel measurable and g ≤ f and g = f except for a set
of measure zero, the union of the sets where sn is not equal to s̃n. As to the other claim,
let hn (x) ≡ ∑

∞
k=1 XAkn (x)

k
2n where Akn is a Gδ set containing f−1

(
( k−1

2n , k
2n ]
)

for which
µ
(
Akn \ f−1

(
( k−1

2n , k
2n ]
))
≡ µ (Dkn) = 0. If N = ∪k,n Dkn, then N is a set of measure zero.

On NC, hn (x)→ f (x) . Let h(x) = liminfn→∞ hn (x).
3. Let Kn ⊆ E ⊆Vn with Kn compact and Vn open such that Vn ⊆ B(x0,r) and

µ (Vn \Kn)< 2−(n+1).

Then from Lemma 11.7.2, there exists hn with Kn ≺ hn ≺ Vn. Then
∫
|hn−XE |dµ < 2−n

and so

µ

(
|hn−XE |>

(
2
3

)n)
<

((
3
2

)n ∫
[|hn−XE |>( 2

3 )
n
]
|hn−XE |dµ

)
≤
(

3
4

)n

Letting An≡
[
|hn−XE |>

( 2
3

)n
]
, the set of x which is in infinitely many An is N≡∩n∪k≥n

Ak and so

µ (∩n∪k≥n Ak)≤ µ (∪k≥nAk)≤
∞

∑
k=n

(
3
4

)k

=

(
3
4

)n( 1
1/4

)
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and since n is arbitrary the set of x in infinitely many An called N has measure zero. Thus if
x /∈ N, it is in only finitely many of the sets

{
|hn−XE |>

( 2
3

)n
}

. Thus on NC, eventually,

for all k large enough, |hk−XE | ≤
( 2

3

)k
so hk (x)→XE (x) off N. The assertion about

convergence of the integrals follows from the dominated convergence theorem and the fact
that each hn is nonnegative, bounded by 1, and is 0 off some ball. In the last claim, it only
remains to verify that hnXÑC converges to an indicator function because each hnXÑC is
Borel measurable. Thus its limit will also be Borel measurable. However, it converges to
1 on E ∩ ÑC,0 on EC ∩ ÑC and 0 on Ñ. Thus E ∩ ÑC = F and hnXÑC (x)→XF where
F ⊆ E and µ (E \F)≤ µ

(
Ñ
)
= 0.

4. It suffices to assume f ≥ 0 because you can consider the positive and negative parts
of the real and imaginary parts of f and reduce to this case. Let fn (x)≡XB(x0,n) (x) f (x) .
Then by the dominated convergence theorem, if n is large enough,

∫
| f − fn|dµ < ε. There

is a nonnegative simple function s ≤ fn such that
∫
| fn− s|dµ < ε. This follows from

picking k large enough in an increasing sequence of simple functions {sk} converging to fn
and the monotone or dominated convergence theorem. Say s(x)=∑

m
k=1 ckXEk (x) . Then let

Kk ⊆ Ek ⊆Vk where Kk,Vk are compact and open respectively and ∑
m
k=1 ckµ (Vk \Kk)< ε .

By Lemma 11.7.2, there exists hk with Kk ≺ hk ≺Vk. Then

∫ ∣∣∣∣∣ m

∑
k=1

ckXEk (x)−
m

∑
k=1

ckhk (x)

∣∣∣∣∣dµ ≤ ∑
k

ck

∫ ∣∣XEk (x)−hk (x)
∣∣dx

< 2∑
k

ckµ (Vk \Kk)< 2ε

Let g≡ ∑
m
k=1 ckhk (x) . Thus

∫
|s−g|dµ ≤ 2ε. Then∫

| f −g|dµ ≤
∫
| f − fn|dµ +

∫
| fn− s|dµ +

∫
|s−g|dµ < 4ε

Since ε is arbitrary, this proves the first part of 4. For the second part, let gn ∈Cc (X) such
that

∫
| f −gn|dµ < 2−n. Let An ≡

{
x : | f −gn|>

( 2
3

)n
}
. Then

µ (An)≤
(

3
2

)n ∫
An

| f −gn|dµ ≤
(

3
4

)n

Thus, if N is all x in infinitely many An, then by the Borel Cantelli lemma, µ (N) = 0 and
if x /∈ N, then x is in only finitely many An and so for all n large enough, | f (x)−gn (x)| ≤( 2

3

)n
. ■

11.8 Exercises
1. Let Ω = N= {1,2, · · ·} and µ(S) = number of elements in S. If

f : Ω→ C

what is meant by
∫

f dµ? Which functions are in L1(Ω)? Which functions are mea-
surable?
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2. Show that for f ≥ 0 and measurable,
∫

f dµ ≡ limh→0+ ∑
∞
i=1 hµ ([ih < f ]).

3. For the measure space of Problem 1, give an example of a sequence of nonnegative
measurable functions { fn} converging pointwise to a function f , such that inequality
is obtained in Fatou’s lemma.

4. Fill in all the details of the proof of Lemma 11.5.2.

5. Let ∑
n
i=1 ciXEi (ω) = s(ω) be a nonnegative simple function for which the ci are the

distinct nonzero values. Show with the aid of the monotone convergence theorem
that the two definitions of the Lebesgue integral given in the chapter are equivalent.

6. Suppose (Ω,µ) is a finite measure space and S⊆ L1 (Ω). Show S is uniformly inte-
grable and bounded in L1 (Ω) if there exists an increasing function h which satisfies

lim
t→∞

h(t)
t

= ∞, sup
{∫

Ω

h(| f |)dµ : f ∈S

}
< ∞.

S is bounded if there is some number, M such that∫
| f |dµ ≤M

for all f ∈S.

7. Let {an},{bn} be sequences in [−∞,∞] and a ∈ R. Show

lim inf
n→∞

(a−an) = a− lim sup
n→∞

an.

This was used in the proof of the Dominated convergence theorem. Also show

lim sup
n→∞

(−an) =− lim inf
n→∞

(an)

lim sup
n→∞

(an +bn)≤ lim sup
n→∞

an + lim sup
n→∞

bn

provided no sum is of the form ∞−∞. Also show strict inequality can hold in the
inequality. State and prove corresponding statements for liminf.

8. Let (Ω,F ,µ) be a measure space and suppose f ,g : Ω→ (−∞,∞] are measurable.
Prove the sets

{ω : f (ω)< g(ω)} and {ω : f (ω) = g(ω)}

are measurable. Hint: The easy way to do this is to write

{ω : f (ω)< g(ω)}= ∪r∈Q [ f < r]∩ [g > r] .

Note that l (x,y) = x− y is not continuous on (−∞,∞] so the obvious idea doesn’t
work.
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9. Let { fn} be a sequence of real or complex valued measurable functions. Let

S = {ω : { fn(ω)} converges}.

Show S is measurable. Hint: You might try to exhibit the set where fn converges
in terms of countable unions and intersections using the definition of a Cauchy se-
quence.

10. Let (Ω,S ,µ) be a measure space and let f be a nonnegative measurable function
defined on Ω. Also let φ : [0,∞)→ [0,∞) be strictly increasing and have a continuous
derivative and φ (0) = 0. Suppose f is bounded and that 0≤ φ ( f (ω))≤M for some
number, M. Show that ∫

Ω

φ ( f )dµ =
∫

∞

0
φ
′ (s)µ ([s < f ])ds,

where the integral on the right is the ordinary improper Riemann integral. Hint:
First note that s→ φ

′ (s)µ ([s < f ]) is Riemann integrable because φ
′ is continuous

and s→ µ ([s < f ]) is a nonincreasing function, hence Riemann integrable. From the
second description of the Lebesgue integral and the assumption that φ ( f (ω))≤M,
argue that for [M/h] the greatest integer less than M/h,

∫
Ω

φ ( f )dµ = sup
h>0

[M/h]

∑
i=1

hµ ([ih < φ ( f )])

= sup
h>0

[M/h]

∑
i=1

hµ
([

φ
−1 (ih)< f

])
= sup

h>0

[M/h]

∑
i=1

h∆i

∆i
µ
([

φ
−1 (ih)< f

])
where ∆i =

(
φ
−1 (ih)−φ

−1 ((i−1)h)
)
. Now use the mean value theorem to write

∆i =
(
φ
−1)′ (ti)h

=
1

φ
′ (

φ
−1 (ti)

)h

for some ti between (i−1)h and ih. Therefore, the right side is of the form

sup
h

[M/h]

∑
i=1

φ
′ (

φ
−1 (ti)

)
∆iµ

([
φ
−1 (ih)< f

])
where φ

−1 (ti) ∈
(
φ
−1 ((i−1)h) ,φ−1 (ih)

)
. Argue that if ti were replaced with ih,

this would be a Riemann sum for the Riemann integral∫
φ−1(M)

0
φ
′ (t)µ ([t < f ])dt =

∫
∞

0
φ
′ (t)µ ([t < f ])dt.
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11. Let (Ω,F ,µ) be a measure space and suppose fn converges uniformly to f and that
fn is in L1(Ω). When is

lim
n→∞

∫
fndµ =

∫
f dµ?

12. Suppose un(t) is a differentiable function for t ∈ (a,b) and suppose that for t ∈ (a,b),

|un(t)|, |u′n(t)|< Kn

where ∑
∞
n=1 Kn < ∞. Show

(
∞

∑
n=1

un(t))′ =
∞

∑
n=1

u′n(t).

Hint: This is an exercise in the use of the dominated convergence theorem and the
mean value theorem.

13. Show that {∑∞
i=1 2−nµ ([i2−n < f ])} for f a nonnegative measurable function is an

increasing sequence. Could you define∫
f dµ ≡ lim

n→∞

∞

∑
i=1

2−n
µ
([

i2−n < f
])

and would it be equivalent to the above definitions of the Lebesgue integral?

14. Suppose { fn} is a sequence of nonnegative measurable functions defined on a mea-
sure space, (Ω,S ,µ). Show that∫ ∞

∑
k=1

fkdµ =
∞

∑
k=1

∫
fkdµ.

Hint: Use the monotone convergence theorem along with the fact the integral is
linear.
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Chapter 12

The Construction Of Measures
12.1 Outer Measures

What are some examples of measure spaces? In this chapter, a general procedure is dis-
cussed called the method of outer measures. It is due to Caratheodory (1918). This ap-
proach shows how to obtain measure spaces starting with an outer measure. This will then
be used to construct measures determined by positive linear functionals.

Definition 12.1.1 Let Ω be a nonempty set and let µ : P(Ω)→ [0,∞] satisfy

µ( /0) = 0,

If A⊆ B, then µ(A)≤ µ(B),

µ(∪∞
i=1Ei)≤

∞

∑
i=1

µ(Ei).

Such a function is called an outer measure. For E ⊆Ω, E is µ measurable if for all S⊆Ω,

µ(S) = µ(S\E)+µ(S∩E). (12.1.1)

To help in remembering 12.1.1, think of a measurable set, E, as a process which divides
a given set into two pieces, the part in E and the part not in E as in 12.1.1. In the Bible, there
are four incidents recorded in which a process of division resulted in more stuff than was
originally present.1 Measurable sets are exactly those for which no such miracle occurs.
You might think of the measurable sets as the nonmiraculous sets. The idea is to show that
they form a σ algebra on which the outer measure, µ is a measure.

First here is a definition and a lemma.

Definition 12.1.2 (µ⌊S)(A)≡ µ(S∩A) for all A⊆Ω. Thus µ⌊S is the name of a new outer
measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 12.1.3 If A is µ measurable, then A is µ⌊S measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆Ω,

(µ⌊S)(T ) = (µ⌊S)(T ∩A)+(µ⌊S)(T \A).

11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was
either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R3 into five disjoint pieces and assemble the pieces to form two disjoint balls of the same size as
the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985.
It is known that all such examples must involve the axiom of choice.

269
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Thus it is desired to show

µ(S∩T ) = µ(T ∩A∩S)+µ(T ∩S∩AC). (12.1.2)

But 12.1.2 holds because A is µ measurable. Apply Definition 12.1.1 to S∩T instead of S.

If A is µ⌊S measurable, it does not follow that A is µ measurable. Indeed, if you believe
in the existence of non measurable sets, you could let A = S for such a µ non measurable
set and verify that S is µ⌊S measurable.

The next theorem is the main result on outer measures. It is a very general result which
applies whenever one has an outer measure on the power set of any set. This theorem will
be referred to as Caratheodory’s procedure in the rest of the book.

Theorem 12.1.4 The collection of µ measurable sets, S , forms a σ algebra and

If Fi ∈S, Fi∩Fj = /0, then µ(∪∞
i=1Fi) =

∞

∑
i=1

µ(Fi). (12.1.3)

If · · ·Fn ⊆ Fn+1 ⊆ ·· · , then if F = ∪∞
n=1Fn and Fn ∈S , it follows that

µ(F) = lim
n→∞

µ(Fn). (12.1.4)

If · · ·Fn ⊇ Fn+1 ⊇ ·· · , and if F = ∩∞
n=1Fn for Fn ∈S then if µ(F1)< ∞,

µ(F) = lim
n→∞

µ(Fn). (12.1.5)

Also, (S ,µ) is complete. By this it is meant that if F ∈S and if E ⊆ Ω with µ(E \F)+
µ(F \E) = 0, then E ∈S .

Proof: First note that /0 and Ω are obviously in S . Now suppose A,B ∈S . I will show
A\B≡ A∩BC is in S . To do so, consider the following picture.
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S
⋂

AC⋂BC

S
⋂

AC⋂B

S
⋂

A
⋂

B

S
⋂

A
⋂

BC

A

B

S

Since µ is subadditive,

µ (S)≤ µ
(
S∩A∩BC)+µ (A∩B∩S)+µ

(
S∩B∩AC)+µ

(
S∩AC ∩BC) .

Now using A,B ∈S ,

µ (S) ≤ µ
(
S∩A∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ

(
S∩AC ∩BC)

= µ (S∩A)+µ
(
S∩AC)= µ (S)

It follows equality holds in the above. Now observe using the picture if you like that

(A∩B∩S)∪
(
S∩B∩AC)∪ (S∩AC ∩BC)= S\ (A\B)

and therefore,

µ (S) = µ
(
S∩A∩BC)+µ (A∩B∩S)+µ

(
S∩B∩AC)+µ

(
S∩AC ∩BC)

≥ µ (S∩ (A\B))+µ (S\ (A\B)) .

Therefore, since S is arbitrary, this shows A\B ∈S .
Since Ω ∈S , this shows that A ∈S if and only if AC ∈S . Now if A,B ∈S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪n
i=1Ai. If

A,B ∈S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai∩A j = /0 and Ai ∈S , µ(∪n
i=1Ai) = ∑

n
i=1 µ(Ai).
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Now let A = ∪∞
i=1Ai where Ai∩A j = /0 for i ̸= j.

∞

∑
i=1

µ(Ai)≥ µ(A)≥ µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai).

Since this holds for all n, you can take the limit as n→ ∞ and conclude,

∞

∑
i=1

µ(Ai) = µ(A)

which establishes 12.1.3. Part 12.1.4 follows from part 12.1.3 just as in the proof of Theo-
rem 11.1.5 on Page 224. That is, letting F0 ≡ /0, use part 12.1.3 to write

µ (F) = µ (∪∞
k=1 (Fk \Fk−1)) =

∞

∑
k=1

µ (Fk \Fk−1)

= lim
n→∞

n

∑
k=1

(µ (Fk)−µ (Fk−1)) = lim
n→∞

µ (Fn) .

In order to establish 12.1.5, let the Fn be as given there. Then from what was just shown,

µ (F1 \Fn)+µ (Fn) = µ (F1)

Then, since (F1 \Fn) increases to (F1 \F), 12.1.4 implies

lim
n→∞

(µ (F1 \Fn)) = lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F) .

Now I don’t know whether F ∈S and so all that can be said is that

µ (F1 \F)+µ (F)≥ µ (F1)

but this implies
µ (F1 \F)≥ µ (F1)−µ (F) .

Hence
lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F)≥ µ (F1)−µ (F)

which implies
lim
n→∞

µ (Fn)≤ µ (F) .

But since F ⊆ Fn,
µ (F)≤ lim

n→∞
µ (Fn)

and this establishes 12.1.5. Note that it was assumed µ (F1) < ∞ because µ (F1) was sub-
tracted from both sides.

It remains to show S is closed under countable unions. Recall that if A ∈ S , then
AC ∈S and S is closed under finite unions. Let Ai ∈S , A = ∪∞

i=1Ai, Bn = ∪n
i=1Ai. Then

µ(S) = µ(S∩Bn)+µ(S\Bn) (12.1.6)
= (µ⌊S)(Bn)+(µ⌊S)(BC

n ).
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By Lemma 12.1.3 Bn is (µ⌊S) measurable and so is BC
n . I want to show µ(S)≥ µ(S\A)+

µ(S∩A). If µ(S) = ∞, there is nothing to prove. Assume µ(S) < ∞. Then apply Parts
12.1.5 and 12.1.4 to the outer measure, µ⌊S in 12.1.6 and let n→ ∞. Thus

Bn ↑ A, BC
n ↓ AC

and this yields

µ(S) = (µ⌊S)(A)+(µ⌊S)(AC) = µ(S∩A)+µ(S\A).

Therefore A ∈S and this proves Parts 12.1.3, 12.1.4, and 12.1.5. It remains to prove
the last assertion about the measure being complete.

Let F ∈S and let µ(E \F)+µ(F \E) = 0. Consider the following picture.

E F

S

Then referring to this picture and using F ∈S ,

µ(S) ≤ µ(S∩E)+µ(S\E)

≤ µ (S∩E ∩F)+µ ((S∩E)\F)+µ (S\F)+µ (F \E)

≤ µ (S∩F)+µ (E \F)+µ (S\F)+µ (F \E)

= µ (S∩F)+µ (S\F) = µ (S)

Hence µ(S) = µ(S∩E)+µ(S\E) and so E ∈S . This shows that (S , µ) is complete and
proves the theorem.

Completeness usually occurs in the following form. E ⊆ F ∈S and µ (F) = 0. Then
E ∈S .

Proposition 12.1.5 Let (Ω,F , µ) be a measure space. Let µ̄ be the outer measure deter-
mined by µ . Also denote as F̄ , the σ algebra of µ̄ measurable sets. Thus

(
Ω,F̄ , µ̄

)
is

a complete measure space in which F̄ ⊇F and µ̄ = µ on F . Also, in this situation, if
µ̄ (E) = 0, then E ∈ F̄ . No new sets are obtained if (Ω,F ,µ) is already complete.

Proof: All that remains to show is the last claim. But this is obvious because if S is a
set,

µ̄ (S) ≤ µ̄ (S∩E)+ µ̄ (S\E)

≤ µ̄ (E)+ µ̄ (S\E)

= µ̄ (S\E)≤ µ̄ (S)

and so all inequalities are equal signs.
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Suppose now that (Ω,F ,µ) is complete. Let F ∈ F̄ . Then there exists E ⊇ F such that
µ (E) = µ̄ (F) . This is obvious if µ̄ (F) = ∞. Otherwise, let En ⊇ F, µ̄ (F)+ 1

n > µ (En) .
Just let E =∩nEn. Now µ̄ (E \F) = 0. Now also, there exists a set of F called W such that
µ (W ) = 0 and W ⊇ E \F. Thus E \F ⊆W, a set of measure zero. Hence by completeness
of (Ω,F ,µ) , it must be the case that E \F = E∩FC = G ∈F . Then taking complements
of both sides, EC ∪F = GC ∈F . Now take intersections with E. F ∈ E ∩GC ∈F . ■

In the case of a Hausdorff topological space, the following lemma gives conditions
under which the σ algebra of µ measurable sets for an outer measure µ contains the Borel
sets. In words, it assumes the outer measure is inner regular on open sets and outer regular
on all sets. Also it assumes you can approximate the measure of an open set with a compact
set and the measure of a compact set with an open set.

Lemma 12.1.6 Let Ω be a Hausdorff space and suppose µ is an outer measure satisfying
µ is finite on compact sets and the following conditions,

1. µ (E) = inf{µ (V ) ,V ⊇ E,V open} for all E. (Outer regularity.)

2. For every open set V,µ (V ) = sup{µ (K) : K ⊆V,K compact} (Inner regularity on
open sets.)

3. If A,B are compact disjoint sets, then µ (A∪B) = µ (A)+µ (B).

Then the following hold.

1. If ε > 0 and if K is compact, there exists V open such that V ⊇ K and

µ (V \K)< ε

2. If ε > 0 and if V is open with µ (V )< ∞, there exists a compact subset K of V such
that

µ (V \K)< ε

3. Then the µ measurable sets S contain the Borel sets and also µ is inner regular
on every open set and for every E ∈S with µ(E) < ∞. Here S consists of those
subsets of Ω E with the property that for any subset S of Ω,

µ (S) = µ (S∩E)+µ
(
S∩EC)

Proof: First we establish 1 and 2 and use them to establish the last assertion. Consider
2. Suppose it is not true. Then there exists an open set V having µ (V ) < ∞ but for all
K ⊆ V,µ (V \K) ≥ ε for some ε > 0. By inner regularity on open sets, there exists K1 ⊆
V,K1 compact, such that µ (K1)≥ ε/2. Now by assumption, µ (V \K1)≥ ε and so by inner
regularity on open sets again, there exists compact K2 ⊆ V \K1 such that µ (K2) ≥ ε/2.
Continuing this way, there is a sequence of disjoint compact sets contained in V {Ki} such
that µ (Ki)≥ ε/2.
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V

K1
K4

K2

K3

Now this is an obvious contradiction because by 3,

µ (V )≥ µ (∪n
i=1Ki) =

n

∑
i=1

µ (Ki)≥ n
ε

2

for each n, contradicting µ (V )< ∞.
Next consider 1. By outer regularity, there exists an open set W ⊇ K such that µ (W )<

µ (K)+ 1. By 2, there exists compact K1 ⊆W \K such that µ ((W \K)\K1) < ε. Then
consider V ≡W \K1. This is an open set containing K and from what was just shown,

µ ((W \K1)\K) = µ ((W \K)\K1)< ε.

Now consider the last assertion.
Define

S1 = {E ∈P (Ω) : E ∩K ∈S }

for all compact K.
First it will be shown the compact sets are in S . From this it will follow the closed sets

are in S1. Then you show S1 = S . Thus S1 = S is a σ algebra and so it contains the
Borel sets. Finally you show the inner regularity assertion.

Claim 1: Compact sets are in S .
Proof of claim: Let V be an open set with µ (V )< ∞. I will show that for C compact,

µ (V )≥ µ(V \C)+µ(V ∩C).

Here is a diagram to help keep things straight.

VH C
K
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By 2, there exists a compact set K ⊆V \C such that

µ ((V \C)\K)< ε.

and a compact set H ⊆V such that

µ (V \H)< ε

Thus µ (V )≤ µ (V \H)+µ (H)< ε +µ (H). Then

µ (V )≤ µ (H)+ ε ≤ µ (H ∩C)+µ (H \C)+ ε

≤ µ (V ∩C)+µ (V \C)+ ε ≤ µ (H ∩C)+µ (K)+3ε

By 3,
= µ (H ∩C)+µ (K)+3ε = µ ((H ∩C)∪K)+3ε ≤ µ (V )+3ε.

Since ε is arbitrary, this shows that

µ(V ) = µ(V \C)+µ(V ∩C). (12.1.7)

Of course 12.1.7 is exactly what needs to be shown for arbitrary S in place of V . It
suffices to consider only S having µ (S)<∞. If S⊆Ω, with µ(S)<∞, let V ⊇ S, µ(S)+ε >
µ(V ). Then from what was just shown, if C is compact,

ε +µ(S) > µ(V ) = µ(V \C)+µ(V ∩C)

≥ µ(S\C)+µ(S∩C).

Since ε is arbitrary, this shows the compact sets are in S . This proves the claim.
As discussed above, this verifies the closed sets are in S1 because if H is closed and

C is compact, then H ∩C ∈S . If S1 is a σ algebra, this will show that S1 contains the
Borel sets. Thus I first show S1 is a σ algebra.

To see that S1 is closed with respect to taking complements, let E ∈ S1 and K a
compact set.

K = (EC ∩K)∪ (E ∩K).

Then from the fact, just established, that the compact sets are in S ,

EC ∩K = K \ (E ∩K) ∈S.

S1 is closed under countable unions because if K is a compact set and En ∈S1,

K∩∪∞
n=1En = ∪∞

n=1K∩En ∈S

because it is a countable union of sets of S . Thus S1 is a σ algebra.
Therefore, if E ∈S and K is a compact set, just shown to be in S , it follows K∩E ∈S

because S is a σ algebra which contains the compact sets and so S1 ⊇S . It remains to
verify S1 ⊆S . Recall that

S1 ≡ {E : E ∩K ∈S for all K compact}
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Let E ∈ S1 and let V be an open set with µ(V ) < ∞ and choose K ⊆ V such that
µ(V \K)< ε . Then since E ∈S1, it follows E ∩K,EC ∩K ∈S and so

µ (V ) ≤ µ (V \E)+µ (V ∩E)≤

The two sets are disjoint and in S︷ ︸︸ ︷
µ (K \E)+µ (K∩E) +2ε

= µ (K)+2ε ≤ µ (V )+3ε

Since ε is arbitrary, this shows

µ (V ) = µ (V \E)+µ (V ∩E)

which would show E ∈S if V were an arbitrary set.
Now let S ⊆Ω be such an arbitrary set. If µ(S) = ∞, then

µ(S) = µ(S∩E)+µ(S\E).

If µ(S)< ∞, let
V ⊇ S, µ(S)+ ε ≥ µ(V ).

Then
µ(S)+ ε ≥ µ(V ) = µ(V \E)+µ(V ∩E)≥ µ(S\E)+µ(S∩E).

Since ε is arbitrary, this shows that E ∈ S and so S1 = S . Thus S ⊇ Borel sets as
claimed.

From 2 µ is inner regular on all open sets. It remains to show that

µ(F) = sup{µ(K) : K ⊆ F}

for all F ∈S with µ(F)< ∞. It might help to refer to the following crude picture to keep
things straight. It also might not help. I am not sure. In the picture, the green marks the
boundary of V while red marks U and black marks F and VC∩K. This last set is as shown
because K is a compact subset of U such that µ(U \K)< ε .

Let µ (F)< ∞ and let U be an open set, U ⊇ F, µ(U)< ∞. Let V be open, V ⊇U \F ,
and

µ(V \ (U \F))< ε.

(This can be obtained as follows, because µ is a measure on S .

µ (V ) = µ (U \F)+µ (V \ (U \F))
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Thus from the outer regularity of µ, 1 above, there exists V such that it contains U \F and

µ (U \F)+ ε > µ (V ) .

and so
µ (V \ (U \F)) = µ (V )−µ (U \F)< ε.)

Also,

V \ (U \F) = V ∩
(
U ∩FC)C

= V ∩
[
UC ∪F

]
= (V ∩F)∪

(
V ∩UC)

⊇ V ∩F

and so
µ(V ∩F)≤ µ (V \ (U \F))< ε.

Since V ⊇U ∩FC, VC ⊆UC ∪F so U ∩VC ⊆U ∩F = F . Hence U ∩VC is a subset of F .
Now let K ⊆U, µ(U \K)< ε . Thus K∩VC is a compact subset of F and

µ(F) = µ(V ∩F)+µ(F \V )

< ε +µ(F \V )≤ ε +µ(U ∩VC)≤ 2ε +µ(K∩VC).

Since ε is arbitrary, this proves the second part of the lemma. ■
Where do outer measures come from? One way to obtain an outer measure is to start

with a measure µ , defined on a σ algebra of sets, S , and use the following definition of
the outer measure induced by the measure.

Definition 12.1.7 Let µ be a measure defined on a σ algebra of sets, S ⊆P (Ω). Then
the outer measure induced by µ , denoted by µ is defined on P (Ω) as

µ(E) = inf{µ(F) : F ∈S and F ⊇ E}.

A measure space, (S ,Ω,µ) is σ finite if there exist measurable sets, Ωi with µ (Ωi) < ∞

and Ω = ∪∞
i=1Ωi.

You should prove the following lemma.

Lemma 12.1.8 If (S ,Ω,µ) is σ finite then there exist disjoint measurable sets, {Bn} such
that µ (Bn)< ∞ and ∪∞

n=1Bn = Ω.

The following lemma deals with the outer measure generated by a measure which is σ

finite. It says that if the given measure is σ finite and complete then no new measurable
sets are gained by going to the induced outer measure and then considering the measurable
sets in the sense of Caratheodory.

Lemma 12.1.9 Let (Ω,S ,µ) be any measure space and let µ : P(Ω)→ [0,∞] be the
outer measure induced by µ . Then µ is an outer measure as claimed and if S is the
set of µ measurable sets in the sense of Caratheodory, then S ⊇ S and µ = µ on S .
Furthermore, if µ is σ finite and (Ω,S ,µ) is complete, then S = S .
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Proof: It is easy to see that µ is an outer measure. Let E ∈S . The plan is to show
E ∈S and µ(E) = µ(E). To show this, let S⊆Ω and then show

µ(S)≥ µ(S∩E)+µ(S\E). (12.1.8)

This will verify that E ∈S . If µ(S) = ∞, there is nothing to prove, so assume µ(S) < ∞.
Thus there exists T ∈S, T ⊇ S, and

µ(S) > µ(T )− ε = µ(T ∩E)+µ(T \E)− ε

≥ µ(T ∩E)+µ(T \E)− ε

≥ µ(S∩E)+µ(S\E)− ε .

Since ε is arbitrary, this proves 12.1.8 and verifies S ⊆ S . Now if E ∈ S and V ⊇ E
with V ∈S , µ(E)≤ µ(V ). Hence, taking inf, µ(E)≤ µ(E). But also µ(E)≥ µ(E) since
E ∈S and E ⊇ E. Hence

µ(E)≤ µ(E)≤ µ(E).

Next consider the claim about not getting any new sets from the outer measure in the
case the measure space is σ finite and complete.

Suppose first F ∈ S and µ (F) < ∞. Then there exists E ∈ S such that E ⊇ F and
µ (E) = µ (F) . Since µ (F)< ∞,

µ (E \F) = µ (E)−µ (F) = 0.

Then there exists D ⊇ E \F such that D ∈S and µ (D) = µ (E \F) = 0. Then by com-
pleteness of S , it follows E \F ∈S and so

E = (E \F)∪F

Hence F = E \ (E \F) ∈S . In the general case where µ (F) is not known to be finite, let
µ (Bn)< ∞, with Bn∩Bm = /0 for all n ̸= m and ∪nBn = Ω. Apply what was just shown to
F∩Bn, obtaining each of these is in S . Then F =∪nF∩Bn ∈S . This proves the Lemma.

Usually Ω is not just a set. It is also a topological space. It is very important to consider
how the measure is related to this topology. The following definition tells what it means
for a measure to be regular.

Definition 12.1.10 Let µ be a measure on a σ algebra S , of subsets of Ω, where (Ω,τ) is
a topological space. µ is a Borel measure if S contains all Borel sets. µ is called outer
regular if µ is Borel and for all E ∈S ,

µ(E) = inf{µ(V ) : V is open and V ⊇ E}.

µ is called inner regular if µ is Borel and

µ(E) = sup{µ(K) : K ⊆ E, and K is compact}.

If the measure is both outer and inner regular, it is called regular.
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There is an interesting situation in which regularity is obtained automatically. To save
on words, let B (E) denote the σ algebra of Borel sets in E, a closed subset of Rn. It is a
very interesting fact that every finite measure on B (E) must be regular.

Lemma 12.1.11 Let µ be a finite measure defined on B (E) where E is a closed subset of
Rn. Then for every F ∈B (E) ,

µ (F) = sup{µ (K) : K ⊆ F, K is closed }

µ (F) = inf{µ (V ) : V ⊇ F, V is open}

Proof: For convenience, I will call a measure which satisfies the above two conditions
“almost regular”. It would be regular if closed were replaced with compact. First note
every open set is the countable union of compact sets and every closed set is the countable
intersection of open sets. Here is why. Let V be an open set and let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V and each is closed because x→ dist(x,S) is
always a continuous function whenever S is any nonempty set. Next, for K closed let

Vk ≡ {x ∈ E : dist(x,K)< 1/k} .

Clearly the intersection of the Vk equals K. Therefore, letting V denote an open set and K a
closed set,

µ (V ) = sup{µ (K) : K ⊆V and K is closed}
µ (K) = inf{µ (V ) : V ⊇ K and V is open} .

Also since V is open and K is closed,

µ (V ) = inf{µ (U) : U ⊇V and V is open}
µ (K) = sup{µ (L) : L⊆ K and L is closed}

In words, µ is almost regular on open and closed sets. Let

F ≡{F ∈B (E) such that µ is almost regular on F} .

Then F contains the open sets. I want to show F is a σ algebra and then it will follow
F = B (E).

First I will show F is closed with respect to complements. Let F ∈F . Then since µ is
finite and F is inner regular, there exists K⊆F such that µ (F \K)< ε. But KC \FC =F \K
and so µ

(
KC \FC

)
< ε showing that FC is outer regular. I have just approximated the

measure of FC with the measure of KC, an open set containing FC. A similar argument
works to show FC is inner regular. You start with V ⊇ F such that µ (V \F) < ε , note
FC \VC = V \ F, and then conclude µ

(
FC \VC

)
< ε, thus approximating FC with the

closed subset, VC.
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Next I will show F is closed with respect to taking countable unions. Let {Fk} be
a sequence of sets in F . Then since Fk ∈ F , there exist {Kk} such that Kk ⊆ Fk and
µ (Fk \Kk)< ε/2k+1. First choose m large enough that

µ ((∪∞
k=1Fk)\ (∪m

k=1Fk))<
ε

2
.

Then

µ ((∪m
k=1Fk)\ (∪m

k=1Kk))≤
m

∑
k=1

ε

2k+1 <
ε

2

and so

µ ((∪∞
k=1Fk)\ (∪m

k=1Kk)) ≤ µ ((∪∞
k=1Fk)\ (∪m

k=1Fk))

+µ ((∪m
k=1Fk)\ (∪m

k=1Kk))

<
ε

2
+

ε

2
= ε

Since µ is outer regular on Fk, there exists Vk such that µ (Vk \Fk)< ε/2k. Then

µ ((∪∞
k=1Vk)\ (∪∞

k=1Fk)) ≤
∞

∑
k=1

µ (Vk \Fk)

<
∞

∑
k=1

ε

2k = ε

and this completes the demonstration that F is a σ algebra. This proves the lemma.

Theorem 12.1.12 Let µ be a finite measure defined on B (E) where E is a closed subset
of Rn. Then µ is regular.

Proof: From Lemma 12.1.11 µ is outer regular. Now let F ∈B (E). Then since µ is
finite, there exists K ⊆ F such that K is closed, K ⊆ F, and

µ (F)< µ (K)+ ε.

Then let Kk ≡ K ∩ B(0,k). Thus Kk is a closed and bounded, hence compact set and
∪∞

k=1Kk = K. Therefore, for all k large enough,

µ (F)

< µ (Kk)+ ε

< sup{µ (K) : K ⊆ F and K compact}+ ε

≤ µ (F)+ ε

Since ε was arbitrary, it follows

sup{µ (K) : K ⊆ F and K compact}= µ (F) .

This proves the theorem.
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It will be assumed in what follows that (Ω,τ) is a locally compact Hausdorff space.
This means it is Hausdorff: If p,q ∈ Ω such that p ̸= q, there exist open sets, Up and Uq
containing p and q respectively such that Up ∩Uq = /0 and Locally compact: There exists
a basis of open sets for the topology, B such that for each U ∈B, U is compact. Recall
B is a basis for the topology if ∪B = Ω and if every open set in τ is the union of sets of
B. Also recall a Hausdorff space is normal if whenever H and C are two closed sets, there
exist disjoint open sets, UH and UC containing H and C respectively. A regular space is one
which has the property that if p is a point not in H, a closed set, then there exist disjoint
open sets, Up and UH containing p and H respectively.

12.2 Urysohn’s lemma
Urysohn’s lemma which characterizes normal spaces is a very important result which is
useful in general topology and in the construction of measures. Because it is somewhat
technical a proof is given for the part which is needed.

Theorem 12.2.1 (Urysohn) Let (X ,τ) be normal and let H ⊆ U where H is closed and
U is open. Then there exists g : X → [0,1] such that g is continuous, g(x) = 1 on H and
g(x) = 0 if x /∈U.

Proof: Let D≡ {rn}∞
n=1 be the rational numbers in (0,1]. Choose Vr1 an open set such

that
H ⊆Vr1 ⊆V r1 ⊆U.

This can be done by applying the assumption that X is normal to the disjoint closed sets, H
and UC, to obtain open sets V and W with

H ⊆V, UC ⊆W,and V ∩W = /0.

Then
H ⊆V ⊆V , V ∩UC = /0

and so let Vr1 =V .
Suppose Vr1 , · · · ,Vrk have been chosen and list the rational numbers r1, · · · ,rk in order,

rl1 < rl2 < · · ·< rlk for {l1, · · · , lk}= {1, · · · ,k}.

If rk+1 > rlk then letting p = rlk , let Vrk+1 satisfy

V p ⊆Vrk+1 ⊆V rk+1 ⊆U.

If rk+1 ∈ (rli ,rli+1), let p = rli and let q = rli+1 . Then let Vrk+1 satisfy

V p ⊆Vrk+1 ⊆V rk+1 ⊆Vq.

If rk+1 < rl1 , let p = rl1 and let Vrk+1 satisfy

H ⊆Vrk+1 ⊆V rk+1 ⊆Vp.
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Thus there exist open sets Vr for each r ∈Q∩ (0,1) with the property that if r < s,

H ⊆Vr ⊆V r ⊆Vs ⊆V s ⊆U.

Now let
f (x) = min(inf{t ∈ D : x ∈Vt},1) , f (x)≡ 1 if x /∈

⋃
t∈D

Vt .

(Recall D =Q∩ (0,1].) I claim f is continuous.

f−1 ([0,a)) = ∪{Vt : t < a, t ∈ D},

an open set.
Next consider x ∈ f−1 ([0,a]) so f (x)≤ a. If t > a, then x ∈Vt because if not, then

f (x)≡ inf{t ∈ D : x ∈Vt}> a.

Thus
f−1 ([0,a])⊆ ∩{Vt : t > a}= ∩{V t : t > a}

which is a closed set. If x ∈ ∩{V t : t > a}, then x ∈ ∩{Vt : t > a} and so f (x)≤ a.
If a = 1, f−1 ([0,1]) = f−1 ([0,a]) = X . Therefore,

f−1 ((a,1]) = X \ f−1 ([0,a]) = open set.

It follows f is continuous. Clearly f (x) = 0 on H. If x ∈UC, then x /∈Vt for any t ∈ D so
f (x) = 1 on UC. Let g(x) = 1− f (x). This proves the theorem.

In any metric space there is a much easier proof of the conclusion of Urysohn’s lemma
which applies.

Lemma 12.2.2 Let S be a nonempty subset of a metric space, (X ,d) . Define

f (x)≡ dist(x,S)≡ inf{d (x,y) : y ∈ S} .

Then f is continuous.

Proof: Consider | f (x)− f (x1)|and suppose without loss of generality that f (x1) ≥
f (x) . Then choose y ∈ S such that f (x)+ ε > d (x,y) . Then

| f (x1)− f (x)| = f (x1)− f (x)≤ f (x1)−d (x,y)+ ε

≤ d (x1,y)−d (x,y)+ ε

≤ d (x,x1)+d (x,y)−d (x,y)+ ε

= d (x1,x)+ ε.

Since ε is arbitrary, it follows that | f (x1)− f (x)| ≤ d (x1,x) and this proves the lemma.

Theorem 12.2.3 (Urysohn’s lemma for metric space) Let H be a closed subset of an open
set, U in a metric space, (X ,d) . Then there exists a continuous function, g : X→ [0,1] such
that g(x) = 1 for all x ∈ H and g(x) = 0 for all x /∈U.
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Proof: If x /∈ C, a closed set, then dist(x,C) > 0 because if not, there would ex-
ist a sequence of points of C converging to x and it would follow that x ∈ C. Therefore,
dist(x,H)+dist

(
x,UC

)
> 0 for all x ∈ X . Now define a continuous function, g as

g(x)≡
dist
(
x,UC

)
dist(x,H)+dist(x,UC)

.

It is easy to see this verifies the conclusions of the theorem and this proves the theorem.

Theorem 12.2.4 Every compact Hausdorff space is normal.

Proof: First it is shown that X , is regular. Let H be a closed set and let p /∈H. Then for
each h ∈ H, there exists an open set Uh containing p and an open set Vh containing h such
that Uh ∩Vh = /0. Since H must be compact, it follows there are finitely many of the sets
Vh, Vh1 · · ·Vhn such that H ⊆∪n

i=1Vhi . Then letting U = ∩n
i=1Uhi and V = ∪n

i=1Vhi , it follows
that p ∈U , H ∈V and U ∩V = /0. Thus X is regular as claimed.

Next let K and H be disjoint nonempty closed sets.Using regularity of X , for every
k ∈ K, there exists an open set Uk containing k and an open set Vk containing H such that
these two open sets have empty intersection. Thus H ∩Uk = /0. Finitely many of the Uk,
Uk1 , · · · ,Ukp cover K and so ∪p

i=1Uki is a closed set which has empty intersection with H.

Therefore, K ⊆ ∪p
i=1Uki and H ⊆

(
∪p

i=1Uki

)C. This proves the theorem.
A useful construction when dealing with locally compact Hausdorff spaces is the notion

of the one point compactification of the space discussed earler. However, it is reviewed here
for the sake of convenience or in case you have not read the earlier treatment.

Definition 12.2.5 Suppose (X ,τ) is a locally compact Hausdorff space. Then let X̃ ≡
X ∪{∞} where ∞ is just the name of some point which is not in X which is called the point
at infinity. A basis for the topology τ̃ for X̃ is

τ ∪
{

KC where K is a compact subset of X
}
.

The complement is taken with respect to X̃ and so the open sets, KC are basic open sets
which contain ∞.

The reason this is called a compactification is contained in the next lemma.

Lemma 12.2.6 If (X ,τ) is a locally compact Hausdorff space, then
(

X̃ , τ̃
)

is a compact

Hausdorff space. Also if U is an open set of τ̃, then U \{∞} is an open set of τ .

Proof: Since (X ,τ) is a locally compact Hausdorff space, it follows
(

X̃ , τ̃
)

is a Haus-
dorff topological space. The only case which needs checking is the one of p ∈ X and ∞.
Since (X ,τ) is locally compact, there exists an open set of τ, U having compact closure
which contains p. Then p ∈U and ∞ ∈UC and these are disjoint open sets containing the
points, p and ∞ respectively. Now let C be an open cover of X̃ with sets from τ̃ . Then ∞

must be in some set, U∞ from C , which must contain a set of the form KC where K is a
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compact subset of X . Then there exist sets from C , U1, · · · ,Ur which cover K. Therefore,
a finite subcover of X̃ is U1, · · · ,Ur,U∞.

To see the last claim, suppose U contains ∞ since otherwise there is nothing to show.
Notice that if C is a compact set, then X \C is an open set. Therefore, if x ∈U \{∞} , and
if X̃ \C is a basic open set contained in U containing ∞, then if x is in this basic open set
of X̃ , it is also in the open set X \C ⊆U \{∞} . If x is not in any basic open set of the form
X̃ \C then x is contained in an open set of τ which is contained in U \{∞}. Thus U \{∞}
is indeed open in τ .

Theorem 12.2.7 Let X be a locally compact Hausdorff space, and let K be a compact
subset of the open set V . Then there exists a continuous function, f : X → [0,1], such that
f equals 1 on K and {x : f (x) ̸= 0} ≡ spt( f ) is a compact subset of V .

Proof: Let X̃ be the space just described. Then K and V are respectively closed and
open in τ̃ . By Theorem 12.2.4 there exist open sets in τ̃, U , and W such that K ⊆U,∞ ∈
VC ⊆W , and U ∩W =U ∩ (W \{∞}) = /0.

VC

K U W

Thus W \{∞} is an open set in the original topological space which contains VC,U is
an open set in the original topological space which contains K, and W \ {∞} and U are
disjoint.

Now for each x ∈ K, let Ux be a basic open set whose closure is compact and such that

x ∈Ux ⊆U.

Thus Ux must have empty intersection with VC because the open set, W \{∞} contains no
points of Ux. Since K is compact, there are finitely many of these sets, Ux1 ,Ux2 , · · · ,Uxn

which cover K. Now let H ≡ ∪n
i=1Uxi .

Claim: H = ∪n
i=1Uxi

Proof of claim: Suppose p ∈ H. If p /∈ ∪n
i=1Uxi then it follows p /∈ Uxi for each i.

Therefore, there exists an open set, Ri containing p such that Ri contains no other points of
Uxi . Therefore, R ≡ ∩n

i=1Ri is an open set containing p which contains no other points of
∪n

i=1Uxi =W, a contradiction. Therefore, H ⊆ ∪n
i=1Uxi . On the other hand, if p ∈Uxi then

p is obviously in H so this proves the claim.
From the claim, K ⊆ H ⊆ H ⊆ V and H is compact because it is the finite union of

compact sets. By Urysohn’s lemma, there exists f1 continuous on H which has values in
[0,1] such that f1 equals 1 on K and equals 0 off H. Let f denote the function which extends
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f1 to be 0 off H. Then for α > 0, the continuity of f1 implies there exists U open in the
topological space such that

f−1 ((−∞,α)) = f−1
1 ((−∞,α))∪HC

=
(
U ∩H

)
∪HC

=U ∪HC

an open set. If α ≤ 0,
f−1 ((−∞,α)) = /0

an open set. If α > 0, there exists an open set U such that

f−1 ((α,∞)) = f−1
1 ((α,∞)) =U ∩H =U ∩H

because U must be a subset of H since by definition f = 0 off H. If α ≤ 0, then

f−1 ((α,∞)) = X ,

an open set. Thus f is continuous and spt( f )⊆ H, a compact subset of V. This proves the
theorem.

In fact, the conclusion of the above theorem could be used to prove that the topological
space is locally compact. However, this is not needed here.

In case you would like a more elementary proof which does not use the one point
compactification idea, here is such a proof.

Theorem 12.2.8 Let X be a locally compact Hausdorff space, and let K be a compact
subset of the open set V . Then there exists a continuous function, f : X → [0,1], such that
f equals 1 on K and {x : f (x) ̸= 0} ≡ spt( f ) is a compact subset of V .

Proof: To begin with, here is a claim. This claim is obvious in the case of a metric
space but requires some proof in this more general case.

Claim: If k ∈ K then there exists an open set Uk containing k such that Uk is contained
in V.

Proof of claim: Since X is locally compact, there exists a basis of open sets whose
closures are compact, U . Denote by C the set of all U ∈ U which contain k and let C ′

denote the set of all closures of these sets of C intersected with the closed set VC. Thus
C ′ is a collection of compact sets. I will argue that there are finitely many of the sets of C ′

which have empty intersection. If not, then C ′ has the finite intersection property and so
there exists a point p in all of them. Since X is a Hausdorff space, there exist disjoint basic
open sets from U , A,B such that k ∈ A and p ∈ B. Therefore, p /∈ A contrary to the above
requirement that p be in all such sets. It follows there are sets A1, · · · ,Am in C such that

VC ∩A1∩·· ·∩Am = /0

Let Uk = A1∩ ·· ·∩Am. Then Uk ⊆ A1∩ ·· ·∩Am and so it has empty intersection with VC.
Thus it is contained in V . Also Uk is a closed subset of the compact set A1 so it is compact.
This proves the claim.

Now to complete the proof of the theorem, since K is compact, there are finitely many
Uk of the sort just described which cover K,Uk1 , · · · ,Ukr . Let

H = ∪r
i=1Uki
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so it follows
H = ∪r

i=1Uki

and so K ⊆ H ⊆ H ⊆ V and H is a compact set. By Urysohn’s lemma, there exists f1
continuous on H which has values in [0,1] such that f1 equals 1 on K and equals 0 off H.
Let f denote the function which extends f1 to be 0 off H. Then for α > 0, the continuity of
f1 implies there exists U open in the topological space such that

f−1 ((−∞,α)) = f−1
1 ((−∞,α))∪HC

=
(
U ∩H

)
∪HC

=U ∪HC

an open set. If α ≤ 0,
f−1 ((−∞,α)) = /0

an open set. If α > 0, there exists an open set U such that

f−1 ((α,∞)) = f−1
1 ((α,∞)) =U ∩H =U ∩H

because U must be a subset of H since by definition f = 0 off H. If α ≤ 0, then

f−1 ((α,∞)) = X ,

an open set. Thus f is continuous and spt( f )⊆ H, a compact subset of V. This proves the
theorem.

Definition 12.2.9 Define spt( f ) (support of f ) to be the closure of the set {x : f (x) ̸= 0}.
If V is an open set, Cc(V ) will be the set of continuous functions f , defined on Ω having
spt( f )⊆V . Thus in Theorem 12.2.7 or 12.2.8, f ∈Cc(V ).

Definition 12.2.10 If K is a compact subset of an open set, V , then K ≺ φ ≺V if

φ ∈Cc(V ), φ(K) = {1}, φ(Ω)⊆ [0,1],

where Ω denotes the whole topological space considered. Also for φ ∈Cc(Ω), K ≺ φ if

φ(Ω)⊆ [0,1] and φ(K) = 1.

and φ ≺V if
φ(Ω)⊆ [0,1] and spt(φ)⊆V.

Theorem 12.2.11 (Partition of unity) Let K be a compact subset of a locally compact
Hausdorff topological space satisfying Theorem 12.2.7 or 12.2.8 and suppose

K ⊆V = ∪n
i=1Vi, Vi open.

Then there exist ψ i ≺Vi with
n

∑
i=1

ψ i(x) = 1

for all x ∈ K.



288 CHAPTER 12. THE CONSTRUCTION OF MEASURES

Proof: Let K1 = K \∪n
i=2Vi. Thus K1 is compact and K1 ⊆ V1. Let K1 ⊆W1 ⊆W 1 ⊆

V1 with W 1compact. To obtain W1, use Theorem 12.2.7 or 12.2.8 to get f such that K1 ≺
f ≺ V1 and let W1 ≡ {x : f (x) ̸= 0} . Thus W1,V2, · · ·Vn covers K and W 1 ⊆ V1. Let K2 =
K \ (∪n

i=3Vi∪W1). Then K2 is compact and K2 ⊆V2. Let K2 ⊆W2 ⊆W 2 ⊆V2 W 2 compact.
Continue this way finally obtaining W1, · · · ,Wn, K⊆W1∪·· ·∪Wn, and W i⊆Vi W i compact.
Now let W i ⊆Ui ⊆U i ⊆Vi ,U i compact.

Wi Ui Vi

By Theorem 12.2.7 or 12.2.8, let U i ≺ φ i ≺Vi, ∪n
i=1W i ≺ γ ≺ ∪n

i=1Ui. Define

ψ i(x) =
{

γ(x)φ i(x)/∑
n
j=1 φ j(x) if ∑

n
j=1 φ j(x) ̸= 0,

0 if ∑
n
j=1 φ j(x) = 0.

If x is such that ∑
n
j=1 φ j(x) = 0, then x /∈ ∪n

i=1U i. Consequently γ(y) = 0 for all y near x
and so ψ i(y) = 0 for all y near x. Hence ψ i is continuous at such x. If ∑

n
j=1 φ j(x) ̸= 0, this

situation persists near x and so ψ i is continuous at such points. Therefore ψ i is continuous.
If x ∈ K, then γ(x) = 1 and so ∑

n
j=1 ψ j(x) = 1. Clearly 0 ≤ ψ i (x) ≤ 1 and spt(ψ j) ⊆ Vj.

This proves the theorem.
The following corollary won’t be needed immediately but is of considerable interest

later.

Corollary 12.2.12 If H is a compact subset of Vi, there exists a partition of unity such that
ψ i (x) = 1 for all x ∈ H in addition to the conclusion of Theorem 12.2.11.

Proof: Keep Vi the same but replace Vj with Ṽj ≡ Vj \H. Now in the proof above, ap-
plied to this modified collection of open sets, if j ̸= i,φ j (x) = 0 whenever x∈H. Therefore,
ψ i (x) = 1 on H.

12.3 Positive Linear Functionals
Definition 12.3.1 Let (Ω,τ) be a topological space. L : Cc(Ω)→ C is called a positive
linear functional if L is linear,

L(a f1 +b f2) = aL f1 +bL f2,

and if L f ≥ 0 whenever f ≥ 0.

Theorem 12.3.2 (Riesz representation theorem) Let (Ω,τ) be a locally compact Hausdorff
space and let L be a positive linear functional on Cc(Ω). Then there exists a σ algebra S
containing the Borel sets and a unique measure µ , defined on S , such that

µ is complete, (12.3.9)
µ(K) < ∞ for all K compact, (12.3.10)
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µ(F) = sup{µ(K) : K ⊆ F, K compact},

for all F open and for all F ∈S with µ(F)< ∞,

µ(F) = inf{µ(V ) : V ⊇ F, V open}

for all F ∈S , and ∫
f dµ = L f for all f ∈Cc(Ω). (12.3.11)

The plan is to define an outer measure and then to show that it, together with the σ

algebra of sets measurable in the sense of Caratheodory, satisfies the conclusions of the
theorem. Always, K will be a compact set and V will be an open set.

Definition 12.3.3 µ(V )≡ sup{L f : f ≺V} for V open, µ( /0) = 0. µ(E)≡ inf{µ(V ) : V ⊇
E} for arbitrary sets E.

Lemma 12.3.4 µ is a well-defined outer measure.

Proof: First it is necessary to verify µ is well defined because there are two descriptions
of it on open sets. Suppose then that µ1 (V ) ≡ inf{µ(U) : U ⊇ V and U is open}. It is
required to verify that µ1 (V ) = µ (V ) where µ is given as sup{L f : f ≺ V}. If U ⊇ V,
then µ (U)≥ µ (V ) directly from the definition. Hence from the definition of µ1, it follows
µ1 (V ) ≥ µ (V ) . On the other hand, V ⊇ V and so µ1 (V ) ≤ µ (V ) . This verifies µ is well
defined.

It remains to show that µ is an outer measure. Let V = ∪∞
i=1Vi and let f ≺ V . Then

spt( f )⊆ ∪n
i=1Vi for some n. Let ψ i ≺Vi, ∑

n
i=1 ψ i = 1 on spt( f ).

L f =
n

∑
i=1

L( f ψ i)≤
n

∑
i=1

µ(Vi)≤
∞

∑
i=1

µ(Vi).

Hence

µ(V )≤
∞

∑
i=1

µ(Vi)

since f ≺ V is arbitrary. Now let E = ∪∞
i=1Ei. Is µ(E) ≤ ∑

∞
i=1 µ(Ei)? Without loss of

generality, it can be assumed µ(Ei)< ∞ for each i since if not so, there is nothing to prove.
Let Vi ⊇ Ei with µ(Ei)+ ε2−i > µ(Vi).

µ(E)≤ µ(∪∞
i=1Vi)≤

∞

∑
i=1

µ(Vi)≤ ε +
∞

∑
i=1

µ(Ei).

Since ε was arbitrary, µ(E)≤ ∑
∞
i=1 µ(Ei) which proves the lemma.

Lemma 12.3.5 Let K be compact, g ≥ 0, g ∈Cc(Ω), and g = 1 on K. Then µ(K) ≤ Lg.
Also µ(K)< ∞ whenever K is compact.
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Proof: Let α ∈ (0,1) and Vα = {x : g(x)> α} so Vα ⊇ K and let h≺Vα .

g > α

VαK

Then h≤ 1 on Vα while gα−1 ≥ 1 on Vα and so gα−1 ≥ h which implies L(gα−1)≥ Lh
and that therefore, since L is linear,

Lg≥ αLh.

Since h≺Vα is arbitrary, and K ⊆Vα ,

Lg≥ αµ (Vα)≥ αµ (K) .

Letting α ↑ 1 yields Lg ≥ µ(K). This proves the first part of the lemma. The second
assertion follows from this and Theorem 12.2.7. If K is given, let

K ≺ g≺Ω

and so from what was just shown, µ (K)≤ Lg < ∞. This proves the lemma.

Lemma 12.3.6 If A and B are disjoint compact subsets of Ω, then µ(A∪B)= µ(A)+µ(B).

Proof: By Theorem 12.2.7 or 12.2.8, there exists h ∈Cc (Ω) such that A≺ h≺ BC. Let
U1 = h−1(( 1

2 ,1]), V1 = h−1([0, 1
2 )). Then A⊆U1,B⊆V1 and U1∩V1 = /0.

B V1A U1

From Lemma 12.3.5 µ(A∪B)< ∞ and so there exists an open set, W such that

W ⊇ A∪B, µ (A∪B)+ ε > µ (W ) .

Now let U =U1∩W and V =V1∩W . Then

U ⊇ A, V ⊇ B, U ∩V = /0,and µ(A∪B)+ ε ≥ µ (W )≥ µ(U ∪V ).

Let A≺ f ≺U, B≺ g≺V . Then by Lemma 12.3.5,

µ(A∪B)+ ε ≥ µ(U ∪V )≥ L( f +g) = L f +Lg≥ µ(A)+µ(B).

Since ε > 0 is arbitrary, this proves the lemma.
From Lemma 12.3.5 the following lemma is obtained.
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Lemma 12.3.7 Let f ∈Cc(Ω), f (Ω)⊆ [0,1]. Then µ(spt( f ))≥ L f . Also, every open set,
V satisfies

µ (V ) = sup{µ (K) : K ⊆V} .

Proof: Let V ⊇ spt( f ) and let spt( f ) ≺ g ≺ V . Then L f ≤ Lg ≤ µ(V ) because f ≤ g.
Since this holds for all V ⊇ spt( f ), L f ≤ µ(spt( f )) by definition of µ .

Vspt( f )

Finally, let V be open and let l < µ (V ) . Then from the definition of µ, there exists
f ≺ V such that L( f ) > l. Therefore, l < µ (spt( f )) ≤ µ (V ) and so this shows the claim
about inner regularity of the measure on an open set.

At this point, the conditions of Lemma 12.1.6 have been verified. Thus S contains the
Borel sets and µ is inner regular on sets of S having finite measure.

It remains to show µ satisfies 12.3.11.

Lemma 12.3.8
∫

f dµ = L f for all f ∈Cc(Ω).

Proof: Let f ∈Cc(Ω), f real-valued, and suppose f (Ω)⊆ [a,b]. Choose t0 < a and let
t0 < t1 < · · ·< tn = b, ti− ti−1 < ε . Let

Ei = f−1((ti−1, ti])∩ spt( f ). (12.3.12)

Note that ∪n
i=1Ei is a closed set, and in fact

∪n
i=1Ei = spt( f ) (12.3.13)

since Ω = ∪n
i=1 f−1((ti−1, ti]). Let Vi ⊇ Ei,Vi is open and let Vi satisfy

f (x)< ti + ε for all x ∈Vi, (12.3.14)

µ(Vi \Ei)< ε/n.

By Theorem 12.2.11 there exists hi ∈Cc(Ω) such that

hi ≺Vi,
n

∑
i=1

hi(x) = 1 on spt( f ).

Now note that for each i,
f (x)hi(x)≤ hi(x)(ti + ε).
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(If x ∈Vi, this follows from 12.3.14. If x /∈Vi both sides equal 0.) Therefore,

L f = L(
n

∑
i=1

f hi)≤ L(
n

∑
i=1

hi(ti + ε))

=
n

∑
i=1

(ti + ε)L(hi)

=
n

∑
i=1

(|t0|+ ti + ε)L(hi)−|t0|L

(
n

∑
i=1

hi

)
.

Now note that |t0|+ ti +ε ≥ 0 and so from the definition of µ and Lemma 12.3.5, this is no
larger than

n

∑
i=1

(|t0|+ ti + ε)µ(Vi)−|t0|µ(spt( f ))

≤
n

∑
i=1

(|t0|+ ti + ε)(µ(Ei)+ ε/n)−|t0|µ(spt( f ))

≤ |t0|

µ(spt( f ))︷ ︸︸ ︷
n

∑
i=1

µ(Ei)+ |t0|ε +
n

∑
i=1

tiµ(Ei)+ ε(|t0|+ |b|)

n

∑
i=1

ti
ε

n
+ ε

n

∑
i=1

µ(Ei)+ ε
2−|t0|µ(spt( f )).

From 12.3.13 and 12.3.12, the first and last terms cancel. Therefore this is no larger than

(2|t0|+ |b|+µ(spt( f ))+ ε)ε

+
n

∑
i=1

ti−1µ(Ei)+ εµ(spt( f ))+
n

∑
i=1

(|t0|+ |b|)
ε

n

≤
∫

f dµ +(2|t0|+ |b|+2µ(spt( f ))+ ε)ε +(|t0|+ |b|)ε

Since ε > 0 is arbitrary,

L f ≤
∫

f dµ (12.3.15)

for all f ∈ Cc(Ω), f real. Hence equality holds in 12.3.15 because L(− f ) ≤ −
∫

f dµ so
L( f )≥

∫
f dµ . Thus L f =

∫
f dµ for all f ∈Cc(Ω). Just apply the result for real functions

to the real and imaginary parts of f . This proves the Lemma.
This gives the existence part of the Riesz representation theorem.
It only remains to prove uniqueness. Suppose both µ1 and µ2 are measures on S

satisfying the conclusions of the theorem. Then if K is compact and V ⊇ K, let K ≺ f ≺V .
Then

µ1(K)≤
∫

f dµ1 = L f =
∫

f dµ2 ≤ µ2(V ).
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Thus µ1(K)≤ µ2(K) for all K. Similarly, the inequality can be reversed and so it follows
the two measures are equal on compact sets. By the assumption of inner regularity on open
sets, the two measures are also equal on all open sets. By outer regularity, they are equal
on all sets of S . This proves the theorem.

An important example of a locally compact Hausdorff space is any metric space in
which the closures of balls are compact. For example, Rn with the usual metric is an
example of this. Not surprisingly, more can be said in this important special case.

Theorem 12.3.9 Let (Ω,τ) be a metric space in which the closures of the balls are compact
and let L be a positive linear functional defined on Cc (Ω) . Then there exists a measure
representing the positive linear functional which satisfies all the conclusions of Theorem
12.2.7 or 12.2.8 and in addition the property that µ is regular. The same conclusion follows
if (Ω,τ) is a compact Hausdorff space.

Theorem 12.3.10 Let (Ω,τ) be a metric space in which the closures of the balls are com-
pact and let L be a positive linear functional defined on Cc (Ω) . Then there exists a measure
representing the positive linear functional which satisfies all the conclusions of Theorem
12.2.7 or 12.2.8 and in addition the property that µ is regular. The same conclusion follows
if (Ω,τ) is a compact Hausdorff space.

Proof: Let µ and S be as described in Theorem 12.3.2. The outer regularity comes
automatically as a conclusion of Theorem 12.3.2. It remains to verify inner regularity. Let
F ∈S and let l < k < µ (F) . Now let z ∈Ω and Ωn = B(z,n) for n ∈N. Thus F ∩Ωn ↑ F.
It follows that for n large enough,

k < µ (F ∩Ωn)≤ µ (F) .

Since µ (F ∩Ωn) < ∞ it follows there exists a compact set, K such that K ⊆ F ∩Ωn ⊆ F
and

l < µ (K)≤ µ (F) .

This proves inner regularity. In case (Ω,τ) is a compact Hausdorff space, the conclusion
of inner regularity follows from Theorem 12.3.2. This proves the theorem.

The proof of the above yields the following corollary.

Corollary 12.3.11 Let (Ω,τ) be a locally compact Hausdorff space and suppose µ defined
on a σ algebra, S represents the positive linear functional L where L is defined on Cc (Ω)
in the sense of Theorem 12.2.7 or 12.2.8. Suppose also that there exist Ωn ∈S such that
Ω = ∪∞

n=1Ωn and µ (Ωn)< ∞. Then µ is regular.

The following is on the uniqueness of the σ algebra in some cases.

Definition 12.3.12 Let (Ω,τ) be a locally compact Hausdorff space and let L be a positive
linear functional defined on Cc (Ω) such that the complete measure defined by the Riesz
representation theorem for positive linear functionals is inner regular. Then this is called a
Radon measure. Thus a Radon measure is complete, and regular.
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Corollary 12.3.13 Let (Ω,τ) be a locally compact Hausdorff space which is also σ com-
pact meaning

Ω = ∪∞
n=1Ωn, Ωn is compact,

and let L be a positive linear functional defined on Cc (Ω) . Then if (µ1,S1) , and (µ2,S2)
are two Radon measures, together with their σ algebras which represent L then the two σ

algebras are equal and the two measures are equal.

Proof: Suppose (µ1,S1) and (µ2,S2) both work. It will be shown the two measures
are equal on every compact set. Let K be compact and let V be an open set containing K.
Then let K ≺ f ≺V. Then

µ1 (K) =
∫

K
dµ1 ≤

∫
f dµ1 = L( f ) =

∫
f dµ2 ≤ µ2 (V ) .

Therefore, taking the infimum over all V containing K implies µ1 (K)≤ µ2 (K) . Reversing
the argument shows µ1 (K) = µ2 (K) . This also implies the two measures are equal on all
open sets because they are both inner regular on open sets. It is being assumed the two
measures are regular. Now let F ∈S1 with µ1 (F) < ∞. Then there exist sets, H,G such
that H ⊆ F ⊆ G such that H is the countable union of compact sets and G is a countable
intersection of open sets such that µ1 (G) = µ1 (H) which implies µ1 (G\H) = 0. Now G\
H can be written as the countable intersection of sets of the form Vk \Kk where Vk is open,
µ1 (Vk)< ∞ and Kk is compact. From what was just shown, µ2 (Vk \Kk) = µ1 (Vk \Kk) so
it follows µ2 (G\H) = 0 also. Since µ2 is complete, and G and H are in S2, it follows
F ∈S2 and µ2 (F) = µ1 (F) . Now for arbitrary F possibly having µ1 (F) = ∞, consider
F∩Ωn. From what was just shown, this set is in S2 and µ2 (F ∩Ωn)= µ1 (F ∩Ωn). Taking
the union of these F ∩Ωn gives F ∈S2 and also µ1 (F) = µ2 (F) . This shows S1 ⊆S2.
Similarly, S2 ⊆S1.

The following lemma is often useful.

Lemma 12.3.14 Let (Ω,F ,µ) be a measure space where Ω is a topological space. Sup-
pose µ is a Radon measure and f is measurable with respect to F . Then there exists a
Borel measurable function, g, such that g = f a.e.

Proof: Assume without loss of generality that f ≥ 0. Then let sn ↑ f pointwise. Say

sn (ω) =
Pn

∑
k=1

cn
kXEn

k
(ω)

where En
k ∈F . By the outer regularity of µ , there exists a Borel set, Fn

k ⊇ En
k such that

µ
(
Fn

k

)
= µ

(
En

k

)
. In fact Fn

k can be assumed to be a Gδ set. Let

tn (ω)≡
Pn

∑
k=1

cn
kXFn

k
(ω) .

Then tn is Borel measurable and tn (ω) = sn (ω) for all ω /∈ Nn where Nn ∈ F is a set
of measure zero. Now let N ≡ ∪∞

n=1Nn. Then N is a set of measure zero and if ω /∈ N,
then tn (ω)→ f (ω). Let N′ ⊇ N where N′ is a Borel set and µ (N′) = 0. Then tnX(N′)C

converges pointwise to a Borel measurable function, g, and g(ω) = f (ω) for all ω /∈ N′.
Therefore, g = f a.e. and this proves the lemma.
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12.4 One Dimensional Lebesgue Measure
To obtain one dimensional Lebesgue measure, you use the positive linear functional L given
by

L f =
∫

f (x)dx

whenever f ∈Cc (R) . Lebesgue measure, denoted by m is the measure obtained from the
Riesz representation theorem such that∫

f dm = L f =
∫

f (x)dx.

From this it is easy to verify that

m([a,b]) = m((a,b)) = b−a. (12.4.16)

This will be done in general a little later but for now, consider the following picture of
functions, f k and gk. Note that f k ≤X(a,b) ≤X[a,b] ≤ gk.

a+1/k

a

1
b−1/k

b

f k

a−1/k

a

1

b

b+1/k
gk

Then considering lower sums and upper sums in the inequalities on the ends,(
b−a− 2

k

)
≤

∫
f kdx =

∫
f kdm≤ m((a,b))≤ m([a,b])

=
∫

X[a,b]dm≤
∫

gkdm =
∫

gkdx≤
(

b−a+
2
k

)
.

From this the claim in 12.4.16 follows.

12.5 One Dimensional Lebesgue Stieltjes Measure
This is just a generalization of Lebesgue measure. Instead of the functional,

L f ≡
∫

f (x)dx, f ∈Cc (R) ,

you use the functional

L f ≡
∫

f (x)dF (x) f ∈Cc (R) ,

where F is an increasing function defined on R. By Theorem 4.3.4 this functional is easily
seen to be well defined. Therefore, by the Riesz representation theorem there exists a
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unique Radon measure µ representing the functional. Thus∫
R

f dµ =
∫

f dF

for all f ∈Cc (R) . Now consider what this measure does to intervals. To begin with, con-
sider what it does to the closed interval, [a,b] . The following picture may help.

aan

1

b bn

fn

In this picture {an} increases to a and bn decreases to b. Also suppose a,b are points of
continuity of F . Therefore,

F (b)−F (a)≤ L fn =
∫
R

fndµ ≤ F (bn)−F (an)

Passing to the limit and using the dominated convergence theorem, this shows

µ ([a,b]) = F (b)−F (a) = F (b+)−F (a−) .

Next suppose a,b are arbitrary, maybe not points of continuity of F. Then letting an and bn
be as in the above picture which are points of continuity of F,

µ ([a,b]) = lim
n→∞

µ ([an,bn]) = lim
n→∞

F (bn)−F (an)

= F (b+)−F (a−) .

In particular µ (a) = F (a+)−F (a−) and so

µ ((a,b)) = F (b+)−F (a−)− (F (a+)−F (a−))
−(F (b+)−F (b−))

= F (b−)−F (a+)

This shows what µ does to intervals. This is stated as the following proposition.

Proposition 12.5.1 Let µ be the measure representing the functional

L f ≡
∫

f dF, f ∈Cc (R)

for F an increasing function defined on R. Then

µ ([a,b]) = F (b+)−F (a−)

µ ((a,b)) = F (b−)−F (a+)

µ (a) = F (a+)−F (a−) .
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Observation 12.5.2 Note that all the above would work as well if

L f ≡
∫

f dF, f ∈Cc ([0,∞))

where F is continuous at 0 and ν is the measure representing this functional. This is
because you could just extend F (x) to equal F (0) for x ≤ 0 and apply the above to the
extended F. In this case, ν ([0,b]) = F (b+)−F (0).

12.6 The Distribution Function
There is an interesting connection between the Lebesgue integral of a nonnegative function
with something called the distribution function.

Definition 12.6.1 Let f ≥ 0 and suppose f is measurable. The distribution function is the
function defined by

t→ µ ([t < f ]) .

Lemma 12.6.2 If { fn} is an increasing sequence of functions converging pointwise to f
then

µ ([ f > t]) = lim
n→∞

µ ([ fn > t])

Proof: The sets, [ fn > t] are increasing and their union is [ f > t] because if f (ω) > t,
then for all n large enough, fn (ω)> t also. Therefore, the desired conclusion follows from
properties of measures.

Lemma 12.6.3 Suppose s≥ 0 is a measurable simple function,

s(ω)≡
n

∑
k=1

akXEk (ω)

where the ak are the distinct nonzero values of s,0 < a1 < a2 < · · ·< an. Suppose φ is a C1

function defined on [0,∞) which has the property that φ (0) = 0,φ ′ (t)> 0 for all t. Then∫
∞

0
φ
′ (t)µ ([s > t])dm =

∫
φ (s)dµ.

Proof: First note that if µ (Ek) = ∞ for any k then both sides equal ∞ and so without
loss of generality, assume µ (Ek)< ∞ for all k. Letting a0 ≡ 0, the left side equals

n

∑
k=1

∫ ak

ak−1

φ
′ (t)µ ([s > t])dm(t) =

n

∑
k=1

∫ ak

ak−1

φ
′ (t)

n

∑
i=k

µ (Ei)dm

=
n

∑
k=1

n

∑
i=k

µ (Ei)
∫ ak

ak−1

φ
′ (t)dm

=
n

∑
k=1

n

∑
i=k

µ (Ei)(φ (ak)−φ (ak−1))

=
n

∑
i=1

µ (Ei)
i

∑
k=1

(φ (ak)−φ (ak−1))

=
n

∑
i=1

µ (Ei)φ (ai) =
∫

φ (s)dµ. ■
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With this lemma the next theorem which is the main result follows easily.

Theorem 12.6.4 Let f ≥ 0 be measurable and let φ be a C1 function defined on [0,∞)
which satisfies φ

′ (t)> 0 for all t > 0 and φ (0) = 0. Then∫
φ ( f )dµ =

∫
∞

0
φ
′ (t)µ ([ f > t])dm.

Proof: By Theorem 11.3.9 on Page 241 there exists an increasing sequence of nonneg-
ative simple functions, {sn}which converges pointwise to f . By the monotone convergence
theorem and Lemma 12.6.2,∫

φ ( f )dµ = lim
n→∞

∫
φ (sn)dµ = lim

n→∞

∫
∞

0
φ
′ (t)µ ([sn > t])dm

=
∫

∞

0
φ
′ (t)µ ([ f > t])dm ■

This theorem can be generalized to a situation in which φ is only increasing and con-
tinuous. In the generalization I will replace the symbol φ with F to coincide with earlier
notation.

Lemma 12.6.5 Suppose s≥ 0 is a measurable simple function,

s(ω)≡
n

∑
k=1

akXEk (ω)

where the ak are the distinct nonzero values of s,a1 < a2 < · · · < an. Suppose F is an
increasing function defined on [0,∞),F (0) = 0,F being continuous at 0 from the right and
continuous at every ak. Then letting µ be a measure and (Ω,F ,µ) a measure space,∫

(0,∞]
µ ([s > t])dν =

∫
Ω

F (s)dµ.

where the integral on the left is the Lebesgue integral for the measure ν given as the Radon
measure representing the functional ∫

∞

0
gdF

for g ∈Cc ([0,∞)) .

Proof: This follows from the following computation and Proposition 12.5.1. Since F
is continuous at 0 and the values ak,∫

∞

0
µ ([s > t])dν (t) =

n

∑
k=1

∫
(ak−1,ak]

µ ([s > t])dν (t)

=
n

∑
k=1

∫
(ak−1,ak]

n

∑
j=k

µ (E j)dF (t) =
n

∑
j=1

µ (E j)
j

∑
k=1

ν ((ak−1,ak])

=
n

∑
j=1

µ (E j)
j

∑
k=1

(F (ak)−F (ak−1)) =
n

∑
j=1

µ (E j)F (a j)≡
∫

Ω

F (s)dµ ■

Now here is the generalization to nonnegative measurable f .
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Theorem 12.6.6 Let f ≥ 0 be measurable with respect to F where (Ω,F ,µ) a measure
space, and let F be an increasing continuous function defined on [0,∞) and F (0) = 0. Then∫

Ω

F ( f )dµ =
∫
(0,∞]

µ ([ f > t])dν (t)

where ν is the Radon measure representing

Lg =
∫

∞

0
gdF

for g ∈Cc ([0,∞)) .

Proof: By Theorem 11.3.9 on Page 241 there exists an increasing sequence of nonneg-
ative simple functions, {sn}which converges pointwise to f . By the monotone convergence
theorem and Lemma 12.6.5,∫

Ω

F ( f )dµ = lim
n→∞

∫
Ω

F (sn)dµ = lim
n→∞

∫
(0,∞]

µ ([sn > t])dν

=
∫
(0,∞]

µ ([ f > t])dν ■

Note that the function t→ µ ([ f > t]) is a decreasing function. Therefore, one can make
sense of an improper Riemann Stieltjes integral∫

∞

0
µ ([ f > t])dF (t) .

With more work, one can have this equal to the corresponding Lebesgue integral above.

12.7 Good Lambda Inequality
There is a very interesting and important inequality called the good lambda inequality (I
am not sure if there is a bad lambda inequality.) which follows from the above theory of
distribution functions. It involves the inequality

µ ([ f > βλ ]∩ [g≤ δλ ])≤ φ (δ )µ ([ f > λ ])

for β > 1, nonnegative functions f ,g and is supposed to hold for all small positive δ and
φ (δ )→ 0 as δ→ 0. Note the left side is small when g is large and f is small. The inequality
involves dominating an integral involving f with one involving g as described below. As
above, ν is the measure which comes from the functional

∫
R gdF for g ∈Cc (R).

Theorem 12.7.1 Let (Ω,F ,µ) be a finite measure space and let F be a continuous in-
creasing function defined on [0,∞) such that F (0) = 0. Suppose also that for all α > 1,
there exists a constant Cα such that for all x ∈ [0,∞),

F (αx)≤Cα F (x) .
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Also suppose f ,g are nonnegative measurable functions and there exists β > 1,0 < r ≤ 1,
such that for all λ > 0 and 1 > δ > 0,

µ ([ f > βλ ]∩ [g≤ rδλ ])≤ φ (δ )µ ([ f > λ ]) (12.7.17)

where limδ→0+ φ (δ ) = 0 and φ is increasing. Under these conditions, there exists a con-
stant C depending only on β ,φ ,r such that∫

Ω

F ( f (ω))dµ (ω)≤C
∫

Ω

F (g(ω))dµ (ω) .

Proof: Let β > 1 be as given above. First suppose f is bounded.∫
Ω

F ( f )dµ =
∫

Ω

F
(

β
f
β

)
dµ ≤Cβ

∫
Ω

F
(

f
β

)
dµ

=Cβ

∫
∞

0
µ ([ f > βλ ])dν

Now using the given inequality,

= Cβ

∫
∞

0
µ ([ f > βλ ]∩ [g≤ rδλ ])dν

+Cβ

∫
∞

0
µ ([ f > βλ ]∩ [g > rδλ ])dν

≤ Cβ φ (δ )
∫

∞

0
µ ([ f > λ ])dν +Cβ

∫
∞

0
µ ([g > rδλ ])dν

≤ Cβ φ (δ )
∫

Ω

F ( f )dµ +Cβ

∫
Ω

F
( g

rδ

)
dµ

Now choose δ small enough that Cβ φ (δ )< 1
2 and then subtract the first term on the right

in the above from both sides. It follows from the properties of F again that

1
2

∫
Ω

F ( f )dµ ≤CβC
(rδ )−1

∫
Ω

F (g)dµ.

This establishes the inequality in the case where f is bounded.
In general, let fn = min( f ,n) . Then for n≤ λ , the inequality

µ ([ f > βλ ]∩ [g≤ rδλ ])≤ φ (δ )µ ([ f > λ ])

holds with f replaced with fn because both sides equal 0 thanks to β > 1. If n > λ , then
[ f > λ ] = [ fn > λ ] and so the inequality still holds because in this case,

µ ([ fn > βλ ]∩ [g≤ rδλ ]) ≤ µ ([ f > βλ ]∩ [g≤ rδλ ])

≤ φ (δ )µ ([ f > λ ]) = φ (δ )µ ([ fn > λ ])

Therefore, 12.7.17 is valid with f replaced with fn. Now pass to the limit as n→ ∞ and
use the monotone convergence theorem. ■
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12.8 The Ergodic Theorem
I am putting this theorem here because it seems to fit in well with the material of this
chapter.

In this section (Ω,F ,µ) will be a finite measure space. This means that µ (Ω) < ∞.
The mapping, T : Ω→Ω will satisfy the following condition.

T (A) ,T−1 (A) ∈F whenever A ∈F , T is one to one. (12.8.18)

For example, you could have T a homeomorphism on some topological space X and the σ

algebra could be the Borel sets.

Lemma 12.8.1 If T satisfies 12.8.18, then f ◦T is measurable whenever f is measurable.

Proof: Let U be an open set. Then

( f ◦T )−1 (U) = T−1 ( f−1 (U)
)
∈F

by 12.8.18. ■
Now suppose that in addition to 12.8.18, T also satisfies

µ
(
T−1A

)
= µ (A) , (12.8.19)

for all A ∈F . In words, T−1 is measure preserving. Note that also

µ (TA) = µ
(
T−1TA

)
= µ (A)

so also T is measure preserving. Then for T satisfying 12.8.18 and 12.8.19, we have the
following simple lemma.

Lemma 12.8.2 If T satisfies 12.8.18 and 12.8.19 then whenever f is nonnegative and mea-
surable, ∫

Ω

f (ω)dµ =
∫

Ω

f (T ω)dµ. (12.8.20)

Also 12.8.20 holds whenever f ∈ L1 (Ω).

Proof: Let f ≥ 0 and f is measurable. Let A ∈F . Then from 12.8.19,∫
Ω

XA (ω)dµ = µ (A) = µ
(
T−1 (A)

)
=
∫

Ω

XT−1(A) (ω)dµ =
∫

Ω

XA (T (ω))dµ.

It follows that whenever s is a simple function,∫
s(ω)dµ =

∫
s(T ω)dµ

If f ≥ 0 and measurable, Theorem 11.3.9 on Page 241, implies there exists an increasing
sequence of simple functions, {sn} converging pointwise to f . Then the result follows from
monotone convergence theorem. Splitting f ∈ L1 into real and imaginary parts we apply
this to the positive and negative parts of these and obtain 12.8.20 in this case also. ■
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Definition 12.8.3 A measurable function f , is said to be invariant if

f (T ω) = f (ω) .

A set, A ∈F is said to be invariant if XA is an invariant function. Thus a set is invariant
if and only if T−1A = A. (XA (T ω) = XT−1(A) (ω) so to say that XA is invariant is to say
that T−1A = A.)

The following theorem, the individual ergodic theorem, is the main result. Define
T 0 (ω) = ω . Let

Sn f (ω)≡
n

∑
k=1

f
(

T k−1
ω

)
, S0 f (ω)≡ 0.

Also define the following maximal type function M∞ f (ω)

M∞ f (ω)≡ sup{Sk f (ω) : 0≤ k} (12.8.21)

and let
Mn f (ω)≡ sup{Sk f (ω) : 0≤ k ≤ n} (12.8.22)

Then one can prove the following interesting lemma.

Lemma 12.8.4 Let f ∈ L1 (µ) where f has real values. Then
∫
[M∞ f>0] f dµ ≥ 0.

Proof: First note that Mn f (ω) ≥ 0 for all n and ω . This follows easily from the
observation that by definition, S0 f (ω) = 0 and so Mn f (ω) is at least as large. There is
certainly something to show here because the integrand is not known to be nonnegative.
The integral involves f not M∞ f .

Let T ∗h≡ h◦T . Thus T ∗ is linear and maps measurable functions to measurable func-
tions by Lemma 12.8.1. It is also clear that if h≥ 0, then T ∗h≥ 0 also. Therefore, for large
k ≤ n,

Sk f (ω) ≡
k

∑
j=1

f
(
T j−1

ω
)
= f (ω)+

k

∑
j=2

f
(
T j−1

ω
)

= f (ω)+T ∗
k−1

∑
j=1

f
(
T j−1

ω
)

(factored out T ∗)

= f (ω)+T ∗Sk−1 f (ω)≤ f (ω)+T ∗Mn f

and so, taking the supremum for k ≤ n,

Mn f (ω)≤ f (ω)+T ∗Mn f (ω) .

Now since Mn f ≥ 0, ∫
Ω

Mn f (ω)dµ =
∫
[Mn f>0]

Mn f (ω)dµ

≤
∫
[Mn f>0]

f (ω)dµ +
∫

Ω

T ∗Mn f (ω)dµ
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=
∫
[Mn f>0]

f (ω)dµ +
∫

Ω

Mn f (ω)dµ

by Lemma 12.8.2. It follows that ∫
[Mn f>0]

f (ω)dµ ≥ 0

for each n. Also, since Mn f (ω)→M∞ f (ω) , the following pointwise convergence holds.

X[Mn f>0] (ω) f (ω)→X[M∞ f>0] (ω) f (ω)

Since f is in L1, the dominated convergence theorem implies∫
[M∞ f>0]

f (ω)dµ = lim
n→∞

∫
[Mn f>0]

f (ω)dµ ≥ 0. ■

Theorem 12.8.5 Let (Ω,F ,µ) be a probability space and let T : Ω→ Ω satisfy 12.8.18
and 12.8.19, T−1 is measure preserving and T−1 maps F to F and T is one to one. Then
if f ∈ L1 (Ω) having real or complex values and

Sn f (ω)≡
n

∑
k=1

f
(

T k−1
ω

)
, S0 f (ω)≡ 0, (12.8.23)

it follows there exists a set of measure zero N, and an invariant function g such that for all
ω /∈ N,

lim
n→∞

1
n

Sn f (ω) = g(ω) . (12.8.24)

and also
lim
n→∞

1
n

Sn f = g in L1 (Ω)

Proof: To begin with, we assume f has real values. Now if A is an invariant set,
XA (T mω) = XA (ω) and so

Sn (XA f )(ω)≡
n

∑
k=1

f
(

T k−1
ω

)
XA

(
T k−1

ω

)
=

n

∑
k=1

f
(

T k−1
ω

)
XA (ω)

= XA (ω)
n

∑
k=1

f
(

T k−1
ω

)
= XA (ω)Sn f (ω) .

Therefore, for such an invariant set,

Mn (XA f )(ω) = XA (ω)Mn f (ω) , M∞ (XA f )(ω) = XA (ω)M∞ f (ω) . (12.8.25)

Let −∞ < a < b < ∞ and define

Nab ≡
[
−∞ < lim inf

n→∞

1
n

Sn f (ω)< a < b < lim sup
n→∞

1
n

Sn f (ω)< ∞

]
(12.8.26)
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Observe that from the definition,

lim inf
n→∞

1
n

Sn f (ω) = lim inf
n→∞

1
n

Sn f (T ω)

and
lim sup

n→∞

1
n

Sn f (ω) = lim sup
n→∞

1
n

Sn f (T ω) .

Thus if ω ∈ Nab, it follows that T ω ∈ Nab and if T ω ∈ Nab, then so is ω . Thus Nab is an
invariant set. Also, if ω ∈ Nab, then

a− lim inf
n→∞

1
n

Sn f (ω) = lim sup
n→∞

(
a− 1

n
Sn f (ω)

)
> 0

and

lim sup
n→∞

(
1
n

Sn f (ω)−b
)
> 0

It follows that
Nab ⊆ [M∞ ( f −b)> 0]∩ [M∞ (a− f )> 0] .

Consequently, since Nab is invariant, argued above,

XNabM∞ ( f −b) = M∞

(
XNab ( f −b)

)
and so from Lemma 12.8.4∫

Nab

( f (ω)−b)dµ =
∫
[XNab M∞( f−b)>0]

XNab (ω)( f (ω)−b)dµ

=
∫
[M∞(XNab ( f−b))>0]

XNab (ω)( f (ω)−b)dµ ≥ 0 (12.8.27)

and ∫
Nab

(a− f (ω))dµ =
∫
[XNab M∞(a− f )>0]

XNab (ω)(a− f (ω))dµ

=
∫
[M∞(XNab (a− f ))>0]

XNab (ω)(a− f (ω))dµ ≥ 0 (12.8.28)

It follows that
aµ (Nab)≥

∫
Nab

f dµ ≥ bµ (Nab) . (12.8.29)

Since a < b, it follows that µ (Nab) = 0.
Now let

N ≡ ∪{Nab : a < b, a,b ∈Q} .

It follows that µ (N) = 0. Now T Na,b = Na,b and so

T (N) = ∪a,bT
(
Na,b

)
= ∪a,bNa,b = N.
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Thus, T nN = N for all n ∈ N. For ω /∈ N, limn→∞
1
n Sn f (ω) exists. Now let

g(ω)≡
{

0 if ω ∈ N
limn→∞

1
n Sn f (ω) if ω /∈ N

.

Then it is clear g satisfies the conditions of the theorem because if ω ∈ N, then T ω ∈ N
also and so in this case, g(T ω) = g(ω)≡ 0. On the other hand, if ω /∈ N, then

g(T ω) = lim
n→∞

1
n

Sn f (T ω) = lim
n→∞

1
n

Sn f (ω) = g(ω) .

Which shows that g is invariant. Also, from Lemma 12.8.2,∫
Ω

|g|dµ ≤ lim inf
n→∞

∫
Ω

∣∣∣∣1nSn f
∣∣∣∣dµ ≤ lim inf

n→∞

1
n

n

∑
k=1

∫
Ω

∣∣∣ f (T k−1
ω

)∣∣∣dµ

= lim inf
n→∞

1
n

n

∑
k=1

∫
Ω

| f (ω)|dµ = ∥ f∥L1

so g ∈ L1 (Ω,µ).
The last claim about convergence in L1 follows from the Vitali convergence theorem

if we verify the sequence,
{ 1

n Sn f
}∞

n=1 is uniformly integrable. To see this is the case, we
know f ∈ L1 (Ω) and so if ε > 0 is given, there exists δ > 0 such that whenever B ∈F and
µ (B)≤ δ , then |

∫
B f (ω)dµ|< ε . Taking µ (A)< δ , it follows∣∣∣∣∫A

1
n

Sn f (ω)dµ

∣∣∣∣=
∣∣∣∣∣1n n

∑
k=1

∫
A

f
(

T k−1
ω

)
dµ

∣∣∣∣∣=
∣∣∣∣∣1n n

∑
k=1

∫
Ω

XA (ω) f
(

T k−1
ω

)
dµ

∣∣∣∣∣
=

∣∣∣∣∣1n n

∑
k=1

∫
Ω

XA

(
T k−1T−(k−1)

ω

)
f
(

T k−1
ω

)
dµ

∣∣∣∣∣
=

∣∣∣∣∣1n n

∑
k=1

∫
Ω

XA

(
T−(k−1)

ω

)
f (ω)dµ

∣∣∣∣∣
=

∣∣∣∣∣1n n

∑
k=1

∫
T k−1(A)

f (ω)dµ

∣∣∣∣∣≤ 1
n

n

∑
k=1

∣∣∣∣∫T k−1(A)
f (ω)dµ

∣∣∣∣< 1
n

n

∑
k=1

ε = ε

because µ

(
T (k−1)A

)
= µ (A) by assumption. This proves the above sequence is uniformly

integrable and so, by the Vitali convergence theorem,

lim
n→∞

∫
Ω

∣∣∣∣1nSn f −g
∣∣∣∣dµ = 0.

This proves the theorem in the case the function has real values. In the case where f has
complex values, apply the above result to the real and imaginary parts of f . ■
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Definition 12.8.6 The above mapping T is ergodic if the only invariant sets have measure
0 or 1.

If the map, T is ergodic, the following corollary holds.

Corollary 12.8.7 In the situation of Theorem 12.8.5, if T is ergodic, then

g(ω) =
∫

f (ω)dµ

for a.e. ω .

Proof: Let g be the function of Theorem 12.8.5 and let R1 be a rectangle in R2 = C
of the form [−a,a]× [−a,a] such that g−1 (R1) has measure greater than 0. This set is
invariant because the function, g is invariant and so it must have measure 1. Divide R1 into
four equal rectangles, R′1,R

′
2,R
′
3,R
′
4. Then one of these, renamed R2 has the property that

g−1 (R2) has positive measure. Therefore, since the set is invariant, it must have measure
1. Continue in this way obtaining a sequence of closed rectangles, {Ri} such that the
diameter of Ri converges to zero and g−1 (Ri) has measure 1. Then let c = ∩∞

j=1R j. We
know µ

(
g−1 (c)

)
= limn→∞ µ

(
g−1 (Ri)

)
= 1. It follows that g(ω) = c for a.e. ω . Now

from Theorem 12.8.5,

c =
∫

cdµ = lim
n→∞

1
n

∫
Sn f dµ =

∫
f dµ. ■

12.9 Product Measures
Let (X ,S ,µ) and (Y,T ,ν) be two complete measure spaces. In this section consider the
problem of defining a product measure, µ×ν which is defined on a σ algebra of sets of
X ×Y such that (µ×ν)(E×F) = µ (E)ν (F) whenever E ∈S and F ∈ T . I found the
following approach to product measures in [47] and they say they got it from [50].

Definition 12.9.1 Let R denote the set of countable unions of sets of the form A×B, where
A ∈S and B ∈ T (Sets of the form A×B are referred to as measurable rectangles) and
also let

ρ (A×B) = µ (A)ν (B) (12.9.30)

More generally, define

ρ (E)≡
∫ ∫

XE (x,y)dµdν (12.9.31)

whenever E is such that

x→XE (x,y) is µ measurable for all y (12.9.32)

and

y→
∫

XE (x,y)dµ is ν measurable. (12.9.33)
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Note that if E = A×B as above, then∫ ∫
XE (x,y)dµdν =

∫ ∫
XA×B (x,y)dµdν

=
∫ ∫

XA (x)XB (y)dµdν = µ (A)ν (B) = ρ (E)

and so there is no contradiction between 12.9.31 and 12.9.30.
The first goal is to show that for Q ∈R, 12.9.32 and 12.9.33 both hold. That is, x→

XQ (x,y) is µ measurable for all y and y→
∫

XQ (x,y)dµ is ν measurable. This is done so
that it is possible to speak of ρ (Q) . The following lemma will be the fundamental result
which will make this possible. First here is a picture.

C

D

A

B

Lemma 12.9.2 Given C×D and {Ai×Bi}n
i=1 , there exist finitely many disjoint rectangles,

{C′i ×D′i}
p
i=1 such that none of these sets intersect any of the Ai×Bi, each set is contained

in C×D and

(∪n
i=1Ai×Bi)∪

(
∪p

k=1C′k×D′k
)
= (C×D)∪ (∪n

i=1Ai×Bi) .

Proof: From the above picture, you see that

(C×D)\ (A1×B1) =C× (D\B1)∪ (C \A1)× (D∩B1)

and these last two sets are disjoint, have empty intersection with A1×B1, and

(C× (D\B1)∪ (C \A1)× (D∩B1))∪ (∪n
i=1Ai×Bi) = (C×D)∪ (∪n

i=1Ai×Bi)

Now suppose disjoint sets,
{

C̃i× D̃i

}m

i=1
have been obtained, each being a subset of C×D

such that
(∪n

i=1Ai×Bi)∪
(
∪m

k=1C̃k× D̃k

)
= (∪n

i=1Ai×Bi)∪ (C×D)

and for all k, C̃k× D̃k has empty intersection with each set of {Ai×Bi}p
i=1 . Then using the

same procedure, replace each of C̃k× D̃k with finitely many disjoint rectangles such that
none of these intersect Ap+1×Bp+1 while preserving the union of all the sets involved. The
process stops when you have gotten to n. This proves the lemma.

Lemma 12.9.3 If Q = ∪∞
i=1Ai×Bi ∈R, then there exist disjoint sets, of the form A′i×B′i

such that Q = ∪∞
i=1A′i×B′i, each A′i×B′i is a subset of some Ai×Bi, and A′i ∈ S while
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B′i ∈ T . Also, the intersection of finitely many sets of R is a set of R. For ρ defined in
12.9.31, it follows that 12.9.32 and 12.9.33 hold for any element of R. Furthermore,

ρ (Q) = ∑
i

µ
(
A′i
)

ν
(
B′i
)
= ∑

i
ρ
(
A′i×B′i

)
.

Proof: Let Q be given as above. Let A′1×B′1 =A1×B1. By Lemma 12.9.2, it is possible
to replace A2×B2 with finitely many disjoint rectangles, {A′i×B′i}

m2
i=2 such that none of

these rectangles intersect A′1×B′1, each is a subset of A2×B2, and

∪∞
i=1Ai×Bi =

(
∪m2

i=1A′i×B′i
)
∪ (∪∞

k=3Ak×Bk)

Now suppose disjoint rectangles, {A′i×B′i}
mp
i=1 have been obtained such that each rectangle

is a subset of Ak×Bk for some k ≤ p and

∪∞
i=1Ai×Bi =

(
∪mp

i=1A′i×B′i
)
∪
(
∪∞

k=p+1Ak×Bk
)
.

By Lemma 12.9.2 again, there exist disjoint rectangles {A′i×B′i}
mp+1
i=mp+1 such that each is

contained in Ap+1×Bp+1, none have intersection with any of {A′i×B′i}
mp
i=1 and

∪∞
i=1Ai×Bi =

(
∪mp+1

i=1 A′i×B′i
)
∪
(
∪∞

k=p+2Ak×Bk
)
.

Note that no change is made in {A′i×B′i}
mp
i=1 . Continuing this way proves the existence of

the desired sequence of disjoint rectangles, each of which is a subset of at least one of the
original rectangles and such that

Q = ∪∞
i=1A′i×B′i.

It remains to verify x→XQ (x,y) is µ measurable for all y and

y→
∫

XQ (x,y)dµ

is ν measurable whenever Q ∈ R. Let Q ≡ ∪∞
i=1Ai×Bi ∈ R. Then by the first part of

this lemma, there exists {A′i×B′i}
∞

i=1 such that the sets are disjoint and ∪∞
i=1A′i×B′i = Q.

Therefore, since the sets are disjoint,

XQ (x,y) =
∞

∑
i=1

XA′i×B′i
(x,y) =

∞

∑
i=1

XA′i
(x)XB′i

(y) .

It follows x→XQ (x,y) is measurable. Now by the monotone convergence theorem,∫
XQ (x,y)dµ =

∫ ∞

∑
i=1

XA′i
(x)XB′i

(y)dµ

=
∞

∑
i=1

XB′i
(y)
∫

XA′i
(x)dµ

=
∞

∑
i=1

XB′i
(y)µ

(
A′i
)
.
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It follows y→
∫

XQ (x,y)dµ is measurable and so by the monotone convergence theorem
again, ∫ ∫

XQ (x,y)dµdν =
∫ ∞

∑
i=1

XB′i
(y)µ

(
A′i
)

dν

=
∞

∑
i=1

∫
XB′i

(y)µ
(
A′i
)

dν

=
∞

∑
i=1

ν
(
B′i
)

µ
(
A′i
)
. (12.9.34)

This shows the measurability conditions, 12.9.32 and 12.9.33 hold for Q ∈ R and also
establishes the formula for ρ (Q) , 12.9.34.

If ∪iAi×Bi and ∪ jC j×D j are two sets of R, then their intersection is

∪i∪ j (Ai∩C j)× (Bi∩D j)

a countable union of measurable rectangles. Thus finite intersections of sets of R are in R.
This proves the lemma.

Now note that from the definition of R if you have a sequence of elements of R then
their union is also in R. The next lemma will enable the definition of an outer measure.

Lemma 12.9.4 Suppose {Ri}∞

i=1 is a sequence of sets of R then

ρ (∪∞
i=1Ri)≤

∞

∑
i=1

ρ (Ri) .

Proof: Let Ri = ∪∞
j=1Ai

j×Bi
j. Using Lemma 12.9.3, let {A′m×B′m}

∞

m=1 be a sequence
of disjoint rectangles each of which is contained in some Ai

j×Bi
j for some i, j such that

∪∞
i=1Ri = ∪∞

m=1A′m×B′m.

Now define
Si ≡

{
m : A′m×B′m ⊆ Ai

j×Bi
j for some j

}
.

It is not important to consider whether some m might be in more than one Si. The important
thing to notice is that

∪m∈SiA
′
m×B′m ⊆ ∪∞

j=1Ai
j×Bi

j = Ri.

Then by Lemma 12.9.3,

ρ (∪∞
i=1Ri) = ∑

m
ρ
(
A′m×B′m

)
≤

∞

∑
i=1

∑
m∈Si

ρ
(
A′m×B′m

)
≤

∞

∑
i=1

ρ
(
∪m∈SiA

′
m×B′m

)
≤

∞

∑
i=1

ρ (Ri) .
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This proves the lemma.
So far, there is no measure and no σ algebra. However, the next step is to define an

outer measure which will lead to a measure on a σ algebra of measurable sets from the
Caratheodory procedure. When this is done, it will be shown that this measure can be
computed using ρ which implies the important Fubini theorem.

Now it is possible to define an outer measure.

Definition 12.9.5 For S⊆ X×Y, define

(µ×ν)(S)≡ inf{ρ (R) : S⊆ R, R ∈R} . (12.9.35)

The following proposition is interesting but is not needed in the development which
follows. It gives a different description of (µ×ν) .

Proposition 12.9.6 (µ×ν)(S) = inf{∑∞
i=1 µ (Ai)ν (Bi) : S⊆ ∪∞

i=1Ai×Bi}

Proof: Let λ (S) ≡ inf{∑∞
i=1 µ (Ai)ν (Bi) : S⊆ ∪∞

i=1Ai×Bi} . Suppose S ⊆ ∪∞
i=1Ai ×

Bi ≡ Q ∈ R. Then by Lemma 12.9.3, Q = ∪iA′i×B′i where these rectangles are disjoint.
Thus by this lemma, ρ (Q) = ∑

∞
i=1 µ (A′i)ν (B′i) ≥ λ (S) and so λ (S) ≤ (µ×ν)(S) . If

λ (S) = ∞, this shows λ (S) = (µ×ν)(S) . Suppose then that λ (S) < ∞ and λ (S)+ ε >

∑
∞
i=1 µ (Ai)ν (Bi) where Q =∪∞

i=1Ai×Bi ⊇ S. Then by Lemma 12.9.3 again, ∪∞
i=1Ai×Bi =

∪∞
i=1A′i×B′i where the primed rectangles are disjoint, each is a subset of some Ai×Bi and

so

λ (S)+ ε ≥
∞

∑
i=1

µ (Ai)ν (Bi)≥
∞

∑
i=1

µ
(
A′i
)

ν
(
B′i
)
= ρ (Q)≥ (µ×ν)(S) .

Since ε is arbitrary, this shows λ (S)≥ (µ×ν)(S) and this proves the proposition.

Lemma 12.9.7 µ×ν is an outer measure on X×Y and for R ∈R

(µ×ν)(R) = ρ (R) . (12.9.36)

Proof: First consider 12.9.36. Since R ⊇ R, it follows ρ (R) ≥ (µ×ν)(R) . On the
other hand, if Q ∈R and Q⊇ R, then ρ (Q)≥ ρ (R) and so, taking the infimum on the left
yields (µ×ν)(R)≥ ρ (R) . This shows 12.9.36.

It is necessary to show that if S⊆ T, then

(µ×ν)(S)≤ (µ×ν)(T ) , (12.9.37)

(µ×ν)(∪∞
i=1Si)≤

∞

∑
i=1

(µ×ν)(Si) . (12.9.38)

To do this, note that 12.9.37 is obvious. To verify 12.9.38, note that it is obvious if
(µ×ν)(Si) = ∞ for any i. Therefore, assume (µ×ν)(Si) < ∞. Then letting ε > 0 be
given, there exist Ri ∈R such that

(µ×ν)(Si)+
ε

2i > ρ (Ri) , Ri ⊇ Si.
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Then by Lemma 12.9.4, 12.9.36, and the observation that ∪∞
i=1Ri ∈R,

(µ×ν)(∪∞
i=1Si) ≤ (µ×ν)(∪∞

i=1Ri)

= ρ (∪∞
i=1Ri)≤

∞

∑
i=1

ρ (Ri)

≤
∞

∑
i=1

(
(µ×ν)(Si)+

ε

2i

)
=

(
∞

∑
i=1

(µ×ν)(Si)

)
+ ε.

Since ε is arbitrary, this proves the lemma.
By Caratheodory’s procedure, it follows there is a σ algebra of subsets of X ×Y, de-

noted here by S ×T such that (µ×ν) is a complete measure on this σ algebra. The first
thing to note is that every rectangle is in this σ algebra.

Lemma 12.9.8 Every rectangle is (µ×ν) measurable.

Proof: Let S⊆ X×Y. The following inequality must be established.

(µ×ν)(S)≥ (µ×ν)(S∩ (A×B))+(µ×ν)(S\ (A×B)) . (12.9.39)

The following claim will be used to establish this inequality.
Claim: Let P,A×B ∈R. Then

ρ (P∩ (A×B))+ρ (P\ (A×B)) = ρ (P) .

Proof of the claim: From Lemma 12.9.3, P=∪∞
i=1A′i×B′i where the A′i×B′i are disjoint.

Therefore,

P∩ (A×B) =
∞⋃

i=1

(
A∩A′i

)
×
(
B∩B′i

)
while

P\ (A×B) =
∞⋃

i=1

(
A′i \A

)
×B′i∪

∞⋃
i=1

(
A∩A′i

)
×
(
B′i \B

)
.

Since all of the sets in the above unions are disjoint,

ρ (P∩ (A×B))+ρ (P\ (A×B)) =

∫ ∫ ∞

∑
i=1

X(A∩A′i)
(x)XB∩B′i

(y)dµdν +
∫ ∫ ∞

∑
i=1

X(A′i\A)
(x)XB′i

(y)dµdν

+
∫ ∫ ∞

∑
i=1

XA∩A′i
(x)XB′i\B (y)dµdν
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=
∞

∑
i=1

µ
(
A∩A′i

)
ν
(
B∩B′i

)
+µ

(
A′i \A

)
ν
(
B′i
)
+µ

(
A∩A′i

)
ν
(
B′i \B

)
=

∞

∑
i=1

µ
(
A∩A′i

)
ν
(
B′i
)
+µ

(
A′i \A

)
ν
(
B′i
)
=

∞

∑
i=1

µ
(
A′i
)

ν
(
B′i
)
= ρ (P) .

This proves the claim.
Now continuing to verify 12.9.39, without loss of generality, (µ×ν)(S) can be as-

sumed finite. Let P⊇ S for P ∈R and

(µ×ν)(S)+ ε > ρ (P) .

Then from the claim,

(µ×ν)(S)+ ε > ρ (P) = ρ (P∩ (A×B))+ρ (P\ (A×B))

≥ (µ×ν)(S∩ (A×B))+(µ×ν)(S\ (A×B)) .

Since ε > 0 this shows A×B is µ×ν measurable as claimed.

Lemma 12.9.9 Let R1 be defined as the set of all countable intersections of sets of R.
Then if S ⊆ X ×Y, there exists R ∈ R1 for which it makes sense to write ρ (R) because
12.9.32 and 12.9.33 hold such that

(µ×ν)(S) = ρ (R) . (12.9.40)

Also, every element of R1 is µ×ν measurable.

Proof: Consider 12.9.40. Let S⊆X×Y. If (µ×ν)(S)=∞, let R=X×Y and it follows
ρ (X×Y ) = ∞ = (µ×ν)(S) . Assume then that (µ×ν)(S)< ∞.

Therefore, there exists Pn ∈R such that Pn ⊇ S and

(µ×ν)(S)≤ ρ (Pn)< (µ×ν)(S)+1/n. (12.9.41)

Let Qn = ∩n
i=1Pi ∈R. Define

P≡ ∩∞
i=1Qi ⊇ S.

Then 12.9.41 holds with Qn in place of Pn. It is clear that

x→XP (x,y) is µ measurable

because this function is the pointwise limit of functions for which this is so. It remains to
consider whether y→

∫
XP (x,y)dµ is ν measurable. First observe Qn ⊇ Qn+1, XQi ≤

XPi , and

ρ (Q1) = ρ (P1) =
∫ ∫

XP1 (x,y)dµdν < ∞. (12.9.42)

Therefore, there exists a set of ν measure 0, N, such that if y /∈ N, then∫
XP1 (x,y)dµ < ∞.
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It follows from the dominated convergence theorem that

lim
n→∞

XNC (y)
∫

XQn (x,y)dµ = XNC (y)
∫

XP (x,y)dµ

and so
y→XNC (y)

∫
XP (x,y)dµ

is also measurable. By completeness of ν ,

y→
∫

XP (x,y)dµ

must also be ν measurable and so it makes sense to write∫ ∫
XP (x,y)dµdν

for every P ∈R1. Also, by the dominated convergence theorem,∫ ∫
XP (x,y)dµdν =

∫
XNC (y)

∫
XP (x,y)dµdν

= lim
n→∞

∫
XNC (y)

∫
XQn (x,y)dµdν

= lim
n→∞

∫ ∫
XQn (x,y)dµdν

= lim
n→∞

ρ (Qn) ∈ [(µ×ν)(S) ,(µ×ν)(S)+1/n]

for all n. Therefore,

ρ (P)≡
∫ ∫

XP (x,y)dµdν = (µ×ν)(S) .

The sets of R1 are µ×ν measurable because these sets are countable intersections of
countable unions of rectangles and Lemma 12.9.8 verifies the rectangles are µ×ν measur-
able. This proves the Lemma.

The following theorem is the main result.

Theorem 12.9.10 Let E ⊆X×Y be µ×ν measurable and suppose (µ×ν)(E)<∞. Then

x→XE (x,y) is µ measurable a.e. y.

Modifying XE on a set of measure zero, it is possible to write∫
XE (x,y)dµ.

The function,

y→
∫

XE (x,y)dµ

is ν measurable and
(µ×ν)(E) =

∫ ∫
XE (x,y)dµdν .

Similarly,

(µ×ν)(E) =
∫ ∫

XE (x,y)dνdµ.
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Proof: By Lemma 12.9.9, there exists R ∈R1 such that

ρ (R) = (µ×ν)(E) , R⊇ E.

Therefore, since R is µ×ν measurable and ρ (R) = (µ×ν)(R), it follows

(µ×ν)(R\E) = 0.

By Lemma 12.9.9 again, there exists P⊇ R\E with P ∈R1 and

ρ (P) = (µ×ν)(R\E) = 0.

Thus ∫ ∫
XP (x,y)dµdν = 0. (12.9.43)

Since P ∈R1 Lemma 12.9.9 implies x→XP (x,y) is µ measurable and it follows from the
above there exists a set of ν measure zero, N such that if y /∈ N, then

∫
XP (x,y)dµ = 0.

Therefore, by completeness of ν ,

x→XNC (y)XR\E (x,y)

is µ measurable and ∫
XNC (y)XR\E (x,y)dµ = 0. (12.9.44)

Now also

XNC (y)XR (x,y) = XNC (y)XR\E (x,y)+XNC (y)XE (x,y) (12.9.45)

and this shows that
x→XNC (y)XE (x,y)

is µ measurable because it is the difference of two functions with this property. Then by
12.9.44 it follows ∫

XNC (y)XE (x,y)dµ =
∫

XNC (y)XR (x,y)dµ.

The right side of this equation equals a ν measurable function and so the left side which
equals it is also a ν measurable function. It follows from completeness of ν that y→∫

XE (x,y)dµ is ν measurable because for y outside of a set of ν measure zero, N it equals∫
XR (x,y)dµ . Therefore,∫ ∫

XE (x,y)dµdν =
∫ ∫

XNC (y)XE (x,y)dµdν

=
∫ ∫

XNC (y)XR (x,y)dµdν

=
∫ ∫

XR (x,y)dµdν

= ρ (R) = (µ×ν)(E) .
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In all the above there would be no change in writing dνdµ instead of dµdν . The same
result would be obtained. This proves the theorem.

Now let f : X×Y → [0,∞] be µ×ν measurable and∫
f d (µ×ν)< ∞. (12.9.46)

Let s(x,y) ≡ ∑
m
i=1 ciXEi (x,y) be a nonnegative simple function with ci being the nonzero

values of s and suppose
0≤ s≤ f .

Then from the above theorem, ∫
sd (µ×ν) =

∫ ∫
sdµdν

In which ∫
sdµ =

∫
XNC (y)sdµ

for N a set of ν measure zero such that y→
∫

XNC (y)sdµ is ν measurable. This follows
because 12.9.46 implies (µ×ν)(Ei)< ∞. Now let sn ↑ f where sn is a nonnegative simple
function and ∫

snd (µ×ν) =
∫ ∫

XNC
n
(y)sn (x,y)dµdν

where
y→

∫
XNC

n
(y)sn (x,y)dµ

is ν measurable. Then let N ≡ ∪∞
n=1Nn. It follows N is a set of ν measure zero. Thus∫

snd (µ×ν) =
∫ ∫

XNC (y)sn (x,y)dµdν

and letting n→ ∞, the monotone convergence theorem implies∫
f d (µ×ν) =

∫ ∫
XNC (y) f (x,y)dµdν

=
∫ ∫

f (x,y)dµdν

because of completeness of the measures, µ and ν . This proves Fubini’s theorem.

Theorem 12.9.11 (Fubini) Let (X ,S ,µ) and (Y,T ,ν) be complete measure spaces and
let

(µ×ν)(E)≡ inf
{∫ ∫

XR (x,y)dµdν : E ⊆ R ∈R

}
2

2Recall this is the same as

inf

{
∞

∑
i=1

µ (Ai)ν (Bi) : E ⊆ ∪∞
i=1Ai×Bi

}
in which the Ai and Bi are measurable.
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where Ai ∈S and Bi ∈ T . Then µ×ν is an outer measure on the subsets of X ×Y and
the σ algebra of µ×ν measurable sets, S ×T , contains all measurable rectangles. If
f ≥ 0 is a µ×ν measurable function satisfying∫

X×Y
f d (µ×ν)< ∞, (12.9.47)

then ∫
X×Y

f d (µ×ν) =
∫

Y

∫
X

f dµdν ,

where the iterated integral on the right makes sense because for ν a.e. y, x→ f (x,y) is µ

measurable and y→
∫

f (x,y)dµ is ν measurable. Similarly,∫
X×Y

f d (µ×ν) =
∫

X

∫
Y

f dνdµ.

In the case where (X ,S ,µ) and (Y,T ,ν) are both σ finite, it is not necessary to assume
12.9.47.

Corollary 12.9.12 (Fubini) Let (X ,S ,µ) and (Y,T ,ν) be complete measure spaces such
that (X ,S ,µ) and (Y,T ,ν) are both σ finite and let

(µ×ν)(E)≡ inf
{∫ ∫

XR (x,y)dµdν : E ⊆ R ∈R

}
where Ai ∈S and Bi ∈T . Then µ×ν is an outer measure. If f ≥ 0 is a µ×ν measurable
function then ∫

X×Y
f d (µ×ν) =

∫
Y

∫
X

f dµdν ,

where the iterated integral on the right makes sense because for ν a.e. y, x→ f (x,y) is µ

measurable and y→
∫

f (x,y)dµ is ν measurable. Similarly,∫
X×Y

f d (µ×ν) =
∫

X

∫
Y

f dνdµ.

Proof: Let ∪∞
n=1Xn = X and ∪∞

n=1Yn =Y where Xn ∈S , Yn ∈T , Xn ⊆ Xn+1,Yn ⊆Yn+1
for all n and µ (Xn) < ∞,ν (Yn) < ∞. From Theorem 12.9.11 applied to Xn,Yn and fm ≡
min( f ,m) , ∫

Xn×Yn

fmd (µ×ν) =
∫

Yn

∫
Xn

fmdµdν

Now take m→ ∞ and use the monotone convergence theorem to obtain∫
Xn×Yn

f d (µ×ν) =
∫

Yn

∫
Xn

f dµdν .

Then use the monotone convergence theorem again letting n→ ∞ to obtain the desired
conclusion. The argument for the other order of integration is similar.



12.9. PRODUCT MEASURES 317

Corollary 12.9.13 If f ∈ L1 (X×Y ) , then∫
f d (µ×ν) =

∫ ∫
f (x,y)dµdν =

∫ ∫
f (x,y)dνdµ.

If µ and ν are σ finite, then if f is µ×ν measurable having complex values and either∫ ∫
| f |dµdν < ∞ or

∫ ∫
| f |dνdµ < ∞, then

∫
| f |d (µ×ν)< ∞ so f ∈ L1 (X×Y ) .

Proof: Without loss of generality, it can be assumed that f has real values. Then

f =
| f |+ f − (| f |− f )

2

and both f+ ≡ | f |+ f
2 and f− ≡ | f |− f

2 are nonnegative and are less than | f |. Therefore,∫
gd (µ×ν)< ∞ for g = f+ and g = f− so the above theorem applies and∫

f d (µ×ν) ≡
∫

f+d (µ×ν)−
∫

f−d (µ×ν)

=
∫ ∫

f+dµdν−
∫ ∫

f−dµdν

=
∫ ∫

f dµdν .

It remains to verify the last claim. Suppose s is a simple function,

s(x,y)≡
m

∑
i=1

ciXEi ≤ | f |(x,y)

where the ci are the nonzero values of s. Then

sXRn ≤ | f |XRn

where Rn ≡ Xn×Yn where Xn ↑ X and Yn ↑ Y with µ (Xn) < ∞ and ν (Yn) < ∞. It follows,
since the nonzero values of sXRn are achieved on sets of finite measure,∫

sXRnd (µ×ν) =
∫ ∫

sXRndµdν .

Letting n→ ∞ and applying the monotone convergence theorem, this yields∫
sd (µ×ν) =

∫ ∫
sdµdν . (12.9.48)

Now let sn ↑ | f | where sn is a nonnegative simple function. From 12.9.48,∫
snd (µ×ν) =

∫ ∫
sndµdν .

Letting n→ ∞ and using the monotone convergence theorem, yields∫
| f |d (µ×ν) =

∫ ∫
| f |dµdν < ∞
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12.10 Alternative Treatment Of Product Measure
12.10.1 Monotone Classes And Algebras
Measures are defined on σ algebras which are closed under countable unions. It is for
this reason that the theory of measure and integration is so useful in dealing with limits of
sequences. However, there is a more basic notion which involves only finite unions and
differences.

Definition 12.10.1 A is said to be an algebra of subsets of a set, Z if Z ∈A , /0 ∈A , and
when E,F ∈A , E ∪F and E \F are both in A .

It is important to note that if A is an algebra, then it is also closed under finite intersec-
tions. This is because E∩F = (EC∪FC)C ∈A since EC = Z\E ∈A and FC = Z\F ∈A .
Note that every σ algebra is an algebra but not the other way around.

Something satisfying the above definition is called an algebra because union is like
addition, the set difference is like subtraction and intersection is like multiplication. Fur-
thermore, only finitely many operations are done at a time and so there is nothing like a
limit involved.

How can you recognize an algebra when you see one? The answer to this question is
the purpose of the following lemma.

Lemma 12.10.2 Suppose R and E are subsets of P(Z)3 such that E is defined as the set
of all finite disjoint unions of sets of R. Suppose also

/0,Z ∈R

A∩B ∈R whenever A,B ∈R,

A\B ∈ E whenever A,B ∈R.

Then E is an algebra of sets of Z.

Proof: Note first that if A ∈R, then AC ∈ E because AC = Z \A.
Now suppose that E1and E2 are in E ,

E1 = ∪m
i=1Ri, E2 = ∪n

j=1R j

where the Ri are disjoint sets in R and the R j are disjoint sets in R. Then

E1∩E2 = ∪m
i=1∪n

j=1 Ri∩R j

which is clearly an element of E because no two of the sets in the union can intersect and
by assumption they are all in R. Thus by induction, finite intersections of sets of E are in
E . Consider the difference of two elements of E next.

If E = ∪n
i=1Ri ∈ E ,

EC = ∩n
i=1RC

i = finite intersection of sets of E

3Set of all subsets of Z
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which was just shown to be in E . Now, if E1,E2 ∈ E ,

E1 \E2 = E1∩EC
2 ∈ E

from what was just shown about finite intersections.
Finally consider finite unions of sets of E . Let E1 and E2 be sets of E . Then

E1∪E2 = (E1 \E2)∪E2 ∈ E

because E1 \ E2 consists of a finite disjoint union of sets of R and these sets must be
disjoint from the sets of R whose union yields E2 because (E1 \E2)∩E2 = /0. This proves
the lemma.

The following corollary is particularly helpful in verifying the conditions of the above
lemma.

Corollary 12.10.3 Let (Z1,R1,E1) and (Z2,R2,E2) be as described in Lemma 14.1.2.
Then (Z1×Z2,R,E ) also satisfies the conditions of Lemma 14.1.2 if R is defined as

R ≡{R1×R2 : Ri ∈Ri}

and
E ≡{ finite disjoint unions of sets of R}.

Consequently, E is an algebra of sets.

Proof: It is clear /0,Z1×Z2 ∈R. Let A×B and C×D be two elements of R.

A×B∩C×D = A∩C×B∩D ∈R

by assumption.
A×B\ (C×D) =

A×

∈E2︷ ︸︸ ︷
(B\D)∪

∈E1︷ ︸︸ ︷
(A\C)×

∈R2︷ ︸︸ ︷
(D∩B)

= (A×Q)∪ (P×R)

where Q ∈ E2, P ∈ E1, and R ∈R2.

A

B

C

D

Since A×Q and P×R do not intersect, it follows the above expression is in E because
each of these terms are. This proves the corollary.
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Definition 12.10.4 M ⊆P(Z) is called a monotone class if
a.) · · ·En ⊇ En+1 · · · , E = ∩∞

n=1En, and En ∈M , then E ∈M .
b.) · · ·En ⊆ En+1 · · · , E = ∪∞

n=1En, and En ∈M , then E ∈M .
(In simpler notation, En ↓ E and En ∈M implies E ∈M . En ↑ E and En ∈M implies

E ∈M .)

Theorem 12.10.5 (Monotone Class theorem) Let A be an algebra of subsets of Z and
let M be a monotone class containing A . Then M ⊇ σ(A ), the smallest σ -algebra
containing A .

Proof: Consider all monotone classes which contain A , and take their intersection.
The result is still a monotone class which contains A and is therefore the smallest mono-
tone class containing A . Therefore, assume without loss of generality that M is the
smallest monotone class containing A because if it is shown the smallest monotone class
containing A contains σ (A ), then the given monotone class does also. To avoid more
notation, let M denote this smallest monotone class.

The plan is to show M is a σ -algebra. It will then follow M ⊇ σ(A ) because σ (A )
is defined as the intersection of all σ algebras which contain A . For A ∈A , define

MA ≡ {B ∈M such that A∪B ∈M }.

Clearly MA is a monotone class containing A . Hence MA ⊇M because M is the smallest
such monotone class. But by construction, MA ⊆M . Therefore, M = MA. This shows
that A∪B ∈M whenever A ∈A and B ∈M . Now pick B ∈M and define

MB ≡ {D ∈M such that D∪B ∈M }.

It was just shown that A ⊆MB. It is clear that MB is a monotone class. Thus by a similar
argument, MB = M and it follows that D∪B ∈M whenever D ∈M and B ∈M . This
shows M is closed under finite unions.

Next consider the diference of two sets. Let A ∈A

MA ≡ {B ∈M such that B\A and A\B ∈M }.

Then MA, is a monotone class containing A . As before, M = MA. Thus B\A and A\B
are both in M whenever A ∈A and B ∈M . Now pick A ∈M and consider

MA ≡ {B ∈M such that B\A and A\B ∈M }.

It was just shown MA contains A . Now MA is a monotone class and so MA = M as
before.

Thus M is both a monotone class and an algebra. Hence, if E ∈M then Z \E ∈M .
Next consider the question of whether M is a σ -algebra. If Ei ∈M and Fn = ∪n

i=1Ei,
then Fn ∈M and Fn ↑ ∪∞

i=1Ei. Since M is a monotone class, ∪∞
i=1Ei ∈M and so M is a

σ -algebra. This proves the theorem.
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12.10.2 Product Measure
Definition 12.10.6 Let (X ,S ,µ) and (Y,F ,λ ) be two measure spaces. A measurable
rectangle is a set A×B ⊆ X ×Y where A ∈ S and B ∈ F. An elementary set will be
any subset of X ×Y which is a finite union of disjoint measurable rectangles. S ×F will
denote the smallest σ algebra of sets in P(X×Y ) containing all elementary sets.

Example 12.10.7 It follows from Lemma 14.1.2 or more easily from Corollary 14.1.3 that
the elementary sets form an algebra.

Definition 12.10.8 Let E ⊆ X×Y,

Ex = {y ∈ Y : (x,y) ∈ E},

Ey = {x ∈ X : (x,y) ∈ E}.

These are called the x and y sections.

x
X

Y

Ex

Theorem 12.10.9 If E ∈S ×F, then Ex ∈F and Ey ∈S for all x ∈ X and y ∈ Y .

Proof: Let

M = {E ⊆S ×F such that for all x ∈ X , Ex ∈F,

and for all y ∈ Y, Ey ∈S .}

Then M contains all measurable rectangles. If Ei ∈M ,

(∪∞
i=1Ei)x = ∪

∞
i=1(Ei)x ∈F.

Similarly,
(∪∞

i=1Ei)
y = ∪∞

i=1Ey
i ∈S .

It follows M is closed under countable unions.
If E ∈M , (

EC)
x = (Ex)

C ∈F.

Similarly,
(
EC
)y ∈ S . Thus M is closed under complementation. Therefore M is a

σ -algebra containing the elementary sets. Hence, M ⊇ S ×Fbecause S ×F is the
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smallest σ algebra containing these elementary sets. But M ⊆S ×Fby definition and so
M = S ×F . This proves the theorem.

It follows from Lemma 14.1.2 that the elementary sets form an algebra because clearly
the intersection of two measurable rectangles is a measurable rectangle and

(A×B)\ (A0×B0) = (A\A0)×B∪ (A∩A0)× (B\B0),

an elementary set.

Theorem 12.10.10 If (X ,S ,µ) and (Y,F,λ ) are both finite measure spaces

(µ(X), λ (Y )< ∞)

then for every E ∈S ×F,
a.) x→ λ (Ex) is µ measurable, y→ µ(Ey) is λ measurable
b.)
∫

X λ (Ex)dµ =
∫

Y µ(Ey)dλ .

Proof: Let

M = {E ∈S ×F such that both a.) and b.) hold} .

Since µ and λ are both finite, the monotone convergence and dominated convergence the-
orems imply M is a monotone class.

Next I will argue M contains the elementary sets. Let

E = ∪n
i=1Ai×Bi

where the measurable rectangles, Ai×Bi are disjoint. Then

λ (Ex) =
∫

Y
XE (x,y)dλ =

∫
Y

n

∑
i=1

XAi×Bi (x,y)dλ

=
n

∑
i=1

∫
Y

XAi×Bi (x,y)dλ =
n

∑
i=1

XAi (x)λ (Bi)

which is clearly µ measurable. Furthermore,∫
X

λ (Ex)dµ =
∫

X

n

∑
i=1

XAi (x)λ (Bi)dµ =
n

∑
i=1

µ (Ai)λ (Bi) .

Similarly, ∫
Y

µ (Ey)dλ =
n

∑
i=1

µ (Ai)λ (Bi)

and y→ µ (Ey) is λ measurable and this shows M contains the algebra of elementary sets.
By the monotone class theorem, M = S ×F . This proves the theorem.

One can easily extend this theorem to the case where the measure spaces are σ finite.



12.10. ALTERNATIVE TREATMENT OF PRODUCT MEASURE 323

Theorem 12.10.11 If (X ,S ,µ) and (Y,F,λ ) are both σ finite measure spaces, then for
every E ∈S ×F,

a.) x→ λ (Ex) is µ measurable, y→ µ(Ey) is λ measurable.
b.)
∫

X λ (Ex)dµ =
∫

Y µ(Ey)dλ .

Proof: Let X = ∪∞
n=1Xn,Y = ∪∞

n=1Yn where,

Xn ⊆ Xn+1,Yn ⊆ Yn+1,µ (Xn)< ∞,λ (Yn)< ∞.

Let
Sn = {A∩Xn : A ∈S }, Fn = {B∩Yn : B ∈F}.

Thus (Xn,Sn,µ) and (Yn,Fn,λ ) are both finite measure spaces.
Claim: If E ∈S ×F, then E ∩ (Xn×Yn) ∈Sn×Fn.
Proof: Let

Mn = {E ∈S ×F : E ∩ (Xn×Yn) ∈Sn×Fn} .
Clearly Mn contains the algebra of elementary sets. It is also clear that Mn is a monotone
class. Thus Mn = S ×F.

Now let E ∈S ×F. By Theorem 12.10.10,∫
Xn

λ ((E ∩ (Xn×Yn))x)dµ =
∫

Yn

µ((E ∩ (Xn×Yn))
y)dλ (12.10.49)

where the integrands are measurable. Also

(E ∩ (Xn×Yn))x = /0

if x /∈ Xn and a similar observation holds for the second integrand in 12.10.49 if y /∈ Yn.
Therefore, ∫

X
λ ((E ∩ (Xn×Yn))x)dµ =

∫
Xn

λ ((E ∩ (Xn×Yn))x)dµ

=
∫

Yn

µ((E ∩ (Xn×Yn))
y)dλ

=
∫

Y
µ((E ∩ (Xn×Yn))

y)dλ .

Then letting n→ ∞, the monotone convergence theorem implies b.) and the measurability
assertions of a.) are valid because

λ (Ex) = lim
n→∞

λ ((E ∩ (Xn×Yn))x)

µ (Ey) = lim
n→∞

µ((E ∩ (Xn×Yn))
y).

This proves the theorem.
This theorem makes it possible to define product measure.

Definition 12.10.12 For E ∈S ×F and (X ,S ,µ),(Y,F,λ ) σ finite,

(µ×λ )(E)≡
∫

X
λ (Ex)dµ =

∫
Y

µ(Ey)dλ
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This definition is well defined because of Theorem 12.10.11.

Theorem 12.10.13 If A ∈S , B ∈F, then (µ ×λ )(A×B) = µ(A)λ (B), and µ ×λ is a
measure on S ×F called product measure.

Proof: The first assertion about the measure of a measurable rectangle was established
above. Now suppose {Ei}∞

i=1 is a disjoint collection of sets of S ×F . Then using the
monotone convergence theorem along with the observation that (Ei)x∩ (E j)x = /0,

(µ×λ )(∪∞
i=1Ei) =

∫
X

λ ((∪∞
i=1Ei)x)dµ

=
∫

X
λ (∪∞

i=1 (Ei)x)dµ =
∫

X

∞

∑
i=1

λ ((Ei)x)dµ

=
∞

∑
i=1

∫
X

λ ((Ei)x)dµ

=
∞

∑
i=1

(µ×λ )(Ei)

This proves the theorem.
The next theorem is one of several theorems due to Fubini and Tonelli. These theorems

all have to do with interchanging the order of integration in a multiple integral.

Theorem 12.10.14 Let f : X×Y → [0,∞] be measurable with respect to S ×F and sup-
pose µ and λ are σ finite. Then∫

X×Y
f d(µ×λ ) =

∫
X

∫
Y

f (x,y)dλdµ =
∫

Y

∫
X

f (x,y)dµdλ (12.10.50)

and all integrals make sense.

Proof: For E ∈S ×F,∫
Y

XE(x,y)dλ = λ (Ex),
∫

X
XE(x,y)dµ = µ(Ey).

Thus from Definition 12.10.12, 12.10.50 holds if f = XE . It follows that 12.10.50 holds
for every nonnegative simple function. By Theorem 11.3.9 on Page 241, there exists an
increasing sequence, { fn}, of simple functions converging pointwise to f . Then∫

Y
f (x,y)dλ = lim

n→∞

∫
Y

fn(x,y)dλ ,

∫
X

f (x,y)dµ = lim
n→∞

∫
X

fn(x,y)dµ.

This follows from the monotone convergence theorem. Since

x→
∫

Y
fn(x,y)dλ
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is measurable with respect to S , it follows that x→
∫

Y f (x,y)dλ is also measurable with
respect to S . A similar conclusion can be drawn about y→

∫
X f (x,y)dµ . Thus the two

iterated integrals make sense. Since 12.10.50 holds for fn, another application of the Mono-
tone Convergence theorem shows 12.10.50 holds for f . This proves the theorem.

Corollary 12.10.15 Let f : X×Y → C be S ×F measurable. Suppose either∫
X

∫
Y
| f |dλdµ or

∫
Y

∫
X
| f |dµdλ < ∞

Then f ∈ L1(X×Y,µ×λ ) and∫
X×Y

f d(µ×λ ) =
∫

X

∫
Y

f dλdµ =
∫

Y

∫
X

f dµdλ (12.10.51)

with all integrals making sense.

Proof: Suppose first that f is real valued. Apply Theorem 12.10.14 to f+and f−. Then
12.10.51 follows from observing that f = f+− f−; and that all integrals are finite. If f is
complex valued, consider real and imaginary parts. This proves the corollary.

Suppose f is product measurable. From the above discussion, and breaking f down into
a sum of positive and negative parts of real and imaginary parts and then using Theorem
11.3.9 on Page 241 on approximation by simple functions, it follows that whenever f is
S ×F measurable, x→ f (x,y) is µ measurable, y→ f (x,y) is λ measurable.

12.11 Completion Of Measures
Suppose (Ω,F ,µ) is a measure space. Then it is always possible to enlarge the σ algebra
and define a new measure µ on this larger σ algebra such that

(
Ω,F ,µ

)
is a complete

measure space. Recall this means that if N ⊆ N′ ∈F and µ (N′) = 0, then N ∈F . The
following theorem is the main result. The new measure space is called the completion of
the measure space.

Theorem 12.11.1 Let (Ω,F ,µ) be a σ finite measure space. Then there exists a unique
measure space,

(
Ω,F ,µ

)
satisfying

1.
(
Ω,F ,µ

)
is a complete measure space.

2. µ = µ on F

3. F ⊇F

4. For every E ∈F there exists G ∈F such that G⊇ E and µ (G) = µ (E) .

5. For every E ∈F there exists F ∈F such that F ⊆ E and µ (F) = µ (E) .

Also for every E ∈F there exist sets G,F ∈F such that G⊇ E ⊇ F and

µ (G\F) = µ (G\F) = 0 (12.11.52)
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Proof: First consider the claim about uniqueness. Suppose (Ω,F1,ν1) and (Ω,F2,ν2)
both work and let E ∈ F1. Also let µ (Ωn) < ∞, · · ·Ωn ⊆ Ωn+1 · · · , and ∪∞

n=1Ωn = Ω.
Define En ≡ E ∩Ωn. Then pick Gn ⊇ En ⊇ Fn such that µ (Gn) = µ (Fn) = ν1 (En). It
follows µ (Gn \Fn) = 0. Then letting G = ∪nGn,F ≡ ∪nFn, it follows G⊇ E ⊇ F and

µ (G\F) ≤ µ (∪n (Gn \Fn))

≤ ∑
n

µ (Gn \Fn) = 0.

It follows that ν2 (G\F) = 0 also. Now E \F ⊆ G\F and since (Ω,F2,ν2) is complete,
it follows E \F ∈F2. Since F ∈F2, it follows E = (E \F)∪F ∈F2. Thus F1 ⊆F2.
Similarly F2 ⊆F1. Now it only remains to verify ν1 = ν2. Thus let E ∈F1 = F2 and let
G and F be as just described. Since ν i = µ on F ,

µ (F) ≤ ν1 (E)

= ν1 (E \F)+ν1 (F)

≤ ν1 (G\F)+ν1 (F)

= ν1 (F) = µ (F)

Similarly ν2 (E) = µ (F) . This proves uniqueness. The construction has also verified
12.11.52.

Next define an outer measure, µ on P (Ω) as follows. For S⊆Ω,

µ (S)≡ inf{µ (E) : E ∈F} .

Then it is clear µ is increasing. It only remains to verify µ is subadditive. Then let S =
∪∞

i=1Si. If any µ (Si) = ∞, there is nothing to prove so suppose µ (Si)< ∞ for each i. Then
there exist Ei ∈F such that Ei ⊇ Si and

µ (Si)+ ε/2i > µ (Ei) .

Then

µ (S) = µ (∪iSi)

≤ µ (∪iEi)≤∑
i

µ (Ei)

≤ ∑
i

(
µ (Si)+ ε/2i)= ∑

i
µ (Si)+ ε.

Since ε is arbitrary, this verifies µ is subadditive and is an outer measure as claimed.
Denote by F the σ algebra of measurable sets in the sense of Caratheodory. Then it

follows from the Caratheodory procedure, Theorem 12.1.4, on Page 270 that
(
Ω,F , µ

)
is

a complete measure space. This verifies 1.
Now let E ∈F . Then from the definition of µ, it follows

µ (E)≡ inf{µ (F) : F ∈F and F ⊇ E} ≤ µ (E) .
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If F ⊇ E and F ∈F , then µ (F)≥ µ (E) and so µ (E) is a lower bound for all such µ (F)
which shows that

µ (E)≡ inf{µ (F) : F ∈F and F ⊇ E} ≥ µ (E) .

This verifies 2.
Next consider 3. Let E ∈F and let S be a set. I must show

µ (S)≥ µ (S\E)+µ (S∩E) .

If µ (S) = ∞ there is nothing to show. Therefore, suppose µ (S)< ∞. Then from the defini-
tion of µ there exists G⊇ S such that G ∈F and µ (G) = µ (S) . Then from the definition
of µ,

µ (S) ≤ µ (S\E)+µ (S∩E)

≤ µ (G\E)+µ (G∩E)

= µ (G) = µ (S)

This verifies 3.
Claim 4 comes by the definition of µ as used above. The only other case is when

µ (S) = ∞. However, in this case, you can let G = Ω.
It only remains to verify 5. Let the Ωn be as described above and let E ∈F such that

E ⊆Ωn. By 4 there exists H ∈F such that H ⊆Ωn, H ⊇Ωn \E, and

µ (H) = µ (Ωn \E) . (12.11.53)

Then let F ≡Ωn∩HC. It follows F ⊆ E and

E \F = E ∩FC = E ∩
(
H ∪Ω

C
n
)

= E ∩H = H \ (Ωn \E)

Hence from 12.11.53
µ (E \F) = µ (H \ (Ωn \E)) = 0.

It follows
µ (E) = µ (F) = µ (F) .

In the case where E ∈F is arbitrary, not necessarily contained in some Ωn, it follows
from what was just shown that there exists Fn ∈F such that Fn ⊆ E ∩Ωn and

µ (Fn) = µ (E ∩Ωn) .

Letting F ≡ ∪nFn

µ (E \F)≤ µ (∪n (E ∩Ωn \Fn))≤∑
n

µ (E ∩Ωn \Fn) = 0.

Therefore, µ (E) = µ (F) and this proves 5. This proves the theorem.
Now here is an interesting theorem about complete measure spaces.
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Theorem 12.11.2 Let (Ω,F ,µ) be a complete measure space and let f ≤ g≤ h be func-
tions having values in [0,∞] . Suppose also that f (ω) = h(ω) a.e. ω and that f and h are
measurable. Then g is also measurable. If

(
Ω,F ,µ

)
is the completion of a σ finite mea-

sure space (Ω,F ,µ) as described above in Theorem 12.11.1 then if f is measurable with
respect to F having values in [0,∞] , it follows there exists g measurable with respect to F
, g≤ f , and a set N ∈F with µ (N) = 0 and g = f on NC. There also exists h measurable
with respect to F such that h ≥ f , and a set of measure zero, M ∈F such that f = h on
MC.

Proof: Let α ∈ R.
[ f > α]⊆ [g > α]⊆ [h > α]

Thus
[g > α] = [ f > α]∪ ([g > α]\ [ f > α])

and [g > α]\ [ f > α] is a measurable set because it is a subset of the set of measure zero,

[h > α]\ [ f > α] .

Now consider the last assertion. By Theorem 11.3.9 on Page 241 there exists an in-
creasing sequence of nonnegative simple functions, {sn} measurable with respect to F
which converges pointwise to f . Letting

sn (ω) =
mn

∑
k=1

cn
kXEn

k
(ω) (12.11.54)

be one of these simple functions, it follows from Theorem 12.11.1 there exist sets, Fn
k ∈F

such that Fn
k ⊆ En

k and µ
(
Fn

k

)
= µ

(
En

k

)
. Then let

tn (ω)≡
mn

∑
k=1

cn
kXFn

k
(ω) .

Thus tn = sn off a set of measure zero, Nn ∈F , tn ≤ sn. Let N′ ≡ ∪nNn. Then by Theorem
12.11.1 again, there exists N ∈F such that N ⊇ N′ and µ (N) = 0. Consider the simple
functions,

s′n (ω)≡ tn (ω)XNC (ω) .

It is an increasing sequence so let g(ω) = limn→∞ sn′ (ω) . It follows g is mesurable with
respect to F and equals f off N.

Finally, to obtain the function, h ≥ f , in 12.11.54 use Theorem 12.11.1 to obtain the
existence of Fn

k ∈F such that Fn
k ⊇ En

k and µ
(
Fn

k

)
= µ

(
En

k

)
. Then let

tn (ω)≡
mn

∑
k=1

cn
kXFn

k
(ω) .

Thus tn = sn off a set of measure zero, Mn ∈F , tn ≥ sn, and tn is measurable with respect
to F . Then define

s′n = max
k≤n

tn.
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It follows s′n is an increasing sequence of F measurable nonnegative simple functions.
Since each s′n ≥ sn, it follows that if h(ω) = limn→∞ s′n (ω) ,then h(ω) ≥ f (ω) . Also if
h(ω)> f (ω) , then ω ∈∪nMn≡M′, a set of F having measure zero. By Theorem 12.11.1,
there exists M ⊇M′ such that M ∈F and µ (M) = 0. It follows h = f off M. This proves
the theorem.

12.12 Another Version Of Product Measures
12.12.1 General Theory
Given two finite measure spaces, (X ,F ,µ) and (Y,S ,ν) , there is a way to define a σ

algebra of subsets of X ×Y , denoted by F ×S and a measure, denoted by µ×ν defined
on this σ algebra such that

µ×ν (A×B) = µ (A)ν (B)

whenever A ∈F and B ∈S . This is naturally related to the concept of iterated integrals
similar to what is used in calculus to evaluate a multiple integral. The approach is based on
something called a π system, [36].

Definition 12.12.1 Let (X ,F ,µ) and (Y,S ,ν) be two measure spaces. A measurable
rectangle is a set of the form A×B where A ∈F and B ∈S .

Definition 12.12.2 Let Ω be a set and let K be a collection of subsets of Ω. Then K is
called a π system if /0,Ω ∈K and whenever A,B ∈K , it follows A∩B ∈K .

Obviously an example of a π system is the set of measurable rectangles because

A×B∩A′×B′ =
(
A∩A′

)
×
(
B∩B′

)
.

The following is the fundamental lemma which shows these π systems are useful. This
lemma is due to Dynkin.

Lemma 12.12.3 Let K be a π system of subsets of Ω, a set. Also let G be a collection of
subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if
H ≡ {G : 1 - 3 all hold}

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that G is the smallest collection satisfying 1 - 3. Let A ∈K and define

GA ≡ {B ∈ G : A∩B ∈ G } .
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I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system, K ⊆ G A. Property 3 is obvious because if {Bi} is
a sequence of disjoint sets in GA, then

A∩∪∞
i=1Bi = ∪∞

i=1A∩Bi ∈ G

because A∩Bi ∈ G and the property 3 of G .
It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other

words, I need to show that A∩BC ∈ G . However,

A∩BC =
(
AC ∪ (A∩B)

)C ∈ G

Here is why. Since B ∈ GA, A∩B ∈ G and since A ∈K ⊆ G it follows AC ∈ G by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, AC and (A∩B) is
in G and then from 2 the complement of their union is in G . Thus GA satisfies 1 - 3 and
this implies since G is the smallest such, that GA ⊇ G . However, GA is constructed as a
subset of G . This proves that for every B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G and
consider

GB ≡ {A ∈ G : A∩B ∈ G } .

I just proved K ⊆ GB. The other arguments are identical to show GB satisfies 1 - 3 and is
therefore equal to G . This shows that whenever A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′1 = A1
and

A′n+1 ≡ An+1 \ (∪n
i=1Ai)

= An+1∩
(
∩n

i=1AC
i
)

= ∩n
i=1
(
An+1∩AC

i
)
∈ G

because finite intersections of sets of G are in G . Since the A′i are disjoint, it follows

∪∞
i=1Ai = ∪∞

i=1A′i ∈ G

Therefore, G ⊇ σ (K ) and this proves the Lemma. ■
With this lemma, it is easy to define product measure.
Let (X ,F ,µ) and (Y,S ,ν) be two finite measure spaces. Define K to be the set of

measurable rectangles, A×B, A ∈F and B ∈S . Let

G ≡
{

E ⊆ X×Y :
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ

}
(12.12.55)

where in the above, part of the requirement is for all integrals to make sense.
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Then K ⊆ G . This is obvious.
Next I want to show that if E ∈ G then EC ∈ G . Observe XEC = 1−XE and so∫

Y

∫
X

XEC dµdν =
∫

Y

∫
X
(1−XE)dµdν

=
∫

X

∫
Y
(1−XE)dνdµ

=
∫

X

∫
Y

XEC dνdµ

which shows that if E ∈ G , then EC ∈ G .
Next I want to show G is closed under countable unions of disjoint sets of G . Let {Ai}

be a sequence of disjoint sets from G . Then∫
Y

∫
X

X∪∞
i=1Aidµdν =

∫
Y

∫
X

∞

∑
i=1

XAidµdν

=
∫

Y

∞

∑
i=1

∫
X

XAidµdν

=
∞

∑
i=1

∫
Y

∫
X

XAidµdν

=
∞

∑
i=1

∫
X

∫
Y

XAidνdµ

=
∫

X

∞

∑
i=1

∫
Y

XAidνdµ

=
∫

X

∫
Y

∞

∑
i=1

XAidνdµ

=
∫

X

∫
Y

X∪∞
i=1Aidνdµ, (12.12.56)

the interchanges between the summation and the integral depending on the monotone con-
vergence theorem. Thus G is closed with respect to countable disjoint unions.

From Lemma 12.12.3, G ⊇ σ (K ) . Also the computation in 12.12.56 implies that on
σ (K ) one can define a measure, denoted by µ×ν and that for every E ∈ σ (K ) ,

(µ×ν)(E) =
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ. (12.12.57)

Now here is Fubini’s theorem.

Theorem 12.12.4 Let f : X ×Y → [0,∞] be measurable with respect to the σ algebra,
σ (K ) just defined and let µ ×ν be the product measure of 12.12.57 where µ and ν are
finite measures on (X ,F ) and (Y,S ) respectively. Then∫

X×Y
f d (µ×ν) =

∫
Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ.
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Proof: Let {sn} be an increasing sequence of σ (K ) measurable simple functions
which converges pointwise to f . The above equation holds for sn in place of f from what
was shown above. The final result follows from passing to the limit and using the monotone
convergence theorem. ■

The symbol, F ×S denotes σ (K ).
Of course one can generalize right away to measures which are only σ finite.

Theorem 12.12.5 Let f : X ×Y → [0,∞] be measurable with respect to the σ algebra,
σ (K ) just defined and let µ×ν be the product measure of 12.12.57 where µ and ν are σ

finite measures on (X ,F ) and (Y,S ) respectively. Then∫
X×Y

f d (µ×ν) =
∫

Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ.

Proof: Since the measures are σ finite, there exist increasing sequences of sets, {Xn}
and {Yn} such that µ (Xn) < ∞ and ν (Yn) < ∞. Then µ and ν restricted to Xn and Yn
respectively are finite. Then from Theorem 12.12.4,∫

Yn

∫
Xn

f dµdν =
∫

Xn

∫
Yn

f dνdµ

Passing to the limit yields ∫
Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ

whenever f is as above. In particular, you could take f = XE where E ∈ F ×S and
define

(µ×ν)(E)≡
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ.

Then just as in the proof of Theorem 12.12.4, the conclusion of this theorem is obtained.
This proves the theorem.

It is also useful to note that all the above holds for ∏
n
i=1 Xi in place of X ×Y. You

would simply modify the definition of G in 12.12.55 including all permutations for the
iterated integrals and for K you would use sets of the form ∏

n
i=1 Ai where Ai is measurable.

Everything goes through exactly as above. Thus the following is obtained.

Theorem 12.12.6 Let {(Xi,Fi,µ i)}
n
i=1 be σ finite measure spaces and let ∏

n
i=1 Fi denote

the smallest σ algebra which contains the measurable boxes of the form ∏
n
i=1 Ai where

Ai ∈Fi. Then there exists a measure, λ defined on ∏
n
i=1 Fi such that if f : ∏

n
i=1 Xi→ [0,∞]

is ∏
n
i=1 Fi measurable, and (i1, · · · , in) is any permutation of (1, · · · ,n) , then∫

f dλ =
∫

Xin

· · ·
∫

Xi1

f dµ i1 · · ·dµ in

12.12.2 Completion Of Product Measure Spaces
Using Theorem 12.11.2 it is easy to give a generalization to yield a theorem for the com-
pletion of product spaces.
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Theorem 12.12.7 Let {(Xi,Fi,µ i)}
n
i=1 be σ finite measure spaces and let ∏

n
i=1 Fi denote

the smallest σ algebra which contains the measurable boxes of the form ∏
n
i=1 Ai where

Ai ∈Fi. Then there exists a measure, λ defined on ∏
n
i=1 Fi such that if f : ∏

n
i=1 Xi→ [0,∞]

is ∏
n
i=1 Fi measurable, and (i1, · · · , in) is any permutation of (1, · · · ,n) , then∫

f dλ =
∫

Xin

· · ·
∫

Xi1

f dµ i1 · · ·dµ in

Let
(

∏
n
i=1 Xi,∏

n
i=1 Fi,λ

)
denote the completion of this product measure space and let

f :
n

∏
i=1

Xi→ [0,∞]

be ∏
n
i=1 Fi measurable. Then there exists N ∈ ∏

n
i=1 Fi such that λ (N) = 0 and a non-

negative function, f1 measurable with respect to ∏
n
i=1 Fi such that f1 = f off N and if

(i1, · · · , in) is any permutation of (1, · · · ,n) , then∫
f dλ =

∫
Xin

· · ·
∫

Xi1

f1dµ i1 · · ·dµ in .

Furthermore, f1 may be chosen to satisfy either f1 ≤ f or f1 ≥ f .

Proof: This follows immediately from Theorem 12.12.6 and Theorem 12.11.2. By the
second theorem, there exists a function f1 ≥ f such that f1 = f for all (x1, · · · ,xn) /∈ N, a
set of ∏

n
i=1 Fi having measure zero. Then by Theorem 12.11.1 and Theorem 12.12.6∫

f dλ =
∫

f1dλ =
∫

Xin

· · ·
∫

Xi1

f1dµ i1 · · ·dµ in .

Since f1 = f off a set of measure zero, I will dispense with the subscript. Also it is
customary to write

λ = µ1×·· ·×µn

and
λ = µ1×·· ·×µn.

Thus in more standard notation, one writes∫
f d (µ1×·· ·×µn) =

∫
Xin

· · ·
∫

Xi1

f dµ i1 · · ·dµ in

This theorem is often referred to as Fubini’s theorem. The next theorem is also called this.

Corollary 12.12.8 Suppose f ∈ L1
(
∏

n
i=1 Xi,∏

n
i=1 Fi,µ1×·· ·×µn

)
where each Xi is a σ

finite measure space. Then if (i1, · · · , in) is any permutation of (1, · · · ,n) , it follows∫
f d (µ1×·· ·×µn) =

∫
Xin

· · ·
∫

Xi1

f dµ i1 · · ·dµ in .
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Proof: Just apply Theorem 12.12.7 to the positive and negative parts of the real and
imaginary parts of f . This proves the theorem.

Here is another easy corollary.

Corollary 12.12.9 Suppose in the situation of Corollary 12.12.8, f = f1 off N, a set of
∏

n
i=1 Fi having µ1×·· ·×µn measure zero and that f1 is a complex valued function mea-

surable with respect to ∏
n
i=1 Fi. Suppose also that for some permutation of (1,2, · · · ,n)

,( j1, · · · , jn) ∫
X jn

· · ·
∫

X j1

| f1|dµ j1 · · ·dµ jn < ∞.

Then

f ∈ L1

(
n

∏
i=1

Xi,
n

∏
i=1

Fi,µ1×·· ·×µn

)
and the conclusion of Corollary 12.12.8 holds.

Proof: Since | f1| is ∏
n
i=1 Fi measurable, it follows from Theorem 12.12.6 that

∞ >
∫

X jn

· · ·
∫

X j1

| f1|dµ j1 · · ·dµ jn

=
∫
| f1|d (µ1×·· ·×µn)

=
∫
| f1|d (µ1×·· ·×µn)

=
∫
| f |d (µ1×·· ·×µn) .

Thus f ∈ L1
(
∏

n
i=1 Xi,∏

n
i=1 Fi,µ1×·· ·×µn

)
as claimed and the rest follows from Corol-

lary 12.12.8. This proves the corollary.
The following lemma is also useful.

Lemma 12.12.10 Let (X ,F ,µ) and (Y,S ,ν) be σ finite complete measure spaces and
suppose f ≥ 0 is F ×S measurable. Then for a.e. x,

y→ f (x,y)

is S measurable. Similarly for a.e. y,

x→ f (x,y)

is F measurable.

Proof: By Theorem 12.11.2, there exist F ×S measurable functions, g and h and a
set, N ∈F ×S of µ ×λ measure zero such that g ≤ f ≤ h and for (x,y) /∈ N, it follows
that g(x,y) = h(x,y) . Then ∫

X

∫
Y

gdνdµ =
∫

X

∫
Y

hdνdµ
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and so for a.e. x, ∫
Y

gdν =
∫

Y
hdν .

Then it follows that for these values of x,g(x,y) = h(x,y) and so by Theorem 12.11.2
again and the assumption that (Y,S ,ν) is complete, y→ f (x,y) is S measurable. The
other claim is similar. This proves the lemma.

12.13 Disturbing Examples
There are examples which help to define what can be expected of product measures and
Fubini type theorems. Three such examples are given in Rudin [113]. Some of the theorems
given above are more general than those in this reference but the same examples are still
useful for showing that the hypotheses of the above theorems are all necessary.

Example 12.13.1 Let {an} be an increasing sequence of numbers in (0,1) which converges
to 1. Let gn ∈Cc (an,an+1) such that

∫
gndx = 1. Now for (x,y) ∈ [0,1)× [0,1) define

f (x,y)≡
∞

∑
k=1

gn (y)(gn (x)−gn+1 (x)) .

Note this is actually a finite sum for each such (x,y) . Therefore, this is a continuous function
on [0,1)× [0,1). Now for a fixed y,∫ 1

0
f (x,y)dx =

∞

∑
k=1

gn (y)
∫ 1

0
(gn (x)−gn+1 (x))dx = 0

showing that
∫ 1

0
∫ 1

0 f (x,y)dxdy =
∫ 1

0 0dy = 0. Next fix x.∫ 1

0
f (x,y)dy =

∞

∑
k=1

(gn (x)−gn+1 (x))
∫ 1

0
gn (y)dy = g1 (x) .

Hence
∫ 1

0
∫ 1

0 f (x,y)dydx =
∫ 1

0 g1 (x)dx = 1. The iterated integrals are not equal. Note
the function, g is not nonnegative even though it is measurable. In addition, neither∫ 1

0
∫ 1

0 | f (x,y)|dxdy nor
∫ 1

0
∫ 1

0 | f (x,y)|dydx is finite and so you Corollary 12.9.13 does not
apply. The problem here is the function is not nonnegative and is not absolutely integrable.

Example 12.13.2 This time let µ = m, Lebesgue measure on [0,1] and let ν be counting
measure on [0,1] , in this case, the σ algebra is P ([0,1]) . Let l denote the line segment
in [0,1]× [0,1] which goes from (0,0) to (1,1). Thus l = (x,x) where x ∈ [0,1] . Consider
the outer measure of l in m×ν . Let l ⊆ ∪kAk×Bk where Ak is Lebesgue measurable and
Bk is a subset of [0,1] . Let B ≡ {k ∈ N : ν (Bk) = ∞} . If m(∪k∈BAk) has measure zero,
then there are uncountably many points of [0,1] outside of ∪k∈BAk. For p one of these
points, (p, p) ∈ Ai×Bi and i /∈B. Thus each of these points is in ∪i/∈BBi, a countable
set because these Bi are each finite. But this is a contradiction because there need to
be uncountably many of these points as just indicated. Thus m(Ak) > 0 for some k ∈B
and so m×ν (Ak×Bk) = ∞. It follows m×ν (l) = ∞ and so l is m×ν measurable. Thus
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∫
Xl (x,y)d m×ν = ∞ and so you cannot apply Fubini’s theorem, Theorem 12.9.11. Since

ν is not σ finite, you cannot apply the corollary to this theorem either. Thus there is no
contradiction to the above theorems in the following observation.∫ ∫

Xl (x,y)dνdm =
∫

1dm = 1,
∫ ∫

Xl (x,y)dmdν =
∫

0dν = 0.

The problem here is that you have neither
∫

f d m×ν < ∞ not σ finite measure spaces.

The next example is far more exotic. It concerns the case where both iterated integrals
make perfect sense but are unequal. In 1877 Cantor conjectured that the cardinality of
the real numbers is the next size of infinity after countable infinity. This hypothesis is
called the continuum hypothesis and it has never been proved or disproved4. Assuming
this continuum hypothesis will provide the basis for the following example. It is due to
Sierpinski.

Example 12.13.3 Let X be an uncountable set. It follows from the well ordering theorem
which says every set can be well ordered which is presented in the appendix that X can be
well ordered. Let ω ∈ X be the first element of X which is preceded by uncountably many
points of X . Let Ω denote {x ∈ X : x < ω} . Then Ω is uncountable but there is no smaller
uncountable set. Thus by the continuum hypothesis, there exists a one to one and onto
mapping, j which maps [0,1] onto Ω. Thus, for x ∈ [0,1] , j (x) is preceeded by countably

many points. Let Q≡
{
(x,y) ∈ [0,1]2 : j (x)< j (y)

}
and let f (x,y) = XQ (x,y) . Then

∫ 1

0
f (x,y)dy = 1,

∫ 1

0
f (x,y)dx = 0

In each case, the integrals make sense. In the first, for fixed x, f (x,y) = 1 for all but
countably many y so the function of y is Borel measurable. In the second where y is fixed,
f (x,y) = 0 for all but countably many x. Thus∫ 1

0

∫ 1

0
f (x,y)dydx = 1,

∫ 1

0

∫ 1

0
f (x,y)dxdy = 0.

The problem here must be that f is not m×m measurable.

12.14 Exercises
1. Let Ω = N, the natural numbers and let d (p,q) = |p−q|, the usual distance in R.

Show that (Ω,d) the closures of the balls are compact. Now let Λ f ≡ ∑
∞
k=1 f (k)

whenever f ∈ Cc (Ω). Show this is a well defined positive linear functional on the
space Cc (Ω). Describe the measure of the Riesz representation theorem which re-
sults from this positive linear functional. What if Λ( f )= f (1)? What measure would
result from this functional? Which functions are measurable?

4In 1940 it was shown by Godel that the continuum hypothesis cannot be disproved. In 1963 it was shown by
Cohen that the continuum hypothesis cannot be proved. These assertions are based on the axiom of choice and the
Zermelo Frankel axioms of set theory. This topic is far outside the scope of this book and this is only a hopefully
interesting historical observation.
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2. Verify that µ defined in Lemma 12.1.9 is an outer measure.

3. Let F : R→ R be increasing and right continuous. Let Λ f ≡
∫

f dF where the in-
tegral is the Riemann Stieltjes integral of f . Show the measure µ from the Riesz
representation theorem satisfies

µ ([a,b]) = F (b)−F (a−) ,µ ((a,b]) = F (b)−F (a) ,

µ ([a,a]) = F (a)−F (a−) .

4. Let Ω be a metric space with the closed balls compact and suppose µ is a measure
defined on the Borel sets of Ω which is finite on compact sets. Show there exists a
unique Radon measure, µ which equals µ on the Borel sets.

5. ↑ Random vectors are measurable functions X, which map a probability space to Rn.
A probability space is of the form (Ω,P,F ). Thus X(ω) ∈ Rn for each ω ∈ Ω and
P is a probability measure defined on the sets of F , a σ algebra of subsets of Ω. For
E a Borel set in Rn, define

µ (E)≡ P
(
X−1 (E)

)
≡ probability that X ∈ E.

Show this is a well defined measure on the Borel sets of Rn and use Problem 4 to
obtain a Radon measure, λ X defined on a σ algebra of sets of Rn including the Borel
sets such that for E a Borel set, λ X (E) =Probability that (X ∈E).

6. Suppose X and Y are metric spaces having compact closed balls. Show

(X×Y,dX×Y )

is also a metric space which has the closures of balls compact. Here

dX×Y ((x1,y1) ,(x2,y2))≡max(d (x1,x2) ,d (y1,y2)) .

Let
A ≡ {E×F : E is a Borel set in X ,F is a Borel set in Y} .

Show σ (A ), the smallest σ algebra containing A contains the Borel sets. Hint:
Show every open set in a metric space which has closed balls compact can be ob-
tained as a countable union of compact sets. Next show this implies every open set
can be obtained as a countable union of open sets of the form U×V where U is open
in X and V is open in Y .

7. Suppose (Ω,S ,µ) is a measure space which may not be complete. Could you obtain
a complete measure space,

(
Ω,S ,µ1

)
by simply letting S consist of all sets of the

form E where there exists F ∈S such that (F \E)∪ (E \F) ⊆ N for some N ∈S
which has measure zero and then let µ (E) = µ1 (F)?

8. If µ and ν are Radon measures defined onRn andRm respectively, show µ×ν is also
a radon measure on Rn+m. Hint: Show the µ×ν measurable sets include the open
sets using the observation that every open set in Rn+m is the countable union of sets
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of the form U ×V where U and V are open in Rn and Rm respectively. Next verify
outer regularity by considering A×B for A,B measurable. Argue sets of R defined
above have the property that they can be approximated in measure from above by
open sets. Then verify the same is true of sets of R1. Finally conclude using an
appropriate lemma that µ×ν is inner regular as well.

9. Let (Ω,S ,µ) be a σ finite measure space and let f : Ω→ [0,∞) be measurable.
Define

A≡ {(x,y) : y < f (x)}

Verify that A is µ×m measurable. Show that∫
f dµ =

∫ ∫
XA (x,y)dµdm =

∫
XAdµ×m.



Chapter 13

Lebesgue Measure
13.1 Basic Properties

Definition 13.1.1 Define the following positive linear functional for f ∈Cc (Rn) .

Λ f ≡
∫

∞

−∞

· · ·
∫

∞

−∞

f (x)dx1 · · ·dxn.

Then the measure representing this functional is Lebesgue measure.

The following lemma will help in understanding Lebesgue measure.

Lemma 13.1.2 Every open set in Rn is the countable disjoint union of half open boxes of
the form

n

∏
i=1

(ai,ai +2−k]

where ai = l2−k for some integers, l,k. The sides of these boxes are of equal length. One
could also have half open boxes of the form

n

∏
i=1

[ai,ai +2−k)

and the conclusion would be unchanged.

Proof: Let

Ck = {All half open boxes
n

∏
i=1

(ai,ai +2−k] where

ai = l2−k for some integer l.}

Thus Ck consists of a countable disjoint collection of boxes whose union is Rn. This is
sometimes called a tiling of Rn. Think of tiles on the floor of a bathroom and you will get
the idea. Note that each box has diameter no larger than 2−k√n. This is because if

x,y ∈
n

∏
i=1

(ai,ai +2−k],

then |xi− yi| ≤ 2−k. Therefore,

|x−y| ≤

(
n

∑
i=1

(
2−k
)2
)1/2

= 2−k√n.

Let U be open and let B1 ≡ all sets of C1 which are contained in U . If B1, · · · ,Bk have
been chosen, Bk+1 ≡ all sets of Ck+1 contained in

U \∪
(
∪k

i=1Bi

)
.

339
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Let B∞ = ∪∞
i=1Bi. In fact ∪B∞ = U . Clearly ∪B∞ ⊆U because every box of every Bi

is contained in U . If p ∈U , let k be the smallest integer such that p is contained in a box
from Ck which is also a subset of U . Thus

p ∈ ∪Bk ⊆ ∪B∞.

Hence B∞ is the desired countable disjoint collection of half open boxes whose union is
U . The last assertion about the other type of half open rectangle is obvious. This proves
the lemma.

Now what does Lebesgue measure do to a rectangle, ∏
n
i=1(ai,bi]?

Lemma 13.1.3 Let R = ∏
n
i=1[ai,bi], R0 = ∏

n
i=1(ai,bi). Then

mn (R0) = mn (R) =
n

∏
i=1

(bi−ai).

Proof: Let k be large enough that

ai +1/k < bi−1/k

for i = 1, · · · ,n and consider functions gk
i and f k

i having the following graphs.

ai +
1
k

ai

1
bi− 1

k

bi

f k
i ai− 1

k

ai

1

bi

bi +
1
k

gk
i

Let

gk(x) =
n

∏
i=1

gk
i (xi), f k(x) =

n

∏
i=1

f k
i (xi).

Then by elementary calculus along with the definition of Λ,

n

∏
i=1

(bi−ai +2/k)≥ Λgk =
∫

gkdmn ≥ mn(R)≥ mn(R0)

≥
∫

f kdmn = Λ f k ≥
n

∏
i=1

(bi−ai−2/k).

Letting k→ ∞, it follows that

mn(R) = mn(R0) =
n

∏
i=1

(bi−ai).

This proves the lemma.
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Lemma 13.1.4 Let U be an open or closed set. Then mn (U) = mn (x+U) .

Proof: By Lemma 13.1.2 there is a sequence of disjoint half open rectangles, {Ri} such
that ∪iRi = U. Therefore, x+U = ∪i (x+Ri) and the x+Ri are also disjoint rectangles
which are identical to the Ri but translated. From Lemma 13.1.3, mn (U) = ∑i mn (Ri) =

∑i mn (x+Ri) = mn (x+U) .
It remains to verify the lemma for a closed set. Let H be a closed bounded set first.

Then H ⊆ B(0,R) for some R large enough. First note that x+H is a closed set. Thus

mn (B(x,R)) = mn (x+H)+mn ((B(0,R)+x)\(x+H))

= mn (x+H)+mn ((B(0,R)\H)+x)
= mn (x+H)+mn ((B(0,R)\H))

= mn (B(0,R))−mn (H)+mn (x+H)

= mn (B(x,R))−mn (H)+mn (x+H)

the last equality because of the first part of the lemma which implies mn (B(x,R)) =
mn (B(0,R)) . Therefore, mn (x+H) = mn (H) as claimed. If H is not bounded, consider
Hm ≡ B(0,m)∩H. Then mn (x+Hm) = mn (Hm) . Passing to the limit as m→ ∞ yields the
result in general.

Theorem 13.1.5 Lebesgue measure is translation invariant. That is

mn (E) = mn (x+E)

for all E Lebesgue measurable.

Proof: Suppose mn (E) < ∞. By regularity of the measure, there exist sets G,H such
that G is a countable intersection of open sets, H is a countable union of compact sets,
mn (G\H) = 0, and G⊇E ⊇H. Now mn (G) =mn (G+x) and mn (H) =mn (H +x) which
follows from Lemma 13.1.4 applied to the sets which are either intersected to form G or
unioned to form H. Now

x+H ⊆ x+E ⊆ x+G

and both x + H and x + G are measurable because they are either countable unions or
countable intersections of measurable sets. Furthermore,

mn (x+G\x+H) = mn (x+G)−mn (x+H) = mn (G)−mn (H) = 0

and so by completeness of the measure, x+E is measurable. It follows

mn (E) = mn (H) = mn (x+H)≤ mn (x+E)

≤ mn (x+G) = mn (G) = mn (E) .

If mn (E) is not necessarily less than ∞, consider Em ≡ B(0,m) ∩ E. Then mn (Em) =
mn (Em +x) by the above. Letting m→ ∞ it follows mn (E) = mn (E +x). This proves
the theorem.
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Corollary 13.1.6 Let D be an n×n diagonal matrix and let U be an open set. Then

mn (DU) = |det(D)|mn (U) .

Proof: If any of the diagonal entries of D equals 0 there is nothing to prove because
then both sides equal zero. Therefore, it can be assumed none are equal to zero. Suppose
these diagonal entries are k1, · · · ,kn. From Lemma 13.1.2 there exist half open boxes, {Ri}
having all sides equal such that U =∪iRi. Suppose one of these is Ri = ∏

n
j=1(a j,b j], where

b j− a j = li. Then DRi = ∏
n
j=1 I j where I j = (k ja j,k jb j] if k j > 0 and I j = [k jb j,k ja j) if

k j < 0. Then the rectangles, DRi are disjoint because D is one to one and their union is DU.
Also,

mn (DRi) =
n

∏
j=1

∣∣k j
∣∣ li = |detD|mn (Ri) .

Therefore,

mn (DU) =
∞

∑
i=1

mn (DRi) = |det(D)|
∞

∑
i=1

mn (Ri) = |det(D)|mn (U) .

and this proves the corollary.
From this the following corollary is obtained.

Corollary 13.1.7 Let M > 0. Then mn (B(a,Mr)) = Mnmn (B(0,r)) .

Proof: By Lemma 13.1.4 there is no loss of generality in taking a = 0. Let D be
the diagonal matrix which has M in every entry of the main diagonal so |det(D)| = Mn.
Note that DB(0,r) = B(0,Mr) . By Corollary 13.1.6 mn (B(0,Mr)) = mn (DB(0,r)) =
Mnmn (B(0,r)) .

There are many norms on Rn. Other common examples are

||x||
∞
≡max{|xk| : x =(x1, · · · ,xn)}

or

||x||p ≡

(
n

∑
i=1
|xi|p

)1/p

.

With ||·|| any norm for Rn you can define a corresponding ball in terms of this norm.

B(a,r)≡ {x ∈ Rn such that ||x−a||< r}

It follows from general considerations involving metric spaces presented earlier that these
balls are open sets. Therefore, Corollary 13.1.7 has an obvious generalization.

Corollary 13.1.8 Let ||·|| be a norm on Rn. Then for M > 0,

mn (B(a,Mr)) = Mnmn (B(0,r))

where these balls are defined in terms of the norm ||·||.
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13.2 The Vitali Covering Theorem
The Vitali covering theorem is concerned with the situation in which a set is contained in
the union of balls. You can imagine that it might be very hard to get disjoint balls from this
collection of balls which would cover the given set. However, it is possible to get disjoint
balls from this collection of balls which have the property that if each ball is enlarged
appropriately, the resulting enlarged balls do cover the set. When this result is established,
it is used to prove another form of this theorem in which the disjoint balls do not cover the
set but they only miss a set of measure zero.

Recall the Hausdorff maximal principle, Theorem 2.4.2 on Page 36 which is proved to
be equivalent to the axiom of choice in the appendix. For convenience, here it is:

Theorem 13.2.1 (Hausdorff Maximal Principle) Let F be a nonempty partially ordered
set. Then there exists a maximal chain.

I will use this Hausdorff maximal principle to give a very short and elegant proof of the
Vitali covering theorem. This follows the treatment in Evans and Gariepy [47] which they
got from another book. I am not sure who first did it this way but it is very nice because it
is so short. In the following lemma and theorem, the balls will be either open or closed and
determined by some norm on Rn. When pictures are drawn, I shall draw them as though
the norm is the usual norm but the results are unchanged for any norm. Also, I will write
(in this section only) B(a,r) to indicate a set which satisfies

{x ∈ Rn : ||x−a||< r} ⊆ B(a,r)⊆ {x ∈ Rn : ||x−a|| ≤ r}

and B̂(a,r) to indicate the usual ball but with radius 5 times as large,

{x ∈ Rn : ||x−a||< 5r} .

Lemma 13.2.2 Let ||·|| be a norm on Rn and let F be a collection of balls determined by
this norm. Suppose

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and k ∈ (0,∞) . Then there exists G ⊆F such that

if B(p,r) ∈ G then r > k, (13.2.1)

if B1,B2 ∈ G then B1∩B2 = /0, (13.2.2)

G is maximal with respect to 13.2.1 and 13.2.2.

Note that if there is no ball of F which has radius larger than k then G = /0.

Proof: Let H = {B ⊆F such that 13.2.1 and 13.2.2 hold}. If there are no balls with
radius larger than k then H = /0 and you let G = /0. In the other case, H ̸= /0 because there
exists B(p,r) ∈F with r > k. In this case, partially order H by set inclusion and use the
Hausdorff maximal principle (see the appendix on set theory) to let C be a maximal chain
in H . Clearly ∪C satisfies 13.2.1 and 13.2.2 because if B1 and B2 are two balls from ∪C
then since C is a chain, it follows there is some element of C ,B such that both B1 and B2
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are elements of B and B satisfies 13.2.1 and 13.2.2. If ∪C is not maximal with respect
to these two properties, then C was not a maximal chain because then there would exist
B ⊋ ∪C , that is, B contains C as a proper subset and {C ,B} would be a strictly larger
chain in H . Let G = ∪C .

Theorem 13.2.3 (Vitali) Let F be a collection of balls and let

A≡ ∪{B : B ∈F}.

Suppose
∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of disjoint balls and

A⊆ ∪{B̂ : B ∈ G }.

Proof: Using Lemma 13.2.2, there exists G1 ⊆F ≡F0 which satisfies

B(p,r) ∈ G1 implies r >
M
2
, (13.2.3)

B1,B2 ∈ G1 implies B1∩B2 = /0, (13.2.4)

G1 is maximal with respect to 13.2.3, and 13.2.4.

Suppose G1, · · · ,Gm have been chosen, m≥ 1. Let

Fm ≡ {B ∈F : B⊆ Rn \∪{G1∪·· ·∪Gm}}.

Using Lemma 13.2.2, there exists Gm+1 ⊆Fm such that

B(p,r) ∈ Gm+1 implies r >
M

2m+1 , (13.2.5)

B1,B2 ∈ Gm+1 implies B1∩B2 = /0, (13.2.6)

Gm+1 is a maximal subset of Fm with respect to 13.2.5 and 13.2.6.

Note it might be the case that Gm+1 = /0 which happens if Fm = /0. Define

G ≡ ∪∞
k=1Gk.

Thus G is a collection of disjoint balls in F . I must show {B̂ : B ∈ G } covers A.
Let x ∈ B(p,r) ∈F and let

M
2m < r ≤ M

2m−1 .

Then B(p,r) must intersect some set, B(p0,r0) ∈ G1∪·· ·∪Gm since otherwise, Gm would
fail to be maximal. Then r0 >

M
2m because all balls in G1∪·· ·∪Gm satisfy this inequality.
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r0

p0 r
p
x

Then for x ∈ B(p,r) , the following chain of inequalities holds because r ≤ M
2m−1 and

r0 >
M
2m

|x−p0| ≤ |x−p|+ |p−p0| ≤ r+ r0 + r

≤ 2M
2m−1 + r0 =

4M
2m + r0 < 5r0.

Thus B(p,r)⊆ B̂(p0,r0) and this proves the theorem.

13.3 The Vitali Covering Theorem (Elementary Version)
The proof given here is from Basic Analysis [83]. It first considers the case of open balls
and then generalizes to balls which may be neither open nor closed or closed.

Lemma 13.3.1 Let F be a countable collection of balls satisfying

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and let k ∈ (0,∞) . Then there exists G ⊆F such that

If B(p,r) ∈ G then r > k, (13.3.7)

If B1,B2 ∈ G then B1∩B2 = /0, (13.3.8)

G is maximal with respect to 13.3.7 and 13.3.8. (13.3.9)

Proof: If no ball of F has radius larger than k, let G = /0. Assume therefore, that some
balls have radius larger than k. Let F ≡ {Bi}∞

i=1. Now let Bn1 be the first ball in the list
which has radius greater than k. If every ball having radius larger than k intersects this one,
then stop. The maximal set is just Bn1 . Otherwise, let Bn2 be the next ball having radius
larger than k which is disjoint from Bn1 . Continue this way obtaining {Bni}

∞

i=1, a finite or
infinite sequence of disjoint balls having radius larger than k. Then let G ≡ {Bni}. To see
that G is maximal with respect to 13.3.7 and 13.3.8, suppose B ∈F , B has radius larger
than k, and G ∪{B} satisfies 13.3.7 and 13.3.8. Then at some point in the process, B would
have been chosen because it would be the ball of radius larger than k which has the smallest
index. Therefore, B ∈ G and this shows G is maximal with respect to 13.3.7 and 13.3.8.

For the next lemma, for an open ball, B = B(x,r) , denote by B̃ the open ball, B(x,4r) .
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Lemma 13.3.2 Let F be a collection of open balls, and let

A≡ ∪{B : B ∈F} .

Suppose
∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of disjoint balls and

A⊆ ∪{B̃ : B ∈ G }.

Proof: Without loss of generality assume F is countable. This is because there is a
countable subset of F , F ′ such that ∪F ′ = A. To see this, consider the set of balls having
rational radii and centers having all components rational. This is a countable set of balls
and you should verify that every open set is the union of balls of this form. Therefore,
you can consider the subset of this set of balls consisting of those which are contained in
some open set of F , G so ∪G = A and use the axiom of choice to define a subset of F
consisting of a single set from F containing each set of G. Then this is F ′ . The union
of these sets equals A . Then consider F ′ instead of F . Therefore, assume at the outset
F is countable. By Lemma 13.3.1, there exists G1 ⊆F which satisfies 13.3.7, 13.3.8, and
13.3.9 with k = 2M

3 .

Suppose G1, · · · ,Gm−1 have been chosen for m≥ 2. Let

Fm = {B ∈F : B⊆ Rn \

union of the balls in these G j︷ ︸︸ ︷
∪{G1∪·· ·∪Gm−1} }

and using Lemma 13.3.1, let Gm be a maximal collection of disjoint balls from Fm with the
property that each ball has radius larger than

( 2
3

)m
M. Let G ≡ ∪∞

k=1Gk. Let x ∈ B(p,r) ∈
F . Choose m such that (

2
3

)m

M < r ≤
(

2
3

)m−1

M

Then B(p,r) must have nonempty intersection with some ball from G1∪ ·· · ∪Gm because
if it didn’t, then Gm would fail to be maximal. Denote by B(p0,r0) a ball in G1 ∪ ·· · ∪Gm
which has nonempty intersection with B(p,r) . Thus

r0 >

(
2
3

)m

M.

Consider the picture, in which w ∈ B(p0,r0)∩B(p,r) .

w·
r0

p0 r
p
·x
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Then

|x−p0| ≤ |x−p|+ |p−w|+

<r0︷ ︸︸ ︷
|w−p0|

< r+ r+ r0 ≤ 2

< 3
2 r0︷ ︸︸ ︷(

2
3

)m−1

M+ r0

< 2
(

3
2

)
r0 + r0 = 4r0.

This proves the lemma since it shows B(p,r)⊆ B(p0,4r0) .

With this Lemma consider a version of the Vitali covering theorem in which the balls do
not have to be open. A ball centered at x of radius r will denote something which contains
the open ball, B(x,r) and is contained in the closed ball, B(x,r). Thus the balls could be
open or they could contain some but not all of their boundary points.

Definition 13.3.3 Let B be a ball centered at x having radius r. Denote by B̂ the open ball,
B(x,5r).

Theorem 13.3.4 (Vitali) Let F be a collection of balls, and let

A≡ ∪{B : B ∈F} .

Suppose

∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of disjoint balls and

A⊆ ∪{B̂ : B ∈ G }.

Proof: For B one of these balls, say B(x,r) ⊇ B ⊇ B(x,r), denote by B1, the ball
B
(
x, 5r

4

)
. Let F1 ≡ {B1 : B ∈F} and let A1 denote the union of the balls in F1. Apply

Lemma 13.3.2 to F1 to obtain

A1 ⊆ ∪{B̃1 : B1 ∈ G1}

where G1 consists of disjoint balls from F1. Now let G ≡ {B ∈F : B1 ∈ G1}. Thus G
consists of disjoint balls from F because they are contained in the disjoint open balls, G1.
Then

A⊆ A1 ⊆ ∪{B̃1 : B1 ∈ G1}= ∪{B̂ : B ∈ G }

because for B1 = B
(
x, 5r

4

)
, it follows B̃1 = B(x,5r) = B̂. This proves the theorem.
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13.4 Vitali Coverings
There is another version of the Vitali covering theorem which is also of great importance.
In this one, balls from the original set of balls almost cover the set,leaving out only a set of
measure zero. It is like packing a truck with stuff. You keep trying to fill in the holes with
smaller and smaller things so as to not waste space. It is remarkable that you can avoid
wasting any space at all when you are dealing with balls of any sort provided you can use
arbitrarily small balls.

Definition 13.4.1 Let F be a collection of balls that cover a set E, which have the prop-
erty that if x ∈ E and ε > 0, then there exists B ∈F , diameter of B < ε and x ∈ B. Such a
collection covers E in the sense of Vitali.

In the following covering theorem, mn denotes the outer measure determined by n di-
mensional Lebesgue measure.

Theorem 13.4.2 Let E ⊆ Rn and suppose 0 < mn(E) < ∞ where mn is the outer measure
determined by mn, n dimensional Lebesgue measure, and let F be a collection of closed
balls of bounded radii such that F covers E in the sense of Vitali. Then there exists a
countable collection of disjoint balls from F , {B j}∞

j=1, such that mn(E \∪∞
j=1B j) = 0.

Proof: From the definition of outer measure there exists a Lebesgue measurable set,
E1 ⊇ E such that mn (E1) = mn (E). Now by outer regularity of Lebesgue measure, there
exists U , an open set which satisfies

mn(E1)> (1−10−n)mn(U), U ⊇ E1.

E1

U

Each point of E is contained in balls of F of arbitrarily small radii and so there exists
a covering of E with balls of F which are themselves contained in U . Therefore, by the
Vitali covering theorem, there exist disjoint balls, {Bi}∞

i=1 ⊆F such that

E ⊆ ∪∞
j=1B̂ j, B j ⊆U.

Therefore,

mn (E1) = mn (E)≤ mn

(
∪∞

j=1B̂ j

)
≤∑

j
mn

(
B̂ j

)
= 5n

∑
j

mn (B j) = 5nmn
(
∪∞

j=1B j
)
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Then E1 and ∪∞
j=1B j are contained in U and so

mn(E1)> (1−10−n)mn(U)

≥ (1−10−n)[mn(E1 \∪∞
j=1B j)+mn(∪∞

j=1B j)]

≥ (1−10−n)[mn(E1 \∪∞
j=1B j)+5−n

=mn(E1)︷ ︸︸ ︷
mn(E) ].

and so (
1−
(
1−10−n)5−n)mn (E1)≥ (1−10−n)mn(E1 \∪∞

j=1B j)

which implies

mn(E1 \∪∞
j=1B j)≤

(1− (1−10−n)5−n)

(1−10−n)
mn (E1)

Now a short computation shows

0 <
(1− (1−10−n)5−n)

(1−10−n)
< 1

Hence, denoting by θ n a number such that

(1− (1−10−n)5−n)

(1−10−n)
< θ n < 1,

mn
(
E \∪∞

j=1B j
)
≤ mn(E1 \∪∞

j=1B j)< θ nmn (E1) = θ nmn (E)

Now using Theorem 11.1.5 on Page 224 there exists N1 large enough that

θ nmn(E)≥ mn(E1 \∪N1
j=1B j)≥ mn(E \∪N1

j=1B j) (13.4.10)

Let F1 = {B ∈F : B j ∩B = /0, j = 1, · · · ,N1}. If E \∪N1
j=1B j = /0, then F1 = /0 and

mn

(
E \∪N1

j=1B j

)
= 0

Therefore, in this case let Bk = /0 for all k > N1. Consider the case where

E \∪N1
j=1B j ̸= /0.

In this case, since the balls are closed and F is a Vitali cover, F1 ̸= /0 and covers E \∪N1
j=1B j

in the sense of Vitali. Repeat the same argument, letting E \∪N1
j=1B j play the role of E. (You

pick a different E1 whose measure equals the outer measure of E \∪N1
j=1B j and proceed as

before.) Then choosing B j for j = N1 +1, · · · ,N2 as in the above argument,

θ nmn(E \∪N1
j=1B j)≥ mn(E \∪N2

j=1B j)

and so from 13.4.10,
θ

2
nmn(E)≥ mn(E \∪N2

j=1B j).
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Continuing this way

θ
k
nmn(E)≥ mn

(
E \∪Nk

j=1B j

)
.

If it is ever the case that E \∪Nk
j=1B j = /0, then as in the above argument,

mn

(
E \∪Nk

j=1B j

)
= 0.

Otherwise, the process continues and

mn
(
E \∪∞

j=1B j
)
≤ mn

(
E \∪Nk

j=1B j

)
≤ θ

k
nmn (E)

for every k ∈ N. Therefore, the conclusion holds in this case also. ■
There is an obvious corollary which removes the assumption that 0 < mn(E).

Corollary 13.4.3 Let E ⊆ Rn and suppose mn(E) < ∞ where mn is the outer measure
determined by mn, n dimensional Lebesgue measure, and let F , be a collection of closed
balls of bounded radii such that F covers E in the sense of Vitali. Then there exists a
countable collection of disjoint balls from F , {B j}∞

j=1, such that mn(E \∪∞
j=1B j) = 0.

Proof: If 0 = mn(E) you simply pick any ball from F for your collection of disjoint
balls.

It is also not hard to remove the assumption that mn (E)< ∞.

Corollary 13.4.4 Let E ⊆ Rn and let F , be a collection of closed balls of bounded radii
such that F covers E in the sense of Vitali. Then there exists a countable collection of
disjoint balls from F , {B j}∞

j=1, such that mn(E \∪∞
j=1B j) = 0.

Proof: Let Rm ≡ (−m,m)n be the open rectangle having sides of length 2m which is
centered at 0 and let R0 = /0. Let Hm ≡ Rm \Rm. Since both Rm and Rm have the same
measure, (2m)n , it follows mn (Hm) = 0. Now for all k ∈ N, Rk ⊆ Rk ⊆ Rk+1. Consider the
disjoint open sets, Uk ≡ Rk+1 \Rk. Thus Rn = ∪∞

k=0Uk∪N where N is a set of measure zero
equal to the union of the Hk. Let Fk denote those balls of F which are contained in Uk
and let Ek ≡Uk ∩E. Then from Theorem 13.4.2, there exists a sequence of disjoint balls,
Dk ≡

{
Bk

i
}∞

i=1 of Fk such that mn(Ek \∪∞
j=1Bk

j) = 0. Letting {Bi}∞

i=1 be an enumeration of
all the balls of ∪kDk, it follows that

mn(E \∪∞
j=1B j)≤ mn (N)+

∞

∑
k=1

mn(Ek \∪∞
j=1Bk

j) = 0.

Also, you don’t have to assume the balls are closed.

Corollary 13.4.5 Let E ⊆ Rn and let F , be a collection of open balls of bounded radii
such that F covers E in the sense of Vitali. Then there exists a countable collection of
disjoint balls from F , {B j}∞

j=1, such that mn(E \∪∞
j=1B j) = 0.
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Proof: Let F be the collection of closures of balls in F . Then F covers E in the sense
of Vitali and so from Corollary 13.4.4 there exists a sequence of disjoint closed balls from
F satisfying mn

(
E \∪∞

i=1Bi
)
= 0. Now boundaries of the balls, Bi have measure zero and

so {Bi} is a sequence of disjoint open balls satisfying mn (E \∪∞
i=1Bi) = 0. The reason for

this is that

(E \∪∞
i=1Bi)\

(
E \∪∞

i=1Bi
)
⊆ ∪∞

i=1Bi \∪∞
i=1Bi ⊆ ∪∞

i=1Bi \Bi,

a set of measure zero. Therefore,

E \∪∞
i=1Bi ⊆

(
E \∪∞

i=1Bi
)
∪
(
∪∞

i=1Bi \Bi
)

and so

mn (E \∪∞
i=1Bi) ≤ mn

(
E \∪∞

i=1Bi
)
+mn

(
∪∞

i=1Bi \Bi
)

= mn
(
E \∪∞

i=1Bi
)
= 0.

This implies you can fill up an open set with balls which cover the open set in the sense
of Vitali.

Corollary 13.4.6 Let U ⊆ Rn be an open set and let F be a collection of closed or even
open balls of bounded radii contained in U such that F covers U in the sense of Vitali.
Then there exists a countable collection of disjoint balls from F , {B j}∞

j=1, such that mn(U \
∪∞

j=1B j) = 0.

13.5 Change of Variables for Linear Maps
To begin with certain kinds of functions map measurable sets to measurable sets. It will be
assumed that U is an open set in Rn and that h : U → Rn satisfies

Dh(x) exists for all x ∈U, (13.5.11)

Lemma 13.5.1 Let h satisfy 13.5.11. If T ⊆U and mn (T ) = 0, then mn (h(T )) = 0.

Proof: Let
Tk ≡ {x ∈ T : ||Dh(x)||< k}

and let ε > 0 be given. Now by outer regularity, there exists an open set, V , containing Tk
which is contained in U such that mn (V )< ε . Let x ∈ Tk. Then by differentiability,

h(x+v) = h(x)+Dh(x)v+o(v)

and so there exist arbitrarily small rx < 1 such that B(x,5rx) ⊆ V and whenever |v| ≤
rx, |o(v)|< k |v| . Thus

h(B(x,rx))⊆ B(h(x) ,2krx) .

From the Vitali covering theorem there exists a countable disjoint sequence of these
sets, {B(xi,ri)}∞

i=1 such that {B(xi,5ri)}∞

i=1 =
{

B̂i

}∞

i=1
covers Tk Then letting mn denote

the outer measure determined by mn,

mn (h(Tk))≤ mn

(
h
(
∪∞

i=1B̂i

))
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≤
∞

∑
i=1

mn

(
h
(

B̂i

))
≤

∞

∑
i=1

mn (B(h(xi) ,2krxi))

=
∞

∑
i=1

mn (B(xi,2krxi)) = (2k)n
∞

∑
i=1

mn (B(xi,rxi))

≤ (2k)n mn (V )≤ (2k)n
ε.

Since ε > 0 is arbitrary, this shows mn (h(Tk)) = 0. Now

mn (h(T )) = lim
k→∞

mn (h(Tk)) = 0.

This proves the lemma.

Lemma 13.5.2 Let h satisfy 13.5.11. If S is a Lebesgue measurable subset of U, then
h(S) is Lebesgue measurable.

Proof: Let Sk = S∩B(0,k) ,k ∈ N. By inner regularity of Lebesgue measure, there
exists a set, F , which is the countable union of compact sets and a set T with mn (T ) = 0
such that

F ∪T = Sk.

Then h(F) ⊆ h(Sk) ⊆ h(F)∪ h(T ). By continuity of h, h(F) is a countable union of
compact sets and so it is Borel. By Lemma 13.5.1, mn (h(T )) = 0 and so h(Sk) is Lebesgue
measurable because of completeness of Lebesgue measure. Now h(S) = ∪∞

k=1h(Sk) and
so it is also true that h(S) is Lebesgue measurable. This proves the lemma.

In particular, this proves the following corollary.

Corollary 13.5.3 Suppose A is an n×n matrix. Then if S is a Lebesgue measurable set, it
follows AS is also a Lebesgue measurable set.

Lemma 13.5.4 Let R be unitary (R∗R = RR∗ = I) and let V be a an open or closed set.
Then mn (RV ) = mn (V ) .

Proof: First assume V is a bounded open set. By Corollary 13.4.6 there is a disjoint
sequence of closed balls, {Bi} such that V =∪∞

i=1Bi∪N where mn (N) = 0. Denote by xi the
center of Bi and let ri be the radius of Bi. Then by Lemma 13.5.1 mn (RV ) = ∑

∞
i=1 mn (RBi) .

Now by invariance of translation of Lebesgue measure, this equals ∑
∞
i=1 mn (RBi−Rxi) =

∑
∞
i=1 mn (RB(0,ri)) . Since R is unitary, it preserves all distances and so RB(0,ri) = B(0,ri)

and therefore,

mn (RV ) =
∞

∑
i=1

mn (B(0,ri)) =
∞

∑
i=1

mn (Bi) = mn (V ) .

This proves the lemma in the case that V is bounded. Suppose now that V is just an open
set. Let Vk =V ∩B(0,k) . Then mn (RVk) = mn (Vk) . Letting k→ ∞, this yields the desired
conclusion. This proves the lemma in the case that V is open.
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Suppose now that H is a closed and bounded set. Let B(0,R) ⊇ H. Then letting B =
B(0,R) for short,

mn (RH) = mn (RB)−mn (R(B\H))

= mn (B)−mn (B\H) = mn (H) .

In general, let Hm = H ∩B(0,m). Then from what was just shown, mn (RHm) = mn (Hm) .
Now let m→ ∞ to get the conclusion of the lemma in general. This proves the lemma.

Lemma 13.5.5 Let E be Lebesgue measurable set in Rn and let R be unitary. Then
mn (RE) = mn (E) .

Proof: First suppose E is bounded. Then there exist sets, G and H such that H ⊆ E ⊆G
and H is the countable union of closed sets while G is the countable intersection of open
sets such that mn (G\H) = 0. By Lemma 13.5.4 applied to these sets whose union or
intersection equals H or G respectively, it follows

mn (RG) = mn (G) = mn (H) = mn (RH) .

Therefore,

mn (H) = mn (RH)≤ mn (RE)≤ mn (RG) = mn (G) = mn (E) = mn (H) .

In the general case, let Em = E ∩B(0,m) and apply what was just shown and let m→ ∞.

Lemma 13.5.6 Let V be an open or closed set in Rn and let A be an n× n matrix. Then
mn (AV ) = |det(A)|mn (V ).

Proof: Let RU be the right polar decomposition (Theorem 5.9.6 on Page 94) of A and
let V be an open set. Then from Lemma 13.5.5,

mn (AV ) = mn (RUV ) = mn (UV ) .

Now U = Q∗DQ where D is a diagonal matrix such that |det(D)| = |det(A)| and Q is
unitary. Therefore,

mn (AV ) = mn (Q∗DQV ) = mn (DQV ) .

Now QV is an open set and so by Corollary 13.1.6 on Page 342 and Lemma 13.5.4,

mn (AV ) = |det(D)|mn (QV ) = |det(D)|mn (V ) = |det(A)|mn (V ) .

This proves the lemma in case V is open.
Now let H be a closed set which is also bounded. First suppose det(A) = 0. Then letting

V be an open set containing H,

mn (AH)≤ mn (AV ) = |det(A)|mn (V ) = 0
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which shows the desired equation is obvious in the case where det(A) = 0. Therefore,
assume A is one to one. Since H is bounded, H ⊆ B(0,R) for some R > 0. Then letting
B = B(0,R) for short,

mn (AH) = mn (AB)−mn (A(B\H))

= |det(A)|mn (B)−|det(A)|mn (B\H) = |det(A)|mn (H) .

If H is not bounded, apply the result just obtained to Hm ≡H∩B(0,m) and then let m→∞.
With this preparation, the main result is the following theorem.

Theorem 13.5.7 Let E be Lebesgue measurable set in Rn and let A be an n× n matrix.
Then mn (AE) = |det(A)|mn (E) .

Proof: First suppose E is bounded. Then there exist sets, G and H such that H ⊆ E ⊆G
and H is the countable union of closed sets while G is the countable intersection of open
sets such that mn (G\H) = 0. By Lemma 13.5.6 applied to these sets whose union or
intersection equals H or G respectively, it follows

mn (AG) = |det(A)|mn (G) = |det(A)|mn (H) = mn (AH) .

Therefore,

|det(A)|mn (E) = |det(A)|mn (H) = mn (AH)≤ mn (AE)

≤ mn (AG) = |det(A)|mn (G) = |det(A)|mn (E) .

In the general case, let Em = E ∩B(0,m) and apply what was just shown and let m→ ∞.

13.6 Change Of Variables For C1 Functions
In this section theorems are proved which generalize the above to C1 functions. More
general versions can be seen in Kuttler [83], Kuttler [84], and Rudin [113]. There is also
a very different approach to this theorem given in [83]. The more general version in [83]
follows [113] and both are based on the Brouwer fixed point theorem and a very clever
lemma presented in Rudin [113]. The proof will be based on a sequence of easy lemmas.

Lemma 13.6.1 Let U and V be bounded open sets in Rn and let h,h−1 be C1 functions
such that h(U) =V . Also let f ∈Cc (V ) . Then∫

V
f (y)dmn =

∫
U

f (h(x)) |det(Dh(x))|dmn

Proof: First note h−1 (spt( f )) is a closed subset of the bounded set, U and so it is
compact. Thus x→ f (h(x)) |det(Dh(x))| is bounded and continuous.

Let x ∈U. By the assumption that h and h−1 are C1,

h(x+v)−h(x) = Dh(x)v+o(v)
= Dh(x)

(
v+Dh−1 (h(x))o(v)

)
= Dh(x)(v+o(v))
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and so if r > 0 is small enough then B(x,r) is contained in U and

h(B(x,r))−h(x) =

h(x+B(0,r))−h(x)⊆ Dh(x)(B(0,(1+ ε)r)) . (13.6.12)

Making r still smaller if necessary, one can also obtain

| f (y)− f (h(x))|< ε (13.6.13)

for any y ∈ h(B(x,r)) and also

| f (h(x1)) |det(Dh(x1))|− f (h(x)) |det(Dh(x))||< ε (13.6.14)

whenever x1 ∈ B(x,r) . The collection of such balls is a Vitali cover of U. By Corollary
13.4.6 there is a sequence of disjoint closed balls {Bi} such that U = ∪∞

i=1Bi ∪N where
mn (N) = 0. Denote by xi the center of Bi and ri the radius. Then by Lemma 13.5.1, the
monotone convergence theorem, and 13.6.12 - 13.6.14,∫

V f (y)dmn = ∑
∞
i=1
∫

h(Bi)
f (y)dmn

≤ εmn (V )+∑
∞
i=1
∫

h(Bi)
f (h(xi))dmn

≤ εmn (V )+∑
∞
i=1 f (h(xi))mn (h(Bi))

≤ εmn (V )+∑
∞
i=1 f (h(xi))mn (Dh(xi)(B(0,(1+ ε)ri)))

= εmn (V )+(1+ ε)n
∑

∞
i=1
∫

Bi
f (h(xi)) |det(Dh(xi))|dmn

≤ εmn (V )+(1+ ε)n
∑

∞
i=1

(∫
Bi

f (h(x)) |det(Dh(x))|dmn + εmn (Bi)
)

≤ εmn (V )+(1+ ε)n
∑

∞
i=1
∫

Bi
f (h(x)) |det(Dh(x))|dmn +(1+ ε)n

εmn (U)

= εmn (V )+(1+ ε)n ∫
U f (h(x)) |det(Dh(x))|dmn +(1+ ε)n

εmn (U)

Since ε > 0 is arbitrary, this shows∫
V

f (y)dmn ≤
∫

U
f (h(x)) |det(Dh(x))|dmn (13.6.15)

whenever f ∈Cc (V ) . Now x→ f (h(x)) |det(Dh(x))| is in Cc (U) and so using the same
argument with U and V switching roles and replacing h with h−1,∫

U
f (h(x)) |det(Dh(x))|dmn

≤
∫

V
f
(
h
(
h−1 (y)

))∣∣det
(
Dh
(
h−1 (y)

))∣∣ ∣∣det
(
Dh−1 (y)

)∣∣dmn

=
∫

V
f (y)dmn

by the chain rule. This with 13.6.15 proves the lemma.
The next task is to relax the assumption that f is continuous.
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Corollary 13.6.2 Let U and V be bounded open sets in Rn and let h,h−1 be C1 functions
such that h(U) =V and |det(Dh(x))| is bounded. Also let E ⊆V be measurable. Then∫

V
XE (y)dmn =

∫
U

XE (h(x)) |det(Dh(x))|dmn.

Proof: By regularity, there exist compact sets, Kk and open sets Gk such that

Kk ⊆ E ⊆ Gk

and mn (Gk \Kk) < 2−k. By Theorem 12.2.7, there exist fk such that Kk ≺ fk ≺ Gk. Then
fk (y)→XE (y) a.e. because if y is such that convergence fails, it must be the case that y
is in Gk \Kk for infinitely many k and ∑k mn (Gk \Kk)< ∞. This set equals

N = ∩∞
m=1∪∞

k=m Gk \Kk

and so for each m ∈ N

mn (N) ≤ mn (∪∞
k=mGk \Kk)

≤
∞

∑
k=m

mn (Gk \Kk)<
∞

∑
k=m

2−k = 2−(m−1)

showing mn (N) = 0.
Then fk (h(x)) must converge to XE (h(x)) for all x /∈ h−1 (N) , a set of measure zero

by Lemma 13.5.1. Thus∫
V

fk (y)dmn =
∫

U
fk (h(x)) |det(Dh(x))|dmn.

By the dominated convergence theorem using a dominating function, XV in the integral on
the left and XU |det(Dh)| on the right, it follows∫

V
XE (y)dmn =

∫
U

XE (h(x)) |det(Dh(x))|dmn.

This proves the corollary.
You don’t need to assume the open sets are bounded.

Corollary 13.6.3 Let U and V be open sets in Rn and let h,h−1 be C1 functions such that
h(U) =V . Also let E ⊆V be measurable. Then∫

V
XE (y)dmn =

∫
U

XE (h(x)) |det(Dh(x))|dmn.

Proof: For each x ∈U, there exists rx such that B(x,rx) ⊆U and rx < 1. Then by the
mean value inequality Theorem 6.13.4, it follows h(B(x,rx)) is also bounded. This is a
Vitali cover of U and so by Corollary 13.4.6 there is a sequence of these balls, {Bi} such
that they are disjoint, h(Bi) is also bounded and

mn (U \∪iBi) = 0.
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It follows from Lemma 13.5.1 that h(U \∪iBi) also has measure zero. Then from Corollary
13.6.2 ∫

V
XE (y)dmn = ∑

i

∫
h(Bi)

XE∩h(Bi) (y)dmn

= ∑
i

∫
Bi

XE (h(x)) |det(Dh(x))|dmn

=
∫

U
XE (h(x)) |det(Dh(x))|dmn.

This proves the corollary.
With this corollary, the main theorem follows.

Theorem 13.6.4 Let U and V be open sets in Rn and let h,h−1 be C1 functions such that
h(U) =V. Then if g is a nonnegative Lebesgue measurable function,∫

V
g(y)dy =

∫
U

g(h(x)) |det(Dh(x))|dx. (13.6.16)

Proof: From Corollary 13.6.3, 13.6.16 holds for any nonnegative simple function in
place of g. In general, let {sk} be an increasing sequence of simple functions which con-
verges to g pointwise. Then from the monotone convergence theorem∫

V
g(y)dy = lim

k→∞

∫
V

skdy = lim
k→∞

∫
U

sk (h(x)) |det(Dh(x))|dx

=
∫

U
g(h(x)) |det(Dh(x))|dx.

This proves the theorem.
This is a pretty good theorem but it isn’t too hard to generalize it. In particular, it is not

necessary to assume h−1 is C1.

Lemma 13.6.5 (Sard) Let U be an open set in Rn and let h : U → Rn be C1. Let

Z ≡ {x ∈U : detDh(x) = 0} .

Then mn (h(Z)) = 0.

Proof: Let Zk denote those points x of Z such that ||Dh(x)|| ≤ k and such that |x|< k.
Let ε > 0 be given. For x ∈ Zk,

h(x+v) = h(x)+Dh(x)v+o(v)

and so whenever r is small enough,

h(x+B(0,r)) = h(B(x,r))⊆ h(x)+Dh(x)B(0,r)+B(0,rε)

Note Dh(x)B(0,r) is contained in an n− 1 dimensional subspace of Rn due to the fact
Dh(x) has rank less than n. Now let Q denote an orthogonal transformation preserving all
distances,

QQ∗ = Q∗Q = I,
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such that
QDh(x)B(0,r)⊆ Rn−1.

Then
Qh(B(x,r))⊆ Qh(x)+QDh(x)B(0,r)+B(0,rε)

and by translation invariance of Lebesgue measure,

mn (Qh(B(x,r)))≤ mn (QDh(x)B(0,r)+B(0,rε))

≤ (||QDh(x)||(2r+2rε))n−1 2rε =C (1+ ε)n−1 mn (B(0,r))ε

These balls give a Vitali cover of Zk and so there exists a disjoint sequence of them {Bi} ,
each contained in B(0,k) which covers Zk except for a set of measure zero which is mapped
by h to a set of measure zero. Therefore using Theorem 13.5.7,

mn (h(Zk)) = mn (h(∪∞
i=1Bi))≤

∞

∑
i=1

mn (h(Bi))

=
∞

∑
i=1

mn (Qh(Bi))≤C (1+ ε)n−1
ε

∞

∑
i=1

mn (Bi)≤C (1+ ε)n−1
εmn (B(0,k))

and since ε is arbitrary, this shows mn (h(Zk)) = 0. Now

mn (h(Z)) = lim
k→∞

mn (h(Zk)) = 0.

This proves the lemma.
With this important lemma, here is a generalization of Theorem 13.6.4.

Theorem 13.6.6 Let U be an open set and let h be a 1−1, C1 function with values in Rn.
Then if g is a nonnegative Lebesgue measurable function,∫

h(U)
g(y)dy =

∫
U

g(h(x)) |det(Dh(x))|dx. (13.6.17)

Proof: Let Z = {x : det(Dh(x)) = 0} . Then by the inverse function theorem, h−1 is
C1 on h(U \Z) and h(U \Z) is an open set. Therefore, from Lemma 13.6.5 and Theorem
13.6.4, ∫

h(U)
g(y)dy =

∫
h(U\Z)

g(y)dy =
∫

U\Z
g(h(x)) |det(Dh(x))|dx

=
∫

U
g(h(x)) |det(Dh(x))|dx.

This proves the theorem.
Of course the next generalization considers the case when h is not even one to one.
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13.7 Mappings Which Are Not One To One
Now suppose h is only C1, not necessarily one to one. For

U+ ≡ {x ∈U : |detDh(x)|> 0}

and Z the set where |detDh(x)|= 0, Lemma 13.6.5 implies mn(h(Z)) = 0. For x ∈U+, the
inverse function theorem implies there exists an open set Bx such that x ∈ Bx ⊆U+, h is
one to one on Bx.

Let {Bi} be a countable subset of {Bx}x∈U+ such that U+ = ∪∞
i=1Bi. Let E1 = B1. If

E1, · · · ,Ek have been chosen, Ek+1 = Bk+1 \∪k
i=1Ei. Thus

∪∞
i=1Ei =U+, h is one to one on Ei, Ei∩E j = /0,

and each Ei is a Borel set contained in the open set Bi. Now define

n(y)≡
∞

∑
i=1

Xh(Ei)(y)+Xh(Z)(y).

The set, h(Ei) ,h(Z) are measurable by Lemma 13.5.2. Thus n(·) is measurable.

Lemma 13.7.1 Let F ⊆ h(U) be measurable. Then∫
h(U)

n(y)XF(y)dy =
∫

U
XF(h(x))|detDh(x)|dx.

Proof: Using Lemma 13.6.5 and the Monotone convergence Theorem or Fubini’s The-
orem,

∫
h(U)

n(y)XF(y)dy =
∫

h(U)

 ∞

∑
i=1

Xh(Ei)(y)+

mn(h(Z))=0︷ ︸︸ ︷
Xh(Z)(y)

XF(y)dy

=
∞

∑
i=1

∫
h(U)

Xh(Ei)(y)XF(y)dy

=
∞

∑
i=1

∫
h(U)∩h(Ei)

XF(y)dy

=
∞

∑
i=1

∫
h(Bi)∩h(Ei)

XF(y)dy

=
∞

∑
i=1

∫
h(Bi)

Xh(Ei)(y)XF(y)dy

=
∞

∑
i=1

∫
Bi

XEi(x)XF(h(x))|detDh(x)|dx

=
∞

∑
i=1

∫
U

XEi(x)XF(h(x))|detDh(x)|dx

=
∫

U

∞

∑
i=1

XEi(x)XF(h(x))|detDh(x)|dx
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=
∫

U+

XF(h(x))|detDh(x)|dx =
∫

U
XF(h(x))|detDh(x)|dx.

This proves the lemma.

Definition 13.7.2 For y ∈ h(U), define a function, #, according to the formula

#(y)≡ number of elements in h−1(y).

Observe that
#(y) = n(y) a.e. (13.7.18)

because n(y) = #(y) if y /∈ h(Z), a set of measure 0. Therefore, # is a measurable function.

Theorem 13.7.3 Let g≥ 0, g measurable, and let h be C1(U). Then∫
h(U)

#(y)g(y)dy =
∫

U
g(h(x))|detDh(x)|dx. (13.7.19)

Proof: From 13.7.18 and Lemma 13.7.1, 13.7.19 holds for all g, a nonnegative simple
function. Approximating an arbitrary measurable nonnegative function, g, with an increas-
ing pointwise convergent sequence of simple functions and using the monotone conver-
gence theorem, yields 13.7.19 for an arbitrary nonnegative measurable function, g. This
proves the theorem.

13.8 Lebesgue Measure And Iterated Integrals
The following is the main result.

Theorem 13.8.1 Let f ≥ 0 and suppose f is a Lebesgue measurable function defined on
Rn and

∫
Rn f dmn < ∞. Then∫

Rn
f dmn =

∫
Rk

∫
Rn−k

f dmn−kdmk.

This will be accomplished by Fubini’s theorem, Theorem 12.9.11 and the following
lemma.

Lemma 13.8.2 mk×mn−k = mn on the mn measurable sets.

Proof: First of all, let R = ∏
n
i=1(ai,bi] be a measurable rectangle and let

Rk =
k

∏
i=1

(ai,bi],Rn−k =
n

∏
i=k+1

(ai,bi]
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Then by Fubini’s theorem,∫
XRd (mk×mn−k) =

∫
Rk

∫
Rn−k

XRkXRn−k dmkdmn−k

=
∫
Rk

XRk dmk

∫
Rn−k

XRn−k dmn−k

=
∫

XRdmn

and so mk×mn−k and mn agree on every half open rectangle. By Lemma 13.1.2 these
two measures agree on every open set. Now if K is a compact set, then K = ∩∞

k=1Uk where
Uk is the open set, K +B

(
0, 1

k

)
. Another way of saying this is Uk ≡

{
x : dist(x,K)< 1

k

}
which is obviously open because x→dist(x,K) is a continuous function. Since K is the
countable intersection of these decreasing open sets, each of which has finite measure with
respect to either of the two measures, it follows that mk×mn−k and mn agree on all the
compact sets. Now let E be a bounded Lebesgue measurable set. Then there are sets, H
and G such that H is a countable union of compact sets, G a countable intersection of open
sets, H ⊆ E ⊆ G, and mn (G\H) = 0. Then from what was just shown about compact and
open sets, the two measures agree on G and on H. Therefore,

mn (H) = mk×mn−k (H)≤ mk×mn−k (E)

≤ mk×mn−k (G) = mn (E) = mn (H)

By completeness of the measure space for mk×mn−k, it follows E is mk×mn−k measurable
and

mk×mn−k (E) = mn (E) .

This proves the lemma.
You could also show that the two σ algebras are the same. However, this is not needed

for the lemma or the theorem.
Proof of Theorem 13.8.1: By the lemma and Fubini’s theorem, Theorem 12.9.11,∫

Rn
f dmn =

∫
Rn

f d (mk×mn−k) =
∫
Rk

∫
Rn−k

f dmn−kdmk.

Corollary 13.8.3 Let f be a nonnegative real valued measurable function. Then∫
Rn

f dmn =
∫
Rk

∫
Rn−k

f dmn−kdmk.

Proof: Let Sp ≡ {x ∈ Rn : 0≤ f (x)≤ p}∩B(0, p) . Then
∫
Rn f XSpdmn < ∞. There-

fore, from Theorem 13.8.1,∫
Rn

f XSpdmn =
∫
Rk

∫
Rn−k

XSp f dmn−kdmk.

Now let p → ∞ and use the Monotone convergence theorem and the Fubini Theorem
12.9.11 on Page 315.

Not surprisingly, the following corollary follows from this.
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Corollary 13.8.4 Let f ∈ L1 (Rn) where the measure is mn. Then

∫
Rn

f dmn =
∫
Rk

∫
Rn−k

f dmn−kdmk.

Proof: Apply Corollary 13.8.3 to the postive and negative parts of the real and imagi-
nary parts of f .

13.9 Spherical Coordinates In p Dimensions
Sometimes there is a need to deal with spherical coordinates in more than three dimen-
sions. In this section, this concept is defined and formulas are derived for these coordinate
systems. Recall polar coordinates are of the form

y1 = ρ cosθ

y2 = ρ sinθ

where ρ > 0 and θ ∈ R. Thus these transformation equations are not one to one but they
are one to one on (0,∞)× [0,2π). Here I am writing ρ in place of r to emphasize a pattern
which is about to emerge. I will consider polar coordinates as spherical coordinates in
two dimensions. I will also simply refer to such coordinate systems as polar coordinates
regardless of the dimension. This is also the reason I am writing y1 and y2 instead of the
more usual x and y. Now consider what happens when you go to three dimensions. The
situation is depicted in the following picture.

φ 1
ρ

(y1,y2,y3)

R2

R

From this picture, you see that y3 = ρ cosφ 1. Also the distance between (y1,y2) and
(0,0) is ρ sin(φ 1) . Therefore, using polar coordinates to write (y1,y2) in terms of θ and
this distance,

y1 = ρ sinφ 1 cosθ ,
y2 = ρ sinφ 1 sinθ ,
y3 = ρ cosφ 1.

where φ 1 ∈R and the transformations are one to one if φ 1 is restricted to be in [0,π] . What
was done is to replace ρ with ρ sinφ 1 and then to add in y3 = ρ cosφ 1. Having done this,
there is no reason to stop with three dimensions. Consider the following picture:
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φ 2
ρ

(y1,y2,y3,y4)

R3

R

From this picture, you see that y4 = ρ cosφ 2. Also the distance between (y1,y2,y3) and
(0,0,0) is ρ sin(φ 2) . Therefore, using polar coordinates to write (y1,y2,y3) in terms of
θ ,φ 1, and this distance,

y1 = ρ sinφ 2 sinφ 1 cosθ ,
y2 = ρ sinφ 2 sinφ 1 sinθ ,
y3 = ρ sinφ 2 cosφ 1,
y4 = ρ cosφ 2

where φ 2 ∈ R and the transformations will be one to one if

φ 2,φ 1 ∈ (0,π) ,θ ∈ (0,2π) ,ρ ∈ (0,∞) .

Continuing this way, given spherical coordinates in Rp, to get the spherical coordinates
in Rp+1, you let yp+1 = ρ cosφ p−1 and then replace every occurance of ρ with ρ sinφ p−1
to obtain y1 · · ·yp in terms of φ 1,φ 2, · · · ,φ p−1,θ , and ρ.

It is always the case that ρ measures the distance from the point in Rp to the origin
in Rp, 0. Each φ i ∈ R and the transformations will be one to one if each φ i ∈ (0,π) , and

θ ∈ (0,2π) . Denote by hp

(
ρ, φ⃗ ,θ

)
the above transformation.

It can be shown using math induction and geometric reasoning that these coordinates
map ∏

p−2
i=1 (0,π)× (0,2π)× (0,∞) one to one onto an open subset of Rp which is ev-

erything except for the set of measure zero Ψp (N) where N results from having some
φ i equal to 0 or π or for ρ = 0 or for θ equal to either 2π or 0. Each of these are sets
of Lebesgue measure zero and so their union is also a set of measure zero. You can see
that hp

(
∏

p−2
i=1 (0,π)× (0,2π)× (0,∞)

)
omits the union of the coordinate axes except for

maybe one of them. This is not important to the integral because it is just a set of measure
zero.

Theorem 13.9.1 Let y = hp

(⃗
φ ,θ ,ρ

)
be the spherical coordinate transformations in Rp.

Then letting A = ∏
p−2
i=1 (0,π)× (0,2π) , it follows h maps A× (0,∞) one to one onto all of

Rp except a set of measure zero given by hp (N) where N is the set of measure zero(
Ā× [0,∞)

)
\ (A× (0,∞))

Also
∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣ will always be of the form∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣= ρ
p−1

Φ

(⃗
φ ,θ

)
. (13.9.20)
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where Φ is a continuous function of φ⃗ and θ .1 Then if f is nonnegative and Lebesgue
measurable,∫

Rp
f (y)dmp =

∫
hp(A)

f (y)dmp =
∫

A
f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp (13.9.21)

Furthermore whenever f is Borel measurable and nonnegative, one can apply Fubini’s
theorem and write∫

Rp
f (y)dy =

∫
∞

0
ρ

p−1
∫

A
f
(

h
(⃗

φ ,θ ,ρ
))

Φ

(⃗
φ ,θ

)
dφ⃗dθdρ (13.9.22)

where here dφ⃗ dθ denotes dmp−1 on A. The same formulas hold if f ∈ L1 (Rp) .

Proof: Formula 13.9.20 is obvious from the definition of the spherical coordinates
because in the matrix of the derivative, there will be a ρ in p−1 columns. The first claim
is also clear from the definition and math induction or from the geometry of the above
description. It remains to verify 13.9.21 and 13.9.22. It is clear hp maps Ā× [0,∞) onto
Rp. Since hp is differentiable, it maps sets of measure zero to sets of measure zero. Then

Rp = hp (N∪A× (0,∞)) = hp (N)∪hp (A× (0,∞)) ,

the union of a set of measure zero with hp (A× (0,∞)) . Therefore, from the change of
variables formula,∫

Rp
f (y)dmp =

∫
hp(A×(0,∞))

f (y)dmp

=
∫

A×(0,∞)
f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

which proves 13.9.21. This formula continues to hold if f is in L1 (Rp). Finally, if f ≥ 0
or in L1 (Rn) and is Borel measurable, then it is F p measurable as well. Recall that F p

includes the smallest σ algebra which contains products of open intervals. Hence F p

includes the Borel sets B (Rp). Thus from the definition of mp∫
A×(0,∞)

f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

=
∫
(0,∞)

∫
A

f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp−1dm

=
∫
(0,∞)

ρ
p−1

∫
A

f
(

hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

Now the claim about f ∈ L1 follows routinely from considering the positive and negative
parts of the real and imaginary parts of f in the usual way. ■

1Actually it is only a function of the first but this is not important in what follows.



13.9. SPHERICAL COORDINATES IN p DIMENSIONS 365

Note that the above equals∫
Ā×[0,∞)

f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

and the iterated integral is also equal to∫
[0,∞)

ρ
p−1

∫
Ā

f
(

hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

because the difference is just a set of measure zero.

Notation 13.9.2 Often this is written differently. Note that from the spherical coordinate
formulas, f

(
h
(⃗

φ ,θ ,ρ
))

= f (ρω) where |ω| = 1. Letting Sp−1 denote the unit sphere,
{ω ∈ Rp : |ω|= 1} , the inside integral in the above formula is sometimes written as∫

Sp−1
f (ρω)dσ

where σ is a measure on Sp−1. See [83] for another description of this measure. It isn’t an
important issue here. Either 13.9.22 or the formula∫

∞

0
ρ

p−1
(∫

Sp−1
f (ρω)dσ

)
dρ

will be referred to as polar coordinates and is very useful in establishing estimates. Here
σ
(
Sp−1

)
≡
∫

A Φ

(⃗
φ ,θ

)
dmp−1.

Example 13.9.3 For what values of s is the integral
∫

B(0,R)

(
1+ |x|2

)s
dy bounded inde-

pendent of R? Here B(0,R) is the ball, {x ∈ Rp : |x| ≤ R} .

I think you can see immediately that s must be negative but exactly how negative? It
turns out it depends on p and using polar coordinates, you can find just exactly what is
needed. From the polar coordinates formula above,∫

B(0,R)

(
1+ |x|2

)s
dy =

∫ R

0

∫
Sp−1

(
1+ρ

2)s
ρ

p−1dσdρ

= Cp

∫ R

0

(
1+ρ

2)s
ρ

p−1dρ

Now the very hard problem has been reduced to considering an easy one variable problem
of finding when ∫ R

0
ρ

p−1 (1+ρ
2)s

dρ

is bounded independent of R. You need 2s+(p−1)<−1 so you need s <−p/2.
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13.10 The Brouwer Fixed Point Theorem
This seems to be a good place to present a short proof of one of the most important of all
fixed point theorems. There are many approaches to this but one of the easiest and shortest
I have ever seen is the one in Dunford and Schwartz [45]. This is what is presented here. In
Evans [48] there is a different proof which depends on integration theory. A good reference
for an introduction to various kinds of fixed point theorems is the book by Smart [118]. This
book also gives an entirely different approach to the Brouwer fixed point theorem.

The proof given here is based on the following lemma. Recall that for A an n×n matrix,
cof(A)i j is the determinant of the matrix which results from deleting the ith row and the jth

column and multiplying by (−1)i+ j. The following lemma is proved earlier. See Lemma
16.3.1.

Lemma 13.10.1 Let g : U → Rn be C2 where U is an open subset of Rn. Then

n

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

To prove the Brouwer fixed point theorem, first consider a version of it valid for C2

mappings. This is the following lemma.

Lemma 13.10.2 Let Br = B(0,r) and suppose g is a C2 function defined onRn which maps
Br to Br. Then g(x) = x for some x ∈ Br.

Proof: Suppose not. Then |g(x)−x|must be bounded away from zero on Br. Let a(x)
be the larger of the two roots of the equation,

|x+ z(x−g(x))|2 = |x|2 +2(x,x−g(x))z+ z2 |x−g(x)|2 = r2. (13.10.23)

Thus, from the quadratic formula,

a(x) =
−(x,(x−g(x)))+

√
(x,(x−g(x)))2 +

(
r2−|x|2

)
|x−g(x)|2

|x−g(x)|2
(13.10.24)

That under the square root is positive if |x| < r. What if |x| = r? In this case, since
g(x) ∈ Br, you cannot have (x,(x−g(x))) = 0 because if so, you would have

r2 = (x,g(x)) = |x| |g(x)|cos(θ)

so r = |g(x)|cosθ where θ is the angle between the vectors x,g(x). The only way this can
happen is for g(x) = x and this is assumed not to occur. Thus what is under the square root
sign is always positive. It follows that a(·) is a C2 function because t →

√
t is smooth on

t > 0. When |x|= r, one solution to 13.10.23 is z = 0. There is also a solution for negative z
based on geometric reasoning. Therefore, these are the two roots to 13.10.23, one negative



13.10. THE BROUWER FIXED POINT THEOREM 367

and one 0, and so a(x) = 0 when |x| = r. Thus also, if |x| = r, 13.10.24 implies that
0 =−(x,(x−g(x)))+ |(x,(x−g(x)))| so (x,(x−g(x)))≥ 0.

Now define for t ∈ [0,1],

f(t,x)≡ x+ta(x)(x−g(x)) .

The important properties of f(t,x) and a(x) are that

a(x) = 0 if |x|= r. (13.10.25)

and
|f(t,x)|= r for all |x|= r (13.10.26)

Also from 13.10.24, a is a C2 function near Br because, as shown above, the expression
under √ is always positive and t→

√
t is infinitely differentiable for t > 0.

Now define
I (t)≡

∫
Br

det(D2f(t,x))dx.

Then
I (0) =

∫
Br

dx = mn (Br)> 0. (13.10.27)

Using the dominated convergence theorem one can differentiate I (t) as follows.

I′ (t) =
∫

Br
∑
i j

∂ det(D2f(t,x))
∂ fi, j

∂ fi, j

∂ t
dx

=
∫

Br
∑
i j

cof(D2f)i j
∂ (a(x)(xi−gi (x)))

∂x j
dx.

Now from 13.10.25 a(x) = 0 when |x| = r and so integration by parts and Lemma 16.3.1
yields

I′ (t) =
∫

Br
∑
i j

cof(D2f)i j
∂ (a(x)(xi−gi (x)))

∂x j
dx

= −
∫

Br
∑
i j

cof(D2f)i j, j a(x)(xi−gi (x))dx = 0.

Therefore, I (1) = I (0). However, from 13.10.23

|x+a(x) t (x−g(x))|2 = |x|2 +2(x,x−g(x))a(x) t +(a(x) t)2 |x−g(x)|2 = r2.

it follows that for t = 1 in the above expression, you have

|f(1,x)|2 = ∑
i

fi fi = r2

and so, ∑i fi, j fi = 0 which implies since |f(1,x)|= r by 13.10.23, that

det( fi, j) = det(D2f(1,x)) = 0

and so I (1) = 0, a contradiction to 13.10.27 since I (1) = I (0). ■
The following theorem is the Brouwer fixed point theorem for a ball.
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Theorem 13.10.3 Let Br be the above closed ball and let f : Br→ Br be continuous. Then
there exists x ∈ Br such that f(x) = x.

Proof: Let fk (x)≡ f(x)
1+k−1 . Thus

∥fk− f∥ = max
x∈Br

{∣∣∣∣ f(x)
1+(1/k)

− f(x)
∣∣∣∣}= max

x∈Br

{∣∣∣∣ f(x)− f(x)(1+(1/k))
1+(1/k)

∣∣∣∣}
= max

x∈Br

{∣∣∣∣ f(x)(1/k)
1+(1/k)

∣∣∣∣}≤ r
1+ k

Letting ∥h∥ ≡ max{|h(x)| : x ∈ Br} , It follows from the Weierstrass approximation theo-
rem, there exists a function whose components are polynomials gk such that ∥gk− fk∥ <

r
k+1 . Then if x ∈ Br, it follows

|gk (x)| ≤ |gk (x)− fk (x)|+ |fk (x)|

<
r

1+ k
+

kr
1+ k

= r

and so gk maps Br to Br. By Lemma 13.10.2 each of these gk has a fixed point xk such that
gk (xk) = xk. The sequence of points, {xk} is contained in the compact set, Br and so there
exists a convergent subsequence still denoted by {xk} which converges to a point x ∈ Br.
Then

|f(x)−x| ≤ |f(x)− fk (x)|+ |fk (x)− fk (xk)|+

∣∣∣∣∣∣fk (xk)−

=xk︷ ︸︸ ︷
gk (xk)

∣∣∣∣∣∣+ |xk−x|

≤ r
1+ k

+ |f(x)− f(xk)|+
r

1+ k
+ |xk−x| .

Now let k→ ∞ in the right side to conclude f(x) = x. ■
It is not surprising that the ball does not need to be centered at 0.

Corollary 13.10.4 Let f : B(a,r)→ B(a,r) be continuous. Then there exists x ∈ B(a,r)
such that f(x) = x.

Proof: Let g : Br→ Br be defined by g(y)≡ f(y+a)−a. Then g is a continuous map
from Br to Br. Therefore, there exists y∈Br such that g(y)= y. Therefore, f(y+a)−a = y
and so letting x = y+a, f also has a fixed point as claimed. ■

Definition 13.10.5 A set A is a retract of a set B if A ⊆ B, and there is a continuous map
h : B→ A such that h(x) = x for all x ∈ A and h is onto. B has the fixed point property
means that whenever g is continuous and g : B→ B, it follows that g has a fixed point.

Proposition 13.10.6 Let A be a retract of B and suppose B has the fixed point property.
Then so does A.
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Proof: Suppose f : A→ A. Let h be the retract of B onto A. Then f◦h : B→ B is
continuous. Thus, it has a fixed point x ∈ B so f(h(x)) = x. However, h(x) ∈ A and
f : A→ A so in fact, x ∈ A. Now h(x) = x and so f(x) = x. ■

Recall that every convex compact subset K of Rp is a retract of all of Rp obtained by
using the projection map. In particular, K is a retract of a large closed ball containing K
which has the fixed point property. Therefore, K also has the fixed point property. This
shows the following which is often called the Brouwer fixed point theorem.

Theorem 13.10.7 Every convex closed and bounded subset of Rp has the fixed point prop-
erty.

13.11 The Brouwer Fixed Point Theorem Another Proof
This proof is also based on Lemma 16.3.1. I found this proof of the Brouwer fixed point
theorem or one close to it in Evans [48]. It is even shorter than the proof just presented. I
think it might be easier to remember also. It is also based on Lemma 16.3.1 which is stated
next for convenience.

Lemma 13.11.1 Let g : U → Rp be C2 where U is an open subset of Rp. Then
p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Definition 13.11.2 Let h be a function defined on an open set, U ⊆Rp. Then h ∈Ck
(
U
)

if
there exists a function g defined on an open set, W containng U such that g = h on U and
g is Ck (W ) .

Lemma 13.11.3 There does not exist h ∈ C2
(

B(0,R)
)

such that h : B(0,R)→ ∂B(0,R)
which also has the property that h(x) = x for all x ∈ ∂B(0,R) . Such a function is called a
retract.

Proof: Here and below, let BR denote B(0,R). Suppose such an h exists. Let λ ∈ [0,1]
and let pλ (x)≡ x+λ (h(x)−x) . This function, pλ is a homotopy of the identity map and
the retraction, h. Let

I (λ )≡
∫

B(0,R)
det(Dpλ (x))dx.

Then using the dominated convergence theorem,

I′ (λ ) =
∫

B(0,R)
∑
i. j

∂ det(Dpλ (x))
∂ pλ i, j

∂ pλ i j (x)
∂λ

dx

=
∫

B(0,R)
∑

i
∑

j

∂ det(Dpλ (x))
∂ pλ i, j

(hi (x)− xi), j dx

=
∫

B(0,R)
∑

i
∑

j
cof(Dpλ (x))i j (hi (x)− xi), j dx
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Now by assumption, hi (x) = xi on ∂B(0,R) and so one can integrate by parts and write

I′ (λ ) =−∑
i

∫
B(0,R)

∑
j

cof(Dpλ (x))i j, j (hi (x)− xi)dx = 0.

Therefore, I (λ ) equals a constant. However, |h(x)|2 = R2 so ∑
p
i=1 hi (x)hi (x) = R2 and so,

differentiating with respect to j,

2
p

∑
i=1

hi, j (x)hi (x) = 0 so Dh(x)T h(x) = 0

and so, since h(x) ̸= 0,Dh(x)T is not invertible. Hence det(Dh(x)) = 0 and so I (1) = 0 ̸=
I (0) = mp (B(0,R)). This is a contradiction. ■

The following is the Brouwer fixed point theorem for C2 maps.

Lemma 13.11.4 If h ∈C2
(

B(0,R)
)

and h : B(0,R)→ B(0,R), then h has a fixed point,

x such that h(x) = x.

Proof: Suppose the lemma is not true. Then for all x, |x−h(x)| ̸= 0. Then define

g(x) = h(x)+
x−h(x)
|x−h(x)|

t (x)

where t (x) is nonnegative and is chosen such that g(x) ∈ ∂B(0,R) .
This mapping is illustrated in the following picture.

h(x)
x

g(x)

If x→t (x) is C2 near B(0,R), it will follow g is a C2 retraction onto ∂B(0,R) contrary
to Lemma 13.11.3. Thus t (x) is the nonnegative solution to

|h(x)|2 +2
(

h(x) ,
x−h(x)
|x−h(x)|

)
t + t2 = R2 (13.11.28)

then by the quadratic formula,

t (x) =−
(

h(x) ,
x−h(x)
|x−h(x)|

)
+

√(
h(x) ,

x−h(x)
|x−h(x)|

)2

+
(

R2−|h(x)|2
)

Is x→t (x) C2? If what is under the radical is positive, then there is no problem because
s→
√

s is smooth for s> 0. In fact, this is the case here. The inside of the radical is positive



13.11. THE BROUWER FIXED POINT THEOREM ANOTHER PROOF 371

if R > |h(x)|. If |h(x)|= R, it is still positive because in this case, the angle between h(x)
and x−h(x) cannot be π/2. This shows that x→ t (x) is the composition of C2 functions
and is therefore C2. Thus this g(x) is a C2 retract and by the above lemma, there isn’t one.
■

Now it is easy to prove the Brouwer fixed point theorem. The following theorem is the
Brouwer fixed point theorem for a ball.

Theorem 13.11.5 Let BR be the above closed ball and let f : BR→ BR be continuous. Then
there exists x ∈ BR such that f(x) = x.

Proof: Let fk (x)≡ f(x)
1+k−1 . Thus

∥fk− f∥ = max
x∈BR

{∣∣∣∣ f(x)
1+(1/k)

− f(x)
∣∣∣∣}= max

x∈BR

{∣∣∣∣ f(x)− f(x)(1+(1/k))
1+(1/k)

∣∣∣∣}
= max

x∈BR

{∣∣∣∣ f(x)(1/k)
1+(1/k)

∣∣∣∣}≤ R
1+ k

Letting ∥h∥ ≡ max{|h(x)| : x ∈ BR} , It follows from the Weierstrass approximation the-
orem, there exists a function whose components are polynomials gk such that ∥gk− fk∥ <

R
k+1 . Then if x ∈ BR, it follows

|gk (x)| ≤ |gk (x)− fk (x)|+ |fk (x)|

<
R

1+ k
+

kR
1+ k

= R

and so gk maps BR to BR. By Lemma 13.10.2 each of these gk has a fixed point xk such that
gk (xk) = xk. The sequence of points, {xk} is contained in the compact set, BR and so there
exists a convergent subsequence still denoted by {xk} which converges to a point x ∈ BR.
Then

|f(x)−x| ≤ |f(x)− fk (x)|+ |fk (x)− fk (xk)|+

∣∣∣∣∣∣fk (xk)−

=xk︷ ︸︸ ︷
gk (xk)

∣∣∣∣∣∣+ |xk−x|

≤ R
1+ k

+ |f(x)− f(xk)|+
R

1+ k
+ |xk−x| .

Now let k→ ∞ in the right side to conclude f(x) = x. ■
It is not surprising that the ball does not need to be centered at 0.

Corollary 13.11.6 Let f : B(a,R)→ B(a,R) be continuous. Then there exists x ∈ B(a,R)
such that f(x) = x.

Proof: Let g : BR→ BR be defined by g(y)≡ f(y+a)−a. Then g is a continuous map
from BR to BR. Therefore, there exists y ∈ BR such that g(y) = y. Therefore, f(y+a)−
a = y and so letting x = y+a, f also has a fixed point as claimed. ■



372 CHAPTER 13. LEBESGUE MEASURE

Definition 13.11.7 A set A is a retract of a set B if A ⊆ B, and there is a continuous map
h : B→ A such that h(x) = x for all x ∈ A and h is onto. B has the fixed point property
means that whenever g is continuous and g : B→ B, it follows that g has a fixed point.

Proposition 13.11.8 Let A be a retract of B and suppose B has the fixed point property.
Then so does A.

Proof: Suppose f : A→ A. Let h be the retract of B onto A. Then f◦h : B→ B is
continuous. Thus, it has a fixed point x ∈ B so f(h(x)) = x. However, h(x) ∈ A and
f : A→ A so in fact, x ∈ A. Now h(x) = x and so f(x) = x. ■

Recall that every convex compact subset K of Rp is a retract of all of Rp obtained by
using the projection map. In particular, K is a retract of a large closed ball containing K
which has the fixed point property. Therefore, K also has the fixed point property. This
shows the following which is often called the Brouwer fixed point theorem.

Corollary 13.11.9 Every convex closed and bounded subset ofRp has the fixed point prop-
erty.

13.12 Invariance Of Domain
This principal says that if f : U ⊆ Rn → f(U) ⊆ Rn where U is open and f is one to one
and continuous, then f(U) is also open. To do this, we first prove the following lemma. I
found something like this on the web. I liked it a lot because it shows how the Brouwer
fixed point theorem implies the invariance of domain. The other ways I know about involve
degree theory or some sort of algebraic topology. I will give two proofs of the following
lemma, the first being somewhat more informal than the second.

Lemma 13.12.1 Let B be a closed ball in Rn centered at a which has radius r. Let f : B→
Rn. Then f(a) is an interior point of f(B).

Proof: Since f(B) is compact and f is one to one, f−1 is continuous on f(B) . Use Tietze
extension theorem on components of f−1 or some such thing to obtain g : Rn → Rn such
that g is continuous and equals f−1 on f(B). Then multiply by a suitable truncation function
to get g uniformly continuous on Rn.

Suppose f(a) is not an interior point of f(B). Then there exists ck→ f(a) but ck /∈ f(B).
In the picture, let Ck be a sphere whose radius is

2 |ck− f(a)|
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f(a)

ckf(B)

g ̸= a

ĝ ̸= a, ĝ close to g

Ck

Let ĝk be C1 and let it satisfy

∥ĝk−g∥f(B)∪D ≡ max
y∈f(B)∪D

|ĝ(y)−g(y)|< εk

εk is very small, εk→ 0. How small will be considered later. Here D is a large closed disk
which contains all of the spheres Ck considered above. The idea is to have a large compact
set which includes everything of interest below.

To get ĝk,you could use the Weierstrass approximation theorem, Theorem 9.2.9. An
easier way involving convolution will be presented in the next chapter. Also let a /∈ ĝk (Ck) .
This is no problem. Ck has measure zero and so ĝ(Ck) also has measure zero thanks to the
assumption that ĝ is C1 and Lemma 13.5.1. Therefore, you could simply add a small
enough nonzero vector to ĝ to preserve the above inequality of ĝ and g so that ĝ(Ck) no
longer contains a. That is, replace ĝ with ĝ+a−b where |a−b| is very small but b /∈
ĝ(Ck).

There is a set Σk consisting of that part of f(B) which is outside of the sphere Ck in the
picture along with the sphere Ck itself. By construction, ĝk misses a on Ck. As to the other
part of Σk, g misses a on this part, because f is one to one and so f−1 is also. Now we will
squash the part of f(B) inside Ck onto Ck while leaving the rest of f(B) unchanged.

Let Φk be defined on f(B)

Φk (y)≡max
(

2 |ck− f(a)|
|y− ck|

,1
)
(y− ck)+ ck

This Φk squishes the part of f(B) inside Ck to Ck and leaves the rest of f(B) unchanged.
Thus

Φk : f(B)→ f(B)∩ [y : |y− ck| ≥ 2 |ck− f(a)|]∪Ck

a compact set. Now ∥ĝk ◦Φk−g∥f(B)→ 0 and g misses a on the part of f(B) outside of Ck.
In the above, we chose ĝk so close to g that it also misses a on the part of f(B) which is
outside of Ck. Then by construction, ĝk misses a on Ck and so in fact ĝk ◦Φk misses a on
f(B) . Now consider a+x− ĝk (Φk (f(x))) for x ∈ B.

|a+x− ĝk (Φk (f(x)))−a|= |x− ĝ(Φ(f(x)))|

= |g(f(x))− ĝk (Φk (f(x)))|
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For f(x) outside of Ck, we could have chosen ĝk such that ∥g− ĝk∥f(B) <
r
2 and this was in-

deed done. When f(x) is inside Ck, then eventually, for large k, both g(f(x)) , ĝk (Φk (f(x)))
are close to g(f(a)) . To see this,

|ĝk (Φk (f(x)))−g(Φk (f(x)))|+ |g(Φk (f(x)))−g(f(x))|
≤ ∥ĝk−g∥f(B)∪D + |g(Φk (f(x)))−g(f(x))|

the last term being small for large k, and so for large k, x→ a+x− ĝk (Φk (f(x))) maps B to
B and so by Brouwer fixed point theorem, it has a fixed point and hence ĝk (Φk (f(x))) = a
contrary to what was argued above. Hence, f(a) must be an interior point after all. ■

Now here is the same lemma with the details.

Lemma 13.12.2 Let B be a closed ball in Rn centered at a which has radius r. Let f : B→
Rn. Then f(a) is an interior point of f(B).

Proof: Since f(B) is compact and f is one to one, f−1 is continuous on f(B). Use Tietze
extension theorem on components of f−1 or some such thing to obtain g : Rn → Rn such
that g is continuous and equals f−1 on f(B).

Suppose f(a) is not an interior point of f(B). Then for every ε > 0 there exists cε ∈
B(f(a) ,ε)\ f(B) . So fix ε small and refer to cε as c. ε will be so small that

|g(y)−g(f(a))|< r
10

for y ∈ B(f(a) ,4ε)

There is δ > 0 such that if |x− x̂|< δ , then

|f(x)− f(x̂)|< ε (13.12.29)

Let ĝ be C1 and on f(B), let it satisfy

∥ĝ−g∥f(B) ≡ max
y∈f(B)

|ĝ(y)−g(y)|< min
(

r
10

,
δ

2

)

To get ĝk,you could use the Weierstrass approximation theorem, Theorem 9.2.9. An easier
way involving convolution will be presented in the next chapter. Also let a /∈ ĝ(∂B(c,2ε)) .
This is no problem. ∂B(a,2ε) has measure zero and so ĝ(∂B(c,ε)) also has measure zero
thanks to the assumption that ĝ is C1 and Lemma 13.5.1. Therefore, you could simply
add a small enough nonzero vector to ĝ to preserve the above inequality of ĝ and g so that
ĝ(∂B(c,2ε)) no longer contains a. That is, replace ĝ with ĝ+a−b where |a−b| is very
small but b /∈ ĝ(∂B(c,2ε)). A summary of the rest of the argument is contained in the
following picture in which the sphere has radius 2ε .



13.12. INVARIANCE OF DOMAIN 375

f(a)

cf(B)

g ̸= a

ĝ ̸= a, ĝ close to g

C

There is a set Σ consisting of that part of f(B) which is outside of the sphere C in the
picture along with the sphere C itself. By construction, ĝ misses a on C. As to the other
part of Σ, that g misses a on this part, follows from the assumption that f is one to one
and so f−1 is also. Then ĝ missing a follows from ĝ being close enough to g. We define a
continuous mapping Φ which maps f(B) to this set Σ. This map squishes that part of f(B)
which is inside C onto C and does nothing to the part of f(B) which is outside of C. This
is where c not in f(B) but close to f(B) is used. Then we argue that ĝ ◦Φ is continuous
and close to g and misses a. It will be close to g and ĝ because of the above assumption
that everything inside C is close to f(a) and g and ĝ are continuous. This will yield an easy
contradiction from a use of the Brouwer fixed point theorem.

Now let Φ be defined on f(B)

Φ(y)≡max
(

2ε

|y− c|
,1
)
(y− c)+ c

If |y− c| ≥ 2ε, then Φ(y) = y. If |y− c|< 2ε, then Φ(y) = 2ε

|y−c| (y− c)+ c and so

|Φ(y)− c|= 2ε
|y− c|
|y− c|

= 2ε

Note that this function is well defined because c /∈ f(B). Thus

Φ : f(B)→ f(B)∩ [y : |y− c| ≥ 2ε]∪∂B(c,2ε)≡ Σ

a compact set. Now the interesting thing about this set Σ is this. For y∈Σ, ĝ(y) ̸= a. Why is
this? It is because by construction, a /∈ ĝ(∂B(c,2ε)). What if y ∈ f(B)∩ [y : |y− c| ≥ 2ε],
the other set in Σ? Could ĝ(y) = a? If so, then

|g(y)−a| ≤ |g(y)− ĝ(y)|+ |ĝ(y)−a| ≤ δ

2

and so by 13.12.29,
|y− f(a)|< ε

But |y− c| ≥ 2ε and so

|y− f(a)| ≥ |y− c|− |c− f(a)| ≥ 2ε−|c− f(a)| ≥ 2ε− ε = ε
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which contradicts the above inequality.
Therefore, ĝ(y) ̸= a for any y ∈ Σ. So consider ĝ(Φ(y)) for y ∈ f(B).

|ĝ(Φ(y))−g(y)| ≤ |ĝ(Φ(y))−g(Φ(y))|+ |g(Φ(y))−g(y)|

≤ r
10

+ |g(Φ(y))−g(f(a))− (g(y)−g(f(a)))| (13.12.30)

This last equals 0 if |y− c| ≥ 2ε . On the other hand, if |y− c|< 2ε,

y ∈ B(f(a) ,2ε) ,Φ(y) ∈ ∂B(c,2ε)

so both y,Φ(y) are in B(f(a) ,4ε) and so this last term in 13.12.30 is no larger than
|g(Φ(y)−g(f(a)))|+ |g(y)−g(f(a))|< r

10 +
r

10 and so for all y ∈ f(B) ,

|ĝ(Φ(y))−g(y)| ≤ 3r
10

Now note that for x ∈ B, from what was just shown,

|ĝ(Φ(f(x)))−x|= |ĝ(Φ(f(x)))−g(f(x))| ≤ 3r
10

It follows that for every x ∈ B,a+x− ĝ(Φ(f(x))) ∈ B and so by the Brouwer fixed point
theorem, there is a fixed point x and hence

a+x− ĝ(Φ(f(x))) = x

so ĝ(Φ(f(x))) = a contrary to what was just shown that there is no solution to ĝ(y) = a
for y ∈ Σ. ■

With the lemma, it is easy to prove the invariance of domain theorem which is as fol-
lows.

Theorem 13.12.3 Let U be an open set in Rn and let f : U → f(U) ⊆ Rn. Then f(U) is
also an open set in Rn.

Proof: For a ∈U, let a ∈ Ba ⊆U, where Ba is a closed ball centered at a. Then from
Lemma 13.12.2, f(a) ∈ Vf(a) an open subset of f(Ba) . Hence f(U) = ∪a∈UVf(a) which is
open. ■

13.13 Besicovitch Covering Theorem
The Besicovitch covering theorem is one of the most amazing and insightful ideas that I
have ever encountered. It is simultaneously elegant, elementary and profound. The next
section is an attempt to present this wonderful result.

When dealing with probability distribution functions or some other Radon measure,
it is necessary to have a better covering theorem than the Vitali covering theorem which
works well for Lebesgue measure. However, for a Radon measure, if you enlarge the ball
by making the radius larger, you don’t know what happens to the measure of the enlarged
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ball except that its measure does not get smaller. Thus the thing required is a covering
theorem which does not depend on enlarging balls.

This all works in a normed linear space (X ,∥·∥) which has dimension p. Here is a
sequence of balls from F in the case that the set of centers of these balls is bounded. I will
denote by r (Bk) the radius of a ball Bk.

A construction of a sequence of balls

Lemma 13.13.1 Let F be a nonempty set of nonempty balls in X with

sup{diam(B) : B ∈F}= D < ∞

and let A denote the set of centers of these balls. Suppose A is bounded. Define a sequence
of balls from F ,

{
B j
}J

j=1 where J ≤ ∞ such that

r (B1)>
3
4

sup{r (B) : B ∈F} (13.13.31)

and if
Am ≡ A\ (∪m

i=1Bi) ̸= /0, (13.13.32)

then Bm+1 ∈F is chosen with center in Am such that

r (Bm)> r (Bm+1)>
3
4

sup{r : B(a,r) ∈F , a ∈ Am} . (13.13.33)

Then letting B j = B(a j,r j) , this sequence satisfies
{

B(a j,r j/3)
}J

j=1 are disjoint,.

A⊆ ∪J
i=1Bi. (13.13.34)

Proof: First note that Bm+1 can be chosen as in 13.13.33. This is because the Am are
decreasing and so

3
4

sup{r : B(a,r) ∈F , a ∈ Am}

≤ 3
4

sup{r : B(a,r) ∈F , a ∈ Am−1}< r (Bm)

Thus the r (Bk) are strictly decreasing and so no Bk contains a center of any other B j.
If x∈ B(a j,r j/3)∩B(ai,ri/3) where these balls are two which are chosen by the above

scheme such that j > i, then from what was just shown∥∥a j−ai
∥∥≤ ∥∥a j−x

∥∥+∥x−ai∥ ≤
r j

3
+

ri

3
≤
(

1
3
+

1
3

)
ri =

2
3

ri < ri

and this contradicts the construction because a j is not covered by B(ai,ri).
Finally consider the claim that A ⊆ ∪J

i=1Bi. Pick B1 satisfying 13.13.31. If B1, · · · ,Bm
have been chosen, and Am is given in 13.13.32, then if Am = /0, it follows A⊆ ∪m

i=1Bi. Set
J = m.
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Now let a be the center of Ba ∈F . If a∈ Am for all m,(That is a does not get covered by
the Bi.) then rm+1 ≥ 3

4 r (Ba) for all m, a contradiction since the balls B
(
a j,

r j
3

)
are disjoint

and A is bounded, implying that r j→ 0. Thus a must fail to be in some Am which means it
was covered by some ball in the sequence. ■

The covering theorem is obtained by estimating how many B j can intersect Bk for j < k.
The thing to notice is that from the construction, no B j contains the center of another Bi.
Also, the r (Bk) is a decreasing sequence.

Let α > 1. There are two cases for an intersection. Either r (B j)≥ αr (Bk) or αr (Bk)>
r (B j)> r (Bk).

First consider the case where we have a ball B(a,r) intersected with other balls of radius
larger than αr such that none of the balls contains the center of any other. This is illustrated
in the following picture with two balls. This has to do with estimating the number of B j for
j ≤ k where r (B j)≥ αr (Bk).

Ba

Bx By

•a
r

•x

rx

•y

ry

••px py

Imagine projecting the center of each big ball as in the above picture onto the surface of
the given ball, assuming the given ball has radius 1. By scaling the balls, you could reduce
to this case that the given ball has radius 1. Then from geometric reasoning, there should
be a lower bound to the distance between these two projections depending on dimension.
Thus there is an estimate on how many large balls can intersect the given ball with no ball
containing a center of another one.

Intersections with relatively big balls

Lemma 13.13.2 Let the balls Ba,Bx,By be as shown, having radii r,rx,ry respectively.
Suppose the centers of Bx and By are not both in any of the balls shown, and suppose
ry ≥ rx ≥ αr where α is a number larger than 1. Also let Px ≡ a+ r x−a

∥x−a∥ with Py being

defined similarly. Then it follows that ∥Px−Py∥ ≥ α−1
α+1 r. There exists a constant L(p,α)

depending on α and the dimension, such that if B1, · · · ,Bm are all balls such that any pair
are in the same situation relative to Ba as Bx, and By, then m≤ L(p,α) .

Proof: From the definition,

∥Px−Py∥= r
∥∥∥∥ x−a
∥x−a∥

− y−a
∥y−a∥

∥∥∥∥
= r
∥∥∥∥ (x−a)∥y−a∥− (y−a)∥x−a∥

∥x−a∥∥y−a∥

∥∥∥∥
= r
∥∥∥∥∥y−a∥(x−y)+(y−a)(∥y−a∥−∥x−a∥)

∥x−a∥∥y−a∥

∥∥∥∥
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≥ r
∥x−y∥
∥x−a∥

− r
∥y−a∥|∥y−a∥−∥x−a∥|

∥x−a∥∥y−a∥

= r
∥x−y∥
∥x−a∥

− r
∥x−a∥

|∥y−a∥−∥x−a∥| . (13.13.35)

There are two cases. First suppose that ∥y−a∥−∥x−a∥ ≥ 0. Then the above

= r
∥x−y∥
∥x−a∥

− r
∥x−a∥

∥y−a∥+ r.

From the assumptions, ∥x−y∥ ≥ ry and also ∥y−a∥ ≤ r+ ry. Hence the above

≥ r
ry

∥x−a∥
− r
∥x−a∥

(r+ ry)+ r = r− r
r

∥x−a∥

≥ r
(

1− r
∥x−a∥

)
≥ r
(

1− r
rx

)
≥ r
(

1− 1
α

)
≥ r

α−1
α +1

.

The other case is that ∥y−a∥−∥x−a∥ < 0 in 13.13.35. Then in this case 13.13.35
equals

= r
(
∥x−y∥
∥x−a∥

− 1
∥x−a∥

(∥x−a∥−∥y−a∥)
)

=
r

∥x−a∥
(∥x−y∥− (∥x−a∥−∥y−a∥))

Then since ∥x−a∥≤ r+rx,∥x−y∥≥ ry,∥y−a∥≥ ry, and remembering that ry ≥ rx ≥αr,

≥ r
rx + r

(ry− (r+ rx)+ ry)≥
r

rx + r
(ry− (r+ ry)+ ry)

≥ r
rx + r

(ry− r)≥ r
rx + r

(rx− r)≥ r
rx +

1
α

rx

(
rx−

1
α

rx

)
=

r
1+(1/α)

(1−1/α) =
α−1
α +1

r

Replacing r with something larger, 1
α

rx is justified by the observation that x→ α−x
α+x is

decreasing. This proves the estimate between Px and Py.
Finally, in the case of the balls Bi having centers at xi, then as above, let Pxi = a+

r xi−a
∥xi−a∥ . Then (Pxi −a)r−1 is on the unit sphere having center 0. Furthermore,

∥∥(Pxi −a)r−1− (Pyi −a)r−1∥∥= r−1 ∥Pxi −Pyi∥ ≥ r−1r
α−1
α +1

=
α−1
α +1

.

How many points on the unit sphere can be pairwise this far apart? The unit sphere is
compact and so there exists a 1

4

(
α−1
α+1

)
net having L(p,α) points. Thus m cannot be any

larger than L(p,α) because if it were, then by the pigeon hole principal, two of the points
(Pxi −a)r−1 would lie in a single ball B

(
p, 1

4

(
α−1
α+1

))
so they could not be α−1

α+1 apart. ■
The above lemma has to do with balls which are relatively large intersecting a given

ball. Next is a lemma which has to do with relatively small balls intersecting a given ball.
First is another lemma.
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Lemma 13.13.3 Let Γ > 1 and B(a,Γr) be a ball and suppose {B(xi,ri)}m
i=1 are balls

contained in B(a,Γr) such that r≤ ri and none of these balls contains the center of another
ball. Then there is a constant M (p,Γ) such that m≤M (p,Γ).

Proof: Let zi = xi − a. Then B(zi,ri) are balls contained in B(0,Γr) with no ball
containing a center of another. Then B

( zi
Γr ,

ri
Γr

)
are balls in B(0,1) with no ball containing

the center of another. By compactness, there is a 1
8Γ

net for B(0,1), {yi}M(p,Γ)
i=1 . Thus the

balls B
(
yi,

1
8Γ

)
cover B(0,1). If m ≥ M (p,Γ) , then by the pigeon hole principle, one of

these B
(
yi,

1
8Γ

)
would contain some zi

Γr and z j
Γr which requires

∥∥ zi
Γr −

z j
Γr

∥∥ ≤ 1
4Γ

<
r j

4Γr so
zi
Γr ∈ B

( z j
Γr ,

r j
Γr

)
. Thus m≤M (p,γ,Γ). ■

Intersections with small balls

Lemma 13.13.4 Let B be a ball having radius r and suppose B has nonempty intersection
with the balls B1, · · · ,Bm having radii r1, · · · ,rm respectively, and as before, no Bi contains
the center of any other and the centers of the Bi are not contained in B. Suppose α > 1
and r ≤ min(r1, · · · ,rm), each ri < αr. Then there exists a constant M (p,α) such that
m≤M (p,α).

Proof: Let B = B(a,r). Then each Bi is contained in B(a,2r+αr+αr) . This is
because if y ∈ Bi ≡ B(xi,ri) ,

∥y−a∥ ≤ ∥y−xi∥+∥xi−a∥ ≤ ri + r+ ri < 2r+αr+αr

Thus Bi does not contain the center of any other B j. Then these balls are contained in
B(a,r (2α +2)) , and each radius is at least as large as r. By Lemma 13.13.3 there is a
constant M (p,α) such that m≤M (p,α). ■

Now here is the Besicovitch covering theorem. In the proof, we are considering the
sequence of balls described above.

Theorem 13.13.5 There exists a constant Np, depending only on p with the following prop-
erty. If F is any collection of nonempty balls in X with

sup{diam(B) : B ∈F}< D < ∞

and if A is the set of centers of the balls in F , then there exist subsets of F , H1, · · · , HNp ,
such that each Hi is a countable collection of disjoint balls from F (possibly empty) and

A⊆ ∪Np
i=1∪{B : B ∈Hi}.

Proof: To begin with, suppose A is bounded. Let L(p,α) be the constant of Lemma
13.13.2 and let Mp = L(p,α) +M (p,α) + 1. Define the following sequence of subsets
of F , G1,G2, · · · ,GMp . Referring to the sequence {Bk} considered in Lemma 13.13.1, let
B1 ∈ G1 and if B1, · · · ,Bm have been assigned, each to a Gi, place Bm+1 in the first G j such
that Bm+1 intersects no set already in G j. The existence of such a j follows from Lemmas
13.13.2 and 13.13.4 and the pigeon hole principle. Here is why. Bm+1 can intersect at
most L(p,α) sets of {B1, · · · ,Bm} which have radii at least as large as αr (Bm+1) thanks to
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Lemma 13.13.2. It can intersect at most M (p,α) sets of {B1, · · · ,Bm} which have radius
smaller than αr (Bm+1) thanks to Lemma 13.13.4. Thus each G j consists of disjoint sets of
F and the set of centers is covered by the union of these G j. This proves the theorem in
case the set of centers is bounded.

Now let R1 = B(0,5D) and if Rm has been chosen, let

Rm+1 = B(0,(m+1)5D)\Rm

Thus, if |k−m| ≥ 2, no ball from F having nonempty intersection with Rm can inter-
sect any ball from F which has nonempty intersection with Rk. This is because all these
balls have radius less than D. Now let Am ≡ A∩ Rm and apply the above result for a
bounded set of centers to those balls of F which intersect Rm to obtain sets of disjoint balls
G1 (Rm) ,G2 (Rm) , · · · ,GMp (Rm) covering Am. Then simply define G ′j ≡∪∞

k=1G j (R2k) ,G j ≡
∪∞

k=1G j (R2k−1) . Let Np = 2Mp and{
H1, · · · ,HNp

}
≡
{

G ′1, · · · ,G ′Mp ,G1, · · · ,GMp

}
Note that the balls in G ′j are disjoint. This is because those in G j (R2k) are disjoint and if
you consider any ball in G j (R2m) , it cannot intersect a ball of G j (R2k) for m ̸= k because
|2k−2m| ≥ 2. Similar considerations apply to the balls of G j. ■

Of course, you could pick a particular α . If you make α larger, L(p,α) should get
smaller and M (p,α) should get larger. Obviously one could explore this at length to try
and get a best choice of α .

13.14 Vitali Coverings and Radon Measures
There is another covering theorem which may also be referred to as the Besicovitch cover-
ing theorem. As before, the balls can be taken with respect to any norm on Rn. At first, the
balls will be closed but this assumption will be removed.

Definition 13.14.1 A collection of balls in Rp, F covers a set E in the sense of Vitali if
whenever x ∈ E and ε > 0, there exists a ball B ∈F whose center is x having diameter
less than ε.

I will give a proof of the following theorem.

Theorem 13.14.2 Let µ be a Radon measure on Rp and let E be a set with µ (E) < ∞.
Where µ is the outer measure determined by µ. Suppose F is a collection of closed balls
which cover E in the sense of Vitali. Then there exists a sequence of disjoint balls, {Bi}⊆F
such that

µ
(
E \∪∞

j=1B j
)
= 0.

Proof: Let Np be the constant of the Besicovitch covering theorem. Choose r > 0 such
that

(1− r)−1
(

1− 1
2Np +2

)
≡ λ < 1.
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If µ (E) = 0, there is nothing to prove so assume µ (E) > 0. Let U1 be an open set con-
taining E with (1− r)µ (U1)< µ (E) and 2µ (E)> µ (U1) , and let F1 be those sets of F
which are contained in U1 whose centers are in E. Thus F1 is also a Vitali cover of E. Now
by the Besicovitch covering theorem proved earlier, there exist balls, B, of F1 such that

E ⊆ ∪Np
i=1 {B : B ∈ Gi}

where Gi consists of a collection of disjoint balls of F1. Therefore,

µ (E)≤
Np

∑
i=1

∑
B∈Gi

µ (B)

and so, for some i≤ Np,

(Np +1) ∑
B∈Gi

µ (B)> µ (E) .

It follows there exists a finite set of balls of Gi, {B1, · · · ,Bm1} such that

(Np +1)
m1

∑
i=1

µ (Bi)> µ (E) (13.14.36)

and so

(2Np +2)
m1

∑
i=1

µ (Bi)> 2µ (E)> µ (U1) .

Since 2µ (E)≥ µ (U1) , 13.14.36 implies

µ (U1)

2N2 +2
≤ 2µ (E)

2N2 +2
=

µ (E)
N2 +1

<
m1

∑
i=1

µ (Bi) .

Also U1 was chosen such that (1− r)µ (U1)< µ (E) , and so

λ µ (E)≥ λ (1− r)µ (U1) =

(
1− 1

2Np +2

)
µ (U1)

≥ µ (U1)−
m1

∑
i=1

µ (Bi) = µ (U1)−µ

(
∪m1

j=1B j

)
= µ

(
U1 \∪m1

j=1B j

)
≥ µ

(
E \∪m1

j=1B j

)
.

Since the balls are closed, you can consider the sets of F which have empty intersection
with ∪m1

j=1B j and this new collection of sets will be a Vitali cover of E \∪m1
j=1B j. Letting

this collection of balls play the role of F in the above argument and letting E \∪m1
j=1B j

play the role of E, repeat the above argument and obtain disjoint sets of F ,

{Bm1+1, · · · ,Bm2} ,
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such that

λ µ

(
E \∪m1

j=1B j

)
> µ

((
E \∪m1

j=1B j

)
\∪m2

j=m1+1B j

)
= µ

(
E \∪m2

j=1B j

)
,

and so
λ

2
µ (E)> µ

(
E \∪m2

j=1B j

)
.

Continuing in this way, yields a sequence of disjoint balls {Bi} contained in F and

µ
(
E \∪∞

j=1B j
)
≤ µ

(
E \∪mk

j=1B j

)
< λ

k
µ (E )

for all k. Therefore, µ

(
E \∪∞

j=1B j

)
= 0. ■

It is not necessary to assume µ (E)< ∞.

Corollary 13.14.3 Let µ be a Radon measure on Rp. Letting µ be the outer measure
determined by µ, suppose F is a collection of closed balls which cover E in the sense of
Vitali. Then there exists a sequence of disjoint balls, {Bi} ⊆F such that

µ
(
E \∪∞

j=1B j
)
= 0.

Proof: Since µ is a Radon measure it is finite on compact sets. Therefore, there are
at most countably many numbers, {bi}∞

i=1 such that µ (∂B(0,bi)) > 0. It follows there
exists an increasing sequence of positive numbers, {ri}∞

i=1 such that limi→∞ ri = ∞ and
µ (∂B(0,ri)) = 0. Now let

D1 ≡ {x : ||x||< r1} ,D2 ≡ {x : r1 < ||x||< r2} ,
· · · ,Dm ≡ {x : rm−1 < ||x||< rm} , · · · .

Let Fm denote those closed balls of F which are contained in Dm. Then letting Em denote
E ∩Dm, Fm is a Vitali cover of Em,µ (Em) < ∞, and so by Theorem 13.14.2, there exists

a countable sequence of balls from Fm

{
Bm

j

}∞

j=1
, such that µ

(
Em \∪∞

j=1Bm
j

)
= 0. Then

consider the countable collection of balls,
{

Bm
j

}∞

j,m=1
.

µ
(
E \∪∞

m=1∪∞
j=1 Bm

j
)
≤ µ

(
∪∞

j=1∂B(0,ri)
)
+

+
∞

∑
m=1

µ
(
Em \∪∞

j=1Bm
j
)

= 0 ■

You don’t need to assume the balls are closed. In fact, the balls can be open, closed
or anything in between and the same conclusion can be drawn provided you change the
definition of a Vitali cover a little.

Corollary 13.14.4 Let µ be a Radon measure on Rp. Letting µ be the outer measure
determined by µ, suppose F is a collection of balls which cover E in the sense that for all
ε > 0 there are uncountably many balls of F centered at x having radius less than ε . Then
there exists a sequence of disjoint balls, {Bi} ⊆F such that

µ
(
E \∪∞

j=1B j
)
= 0.
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Proof: Let x ∈ E. Thus x is the center of arbitrarily small balls from F . Since µ is a
Radon measure, at most countably many radii, r of these balls can have the property that
µ (∂B(0,r)) = 0. Let F ′ denote the closures of the balls of F , B(x,r) with the property
that µ (∂B(x,r)) = 0. Since for each x ∈ E there are only countably many exceptions, F ′

is still a Vitali cover of E. Therefore, by Corollary 13.14.3 there is a disjoint sequence of
these balls of F ′,

{
Bi
}∞

i=1 for which

µ
(
E \∪∞

j=1B j
)
= 0

However, since their boundaries have µ measure zero, it follows

µ
(
E \∪∞

j=1B j
)
= 0. ■



Chapter 14

Some Extension Theorems
14.1 Algebras

First of all, here is the definition of an algebra and theorems which tell how to recognize
one when you see it. An algebra is like a σ algebra except it is only closed with respect to
finite unions.

Definition 14.1.1 A is said to be an algebra of subsets of a set, Z if Z ∈A , /0 ∈A , and
when E,F ∈A , E ∪F and E \F are both in A .

It is important to note that if A is an algebra, then it is also closed under finite intersec-
tions. This is because E∩F = (EC∪FC)C ∈A since EC = Z\E ∈A and FC = Z\F ∈A .
Note that every σ algebra is an algebra but not the other way around.

Something satisfying the above definition is called an algebra because union is like
addition, the set difference is like subtraction and intersection is like multiplication. Fur-
thermore, only finitely many operations are done at a time and so there is nothing like a
limit involved.

How can you recognize an algebra when you see one? The answer to this question is
the purpose of the following lemma.

Lemma 14.1.2 Suppose R and E are subsets of P(Z)1 such that E is defined as the set
of all finite disjoint unions of sets of R. Suppose also

/0,Z ∈R

A∩B ∈R whenever A,B ∈R,

A\B ∈ E whenever A,B ∈R.

Then E is an algebra of sets of Z.

Proof: Note first that if A ∈R, then AC ∈ E because AC = Z \A.
Now suppose that E1and E2 are in E ,

E1 = ∪m
i=1Ri, E2 = ∪n

j=1R j

where the Ri are disjoint sets in R and the R j are disjoint sets in R. Then

E1∩E2 = ∪m
i=1∪n

j=1 Ri∩R j

which is clearly an element of E because no two of the sets in the union can intersect and
by assumption they are all in R. Thus by induction, finite intersections of sets of E are in
E . Consider the difference of two elements of E next.

If E = ∪n
i=1Ri ∈ E ,

EC = ∩n
i=1RC

i = finite intersection of sets of E

1Set of all subsets of Z

385
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which was just shown to be in E . Now, if E1,E2 ∈ E ,

E1 \E2 = E1∩EC
2 ∈ E

from what was just shown about finite intersections.
Finally consider finite unions of sets of E . Let E1 and E2 be sets of E . Then

E1∪E2 = (E1 \E2)∪E2 ∈ E

because E1 \ E2 consists of a finite disjoint union of sets of R and these sets must be
disjoint from the sets of R whose union yields E2 because (E1 \E2)∩E2 = /0. This proves
the lemma.

The following corollary is particularly helpful in verifying the conditions of the above
lemma.

Corollary 14.1.3 Let (Z1,R1,E1) and (Z2,R2,E2) be as described in Lemma 14.1.2. Then
(Z1×Z2,R,E ) also satisfies the conditions of Lemma 14.1.2 if R is defined as

R ≡{R1×R2 : Ri ∈Ri}

and
E ≡{ finite disjoint unions of sets of R}.

Consequently, E is an algebra of sets.

Proof: It is clear /0,Z1×Z2 ∈R. Let A×B and C×D be two elements of R.

A×B∩C×D = A∩C×B∩D ∈R

by assumption.
A×B\ (C×D) =

A×

∈E2︷ ︸︸ ︷
(B\D)∪

∈E1︷ ︸︸ ︷
(A\C)×

∈R2︷ ︸︸ ︷
(D∩B)

= (A×Q)∪ (P×R)

where Q ∈ E2, P ∈ E1, and R ∈R2.

A

B

C

D

Since A×Q and P×R do not intersect, it follows the above expression is in E because
each of these terms are. This proves the corollary.
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14.2 Caratheodory Extension Theorem
The Caratheodory extension theorem is a fundamental result which makes possible the
consideration of measures on infinite products among other things. The idea is that if a
finite measure defined only on an algebra is trying to be a measure, then in fact it can be
extended to a measure.

Definition 14.2.1 Let E be an algebra of sets of Ω and let µ0 be a finite measure on E .
This means µ0 is finitely additive and if Ei,E are sets of E with the Ei disjoint and

E = ∪∞
i=1Ei,

then

µ0 (E) =
∞

∑
i=1

µ0 (Ei)

while µ0 (Ω)< ∞.

In this definition, µ0 is trying to be a measure and acts like one whenever possible.
Under these conditions, µ0 can be extended uniquely to a complete measure, µ , defined on
a σ algebra of sets containing E such that µ agrees with µ0 on E . The following is the
main result.

Theorem 14.2.2 Let µ0 be a measure on an algebra of sets, E , which satisfies µ0 (Ω)< ∞.
Then there exists a complete measure space (Ω,S , µ) such that

µ (E) = µ0 (E)

for all E ∈ E . Also if ν is any such measure which agrees with µ0 on E , then ν = µ on
σ (E ), the σ algebra generated by E .

Proof: Define an outer measure as follows.

µ (S)≡ inf

{
∞

∑
i=1

µ0 (Ei) : S⊆ ∪∞
i=1Ei,Ei ∈ E

}
Claim 1: µ is an outer measure.
Proof of Claim 1: Let S⊆ ∪∞

i=1Si and let Si ⊆ ∪∞
j=1Ei j, where

µ (Si)+
ε

2i ≥
∞

∑
j=1

µ (Ei j) .

Then
µ (S)≤∑

i
∑

j
µ (Ei j) = ∑

i

(
µ (Si)+

ε

2i

)
= ∑

i
µ (Si)+ ε.

Since ε is arbitrary, this shows µ is an outer measure as claimed.
By the Caratheodory procedure, there exists a unique σ algebra, S , consisting of the

µ measurable sets such that
(Ω,S , µ)
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is a complete measure space. It remains to show µ extends µ0.
Claim 2: If S is the σ algebra of µ measurable sets, S ⊇ E and µ = µ0 on E .
Proof of Claim 2: First observe that if A∈ E , then µ (A)≤ µ0 (A) by definition. Letting

µ (A)+ ε >
∞

∑
i=1

µ0 (Ei) , ∪∞
i=1Ei⊇A, Ei ∈ E ,

it follows

µ (A)+ ε >
∞

∑
i=1

µ0 (Ei∩A)≥ µ0 (A)

since A = ∪∞
i=1Ei∩A. Therefore, µ = µ0 on E .

Consider the assertion that E ⊆S . Let A ∈ E and let S ⊆ Ω be any set. There exist
sets {Ei} ⊆ E such that ∪∞

i=1Ei ⊇ S but

µ (S)+ ε >
∞

∑
i=1

µ (Ei) .

Then
µ (S)≤ µ (S∩A)+µ (S\A)

≤ µ (∪∞
i=1Ei \A)+µ (∪∞

i=1 (Ei∩A))

≤
∞

∑
i=1

µ (Ei\A)+
∞

∑
i=1

µ (Ei∩A) =
∞

∑
i=1

µ (Ei)< µ (S)+ ε.

Since ε is arbitrary, this shows A ∈S .
This has proved the existence part of the theorem. To verify uniqueness, Let

G ≡ {E ∈ σ (E ) : µ (E) = ν (E)} .

Then G is given to contain E and is obviously closed with respect to countable disjoint
unions and complements. Therefore by Lemma 12.12.3, G ⊇ σ (E ) and this proves the
lemma.

The following lemma is also very significant.

Lemma 14.2.3 Let M be a metric space with the closed balls compact and suppose µ is a
measure defined on the Borel sets of M which is finite on compact sets. Then there exists a
unique Radon measure, µ which equals µ on the Borel sets. In particular µ must be both
inner and outer regular on all Borel sets.

Proof: Define a positive linear functional, Λ( f ) =
∫

f dµ. Let µ be the Radon measure
which comes from the Riesz representation theorem for positive linear functionals. Thus
for all f ∈C0 (M) , ∫

f dµ =
∫

f dµ.

If V is an open set, let { fn} be a sequence of continuous functions in C0 (M) which is
increasing and converges to XV pointwise. Then applying the monotone convergence the-
orem, ∫

XV dµ = µ (V ) =
∫

XV dµ = µ (V )
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and so the two measures coincide on all open sets. Every compact set is a countable inter-
section of open sets and so the two measures coincide on all compact sets. Now let B(a,n)
be a ball of radius n and let E be a Borel set contained in this ball. Then by regularity of µ

there exist sets F,G such that G is a countable intersection of open sets and F is a countable
union of compact sets such that F ⊆ E ⊆ G and µ (G\F) = 0. Now µ (G) = µ (G) and
µ (F) = µ (F) . Thus

µ (G\F)+µ (F) = µ (G)

= µ (G) = µ (G\F)+µ (F)

and so µ (G\F) = µ (G\F) . It follows

µ (E) = µ (F) = µ (F) = µ (G) = µ (E) .

If E is an arbitrary Borel set, then

µ (E ∩B(a,n)) = µ (E ∩B(a,n))

and letting n→ ∞, this yields µ (E) = µ (E) .

14.3 The Tychonoff Theorem
Sometimes it is necessary to consider infinite Cartesian products of topological spaces.
When you have finitely many topological spaces in the product and each is compact, it can
be shown that the Cartesian product is compact with the product topology. It turns out that
the same thing holds for infinite products but you have to be careful how you define the
topology. The first thing likely to come to mind by analogy with finite products is not the
right way to do it.

First recall the Hausdorff maximal principle.

Theorem 14.3.1 (Hausdorff maximal principle) Let F be a nonempty partially ordered
set. Then there exists a maximal chain.

The main tool in the study of products of compact topological spaces is the Alexander
subbasis theorem which is presented next. Recall a set is compact if every basic open cover
admits a finite subcover. This was pretty easy to prove. However, there is a much smaller
set of open sets called a subbasis which has this property. The proof of this result is much
harder.

Definition 14.3.2 S ⊆ τ is called a subbasis for the topology τ if the set B of finite inter-
sections of sets of S is a basis for the topology, τ .

Theorem 14.3.3 Let (X ,τ) be a topological space and let S ⊆ τ be a subbasis for τ . Then
if H ⊆ X , H is compact if and only if every open cover of H consisting entirely of sets of
S admits a finite subcover.
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Proof: The only if part is obvious because the subasic sets are themselves open.
If every basic open cover admits a finite subcover then the set in question is compact.

Suppose then that H is a subset of X having the property that subbasic open covers admit
finite subcovers. Is H compact? Assume this is not so. Then what was just observed
about basic covers implies there exists a basic open cover of H, O , which admits no finite
subcover. Let F be defined as

{O : O is a basic open cover of H which admits no finite subcover}.

The assumption is that F is nonempty. Partially order F by set inclusion and use the
Hausdorff maximal principle to obtain a maximal chain, C , of such open covers and let

D = ∪C .

If D admits a finite subcover, then since C is a chain and the finite subcover has only
finitely many sets, some element of C would also admit a finite subcover, contrary to the
definition of F . Therefore, D admits no finite subcover. If D ′ properly contains D and D ′

is a basic open cover of H, then D ′ has a finite subcover of H since otherwise, C would
fail to be a maximal chain, being properly contained in C∪{D ′}. Every set of D is of the
form

U = ∩m
i=1Bi, Bi ∈S

because they are all basic open sets. If it is the case that for all U ∈D one of the Bi is found
in D , then replace each such U with the subbasic set from D containing it. But then this
would be a subbasic open cover of H which by assumption would admit a finite subcover
contrary to the properties of D . Therefore, one of the sets of D , denoted by U , has the
property that

U = ∩m
i=1Bi, Bi ∈S

and no Bi is in D . Thus D ∪{Bi} admits a finite subcover, for each of the above Bi because
it is strictly larger than D . Let this finite subcover corresponding to Bi be denoted by

V i
1, · · · ,V i

mi
,Bi

Consider
{U,V i

j , j = 1, · · · ,mi, i = 1, · · · ,m}.

If p ∈ H \∪{V i
j}, then p ∈ Bi for each i and so p ∈U . This is therefore a finite subcover

of D contradicting the properties of D . Therefore, F must be empty and this proves the
theorem.

Definition 14.3.4 Let I be a set and suppose for each i ∈ I, (Xi,τ i) is a nonempty topolog-
ical space. The Cartesian product of the Xi, denoted by ∏i∈I Xi, consists of the set of all
choice functions defined on I which select a single element of each Xi. Thus f ∈ ∏i∈I Xi
means for every i ∈ I, f (i) ∈ Xi. The axiom of choice says ∏i∈I Xi is nonempty. Let

Pj (A)≡∏
i∈I

Bi
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where Bi ≡ Xi if i ̸= j and B j = A. A subbasis for a topology on the product space consists
of all sets Pj (A) where A ∈ τ j. (These sets have an open set from the topology of X j in the
jth slot and the whole space in the other slots.) Thus a basis consists of finite intersections
of these sets. Note that the intersection of two of these basic sets is another basic set and
their union yields ∏i∈I Xi. Therefore, they satisfy the condition needed for a collection of
sets to serve as a basis for a topology. This topology is called the product topology and is
denoted by ∏τ i.

Proposition 14.3.5 The product topology is the smallest topology τ for X ≡∏i∈I Xi such
that each π i is continuous. Here π i is defined in the following manner. For x ∈ X , π i (x)≡
xi. Thus π i delivers the ith entry of x.

Proof: If each π i is continuous, then for A ∈ τ i,π
−1
i (A) must be in τ . However,

π
−1
i (A) = Pj (A) having A in the ith slot and X j in every other. Therefore, τ must con-

tain the sets Pj (A) . Since it must be a topology, it must also contain all finite intersections
of these sets. Thus the topology τ must contain the product topology described in the above
definition. Is it any larger? No, because if it were, it would not be the smallest topology
making the coordinate maps continuous, due to the observation that these coordinate maps
are indeed continuous with respect to the product topology. ■

It is tempting to define a basis for a topology to be sets of the form ∏i∈I Ai where Ai
is open in Xi. This is not the same thing at all. Note that the basis just described has at
most finitely many slots filled with an open set which is not the whole space. The thing just
mentioned in which every slot may be filled by a proper open set is called the box topology
and there exist people who are interested in it.

The Alexander subbasis theorem is used to prove the Tychonoff theorem which says
that if each Xi is a compact topological space, then in the product topology, ∏i∈I Xi is also
compact.

Theorem 14.3.6 If (Xi,τ i) is compact, then so is (∏i∈I Xi,τ) where τ is the product topol-
ogy.

Proof: By the Alexander subbasis theorem, the theorem will be proved if every sub-
basic open cover admits a finite subcover. Therefore, let O be a subbasic open cover of
X ≡∏i∈I Xi. Let

O j = {Q ∈ O : π iQ = Xi for i ̸= j}
π jO j ≡

{
π jQ : Q ∈ O j

}
Thus O j are those sets of O which might have a proper open subset of X j in the jth position.
If each π jO j fails to cover X j, then there exists

f ∈∏
j∈I

X j \∪π jO j

Now f is contained in some open set from O which must be in some O j. Hence π j f =
f ( j) ∈ ∪π jO j but this does not happen. Hence for some j,π jO j must cover X j.

X j = ∪π jO j
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and so by compactness of X j, there exist A1, · · · ,Am, sets in τ j such that X j ⊆ ∪m
k=1Ak and

letting π jUk = Ak for Uk ∈O j, {Uk}m
k=1 covers ∏i∈I Xi. By the Alexander subbasis theorem

this proves ∏i∈I Xi is compact. ■

14.4 Kolmogorov Extension Theorem
Let a subbasis for [−∞,∞] be sets of the form [−∞,a) and (a,∞]. Thus with this subbasis,
[−∞,∞] is a compact Hausdorff space. Also let Mt ≡ [−∞,∞]nt where nt is a positive integer
and endow this product with the product topology so that Mt is also a compact Hausdorff
space.

I will denote a totally ordered index set, (Like R) and the interest will be in building
a measure on the product space, ∏t∈I Mt . By the well ordering principle, you can always
put an order on any index set so this order is no restriction, but we do not insist on a well
order and in fact, index sets of great interest are R or [0,∞). Also for X a topological space,
B (X) will denote the Borel sets.

Notation 14.4.1 The symbol J will denote a finite subset of I,J = (t1, · · · , tn) , the ti taken
in order. EJ will denote a set which has a set Et of B (Mt) in the tth position for t ∈ J and
for t /∈ J, the set in the tth position will be Mt . KJ will denote a set which has a compact set
in the tth position for t ∈ J and for t /∈ J, the set in the tth position will be Mt . Thus KJ is
compact in the product topology of Ω≡∏t∈I Mt .Also denote by RJ the sets EJ and R the
union of the RJ . Let EJ denote finite disjoint unions of sets of RJ and let E denote finite
disjoint unions of sets of R. Thus if F is a set of E , there exists J such that F is a finite
disjoint union of sets of RJ . For F ∈Ω, denote by πJ (F) the set ∏t∈J Ft where F =∏t∈I Ft .

Lemma 14.4.2 The sets, E ,EJ defined above form an algebra of sets of ∏t∈I Mt .

Proof: First consider RJ . If A,B ∈RJ , then A∩B ∈RJ also. Is A\B a finite disjoint
union of sets of RJ? It suffices to verify that πJ (A\B) is a finite disjoint union of πJ (RJ).
Let |J| denote the number of indices in J. If |J| = 1, then it is obvious that πJ (A\B) is a
finite disjoint union of sets of πJ (RJ). In fact, letting J = (t) and the tth entry of A is A and
the tth entry of B is B, then the tth entry of A\B is A\B, a Borel set of Mt , a finite disjoint
union of Borel sets of Mt .

Suppose then that for A,B sets of RJ , πJ (A\B) is a finite disjoint union of sets of
πJ (RJ) for |J| ≤ n, and consider J = (t1, · · · , tn, tn+1) . Let the tth

i entry of A and B be
respectively Ai and Bi. It follows that πJ (A\B) has the following in the entries for J

(A1×A2×·· ·×An×An+1)\ (B1×B2×·· ·×Bn×Bn+1)

Letting A represent A1×A2×·· ·×An and B represent B1×B2×·· ·×Bn, this is of the form

A× (An+1 \Bn+1)∪ (A\B)× (An+1∩Bn+1)

By induction, (A\B) is the finite disjoint union of sets of R(t1,··· ,tn). Therefore, the above
is the finite disjoint union of sets of RJ . It follows that EJ is an algebra.

Now suppose A,B ∈ R. Then for some finite set J, both are in RJ . Then from what
was just shown,

A\B ∈ EJ ⊆ E , A∩B ∈R.
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By Lemma 12.10.2 on Page 318 this shows E is an algebra. ■
With this preparation, here is the Kolmogorov extension theorem. In the statement and

proof of the theorem, Fi,Gi, and Ei will denote Borel sets. Any list of indices from I will
always be assumed to be taken in order. Thus, if J ⊆ I and J = (t1, · · · , tn) , it will always
be assumed t1 < t2 < · · ·< tn.

Theorem 14.4.3 For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt such that the following consistency condition holds. If

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,

then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(14.4.1)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices, tk, then Gsi = Msi .
Then for E defined in Definition 14.4.1, there exists a probability measure, P and a σ

algebra F = σ (E ) such that (
∏
t∈I

Mt ,P,F

)
is a probability space. Also there exist measurable functions, Xs : ∏t∈I Mt →Ms defined as

Xsx≡ xs

for each s ∈ I such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(14.4.2)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn

=
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (14.4.3)

Proof: Let E be the algebra of sets defined in Definition 14.4.1. I want to define a
measure on E . For F ∈ E , there exists J such that F is the finite disjoint unions of sets of
RJ . Define

P0 (F)≡ νJ (πJ (F))
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Then P0 is well defined because of the consistency condition on the measures νJ . P0 is
clearly finitely additive because the νJ are measures and one can pick J as large as desired
to include all t where there may be something other than Mt . Also, from the definition,

P0 (Ω)≡ P0

(
∏
t∈I

Mt

)
= ν t1 (Mt1) = 1.

Next I will show P0 is a finite measure on E . After this it is only a matter of using the
Caratheodory extension theorem to get the existence of the desired probability measure P.

Claim: Suppose En is in E and suppose En ↓ /0. Then P0 (En) ↓ 0.
Proof of the claim: If not, there exists a sequence such that although En ↓ /0,P0 (En) ↓

ε > 0. Let En ∈ EJn . Thus it is a finite disjoint union of sets of RJn . By regularity of the
measures νJ , there exists a compact set KJn ⊆ En such that

νJn (πJn (KJn))+
ε

2n+2 > νJn (πJn (E
n))

Thus

P0 (KJn)+
ε

2n+2 ≡ νJn (πJn (KJn))+
ε

2n+2

> νJn (πJn (E
n))≡ P0 (En)

The interesting thing about these KJn is: they have the finite intersection property. Here is
why.

ε ≤ P0
(
∩m

k=1KJk

)
+P0

(
Em \∩m

k=1KJk

)
≤ P0

(
∩m

k=1KJk

)
+P0

(
∪m

k=1Ek \KJk

)
< P0

(
∩m

k=1KJk

)
+

∞

∑
k=1

ε

2k+2 < P0
(
∩m

k=1KJk

)
+ ε/2,

and so P0
(
∩m

k=1KJk

)
> ε/2. Now this yields a contradiction, because this finite intersection

property implies the intersection of all the KJk is nonempty, contradicting En ↓ /0 since each
KJn is contained in En.

With the claim, it follows P0 is a measure on E . Here is why: If E = ∪∞
k=1Ek where

E,Ek ∈ E , then (E\∪n
k=1Ek) ↓ /0 and so

P0 (∪n
k=1Ek)→ P0 (E) .

Hence if the Ek are disjoint, P0
(
∪n

k=1Ek
)
= ∑

n
k=1 P0 (Ek)→ P0 (E) . Thus for disjoint Ek

having ∪kEk = E ∈ E ,

P0 (∪∞
k=1Ek) =

∞

∑
k=1

P0 (Ek) .

Now to conclude the proof, apply the Caratheodory extension theorem to obtain P
a probability measure which extends P0 to a σ algebra which contains σ (E ) the sigma
algebra generated by E with P = P0 on E . Thus for EJ ∈ E , P(EJ) = P0 (EJ) = νJ (PJE j) .
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Next, let (∏t∈I Mt ,F ,P) be the probability space and for x ∈ ∏t∈I Mt let Xt (x) = xt ,
the tth entry of x. It follows Xt is measurable (also continuous) because if U is open in Mt ,
then X−1

t (U) has a U in the tth slot and Ms everywhere else for s ̸= t. Thus inverse images
of open sets are measurable. Also, letting J be a finite subset of I and for J = (t1, · · · , tn) ,
and Ft1 , · · · ,Ftn Borel sets in Mt1 · · ·Mtn respectively, it follows FJ , where FJ has Fti in the
tth
i entry, is in E and therefore,

P([Xt1 ∈ Ft1 ]∩ [Xt2 ∈ Ft2 ]∩·· ·∩ [Xtn ∈ Ftn ]) =

P([(Xt1 ,Xt2 , · · · ,Xtn) ∈ Ft1 ×·· ·×Ftn ]) = P(FJ) = P0 (FJ)

= ν t1···tn (Ft1 ×·· ·×Ftn)

Finally consider the claim about the integrals. Suppose f (xt1 , · · · ,xtn) = XF where F
is a Borel set of ∏t∈J Mt where J = (t1, · · · , tn). To begin with suppose

F = Ft1 ×·· ·×Ftn (14.4.4)

where each Ft j is in B
(
Mt j

)
. Then∫

Mt1×···×Mtn

XF (xt1 , · · · ,xtn)dν t1···tn = ν t1···tn (Ft1 ×·· ·×Ftn)

= P

(
∏
t∈I

Ft

)
=
∫

Ω

X∏t∈I Ft (x)dP

=
∫

Ω

XF (xt1 , · · · ,xtn)dP (14.4.5)

where Ft = Mt if t /∈ J. Let K denote sets, F of the sort in 14.4.4. It is clearly a π system.
Now let G denote those sets F in B (∏t∈J Mt) such that 14.4.5 holds. Thus G ⊇K . It is
clear that G is closed with respect to countable disjoint unions and complements. Hence
G ⊇ σ (K ) but σ (K ) = B (∏t∈J Mt) because every open set in ∏t∈J Mt is the countable
union of rectangles like 14.4.4 in which each Fti is open. Therefore, 14.4.5 holds for every
F ∈B (∏t∈J Mt) .

Passing to simple functions and then using the monotone convergence theorem yields
the final claim of the theorem. ■

The next task is to consider the case where Mt = (−∞,∞)nt . To consider this case, here
is a lemma which will allow this case to be deduced from the above theorem. In this lemma,
M′t ≡ [−∞,∞]nt .

Lemma 14.4.4 Let J be a finite subset of I. Then U is a Borel set in ∏t∈J Mt if and only if
there exists a Borel set, U′ in ∏t∈J M′t such that U = U′∩∏t∈J Mt .

Proof: A subbasis for the topology for [−∞,∞] is sets of the form [−∞,a) and (a,∞].
Also a subbasis for the topology of [−∞,∞]n consists of sets of the form ∏

n
i=1[−∞,ai)

and ∏
n
i=1(ai,∞]. Similarly, a subbasis for the topology of (−∞,∞)n consists of sets of the

form ∏
n
i=1 (−∞,ai) and ∏

n
i=1 (ai,∞). Thus the basic open sets of ∏t∈J Mt are of the form
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U′ ∩∏t∈J Mt where U′ is a basic open set in ∏t∈J M′t . It follows the open sets of ∏t∈J Mt
are of the form U′ ∩∏t∈J Mt where U′ is open in ∏t∈J M′t . Let F denote those Borel sets
of ∏t∈J Mt which are of the form U′ ∩∏t∈J Mt for U′ a Borel set in ∏t∈J M′t . Then as just
shown, F contains the π system of open sets in ∏t∈J Mt . Let G denote those Borel sets
of ∏t∈J Mt which are of the desired form. It is clearly closed with respect to complements
and countable disjoint unions. Hence G equals the Borel sets of ∏t∈J Mt . ■

Now here is the Kolmogorov extension theorem in the desired form. However, a more
general version is given later where Mt is just a Polish space (complete separable metric
space).

Theorem 14.4.5 (Kolmogorov extension theorem) For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt for Mt =Rnt for nt an integer, such that the following consistency condition holds.
If

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,

then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(14.4.6)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices, tk, then Gsi = Msi .
Then for E defined as in Definition 14.4.1, adjusted so that ±∞ never appears as any
endpoint of any interval, there exists a probability measure, P and a σ algebra F = σ (E )
such that (

∏
t∈I

Mt ,P,F

)
is a probability space. Also there exist measurable functions, Xs : ∏t∈I Mt →Ms defined as

Xsx≡ xs

for each s ∈ I such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(14.4.7)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn

=
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (14.4.8)
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Proof: Using Lemma 14.4.4, extend each measure, νJ to M′t , defined by adding in the
points ±∞ at the ends, by letting νJ (E)≡ νJ (E∩∏t∈I Mt) for all E ∈B (∏t∈I M′t ) . Then
apply Theorem 14.4.3 to these extended measures and use the definition of the extensions
of each νJ to replace each M′t with Mt everywhere it occurs. ■

As a special case, you can obtain a version of product measure for possibly infinitely
many factors. Suppose in the context of the above theorem that ν t is a probability measure
defined on the Borel sets of Mt ≡ Rnt for nt a positive integer, and let the measures, ν t1···tn
be defined on the Borel sets of ∏

n
i=1 Mti by

ν t1···tn (E)≡

product measure︷ ︸︸ ︷
(ν t1 ×·· ·×ν tn)(E) .

Then these measures satisfy the necessary consistency condition and so the Kolmogorov
extension theorem given above can be applied to obtain a measure P defined on a mea-
surable space (∏t∈I Mt ,F ) and measurable functions Xs : ∏t∈I Mt →Ms such that for Fti a
Borel set in Mti ,

P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
i=1

Fti

)
= ν t1···tn (Ft1 ×·· ·×Ftn)

= ν t1 (Ft1) · · ·ν tn (Ftn) . (14.4.9)

In particular, P(Xt ∈ Ft) = ν t (Ft) . Then P in the resulting probability space,(
∏
t∈I

Mt ,F ,P

)

will be denoted as ∏t∈I ν t . This proves the following theorem which describes an infinite
product measure.

Theorem 14.4.6 Let Mt for t ∈ I be given as in Theorem 14.4.5 and let ν t be a Borel
probability measure defined on the Borel sets of Mt . Then there exists a measure P and a
σ algebra F = σ (E ) where E is given in Definition 14.4.1 such that (∏t Mt ,F ,P) is a
probability space satisfying 14.4.9 whenever each Fti is a Borel set of Mti . This probability
measure is sometimes denoted as ∏t ν t .

14.5 Exercises
1. Let (X ,S ,µ) and (Y,F ,λ ) be two finite measure spaces. A subset of X ×Y is

called a measurable rectangle if it is of the form A×B where A ∈S and B ∈F . A
subset of X×Y is called an elementary set if it is a finite disjoint union of measurable
rectangles. Denote this set of functions by E . Show that E is an algebra of sets.

2. ↑For A ∈ σ (E ) , the smallest σ algebra containing E , show that x→XA (x,y) is µ

measurable and that
y→

∫
XA (x,y)dµ
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is λ measurable. Show similar assertions hold for y→XA (x,y) and

x→
∫

XA (x,y)dλ

and that ∫ ∫
XA (x,y)dµdλ =

∫ ∫
XA (x,y)dλdµ. (14.5.10)

Hint: Let M ≡ {A ∈ σ (E ) : 14.5.10 holds} along with all relevant measurability
assertions. Show M contains E and is a monotone class. Then apply the Theorem
12.10.5.

3. ↑For A ∈ σ (E ) define (µ×λ )(A) ≡
∫ ∫

XA (x,y)dµdλ . Show that (µ×λ ) is a
measur on σ (E ) and that whenever f ≥ 0 is measurable with respect to σ (E ) ,∫

X×Y
f d (µ×λ ) =

∫ ∫
f (x,y)dµdλ =

∫ ∫
f (x,y)dλdµ.

This is a common approach to Fubini’s theorem.

4. ↑Generalize the above version of Fubini’s theorem to the case where the measure
spaces are only σ finite.

5. ↑Suppose now that µ and λ are both complete σ finite measures. Let (µ×λ ) denote
the completion of this measure. Let the larger measure space be(

X×Y,σ (E ),(µ×λ )
)
.

Thus if E ∈ σ (E ), it follows there exists a set A ∈ σ (E ) such that E ∪N = A where
(µ×λ )(N) = 0. Now argue that for λ a.e. y,x→XN (x,y) is measurable because it
is equal to zero µ a.e. and µ is complete. Therefore,∫ ∫

XN (x,y)dµdλ

makes sense and equals zero. Use to argue that for λ a.e. y,x→XE (x,y) is µ mea-
surable and equals

∫
XA (x,y)dµ. Then by completeness of λ ,y→

∫
XE (x,y)dµ is

λ measurable and∫ ∫
XA (x,y)dµdλ =

∫ ∫
XE (x,y)dµdλ = (µ×λ )(E) .

Similarly ∫ ∫
XE (x,y)dλdµ = (µ×λ )(E) .

Use this to give a generalization of the above Fubini theorem. Prove that if f is
measurable with respect to the σ algebra, σ (E ) and nonnegative, then∫

X×Y
f d(µ×λ ) =

∫ ∫
f (x,y)dµdλ =

∫ ∫
f (x,y)dλdµ

where the iterated integrals make sense.



Chapter 15

The Lp Spaces
15.1 Basic Inequalities And Properties

One of the main applications of the Lebesgue integral is to the study of various sorts of
functions space. These are vector spaces whose elements are functions of various types.
One of the most important examples of a function space is the space of measurable func-
tions whose absolute values are pth power integrable where p ≥ 1. These spaces, referred
to as Lp spaces, are very useful in applications. In the chapter (Ω,S ,µ) will be a measure
space.

Definition 15.1.1 Let 1≤ p < ∞. Define

Lp(Ω)≡ { f : f is measurable and
∫

Ω

| f (ω)|pdµ < ∞}

In terms of the distribution function,

Lp (Ω) = { f : f is measurable and
∫

∞

0
pt p−1

µ ([| f |> t])dt < ∞}

For each p > 1 define q by
1
p
+

1
q
= 1.

Often one uses p′ instead of q in this context.
Lp (Ω) is a vector space and has a norm. This is similar to the situation for Rn but the

proof requires the following fundamental inequality. .

Theorem 15.1.2 (Holder’s inequality) If f and g are measurable functions, then if p > 1,∫
| f | |g| dµ ≤

(∫
| f |pdµ

) 1
p
(∫
|g|qdµ

) 1
q

. (15.1.1)

Proof: First here is a proof of Young’s inequality .

Lemma 15.1.3 If p > 1, and 0≤ a,b then ab≤ ap

p + bq

q .

Proof: Consider the following picture:

b

a

x

t

x = t p−1

t = xq−1

From this picture, the sum of the area between the x axis and the curve added to the

399
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area between the t axis and the curve is at least as large as ab. Using beginning calculus,
this is equivalent to the following inequality.

ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

The above picture represents the situation which occurs when p > 2 because the graph of
the function is concave up. If 2 ≥ p > 1 the graph would be concave down or a straight
line. You should verify that the same argument holds in these cases just as well. In fact,
the only thing which matters in the above inequality is that the function x = t p−1 be strictly
increasing.

Note equality occurs when ap = bq.
Here is an alternate proof.

Lemma 15.1.4 For a,b≥ 0,

ab≤ ap

p
+

bq

q
and equality occurs when if and only if ap = bq.

Proof: If b = 0, the inequality is obvious. Fix b > 0 and consider

f (a)≡ ap

p
+

bq

q
−ab.

Then f ′ (a) = ap−1 − b. This is negative when a < b1/(p−1) and is positive when a >
b1/(p−1). Therefore, f has a minimum when a = b1/(p−1). In other words, when ap =
bp/(p−1) = bq since 1/p+1/q = 1. Thus the minimum value of f is

bq

p
+

bq

q
−b1/(p−1)b = bq−bq = 0.

It follows f ≥ 0 and this yields the desired inequality.
Proof of Holder’s inequality: If either

∫
| f |pdµ or

∫
|g|pdµ equals ∞, the inequality

15.1.1 is obviously valid because ∞ ≥ anything. If either
∫
| f |pdµ or

∫
|g|pdµ equals 0,

then f = 0 a.e. or that g = 0 a.e. and so in this case the left side of the inequality equals
0 and so the inequality is therefore true. Therefore assume both

∫
| f |pdµ and

∫
|g|pdµ are

less than ∞ and not equal to 0. Let(∫
| f |pdµ

)1/p

= I ( f )

and let (
∫
|g|pdµ)1/q = I (g). Then using the lemma,∫ | f |

I ( f )
|g|

I (g)
dµ ≤ 1

p

∫ | f |p

I ( f )p dµ +
1
q

∫ |g|q

I (g)q dµ = 1.

Hence, ∫
| f | |g| dµ ≤ I ( f ) I (g) =

(∫
| f |pdµ

)1/p(∫
|g|qdµ

)1/q

.

This proves Holder’s inequality.
The following lemma will be needed.
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Lemma 15.1.5 Suppose x,y ∈ C. Then

|x+ y|p ≤ 2p−1 (|x|p + |y|p) .

Proof: The function f (t) = t p is concave up for t ≥ 0 because p > 1. Therefore, the
secant line joining two points on the graph of this function must lie above the graph of the
function. This is illustrated in the following picture.

|x| |y|m

(|x|+ |y|)/2 = m

Now as shown above, (
|x|+ |y|

2

)p

≤ |x|
p + |y|p

2

which implies
|x+ y|p ≤ (|x|+ |y|)p ≤ 2p−1 (|x|p + |y|p)

and this proves the lemma.
Note that if y = φ (x) is any function for which the graph of φ is concave up, you could

get a similar inequality by the same argument.

Corollary 15.1.6 (Minkowski inequality) Let 1≤ p < ∞. Then(∫
| f +g|p dµ

)1/p

≤
(∫
| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

. (15.1.2)

Proof: If p = 1, this is obvious because it is just the triangle inequality. Let p > 1.
Without loss of generality, assume(∫

| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

< ∞

and (
∫
| f +g|p dµ)1/p ̸= 0 or there is nothing to prove. Therefore, using the above lemma,∫

| f +g|pdµ ≤ 2p−1
(∫
| f |p + |g|pdµ

)
< ∞.

Now | f (ω)+g(ω)|p ≤ | f (ω)+g(ω)|p−1 (| f (ω)|+ |g(ω)|). Also, it follows from the
definition of p and q that p−1 = p

q . Therefore, using this and Holder’s inequality,∫
| f +g|pdµ ≤
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∫
| f +g|p−1| f |dµ +

∫
| f +g|p−1|g|dµ

=
∫
| f +g|

p
q | f |dµ +

∫
| f +g|

p
q |g|dµ

≤ (
∫
| f +g|pdµ)

1
q (
∫
| f |pdµ)

1
p +(

∫
| f +g|pdµ)

1
q (
∫
|g|pdµ)

1
p.

Dividing both sides by (
∫
| f +g|pdµ)

1
q yields 15.1.2. This proves the corollary.

The following follows immediately from the above.

Corollary 15.1.7 Let fi ∈ Lp (Ω) for i = 1,2, · · · ,n. Then(∫ ∣∣∣∣∣ n

∑
i=1

fi

∣∣∣∣∣
p

dµ

)1/p

≤
n

∑
i=1

(∫
| fi|p

)1/p

.

This shows that if f ,g ∈ Lp, then f +g ∈ Lp. Also, it is clear that if a is a constant and
f ∈ Lp, then a f ∈ Lp because∫

|a f |p dµ = |a|p
∫
| f |p dµ < ∞.

Thus Lp is a vector space and
a.) (

∫
| f |p dµ)1/p ≥ 0,(

∫
| f |p dµ)1/p = 0 if and only if f = 0 a.e.

b.) (
∫
|a f |p dµ)1/p = |a| (

∫
| f |p dµ)1/p if a is a scalar.

c.) (
∫
| f +g|p dµ)1/p ≤ (

∫
| f |p dµ)1/p +(

∫
|g|p dµ)1/p.

f → (
∫
| f |p dµ)1/p would define a norm if (

∫
| f |p dµ)1/p = 0 implied f = 0. Unfor-

tunately, this is not so because if f = 0 a.e. but is nonzero on a set of measure zero,
(
∫
| f |p dµ)1/p = 0 and this is not allowed. However, all the other properties of a norm are

available and so a little thing like a set of measure zero will not prevent the consideration
of Lp as a normed vector space if two functions in Lp which differ only on a set of measure
zero are considered the same. That is, an element of Lp is really an equivalence class of
functions where two functions are equivalent if they are equal a.e. With this convention,
here is a definition.

Definition 15.1.8 Let f ∈ Lp (Ω). Define

|| f ||p ≡ || f ||Lp ≡
(∫
| f |p dµ

)1/p

.

Then with this definition and using the convention that elements in Lp are considered to
be the same if they differ only on a set of measure zero, || ||p is a norm on Lp (Ω) because
if || f ||p = 0 then f = 0 a.e. and so f is considered to be the zero function because it differs
from 0 only on a set of measure zero.

The following is an important definition.
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Definition 15.1.9 A complete normed linear space is called a Banach1 space.

Lp is a Banach space. This is the next big theorem.

Theorem 15.1.10 The following hold for Lp(Ω)
a.) Lp(Ω) is complete.
b.) If { fn} is a Cauchy sequence in Lp(Ω), then there exists f ∈ Lp (Ω) and a subse-

quence which converges a.e. to f ∈ Lp(Ω), and || fn− f ||p→ 0.

Proof: Let { fn} be a Cauchy sequence in Lp(Ω). This means that for every ε > 0 there
exists N such that if n,m≥ N, then || fn− fm||p < ε . Now select a subsequence as follows.
Let n1 be such that || fn− fm||p < 2−1 whenever n,m≥ n1. Let n2 be such that n2 > n1 and
|| fn− fm||p < 2−2 whenever n,m ≥ n2. If n1, · · · ,nk have been chosen, let nk+1 > nk and
whenever n,m ≥ nk+1, || fn− fm||p < 2−(k+1). The subsequence just mentioned is { fnk}.
Thus, || fnk − fnk+1 ||p < 2−k. Let

gk+1 = fnk+1 − fnk .

Then by the corollary to Minkowski’s inequality,

∞ >
∞

∑
k=1
||gk+1||p ≥

m

∑
k=1
||gk+1||p ≥

∣∣∣∣∣
∣∣∣∣∣ m

∑
k=1
|gk+1|

∣∣∣∣∣
∣∣∣∣∣

p

for all m. It follows that∫ ( m

∑
k=1
|gk+1|

)p

dµ ≤

(
∞

∑
k=1
||gk+1||p

)p

< ∞ (15.1.3)

for all m and so the monotone convergence theorem implies that the sum up to m in 15.1.3
can be replaced by a sum up to ∞. Thus,

∫ ( ∞

∑
k=1
|gk+1|

)p

dµ < ∞

which requires
∞

∑
k=1
|gk+1(x)|< ∞ a.e. x.

1These spaces are named after Stefan Banach, 1892-1945. Banach spaces are the basic item of study in the
subject of functional analysis and will be considered later in this book.

There is a recent biography of Banach, R. Katuża, The Life of Stefan Banach, (A. Kostant and W. Woyczyński,
translators and editors) Birkhauser, Boston (1996). More information on Banach can also be found in a recent
short article written by Douglas Henderson who is in the department of chemistry and biochemistry at BYU.

Banach was born in Austria, worked in Poland and died in the Ukraine but never moved. This is because
borders kept changing. There is a rumor that he died in a German concentration camp which is apparently not
true. It seems he died after the war of lung cancer.

He was an interesting character. He hated taking examinations so much that he did not receive his undergraduate
university degree. Nevertheless, he did become a professor of mathematics due to his important research. He and
some friends would meet in a cafe called the Scottish cafe where they wrote on the marble table tops until Banach’s
wife supplied them with a notebook which became the ”Scotish notebook” and was eventually published.
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Therefore, ∑
∞
k=1 gk+1(x) converges for a.e. x because the functions have values in a com-

plete space, C, and this shows the partial sums form a Cauchy sequence. Now let x be such
that this sum is finite. Then define

f (x)≡ fn1(x)+
∞

∑
k=1

gk+1(x)= lim
m→∞

fnm (x)

since ∑
m
k=1 gk+1(x) = fnm+1(x)− fn1(x). Therefore there exists a set, E having measure zero

such that
lim
k→∞

fnk(x) = f (x)

for all x /∈ E. Redefine fnk to equal 0 on E and let f (x) = 0 for x ∈ E. It then follows that
limk→∞ fnk(x) = f (x) for all x. By Fatou’s lemma, and the Minkowski inequality,

|| f − fnk ||p =
(∫ ∣∣ f − fnk

∣∣p dµ

)1/p

≤

lim inf
m→∞

(∫ ∣∣ fnm − fnk

∣∣p dµ

)1/p

= lim inf
m→∞

∣∣∣∣ fnm − fnk

∣∣∣∣
p ≤

lim inf
m→∞

m−1

∑
j=k

∣∣∣∣∣∣ fn j+1 − fn j

∣∣∣∣∣∣
p
≤

∞

∑
i=k

∣∣∣∣ fni+1 − fni

∣∣∣∣
p ≤ 2−(k−1). (15.1.4)

Therefore, f ∈ Lp(Ω) because

|| f ||p ≤ || f − fnk ||p + || fnk ||p < ∞,

and limk→∞ || fnk − f ||p = 0. This proves b.).
This has shown fnk converges to f in Lp (Ω). It follows the original Cauchy sequence

also converges to f in Lp (Ω). This is a general fact that if a subsequence of a Cauchy
sequence converges, then so does the original Cauchy sequence. You should give a proof
of this. This proves the theorem.

In working with the Lp spaces, the following inequality also known as Minkowski’s
inequality is very useful. It is similar to the Minkowski inequality for sums. To see this,
replace the integral,

∫
X with a finite summation sign and you will see the usual Minkowski

inequality or rather the version of it given in Corollary 15.1.7.
To prove this theorem first consider a special case of it in which technical considerations

which shed no light on the proof are excluded.

Lemma 15.1.11 Let (X ,S ,µ) and (Y,F ,λ ) be finite complete measure spaces and let f
be µ×λ measurable and uniformly bounded. Then the following inequality is valid for
p≥ 1. ∫

X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

. (15.1.5)



15.1. BASIC INEQUALITIES AND PROPERTIES 405

Proof: Since f is bounded and µ (X) ,λ (Y )< ∞,(∫
Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

< ∞.

Let
J(y) =

∫
X
| f (x,y)|dµ .

Note there is no problem in writing this for a.e. y because f is product measurable. Then
by Fubini’s theorem,∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ =
∫

Y
J(y)p−1

∫
X
| f (x,y)|dµ dλ

=
∫

X

∫
Y

J(y)p−1| f (x,y)|dλ dµ

Now apply Holder’s inequality in the last integral above and recall p−1 = p
q . This yields∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ

≤
∫

X

(∫
Y

J(y)pdλ

) 1
q
(∫

Y
| f (x,y)|pdλ

) 1
p

dµ

=

(∫
Y

J(y)pdλ

) 1
q ∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ

=

(∫
Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
q ∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ . (15.1.6)

Therefore, dividing both sides by the first factor in the above expression,(∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ

) 1
p

≤
∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ . (15.1.7)

Note that 15.1.7 holds even if the first factor of 15.1.6 equals zero. This proves the lemma.
Now consider the case where f is not assumed to be bounded and where the measure

spaces are σ finite.

Theorem 15.1.12 Let (X ,S ,µ) and (Y,F ,λ ) be σ -finite measure spaces and let f be
product measurable. Then the following inequality is valid for p≥ 1.∫

X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

. (15.1.8)

Proof: Since the two measure spaces are σ finite, there exist measurable sets, Xm and
Yk such that Xm ⊆ Xm+1 for all m, Yk ⊆ Yk+1 for all k, and µ (Xm) ,λ (Yk)< ∞. Now define

fn (x,y)≡
{

f (x,y) if | f (x,y)| ≤ n
n if | f (x,y)|> n.
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Thus fn is uniformly bounded and product measurable. By the above lemma,

∫
Xm

(∫
Yk

| fn(x,y)|p dλ

) 1
p

dµ ≥
(∫

Yk

(
∫

Xm

| fn(x,y)|dµ)pdλ

) 1
p

. (15.1.9)

Now observe that | fn (x,y)| increases in n and the pointwise limit is | f (x,y)|. Therefore,
using the monotone convergence theorem in 15.1.9 yields the same inequality with f re-
placing fn. Next let k→ ∞ and use the monotone convergence theorem again to replace Yk
with Y . Finally let m→ ∞ in what is left to obtain 15.1.8. This proves the theorem.

Note that the proof of this theorem depends on two manipulations, the interchange of
the order of integration and Holder’s inequality. Note that there is nothing to check in the
case of double sums. Thus if ai j ≥ 0, it is always the case that(

∑
j

(
∑

i
ai j

)p)1/p

≤∑
i

(
∑

j
ap

i j

)1/p

because the integrals in this case are just sums and (i, j)→ ai j is measurable.
The Lp spaces have many important properties.

15.2 Density Considerations
Theorem 15.2.1 Let p ≥ 1 and let (Ω,S ,µ) be a measure space. Then the simple func-
tions are dense in Lp (Ω).

Proof: Recall that a function, f , having values in R can be written in the form f =
f+− f− where

f+ = max(0, f ) , f− = max(0,− f ) .

Therefore, an arbitrary complex valued function, f is of the form

f = Re f+−Re f−+ i
(
Im f+− Im f−

)
.

If each of these nonnegative functions is approximated by a simple function, it follows
f is also approximated by a simple function. Therefore, there is no loss of generality in
assuming at the outset that f ≥ 0.

Since f is measurable, Theorem 11.3.9 implies there is an increasing sequence of sim-
ple functions, {sn}, converging pointwise to f (x). Now

| f (x)− sn(x)| ≤ | f (x)|.

By the Dominated Convergence theorem,

0 = lim
n→∞

∫
| f (x)− sn(x)|pdµ .

Thus simple functions are dense in Lp.
Recall that for Ω a topological space, Cc(Ω) is the space of continuous functions with

compact support in Ω. Also recall the following definition.



15.2. DENSITY CONSIDERATIONS 407

Definition 15.2.2 Let (Ω,S ,µ) be a measure space and suppose (Ω,τ) is also a topolog-
ical space. Then (Ω,S ,µ) is called a regular measure space if the σ algebra of Borel sets
is contained in S and for all E ∈S ,

µ(E) = inf{µ(V ) : V ⊇ E and V open}

and if µ (E)< ∞,

µ(E) = sup{µ(K) : K ⊆ E and K is compact }

and µ (K)< ∞ for any compact set, K.

For example Lebesgue measure is an example of such a measure. More generally these
measures are often refered to as Radon measures.

Lemma 15.2.3 Let Ω be a metric space in which the closed balls are compact and let K be
a compact subset of V , an open set. Then there exists a continuous function f : Ω→ [0,1]
such that f (x) = 1 for all x ∈ K and spt( f ) is a compact subset of V . That is, K ≺ f ≺V.

Proof: Let K ⊆W ⊆W ⊆V and W is compact. To obtain this list of inclusions consider
a point in K,x, and take B(x,rx) a ball containing x such that B(x,rx) is a compact subset
of V . Next use the fact that K is compact to obtain the existence of a list, {B(xi,rxi/2)}m

i=1
which covers K. Then let

W ≡ ∪m
i=1B

(
xi,

rxi

2

)
.

It follows since this is a finite union that

W = ∪m
i=1B

(
xi,

rxi

2

)
and so W , being a finite union of compact sets is itself a compact set. Also, from the
construction

W ⊆ ∪m
i=1B(xi,rxi) .

Define f by

f (x) =
dist(x,WC)

dist(x,K)+dist(x,WC)
.

It is clear that f is continuous if the denominator is always nonzero. But this is clear
because if x ∈WC there must be a ball B(x,r) such that this ball does not intersect K.
Otherwise, x would be a limit point of K and since K is closed, x ∈ K. However, x /∈ K
because K ⊆W .

It is not necessary to be in a metric space to do this. You can accomplish the same thing
using Urysohn’s lemma.

Theorem 15.2.4 Let (Ω,S ,µ) be a regular measure space as in Definition 15.2.2 where
the conclusion of Lemma 15.2.3 holds. Then Cc(Ω) is dense in Lp(Ω).
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Proof: First consider a measurable set, E where µ (E) < ∞. Let K ⊆ E ⊆ V where
µ (V \K)< ε. Now let K ≺ h≺V. Then∫

|h−XE |p dµ ≤
∫

X p
V\Kdµ = µ (V \K)< ε.

It follows that for each s a simple function in Lp (Ω) , there exists h ∈ Cc (Ω) such that
||s−h||p < ε. This is because if

s(x) =
m

∑
i=1

ciXEi(x)

is a simple function in Lp where the ci are the distinct nonzero values of s each µ (Ei)< ∞

since otherwise s /∈ Lp due to the inequality∫
|s|p dµ ≥ |ci|p µ (Ei) .

By Theorem 15.2.1, simple functions are dense in Lp (Ω), and so this proves the Theorem.

15.3 Separability
Theorem 15.3.1 For p ≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall this
means there exists a countable set, D , such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that || f −g||p < ε .

Proof: Let Q be all functions of the form cX[a,b) where

[a,b)≡ [a1,b1)× [a2,b2)×·· ·× [an,bn),

and both ai, bi are rational, while c has rational real and imaginary parts. Let D be
the set of all finite sums of functions in Q. Thus, D is countable. In fact D is dense in
Lp(Rn,µ). To prove this it is necessary to show that for every f ∈ Lp(Rn,µ), there exists
an element of D , s such that ||s− f ||p < ε. If it can be shown that for every g ∈ Cc (Rn)
there exists h ∈ D such that ||g−h||p < ε , then this will suffice because if f ∈ Lp (Rn) is
arbitrary, Theorem 15.2.4 implies there exists g ∈Cc (Rn) such that || f −g||p ≤ ε

2 and then
there would exist h ∈Cc (Rn) such that ||h−g||p < ε

2 . By the triangle inequality,

|| f −h||p ≤ ||h−g||p + ||g− f ||p < ε.

Therefore, assume at the outset that f ∈Cc (Rn).
Let Pm consist of all sets of the form [a,b)≡∏

n
i=1[ai,bi)where ai = j2−mand bi =( j+

1)2−m for j an integer. Thus Pm consists of a tiling of Rn into half open rectangles having
diameters 2−mn

1
2 . There are countably many of these rectangles; so, let Pm = {[ai,bi)}∞

i=1
and Rn = ∪∞

i=1[ai,bi). Let cm
i be complex numbers with rational real and imaginary parts

satisfying
| f (ai)− cm

i |< 2−m,
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|cm
i | ≤ | f (ai)|. (15.3.10)

Let

sm(x) =
∞

∑
i=1

cm
i X[ai,bi)

(x) .

Since f (ai) = 0 except for finitely many values of i, the above is a finite sum. Then 15.3.10
implies sm ∈ D . If sm converges uniformly to f then it follows ||sm− f ||p → 0 because
|sm| ≤ | f | and so

||sm− f ||p =

(∫
|sm− f |p dµ

)1/p

=

(∫
spt( f )

|sm− f |p dµ

)1/p

≤ [εmn (spt( f ))]1/p

whenever m is large enough.
Since f ∈ Cc (Rn) it follows that f is uniformly continuous and so given ε > 0 there

exists δ > 0 such that if |x−y|< δ , | f (x)− f (y)|< ε/2. Now let m be large enough that
every box in Pm has diameter less than δ and also that 2−m < ε/2. Then if [ai,bi) is one
of these boxes of Pm, and x ∈ [ai,bi),

| f (x)− f (ai)|< ε/2

and
| f (ai)− cm

i |< 2−m < ε/2.

Therefore, using the triangle inequality, it follows that

| f (x)− cm
i |= |sm (x)− f (x)|< ε

and since x is arbitrary, this establishes uniform convergence. This proves the theorem.
Here is an easier proof if you know the Weierstrass approximation theorem.

Theorem 15.3.2 For p ≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall this
means there exists a countable set, D , such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that || f −g||p < ε .

Proof: Let P denote the set of all polynomials which have rational coefficients. Then
P is countable. Let τk ∈Cc ((−(k+1) ,(k+1))n) such that

[−k,k]n ≺ τk ≺ (−(k+1) ,(k+1))n .

Let Dk denote the functions which are of the form, pτk where p ∈P . Thus Dk is also
countable. Let D ≡ ∪∞

k=1Dk. It follows each function in D is in Cc (Rn) and so it in
Lp (Rn,µ). Let f ∈ Lp (Rn,µ). By regularity of µ there exists g ∈ Cc (Rn) such that
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|| f −g||Lp(Rn,µ) <
ε

3 . Let k be such that spt(g) ⊆ (−k,k)n . Now by the Weierstrass ap-
proximation theorem there exists a polynomial q such that

||g−q||[−(k+1),k+1]n ≡ sup{|g(x)−q(x)| : x ∈ [−(k+1) ,(k+1)]n}

<
ε

3µ ((−(k+1) ,k+1)n)
.

It follows

||g− τkq||[−(k+1),k+1]n = ||τkg− τkq||[−(k+1),k+1]n

<
ε

3µ ((−(k+1) ,k+1)n)
.

Without loss of generality, it can be assumed this polynomial has all rational coefficients.
Therefore, τkq ∈D .

||g− τkq||pLp(Rn)
=

∫
(−(k+1),k+1)n

|g(x)− τk (x)q(x)|p dµ

≤
(

ε

3µ ((−(k+1) ,k+1)n)

)p

µ ((−(k+1) ,k+1)n)

<
(

ε

3

)p
.

It follows

|| f − τkq||Lp(Rn,µ) ≤ || f −g||Lp(Rn,µ)+ ||g− τkq||Lp(Rn,µ) <
ε

3
+

ε

3
< ε.

This proves the theorem.

Corollary 15.3.3 Let Ω be any µ measurable subset of Rn and let µ be a Radon measure.
Then Lp(Ω,µ) is separable. Here the σ algebra of measurable sets will consist of all
intersections of measurable sets with Ω and the measure will be µ restricted to these sets.

Proof: Let D̃ be the restrictions of D to Ω. If f ∈ Lp(Ω), let F be the zero extension
of f to all of Rn. Let ε > 0 be given. By Theorem 15.3.1 or 15.3.2 there exists s ∈D such
that ||F− s||p < ε . Thus

||s− f ||Lp(Ω,µ) ≤ ||s−F ||Lp(Rn,µ) < ε

and so the countable set D̃ is dense in Lp(Ω).

15.4 Continuity Of Translation
Definition 15.4.1 Let f be a function defined on U ⊆ Rn and let w ∈ Rn. Then fw will be
the function defined on w+U by

fw(x) = f (x−w).
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Theorem 15.4.2 (Continuity of translation in Lp) Let f ∈ Lp(Rn) with the measure being
Lebesgue measure. Then

lim
||w||→0

|| fw− f ||p = 0.

Proof: Let ε > 0 be given and let g ∈ Cc(Rn) with ||g− f ||p < ε

3 . Since Lebesgue
measure is translation invariant (mn(w+E) = mn(E)),

||gw− fw||p = ||g− f ||p <
ε

3
.

You can see this from looking at simple functions and passing to the limit or you could use
the change of variables formula to verify it.

Therefore

|| f − fw||p ≤ || f −g||p + ||g−gw||p + ||gw− fw||

<
2ε

3
+ ||g−gw||p. (15.4.11)

But lim|w|→0 gw(x) = g(x) uniformly in x because g is uniformly continuous. Now let B
be a large ball containing spt(g) and let δ 1 be small enough that B(x,δ ) ⊆ B whenever
x ∈ spt(g). If ε > 0 is given there exists δ < δ 1 such that if |w| < δ , it follows that
|g(x−w)−g(x)|< ε/3

(
1+mn (B)

1/p
)

. Therefore,

||g−gw||p =

(∫
B
|g(x)−g(x−w)|p dmn

)1/p

≤ ε
mn (B)

1/p

3
(

1+mn (B)
1/p
) <

ε

3
.

Therefore, whenever |w|< δ , it follows ||g−gw||p < ε

3 and so from 15.4.11 || f − fw||p < ε .
This proves the theorem.

15.5 Mollifiers And Density Of Smooth Functions
Definition 15.5.1 Let U be an open subset ofRn. C∞

c (U) is the vector space of all infinitely
differentiable functions which equal zero for all x outside of some compact set contained
in U. Similarly, Cm

c (U) is the vector space of all functions which are m times continuously
differentiable and whose support is a compact subset of U.

Example 15.5.2 Let U = B(z,2r)

ψ (x) =

 exp
[(
|x− z|2− r2

)−1
]

if |x− z|< r,

0 if |x− z| ≥ r.

Then a little work shows ψ ∈C∞
c (U). Note that if z = 0 then ψ (x) =ψ (−x). The following

also is easily obtained.
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Lemma 15.5.3 Let U be any open set. Then C∞
c (U) ̸= /0.

Proof: Pick z ∈U and let r be small enough that B(z,2r)⊆U . Then let

ψ ∈C∞
c (B(z,2r))⊆C∞

c (U)

be the function of the above example.

Definition 15.5.4 Let U = {x ∈ Rn : |x| < 1}. A sequence {ψm} ⊆ C∞
c (U) is called a

mollifier (This is sometimes called an approximate identity if the differentiability is not
included.) if

ψm(x)≥ 0, ψm(x) = 0, if |x| ≥ 1
m
,

and
∫

ψm(x) = 1. Sometimes it may be written as {ψε} where ψε satisfies the above
conditions except ψε (x) = 0 if |x| ≥ ε . In other words, ε takes the place of 1/m and in
everything that follows ε → 0 instead of m→ ∞.

As before,
∫

f (x,y)dµ(y) will mean x is fixed and the function y→ f (x,y) is being
integrated. To make the notation more familiar, dx is written instead of dmn(x).

Example 15.5.5 Let

ψ ∈C∞
c (B(0,1)) (B(0,1) = {x : |x|< 1})

with ψ(x) ≥ 0 and
∫

ψdm = 1. Let ψm(x) = cmψ(mx) where cm is chosen in such a way
that

∫
ψmdm = 1. By the change of variables theorem cm = mn.

Definition 15.5.6 A function, f , is said to be in L1
loc(Rn,µ) if f is µ measurable and if

| f |XK ∈ L1(Rn,µ) for every compact set, K. Here µ is a Radon measure on Rn. Usu-
ally µ = mn, Lebesgue measure. When this is so, write L1

loc(Rn) or Lp(Rn), etc. If
f ∈ L1

loc(Rn,µ), and g ∈Cc(Rn),

f ∗g(x)≡
∫

f (y)g(x−y)dµ .

The following lemma will be useful in what follows. It says that one of these very
unregular functions in L1

loc (Rn,µ) is smoothed out by convolving with a mollifier.

Lemma 15.5.7 Let f ∈ L1
loc(Rn,µ), and g ∈C∞

c (Rn). Then f ∗ g is an infinitely differen-
tiable function. Here µ is a Radon measure on Rn.

Proof: Consider the difference quotient for calculating a partial derivative of f ∗g.

f ∗g(x+ te j)− f ∗g(x)
t

=
∫

f (y)
g(x+ te j−y)−g(x−y)

t
dµ (y) .
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Using the fact that g ∈C∞
c (Rn), the quotient,

g(x+ te j−y)−g(x−y)
t

,

is uniformly bounded. To see this easily, use Theorem 6.13.4 on Page 120 to get the exis-
tence of a constant, M depending on

max{||Dg(x)|| : x ∈ Rn}

such that ∣∣g(x+ te j−y)−g(x−y)
∣∣≤M |t|

for any choice of x and y. Therefore, there exists a dominating function for the integrand
of the above integral which is of the form C | f (y)|XK where K is a compact set depending
on the support of g. It follows the limit of the difference quotient above passes inside the
integral as t→ 0 and

∂

∂x j
( f ∗g)(x) =

∫
f (y)

∂

∂x j
g(x−y)dµ (y) .

Now letting ∂

∂x j
g play the role of g in the above argument, partial derivatives of all or-

ders exist. A similar use of the dominated convergence theorem shows all these partial
derivatives are also continuous. This proves the lemma.

Theorem 15.5.8 Let K be a compact subset of an open set, U. Then there exists a function,
h ∈C∞

c (U), such that h(x) = 1 for all x ∈ K and h(x) ∈ [0,1] for all x.

Proof: Let r > 0 be small enough that K +B(0,3r) ⊆U. The symbol, K +B(0,3r)
means

{k+x : k ∈ K and x ∈ B(0,3r)} .
Thus this is simply a way to write

∪{B(k,3r) : k ∈ K} .

Think of it as fattening up the set, K. Let Kr = K +B(0,r). A picture of what is happening
follows.

K Kr U

Consider XKr ∗ψmwhere ψmis a mollifier. Let m be so large that 1
m < r. Then from

the definition of what is meant by a convolution, and using that ψm has support in B
(
0, 1

m

)
,

XKr ∗ψm = 1 on K and that its support is in K +B(0,3r). Now using Lemma 15.5.7,
XKr ∗ψm is also infinitely differentiable. Therefore, let h = XKr ∗ψm.

The following corollary will be used later.
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Corollary 15.5.9 Let K be a compact set in Rn and let {Ui}∞

i=1 be an open cover of K.
Then there exist functions, ψk ∈C∞

c (Ui) such that ψ i ≺Ui and for all x ∈ K,
∞

∑
i=1

ψ i (x) = 1.

If K1 is a compact subset of U1 there exist such functions such that also ψ1 (x) = 1 for all
x ∈ K1.

Proof: This follows from a repeat of the proof of Theorem 12.2.11 on Page 287, re-
placing the lemma used in that proof with Theorem 15.5.8.

Note that in the last conclusion of above corollary, the set U1 could be replaced with Ui
for any fixed i by simply renumbering.

Theorem 15.5.10 For each p ≥ 1, C∞
c (Rn) is dense in Lp(Rn). Here the measure is

Lebesgue measure.

Proof: Let f ∈ Lp(Rn) and let ε > 0 be given. Choose g∈Cc(Rn) such that || f −g||p <
ε

2 . This can be done by using Theorem 15.2.4. Now let

gm (x) = g∗ψm (x)≡
∫

g(x−y)ψm (y)dmn (y) =
∫

g(y)ψm (x−y)dmn (y)

where {ψm} is a mollifier. It follows from Lemma 15.5.7 gm ∈ C∞
c (Rn). It vanishes if

x /∈ spt(g)+B(0, 1
m ).

||g−gm||p =

(∫
|g(x)−

∫
g(x−y)ψm(y)dmn(y)|pdmn(x)

) 1
p

≤
(∫

(
∫
|g(x)−g(x−y)|ψm(y)dmn(y))pdmn(x)

) 1
p

≤
∫ (∫

|g(x)−g(x−y)|pdmn(x)
) 1

p

ψm(y)dmn(y)

=
∫

B(0, 1
m )
||g−gy||pψm(y)dmn(y)<

ε

2

whenever m is large enough thanks to the uniform continuity of g. Theorem 15.1.12 was
used to obtain the third inequality. There is no measurability problem because the function

(x,y)→ |g(x)−g(x−y)|ψm(y)

is continuous. Thus when m is large enough,

|| f −gm||p ≤ || f −g||p + ||g−gm||p <
ε

2
+

ε

2
= ε .

This proves the theorem.
This is a very remarkable result. Functions in Lp (Rn) don’t need to be continuous

anywhere and yet every such function is very close in the Lp norm to one which is infinitely
differentiable having compact support. The same result holds for Lp (U) for U an open set.
This is the next corollary.
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Corollary 15.5.11 Let U be an open set. For each p≥ 1, C∞
c (U) is dense in Lp(U). Here

the measure is Lebesgue measure.

Proof: Let f ∈ Lp(U) and let ε > 0 be given. Choose g∈Cc(U) such that || f −g||p < ε

2 .
This is possible because Lebesgue measure restricted to the open set, U is regular. Thus
the existence of such a g follows from Theorem 15.2.4. Now let

gm (x) = g∗ψm (x)≡
∫

g(x−y)ψm (y)dmn (y) =
∫

g(y)ψm (x−y)dmn (y)

where {ψm} is a mollifier. It follows from Lemma 15.5.7 gm ∈C∞
c (U) for all m sufficiently

large. It vanishes if x /∈ spt(g)+B(0, 1
m ). Then

||g−gm||p =

(∫
|g(x)−

∫
g(x−y)ψm(y)dmn(y)|pdmn(x)

) 1
p

≤
(∫

(
∫
|g(x)−g(x−y)|ψm(y)dmn(y))pdmn(x)

) 1
p

≤
∫ (∫

|g(x)−g(x−y)|pdmn(x)
) 1

p

ψm(y)dmn(y)

=
∫

B(0, 1
m )
||g−gy||pψm(y)dmn(y)<

ε

2

whenever m is large enough thanks to uniform continuity of g. Theorem 15.1.12 was used
to obtain the third inequality. There is no measurability problem because the function

(x,y)→ |g(x)−g(x−y)|ψm(y)

is continuous. Thus when m is large enough,

|| f −gm||p ≤ || f −g||p + ||g−gm||p <
ε

2
+

ε

2
= ε .

This proves the corollary.
Another thing should probably be mentioned. If you have had a course in complex

analysis, you may be wondering whether these infinitely differentiable functions having
compact support have anything to do with analytic functions which also have infinitely
many derivatives. The answer is no! Recall that if an analytic function has a limit point in
the set of zeros then it is identically equal to zero. Thus these functions in C∞

c (Rn) are not
analytic. This is a strictly real analysis phenomenon and has absolutely nothing to do with
the theory of functions of a complex variable.

15.6 Exercises
1. Let E be a Lebesgue measurable set in R. Suppose m(E)> 0. Consider the set

E−E = {x− y : x ∈ E,y ∈ E}.
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Show that E−E contains an interval. Hint: Let

f (x) =
∫

XE(t)XE(x+ t)dt.

Note f is continuous at 0 and f (0)> 0 and use continuity of translation in Lp.

2. Establish the inequality || f g||r ≤ || f ||p ||g||q whenever 1
r = 1

p +
1
q .

3. Let (Ω,S ,µ) be counting measure onN. Thus Ω =N and S =P (N) with µ (S) =
number of things in S. Let 1≤ p≤ q. Show that in this case,

L1 (N)⊆ Lp (N)⊆ Lq (N) .

Hint: This is real easy if you consider what
∫

Ω
f dµ equals. How are the norms

related?

4. Consider the function, f (x,y) = xp−1

py + yq−1

qx for x,y> 0 and 1
p +

1
q = 1. Show directly

that f (x,y)≥ 1 for all such x,y and show this implies xy≤ xp

p + yq

q .

5. Give an example of a sequence of functions in Lp (R) which converges to zero in Lp

but does not converge pointwise to 0. Does this contradict the proof of the theorem
that Lp is complete?

6. Let K be a bounded subset of Lp (Rn) and suppose that there exists G such that G is
compact with ∫

Rn\G
|u(x)|p dx < ε

p

and for all ε > 0, there exist a δ > 0 and such that if |h|< δ , then∫
|u(x+h)−u(x)|p dx < ε

p

for all u ∈ K. Show that K is precompact in Lp (Rn). Hint: Let φ k be a mollifier and
consider

Kk ≡ {u∗φ k : u ∈ K} .

Verify the conditions of the Ascoli Arzela theorem for these functions defined on G
and show there is an ε net for each ε > 0. Can you modify this to let an arbitrary
open set take the place of Rn?

7. Let (Ω,d) be a metric space and suppose also that (Ω,S ,µ) is a regular measure
space such that µ (Ω) < ∞ and let f ∈ L1 (Ω) where f has complex values. Show
that for every ε > 0, there exists an open set of measure less than ε, denoted here by
V and a continuous function, g defined on Ω such that f = g on VC. Thus, aside from
a set of small measure, f is continuous. If | f (ω)| ≤M, show that it can be assumed
that |g(ω)| ≤ M. This is called Lusin’s theorem. Hint: Use Theorems 15.2.4 and
15.1.10 to obtain a sequence of functions in Cc (Ω) ,{gn} which converges pointwise
a.e. to f and then use Egoroff’s theorem to obtain a small set, W of measure less
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than ε/2 such that convergence is uniform on WC. Now let F be a closed subset of
WC such that µ

(
WC \F

)
< ε/2. Let V = FC. Thus µ (V ) < ε and on F = VC, the

convergence of {gn} is uniform showing that the restriction of f to VC is continuous.
Now use the Tietze extension theorem.

8. Let φ m ∈C∞
c (Rn),φ m (x)≥ 0,and

∫
Rn φ m(y)dy = 1 with

lim
m→∞

sup{|x| : x ∈ spt(φ m)}= 0.

Show if f ∈ Lp(Rn), limm→∞ f ∗φ m = f in Lp(Rn).

9. Let φ : R→ R be convex. This means

φ(λx+(1−λ )y)≤ λφ(x)+(1−λ )φ(y)

whenever λ ∈ [0,1]. Verify that if x < y < z, then φ(y)−φ(x)
y−x ≤ φ(z)−φ(y)

z−y and that
φ(z)−φ(x)

z−x ≤ φ(z)−φ(y)
z−y . Show if s ∈ R there exists λ such that φ(s) ≤ φ(t)+λ (s− t)

for all t. Show that if φ is convex, then φ is continuous.

10. ↑ Prove Jensen’s inequality. If φ : R→ R is convex, µ(Ω) = 1, and f : Ω→ R is in
L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ . Hint: Let s =

∫
Ω

f dµ and use Problem 9.

11. Let 1
p +

1
p′ = 1, p> 1, let f ∈ Lp(R), g∈ Lp′(R). Show f ∗g is uniformly continuous

on R and |( f ∗ g)(x)| ≤ || f ||Lp ||g||Lp′ . Hint: You need to consider why f ∗ g exists
and then this follows from the definition of convolution and continuity of translation
in Lp.

12. B(p,q) =
∫ 1

0 xp−1(1− x)q−1dx,Γ(p) =
∫

∞

0 e−tt p−1dt for p,q > 0. The first of these
is called the beta function, while the second is the gamma function. Show a.) Γ(p+
1) = pΓ(p); b.) Γ(p)Γ(q) = B(p,q)Γ(p+q).

13. Let f ∈Cc(0,∞) and define F(x) = 1
x
∫ x

0 f (t)dt. Show

||F ||Lp(0,∞) ≤
p

p−1
|| f ||Lp(0,∞) whenever p > 1.

Hint: Argue there is no loss of generality in assuming f ≥ 0 and then assume this is
so. Integrate

∫
∞

0 |F(x)|pdx by parts as follows:

∫
∞

0
F pdx =

show = 0︷ ︸︸ ︷
xF p|∞0 − p

∫
∞

0
xF p−1F ′dx.

Now show xF ′ = f −F and use this in the last integral. Complete the argument by
using Holder’s inequality and p−1 = p/q.

14. ↑ Now suppose f ∈ Lp(0,∞), p > 1, and f not necessarily in Cc(0,∞). Show that
F(x) = 1

x
∫ x

0 f (t)dt still makes sense for each x > 0. Show the inequality of Problem
13 is still valid. This inequality is called Hardy’s inequality. Hint: To show this, use
the above inequality along with the density of Cc (0,∞) in Lp (0,∞).
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15. Suppose f ,g≥ 0. When does equality hold in Holder’s inequality?

16. Prove Vitali’s Convergence theorem: Let { fn} be uniformly integrable and complex
valued, µ(Ω) < ∞, fn(x)→ f (x) a.e. where f is measurable. Then f ∈ L1 and
limn→∞

∫
Ω
| fn− f |dµ = 0. Hint: Use Egoroff’s theorem to show { fn} is a Cauchy

sequence in L1 (Ω). This yields a different and easier proof than what was done
earlier. See Theorem 11.5.3 on Page 257.

17. ↑ Show the Vitali Convergence theorem implies the Dominated Convergence theo-
rem for finite measure spaces but there exist examples where the Vitali convergence
theorem works and the dominated convergence theorem does not.

18. ↑ Suppose µ(Ω)< ∞, { fn} ⊆ L1(Ω), and∫
Ω

h(| fn|)dµ <C

for all n where h is a continuous, nonnegative function satisfying

lim
t→∞

h(t)
t

= ∞.

Show { fn} is uniformly integrable. In applications, this often occurs in the form of
a bound on || fn||p.

19. ↑ Sometimes, especially in books on probability, a different definition of uniform
integrability is used than that presented here. A set of functions, S, defined on a
finite measure space, (Ω,S ,µ) is said to be uniformly integrable if for all ε > 0
there exists α > 0 such that for all f ∈S,∫

[| f |≥α]
| f |dµ ≤ ε.

Show that this definition is equivalent to the definition of uniform integrability given
earlier in Definition 11.5.1 on Page 256 with the addition of the condition that there
is a constant, C < ∞ such that ∫

| f |dµ ≤C

for all f ∈S.

20. f ∈ L∞(Ω,µ) if there exists a set of measure zero, E, and a constant C < ∞ such that
| f (x)| ≤C for all x /∈ E.

|| f ||∞ ≡ inf{C : | f (x)| ≤C a.e.}.

Show || ||∞ is a norm on L∞(Ω,µ) provided f and g are identified if f (x) = g(x) a.e.
Show L∞(Ω,µ) is complete. Hint: You might want to show that [| f |> || f ||

∞
] has

measure zero so || f ||
∞

is the smallest number at least as large as | f (x)| for a.e. x.
Thus || f ||

∞
is one of the constants, C in the above.
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21. Suppose f ∈ L∞∩L1. Show limp→∞ || f ||Lp = || f ||∞. Hint:

(|| f ||
∞
− ε)p

µ ([| f |> || f ||
∞
− ε])≤

∫
[| f |>|| f ||∞−ε]

| f |p dµ ≤

∫
| f |p dµ =

∫
| f |p−1 | f |dµ ≤ || f ||p−1

∞

∫
| f |dµ.

Now raise both ends to the 1/p power and take liminf and limsup as p→ ∞. You
should get || f ||

∞
− ε ≤ liminf || f ||p ≤ limsup || f ||p ≤ || f ||∞

22. Suppose µ(Ω)<∞. Show that if 1≤ p< q, then Lq(Ω)⊆ Lp(Ω). Hint Use Holder’s
inequality.

23. Show L1(R)⊈ L2(R) and L2(R)⊈ L1(R) if Lebesgue measure is used. Hint: Con-
sider 1/

√
x and 1/x.

24. Suppose that θ ∈ [0,1] and r,s,q > 0 with

1
q
=

θ

r
+

1−θ

s
.

show that
(
∫
| f |qdµ)1/q ≤ ((

∫
| f |rdµ)1/r)θ ((

∫
| f |sdµ)1/s)1−θ.

If q,r,s≥ 1 this says that
|| f ||q ≤ || f ||θr || f ||1−θ

s .

Using this, show that

ln
(
|| f ||q

)
≤ θ ln(|| f ||r)+(1−θ) ln(|| f ||s) .

Hint: ∫
| f |qdµ =

∫
| f |qθ | f |q(1−θ)dµ.

Now note that 1 = θq
r + q(1−θ)

s and use Holder’s inequality.

25. Suppose f is a function in L1 (R) and f is infinitely differentiable. Is f ′ ∈ L1 (R)?
Hint: What if φ ∈C∞

c (0,1) and f (x) = φ (2n (x−n)) for x ∈ (n,n+1) , f (x) = 0 if
x < 0?
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Chapter 16

Stone’s Theorem
This section is devoted to Stone’s theorem which says that a metric space is paracompact,
defined below. See [98] for this which is where I read it. First is the definition of what is
meant by a refinement.

Definition 16.0.1 Let S be a topological space. We say that a collection of sets D is a
refinement of an open cover S, if every set of D is contained in some set of S. An open
refinement would be one in which all sets are open, with a similar convention holding for
the term “ closed refinement”.

Definition 16.0.2 We say that a collection of sets D, is locally finite if for all p ∈ S, there
exists V an open set containing p such that V has nonempty intersection with only finitely
many sets of D.

Definition 16.0.3 We say S is paracompact if it is Hausdorff and for every open cover S,
there exists an open refinement D such that D is locally finite and D covers S.

Theorem 16.0.4 If D is locally finite then

∪{D : D ∈D}= ∪{D : D ∈D}.

Proof: It is clear the left side is a subset of the right. Let p be a limit point of

∪{D : D ∈D}

and let p ∈V , an open set intersecting only finitely many sets of D, D1...Dn. If p is not in
any of Di then p ∈W where W is some open set which contains no points of ∪n

i=1Di. Then
V ∩W contains no points of any set of D and this contradicts the assumption that p is a
limit point of

∪{D : D ∈D}.
Thus p ∈ Di for some i. ■

We say S⊆P (S) is countably locally finite if

S= ∪∞
n=1Sn

and each Sn is locally finite. The following theorem appeared in the 1950’s. It will be used
to prove Stone’s theorem.

Theorem 16.0.5 Let S be a regular topological space. (If p ∈U open, then there exists an
open set V such that p ∈ V̄ ⊆U. ) The following are equivalent

1.) Every open covering of S has a refinement that is open, covers S and is countably
locally finite.

2.) Every open covering of S has a refinement that is locally finite and covers S. (The
sets in refinement maybe not open.)

3.) Every open covering of S has a refinement that is closed, locally finite, and covers
S. (Sets in refinement are closed.)

4.) Every open covering of S has a refinement that is open, locally finite, and covers S.
(Sets in refinement are open.)

421
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Proof:
1.)⇒ 2.)
Let S be an open cover of S and let B be an open countably locally finite refinement

B= ∪∞
n=1Bn

where Bn is an open refinement of S and Bn is locally finite. For B ∈Bn, let

En (B) = B\
⋃
k<n

(∪{B : B ∈Bk}).

Thus, in words, En (B) consists of points in B which are not in any set from any Bk for
k < n.

Claim: {En (B) : n ∈ N, B ∈Bn} is locally finite.
Proof of the claim: Let p ∈ S. Then p ∈ B0 ∈Bn for some n. Let V be open, p ∈ V,

and V intersects only finitely many sets of B1∪ ...∪Bn. Then consider B0∩V . If m > n,

(B0∩V )∩Em (B)⊆

[⋃
k<m

(∪{B : B ∈Bk)

]C

⊆ BC
0 .

In words, Em (B) has nothing in it from any of the Bk for k <m. In particular, it has nothing
in it from B0. Thus (B0∩V )∩Em (B) = /0 for m > n. Thus p∈ B0∩V which intersects only
finitely many sets of S, no more than those intersected by V . This establishes the claim.

Claim: {En (B) : n ∈ N, B ∈Bn} covers S.
Proof: Let p ∈ S and let n = min{k ∈ N : p ∈ B for some B ∈Bk}. Let p ∈ B ∈Bn.

Then p ∈ En (B).
The two claims show that 1.)⇒ 2.).
2.)⇒ 3.)
Let S be an open cover and let

G ≡ {U : U is open and U ⊆V ∈S for some V ∈S}.

Then since S is regular, G covers S. (If p ∈ S, then p ∈U ⊆U ⊆V ∈S. ) By 2.), G has a
locally finite refinement C, covering S. Consider

{E : E ∈ C}.

This collection of closed sets covers S and is locally finite because if p ∈ S, there exists
V, p ∈ V, and V has nonempty intersections with only finitely many elements of C, say
E1, · · · ,En. If E ∩V ̸= /0, then E ∩V ̸= /0 and so V intersects only E1, · · ·,En. This shows
2.)⇒ 3.).

3.)⇒ 4.) Here is a table of symbols with a short summary of their meaning.

Open covering Locally finite refinement
S original covering B by 3. can be closed refinement
F open intersectors C closed refinement
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Let S be an open cover and let B be a locally finite refinement which covers S. By 3.)
we can take B to be a closed refinement but this is not important here. Let

F≡ {U : U is open and U intersects only finitely many sets of B}.

Then F covers S because B is locally finite. If p ∈ S, then there exists an open set U
containing p which intersects only finitely many sets of B. Thus p ∈U ∈ F. By 3., F has
a locally finite closed refinement C, which covers S. Define for B ∈B

C(B)≡ {C ∈ C : C∩B = /0}

Thus these closed sets C do not intersect B and so B is in their complement. We use C(B)
to fatten up B. Let

E (B)≡ (∪{C : C ∈ C(B)})C.

In words, E (B) is the complement of the union of all closed sets of C which do not intersect
B. Thus E (B) ⊇ B, and has fattened up B. Then since C(B) is locally finite, E (B) is an
open set by Theorem 16.0.4. Now let F (B) be defined such that for B ∈B,

B⊆ F (B) ∈S

(by definition B is in some set of S), and let

L= {E (B)∩F (B) : B ∈B}

The intersection with F (B) is to ensure that L is a refinement of S. The important thing
to notice is that if C ∈ C intersects E (B) , then it must also intersect B. If not, you could
include it in the list of closed sets which do not intersect B and whose complement is E (B).
Thus E (B) would be too large.

Claim: L covers S.
This claim is obvious because if p ∈ S then p ∈ B for some B ∈B. Hence

p ∈ E (B)∩F (B) ∈ L.

Claim: L is locally finite and a refinement of S.
Proof: It is clear L is a refinement of S because every set of L is a subset of a set of

S, F (B). Let p ∈ S. There exists an open set W, such that p ∈W and W intersects only
C1, · · · ,Cn, elements of C. Hence W ⊆ ∪n

i=1Ci since C covers S.
But Ci is contained in a set Ui ∈ F which intersects only finitely many sets of B. Thus

each Ci intersects only finitely many B ∈B and so each Ci intersects only finitely many of
the sets, E (B). (If it intersects E (B) , then it intersects B.) Thus W intersects only finitely
many of the E (B) , hence finitely many of the E (B)∩F (B). It follows that L is locally
finite.

It is obvious that 4.)⇒ 1.). ■
The following theorem is Stone’s theorem.

Theorem 16.0.6 If S is a metric space then S is paracompact (Every open cover has a
locally finite open refinement also an open cover.)
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Proof: Let S be an open cover. Well order S. For B ∈S,

Bn ≡ {x ∈ B : dist
(
x,BC)< 1

2n }, n = 1,2, · · · .

Thus Bn is contained in B but approximates it up to 2−n. Let

En (B) = Bn \∪{D : D≺ B and D ̸= B}

where ≺ denotes the well order. If B, D ∈S, then one is first in the well order. Let D≺ B.
Then from the construction, En (B)⊆ DC and En (D) is further than 1/2n from DC. Hence,
assuming neither set is empty,

dist(En (B) ,En (D))≥ 2−n

for all B, D ∈S. Fatten up En (B) as follows.

Ẽn (B)≡ ∪{B
(
x,8−n) : x ∈ En (B)}.

Thus Ẽn (B)⊆ B and

dist
(

Ẽn (B), Ẽn (D)
)
≥ 1

2n −2
(

1
8

)n

≡ δ n > 0.

It follows that the collection of open sets

{Ẽn (B) : B ∈S} ≡Bn

is locally finite. In fact, B
(

p, δ n
2

)
cannot intersect more than one of them. In addition to

this,
S⊆ ∪{Ẽn (B) : n ∈ N, B ∈S}

because if p ∈ S, let B be the first set in S to contain p. Then p ∈ En (B) for n large enough
because it will not be in anything deleted. Thus this is an open countably locally finite
refinement. Thus 1.) in the above theorem is satisfied. ■

16.1 Partitions Of Unity And Stone’s Theorem
First observe that if S is a nonempty set, then dist(x,S) satisfies |dist(x,S)−dist(y,S)| ≤
d (x,y) . To see this,

|dist(x,S)−dist(y,S)| ≤ d (x,y)

To see this, say dist(x,S) is the larger of the two. Then there exists z ∈ S such that

dist(y,S)≥ d (y,z)− ε

It follows that

|dist(x,S)−dist(y,S)|
= dist(x,S)−dist(y,S)



16.1. PARTITIONS OF UNITY AND STONE’S THEOREM 425

≤ dist(x,S)− (d (y,z)− ε)

≤ d (x,z)−d (y,z)+ ε

≤ d (x,y)+d (y,z)−d (y,z)+ ε = d (x,y)+ ε

Since ε > 0 is arbitrary, this shows the desired conclusion.

Theorem 16.1.1 Let S be a metric space and let S be any open cover of S. Then there
exists a set F, an open refinement of S, and functions {φ F : F ∈ F} such that

φ F : S→ [0,1]

φ F is continuous

φ F (x) equals 0 for all but finitely many F ∈ F

∑{φ F (x) : F ∈ F}= 1 for all x ∈ S.

Each φ F is locally Lipschitz continuous which means that for each z there is an open set W
containing z for which, if x,y ∈W, then there is a constant K such that

|φ F (x)−φ F (y)| ≤ Kd (x,y)

Proof: By Stone’s theorem, there exists a locally finite refinement F covering S. For
F ∈ F

gF (x)≡ dist
(
x,FC)

Let
φ F (x)≡ (∑{gF (x) : F ∈ F})−1gF (x) .

Now
∑{gF (x) : F ∈ F}

is a continuous function because if x ∈ S, then there exists an open set W with x ∈W and
W has nonempty intersection with only finitely many sets of F ∈ F. Then for y ∈W,

∑{gF (y) : F ∈ F}=
n

∑
i=1

gFi (y).

Since F is a cover of S,
∑{gF (x) : F ∈ F} ̸= 0

for any x ∈ S. Hence φ F is continuous. This also shows φ F (x) = 0 for all but finitely many
F ∈ F. It is obvious that

∑{φ F (x) : F ∈ F}= 1

from the definition.
Let z ∈ S. Then there is an open set W containing z such that W has nonempty intersec-

tion with only finitely many F ∈F . Thus for y,x ∈W,∣∣∣φ Fj
(x)−φ Fj

(y)
∣∣∣≤ ∣∣∣∣gFj (x)∑

n
i=1 gFi (y)−gFj (y)∑

n
i=1 gFi (x)

∑
n
i=1 gFi (x)∑

n
i=1 gFi (y)

∣∣∣∣
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If F is not one of these Fi, then gF (x) = φ F (x) = φ F (y) = gF (y) = 0. Thus there is nothing
to show for these. It suffices to consider the ones above. Restricting W if necessary, we can
assume that for x ∈W,

∑
F

gF (x) =
n

∑
i=1

gFi (x)> δ > 0, gFj (x)< ∆ < ∞, j ≤ n

Then, simplifying the above, and letting x,y ∈W, for each j ≤ n,∣∣∣φ Fj
(x)−φ Fj

(y)
∣∣∣≤ 1

δ
2

∣∣∣∣ gFj (x)∑F gF (y)−gFj (y)∑F gF (y)
+gFj (y)∑F gF (y)−gFj (y)∑F gF (x)

∣∣∣∣
≤ 1

δ
2 ∆
∣∣gFj (x)−gFj (y)

∣∣+ 1

δ
2 ∆

n

∑
i=1
|gFi (y)−gFi (x)|

≤ ∆

δ
2 d (x,y)+

∆

δ
2 nd (x,y) = (n+1)

∆

δ
2 d (x,y)

Thus on this set W containing z, all φ F are Lipschitz continuous with Lipschitz constant
(n+1) ∆

δ
2 . ■

The functions described above are called a partition of unity subordinate to the open
cover S. A useful observation is contained in the following corollary.

Corollary 16.1.2 Let S be a metric space and let S be any open cover of S. Then there
exists a set F, an open refinement of S, and functions {φ F : F ∈ F} such that

φ F : S→ [0,1]

φ F is continuous

φ F (x) equals 0 for all but finitely many F ∈ F

∑{φ F (x) : F ∈ F}= 1 for all x ∈ S.

Each φ F is Lipschitz continuous. If U ∈S and H is a closed subset of U, the partition of
unity can be chosen such that each φ F = 0 on H except for one which equals 1 on H.

Proof: Just change your open cover to consist of U and V \H for each V ∈S. Then
every function but one equals 0 on H and so exactly one of them equals 1 on H. ■

16.2 An Extension Theorem, Retracts
Lemma 16.2.1 Let A be a closed set in a metric space and let xn /∈ A,xn → a0 ∈ A and
an ∈ A such that d (an,xn)< 6dist(xn,A) . Then an→ a0.

Proof: By assumption,

d (an,a0) ≤ d (an,xn)+d (xn,a0)< 6dist(xn,A)+d (xn,a0)

≤ 6d (xn,a0)+d (xn,a0) = 7d (xn,a0)



16.2. AN EXTENSION THEOREM, RETRACTS 427

and this converges to 0. ■

a0

xn

an
A

Note that there was nothing magic about 6 in the above. Another number would work
as well.

In the proof of the following theorem, you get a covering of AC with open balls B such
that for each of these balls, there exists a ∈ A such that for all x ∈ B,∥x−a∥ ≤ 6dist(x,A) .
The 6 is not important. Any other constant with this property would work. Then you use
Stone’s theorem.

A Banach space is a normed vector space which is also a complete metric space where
the metric comes from the norm.

d (x,y) = ∥x− y∥

Thus you can add things in a Banach space. Much more will be considered about Banach
spaces a little later.

Definition 16.2.2 A Banach space is a complete normed linear space. If you have a subset
B of a Banach space, then conv(B) denotes the smallest closed convex set which contains
B. It can be obtained by taking the intersection of all closed convex sets containing B.
Recall that a set C is convex if whenever x,y ∈C, then so is λx+(1−λ )y for all λ ∈ [0,1].
Note how this makes sense in a vector space but maybe not in a general metric space.

In the following theorem, we have in mind both X and Y are Banach spaces, but this is
not needed in the proof. All that is needed is that X is a metric space and Y a normed linear
space or possibly something more general in which it makes sense to do addition and scalar
multiplication.

Theorem 16.2.3 Let A be a closed subset of a metric space X and let F : A→ Y, Y a
normed linear space. Then there exists an extension of F denoted as F̂ such that F̂ is
defined on all of X and agrees with F on A. It has values in conv(F (A)) , the convex hull
of F (A).

Proof: For each c /∈ A, let Bc be a ball contained in AC centered at c where distance of
c to A is at least diam(Bc) .

Bc

A
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So for x ∈ Bc what about dist(x,A)? How does it compare with dist(c,A)?

dist(c,A) ≤ d (c,x)+dist(x,A)

≤ 1
2

diam(Bc)+dist(x,A)

≤ 1
2

dist(c,A)+dist(x,A)

so
dist(c,A)≤ 2dist(x,A)

Now the following is also valid. Letting x ∈ Bc be arbitrary, it follows from the assumption
on the diameter that there exists a0 ∈ A such that d (c,a0)< 2dist(c,A) . Then

d (x,a0)≤ sup
y∈Bc

d (y,a0)≤ sup
y∈Bc

(d (y,c)+d (c,a0))≤
diam(Bc)

2
+2dist(c,A)

≤ dist(c,A)
2

+2dist(c,A)< 3dist(c,A) (16.2.1)

It follows from 16.2.1,

d (x,a0)≤ 3dist(c,A)≤ 6dist(x,A)

Thus for any x ∈ Bc, there is an a0 ∈ A such that d (x,a0) is bounded by a fixed multiple of
the distance from x to A.

By Stone’s theorem, there is a locally finite open refinement R. These are open sets
each of which is contained in one of the balls just mentioned such that each of these balls
is the union of sets of R. Thus R is a locally finite cover of AC. Since x ∈ AC is in one
of those balls, it was just shown that there exists aR ∈ A such that for all x ∈ R ∈ R we
have d (x,aR) ≤ 6dist(x,A) . Of course there may be more than one because R might be
contained in more than one of those special balls. One aR is chosen for each R ∈R.

Now let φ R (x)≡ dist
(
x,RC

)
. Then let

F̂ (x)≡

{
F (x) for x ∈ A

∑R∈R F (aR)
φR(x)

∑R̂∈R φ R̂(x)
for x /∈ A

The sum in the bottom is always finite because the covering is locally finite. Also, this sum
is never 0 because R is a covering. Also F̂ has values in conv(F (K)) . It only remains to
verify that F̂ is continuous. It is clearly so on the interior of A thanks to continuity of F . It
is also clearly continuous on AC because the functions φ R are continuous. So it suffices to
consider xn→ a ∈ ∂A⊆ A where xn /∈ A and see whether F (a) = limn→∞ F̂ (xn).

Suppose this does not happen. Then there is a sequence converging to some a∈ ∂A and
ε > 0 such that

ε ≤
∥∥F̂ (a)− F̂ (xn)

∥∥ all n

For xn ∈R, it was shown above that d (xn,aRn)≤ 6dist(xn,A) . By the above Lemma 16.2.1,
it follows that aRn→ a and so F (aRn)→ F (a) .

ε ≤
∥∥F̂ (a)− F̂ (xn)

∥∥≤ ∑
R∈R
∥F (aRn)−F (a)∥ φ R (xRn)

∑R̂∈R φ R̂ (xRn)
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By local finiteness of the cover, each xn involves only finitely many R Thus, in this limit
process, there are countably many R involved

{
R j
}∞

j=1. Thus one can apply Fatou’s lemma.

ε ≤ lim inf
n→∞

∥∥F̂ (a)− F̂ (xn)
∥∥

≤
∞

∑
j=1

lim inf
n→∞

∥∥F
(
aR jn

)
−F (a)

∥∥ φ R j

(
xR jn

)
∑

∞
j=1 φ R̂ j

(
xR jn

)
≤

∞

∑
j=1

lim inf
n→∞

∥∥F
(
aR jn

)
−F (a)

∥∥= 0 ■

The last step is needed because you lose local finiteness as you approach ∂A. Note that
the only thing needed was that X is a metric space. The addition takes place in Y so it
needs to be a vector space. Did it need to be complete? No, this was not used. Nor was
completeness of X used. The main interest here is in Banach spaces, but the result is more
general than that.

It also appears that F̂ is locally Lipschitz on AC.

Definition 16.2.4 Let S be a subset of X , a Banach space. Then it is a retract if there exists
a continuous function R : X → S such that Rs = s for all s ∈ S. This R is a retraction. More
generally, S⊆ T is called a retract of T if there is a continuous R : T → S such that Rs = s
for all s ∈ S.

Theorem 16.2.5 Let K be closed and convex subset of X a Banach space. Then K is a
retract.

Proof: By Theorem 16.2.3, there is a continuous function Î extending I to all of X . Then
also Î has values in conv(IK) = conv(K) =K. Hence Î is a continuous function which does
what is needed. It maps everything into K and keeps the points of K unchanged. ■

Sometimes people call the set a retraction also or the function which does the job a re-
traction. This seems like strange thing to call it because a retraction is the act of repudiating
something you said earlier. Nevertheless, I will call it that. Note that if S is a retract of the
whole metric space X , then it must be a retract of every set which contains S.

16.3 Something Which Is Not A Retract
The next lemma is a fundamental result which will be used to develop the Brouwer degree.
It will also be used to give a short proof of the Brouwer fixed point theorem in the exercises.
This major fixed point theorem is probably the most fundamental theorem in nonlinear
analysis. The proof outlined in the exercises is from [48].

Lemma 16.3.1 Let g : U → Rn be C2 where U is an open subset of Rn. Then

n

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.
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Proof: From the cofactor expansion theorem,

det(Dg) =
n

∑
i=1

gi, j cof(Dg)i j

and so
∂ det(Dg)

∂gi, j
= cof(Dg)i j (16.3.2)

which shows the last claim of the lemma. Also

δ k j det(Dg) = ∑
i

gi,k (cof(Dg))i j (16.3.3)

because if k ̸= j this is just the cofactor expansion of the determinant of a matrix in which
the kth and jth columns are equal. Differentiate 16.3.3 with respect to x j and sum on j.
This yields

∑
r,s, j

δ k j
∂ (detDg)

∂gr,s
gr,s j = ∑

i j
gi,k j (cof(Dg))i j +∑

i j
gi,k cof(Dg)i j, j .

Hence, using δ k j = 0 if j ̸= k and 16.3.2,

∑
rs
(cof(Dg))rs gr,sk = ∑

rs
gr,ks (cof(Dg))rs +∑

i j
gi,kcof(Dg)i j, j .

Subtracting the first sum on the right from both sides and using the equality of mixed
partials,

∑
i

gi,k

(
∑

j
(cof(Dg))i j, j

)
= 0.

If det
(
gi,k
)
̸= 0 so that

(
gi,k
)

is invertible, this shows ∑ j (cof(Dg))i j, j = 0. If det(Dg) = 0,
let

gk = g+ εkI

where εk→ 0 and det(Dg+ εkI)≡ det(Dgk) ̸= 0. Then

∑
j
(cof(Dg))i j, j = lim

k→∞
∑

j
(cof(Dgk))i j, j = 0 ■

Definition 16.3.2 Let h be a function defined on an open set, U ⊆ Rn. Then h ∈Ck
(
U
)

if
there exists a function g defined on an open set, W containng U such that g = h on U and
g is Ck (W ) .

Lemma 16.3.3 There does not exist h ∈ C2
(

B(0,R)
)

such that h : B(0,R)→ ∂B(0,R)
which also has the property that h(x)= x for all x∈ ∂B(0,R) . That is, there is no retraction
of B(0,R) to ∂B(0,R) .
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Proof: Suppose such an h exists. Let λ ∈ [0,1] and let pλ (x)≡ x+λ (h(x)−x) . This
function, pλ is a homotopy of the identity map and the retraction, h. Let

I (λ )≡
∫

B(0,R)
det(Dpλ (x))dx.

Then using the dominated convergence theorem,

I′ (λ ) =
∫

B(0,R)
∑
i. j

∂ det(Dpλ (x))
∂ pλ i, j

∂ pλ i j (x)
∂λ

=
∫

B(0,R)
∑

i
∑

j

∂ det(Dpλ (x))
∂ pλ i, j

(hi (x)− xi), j dx

=
∫

B(0,R)
∑

i
∑

j
cof(Dpλ (x))i j (hi (x)− xi), j dx

Now by assumption, hi (x) = xi on ∂B(0,R) and so one can integrate by parts and write

I′ (λ ) =−∑
i

∫
B(0,R)

∑
j

cof(Dpλ (x))i j, j (hi (x)− xi)dx = 0.

Therefore, I (λ ) equals a constant. However,

I (0) = mn

(
B(0,R)

)
> 0

but
I (1) =

∫
B(0,R)

det(Dh(x))dmn =
∫

∂B(0,R)
#(y)dmn = 0

because from polar coordinates or other elementary reasoning, mn (∂B(0,1)) = 0. ■
The last formula uses the change of variables formula for functions which are not one

to one. In this formula, #(y) equals the number of x such that h(x) = y. To see this is so
in case you have not seen this, note that h is C1 and so the inverse function theorem from
advanced calculus applies. Thus∫

B(0,R)
det(Dh(x))dmn =

∫
[det(Dh(x))>0]

det(Dh(x))dmn

+
∫
[det(Dh(x))<0]

det(Dh(x))dmn

Thus h is locally one to one on the two open sets [det(Dh(x))> 0] , [det(Dh(x))< 0].
Now use inverse function theorem and change of variables for one to one h to verify that
both of these integrals equal 0. You cover [det(Dh(x))> 0] with countably many balls
on which h is one to one and then use change of variables for each of these integrals over
[det(Dh(x))> 0] intersected with this ball.

The following is the Brouwer fixed point theorem for C2 maps.

Lemma 16.3.4 If h ∈C2
(

B(0,R)
)

and h : B(0,R)→ B(0,R), then h has a fixed point, x
such that h(x) = x.
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Proof: Suppose the lemma is not true. Then for all x, |x−h(x)| ̸= 0. Then define

g(x) = h(x)+
x−h(x)
|x−h(x)|

t (x)

where t (x) is nonnegative and is chosen such that g(x) ∈ ∂B(0,R) . This mapping is illus-
trated in the following picture.

f(x)
x

g(x)

If x→ t (x) is C2 near B(0,R), it will follow g is a C2 retraction onto ∂B(0,R) contrary
to Lemma 16.3.3. Thus t (x) is the nonnegative solution to

H (x, t)≡ |h(x)|2 +2
(

h(x) ,
x−h(x)
|x−h(x)|

)
t + t2 = R2 (16.3.4)

Then

Ht (x, t) = 2
(

h(x) ,
x−h(x)
|x−h(x)|

)
+2t.

If this is nonzero for all x near B(0,R), it follows from the implicit function theorem that t
is a C2 function of x. Then from 16.3.4

2t = −2
(

h(x) ,
x−h(x)
|x−h(x)|

)

±

√
4
(

h(x) ,
x−h(x)
|x−h(x)|

)2

−4
(
|h(x)|2−R2

)
and so

Ht (x, t) = 2t +2
(

h(x) ,
x−h(x)
|x−h(x)|

)

= ±

√
4
(

R2−|h(x)|2
)
+4
(

h(x) ,
x−h(x)
|x−h(x)|

)2

If |h(x)|< R, this is nonzero. If |h(x)|= R, then it is still nonzero unless

(h(x) ,x−h(x)) = 0.

But this cannot happen because the angle between h(x) and x−h(x) cannot be π/2. Al-
ternatively, if the above equals zero, you would need

(h(x) ,x) = |h(x)|2 = R2



16.4. EXERCISES 433

which cannot happen unless x= h(x) which is assumed not to happen. Therefore, x→ t (x)
is C2 near B(0,R) and so g(x) given above contradicts Lemma 16.3.3. ■

Then the Brouwer fixed point theorem is as follows.

Theorem 16.3.5 Let f : B(0,R)→ B(0,R) be continuous, this being a ball in Rp. Then it
has a fixed point x ∈ B(0,R) such that f(x) = x.

Proof: You can extend f to assume it is defined on all of Rp, f(Rp) ⊆ B(0,R), the
convex hull of B(0,R). Then letting {ψn} be a mollifier, let fn ≡ f∗ψn. Thus

|fn (x)|=
∣∣∣∣∫Rp

f(t)ψn (x− t)dt
∣∣∣∣≤ ∫Rp

|f(t)|ψn (x− t)dt ≤ R
∫
Rp

ψn (x− t)dt = R

and so the restriction of fn to B(0,R) is C2
(

B(0,R)
)
. Therefore, there exists xn ∈ B(0,R)

such that fn (xn) = xn. The functions fn converge uniformly to f on B(0,R).

|f(x)− fn (x)| =

∣∣∣∣∣
∫

B(0, 1
n )
(f(x)− f(x− t))ψn (t)dt

∣∣∣∣∣
≤

∫
B(0, 1

n )
|f(x)− f(x− t)|ψn (t)dt < ε

provided n is large enough, this for every x ∈ B(0,R), this by uniform continuity of f on
B(0,R+1). There exists a subsequence, still called {xn} which converges to x ∈ B(0,R).
Then using the uniform convergence of fn to f,

f(x) = lim
n→∞

f(xn) = lim
n→∞

fn (xn) = lim
n→∞

xn = x ■

Definition 16.3.6 A nonempty topological space A is said to have the fixed point property
if every continuous mapping f : A→ A has a fixed point.

16.4 Exercises
1. Suppose you have a Banach space X and a set A ⊆ X . Suppose A is a retract of B

where B has the fixed point property. By this is meant that A ⊆ B and there is a
continuous function f : B→ A such that f equals the identity on A. Show that it
follows that then A also has the fixed point property.

2. Show that the fixed point property is a topological property. That is, if you have A,B
two topological spaces and there is a continuous one to one onto mapping f : A→ B
which has continuous inverse, then the two topological spaces either both have the
fixed point property or neither one does.

3. The Brouwer fixed point theorem says that every closed ball in Rn centered at 0 has
the fixed point property. Show that it follows that every bounded convex closed set
in Rn has the fixed point property. Hint: You know that the closed convex set is a
retract of Rn. Now if it is also a bounded set, then you could enclose it in B(0,r) for
some large enough r.



434 CHAPTER 16. STONE’S THEOREM

4. Convex closed sets in Rn are retracts. Are there other examples of retracts not con-
sidered by Theorem 16.2.3?

5. In R2, consider an annulus, {x : 1≤ |x| ≤ 2}. Show that this set does not have the
fixed point property. Could it be a retract of R2?

6. Does {x ∈ Rn : |x|= 1} have the fixed point property?

7. Suppose you have a closed subset H of X a metric space and suppose also that C
is an open cover of H. Show there is another open cover Ĉ such that the closure of
each open set in Ĉ is contained in some set of C . Hint: You might want to use the
fact that metric space is normal.

8. If H is a closed nonempty subset of Rn and C is an open cover of H, show that
there is a refined open cover such that each of the new open sets are bounded. In the
partition of unity result obtained above, applied to H show that the functions in the
partition of unity can be assumed to be infinitely differentiable with compact support.

9. Check that the conclusion of Theorem 16.2.3 applies for X just a metric space. Then
apply it to give another proof of the Tietze extension theorem.

10. Suppose you have that hk : B→ B for B a compact set and each hk has a fixed point.
Suppose also that hk converges to h uniformly on B. Then h also has a fixed point.
Verify this.

11. The Brouwer fixed point theorem is a finite dimensional creature. Consider a sep-
arable Hilbert space H with a complete orthonormal basis {ek}∞

k=1. Then define
the following map. For x = ∑

∞
i=1 xiei, define L(∑∞

i=1 xiei) ≡ ∑
∞
i=1 xiei+1. Now let

f (x)≡ 1
2 (1−∥x∥H)e1 +Lx. Verify that f : B(0,1)→ B(0,1) is continuous and yet

it has no fixed point. This example is in [55].
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Banach Spaces
17.1 Theorems Based On Baire Category

17.1.1 Baire Category Theorem

Some examples of Banach spaces that have been discussed up to now are Rn,Cn, and
Lp (Ω). Theorems about general Banach spaces are proved in this chapter. The main
theorems to be presented here are the uniform boundedness theorem, the open mapping
theorem, the closed graph theorem, and the Hahn Banach Theorem. The first three of these
theorems come from the Baire category theorem which is about to be presented. They are
topological in nature. The Hahn Banach theorem has nothing to do with topology. Banach
spaces are all normed linear spaces and as such, they are all metric spaces because a normed
linear space may be considered as a metric space with d (x,y) ≡ ||x− y||. You can check
that this satisfies all the axioms of a metric. As usual, if every Cauchy sequence converges,
the metric space is called complete.

Definition 17.1.1 A complete normed linear space is called a Banach space.

The following remarkable result is called the Baire category theorem. To get an idea
of its meaning, imagine you draw a line in the plane. The complement of this line is an
open set and is dense because every point, even those on the line, are limit points of this
open set. Now draw another line. The complement of the two lines is still open and dense.
Keep drawing lines and looking at the complements of the union of these lines. You always
have an open set which is dense. Now what if there were countably many lines? The Baire
category theorem implies the complement of the union of these lines is dense. In particular
it is nonempty. Thus you cannot write the plane as a countable union of lines. This is a
rather rough description of this very important theorem. The precise statement and proof
follow.

Theorem 17.1.2 Let (X ,d) be a complete metric space and let {Un}∞
n=1 be a sequence of

open subsets of X satisfying Un = X (Un is dense). Then D ≡ ∩∞
n=1Un is a dense subset of

X.

Proof: Let p ∈ X and let r0 > 0. I need to show D∩B(p,r0) ̸= /0. Since U1 is dense,
there exists p1 ∈U1∩B(p,r0), an open set. Let p1 ∈ B(p1,r1)⊆ B(p1,r1)⊆U1∩B(p,r0)
and r1 < 2−1. This is possible because U1 ∩B(p,r0) is an open set and so there exists r1
such that B(p1,2r1)⊆U1∩B(p,r0). But

B(p1,r1)⊆ B(p1,r1)⊆ B(p1,2r1)

because B(p1,r1) = {x ∈ X : d (x, p)≤ r1}. (Why?)

435
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r0 p

p1
·

There exists p2 ∈U2∩B(p1,r1) because U2 is dense. Let

p2 ∈ B(p2,r2)⊆ B(p2,r2)⊆U2∩B(p1,r1)⊆U1∩U2∩B(p,r0).

and let r2 < 2−2. Continue in this way. Thus

rn < 2−n,

B(pn,rn)⊆U1∩U2∩ ...∩Un∩B(p,r0),

B(pn,rn)⊆ B(pn−1,rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n are
contained in B(pn,rn), a set whose diameter is no larger than 2−n. Since X is complete,
there exists p∞ such that

lim
n→∞

pn = p∞.

Since all but finitely many terms of {pn} are in B(pm,rm), it follows that p∞ ∈ B(pm,rm)
for each m. Therefore,

p∞ ∈ ∩∞
m=1B(pm,rm)⊆ ∩∞

i=1Ui∩B(p,r0).

This proves the theorem.
The following corollary is also called the Baire category theorem.

Corollary 17.1.3 Let X be a complete metric space and suppose X = ∪∞
i=1Fi where each

Fi is a closed set. Then for some i, interior Fi ̸= /0.

Proof: If all Fi has empty interior, then FC
i would be a dense open set. Therefore, from

Theorem 17.1.2, it would follow that

/0 = (∪∞
i=1Fi)

C = ∩∞
i=1FC

i ̸= /0.

The set D of Theorem 17.1.2 is called a Gδ set because it is the countable intersection
of open sets. Thus D is a dense Gδ set.

Recall that a norm satisfies:
a.) ||x|| ≥ 0, ||x||= 0 if and only if x = 0.
b.) ||x+ y|| ≤ ||x||+ ||y||.
c.) ||cx||= |c| ||x|| if c is a scalar and x ∈ X .
From the definition of continuity, it follows easily that a function is continuous if

lim
n→∞

xn = x

implies
lim
n→∞

f (xn) = f (x).
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Theorem 17.1.4 Let X and Y be two normed linear spaces and let L : X → Y be linear
(L(ax+by) = aL(x)+bL(y) for a,b scalars and x,y ∈ X). The following are equivalent

a.) L is continuous at 0
b.) L is continuous
c.) There exists K > 0 such that ||Lx||Y ≤ K ||x||X for all x ∈ X (L is bounded).

Proof: a.)⇒b.) Let xn → x. It is necessary to show that Lxn → Lx. But (xn− x)→ 0
and so from continuity at 0, it follows

L(xn− x) = Lxn−Lx→ 0

so Lxn→ Lx. This shows a.) implies b.).
b.)⇒c.) Since L is continuous, L is continuous at 0. Hence ||Lx||Y < 1 whenever

||x||X ≤ δ for some δ . Therefore, suppressing the subscript on the || ||,

||L
(

δx
||x||

)
|| ≤ 1.

Hence
||Lx|| ≤ 1

δ
||x||.

c.)⇒a.) follows from the inequality given in c.).

Definition 17.1.5 Let L : X → Y be linear and continuous where X and Y are normed
linear spaces. Denote the set of all such continuous linear maps by L (X ,Y ) and define

||L||= sup{||Lx|| : ||x|| ≤ 1}. (17.1.1)

This is called the operator norm.

Note that from Theorem 17.1.4 ||L|| is well defined because of part c.) of that Theorem.
The next lemma follows immediately from the definition of the norm and the assump-

tion that L is linear.

Lemma 17.1.6 With ||L|| defined in 17.1.1, L (X ,Y ) is a normed linear space. Also
||Lx|| ≤ ||L|| ||x||.

Proof: Let x ̸= 0 then x/ ||x|| has norm equal to 1 and so∣∣∣∣∣∣∣∣L( x
||x||

)∣∣∣∣∣∣∣∣≤ ||L|| .
Therefore, multiplying both sides by ||x||, ||Lx|| ≤ ||L|| ||x||. This is obviously a linear
space. It remains to verify the operator norm really is a norm. First of all, if ||L||= 0, then
Lx = 0 for all ||x|| ≤ 1. It follows that for any x ̸= 0,0 = L

(
x
||x||

)
and so Lx = 0. Therefore,

L = 0. Also, if c is a scalar,

||cL||= sup
||x||≤1

||cL(x)||= |c| sup
||x||≤1

||Lx||= |c| ||L|| .
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It remains to verify the triangle inequality. Let L,M ∈L (X ,Y ) .

||L+M|| ≡ sup
||x||≤1

||(L+M)(x)|| ≤ sup
||x||≤1

(||Lx||+ ||Mx||)

≤ sup
||x||≤1

||Lx||+ sup
||x||≤1

||Mx||= ||L||+ ||M|| .

This shows the operator norm is really a norm as hoped. This proves the lemma.
For example, consider the space of linear transformations defined on Rn having values

in Rm. The fact the transformation is linear automatically imparts continuity to it. You
should give a proof of this fact. Recall that every such linear transformation can be realized
in terms of matrix multiplication.

Thus, in finite dimensions the algebraic condition that an operator is linear is sufficient
to imply the topological condition that the operator is continuous. The situation is not so
simple in infinite dimensional spaces such as C (X ;Rn). This explains the imposition of the
topological condition of continuity as a criterion for membership in L (X ,Y ) in addition
to the algebraic condition of linearity.

Theorem 17.1.7 If Y is a Banach space, then L (X ,Y ) is also a Banach space.

Proof: Let {Ln} be a Cauchy sequence in L (X ,Y ) and let x ∈ X .

||Lnx−Lmx|| ≤ ||x|| ||Ln−Lm||.

Thus {Lnx} is a Cauchy sequence. Let

Lx = lim
n→∞

Lnx.

Then, clearly, L is linear because if x1,x2 are in X , and a,b are scalars, then

L(ax1 +bx2) = lim
n→∞

Ln (ax1 +bx2)

= lim
n→∞

(aLnx1 +bLnx2)

= aLx1 +bLx2.

Also L is continuous. To see this, note that {||Ln||} is a Cauchy sequence of real numbers
because |||Ln||− ||Lm||| ≤ ||Ln−Lm||. Hence there exists K > sup{||Ln|| : n ∈ N}. Thus, if
x ∈ X ,

||Lx||= lim
n→∞
||Lnx|| ≤ K||x||.

This proves the theorem.

17.1.2 Uniform Boundedness Theorem
The next big result is sometimes called the Uniform Boundedness theorem, or the Banach-
Steinhaus theorem. This is a very surprising theorem which implies that for a collection
of bounded linear operators, if they are bounded pointwise, then they are also bounded
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uniformly. As an example of a situation in which pointwise bounded does not imply uni-
formly bounded, consider the functions fα (x)≡X(α,1) (x)x−1 for α ∈ (0,1). Clearly each
function is bounded and the collection of functions is bounded at each point of (0,1), but
there is no bound for all these functions taken together. One problem is that (0,1) is not a
Banach space. Therefore, the functions cannot be linear.

Theorem 17.1.8 Let X be a Banach space and let Y be a normed linear space. Let
{Lα}α∈Λ be a collection of elements of L (X ,Y ). Then one of the following happens.

a.) sup{||Lα || : α ∈ Λ}< ∞

b.) There exists a dense Gδ set, D, such that for all x ∈ D,

sup{||Lα x|| α ∈ Λ}= ∞.

Proof: For each n ∈ N, define

Un = {x ∈ X : sup{||Lα x|| : α ∈ Λ}> n}.

Then Un is an open set because if x ∈Un, then there exists α ∈ Λ such that

||Lα x||> n

But then, since Lα is continuous, this situation persists for all y sufficiently close to x, say
for all y ∈ B(x,δ ). Then B(x,δ )⊆Un which shows Un is open.

Case b.) is obtained from Theorem 17.1.2 if each Un is dense.
The other case is that for some n, Un is not dense. If this occurs, there exists x0 and r > 0

such that for all x ∈ B(x0,r), ||Lα x|| ≤ n for all α . Now if y ∈ B(0,r), x0 + y ∈ B(x0,r).
Consequently, for all such y, ||Lα(x0+y)|| ≤ n. This implies that for all α ∈Λ and ||y||< r,

||Lα y|| ≤ n+ ||Lα(x0)|| ≤ 2n.

Therefore, if ||y|| ≤ 1,
∣∣∣∣ r

2 y
∣∣∣∣< r and so for all α ,

||Lα

( r
2

y
)
|| ≤ 2n.

Now multiplying by r/2 it follows that whenever ||y|| ≤ 1, ||Lα (y)|| ≤ 4n/r. Hence case
a.) holds.

17.1.3 Open Mapping Theorem
Another remarkable theorem which depends on the Baire category theorem is the open
mapping theorem. Unlike Theorem 17.1.8 it requires both X and Y to be Banach spaces.

Theorem 17.1.9 Let X and Y be Banach spaces, let L ∈L (X ,Y ), and suppose L is onto.
Then L maps open sets onto open sets.

To aid in the proof, here is a lemma.
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Lemma 17.1.10 Let a and b be positive constants and suppose

B(0,a)⊆ L(B(0,b)).

Then
L(B(0,b))⊆ L(B(0,2b)).

Proof of Lemma 17.1.10: Let y ∈ L(B(0,b)). There exists x1 ∈ B(0,b) such that ||y−
Lx1||< a

2 . Now this implies

2y−2Lx1 ∈ B(0,a)⊆ L(B(0,b)).

Thus 2y− 2Lx1 ∈ L(B(0,b)) just like y was. Therefore, there exists x2 ∈ B(0,b) such
that ||2y− 2Lx1 − Lx2|| < a/2. Hence ||4y−4Lx1−2Lx2|| < a, and there exists x3 ∈
B(0,b) such that ||4y−4Lx1−2Lx2−Lx3|| < a/2. Continuing in this way, there exist
x1,x2,x3,x4, ... in B(0,b) such that

||2ny−
n

∑
i=1

2n−(i−1)L(xi)||< a

which implies

||y−
n

∑
i=1

2−(i−1)L(xi)||= ||y−L

(
n

∑
i=1

2−(i−1)(xi)

)
||< 2−na (17.1.2)

Now consider the partial sums of the series, ∑
∞
i=1 2−(i−1)xi.

||
n

∑
i=m

2−(i−1)xi|| ≤ b
∞

∑
i=m

2−(i−1) = b 2−m+2.

Therefore, these partial sums form a Cauchy sequence and so since X is complete, there
exists x = ∑

∞
i=1 2−(i−1)xi. Letting n→ ∞ in 17.1.2 yields ||y−Lx||= 0. Now

||x||= lim
n→∞
||

n

∑
i=1

2−(i−1)xi||

≤ lim
n→∞

n

∑
i=1

2−(i−1)||xi||< lim
n→∞

n

∑
i=1

2−(i−1)b = 2b.

This proves the lemma.
Proof of Theorem 17.1.9: Y =∪∞

n=1L(B(0,n)). By Corollary 17.1.3, the set, L(B(0,n0))

has nonempty interior for some n0. Thus B(y,r) ⊆ L(B(0,n0)) for some y and some
r > 0. Since L is linear B(−y,r) ⊆ L(B(0,n0)) also. Here is why. If z ∈ B(−y,r), then
−z ∈ B(y,r) and so there exists xn ∈ B(0,n0) such that Lxn→−z. Therefore, L(−xn)→ z
and −xn ∈ B(0,n0) also. Therefore z ∈ L(B(0,n0)). Then it follows that

B(0,r) ⊆ B(y,r)+B(−y,r)

≡ {y1 + y2 : y1 ∈ B(y,r) and y2 ∈ B(−y,r)}
⊆ L(B(0,2n0))
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The reason for the last inclusion is that from the above, if y1 ∈ B(y,r) and y2 ∈ B(−y,r),
there exists xn,zn ∈ B(0,n0) such that

Lxn→ y1, Lzn→ y2.

Therefore,
||xn + zn|| ≤ 2n0

and so (y1 + y2) ∈ L(B(0,2n0)).
By Lemma 17.1.10, L(B(0,2n0))⊆ L(B(0,4n0)) which shows

B(0,r)⊆ L(B(0,4n0)).

Letting a = r(4n0)
−1, it follows, since L is linear, that B(0,a)⊆ L(B(0,1)). It follows since

L is linear,
L(B(0,r))⊇ B(0,ar). (17.1.3)

Now let U be open in X and let x+B(0,r) = B(x,r)⊆U . Using 17.1.3,

L(U)⊇ L(x+B(0,r))

= Lx+L(B(0,r))⊇ Lx+B(0,ar) = B(Lx,ar).

Hence
Lx ∈ B(Lx,ar)⊆ L(U).

which shows that every point, Lx ∈ LU , is an interior point of LU and so LU is open. This
proves the theorem.

This theorem is surprising because it implies that if |·| and ||·|| are two norms with
respect to which a vector space X is a Banach space such that |·| ≤ K ||·||, then there exists
a constant k, such that ||·|| ≤ k |·| . This can be useful because sometimes it is not clear how
to compute k when all that is needed is its existence. To see the open mapping theorem
implies this, consider the identity map idx = x. Then id : (X , ||·||)→ (X , |·|) is continuous
and onto. Hence id is an open map which implies id−1 is continuous. Theorem 17.1.4 gives
the existence of the constant k.

17.1.4 Closed Graph Theorem
Definition 17.1.11 Let f : D→ E. The set of all ordered pairs of the form {(x, f (x)) : x ∈
D} is called the graph of f .

Definition 17.1.12 If X and Y are normed linear spaces, make X×Y into a normed linear
space by using the norm ||(x,y)|| = max(||x||, ||y||) along with component-wise addition
and scalar multiplication. Thus a(x,y)+b(z,w)≡ (ax+bz,ay+bw).

There are other ways to give a norm for X×Y . For example, you could define ||(x,y)||=
||x||+ ||y||

Lemma 17.1.13 The norm defined in Definition 17.1.12 on X×Y along with the definition
of addition and scalar multiplication given there make X×Y into a normed linear space.
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Proof: The only axiom for a norm which is not obvious is the triangle inequality.
Therefore, consider

||(x1,y1)+(x2,y2)|| = ||(x1 + x2,y1 + y2)||
= max(||x1 + x2|| , ||y1 + y2||)
≤ max(||x1||+ ||x2|| , ||y1||+ ||y2||)

≤ max(||x1|| , ||y1||)+max(||x2|| , ||y2||)
= ||(x1,y1)||+ ||(x2,y2)|| .

It is obvious X×Y is a vector space from the above definition. This proves the lemma.

Lemma 17.1.14 If X and Y are Banach spaces, then X×Y with the norm and vector space
operations defined in Definition 17.1.12 is also a Banach space.

Proof: The only thing left to check is that the space is complete. But this follows from
the simple observation that {(xn,yn)} is a Cauchy sequence in X ×Y if and only if {xn}
and {yn} are Cauchy sequences in X and Y respectively. Thus if {(xn,yn)} is a Cauchy
sequence in X ×Y , it follows there exist x and y such that xn → x and yn → y. But then
from the definition of the norm, (xn,yn)→ (x,y).

Lemma 17.1.15 Every closed subspace of a Banach space is a Banach space.

Proof: If F ⊆ X where X is a Banach space and {xn} is a Cauchy sequence in F , then
since X is complete, there exists a unique x ∈ X such that xn → x. However this means
x ∈ F = F since F is closed.

Definition 17.1.16 Let X and Y be Banach spaces and let D ⊆ X be a subspace. A linear
map L : D→Y is said to be closed if its graph is a closed subspace of X×Y . Equivalently,
L is closed if xn→ x and Lxn→ y implies x ∈ D and y = Lx.

Note the distinction between closed and continuous. If the operator is closed the as-
sertion that y = Lx only follows if it is known that the sequence {Lxn} converges. In the
case of a continuous operator, the convergence of {Lxn} follows from the assumption that
xn→ x. It is not always the case that a mapping which is closed is necessarily continuous.
Consider the function f (x) = tan(x) if x is not an odd multiple of π

2 and f (x)≡ 0 at every
odd multiple of π

2 . Then the graph is closed and the function is defined on R but it clearly
fails to be continuous. Of course this function is not linear. You could also consider the
map,

d
dx

:
{

y ∈C1 ([0,1]) : y(0) = 0
}
≡ D→C ([0,1]) .

where the norm is the uniform norm on C ([0,1]) , ||y||
∞

. If y ∈ D, then

y(x) =
∫ x

0
y′ (t)dt.
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Therefore, if dyn
dx → f ∈C ([0,1]) and if yn→ y in C ([0,1]) it follows that

yn (x) =
∫ x

0
dyn(t)

dx dt
↓ ↓

y(x) =
∫ x

0 f (t)dt

and so by the fundamental theorem of calculus f (x) = y′ (x) and so the mapping is closed.
It is obviously not continuous because it takes y(x) and y(x)+ 1

n sin(nx) to two functions
which are far from each other even though these two functions are very close in C ([0,1]).
Furthermore, it is not defined on the whole space, C ([0,1]).

The next theorem, the closed graph theorem, gives conditions under which closed im-
plies continuous.

Theorem 17.1.17 Let X and Y be Banach spaces and suppose L : X → Y is closed and
linear. Then L is continuous.

Proof: Let G be the graph of L. G = {(x,Lx) : x ∈ X}. By Lemma 17.1.15 it follows
that G is a Banach space. Define P : G→ X by P(x,Lx) = x. P maps the Banach space G
onto the Banach space X and is continuous and linear. By the open mapping theorem, P
maps open sets onto open sets. Since P is also one to one, this says that P−1 is continuous.
Thus ||P−1x|| ≤ K||x||. Hence

||Lx|| ≤max(||x||, ||Lx||)≤ K||x||

By Theorem 17.1.4 on Page 437, this shows L is continuous and proves the theorem.
The following corollary is quite useful. It shows how to obtain a new norm on the

domain of a closed operator such that the domain with this new norm becomes a Banach
space.

Corollary 17.1.18 Let L : D⊆ X → Y where X ,Y are a Banach spaces, and L is a closed
operator. Then define a new norm on D by

||x||D ≡ ||x||X + ||Lx||Y .

Then D with this new norm is a Banach space.

Proof: If {xn} is a Cauchy sequence in D with this new norm, it follows both {xn} and
{Lxn} are Cauchy sequences and therefore, they converge. Since L is closed, xn → x and
Lxn→ Lx for some x ∈ D. Thus ||xn− x||D→ 0.

17.2 Hahn Banach Theorem
The closed graph, open mapping, and uniform boundedness theorems are the three major
topological theorems in functional analysis. The other major theorem is the Hahn-Banach
theorem which has nothing to do with topology. Before presenting this theorem, here are
some preliminaries about partially ordered sets.
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17.2.1 Partially Ordered Sets
Definition 17.2.1 Let F be a nonempty set. F is called a partially ordered set if there is
a relation, denoted here by ≤, such that

x≤ x for all x ∈F .

If x≤ y and y≤ z then x≤ z.

C ⊆F is said to be a chain if every two elements of C are related. This means that if
x,y ∈ C , then either x≤ y or y≤ x. Sometimes a chain is called a totally ordered set. C is
said to be a maximal chain if whenever D is a chain containing C , D = C .

The most common example of a partially ordered set is the power set of a given set
with ⊆ being the relation. It is also helpful to visualize partially ordered sets as trees. Two
points on the tree are related if they are on the same branch of the tree and one is higher
than the other. Thus two points on different branches would not be related although they
might both be larger than some point on the trunk. You might think of many other things
which are best considered as partially ordered sets. Think of food for example. You might
find it difficult to determine which of two favorite pies you like better although you may
be able to say very easily that you would prefer either pie to a dish of lard topped with
whipped cream and mustard. The following theorem is equivalent to the axiom of choice.
For a discussion of this, see the appendix on the subject.

Theorem 17.2.2 (Hausdorff Maximal Principle) Let F be a nonempty partially ordered
set. Then there exists a maximal chain.

17.2.2 Gauge Functions And Hahn Banach Theorem
Definition 17.2.3 Let X be a real vector space ρ : X → R is called a gauge function if

ρ(x+ y)≤ ρ(x)+ρ(y),

ρ(ax) = aρ(x) if a≥ 0. (17.2.4)

Suppose M is a subspace of X and z /∈ M. Suppose also that f is a linear real-valued
function having the property that f (x) ≤ ρ(x) for all x ∈ M. Consider the problem of
extending f to M⊕Rz such that if F is the extended function, F(y) ≤ ρ(y) for all y ∈
M⊕Rz and F is linear. Since F is to be linear, it suffices to determine how to define F(z).
Letting a > 0, it is required to define F (z) such that the following hold for all x,y ∈M.

f (x)︷︸︸︷
F (x)+aF (z) = F(x+az)≤ ρ(x+az),

f (y)︷︸︸︷
F (y)−aF (z) = F(y−az)≤ ρ(y−az). (17.2.5)
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Now if these inequalities hold for all y/a, they hold for all y because M is given to be a
subspace. Therefore, multiplying by a−1 17.2.4 implies that what is needed is to choose
F (z) such that for all x,y ∈M,

f (x)+F(z)≤ ρ(x+ z), f (y)−ρ(y− z)≤ F(z)

and that if F (z) can be chosen in this way, this will satisfy 17.2.5 for all x,y and the problem
of extending f will be solved. Hence it is necessary to choose F(z) such that for all x,y∈M

f (y)−ρ(y− z)≤ F(z)≤ ρ(x+ z)− f (x). (17.2.6)

Is there any such number between f (y)−ρ(y− z) and ρ(x+ z)− f (x) for every pair x,y ∈
M? This is where f (x)≤ ρ(x) on M and that f is linear is used. For x,y ∈M,

ρ(x+ z)− f (x)− [ f (y)−ρ(y− z)]

= ρ(x+ z)+ρ(y− z)− ( f (x)+ f (y))

≥ ρ(x+ y)− f (x+ y)≥ 0.

Therefore there exists a number between

sup{ f (y)−ρ(y− z) : y ∈M}

and
inf{ρ(x+ z)− f (x) : x ∈M}

Choose F(z) to satisfy 17.2.6. This has proved the following lemma.

Lemma 17.2.4 Let M be a subspace of X, a real linear space, and let ρ be a gauge function
on X. Suppose f : M→ R is linear, z /∈M, and f (x)≤ ρ (x) for all x ∈M. Then f can be
extended to M⊕Rz such that, if F is the extended function, F is linear and F(x) ≤ ρ(x)
for all x ∈M⊕Rz.

With this lemma, the Hahn Banach theorem can be proved.

Theorem 17.2.5 (Hahn Banach theorem) Let X be a real vector space, let M be a subspace
of X, let f : M→R be linear, let ρ be a gauge function on X, and suppose f (x)≤ ρ(x) for
all x ∈M. Then there exists a linear function, F : X → R, such that

a.) F(x) = f (x) for all x ∈M
b.) F(x)≤ ρ(x) for all x ∈ X.

Proof: Let F = {(V,g) : V ⊇M, V is a subspace of X , g : V →R is linear, g(x) = f (x)
for all x ∈ M, and g(x) ≤ ρ(x) for x ∈ V}. Then (M, f ) ∈F so F ̸= /0. Define a partial
order by the following rule.

(V,g)≤ (W,h)

means
V ⊆W and h(x) = g(x) if x ∈V.
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By Theorem 17.2.2, there exists a maximal chain, C ⊆ F . Let Y = ∪{V : (V,g) ∈ C }
and let h : Y → R be defined by h(x) = g(x) where x ∈ V and (V,g) ∈ C . This is well
defined because if x ∈ V1 and V2 where (V1,g1) and (V2,g2) are both in the chain, then
since C is a chain, the two element related. Therefore, g1 (x) = g2 (x). Also h is linear
because if ax+by ∈ Y , then x ∈ V1 and y ∈ V2 where (V1,g1) and (V2,g2) are elements of
C . Therefore, letting V denote the larger of the two Vi, and g be the function that goes with
V , it follows ax+by ∈V where (V,g) ∈ C . Therefore,

h(ax+by) = g(ax+by)

= ag(x)+bg(y)

= ah(x)+bh(y) .

Also, h(x) = g(x)≤ ρ(x) for any x ∈ Y because for such x, x ∈V where (V,g) ∈ C .
Is Y = X? If not, there exists z ∈ X \Y and there exists an extension of h to Y ⊕Rz

using Lemma 17.2.4. Letting h denote this extended function, contradicts the maximality
of C . Indeed, C ∪{

(
Y ⊕Rz, h

)
} would be a longer chain. This proves the Hahn Banach

theorem.
This is the original version of the theorem. There is also a version of this theorem for

complex vector spaces which is based on a trick.

17.2.3 The Complex Version Of The Hahn Banach Theorem
Corollary 17.2.6 (Hahn Banach) Let M be a subspace of a complex normed linear space,
X, and suppose f : M→ C is linear and satisfies | f (x)| ≤ K||x|| for all x ∈M. Then there
exists a linear function, F, defined on all of X such that F(x) = f (x) for all x ∈ M and
|F(x)| ≤ K||x|| for all x.

Proof: First note f (x) = Re f (x)+ i Im f (x) and so

Re f (ix)+ i Im f (ix) = f (ix) = i f (x) = iRe f (x)− Im f (x).

Therefore, Im f (x) =−Re f (ix), and

f (x) = Re f (x)− iRe f (ix).

This is important because it shows it is only necessary to consider Re f in understanding f .
Now it happens that Re f is linear with respect to real scalars so the above version of the
Hahn Banach theorem applies. This is shown next.

If c is a real scalar

Re f (cx)− iRe f (icx) = c f (x) = cRe f (x)− icRe f (ix).

Thus Re f (cx) = cRe f (x). Also,

Re f (x+ y)− iRe f (i(x+ y)) = f (x+ y)

= f (x)+ f (y)
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= Re f (x)− iRe f (ix)+Re f (y)− iRe f (iy).

Equating real parts, Re f (x+ y) = Re f (x)+Re f (y). Thus Re f is linear with respect to
real scalars as hoped.

Consider X as a real vector space and let ρ(x)≡ K||x||. Then for all x ∈M,

|Re f (x)| ≤ | f (x)| ≤ K||x||= ρ(x).

From Theorem 17.2.5, Re f may be extended to a function, h which satisfies

h(ax+by) = ah(x)+bh(y) if a,b ∈ R
h(x) ≤ K||x|| for all x ∈ X .

Actually, |h(x)| ≤ K ||x|| . The reason for this is that h(−x) = −h(x) ≤ K ||−x|| = K ||x||
and therefore, h(x)≥−K ||x||. Let

F(x)≡ h(x)− ih(ix).

By arguments similar to the above, F is linear.

F (ix) = h(ix)− ih(−x)

= ih(x)+h(ix)

= i(h(x)− ih(ix)) = iF (x) .

If c is a real scalar,

F (cx) = h(cx)− ih(icx)

= ch(x)− cih(ix) = cF (x)

Now

F (x+ y) = h(x+ y)− ih(i(x+ y))

= h(x)+h(y)− ih(ix)− ih(iy)

= F (x)+F (y) .

Thus

F ((a+ ib)x) = F (ax)+F (ibx)

= aF (x)+ ibF (x)

= (a+ ib)F (x) .

This shows F is linear as claimed.
Now wF(x) = |F(x)| for some |w|= 1. Therefore

|F(x)| = wF(x) = h(wx)−

must equal zero︷ ︸︸ ︷
ih(iwx) = h(wx)

= |h(wx)| ≤ K||wx||= K ||x|| .

This proves the corollary.
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17.2.4 The Dual Space And Adjoint Operators
Definition 17.2.7 Let X be a Banach space. Denote by X ′ the space of continuous linear
functions which map X to the field of scalars. Thus X ′ = L (X ,F). By Theorem 17.1.7 on
Page 438, X ′ is a Banach space. Remember with the norm defined on L (X ,F),

|| f ||= sup{| f (x)| : ||x|| ≤ 1}

X ′ is called the dual space.

Definition 17.2.8 Let X and Y be Banach spaces and suppose L ∈L (X ,Y ). Then define
the adjoint map in L (Y ′,X ′), denoted by L∗, by

L∗y∗(x)≡ y∗(Lx)

for all y∗ ∈ Y ′.

The following diagram is a good one to help remember this definition.

X ′
L∗

← Y ′

X
→
L

Y

This is a generalization of the adjoint of a linear transformation on an inner product
space. Recall

(Ax,y) = (x,A∗y)

What is being done here is to generalize this algebraic concept to arbitrary Banach spaces.
There are some issues which need to be discussed relative to the above definition. First of
all, it must be shown that L∗y∗ ∈ X ′. Also, it will be useful to have the following lemma
which is a useful application of the Hahn Banach theorem.

Lemma 17.2.9 Let X be a normed linear space and let x ∈ X \V where V is a closed
subspace of X. Then there exists x∗ ∈ X ′ such that x∗(x) = ||x||, x∗ (V ) = {0}, and

||x∗|| ≤ 1
dist(x,V )

In the case that V = {0} , ||x∗||= 1.

Proof: Let f :Fx+V→F be defined by f (αx+v)=α||x||. First it is necessary to show
f is well defined and continuous. If α1x+v1 = α2x+v2 then if α1 ̸= α2, then x ∈V which
is assumed not to happen so f is well defined. It remains to show f is continuous. Suppose
then that αnx+ vn→ 0. It is necessary to show αn→ 0. If this does not happen, then there
exists a subsequence, still denoted by αn such that |αn| ≥ δ > 0. Then x+(1/αn)vn→ 0
contradicting the assumption that x /∈V and V is a closed subspace. Hence f is continuous
on Fx+V. Being a little more careful,

|| f ||= sup
||αx+v||≤1

| f (αx+ v)|= sup
|α|||x+(v/α)||≤1

|α| ||x||= 1
dist(x,V )

||x||



17.2. HAHN BANACH THEOREM 449

By the Hahn Banach theorem, there exists x∗ ∈ X ′ such that x∗ = f on Fx+V. Thus x∗ (x) =
||x|| and also

||x∗|| ≤ || f ||= 1
dist(x,V )

In case V = {0} , the result follows from the above or alternatively,

|| f || ≡ sup
||αx||≤1

| f (αx)|= sup
|α|≤1/||x||

|α| ||x||= 1

and so, in this case, ||x∗|| ≤ || f ||= 1. Since x∗(x) = ||x|| it follows

||x∗|| ≥
∣∣∣∣x∗( x

||x||

)∣∣∣∣= ||x||||x|| = 1.

Thus ||x∗||= 1 and this proves the lemma.

Theorem 17.2.10 Let L ∈L (X ,Y ) where X and Y are Banach spaces. Then
a.) L∗ ∈L (Y ′,X ′) as claimed and ||L∗||= ||L||.
b.) If L maps one to one onto a closed subspace of Y , then L∗ is onto.
c.) If L maps onto a dense subset of Y , then L∗ is one to one.

Proof: It is routine to verify L∗y∗ and L∗ are both linear. This follows immediately
from the definition. As usual, the interesting thing concerns continuity.

||L∗y∗||= sup
||x||≤1

|L∗y∗ (x)|= sup
||x||≤1

|y∗ (Lx)| ≤ ||y∗|| ||L|| .

Thus L∗ is continuous as claimed and ||L∗|| ≤ ||L|| .
By Lemma 17.2.9, there exists y∗x ∈ Y ′ such that ||y∗x || = 1 and y∗x (Lx) = ||Lx|| .There-

fore,

||L∗|| = sup
||y∗||≤1

||L∗y∗||= sup
||y∗||≤1

sup
||x||≤1

|L∗y∗ (x)|

= sup
||y∗||≤1

sup
||x||≤1

|y∗ (Lx)|= sup
||x||≤1

sup
||y∗||≤1

|y∗ (Lx)|

≥ sup
||x||≤1

|y∗x (Lx)|= sup
||x||≤1

||Lx||= ||L||

showing that ||L∗|| ≥ ||L|| and this shows part a.).
If L is one to one and onto a closed subset of Y , then L(X) being a closed subspace

of a Banach space, is itself a Banach space and so the open mapping theorem implies
L−1 : L(X)→ X is continuous. Hence

||x||= ||L−1Lx|| ≤
∣∣∣∣L−1∣∣∣∣ ||Lx||

Now let x∗ ∈ X ′ be given. Define f ∈L (L(X),C) by f (Lx) = x∗(x). The function, f is
well defined because if Lx1 = Lx2, then since L is one to one, it follows x1 = x2 and so
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f (L(x1)) = x∗ (x1) = x∗ (x2) = f (L(x1)). Also, f is linear because

f (aL(x1)+bL(x2)) = f (L(ax1 +bx2))

≡ x∗ (ax1 +bx2)

= ax∗ (x1)+bx∗ (x2)

= a f (L(x1))+b f (L(x2)) .

In addition to this,

| f (Lx)|= |x∗(x)| ≤ ||x∗|| ||x|| ≤ ||x∗||
∣∣∣∣L−1∣∣∣∣ ||Lx||

and so the norm of f on L(X) is no larger than ||x∗||
∣∣∣∣L−1

∣∣∣∣. By the Hahn Banach theorem,
there exists an extension of f to an element y∗ ∈ Y ′ such that ||y∗|| ≤ ||x∗||

∣∣∣∣L−1
∣∣∣∣. Then

L∗y∗(x) = y∗(Lx) = f (Lx) = x∗(x)

so L∗y∗ = x∗ because this holds for all x. Since x∗ was arbitrary, this shows L∗ is onto and
proves b.).

Consider the last assertion. Suppose L∗y∗ = 0. Is y∗ = 0? In other words is y∗ (y) = 0
for all y∈Y ? Pick y∈Y . Since L(X) is dense in Y, there exists a sequence, {Lxn} such that
Lxn → y. But then by continuity of y∗, y∗ (y) = limn→∞ y∗ (Lxn) = limn→∞ L∗y∗ (xn) = 0.
Since y∗ (y) = 0 for all y, this implies y∗ = 0 and so L∗ is one to one.

Corollary 17.2.11 Suppose X and Y are Banach spaces, L ∈L (X ,Y ), and L is one to one
and onto. Then L∗ is also one to one and onto.

There exists a natural mapping, called the James map from a normed linear space, X ,
to the dual of the dual space which is described in the following definition.

Definition 17.2.12 Define J : X → X ′′ by J(x)(x∗) = x∗(x).

Theorem 17.2.13 The map, J, has the following properties.
a.) J is one to one and linear.
b.) ||Jx||= ||x|| and ||J||= 1.
c.) J(X) is a closed subspace of X ′′ if X is complete.
Also if x∗ ∈ X ′,

||x∗||= sup
{
|x∗∗ (x∗)| : ||x∗∗|| ≤ 1, x∗∗ ∈ X ′′

}
.

Proof:

J (ax+by)(x∗) ≡ x∗ (ax+by)

= ax∗ (x)+bx∗ (y)

= (aJ (x)+bJ (y))(x∗) .

Since this holds for all x∗ ∈ X ′, it follows that

J (ax+by) = aJ (x)+bJ (y)
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and so J is linear. If Jx = 0, then by Lemma 17.2.9 there exists x∗ such that x∗(x) = ||x||
and ||x∗||= 1. Then

0 = J(x)(x∗) = x∗(x) = ||x||.

This shows a.).
To show b.), let x ∈ X and use Lemma 17.2.9 to obtain x∗ ∈ X ′ such that x∗(x) = ||x||

with ||x∗||= 1. Then

||x|| ≥ sup{|y∗(x)| : ||y∗|| ≤ 1}
= sup{|J(x)(y∗)| : ||y∗|| ≤ 1}= ||Jx||
≥ |J(x)(x∗)|= |x∗(x)|= ||x||

Therefore, ||Jx||= ||x|| as claimed. Therefore,

||J||= sup{||Jx|| : ||x|| ≤ 1}= sup{||x|| : ||x|| ≤ 1}= 1.

This shows b.).
To verify c.), use b.). If Jxn→ y∗∗ ∈ X ′′ then by b.), xn is a Cauchy sequence converging

to some x ∈ X because
||xn− xm||= ||Jxn− Jxm||

and {Jxn} is a Cauchy sequence. Then Jx = limn→∞ Jxn = y∗∗.
Finally, to show the assertion about the norm of x∗, use what was just shown applied to

the James map from X ′ to X ′′′ still referred to as J.

||x∗||= sup{|x∗ (x)| : ||x|| ≤ 1}= sup{|J (x)(x∗)| : ||Jx|| ≤ 1}

≤ sup{|x∗∗ (x∗)| : ||x∗∗|| ≤ 1}= sup{|J (x∗)(x∗∗)| : ||x∗∗|| ≤ 1}

≡ ||Jx∗||= ||x∗||.

This proves the theorem.

Definition 17.2.14 When J maps X onto X ′′, X is called reflexive.

It happens the Lp spaces are reflexive whenever p > 1. This is shown later.

17.3 Uniform Convexity Of Lp

These terms refer roughly to how round the unit ball is. Here is the definition.

Definition 17.3.1 A Banach space is uniformly convex if whenever ||xn||, ||yn|| ≤ 1 and
||xn + yn|| → 2, it follows that ||xn− yn|| → 0.

You can show that uniform convexity implies strict convexity. There are various other
things which can also be shown. See the exercises for some of these. In this section, it
will be shown that the Lp spaces are examples of uniformly convex spaces. This involves
some inequalities known as Clarkson’s inequalities. Before presenting these, here are the
backwards Holder inequality and the backwards Minkowski inequality.
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Lemma 17.3.2 Let 0 < p < 1 and let f ,g be measurable functions. Also∫
Ω

|g|p/(p−1) dµ < ∞,
∫

Ω

| f |p dµ < ∞

Then the following backwards Holder inequality holds.∫
Ω

| f g|dµ ≥
(∫

Ω

| f |p dµ

)1/p(∫
Ω

|g|p/(p−1) dµ

)(p−1)/p

Proof: If
∫
| f g|dµ = ∞, there is nothing to prove. Hence assume this is finite. Then∫

| f |p dµ =
∫
|g|−p | f g|p dµ

This makes sense because, due to the hypothesis on g it must be the case that g equals 0
only on a set of measure zero, since p/(p−1)< 0. Then∫

| f |p dµ ≤
(∫
| f g|dµ

)p
(∫ ( 1

|g|p
)1/(1−p)

dµ

)1−p

=

(∫
| f g|dµ

)p(∫
|g|p/p−1 dµ

)1−p

Now divide and then take the pth root. ■
Here is the backwards Minkowski inequality.

Corollary 17.3.3 Let 0 < p < 1 and suppose
∫
|h|p dµ < ∞ for h = f ,g. Then(∫

(| f |+ |g|)p dµ

)1/p

≥
(∫
| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

Proof: If
∫
(| f |+ |g|)p dµ = 0 then there is nothing to prove so assume this is not zero.∫

(| f |+ |g|)p dµ =
∫

(| f |+ |g|)p−1 (| f |+ |g|)dµ

(| f |+ |g|)p ≤ | f |p + |g|p and so∫ (
(| f |+ |g|)p−1

)p/p−1
dµ < ∞.

Hence the backward Holder inequality applies and it follows that∫
(| f |+ |g|)p dµ =

∫
(| f |+ |g|)p−1 | f |dµ +

∫
(| f |+ |g|)p−1 |g|dµ

≥
(∫ (

(| f |+ |g|)p−1
)p/p−1

)(p−1)/p
[(∫

| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p
]

=

(∫
(| f |+ |g|)p

)(p−1)/p
[(∫

| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p
]

and so, dividing gives the desired inequality. ■
Consider the easy Clarkson inequalities.
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Lemma 17.3.4 For any p≥ 2 the following inequality holds for any t ∈ [0,1] ,∣∣∣∣1+ t
2

∣∣∣∣p + ∣∣∣∣1− t
2

∣∣∣∣p ≤ 1
2
(|t|p +1)

Proof: It is clear that, since p ≥ 2, the inequality holds for t = 0 and t = 1.Thus it
suffices to consider only t ∈ (0,1). Let x = 1/t. Then, dividing by 1/t p, the inequality
holds if and only if (

x+1
2

)p

+

(
x−1

2

)p

≤ 1
2
(1+ xp)

for all x≥ 1. Let

f (x) =
1
2
(1+ xp)−

((
x+1

2

)p

+

(
x−1

2

)p)
Then f (1) = 0 and

f ′ (x) =
p
2

xp−1−

(
p
2

(
x+1

2

)p−1

+
p
2

(
x−1

2

)p−1
)

Since p−1≥ 1, by convexity of f (x) = xp−1,

f ′ (x)≥ p
2

xp−1− p

(
x+1

2 + x−1
2

2

)p−1

=
p
2

xp−1− p
( x

2

)p−1
≥ 0

Hence f (x)≥ 0 for all x≥ 1.■

Corollary 17.3.5 If z,w ∈ C and p≥ 2, then∣∣∣∣ z+w
2

∣∣∣∣p + ∣∣∣∣ z−w
2

∣∣∣∣p ≤ 1
2
(|z|p + |w|p) (17.3.7)

Proof: One of |w| , |z| is larger. Say |z| ≥ |w| . Then dividing both sides of the proposed
inequality by |z|p it suffices to verify that for all complex t having |t| ≤ 1,∣∣∣∣1+ t

2

∣∣∣∣p + ∣∣∣∣1− t
2

∣∣∣∣p ≤ 1
2
(|t|p +1)

Say t = reiθ where r ≤ 1.Then consider the expression∣∣∣∣1+ reiθ

2

∣∣∣∣p + ∣∣∣∣1− reiθ

2

∣∣∣∣p
It is 2−p times (

(1+ r cosθ)2 + r2 sin2 (θ)
)p/2

+
(
(1− r cosθ)2 + r2 sin2 (θ)

)p/2

=
(
1+ r2 +2r cosθ

)p/2
+
(
1+ r2−2r cosθ

)p/2
,
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a continuous periodic function for θ ∈ R which achieves its maximum value when θ = 0.
This follows from the first derivative test from calculus. Therefore, for |t| ≤ 1,∣∣∣∣1+ t

2

∣∣∣∣p + ∣∣∣∣1− t
2

∣∣∣∣p ≤ ∣∣∣∣1+ |t|2

∣∣∣∣p + ∣∣∣∣1−|t|2

∣∣∣∣p ≤ 1
2
(1+ |t|p)

by the above lemma. ■
With this corollary, here is the easy Clarkson inequality.

Theorem 17.3.6 Let p≥ 2. Then∣∣∣∣∣∣∣∣ f +g
2

∣∣∣∣∣∣∣∣p
Lp
+

∣∣∣∣∣∣∣∣ f −g
2

∣∣∣∣∣∣∣∣p
Lp
≤ 1

2
(
|| f ||pLp + ||g||pLp

)
Proof: This follows right away from the above corollary.∫

Ω

∣∣∣∣ f +g
2

∣∣∣∣p dµ +
∫

Ω

∣∣∣∣ f −g
2

∣∣∣∣p dµ ≤ 1
2

∫
Ω

(| f |p + |g|p)dµ ■

Now it remains to consider the hard Clarkson inequalities. These pertain to p < 2. First
is the following elementary inequality.

Lemma 17.3.7 For 1 < p < 2, the following inequality holds for all t ∈ [0,1] .∣∣∣∣1+ t
2

∣∣∣∣q + ∣∣∣∣1− t
2

∣∣∣∣q ≤ (1
2
+

1
2
|t|p
)q/p

where here 1/p+1/q = 1 so q > 2.

Proof: First note that if t = 0 or 1, the inequality holds. Next observe that the map
s→ 1−s

1+s maps (0,1) onto (0,1). Replace t with (1− s)/(1+ s). Then you get

∣∣∣∣ 1
s+1

∣∣∣∣q + ∣∣∣∣ s
s+1

∣∣∣∣q ≤ (1
2
+

1
2

∣∣∣∣1− s
s+1

∣∣∣∣p)q/p

Multiplying both sides by (1+ s)q , this is equivalent to showing that for all s ∈ (0,1) ,

1+ sq ≤ ((1+ s)p)
q/p
(

1
2
+

1
2

∣∣∣∣1− s
s+1

∣∣∣∣p)q/p

=

(
1
2

)q/p

((1+ s)p +(1− s)p)
q/p

This is the same as establishing

1
2
((1+ s)p +(1− s)p)− (1+ sq)p−1 ≥ 0 (17.3.8)
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where p−1 = p/q due to the definition of q above.(
p
l

)
≡ p(p−1) · · ·(p− k+1)

l!
, l ≥ 1

and
(

p
0

)
≡ 1. What is the sign of

(
p
l

)
? Recall that 1 < p < 2 so the sign is positive

if l = 0, l = 1, l = 2. What about l = 3?
(

p
3

)
= p(p−1)(p−2)

3! so this is negative. Then(
p
4

)
is positive. Thus these alternate between positive and negative with

(
p

2k

)
> 0

for all k. What about
(

p−1
k

)
? When k = 0 it is positive. When k = 1 it is also positive.

When k = 2 it equals (p−1)(p−2)
2! < 0. Then when k = 3,

(
p−1

3

)
> 0. Thus

(
p−1

k

)
is positive when k is odd and is negative when k is even.

Now return to 17.3.8. The left side equals

1
2

(
∞

∑
k=0

(
p
k

)
sk +

∞

∑
k=0

(
p
k

)
(−s)k

)
−

∞

∑
k=0

(
p−1

k

)
sqk.

The first term equals 0. Then this reduces to
∞

∑
k=1

(
p

2k

)
s2k−

(
p−1

2k

)
sq2k−

(
p−1

2k−1

)
sq(2k−1)

From the above observation about the binomial coefficients, the above is larger than
∞

∑
k=1

(
p

2k

)
s2k−

(
p−1

2k−1

)
sq(2k−1)

It remains to show the kth term in the above sum is nonnegative. Now q(2k−1) > 2k for
all k ≥ 1 because q > 2. Then since 0 < s < 1(

p
2k

)
s2k−

(
p−1

2k−1

)
sq(2k−1) ≥ s2k

((
p

2k

)
−
(

p−1
2k−1

))
However, this is nonnegative because it equals

s2k

 p(p−1) · · ·(p−2k+1)
(2k)!

−

>0︷ ︸︸ ︷
(p−1)(p−2) · · ·(p−2k+1)

(2k−1)!


≥ s2k

(
p(p−1) · · ·(p−2k+1)

(2k)!
− (p−1)(p−2) · · ·(p−2k+1)

(2k)!

)
= s2k (p−1)(p−2) · · ·(p−2k+1)

(2k)!
(p−1)> 0. ■

As before, this leads to the following corollary.
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Corollary 17.3.8 Let z,w ∈ C. Then for p ∈ (1,2) ,∣∣∣∣ z+w
2

∣∣∣∣q + ∣∣∣∣ z−w
2

∣∣∣∣q ≤ (1
2
|z|p + 1

2
|w|p

)q/p

Proof: One of |w| , |z| is larger. Say |w| ≥ |z| . Then dividing by |w|q , for t = z/w,
showing the above inequality is equivalent to showing that for all t ∈ C, |t| ≤ 1,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t
2

∣∣∣∣q ≤ (1
2
|t|p + 1

2

)q/p

Now q > 2 and so by the same argument given in proving Corollary 17.3.5, for t = reiθ , the
left side of the above inequality is maximized when θ = 0. Hence, from Lemma 17.3.7,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t
2

∣∣∣∣q ≤ ∣∣∣∣ |t|+1
2

∣∣∣∣q + ∣∣∣∣1−|t|2

∣∣∣∣q

≤
(

1
2
|t|p + 1

2

)q/p

. ■

From this the hard Clarkson inequality follows. The two Clarkson inequalities are
summarized in the following theorem.

Theorem 17.3.9 Let 2≤ p. Then∣∣∣∣∣∣∣∣ f +g
2

∣∣∣∣∣∣∣∣p
Lp
+

∣∣∣∣∣∣∣∣ f −g
2

∣∣∣∣∣∣∣∣p
Lp
≤ 1

2
(
|| f ||pLp + ||g||pLp

)
Let 1 < p < 2. Then for 1/p+1/q = 1,∣∣∣∣∣∣∣∣ f +g

2

∣∣∣∣∣∣∣∣q
Lp
+

∣∣∣∣∣∣∣∣ f −g
2

∣∣∣∣∣∣∣∣q
Lp
≤
(

1
2
|| f ||pLp +

1
2
||g||pLp

)q/p

Proof: The first was established above.∣∣∣∣∣∣∣∣ f +g
2

∣∣∣∣∣∣∣∣q
Lp
+

∣∣∣∣∣∣∣∣ f −g
2

∣∣∣∣∣∣∣∣q
Lp
≤

(∫
Ω

∣∣∣∣ f +g
2

∣∣∣∣p dµ

)q/p

+

(∫
Ω

∣∣∣∣ f −g
2

∣∣∣∣p dµ

)q/p

=

(∫
Ω

(∣∣∣∣ f +g
2

∣∣∣∣q)p/q

dµ

)q/p

+

(∫
Ω

(∣∣∣∣ f −g
2

∣∣∣∣q)p/q

dµ

)q/p

Now p/q < 1 and so the backwards Minkowski inequality applies. Thus

≤

(∫
Ω

(∣∣∣∣ f +g
2

∣∣∣∣q + ∣∣∣∣ f −g
2

∣∣∣∣q)p/q

dµ

)q/p
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From Corollary 17.3.8,

≤

∫
Ω

((
1
2
| f |p + 1

2
|g|p
)q/p

)p/q

dµ

q/p

=

(∫
Ω

(
1
2
| f |p + 1

2
|g|p
)

dµ

)q/p

=

(
1
2
|| f ||pLp +

1
2
||g||pLp

)q/p

■

Now with these Clarkson inequalities, it is not hard to show that all the Lp spaces are
uniformly convex.

Theorem 17.3.10 The Lp spaces are uniformly convex.

Proof: First suppose p ≥ 2. Suppose || fn||Lp , ||gn||Lp ≤ 1 and
∣∣∣∣∣∣ fn+gn

2

∣∣∣∣∣∣
Lp
→ 1. Then

from the first Clarkson inequality,∣∣∣∣∣∣∣∣ fn +gn

2

∣∣∣∣∣∣∣∣p
Lp
+

∣∣∣∣∣∣∣∣ fn−gn

2

∣∣∣∣∣∣∣∣p
Lp
≤ 1

2
(
|| fn||pLp + ||gn||pLp

)
≤ 1

and so || fn−gn||Lp → 0.

Next suppose 1< p< 2 and
∣∣∣∣∣∣ fn+gn

2

∣∣∣∣∣∣
Lp
→ 1. Then from the second Clarkson inequality

∣∣∣∣∣∣∣∣ fn +gn

2

∣∣∣∣∣∣∣∣q
Lp
+

∣∣∣∣∣∣∣∣ fn−gn

2

∣∣∣∣∣∣∣∣q
Lp
≤
(

1
2
|| fn||pLp +

1
2
||gn||pLp

)q/p

≤ 1

which shows that || fn−gn||Lp → 0. ■

17.4 Closed Subspaces
Theorem 17.4.1 Let X be a Banach space and let V = span(x1, · · · ,xn) . Then V is a closed
subspace of X.

Proof: Without loss of generality, it can be assumed {x1, · · · ,xn} is linearly indepen-
dent. Otherwise, delete those vectors which are in the span of the others till a linearly
independent set is obtained. Let

x = lim
p→∞

n

∑
k=1

cp
k xk ∈V . (17.4.9)

First suppose cp ≡
(
cp

1 , · · · ,c
p
n
)

is not bounded in Fn. Then dp ≡ cp/ |cp|Fn is a unit vector
in Fn and so there exists a subsequence, still denoted by dp which converges to d where
|d|= 1. Then

0 = lim
p→∞

x
||cp|| = lim

p→∞

n

∑
k=1

dp
k xk =

n

∑
k=1

dkxk
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where ∑k |dk|2 = 1 in contradiction to the linear independence of the {x1, · · · ,xn}. Hence it
must be the case that cp is bounded in Fn. Then taking a subsequence, still denoted as p, it
can be assumed cp→ c and then in 17.4.9 it follows

x =
n

∑
k=1

ckxk ∈ span(x1, · · · ,xn) . ■

Proposition 17.4.2 Let E be a separable Banach space. Then there exists an increasing
sequence of subspaces, {Fn} such that dim(Fn+1)−dim(Fn) ≤ 1 and equals 1 for all n if
the dimension of E is infinite. Also ∪∞

n=1Fn is dense in E. In the case where E is infinite
dimensional, Fn = span(e1, · · · ,en) where for each n

dist(en+1,Fn)≥
1
2

(17.4.10)

and defining,
Gk ≡ span

({
e j : j ̸= k

})
dist(ek,Gk)≥

1
4

. (17.4.11)

Proof: Since E is separable, so is ∂B(0,1) , the boundary of the unit ball. Let {wk}∞

k=1
be a countable dense subset of ∂B(0,1).

Let e1 = w1. Let F1 = Fe1. Suppose Fn has been obtained and equals span(e1, · · · ,en)
where {e1, · · · ,en} is independent, ||ek||= 1, and

dist(en,span(e1, · · · ,en−1))≥
1
2
.

For each n, Fn is closed by Theorem 17.4.1.
If Fn contains {wk}∞

k=1 , let Fm = Fn for all m > n. Otherwise, pick w ∈ {wk} to be the
point of {wk}∞

k=1 having the smallest subscript which is not contained in Fn. Then w is at a
positive distance, λ from Fn because Fn is closed. Therefore, there exists y ∈ Fn such that
λ ≤ ||y−w|| ≤ 2λ . Let en+1 =

w−y
||w−y|| . It follows

w = ||w− y||en+1 + y ∈ span(e1, · · · ,en+1)≡ Fn+1

Then if x ∈ span(e1, · · · ,en) ,

||en+1− x|| =

∣∣∣∣∣∣∣∣ w− y
||w− y||

− x
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ w− y
||w− y||

− ||w− y||x
||w− y||

∣∣∣∣∣∣∣∣
≥ 1

2λ
||w− y−||w− y||x||

≥ λ

2λ
=

1
2
.
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This has shown the existence of an increasing sequence of subspaces, {Fn} as described
above. It remains to show the union of these subspaces is dense. First note that the union of
these subspaces must contain the {wk}∞

k=1 because if wm is missing, then it would contradict
the construction at the mth step. That one should have been chosen. However, {wk}∞

k=1 is
dense in ∂B(0,1). If x ∈ E and x ̸= 0, then x

||x|| ∈ ∂B(0,1) then there exists

wm ∈ {wk}∞

k=1 ⊆ ∪
∞
n=1Fn

such that
∣∣∣∣∣∣wm− x

||x||

∣∣∣∣∣∣< ε

||x|| . But then

||||x||wm− x||< ε

and so ||x||wm is a point of ∪∞
n=1Fn which is within ε of x. This proves ∪∞

n=1Fn is dense as
desired. 17.4.10 follows from the construction. It remains to verify 17.4.11.

Let y ∈ Gk. Thus for some n,

y =
k−1

∑
j=1

c je j +
n

∑
j=k+1

c je j

and I need to show ||y− ek|| ≥ 1/4. Without loss of generality, cn ̸= 0 and n > k. Suppose
17.4.11 does not hold for some such y so that∣∣∣∣∣

∣∣∣∣∣ek−

(
k−1

∑
j=1

c je j +
n

∑
j=k+1

c je j

)∣∣∣∣∣
∣∣∣∣∣< 1

4
. (17.4.12)

Then from the construction,

1
4

> |cn|

∣∣∣∣∣
∣∣∣∣∣ek−

(
k−1

∑
j=1

(c j/cn)e j +
n−1

∑
j=k+1

(c j/cn)e j + en

)∣∣∣∣∣
∣∣∣∣∣

≥ |cn|
1
2

and so |cn|< 1/2. Consider the left side of 17.4.12. By the construction∣∣∣∣∣
∣∣∣∣∣cn (ek− en)+(1− cn)ek−

(
k−1

∑
j=1

c je j +
n−1

∑
j=k+1

c je j

)∣∣∣∣∣
∣∣∣∣∣

≥ |1− cn|− |cn|

∣∣∣∣∣
∣∣∣∣∣(ek− en)−

(
k−1

∑
j=1

(c j/cn)e j +
n−1

∑
j=k+1

(c j/cn)e j

)∣∣∣∣∣
∣∣∣∣∣

≥ |1− cn|− |cn|
1
2
≥ 1− 3

2
|cn|> 1− 3

2
1
2
=

1
4
,

a contradiction. This proves the desired estimate. ■
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17.5 Weak And Weak ∗ Topologies
17.5.1 Basic Definitions

Let X be a Banach space and let X ′ be its dual space.1 For A′ a finite subset of X ′, denote
by ρA′ the function defined on X

ρA′ (x)≡ max
x∗∈A′
|x∗ (x)| (17.5.13)

and also let BA′ (x,r) be defined by

BA′ (x,r)≡ {y ∈ X : ρA′ (y− x)< r} (17.5.14)

Then certain things are obvious. First of all, if a ∈ F and x,y ∈ X ,

ρA′ (x+ y) ≤ ρA′ (x)+ρA′ (y) ,

ρA′ (ax) = |a|ρA′ (x) .

Similarly, letting A be a finite subset of X , denote by ρA the function defined on X ′

ρA (x
∗)≡max

x∈A
|x∗ (x)| (17.5.15)

and let BA (x∗,r) be defined by

BA (x∗,r)≡
{

y∗ ∈ X ′ : ρA (y
∗− x∗)< r

}
. (17.5.16)

It is also clear that

ρA (x
∗+ y∗) ≤ ρ (x∗)+ρA (y

∗) ,

ρA (ax∗) = |a|ρA (x
∗) .

Lemma 17.5.1 The sets, BA′ (x,r) where A′ is a finite subset of X ′ and x ∈ X form a basis
for a topology on X known as the weak topology. The sets BA (x∗,r) where A is a finite
subset of X and x∗ ∈ X ′ form a basis for a topology on X ′ known as the weak ∗ topology.

Proof: The two assertions are very similar. I will verify the one for the weak topology.
The union of these sets, BA′ (x,r) for x∈ X and r > 0 is all of X . Now suppose z is contained
in the intersection of two of these sets. Say

z ∈ BA′ (x,r)∩BA′1
(x1,r1)

Then let C′ = A′∪A′1 and let

0 < δ ≤min
(

r−ρA′ (z− x) ,r1−ρA′1
(z− x1)

)
.

1Actually, all this works in much more general settings than this.
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Consider y ∈ BC′ (z,δ ) . Then

r−ρA′ (z− x)≥ δ > ρC′ (y− z)≥ ρA′ (y− z)

and so
r > ρA′ (y− z)+ρA′ (z− x)≥ ρA′ (y− x)

which shows y ∈ BA′ (x,r) . Similar reasoning shows y ∈ BA′1
(x1,r1) and so

BC′ (z,δ )⊆ BA′ (x,r)∩BA′1
(x1,r1) .

Therefore, the weak topology consists of the union of all sets of the form BA (x,r).

17.5.2 Banach Alaoglu Theorem
Why does anyone care about these topologies? The short answer is that in the weak ∗
topology, closed unit ball in X ′ is compact. This is not true in the normal topology. This
wonderful result is the Banach Alaoglu theorem. First recall the notion of the product
topology, and the Tychonoff theorem, Theorem 14.3.6 on Page 391 which are stated here
for convenience.

Definition 17.5.2 Let I be a set and suppose for each i ∈ I, (Xi,τ i) is a nonempty topolog-
ical space. The Cartesian product of the Xi, denoted by ∏i∈I Xi, consists of the set of all
choice functions defined on I which select a single element of each Xi. Thus f ∈ ∏i∈I Xi
means for every i ∈ I, f (i) ∈ Xi. The axiom of choice says ∏i∈I Xi is nonempty. Let

Pj (A) = ∏
i∈I

Bi

where Bi = Xi if i ̸= j and B j = A. A subbasis for a topology on the product space consists
of all sets Pj (A) where A ∈ τ j. (These sets have an open set from the topology of X j in the
jth slot and the whole space in the other slots.) Thus a basis consists of finite intersections
of these sets. Note that the intersection of two of these basic sets is another basic set and
their union yields ∏i∈I Xi. Therefore, they satisfy the condition needed for a collection of
sets to serve as a basis for a topology. This topology is called the product topology and is
denoted by ∏τ i.

Theorem 17.5.3 If (Xi,τ i) is compact, then so is (∏i∈I Xi,∏τ i).

The Banach Alaoglu theorem is as follows.

Theorem 17.5.4 Let B′ be the closed unit ball in X ′. Then B′ is compact in the weak ∗
topology.

Proof: By the Tychonoff theorem, Theorem 17.5.3

P≡∏
x∈X

B(0, ||x||)
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is compact in the product topology where the topology on B(0, ||x||) is the usual topology
of F. Recall P is the set of functions which map a point, x ∈ X to a point in B(0, ||x||).
Therefore, B′ ⊆ P. Also the basic open sets in the weak ∗ topology on B′ are obtained as
the intersection of basic open sets in the product topology of P to B′ and so it suffices to
show B′ is a closed subset of P. Suppose then that f ∈ P\B′. Since | f (x)| ≤ ∥x∥ for each
x, it follows f cannot be linear. There are two ways this can happen. One way is that for
some x,y

f (x+ y) ̸= f (x)+ f (y)

for some x,y ∈ X . However, if g is close enough to f at the three points, x+ y,x, and y,
the above inequality will hold for g in place of f . In other words there is a basic open
set containing f , such that for all g in this basic open set, g /∈ B′. A similar consideration
applies in case f (λx) ̸= λ f (x) for some scalar λ and x. Since P\B′ is open, it follows B′

is a closed subset of P and is therefore, compact. ■
Sometimes one can consider the weak ∗ topology in terms of a metric space.

Theorem 17.5.5 If K ⊆ X ′ is compact in the weak ∗ topology and X is separable in the
weak topology then there exists a metric, d, on K such that if τd is the topology on K
induced by d and if τ is the topology on K induced by the weak ∗ topology of X ′, then
τ = τd . Thus one can consider K with the weak ∗ topology as a metric space.

Proof: Let D = {xn} be the dense countable subset in X . The metric is

d ( f ,g)≡
∞

∑
n=1

2−n ρxn
( f −g)

1+ρxn
( f −g)

where ρxn
( f ) = | f (xn)|. Clearly d ( f ,g) = d (g, f ) ≥ 0. If d ( f ,g) = 0, then this requires

f (xn) = g(xn) for all xn ∈ D. Is it the case that f = g? B{ f ,g} (x,r) contains some xn ∈ D.
Hence

max{| f (xn)− f (x)| , |g(xn)−g(x)|}< r

and f (xn) = g(xn) . It follows that | f (x)−g(x)| < 2r. Since r is arbitrary, this implies
f (x) = g(x) . It is routine to verify the triangle inequality from the easy to establish in-
equality,

x
1+ x

+
y

1+ y
≥ x+ y

1+ x+ y
,

valid whenever x,y≥ 0. Therefore this is a metric.
Thus there are two topological spaces, (K,τ) and (K,d), the first being K with the weak

∗ topology and the second being K with this metric. It is clear that if i is the identity map,
i : (K,τ)→ (K,d), then i is continuous. Therefore, sets which are open in (K,d) are open
in (K,τ) . Letting τd denote those sets which are open with respect to the metric, τd ⊆ τ .

Now suppose U ∈ τ . Is U in τd? Since K is compact with respect to τ, it follows from
the above that K is compact with respect to τd ⊆ τ . Hence K \U is compact with respect
to τd and so it is closed with respect to τd . Thus U is open with respect to τd . ■

The fact that this set with the weak ∗ topology can be considered a metric space is very
significant because if a point is a limit point in a metric space, one can extract a convergent
sequence.

Note that if a Banach space is separable, then it is weakly separable.
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Corollary 17.5.6 If X is weakly separable and K ⊆ X ′ is compact in the weak ∗ topology,
then K is sequentially compact. That is, if { fn}∞

n=1 ⊆ K, then there exists a subsequence
fnk and f ∈ K such that for all x ∈ X,

lim
k→∞

fnk (x) = f (x).

Proof: By Theorem 17.5.5, K is a metric space for the metric described there and it is
compact. Therefore by the characterization of compact metric spaces, Proposition 7.6.5 on
Page 144, K is sequentially compact. This proves the corollary. ■

17.5.3 Eberlein Smulian Theorem
Next consider the weak topology. The most interesting results have to do with a reflexive
Banach space. The following lemma ties together the weak and weak ∗ topologies in the
case of a reflexive Banach space.

Lemma 17.5.7 Let J : X → X ′′ be the James map

Jx( f )≡ f (x)

and let X be reflexive so that J is onto. Then J is a homeomorphism of (X , weak topology)
and (X ′′, weak ∗ topology).This means J is one to one, onto, and both J and J−1 are
continuous.

Proof: Let f ∈ X ′ and let

B f (x,r)≡ {y : | f (x)− f (y)|< r}.

Thus B f (x,r) is a subbasic set for the weak topology on X . I claim that

JB f (x,r) = B f (Jx,r)

where B f (Jx,r) is a subbasic set for the weak ∗ topology. If y∈ B f (x,r) , then ∥Jy− Jx∥=
∥x− y∥< r and so JB f (x,r)⊆ B f (Jx,r) . Now if x∗∗ ∈ B f (Jx,r) , then since J is reflexive,
there exists y ∈ X such that Jy = x∗∗ and so

∥y− x∥= ∥Jy− Jx∥< r

showing that JB f (x,r) = B f (Jx,r) . A typical subbasic set in the weak ∗ topology is of the
form B f (Jx,r) . Thus J maps the subbasic sets of the weak topology to the subbasic sets of
the weak ∗ topology. Therefore, J is a homeomorphism as claimed. ■

The following is an easy corollary.

Corollary 17.5.8 If X is a reflexive Banach space, then the closed unit ball is weakly com-
pact.

Proof: Let B be the closed unit ball. Then B = J−1 (B∗∗) where B∗∗ is the unit ball in
X ′′ which is compact in the weak ∗ topology. Therefore B is weakly compact because J−1

is continuous. ■
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Corollary 17.5.9 Let X be a reflexive Banach space. If K ⊆ X is compact in the weak
topology and X ′ is separable in the weak ∗ topology, then there exists a metric d, on K such
that if τd is the topology on K induced by d and if τ is the topology on K induced by the
weak topology of X, then τ = τd . Thus one can consider K with the weak topology as a
metric space.

Proof: This follows from Theorem 17.5.5 and Lemma 17.5.7. Lemma 17.5.7 implies
J (K) is compact in X ′′. Then since X ′ is separable in the weak ∗ topology, X is separable in
the weak topology and so there is a metric, d′′ on J (K) which delivers the weak ∗ topology
on J (K). Let d (x,y)≡ d′′ (Jx,Jy) . Then

(K,τd)
J→ (J (K) ,τd′′)

id→ (J (K) ,τweak ∗)
J−1
→ (K,τweak)

and all the maps are homeomorphisms. ■
Here is a useful lemma.

Lemma 17.5.10 Let Y be a closed subspace of a Banach space X and let y ∈ X \Y. Then
there exists x∗ ∈ X ′ such that x∗ (Y ) = 0 but x∗ (y) ̸= 0.

Proof: Define f (x+αy) ≡ ∥y∥α. Thus f is linear on Y ⊕Fy. I claim that f is also
continuous on this subspace of X . If not, then there exists xn+αny→ 0 but | f (xn +αny)| ≥
ε > 0 for all n. First suppose |αn| is bounded. Then, taking a further subsequence, we can
assume αn → α. It follows then that {xn} must also converge to some x ∈ Y since Y is
closed. Therefore, in this case, x+αy = 0 and so α = 0 since otherwise, y∈Y . In the other
case when αn is unbounded, you have (xn/αn + y)→ 0 and so it would require that y ∈ Y
which cannot happen because Y is closed. Hence f is continuous as claimed. It follows
that for some k,

| f (x+αy)| ≤ k∥x+αy∥

Now apply the Hahn Banach theorem to extend f to x∗ ∈ X ′. ■
Next is the Eberlein Smulian theorem which states that a Banach space is reflexive if

and only if the closed unit ball is weakly sequentially compact. Actually, only half the
theorem is proved here, the more useful only if part. The book by Yoshida [127] has the
complete theorem discussed. First here is an interesting lemma for its own sake.

Lemma 17.5.11 A closed subspace of a reflexive Banach space is reflexive.

Proof: Let Y be the closed subspace of the reflexive space, X . Consider the following
diagram

Y ′′ i∗∗ 1-1→ X ′′

Y ′ i∗ onto← X ′

Y i→ X

This diagram follows from Theorem 17.2.10 on Page 449, the theorem on adjoints. Now
let y∗∗ ∈ Y ′′. Then i∗∗y∗∗ = JX (y) because X is reflexive. I want to show that y ∈ Y . If it
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is not in Y then since Y is closed, there exists x∗ ∈ X ′ such that x∗ (y) ̸= 0 but x∗ (Y ) = 0.
Then i∗x∗ = 0. Hence

0 = y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = J (y)(x∗) = x∗ (y) ̸= 0,

a contradiction. Hence y ∈ Y . Letting JY denote the James map from Y to Y ′′ and x∗ ∈ X ′,

y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = JX (y)(x∗)

= x∗ (y) = x∗ (iy) = i∗x∗ (y) = JY (y)(i∗x∗)

Since i∗ is onto, this shows y∗∗ = JY (y) . ■

Theorem 17.5.12 (Eberlein Smulian) The closed unit ball in a reflexive Banach space X,
is weakly sequentially compact. By this is meant that if {xn} is contained in the closed unit
ball, there exists a subsequence,

{
xnk

}
and x ∈ X such that for all x∗ ∈ X ′,

x∗
(
xnk

)
→ x∗ (x) .

Proof: Let {xn} ⊆ B ≡ B(0,1). Let Y be the closure of the linear span of {xn}. Thus
Y is a separable. It is reflexive because it is a closed subspace of a reflexive space so the
above lemma applies. By the Banach Alaoglu theorem, the closed unit ball B∗ in Y ′ is weak
∗ compact. Also by Theorem 17.5.5, B∗ is a metric space with a suitable metric.

B∗∗ Y ′′ i∗∗ 1-1→ X ′′

weakly separable B∗ Y ′ i∗ onto← X ′

separable B Y i→ X

Thus B∗ is complete and totally bounded with respect to this metric and it follows that
B∗ with the weak ∗ topology is separable. This implies Y ′ is also separable in the weak ∗
topology. To see this, let {y∗n} ≡ D be a weak ∗ dense set in B∗ and let y∗ ∈ Y ′. Let p be
a large enough positive rational number that y∗/p ∈ B∗. Then if A is any finite set from Y,
there exists y∗n ∈ D such that ρA (y

∗/p− y∗n) <
ε

p . It follows py∗n ∈ BA (y∗,ε) showing that
rational multiples of D are weak ∗ dense in Y ′. Since Y is reflexive, the weak and weak
∗ topologies on Y ′ coincide and so Y ′ is weakly separable. Since Y ′ is weakly separable,
Corollary 17.5.6 implies B∗∗, the closed unit ball in Y ′′ is weak ∗ sequentially compact.
Then by Lemma 17.5.7 B, the unit ball in Y , is weakly sequentially compact. It follows
there exists a subsequence xnk , of the sequence {xn} and a point x ∈ Y , such that for all
f ∈ Y ′,

f
(
xnk

)
→ f (x).

Now if x∗ ∈ X ′, and i is the inclusion map of Y into X ,

x∗
(
xnk

)
= i∗x∗

(
xnk

)
→ i∗x∗ (x) = x∗ (x).

which shows xnk converges weakly and this shows the unit ball in X is weakly sequentially
compact. ■
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Corollary 17.5.13 Let {xn} be any bounded sequence in a reflexive Banach space X . Then
there exists x ∈ X and a subsequence,

{
xnk

}
such that for all x∗ ∈ X ′,

lim
k→∞

x∗
(
xnk

)
= x∗ (x)

Proof: If a subsequence, xnk has
∣∣∣∣xnk

∣∣∣∣→ 0, then the conclusion follows. Simply
let x = 0. Suppose then that ||xn|| is bounded away from 0. That is, ||xn|| ∈ [δ ,C]. Take
a subsequence such that

∣∣∣∣xnk

∣∣∣∣→ a. Then consider xnk/
∣∣∣∣xnk

∣∣∣∣. By the Eberlein Smulian

theorem, this subsequence has a further subsequence, xnk j
/
∣∣∣∣∣∣xnk j

∣∣∣∣∣∣which converges weakly
to x∈B where B is the closed unit ball. It follows from routine considerations that xnk j

→ ax
weakly. This proves the corollary.

17.6 Operators With Closed Range
When is T (X) a closed subset of Y for T ∈ L (X ,Y )? One way this happens is when
T = I−C for C compact.

Definition 17.6.1 Let C ∈L (X ,Y ) where X ,Y are two Banach spaces. Then C is called a
compact operator if C (bounded set) = (precompact set).

Lemma 17.6.2 Suppose C ∈L (X ,X) is compact. Then (I−C)(X) is closed.

Proof: Let (I−C)xn→ y. Let zn ∈ ker(I−C) such that

dist(xn,ker(I−C)) ≤ ∥xn− zn∥

≤
(

1+
1
n

)
dist(xn,ker(I−C))

Case 1: ∥xn− zn∥→ ∞.
In this case, you get (I−C)(xn− zn) → y and so there is a subsequence such that

C
(

xn−zn
∥xn−zn∥

)
converges. Also xn−zn

∥xn−zn∥ converges to the same thing. Let it be called w. Thus

xn− zn

∥xn− zn∥
→ w, C

xn− zn

∥xn− zn∥
→Cw

C
(

xn− zn

∥xn− zn∥

)
→ w so Cw = w, w ∈ ker(I−C)

∥∥∥∥ xn− zn

∥xn− zn∥
−w

∥∥∥∥= 1
∥xn− zn∥

∥∥∥∥∥∥∥(xn− zn)−

∈ker(I−C)︷ ︸︸ ︷
w∥xn− zn∥

∥∥∥∥∥∥∥
≥ 1
∥xn− zn∥

dist(xn,ker(I−C))

≥ 1((
1+ 1

n

)
dist(xn,ker(I−C))

) dist(xn,ker(I−C))
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Now passing to a limit,

0≥ lim
n→∞

1
1+1/n

= 1

so Case 1 cannot occur.
Case 2: A subsequence of ∥xn− zn∥ is bounded.
Let n denote the subscript for the subsequence. Then there is a further subsequence

still denoted with n such that C (xn− zn) converges. Then also (xn− zn) converges because
(I−C)(xn) = (I−C)(xn− zn) is given to converge. Let (xn− zn)→ x. Then

y = lim
n→∞

(I−C)xn = lim
n→∞

(I−C)(xn− zn) = (I−C)x

and so y ∈ (I−C)(X) showing that (I−C)(X) is closed. ■
Here is a useful lemma.

Lemma 17.6.3 Suppose W and V are closed subspaces of a Banach space X and V &W
(V is a proper subset of W.) while (λ I−L)(W ) ⊆ V,λ ̸= 0. Then there exists w ∈W \V
such that ∥w∥= 1 and

dist(Lw,LV )≥ 1/2

Proof: Let w0 ∈W \V. Then let v ∈V be such that ∥λw0− v∥ ≤ 2dist(λw0,V ). Then
let

w =
λw0− v
∥λw0− v∥

It follows that ∥w∥= 1 and is in W \V . Now let x ∈V . Then

Lx−Lw = λ (x−w)+

in V︷ ︸︸ ︷
(L−λ I)(x−w)

= λx+(L−λ I)(x−w)−λw

=
1

∥λw0− v∥
(λx∥λw0− v∥+(L−λ I)(x−w)∥λw0− v∥−λ ∥λw0− v∥w)

=
1

∥λw0− v∥
(λx∥λw0− v∥+(L−λ I)(x−w)∥λw0− v∥−λ (λw0− v))

=
1

∥λw0− v∥

 ∈V︷ ︸︸ ︷
λx∥w0− v∥+(L−λ I)(x−w)∥λw0− v∥+λv−λw0


Thus

∥Lx−Lw∥ ≥ 1
∥λw0− v∥

∥λx∥λw0− v∥+(L−λ I)(x−w)∥λw0− v∥+λv−λw0∥

≥ 1
2dist(λw0,V )

dist(λw0,V ) =
1
2
■

Here is another fairly elementary lemma a little like the above.
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Lemma 17.6.4 Let Y be an infinite dimensional Banach space. Then there exists a se-
quence {xn} in the unit sphere S, ∥xn∥= 1, such that ∥xn− xm∥ ≥ 1

2 whenever n ̸= m.

Proof: Pick x1 ∈ S. Now the span of x1 is not everything and so there exists u2 /∈
span(x1) . Let w2 be a point of span(x1) such that ∥u2−w2∥ ≤ 2dist(u2,span(x1)) . Then
x2 =

u2−w2
∥u2−w2∥

. Then

∥x1− x2∥=
∥∥∥∥∥u2−w2∥x1− (u2−w2)

∥u2−w2∥

∥∥∥∥≥ dist(u2,span(x1))

2dist(u2,span(x1))
=

1
2

Now repeat the argument with span(x1,x2) in place of span(x1) and continue to get the
desired sequence. ■

Lemma 17.6.5 Let L be a compact linear map. Then the eigenspace of L is finite dimen-
sional for each eigenvalue λ ̸= 0.

Proof: Consider (L−λ I)−1 (0)∩S where S is the unit sphere. The eigenspace is just
(L−λ I)−1 (0) . Let Y be this inverse image. If Y is infinite dimensional, then the above
Lemma 17.6.4 applies. There exists {xn} ⊆ (L−λ I)−1 (0)∩S where ∥xn− xm∥ ≥ 1/2 for
all n ̸= m. Then there is a subsequence, still denoted with subscript n such that {Lxn} is a
Cauchy sequence. Thus Lxn = λxn and so, since λ ̸= 0, it follows that {xn} is also a Cauchy
sequence and converges to some x. But this is impossible because of the construction of the
{xn} which prevents there being any Cauchy sequence. Thus Y must be finite dimensional.
■

This lemma is useful in proving the following major spectral theorem about the eigen-
values of a compact operator. I found this theorem in Deimling [38].

Theorem 17.6.6 Let L ∈L (X ,X) with L compact. Let Λ be the eigenvalues of L. That is
λ ∈ Λ means there exists x ̸= 0 such that Lx = λx. It is assumed the field of scalars is R or
C. Let Rλ ≡ L−λ I. Then the following hold.

1. If µ ∈ Λ then |µ| ≤ ∥L∥ ,Λ is at most countable and has no limit points other than
possibly 0.

2. Rλ is a homeomorphism onto X whenever λ /∈ Λ∪{0} .

3. For all λ ∈ Λ\{0} , there exists a smallest k = k (λ ) ,

(a) Rk
λ

X ⊕N
(
Rk

λ

)
= X where N

(
Rk

λ

)
is the vectors x such that Rk

λ
x = 0. Rk

λ
X is

closed, dim
(
N
(
Rk

λ

))
< ∞.

(b) Rk
λ

X and N
(
Rk

λ

)
are invariant under L and Rλ |Rk

kX is a homeomorphism onto

Rk
λ

X.

(c) N
(
Rk

µ

)
⊆ Rk

λ
X for all λ ,µ ∈ Λ\{0} where λ ̸= µ .
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Proof: Consider λ ̸= 0. The N
(
Rk

λ

)
are increasing in k and Rλ

(
N
(
Rk+1

λ

))
⊆ N

(
Rk

λ

)
.

This follows from the definition. (It isn’t necessary to assume in most of this that λ ∈ Λ,
just a nonzero number will do.) Now

Rλ =−λ

(
I− 1

λ
L
)

If these things are strictly increasing for infinitely many k, then by Lemma 17.6.3, there is
an infinite sequence xk,xk ∈ N

(
Rk+1

λ

)
\N
(
Rk

λ

)
, dist

(
Lxk,LN

(
Rk

λ

))
≥ 1/2. Hence

∥Lxk−Lxk−1∥ ≥ 1/2

and this can’t happen because L is compact so {Lxk} has a Cauchy subsequence. Therefore
there exists a smallest k such that

N
(

Rk
λ

)
= N

(
Rm

λ

)
,m≥ k

On the other hand,
{

Rk
λ

X
}

are decreasing in k. By similar reasoning using Lemma 17.6.3
and the observation that Rλ

(
Rk

λ
X
)
⊇ Rk+1

λ
X (in fact they are equal) it follows that the{

Rk
λ

X
}

are also eventually constant, say for m≥ l.
Now if you have y ∈ N

(
Rk

λ

)
∩Rk

λ
X , then y = Rk

λ
w and also Rk

λ
y = 0. Hence R2k

λ
w = 0

and so, w ∈ N
(
R2k

λ

)
= N

(
Rk

λ

)
which implies Rk

λ
w = 0 and so y = 0. It follows N

(
Rk

λ

)
∩

Rk
λ

X = {0}.
Now suppose l > k. Then there exists y ∈ Rl−1

λ
X \Rl

λ
X and so Rλ y ∈ Rl

λ
X = Rl+1

λ
X =

Rλ Rl
λ

X . So Rλ y = Rλ z for some z ∈ Rl
λ

X . Thus y− z ̸= 0 because y /∈ Rl
λ

X but z is. How-
ever, Rλ (y− z) = 0 and so

(y− z) ∈ N (Rλ )∩Rk
λ

X ⊆ N
(

Rk
λ

)
∩Rk

λ
X

which cannot happen from the above which showed that N
(
Rk

λ

)
∩Rk

λ
X = {0}. Thus l ≤ k.

Next suppose l < k. Then you would have Rl
λ

X = Rk
λ

X and N
(
Rk

λ

)
⫌ N

(
Rl

λ

)
. Thus

there exists y ∈ N
(
Rk

λ

)
but not in N

(
Rl

λ

)
. Hence Rk

λ
y = 0 but Rl

λ
y ̸= 0. However, Rl

λ
y is in

Rk
λ

X from the definition of l and so there is u such that Rl
λ

y = Rk
λ

u. Thus

0 = Rk
λ

y = Rk−l+l
λ

y = Rk−l
λ

Rl
λ

y = Rk−l
λ

Rk
λ

u = R2k−l
λ

u

Now it follows that u ∈ N
(
R2k−l

λ

)
= N

(
Rk

λ

)
. This is a contradiction because it says that

Rk
λ

u = 0 but right above the displayed equation, we had Rl
λ

y = Rk
λ

u and Rl
λ

y ̸= 0. Thus,
with the above paragraph, k = l.

What about the claim that Rλ restricted to Rk
λ

X is a homeomorphism? It maps Rk
λ

X
to Rk+1

λ
X = Rk

λ
X . Also, if Rλ (y) = 0 for y ∈ Rk

λ
X , then Rk

λ
y = 0 also and so y ∈ Rk

λ
X ∩

N
(
Rk

λ

)
. It was shown above that this implies y = 0. Thus Rλ appears to be one to one. By

assumption, it is continuous. Also from Lemma 17.6.2,

Rk
λ

X is closed.
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This follows from the observation that

Rk
λ
= (L−λ I)k =

k

∑
j=0

(
k
j

)
L j (−λ I)k− j = (−λ )k I+

k

∑
j=1

(
k
j

)
L j (−λ I)k− j (17.6.17)

which is a multiple of I−C where C is a compact map. Then by the open mapping theorem,
it follows that Rλ is a homeomorphism onto Rk+1

λ
X = Rk

λ
X .

What about Rk
λ

X ⊕N
(
Rk

λ

)
= X? It only remains to verify that Rk

λ
X + N

(
Rk

λ

)
= X

because the only vector in the intersection was shown to be 0. Thus if you have x+ y = 0
where x is in one of these and y in the other, then x =−y so each is in both and hence both
are 0. Pick x ∈ X . Then Rk

λ
x ∈ Rk

λ

(
Rk

λ
X
)
= Rk

λ
X . Therefore, Rk

λ
x = Rk

λ

(
Rk

λ
y
)

for some y
and so Rk

λ

(
x−Rk

λ
y
)
= 0. Hence

x−Rk
λ

y ∈ N
(

Rk
λ

)
showing that x ∈ Rk

λ
X +N

(
Rk

λ

)
.

It is obvious that Rk
λ

X and N
(
Rk

λ

)
are invariant under L. If λ 0 /∈ Λ\{0} , then L−λ 0I

is one to one and so the compactness of L and Lemma 17.6.2 implies that (L−λ 0I)X
is closed. Hence the open mapping theorem implies L− λ 0I is a homeomorphism onto
(L−λ 0I)X . Is this last all of X? There is nothing in the above argument which involved an
essential assumption that λ ∈Λ. Hence, repeating this argument, you see that (L−λ 0I)X⊕
N (L−λ 0I) = X but N (L−λ 0I) = 0. Hence (L−λ 0I)X = X and so indeed (L−λ 0I) is a
homeomorphism.

For µ ∈Λ,Lx = µx and so |µ|∥x∥ ≤ ∥L∥∥x∥ so |µ| ≤ ∥L∥. Why is Λ at most countable
and has only one possible limit point at 0? It was shown that Rλ is a homeomorphism when
restricted to Rk

λ
X . It follows that for x ∈ Rk

λ
X ,∥Rλ x∥> δ ∥x∥ for some δ > 0, this for every

such x ∈ Rk
λ

X . Now consider µ close to λ and consider Rµ . Then for x ∈ Rk
λ

X ,
∥∥Rµ x

∥∥ =
∥(Rλ +(λ −µ))x∥ ≥ δ ∥x∥− |λ −µ|∥x∥ > δ

2 ∥x∥ provided |λ −µ| < δ/2. Thus for µ

close enough to λ ,Rµ is one to one on Rk
λ

X . But also Rµ is one to one on N
(
Rk

λ

)
. Lets see

why this is so. Suppose (L−µI)x = 0 for x ∈ N
(
Rk

λ

)
. Then

0 = (L−µI +(µ−λ ) I)k x

= (µ−λ )k x+
k

∑
j=1

(
k
j

)
(L−µI) j (µ−λ )k− j x

and the second term involving the sum yields 0. Since Rk
λ

X ⊕N
(
Rk

λ

)
= X , this shows that

(L−µI) is one to one for µ near λ . It follows that for µ near λ , µ /∈ Λ. Thus the only
possible limit point is 0. Note that there is no restriction on the size of µ for (L−µI) to be
one to one on N

(
Rk

λ

)
.

Why is dim
(
N
(
Rk

λ

))
< ∞ for each λ ̸= 0. This follows from 17.6.17. Rk

λ
is a multiple

of I−C for C a compact operator. Hence this is finite dimensional by Lemma 17.6.5.
What about N

(
Rk

µ

)
⊆ Rk

λ
X for µ an eigenvalue different than λ? Say Rk

µ x = 0. Then,
does it follow that x ∈ Rk

λ
X? From what was just shown

x = y+ z, y ∈ Rk
λ

X , z ∈ N
(

Rk
λ

)
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Then
0 = Rp

µ x = Rp
µ y+Rp

µ z

Here p = k (µ). This is where it is important that µ ∈ Λ. However, N
(
Rk

λ

)
and Rk

λ
X

are invariant under Rp
µ since it is clear that Rλ and Rµ commute. Thus Rp

µ y = −Rp
µ z and

Rp
µ y ∈ Rk

λ
X , −Rp

µ z ∈ N
(
Rk

λ

)
and these are equal. Hence they are both 0. Now it was just

shown that Rµ is one to one on N
(
Rk

λ

)
and so z = 0. Hence x = y ∈ Rk

λ
X . ■

Note that in the last step, we can’t conclude that y = 0 because we only know that Rµ

is one to one on Rk
λ

X if µ is sufficiently close to λ . The above is about compact mappings
from a single space to itself. However, there are also mappings which have closed range
which map from one space to another. The Fredholm operators have this property that their
image is closed. These are discussed next.

Suppose T ∈L (X ,Y ) . Then T X is a subspace of Y and so it has a Hamel basis B.
Extending B to a Hamel basis for Y yields C . Then Y = span(B)⊕ span(C \B) . Thus
Y = T X⊕E. For more on this, see [55].

Definition 17.6.7 Let T ∈L (X ,Y ) . Then this is a Fredholm operator means

1. dim(ker(T ))< ∞

2. dim(E)< ∞ where Y = T X⊕E

Proposition 17.6.8 Let T ∈L (X ,Y ) . Then T X is closed if and only if there exists δ > 0
such that

∥T x∥ ≥ δ dist(x,ker(T )) .

Proof: First suppose T X is closed. Let T̂ : X/ker(T )→ Y be defined as T̂ ([x])≡ T x.
Then by Theorem 18.7.2, T̂ is one to one and continuous and X/ker(T ) is a Banach space,∥∥T̂
∥∥ ≤ ∥T∥. Also T̂ has the same range as T . Thus T X is the same as T̂ (X/ker(T )) and

T̂ ∈L (X/ker(T ) ,Y ) . By the open mapping theorem, T̂ is continuous and has continuous
inverse. Recall

∥[x]∥ ≡ inf{∥x+ z∥ : z ∈ kerT}= dist(x,ker(T ))

Then

dist(x,ker(T )) = ∥[x]∥=
∥∥T̂−1T̂ [x]

∥∥≤ ∥∥T̂−1∥∥∥∥T̂ [x]
∥∥= ∥∥T̂−1∥∥∥T x∥

and so,
∥T x∥ ≥ δ dist(x,ker(T ))

where δ = 1/
∥∥T̂−1

∥∥ .
Next suppose the inequality holds. Why will T X be closed? Say {T xn} is a sequence

in T X converging to y. Then by the inequality,

∥T xn−T xm∥ ≥ δ dist(xn− xm,ker(T )) = δ ∥[xn]− [xm]∥X/ker(T )

showing that {[xn]} is a Cauchy sequence in X/ker(T ). Therefore, since this is a Banach
space, there exists [x] such that [xn]→ [x] in X/ker(T ) and so T̂ ([xn])→ T̂ ([x]) in Y. But
this is the same as saying that T (xn)→ T (x). It follows that y = T x and so T X is indeed
closed. ■
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Theorem 17.6.9 If T is a Fredholm operator, then T X is closed in Y .

Proof: Recall that Y = T X ⊕E where E is a closed subspace of Y . In fact, E is finite
dimensional, but it is only needed that E is closed. Let T0 ∈L (X×E,T X⊕E) be given
by

T0 (x,e)≡ T x+ e

Let the norm on X×E be

∥(x,e)∥X×E ≡max{∥x∥X ,∥e∥E}

Thus T0 (x,e) = 0 implies both T x = 0 and e = 0. Thus ker(T0) = ker(T )×{0}. Also,
T0 (X×E) is closed in Y because in fact it is all of Y , T X⊕E. By Proposition 17.6.8, there
exists δ > 0 such that

∥T0 (x,e)∥Y ≥ δ dist((x,e) ,ker(T0))

= δ dist((x,e) ,ker(T )×{0})≥ δ dist(x,ker(T ))

Then
∥T x∥Y ≡ ∥T0 (x,0)∥Y ≥ δ dist(x,ker(T ))

and by Proposition 17.6.8, T X is closed. ■
Actually, the above proves the following corollary.

Corollary 17.6.10 If T X ⊕E is closed in Y and E is a closed subspace of Y , then T X is
closed. Here T ∈L (X ,Y ).

Note that it appears that dim(ker(T ))< ∞ was not really needed.
Let B be a Hamel basis for T X and consider A ≡ {x : T x ∈B} . Then this is a lin-

early independent set of vectors in X . Suppose now that ker(T ) = span(z1, · · · ,zn) where
{z1, · · · ,zn} is linearly independent so here the assumption that ker(T ) has finite dimen-
sions is being used. Then if x ∈ X ,T x ∈ T X and so there are finitely many vectors xi ∈A
such that

T x = ∑
i

ciT xi.

Hence

T

(
x−∑

i
cixi

)
= 0

so

x−∑
i

cixi =
n

∑
j=1

a jz j

Hence X = span(A ) + ker(T ) . In fact, {A ,{z1, · · · ,zn}} is linearly independent as is
easily seen and so this is a basis for X . Hence

X = span(A )⊕ker(T )≡ X1⊕ker(T )
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Is X1 closed? Define S : T X → X1 as follows: Sy = x ∈ X1 such that T x = y. Since T is
one to one on X1, there is only one such x. Is S continuous? Yes, this is so by the open
mapping theorem. It is just the inverse of a continuous one to one linear onto map. Now this
reduces to the situation discussed above in Corollary 17.6.10. You have S ∈L (T X ,X1)
and S (T X)⊕ker(T ) is all of X and so it is closed in X . Therefore, S (T X) = X1 is closed.
This, along with the above proves the following.

Theorem 17.6.11 Let T ∈L (X ,Y ) be a Fredholm operator and suppose ker(T ) is finite
dimensional and that Y = T X⊕E where E is a finite dimensional subspace or more gener-
ally closed. Then T X is closed and also for X = X1⊕ker(T ) , it follows that X1 is closed.

17.7 Exercises
1. Is N a Gδ set? What about Q? What about a countable dense subset of a complete

metric space?

2. ↑ Let f : R→ C be a function. Define the oscillation of a function in B(x,r) by
ωr f (x) = sup{| f (z)− f (y)| : y,z ∈ B(x,r)}. Define the oscillation of the function
at the point, x by ω f (x) = limr→0 ωr f (x). Show f is continuous at x if and only
if ω f (x) = 0. Then show the set of points where f is continuous is a Gδ set (try
Un = {x : ω f (x) < 1

n}). Does there exist a function continuous at only the rational
numbers? Does there exist a function continuous at every irrational and discontinu-
ous elsewhere? Hint: Suppose D is any countable set, D = {di}∞

i=1, and define the
function, fn (x) to equal zero for every x /∈ {d1, · · · ,dn} and 2−n for x in this finite
set. Then consider g(x)≡ ∑

∞
n=1 fn (x). Show that this series converges uniformly.

3. Let f ∈C([0,1]) and suppose f ′(x) exists. Show there exists a constant, K, such that
| f (x)− f (y)| ≤ K|x− y| for all y ∈ [0,1]. Let Un = { f ∈C([0,1]) such that for each
x ∈ [0,1] there exists y ∈ [0,1] such that | f (x)− f (y)| > n|x− y|}. Show that Un is
open and dense in C([0,1]) where for f ∈C ([0,1]),

|| f || ≡ sup{| f (x)| : x ∈ [0,1]} .

Show that ∩nUn is a dense Gδ set of nowhere differentiable continuous functions.
Thus every continuous function is uniformly close to one which is nowhere differen-
tiable.

4. ↑Suppose f (x) = ∑
∞
k=1 uk (x) where the convergence is uniform and each uk is a

polynomial. Is it reasonable to conclude that f ′ (x) = ∑
∞
k=1 u′k (x)? The answer is no.

Use the Weierstrass approximation theorem do show this.

5. Let X be a normed linear space. We say A ⊆ X is “weakly bounded” if for each
x∗ ∈ X ′, sup{|x∗(x)| : x ∈ A} < ∞, while A is bounded if sup{||x|| : x ∈ A} < ∞.
Show A is weakly bounded if and only if it is bounded.

6. Let X and Y be two Banach spaces. Define the norm

|||(x,y)||| ≡ ||x||X + ||y||Y .
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Show this is a norm on X ×Y which is equivalent to the norm given in the chapter
for X×Y . Can you do the same for the norm defined for p > 1 by

|(x,y)| ≡
(
||x||pX + ||y||pY

)1/p?

7. Let f be a 2π periodic locally integrable function on R. The Fourier series for f is
given by

∞

∑
k=−∞

akeikx ≡ lim
n→∞

n

∑
k=−n

akeikx ≡ lim
n→∞

Sn f (x)

where
ak =

1
2π

∫
π

−π

e−ikx f (x)dx.

Show
Sn f (x) =

∫
π

−π

Dn (x− y) f (y)dy

where

Dn(t) =
sin((n+ 1

2 )t)
2π sin( t

2 )
.

Verify that
∫

π

−π
Dn (t)dt = 1. Also show that if g ∈ L1 (R) , then

lim
a→∞

∫
R

g(x)sin(ax)dx = 0.

This last is called the Riemann Lebesgue lemma. Hint: For the last part, assume first
that g ∈C∞

c (R) and integrate by parts. Then exploit density of the set of functions in
L1 (R).

8. ↑It turns out that the Fourier series sometimes converges to the function pointwise.
Suppose f is 2π periodic and Holder continuous. That is | f (x)− f (y)| ≤ K |x− y|θ
where θ ∈ (0,1]. Show that if f is like this, then the Fourier series converges to
f at every point. Next modify your argument to show that if at every point, x,
| f (x+)− f (y)| ≤ K |x− y|θ for y close enough to x and larger than x and

| f (x−)− f (y)| ≤ K |x− y|θ

for every y close enough to x and smaller than x, then Sn f (x)→ f (x+)+ f (x−)
2 , the

midpoint of the jump of the function. Hint: Use Problem 7.

9. ↑ Let Y = { f such that f is continuous, defined on R, and 2π periodic}. Define
|| f ||Y = sup{| f (x)| : x ∈ [−π,π]}. Show that (Y, || ||Y ) is a Banach space. Let x ∈ R
and define Ln( f ) = Sn f (x). Show Ln ∈ Y ′ but limn→∞ ||Ln||= ∞. Show that for each
x ∈ R, there exists a dense Gδ subset of Y such that for f in this set, |Sn f (x)| is
unbounded. Finally, show there is a dense Gδ subset of Y having the property that
|Sn f (x)| is unbounded on the rational numbers. Hint: To do the first part, let f (y)
approximate sgn(Dn(x−y)). Here sgnr = 1 if r > 0,−1 if r < 0 and 0 if r = 0. This
rules out one possibility of the uniform boundedness principle. After this, show the
countable intersection of dense Gδ sets must also be a dense Gδ set.
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10. Let α ∈ (0,1]. Define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+ ||f|| ≡ ||f||
α
< ∞}

where
||f|| ≡ sup{|f(x)| : x ∈ X}

and

ρα (f)≡ sup{ |f(x)− f(y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) , ||·||
α
) is a complete normed linear space. This is called a

Holder space. What would this space consist of if α > 1?

11. ↑Now recall Problem 10 about the Holder spaces. Let X be the Holder functions
which are periodic of period 2π . Define Ln f (x) = Sn f (x) where Ln : X → Y for
Y given in Problem 9. Show ||Ln|| is bounded independent of n. Conclude that
Ln f → f in Y for all f ∈ X . In other words, for the Holder continuous and 2π

periodic functions, the Fourier series converges to the function uniformly. Hint:
Ln f (x) is given by

Ln f (x) =
∫

π

−π

Dn (y) f (x− y)dy

where f (x− y) = f (x)+g(x,y) where |g(x,y)| ≤C |y|α . Use the fact the Dirichlet
kernel integrates to one to write

∣∣∣∣∫ π

−π

Dn (y) f (x− y)dy
∣∣∣∣≤

=| f (x)|︷ ︸︸ ︷∣∣∣∣∫ π

−π

Dn (y) f (x)dy
∣∣∣∣

+C
∣∣∣∣∫ π

−π

sin
((

n+
1
2

)
y
)
(g(x,y)/sin(y/2))dy

∣∣∣∣
Show the functions, y→ g(x,y)/sin(y/2) are bounded in L1 independent of x and
get a uniform bound on ||Ln||. Now use a similar argument to show {Ln f} is equicon-
tinuous in addition to being uniformly bounded. If Ln f fails to converge to f uni-
formly, then there exists ε > 0 and a subsequence, nk such that

∣∣∣∣Lnk f − f
∣∣∣∣

∞
≥ ε

where this is the norm in Y or equivalently the sup norm on [−π,π]. By the Arzela
Ascoli theorem, there is a further subsequence, Lnkl

f which converges uniformly on
[−π,π]. But by Problem 8 Ln f (x)→ f (x).

12. Let X be a normed linear space and let M be a convex open set containing 0. Define

ρ(x) = inf{t > 0 :
x
t
∈M}.

Show ρ is a gauge function defined on X . This particular example is called a
Minkowski functional. It is of fundamental importance in the study of locally con-
vex topological vector spaces. A set, M, is convex if λx+(1−λ )y ∈M whenever
λ ∈ [0,1] and x,y ∈M.
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13. ↑ The Hahn Banach theorem can be used to establish separation theorems. Let M
be an open convex set containing 0. Let x /∈ M. Show there exists x∗ ∈ X ′ such
that Rex∗(x) ≥ 1 > Rex∗(y) for all y ∈M. Hint: If y ∈M,ρ(y) < 1. Show this. If
x /∈M, ρ(x)≥ 1. Try f (αx) = αρ(x) for α ∈ R. Then extend f to the whole space
using the Hahn Banach theorem and call the result F , show F is continuous, then fix
it so F is the real part of x∗ ∈ X ′.

14. A Banach space is said to be strictly convex if whenever ||x||= ||y|| and x ̸= y, then∣∣∣∣∣∣∣∣x+ y
2

∣∣∣∣∣∣∣∣< ||x||.
F : X → X ′ is said to be a duality map if it satisfies the following: a.) ||F(x)|| =
||x||. b.) F(x)(x) = ||x||2. Show that if X ′ is strictly convex, then such a duality map
exists. The duality map is an attempt to duplicate some of the features of the Riesz
map in Hilbert space which is discussed in the chapter on Hilbert space. Hint: For
an arbitrary Banach space, let

F (x)≡
{

x∗ : ||x∗|| ≤ ||x|| and x∗ (x) = ||x||2
}

Show F (x) ̸= /0 by using the Hahn Banach theorem on f (αx) = α||x||2. Next show
F (x) is closed and convex. Finally show that you can replace the inequality in the
definition of F (x) with an equal sign. Now use strict convexity to show there is only
one element in F (x).

15. Prove the following theorem which is an improved version of the open mapping the-
orem, [42]. Let X and Y be Banach spaces and let A ∈L (X ,Y ). Then the following
are equivalent.

AX = Y,

A is an open map.

There exists a constant M such that for every y ∈ Y , there exists x ∈ X with y = Ax
and

||x|| ≤M ||y||.

Note this gives the equivalence between A being onto and A being an open map. The
open mapping theorem says that if A is onto then it is open.

16. Suppose D⊆ X and D is dense in X . Suppose L : D→ Y is linear and ||Lx|| ≤ K||x||
for all x ∈ D. Show there is a unique extension of L, L̃, defined on all of X with
||L̃x|| ≤ K||x|| and L̃ is linear. You do not get uniqueness when you use the Hahn
Banach theorem. Therefore, in the situation of this problem, it is better to use this
result.

17. ↑ A Banach space is uniformly convex if whenever ||xn||, ||yn|| ≤ 1 and ||xn+yn|| →
2, it follows that ||xn− yn|| → 0. Show uniform convexity implies strict convexity
(See Problem 14). Hint: Suppose it is not strictly convex. Then there exist ||x||
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and ||y|| both equal to 1 and
∣∣∣∣ xn+yn

2

∣∣∣∣ = 1 consider xn ≡ x and yn ≡ y, and use the
conditions for uniform convexity to get a contradiction. It can be shown that Lp is
uniformly convex whenever ∞> p> 1. See Hewitt and Stromberg [64] or Ray [109].

18. Show that a closed subspace of a reflexive Banach space is reflexive. Hint: The
proof of this is an exercise in the use of the Hahn Banach theorem. Let Y be the
closed subspace of the reflexive space X and let y∗∗ ∈ Y ′′. Then i∗∗y∗∗ ∈ X ′′ and so
i∗∗y∗∗ = Jx for some x ∈ X because X is reflexive. Now argue that x ∈ Y as follows.
If x /∈ Y , then there exists x∗ such that x∗ (Y ) = 0 but x∗ (x) ̸= 0. Thus, i∗x∗ = 0. Use
this to get a contradiction. When you know that x = y∈Y , the Hahn Banach theorem
implies i∗ is onto Y ′ and for all x∗ ∈ X ′,

y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = Jx(x∗) = x∗ (x) = x∗ (iy) = i∗x∗ (y).

19. We say that xn converges weakly to x if for every x∗ ∈ X ′, x∗(xn)→ x∗(x). xn ⇀ x
denotes weak convergence. Show that if ||xn− x|| → 0, then xn ⇀ x.

20. ↑ Show that if X is uniformly convex, then if xn ⇀ x and ||xn|| → ||x||, it follows
||xn− x|| → 0. Hint: Use Lemma 17.2.9 to obtain f ∈ X ′ with || f ||= 1 and f (x) =
||x||. See Problem 17 for the definition of uniform convexity. Now by the weak
convergence, you can argue that if x ̸= 0, f (xn/ ||xn||)→ f (x/ ||x||). You also might
try to show this in the special case where ||xn||= ||x||= 1.

21. Suppose L ∈L (X ,Y ) and M ∈L (Y,Z). Show ML ∈L (X ,Z) and that (ML)∗ =
L∗M∗.

22. Let X and Y be Banach spaces and suppose f ∈ L (X ,Y ) is compact. Recall this
means that if B is a bounded set in X , then f (B) has compact closure in Y. Show that
f ∗ is also a compact map. Hint: Take a bounded subset of Y ′,S. You need to show
f ∗ (S) is totally bounded. You might consider using the Ascoli Arzela theorem on
the functions of S applied to f (B) where B is the closed unit ball in X .
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Chapter 18

Topological Vector Spaces
18.1 Fundamental Considerations

The right context to consider certain topics like separation theorems is in locally convex
topological vector spaces, a generalization of normed linear spaces. Let X be a vector
space and let Ψ be a collection of functions defined on X such that if ρ ∈ Ψ,

ρ(x+ y)≤ ρ(x)+ρ(y),

ρ(ax) = |a|ρ(x) if a ∈ F,

ρ(x)≥ 0,

where F denotes the field of scalars, either R or C, assumed to be C unless otherwise
specified. These functions are called seminorms because it is not necessarily true that x = 0
when ρ (x) = 0. A basis for a topology, B, is defined as follows.

Definition 18.1.1 For A a finite subset of Ψ and r > 0,

BA(x,r)≡ {y ∈ X : ρ(x− y)< r for all ρ ∈ A}.

Then
B ≡ {BA(x,r) : x ∈ X ,r > 0,and A⊆Ψ,A finite}.

That this really is a basis is the content of the next theorem.

Theorem 18.1.2 B is the basis for a topology.

Proof: I need to show that if BA(x,r1) and BB(y,r2) are two elements of B and if z ∈
BA(x,r1)∩BB(y,r2), then there exists U ∈B such that

z ∈U ⊆ BA(x,r1)∩BB(y,r2).

Let
r = min(min{(r1−ρ(z− x)) : ρ ∈ A},

min{(r2−ρ(z− y)) : ρ ∈ B})

and consider BA∪B(z,r). If w belongs to this set, then for ρ ∈ A,

ρ(w− z)< r1−ρ(z− x).

Hence
ρ (w− x)≤ ρ(w− z)+ρ(z− x)< r1

for each ρ ∈ A and so BA∪B(z,r)⊆ BA(x,r1). Similarly, BA∪B(z,r)⊆ BB(y,r2). This proves
the theorem.

Let τ be the topology consisting of unions of all subsets of B. Then (X ,τ) is a locally
convex topological vector space.

479
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Theorem 18.1.3 The vector space operations of addition and scalar multiplication are
continuous. More precisely,

+ : X×X → X , · : F×X→X

are continuous.

Proof: It suffices to show +−1(B) is open in X ×X and ·−1(B) is open in F×X if B is
of the form

B = {y ∈ X : ρ(y− x)< r}

because finite intersections of such sets form the basis B. (This collection of sets is a
subbasis.) Suppose u+ v ∈ B where B is described above. Then

ρ(u+ v− x)< λ r

for some λ < 1. Consider
Bρ(u,δ )×Bρ(v,δ ).

If (u1,v1) is in this set, then

ρ(u1 + v1− x) ≤ ρ (u+ v− x)+ρ (u1−u)+ρ(v1− v)

< λ r+2δ .

Let δ be positive but small enough that

2δ +λ r < r.

Thus this choice of δ shows that +−1(B) is open and this shows + is continuous.
Now suppose αz ∈ B. Then

ρ(αz− x)< λ r < r

for some λ ∈ (0,1). Let δ > 0 be small enough that δ < 1 and also

λ r+δ (ρ (z)+1)+δ |α|< r.

Then consider (β ,w) ∈ B(α,δ )×Bρ (z,δ ).

ρ (βw− x)−ρ (αz− x) ≤ ρ (βw−αz)

≤ |β −α|ρ (w)+ρ (w− z) |α|
≤ |β −α|(ρ (z)+1)+ρ (w− z) |α|
< δ (ρ (z)+1)+δ |α|.

Hence
ρ (βw− x)< λ r+δ (ρ (z)+1)+δ |α|< r

and so
B(α,δ )×Bρ (z,δ )⊆ ·−1(B).

This proves the theorem.



18.1. FUNDAMENTAL CONSIDERATIONS 481

Theorem 18.1.4 Let x be given and let fx(y) = x+ y. Then fx is 1−1, onto, and continu-
ous. If α ̸= 0 and gα(x) = αx, then gα is also 1−1 onto and continuous.

Proof: The assertions about 1−1 and onto are obvious. It remains to show fx and gα

are continuous. Let B = Bρ (z,r) and consider f−1
x (B). Then it is easy to see that

f−1
x (B) = Bρ (z− x,r)

and so fx is continuous. To see that gα is continuous, note that

g−1
α (B) = Bρ

(
z
α
,

r
|α|

)
.

This proves the theorem.
As in the case of a normed linear space, the vector space of continuous linear function-

als, is denoted by X ′ .

Definition 18.1.5 Define, for A a finite subset of Ψ,

ρA (x) = max{ρ (x) : ρ ∈ A}.

The following theorem is the equivalent to the earlier theorems concerning continuous
linear functionals on normed linear spaces.

Theorem 18.1.6 The following are equivalent for f , a linear function mapping X to F.

f is continuous at 0. (18.1.1)

For some A⊆Ψ, A finite,
| f (x)| ≤CρA (x) (18.1.2)

for all x ∈ X where the constant may depend on A but is independent of x.

f is continuous at x (18.1.3)

for all x.

Proof: Clearly 18.1.3 implies 18.1.1. Suppose 18.1.1. Then

0 = f (0) ∈ B(0,1)⊆ F.

Since f is continuous at 0, 0 ∈ f−1 (B(0,1)) and there exists an open set V ∈ τ such that

0 ∈V ⊆ f−1 (B(0,1)).

Then 0 ∈ BA (0,r)⊆V for some r and some A⊆Ψ, A finite. Hence

| f (y)|< 1 if ρA (y)< r.
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Since f is linear

| f (x)| ≤ 2
r

ρA (x).

To see this, note that if x ̸= 0, then

rx
2ρA (x)

∈ BA (0,r)

and so
| f (rx)|
2ρA (x)

≤ 1

which shows that 18.1.1 implies 18.1.2.
Now suppose 18.1.2 and suppose f (x) ∈ V , an open set in F. Then

f (x) ∈ B( f (x) ,r)⊆V

for some r > 0. Suppose ρA (x− y)< r (CA +1)−1. Then

| f (x)− f (y)|= | f (x− y)| ≤CAρA (y− x)< r.

Hence
f
(

BA

(
x,r (CA +1)−1

))
⊆ B( f (x),r)⊆V.

Thus f is continuous at x. This proves the theorem.
What are some examples of locally convex topological vector spaces? It is obvious

that any normed linear space is such an example. More generally, here is a theorem which
shows how to make any vector space into a locally convex topological vector space.

Theorem 18.1.7 Let X be a vector space and let Y be a vector space of linear functionals
defined on X. For each y ∈ Y , define

ρy (x)≡ |y(x)|.

Then the collection of seminorms {ρy}y∈Y defined on X makes X into a locally convex
topological vector space and Y = X ′.

Proof: Clearly {ρy}y∈Y is a collection of seminorms defined on X ; so, X supplied with
the topology induced by this collection of seminorms is a locally convex topological vector
space. Is Y = X ′?

Let y ∈Y , let U ⊆ F be open and let x ∈ y−1 (U). Then B(y(x) ,r)⊆U for some r > 0.
Letting A = {y}, it is easy to see from the definition that BA (x,r)⊆ y−1 (U) and so y−1 (U)
is an open set as desired. Thus, Y ⊆ X ′.

Now suppose z ∈ X ′. Then by 18.1.2, there exists a finite subset of Y, A≡ {y1, · · · ,yn},
such that

|z(x)| ≤CρA (x).

Let
π (x)≡ (y1 (x) , · · · ,yn (x))
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and let f be a linear map from π (X) to F defined by

f (πx)≡ z(x).

(This is well defined because if π (x) = π (x1), then yi (x) = yi (x1) for i = 1, · · · ,n and so

ρA (x− x1) = 0.

Thus,
|z(x1)− z(x)|= |z(x1− x)| ≤CρA (x− x1) = 0.)

Extend f to all of Fn and denote the resulting linear map by F . Then there exists a vector

α = (α1, · · · ,αn) ∈ Fn

with α i = F (ei) such that
F (β ) = α ·β .

Hence for each x ∈ X ,

z(x) = f (πx) = F (πx) =
n

∑
i=1

α iyi (x)

and so

z =
n

∑
i=1

α iyi ∈ Y.

This proves the theorem.

18.2 Separation Theorems
It will always be assumed that X is a locally convex topological vector space. A set, K, is
said to be convex if whenever x,y ∈ K,

λx+(1−λ )y ∈ K

for all λ ∈ [0,1].

Definition 18.2.1 Let U be an open convex set containing 0 and define

m(x)≡ inf{t > 0 : x/t ∈U}.

This is called a Minkowski functional.

Proposition 18.2.2 Let X be a locally convex topological vector space. Then m is defined
on X and satisfies

m(x+ y)≤ m(x)+m(y) (18.2.4)

m(λx) = λm(x) if λ > 0. (18.2.5)

Thus, m is a gauge function on X.
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Proof: Let x ∈ X be arbitrary. There exists A⊆Ψ such that

0 ∈ BA (0,r)⊆U.

Then rx
2ρA (x)

∈ BA (0,r)⊆U

which implies
2ρA (x)

r
≥ m(x) . (18.2.6)

Thus m(x) is defined on X .
Let x/t ∈U, y/s ∈U . Then since U is convex,

x+ y
t + s

=

(
t

t + s

)(x
t

)
+

(
s

t + s

)(y
s

)
∈U.

It follows that
m(x+ y)≤ t + s.

Choosing s, t such that t− ε < m(x) and s− ε < m(y),

m(x+ y)≤ m(x)+m(y)+2ε.

Since ε is arbitrary, this shows 18.2.4. It remains to show 18.2.5. Let x/t ∈ U . Then if
λ > 0,

λx
λ t
∈U

and so m(λx)≤ λ t. Thus m(λx)≤ λm(x) for all λ > 0. Hence

m(x) = m
(

λ
−1

λx
)
≤ λ

−1m(λx)≤ λ
−1

λm(x) = m(x)

and so
λm(x) = m(λx) .

This proves the proposition.

Lemma 18.2.3 Let U be an open convex set containing 0 and let q /∈U. Then there exists
f ∈ X ′ such that

Re f (q)> Re f (x)

for all x ∈U.

Proof: Let m be the Minkowski functional just defined and let

F (cq) = cm(q)

for c ∈ R. If c > 0 then
F (cq) = m(cq)
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while if c≤ 0,
F (cq) = cm(q)≤ 0≤ m(cq) .

By the Hahn Banach theorem, F has an extension, g, defined on all of X satisfying

g(x+ y) = g(x)+g(y), g(cx) = cg(x)

for all c ∈ R, and
g(x)≤ m(x).

Thus, g(−x)≤ m(−x) and so

−m(−x)≤ g(x)≤ m(x).

It follows as in 18.2.6 that for some A⊆Ψ, A finite, and r > 0,

|g(x)| ≤ m(x)+m(−x)

≤ 2
r

ρA (x)+
2
r

ρA (−x) =
4
r

ρA (x)

because
ρA (−x) = |−1|ρA (x) = ρA (x).

Hence g is continuous by Theorem 18.1.6. Now define

f (x)≡ g(x)− ig(ix).

Thus f is linear and continuous so f ∈ X ′ and Re f (x) = g(x). But for x ∈ U, Theorem
18.1.3 implies that x/t ∈U for some t < 1 and so m(x)< 1. Since U is convex and 0 ∈U ,
it follows q/t /∈U if t < 1 because if it were,

q = t
(q

t

)
+(1− t)0 ∈U.

Therefore, m(q)≥ 1 and for x ∈U ,

Re f (x) = g(x)≤ m(x)< 1≤ m(q) = g(q) = Re f (q)

and this proves the lemma.

Corollary 18.2.4 Let U be an open nonempty convex set and let q /∈U. Then there exists
f ∈ X ′ such that

f (q)> f (x)

for all x ∈U.

Proof: Let u0 ∈U and consider Û ≡U−u0. Then 0∈ Û and q−u0 /∈ Û . By separation
theorems, Lemma 18.2.3 there exists f ∈ X ′ such that

f (q−u0)> f (x−u0)

for all x ∈U . Thus f (q)> f (x) for all x ∈U . ■
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Theorem 18.2.5 Let K be closed and convex in a locally convex topological vector space
and let p /∈ K. Then there exists a real number c, and f ∈ X ′ such that

Re f (p)> c > Re f (k)

for all k ∈ K.

Proof: Since K is closed, and p /∈ K, there exists a finite subset of Ψ,A, and a positive
r > 0 such that

K∩BA (p,2r) = /0.

Pick k0 ∈ K and let
U = K +BA (0,r)− k0, q = p− k0.

It follows that U is an open convex set containing 0 and q /∈ U . Therefore, by Lemma
18.2.3, there exists f ∈ X ′ such that

Re f (p− k0) = Re f (q)> Re f (k+ e− k0) (18.2.7)

for all k ∈ K and e ∈ BA (0,r). If Re f (e) = 0 for all e ∈ BA (0,r), then Re f = 0 and 18.2.7
could not hold. Therefore, Re f (e)> 0 for some e ∈ BA (0,r) and so,

Re f (p)> Re f (k)+Re f (e)

for all k ∈ K. Let c1 ≡ sup{Re f (k) : k ∈ K}. Then for all k ∈ K,

Re f (p)≥ c1 +Re f (e)> c1 +
Re f (e)

2
> Re f (k).

Let c = c1 +
Re f (e)

2 . ■

K

{x : Re f (x) = c} p

Corollary 18.2.6 In the situation of the above theorem, there exist real numbers c,d such
that Re f (p)> d > c > Re f (k) for all k ∈ K.

Proof: From the theorem, there exists ĉ such that Re f (p) > ĉ > Re f (k) for all k ∈
K. Thus Re f (p) > ĉ ≥ supk∈K Re f (k). Now choose d,c such that f (p) > d > c > ĉ ≥
supk∈K Re f (k)> f (k). ■

Note that if the field of scalars comes from R rather than C there is no essential change
to the above conclusions. Just eliminate all references to the real part.
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18.2.1 Convex Functionals
As an important application, this theorem gives the basis for proving something about lower
semicontinuity of functionals.

Definition 18.2.7 Let X be a Banach space and let φ : X → (0,∞] be convex and lower
semicontinuous. This means whenever x ∈ X and limn→∞ xn = x,

φ (x)≤ lim inf
n→∞

φ (xn) .

Also assume φ is not identically equal to ∞.

Lemma 18.2.8 Let X ,Y be two Banach spaces. Then letting

||(x,y)|| ≡max(||x||X , ||y||Y ) ,

it follows X ×Y is a Banach space and φ ∈ (X×Y )′ if and only if there exist x∗ ∈ X ′ and
y∗ ∈ Y ′ such that

φ ((x,y)) = x∗ (x)+ y∗ (y) .

The topology coming from this norm is called the strong topology.

Proof: Most of these conclusions are obvious. In particular it is clear X×Y is a Banach
space with the given norm. Let φ ∈ (X×Y )′ . Also let πX (x,y) ≡ (x,0) and πY (x,y) ≡
(0,y) . Then each of πX and πY is continuous and

φ ((x,y)) = φ (πX +πY )((x,y))

= φ ((x,0))+φ ((0,y)) .

Thus φ ◦πX and φ ◦πY are both continuous and their sum equals φ . Let x∗ (x)≡ φ ◦πX (x,0)
and let y∗ ≡ φ ◦πY (x,0) . Then it is clear both x∗ and y∗ are continuous and linear defined
on X and Y respectively. Also, if (x∗,y∗) ∈ X ′×Y ′, then if φ ((x,y)) ≡ x∗ (x)+ y∗ (y) , it
follows φ ∈ (X×Y )′ . This proves the lemma.

Lemma 18.2.9 Let φ be a functional as described in Definition 18.2.7. Then φ is lower
semicontinuous if and only if the epigraph of φ is closed in X×R with the strong topology.
Here the epigraph is defined as

epi(φ)≡ {(x,y) : y≥ φ (x)} .

In this case the functional is called strongly lower semicontinuous.

Proof: First suppose epi(φ) is closed and suppose xn→ x. Let l < φ (x) . Then (x, l) /∈
epi(φ) and so there exists δ > 0 such that if |x− y| < δ and |α− l| < δ , then α < φ (y) .
This implies that if |x− y|< δ and α < l+δ , then the above holds. Therefore, (xn,φ (xn)),
being in epi(φ) cannot satisfy both conditions,

|xn− x|< δ ,φ (xn)< l +δ .
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However, for all n large enough, the first condition is satisfied. Consequently, for all n large
enough, φ (xn)≥ l +δ ≥ l. Thus

lim inf
n→∞

φ (xn)≥ l

and since l < φ (x) is arbitrary, it follows

lim inf
n→∞

φ (xn)≥ φ (x) .

Next suppose the condition about the liminf. If epi(φ) is not closed, then there exists
(x, l) /∈ epi(φ) which is a limit point of points of epi(φ) , Thus there exists (xn, ln)∈ epi(φ)
such that (xn, ln)→ (x, l) and so

l = lim inf
n→∞

ln ≥ lim inf
n→∞

φ (xn)≥ φ (x) ,

contradicting (x, l) /∈ epi(φ). This proves the lemma.

Definition 18.2.10 Let φ be convex and defined on X , a Banach space. Then φ is said to
be weakly lower semicontinuous if epi(φ) is closed in X×R where a basis for the topology
of X×R consists of sets of the form U× (a,b) for U a weakly open set in X.

Theorem 18.2.11 Let φ be a lower semicontinuous convex functional as described in Def-
inition 18.2.7 and let X be a real Banach space. Then φ is also weakly lower semicontinu-
ous.

Proof: By Lemma 18.2.9 epi(φ) is closed in X×R with the strong topology as well as
being convex. Letting (z, l) /∈ epi(φ) , it follows from Theorem 18.2.5 and Lemma 18.2.8
there exists (x∗,α) ∈ X ′×R such that for some c

x∗ (z)+αl > c > x∗ (x)+αβ

whenever β ≥ φ (x) . Consider B{(x∗,α)} ((z, l) ,r) where r is chosen so small that if (y,γ) ∈
B{(x∗,α)} ((z, l) ,r) , then

x∗ (y)+αγ > c.

This shows that the complement of epi(φ) is weakly open and this proves the theorem.

Corollary 18.2.12 Let φ be a lower semicontinuous convex functional as described in Def-
inition 18.2.7 and let X be a real Banach space. Then if xn converges weakly to x, it follows
that

φ (x)≤ lim inf
n→∞

φ (xn) .

Proof: Let l < φ (x) so that (x, l) /∈ epi(φ). Then by Theorem 18.2.11 there exists
B× (−∞, l +δ ) such that B is a weakly open set in X containing x and

B× (−∞, l +δ )⊆ epi(φ)C .
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Thus (xn,φ (xn)) /∈ B×(−∞, l +δ ) for all n. However, xn ∈ B for all n large enough. There-
fore, for those values of n, it must be the case that φ (xn) /∈ (−∞, l +δ ) and so

lim inf
n→∞

φ (xn)≥ l +δ ≥ l

which shows, since l < φ (x) is arbitrary that

lim inf
n→∞

φ (xn)≥ φ (x) .

This proves the corollary.
The following is a convenient fact which follows from the above.

Proposition 18.2.13 Let A be a linear operator which maps a real normed linear space
(X ,∥·∥X ) to a real normed linear space (Y,∥·∥Y ) . Then xn→ x strongly implies Axn→ Ax
if and only if whenever xn→ x weakly, it follows that Axn→ Ax weakly.

Proof: ⇒ Define φ (x) ≡ f (Ax) where f ∈ Y ′. Then φ is convex and continuous.
Therefore, if xn→ x weakly, then

φ (x) = f (Ax)≤ lim inf
n→∞

f (Axn) = lim inf
n→∞

φ (xn)

Then substituting −A for A,

− f (Ax)≤ lim inf
n→∞

f (−Axn) , f (Ax)≥ lim sup
n→∞

f (Axn)

which shows that for each f ∈ Y ′,

lim sup
n→∞

f (Axn)≤ f (Ax)≤ lim inf
n→∞

f (Axn)

and so the second condition holds.
⇐ By the second condition, x→ f (Ax) satisfies the condition that if xn → x weakly,

then
f (Ax) = lim

n→∞
f (Axn)

If A is not bounded, then there exists xn,∥xn∥ ≤ 1 but ∥Axn∥ ≥ n. It follows that xn/
√

n→ 0
and so A

(
xn√

n

)
→ 0 weakly. Therefore, A

(
xn√

n

)
is bounded contrary to the construction

which says that
∥∥∥A
(

xn√
n

)∥∥∥≥√n. Since A is bounded, it must be continuous. ■

18.2.2 More Separation Theorems
There are other separation theorems which can be proved in a similar way. The next theo-
rem considers the separation of an open convex set from a convex set.

Theorem 18.2.14 Let A and B be disjoint, convex and nonempty sets with B open. Then
there exists f ∈ X ′ such that

Re f (a)< Re f (b)

for all a ∈ A and b ∈ B.
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Proof: Let b0 ∈ B,a0 ∈ A. Then the set

B−A+a0−b0

is open, convex, contains 0, and does not contain a0− b0. By Lemma 18.2.3 there exists
f ∈ X ′ such that

Re f (a0−b0)> Re f (b−a+a0−b0)

for all a ∈ A and b ∈ B. Therefore, for all a ∈ A,b ∈ B,

Re f (b)> Re f (a) .

Before giving another separation theorem, here is a lemma.

Lemma 18.2.15 If B is convex, then int(B) ≡ union of all open sets contained in B is
convex. Also, if int(B) ̸= /0, then B⊆ int(B).

Proof: Suppose x,y ∈ int(B). Then there exists r > 0 and a finite set A⊆Ψ such that

BA (x,r) ,BA (y,r)⊆ B.

Let
V ≡ ∪λ∈[0,1]λBA (x,r)+(1−λ )BA (y,r).

Then V is open, V ⊆ B, and if λ ∈ [0,1], then

λx+(1−λ )y ∈V ⊆ B.

Therefore, int(B) is convex as claimed.
Now let y ∈ B and x ∈ int(B). Let

x ∈ BA (x,r)⊆ int(B)

and let xλ ≡ (1−λ )x+λy. Define the open cone,

C ≡ ∪λ∈[0,1)BA(xλ ,(1−λ )r).

Thus C is represented in the following picture.

BA(x,r)

y
B xλ

C
x

I claim C ⊆ B as suggested in the picture. To see this, let

z ∈ BA (xλ ,(1−λ )r) ,λ ∈ (0,1).
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Then
ρA (z− xλ )< (1−λ )r

and so

ρA

(
z

1−λ
− x− λy

1−λ

)
< r.

Therefore,
z

1−λ
− λy

1−λ
∈ BA (x,r)⊆ B.

It follows

(1−λ )

(
z

1−λ
− λy

1−λ

)
+λy = z ∈ B

and so C⊆ B as claimed. Now this shows xλ ∈ int(B) and limλ→1 xλ = y. Thus, y ∈ int(B)
and this proves the lemma.

Note this also shows that B = int(B).

Corollary 18.2.16 Let A,B be convex, nonempty sets. Suppose int(B) ̸= /0 and A∩ int(B)=
/0. Then there exists f ∈ X ′, f ̸= 0, such that for all a ∈ A and b ∈ B,

Re f (b)≥ Re f (a).

Proof: By Theorem 18.2.14, there exists f ∈ X ′ such that for all b ∈ int(B), and a ∈ A,

Re f (b)> Re f (a) .

Thus, in particular, f ̸= 0. By Lemma 18.2.15, if b ∈ B and a ∈ A,

Re f (b)≥ Re f (a) .

This proves the theorem.

Lemma 18.2.17 If X is a topological Hausdorff space then compact implies closed.

Proof: Let K be compact and suppose KC is not open. Then there exists p ∈ KC such
that

Vp∩K ̸= /0

for all open sets Vp containing p. Let

C ={
(
V p
)C : Vp is an open set containing p}.

Then C is an open cover of K because if q ∈ K, there exist disjoint open sets Vp and Vq

containing p and q respectively. Thus q ∈
(
V p
)C. This is an example of an open cover of K

which has no finite subcover, contradicting the assumption that K is compact. This proves
the lemma.
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Lemma 18.2.18 If X is a locally convex topological vector space, and if every point is a
closed set, then the seminorms and X ′ separate the points. This means if x ̸= y, then for
some ρ ∈Ψ,

ρ (x− y) ̸= 0

and for some f ∈ X ′,
f (x) ̸= f (y) .

In this case, X is a Hausdorff space.

Proof: Let x ̸= y. Then by Theorem 18.2.5, there exists f ∈ X ′ such that f (x) ̸= f (y).
Thus X ′ separates the points. Since f ∈ X ′, Theorem 18.1.6 implies

| f (z)| ≤CρA (z)

for some A a finite subset of Ψ. Thus

0 < | f (x− y)| ≤CρA (x− y)

and so ρ (x− y) ̸= 0 for some ρ ∈ A⊆Ψ. Now to show X is Hausdorff, let

0 < r < ρ (x− y)2−1.

Then the two disjoint open sets containing x and y respectively are

Bρ (x,r) and Bρ (y,r).

This proves the lemma.

18.3 The Weak And Weak∗ Topologies
The weak and weak ∗ topologies are examples which make the underlying vector space
into a topological vector space. This section gives a description of these topologies. Unless
otherwise specified, X is a locally convex topological vector space. For G a finite subset of
X ′ define δ G : X → [0,∞) by

δ G (x) = max{| f (x)| : f ∈ G}.

Lemma 18.3.1 The functions δ G for G a finite subset of X ′ are seminorms and the sets

BG (x,r)≡ {y ∈ X : δ G (x− y)< r}

form a basis for a topology on X. Furthermore, X with this topology is a locally convex
topological vector space. If each point in X is a closed set, then the same is true of X with
respect to this new topology.

Proof: It is obvious that the functions δ G are seminorms and therefore the proof that
the sets BG (x,r) form a basis for a topology is the same as in Theorem 18.1.2. To see
every point is a closed set in this new topology, assuming this is true for X with the original
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topology, use Lemma 18.2.18 to assert X ′ separates the points. Let x ∈ X and let y ̸= x.
There exists f ∈ X ′ such that f (x) ̸= f (y). Let G = { f} and consider

BG (y, | f (x− y)|/2).

Then this open set does not contain x. Thus {x}C is open and so {x} is closed. This proves
the Lemma.

This topology for X is called the weak topology for X . For F a finite subset of X , define
γF : X ′→ [0,∞) by

γF ( f ) = max{| f (x) | : x ∈ F}.

Lemma 18.3.2 The functions γF for F a finite subset of X are seminorms and the sets

BF ( f ,r)≡ {g ∈ X ′ : γF ( f −g)< r}

form a basis for a topology on X ′. Furthermore, X ′ with this topology is a locally convex
topological vector space having the property that every point is a closed set.

Proof: The proof is similar to that of Lemma 18.3.1 but there is a difference in the part
where every point is shown to be a closed set. Let f ∈ X ′ and let g ̸= f . Thus there exists
x ∈ X such that f (x) ̸= g(x). Let F = {x}. Then

BF (g, |( f −g)(x) |/2)

contains g but not f . Thus { f}C is open and so { f} is closed. ■
Note that it was not necessary to assume points in X are closed sets to get this.
The topology for X ′ just described is called the weak ∗ topology. In terms of Theorem

18.1.7 the weak topology is obtained by letting Y = X ′ in that theorem while the weak ∗
topology is obtained by letting Y = X with the understanding that X is a vector space of
linear functionals on X ′ defined by

x(x∗)≡ x∗ (x).

By Theorem 18.2.5, there is a useful result which follows immediately.

Theorem 18.3.3 Let K be closed and convex in a Banach space X. Then it is also weakly
closed. Furthermore, if p /∈ K, there exists f ∈ X ′ such that

Re f (p)> c > Re f (k) (18.3.8)

for all k ∈ K. If K∗ is closed and convex in the dual of a Banach space, X ′, then it is also
weak ∗ closed.

Proof: By Theorem 18.2.5 there exists f ∈ X ′ such that 18.3.8 holds. Therefore, letting
A = { f} , it follows that for r small enough, BA (p,r)∩K = /0. Thus K is weakly closed.
This establishes the first part.

For the second part, the seminorms for the weak ∗ toplogy are determined from X and
the continuous linear functionals are of the form x∗→ x∗ (x) where x ∈ X . Thus if p∗ /∈ K∗,
it follows from Theorem 18.2.5 there exists x ∈ X such that

Re p∗ (x)> c > Rek∗ (x)

for all k∗ ∈ K∗. Therefore, letting A = {x} ,BA (p∗,r)∩K∗ = /0 whenever r is small enough
and this shows K∗ is weak ∗ closed. ■
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18.4 Mean Ergodic Theorem
The following theorem is called the mean ergodic theorem.

Theorem 18.4.1 Let (Ω,S ,µ) be a finite measure space and let T : Ω→Ω satisfy

T−1 (E) ∈S ,T (E) ∈S

for all E ∈S . Also suppose for all positive integers, n, that

µ
(
T−n (E)

)
≤ Kµ (E) .

For f ∈ Lp (Ω), and p > 1, let
T ∗ f ≡ f ◦T. (18.4.9)

Then T ∗ ∈L (Lp (Ω) ,Lp (Ω)) , the continuous linear mappings form Lp (Ω) to itself with

||T ∗n|| ≤ K1/p. (18.4.10)

Defining An ∈L (Lp (Ω) ,Lp (Ω)) by

An ≡
1
n

n−1

∑
k=0

T ∗k,

there exists A ∈L (Lp (Ω) ,Lp (Ω)) such that for all f ∈ Lp (Ω) ,

An f → A f weakly (18.4.11)

and A is a projection, A2 = A, onto the space of all f ∈ Lp (Ω) such that T ∗ f = f . (The
invariant functions.) The norm of A satisfies

||A|| ≤ K1/p. (18.4.12)

Proof: To begin with, it follows from simple considerations that∫
|XA (T n (ω))|p dµ =

∫ ∣∣XT−n(A) (ω)
∣∣p dµ = µ

(
T−n (A)

)
≤ Kµ (A)

Hence
∥T ∗n (XA)∥ ≤ K1/p

µ (A)1/p = K1/p ∥XA∥Lp

Next suppose you have a simple function s(ω) = ∑
n
k=1 XAi (ω)ci where we assume the Ai

are disjoint. From the above,

∫ ∣∣∣∣∣ n

∑
k=1

XAi (T
m (ω))ci

∣∣∣∣∣
p

dµ =
∫ n

∑
k=1

XAi (T
m (ω))p |ci|p dµ

≤
n

∑
k=1

Kµ (Ai) |ci|p = K
∫
|s|p dµ
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and so
∥T ∗ms∥ ≤ K1/p ∥s∥

and so the density of the simple functions implies that ∥T ∗m∥ ≤ K1/p.
Next let

M ≡
{

g ∈ Lp (Ω) : ||Ang||p→ 0
}

It follows from 18.4.10 that M is a closed subspace of Lp (Ω) containing (I−T ∗)(Lp (Ω)).
This is shown next.

Claim 1: M is a closed subspace which contains (I−T ∗m)(Lp (Ω)).
First it is shown that this is true if m = 1 and then it will be observed that the same

argument would work for any positive integer m.

An ( f −T ∗ f ) ≡ 1
n

n−1

∑
k=0

T ∗k f −T ∗k+1 f

=
1
n

n−1

∑
k=0

T ∗k f − 1
n

n

∑
k=1

T ∗k f =
1
n
( f −T ∗n f )

Hence

∥An ( f −T ∗ f )∥p ≤
1
n

(
∥ f∥p +∥T

∗n f∥p

)
≤ 1

n

(
∥ f∥p +K1/p ∥ f∥p

)
and this clearly converges to 0. In fact, the same argument shows that M contains the set
(I−T ∗m)(Lp (Ω)) for any m. Now suppose gn ∈M and gn→ g. Does it follow that g ∈M
also? Note that T ∗m is clearly linear. Thus

∥T ∗mg∥ ≤ ∥T ∗mg−T ∗mgn∥+∥T ∗mgn∥ ≤ K1/p ∥g−gn∥+∥T ∗mgn∥

Now pick n large enough that ∥gn−g∥< ε/
(
2K1/p

)
so that

∥T ∗mg∥ ≤ ε

2
+∥T ∗mgn∥

Then for all m large enough, the right side of the above is less than ε and this shows that
g ∈M. Note that M is also a subspace and so it is a closed subspace.

Claim 2: If Ank f → g weakly and Amk f → h weakly, then g = h.
It is first shown that if ξ ∈ Lp′ (Ω) and

∫
ξ gdµ = 0 for all g ∈M, then

∫
ξ (g−h)dµ =

0.
If ξ ∈ Lp′ (Ω) is such that

∫
ξ gdµ = 0 for all g∈M, then since M ⊇ (I−T ∗n)(Lp (Ω)),

it follows that for all k ∈ Lp (Ω),∫
ξ kdµ =

∫
(ξ T ∗nk+ξ (I−T ∗n)k)dµ =

∫
ξ T ∗nkdµ

and so from the definition of An as an average, for such ξ ,∫
ξ kdµ =

∫
ξ Ankdµ. (18.4.13)
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Since Ank f → g weakly and Amk f → h weakly. Then 18.4.13 shows that∫
ξ gdµ = lim

k→∞

∫
ξ Ank f dµ =

∫
ξ f dµ = lim

k→∞

∫
ξ Amk f dµ =

∫
ξ hdµ. (18.4.14)

Thus for these special ξ , it follows that∫
ξ (g−h)dµ = 0. (18.4.15)

Next observe that for each fixed n, if nk→ ∞,

lim
k→∞

∥∥T ∗nAnk f −Ank f
∥∥= 0 (18.4.16)

this follows like the arguments given above in Claim 1. Note that if L ∈ L (X ,X) and
xn→ x weakly in X , then for φ ∈ X ′

⟨φ ,Lxn⟩= ⟨L∗φ ,xn⟩ → ⟨L∗φ ,x⟩= ⟨φ ,Lx⟩

and so Lxn → Lx weakly. Therefore, this simple observation along with the above strong
convergence 18.4.16 implies

T ∗ng = weak lim
k→∞

T ∗nAnk f = weak lim
k→∞

Ank f = g.

Similarly T ∗nh = h where Amk f → h weakly. It follows that An (g−h) = g−h so if g ̸= h,
then g−h /∈M because

An (g−h)→ g−h ̸= 0.

It follows that since M is a closed subspace, there exists ξ ∈ Lp′ (Ω) such that∫
ξ (g−h)dµ ̸= 0

but
∫

ξ kdµ = 0 for all k ∈M, contradicting 18.4.15. This verifies Claim 2.
Now

∥An f∥p =

(∫ ∣∣∣∣∣1n n−1

∑
k=0

f
(

T k
ω

)∣∣∣∣∣
p

dµ

)1/p

≤ 1
n

n−1

∑
k=0

(∫ ∣∣∣ f (T k
ω

)∣∣∣p dµ

)1/p

=
1
n

n−1

∑
k=0

∥∥∥T ∗k f
∥∥∥

p
≤ 1

n

n−1

∑
k=0

K1/p ∥ f∥p = K1/p ∥ f∥p (18.4.17)

Hence, by the Eberlein Smulian theorem, Theorem 17.5.12, in case p > 1, there is a sub-
sequence for which An f converges weakly in Lp (Ω). From the above, it follows that the
original sequence must converge. That is, An f converges weakly for each f ∈ Lp (Ω). Let
A f denote this weak limit. Then it is clear that A is linear because this is true for each
An. What of the claim about the estimate? From weak lower semicontinuity of the norm,
Corollary 18.2.12,

∥A f∥p ≤ lim inf
n→∞
∥An f∥ ≤ K1/p ∥ f∥p ■
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18.5 The Tychonoff And Schauder Fixed Point Theo-
rems

First we give a proof of the Schauder fixed point theorem which is an infinite dimensional
generalization of the Brouwer fixed point theorem. This is a theorem which lives in Banach
space. After this, we give a generalization to locally convex topological vector spaces
where the theorem is sometimes called Tychonoff’s theorem. First here is an interesting
example [55].

Exercise 18.5.1 Let B be the closed unit ball in a separable Hilbert space H which is
infinite dimensional. Then there exists continuous f : B→ B which has no fixed point.

Let {ek}∞

k=1 be a complete orthonormal set in H. Let L ∈L (H,H) be defined as fol-
lows. Lek = ek+1 and then extend linearly. Then in particular,

L

(
∑

i
xiei

)
= ∑

i
xiei+1

Then it is clear that L preserves norms and so it is linear and continuous. Note how this
would not work at all if the Hilbert space were finite dimensional. Then define f (x) =
1
2 (1−∥x∥H)e1 +Lx. Then if ∥x∥ ≤ 1,

∥ f (x)∥= 1
2
(1−∥x∥)2 +∥Lx∥2 =

1
2
(1−∥x∥)2 +∥x∥2 =

1
2
∥x∥2 +

1
2
≤ 1

and so f : B→ B yet has no fixed point because if it did, you would need to have

x =
1
2
(1−∥x∥H)e1 +Lx

and so

∥x∥2 =
1
4
(1−∥x∥)2 +∥Lx∥2 =

1
4
(1−∥x∥)2 +∥Lx∥2

=
1
4
+

5
4
∥x∥2− 1

2
∥x∥

1
2
∥x∥= 1

4
+

1
4
∥x∥2

this requires ∥x∥= 1. But then you would need to have x = Lx which is not so because if x
is in the closure of the span of {ei}∞

i=m , such that the first nonzero Fourier coefficient is the
mth, then Lx is in the closure of the span of {ei}∞

i=m+1.
This shows you need something other than continuity if you want to get a fixed point.

This also shows that there is a retraction of B onto ∂B in any infinite dimensional separable
Hilbert space. You get it the usual way. Take the line from x to f (x) and the retraction will
be the function which gives the point on ∂B which is obtained by extending this line till
it hits the boundary of B. Thus for Hilbert spaces, those which have ∂B a retraction of B
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are exactly those which are infinite dimensional. The above reference claims this retraction
property holds for any infinite dimensional normed linear space. I think it is fairly clear
to see from the above example that this is not a surprising assertion. Recall that one of
the proofs of the Brouwer fixed point theorem used the non existence of such a retraction,
obtained using integration theory, to prove the theorem.

We let K be a closed convex subset of X a Banach space and let

f be continuous, f : K→ K, and f (K) is compact.

Lemma 18.5.2 For each r > 0 there exists a finite set of points

{y1, · · · ,yn} ⊆ f (K)

and continuous functions ψ i defined on f (K) such that for x ∈ f (K),

n

∑
i=1

ψ i (x) = 1, (18.5.18)

ψ i (x) = 0 if x /∈ B(yi,r) , ψ i (x)> 0 if x ∈ B(yi,r) .

If

fr (x)≡
n

∑
i=1

yiψ i ( f (x)), (18.5.19)

then whenever x ∈ K,
∥ f (x)− fr (x)∥ ≤ r.

Proof: Using the compactness of f (K), there exists

{y1, · · · ,yn} ⊆ f (K)⊆ K

such that
{B(yi,r)}n

i=1

covers f (K). Let
φ i (y)≡ (r−∥y− yi∥)+

Thus φ i (y)> 0 if y ∈ B(yi,r) and φ i (y) = 0 if y /∈ B(yi,r). For x ∈ f (K), let

ψ i (x)≡ φ i (x)

(
n

∑
j=1

φ j (x)

)−1

.

Then 18.5.18 is satisfied. Indeed the denominator is not zero because x is in one of the
B(yi,r). Thus it is obvious that the sum of these equals 1 on K. Now let fr be given by
18.5.19 for x ∈ K. For such x,

f (x)− fr (x) =
n

∑
i=1

( f (x)− yi)ψ i ( f (x))
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Thus
f (x)− fr (x) = ∑

{i: f (x)∈B(yi,r)}
( f (x)− yi)ψ i ( f (x))

+ ∑
{i: f (x)/∈B(yi,r)}

( f (x)− yi)ψ i ( f (x))

= ∑
{i: f (x)−yi∈B(0,r)}

( f (x)− yi)ψ i ( f (x)) =

∑
{i: f (x)−yi∈B(0,r)}

( f (x)− yi)ψ i ( f (x))+ ∑
{i: f (x)/∈B(yi,r)}

0ψ i ( f (x)) ∈ B(0,r)

because 0 ∈ B(0,r), B(0,r) is convex, and 18.5.18. It is just a convex combination of
things in B(0,r). ■

Note that we could have had the yi in f (K) in addition to being in f (K). This would
make it possible to eliminate the assumption that K is closed later on. All you really need
is that K is convex.

We think of fr as an approximation to f . In fact it is uniformly within r of f on K. The
next lemma shows that this fr has a fixed point. This is the main result and comes from the
Brouwer fixed point theorem in Rn. It is an approximate fixed point.

Lemma 18.5.3 For each r > 0, there exists xr ∈ convex hull of f (K)⊆ K such that

fr (xr) = xr, ∥ fr (x)− f (x)∥< r for all x

Proof: If fr (xr) = xr and

xr =
n

∑
i=1

aiyi

for ∑
n
i=1 ai = 1 and the yi described in the above lemma, we need

fr (xr) =
n

∑
i=1

yiψ i ( f (xr)) =
n

∑
j=1

y jψ j

(
f

(
n

∑
i=1

aiyi

))
=

n

∑
j=1

a jy j = xr.

Also, if this is satisfied, then we have the desired fixed point.
This will be satisfied if for each j = 1, · · · ,n,

a j = ψ j

(
f

(
n

∑
i=1

aiyi

))
; (18.5.20)

so, let

Σn−1 ≡

{
a ∈ Rn :

n

∑
i=1

ai = 1, ai ≥ 0

}
and let h : Σn−1→ Σn−1 be given by

h(a) j ≡ ψ j

(
f

(
n

∑
i=1

aiyi

))
.
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Since h is a continuous function of a, the Brouwer fixed point theorem applies and there
exists a fixed point for h which is a solution to 18.5.20. ■

The following is the Schauder fixed point theorem.

Theorem 18.5.4 Let K be a closed and convex subset of X, a normed linear space. Let
f : K→ K be continuous and suppose f (K) is compact. Then f has a fixed point.

Proof: Recall that f (xr)− fr (xr) ∈ B(0,r) and fr (xr) = xr with xr ∈ convex hull of
f (K)⊆ K.

There is a subsequence, still denoted with subscript r such that f (xr)→ x∈ f (K). Note
that the fact that K is convex is what makes f defined at xr. xr is in the convex hull
of f (K) ⊆ K. This is where we use K convex. Then since fr is uniformly close to f , it
follows that fr (xr) = xr→ x also. Thus xr converges strongly to x. Therefore,

f (x) = lim
r→0

f (xr) = lim
r→0

fr (xr) = lim
r→0

xr = x. ■

We usually have in mind the mapping defined on a Banach space. However, the com-
pleteness was never used. Thus the result holds in a normed linear space.

There is a nice corollary of this major theorem which is called the Schaefer fixed point
theorem or the Leray Schauder alterative principle [55].

Theorem 18.5.5 Let f : X → X be a compact map. Then either

1. There is a fixed point for t f for all t ∈ [0,1] or

2. For every r > 0, there exists a solution to x = t f (x) for some t ∈ (0,1) such that
∥x∥> r. (The solutions to x = t f (x) for t ∈ (0,1) are unbounded.)

Proof: Suppose there is t0 ∈ [0,1] such that t0 f has no fixed point. Then t0 ̸= 0.t0 f
obviously has a fixed point if t0 = 0. Thus t0 ∈ (0,1]. Then let rM be the radial retraction
onto B(0,M). By Schauder’s theorem there exists x∈B(0,M) such that t0rM f (x)= x. Then
if ∥ f (x)∥ ≤ M, rM has no effect and so t0 f (x) = x which is assumed not to take place.
Hence ∥ f (x)∥ > M and so ∥rM f (x)∥ = M so ∥x∥ = t0M. Also t0rM f (x) = t0M f (x)

∥ f (x)∥ =

x and so x = t̂ f (x) , t̂ = t0 M
∥ f (x)∥ < 1. Since M is arbitrary, it follows that the solutions

to x = t f (x) for t ∈ (0,1) are unbounded. It was just shown that there is a solution to
x = t̂ f (x) , t̂ < 1 such that ∥x∥ = t0M where M is arbitrary. Thus the second of the two
alternatives holds. ■

Proof: Suppose that alternative 2 does not hold and yet alternative 1 also fails to hold.
Then there is M0 such that if you have any solution to x = t f (x) for t ∈ (0,1) , then ∥x∥ ≤
M0. Nevertheless, there is t ∈ (0,1] for which there is no fixed point for t f . (obviously
there is a fixed point for t = 0.) However, there is x such that for M > M0,

x = t (rM f (x)) = t
M f (x)
∥ f (x)∥

= t̂ f (x) , t̂ =
M

∥ f (x)∥
t < t

We must have ∥ f (x)∥> M and rM f (x) = M f (x)
∥ f (x)∥ since if ∥ f (x)∥ ≤M, rM f (x) = f (x) and

there would be a fixed point for this t. Thus, letting M get larger and larger, there are
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tM ∈ (0,1) and xM,∥xM∥ ≤ M0 such that xM = tM f (xM) , ∥ f (xM)∥ > M . However, f is
given to be a compact map so it takes B(0,M0) to a compact set but this shows that f must
take this set to an unbounded set which is a contradiction. This results from assuming there
is t such that t f fails to have a fixed point for some t ∈ [0,1]. Thus alternative 1 must hold.
■

Next this is considered in the more general setting of locally convex topological vector
space. This is the Tychonoff fixed point theorem. In this theorem, X will be a locally
convex topological vector space in which every point is a closed set. Let B be the basis
described earlier and let B0 consist of all sets of B which are of the form BA (0,r) where A
is a finite subset of Ψ as described earlier. Note that for U ∈B0, U =−U and U is convex.
Also, if U ∈B0, there exists V ∈B0 such that

V +V ⊆U

where
V +V ≡ {v1 + v2 : vi ∈V}.

To see this, note
BA (0,r/2)+BA (0,r/2)⊆ BA(0,r).

We let K be a closed convex subset of X and let

f be continuous, f : K→ K, and f (K) is compact.

Lemma 18.5.6 For each U ∈B0, there exists a finite set of points

{y1 · · ·yn} ⊆ f (K)

and continuous functions ψ i defined on f (K) such that for x ∈ f (K),

n

∑
i=1

ψ i (x) = 1, (18.5.21)

ψ i (x) = 0 if x /∈ yi +U, ψ i (x)> 0 if x ∈ yi +U.

If

fU (x)≡
n

∑
i=1

yiψ i ( f (x)), (18.5.22)

then whenever x ∈ K,
f (x)− fU (x) ∈U.

Proof: Let U = BA (0,r) . Using the compactness of f (K), there exists

{y1 · · ·yn} ⊆ f (K)

such that
{yi +U}n

i=1
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covers f (K). Let
φ i (y)≡ (r−ρA (y− yi))

+.

Thus φ i (y)> 0 if y ∈ yi +U and φ i (y) = 0 if y /∈ yi +U . For x ∈ f (K), let

ψ i (x)≡ φ i (x)

(
n

∑
j=1

φ j (x)

)−1

.

Then 18.5.21 is satisfied. Now let fU be given by 18.5.22 for x ∈ K. For such x,

f (x)− fU (x) = ∑
{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x))

+ ∑
{i: f (x)−yi /∈U}

( f (x)− yi)ψ i ( f (x))

= ∑
{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x)) =

∑
{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x))+ ∑
{i: f (x)−yi /∈U}

0ψ i ( f (x)) ∈U

because 0 ∈U , U is convex, and 18.5.21. ■
We think of fU as an approximation to f .

Lemma 18.5.7 For each U ∈B0, there exists xU ∈ convex hull of f (K)⊆ K such that

fU (xU ) = xU .

Proof: If fU (xU ) = xU and

xU =
n

∑
i=1

aiyi

for ∑
n
i=1 ai = 1, we need

n

∑
j=1

y jψ j

(
f

(
n

∑
i=1

aiyi

))
=

n

∑
j=1

a jy j.

Also, if this is satisfied, then we have the desired fixed point. This will be satisfied if for
each j = 1, · · · ,n,

a j = ψ j

(
f

(
n

∑
i=1

aiyi

))
; (18.5.23)

so, let

Σn−1 ≡

{
a ∈ Rn :

n

∑
i=1

ai = 1, ai ≥ 0

}
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and let h : Σn−1→ Σn−1 be given by

h(a) j ≡ ψ j

(
f

(
n

∑
i=1

aiyi

))
.

Since h is continuous, the Brouwer fixed point theorem applies and we see there exists a
fixed point for h which is a solution to 18.5.23. ■

Theorem 18.5.8 Let K be a closed and convex subset of X, a locally convex topological
vector space in which every point is closed. Let f : K → K be continuous and suppose
f (K) is compact. Then f has a fixed point.

Proof: First consider the following claim which will yield a candidate for the fixed
point. Recall that f (xU )− fU (xU ) ∈U and fU (xU ) = xU with xU ∈ convex hull of f (K)⊆
K.

Claim: There exists x ∈ f (K) with the property that if V ∈B0, there exists U ⊆ V ,
U ∈B0, such that

f (xU ) ∈ x+V.

Proof of the claim: If no such x exists, then for each x ∈ f (K), there exists Vx ∈B0
such that whenever U ⊆Vx, with U ∈B0,

f (xU ) /∈ x+Vx.

Since f (K) is compact, there exist x1, · · · ,xn ∈ f (K) such that

{xi +Vxi}
n
i=1

cover f (K). Let
U ∈B0, U ⊆ ∩n

i=1Vxi

and consider xU .
f (xU ) ∈ xi +Vxi

for some i because these sets cover f (K) and f (xU ) is something in f (K). But U ⊆Vxi , a
contradiction. This shows the claim.

Now I show x is the desired fixed point. Let W ∈B0 and let V ∈B0 with

V +V +V ⊆W .

Since f is continuous at x, there exists V0 ∈B0 such that

V0 +V0 ⊆V

and if
y− x ∈V0 +V0,

then
f (x)− f (y) ∈V.



504 CHAPTER 18. TOPOLOGICAL VECTOR SPACES

Using the claim, let U ∈B0, U ⊆V0, such that

f (xU ) ∈ x+V0.

Then
x− xU = x− f (xU )+ f (xU )− fU (xU ) ∈V0 +U

⊆V0 +V0 ⊆V

and so

f (x)− x = f (x)− f (xU )+ f (xU )− fU (xU )+ fU (xU )− x

= f (x)− f (xU )+ f (xU )− fU (xU )+ xU − x

⊆ V +U +V ⊆W.

Since W ∈B0 is arbitrary, it follows from Lemma 18.2.18 that f (x)− x = 0. ■
As an example of the usefulness of this fixed point theorem, consider the following

application to the theory of ordinary differential equations. In the context of this theorem,
X =C ([0,T ] ;Rn), a Banach space with norm given by

||x|| ≡max{|x(t)| : t ∈ [0,T ]} .

Theorem 18.5.9 Let f : [0,T ]×Rn → Rn be continuous and suppose there exists L > 0
such that for all λ ∈ (0,1), if

x′ = λ f(t,x) , x(0) = x0 (18.5.24)

for all t ∈ [0,T ], then ||x||< L. Then there exists a solution to

x′ = f(t,x) , x(0) = x0 (18.5.25)

for t ∈ [0,T ].

Proof: Let
Nx(t)≡

∫ t

0
f(s,x(s))ds.

Thus a solution to the initial value problem exists if there exists a solution to

x0 +N (x) = x.

Let
m≡max

{
|f(t,x)| : (t,x) ∈ [0,T ]×B(0,L)

}
, M ≡ |x0|+mT

and let
K ≡ {x ∈C (0,T ;Rn) such that x(0) = x0 and ||x|| ≤M} .

Now define

Ax≡

{
x0 +Nx if ||Nx|| ≤M−|x0|,
x0 +

(M−|x0|)Nx
||Nx|| if ||Nx||> M−|x0|.
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Then A is continuous and maps X to K because

∥Ax∥ ≤ |x0|+∥Nx∥ ≤M if ∥Nx∥ ≤M−|x0|

and otherwise,

∥Ax∥ ≤ |x0|+
∥∥∥∥ (M−|x0|)Nx

||Nx||

∥∥∥∥≤ |x0|+M−|x0|= M.

Also A(K) is equicontinuous because

x0 +Nx(t)− (x0 +Nx(t1)) =
∫ t

t1
f(s,x(s))ds

and the integrand is bounded. Thus A(K) is a compact set in X by the Ascoli Arzela
theorem. By the Schauder fixed point theorem, A has a fixed point, x ∈ K.

If ||N (x)||> M−|x0|, then
x0 +λN (x) = x

where

λ =
(M−|x0|)
||Nx||

< 1

and so 18.5.24 holds. Therefore, by the assumed estimate on the solutions to 18.5.24, it
follows that

||x||< L

and so ||Nx|| ≤ mT = M−|x0|, a contradiction. Therefore, it must be the case that

||N (x)|| ≤M−|x0|

which implies that
x0 +N (x) = x.

Since this is equivalent to 18.5.25, this proves the theorem. ■
Here is a neater proof which uses the Leray Schauder alternative, also called the Schae-

fer fixed point theorem presented above.

Theorem 18.5.10 Let f : [0,T ]×Rn → Rn be continuous and suppose there exists L > 0
such that for all λ ∈ (0,1), if

x′ = λ f(t,x) , x(0) = x0 (18.5.26)

for all t ∈ [0,T ], then ||x||< L. Then there exists a solution to

x′ = f(t,x) , x(0) = x0 (18.5.27)

for t ∈ [0,T ].
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Proof: Let F : X → X where X described above.

Fy(t)≡
∫ t

0
f(s,y(s)+x0)ds

Let B be a bounded set in X . Then |f(s,y(s)+x0)| is bounded for s ∈ [0,T ] if y ∈ B. Say
|f(s,y(s)+x0)| ≤CB. Hence F (B) is bounded in X . Also, for y ∈ B,s < t,

|Fy(t)−Fy(s)| ≤
∣∣∣∣∫ t

s
f(s,y(s)+x0)ds

∣∣∣∣≤CB |t− s|

and so F (B) is pre-compact by the Ascoli Arzela theorem. By the Schaefer fixed point
theorem, there are two alternatives. Either there are unbounded solutions y to

λF (y) = y

for various λ ∈ (0,1) or for all λ ∈ [0,1] , there is a fixed point for λF. In the first case,
there would be unbounded yλ solving

yλ (t) = λ

∫ t

0
f(s,yλ (s)+x0)ds

Then let xλ (s)≡ yλ (s)+x0 and you get ∥xλ∥ also unbounded for various λ ∈ (0,1). The
above implies

xλ (t)−x0 = λ

∫ t

0
f(s,xλ (s))ds

so x′
λ
= λ f(t,xλ ) ,xλ (0) = x0 and these would be unbounded for λ ∈ (0,1) contrary to the

assumption that there exists an estimate for these valid for all λ ∈ (0,1). Hence the first
alternative must hold and hence there is y ∈ X such that

Fy = y

Then letting x(s)≡ y(s)+x0, it follows that

x(t)−x0 =
∫ t

0
f(s,x(s))ds

and so x is a solution to the differential equation on [0,T ]. ■
Note that existence for solutions to 18.5.24 is not assumed, only estimates of possible

solutions. These estimates are called a-priori estimates. Also note this is a global existence
theorem, not a local one for a solution defined on only a small interval.

18.6 A Variational Principle of Ekeland
Definition 18.6.1 A function φ : X → (−∞,∞] is called proper if it is not constantly equal
to ∞. Here X is assumed to be a complete metric space. The function φ is lower semicon-
tinuous if

xn→ x implies φ (x)≤ lim inf
n→∞

φ (xn)

It is bounded below if there is some constant C such that C ≤ φ (x) for all x.
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The variational principle of Ekeland is the following theorem [55]. You start with an
approximate minimizer x0. It says there is yλ fairly close to x0 such that if you subtract a
“cone” from the value of φ at yλ , then the resulting function is less than φ (x) for all x ̸= yλ .
This cone is like a supporting plane for a convex function but pertains to functions which
are certainly not convex.

x0

yλ

Theorem 18.6.2 Let X be a complete metric space and let φ : X → (−∞,∞] be proper,
lower semicontinuous and bounded below. Let x0 be such that

φ (x0)≤ inf
x∈X

φ (x)+ ε

Then for every λ > 0 there exists a yλ such that

1. φ (yλ )≤ φ (x0)

2. d (yλ ,x0)≤ λ

3. φ (yλ )− ε

λ
d (x,yλ )< φ (x) for all x ̸= yλ

To motivate the proof, see the following picture which illustrates the first two steps.
The Siwill be sets in X but are denoted symbolically by labeling them in X× (−∞,∞].

x1

x2

S1 S1

Then the end result of this iteration would be a picture like the following.

yλ
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Thus you would have φ (yλ )− ε

λ
d (yλ ,x) ≤ φ (x) for all x which is seen to be what is

wanted.
Proof: Let x1 = x0 and define

S1 ≡
{

z ∈ X : φ (z)≤ φ (x1)−
ε

λ
d (z,x1)

}
Then S1 contains x1 so it is nonempty. It is also clear that S1 is a closed set. This follows
from the lower semicontinuity of φ . Let x2 be a point of S1, possibly different than x1 and
let

S2 ≡
{

z ∈ X : φ (z)≤ φ (x2)−
ε

λ
d (z,x2)

}
Continue in this way. Now let there be a sequence of points {xk} such that xk ∈ Sk−1 and
define Sk by

Sk ≡
{

z ∈ X : φ (z)≤ φ (xk)−
ε

λ
d (z,xk)

}
where xk is some point of Sk−1. Then xk is a point of Sk. Will this yield a nested sequence
of nonempty closed sets? Yes, it appears that it would because if z ∈ Sk then

φ (z) ≤
∈Sk−1

φ (xk)−
ε

λ
d (z,xk)≤

(
φ (xk−1)−

ε

λ
d (xk−1,xk)

)
− ε

λ
d (z,xk)

≤ φ (xk−1)−
ε

λ
d (z,xk−1)

showing that z has what it takes to be in Sk−1. Thus we would obtain a sequence of nested,
nonempty, closed sets according to this scheme.

Now here is how to choose the xk ∈ Sk−1. Let

φ (xk)< inf
x∈Sk−1

φ (x)+
1
2k

Then for z ∈ Sn+1 ⊆ Sn,

φ (z)≤ φ (xn+1)−
ε

λ
d (z,xn+1)

and so

ε

λ
d (z,xn+1) ≤ φ (xn+1)−φ (z)≤ inf

x∈Sn
φ (x)+

1
2n+1 −φ (z)

≤ φ (z)+
1

2n+1 −φ (z) =
1

2n+1

Thus every z ∈ Sn+1 is within 1
2n+1 of the single point xn+1 and so the diameter of Sn

converges to 0 as n→ ∞. By completeness of X , there exists a unique yλ ∈ ∩nSn. Then it
follows in particular that for x0 = x1 as above,

φ (yλ )≤ φ (x0)−
ε

λ
d (yλ ,x0)≤ φ (x0)

which verifies the first of the above conclusions.
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As to the second, φ (x0)≤ infx∈X φ (x)+ ε and so, for any x,

φ (yλ )≤ φ (x0)−
ε

λ
d (yλ ,x0)≤ φ (x)+ ε− ε

λ
d (yλ ,x0)

this being true for x = yλ . Hence ε

λ
d (yλ ,x0)≤ ε and so d (yλ ,x0)≤ λ .

Finally consider the third condition. If it does not hold, then there exists z ̸= yλ such
that

φ (yλ )≥ φ (z)+
ε

λ
d (z,yλ )

so that
φ (z)≤ φ (yλ )−

ε

λ
d (z,yλ ) .

But then, by the definition of yλ as being in all the Sn,

φ (yλ )≤ φ (xn)−
ε

λ
d (xn,yλ )

and so

φ (z) ≤ φ (xn)−
ε

λ
(d (xn,yλ )+d (z,yλ ))

≤ φ (xn)−
ε

λ
d (xn,z)

Since n is arbitrary, this shows that z ∈ ∩nSn but there is only one element of this intersec-
tion and it is yλ so z must equal yλ , a contradiction. ■

Note how if you make λ very small, you could pick ε very small such that the cone
looks pretty flat.

18.6.1 Cariste Fixed Point Theorem
As mentioned in [55], the above result can be used to prove a fixed point theorem called
the Cariste fixed point theorem.

Theorem 18.6.3 Let φ be lower semicontinuous, proper, and bounded below on a complete
metric space X and let F : X →P (X) be set valued such that F (x) ̸= /0 for all x. Also
suppose that for each x ∈ X , there exists y ∈ F (x) such that

φ (y)≤ φ (x)−d (x,y)

Then there exists x0 such that x0 ∈ F (x0).

Proof: In the above Ekeland variational principle, let ε = 1 = λ . Then there exists x0
such that for all y ̸= x0

φ (x0)−d (y,x0)< φ (y) , so φ (x0)< φ (y)+d (y,x0) (18.6.28)

for all y ̸= x0.
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x→ φ(x0)−d(x,x0)

φ(x0)

Suppose x0 /∈ F (x0) . From the assumption, there is y ∈ F (x0) (so y ̸= x0) such that

φ (y)≤ φ (x0)−d (x0,y)

Since y ̸= x0, it follows

φ (y)+d (x0,y)≤ φ (x0)< φ (y)+d (y,x0)

a contradiction. Hence x0 ∈ F (x0) after all. ■
It is a funny theorem. It is easy to prove, but you look at it and wonder what it says. If

F is single valued, you would need to have a function φ such that for each x,

φ (F (x))≤ φ (x)−d (x,y)

and if you have such a φ then you can assert there is a fixed point for F . Suppose F is
single valued and d (Fx,Fy) ≤ rd (x,y) ,0 < r < 1. Of course F has a fixed point using
easier techniques. However, this also follows from this result. Let

φ (x) =
1

1− r
d (x,F (x))

Then is it true that for each x, there exists y ∈ F (x) such that the inequality holds for all x?
Is

1
1− r

d (F (x) ,F (F (x)))≤ 1
1− r

d (x,F (x))−d (x,F (x))

Yes, this is certainly so because the right side reduces to r
1−r d (x,F (x)) . Thus this fixed

point theorem implies the usual Banach fixed point theorem.
The Ekeland variational principle says that when φ is lower semicontinuous proper and

bounded below, there exists y such that

φ (y)−d (x,y)< φ (x) for all x ̸= y

In fact this can be proved from the Cariste fixed point theorem. Suppose the EVP does not
hold. This would mean that for all y there exists x ̸= y such that

φ (y)−d (x,y)≥ φ (x)

Thus, for all x there exists y ̸= x such that

φ (x)−d (x,y)≥ φ (y)
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The inequality is preserved if x = y. Then let

F (x)≡ {y ̸= x : φ (x)−d (x,y)≥ φ (y)} ̸= /0

by assumption. This is the hypothesis for the Cariste fixed point theorem. Hence there
exists x0 ∈F (x0) = {y ̸= x0 : φ (x0)−d (x0,y)≥ φ (y)} but this cannot happen because you
can’t have x0 ̸= x0. Thus the Ekeland variational principle must hold after all.

18.6.2 A Density Result
There are several applications of the Ekeland variational principle. For more of them, see
[55]. One of these is to show that there is a point where φ

′ is small assuming φ is bounded
below, lower semicontinuous, and Gateaux differentiable. Here〈

φ
′ (x) ,v

〉
≡ lim

h→0

φ (x+hv)−φ (x)
h

, φ
′ (x) ∈ X ′

It is sort of an approximate critical point at a point which causes φ to be near the infimum.

Theorem 18.6.4 Let X be a Banach space and φ : X → R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Then for every ε > 0 there exists x ∈ X
such that

φ (xε)≤ inf
x∈X

φ (x)+ ε and
∥∥φ
′ (xε)

∥∥
X ′ ≤ ε

Proof: From the Ekeland variational principle with λ = 1, there exists xε such that

φ (xε)≤ φ (x0)≤ inf
x∈X

φ (x)+ ε

and for all x,
φ (xε)< φ (x)+ ε ∥x− xε∥

Then letting x = xε +hv where ∥v∥= 1,

φ (xε +hv)−φ (xε)>−ε |h|

Let h < 0. Then divide by it

φ (xε +hv)−φ (xε)

h
< ε

Passing to a limit as h→ 0 yields 〈
φ
′ (xε) ,v

〉
≤ ε

Now v was arbitrary with norm 1 and so

sup
∥v∥=1

〈
φ
′ (xε) ,v

〉
=
∥∥φ
′ (xε)

∥∥≤ ε ■

There is another very interesting application of the Ekeland variational principle [55].



512 CHAPTER 18. TOPOLOGICAL VECTOR SPACES

Theorem 18.6.5 Let X be a Banach space and φ : X → R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Also suppose there exists a,c > 0 such
that

a∥x∥− c≤ φ (x) for all x ∈ X

Then {φ ′ (x) : x ∈ X} is dense in the ball of X ′ centered at 0 with radius a. Here φ
′ (x) ∈ X ′

and is determined by 〈
φ
′ (x) ,v

〉
≡ lim

h→0

φ (x+hv)−φ (x)
h

Proof: Let x∗ ∈ X ′,∥x∗∥ ≤ a. Let

ψ (x) = φ (x)−⟨x∗,x⟩

This is lower semicontinuous. It is also bounded from below because

ψ (x)≥ φ (x)−a∥x∥ ≥ (a∥x∥− c)−a∥x∥=−c

It is also clearly Gateaux differentiable and lower semicontinuous because the piece added
in is actually continuous. It is clear that the Gateaux derivative is just φ

′ (x)− x∗. By
Theorem 18.6.4, there exists xε such that∥∥φ

′ (xε)− x∗
∥∥≤ ε ■

Thus this theorem says that if φ (x) ≥ a∥x∥− c where φ has the nice properties of the
theorem it follows that φ

′ (x) is dense in B(0,a) in the dual space X ′. It follows that if for
every a, there exists c such that

φ (x)≥ a∥x∥− c for all x ∈ X

then {φ ′ (x) : x ∈ X} is dense in X ′. This proves the following lemma.

Lemma 18.6.6 Let X be a Banach space and φ : X→R be Gateaux differentiable, bounded
from below, and lower semicontinuous. Suppose for all a > 0 there exists a c > 0 such that

φ (x)≥ a∥x∥− c for all x

Then {φ ′ (x) : x ∈ X} is dense in X ′.

If the above holds, then
φ (x)
∥x∥

≥ a− c
∥x∥

and so, since a is arbitrary, it must be the case that

lim
∥x∥→∞

φ (x)
∥x∥

= ∞. (18.6.29)

In fact, this is sufficient. If not, there would exist a > 0 such that φ (xn) < a∥xn∥−n. Let
−L be a lower bound for φ (x). Then

−L+n≤ a∥xn∥
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and so ∥xn∥→ ∞. Now it follows that

a≥ φ (xn)

∥xn∥
+

n
∥xn∥

≥ φ (xn)

∥xn∥
(18.6.30)

which is a contradiction to 18.6.29. This proves the following interesting density theorem.

Theorem 18.6.7 Let X be a Banach space and φ : X → R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Also suppose the coercivity condition

lim
∥x∥→∞

φ (x)
∥x∥

= ∞

Then {φ ′ (x) : x ∈ X} is dense in X ′. Here φ
′ (x) ∈ X ′ and is determined by

〈
φ
′ (x) ,v

〉
≡ lim

h→0

φ (x+hv)−φ (x)
h

18.7 Quotient Spaces
A useful idea is that of a quotient space. It is a way to create another Banach space from
a given Banach space and a closed subspace. It generalizes similar concepts which are
routine in linear algebra.

Definition 18.7.1 Let X be a Banach space and let V be a closed subspace of X. Then
X/V denotes the set of equivalence classes determined by the equivalence relation which
says x∼ y means x− y ∈V . An individual equivalence class will be denoted by any of the
following symbols. x+V, [x] , or [x]V . Vector space operations are defined as follows:

(x+V )+ y+V ≡ x+ y+V

or in other symbols,
[x]+ [y]≡ [x+ y]

and for α ∈ F,
α [x]≡ [αx] .

Also a norm is defined by

||[x]|| ≡ inf{||x+ v|| : v ∈V} .

It is left as an exercise to verify the above algebraic operations are well defined. With
the above definition, here is the major theorem about quotient spaces.

Theorem 18.7.2 Let X be a Banach space and let V be a closed subspace of X . Then with
the above definitions of vector space operations, X/V is a Banach space. In the case where
V = ker(A) for A ∈L (X ,Y ) for Y another Banach space, define Â : X/V → A(X)⊆Y by

Â([x])≡ Ax. Then Â is continuous and 1−1. In fact,
∥∥∥Â
∥∥∥≤ ∥A∥.
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Proof: First of all, consider the claim that the given norm really is a norm. First
note that ||x+V || ≥ 0 and ||x+V || = 0 only if x ∈ V because V is closed. Therefore,
x+V = 0+V . Next,

||α [x]|| ≡ ||[αx]|| ≡ inf{||αx+ v|| : v ∈V}
= inf{||αx+αv|| : v ∈V}
= |α| inf{||x+ v|| : v ∈V}= |α| ||[x]|| .

Consider the triangle inequality.

||[x+ y]||= inf{||x+ y+ v|| : v ∈V}

≤ ||x+ v1||+ ||y+ v2||
for any choice of v1 and v2. Therefore, taking the infimum of both sides over v2 yields

||[x+ y]|| ≤ ||x+ v1||+ ||[y]||

and then taking the infimum over all v1 yields

||[x+ y]|| ≤ ||[x]||+ ||[y]|| .

Next consider the claim that X/V is a Banach space. Letting {[xn]} be a Cauchy se-
quence in X/V, I will show a subsequence of this converges to a point in X/V . This is
done by defining a suitable sequence in X and then using completeness of X . By choosing
a subsequence, it can be assumed that ||[xn]− [xn+1]|| < 2−n. Let z1 ≡ x1. Then choose
v2 ∈ V such that ||x2 + v2− z1|| < 2−1. Let z2 = x2 + v2. Suppose {z1, · · · ,zn} have been
chosen, each having the property that [zk] = [xk] and such that ||zk− zk+1||< 2−k. Then let
vn+1 be chosen such that ||xn+1 + vn+1− zn||< 2−n and let zn+1 ≡ xn+1 + vn+1. Thus {zn}
is a Cauchy sequence in X and so it converges to x ∈ X . Then

||[x]− [xn]|| ≤ ||x− (xn + vn)||= ||x− zn||

and so limn→∞ [xn] = [x].
Next consider the claim about Â. This is well defined and linear because if [x] = [x1] ,

then x− x1 ∈ ker(A) and so Ax = Ax1. Thus Â([x]) = Â([x1]). It is linear because

Â(α [x]+β [y]) = Â([αx+βy]) = A(αx+βy)

= αAx+βAy = αÂ([x])+β Â([y])

Next consider the claim that Â is continuous. Letting v ∈V,∣∣∣∣∣∣Â([x])
∣∣∣∣∣∣≡ ||Ax||= ||A(x+ v)|| ≤ ||A|| ||x+ v||

and so, taking the infimum over all v ∈V,∣∣∣∣∣∣Â([x])
∣∣∣∣∣∣≤ ||A|| ||[x]||

and this shows
∣∣∣∣∣∣Â∣∣∣∣∣∣≤ ||A||. ■

Now with this theorem, here is an interesting application.
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Theorem 18.7.3 Let X1 and X2 be Banach spaces which are either reflexive or dual spaces
for a separable Banach space and let Ai ∈L (Xi,Y ) for Y a reflexive Banach space. The
following are equivalent.

For some k > 0
A1

(
B(0,1)

)
⊆ A2

(
B(0,k)

)
(18.7.31)

||A∗1y∗|| ≤ k ||A∗2y∗|| (18.7.32)

for all y ∈ Y ∗. If either of the above hold, then

A1X1 ⊆ A2X2. (18.7.33)

Proof: Suppose 18.7.31 first. I show this implies 18.7.33. There are two cases. First
suppose A2 is one to one. Then in this case, A−1

2 A1

(
B(0,1)

)
⊆ B(0,k). Therefore, if

x ∈ X1,
A−1

2 A1 (x/ ||x||) = y ∈ B(0,k)

and so
A1 (x) = ||x||A2 (y) = A2 (||x||y) ∈ A2 (X2) .

Next suppose A2 is not one to one. In this case, letting Â2 be the continuous linear map
given by

Â2 ([x])≡ A2x,

it follows Â2 is 1−1 on X2/ker(A2) . Now note that if ||x|| ≤ k, then it is also the case that
||[x]|| ≤ k and so

A2

(
B(0,k)

)
⊆ Â2

(
B2 (0,k)

)
where in the second set, B2 (0,k) is the unit ball in X/ker(A2). It follows from 18.7.31

A1

(
B(0,1)

)
⊆ Â2

(
B2 (0,k)

)
and so Â−1

2 A1

(
B(0,1)

)
⊆ B2 (0,k) which implies

A1 (x/ ||x||) = Â2 [y] ∈ Â2

(
B2 (0,k)

)
Therefore, letting [y1] = [y] be such that ||y1||< 2k, it follows

A1 (x/ ||x||) = Â2 [y1] = A2 (y1)

and so
A1 (x) = A2 (||x||y1) ∈ A2 (X2) .

Next I show the equivalence of 18.7.32 and 18.7.31. First I want to show Ai

(
B(0,r)

)
is

closed. Suppose then that for A = A1 or A2,A(xn)→ y where xn ∈ B(0,r). In the case the
Xi are reflexive, it follows from the Eberlein Smulian theorem there exists a subsequence,



516 CHAPTER 18. TOPOLOGICAL VECTOR SPACES

still denoted as {xn} which converges weakly to x ∈ B(0,r). Then Axn → y and xn → x
weakly. Thus (x,y) is in the weak closure of the graph of A,

{(x,Ax) : x ∈ Xi}

This set is strongly closed and convex and hence it is weakly closed by Theorem 18.3.3 so
y = Ax and this shows A

(
B(0,r)

)
is closed. In the other case where Xi is the dual space of

a separable Banach space, it follows from Corollary 17.5.6 there exists a subsequence still
denoted as {xn} such that xn→ x weak ∗ and similarly, (x,y) is in the weak ∗ closure of the
graph of A which shows again by Theorem 18.3.3 that (x,y) is in the graph of A, showing
again that A

(
B(0,r)

)
is closed.

Suppose 18.7.31. Then letting y∗ ∈ Y ′,

||A∗1y∗|| = sup
||x1||X1

≤1
|y∗ (A1x1)|

≤ sup
||x2||X2

≤k
|y∗ (A2x2)|= k ||A∗2y∗||

which shows 18.7.32.
Now suppose 18.7.32. Then if 18.7.31 does not hold, it follows from the first part which

gives Ai

(
B(0,r)

)
a closed set, there exists

A1x0 ∈ A1

(
B(0,1)

)
\A2

(
B(0,k)

)
Now A2

(
B(0,k)

)
is closed and convex, hence weakly closed, and so by Theorem 18.2.5

there exists y∗0 ∈ Y ′ such that

Rey∗0
(

A2

(
B(0,k)

))
< c < Rey∗0 (A1x0)

and so

||A∗1y∗0|| = sup
||x1||X1

≤1
|y∗0 (Ax1)| ≥ Rey∗0 (A1x0)

> c > Rey∗0 (A2 (x2)) = ReA∗2y∗0 (x2)

whenever x2 ∈ B(0,k) and so, taking the supremum of all such x2,

||A∗1y∗0||> c > k ||A∗2y∗0|| ,

contradicting 18.7.32. ■



Chapter 19

Hilbert Spaces
In this chapter, Hilbert spaces, which have been alluded to earlier are given a complete
discussion. These spaces, as noted earlier are just complete inner product spaces.

19.1 Basic Theory
Definition 19.1.1 Let X be a vector space. An inner product is a mapping from X ×X to
C if X is complex and from X ×X to R if X is real, denoted by (x,y) which satisfies the
following.

(x,x)≥ 0, (x,x) = 0 if and only if x = 0, (19.1.1)

(x,y) = (y,x). (19.1.2)

For a,b ∈ C and x,y,z ∈ X,

(ax+by,z) = a(x,z)+b(y,z). (19.1.3)

Note that 19.1.2 and 19.1.3 imply (x,ay+ bz) = a(x,y)+ b(x,z). Such a vector space is
called an inner product space.

The Cauchy Schwarz inequality is fundamental for the study of inner product spaces.

Theorem 19.1.2 (Cauchy Schwarz) In any inner product space

|(x,y)| ≤ ||x|| ||y||.

Proof: Let ω ∈ C, |ω|= 1, and ω(x,y) = |(x,y)|= Re(x,yω). Let

F(t) = (x+ tyω,x+ tωy).

If y = 0 there is nothing to prove because

(x,0) = (x,0+0) = (x,0)+(x,0)

and so (x,0) = 0. Thus, it can be assumed y ̸= 0.Then from the axioms of the inner product,

F(t) = ||x||2 +2t Re(x,ωy)+ t2||y||2 ≥ 0.

This yields
||x||2 +2t|(x,y)|+ t2||y||2 ≥ 0.

Since this inequality holds for all t ∈ R, it follows from the quadratic formula that

4|(x,y)|2−4||x||2||y||2 ≤ 0.

This yields the conclusion and proves the theorem.

Proposition 19.1.3 For an inner product space, ||x|| ≡ (x,x)1/2 does specify a norm.

517
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Proof: All the axioms are obvious except the triangle inequality. To verify this,

||x+ y||2 ≡ (x+ y,x+ y)≡ ||x||2 + ||y||2 +2Re(x,y)

≤ ||x||2 + ||y||2 +2 |(x,y)|
≤ ||x||2 + ||y||2 +2 ||x|| ||y||= (||x||+ ||y||)2.

The following lemma is called the parallelogram identity.

Lemma 19.1.4 In an inner product space,

||x+ y||2 + ||x− y||2 = 2||x||2 +2||y||2.

The proof, a straightforward application of the inner product axioms, is left to the
reader.

Lemma 19.1.5 For x ∈ H, an inner product space,

||x||= sup
||y||≤1

|(x,y)| (19.1.4)

Proof: By the Cauchy Schwarz inequality, if x ̸= 0,

||x|| ≥ sup
||y||≤1

|(x,y)| ≥
(

x,
x
||x||

)
= ||x|| .

It is obvious that 19.1.4 holds in the case that x = 0.

Definition 19.1.6 A Hilbert space is an inner product space which is complete. Thus a
Hilbert space is a Banach space in which the norm comes from an inner product as de-
scribed above.

In Hilbert space, one can define a projection map onto closed convex nonempty sets.

Definition 19.1.7 A set, K, is convex if whenever λ ∈ [0,1] and x,y∈K, λx+(1−λ )y∈K.

Theorem 19.1.8 Let K be a closed convex nonempty subset of a Hilbert space, H, and let
x ∈H. Then there exists a unique point Px ∈ K such that ||Px−x|| ≤ ||y−x|| for all y ∈ K.

Proof: Consider uniqueness. Suppose that z1 and z2 are two elements of K such that
for i = 1,2,

||zi− x|| ≤ ||y− x|| (19.1.5)

for all y ∈ K. Also, note that since K is convex,

z1 + z2

2
∈ K.
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Therefore, by the parallelogram identity,

||z1− x||2 ≤ || z1 + z2

2
− x||2 = || z1− x

2
+

z2− x
2
||2

= 2(|| z1− x
2
||2 + || z2− x

2
||2)−|| z1− z2

2
||2

=
1
2
||z1− x||2 + 1

2
||z2− x||2−|| z1− z2

2
||2

≤ ||z1− x||2−|| z1− z2

2
||2,

where the last inequality holds because of 19.1.5 letting zi = z2 and y = z1. Hence z1 = z2
and this shows uniqueness.

Now let λ = inf{||x− y|| : y ∈ K} and let yn be a minimizing sequence. This means
{yn} ⊆ K satisfies limn→∞ ||x−yn||= λ . Now the following follows from properties of the
norm.

||yn− x+ ym− x||2 = 4(||yn + ym

2
− x||2)

Then by the parallelogram identity, and convexity of K, yn+ym
2 ∈ K, and so

||(yn− x)− (ym− x) ||2 = 2(||yn− x||2 + ||ym− x||2)−

=||yn−x+ym−x||2︷ ︸︸ ︷
4(||yn + ym

2
− x||2)

≤ 2(||yn− x||2 + ||ym− x||2)−4λ
2.

Since ||x−yn|| → λ , this shows {yn−x} is a Cauchy sequence. Thus also {yn} is a Cauchy
sequence. Since H is complete, yn→ y for some y ∈ H which must be in K because K is
closed. Therefore

||x− y||= lim
n→∞
||x− yn||= λ .

Let Px = y.

Corollary 19.1.9 Let K be a closed, convex, nonempty subset of a Hilbert space, H, and
let x ∈ H. Then for z ∈ K, z = Px if and only if

Re(x− z,y− z)≤ 0 (19.1.6)

for all y ∈ K.

Before proving this, consider what it says in the case where the Hilbert space is Rn.

K
y θ

x
z

Condition 19.1.6 says the angle, θ , shown in the diagram is always obtuse. Remember
from calculus, the sign of x ·y is the same as the sign of the cosine of the included angle
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between x and y. Thus, in finite dimensions, the conclusion of this corollary says that z=Px
exactly when the indicated angle is obtuse. Surely the picture suggests this is reasonable.

The inequality 19.1.6 is an example of a variational inequality and this corollary char-
acterizes the projection of x onto K as the solution of this variational inequality.

Proof of Corollary: Let z ∈ K and let y ∈ K also. Since K is convex, it follows that if
t ∈ [0,1],

z+ t(y− z) = (1− t)z+ ty ∈ K.

Furthermore, every point of K can be written in this way. (Let t = 1 and y ∈ K.) Therefore,
z = Px if and only if for all y ∈ K and t ∈ [0,1],

||x− (z+ t(y− z))||2 = ||(x− z)− t(y− z)||2 ≥ ||x− z||2

for all t ∈ [0,1] and y ∈ K if and only if for all t ∈ [0,1] and y ∈ K

||x− z||2 + t2 ||y− z||2−2t Re(x− z,y− z)≥ ||x− z||2

If and only if for all t ∈ [0,1],

t2 ||y− z||2−2t Re(x− z,y− z)≥ 0. (19.1.7)

Now this is equivalent to 19.1.7 holding for all t ∈ (0,1). Therefore, dividing by t ∈ (0,1) ,
19.1.7 is equivalent to

t ||y− z||2−2Re(x− z,y− z)≥ 0

for all t ∈ (0,1) which is equivalent to 19.1.6. This proves the corollary.

Corollary 19.1.10 Let K be a nonempty convex closed subset of a Hilbert space, H. Then
the projection map, P is continuous. In fact,

|Px−Py| ≤ |x− y| .

Proof: Let x,x′ ∈ H. Then by Corollary 19.1.9,

Re
(
x′−Px′,Px−Px′

)
≤ 0, Re

(
x−Px,Px′−Px

)
≤ 0

Hence

0 ≤ Re
(
x−Px,Px−Px′

)
−Re

(
x′−Px′,Px−Px′

)
= Re

(
x− x′,Px−Px′

)
−
∣∣Px−Px′

∣∣2
and so ∣∣Px−Px′

∣∣2 ≤ ∣∣x− x′
∣∣ ∣∣Px−Px′

∣∣ .
This proves the corollary.

The next corollary is a more general form for the Brouwer fixed point theorem.

Corollary 19.1.11 Let f : K→ K where K is a convex compact subset of Rn. Then f has a
fixed point.
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Proof: Let K ⊆ B(0,R) and let P be the projection map onto K. Then consider the map
f◦P which maps B(0,R) to B(0,R) and is continuous. By the Brouwer fixed point theorem
for balls, this map has a fixed point. Thus there exists x such that

f◦P(x) = x

Now the equation also requires x ∈ K and so P(x) = x. Hence f(x) = x.

Definition 19.1.12 Let H be a vector space and let U and V be subspaces. U ⊕V = H if
every element of H can be written as a sum of an element of U and an element of V in a
unique way.

The case where the closed convex set is a closed subspace is of special importance and
in this case the above corollary implies the following.

Corollary 19.1.13 Let K be a closed subspace of a Hilbert space, H, and let x ∈ H. Then
for z ∈ K, z = Px if and only if

(x− z,y) = 0 (19.1.8)

for all y ∈ K. Furthermore, H = K⊕K⊥ where

K⊥ ≡ {x ∈ H : (x,k) = 0 for all k ∈ K}

and
||x||2 = ||x−Px||2 + ||Px||2 . (19.1.9)

Proof: Since K is a subspace, the condition 19.1.6 implies Re(x−z,y)≤ 0 for all y∈K.
Replacing y with −y, it follows Re(x− z,−y) ≤ 0 which implies Re(x− z,y) ≥ 0 for all
y. Therefore, Re(x− z,y) = 0 for all y ∈ K. Now let |α| = 1 and α (x− z,y) = |(x− z,y)|.
Since K is a subspace, it follows αy ∈ K for all y ∈ K. Therefore,

0 = Re(x− z,αy) = (x− z,αy) = α (x− z,y) = |(x− z,y)|.

This shows that z = Px, if and only if 19.1.8.
For x ∈ H, x = x−Px+Px and from what was just shown, x−Px ∈ K⊥ and Px ∈ K.

This shows that K⊥+K = H. Is there only one way to write a given element of H as a
sum of a vector in K with a vector in K⊥? Suppose y+ z = y1 + z1 where z,z1 ∈ K⊥ and
y,y1 ∈ K. Then (y− y1) = (z1− z) and so from what was just shown, (y− y1,y− y1) =
(y− y1,z1− z) = 0 which shows y1 = y and consequently z1 = z. Finally, letting z = Px,

||x||2 = (x− z+ z,x− z+ z) = ||x− z||2 +(x− z,z)+(z,x− z)+ ||z||2

= ||x− z||2 + ||z||2

This proves the corollary.
The following theorem is called the Riesz representation theorem for the dual of a

Hilbert space. If z ∈ H then define an element f ∈ H ′ by the rule (x,z) ≡ f (x). It follows
from the Cauchy Schwarz inequality and the properties of the inner product that f ∈ H ′.
The Riesz representation theorem says that all elements of H ′ are of this form.
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Theorem 19.1.14 Let H be a Hilbert space and let f ∈ H ′. Then there exists a unique
z ∈ H such that

f (x) = (x,z) (19.1.10)

for all x ∈ H.

Proof: Letting y,w ∈ H the assumption that f is linear implies

f (y f (w)− f (y)w) = f (w) f (y)− f (y) f (w) = 0

which shows that y f (w)− f (y)w ∈ f−1 (0), which is a closed subspace of H since f is
continuous. If f−1 (0) = H, then f is the zero map and z = 0 is the unique element of
H which satisfies 19.1.10. If f−1 (0) ̸= H, pick u /∈ f−1 (0) and let w ≡ u−Pu ̸= 0. Thus
Corollary 19.1.13 implies (y,w) = 0 for all y∈ f−1 (0). In particular, let y = x f (w)− f (x)w
where x ∈ H is arbitrary. Therefore,

0 = ( f (w)x− f (x)w,w) = f (w)(x,w)− f (x)||w||2.

Thus, solving for f (x) and using the properties of the inner product,

f (x) = (x,
f (w)w
||w||2

)

Let z = f (w)w/||w||2. This proves the existence of z. If f (x) = (x,zi) i = 1,2, for all x∈H,
then for all x ∈H, then (x,z1− z2) = 0 which implies, upon taking x = z1− z2 that z1 = z2.
This proves the theorem.

If R : H → H ′ is defined by Rx(y) ≡ (y,x) , the Riesz representation theorem above
states this map is onto. This map is called the Riesz map. It is routine to show R is linear
and |Rx|= |x|.

19.2 The Hilbert Space L(U)

Let L ∈L (U,H) . Then one can consider the image of L,L(U) as a Hilbert space. This is
another interesting application of Theorem 19.1.8. First here is a definition which involves
abominable and atrociously misleading notation which nevertheless seems to be well ac-
cepted.

Definition 19.2.1 Let L∈L (U,H), the bounded linear maps from U to H for U,H Hilbert
spaces. For y ∈ L(U) , let L−1y denote the unique vector in

{x : Lx = y} ≡My

which is closest in U to 0.

{x : Lx = y}
L−1(y)



19.2. THE HILBERT SPACE L(U) 523

Note this is a good definition because {x : Lx = y} is closed thanks to the continuity of
L and it is obviously convex. Thus Theorem 19.1.8 applies. With this definition define an
inner product on L(U) as follows. For y,z ∈ L(U) ,

(y,z)L(U) ≡
(
L−1y,L−1z

)
U

The notation is abominable because L−1 (y) is the normal notation for My.

In terms of linear algebra, this L−1 is the Moore Penrose inverse. There you obtain the
least squares solution x to Lx = y which has smallest norm. Here there is an actual solution
and among those solutions you get the one which has least norm. Of course a real honest
solution is also a least squares solution so this is the Moore Penrose inverse restricted to
L(U).

First I want to understand L−1 better. It is actually fairly easy to understand in terms of
geometry. Here is a picture of L−1 (y) for y ∈ L(U).

My
w

L−1(y)

U

As indicated in the picture, here is a lemma which gives a description of the situation.

Lemma 19.2.2 In the context of the above definition, L−1 (y) is characterized by(
L−1 (y) ,x

)
U = 0 for all x ∈ ker(L)

L
(
L−1 (y)

)
= y,

(
L−1 (y) ∈My

)
In addition to this, L−1 is linear and the above definition does define an inner product.

Proof: The point L−1 (y) is well defined as noted above. I claim it is characterized by
the following for y ∈ L(U)(

L−1 (y) ,x
)

U = 0 for all x ∈ ker(L)

L
(
L−1 (y)

)
= y,

(
L−1 (y) ∈My

)
Let w ∈My and suppose

(v,x)U = 0,L(v) = y
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Then from the above characterization,

||w||2 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∈ker(L)︷ ︸︸ ︷
w− v + v

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= ∥w− v∥2 +∥v∥2

which shows that w= L−1 (y) if and only if w= v just described. From this characterization,
it is clear that L−1 is linear. Then it is also obvious that

(y,z)L(U) =
(
L−1y,L−1z

)
U

also specifies an inner product. The algebraic axioms are all obvious because L−1 is linear.
If (y,y)L(U) = 0, then

∣∣L−1y
∣∣2
U = 0 and so L−1y = 0 which requires y = L

(
L−1y

)
= 0. ■

With the above definition, here is the main result.

Theorem 19.2.3 Let U,H be Hilbert spaces and let L ∈L (U,H) . Then Definition 19.2.1
makes L(U) into a Hilbert space. Also L : U → L(U) is continuous and L−1 : L(U)→U
is continuous. Also,

∥L∥L (U,H) ||Lx||L(U) ≥ ||Lx||H (19.2.11)

If U is separable, so is L(U). Also
(
L−1 (y) ,x

)
= 0 for all x∈ ker(L) , and L−1 : L(U)→U

is linear. Also, in case that L is one to one, both L and L−1 preserve norms.

Proof: First consider the claim that L : U → L(U) is continuous and L−1 : L(U)→U
is also continuous. Why is L continuous? Say un→ 0 in U. Then

∥Lun∥L(U) ≡
∥∥L−1 (L(un))

∥∥
U .

Now
∥∥L−1 (L(un))

∥∥
U ≤ ∥un∥U and so it converges to 0. (Recall that L−1 (Lun) is the

smallest vector in U which maps to Lun. Since un is mapped by L to Lun, it follows that∥∥L−1 (L(un))
∥∥

U ≤ ∥un∥U .) Hence L is continuous.
Next, why is L−1 continuous? Let ∥yn∥L(U) → 0. This requires

∥∥L−1 (yn)
∥∥

U → 0 by
definition of the norm in L(U). Thus L−1 is continuous.

Why is L(U) a Hilbert space? Let {yn} be a Cauchy sequence in L(U) . Then from what
was just observed, it follows that L−1 (yn) is a Cauchy sequence in U. Hence L−1 (yn)→
x ∈U. It follows that yn = L

(
L−1 (yn)

)
→ Lx in L(U). This is in the norm of L(U). It

was just shown that L is continuous as a map from U to L(U). This shows that L(U) is
a Hilbert space. It was already shown that it is an inner product space and this has shown
that it is complete.

If x ∈U, then ∥Lx∥H ≤ ∥L∥L (U,H) ∥x∥U . It follows that

∥L(x)∥H =
∥∥L
(
L−1 (L(x))

)∥∥
H ≤ ∥L∥L (U,H)

∥∥L−1 (L(x))
∥∥

U

= ∥L∥L (U,H) ∥L(x)∥L(U) .

This verifies 19.2.11.



19.2. THE HILBERT SPACE L(U) 525

If U is separable, then letting D be a countable dense subset, it follows from the con-
tinuity of the operators L,L−1 discussed above that L(D) is separable in. To see this, note
that

∥Lxn−Lx∥L(U) =
∥∥L
(
L−1 (Lxn−Lx)

)∥∥
≤ ∥L∥L (U,H)

∥∥L−1 (L(xn− x))
∥∥

U

≤ ∥L∥L (U,H) ∥xn− x∥U

As before, L−1 (L(xn− x)) is the smallest vector which maps onto L(xn− x) and so its
norm is no larger than ∥xn− x∥U .

Consider the last claim. If L is one to one, then for y ∈ L(U) , there is only one vector
which maps to y. Therefore,

L−1 (L(x)) = x.

Hence for y ∈ L(U) ,
∥y∥L(U) ≡

∥∥L−1 (y)
∥∥

U

Also,
∥Lu∥L(U) ≡

∥∥L−1 (L(u))
∥∥

U ≡ ∥u∥U
Now here is another argument for various continuity claims.

∥Lx∥L(U) ≡
∥∥L−1 (Lx)

∥∥
U ≤ ∥x∥U

because L−1 (Lx) is the smallest thing in U which maps to Lx and x is something which
maps to Lx so it follows that the inequality holds. Hence L ∈ L (U,L(U)) and in fact,
∥L∥L (U,L(U)) = 1. Next, letting y ∈ L(U) ,∥∥L−1y

∥∥
U ≡ ∥y∥L(U)

and so
∥∥L−1

∥∥
L (L(U),U)

= 1 and this shows that L∈L (U,L(U)) while L−1 ∈L (L(U) ,U)

and both have norm equal to 1.
Now

∥Lx∥H =
∥∥L
(
L−1 (Lx)

)∥∥
H ≤ ∥L∥L (U,H)

∥∥L−1 (Lx)
∥∥

U ≡ ∥L∥L (U,H) ∥Lx∥L(U) ■

Now here are some other very interesting results. I am following [108].

Lemma 19.2.4 Let L ∈L (U,H) . Then L
(

B(0,r)
)

is closed and convex.

Proof: It is clear this is convex since L is linear. Why is it closed? B(0,r) is compact in
the weak topology by the Banach Alaoglu theorem, Theorem 17.5.4 on Page 461. Further-
more, L is continuous with respect to the weak topologies on U and H. Here is why this is
so. Suppose un→ u weakly in U. Then if h ∈ H,

(Lun,h) = (un,L∗h)→ (u,L∗h) = (Lu,h)



526 CHAPTER 19. HILBERT SPACES

which shows Lun→ Lu weakly. Therefore, L
(

B(0,r)
)

is weakly compact because it is the
continuous image of a compact set. Therefore, it must also be weakly closed because the
weak topology is a Hausdorff space. (See Lemma 18.3.2 on Page 493, and so you can apply
the separation theorem, Theorem 18.2.5 on Page 486 to obtain a separating functional. Thus
if x ̸= y, there exists f ∈ H ′ such that Re f (y)> c > Re f (x) and so taking

2r < min(c−Re f (x) ,Re f (y)− c) ,

B f (x,r)∩B f (y,r) = /0

where
B f (x,r)≡ {y ∈ H : | f (x− y)|< r}

is an example of a basic open set in the weak topology.)
Now suppose p /∈ L

(
B(0,r)

)
. Since the set is weakly closed and convex, it follows

by Theorem 18.2.5 and the Riesz representation theorem for Hilbert space that there exists
z ∈ H such that

Re(p,z)> c > Re(Lx,z)

for all x ∈ B(0,r). Therefore, p cannot be a strong limit point because if it were, there
would exist xn ∈ B(0,r) such that Lxn → p which would require Re(Lxn,z)→ Re(p,z)
which is prevented by the above inequality. This proves the lemma.

Now here is a very interesting result about showing that T1 (U1) = T2 (U2) where Ui is
a Hilbert space and Ti ∈L (Ui,H). The situation is as indicated in the diagram.

H
T1↗ ↖ T2

U1 U2

The question is whether T1U1 = T2U2.

Theorem 19.2.5 Let Ui, i = 1,2 and H be Hilbert spaces and let Ti ∈L (Ui,H). If there
exists c≥ 0 such that for all x ∈ H

||T ∗1 x||1 ≤ c ||T ∗2 x||2 (19.2.12)

then
T1

(
B(0,1)

)
⊆ T2

(
B(0,c)

)
(19.2.13)

and so T1 (U1)⊆ T2 (U2). If ||T ∗1 x||1 = ||T
∗x||2 for all x ∈ H, then T1 (U1) = T2 (U2) and in

addition to this, ∣∣∣∣T−1
1 x

∣∣∣∣
1 =

∣∣∣∣T−1
2 x

∣∣∣∣
2 (19.2.14)

for all x ∈ T1 (U1) = T2 (U2). In this theorem, T−1
i refers to Definition 19.2.1.

Proof: Consider the first claim. If it is not so, then there exists u0, ||u0||1 ≤ 1 but

T1 (u0) /∈ T2

(
B(0,c)

)
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the latter set being a closed convex nonempty set thanks to Lemma 19.2.4. Then by the
separation theorem, Theorem 18.2.5 there exists z ∈ H such that

Re(T1 (u0) ,z)H > 1 > Re(T2 (v) ,z)H

for all ||v||2 ≤ c. Therefore, replacing v with vθ where θ is a suitable complex number
having modulus 1, it follows

||T ∗1 z||> 1 >
∣∣∣(v,T ∗2 z)U2

∣∣∣ (19.2.15)

for all ||v||2 ≤ c. If c = 0, 19.2.15 gives a contradiction immediately because of 19.2.12.
Assume then that c > 0. From 19.2.15, if ||v||2 ≤ 1, then∣∣∣(v,T ∗2 z)U2

∣∣∣< 1
c
<

1
c
||T ∗1 z||

Then from 19.2.15,

||T ∗2 z||U2
= sup
||v||≤1

∣∣∣(v,T ∗2 z)U2

∣∣∣≤ 1
c
<

1
c
||T ∗1 z||

which contradicts 19.2.12. Therefore, it is clear that T1 (U1)⊆ T2 (U2).
Now consider the second claim. The first part shows T1 (U1) = T2 (U2). Denote by

ui ∈ Ui, the point T−1
i x. Without loss of generality, it can be assumed x ̸= 0 because if

x = 0, then the definition of T−1
i gives T−1

i (x) = 0. Thus for x ̸= 0 neither ui can equal 0. I
need to verify that ||u1||1 = ||u2||2. Suppose then that this is not so. Say ||u1||1 > ||u2||2 > 0.

x
||u2||2

= T2

(
u2

||u2||2

)
∈ T2

(
B(0,1)

)
But from the first part of the theorem this equals T1

(
B(0,1)

)
and so there exists u′1 ∈

B(0,1) such that
x

||u2||2
= T1u′1

Hence

T1

(
u′1−

u1

||u2||2

)
=

x
||u2||2

− x
||u2||2

= 0.

From Theorem 19.2.3 this implies

0 =

(
u1,u′1−

u1

||u2||2

)
≤ ||u1||1

∣∣∣∣u′1∣∣∣∣1−||u1||1
||u1||1
||u2||2

= ||u1||1
(∣∣∣∣u′1∣∣∣∣1− ||u1||1

||u2||2

)
≤ ||u1||1

(
1− ||u1||1
||u2||2

)
which is a contradiction because it was assumed ||u1||1

||u2||2
> 1. This proves the theorem.
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19.3 Approximations In Hilbert Space
The Gram Schmidt process applies in any Hilbert space.

Theorem 19.3.1 Let {x1, · · · ,xn} be a basis for M a subspace of H a Hilbert space. Then
there exists an orthonormal basis for M, {u1, · · · ,un} which has the property that for each
k ≤ n, span(x1, · · · ,xk) = span(u1, · · · ,uk) . Also if {x1, · · · ,xn} ⊆ H, then

span(x1, · · · ,xn)

is a closed subspace.

Proof: Let {x1, · · · ,xn} be a basis for M. Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) =
span(x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (u j ·ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1 ·u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1 ·u j)u j

∣∣∣ , (19.3.16)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 19.3.16 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 ·ul) = C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)(u j ·ul)

)

= C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)δ l j

)
= C ((xk+1 ·ul)− (xk+1 ·ul)) = 0.

The vectors,
{

u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length.

Consider the second claim about finite dimensional subspaces. Without loss of gener-
ality, assume {x1, · · · ,xn} is linearly independent. If it is not, delete vectors until a linearly
independent set is obtained. Then by the first part, span(x1, · · · ,xn)= span(u1, · · · ,un)≡M
where the ui are an orthonormal set of vectors. Suppose {yk} ⊆ M and yk → y ∈ H. Is
y ∈M? Let

yk ≡
n

∑
j=1

ck
ju j
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Then let ck ≡
(
ck

1, · · · ,ck
n
)T

. Then

∣∣∣ck− cl
∣∣∣2 ≡

n

∑
j=1

∣∣∣ck
j− cl

j

∣∣∣2 =( n

∑
j=1

(
ck

j− cl
j

)
u j,

n

∑
j=1

(
ck

j− cl
j

)
u j

)
= ||yk− yl ||2

which shows
{

ck
}

is a Cauchy sequence in Fn and so it converges to c ∈ Fn. Thus

y = lim
k→∞

yk = lim
k→∞

n

∑
j=1

ck
ju j =

n

∑
j=1

c ju j ∈M.

This completes the proof.

Theorem 19.3.2 Let M be the span of {u1, · · · ,un} in a Hilbert space, H and let y ∈ H.
Then Py is given by

Py =
n

∑
k=1

(y,uk)uk (19.3.17)

and the distance is given by √
|y|2−

n

∑
k=1
|(y,uk)|2. (19.3.18)

Proof: (
y−

n

∑
k=1

(y,uk)uk,up

)
= (y,up)−

n

∑
k=1

(y,uk)(uk,up)

= (y,up)− (y,up) = 0

It follows that (
y−

n

∑
k=1

(y,uk)uk,u

)
= 0

for all u ∈M and so by Corollary 19.1.13 this verifies 19.3.17.
The square of the distance, d is given by

d2 =

(
y−

n

∑
k=1

(y,uk)uk,y−
n

∑
k=1

(y,uk)uk

)

= |y|2−2
n

∑
k=1
|(y,uk)|2 +

n

∑
k=1
|(y,uk)|2

and this shows 19.3.18.
What if the subspace is the span of vectors which are not orthonormal? There is a

very interesting formula for the distance between a point of a Hilbert space and a finite
dimensional subspace spanned by an arbitrary basis.
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Definition 19.3.3 Let {x1, · · · ,xn} ⊆ H, a Hilbert space. Define

G (x1, · · · ,xn)≡

 (x1,x1) · · · (x1,xn)
...

...
(xn,x1) · · · (xn,xn)

 (19.3.19)

Thus the i jth entry of this matrix is (xi,x j). This is sometimes called the Gram matrix. Also
define G(x1, · · · ,xn) as the determinant of this matrix, also called the Gram determinant.

G(x1, · · · ,xn)≡

∣∣∣∣∣∣∣
(x1,x1) · · · (x1,xn)

...
...

(xn,x1) · · · (xn,xn)

∣∣∣∣∣∣∣ (19.3.20)

The theorem is the following.

Theorem 19.3.4 Let M = span(x1, · · · ,xn) ⊆ H, a Real Hilbert space where {x1, · · · ,xn}
is a basis and let y ∈ H. Then letting d be the distance from y to M,

d2 =
G(x1, · · · ,xn,y)
G(x1, · · · ,xn)

. (19.3.21)

Proof: By Theorem 19.3.1 M is a closed subspace of H. Let ∑
n
k=1 αkxk be the element

of M which is closest to y. Then by Corollary 19.1.13,(
y−

n

∑
k=1

αkxk,xp

)
= 0

for each p = 1,2, · · · ,n. This yields the system of equations,

(y,xp) =
n

∑
k=1

(xp,xk)αk, p = 1,2, · · · ,n (19.3.22)

Also by Corollary 19.1.13,

∥y∥2 =

d2︷ ︸︸ ︷∥∥∥∥∥y−
n

∑
k=1

αkxk

∥∥∥∥∥
2

+

∥∥∥∥∥ n

∑
k=1

αkxk

∥∥∥∥∥
2

and so, using 19.3.22,

∥y∥2 = d2 +∑
j

(
∑
k

αk (xk,x j)

)
α j

= d2 +∑
j
(y,x j)α j (19.3.23)

≡ d2 +yT
x α (19.3.24)
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in which
yT

x ≡ ((y,x1) , · · · ,(y,xn)) , α
T≡(α1, · · · ,αn) .

Then 19.3.22 and 19.3.23 imply the following system(
G (x1, · · · ,xn) 0

yT
x 1

)(
α

d2

)
=

(
yx

||y||2
)

By Cramer’s rule,

d2 =

det
(

G (x1, · · · ,xn) yx

yT
x ∥y∥2

)
det
(

G (x1, · · · ,xn) 0
yT

x 1

)

=

det
(

G (x1, · · · ,xn) yx

yT
x ∥y∥2

)
det(G (x1, · · · ,xn))

=
det(G (x1, · · · ,xn,y))
det(G (x1, · · · ,xn))

=
G(x1, · · · ,xn,y)
G(x1, · · · ,xn)

and this proves the theorem.

19.4 The Müntz Theorem
Recall the polynomials are dense in C ([0,1]) . This is a consequence of the Weierstrass
approximation theorem. Now consider finite linear combinations of the functions, t pk

where {p0, p1, p2, · · ·} is a sequence of nonnegative real numbers, p0 ≡ 0. The Müntz
theorem says this set, S of finite linear combinations is dense in C ([0,1]) exactly when
∑

∞
k=1

1
pk

= ∞. There are two versions of this theorem, one for density of S in L2 (0,1) and
one for C ([0,1]) . The presentation follows Cheney [33].

Recall the Cauchy identity presented earlier, Theorem 5.5.5 on Page 79 which is stated
here for convenience.

Theorem 19.4.1 The following identity holds.

∏
i, j

(ai +b j)

∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

...
1

an+b1
· · · 1

an+bn

∣∣∣∣∣∣∣= ∏
j<i

(ai−a j)(bi−b j) . (19.4.25)

Lemma 19.4.2 Let m, p1, · · · , pn be distinct real numbers larger than −1/2. Thus the
functions, fm (x)≡ xm, fp j (x)≡ xp j are all in L2 (0,1). Let

M = span( fp1 , · · · , fpn) .

Then the L2 distance, d between fm and M is

d =
1√

2m+1

n

∏
j=1

∣∣m− p j
∣∣

m+ p j +1
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Proof: By Theorem 19.3.4

d2 =
G( fp1 , · · · , fpn , fm)

G( fp1 , · · · , fpn)
.

(
fpi , fp j

)
=
∫ 1

0
xpixp j dx =

1
1+ pi + p j

Therefore,

d2 =

∣∣∣∣∣∣∣∣∣∣∣∣

1
1+p1+p1

1
1+p1+p2

· · · 1
1+p1+pn

1
1+m+p1

1
1+p2+p1

1
1+p2+p2

· · · 1
1+p2+pn

1
1+m+p2

...
...

...
...

1
1+pn+p1

1
1+pn+p2

· · · 1
1+pn+pn

1
1+pn+m

1
1+m+p1

1
1+m+p2

· · · 1
1+m+pn

1
1+m+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+p1+p1

1
1+p1+p2

· · · 1
1+p1+pn

1
1+p2+p1

1
1+p2+p2

· · · 1
1+p2+pn

...
...

...
1

1+pn+p1
1

1+pn+p2
· · · 1

1+pn+pn

∣∣∣∣∣∣∣∣∣∣
Now from the Cauchy identity, letting ai = pi +

1
2 and b j =

1
2 + p j with pn+1 = m, the

numerator of the above equals

∏ j<i≤n+1 (pi− p j)(pi− p j)

∏i, j≤n+1 (pi + p j +1)

=
∏

n
k=1 (m− pk)

2
∏ j<i≤n (pi− p j)

2

∏
n
i=1 (m+ pi +1)∏

n
j=1 (m+ p j +1)∏i, j≤n (pi + p j +1)(2m+1)

=
∏

n
k=1 (m− pk)

2
∏ j<i≤n (pi− p j)

2

∏
n
i=1 (m+ pi +1)2

∏i, j≤n (pi + p j +1)(2m+1)

while the denominator equals
∏ j<i≤n (pi− p j)

2

∏i, j≤n (pi + p j +1)

Therefore,

d2 =

(
∏

n
k=1(m−pk)

2
∏ j<i≤n(pi−p j)

2

∏
n
i=1(m+pi+1)2

∏i, j≤n(pi+p j+1)(2m+1)

)
(

∏ j<i≤n(pi−p j)
2

∏i, j≤n(pi+p j+1)

)
=

∏
n
k=1 (m− pk)

2

∏
n
i=1 (m+ pi +1)2 (2m+1)
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which shows

d =
1√

2m+1

n

∏
k=1

|m− pk|
m+ pk +1

.

and this proves the lemma.
The following lemma relates an infinite sum to a product. First consider the graph of

ln(1− x) for x ∈
[
0, 1

2

]
. Here is a rough sketch with two lines, y =−x which lies above the

graph of ln(1− x) and y =−2x which lies below.

1
2

Lemma 19.4.3 Let an ̸= 1,an > 0, and limn→∞ an = 0. Then

∞

∏
k=1

(1−an)≡ lim
n→∞

n

∏
k=1

(1−an) = 0

if and only if
∞

∑
n=1

an =+∞.

Proof:Without loss of generality, you can assume an < 1/2 because the two condi-
tions are determined by the values of an for n large. By the above sketch the following is
obtained.

ln
n

∏
k=1

(1−ak) =
n

∑
k=1

ln(1−ak) ∈

[
−2

n

∑
k=1

ak,−
n

∑
k=1

ak

]
.

Therefore,

e−2∑
n
k=1 ak ≤

n

∏
k=1

(1−ak)≤ e−∑
n
k=1 ak

The conclusion follows.
The following is Müntz’s first theorem.

Theorem 19.4.4 Let {pn} be a sequence of real numbers larger than −1/2 such that
limn→∞ pn = ∞. Let S denote the set of finite linear combinations of the functions

{xp1 ,xp2 , · · ·} .
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Then S is dense in L2 (0,1) if and only if

∞

∑
i=1

1
pi

= ∞.

Proof: The polynomials are dense in L2 (0,1) and so S is dense in L2 (0,1) if and
only if for every ε > 0 there exists a function f from S such that for each integer m ≥

0,
(∫ 1

0 | f (x)− xm|2 dx
)1/2

< ε . This happens if and only if for all n large enough, the

distance in L2 (0,1) between the function, x→ xm and span(xp1 ,xp2 , · · · ,xpn) is less than
ε. However, from Lemma 19.4.2 this distance equals

1√
2m+1

n

∏
k=1

|m− pk|
m+ pk +1

=
1√

2m+1

n

∏
k=1

1−
(

1− |m− pk|
m+ pk +1

)
Thus S is dense if and only if

∞

∏
k=1

(
1−
(

1− |m− pk|
m+ pk +1

))
= 0

which, by Lemma 19.4.3, happens if and only if
∞

∑
k=1

(
1− |m− pk|

m+ pk +1

)
=+∞

But this sum equals
∞

∑
k=1

(
m+ pk +1−|m− pk|

m+ pk +1

)
which has the same convergence properties as ∑

1
pk

by the limit comparison test. This
proves the theorem.

The following is Müntz’s second theorem.

Theorem 19.4.5 Let S be finite linear combinations of {1,xp1 ,xp2 , · · ·} where p j ≥ 1 and
limn→∞ pn = ∞. Then S is dense in C ([0,1]) if and only if ∑

∞
k=1

1
pk

= ∞.

Proof: If S is dense in C ([0,1]) then S must also be dense in L2 (0,1) and so by Theorem
19.4.4 ∑

∞
k=1

1
pk

= ∞.
Suppose then that ∑

∞
k=1

1
pk

= ∞ so that by Theorem 19.4.4, S is dense in L2 (0,1) . The
theorem will be proved if it is shown that for all m a nonnegative integer,

max{|xm− f (x)| : x ∈ [0,1]}< ε

for some f ∈ S. This is true if m = 0 because 1 ∈ S. Suppose then that m > 0. Let S′ denote
finite linear combinations of the functions{

xp1−1,xp2−1, · · ·
}
.
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These functions are also dense in L2 (0,1) because ∑
1

pk−1 = ∞ by the limit comparison
test. Then by Theorem 19.4.4 there exists f ∈ S′ such that(∫ 1

0

∣∣ f (x)−mxm−1∣∣2 dx
)1/2

< ε.

Thus F (x)≡
∫ x

0 f (t)dt ∈ S and

|F (x)− xm| =

∣∣∣∣∫ x

0

(
f (t)−mtm−1)dt

∣∣∣∣
≤

∫ x

0

∣∣ f (t)−mtm−1∣∣dt

≤
(∫ 1

0

∣∣ f (t)−mtm−1∣∣2 dt
)1/2(∫ 1

0
dx
)1/2

< ε

and this proves the theorem.

19.5 Orthonormal Sets
The concept of an orthonormal set of vectors is a generalization of the notion of the standard
basis vectors of Rn or Cn.

Definition 19.5.1 Let H be a Hilbert space. S⊆H is called an orthonormal set if ||x||= 1
for all x ∈ S and (x,y) = 0 if x,y ∈ S and x ̸= y. For any set, D,

D⊥ ≡ {x ∈ H : (x,d) = 0 for all d ∈ D} .

If S is a set, span(S) is the set of all finite linear combinations of vectors from S.

You should verify that D⊥ is always a closed subspace of H.

Theorem 19.5.2 In any separable Hilbert space, H, there exists a countable orthonormal
set, S = {xi} such that the span of these vectors is dense in H. Furthermore, if span(S) is
dense, then for x ∈ H,

x =
∞

∑
i=1

(x,xi)xi ≡ lim
n→∞

n

∑
i=1

(x,xi)xi. (19.5.26)

Proof: Let F denote the collection of all orthonormal subsets of H. F is nonempty
because {x} ∈F where ||x||= 1. The set, F is a partially ordered set with the order given
by set inclusion. By the Hausdorff maximal theorem, there exists a maximal chain, C in
F . Then let S ≡ ∪C. It follows S must be a maximal orthonormal set of vectors. Why? It
remains to verify that S is countable span(S) is dense, and the condition, 19.5.26 holds. To
see S is countable note that if x,y ∈ S, then

||x− y||2 = ||x||2 + ||y||2−2Re(x,y) = ||x||2 + ||y||2 = 2.



536 CHAPTER 19. HILBERT SPACES

Therefore, the open sets, B
(
x, 1

2

)
for x ∈ S are disjoint and cover S. Since H is assumed

to be separable, there exists a point from a countable dense set in each of these disjoint
balls showing there can only be countably many of the balls and that consequently, S is
countable as claimed.

It remains to verify 19.5.26 and that span(S) is dense. If span(S) is not dense, then
span(S) is a closed proper subspace of H and letting y /∈ span(S),

z≡ y−Py
||y−Py||

∈ span(S)⊥ .

But then S∪{z} would be a larger orthonormal set of vectors contradicting the maximality
of S.

It remains to verify 19.5.26. Let S = {xi}∞

i=1 and consider the problem of choosing the
constants, ck in such a way as to minimize the expression∣∣∣∣∣

∣∣∣∣∣x− n

∑
k=1

ckxk

∣∣∣∣∣
∣∣∣∣∣
2

=

||x||2 +
n

∑
k=1
|ck|2−

n

∑
k=1

ck (x,xk)−
n

∑
k=1

ck(x,xk).

This equals

||x||2 +
n

∑
k=1
|ck− (x,xk)|2−

n

∑
k=1
|(x,xk)|2

and therefore, this minimum is achieved when ck = (x,xk) and equals

||x||2−
n

∑
k=1
|(x,xk)|2

Now since span(S) is dense, there exists n large enough that for some choice of constants,
ck, ∣∣∣∣∣

∣∣∣∣∣x− n

∑
k=1

ckxk

∣∣∣∣∣
∣∣∣∣∣
2

< ε.

However, from what was just shown,∣∣∣∣∣
∣∣∣∣∣x− n

∑
i=1

(x,xi)xi

∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣x− n

∑
k=1

ckxk

∣∣∣∣∣
∣∣∣∣∣
2

< ε

showing that limn→∞ ∑
n
i=1 (x,xi)xi = x as claimed. This proves the theorem.

The proof of this theorem contains the following corollary.

Corollary 19.5.3 Let S be any orthonormal set of vectors and let

{x1, · · · ,xn} ⊆ S.
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Then if x ∈ H ∣∣∣∣∣
∣∣∣∣∣x− n

∑
k=1

ckxk

∣∣∣∣∣
∣∣∣∣∣
2

≥

∣∣∣∣∣
∣∣∣∣∣x− n

∑
i=1

(x,xi)xi

∣∣∣∣∣
∣∣∣∣∣
2

for all choices of constants, ck. In addition to this, Bessel’s inequality

||x||2 ≥
n

∑
k=1
|(x,xk)|2 .

If S is countable and span(S) is dense, then letting {xi}∞

i=1 = S, 19.5.26 follows.

19.6 Fourier Series, An Example
In this section consider the Hilbert space, L2 (0,2π) with the inner product,

( f ,g)≡
∫ 2π

0
f gdm.

This is a Hilbert space because of the theorem which states the Lp spaces are complete,
Theorem 15.1.10 on Page 403. An example of an orthonormal set of functions in L2 (0,2π)
is

φ n (x)≡
1√
2π

einx

for n an integer. Is it true that the span of these functions is dense in L2 (0,2π)?

Theorem 19.6.1 Let S = {φ n}n∈Z. Then span(S) is dense in L2 (0,2π).

Proof: By regularity of Lebesgue measure, and Theorem 15.2.4 that Cc (0,2π) is dense
in L2 (0,2π) . Therefore, it suffices to show that for g ∈ Cc (0,2π) , then for every ε > 0
there exists h ∈ span(S) such that ||g−h||L2(0,2π) < ε.

Let T denote the points of C which are of the form eit for t ∈ R. Let A denote the
algebra of functions consisting of polynomials in z and 1/z for z ∈ T. Thus a typical such
function would be one of the form

m

∑
k=−m

ckzk

for m chosen large enough. This algebra separates the points of T because it contains the
function, p(z) = z. It annihilates no point of t because it contains the constant function
1. Furthermore, it has the property that for f ∈ A , f ∈ A . By the Stone Weierstrass
approximation theorem, Theorem 9.2.10 on Page 203, A is dense in C (T ) . Now for g ∈
Cc (0,2π) , extend g to all of R to be 2π periodic. Then letting G

(
eit
)
≡ g(t) , it follows G

is well defined and continuous on T. Therefore, there exists H ∈A such that for all t ∈ R,∣∣H (eit)−G
(
eit)∣∣< ε

2/2π.

Thus H
(
eit
)

is of the form

H
(
eit)= m

∑
k=−m

ck
(
eit)k

=
m

∑
k=−m

ckeikt ∈ span(S) .
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Let h(t) = ∑
m
k=−m ckeikt . Then(∫ 2π

0
|g−h|2 dx

)1/2

≤
(∫ 2π

0
max{|g(t)−h(t)| : t ∈ [0,2π]}dx

)1/2

=

(∫ 2π

0
max

{∣∣G(eit)−H
(
eit)∣∣ : t ∈ [0,2π]

}
dx
)1/2

<

(∫ 2π

0

ε2

2π

)1/2

= ε.

This proves the theorem.

Corollary 19.6.2 For f ∈ L2 (0,2π) ,

lim
m→∞

∣∣∣∣∣
∣∣∣∣∣ f − m

∑
k=−m

( f ,φ k)φ k

∣∣∣∣∣
∣∣∣∣∣
L2(0,2π)

Proof: This follows from Theorem 19.5.2 on Page 535.

19.7 Compact Operators
19.7.1 Compact Operators In Hilbert Space
Definition 19.7.1 Let A ∈L (H,H) where H is a Hilbert space. Then

|(Ax,y)| ≤ ||A|| ||x|| ||y||

and so the map, x→ (Ax,y) is continuous and linear. By the Riesz representation theorem,
there exists a unique element of H, denoted by A∗y such that

(Ax,y) = (x,A∗y) .

It is clear y→ A∗y is linear and continuous. A∗ is called the adjoint of A. A is a self ad-
joint operator if A = A∗. Thus for a self adjoint operator, (Ax,y) = (x,Ay) for all x,y ∈ H.
A is a compact operator if whenever {xk} is a bounded sequence, there exists a conver-
gent subsequence of {Axk}. Equivalently, A maps bounded sets to sets whose closures are
compact.

The big result is called the Hilbert Schmidt theorem. It is a generalization to arbitrary
Hilbert spaces of standard finite dimensional results having to do with diagonalizing a
symmetric matrix. There is another statement and proof of this theorem around Page 663.

Theorem 19.7.2 Let A be a compact self adjoint operator defined on a Hilbert space, H.
Then there exists a countable set of eigenvalues, {λ i} and an orthonormal set of eigenvec-
tors, ui satisfying

λ i is real, |λ n| ≥ |λ n+1| , Aui = λ iui, (19.7.27)
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and either
lim
n→∞

λ n = 0, (19.7.28)

or for some n,
span(u1, · · · ,un) = H. (19.7.29)

In any case,
span({ui}∞

i=1) is dense in A(H) . (19.7.30)

and for all x ∈ H,

Ax =
∞

∑
k=1

λ k (x,uk)uk (19.7.31)

where the sum might be finite. This sequence of eigenvectors and eigenvalues also satisfies

|λ n|= ∥An∥, (19.7.32)

and
An : Hn→ Hn. (19.7.33)

where H ≡ H1 and Hn ≡ {u1, · · · ,un−1}⊥ and An is the restriction of A to Hn.

Proof: If ∥A∥ = 0 then pick u ∈ H with ∥u∥ = 1 and let λ 1 = 0. Since A(H) = 0 it
follows the span of u is dense in A(H) and this proves the theorem in this uninteresting
case.

Assume from now on A ̸= 0. Let A1 = A and let λ 1 be real and λ
2
1 ≡ ∥A∥

2. From the
definition of ∥A∥ there exists xn,∥xn∥ = 1, and ∥Axn∥ → ∥A∥ = |λ 1|. Now it is clear that
A2 is also a compact self adjoint operator. Consider((

λ
2
1−A2

)
xn,xn

)
= λ

2
1 (xn,xn)−

(
A2xn,xn

)
= λ

2
1−∥Axn∥2→ 0.

Since A is compact, there exists a subsequence of {xn} still denoted by {xn} such that Axn
converges to some element of H. Thus since λ

2
1−A2 satisfies((

λ
2
1−A2

)
y,y
)
≥ 0

in addition to being self adjoint, it follows x,y→
((

λ
2
1−A2

)
x,y
)

satisfies all the axioms
for an inner product except for the one which says that (z,z) = 0 only if z = 0. Therefore,
the Cauchy Schwarz inequality may be used to write∣∣∣((λ

2
1−A2

)
xn,y

)∣∣∣ ≤ ((
λ

2
1−A2

)
y,y
)1/2((

λ
2
1−A2

)
xn,xn

)1/2

≤ en ∥y∥ .

where en→ 0 as n→ ∞. Therefore, taking the sup over all ∥y∥ ≤ 1,

lim
n→∞

∥∥∥(λ
2
1−A2

)
xn

∥∥∥= 0.
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Since A2xn converges, it follows, since λ 1 ̸= 0 that {xn} is a Cauchy sequence converging
to x with ∥x∥= 1. Therefore, A2xn→ A2x and so∥∥∥(λ

2
1−A2

)
x
∥∥∥= 0.

Now
(λ 1I−A)(λ 1I +A)x = (λ 1I +A)(λ 1I−A)x = 0.

If (λ 1I−A)x = 0, let u1 ≡ x. If (λ 1I−A)x = y ̸= 0, let u1 ≡ y
∥y∥ .

Suppose {u1, · · · ,un} is such that Auk = λ kuk and |λ k| ≥ |λ k+1|, |λ k| = ∥Ak∥ and Ak :
Hk→ Hk for k ≤ n, for

Hk ≡ {u1, · · · ,uk−1}⊥ ,H0 ≡ {0} so H⊥0 = H1 = H

From the above, this results in case n = 1.
If

span(u1, · · · ,un) = H,

this yields the conclusion of the theorem 19.7.29. Therefore, assume the span of these
vectors is always a proper subspace of H.

It is shown next that An+1 : Hn+1→ Hn+1. Let

y ∈ Hn+1 ≡ {u1, · · · ,un}⊥

Then for k ≤ n
(Ay,uk) = (y,Auk) = λ k (y,uk) = 0,

showing An+1 : Hn+1→ Hn+1 as claimed.
Say λ k > 0 for k ≤ n− 1. There are two cases. Either λ n = 0 or it is not. In the

case where λ n = 0 it follows An = 0 since ∥An∥ = 0. Every element of H is the sum of
one in span(u1, · · · ,un) and one in span(u1, · · · ,un)

⊥. (note span(u1, · · · ,un) is a closed
subspace.) Thus, if x ∈ H, x = y+ z where y ∈ span(u1, · · · ,un) and z ∈ span(u1, · · · ,un)

⊥

and Az = 0. Say y = ∑
n
j=1 c ju j. Then

Ax = Ay =
n

∑
j=1

c jAu j =
n

∑
j=1

c jλ ju j ∈ span(u1, · · · ,un−1) .

Thus, if λ n = 0, 19.7.30 holds since x ∈ H was arbitrary. Hence, from the above sum,

λ k (x,uk) = (x,Auk) = (Ax,uk) = ckλ k

and so it suffices to let ck = (x,uk) yielding the formula in 19.7.30 for any x ∈ H with
λ n = λ n+1 = · · · all zero.

Now consider the case where λ n ̸= 0. In this case repeat the above argument used to
find un+1 and λ n+1 for the operator, An+1. This yields un+1 ∈ Hn+1 ≡ {u1, · · · ,un}⊥ such
that

∥un+1∥= 1,∥Aun+1∥= |λ n+1|= ∥An+1∥ ≤ ∥An∥= |λ n|
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and if it is ever the case that λ n = 0, it follows from the above argument that the conclusion
of the theorem is obtained.

I claim limn→∞ λ n = 0. If this were not so, then for some ε > 0, 0 < ε = limn→∞ |λ n|
but then

∥Aun−Aum∥2 = ∥λ nun−λ mum∥2

= |λ n|2 + |λ m|2 ≥ 2ε
2

and so there would not exist a convergent subsequence of {Auk}∞

k=1 contrary to the assump-
tion that A is compact. This verifies the claim that limn→∞ λ n = 0.

It remains to verify that span({ui}) is dense in A(H). If w ∈ span({ui})⊥ then w ∈ Hn
for all n and so for all n,

∥Aw∥ ≤ ∥An∥∥w∥ ≤ |λ n|∥w∥ .
Therefore, Aw = 0. Now every vector from H can be written as a sum of one from

span({ui})⊥ = span({ui})
⊥

and one from span({ui}). Therefore, if x ∈ H, x = y+w where y ∈ span({ui}) and w ∈
span({ui})

⊥
and Aw = 0. Also, since y ∈ span({ui}), there exist constants, ck and n such

that ∥∥∥∥∥y−
n

∑
k=1

ckuk

∥∥∥∥∥< ε, (w,uk) = 0 for all uk.

Therefore, from Corollary 19.5.3,∥∥∥∥∥y−
n

∑
k=1

(y,uk)uk

∥∥∥∥∥=
∥∥∥∥∥y−

n

∑
k=1

(x,uk)uk

∥∥∥∥∥< ε.

Therefore,

∥A∥ε >

∥∥∥∥∥A

(
y−

n

∑
k=1

(x,uk)uk

)∥∥∥∥∥=
∥∥∥∥∥Ax−

n

∑
k=1

(x,uk)λ kuk

∥∥∥∥∥ .
Since ε is arbitrary, this shows span({ui}) is dense in A(H) and also implies 19.7.31. ■

Define v⊗u ∈L (H,H) by

v⊗u(x) = (x,u)v,

then 19.7.31 is of the form

A =
∞

∑
k=1

λ kuk⊗uk

This is the content of the following corollary.

Corollary 19.7.3 The main conclusion of the above theorem can be written as

A =
∞

∑
k=1

λ kuk⊗uk

where the convergence of the partial sums takes place in the operator norm.
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Proof: Using 19.7.31∣∣∣∣∣
((

A−
n

∑
k=1

λ kuk⊗uk

)
x,y

)∣∣∣∣∣=
∣∣∣∣∣
(

Ax−
n

∑
k=1

λ k (x,uk)uk,y

)∣∣∣∣∣
=

∣∣∣∣∣
(

∞

∑
k=n

λ k (x,uk)uk,y

)∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
k=n

λ k (x,uk)(uk,y)

∣∣∣∣∣
≤ |λ n|

(
∞

∑
k=n
|(x,uk)|2

)1/2(
∞

∑
k=n
|(y,uk)|2

)1/2

≤ |λ n|∥x∥∥y∥

It follows ∥∥∥∥∥
(

A−
n

∑
k=1

λ kuk⊗uk

)
(x)

∥∥∥∥∥≤ |λ n|∥x∥ ■

Lemma 19.7.4 If Vλ is the eigenspace for λ ̸= 0 and B : Vλ →Vλ is a compact self adjoint
operator, then Vλ must be finite dimensional.

Proof: This follows from the above theorem because it gives a sequence of eigenvalues
on restrictions of B to subspaces with λ k ↓ 0. Hence, eventually λ n = 0 because there is
no other eigenvalue in Vλ than λ . Hence there can be no eigenvector on Vλ for λ = 0 and
span(u1, · · · ,un) =Vλ = A(Vλ ) for some n. ■

Corollary 19.7.5 Let A be a compact self adjoint operator defined on a separable Hilbert
space, H. Then there exists a countable set of eigenvalues, {λ i} and an orthonormal set of
eigenvectors, ui satisfying

Avi = λ ivi,∥ui∥= 1, (19.7.34)

span({vi}∞

i=1) is dense in H. (19.7.35)

Furthermore, if λ i ̸= 0, the space, Vλ i ≡ {x ∈ H : Ax = λ ix} is finite dimensional.

Proof: Let B be the restriction of A to Vλ i . Thus B is a compact self adjoint operator
which maps Vλ to Vλ and has only one eigenvalue λ i on Vλ i . By Lemma 19.7.4, Vλ is
finite dimensional. As to the density of some span({vi}∞

i=1) in H, in the proof of the above

theorem, let W ≡ span({ui})
⊥

. By Theorem 19.5.2, there is a maximal orthonormal set
of vectors, {wi}∞

i=1 whose span is dense in W . There are only countably many of these
since the space H is separable. As shown in the proof of the above theorem, Aw = 0 for all
w ∈W . Let {vi}∞

i=1 = {ui}∞

i=1∪{wi}∞

i=1. ■
Note the last claim of this corollary about Vλ being finite dimensional if λ ̸= 0 holds

independent of the separability of H.
Suppose λ /∈ {λ k}∞

k=1 , the eigenvalues of A, and λ ̸= 0. Then the above formula for A,
19.7.31, yields an interesting formula for (A−λ I)−1. Note first that since limn→∞ λ n = 0,
it follows that λ

2
n/(λ n−λ )2 must be bounded, say by a positive constant, M.
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Corollary 19.7.6 Let A be a compact self adjoint operator and let λ /∈ {λ n}∞

n=1 and λ ̸= 0
where the λ n are the eigenvalues of A. (Ax = λx,x ̸= 0)Then

(A−λ I)−1 x =− 1
λ

x+
1
λ

∞

∑
k=1

λ k

λ k−λ
(x,uk)uk. (19.7.36)

Proof: Let m < n. Then since the {uk} form an orthonormal set,∣∣∣∣∣ n

∑
k=m

λ k

λ k−λ
(x,uk)uk

∣∣∣∣∣ ≤
(

n

∑
k=m

(
λ k

λ k−λ

)2

|(x,uk)|2
)1/2

(19.7.37)

≤ M

(
n

∑
k=m
|(x,uk)|2

)1/2

.

But from Bessel’s inequality, ∑
∞
k=1 |(x,uk)|2 ≤ ∥x∥2 and so for m large enough, the first

term in 19.7.37 is smaller than ε . This shows the infinite series in 19.7.36 converges. It is
now routine to verify that the formula in 19.7.36 is the inverse. ■

19.8 Sturm Liouville Problems
A Sturm Liouville problem involves the differential equation,(

p(x)y′
)′
+(λq(x)+ r (x))y = 0, x ∈ [a,b] , p(x)≥ 0 (19.8.38)

where we assume that q(x)≥ 0 for x ∈ [a,b] and is positive except for finitely many points.
Also, assume it is continuous. Probably, you could generalize this to assume less about q
if this is of interest. There will also be boundary conditions at a,b. These are typically of
the form

C1y(a)+C2y′ (a) = 0
C3y(b)+C4y′ (b) = 0 (19.8.39)

where
C2

1 +C2
2 > 0, and C2

3 +C2
4 > 0. (19.8.40)

Also we assume here that a and b are finite numbers. In the example, the constants Ci are
given and λ is called the eigenvalue while a solution of the differential equation and given
boundary conditions corresponding to λ is called an eigenfunction.

There is a simple but important identity related to solutions of the above differential
equation. Suppose λ i and yi for i = 1,2 are two solutions of 19.8.38. Thus from the
equation, we obtain the following two equations.(

p(x)y′1
)′ y2 +(λ 1q(x)+ r (x))y1y2 = 0,(

p(x)y′2
)′ y1 +(λ 2q(x)+ r (x))y1y2 = 0.
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Subtracting the second from the first yields(
p(x)y′1

)′ y2−
(

p(x)y′2
)′ y1 +(λ 1−λ 2)q(x)y1y2 = 0. (19.8.41)

Now we note that(
p(x)y′1

)′ y2−
(

p(x)y′2
)′ y1 =

d
dx

((
p(x)y′1

)
y2−

(
p(x)y′2

)
y1
)

and so integrating 19.8.41 from a to b, we obtain((
p(x)y′1

)
y2−

(
p(x)y′2

)
y1
)
|ba +(λ 1−λ 2)

∫ b

a
q(x)y1 (x)y2 (x)dx = 0 (19.8.42)

We have been purposely vague about the nature of the boundary conditions because of a
desire to not lose generality. However, we will always assume the boundary conditions are
such that whenever y1 and y2 are two eigenfunctions, it follows that((

p(x)y′1
)

y2−
(

p(x)y′2
)

y1
)
|ba = 0 (19.8.43)

In the case where the boundary conditions are given by 19.8.39, and 19.8.40, we obtain
19.8.43. To see why this is so, consider the top limit. This yields

p(b)
[
y′1 (b)y2 (b)− y′2 (b)y1 (b)

]
However we know from the boundary conditions that

C3y1 (b)+C4y′1 (b) = 0
C3y2 (b)+C4y′2 (b) = 0

and that from 19.8.40 that not both C3 and C4 equal zero. Therefore the determinant of the
matrix of coefficients must equal zero. But this implies[

y′1 (b)y2 (b)− y′2 (b)y1 (b)
]
= 0

which yields the top limit is equal to zero. A similar argument holds for the lower limit.
Note that y1,y2 satisfy different differential equations because of different eigenval-
ues.

From now on the boundary condition will be conditions L, L̂,

L
(
y(a) ,y′ (a)

)
= 0, L̂

(
y(b) ,y′ (b)

)
= 0

which imply that if yi correspond to two different eigenvalues,((
p(x)y′1

)
y2−

(
p(x)y′2

)
y1
)
|ba = 0 (*)

and if α is a constant, if L(y(a) ,y′ (a)) = 0, L̂(y(b) ,y′ (b)) = 0, then also

L
(
αy(a) ,αy′ (a)

)
= 0, L̂

(
αy(b) ,αy′ (b)

)
= 0

For example, maybe one wants to say that y is bounded at a,b.
With the identity 19.8.42 here is a result on orthogonality of the eigenfunctions.
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Proposition 19.8.1 Suppose yi solves the boundary conditions and the differential equa-
tion for λ = λ i where λ 1 ̸= λ 2. Then we have the orthogonality relation∫ b

a
q(x)y1 (x)y2 (x)dx = 0. (19.8.44)

In addition to this, if u,v are two solutions to the differential equation corresponding to
a single λ , 19.8.38, not necessarily the boundary conditions, (same differential equation)
then there exists a constant, C such that

W (u,v)(x) p(x) =C (19.8.45)

for all x ∈ [a,b]. In this formula, W (u,v) denotes the Wronskian given by

det
(

u(x) v(x)
u′ (x) v′ (x)

)
. (19.8.46)

Proof: The orthogonality relation, 19.8.44 follows from the fundamental assumption,
19.8.43 and 19.8.42.

It remains to verify 19.8.45. We have from 19.8.41,

0 = (λ −λ )q(x)uv+
(

p(x)u′
)′ v− (p(x)v′

)′ u
=

d
dx

(
p(x)u′v− p(x)v′u

)
=

d
dx

(p(x)W (v,u)(x))

and so p(x)W (u,v)(x) =−p(x)W (v,u)(x) =C as claimed. ■
Now consider the differential equation,(

p(x)y′
)′
+ r (x)y = 0. (19.8.47)

This is obtained from the one of interest by letting λ = 0.

Criterion 19.8.2 Suppose we are able to find functions, u and v such that they solve the
differential equation, 19.8.47 and u solves the boundary condition at x = a while v solves
the boundary condition at x = b. Assume both are in L2 (a,b) and W (u,v) ̸= 0. It follows
that both are in L2 (a,b,q) , the L2 functions with respect to the measure q(x)dx. Thus

( f ,g)L2(a,b,q) ≡
∫ b

a
f (x)g(x)q(x)dx

If p(x)> 0 on [a,b] it is typically clear from the fundamental existence and uniqueness
theorems for ordinary differential equations that such functions u and v exist. (See any
good differential equations book or Problem 10 on Page 750.)

However, such functions might exist even if p vanishes at the end points.

Lemma 19.8.3 Assume Criterion 19.8.2. A function y is a solution to the boundary condi-
tions along with the equation, (

p(x)y′
)′
+ r (x)y = g (19.8.48)



546 CHAPTER 19. HILBERT SPACES

if

y(x) =
∫ b

a
G(t,x)g(t)dt (19.8.49)

where

G(t,x) =
{

c−1 (v(x)u(t)) if t < x
c−1 (v(t)u(x)) if t > x

. (19.8.50)

where c is the constant of Proposition 19.8.1 which satisfies p(x)W (u,v)(x) = c.

Proof: Why does y solve the equation 19.8.48 along with the boundary conditions?

y(x) =
1
c

∫ x

a
g(t)u(t)v(x)dt +

1
c

∫ b

x
g(t)v(t)u(x)dt

Differentiate

y′ (x) =
1
c

g(x)u(x)v(x)+
1
c

∫ x

a
g(t)u(t)v′ (x)dt

−1
c

g(x)v(x)u(x)+
1
c

∫ b

x
g(t)v(t)u′ (x)dt

=
1
c

∫ x

a
g(t)u(t)v′ (x)dt +

1
c

∫ b

x
g(t)v(t)u′ (x)dt

Then

p(x)y′ (x) =
1
c

∫ x

a
g(t)u(t) p(x)v′ (x)dt +

1
c

∫ b

x
g(t)v(t) p(x)u′ (x)dt

Then (p(x)y′ (x))′ =

1
c

g(x) p(x)u(x)v′ (x)− 1
c

g(x) p(x)v(x)u′ (x)

+
1
c

∫ x

a
g(t)u(t)

(
p(x)v′ (x)

)′ dt +
1
c

∫ b

x
g(t)v(t)

(
p(x)u′ (x)

)′ dt

From the definition of c, this equals

= g(x)+
1
c

∫ x

a
g(t)u(t)

(
p(x)v′ (x)

)′ dt +
1
c

∫ b

x
g(t)v(t)

(
p(x)u′ (x)

)′ dt

= g(x)+
1
c

∫ x

a
g(t)u(t)(−r (x)v(x))dt +

1
c

∫ b

x
g(t)v(t)(−r (x)u(x))dt

= g(x)− r (x)
(

1
c

∫ x

a
g(t)u(t)v(x)dt +

1
c

∫ b

x
g(t)v(t)u(x)dt

)
= g(x)− r (x)y(x)

Thus (
p(x)y′ (x)

)′
+ r (x)y(x) = g(x)
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so y satisfies the equation. As to the boundary conditions, by assumption,

L̂
(
y(b) ,y′ (b)

)
= L̂

(
v(b)

1
c

∫ b

a
g(t)u(t)dt,v′ (b)

1
c

∫ b

a
g(t)u(t)dt

)
= 0

because v satisfies the boundary condition at b. The other boundary condition is exactly
similar. ■

Now in the case of Criterion 19.8.2, y is a solution to the Sturm Liouville eigenvalue
problem, if and only if y solves the boundary conditions and the equation,(

p(x)y′
)′
+ r (x)y(x) =−λq(x)y(x) .

This happens if

y(x) =
−λ

c

∫ x

a
q(t)y(t)u(t)v(x)dt

+
−λ

c

∫ b

x
q(t)y(t)v(t)u(x)dt, (19.8.51)

Letting µ = 1
λ

, this is of the form

µy(x) =
∫ b

a
G(t,x)q(t)y(t)dt (19.8.52)

where

G(t,x) =
{
−c−1 (v(x)u(t)) if t < x
−c−1 (v(t)u(x)) if t > x

. (19.8.53)

Could µ = 0? If this happened, then from Lemma 19.8.3, we would have that y = 0 is a
solution of 19.8.48 where the right side is −q(t)y(t) which would imply that q(t)y(t) = 0
(since the left side is 0) for all t which implies y(t) = 0 for all t thanks to assumptions on
q(t). Thus we are not interested in this case. It follows from 19.8.53 that G : [a,b]× [a,b]→
R is continuous and symmetric, G(t,x) = G(x, t).

G(x, t) ≡
{
−c−1 (v(t)u(x)) if x < t
−c−1 (v(x)u(t)) if x > t

= G(t,x)

Also we see that for f ∈C ([a,b]), and

w(x)≡
∫ b

a
G(t,x)q(t) f (t)dt,

Lemma 19.8.3 implies w is a solution to the boundary conditions and the equation(
p(x)y′

)′
+ r (x)y =−q(x) f (x) (19.8.54)

Theorem 19.8.4 Suppose u,v are given in Criterion 19.8.2. Then there exists a sequence
of functions, {yn}∞

n=1 and real numbers, λ n such that(
p(x)y′n

)′
+(λ nq(x)+ r (x))yn = 0, x ∈ [a,b] , (19.8.55)
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L
(
y(a) ,y′ (a)

)
= 0,

L̂
(
y(b) ,y′ (b)

)
= 0. (19.8.56)

and
lim
n→∞
|λ n|= ∞ (19.8.57)

such that for all f ∈C ([a,b]), whenever w satisfies 19.8.54 and the boundary conditions,

w(x) =
∞

∑
n=1

1
λ n

( f ,yn)yn. (19.8.58)

Also the functions, {yn} form a dense set in L2 (a,b,q) which satisfy the orthogonality
condition, 19.8.44.

Proof: Let Ay(x) ≡
∫ b

a G(t,x)q(t)y(t)dt where G is defined above in 19.8.53. Then
from symmetry and Fubini’s theorem,

(Ay,z)L2(a,b,q) =

∫ b

a

∫ b

a
G(t,x)y(t)z(x)q(x)q(t)dtdx =

∫ b

a

∫ b

a
G(x, t)y(x)z(t)q(t)q(x)dxdt

=
∫ b

a

∫ b

a
G(t,x)z(t)q(t)y(x)q(x)dxdt

= (Az,y)L2(a,b,q)

This shows that A is self adjoint. For y ∈ L2 (a,b,q) ,

Ay(x) =
∫ x

a

(
−c−1 (v(t)u(x))

)
y(t)q(t)dt +

∫ b

x

(
−c−1 (v(x)u(t))

)
q(t)y(t)dt

If you have yn → y weakly in L2 (a,b,q) , then it is clear that Ayn (x)→ Ay(x) for each x,
this from the above formula. Consider now ∥Ayn−Ay∥L2(a,b,q). Look at the first term in the
above. Is it true that the following converges to 0?∫ b

a

∣∣∣∣∫ x

a

(
−c−1 (v(t)u(x))

)
(yn (t)− y(t))q(t)dt

∣∣∣∣2 q(x)dx (**)

We know that the integrand converges to 0 for each x. Is there a dominating function? If
so, then the dominated convergence theorem gives the result.∣∣∣∣∫ x

a

(
−c−1 (v(t)u(x))

)
q(t)(yn (t)− y(t))dt

∣∣∣∣
≤ |u(x)|C (c)

∫ x

a
|v(t)(yn (t)− y(t))|dt

≤ |u(x)|C∥v∥L2(a,b,q) ∥yn− y∥L2(a,b,q)
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The last factor is uniformly bounded due to the weak convergence of yn to y. Therefore,
there is a constant C such that the integrand is bounded by |u(x)|2 C. Hence the dominated
convergence theorem applies and we can conclude that ∗∗ converges to 0. Thus A is a
compact, self adjoint operator on L2 (a,b,q)

Therefore, by Theorem 19.7.2, there exist functions yn and real constants, µn such that
||yn||L2 = 1 and Ayn = µnyn and

|µn| ≥
∣∣µn+1

∣∣ , Aui = µ iui, (19.8.59)

and either
lim
n→∞

µn = 0, (19.8.60)

or for some n,
span(y1, · · · ,yn) = H ≡ L2 (a,b,q) . (19.8.61)

Of course, H is not finite dimensional and so the second will not hold. Also from Theorem
19.7.2,

span({yi}∞

i=1) is dense in A(H) . (19.8.62)

and so for all f ∈C ([a,b]),

A f =
∞

∑
k=1

µk ( f ,yk)yk. (19.8.63)

Thus for w a solution of 19.8.54 and suitable boundary conditions as above which cause ∗,

w≡ A f =
∞

∑
k=1

1
λ k

( f ,yk)yk.

The last claim follows from Corollary 19.7.5 and the observation above that µ is never
equal to zero. ■

Note that if q(x) ̸= 0 we can say that for a given g ∈ C ([a,b]) , one can define f by
g(x) =−q(x) f (x) and so if w is a solution to the boundary conditions and the equation(

p(x)w′ (x)
)′
+ r (x)w(x) = g(x) =−q(x) f (x) ,

one obtains the formula

w(x) =
∞

∑
k=1

1
λ k

( f ,yk)yk

=
∞

∑
k=1

1
λ k

(
−g
q

,yk

)
yk.

More can be said about convergence of these series based on the eigenfunctions of
a Sturm Liouville problem. In particular, it can be shown that for reasonable functions
the pointwise convergence properties are like those of Fourier series and that the series
converges to the midpoint of the jump. This is partly done for the Legendre polynomials
in [28]. For more on these topics see the old book by Ince, written in Egypt in the 1920’s,
[72], [73] or the 1955 book on differential equations by Coddington and Levinson [31].
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As an example, consider the following eigenvalue problem

x2y′′+ xy′+
(
λx2−n2)y = 0, C1y(L)+C2y′ (L) = 0, x ∈ [0,L] (*)

not both Ci equal zero. Then you can write the equation in “self adjoint” form as

(
xy′
)′
+

(
λx− n2

x

)
y = 0

Multiply by y and integrate from 0 to L. Then the boundary terms cancel and you get∫ L

0

(
λx− n2

x

)
y2dx = 0

and so you must have λ > 0.
Now it follows that corresponding to different values of λ the eigenfunctions are or-

thogonal with respect to x. So what are the values of λ and how can we describe the
corresponding eigenfunctions?

Let y be an eigenfunction. Let z
(√

λx
)
= y(x) . Then

0 = x2y′′+ xy′+
(
λx2−n2)y

= λx2z′′
(√

λx
)
+
√

λxz′
(√

λx
)
+
(
λx2−n2)z

(√
λx
)

Now replace
√

λx with u. Then

u2z′′ (u)+uz′ (u)+
(
u2−n2)z(u) = 0

Then we need
z
(√

λL
)
= 0

and z is bounded near 0. This happens if and only if z(u) = Jn (u) because the other solution
to the Bessel equation is unbounded near 0. Then Jn

(√
λL
)
= 0 and so for some α a zero

of Jn,
√

λL = α, λ =
α2

L2 .

Thus the eigenvalues are
α2

L2 ,α a zero of Jn (x)

and the eigenfunctions are
x→ Jn

(
α

L
x
)
.

Then Theorem 19.8.4 implies that if you have any f ∈ L2 (a,b,x) , you can obtain it as
an expansion in terms of the functions x→ Jn

(
αk
L x
)

where αk are the zeros of the Bessel
function. Note that this theorem and what was shown above also shows that there are
countably many zeros of Jn also.
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19.8.1 Nuclear Operators
Definition 19.8.5 A self adjoint operator A ∈ L (H,H) for H a separable Hilbert space
is called a nuclear operator if for some complete orthonormal set, {ek} ,

∞

∑
k=1
|(Aek,ek)|< ∞

To begin with here is an interesting lemma.

Lemma 19.8.6 Suppose {An} is a sequence of compact operators in L (X ,Y ) for two
Banach spaces, X and Y and suppose A ∈L (X ,Y ) and

lim
n→∞
||A−An||= 0.

Then A is also compact.

Proof: Let B be a bounded set in X such that ||b|| ≤C for all b ∈ B. I need to verify AB
is totally bounded. Suppose then it is not. Then there exists ε > 0 and a sequence, {Abi}
where bi ∈ B and ∣∣∣∣Abi−Ab j

∣∣∣∣≥ ε

whenever i ̸= j. Then let n be large enough that

||A−An|| ≤
ε

4C
.

Then ∣∣∣∣Anbi−Anb j
∣∣∣∣ =

∣∣∣∣Abi−Ab j +(An−A)bi− (An−A)b j
∣∣∣∣

≥
∣∣∣∣Abi−Ab j

∣∣∣∣−||(An−A)bi||−
∣∣∣∣(An−A)b j

∣∣∣∣
≥

∣∣∣∣Abi−Ab j
∣∣∣∣− ε

4C
C− ε

4C
C ≥ ε

2
,

a contradiction to An being compact. This proves the lemma.
Then one can prove the following lemma. In this lemma, A≥ 0 will mean (Ax,x)≥ 0.

Lemma 19.8.7 Let A≥ 0 be a nuclear operator defined on a separable Hilbert space, H.
Then A is compact and also, whenever {ek} is a complete orthonormal set,

A =
∞

∑
j=1

∞

∑
i=1

(Aei,e j)ei⊗ e j.

Proof: First consider the formula. Since A is given to be continuous,

Ax = A

(
∞

∑
j=1

(x,e j)e j

)
=

∞

∑
j=1

(x,e j)Ae j,
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the series converging because

x =
∞

∑
j=1

(x,e j)e j

Then also since A is self adjoint,
∞

∑
j=1

∞

∑
i=1

(Aei,e j)ei⊗ e j (x) ≡
∞

∑
j=1

∞

∑
i=1

(Aei,e j)(x,e j)ei

=
∞

∑
j=1

(x,e j)
∞

∑
i=1

(Aei,e j)ei

=
∞

∑
j=1

(x,e j)
∞

∑
i=1

(Ae j,ei)ei

=
∞

∑
j=1

(x,e j)Ae j

Next consider the claim that A is compact. Let CA ≡
(

∑
∞
j=1
∣∣(Ae j,e j)

∣∣)1/2
. Let An be

defined by

An ≡
∞

∑
j=1

n

∑
i=1

(Aei,e j)(ei⊗ e j) .

Then An has values in span(e1, · · · ,en) and so it must be a compact operator because
bounded sets in a finite dimensional space must be precompact. Then

|(Ax−Anx,y)| =

∣∣∣∣∣ ∞

∑
j=1

∞

∑
i=n+1

(Aeie j)(y,e j)(ei,x)

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
j=1

(y,e j)
∞

∑
i=n+1

(Aeie j)(ei,x)

∣∣∣∣∣
≤

∣∣∣∣∣ ∞

∑
j=1

∣∣(y,e j)
∣∣(Ae j,e j)

1/2
∞

∑
i=n+1

(Aeiei)
1/2 |(ei,x)|

∣∣∣∣∣
≤

(
∞

∑
j=1

∣∣(y,e j)
∣∣2)1/2(

∞

∑
j=1

∣∣(Ae j,e j)
∣∣)1/2

·

(
∞

∑
i=n+1

|(x,ei)|2
)1/2(

∞

∑
i=n+1

|(Aeiei)|
)1/2

≤ |y| |x|CA

(
∞

∑
i=n+1

|(Aei,ei)|
)1/2

and this shows that if n is sufficiently large,

|((A−An)x,y)| ≤ ε |x| |y| .
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Therefore,
lim
n→∞
||A−An||= 0

and so A is the limit in operator norm of finite rank bounded linear operators, each of which
is compact. Therefore, A is also compact.

Definition 19.8.8 The trace of a nuclear operator A ∈L (H,H) such that A≥ 0 is defined
to equal

∞

∑
k=1

(Aek,ek)

where {ek} is an orthonormal basis for the Hilbert space, H.

Theorem 19.8.9 Definition 19.8.8 is well defined and equals ∑
∞
j=1 λ j where the λ j are the

eigenvalues of A.

Proof: Suppose {uk} is some other orthonormal basis. Then

ek =
∞

∑
j=1

u j (ek,u j)

By Lemma 19.8.7 A is compact and so

A =
∞

∑
k=1

λ kuk⊗uk

where the uk are the orthonormal eigenvectors of A which form a complete orthonormal
set. Then

∞

∑
k=1

(Aek,ek) =
∞

∑
k=1

(
A

(
∞

∑
j=1

u j (ek,u j)

)
,

∞

∑
j=1

u j (ek,u j)

)

=
∞

∑
k=1

∑
i j
(Au j,ui)(ek,u j)(ui,ek)

=
∞

∑
k=1

∞

∑
j=1

(Au j,u j)
∣∣(ek,u j)

∣∣2
=

∞

∑
j=1

(Au j,u j)
∞

∑
k=1

∣∣(ek,u j)
∣∣2 = ∞

∑
j=1

(Au j,u j)
∣∣u j
∣∣2

=
∞

∑
j=1

(Au j,u j) =
∞

∑
j=1

λ j

and this proves the theorem.
This is just like it is for a matrix. Recall the trace of a matrix is the sum of the eigen-

values.
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It is also easy to see that in any separable Hilbert space, there exist nuclear operators.
Let ∑

∞
k=1 |λ k|< ∞. Then let {ek} be a complete orthonormal set of vectors. Let

A≡
∞

∑
k=1

λ kek⊗ ek.

It is not too hard to verify this works.
Much more can be said about nuclear operators.

19.8.2 Hilbert Schmidt Operators

Definition 19.8.10 Let H and G be two separable Hilbert spaces and let T map H to G be
linear. Then T is called a Hilbert Schmidt operator if there exists some orthonormal basis
for H,

{
e j
}

such that

∑
j

∥∥Te j
∥∥2

< ∞.

The collection of all such linear maps will be denoted by L2 (H,G) .

Theorem 19.8.11 L2 (H,G)⊆L (H,G) and L2 (H,G) is a separable Hilbert space with
norm given by

∥T∥L2
≡

(
∑
k
∥Tek∥2

)1/2

where {ek} is some orthonormal basis for H. Also L2 (H,G)⊆L (H,G) and

∥T∥ ≤ ∥T∥L2
. (19.8.64)

All Hilbert Schmidt opearators are compact. Also for X ∈H and Y ∈G,X⊗Y ∈L2 (H,G)
and

∥X⊗Y∥L2
= ∥X∥H ∥Y∥G (19.8.65)

Proof: First I want to show L2 (H,G) ⊆ L (H,G) and ∥T∥ ≤ ∥T∥L2
. Pick an or-

thonormal basis for H,{ek} and an orthonormal basis for G,{ fk}. Then letting

x =
n

∑
k=1

xkek,

T x = T

(
n

∑
k=1

xkek

)
=

n

∑
k=1

xkT (ek)
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where xk ≡ (x,ek). Therefore using Minkowski’s inequality,

∥T x∥ =

(
∞

∑
k=1
|(T x, fk)|2

)1/2

=

 ∞

∑
k=1

∣∣∣∣∣
(

n

∑
j=1

x jTe j, fk

)∣∣∣∣∣
2
1/2

=

 ∞

∑
k=1

∣∣∣∣∣ n

∑
j=1

(x jTe j, fk)

∣∣∣∣∣
2
1/2

≤
n

∑
j=1

(
∞

∑
k=1

∣∣(x jTe j, fk)
∣∣2)1/2

≤
n

∑
j=1

∣∣x j
∣∣( ∞

∑
k=1

∣∣(Te j, fk)
∣∣2)1/2

=
n

∑
j=1

∣∣x j
∣∣∥∥Te j

∥∥≤( n

∑
j=1

∣∣x j
∣∣2)1/2

∥T∥L2
= ∥x∥∥T∥L2

Therefore, since finite sums of the form ∑
n
k=1 xkek are dense in H, it follows T ∈L (H,G)

and ∥T∥ ≤ ∥T∥L2
Next consider the norm. I need to verify the norm does not depend on the choice of

orthonormal basis. Let { fk} be an orthonormal basis for G. Then for {ek} an orthonormal
basis for H,

∑
k
∥Tek∥2 = ∑

k
∑

j

∣∣(Tek, f j)
∣∣2 = ∑

k
∑

j

∣∣(ek,T ∗ f j)
∣∣2

= ∑
j
∑
k

∣∣(ek,T ∗ f j)
∣∣2 = ∑

j

∥∥T ∗ f j
∥∥2

.

The above computation makes sense because it was just shown that T is continuous. The
same result would be obtained for any other orthonormal basis

{
e′j
}

and this shows the
norm is at least well defined. It is clear that this does indeed satisfy the axioms of a
norm.and this proves the above claims.

It only remains to verify L2 (H,G) is a separable Hilbert space. It is clear that it is an
inner product space because you only have to pick an orthonormal basis, {ek} and define
the inner product as

(S,T )≡∑
k
(Sek,Tek) .

This satisfies the axioms of an inner product and delivers the well defined norm so it is a
well defined inner product. Indeed, we get it from

(S,T )≡ 1
4

(
∥S+T∥2

L2
−∥S−T∥2

L2

)
and the norm is well defined giving the same thing for any choice of the orthonormal basis
so the same is true of the inner product.

Consider completeness. Suppose then that {Tn} is a Cauchy sequence in L2 (H,G) .
Then from 19.8.64 {Tn} is a Cauchy sequence in L (H,G) and so there exists a unique
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T such that limn→∞ ∥Tn−T∥ = 0. Then it only remains to verify T ∈L2 (H,G) . But by
Fatou’s lemma,

∑
k
∥Tek∥2 ≤ lim inf

n→∞
∑
k
∥Tnek∥2 = lim inf

n→∞
∥Tn∥2

L2
< ∞.

All that remains is to verify L2 (H,G) is separable and these Hilbert Schmidt operators
are compact. I will show an orthonormal basis for L2 (H,G) is

{
f j⊗ ek

}
where { fk} is

an orthonormal basis for G and {ek} is an orthonormal basis for H. Here, for f ∈ G and
e ∈ H, f ⊗ e(x)≡ (x,e) f .

I need to show f j⊗ ek ∈L2 (H,G) and that it is an orthonormal basis for L2 (H,G) as
claimed.

∑
k

∥∥ f j⊗ ei (ek)
∥∥2

= ∑
k

∥∥ f jδ ik
∥∥2

=
∥∥ f j
∥∥2

= 1 < ∞

so each of these operators is in L2 (H,G). Next I show they are orthonormal.

( f j⊗ ek, fs⊗ er) = ∑
p
( f j⊗ ek (ep) , fs⊗ er (ep))

= ∑
p

δ rpδ kp ( f j, fs) = ∑
p

δ rpδ kpδ js

If j = s and k = r this reduces to 1. Otherwise, this gives 0. Thus these operators are
orthonormal.

Now let T ∈L2 (H,G). Consider

Tn ≡
n

∑
i=1

n

∑
j=1

(Tei, f j) f j⊗ ei

Then

Tnek =
n

∑
i=1

n

∑
j=1

(Tei, f j)(ek,ei) f j =
n

∑
j=1

(Tek, f j) f j

It follows ∥Tnek∥ ≤ ∥Tek∥ and limn→∞ Tnek = Tek. Therefore, from the dominated conver-
gence theorem,

lim
n→∞
∥T −Tn∥2

L2
≡ lim

n→∞
∑
k
∥(T −Tn)ek∥2 = 0.

Therefore, the linear combinations of the f j ⊗ ei are dense in L2 (H,G) and this proves
completeness of the orthonomal basis.

This also shows L2 (H,G) is separable. From 19.8.64 it also shows that every T ∈
L2 (H,G) is the limit in the operator norm of a sequence of compact operators. This
follows because each of the f j⊗ei is easily seen to be a compact operator because if B⊆H
is bounded, then ( f j⊗ ei)(B) is a bounded subset of a one dimensional vector space so it is
pre-compact. Thus Tn is compact, being a finite sum of these. By Lemma 19.8.6, so is T .

Finally, consider 19.8.65.

∥X⊗Y∥2
L2
≡∑

k
|X⊗Y ( fk)|2H ≡∑

k
|X ( fk,Y )|2H

= ∥X∥2
H ∑

k
|( fk,Y )|2 = ∥X∥2

H ∥Y∥
2
G ■
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19.9 Compact Operators in Banach Space
In general for A ∈L (X ,Y ) the following definition holds.

Definition 19.9.1 Let A ∈L (X ,Y ) . Then A is compact if whenever B ⊆ X is a bounded
set, AB is precompact. Equivalently, if {xn} is a bounded sequence in X , then {Axn} has a
subsequence which converges in Y.

An important result is the following theorem about the adjoint of a compact operator.

Theorem 19.9.2 Let A∈L (X ,Y ) be compact. Then the adjoint operator, A∗ ∈L (Y ′,X ′)
is also compact.

Proof: Let {y∗n} be a bounded sequence in Y ′. Let B be the closure of the unit ball
in X . Then AB is precompact. Then it is clear that the functions {y∗n} are equicontinuous
and uniformly bounded on the compact set, A(B). By the Ascoli Arzela theorem, there is a
subsequence

{
y∗nk

}
which converges uniformly to a continuous function, f on A(B). Now

define g on AX by

g(Ax) = ||x|| f
(

A
(

x
||x||

))
,g(A0) = 0.

Thus for x1,x2 ̸= 0, and a,b scalars,

g(aAx1 +bAx2) ≡ ||ax1 +bx2|| f
(

A(ax1 +bx2)

||ax1 +bx2||

)
≡ lim

k→∞

||ax1 +bx2||y∗nk

(
A(ax1 +bx2)

||ax1 +bx2||

)
= lim

k→∞
ay∗nk

(Ax1)+by∗nk
(Ax2)

= a lim
k→∞

||x1||y∗nk

(
Ax1

||x1||

)
+b lim

k→∞

||x2||y∗nk

(
Ax2

||x2||

)
= a ||x1|| f

(
Ax1

||x1||

)
+b ||x2|| f

(
Ax2

||x2||

)
≡ ag(Ax1)+bg(Ax2)

showing that g is linear on AX . Also

|g(Ax)|= lim
k→∞

∣∣∣∣||x||y∗nk

(
A
(

x
||x||

))∣∣∣∣≤C ||x||
∣∣∣∣∣∣∣∣A( x

||x||

)∣∣∣∣∣∣∣∣=C ||Ax||

and so by the Hahn Banach theorem, there exists y∗ extending g to all of Y having the same
operator norm.

y∗ (Ax) = lim
k→∞

||x||y∗nk

(
A
(

x
||x||

))
= lim

k→∞
y∗nk

(Ax)
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Thus A∗y∗nk
(x)→ A∗y∗ (x) for every x. In addition to this, for x ∈ B,∣∣∣∣A∗y∗ (x)−A∗y∗nk

(x)
∣∣∣∣ =

∣∣∣∣y∗ (Ax)− y∗nk
(Ax)

∣∣∣∣
=

∣∣∣∣g(Ax)− y∗nk
(Ax)

∣∣∣∣
=

∣∣∣∣∣∣∣∣||x|| f (A
(

x
||x||

))
−||x||y∗nk

(
Ax
||x||

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ f (A
(

x
||x||

))
− y∗nk

(
Ax
||x||

)∣∣∣∣∣∣∣∣
and this is uniformly small for large k due to the uniform convergence of y∗nk

to f on A(B).
Therefore,

∣∣∣∣A∗y∗−A∗y∗nk

∣∣∣∣→ 0.

19.10 The Fredholm Alternative
Recall that if A is an n× n matrix and if the only solution to the system, Ax = 0 is x = 0
then for any y ∈ Rn it follows that there exists a unique solution to the system Ax = y.
This holds because the first condition implies A is one to one and therefore, A−1 exists. Of
course things are much harder in a general Banach space. Here is a simple example for a
Hilbert space.

Example 19.10.1 Let L2 (N; µ) = H where µ is counting measure. Thus an element of H
is a sequence, a = {ai}∞

i=1 having the property that

||a||H ≡

(
∞

∑
k=1
|ak|2

)1/2

< ∞.

Define A : H→ H by
Aa≡ b≡{0,a1,a2, · · ·} .

Thus A slides the sequence to the right and puts a zero in the first slot. Clearly A is one to
one and linear but it cannot be onto because it fails to yield e1 ≡ {1,0,0, · · ·}.

Notwithstanding the above example, there are theorems which are like the linear alge-
bra theorem mentioned above which hold in an arbitrary Banach spaces in the case where
the operator is compact. To begin with here is an interesting lemma.

Lemma 19.10.2 Suppose A∈L (X ,X) is compact for X a Banach space. Then (I−A)(X)
is a closed subspace of X.

Proof: Suppose (I−A)xn→ y. Let

αn ≡ dist(xn,ker(I−A))

and let zn ∈ ker(I−A) be such that

αn ≤ ||xn− zn|| ≤
(

1+
1
n

)
αn.
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Thus (I−A)(xn− zn)→ y because (I−A)zn = 0.
Case 1: {xn− zn} has a bounded subsequence.
If this is so, the compactness of A implies there exists a subsequence, still denoted by n

such that {A(xn− zn)}∞

n=1 is a Cauchy sequence. Since (I−A)(xn− zn)→ y, this implies
{(xn− zn)} is also a Cauchy sequence converging to a point, x ∈ X . Then, taking the limit
as n→ ∞, (I−A)x = y and so y ∈ (I−A)(X).

Case 2: limn→∞ ||xn− zn||= ∞. I will show this case cannot occur.
In this case, let wn ≡ xn−zn

||xn−zn|| . Thus (I−A)wn→ 0 and wn is bounded. Therefore, there
exists a subsequence, still denoted by n such that {Awn} is a Cauchy sequence. Now it
follows

Awn−Awm + en− em = wn−wm

where ek → 0 as k→ ∞. This implies {wn} is a Cauchy sequence which must converge
to some w∞ ∈ X . Therefore, (I−A)w∞ = 0 and so w∞ ∈ ker(I−A). However, this is
impossible because of the following argument. If z ∈ ker(I−A),

||wn− z|| =
1

||xn− zn||
||xn− zn−||xn− zn||z||

≥ 1
||xn− zn||

αn ≥
αn(

1+ 1
n

)
αn

=
n

n+1
.

Taking the limit, ||w∞− z|| ≥ 1. Since z ∈ ker(I−A) is arbitrary, this shows

dist(w∞,ker(I−A))≥ 1

Since Case 2 does not occur, this proves the lemma.

Theorem 19.10.3 Let A ∈ L (X ,X) be a compact operator and let f ∈ X. Then there
exists a solution, x, to

x−Ax = f (19.10.66)

if and only if
x∗ ( f ) = 0 (19.10.67)

for all x∗ ∈ ker(I−A∗) .

Proof: Suppose x is a solution to 19.10.66 and let x∗ ∈ ker(I−A∗). Then

x∗ ( f ) = x∗ ((I−A)(x)) = ((I−A∗)x∗)(x) = 0.

Next suppose x∗ ( f ) = 0 for all x∗ ∈ ker(I−A∗) . I will show there exists x solving
19.10.66. By Lemma 19.10.2, (I−A)(X) is a closed subspace of X . Is f ∈ (I−A)(X)?
If not, then by the Hahn Banach theorem, there exists x∗ ∈ X ′ such that x∗ ( f ) ̸= 0 but
x∗ ((I−A)(x)) = 0 for all x ∈ X . However last statement says nothing more nor less than
(I−A∗)x∗ = 0. This is a contradiction because for such x∗, it is given that x∗ ( f ) = 0. This
proves the theorem.

The following corollary is called the Fredholm alternative.
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Corollary 19.10.4 Let A ∈L (X ,X) be a compact operator. Then there exists a solution
to the equation

x−Ax = f (19.10.68)

for all f ∈ X if and only if (I−A∗) is one to one on X ′.

Proof: Suppose (I−A∗) is one to one first. Then if x∗−A∗x∗ = 0 it follows x∗ = 0 and
so for any f ∈ X , x∗ ( f ) = 0 for all x∗ ∈ ker(I−A∗) . By 19.10.3 there exists a solution to
(I−A)x = f .

Now suppose there exists a solution, x, to (I−A)x = f for every f ∈ X . If (I−A∗)x∗ =
0, then for every x ∈ X ,

(I−A∗)x∗ (x) = x∗ ((I−A)(x)) = 0

Since (I−A) is onto, this shows x∗ = 0 and so (I−A∗) is one to one as claimed. This
proves the corollary.

The following is just an easier version of the above.

Corollary 19.10.5 In the case where X is a Hilbert space, the conclusions of Corollary
19.10.4, Theorem 19.10.3, and Lemma 19.10.2 remain true if H ′ is replaced by H and the
adjoint is understood in the usual manner for Hilbert space. That is

(Ax,y)H = (x,A∗y)H

19.11 Square Roots
In this section, H will be a Hilbert space, real or complex, and T will denote an operator
which satisfies the following definition. A useful theorem about the existence of square
roots of certain operators is presented. This proof is very elementary. I found it in [80].

Definition 19.11.1 Let T ∈L (H,H) satisfy T = T ∗ (Hermitian) and for all x ∈ H,

(T x,x)≥ 0 (19.11.69)

Such an operator is referred to as positive and self adjoint. It is probably better to refer to
such an operator as “nonnegative” since the possibility that T x = 0 for some x ̸= 0 is not
being excluded. Instead of “self adjoint” you can also use the term, Hermitian. To save
on notation, write T ≥ 0 to mean T is positive, satisfying 19.11.69.

With the above definition here is a fundamental result about positive self adjoint oper-
ators.

Proposition 19.11.2 Let S,T be positive and self adjoint such that ST = T S. Then ST is
also positive and self adjoint.

Proof: It is obvious that ST is self adjoint. The only problem is to show that ST is
positive. To show this, first suppose S≤ I. The idea is to write

S = Sn+1 +
n

∑
k=0

S2
k
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where S0 = S and the operators Sk are self adjoint. This is a useful idea because it is then
obvious that the sum is positive. If we want such a representation as above for each n, then
it follows that S0 ≡ S and

S = Sn +
n−1

∑
k=0

S2
k (19.11.70)

so, subtracting these yields 0 = Sn+1−Sn +S2
n and so

Sn+1 = Sn−S2
n.

Thus it is obvious that the Sk are all self adjoint and this shows how to define the Sk recur-
sively. Say 19.11.70 holds and Sn+1 is defined above. Then

S = Sn +
n−1

∑
k=0

S2
k = Sn+1 +S2

n +
n−1

∑
k=0

S2
k = Sn+1 +

n

∑
k=0

S2
k

If we start with S self adjoint, then we end up with each of the Sn also being self adjoint.
Now the assumption that I ≥ S is used. Also, the Sn are polynomials in S.

Claim: I ≥ Sn ≥ 0.
Proof of the claim: This is true if n = 0 by assumption. Assume true for n. Then from

the definition,

Sn+1 = Sn−S2
n = (I−Sn)Sn (Sn +(I−Sn)) = S2

n (I−Sn)+(I−Sn)
2 Sn

and it is obvious from the definition that the sum of positive operators is positive. Therefore,
it suffices to show the two terms in the above are both positive. It is clear from the definition
that each Sn is Hermitian (self adjoint) because they are just polynomials in S. Also each
must commute with T for the same reason. Therefore,(

S2
n (I−Sn)x,x

)
= ((I−Sn)Snx,Snx)≥ 0

and also (
(I−Sn)

2 Snx,x
)
= (Sn (I−Sn)x,(I−Sn)x)≥ 0

This proves the claim.
Now each Sk commutes with T because this is true of S0 and succeding Sk are polyno-

mials in terms of S0. Therefore,

(ST x,x) =

((
Sn+1 +

n

∑
k=0

S2
k

)
T x,x

)
= (Sn+1T x,x)+

n

∑
k=0

(
S2

kT x,x
)

= (T x,Sn+1x)+
n

∑
k=0

(T Skx,Skx) (19.11.71)

Consider Sn+1x. From the claim,

(Sx,x) = (Sn+1x,x)+
n

∑
k=0
|Skx|2 ≥

n

∑
k=0
|Skx|2
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and so limn→∞ Snx = 0. Hence from 19.11.71,

lim inf
n→∞

(ST x,x) = (ST x,x) = lim inf
n→∞

n

∑
k=0

(T Skx,Skx)≥ 0.

All this was based on the assumption that S ≤ I. The next task is to remove this as-
sumption. Let ST = T S where T and S are positive self adjoint operators. Then consider
S/∥S∥ . This is still a positive self adjoint operator and it commutes with T just like S does.
Therefore, from the first part,

0≤
(

S
∥S∥

T x,x
)
=

1
∥S∥

(ST x,x) . ■

The proposition is like the familiar statement about real numbers which says that when
you multiply two nonnegative real numbers the result is a nonnegative real number. The
next lemma is a generalization of the familiar fact that if you have an increasing sequence
of real numbers which is bounded above, then the sequence converges.

Lemma 19.11.3 Let {Tn} be a sequence of self adjoint operators on a Hilbert space, H
and let Tn ≤ Tn+1 for all n. Also suppose there exists K, a self adjoint operator such that
for all n,Tn ≤ K. Suppose also that each operator commutes with all the others and that K
commutes with all the Tn. Then there exists a self adjoint continuous operator, T such that
for all x ∈ H,Tnx→ T x,T ≤ K, and T commutes with all the Tn and with K.

Proof: Consider K− Tn ≡ Sn. Then the {Sn} are decreasing, that is, {(Snx,x)} is a
decreasing sequence and from the hypotheses, Sn ≥ 0 so the above sequence is bounded
below by 0. Therefore, limn→∞ (Snx,x) exists. By Proposition 19.11.2, if n > m,

S2
m−SnSm = Sm (Sm−Sn)≥ 0

and similarly from the above proposition,

SnSm−S2
n = Sn (Sm−Sn)≥ 0.

Therefore, since Sn is self adjoint,

|Tnx−Tmx|2 = |Snx−Smx|2 =
(
(Sn−Sm)

2 x,x
)

=
((

S2
n−2SnSm +S2

m
)

x,x
)
=
((

S2
m−SmSn

)
x,x
)
+
((

S2
n−SnSm

)
x,x
)

≤
((

S2
m−SmSn

)
x,x
)
≤
((

S2
m−S2

n
)

x,x
)

= ((Sm−Sn)(Sm +Sn)x,x)≤ 2((Sm−Sn)Kx,x)

≤ 2((Sm−Sn)Kx,Kx)1/2 ((Sm−Sn)x,x)1/2

The last step follows from an application of the Cauchy Schwarz inequality along with the
fact Sm−Sn ≥ 0. The last expression converges to 0 because limn→∞ (Snx,x) exists for each
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x. It follows {Tnx} is a Cauchy sequence. Let T x be the thing to which it converges. T is
obviously linear and (T x,x) = limn→∞ (Tnx,x)≤ (Kx,x) . Also

(KT x,y) = lim
n→∞

(KTnx,y) = lim
n→∞

(TnKx,y) = (T Kx,y)

and so T K = KT . Similarly, T commutes with all Tn.
In order to show T is continuous, apply the uniform boundedness principle, Theorem

17.1.8. The convergence of {Tnx} implies there exists a uniform bound on the norms, ∥Tn∥
and so |(Tnx,y)| ≤ C |x| |y| . Now take the limit as n→ ∞ to conclude |(T x,y)| ≤ C |x| |y|
which shows ∥T∥ ≤C. ■

With this preparation, here is the theorem about square roots.

Theorem 19.11.4 Let T ∈L (H,H) be a positive self adjoint linear operator. Then there
exists a unique square root, A with the following properties. A2 = T,A is positive and self
adjoint, A commutes with every operator which commutes with T .

Proof: First suppose T ≤ I. Then define

A0 ≡ 0, An+1 = An +
1
2
(
T −A2

n
)
.

From this it follows that every An is a polynomial in T. Therefore, An commutes with T
and with every operator which commutes with T.

Claim 1: An ≤ I.
Proof of Claim 1: This is true if n = 0. Suppose it is true for n. Then by the assumption

that T ≤ I,

I−An+1 = I−An +
1
2
(
A2

n−T
)
≥ I−An +

1
2
(
A2

n− I
)

= I−An−
1
2
(I−An)(I +An) = (I−An)

(
I− 1

2
(I +An)

)
= (I−An)(I−An)

1
2
≥ 0.

Claim 2: An ≤ An+1
Proof of Claim 2: From the definition of An, this is true if n = 0 because

A1 = T ≥ 0 = A0.

Suppose true for n. Then from Claim 1,

An+2−An+1 = An+1 +
1
2
(
T −A2

n+1
)
−
[

An +
1
2
(
T −A2

n
)]

= An+1−An +
1
2
(
A2

n−A2
n+1
)

= (An+1−An)

(
I− 1

2
(An +An+1)

)
≥ (An+1−An)

(
I− 1

2
(2I)

)
= 0.
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Claim 3: An ≥ 0
Proof of Claim 3: This is true if n = 0. Suppose it is true for n.

(An+1x,x) = (Anx,x)+
1
2
(T x,x)− 1

2
(
A2

nx,x
)

≥ (Anx,x)+
1
2
(T x,x)− 1

2
(Anx,x)≥ 0

because An−A2
n = An (I−An)≥ 0 by Proposition 19.11.2.

Now {An} is a sequence of positive self adjoint operators which are bounded above
by I such that each of these operators commutes with every operator which commutes
with T . By Lemma 19.11.3, there exists a bounded linear operator A such that for all x,
Anx→ Ax.Then A commutes with every operator which commutes with T because each An
has this property. Also A is a positive operator because each An is. From passing to the
limit in the definition of An,

Ax = Ax+
1
2
(
T x−A2x

)
and so T x = A2x. This proves the theorem in the case that T ≤ I.

In the general case, consider T/ ||T || . Then(
T
||T ||

x,x
)
=

1
||T ||

(T x,x)≤ |x|2 = (Ix,x)

and so T/ ||T || ≤ I. Therefore, it has a square root, B. Let A =
√
||T ||B. Then A has all the

right properties and A2 = ||T ||B2 = ||T ||(T/ ||T ||) = T. This proves the existence part of
the theorem.

Next suppose both A and B are square roots of T having all the properties stated in
the theorem. Then AB = BA because both A and B commute with every operator which
commutes with T .

(A(A−B)x,(A−B)x) ,(B(A−B)x,(A−B)x)≥ 0 (19.11.72)

Therefore, on adding these,((
A2−AB+BA−B2)x,(A−B)x

)
=
((

A2−B2)x,(A−B)x
)

= ((T −T )x,(A−B)x) = 0.

It follows both expressions in 19.11.72 equal 0 since both are nonnegative and when they
are added the result is 0. Now applying the existence part of the theorem to A, there exists
a positive square root of A which is self adjoint. Thus(√

A(A−B)x,
√

A(A−B)x
)
= 0

so
√

A(A−B)x = 0 which implies A(A−B)x = 0. Similarly, B(A−B)x = 0. Subtracting
these and taking the inner product with x,

0 = ((A(A−B)−B(A−B))x,x) =
(
(A−B)2 x,x

)
= |(A−B)x|2

and so Ax = Bx which shows A = B since x was arbitrary. ■
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19.12 Ordinary Differential Equations in Banach Space
Here we consider the initial value problem for functions which have values in a Banach
space. Let X be a Banach space.

Definition 19.12.1 Define BC ([a,b] ;X) as the bounded continuous functions f which have
values in the Banach space X. For f ∈ BC ([a,b] ;X) , γ a real number. Then

∥ f∥
γ
≡ sup

t∈[a,b]

∥∥∥ f (t)eγ(t−a)
∥∥∥ (19.12.73)

Then this is a norm. The usual norm is given by

∥ f∥ ≡ sup
t∈[a,b]

∥ f (t)∥

Lemma 19.12.2 ∥·∥
γ

is a norm for BC ([a,b] ;X) and BC ([a,b] ;X) is a complete normed
linear space. Also, a sequence is Cauchy in ∥·∥

γ
if and only if it is Cauchy in ∥·∥.

Proof: First consider the claim about ∥·∥
γ

being a norm. To simplify notation, let
T = [a,b]. It is clear that ∥ f∥

γ
= 0 if and only if f = 0 and ∥ f∥

γ
≥ 0. Also,

∥α f∥
γ
≡ sup

t∈T

∥∥∥α f (t)eγ(t−a)
∥∥∥= |α|sup

t∈T

∥∥∥ f (t)eγ(t−a)
∥∥∥= |α|∥ f∥

γ

so it does what is should for scalar multiplication. Next consider the triangle inequality.

∥ f +g∥
γ

= sup
t∈T

∥∥∥( f (t)+g(t))eγ(t−a)
∥∥∥≤ sup

t∈T

(∣∣∣ f (t)eγ(t−a)
∣∣∣+ ∣∣∣g(t)eγ(t−a)

∣∣∣)
≤ sup

t∈T

∣∣∣ f (t)eγ(t−a)
∣∣∣+ sup

t∈T

∣∣∣g(t)eγ(t−a)
∣∣∣= ∥ f∥

γ
+∥g∥

γ

The rest follows from the next inequalities.

∥ f∥ ≡ sup
t∈T
∥ f (t)∥= sup

t∈T

∥∥∥ f (t)eγ(t−a)e−γ(t−a)
∥∥∥≤ e|γ(b−a)| ∥ f∥

γ

≡ e|γ(b−a)| sup
t∈T

∥∥∥ f (t)eγ(t−a)
∥∥∥≤ (e|γ|(b−a)

)2
sup
t∈T
∥ f (t)∥=

(
e|γ|(b−a)

)2
∥ f∥ ■

Now consider the ordinary initial value problem

x′ (t)+F (t,x(t)) = f (t) , x(a) = x0, t ∈ [a,b] (19.12.74)

where here F : [a,b]×X → X is continuous and satisfies the Lipschitz condition

∥F (t,x)−F (t,y)∥ ≤ K ∥x− y∥ , F : [a,b]×X → X is continuous (19.12.75)

Thanks to the fundamental theorem of calculus, there exists a solution to 19.12.74 if and
only if it is a solution to the integral equation

x(t) = x0−
∫ t

a
F (s,x(s))ds (19.12.76)

Then we have the following theorem.
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Theorem 19.12.3 Let 19.12.75 hold. Then there exists a unique solution to 19.12.74 in
BC ([a,b] ;X).

Proof: Use the norm of 19.12.73 where γ ̸= 0 is described later. Let T : BC ([a,b] ;X)→
BC ([a,b] ;X) be defined by

T x(t)≡ x0−
∫ t

a
F (s,x(s))ds

Then

∥T x(t)−Ty(t)∥X =

∥∥∥∥∫ t

a
F (s,x(s))ds−

∫ t

a
F (s,y(s))ds

∥∥∥∥
≤ K

∫ t

a
∥x(s)− y(s)∥ds = K

∫ t

a

∥∥∥(x(s)− y(s))eγ(s−a)e−γ(s−a)
∥∥∥ds

≤ K
∫ t

a
e−γ(s−a)ds∥x− y∥

γ
= K

(
e−γ(t−a)

−γ
+

1
γ

)
∥x− y∥

γ

Therefore,

eγ(t−a) ∥T x(t)−Ty(t)∥X ≤ K

(
eγ(t−a)

γ
− 1

γ

)
∥x− y∥

γ

∥T x−Ty∥
γ
≤ sup

t∈[a,b]
K

(
eγ(t−a)

γ
− 1

γ

)
∥x− y∥

γ

Letting γ =−m2, this reduces to

∥T x−Ty∥−m2 ≤
K
m2 ∥x− y∥−m2

and so if K/m2 < 1/2, this shows the solution to the integral equation is the unique fixed
point of a contraction mapping defined on BC ([a,b] ;X). This shows existence and unique-
ness of the initial value problem 19.12.74. ■

Definition 19.12.4 Let S : [0,∞)→L (X ,X) be continuous and satisfy

1. S (t + s) = S (t)S (s) called the semigroup identity.

2. S (0) = I

3. limh→0+
S(h)x−x

h = Ax for A a densely defined closed linear operator whenever x ∈
D(A)⊆ X .

Then S is called a continuous semigroup and A is said to generate S.
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Then we have the following corollary of Theorem 19.12.3. First note the following.
For t ≥ 0 and h≥ 0, if x ∈ D(A) , the semigroup identity implies

lim
h→0

S (t +h)x−S (t)x
h

= lim
h→0

S (t)
S (h)x− x

h
= S (t) lim

h→0

S (h)x− x
h

≡ S (t)Ax

As shown above, L (X ,X) is a perfectly good Banach space with the operator norm when-
ever X is a Banach space.

Corollary 19.12.5 Let X be a Banach space and let A∈L (X ,X) . Let S (t) be the solution
in L (X ,X) to

S′ (t) = AS (t) , S (0) = I (19.12.77)

Then t→ S (t) is a continuous semigroup whose generator is A. In this case A is actually de-
fined on all of X, not just on a dense subset. Furthermore, in this case where A ∈L (X ,X),
S (t)A = AS (t) . If T (t) is any semigroup having A as a generator, then T (t) = S (t). Also
you can express S (t) as a power series,

S (t) =
∞

∑
n=0

(At)
n!

n

(19.12.78)

Proof: The solution to the initial value problem 19.12.77 exists on [0,b] for all b so
it exists on all of R thanks to the uniqueness on every finite interval. First consider the
semigroup property. Let Ψ(t)≡ S (t + s) ,Φ(t)≡ S (t)S (s) . Then

Ψ
′ (t) = S′ (t + s) = AS (t + s) = AΨ(t) , Ψ(0) = S (s)

Φ
′ (t) = S′ (t)S (s) = AS (t)S (s) = AΦ(t) , Φ(0) = S (s)

By uniqueness, Φ(t) = Ψ(t) for all t ≥ 0. Thus S (t)S (s) = S (t + s) = S (s)S (t) . Now
from this, for t > 0

S (t)A = S (t) lim
h→0

S (h)− I
h

= lim
h→0

S (t)
S (h)− I

h
= lim

h→0

S (h)− I
h

S (t) = AS (t) .

As to A being the generator of S (t) , letting x ∈ X , then from the differential equation
solved,

lim
h→0+

S (h)x− x
h

= lim
h→0+

1
h

∫ h

0
AS (t)xdt = AS (0)x = Ax.

If T (t) is a semigroup generated by A then for t > 0,

T ′ (t)≡ lim
h→0

T (t +h)−T (t)
h

= lim
h→0

T (h)− I
h

T (t) = AT (t)

and T (0) = I. However, uniqueness applies because T and S both satisfy the same initial
value problem and this yields T (t) = S (t).

To show the power series equals S (t) it suffices to show it satisfies the initial value
problem. Using the mean value theorem,

∞

∑
n=0

An ((t +h)n− tn)

n!
=

∞

∑
n=1

An (t +θ n (h))
n−1

(n−1)!
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where θ n (h) ∈ (0,h). Then taking a limit as h→ 0 and using the dominated convergence
theorem, the limit of the difference quotient is

∞

∑
n=1

Antn−1

(n−1)!
= A

∞

∑
n=1

An−1tn−1

(n−1)!
= A

∞

∑
n=0

(At)
n!

n

Thus ∑
∞
n=0

(At)
n!

n
satisfies the differential equation. It clearly satisfies the initial condition.

Hence it equals S (t). ■
Note that as a consequence of the above argument showing that T and S are the same, it

follows that T (t)A=AT (t) so one obtains that if the generator is a bounded linear operator,
then the semigroup commutes with this operator.

When dealing with differential equations, one of the best tools is Gronwall’s inequality.
This is presented next.

Theorem 19.12.6 Suppose u is nonnegative, continuous, and real valued and that

u(t)≤C+
∫ t

0
ku(s)ds, k ≥ 0

Then u(t)≤Cekt .

Proof: Let w(t)≡
∫ t

0 ku(s)ds. Then

w′ (t) = ku(t)≤ kC+ kw(t)

and so w′ (t)− kw(t)≤ kC which implies d
dt

(
e−ktw(t)

)
≤ kCe−kt . Therefore,

e−ktw(t)≤Ck
∫ t

0
e−ksds =Ck

(
1
k
− 1

k
e−kt

)
so w(t)≤C

(
ekt −1

)
. From the original inequality, u(t)≤C+w(t)≤C+Cekt−C =Cekt .

■

19.13 Fractional Powers of Operators
Let A ∈L (X ,X) for X a Hilbert space, A = A∗. We want to define Aα for α ∈ (0,1) in
such a way that things work as they should provided that (Ax,x)≥ 0.

If A ∈ (0,∞) we can get A−α for α ∈ (0,1) as

A−α ≡ 1
Γ(α)

∫
∞

0
e−Atta−1dt

Indeed, you change the variable as follows letting u = At,∫
∞

0
e−Atta−1dt =

∫
∞

0
e−u
( u

A

)a−1 1
A

du

=
∫

∞

0
e−uuα−1A1−α 1

A
du = A−α

Γ(α)

Next we need to define e−At for A ∈L (X ,X).
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Definition 19.13.1 By definition, e−Atx0 will be x(t) where x(t) is the solution to the initial
value problem

x′+Ax = 0, x(0) = x0

Such a solution exists and is unique by standard contraction mapping arguments as in The-
orem 19.12.3. Equivalently, one could consider for Φ(t) ≡ e−At the solution in L (X ,X)
of

Φ
′ (t)+AΦ(t) = 0, Φ(0) = I.

Now the case of interest here is that A = A∗ and (Ax,x) ≥ δ |x|2. We need an estimate
for
∥∥e−At

∥∥.

Lemma 19.13.2 Suppose A = A∗ and (Ax,x)≥ ε |x|2 . Then∥∥e−At∥∥≤ e−εt

Proof: Let x̂(t) = x(t)eεt . Then the equation for e−Atx0 ≡ x(t) becomes

x̂′ (t)− ε x̂(t)+Ax̂(t) = 0, x̂(0) = x0

Then multiplying by x̂(t) and integrating gives

1
2
|x̂(t)|2− ε

∫ t

0
|x̂(s)|2 ds− 1

2
|x0|2 +

∫ t

0
(Ax̂, x̂)ds = 0

and so, from the assumed estimate,

1
2
|x̂(t)|2− ε

∫ t

0
|x̂(s)|2 ds− 1

2
|x0|2 +

∫ t

0
ε |x̂(s)|2 ds≤ 0

and so |x̂(t)| ≤ |x0|. Hence, |x(t)|=
∣∣e−Atx0

∣∣≤ |x0|e−εt . Since x0 was arbitrary, it follows
that

∥∥e−At
∥∥≤ e−εt . ■

With this estimate, we can define A−α for α ∈ (0,1) if A = A∗ and (Ax,x)≥ ε |x|2.

Definition 19.13.3 Let A ∈L (X ,X) ,A = A∗ and (Ax,x)≥ ε |x|2 . Then for α ∈ (0,1) ,

A−α ≡ 1
Γ(α)

∫
∞

0
e−Atta−1dt

The integral is well defined thanks to the estimate of the above lemma which gives
∥∥e−At

∥∥≤
e−εt . You can let the integral be a standard improper Riemann integral since everything in
sight is continuous. For such A, define

Aα ≡ AA−(1−α)

Note the meaning of the integral. It takes place in L (X ,X) and Riemann sums approx-
imating this integral also take place in L (X ,X) . Thus∫

∞

0
e−Atta−1dt (x0) =

∫
∞

0
ta−1e−At (x0)dt
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by approximating the improper integral with Riemann sums and using the obvious fact that
such an identification holds for each sum in the approximation. Similar reasoning shows
that an inner product can be taken inside the integral(∫

∞

0
e−Atta−1dt (x0) ,y0

)
=
∫

∞

0
e−At (x0,y0) ta−1dt

With this observation, the following lemma is fairly easy.

Lemma 19.13.4 For all x0,
∫

∞

0 e−Atta−1dt (x0) =
∫

∞

0 ta−1e−At (x0)dt. Also A−α is Hermi-
tian whenever A is. (This is the case considered here.) Also we have the semigroup prop-
erty e−A(t+s) = e−Ate−As for t,s ≥ 0. In addition to this, if CA = AC then e−AtC = Ce−At .
In words, e−At commutes with every C ∈L (X ,X) which commutes with A. Also, e−At is
Hermitian whenever A is and so is A−α . (This is what is being considered here.)

Proof: The semigroup property follows right away from uniqueness considerations for
the ordinary initial value problem. Indeed, letting s, t ≥ 0, fix s and consider the following
for Φ(t)≡ e−At . Thus Φ(0) = I and Φ(t)x0 is the solution to x′+Ax = 0,x(0) = x0. Then
define

t→Φ(t + s)−Φ(t)Φ(s)≡ Y (t)

Then taking the time derivative, you get the following ordinary differential equation in
L (X ,X)

Y ′ (t) = Φ
′ (t + s)−Φ

′ (t)Φ(s) =−AΦ(t + s)+AΦ(t)Φ(s)

= −A(Φ(t + s)−Φ(t)Φ(s)) =−AY (t)

also, letting t = 0,Y (0) = Φ(s)−Φ(0)Φ(s) = 0. Thus, by uniqueness of solutions to
ordinary differential equations, Y (t) = 0 for all t ≥ 0 which shows the semigroup property.
See Theorem 19.12.75. Actually, this identity holds in this case for all s, t ∈ R but this is
not needed and the argument given here generalizes well to situations where one can only
consider t ∈ [0,∞). Note how this shows that it is also the case that Φ(t)Φ(s) = Φ(s)Φ(t).

Now consider the claim about commuting with operators which commute with A. Let
CA = AC for C ∈L (X ,X) and let y(t) be given by

y(t)≡
(
Ce−Atx0− e−AtCx0

)
Then y(0) =Cx0−Cx0 = 0 and

y′ (t) = C
(
−A
(
e−Atx0

))
+
(
Ae−AtCx0

)
= −AC

(
e−Atx0

)
+A

(
e−AtCx0

)
and so

y′ (t)+A
(
Ce−Atx0− e−AtCx0

)
= y′+Ay = 0, y(0) = 0

Therefore, by uniqueness to the ODE one obtains y(t) = 0 which shows that C commutes
with e−At .
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Finally consider the claim about e−At being Hermitian. For Φ(t)≡ e−At

Φ
′ (t)+AΦ(t) = 0,Φ(0) = I

Φ
∗′ (t)+Φ

∗ (t)A = 0, Φ
∗ (0) = I

and so, from what was just shown about commuting,

Φ
∗′ (t)+Φ

∗ (t)A = 0, Φ
∗ (0) = I

Φ
′ (t)+Φ(t)A = 0,Φ(0) = I

Thus Φ(t) and Φ∗ (t) satisfy the same initial value problem and so they are the same Thanks
to Theorem 19.12.3.

Next it follows that A−α is Hermitian because(
A−α x0,y0

)
≡

(∫
∞

0
tα−1e−Atx0dt,y0

)
=
∫

∞

0

(
tα−1e−Atx0,y0

)
dt

=
∫

∞

0

(
x0, tα−1e−Aty0

)
dt =

(
x0,
∫

∞

0
tα−1e−At (y0)dt

)
=

(
x0,A−α y0

)
■

Note that Lemma 19.13.2 shows that AA−α = A−α A. Also A−α A−β = A−β A−α and
in fact, A−α commutes with every operator which commutes with A. Next is a technical
lemma which will prove useful.

Lemma 19.13.5 For α,β > 0,Γ(α)Γ(β ) = Γ(α +β )
∫ 1

0 (1− v)α−1 vβ−1dv

Proof:

Γ(α)Γ(β )≡
∫

∞

0

∫
∞

0
e−(t+s)tα−1sβ−1dtds =

∫
∞

0

∫
∞

s
e−u (u− s)α−1 sβ−1duds

=
∫

∞

0
e−u

∫ u

0
(u− s)α−1 sβ−1dsdu =

∫
∞

0
e−u

∫ u

0
(u− s)α−1 sβ−1dsdu

=
∫

∞

0
e−u

∫ 1

0
(u−uv)α−1 (uv)β−1 udvdu

=
∫

∞

0
e−u

∫ 1

0
uα−1uβ (1− v)α−1 vβ−1dvdu

=
∫ 1

0
(1− v)α−1 vβ−1dv

∫
∞

0
uα+β−1e−udu

= Γ(α +β )
∫ 1

0
(1− v)α−1 vβ−1dv ■

Now consider whether A−α acts like it should. In particular, is A−α A−(1−α) = A−1?
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Lemma 19.13.6 For α ∈ (0,1) ,A−α A−(1−α) = A−1. More generally, if

α +β < 1,A−α A−β = A−(α+β )

Proof: The product is the following where β = 1−α

1
Γ(α)

∫
∞

0
e−Atta−1dt

1
Γ(β )

∫
∞

0
e−Assβ−1ds

Then this equals

1
Γ(α)Γ(β )

∫
∞

0

∫
∞

0
e−A(t+s)tα−1sβ−1dtds

=
1

Γ(α)Γ(β )

∫
∞

0

∫
∞

s
e−Au (u− s)α−1 sβ−1du ds

=
1

Γ(α)Γ(β )

∫
∞

0
e−Au

∫ u

0
(u− s)α−1 sβ−1dsdu

=
1

Γ(α)Γ(β )

∫
∞

0
uα+β−1e−Au

∫ 1

0
(1− v)α−1 vβ−1dvdu

=
∫ 1

0
(1− v)α−1 vβ−1dv

1
Γ(α)Γ(β )

∫
∞

0
uα+β−1e−Audu

From the above lemma, this equals

1
Γ(α +β )

∫
∞

0
uα+β−1e−Audu≡ A−(α+β )

Note how this shows that these powers of A all commute with each other. If α +β = 1, this
becomes ∫

∞

0
e−Audu

Is this the usual inverse or is it something else called A−1 but not being the real inverse?
We show it is the usual inverse. To see this, consider

A
∫

∞

0
e−Audu(x0) =

∫
∞

0
Ae−Aux0du =

∫
∞

0
−x′ (u)du

where x′ (t)+Ax(t) = 0,x(0) = x0 and |x(t)| ≤ e−εt |x0| . The manipulation is routine from
approximating with Riemann sums. Then the right side equals x0. Thus A

∫
∞

0 e−Audu = I.
Similarly, ∫

∞

0
e−Audu A(x0) =

∫
∞

0
e−AuAx0du =

∫
∞

0
Ae−Aux0du = x0

and so this shows the desired result. ■
Now it follows that if Aα ≡ AA−(1−α) as defined above, then A1−α = AA−(1−(1−α)) =

AA−α and so,
Aα A1−α ≡ AA−(1−α)AA−α = A2A−1 = A
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Also, if α +β ≤ 1,

Aα Aβ = AA−(1−α)AA−(1−β ) = A2A−(1−α)A−(1−β )

Aα+β ≡ AA−(1−(α+β )) = A2A−1A−(1−(α+β ))

= A2A−β A−(1−β )A−(1−(α+β ))

= A2A−(1−α)A−(1−β ) = Aα Aβ

This shows the following.

Lemma 19.13.7 If α,β ∈ (0,1) , α +β ≤ 1, then Aα Aβ = Aα+β . Also Aα commutes with
every operator in L (X ,X) which commutes with A.

Proof: The last assertion follows right away from the fact noted above that A−(1−α)

commutes with all operators which commute with A and that so does A. Thus if C is such
a commuting operator,

CAα =CAA−(1−α) = ACA−(1−α) = AA−(1−α)C = AαC.■

The next task is to remove the assumption that (Ax,x) ≥ ε |x|2 and replace it with
(Ax,x)≥ 0.

Observation 19.13.8 First note that if Φ(t)= e−(εI+A)t , and if x0 is given, then if Φ(t)x0 =
y(t) ,

y′ (t)+(εI +A)y(t) = 0, y(0) = x0

Then taking inner product of both sides with y(t) and integrating,

|y(t)|2

2
− |x0|2

2
≤ 0

and so |Φ(t)x0| = |y(t)| ≤ |x0| and so ∥Φ(t)∥ ≤ 1. This will be used in the following
lemma.

Lemma 19.13.9 Let (Ax,x)≥ 0. Then for α ∈ (0,1) ,

lim
ε→0+

(εI +A)(εI +A)−α

exists in L (X ,X).

Proof: Let δ > ε and both ε and δ are small.(
(εI +A)(εI +A)−α − (δ I +A)(δ I +A)−α

)
Γ(α) =∫

∞

0

(
(εI +A)e−(εI+A)t − (δ I +A)e−(δ I+A)t

)
tα−1dt =
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=
∫

∞

0

(
(εI +A)e−(εI+A)t − (εI +A)e−(δ I+A)t

)
tα−1dt

+
∫

∞

0

(
(εI +A)e−(δ I+A)t − (δ I +A)e−(δ I+A)t

)
tα−1dt

= Pδ ,ε +Qδ ,ε .

Then Pδ ,ε = ∫
∞

0
(εI +A)

(
e−(εI+A)t − e−(δ I+A)t

)
tα−1dt

∥∥Pδ ,ε

∥∥≤ ∫ ∞

0
∥(εI +A)∥

∥∥∥(e−(εI+A)t − e−(δ I+A)t
)∥∥∥ tα−1dt

We need to estimate the difference of those semigroups. Call the first, e−(εI+A)t ≡ y and
the second x. Then by definition,

y′+(εI +A)y = 0,y(0) = x0

x′+(δ I +A)x = 0,x(0) = x0

Then ŷ(t)≡ eεty(t) , x̂(t)≡ eδ tx(t)

ŷ′− ε ŷ(t)+(εI +A) ŷ = 0, ŷ(0) = x0

x̂′−δ x̂(t)+(δ I +A) x̂ = 0, x̂(0) = x0

Thus

ŷ′+Aŷ = 0, ŷ(0) = x0

x̂′+Ax̂ = 0, x̂(0) = x0

By uniqueness, x̂ = ŷ. Thus ∣∣∣eεty(t)− eδ tx(t)
∣∣∣= 0

So
eδ t
∣∣∣e(ε−δ )ty(t)− x(t)

∣∣∣= 0

So, since x0 was arbitrary,

e(ε−δ )te−(εI+A)t − e−(δ I+A)t = 0

Then ∥∥Pδ ,ε

∥∥≤C (∥A∥)
∫

∞

0

∥∥∥(e−(εI+A)t − e(ε−δ )te−(εI+A)t
)∥∥∥ tα−1dt

≤C (∥A∥)
∫

∞

0

∣∣∣1− e(ε−δ )t
∣∣∣ tα−1dt =C (∥A∥)

∫
∞

0

(
1− e−(δ−ε)t

)
tα−1dt

Now we need an estimate. Suppose 1 > λ > 0. For t ≥ 0, is

1− e−λ t ≤ λe−λ t?
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Let f (t) = λe−λ t − e−λ t +1. Then

f ′ (t) =−λ
2e−λ t +λe−λ t > 0, f (0) = λ −1+1 > 0

Thus ∥∥Pδ ,ε

∥∥≤C (∥A∥)
∫

∞

0
(δ − ε)e−(δ−ε)ttα−1dt

Now change the variables letting u = (δ − ε) t. Then

∥∥Pδ ,ε

∥∥=C (∥A∥)
∫

∞

0
e−u
(

u
δ − ε

)α−1

du =C (∥A∥)Γ(α) |δ − ε|1−α

Thus limε,δ→0 ∥Pδε∥= 0. Consider Qδ ,ε∥∥Qδ ,ε

∥∥ ≤
∫

∞

0

∥∥∥e−(δ I+A)t
∥∥∥∥((εI +A)− (δ I +A))∥ tα−1dt

≤
∫

∞

0
e−δ t |δ − ε| tα−1dt ≤

∫
∞

0
e−(δ−ε)t |ε−δ | tα−1dt

Now let u = (δ − ε) t,du = (δ − ε)dt. Then the last integral on the right equals

|ε−δ |
∫

∞

0
e−uuα−1 du

|δ − ε|
1

|δ − ε|α−1 = Γ(α) |δ − ε|1−α

so also limε,δ→0
∥∥Qδ ,ε

∥∥= 0. ■

Definition 19.13.10 For α ∈ (0,1) , and (Ax,x)≥ 0 with A = A∗, we define

Aα ≡ lim
ε→0

(εI +A)(εI +A)−(1−α)

Theorem 19.13.11 In the situation of the definition, if α +β ≤ 1, for α,β ∈ (0,1) ,

Aα Aβ = Aα+β

and in particular,
Aα A1−α = A.

Also, Aα commutes with every operator which commutes with A. For A a Hermitian oper-
ator as here, it follows that Aα is also Hermitian.

Proof: Aα+β ≡ limε→0 (εI +A)(εI +A)−(1−(α+β )) . Then since (εI +A) commutes
with e−(εI+A)t , it follows that this equals

lim
ε→0

(εI +A)(εI +A)−(1−(α+β )) =

lim
ε→0

(εI +A)2 (εI +A)−(1−α) (εI +A)−(1−β )



576 CHAPTER 19. HILBERT SPACES

= lim
ε→0

(εI +A)(εI +A)−(1−α) (εI +A)(εI +A)−(1−β ) = Aα Aβ

There is nothing to show if α+β = 1. In this case, the limit reduces to limε→0 (εI +A) =A.
Consider the last claim. Let C be such a commuting operator. and let Aε ≡ εI +A.

Then
CAα = lim

ε→0
CAα

ε = lim
ε→0

Aα
ε C = AαC

Note that Aα ≡ limε→0 (εI +A)(εI +A)−(1−α) ≡ limε→0 Aα
ε . Finally, consider the claim

about Aα being Hermitian when A is.

(x,Aα y) = lim
ε→0

(x,Aα
ε y) = lim

ε→0
(Aα

ε x,y) = (Aα x,y) ■

For more on this kind of thing including generalizations to operators defined on Banach
space, see [79].

19.14 General Theory of Continuous Semigroups
Much more on semigroups is available in Yosida [127]. This is just an introduction to the
subject.

Definition 19.14.1 A strongly continuous semigroup defined on X ,a Banach space is a
function S : [0,∞)→ X which satisfies the following for all x0 ∈ X .

S (t) ∈ L (X ,X) ,S (t + s) = S (t)S (s) ,

t → S (t)x0 is continuous, lim
t→0+

S (t)x0 = x0

Sometimes such a semigroup is said to be C0. It is said to have the linear operator A as its
generator if

D(A)≡
{

x : lim
h→0

S (h)x− x
h

exists
}

and for x ∈ D(A) , A is defined by

lim
h→0

S (h)x− x
h

≡ Ax

The assertion that t → S (t)x0 is continuous and that S (t) ∈ L (X ,X) is not suffi-
cient to say there is a bound on ∥S (t)∥ for all t ≥ 0. Also the assertion that for each
x0, limt→0+ S (t)x0 = x0 is not the same as saying that S (t)→ I in L (X ,X) . It is a much
weaker assertion. The next theorem gives information on the growth of ∥S (t)∥ . It turns out
it has exponential growth.

Lemma 19.14.2 Let M ≡ sup{∥S (t)∥ : t ∈ [0,T ]} . Then M < ∞.

Proof: If this is not true, then there exists tn ∈ [0,T ] such that ∥S (tn)∥ ≥ n. That is
the operators S (tn) are not uniformly bounded. By the uniform boundedness principle,
Theorem 17.1.8, there exists x ∈ X such that ∥S (tn)x∥ is not bounded. However, this is
impossible because it is given that t → S (t)x is continuous on [0,T ] and so t → ∥S (t)x∥
must achieve its maximum on this compact set. ■

Now here is the main result for growth of ∥S (t)∥.
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Theorem 19.14.3 For M described in Lemma 19.14.2, there exists α such that

∥S (t)∥ ≤Meαt , t ≥ 0

In fact, α can be chosen such that M1/T = eα .

Proof: Let t be arbitrary. Then t = mT + r (t) where 0 ≤ r (t) < T . Then by the semi-
group property

∥S (t)∥= ∥S (mT + r (t))∥= ∥S (r (t))S (T )m∥ ≤Mm+1

Now mT ≤ t ≤ mT + r (t)≤ (m+1)T and so m≤ t
T ≤ m+1. Therefore,

∥S (t)∥ ≤M(t/T )+1 = M
(

M1/T
)t
.

Let M1/T ≡ eα and then ∥S (t)∥ ≤Meαt ■

Definition 19.14.4 Let S (t) be a continuous semigroup as described above. It is called a
contraction semigroup if for all t ≥ 0

∥S (t)∥ ≤ 1.

It is called a bounded semigroup if there exists M such that for all t ≥ 0,

∥S (t)∥ ≤M

Note that for S (t) an arbitrary continuous semigroup satisfying ∥S (t)∥ ≤Meαt , It fol-
lows that the semigroup, T (t) = e−αtS (t) is a bounded semigroup which satisfies ∥T (t)∥≤
M.

The next proposition has to do with taking a Laplace transform of a semigroup.

Proposition 19.14.5 Given a continuous semigroup S (t) , its generator A exists and is a
closed densely defined operator. Furthermore, for

∥S (t)∥ ≤Meαt

and λ > α, λ I−A is one to one and onto from D(A) to X. Also (λ I−A)−1 maps X onto
D(A) and is in L (X ,X). Also for these values of λ > α,

(λ I−A)−1 x =
∫

∞

0
e−λ tS (t)xdt.

For λ > α, the following estimate holds.∥∥∥(λ I−A)−1
∥∥∥≤ M
|λ −α|

(19.14.79)
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Proof: First note D(A) ̸= /0. In fact 0∈D(A). It follows from Theorem 19.14.3 that for
all λ larger than α , one can define a Laplace transform, R(λ )x≡

∫
∞

0 e−λ tS (t)xdt ∈ X .Here
the integral is the ordinary improper Riemann integral. I claim each of these R(λ )x for λ

large is in D(A) .
S (h)

∫
∞

0 e−λ tS (t)xdt−
∫

∞

0 e−λ tS (t)xdt
h

Using the semigroup property and changing the variables in the first of the above integrals,
this equals

=
1
h

(
eλh

∫
∞

h
e−λ tS (t)xdt−

∫
∞

0
e−λ tS (t)xdt

)
=

1
h

((
eλh−1

)∫ ∞

0
e−λ tS (t)xdt− eλh

∫ h

0
e−λ tS (t)xdt

)
Then it follows that the limit as h→ 0 exists and equals

λR(λ )x− x = lim
h→0+

S (h)R(λ )x−R(λ )x
h

≡ A(R(λ )x) (19.14.80)

and R(λ )x ∈ D(A) as claimed. Hence

x = (λ I−A)R(λ )x. (19.14.81)

Since x is arbitrary, this shows that for λ > α , λ I−A is onto. Also, if x ∈D(A) , you could
approximate with Riemann sums and pass to a limit and obtain

1
h
(R(λ )S (h)x−R(λ )x) =

∫
∞

0
e−λ tS (t)

S (h)x− x
h

dt

Then, passing to a limit as h→ 0 using the dominated convergence theorem, one obtains

lim
h→0

1
h
(R(λ )S (h)x−R(λ )x) =

∫
∞

0
S (t)e−λ tAxdt ≡ R(λ )Ax

Also, S (h) commutes with R(λ ) . This follows in the usual way by approximating with
Riemann sums and taking a limit. Thus for x ∈ D(A)

λR(λ )x− x = lim
h→0+

S (h)R(λ )x−R(λ )x
h

= lim
h→0+

R(λ )S (h)x−R(λ )x
h

= R(λ )Ax

and so, for x ∈ D(A) ,

x = λR(λ )x−R(λ )Ax = R(λ )(λ I−A)x (19.14.82)

which shows that for λ > α,(λ I−A) is one to one on D(A). Hence from 19.14.80
and 19.14.82, (λ I−A) is an algebraic isomorphism from D(A) onto X . Also R(λ ) =
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(λ I−A)−1 on X . The estimate 19.14.79 follows easily from the definition of R(λ ) when-
ever λ > α as follows.

∥R(λ )x∥=
∥∥∥(λ I−A)−1 x

∥∥∥= ∥∥∥∥∫ ∞

0
e−λ tS (t)xdt

∥∥∥∥
≤
∫

∞

0
e−λ tMeαtdt ∥x∥ ≤ M

|λ −α|
∥x∥

Why is D(A) dense? I will show that ∥λR(λ )x− x∥ → 0 as λ → ∞, and it was shown
above that R(λ )x and therefore λR(λ )x ∈D(A) so this will show that D(A) is dense in X .
For λ > α where ∥S (t)∥ ≤Meαt ,

∥λR(λ )x− x∥=
∥∥∥∥∫ ∞

0
λe−λ tS (t)xdt−

∫
∞

0
λe−λ txdt

∥∥∥∥
≤
∫

∞

0

∥∥∥λe−λ t (S (t)x− x)
∥∥∥dt

=
∫ h

0

∥∥∥λe−λ t (S (t)x− x)
∥∥∥dt +

∫
∞

h

∥∥∥λe−λ t (S (t)x− x)
∥∥∥dt

≤
∫ h

0

∥∥∥λe−λ t (S (t)x− x)
∥∥∥dt +

∫
∞

h
λe−(λ−α)tdt (M+1)∥x∥

Now since S (t)x− x→ 0, it follows that for h sufficiently small

≤ ε

2

∫ h

0
λe−λ tdt +

λ

λ −α
e−(λ−α)h (M+1)∥x∥

≤ ε

2
+

λ

λ −α
e−(λ−α)h (M+1)∥x∥< ε

whenever λ is large enough. Thus D(A) is dense as claimed.
Why is A a closed operator? Suppose xn → x where xn ∈ D(A) and that Axn → ξ . I

need to show that this implies that x ∈ D(A) and that Ax = ξ . Thus xn→ x and for λ > α,

(λ I−A)xn→ λx−ξ . However, 19.14.79 shows that (λ I−A)−1 is continuous and so

xn→ (λ I−A)−1 (λx−ξ ) = x

It follows that x ∈ D(A) . Then doing (λ I−A) to both sides of the equation, λx− ξ =
λx−Ax and so Ax = ξ showing that A is a closed operator as claimed. ■

Definition 19.14.6 The linear mapping for λ > α where ∥S (t)∥ ≤Meαt given by

(λ I−A)−1 = R(λ )

is called the resolvent.

The following corollary is also very interesting.
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Corollary 19.14.7 Let S (t) be a continuous semigroup and let A be its generator. Then for
0 < a < b and x ∈ D(A)

S (b)x−S (a)x =
∫ b

a
S (t)Axdt

and also for t > 0 you can take the derivative from the left,

lim
h→0+

S (t)x−S (t−h)x
h

= S (t)Ax

Proof:Letting y∗ ∈ X ′,

y∗
(∫ b

a
S (t)Axdt

)
=
∫ b

a
y∗
(

S (t) lim
h→0

S (h)x− x
h

)
dt

The difference quotients are bounded because they converge to Ax. Therefore, from the
dominated convergence theorem,

y∗
(∫ b

a
S (t)Axdt

)
= lim

h→0

∫ b

a
y∗
(

S (t)
S (h)x− x

h

)
dt

= lim
h→0

y∗
(∫ b

a
S (t)

S (h)x− x
h

dt
)

= lim
h→0

y∗
(

1
h

∫ b+h

a+h
S (t)xdt− 1

h

∫ b

a
S (t)xdt

)
= lim

h→0
y∗
(

1
h

∫ b+h

b
S (t)xdt− 1

h

∫ a+h

a
S (t)xdt

)
= y∗ (S (b)x−S (a)x)

Since y∗ is arbitrary, this proves the first part. Now from what was just shown, if t > 0 and
h is small enough,

S (t)x−S (t−h)x
h

=
1
h

∫ t

t−h
S (s)Axds

which converges to S (t)Ax as h→ 0+ . This proves the corollary.
Given a closed densely defined operator, when is it the generator of a continuous semi-

group? This is answered in the following theorem which is called the Hille Yosida theorem.
It concerns the case of a bounded semigroup. However, if you have an arbitrary continuous
semigroup, S (t) , then it was shown above that S (t)e−αt is bounded for suitable α so the
case discussed below is obtained.

Theorem 19.14.8 Suppose A is a densely defined linear operator which has the property
that for all λ > 0,

(λ I−A)−1 ∈L (X ,X)

which means that λ I − A : D(A)→ X is one to one and onto with continuous inverse.
Suppose also that for all n ∈ N, ∥∥∥((λ I−A)−1

)n∥∥∥≤ M
λ

n . (19.14.83)
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Then there exists a continuous semigroup S (t) which has A as its generator and satisfies
∥S (t)∥ ≤M and A is closed. In fact letting

Sλ (t)≡ exp
(
−λ +λ

2 (λ I−A)−1
)

it follows limλ→∞ Sλ (t)x = S (t)x uniformly on finite intervals. Conversely, if A is the
generator of S (t) , a bounded continuous semigroup having ∥S (t)∥≤M, then (λ I−A)−1 ∈
L (X ,X) for all λ > 0 and 19.14.83 holds.

Proof: The condition 19.14.83 implies, that∥∥∥(λ I−A)−1
∥∥∥≤ M

λ

Consider, for λ > 0, the operator which is defined on D(A) ,

λ (λ I−A)−1 A

On D(A) , this equals
−λ I +λ

2 (λ I−A)−1 (19.14.84)

because

(λ I−A)λ (λ I−A)−1 A = λA

(λ I−A)
(
−λ I +λ

2 (λ I−A)−1
)

= −λ (λ I−A)+λ
2 = λA

and, by assumption, (λ I−A) is one to one so these are the same. However, the second one
in 19.14.84, −λ I +λ

2 (λ I−A)−1 makes sense on all of X . Also(
−λ I +λ

2 (λ I−A)−1
)
(λ I−A) =−λ (λ I−A)+λ

2I = λA

λA(λ I−A)−1 (λ I−A) = λA

so, since (λ I−A) is onto, it follows that on X ,

−λ I +λ
2 (λ I−A)−1 = Aλ (λ I−A)−1 ≡ Aλ

Denote this as Aλ to save notation. Thus on D(A) ,

λA(λ I−A)−1 = λ (λ I−A)−1 A = Aλ

although the λ (λ I−A)−1 A only makes sense on D(A). Note that formally

lim
λ→∞

λ (λ I−A)−1 A = A

This is summarized next.
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Lemma 19.14.9 There is a bounded linear operator given for λ > 0 by

−λ I +λ
2 (λ I−A)−1 = λA(λ I−A)−1 ≡ Aλ

On D(A) ,Aλ = λ (λ I−A)−1 A.

For x ∈ D(A) , ∥∥∥λ (λ I−A)−1 x− x
∥∥∥

=
∥∥∥(λ I−A)−1 (λx− (λ I−A)x)

∥∥∥
=

∥∥∥(λ I−A)−1 Ax
∥∥∥≤ M

λ
∥Ax∥ (19.14.85)

which converges to 0 as λ → ∞.
Now Lλ x→ x on a dense subset of X ,Lλ ≡ λ (λ I−A)−1. Also, from the hypothesis,

∥Lλ∥ ≤M. Say x is arbitrary. Then does Lλ x→ x? Let x̂ ∈ D(A) and ∥x− x̂∥< ε. Then

∥Lλ x− x∥ ≤ ∥Lλ x−Lλ x̂∥+∥Lλ x̂− x̂∥+∥x̂− x∥
< Mε + ε + ε

whenever λ is large enough and so for all x ∈ X ,

lim
λ→∞

λ (λ I−A)−1 x = x

In particular, this holds whenever x is replaced with Ax for some x ∈ D(A) . Thus if x ∈
D(A) ,

lim
λ→∞

∥Aλ x−Ax∥= lim
λ→∞

∥∥∥λ (λ I−A)−1 Ax−Ax
∥∥∥= 0 (19.14.86)

This is summarized in the following lemma.

Lemma 19.14.10 For all x ∈ D(A) , limλ→∞ ∥Aλ x−Ax∥= 0.

Now from Corollary 19.12.5, there exists an approximate continuous semigroup Sλ (t)
generated by Aλ which is the solution to

S′
λ
(t) = Aλ Sλ (t) ,Sλ (0) = I (19.14.87)

In terms of power series,

Sλ (t)≡ e−λ t
∞

∑
k=0

tk
(

λ
2 (λ I−A)−1

)k

k!
= et(−λ I+λ

2(λ I−A)−1) (19.14.88)

Thus, by assumption and triangle inequality,

∥Sλ (t)∥ ≤ e−λ t
∞

∑
k=0

tk

k!
λ

2k M

λ
k = e−λ tMeλ t = M (19.14.89)
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Note that
tk
(

λ
2 (λ I−A)−1

)k

k!
≤ tk

k!
λ

2k M

λ
k

so one obtains absolute convergence in 19.14.88.
Next is an easy observation about operators commuting.

Lemma 19.14.11 For λ ,µ > 0, (λ I−A)−1 and (µI−A)−1 commute.

Proof: Suppose

y = (µI−A)−1 (λ I−A)−1 x (19.14.90)

z = (λ I−A)−1 (µI−A)−1 x (19.14.91)

I need to show y = z. First note z,y ∈D(A) . Then also (µI−A)y ∈D(A) and (λ I−A)z ∈
D(A) and so the following manipulation makes sense.

x = (λ I−A)(µI−A)y = (µI−A)(λ I−A)y

x = (µI−A)(λ I−A)z

so (µI−A)(λ I−A)y = (µI−A)(λ I−A)z and since (µI−A) ,(λ I−A) are both one to
one, this shows z = y. ■

It follows from the description of Sλ (t) in terms of a power series that Sλ (t) and Sµ (s)
commute and also Aλ commutes with Sµ (t) for any t. One could also exploit uniqueness
and the theory of ordinary differential equations to verify this. I will use this fact in what
follows whenever needed.

I want to show that for each x ∈ D(A) ,

lim
λ→∞

Sλ (t)x≡ S (t)x

where S (t) is the desired semigroup. Let x ∈ D(A) . Then

Sµ (t)x−Sλ (t)x =
∫ t

0

d
dr

(
Sλ (t− r)Sµ (r)

)
xdr

=
∫ t

0

(
−S′

λ
(t− r)Sµ (r)+Sλ (t− r)S′µ (r)

)
xdr

=
∫ t

0

(
Sλ (t− r)Sµ (r)Aλ −Sµ (r)Sλ (t− r)Aµ

)
xdr

=
∫ t

0
Sλ (t− r)Sµ (r)

(
Aµ x−Aλ x

)
dr

It follows that ∥∥Sµ (t)x−Sλ (t)x
∥∥≤ ∫ t

0

∥∥Sλ (t− r)Sµ (r)
(
Aµ x−Aλ x

)∥∥dr
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≤M2t
∥∥Aµ x−Aλ x

∥∥≤M2t
(∥∥Aµ x−Ax

∥∥+∥Ax−Aλ x∥
)

Now by Lemma 19.14.10, the right side converges uniformly to 0 in t ∈ [0,T ] an arbitrary
finite interval. Denote that to which it converges S (t)x. Therefore, t→ S (t)x is continuous
for each x ∈ D(A) and also from 19.14.89,

∥S (t)x∥= lim
λ→∞

∥Sλ (t)x∥ ≤M ∥x∥

so that S (t) can be extended to a continuous linear map, still called S (t) defined on all of
X which also satisfies ∥S (t)∥ ≤M since D(A) is dense in X .

If x is arbitrary, let y ∈ D(A) be close to x, close enough that 2M ∥x− y∥< ε. Then

∥S (t)x−Sλ (t)x∥ ≤ ∥S (t)x−S (t)y∥+∥S (t)y−Sλ (t)y∥
+∥Sλ (t)y−Sλ (t)x∥

≤ 2M ∥x− y∥+∥S (t)y−Sλ (t)y∥< ε +∥S (t)y−Sλ (t)y∥< 2ε

if λ is large enough, and so limλ→∞ Sλ (t)x = S (t)x for all x, uniformly on finite intervals.
Thus t→ S (t)x is continuous for any x ∈ X .

It remains to verify A generates S (t) and for all x, limt→0+ S (t)x− x = 0. From the
above,

Sλ (t)x = x+
∫ t

0
Sλ (s)Aλ xds (19.14.92)

and so
lim

t→0+
∥Sλ (t)x− x∥= 0

By the uniform convergence just shown, there exists λ large enough that for all t ∈ [0,δ ] ,

∥S (t)x−Sλ (t)x∥< ε.

Then

lim sup
t→0+

∥S (t)x− x∥ ≤ lim sup
t→0+

(∥S (t)x−Sλ (t)x∥+∥Sλ (t)x− x∥)

≤ lim sup
t→0+

(ε +∥Sλ (t)x− x∥)≤ ε

It follows limt→0+ S (t)x = x because ε is arbitrary.
Next, limλ→∞ Aλ x = Ax for all x ∈ D(A) by Lemma 19.14.10. Therefore, passing to

the limit in 19.14.92 yields from the uniform convergence

S (t)x = x+
∫ t

0
S (s)Axds

and by continuity of s→ S (s)Ax, it follows

lim
h→0+

S (h)x− x
h

= lim
h→0

1
h

∫ h

0
S (s)Axds = Ax
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Thus letting B denote the generator of S (t) , D(A) ⊆ D(B) and A = B on D(A) . It only
remains to verify D(A) = D(B) .

To do this, let λ > 0 and consider the following where y ∈ X is arbitrary.

(λ I−B)−1 y = (λ I−B)−1
(
(λ I−A)(λ I−A)−1 y

)
Now (λ I−A)−1 y ∈ D(A)⊆ D(B) and A = B on D(A) and so

(λ I−A)(λ I−A)−1 y = (λ I−B)(λ I−A)−1 y

which implies,
(λ I−B)−1 y =

(λ I−B)−1
(
(λ I−B)(λ I−A)−1 y

)
= (λ I−A)−1 y

Recall from Proposition 19.14.5, an arbitrary element of D(B) is of the form (λ I−B)−1 y
and this has shown every such vector is in D(A) , in fact it equals (λ I−A)−1 y. Hence
D(B)⊆ D(A) which shows A generates S (t) and this proves the first half of the theorem.

Next suppose A is the generator of a semigroup S (t) having ∥S (t)∥ ≤ M. Then by
Proposition 19.14.5 for all λ > 0,(λ I−A) is onto and

(λ I−A)−1 =
∫

∞

0
e−λ tS (t)dt

thus ∥∥∥((λ I−A)−1
)n∥∥∥

=

∥∥∥∥∫ ∞

0
· · ·
∫

∞

0
e−λ (t1+···+tn)S (t1 + · · ·+ tn)dt1 · · ·dtn

∥∥∥∥
≤

∫
∞

0
· · ·
∫

∞

0
e−λ (t1+···+tn)Mdt1 · · ·dtn =

M
λ

n . ■

19.14.1 An Evolution Equation
When Λ generates a continuous semigroup, one can consider a very interesting theorem
about evolution equations of the form

y′−Λy = g(t)

provided t→ g(t) is C1.

Theorem 19.14.12 Let Λ be the generator of S (t) , a continuous semigroup on X , a Banach
space and let t → g(t) be in C1 (0,∞;X). Then there exists a unique solution to the initial
value problem

y′−Λy = g, y(0) = y0 ∈ D(Λ)

and it is given by

y(t) = S (t)y0 +
∫ t

0
S (t− s)g(s)ds. (19.14.93)

This solution is continuous having continuous derivative and has values in D(Λ).
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Proof: First I show the following claim.
Claim:

∫ t
0 S (t− s)g(s)ds ∈ D(Λ) and

Λ

(∫ t

0
S (t− s)g(s)ds

)
= S (t)g(0)−g(t)+

∫ t

0
S (t− s)g′ (s)ds

Proof of the claim:

1
h

(
S (h)

∫ t

0
S (t− s)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)

=
1
h

(∫ t

0
S (t− s+h)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)
=

1
h

(∫ t−h

−h
S (t− s)g(s+h)ds−

∫ t

0
S (t− s)g(s)ds

)

=
1
h

∫ 0

−h
S (t− s)g(s+h)ds+

∫ t−h

0
S (t− s)

g(s+h)−g(s)
h

−1
h

∫ t

t−h
S (t− s)g(s)ds

Using the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-
rem, the limit as h→ 0 of the above equals

S (t)g(0)−g(t)+
∫ t

0
S (t− s)g′ (s)ds

which proves the claim.
Since y0 ∈ D(Λ) ,

S (t)Λy0 = S (t) lim
h→0

S (h)y0− y0

h

= lim
h→0

S (t +h)−S (t)
h

y0

= lim
h→0

S (h)S (t)y0−S (t)y0

h
(19.14.94)

Since this limit exists, the last limit in the above exists and equals

ΛS (t)y0 (19.14.95)

and so S (t)y0 ∈ D(Λ). Now consider 19.14.93.

y(t +h)− y(t)
h

=
S (t +h)−S (t)

h
y0+

1
h

(∫ t+h

0
S (t− s+h)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)
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=
S (t +h)−S (t)

h
y0 +

1
h

∫ t+h

t
S (t− s+h)g(s)ds

+
1
h

(
S (h)

∫ t

0
S (t− s)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)
From the claim and 19.14.94, 19.14.95 the limit of the right side is

ΛS (t)y0 +g(t)+Λ

(∫ t

0
S (t− s)g(s)ds

)
= Λ

(
S (t)y0 +

∫ t

0
S (t− s)g(s)ds

)
+g(t)

Hence
y′ (t) = Λy(t)+g(t)

and from the formula, y′ is continuous since by the claim and 19.14.95 it also equals

S (t)Λy0 +g(t)+S (t)g(0)−g(t)+
∫ t

0
S (t− s)g′ (s)ds

which is continuous. The claim and 19.14.95 also shows y(t) ∈ D(Λ). This proves the
existence part of the lemma.

It remains to prove the uniqueness part. It suffices to show that if

y′−Λy = 0, y(0) = 0

and y is C1 having values in D(Λ) , then y = 0. Suppose then that y is this way. Letting
0 < s < t,

d
ds

(S (t− s)y(s))

≡ lim
h→0

S (t− s−h)
y(s+h)− y(s)

h

−S (t− s)y(s)−S (t− s−h)y(s)
h

provided the limit exists. Since y′ exists and y(s) ∈ D(Λ) , this equals

S (t− s)y′ (s)−S (t− s)Λy(s) = 0.

Let y∗ ∈X ′. This has shown that on the open interval (0, t) the function s→ y∗ (S (t− s)y(s))
has a derivative equal to 0. Also from continuity of S and y, this function is continu-
ous on [0, t]. Therefore, it is constant on [0, t] by the mean value theorem. At s = 0,
this function equals 0. Therefore, it equals 0 on [0, t]. Thus for fixed s > 0 and letting
t > s,y∗ (S (t− s)y(s)) = 0. Now let t decrease toward s. Then y∗ (y(s)) = 0 and since y∗

was arbitrary, it follows y(s) = 0. This proves uniqueness.
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19.14.2 Adjoints, Hilbert Space
In Hilbert space, there are some special things which are true.

Definition 19.14.13 Let A be a densely defined closed operator on H a real Hilbert space.
Then A∗ is defined as follows.

D(A∗)≡ {y ∈ H : |(Ax,y)| ≤C |x|}

Then since D(A) is dense, there exists a unique element of H denoted by A∗y such that

(Ax,y) = (x,A∗y)

for all x ∈ D(A) .

Lemma 19.14.14 Let A be closed and densely defined on D(H) ⊆ H, a Hilbert space.
Then A∗ is also closed and densely defined. Also (A∗)∗ = A. In addition to this, if

(λ I−A)−1 ∈L (H,H) ,

then (λ I−A∗)−1 ∈L (H,H) and((
(λ I−A)−1

)n)∗
=
(
(λ I−A∗)−1

)n

Proof: Denote by [x,y] an ordered pair in H×H. Define τ : H×H→ H×H by

τ [x,y]≡ [−y,x]

Then the definition of adjoint implies that for G (B) equal to the graph of B,

G (A∗) = (τG (A))⊥ (19.14.96)

In this notation the inner product on H×H with respect to which ⊥ is defined is given by

([x,y] , [a,b])≡ (x,a)+(y,b) .

Here is why this is so. For [x,A∗x] ∈ G (A∗) it follows that for all y ∈ D(A)

([x,A∗x] , [−Ay,y]) =−(Ay,x)+(y,A∗x) = 0

and so [x,A∗x] ∈ (τG (A))⊥ which shows

G (A∗)⊆ (τG (A))⊥

To obtain the other inclusion, let [a,b] ∈ (τG (A))⊥ . This means that for all x ∈ D(A) ,

([a,b] , [−Ax,x]) = 0.

In other words, for all x ∈ D(A) ,

(Ax,a) = (x,b)
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and so |(Ax,a)| ≤C |x| for all x ∈ D(A) which shows a ∈ D(A∗) and

(x,A∗a) = (x,b)

for all x ∈D(A) . Therefore, since D(A) is dense, it follows b = A∗a and so [a,b] ∈ G (A∗) .
This shows the other inclusion.

Note that if V is any subspace of the Hilbert space H×H,(
V⊥
)⊥

=V

and S⊥ is always a closed subspace. Also τ and ⊥ commute. The reason for this is that
[x,y] ∈ (τV )⊥ means that

(x,−b)+(y,a) = 0

for all [a,b] ∈V and [x,y] ∈ τ
(
V⊥
)

means [−y,x] ∈V⊥ so for all [a,b] ∈V,

(−y,a)+(x,b) = 0

which says the same thing. It is also clear that τ ◦ τ has the effect of multiplication by −1.
It follows from the above description of the graph of A∗ that even if G (A) were not

closed it would still be the case that G (A∗) is closed.
Why is D(A∗) dense? Suppose z ∈ D(A∗)⊥ . Then for all y ∈ D(A∗) so that [y,Ay] ∈

G (A∗) , it follows [z,0] ∈ G (A∗)⊥ =
(
(τG (A))⊥

)⊥
= τG (A) but this implies

[0,z] ∈ −G (A)

and so z=−A0= 0. Thus D(A∗) must be dense since there is no nonzero vector in D(A∗)⊥ .
Since A is a closed operator, meaning G (A) is closed in H ×H, it follows from the

above formula that

G
(
(A∗)∗

)
=

(
τ

(
(τG (A))⊥

))⊥
=
(

τ (τG (A))⊥
)⊥

=
(
(−G (A))⊥

)⊥
=
(
G (A)⊥

)⊥
= G (A)

and so (A∗)∗ = A.
Now consider the final claim. First let y ∈D(A∗) = D(λ I−A∗) . Then letting x ∈H be

arbitrary, (
x,
(
(λ I−A)(λ I−A)−1

)∗
y
)

(
(λ I−A)(λ I−A)−1 x,y

)
=
(

x,
(
(λ I−A)−1

)∗
(λ I−A∗)y

)
Thus (

(λ I−A)(λ I−A)−1
)∗

= I =
(
(λ I−A)−1

)∗
(λ I−A∗) (19.14.97)

on D(A∗). Next let x ∈ D(A) = D(λ I−A) and y ∈ H arbitrary.

(x,y) =
(
(λ I−A)−1 (λ I−A)x,y

)
=
(
(λ I−A)x,

(
(λ I−A)−1

)∗
y
)
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Now it follows
∣∣∣((λ I−A)x,

(
(λ I−A)−1

)∗
y
)∣∣∣≤ |y| |x| for any x ∈ D(A) and so(

(λ I−A)−1
)∗

y ∈ D(A∗)

Hence
(x,y) =

(
x,(λ I−A∗)

(
(λ I−A)−1

)∗
y
)
.

Since x ∈ D(A) is arbitrary and D(A) is dense, it follows

(λ I−A∗)
(
(λ I−A)−1

)∗
= I (19.14.98)

From 19.14.97 and 19.14.98 it follows

(λ I−A∗)−1 =
(
(λ I−A)−1

)∗
and (λ I−A∗) is one to one and onto with continuous inverse. Finally, from the above,(

(λ I−A∗)−1
)n

=
((

(λ I−A)−1
)∗)n

=
((

(λ I−A)−1
)n)∗

.

This proves the lemma.
With this preparation, here is an interesting result about the adjoint of the generator of

a continuous bounded semigroup. I found this in Balakrishnan [12].

Theorem 19.14.15 Suppose A is a densely defined closed operator which generates a con-
tinuous semigroup, S (t) . Then A∗ is also a closed densely defined operator which generates
S∗ (t) and S∗ (t) is also a continuous semigroup.

Proof: First suppose S (t) is also a bounded semigroup, ||S (t)|| ≤ M. From Lemma
19.14.14 A∗ is closed and densely defined. It follows from the Hille Yosida theorem, The-
orem 19.14.8 that ∣∣∣((λ I−A)−1

)n∣∣∣≤ M
λ

n

From Lemma 19.14.14 and the fact the adjoint of a bounded linear operator preserves the
norm,

M
λ

n ≥
∣∣∣(((λ I−A)−1

)n)∗∣∣∣= ∣∣∣(((λ I−A)−1
)∗)n∣∣∣

=
∣∣∣((λ I−A∗)−1

)n∣∣∣
and so by Theorem 19.14.8 again it follows A∗ generates a continuous semigroup, T (t)
which satisfies ||T (t)|| ≤M. I need to identify T (t) with S∗ (t). However, from the proof
of Theorem 19.14.8 and Lemma 19.14.14, it follows that for x ∈ D(A∗) and a suitable
sequence {λ n} ,

(T (t)x,y) =

 lim
n→∞

e−λ nt
∞

∑
k=0

tk
(

λ
2
n (λ nI−A∗)−1

)k

k!
x,y
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= lim
n→∞

e−λ nt
∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)∗

k!
x,y



= lim
n→∞

x,e−λ nt

 ∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)

k!

y


= (x,S (t)y) = (S∗ (t)x,y) .

Therefore, since y is arbitrary, S∗ (t) = T (t) on x ∈ D(A∗) a dense set and this shows the
two are equal. This proves the proposition in the case where S (t) is also bounded.

Next only assume S (t) is a continuous semigroup. Then by Proposition 19.14.5 there
exists α > 0 such that

||S (t)|| ≤Meαt .

Then consider the operator −αI +A and the bounded semigroup e−αtS (t). For x ∈ D(A)

lim
h→0+

e−αhS (h)x− x
h

= lim
h→0+

(
e−αh S (h)x− x

h
+

e−αh−1
h

x
)

= −αx+Ax

Thus−αI+A generates e−αtS (t) and it follows from the first part that−αI+A∗ generates
e−αtS∗ (t) . Thus

−αx+A∗x = lim
h→0+

e−αhS∗ (h)x− x
h

= lim
h→0+

(
e−αh S∗ (h)x− x

h
+

e−αh−1
h

x
)

= −αx+ lim
h→0+

S∗ (h)x− x
h

showing that A∗ generates S∗ (t) . It follows from Proposition 19.14.5 that A∗ is closed and
densely defined. It is obvious S∗ (t) is a semigroup. Why is it continuous? This also follows
from the first part of the argument which establishes that

e−αtS∗ (t)

is continuous. This proves the theorem.

19.14.3 Adjoints, Reflexive Banach Space
Here the adjoint of a generator of a semigroup is considered. I will show that the adjoint
of the generator generates the adjoint of the semigroup in a reflexive Banach space. This is
about as far as you can go although a general but less satisfactory result is given in Yosida
[127].
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Definition 19.14.16 Let A be a densely defined closed operator on H a real Banach space.
Then A∗ is defined as follows.

D(A∗)≡
{

y∗ ∈ H ′ : |y∗ (Ax)| ≤C ||x|| for all x ∈ D(A)
}

Then since D(A) is dense, there exists a unique element of H ′ denoted by A∗y such that

A∗ (y∗)(x) = y∗ (Ax)

for all x ∈ D(A) .

Lemma 19.14.17 Let A be closed and densely defined on D(A)⊆H, a Banach space. Then
A∗ is also closed and densely defined. Also (A∗)∗ = A. In addition to this, if (λ I−A)−1 ∈
L (H,H) , then (λ I−A∗)−1 ∈L (H ′,H ′) and((

(λ I−A)−1
)n)∗

=
(
(λ I−A∗)−1

)n

Proof: Denote by [x,y] an ordered pair in H×H. Define τ : H×H→ H×H by

τ [x,y]≡ [−y,x]

A similar notation will apply to H ′×H ′. Then the definition of adjoint implies that for
G (B) equal to the graph of B,

G (A∗) = (τG (A))⊥ (19.14.99)

For S⊆ H×H, define S⊥ by{
[a∗,b∗] ∈ H ′×H ′ : a∗ (x)+b∗ (y) = 0 for all [x,y] ∈ S

}
If S⊆ H ′×H ′ a similar definition holds.

{[x,y] ∈ H×H : a∗ (x)+b∗ (y) = 0 for all [a∗,b∗] ∈ S}

Here is why 19.14.99 is so. For [x∗,A∗x∗] ∈ G (A∗) it follows that for all y ∈ D(A)

x∗ (Ay) = A∗x∗ (y)

and so for all [y,Ay] ∈ G (A) ,

−x∗ (Ay)+A∗x∗ (y) = 0

which is what it means to say [x∗,A∗x∗] ∈ (τG (A))⊥ . This shows

G (A∗)⊆ (τG (A))⊥

To obtain the other inclusion, let [a∗,b∗] ∈ (τG (A))⊥ . This means that for all [x,Ax] ∈
G (A) ,

−a∗ (Ax)+b∗ (x) = 0
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In other words, for all x ∈ D(A) ,

|a∗ (Ax)| ≤ ||b∗|| ||x||

which means by definition, a∗ ∈ D(A∗) and A∗a∗ = b∗. Thus [a∗,b∗] ∈ G (A∗).This shows
the other inclusion.

Note that if V is any subspace of H×H,(
V⊥
)⊥

=V

and S⊥ is always a closed subspace. Also τ and ⊥ commute. The reason for this is that
[x∗,y∗] ∈ (τV )⊥ means that

−x∗ (b)+ y∗ (a) = 0

for all [a,b] ∈V and [x∗,y∗] ∈ τ
(
V⊥
)

means [−y∗,x∗] ∈ −
(
V⊥
)
=V⊥ so for all [a,b] ∈V,

−y∗ (a)+ x∗ (b) = 0

which says the same thing. It is also clear that τ ◦ τ has the effect of multiplication by −1.
If V ⊆ H ′×H ′, the argument for commuting ⊥ and τ is similar.

It follows from the above description of the graph of A∗ that even if G (A) were not
closed it would still be the case that G (A∗) is closed.

Why is D(A∗) dense? If it is not dense, then by a typical application of the Hahn
Banach theorem, there exists y∗∗ ∈ H ′′ such that y∗∗ (D(A∗)) = 0 but y∗∗ ̸= 0. Since H is
reflexive, there exists y ∈ H such that x∗ (y) = 0 for all x∗ ∈ D(A∗) . Thus

[y,0] ∈ G (A∗)⊥ =
(
(τG (A))⊥

)⊥
= τG (A)

and so [0,y] ∈ G (A) which means y = A0 = 0, a contradiction. Thus D(A∗) is indeed
dense. Note this is where it was important to assume the space is reflexive. If you consider
C ([0,1]) it is not dense in L∞ ([0,1]) but if f ∈ L1 ([0,1]) satisfies

∫ 1
0 f gdm = 0 for all

g ∈C ([0,1]) , then f = 0. Hence there is no nonzero f ∈C ([0,1])⊥.
Since A is a closed operator, meaning G (A) is closed in H ×H, it follows from the

above formula that

G
(
(A∗)∗

)
=

(
τ

(
(τG (A))⊥

))⊥
=
(

τ (τG (A))⊥
)⊥

=
(
(−G (A))⊥

)⊥
=
(
G (A)⊥

)⊥
= G (A)

and so (A∗)∗ = A.
Now consider the final claim. First let y∗ ∈ D(A∗) = D(λ I−A∗) . Then letting x ∈ H

be arbitrary,

y∗ (x) =
(
(λ I−A)(λ I−A)−1

)∗
y∗ (x)

= y∗
(
(λ I−A)(λ I−A)−1 x

)
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Since y∗ ∈ D(A∗) and (λ I−A)−1 x ∈ D(A) , this equals

(λ I−A)∗ y∗
(
(λ I−A)−1 x

)
Now by definition, this equals(

(λ I−A)−1
)∗

(λ I−A)∗ y∗ (x)

It follows that for y∗ ∈ D(A∗) , (
(λ I−A)−1

)∗
(λ I−A)∗ y∗

=
(
(λ I−A)−1

)∗
(λ I−A∗)y∗ = y∗ (19.14.100)

Next let y∗ ∈ H ′ be arbitrary and x ∈ D(A)

y∗ (x) = y∗
(
(λ I−A)−1 (λ I−A)x

)
=

(
(λ I−A)−1

)∗
y∗ ((λ I−A)x)

= (λ I−A)∗
(
(λ I−A)−1

)∗
y∗ (x)

In going from the second to the third line, the first line shows
(
(λ I−A)−1

)∗
y∗ ∈ D(A∗)

and so the third line follows. Since D(A) is dense, it follows

(λ I−A∗)
(
(λ I−A)−1

)∗
= I (19.14.101)

Then 19.14.100 and 19.14.101 show λ I−A∗ is one to one and onto from D(A∗) t0 H ′ and

(λ I−A∗)−1 =
(
(λ I−A)−1

)∗
.

Finally, from the above,(
(λ I−A∗)−1

)n
=
((

(λ I−A)−1
)∗)n

=
((

(λ I−A)−1
)n)∗

.

This proves the lemma.
With this preparation, here is an interesting result about the adjoint of the generator of

a continuous bounded semigroup.

Theorem 19.14.18 Suppose A is a densely defined closed operator which generates a con-
tinuous semigroup, S (t) . Then A∗ is also a closed densely defined operator which generates
S∗ (t) and S∗ (t) is also a continuous semigroup.



19.14. GENERAL THEORY OF CONTINUOUS SEMIGROUPS 595

Proof: First suppose S (t) is also a bounded semigroup, ||S (t)|| ≤ M. From Lemma
19.14.17 A∗ is closed and densely defined. It follows from the Hille Yosida theorem, The-
orem 19.14.8 that ∣∣∣∣∣∣((λ I−A)−1

)n∣∣∣∣∣∣≤ M
λ

n

From Lemma 19.14.17 and the fact the adjoint of a bounded linear operator preserves the
norm,

M
λ

n ≥
∣∣∣∣∣∣(((λ I−A)−1

)n)∗∣∣∣∣∣∣= ∣∣∣∣∣∣(((λ I−A)−1
)∗)n∣∣∣∣∣∣

=
∣∣∣∣∣∣((λ I−A∗)−1

)n∣∣∣∣∣∣
and so by Theorem 19.14.8 again it follows A∗ generates a continuous semigroup, T (t)
which satisfies ||T (t)|| ≤M. I need to identify T (t) with S∗ (t). However, from the proof
of Theorem 19.14.8 and Lemma 19.14.17, it follows that for x∗ ∈ D(A∗) and a suitable
sequence {λ n} ,

T (t)x∗ (y) = lim
n→∞

e−λ nt
∞

∑
k=0

tk
(

λ
2
n (λ nI−A∗)−1

)k

k!
x∗ (y)

= lim
n→∞

e−λ nt
∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)∗

k!
x∗ (y)

= lim
n→∞

x∗

e−λ nt

 ∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)

k!
y




= x∗ (S (t)y) = S∗ (t)x∗ (y) .

Therefore, since y is arbitrary, S∗ (t)= T (t) on x∈D(A∗) a dense set and this shows the two
are equal. In particular, S∗ (t) is a semigroup because T (t) is. This proves the proposition
in the case where S (t) is also bounded.

Next only assume S (t) is a continuous semigroup. Then by Proposition 19.14.5 there
exists α > 0 such that

||S (t)|| ≤Meαt .

Then consider the operator −αI +A and the bounded semigroup e−αtS (t). For x ∈ D(A)

lim
h→0+

e−αhS (h)x− x
h

= lim
h→0+

(
e−αh S (h)x− x

h
+

e−αh−1
h

x
)

= −αx+Ax
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Thus−αI+A generates e−αtS (t) and it follows from the first part that−αI+A∗ generates
the semigroup e−αtS∗ (t) . Thus

−αx+A∗x = lim
h→0+

e−αhS∗ (h)x− x
h

= lim
h→0+

(
e−αh S∗ (h)x− x

h
+

e−αh−1
h

x
)

= −αx+ lim
h→0+

S∗ (h)x− x
h

showing that A∗ generates S∗ (t) . It follows from Proposition 19.14.5 that A∗ is closed and
densely defined. It is obvious S∗ (t) is a semigroup. Why is it continuous? This also follows
from the first part of the argument which establishes that

t→ e−αtS∗ (t)x

is continuous. This proves the theorem.



Chapter 20

Representation Theorems
20.1 Radon Nikodym Theorem

This chapter is on various representation theorems. The first theorem, the Radon Nikodym
Theorem, is a representation theorem for one measure in terms of another. The approach
given here is due to Von Neumann and depends on the Riesz representation theorem for
Hilbert space, Theorem 19.1.14 on Page 522.

Definition 20.1.1 Let µ and λ be two measures defined on a σ -algebra, S , of subsets
of a set, Ω. λ is absolutely continuous with respect to µ , written as λ ≪ µ, if λ (E) = 0
whenever µ(E) = 0.

It is not hard to think of examples which should be like this. For example, suppose
one measure is volume and the other is mass. If the volume of something is zero, it is
reasonable to expect the mass of it should also be equal to zero. In this case, there is a
function called the density which is integrated over volume to obtain mass. The Radon
Nikodym theorem is an abstract version of this notion. Essentially, it gives the existence of
the density function.

Theorem 20.1.2 (Radon Nikodym) Let λ and µ be finite measures defined on a σ -algebra,
S , of subsets of Ω. Suppose λ ≪ µ . Then there exists a unique f ∈ L1(Ω,µ) such that
f (x)≥ 0 and

λ (E) =
∫

E
f dµ .

If it is not necessarily the case that λ ≪ µ, there are two measures, λ⊥ and λ || such that
λ = λ⊥ + λ ||,λ || ≪ µ and there exists a set of µ measure zero, N such that for all E
measurable, λ⊥ (E) = λ (E ∩N) = λ⊥ (E ∩N) . In this case the two measures, λ⊥ and λ ||
are unique and the representation of λ = λ⊥+λ || is called the Lebesgue decomposition
of λ . The measure λ || is the absolutely continuous part of λ and λ⊥ is called the singular
part of λ .

Proof: Let Λ : L2(Ω,µ +λ )→ C be defined by

Λg =
∫

Ω

g dλ .

By Holder’s inequality,

|Λg| ≤
(∫

Ω

12dλ

)1/2(∫
Ω

|g|2 d (λ +µ)

)1/2

= λ (Ω)1/2 ||g||2

where ||g||2 is the L2 norm of g taken with respect to µ +λ . Therefore, since Λ is bounded,
it follows from Theorem 17.1.4 on Page 437 that Λ ∈ (L2(Ω,µ + λ ))′, the dual space
L2(Ω,µ + λ ). By the Riesz representation theorem in Hilbert space, Theorem 19.1.14,
there exists a unique h ∈ L2(Ω,µ +λ ) with

Λg =
∫

Ω

g dλ =
∫

Ω

hgd(µ +λ ). (20.1.1)

597
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The plan is to show h is real and nonnegative at least a.e. Therefore, consider the set where
Imh is positive.

E = {x ∈Ω : Imh(x)> 0} ,

Now let g = XE and use 20.1.1 to get

λ (E) =
∫

E
(Reh+ i Imh)d(µ +λ ). (20.1.2)

Since the left side of 20.1.2 is real, this shows

0 =
∫

E
(Imh)d(µ +λ )

≥
∫

En

(Imh)d(µ +λ )

≥ 1
n
(µ +λ )(En)

where

En ≡
{

x : Imh(x)≥ 1
n

}
Thus (µ +λ )(En) = 0 and since E = ∪∞

n=1En, it follows (µ +λ )(E) = 0. A similar argu-
ment shows that for

E = {x ∈Ω : Imh(x)< 0},

(µ +λ )(E) = 0. Thus there is no loss of generality in assuming h is real-valued.
The next task is to show h is nonnegative. This is done in the same manner as above.

Define the set where it is negative and then show this set has measure zero.
Let E ≡ {x : h(x) < 0} and let En ≡ {x : h(x) < − 1

n}. Then let g = XEn . Since E =
∪nEn, it follows that if (µ +λ )(E)> 0 then this is also true for (µ +λ )(En) for all n large
enough. Then from 20.1.2

λ (En) =
∫

En

h d(µ +λ )≤−(1/n)(µ +λ )(En)< 0,

a contradiction. Thus it can be assumed h≥ 0.
At this point the argument splits into two cases.
Case Where λ ≪ µ. In this case, h < 1.
Let E = [h≥ 1] and let g = XE . Then

λ (E) =
∫

E
h d(µ +λ )≥ µ(E)+λ (E).

Therefore µ(E) = 0. Since λ ≪ µ , it follows that λ (E) = 0 also. Thus it can be assumed

0≤ h(x)< 1

for all x.
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From 20.1.1, whenever g ∈ L2(Ω,µ +λ ),∫
Ω

g(1−h)dλ =
∫

Ω

hgdµ . (20.1.3)

Now let E be a measurable set and define

g(x)≡
n

∑
i=0

hi(x)XE(x)

in 20.1.3. This yields ∫
E
(1−hn+1(x))dλ =

∫
E

n+1

∑
i=1

hi(x)dµ . (20.1.4)

Let f (x) = ∑
∞
i=1 hi(x) and use the Monotone Convergence theorem in 20.1.4 to let n→ ∞

and conclude
λ (E) =

∫
E

f dµ .

f ∈ L1(Ω,µ) because λ is finite.
The function, f is unique µ a.e. because, if g is another function which also serves to

represent λ , consider for each n ∈ N the set,

En ≡
[

f −g >
1
n

]
and conclude that

0 =
∫

En

( f −g)dµ ≥ 1
n

µ (En) .

Therefore, µ (En) = 0. It follows that

µ ([ f −g > 0])≤
∞

∑
n=1

µ (En) = 0

Similarly, the set where g is larger than f has measure zero. This proves the theorem.
Case where it is not necessarily true that λ ≪ µ.
In this case, let N = [h≥ 1] and let g = XN . Then

λ (N) =
∫

N
h d(µ +λ )≥ µ(N)+λ (N).

and so µ (N) = 0. Now define a measure, λ⊥ by

λ⊥ (E)≡ λ (E ∩N)

so λ⊥ (E ∩N) = λ (E ∩N∩N)≡ λ⊥ (E) and let λ || ≡ λ −λ⊥. Therefore,

µ (E) = µ
(
E ∩NC)
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Also,
λ || (E) = λ (E)−λ⊥ (E)≡ λ (E)−λ (E ∩N) = λ

(
E ∩NC) .

Suppose λ || (E)> 0. Therefore, since h < 1 on NC

λ || (E) = λ
(
E ∩NC)= ∫

E∩NC
h d(µ +λ )

< µ
(
E ∩NC)+λ

(
E ∩NC)= µ (E)+λ || (E) ,

which is a contradiction unless µ (E) > 0. Therefore, λ || ≪ µ because if µ (E) = 0, the
above inequality cannot hold.

It only remains to verify the two measures λ⊥ and λ || are unique. Suppose then that
ν1 and ν2 play the roles of λ⊥ and λ || respectively. Let N1 play the role of N in the
definition of ν1 and let f1 play the role of f for ν2. I will show that f = f1 µ a.e. Let
Ek ≡ [ f1− f > 1/k] for k ∈ N. Then on observing that λ⊥−ν1 = ν2−λ ||

0 = (λ⊥−ν1)
(

Ek ∩ (N1∪N)C
)
=
∫

Ek∩(N1∪N)C
(g1−g)dµ

≥ 1
k

µ

(
Ek ∩ (N1∪N)C

)
=

1
k

µ (Ek) .

and so µ (Ek) = 0. Therefore, µ ([ f1− f > 0]) = 0 because [ f1− f > 0] = ∪∞
k=1Ek. It fol-

lows f1 ≤ f µ a.e. Similarly, f1 ≥ f µ a.e. Therefore, ν2 = λ || and so λ⊥ = ν1 also.
■

The f in the theorem for the absolutely continuous case is sometimes denoted by dλ

dµ

and is called the Radon Nikodym derivative.
The next corollary is a useful generalization to σ finite measure spaces.

Corollary 20.1.3 Suppose λ ≪ µ and there exist sets Sn ∈S with

Sn∩Sm = /0, ∪∞
n=1Sn = Ω,

and λ (Sn), µ(Sn)< ∞. Then there exists f ≥ 0, where f is µ measurable, and

λ (E) =
∫

E
f dµ

for all E ∈S . The function f is µ +λ a.e. unique.

Proof: Define the σ algebra of subsets of Sn,

Sn ≡ {E ∩Sn : E ∈S }.

Then both λ , and µ are finite measures on Sn, and λ ≪ µ . Thus, by Theorem 20.1.2,
there exists a nonnegative Sn measurable function fn,with λ (E) =

∫
E fndµ for all E ∈Sn.

Define f (x) = fn(x) for x ∈ Sn. Since the Sn are disjoint and their union is all of Ω, this
defines f on all of Ω. The function, f is measurable because

f−1((a,∞]) = ∪∞
n=1 f−1

n ((a,∞]) ∈S .
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Also, for E ∈S ,

λ (E) =
∞

∑
n=1

λ (E ∩Sn) =
∞

∑
n=1

∫
XE∩Sn(x) fn(x)dµ

=
∞

∑
n=1

∫
XE∩Sn(x) f (x)dµ

By the monotone convergence theorem

∞

∑
n=1

∫
XE∩Sn(x) f (x)dµ = lim

N→∞

N

∑
n=1

∫
XE∩Sn(x) f (x)dµ

= lim
N→∞

∫ N

∑
n=1

XE∩Sn(x) f (x)dµ

=
∫ ∞

∑
n=1

XE∩Sn(x) f (x)dµ =
∫

E
f dµ .

This proves the existence part of the corollary.
To see f is unique, suppose f1 and f2 both work and consider for n ∈ N

Ek ≡
[

f1− f2 >
1
k

]
.

Then
0 = λ (Ek ∩Sn)−λ (Ek ∩Sn) =

∫
Ek∩Sn

f1(x)− f2(x)dµ .

Hence µ(Ek ∩Sn) = 0 for all n so

µ(Ek) = lim
n→∞

µ(E ∩Sn) = 0.

Hence µ([ f1− f2 > 0])≤∑
∞
k=1 µ (Ek) = 0. Therefore, λ ([ f1− f2 > 0]) = 0 also. Similarly

(µ +λ )([ f1− f2 < 0]) = 0.

This version of the Radon Nikodym theorem will suffice for most applications, but
more general versions are available. To see one of these, one can read the treatment in
Hewitt and Stromberg [64]. This involves the notion of decomposable measure spaces, a
generalization of σ finite.

Not surprisingly, there is a simple generalization of the Lebesgue decomposition part
of Theorem 20.1.2.

Corollary 20.1.4 Let (Ω,S ) be a set with a σ algebra of sets. Suppose λ and µ are two
measures defined on the sets of S and suppose there exists a sequence of disjoint sets of
S , {Ωi}∞

i=1 such that λ (Ωi) ,µ (Ωi) < ∞. Then there is a set of µ measure zero, N and
measures λ⊥ and λ || such that

λ⊥+λ || = λ , λ ||≪ µ,λ⊥ (E) = λ (E ∩N) = λ⊥ (E ∩N) .
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Proof: Let Si ≡ {E ∩Ωi : E ∈S } and for E ∈ Si, let λ
i (E) = λ (E) and µ i (E) =

µ (E) . Then by Theorem 20.1.2 there exist unique measures λ
i
⊥ and λ

i
|| such that λ

i =

λ
i
⊥+λ

i
||, a set of µ i measure zero, Ni ∈Si such that for all E ∈Si, λ

i
⊥ (E) = λ

i (E ∩Ni)

and λ
i
||≪ µ i. Define for E ∈S

λ⊥ (E)≡∑
i

λ
i
⊥ (E ∩Ωi) , λ || (E)≡∑

i
λ

i
|| (E ∩Ωi) , N ≡ ∪iNi.

First observe that λ⊥ and λ || are measures.

λ⊥
(
∪∞

j=1E j
)
≡ ∑

i
λ

i
⊥
(
∪∞

j=1E j ∩Ωi
)
= ∑

i
∑

j
λ

i
⊥ (E j ∩Ωi)

= ∑
j
∑

i
λ

i
⊥ (E j ∩Ωi) = ∑

j
∑

i
λ (E j ∩Ωi∩Ni)

= ∑
j
∑

i
λ

i
⊥ (E j ∩Ωi) = ∑

j
λ⊥ (E j) .

The argument for λ || is similar. Now

µ (N) = ∑
i

µ (N∩Ωi) = ∑
i

µ
i (Ni) = 0

and

λ⊥ (E) ≡ ∑
i

λ
i
⊥ (E ∩Ωi) = ∑

i
λ

i (E ∩Ωi∩Ni)

= ∑
i

λ (E ∩Ωi∩N) = λ (E ∩N) .

Also if µ (E) = 0, then µ i (E ∩Ωi) = 0 and so λ
i
|| (E ∩Ωi) = 0. Therefore,

λ || (E) = ∑
i

λ
i
|| (E ∩Ωi) = 0.

The decomposition is unique because of the uniqueness of the λ
i
|| and λ

i
⊥ and the observa-

tion that some other decomposition must coincide with the given one on the Ωi.

20.2 Vector Measures
The next topic will use the Radon Nikodym theorem. It is the topic of vector and complex
measures. The main interest is in complex measures although a vector measure can have
values in any topological vector space. Whole books have been written on this subject. See
for example the book by Diestal and Uhl [41] titled Vector measures.

Definition 20.2.1 Let (V, || · ||) be a normed linear space and let (Ω,S ) be a measure
space. A function µ : S → V is a vector measure if µ is countably additive. That is, if
{Ei}∞

i=1 is a sequence of disjoint sets of S ,

µ(∪∞
i=1Ei) =

∞

∑
i=1

µ(Ei).
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Note that it makes sense to take finite sums because it is given that µ has values in a
vector space in which vectors can be summed. In the above, µ (Ei) is a vector. It might be
a point in Rn or in any other vector space. In many of the most important applications, it
is a vector in some sort of function space which may be infinite dimensional. The infinite
sum has the usual meaning. That is

∞

∑
i=1

µ(Ei) = lim
n→∞

n

∑
i=1

µ(Ei)

where the limit takes place relative to the norm on V .

Definition 20.2.2 Let (Ω,S ) be a measure space and let µ be a vector measure defined
on S . A subset, π(E), of S is called a partition of E if π(E) consists of finitely many
disjoint sets of S and ∪π(E) = E. Let

|µ|(E) = sup{ ∑
F∈π(E)

||µ(F)|| : π(E) is a partition of E}.

|µ| is called the total variation of µ .

The next theorem may seem a little surprising. It states that, if finite, the total variation
is a nonnegative measure.

Theorem 20.2.3 If |µ|(Ω)< ∞, then |µ| is a measure on S . Even if |µ|(Ω) = ∞,

|µ|(∪∞
i=1Ei)≤

∞

∑
i=1
|µ|(Ei) .

That is |µ| is subadditive and |µ|(A)≤ |µ|(B) whenever A,B ∈S with A⊆ B.

Proof: Consider the last claim. Let a < |µ|(A) and let π (A) be a partition of A such
that

a < ∑
F∈π(A)

||µ (F)|| .

Then π (A)∪{B\A} is a partition of B and

|µ|(B)≥ ∑
F∈π(A)

||µ (F)||+ ||µ (B\A)||> a.

Since this is true for all such a, it follows |µ|(B)≥ |µ|(A) as claimed.
Let

{
E j
}∞

j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞
j=1E j. Then letting

a < |µ|(E∞) , it follows from the definition of total variation there exists a partition of E∞,
π(E∞) = {A1, · · · ,An} such that

a <
n

∑
i=1
||µ(Ai)||.



604 CHAPTER 20. REPRESENTATION THEOREMS

Also,
Ai = ∪∞

j=1Ai∩E j

and so by the triangle inequality, ||µ(Ai)|| ≤ ∑
∞
j=1 ||µ(Ai∩E j)||. Therefore, by the above,

and either Fubini’s theorem or Lemma 11.3.3 on Page 236

a <
n

∑
i=1

≥||µ(Ai)||︷ ︸︸ ︷
∞

∑
j=1
||µ(Ai∩E j)||

=
∞

∑
j=1

n

∑
i=1
||µ(Ai∩E j)||

≤
∞

∑
j=1
|µ|(E j)

because
{

Ai∩E j
}n

i=1 is a partition of E j.
Since a is arbitrary, this shows

|µ|(∪∞
j=1E j)≤

∞

∑
j=1
|µ|(E j).

If the sets, E j are not disjoint, let F1 = E1 and if Fn has been chosen, let Fn+1 ≡ En+1 \
∪n

i=1Ei. Thus the sets, Fi are disjoint and ∪∞
i=1Fi = ∪∞

i=1Ei. Therefore,

|µ|
(
∪∞

j=1E j
)
= |µ|

(
∪∞

j=1Fj
)
≤

∞

∑
j=1
|µ|(Fj)≤

∞

∑
j=1
|µ|(E j)

and proves |µ| is always subadditive as claimed regardless of whether |µ|(Ω)< ∞.
Now suppose |µ|(Ω)< ∞ and let E1 and E2 be sets of S such that E1∩E2 = /0 and let

{Ai
1 · · ·Ai

ni
}= π(Ei), a partition of Ei which is chosen such that

|µ|(Ei)− ε <
ni

∑
j=1
||µ(Ai

j)|| i = 1,2.

Such a partition exists because of the definition of the total variation. Consider the sets
which are contained in either of π (E1) or π (E2) , it follows this collection of sets is a
partition of E1∪E2 denoted by π(E1∪E2). Then by the above inequality and the definition
of total variation,

|µ|(E1∪E2)≥ ∑
F∈π(E1∪E2)

||µ(F)||> |µ|(E1)+ |µ|(E2)−2ε ,

which shows that since ε > 0 was arbitrary,

|µ|(E1∪E2)≥ |µ|(E1)+ |µ|(E2). (20.2.5)
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Then 20.2.5 implies that whenever the Ei are disjoint, |µ|(∪n
j=1E j)≥∑

n
j=1 |µ|(E j). There-

fore,
∞

∑
j=1
|µ|(E j)≥ |µ|(∪∞

j=1E j)≥ |µ|(∪n
j=1E j)≥

n

∑
j=1
|µ|(E j).

Since n is arbitrary,

|µ|(∪∞
j=1E j) =

∞

∑
j=1
|µ|(E j)

which shows that |µ| is a measure as claimed. ■
The following corollary is interesting. It concerns the case that µ is only finitely addi-

tive.

Corollary 20.2.4 Suppose (Ω,F ) is a set with a σ algebra of subsets F and suppose
µ : F → C is only finitely additive. That is, µ

(
∪n

i=1Ei
)
= ∑

n
i=1 µ (Ei) whenever the Ei are

disjoint. Then |µ| , defined in the same way as above, is also finitely additive provided |µ|
is finite.

Proof: Say E ∩F = /0 for E,F ∈F . Let π (E) ,π (F) suitable partitions for which the
following holds.

|µ|(E ∪F)≥ ∑
A∈π(E)

|µ (A)|+ ∑
B∈π(F)

|µ (B)| ≥ |µ|(E)+ |µ|(F)−2ε.

Similar considerations apply to any finite union.
Now let E = ∪n

i=1Ei where the Ei are disjoint. Then letting π (E) be a partition of E,

|µ|(E)− ε ≤ ∑
F∈π(E)

|µ (F)| ,

it follows that

|µ|(E) ≤ ε + ∑
F∈π(E)

|µ (F)|= ε + ∑
F∈π(E)

∣∣∣∣∣ n

∑
i=1

µ (F ∩Ei)

∣∣∣∣∣
≤ ε +

n

∑
i=1

∑
F∈π(E)

|µ (F ∩Ei)| ≤ ε +
n

∑
i=1
|µ|(Ei)

which shows |µ| is finitely additive. ■
In the case that µ is a complex measure, it is always the case that |µ|(Ω)< ∞.

Theorem 20.2.5 Suppose µ is a complex measure on (Ω,S ) where S is a σ algebra of
subsets of Ω. That is, whenever, {Ei} is a sequence of disjoint sets of S ,

µ (∪∞
i=1Ei) =

∞

∑
i=1

µ (Ei) .

Then |µ|(Ω)< ∞.



606 CHAPTER 20. REPRESENTATION THEOREMS

Proof: First here is a claim.
Claim: Suppose |µ|(E) = ∞. Then there are disjoint subsets of E, A and B such that

E = A∪B, |µ (A)| , |µ (B)|> 1 and |µ|(B) = ∞.
Proof of the claim: From the definition of |µ| , there exists a partition of E,π (E) such

that
∑

F∈π(E)
|µ (F)|> 20(1+ |µ (E)|) . (20.2.6)

Here 20 is just a nice sized number. No effort is made to be delicate in this argument. Also
note that µ (E)∈C because it is given that µ is a complex measure. Consider the following
picture consisting of two lines in the complex plane having slopes 1 and -1 which intersect
at the origin, dividing the complex plane into four closed sets, R1,R2,R3, and R4 as shown.

R1

R2

R3

R4

Let π i consist of those sets, A of π (E) for which µ (A)∈Ri. Thus, some sets, A of π (E)
could be in two of the π i if µ (A) is on one of the intersecting lines. This is not important.
The thing which is important is that if µ (A) ∈ R1 or R3, then

√
2

2 |µ (A)| ≤ |Re(µ (A))| and

if µ (A) ∈ R2 or R4 then
√

2
2 |µ (A)| ≤ |Im(µ (A))| and Re(z) has the same sign for z in R1

and R3 while Im(z) has the same sign for z in R2 or R4. Then by 20.2.6, it follows that for
some i,

∑
F∈π i

|µ (F)|> 5(1+ |µ (E)|) . (20.2.7)

Suppose i equals 1 or 3. A similar argument using the imaginary part applies if i equals 2
or 4. Then, ∣∣∣∣∣ ∑

F∈π i

µ (F)

∣∣∣∣∣ ≥
∣∣∣∣∣ ∑
F∈π i

Re(µ (F))

∣∣∣∣∣= ∑
F∈π i

|Re(µ (F))|

≥
√

2
2 ∑

F∈π i

|µ (F)|> 5

√
2

2
(1+ |µ (E)|) .

Now letting C be the union of the sets in π i,

|µ (C)|=

∣∣∣∣∣ ∑
F∈π i

µ (F)

∣∣∣∣∣> 5
2
(1+ |µ (E)|)> 1. (20.2.8)

Define D≡ E \C.



20.2. VECTOR MEASURES 607

E

C

Then µ (C)+µ (E \C) = µ (E) and so

5
2
(1+ |µ (E)|) < |µ (C)|= |µ (E)−µ (E \C)|

= |µ (E)−µ (D)| ≤ |µ (E)|+ |µ (D)|

and so
1 <

5
2
+

3
2
|µ (E)|< |µ (D)| .

Now since |µ|(E)=∞, it follows from Theorem 20.2.5 that ∞= |µ|(E)≤ |µ|(C)+ |µ|(D)
and so either |µ|(C) = ∞ or |µ|(D) = ∞. If |µ|(C) = ∞, let B =C and A = D. Otherwise,
let B = D and A =C. This proves the claim.

Now suppose |µ|(Ω) = ∞. Then from the claim, there exist A1 and B1 such that

|µ|(B1) = ∞, |µ (B1)| , |µ (A1)|> 1,

and A1 ∪B1 = Ω. Let B1 ≡ Ω \A play the same role as Ω and obtain A2,B2 ⊆ B1 such
that |µ|(B2) = ∞, |µ (B2)| , |µ (A2)| > 1, and A2∪B2 = B1. Continue in this way to obtain
a sequence of disjoint sets, {Ai} such that |µ (Ai)|> 1. Then since µ is a measure,

µ (∪∞
i=1Ai) =

∞

∑
i=1

µ (Ai)

but this is impossible because limi→∞ µ (Ai) ̸= 0. This proves the theorem.

Theorem 20.2.6 Let (Ω,S ) be a measure space and let λ : S → C be a complex vector
measure. Thus |λ |(Ω) < ∞. Let µ : S → [0,µ(Ω)] be a finite measure such that λ ≪ µ .
Then there exists a unique f ∈ L1(Ω) such that for all E ∈S ,∫

E
f dµ = λ (E).

Proof: It is clear that Reλ and Imλ are real-valued vector measures on S . Since
|λ |(Ω)< ∞, it follows easily that |Reλ |(Ω) and | Imλ |(Ω)< ∞. This is clear because

|λ (E)| ≥ |Reλ (E)| , |Imλ (E)| .
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Therefore, each of

|Reλ |+Reλ

2
,
|Reλ |−Re(λ )

2
,
| Imλ |+ Imλ

2
, and

| Imλ |− Im(λ )

2

are finite measures on S . It is also clear that each of these finite measures are abso-
lutely continuous with respect to µ and so there exist unique nonnegative functions in
L1(Ω), f1, f2, g1, g2 such that for all E ∈S ,

1
2
(|Reλ |+Reλ )(E) =

∫
E

f1dµ,

1
2
(|Reλ |−Reλ )(E) =

∫
E

f2dµ,

1
2
(| Imλ |+ Imλ )(E) =

∫
E

g1dµ,

1
2
(| Imλ |− Imλ )(E) =

∫
E

g2dµ.

Now let f = f1− f2 + i(g1−g2).
The following corollary is about representing a vector measure in terms of its total

variation. It is like representing a complex number in the form reiθ . The proof requires the
following lemma.

Lemma 20.2.7 Suppose (Ω,S ,µ) is a measure space and f is a function in L1(Ω,µ) with
the property that

|
∫

E
f dµ| ≤ µ(E)

for all E ∈S . Then | f | ≤ 1 a.e.

Proof of the lemma: Consider the following picture.

1
(0,0) .p

B(p,r)

where B(p,r)∩B(0,1) = /0. Let E = f−1(B(p,r)). In fact µ (E) = 0. If µ(E) ̸= 0 then∣∣∣∣ 1
µ(E)

∫
E

f dµ− p
∣∣∣∣ =

∣∣∣∣ 1
µ(E)

∫
E
( f − p)dµ

∣∣∣∣
≤ 1

µ(E)

∫
E
| f − p|dµ < r

because on E, | f (x)− p|< r. Hence

| 1
µ(E)

∫
E

f dµ|> 1
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because it is closer to p than r. (Refer to the picture.) However, this contradicts the as-
sumption of the lemma. It follows µ(E) = 0. Since the set of complex numbers, z such that
|z|> 1 is an open set, it equals the union of countably many balls, {Bi}∞

i=1 . Therefore,

µ
(

f−1({z ∈ C : |z|> 1}
)

= µ
(
∪∞

k=1 f−1 (Bk)
)

≤
∞

∑
k=1

µ
(

f−1 (Bk)
)
= 0.

Thus | f (x)| ≤ 1 a.e. as claimed. This proves the lemma.

Corollary 20.2.8 Let λ be a complex vector measure with |λ |(Ω) < ∞1 Then there exists
a unique f ∈ L1(Ω) such that λ (E) =

∫
E f d|λ |. Furthermore, | f | = 1 for |λ | a.e. This is

called the polar decomposition of λ .

Proof: First note that λ ≪ |λ | and so such an L1 function exists and is unique. It is
required to show | f |= 1 a.e. If |λ |(E) ̸= 0,∣∣∣∣ λ (E)

|λ |(E)

∣∣∣∣= ∣∣∣∣ 1
|λ |(E)

∫
E

f d|λ |
∣∣∣∣≤ 1.

Therefore by Lemma 20.2.7, | f | ≤ 1, |λ | a.e. Now let

En =

[
| f | ≤ 1− 1

n

]
.

Let {F1, · · · ,Fm} be a partition of En. Then

m

∑
i=1
|λ (Fi)| =

m

∑
i=1

∣∣∣∣∫Fi

f d |λ |
∣∣∣∣≤ m

∑
i=1

∫
Fi

| f |d |λ |

≤
m

∑
i=1

∫
Fi

(
1− 1

n

)
d |λ |=

m

∑
i=1

(
1− 1

n

)
|λ |(Fi)

= |λ |(En)

(
1− 1

n

)
.

Then taking the supremum over all partitions,

|λ |(En)≤
(

1− 1
n

)
|λ |(En)

which shows |λ |(En)= 0. Hence |λ |([| f |< 1])= 0 because [| f |< 1] =∪∞
n=1En.This proves

Corollary 20.2.8.

Corollary 20.2.9 Let λ be a complex vector measure such that λ ≪ µ where µ is σ finite.
Then there exists a unique g ∈ L1(Ω,µ) such that λ (E) =

∫
E gdµ .

1As proved above, the assumption that |λ |(Ω)< ∞ is redundant.
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Proof: By Corollary 20.2.8 and Theorem 20.2.5 which says that |λ | is finite, there
exists a unique f such that | f |= 1 |λ | a.e. and

λ (E) =
∫

E
f d |λ | .

Now |λ | ≪ µ and so it follows from Corollary 20.1.3 there exists a unique nonnegative
measurable function h such that for all E measurable,

|λ |(E) =
∫

E
hdµ

where since |λ | is finite, h ∈ L1 (Ω,µ) . It follows from approximating f with simple func-
tions and using the above formula that

λ (E) =
∫

E
f hdµ.

Then let g = L1 (Ω,µ) . This proves the corollary.

Corollary 20.2.10 Suppose (Ω,S ) is a measure space and µ is a finite nonnegative mea-
sure on S . Then for h ∈ L1 (µ) , define a complex measure, λ by

λ (E)≡
∫

E
hdµ.

Then
|λ |(E) =

∫
E
|h|dµ.

Furthermore, |h|= gh where gd |λ | is the polar decomposition of λ ,

λ (E) =
∫

E
gd |λ |

Proof: From Corollary 20.2.8 there exists g such that |g|= 1, |λ | a.e. and for all E ∈S

λ (E) =
∫

E
gd |λ |=

∫
E

hdµ.

Let sn be a sequence of simple functions converging pointwise to g. Then from the above,∫
E

gsnd |λ |=
∫

E
snhdµ.

Passing to the limit using the dominated convergence theorem,∫
E

d |λ |=
∫

E
ghdµ.

It follows gh ≥ 0 a.e. and |g| = 1. Therefore, |h| = |gh| = gh. It follows from the above,
that

|λ |(E) =
∫

E
d |λ |=

∫
E

ghdµ =
∫

E
d |λ |=

∫
E
|h|dµ

and this proves the corollary.
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20.3 Representation Theorems For The Dual Space Of
Lp

Recall the concept of the dual space of a Banach space in the Chapter on Banach space
starting on Page 435. The next topic deals with the dual space of Lp for p ≥ 1 in the case
where the measure space is σ finite or finite. In what follows q = ∞ if p = 1 and otherwise,
1
p +

1
q = 1.

Theorem 20.3.1 (Riesz representation theorem) Let p > 1 and let (Ω,S ,µ) be a finite
measure space. If Λ∈ (Lp(Ω))′, then there exists a unique h∈ Lq(Ω) ( 1

p +
1
q = 1) such that

Λ f =
∫

Ω

h f dµ .

This function satisfies ||h||q = ||Λ|| where ||Λ|| is the operator norm of Λ.

Proof: (Uniqueness) If h1 and h2 both represent Λ, consider

f = |h1−h2|q−2(h1−h2),

where h denotes complex conjugation. By Holder’s inequality, it is easy to see that f ∈
Lp(Ω). Thus

0 = Λ f −Λ f =∫
h1|h1−h2|q−2(h1−h2)−h2|h1−h2|q−2(h1−h2)dµ

=
∫
|h1−h2|qdµ .

Therefore h1 = h2 and this proves uniqueness.
Now let λ (E) = Λ(XE). Since this is a finite measure space XE is an element of

Lp (Ω) and so it makes sense to write Λ(XE). In fact λ is a complex measure having finite
total variation. Let A1, · · · ,An be a partition of Ω.

|ΛXAi |= wi(ΛXAi) = Λ(wiXAi)

for some wi ∈ C, |wi|= 1. Thus

n

∑
i=1
|λ (Ai)|=

n

∑
i=1
|Λ(XAi)|= Λ(

n

∑
i=1

wiXAi)

≤ ||Λ||(
∫
|

n

∑
i=1

wiXAi |
pdµ)

1
p = ||Λ||(

∫
Ω

dµ)
1
p = ||Λ||µ(Ω)

1
p.

This is because if x ∈Ω, x is contained in exactly one of the Ai and so the absolute value of
the sum in the first integral above is equal to 1. Therefore |λ |(Ω)< ∞ because this was an
arbitrary partition. Also, if {Ei}∞

i=1 is a sequence of disjoint sets of S , let

Fn = ∪n
i=1Ei, F = ∪∞

i=1Ei.
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Then by the Dominated Convergence theorem,

||XFn −XF ||p→ 0.

Therefore, by continuity of Λ,

λ (F) = Λ(XF) = lim
n→∞

Λ(XFn) = lim
n→∞

n

∑
k=1

Λ(XEk) =
∞

∑
k=1

λ (Ek).

This shows λ is a complex measure with |λ | finite.
It is also clear from the definition of λ that λ ≪ µ . Therefore, by the Radon Nikodym

theorem, there exists h ∈ L1(Ω) with

λ (E) =
∫

E
hdµ = Λ(XE).

Actually h ∈ Lq and satisfies the other conditions above. Let s = ∑
m
i=1 ciXEi be a simple

function. Then since Λ is linear,

Λ(s) =
m

∑
i=1

ciΛ(XEi) =
m

∑
i=1

ci

∫
Ei

hdµ =
∫

hsdµ . (20.3.9)

Claim: If f is uniformly bounded and measurable, then

Λ( f ) =
∫

h f dµ.

Proof of claim: Since f is bounded and measurable, there exists a sequence of simple
functions, {sn} which converges to f pointwise and in Lp (Ω). This follows from Theorem
11.3.9 on Page 241 upon breaking f up into positive and negative parts of real and complex
parts. In fact this theorem gives uniform convergence. Then

Λ( f ) = lim
n→∞

Λ(sn) = lim
n→∞

∫
hsndµ =

∫
h f dµ,

the first equality holding because of continuity of Λ, the second following from 20.3.9 and
the third holding by the dominated convergence theorem.

This is a very nice formula but it still has not been shown that h ∈ Lq (Ω).
Let En = {x : |h(x)| ≤ n}. Thus |hXEn | ≤ n. Then

|hXEn |q−2(hXEn) ∈ Lp(Ω).

By the claim, it follows that

||hXEn ||qq =
∫

h|hXEn |q−2(hXEn)dµ = Λ(|hXEn |q−2(hXEn))

≤ ||Λ||
∣∣∣∣|hXEn |q−2(hXEn)

∣∣∣∣
p = ||Λ|| ||hXEn ||

q
p
q ,
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the last equality holding because q−1 = q/p and so(∫ ∣∣|hXEn |q−2(hXEn)
∣∣p dµ

)1/p

=

(∫ (
|hXEn |q/p

)p
dµ

)1/p

= ||hXEn ||
q
p
q

Therefore, since q− q
p = 1, it follows that

||hXEn ||q ≤ ||Λ||.

Letting n→ ∞, the Monotone Convergence theorem implies

||h||q ≤ ||Λ||. (20.3.10)

Now that h has been shown to be in Lq(Ω), it follows from 20.3.9 and the density of
the simple functions, Theorem 15.2.1 on Page 406, that

Λ f =
∫

h f dµ

for all f ∈ Lp(Ω).
It only remains to verify the last claim.

||Λ||= sup{
∫

h f : || f ||p ≤ 1} ≤ ||h||q ≤ ||Λ||

by 20.3.10, and Holder’s inequality. This proves the theorem.
To represent elements of the dual space of L1(Ω), another Banach space is needed.

Definition 20.3.2 Let (Ω,S ,µ) be a measure space. L∞(Ω) is the vector space of mea-
surable functions such that for some M > 0, | f (x)| ≤ M for all x outside of some set of
measure zero (| f (x)| ≤M a.e.). Define f = g when f (x) = g(x) a.e. and || f ||∞ ≡ inf{M :
| f (x)| ≤M a.e.}.

Theorem 20.3.3 L∞(Ω) is a Banach space.

Proof: It is clear that L∞(Ω) is a vector space. Is || ||∞ a norm?
Claim: If f ∈ L∞ (Ω), then | f (x)| ≤ || f ||

∞
a.e.

Proof of the claim:
{

x : | f (x)| ≥ || f ||
∞
+n−1

}
≡ En is a set of measure zero according

to the definition of || f ||
∞

. Furthermore, {x : | f (x)|> || f ||
∞
}= ∪nEn and so it is also a set

of measure zero. This verifies the claim.
Now if || f ||

∞
= 0 it follows that f (x) = 0 a.e. Also if f ,g ∈ L∞ (Ω),

| f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ || f ||
∞
+ ||g||

∞

a.e. and so || f ||
∞
+ ||g||

∞
serves as one of the constants, M in the definition of || f +g||

∞
.

Therefore,
|| f +g||

∞
≤ || f ||

∞
+ ||g||

∞
.
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Next let c be a number. Then |c f (x)| = |c| | f (x)| ≤ |c| || f ||
∞

and so ||c f ||
∞
≤ |c| || f ||

∞
.

Therefore since c is arbitrary, || f ||
∞
= ||c(1/c) f ||

∞
≤
∣∣ 1

c

∣∣ ||c f ||
∞

which implies |c| || f ||
∞
≤

||c f ||
∞

. Thus || ||∞ is a norm as claimed.
To verify completeness, let { fn} be a Cauchy sequence in L∞(Ω) and use the above

claim to get the existence of a set of measure zero, Enm such that for all x /∈ Enm,

| fn(x)− fm(x)| ≤ || fn− fm||∞

Let E = ∪n,mEnm. Thus µ(E) = 0 and for each x /∈ E, { fn(x)}∞
n=1 is a Cauchy sequence in

C. Let

f (x) =
{

0 if x ∈ E
limn→∞ fn(x) if x /∈ E = lim

n→∞
XEC(x) fn(x).

Then f is clearly measurable because it is the limit of measurable functions. If

Fn = {x : | fn(x)|> || fn||∞}

and F = ∪∞
n=1Fn, it follows µ(F) = 0 and that for x /∈ F ∪E,

| f (x)| ≤ lim inf
n→∞
| fn(x)| ≤ lim inf

n→∞
|| fn||∞ < ∞

because {|| fn||∞} is a Cauchy sequence. (||| fn||∞−|| fm||∞| ≤ || fn− fm||∞ by the triangle
inequality.) Thus f ∈ L∞(Ω). Let n be large enough that whenever m > n,

|| fm− fn||∞ < ε .

Then, if x /∈ E,

| f (x)− fn(x)| = lim
m→∞
| fm(x)− fn(x)|

≤ lim
m→∞

inf || fm− fn||∞ < ε .

Hence || f − fn||∞ < ε for all n large enough. This proves the theorem.
The next theorem is the Riesz representation theorem for

(
L1 (Ω)

)′.
Theorem 20.3.4 (Riesz representation theorem) Let (Ω,S ,µ) be a finite measure space.
If Λ ∈ (L1(Ω))′, then there exists a unique h ∈ L∞(Ω) such that

Λ( f ) =
∫

Ω

h f dµ

for all f ∈ L1(Ω). If h is the function in L∞(Ω) representing Λ ∈ (L1(Ω))′, then ||h||∞ =
||Λ||.

Proof: Just as in the proof of Theorem 20.3.1, there exists a unique h ∈ L1(Ω) such
that for all simple functions, s,

Λ(s) =
∫

hs dµ . (20.3.11)
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To show h ∈ L∞(Ω), let ε > 0 be given and let

E = {x : |h(x)| ≥ ||Λ||+ ε}.

Let |k| = 1 and hk = |h|. Since the measure space is finite, k ∈ L1(Ω). As in Theorem
20.3.1 let {sn} be a sequence of simple functions converging to k in L1(Ω), and pointwise.
It follows from the construction in Theorem 11.3.9 on Page 241 that it can be assumed
|sn| ≤ 1. Therefore

Λ(kXE) = lim
n→∞

Λ(snXE) = lim
n→∞

∫
E

hsndµ =
∫

E
hkdµ

where the last equality holds by the Dominated Convergence theorem. Therefore,

||Λ||µ(E) ≥ |Λ(kXE)|= |
∫

Ω

hkXEdµ|=
∫

E
|h|dµ

≥ (||Λ||+ ε)µ(E).

It follows that µ(E) = 0. Since ε > 0 was arbitrary, ||Λ|| ≥ ||h||∞. It was shown that
h ∈ L∞(Ω), the density of the simple functions in L1 (Ω) and 20.3.11 imply

Λ f =
∫

Ω

h f dµ , ||Λ|| ≥ ||h||∞. (20.3.12)

This proves the existence part of the theorem. To verify uniqueness, suppose h1 and h2
both represent Λ and let f ∈ L1(Ω) be such that | f | ≤ 1 and f (h1−h2) = |h1−h2|. Then

0 = Λ f −Λ f =
∫
(h1−h2) f dµ =

∫
|h1−h2|dµ.

Thus h1 = h2. Finally,

||Λ||= sup{|
∫

h f dµ| : || f ||1 ≤ 1} ≤ ||h||∞ ≤ ||Λ||

by 20.3.12.
Next these results are extended to the σ finite case.

Lemma 20.3.5 Let (Ω,S ,µ) be a measure space and suppose there exists a measurable
function, r such that r (x) > 0 for all x, there exists M such that |r (x)| < M for all x, and∫

rdµ < ∞. Then for
Λ ∈ (Lp(Ω,µ))′, p≥ 1,

there exists a unique h ∈ Lp′(Ω,µ), L∞(Ω,µ) if p = 1 such that

Λ f =
∫

h f dµ.

Also ||h||= ||Λ||. (||h||= ||h||p′ if p > 1, ||h||∞ if p = 1). Here

1
p
+

1
p′

= 1.
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Proof: Define a new measure µ̃ , according to the rule

µ̃ (E)≡
∫

E
rdµ. (20.3.13)

Thus µ̃ is a finite measure on S . Now define a mapping, η : Lp(Ω,µ)→ Lp(Ω, µ̃) by

η f = r−
1
p f .

Then
||η f ||pLp(µ̃)

=
∫ ∣∣∣r− 1

p f
∣∣∣p rdµ = || f ||pLp(µ)

and so η is one to one and in fact preserves norms. I claim that also η is onto. To see this,
let g ∈ Lp(Ω, µ̃) and consider the function, r

1
p g. Then∫ ∣∣∣r 1

p g
∣∣∣p dµ =

∫
|g|p rdµ =

∫
|g|p dµ̃ < ∞

Thus r
1
p g ∈ Lp (Ω,µ) and η

(
r

1
p g
)
= g showing that η is onto as claimed. Thus η is one

to one, onto, and preserves norms. Consider the diagram below which is descriptive of the
situation in which η∗ must be one to one and onto.

h,Lp′ (µ̃) Lp (µ̃)′ , Λ̃

η∗

→ Lp (µ)′ ,Λ

Lp (µ̃)
η

← Lp (µ)

Then for Λ∈ Lp (µ)′ , there exists a unique Λ̃∈ Lp (µ̃)′ such that η∗Λ̃=Λ,
∣∣∣∣∣∣Λ̃∣∣∣∣∣∣= ||Λ|| . By

the Riesz representation theorem for finite measure spaces, there exists a unique h∈ Lp′ (µ̃)

which represents Λ̃ in the manner described in the Riesz representation theorem. Thus
||h||Lp′ (µ̃) =

∣∣∣∣∣∣Λ̃∣∣∣∣∣∣= ||Λ|| and for all f ∈ Lp (µ) ,

Λ( f ) = η
∗
Λ̃( f )≡ Λ̃(η f ) =

∫
h(η f )dµ̃ =

∫
rh
(

f−
1
p f
)

dµ

=
∫

r
1
p′ h f dµ.

Now ∫ ∣∣∣∣r 1
p′ h
∣∣∣∣p′ dµ =

∫
|h|p

′
rdµ = ||h||p

′

Lp′ (µ̃)
< ∞.

Thus
∣∣∣∣∣∣∣∣r 1

p′ h
∣∣∣∣∣∣∣∣

Lp′ (µ)
= ||h||Lp′ (µ̃) =

∣∣∣∣∣∣Λ̃∣∣∣∣∣∣= ||Λ|| and represents Λ in the appropriate way. If

p = 1, then 1/p′ ≡ 0. This proves the Lemma.
A situation in which the conditions of the lemma are satisfied is the case where the

measure space is σ finite. In fact, you should show this is the only case in which the
conditions of the above lemma hold.
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Theorem 20.3.6 (Riesz representation theorem) Let (Ω,S ,µ) be σ finite and let

Λ ∈ (Lp(Ω,µ))′, p≥ 1.

Then there exists a unique h ∈ Lq(Ω,µ), L∞(Ω,µ) if p = 1 such that

Λ f =
∫

h f dµ.

Also ||h||= ||Λ||. (||h||= ||h||q if p > 1, ||h||∞ if p = 1). Here

1
p
+

1
q
= 1.

Proof: Let {Ωn} be a sequence of disjoint elements of S having the property that

0 < µ(Ωn)< ∞, ∪∞
n=1Ωn = Ω.

Define

r(x) =
∞

∑
n=1

1
n2 XΩn(x) µ(Ωn)

−1, µ̃(E) =
∫

E
rdµ .

Thus ∫
Ω

rdµ = µ̃(Ω) =
∞

∑
n=1

1
n2 < ∞

so µ̃ is a finite measure. The above lemma gives the existence part of the conclusion of the
theorem. Uniqueness is done as before.

With the Riesz representation theorem, it is easy to show that

Lp(Ω), p > 1

is a reflexive Banach space. Recall Definition 17.2.14 on Page 451 for the definition.

Theorem 20.3.7 For (Ω,S ,µ) a σ finite measure space and p > 1, Lp(Ω) is reflexive.

Proof: Let δ r : (Lr(Ω))′→ Lr′(Ω) be defined for 1
r +

1
r′
= 1 by∫

(δ rΛ)g dµ = Λg

for all g ∈ Lr(Ω). From Theorem 20.3.6 δ r is one to one, onto, continuous and linear.
By the open map theorem, δ

−1
r is also one to one, onto, and continuous (δ rΛ equals the

representor of Λ). Thus δ
∗
r is also one to one, onto, and continuous by Corollary 17.2.11.

Now observe that J = δ
∗
p ◦δ

−1
q . To see this, let z∗ ∈ (Lq)′, y∗ ∈ (Lp)′,

δ
∗
p ◦δ

−1
q (δ qz∗)(y∗) = (δ ∗pz∗)(y∗)

= z∗(δ py∗)

=
∫
(δ qz∗)(δ py∗)dµ,
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J(δ qz∗)(y∗) = y∗(δ qz∗)

=
∫
(δ py∗)(δ qz∗)dµ .

Therefore δ
∗
p ◦δ

−1
q = J on δ q(Lq)′ = Lp. But the two δ maps are onto and so J is also onto.

20.4 The Dual Space Of L∞ (Ω)

What about the dual space of L∞ (Ω)? This will involve the following Lemma. Also recall
the notion of total variation defined in Definition 20.2.2.

Lemma 20.4.1 Let (Ω,F ) be a measure space. Denote by BV (Ω) the space of finitely
additive complex measures ν such that |ν |(Ω)<∞. Then defining ||ν || ≡ |ν |(Ω) , it follows
that BV (Ω) is a Banach space.

Proof: It is obvious that BV (Ω) is a vector space with the obvious conventions involv-
ing scalar multiplication. Why is ||·|| a norm? All the axioms are obvious except for the
triangle inequality. However, this is not too hard either.

||µ +ν || ≡ |µ +ν |(Ω) = sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)+ν (A)|
}

≤ sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)|
}
+ sup

π(Ω)

{
∑

A∈π(Ω)

|ν (A)|
}

≡ |µ|(Ω)+ |ν |(Ω) = ||ν ||+ ||µ|| .

Suppose now that {νn} is a Cauchy sequence. For each E ∈F ,

|νn (E)−νm (E)| ≤ ||νn−νm||

and so the sequence of complex numbers νn (E) converges. That to which it converges is
called ν (E) . Then it is obvious that ν (E) is finitely additive. Why is |ν | finite? Since ||·||
is a norm, it follows that there exists a constant C such that for all n,

|νn|(Ω)<C

Let π (Ω) be any partition. Then

∑
A∈π(Ω)

|ν (A)|= lim
n→∞

∑
A∈π(Ω)

|νn (A)| ≤C.

Hence ν ∈ BV (Ω). Let ε > 0 be given and let N be such that if n,m > N, then

||νn−νm||< ε/2.
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Pick any such n. Then choose π (Ω) such that

|ν−νn|(Ω)− ε/2 < ∑
A∈π(Ω)

|ν (A)−νn (A)|

= lim
m→∞

∑
A∈π(Ω)

|νm (A)−νn (A)|< lim inf
m→∞
|νn−νm|(Ω)≤ ε/2

It follows that
lim
n→∞
||ν−νn||= 0. ■

Corollary 20.4.2 Suppose (Ω,F ) is a measure space as above and suppose µ is a mea-
sure defined on F . Denote by BV (Ω; µ) those finitely additive measures of BV (Ω) ν such
that ν≪ µ in the usual sense that if µ (E) = 0, then ν (E) = 0. Then BV (Ω; µ) is a closed
subspace of BV (Ω).

Proof: It is clear that it is a subspace. Is it closed? Suppose νn→ ν and each νn is in
BV (Ω; µ) . Then if µ (E) = 0, it follows that νn (E) = 0 and so ν (E) = 0 also, being the
limit of 0. ■

Definition 20.4.3 For s a simple function s(ω) = ∑
n
k=1 ckXEk (ω) and ν ∈ BV (Ω) , define

an “integral” with respect to ν as follows.∫
sdν ≡

n

∑
k=1

ckν (Ek) .

For f function which is in L∞ (Ω; µ) , define
∫

f dν as follows. Applying Theorem 11.3.9, to
the positive and negative parts of real and imaginary parts of f , there exists a sequence of
simple functions {sn} which converges uniformly to f off a set of µ measure zero. Then∫

f dν ≡ lim
n→∞

∫
sndν

Lemma 20.4.4 The above definition of the integral with respect to a finitely additive mea-
sure in BV (Ω; µ) is well defined.

Proof: First consider the claim about the integral being well defined on the simple
functions. This is clearly true if it is required that the ck are disjoint and the Ek also disjoint
having union equal to Ω. Thus define the integral of a simple function in this manner. First
write the simple function as

n

∑
k=1

ckXEk

where the ck are the values of the simple function. Then use the above formula to define
the integral. Next suppose the Ek are disjoint but the ck are not necessarily distinct. Let the
distinct values of the ck be a1, · · · ,am

∑
k

ckXEk = ∑
j

a j

(
∑

i:ci=a j

XEi

)
= ∑

j
a jν

 ⋃
i:ci=a j

Ei


= ∑

j
a j ∑

i:ci=a j

ν (Ei) = ∑
k

ckν (Ek)
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and so the same formula for the integral of a simple function is obtained in this case also.
Now consider two simple functions

s =
n

∑
k=1

akXEk , t =
m

∑
j=1

b jXFj

where the ak and b j are the distinct values of the simple functions. Then from what was
just shown,

∫
(αs+β t)dν =

∫ ( n

∑
k=1

m

∑
j=1

αakXEk∩Fj +
m

∑
j=1

n

∑
k=1

βb jXEk∩Fj

)
dν

=
∫ (

∑
j,k

αakXEk∩Fj +βb jXEk∩Fj

)
dν

= ∑
j,k
(αak +βb j)ν (Ek ∩Fj)

=
n

∑
k=1

m

∑
j=1

αakν (Ek ∩Fj)+
m

∑
j=1

n

∑
k=1

βb jν (Ek ∩Fj)

=
n

∑
k=1

αakν (Ek)+
m

∑
j=1

βb jν (Fj)

= α

∫
sdν +β

∫
tdν

Thus the integral is linear on simple functions so, in particular, the formula given in the
above definition is well defined regardless.

So what about the definition for f ∈ L∞ (Ω; µ)? Since f ∈ L∞, there is a set of µ mea-
sure zero N such that on NC there exists a sequence of simple functions which converges
uniformly to f on NC. Consider sn and sm. As in the above, they can be written as

p

∑
k=1

cn
kXEk ,

p

∑
k=1

cm
k XEk

respectively, where the Ek are disjoint having union equal to Ω. Then by uniform conver-
gence, if m,n are sufficiently large,

∣∣cn
k− cm

k

∣∣< ε or else the corresponding Ek is contained
in NC a set of ν measure 0 thanks to ν ≪ µ . Hence∣∣∣∣∫ sndν−

∫
smdν

∣∣∣∣ =

∣∣∣∣∣ p

∑
k=1

(cn
k− cm

k )ν (Ek)

∣∣∣∣∣
≤

p

∑
k=1
|cn

k− cm
k | |ν (Ek)| ≤ ε ||ν ||

and so the integrals of these simple functions converge. Similar reasoning shows that the
definition is not dependent on the choice of approximating sequence. ■
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Note also that for s simple,∣∣∣∣∫ sdν

∣∣∣∣≤ ||s||L∞ |ν |(Ω) = ||s||L∞ ||ν ||

Next the dual space of L∞ (Ω; µ) will be identified with BV (Ω; µ). First here is a simple
observation. Let ν ∈ BV (Ω; µ) . Then define the following for f ∈ L∞ (Ω; µ) .

Tν ( f )≡
∫

f dν

Lemma 20.4.5 For Tν just defined,

|Tν f | ≤ || f ||L∞ ||ν ||

Proof: As noted above, the conclusion true if f is simple. Now if f is in L∞, then it
is the uniform limit of simple functions off a set of µ measure zero. Therefore, by the
definition of the Tν ,

|Tν f |= lim
n→∞
|Tν sn| ≤ lim inf

n→∞
||sn||L∞ ||ν ||= || f ||L∞ ||ν || . ■

Thus each Tν is in (L∞ (Ω; µ))′ .■
Here is the representation theorem, due to Kantorovitch, for the dual of L∞ (Ω; µ).

Theorem 20.4.6 Let θ : BV (Ω; µ)→ (L∞ (Ω; µ))′ be given by θ (ν) ≡ Tν . Then θ is one
to one, onto and preserves norms.

Proof: It was shown in the above lemma that θ maps into (L∞ (Ω; µ))′ . It is obvious
that θ is linear. Why does it preserve norms? From the above lemma,

||θν || ≡ sup
|| f ||∞≤1

|Tν f | ≤ ||ν ||

It remains to turn the inequality around. Let π (Ω) be a partition. Then

∑
A∈π(Ω)

|ν (A)|= ∑
A∈π(Ω)

sgn(ν (A))ν (A)≡
∫

f dν

where sgn(ν (A)) is defined to be a complex number of modulus 1 such that

sgn(ν (A))ν (A) = |ν (A)|

and
f (ω) = ∑

A∈π(Ω)

sgn(ν (A))XA (ω) .

Therefore, choosing π (Ω) suitably, since || f ||
∞
≤ 1,

||ν ||− ε = |ν |(Ω)− ε ≤ ∑
A∈π(Ω)

|ν (A)|= Tν ( f )

= |Tν ( f )|= |θ (ν)( f )| ≤ ||θ (ν)|| ≤ ||ν ||
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Thus θ preserves norms. Hence it is one to one also. Why is θ onto?
Let Λ ∈ (L∞ (Ω; µ))′ . Then define

ν (E)≡ Λ(XE) (20.4.14)

This is obviously finitely additive because Λ is linear. Also, if µ (E) = 0, then XE = 0 in
L∞ and so Λ(XE) = 0. If π (Ω) is any partition of Ω, then

∑
A∈π(Ω)

|ν (A)| = ∑
A∈π(Ω)

|Λ(XA)|= ∑
A∈π(Ω)

sgn(Λ(XA))Λ(XA)

= Λ

(
∑

A∈π(Ω)

sgn(Λ(XA))XA

)
≤ ||Λ||

and so ||ν || ≤ ||Λ|| showing that ν ∈ BV (Ω; µ). Also from 20.4.14, if s = ∑
n
k=1 ckXEk is a

simple function,

∫
sdν =

n

∑
k=1

ckν (Ek) =
n

∑
k=1

ckΛ
(
XEk

)
= Λ

(
n

∑
k=1

ckXEk

)
= Λ(s)

Then letting f ∈ L∞ (Ω; µ) , there exists a sequence of simple functions converging to f
uniformly off a set of µ measure zero and so passing to a limit in the above with s replaced
with sn it follows that

Λ( f ) =
∫

f dν

and so θ is onto. ■

20.5 Non σ Finite Case
It turns out that for p> 1, you don’t have to assume the measure space is σ finite. The Riesz
representation theorem holds always. The proof involves the notion of uniform convexity.
First recall Clarkson’s inequalities. These fundamental inequalities were used to verify that
Lp (Ω) is uniformly convex. More precisely, the unit ball in Lp (Ω) is uniformly convex.

Lemma 20.5.1 Let 2≤ p. Then∥∥∥∥ f +g
2

∥∥∥∥p

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥p

Lp
≤ 1

2
(
|| f ||pLp + ||g||pLp

)
Let 1 < p < 2. then for 1/p+1/q = 1,∥∥∥∥ f +g

2

∥∥∥∥q

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥q

Lp
≤
(

1
2
|| f ||pLp +

1
2
||g||pLp

)q/p

Recall the following definition of uniform convexity.

Definition 20.5.2 A Banach space, X, is said to be uniformly convex if whenever ∥xn∥ ≤ 1
and

∥∥ xn+xm
2

∥∥→ 1 as n,m→∞, then {xn} is a Cauchy sequence and xn→ x where ∥x∥= 1.
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Observe that Clarkson’s inequalities imply Lp is uniformly convex for all p > 1. Uni-
formly convex spaces have a very nice property which is described in the following lemma.
Roughly, this property is that any element of the dual space achieves its norm at some point
of the closed unit ball.

Lemma 20.5.3 Let X be uniformly convex and let φ ∈ X ′. Then there exists x ∈ X such
that

||x||= 1, φ (x) = ||φ ||.

Proof: Let ||∥x̃n∥ ≤ 1 and |φ (x̃n) | → ||φ ||. Let xn = wnx̃n where |wn|= 1 and

wnφ x̃n = |φ x̃n|.

Thus φ (xn) = |φ (xn) |= |φ (x̃n) | → ||φ ||.

φ (xn)→ ||φ ||, ∥xn∥ ≤ 1.

We can assume, without loss of generality, that

φ (xn) = |φ (xn)| ≥
||φ ||

2

and φ ̸= 0.
Claim || xn+xm

2 || → 1 as n,m→ ∞.
Proof of Claim: Let n,m be large enough that φ (xn) , φ (xm)≥ ||φ ||− ε

2 where 0 < ε .
Then ∥xn + xm∥ ̸= 0 because if it equals 0, then xn = −xm so −φ (xn) = φ (xm) but both
φ (xn) and φ (xm) are positive. Therefore consider xn+xm

||xn+xm|| , a vector of norm 1. Thus,

||φ || ≥ |φ
(

(xn + xm)

||xn + xm||

)
| ≥ 2||φ ||− ε

||xn + xm||
.

Hence
||∥xn + xm∥∥φ∥ ≥ 2∥φ∥− ε .

Since ε > 0 is arbitrary, limn,m→∞ ∥xn + xm∥= 2. This proves the claim.
By uniform convexity, {xn} is Cauchy and xn→ x, ∥x∥= 1. Thus

φ (x) = lim
n→∞

φ (xn) = ∥φ∥

■
The proof of the Riesz representation theorem will be based on the following lemma

which says that if you can show a directional derivative exists, then it can be used to rep-
resent a functional in terms of this directional derivative. It is very interesting for its own
sake.

Lemma 20.5.4 (McShane) Let X be a complex normed linear space and let φ ∈ X ′. Sup-
pose there exists x ∈ X , ||x||= 1 with φ (x) = ||φ || ̸= 0. Let y ∈ X and let ψy(t) = ||x+ ty||
for t ∈ R. Suppose ψ ′y(0) exists for each y ∈ X. Then for all y ∈ X,

ψ
′
y(0)+ iψ ′−iy(0) = ||φ ||−1

φ (y) .
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Proof: Suppose first that ||φ || = 1. Then by assumption, there is x such that ∥x∥ = 1
and φ (x) = 1 = ∥φ∥ . Then φ (y−φ(y)x) = 0 and so

φ(x+ t(y−φ(y)x)) = φ (x) = 1 = ||φ ||.

Therefore, ||x+ t(y−φ(y)x)|| ≥ 1 since otherwise ||x+ t(y−φ(y)x)||= r < 1 and so

φ

(
(x+ t(y−φ(y)x))

1
r

)
=

1
r

φ (x) =
1
r

which would imply that ||φ ||> 1.
Also for small t, |φ(y)t|< 1, and so

1≤ ||x+ t (y−φ(y)x)||= ||(1−φ(y)t)x+ ty||

≤ |1−φ (y) t|
∥∥∥∥x+

t
1−φ (y) t

y
∥∥∥∥.

Divide both sides by |1−φ (y) t|. Using the standard formula for the sum of a geometric
series,

1+ tφ (y)+o(t) =
1

1− tφ(y)

Therefore,

1
|1−φ (y) t|

= |1+φ (y) t +o(t)| ≤
∥∥∥∥x+

t
1−φ (y) t

y
∥∥∥∥= ∥x+ ty+o(t)∥ (20.5.15)

where limt→0 o(t)(t−1) = 0. Thus,

|1+φ (y) t| ≤ ∥x+ ty∥+o(t)

Now |1+ tφ (y)|−1≥ 1+ t Reφ (y)−1 = t Reφ (y) .
Thus for t > 0,

Reφ (y) ≤ |1+ tφ (y)|−1
t

∥x∥=1
≤ ||x+ ty||− ||x||

t
+

o(t)
t

and for t < 0,

Reφ (y)≥ |1+ tφ (y)|−1
t

≥ ||x+ ty||− ||x||
t

+
o(t)

t
By assumption, letting t→ 0+ and t→ 0−,

Reφ (y) = lim
t→0

||x+ ty||− ||x||
t

= ψ
′
y (0) .

Now
φ (y) = Reφ(y)+ i Imφ(y)

so
φ(−iy) =−i(φ (y)) =−iReφ(y)+ Imφ(y)



20.5. NON σ FINITE CASE 625

and
φ(−iy) = Reφ (−iy)+ i Imφ (−iy).

Hence
Reφ(−iy) = Imφ(y).

Consequently,

φ (y) = Reφ(y)+ i Imφ(y) = Reφ (y)+ iReφ (−iy)

= ψ
′
y(0)+ iψ ′−iy(0).

This proves the lemma when ||φ ||= 1. For arbitrary φ ̸= 0, let φ (x) = ||φ ||, ||x||= 1. Then
from above, if φ 1 (y)≡ ||φ ||

−1
φ (y) , ||φ 1||= 1 and so from what was just shown,

φ 1 (y) =
φ(y)
||φ ||

= ψ
′
y(0)+ iψ−iy(0) ■

Now here are some short observations. For t ∈ R, p > 1, and x,y ∈ C, x ̸= 0

lim
t→0

|x+ ty|p−|x|p

t
= p |x|p−2 (RexRey+ Imx Imy)

= p |x|p−2 Re(x̄y) (20.5.16)

Also from convexity of f (r) = rp, for |t|< 1,

|x+ ty|p−|x|p ≤ ||x|+ |t| |y||p−|x|p

=

[
(1+ |t|)

(
|x|+ |t| |y|

1+ |t|

)]p

−|x|p

≤ (1+ |t|)p |x|p

1+ |t|
+
|t| |y|p

1+ |t|
− |x|p

≤ (1+ |t|)p−1 (|x|p + |t| |y|p)−|x|p

≤
(
(1+ |t|)p−1−1

)
|x|p +2p−1 |t| |y|p

Now for f (t) ≡ (1+ t)p−1 , f ′ (t) is uniformly bounded, depending on p, for t ∈ [0,1] .
Hence the above is dominated by an expression of the form

Cp (|x|p + |y|p) |t| (20.5.17)

The above lemma and uniform convexity of Lp can be used to prove a general version
of the Riesz representation theorem next. Let p > 1 and let η : Lq→ (Lp)′ be defined by

η(g)( f ) =
∫

Ω

g f dµ. (20.5.18)



626 CHAPTER 20. REPRESENTATION THEOREMS

Theorem 20.5.5 (Riesz representation theorem p > 1) The map η is 1-1, onto, continuous,
and

||ηg||= ||g||, ||η ||= 1.

Proof: Obviously η is linear. Suppose ηg = 0. Then 0 =
∫

g f dµ for all f ∈ Lp. Let
f = |g|q−2g. Then f ∈ Lpand so 0 =

∫
|g|qdµ. Hence g = 0 and η is one to one. That

ηg ∈ (Lp)′ is obvious from the Holder inequality. In fact,

|η(g)( f )| ≤ ||g||q|| f ||p,

and so ||η(g)|| ≤ ||g||q. To see that equality holds, let

f = |g|q−2g ||g||1−q
q .

Then || f ||p = 1 and

η(g)( f ) =
∫

Ω

|g|qdµ ∥g∥1−q
q = ||g||q.

Thus ||η ||= 1.
It remains to show η is onto. Let φ ∈ (Lp)′. Is φ = ηg for some g ∈ Lq? Without loss of

generality, assume φ ̸= 0. By uniform convexity of Lp, Lemma 20.5.3, there exists g such
that

φg = ||φ ||, g ∈ Lp, ||g||= 1.

For f ∈ Lp, define φ f (t)≡
∫

Ω
|g+ t f |p dµ. Thus

ψ f (t)≡ ||g+ t f ||p ≡ φ f (t)
1
p .

Does φ
′
f (0) exist? Let [g = 0] denote the set {x : g(x) = 0}.

φ f (t)−φ f (0)
t

=
∫

(|g+ t f |p−|g|p)
t

dµ

From 20.5.17, the integrand is bounded by Cp (| f |p + |g|p) . Therefore, using 20.5.16, the
dominated convergence theorem applies and it follows φ

′
f (0) =

lim
t→0

φ f (t)−φ f (0)
t

= lim
t→0

[∫
[g=0]
|t|p−1 | f |pdµ +

∫
[g̸=0]

(|g+ t f |p−|g|p)
t

dµ

]

= p
∫
[g̸=0]
|g|p−2 Re(ḡ f )dµ = p

∫
|g|p−2 Re(ḡ f )dµ

Hence
ψ
′
f (0) = ||g||

−p
q

∫
|g(x)|p−2 Re(g(x) f̄ (x))dµ .

Note 1
p −1 =− 1

q . Therefore,

ψ
′
−i f (0) = ||g||

−p
q

∫
|g(x)|p−2 Re(ig(x) f̄ (x))dµ.
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But Re(ig f̄ ) = Im(−g f̄ ) and so by the McShane lemma,

φ ( f ) = ||φ || ||g||
−p
q

∫
|g(x)|p−2[Re(g(x) f̄ (x))+ i Re(ig(x) f̄ (x))]dµ

= ||φ || ||g||
−p
q

∫
|g(x)|p−2[Re(g(x) f̄ (x))+ i Im(−g(x) f̄ (x))]dµ

= ||φ || ||g||
−p
q

∫
|g(x)|p−2g(x) f (x)dµ .

This shows that
φ = η(||φ || ||g||

−p
q |g|p−2g)

and verifies η is onto. ■

20.6 The Dual Space Of C0 (X)

Consider the dual space of C0(X) where X is a locally compact Hausdorff space. It will
turn out to be a space of measures. To show this, the following lemma will be convenient.
Recall this space is defined as follows.

Definition 20.6.1 f ∈C0 (X) means that for every ε > 0 there exists a compact set K such
that | f (x)|< ε whenever x /∈ K. Recall the norm on this space is

|| f ||
∞
≡ || f || ≡ sup{| f (x)| : x ∈ X}

Lemma 20.6.2 Suppose λ is a mapping which has nonnegative values which is defined on
the nonnegative functions in C0 (X) such that

λ (a f +bg) = aλ ( f )+bλ (g) (20.6.19)

whenever a,b ≥ 0 and f ,g ≥ 0. Then there exists a unique extension of λ to all of C0 (X),
Λ such that whenever f ,g ∈C0 (X) and a,b ∈ C, it follows

Λ(a f +bg) = aΛ( f )+bΛ(g) .

If
|λ ( f )| ≤C || f ||

∞

then
|Λ f | ≤C || f ||

∞

Proof: Let C0(X ;R) be the real-valued functions in C0(X) and define

ΛR( f ) = λ f+−λ f−

for f ∈C0(X ;R). Use the identity

( f1 + f2)
++ f−1 + f−2 = f+1 + f+2 +( f1 + f2)

−
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and 20.6.19 to write

λ ( f1 + f2)
+−λ ( f1 + f2)

− = λ f+1 −λ f−1 +λ f+2 −λ f−2 ,

it follows that ΛR( f1 + f2) = ΛR( f1)+ΛR( f2). To show that ΛR is linear, it is necessary to
verify that ΛR(c f ) = cΛR( f ) for all c ∈ R. But

(c f )± = c f±,

if c≥ 0 while
(c f )+ =−c( f )−,

if c < 0 and
(c f )− = (−c) f+,

if c < 0. Thus, if c < 0,

ΛR(c f ) = λ (c f )+−λ (c f )− = λ
(
(−c) f−

)
−λ

(
(−c) f+

)
=−cλ ( f−)+ cλ ( f+) = c(λ ( f+)−λ ( f−)) = cΛR ( f ) .

A similar formula holds more easily if c≥ 0. Now let

Λ f = ΛR(Re f )+ iΛR(Im f )

for arbitrary f ∈C0(X). This is linear as desired.
Here is why. It is obvious that Λ( f +g) = Λ( f )+Λ(g) from the fact that taking the

real and imaginary parts are linear operations. The only thing to check is whether you can
factor out a complex scalar.

Λ((a+ ib) f ) = Λ(a f )+Λ(ib f )

≡ ΛR (aRe f )+ iΛR (a Im f )+ΛR (−b Im f )+ iΛR (bRe f )

because ib f = ibRe f −b Im f and so Re(ib f ) =−b Im f and Im(ib f ) = bRe f . Therefore,
the above equals

= (a+ ib)ΛR (Re f )+ i(a+ ib)ΛR (Im f )

= (a+ ib)(ΛR (Re f )+ iΛR (Im f )) = (a+ ib)Λ f

The extension is obviously unique because all the above is required in order for Λ to be
linear.

It remains to verify the claim about continuity of Λ. From the definition of λ , if 0 ≤
g≤ f , then

λ ( f ) = λ ( f −g+g) = λ ( f −g)+λ (g)≥ λ (g)

|ΛR f | ≡
∣∣λ f+−λ f−

∣∣≤max
(
λ f+,λ f−

)
≤ λ (| f |)≤C || f ||

∞

Then letting ωΛ f = |Λ f | , |ω|= 1, and using the above,

|Λ f | = ωΛ f = Λ(ω f )≡ ΛR (Re(ω f )) = |ΛR (Re(ω f ))|
≤ C ||Re(ω f )|| ≤C || f ||

∞
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This proves the lemma.
Let L ∈ C0(X)′. Also denote by C+

0 (X) the set of nonnegative continuous functions
defined on X . Define for f ∈C+

0 (X)

λ ( f ) = sup{|Lg| : |g| ≤ f}.

Note that λ ( f ) < ∞ because |Lg| ≤ ||L||||g|| ≤ ||L|||| f || for |g| ≤ f . Then the following
lemma is important.

Lemma 20.6.3 If c≥ 0, λ (c f ) = cλ ( f ), f1 ≤ f2 implies λ f1 ≤ λ f2, and

λ ( f1 + f2) = λ ( f1)+λ ( f2).

Also
0≤ λ ( f )≤ ||L|| || f ||

∞

Proof: The first two assertions are easy to see so consider the third.
For f j ∈C+

0 (X) , there exists gi ∈C0 (X) such that |gi| ≤ fi and

λ ( f1)+λ ( f2) ≤ |L(g1)|+ |L(g2)|+2ε

= L(ω1g1)+L(ω2g2)+2ε

= L(ω1g1 +ω2g2)+2ε

= |L(ω1g1 +ω2g2)|+2ε

where |gi| ≤ fi and |ω i|= 1 and ω iL(gi) = |L(gi)|. Now

|ω1g1 +ω2g2| ≤ |g1|+ |g2| ≤ f1 + f2

and so the above shows

λ ( f1)+λ ( f2)≤ λ ( f1 + f2)+2ε.

Since ε is arbitrary, λ ( f1)+λ ( f2)≤ λ ( f1 + f2) . It remains to verify the other inequality.
Now let |g| ≤ f1 + f2, |Lg| ≥ λ ( f1 + f2)− ε . Let

hi (x) =

{
fi(x)g(x)

f1(x)+ f2(x)
if f1 (x)+ f2 (x)> 0,

0 if f1 (x)+ f2 (x) = 0.

Then hi is continuous and h1(x)+ h2(x) = g(x), |hi| ≤ fi. The reason it is continuous at
a point where f1 (x)+ f2 (x) = 0 is that at every point y where f1 (y)+ f2 (y) > 0, the top
description of the function gives ∣∣∣∣ fi (y)g(y)

f1 (y)+ f2 (y)

∣∣∣∣≤ |g(y)|
Therefore,

−ε +λ ( f1 + f2) ≤ |Lg| ≤ |Lh1 +Lh2| ≤ |Lh1|+ |Lh2|
≤ λ ( f1)+λ ( f2).
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Since ε > 0 is arbitrary, this shows

λ ( f1 + f2)≤ λ ( f1)+λ ( f2)≤ λ ( f1 + f2)

The last assertion follows from

λ ( f ) = sup{|Lg| : |g| ≤ f} ≤ sup
||g||∞≤|| f ||∞

||L|| ||g||
∞
≤ ||L|| || f ||

∞

which proves the lemma.
Let Λ be defined in Lemma 20.6.2. Then Λ is linear by this lemma and also satisfies

|Λ f | ≤ ||L|| || f ||
∞

. (20.6.20)

Also, if f ≥ 0,
Λ f = ΛR f = λ ( f )≥ 0.

Therefore, Λ is a positive linear functional on C0(X). In particular, it is a positive linear
functional on Cc (X). By Theorem 12.3.2 on Page 288, there exists a unique measure µ

such that
Λ f =

∫
X

f dµ

for all f ∈Cc(X). This measure is inner regular on all open sets and on all measurable sets
having finite measure. In fact, it is actually a finite measure.

Lemma 20.6.4 Let L ∈ C0 (X)′ as above. Then letting µ be the Radon measure just de-
scribed, it follows µ is finite and

µ (X) = ||Λ||= ||L||

Proof: First of all, why is ||Λ||= ||L||? From 20.6.20 it follows ||Λ|| ≤ ||L||. But also

|Lg| ≤ λ (|g|) = Λ(|g|)≤ ||Λ|| ||g||
∞

and so by definition of the operator norm, ||L|| ≤ ||Λ|| .
Now X is an open set and so

µ (X) = sup{µ (K) : K ⊆ X}

and so letting K ≺ f ≺ X for one of these K, it also follows

µ (X) = sup{Λ f : f ≺ X}

However, for such f ≺ X ,

0≤ Λ f = ΛR f ≤ ||L|| || f ||
∞
= ||L||

and so
µ (X)≤ ||L|| .
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Now since Cc (X) is dense in C0 (X) , there exists f ∈Cc (X) such that || f || ≤ 1 and

|Λ f |+ ε > ||Λ||= ||L||

Then also f ≺ X and so
||L||− ε < |Λ f |= Λ f ≤ µ (X)

Since ε is arbitrary, this shows ||L||= µ (X). This proves the lemma.
What follows is the Riesz representation theorem for C0(X)′.

Theorem 20.6.5 Let L ∈ (C0(X))′ for X a locally compact Hausdorf space. Then there
exists a finite Radon measure µ and a function σ ∈ L∞(X ,µ) such that for all f ∈C0 (X) ,

L( f ) =
∫

X
f σdµ.

Furthermore,
µ (X) = ||L|| , |σ |= 1 a.e.

and if

ν (E)≡
∫

E
σdµ

then µ = |ν |

Proof: From the above there exists a unique Radon measure µ such that for all f ∈
Cc (X) ,

Λ f =
∫

X
f dµ

Then for f ∈Cc (X) ,

|L f | ≤ Λ(| f |) =
∫

X
| f |dµ = || f ||L1(µ).

Since µ is both inner and outer regular thanks to it being finite, Cc(X) is dense in L1(X ,µ).
(See Theorem 15.2.4 for more than is needed.) Therefore L extends uniquely to an element
of (L1(X ,µ))′, L̃. By the Riesz representation theorem for L1 for finite measure spaces,
there exists a unique σ ∈ L∞(X ,µ) such that for all f ∈ L1 (X ,µ) ,

L̃ f =
∫

X
f σdµ

In particular, for all f ∈C0 (X) ,

L f =
∫

X
f σdµ

and it follows from Lemma 20.6.4, µ (X) = ||L||.
It remains to verify |σ |= 1 a.e. For any f ≥ 0,

Λ f ≡
∫

X
f dµ ≥ |L f |=

∣∣∣∣∫X
f σdµ

∣∣∣∣
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Now if E is measurable, the regularity of µ implies there exists a sequence of bounded
functions fn ∈Cc (X) such that fn (x)→XE (x) a.e. Then using the dominated convergence
theorem in the above,∫

E
dµ = lim

n→∞

∫
X

fndµ ≥ lim
n→∞

∣∣∣∣∫X
fnσdµ

∣∣∣∣= ∣∣∣∣∫E
σdµ

∣∣∣∣
and so if µ (E)> 0,

1≥
∣∣∣∣ 1
µ (E)

∫
E

σdµ

∣∣∣∣
which shows from Lemma 20.2.7 that |σ | ≤ 1 a.e. But also, choosing f1 appropriately,
|| f1||∞ ≤ 1, and letting ωL f1 = |L f1| ,

µ (X) = ||L||= sup
|| f ||∞≤1

|L f | ≤ |L f1|+ ε

≤
∫

X
f1ωσdµ + ε =

∫
X

Re( f1ωσ)dµ + ε

≤
∫

X
|σ |dµ + ε

and since ε is arbitrary,

µ (X)≤
∫

X
|σ |dµ

which requires |σ | = 1 a.e. since it was shown to be no larger than 1 and if it is smaller
than 1 on a set of positive measure, then the above could not hold.

It only remains to verify µ = |ν |. By Corollary 20.2.10,

|ν |(E) =
∫

E
|σ |dµ =

∫
E

1dµ = µ (E)

and so µ = |ν | . This proves the Theorem.
Sometimes people write ∫

X
f dν ≡

∫
X

f σd |ν |

where σd |ν | is the polar decomposition of the complex measure ν . Then with this conven-
tion, the above representation is

L( f ) =
∫

X
f dν , |ν |(X) = ||L|| .

20.7 The Dual Space Of C0(X), Another Approach
It is possible to obtain the above theorem by a slick trick after first proving it for the special
case where X is a compact Hausdorff space. For X a locally compact Hausdorff space, X̃
denotes the one point compactification of X . Thus, X̃ = X ∪{∞} and the topology of X̃
consists of the usual topology of X along with all complements of compact sets which are
defined as the open sets containing ∞. Also C0 (X) will denote the space of continuous
functions, f , defined on X such that in the topology of X̃ , limx→∞ f (x) = 0. For this space
of functions, || f ||0 ≡ sup{| f (x)| : x ∈ X} is a norm which makes this into a Banach space.
Then the generalization is the following corollary.
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Corollary 20.7.1 Let L ∈ (C0 (X))′ where X is a locally compact Hausdorff space. Then
there exists σ ∈ L∞ (X ,µ) for µ a finite Radon measure such that for all f ∈C0 (X),

L( f ) =
∫

X
f σdµ.

Proof: Let
D̃≡

{
f ∈C

(
X̃
)

: f (∞) = 0
}
.

Thus D̃ is a closed subspace of the Banach space C
(

X̃
)

. Let θ : C0 (X)→ D̃ be defined by

θ f (x) =
{

f (x) if x ∈ X ,
0 if x = ∞.

Then θ is an isometry of C0 (X) and D̃. (||θu||= ||u|| .)The following diagram is obtained.

C0 (X)′
θ
∗
←

(
D̃
)′ i∗← C

(
X̃
)′

C0 (X) →
θ

D̃ →
i

C
(

X̃
)

By the Hahn Banach theorem, there exists L1 ∈C
(

X̃
)′

such that θ
∗i∗L1 = L. Now apply

Theorem 20.6.5 to get the existence of a finite Radon measure, µ1, on X̃ and a function

σ ∈ L∞

(
X̃ ,µ1

)
, such that

L1g =
∫

X̃
gσdµ1.

Letting the σ algebra of µ1 measurable sets be denoted by S1, define

S ≡{E \{∞} : E ∈S1}

and let µ be the restriction of µ1 to S . If f ∈C0 (X),

L f = θ
∗i∗L1 f ≡ L1iθ f = L1θ f =

∫
X̃

θ f σdµ1 =
∫

X
f σdµ.

This proves the corollary.

20.8 More Attractive Formulations
In this section, Corollary 20.7.1 will be refined and placed in an arguably more attractive
form. The measures involved will always be complex Borel measures defined on a σ

algebra of subsets of X , a locally compact Hausdorff space.

Definition 20.8.1 Let λ be a complex measure. Then
∫

f dλ ≡
∫

f hd |λ | where hd |λ | is
the polar decomposition of λ described above. The complex measure, λ is called regular
if |λ | is regular.
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The following lemma says that the difference of regular complex measures is also reg-
ular.

Lemma 20.8.2 Suppose λ i, i = 1,2 is a complex Borel measure with total variation finite2

defined on X , a locally compact Hausdorf space. Then λ 1−λ 2 is also a regular measure
on the Borel sets.

Proof: Let E be a Borel set. That way it is in the σ algebras associated with both
λ i. Then by regularity of λ i, there exist K and V compact and open respectively such that
K ⊆ E ⊆V and |λ i|(V \K)< ε/2. Therefore,

∑
A∈π(V\K)

|(λ 1−λ 2)(A)| = ∑
A∈π(V\K)

|λ 1 (A)−λ 2 (A)|

≤ ∑
A∈π(V\K)

|λ 1 (A)|+ |λ 2 (A)|

≤ |λ 1|(V \K)+ |λ 2|(V \K)< ε.

Therefore, |λ 1−λ 2|(V \K)≤ ε and this shows λ 1−λ 2 is regular as claimed.

Theorem 20.8.3 Let L ∈C0 (X)′ Then there exists a unique complex measure, λ with |λ |
regular and Borel, such that for all f ∈C0 (X) ,

L( f ) =
∫

X
f dλ .

Furthermore, ||L||= |λ |(X) .

Proof: By Corollary 20.7.1 there exists σ ∈ L∞ (X ,µ) where µ is a Radon measure
such that for all f ∈C0 (X) ,

L( f ) =
∫

X
f σdµ.

Let a complex Borel measure, λ be given by

λ (E)≡
∫

E
σdµ.

This is a well defined complex measure because µ is a finite measure. By Corollary 20.2.10

|λ |(E) =
∫

E
|σ |dµ (20.8.21)

and σ = g |σ | where gd |λ | is the polar decomposition for λ . Therefore, for f ∈C0 (X) ,

L( f ) =
∫

X
f σdµ =

∫
X

f g |σ |dµ =
∫

X
f gd |λ | ≡

∫
X

f dλ . (20.8.22)

From 20.8.21 and the regularity of µ, it follows that |λ | is also regular.

2Recall this is automatic for a complex measure.
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What of the claim about ||L||? By the regularity of |λ | , it follows that C0 (X) (In fact,
Cc (X)) is dense in L1 (X , |λ |). Since |λ | is finite, g ∈ L1 (X , |λ |). Therefore, there exists
a sequence of functions in C0 (X) ,{ fn} such that fn → g in L1 (X , |λ |). Therefore, there
exists a subsequence, still denoted by { fn} such that fn (x)→ g(x) |λ | a.e. also. But since
|g(x)|= 1 a.e. it follows that hn (x)≡ fn(x)

| fn(x)|+ 1
n

also converges pointwise |λ | a.e. Then from

the dominated convergence theorem and 20.8.22

||L|| ≥ lim
n→∞

∫
X

hngd |λ |= |λ |(X) .

Also, if || f ||C0(X) ≤ 1, then

|L( f )|=
∣∣∣∣∫X

f gd |λ |
∣∣∣∣≤ ∫X

| f |d |λ | ≤ |λ |(X) || f ||C0(X)

and so ||L|| ≤ |λ |(X) . This proves everything but uniqueness.
Suppose λ and λ 1 both work. Then for all f ∈C0 (X) ,

0 =
∫

X
f d (λ −λ 1) =

∫
X

f hd |λ −λ 1|

where hd |λ −λ 1| is the polar decomposition for λ −λ 1. By Lemma 20.8.2 λ −λ 1 is reg-
ular and so, as above, there exists { fn} such that | fn| ≤ 1 and fn→ h pointwise. Therefore,∫

X d |λ −λ 1|= 0 so λ = λ 1. This proves the theorem.

20.9 Sequential Compactness In L1

Lemma 20.9.1 Let C ≡ {Ei}∞

i=1 be a countable collection of sets and let Ω1 ≡ ∪∞
i=1Ei.

Then there exists an algebra of sets, A , such that A ⊇ C and A is countable.

Proof: Let C1 denote all finite unions of sets of C and also include Ω1 and /0. Thus C1
is countable. Next let B1 denote all sets of the form Ω1 \A such that A ∈ C1. Next let C2
denote all finite unions of sets of B1∪C1. Then let B2 denote all sets of the form Ω1 \A
such that A ∈ C2 and let C3 =B2∪C2. Continuing this way yields an increasing sequence,
{Cn} each of which is countable. Let

A ≡ ∪∞
i=1Ci.

Then A is countable. Also A is an algebra. Here is why. Suppose A,B ∈A . Then there
exists n such that both A,B ∈ Cn−1. It follows A∪B ∈ Cn ⊆ A from the construction. It
only remains to show that A \B ∈ A . Taking complements with respect to Ω1, it follows
from the construction that AC,BC are both in Bn−1 ⊆ Cn. Thus,

AC ∪B ∈ Cn

and so
A\B =

(
AC ∪B

)C ∈Bn ⊆ Cn+1 ⊆A .

This shows A is an algebra of sets of Ω1 which is also countable and contains C .
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Lemma 20.9.2 Let { fn} be a sequence of functions in L1 (Ω,S ,µ). Then there exists a σ

finite set of S , Ω1, and a σ algebra of subsets of Ω1,S1, such that S1 ⊆S , fn = 0 off
Ω1, fn ∈ L1 (Ω1,S1,µ), and S1 = σ (A ), the σ algebra generated by A , for some A a
countable algebra.

Proof: Let En denote the sets which are of the form{
f−1
n (B(z,r)) : z ∈Q+ iQ,r > 0,r ∈Q, and 0 /∈ B(z,r)

}
Since each En is countable, so is

E ≡ ∪∞
n=1En

Now let Ω1 ≡ ∪E . I claim Ω1 is σ finite. To see this, let

Wn =

{
ω ∈Ω : | fk (ω)|> 1

n
for some k = 1,2, · · · ,n

}
Thus if ω ∈Wn, it follows that for some r ∈Q, z ∈Q+ iQ sufficiently close to fk (ω)

ω ∈ f−1
k (B(z,r)) ∈ Ek

and so ω ∈ ∪n
k=1Ek and consequently, Wn ∈ ∪n

k=1Ek. Also

µ (Wn)
1
n
≤
∫

Wn

n

∑
k=1
| fk (ω)|dµ < ∞.

Now if ω ∈Ω1, then for some k,ω is contained in a set of Ek. Therefore, for that k,

fk (ω) ∈ B(z,r)

where r is a positive rational number and z ∈Q+ iQ and B(z,r) does not contain 0. There-
fore, fk (ω) is at a positive distance from 0 and so for large enough n,ω ∈Wn. Take n so
large that 1/n is less than the distance from B(z,r) to 0 and also larger than k.

By Lemma 20.9.1 there exists a countable algebra of sets A which contains E . Let
S1 ≡ σ (A ). It remains to show fn (ω) = 0 off Ω1 for all n. Let ω /∈ Ω1. Then ω is not
contained in any set of Ek and so fk (ω) cannot be nonzero. Hence fk (ω) = 0. This proves
the lemma.

The following Theorem is the main result on sequential compactness in L1 (Ω,S ,µ).

Theorem 20.9.3 Let K ⊆ L1 (Ω,S ,µ) be such that for some C > 0 and all f ∈ K,

|| f ||L1 ≤C (20.9.23)

and K also satisfies the property that if {En} is a decreasing sequence of measurable sets
such that ∩∞

n=1En = /0, then for all ε > 0 there exists nε such that if n≥ nε , then∣∣∣∣∫En

f dµ

∣∣∣∣< ε (20.9.24)

for all f ∈ K. Then every sequence of functions of K has an L1 (Ω,µ) weakly convergent
subsequence.
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Proof: Take { fn} a sequence in K and let A ,S1,Ω1 be as in Lemma 20.9.2. Thus A
is a countable algebra and by assumption, for each E ∈A ,{∫

E
fndµ

}
is a bounded sequence and so there exists a convergent subsequence. Therefore, from a
Cantor diagonalization argument, there exists a subsequence, denoted by {gn} such that{∫

E
gndµ

}
converges for every E ∈A .

Let

M ≡
{

E ∈S1 = σ (A ) such that lim
n→∞

∫
E

gndµ exists
}
.

Then it has been shown that A ⊆M . Suppose Ek ↑ E where Ek ∈M . Then letting ε > 0
be given, the assumption shows that for k large enough,∣∣∣∣∫E\Ek

gndµ

∣∣∣∣< ε

for all gn. Therefore, picking such a k,∣∣∣∣∫E
gndµ−

∫
E

gmdµ

∣∣∣∣≤ 2ε +

∣∣∣∣∫Ek

gndµ−
∫

Ek

gmdµ

∣∣∣∣< 3ε

provided m,n are large enough. Therefore, {
∫

E gndµ} is a Cauchy sequence and so it
converges.

In the case that Ek ↓ E use the assumption to conclude there exists a k large enough that∣∣∣∣∫Ek\E
gndµ

∣∣∣∣< ε

for all gn. Then∣∣∣∣∫E
gndµ−

∫
E

gmdµ

∣∣∣∣ =

∣∣∣∣∫Ek

gndµ−
∫

Ek

gmdµ

∣∣∣∣
+

∣∣∣∣∫Ek\E
gndµ

∣∣∣∣+ ∣∣∣∣∫Ek\E
gmdµ

∣∣∣∣
≤

∣∣∣∣∫Ek

gndµ−
∫

Ek

gmdµ

∣∣∣∣+2ε < 3ε

provided m,n large enough. Again {
∫

E gndµ} is a Cauchy sequence. This shows M is a
monotone class and so by the monotone class theorem, Theorem 12.10.5 on Page 320 it
follows M = S 1 ≡ σ (A ).
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Therefore, picking E ∈S1, you can define a complex measure,

λ (E)≡ lim
n→∞

∫
E

gndµ

Then λ ≪ µ and so by Corollary 20.2.9 on Page 609 and the fact shown above that Ω1 is
σ finite there exists a unique S1 measurable g ∈ L1 (Ω1,µ) such that

λ (E) =
∫

E
gdµ ≡ lim

n→∞

∫
E

gndµ.

Extend g to equal 0 outside Ω1.
It remains to show {gn} converges weakly. It has just been shown that for every s a

simple function measurable with respect to S1∫
Ω

gnsdµ =
∫

Ω1

gnsdµ →
∫

Ω1

gsdµ =
∫

Ω

gsdµ

Now let f ∈ L∞ (Ω1,S1,µ) and pick a uniformly bounded representative of this function.
Then by Theorem 11.3.9 on Page 241 there exists a sequence of simple functions converg-
ing uniformly to f and so {∫

Ω

gn f dµ

}
converges because∣∣∣∣∫

Ω

gn f dµ−
∫

Ω

g f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

gnsdµ−
∫

Ω

gsdµ

∣∣∣∣
+
∫

Ω

|gn|εdµ +
∫

Ω

|g|εdµ

≤ Cε + ||g||1 ε +

∣∣∣∣∫
Ω

gnsdµ−
∫

Ω

gsdµ

∣∣∣∣
for suitable simple s satisfying supω∈Ω1

|s(ω)− f (ω)| < ε and the last term converges to
0 as n→ ∞.(

L1 (Ω,S ,µ)
)′ is a space I don’t know much about due to a possible lack of σ finite-

ness of Ω. However, it does follow that for i the inclusion map of L1 (Ω1,S1,µ) into
L1 (Ω,S ,µ) which merely extends the function as 0 off Ω1 and f ∈

(
L1 (Ω,S ,µ)

)′
, there

exists h ∈ L∞ (Ω1) such that for all g ∈ L1 (Ω1,S1,µ)

i∗ f (g) =
∫

Ω1

hgdµ.

This is because i∗ f ∈
(
L1 (Ω1,S1,µ)

)′ and Ω1 is σ finite and so the Riesz representation
theorem applies to get a unique such h ∈ L∞ (Ω1) . Then since all the gn equal 0 off Ω1,

f (gn) = i∗ f (gn) =
∫

Ω1

hgndµ
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for a unique h ∈ L∞ (Ω1,S1,µ) due to the Riesz representation theorem which holds here
because Ω1 was shown to be σ finite. Therefore,

lim
n→∞

f (gn) = lim
n→∞

∫
Ω1

hgndµ =
∫

Ω1

hgdµ = i∗ f (g) = f (g) .

This proves the theorem.
For more on this theorem see [45]. I have only discussed the sufficiency of the condi-

tions to give sequential compactness. They also discuss the necessity of these conditions.
There is another nice condition which implies the above results which is seen in books

on probability. It is the concept of equi integrability.

Definition 20.9.4 Let (Ω,S ,µ) be a measure space in which µ (Ω)< ∞. Then

K ⊆ L1 (Ω,S ,µ)

is said to be equi integrable if

lim
λ→∞

sup
f∈K

∫
[| f |≥λ ]

| f |dµ = 0

Lemma 20.9.5 Let K be an equi integrable set. Then there exists C > 0 such that for all
f ∈ K,

∥ f∥L1 ≤C (20.9.25)

and K also satisfies the property that if {En} is a decreasing sequence of measurable sets
such that ∩∞

n=1En = /0, then for all ε > 0 there exists nε such that if n≥ nε , then∣∣∣∣∫En

f dµ

∣∣∣∣< ε (20.9.26)

for all f ∈ K.

Proof: Choose λ 0 such that

sup
f∈K

∫
[| f |≥λ 0]

| f |dµ ≤ 1.

Then for f ∈ K, ∫
Ω

| f |dµ =
∫
[| f |≥λ 0]

| f |dµ +
∫
[| f |<λ 0]

| f |dµ

≤ 1+λ 0µ (Ω)≡C

and this proves 20.9.25.
Next suppose {En} is a decreasing sequence which has empty intersection and let ε > 0

and choose λ ε such that

sup
f∈K

∫
[| f |≥λ ε ]

| f |dµ ≤ ε/2.
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Then since µ is finite, there exists nε such that if n≥ nε , then µ (En)≤ ε/2(1+λ ε) . Then
letting f ∈ K, ∫

En

| f |dµ =
∫

En∩[| f |≥λ ε ]
| f |dµ +

∫
En∩[| f |<λ ε ]

| f |dµ

≤ ε/2+
∫

En

λ ε dµ < ε/2+ ε/2 = ε

This proves 20.9.26 ■

Corollary 20.9.6 Let (Ω,S ,µ) be a measure space in which µ (Ω) < ∞ and let K ⊆
L1 (Ω,S ,µ) be equi integrable. Then every sequence from K has a weakly convergent
subsequence.

Proof: From Lemma 20.9.5 the hypotheses of Theorem 20.9.3 are satisfied.
It is also convenient to consider the following proposition.

Proposition 20.9.7 Let (Ω,S ,µ) be a measure space in which µ (Ω) < ∞. Then K ⊆
L1 (Ω,S ,µ) is equi integrable if and only if K is uniformly integrable and there exists a
constant, M such that for all f ∈ K, || f ||L1 ≤M.

Proof: First suppose K is equi integrable. Then pick λ such that for all f ∈ K,∫
[| f |≥λ ]

| f |dµ < 1.

Then for f ∈ K ∫
Ω

| f |dµ =
∫
[| f |≥λ ]

| f |dµ +
∫
[| f |<λ ]

| f |dµ

≤ 1+λ µ (Ω)≡M.

Also, if ε > 0, pick λ so large that for all f ∈ K∫
[| f |≥λ ]

| f |dµ <
ε

2
.

Then letting A ∈S ,∫
A
| f |dµ =

∫
A∩[| f |≥λ ]

| f |dµ +
∫

A∩[| f |<λ ]
| f |dµ

<
ε

2
+λP(A)

and so if P(A) is sufficiently small, this is less than ε. Thus K is uniformly integrable.
Now suppose || f ||1 ≤M for all f ∈ K and K is uniformly integrable. Then∫

[| f |≥λ ]
| f |dµ ≥ λP([| f | ≥ λ ])
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and so
P([| f | ≥ λ ])≤ 1

λ

∫
[| f |≥λ ]

| f |dµ ≤ 1
λ

∫
Ω

| f |dµ ≤ M
λ

and so, by the assumption of uniform integrability,∫
[| f |≥λ ]

| f |dµ < ε

for all f ∈ K provided λ is large enough. This proves the proposition.

20.10 Exercises
1. Suppose µ is a vector measure having values inRn orCn. Can you show that |µ|must

be finite? Hint: You might define for each ei, one of the standard basis vectors, the
real or complex measure, µei

given by µei
(E)≡ ei ·µ (E) . Why would this approach

not yield anything for an infinite dimensional normed linear space in place of Rn?

2. The Riesz representation theorem of the Lp spaces can be used to prove a very inter-
esting inequality. Let r, p,q ∈ (1,∞) satisfy

1
r
=

1
p
+

1
q
−1.

Then
1
q
= 1+

1
r
− 1

p
>

1
r

and so r > q. Let θ ∈ (0,1) be chosen so that θr = q. Then also we have

1
r
=


1/p+1/p′=1︷ ︸︸ ︷

1− 1
p′

+
1
q
−1 =

1
q
− 1

p′

and so
θ

q
=

1
q
− 1

p′

which implies p′ (1−θ) = q. Now let f ∈ Lp (Rn) , g ∈ Lq (Rn) , f ,g ≥ 0. Jus-
tify the steps in the following argument using what was just shown that θr = q and
p′ (1−θ) = q. Let

h ∈ Lr′ (Rn) .

(
1
r
+

1
r′

= 1
)

∫
f ∗g(x) |h(x)|dx =

∫ ∫
f (y)g(x−y) |h(x)|dxdy.

≤
∫ ∫

| f (y)| |g(x−y)|θ |g(x−y)|1−θ |h(x)|dydx
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≤
∫ (∫ (

|g(x−y)|1−θ |h(x)|
)r′

dx
)1/r′

·

(∫ (
| f (y)| |g(x−y)|θ

)r
dx
)1/r

dy

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)r′

dx
)p′/r′

dy

]1/p′

·

[∫ (∫ (
| f (y)| |g(x−y)|θ

)r
dx
)p/r

dy

]1/p

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)p′

dy
)r′/p′

dx

]1/r′

·

[∫
| f (y)|p

(∫
|g(x−y)|θr dx

)p/r

dy

]1/p

=

[∫
|h(x)|r

′
(∫
|g(x−y)|(1−θ)p′ dy

)r′/p′

dx

]1/r′

||g||q/r
q || f ||p

= ||g||q/r
q ||g||

q/p′
q || f ||p ||h||r′ = ||g||q || f ||p ||h||r′ . (20.10.27)

Young’s inequality says that

|| f ∗g||r ≤ ||g||q || f ||p . (20.10.28)

Therefore || f ∗g||r ≤ ||g||q || f ||p. How does this inequality follow from the above
computation? Does 20.10.27 continue to hold if r, p,q are only assumed to be in
[1,∞]? Explain. Does 20.10.28 hold even if r, p, and q are only assumed to lie in
[1,∞]?

3. Show that in a reflexive Banach space, weak and weak ∗ convergence are the same.

4. Suppose (Ω,µ,S ) is a finite measure space and that { fn} is a sequence of functions
which converge weakly to 0 in Lp (Ω). Suppose also that fn (x)→ 0 a.e. Show that
then fn→ 0 in Lp−ε (Ω) for every p > ε > 0.

5. Give an example of a sequence of functions in L∞ (−π,π) which converges weak ∗
to zero but which does not converge pointwise a.e. to zero.



Chapter 21

The Bochner Integral
21.1 Strong and Weak Measurability

In this chapter (Ω,S ,µ) will be a σ finite measure space and X will be a Banach space
which contains the values of either a function or a measure. The Banach space will be
either a real or a complex Banach space but the field of scalars does not matter and so it
is denoted by F with the understanding that F= C unless otherwise stated. The theory
presented here includes the case where X = Rn or Cn but it does not include the situation
where f could have values in something like [0,∞] which is not a vector space. To begin
with here is a definition.

Definition 21.1.1 A function, x : Ω→ X, for X a Banach space, is a simple function if it is
of the form

x(s) =
n

∑
i=1

aiXBi (s)

where Bi ∈S and µ (Bi) < ∞ for each i. A function x from Ω to X is said to be strongly
measurable if there exists a sequence of simple functions {xn} converging pointwise to x.
The function x is said to be weakly measurable if, for each f ∈ X ′, f ◦ x is a scalar valued
measurable function.

The approximating simple functions can be modified so that the norm of each is no
more than 2∥x(s)∥. This is a useful observation.

Lemma 21.1.2 Let x be strongly measurable. Then ∥x∥ is a real valued measurable func-
tion. There exists a sequence of simple functions {yn} which converges to f (s) pointwise
and also ∥yn (s)∥ ≤ 2∥x(s)∥ for all s.

Proof: Consider the first claim. Letting xn be a sequence of simple functions converging
to x pointwise, it follows that ∥xn∥ is a real valued measurable function. Since ∥x∥ is a
pointwise limit, so is ∥x∥ a real valued measurable function.

Let xn (s) be simple functions converging to x(s) pointwise as above. Let

xn (s)≡
mn

∑
k=1

an
kXEn

k
(s)

Then

yn (s)≡
{

xn (s) if ∥xn (s)∥< 2∥x(s)∥
0 if ∥xn (s)∥ ≥ 2∥x(s)∥

Thus, for
[∥∥an

k

∥∥≤ 2∥x∥
]
≡
{

s :
∥∥an

k

∥∥≤ 2∥x(s)∥
}
,

yn (s) =
mn

∑
k=1

an
kXEn

k∩[∥an
k∥≤2∥x∥] (s)

It follows yn is a simple function. If ∥x(s)∥ = 0, then yn (s) = 0 and so yn (s)→ x(s). If
∥x(s)∥> 0, then eventually, yn (s) = xn (s) and so in this case, yn (s)→ x(s). ■

643
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Earlier, a function was measurable if inverse images of open sets were measurable.
Something similar holds here. The difference is that another condition needs to hold about
the values being separable. First is a somewhat obvious lemma.

Lemma 21.1.3 Suppose S is a nonempty subset of a metric space (X ,d) and S ⊆ T where
T is separable. Then there exists a countable dense subset of S.

Proof: Let D be the countable dense subset of T . Now consider the countable set B
of balls having center at a point of D and radius a positive rational number such that also,
each ball in B has nonempty intersection with S. Let D consist of a point from S∩B
whenever B ∈ B. Let s ∈ S and consider B(s,ε). Let r be rational with r < ε . Now
B
(
s, r

10

)
contains a point d ∈ D. Thus B

(
d, r

10

)
∈B and in fact, s ∈ B

(
d, r

10

)
. Let d̂ ∈D .

Thus d
(
s, d̂
)
< r

5 < r < ε so d̂ ∈ B(s,ε) and this shows that D is a countable dense subset
of S as claimed. ■

Theorem 21.1.4 x is strongly measurable if and only if x−1 (U) is measurable for all U
open in X and x(Ω) is separable. Thus, if X is separable, x is strongly measurable if and
only if x−1 (U) is measurable for all U open.

Proof: Suppose first x−1 (U) is measurable for all U open in X and x(Ω) is separable.
Let {an}∞

n=1 be the dense subset of x(Ω). It follows x−1 (B) is measurable for all B Borel
because

{B : x−1 (B) is measurable}
is a σ algebra containing the open sets. Let

Un
k ≡ {z ∈ X : ∥z−ak∥ ≤min{{∥z−al∥}n

l=1}.

In words, Um
k is the set of points of X which are as close to ak as they are to any of the al

for l ≤ n.
Bn

k ≡ x−1 (Un
k ) , Dn

k ≡ Bn
k \
(
∪k−1

i=1 Bn
i

)
, Dn

1 ≡ Bn
1,

and xn (s) ≡ ∑
n
k=1 akXDn

k
(s).Thus xn (s) is a closest approximation to x(s) from {ak}n

k=1
and so xn (s)→ x(s) because {an}∞

n=1 is dense in x(Ω). Furthermore, xn is measurable
because each Dn

k is measurable.
Since (Ω,S ,µ) is σ finite, there exists Ωn ↑Ω with µ (Ωn)< ∞. Let

yn (s)≡XΩn (s)xn (s) .

Then yn (s)→ x(s) for each s because for any s, s ∈ Ωn if n is large enough. Also yn is a
simple function because it equals 0 off a set of finite measure.

Now suppose that x is strongly measurable. Then some sequence of simple functions,
{xn}, converges pointwise to x. Then x−1

n (W ) is measurable for every open set W because
it is just a finite union of measurable sets. Thus, x−1

n (W ) is measurable for every Borel
set W . This follows by considering

{
W : x−1

n (W ) is measurable
}

and observing this is a σ

algebra which contains the open sets. Since X is a metric space, it follows that if U is an
open set in X , there exists a sequence of open sets, {Vn} which satisfies

V n ⊆U, V n ⊆Vn+1, U = ∪∞
n=1Vn.
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Then
x−1 (Vm)⊆

⋃
n<∞

⋂
k≥n

x−1
k (Vm)⊆ x−1 (V m

)
.

This implies
x−1 (U) =

⋃
m<∞

x−1 (Vm)

⊆
⋃

m<∞

⋃
n<∞

⋂
k≥n

x−1
k (Vm)⊆

⋃
m<∞

x−1 (V m
)
⊆ x−1 (U).

Since
x−1 (U) =

⋃
m<∞

⋃
n<∞

⋂
k≥n

x−1
k (Vm),

it follows that x−1 (U) is measurable for every open U . It remains to show x(Ω) is separa-
ble. Let

D≡ all values of the simple functions xn

Then x(Ω)⊆D, which has a countable dense subset. By Lemma 21.1.3, x(Ω) is separable.
■

The next lemma is interesting for its own sake. Roughly it says that if a Banach space
is separable, then the unit ball in the dual space is weak ∗ separable. This will be used
to prove Pettis’s theorem, one of the major theorems in this subject which relates weak
measurability to strong measurability. First here is a standard application which comes
from earlier material on the Hahn Banach theorem.

Lemma 21.1.5 Let x∈X a normed linear space. Then there exists f ∈X ′ such that ∥ f∥= 1
and f (x) = ∥x∥.

Proof: Consider the one dimensional subspace

M ≡
{

α
x
∥x∥

: α ∈ F
}

and define a continuous linear functional on M by g
(

α
x
∥x∥

)
≡ α. Then the norm of ∥g∥ ≡

sup|α|≤1 |α|= 1. Extend g to all of X using the Hahn Banach theorem calling the extended

function f . Then ∥ f∥= 1 and f (x) = f
(
∥x∥ x

∥x∥

)
= ∥x∥. ■

Lemma 21.1.6 If X is a separable Banach space with B′ the closed unit ball in X ′, then
there exists a sequence { fn}∞

n=1 ≡ D′ ⊆ B′ with the property that for every x ∈ X ,

∥x∥= sup
f∈D′
| f (x)|

If H is a dense subset of X ′ then D′ may be chosen to be contained in H.
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Proof: Let {ak}∞
k=1 be a countable dense set in X and consider the mapping

φ n : B′→ Fn

given by
φ n ( f )≡ ( f (a1) , · · · , f (an)) .

Then φ n (B
′) is contained in a compact subset of Fn because | f (ak)| ≤ ∥ak∥ . Therefore,

there exists a countable dense subset of φ n (B
′) ,{φ n ( fk)}∞

k=1 . Then pick hk
j ∈ H ∩B′ such

that lim j→∞

∥∥∥ fk−hk
j

∥∥∥= 0. Then
{

φ n

(
hk

j

)
,k, j

}
must also be dense in φ n (B

′) . Let D′n ={
hk

j,k, j
}

. Thus D′n is a countable collection of f ∈ B′ which can be used to approximate

each ∥ak∥ ,k ≤ n. Indeed, if x is arbitrary, there exists fx ∈ B′ with fx (x) = ∥x∥. Thus ∥ak∥
is contained in φ n (B

′). Define
D′ ≡ ∪∞

n=1D′n.

From the construction, D′ is countable and can be used to approximate each ∥am∥ . That
is,

∥am∥= sup
{
| f (am)| : f ∈ D′

}
Then, for x arbitrary, | f (x)| ≤ ∥x∥ and so

∥x∥ ≤ ∥x−am∥+∥am∥= ∥x−am∥+ sup
{
| f (am)| : f ∈ D′

}
≤ sup

{
| f (am− x)+ f (x)| : f ∈ D′

}
+∥x−am∥

≤ sup
{
| f (x)| : f ∈ D′

}
+2∥x−am∥ ≤ ∥x∥+2∥x−am∥ .

Since am is arbitrary and the {am}∞

m=1 are dense, this establishes the claim of the lemma.
■

Note that the proof would work the same if H were only given to be weak ∗ dense.
The next theorem is one of the most important results in the subject. It is due to Pettis

and appeared in 1938 [107].

Theorem 21.1.7 If x has values in a separable Banach space X, then x is weakly measur-
able if and only if x is strongly measurable.

Proof: ⇒It is necessary to show x−1 (U) is measurable whenever U is open. Since
every open set is a countable union of balls, it suffices to show x−1 (B(a,r)) is measurable
for any ball, B(a,r) . Since every open ball is the countable union of closed balls, it suffices
to verify x−1

(
B(a,r)

)
is measurable. For D′ described in Lemma 21.1.6,

x−1
(

B(a,r)
)

= {s : ∥x(s)−a∥ ≤ r}=

{
s : sup

f∈D′
| f (x(s)−a)| ≤ r

}
= ∩ f∈D′ {s : | f (x(s)−a)| ≤ r}= ∩ f∈D′ {s : | f (x(s))− f (a)| ≤ r}

= ∩ f∈D′ ( f ◦ x)−1 B( f (a) ,r)

which equals a countable union of measurable sets because it is assumed that f ◦ x is mea-
surable for all f ∈ X ′.
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⇐Next suppose x is strongly measurable. Then there exists a sequence of simple func-
tions xn which converges to x pointwise. Hence for all f ∈ X ′, f ◦ xn is measurable and
f ◦ xn→ f ◦ x pointwise. Thus x is weakly measurable. ■

The same method of proof yields the following interesting corollary.

Corollary 21.1.8 Let X be a separable Banach space and let B (X) denote the σ algebra
of Borel sets. Let H be a dense subset of X ′. Then B (X) = σ (H) ≡F , the smallest σ

algebra of subsets of X which has the property that every function, x∗ ∈ H is measurable.

Proof: First I need to show F contains open balls because then F will contain the
open sets and hence the Borel sets. As noted above, it suffices to show F contains closed
balls. Let D′ be those functionals in B′ defined in Lemma 21.1.6 contained in H. Then

{x : ∥x−a∥ ≤ r} =

{
x : sup

x∗∈D′
|x∗ (x−a)| ≤ r

}
= ∩x∗∈D′ {x : |x∗ (x−a)| ≤ r}
= ∩x∗∈D′ {x : |x∗ (x)− x∗ (a)| ≤ r}

= ∩x∗∈D′x
∗−1
(

B(x∗ (a) ,r)
)
∈ σ (H)

which is measurable because this is a countable intersection of measurable sets. Thus F
contains open sets so σ (H)≡F ⊇B (X) .

To show the other direction for the inclusion, note that each x∗ is B (X) measurable
because x∗−1 (open set) = open set. Therefore, B (X)⊇ σ (H) . ■

It is important to verify the limit of strongly measurable functions is itself strongly
measurable. This happens under very general conditions.

Lemma 21.1.9 Let X be a metric space and suppose V is an open set in V . Then there
exists open sets Vm such that

· · ·Vm ⊆V m ⊆Vm+1 ⊆ ·· · , V =
∞⋃

m=1

Vm. (21.1.1)

Proof: Recall that if S is a nonempty set, x→ dist(x,S) is a continuous map from X to
R. First assume V ̸= X . Let

Vm ≡
{

x ∈V : dist
(
x,VC)> 1

m

}
Then for large enough m, this set is nonempty and contained in V. Furthermore, if x ∈ V
then it is at a positive distance to the closed set VC so eventually, x ∈Vm. Now

Vm ⊆Vm ⊆
{

x ∈V : dist
(
x,VC)≥ 1

m

}
⊆V

Indeed, if p is a limit point of Vm, then there are xn ∈Vm with xn→ p. Thus dist
(
xn,VC

)
→

dist
(

p,VC
)

and so p is in the set on the right. In case X = V, let Vm ≡ B(ξ ,m) . Then
Vm ⊆Vm ⊆

{
x ∈V : dist

(
x,VC

)
≥ 1

m

}
and the union of these Vm equals V . ■

What of limits of measurable functions? The next theorem says that the usual theorem
about limits of measurable functions being measurable holds.
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Theorem 21.1.10 Let xn and x be functions mapping Ω to X where F is a σ algebra
of measurable sets of Ω and X is a Banach space. Thus X satisfies 21.1.1. Then if xn is
strongly measurable, and x(s) = limn→∞ xn(s), it follows that x is also strongly measurable.
(Pointwise limits of measurable functions are measurable.)

Proof: Let {Vm} be the sequence of 21.1.1. Since x is the pointwise limit of xn,

x−1(Vm)⊆ {s : xk(s) ∈Vm for all k large enough} ⊆ x−1(Vm).

Therefore,
x−1(V ) = ∪∞

m=1x−1(Vm)⊆ ∪∞
m=1∪∞

n=1∩∞
k=nx−1

k (Vm)

⊆ ∪∞
m=1x−1(Vm) = x−1(V ).

It follows x−1(V ) ∈F because it equals the expression in the middle which is measurable.
Note that this shows the characterization of measurability in terms of inverse images of
open sets being measureable sets. Thus the theorem is proved in the case of separable
Banach spaces. However, Lemma 21.1.3 can be applied to conclude that this holds in
general because each xn is separably valued given they are each strongly measurable and
x(Ω)⊆ D where D = ∪nDn for Dn a countable dense subset of xn (Ω). ■

Note that the same conclusion in terms of inverse images being measurable would hold
for any metric space.

Corollary 21.1.11 x is strongly measurable if and only if x(Ω) is separable and x is weakly
measurable.

Proof: Strong measurability clearly implies weak measurability. If xn (s)→ x(s) where
xn is simple, then f (xn (s))→ f (x(s)) for all f ∈X ′. Hence f ◦x is measurable by Theorem
21.1.10 because it is the limit of a sequence of measurable functions. Let D denote the set
of all values of xn. Then D is a separable set containing x(Ω). Thus D is a separable metric
space. Therefore x(Ω) is separable also by the last part of the proof of Theorem 21.1.4.

Now suppose D is a countable dense subset of x(Ω) and x is weakly measurable. Let
Z be the subset consisting of all finite linear combinations of D with the scalars coming
from the set of rational points of F. Thus, Z is countable. Letting Y = Z, Y is a separable
Banach space containing x(Ω). If f ∈ Y ′, f can be extended to an element of X ′ by the
Hahn Banach theorem. Therefore, x is a weakly measurable Y valued function. Now use
Theorem 21.1.7 to conclude x is strongly measurable. ■

Weakly measurable as defined above means s→ x∗ (x(s)) is measurable for every x∗ ∈
X ′. The next lemma ties this weak measurability to the usual version of measurability in
which a function is measurable when inverse images of open sets are measurable.

Lemma 21.1.12 Let X be a Banach space and let x : (Ω,F )→ K ⊆ X where K is weakly
compact and X ′ is separable. Then x is weakly measurable if and only if x−1 (U) ∈ F
whenever U is a weakly open set.

Proof: By Corollary 17.5.9 on Page 464, there exists a metric d, such that the metric
space topology with respect to d coincides with the weak topology on K. Since K is com-
pact, it follows that K is also separable. Hence it is completely separable and so there exists
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a countable basis of open sets B for the weak topology on K. It follows that if U is any
weakly open set, covered by basic sets of the form BA (x,r) where A is a finite subset of X ′,
there exists a countable collection of these sets of the form BA (x,r) which covers U .

Suppose now that x is weakly measurable. To show x−1 (U)∈F whenever U is weakly
open, it suffices to verify x−1 (BA (z,r)) ∈F for any set, BA (z,r) . Let A = {x∗1, · · · ,x∗m} .
Then

x−1 (BA (z,r)) = {s ∈Ω : ρA (x(s)− z)< r}

≡
{

s ∈Ω : max
x∗∈A
|x∗ (x(s)− z)|< r

}
= ∪m

i=1 {s ∈Ω : |x∗i (x(s)− z)|< r}
= ∪m

i=1 {s ∈Ω : |x∗i (x(s))− x∗i (z)|< r}

which is measurable because each x∗i ◦ x is given to be measurable.
Next suppose x−1 (U) ∈F whenever U is weakly open. Then in particular this holds

when U = Bx∗ (z,r) for arbitrary x∗. Hence

{s ∈Ω : x(s) ∈ Bx∗ (z,r)} ∈F .

But this says the same as

{s ∈Ω : |x∗ (x(s))− x∗ (z)|< r} ∈F

Since x∗ (z) can be a completely arbitrary element of F, it follows x∗ ◦x is an F valued mea-
surable function. In other words, x is weakly measurable according to the former definition.
■

One can also define weak ∗ measurability and prove a theorem just like the Pettis theo-
rem above. The next lemma is the analogue of Lemma 21.1.6.

Lemma 21.1.13 Let B be the closed unit ball in X. If X ′ is separable, there exists a se-
quence {xm}∞

m=1 ≡ D⊆ B with the property that for all y∗ ∈ X ′,

∥y∗∥= sup
x∈D
|y∗ (x)| .

Proof: Let {x∗k}∞
k=1be the dense subset of X ′. Define φ n : B→ Fn by

φ n (x)≡ (x∗1 (x) , · · · ,x∗n (x)).

Then
∣∣x∗k (x)∣∣ ≤ ∥∥x∗k

∥∥ and so φ n (B) is contained in a compact subset of Fn. There-
fore, there exists a countable set, Dn ⊆ B such that φ n (Dn) is dense in φ n (B) . That is,
{(x∗1 (x) , · · · ,x∗n (x)) : x ∈ Dn} is dense in φ n (B) .

D≡ ∪∞
n=1Dn.

It remains to verify this works. Let y∗ ∈ X ′. I want to show that ∥y∗∥= supx∈D |y∗ (x)|.
There exists y,∥y∥ ≤ 1, such that

|y∗ (y)|> ∥y∗∥− ε.
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By density, there exists one of the x∗k from the countable dense subset of X ′ such that also

∥x∗k − y∗∥< ε, so |x∗k (y)|> ∥y∗∥−2ε

Now x∗k (y) ∈ φ k (B) and so there exists x ∈ Dk ⊆ D⊆ B such that also

|x∗k (x)|> ∥y∗∥−2ε.

Then since
∥∥x∗k − y∗

∥∥< ε, this implies

∥y∗∥ ≥ |y∗ (x)|= |(y∗− x∗k)(x)+ x∗k (x)| ≥ |x∗k (x)|− ε > ∥y∗∥−3ε

It follows that
∥y∗∥−3ε ≤ sup

x∈D
|y∗ (x)| ≤ ∥y∗∥

This proves the lemma because ε is arbitrary. ■
The next theorem is another version of the Pettis theorem. First here is a definition.

Definition 21.1.14 A function y having values in X ′ is weak ∗ measurable, when for each
x ∈ X, y(·)(x) is a measurable scalar valued function.

Theorem 21.1.15 If X ′ is separable and y : Ω→ X ′ is weak ∗ measurable meaning s→
y(s)(x) is a F valued measurable function, then y is strongly measurable.

Proof: It is necessary to show y−1 (B(a∗,r)) is measurable for a∗ ∈ X ′. This will suffice
because the separability of X ′ implies every open set is the countable union of such balls
of the form B(a∗,r). It also suffices to verify inverse images of closed balls are measurable
because every open ball is the countable union of closed balls. From Lemma 21.1.13,

y−1
(

B(a∗,r)
)

= {s : ∥y(s)−a∗∥ ≤ r}

=

{
s : sup

x∈D
|(y(s)−a∗)(x)| ≤ r

}
=

{
s : sup

x∈D
|y(s)(x)−a∗ (x)| ≤ r

}
= ∩x∈Dy(·)(x)−1

(
B(a∗ (x) ,r)

)
which is a countable intersection of measurable sets by hypothesis. ■

The following are interesting consequences of the theory developed so far and are of
interest independent of the theory of integration of vector valued functions.

Theorem 21.1.16 If X ′ is separable, then so is X.

Proof: Let D = {xm} ⊆ B, the unit ball of X , be the sequence promised by Lemma
21.1.13. Let V be all finite linear combinations of elements of {xm} with rational scalars.
Thus V is a separable subspace of X . The claim is that V = X . If not, there exists

x0 ∈ X \V .
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But by the Hahn Banach theorem there exists x∗0 ∈ X ′ satisfying x∗0 (x0) ̸= 0, but x∗0 (v) = 0
for every v ∈V . Hence

∥x∗0∥= sup
x∈D
|x∗0 (x)|= 0,

a contradiction. ■

Corollary 21.1.17 If X is reflexive, then X is separable if and only if X ′ is separable.

Proof: From the above theorem, if X ′ is separable, then so is X . Now suppose X is
separable with a dense subset equal to D. Then since X is reflexive, J (D) is dense in X ′′

where J is the James map satisfying Jx(x∗)≡ x∗ (x) . Then since X ′′ is separable, it follows
from the above theorem that X ′ is also separable. ■

Note how this shows that L1 (Rp,mp) is not reflexive because this is a separable space,
but L∞ (Rp,mp) is clearly not. For example, you could consider X[0,r] for r a positive
irrational number. There are uncountably many of these functions in L∞ ([0,1]) and∥∥X[0,r]−X[0,r̂]

∥∥
∞
= 1.

21.2 The Bochner Integral
21.2.1 Definition and Basic Properties
Definition 21.2.1 Let ak ∈ X , a Banach space and let a simple function s→ x(s) be

x(s) =
n

∑
k=1

akXEk (s) (21.2.2)

where for each k, Ek is measurable and µ (Ek)< ∞. Then define∫
Ω

x(s)dµ ≡
n

∑
k=1

akµ (Ek).

Proposition 21.2.2 Definition 21.2.1 is well defined, the integral is linear on simple func-
tions and ∥∥∥∥∫

Ω

x(s)dµ

∥∥∥∥≤ ∫
Ω

∥x(s)∥dµ

whenever x is a simple function.

Proof: It suffices to verify that if ∑
n
k=1 akXEk (s) = 0,then ∑

n
k=1 akµ (Ek) = 0. Let f ∈

X ′. Then

f

(
n

∑
k=1

akXEk (s)

)
=

n

∑
k=1

f (ak)XEk (s) = 0

and, therefore,

0 =
∫

Ω

(
n

∑
k=1

f (ak)XEk (s)

)
dµ =

n

∑
k=1

f (ak)µ (Ek) = f

(
n

∑
k=1

akµ (Ek)

)
.
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Since f ∈ X ′ is arbitrary, and X ′ separates the points of X , it follows that ∑
n
k=1 akµ (Ek) = 0

as hoped. It is now obvious that the integral is linear on simple functions.
As to the triangle inequality, say x(s) = ∑

n
k=1 akXEk (s) . Then from the triangle in-

equality, ∥∥∥∥∫
Ω

x(s)dµ

∥∥∥∥=
∥∥∥∥∥ n

∑
k=1

akµ (Ek)

∥∥∥∥∥≤ n

∑
k=1
∥ak∥µ (Ek) =

∫
Ω

∥x(s)∥dµ ■

Definition 21.2.3 A strongly measurable function x is Bochner integrable if there exists a
sequence of simple functions xn converging to x pointwise and satisfying∫

Ω

∥xn (s)− xm (s)∥dµ → 0 as m,n→ ∞. (21.2.3)

If x is Bochner integrable, define∫
Ω

x(s)dµ ≡ lim
n→∞

∫
Ω

xn (s)dµ. (21.2.4)

First it is important to show that this integral is well defined. When this is done, an
easier to use condition will be developed. Note that by Lemma 21.1.2, if x is strongly
measurable, ∥x∥ is a measurable real valued function. Thus, it makes sense to consider∫

Ω
∥x∥dµ and also

∫
Ω
∥x− xn∥dµ .

Theorem 21.2.4 The definition of Bochner integrability is well defined. Also, a strongly
measurable function x is Bochner integrable if and only if

∫
Ω
∥x∥dµ < ∞. In this case

that the function is Bochner integrable, an approximating sequence {yn} exists such that
∥yn (s)∥ ≤ 2∥x(s)∥ for all s and

lim
n→∞

∫
Ω

∥yn (s)− x(s)∥dµ = 0

Proof:⇒First consider the claim about the integral being well defined. Let {xn} be a
sequence of simple functions converging pointwise to x and satisfying the conditions given
above for x to be Bochner integrable. Then∣∣∣∣∫

Ω

∥xn (s)∥dµ−
∫

Ω

∥xm (s)∥dµ

∣∣∣∣≤ ∫
Ω

∥xn− xm∥dµ

which is given to converge to 0 as n,m→ ∞ which shows that {
∫

Ω
∥xn (s)∥dµ}∞

n=1 is a
Cauchy sequence. Hence it is bounded and so, by Fatou’s lemma,∫

Ω

∥x(s)∥dµ ≤ lim inf
n→∞

∫
Ω

∥xn (s)∥dµ < ∞

The limit in 21.2.4 exists because∥∥∥∥∫
Ω

xndµ−
∫

Ω

xmdµ

∥∥∥∥= ∥∥∥∥∫
Ω

(xn− xm)dµ

∥∥∥∥≤ ∫
Ω

∥xn− xm∥dµ
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and the last term is no more than ε whenever n,m are large enough. From Fatou’s lemma,
if n is large enough, ∫

Ω

∥xn− x∥dµ < ε

Now if you have another sequence {x̂n} satisfying the condition 21.2.3 along with
pointwise convergence to x,∥∥∥∥∫

Ω

xndµ−
∫

Ω

x̂ndµ

∥∥∥∥ =

∥∥∥∥∫
Ω

(xn− x̂n)dµ

∥∥∥∥≤ ∫
Ω

∥xn− x̂n∥dµ

≤
∫

Ω

∥xn− x∥dµ +
∫

Ω

∥x− x̂n∥dµ < 2ε

if n is large enough. Hence convergence of the integrals of the simple functions takes place
and these integrals converge to the same thing. Thus the definition is well defined and∫

Ω
∥x∥dµ < ∞.
⇐Next suppose

∫
Ω
∥x∥dµ < ∞ for x strongly measurable. By Lemma 21.1.2, there is

a sequence of simple functions {yn} with ∥yn (s)∥ ≤ 2∥x(s)∥ and yn (s)→ x(s) for each s.
Then by the dominated convergence theorem for scalar valued functions,

lim
n→∞

∫
Ω

∥yn− x∥dµ = 0

Thus, ∫
Ω

∥yn− ym∥dµ ≤
∫

Ω

∥yn− x∥dµ +
∫

Ω

∥x− ym∥dµ < ε

if m,n are large enough so {yn} is a suitable approximating sequence for x. ■
This is a very nice theorem. It says that all you have to do is verify measurability

and absolute integrability just like the case of scalar valued functions. Other things which
are totally similar are that the integral is linear, the triangle inequality holds, and you can
take a continuous linear functional inside the integral. These things are considered in the
following theorem.

Theorem 21.2.5 The Bochner integral is well defined and if x is Bochner integrable and
f ∈ X ′,

f
(∫

Ω

x(s)dµ

)
=
∫

Ω

f (x(s))dµ (21.2.5)

and the triangle inequality is valid,∥∥∥∥∫
Ω

x(s)dµ

∥∥∥∥≤ ∫
Ω

∥x(s)∥dµ. (21.2.6)

Also, the Bochner integral is linear. That is, if a,b are scalars and x,y are two Bochner
integrable functions, then∫

Ω

(ax(s)+by(s))dµ = a
∫

Ω

x(s)dµ +b
∫

Ω

y(s)dµ (21.2.7)
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Proof: Theorem 21.2.4 shows
∫

Ω
∥x(s)∥dµ < ∞ and that the definition of the integral

is well defined.
It remains to verify the triangle inequality on Bochner integral functions and the claim

about passing a continuous linear functional inside the integral. First of all, consider the
triangle inequality. From Lemma 21.1.2, there is a sequence of simple functions {yn}
satisfying 21.2.3 and converging to x pointwise such that also ∥yn (s)∥ ≤ 2∥x(s)∥. Thus,∥∥∥∥∫

Ω

x(s)dµ

∥∥∥∥≡ lim
n→∞

∥∥∥∥∫
Ω

yn (s)dµ

∥∥∥∥≤ lim
n→∞

∫
Ω

∥yn (s)∥dµ =
∫

Ω

∥x(s)∥dµ

the last step coming from the dominated convergence theorem since ∥yn (s)∥ ≤ 2∥x(s)∥
and ∥yn (s)∥→ ∥x(s)∥ for each s. This shows the triangle inequality.

From Definition 21.2.1 and Theorem 21.2.4 and {yn} being the approximating sequence
described there,

f
(∫

Ω

yndµ

)
=
∫

Ω

f (yn)dµ.

Thus,

f
(∫

Ω

xdµ

)
= lim

n→∞
f
(∫

Ω

yndµ

)
= lim

n→∞

∫
Ω

f (yn)dµ =
∫

Ω

f (x)dµ,

the last equation holding from the dominated convergence theorem (| f (yn)| ≤ ∥ f∥∥yn∥ ≤
2∥ f∥∥x∥). This shows 21.2.5.

It remains to verify 21.2.7. Let f ∈ X ′. Then from 21.2.5

f
(∫

Ω

(ax(s)+by(s))dµ

)
=

∫
Ω

(a f (x(s))+b f (y(s)))dµ

= a
∫

Ω

f (x(s))dµ +b
∫

Ω

f (y(s))dµ

= f
(

a
∫

Ω

x(s)dµ +b
∫

Ω

y(s)dµ

)
.

Since X ′ separates the points of X ,it follows∫
Ω

(ax(s)+by(s))dµ = a
∫

Ω

x(s)dµ +b
∫

Ω

y(s)dµ

and this proves 21.2.7. ■
A similar result is the following corollary.

Corollary 21.2.6 Let an X valued function x be Bochner integrable and let L ∈L (X ,Y )
where Y is another Banach space. Then Lx is a Y valued Bochner integrable function and

L
(∫

Ω

x(s)dµ

)
=
∫

Ω

Lx(s)dµ

Proof: From Theorem 21.2.4 there is a sequence of simple functions {yn} having the
properties listed in that theorem. Then consider {Lyn} which converges pointwise to Lx.
Since L is continuous and linear,∫

Ω

∥Lyn−Lx∥Y dµ ≤ ∥L∥
∫

Ω

∥yn− x∥X dµ
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which converges to 0. This implies

lim
m,n→∞

∫
Ω

∥Lyn−Lym∥dµ = 0

and so by definition Lx is Bochner integrable. Also∫
Ω

x(s)dµ = lim
n→∞

∫
Ω

yn (s)dµ∫
Ω

Lx(s)dµ = lim
n→∞

∫
Ω

Lyn (s)dµ = lim
n→∞

L
∫

Ω

yn (s)dµ

∥∥∥∥L
(∫

Ω

x(s)dµ

)
−
∫

Ω

Lx(s)dµ

∥∥∥∥
Y

≤
∥∥∥∥L
(∫

Ω

x(s)dµ

)
−L

∫
Ω

yn (s)dµ

∥∥∥∥
Y

+

∥∥∥∥∫
Ω

Lyn (s)dµ−
∫

Ω

Lx(s)dµ

∥∥∥∥
Y
< ε/2+ ε/2 = ε

whenever n large enough. ■

21.2.2 Taking a Closed Operator Out of the Integral
Now let X and Y be separable Banach spaces and suppose A : D(A) ⊆ X → Y be a closed
operator. Recall this means that the graph of A,

G(A)≡ {(x,Ax) : x ∈ D(A)}

is a closed subset of X×Y with respect to the product topology obtained from the norm

∥(x,y)∥= max(∥x∥ ,∥y∥) .

Thus also G(A) is a separable Banach space with the above norm. You can also consider
D(A) as a separable Banach space having the graph norm

∥x∥D(A) ≡max(∥x∥ ,∥Ax∥) (21.2.8)

which is isometric to G(A) with the mapping, θx ≡ (x,Ax) . Recall why this is. It is clear
that θ is one to one and onto G(A) . Is it continuous? If xn→ x in D(A) , this means that
xn → x in X and Axn → y. Then, since A is closed, it follows that y = Ax so (xn,Axn)→
(x,Ax) in G(A) . Hence θ is indeed continuous and onto. Similar reasoning shows that
D(A) with this norm is complete. Hence it is a Banach space. Thus θ

−1 is also continuous.
The following lemma is a fundamental result which was proved earlier in the discussion
on the Eberlein Smulian theorem in which this was an essential fact to allow the case of a
reflexive Banach space which maybe was not separable. See Lemma 17.5.11 for the proof.

Lemma 21.2.7 A closed subspace of a reflexive Banach space is reflexive.
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Then, with this lemma, one has the following corollary.

Corollary 21.2.8 Suppose Y is a reflexive Banach space and X is a Banach space such
that there exists a continuous one to one mapping, g : X → Y such that g(X) is a closed
subset of Y. Then X is reflexive.

Proof: By the open mapping theorem, g(X) and X are homeomorphic since g−1 must
also be continuous. Therefore, since g(X) is reflexive because it is a closed subspace of a
reflexive space, it follows X is also reflexive. ■

Lemma 21.2.9 Suppose V is a reflexive Banach space and that V is a dense subset of W,
another Banach space in the topology of W. Then i∗W ′ is a dense subset of V ′ where here i
is the inclusion map of V into W.

Proof: First note that i∗ is one to one. If i∗w∗ = 0 for w∗ ∈W ′, then this means that for
all v ∈V,

i∗w(v) = w∗ (v) = 0

and since V is dense in W, this shows w∗ = 0.
Consider the following diagram

V ′′ i∗∗→ W ′′

V ′ i∗← W ′

V i→ W

in which i is the inclusion map. Next suppose i∗W ′ is not dense in V ′. Then, using the Hahn
Banach theorem, there exists v∗∗ ∈V ′′ such that v∗∗ ̸= 0 but v∗∗ (i∗W ′) = 0. It follows from
V being reflexive, that v∗∗ = Jv0 where J is the James map from V to V ′′for some v0 ∈ V .
Thus for every w∗ ∈W ′,

0 = v∗∗ (i∗w∗)≡ i∗∗v∗∗ (w∗)

= i∗∗Jv0 (w∗) = Jv0 (i∗w∗)

≡ i∗w∗ (v0) = w∗ (v0)

and since W ′ separates the points of W, it follows v0 = 0 which contradicts v∗∗ ̸= 0. ■
Note that in the proof, only V reflexive was used.
This lemma implies an easy corollary.

Corollary 21.2.10 Let E and F be reflexive Banach spaces and let A be a closed operator
A : D(A)⊆E→F. Suppose also that D(A) is dense in E. Then making D(A) into a Banach
space by using the above graph norm given in 21.2.8, it follows that D(A) is a Banach space
and i∗E ′ is a dense subspace of D(A)′ .

Proof: First note that E×F is a reflexive Banach space and G (A) is a closed subspace
of E×F so it is also a reflexive Banach space. Now D(A) is isometric to G (A) and so it
follows D(A) is a dense subspace of E which is reflexive. Therefore, from Lemma 21.2.9
the conclusion follows. ■

With this preparation, here is another interesting theorem. This one is about taking
outside the integral a closed linear operator as opposed to a continuous linear operator.
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Theorem 21.2.11 Let X ,Y be separable Banach spaces and let A : D(A) ⊆ X → Y be a
closed operator where D(A) is a dense separable subset of X with respect to the graph
norm on D(A) described above1. Suppose also that i∗X ′ is a dense subspace of D(A)′

where D(A) is a Banach space having the graph norm described in 21.2.8. Suppose that
(Ω,F ,µ) is a σ finite measure space and x : Ω→ X is strongly measurable and it happens
that x(s) ∈ D(A) for all s ∈ Ω. Then x is strongly measurable as a mapping into D(A).
Also Ax is strongly measurable as a map into Y and if∫

Ω

∥x(s)∥dµ,
∫

Ω

∥Ax(s)∥dµ < ∞, (21.2.9)

then ∫
Ω

x(s)dµ ∈ D(A) (21.2.10)

and
A
∫

Ω

x(s)dµ =
∫

Ω

Ax(s)dµ. (21.2.11)

Proof: First of all, consider the assertion that x is strongly measurable into D(A) .
Letting f ∈ D(A)′ be given, there exists a sequence, {gn} ⊆ i∗X ′ such that gn → f in
D(A)′ . Therefore, s→ gn (x(s)) is measurable by assumption and gn (x(s))→ f (x(s)) ,
which shows that s→ f (x(s)) is measurable. By the Pettis theorem, it follows that s→ x(s)
is strongly measurable as a map into D(A).

It follows from Theorem 21.2.4 there exists a sequence of simple functions, {xn} of the
form

xn (s) =
mn

∑
k=1

an
kXEn

k
(s) ,xn (s) ∈ D(A) ,

which converges strongly and pointwise to x(s) in D(A). Thus

xn (s)→ x(s) ,Axn (s)→ Ax(s) ,

which shows s→ Ax(s) is stongly measurable in Y as claimed.
It remains to verify the assertions about the integral. 21.2.9 implies x is Bochner inte-

grable as a function having values in D(A) with the norm on D(A) described above. There-
fore, by Theorem 21.2.4 there exists a sequence of simple functions {yn} having values in
D(A) ,

lim
m,n→∞

∫
Ω

∥yn− ym∥D(A) dµ = 0,

yn (s) converging pointwise to x(s),

∥yn (s)∥D(A) ≤ 2∥x(s)∥D(A)

and
lim
n→∞

∫
Ω

∥x(s)− yn (s)∥D(A) ds = 0.

1Note that this follows from the assumed separability of X ,Y because the graph is a subset of the separable
space X×Y
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Therefore, ∫
Ω

yn (s)dµ ∈ D(A) ,
∫

Ω

yn (s)dµ →
∫

Ω

x(s)dµ in X ,

and since yn is a simple function and A is linear,

A
∫

Ω

yn (s)dµ =
∫

Ω

Ayn (s)dµ →
∫

Ω

Ax(s)dµ in Y.

It follows, since A is a closed operator, that
∫

Ω
x(s)dµ ∈ D(A) and

A
∫

Ω

x(s)dµ =
∫

Ω

Ax(s)dµ. ■

Here is another version of this theorem which has different hypotheses.

Theorem 21.2.12 Let X and Y be separable Banach spaces and let A : D(A)⊆ X → Y be
a closed operator. Also let (Ω,F ,µ) be a σ finite measure space and let x : Ω→ X be
Bochner integrable such that x(s) ∈D(A) for all s. Also suppose Ax is Bochner integrable.
Then ∫

Axdµ = A
∫

xdµ

and
∫

xdµ ∈ D(A).

Proof: Consider the graph of A,

G(A)≡ {(x,Ax) : x ∈ D(A)} ⊆ X×Y.

Then since A is closed, G(A) is a closed separable Banach space with the norm ∥(x,y)∥ ≡
max(∥x∥ ,∥y∥) . Therefore, for g∗ ∈ G(A)′ , one can apply the Hahn Banach theorem and
obtain (x∗,y∗) ∈ (X×Y )′ such that g∗ (x,Ax) = (x∗ (x) ,y∗ (Ax)) . Now it follows from the
assumptions that s→ (x∗ (x(s)) ,y∗ (Ax(s))) is measurable with values in G(A) . It is also
separably valued because this is true of G(A) . By the Pettis theorem, s→ (x(s) ,A(x(s)))
must be strongly measurable. Also

∫
∥x(s)∥+ ∥A(x(s))∥dµ < ∞ by assumption and so

there exists a sequence of simple functions having values in G(A) ,{(xn (s) ,Axn (s))}which
converges to (x(s) ,A(s)) pointwise such that

∫
∥(xn,Axn)− (x,Ax)∥dµ → 0 in G(A) .

Now for simple functions is it routine to verify that∫
(xn,Axn)dµ =

(∫
xndµ,

∫
Axndµ

)
=

(∫
xndµ,A

∫
xndµ

)
Also ∥∥∥∥∫ xndµ−

∫
xdµ

∥∥∥∥ ≤
∫
∥xn− x∥dµ

≤
∫
∥(xn,Axn)− (x,Ax)∥dµ
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which converges to 0. Also∥∥∥∥∫ Axndµ−
∫

Axdµ

∥∥∥∥ =

∥∥∥∥A
∫

xndµ−
∫

Axdµ

∥∥∥∥
≤

∫
∥Axn−Ax∥dµ

≤
∫
∥(xn,Axn)− (x,Ax)∥dµ

and this converges to 0. Therefore,
∫

xndµ →
∫

xdµ and A
∫

xndµ →
∫

Axdµ. Since each∫
xndµ ∈ D(A) , and A is closed, this implies

∫
xdµ ∈ D(A) and A

∫
xdµ =

∫
Axdµ . ■

21.3 Operator Valued Functions
Consider the case where A(s) ∈L (X ,Y ) for X and Y separable Banach spaces. With the
operator norm L (X ,Y ) is a Banach space and so if A is strongly measurable, the Bochner
integral can be defined as before. However, it is also possible to define the Bochner integral
of such operator valued functions for more general situations. In this section, (Ω,F ,µ)
will be a σ finite measure space as usual.

Lemma 21.3.1 Let x ∈ X and suppose A is strongly measurable. Then

s→ A(s)x

is strongly measurable as a map into Y.

Proof: Since A is assumed to be strongly measurable, it is the pointwise limit of simple
functions of the form

An (s)≡
mn

∑
k=1

An
kXEn

k
(s)

where An
k is in L (X ,Y ). It follows An (s)x→ A(s)x for each s and so, since s→ An (s)x is

a simple Y valued function, s→ A(s)x must be strongly measurable. ■

Definition 21.3.2 Suppose A(s) ∈L (X ,Y ) for each s ∈ Ω where X ,Y are separable Ba-
nach spaces. Suppose also that for each x ∈ X ,

s→ A(s)x is strongly measurable (21.3.12)

and there exists C such that for each x ∈ X ,∫
Ω

∥A(s)x∥dµ <C∥x∥ (21.3.13)

Then
∫

Ω
A(s)dµ ∈L (X ,Y ) is defined by the following formula.(∫

Ω

A(s)dµ

)
(x)≡

∫
Ω

A(s)xdµ (21.3.14)
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Lemma 21.3.3 The above definition is well defined. Furthermore, if 21.3.12 holds then
s→∥A(s)∥ is measurable and if 21.3.13 holds, then∥∥∥∥∫

Ω

A(s)dµ

∥∥∥∥≤ ∫
Ω

∥A(s)∥dµ.

Proof: It is clear that in case s→ A(s)x is measurable for all x∈ X there exists a unique
Ψ ∈L (X ,Y ) such that

Ψ(x) =
∫

Ω

A(s)xdµ.

This is because x→
∫

Ω
A(s)xdµ is linear and continuous. It is continuous because∥∥∥∥∫

Ω

A(s)xdµ

∥∥∥∥≤ ∫
Ω

∥A(s)x∥dµ ≤
∫

Ω

∥A(s)∥dµ ∥x∥

Thus Ψ =
∫

Ω
A(s)dµ and the definition is well defined.

Now consider the assertion about s→∥A(s)∥. Let D′ ⊆ B′ the closed unit ball in Y ′ be
such that D′ is countable and

∥y∥= sup
y∗∈D′

|y∗ (y)| .

This is from Lemma 21.1.6. Recall X is separable. Also let D be a countable dense subset
of B, the unit ball of X . Then

{s : ∥A(s)∥> α} =

{
s : sup

x∈D
∥A(s)x∥> α

}
= ∪x∈D {s : ∥A(s)x∥> α}
= ∪x∈D

(
∪y∗∈D′ {|y∗ (A(s)x)|> α}

)
and this is measurable because s→ A(s)x is strongly, hence weakly measurable.

Now suppose 21.3.13 holds. Then for all x,∫
Ω

∥A(s)x∥dµ <C∥x∥ .

It follows that for ∥x∥ ≤ 1,∥∥∥∥(∫
Ω

A(s)dµ

)
(x)
∥∥∥∥= ∥∥∥∥∫

Ω

A(s)xdµ

∥∥∥∥≤ ∫
Ω

∥A(s)x∥dµ ≤
∫

Ω

∥A(s)∥dµ

and so ∥∥∥∥∫
Ω

A(s)dµ

∥∥∥∥≤ ∫
Ω

∥A(s)∥dµ. ■

Now it is interesting to consider the case where A(s) ∈L (H,H) where s→ A(s)x is
strongly measurable and A(s) is compact and self adjoint. Recall the Kuratowski measur-
able selection theorem, Theorem 11.1.11 on Page 228 listed here for convenience.
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Theorem 21.3.4 Let E be a compact metric space and let (Ω,F ) be a measure space.
Suppose ψ : E×Ω→R has the property that x→ψ (x,ω) is continuous and ω→ψ (x,ω)
is measurable. Then there exists a measurable function, f having values in E such that

ψ ( f (ω) ,ω) = sup
x∈E

ψ (x,ω) .

Furthermore, ω → ψ ( f (ω) ,ω) is measurable.

21.3.1 Review of Hilbert Schmidt Theorem
This section is a review of earlier material and is presented a little differently. I think it does
not hurt to repeat some things relative to Hilbert space. I will give a proof of the Hilbert
Schmidt theorem which will generalize to a result about measurable operators. It will be a
little different then the earlier proof. Recall the following.

Definition 21.3.5 Define v⊗u ∈L (H,H) by

v⊗u(x) = (x,u)v.

A ∈L (H,H) is a compact operator if whenever {xk} is a bounded sequence, there exists
a convergent subsequence of {Axk}. Equivalently, A maps bounded sets to sets whose
closures are compact or to use other terminology, A maps bounded sets to sets which are
precompact.

Next is a convenient description of compact operators on a Hilbert space.

Lemma 21.3.6 Let H be a Hilbert space and suppose A∈L (H,H) is a compact operator.
Then

1. A is a compact operator if and only if whenever if xn→ x weakly in H, it follows that
Axn→ Ax strongly in H.

2. For u,v ∈ H, v⊗u : H→ H is a compact operator.

3. Let B be the closed unit ball in H. If A is self adjoint and compact, then if xn → x
weakly on B, it follows that (Axn,xn)→ (Ax,x) so x→|(Ax,x)| achieves its maximum
value on B.

4. The function, v⊗u is compact and the operator u⊗u is self adjoint.

Proof: Consider ⇒ of 1. Suppose then that xn → x weakly. Since {xn} is weakly
bounded, it follows from the uniform boundedness principle that {∥xn∥} is bounded. Let
xn ∈ B̂ for B̂ some closed ball. If Axn fails to converge to Ax, then there is ε > 0 and a
subsequence still denoted as {xn} such that xn→ x weakly but ∥Axn−Ax∥ ≥ ε > 0. Then
A
(
B̂
)

is precompact because A is compact so there is a further subsequence, still denoted
by {xn} such that Axn converges to some y ∈ H. Therefore,

(y,w) = lim
n→∞

(Axn,w) = lim
n→∞

(xn,A∗w)

= (x,A∗w) = (Ax,w)
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which shows Ax = y since w is arbitrary. However, this is a contradiction to ∥Axn−Ax∥ ≥
ε > 0.

Consider ⇐ of 1. Why is A compact if it satisfies the property that it takes weakly
convergent sequences to strongly convergent ones? If A is not compact, then there exists B̂
a bounded set such that A

(
B̂
)

is not precompact. Thus, there exists a sequence {Axn}∞

n=1 ⊆
A
(
B̂
)

which has no convergent subsequence where xn ∈ B̂ the bounded set. However,
there is a subsequence {xn} ∈ B̂ which converges weakly to some x ∈ H because of weak
compactness. Hence Axn→ Ax by assumption and so this is a contradiction to there being
no convergent subsequence of {Axn}∞

n=1.
Next consider 2. Letting {xn} be a bounded sequence,

v⊗u(xn) = (xn,u)v.

There exists a weakly convergent subsequence of {xn} say
{

xnk

}
converging weakly to

x ∈ H. Therefore, ∥∥v⊗u
(
xnk

)
− v⊗u(x)

∥∥= ∥∥(xnk ,u
)
− (x,u)

∥∥∥v∥
which converges to 0. Thus v⊗u is compact as claimed. It takes bounded sets to precom-
pact sets.

Next consider 3. To verify the assertion about x→ (Ax,x), let xn→ x weakly. Since A
is compact, Axn→ Ax by part 1. Then, since A is self adjoint,

|(Axn,xn)− (Ax,x)|
≤ |(Axn,xn)− (Ax,xn)|+ |(Ax,xn)− (Ax,x)|
≤ |(Axn,xn)− (Ax,xn)|+ |(Axn,x)− (Ax,x)|
≤ ∥Axn−Ax∥∥xn∥+∥Axn−Ax∥∥x∥ ≤ 2∥Axn−Ax∥

which converges to 0. Now let {xn} be a maximizing sequence for |(Ax,x)| for x∈ B and let
λ ≡ sup{|(Ax,x)| : x ∈ B} . There is a subsequence still denoted as {xn} which converges
weakly to some x ∈ B by weak compactness. Hence |(Ax,x)|= limn→∞ |(Axn,xn)|= λ .

Next consider 4. It only remains to verify that u⊗u is self adjoint. This follows from
the definition.

((u⊗u)x,y) ≡ (u(x,u) ,y) = (x,u)(u,y)

(x,(u⊗u)y) ≡ (x,u(y,u)) = (u,y)(x,u) ,

the same thing. ■

Observation 21.3.7 Note that if A is any self adjoint operator,

(Ax,x) = (x,Ax) = (Ax,x) .

so (Ax,x) is real valued.

From Lemma 21.3.6, the maximum of |(Ax,x)| exists on the closed unit ball B.
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Lemma 21.3.8 Let A ∈L (H,H) and suppose it is self adjoint and compact. Let B denote
the closed unit ball in H. Let e ∈ B be such that

|(Ae,e)|= max
x∈B
|(Ax,x)| .

Then letting λ = (Ae,e) , it follows Ae = λe. You can always assume ∥e∥= 1.

Proof: From the above observation, (Ax,x) is always real and since A is compact,
|(Ax,x)| achieves a maximum at e. It remains to verify e is an eigenvector. If |(Ae,e)|= 0
for all e ∈ B, then A is a self adjoint nonnegative ((Ax,x) ≥ 0) operator and so by Cauchy
Schwarz inequality,

(Ae,x)≤ (Ax,x)1/2 (Ae,e)1/2 = 0

and so Ae = 0 for all e. Assume then that A is not 0. You can always make |(Ae,e)| at least
as large by replacing e with e/∥e∥. Thus, there is no loss of generality in letting ∥e∥= 1 in
every case.

Suppose λ = (Ae,e)≥ 0 where |(Ae,e)|= maxx∈B |(Ax,x)| . Thus

((λ I−A)e,e) = λ ∥e∥2−λ = 0

Then it is easy to verify that λ I−A is a nonnegative (((λ I−A)x,x)≥ 0 for all x.) and self
adjoint operator. To see this, note that

((λ I−A)x,x) = ∥x∥2
(
(λ I−A)

x
∥x∥

,
x
∥x∥

)
= ∥x∥2

λ −∥x∥2
(

A
x
∥x∥

,
x
∥x∥

)
≥ 0

Therefore, the Cauchy Schwarz inequality can be applied to write

((λ I−A)e,x)≤ ((λ I−A)e,e)1/2 ((λ I−A)x,x)1/2 = 0

Since this is true for all x it follows Ae = λe. Just pick x = (λ I−A)e.
Next suppose maxx∈B |(Ax,x)|=−(Ae,e) . Let −λ = (−Ae,e) and the previous result

can be applied to −A and −λ . Thus −λe =−Ae and so Ae = λe. ■
With these lemmas here is a major theorem, the Hilbert Schmidt theorem. I think this

proof is a little slicker than the more standard proof given earlier.

Theorem 21.3.9 Let A ∈L (H,H) be a compact self adjoint operator on a Hilbert space.
Then there exist real numbers {λ k}∞

k=1 and vectors {ek}∞

k=1 such that

∥ek∥= 1,

(ek,e j)H = 0 if k ̸= j,

Aek = λ kek,

|λ n| ≥ |λ n+1| for all n,

lim
n→∞

λ n = 0,

lim
n→∞

∥∥∥∥∥A−
n

∑
k=1

λ k (ek⊗ ek)

∥∥∥∥∥
L (H,H)

= 0. (21.3.15)
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Proof: This is done by considering a sequence of compact self adjoint operators,
A,A1,A2, · · · . Here is how these are defined. Using Lemma 21.3.8 let e1,λ 1 be given by
that lemma such that

|(Ae1,e1)|= max
x∈B
|(Ax,x)| , λ 1 = (Ae1,e1)⇒ Ae1 = λ 1e1

Then by that lemma, Ae1 = λ 1e1 and ∥e1∥ = 1. Now define A1 = A−λ 1e1⊗ e1. This is
compact and self adjoint by Lemma 21.3.6. Thus, one could repeat the argument.

If An has been obtained, use Lemma 21.3.8 to obtain en+1 and λ n+1 such that

|(Anen+1,en+1)|= max
x∈B
|(Anx,x)| , λ n+1 = (Anen+1,en+1) .

By that lemma again, Anen+1 = λ n+1en+1 and ∥en+1∥= 1. Then

An+1 ≡ An−λ n+1en+1⊗ en+1

Thus iterating this,

An = A−
n

∑
k=1

λ kek⊗ ek. (21.3.16)

Assume for j,k ≤ n,(ek,e j) = δ jk. Then the new vector en+1 will be orthogonal to the
earlier ones. This is the next claim.

Claim 1: If k < n+ 1 then (en+1,ek) = 0. Also Aek = λ kek for all k and from the
construction, Anen+1 = λ n+1en+1.

Proof of claim: From the above,

λ n+1en+1 = Anen+1 = Aen+1−
n

∑
k=1

λ k (en+1,ek)ek.

From the above and induction hypothesis that (ek,e j) = δ jk for j,k ≤ n,

λ n+1 (en+1,e j) = (Aen+1,e j)−
n

∑
k=1

λ k (en+1,ek)(ek,e j)

= (en+1,Ae j)−
n

∑
k=1

λ k (en+1,ek)(ek,e j)

= λ j (en+1,e j)−λ j (en+1,e j) = 0.

To verify the second part of this claim,

λ n+1en+1 = Anen+1 = Aen+1−
n

∑
k=1

λ kek (en+1,ek) = Aen+1

This proves the claim.
Claim 2: |λ n| ≥ |λ n+1| .



21.3. OPERATOR VALUED FUNCTIONS 665

Proof of claim: From 21.3.16 and the definition of An and ek⊗ ek,

(An−1en+1,en+1) =

((
A−

n−1

∑
k=1

λ kek⊗ ek

)
en+1,en+1

)
= (Aen+1,en+1) = (Anen+1,en+1)

Thus,

λ n+1 = (Anen+1,en+1)

= (An−1en+1,en+1)−λ n |(en,en+1)|2

= (An−1en+1,en+1)

By the previous claim. Therefore,

|λ n+1|= |(An−1en+1,en+1)| ≤ |(An−1en,en)|= |λ n|

by the definition of |λ n|. (en makes |(An−1x,x)| as large as possible.)
Claim 3: limn→∞ λ n = 0.
Proof of claim: If for some n,λ n = 0, then λ k = 0 for all k > n by claim 2. Thus, for

some n,

A =
n

∑
k=1

λ kek⊗ ek

Assume then that λ k ̸= 0 for any k. Then if limk→∞ |λ k|= ε > 0, one contradicts, ∥ek∥= 1
for all k because

∥Aen−Aem∥2 = ∥λ nen−λ mem∥2

= λ
2
n +λ

2
m ≥ 2ε

2

which shows there is no Cauchy subsequence of {Aen}∞

n=1 , which contradicts the compact-
ness of A. This proves the claim.

Claim 4: ∥An∥→ 0
Proof of claim: Let x,y ∈ B

|λ n+1| ≥
∣∣∣∣(An

x+ y
2

,
x+ y

2

)∣∣∣∣
=

∣∣∣∣14 (Anx,x)+
1
4
(Any,y)+

1
2
(Anx,y)

∣∣∣∣
≥ 1

2
|(Anx,y)|− 1

4
|(Anx,x)+(Any,y)|

≥ 1
2
|(Anx,y)|− 1

4
(|(Anx,x)|+ |(Any,y)|)

≥ 1
2
|(Anx,y)|− 1

2
|λ n+1|

and so
3 |λ n+1| ≥ |(Anx,y)| .

It follows ∥An∥ ≤ 3 |λ n+1| . By 21.3.16 this proves 21.3.15 and completes the proof. ■
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21.3.2 Measurable Compact Operators
Here the operators will be of the form A(s) where s ∈ Ω and s→ A(s)x is strongly mea-
surable and A(s) is a compact operator in L (H,H).

Theorem 21.3.10 Let A(s) ∈ L (H,H) be a compact self adjoint operator and H is a
separable Hilbert space such that s→ A(s)x is strongly measurable. Then there exist real
numbers {λ k (s)}∞

k=1 and vectors {ek (s)}∞

k=1 such that

∥ek (s)∥= 1

(ek (s) ,e j (s))H = 0 if k ̸= j,

A(s)ek (s) = λ k (s)ek (s) ,

|λ n (s)| ≥ |λ n+1 (s)| for all n,

lim
n→∞

λ n (s) = 0,

lim
n→∞

∥∥∥∥∥A(s)−
n

∑
k=1

λ k (s)(ek (s)⊗ ek (s))

∥∥∥∥∥
L (H,H)

= 0.

The function s→ λ j (s) is measurable and s→ e j (s) is strongly measurable.

Proof: It is simply a repeat of the above proof of the Hilbert Schmidt theorem except
at every step when the ek and λ k are defined, you use the Kuratowski measurable selection
theorem, Theorem 21.3.4 on Page 661 to obtain λ k (s) is measurable and that s→ ek (s) is
also measurable. This follows because the closed unit ball in a separable Hilbert space is a
compact metric space.

When you consider maxx∈B |(An (s)x,x)| , let ψ (x,s) = |(An (s)x,x)| . Then ψ is contin-
uous in x by Lemma 21.3.6 on Page 661 and it is measurable in s by assumption. Therefore,
by the Kuratowski theorem, ek (s) is measurable in the sense that inverse images of weakly
open sets in B are measurable. However, by Lemma 21.1.12 on Page 648 this is the same
as weakly measurable. Since H is separable, this implies s→ ek (s) is also strongly mea-
surable. The measurability of λ k and ek is the only new thing here and so this completes
the proof. ■

21.4 Fubini’s Theorem for Bochner Integrals
Now suppose (Ω1,F ,µ) and (Ω2,S ,λ ) are two σ finite measure spaces. Recall the notion
of product measure. There was a σ algebra, denoted by F ×S which is the smallest σ

algebra containing the elementary sets, (finite disjoint unions of measurable rectangles) and
a measure, denoted by µ×λ defined on this σ algebra such that for E ∈F ×S ,

s1→ λ (Es1) , (Es1 ≡ {s2 : (s1,s2) ∈ E})

is µ measurable and

s2→ µ (Es2) , (Es2 ≡ {s1 : (s1,s2) ∈ E})
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is λ measurable. In terms of nonnegative functions which are F ×S measurable,

s1 → f (s1,s2) is µ measurable,
s2 → f (s1,s2) is λ measurable,

s1 →
∫

Ω2

f (s1,s2)dλ is µ measurable,

s2 →
∫

Ω1

f (s1,s2)dµ is λ measurable,

and the conclusion of Fubini’s theorem holds.∫
Ω1×Ω2

f d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)dλdµ

=
∫

Ω2

∫
Ω1

f (s1,s2)dµdλ .

The following theorem is the version of Fubini’s theorem valid for Bochner integrable
functions.

Theorem 21.4.1 Let f : Ω1×Ω2→ X be strongly measurable with respect to µ ×λ and
suppose ∫

Ω1×Ω2

|| f (s1,s2)||d (µ×λ )< ∞. (21.4.17)

Then there exist a set of µ measure zero, N and a set of λ measure zero, M such that the
following formula holds with all integrals making sense.∫

Ω1×Ω2

f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)XN (s1)dλdµ

=
∫

Ω2

∫
Ω1

f (s1,s2)XM (s2)dµdλ .

Proof: First note that from 21.4.17 and the usual Fubini theorem for nonnegative valued
functions, ∫

Ω1×Ω2

|| f (s1,s2)||d (µ×λ ) =
∫

Ω1

∫
Ω2

|| f (s1,s2)||dλdµ

and so ∫
Ω2

∥ f (s1,s2)∥dλ < ∞ (21.4.18)

for µ a.e. s1. Say for all s1 /∈ N where µ (N) = 0.
Let φ ∈ X ′. Then φ ◦ f is F ×S measurable and∫

Ω1×Ω2

|φ ◦ f (s1,s2)|d (µ×λ )

≤
∫

Ω1×Ω2

∥φ∥∥ f (s1,s2)∥d (µ×λ )< ∞
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and so from the usual Fubini theorem for complex valued functions,∫
Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ. (21.4.19)

Now also if you fix s2, it follows from the definition of strongly measurable and the prop-
erties of product measure mentioned above that

s1→ f (s1,s2)

is strongly measurable. Also, by 21.4.18∫
Ω2

∥ f (s1,s2)∥dλ < ∞

for s1 /∈ N. Therefore, by Theorem 21.2.4 s2 → f (s1,s2)XNC (s1) is Bochner integrable.
By 21.4.19 and 21.2.5 ∫

Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ )

=
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ

=
∫

Ω1

∫
Ω2

φ ( f (s1,s2)XNC (s1))dλdµ

=
∫

Ω1

φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
dµ. (21.4.20)

Each iterated integral makes sense and

s1 →
∫

Ω2

φ ( f (s1,s2)XNC (s1))dλ

= φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
(21.4.21)

is µ measurable because

(s1,s2) → φ ( f (s1,s2)XNC (s1))

= φ ( f (s1,s2))XNC (s1)

is product measurable. Now consider the function,

s1→
∫

Ω2

f (s1,s2)XNC (s1)dλ . (21.4.22)

I want to show this is also Bochner integrable with respect to µ so I can factor out φ once
again. It’s measurability follows from the Pettis theorem and the above observation 21.4.21.
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Also, ∫
Ω1

∥∥∥∥∫
Ω2

f (s1,s2)XNC (s1)dλ

∥∥∥∥dµ

≤
∫

Ω1

∫
Ω2

∥ f (s1,s2)∥dλdµ

=
∫

Ω1×Ω2

∥ f (s1,s2)∥d (µ×λ )< ∞.

Therefore, the function in 21.4.22 is indeed Bochner integrable and so in 21.4.20 the φ can
be taken outside the last integral. Thus,

φ

(∫
Ω1×Ω2

f (s1,s2)d (µ×λ )

)
=

∫
Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ )

=
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ

=
∫

Ω1

φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
dµ

= φ

(∫
Ω1

∫
Ω2

f (s1,s2)XNC (s1)dλdµ

)
.

Since X ′ separates the points,∫
Ω1×Ω2

f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)XNC (s1)dλdµ.

The other formula follows from similar reasoning. ■

21.5 The Spaces Lp (Ω;X)

Recall that x is Bochner when it is strongly measurable and
∫

Ω
∥x(s)∥dµ < ∞. It is natural

to generalize to
∫

Ω
∥x(s)∥p dµ < ∞.

Definition 21.5.1 x ∈ Lp (Ω;X) for p ∈ [1,∞) if x is strongly measurable and∫
Ω

∥x(s)∥p dµ < ∞

Also

∥x∥Lp(Ω;X) ≡ ∥x∥p ≡
(∫

Ω

∥x(s)∥p dµ

)1/p

. (21.5.23)

As in the case of scalar valued functions, two functions in Lp (Ω;X) are considered
equal if they are equal a.e. With this convention, and using the same arguments found in
the presentation of scalar valued functions it is clear that Lp (Ω;X) is a normed linear space
with the norm given by 21.5.23. In fact, Lp (Ω;X) is a Banach space. This is the main
contribution of the next theorem.



670 CHAPTER 21. THE BOCHNER INTEGRAL

Lemma 21.5.2 If xn is a Cauchy sequence in Lp (Ω;X) satisfying

∞

∑
n=1
∥xn+1− xn∥p < ∞,

then there exists x ∈ Lp (Ω;X) such that xn (s)→ x(s) a.e. and

∥x− xn∥p→ 0.

Proof: Let gN (s)≡ ∑
N
n=1 ∥xn+1 (s)− xn (s)∥X . Then by the triangle inequality,(∫

Ω

gN (s)p dµ

)1/p

≤
N

∑
n=1

(∫
Ω

∥xn+1 (s)− xn (s)∥p dµ

)1/p

≤
∞

∑
n=1
∥xn+1− xn∥p < ∞.

Let

g(s) = lim
N→∞

gN (s) =
∞

∑
n=1
∥xn+1 (s)− xn (s)∥X .

By the monotone convergence theorem,(∫
Ω

g(s)p dµ

)1/p

= lim
N→∞

(∫
Ω

gN (s)p dµ

)1/p

< ∞.

Therefore, there exists a measurable set of measure 0 called E, such that for s /∈E, it follows
that g(s)< ∞. Hence, for s /∈ E, limN→∞ xN+1 (s) exists because

xN+1 (s) = xN+1 (s)− x1 (s)+ x1 (s) =
N

∑
n=1

(xn+1 (s)− xn (s))+ x1 (s).

Thus, if N > M, and s is a point where g(s)< ∞,

∥xN+1 (s)− xM+1 (s)∥X ≤
N

∑
n=M+1

∥xn+1 (s)− xn (s)∥X

≤
∞

∑
n=M+1

∥xn+1 (s)− xn (s)∥X

which shows that {xN+1 (s)}∞

N=1 is a Cauchy sequence for each s /∈ E. Now let

x(s)≡
{

limN→∞ xN (s) if s /∈ E,
0 if s ∈ E.

Theorem 21.1.10 shows that x is strongly measurable. By Fatou’s lemma,∫
Ω

∥x(s)− xN (s)∥p dµ ≤ lim inf
M→∞

∫
Ω

∥xM (s)− xN (s)∥p dµ.
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But if N and M are large enough with M > N,(∫
Ω

∥xM (s)− xN (s)∥p dµ

)1/p

≤
M

∑
n=N
∥xn+1− xn∥p ≤

∞

∑
n=N
∥xn+1− xn∥p < ε

and this shows, since ε is arbitrary, that

lim
N→∞

∫
Ω

∥x(s)− xN (s)∥p dµ = 0.

It remains to show x ∈ Lp (Ω;X). This follows from the above and the triangle inequality.
Thus, for N large enough,(∫

Ω

∥x(s)∥p dµ

)1/p

≤
(∫

Ω

∥xN (s)∥p dµ

)1/p

+

(∫
Ω

∥x(s)− xN (s)∥p dµ

)1/p

≤
(∫

Ω

∥xN (s)∥p dµ

)1/p

+ ε < ∞. ■

Theorem 21.5.3 Lp (Ω;X) is complete. Also every Cauchy sequence has a subsequence
which converges pointwise.

Proof: If {xn} is Cauchy in Lp (Ω;X), extract a subsequence {xnk} satisfying∥∥xnk+1 − xnk

∥∥
p ≤ 2−k

and apply Lemma 21.5.2. The pointwise convergence of this subsequence was established
in the proof of this lemma. This proves the theorem because if a subsequence of a Cauchy
sequence converges, then the Cauchy sequence must also converge. ■

Observation 21.5.4 If the measure space is Lebesgue measure then you have continuity of
translation in Lp (Rn;X) in the usual way. More generally, for µ a Radon measure on Ω

a locally compact Hausdorff space, Cc (Ω;X) is dense in Lp (Ω;X) . Here Cc (Ω;X) is the
space of continuous X valued functions which have compact support in Ω. The proof of
this little observation follows immediately from approximating with simple functions and
then applying the appropriate considerations to the simple functions.

Clearly Fatou’s lemma and the monotone convergence theorem make no sense for func-
tions with values in a Banach space but the dominated convergence theorem holds in this
setting.

Theorem 21.5.5 If x is strongly measurable and xn (s)→ x(s) a.e. (for s off a set of mea-
sure zero) with

∥xn (s)∥ ≤ g(s) a.e.

where
∫

Ω
gdµ < ∞, then x is Bochner integrable and∫

Ω

x(s)dµ = lim
n→∞

∫
Ω

xn (s)dµ.
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Proof: The measurability of x follows from Theorem 21.1.10 if convergence happens
for each s. Otherwise, x is measurable by assumption. Then ∥xn (s)− x(s)∥ ≤ 2g(s) a.e.
so, from Fatou’s lemma,∫

Ω

2g(s)dµ ≤ lim inf
n→∞

∫
Ω

(2g(s)−∥xn (s)− x(s)∥)dµ

=
∫

Ω

2g(s)dµ− lim sup
n→∞

∫
Ω

∥xn (s)− x(s)∥dµ

and so,

lim sup
n→∞

∫
Ω

∥xn (s)− x(s)∥dµ ≤ 0

Also, from Fatou’s lemma again,∫
Ω

∥x(s)∥dµ ≤ lim inf
n→∞

∫
Ω

∥xn (s)∥dµ <
∫

Ω

g(s)dµ < ∞

so x ∈ L1. Then by the triangle inequality,

lim sup
n→∞

∥∥∥∥∫
Ω

x(s)dµ−
∫

Ω

xn (s)dµ

∥∥∥∥≤ lim sup
n→∞

∫
Ω

∥xn (s)− x(s)∥dµ = 0 ■

One can also give a version of the Vitali convergence theorem.

Definition 21.5.6 Let A ⊆ L1 (Ω;X). Then A is said to be uniformly integrable if for
every ε > 0 there exists δ > 0 such that whenever µ (E)< δ , it follows∫

E
∥ f∥X dµ < ε

for all f ∈A . It is bounded if

sup
f∈A

∫
Ω

∥ f∥X dµ < ∞.

Theorem 21.5.7 Let (Ω,F ,µ) be a finite measure space and let X be a separable Banach
space. Let { fn}⊆ L1 (Ω;X) be uniformly integrable and bounded such that fn (ω)→ f (ω)
for each ω ∈Ω. Then f ∈ L1 (Ω;X) and

lim
n→∞

∫
Ω

∥ fn− f∥X dµ = 0.

Proof: Let ε > 0 be given. Then by uniform integrability there exists δ > 0 such that
if µ (E)< δ then ∫

E
∥ fn∥dµ < ε/3.

By Fatou’s lemma the same inequality holds for f . Also Fatou’s lemma shows f ∈L1 (Ω;X),
f being measurable because of Theorem 11.1.9.
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By Egoroff’s theorem, Theorem 11.3.11, there exists a set of measure less than δ , E
such that the convergence of { fn} to f is uniform off E. Therefore,∫

Ω

∥ f − fn∥dµ ≤
∫

E
(∥ f∥X +∥ fn∥X )dµ +

∫
EC
∥ f − fn∥X dµ

<
2ε

3
+
∫

EC

ε

(µ (Ω)+1)3
dµ < ε

if n is large enough. ■
Note that a convenient way to achieve uniform integrability is to say { fn} is bounded

in Lp (Ω;X) for some p > 1. This follows from Holder’s inequality.

∫
E
∥ fn∥dµ ≤

(∫
E

dµ

)1/p′(∫
Ω

∥ fn∥p dµ

)1/p

≤Cµ (E)1/p′ .

The following theorem is interesting.

Theorem 21.5.8 Let 1≤ p < ∞ and let p < r ≤ ∞. Then Lr ([0,T ] ,X) is a Borel subset of
Lp ([0,T ] ;X). Letting C ([0,T ] ;X) denote the functions having values in X which are con-
tinuous, C ([0,T ] ;X) is also a Borel subset of Lp ([0,T ] ;X) . Here the measure is ordinary
one dimensional Lebesgue measure on [0,T ].

Proof: First consider the claim about Lr ([0,T ] ;X). Let

BM ≡
{

x ∈ Lp ([0,T ] ;X) : ∥x∥Lr([0,T ];X) ≤M
}
.

Then BM is a closed subset of Lp ([0,T ] ;X) . Here is why. If {xn} is a sequence of
elements of BM and xn → x in Lp ([0,T ] ;X) , then passing to a subsequence, still denoted
by xn, it can be assumed xn (s)→ x(s) a.e. Hence Fatou’s lemma can be applied to conclude∫ T

0
∥x(s)∥r ds≤ lim inf

n→∞

∫ T

0
∥xn (s)∥r ds≤Mr < ∞.

Now ∪∞
M=1BM = Lr ([0,T ] ;X) . Note this did not depend on the measure space used. It

would have been equally valid on any measure space.
Consider now C ([0,T ] ;X) . The norm on this space is the usual norm, ∥·∥

∞
. The argu-

ment above shows ∥·∥
∞

is a Borel measurable function on Lp ([0,T ] ;X) . This is because
BM ≡{x ∈ Lp ([0,T ] ;X) : ∥x∥

∞
≤M} is a closed, hence Borel subset of Lp ([0,T ] ;X). Now

let θ ∈ L (Lp ([0,T ] ;X) ,Lp (R;X)) such that θ (x(t)) = x(t) for all t ∈ [0,T ] and also
θ ∈ L (C ([0,T ] ;X) ,BC (R;X)) where BC (R;X) denotes the bounded continuous func-
tions with a norm given by ∥x∥ ≡ supt∈R ∥x(t)∥ , and θx has compact support.

For example, you could define

x̃(t)≡


x(t) if t ∈ [0,T ]
x(2T − t) if t ∈ [T,2T ]
x(−t) if t ∈ [−T,0]
0 if t /∈ [−T,2T ]
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and let Φ ∈C∞
c (−T,2T ) such that Φ(t) = 1 for t ∈ [0,T ]. Then you could let

θx(t)≡Φ(t) x̃(t) .

Then let {φ n} be a mollifier and define

ψnx(t)≡ φ n ∗θx(t) .

It follows ψnx is uniformly continuous because∥∥ψnx(t)−ψnx
(
t ′
)∥∥

X

≤
∫
R

∣∣φ n
(
t ′− s

)
−φ n (t− s)

∣∣∥θx(s)∥X ds

≤ C∥x∥p

(∫
R

∣∣φ n
(
t ′− s

)
−φ n (t− s)

∣∣p′ ds
)1/p′

Also for x ∈C ([0,T ] ;X) , it follows from usual mollifier arguments that

∥ψnx− x∥L∞([0,T ];X)→ 0.

Here is why. For t ∈ [0,T ] ,

∥ψnx(t)− x(t)∥X ≤
∫
R

φ n (s)∥θx(t− s)−θx(t)∥ds

≤ Cθ

∫ 1/n

−1/n
φ n (s)dsε =Cθ ε

provided n is large enough due to the compact support and consequent uniform continuity
of θx.

If ||ψnx− x||L∞([0,T ];X)→ 0, then {ψnx}must be a Cauchy sequence in C ([0,T ] ;X) and
this requires that x equals a continuous function a.e. Thus C ([0,T ] ;X) consists exactly of
those functions, x of Lp ([0,T ] ;X) such that ∥ψnx− x∥

∞
→ 0. It follows

C ([0,T ] ;X) =

∩∞
n=1∪∞

m=1∩∞
k=m

{
x ∈ Lp ([0,T ] ;X) : ∥ψkx− x∥

∞
≤ 1

n

}
. (21.5.24)

It only remains to show

S≡
{

x ∈ Lp ([0,T ] ;X) : ∥ψkx− x∥
∞
≤ α

}
is a Borel set. Suppose then that xn ∈ S and xn → x in Lp ([0,T ] ;X). Then there exists a
subsequence, still denoted by n such that xn → x pointwise a.e. as well as in Lp. There
exists a set of measure 0 such that for all n, and t not in this set,

∥ψkxn (t)− xn (t)∥ ≡
∥∥∥∥∫ 1/k

−1/k
φ k (s)(θxn (t− s))ds− xn (t)

∥∥∥∥≤ α

xn (t) → x(t) .
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Then

∥ψkxn (t)− xn (t)− (ψkx(t)− x(t))∥

≤ ∥xn (t)− x(t)∥X +

∥∥∥∥∫ 1/k

−1/k
φ k (s)(θxn (t− s)−θx(t− s))ds

∥∥∥∥
≤ ∥xn (t)− x(t)∥X +Ck,θ ∥xn− x∥Lp(0,T ;X)

which converges to 0 as n→ ∞. It follows that for a.e. t,

∥ψkx(t)− x(t)∥ ≤ α.

Thus S is closed and so the set in 21.5.24 is a Borel set. ■
As in the scalar case, the following lemma holds in this more general context.

Lemma 21.5.9 Let (Ω,µ) be a regular measure space where Ω is a locally compact Haus-
dorff space. Then Cc (Ω;X) the space of continuous functions having compact support and
values in X is dense in Lp (0,T ;X) for all p ∈ [0,∞). For any σ finite measure space, the
simple functions are dense in Lp (0,T ;X) .

Proof: First is it shown the simple functions are dense in Lp (0,T ;X) . Let f be a func-
tion in Lp (0,T ;X) and let {xn} denote a sequence of simple functions which converge to f
pointwise which also have the property that

∥xn (s)∥ ≤ 2∥ f (s)∥

Then ∫
Ω

∥xn (s)− f (s)∥p dµ → 0

from the dominated convergence theorem. Therefore, the simple functions are indeed dense
in Lp (0,T ;X) .

Next suppose (Ω,µ) is a regular measure space. If x(s) ≡ ∑i aiXEi (s) is a simple
function, then by regularity, there exist compact sets, Ki and open sets, Vi such that Ki ⊆
Ei ⊆Vi and µ (Vi \Ki)

1/p < ε/∑i ||ai|| . Let Ki ≺ hi ≺Vi. Then consider

∑
i

aihi ∈Cc (Ω) .

By the triangle inequality,(∫
Ω

∥∥∥∥∥∑i
aihi (s)−aiXEi (s)

∥∥∥∥∥
p

dµ

)1/p

≤∑
i

(∫
Ω

∥ai (hi (s)−XEi (s))∥
p dµ

)1/p

≤ ∑
i

(∫
Ω

∥ai∥p |hi (s)−XEi (s)|
p dµ

)1/p

≤∑
i
∥ai∥

(∫
Vi\Ki

dµ

)1/p

≤ ∑
i
∥ai∥µ (Vi \Ki)

1/p < ε

Since ε is arbitrary, this and the first part of the lemma shows Cc (Ω;X) is dense in Lp (Ω;X).
■
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21.6 Measurable Representatives
In this section consider the special case where X = L1 (B,ν) where (B,F ,ν) is a σ finite
measure space and x ∈ L1 (Ω;X). Thus for each s ∈ Ω, x(s) ∈ L1 (B,ν). In general, the
map

(s, t)→ x(s)(t)

will not be product measurable, but one can obtain a measurable representative. This is
important because it allows the use of Fubini’s theorem on the measurable representative.

By Theorem 21.2.4, there exists a sequence of simple functions, {xn}, of the form

xn (s) =
m

∑
k=1

akXEk (s) (21.6.25)

where ak ∈ L1 (B,ν) which satisfy the conditions of Definition 21.2.3 and

∥xn− xm∥L1(Ω,L1(B))→ 0 as m,n→ ∞ (21.6.26)

For such a simple function, you can assume the Ek are disjoint and then

∥xn∥L1(Ω,L1(B)) =
m

∑
k=1
∥ak∥L1(B) µ (Ek) =

m

∑
k=1

∫
B
|ak|dνµ (Ek)

=
∫

Ω

∫
B
|ak (t)|dν (t)XEk (s)dµ (s)

=
∫

Ω

∫
B
|xn|dνdµ

Also, each xn is product measurable. Thus from 21.6.26,

∥xn− xm∥L1(Ω,L1(B)) =
∫

Ω

∫
B
|xn− xm|dνdµ

which shows that {xn} is a Cauchy sequence in L1 (Ω×B,µ×λ ) . Then there exists y ∈
L1 (Ω×B,µ×λ ) and a subsequence still called {xn} such that

lim
n→∞

∫
Ω

∫
B
|xn− y|dνdµ = lim

n→∞

∫
Ω

∥xn− y∥L1(B) dµ = ∥xn− y∥L1(Ω,L1(B)) = 0.

Now consider 21.6.26. Since limm→∞ xm (s) = x(s) in L1 (B) , it follows from Fatou’s
lemma that

∥xn− x∥L1(Ω,L1(B)) ≤ lim inf
m→∞
∥xn− xm∥L1(Ω,L1(B)) < ε

for all n large enough. Hence

lim
n→∞
∥xn− x∥L1(Ω,L1(B)) = 0

and so
x(s) = y(s) in L1 (B) µ a.e. s



21.6. MEASURABLE REPRESENTATIVES 677

In particular, for a.e. s, it follows that

x(s)(t) = y(s, t) for a.e. t.

Now
∫

Ω
x(s)dµ ∈ X = L1 (B,ν) so it makes sense to ask for (

∫
Ω

x(s)dµ)(t), at least µ

a.e. t. To find what this is, note∥∥∥∥∫
Ω

xn (s)dµ−
∫

Ω

x(s)dµ

∥∥∥∥
X
≤
∫

Ω

∥xn (s)− x(s)∥X dµ.

Therefore, since the right side converges to 0,

lim
n→∞

∥∥∥∥∫
Ω

xn (s)dµ−
∫

Ω

x(s)dµ

∥∥∥∥
X
=

lim
n→∞

∫
B

∣∣∣∣(∫
Ω

xn (s)dµ

)
(t)−

(∫
Ω

x(s)dµ

)
(t)
∣∣∣∣dν = 0.

But (∫
Ω

xn (s)dµ

)
(t) =

∫
Ω

xn (s, t)dµ a.e. t.

Therefore

lim
n→∞

∫
B

∣∣∣∣∫
Ω

xn (s, t)dµ−
(∫

Ω

x(s)dµ

)
(t)
∣∣∣∣dν = 0. (21.6.27)

Also, since xn→ y in L1 (Ω×B),

0 = lim
n→∞

∫
B

∫
Ω

|xn (s, t)− y(s, t)|dµdν ≥

lim
n→∞

∫
B

∣∣∣∣∫
Ω

xn (s, t)dµ−
∫

Ω

y(s, t)dµ

∣∣∣∣dν . (21.6.28)

From 21.6.27 and 21.6.28∫
Ω

y(s, t)dµ =

(∫
Ω

x(s)dµ

)
(t) a.e. t.

Theorem 21.6.1 Let X = L1 (B) where (B,F ,ν) is a σ finite measure space and let

x ∈ L1 (Ω;X)

Then there exists a measurable representative, y ∈ L1 (Ω×B), such that

x(s) = y(s, ·) a.e. s in Ω, the equation in L1 (B) ,

and ∫
Ω

y(s, t)dµ =

(∫
Ω

x(s)dµ

)
(t) a.e. t.
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21.7 Vector Measures
There is also a concept of vector measures.

Definition 21.7.1 Let (Ω,S ) be a set and a σ algebra of subsets of Ω. A mapping

F : S → X

is said to be a vector measure if

F (∪∞
i=1Ei) =

∞

∑
i=1

F (Ei)

whenever {Ei}∞

i=1 is a sequence of disjoint elements of S . For F a vector measure,

|F |(A)≡ sup{ ∑
F∈π(A)

∥µ (F)∥ : π (A) is a partition of A}.

This is the same definition that was given in the case where F would have values in C,
the only difference being the fact that now F has values in a general Banach space X as
the vector space of values of the vector measure. Recall that a partition of A is a finite set,
{F1, · · · ,Fm} ⊆S such that ∪m

i=1Fi = A. The same theorem about |F | proved in the case of
complex valued measures holds in this context with the same proof. For completeness, it is
included here.

Theorem 21.7.2 If |F |(Ω)< ∞, then |F | is a measure on S .

Proof: Let E1 and E2 be sets of S such that E1∩E2 = /0 and let {Ai
1, · · · ,Ai

ni
}= π(Ei),

a partition of Ei which is chosen such that

|F |(Ei)− ε <
ni

∑
j=1
∥F(Ai

j)∥ i = 1,2.

Consider the sets which are contained in either of π (E1) or π (E2) , it follows this collection
of sets is a partition of E1 ∪E2 which is denoted here by π(E1 ∪E2). Then by the above
inequality and the definition of total variation,

|F |(E1∪E2)≥ ∑
F∈π(E1∪E2)

∥F(F)∥> |F |(E1)+ |F |(E2)−2ε ,

which shows that since ε > 0 was arbitrary,

|F |(E1∪E2)≥ |F |(E1)+ |F |(E2). (21.7.29)

Let
{

E j
}∞

j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞
j=1E j. Then by the

definition of total variation there exists a partition of E∞, π(E∞) = {A1, · · · ,An} such that

|F |(E∞)− ε <
n

∑
i=1
∥F(Ai)∥ .
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Also,

Ai = ∪∞
j=1Ai∩E j, so F (A j) =

∞

∑
j=1

F (Ai∩E j)

and so by the triangle inequality, ∥F(Ai)∥ ≤ ∑
∞
j=1
∥∥F(Ai∩E j)

∥∥. Therefore, by the above,

|F |(E∞)− ε <
n

∑
i=1

≥∥F(Ai)∥︷ ︸︸ ︷
∞

∑
j=1

∥∥F(Ai∩E j)
∥∥= ∞

∑
j=1

n

∑
i=1

∥∥F(Ai∩E j)
∥∥≤ ∞

∑
j=1
|F |(E j)

because
{

Ai∩E j
}n

i=1 is a partition of E j.
Since ε > 0 is arbitrary, this shows

|F |(∪∞
j=1E j)≤

∞

∑
j=1
|F |(E j).

Also, 21.7.29 implies that whenever the Ei are disjoint, |F |(∪n
j=1E j)≥∑

n
j=1 |F |(E j). There-

fore,
∞

∑
j=1
|F |(E j)≥ |F |(∪∞

j=1E j)≥ |F |(∪n
j=1E j)≥

n

∑
j=1
|F |(E j).

Since n is arbitrary,

|F |(∪∞
j=1E j) =

∞

∑
j=1
|F |(E j)

which shows that |F | is a measure as claimed. ■

Definition 21.7.3 A Banach space is said to have the Radon Nikodym property if whenever

(Ω,S ,µ) is a finite measure space

F : S → X is a vector measure with |F |(Ω)< ∞

F ≪ µ

then one may conclude there exists g ∈ L1 (Ω;X) such that

F (E) =
∫

E
g(s)dµ

for all E ∈S .

Some Banach spaces have the Radon Nikodym property and some don’t. No attempt is
made to give a complete answer to the question of which Banach spaces have this property,
but the next theorem gives examples of many spaces which do. This next lemma was used
earlier. I am presenting it again.
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Lemma 21.7.4 Suppose ν is a complex measure defined on S a σ algebra where (Ω,S )
is a measurable space, and let µ be a measure on S with |ν (E)| ≤ rµ (E) and suppose
there is h ∈ L1 (Ω,µ) such that for all E ∈S ,

ν (E) =
∫

E
hdµ, ,

Then |h| ≤ r a.e.

Proof: Let B(p,δ )⊆ C\B(0,r) and let E ≡ h−1 (B(p,δ )) . If µ (E)> 0. Then∣∣∣∣ 1
µ (E)

∫
E

hdµ− p
∣∣∣∣≤ 1

µ (E)

∫
E
|h(ω)− p|dµ < δ

Thus,
∣∣∣ ν(E)

µ(E) − p
∣∣∣< δ and so |ν (E)− pµ (E)|< δ µ (E) which implies

|ν (E)| ≥ (|p|−δ )µ (E)> rµ (E)≥ |ν (E)|

which contradicts the assumption. Hence h−1 (B(p,δ )) is a set of µ measure zero for
all such balls contained in C \B(0,r) and so, since countably many of these balls cover
C\B(0,r), it follows that µ

(
h−1

(
C\B(0,r)

))
= 0 and so |h(ω)| ≤ r for a.e. ω . ■

Theorem 21.7.5 Suppose X ′ is a separable dual space. Then X ′ has the Radon Nikodym
property.

Proof: By Theorem 21.1.16, X is separable. Let D be a countable dense subset of X .
Let F≪ µ,µ a finite measure and F a vector measure and let |F |(Ω)< ∞. Pick x ∈ X and
consider the map

E→ F (E)(x)

for E ∈S . This defines a complex measure which is absolutely continuous with respect to
|F |. Therefore, by the earlier Radon Nikodym theorem, there exists fx ∈ L1 (Ω, |F |) such
that

F (E)(x) =
∫

E
fx (s)d |F |. (21.7.30)

Also, by definition ∥F (E)∥ ≤ |F |(E) so |F (E)(x)| ≤ |F |(E)∥x∥ . By Lemma 21.7.4,
| fx (s)| ≤ ∥x∥ for |F | a.e. s. Let D̃ consist of all finite linear combinations of the form
∑

m
i=1 aixi where ai is a rational point of F and xi ∈ D. For each of these countably many

vectors, there is an exceptional set of measure zero off which | fx (s)| ≤ ∥x∥. Let N be the
union of all of them and define fx (s)≡ 0 if s /∈ N. Then since F (E) is in X ′, it is linear and
so for ∑

m
i=1 aixi ∈ D̃,∫

E
f∑

m
i=1 aixi (s)d |F |= F (E)

(
m

∑
i=1

aixi

)
=

m

∑
i=1

aiF (E)(xi) =
∫

E

m

∑
i=1

ai fxi (s)d |F |

and so by uniqueness in the Radon Nikodym theorem,

f∑
m
i=1 aixi (s) =

m

∑
i=1

ai fxi (s) |F | a.e.
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and so, we can regard this as holding for all s /∈ N. Also, if x ∈ D̃, | fx (s)| ≤ ∥x∥. Now for
x,y ∈ D̃, ∣∣ fx (s)− fy (s)

∣∣= ∣∣ fx−y (s)
∣∣≤ ∥x− y∥

and so, by density of D̃, we can define

hx (s)≡ lim
n→∞

fxn (s) where xn→ x,xn ∈ D̃

For s ∈ N, all functions equal 0. Thus for all x, |hx (s)| ≤ ∥x∥. The dominated convergence
theorem and continuity of F (E) implies that for xn→ x, with xn ∈ D̃,∫

E
hx (s)d |F |= lim

n→∞

∫
E

fxn (s)d |F |= lim
n→∞

F (E)(xn) = F (E)(x). (21.7.31)

It follows from the density of D̃ that for all x,y ∈ X ,s /∈ N, and a,b ∈ F, let xn→ x,yn→
y,an→ a,bn→ b, with xn,yn ∈ D̃ and an,bn ∈Q or Q+ iQ in case F= C. Then

hax+by (s) = lim
n→∞

fanxn+bnyn (s) = lim
n→∞

an fxn (s)+bn fyn (s)≡ ahx (s)+bhy (s), (21.7.32)

Let θ (s) be given by θ (s)(x) = hx (s) if s /∈ N and let θ (s) = 0 if s ∈ N. By 21.7.32 it
follows that θ (s) ∈ X ′ for each s. Also

θ (s)(x) = hx (s) ∈ L1 (Ω)

so θ (·) is weak ∗ measurable. Since X ′ is separable, Theorem 21.1.15 implies that θ is
strongly measurable. Furthermore, by 21.7.32,

∥θ (s)∥ ≡ sup
∥x∥≤1

|θ (s)(x)| ≤ sup
∥x∥≤1

|hx (s)| ≤ 1.

Therefore,
∫

Ω
∥θ (s)∥d |F |< ∞ so θ ∈ L1 (Ω;X ′). Thus, if E ∈S ,∫
E

hx (s)d |F |=
∫

E
θ (s)(x)d |F |=

(∫
E

θ (s)d |F |
)
(x). (21.7.33)

From 21.7.31 and 21.7.33, (
∫

E θ (s)d |F |)(x) = F (E)(x) for all x ∈ X and therefore,∫
E

θ (s)d |F |= F (E).

Finally, since F ≪ µ, |F | ≪ µ also and so there exists k ∈ L1 (Ω) such that

|F |(E) =
∫

E
k (s)dµ

for all E ∈S , by the scalar Radon Nikodym Theorem. It follows

F (E) =
∫

E
θ (s)d |F |=

∫
E

θ (s)k (s)dµ.

Letting g(s) = θ (s)k (s), this has proved the theorem. ■
Since each reflexive Banach spaces is a dual space, the following corollary holds.

Corollary 21.7.6 Any separable reflexive Banach space has the Radon Nikodym property.

It is not necessary to assume separability in the above corollary. For the proof of a more
general result, consult Vector Measures by Diestal and Uhl, [41].
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21.8 The Riesz Representation Theorem
The Riesz representation theorem for the spaces Lp (Ω;X) holds under certain conditions.
The proof follows the proofs given earlier for scalar valued functions.

Definition 21.8.1 If X and Y are two Banach spaces, X is isometric to Y if there exists
θ ∈L (X ,Y ) such that

∥θx∥Y = ∥x∥X .

This will be written as X ∼= Y . The map θ is called an isometry.

The next theorem says that Lp′ (Ω;X ′) is always isometric to a subspace of (Lp (Ω;X))′

for any Banach space, X .

Theorem 21.8.2 Let X be any Banach space and let (Ω,S ,µ) be a finite measure space.
Let p ≥ 1 and let 1/p+ 1/p′ = 1.(If p = 1, p′ ≡ ∞.) Then Lp′ (Ω;X ′) is isometric to a
subspace of (Lp (Ω;X))′. Also, for g ∈ Lp′ (Ω;X ′),

sup
|| f ||p≤1

∣∣∣∣∫
Ω

g(s)( f (s))dµ

∣∣∣∣= ∥g∥p′ .

Proof: First observe that for f ∈ Lp (Ω;X) and g ∈ Lp′ (Ω;X ′),

s→ g(s)( f (s))

is a function in L1 (Ω). (To obtain measurability, write f as a limit of simple functions.
Holder’s inequality then yields the function is in L1 (Ω).) Define

θ : Lp′ (
Ω;X ′

)
→ (Lp (Ω;X))′

by

θg( f )≡
∫

Ω

g(s)( f (s))dµ.

Holder’s inequality implies
∥θg∥ ≤ ∥g∥p′ (21.8.34)

and it is also clear that θ is linear. Next it is required to show ∥θg∥= ∥g∥.
This will first be verified for simple functions. Let

g(s) =
m

∑
i=1

c∗i XEi (s)

where c∗i ∈ X ′, the Ei are disjoint and ∪m
i=1Ei = Ω. Then ∥g∥ ∈ Lp′ (Ω;R), ∥g(s)∥ =

∑
m
i=1 ∥c∗i ∥XEi (s) .

Let h(s)≡ ∥g(s)∥p′−1 /∥g∥p′−1
p′ . Then

∫
Ω

∥g(s)∥X ′ h(s)dµ =
∫

Ω

∥g(s)∥p′

X ′

∥g∥p′−1
p′

dµ = ∥g∥Lp′ (Ω;X ′) (21.8.35)
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Also h ∈ Lp (Ω;R) and

∫
Ω

|h(s)|p dµ =
∫

Ω

∥g(s)∥p′

∥g∥p′
p′

=
∥g∥p′

∥g∥p′
= 1

so ∥h∥p = 1. Since the measure space is finite, h ∈ L1 (Ω;R).
Now let di be chosen such that

c∗i (di)≥ ∥c∗i ∥X ′ − ε/∥h∥L1(Ω)

and ∥di∥X = 1. Let

f (s)≡
m

∑
i=1

dih(s)XEi (s) .

Thus f ∈ Lp (Ω;X) and ∥ f∥Lp(Ω;X) = 1. This follows from

∥ f∥p
p =

∫
Ω

m

∑
i=1
∥di∥p

X |h(s)|
p XEi (s)dµ =

m

∑
i=1

(∫
Ei

|h(s)|p dµ

)
= 1

Also

∥θg∥ ≥ |θg( f )|=
∣∣∣∣∫

Ω

g(s)( f (s))dµ

∣∣∣∣≥∣∣∣∣∣
∫

Ω

m

∑
i=1

(
∥c∗i ∥X ′ − ε/∥h∥L1(Ω)

)
h(s)XEi (s)dµ

∣∣∣∣∣
Then from 21.8.35

≥
∣∣∣∣∫

Ω

∥g(s)∥X ′ h(s)dµ

∣∣∣∣− ε

∣∣∣∣∫
Ω

h(s)/∥h∥L1(Ω) dµ

∣∣∣∣= ∥g∥Lp′ (Ω;X ′)− ε.

Since ε was arbitrary, ∥θg∥ ≥ ∥g∥ and from 21.8.34 this shows equality holds whenever g
is a simple function.

In general, let g ∈ Lp′ (Ω;X ′) and let gn be a sequence of simple functions converging
to g in Lp′ (Ω;X ′). Such a sequence exists by Lemma 21.1.2. Let gn (s)→ g(s) ,∥gn (s)∥ ≤
2∥g(s)∥ . Then each gn is in Lp′ (Ω;X ′) and by the dominated convergence theorem they
converge to g in Lp′ (Ω;X ′). Then for ∥·∥ the norm in (Lp (Ω;X))′ ,

∥θg∥= lim
n→∞
∥θgn∥= lim

n→∞
∥gn∥= ∥g∥.

This proves the theorem and shows θ is the desired isometry. ■

Theorem 21.8.3 If X is a Banach space and X ′ has the Radon Nikodym property, then if
(Ω,S ,µ) is a finite measure space,

(Lp (Ω;X))′ ∼= Lp′ (
Ω;X ′

)
and in fact the mapping θ of Theorem 21.8.2 is onto.
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Proof: Let l ∈ (Lp (Ω;X))′ and define F (E) ∈ X ′ by

F (E)(x)≡ l (XE (·)x).

Lemma 21.8.4 F defined above is a vector measure with values in X ′ and |F |(Ω)< ∞.

Proof of the lemma: Clearly F (E) is linear. Also

∥F (E)∥= sup
∥x∥≤1

∥F (E)(x)∥

≤ ∥l∥ sup
∥x∥≤1

∥XE (·)x∥Lp(Ω;X) ≤ ∥l∥µ (E)1/p.

Let {Ei}∞
i=1 be a sequence of disjoint elements of S and let E = ∪n<∞En.∣∣∣∣∣F (E)(x)−

n

∑
k=1

F (Ek)(x)

∣∣∣∣∣ =

∣∣∣∣∣l (XE (·)x)−
n

∑
i=1

l (XEi (·)x)

∣∣∣∣∣ (21.8.36)

≤ ∥l∥

∥∥∥∥∥XE (·)x−
n

∑
i=1

XEi (·)x

∥∥∥∥∥
Lp(Ω;X)

≤ ∥l∥µ

(⋃
k>n

Ek

)1/p

∥x∥.

Since µ (Ω)< ∞, limn→∞ µ

( ⋃
k>n

Ek

)1/p

= 0 and so inequality 21.8.36 shows that

lim
n→∞

∥∥∥∥∥F (E)−
n

∑
k=1

F (Ek)

∥∥∥∥∥
X ′

= 0.

To show |F |(Ω) < ∞, let ε > 0 be given, let {H1, · · · ,Hn} be a partition of Ω, and let
∥xi∥ ≤ 1 be chosen in such a way that

F (Hi)(xi)> ∥F (Hi)∥− ε/n.

Thus

−ε +
n

∑
i=1
∥F (Hi)∥<

n

∑
i=1

l (XHi (·)xi)≤ ∥l∥

∥∥∥∥∥ n

∑
i=1

XHi (·)xi

∥∥∥∥∥
Lp(Ω;X)

≤ ∥l∥
(∫

Ω

n

∑
i=1

XHi (s)dµ

)1/p

= ∥l∥µ (Ω)1/p.

Since ε > 0 was arbitrary, ∑
n
i=1 ∥F (Hi)∥ < ∥l∥µ (Ω)1/p.Since the partition was arbitrary,

this shows |F |(Ω)≤ ∥l∥µ (Ω)1/p and this proves the lemma. ■



21.8. THE RIESZ REPRESENTATION THEOREM 685

Continuing with the proof of Theorem 21.8.3, note that F≪ µ. Since X ′ has the Radon
Nikodym property, there exists g ∈ L1 (Ω;X ′) such that

F (E) =
∫

E
g(s)dµ.

Also, from the definition of F (E) ,

l

(
n

∑
i=1

xiXEi (·)

)
=

n

∑
i=1

l (XEi (·)xi)

=
n

∑
i=1

F (Ei)(xi) =
n

∑
i=1

∫
Ei

g(s)(xi)dµ. (21.8.37)

It follows from 21.8.37 that whenever h is a simple function,

l (h) =
∫

Ω

g(s)(h(s))dµ. (21.8.38)

Let Gn ≡ {s : ∥g(s)∥X ′ ≤ n} and let j : Lp (Gn;X)→ Lp (Ω;X) be given by

jh(s) =
{

h(s) if s ∈ Gn,
0 if s /∈ Gn.

Letting h be a simple function in Lp (Gn;X),

j∗l (h) = l ( jh) =
∫

Gn

g(s)(h(s))dµ. (21.8.39)

Since the simple functions are dense in Lp (Gn;X), and g ∈ Lp′ (Gn;X ′), it follows 21.8.39
holds for all h ∈ Lp (Gn;X). By Theorem 21.8.2,

∥g∥Lp′ (Gn;X ′) = ∥ j∗l∥(Lp(Gn;X))′ ≤ ∥l∥(Lp(Ω;X))′ .

By the monotone convergence theorem,

∥g∥Lp′ (Ω;X ′) = lim
n→∞
∥g∥Lp′ (Gn;X ′) ≤ ∥l∥(Lp(Ω;X))′ .

Therefore g ∈ Lp′ (Ω;X ′) and since simple functions are dense in Lp (Ω;X), 21.8.38 holds
for all h ∈ Lp (Ω;X) . Thus l = θg and the theorem is proved because, by Theorem 21.8.2,
∥l∥= ∥g∥ and the mapping θ is onto because l was arbitrary. ■

As in the scalar case, everything generalizes to the case of σ finite measure spaces. The
proof is almost identical.

Lemma 21.8.5 Let (Ω,S ,µ) be a σ finite measure space and let X be a Banach space
such that X ′ has the Radon Nikodym property. Then there exists a measurable function, r
such that r (x)> 0 for all x, such that |r (x)|< M for all x, and

∫
rdµ < ∞. For

Λ ∈ (Lp(Ω;X))′, p≥ 1,
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there exists a unique h ∈ Lp′(Ω;X ′), L∞(Ω;X ′) if p = 1 such that

Λ f =
∫

h( f )dµ.

Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥p′ if p > 1, ∥h∥∞ if p = 1). Here

1
p
+

1
p′

= 1.

Proof: First suppose r exists as described. Also, to save on notation and to emphasize
the similarity with the scalar case, denote the norm in the various spaces by |·|. Define a
new measure µ̃ , according to the rule

µ̃ (E)≡
∫

E
rdµ. (21.8.40)

Thus µ̃ is a finite measure on S . Now define a mapping, η : Lp(Ω;X ,µ)→ Lp(Ω;X , µ̃)

by η f = r−
1
p f . Then

∥η f∥p
Lp(µ̃)

=
∫ ∣∣∣r− 1

p f
∣∣∣p rdµ = ∥ f∥p

Lp(µ)

and so η is one to one and in fact preserves norms. I claim that also η is onto. To see this,
let g ∈ Lp(Ω;X , µ̃) and consider the function, r

1
p g. Then∫ ∣∣∣r 1

p g
∣∣∣p dµ =

∫
|g|p rdµ =

∫
|g|p dµ̃ < ∞

Thus r
1
p g ∈ Lp (Ω;X ,µ) and η

(
r

1
p g
)
= g showing that η is onto as claimed. Thus η is

one to one, onto, and preserves norms. Consider the diagram below which is descriptive of
the situation in which η∗ must be one to one and onto.

h,Lp′ (µ̃) Lp (µ̃)′ , Λ̃

η∗

→ Lp (µ)′ ,Λ

Lp (µ̃)
η

← Lp (µ)

Then for Λ ∈ Lp (µ)′ , there exists a unique Λ̃ ∈ Lp (µ̃)′ such that η∗Λ̃ = Λ,
∥∥∥Λ̃

∥∥∥ = ∥Λ∥ .
By the Riesz representation theorem for finite measure spaces, there exists a unique h ∈
Lp′ (µ̃)≡ Lp′ (Ω;X ′, µ̃) which represents Λ̃ in the manner described in the Riesz represen-
tation theorem. Thus ∥h∥Lp′ (µ̃) =

∥∥∥Λ̃

∥∥∥= ∥Λ∥ and for all f ∈ Lp (µ) ,

Λ( f ) = η
∗
Λ̃( f )≡ Λ̃(η f ) =

∫
h(η f )dµ̃ =

∫
rh
(

r−
1
p f
)

dµ

=
∫

r
1
p′ h f dµ.
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Now ∫ ∣∣∣∣r 1
p′ h
∣∣∣∣p′ dµ =

∫
|h|p

′
rdµ = ∥h∥p′

Lp′ (µ̃)
< ∞.

Thus
∥∥∥∥r

1
p′ h
∥∥∥∥

Lp′ (µ)
= ∥h∥Lp′ (µ̃) =

∥∥∥Λ̃

∥∥∥ = ∥Λ∥ and represents Λ in the appropriate way. If

p = 1, then 1/p′ ≡ 0. Now consider the existence of r. Since the measure space is σ finite,
there exist {Ωn} disjoint, each having positive measure and their union equals Ω. Then
define

r (ω)≡
∞

∑
n=1

1
n2 µ(Ωn)

−1XΩn (ω)

This proves the Lemma.

Theorem 21.8.6 (Riesz representation theorem) Let (Ω,S ,µ) be σ finite and let X ′ have
the Radon Nikodym property. Then for

Λ ∈ (Lp(Ω;X ,µ))′, p≥ 1

there exists a unique h ∈ Lq(Ω,X ′,µ), L∞(Ω,X ′,µ) if p = 1 such that

Λ f =
∫

h( f )dµ.

Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here

1
p
+

1
q
= 1.

Proof: The above lemma gives the existence part of the conclusion of the theorem.
Uniqueness is done as before.

Corollary 21.8.7 If X ′ is separable, then for (Ω,S ,µ) a σ finite measure space,

(Lp (Ω;X))′ ∼= Lp′ (
Ω;X ′

)
.

Corollary 21.8.8 If X is separable and reflexive, then for (Ω,S ,µ) a σ finite measure
space,

(Lp (Ω;X))′ ∼= Lp′ (
Ω;X ′

)
.

Corollary 21.8.9 If X is separable and reflexive and (Ω,S ,µ) is a σ finite measure
space,then if p ∈ (1,∞) , then Lp (Ω;X) is reflexive.

Proof: This is just like the scalar valued case.
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21.8.1 An Example of Polish Space
Here is an interesting example. Obviously L∞ (0,T,H) is not separable with the normed
topology. However, bounded sets turn out to be metric spaces which are complete and
separable. This is the next lemma. Recall that a Polish space is a complete separable
metric space. In this example, H is a separable real Hilbert space or more generally a
separable real Banach space.

Lemma 21.8.10 Let B = B(0,L) be a closed ball in L∞ (0,T,H) . Then B is a Polish space
with respect to the weak ∗ topology. The closure is taken with respect to the usual topology.

Proof: Let {zk}∞

k=1 = X be a dense countable subspace in L1 (0,T,H) . You start with a
dense countable set and then consider all finite linear combinations having coefficients in
Q. Then the metric on B is

d (f,g)≡
∞

∑
k=1

2−k

∣∣∣⟨f−g,zk⟩L∞,L1

∣∣∣
1+
∣∣∣⟨f−g,zk⟩L∞,L1

∣∣∣
Is B complete? Suppose you have a Cauchy sequence {fn} . This happens if and only if
{⟨fn,zk⟩}∞

n=1 is a Cauchy sequence for each k. Therefore, there exists

ξ (zk) = lim
n→∞
⟨fn,zk⟩ .

Then for a,b ∈Q, and z,w ∈ X

ξ (az+bw) = lim
n→∞
⟨fn,az+bw⟩= lim

n→∞
a⟨fn,z⟩+b⟨fn,w⟩= aξ (z)+bξ (w)

showing that ξ is linear on X a dense subspace of L1 (0,T,H). Is ξ bounded on this dense
subspace with bound L? For z ∈ X ,

|ξ (z)| ≡ lim
n→∞
|⟨fn,z⟩| ≤ lim sup

n→∞

∥fn∥L∞ ∥z∥L1 ≤ L∥z∥L1

Hence ξ is also bounded on this dense subset of L1 (0,T,H) . Therefore, there is a unique
bounded linear extension of ξ to all of L1 (0,T,H) still denoted as ξ such that its norm
in L1 (0,T,H)′ is no larger than L. It follows from the Riesz representation theorem that
there exists a unique f ∈ L∞ (0,T,H) such that for all w ∈ L1 (0,T,H) , ξ (w) = ⟨f,w⟩ and
∥f∥ ≤ L. This f is the limit of the Cauchy sequence {fn} in B. Thus B is complete.

Is B separable? Let f ∈ B. Let ε > 0 be given. Choose M such that

∞

∑
k=M+1

2−k <
ε

4

Then the finite set {z1, · · · ,zM} is uniformly integrable. There exists δ > 0 such that if
m(S)< δ , then ∫

S
|zk|H dm <

(
ε

4(1+∥f∥L∞)

)
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Then there is a sequence of simple functions {sn}which converge uniformly to f off a set of
measure zero, N, ∥sn∥L∞ ≤ ∥f∥L∞ . By regularity of the measure, there exists a continuous
function with compact support hn such that sn = hn off a set of measure no more than δ/4n

and also ∥hn∥L∞ ≤ ∥f∥L∞ . Then off a set of measure no more than 1
3 δ , hn (r)→ f(r). Now

by Eggorov’s theorem and outer regularity, one can enlarge this exceptional set to obtain
an open set S of measure no more than δ/2 such that the convergence is uniform off this
exceptional set. Thus f equals the uniform limit of continuous functions on SC. Define

h(r)≡

 limn→∞ hn (r) = f(r) on SC

0 on S\N
0 on N

Then ∥h∥L∞ ≤ ∥f∥L∞ . Now consider

h̄∗ψm (r)

where ψr is approximate identity.

ψm (t) =
1
2

mX[−1/m,1/m] (t) , h̄∗ψm (t) =
1
2

m
∫ 1/m

−1/m
h̄(t− s)ds =

1
2

m
∫ t+1/m

t−1/m
h̄(s)ds

where we define h̄ to be the 0 extension of h̄ off [0,T ]. This is a continuous function of t.
Also a.e.t is a Lebesgue point and so for a.e.t,∣∣∣∣12m

∫ t+1/m

t−1/m
h̄(s)ds− h̄(t)

∣∣∣∣→ 0

∣∣h̄∗ψm (r)
∣∣≡ ∣∣∣∣∫R h̄(r− s)ψm (s)ds

∣∣∣∣≤ ∥h∥L∞ ≤ ∥f∥L∞

Thus this continuous function is in L∞ (0,T,H). Letting z = zk ∈ L1 (0,T,H) be one of
those defined above,∣∣∣∣∫ T

0

〈
h̄∗ψm (t)− f(t) ,z(t)

〉
dt
∣∣∣∣≤ ∫ T

0

∣∣〈h̄∗ψm (t)−h(t) ,z(t)
〉∣∣dt

+
∫ T

0
|⟨h(t)− f(t) ,z(t)⟩|dt (21.8.41)

for a.e. t, h̄∗ψm (t)− h(t)→ 0 and the integrand in the first integral is bounded by the
expression 2∥f∥L∞ |z(t)|H so by the dominated convergence theorem, as m→ ∞, the first
integral converges to 0. As to the second, it is dominated by∫

S
|⟨h(t)− f(t) ,z(t)⟩|dt ≤ 2∥f∥L∞

∫
S
|z(t)|dt <

2∥f∥L∞ ε

4(1+∥f∥L∞)
≤ ε

2

Therefore, choosing m large enough so that the first integral on the right in 21.8.41 is less
than ε

4 for each zk for k ≤M, then for each of these,

d
(
f, h̄∗ψm

)
≤ ε

4
+

M

∑
k=1

2−k (ε/4)+(ε/2)
1+((ε/4)+(ε/2))

=
ε

4
+

M

∑
k=1

2−k 3
4

ε

3
4 ε +1

≤ ε

4
+

3ε

4

M

∑
k=1

2−k <
ε

4
+

3ε

4
= ε
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which appears to show that C ([0,T ] ,H) is weak ∗ dense in L∞ (0,T,H). However, this last
space is obviously separable in terms of the norm topology. Let D be a countable dense
subset of C ([0,T ] ,H). For f ∈ L∞ (0,T,H) let g ∈C ([0,T ] ,H) such that d (f,g)< ε

4 . Then
let h ∈ D be so close to g in C ([0,T ] ,H) that

M

∑
k=1

2−k

∣∣∣⟨h−g,zk⟩L∞,L1

∣∣∣
1+
∣∣∣⟨h−g,zk⟩L∞,L1

∣∣∣ < ε

2

Then
d (f,h)≤ d (f,g)+d (g,h)<

ε

4
+

ε

2
+

ε

4
= ε

It appears that D is dense in B in the weak ∗ topology. ■

21.9 Pointwise Behavior, Weakly Convergent Sequences
There is an interesting little result which relates to weak limits in L2 (Γ,E) for E a Banach
space. I am not sure where to put this thing but think that this would be a good place for it.
It obviously generalizes to Lp spaces.

Proposition 21.9.1 Let E be a Banach space and let {un} be a sequence in L2 (Γ,E) and let
G(x) be a weakly compact set in E, and un (x) ∈ G(x) a.e. for each n. Let limsup{un (x)}
denote the set of all weak limits of subsequences of {un (x)} and let H (x) be the closure of
the convex hull of limsup{un (x)}. Then if un→ u weakly in L2 (Γ,E) , then u(x) ∈ H (x)
for a.e. x.

Proof: Let H =
{

w ∈ L2 (Γ,E) : w(x) ∈ H (x) a.e.
}

. Then H is convex. If you have
wi ∈ H, then since each H (x) is convex, it follows that λw1 (x)+ (1−λ )w2 (x) ∈ H for
a.e. x and λ ∈ [0,1]. Is H closed? Suppose you have wn ∈ H and wn → w in L2 (Γ,E).
Then there is a subsequence such that pointwise convergence happens a.e. and so since H
is closed, you have w(x) ∈ H for a.e. x. Hence H is also weakly closed in L2 (Γ,H). Thus
if u is the weak limit of {un} in L2 (Γ,E) , it must be the case that u(x) ∈ H (x) a.e. ■

As a case of this which might be pretty interesting, suppose G(x) is not just weakly
compact but also convex. Then H (x) = G(x) and you can say that u(x) ∈H (x) a.e. when-
ever it is a weak limit in L2 (Γ,E) of functions un for which un (x) ∈ G(x).

21.10 Some Embedding Theorems
The next lemma is a very useful little result which involves embeddings of Banach spaces.

Lemma 21.10.1 Suppose V ⊆ W and the injection map is compact, hence continuous.
Suppose also that W ⊆ U with continuous injection. Then for any ε > 0 there exists Cε

such that for all v ∈V,
∥v∥W ≤ ε ∥v∥V +Cε ∥v∥U
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Proof: Suppose not. Then there exists ε > 0 for which things don’t work out. Thus
there exists vn ∈V such that

∥vn∥W > ε ∥vn∥V +n∥vn∥U

Dividing by ∥vn∥V , it can also be assumed that ∥vn∥V = 1. Thus

∥vn∥W > ε +n∥vn∥U

and so ∥vn∥U → 0. However, vn is contained in the closed unit ball of V which is, by
assumption precompact in W . Hence, there exists a subsequence, still denoted as {vn} such
that vn→ v in W . But it was just determined that v = 0 and so

0≥ lim sup
n→∞

(ε +n∥vn∥U )≥ ε

which is a contradiction. ■
Recall the following definition, this time for the space of continuous functions defined

on a compact set with values in a Banach space.

Definition 21.10.2 Let A ⊆C (K;V ) where the last symbol denotes the continuous func-
tions defined on a compact set K ⊆ X a metric space having values in V a Banach space.
Then A is equicontinuous if for every ε > 0, there exists δ > 0 such that for every f ∈A ,
if d (x,y)< δ , then

∥ f (x)− f (y)∥V < ε.

Also A ⊆C (K;V ) is uniformly bounded means

sup
f∈A
∥ f∥

∞,V < ∞ where ∥ f∥
∞,V ≡max

x∈K
∥ f (x)∥V .

Here is a general version of the Ascoli Arzela theorem valid for Banach spaces.

Theorem 21.10.3 Let V ⊆W ⊆U where the injection map of V into W is compact and W
embedds continuously into U, these being Banach spaces. Assume:

1. A ⊆C (K;U) where K is compact and A is equicontinuous.

2. sup f∈A ∥ f∥
∞,V < ∞ where ∥ f∥

∞,V ≡maxx∈K ∥ f (x)∥V .

Then

1. A ⊆C (K;W ) and A is equicontinuous into W

2. A is pre-compact in C (K;W ) . Recall this means that A is compact in C (K;W ).

Proof: Let C ≡ sup f∈A ∥ f∥
∞,V < ∞ . Let ε > 0 be given. Then from Lemma 21.10.1,

∥ f (x)− f (y)∥W ≤
ε

5C
∥ f (x)− f (y)∥V +Cε ∥ f (x)− f (y)∥U
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≤ 2ε

5
+Cε ∥ f (x)− f (y)∥U

By equicontinuity in C (K,U) , there exists a δ > 0 such that if d (x,y) < δ , then for all
f ∈A ,

Cε ∥ f (x)− f (y)∥U <
2ε

5
Thus if d (x,y)< δ , then ∥ f (x)− f (y)∥W < ε for all f ∈A .

It remains to verify that A is pre-compact in C (K;W ) . Since this space of continuous
functions is complete, it suffices to verify that for all ε > 0, A has an ε net. Suppose then
that for some ε > 0 there is no ε net. Thus there is an infinite sequence { fn} for which
∥ fn− fm∥∞,W ≥ ε whenever m ̸= n. There exists δ > 0 such that if d (x,y)< δ , then for all
fn,

∥ fn (x)− fn (y)∥W <
ε

5
.

Let {xk}p
k=1 be a δ/2 net for K. This is where we use K is compact. By compactness of the

embedding of V into W, there exists a further subsequence, still called { fn} such that each
{ fn (xk)}∞

n=1 converges, this for each xk in that δ/2 net. Thus there is a single N such that
if n > N, then for all m,n > N, and k ≤ p,

∥ fn (xk)− fm (xk)∥W <
ε

5

Now letting x ∈ K be arbitrary, it is in B(xk,δ/2) for some xk. Therefore, for n,m larger
than N,

∥ fn (x)− fm (x)∥W ≤ ∥ fn (x)− fn (xk)∥W
+∥ fn (xk)− fm (xk)∥W
+∥ fm (xk)− fm (x)∥

<
ε

5
+

ε

5
+

ε

5
=

3ε

5
Taking the maximum for all x, for m,n > N,

∥ fn− fm∥W,∞ ≤
3ε

5
< ε

contrary to the assumption that every pair is further apart than ε . Thus A is totally bounded
so its closure would also be totally bounded and complete. In other words, A is pre-
compact in C (K;W ). ■

In the following theorem about compact subsets of an Lp space, the measure will be
Lebesgue measure. It depends on the above version of the Ascoli Arzela theorem. First
note the following which I will use when convenient. For a,b≥ 0, and p≥ 1,

(a+b)p ≤ 2p−1 (ap +bp)

This follows from the convexity of y = xp for x > 0. Also, for such p,

(a+b)1/p ≤ a1/p +b1/p
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Usually the thing of interest in this theorem is the case where V = W = U = R. How-
ever, the more general version to be presented is interesting I think. Of course closed and
bounded sets are compact in R so the usual case works as a special case of what is about to
be presented.

Theorem 21.10.4 Let V ⊆W ⊆U where these are Banach spaces such that the injection
map of V into W is compact and the injection map of W into U is continuous. Let Ω be an
open set in Rm and let A be a bounded subset of Lp (Ω;V ) and suppose that for all ε > 0,
there exist a δ > 0 such that if |h|< δ , then for ũ denoting the zero extension of u off Ω,∫

Rm
∥ũ(x+h)− ũ(x)∥p

U dx < ε
p (21.10.42)

Suppose also that for each ε > 0 there exists an open set, Gε ⊆ Ω such that Gε ⊆ Ω is
compact and for all u ∈A , ∫

Ω\Gε

∥u(x)∥p
W dx < ε

p (21.10.43)

Then A is precompact in Lp (Rn;W ).

Proof: Let ∞ > M ≥ supu∈Lp(Ω;V ) ∥u∥
p
Lp(Ω;V )

. Let {ψn} be a mollifier with support in
B(0,1/n). I need to show that A has an η net in Lp (Ω;W ) for every η > 0. Suppose
for some η > 0 it fails to have an η net. Without loss of generality, let η < 1. Then by
21.10.43, it follows that for small enough ε > 0,Aε ≡

{
uXGε

: u ∈A
}

fails to have an
η/2 net. Indeed, pick ε small enough that for all u ∈A ,∥∥∥uXGε

−u
∥∥∥

Lp(Ω;W )
<

η

5

Then if
{

ukXGε

}r

k=1
is an η/2 net for Aε , so that ∪r

k=1B
(

ukXGε
, η

2

)
⊇ Aε , then for

w ∈A , wXGε
∈ B

(
ukXGε

, η

2

)
for some uk. Hence,

∥w−uk∥Lp(Ω;W ) ≤
∥∥∥w−wXGε

∥∥∥
Lp(Ω;W )

+
∥∥∥wXGε

−ukXGε

∥∥∥
Lp(Ω;W )

+
∥∥∥ukXGε

−uk

∥∥∥
Lp(Ω;W )

≤ η

5
+

η

2
+

η

5
< η

and so {uk}r
k=1 would be an η net for A which is assumed to not exist.

Pick this ε in all that follows. By compactness, Lemma 21.10.1, there exists Cη such
that for all u ∈V,

∥u∥p
W ≤

η

50(2p−1)M
∥u∥p

V +Cη ∥u∥p
U (21.10.44)

Let Aεn consist of Aεn ≡
{

uXGε
∗ψn : u ∈A

}
. I want to show that Aεn satisfies the

conditions for Theorem 21.10.3.
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Lemma 21.10.5 For each n, Aεn satisfies the conditions of Theorem 21.10.3.

Proof: First consider the equicontinuity condition of that theorem. It suffices to show
that if η > 0 then there exists δ > 0 such that if |h|< δ , then for any u ∈A and x ∈ Gε ,∥∥∥uXGε

∗ψn (x+h)−uXGε
∗ψn (x)

∥∥∥
U
< η

Always assume |h|< dist
(
Gε ,Ω

C
)
, and x ∈Gε . Also assume that |h| is small enough that(∫

Rm

∣∣∣(XGε
(x−y+h)−XGε

(x−y)
)

ψn (y)
∣∣∣p′ dz

)1/p′

=

(∫
Rm

∣∣∣(XGε
(z+h)−XGε

(z)
)

ψn (x− z)
∣∣∣p′ dz

)1/p′

<
η

2M
(21.10.45)

This can be obtained because by Holder’s inequality,(∫
Rm

∣∣∣(XGε
(z+h)−XGε

(z)
)

ψn (x− z)
∣∣∣p′ dz

)1/p′

≤
(∫

Rm

∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣2p′

dz
) 1

2p′
(∫

Rm
ψn (x− z)2p′ dz

) 1
2p′

which is small independent of x for |h| small enough, thanks to continuity of translation in
L2p′ (Rm). Then

∥∥∥uXGε
∗ψn (x+h)−uXGε

∗ψn (x)
∥∥∥

U

=

∥∥∥∥∫Rm

(
ũ(x+h−y)XGε

(x+h−y)− ũ(x−y)XGε
(x−y)

)
ψn (y)dy

∥∥∥∥
U

≤
∫
Rm

∥∥∥(ũ(x+h−y)XGε
(x+h−y)− ũ(x−y)XGε

(x−y)
)∥∥∥

U
ψn (y)dy

Changing the variables,

≤
∫
Rm

∥∥∥∥∥ (ũ(z+h)− ũ(z))XGε
(z+h)

+ũ(z)
(
XGε

(z+h)−XGε
(z)
) ∥∥∥∥∥

U

ψn (x− z)dz

≤
∫
Rm

∥∥∥(ũ(z+h)− ũ(z))XGε
(z+h)

∥∥∥
U

ψn (x− z)dz

+
∫
Rm
∥ũ(z)∥U

∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣ψn (x− z)dz (21.10.46)

The first integral

≤
(∫

Rm
∥ũ(z+h)− ũ(z)∥p

U

)1/p(∫
Rm

ψ
p′
n (x− z)dz

)1/p′
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You make the obvious change here in case p = 1. Instead of the above, you would have

≤
∫
Rm
∥ũ(z+h)− ũ(z)∥U dz2∥ψn∥∞

Since Lebesgue measure is translation independent, there is a constant Cn such that the
above is

≤Cn

(∫
Rm
∥ũ(z+h)− ũ(z)∥p

U

)1/p

< η/2

and this holds for all u ∈ A . As for the second integral in 21.10.46, from 21.10.45, it
follows that this term is no larger than

≤
(∫

Rm
∥ũ(z)∥p

U dz
)1/p(∫

Rm

(∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣ψn (x− z)

)p′

dz
)1/p′

and by 21.10.45,

< M
η

2M
=

η

2

Thus, if δ < dist
(
Gε ,Ω

C
)

and 21.10.45 holds, then for all u ∈A , when |h|< δ ,∥∥∥uXGε
∗ψn (x+h)−uXGε

∗ψn (x)
∥∥∥

U
< η

and so the desired equicontinuity condition holds for Aεn. Note that δ does depend on n
but for each n, things work out well.

I also need to verify that the functions in Aεn are uniformly bounded. For x ∈ Gε and
u ∈A , ∥∥∥uXGε

∗ψn (x)
∥∥∥

V
≤
∫

Gε

∥u(z)∥ψn (x− z)dz

≤
(∫

Ω

∥u(z)∥p dz
)1/p(∫

Ω

ψn (x− z)p′
)1/p′

≤MCn ■

Now is a general statement about norms, indicating that the Lp norm is no more than a
constant times the norm involving the maximum.(∫

Gε

∥v(x)∥p
W dx

)1/p

≤ max
x∈Gε

∥v(x)∥W m
(
Gε

)
≡ m

(
Gε

)
∥v∥W,∞

It follows from Theorem 21.10.3 that for every η > 0, there exists a η net in C
(
Gε ;W

)
for

Aεn, this for each n. Then from the above inequality, it follows that for each η , there exists
an η net in Lp

(
Gε ;W

)
for Aεn.

Recall also, from the assumption that the theorem is not true, Aε ≡
{

uXGε
: u ∈A

}
has no η/2 net in Lp

(
Gε ;W

)
. Next I estimate the distance in Lp

(
Gε ;W

)
between uXGε

for u ∈A and uXGε
∗ψn. The idea is that for each n,Aεn has an η/8 net and for n large

enough, uXGε
is close to uXGε

∗ψn so a contradiction will result if the functions of the
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second sort are totally bounded while those functions of the first sort don’t. Assume always
that 1/n < dist

(
Gε ,Ω

C
)
. Using Minkowski’s inequality,∥∥∥uXGε

−uXGε
∗ψn

∥∥∥
Lp(Gε ;W)

=

(∫
Rm

∥∥∥∥∫Rm

(
uXGε

(x)−uXGε
(x−y)

)
ψn (y)dy

∥∥∥∥p

W
dx
)1/p

≤
∫

B(0,1/n)
ψn (y)

(∫
Rm

∥∥∥(uXGε
(x)−uXGε

(x−y)
)∥∥∥p

W
dx
)1/p

dy

≤
∫

B(0,1/n)
ψn (y)

(∫
Rm
∥(ũ(x)− ũ(x−y))∥p

W dx
)1/p

dy

≤
∫

B(0,1/n)
ψn (y)

( ∫
Rm

η

50(2p−1)M
∥ũ(x)− ũ(x−y)∥p

V

+Cη ∥ũ(x)− ũ(x−y)∥p
U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)

( ∫
Rm

η

50(2p−1)M
2p−12

(
∥ũ(x)∥p

V

)
dx

+Cη

∫
Rm ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)
( ∫

Rm
η

25M

(
∥ũ(x)∥p

V

)
dx

+
∫
Rm Cη ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)
(

η

25
+
∫
Rm

Cη ∥ũ(x)− ũ(x−y)∥p
U dx

)1/p

dy

By assumption 21.10.42, there exists N such that if n≥ N, then |y|< 1
n and for all u ∈A ,∥∥∥uXGε

−uXGε
∗ψn

∥∥∥
Lp(Gε ;W)

≤

∫
B(0, 1

n )
ψn (y)

(
η

25
+

η p

8p

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)
(

η

25
+

η

8

)
dy

=
η

25
+

η

8

Recall η < 1.
Let n be this large. Then let

{
ukXGε

∗ψn

}r

k=1
be a η/8 net for Aεn in Lp

(
Gε ;W

)
.

Then consider the balls B
(

ukXGε
, η

4

)
in Lp

(
Gε ;W

)
. If wXGε

is in Aε , is it in some

B
(

ukXGε
, η

2

)
? By what was just shown, there is k such that∥∥∥wXGε

∗ψn−ukXGε
∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8
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and also ∥∥∥wXGε
−wXGε

∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8
+

η

25∥∥∥ukXGε
−ukXGε

∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8
+

η

25

Thus, ∥∥∥wXGε
−ukXGε

∥∥∥
Lp(Gε ;W )

≤
∥∥∥wXGε

−wXGε
∗ψn

∥∥∥
Lp(Gε ;W)

+
∥∥∥wXGε

∗ψn−ukXGε
∗ψn

∥∥∥
Lp(Gε ;W)

+
∥∥∥ukXGε

∗ψn−ukXGε

∥∥∥
Lp(Gε ;W)

<
3η

8
+

2η

25
<

η

2

It follows that
{

ukXGε

}r

k=1
is a η/2 net for Lp

(
Gε ;W

)
contrary to the construction. Thus

A has an η net after all. ■
In case Ω is a closed interval, there are several versions of these sorts of embeddings

which are enormously useful in the study of nonlinear evolution equations or inclusions.
The following theorem is an infinite dimensional version of the Ascoli Arzela theorem.

It is like a well known result due to Simon [117]. It is an appropriate generalization when
you do not necessarily have weak derivatives.

Theorem 21.10.6 Let q > 1 and let E ⊆W ⊆ X where the injection map is continuous
from W to X and compact from E to W. Let S be defined by{

u such that ||u(t)||E ≤ R for all t ∈ [a,b] , and ∥u(s)−u(t)∥X ≤ R |t− s|1/q
}
.

Thus S is bounded in L∞ (a,b,E) and in addition, the functions are uniformly Holder con-
tinuous into X . Then S ⊆ C ([a,b] ;W ) and if {un} ⊆ S, there exists a subsequence,

{
unk

}
which converges to a function u ∈C ([a,b] ;W ) in the following way.

lim
k→∞

∣∣∣∣unk −u
∣∣∣∣

∞,W = 0.

Proof: First consider the issue of S being a subset of C ([a,b] ;W ) . Let ε > 0 be given.
Then by Lemma 21.10.1, there exists a constant, Cε such that for all u ∈W

||u||W ≤
ε

6R
||u||E +Cε ||u||X .

Therefore, for all u ∈ S,

||u(t)−u(s)||W ≤ ε

6R
||u(t)−u(s)||E +Cε ||u(t)−u(s)||X

≤ ε

6R
(∥u(t)∥E +∥u(s)∥E)+Cε ∥u(t)−u(s)∥X

≤ ε

3
+Cε R |t− s|1/q . (21.10.47)
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Since ε is arbitrary, it follows u ∈C ([a,b] ;W ).
Let D = Q∩ [a,b] so D is a countable dense subset of [a,b]. Let D = {tn}∞

n=1. By
compactness of the embedding of E into W, there exists a subsequence u(n,1) such that
as n→ ∞, u(n,1) (t1) converges to a point in W. Now take a subsequence of this, called
(n,2) such that as n→ ∞,u(n,2) (t2) converges to a point in W. It follows that u(n,2) (t1) also
converges to a point of W. Continue this way. Now consider the diagonal sequence, uk ≡
u(k,k) This sequence is a subsequence of u(n,l) whenever k > l. Therefore, uk (t j) converges
for all t j ∈ D.

Claim: Let {uk} be as just defined, converging at every point of D ≡ [a,b]∩Q. Then
{uk} converges at every point of [a,b].

Proof of claim: Let ε > 0 be given. Let t ∈ [a,b] . Pick tm ∈ D∩ [a,b] such that in
21.10.47 Cε R |t− tm|< ε/3. Then there exists N such that if l,n > N, then

||ul (tm)−un (tm)||X < ε/3.

It follows that for l,n > N,

||ul (t)−un (t)||W ≤ ||ul (t)−ul (tm)||W + ||ul (tm)−un (tm)||W
+ ||un (tm)−un (t)||W

≤ 2ε

3
+

ε

3
+

2ε

3
< 2ε

Since ε was arbitrary, this shows {uk (t)}∞

k=1 is a Cauchy sequence. Since W is complete,
this shows this sequence converges.

Now for t ∈ [a,b] , it was just shown that if ε > 0 there exists Nt such that if n,m > Nt ,
then

||un (t)−um (t)||W <
ε

3
.

Now let s ̸= t. Then

||un (s)−um (s)||W ≤ ||un (s)−un (t)||W + ||un (t)−um (t)||W + ||um (t)−um (s)||W

From 21.10.47

||un (s)−um (s)||W ≤ 2
(

ε

3
+Cε R |t− s|1/q

)
+ ||un (t)−um (t)||W

and so it follows that if δ is sufficiently small and s ∈ B(t,δ ) , then when n,m > Nt

||un (s)−um (s)||< ε.

Since [a,b] is compact, there are finitely many of these balls, {B(ti,δ )}p
i=1 , such that for

s ∈ B(ti,δ ) and n,m > Nti , the above inequality holds. Let N > max
{

Nt1 , · · · ,Ntp

}
. Then

if m,n > N and s ∈ [a,b] is arbitrary, it follows the above inequality must hold. Therefore,
this has shown the following claim.

Claim: Let ε > 0 be given. Then there exists N such that if m,n > N, then

||un−um||∞,W < ε.
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Now let u(t) = limk→∞ uk (t) .

||u(t)−u(s)||W ≤ ||u(t)−un (t)||W + ||un (t)−un (s)||W + ||un (s)−u(s)||W (21.10.48)

Let N be in the above claim and fix n > N. Then

||u(t)−un (t)||W = lim
m→∞
||um (t)−un (t)||W ≤ ε

and similarly, ||un (s)−u(s)||W ≤ ε. Then if |t− s| is small enough, 21.10.47 shows the
middle term in 21.10.48 is also smaller than ε. Therefore, if |t− s| is small enough,

||u(t)−u(s)||W < 3ε.

Thus u is continuous. Finally, let N be as in the above claim. Then letting m,n > N, it
follows that for all t ∈ [a,b] ,

||um (t)−un (t)||W < ε.

Therefore, letting m→ ∞, it follows that for all t ∈ [a,b] ,

||u(t)−un (t)||W ≤ ε.

and so ||u−un||∞,W ≤ ε. ■

Here is an interesting corollary. Recall that for E a Banach space C0,α ([0,T ] ,E) is the
space of continuous functions u from [0,T ] to E such that

∥u∥
α,E ≡ ∥u∥∞,E +ρα,E (u)< ∞

where here

ρα,E (u)≡ sup
t ̸=s

∥u(t)−u(s)∥E
|t− s|α

Corollary 21.10.7 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then if γ > α, the embedding of C0,γ ([0,T ] ,E) into C0,α ([0,T ] ,X)
is compact.

Proof: Let φ ∈C0,γ ([0,T ] ,E)

∥φ (t)−φ (s)∥X
|t− s|α

≤
(
∥φ (t)−φ (s)∥W
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W

≤
(
∥φ (t)−φ (s)∥E
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W ≤ ργ,E (φ)∥φ (t)−φ (s)∥1−(α/γ)

W

Now suppose {un} is a bounded sequence in C0,γ ([0,T ] ,E) . By Theorem 21.10.6 above,
there is a subsequence still called {un} which converges in C0 ([0,T ] ,W ) . Thus from the
above inequality

∥un (t)−um (t)− (un (s)−um (s))∥X
|t− s|α

≤ ργ,E (un−um)∥un (t)−um (t)− (un (s)−um (s))∥1−(α/γ)
W

≤ C ({un})
(

2∥un−um∥∞,W

)1−(α/γ)
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which converges to 0 as n,m→ ∞. Thus

ρα,X (un−um)→ 0 as n,m→ ∞

Also ∥un−um∥∞,X → 0 as n,m→ ∞ so this is a Cauchy sequence in C0,α ([0,T ] ,X). ■
The next theorem is a well known result probably due to Lions, Temam, or Aubin.

Theorem 21.10.8 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) .

Proof: It suffices to show S has an η net in Lp ([a,b] ;W ) for each η > 0.
If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (21.10.49)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 21.10.49.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

≤
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)
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and so ∫ b

a
||(un (t)−un (s))||pW ds

≤
∫ b

a

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (21.10.50)

From Lemma 21.10.1 if ε > 0, there exists Cε such that

||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX

≤ 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q

This is substituted in to 21.10.50 to obtain∫ b

a
||(un (t)−un (s))||pW ds≤

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(
2p−1

ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q
)

dsdt

=
k

∑
i=1

2p
ε

∫ ti

ti−1

||un (t)||pW +
Cε

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q dsdt

≤ 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q
∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q (ti− ti−1)

2

≤ 2p
εRp +Cε

k

∑
i=1

(ti− ti−1)
1+p/q = 2p

εRp +Cε k
(

b−a
k

)1+p/q

.

Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows

||un−un||Lp([a,b];W ) <
η

4
.

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp (a,b;W ) and use this to contradict 21.10.49. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)
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and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E

Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp (a,b;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 21.10.49. ■
You can give a different version of the above to include the case where there is, instead

of a Holder condition, a bound on u′ for u∈ S. It is stated next. We are assuming a situation
in which ∫ b

a
u′ (t)dt = u(b)−u(a)

This happens, for example, if u′ is the weak derivative. See [117].

Corollary 21.10.9 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) . The same conclusion can be drawn if it is known instead of the Holder
condition that ∥u′∥L1([a,b];X) is bounded.

Proof: The first part was done earlier. Therefore, we just prove the new stuff which
involves a bound on the L1 norm of the derivative. It suffices to show S has an η net in
Lp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (21.10.51)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.
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The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 21.10.51.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

And so ∫ T

0
||un (t)−un (t)||pW dt =

k

∑
i=1

∫ ti

ti−1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
dt

≤
k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt

+Cε

k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

X
dt (21.10.52)

Consider the second of these. It equals

Cε

k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

∫ t

s
u′n (τ)dτds

∥∥∥∥p

X
dt

This is no larger than

≤Cε

k

∑
i=1

∫ ti

ti−1

(
1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτds
)p

dt

=Cε

k

∑
i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

dt

=Cε

k

∑
i=1

(
(ti− ti−1)

1/p
∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p
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Since b−a
k = ti− ti−1,

= Cε

(
k

∑
i=1

(ti− ti−1)
1/p
∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

= Cε

(
k

∑
i=1

(
b−a

k

)1/p ∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

≤ Cε (b−a)
k

(
k

∑
i=1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

=
Cε (b−a)

k

(∥∥u′n
∥∥

L1([a,b],X)

)p
<

η p

10p

if k is chosen large enough. Now consider the first in 21.10.52. By Jensen’s inequality

k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt ≤

k

∑
i=1

∫ ti

ti−1

ε
1

ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
E dsdt

≤ ε2p−1
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(∥un (t)∥p +∥un (s)∥p)dsdt

= 2ε2p−1
k

∑
i=1

∫ ti

ti−1

(∥un (t)∥p)dt = ε (2)
(
2p−1)∥un∥Lp([a,b],E) ≤Mε

Now pick ε sufficiently small that Mε < η p

10p and then k large enough that the second term
in 21.10.52 is also less than η p/10p. Then it will follow that

∥ūn−un∥Lp([a,b],W ) <

(
2η p

10p

)1/p

= 21/p η

10
≤ η

5

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp ([a,b] ;W ) and use this to contradict 21.10.51. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)

and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E
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Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp ([a,b] ;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 21.10.51. ■

21.11 Exercises
1. Show L1 (R) is not reflexive. Hint: L1 (R) is separable. What about L∞ (R)?

2. If f ∈ L1 (Rn;X) for X a Banach space, does the usual fundamental theorem of cal-
culus work? That is, can you say limr→0

1
m(B(x,r))

∫
B(x,r) f (t)dm = f (x) a.e.?

3. Does the Vitali convergence theorem hold for Bochner integrable functions? If so,
give a statement of the appropriate theorem and a proof.

4. Suppose g ∈ L1 ([a,b] ;X) where X is a Banach space. Then if
∫ b

a g(t)φ (t)dt = 0 for
all φ ∈C∞

c (a,b) , then g(t) = 0 a.e. Show that this is the case. Hint: It will likely
depend on the regularity properties of Lebesgue measure.

5. Suppose f ∈ L1 (a,b;X) and for all φ ∈ C∞
c (a,b) ,

∫ b
a f (t)φ

′ (t)dt = 0.Then there
exists a constant, a ∈ X such that f (t) = a a.e. Hint: Let

ψφ (x)≡
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt, φ 0 ∈C∞

c (a,b) ,
∫ b

a
φ 0 (x)dx = 1

Then explain why ψφ ∈C∞
c (a,b), ψ ′

φ
= φ −

(∫ b
a φ (y)dy

)
φ 0. Then use the assump-

tion on ψφ . Next use the above problem. Verify that

f (y) =
∫ b

a
f (t)φ 0 (t)dt a.e. y

6. Let f ∈ L1 ([a,b] ,X) . Then we say that the weak derivative of f is in L1 ([a,b] ,X) if
there is a function denoted as f ′ ∈ L1 ([a,b] ,X) such that for all φ ∈C∞

c (a,b) ,

−
∫ b

a
f (t)φ

′ (t)dt =
∫ b

a
f ′ (t)φ (t)dt

Show that this definition is well defined. Next, using the above problems, show
that if f , f ′ ∈ L1 ([a,b] ,X) , it follows that there is a continuous function, denoted by
t→ f̂ (t) such that f̂ (t) = f (t) a.e. t and

f̂ (t) = f̂ (a)+
∫ t

0
f ′ (s)ds
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Thus, unlike the classical definition of the derivative, when a function and its deriva-
tive are both in L1, it has a representative f̂ which equals the function a.e. such that
f̂ can be recovered from its derivative. Recall the well known example of this not
working out which is based on the Cantor function which you should see in a real
analysis course. This function had zero derivative a.e. and yet it climbed from 0 to
1 on the unit interval. Thus one could not recover it from integrating its classical
derivative.



Chapter 22

The Derivative
22.1 Limits Of A Function

As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points x, which are limit points of D(f) and this concept is defined next. In all that follows
(V,∥·∥) and (W,∥·∥) are two normed linear spaces. Recall the definition of limit point first.

Definition 22.1.1 Let A ⊆W be a set. A point x, is a limit point of A if B(x,r) contains
infinitely many points of A for every r > 0.

Definition 22.1.2 Let f : D(f) ⊆ V →W be a function and let x be a limit point of D(f).
Then

lim
y→x

f(y) = L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < ∥y−x∥< δ , and y ∈ D(f)

then,
∥L− f(y)∥< ε.

Theorem 22.1.3 If limy→x f(y) = L and limy→x f(y) = L1, then L = L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x|< δ and y∈D(f),
then

∥f(y)−L∥< ε, ∥f(y)−L1∥< ε.

Pick such a y. There exists one because x is a limit point of D(f). Then

∥L−L1∥ ≤ ∥L− f(y)∥+∥f(y)−L1∥< ε + ε = 2ε.

Since ε > 0 was arbitrary, this shows L = L1. ■
As in the case of functions of one variable, one can define limy→x f (x) =±∞.

Definition 22.1.4 If f (x) ∈ R, limy→x f (x) = ∞ if for every number l, there exists δ > 0
such that whenever ∥y−x∥ < δ and y ∈ D(f), then f (x) > l. limy→x f (x) = −∞ if for
every number l, there exists δ > 0 such that whenever ∥y−x∥ < δ and y ∈ D(f), then
f (x)< l.

The following theorem is just like the one variable version of calculus.

Theorem 22.1.5 Suppose f : D(f)⊆V → Fm. Then for x a limit point of D(f),

lim
y→x

f(y) = L (22.1.1)

707
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if and only if
lim
y→x

fk (y) = Lk (22.1.2)

where f(y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp).
Suppose here that f has values in W, a normed linear space and

lim
y→x

f (y) = L, lim
y→x

g(y) = K

where K,L ∈W. Then if a, b ∈ F,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (22.1.3)

If W is an inner product space,

lim
y→x

( f ,g)(y) = (L,K) (22.1.4)

If g is scalar valued with limy→x g(y) = K,

lim
y→x

f (y)g(y) = LK. (22.1.5)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦ f (y) = h(L) . (22.1.6)

Suppose limy→x f (y) = L. If ∥ f (y)−b∥ ≤ r for all y sufficiently close to x, then |L−b| ≤ r
also.

Proof: Suppose 22.1.1. Then letting ε > 0 be given there exists δ > 0 such that if
0 < ∥y−x∥< δ , it follows

| fk (y)−Lk| ≤ ∥f(y)−L∥< ε

which verifies 22.1.2.
Now suppose 22.1.2 holds. Then letting ε > 0 be given, there exists δ k such that if

0 < ∥y−x∥< δ k, then
| fk (y)−Lk|< ε.

Let 0 < δ < min(δ 1, · · · ,δ p). Then if 0 < ∥y−x∥< δ , it follows

∥f(y)−L∥
∞
< ε

Any other norm on Fm would work out the same way because the norms are all equivalent.
Each of the remaining assertions follows immediately from the coordinate descriptions

of the various expressions and the first part. However, I will give a different argument for
these.
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The proof of 22.1.3 is left for you. Now 22.1.4 is to be verified. Let ε > 0 be given.
Then by the triangle inequality,

|( f ,g)(y)− (L,K)| ≤ |( f ,g)(y)− ( f (y) ,K)|+ |( f (y) ,K)− (L,K)|
≤ ∥ f (y)∥∥g(y)−K∥+∥K∥∥ f (y)−L∥ .

There exists δ 1 such that if 0 < ∥y−x∥< δ 1 and y ∈ D( f ), then

∥ f (y)−L∥< 1,

and so for such y, the triangle inequality implies, ∥ f (y)∥ < 1+ ∥L∥. Therefore, for 0 <
∥y−x∥< δ 1,

|( f ,g)(y)− (L,K)| ≤ (1+∥K∥+∥L∥) [∥g(y)−K∥+∥ f (y)−L∥] . (22.1.7)

Now let 0 < δ 2 be such that if y ∈ D( f ) and 0 < ∥x−y∥< δ 2,

∥ f (y)−L∥< ε

2(1+∥K∥+∥L∥)
, ∥g(y)−K∥< ε

2(1+∥K∥+∥L∥)
.

Then letting 0 < δ ≤min(δ 1,δ 2), it follows from 22.1.7 that

|( f ,g)(y)− (L,K)|< ε

and this proves 22.1.4.
The proof of 22.1.5 is left to you.
Consider 22.1.6. Since h is continuous near L, it follows that for ε > 0 given, there

exists η > 0 such that if ∥y−L∥< η , then

∥h(y)−h(L)∥< ε

Now since limy→x f (y) = L, there exists δ > 0 such that if 0 < ∥y−x∥< δ , then

∥ f (y)−L∥< η .

Therefore, if 0 < ∥y−x∥< δ ,

∥h( f (y))−h(L)∥< ε.

It only remains to verify the last assertion. Assume ∥ f (y)−b∥ ≤ r. It is required to
show that ∥L−b∥≤ r. If this is not true, then ∥L−b∥> r. Consider B(L,∥L−b∥− r). Since
L is the limit of f , it follows f (y) ∈ B(L,∥L−b∥− r) whenever y ∈ D( f ) is close enough
to x. Thus, by the triangle inequality,

∥ f (y)−L∥< ∥L−b∥− r

and so

r < ∥L−b∥−∥ f (y)−L∥ ≤ |∥b−L∥−∥ f (y)−L∥|
≤ ∥b− f (y)∥ ,

a contradiction to the assumption that ∥b− f (y)∥ ≤ r. ■
The relation between continuity and limits is as follows.
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Theorem 22.1.6 For f : D( f )→W and x ∈ D( f ) a limit point of D( f ), f is continuous
at x if and only if

lim
y→x

f (y) = f (x) .

Proof: First suppose f is continuous at x a limit point of D( f ). Then for every ε > 0
there exists δ > 0 such that if ∥x− y∥ < δ and y ∈ D( f ), then | f (x)− f (y)| < ε . In
particular, this holds if 0 < ∥x− y∥ < δ and this is just the definition of the limit. Hence
f (x) = limy→x f (y).

Next suppose x is a limit point of D( f ) and limy→x f (y) = f (x). This means that if ε >
0 there exists δ > 0 such that for 0 < ∥x− y∥< δ and y ∈D( f ), it follows | f (y)− f (x)|<
ε . However, if y = x, then | f (y)− f (x)| = | f (x)− f (x)| = 0 and so whenever y ∈ D( f )
and ∥x− y∥< δ , it follows | f (x)− f (y)|< ε , showing f is continuous at x. ■

Example 22.1.7 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.

It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1).

Example 22.1.8 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all, observe the domain of the function is R2 \{(0,0)}, every point in R2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.

22.2 Basic Definitions
The concept of derivative generalizes right away to functions defined on a normed linear
space. However, no attempt will be made to consider derivatives from one side or another.
This is because there isn’t a well defined side. However, it is certainly the case that there
are more general notions which include such things. I will present a fairly general notion
of the derivative of a function which is defined on a normed vector space which has values
in a normed vector space.

In what follows, X ,Y will denote normed vector spaces. Recall that L (X ,Y ) will
denote the bounded linear transformations from X to Y .

Let U be an open set in X , and let f : U → Y be a function.



22.2. BASIC DEFINITIONS 711

Definition 22.2.1 A function g is o(v) if

lim
||v||→0

g(v)
||v||

= 0 (22.2.8)

A function f : U → Y is differentiable at x ∈U if there exists a linear transformation L ∈
L (X ,Y ) such that

f(x+v) = f(x)+Lv+o(v)

This linear transformation L is the definition of Df(x). This derivative is often called the
Frechet derivative.

In finite dimensions, the question whether a given function is differentiable is inde-
pendent of the norm used on the finite dimensional vector space. That is, a function is
differentiable with one norm if and only if it is differentiable with another norm. This is
because all norms are equivalent on a finite dimensional space.

The definition 22.2.8 means the error,

f(x+v)− f(x)−Lv

converges to 0 faster than ||v||. Thus the above definition is equivalent to saying

lim
||v||→0

||f(x+v)− f(x)−Lv||
||v||

= 0 (22.2.9)

or equivalently,

lim
y→x

||f(y)− f(x)−Df(x)(y−x)||
||y−x||

= 0. (22.2.10)

The symbol o(v) should be thought of as an adjective. Thus, if t and k are constants,

o(v) = o(v)+o(v) , o(tv) = o(v) , ko(v) = o(v)

and other similar observations hold.

Theorem 22.2.2 The derivative is well defined.

Proof: First note that for a fixed vector v, o(tv) = o(t). This is because

lim
t→0

o(tv)
|t|

= lim
t→0
||v|| o(tv)||tv||

= 0

Now suppose both L1 and L2 work in the above definition. Then let v be any vector and let
t be a real scalar which is chosen small enough that tv+x ∈U . Then

f(x+ tv) = f(x)+L1tv+o(tv) , f(x+ tv) = f(x)+L2tv+o(tv) .

Therefore, subtracting these two yields (L2−L1)(tv) = o(tv) = o(t). Therefore, dividing
by t yields (L2−L1)(v) = o(t)

t . Now let t → 0 to conclude that (L2−L1)(v) = 0. Since
this is true for all v, it follows L2 = L1. This proves the theorem. ■
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Lemma 22.2.3 Let f be differentiable at x. Then f is continuous at x and in fact, there
exists K > 0 such that whenever ||v|| is small enough,

||f(x+v)− f(x)|| ≤ K ||v||

Also if f is differentiable at x, then

o(∥f(x+v)− f(x)∥) = o(v)

Proof: From the definition of the derivative,

f(x+v)− f(x) = Df(x)v+o(v) .

Let ||v|| be small enough that o(||v||)
||v|| < 1 so that ||o(v)|| ≤ ||v||. Then for such v,

||f(x+v)− f(x)|| ≤ ||Df(x)v||+ ||v||
≤ (||Df(x)||+1) ||v||

This proves the lemma with K = ||Df(x)||+ 1. Recall the operator norm discussed in
Definition 17.1.5.

The last assertion is implied by the first as follows. Define

h(v)≡

{
o(∥f(x+v)−f(x)∥)
∥f(x+v)−f(x)∥ if ∥f(x+v)− f(x)∥ ̸= 0

0 if ∥f(x+v)− f(x)∥= 0

Then lim∥v∥→0 h(v) = 0 from continuity of f at x which is implied by the first part. Also
from the above estimate,∥∥∥∥o(∥f(x+v)− f(x)∥)

∥v∥

∥∥∥∥= ∥h(v)∥ ∥f(x+v)− f(x)∥
∥v∥

≤ ∥h(v)∥(||Df(x)||+1)

This establishes the second claim. ■
Here ||Df(x)|| is the operator norm of the linear transformation Df(x).

22.3 The Chain Rule
With the above lemma, it is easy to prove the chain rule.

Theorem 22.3.1 (The chain rule) Let U and V be open sets U ⊆ X and V ⊆ Y . Suppose
f : U → V is differentiable at x ∈U and suppose g : V → Fq is differentiable at f(x) ∈ V .
Then g◦ f is differentiable at x and

D(g◦ f)(x) = Dg(f(x))Df(x) .

Proof: This follows from a computation. Let B(x,r)⊆U and let r also be small enough
that for ||v|| ≤ r, it follows that f(x+v) ∈V . Such an r exists because f is continuous at x.
For ||v||< r, the definition of differentiability of g and f implies

g(f(x+v))−g(f(x)) =
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Dg(f(x))(f(x+v)− f(x))+o(f(x+v)− f(x))
= Dg(f(x)) [Df(x)v+o(v)]+o(f(x+v)− f(x))
= Dg(f(x))Df(x)v+o(v)+o(f(x+v)− f(x)) (22.3.11)
= Dg(f(x))Df(x)v+o(v)

By Lemma 22.2.3. From the definition of the derivative D(g◦ f)(x) exists and equals
Dg(f(x))Df(x). ■

22.4 The Derivative Of A Compact Mapping
Here is a little definition about compact mappings. It turns out that if you have a differen-
tiable mapping which is also compact, then the derivative must also be compact.

Definition 22.4.1 Let C ∈ L (X ,Y ) . It is said to be compact if it takes bounded sets to
precompact sets. If f is a function defined on an open subset U of X , then f is called
compact if f (bounded set) = (precompact) .

Theorem 22.4.2 Let f : U ⊆ X → Y where f takes bounded sets to precompact sets. Then
D f (x) also takes bounded sets in X to precompact sets in Y.

Proof: If this is not so, then there exists a bounded set B in X and for some ε > 0 a
sequence of points D f (x)bn such that all these points are further apart than ε . Without loss
of generality, one can assume B = B(0,r) , a ball. In fact, one can assume that r > 0 is
as small as desired because if D f (x)B(0,r) is precompact, then so is D f (x)B(0,R) ,R >

r. Just get an ε
r
R net {D f (x)xn}N

n=1 for D f (x)B(0,r) and consider
{R

r D f (x)xn
}N

n=1 .

∪nB
(
D f (x)xn,ε

r
R

)
covers D f (x)B(0,R), so ∪nB

(R
r D f (x)xn,ε

)
covers D f (x)B(0,R).

Choose r very small so that r < ε/4 and

f (x+ xn)− f (x) = D f (x)xn +o(xn) , ∥o(xn)∥< ∥xn∥

and there are infinitely many D f (x)xn further apart than ε,xn ∈ B(0,r). Then consider
B(x,r) and { f (x+ xn)}∞

n=1 .

∥ f (x+ xn)− f (x+ xm)∥ ≥ ∥D f (x)xn−D f (x)xm∥−∥o(xn)−o(xm)∥

≥ ε−2
ε

4
=

ε

2

contradicting the assertion that f takes bounded sets to precompact sets. ■

22.5 The Matrix Of The Derivative
The case of most interest here is the only one I will discuss. It is the case where X =Rn and
Y = Rm, the function being defined on an open subset of Rn. Of course this all generalizes
to arbitrary vector spaces and one considers the matrix taken with respect to various bases.
As above, f will be defined and differentiable on an open set U ⊆ Rn.
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The matrix of Df(x) is the matrix having the ith column equal to Df(x)ei and so it is
only necessary to compute this. Let t be a small real number such that both

f(x+ tei)− f(x)−Df(x)(tei)

t
=

o(t)
t

Therefore,
f(x+ tei)− f(x)

t
= Df(x)(ei)+

o(t)
t

The limit exists on the right and so it exists on the left also. Thus

∂ f(x)
∂xi

≡ lim
t→0

f(x+ tei)− f(x)
t

= Df(x)(ei)

and so the matrix of the derivative is just the matrix which has the ith column equal to the
ith partial derivative of f. Note that this shows that whenever f is differentiable, it follows
that the partial derivatives all exist. It does not go the other way however as discussed later.

Theorem 22.5.1 Let f : U ⊆ Fn → Fm and suppose f is differentiable at x. Then all the
partial derivatives ∂ fi(x)

∂x j
exist and if Jf(x) is the matrix of the linear transformation, Df(x)

with respect to the standard basis vectors, then the i jth entry is given by ∂ fi
∂x j

(x) also denoted

as fi, j or fi,x j . It is the matrix whose ith column is

∂ f(x)
∂xi

≡ lim
t→0

f(x+ tei)− f(x)
t

.

Of course there is a generalization of this idea called the directional derivative.

Definition 22.5.2 In general, the symbol

Dvf(x)

is defined by

lim
t→0

f(x+ tv)− f(x)
t

where t ∈ F. In case |v| = 1 and the norm is the standard Euclidean norm, this is called
the directional derivative. More generally, with no restriction on the size of v and in any
linear space, it is called the Gateaux derivative. f is said to be Gateaux differentiable at x
if there exists Dvf(x) such that

lim
t→0

f(x+ tv)− f(x)
t

= Dvf(x)

where v→Dvf(x) is linear. Thus we say it is Gateaux differentiable if the Gateaux deriva-
tive exists for each v and v→ Dvf(x) is linear. 1

1René Gateaux was one of the many young French men killed in world war I. This derivative is named after
him, but it developed naturally from ideas used in the calculus of variations which were due to Euler and Lagrange
back in the 1700’s.
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What if all the partial derivatives of f exist? Does it follow that f is differentiable?
Consider the following function, f : R2→ R,

f (x,y) =
{ xy

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.

Then from the definition of partial derivatives,

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0

and

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 22.2.3 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.

22.6 A Mean Value Inequality
The following theorem will be very useful in much of what follows. It is a version of the
mean value theorem as is the next lemma.

Lemma 22.6.1 Let Y be a normed vector space and suppose h : [0,1]→Y is differentiable
and satisfies ∣∣∣∣h′ (t)∣∣∣∣≤M.

Then
||h(1)−h(0)|| ≤M.

Proof: Let ε > 0 be given and let

S≡ {t ∈ [0,1] : for all s ∈ [0, t] , ||h(s)−h(0)|| ≤ (M+ ε)s}

Then 0 ∈ S. Let t = supS. Then by continuity of h it follows

||h(t)−h(0)||= (M+ ε) t (22.6.12)

Suppose t < 1. Then there exist positive numbers, hk decreasing to 0 such that

||h(t +hk)−h(0)||> (M+ ε)(t +hk)

and now it follows from 22.6.12 and the triangle inequality that

||h(t +hk)−h(t)||+ ||h(t)−h(0)||
= ||h(t +hk)−h(t)||+(M+ ε) t > (M+ ε)(t +hk)
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and so
||h(t +hk)−h(t)||> (M+ ε)hk

Now dividing by hk and letting k→ ∞∣∣∣∣h′ (t)∣∣∣∣≥M+ ε,

a contradiction. Thus t = 1. ■

Theorem 22.6.2 Suppose U is an open subset of X and f : U → Y has the property that
Df (x) exists for all x in U and that, x+ t (y−x) ∈U for all t ∈ [0,1]. (The line segment
joining the two points lies in U.) Suppose also that for all points on this line segment,

||Df(x+t (y−x))|| ≤M.

Then
||f(y)− f(x)|| ≤M ∥y−x∥ .

Proof: Let
h(t)≡ f(x+ t (y−x)) .

Then by the chain rule,
h′ (t) = Df(x+ t (y−x))(y−x)

and so ∣∣∣∣h′ (t)∣∣∣∣ = ||Df(x+ t (y−x))(y−x)||
≤ M ||y−x||

by Lemma 22.6.1

||h(1)−h(0)||= ||f(y)− f(x)|| ≤M ||y−x|| .■

Here is a little result which will help to tie the case of Rn in to the abstract theory
presented for arbitrary spaces.

Theorem 22.6.3 Let X be a normed vector space having basis {v1, · · · ,vn} and let Y be
another normed vector space having basis {w1, · · · ,wm} . Let U be an open set in X and
let f : U → Y have the property that the Gateaux derivatives,

Dvk f(x)≡ lim
t→0

f(x+ tvk)− f(x)
t

exist and are continuous functions of x. Then Df(x) exists and

Df(x)v =
n

∑
k=1

Dvk f(x)ak

where

v =
n

∑
k=1

akvk.

Furthermore, x→ Df(x) is continuous; that is

lim
y→x
||Df(y)−Df(x)||= 0.
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Proof: Let v =∑
n
k=1 akvk. Then

f(x+v)− f(x) = f

(
x+

n

∑
k=1

akvk

)
− f(x) .

Then letting ∑
0
k=1 ≡ 0, f(x+v)− f(x) is given by

n

∑
k=1

[
f

(
x+

k

∑
j=1

a jv j

)
− f

(
x+

k−1

∑
j=1

a jv j

)]

=
n

∑
k=1

[f(x+akvk)− f(x)]+

n

∑
k=1

[(
f

(
x+

k

∑
j=1

a jv j

)
− f(x+akvk)

)
−

(
f

(
x+

k−1

∑
j=1

a jv j

)
− f(x)

)]
(22.6.13)

Consider the kth term in 22.6.13. Let

h(t)≡ f

(
x+

k−1

∑
j=1

a jv j + takvk

)
− f(x+ takvk)

for t ∈ [0,1] . Then

h′ (t) = ak lim
h→0

1
akh

(
f

(
x+

k−1

∑
j=1

a jv j +(t +h)akvk

)
− f(x+(t +h)akvk)

−

(
f

(
x+

k−1

∑
j=1

a jv j + takvk

)
− f(x+ takvk)

))

and this equals (
Dvk f

(
x+

k−1

∑
j=1

a jv j + takvk

)
−Dvk f(x+ takvk)

)
ak (22.6.14)

Now without loss of generality, it can be assumed that the norm on X is given by

||v|| ≡max

{
|ak| : v =

n

∑
j=1

akvk

}

because this is a finite dimensional space, all norms on X are equivalent. Therefore, from
22.6.14 and the assumption that the Gateaux derivatives are continuous,

∣∣∣∣h′ (t)∣∣∣∣ =

∥∥∥∥∥
(

Dvk f

(
x+

k−1

∑
j=1

a jv j + takvk

)
−Dvk f(x+ takvk)

)
ak

∥∥∥∥∥
≤ ε |ak| ≤ ε ||v||
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provided ||v|| is sufficiently small. Since ε is arbitrary, it follows from Lemma 22.6.1 the
expression in 22.6.13 is o(v) because this expression equals a finite sum of terms of the
form h(1)−h(0) where ||h′ (t)|| ≤ ε ||v|| whenever ∥v∥ is small enough. Thus

f(x+v)− f(x) =
n

∑
k=1

[f(x+akvk)− f(x)]+o(v)

=
n

∑
k=1

Dvk f(x)ak +
n

∑
k=1

[
f(x+akvk)− f(x)−Dvk f(x)ak

]
+o(v) .

Consider the kth term in the second sum.

f(x+akvk)− f(x)−Dvk f(x)ak = ak

(
f(x+akvk)− f(x)

ak
−Dvk f(x)

)
where the expression in the parentheses converges to 0 as ak → 0. Thus whenever ||v|| is
sufficiently small, ∣∣∣∣f(x+akvk)− f(x)−Dvk f(x)ak

∣∣∣∣≤ ε |ak| ≤ ε ||v||

which shows the second sum is also o(v). Therefore,

f(x+v)− f(x) =
n

∑
k=1

Dvk f(x)ak +o(v) .

Defining

Df(x)v≡
n

∑
k=1

Dvk f(x)ak

where v = ∑k akvk, it follows Df(x) ∈L (X ,Y ) and is given by the above formula.
It remains to verify x→ Df(x) is continuous.

||(Df(x)−Df(y))v||

≤
n

∑
k=1

∣∣∣∣(Dvk f(x)−Dvk f(y)
)

ak
∣∣∣∣

≤ max{|ak| ,k = 1, · · · ,n}
n

∑
k=1

∣∣∣∣Dvk f(x)−Dvk f(y)
∣∣∣∣

= ||v||
n

∑
k=1

∣∣∣∣Dvk f(x)−Dvk f(y)
∣∣∣∣

(Note that ∥v∥ ≡max{|ak| ,k = 1, · · · ,n} where v = ∑k akvk) and so

||Df(x)−Df(y)|| ≤
n

∑
k=1

∣∣∣∣Dvk f(x)−Dvk f(y)
∣∣∣∣

which proves the continuity of Df because of the assumption the Gateaux derivatives are
continuous. ■

In particular, if Dvk f(x) exist and are continuous functions of x, this shows that f is
Gateaux differentiable and in fact the Gateaux derivatives are continuous. The following
gives the corresponding result for functions defined on infinite dimensional spaces.
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Theorem 22.6.4 Suppose f : U → Y where U is an open set in X , a normed linear space.
Suppose that f is Gateaux differentiable on U and that the Gateaux derivative is continuous
on an open set containing x. Then f is Frechet differentiable at x.

Proof: Denote by G(x) ∈L (X ,Y ) the Gateaux derivative. Thus

G(x)v≡ lim
λ→0

f(x+λv)− f(x)
λ

It is desired to show that G(x) = Df(x). Since G is continuous, one can obtain

f(x+v)− f(x) =
∫ 1

0
G(x+ tv)vdt

where this is the ordinary Riemann integral.∥∥∥∥ f(x+v)− f(x)−G(x)v
∥v∥

∥∥∥∥=
∥∥∥∥∥
∫ 1

0 G(x+ tv)vdt−G(x)v
∥v∥

∥∥∥∥∥
=

∥∥∥∥∥
∫ 1

0 G(x+ tv)v−G(x)vdt
∥v∥

∥∥∥∥∥≤ 1
∥v∥

∫ 1

0
∥G(x+ tv)−G(x)∥dt ∥v∥

which is small provided ∥v∥ is sufficiently small. Thus G(x) = Df(x) as hoped. ■
Recall the following.

Lemma 22.6.5 Let ∥x∥= sup∥y∗∥X ′≤1 |⟨y∗,x⟩| .

Proof: Let f (kx) = k∥x∥ . Then

sup
∥kx∥≤1

|⟨ f ,x⟩|= sup
|k|≤1/∥x∥

|k|∥x∥= 1

Then by Hahn Banach theorem, there is y∗ ∈ X ′ which extends f and ∥y∗∥ ≤ 1. Then

∥x∥ ≥ sup
∥z∗∥X ′≤1

|⟨z∗,x⟩| ≥ |⟨y∗,x⟩|= ∥x∥ ■

One does not need continuity of G near x. It suffices to have continuity at x. Let y∗ ∈Y ′.
Then by the mean value theorem,

⟨y∗, f(x+v)⟩−⟨y∗, f(x)⟩= ⟨y∗,G(x+ tv)v⟩ , t ∈ [0,1]

Then

1
∥v∥
∥f(x+v)− f(x)−G(x)v∥= 1

∥v∥
sup
∥y∗∥≤1

|⟨y∗, f(x+v)− f(x)−G(x)v⟩|

=
1
∥v∥

sup
∥y∗∥≤1

|⟨y∗,G(x+ tv)v−G(x)v⟩| ≤ sup
|t|≤1
∥G(x+ tv)−G(x)∥L (X ,Y )

which converges to 0 as ∥v∥→ 0 thanks to continuity of G at x. This proves the following.
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Theorem 22.6.6 Suppose f : U → Y where U is an open set in X , a normed linear space.
Suppose that f is Gateaux differentiable on U and that the Gateaux derivative is continuous
at x. Then f is Frechet differentiable at x and Df(x)v = Dvf(x).

Example 22.6.7 Let X be C2
0
(
Ω̄
)

where Ω is a bounded open set in Rnconsisting of those
functions which are twice continuously differentiable and vanish near ∂Ω. The norm will
be

∥u∥X ≡ ∥u∥∞
+max{∥u,i ∥∞

, i}+max
{∥∥u,i j

∥∥
∞

i, j
}

Then let f : X → R be defined by

f (u)≡ 1
2

∫
Ω

∇u ·∇udx

Show f is differentiable at u ∈ X.

Consider the Gateaux differentiability.

lim
t→0

f (u+ tv)− f (u)
t

= lim
t→0

t
∫

Ω
∇u ·∇vdx

t
+ t

1
2

∫
Ω

∇v ·∇v

so it converges to ∫
Ω

∇u ·∇vdx =−
∫

Ω

∆uvdx

the last step comes from the divergence theorem. Clearly v→−
∫

Ω
∆uvdx is linear and R

valued. ∣∣∣∣−∫
Ω

∆uvdx
∣∣∣∣≤ ∥v∥X

∫
Ω

|∆u|dx≤ ∥v∥X m(Ω)∥u∥X

Thus this appears to be in L (X ,R). This also shows that,

sup
∥v∥≤1

|Dv f (u)−Dv f (û)| ≤ m(Ω)∥u− û∥X

and so u→ D(·) (u) is continuous as a map from X to L (X ,R) so it seems that this is a
differentiable function and

D f (u)(v) =−
∫

Ω

∆uvdx

Definition 22.6.8 Let f : U → Y where U is an open set in X. Then f is called C1 (U) if it
Gateaux differentiable and the Gateaux derivative is continuous on U.

As shown, this implies f is differentiable and the Gateaux derivative is the Frechet
derivative. It is good to keep in mind the following simple example or variations of it.

Example 22.6.9 Define

f (x)≡
{

x2 sin
( 1

x

)
x ̸= 0

0 if x = 0

This function has the property that it is differentiable everywhere but is not C1 (R). In
fact the derivative fails to be continuous at 0.
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22.7 Higher Order Derivatives
If f : U ⊆ X → Y for U an open set, then

x→ Df(x)

is a mapping from U to L (X ,Y ), a normed vector space. Therefore, it makes perfect sense
to ask whether this function is also differentiable.

Definition 22.7.1 The following is the definition of the second derivative.

D2f(x)≡ D(Df(x)) .

Thus,
Df(x+v)−Df(x) = D2f(x)v+o(v) .

This implies
D2f(x) ∈L (X ,L (X ,Y )) , D2f(x)(u)(v) ∈ Y,

and the map
(u,v)→ D2f(x)(u)(v)

is a bilinear map having values in Y . In other words, the two functions,

u→ D2f(x)(u)(v) , v→ D2f(x)(u)(v)

are both linear.
The same pattern applies to taking higher order derivatives. Thus,

D3f(x)≡ D
(
D2f(x)

)
and D3f(x) may be considered as a trilinear map having values in Y . In general Dkf(x)
may be considered a k linear map. This means the function

(u1, · · · ,uk)→ Dkf(x)(u1) · · ·(uk)

has the property
u j→ Dkf(x)(u1) · · ·(u j) · · ·(uk)

is linear.
Also, instead of writing

D2f(x)(u)(v) , or D3f(x)(u)(v)(w)

the following notation is often used.

D2f(x)(u,v) or D3f(x)(u,v,w)

with similar conventions for higher derivatives than 3. Another convention which is often
used is the notation

Dkf(x)vk
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instead of
Dkf(x)(v, · · · ,v) .

Note that for every k, Dkf maps U to a normed vector space. As mentioned above,
Df(x) has values in L (X ,Y ) ,D2f(x) has values in L (X ,L (X ,Y )) , etc. Thus it makes
sense to consider whether Dkf is continuous. This is described in the following definition.

Definition 22.7.2 Let U be an open subset of X , a normed vector space, and let f : U →Y.
Then f is Ck (U) if f and its first k derivatives are all continuous. Also, Dkf(x) when it exists
can be considered a Y valued multi-linear function. Sometimes these are called tensors in
case f has scalar values.

22.8 The Derivative And The Cartesian Product
There are theorems which can be used to get differentiability of a function based on exis-
tence and continuity of the partial derivatives. A generalization of this was given above.
Here a function defined on a product space is considered. It is very much like what was
presented above and could be obtained as a special case but to reinforce the ideas, I will do
it from scratch because certain aspects of it are important in the statement of the implicit
function theorem.

The following is an important abstract generalization of the concept of partial derivative
presented above. Insead of taking the derivative with respect to one variable, it is taken with
respect to several but not with respect to others. This vague notion is made precise in the
following definition. First here is a lemma.

Lemma 22.8.1 Suppose U is an open set in X×Y. Then the set, Uy defined by

Uy ≡ {x ∈ X : (x,y) ∈U}

is an open set in X. Here X ×Y is a finite dimensional vector space in which the vector
space operations are defined componentwise. Thus for a,b ∈ F,

a(x1,y1)+b(x2,y2) = (ax1 +bx2,ay1 +by2)

and the norm can be taken to be

||(x,y)|| ≡max(||x|| , ||y||)

Proof: In finite dimensions it doesn’t matter how this norm is defined because all are
equivalent. It obviously satisfies most axioms of a norm. The only one which is not obvious
is the triangle inequality. I will show this now.

||(x,y)+(x1,y1)|| ≡ ||(x+x1,y+y1)|| ≡max(||x+x1|| , ||y+y1||)
≤ max(||x||+ ||x1|| , ||y||+ ||y1||)
≤ max(∥x∥ ,∥y∥)+max(∥x1∥ ,∥y1∥)
≡ ||(x,y)||+ ||(x1,y1)||
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Let x ∈Uy. Then (x,y) ∈U and so there exists r > 0 such that

B((x,y) ,r) ∈U.

This says that if (u,v) ∈ X×Y such that ||(u,v)− (x,y)||< r, then (u,v) ∈U. Thus if

||(u,y)− (x,y)||= ||u−x||< r,

then (u,y) ∈U. This has just said that B(x,r), the ball taken in X is contained in Uy. This
proves the lemma. ■

Or course one could also consider

Ux ≡ {y :(x,y) ∈U}

in the same way and conclude this set is open in Y . Also, the generalization to many factors
yields the same conclusion. In this case, for x ∈∏

n
i=1 Xi, let

||x|| ≡max
(
||xi||Xi

: x = (x1, · · · ,xn)
)

Then a similar argument to the above shows this is a norm on ∏
n
i=1 Xi. Consider the triangle

inequality.

∥(x1, · · · ,xn)+(y1, · · · ,yn)∥= max
i

(
||xi +yi||Xi

)
≤max

i

(
∥xi∥Xi

+∥yi∥Xi

)
≤max

i

(
||xi||Xi

)
+max

i

(
||yi||Xi

)
Corollary 22.8.2 Let U ⊆∏

n
i=1 Xi be an open set and let

U(x1,··· ,xi−1,xi+1,··· ,xn) ≡ {x ∈ F
ri : (x1, · · · ,xi−1,x,xi+1, · · · ,xn) ∈U} .

Then U(x1,··· ,xi−1,xi+1,··· ,xn) is an open set in Fri .

Proof: Let z ∈U(x1,··· ,xi−1,xi+1,··· ,xn). Then (x1, · · · ,xi−1,z,xi+1, · · · ,xn)≡ x ∈U by def-
inition. Therefore, since U is open, there exists r > 0 such that B(x,r)⊆U. It follows that
for B(z,r)Xi

denoting the ball in Xi, it follows that B(z,r)Xi
⊆U(x1,··· ,xi−1,xi+1,··· ,xn) because

to say that ∥z−w∥Xi
< r is to say that

∥(x1, · · · ,xi−1,z,xi+1, · · · ,xn)− (x1, · · · ,xi−1,w,xi+1, · · · ,xn)∥< r

and so w ∈U(x1,··· ,xi−1,xi+1,··· ,xn). ■
Next is a generalization of the partial derivative.

Definition 22.8.3 Let g : U ⊆∏
n
i=1 Xi→ Y , where U is an open set. Then the map

z→ g(x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is a function from the open set in Xi,

{z : x =(x1, · · · ,xi−1,z,xi+1, · · · ,xn) ∈U}
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to Y . When this map is differentiable, its derivative is denoted by Dig(x). To aid in the
notation, for v ∈ Xi, let θ iv ∈∏

n
i=1 Xi be the vector (0, · · · ,v, · · · ,0) where the v is in the ith

slot and for v ∈∏
n
i=1 Xi, let vi denote the entry in the ith slot of v. Thus, by saying

z→ g(x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is differentiable is meant that for v ∈ Xi sufficiently small,

g(x+θ iv)−g(x) = Dig(x)v+o(v) .

Note Dig(x) ∈L (Xi,Y ) .

Definition 22.8.4 Let U ⊆ X be an open set. Then f : U → Y is C1 (U) if f is differentiable
and the mapping

x→ Df(x) ,

is continuous as a function from U to L (X ,Y ).

With this definition of partial derivatives, here is the major theorem. Note the resem-
blance with the matrix of the derivative of a function having values in Rm in terms of the
partial derivatives.

Theorem 22.8.5 Let g,U,∏n
i=1 Xi, be given as in Definition 22.8.3. Then g is C1 (U) if and

only if Dig exists and is continuous on U for each i. In this case, g is differentiable and

Dg(x)(v) = ∑
k

Dkg(x)vk (22.8.15)

where v = (v1, · · · ,vn) .

Proof: Suppose then that Dig exists and is continuous for each i. Note that

k

∑
j=1

θ jv j = (v1, · · · ,vk,0, · · · ,0) .

Thus ∑
n
j=1 θ jv j = v and define ∑

0
j=1 θ jv j ≡ 0. Therefore,

g(x+v)−g(x) =
n

∑
k=1

[
g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)]
(22.8.16)

Consider the terms in this sum.

g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)
= g(x+θ kvk)−g(x)+ (22.8.17)

(
g

(
x+

k

∑
j=1

θ jv j

)
−g(x+θ kvk)

)
−

(
g

(
x+

k−1

∑
j=1

θ jv j

)
−g(x)

)
(22.8.18)
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and the expression in 22.8.18 is of the form h(vk)−h(0) where for small w ∈ Xk,

h(w)≡ g

(
x+

k−1

∑
j=1

θ jv j +θ kw

)
−g(x+θ kw) .

Therefore,

Dh(w) = Dkg

(
x+

k−1

∑
j=1

θ jv j +θ kw

)
−Dkg(x+θ kw)

and by continuity, ||Dh(w)|| < ε provided ||v|| is small enough. Therefore, by Theorem
22.6.2, the mean value inequality, whenever ||v|| is small enough,

||h(vk)−h(0)|| ≤ ε ||v||

which shows that since ε is arbitrary, the expression in 6.13.24 is o(v). Now in 22.8.17

g(x+θ kvk)−g(x) = Dkg(x)vk +o(vk) = Dkg(x)vk +o(v) .

Therefore, referring to 22.8.16,

g(x+v)−g(x) =
n

∑
k=1

Dkg(x)vk +o(v)

which shows Dg(x) exists and equals the formula given in 22.8.15. Also x→ Dg(x) is
continuous since each of the Dkg(x) are.

Next suppose g is C1. I need to verify that Dkg(x) exists and is continuous. Let v ∈ Xk
sufficiently small. Then

g(x+θ kv)−g(x) = Dg(x)θ kv+o(θ kv)
= Dg(x)θ kv+o(v)

since ||θ kv||= ||v||. Then Dkg(x) exists and equals

Dg(x)◦θ k

Now x→Dg(x) is continuous. It is clear that θ k : Xk→∏
n
i=1 Xi is also continuous because

θ kv places v in the kth position and 0 in every other position. ■
Note that the above argument also works at a single point x. That is, continuity at x of

the partials implies Dg(x) exists and is continuous at x.

22.9 Mixed Partial Derivatives
Let U be an open set in ∏

n
i=1 Xi where the norm is the one described above and let f : U→Y

be a function for which the higher order partial derivatives of the sort described above exist.
As in the case of functions defined on open sets of Rn one can ask whether the mixed
partials are equal.

Results of this sort were known to Euler in around 1734. The theorem was proved by
Clairaut some time later. It turns out that the mixed partial derivatives, if continuous will
end up being equal. It will also work in the more general situation just described.
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Theorem 22.9.1 Let U be an open subset of ∏
n
i=1 Xi where each Xi is a normed linear

space and ∥x∥ = maxi ∥xi∥i. Let f : U → Y have mixed partial derivatives DiD jf and
D jDif. Then if these are continuous at x ∈ U, it follows they will be equal in the sense
that D jDif(x)(u,v) = DiD jf(x)(v,u).

Proof: It suffices to assume that there are only two spaces and U is an open subset
of X1×X2 because one simply specializes to two of the variables in the general case. We
denote the variable for X1 as x and the one from X2 as y. Also, to simplify this, first assume
f has values in R. Thus it will be denoted as f rather than f. Since U is open, there exists
r > 0 such that B((x,y) ,r)⊆U . Now let t,s be small real numbers and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ tu,y+ sv)− f (x+ tu,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ sv)− f (x,y))}

Then h′ (t) = D1 f (x+ tu,y+ sv)(u)−D1 f (x+ tu,y)(u) . By the mean value theorem,

∆(s, t) =
1
s

h′ (θ t) =
1
s
(D1 f (x+θ tu,y+ sv)(u)−D1 f (x+θ tu,y)(u))

where θ ∈ (0,1). Now use the mean value theorem again to obtain

∆(s, t) = D2D1 f (x+θ tu,y+αsv)(u)(v) , α ∈ (0,1) .

Similarly doing things in the other order writing

∆(s, t) =
1
st
{( f (x+ tu,y+ sv)− f (x,y+ sv))− ( f (x+ tu,y)− f (x,y))}

and taking the derivative first with respect to s and next with respect to t, one can obtain

∆(s, t) = D1D2 f
(
x+ θ̂ tu,y+ α̂sv

)
(v)(u)

where θ̂ , α̂ are also in (0,1). Then letting (s, t)→ (0,0) and using continuity of the mixed
partial derivatives, one obtains that

D2D1 f (x,y)(u)(v) = D1D2 f (x,y)(v)(u)

Letting v = u yields the desired result.
The general case follows right away by applying this result to ⟨y∗, f⟩ . Thus one obtains

⟨y∗,D2D1 f (x,y)(u)(v)⟩= ⟨y∗,D1D2 f (x,y)(v)(u)⟩

for every y∗ ∈ Y ′. Hence, since Y ′ separates the points, it follows that the mixed partials
are equal. ■

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [6].

Example 22.9.2 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)
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From the definition of partial derivatives it follows immediately that

fx (0,0) = fy (0,0) = 0.

Using the standard rules of differentiation, for (x,y) ̸= (0,0) ,

fx = y
x4− y4 +4x2y2

(x2 + y2)2 , fy = x
x4− y4−4x2y2

(x2 + y2)2

Now

fxy (0,0)≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0)≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that although the mixed partial derivatives do exist at (0,0) , they are not equal
there.

Incidentally, the graph of this function appears very innocent. Its fundamental sickness
is not apparent. It is like one of those whited sepulchers mentioned in the Bible.

22.10 Implicit Function Theorem
Recall the following notation. L (X ,Y ) is the space of bounded linear mappings from X to
Y where here (X ,∥·∥X ) and (Y,∥·∥Y ) are normed linear spaces. Recall that this means that
for each L ∈L (X ,Y )

∥L∥ ≡ sup
∥x∥≤1

∥Lx∥< ∞

As shown earlier, this makes L (X ,Y ) into a normed linear space. In case X is finite di-
mensional, L (X ,Y ) is the same as the collection of linear maps from X to Y . In what
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follows X ,Y will be Banach spaces, complete normed linear spaces. Thus these are com-
plete normed linear space and L (X ,Y ) is the space of bounded linear maps. I will also
cease trying to write the vectors in bold face partly to emphasize that these are not in Rn.

Definition 22.10.1 Let (X ,∥·∥X ) and (Y,∥·∥Y ) be two normed linear spaces. Then L (X ,Y )
denotes the set of linear maps from X to Y which also satisfy the following condition. For
L ∈L (X ,Y ) ,

lim
∥x∥X≤1

∥Lx∥Y ≡ ∥L∥< ∞

Recall that this operator norm is less than infinity is always the case where X is fi-
nite dimensional. However, if you wish to consider infinite dimensional situations, you
assume the operator norm is finite as a qualification for being in L (X ,Y ). Then here is an
important theorem.

Theorem 22.10.2 If Y is a Banach space, then L (X ,Y ) is also a Banach space.

Proof: Let {Ln} be a Cauchy sequence in L (X ,Y ) and let x ∈ X .

||Lnx−Lmx|| ≤ ||x|| ||Ln−Lm||.

Thus {Lnx} is a Cauchy sequence. Let

Lx = lim
n→∞

Lnx.

Then, clearly, L is linear because if x1,x2 are in X , and a,b are scalars, then

L(ax1 +bx2) = lim
n→∞

Ln (ax1 +bx2)

= lim
n→∞

(aLnx1 +bLnx2)

= aLx1 +bLx2.

Also L is bounded. To see this, note that {||Ln||} is a Cauchy sequence of real numbers
because |||Ln||− ||Lm||| ≤ ||Ln−Lm||. Hence there exists K > sup{||Ln|| : n ∈ N}. Thus, if
x ∈ X ,

∥Lx∥= lim
n→∞
||Lnx|| ≤ K ∥x∥ . ■

The following theorem is really nice. The series in this theorem is called the Neuman
series.

Lemma 22.10.3 Let (X ,∥·∥) is a Banach space, and if A ∈ L (X ,X) and ∥A∥ = r < 1,
then

(I−A)−1 =
∞

∑
k=0

Ak ∈L (X ,X)

where the series converges in the Banach space L (X ,X). If O consists of the invertible
maps in L (X ,X) , then O is open and if I is the mapping which takes A to A−1, then I is
continuous.
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Proof: First of all, why does the series make sense?∥∥∥∥∥ q

∑
k=p

Ak

∥∥∥∥∥≤ q

∑
k=p

∥∥∥Ak
∥∥∥≤ q

∑
k=p
∥A∥k ≤

∞

∑
k=p

rk ≤ rp

1− r

and so the partial sums are Cauchy in L (X ,X) . Therefore, the series converges to some-
thing in L (X ,X) by completeness of this normed linear space. Now why is it the inverse?

∞

∑
k=0

Ak (I−A) = lim
n→∞

n

∑
k=0

Ak (I−A) = lim
n→∞

(
n

∑
k=0

Ak−
n+1

∑
k=1

Ak

)
= lim

n→∞

(
I−An+1)= I

because
∥∥An+1

∥∥≤ ∥A∥n+1 ≤ rn+1. Similarly,

(I−A)
∞

∑
k=0

Ak = lim
n→∞

(
I−An+1)= I

and so this shows that this series is indeed the desired inverse.
Next suppose A ∈ O so A−1 ∈ L (X ,X) . Then suppose ∥A−B∥ < r

1+∥A−1∥ ,r < 1.

Does it follow that B is also invertible?

B = A− (A−B) = A
[
I−A−1 (A−B)

]
Then

∥∥A−1 (A−B)
∥∥≤ ∥∥A−1

∥∥∥A−B∥< r and so
[
I−A−1 (A−B)

]−1 exists. Hence

B−1 =
[
I−A−1 (A−B)

]−1
A−1

Thus O is open as claimed. As to continuity, let A,B be as just described. Then using the
Neuman series,

∥IA−IB∥=
∥∥∥A−1−

[
I−A−1 (A−B)

]−1
A−1

∥∥∥
=

∥∥∥∥∥A−1−
∞

∑
k=0

(
A−1 (A−B)

)k
A−1

∥∥∥∥∥=
∥∥∥∥∥ ∞

∑
k=1

(
A−1 (A−B)

)k
A−1

∥∥∥∥∥
≤

∞

∑
k=1

∥∥A−1∥∥k+1 ∥A−B∥k = ∥A−B∥
∥∥A−1∥∥2

∞

∑
k=0

∥∥A−1∥∥k
(

r
1+∥A−1∥

)k

≤ ∥B−A∥
∥∥A−1∥∥2 1

1− r
.

Thus I is continuous at A ∈ O . ■

Lemma 22.10.4 Let
O ≡ {A ∈L (X ,Y ) : A−1 ∈L (Y,X)}

and let
I : O →L (Y,X) , IA≡ A−1.
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Then O is open and I is in Cm (O) for all m = 1,2, · · · . Also

DI(A)(B) =−I(A)(B)I(A). (22.10.19)

In particular, I is continuous.

Proof: Let A ∈ O and let B ∈L (X ,Y ) with

||B|| ≤ 1
2

∣∣∣∣A−1∣∣∣∣−1
.

Then ∣∣∣∣A−1B
∣∣∣∣≤ ∣∣∣∣A−1∣∣∣∣ ||B|| ≤ 1

2
and so by Lemma 22.10.3, (

I +A−1B
)−1 ∈L (X ,X) .

It follows that

(A+B)−1 =
(
A
(
I +A−1B

))−1
=
(
I +A−1B

)−1
A−1 ∈L (Y,X) .

Thus O is an open set.
Thus

(A+B)−1 =
(
I +A−1B

)−1
A−1 =

∞

∑
n=0

(−1)n (A−1B
)n

A−1

=
[
I−A−1B+o(B)

]
A−1

which shows that O is open and, also,

I(A+B)−I(A) =
∞

∑
n=0

(−1)n (A−1B
)n

A−1−A−1

= −A−1BA−1 +o(B)

= −I(A)(B)I(A)+o(B)

which demonstrates 22.10.19. It follows from this that we can continue taking derivatives
of I. For ||B1|| small,

− [DI(A+B1)(B)−DI(A)(B)] =

I(A+B1)(B)I(A+B1)−I(A)(B)I(A)

= I(A+B1)(B)I(A+B1)−I(A)(B)I(A+B1)+

I(A)(B)I(A+B1)−I(A)(B)I(A)

= [I(A)(B1)I(A)+o(B1)] (B)I(A+B1)+

I(A)(B) [I(A)(B1)I(A)+o(B1)]
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= [I(A)(B1)I(A)+o(B1)] (B)
[
A−1−A−1B1A−1 +o(B1)

]
+

I(A)(B) [I(A)(B1)I(A)+o(B1)]

= I(A)(B1)I(A)(B)I(A)+I(A)(B)I(A)(B1)I(A)+o(B1)

and so

D2I(A)(B1)(B) = I(A)(B1)I(A)(B)I(A)+I(A)(B)I(A)(B1)I(A)

which shows I is C2 (O). Clearly we can continue in this way which shows I is in Cm (O)
for all m = 1,2, · · · . ■

Here are the two fundamental results presented earlier which will make it easy to prove
the implicit function theorem. First is the fundamental mean value inequality.

Theorem 22.10.5 Suppose U is an open subset of X and f : U → Y has the property that
D f (x) exists for all x in U and that, x+ t (y− x) ∈U for all t ∈ [0,1]. (The line segment
joining the two points lies in U.) Suppose also that for all points on this line segment,

||D f (x+ t (y− x))|| ≤M.

Then
|| f (y)− f (x)|| ≤M |y− x| .

Next recall the following theorem about fixed points of a contraction map. It was
Corollary 7.11.3.

Corollary 22.10.6 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
and so it will remain in B if

d (x0, f (x0))

1− r
< δ .

The implicit function theorem deals with the question of solving, f (x,y) = 0 for x in
terms of y and how smooth the solution is. It is one of the most important theorems in math-
ematics. The proof I will give holds with no change in the context of infinite dimensional
complete normed vector spaces when suitable modifications are made on what is meant by
L (X ,Y ) . There are also even more general versions of this theorem than to normed vector
spaces.

Recall that for X ,Y normed vector spaces, the norm on X×Y is of the form

||(x,y)||= max(||x|| , ||y||) .



732 CHAPTER 22. THE DERIVATIVE

Theorem 22.10.7 (implicit function theorem) Let X ,Y,Z be Banach spaces and suppose U
is an open set in X×Y . Let f : U → Z be in C1 (U) and suppose

f (x0,y0) = 0, D1 f (x0,y0)
−1 ∈L (Z,X) . (22.10.20)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (22.10.21)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).

Proof: Let T (x,y)≡ x−D1 f (x0,y0)
−1 f (x,y). Therefore,

D1T (x,y) = I−D1 f (x0,y0)
−1 D1 f (x,y) . (22.10.22)

by continuity of the derivative which implies continuity of D1T , it follows there exists
δ > 0 such that if ∥x−x0∥< δ and ∥y−y0∥< δ , then

||D1T (x,y)||< 1
2
, D1 f (x,y)−1 exists (22.10.23)

The second claim follows from Lemma 22.10.4. By the mean value inequality, Theorem
22.10.5, whenever x,x′ ∈ B(x0,δ ) and y ∈ B(y0,δ ),∣∣∣∣T (x,y)−T

(
x′,y
)∣∣∣∣≤ 1

2

∣∣∣∣x− x′
∣∣∣∣ . (22.10.24)

Also, it can be assumed δ is small enough that for some M and all such (x,y) ,∥∥∥D1 f (x0,y0)
−1
∥∥∥ ||D2 f (x,y)||< M (22.10.25)

Next, consider only y such that ∥y−y0∥< η where η is so small that

∥T (x0,y)− x0∥<
δ

3

Then for such y, consider the mapping Ty (x) = T (x,y). Thus by Corollary 22.10.6, for each
n ∈ N,

δ >
2
3

δ ≥
∥∥Ty (x0)− x0

∥∥
1− (1/2)

≥
∥∥T n

y (x0)− x0
∥∥

Then by 22.10.24, the sequence of iterations of this map Ty converges to a unique fixed
point x(y) in the ball B(x0,δ ). Thus, from the definition of T , f (x(y) ,y) = 0. This is the
implicitly defined function.

Next we show that this function is Lipschitz continuous. For y,ŷ in B(y0,η) ,

∥T (x,y)−T (x,ŷ)∥=∥∥∥D1 f (x0,y0)
−1 f (x,y)−D1 f (x0,y0)

−1 f (x, ŷ)
∥∥∥≤M ∥y−ŷ∥
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thanks to the above estimate 22.10.25 and the mean value inequality, Theorem 22.10.5.
Note how convexity of B(y0,η) which says that the line segment joining y,ŷ is contained
in B(y0,η) is important to use this theorem. Then from this,

∥x(y)− x(ŷ)∥ = ∥T (x(y) ,y)−T (x(ŷ) , ŷ)∥ ≤ ∥T (x(y) ,y)−T (x(y) , ŷ)∥
+∥T (x(y) , ŷ)−T (x(ŷ) , ŷ)∥

≤M ∥y−ŷ∥+ 1
2
∥x(y)− x(ŷ)∥

Hence,
∥x(y)− x(ŷ)∥ ≤ 2M ∥y−ŷ∥ (22.10.26)

Finally consider the claim that this implicitly defined function is C1.

0 = f (x(y+u) ,y+u)− f (x(y) ,y)

= D1 f (x(y) ,y)(x(y+u)− x(y))+D2 f (x(y) ,y)u

+o(x(y+u)− x(y) ,u) (22.10.27)

Consider the last term. o(x(y+u)− x(y) ,u)/∥u∥ equals{
o(x(y+u)−x(y),u)

∥(x(y+u)−x(y),u)∥X×Y

max(∥x(y+u)−x(y)∥,∥u∥)
∥u∥ if ∥(x(y+u)− x(y) ,u)∥X×Y ̸= 0

0 if ∥(x(y+u)− x(y) ,u)∥X×Y = 0

Now the Lipschitz condition just established shows that

max(∥x(y+u)− x(y)∥ ,∥u∥)
∥u∥

is bounded for nonzero u sufficiently small that y,y+u ∈ B(y0,η). Therefore,

lim
u→0

o(x(y+u)− x(y) ,u)
∥u∥

= 0

Then 22.10.27 shows that

0 = D1 f (x(y) ,y)(x(y+u)− x(y))+D2 f (x(y) ,y)u+o(u)

Therefore, solving for x(y+u)− x(y) , it follows that

x(y+u)− x(y) = −D1 f (x(y) ,y)−1 D2 f (x(y) ,y)u+D1 f (x(y) ,y)−1 o(u)

= −D1 f (x(y) ,y)−1 D2 f (x(y) ,y)u+o(u)

and now, the continuity of the partial derivatives D1 f ,D2 f , continuity of the map A→ A−1,
along with the continuity of y→ x(y) shows that y→ x(y) is C1 with derivative equal to
−D1 f (x(y) ,y)−1 D2 f (x(y) ,y). ■

It is easy to give a version of this theorem in which the function f also depends on a
parameter λ ∈ Λ, a metric space.
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Corollary 22.10.8 Let X ,Y,Z be Banach spaces and suppose U is an open set in X ×Y .
Let f : U×Λ→ Z satisfy f (·, ·,λ ) is in C1 (U) and suppose for each λ ,

f (x0,y0,λ ) = 0, D1 f (x0,y0,λ )
−1 ∈L (Z,X) . (22.10.28)

Also suppose (x,y)→D1 f (x,y,λ ) is continuous uniformly in λ and D2 (x,y,λ ) is uniformly
bounded in λ for (x,y) sufficiently close to (x0,y0). Then there exist positive constants, δ ,η ,
such that for every y ∈ B(y0,η) there exists a unique x(y,λ ) ∈ B(x0,δ ) such that

f (x(y,λ ) ,y,λ ) = 0. (22.10.29)

Furthermore, the mapping, y→ x(y,λ ) is in C1 (B(y0,η)) and λ → x(y,λ ) is continuous.

Proof: It is just a repeat of the above proof except you use the uniform contraction
principle, Corollary 7.11.4 to get the fixed point. ■

The next theorem is a very important special case of the implicit function theorem
known as the inverse function theorem. Actually one can also obtain the implicit function
theorem from the inverse function theorem. It is done this way in [84], [96] and in [6].

Theorem 22.10.9 (inverse function theorem) Let x0 ∈U, an open set in X , and let f : U→
Y where X ,Y are finite dimensional normed vector spaces. Suppose

f is C1 (U) , and D f (x0)
−1 ∈L (Y,X). (22.10.30)

Then there exist open sets W, and V such that

x0 ∈W ⊆U, (22.10.31)

f : W →V is one to one and onto, (22.10.32)

f−1 is C1, (22.10.33)

Proof: Apply the implicit function theorem to the function

F (x,y)≡ f (x)− y

where y0 ≡ f (x0). Thus the function y→ x(y) defined in that theorem is f−1. Now let

W ≡ B(x0,δ )∩ f−1 (B(y0,η))

and
V ≡ B(y0,η) .■

22.11 More Derivatives
When you consider a Ck function f defined on an open set U, you obtain the following

D f (x) ∈L (X ,Y ) ,D2 f (x) ∈L (X ,L (X ,Y )) ,D3 f (x) ∈L (X ,L (X ,L (X ,Y )))
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and so forth. Thus they can each be considered as a linear transformation with values in
some vector space. When you consider the vector spaces, you see that these can also be
considered as multilinear functions on X with values in Y . Now consider the product of two
linear transformations A(y)B(y)w, where everything is given to make sense and here w is
an appropriate vector. Then if each of these linear transformations can be differentiated,
you would do the following simple computation.

(A(y+u)B(y+u)−A(y)B(y))(w)

= (A(y+u)B(y+u)−A(y)B(y+u)+A(y)B(y+u)−A(y)B(y))(w)

= ((DA(y)u+o(u))B(y+u)+A(y)(DB(y)u+o(u)))(w)

= (DA(y)(u)B(y+u)+A(y)DB(y)(u)+o(u))(w)

= (DA(y)(u)B(y)+A(y)DB(y)(u)+o(u))(w)

Then
u→ (DA(y)(u)B(y)+A(y)DB(y)(u))(w)

is clearly linear and

(u,w)→ (DA(y)(u)B(y)+A(y)DB(y)(u))(w)

is bilinear and continuous as a function of y. By this we mean that for a fixed choice of (u,w)
the resulting Y valued function just described is continuous. Now if each of A,B,DA,DB
can be differentiated, you could replace y with y+ û and do a similar computation to obtain
as many differentiations as desired, the kth differentiation yielding a k linear function. You
can do this as long as A and B have derivatives. Now in the case of the implicit function
theorem, you have

Dx(y) =−D1 f (x(y) ,y)−1 D2 f (x(y) ,y) . (22.11.34)

By Lemma 22.10.4 and the implicit function theorem and the chain rule, this is the situation
just discussed. Thus D2x(y) can be obtained. Then the formula for it will only involve Dx
which is known to be continuous. Thus one can continue in this way finding derivatives till
f fails to have them. The inverse map never creates difficulties because it is differentiable
of order m for any m thanks to Lemma 22.10.4. Thus one can conclude the following
corollary.

Corollary 22.11.1 In the implicit and inverse function theorems, you can replace C1 with
Ck in the statements of the theorems for any k ∈ N.

22.12 Lyapunov Schmidt Procedure
You have f : X ×Λ→ Y where here X ,Λ are Banach spaces. Suppose (0,0) ∈ X ×Λ and
f (0,0) = 0. Then if D1 f (0,0)−1 is in L (Y,X) , the implicit function theorem says that
there exists x(λ ) a Cp function such that locally f (x(λ ) ,λ ) = 0. So what if D1 f (0,0)
fails to be one to one? Sometimes this case is also considered. It may be that D1 f (0,0)



736 CHAPTER 22. THE DERIVATIVE

is one to one on some subspace and other nice things happen. In particular, suppose the
following.

Letting X2 ≡ kerD1 f (0,0) assume

X = X1⊕X2, dim(X2)< ∞

where X1 is a closed subspace. Thus D1 f (0,0) is one to one on X1. We let

Y1 = D1 f (0,0)(X1)

and suppose that Y = Y1⊕Y2 where dim(Y2)< ∞,Y1 also a closed subspace.

X1
D1 f (0,0)→ Y1 = D1 f (0,0)(X1) , Y1 closed

Y = Y1⊕Y2, dim(Y2)< ∞
< ∞

By the open mapping theorem, D1 f (0,0)−1 is also continuous.
Let Q be a continuous projection onto Y1 which is assumed to exist2 so that (I−Q) is a

projection onto Y2. Then the equation f (x(λ ) ,λ ) = 0 can be written as the pair

Q f (x,λ ) = 0
(I−Q) f (x,λ ) = 0

Consider the top. For x = x1 + x2 where xi ∈ Xi, this is

Q f (x1 + x2,λ ) = 0

Then if g(x1,x2,λ ) = Q f (x1 + x2,λ ) , one has g : X1×X2×Λ→ Y1

D1g(x1,x2,λ )h = D1Q f (x1 + x2,λ )h, h ∈ X1.

Thus D1g(0,0,0)−1 is continuous by the open mapping theorem (D1 f (0,0) is one to one
on X1), and by the implicit function theorem, there is a solution to

Q f (x1 + x2,λ ) = 0

for x1 = x1 (x2,λ ). (Note how it is important that X1 and Y1 be Banach spaces.) Then the
other equation yields

(I−Q) f (x1 (x2,λ )+ x2,λ ) = 0

and so for fixed λ , this is a finite set of equations of a variable in a finite dimensional space.
This depends on being able to write X =X1⊕X2 where X1 is closed, X2 = kerD1 f (0,0) ,

a similar situation for Y = Y1⊕Y2. So when does this happen? Are there conditions on
D1 f (0,0) which will cause it to occur?

There are such conditions. For example, D1 f (0,0) could be a Fredholm operator de-
fined in Definition 17.6.7. The following are some easy examples in which all that nonsense
about things being finite dimensional and part of a direct sum does not need to be consid-
ered.

2In Hilbert space, the existence of this projection map is obvious and it is assumed that it exists here.



22.12. LYAPUNOV SCHMIDT PROCEDURE 737

Example 22.12.1 Say X = R2 and Λ = R. Let f (x,y,λ ) = x+ xy+ y2 +λ . Then

D1 f (0,0,0) = (1,0)

this 1×2 matrix mapping R2 to R. Thus X2 = (0,α)T : α ∈ R and X1 = (α,0)T : α ∈ R.
In this case, Y1 = R and so Q = I. Thus the above reduces to the single equation

f ((α,0)+(0,β ) ,λ ) = 0

and so since D1 f (0,0,0) is one to one, x1 = (α,0) = x1 ((0,β ) ,λ ) . Of course this is
completely obvious because if you consider f in the natural way as a function of three
variables, then the implicit function theorem immediately gives x = x(y,λ ) which is essen-
tially the same result. We just write (α,0) in place of α . The first independent variable is
a function of the other two.

Example 22.12.2 Here is another easy example. f : R2×R→ R2

f(x,y,λ ) =
(

x+ xy+ y2 + sin(λ )
x+ y2− x2 +λ

)
Then

D1f(x,y,λ ) =
(

1+ y x+2y
1−2x 2y

)
So

D1f((0,0) ,0) =
(

1 0
1 0

)
Then

X2 = kerD1f((0,0) ,0) =
{(

0
β

)
: β ∈ R

}
and X1 =

{(
α

0

)
: α ∈ R

}
and clearly D1f((0,0) ,0) is indeed one to one on X1.

D1f(0,0)(X1) =

{(
y
y

)
: y ∈ R

}
= Y1

In this case, let

Q
(

α

β

)
=

(
α+β

2
α+β

2

)
=

(
1/2 1/2
1/2 1/2

)(
α

β

)

so (I−Q) =

(
1/2 −1/2
−1/2 1/2

)
. Thus the equations are

Qf(x,λ ) = 0
(I−Q) f(x,λ ) = 0
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This reduces to (
− 1

2 x2 + 1
2 xy+ x+ y2 + 1

2 λ + 1
2 sinλ

− 1
2 x2 + 1

2 xy+ x+ y2 + 1
2 λ + 1

2 sinλ

)
=

(
0
0

)
( 1

2 x2 + 1
2 yx− 1

2 λ + 1
2 sinλ

− 1
2 x2− 1

2 yx+ 1
2 λ − 1

2 sinλ

)
=

(
0
0

)
Note how in both the top and the bottom, there is only one equation and one can solve
for x in terms of y,λ near (0,0,0) which is what the above general argument shows. Of
course you can see this directly using the implicit function theorem. Then can you solve for
y = y(λ )? This would involve trying to solve for y as a function of λ in the following where
x(y,λ ) comes from the first equations.

1
2

x2 (y,λ )+
1
2

yx(y,λ )− 1
2

λ +
1
2

sinλ = 0

If you can do this, then you would have found (x,y) as a function of λ for small λ .

In this example, in the top equation, at (0,0,0) ,xy = 0. Also xλ =−1 so x(y,λ )≈−λ

other than higher order terms for small y,λ . Then in the bottom equation, for all variables
very small, you would have λ

2 +y(−λ )−λ + sin(λ ) = 0, y(λ ) =−1+ sin(λ )
λ

+λ at least
approximately. Thus it seems there is a nonzero solution to the equation f(x,y,λ )= 0 which
is valid for small λ ,x,y, this in addition to the zero solution. Note that for small nonzero
λ ,−1+ sin(λ )

λ
+λ ̸= 0. It equals approximately λ − λ

2

3! for small λ from the power series
for sin .

In the next example, the same procedure gives a solution to a problem f((x,y) ,λ ) = 0
such that for small λ , (x,y) is a function of λ which is nonzero and f((0,0) ,λ ) = 0. Thus
for small λ , there are two solutions to the nonlinear system of equations.

Example 22.12.3 Let

f((x,y) ,λ ) =
(

x+ xy+ y2 + xsin(λ )
x+ y2− x2 + xλ

)
In this case f((0,0) ,λ ) = 0 even though λ might not be 0. The Lyapunov Schmidt proce-
dure will be used to show that there are nonzero solutions x(λ ) ,y(λ ) such that

f ((x(λ ) ,y(λ )) ,λ ) = 0

At origin,

D1f((0,0) ,0) =
(

1 0
1 0

)
Thus X1 = span(e1) and X2 = span(e2). Then Y1 = span(e1 + e2) and Y2 = span(e1− e2) .
Also D1f((0,0) ,0) is one to one on X1 and its range is Y1. Then let

Q
(

α

β

)
=

(
α+β

2
α+β

2

)
=

(
1/2 1/2
1/2 1/2

)(
α

β

)
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(I−Q) =

(
1/2 −1/2
−1/2 1/2

)
Then Qf = 0 is yields the equation

x+
1
2

xλ +
1
2

xsinλ +
1
2

xy− 1
2

x2 + y2 = 0

Also (I−Q) f = 0 yields the equation

1
2

xsinλ − 1
2

xλ +
1
2

xy+
1
2

x2 = 0

Now consider xy and xλ at (0,0) from the first equation. Both of these are easily seen to
be 0. Now consider xyy. After some computations, this is seen to be xyy = −2. Similarly,
xyλ (0,0) = 0,xλλ (0,0) = 0 also. Thus up to terms of degree 3,

x(y,λ ) =−y2 =
1
2
(−2)y2

Place this in the bottom equation.

1
2

y2
λ − 1

2
y2 sinλ − 1

2
y3 +

1
2

y4 = 0

Now the idea is to find y = y(λ ), hopefully nonzero. Divide by y2 and multiply by 2.

y2− y+λ − sinλ = 0

Then for small λ this is approximately equal to

y2− y+
λ

3

6
= 0

Then a solution for y for small λ is

y =
1+
√

1− 2
3 λ

3

2

Of course there is another solution as well, when you replace the + with a minus sign. This
is the one we want because when λ = 0 it reduces to y = 0. This shows that there exist
solutions to the equations f((x,y) ,λ ) = 0 which for small λ are approximately

(x(λ ) ,y(λ )) =

−y2,
1−
√

1− 2
3 λ

3

2


In terms of λ very small,

(x(λ ) ,y(λ )) =

1
6

λ
3 +

1
6

√
3
√

3−2λ
3− 1

2
,

1−
√

1− 2
3 λ

3

2
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Using a power series in λ to approximate these functions, this reduces to

(x(λ ) ,y(λ )) =
(
− 1

36
λ

6,
1
6

λ
3 +

1
36

λ
6 +

1
108

λ
9
)

where higher order terms are neglected. Thus there exist other solutions than the zero
solution even though λ may be nonzero. Note that in this example, f((0,0) ,λ ) = 0.

22.13 Analytic Functions
In calculus, there was a difference between functions of a real variable and functions of a
complex variable. In the latter case the existence of a single derivative implied the existence
of all derivatives and in fact the Taylor series converged to the function. It is reasonable
to ask if a similar phenomenon occurs in the case of complex Banach spaces versus real
Banach spaces. This section presents a quick introduction to this topic based on the as-
sumption that the reader has had some exposure to complex analysis. Some of the details
involving questions of convergence and term by term differentiation are left to the reader.
Also if h maps an open subset of C to a complex Banach space X , and has a first derivative,
then the usual Cauchy integral formula,

h(z) =
1

2πi

∫
C

h(w)
w− z

dw,

holds if C is a circle contained, together with its interior, in the open set on which h has
a derivative. The integral can be defined as the ordinary Riemann integral using Riemann
sums or it can be defined in terms of a Bochner integral. These details are routine and are
left to the reader. There are several equivalent definitions of an analytic function defined
on a complex Banach space. The following is the one we will use since it resembles the
familiar definition encountered in undergraduate complex variable courses.

Definition 22.13.1 Let X and Y be complex Banach spaces and let U ⊆ X be an open set.
We say f : U → Y is analytic and bounded on U if

z→ f (x+ zh) is analytic for x ∈U,h ∈ X and |z| small enough

exists for all x ∈U and also || f (x)|| ≤M < ∞ for all x ∈U. Here z ∈ C and x,h ∈ X.

Let h ∈ X l and consider all z ∈ Cl with ∥z∥Cl ≡ max(|zm| ,m = 1, · · · , l) sufficiently
small. Let C1 be a sufficiently small circle centered at 0. Then consider

zm→ f

(
x+

l

∑
m=1

zmhm

)

which is analytic on and inside C1. Thus using the Cauchy integral formula,

f

(
x+ z1h1 +

l

∑
m=2

zmhm

)
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=
1

2πi

∫
C1

f
(
x+w1h1 +∑

l
m=2 zmhm

)
(w1− z1)

dw1

=

(
1

2πi

)2 ∫
C1

1
w1− z1

·

∫
C1

f
(
x+w1h1 +w2h2 +∑

l
m=3 zmhm

)
(w2− z2)

dw2dw1 =(
1

2πi

)l ∫
C1

· · ·
∫

C1

f (x+w1h1 +w2h2 + · · ·+wlhl)

∏
l
m=1 (wm− zm)

dwl · · ·dw1.

Consider the case when l = 2.(
1

2πi

)2 ∫
C1

∫
C1

f (x+w1h1 +w2h2)

(w1− z1)(w2− z2)
dw2dw1 =

(
1

2πi

)2 ∫
C1

∫
C1

f (x+w1h1 +w2h2) ·

∞

∑
k2=0

zk2
2

wk2+1
2

∞

∑
k1=0

zk1
1

wk1+1
1

dw2dw1 =

(
1

2πi

)2 ∞

∑
k2=0

∞

∑
k1=0

(∫
C1

∫
C1

f (x+w1h1 +w2h2)

wk2+1
2 wk1+1

1

dw2dw1

)
zk2

2 zk1
1 .

Similarly, for arbitrary l, and letting C be any circle centered at 0 with radius smaller than
δ

l ,

f

(
x+

l

∑
m=1

zmhm

)
=

∞

∑
kl=0
· · ·

∞

∑
k1=0

ak1···kl (x,hl , · · · ,h1)zk1
1 · · ·z

kk
l (22.13.35)

where
ak1···kl (x,hl , · · · ,h1)

=

(
1

2πi

)l ∫
C
· · ·
∫

C

f
(
x+∑

l
m=1 wmhm

)
∏

l
m=1 wkm+1

m
dw1 · · ·dwl . (22.13.36)

Lemma 22.13.2 Let l ≥ 1 and let tm ∈ C. Then if h ∈ X l , then whenever |z| is small
enough, 22.13.35 holds. Also the coefficients satisfy

ak1···kl (x, tlhl , · · · , t1h1) =

(
l

∏
m=1

tkm
m

)
ak1···kl (x,hl , · · · ,h1) (22.13.37)

and ∥∥ak1···kl (x,hl , · · · ,h1)
∥∥≤C

l

∏
m=1
∥hm∥ (22.13.38)

for some constant C.
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Proof: Let C be small enough that the circles tmC for all m = 1, · · · , l and C have radius
less than δ

l . First assume tm ̸= 0 for all m. Then

ak1···kl (x, tlhl , · · · , t1h1)

=

(
1

2πi

)l ∫
C
· · ·
∫

C

f
(
x+∑

l
m=1 wmtmhm

)
∏

l
m=1 (wmtm)

km+1 ·

l

∏
m=1

tkm+1
m dw1 · · ·dwl

Here we just multiplied and divided by ∏
l
m=1 tkm+1

m .

=

(
1

2πi

)l ∫
tlC
· · ·
∫

t1C

f
(
x+∑

l
m=1 umhm

)
∏

l
m=1 (um)

km+1 du1 · · ·dul

l

∏
m=1

tkm
m

= ak1···kl (x,hl , · · · ,h1)
l

∏
m=1

tkm
m .

Formally, wi ∈C and so tiwi ≡ ui ∈ tiC. Then tidwi = dui and so dwi = (1/ti)dui. This is
why ∏

l
m=1 tkm+1

m gets changed to ∏
l
m=1 tkm

m .
If tm = 0 for any m, the result of both sides in the above equals zero due to the fact that∫

C

1

wkm+1
m

dwm = 0

whenever km ≥ 1.
To verify 22.13.38, use 22.13.37 to conclude∥∥ak1···kl (x,hl · · ·h1)

∥∥≤∣∣∣∣∣∣∣∣ak1···kl

(
x,

hl

∥hl∥
· · · h1

∥h1∥

)∣∣∣∣∣∣∣∣ l

∏
m=1
||hm||km

and
∣∣∣∣∣∣ak1···kl

(
x, hl
∥hl∥
· · · h1
∥h1∥

)∣∣∣∣∣∣ is bounded by

M

(2π)l

∫
C
· · ·
∫

C

1

∏
l
m=1 |wm|km+1 d |w1| · · ·d |wl | ≡C. ■

Lemma 22.13.3 Suppose

g(x+ zh) = g(x)+
∞

∑
m=1

bm (x,h)zm

for all z small enough. Then

b1 (x,h1 +h2) = b1 (x,h1)+b1 (x,h2) .



22.13. ANALYTIC FUNCTIONS 743

Proof: Recall that

f

(
x+

l

∑
m=1

zmhm

)
=

∞

∑
kl=0
· · ·

∞

∑
k1=0

ak1···kl (x,hl , · · · ,h1)zk1
1 · · ·z

kk
l

and so one can write the following where gnm is defined in the following expression.

g(x+ z1h1 + z2h2) =
∞

∑
m=0

∞

∑
n=0

gmn (x,h1,h2)zm
1 zn

2.

Thus,

g(x+ z1h1) =
∞

∑
m=0

gm0 (x,h1,h2)zm
1 = g(x)+

∞

∑
m=1

bm (x,h)zm
1 ,

g(x+ z2h2) =
∞

∑
n=0

g0n (x,h1,h2)zn
2 = g(x)+

∞

∑
n=1

bn (x,h)zn
2

which implies

gm0 (x,h1,h2) = bm (x,h1) , g0n (x,h1,h2) = bn (x,h2) .

Now let z1 = z2 = z. Then

g(x+ z(h1 +h2)) = g(x)+
∞

∑
n=0

bn (x,h1 +h2)zn

= g(x)+ z(g10 (x,h1,h2)+g01 (x,h1,h2))+higher order terms in z.

Therefore,

b1 (x,h1 +h2) = g10 (x,h1,h2)+g01 (x,h1h2)

= b1 (x,h1)+b1 (x,h2) ■

Lemma 22.13.4 Suppose a(x,hl , · · · ,h1) is multilinear, (hi→ a(x,hl , · · · ,h1) is linear),

||a(x,hl , · · · ,h1)|| ≤C
l

∏
m=1
||hm||,

and
Dl−1 f (x+hl)(hl−1) · · ·(h1)−Dl−1 f (x)(hl−1) · · ·(h1)

−a(x,hl , · · · ,h1) = o(||hl ||).

Then Dl f (x) exists and

Dl f (x)(hl)(hl−1) · · ·(h1) = a(x,hl , · · · ,h1).
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Proof: If l = 1, the conclusion is obvious and is nothing more than the definition of
the derivative.

f (x+h)− f (x)−a(x,h) = o(∥h∥)

and so from the definition of the derivative, a(x,h) = D f (x)h.
Next let n = 2. By assumption,

D f (x+h)(h1)−D f (x)(h1)−a(x,h,h1) = o(||h||).

Let L(x) be defined by
L(x)(h)(h1)≡ a(x,h,h1).

Then L(x) ∈L (U,L (X ,Y )) because

||L(x)|| ≡ sup
||h||≤1

||L(x)(h)|| ≡ sup
||h||≤1

sup
||h1||≤1

||L(x)(h)(h1)|| ≤C.

Also
||D f (x+h)−D f (x)−L(x)h||

≡ sup
||h1||≤1

||D f (x+h)(h1)−D f (x)(h1)−L(x)(h)(h1)||

= sup
||h1||≤1

||D f (x+h)(h1)−D f (x)(h1)−a(x,h,h1)||= o(||h||)

and so L(x) = D2 f (x). Continuing in this way, we verify the conclusion of the lemma. ■

Lemma 22.13.5 If f is analytic on U, then f ∈C∞ (U). Also

Proof: By Lemma 22.13.3 applied to g = f and Lemma 22.13.2, D f (x) exists and

D f (x)(h) = a1 (x,h).

These lemmas implied that h→ a1 (x,h) was linear. Suppose Dl−1 f (x) exists for l ≥ 2.

f

(
x+

l

∑
m=1

zmhm

)
=

∞

∑
nl=0
· · ·

∞

∑
n1=0

an1···nl (x,hl , · · · ,h1)zn1
1 · · ·z

nl
l .

Differentiate with respect to z1, · · · ,zl−1 to obtain

Dl−1 f

(
x+

l−1

∑
m=1

zmhm + zlhl

)
(hl−1) · · ·(h1) =

∞

∑
nl=0

∞

∑
nl−1=1

· · ·
∞

∑
n1=1

anlnl−1···n1 (x,h1 · · ·hl)

(
l−1

∏
m=1

nm

)
zn1−1

1 · · ·znl−1−1
l−1 znl

l .

Take zi = 0 for i = 1, · · · , l−1. Then

Dl−1 f (x+ zlhl)(hl−1) · · ·(h1) =
∞

∑
nl=0

anl1···1 (x,hl , · · · ,h1)znl
l . (22.13.39)
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Now we apply Lemma 22.13.3 to the function

zl → Dl−1 f (x+ zlhl)(hl−1) · · ·(h1)

and conclude
hl → a1···1 (x,hl , · · · ,h1)

is linear. This involved taking nl = 1 to get a1···1 (x,hl , · · · ,h1). Thus from 22.13.39,

Dl−1 f (x+ zlhl)(hl−1) · · ·(h1)−Dl−1 f (x)(hl−1) · · ·(h1)

= a1···1 (x,hl , · · · ,h1)zl +o(zlhl). (22.13.40)

From this equation, it follows that

a1···1
(

x,hl · · ·hi + ĥi · · ·h1

)
zl−a1···1 (x,hl · · ·hi · · ·h1)zl

−a1···1
(

x,hl · · · ĥi · · ·h1

)
zl = o(zlhl)

because for each zl , the left side of 22.13.40 is linear in hi for each i≤ l−1. Dividing both
sides of the above by zl and then letting zl → 0, we see that anl1···1 is linear in each of the
hi. Denoting zlhl by hl ,

Dl−1 f (x+hl)(hl−1) · · ·(h1)−Dl−1 f (x)(hl−1) · · ·(h1)

= a1···1 (x,hl , · · · ,h1)+o(∥hl∥)
and so by Lemma 22.13.4, Dl f (x) exists and

Dl f (x)(hl) · · ·(h1) = a1···1 (x,hl , · · · ,h1). ■

With these lemmas, the main result can be established. This is the generalization of the
well known result for analytic functions.

Theorem 22.13.6 Let X and Y be two complex Banach spaces and let U be an open set in
X. Then f : U → Y is analytic on U if and only if D f (x) exists for each x ∈U and in this
case, f ∈C∞ (U) , and if h ∈ X , then whenever z is small enough,

f (x+ zh) = f (x)+
∞

∑
n=1

Dn f (x)hnzn

n!
.

Proof: We know

f (x+ zh) = f (x)+
∞

∑
n=1

an (x,h)zn.

Differentiating, we obtain

Dk f (x+ zh)hk = k!ak (x,h)+
∞

∑
n=k+1

n(n−1) · · ·(n− k+1)zn−k.

Letting z = 0 this shows
Dk f (x)hk = k!ak (x,h)

and this proves half the theorem.
Conversely, if D f (x) exists on U, it is clear that f is analytic on some ball, B(x,r) ⊆

U,z→ f (y+ zh) is analytic for y ∈ B(x,r) and small enough z. Therefore the formula
involving the series follows. ■
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22.14 Ordinary Differential Equations
In this section we give an application to ordinary differential equations. To begin with, here
are two Banach spaces which will be of use. Let Z be a complex Banach space and let X
be the space of functions mapping B(0,1)≡D1 to Z such that the functions are continuous
on D1 and analytic on B1 ≡ B(0,1), the derivative is the restriction to B1 of a continuous
function defined on D1, and the function equals 0 at 0.

X ≡ {φ ∈C (D1,X) : φ (0) = 0}

The norm on X will be
||φ ||X ≡ ||φ ||∞ +

∣∣∣∣φ ′∣∣∣∣
∞

where
||φ ||

∞
≡ sup{||φ (t)||Z : t ∈ B1}.

(Note that for a function continuous on D1 it does not matter in the above definition of
||·||

∞
whether we use B1 or D1 in the definition.) We define Y to be the space of continuous

functions which are defined on D1 having values in Z which are also analytic on B1. The
norm on Y is defined as

||φ ||
∞
≡ ||φ ||Y .

Note that B1 is in C.

Lemma 22.14.1 The spaces X and Y with the given norms are Banach spaces and if L :
X→Y is defined as Lφ (t) = φ

′ (t) for all t ∈ B1, then L is one to one, onto and continuous.

Proof: It is clear that X and Y are both normed linear spaces. It remains to show they
are Banach spaces. Suppose {φ n} is a Cauchy sequence in X . Then φ n→ φ uniformly and
φ
′
n→ ψ uniformly where ψ and φ are continuous on D1. We need to verify that ψ = φ

′ on
B1. Letting C1 be the unit circle, the Cauchy integral formula implies for t ∈ B1,

φ (t) = lim
n→∞

φ n (t) = lim
n→∞

1
2πi

∫
C1

φ n (w)
w− t

dw =
1

2πi

∫
C1

φ (w)
w− t

dw

which shows φ
′ (t) exists on B1. Also for t ∈ B1,

ψ (t) = lim
n→∞

φ
′
n (t) = lim

n→∞

1
2πi

∫
C1

φ n (w)

(w− t)2 dw

=
1

2πi

∫
C1

φ (w)

(w− t)2 dw = φ
′ (t).

This shows X is a Banach space. A similar argument using the Cauchy integral theorem
shows Y is a Banach space also. It is obvious that L is continuous. It remains to show L is
one to one and onto.

Let φ ∈ Y . We need to show φ = Lψ for some ψ ∈ X . Let

ψ (t)≡
∫

Γ

φ (w)dw
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where Γ is any piecewise smooth curve from 0 to t. By the Cauchy integral theorem, this
definition is well defined and it is clear that ψ (0) = 0, ψ ′ (t) = φ (t) , and ψ is continuous
on D1. This shows L is onto.

It only remains to show L is one to one. Suppose Lφ = 0. Since φ (0) = 0,

φ (t) =
∫ 1

0
φ
′ (ts) tds = 0

if t ̸= 0. But φ (0) is given to equal zero. Thus L is one to one as claimed. ■

Theorem 22.14.2 Let Λ and Z be complex Banach spaces and let W be an open subset of
C×Z×Λ containing (0,y0,λ ). Also let f : W → Z be analytic. Then there exists a unique
y = y(y0,λ ) solving

y′ = f (t,y,λ ) ,y(0) = y0 (22.14.41)

valid for t ∈ Dα ≡ B(0, |α|) where α = α (y0,λ ). Furthermore, the map

(t,y0,λ )→ y(y0,λ )(t)

is analytic.

Proof: Let αs = t and define φ (s) ≡ y(t)− y0. Then y is a solution to 22.14.41 for
t ∈ Dα if and only if φ is a solution for s ∈ D1 ≡ B(0,1) to the equations

φ
′ (s) = α f (αs,φ (s)+ y0,λ ) , φ (0) = 0.

Let X , Y, and L be given above and define

W̃ ≡ {(α, ŷ0,µ,φ) ∈ C×Z×Λ×X :

for s ∈ D1,(sα, ŷ0 +φ (s) ,µ) ∈W}.

For a given (α, ŷ0,µ,φ) ∈ W̃ ,

{(sα, ŷ0 +φ (s) ,µ) : s ∈ D1}

is a compact subset of W . This is because you have s→ (α, ŷ0 +φ (s) ,µ) is the continuous
image of a compact set which is assumed to be in W . Consequently, the distance from this
set to WC is positive and so if (β ,y0,λ ,ψ) is sufficiently close to (α, ŷ0,µ,φ) in C×Z×
Λ×X it follows (β ,y0,λ ,ψ) is also in W̃ . This shows W̃ is an open subset ofC×Z×Λ×X .

Now define F : W̃ → Y (Recall that Y was a space of functions.) by

F (α, ŷ0,µ,φ)(s)≡ Lφ (s)−α f (αs,φ (s)+ ŷ0,µ).

Then
F (0,y0,λ ,0) = Lφ = 0,

and F is analytic in W̃ . Also

D4F (0,y0,λ ,0)ψ = Lψ = ψ
′
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and so D4F (0,y0,λ ,0) ∈L (X ,Y ) , is one to one, onto and continuous by Lemma 22.14.1.
By the open mapping theorem, its inverse is also continuous. Therefore, the conditions

of the implicit function theorem are satisfied and so there exists r > 0 such that if

|α|+∥µ−λ∥+∥ŷ0− y0∥< r,

then there exists a unique φ ∈ X such that

F (α, ŷ0,µ,φ) = 0,

and φ is an analytic function of (α, ŷ0,µ). Fixing 0 < α < r, it follows

(ŷ0,µ)→ y(ŷ0,µ)

is analytic on an open subset of Z×Λ. Also t→ y(ŷ0,µ)(t) is an analytic function because
of the definition of y in terms of φ ,φ (s)≡ y(t)− y0. It follows that for t ∈ B(0, |α|) ,

(ŷ0,µ)→ y(ŷ0,µ)(t) and t→ y(ŷ0,µ)(t)

are both analytic. ■

22.15 Exercises
1. Suppose L ∈ L (X ,Y ) where X and Y are two finite dimensional normed vector

spaces and suppose L is one to one. Show there exists r > 0 such that for all x ∈ X ,

∥Lx∥ ≥ r∥x∥ .

Hint: Show that ∥x∥ ≡ ∥Lx∥ is a norm. Now suppose L∈L (X ,Y ) is one to one and
onto for X ,Y Banach spaces. Explain why the same result holds. Hint: Recall open
mapping theorem.

2. Suppose B is an open ball in X , a Banach space, and f : B→ Y is differentiable.
Suppose also there exists L ∈L (X ,Y ) such that

||D f (x)−L||< k

for all x ∈ B. Show that if x1,x2 ∈ B,

|| f (x1)− f (x2)−L(x1− x2)|| ≤ k ||x1− x2|| .

Hint: Consider T x = f (x)−Lx and argue ||DT (x)||< k.

3. ↑ Let U be an open subset of X , f : U→Y where X ,Y are finite dimensional normed
linear spaces and suppose f ∈C1 (U) and D f (x0) is one to one. Then show f is one
to one near x0. Hint: Show using the assumption that f is C1 that there exists δ > 0
such that if

x1,x2 ∈ B(x0,δ ) ,

then
| f (x1)− f (x2)−D f (x0)(x1− x2)| ≤

r
2
|x1− x2| (22.15.42)

then use Problem 1. In case X ,Y are Banach spaces, assume D f (x0) is one to one
and onto.
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4. Suppose U ⊆ X is an open subset of X a Banach space and that f : U → Y is
differentiable at x0 ∈ U such that D f (x0) is one to one and onto from X to Y .
(D f (x0)

−1 ∈L (Y,X)) Then show that f (x) ̸= f (x0) for all x sufficiently near but
not equal to x0. In this case, you only know the derivative exists at x0.

5. Suppose M ∈L (X ,Y ) where X and Y are finite dimensional linear spaces and sup-
pose M is onto. Show there exists L ∈L (Y,X) such that

LMx =Px

where P ∈L (X ,X), and P2 = P. Also show L is one to one and onto from X1 to Y.
Hint: Let {y1 · · ·yn} be a basis of Y and let Mxi = yi. Then define

Ly =
n

∑
i=1

α ixi where y =
n

∑
i=1

α iyi.

Show {x1, · · · ,xn} is a linearly independent set and show you can obtain

{x1, · · · ,xn, · · · ,xm}

a basis for X in which Mx j = 0 for j > n. Then let

Px≡
n

∑
i=1

α ixi

where

x =
m

∑
i=1

α ixi.

6. ↑ Let f : U ⊆ X → Y, f is C1, and Df(x) is onto for each x ∈ U . Then show f
maps open subsets of U onto open sets in Y . Hint: Let P = LDf(x) as in Problem
5. Argue L maps open sets from Y to open sets of X1 ≡ PX and L−1 maps open
sets from X1 to open sets of Y. Then Lf(x+v) = Lf(x)+LDf(x)v+o(v) . Now for
z ∈ X1, let h(z) = Lf(x+ z)−Lf(x) . Then h is C1 on some small open subset of X1
containing 0 and Dh(0) = LDf(x) which is seen to be one to one and onto and in
L (X1,X1) . Therefore, if r is small enough, h(B(0,r)) equals an open set in X1, V.
This is by the inverse function theorem. Hence L(f(x+B(0,r))− f(x)) =V and so
f(x+B(0,r))− f(x) = L−1 (V ) , an open set in Y.

7. Suppose U ⊆ R2 is an open set and f : U → R3 is C1. Suppose Df(s0, t0) has rank
two and

f(s0, t0) =

 x0
y0
z0

 .

Show that for (s, t) near (s0, t0), the points f(s, t) may be realized in one of the fol-
lowing forms.

{(x,y,φ (x,y)) : (x,y) near (x0,y0)},
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{(φ (y,z) ,y,z) : (y,z) near (y0,z0)},
or

{(x,φ (x,z) ,z,) : (x,z) near (x0,z0)}.
This shows that parametrically defined surfaces can be obtained locally in a particu-
larly simple form.

8. Let f : U → Y , D f (x) exists for all x ∈ U , B(x0,δ ) ⊆ U , and there exists L ∈
L (X ,Y ), such that L−1 ∈L (Y,X), and for all x ∈ B(x0,δ )

||D f (x)−L||< r
||L−1|| , r < 1.

Show that there exists ε > 0 and an open subset of B(x0,δ ) ,V , such that f : V →
B( f (x0) ,ε) is one to one and onto. Also D f−1 (y) exists for each y ∈ B( f (x0) ,ε)
and is given by the formula

D f−1 (y) =
[
D f
(

f−1 (y)
)]−1

.

Hint: Let
Ty (x)≡ T (x,y)≡ x−L−1 ( f (x)− y)

for |y− f (x0)|< (1−r)δ
2||L−1|| , consider {T n

y (x0)}. This is a version of the inverse function

theorem for f only differentiable, not C1.

9. Denote by C ([0,T ] ,X) the space of functions which are continuous having values in
X and define a norm on this linear space as follows.

|| f ||
λ
≡max

{
| f (t)|eλ t : t ∈ [0,T ]

}
.

Show for each λ ∈R, this is a norm and that C ([0,T ] ;X) is a complete normed linear
space with this norm.

10. ↑Let f : [0,T ]×X → X be continuous and suppose f satisfies a Lipschitz condition,

| f (t,x)− f (t,y)| ≤ K |x−y|

and let x0 ∈ X . Show there exists a unique solution to the Cauchy problem,

x′ = f (t,x) , x(0) = x0,

for t ∈ [0,T ]. Hint: Consider the map

G : C ([0,T ] ;X)→C ([0,T ] ;X)

defined by

Gx(t)≡ x0 +
∫ t

0
f (s,x(s))ds,

where the integral is defined componentwise. Show G is a contraction map for ||·||
λ

given in Problem 9 for a suitable choice of λ and that therefore, it has a unique fixed
point in C ([0,T ] ;X). Next argue, using the fundamental theorem of calculus, that
this fixed point is the unique solution to the Cauchy problem.
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11. ↑Use Theorem 7.11.5 to give another proof of the above theorem. Hint: Use the
same mapping and show that a large power is a contraction map.

12. Suppose you know that u(t)≤ a+
∫ t

0 k (s)u(s)ds where k (s)≥ 0 and k ∈ L1 ([0,T ]) .
Show that then u(t) ≤ aexp

(∫ t
0 k (s)ds

)
. This is a version of Gronwall’s inequal-

ity. Hint: Let W (t) =
∫ t

0 k (s)u(s)ds. Then explain why W ′ (t)− k (t)W (t)≤ ak (t).
Now use the usual technique of an integrating factor you saw in beginning differen-
tial equations.

13. ↑Use the above Gronwall’s inequality to establish a result of continuous dependence
on the initial condition and f in the ordinary differential equation of Problem 10.

14. The existence of partial derivatives does not imply continuity as was shown in an
example. However, much more can be said than this. Consider

f (x,y) =

 (x2−y4)
2

(x2+y4)
2 if (x,y) ̸= (0,0) ,

1 if (x,y) = (0,0) .

Show the directional derivative of f at (0,0) exists and equals 0 for every direction.
The directional derivative in the direction (v1,v2) is defined as

lim
t→0

f (x+ tv1,y+ tv2)− f (x,y)
t

.

Now consider the curve x2 = y4 and the curve y = 0 to verify the function fails to be
continuous at (0,0).

15. Let

f (x,y) =

{
x2y4

x2+y8 if (x,y) ̸= (0,0) ,
0 if (x,y) = (0,0) .

Show that this function is not continuous at (0,0) but that it has all directional deriva-
tives at (0,0) and they all equal 0.

16. Let Xi be a normed linear space having norm ||·||i. Then we can make ∏
n
i=1 Xi into a

normed linear space by defining a norm on x ∈∏
n
i=1 Xi by

||x|| ≡max{||xi||i : i = 1, · · · ,n} .

Show this is a norm on ∏
n
i=1 Xi as claimed.

17. Suppose f : U ⊆ X×Y → Z and D2 f (x0,y0)
−1 ∈L (X ,Y ) exists and f is C1 so the

conditions of the implicit function theorem are satisfied. Also suppose that all these
are complex Banach spaces. Show that then the implicitly defined function y = y(x)
is analytic. Thus it has infinitely many derivatives and can be given as a power series
as described above.
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Chapter 23

Degree Theory
This chapter is on the Brouwer degree, a very useful concept with numerous and important
applications. The degree can be used to prove some difficult theorems in topology such
as the Brouwer fixed point theorem, the Jordan separation theorem, and the invariance of
domain theorem. A couple of these big theorems have been presented earlier, but when you
have degree theory, they get much easier. Degree theory is also used in bifurcation theory
and many other areas in which it is an essential tool. The degree will be developed for
Rp first. When this is understood, it is not too difficult to extend to versions of the degree
which hold in Banach space. There is more on degree theory in the book by Deimling [38]
and much of the presentation here follows this reference. Another more recent book which
is really good is [43]. This is a whole book on degree theory.

The original reference for the approach given here, based on analysis, is [62] and dates
from 1959. The degree was developed earlier by Brouwer and others using different meth-
ods.

To give you an idea what the degree is about, consider a real valued C1 function defined
on an interval I, and let y ∈ f (I) be such that f ′ (x) ̸= 0 for all x ∈ f−1 (y). In this case the
degree is the sum of the signs of f ′ (x) for x ∈ f−1 (y), written as d ( f , I,y).

y

In the above picture, d ( f , I,y) is 0 because there are two places where the sign is 1 and
two where it is −1.

The amazing thing about this is the number you obtain in this simple manner is a spe-
cialization of something which is defined for continuous functions and which has nothing
to do with differentiability. An outline of the presentation is as follows. First define the
degree for smooth functions at regular values and then extend to arbitrary values and finally
to continuous functions. The reason this is possible is an integral expression for the degree
which is insensitive to homotopy. It is very similar to the winding number of complex anal-
ysis. The difference between the two is that with the degree, the integral which ties it all
together is taken over the open set while the winding number is taken over the boundary,
although proofs of in the case of the winding number sometimes involve Green’s theorem
which involves an integral over the open set.

In this chapter Ω will refer to a bounded open set.

Definition 23.0.1 For Ω a bounded open set, denote by C
(
Ω
)

the set of functions which

753
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are restrictions of functions in Cc (Rp) , equivalently C (Rp) to Ω and by Cm
(
Ω
)
,m ≤ ∞

the space of restrictions of functions in Cm
c (Rp) , equivalently Cm (Rp) to Ω. If f ∈C

(
Ω
)

the symbol f will also be used to denote a function defined on Rp equalling f on Ω when
convenient. The subscript c indicates that the functions have compact support. The norm
in C

(
Ω
)

is defined as follows.

∥ f∥
∞,Ω = ∥ f∥

∞
≡ sup

{
| f (x)| : x ∈Ω

}
.

If the functions take values in Rp write Cm
(
Ω;Rp

)
or C

(
Ω;Rp

)
for these functions if there

is no differentiability assumed. The norm on C
(
Ω;Rp

)
is defined in the same way as above,

∥f∥
∞,Ω = ∥f∥

∞
≡ sup

{
|f(x)| : x ∈Ω

}
.

Of course if m = ∞, the notation means that there are infinitely many derivatives. Also,
C (Ω;Rp) consists of functions which are continuous on Ω that have values in Rp and
Cm (Ω;Rp) denotes the functions which have m continuous derivatives defined on Ω. Also
let P consist of functions f(x) such that fk (x) is a polynomial, meaning an element of the
algebra of functions generated by

{
1,x1, · · · ,xp

}
. Thus a typical polynomial is of the form

∑i1···ip a(i1 · · · ip)xi1 · · ·xip where the i j are nonnegative integers and a(i1 · · · ip) is a real
number.

Some of the theorems are simpler if you base them on the Weierstrass approximation
theorem.

Note that, by applying the Tietze extension theorem to the components of the function,
one can always extend a function continuous on Ω to all of Rp so there is no loss of gener-
ality in simply regarding functions continuous on Ω as restrictions of functions continuous
on Rp. Next is the idea of a regular value.

Definition 23.0.2 For W an open set in Rp and g ∈C1 (W ;Rp) y is called a regular value
of g if whenever x ∈ g−1 (y), det(Dg(x)) ̸= 0. Note that if g−1 (y) = /0, it follows that y is
a regular value from this definition. That is, y is a regular value if and only if

y /∈ g({x ∈W : detDg(x) = 0})

Denote by Sg the set of singular values of g, those y such that det(Dg(x)) = 0 for some
x ∈ g−1 (y).

Also, ∂Ω will often be referred to. It is those points with the property that every open
set (or open ball) containing the point contains points not in Ω and points in Ω. Then the
following simple lemma will be used frequently.

Lemma 23.0.3 Define ∂U to be those points x with the property that for every r > 0,
B(x,r) contains points of U and points of UC. Then for U an open set,

∂U =U \U (23.0.1)

Let C be a closed subset of Rp and let K denote the set of components of Rp \C. Then if
K is one of these components, it is open and

∂K ⊆C
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Proof: First consider claim 23.0.1. Let x ∈U \U. If B(x,r) contains no points of U,
then x /∈U . If B(x,r) contains no points of UC, then x ∈U and so x /∈U \U . Therefore,
U \U ⊆ ∂U . Now let x ∈ ∂U . If x ∈U, then since U is open there is a ball containing
x which is contained in U contrary to x ∈ ∂U . Therefore, x /∈U. If x is not a limit point
of U, then some ball containing x contains no points of U contrary to x ∈ ∂U . Therefore,
x ∈U \U which shows the two sets are equal.

Why is K open for K a component of Rp \C? This follows from Theorem 7.13.10
and results from open balls being connected. Thus if k ∈ K,letting B(k,r)⊆CC, it follows
K ∪B(k,r) is connected and contained in CC and therefore is contained in K because K is
maximal with respect to being connected and contained in CC.

Now for K a component of Rp \C, why is ∂K ⊆C? Let x ∈ ∂K. If x /∈C, then x ∈ K1,
some component of Rp \C. If K1 ̸= K then x cannot be a limit point of K and so it cannot
be in ∂K. Therefore, K = K1 but this also is a contradiction because if x ∈ ∂K then x /∈ K
thanks to 23.0.1. ■

Note that for an open set U ⊆ Rp, and h :U → Rp, dist(h(∂U) ,y) ≥ dist
(
h
(
U
)
,y
)

because U ⊇ ∂U .
The following lemma will be nice to keep in mind.

Lemma 23.0.4 f ∈ C
(
Ω× [a,b] ;Rp

)
if and only if t → f(·, t) is in C

(
[a,b] ;C

(
Ω;Rp

))
.

Also
∥f∥

∞,Ω×[a,b] = max
t∈[a,b]

(
∥f(·,t)∥

∞,Ω

)
Proof:⇒By uniform continuity, if ε > 0 there is δ > 0 such that if |t− s|< δ , then for

all x ∈Ω, ∥f(x,t)− f(x,s)∥< ε

2 . It follows that ∥f(·, t)− f(·,s)∥
∞
≤ ε

2 < ε .
⇐Say (xn, tn)→ (x,t) . Does it follow that f(xn, tn)→ f(x,t)?

∥f(xn, tn)− f(x,t)∥ ≤ ∥f(xn, tn)− f(xn, t)∥+∥f(xn, t)− f(x, t)∥
≤ ∥f(·, tn)− f(·, t)∥

∞
+∥f(xn, t)− f(x, t)∥

both terms converge to 0, the first because f is continuous into C
(
Ω;Rp

)
and the second

because x→ f(x, t) is continuous.
The claim about the norms is next. Let (x, t) be such that ∥f∥

∞,Ω×[a,b] < ∥f(x, t)∥+ ε .
Then

∥f∥
∞,Ω×[a,b] < ∥f(x, t)∥+ ε ≤ max

t∈[a,b]

(
∥f(·, t)∥

∞,Ω

)
+ ε

and so ∥f∥
∞,Ω×[a,b] ≤ maxt∈[a,b] max

(
∥f(·,t)∥

∞,Ω

)
because ε is arbitrary. However, the

same argument works in the other direction. There exists t such that

∥f(·, t)∥
∞,Ω = max

t∈[a,b]

(
∥f(·, t)∥

∞,Ω

)
by compactness of the interval. Then by compactness of Ω, there is x such that ∥f(·,t)∥

∞,Ω =

∥f(x, t)∥ ≤ ∥f∥
∞,Ω×[a,b] and so the two norms are the same. ■
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23.1 Sard’s Lemma and Approximation
First are easy assertions about approximation of continuous functions with smooth ones.

The following is the Weierstrass approximation theorem. It is Corollary 9.1.5 presented
earlier.

Corollary 23.1.1 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists a
sequence of polynomials which converge uniformly to f on [a,b]. The polynomials are of
the form

m

∑
k=0

(
m
k

)(
l−1 (t)

)k (
1− l−1 (t)

)m−k
f
(

l
(

k
m

))
(23.1.2)

where l is a linear one to one and onto map from [0,1] to [a,b].

Applying the Weierstrass approximation theorem, Theorem 9.2.9 or Theorem 9.2.5 to
the components of a vector valued function yields the following corollary

Theorem 23.1.2 If f ∈C
(
Ω;Rp

)
for Ω a bounded subset of Rp, then for all ε > 0, there

exists g ∈C∞
(
Ω;Rp

)
such that

∥g− f∥
∞,Ω < ε.

Recall Sard’s lemma, shown earlier. It is Lemma 13.6.5. I am stating it here for conve-
nience.

Lemma 23.1.3 (Sard) Let U be an open set in Rp and let h : U→Rp be differentiable. Let

S≡ {x ∈U : detDh(x) = 0} .

Then mp (h(S)) = 0.

First note that if y /∈ g(Ω) , then we are calling it a regular value because whenever
x ∈ g−1 (y) the desired conclusion follows vacuously. Thus, for g ∈ C∞

(
Ω,Rp

)
,y is a

regular value if and only if y /∈ g
({

x ∈Ω : detDg(x) = 0
})

.

Observe that any uncountable set in Rp has a limit point. To see this, tile Rp with
countably many congruent boxes. One of them has uncountably many points. Now sub-
divide this into 2p congruent boxes. One has uncountably many points. Continue sub-
dividing this way to obtain a limit point as the unique point in the intersection of a nested
sequence of compact sets whose diameters converge to 0.

Lemma 23.1.4 Let g ∈C∞ (Rp;Rp) and let {yi}∞

i=1 be points of Rp and let η > 0. Then
there exists e with ∥e∥< η and yi + e is a regular value for g.

Proof: Let S = {x ∈ Rp : detDg(x) = 0}. By Sard’s lemma, g(S) has measure zero.
Let N ≡ ∪∞

i=1 (g(S)−yi) . Thus N has measure 0. Pick e ∈ B(0,η) \N. Then for each
i,yi + e /∈ g(S) . ■



23.1. SARD’S LEMMA AND APPROXIMATION 757

Lemma 23.1.5 Let f ∈ C
(
Ω;Rp

)
and let {yi}∞

i=1 be points not in f(∂Ω) and let δ > 0.
Then there exists g ∈C∞

(
Ω;Rp

)
such that ∥g− f∥

∞,Ω < δ and yi is a regular value for g
for each i. That is, if g(x) = yi, then Dg(x)−1 exists. Also, if δ < dist(f(∂Ω) ,y) for some
y a regular value of g ∈C∞

(
Ω;Rp

)
, then g−1 (y) is a finite set of points in Ω. Also, if y is

a regular value of g ∈C∞ (Rp,Rp) , then g−1 (y) is countable.

Proof: Pick g̃ ∈ C∞
(
Ω;Rp

)
,∥g̃− f∥

∞,Ω < δ . g≡ g̃− e where e is from the above
Lemma 23.1.4 and η so small that ∥g− f∥

∞,Ω < δ . Then if g(x) = yi, you get g̃(x) = yi+e
a regular value of g̃ and so det(Dg(x)) = det(Dg̃(x)) ̸= 0 so this shows the first part.

It remains to verify the last claims. Since ∥g− f∥
Ω,∞ < δ , if x ∈ ∂Ω, then

∥g(x)−y∥ ≥ ∥f(x)−y∥−∥f(x)−g(x)∥ ≥ dist(f(∂Ω) ,y)−δ > δ −δ = 0

and so y /∈ g(∂Ω), so if g(x) = y, then x∈Ω. If there are infinitely many points in g−1 (y) ,
then there would be a subsequence converging to a point x ∈Ω. Thus g(x) = y so x /∈ ∂Ω.
However, this would violate the inverse function theorem because g would fail to be one
to one on an open ball containing x and contained in Ω. Therefore, there are only finitely
many points in g−1 (y) and at each point, the determinant of the derivative of g is nonzero.
For y a regular value, g−1 (y) is countable since otherwise, there would be a limit point
x ∈ g−1 (y) and g would fail to be one to one near x contradicting the inverse function
theorem. ■

Now with this, here is a definition of the degree.

Definition 23.1.6 Let Ω be a bounded open set in Rp and let f : Ω→ Rp be continuous.
Let y /∈ f(∂Ω) . Then the degree is defined as follows: Let g be infinitely differentiable,
∥f−g∥

∞,Ω < dist(f(∂Ω) ,y) , and y is a regular value of g.Then

d (f,Ω,y)≡∑
{

sgn(det(Dg(x))) : x ∈ g−1 (y)
}

From Lemma 23.1.5 the definition at least makes sense because the sum is finite and
such a g exists. The problem is whether the definition is well defined in the sense that we
get the same answer if a different g is used. Suppose it is shown that the definition is well
defined. If y /∈ f(Ω) , then you could pick g such that ∥g− f∥

Ω
< dist

(
y, f
(
Ω
))

. However,
this requires that g

(
Ω
)

does not contain y because if x ∈Ω, then

∥g(x)−y∥ = ∥(y− f(x))− (g(x)− f(x))∥ ≥ ∥f(x)−y∥−∥g(x)− f(x)∥
> dist

(
y, f
(
Ω
))
−dist

(
y, f
(
Ω
))

= 0

Therefore, y is a regular value of g because every point in g−1 (y) is such that the deter-
minant of the derivative at this point is non zero since there are no such points. Thus if
f−1 (y) = /0,d (f,Ω,y) = 0.

If f(z) = y, then there is g having y a regular value and g(z) = y by the above lemma.

Lemma 23.1.7 Suppose g, ĝ both satisfy the above definition,

dist(f(∂Ω) ,y)> δ > ∥f−g∥
∞,Ω ,dist(f(∂Ω) ,y)> δ > ∥f− ĝ∥

∞,Ω
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Then for t ∈ [0,1] so does tg+ (1− t) ĝ. In particular, y /∈ (tg+(1− t) ĝ)(∂Ω). More
generally, if

∥h− f∥< dist(f(∂Ω) ,y)

then 0 < dist(h(∂Ω) ,y) . Also d (f−y,Ω,0) = d (f,Ω,y).

Proof: From the triangle inequality, if t ∈ [0,1] ,

∥f−(tg+(1− t) ĝ)∥
∞
≤ t ∥f−g∥

∞
+(1− t)∥f− ĝ∥

∞
< tδ +(1− t)δ = δ .

If ∥h− f∥
∞
< δ < dist(f(∂Ω) ,y) , as was just shown for h≡tg+(1− t) ĝ, then if x ∈ ∂Ω,

∥y−h(x)∥ ≥ ∥y− f(x)∥−∥h(x)− f(x)∥> dist(f(∂Ω) ,y)−δ ≥ δ −δ = 0

Now consider the last claim. This follows because ∥g− f∥
∞

small is the same as
∥g−y−(f−y)∥

∞
being small. They are the same. Also, (g−y)−1 (0) = g−1 (y) and

Dg(x) = D(g−y)(x). ■
First is an identity. It was Lemma 16.3.1 on Page 429.

Lemma 23.1.8 Let g : U → Rp be C2 where U is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Next is an integral representation of ∑
{

sgn(det(Dg(x))) : x ∈ g−1 (y)
}

but first is a
little lemma about disjoint sets.

Lemma 23.1.9 Let K be a compact set and C a closed set in Rp such that K∩C = /0. Then

dist(K,C)≡ inf{∥k− c∥ : k ∈ K,c ∈C}> 0.

Proof: Let
d ≡ inf{∥k− c∥ : k ∈ K,c ∈C}

Let {ki} ,{ci} be such that

d +
1
i
> ∥ki− ci∥ .

Since K is compact, there is a subsequence still denoted by {ki} such that ki → k ∈ K.
Then also

∥ci− cm∥ ≤ ∥ci−ki∥+∥ki−km∥+∥cm−km∥

If d = 0, then as m, i→∞ it follows ∥ci− cm∥→ 0 and so {ci} is a Cauchy sequence which
must converge to some c∈C. But then ∥c−k∥= limi→∞ ∥ci−ki∥= 0 and so c= k∈C∩K,
a contradiction to these sets being disjoint. ■

In particular the distance between a point and a closed set is always positive if the point
is not in the closed set. Of course this is obvious even without the above lemma.
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Definition 23.1.10 Let g ∈ C∞
(
Ω;Rp

)
where Ω is a bounded open set. Also let φ ε be a

mollifier.

φ ε ∈C∞
c (B(0,ε)) , φ ε ≥ 0,

∫
φ ε dx = 1.

The idea is that ε will converge to 0 to get suitable approximations.

First, here is a technical lemma which will be used to identify the degree with an inte-
gral.

Lemma 23.1.11 Let y /∈ g(∂Ω) for g ∈C∞
(
Ω;Rp

)
. Also suppose y is a regular value of

g. Then for all positive ε small enough,∫
Ω

φ ε (g(x)−y)detDg(x)dx = ∑
{

sgn(detDg(x)) : x ∈ g−1 (y)
}

Proof: First note that the sum is finite from Lemma 23.1.5. It only remains to verify
the equation.

I need to show the left side of this equation is constant for ε small enough and equals the
right side. By what was just shown, there are finitely many points, {xi}m

i=1 = g−1 (y). By the
inverse function theorem, there exist disjoint open sets Ui with xi ∈Ui, such that g is one to
one on Ui with det(Dg(x)) having constant sign on Ui and g(Ui) is an open set containing
y. Then let ε be small enough that B(y,ε) ⊆ ∩m

i=1g(Ui) . Also, y /∈ g
(
Ω\
(
∪n

i=1Ui
))

, a
compact set. Let ε be still smaller, if necessary, so that B(y,ε)∩g

(
Ω\
(
∪n

i=1Ui
))

= /0 and
let Vi ≡ g−1 (B(y,ε))∩Ui.

g(U2)g(U3)

g(U1)yε

x1

x2

x3
V1

V2

V3

Therefore, for any ε this small,∫
Ω

φ ε (g(x)−y)detDg(x)dx =
m

∑
i=1

∫
Vi

φ ε (g(x)−y)detDg(x)dx

The reason for this is as follows. The integrand on the left is nonzero only if g(x)−
y ∈ B(0,ε) which occurs only if g(x) ∈ B(y,ε) which is the same as x ∈ g−1 (B(y,ε)).
Therefore, the integrand is nonzero only if x is contained in exactly one of the disjoint sets,
Vi. Now using the change of variables theorem, (z = g(x)−y,g−1 (y+ z) = x.)

=
m

∑
i=1

∫
g(Vi)−y

φ ε (z)detDg
(
g−1 (y+ z)

)∣∣detDg−1 (y+ z)
∣∣dz



760 CHAPTER 23. DEGREE THEORY

By the chain rule, I = Dg
(
g−1 (y+ z)

)
Dg−1 (y+ z) and so

detDg
(
g−1 (y+ z)

)∣∣detDg−1 (y+ z)
∣∣

= sgn
(
detDg

(
g−1 (y+ z)

))∣∣detDg
(
g−1 (y+ z)

)∣∣ ∣∣detDg−1 (y+ z)
∣∣

= sgn
(
detDg

(
g−1 (y+ z)

))
= sgn(detDg(x)) = sgn(detDg(xi)) .

Therefore, this reduces to

m

∑
i=1

sgn(detDg(xi))
∫

g(Vi)−y
φ ε (z)dz =

m

∑
i=1

sgn(detDg(xi))
∫

B(0,ε)
φ ε (z)dz =

m

∑
i=1

sgn(detDg(xi)) .

In case g−1 (y) = /0, there exists ε > 0 such that g
(
Ω
)
∩B(y,ε) = /0 and so for ε this small,∫

Ω

φ ε (g(x)−y)detDg(x)dx = 0.■

As noted above, this will end up being d (g,Ω,y) in this last case where g−1 (y) = /0.
Next is an important result on homotopy.

Lemma 23.1.12 If h is in C∞
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) then for 0 < ε <

dist(0,h(∂Ω× [a,b])) ,

t→
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

is constant for t ∈ [a,b]. As a special case, d (f,Ω,y) is well defined. Also, if y /∈ f
(
Ω
)
,

then d (f,Ω,y) = 0.

Proof: By continuity of h, h(∂Ω× [a,b]) is compact and so is at a positive distance
from 0. Let ε > 0 be such that for all t ∈ [a,b] ,

B(0,ε)∩h(∂Ω× [a,b]) = /0 (23.1.3)

Define for t ∈ (a,b),

H (t)≡
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

I will show that H ′ (t) = 0 on (a,b) . Then, since H is continuous on [a,b] , it will follow
from the mean value theorem that H (t) is constant on [a,b]. If t ∈ (a,b),

H ′ (t) =
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t (x, t)detD1h(x, t)dx
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+
∫

Ω

φ ε (h(x, t))∑
α, j

detD1 (h(x, t)),α j hα, jtdx≡ A+B. (23.1.4)

In this formula, the function det is considered as a function of the n2 entries in the n× n
matrix and the ,α j represents the derivative with respect to the α jth entry hα, j. Now as in
the proof of Lemma 16.3.1 on Page 429,

detD1 (h(x, t)),α j = (cofD1 (h(x, t)))α j

and so

B =
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD1 (h(x, t)))α j hα, jtdx.

By hypothesis
x→ φ ε (h(x, t))(cof D1 (h(x, t)))α j for x ∈Ω

is in C∞
c (Ω) because if x ∈ ∂Ω, it follows that for all t ∈ [a,b] ,h(x, t) /∈ B(0,ε) and so

φ ε (h(x, t)) = 0 off some compact set contained in Ω. Therefore, integrate by parts and
write

B =−
∫

Ω
∑
α

∑
j

∂

∂x j
(φ ε (h(x, t)))(cof D1 (h(x, t)))α j hα,tdx+

−
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD(h(x, t)))
α j, j hα,tdx

The second term equals zero by Lemma 23.1.8. Simplifying the first term yields

B = −
∫

Ω
∑
α

∑
j
∑
β

φ ε,β (h(x, t))hβ , jhα,t (cofD1 (h(x, t)))α j dx

= −
∫

Ω
∑
α

∑
β

φ ε,β (h(x, t))hα,t ∑
j

hβ , j (cofD1 (h(x, t)))α j dx

Now the sum on j is the dot product of the β
th row with the α th row of the cofactor matrix

which equals zero unless β = α because it would be a cofactor expansion of a matrix with
two equal rows. When β = α, the sum on j reduces to det(D1 (h(x, t))) . Thus B reduces
to

=−
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t det(D1 (h(x, t)))dx

Which is the same thing as A, but with the opposite sign. Hence A+B in 23.1.4 is 0 and
H ′ (t) = 0 and so H is a constant on [a,b].

Finally consider the last claim. If g, ĝ both work in the definition for the degree, then
consider h(x, t) ≡ tg(x)+ (1− t) ĝ(x)− y for t ∈ [0,1] . From Lemma 23.1.7, h satisfies
what is needed for the first part of this lemma. Then from Lemma 23.1.11 and the first part
of this lemma, if 0 < ε < dist(0,h(∂Ω× [0,1])) is sufficiently small that the second and
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last equations hold in what follows,

d (f,Ω,y) = ∑
{

sgn(det(Dg(x))) : x ∈ g−1 (y)
}

=
∫

Ω

φ ε (h(x,1))detD1h(x,1)dx

=
∫

Ω

φ ε (h(x,0))detD1h(x,0)dx

= ∑
{

sgn(det(Dĝ(x))) : x ∈ g−1 (y)
}

The last claim was noted earlier. If y /∈ f
(
Ω
)
, then letting g be smooth with ∥f−g∥

∞,Ω <

δ < dist(f(∂Ω) ,y) , it follows that if x ∈ ∂Ω,

∥g(x)−y∥ ≥ ∥y− f(x)∥−∥g(x)− f(x)∥> dist(f(∂Ω) ,y)−δ ≥ 0

Thus, from the definition, d (f,Ω,y) = 0. ■

23.2 Properties of the Degree
Now that the degree for a continuous function has been defined, it is time to consider
properties of the degree. In particular, it is desirable to prove a theorem about homotopy
invariance which depends only on continuity considerations.

Theorem 23.2.1 If h is in C
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) then

t→ d (h(·, t) ,Ω,0)

is constant for t ∈ [a,b].

Proof: Let 0 < δ < mint∈[a,b] dist(h(∂Ω× [a,b]) ,0) . By Corollary 23.1.1, there exists

hm (·, t) =
m

∑
k=0

pk (t)h(·, tk)

for pk (t) some polynomial in t of degree m such that

max
t∈[a,b]

∥hm (·, t)−h(·, t)∥
∞,Ω < δ (23.2.5)

Letting ψn be a mollifier,

C∞
c

(
B
(

0,
1
n

))
,
∫
Rp

ψn (u)du = 1

let
gn (·, t)≡ hm ∗ψn (·, t)

Thus,

gn (x, t) ≡
∫
Rp

hm (x−u, t)ψn (u)du =
m

∑
k=0

pk (t)
∫
Rp

h(x−u, tk)ψn (u)du

=
m

∑
k=0

pk (t)
∫
Rp

h(u, tk)ψn (x−u)du≡
m

∑
k=0

pk (t)h(·, tk)∗ψn (x)(23.2.6)
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so x→ gn (x, t) is in C∞
(
Ω;Rp

)
. Also,

∥gn (x, t)−hm (x,t)∥ ≤
∫

B(0, 1
n )
∥h(x−u, t)−h(z, t)∥du < ε

provided n is large enough. This follows from uniform continuity of h on the compact set
Ω× [a,b]. It follows that if n is large enough, one can replace hm in 23.2.5 with gn and
obtain for large enough n

max
t∈[a,b]

∥gn (·, t)−h(·, t)∥
∞,Ω < δ (23.2.7)

Now gn ∈C∞
(
Ω× [a,b] ;Rp

)
because all partial derivatives with respect to either t or x are

continuous. Here

gn (x,t) =
m

∑
k=0

pk (t)h(·, tk)∗ψn (x)

Let τ ∈ (a,b]. Let gaτ (x, t) ≡ gn (x, t)−
(

τ−t
τ−a ya +yτ

t−a
τ−a

)
where ya is a regular value

of gn (·,a), yτ is a regular value of gn (x,τ) and both ya,yτ are so small that

max
t∈[a,b]

∥gaτ (·, t)−h(·, t)∥
∞,Ω < δ . (23.2.8)

This uses Lemma 23.1.3. Thus if gaτ (x,τ) = 0, then gn (x,τ)− yτ = 0 so 0 is a regular
value for gaτ (·,τ) . If gaτ (x,a) = 0, then gn (x, t) = ya so 0 is also a regular value for
gaτ (·,a) . From 23.2.8, dist(gaτ (∂Ω× [a,b]) ,0) > 0 as in Lemma 23.1.5. Choosing ε <
dist(gaτ (∂Ω× [a,b]) ,0), it follows from Lemma 23.1.12, the definition of the degree, and
Lemma 23.1.11 in the first and last equations that for ε small enough,

d (h(·,a) ,Ω,0) =
∫

Ω

φ ε (gaτ (x,a))detD1gaτ (x,a)dx

=
∫

Ω

φ ε (gaτ (x,τ))detD1gaτ (x,τ)dx = d (h(·,τ) ,Ω,0)

Since τ is arbitrary, this proves the theorem. ■
Now the following theorem is a summary of the main result on properties of the degree.

Theorem 23.2.2 Definition 23.1.6 is well defined and the degree satisfies the following
properties.

1. (homotopy invariance) If h ∈C
(
Ω× [0,1] ,Rp

)
and y(t) /∈ h(∂Ω, t) for all t ∈ [0,1]

where y is continuous, then

t→ d (h(·, t) ,Ω,y(t))

is constant for t ∈ [0,1] .

2. If Ω⊇Ω1∪Ω2 where Ω1∩Ω2 = /0, for Ωi an open set, then if y /∈ f
(
Ω\ (Ω1∪Ω2)

)
,

then
d (f,Ω1,y)+d (f,Ω2,y) = d (f,Ω,y)



764 CHAPTER 23. DEGREE THEORY

3. d (I,Ω,y) = 1 if y ∈Ω.

4. d (f,Ω, ·) is continuous and constant on every connected component of Rp \ f(∂Ω).

5. d (g,Ω,y) = d (f,Ω,y) if g|
∂Ω

= f|
∂Ω

.

6. If y /∈ f(∂Ω), and if d (f,Ω,y) ̸= 0, then there exists x ∈Ω such that f(x) = y.

Proof: That the degree is well defined follows from Lemma 23.1.12.
Consider 1., the first property about homotopy. This follows from Theorem 23.2.1

applied to H (x, t)≡ h(x, t)−y(t).
Consider 2. where y /∈ f

(
Ω\ (Ω1∪Ω2)

)
. Note that

dist
(
y, f
(
Ω\ (Ω1∪Ω2)

))
≤ dist(y, f(∂Ω))

Then let g be in C
(
Ω;Rp

)
and

∥g− f∥
∞

< dist
(
y, f
(
Ω\ (Ω1∪Ω2)

))
≤ min(dist(y, f(∂Ω1)) ,dist(y, f(∂Ω2)) ,dist(y, f(∂Ω)))

where y is a regular value of g. Then by definition,

d (f,Ω,y)≡∑
{

det(Dg(x)) : x ∈ g−1 (y)
}

= ∑
{

det(Dg(x)) : x ∈ g−1 (y) ,x ∈Ω1
}

+∑
{

det(Dg(x)) : x ∈ g−1 (y) ,x ∈Ω2
}

≡ d (f,Ω1,y)+d (f,Ω2,y)

It is of course obvious that this can be extended by induction to any finite number of disjoint
open sets Ωi.

Note that 3. is obvious because I (x) = x and so if y∈Ω, then I−1 (y) = y and DI (x) = I
for any x so the definition gives 3.

Now consider 4. Let U be a connected component of Rp \ f(∂Ω) . This is open as well
as connected and arc wise connected by Theorem 7.13.10. Hence, if u,v ∈U, there is a
continuous function y(t) which is in U such that y(0) = u and y(1) = v. By homotopy
invariance, it follows d (f,Ω,y(t)) is constant. Thus d (f,Ω,u) = d (f,Ω,v).

Next consider 5. When f = g on ∂Ω, it follows that if y /∈ f(∂Ω) , then y /∈ f(x) +
t (g(x)− f(x)) for t ∈ [0,1] and x ∈ ∂Ω so

d (f+ t (g− f) ,Ω,y)

is constant for t ∈ [0,1] by homotopy invariance in part 1. Therefore, let t = 0 and then
t = 1 to obtain 5.

Claim 6. follows from Lemma 23.1.12 which says that if y /∈ f
(
Ω
)
, then d (f,Ω,y) = 0.

■
From the above, there is an easy corollary which gives related properties of the degree.
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Corollary 23.2.3 The following additional properties of the degree are also valid.

1. If y /∈ f
(
Ω\Ω1

)
and Ω1 is an open subset of Ω, then d (f,Ω,y) = d (f,Ω1,y) .

2. d (·,Ω,y) is defined and constant on{
g ∈C

(
Ω;Rp) : ∥g− f∥

∞
< r
}

where r = dist(y, f(∂Ω)).

3. If dist(y, f(∂Ω))≥ δ and |z−y|< δ , then d (f,Ω,y) = d (f,Ω,z).

Proof: Consider 1. You can take Ω2 = /0 in 2 of Theorem 23.2.2 or you can modify
the proof of 2 slightly. Consider 2. To verify, let h(x, t) = f(x)+ t (g(x)− f(x)) . Then
note that y /∈ h(∂Ω, t) and use Property 1 of Theorem 23.2.2. Finally, consider 3. Let
y(t)≡ (1− t)y+ tz. Then for x ∈ ∂Ω

|(1− t)y+ tz− f(x)| = |y− f(x)+ t (z−y)|
≥ δ − t |z−y|> δ −δ = 0

Then by 1 of Theorem 23.2.2, d (f,Ω,(1− t)y+ tz) is constant. When t = 0 you get
d (f,Ω,y) and when t = 1 you get d (f,Ω,z) . ■

Another simple observation is that if you have y1, · · · ,yr in Rp \ f(∂Ω) , then if f̃ has
the property that

∥∥f̃− f
∥∥

∞
< mini≤r dist(yi, f(∂Ω)) , then

d (f,Ω,yi) = d
(
f̃,Ω,yi

)
for each yi. This follows right away from the above arguments and the homotopy invariance
applied to each of the finitely many yi. Just consider d

(
f+ t

(
f̃− f

)
,Ω,yi

)
, t ∈ [0,1] . If

x ∈ ∂Ω, f+ t
(
f̃− f

)
(x) ̸= yi and so d

(
f+ t

(
f̃− f

)
,Ω,yi

)
is constant on [0,1] , this for each

i.

23.3 Borsuk’s Theorem
In this section is an important theorem which can be used to verify that d (f,Ω,y) ̸= 0. This
is significant because when this is known, it follows from Theorem 23.2.2 that f−1 (y) ̸= /0.
In other words there exists x ∈Ω such that f(x) = y.

Definition 23.3.1 A bounded open set, Ω is symmetric if −Ω = Ω. A continuous function,
f : Ω→ Rp is odd if f(−x) =−f(x).

Suppose Ω is symmetric and g ∈ C∞
(

Ω;Rp
)

is an odd map for which 0 is a regular
value. Then the chain rule implies Dg(−x) = Dg(x) and so d (g,Ω,0) must equal an odd
integer because if x∈ g−1 (0), it follows that−x∈ g−1 (0) also and since Dg(−x) =Dg(x),
it follows the overall contribution to the degree from x and −x must be an even integer.
Also 0 ∈ g−1 (0) and so the degree equals an even integer added to sgn (detDg(0)), an
odd integer, either −1 or 1. It seems reasonable to expect that something like this would
hold for an arbitrary continuous odd function defined on symmetric Ω. In fact this is the
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case and this is next. The following lemma is the key result used. This approach is due to
Gromes [57]. See also Deimling [38] which is where I found this argument.

The idea is to start with a smooth odd map and approximate it with a smooth odd map
which also has 0 a regular value. Note that 0 is achieved because g(0) =−g(0) .

Lemma 23.3.2 Let g ∈C∞
(

Ω;Rp
)

be an odd map. Then for every ε > 0, there exists h
∈ C∞

(
Ω;Rp

)
such that h is also an odd map, ∥h−g∥

∞
< ε , and 0 is a regular value of

h,0 /∈ g(∂Ω) . Here Ω is a symmetric bounded open set. In addition, d (g,Ω,0) is an odd
integer.

Proof: In this argument η > 0 will be a small positive number. Let h0 (x) = g(x)+ηx
where η is chosen such that detDh0 (0) ̸= 0. Just let −η not be an eigenvalue of Dg(0)
also see Lemma 5.9.7. Note that h0 is odd and 0 is a value of h0 thanks to h0 (0) = 0. This
has taken care of 0. However, it is not known whether 0 is a regular value of h0 because
there may be other x where h0 (x) = 0. These other points must be accounted for. The
eventual function will be of the form

h(x)≡ h0 (x)−
p

∑
j=1

y jx3
j ,

0

∑
j=1

y jx3
j ≡ 0.

Note that h(0) = 0 and det(Dh(0)) = det(Dh0 (0)) ̸= 0. This is because when you take
the matrix of the derivative, those terms involving x3

j will vanish when x = 0 because of the
exponent 3.

The idea is to choose small y j,
∥∥y j
∥∥< η in such a way that 0 is a regular value for h for

each x ̸= 0 such that x ∈ h−1 (0). As just noted, the case where x = 0 creates no problems.
Let

Ωi ≡ {x ∈Ω : xi ̸= 0} , so ∪p
j=1 Ω j = {x ∈ Rp : x ̸= 0} , Ω0 ≡ {0} .

Each Ωi is a symmetric open set while Ω0 is the single point 0. Then let h1 (x)≡ h0 (x)−
y1x3

1 on Ω1. If h1 (x) = 0, then

h0 (x) = y1x3
1 so y1 =

h0 (x)
x3

1
(23.3.9)

The set of singular values of x→ h0(x)
x3

1
for x∈Ω1 contains no open sets. Hence there exists

a regular value y1 for x→ h0(x)
x3

1
such that

∥∥y1
∥∥< η . Then if y1 = h0(x)

x3
1

, abusing notation a

little, the matrix of the derivative at this x is

Dh1 (x)rs =
h0r,s (x)x3

1− (x1)
3
,xs

h0r (x)
x6

1
=

h0r,s (x)x3
1− (x1)

3
,xs

y1
r x3

1

x6
1

=
h0r,s (x) − (x1)

3
,xs

y1
r

x3
1

and so, choosing y1 this way in 23.3.9, this derivative is non-singular if and only if

det
(

h0r,s (x) − (x1)
3
,xs

y1
r

)
= detD(h1 (x)) ̸= 0
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which of course is exactly what is wanted. Thus there is a small y1,
∥∥y1
∥∥ < η such that if

h1 (x) = 0, for x ∈ Ω1, then detD(h1 (x)) ̸= 0. That is, 0 is a regular value of h1. Thus,
23.3.9 is how to choose y1 for

∥∥y1
∥∥< η .

Then the theorem will be proved by doing the same process, going from Ω1 to Ω1∪Ω2
and so forth. If for each k ≤ p, there exist yi,

∥∥yi
∥∥< η , i≤ k and 0 is a regular value of

hk (x)≡ h0 (x)−
k

∑
j=1

y jx3
j for x ∈ ∪k

i=0Ωi

Then the theorem will be proved by considering hp ≡ h. For k = 0,1 this is done. Suppose
then that this holds for k−1, k ≥ 2. Thus 0 is a regular value for

hk−1 (x)≡ h0 (x)−
k−1

∑
j=1

y jx3
j on ∪k−1

i=0 Ωi

What should yk be? Keeping y1, · · · ,yk−1, it follows that if xk = 0, hk (x) = hk−1 (x) . For
x ∈Ωk where xk ̸= 0,

hk (x)≡ h0 (x)−
k

∑
j=1

y jx3
j = 0

if and only if
h0 (x)−∑

k−1
j=1 y jx3

j

x3
k

= yk

So let yk be a regular value of
h0(x)−∑

k−1
j=1 y jx3

j

x3
k

on Ωk, (xk ̸= 0) and also
∥∥yk
∥∥< η . This is the

same reasoning as before, the set of singular values does not contain any open set. Then
for such x satisfying

h0 (x)−∑
k−1
j=1 y jx3

j

x3
k

= yk on Ωk, (23.3.10)

and using the quotient rule as before,

0 ̸= det


(

h0r,s−∑
k−1
j=1 y j

r∂xs

(
x3

j

))
x3

k−
(

h0r (x)−∑
k−1
j=1 y j

rx3
j

)
∂xs

(
x3

k

)
x6

k


and h0r (x)−∑

k−1
j=1 y j

rx3
j = yk

rx3
k from 23.3.10 and so

0 ̸= det


(

h0r,s−∑
k−1
j=1 y j

r∂xs

(
x3

j

))
x3

k− yk
rx3

k∂xs

(
x3

k

)
x6

k



0 ̸= det


(

h0r,s−∑
k−1
j=1 y j

r∂xs

(
x3

j

))
− yk

r∂xs

(
x3

k

)
x3

k
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which implies

0 ̸= det

((
h0r,s−

k−1

∑
j=1

y j
r∂xs

(
x3

j
))
− yk

r∂xs

(
x3

k
))

= det(D(hk (x)))

If x ∈Ωk, (xk ̸= 0) this has shown that det(Dhk (x)) ̸= 0 whenever hk (x) = 0 and xk ∈Ωk.
If x /∈Ωk, then xk = 0 and so, since hk (x) = h0 (x)−∑

k
j=1 y jx3

j , because of the power of 3 in
x3

k , Dhk (x) = Dhk−1 (x) which has nonzero determinant by induction if hk−1 (x) = 0. Thus
for each k≤ p, there is a function hk of the form described above, such that if x ∈ ∪k

j=1Ωk,

with hk (x)= 0, it follows that det(Dhk (x)) ̸= 0. Thus 0 is a regular value for hk on∪k
j=1Ω j.

Let h≡ hp. Then

∥h−g∥
∞, Ω

≤ max
x∈Ω

{
∥ηx∥+

p

∑
k=1

∥∥∥yk
∥∥∥∥x∥}

≤ η ((p+1)diam(Ω))< ε < dist(g(∂Ω) ,0)

provided η was chosen sufficiently small to begin with.
So what is d (h,Ω,0)? Since 0 is a regular value and h is odd,

h−1 (0) = {x1, · · · ,xr,−x1, · · · ,−xr,0} .

So consider Dh(x) and Dh(−x).

Dh(−x)u+o(u) = h(−x+u)−h(−x)
= −h(x+(−u))+h(x)
= −(Dh(x)(−u))+o(−u)
= Dh(x)(u)+o(u)

Hence Dh(x) = Dh(−x) and so the determinants of these two are the same. It follows
from the definition that d (g,Ω,0) =

d (h,Ω,0) =
r

∑
i=1

sgn(det(Dh(xi)))+
r

∑
i=1

sgn(det(Dh(−xi)))

+sgn(det(Dh(0)))
= 2m±1 some integer m ■

Theorem 23.3.3 (Borsuk) Let f∈C
(

Ω;Rp
)

be odd and let Ω be symmetric and 0 /∈ f(∂Ω).
Then d (f,Ω,0) equals an odd integer.

Proof: Let ψn be a mollifier which is symmetric, ψ (−x) = ψ (x). Also recall that f is
the restriction to Ω of a continuous function, still denoted as f which is defined on all of
Rp. Let g be the odd part of this function. That is,

g(x)≡ 1
2
(f(x)− f(−x))
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Since f is odd, g = f on Ω. Then

gn (−x)≡ g∗ψn (−x) =
∫

Ω

g(−x−y)ψn (y)dy

=−
∫

Ω

g(x+y)ψn (y)dy =−
∫

Ω

g(x−(−y))ψn (−y)dy =−gn (x)

Thus gn is odd and is infinitely differentiable. Let n be large enough that ∥gn−g∥
∞,Ω <

δ < dist(f(∂Ω) ,0). Then by definition of the degree,

d (f,Ω,0) = d (g,Ω,0) = d (gn,Ω,0)

and by Lemma 23.3.2 this is an odd integer. ■

23.4 Applications
With these theorems it is possible to give easy proofs of some very important and difficult
theorems.

Definition 23.4.1 If f : U ⊆ Rp→ Rp where U is an open set. Then f is locally one to one
if for every x ∈U, there exists δ > 0 such that f is one to one on B(x,δ ).

As a first application, consider the invariance of domain theorem. This result says that
a one to one continuous map takes open sets to open sets. It is an amazing result which is
essential to understand if you wish to study manifolds. In fact, the following theorem only
requires f to be locally one to one. First here is a lemma which has the main idea.

Lemma 23.4.2 Let g : B(0,r)→Rp be one to one and continuous where here B(0,r) is the
ball centered at 0 of radius r in Rp. Then there exists δ > 0 such that

g(0)+B(0,δ )⊆ g(B(0,r)) .

The symbol on the left means: {g(0)+x : x ∈ B(0,δ )} .

Proof: For t ∈ [0,1] , let

h(x, t)≡ g
(

x
1+ t

)
−g
(
−tx
1+ t

)
Then for x ∈ ∂B(0,r) , h(x, t) ̸= 0 because if this were so, the fact g is one to one implies

x
1+ t

=
−tx
1+ t

and this requires x = 0 which is not the case since ∥x∥ = r. Then d (h(·, t) ,B(0,r) ,0) is
constant. Hence it is an odd integer for all t thanks to Borsuk’s theorem, because h(·,1)
is odd. Now let B(0,δ ) be such that B(0,δ )∩h(∂Ω,0) = /0. Then d (h(·,0) ,B(0,r) ,0) =
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d (h(·,0) ,B(0,r) ,z) for z ∈ B(0,δ ) because the degree is constant on connected compo-
nents of Rp \h(∂Ω,0) . Hence z = h(x,0) = g(x)−g(0) for some x ∈ B(0,r). Thus

g(B(0,r))⊇ g(0)+B(0,δ ) ■

Now with this lemma, it is easy to prove the very important invariance of domain theo-
rem.

A function f is locally one to one on an open set Ω if for every x0 ∈ Ω, there exists
B(x0,r)⊆Ω such that f is one to one on B(x0,r).

Theorem 23.4.3 (invariance of domain)Let Ω be any open subset of Rp and let f : Ω→Rp

be continuous and locally one to one. Then f maps open subsets of Ω to open sets in Rp.

Proof: Let B(x0,r)⊆Ω where f is one to one on B(x0,r). Let g be defined on B(0,r)
given by

g(x)≡ f(x+x0)

Then g satisfies the conditions of Lemma 23.4.2, being one to one and continuous. It
follows from that lemma there exists δ > 0 such that

f(Ω) ⊇ f(B(x0,r)) = f(x0 +B(0,r))
= g(B(0,r))⊇ g(0)+B(0,δ )
= f(x0)+B(0,δ ) = B(f(x0) ,δ )

This shows that for any x0 ∈Ω, f(x0) is an interior point of f(Ω) which shows f(Ω) is open.
■

With the above, one gets easily the following amazing result. It is something which is
clear for linear maps but this is a statement about continuous maps.

Corollary 23.4.4 If p > m there does not exist a continuous one to one map from Rp to
Rm.

Proof: Suppose not and let f be such a continuous map,

f(x)≡ ( f1 (x) , · · · , fm (x))T .

Then let g(x)≡ ( f1 (x) , · · · , fm (x) ,0, · · · ,0)T where there are p−m zeros added in. Then
g is a one to one continuous map from Rp to Rp and so g(Rp) would have to be open from
the invariance of domain theorem and this is not the case. ■

Corollary 23.4.5 If f is locally one to one and continuous, f : Rp→ Rp, and

lim
|x|→∞

|f(x)|= ∞,

then f maps Rp onto Rp.
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Proof: By the invariance of domain theorem, f(Rp) is an open set. It is also true that
f(Rp) is a closed set. Here is why. If f(xk)→ y, the growth condition ensures that {xk}
is a bounded sequence. Taking a subsequence which converges to x ∈ Rp and using the
continuity of f, it follows f(x) = y. Thus f(Rp) is both open and closed which implies f
must be an onto map since otherwise, Rp would not be connected. ■

The next theorem is the famous Brouwer fixed point theorem.

Theorem 23.4.6 (Brouwer fixed point) Let B = B(0,r)⊆Rp and let f : B→ B be continu-
ous. Then there exists a point x ∈ B, such that f(x) = x.

Proof: Assume there is no fixed point. Consider h(x, t)≡ tf(x)−x for t ∈ [0,1] . Then
for ∥x∥= r,

0 /∈ tf(x)−x,t ∈ [0,1]

By homotopy invariance,
t→ d (tf− I,B,0)

is constant. But when t = 0, this is d (−I,B,0) = (−1)n ̸= 0. Hence d (f− I,B,0) ̸= 0 so
there exists x such that f(x)−x = 0. ■

You can use standard stuff from Hilbert space to get this the fixed point theorem for a
compact convex set. Let K be a closed bounded convex set and let f : K→K be continuous.
Let P be the projection map onto K as in Problem 3 on Page 194. Then P is continuous
because |Px−Py| ≤ |x−y|. Recall why this is. From the characterization of the projection
map P, (x−Px,y−Px)≤ 0 for all y ∈ K. Therefore,

(x−Px,Py−Px)≤ 0, (y−Py,Px−Py)≤ 0 so (y−Py,Py−Px)≥ 0

Hence, subtracting the first from the last,

(y−Py−(x−Px) ,Py−Px)≥ 0

consequently,
|x−y| |Py−Px| ≥ (y−x,Py−Px)≥ |Py−Px|2

and so |Py−Px| ≤ |y−x| as claimed.
Now let r be so large that K ⊆ B(0,r) . Then consider f ◦P. This map takes B(0,r)→

B(0,r). In fact it maps B(0,r) to K. Therefore, being the composition of continuous
functions, it is continuous and so has a fixed point in B(0,r) denoted as x. Hence f(P(x)) =
x. Now, since f maps into K, it follows that x ∈ K. Hence Px = x and so f(x) = x. This has
proved the following general Brouwer fixed point theorem.

Theorem 23.4.7 Let f : K → K be continuous where K is compact and convex and non-
empty, K ⊆ Rp. Then f has a fixed point.

Definition 23.4.8 f is a retract of B(0,r) onto ∂B(0,r) if f is continuous,

f
(

B(0,r)
)
⊆ ∂B(0,r)

and f(x) = x for all x ∈ ∂B(0,r).
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Theorem 23.4.9 There does not exist a retract of B(0,r) onto its boundary, ∂B(0,r).

Proof: Suppose f were such a retract. Then for all x ∈ ∂B(0,r), f(x) = x and so from
the properties of the degree, the one which says if two functions agree on ∂Ω, then they
have the same degree,

1 = d (I,B(0,r) ,0) = d (f,B(0,r) ,0)

which is clearly impossible because f−1 (0) = /0 which implies d (f,B(0,r) ,0) = 0. ■
You should now use this theorem to give another proof of the Brouwer fixed point

theorem.
The proofs of the next two theorems make use of the Tietze extension theorem, Theo-

rem 7.10.7.

Theorem 23.4.10 Let Ω be a symmetric open set in Rp such that 0 ∈Ω and let f : ∂Ω→V
be continuous where V is an m dimensional subspace of Rp,m < p. Then f(−x) = f(x) for
some x ∈ ∂Ω.

Proof: Suppose not. Using the Tietze extension theorem on components of the func-
tion, extend f to all of Rp, f

(
Ω
)
⊆ V . (Here the extended function is also denoted by f.)

Let g(x) = f(x)− f(−x). Then 0 /∈ g(∂Ω) and so for some r > 0, B(0,r) ⊆ Rp \ g(∂Ω).
For z ∈ B(0,r),

d (g,Ω,z) = d (g,Ω,0) ̸= 0

because B(0,r) is contained in a component of Rp \g(∂Ω) and Borsuk’s theorem implies
that d (g,Ω,0) ̸= 0 since g is odd. Hence

V ⊇ g(Ω)⊇ B(0,r)

and this is a contradiction because V is m dimensional. ■
This theorem is called the Borsuk Ulam theorem. Note that it implies there exist two

points on opposite sides of the surface of the earth which have the same atmospheric pres-
sure and temperature, assuming the earth is symmetric and that pressure and temperature
are continuous functions. The next theorem is an amusing result which is like combing
hair. It gives the existence of a “cowlick”.

Theorem 23.4.11 Let n be odd and let Ω be an open bounded set in Rp with 0 ∈ Ω. Sup-
pose f : ∂Ω→ Rp \{0} is continuous. Then for some x ∈ ∂Ω and λ ̸= 0, f(x) = λx.

Proof: Using the Tietze extension theorem, extend f to all of Rp. Also denote the
extended function by f. Suppose for all x ∈ ∂Ω, f(x) ̸= λx for all λ ∈ R. Then

0 /∈ tf(x)+(1− t)x(x, t) ∈ ∂Ω× [0,1]

0 /∈ tf(x)− (1− t)x,(x, t) ∈ ∂Ω× [0,1] .

Thus there exists a homotopy of f and I and a homotopy of f and−I. Then by the homotopy
invariance of degree,

d (f,Ω,0) = d (I,Ω,0) , d (f,Ω,0) = d (−I,Ω,0) .

But this is impossible because d (I,Ω,0) = 1 but d (−I,Ω,0) = (−1)n =−1. ■
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23.5 Product Formula, Jordan Separation Theorem
This section is on the product formula for the degree which is used to prove the Jordan sep-
aration theorem. To begin with is a significant observation which is used without comment
below. Recall that the connected components of an open set are open. The formula is all
about the composition of continuous functions.

Ω
f→ f(Ω)⊆ Rp g→ Rp

Lemma 23.5.1 Let {Ki}∞

i=1 be the connected components of Rp \C where C is a closed
set. Then ∂Ki ⊆C.

Proof: Since Ki is a connected component of an open set, it is itself open. See Theorem
7.13.10. Thus ∂Ki consists of all limit points of Ki which are not in Ki. Let p be such a
point. If it is not in C then it must be in some other K j which is impossible because these
are disjoint open sets. Thus if x is a point in U it cannot be a limit point of V for V disjoint
from U . ■

Definition 23.5.2 Let the connected components of Rp \ f(∂Ω) be denoted by Ki. From
the properties of the degree listed in Theorem 23.2.2, d (f,Ω, ·) is constant on each of these
components. Denote by d (f,Ω,Ki) the constant value on the component Ki.

The following is the product formula. Note that if K is an unbounded component of
f(∂Ω)C , then d (f,Ω,y) = 0 for all y∈K by homotopy invariance and the fact that for large
enough ∥y∥ , f−1 (y) = /0 since f

(
Ω
)

is compact.

Theorem 23.5.3 (product formula)Let {Ki}∞

i=1 be the bounded components of Rp \ f(∂Ω)
for f ∈ C

(
Ω;Rp

)
, let g ∈ C (Rp,Rp), and suppose that y /∈ g(f(∂Ω)) or in other words,

g−1 (y)∩ f(∂Ω) = /0. Then

d (g◦ f,Ω,y) =
∞

∑
i=1

d (f,Ω,Ki)d (g,Ki,y) . (23.5.11)

All but finitely many terms in the sum are zero. If there are no bounded components of
f(∂Ω)C , then d (g◦ f,Ω,y) = 0.

Proof: The compact set f
(
Ω
)
∩ g−1 (y) is contained in Rp \ f(∂Ω) and so, f

(
Ω
)
∩

g−1 (y) is covered by finitely many of the components K j one of which may be the un-
bounded component. Since these components are disjoint, the other components fail to
intersect f

(
Ω
)
∩g−1 (y). Thus, if Ki is one of these others, either it fails to intersect g−1 (y)

or Ki fails to intersect f
(
Ω
)
. Thus either d (f,Ω,Ki) = 0 because Ki fails to intersect f

(
Ω
)

or d (g,Ki,y) = 0 if Ki fails to intersect g−1 (y). Thus the sum is always a finite sum. I am
using Theorem 23.2.2, the part which says that if y /∈ h

(
Ω
)
, then d (h,Ω,y) = 0. Note that

∂Ki ⊆ f(∂Ω) so y /∈ g(∂Ki).
Let g̃ be in C∞ (Rp,Rp) and let ∥g̃−g∥

∞
be so small that for each of the finitely many

Ki intersecting f
(
Ω
)
∩g−1 (y) ,

d (g◦ f,Ω,y) = d (g̃◦ f,Ω,y)
d (g,Ki,y) = d (g̃,Ki,y) (23.5.12)
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Since ∂Ki ⊆ f(∂Ω), both conditions are obtained by letting

∥g− g̃∥
∞,f(Ω) < dist(y,g(f(∂Ω)))

By Lemma 23.1.5, there exists g̃ such that y is a regular value of g̃ in addition to 23.5.12
and g̃−1 (y)∩ f(∂Ω) = /0. Then g̃−1 (y) is contained in the union of the Ki along with the
unbounded component(s) and by Lemma 23.1.5 g̃−1 (y) is countable. As discussed there,

g̃−1 (y)∩Ki is finite if Ki is bounded. Let g̃−1 (y)∩Ki =
{

xi
j

}mi

j=1
,mi ≤ ∞. mi could only

be ∞ on the unbounded component.
Now use Lemma 23.1.5 again to get f̃ in C∞

(
Ω;Rp

)
such that each xi

j is a regular value
of f̃ on Ω and also

∥∥f̃− f
∥∥

∞
is very small, so small that

d
(
g̃◦ f̃,Ω,y

)
= d (g̃◦ f,Ω,y) = d (g◦ f,Ω,y)

and
d
(
f̃,Ω,xi

j
)
= d

(
f,Ω,xi

j
)

for each i, j.
Thus, from the above,

d (g◦ f,Ω,y) = d
(
g̃◦ f̃,Ω,y

)
d
(
f̃,Ω,xi

j
)

= d
(
f,Ω,xi

j
)
= d (f,Ω,Ki)

d (g̃,Ki,y) = d (g,Ki,y)

Is y a regular value for g̃◦ f̃ on Ω? Suppose z ∈Ω and y = g̃◦ f̃(z) so f̃(z) ∈ g̃−1 (y) . Then
f̃(z) = xi

j for some i, j and Df̃(z)−1 exists. Hence D
(
g̃◦ f̃

)
(z) = Dg̃

(
xi

j

)
Df̃(z) , both

linear transformations invertible. Thus y is a regular value of g̃◦ f̃ on Ω.
What of xi

j in Ki where Ki is unbounded? Then as observed above, the sum of the terms

sgn
(
detDf̃(z)

)
for z ∈ f̃−1

(
xi

j

)
is d

(
f̃,Ω,xi

j

)
and is 0 because the degree is constant on

Ki which is unbounded.
From the definition of the degree, the left side of 23.5.11 d (g◦ f,Ω,y) equals

∑
{

sgn
(
detDg̃

(
f̃(z)

))
sgn
(
detDf̃(z)

)
: z ∈ f̃−1 (g̃−1 (y)

)}
The g̃−1 (y) are the xi

j. Thus the above is of the form

= ∑
i

∑
j

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(
det
(
Df̃(z)

))

As mentioned, if xi
j ∈ Ki an unbounded component, then

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(
det
(
Df̃(z)

))
= 0
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and so, it suffices to only consider bounded components in what follows and the sum makes
sense because there are finitely many xi

j in bounded Ki. This also shows that if there are no
bounded components of f(∂Ω)C, then d (g◦ f,Ω,y) = 0. Thus d (g◦ f,Ω,y) equals

= ∑
i

∑
j

sgn
(
det
(
Dg̃
(
xi

j
)))

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Df̃(z)

))
= ∑

i
d (g̃,Ki,y)d

(
f̃,Ω,Ki

)
For the last step, ∑z∈f̃−1

(
xi

j

) sgn
(
det
(
Df̃(z)

))
≡ d

(
f̃,Ω,xi

j

)
= d

(
f̃,Ω,Ki

)
. This proves the

product formula because g̃ and f̃ were chosen close enough to f,g respectively that

∑
i

d
(
f̃,Ω,Ki

)
d (g̃,Ki,y) = ∑

i
d (f,Ω,Ki)d (g,Ki,y) ■

Before the general Jordan separation theorem, I want to first consider the examples of
most interest.

Recall that if a function f is continuous and one to one on a compact set K, then f is a
homeomorphism of K and f(K). Also recall that if U is a nonempty open set, the boundary
of U , denoted as ∂U and meaning those points x with the property that for all r > 0 B(x,r)
intersects both U and UC, is U \U .

Proposition 23.5.4 Let H be a compact set and let f : H → Rp, p ≥ 2 be one to one and
continuous so that H and f(H) ≡ C are homeomorphic. Suppose HC has only one con-
nected component so HC is connected. Then CC also has only one component.

Proof: I want to show that CC has no bounded components so suppose it has a bounded
component K. Extend f to all of Rp and let g be an extension of f−1 to all of Rp. Then, by
the above Lemma 23.5.1, ∂K ⊆C. Since f◦g(x) = x on ∂K ⊆C, if z ∈ K, it follows that
1 = d (f◦g,K,z) . Now g(∂K)⊆ g(C) = H. Thus g(∂K)C ⊇HC and HC is unbounded and
connected. If a component of g(∂K)C is bounded, then it cannot contain the unbounded
HC which must be contained in the component of g(∂K)Cwhich it intersects. Thus, the
only bounded components of g(∂K)C must be contained in H. Let the set of such bounded
components be denoted by Q. By the product formula,

d (f◦g,K,z) = ∑
Q∈Q

d (g,K,Q)d (f,Q,z)

However, f
(
Q
)
⊆ f(H) = C and z is contained in a component of CC so for each Q ∈Q,

d (f,Q,z) = 0. Hence, by the product formula, d (f◦g,K,z) = 0 which is a contradiction to
1 = d (f◦g,K,z). Thus there is no bounded component of CC. ■

It is obvious that the unit sphere Sp−1 divides Rp into two disjoint open sets, the inside
and the outside. The following shows that this also holds for any homeomorphic image of
Sp−1.
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Proposition 23.5.5 Let B be the ball B(0,1) with Sp−1 its boundary, p ≥ 2. Suppose
f : Sp−1→C ≡ f

(
Sp−1

)
⊆ Rp is a homeomorphism. Then CC also has exactly two compo-

nents, a bounded and an unbounded.

Proof: I need to show there is only one bounded component of CC. From Proposition
23.5.4, there is at least one. Otherwise, Sp−1 would have no bounded components which is
obviously false.

Let f be a continuous extension of f off Sp−1 and let g be a continuous extension of g
off C. Let {Ki} be the bounded components of CC. Now ∂Ki ⊆C and so g(∂Ki)⊆ g(C) =
Sp−1. Let G be those points x with |x|> 1.

Let a bounded component of g(∂Ki)
C be H. If H intersects B then H must contain

B because B is connected and contained in
(
Sp−1

)C ⊆ g(∂Ki)
C which means that B is

contained in the union of components of g(∂Ki)
C. The same is true if H intersects G.

However, H cannot contain the unbounded G and so H cannot intersect G. Since H is open
and cannot intersect G, it cannot intersect Sp−1 either. Thus H = B and so there is only one
bounded component of g(∂Ki)

C and it is B. Now let z ∈ Ki. f◦g = I on ∂Ki ⊆ C and so
if z ∈ Ki, since the degree is determined by values on the boundary, the product formula
implies

1 = d (f◦g,Ki,z) = d (g,Ki,B)d (f,B,z) = d (g,Ki,B)d (f,B,Ki)

If there are n of these Ki, it follows ∑i d (g,Ki,B)d (f,B,Ki) = n. Now pick y ∈ B. Then,
since g◦ f(x) = x on ∂B, the product formula shows

1 = d (g◦ f,B,y) = ∑
i

d (f,B,Ki)d (g,Ki,y) = ∑
i

d (f,B,Ki)d (g,Ki,B) = n

Thus n = 1 and there is only one bounded component of CC. ■
It remains to show that, in the above f

(
Sp−1

)
is the boundary of both components, the

bounded one and the unbounded one.

Theorem 23.5.6 Let Sp−1 be the unit sphere in Rp, p ≥ 2. Suppose γ : Sp−1 → Γ ⊆ Rp

is one to one onto and continuous. Then Rp \Γ consists of two components, a bounded
component (called the inside) Ui and an unbounded component (called the outside), Uo.
Also the boundary of each of these two components of Rp \Γ is Γ and Γ has empty interior.

Proof: γ−1 is continuous since Sp−1 is compact and γ is one to one. By the Jordan
separation theorem, Rp \Γ = Uo ∪Ui where these on the right are the connected com-
ponents of the set on the left, both open sets. Only one of them is bounded, Ui. Thus
Γ∪Ui∪Uo = Rp. Since both Ui,Uo are open, ∂U ≡U \U for U either Uo or Ui. If x ∈ Γ,
and is not a limit point of Ui, then there is B(x,r) which contains no points of Ui. Let S be
those points x of Γ for which B(x,r) contains no points of Ui for some r > 0. This S is open
in Γ. Let Γ̂ be Γ\S. Then if Ĉ = γ−1

(
Γ̂
)
, it follows that Ĉ is a closed set in Sp−1and is a

proper subset of Sp−1. It is obvious that taking a relatively open set from Sp−1 results in a
compact set whose complement is an open connected set. By Proposition 23.5.4, Rp \ Γ̂ is
also an open connected set. Start with x ∈Ui and consider a continuous curve which goes
from x to y ∈Uo which is contained in Rp \ Γ̂ . Thus the curve contains no points of Γ̂.
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However, it must contain points of Γ which can only be in S. The first point of Γ intersected
by this curve is a point in Ui and so this point of intersection is not in S after all because
every ball containing it must contain points of Ui. Thus S = /0 and every point of Γ is in
Ui. Similarly, every point of Γ is in Uo. Thus Γ ⊆Ui \Ui and Γ ⊆Uo \Uo. However, if
x ∈Ui \Ui, then x /∈Uo because it is a limit point of Ui and so x ∈ Γ. It is similar with Uo.
Thus Γ =Ui \Ui and Γ =Uo \Uo. This could not happen if Γ had an interior point. Such a
point would be in Γ but would fail to be in either ∂Ui or ∂Uo. ■

When p = 2, this theorem is called the Jordan curve theorem.
What if γ maps B̄ to Rp instead of just Sp−1? Obviously, one should be able to say a

little more.

Corollary 23.5.7 Let B be an open ball and let γ : B̄→ Rp be one to one and continuous.
Let Ui,Uo be as in the above theorem, the bounded and unbounded components of γ (∂B)C.
Then Ui = γ (B).

Proof: By connectedness and the observation that γ (B) contains no points of C ≡
γ (∂B) , it follows that γ (B) ⊆ Ui or Uo. Suppose γ (B) ⊆ Ui. I want to show that γ (B)
is not a proper subset of Ui. If γ (B) is a proper subset of Ui, then if x ∈Ui \ γ (B) , it fol-
lows also that x ∈Ui \ γ (B̄) because x /∈C = γ (∂B). Let H be the component of Ui \ γ (B̄)
determined by x. In particular H and Uo are separated since they are disjoint open sets.
Now γ (B̄)C and B̄C each have only one component. This is true for B̄C and by the Jordan
separation theorem, also true for γ (B̄)C. However, H is in γ (B̄)C as is Uo and so γ (B̄)C has
at least two components after all. If γ (B)⊆Uo the argument works exactly the same. Thus
either γ (B) = Ui or γ (B) = Uo. The second alternative cannot take place because γ (B) is
bounded. Hence γ (B) =Ui. ■

Note that this essentially gives the invariance of domain theorem.

23.6 The Jordan Separation Theorem
What follows is the general Jordan separation theorem.

Lemma 23.6.1 Let Ω be a bounded open set in Rp, f ∈C
(
Ω;Rp

)
, and suppose {Ωi}∞

i=1
are disjoint open sets contained in Ω such that

y /∈ f
(
Ω\∪∞

j=1Ω j
)

Then

d (f,Ω,y) =
∞

∑
j=1

d (f,Ω j,y)

where the sum has all but finitely many terms equal to 0.

Proof: By assumption, the compact set f−1 (y) ≡
{

x ∈Ω : f(x) = y
}

has empty inter-
section with

Ω\∪∞
j=1Ω j

and so this compact set is covered by finitely many of the Ω j, say {Ω1, · · · ,Ωn−1} and

y /∈ f
(
∪∞

j=nΩ j
)
.
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By Theorem 23.2.2 and letting O = ∪∞
j=nΩ j,

d (f,Ω,y) =
n−1

∑
j=1

d (f,Ω j,y)+d (f,O,y) =
∞

∑
j=1

d (f,Ω j,y)

because d (f,O,y) = 0 as is d (f,Ω j,y) for every j ≥ n. ■
To help remember some symbols, here is a short diagram. I have a little trouble remem-

bering what is what when I read the proof.

bounded components Rp \C bounded components Rp \ f(C)
K L

For K ∈K , K a bounded component of Rp \C,

bounded components of Rp \ f(∂K)
H

LH sets of L contained in H ∈H
H1 those sets of H which intersect a set of L

Note that the sets of H will tend to be larger than the sets of L . The following lemma
relating to the above definitions is interesting.

Lemma 23.6.2 If a component L of Rp \ f(C) intersects a component H of Rp \ f(∂K), K
a component of Rp \C, then L⊆ H.

Proof: First note that by Lemma 23.5.1 for K ∈K , ∂K ⊆C.
Next suppose L ∈L and L∩H ̸= /0 where H is as described above. Suppose y∈ L\H

so L is not contained in H. Since y∈ L, it follows that y /∈ f(C) and so y /∈ f(∂K) either, by
Lemma 23.5.1. It follows that y ∈ H̃ for some other H̃ a component of Rp \ f(∂K) . Now
Rp \ f(∂K)⊇ Rp \ f(C) and so ∪H ⊇ L and so

L = ∪{L∩H : H ∈H }

and these are disjoint open sets with two of them nonempty. Hence L would not be con-
nected which is a contradiction. Hence if L∩H ̸= /0, then L⊆ H. ■

The following is the Jordan separation theorem. It is based on a use of the product
formula and splitting up the sets of L into LH for various H ∈H , those in LH being the
ones which intersect H thanks to the above lemma.

Theorem 23.6.3 (Jordan separation theorem) Let f be a homeomorphism of C and f(C)
where C is a compact set in Rp. Then Rp \C and Rp \ f(C) have the same number of
connected components.

Proof: Denote by K the bounded components of Rp \C and denote by L , the
bounded components of Rp \ f(C). Also, using the Tietze extension theorem on com-
ponents of a vector valued function, there exists f̄ an extension of f to all of Rp and let f−1

be an extension of f−1 to all of Rp. Pick K ∈K and take y ∈ K. Then ∂K ⊆ C and so
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y /∈ f−1
(
f̄(∂K)

)
. Since f−1 ◦ f̄ equals the identity I on ∂K, it follows from the properties of

the degree that
1 = d (I,K,y) = d

(
f−1 ◦ f̄,K,y

)
.

Recall that if two functions agree on the boundary, then they have the same degree. Let H
denote the set of bounded components of Rp \ f(∂K). Then

∪H = Rp \ f(∂K)⊇ Rp \ f(C)

Thus if L ∈L , then L ⊆ ∪H and so it must intersect some set H of H . By the above
Lemma 23.6.2, L is contained in this set of H so it is in LH .

By the product formula,

1 = d
(

f−1 ◦ f̄,K,y
)
= ∑

H∈H
d
(
f̄,K,H

)
d
(

f−1,H,y
)
, (23.6.13)

the sum being a finite sum. That is, there are finitely many H involved in the sum, the other
terms being zero, this by the general result in the product formula.

What about those sets of H which contain no set of L ? These sets also have empty
intersection with all sets of L and empty intersection with the unbounded component(s)
of Rp \ f(C) by Lemma 23.6.2. Therefore, for H one of these, H ⊆ f(C) because H has no
points of Rp \ f(C) which equals

∪L ∪{unbounded component(s) of Rp \ f(C) } .

Therefore,
d
(

f−1,H,y
)
= d

(
f−1,H,y

)
= 0

because y ∈ K a bounded component of Rp \C, but for u ∈ H ⊆ f(C) , f−1 (u) ∈ C so
f−1 (u) ̸= y implying that d

(
f−1,H,y

)
= 0. Thus in 23.6.13, all such terms are zero. Then

letting H1 be those sets of H which contain (intersect) some sets of L , the above sum
reduces to

1 = ∑
H∈H1

d
(
f̄,K,H

)
d
(

f−1,H,y
)

Note also that for H ∈H1, H \∪LH = H \∪L and it has no points of Rp \ f(C) = ∪L
so H \∪LH is contained in f(C). Thus y /∈ f−1

(
H \∪LH

)
⊆C because y /∈C.

It follows from Lemma 23.6.1 which comes from Theorem 23.2.2, the part about having
disjoint open sets in Ω and getting a sum of degrees over these being equal to d (f,Ω,y)
that

∑
H∈H1

d
(
f̄,K,H

)
d
(

f−1,H,y
)

= ∑
H∈H1

d
(
f̄,K,H

)
∑

L∈LH

d
(

f−1,L,y
)

= ∑
H∈H1

∑
L∈LH

d
(
f̄,K,H

)
d
(

f−1,L,y
)

where LH are those sets of L contained in H.
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Now d
(
f̄,K,H

)
= d

(
f̄,K,L

)
where L ∈LH . This is because L is an open connected

subset of H and z→ d
(
f̄,K,z

)
is constant on H. Therefore,

∑
H∈H1

∑
L∈LH

d
(
f̄,K,H

)
d
(

f−1,L,y
)
= ∑

H∈H1

∑
L∈LH

d
(
f̄,K,L

)
d
(

f−1,L,y
)

As noted above, there are finitely many H ∈H which are involved.

Rp \ f(C)⊆ Rp \ f(∂K)

and so every L must be contained in some H ∈H1. It follows that the above reduces to

∑
L∈L

d
(
f̄,K,L

)
d
(

f−1,L,y
)

Where this is a finite sum because all but finitely many terms are 0.
Thus from 23.6.13,

1 = ∑
L∈L

d
(
f̄,K,L

)
d
(

f−1,L,y
)
= ∑

L∈L
d
(
f̄,K,L

)
d
(

f−1,L,K
)

(23.6.14)

Let |K | denote the number of components in K and similarly, |L | denotes the number of
components in L . Thus

|K |= ∑
K∈K

1 = ∑
K∈K

∑
L∈L

d
(
f̄,K,L

)
d
(

f−1,L,K
)

Similarly, the argument taken another direction yields

|L |= ∑
L∈L

1 = ∑
L∈L

∑
K∈K

d
(
f̄,K,L

)
d
(

f−1,L,K
)

If |K |< ∞, then ∑K∈K

1︷ ︸︸ ︷
∑

L∈L
d
(
f̄,K,L

)
d
(

f−1,L,K
)
< ∞. The summation which equals 1

is a finite sum and so is the outside sum. Hence we can switch the order of summation and
get

|K |= ∑
L∈L

∑
K∈K

d
(
f̄,K,L

)
d
(

f−1,L,K
)
= |L |

A similar argument applies if |L | < ∞. Thus if one of these numbers |K | , |L | is finite,
so is the other and they are equal. This proves the theorem because if p > 1 there is exactly
one unbounded component to both Rp \C and Rp \ f(C) and if p = 1 there are exactly two
unbounded components. ■

As an application, here is a very interesting little result. It has to do with d (f,Ω, f(x))
in the case where f is one to one and Ω is connected. You might imagine this should equal 1
or −1 based on one dimensional analogies. Recall a one to one map defined on an interval
is either increasing or decreasing. It either preserves or reverses orientation. It is similar in
n dimensions and it is a nice application of the Jordan separation theorem and the product
formula.
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Proposition 23.6.4 Let Ω be an open connected bounded set in Rp, p ≥ 1 such that Rp \
∂Ω consists of two, three if n = 1, connected components. Let f ∈C

(
Ω;Rp

)
be continuous

and one to one. Then f(Ω) is the bounded component of Rp \ f(∂Ω) and for y ∈ f(Ω) ,
d (f,Ω,y) either equals 1 or −1.

Proof: First suppose n ≥ 2. By the Jordan separation theorem, Rp \ f(∂Ω) consists
of two components, a bounded component B and an unbounded component U . Using the
Tietze extention theorem, there exists g defined on Rp such that g = f−1 on f

(
Ω
)
. Thus on

∂Ω,g◦ f = id. It follows from this and the product formula that

1 = d (id,Ω,g(y)) = d (g◦ f,Ω,g(y))
= d (g,B,g(y))d (f,Ω,B)+d (f,Ω,U)d (g,U,g(y))
= d (g,B,g(y))d (f,Ω,B)

The reduction happens because d (f,Ω,U) = 0 as explained above. Since U is unbounded,
there are points in U which cannot be in the compact set f

(
Ω̄
)
. For such, the degree is 0 but

the degree is constant on U, one of the components of f(∂Ω). Therefore, d (f,Ω,B) ̸= 0 and
so for every z ∈ B, it follows z ∈ f(Ω) . Thus B ⊆ f(Ω) . On the other hand, f(Ω) cannot
have points in both U and B because it is a connected set. Therefore f(Ω) ⊆ B and this
shows B = f(Ω). Thus d (f,Ω,B) = d (f,Ω,y) for each y ∈ B and the above formula shows
this equals either 1 or −1 because the degree is an integer. In the case where n = 1, the
argument is similar but here you have 3 components in R1 \ f(∂Ω) so there are more terms
in the above sum although two of them give 0. ■

Here is another nice application of the Jordan separation theorem to the Jordan curve
theorem and generalizations to higher dimensions.

23.7 Uniqueness of the Degree
The degree exists and has the above properties which allow one to prove amazing theorems.
This is plenty to justify it. However, one might wonder whether, if we have a degree
function with these properties, it will be the same? The answer is yes. It is likely possible to
give a shorter list of desired properties however. Nevertheless, we want all these properties.
First are some simple applications of the product formula which is one of the items which
it is assumed satisfied by the degree.

Lemma 23.7.1 Let h : Rp→ Rp be a homeomorphism. Then

1 = d (h,Ω,h(y))d
(
h−1,h(Ω) ,y

)
whenever y /∈ ∂Ω for Ω a bounded open set. Similarly,

1 = d
(
h−1,Ω,h−1 (y)

)
d
(
h,h−1 (Ω) ,y

)
.

Thus both terms in the factor equal either 1 or −1.

Proof: It is known that y /∈ ∂Ω. Let L be the components ofRp \h(∂Ω) . Thus h(y) /∈
h(∂Ω). The product formula gives

1 = d
(
h−1◦h,Ω,y

)
= ∑

L∈L
d (h,Ω,L)d

(
h−1,L,y

)
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d
(
h−1,L,y

)
might be nonzero if y ∈ h−1 (L) . But, since h−1 is one to one, if y ∈ h−1 (L) ,

then y /∈ h−1 (L̃) for any other L̃ ∈L . Thus there is only one term in the above sum.

1 = d (h,Ω,L)d
(
h−1,L,y

)
,y ∈ h−1 (L)

1 = d (h,Ω,h(y))d
(
h−1,h(Ω) ,y

)
Since the degree is an integer, both factors are either 1 or −1. ■

The following assumption is convenient and seems like something which should be
true. It says just a little more than d (id,Ω,y) = 1 for y ∈ Ω. Actually, you could prove
it by adding in a succession of z

n to id for n large till you get to h in the first argument
and hz (y) in the last and use the property that the degree is continuous in the first and last
places. However, this is such a reasonable thing to assume, that it seems like we might as
well have assumed it instead of d (id,Ω,y) = 1 for y ∈Ω.

Assumption 23.7.2 If hz (x) = x+ z, then for y /∈ ∂Ω,y ∈Ω,

d (hz,Ω,hz (y)) = d (id,Ω,y) = 1.

That is,d (·+ z,Ω,z+y) = 1. From the above lemma, d (hz,h−z (Ω) ,y) = 1 also.

Now let hz (x)≡ x+ z. Let y /∈ g(∂Ω) and consider

d (h−y ◦g◦hz,h−z (Ω) ,h−y (y)) = d (h−y ◦g◦hz,h−z (Ω) ,0)

Let L be the components ofRp \g◦hz (∂ (h−z (Ω))) =Rp \g(∂Ω) . Then the product rule
gives d (h−y ◦g◦hz,h−z (Ω) ,0) =

∑
L∈L

d (g◦hz,h−z (Ω) ,L)d (h−y,L,0)

Now h−y is one to one and so if 0 ∈ h−y (L) , then this is true for only that single L and so
there is only one term in the sum. For a single L where 0 ∈ h−y (L) so y ∈ L,

d (h−y ◦g◦hz,h−z (Ω) ,h−y (y)) = d (g◦hz,h−z (Ω) ,L)d (h−y,L,h−y (y))

Now from the assumption, this equals d (g◦hz,h−z (Ω) ,L) = d (g◦hz,h−z (Ω) ,y) . Now
we use the product rule on this. Letting K be the bounded components of

Rp \hz (∂h−z (Ω)) = Rp \∂Ω

d (g◦hz,h−z (Ω) ,y) = ∑
K∈K

d (hz,h−z (Ω) ,K)d (g,K,y)

The points of K are not in ∂Ω and so, from the assumption, d (hz,h−z (Ω) ,K) = 1. Thus
this whole thing reduces to ∑K∈K d (g,K,y)= d (g,Ω,y). This shows the following lemma.

Lemma 23.7.3 The following formula holds

d (h−y ◦g◦hz,h−z (Ω) ,h−y (y)) = d (g◦hz,h−z (Ω) ,L) = d (g,Ω,y) .

In other words, d (g,Ω,y) = d (g(·+ z) ,Ω− z,y) = d (g(·+ z)−y,Ω− z,0).
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Theorem 23.7.4 You have a function d which has integer values d (g,Ω,y) ∈ Z whenever
y /∈ g(∂Ω) for g ∈ C

(
Ω;Rp

)
. Assume it satisfies the following properties which the one

above satisfies.

1. (homotopy invariance) If
h ∈C

(
Ω× [0,1] ,Rp)

and y(t) /∈ h(∂Ω, t) for all t ∈ [0,1] where y is continuous, then

t→ d (h(·, t) ,Ω,y(t))

is constant for t ∈ [0,1] .

2. If Ω⊇Ω1∪Ω2 where Ω1∩Ω2 = /0, for Ωi an open set, then if

y /∈ f
(
Ω\ (Ω1∪Ω2)

)
then

d (f,Ω1,y)+d (f,Ω2,y) = d (f,Ω,y)

3. d (id,Ω,y) = 1 if y ∈Ω.

4. d (f,Ω, ·) is continuous and constant on every connected component of Rp \ f(∂Ω).

5. If y /∈ f(∂Ω), and if d (f,Ω,y) ̸= 0, then there exists x ∈Ω such that f(x) = y.

6. Product formula, Assumption 23.7.2.

Then d is the degree which was defined above. Thus, in a sense, the degree is unique if
we want it to do these things.

Proof: First note that h → d (h,Ω,y) is continuous on C
(
Ω,Rp

)
. Say ∥g−h∥

∞
<

dist(h(∂Ω) ,y) . Then if x ∈ ∂Ω, t ∈ [0,1] ,

∥g(x)+ t (h−g)(x)−y∥ = ∥g(x)−h(x)+ t (h−g)(x)+h(x)−y∥
≥ dist(h(∂Ω) ,y)− (1− t)∥g−h∥

∞
> 0

By homotopy invariance, d (g,Ω,y) = d (h,Ω,y) . By the approximation lemma, if we can
identify the degree for g ∈ C∞

(
Ω,Rp

)
with y a regular value, y /∈ g(∂Ω) then we know

what the degree is. Say g−1 (y) = {x1, · · · ,xn} . Using the inverse function theorem there
are balls Bir containing xi such that none of these balls of radius r intersect and g is one to
one on each. Then from the theorem on the fundamental properties assumed above,

d (g,Ω,y) =
n

∑
i=1

d (g,Bir,y) (23.7.15)

and by assumption, this is

n

∑
i=1

d (g(·+xi) ,B(0,r) ,y) =
n

∑
i=1

d (g(·+xi)−y,B(0,r) ,0) =
n

∑
i=1

d (h,B(0,r) ,0)
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where h(x) ≡ g(x+xi)− y. There is no restriction on the size of r. Consider one of the
terms in the sum. d (h,B(0,r) ,y) . Note Dh(0) = Dg(xi) .

h(x) = Dh(0)x+o(x) (23.7.16)

Now let

L(z1, ...,zp)≡

 ∇h1 (z1)
...

∇hp (zp)


By the mean value theorem applied to the components of h, if x ̸= 0,∥x∥ ≤ r, there exist
z1, ...,zp ∈ B(0,r)×·· ·×B(0,r)

∥h(x)−h(0)∥
∥x∥

=
∥h(x)−0∥
∥x∥

=

∥∥L(z1, ...,zp)x
∥∥

∥x∥
=

∥∥∥∥L(z1, ...,zn)

(
x
∥x∥

)∥∥∥∥ (23.7.17)

Since Dh(0)−1 exists, we can choose r small enough that for all (z1, ...,zp) ∈ B(0,r)×
·· ·×B(0,r)

det(L(z1, ...,zp)) ̸= 0

Hence, for such sufficiently small r, there is δ > 0 such that for S the unit sphere,

{x :∥x∥= 1} ,

inf
{∥∥L(z1, ...,zp)x

∥∥ : (z1, ...,zp,x) ∈ B(0,r)×·· ·×B(0,r)×S
}
= δ > 0

Then it follows from 23.7.17 that if ∥x∥ ≤ r, ∥h(x)∥∥x∥ ≥ δ so ∥h(x)−0∥ ≥ δ ∥x∥. Letting
∥x∥= r so x ∈ h(∂B(0,r)) ,

dist(h(∂B(0,r)) ,0)≥ δ r

Now pick ε < δ . Making r still smaller if necessary, it follows from 23.7.16 that if
∥x∥ ≤ r,

∥h(x)−Dh(0)x∥ ≤ ε ∥x∥< δ r ≤ dist(h(∂B(0,r)) ,0)

Thus,
∥h−Dh(0)(·)∥

∞,B(0,r) < dist(h(∂B(0,r)) ,0)

and so d (h,B(0,r) ,0) = d (Dh(0)(·) ,B(0,r) ,0).
Say A = Dh(0) an invertible matrix. Then if U is any open set containing 0, it follows

from the properties of the degree that d (A,U,0) = d (A,B(0,r) ,0) whenever r is small
enough. By the product formula and 3. above,

1 = d (I,B(0,r) ,0) = d
(
A−1A,B(0,r) ,0

)
= d (A,B(0,r) ,AB(0,r))d

(
A−1,AB(0,r) ,0

)
+d
(

A,B(0,r) ,AB(0,r)
C
)

d
(

A−1,AB(0,r)
C
,0
)
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From 5. above, this reduces to

1 = d (A,B(0,r) ,AB(0,r))d
(
A−1,AB(0,r) ,0

)
Thus, since the degree is an integer, either both d (A,B(0,r) ,0) ,d

(
A−1,AB(0,r) ,0

)
are 1

or they are both −1. This would hold if when A is invertible,

d (A,B(0,r) ,0) = sgn(det(A)) = sgn
(
det
(
A−1)) .

It would also hold if d (A,B(0,r) ,0) = −sgn(det(A)) . However, the latter of the two al-
ternatives is not the one wanted because, doing something like the above,

d
(
A2,B(0,r) ,0

)
= d (A,B(0,r) ,AB(0,r))d (A,AB(0,r) ,0)
= d (A,B(0,r) ,0)d (A,AB(0,r) ,0)

If you had for a definition d (A,B(0,r) ,0) =−sgndet(A) , then you would have

−sgndet
(
A2)=−1 = (−sgndet(A))2 = 1

Hence the only reasonable definition is to let d (A,B(0,r) ,0) = sgn(det(A)). It follows
from 23.7.15 that d (g,Ω,y)=∑

n
i=1 d (g,Bir,y)=∑

n
i=1 sgn(det(Dg(xi))) . Thus, if the above

conditions hold, then in whatever manner you construct the degree, it amounts to the defini-
tion given above in this chapter in the sense that for y a regular point of a smooth function,
you get the definition of the chapter. ■

23.8 A Function With Values In Smaller Dimensions
Recall that we have the degree defined d ( f ,Ω,y) for continuous functions on Ω̄ and y /∈
f (∂Ω). It had properties as follows.

1. d (id,Ω,y) = 1 if y ∈Ω.

2. If Ωi ⊆Ω,Ωi open, and Ω1∩Ω2 = /0 and if y /∈ f
(
Ω\ (Ω1∪Ω2)

)
, then d (f,Ω1,y)+

d (f,Ω2,y) = d (f,Ω,y).

3. If y /∈ f
(
Ω\Ω1

)
and Ω1 is an open subset of Ω, then

d (f,Ω,y) = d (f,Ω1,y) .

4. For y ∈ Rn \ f(∂Ω) , if d (f,Ω,y) ̸= 0 then f−1 (y)∩Ω ̸= /0.

5. If t→ y(t) is continuous h : Ω̄× [0,1]→Rn is continuous and if y(t) /∈ h(∂Ω, t) for
all t, then t→ d (h(·, t) ,Ω,y(t)) is constant.

6. d (·,Ω,y) is defined and constant on{
g ∈C

(
Ω;Rn) : ||g− f||

∞
< r
}

where r = dist(y, f(∂Ω)).
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7. d (f,Ω, ·) is constant on every connected component of Rn \ f(∂Ω).

8. d (g,Ω,y) = d (f,Ω,y) if g|
∂Ω

= f|
∂Ω

.

Theorem 23.8.1 Let Ω be a bounded open set in Rn and let f ∈ C
(
Ω̄;Rn

m
)

where Rn
m =

{x ∈ Rn : xk = 0 for k > m} . Thus x concludes with a column of n−m zeros. Let y ∈ Rn
m \

(id−f)(∂Ω) . Then d (id−f,Ω,y) = d
(
(id−f) |

Ω∩Rn
m
,Ω∩Rn

m,y
)
.

Proof: To save space, let g = id−f. Then there is no loss of generality in assuming at
the outset that y is a regular value for g. Indeed, everything above was reduced to this case.
Then for x ∈ g−1 (y) and letting xm be the first m variables for x,

Dg(x) =
(

Dxmg(x) ∗
0 In−m

)
Then it follows that

0 ̸= det(Dg(x)) = det
(

Dxmg(x) ∗
0 In−m

)
= det

(
Dxmg(x) 0

0 In−m

)
= det(Dxmg(x))

This last is just the determinant of the derivative of the function which results from restrict-
ing g to the first m variables. Now y ∈ Rn

m and f also is given to have values in Rn
m so

if g(x) = y, then you have x− f(x) = y which requires x ∈ Rn
m also. Therefore, g−1 (y)

consists of points in Rn
m only. Thus, y is also a regular value of the function which results

from restricting g to Rn
m∩Ω.

d (id−f,Ω,y) = d (g,Ω,y)

= ∑
x∈g−1(y)

sign(det(Dg(x)))

= ∑
x∈g−1(y)

sign(det(Dxmg(x)))≡ d
(
(id−f) |

Ω∩Rn
m
,Ω∩Rn

m,y
)
■

Recall that for g ∈C2
(
Ω̄;Rn

)
,

d (g,Ω,y)≡ lim
ε→0

∫
Ω

φ ε (g(x)−y)detDg(x)dx

In fact, it can be shown that the degree is unique based on its Properties, 1,2,5 above. It
involves reducing to linear maps and then some complicated arguments involving linear
algebra. It is done in [38]. Here we will be a little less ambitious. The following lemma
will be useful when extending the degree to finite dimensional normed linear spaces and
from there to Banach spaces. It is motivated by the following diagram.

θ
−1 (y) θ

−1
← y

↑ θ
−1 ◦g◦θ ↑ g

θ
−1 (Ω)

θ→ Ω
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Lemma 23.8.2 Let y /∈ g(∂Ω) and let θ be an isomorphism of Rn. That is, θ is one to one
onto and linear. Then

d
(
θ
−1 ◦g◦θ ,θ−1 (Ω) ,θ−1y

)
= d (g,Ω,y)

Proof: It suffices to consider g ∈C2
(
Ω̄;Rn

)
for which y is a regular value because you

can get such a ĝ with ∥ĝ−g∥
∞
< δ where

B(y,2δ )∩g(∂Ω) = /0.

Thus B(y,δ )∩ ĝ(∂Ω) = /0 and so d (g,Ω,y) = d (ĝ,Ω,y) . One can assume similarly that
∥ĝ−g∥

∞
is sufficiently small that

d
(
θ
−1g◦θ ,θ−1 (Ω) ,θ−1y

)
= d

(
θ
−1ĝ◦θ ,θ−1 (Ω) ,θ−1y

)
because both θ and θ

−1 are continuous. Thus it suffices to consider at the outset g ∈
C2
(
Ω̄;Rn

)
. Then from the definition of degree for C2 maps,

d
(
θ
−1 ◦g◦θ ,θ−1 (Ω) ,θ−1y

)
= lim

ε→0

∫
θ
−1

Ω

φ ε

((
θ
−1 ◦g◦θ

)
(z)−θ

−1y
)

detD
(
θ
−1 ◦g◦θ

)
(z)dz

Now D
(
θ
−1 ◦g◦θ

)
(z) = θ

−1 D(g◦θ)(z) = θ
−1Dg(θ (z))θz. Changing the variables

x = θz,z = θ
−1x, this last integral equals∫

Ω

φ ε

((
θ
−1g◦θ

)(
θ
−1 (x)

)
−θ

−1y
)

detDg(x) |detθ |
∣∣detθ

−1∣∣2 dx

=
∫

Ω

φ ε

(
θ
−1g(x)−θ

−1y
)∣∣detθ

−1∣∣detDg(x)dx

Recall that φ ε is a mollifier which is nonzero only in B(0,ε). Now

g−1 (y) = {x1, · · · ,xm}=
(
θ
−1g
)−1 (

θ
−1y
)

and so g(xi)= y and θ
−1g(xi)= θ

−1y. By the inverse function theorem, there exist disjoint
open sets Ui with xi ∈Ui, such that θ

−1g is one to one on Ui with det
(
D
(
θ
−1g
)
(x)
)
=

det
(
θ
−1)detDg(x) having constant sign on Ui and θ

−1g(Ui) is an open set containing
θ
−1y. Then let ε be small enough that B

(
θ
−1y,ε

)
⊆ ∩m

i=1θ
−1g(Ui) and let

Vi ≡
(
θ
−1g
)−1 (

B
(
θ
−1y,ε

))
∩Ui

Thus for small ε, the Vi are disjoint open sets in Ω and∫
Ω

φ ε

(
θ
−1g(x)−θ

−1y
)

detDg(x)
∣∣detθ

−1∣∣dx

=
m

∑
i=1

∫
Vi

φ ε

(
θ
−1 (g(x)−y)

)
detDg(x)

∣∣detθ
−1∣∣dx
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Now just let z = g(x)−y and change the variables.

=
m

∑
i=1

∣∣detθ
−1∣∣∫

g(Vi)−y
φ ε

(
θ
−1z
)

detDg
(
g−1 (y+ z)

)∣∣detDg−1 (y+ z)
∣∣dz

By the chain rule, I = Dg
(
g−1 (y+ z)

)
Dg−1 (y+ z) and so

detDg
(
g−1 (y+ z)

)∣∣detDg−1 (y+ z)
∣∣

= sgn
(
detDg

(
g−1 (y+ z)

))
·

∣∣detDg
(
g−1 (y+ z)

)∣∣ ∣∣detDg−1 (y+ z)
∣∣

= sgn
(
detDg

(
g−1 (y+ z)

))
= sgn(detDg(x)) = sgn(detDg(xi)) .

and so it all reduces to

m

∑
i=1

sgn(detDg(xi))
∫

g(Vi)−y
φ ε

(
θ
−1z
)

dz

=
m

∑
i=1

sgn(detDg(xi))
∫

θB(0,ε)

∣∣detθ
−1∣∣φ ε

(
θ
−1z
)

dz

=
m

∑
i=1

sgn(detDg(xi))
∫

B(0,ε)
φ ε (w)

∣∣detθ
−1∣∣ |detθ |dw

=
m

∑
i=1

sgn(detDg(xi)) = d (g,Ω,y) . ■

What about functions which have values in finite dimensional vector spaces?

Theorem 23.8.3 Let Ω be an open bounded set in V a real normed n dimensional vector
space. Then there exists a topological degree d ( f ,Ω,y) for f ∈C

(
Ω̄,V

)
,y /∈ f (∂Ω) which

satisfies all the properties of the degree for functions having values in Rn described above,

1. d (id,Ω,y) = 1 if y ∈Ω.

2. If Ωi ⊆Ω,Ωi open, and Ω1∩Ω2 = /0 and if y /∈ f
(
Ω\ (Ω1∪Ω2)

)
, then d ( f ,Ω1,y)+

d ( f ,Ω2,y) = d ( f ,Ω,y).

3. If y/∈ f
(
Ω\Ω1

)
and Ω1 is an open subset of Ω, then

d ( f ,Ω,y) = d ( f ,Ω1,y) .

4. For y ∈ Rn \ f (∂Ω) , if d ( f ,Ω,y) ̸= 0 then f−1 (y)∩Ω ̸= /0.
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5. If t→ y(t) is continuous h : Ω̄× [0,1]→Rn is continuous and if y(t) /∈ h(∂Ω, t) for
all t, then t→ d (h(·, t) ,Ω,y(t)) is constant.

6. d (·,Ω,y) is defined and constant on{
g ∈C

(
Ω;Rn) : ||g− f ||

∞
< r
}

where r = dist(y, f (∂Ω)).

7. d ( f ,Ω, ·) is constant on every connected component of Rn \ f (∂Ω).

8. d (g,Ω,y) = d ( f ,Ω,y) if g|∂Ω = f |∂Ω.

Proof: There is an isomorphism θ :Rn→V which also preserves all topological prop-
erties. This follows from the properties of finite dimensional vector spaces. In fact, every
algebraic isomorphism is automatically a homeomorphism preserving all topological prop-
erties. Then it is pretty easy to see what the degree should be.

d ( f ,Ω,y)≡ d
(
θ
−1 ◦ f ◦θ ,θ−1 (Ω) ,θ−1y

)
Then by standard material on finite dimensional vector spaces, the norm on V is equivalent
to the norm defined by |v| ≡

∣∣θ−1v
∣∣
Rn . Hence all of those properties hold. By Lemma

23.8.2 this definition does not depend on the particular isomorphism used. If θ̂ is another
one, then one would need to verify that

d
(
θ
−1 ◦ f ◦θ ,θ−1 (Ω) ,θ−1y

)
= d

(
θ̂
−1 ◦ f ◦ θ̂ , θ̂

−1
(Ω) , θ̂

−1
y
)

However, you could use that lemma to conclude that

d
(

θ̂
−1 ◦ f ◦ θ̂ , θ̂

−1
(Ω) , θ̂

−1
y
)

= d
(

α
−1 ◦ θ̂

−1 ◦ f ◦ θ̂ ◦α,α−1
θ̂
−1

(Ω) ,α−1
θ̂
−1

y
)

where α is such that θ̂ ◦α = θ . Then this verifies the appropriate equation. ■
Next one considers what happens when the function I− f has values in a smaller di-

mensional subspace.

Theorem 23.8.4 Let Ω be a bounded open set in V an n dimensional normed linear space
and let f ∈C

(
Ω̄;Vm

)
where Vm is an m dimensional subspace. Let y ∈ Vm \ (I− f )(∂Ω) .

Then d (I− f ,Ω,y) = d
(
(I− f ) |

Ω∩Vm
,Ω∩Vm,y

)
.

Proof: Letting {v1, · · · ,vm} be a basis for Vm, let a basis for V be

{v1, · · · ,vm,vm+1, · · · ,vn}

Let θ be the isomorphism which satisfies θei = vi where the ei denotes the standard basis
vectors for Rn. Then from the above,

d (I− f ,Ω,y) ≡ d
(
θ
−1 ◦ (I− f )◦θ ,θ−1

Ω,θ−1y
)

= d
(

θ
−1 ◦ (I− f )◦θ |

θ
−1(Ω)∩Rn

m
,θ−1 (Ω)∩Rn

m,θ
−1y
)

≡ d
(
(I− f ) |

Ω∩Vm
,Ω∩Vm,y

)
. ■
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23.9 The Leray Schauder Degree
This is a very important generalization to Banach spaces. It turns out you can define the
degree of I−F where F is a compact mapping. To recall what one of these is, here is the
definition.

Definition 23.9.1 Let Ω be a bounded open set in X a Banach space and let F : Ω→ X be
continuous. Then F is called compact if F (B) is precompact whenever B is bounded. That
is, if {xn} is a bounded sequence, then there is a subsequence

{
xnk

}
such that

{
F
(
xnk

)}
converges.

Theorem 23.9.2 Let F : Ω→ X as above be compact. Then for each ε > 0, there exists
Fε : Ω→ X such that F has values in a finite dimensional subspace of X and

sup
x∈Ω

∥Fε (x)−F (x)∥< ε

In addition to this, (I−F)−1 (compact set) =compact set. (This is called “proper”.)

Proof: It is known that F (Ω) is compact. Therefore, there is an ε net for F (Ω),
{Fxk}n

k=1 satisfying
F (Ω)⊆ ∪kB(Fxk,ε)

Now let
φ k (Fx)≡ (ε−∥Fx−Fxk∥)+

Thus this is equal to 0 if ∥Fxk−Fx∥ ≥ ε and is positive if ∥Fxk−Fx∥< ε . Then consider

Fε (x)≡
n

∑
k=1

F (xk)
φ k (Fx)

∑i φ i (Fx)

It clearly has values in span({Fxk}n
k=1) . How close is it to F (x)? Say Fx ∈ B(Fxk,ε) .

Then for such x,∥F (x)−F (xk)∥< ε by definition. Hence

∥F (x)−Fε (x)∥ = ∑
k:∥F(x)−Fxk∥<ε

∥F (xk)−F (x)∥ φ k (Fx)
∑i φ i (Fx)

< ε ∑
k

φ k (Fx)
∑i φ i (Fx)

= ε

Of course x is arbitrary and so

sup
x∈Ω

∥Fε (x)−F (x)∥< ε.

Next consider the second claim. Let K be compact. Consider

{xk} ⊆ (I−F)−1 (K) .

It is necessary to show that it has a convergent subsequence. Then {(I−F)(xk)} is a
sequence in K and so it has a convergent subsequence still denoted with subscript k such
that (I−F)(xk)→ y. The xk are in a bounded set Ω and so, from compactness of F, there
is a further subsequence, still denoted with subscript k such that Fxk → z. It follows that
xk→ y− z and hence every sequence in (I−F)−1 (K) has a convergent subsequence. ■
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Corollary 23.9.3 Let F : Ω→ X as above be compact. Then for each ε > 0, there exists
Fε : Ω→ X such that F has values in a finite dimensional subspace of X and

sup
x∈Ω

∥Fε (x)−F (x)∥< ε

. . In addition to this, (I−F)−1 (compact set) =compact set. (This is called “proper”.) If
Ω is symmetric and F is odd (F (−x) =−F (x)) then one can also assume Fε is also odd.

Proof: Suppose Ω is symmetric in that x ∈ Ω iff −x ∈ Ω. Suppose also that F is odd.
Thus F (Ω) is also symmetric. Thus F (Ω) is compact and symmetric. If y ∈ F (Ω) , then
y = Fx and so −y =−F (x) = F (−x) ∈ F (Ω). Choose the ε net to be symmetric. That is,
you have (Fx)k in the net if and only if −(Fx)k is in the net. Just add them in if needed.
Therefore, there is an ε net for F (Ω), {(Fx)k}

mε

k=−mε
satisfying

F (Ω)⊆ ∪kB(Fxk,ε) , {Fxk} is symmetric.

Number these so that
Fx−k =−Fxk = F (−xk) , |k| ≤ mε .

Now let
φ k (Fx)≡ (ε−∥Fx−Fxk∥)+

φ−k (Fx) ≡ (ε−∥Fx−Fx−k∥)+

= (ε−∥Fx+Fxk∥)+

= (ε−∥Fx− (−Fxk)∥)+

= φ k (−Fx)

that is, φ−k is centered at −Fxk while φ k is centered at Fxk, each function equal to 0 off
B(Fxk,ε) and is positive on B(Fxk,ε). Then consider

Fε (x)≡
mε

∑
k=−mε

F (xk)
φ k (Fx)

∑i φ i (Fx)

Fε (−x) =
mε

∑
k=−mε

F (xk)
φ k (F (−x))

∑i φ i (F (−x))
=

mε

∑
k=−mε

F (xk)
φ−k (F (x))

∑i φ−i (F (x))

= −
mε

∑
k=−mε

F (−xk)
φ−k (F (x))

∑i φ−i (F (x))
=−

mε

∑
k=−mε

F (x−k)
φ−k (F (x))

∑i φ−i (F (x))

= −
mε

∑
k=−mε

F (xk)
φ k (F (x))

∑i φ i (F (x))
=−Fε (x)

The rest of the argument is the same. ■
Now let F : Ω→ X be compact and consider I−F. Is (I−F)(∂Ω) closed? Suppose

(I−F)xk→ y. Then K ≡ y∪{(I−F)xk}∞

k=1 is a compact set because if you have any open
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cover, one of the open sets contains y and hence it contains all (I−F)xk except for finitely
many which can then be covered by finitely many open sets in the open cover. Hence, since
(I−F) is proper, (I−F)−1 (K) is compact. It follows that there is a subsequence, still
called xk such that xk→ x ∈ (I−F)−1 (K). Then by continuity of F,

(I−F)(xk) → (I−F)(x)

(I−F)(xk) → y

It follows y = (I−F)x and so in fact (I−F)(∂Ω) is closed.

Lemma 23.9.4 If F : Ω→ X is compact and Ω is a bounded open set in X , then

(I−F)(∂Ω)

is closed.

Justification for definition of Leray Schauder Degree

Now let y /∈ (I−F)(∂Ω) , a closed set. Hence dist(y,(I−F)(∂Ω))> 4δ > 0. Now let
Fk be a sequence of approximations to F which have values in an increasing sequence of
finite dimensional subsets Vk each of which contains y. Thus

lim
k→∞

supx∈Ω
∥F (x)−Fk (x)∥= 0. Consider

d
(
I−Fk|Vk ,Ω∩Vk,y

)
Each of these is a well defined integer according to Theorem 23.8.3. For all k large enough,

sup
x∈Ω

∥(I−F)(x)− (I−Fk)(x)∥< δ

Hence, for all such k,

B(y,3δ )∩ (I−Fk)(∂Ω) = /0, that is dist(y,(I−Fk)(∂Ω))> 3δ (23.9.18)

Note that this implies
dist(y,(I−Fk)(∂ (Ω∩V )))> 3δ

for any subspace V . If k < l are two such indices, then consider

d
(
I−Fk|Vk ,Ω∩Vk,y

)
,d
(
I−Fl |Vl ,Ω∩Vl ,y

)
Are they equal? Let V =Vk +Vl . Then by Theorem 23.8.4,

d
(
I−Fl |Vl ,Ω∩Vl ,y

)
= d (I−Fl |V ,Ω∩V,y)

d
(
I−Fk|Vk ,Ω∩Vk,y

)
= d (I−Fk|V ,Ω∩V,y)
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So what about d (I−Fl |V ,Ω∩V,y) ,d (I−Fk|V ,Ω∩V,y)? Are these equal?

sup
x∈Ω∩V

∥Fl (x)−Fk (x)∥ ≤ sup
x∈Ω∩V

∥Fl (x)−F (x)∥+ sup
x∈Ω∩V

∥F (x)−Fk (x)∥< 2δ

This implies for
h(x, t) = t (I−Fl)(x)+(1− t)(I−Fk)(x) ,

and x ∈Ω∩V ,y /∈ h(∂ (Ω∩V ) , t) for all t ∈ [0,1]. To see this, let x ∈ ∂Ω

∥t (I−Fl)(x)+(1− t)(I−Fk)(x)− y∥
= ∥t (I−Fk)(x)+ t (Fkx−Flx)+(1− t)(I−Fk)(x)− y∥
= ∥(I−Fk)(x)+ t (Fkx−Flx)∥ ≥ 3δ − t2δ ≥ δ

Hence
d (I−Fl |V ,Ω∩V,y) = d (I−Fk|V ,Ω∩V,y)

and so
lim
k→∞

d
(
I−Fk|Vk ,Ω∩Vk,y

)
exists. A similar argument shows that this limit is independent of the sequence {Fk} of
approximating functions having values in a finite dimensional space. Thus we have the
following definition of the Leray Schauder degree.

Definition 23.9.5 Let X be a Banach space and let F : X → X be compact. That is, F (Ω)
is precompact whenever Ω is bounded. Let Ω be a bounded open set in X and let y /∈
(I−F)(∂Ω). Let Fk be a sequence of operators which have values in finite dimensional
spaces Vk such that Vk ⊆Vk+1 · · · ,y ∈Vk, and limk→∞ supx∈Ω

∥F (x)−Fk (x)∥= 0. Then

D(I−F,Ω,y)≡ lim
k→∞

d
(
I−Fk|Vk ,Ω∩Vk,y

)
In fact, the sequence on the right is eventually constant. So

D(I−F,Ω,y)≡ d
(
I−Fk|Vk ,Ω∩Vk,y

)
for all k sufficiently large.

The main properties of the Leray Schauder degree follow from the corresponding prop-
erties of Brouwer degree.

Theorem 23.9.6 Let D be the Leray Schauder degree just defined and let Ω be a bounded
open set y /∈ (I−F)(∂Ω) where F is always a compact mapping. Then the following
properties hold:

1. D(I,Ω,y) = 1

2. If Ωi ⊆Ω where Ωi is open, Ω1∩Ω2 = /0, and y /∈Ω\ (Ω1∪Ω2) then

D(I−F,Ω,y) = D(I−F,Ω1,y)+D(I−F,Ω2,y)
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3. If t → y(t) is continuous h : Ω× [0,1]→ X is continuous, (x, t)→ h(x, t) is com-
pact, (It takes bounded subsets of Ω× [0,1] to precompact sets in X) and if y(t) /∈
(I−h)(∂Ω, t) for all t, then t→ D((I−h)(·, t) ,Ω,y(t)) is constant.

Proof: The mapping x→ 0 is clearly compact. Then an approximating sequence is
Fk,Fkx = 0 for all k. Then

D(I,Ω,y) = lim
k→∞

d
(
I|Vk ,Ω∩Vk,y

)
= 1

For the second part, let k be large enough that for U = Ω,Ω1,Ω2,

D(I−F,U,y) = d
(
I−Fk|Vk ,U ∩Vk,y

)
where Fk is the sequence of approximating functions having finite dimensional range. Then
the result follows from the Brouwer degree. In fact,

D(I−F,Ω,y) = d
(
I−Fk|Vk ,Ω∩Vk,y

)
= d

(
I−Fk|Vk ,Ω1∩Vk,y

)
+d
(
I−Fk|Vk ,Ω2∩Vk,y

)
= D(I−F,Ω1,y)+D(I−F,Ω2,y)

this does the second claim of the theorem. Now consider the third one about homotopy
invariance.

Claim: If dist(y,(I−F)∂Ω)≥ 6δ , and if ∥y− z∥< δ , then

D(I−F,Ω,y) = D(I−F,Ω,z)

Proof of claim: Let Fk be the approximations and include both y,z in all the finite
dimensional subspaces Vk. Then for k large enough, supx∈Ω

∥F (x)−Fk (x)∥< δ and also,

D(I−F,Ω,y) = d
(
(I−Fk) |Vk ,Ω∩Vk,y

)
D(I−F,Ω,z) = d

(
(I−Fk) |Vk ,Ω∩Vk,z

)
Now for x ∈ ∂ (Ω∩Vk) ,

∥(I−Fk)(x)− y∥ ≥ ∥(I−F)(x)+(F (x)−Fk (x))− y∥
≥ ∥(I−F)(x)− y∥−∥F (x)−Fk (x)∥
> 6δ −δ = 5δ

Hence dist(y,(I−Fk)∂Ω)≥ 5δ while ∥y− z∥< δ . Hence

d
(
(I−Fk) |Vk ,Ω∩Vk,y

)
= d

(
(I−Fk) |Vk ,Ω∩Vk,z

)
by Theorem 23.2.2.

From compactness of h, there is an ε net for h
(
Ω× [0,1]

)
,{h(xk, tk)} such that

h
(
Ω× [0,T ]

)
⊆ ∪n

k=1B(h(xk, tk) ,ε) .
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Say the tk are ordered. Then, as before,

φ k (x)≡ (ε−∥h(x, t)−h(xk, tk)∥)+

hε (x, t)≡
n

∑
k=1

h(xk, tk)
φ k (h(x, t))

∑i φ i (h(x, t))

Then this is clearly continuous and has values in span({h(xk, tk)}n
k=1) . How well does it

approximate? Say h(x, t) ∈ h
(
Ω× [0,T ]

)
. Then it is in some

B(h(xk, tk) ,ε) ,

maybe several. Thus letting K (x, t) be those indices k such that

h(x, t) ∈ B(h(xk, tk) ,ε)

∥hε (x, t)−h(x, t)∥ ≤ ∑
k∈K (x,t)

∥h(xk, tk)−h(x, t)∥ φ k (h(x, t))
∑i φ i (h(x, t))

≤ ε

n

∑
k=1

φ k (h(x, t))
∑i φ i (h(x, t))

= ε

Now here is a claim.
Claim: There exists δ > 0 such that for all t ∈ [0,1] ,

dist(y(t) ,(I−h)(∂Ω, t))> 6δ

Proof of claim: If not, there is (xn, tn) ∈ ∂Ω× [0,1] such that

∥y(tn)− (I−h)(xn, tn)∥< 1/n

Then h(xn, tn) is in a compact set because of compactness of h. Also, the y(tn) are in
a compact set because y is continuous and y([0,T ]) must therefore be compact. It fol-
lows that (xn, tn) must be in a compact subset of ∂Ω× [0,1]. It follows there is a subse-
quence, still denoted as (xn, tn) which converges to (x, t) in ∂Ω× [0,1]. then by continuity,
∥y(t)− (I−h)(x, t)∥= 0 contrary to assumption. This proves the claim.

As with h there exists a sequence {yk (t)} such that yk (t)→ y(t) uniformly in t ∈ [0,1]
but yk has values in a finite dimensional subspace of X ,Yk. Choose k0 large enough that for
all t ∈ [0,1] ,

∥∥y(t)− yk0 (t)
∥∥< δ . Thus by the first claim,

D(h(·, t) ,Ω,y(t)) = D
(
h(·, t) ,Ω,yk0 (t)

)
for all t. Also,

dist(y0 (t) ,(I−h)(∂Ω, t))> 5δ

From the above, let hk→ h uniformly on Ω× [0,1] but hk has values in a finite dimensional
subspace Vk.Let all the Vk contain the values of yk0 and so, for all k large enough,

sup
Ω×[0,T ]

∥h(t,x)−hk (t,x)∥< δ
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so for such k,

dist(y0 (t) ,(I−hk)(∂ (Ω∩Vk) , t))

≥ dist(y0 (t) ,(I−hk)(∂Ω, t))> 4δ

Then

D(h(·, t) ,Ω,y(t)) = D
(
h(·, t) ,Ω,yk0 (t)

)
= lim

k→∞
d
(

hk (·, t) |Ω∩Vk
,Ω∩Vk,yk0 (t)

)
and d

(
hk (·, t) |Ω∩Vk

,Ω∩Vk,yk0 (t)
)

is constant in t for all large enough k. Thus

D(h(·, t) ,Ω,y(t)) = lim
k→∞

ak, ak independent of t. ■

One of the nice results which follows right away from this is the Schauder fixed point
theorem.

Theorem 23.9.7 Let B = B(0,r) and let F : B→ B be compact. Then F has a fixed point.

Proof: Suppose it does not. Then consider D(I− tF,B(0,r) ,0). If t = 1, then 0 /∈
(I− tF)(∂B) since otherwise, there would be a fixed point. If t < 1 there is no point of ∂B
which I− tF sends to 0 because if so,

x− tFx = 0, ∥x∥= 1,∥Fx∥ ≤ 1.

Therefore, by homotopy invariance, t → D(I− tF,B(0,r) ,0) is constant for t ∈ [0,1]. It
must equal

D(I−F,B(0,r) ,0) = D(I,B(0,r) ,0) = 1.

Therefore, there exists x∈ B(0,r) such that (I−F)(x) = 0 so F which means F has a fixed
point after all. ■

One can get an improved version of this easily.

Theorem 23.9.8 Let K be a closed bounded convex subset of a Banach space X and sup-
pose F : K→ K is compact. Then F has a fixed point.

Proof: By Theorem 16.2.5, K is a retract. Thus there is a continuous function R : X→K
which leaves points of K unchanged. Then you consider F ◦R. It is still a compact mapping
obviously. Let B(0,r) be so large that it contains K. Then from the above theorem, it has
a fixed point in B(0,r) denoted as x. Then F (R(x)) = x. But F (R(x)) ∈ K and so x ∈ K.
Hence Rx = x and so Fx = x. ■

There is an easy modification of the above which is often useful. If F : X→F (X) where
F (X) is bounded and in a compact set, and F is a compact map, then you could consider F :
conv(F (X))→ F (X)⊆ conv(F (X)) where here conv(F (X)) is a closed bounded convex
subset of X . Then by the Schauder theorem, there is a fixed point for F .

Here is an easy application of this theorem to ordinary differential equations.
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Theorem 23.9.9 Let g : [0,T ]×Rn→ Rn be continuous. Let

F : C ([0,T ] ;Rn)→C ([0,T ] ;Rn)

be given by

F (y)(t) = y0 +
∫ t

0
g(s,y(s))ds

Suppose that whenever
y(s) = F (y)(s) , for s≤ t,

it follows that maxs∈[0,t] |y(s)| < M, |y0| < M. Then there exists a solution to the integral
equation

y(t) = y0 +
∫ t

0
g(s,y(s))ds

for t ∈ [0,T ] .

Proof: Let rM be the radial projection in Rn onto B(0,M) . Then F ◦ rM is compact
because |g(s,rMy)| is bounded. It also maps into a compact subset of C ([0,T ] ;Rn) thanks
to the Arzela Ascoli theorem. Then by the Schauder fixed point theorem, there exists a
solution y = F ◦ rM to

y(t) = y0 +
∫ t

0
g(s,rMy(s))ds

Then for s ∈
[
0, T̂
]

where T̂ is the largest such that ∥y(s)∥ ≤ M for s ∈
[
0, T̂
]
. Thus on[

0, T̂
]
,rM has no effect. If T̂ < T, then by the estimate,

∣∣y(T̂)∣∣< M. Hence T̂ is not really
the last. Thus T̂ = T . ■

The Schauder alternative or Schaefer fixed point theorem is as follows [38].

Theorem 23.9.10 Let f : X → X be a compact map. Then either

1. There is a fixed point for t f for all t ∈ [0,1] or

2. For every r > 0, there exists a solution to x = t f (x) for t ∈ (0,1) such that ∥x∥> r.

Proof: Suppose there is t0 ∈ [0,1] such that t0 f has no fixed point. Then t0 ̸= 0.t0 f
obviously has a fixed point if t0 = 0. Thus t0 ∈ (0,1]. Then let rM be the radial retraction
onto B(0,M). By Schauder’s theorem there exists x∈B(0,M) such that t0rM f (x)= x. Then
if ∥ f (x)∥ ≤ M, rM has no effect and so t0 f (x) = x which is assumed not to take place.
Hence ∥ f (x)∥ > M and so ∥rM f (x)∥ = M so ∥x∥ = t0M. Also t0rM f (x) = t0M f (x)

∥ f (x)∥ =

x and so x = t̂ f (x) , t̂ = t0 M
∥ f (x)∥ < 1. Since M is arbitrary, it follows that the solutions

to x = t f (x) for t ∈ (0,1) are unbounded. It was just shown that there is a solution to
x = t̂ f (x) , t̂ < 1 such that ∥x∥ = t0M where M is arbitrary. Thus the second of the two
alternatives holds. ■

There is a lot more on degree theory in [43]. Here is a very interesting theorem from
this reference which pertains specifically to infinite dimensional spaces.
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Theorem 23.9.11 Let X be an infinite dimensional Banach space and let 0 /∈ ∂Ω where Ω

is an open bounded subset of X. Let F : Ω̄→ X be compact. Suppose that Fx ̸= λx for all
x ∈ ∂Ω and that 0 /∈ F (∂Ω). Then D(I−F,Ω,0) = 0.

Proof: Recall that D(I−F,Ω,0) ≡ limk→∞ d (I−Fk,Ω∩Vk,0) where Fk has values in
a finite dimensional subspace Vk,

sup
x∈Ω̄

∥Fk (x)−F (x)∥< 1/k

Since the dimension of X is infinite, it can always be assumed that span
(
−Fk

(
Ω̄
))

is a
proper subspace of Vk and this will be assumed. This is where it is significant that the
dimension of X is infinite. Also recall that in the limit, eventually d (I−Fk,Ω∩Vk,0) is a
constant. Then the fact that Fx ̸= λx for all x∈ ∂Ω will persist for Fk for all k large enough.

If not, then there exists xk ∈ ∂Ω,Fkxk = λ kxk for some xk ∈ ∂Ω and λ k ∈ [0,1]. Then
there are subsequence λ k→ λ 0 ∈ [0,1] . Then

Fxk−λ kxk→ 0

because it is uniformly close to Fkxk−λ kxk. Now by assumption 0 /∈ F (∂Ω). If λ 0 = 0,
then you would have Fxk → 0 which does not happen because 0 is at a positive distance
from F (∂Ω). Hence for all k large enough,

Fkx ̸= λx

for all λ ∈ [0,1]. Pick k sufficiently large that in the limit for the Leray Schauder degree
d (I−Fk,Ω∩Vk,0) remains constant. Then for λ ∈ [0,1] ,

d (λ I−Fk,Ω∩Vk,0) = d (−Fk,Ω∩Vk,0) = d (−Fk,Ω∩Vk, p)

for all p /∈ span
(
−Fk

(
Ω̄
))

which is also close enough to 0. Hence, since the degree of this
last equals 0 for such p, it follows that

d (I−Fk,Ω∩Vk,0) = 0

Hence D(I−F,Ω,0) = 0 as claimed. ■
This theorem implies a very strange fixed point theorem. It is strange because it only

applies to infinite dimensions.

Corollary 23.9.12 Let X be an infinite dimensional Banach space. Let 0 ∈ Ω0 ⊆Ω be two
open sets. Let F : Ω→ X be a compact mapping which satisfies

1. ∥Fx∥ ≤ ∥x∥ for x ∈ ∂Ω0

2. ∥Fx∥ ≥ ∥x∥ for x ∈ ∂Ω

Then F has a fixed point in Ω\Ω0.
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Proof: First note that Ω\Ω0 is like an annulus with both edges included. Suppose F
does not have a fixed point in Ω\Ω0. What if t = 1 and x ∈ ∂Ω? Could 0 = (I−F)(x)? If
so, the fixed point is obtained so assume this is not so. Then for t < 1 and x ∈ ∂Ω, if you
have x= t−1Fx, this would mean that ∥Fx∥= t ∥x∥ and ∥Fx∥< ∥x∥which is assumed not to
happen. Hence for t ∈ (0,1] we can assume that 0 /∈

(
I− t−1F

)
(∂Ω). If (I−F)(x) = 0 for

x /∈ ∂Ω0 then the fixed point has been found. For t ∈ [0,1), you can’t have (I− tF)(x) =
0 for x ∈ ∂Ω0 because then you would have ∥x∥ = t ∥Fx∥ and so ∥Fx∥ > ∥x∥ which is
assumed not to happen. Therefore, we can assume that for x ∈ ∂Ω0, (I− tF)(x) ̸= 0.
Therefore, D(I−F,Ω0,0)=D(I,Ω0,0)= 1 by homotopy invariance. Also from properties
of the degree,

D(I−F,Ω0,0)+D
(
I−F,Ω\Ω0,0

)
= D(I−F,Ω,0)

Recall that this is true if 0 /∈ (I−F)
(
Ω̄−Ω0

)
which is assumed to take place when we

assume there is no fixed point. It is desired to use the above theorem so we need to consider
F (∂Ω) and whether 0 is in this set. Condition 2 implies 0 is not in this set. Then Theorem
23.9.11 implies that D(I−F,Ω,0) = 0 and so D

(
I−F,Ω\Ω0,0

)
= −1. Hence there is a

fixed point in Ω\Ω0 after all contrary to the assumption that there was no such thing. ■
This only works in infinite dimensions. Consider an annulus in R2 and let F be a rota-

tion through an angle of 30 degrees. It clearly has no fixed point but the above conditions
are satisfied. This seems very interesting, something which happens in infinite dimensions
but not in finite dimensions.

23.10 Exercises
1. Show the Brouwer fixed point theorem is equivalent to the nonexistence of a contin-

uous retraction onto the boundary of B(0,r).

2. Using the Jordan separation theorem, prove the invariance of domain theorem n≥ 2.
Thus an open ball goes to some open. Hint: You might consider B(x,r) and show f
maps the inside to one of two components of Rn \ f(∂B(x,r)) . etc.

3. Give a version of Proposition 23.6.4 which is valid for the case where n = 1.

4. It was shown that if f is locally one to one and continuous, f : Rn→ Rn, and

lim
|x|→∞

|f(x)|= ∞,

then f maps Rn onto Rn. Suppose you have f : Rm→ Rn where f is one to one and
lim|x|→∞ |f(x)|= ∞. Show that f cannot be onto.

5. Can there exists a one to one onto continuous map, f which takes the unit interval
[0,1] to the unit disk B(0,1)? Hint: Think in terms of invariance of domain.

6. Let m < n and let Bm (0,r) be the ball in Rm and Bn (0,r) be the ball in Rn. Show that
there is no one to one continuous map from Bm (0,r) to Bn (0,r). Hint: It is like the
above problem.
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7. Consider the unit disk, {
(x,y) : x2 + y2 ≤ 1

}
≡ D

and the annulus {
(x,y) :

1
2
≤ x2 + y2 ≤ 1

}
≡ A

Is it possible there exists a one to one onto continuous map f such that f(D) = A?
Thus D has no holes and A is really like D but with one hole punched out. Can you
generalize to different numbers of holes? Hint: Consider the invariance of domain
theorem. The interior of D would need to be mapped to the interior of A. Where do
the points of the boundary of A come from? Consider Theorem 7.13.3.

8. Suppose C is a compact set in Rn which has empty interior and f : C→ Γ ⊆ Rn is
one to one onto and continuous with continuous inverse. Could Γ have nonempty
interior? Show also that if f is one to one and onto Γ then if it is continuous, so is
f−1.

9. Let K be a nonempty closed and convex subset of Rn. Recall K is convex means that
if x,y ∈ K, then for all t ∈ [0,1] , tx+(1− t)y ∈ K. Show that if x ∈ Rn there exists
a unique z ∈ K such that

|x− z|= min{|x−y| : y ∈ K} .

This z will be denoted as Px. Hint: First note you do not know K is compact.
Establish the parallelogram identity if you have not already done so,

|u−v|2 + |u+v|2 = 2 |u|2 +2 |v|2 .

Then let {zk} be a minimizing sequence,

lim
k→∞

|zk−x|2 = inf{|x−y| : y ∈ K} ≡ λ .

Now using convexity, explain why∣∣∣∣zk− zm

2

∣∣∣∣2 + ∣∣∣∣x−zk + zm

2

∣∣∣∣2 = 2
∣∣∣∣x− zk

2

∣∣∣∣2 +2
∣∣∣∣x− zm

2

∣∣∣∣2
and then use this to argue {zk} is a Cauchy sequence. Then if zi works for i = 1,2,
consider (z1 + z2)/2 to get a contradiction.

10. In Problem 9 show that Px satisfies the following variational inequality.

(x−Px) · (y−Px)≤ 0

for all y ∈ K. Then show that |Px1−Px2| ≤ |x1−x2|. Hint: For the first part note
that if y ∈ K, the function t→ |x−(Px+ t (y−Px))|2 achieves its minimum on [0,1]
at t = 0. For the second part,

(x1−Px1) · (Px2−Px1)≤ 0, (x2−Px2) · (Px1−Px2)≤ 0.
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Explain why
(x2−Px2− (x1−Px1)) · (Px2−Px1)≥ 0

and then use a some manipulations and the Cauchy Schwarz inequality to get the
desired inequality. Thus P is called a retraction onto K.

11. Establish the Brouwer fixed point theorem for any convex compact set inRn. Hint: If
K is a compact and convex set, let R be large enough that the closed ball, D(0,R)⊇K.
Let P be the projection onto K as in Problem 10 above. If f is a continuous map from
K to K, consider f◦P. You want to show f has a fixed point in K.

12. Suppose D is a set which is homeomorphic to B(0,1). This means there exists a
continuous one to one map, h such that h

(
B(0,1)

)
= D such that h−1 is also one

to one. Show that if f is a continuous function which maps D to D then f has a fixed
point. Now show that it suffices to say that h is one to one and continuous. In this
case the continuity of h−1 is automatic. Sets which have the property that continuous
functions taking the set to itself have at least one fixed point are said to have the fixed
point property. Work Problem 7 using this notion of fixed point property. What about
a solid ball and a donut? Could these be homeomorphic?

13. Suppose Ω is any open bounded subset of Rn which contains 0 and that f : Ω→ Rn

is continuous with the property that

f(x) ·x≥ 0

for all x ∈ ∂Ω. Show that then there exists x ∈Ω such that f(x) = 0. Give a similar
result in the case where the above inequality is replaced with ≤. Hint: You might
consider the function

h(t,x)≡ tf(x)+(1− t)x.

14. Suppose Ω is an open set in Rn containing 0 and suppose that f : Ω→ Rn is contin-
uous and |f(x)| ≤ |x| for all x ∈ ∂Ω. Show f has a fixed point in Ω. Hint: Consider
h(t,x)≡ t (x− f(x))+(1− t)x for t ∈ [0,1] . If t = 1 and some x ∈ ∂Ω is sent to 0,
then you are done. Suppose therefore, that no fixed point exists on ∂Ω. Consider
t < 1 and use the given inequality.

15. Let Ω be an open bounded subset ofRn and let f,g : Ω→Rn both be continuous such
that

|f(x)|− |g(x)|> 0

for all x ∈ ∂Ω. Show that then

d (f−g,Ω,0) = d (f,Ω,0)

Show that if there exists x ∈ f−1 (0) , then there exists x ∈ (f−g)−1 (0). Hint: You
might consider h(t,x) ≡ (1− t) f(x) + t (f(x)−g(x)) and argue 0 /∈ h(t,∂Ω) for
t ∈ [0,1].
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16. Suppose f : Rn→ Rn is continuous and satisfies

|f(x)− f(y)| ≥ α |x−y| , α > 0,

Show that f must map Rn onto Rn. Hint: First show f is one to one. Then use
invariance of domain. Next show, using the inequality, that the points not in f(Rn)
must form an open set because if y is such a point, then there can be no sequence
{f(xn)} converging to it. Finally recall that Rn is connected.

It is obvious that f is one to one. This follows from the inequality. If U are the
points not in the image of f, then U must be open because if not, then for y one of
these points, there would be a sequence f(xn)→ y. Then by the inequality, {xn} is a
Cauchy sequence and so it converges to x. Thus f(x) = limn→∞ f(xn) = y. Now by
invariance of domain, f(Rn) is open. However, Rn is connected and so in fact, U is
empty.

17. Let f : C→ C where C is the field of complex numbers. Thus f has a real and
imaginary part. Letting z = x+ iy,

f (z) = u(x,y)+ iv(x,y)

Recall that the norm in C is given by |x+ iy| =
√

x2 + y2 and this is the usual norm
in R2 for the ordered pair (x,y) . Thus complex valued functions defined on C can
be considered as R2 valued functions defined on some subset of R2. Such a complex
function is said to be analytic if the usual definition holds. That is

f ′ (z) = lim
h→0

f (z+h)− f (z)
h

.

In other words,
f (z+h) = f (z)+ f ′ (z)h+o(h) (23.10.19)

at a point z where the derivative exists. Let f (z) = zn where n is a positive integer.
Thus zn = p(x,y)+ iq(x,y) for p,q suitable polynomials in x and y. Show this func-
tion is analytic. Next show that for an analytic function and u and v the real and
imaginary parts, the Cauchy Riemann equations hold.

ux = vy, uy =−vx.

In terms of mappings show 23.10.19 has the form(
u(x+h1,y+h2)
v(x+h1,y+h2)

)
=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) uy (x,y)
vx (x,y) vy (x,y)

)(
h1
h2

)
+o(h)

=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) −vx (x,y)
vx (x,y) ux (x,y)

)(
h1
h2

)
+o(h)
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where h =(h1,h2)
T and h is given by h1 + ih2. Thus the determinant of the above

matrix is always nonnegative. Letting Br denote the ball B(0,r) = B((0,0) ,r) show

d ( f ,Br,0) = n.

where f (z) = zn. In terms of mappings on R2,

f(x,y) =
(

u(x,y)
v(x,y)

)
.

Thus show
d (f,Br,0) = n.

Hint: You might consider

g(z)≡
n

∏
j=1

(z−a j)

where the a j are small real distinct numbers and argue that both this function and f
are analytic but that 0 is a regular value for g although it is not so for f. However, for
each a j small but distinct d (f,Br,0) = d (g,Br,0).

18. Using Problem 17, prove the fundamental theorem of algebra as follows. Let p(z)
be a nonconstant polynomial of degree n,

p(z) = anzn +an−1zn−1 + · · ·

Show that for large enough r, |p(z)| > |p(z)−anzn| for all z ∈ ∂B(0,r). Now from
Problem 15 you can conclude d (p,Br,0) = d ( f ,Br,0) = n where f (z) = anzn.

19. The proof of Sard’s lemma made use of the hard Vitali covering theorem. Here is
another way to do something similar. Let U be a bounded open set and let f : U→Rn

be in C1 (U). Let S denote the set of x ∈U such that Df(x) has rank less than n. Thus
it is a closed set. Let Um = {x ∈U : ∥Df(x)∥ ≤ m} , a closed set. It suffices to show
that for Sm ≡ Um ∩ S, f(Sm) has measure zero because f(S) = ∪mf(Sm) these sets
increasing in m. By definition of differentiability,

lim
k→∞

sup
∥v∥≤1/k

∥f(x+v)− f(x)−Df(x)v∥
∥v∥

= 0

for each x ∈U . Explain why the above function of x is measurable. Now by Eggo-
roff’s theorem, there is measurable set A of measure less than ε

mn10n such that off A,
the convergence is uniform. Let Ck be a countable union of non overlapping half
open rectangles one of which is of the form ∏

n
i=1(ai,bi] such that each has diameter

less than 2−k. Consider the half open rectangles which have nonempty intersection
with Sm \A,Ik. Then repeat the argument given in the first section of this chapter.
Show that for k large enough, the rank condition and uniform convergence above
implies that mn (∪{f(I) : I ∈Ik}) is less than ε . Now show that f(A) is contained in
a set of measure no more than mn10n ε

mn10n = 2ε . Thus f(Sm) has measure no more
than 3ε . Since ε is arbitrary, this establishes the desired conclusion.
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20. Let X be a Banach space and let Ω be a symmetric and bounded open set. Let
F : Ω→ X be odd and compact 0 /∈ (I−F)(∂Ω). Show using Corollary 23.9.3 that
D(I−F,Ω,0) is an odd integer.

21. Let F be compact. Suppose I − F is one to one on B(0,r). Then using similar
reasoning to the finite dimensional case, show that there is a δ > 0 such that

(I−F)(0)+B(0,δ )⊆ (I−F)(B(0,r))

22. Let F be compact. Suppose I−F is locally one to one on an open set Ω. Show that
(I−F) maps open sets to open sets. This is a version of invariance of domain.

23. Suppose (I−F) is locally one to one and F is compact. Suppose also that

lim
∥x∥→∞

∥(I−F)x∥= ∞.

Show that (I−F) is onto.

24. As a variation of the above problem, suppose F : X → X is compact and

lim
∥x∥→∞

∥F (x)∥
∥x∥

= 0

Then I−F is onto. Note that I−F is not one to one.

25. Suppose F is compact and ∥(I−F)x− (I−F)y∥≥α ∥x− y∥. Show that then (I−F)
is onto.

26. The Jordan curve theorem is: Let C denote the unit circle,{
(x,y) ∈ R2 : x2 + y2 = 1

}
.

Suppose γ : C→ Γ ⊆ R2 is one to one onto and continuous. Then R2 \Γ consists
of two components, a bounded component (called the inside) U1 and an unbounded
component (called the outside), U2. Also the boundary of each of these two compo-
nents of R2 \Γ is Γ and Γ has empty interior. Using the Jordan separation theorem,
prove this important result.

27. This problem is from [43] Recall Theorem 23.9.11. It allowed you to say that
D(I−F,Ω,0) = 0 provided 0 /∈ F (∂Ω) and λx ̸= Fx for all x ∈ ∂Ω,λ ∈ [0,1]. This
was for F compact and defined on an infinite dimensional space X . Suppose now
that F is compact and F : Ω̄→ X where 0 ∈ Ω an open set in X . Suppose also that
F (0) = 0 and that

lim inf
x→0

∥F (x)∥
∥x∥

≡ lim
r→0+

inf
{
∥F (x)∥
∥x∥

: ∥x∥ ≤ r
}
= ∞

Show that there is a sequence αn → 0 each αn ̸= 0, and for some xn ̸= 0,xn −
αnF (xn) = 0. Note that when α = 0, there is only one solution to (I−αF)(x) = 0,
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but this says that there are many small αn ̸= 0 for which there is a nonzero solution to
(I−αnF)(x) = 0. That is there exist arbitrarily small αn such that (I−αn)F (xn) =
0. This says that 0 is a bifurcation point for I−αF . Hint: Let αn ↓ 0 and pick rn
such that for all ∥x∥= rn,

∥αnF (x)∥> ∥x∥

Thus 0 /∈ αnF (∂B(0,rn)) and also αnF (x) ̸= λx for all x ∈ ∂B(0,rn). Use the
theorem to conclude that

D(I−αnF,B(0,rn) ,0) = 0

and then consider the homotopy I−αntF . If it sends no point of ∂B(0,rn) to 0 then
you would have

D(I−αntF,B(0,rn) ,0) = D(I,B(0,rn) ,0) = 1
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Chapter 24

Critical Points
24.1 Mountain Pass Theorem In Hilbert Space

This is from Evans [49]. It is an interesting theorem. See also [55] for more general
versions. It has to do with differentiable functions defined on a Hilbert space H. Thus
I : H→ R will be differentiable. Then the following is the Palais Smale condition.

Definition 24.1.1 A functional I satisfies the Palais Smale conditions means that if {I (uk)}
is a bounded sequence and I′ (uk)→ 0, then {uk} is precompact. That is, it has a subse-
quence which converges.

It will be assumed that I is C1 (H;R) and also that I′ is Lipschitz on bounded sets. By
I′ (u) is meant the element of H such that

I (u+ v) = I (u)+
(
I′ (u) ,v

)
H +o(v)

Such exists because of the Riesz representation theorem. Note that, from the assumption
that I′ is Lipschitz continuous, it follows that I′ is bounded on every bounded set.

First is a deformation theorem. The notation [I (u) ∈ S] means {u : I (u) ∈ S}.

Theorem 24.1.2 Let I be C1, I is non constant, satisfy the Palais Smale condition, and
I′ is Lipschitz continuous on bounded sets. Also suppose that c ∈ R is such that either
[I (u) ∈ [c−δ ,c+δ ]] = /0 for some δ > 0 or [I (u) ∈ [c−δ ,c+δ ]] ̸= /0 for all δ > 0 and
IF I (u) = c, then I′ (u) ̸= 0. Then for each sufficiently small ε > 0, there is a constant
δ ∈ (0,ε) and a function η : [0,1]×H→ H such that

1. η (0,u) = u

2. η (1,u) = u on [I (u) /∈ (c− ε,c+ ε)]

3. I (η (t,u))≤ I (u)

4. η (1, [I (u)≤ c+δ ])⊆ [I (u)≤ c−δ ]

The main part of this conclusion is the statement about u→ η (1,u) contained in parts
2. and 4. The other two parts are there to facilitate these two although they are certainly
interesting for their own sake.

Proof: Suppose [I (u) ∈ [c−δ ,c+δ ]] = /0 for some δ > 0. Then [I (u)≤ c+δ/2] ⊆
[I (u)≤ c−δ/2] and you could take ε = δ and let η (t,u) = u. Therefore, assume

[I (u) ∈ [c−δ ,c+δ ]] ̸= /0

for all δ > 0. Since I is nonconstant, ε > 0 can be chosen small enough that

[I (u) /∈ (c− ε,c+ ε)] ̸= /0.

Always let ε be this small.

807
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Claim 1: For all small enough ε > 0, if u ∈ [I (u) ∈ [c− ε,c+ ε]] , I′ (u) ̸= 0 and in
fact, for such ε, there exists σ (ε) > 0 such that σ (ε) < ε, ∥I′ (u)∥ > σ (ε) for all u ∈
[I (u) ∈ [c− ε,c+ ε]].

Proof of Claim 1: If claim is not so, then there is {uk} ,εk,σ k → 0,∥I′ (uk)∥ < σ k,
and I (uk) ∈ [c− εk,c+ εk] but ∥I′ (uk)∥ ≤ σ k. However, from the Palais Smale condi-
tion, there is a subsequence, still denoted as uk which converges to some u. Now I (uk) ∈
[c− εk,c+ εk] and so I (u) = c while I′ (u) = 0 contrary to the hypothesis. This proves
Claim 1. From now on, ε will be sufficiently small.

Now define for δ < ε (The description of small δ will be described later.)

A ≡ [I (u) /∈ (c− ε,c+ ε)]

B ≡ [I (u) ∈ [c−δ ,c+δ ]]

Thus A and B are disjoint closed sets. Recall that it is assumed that B ̸= /0 since otherwise,
there is nothing to prove. Also it is assumed throughout that ε > 0 is such that A ̸= /0 thanks
to I not being constant. Thus these are nonempty sets and we do not have to fuss with
worrying about meaning when one is empty.

Claim 2: For any u,dist(u,A)+dist(u,B)> 0.
This is so because if not, then both would be zero and this requires that u ∈ A∩B since

these sets are closed. But A∩B = /0.
Now define a function

g(u)≡ dist(u,A)
dist(u,A)+dist(u,B)

It is a continuous function of u which has values in [0,1]. Consider the ordinary differential
initial value problem

η
′ (t,u)+g(u)h

(∥∥I′ (η (t,u))
∥∥) I′ (η (t,u)) = 0 (24.1.1)

η (0,u) = u (24.1.2)

where r→ h(r) is a decreasing function which has values in (0,1] and equals 1 for r ∈ [0,1]
and equals 1/r for r > 1. Here u is given and the η ′ is the time derivative is with respect
to t. Thus, by assumption, the function

η → g(u)h
(∥∥I′ (η)

∥∥) I′ (η)

is Lipschitz continuous on bounded sets and so there exists a solution to the above initial
value problem valid for all t ∈ [0,1] . To see this, you can let P be the projection map onto
the closed ball of radius M > ∥u∥ and the system

η
′ (t,u)+g(u)h

(∥∥I′ (P(η (t,u)))
∥∥) I′ (P(η (t,u))) = 0

η (0,u) = u

Then by Lipschitz continuity, there is a global solution for all t ≥ 0. Hence there is a local
solution to 24.1.1, 24.1.2. Note that∥∥g(u)h

(∥∥I′ (P(η (t,u)))
∥∥) I′ (P(η (t,u)))

∥∥
= g(u)h

(∥∥I′ (P(η (t,u)))
∥∥)∥∥I′ (P(η (t,u)))

∥∥≤ 1
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Taking inner products with η (t,u) , and integrating
∫ t

0 for this local solution,

1
2
∥η (t,u)∥2− 1

2
∥u∥2 +

∫ t

0
g(u)h

(∥∥I′ (Pη (s,u))
∥∥)(I′ (Pη (s,u)) ,η (s,u)

)
ds = 0

1
2
∥η (t,u)∥2 ≤ 1

2
∥u∥2 +

∫ t

0
g(u)h

(∥∥I′ (Pη (t,u))
∥∥)∥∥I′ (Pη (t,u))

∥∥∥η (s,u)∥ds

It follows that for t ≤ 1,

∥η (t,u)∥2 ≤ ∥u∥2 +2
∫ t

0
∥η (s,u)∥ds

≤ ∥u∥2 +1+
∫ t

0
∥η (s,u)∥2 ds

and so from Gronwall’s inequality, for t ≤ 1,

∥η (t,u)∥2 ≤
(
∥u∥2 +1

)
e1

Thus we pick M > e
(
∥u∥2 +1

)
and then we obtain that for t ∈ [0,1] , the projection map

does not change anything. Hence there exists a solution to 24.1.1, 24.1.2 on [0,1] as desired.
Then for this solution, η (0,u) = u because of the above initial condition. If u ∈

[I (u) /∈ [c− ε,c+ ε]] , then u ∈ A and so g(u) = 0 so η (t,u) = u for all t ∈ [0,1]. This
gives the first two conditions. Consider the third.

d
dt

(I (η (t,u))) =
(
I′ (η) ,η ′

)
=−

(
I′ (η) ,g(u)h

(∥∥I′ (η)
∥∥) I′ (η)

)
= −g(u)h

(∥∥I′ (η)
∥∥)∥∥I′ (η)

∥∥2

and so this implies the third condition since it says that the function t → I (η (t,u)) is
decreasing.

It remains to consider the last condition. This involves choosing δ still smaller if nec-
essary. It is desired to verify that

η (1, [I (u)≤ c+δ ])⊆ [I (u)≤ c−δ ]

Suppose it is not so. Then there exists u ∈ [I (u)≤ c+δ ] but I (η (1,u))> c−δ .

c−δ < I (η (1,u)) = I (u)−
∫ 1

0

(
I′ (η) ,g(u)h

(∥∥I′ (η)
∥∥) I′ (η)

)
dt

= I (u)−g(u)
∫ 1

0
h
(∥∥I′ (η)

∥∥)∥∥I′ (η (t,u))
∥∥2 dt

< c+δ −g(u)
∫ 1

0
h
(∥∥I′ (η)

∥∥)∥∥I′ (η (t,u))
∥∥2 dt

Then

c−2δ +g(u)
∫ 1

0
h
(∥∥I′ (η (t,u))

∥∥)∥∥I′ (η (t,u))
∥∥2 dt < c
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If I (u) ≤ c− δ , there is nothing to show because in this case I (η (1,u)) ≤ I (u) ≤ c− δ .
Hence we can assume that I (u) > c− δ and also that I (u) ≤ c+ δ . Thus u ∈ B and so
g(u) = 1. Thus

c−2δ +
∫ 1

0
h
(∥∥I′ (η (t,u))

∥∥)∥∥I′ (η (t,u))
∥∥2 dt < c

Also, it is being assumed that I (η (1,u)) > c− δ and so by the third conclusion shown
above, η (t,u) ∈ B for t ∈ [0,1]. We also know that for such values of η (t,u) ,∥∥I′ (η (t,u))

∥∥≥ σ (ε)

from Claim 1. If ∥I′ (η (t,u))∥> 1, the integrand equals∥∥I′ (η (t,u))
∥∥≥ σ (ε) .

if ∥I′ (η (t,u))∥ ≤ 1, the integrand is ∥I′ (η (t,u))∥2 ≥ σ (ε)2 . Thus

c−2δ +
∫ 1

0
min

(
σ (ε) ,σ (ε)2

)
dt < c

and the only restriction on δ was that it should be smaller than ε . Although it was not
mentioned above, δ was chosen so small that −2δ +min

(
σ (ε) ,σ (ε)2

)
> 0. Hence this

yields a contradiction. Thus the last conclusion is verified. ■
Imagine a valley surrounded by a ring of mountains. On the other side of this ring of

moutains, there is another low place. Then there must be some path from the valley to the
exterior low place which goes through a point where the gradient equals 0, the gradient
being the gradient of a function f which gives the altitude of the land. This is the idea of
the mountain pass theorem. The critical point where ∇ f = 0 is the mountain pass.

Theorem 24.1.3 Let H be a Hilbert space and let I : H → R be a C1 functional having I′

Lipschitz continuous and such that I satisfies the Palais Smale condition. Suppose I (0) = 0
and I (u)≥ a> 0 for all ∥u∥= r. Suppose also that there exists v,∥v∥> r such that I (v)≤ 0.
Then define

Γ≡ {g ∈C ([0,1] ;H) : g(0) = 0,g(1) = v}

Let
c≡ inf

g∈Γ
max

0≤t≤1
I (g(t))

Then c is a critical value of I meaning that there exists u such that I (u) = c and I′ (u) = 0.
In particular, there is u ̸= 0 such that I′ (u) = 0.

Proof: First note that c≥ a > 0. Suppose c is not a critical value. Then by the deforma-
tion theorem, for ε > 0,ε sufficiently small, there is η : H→ H and a δ < ε small enough
that

η ([I (u)≤ c+δ ])⊆ [I (u)≤ c−δ ]
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and η leaves unchanged [I (u) /∈ (c− ε,c+ ε)] . Then there is g ∈ Γ such that

max
t∈[0,1]

I (g(t))< c+δ

Then in particular, I (g(t)) < c+ δ for every t. Hence you look at η ◦ g. We know that
g(0) ,g(1) are both in the set [I (u) /∈ (c− ε,c+ ε)] because they are both 0 and so η leaves
these unchanged. Hence η ◦g ∈ Γ and

I (η ◦g(t))≤ c−δ

for all t ∈ [0,1]. Thus

c = inf
g∈Γ

max
0≤t≤1

I (g(t))≤ max
t∈[0,1]

I (η ◦g(t))≤ c−δ

which is clearly a contradiction. ■
The Palais Smale conditions are pretty restrictive. For example, let I (x) = cosx. Thus

I :R→R. Then let uk = kπ. Clearly I (uk) is bounded and limk→∞ I (uk) = 0 but {uk} is not
precompact. However, here is a simple case which does satisfy the Palais Smale conditions.

Example 24.1.4 Let I :Rd→R satisfy lim|x|→∞ I (x) =∞. Then I satisfies the Palais Smale
conditions.

The growth condition implies that if I (xk) is bounded, then so is {xk} and so this
sequence is precompact. Nothing needs to be said about I′ (xk).

24.1.1 A Locally Lipschitz Selection, Pseudogradients

When you have a functional φ defined on a Banach space X , φ
′ (u) is in X ′ and it isn’t

obvious how you can understand it in terms of an element in X like what is done with
Hilbert space using the Riesz representation theorem. However, there is something called
a pseudogradient which is defined next.

Definition 24.1.5 Let φ : X →R be C1. Then v is a pseudogradient for φ at x if the follow-
ing hold.

1. ∥v∥X ≤ 2∥φ ′ (x)∥X ′

2. ∥φ ′ (x)∥2
X ′ ≤ ⟨φ ′ (x) ,v⟩

A pseudogradient field V is a locally Lipschitz selection of G(x) where G(x) is defined
to be the set of pseudogradients of φ at x. Thus V (x) ∈G(x) and V (x) is a pseudogradient
for φ at each x a regular point of φ .

Note how this generalizes the case of Hilbert space. In the Hilbert space case, you have
φ
′ (x) which technically is in H ′ and you have the gradient, written here as ∇φ which is in

H such that
(∇φ (x) ,v)H ≡

〈
φ
′ (x) ,v

〉
H ′,H
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the existence of ∇φ (x) coming from the Riesz representation theorem which also gives
that ∇φ (x) = R−1φ

′ (x) and so ∥∇φ (x)∥H = ∥φ ′ (x)∥H ′ so the above two conditions hold
for the gradient field except for one thing. Why is x→ ∇φ (x) locally Lipschitz. We don’t
know this, but with a pseudogradient field, we do. Also, the pseudogradient field is only
required at regular points of φ where φ

′ (x) ̸= 0. If you had strict inequalities holding in the
above definition, then they would continue to hold for x̂ near x. Thus if you had

∥v∥X < 2
∥∥φ
′ (x)

∥∥
X ′ ,

∥∥φ
′ (x)

∥∥2
X ′ <

〈
φ
′ (x) ,v

〉
and Γ(x) were the set of such v, then there would be an open set U containing x such that
∩x̂∈U Γ(x̂) ̸= /0. In fact, the intersection would contain v.

This very nice lemma is from Gasinski L. and Papageorgiou N. [55]. It is a lovely
application of Stone’s theorem and partitions of unity for a metric space.

Lemma 24.1.6 Let Y be a metric space and let X be a normed linear space. (We will want
to add in X .) Let Γ : Y →P (X) such that Γ(y) is a nonempty convex set. Suppose that for
each y ∈ Y, there exists an open set U containing y such that

/0 ̸= ∩ŷ∈U Γ(ŷ)

Then there exists a locally Lipschitz map γ : Y → X such that γ (y) ∈ Γ(y) for all y.

Proof: Let U denote the collection of all open sets U such that the nonempty intersec-
tion described above holds. Let V be a locally finite open refinement which also covers.
Thus for any V ∈ V

/0 ̸= ∩ŷ∈V Γ(ŷ)

because it is a smaller intersection. Let {φV}V∈V be a partition of unity subordinate to
the open covering V . In fact, we can have φV locally Lipschitz. This follows from the
above construction of the partition of unity in Theorem 16.1.1. Pick xV ∈ ∩ŷ∈V Γ(ŷ) . Then
consider

γ (y) = ∑
V∈V

xV φV (y)

It is clearly locally Lipschitz because near any point y, it is a finite sum of Lipschitz func-
tions. Pick y ∈ Y. Then it is in some V ∈ V . In fact, it is finitely many, V1, · · · ,Vn and for
other V ∈ V , φV (y) = 0. Therefore,

γ (y) =
n

∑
i=1

xViφVi
(y)

which is a convex combination of the xVi . Now xVi ∈ ∩ŷ∈ViΓ(ŷ) ⊆ Γ(y) , this for each i.
Hence this is a convex combination of points in a nonempty convex set Γ(y). Thus γ (y) ∈
Γ(y). ■

The following lemma says that if φ is C1 on X , then it has a pseudogradient field on
{x : φ

′ (x) ̸= 0}, the set of regular points.

Lemma 24.1.7 Let φ be a C1 function defined on X a Banach space. Then there exists
a pseudogradient field for φ on the set of regular points. (V (x) ∈ G(x) and x→ V (x) is
locally Lipschitz on the set of regular points.)
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Proof: First consider whether G(x), the set of pseudogradients of φ at x is nonempty
for φ

′ (x) ̸= 0. From the definition of the operator norm, there exists u such that ∥u∥X = 1
and ⟨φ ′ (x) ,u⟩ ≥ δ ∥φ ′ (x)∥X ′ where δ ∈ (0,1). Then let v = ru∥φ ′ (x)∥X ′ where r ∈ (1,2).〈

φ
′ (x) ,v

〉
=
〈
φ
′ (x) ,ru

∥∥φ
′ (x)

∥∥〉= r
〈
φ
′ (x) ,u

〉∥∥φ
′ (x)

∥∥≥ rδ
∥∥φ
′ (x)

∥∥2

Then choose r,δ such that rδ > 1 and r < 2. Then if these were chosen this way in the
above reasoning, it follows that

∥v∥< 2
∥∥φ
′ (x)

∥∥ and
〈
φ
′ (x) ,v

〉
>
∥∥φ
′ (x)

∥∥2
.

That φ
′ (x) ̸= 0 is needed to insure that the above strict inequalities hold.

Thus, letting Y be the metric space consisting of the regular points of φ ,the continuity
of φ

′ implies that the above inequalities persist for all y close enough to x. Thus there is
an open set U containing x such that v satisfies the above inequalities for x replaced with
arbitrary y ∈U . Thus

v ∈ ∩y∈U G(y)

Since it is clear that each G(y) is convex, Lemma 24.1.6 implies the existence of a locally
Lipschitz selection from G. That is x→V (x) is locally Lipschitz and V (x) ∈ G(x) for all
regular x. ■

It will be important to consider y′ = f (y) where f is locally Lipschitz and y is just in
a Banach space. This is more complicated than in Hilbert space because of the lack of a
convenient projection map.

Theorem 24.1.8 Let f : U → X be locally Lipschitz where X is a Banach space and U is
an open set. Then there exists a unique local solution to the IVP

y′ = f (y) , y(0) = y0 ∈U

Proof: Let B be a closed ball of radius R centered at y0 such that f has Lipschitz
constant K on B. Then

y1 (t) = y0 +
∫ t

0
f (y0)ds

and if yn (t) has been obtained,

yn+1 (t) = y0 +
∫ t

0
f (yn (s))ds (24.1.3)

Now t < T where T is so small that ∥ f (y0)∥TeKT < R.
Claim: ∥yn (t)− yn−1 (t)∥ ≤ ∥ f (y0)∥ tnKn−1 1

(n−1)! .

Proof of claim: First

∥y1 (t)− y0∥ ≤
∫ t

0
∥ f (y0)∥ds≤ ∥ f (y0)∥ t

Now suppose it is so for n. Then

∥yn+1 (t)− yn (t)∥ ≤
∫ t

0
∥ f (yn (s))− f (yn−1 (s))∥ds
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By induction, yn (s) ,yn−1 (s) are still in B. This is because

∥yn (t)− y0∥ ≤
n

∑
k=1
∥yk (t)− yk−1 (t)∥

≤
n

∑
k=1
∥ f (y0)∥

1
(k−1)!

tkKk−1

≤ ∥ f (y0)∥ teKt < R (24.1.4)

showing that yn (t) stays in B. Then since all values of the iterates remain in B, induction
gives

∥yn+1 (t)− yn (t)∥ ≤
∫ t

0
K ∥yn (s)− yn−1 (s)∥ds

≤ K
∫ t

0
∥ f (y0)∥

1
(n−1)!

snKn−1ds = Kn 1
(n−1)!

∥ f (y0)∥
∫ t

0
snds

= Kn 1
n!
∥ f (y0)∥ tn+1

which proves the claim. Since the inequality of the claim shows that ∥yn− yn−1∥ is sum-
mable, it follows that {yn} is a Cauchy sequence in C ([0,T ] ,X). It satsifies ∥yn− y0∥< R
and so yn converges uniformly to some y ∈C ([0,T ] ,X) . Hence one can pass to a limit in
24.1.3 and obtain

y(t) = y0 +
∫ t

0
f (y(s))ds

for t ∈ [0,T ]. Also ∥y(t)− y0∥ ≤ R and on B(y0,R) , f is Lipschitz continuous so Gron-
wall’s inequality gives uniqueness of solutions which remain in B. ■

Here is an alternate proof which other than the ugly lemma, seems more elegant to me.
However, it is a useful lemma.

Lemma 24.1.9 Define

γ (x)≡
{

x if ∥x− y0∥ ≤ R
y0 +

x−y0
∥x−y0∥

R if ∥x− y0∥> R

Then ∥γ (x)− γ (y)∥ ≤ 3∥x− y∥ for all x,y ∈ X. Thus

∥γ (x)− y0∥ ≤ R.

Proof: In case both of x,y are in B = B(y0,R), there is nothing to show. Suppose then
that ∥y− y0∥ ≤ R but ∥x− y0∥> R. Then, assuming y− y0 ̸= 0,

∥γ (x)− γ (y)∥=
∥∥∥∥y0 +

x− y0

∥x− y0∥
R − y

∥∥∥∥= ∥∥∥∥ x− y0

∥x− y0∥
R− (y− y0)

∥∥∥∥
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=

∥∥∥∥ x− y0

∥x− y0∥
R− ∥y− y0∥
∥y− y0∥

(y− y0)

∥∥∥∥
≤

∥∥∥∥ x− y0

∥x− y0∥
R− (y− y0)

∥y− y0∥
R
∥∥∥∥+

+

∥∥∥∥ R
∥y− y0∥

(y− y0)−
∥y− y0∥
∥y− y0∥

(y− y0)

∥∥∥∥= A+B

Now
B = (R−∥y− y0∥)< ∥x− y0∥−∥y− y0∥ ≤ ∥y− x∥

A≤
∥∥∥∥ x− y0

∥x− y0∥
R− (y− y0)

∥y− y0∥
R
∥∥∥∥≤ R

∥(x− y0)∥y− y0∥− (y− y0)∥x− y0∥∥
∥x− y0∥∥y− y0∥

≤ R
∥x− y0∥∥y− y0∥

(
∥(x− y0)∥y− y0∥− (y− y0)∥y− y0∥∥
+∥(y− y0)∥y− y0∥− (y− y0)∥x− y0∥∥

)

≤ R
∥x− y0∥∥y− y0∥

(∥y− y0∥∥x− y∥+∥y− y0∥∥y− x∥)

≤ R
∥x− y0∥

(∥x− y∥+∥y− x∥)< 2∥y− x∥

In case y = y0, you have

∥γ (x)− γ (y)∥=
∥∥∥∥ x− y0

∥x− y0∥
R
∥∥∥∥= ∥∥∥∥ x− y

∥x− y0∥
R
∥∥∥∥< ∥x− y∥

The only other case is where both x,y are in X \B. In this case, you get

∥γ (x)− γ (y)∥ =

∥∥∥∥y0 +
x− y0

∥x− y0∥
R−

(
y0 +

y− y0

∥y− y0∥
R
)∥∥∥∥

=

∥∥∥∥ x− y0

∥x− y0∥
R− y− y0

∥y− y0∥
R
∥∥∥∥≤ 2∥x− y∥

by the same reasoning used above to estimate A. ■
Alternate Proof of Theorem 24.1.8: Let B be a closed ball of radius R centered at

y0 such that f has Lipschitz constant K on B. Let γ be as in Lemma 24.1.9. Consider
g(x)≡ f (γ (x)) . Then

∥g(x)−g(y)∥= ∥ f (γ (x))− f (γ (y))∥ ≤ K ∥γ (x)− γ (y)∥ ≤ 3K ∥x− y∥ .

Now consider for y ∈C ([0,T ] ,X)

Fy(t)≡ y0 +
∫ t

0
g(y(s))ds

Then
∥Fy(t)−Fz(t)∥ ≤

∫ t

0
K ∥y(s)− z(s)∥ds
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Thus, iterating this inequality, it follows that a large enough power of F is a contraction
map. Therefore, there is a unique fixed point. Now letting y be this fixed point,

∥y(t)− y0∥ ≤
∫ t

0
3K ∥y(s)− y0∥ds+∥ f (y0)∥T

It follows that
∥y(t)− y0∥ ≤ ∥ f (y0)∥Te3KT

Choosing T small enough, it follows that ∥y(t)− y0∥< R on [0,T ] and so γ has no effect.
Thus this yields a local solution to the initial value problem. ■

In the case that U = X , the above argument shows that there exists a solution on some
[0,T ) where T is maximal.

y(t) = y0 +
∫ t

0
f (y(s))ds, t < T

Suppose T < ∞. Suppose
∫ T

0 ∥ f (y(s))∥ds < ∞. Then you can consider y0 +
∫ T

0 f (y(s))ds
as an initial condition for the equation and obtain a unique solution z valid on [T,T +δ ] .
Then one could consider ŷ(t) = y(t) for t < T and for t ≥ T, ŷ(t) = z(t) . Then for t ∈
[T,T +δ ] ,

ŷ(t) = z(t) = y0 +
∫ T

0
f (y(s))d +

∫ t

T
f (ŷ(s))ds

= y0 +
∫ T

0
f (ŷ(s))d +

∫ t

T
f (ŷ(s))ds

and so in fact, for all t ∈ [0,T +δ ] ,

ŷ(t) = y0 +
∫ t

0
f (ŷ(s))ds

contrary to the maximality of T. Hence it cannot be the case that T < ∞. Thus it must be
the case that

∫ T
0 ∥ f (y(s))∥ds = ∞ if the solution is not global.

From the above observation, here is a corollary.

Corollary 24.1.10 Let f : X → X be locally Lipschitz where X is a Banach space. Then
there exists a unique local solution to the IVP

y′ = f (y) , y(0) = y0

If f is bounded, then in fact the solutions exists on [0,T ] for any T > 0.

Proof: Say ∥ f (x)∥ ≤M for all M. Then letting [0, T̂ ) be the maximal interval, it must
be the case that

∫ T̂
0 ∥ f (y(t))∥dt = ∞, but this does not happen if f is bounded. ■

Note that this conclusion holds just as well if f has linear growth, ∥ f (u)∥ ≤ a+b∥u∥
for a,b ≥ 0. One just uses an application of Gronwall’s inequality to verify a similar con-
clusion.

One can also give a simple modification of these theorems as follows.
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Corollary 24.1.11 Suppose f : X → X is continuous and f is locally Lipschitz on U, an
open subset of X, a Banach space. Suppose also that f (x) = 0 for all x /∈ U and that
∥ f (x)∥< M for all x ∈ X . Then there exists a solution to the IVP

y′ = f (y) , y(0) = y0

for t ∈ [0,T ] for any T > 0.

Proof: Let T be given. If y0 /∈ U, there is nothing to show. The solution is y(t) ≡
y0. Suppose then that y0 ∈ U . Then by Theorem 24.1.8, there exists a unique solution
to the initial value problem on an interval [0, T̂ ) of maximal length. If T̂ = T, then as
tn→ T,{y(tn)} must converge. This is because for tm < tn,

∥y(tn)− y(tm)∥ ≤M |tn− tm|

showing that this is a Cauchy sequence. Since all such sequences lead to a Cauchy se-
quence, it must be the case that limt→T y(t) exists. Thus it equals

y0 +
∫ T

0
f (y(t))dt

We let y(T ) equal the above and it follows from Gronwall’s inequality that there is a unique
solution to the IVP on [0,T ] so the claim is true in this case.

Otherwise, if T̂ < T, then one can define

y
(
T̂
)
≡ y0 +

∫ T̂

0
f (y(s))ds

If y
(
T̂
)
∈U, then by the assumption that f is bounded, one could consider a new initial

condition and extend the solution further violating the maximality of the length of [0, T̂ ).
Therefore, it must be the case that y

(
T̂
)
∈UC. Then the solution is

ŷ(t) =
{

y(t) , t < T̂
y
(
T̂
)
, t > T̂

because f
(
y
(
T̂
))

= 0 by assumption. ■
One could also change the above argument for Corollary 24.1.11 to include the case

that f has linear growth.

24.1.2 Mountain Pass Theorem In Banach Space
In this section, is a more general version of the mountain pass theorem. It is generalized in
two ways. First, the space is not a Hilbert space and second, the derivative of the functional
is not assumed to be Lipschitz. Instead of using I′ one uses the pseudogradient in an
appropriate differential equation. This is a significant generalization because there is no
convenient projection map from X ′ to X like there is in Hilbert space. This is why the use
of the psedogradient is so interesting. For many more considerations of this sort of thing,
see [55]. First is a deformation theorem. Here I will be defined on a Banach space X and
I′ (x) ∈ X ′. First recall the Palais Smale conditions.
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Definition 24.1.12 A functional I satisfies the Palais Smale conditions if {I (uk)} is a
bounded sequence and I′ (uk)→ 0, then {uk} is precompact. That is, it has a subsequence
which converges.

Here is a picture which illustrates the main conclusion of the following theorem. The
idea is that you modify the functional on some set making it smaller and leaving it un-
changed off that set.

c−δ

c− ε

c

c+δ

c+ ε

I(η(1,u))

I(u)

I (η (1,u))≤ c−δ if I (u)≤ c+δ .

Theorem 24.1.13 Let I be C1, I is non constant, satisfy the Palais Smale condition, and I′

is bounded on bounded sets. Also suppose that c∈R is such that either I−1 ([c−δ ,c+δ ])=
/0 for some δ > 0 or I−1 ([c−δ ,c+δ ]) ̸= /0 for all δ > 0 and IF I (u) = c, then I′ (u) ̸= 0.
Then for each sufficiently small ε > 0, there is a constant δ ∈ (0,ε) and a function η :
[0,1]×X → X such that

1. η (0,u) = u

2. η (1,u) = u on I−1 (X \ (c− ε,c+ ε))

3. I (η (t,u))≤ I (u)

4. η
(
1, I−1(−∞,c+δ ]

)
⊆ I−1(−∞,c−δ ], so I (η (1,u))≤ c−δ if I (u)≤ c+δ .

The main part of this conclusion is the statement about u→ η (1,u) contained in parts
2. and 4. The other two parts are there to facilitate these two although they are certainly
interesting for their own sake.

Proof: Suppose I−1
([

c− δ̂ ,c+ δ̂

])
= /0 for some δ̂ > 0. Then

I−1

(
(−∞,c+

δ̂

2
]

)
⊆ I−1

(
(−∞,c− δ̂

2
]

)

and you could take ε = δ and let η (t,u) = u. The conclusion holds with δ = δ̂/2.
Therefore, assume I−1 ([c−δ ,c+δ ]) ̸= /0 for all δ > 0. Since I is nonconstant, ε > 0

can be chosen small enough that

I−1 (X \ (c− ε,c+ ε)) ̸= /0.
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Always let ε be this small. Note that I nonconstant is part of the assumptions.
Claim 1: For all small enough ε > 0, if u ∈ I−1 ([c− ε,c+ ε]) , then I′ (u) ̸= 0 and in

fact, for such ε, there exists σ (ε)> 0, such that σ (ε)< min(ε,1) , ∥I′ (u)∥> σ (ε) for all
u ∈ I−1 ([c− ε,c+ ε]).

Proof of Claim 1: If the claim is not so, then there is {uk} ,εk,σ k → 0,∥I′ (uk)∥X ′ <
σ k, and I (uk) ∈ [c− εk,c+ εk] but ∥I′ (uk)∥X ′ ≤ σ k. However, from the Palais Smale
condition, there is a subsequence, still denoted as uk which converges to some u. Now
I (uk) ∈ [c− εk,c+ εk] and so I (u) = c while I′ (u) = 0 contrary to the hypothesis. This
proves Claim 1. From now on, ε will be sufficiently small that this holds.

Now define for δ < ε (The precise description of small δ will be described later. How-
ever, it will be δ < σ (ε)/2, but this exact description is only used at the end.)

A ≡ I−1 (X \ (c− ε,c+ ε))

B ≡ I−1 ([c−δ ,c+δ ])

Thus A and B are disjoint closed sets. Recall that it is assumed that B ̸= /0 since otherwise,
there is nothing to prove. Also it is assumed throughout that ε > 0 is such that A ̸= /0 thanks
to I not being constant. Thus these are nonempty sets and we do not have to fuss with
worrying about meaning when one is empty.

Claim 2: For any u,dist(u,A)+dist(u,B)> 0.
This is so because if not, then both summands would be zero and this requires that

u ∈ A∩B since these sets are closed. But A∩B = /0.
Now define a function

g(u)≡ dist(u,A)
dist(u,A)+dist(u,B)

It is a continuous function of u which has values in [0,1]. It is 1 on B and 0 on A. Also
define V (x) as a pseudogradient field for I on the regular points of I. At points where
I′ (x) = 0, let V (x) = 0. Recall what this means:∥∥I′ (x)

∥∥2
X ′ ≤

〈
I′ (x) ,V (x)

〉
, ∥V (x)∥X ≤ 2

∥∥I′ (x)
∥∥

X ′ (24.1.5)

and also V is locally Lipschitz on the regular points of I. Thus x→ V (x) is continuous
on X , thanks to continuity of I′, satisfies the above inequalities, and is locally Lipschitz on
U = {x : I′ (x) ̸= 0}. It exists because of Lemma 24.1.7. Consider the ordinary differential
initial value problem

η
′ (t,u)+g(u)h(∥V (η (t,u))∥)V (η (t,u)) = 0 (24.1.6)

η (0,u) = u (24.1.7)

where r→ h(r) is a decreasing function which has values in (0,1] and equals 1 for r ∈ [0,1]
and equals 1/r for r > 1.

1
h(r) = 1

r

h(r) = 1
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Here u is given and the η ′ is the time derivative is with respect to t. By Corollary
24.1.11, there exists a solution to this for t ∈ [0,1].

Then for this solution, η (0,u) = u because of the above initial condition. If u ∈
I−1 (X \ [c− ε,c+ ε]) , then u ∈ A and so g(u) = 0 so η (t,u) = u for all t ∈ [0,1]. This
gives the first two conditions. Consider the third.

d
dt

(I (η (t,u))) =
〈
I′ (η) ,η ′

〉
=−

〈
I′ (η) ,g(u)h(∥V (η (t,u))∥)V (η (t,u))

〉
= −g(u)h(∥V (η (t,u))∥)

〈
I′ (η) ,V (η (t,u))

〉
≤ −g(u)h(∥V (η (t,u))∥)

∥∥I′ (η)
∥∥2

X ′ ≤ 0

this last inequality from the inequalities of 24.1.5, and so this implies the third condition
since it says that the function t→ I (η (t,u)) is decreasing.

It remains to consider the last condition. This involves an appropriate choice of small
δ . It was chosen small and now it will be seen how small. It is desired to verify that

η
(
1, I−1 ((−∞,c+δ ])

)
⊆ I−1 ((−∞,c−δ ])

Suppose it is not so. Then there exists u such that I (u) ∈ (c− δ ,c+ δ ] but I (η (1,u)) >
c−δ . We can assume that I (u)∈ (c−δ ,c+δ ] because if I (u)≤ c−δ , then so is I (η (1,u))
from what was just shown. Hence g(u) = 1. Then using the fact that g(u) = 1,

c−δ < I (η (1,u)) = I (u)+
∫ 1

0

d
dt

(I (η))dt

= I (u)−
∫ 1

0

〈
I′ (η) ,h(∥V (η)∥)V (η)

〉
dt

= I (u)+
∫ 1

0
−h(∥V (η)∥)

〈
I′ (η) ,V (η)

〉
dt

≤
≤c+δ

I (u) +
∫ 1

0

(
−h(∥V (η)∥)

∥∥I′ (η)
∥∥2
)

dt

Then

c−δ +
∫ 1

0
h(∥V (η)∥)

∥∥I′ (η)
∥∥2 dt < I (u)≤ c+δ

Thus

c−2δ +
∫ 1

0
h(∥V (η)∥)

∥∥I′ (η)
∥∥2 dt < c

Also, it is being assumed that I (η (1,u)) > c− δ and so by the third conclusion shown
above, η (t,u) ∈ B for t ∈ [0,1]. We also know that for such values of η (t,u) ,∥∥I′ (η (t,u))

∥∥≥ σ (ε)

from Claim 1. Now ∥∥I′ (x)
∥∥2

X ′ ≤
〈
I′ (x) ,V (x)

〉
≤
∥∥I′ (x)

∥∥∥V (x)∥



24.1. MOUNTAIN PASS THEOREM IN HILBERT SPACE 821

and so
∥V (η (t,u))∥X ≥

∥∥I′ (η (t,u))
∥∥

X ′ ≥ σ (ε) . (24.1.8)

Thus the above inequality yields

c−2δ +
∫ 1

0
h(∥V (η)∥)σ (ε)2 dt < c

Now what is the value of h(∥V (η)∥)? From 24.1.8

h(∥V (η (t,u))∥X )≤ h
(∥∥I′ (η (t,u))

∥∥
X ′
)
≤ h(σ (ε))≤ 1

σ (ε)

In fact, σ (ε)< 1 so h(σ (ε)) = 1 so the above estimate, while correct is sloppy. Hence

c−2δ +
∫ 1

0

1
σ (ε)

σ (ε)2 dt < c

So far it was only assumed δ < ε . As indicated above, δ was chosen small enough that
−2δ +σ (ε)> 0. Hence this yields a contradiction. Thus the last conclusion is verified. ■

Imagine a valley surrounded by a ring of mountains. On the other side of this ring of
moutains, there is another low place. Then there must be some path from the valley to the
exterior low place which goes through a point where the gradient equals 0, the gradient
being the gradient of a function f which gives the altitude of the land. This is the idea of
the mountain pass theorem. The critical point where ∇ f = 0 is the mountain pass.

Theorem 24.1.14 Let X be a Banach space and let I : X → R be a C1 functional having
I′ bounded on bounded sets and such that I satisfies the Palais Smale condition. Suppose
I (0) = 0 and I (u) ≥ a > 0 for all ∥u∥ = r. Suppose also that there exists v,∥v∥ > r such
that I (v)≤ 0. Then define

Γ≡ {g ∈C ([0,1] ;X) : g(0) = 0,g(1) = v}

Let
c≡ inf

g∈Γ
max

0≤t≤1
I (g(t))

Then c is a critical value of I meaning that there exists u such that I (u) = c and I′ (u) = 0.
In particular, there is u ̸= 0 such that I′ (u) = 0.

Proof: First note that c ≥ a > 0. Suppose c is not a critical value. Then either
I−1 ((c−δ ,c+δ )) = /0 for some δ > 0 in which case the conclusion of the deformation
theorem, (Theorem 24.1.13) holds, or for all δ > 0, I−1 ((c−δ ,c+δ )) ̸= /0 and if I (u) = c,
then I′ (u) ̸= 0 in which case the deformation theorem also holds. Then by this theorem,
for ε > 0,ε sufficiently small, ε < c, there is η : X → X and a δ < ε small enough that

η
(
I−1 ((−∞,c+δ ])

)
⊆ I−1 ((−∞,c−δ ])

and η leaves unchanged I−1 (X \ (c− ε,c+ ε)). Then there is g ∈ Γ such that

max
t∈[0,1]

I (g(t))< c+δ
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Then in particular, I (g(t)) < c+ δ for every t. Hence you look at η ◦ g. We know that
g(0) ,g(1) are both in the set [I (u) /∈ (c− ε,c+ ε)] because they are both 0 or less than 0
and so η leaves these unchanged. Hence η ◦g ∈ Γ and

I (η ◦g(t))≤ c−δ

for all t ∈ [0,1]. Thus

c = inf
g∈Γ

max
0≤t≤1

I (g(t))≤ max
t∈[0,1]

I (η ◦g(t))≤ c−δ

which is clearly a contradiction. ■



Chapter 25

Nonlinear Operators
In this chapter, is a discussion of various kinds of nonlinear operators. Some standard
references on these operators are [39], [40], [22], [24], [13], [91], [116], [25] and references
listed there. The most important examples of these operators seem to be due to Brezis in
the 1960’s and these things have been generalized and used by many others since this time.
I am following many of these, but the stuff about maximal monotone operators is mainly
from Barbu [13]. I am trying to include all the necessary basic results such as fixed point
theorems which are needed to prove the main theorems and also to re write in a manner
understandable to me.

It seems like the main issue is the following. When does ⟨ fn,xn⟩ converge to ⟨ f ,x⟩
given that fn and xn both converge weakly to f and x respectively? There is no problem
in finite dimensions because in finite dimensions, there is only one meaning for conver-
gence. However, in infinite dimensions, there certainly is a problem as can be instantly
realized by consideration of the Riemann Lebesgue lemma, for example. You know that∫

π

−π
f (x)sin(nx)dx→ 0 so sin(nx) converges weakly to 0 but

∫
π

−π
sin2 (nx)dx certainly

does not converge to 0.
The idea behind all of these considerations is that fn is to come from some nonlinear

operator which has properties which will allow one to successfully pass to a limit. When
the operator is linear, there usually is no problem because the graph is a subspace and so
if it is closed, it will also be weakly closed. Thus, if xn→ x weakly and Lxn→ f weakly,
then f = Lx. However, nothing like this happens with nonlinear operators. Consideration
of when this happens is the purpose of this catalogue of nonlinear operators, and also to
generalize to set valued operators. First is a section on single valued nonlinear operators
and then the case of set valued nonlinear operators is discussed.

25.1 Some Nonlinear Single Valued Operators
Here is an assortment of nonlinear operators which are useful in applications to nonlinear
partial differential equations. Generalizations of the notion of a pseudomonotone map will
be presented later to include the case of set valued pseudomonotone maps. This is on the
single valued version of some of these and these ideas originate with Brezis in the 1960’s.
A good description is given in Lions [91].

Definition 25.1.1 For V a real Banach space, A : V → V ′ is a pseudomonotone map if
whenever

un ⇀ u (25.1.1)

and
lim sup

n→∞

⟨Aun,un−u⟩ ≤ 0 (25.1.2)

it follows that for all v ∈V,

lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩. (25.1.3)

The half arrows denote weak convergence.

823
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If V is finite dimensional, then pseudomonotone maps are continuous. Also the prop-
erty of being pseudomonotone is preserved when restriction is made to finite dimensional
spaces. The notation is explained in the following diagram.

W ′ i∗← V ′

W i→ V

The map i is just the inclusion map. iw≡ w and i∗ is the usual adjoint map. ⟨i∗ f ,w⟩W ′,W ≡
⟨ f , iw⟩V ′,V = ⟨ f ,w⟩V ′,V . Thus i∗Ai(w) ∈W ′ and it is defined by

⟨i∗Ai(w) ,z⟩W ′,W ≡ ⟨Aw,z⟩V ′,V

in other words, you restrict A to W and only consider what the resulting functional does to
things in W .

Proposition 25.1.2 Let V be finite dimensional and let A : V →V ′ be pseudomonotone and
bounded (meaning A maps bounded sets to bounded sets). Then A is continuous. Also, if
A : V →V ′ is pseudomonotone and bounded, and if W ⊆V is a finite dimensional subspace,
then i∗Ai is pseudomonotone as a map from W to W ′.

Proof: Say un→ u. Does it follow that Aun→ Au? If not, then there is a subsequence
such that Aun→ ξ ̸= Au thanks to {Aun} being bounded. Then the limsup condition holds
obviously. In fact the limit of ⟨Aun,un−u⟩ exists and equals 0. Hence for all v,

lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩

Therefore,
⟨ξ ,u− v⟩ ≥ ⟨Au,u− v⟩

for all v and so in fact ξ = Au after all. Thus A must be continuous.
As to the second part of this proposition, if you have wn ⇀ w in W, then in fact con-

vergence takes place strongly because weak and strong convergence are the same in finite
dimensions. Hence the same argument given above holds to show that i∗Ai is continuous.

Definition 25.1.3 A : V →V ′ is monotone if for all v,u ∈V,

⟨Au−Av,u− v⟩ ≥ 0,

and A is Hemicontinuous if for all v,u ∈V,

lim
t→0+
⟨A(u+ t (v−u)) ,u− v⟩= ⟨Au,u− v⟩.

Theorem 25.1.4 Let V be a Banach space and let A : V →V ′ be monotone and hemicon-
tinuous. Then A is pseudomonotone.

Proof: Let A be monotone and Hemicontinuous. First here is a claim.
Claim: If 25.1.1 and 25.1.2 hold, then limn→∞⟨Aun,un−u⟩= 0.
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Proof of the claim: Since A is monotone,

⟨Aun−Au,un−u⟩ ≥ 0

so
⟨Aun,un−u⟩ ≥ ⟨Au,un−u⟩.

Therefore,

0 = lim inf
n→∞
⟨Au,un−u⟩ ≤ lim inf

n→∞
⟨Aun,un−u⟩ ≤ lim sup

n→∞

⟨Aun,un−u⟩ ≤ 0.

Now using that A is monotone again, then letting t > 0,

⟨Aun−A(u+ t (v−u)) ,un−u+ t (u− v)⟩ ≥ 0

and so
⟨Aun,un−u+ t (u− v)⟩ ≥ ⟨A(u+ t (v−u)) ,un−u+ t (u− v)⟩.

Taking the liminf on both sides and using the claim and t > 0,

t lim inf
n→∞
⟨Aun,u− v⟩ ≥ t⟨A(u+ t (v−u)) ,(u− v)⟩.

Next divide by t and use the Hemicontinuity of A to conclude that

lim inf
n→∞
⟨Aun,u− v⟩ ≥ ⟨Au,u− v⟩.

From the claim,

lim inf
n→∞
⟨Aun,u− v⟩= lim inf

n→∞
(⟨Aun,un− v⟩+ ⟨Aun,u−un⟩)

= lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩.■

Monotonicity is very important in the above proof. The next example shows that even
if the operator is linear and bounded, it is not necessarily pseudomonotone.

Example 25.1.5 Let H be any Hilbert space (complete inner product space, more on these
later) and let A : H→ H ′ be given by

⟨Ax,y⟩ ≡ (−x,y)H .

Then A fails to be pseudomonotone.

Proof: Let {xn}∞

n=1 be an orthonormal set of vectors in H. Then Parsevall’s inequality
implies

||x||2 ≥
∞

∑
n=1
|(xn,x)|2

and so for any x ∈ H, limn→∞ (xn,x) = 0. Thus xn ⇀ 0≡ x. Also

lim sup
n→∞

⟨Axn,xn− x⟩=



826 CHAPTER 25. NONLINEAR OPERATORS

lim sup
n→∞

⟨Axn,xn−0⟩= lim sup
n→∞

(
−||xn||2

)
=−1≤ 0.

If A were pseudomonotone, we would need to be able to conclude that for all y ∈ H,

lim inf
n→∞
⟨Axn,xn− y⟩ ≥ ⟨Ax,x− y⟩= 0.

However,
lim inf

n→∞
⟨Axn,xn−0⟩=−1 < 0 = ⟨A0,0−0⟩.

The following proposition is useful.

Proposition 25.1.6 Suppose A : V →V ′ is pseudomonotone and bounded where V is sepa-
rable. Then it must be demicontinuous. This means that if un→ u, then Aun ⇀ Au. In case
that V is reflexive, you don’t need the assumption that V is separable.

Proof: Since un→ u is strong convergence and since Aun is bounded, it follows

lim sup
n→∞

⟨Aun,un−u⟩= lim
n→∞
⟨Aun,un−u⟩= 0.

Suppose this is not so that Aun converges weakly to Au. Since A is bounded, there exists a
subsequence, still denoted by n such that Aun ⇀ ξ weak ∗. I need to verify ξ = Au. From
the above, it follows that for all v ∈V

⟨Au,u− v⟩ ≤ lim inf
n→∞
⟨Aun,un− v⟩

= lim inf
n→∞
⟨Aun,u− v⟩= ⟨ξ ,u− v⟩

Hence ξ = Au. ■
There is another type of operator which is more general than pseudomonotone.

Definition 25.1.7 Let A : V → V ′ be an operator. Then A is called type M if whenever
un ⇀ u and Aun ⇀ ξ , and

lim sup
n→∞

⟨Aun,un⟩ ≤ ⟨ξ ,u⟩

it follows that Au = ξ .

Proposition 25.1.8 If A is pseudomonotone, then A is type M.

Proof: Suppose A is pseudomonotone and un ⇀ u and Aun ⇀ ξ , and

lim sup
n→∞

⟨Aun,un⟩ ≤ ⟨ξ ,u⟩

Then
lim sup

n→∞

⟨Aun,un−u⟩= lim sup
n→∞

⟨Aun,un⟩−⟨ξ ,u⟩ ≤ 0

Hence
lim inf

n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩
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for all v ∈V . Consequently, for all v ∈V,

⟨Au,u− v⟩ ≤ lim inf
n→∞
⟨Aun,un− v⟩

= lim inf
n→∞

(⟨Aun,u− v⟩+ ⟨Aun,un−u⟩)

= ⟨ξ ,u− v⟩+ lim inf
n→∞
⟨Aun,un−u⟩ ≤ ⟨ξ ,u− v⟩

and so Au = ξ . ■
An interesting result is the following which states that a monotone linear function added

to a type M is also type M.

Proposition 25.1.9 Suppose A : V → V ′ is type M and suppose L : V → V ′ is monotone,
bounded and linear. Then L+A is type M. Let V be separable or reflexive so that the weak
convergences in the following argument are valid.

Proof: Suppose un ⇀ u and Aun +Lun ⇀ ξ and also that

lim sup
n→∞

⟨Aun +Lun,un⟩ ≤ ⟨ξ ,u⟩

Does it follow that ξ = Au+ Lu? Suppose not. There exists a further subsequence, still
called n such that Lun ⇀ Lu. This follows because L is linear and bounded. Then from
monotonicity,

⟨Lun,un⟩ ≥ ⟨Lun,u⟩+ ⟨L(u) ,un−u⟩

Hence with this further subsequence, the limsup is no larger and so

lim sup
n→∞

⟨Aun,un⟩+ lim
n→∞

(⟨Lun,u⟩+ ⟨L(u) ,un−u⟩)≤ ⟨ξ ,u⟩

and so
lim sup

n→∞

⟨Aun,un⟩ ≤ ⟨ξ −Lu,u⟩

It follows since A is type M that Au = ξ −Lu, which contradicts the assumption that ξ ̸=
Au+Lu. ■

There is also the following useful generalization of the above proposition.

Corollary 25.1.10 Suppose A : V → V ′ is type M and suppose L : W →W ′ is monotone,
bounded and linear where V ⊆W and V is dense in W so that W ′ ⊆ V ′. Then for u0 ∈W
define M (u) ≡ L(u−u0) . Then M +A is type M. Let V be separable or reflexive so that
the weak convergences in the following argument are valid.

Proof: Suppose un ⇀ u and Aun +Mun ⇀ ξ and also that

lim sup
n→∞

⟨Aun +Mun,un⟩ ≤ ⟨ξ ,u⟩

Does it follow that ξ = Au+Mu? Suppose not. By assumption, un ⇀ u and so,

un−u0 ⇀ u−u0 weak convergence in W
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since L is bounded, there is a further subsequence, still called n such that

Mun = L(un−u0)⇀ L(u−u0) = Mu.

Since M is monotone,
⟨Mun−Mu,un−u⟩ ≥ 0

Thus
⟨Mun,un⟩−⟨Mun,u⟩−⟨Mu,un⟩+ ⟨Mu,u⟩ ≥ 0

and so
⟨Mun,un⟩ ≥ ⟨Mun,u⟩+ ⟨Mu,un−u⟩

Hence with this further subsequence, the limsup is no larger and so

⟨ξ ,u⟩ ≥ lim sup
n→∞

⟨Aun +Mun,un⟩

≥ lim sup
n→∞

(⟨Aun,un⟩+ ⟨Mun,u⟩+ ⟨Mu,un−u⟩)

= lim sup
n→∞

⟨Aun,un⟩+ lim
n→∞

(⟨Mun,u⟩+ ⟨M (u) ,un−u⟩)≤ ⟨ξ ,u⟩

and so
lim sup

n→∞

⟨Aun,un⟩ ≤ ⟨ξ −Mu,u⟩

It follows since A is type M that Au = ξ −Mu, which contradicts the assumption that
ξ ̸= Au+Mu. ■

The following is Browder’s lemma. It is a very interesting application of the Brouwer
fixed point theorem.

Lemma 25.1.11 (Browder) Let K be a convex closed and bounded set in Rn and let A :
K→ Rn be continuous and f ∈ Rn. Then there exists x ∈ K such that for all y ∈ K,

(f−Ax,y−x)Rn ≤ 0

If K is convex, closed, bounded subset of V a finite dimensional vector space, then the same
conclusion holds. If f ∈V ′, there exists x ∈ K such that for all y ∈ K,

⟨ f −Ax,y− x⟩V ′,V ≤ 0

Proof: Let PK denote the projection onto K. Thus PK is Lipschitz continuous.

x→ PK (f−Ax+x)

is a continuous map from K to K. By the Brouwer fixed point theorem, it has a fixed point
x ∈ K. Therefore, for all y ∈ K,

(f−Ax+x−x,y−x) = (f−Ax,y−x)≤ 0
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As to the second claim. Consider the following diagram.

Rn θ
∗
← V ′

Rn θ→ V

where

θ (x) =
n

∑
i=1

xivi

Thus θ and θ
∗ are both continuous linear and one to one and onto. Hence there is x∈ θ

−1K
a closed convex and bounded subset of Rn such that x = θ

−1u,u ∈ K, and(
θ
∗ f −θ

∗Aθ
(
θ
−1u
)
,θ−1y−θ

−1u
)
Rn ≡ ⟨ f −Au,y−u⟩V ′,V ≤ 0

for all y ∈ K. ■
From this lemma, there is an interesting theorem on surjectivity.

Proposition 25.1.12 Let A : V →V ′ be continuous and coercive,

lim
∥v∥→∞

⟨A(v+ v0) ,v⟩
∥v∥V

= ∞

for some v0. Then for all f ∈V ′, there exists v ∈V such that Av = f .

Proof: Define the closed convex sets Bn ≡ B(v0,n). By Browder’s lemma, there exists
xn such that

( f −Avn,y− vn)≤ 0

for all y ∈ Bn. Then taking y = v0,

⟨Avn,vn− v0⟩ ≤ ⟨ f ,vn− v0⟩

letting wn = vn− v0,

⟨A(wn + v0) ,wn⟩ ≤ ⟨ f ,wn⟩

and so
⟨A(wn + v0) ,wn⟩

∥wn∥
≤ ∥ f∥

which implies that the ∥wn∥ and hence the ∥vn∥ are bounded. It follows that for large n, vn
is an interior point of Bn. Therefore,

⟨ f −Avn,z⟩V ′,V ≤ 0

for all z in some open ball centered at v0. Hence f −Avn = 0. ■

Lemma 25.1.13 Let A : V →V ′ be type M and bounded and suppose V is reflexive or V is
separable. Then A is demicontinuous.
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Proof: Suppose un → u and Aun fails to converge weakly to Au. Then there is a fur-
ther subsequence, still denoted as un such that Aun ⇀ ζ ̸= Au. Then thanks to the strong
convergence, you have

lim sup
n→∞

⟨Aun,un⟩= ⟨ζ ,u⟩

which implies ζ = Au after all. ■
With these lemmas and the above proposition, there is a very interesting surjectivity

result.

Theorem 25.1.14 Let A : V →V ′ be type M, bounded, and coercive

lim
∥u∥→∞

⟨A(u+u0) ,u⟩
∥u∥

= ∞, (25.1.4)

for some u0, where V is a separable reflexive Banach space. Then A is surjective.

Proof: Since V is separable, there exists an increasing sequence of finite dimensional
subspaces {Vn} such that ∪nVn = V and each Vn contains u0. Say span(v1, · · · ,vn) = Vn.
Then consider the following diagram.

V ′n
i∗← V ′

Vn
i→ V

The map i is the inclusion map. Consider the map i∗Ai. By Lemma 25.1.13 this map is
continuous.

⟨i∗Ai(v+u0) ,v⟩V ′nVn

∥v∥
=
⟨A(v+u0) ,v⟩V ′,V

∥v∥

Hence i∗Ai is coercive. Let f ∈V ′. Then from Proposition 25.1.12, there exists xn such that

i∗Aivn = i∗ f

In other words,
⟨Avn,y⟩V ′V = ⟨ f ,y⟩V ′V (25.1.5)

for all y ∈Vn. Letting y≡ vn−u0 ≡ wn,

⟨A(wn +u0) ,wn⟩= ⟨ f ,wn⟩

Then from the coercivity condition 25.1.4, the wn are bounded independent of n. Hence this
is also true of the vn. Since V is reflexive, there is a subsequence, still called {vn} which
converges weakly to v ∈V. Since A is bounded, it can also be assumed that Avn ⇀ ζ ∈V ′.
Then

lim sup
n→∞

⟨Avn,vn⟩= lim sup
n→∞

⟨ f ,vn⟩= ⟨ f ,v⟩

Also, passing to the limit in 25.1.5,

⟨ζ ,y⟩= ⟨ f ,y⟩
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for any y ∈Vn, this for any n. Since the union of these Vn is dense, it follows that the above
equation holds for all y ∈V. Therefore, f = ζ and so

lim sup
n→∞

⟨Avn,vn⟩= lim sup
n→∞

⟨ f ,vn⟩= ⟨ f ,v⟩= ⟨ζ ,v⟩

Since A is type M, Av = ζ = f . ■
You can generalize pseudomonotone slightly without any trouble.

Definition 25.1.15 Let V be a Banach space and let K be a closed convex nonempty subset
of V. Then A : K→V ′ is pseudomonotone if similar conditions hold as above. That is, if

un ⇀ u (25.1.6)

and
lim sup

n→∞

⟨Aun,un−u⟩ ≤ 0 (25.1.7)

it follows that for all v ∈ K,

lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩. (25.1.8)

Then it is easy to give a nice result on variational inequalities.

Proposition 25.1.16 Let K be a closed convex nonempty subset of V a separable reflexive
Banach space. Let A : K→ V ′ be pseudomonotone and bounded. Also assume that either
K is bounded or there is a coercivity condition

lim
∥u∥→∞

⟨Au,u−u0⟩
∥u∥

= ∞, u0 ∈ K

then for f ∈V ′, there exists u ∈ K such that for all v ∈ K,

⟨Au,u− v⟩ ≤ ⟨ f ,u− v⟩

Proof: Let Vn be finite dimensional spaces whose union is dense in V, · · ·Vn ⊆Vn+1 · · · ,
each containing u0,n > ∥u0∥. By a repeat of the proof of Proposition 25.1.2, i∗Ai will be
continuous on K. Therefore, by Browder’s lemma, there exists un ∈ Kn ≡ K∩B(0,n)∩Vn
such that for all v ∈ Kn,

⟨i∗ f − i∗Aiun,v−un⟩V ′n,Vn
= ⟨ f −Aun,v−un⟩V ′,V ≤ 0

Now assume we don’t know that K is bounded. In case it is bounded, the argument simpli-
fies. In the harder case, the coercivity condition implies that the un are bounded in V . This
follows from letting v = u0 in the above inequality. Thus

⟨ f ,un−u0⟩ ≥ ⟨Aun,un−u0⟩

Hence
⟨Aun,un−u0⟩
∥un∥

≤ ∥ f∥∥un−u0∥
∥un∥
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The right side is bounded and so it follows that the left side is also bounded. Therefore,
∥un∥ must be bounded. Taking a subsequence and using the assumption that V is reflexive,
we can obtain

un→ u weakly in V

By the fact that convex closed sets are weakly closed also, it follows that u∈K. Also, given
M, eventually all ∥un∥ and ∥u∥ are less than M. Now from the inequality,

⟨Aun,un− v⟩ ≤ ⟨ f ,un− v⟩

Thus
⟨Aun,un−u⟩+ ⟨Aun,u− v⟩ ≤ ⟨ f ,un−u⟩+ ⟨ f ,u− v⟩

Then taking limsupn→∞ one gets

lim sup
n→∞

⟨Aun,un−u⟩+ ⟨ξ ,u− v⟩ ≤ ⟨ f ,u− v⟩

This holds for v ∈ Km where m is arbitrary. Hence one could let vm→ u. Thus eventually
∥vm∥< M and so for large m,vm ∈ Km. Then it follows that

lim sup
n→∞

⟨Aun,un−u⟩ ≤ 0.

Consequently, by the assumption that A is pseudomonotone on K, for every v ∈ K,

⟨Au,u− v⟩ ≤ lim inf
n→∞
⟨Aun,un− v⟩ (*)

for all v ∈ K. Then from the inequality obtained from Browder’s lemma,

⟨Aun,un− v⟩V ′,V ≤ ⟨ f ,un− v⟩V ′,V

and so * implies on taking liminf that for all v ∈ K,

⟨Au,u− v⟩V ′,V ≤ ⟨ f ,u− v⟩V ′,V ■

25.2 Duality Maps
The duality map is an attempt to duplicate some of the features of the Riesz map in Hilbert
space which is discussed in the chapter on Hilbert space.

Definition 25.2.1 A Banach space is said to be strictly convex if whenever ||x||= ||y|| and
x ̸= y, then ∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣< ||x||.
F : X→ X ′ is said to be a duality map if it satisfies the following: a.) ||F(x)||= ||x||p−1. b.)
F(x)(x) = ||x||p, where p > 1.
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Duality maps exist. Here is why. Let

F (x)≡
{

x∗ : ||x∗|| ≤ ||x||p−1 and x∗ (x) = ||x||p
}

Then F (x) is not empty because you can let f (αx) = α ||x||p . Then f is linear and defined
on a subspace of X . Also

sup
||αx||≤1

| f (αx)|= sup
||αx||≤1

|α| ||x||p ≤ ||x||p−1

Also from the definition,
f (x) = ||x||p

and so, letting x∗ be a Hahn Banach extension, it follows x∗ ∈ F (x). Also, F (x) is closed
and convex. It is clearly closed because if x∗n→ x∗, the condition on the norm clearly holds
and also the other one does too. It is convex because

||x∗λ +(1−λ )y∗|| ≤ λ ||x∗||+(1−λ ) ||y∗|| ≤ λ ||x||p−1 +(1−λ ) ||x||p−1

If the conditions hold for x∗, then we can show that in fact ||x∗|| = ||x||p−1. This is
because

||x∗|| ≥
∣∣∣∣x∗( x

||x||

)∣∣∣∣= 1
||x||
|x∗ (x)|= ||x||p−1 .

Now how many things are in F (x) assuming the norm on X ′ is strictly convex? Suppose
x∗1, and x∗2 are two things in F (x) . Then by convexity, so is (x∗1 + x∗2)/2. Hence by strict
convexity, if the two are different, then∣∣∣∣∣∣∣∣x∗1 + x∗2

2

∣∣∣∣∣∣∣∣= ||x||p−1 <
1
2
||x∗1||+

1
2
||x∗2||= ||x||

p−1

which is a contradiction. Therefore, F is an actual mapping.
What are some of its properties? First is one which is similar to the Cauchy Schwarz

inequality. Since p−1 = p/p′,

sup
||y||≤1

|⟨Fx,y⟩|= ||x||p/p′

and so for arbitrary y ̸= 0,

|⟨Fx,y⟩| = ||y||
∣∣∣∣〈Fx,

y
||y||

〉∣∣∣∣≤ ||y|| ||x||p/p′

= |⟨Fy,y⟩|1/p |⟨Fx,x⟩|1/p′

Next we can show that F is monotone.

⟨Fx−Fy,x− y⟩ = ⟨Fx,x⟩−⟨Fx,y⟩−⟨Fy,x⟩+ ⟨Fy,y⟩
≥ ||x||p + ||y||p−||y|| ||x||p/p′ −||y||p/p′ ||x||
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≥ ||x||p + ||y||p−
(
||y||p

p
+
||x||p

p′

)
−
(
||y||p

p′
+
||x||p

p

)
= 0

Next it can be shown that F is hemicontinuous. By the construction, F (x+ ty) is
bounded as t→ 0. Let t→ 0 be a subsequence such that

F (x+ ty)→ ξ weak ∗

Then we ask: Does ξ do what it needs to do in order to be F (x)? The answer is yes. First
of all ||F (x+ ty)||= ||x+ ty||p−1→ ||x||p−1 . The set{

x∗ : ||x∗|| ≤ ||x||p−1 + ε

}
is closed and convex and so it is weak ∗ closed as well. For all small enough t, it follows
F (x+ ty) is in this set. Therefore, the weak limit is also in this set and it follows ||ξ || ≤
||x||p−1 + ε. Since ε is arbitrary, it follows ||ξ || ≤ ||x||p−1 . Is ξ (x) = ||x||p? We have

||x||p = lim
t→0
||x+ ty||p = lim

t→0
⟨F (x+ ty) ,x+ ty⟩

= lim
t→0
⟨F (x+ ty) ,x⟩= ⟨ξ ,x⟩

and so, ξ does what it needs to do to be F (x). This would be clear if ||ξ || = ||x||p−1 .

However, |⟨ξ ,x⟩|= ||x||p and so ||ξ || ≥
∣∣∣〈ξ , x

||x||

〉∣∣∣= ||x||p−1 . Thus ||ξ ||= ||x||p−1 which

shows ξ does everyting it needs to do to equal F (x) and so it is F (x) . Since this conclusion
follows for any convergent sequence, it follows that F (x+ ty) converges to F (x) weakly
as t → 0. This is what it means to be hemicontinuous. This proves the following theorem.
One can show also that F is demicontinuous which means strongly convergent sequences
go to weakly convergent sequences. Here is a proof for the case where p = 2. You can
clearly do the same thing for arbitrary p.

Lemma 25.2.2 Let F be a duality map for p = 2 where X ,X ′ are reflexive and have strictly
convex norms. (If X is reflexive, there is always an equivalent strictly convex norm [8].)
Then F is demicontinuous.

Proof: Say xn→ x. Then does it follow that Fxn ⇀ Fx? Suppose not. Then there is a
subsequence, still denoted as xn such that xn→ x but Fxn ⇀ y ̸= Fx where here ⇀ denotes
weak convergence. This follows from the Eberlein Smulian theorem. Then

⟨y,x⟩= lim
n→∞
⟨Fxn,xn⟩= lim

n→∞
∥xn∥2 = ∥x∥2

Also, there exists z,∥z∥= 1 and ⟨y,z⟩ ≥ ∥y∥− ε. Then

∥y∥− ε ≤ ⟨y,z⟩= lim
n→∞
⟨Fxn,z⟩ ≤ lim inf

n→∞
∥Fxn∥= lim inf

n→∞
∥xn∥= ∥x∥

and since ε is arbitrary, ∥y∥ ≤ ∥x∥ . It follows from the above construction of Fx, that
y = Fx after all, a contradiction. ■
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Theorem 25.2.3 Let X be a reflexive Banach space with X ′ having strictly convex norm1.
Then for p > 1, there exists a mapping F : X → X ′ which is bounded, monotone, hemi-
continuous, coercive in the sense that lim|x|→∞ ⟨Fx,x⟩/ |x| = ∞, which also satisfies the
inequalities

|⟨Fx,y⟩| ≤ |⟨Fx,x⟩|1/p′ |⟨Fy,y⟩|1/p

Note that these conclusions about duality maps show that they map onto the dual space.
The duality map was onto and it was monotone. This was shown above. Consider the

form of a duality map for the Lp spaces. Let F : Lp→ (Lp)′ be the one which satisfies

||F f ||= || f ||p−1 , ⟨F f , f ⟩= || f ||p

Then in this case,
F f = | f |p−2 f

This is because it does what it needs to do.

||F f ||Lp′ =

(∫
Ω

(
| f |p−1

)p′

dµ

)1/p′

=

(∫
Ω

(
| f |p/p′

)p′

dµ

)1/p′

=

(∫
Ω

| f |p dµ

)1−(1/p)

=

((∫
Ω

| f |p dµ

)1/p
)p−1

= || f ||p−1
Lp

while it is obvious that
⟨F f , f ⟩=

∫
Ω

| f |p dµ = || f ||pLp(Ω)
.

Now here is an interesting inequality which I will only consider in the case where the
quantities are real valued.

Lemma 25.2.4 Let p≥ 2. Then for a,b real numbers,(
|a|p−2 a−|b|p−2 b

)
(a−b)≥C |a−b|p

for some constant C independent of a,b.

Proof: There is nothing to show if a = b. Without loss of generality, assume a > b.
Also assume p > 2. There is nothing to show if p = 2. I want to show that there exists a
constant C such that for a > b,

|a|p−2 a−|b|p−2 b

|a−b|p−1 ≥C (25.2.9)

First assume also that b≥ 0. Now it is clear that as a→∞, the quotient above converges to
1. Take the derivative of this quotient. This yields

(p−1) |a−b|p−2
|a|p−2 |a−b|−

(
|a|p−2 a−|b|p−2 b

)
|a−b|2p−2

1It is known that if the space is reflexive, then there is an equivalent norm which is strictly convex. However,
in most examples, this strict convexity is obvious.
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Now remember a > b. Then the above reduces to

(p−1) |a−b|p−2 b
|b|p−2−|a|p−2

|a−b|2p−2

Since b ≥ 0, this is negative and so 1 would be a lower bound. Now suppose b < 0. Then
the above derivative is negative for b < a≤−b and then it is positive for a >−b. It equals
0 when a =−b. Therefore the quotient in 25.2.9 achieves its minimum value when a =−b.
This value is

|−b|p−2 (−b)−|b|p−2 b

|−b−b|p−1 = |b|p−2 −2b

|2b|p−1 = |b|p−2 1

|2b|p−2 =
1

2p−2 .

Therefore, the conclusion holds whenever p≥ 2. That is(
|a|p−2 a−|b|p−2 b

)
(a−b)≥ 1

2p−2 |a−b|p .

This proves the lemma.
However, in the context of strictly convex norms on the reflexive Banach space X , the

following important result holds. I will give it first for the case where p = 2 since this is
the case of most interest.

Theorem 25.2.5 Let X be a reflexive Banach space and X ,X ′ have strictly convex norms
as discussed above. Let F be the duality map with p = 2. Then F is strictly monotone. This
means

⟨Fu−Fv,u− v⟩ ≥ 0

and it equals 0 if and only if u− v.

Proof: First why is it monotone? By definition of F, ⟨F (u) ,u⟩ = ∥u∥2 and ∥F (u)∥ =
∥u∥. Then

|⟨Fu,v⟩|=
∣∣∣∣〈Fu,

v
∥v∥

〉∣∣∣∣∥v∥ ≤ ∥Fu∥∥v∥= ∥u∥∥v∥

Hence

⟨Fu−Fv,u− v⟩ = ∥u∥2 +∥v∥2−⟨Fu,v⟩−⟨Fv,u⟩
≥ ∥u∥2 +∥v∥2−2∥u∥∥v∥ ≥ 0

Now suppose ∥x∥= ∥y∥= 1 but x ̸= y. Then〈
Fx,

x+ y
2

〉
≤
∥∥∥∥x+ y

2

∥∥∥∥< ∥x∥+∥y∥2
= 1

It follows that
1
2
⟨Fx,x⟩+ 1

2
⟨Fx,y⟩= 1

2
+

1
2
⟨Fx,y⟩< 1

and so
⟨Fx,y⟩< 1
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For arbitrary x,y, x/∥x∥ ̸= y/∥y∥

⟨Fx,y⟩= ∥x∥∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
It is easy to check that F (αx) = αF (x) . Therefore,

|⟨Fx,y⟩|= ∥x∥∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
< ∥x∥∥y∥

Now say that x ̸= y and consider

⟨Fx−Fy,x− y⟩

First suppose x = αy. Then the above is

⟨F (αy)−Fy,(α−1)y⟩ = (α−1)
(
⟨F (αy) ,y⟩−∥y∥2

)
= (α−1)

(
⟨αF (y) ,y⟩−∥y∥2

)
= (α−1)2 ∥y∥2 > 0

The other case is that x/∥x∥ ̸= y/∥y∥ and in this case,

⟨Fx−Fy,x− y⟩= ∥x∥2 +∥y∥2−⟨Fx,y⟩−⟨Fy,x⟩

> ∥x∥2 +∥y∥2−2∥x∥∥y∥ ≥ 0

Thus F is strictly monotone as claimed. ■
As mentioned, this will hold for any p > 1. Here is a proof in the case that the Banach

space is real which is the usual case of interest. First here is a simple observation.

Observation 25.2.6 Let p > 1. Then x→ |x|p−2 x is strictly monotone. Here x ∈ R.

To verify this observation,

d
dx

((
x2) p−2

2 x
)
=

1
x2 (p−1)

(
x2) 1

2 p
> 0

Theorem 25.2.7 Let X be a real reflexive Banach space and X ,X ′ have strictly convex
norms as discussed above. Let F be the duality map for p > 1. Then F is strictly monotone.
This means

⟨Fu−Fv,u− v⟩ ≥ 0

and it equals 0 if and only if u− v.

Proof: First why is it monotone? By definition of F, ⟨F (u) ,u⟩ = ∥u∥p and ∥F (u)∥ =
∥u∥p−1. Then

|⟨Fu,v⟩|=
∣∣∣∣〈Fu,

v
∥v∥

〉∣∣∣∣∥v∥ ≤ ∥Fu∥∥v∥= ∥u∥p−1 ∥v∥
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Hence

⟨Fu−Fv,u− v⟩ = ∥u∥p +∥v∥p−⟨Fu,v⟩−⟨Fv,u⟩
≥ ∥u∥p +∥v∥p−∥u∥p−1 ∥v∥−∥u∥∥v∥p−1

≥ ∥u∥p +∥v∥p−
(
∥u∥p

p′
+
∥v∥p

p

)
−
(
∥u∥p

p
+
∥v∥p

p′

)
= 0

Now suppose ∥x∥= ∥y∥= 1 but x ̸= y. Then〈
Fx,

x+ y
2

〉
≤ ∥x∥p−1

∥∥∥∥x+ y
2

∥∥∥∥< ∥x∥+∥y∥2
= 1

It follows that
1
2
⟨Fx,x⟩+ 1

2
⟨Fx,y⟩= 1

2
+

1
2
⟨Fx,y⟩< 1

and so
⟨Fx,y⟩< 1

It is easy to check that for nonzero α, F (αx) = |α|p−2
αF (x) . This is because∥∥∥|α|p−2

αF (x)
∥∥∥= |α|p−1 ∥x∥p−1 = ∥αx∥p−1

〈
|α|p−2

αF (x) ,αx
〉
= |α|p ∥x∥p = ∥αx∥p

and so, since |α|p−2
αF (x) acts like F (αx) , it is F (αx). It follows that for arbitrary x,y,

such that x/∥x∥ ̸= y/∥y∥

⟨Fx,y⟩= ∥x∥p−1 ∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
Therefore,

⟨Fx,y⟩= ∥x∥p−1 ∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
< ∥x∥p−1 ∥y∥ (25.2.10)

Now say that x ̸= y and consider

⟨Fx−Fy,x− y⟩

First suppose x = αy. This is the case where x is a multiple of y. Then the above is

⟨F (αy)−Fy,(α−1)y⟩= (α−1)(⟨F (αy) ,y⟩−∥y∥p)

= (α−1)
(
|α|p−2

α ∥y∥p−∥y∥p
)
= (α−1)

(
|α|p−2

α−1
)
∥y∥p > 0

by the above observation that x→ |x|p−2 x is strictly monotone. Similarly,

⟨Fx−Fy,x− y⟩> 0
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if y = αx for α ̸= 1.
Thus the desired result holds in the case that one vector is a multiple of the other. The

other case is that neither vector is a multiple of the other. Thus, in particular, x/∥x∥ ̸=
y/∥y∥ , and in this case, it follows from 25.2.10

⟨Fx−Fy,x− y⟩= ∥x∥p +∥y∥p−⟨Fx,y⟩−⟨Fy,x⟩

> ∥x∥p +∥y∥p−∥x∥p−1 ∥y∥−∥y∥p−1 ∥x∥

≥ ∥x∥p +∥y∥p−
(
∥x∥p

p′
+
∥y∥p

p

)
−
(
∥y∥p

p′
+
∥x∥p

p

)
= 0

Thus F is strictly monotone as claimed. ■
Another useful observation about duality maps for p = 2 is that

∥∥F−1y∗
∥∥

V = ∥y∗∥V ′ .
This is because

∥y∗∥V ′ =
∥∥FF−1y∗

∥∥
V ′ =

∥∥F−1y∗
∥∥

V

also from similar reasoning,〈
y∗,F−1y∗

〉
=
〈
FF−1y∗,F−1y∗

〉
=
∥∥F−1y∗

∥∥2
V = ∥y∗∥2

V ′

You can give specific inequalities in certain cases. Here is a nice little inequality which
will allow this.

Theorem 25.2.8 Let p≥ 2 then for x,y ∈ Rn,(
|x|p−2 x−|y|p−2 y,x−y

)
≥ 1

2p−1 |x−y|p (*)

Proof: We have (x,y) = 1
2

(
|x|2 + |y|2−|x−y|2

)
. Consider the following.

1
2

(
|x|p−2 + |y|p−2

|x−y|p−2

)
|x−y|p + 1

2

(
|x|p−2−|y|p−2

)(
|x|2−|y|2

)
multiplying this out gives

1
2

(
|x|p−2 + |y|p−2

)(
|x|2 + |y|2−2(x,y)

)
+

1
2

(
|x|p−|x|2 |y|p−2 + |y|p−|x|p−2 |y|2

)
thus this yields

1
2

[
|x|p + |y|p−2 |x|2 + |x|p−2 |y|2 + |y|p−

(
2(x,y) |x|p−2 +2(x,y) |y|p−2

)]
+

1
2

(
|x|p + |y|p−

(
|x|2 |y|p−2 + |x|p−2 |y|2

))
It simplifies to

|x|p + |y|p−2(x,y)
(
|x|p−2 + |y|p−2

)
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On the left side of ∗, when you multiply it out, you get

|x|p−|x|p−2 (x,y)−|y|p−2 (x,y)+ |y|p

which is exactly the same thing. Therefore,(
|x|p−2 x−|y|p−2 y,x−y

)
=

1
2

(
|x|p−2 + |y|p−2

|x−y|p−2

)
|x−y|p (**)

+

≥0︷ ︸︸ ︷
1
2

(
|x|p−2−|y|p−2

)(
|x|2−|y|2

)
Suppose first that p≥ 3. Now p≥ 3 and so |x|p−2 is convex. Hence∣∣∣∣x+(−y)

2

∣∣∣∣p−2

≤ 1
2

(
|x|p−2 + |−y|p−2

)
and so (

|x|p−2 x−|y|p−2 y,x−y
)
≥
∣∣∣∣x−y

2

∣∣∣∣p−2 1

|x−y|p−2 |x−y|p = 1
2p−2 |x−y|p

Next suppose p > 2. There is nothing to show if p = 2. Then for a positive integer m, you
can get m(p−2)> 1. Then(

|x|p−2 + |y|p−2
)m
≥ |x|m(p−2)+ |y|m(p−2) ≥ 21−m(p−2) |x−y|m(p−2)

Thus we can raise both sides of the above to 1/m and conclude

|x|p−2 + |y|p−2 ≥ 21/m−(p−2) |x−y|p−2

Then we use this in ∗∗ to obtain(
|x|p−2 x−|y|p−2 y,x−y

)
≥ 1

2

(
|x|p−2 + |y|p−2

|x−y|p−2

)
|x−y|p

≥ 1
2

1
2(p−2)−(1/m)

|x−y|p ≥ 1
2p−1 |x−y|p ■

Thus, if you have the duality map F for p ≥ 2 for real valued Lp (Ω) to Lp′ (Ω) , it is
clear that F f = | f |p−2 f and so

⟨F f −Fg, f −g⟩ =
∫

Ω

(
| f |p−2 f −|g|p−2 g

)
( f −g)dµ ≥ 1

2p−1

∫
Ω

| f −g|p dµ

⟨F f −Fg, f −g⟩ ≥ 1
2p−1 ∥ f −g∥p

Lp(Ω)

A similar result would hold for the duality map from (Lp (Ω))n to
(

Lp′ (Ω)
)n

.
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25.3 Penalizaton And Projection Operators
In this section, X will be a reflexive Banach space such that X , X ′ has a strictly convex
norm. Let K be a closed convex set in X . Then the following lemma is obtained.

Lemma 25.3.1 Let K be closed and convex nonempty subset of X a reflexive Banach space
which has strictly convex norm. Then there exists a projection map P such that Px ∈ K and
for all y ∈ K,

∥y− x∥ ≥ ∥x−Px∥

Proof: Let {yn} be a minimizing sequence for y→∥y− x∥ for y ∈ K. Thus

d ≡ inf{∥y− x∥ : y ∈ K}= lim
n→∞
∥yn− x∥

Then obviously {yn} is bounded. Hence there is a subsequence, still denoted by n such that
yn→ w ∈ K. Then

∥w− x∥ ≤ lim inf
n→∞
∥yn− x∥= d

How many closest points to x are there? Suppose w1 is another one. Then∥∥∥∥w1 +w
2
− x
∥∥∥∥= ∥∥∥∥w1− x+w− x

2

∥∥∥∥< ∥∥∥∥w1− x
2

∥∥∥∥+∥∥∥∥w− x
2

∥∥∥∥= d

contradicting the assumption that both w,w1 are closest points to x. Therefore, Px consists
of a single point. ■

Denote by F the duality map such that ⟨Fx,x⟩ = ∥x∥2. This is described earlier but
there is also a very nice treatment which is somewhat different in [13]. Everything can be
generalized and is in [91] but here I will only consider this case. First here is a useful result.

Proposition 25.3.2 Let F be the duality map just described. Let φ (x)≡ ∥x∥
2

2 . Then F (x) =
∂φ (x) .

Proof: This follows from

⟨Fx,y− x⟩ ≤ ⟨Fx,y⟩−⟨Fx,x⟩ ≤ ⟨Fx,x⟩1/2 ⟨Fy,y⟩1/2−⟨Fx,x⟩

≤ ⟨Fy,y⟩
2
− ⟨Fx,x⟩

2
=
∥y∥2

2
− ∥x∥

2

2
. ■

Next is a really nice result about the characterization of Px in terms of F .

Proposition 25.3.3 Let K be a nonempty closed convex set in X a reflexive Banach space
in which both X ,X ′ have strictly convex norms. Then w ∈ K is equal to Px if and only if

⟨F (x−w) ,y−w⟩ ≤ 0

for every y ∈ K.
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Proof: First suppose the condition. Then for y ∈ K, it follows from the above proposi-
tion about the subgradient,

1
2
∥x− y∥2− 1

2
∥x−w∥2 ≥ ⟨F (x−w) ,w− y⟩ ≥ 0

and so since this holds for all y it follows that

∥x− y∥ ≥ ∥x−w∥

for all y which says that w = Px.
Next, using the subgradient idea again, for θ ∈ [0,1] , suppose w = Px then for y ∈ K

arbitrary,

0≥ 1
2
∥x−w∥2− 1

2
∥x− (w+θ (y−w))∥2 ≥ ⟨F (x− (w+θ (y−w))) ,θ (y− x)⟩

Now divide by θ and let θ ↓ 0 and use the hemicontinuity of F given above. Then

0≥ ⟨F (x−w) ,y− x⟩ ■

Definition 25.3.4 An operator of penalization is an operator f : X → X ′ such that f = 0
on K, f is monotone and nonzero off K as well as demicontinuous. (Strong convergence
goes to weak convergence.) Actually, in applications, it is usually easy to give an ad hoc
description of an appropriate penalization operator.

Proposition 25.3.5 Let K be a closed convex nonempty subset of X a reflexive Banach
space such that X ,X ′ have strictly convex norms. Then

f (x)≡ F (x−Px)

is an operator of penalization. Here P is the projection onto K. This operator of penaliza-
tion is demicontinuous.

Proof: First, observe that f (x) is 0 on K and nonzero off K. Why is it monotone?

⟨F (x−Px)−F (x1−Px1) ,x− x1⟩

= ⟨F (x−Px)−F (x1−Px1) ,x−Px− (x1−Px1)⟩
+⟨F (x−Px)−F (x1−Px1) ,Px−Px1⟩

The first term is ≥ 0 because F is monotone. As to the second, it equals

⟨F (x−Px) ,Px−Px1⟩+ ⟨F (x1−Px1) ,Px1−Px⟩

and both of these are ≥ 0 because of Proposition 25.3.3 which characterizes the projection
map.
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Now why is this hemicontinuous? Let xn → x.Then Pxn is clearly bounded. Taking a
subsequence, it can be assumed that Pxn→ ξ weakly. Is ξ = Px?

∥x−Px∥ ≤ ∥x−Pxn∥ ≤ ∥x− xn∥+∥xn−Pxn∥
∥xn−Pxn∥ ≤ ∥xn−Px∥ ≤ ∥xn− x∥+∥x−Px∥

It follows that

∥x−Px∥−∥xn−Pxn∥ ≤ ∥x− xn∥
∥xn−Pxn∥−∥x−Px∥ ≤ ∥x− xn∥

Hence ∥xn−Pxn∥ → ∥x−Px∥. However, from convexity and strong lower semicontinuity
implying weak lower semicontinuity,

∥x−ξ∥ ≤ lim inf
n→∞
∥xn−Pxn∥= ∥x−Px∥

and so ξ = Px because there is only one value in Px. This has shown that, thanks to
uniqueness of Px, xn→ x implies Pxn→ Px weakly.

Next we show that f is demicontinuous. Suppose xn → x. Then from what was just
shown, Pxn→ Px weakly. Thus xn−Pxn→ x−Px weakly. Then

lim sup
n→∞

⟨F (xn−Pxn) ,xn−Pxn− (x−Px)⟩

= lim sup
n→∞

⟨F (xn−Pxn) ,Px−Pxn⟩ ≤ 0

from Proposition 25.3.3 which characterizes the projection map. It follows that, since F is
monotone hemicontinuous and bounded, it is also pseudomonotone and so for all v

lim inf
n→∞
⟨F (xn−Pxn) ,(xn−Pxn)− v⟩

≥ ⟨F (x−Px) ,(x−Px)− v⟩

Now F (xn−Pxn) is bounded. If it converges to ξ , then

lim inf
n→∞
⟨F (xn−Pxn) ,(xn−Pxn)− v⟩

≤ lim sup
n→∞

[
⟨F (xn−Pxn) ,(xn−Pxn)− (x−Px)⟩

+⟨F (xn−Pxn) ,(x−Px)− v⟩

]
≤ ⟨ξ ,(x−Px)− v⟩

It follows that

⟨ξ ,(x−Px)− v⟩ ≥ lim inf
n→∞
⟨F (xn−Pxn) ,(xn−Pxn)− v⟩

≥ ⟨F (x−Px) ,(x−Px)− v⟩

Since v is arbitrary, it follows that ξ = F (x−Px). Hence F (xn−Pxn) → F (x−Px)
weakly. Thus this is demicontinuous. ■
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25.4 Set-Valued Maps, Pseudomonotone Operators
In the abstract theory of partial differential equations and variational inequalities, it is im-
portant to consider set-valued maps from a Banach space to the power set of its dual. In this
section we give an introduction to this theory by proving a general result on surjectivity for
a class of such operators.

To begin with, if A : X →P (Y ) is a set-valued map, define the graph of A by

G(A)≡ {(x,y) : y ∈ Ax}.

First consider a map A which maps Cn to P (Cn) which satisfies

Ax is compact and convex. (25.4.11)

and also the condition that if O is open and O⊇ Ax, then there exists δ > 0 such that if

y ∈ B(x,δ ) , then Ay⊆O. (25.4.12)

This last condition is sometimes referred to as upper semicontinuity. In words, A is upper
semicontinuous and has values which are compact and convex. As to the last condition of
upper semi continuity, here is the formal definition.

Definition 25.4.1 Let F : X →P (Y ) be a set valued function. Then F is upper semicon-
tinuous at x if for every open V ⊇ F (x) there exists an open set U containing x such that
whenever x̂ ∈U, it follows that F (x̂)⊆V .

Lemma 25.4.2 Let A satisfy 25.4.12. Then AK is a subset of a compact set whenever K is
compact. Also the graph of A is closed if Ax is closed.

Proof: Let x ∈ K. Then Ax is compact and contained in some open set whose closure
is compact, Ux. By assumption 25.4.12 there exists an open set Vx containing x such that if
y ∈Vx, then Ay⊆Ux. Let Vx1 , · · · ,Vxm cover K. Then AK ⊆ ∪m

k=1Uxk , a compact set.
To see the graph of A is closed when Ax is closed, let xk → x,yk → y where yk ∈ Axk.

Then letting O = Ax+B(0,r) it follows from 25.4.12 that yk ∈ Axk ⊆ O for all k large
enough. Therefore, y∈ Ax+B(0,2r) and since r > 0 is arbitrary and Ax is closed it follows
y ∈ Ax. ■

Also, there is a general consideration relative to upper semicontinuous functions.

Lemma 25.4.3 If f is upper semicontinuous on some set K and g is continuous and defined
on f(K) , then g◦ f is also upper semicontinuous.

Proof: Let xn→ x in K. Let U ⊇ g◦ f(x) . Is g◦ f(xn) ∈U for all n large enough? We
have f(x) ∈ g−1 (U) , an open set. Therefore, if n is large enough, f(xn) ∈ g−1 (U). It
follows that for large enough n, g◦ f(xn) ∈U and so g◦ f is upper semicontinuous on K. ■

The next theorem is an application of the Brouwer fixed point theorem. First define an
n simplex, denoted by [x0, · · · ,xn], to be the convex hull of the n+ 1 points, {x0, · · · ,xn}
where {xi−x0}n

i=1 are independent. Thus

[x0, · · · ,xn]≡

{
n

∑
i=0

tixi :
n

∑
i=0

ti = 1, ti ≥ 0

}
.
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Since {xi−x0}n
i=1 is independent, the ti are uniquely determined. If two of them are

n

∑
i=0

tixi =
n

∑
i=0

sixi

Then
n

∑
i=0

ti (xi−x0) =
n

∑
i=0

si (xi−x0)

so ti = si for i ≥ 1. Since the si and ti sum to 1, it follows that also s0 = t0. If n ≤ 2,
the simplex is a triangle, line segment, or point. If n ≤ 3, it is a tetrahedron, triangle, line
segment or point. To say that {xi−x0}n

i=1 are independent is to say that {xi−xr}i̸=r are
independent for each fixed r. Indeed, if xi−xr = ∑ j ̸=i,r c j (x j−xr) , then you would have

xi−x0 +x0−xr = ∑
j ̸=i,r

c j (x j−x0)+

(
∑

j ̸=i,r
c j

)
x0

and it follows that xi − x0 is a linear combination of the x j − x0 for j ̸= i, contrary to
assumption. A collection of simplices is a tiling of Rn if Rn is contained in their union and
if S1,S2 are two simplices in the tiling, with

S j =
[
x j

0, · · · ,x
j
n

]
,

then
S1∩S2 =

[
xk0 , · · · ,xkr

]
where {

xk0 , · · · ,xkr

}
⊆
{

x1
0, · · · ,x1

n
}
∩
{

x2
0, · · · ,x2

n
}

or else the two simplices do not intersect. The collection of simplices is said to be locally
finite if, for every point, there exists a ball containing that point which also intersects only
finitely many of the simplices in the collection. It is left to the reader to verify that for each
ε > 0, there exists a locally finite tiling of Rn which is composed of simplices which have
diameters less than ε . The local finiteness ensures that for each ε the vertices have no limit
point. To see how to do this, consider the case of R2. Tile the plane with identical small
squares and then form the triangles indicated in the following picture. It is clear something
similar can be done in any dimension. Making the squares identical ensures that the little
triangles are locally finite.
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In general, you could consider [0,1]n . The point at the center is (1/2, · · · ,1/2) . Then
there are 2n faces. Form the 2n pyramids having this point along with the 2n−1 vertices of
the face. Then use induction on each of these faces to form smaller dimensional simplices
tiling that face. Corresponding to each of these 2n pyramids, it is the union of the simplices
whose vertices consist of the center point along with those of these new simplicies tiling the
chosen face. In general, you can write any n dimensional cube as the translate of a scaled
[0,1]n. Thus one can express each of identical cubes as a tiling of m(n) simplices of the
appropriate size and thereby obtain a tiling of Rn with simplices. A ball will intersect only
finitely many of the cubes and hence finitely many of the simplices. To get their diameters
small as desired, just use [0,r]n instead of [0,1]n.

Thus one can give a function any value desired on these vertices and extend appropri-
ately to the rest of the simplex and obtain a continuous function.

The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theo-
rem from continuous single valued maps to upper semicontinuous maps which have closed
convex values.

Theorem 25.4.4 Let K be a compact convex subset of Rn and let A : K→P (K) such that
Ax is a closed convex subset of K and A is upper semicontinuous. Then there exists x such
that x ∈ Ax. This is the “fixed point”.

Proof: Let there be a locally finite tiling of Rn consisting of simplices having diameter
no more than ε . Let Px be the point in K which is closest to x. For each vertex xk, pick
Aε xk ∈ APxk and define Aε on all of Rn by the following rule. If

x ∈ [x0, · · · ,xn],

so x =∑
n
i=0 tixi, ti ∈ [0,1] ,∑i ti = 1,then

Aε x≡
n

∑
k=0

tkAε xk.

Now by construction Aε xk ∈ APxk ∈ K and so Aε is a continuous map defined on Rn with
values in K thanks to the local finiteness of the collection of simplices. By the Brouwer
fixed point theorem Aε has a fixed point xε in K, Aε xε = xε .

xε =
n

∑
k=0

tε
k Aε xε

k , Aε xε
k ∈ APxε

k ∈ K

where a simplex containing xε is

[xε

0, · · · ,x
ε
n], xε =

n

∑
k=0

tε
k xε

k

Also, xε ∈ K and is closer than ε to each xε
k so each xε

k is within ε of K. It follows that for
each k,

∣∣Pxε
k −xε

k

∣∣< ε and so
lim
ε→0
|Pxε

k −xε
k |= 0
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By compactness of K, there exists a subsequence, still denoted with the subscript of ε such
that for each k, the following convergences hold as ε → 0

tε
k → tk, Aε xε

k → yk, Pxε
k → zk, xε

k → zk

Any pair of the xε
k are within ε of each other. Hence, any pair of the Pxε

k are within ε of
each other because P reduces distances. Therefore, in fact, zk does not depend on k.

lim
ε→0

Pxε
k = lim

ε→0
xε

k = z, lim
ε→0

xε = lim
ε→0

n

∑
k=0

tε
k xε

k =
n

∑
k=0

tkz = z

By upper semicontinuity of A, for all ε small enough,

APxε
k ⊆ Az+B(0,r)

In particular, since Aε xε
k ∈ APxε

k ,

Aε xε
k ∈ Az+B(0,r) for ε small enough

Since r is arbitrary and Az is closed, it follows

yk ∈ Az.

It follows that since K is closed,

xε → z =
n

∑
k=0

tkyk, tk ≥ 0,
n

∑
k=0

tk = 1

Now by convexity of Az and the fact just shown that yk ∈ Az,

z =
n

∑
k=0

tkyk ∈ Az

and so z ∈ Az. This is the fixed point. ■
One can replaceRn withCn in the above theorem because it is essentiallyR2n. Also the

theorem holds with no change for any finite dimensional normed linear space since these
are homeomorpic to Rn or Cn.

Lemma 25.4.5 Suppose A : Cn →P (Cn) satisfies Ax is compact and convex, and A is
upper semicontinuous, 25.4.12 and K is a nonempty compact convex set in Cn. Then if
y ∈ Cn there exists [x,w] ∈ G(A) such that x ∈ K and

Re(y−w,z−x)≤ 0

for all z ∈ K.

Proof: Tile Cn with 2n simplices such that the collection is locally finite and each
simplex has diameter less than ε < 1. This collection of simplices is determined by a



848 CHAPTER 25. NONLINEAR OPERATORS

countable collection of vertices. For each vertex x, pick Aε x ∈ Ax and define Aε on all of
Cn by the following rule. If

x ∈ [x0, · · · ,x2n],

so x =∑
2n
i=0 tixi, then

Aε x≡
2n

∑
k=0

tkAε xk.

Thus Aε is a continuous map defined on Cn thanks to the local finiteness of the collection
of simplices. Let PK denote the projection on the convex set K. By the Brouwer fixed point
theorem, there exists a fixed point, xε ∈ K such that

PK (y−Aε xε +xε) = xε .

By Corollary 19.1.9 this requires

Re(y−Aε xε ,z−xε)≤ 0

for all z ∈ K.
Suppose xε ∈

[
xε

0, · · · ,xε
2n

]
so xε = ∑

2n
k=0 tε

k xε
k . Then since xε is contained in K, a com-

pact set, and the diameter of each simplex is less than 1, it follows that Aε xε
k is contained in

A(K +B(0,1)), which is contained in a compact set thanks to Lemma 25.4.2. The reason
is that A is assumed to take bounded sets to bounded sets and K +B(0,1) is a bounded set.

From the Heine Borel theorem, there exists a sequence ε → 0 such that

tε
k → tk,xε → x ∈ K,Aε xε

k → yk

for k = 0, · · · ,2n. Since the diameter of the simplex containing xε converges to 0, it follows

xε
k → x, Aε xε

k → yk.

By upper semicontinuity, it follows that for all r > 0, Axε
k ⊆ Ax+B(0,r) for all ε small

enough. Since Aε xε
k ∈ Axε

k , and Ax is closed, this implies yk ∈ Ax. Since Ax is convex,

2n

∑
k=1

tkyk ∈ Ax.

Hence for all z ∈ K,

Re

(
y−

2n

∑
k=1

tkyk,z−x

)
= lim

ε→0
Re

(
y−

2n

∑
k=1

tε
k Aε xε

k ,z−xε

)

= lim
ε→0

Re(y−Aε xε ,z−xε)≤ 0.

Let w =∑
2n
k=1 tkyk. ■

You could replace A with A◦PK in the above and assume only that A is only defined on
K. This is because x ∈ K.
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Lemma 25.4.6 Suppose in addition to 25.4.11 and 25.4.12, (compact convex valued and
upper semicontinuous) A is coercive,

lim
|x|→∞

inf
{

Re(y,x)
|x|

: y ∈ Ax
}
= ∞.

Then A is onto.

Proof: Let y ∈ Cn and let Kr ≡ B(0,r). By Lemma 25.4.5 there exists xr ∈ Kr and
wr ∈ Axr such that

Re(y−wr,z−xr)≤ 0 (25.4.13)

for all z ∈ Kr. Letting z = 0,

Re(wr,xr)≤ Re(y,xr).

Therefore,

inf
{

Re(w,xr)

|xr|
: w ∈ Axr

}
≤ |y| .

It follows from the assumption of coercivity that |xr| is bounded independent of r. There-
fore, picking r strictly larger than this bound, 25.4.13 implies

Re(y−wr,v)≤ 0

for all v in some open ball containing 0. Therefore, for all v in this ball

Re(y−wr,v) = 0

and hence this holds for all v ∈ Cn and so y = wr ∈ Axr. This proves the lemma.

Lemma 25.4.7 Let F be a finite dimensional Banach space of dimension n, and let T be a
mapping from F to P (F ′) such that 25.4.11 and 25.4.12 both hold for F ′ in place of Cn.
Then if T is also coercive,

lim
||u||→∞

inf
{

Rey∗ (u)
||u||

: y∗∈ T u
}
= ∞, (25.4.14)

it follows T is onto.

Proof: Let |·| be an equivalent norm for F such that there is an isometry of Cn and F,θ .
Now define A : Cn→P (Cn) by Ax≡ θ

∗T θx.

P (F ′) θ
∗
→ Cn

T ↑ ◦ ↑ A

F θ← Cn

Thus y ∈ Ax means that there exists z∗ ∈ T θx such that

(w,y)Cn = z∗ (θw)
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for all w ∈ Cn. Then A satisfies the conditions of Lemma 25.4.6 and so A is onto. Conse-
quently T is also onto. ■

With these lemmas, it is possible to prove a very useful result about a class of mappings
which map a reflexive Banach space to the power set of its dual space. For more theorems
about these mappings and their applications, see [99]. In the discussion below, we will use
the symbol, ⇀, to denote weak convergence.

Definition 25.4.8 Let V be a Reflexive Banach space. We say T : V →P (V ′) is pseu-
domonotone if the following conditions hold.

Tu is closed, nonempty, convex. (25.4.15)

If F is a finite dimensional subspace of V , then if u ∈ F and W ⊇ Tu for W a weakly open
set in V ′, then there exists δ > 0 such that

v ∈ B(u,δ )∩F implies T v⊆W. (25.4.16)

If uk ⇀ u and if u∗k ∈ Tuk is such that

lim sup
k→∞

Reu∗k (uk−u)≤ 0,

then for all v ∈V , there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

Reu∗k (uk− v)≥ Reu∗ (v)(u− v). (25.4.17)

We say T is coercive if

lim
||v||→∞

inf
{

Rez∗ (v)
||v||

: z∗ ∈ T v
}
= ∞. (25.4.18)

In the case that T takes bounded sets to bounded sets so it is a bounded set valued
operator, it turns out you don’t have to consider the second of the above conditions about
the upper semicontinuity. It follows from the other conditions. It is convenient to use the
notation

⟨u∗,v⟩ ≡ u∗ (v) ,u∗ ∈V ′,v ∈V.

and this will be used interchangeably with the earlier notation from now on.
The next lemma has to do with upper semicontinuity being obtained from simpler con-

ditions.

Lemma 25.4.9 Let T : X→P (X ′) satisfy conditions 25.4.15 and 25.4.17 above and sup-
pose T is bounded (T x for x in a bounded set is bounded). Then if xn→ x in X , and if U
is a weakly open set containing T x, then T xn ⊆U for all n large enough. If fact the limit
condition 25.4.17 can be weakened to the following more general condition: If uk ⇀ u, and

lim sup
k→∞

Reu∗k (uk−u)≤ 0, (**)
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then there exists a subsequence still denoted as {uk} , such that if u∗k ∈ Tuk, then for all
v ∈V , there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

Reu∗k (uk− v)≥ Reu∗ (v)(u− v). (25.4.19)

(This weaker condition says that if the lim sup condition holds for the original sequence,
then there is a subsequence such that the lim inf condition holds for all v. In particular, for
this subsequence, the lim sup condition continues to hold.)

Proof: If this is not true, there exists xn→ x, also a weakly open set U, containing T x
and zn ∈ T xn, but zn /∈ U . Then, taking a further subsequence, we can assume zn → z
weakly and z /∈U . Then the strong convergence implies

lim sup
n→∞

Re⟨zn,xn− x⟩ ≤ 0

By assumption, there is a subsequence still denoted with n such that for any y,

lim inf
k→∞

Re⟨zn,xn− y⟩ ≥ Re⟨z(y) ,x− y⟩ , some z(y) ∈ T (x)

Then in particular, for this subsequence,

0≥ lim sup
n→∞

Re⟨zn,xn− x⟩ ≥ lim inf
n→∞

Re⟨zn,xn− x⟩ ≥ Re⟨z(x) ,x− x⟩= 0

so for this subsequence,
lim
n→∞

Re⟨zn,xn− x⟩= 0

Therefore, if y ∈ X there exists z(y) ∈ T x such that

Re⟨z,x− y⟩= lim inf
n→∞

Re⟨zn,xn− y⟩ ≥ Re⟨z(y) ,x− y⟩.

Letting w = x− y, this shows, since y ∈ X is arbitrary, that the following inequality holds
for every w ∈ X . (If you have w ∈ X , then you just choose y = x−w.)

Re⟨z,w⟩ ≥ Re⟨z(x−w) ,w⟩, z(x−w) ∈ T x.

In particular, we may replace w with −w and obtain

Re⟨z,−w⟩ ≥ Re⟨z(x+w) ,−w⟩,

which implies
Re⟨z(x−w) ,w⟩ ≤ Re⟨z,w⟩ ≤ Re⟨z(x+w) ,w⟩.

Therefore, there exists, λ ∈ [0,1] ,

zλ (y)≡ λ z(x−w)+(1−λ )z(x+w) ∈ Ax

such that
Re⟨z,w⟩= Re⟨zλ (y) ,w⟩.
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But this is a contradiction to z /∈ T x because if z /∈ T x, it follows from separation theorems
there exists w ∈ X such that for all z1 ∈ T x,

Re⟨z,w⟩> Re⟨z1,w⟩.

You pick that w in the above. Therefore, z ∈ T x which contradicts the assumption that zn
and consequently z are not contained in U . ■

What if T : V →P (V ′) for V a finite dimensional vector space such that T is upper
semicontinuous and bounded? If un→ u weakly, then this also happens strongly because
the weak convergence and strong convergence are the same in finite dimensions. Therefore,
by upper semicontinuity, there is a subsequence still denoted with n and zn ∈ Tun such
that zn → z for some z. Then since Tu is closed, we must have z ∈ Tu thanks to upper
semicontinuity. Then for this subsequence and arbitrary v,

lim inf
n→∞

Rezn (un− v) = Rez(u− v)

Also, this limit condition holds whenever un→ u and zn→ z even without an assumption
that T is bounded. This mostly proves the following.

Proposition 25.4.10 Let V be finite dimensional and let T : V →P (V ) be upper semicon-
tinuous with closed values. Then if un→ u and zn ∈ Tun with zn→ z, then

lim inf
n→∞

Rezn (un− v) = Rez(u− v) , z ∈ Tu

If T is bounded, and un→ u, then if v is given,

lim inf
n→∞

Rezn (un− v) = Rez(u− v) , some z ∈ Tu

Proof: Consider the last claim and suppose the limit condition does not hold for some
v. Then take a subsequence such that

lim inf
n→∞

Rezn (un− v) = lim
n→∞

Rezn (un− v)

By boundedness, there is a further subsequence such that zn→ z. Then from upper semi-
continuity and Tu being closed, z ∈ Tu and so

lim
n→∞

Rezn (un− v) = lim inf
n→∞

Rezn (un− v) = Rez(u− v) ■

This more general limit condition is sometimes useful if not essential to use. The
following is a definition of this more general condition used in the above lemma.

Definition 25.4.11 Say T : V →P (V ′) is modified bounded pseudomonotone if the fol-
lowing conditions hold.

Tu is closed, nonempty, convex. (25.4.20)

T is bounded meaning it takes bounded sets to bounded sets.
If uk ⇀ u and if

lim sup
k→∞

Reu∗k (uk−u)≤ 0,
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then there exists a subsequence, still denoted as {uk} such that if u∗k ∈ Tuk then for all
v ∈V , there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

Reu∗k (uk− v)≥ Reu∗ (v)(u− v). (25.4.21)

In this limit condition, there is a subsequence which works for all v. However, the
preservation of lower semicontinuity happens under even less.

Definition 25.4.12 Say T : V →P (V ′) is generalized bounded pseudomonotone if the
following conditions hold.

Tu is closed, nonempty, convex. (25.4.22)

T is bounded meaning it takes bounded sets to bounded sets.
If uk ⇀ u and if

lim sup
k→∞

Reu∗k (uk−u)≤ 0,

then if v is given there exists a subsequence, still denoted as {uk} possibly depending on v
such that if u∗k ∈ Tuk then, there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

Reu∗k (uk− v)≥ Reu∗ (v)(u− v). (25.4.23)

This is more general because in this situation, the subsequence depends on the choice of v.

In case T is single valued, this condition is equivalent to type M.

Proposition 25.4.13 A single valued bounded operator T : V →V ′,V reflexive is general-
ized bounded pseudomonotone then it is bounded and type M.

Proof: Suppose that un→ u weakly and Tun→ ξ weakly and

lim sup
n→∞

⟨Tun,un⟩ ≤ ⟨ξ ,u⟩ .

Then
lim sup

n→∞

⟨Tun,un−u⟩ ≤ 0

and so there is a subsequence depending on v and a further one depending on u such that

lim inf
n→∞
⟨Tun,un−u⟩ ≥ ⟨Tu,u−u⟩= 0

lim inf
n→∞
⟨Tun,un− v⟩ ≥ ⟨Tu,u− v⟩

The first in the above shows with the limsup condition that limn→∞ ⟨Tun,un−u⟩ = 0.
Therefore, the second condition implies

⟨ξ ,u− v⟩ ≥ ⟨Tu,u− v⟩

since v is arbitrary, it follows that ξ = Tu. Thus T is type M. ■
If T is generalized bounded pseudomonotone, then it is upper semicontinuous from the

strong to the weak topology.
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Lemma 25.4.14 Let T : X →P (X ′) satisfy conditions 25.4.15 and 25.4.17 above and
suppose T is bounded. Then if xn→ x in X , and if U is a weakly open set containing T x,
then T xn ⊆U for all n large enough. If fact the limit condition 25.4.17 can be weakened to
the following more general condition: If uk ⇀ u, and

lim sup
k→∞

Reu∗k (uk−u)≤ 0, (**)

then for each v, there exists a subsequence still denoted as {uk} , possibly depending on v
such that if u∗k ∈ Tuk, then there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

Reu∗k (uk− v)≥ Reu∗ (v)(u− v). (25.4.24)

(This weaker condition says that if the lim sup condition holds for the original sequence,
then for given v there is a subsequence such that the lim inf condition holds for that v. In
particular, for this subsequence, the lim sup condition continues to hold.)

Proof: If this is not true, there exists xn→ x, and a weakly open set U, containing T x
and zn ∈ T xn, but zn /∈ U . Then, taking a further subsequence, we can assume zn → z
weakly and z /∈U . Then the strong convergence implies

lim sup
n→∞

Re⟨zn,xn− x⟩ ≤ 0

By separation theorems, there exists w such that for all ŵ ∈ T (x) ,

Re⟨z,w⟩< Re⟨ŵ,w⟩ (*)

Thus, choose y such that w = x− y. By assumption, there is a subsequence still denoted
with n such that

lim inf
k→∞

Re⟨zn,xn− y⟩ ≥ Re⟨z(y) ,x− y⟩ , some z(y) ∈ T (x)

lim inf
k→∞

Re⟨zn,xn− x⟩ ≥ Re⟨z(x) ,x− x⟩= 0, some z(x) ∈ T (x)

To get this subsequence, get one which goes with y and then note that the limsup only gets
smaller when you go to a subsequence. Hence you can apply the condition to get a further
subsequence which goes with x. By doing so, the liminf condition for y is strengthened.
Then in particular, for this subsequence,

0≥ lim sup
n→∞

Re⟨zn,xn− x⟩ ≥ lim inf
n→∞

Re⟨zn,xn− x⟩ ≥ Re⟨z(x) ,x− x⟩= 0

so for this subsequence,
lim
n→∞

Re⟨zn,xn− x⟩= 0

Therefore, from the assumed condition, there is a further subsequence such that

Re⟨z,x− y⟩= lim inf
n→∞

Re⟨zn,xn− y⟩ ≥ Re⟨z(y) ,x− y⟩, z(y) ∈ T (x)

Since w = x− y,
Re⟨z,w⟩ ≥ Re⟨z(y) ,w⟩

where z(y) ∈ T x. which contradicts ∗. Thus z ∈U as claimed. ■
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25.5 Sum Of Pseudomonotone Operators
One of the nice properties of pseudomonotone maps is that when you add two of them, you
get another one. I will give a proof in the case that the two pseudomonotone maps are both
bounded. It is probably true in general, but as just noted, it is less trouble to verify if you
don’t have to worry about as many conditions. I will also assume the spaces are all real so
it will not be necessary to constantly write the real part. Actually, we do a slightly more
general version which says that a bounded pseudomonotone added to a modified bounded
pseudomonotone is a modified bounded pseudomonotone. First is the theorem about the
sum of two bounded set valued pseudomonotone operators.

Theorem 25.5.1 Say A,B are set valued bounded pseudomonotone operators. Then their
sum is also a set valued bounded pseudomonotone operator. Also, if un→ u weakly, zn→ z
weakly, zn ∈ A(un) , and wn→ w weakly with wn ∈ B(un) , then if

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0,

it follows that

lim inf
n→∞
⟨zn +wn,un− v⟩ ≥ ⟨z(v)+w(v) ,u− v⟩ , z(v) ∈ A(u) ,w(v) ∈ B(u) ,

and z ∈ A(u) ,w ∈ B(u).

Proof: Say zn ∈ A(un) ,wn ∈ B(un) ,un→ u weakly and

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0.

Claim: Both of limsupn→∞ ⟨zn,un−u⟩ , limsupn→∞ ⟨wn,un−u⟩ are no larger than 0.
Proof of the claim: Suppose limsupn→∞ ⟨wn,un−u⟩ = δ > 0. Then take a subse-

quence such that the limsup equals lim . The limsup only gets smaller when you go to a
subsequence. Thus, continuing to denote the subsequence with n we still have

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0

But from the fact that we just took a subsequence for which the limsup = lim,

lim sup
n→∞

⟨zn +wn,un−u⟩ = lim sup
n→∞

⟨zn,un−u⟩+ lim
n→∞
⟨wn,un−u⟩

= lim sup
n→∞

⟨zn,un−u⟩+δ ≤ 0

and so limsupn→∞ ⟨zn,un−u⟩=−δ < 0. Therefore by the limit condition,

lim inf
n→∞
⟨zn,un−u⟩ ≥ ⟨z(u) ,u−u⟩= 0

and so
0 >−δ ≥ lim sup

n→∞

⟨zn,un−u⟩ ≥ lim inf
n→∞
⟨zn,un−u⟩ ≥ 0
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a contradiction. Thus the claim is established. We have

lim sup
n→∞

⟨wn,un−u⟩ ≤ 0, lim sup
n→∞

⟨zn,un−u⟩ ≤ 0

Thus we can apply the limit condition to the two operators separately. This refers to the
original sequence now. If v is given, then

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ , lim inf

n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩

where w(v) ∈ B(u) and z(v) ∈ A(u) . Thus

lim inf
n→∞
⟨zn +wn,un− v⟩ ≥ lim inf

n→∞
⟨zn,un− v⟩+ lim inf

n→∞
⟨wn,un− v⟩

≥ ⟨w(v)+ z(v) ,u− v⟩

and w(v)+ z(v) ∈ A(u)+B(u) which shows that the sum is pseudomonotone.
In addition, from the claim, we know that

liminf⟨zn,un−u⟩ ≥ ⟨z(u) ,u−u⟩= 0,

similar for wn. Thus liminf⟨zn,un−u⟩≥ 0≥ limsup⟨zn,un−u⟩ so limn→∞ ⟨zn,un−u⟩= 0,
similar for ⟨wn,un−u⟩. Therefore, if zn→ z weakly and wn→ w weakly,

⟨z,u− v⟩ = lim⟨zn,u− v⟩= lim
n→∞

[⟨zn,u−un⟩+ ⟨zn,un− v⟩]

≥ lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ ,z(v) ∈ A(u)

It follows that ⟨z,u− v⟩ ≥ ⟨z(v) ,u− v⟩ for all v which could be violated using separation
theorems if z is not in A(u) . Thus z ∈ A(u) . Similarly w ∈ B(u). ■

The above is the main result but we can attempt to see what happens if one of the
operators is only modified pseudomonotone.

Note that if B is bounded pseudomonotone, then it is certainly modified bounded pseu-
domonotone.

Theorem 25.5.2 Suppose A,B : X→P (X ′) are both pseudomonotone and bounded. Then
so is their sum. If A is bounded pseudomonotone and B is modified bounded pseudomono-
tone, then A+B is modified bounded pseudomonotone.

Proof: It is clear that Ax+Bx is closed and convex because this is true of both of the
sets in the sum. It is also bounded because both terms in the sum are bounded. It only
remains to verify the limit condition. Suppose then that

un→ u weakly

Will the limit condition hold for A+B when applied to this further subsequence? Suppose
zn ∈ Axn,wn ∈ Bxn and

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0 (25.5.25)



25.5. SUM OF PSEUDOMONOTONE OPERATORS 857

Is there a subsequence such that the liminf condition holds? From the above,

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ lim sup
n→∞

⟨zn,un−u⟩+ lim sup
n→∞

⟨wn,un−u⟩ (25.5.26)

and so, if the second term ≤ 0, since B is modified bounded pseudomonotone, there is a
subsequence, still denoted with n for which

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ , w(v) ∈ B(u) (*)

for all v. In particular,

lim inf
n→∞
⟨wn,un−u⟩ ≥ ⟨w(u) ,u−u⟩= 0

Hence you would have

lim inf
n→∞
⟨wn,un−u⟩ ≥ 0≥ lim sup

n→∞

⟨wn,un−u⟩

and so limn→∞ ⟨wn,un−u⟩ = 0 for this subsequence still denoted with n. Hence for this
subsequence,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim sup
n→∞

⟨zn,un−u⟩ ≤ 0

Then using that A is bounded pseudomonotone, limn→∞ ⟨zn,un−u⟩= 0 also. It follows for
any v,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩

Then from this it is routine to establish the modified pseudomonotone limit condition for
the sum A+B. For the subsequence just described, still denoted with n,

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0

and ∗. In fact, you would have for any v,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ ,z(v) ∈ A(u)

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ ,w(v) ∈ A(u)

Then you would get

lim inf
n→∞
⟨zn +wn,un− v⟩ = lim inf

n→∞
(⟨zn,un− v⟩+ ⟨wn,un− v⟩)

≥ lim inf
n→∞

(⟨zn,un− v⟩)+ lim inf
n→∞

(⟨wn,un− v⟩)

≥ ⟨z(v) ,u− v⟩+ ⟨w(v) ,u− v⟩

and z(v)+w(v) ∈ (A+B)(u).
Returning to 25.5.26, the other case to consider is that

lim sup
n→∞

⟨zn,un−u⟩ ≤ 0
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Then in this case, the assumption that A is pseudomonotone implies that for any v,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ , z(v) ∈ A(u) (***)

No subsequence here. However, if you use a subsequence, the inequality is only strength-
ened. In particular,

0≥ lim inf
n→∞
⟨zn,un−u⟩= ⟨z(u) ,u−u⟩= 0≥ lim sup

n→∞

⟨zn,un−u⟩

and so for the original sequence,

lim
n→∞
⟨zn,un−u⟩= 0.

Then back to 25.5.26,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim sup
n→∞

⟨wn,un−u⟩ ≤ 0

Now by assumption that B is modified bounded pseudomonotone, there is a subsequence,
still denoted with n such that for any v

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ , w(v) ∈ B(u) . (****)

In particular, for this subsequence,

0≥ lim sup
n→∞

⟨wn,un−u⟩ ≥ lim inf
n→∞
⟨wn,un−u⟩ ≥ ⟨w(u) ,u−u⟩= 0

and so for this subsequence, limn→∞ ⟨wn,un−u⟩= 0. Then for this subsequence, it follows
from ∗∗∗, and ∗∗∗∗,

lim inf
n→∞
⟨zn +wn,un− v⟩ = lim inf

n→∞
(⟨zn,un− v⟩+ ⟨wn,un− v⟩)

≥ lim inf
n→∞

(⟨zn,un− v⟩)+ lim inf
n→∞

(⟨wn,un− v⟩)

≥ ⟨z(v) ,u− v⟩+ ⟨w(v) ,u− v⟩

We continue to be in the situation of 25.5.25 and we are asking for a subsequence such
that the liminf condition will hold for the subsequence. Suppose this liminf condition is
not obtained for any subsequence. The desired liminf condition will hold for a subsequence
if either limsupn→∞ ⟨zn,un−u⟩ or limsupn→∞ ⟨wn,un−u⟩ is ≤ 0. This was shown above.
Therefore, if there is no subsequence yielding the liminf condition, you must have both of
these strictly positive. Say δ > 0 is smaller than both. Let n denote a subsequence such
that

lim sup
n→∞

⟨zn,un−u⟩= lim
n→∞
⟨zn,un−u⟩> δ > 0.

If, for this new subsequence, limsupn→∞ ⟨wn,un−u⟩ < 0, then, since the limsup gets
smaller for a subsequence,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim
n→∞
⟨zn,un−u⟩+ lim sup

n→∞

⟨wn,un−u⟩ ≤ 0
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then you could apply the above argument and obtain a further subsequence for which the
liminf condition would hold for the sum. Thus, we must have for this new subsequence,

lim sup
n→∞

⟨wn,un−u⟩ ≥ 0.

Then, using this subsequence,

0≥ lim sup
n→∞

⟨zn +wn,un−u⟩ ≥ δ + lim sup
n→∞

⟨wn,un−u⟩ ≥ δ

which is a contradiction. Thus the liminf condition must hold for some subsequence. In
case both are bounded and pseudomonotone, things are easier. You don’t have to take a
subsequence. ■

It is not entirely clear whether the sum of modified bounded pseudomonotone operators
is modified bounded pseudomonotone. This is because when you go to a subsequence,
the limsup gets smaller and so it is not entirely clear whether the subsequence for A will
continue to yield the limit condition if a further subsequence is taken.

In fact, you can add a bounded pseudomonotone to a generalized bounded pseudomono-
tone and get a generalized bounded pseudomonotone. The proof is just like the above and
is given next.

Theorem 25.5.3 Suppose A,B : X →P (X ′). If A is bounded pseudomonotone and B is
generalized bounded pseudomonotone, then A+B is generalized bounded pseudomono-
tone.

Proof: It is clear that Ax+Bx is closed and convex because this is true of both of the
sets in the sum. It is also bounded because both terms in the sum are bounded. It only
remains to verify the limit condition. Suppose then that

un→ u weakly

Will the limit condition hold for A+B when applied to this further subsequence? Suppose
zn ∈ Axn,wn ∈ Bxn and

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0 (25.5.27)

If v is given, is there a subsequence such that the liminf condition holds? From the above,

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ lim sup
n→∞

⟨zn,un−u⟩+ lim sup
n→∞

⟨wn,un−u⟩ (25.5.28)

and so, if the second term ≤ 0, since B is modified bounded pseudomonotone, there is a
subsequence, still denoted with n for which

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ , w(v) ∈ B(u) (*)

lim inf
n→∞
⟨wn,un−u⟩ ≥ ⟨w(u) ,u−u⟩= 0

You just get a subsequence which works for v and note that the limsup condition is only
strengthened for the subsequence and then obtain a further subsequence which goes with
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u to get the second condition along with the first. Note that liminf gets bigger when you
go to a subsequence so if ∗ holds for the first subsequence, then it holds even better for the
second.

Hence you would have, for this subsequence depending on v

lim inf
n→∞
⟨wn,un−u⟩ ≥ 0≥ lim sup

n→∞

⟨wn,un−u⟩

and so limn→∞ ⟨wn,un−u⟩ = 0 for this subsequence still denoted with n. Hence for this
subsequence,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim sup
n→∞

⟨zn,un−u⟩ ≤ 0

Then using that A is bounded pseudomonotone, limn→∞ ⟨zn,un−u⟩= 0 also. It follows for
any v,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩

Then from this it is routine to establish the modified pseudomonotone limit condition for
the sum A+B. For the subsequence just described, still denoted with n,

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0

and ∗. In fact, you would have

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ ,z(v) ∈ A(u)

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ ,w(v) ∈ A(u)

Then you would get

lim inf
n→∞
⟨zn +wn,un− v⟩ = lim inf

n→∞
(⟨zn,un− v⟩+ ⟨wn,un− v⟩)

≥ lim inf
n→∞

(⟨zn,un− v⟩)+ lim inf
n→∞

(⟨wn,un− v⟩)

≥ ⟨z(v) ,u− v⟩+ ⟨w(v) ,u− v⟩

and z(v)+w(v) ∈ (A+B)(u).
Returning to 25.5.28, the other case to consider is that

lim sup
n→∞

⟨zn,un−u⟩ ≤ 0

Then in this case, the assumption that A is pseudomonotone implies that for any v,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ , z(v) ∈ A(u) (***)

No subsequence here. In particular,

0≥ lim inf
n→∞
⟨zn,un−u⟩= ⟨z(u) ,u−u⟩= 0≥ lim sup

n→∞

⟨zn,un−u⟩
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and so for the original sequence,

lim
n→∞
⟨zn,un−u⟩= 0.

Then back to 25.5.28,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim sup
n→∞

⟨wn,un−u⟩ ≤ 0

Now by assumption that B is generalized bounded pseudomonotone, there is a subsequence,
still denoted with n such that for the given v,

lim inf
n→∞
⟨wn,un− v⟩ ≥ ⟨w(v) ,u− v⟩ , w(v) ∈ B(u) . (****)

Then taking a further subsequence to go with u in the third inequality below, the first
inequality is preserved and

0≥ lim sup
n→∞

⟨wn,un−u⟩ ≥ lim inf
n→∞
⟨wn,un−u⟩ ≥ ⟨w(u) ,u−u⟩= 0

and so for this further subsequence, limn→∞ ⟨wn,un−u⟩= 0. Then for this subsequence, it
follows from ∗∗∗, and ∗∗∗∗,

lim inf
n→∞
⟨zn +wn,un− v⟩ = lim inf

n→∞
(⟨zn,un− v⟩+ ⟨wn,un− v⟩)

≥ lim inf
n→∞

(⟨zn,un− v⟩)+ lim inf
n→∞

(⟨wn,un− v⟩)

≥ ⟨z(v) ,u− v⟩+ ⟨w(v) ,u− v⟩

We continue to be in the situation of 25.5.27 and we are asking for a subsequence
such that the liminf condition will hold for some subsequence depending on v. Suppose
this liminf condition is not obtained for any subsequence. The desired liminf condition
will hold for a subsequence if either limsupn→∞ ⟨zn,un−u⟩ ≤ or limsupn→∞ ⟨wn,un−u⟩
is ≤ 0. This was shown above. Therefore, if there is no subsequence yielding the liminf
condition, you must have both of these strictly positive. Say δ > 0 is smaller than both. Let
n denote a subsequence such that

lim sup
n→∞

⟨zn,un−u⟩= lim
n→∞
⟨zn,un−u⟩> δ > 0.

If, for this new subsequence, limsupn→∞ ⟨wn,un−u⟩ < 0, then, since the limsup gets
smaller for a subsequence,

lim sup
n→∞

⟨zn +wn,un−u⟩= lim
n→∞
⟨zn,un−u⟩+ lim sup

n→∞

⟨wn,un−u⟩ ≤ 0

then you could apply the above argument and obtain a further subsequence for which the
liminf condition would hold for the sum. Thus, we must have for this new subsequence,

lim sup
n→∞

⟨wn,un−u⟩ ≥ 0.
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Then, using this subsequence,

0≥ lim sup
n→∞

⟨zn +wn,un−u⟩ ≥ δ + lim sup
n→∞

⟨wn,un−u⟩ ≥ δ

which is a contradiction. Thus the liminf condition must hold for some subsequence. ■
The following is mostly in [99].

Theorem 25.5.4 Let V be a reflexive Banach space and let T : V → P (V ′) be pseu-
domonotone, bounded, and coercive. Then T is onto. More generally, the same holds if
T is modified or generalized bounded pseudomonotone and coercive.

Proof: The proof is for modified bounded pseudomonotone since this is more general.
Let F be the set of finite dimensional subspaces of V and let F ∈F . Then define TF as

TF ≡ i∗F TiF

where here iF is the identity map from F to V. Then TF satisfies the conditions of Lemma
25.4.7 thanks to Lemma 25.4.9 or Lemma 25.4.14 and so TF is onto P (F ′). Let w∗ ∈V ′.
Then since TF is onto, there exists uF ∈ F such that

i∗F w∗ ∈ i∗F TiF uF .

Thus for each finite dimensional subspace F , there exists uF ∈ F such that for all v ∈ F ,

⟨w∗,v⟩= ⟨u∗F ,v⟩ , u∗F ∈ TuF . (25.5.29)

Replacing v with uF , in 25.5.29,

⟨u∗F ,uF⟩
||uF ||

=
⟨w∗,uF⟩
||uF ||

≤ ||w∗||.

Therefore, the assumption that T is coercive implies {uF : F ∈F} is bounded in V . Now
define

WF ≡ ∪
{

uF ′ : F ′ ⊇ F
}
.

Then WF is bounded and if WF ≡ weak closure of WF , then{
WF : F ∈F

}
is a collection of nonempty weakly compact (since V is reflexive and the uF were just
shown bounded) sets having the finite intersection property because WF ̸= /0 for each F .
(If Fi, i = 1, · · · ,n are finite dimensional subspaces, let F be a finite dimensional subspace
which contains all of these. Then WF ̸= /0 and WF ⊆ ∩n

i=1WFi .) Thus there exists

u ∈ ∩
{

WF : F ∈F
}
.

I will show w∗ ∈ Tu. If w∗ /∈ Tu, a closed convex set, there exists v ∈V such that

Re⟨w∗,u− v⟩< Re⟨u∗,u− v⟩ (25.5.30)
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for all u∗ ∈ Tu. This follows from the separation theorems. (These theorems imply there
exists z ∈V such that

Re⟨w∗,z⟩< Re⟨u∗,z⟩

for all u∗ ∈ Tu. Define u− v≡ z.)
Now let F ⊇ {u,v}. Since u ∈WF , a weakly sequentially compact set, there exists a

sequence, {uk}, such that
uk ⇀ u, uk ∈WF .

Then since F ⊇ {u,v}, there exists u∗k ∈ Tuk such that

⟨u∗k ,uk−u⟩= ⟨w∗,uk−u⟩ .

Therefore,
lim sup

k→∞

Re⟨u∗k ,uk−u⟩= lim sup
k→∞

Re⟨w∗,uk−u⟩= 0.

It follows by the assumption that T is modified bounded pseudomonotone or generalized
bounded pseudomonotone and the pseudomonotone limit condition, a further subsequence
corresponding to v such that the following holds for the v defined above in 25.5.30.

lim inf
k→∞

Re⟨u∗k ,uk− v⟩ ≥ Re⟨u∗ (v) ,u− v⟩ , u∗ (v) ∈ Tu.

But since v ∈ F,Re
〈
u∗k ,uk− v

〉
= Re⟨w∗,uk− v⟩ and so

lim inf
k→∞

Re⟨u∗k ,uk− v⟩= lim inf
k→∞

Re⟨w∗,uk− v⟩= Re⟨w∗,u− v⟩,

so from 25.5.30, Re⟨w∗,u− v⟩< Re⟨u∗,u− v⟩ for all u∗ ∈ Tu,

Re⟨w∗,u− v⟩= lim inf
k→∞

Re⟨u∗k ,uk− v⟩

≥ Re⟨u∗ (v) ,u− v⟩> Re⟨w∗,u− v⟩,

a contradiction. Thus, w∗ ∈ Tu. ■
This is likely a good place to put an extremely interesting convergence theorem. It is a

version of one in Aubin and Cellina [9]. It is a perfectly marvelous use of the fact that the
weak and strong closures of a convex set are the same.

Proposition 25.5.5 Let X ,Y be Banach spaces, and let F : (0,T )×X →P (Y ) be a mul-
tifunction such that

1. The values of F are nonempty, closed and convex subsets of Y

2. For a.e. t ∈ (0,T ) ,F (t, ·) is upper semicontinuous from X into Y with the weak
topology

Then let xn : (0,T )→ X ,yn : (0,T )→Y be measurable functions such that the sequence
{xn} converges a.e. on (0,T ) to a function x : (0,T )→ X and yn converges weakly in
L1 (0,T ;Y ) to y ∈ L1 (0,T,Y ). If yn (t) ∈ F (t,xn (t)) for all n ∈ N and a.e.t, then y(t) ∈
F (t,x(t)) for a.e.t ∈ (0,T ) .
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Proof: It is given that yn → y weakly in L1 (0,T ;Y ) . It is too bad that this does not
confer pointwise convergence of some subsequence. However, what can be said is this:

weak closure of co(∪∞
k=nyk) = strong closure of co(∪∞

k=nyk)

Here co signifies the convex hull. Thus something is in co
(
∪∞

k=nyk
)

means it is of the form

vn =
∞

∑
k=n

cn
kyk (*)

where all but finitely many of the cn
k are zero and they sum to 1, each being a number

in [0,1]. Now it is given that y is in the weak closure of co
(
∪∞

k=nyk
)
. In fact yn con-

verges weakly to y. Therefore, from the above observation, y is in the strong closure of
co
(
∪∞

k=nyk
)
. Let vn be of the form in ∗ and let it converge in L1 (0,T ;Y ) to y. Then there

is a subsequence, still denoted as vn such that for a.e. t,

vn (t)→ y(t) in Y

Pick such a t.
If y(t) /∈ F (t,x(t)) , there exist numbers k > l and y∗ ∈ Y ′ such that

⟨y∗,y(t)⟩> k > l > ⟨y∗,z⟩ for all z ∈ F (t,x(t)) .

This follows from separation theorems due to the assumption that F (t,x(t)) is a closed
convex set. Thus for all n large enough,

⟨y∗,vn (t)⟩> k > l > ⟨y∗,z⟩ for all z ∈ F (t,x(t)) . (**)

Let k− l > 2ε > 0. Consider

F (t,x(t))+By∗ (0,ε)

where the ball signifies all z ∈ Y such that

|⟨y∗,z⟩|< ε

By the weak upper semicontinuity assumption of F (t, ·) and xn (t)→ x(t), it follows that
for k large enough,

yk (t) ∈ F (t,xk (t))⊆ F (t,x(t))+By∗ (0,ε)

Now vn is a convex combination of yk for k ≥ n and so it follows that for n large enough,

vn (t) ∈ F (t,x(t))+By∗ (0,ε)

which says that there exists zn ∈ F (t,x(t)) such that

|⟨y∗,vn (t)⟩−⟨y∗,zn⟩|< ε

However, this is a contradiction to ∗∗ because it says two things are closer than ε and also
farther than k− l > 2ε . Thus y(t) ∈ F (t,x(t)). ■

It does not use that the measure space is Lebesgue measure on [0,T ] that I can see.
I think it appears to work for [0,T ] replaced with Ω and t replaced with ω ∈ Ω where
(Ω,F ,µ) is just some measure space.
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25.6 Generalized Gradients
This is an interesting theorem, but one might wonder if there are easy to verify examples of
such possibly set valued mappings. In what follows consider only real spaces because the
essential ideas are included in this case which is also the case of most use in applications.
Of course, you might with some justification, make the claim that the following is not really
very easy to verify any more than the original definition.

Definition 25.6.1 Let V be a real reflexive Banach space and let f : V → R be a locally
Lipschitz function, meaning that f is Lipschitz near every point of V although f need not
be Lipschitz on all of V. Under these conditions,

f 0 (x,y)≡ lim sup
µ→0+ h→0

f (x+h+µy)− f (x+h)
µ

(25.6.31)

and ∂ f (x)⊆ X ′ is defined by

∂ f (x)≡
{

x∗ ∈ X ′ : x∗ (y)≤ f 0 (x,y) for all y ∈ X
}
. (25.6.32)

The set just described is called the generalized gradient. In 25.6.31 we mean the following
by the right hand side.

lim
(r,δ )→(0,0)

sup
{

f (x+h+µy)− f (x+h)
µ

: µ ∈ (0,r) ,h ∈ B(0,δ )
}

I will show, following [99], that these generalized gradients of locally Lipschitz func-
tions are sometimes pseudomonotone. First here is a lemma.

Lemma 25.6.2 Let f be as described in the above definition. Then ∂ f (x) is a closed,
bounded, convex, and non empty subset of V ′. Furthermore, for x∗ ∈ ∂ f (x) ,

||x∗|| ≤ Lipx ( f ) . (25.6.33)

Proof: It is left as an exercise to verify the assertions that ∂ f (x) is closed, and convex.
It follows directly from the definition. To verify this set is bounded, let Lipx ( f ) denote a
Lipschitz constant valid near x ∈V and let x∗ ∈ ∂ f (x) . Then choosing y with ||y||= 1 and
x∗ (y)≥ 1

2 ||x
∗|| ,

1
2
||x∗||= x∗ (y)≤ f 0 (x,y) . (25.6.34)

Also, for small µ and h,∣∣∣∣ f (x+h+µy)− f (x+h)
µ

∣∣∣∣≤ Lipx ( f ) ||y||= Lipx ( f ) .

Therefore, f 0 (x,y)≤ Lipx ( f ) and so 25.6.34 shows ||x∗|| ≤ 2Lipx ( f ) .
The interesting part of this Lemma is that ∂ f (x) ̸= /0. To verify this first note that the

definition of f 0 implies that y→ f 0 (x,y) is a gauge function. Now fix y ∈V and define on
Ry a linear map x∗0 by

x∗0 (αy)≡ α f 0 (x,y) .
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Then if α ≥ 0,
x∗0 (αy) = α f 0 (x,y) = f 0 (x,αy) .

If α < 0,
x∗0 (αy)≡ α f 0 (x,y) =

lim inf
µ→0+ h→0

(−α) f (x+h)− (−α) f (x+h+µy)
µ

=

(−α) lim inf
µ→0+ h→0

f (x+h−µy)− f (x+h)
µ

≤

(−α) f 0 (x,−y) = f 0 (x,αy) .

Therefore, x∗0 (αy)≤ f 0 (x,αy) for all α. By the Hahn Banach theorem there is an extension
of x∗0 to all of V, x∗ which satisfies,

x∗ (y)≤ f 0 (x,y)

for all y. It remains to verify x∗ is continuous. This follows easily from

|x∗ (y)|= max(x∗ (−y) ,x∗ (y))≤

max
(

f 0 (x,y) , f 0 (x,−y)
)
≤ Lipx ( f ) ||y|| ,

which verifies 25.6.33 and proves the lemma.
This lemma has verified the first condition needed in the definition of pseudomonotone.

The next lemma verifies that these generalized subgradients satisfy the second of the con-
ditions needed in the definition. In fact somewhat more than is needed in the definition is
shown.

Lemma 25.6.3 Let U be weakly open in V ′ and suppose ∂ f (x) ⊆ U. Then ∂ f (z) ⊆ U
whenever z is close enough to x.

Proof: Suppose to the contrary there exists zn→ x but z∗n ∈ ∂ f (zn)\U. From the first
lemma, we may assert that ||z∗n|| ≤ 2Lip( f ) for all n large enough. Therefore, there is a
subsequence, still denoted by n such that z∗n converges weakly to z∗ /∈U.

Claim: f 0 (x,y)≥ limsupn→∞ f 0 (xn,y) .
Proof of the claim: There exists δ > 0 such that if µ, ||h||< δ , then

ε + f 0 (x,y)≥ f (x+h+µy)− f (x+h)
µ

.

Thus, for ||h||< δ ,

ε + f 0 (x,y)≥ f (xn +(x− xn)+h+µy)− f (xn +(x− xn)+h)
µ

.
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Now let ||h′||< δ

2 and let n be so large that ||x− xn||< δ

2 . Suppose||h′||< δ

2 . Then choosing
h ≡ h′ − (x− xn) , it follows the above inequality holds because ||h|| < δ . Therefore, if
||h′||< δ

2 , and n is sufficiently large,

ε + f 0 (x,y)≥ f (xn +h′+µy)− f (xn +h′)
µ

.

Consequently, for all n large enough,

ε + f 0 (x,y)≥ f 0 (xn,y)

which proves the claim.
Now with the claim,

z∗ (y) = lim sup
n→∞

z∗n (y)≤ lim sup
n→∞

f 0 (xn,y)≤ f 0 (x,y)

so z∗ ∈ ∂ f (x) contradicting the assumption that z∗ /∈U. This proves the lemma.
It is necessary to assume more on f 0 in order to obtain the third axiom defining pseu-

domonotone. The following theorem describes the situation.

Theorem 25.6.4 Let f : V →V ′ be locally Lipschitz and suppose it satisfies the condition
that whenever

xn converges weakly to x

and
lim sup

n→∞

f 0 (xn,x− xn)≥ 0

it follows that
lim sup

n→∞

f 0 (xn,z− xn)≤ f 0 (x,z− x)

for all z ∈V. Then ∂ f is pseudomonotone.

Proof: 25.4.15 and 25.4.16 both are satisfied thanks to Lemmas 25.6.1 and 25.6.2. It
remains to verify 25.4.17. To do so, I will adopt the convention that x∗ ∈ ∂ f (x) . Suppose

lim sup
n→∞

x∗n (xn− x)≤ 0. (25.6.35)

This implies liminfn→∞ x∗n (x− xn)≥ 0. Thus,

0≤ lim inf
n→∞

x∗n (x− xn)≤ liminf f 0 (xn,x− xn)

≤ lim sup
n→∞

f 0 (xn,x− xn) ,

which implies, by the above assumption that for all z,

limsupx∗n (z− xn)≤ limsup f 0 (xn,z− xn)≤ f 0 (x,z− x) . (25.6.36)
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In particular, this holds for z = x and this implies limsupx∗n (x− xn) ≤ 0 which along with
25.6.35 yields

lim
n→∞

x∗n (xn− x) = 0 (25.6.37)

.
Now let z be arbitrary. There exists a subsequence, nk, depending on z such that

lim
k→∞

x∗nk

(
xnk − z

)
= liminfx∗nk

(
xnk − z

)
.

Now from Lemma 25.6.2 and its proof, the ||x∗n|| are all bounded by Lipx ( f ) whenever n is
large enough. Therefore, there is a further subsequence, still denoted by nk such that

x∗nk
converges weakly to x∗ (z) .

We need to verify that x∗ (z)∈ ∂ f (x) . To do so, let y be arbitrary. Then from the definition,

x∗n (y− xn)≤ f 0 (xn,y− xn) . (25.6.38)

From 25.6.37, we can take the limsup of both sides and obtain, using 25.6.36

x∗ (z)(y− x)≤ limsup f 0 (xn,y− xn)≤ f 0 (x,y− x) .

Since y is arbitrary, this shows x∗ (z) ∈ ∂ f (x) and proves the theorem.

25.7 Maximal Monotone Operators
Here it is assumed that the spaces are all real spaces to simplify the presentation.

Definition 25.7.1 Let A : D(A)⊆ X →P (X) be a set valued map. It is said to be mono-
tone if whenever yi ∈ Axi,

⟨y1− y2,x1− x2⟩ ≥ 0

Denote by G (A) the graph of A consisting of all pairs (x,y) where y∈ Ax. Such a monotone
operator is said to be maximal monotone if

F +A

is onto where F is the duality map with p = 2.

Actually, it is more usual to say that the graph is maximal monotone if the graph is
monotone and there is no monotone graph which properly contains the given graph. How-
ever, the two conditions are equivalent and I am more used to using the version in the above
definition.

There is a fundamental result about these which is given next.

Theorem 25.7.2 Let X, X ′ be reflexive and have strictly convex norms. Let A be a mono-
tone set valued map as just described. Then if λF+A is onto for some λ > 0, then whenever

⟨y− z,x−u⟩ ≥ 0 for all [x,y] ∈ G (A)

it follows that z ∈ Au and u ∈ D(A). That is, the graph is maximal.
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Proof: Suppose that for all [x,y] ∈ G (A) ,

⟨y− z,x− t⟩ ≥ 0

Does it follow that z ∈ At? By assumption, z+λF (t) = λFx̂+ ξ̂ , ξ̂ ∈ Ax̂. Then replacing
y with ξ̂ and x with x̂, 〈

ξ̂ −
(

λFx̂+ ξ̂ −λFt
)
, x̂− t

〉
≥ 0

and so
λ ⟨Ft−Fx̂, t− x̂⟩ ≤ 0

which implies from Theorem 25.2.5 that t = x̂ and so the graph of A is indeed maximal
monotone.

z+λF (t) = λFx̂+ ξ̂ ⇒ z = ξ̂ ∈ Ax̂ = At

■
Note that this would have worked with no change if the duality map had been for

arbitrary p > 1.

25.7.1 The minmax Theorem
In fact, these two conditions are equivalent. This is shown in [13]. We give a proof of this
here. First it is necessary to prove a minmax theorem. The proof given follows Brezis [24]
which is where I found it. Here is the minmax theorem. A function f is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

It is concave if the inequality is turned around. It can be shown that in finite dimensions,
convex functions are automatically continuous, similar for concave functions. Recall the
following definition of upper and lower semicontinuous functions defined on a metric space
and having values in [−∞,∞].

Definition 25.7.3 A function is upper semicontinuous if whenever xn → x, it follows that
f (x)≥ limsupn→∞ f (xn) and it is lower semicontinuous if f (x)≤ liminfn→∞ f (xn) .

Lemma 25.7.4 If F is a set of functions which are upper semicontinuous, then g(x) ≡
inf{ f (x) : f ∈F} is also upper semicontinuous. Similarly, if F is a set of functions which
are lower semicontinuous, then if g(x) ≡ sup{ f (x) : f ∈F} it follows that g is lower
semicontinuous.

Proof: Let f ∈F where these functions are upper semicontinuous. Then if xn → x,
and g(x)≡ inf{ f (x) : f ∈F} ,

f (x)≥ lim sup
n→∞

f (xn)≥ lim sup
n→∞

g(xn)

Since this is true for each f ∈F , then it follows that you can take the infimum and obtain
g(x)≥ limsupn→∞ g(xn) . Similarly, lower semicontinuity is preserved on taking sup. ■
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Note that in a metric space, the above definitions up upper and lower semicontinuity in
terms of sequences are equivalent to the definitions that

f (x) ≥ lim
r→0

sup{ f (y) : y ∈ B(x,r)}

f (x) ≤ lim
r→0

inf{ f (y) : y ∈ B(x,r)}

respectively.
Here is a technical lemma which will make the proof shorter. It seems fairly interesting

also.

Lemma 25.7.5 Suppose H : A×B→R is strictly convex in the first argument and concave
in the second argument where A,B are compact convex nonempty subsets of Banach spaces
E,F respectively and x→ H (x,y) is lower semicontinuous while y→ H (x,y) is upper
semicontinuous. Let

H (g(y) ,y)≡min
x∈A

H (x,y)

Then g(y) is uniquely defined and also for t ∈ [0,1] ,

lim
t→0

g(y+ t (z− y)) = g(y) .

Proof: First suppose both z,w yield the definition of g(y) . Then

H
(

z+w
2

,y
)
<

1
2

H (z,y)+
1
2

H (w,y)

which contradicts the definition of g(y). As to the existence of g(y) this is nothing more
than the theorem that a lower semicontinuous function defined on a compact set achieves
its minimum.

Now consider the last claim about “hemicontinuity”. For all x ∈ A, it follows from the
definition of g that

H (g(y+ t (z− y)) ,y+ t (z− y))≤ H (x,y+ t (z− y))

By concavity of H in the second argument,

(1− t)H (g(y+ t (z− y)) ,y)+ tH (g(y+ t (z− y)) ,z) (25.7.39)
≤ H (x,y+ t (z− y)) (25.7.40)

Now let tn→ 0. Does g(y+ tn (z− y))→ g(y)? Suppose not. By compactness, the expres-
sion g(y+ tn (z− y)) is in a compact set and so there is a further subsequence, still denoted
by tn such that

g(y+ tn (z− y))→ x̂ ∈ A

Then passing to a limit in 25.7.40, one obtains, using the upper semicontinuity in one and
lower semicontinuity in the other the following inequality.

H (x̂,y)≤ lim inf
n→∞

(1− tn)H (g(y+ tn (z− y)) ,y)+
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lim inf
n→∞

tnH (g(y+ tn (z− y)) ,z)

≤ lim inf
n→∞

(
(1− tn)H (g(y+ tn (z− y)) ,y)
+tnH (g(y+ tn (z− y)) ,z)

)
≤ lim sup

n→∞

H (x,y+ tn (z− y))≤ H (x,y)

This shows that x̂ = g(y) because this holds for every x. Since tn → 0 was arbitrary, this
shows that in fact

lim
t→0+

g(y+ t (z− y)) = g(y) ■

Now with this preparation, here is the min-max theorem. A norm is called strictly convex
if whenever x ̸= y,

∥∥ x+y
2

∥∥< ∥x∥
2 + ∥y∥2 .

Theorem 25.7.6 Let E,F be Banach spaces with E having a strictly convex norm. Also
suppose that A ⊆ E,B ⊆ F are compact and convex sets and that H : A×B→ R is such
that

x→ H (x,y) is convex

y→ H (x,y) is concave

Thus H is continuous in each variable in the case of finite dimensional spaces. Here
assume that x→H (x,y) is lower semicontinuous and y→H (x,y) is upper semicontinuous.
Then

min
x∈A

max
y∈B

H (x,y) = max
y∈B

min
x∈A

H (x,y)

This condition is equivalent to the existence of (x0,y0) ∈ A×B such that

H (x0,y)≤ H (x0,y0)≤ H (x,y0) for all x,y (25.7.41)

Proof: One part of the main equality is obvious.

max
y∈B

H (x,y)≥ H (x,y)≥min
x∈A

H (x,y)

and so for each x,
max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y)

and so
min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y) (25.7.42)

Next consider the other direction.
Define Hε (x,y)≡ H (x,y)+ ε ∥x∥2 where ε > 0. Then Hε is strictly convex in the first

variable. This results from the observation that∥∥∥∥x+ y
2

∥∥∥∥2

<

(
∥x∥+∥y∥

2

)2

≤ 1
2

(
∥x∥2 +∥y∥2

)
,
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Then by Lemma 25.7.5 there exists a unique x≡ g(y) such that

Hε (g(y) ,y)≡min
x∈A

Hε (x,y)

and also, whenever y,z ∈ A,

lim
t→0+

g(y+ t (z− y)) = g(y) .

Thus Hε (g(y) ,y) = minx∈A Hε (x,y) . But also this shows that y→Hε (g(y) ,y) is the mini-
mum of functions which are upper semicontinuous and so this function is also upper semi-
continuous. Hence there exists y∗ such that

max
y∈B

Hε (g(y) ,y) = Hε (g(y∗) ,y∗) = max
y∈B

min
x∈A

Hε (x,y) (25.7.43)

Thus from concavity in the second argument and what was just defined, for t ∈ (0,1) ,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,(1− t)y∗+ ty)

≥ (1− t)Hε (g((1− t)y∗+ ty) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y)

≥ (1− t)Hε (g(y∗) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y) (25.7.44)

This is because minx Hε (x,y∗)≡ Hε (g(y∗) ,y∗) so

Hε (g((1− t)y∗+ ty) ,y∗)≥ Hε (g(y∗) ,y∗)

Then subtracting the first term on the right, one gets

tHε (g(y∗) ,y∗)≥ tHε (g((1− t)y∗+ ty) ,y)

and cancelling the t,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,y)

Now apply Lemma 25.7.5 and let t→ 0+ . This along with lower semicontinuity yields

Hε (g(y∗) ,y∗)≥ lim inf
t→0+

Hε (g((1− t)y∗+ ty) ,y) = Hε (g(y∗) ,y) (25.7.45)

Hence for every x,y

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥ Hε (g(y∗) ,y)

Thus
min

x
Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥max

y
Hε (g(y∗) ,y)

and so

max
y∈B

min
x∈A

Hε (x,y) ≥ min
x

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)

≥ max
y

Hε (g(y∗) ,y)≥min
x∈A

max
y∈B

Hε (x,y)
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Thus, letting C ≡max{∥x∥ : x ∈ A}

εC2 +max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

Since ε is arbitrary, it follows that

max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

This proves the first part because it was shown above in 25.7.42 that

min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y)

Now consider 25.7.41 about the existence of a “saddle point” given the equality of
minmax and maxmin. Let

α = max
y∈B

min
x∈A

H (x,y) = min
x∈A

max
y∈B

H (x,y)

Then from
y→min

x∈A
H (x,y) and x→max

y∈B
H (x,y)

being upper semicontinuous and lower semicontinuous respectively, there exist y0 and x0
such that

α = min
x∈A

H (x,y0) =

.

max
y∈B

minimum of u.s.c
min
x∈A

H (x,y) = min
x∈A

maximum of l.s.c.
max
y∈B

H (x,y) = max
y∈B

H (x0,y)

Then

α = max
y∈B

H (x0,y)≥ H (x0,y0)

α = min
x∈A

H (x,y0)≤ H (x0,y0)

so in fact α = H (x0,y0) and from the above equalities,

H (x0,y0) = α = min
x∈A

H (x,y0)≤ H (x,y0)

H (x0,y0) = α = max
y∈B

H (x0,y)≥ H (x0,y)

and so
H (x0,y)≤ H (x0,y0)≤ H (x,y0)

Thus if the minmax condition holds, then there exists a saddle point, namely (x0,y0).
Finally suppose there is a saddle point (x0,y0) where

H (x0,y)≤ H (x0,y0)≤ H (x,y0)

Then

min
x∈A

max
y∈B

H (x,y)≤max
y∈B

H (x0,y)≤ H (x0,y0)≤min
x∈A

H (x,y0)≤max
y∈B

min
x∈A

H (x,y)
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However, as noted above, it is always the case that

max
y∈B

min
x∈A

H (x,y)≤min
x∈A

max
y∈B

H (x,y) ■

Of course all of this works with no change if you have E,F reflexive Banach spaces
and the sets A,B are just closed and bounded and convex. Then you just use the fact that
the functional is weakly lower semicontinuous in the first variable and weakly upper semi-
continuous in the second. Recall that lower semicontinuous and convex implies weakly
lower semicontinuity. Then just use weak convergence instead of strong convergence in
the above argument. Recall that closed bounded and convex sets with the weak topology
can be considered metric spaces. I think the above is most interesting in finite dimensions.
Of course in this case, you can simply assume the norm is the standard Euclidean norm and
there is then no need to assume one of the norms is strictly convex. It comes automatically.
Just use an equivalent norm which is strictly convex.

25.7.2 Equivalent Conditions For Maximal Monotone
Next is the theorem about the graph being maximal being equivalent to the operator being
maximal monotone. It is a very convenient result to have. The proof is a modified version
of one in Barbu [13]. It is based on the following lemma also in Barbu. This is a little like
the Browder lemma but is based on the min max theorem above. It is also a very interesting
argument.

Lemma 25.7.7 Let E be a finite dimensional Banach space and let K be a convex and
compact subset of E. Let G (A) be a monotone subset of E×E ′ such that D(A)⊆ K and B
is a single valued monotone and continuous operator from E to E ′. Then there exists x ∈ K
such that

⟨Bx+ v,u− x⟩E ′,E ≥ 0 for all [u,v] ∈ G (A) .

If B is coercive

lim
∥x∥→∞

⟨Bx,x⟩
∥x∥

= ∞,

and 0 ∈ D(A), then one can assume only that K is convex and closed.

Proof: Let T : E→ K be the multivalued operator defined by

Ty≡
{

x ∈ K : ⟨By+ v,u− x⟩E ′,E ≥ 0 for all [u,v] ∈ G (A)
}

Here y ∈ E and it is desired to show that Ty ̸= /0 for all y ∈ K. For [u,v] ∈ G (A) , let

Ku,v =
{

x ∈ K : ⟨By+ v,u− x⟩E ′,E ≥ 0
}

Then Ku,v is a closed, hence compact subset of K. The thing to do is to show that

∩[u,v]∈G (A)Ku,v ≡ Ty ̸= /0
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whenever y ∈ K. Then one argues that T is set valued, has convex compact values and is
upper semicontinuous. Then one applies the Kakutani fixed point theorem to get x ∈ T x.

Since these sets Ku,v are compact, it suffices to show that they satisfy the finite intersec-
tion property. Thus for {[ui,vi]}n

i=1 a finite set of elements of G (A) , it is necessary to show
that there exists a solution x to the inequalities

⟨ui− x,By+ vi⟩ ≥ 0, i = 1,2, · · · ,n

and then it follows from finite intersection property that there exists

x ∈ ∩[u,v]∈G (A)Ku,v

which is what was desired. Let Pn be all λ⃗ = (λ 1, · · · ,λ n) such that each λ k ≥ 0 and
∑

n
k=1 λ k = 1. Let H : Pn×Pn→ R be given by

H
(

µ⃗, λ⃗
)
≡

n

∑
i=1

µ i

〈
By+ vi,

n

∑
j=1

λ ju j−ui

〉
(25.7.46)

Then this is both convex and concave in both λ⃗ , µ⃗ and so by Theorem 25.7.6, there exists
µ⃗0, λ⃗ 0 both in Pn such that for all µ⃗, λ⃗ ,

H
(

µ⃗, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗

)
(25.7.47)

However, plugging in µ⃗ = λ⃗ in 25.7.46,

H
(⃗

λ , λ⃗
)

=
n

∑
i=1

λ i

〈
By+ vi,

n

∑
j=1

λ ju j−ui

〉

=
n

∑
i=1

〈
By+ vi,

n

∑
j=1

λ iλ ju j−λ iui

〉

=
n

∑
i=1

〈
By+ vi,

n

∑
j=1

(λ iλ ju j−λ iλ jui)

〉

=

=0︷ ︸︸ ︷〈
By,

n

∑
i=1

n

∑
j=1

(λ iλ ju j−λ iλ jui)

〉
+

n

∑
i=1

〈
vi,

n

∑
j=1

(λ iλ ju j−λ iλ jui)

〉
The first term obviously equals 0. Consider the second. This term equals

∑
i

∑
j

λ iλ j
〈
vi,(u j−ui)

〉
The terms equal 0 when j = i or they come in pairs

λ iλ j
〈
vi,(u j−ui)

〉
+λ iλ j

〈
v j,(ui−u j)

〉
= λ iλ j

(〈
vi,(u j−ui)

〉
−
〈
v j,(u j−ui)

〉)
= λ iλ j

(〈
vi,(u j−ui)

〉
−
〈
v j,(u j−ui)

〉)
≤ 0
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by monotonicity of A. Hence H
(⃗

λ , λ⃗
)
≤ 0. Then from 25.7.47, for all µ⃗

H
(

µ⃗, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗ 0

)
≤ H (⃗µ0, µ⃗0)≤ 0

It follows that

m

∑
i=1

µ i

〈
By+ vi,

n

∑
j=1

λ
0
ju j−ui

〉
≤ 0

m

∑
i=1

µ i

〈
By+ vi,ui−

n

∑
j=1

λ
0
ju j

〉
≥ 0

where λ⃗ 0 ≡
(

λ
0
1, · · · ,λ

0
n

)
. This is true for any choice of µ⃗. In particular, you could let µ⃗

equal 1 in the ith position and 0 elsewhere and conclude that for all i = 1, · · · ,n,〈
By+ vi,ui−

n

∑
j=1

λ
0
ju j

〉
≥ 0

so you let x = ∑
n
j=1 λ

0
ju j and this shows that Ty ̸= /0 because the sets Ku,v have the finite

intersection property.
Thus T : K→P (K) and for each y ∈ K,Ty ̸= /0. In fact this is true for any y but we are

only considering y ∈ K. Now Ty is clearly a closed subset of K. It is also clearly convex. Is
it upper semicontinuous? Let yk → y and consider Ty+B(0,r) . Is Tyk ∈ Ty+B(0,r) for
all k large enough? If not, then there is a subsequence, denoted as zk ∈ Tyk which is outside
this open set Ty+B(0,r). Then taking a further subsequence, still denoted as zk, it follows
that zk→ z /∈ Ty+B(0,r) . Now

⟨Byk + v,u− zk⟩ ≥ 0 all [u,v] ∈ G (A)

Therefore, from continuity of B,

⟨By+ v,u− z⟩ ≥ 0 all [u,v] ∈ G (A)

which means z∈ Ty contrary to the assumption that T is not upper semicontinuous. Since T
is upper semicontinuous and maps to compact convex sets, it follows from Theorem 25.4.4
that T has a fixed point x ∈ T x. Hence there exists a solution x to

⟨Bx+ v,u− x⟩ ≥ 0 all [u,v] ∈ G (A)

Next suppose that K is only closed and convex but B is coercive and 0 ∈ D(A). Then
let Kn ≡ B(0,n)∩K and let An be the restriction of A to B(0,n). It follows that there exists
xn ∈ Kn such that for all [u,v] ∈ G (An) ,

⟨Bxn + v,u− xn⟩ ≥ 0

Then since 0 ∈ D(A) , one can pick v0 ∈ A0 and obtain

⟨Bxn + v0,−xn⟩ ≥ 0, ⟨v0,−xn⟩ ≥ ⟨Bxn,xn⟩
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from which it follows from coercivity of B that the xn are bounded independent of n. Say
∥xn∥ <C. Then there is a subsequence still denoted as xn such that xn→ x ∈ K, thanks to
the assumption that K is closed and convex. Let [u,v] ∈ G (A) . Then for all n large enough
∥u∥< n and so

⟨Bxn + v,u− xn⟩ ≥ 0

Then letting n→ ∞ and using the continuity of B,

⟨Bx+ v,u− x⟩ ≥ 0

Since [u,v] was arbitrary, this proves the lemma. ■

Observation 25.7.8 If you have a monotone set valued function, then its graph can always
be considered a subset of the graph of a maximal monotone graph. If A is monotone, then
let F be G (B) such that G (B)⊇G (A) and B is monotone. Partially order by set inclusion.
Then let C be a maximal chain. Let G

(
Â
)
= ∪C . If [xi,yi] ∈ G

(
Â
)
, then both are in some

B ∈ C . Hence (y1− y2,x1− x2)≥ 0 so monotone and must be maximal monotone because
if ⟨z− v,x−u⟩ ≥ 0 for all [u,v] ∈ G

(
Â
)

and [x,z] /∈ Â, then you could include this ordered
pair and contradict maximality of the chain C .

Next is an interesting theorem which comes from this lemma. It is an infinite dimen-
sional version of the above lemma.

Theorem 25.7.9 Let X be a reflexive Banach space and let K be a closed convex subset of
X. Let A,B be monotone such that

1. D(A)⊆ K,0 ∈ D(A) .

2. B is single valued, hemicontinuous, bounded and coercive mapping X to X ′.

Then there exists x ∈ K such that

⟨Bx+ v,u− x⟩X ′,X ≥ 0 for all [u,v] ∈ G (A)

Before giving the proof, here is an easy lemma.

Lemma 25.7.10 Let E be finite dimensional and let B : E→ E ′ be monotone and hemicon-
tinuous. Then B is continuous.

Proof: The space can be considered a finite dimensional Hilbert space (Rn) and so weak
and strong convergence are exactly the same. First it is desired to show that B is bounded.
Suppose it is not. Then there exists ∥xk∥E = 1 but ∥Bxn∥E ′ → ∞. Since finite dimensional,
there is a subsequence still denoted as xk such that xk→ x,∥x∥E = 1.

⟨Bxk−Bx,xk− x⟩ ≥ 0

Hence 〈
Bxk−Bx
∥Bxk∥E ′

,xk− x
〉
≥ 0
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Then taking another subsequence, written with index k, it can be assumed that

Bxk/∥Bxk∥→ y∗ ∈ E ′,∥y∗∥E ′ = 1

Hence,
⟨y∗,xk− x⟩ ≥ 0

for all x∈E, but this requires that y∗= 0, a contradiction. Thus B is monotone, hemicontin-
uous, and bounded. It follows from Theorem 25.1.4 which says that monotone and hemi-
continuous operators are pseudomonotone and Proposition 25.1.6 which says that bounded
pseudomonotone operators are demicontinuous that B is demicontinuous, hence continuous
because, as just noted above, weak and strong convergence are the same for finite dimen-
sional spaces. In case B is bounded, then this follows from Proposition 25.1.6 above. It is
pseudomonotone and bounded hence demicontinuous and weak and strong convergence is
the same in finite dimensions. ■

Proof of Theorem 25.7.9: Let {Xn} be an increasing sequence of finite dimensional
subspaces. Let Â be maximal monotone on ∪nXn and extending A. By this is meant that
the graph of Â contains the graph of A restricted to ∪nXn, Â is monotone and there is no
other larger graph with these properties. See the above observation. Let jn : Xn → X be
the inclusion map and j∗n : X ′ → X ′n be the dual map. Then j∗nÂ jn ≡ An and j∗nB jn ≡ Bn
have monotone graphs from Xn to P (X ′n) with Bn being continuous and single valued.
This follows from the hemicontinuity and the above lemma which states that on finite
dimensional spaces, hemicontinuity and monotonicity imply continuity. Then

[u,v] ∈ G (An)

means
u ∈ D(A)∩Xn and v ∈ j∗nÂ jn (u) = j∗nÂ(u) since u ∈ Xn

Then from Lemma 25.7.7, there exists xn ∈ Xn such that

⟨Bnxn + vn,un− xn⟩X ′,X ≥ 0 all [un,vn] ∈ G (An)

That is, there exists xn ∈ K∩Xn such that for all u ∈ D
(
Â
)
∩Xn, [u,v] ∈ G

(
Â
)

⟨Bxn + v,u− xn⟩X ′,X ≥ 0 (25.7.48)

Then
⟨v,u− xn⟩ ≥ ⟨Bxn,xn−u⟩ (25.7.49)

From the assumption that 0 ∈ D
(
Â
)
, one can let u = 0 and then pick v0 ∈ Â0. Then the

above reduces to
⟨v0,−xn⟩ ≥ ⟨Bxn,xn⟩

By coercivity of B, these xn are all bounded and so by the Eberlien Smulian theorem, there
is a subsequence {xn} which satisfies

xn → x weakly in X

Bxn → y weakly in X ′
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Then from 25.7.48
⟨v,u− xn⟩+ ⟨Bxn,u⟩ ≥ ⟨Bxn,xn⟩

Then it follows that

⟨v,u− xn⟩+ ⟨Bxn,u⟩−⟨Bxn,x⟩ ≥ ⟨Bxn,xn− x⟩

It follows that

lim sup
n→∞

⟨Bxn,xn− x⟩ ≤ ⟨v,u− x⟩+ ⟨y,u⟩−⟨y,x⟩

= ⟨v+ y,u− x⟩

Claim: limsupn→∞ ⟨Bxn,xn− x⟩ ≤ 0.
Proof of claim: This is so if ⟨v+ y,u− x⟩ ≤ 0 for some [u,v] ∈ G

(
Â
)
.If ⟨v+ y,u− x⟩

is greater than 0 for all [u,v] , then since Â is maximal, it would follow that −y ∈ Âx. Now
consider 25.7.49.

⟨v,u− x⟩ ≥ lim sup
n→∞

⟨Bxn,xn⟩−⟨y,u⟩

Since x ∈ D
(
Â
)
, you could put in u = x in the above and obtain

0≥ lim sup
n→∞

⟨Bxn,xn⟩−⟨y,x⟩= lim sup
n→∞

⟨Bxn,xn− x⟩

which shows the claim is true.
Since B is monotone and hemicontinuous, it satisfies the pseudomonotone condition,

Theorem 25.1.4. Hence for any z,

⟨y,x− z⟩ ≥ lim sup
n→∞

⟨Bxn,xn− x⟩+ lim sup
n→∞

⟨Bxn,x− z⟩

≥ lim sup
n→∞

(⟨Bxn,xn− x⟩+ ⟨Bxn,x− z⟩)

≥ lim inf
n→∞

(⟨Bxn,xn− z⟩)≥ ⟨Bx,x− z⟩

Since z is arbitrary, this shows that y = Bx. It follows from 25.7.48 that for any [u,v] ∈
G
(
Â
)
,

⟨Bxn + v,u− xn⟩= ⟨Bxn + v,u− x⟩+ ⟨Bxn + v,x− xn⟩ ≥ 0

⟨Bxn + v,u− x⟩ ≥ ⟨Bxn,xn− x⟩ ≥ ⟨Bx,xn− x⟩

Now take a limit of both sides and use the fact that y = Bx to obtain

⟨Bx+ v,u− x⟩ ≥ 0

for all [u,v] ∈ G
(
Â
)
. Here Â extends A on ∪nXn. Why does it follow from this that there

exists an x such that the inequality holds for all [u,v] ∈ G (A)?
Let V be a finite dimensional subspace.

KV ≡
{

x ∈ K : ⟨Bx+ v,u− x⟩X ′,X ≥ 0 for all [u,v] ∈ G (A) ,u ∈V
}
.
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Then from the above argument, KV ̸= /0. You just choose your subspaces Xn to all include V .
Also, from coercivity of B and the above argument, these KV are all bounded and weakly
closed. Hence they are weakly compact. Then if you have finitely many of them, you
can let your subspaces include each V and conclude that these KV have finite intersection
property and so there exists x ∈ ∩V KV which gives the desired x. ■

Note that there is only one place where 0∈D(A) was used and it was to get the estimate.
In the argument,

⟨v,u− xn⟩ ≥ ⟨Bxn,xn−u⟩

and it was convenient to be able to take u= 0. However, you could also assume other things
on B such as that it satisfies an estimate of the form

∥Bx∥ ≤C∥x∥+C

and if you did this, you could also obtain the necessary estimate as follows.

⟨v,u− xn⟩ ≥ ⟨Bxn,xn−u⟩
⟨v,u− xn⟩+ ⟨Bxn,u⟩ ≥ ⟨Bxn,xn⟩

∥v∥(∥u∥+∥xn∥)+([C∥xn∥+C]∥u∥) ≥ ⟨Bxn,xn⟩

and then pick some [u,v]. Thus the following corollary comes right away. This would have
worked just as well if you had an estimate of the form

∥Bx∥ ≤C∥x∥p−1 +C, p > 1

Corollary 25.7.11 Let X be a reflexive Banach space and let K be a closed convex subset
of X. Let A,B be monotone such that

1. D(A)⊆ K

2. B is single valued, hemicontinuous, bounded and coercive mapping X to X ′ which
satisfies the estimate

∥Bx∥ ≤C∥x∥+C or more generally ∥Bx∥ ≤C∥x∥p−1 +C, p > 1

Then there exists x ∈ K such that

⟨Bx+ v,u− x⟩X ′,X ≥ 0 for all [u,v] ∈ G (A)

Now here is the equivalence between maximal monotone graph and having F +A be
onto. It was already shown that if λF +A is onto, then the graph of A is maximal monotone
in the sense that there is no monotone operator whose graph properly contains the graph of
A. This was Theorem 25.7.2 above which is stated here as a reminder of what it said.

Theorem 25.7.12 Let X, X ′ be reflexive and have strictly convex norms. Let A be a mono-
tone set valued map as just described. Then if

λF +A onto,
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for some λ > 0, then whenever

⟨y− z,x−u⟩ ≥ 0 for all [x,y] ∈ G (A)

it follows that z ∈ Au and u ∈ D(A). That is, the graph is maximal.

Theorem 25.7.13 Let X be a strictly convex reflexive Banach space. Suppose the graph
of A : X →P (X) is maximal monotone in the sense that it is monotone and no monotone
graph can properly contain the graph of A. Then for all λ > 0,λF +A is onto. Conversely,
if for some λ > 0,λF +A is onto, then the graph of A is maximal with respect to being
monotone.

Proof: In Theorem 25.7.9, let Bx≡ λF (x)−y0. Then from the properties of the duality
map, Theorem 25.2.3 above, it follows that B satisfies the necessary conditions to use the
result of Corollary 25.7.11 with K = X . This B is monotone hemicontinuous, and coercive.
Thus there exists x such that for all [u,v] ∈ G (A) ,

⟨λF (x)− y0 + v,u− x⟩X ′,X ≥ 0
⟨v− (y0−λF (x)) ,u− x⟩X ′,X ≥ 0

By maximality of the graph, it follows that x ∈ D(A) and

y0−λF (x) ∈ A(x) , y0 = λF (x)+A(x)

so λF +A is onto as claimed. The converse was proved in Theorem 25.7.2. ■
Note that this theorem holds if F is a duality map for p > 1. That is, ⟨Fx,x⟩ =

∥x∥p ,∥Fx∥= ∥x∥p−1.
Suppose A : X →P (X) is maximal monotone. Then let z ∈ X and define a new map-

ping Â as follows.

D
(
Â
)
≡ {x : x− x0 ∈ D(A)} , Â(x)≡ A(x− x0)

Proposition 25.7.14 Let A, Â be as just defined. Then Â is also maximal monotone.

Proof: From Theorem 25.7.13 it suffices to show that graph of Â is monotone and is
maximal. Suppose then that x∗i ∈ Âxi. Then

⟨x∗1− x∗2,x1− x2⟩= ⟨x∗1− x∗2,x1− x0− (x2− x0)⟩

by definition, x∗i ∈ A(xi− x0) and so the above is ≥ 0. Next suppose for all [x,x∗] ∈ G
(
Â
)
,

⟨x∗− z∗,x− z⟩ ≥ 0

Does it follow that [z,z∗] ∈ G
(
Â
)
? The above says that

⟨x∗− z∗,x− x0− (z− x0)⟩ ≥ 0

whenever x−x0 ∈D(A) and x∗ ∈ A(x− x0) . Hence, since A is given to be maximal mono-
tone, z− x0 ∈ D(A) and z∗ ∈ A(z− x0) which says that z∗ ∈ Â(z). Thus Â is maximal
monotone by the Theorem 25.7.13. ■
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25.7.3 Surjectivity Theorems
As an interesting example of this theorem, here is another result in Barbu [13]. It is inter-
esting because it is not assumed B is bounded.

Theorem 25.7.15 Let B : X→ X ′ be monotone hemicontinuous. Then B is maximal mono-
tone. If B is coercive, then B is also onto. Here X is a strictly convex reflexive Banach
space.

Proof: Suppose B is not maximal monotone. Then there exists (x0,x∗0) ∈ X ×X ′ such
that for all x,

⟨Bx− x∗0,x− x0⟩ ≥ 0

and yet x∗0 ̸= Bx0. This is going to be a contradiction. Let u ∈ X and consider xt ≡ tx0 +
(1− t)u, t ∈ (0,1). Then consider

⟨Bxt − x∗0,xt − x0⟩

However, xt − x0 = tx0 +(1− t)u− x0 = (1− t)(u− x0) and so, for each t ∈ (0,1) ,

0≤ ⟨Bxt − x∗0,xt − x0⟩= (1− t)⟨Bxt − x∗0,u− x0⟩

Divide by (1− t) and then let t ↑ 1. This yields the following by hemicontinuity.

⟨Bx0− x∗0,u− x0⟩ ≥ 0

which holds for all u. Hence Bx0 = x∗0 after all. Thus B is indeed maximal monotone.
Next suppose B is coercive. Let F be the duality map (or the duality map for arbitrary

p > 1). Then from Theorem 25.7.13 there exists a solution xλ to

λFxλ +Bxλ = x∗0 ∈ X ′ (25.7.50)

Then the xλ are bounded because, doing both sides to xλ ,

λ ∥xλ∥2 + ⟨Bxλ ,xλ ⟩= ⟨x∗0,xλ ⟩

and so
⟨Bxλ ,xλ ⟩
∥xλ∥

≤ ∥x∗0∥

Thus the coercivity of B implies that the xλ are bounded. There exists a subsequence such
that

xλ → x weakly.

Then from the equation 25.7.50 ∥λFxλ∥= λ ∥xλ∥ and so,

Bxλ → x∗0 strongly.

Since B is monotone and hemicontinuous, it satisfies the pseudomonotone condition, The-
orem 25.1.4. The above strong convergence implies

lim
λ→0
⟨Bxλ ,xλ − x⟩= 0
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Hence for all y,

lim inf
λ→0
⟨Bxλ ,xλ − y⟩= lim inf

λ→0
⟨Bxλ ,x− y⟩= ⟨x∗0,x− y⟩ ≥ ⟨Bx,x− y⟩

Since y is arbitrary, this shows that x∗0 = Bx and so B is onto as claimed. ■
Again, note that it really didn’t matter about the particular duality map used, although

the usual one was featured in the argument.
There are some more things which can be said about maximal monotone operators. To

include some of these, here is a very interesting lemma found in [13].

Lemma 25.7.16 Let X be a Banach space and suppose that

xn→ 0, ∥x∗n∥→ ∞

Then denoting by Dr the closed disk centered at 0 with radius r. It follows that for every
Dr, there exists y0 ∈ Dr and a subsequence with index nk such that〈

x∗nk
,xnk − y0

〉
→−∞

Proof: Suppose this is not true. Then there exists Dr which has the property that for all
u ∈ Dr,

⟨x∗n,xn−u⟩ ≥Cu

for all n. Now let
Ek ≡ {y ∈ Dr : ⟨x∗n,xn− y⟩ ≥ −k for all n}

Then this is a closed set, being the intersection of closed sets. Also, by assumption, the
union of these Ek equals Dr which is a complete metric space. Hence one of these Ek must
have nonempty interior by the Bair category theorem, say for k0. Say B(y,ε) ⊆ Dr. Then
for all ∥u− y∥< ε,

⟨x∗n,xn−u⟩ ≥ −k0 for all n

Of course −y ∈ Dr also, and so there is C such that

⟨x∗n,xn + y⟩ ≥C for all n

Then
⟨x∗n,2xn + y−u⟩ ≥C− k0 for all n

whenever ∥y−u∥ < ε. Now recall that xn→ 0. Consider only u such that ∥y−u∥ < ε/2.
Therefore, for all n large enough, the expression 2xn + y− u for such u contains a small
ball centered at the origin, say Dδ . (The set of all y− u for u closer to y than ε/2 is the
ball B(0,ε/2) and then the 2xn does not move it by much provided n is large enough.)
Therefore,

⟨x∗n,v⟩ ≥C− k0

for all ∥v∥ ≤ δ . This contradicts the assumption that ∥x∗n∥→ ∞. ■
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Corollary 25.7.17 Let X be a Banach space and suppose that

xn→ x, ∥x∗n∥→ ∞

Then denoting by Dr the closed disk centered at x with radius r. It follows that for every Dr,
there exists y0 ∈ Dr and a subsequence with index nk such that〈

x∗nk
,xnk − y0

〉
→−∞

Proof: It follows that xn− x→ 0. Therefore, from Lemma 25.7.16, for every r > 0,
there exists ŷ0 ∈ B(0,r) and a subsequence xnk such that〈

x∗nk
,
(
xnk − x

)
− ŷ0

〉
→−∞

Thus 〈
x∗nk

,xnk − (x+ ŷ0)
〉
→−∞

Just let y0 = x+ ŷ0. Then y0 ∈ Dr and satisfies the desired conditions. ■

Definition 25.7.18 A set valued mapping A : D(A)→P (X) is locally bounded at x ∈
D(A) if whenever xn→ x, xn ∈ D(A) it follows that

lim sup
n→∞

{∥x∗n∥ : x∗n ∈ Axn}< ∞.

Lemma 25.7.19 A set valued operator A is locally bounded at x∈D(A) if and only if there
exists r > 0 such that A is bounded on B(x,r)∩D(A) .

Proof: Say the limit condition holds. Then if no such r exists, it follows that A is
unbounded on every B(x,r)∩D(A). Hence, you can let rn → 0 and pick xn ∈ B(x,rn)∩
D(A) with x∗n ∈ Axn such that ∥x∗n∥> n, violating the limit condition. Hence some r exists
such that A is bounded on B(x,r)∩D(A). Conversely, suppose A is bounded on B(x,r)∩
D(A) by M. Then if xn → x, it follows that for all n large enough, xn ∈ B(x,r) and so if
x∗n ∈ Axn, ∥x∗n∥ ≤M. Hence limsupn→∞ {∥x∗n∥ : x∗n ∈ Axn} ≤M < ∞ which verifies the limit
condition. ■

With this definition, here is a very interesting result.

Theorem 25.7.20 Let A : D(A)→ X ′ be monotone. Then if x is an interior point of D(A) ,
it follows that A is locally bounded at x.

Proof: You could use Corollary 25.7.17. If x is an interior point of D(A) , and A is
not locally bounded, then there exists xn → x and x∗n ∈ Axn such that ∥x∗n∥ → ∞. Then by
Corollary 25.7.17, there exists y0 close to x, in D(A) and a subsequence xnk such that〈

x∗nk
,xnk − y0

〉
→−∞

Letting y∗0 ∈ Ay0, 〈
x∗nk
− y∗0,xnk − y0

〉
≥ 0
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and so 〈
x∗nk

,xnk − y0
〉
≥
〈
y∗0,xnk − y0

〉
and the right side is bounded below because it converges to

〈
y∗0,x− y0

〉
and this is a con-

tradiction. ■
Does the same proof work if x is a limit point of D(A)? No. Suppose x is a limit point

of D(A) . If A is not locally bounded, then there exists xn→ x,xn ∈D(A) and x∗n ∈ Axn and
∥x∗n∥ → ∞. Then there is y0 close to x such that

〈
x∗nk

,xnk − y0
〉
→−∞ but now everything

crashes in flames because it is not known that y0 ∈ D(A).
It follows from the above theorem that if A is defined on all of X and is maximal

monotone, then it is locally bounded everywhere. Now here is a very interesting result
which is like the one which involves monotone and hemicontinuous conditions. It is in
[55].

Theorem 25.7.21 Let A : X→P (X ′) be monotone and satisfies the following conditions:

1. If λ n → λ ,λ n ∈ [0,1] and zn ∈ A(u+λ n (v−u)) , then if B is any weakly open set
containing 0, zn ∈ A(u)+B for all n large enough. (Upper semicontinuous into weak
topology along a line segment)

2. A(x) is closed and convex.

Then one can conclude that A is maximal monotone.

Proof: Let Â be a monotone extension of A. Let [û, ŵ] be such that ŵ ∈ Â(û). Now also
by assumption, A(x) is not just convex but also closed.

If [û, ŵ] is not in the graph of A, then by separation theorems, there is u such that

⟨x∗,u⟩< ⟨ŵ,u⟩ for all x∗ ∈ A(û)

Then for λ > 0, let xλ ≡ û+λu, x∗
λ
∈ A(xλ ) . Then from monotonicity of Â,

0≤
〈
x∗

λ
− ŵ,xλ − û

〉
= λ

〈
x∗

λ
− ŵ,u

〉
Thus 〈

x∗
λ
− ŵ,u

〉
≥ 0

By Theorem 25.7.20, the monotonicity of A on X implies A is locally bounded also. Thus
in particular, Axλ for small λ is contained in a bounded set. Now by that hemicontinuity
assumption, you can get a subsequence λ n→ 0 for which x∗

λ n
converges weakly to x∗ ∈ Aû.

Therefore, passing to the limit in the above, we get

⟨x∗− ŵ,u⟩ ≥ 0

⟨x∗,u⟩ ≥ ⟨ŵ,u⟩> ⟨x∗,u⟩

a contradiction. Thus there is no proper extension and this shows that A is maximal mono-
tone. ■

Recall the definition of a pseudomonotone operator.
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Definition 25.7.22 A set valued operator B is quasi-bounded if whenever x ∈ D(B) and
x∗ ∈ Bx are such that

|⟨x∗,x⟩| , ∥x∥ ≤M,

it follows that ∥x∗∥ ≤ KM . Bounded would mean that if ∥x∥ ≤M, then ∥x∗∥ ≤ KM . Here
you only know this if there is another condition.

By Proposition 25.7.23 an example of a quasi-bounded operator is a maximal monotone
operator G for which 0 ∈ int(D(G)).

Then there is a useful result which gives examples of quasi-bounded operators [25].

Proposition 25.7.23 Let A : D(A)⊆ X →P (X ′) be maximal monotone and suppose 0 ∈
int(D(A)) . Then A is quasi-bounded.

Proof: From local boundedness, Theorem 25.7.20, there exists δ ,C > 0 such that

sup{∥x∗∥ : x∗ ∈ A(x) for ∥x∥ ≤ δ}<C

Now suppose that ∥x∥ , |⟨x∗,x⟩| ≤M. Then letting ∥y∥ ≤ δ ,y∗ ∈ Ay,

0≤ ⟨x∗− y∗,x− y⟩= ⟨x∗,x⟩−⟨x∗,y⟩−⟨y∗,x⟩+ ⟨y∗,y⟩

and so for ∥y∥ ≤ δ ,

⟨x∗,y⟩ ≤ ⟨x∗,x⟩−⟨y∗,x⟩+ ⟨y∗,y⟩ ≤M+MC+Cδ

Hence, ∥x∗∥ ≤M+MC+Cδ ≡ KM . ■
This is actually quite a restrictive requirement and leaves out a lot which would be

interesting.

Definition 25.7.24 Let V be a Reflexive Banach space. We say T : V →P (V ′) is pseu-
domonotone if the following conditions hold.

Tu is closed, nonempty, convex. (25.7.51)

If F is a finite dimensional subspace of V , then if u ∈ F and W ⊇ Tu for W a weakly open
set in V ′, then there exists δ > 0 such that

v ∈ B(u,δ )∩F implies T v⊆W. (25.7.52)

If uk ⇀ u and if u∗k ∈ Tuk is such that

lim sup
k→∞

u∗k (uk−u)≤ 0,

then for all v ∈V , there exists u∗ (v) ∈ Tu such that

lim inf
k→∞

u∗k (uk− v)≥ u∗ (v)(u− v). (25.7.53)

Then here is an interesting result [39].
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Theorem 25.7.25 Suppose A : X →P (X ′) is maximal monotone. That is, D(A) = X.
Then A is pseudomonotone.

Proof: Consider the first condition. Say x∗i ∈ Ax. Let u∗ ∈ Au. For λ ∈ [0,1] ,

⟨λx∗1 +(1−λ )x∗2−u∗,x−u⟩
= λ ⟨x∗1−u∗,x−u⟩+(1−λ )⟨x∗2−u∗,x−u⟩ ≥ 0

and so, since [u,u∗] is arbitrary, it follows that λx∗1 +(1−λ )x∗2 ∈ Ax. Thus Ax is convex.
Is it closed? Say x∗n ∈ Ax and x∗n→ x∗. Is it the case that x∗ ∈ D(A)? Let [u,u∗] ∈ G (A) be
arbitrary. Then

⟨x∗−u∗,x−u⟩= lim
n→∞
⟨x∗n−u∗,xn−u⟩ ≥ 0

and so Ax is also closed.
Consider the second condition. It is to show that if xn → x in V a finite dimensional

subspace and if U is a weakly open set containing 0, then eventually Axn⊆Ax+U. Suppose
then that this is not the case. Then there exists x∗n outside of Ax+U but in Axn. Since A is
locally bounded at x, it follows that the ∥x∗n∥ are bounded. Thus there is a subsequence, still
denoted as xn and x∗n such that x∗n→ x∗ weakly and x∗ /∈ Ax+U. Now let [u,u∗] ∈ G (A) .

⟨x∗−u∗,x−u⟩= lim
n→∞
⟨x∗n−u∗,xn−u⟩ ≥ 0

and since [u,u∗] is arbitrary, it follows that x∗ ∈ Ax and so is inside Ax+U . Thus the second
condition holds also.

Consider the third. Say xk→ x weakly and letting x∗k ∈ Axk,suppose

lim sup
k→∞

⟨x∗k ,xk− x⟩ ≤ 0,

Is it the case that there exists x∗ (y) ∈ Ax such that

lim inf
k→∞

⟨x∗k ,xk− y⟩ ≥ ⟨x∗ (y) ,x− y⟩?

The proof goes just like it did earlier in the case of single valued pseudomonotone operators.
It is just a little more complicated. First, let x∗ ∈ Ax.

⟨x∗k− x∗,xk− x⟩ ≥ 0

and so
lim inf

k→∞

⟨x∗k ,xk− x⟩ ≥ lim inf
k→∞

⟨x∗,xk− x⟩= 0≥ limsup⟨x∗k ,xk− x⟩

Thus
lim
k→∞

⟨x∗k ,xk− x⟩= 0.

Now let x∗t ∈ A(x+ t (y− x)) , t ∈ (0,1) , where here y is arbitrary. Then

⟨x∗n− x∗t ,xn− x+ t (x− y)⟩ ≥ 0



888 CHAPTER 25. NONLINEAR OPERATORS

Hence
lim inf

n→∞
⟨x∗n,xn− x+ t (x− y)⟩ ≥ lim inf

n→∞
⟨x∗t ,xn− x+ t (x− y)⟩

and so from the above limit,

t lim inf
n→∞
⟨x∗n,x− y⟩ ≥ t ⟨x∗t ,x− y⟩

Cancel the t.
lim inf

n→∞
⟨x∗n,x− y⟩= lim inf

n→∞
⟨x∗n,xn− y⟩ ≥ ⟨x∗t ,x− y⟩

Now you have a fixed y and x∗t ∈ A(x+ t (y− x)) . The subspace determined by x,y is fi-
nite dimensional. Also it was shown above that A is locally bounded at x and so there is a
subsequence, still denoted as x∗t such that x∗t → x∗ (y) weakly. Now from the upper semi-
continuity on finite dimensional spaces shown above, for every S a finite subset of X and
ε > 0, it follows that for all t small enough,

x∗t ∈ Ax+BS (0,ε)

Thus x∗ (y) ∈ Ax. Hence, there exists x∗ (y) ∈ Ax such that

lim inf
n→∞
⟨x∗n,xn− y⟩ ≥ ⟨x∗ (y) ,x− y⟩ ■

I found this in a paper by Peng. It is a very nice result.

Proposition 25.7.26 Let X and Y be reflexive Banach spaces with Y ⊆ X ′. Let 1 < p < ∞

and let q = p
p−1 = p′ so 1

p +
1
q = 1. Let F : [0,T ]×X→P (Y ) be multivalued and satisfies.

1. F (·,x) has a measurable selection for each x ∈ X

2. F (t, ·) is maximal monotone for a.e. t ∈ [0,T ]

3. ∥y∥Y ≤ ρ1 (t)+ρ2 ∥x∥
p−1
X where y ∈ F (t,x) for a.e. t, and where ρ1 ∈ Lq (0,T ) and

ρ2 > 0

Let 0≤ a < b≤ T with b−a = τ . Define

Fτ x≡
{

1
τ

∫ b
a y(t)dt : t→ y(t) is measurable
and y(t) ∈ F (t,x) a.e. t ∈ (a,b)

}
Then Fτ : X →P (Y ) is maximal monotone.

Proof: First note that Fτ x is convex and nonempty. To see this, say z, ẑ are in Fτ x. and
let y, ŷ be the corresponding functions. Then for λ ∈ [0,1]

λ z+(1−λ ) ẑ =
1
τ

∫ b

a
(λy(t)+(1−λ ) ŷ(t))dt

and λy(t)+(1−λ ) ŷ(t)∈ F (t,x) because F (t, ·) is maximal monotone which implies that
the set values are convex.
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Next is a claim that Fτ x is closed and also has the property that if zn ∈ Fτ xn and if
xn→ x strongly in X and zn→ z weakly in Y, then z ∈ Fτ x. Let yn (t) ∈ F (t,xn) a.e. such
that zn = 1

τ

∫ b
a yn (t)dt. These xn are bounded and so by the assumed estimate, it follows

that the yn are bounded in Lq (0,T ;Y ) . Therefore, there is a subsequence, still denoted with
n such that yn → ŷ weakly in Lq (0,T ;Y ). Now this means that ŷ is in the weak closure
of the convex hull of {yk : k ≥ n}. However, this is the same as the strong closure because
convex and closed is the same as convex and weakly closed. Therefore, there are functions

lim
n→∞

∞

∑
k=n

cn
kyk = ŷ strongly in Lq (0,T ;Y ) where

∞

∑
k=n

cn
k = 1,cn

k ≥ 0,

and only finitely many are nonzero. Thus a subsequence still denoted with subscript n also
converges to ŷ(t) for each t off a set of measure zero. The function F (t, ·) is maximal mono-
tone and defined on X and so it is pseudomonotone by Theorem 25.7.25. The estimate also
shows that it is bounded. Therefore, as shown in the section on set valued pseudomonotone
operators, x→ F (t,x) is upper semicontinuous from strong to weak topology. Thus, for
large n depending on t, all of the F (t,xn) are contained in F (t,x)+BS (0,r/2) where S is
a finite subset of points of X .

B≡ BS (0,r/2)≡
{

w∗ : |w∗ (x)|< r
2

for all x ∈ S
}

Thus, for a fixed t not in the exceptional set, off which the above pointwise convergence
takes place, ŷ(t) ∈ F (t,x)+D where

D≡ {w∗ : |w∗ (x)| ≤ r for all x ∈ S}

Since S,r are arbitrary, separation theorems imply that ŷ(t) ∈ F (t,x) for t off a set of
measure zero: If not, there would exist u ∈ X such that ŷ(t)(u)> l > l−δ > p(u) for all
p ∈ F (t,x) . But then you could take r = δ/2 and Bu (0,δ/2) and find that ŷ(t) = p+w∗

where p ∈ F (t,x) and |w∗ (u)| ≤ δ . Hence p(u) = ŷ(t)(u)−w∗ (u) > l− δ > p(u) an
obvious contradiction. Is z ∈ Fτ x? Certainly so if z = 1

τ

∫ b
a ŷ(t)dt. Letting φ ∈ X ,

⟨z,φ⟩ = lim
n→∞
⟨zn,φ⟩= lim

n→∞

〈
1
τ

∫ b

a
yn (t)dt,φ

〉
= lim

n→∞

〈
1
τ

∫ b

a

∞

∑
k=n

cn
kyk (t)dt,φ

〉

=

〈
1
τ

∫ b

a
ŷ(t)dt,φ

〉
Since φ is arbitrary, it follows that z = 1

τ

∫ b
a ŷ(t)dt and so z ∈ Fτ x.

Is Fτ monotone? Say z, ẑ are in Fτ (x) ,Fτ (x̂) respectively. Consider

⟨z− ẑ,x− x̂⟩=
〈

1
τ

∫ b

a
y(t)− ŷ(t)dt,x− x̂

〉
=

1
τ

∫ b

a
⟨y(t)− ŷ(t) ,x− x̂⟩dt

but y(t) ∈ F (t,x) similar for ŷ and so the above is ≥ 0. Thus Fτ is indeed monotone.
This has also shown that Fτ satisfies the necessary modified hemicontinuity condition of
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Theorem 25.7.21 to conclude that Fτ is indeed maximal monotone because it has convex
closed values, the hemicontinuity condition, and is monotone. ■

Suppose T is a bounded pseudomonotone operator and S is a maximal monotone op-
erator, both defined on a strictly convex reflexive Banach space. What of their sum? Is
(T +S)(x) convex and closed? Say ti ∈ T x and si ∈ Sx is it the case that θ (s1 + t1) +
(1−θ)(s2 + t2) ∈ (T +S)(x) whenever θ ∈ [0,1]? Of course this is so. Thus T + S has
convex values. Does it have closed values? Suppose {sn + tn} converges to z ∈ X ′,sn ∈
Sx, tn ∈ T x. Is z ∈ (T +S)(x)? Taking a subsequence, and using the assumption that T is
bounded, it can be assumed that tn → t ∈ T x weakly. Therefore, sn must also converge
weakly and so it converges to some s = z− t ∈ Sx. Convex and closed implies weakly
closed. Thus T +S has closed convex values. Is it upper semicontinuous on finite dimen-
sional subspaces? Suppose xn → x in a finite dimensional subspace F . Does it follow
that

(S+T )xn ⊆ (S+T )x+B(0,r)

for all n sufficiently large? It is known that Sxn ⊆ Sx+B(0,r/2) and T xn ⊆ T x+B(0,r/2)
whenever n is sufficiently large and so it follows that

(S+T )xn ⊆ (S+T )x+B(0,r/2)+B(0,r/2)⊆ (S+T )x+B(0,r)

whenever n is large enough.
What of the pseudomonotone condition? Suppose

lim sup
n→∞

⟨u∗n + v∗n,xn− x⟩ ≤ 0

where u∗n ∈ Sxn and v∗n ∈ T xn where xn → x weakly. Is it the case that for every y, there
exists u∗ ∈ Sx and v∗ ∈ T x such that

lim inf
n→∞
⟨u∗n + v∗n,xn− y⟩ ≥ ⟨u∗+ v∗,x− y⟩?

By monotonicity,

0 ≥ lim sup
n→∞

⟨u∗n + v∗n,xn− x⟩ ≥ lim sup
n→∞

⟨u∗+ v∗n,xn− x⟩

= lim sup
n→∞

⟨v∗n,xn− x⟩

Hence
lim sup

n→∞

⟨v∗n,xn− x⟩ ≤ 0

which implies

lim inf
n→∞
⟨v∗n,xn− x⟩ ≥ ⟨v̂∗,x− x⟩= 0≥ lim sup

n→∞

⟨v∗n,xn− x⟩

showing that
lim
n→∞
⟨v∗n,xn− x⟩= 0 (25.7.54)
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It follows that if y is given, there exists v∗ ∈ T (x) such that

lim inf
n→∞
⟨v∗n,xn− y⟩ ≥ ⟨v∗,x− y⟩

Now let u∗t ∈ S (x+ t (y− x)) for t > 0. Thus

⟨u∗n−u∗t ,xn− x+ t (x− y)⟩ ≥ 0

⟨u∗n,xn− x+ t (x− y)⟩ ≥ ⟨u∗t ,xn− x+ t (x− y)⟩

Then using the above and the convergence in 25.7.54,

lim inf
n→∞
⟨u∗n + v∗n,xn− y⟩ ≥ lim inf

n→∞
⟨u∗t + v∗n,xn− y⟩

= ⟨u∗t ,x− y⟩+ ⟨v∗,x− y⟩

Now as before where it was shown that maximal monotone and defined on X implied
pseudomonotone, and the theorem which says that maximal monotone operators are locally
bounded on the interior of their domains, it follows that there exists a sequence, still denoted
as u∗t which converges to something called u∗. Then as before, the subspace spanned by
x,y is finite dimensional and so from upper semicontinuity, for all t small enough,

u∗t ∈ S (x)+B(0,r)

Note that weak convergence is the same as strong on finite dimensional spaces. Since this
is true for all r and S (x) is closed, it follows that u∗ ∈ S (x) . Thus, passing to a limit as
t→ 0 one gets u∗ ∈ S (x) ,v∗ ∈ T (x) , and

lim inf
n→∞
⟨u∗n + v∗n,xn− y⟩ ≥ ⟨u∗+ v∗,x− y⟩

This proves the following generalization of Theorem 25.7.25.

Theorem 25.7.27 Let T,S : X →P (X ′) where X is a strictly convex reflexive Banach
space and suppose T is bounded and pseudomonotone while S is maximal monotone. Then
T +S is pseudomonotone.

Also, there is an interesting result which is based on the obvious observation that if A
is maximal monotone, then so is Â(x)≡ A(x0 + x).

Lemma 25.7.28 Let A be maximal monotone. Then for each λ > 0,

x→ λF (x− x0)+Ax

is onto.

Proof: Let Â(x) ≡ A(x0 + x) so as earlier, Â is maximal monotone. Then let y∗ ∈ X ′.
Then there exists y such that Â(y)+λF (y) ∋ y∗. Now define x≡ y+ x0. Then

Â(y)+λF (y) ∋ y∗, Â(x− x0)+λF (x− x0) ∋ y∗, A(x)+λF (x− x0) ∋ y∗ ■
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Definition 25.7.29 Let A : D(A)→P (X ′) be maximal monotone. Let A−1 : A(D(A))→
P (X ′) be defined as follows.

x ∈ A−1x∗ if and only if x∗ ∈ Ax

Observation 25.7.30 A−1 is also maximal monotone. This is easily seen as follows. [x,y]∈
G (A) if and only if [y,x] ∈ G

(
A−1

)
.

Earlier, it was shown that if B is monotone and hemicontinuous and coercive, then it
was onto. It was not necessary to assume that B is bounded. The same thing holds for A
maximal monotone. This will follow from the next result. Recall that a maximal monotone
operator is locally bounded at every interior point of its domain which was shown above.
Also it appears to not be possible to show that a maximal monotone operator is locally
bounded at a limit point of D(A). The following result is in [13] although he claims a
better result than what I am proving here in which it is only necessary to verify A−1 is
locally bounded at every point of A(D(A)). However, I was unable to follow the argument
and so I am proving another theorem with the same argument he uses. It looks like a typo
to me but I often have trouble following hard theorems so I am not sure. Anyway, the
following is the best I can do. I think it is still a very interesting result.

Theorem 25.7.31 Suppose A−1 is locally bounded at every point of A(D(A)). Then in fact
A(D(A)) = X ′ and in fact A(D(A)) = A(D(A)) .

Proof: This is done by showing that A(D(A)) is both open and closed. Since it is
nonempty, it must be all of X ′ because X ′ is connected. First it is shown that A(D(A)) is
closed. Suppose yn ∈ Axn and yn→ y. Does it follow that y ∈ A(D(A))? Since y is a limit
point of A(D(A)) , it follows that A−1 is locally bounded at y. Thus there is a subsequence
still denoted by yn such that yn→ y and for xn ∈A−1yn or in other words, yn ∈Axn, it follows
that xn is bounded. Hence there exists a subsequence, still denoted with the subscript n such
that xn→ x weakly and yn→ y strongly. Hence if [u,v] ∈ G (A) ,

⟨y− v,x−u⟩= lim
n→∞
⟨yn− v,xn− x⟩ ≥ 0

Since [u,v] is arbitrary and A is maximal monotone, it follows that y∈ Ax or in other words,
x ∈ A−1y and y ∈ A(D(A)). Thus A(D(A)) is closed.

Next consider why A(D(A)) is open. Let y0 ∈ A(D(A)) . Then there exists Dr ≡
B(y0,r) centered at y0 such that A−1 is bounded on Dr. Since A is maximal montone,
for each y ∈ X ′ there is a solution xε to the inclusion

y ∈ εF (xε − x0)+Axε , yε ≡ y− εF (xε − x0) ∈ Axε

Consider only y ∈ B
(
y0,

r
2

)
.

⟨(y− εF (xε − x0))− y0,xε − x0⟩ ≥ 0

Then using ⟨Fz,z⟩= ∥z∥2 ,

∥y− y0∥∥xε − x0∥ ≥ ⟨y− y0,xε − x0⟩ ≥ ε ∥xε − x0∥2
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and so ε ∥xε − x0∥ = ε ∥F (xε − x0)∥ ≤ ∥y− y0∥ < r/2. Thus yε stays in B(y0,r). This is
because y is closer to y0 than r/2 while yε is within r/2 of y. It follows that the xε are
bounded and so xε − x0 is bounded and so εF (xε − x0)→ 0. Thus yε → y strongly. Since
the xε are bounded, there exists a further subsequence, still denoted as xε such that xε → x,
some point of X . Then if [u,v] ∈ G (A) ,

⟨yε − v,xε −u⟩ ≥ 0

and letting ε → 0 using the strong convergence of yε one obtains

⟨y− v,x−u⟩ ≥ 0

which shows that y ∈ Ax. Thus B
(
y0,

r
2

)
⊆ A(D(A)) ≡ D

(
A−1

)
and so A(D(A)) is open.

■
The proof featured the usual duality map.
Note that as part of the proof A(D(A)) was shown to be closed so although it was

assumed at the outset that A−1 was locally bounded on A(D(A)), this is the same as saying
that A−1 is locally bounded on A(D(A)).

Corollary 25.7.32 Suppose A : D(A)→P (X ′) is maximal monotone and coercive. Then
A is onto.

Proof: From Theorem 25.7.31 it suffics to show that A−1 is locally bounded at y∗ ∈
A(D(A)). The case of an interior point follows from Theorem 25.7.20. Assume then that
y∗ is a limit point of A(D(A)). Of course this includes the case of interior points. Then
there exists y∗n→ y∗ where y∗n ∈ Axn. Then

⟨y∗n,xn⟩
∥xn∥

≤ ∥y∗n∥

and the right side is bounded. Hence by coercivity, so is ∥xn∥. Therefore, there is a further
subsequence, still denoted as xn such that xn → x weakly while y∗n → y∗ strongly. Then
letting [u,v∗] ∈ G (A) ,

⟨y∗− v∗,x−u⟩= lim
n→∞
⟨y∗n− v∗,xn−u⟩ ≥ 0

Hence y∗ ∈ Ax and y∗ ∈ A(D(A)). Thus A−1 is locally bounded on A(D(A)) and so A is
onto from the above theorem. ■

25.7.4 Approximation Theorems
This section continues following Barbu [13]. Always it is assumed that the situation is of
a real reflexive Banach space X having strictly convex norm and its dual X ′. As observed
earlier, there exists a solution xλ to the inclusion

0 ∈ F (xλ − x)+λA(xλ )
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To see this, you consider Â(y)≡ A(x+ y) . Then Â is also maximal monotone and so there
exists a solution to

0 ∈ F (x̂)+λ Â(x̂) = F (x̂)+λA(x+ x̂)

Now let xλ = x+ x̂ so x̂ = xλ − x. Hence

0 ∈ F (xλ − x)+λAxλ

Here you could have F the duality map for any given p > 1.
The symbol limsupn,n→∞ amn means limN→∞

(
supm≥N,n≥N amn

)
. Then here is a simple

observation.

Lemma 25.7.33 Suppose limsupn,n→∞ amn ≤ 0. Then

lim sup
m→∞

(
lim sup

n→∞

amn

)
≤ 0.

Proof: There exists N such that if both m,n≥ N,amn ≤ ε . Then

lim sup
n→∞

amn = lim sup
n→∞,n>N

amn ≤ ε

Thus also

lim sup
m→∞

(
lim sup

n→∞

amn

)
= lim sup

m→∞,m≥N

(
lim sup

n→∞

amn

)
≤ ε. ■

The argument will be based on the following lemma.

Lemma 25.7.34 Let A : D(A)→P (X ′) be maximal monotone and let vn ∈ Aun and

un→ u, vn→ v weakly.

Also suppose that
lim sup

m,n→∞

⟨vn− vm,un−um⟩ ≤ 0

or
lim sup

n→∞

⟨vn− v,un−u⟩ ≤ 0

Then [u,v] ∈ G (A) and ⟨vn,un⟩ → ⟨v,u⟩.

Proof: By monotonicity,

lim
m,n→∞

⟨vn− vm,un−um⟩= 0

Suppose then that ⟨vn,un⟩ fails to converge to ⟨v,u⟩. Then there is a subsequence, still
denoted with subscript n such that ⟨vn,un⟩ → µ ̸= ⟨v,u⟩. Let ε > 0. Then there exists M
such that if n,m > M, then

|⟨vn,un⟩−µ|< ε, |⟨vn− vm,un−um⟩|< ε
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Then if m,n > M,

|⟨vn− vm,un−um⟩|= |⟨vn,un⟩+ ⟨vm,um⟩−⟨vn,um⟩−⟨vm,un⟩|< ε

Hence it is also true that

|⟨vn,un⟩+ ⟨vm,um⟩−⟨vn,um⟩−⟨vm,un⟩| ≤ |2µ− (⟨vn,um⟩+ ⟨vm,un⟩)|< 3ε

Now take a limit first with respect to n and then with respect to m to obtain

|2µ− (⟨v,u⟩+ ⟨v,u⟩)|< 3ε

Since ε is arbitrary, µ = ⟨v,u⟩ after all. Hence the claim that ⟨vn,um⟩ → ⟨v,u⟩ is verified.
Next suppose [x,y] ∈ G (A) and consider

⟨v− y,u− x⟩= ⟨v,u⟩−⟨v,x⟩−⟨y,u⟩+ ⟨y,x⟩

= lim
n→∞

(⟨vn,un⟩−⟨vn,x⟩−⟨y,un⟩+ ⟨y,x⟩)

= lim
n→∞
⟨vn− y,un− x⟩ ≥ 0

and since [x,y] is arbitrary, it follows that v ∈ Au.
Next suppose limsupn→∞ ⟨vn− v,un−u⟩ ≤ 0. It is not known that [u,v] ∈ G (A).

lim sup
n→∞

[⟨vn,un⟩−⟨v,un⟩−⟨vn,u⟩+ ⟨v,u⟩] ≤ 0

lim sup
n→∞

⟨vn,un⟩−⟨v,u⟩ ≤ 0

Thus limsupn→∞ ⟨vn,un⟩ ≤ ⟨v,u⟩. Now let [x,y] ∈ G (A)

⟨v− y,u− x⟩= ⟨v,u⟩−⟨v,x⟩−⟨y,u⟩+ ⟨y,x⟩

≥ lim sup
n→∞

[⟨vn,un⟩−⟨vn,x⟩−⟨y,un⟩+ ⟨y,x⟩]

≥ lim inf
n→∞

[⟨vn− y,un− x⟩]≥ 0

Hence [u,v] ∈ G (A). Now

lim sup
n→∞

⟨vn− v,un−u⟩ ≤ 0≤ lim inf
n→∞
⟨vn− v,un−u⟩

the second coming from monotonicity and the fact that v ∈ Au. Therefore,

lim
n→∞
⟨vn− v,un−u⟩= 0

which shows that limn→∞ ⟨vn,un⟩= ⟨v,u⟩. ■
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Definition 25.7.35 Let xλ just defined

0 ∈ F (xλ − x)+λAxλ

be denoted by Jλ x and define also

Aλ (x) =−λ
−(p−1)F (xλ − x) =−λ

−(p−1)F (Jλ x− x) .

This is for F a duality map with p > 1. Thus for the usual duality map, you would have

Aλ (x) =−λ
−1F (Jλ x− x)

Recall how this xλ is defined. In general,

0 ∈ F (Jλ x− x)+λ
p−1Axλ

Thus, from the definition,
Aλ (x) ∈ A(Jλ x)

Formally, and to help remember what is going on, you are looking at a generalization
of

Aλ x =
A

1+λA
x =

1
λ

(
x− (I +λA)−1 x

)
This is in the case where F = I to keep things simpler. You have 0 = xλ −x+λAxλ and so
formally xλ = (I +λA)−1 x. Thus you are looking at 1

λ
(x− xλ ) =

1
λ

(
x− (I +λA)−1 x

)
=

Aλ x. In fact, this is exactly what you do when you are in a single Hilbert space. This is just
a generalization to mappings between Banach spaces and their duals.

Then there are some things which can be said about these operators. It is presented for
the general duality map for p > 1.

Theorem 25.7.36 The following hold. Here X is a reflexive Banach space with strictly
convex norm. A : D(A)→P (X ′) is maximal monotone. Then

1. Jλ and Aλ are bounded single valued operators defined on X . Bounded means they
take bounded sets to bounded sets. Also Aλ is a monotone operator.

2. Aλ ,Jλ are demicontinuous. That is, strongly convergent sequences are mapped to
weakly convergent sequences.

3. For every x ∈ D(A) ,

∥Aλ (x)∥ ≤ |Ax| ≡ inf{∥y∗∥ : y∗ ∈ Ax} .

For every x ∈ conv(D(A)), it follows that limλ→0 Jλ (x) = x. The new symbol means
the closure of the convex hull. It is the closure of the set of all convex combinations
of points of D(A).
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Proof: 1.) It is clear that these are single valued operators. What about the asser-
tion that they are bounded? Let y∗ ∈ Axλ such that the inclusion defining xλ becomes an
equality. Thus

F (xλ − x)+λ
p−1y∗ = 0

Then let x0 ∈ D(A) be given.

⟨F (xλ − x) ,xλ − x⟩+λ
p−1 ⟨y∗,xλ − x0⟩+λ

p−1 ⟨y∗,x0− x⟩= 0

Then by monotonicity of A,

∥xλ − x∥p +λ
p−1 ⟨y∗0,xλ − x0⟩+λ

p−1 ⟨y∗,x0− x⟩ ≤ 0

It follows that

∥xλ − x∥p ≤ λ
p−1 ∥y∗0∥∥xλ − x0∥+λ

p−1 ∥y∗∥∥x0− x∥

Hence if x is in a bounded set, it follows the resulting xλ = Jλ x remain in a bounded set.
Now from the definition of Aλ , it follows that this is also a bounded operator.

Why is Aλ monotone?

0 ≤ ⟨Aλ x−Aλ y,x− y⟩= ⟨Aλ x−Aλ y,x− Jλ x− (y− Jλ y)⟩
+⟨Aλ x−Aλ y,Jλ x− Jλ y⟩

=
〈

λ
−(p−1)F (Jλ x− x)−λ

−(p−1)F (Jλ y− y) ,Jλ x− x− (Jλ y− y)
〉

+⟨Aλ x−Aλ y,Jλ x− Jλ y⟩

and both terms are nonnegative, the first because F is monotone so indeed Aλ is monotone.
2.) What of the demicontinuity of Aλ ? This one is really tricky. Suppose xn→ x. Does

it follow that Aλ xn→ Aλ x weakly? The proof will be based on a pair of equations. These
are

lim
m,n→∞

⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,Jλ xn− xn− (Jλ xm− xm)⟩= 0

and
lim

m,n→∞
⟨Aλ (xn)−Aλ (xm) ,Jλ xn− Jλ xm⟩= 0

When these have been established, Lemma 25.7.34 is used to get the desired result for
a subsequence. It will be shown that every sequence has a subsequence which gives the
right sort of weak convergence and from this the desired weak convergence of Aλ xn to Aλ x
follows.

0 ∈ F (Jλ xn− xn)+λ
p−1A(Jλ xn)

0 ∈ F (Jλ x− x)+λ
p−1A(Jλ x)

−λ
−(p−1)F (Jλ x− x) ≡ Aλ (x) ∈ A(Jλ x)

−λ
−(p−1)F (Jλ xn− xn) ≡ Aλ (xn) ∈ A(Jλ xn)
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Note also that for a given x there is only one solution Jλ x to 0 ∈ F (Jλ x− x)+λ
p−1A(Jλ x).

By monotonicity of F,

0≤ ⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,xm− xn + Jλ xn− Jλ xm⟩

Then from the above,

⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,xn− xm⟩
≤ ⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,Jλ xn− Jλ xm⟩

Now from the boundedness of these operators, the left side of the above inequality con-
verges to 0 as n,m→ ∞. Thus

lim inf
m,n→∞

⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,Jλ xn− Jλ xm⟩ ≥ 0 (25.7.55)

lim inf
m,n→∞

〈
−λ

p−1Aλ (xn)−
(
−λ

p−1Aλ (xm)
)
,Jλ xn− Jλ xm

〉
≥ 0

lim inf
m,n→∞

〈
λ

p−1

∈A(Jλ xm)︷ ︸︸ ︷
Aλ (xm)−λ

p−1

A(Jλ xn)︷ ︸︸ ︷
Aλ (xn),Jλ xn− Jλ xm

〉
≥ 0

The expression on the left in the above is non positive. Multiplying by −1,

0 ≥ lim sup
m,n→∞

⟨Aλ (xn)−Aλ (xm) ,Jλ xn− Jλ xm⟩

≥ lim inf
m,n→∞

⟨Aλ (xn)−Aλ (xm) ,Jλ xn− Jλ xm⟩ ≥ 0 (25.7.56)

Thus, in fact,the expression in 25.7.55 converges to 0. By boundedness considerations and
the strong convergence given,

lim
m,n→∞

⟨F (Jλ xn− xn)−F (Jλ xm− xm) ,Jλ xn− xn− (Jλ xm− xm)⟩= 0 (25.7.57)

From boundedness again, there is a subsequence still denoted with the subscript n such
that

Jλ xn− xn→ a− x, F (Jλ xn− xn)→ b both weakly.

Since F is maximal monotone, (Theorem 25.7.9) it follows from Lemma 25.7.34 that
[a− x,b]∈G (F) and so in fact F (a− x)= b. Thus this has just shown that F (Jλ xn− xn)→
F (a− x). Next consider 25.7.56. We have Jλ xn→ a weakly and

Aλ (xn) =−λ
−(p−1)F (Jλ xn− xn)→−λ

−(p−1)b

weakly. Then from Lemma 25.7.34 again,
[
a,−λ

−(p−1)b
]
∈ G (A) so −λ

−(p−1)b ∈ A(a)

so b ∈ −λ
p−1A(a) . But it was just shown that b = F (a− x) and so

F (a− x) ∈ −λ
p−1A(a) so 0 ∈ F (a− x)+λ

p−1A(a) , so a = Jλ x.
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As noted at the beginning, there is only one solution to this inclusion for a given x and it is
a = Jλ x. This has shown that in terms of weak convergence,

Aλ (xn)→−λ
−(p−1)b =−λ

−(p−1)F (a− x) =−λ
−(p−1)F (Jλ x− x)≡ Aλ (x)

This has shown that Aλ is demicontinuous. Also it has shown that Jλ is also demicontinu-
ous. (This result is a lot nicer in Hilbert space. )

3.) Why is ∥Aλ (x)∥ ≤ |Ax| whenever x ∈ D(A)?

Aλ (x) =−λ
−(p−1)F (Jλ x− x)

where 0 ∈ F (Jλ x− x) + λ
p−1A(Jλ x) . Therefore, Aλ (x) ∈ A(Jλ x) . Then letting [u,v] ∈

G (A) ,
0≤ ⟨v−Aλ (x) ,u− Jλ x⟩

In particular, if y ∈ Ax

0≤ ⟨y−Aλ (x) ,x− Jλ x⟩=
〈

y+λ
−(p−1)F (Jλ x− x) ,x− Jλ x

〉
Hence

λ
−(p−1) ∥Jλ x− x∥p ≤ ∥y∥∥Jλ x− x∥

and so
λ
−(p−1) ∥Jλ x− x∥p−1 = λ

−(p−1) ∥F (Jλ x− x)∥= ∥Aλ (x)∥ ≤ ∥y∥

and since y ∈ Ax is arbitrary, ∥Aλ (x)∥ ≤ |Ax| ≡ inf{∥y∥ : y ∈ Ax}.
Next consider the claim that for all x ∈ conv(D(A)), it follows that

lim
λ→0

Jλ (x) = x.

Let [u,v] ∈ G (A) and x is arbitrary.

0≤ ⟨v−Aλ (x) ,u− Jλ x⟩=
〈

v+λ
−(p−1)F (Jλ x− x) ,u− Jλ x

〉
=
〈

v+λ
−(p−1)F (Jλ x− x) ,u− x

〉
+
〈

v+λ
−(p−1)F (Jλ x− x) ,x− Jλ x

〉
Thus

∥Jλ x− x∥p ≤ λ
p−1 ⟨v,u− x⟩+ ⟨F (Jλ x− x) ,u− x⟩+λ

p−1 ⟨v,x− Jλ x⟩ (25.7.58)

for x arbitrary and u anything in D(A) . It follows that 25.7.58 holds for any u∈ conv(D(A)).
Say u = xn ∈ conv(D(A)) where xn→ x. Then

∥Jλ x− x∥p ≤ λ
p−1 ⟨v,xn− x⟩+ ⟨F (Jλ x− x) ,xn− x⟩+λ

p−1 ⟨v,x− Jλ x⟩

≤ λ
p−1 ∥v∥∥xn− x∥+∥Jλ x− x∥p−1 ∥xn− x∥+λ

p−1 ∥v∥∥Jλ x− x∥

You have something like this: yλ = ∥Jλ x− x∥ ,an = ∥xn− x∥ ,

yp
λ
≤ λ

p−1 ∥v∥an + yp−1
λ

an +λ
p−1 ∥v∥yλ , yλ ≥ 0
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where p > 1 and an→ 0. Then

lim sup
λ→0

yp
λ
≤ lim sup

λ→0
yp−1

λ
an

and so,
lim sup

λ→0
yλ ≤ an

Hence
lim sup

λ→0
∥Jλ x− x∥ ≤ ∥xn− x∥

Since xn is arbitrary, it follows that for every ε > 0,

lim sup
λ→0
∥Jλ x− x∥ ≤ ε

and so in fact, limsupλ→∞ ∥Jλ x− x∥= 0. ■
Now here is an interesting corollary.

Corollary 25.7.37 Let A be maximal monotone. A : X → X ′ where X is a strictly convex
reflexive Banach space. Then D(A) is convex.

Proof: It is known that Jλ : X → D(A) for any λ . Also, if x ∈ conv(D(A)), then it was
shown that Jλ x→ x. Clearly

conv(D(A))⊇ D(A)

Now if x is in the set on the left, Jλ x→ x and so in fact, since Jλ x ∈ D(A) , it must be
the case that x ∈ D(A). Thus the two sets are the same and so in fact, D(A) is closed and
convex. ■

Note that this implies that A(D(A)) is also convex. This is because A−1 described
above, is maximal monotone with domain A(D(A)).

Next is a useful generalization of some of the earlier material used to establish the
above results on approximation. It will include the general case of F a duality map for
p > 1.

Proposition 25.7.38 Suppose A : X →P (X ′) where X is a reflexive Banach space with
strictly convex norm. Suppose also that A is maximal monotone. Then if λ n → 0 and if
xn→ x weakly, Aλ n xn→ x∗ weakly, and

lim sup
n,m→∞

〈
Aλ nxn−Aλ mxm,xn− xm

〉
≤ 0

Then
lim

n,m→∞

〈
Aλ nxn−Aλ mxm,xn− xm

〉
= 0,

[x,x∗] ∈ G (A), and
〈
Aλ nxn,xn

〉
→ ⟨x∗,x⟩.
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Proof: Let α = limsupn→∞

〈
Aλ n xn,xn

〉
. It is finite because the expression is bounded

independent of n. Then

lim sup
m→∞

(
lim sup

n→∞

( 〈
Aλ n xn,xn

〉
+
〈
Aλ mxm,xm

〉
−
[〈

Aλ nxn,xm
〉
+
〈
Aλ mxm,xn

〉] ))≤ 0

Thus
lim sup

m→∞

(
α +

〈
Aλ m xm,xm

〉
−
[
⟨x∗,xm⟩+

〈
Aλ mxm,x

〉])
≤ 0

and so
2α−2⟨x∗,x⟩ ≤ 0

The next simple observation is that∥∥Aλ nxn
∥∥= ∥∥∥λ

−(p−1)
n F

(
Jλ nxn− xn

)∥∥∥≤C

due to the weak convergence. Hence λ
−(p−1)
n

∥∥Jλ nxn− xn
∥∥p−1 ≤C and so∥∥Jλ nxn− xn

∥∥≤ λ nC1/(p−1). (25.7.59)

Thus if [u,u∗] ∈ G (A) ,

lim inf
n→∞

〈
Aλ nxn−u∗,xn−u

〉
= lim inf

n→∞

〈
Aλ nxn−u∗,Jλ nxn−u

〉
≥ 0

because Aλ x ∈ AJλ x. However, the left side satisfies

0 ≤ lim inf
n→∞

〈
Aλ nxn−u∗,xn−u

〉
≤ lim sup

n→∞

〈
Aλ nxn−u∗,xn−u

〉
= lim sup

n→∞

[〈
Aλ nxn,xn

〉
−
〈
Aλ nxn,u

〉
−⟨u∗,xn⟩+ ⟨u∗,u⟩

]
= α−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩ ≤ ⟨x∗,x⟩−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩
= ⟨x∗−u∗,x−u⟩

and this shows that [x,x∗] ∈ G (A) since [u,u∗] was arbitrary.
Next let [u,u∗] ∈ G (A). Then thanks to 25.7.59,

0 ≤ lim inf
n→∞

〈
Aλ nxn−u∗,Jλ nxn−u

〉
= lim inf

n→∞

〈
Aλ nxn−u∗,xn−u

〉
≤ lim sup

n→∞

〈
Aλ nxn−u∗,xn−u

〉
= lim sup

n→∞

(〈
Aλ nxn,xn

〉
−
〈
Aλ nxn,u

〉
−⟨u∗,xn⟩+ ⟨u∗,u⟩

)
= lim sup

n→∞

〈
Aλ nxn,xn

〉
−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩

≤ ⟨x∗,x⟩−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩= ⟨x∗−u∗,x−u⟩

In particular, you could let [u,u∗] = [x,x∗] and conclude that

lim
n→∞

〈
Aλ nxn− x∗,xn− x

〉
= lim

n→∞

(〈
Aλ nxn,xn

〉
−
〈
Aλ nxn,x

〉
+ ⟨x∗,x⟩−⟨x∗,xn⟩

)
= lim

n→∞

〈
Aλ nxn,xn

〉
−⟨x∗,x⟩+ ⟨x∗,x⟩−⟨x∗,x⟩= 0
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which shows that limn→∞

〈
Aλ nxn,xn

〉
= ⟨x∗,x⟩. Then it follows from this that

lim
n,m→∞

〈
Aλ nxn−Aλ mxm,xn− xm

〉
= 0 ■

For the rest of this, the usual duality map for p = 2 will be used. It may be that one could
change this, but I don’t have a need to do it right now so from now on, F will be the usual
thing.

25.7.5 Sum Of Maximal Monotone Operators
To begin with, here is a nice lemma.

Lemma 25.7.39 Let 0 ∈ D(A) and let A be maximal monotone and let B : X → X ′ be
monotone hemicontinuous, bounded, and coercive. Then B+A is also maximal monotone.
Also B+A is onto.

Proof: By Theorem 25.7.9, there exists x ∈ D(A) such that for all [u,u∗] ∈ G (A) ,

⟨Bx+Fx− y∗+u∗,u− x⟩ ≥ 0

Hence for all [u,u∗] ,
⟨u∗− (y∗− (Bx+Fx)) ,u− x⟩ ≥ 0

It follows that
y∗− (Bx+Fx) ∈ Ax

and so y∗ ∈ Bx+Ax+Fx showing that B+A is maximal monotone because it added to F
is onto. As to the last claim, just don’t add in F in the argument. Thus for all [u,u∗] ,

⟨Bx− y∗+u∗,u− x⟩ ≥ 0

Then the rest is as before. You find that y∗−Bx ∈ Ax. ■

Corollary 25.7.40 Suppose instead of 0 ∈ D(A) , it is known that x0 ∈ D(A) and

lim
∥x∥→∞

⟨B(x0 + x) ,x⟩
∥x∥

= ∞

Then if B is monotone and hemicontinuous and A is maximal monotone, then B+A is onto.

Proof: Let Â(x)≡ A(x0 + x) so in fact 0 ∈ D
(
Â
)
. Then letting B̂ be defined similarly,

it follows from the above lemma that if y∗ ∈ X ′, there exists x such that

y∗ ∈ Âx+ B̂x≡ A(x0 + x)+B(x0 + x) ■

Lemma 25.7.41 Let 0 be on the interior of D(A) and also in D(B). Also let 0 ∈ B(0) and
0 ∈ A(0). Then if A,B are maximal monotone, so is A+B.
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Proof: Note that, since 0∈ A(0) , if x∗ ∈ Ax, then ⟨x∗,x⟩ ≥ 0. Also note that ∥Bλ (0)∥≤
|B(0)|= 0 and so also ⟨Bλ x,x⟩ ≥ 0. It is necessary to show that F+A+B is onto. However,
Bλ is monotone hemicontinuous, bounded and coercive. Hence, by Lemma 25.7.39, Bλ +A
is maximal monotone. If x∗ ∈ X ′ is given, there exists a solution to

x∗ ∈ Fxλ +Bλ xλ +Axλ

Do both sides to xλ and let x∗
λ
∈ Axλ be such that equality holds in the above.

x∗ = Fxλ +Bλ xλ + x∗
λ

(25.7.60)

Then

⟨x∗,xλ ⟩= ∥xλ∥2 +
≥0〈

x∗
λ
,xλ

〉
It follows that

∥xλ∥ ≤ ∥x∗∥ ,
〈
x∗

λ
,xλ

〉
≤ ⟨x∗,xλ ⟩ ≤ ∥x∗∥∥xλ∥ ≤ ∥x∗∥2 (25.7.61)

Next, 0 is on the interior of D(A) and so from Theorem 25.7.20, there exists ρ > 0 such
that if y∗ ∈ Ax for ∥x∥ ≤ ρ, then ∥y∗∥< M and in fact, all such x are in D(A). Now let

yλ =
1

2
∥∥x∗

λ

∥∥F−1 (x∗
λ

)
so ∥yλ∥< ρ

Thus yλ ∈ D(A) and if y∗
λ
∈ Ayλ , then

∥∥y∗
λ

∥∥< M. Then for such bounded y∗
λ
,

0≤
〈
y∗

λ
− x∗

λ
,yλ − xλ

〉
=
〈
y∗

λ
,yλ

〉
−
〈
x∗

λ
,yλ

〉
−
〈
y∗

λ
,xλ

〉
+
〈
x∗

λ
,xλ

〉
Then

1
2

∥∥x∗
λ

∥∥=〈x∗
λ
,

1
2
∥∥x∗

λ

∥∥F−1 (x∗
λ

)〉
=
〈
x∗

λ
,yλ

〉
≤
〈
y∗

λ
,yλ

〉
−
〈
y∗

λ
,xλ

〉
+
〈
x∗

λ
,xλ

〉
≤Mρ +M ∥xλ∥+

〈
x∗

λ
,xλ

〉
From 25.7.61, ∥∥x∗

λ

∥∥≤ 2
(

Mρ +M ∥x∗∥+∥x∗∥2
)

Thus from 25.7.61, xλ ,x∗λ ,Fxλ are all bounded. Hence it follows from 25.7.60 that Bλ xλ

is also bounded. Therefore, there is a sequence, λ n→ 0 such that

xλ n → z weakly

x∗
λ
→ w∗ weakly

Fxλ → u∗ weakly

Bλ nxλ n → b∗ weakly
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Using 25.7.60, it follows that〈
Fxλ n + x∗

λ n
+Bλ nxλ n −

(
Fxλ m + x∗

λ m
+Bλ mxλ m

)
,xλ n − xλ m

〉
= 0

Thus〈
Fxλ n + x∗

λ n
−
(
Fxλ m + x∗

λ m

)
,xλ n − xλ m

〉
+
〈
Bλ nxλ n −Bλ mxλ m ,xλ n − xλ m

〉
= 0 (25.7.62)

Now F +A is surely monotone and so

lim sup
m,n→∞

〈
Bλ nxλ n −Bλ mxλ m ,xλ n − xλ m

〉
≤ 0

By Proposition 25.7.38, b∗ ∈ Bz and

lim
m,n→∞

〈
Bλ nxλ n −Bλ mxλ m ,xλ n − xλ m

〉
= 0

Then returning to 25.7.62,

lim sup
m,n→∞

〈
Fxλ n + x∗

λ n
−
(
Fxλ m + x∗

λ m

)
,xλ n − xλ m

〉
≤ 0

Now from Lemma 25.7.39, F+A is maximal monotone. Hence Proposition 25.7.38 applies
again and it follows that u∗+w∗ ∈ Fz+Az. Then passing to the limit as n→ ∞ in

x∗ = Fxλ n +Bλ nxλ n + x∗
λ n

it follows that
x∗ = u∗+b∗+w∗ = Fz+Az+Bz

and this shows that A+B is maximal monotone because x∗ was arbitrary. ■
You don’t need to assume all that stuff about 0 ∈ A(0) ,0 ∈ B(0) ,0 on interior of D(A)

and so forth.

Theorem 25.7.42 Suppose A,B are maximal monotone and the interior of D(A) has non-
empty intersection with D(B). Then A+B is maximal monotone.

Proof: Let x0 be on the interior of D(A) and also in D(B). Let Â(x) = A(x0 + x)− x∗0
where x∗0 ∈ A(x0) . Thus 0 ∈ D

(
Â
)

and 0 ∈ Â(0). Do the same thing for B to get B̂ defined
similarly. Are these still maximal monotone? Suppose for all [u,u∗] ∈ G

(
Â
)

⟨y∗−u∗,y−u⟩ ≥ 0

Does it follow that y∗ ∈ Ây? It is given that u∗ ∈ A(x0 +u) . The above implies for all
[u,u∗] ∈ G

(
Â
)

⟨y∗+ x∗0− (u∗+ x∗0) ,(y+ x0)− (u+ x0)⟩ ≥ 0

and since u+ x0 is a generic element of D(A) for u ∈ D
(
Â
)
, the above implies y∗+ x∗0 ∈

A(y+ x0) and so y ∈ A(y+ x0)− x∗0 ≡ Â(y). Hence the graph is maximal. Similar for
B̂. Thus the lemma can be applied to Â, B̂ to conclude that the sum of these is maximal
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monotone. Now a repeat of the above reasoning which shows that Â is maximal monotone
shows that the fact that Â+ B̂ is maximal monotone implies that A+B is also. You just
shift with −x0 instead of x0. It amounts to nothing more than the observation that maximal
graphs don’t lose their maximality by shifting their ranges and domains. ■

Suppose B,A are maximal monotone. Does there always exist a solution x to

x∗ ∈ Fx+Bλ x+Ax? (25.7.63)

Consider the monotone hemicontinuous and bounded operator F +Bλ .Is F̂ + B̂λ defined
by (

F̂ + B̂λ

)
(x)≡

(
F̂ + B̂λ

)
(x+ x0)

also coercive for some x0 ∈ D(A)? If so, the existence of the desired solution to the above
inclusion follows from Corollary 25.7.40. Then for all ∥x∥ large enough that ∥x+ x0∥ >
∥x0∥ ,

⟨F (x+ x0)+Bλ (x+ x0) ,x⟩
∥x∥

=
⟨F (x+ x0) ,x⟩

∥x∥
+

≥0
⟨Bλ (x+ x0)−Bλ (x0) ,x⟩

∥x∥
+
⟨Bλ (x0) ,x⟩
∥x∥

≥ 1
2
⟨F (x+ x0) ,x⟩
∥x+ x0∥

−∥Bλ (x0)∥

≥ 1
2
⟨F (x+ x0) ,x+ x0⟩

∥x+ x0∥
− 1

2
⟨F (x+ x0) ,x0⟩
∥x+ x0∥

−∥Bλ (x0)∥

≥ 1
2
⟨F (x+ x0) ,x+ x0⟩

∥x+ x0∥
− 1

2
⟨F (x+ x0) ,x0⟩

∥x0∥
−∥Bλ (x0)∥

≥ 1
2
⟨F (x+ x0) ,x+ x0⟩

∥x+ x0∥
− 1

2
∥x+ x0∥−∥Bλ (x0)∥

=
1
2
∥x+ x0∥2− 1

2
∥x+ x0∥−∥Bλ (x0)∥

which shows that

lim
∥x∥→∞

⟨F (x+ x0)+Bλ (x+ x0) ,x⟩
∥x∥

= ∞

and so by Corollary 25.7.40, there exists a solution to 25.7.63. This shows half of the
following interesting theorem which is another version of the above major result.

Theorem 25.7.43 Suppose A,B are maximal monotone operators. Then for each x∗ ∈ X ′,
there exists a solution xλ to

x∗ ∈ Fxλ +Bλ xλ +Axλ , λ > 0 (25.7.64)

If for λ ∈ (0,δ ) ,{Bλ xλ} is bounded, then there exists a solution x to

x∗ ∈ Fx+Bx+Ax
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Proof: The existence of a solution to the inclusion 25.7.64 comes from the above dis-
cussion. The last claim follows from almost a repeat of the last part of the proof of the
above theorem. Since {Bλ xλ} is given to be bounded for λ ∈ (0,δ ) , there is a sequence,
λ n→ 0 such that

xλ n → z weakly

x∗
λ
→ w∗ weakly

Fxλ → u∗ weakly

Bλ nxλ n → b∗ weakly

Using 25.7.64, it follows that〈
Fxλ n + x∗

λ n
+Bλ nxλ n −

(
Fxλ m + x∗

λ m
+Bλ mxλ m

)
,xλ n − xλ m

〉
= 0

Thus 〈
Fxλ n + x∗

λ n
−
(
Fxλ m + x∗

λ m

)
,xλ n − xλ m

〉
+
〈
Bλ nxλ n −Bλ mxλ m ,xλ n − xλ m

〉
= 0 (25.7.65)

Now F +A is surely monotone and so

lim sup
m,n→∞

〈
Bλ nxλ n −Bλ mxλ m ,xλ n − xλ m

〉
≤ 0

By Proposition 25.7.38, b∗ ∈ Bz and

lim
m,n→∞

〈
Bλ nxλ n −Bλ m xλ m ,xλ n − xλ m

〉
= 0

Then returning to 25.7.65,

lim sup
m,n→∞

〈
Fxλ n + x∗

λ n
−
(
Fxλ m + x∗

λ m

)
,xλ n − xλ m

〉
≤ 0

Now from Corollary 25.7.40, F +A is maximal monotone (In fact, F +A is onto). Hence
Proposition 25.7.38 applies again and it follows that u∗+w∗ ∈ Fz+Az. Then passing to
the limit as n→ ∞ in

x∗ = Fxλ n +Bλ nxλ n + x∗
λ n

it follows that
x∗ = u∗+b∗+w∗ = Fz+Az+Bz ■

25.7.6 Convex Functions, An Example

As before, X will be a Banach space in what follows. Sometimes it will be a reflexive
Banach space and in this case, it will be assumed that the norm is strictly convex.
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Definition 25.7.44 Let φ : X → (−∞,∞]. Then φ is convex if whenever t ∈ [0,1] ,x,y ∈ X ,

φ (tx+(1− t)y)≤ tφ (x)+(1− t)φ (y)

The epigraph of φ is defined by

epi(φ)≡ {(x,y) : y≥ φ (x)}

When epi(φ) is closed in X × (−∞,∞], we say that φ is lower semicontinuous, l.s.c. The
function is called proper if φ (x)<∞ for some x. The collection of all such x is called D(φ) ,
the domain of φ .

This definition of lower semicontinuity is equivalent to the usual definition.

Lemma 25.7.45 The above definition of lower semicontinuity is equivalent to the assertion
that whenever xn → x, it follows that φ (x) ≤ liminfn→∞ φ (xn) . In case that φ is convex,
lower semicontinuity is equivalent to weak lower semicontinuity. That is epi(φ) is closed
if and only if epi(φ) is weakly closed. In this case, the limit condition: If xx → x weakly,
then φ (x)≤ liminfn→∞ φ (xn) is valid.

Proof: Suppose the limit condition holds. Why is epi(φ) closed? Why is X×(−∞,∞]\
epi(φ) ≡ epi(φ)C open? Let (x,α) ∈ epi(φ)C . Then α < φ (x) ,α + δ < φ (x) . Consider
B(x,r)×

(
α− δ

2 ,α + δ

2

)
. If every such open set contains a point of epi(φ) , then there

exists xn→ x,yn < α + δ

2 ,yn ≥ φ (xn) . Hence, from the limit condition,

φ (x)≤ lim inf
n→∞

φ (xn)≤ lim inf
n→∞

yn ≤ α +
δ

2
< α +δ < φ (x)

a contradiction. It follows that there exists r > 0 such that B(x,r)×
(

α− δ

2 ,α + δ

2

)
∩

epi(φ) = /0. Since epi(φ)C is open, it follows that epi(φ) is closed.
Next suppose epi(φ) is closed. Why does the limit condition hold? Suppose xn → x.

Then (xn,φ (xn)) ∈ epi(φ). There is a subsequence such that

α ≡ lim inf
n→∞

φ (xn) = lim
k→∞

φ
(
xnk

)
and so

(
xnk ,φ

(
xnk

))
→ (x,α). Since epi(φ) is closed, this means (x,α) ∈ epi(φ). Hence

α ≡ lim inf
n→∞

φ (xn)≥ φ (x) .

Consider the last claim. In this case, epi(φ) is convex. If it is closed, then it is weakly
closed thanks to separation theorems: If (x,α) ∈ epi(φ)C , then α < ∞ and so there exists
(x∗,β ) ∈ (X×R)′ and l such that for all (t,γ) ∈ epi(φ) ,

x∗ (t)+βγ > l > x∗ (x)+αβ
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Then B(x∗,β ) ((x,α) ,δ ) is a weakly open set containing (x,α). For δ small enough, it does
not intersect epi(φ) since if not so, there would exist (tn,γn) ∈ epi(φ)∩B(x∗,β )

(
(x,α) , 1

n

)
and so

x∗ (tn)+βγn→ x∗ (x)+αβ

contrary to the above inequality. Thus epi(φ) is weakly closed. Also, if epi(φ) is weakly
closed, then it is obviously strongly closed.

What of the limit condition using weak convergence instead of strong convergence? Say
xn→ x weakly. Does it follow that if epi(φ) is weakly closed that φ (x)≤ liminfn→∞ φ (xn)?
It is just as above. There is a subsequence such that

α ≡ lim inf
n→∞

φ (xn) = lim
k→∞

φ
(
xnk

)
and so

(
xnk ,φ

(
xnk

))
→ (x,α) weakly. Since epi(φ) is weakly closed, this means (x,α) ∈

epi(φ). Hence
α ≡ lim inf

n→∞
φ (xn)≥ φ (x) . ■

There is also another convenient characterization of what it means for a function to be
lower semicontinuous.

Lemma 25.7.46 Let φ : X → (−∞,∞]. Then φ is lower semicontinuous if and only if
φ
−1 ((a,∞]) is open for any a ∈ R.

Proof: Suppose first that epi(φ) is closed. Consider x ∈ φ
−1 ((a,∞]) . Thus φ (x) > a.

Thus (x,a) ∈ epi(φ)C because a < φ (x) . Since epi(φ) is closed, there exists r,ε > 0 such
that

B(x,r)× (a− ε,a+ ε)⊆ epi(φ)C

Hence if y ∈ B(x,r) , it follows that φ (y)≥ a+ε since otherwise there would be a point of
epi(φ)C in this open set B(x,r)× (a− ε,a+ ε). Hence B(x,r)⊆ φ

−1 ((a,∞]).
Conversely, suppose φ

−1 ((a,∞]) is open for any a and let (x,b) ∈ epi(φ)C. Then
φ (x) > b. Thus there exists B(x,r) such that for y ∈ B(x,r) , it follows that φ (y) > b.
That is, y ∈ φ

−1 ((b,∞]). So consider B(x,r)× (−∞,b). If (y,α) ∈ B(x,r)× (−∞,b), then
since φ (y) > b,α < φ (y) and so there is no point of intersection between epi(φ) and this
open set B(x,r)× (−∞,b).■

Of course one can define upper semicontinuous the same way that φ
−1 (−∞,a) is open.

Thus a function is continuous if and only if it is both upper and lower semicontinuous.
In case X is reflexive, the limit condition implies that epi(φ) is weakly closed. Suppose

(x,α) is a weak limit point of epi(φ) . Then by the Eberlein Smulian theorem, there is a
subsequence of points of X ,(xn,αn) which converges weakly to (x,α) . Thus if the limit
condition holds,

φ (x)≤ lim inf
n→∞

φ (xn)≤ lim inf
n→∞

αn = α

and so (x,α) ∈ epi(φ). If X is not reflexive, this isn’t all that clear because it is not clear
that a limit point is the limit of a sequence. However, one could consider a limit condition
involving nets and get a similar result.
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Definition 25.7.47 Let φ : X → (−∞,∞] be convex lower semicontinuous, and proper.
Then

∂φ (x)≡ {x∗ : φ (y)−φ (x)≥ ⟨x∗,y− x⟩ for all y}

The domain of ∂φ , denoted as D(∂φ) is just the set of all x for which ∂φ (x) ̸= /0. Note that
D(∂φ)⊆ D(φ) since if x /∈ D(φ) , the defining inequality could not hold for all y because
the left side would be −∞ for some y.

Theorem 25.7.48 For X a real Banach space, let φ (x) ≡ 1
2 ||x||

2. Then F (x) = ∂φ (x).
Here F was the set valued map satisfying x∗ ∈ Fx means

∥x∗∥= ∥Fx∥ ,⟨Fx,x⟩= ∥x∥2 .

Proof: Let x∗ ∈ F (x). Then

⟨x∗,y− x⟩ = ⟨x∗,y⟩−⟨x∗,x⟩

≤ ||x|| ||y||− ||x||2 ≤ 1
2
||y||2− 1

2
||x||2.

This shows F (x)⊆ ∂φ (x).
Now let x∗ ∈ ∂φ (x). Then for all t ∈ R,

⟨x∗, ty⟩= ⟨x∗,(ty+ x)− x⟩ ≤ 1
2

(
||x+ ty||2−||x||2

)
. (25.7.66)

Now if t > 0, divide both sides by t. This yields

⟨x∗,y⟩ ≤ 1
2t

(
(∥x∥+ t ∥y∥)2−∥x∥2

)
=

1
2t

(
2t ||x|| ||y||+ t2 ||y||2

)
Letting t→ 0,

⟨x∗,y⟩ ≤ ||x|| ||y|| . (25.7.67)

Next suppose t =−s, where s > 0 in 25.7.66. Then, since when you divide by a negative,
you reverse the inequality, for s > 0

⟨x∗,y⟩ ≥ 1
2s

[
||x||2−||x− sy||2

]
≥

1
2s

[
||x− sy||2−2 ||x− sy|| ||sy|| + ||sy||2−||x− sy||

]2
. (25.7.68)

=
1
2s

[
−2 ||x− sy|| ||sy||+ ||sy||2

]
(25.7.69)

Taking a limit as s→ 0 yields
⟨x∗,y⟩ ≥ −||x|| ||y||. (25.7.70)

It follows from 25.7.70 and 25.7.67 that

|⟨x∗,y⟩| ≤ ||x|| ||y||
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and that, therefore, ||x∗|| ≤ ||x|| and |⟨x∗,x⟩| ≤ ||x||2. Now return to 25.7.69 and let y = x.
Then

⟨x∗,x⟩ ≥ 1
2s

[
−2 ||x− sx|| ||sx||+ ||sx||2

]
= −∥x∥2 (1− s)+ s∥x∥2

Letting s→ 1,
⟨x∗,x⟩ ≥ ||x||2.

Since it was already shown that |⟨x∗,x⟩| ≤ ||x||2, this shows ⟨x∗,x⟩= ∥x∥2 and also ∥x∗∥ ≤
∥x∥. Thus

∥x∗∥ ≥
〈

x∗
x
∥x∥

〉
= ∥x∥

so in fact x∗ ∈ F (x) . ■
The next result gives conditions under which the subgradient is onto. This means that

if y∗ ∈ X ′, then there exists x ∈ X such that y∗ ∈ ∂φ (x).

Theorem 25.7.49 Suppose X is a reflexive Banach space and suppose φ : X → (−∞,∞] is
convex, proper, l.s.c., and for all y∗ ∈ X ′, x→ φ (x)−⟨y∗,x⟩ is coercive,

lim
||x||→∞

φ (x)−⟨y∗,x⟩= ∞

Then ∂φ is onto.

Proof: The function x→ φ (x)− y∗ (x) ≡ ψ (x) is convex, proper, l.s.c., and coercive.
Let

λ ≡ inf{φ (x)−⟨y∗,x⟩ : x ∈ X}

and let {xn} be a minimizing sequence satisfying

λ = lim
n→∞

φ (xn)−⟨y∗,xn⟩

By coercivity,
lim
||x||→∞

φ (x)−⟨y∗,x⟩= ∞

and so this minimizing sequence is bounded. By the Eberlein Smulian theorem, Theorem
17.5.12, there is a weakly convergent subsequence xnk → x. By Lemma 25.7.45,

λ = φ (x)−⟨y∗,x⟩ ≤ lim inf
k→∞

φ
(
xnk

)
−
〈
y∗,xnk

〉
= λ

so there exists x which minimizes x→ φ (x)−⟨y∗,x⟩ ≡ ψ (x). Therefore, 0 ∈ ∂ψ (x) be-
cause

ψ (y)−ψ (x)≥ 0 = ⟨0,y− x⟩

Thus, 0 ∈ ∂ψ (x) = ∂φ (x)− y∗. ■
Now let φ be a convex proper lower semicontinuous function defined on X where X is

a reflexive Banach space with strictly convex norm. Consider ∂φ . Is it maximal monotone?
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Is it the case that F+∂φ is onto? First of all, is ∂φ monotone? Let x∗ ∈ ∂φ (x) ,y∗ ∈ ∂φ (y) .
Then

φ (y)−φ (x) ≥ ⟨x∗,y− x⟩
φ (x)−φ (y) ≥ ⟨y∗,x− y⟩

Hence adding these yields

⟨y∗− x∗,x− y⟩ ≤ 0, ⟨y∗− x∗,y− x⟩ ≥ 0.

Yes, ∂φ is certainly monotone. Is it maximal monotone?

Theorem 25.7.50 Let φ be convex, proper, and lower semicontinuous on X where X is a
reflexive Banach space having strictly convex norm. Then ∂φ is maximal monotone.

Proof: It is necessary to show that F +∂φ is onto. To do this, let

ψ (x)≡ 1
2
∥x∥2 +φ (x)−⟨y∗,x⟩

where y∗ is a given element of X ′ and the idea is to show that y∗ ∈ F (x)+∂φ (x) for some
x. Then by separation theorems, φ (x) ≥ b+ ⟨z∗,x⟩ for some b,z∗. Hence it is clear that ψ

is convex, lower semicontinuous and coercive in the sense that

lim
∥x∥→∞

ψ (x) = ∞

It follows that any minimizing sequence for ψ is bounded. Hence by the weak lower
semicontinuity, this function has a minimum at x0 say. Thus

1
2
∥x0∥2 +φ (x0)−⟨y∗,x0⟩ ≤

1
2
∥x∥2 +φ (x)−⟨y∗,x⟩

for all x. Then
1
2
∥x0∥2− 1

2
∥x∥2 + ⟨y∗,x− x0⟩ ≤ φ (x)−φ (x0)

Now from Theorem 25.7.48,

⟨F (x) ,x0− x⟩ ≤ 1
2
∥x0∥2− 1

2
∥x∥2

and so, the above reduces to

⟨F (x) ,x0− x⟩+ ⟨y∗,x− x0⟩ ≤ φ (x)−φ (x0)

Next let x = x0 + t (z− x0) , t ∈ (0,1) , where z is arbitary. Then

−t ⟨F (x0 + t (z− x0)) ,z− x0⟩+ t ⟨y∗,z− x0⟩ ≤ φ (x0 + t (z− x0))−φ (x0)

and so, by convexity,

−t ⟨F (x0 + t (z− x0)) ,z− x0⟩+ t ⟨y∗,z− x0⟩ ≤ (1− t)φ (x0)+ tφ (z)−φ (x0)
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t ⟨y∗,z− x0⟩ ≤ t (φ (z)−φ (x0))+ t ⟨F (x0 + t (z− x0)) ,z− x0⟩

Now cancel the t on both sides to obtain

⟨y∗,z− x0⟩ ≤ (φ (z)−φ (x0))+ ⟨F (x0 + t (z− x0)) ,z− x0⟩

By the fact that F is hemicontinuous, actually demicontinuous, one can let t ↓ 0 and obtain

⟨y∗,z− x0⟩ ≤ (φ (z)−φ (x0))+ ⟨F (x0) ,z− x0⟩

This says that y∗−F (x0) ∈ ∂φ (x0) from the definition of what ∂φ (x0) means. ■
There is a much harder approach to this theorem which is based on a theorem about

when the subgradient of a sum equals the sum of the subgradients. This major theorem is
given next. Much of the above is in [13] but I don’t remember where I found the following
proof.

Theorem 25.7.51 Let φ 1 and φ 2 be convex, l.s.c. and proper having values in (−∞,∞].
Then

∂ (λφ i)(x) = λ∂φ i (x) , ∂ (φ 1 +φ 2)(x)⊇ ∂φ 1 (x)+∂φ 2 (x) (25.7.71)

if λ > 0. If there exists x ∈ dom(φ 1)∩ dom(φ 2) and φ 1 is continuous at x then for all
x ∈ X,

∂ (φ 1 +φ 2)(x) = ∂φ 1 (x)+∂φ 2 (x). (25.7.72)

Proof: 25.7.71 is obvious so we only need to show 25.7.72. Suppose x is as described.
It is clear 25.7.72 holds whenever x /∈ dom(φ 1)∩ dom(φ 2) since then ∂ (φ 1 +φ 2) = /0.
Therefore, assume

x ∈ dom(φ 1)∩dom(φ 2)

in what follows. Let x∗ ∈ ∂ (φ 1 +φ 2)(x). Is x∗ is the sum of an element of ∂φ 1 (x) and
∂φ 2 (x)? Does there exist x∗1 and x∗2 such that for every y,

x∗ (y− x) = x∗1 (y− x)+ x∗2 (y− x)

≤ φ 1 (y)−φ 1 (x)+φ 2 (y)−φ 2 (x)?

If so, then
φ 1 (y)−φ 1 (x)− x∗ (y− x)≥ φ 2 (x)−φ 2 (y) .

Define
C1 ≡ {(y,a) ∈ X×R : φ 1 (y)−φ 1 (x)− x∗ (y− x)≤ a},

C2 ≡ {(y,a) ∈ X×R : a≤ φ 2 (x)−φ 2 (y)}.

I will show int(C1)∩C2 = /0 and then by Theorem 18.2.14 there exists an element of X ′

which does something interesting.
Both C1 and C2 are convex and nonempty. Say y1,y2 ∈C1 and t ∈ [0,1] . Then

φ 1 ((ty1)+(1− t)y2)−φ 1 (x)− x∗ (((ty1)+(1− t)y2)− x)
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≤ tφ (y1)+(1− t)φ (y2)− (tφ 1 (x)+(1− t)φ (x))

−(tx∗ (y1− x)+(1− t)x∗ (y2− x))

≤ ta+(1− t)a = a

so C1 is indeed convex. The case of C2 is similar.
C1 is nonempty because it contains (x,φ 1 (x)−φ 1 (x)− x∗ (x− x)) since

φ 1 (x)−φ 1 (x)− x∗ (x− x)≤ φ 1 (x)−φ 1 (x)− x∗ (x− x)

C2 is also nonempty because it contains (x,φ 2 (x)−φ 2 (x)) since

φ 2 (x)−φ 2 (x)≤ φ 2 (x)−φ 2 (x)

In addition to this,

(x,φ 1 (x)− x∗ (x− x)−φ 1 (x)+1) ∈ int(C1)

due to the assumed continuity of φ 1 at x and so int(C1) ̸= /0. If (y,a) ∈ int(C1) then

φ 1 (y)− x∗ (y− x)−φ 1 (x)≤ a− ε

whenever ε is small enough. Therefore, if (y,a) is also in C2, the assumption that x∗ ∈
∂ (φ 1 +φ 2)(x) implies

a− ε ≥ φ 1 (y)− x∗ (y− x)−φ 1 (x)≥ φ 2 (x)−φ 2 (y)≥ a,

a contradiction. Therefore int(C1) ∩C2 = /0 and so by Theorem 18.2.14, there exists
(w∗,β ) ∈ X ′×R with

(w∗,β ) ̸= (0,0) , (25.7.73)

and
w∗ (y)+βa≥ w∗ (y1)+βa1, (25.7.74)

whenever (y,a) ∈C1 and (y1,a1) ∈C2.
Claim: β > 0.
Proof of claim: If β < 0 let

a = φ 1 (x)− x∗ (x− x)−φ 1 (x)+1,

a1 = φ 2 (x)−φ 2 (x) , and y = y1 = x.

Then from 25.7.74

β (φ 1 (x)− x∗ (x− x)−φ 1 (x)+1)≥ β (φ 2 (x)−φ 2 (x)) .

Dividing by β yields

φ 1 (x)− x∗ (x− x)−φ 1 (x)+1≤ φ 2 (x)−φ 2 (x)
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and so
φ 1 (x)+φ 2 (x)− (φ 1 (x)+φ 2 (x))+1≤ x∗ (x− x)

≤ φ 1 (x)+φ 2 (x)− (φ 1 (x)+φ 2 (x)),

a contradiction. Therefore, β ≥ 0.
Now suppose β = 0. Letting

a = φ 1 (x)− x∗ (x− x)−φ 1 (x)+1,

(x,a) ∈ int(C1) ,

and so there exists an open set U containing 0 and η > 0 such that

x+U× (a−η ,a+η)⊆C1.

Therefore, 25.7.74 applied to (x+ z,a) ∈C1 and (x,φ 2 (x)−φ 2 (x)) ∈C2 for z ∈U yields

w∗ (x+ z)≥ w∗ (x)

for all z ∈U . Hence w∗ (z) = 0 on U which implies w∗ = 0, contradicting 25.7.73. This
proves the claim.

Now with the claim, it follows β > 0 and so, letting z∗ = w∗/β , 25.7.74 and Lemma
18.2.15 implies

z∗ (y)+a≥ z∗ (y1)+a1 (25.7.75)

whenever (y,a) ∈C1 and (y1,a1) ∈C2. In particular,

(y,φ 1 (y)−φ 1 (x)− x∗ (y− x)) ∈C1 (25.7.76)

because
φ 1 (y)−φ 1 (x)− x∗ (y− x)≤ φ 1 (y)− x∗ (y− x)−φ 1 (x)

and
(y1,φ 2 (x)−φ 2 (y1)) ∈C2. (25.7.77)

by similar reasoning so letting y = x,

z∗ (x)+

 =0︷ ︸︸ ︷
φ 1 (x)− x∗ (x− x)−φ 1 (x)

≥ z∗ (y1)+φ 2 (x)−φ 2 (y1).

Therefore,
z∗ (y1− x)≤ φ 2 (y1)−φ 2 (x)

for all y1 and so z∗ ∈ ∂φ 2 (x). Now let y1 = x in 25.7.77 and using 25.7.75 and 25.7.76, it
follows

z∗ (y)+φ 1 (y)− x∗ (y− x)−φ 1 (x)≥ z∗ (x)

φ 1 (y)−φ 1 (x)≥ x∗ (y− x)− z∗ (y− x)

and so x∗− z∗ ∈ ∂φ 1 (x) so x∗ = z∗+(x∗− z∗) ∈ ∂φ 2 (x)+∂φ 1 (x) . ■
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Corollary 25.7.52 Let φ : X → (−∞,∞] be convex, proper, and lower semicontinuous.
Here X is a Banach space. Then ∂φ is maximal monotone.

Proof: Let ψ (x) = 1
2 ∥x∥

2. There exists x∗ and some number b such that φ (x) ≥
b+ ⟨x∗,x⟩ . Therefore, ψ + φ is convex, lower semicontinuous, and bounded. It follows
∂ (ψ +φ) is onto by Theorem 25.7.49. However, ψ is continuous everywhere, in particu-
lar at every point of the domain of φ . Therefore, ∂ψ + ∂φ = ∂ (φ +ψ) and by Theorem
25.7.48, this shows that F +∂φ is onto. ■

It seems to me that the above are the most important results about convex proper
lower semicontinuous functions. However, there are many other very interesting properties
known.

Proposition 25.7.53 Let φ : X → (−∞,∞] be convex proper and lower semicontinuous.
Then D(∂φ) is dense in D(φ) and so D(∂φ) = D(φ).

Proof: Let xλ be the solution to 0 ∈ F (xλ − x)+λ∂φ (xλ ) . Here x ∈ D(φ). Say u∗
λ
∈

∂φ (xλ ) such that the inclusion becomes an equality. Then

0 =
〈
F (xλ − x)+λu∗

λ
,xλ − x

〉
= ∥xλ − x∥2−λ

〈
u∗

λ
,x− xλ

〉
≥ ∥xλ − x∥2−λ (φ (x)−φ (xλ ))

Hence, letting z∗,b be such that φ (y)≥ b+ ⟨z∗,y− x⟩ ,

λ (φ (x)− [b+ ⟨z∗,xλ − x⟩])≥ λ (φ (x)−φ (xλ ))≥ ∥xλ − x∥2

λφ (x)−λb≥ ∥xλ − x∥2−λ ∥z∗∥∥xλ − x∥

≥ ∥xλ − x∥2−λ

(
∥z∗∥2

2
+
∥xλ − x∥2

2

)
Thus

λφ (x)−λb+λ
∥z∗∥2

2
≥
(

1− λ

2

)
∥xλ − x∥2

It follows that xλ → x. This shows that D(φ)⊆ D(∂φ) and so D(φ)⊆D(∂φ) ⊆D(φ). ■
There is a really amazing theorem, Moreau’s theorem. It is in [24], [13] and [116]. It

involves approximating a convex function with one which is differentiable, at least in the
case where you have a Hilbert space. In the general case considered in this chapter, the
function is continuous.

Theorem 25.7.54 Let φ be a convex lower semicontinuous proper function defined on X.
Define A≡ ∂φ ,Aλ = (∂φ)

λ

φ λ (x)≡min
y∈X

(
1

2λ
∥x− y∥2 +φ (y)

)
Then the function is well defined, convex, Gateaux differentiable,

Dzφ λ (x)≡ lim
t↓0

φ λ (x+ tz)−φ λ (x)
t

= ⟨Aλ x,z⟩
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so the Gateaux derivative is just Aλ x and for all x ∈ X ,

lim
λ→0

φ λ (x) = φ (x) ,

In addition,

φ λ (x) =
1

2λ
∥x− Jλ x∥2 +φ (Jλ (x)) (25.7.78)

where Jλ x is as before, the solution to

0 ∈ F (Jλ x− x)+λ∂φ (Jλ x)

Proof: First of all, why does the minimum take place? By the convexity, closed epi-
graph, and assumption that φ is proper, separation theorems apply and one can say that
there exists z∗ such that for all y ∈ H,

1
2λ
∥x− y∥2 +φ (y)≥ 1

2λ
∥x− y∥2 +(z∗,y)+ c (25.7.79)

It follows easily that a minimizing sequence is bounded and so from lower semicontinuity
which implies weak lower semicontinuity due to convexity, there exists yx such that

min
y∈H

(
1

2λ
∥x− y∥2 +φ (y)

)
=

(
1

2λ
∥x− yx∥2 +φ (yx)

)
Why is φ λ convex? For θ ∈ [0,1] ,

φ λ (θx+(1−θ)z)≡ 1
2λ

∥∥θx+(1−θ)z− y(θx+(1−θ)z)
∥∥2

+φ
(
yθx+(1−θ)z

)
≤ 1

2λ
|θx+(1−θ)z− (θyx +(1−θ)yz)|2 +φ (θyx +(1−θ)yz)

≤ θ

2λ
|x− yx|2 +

1−θ

2λ
|z− yz|2 +θφ (yx)+(1−θ)φ (yz)

= θφ λ (x)+(1−θ)φ λ (z)

So is there a formula for yx? Since it involves minimization of the functional, it follows
that

0 ∈ − 1
λ

F (x− yx)+∂φ (yx) =
1
λ

F (yx− x)+∂φ (yx)

Recall that if ψ (x) = 1
2 ∥x∥

2 , then ∂ψ (x) = F (x). Thus

yx = Jλ x

because this was how Jλ x was defined. Therefore,

φ λ (x) =
1

2λ
∥x− Jλ x∥2 +φ (Jλ (x)) =

λ

2
∥Aλ x∥2 +φ (Jλ x) , A = ∂φ
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It follows from this equation that

φ (Jλ x)≤ φ λ (x)≤ φ (x) , (25.7.80)

the second inequality following from taking y = x in the definition of φ λ .
Next consider the claim about φ λ (x) ↑ φ (x). First suppose that x ∈ D(φ) . Then from

Proposition 25.7.53, x ∈ D(∂φ) and so from the material on approximations, Theorem
25.7.36, it follows that Jλ x→ x. Hence from 25.7.80 and lower semicontinuity of φ ,

φ (x)≤ lim inf
λ→0

φ (Jλ x)≤ lim inf
λ→0

φ λ (x)≤ lim sup
λ→0

φ λ (x)≤ φ (x)

showing that in this case, limλ→0 φ λ (x) = φ (x). Next suppose x /∈D(φ) so that φ (x) = ∞.
Why does φ λ (x)→ ∞? Suppose not. Then from the description of φ λ given above and
using the fact that the epigraph is closed and convex, there would exist a subsequence, still
denoted as λ such that

C ≥ φ λ (x) =
1

2λ
∥x− Jλ x∥2 +φ (Jλ (x))≥

1
2λ
∥x− Jλ x∥2 + ⟨z∗,x− Jλ x⟩+b

Then multiplying by λ , it follows that for a suitable constant M,

∥x− Jλ x∥2 ≤Mλ +λM ∥x− Jλ x∥

and so a use of the quadratic formula implies

∥x− Jλ x∥ ≤ M
2

(
1+
√

5
)

λ

Hence Jλ x→ x and so in 25.7.80 it follows from lower semicontinuity again that

∞ = φ (x)≤ lim inf
λ→0

φ (Jλ x)≤ lim inf
λ→0

φ λ (x)≤ lim sup
λ→0

φ λ (x)≤ φ (x)

and so again, limλ→0 φ λ (x) = ∞. Also note that if λ > µ, then

min
y∈X

(
1

2λ
∥x− y∥2 +φ (y)

)
≤min

y∈X

(
1

2µ
∥x− y∥2 +φ (y)

)
because for a given y, 1

2λ
∥x− y∥2 +φ (y)≤ 1

2µ
∥x− y∥2 +φ (y). Thus φ λ (x) ↑ φ (x).

Next consider the claim about the Gateaux differentiability. Using the description
25.7.78

φ λ (y)−φ λ (x) =

1
2λ
∥y− Jλ y∥2 +φ (Jλ (y))−

(
1

2λ
∥x− Jλ x∥2 +φ (Jλ (x))

)
(25.7.81)

Using the fact that if ψ (x) = ∥x∥2 , then ∂ψ (x) = Fx, and that Aλ x ∈ ∂φ (Jλ x) ,

≥ λ
−1 ⟨F (x− Jλ (x)) ,(y− Jλ y)− (x− Jλ x)⟩+ ⟨Aλ x,Jλ (y)− Jλ (x)⟩

= ⟨Aλ (x) ,(y− Jλ y)− (x− Jλ x)⟩+ ⟨Aλ x,Jλ (y)− Jλ (x)⟩= ⟨Aλ x,y− x⟩
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Hence
(φ λ (y)−φ λ (x))−⟨Aλ x,y− x⟩ ≥ 0

Also from 25.7.81

1
2λ
∥y− Jλ y∥2− 1

2λ
∥x− Jλ x∥2 =−

(
1

2λ
∥x− Jλ x∥2− 1

2λ
∥y− Jλ y∥2

)

≤− 1
λ
⟨F (y− Jλ y) ,(x− Jλ x)− (y− Jλ y)⟩= ⟨Aλ y,(y− Jλ y)− (x− Jλ x)⟩

Similarly, from 25.7.81,

φ (Jλ (y))−φ (Jλ (x)) =−(φ (Jλ (x))−φ (Jλ (y)))

≤−⟨Aλ (y) ,Jλ (x)− Jλ (y)⟩= ⟨Aλ (y) ,Jλ (y)− Jλ (x)⟩

It follows that

⟨Aλ (y) ,Jλ (y)− Jλ (x)⟩+ ⟨Aλ y,(y− Jλ y)− (x− Jλ x)⟩
≥ (φ λ (y)−φ λ (x))≥ ⟨Aλ x,y− x⟩

and so
⟨Aλ (y) ,y− x⟩ ≥ (φ λ (y)−φ λ (x))≥ ⟨Aλ x,y− x⟩

Therefore,

⟨Aλ (y)−Aλ (x) ,y− x⟩ ≥ (φ λ (y)−φ λ (x))−⟨Aλ x,y− x⟩ ≥ 0

Next let y = x+ tz for t > 0. Then

t ⟨Aλ (x+ tz)−Aλ (x) ,z⟩ ≥ (φ λ (x+ tz)−φ λ (x))− t ⟨Aλ x,z⟩ ≥ 0

Using the demicontinuity of Aλ , you can divide by t and pass to a limit to obtain

lim
t↓0

φ λ (x+ tz)−φ λ (x)
t

= ⟨Aλ x,z⟩ . ■

A much better theorem is available in case X = X ′ = H a Hilbert space. In this case φ λ is
also Frechet differentiable. See Theorem 35.3.24 which is presented later. Everything is
much nicer in the Hilbert space setting because F is just replaced with the identity and the
approximations are defined more easily.

0 ∈ Jλ x− x+λAJλ x,

x ∈ Jλ x+λAJλ x = (I +λA)Jλ x

Jλ x = (I +λA)−1 x

Then one can show that Jλ is Lipschitz continuous and many other nice things happen.
Next is an interesting result about when the sum of a maximal monotone operator and

a subgradient is also maximal monotone. A version of this is well known in the case of a
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single Hilbert space. In the case of a single Hilbert space, this result can be used to produce
very regular solutions to evolution equations for functions which have values in the Hilbert
space. You would get this by letting X = X ′ equal to a Hilbert space and your maximal
monotone operator A would be defined on L2 (0,T ;H) = X a space of Hilbert space valued
functions which are square integrable. Then you could take Lu = u′ with domain equal to
those functions in X which are equal to 0 at the left end of the interval for example. This is
done more generally later. In this case the duality map is just the identity. The next theorem
includes the case of two different spaces. I am not sure whether this is a useful result at this
time, in terms of evolution equations. However, it is good to have conditions which show
that the sum of two maximal monotone operators is maximal monotone.

Theorem 25.7.55 Let X be a reflexive Banach space with strictly convex norm and let Φ

be non negative, convex, proper, and lower semicontinuous. Suppose also that A : D(A)→
P (X ′) is a maximal monotone operator and there exists

ξ ∈ D(A)∩D(Φ) . (25.7.82)

Suppose also that
Φ(Jλ x)≤Φ(x)+Cλ (25.7.83)

Then A+∂Φ is maximal monotone.

Proof: Recall that

Aλ x =−λ
−1F (Jλ x− x) , where 0 ∈ F (Jλ x− x)+λ∂A(Jλ x)

Let y∗ ∈ X ′ . From Theorem 25.7.43 there exists xλ ∈ H such that

y∗ ∈ Fxλ +Aλ xλ +∂Φ(xλ ) .

It is desired to show that Aλ xλ is bounded. From the above,

y∗−Fxλ −Aλ xλ ∈ ∂Φ(xλ ) (25.7.84)

and so
⟨y∗−Fxλ −Aλ xλ ,Jλ xλ − xλ ⟩ ≤Φ(Jλ xλ )−Φ(xλ )≤Cλ (25.7.85)

which implies〈
y∗−Fxλ −Aλ xλ ,(−λ )F−1 (Aλ x)

〉
≤Φ(Jλ xλ )−Φ(xλ )≤Cλ

and so 〈
y∗−Fxλ −Aλ xλ ,−F−1 (Aλ x)

〉
≤C

Hence 〈
y∗−Fxλ ,−F−1 (Aλ xλ )

〉
+∥Aλ xλ∥2 ≤C (25.7.86)

I claim {∥xλ∥}are bounded independent of λ .
By 25.7.84 and monotonicity of Aλ ,

Φ(ξ )−Φ(xλ )≥ ⟨y∗−Fxλ −Aλ xλ ,ξ − xλ ⟩
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≥ ⟨y∗−Fxλ ,ξ − xλ ⟩−⟨Aλ xλ ,ξ − xλ ⟩

≥ ⟨y∗−Fxλ ,ξ − xλ ⟩−⟨Aλ ξ ,ξ − xλ ⟩

= ⟨y∗,ξ ⟩−⟨y∗,xλ ⟩−⟨Fxλ ,ξ ⟩+∥xλ∥2−∥ξ − xλ∥∥Aλ ξ∥

≥ −∥y∗∥∥ξ∥−∥y∗∥∥xλ∥−∥xλ∥∥ξ∥−∥ξ∥|Aξ |−∥xλ∥|Aξ |+∥xλ∥2

Therefore, there exist constants, C1 and C2, depending on ξ and y∗ but not on λ such that

Φ(ξ )≥Φ(xλ )+∥xλ∥2−C1 ∥xλ∥−C2.

Since Φ ≥ 0, the above shows that ∥xλ∥ is indeed bounded. Now from 25.7.86 it follows
that {Aλ xλ} is bounded for small positive λ . By Theorem 25.7.43, there exists a solution
x to

y∗ ∈ Fx+Ax+∂Φ(x)

and since y∗ is arbitrary, this shows that A+∂Φ is maximal monotone. ■

25.8 Perturbation Theorems
In this section gives surjectivity of the sum of a pseudomonotone set valued map with a
linear maximal monotone map and also with another maximal monotone operator added
in. It generalizes the surjectivity results given earlier because one could have 0 for the
maximal monotone linear operator. The theorems developed here lead to nice results on
evolution equations because the linear maximal monotone operator can be something like
a time derivative and X can be some sort of an Lp space for functions having values in a
suitable Banach space. This is presented later in the material on Bochner integrals.

The notation ⟨z∗,u⟩V ′,V will mean z∗ (u) in this section. We will not worry about the
order either. Thus

⟨u,z∗⟩ ≡ z∗ (u)≡ ⟨z∗,u⟩

This is just convenient in writing things down. Also, it is assumed that all Banach spaces
are real to simplify the presentation. It is also usually assumed that the Banach spaces are
reflexive. Thus we can regard (

V ×V ′
)′
=V ′×V

and ⟨(y∗,x) ,(u,v∗)⟩ ≡ ⟨y∗,u⟩+ ⟨x,v∗⟩. It is known [8] that for a reflexive Banach space,
there is always an equivalent strictly convex norm. It is therefore, assumed that the norm
for the reflexive Banach space is strictly convex.

Definition 25.8.1 Let L : D(L)⊆V →V ′ be a linear map where we always assume D(L)
is dense in V . Then

D(L∗)≡ {u ∈V : |⟨Lv,u⟩| ≤C∥v∥ for all v ∈ D(L)}

For such u, it follows that on a dense subset of V, namely D(L) ,v→⟨Lz,u⟩ is a continuous
linear map. Hence there exists a unique element of V ′, denoted as L∗u such that for all
v ∈ D(L) ,

⟨Lv,u⟩V ′,V = ⟨L∗u,v⟩V ′,V
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Thus
L : D(L)⊆V →V ′

L∗ : D(L∗)⊆V →V ′

There is an interesting description of L∗ in terms of L which will be quite useful.

Proposition 25.8.2 Let τ : V ×V ′→V ′×V be given by τ (a,b)≡ (−b,a) . Also for S⊆ X
a reflexive Banach space,

S⊥ ≡
{

z∗ ∈ X ′ : ⟨z∗,s⟩= 0 for all s ∈ S
}

Also denote by G (L)≡ {(x,Lx) : x ∈ D(L)}. Then

G (L∗) = (τG (L))⊥

Proof: Let (x,L∗x) ∈ G (L∗) . This means that

|⟨Ly,x⟩| ≤C∥y∥ for all y ∈ D(L)

and ⟨Ly,x⟩= ⟨L∗x,y⟩ for all y ∈D(L) . Let (y,Ly)∈ G (L) . Then τ (y,Ly) = (−Ly,y) . Then

⟨(x,L∗x) ,(−Ly,y)⟩= ⟨x,−Ly⟩+ ⟨L∗x,y⟩=−⟨x,Ly⟩+ ⟨x,L∗y⟩= 0

Thus G (L∗)⊆ (τG (L))⊥ . Next suppose (x,y∗) ∈ (τG (L))⊥ . This means that if (u,Lu) ∈
G (L) , then

⟨(x,y∗) ,(−Lu,u)⟩ ≡ ⟨x,−Lu⟩+ ⟨y∗,u⟩= 0

and so for all u ∈ D(L) ,
⟨y∗,u⟩= ⟨x,Lu⟩

and so x ∈ D(L∗) . Hence for all u ∈ D(L) ,

⟨y∗,u⟩= ⟨x,Lu⟩= ⟨L∗x,u⟩

Then, since D(L) is dense, it follows that y∗ = L∗x and so (x,y) ∈ G (L∗) . Thus these are
the same. ■

Theorem 25.5.4 is a very nice surjectivity result for set valued pseudomonotone opera-
tors. We recall what it said here. Recall the meaning of coercive.

lim
∥v∥→∞

inf
{
⟨z∗,v⟩
||v||

: z∗ ∈ T v
}
= ∞

In this section, we use the convenient notation ⟨z∗,x⟩V ′,V ≡ z∗ (x).

Theorem 25.8.3 Let V be a reflexive Banach space and let T : V → P (V ′) be pseu-
domonotone, bounded and coercive. Then T is onto. More generally, this continues to
hold if T is modified bounded pseudomonotone.

Recall the definition of pseudomonotone.
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Definition 25.8.4 For X a reflexive Banach space, we say A : X→P (X ′) is pseudomono-
tone if the following hold.

1. The set Au is nonempty, closed and convex for all u ∈ X .

2. If F is a finite dimensional subspace of X, u ∈ F, and if U is a weakly open set in V ′

such that Au ⊆U, then there exists a δ > 0 such that if v ∈ Bδ (u)∩F then Av ⊆U.
(Weakly upper semicontinuous on finite dimensional subspaces.)

3. If ui→ u weakly in X and u∗i ∈ Aui is such that

lim sup
i→∞

⟨u∗i ,ui−u⟩ ≤ 0, (25.8.87)

then, for each v ∈ X , there exists u∗ (v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩ ≥ ⟨u∗(v),u− v⟩. (25.8.88)

Also recall the definition of modified bounded pseudomonotone. It is just the above
except that the limit condition is replaced with the following condition: If ui → u weakly
in X and

lim sup
i→∞

⟨u∗i ,ui−u⟩ ≤ 0, (25.8.89)

then there exists a subsequence, still denoted as {ui} such that for each v ∈ X , there exists
u∗ (v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩ ≥ ⟨u∗(v),u− v⟩. (25.8.90)

Also recall that this more general limit condition along with the assumption 1 and the
assumption that A is bounded is sufficient to obtain condition 2. This was Lemma 25.4.9
proved earlier and stated here for convenience.

Lemma 25.8.5 Let A : X →P (X ′) satisfy conditions 1 and 3 above and suppose A is
bounded. Also suppose the condition that if xn→ x weakly and

lim sup
n→∞

⟨zn,xn− x⟩ ≤ 0

implies there exists a subsequence
{

xnk

}
such that for any y,

lim inf
n→∞

〈
znk ,xnk − y

〉
≥ ⟨z(y) ,x− y⟩

for z(y) some element of Ax. Then if this weaker condition holds, you have that if U is a
weakly open set containing Ax, then Axn ⊆U for all n large enough.

Definition 25.8.6 Now let L : D(L) ⊆ V → V ′ such that L is linear, monotone, D(L) is
dense in V , L is closed, and L∗ is monotone. Let A : V →P (V ′) be a bounded operator.
Then A is called L pseudomonotone if Av is closed and convex in V ′ and for any sequence
{un} ⊆ D(L) such that un→ u weakly in V and Lun→ Lu weakly in V ′, and for z∗n ∈ Aun,

lim sup
n→∞

⟨z∗n,un−u⟩ ≤ 0
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then for every v ∈V, there exists z∗ (v) ∈ Au such that

lim inf
n→∞
⟨z∗n,un− v⟩ ≥ ⟨z∗ (v) ,u− v⟩

It is called L modified bounded pseudomonotone if the above liminf condition holds for
some subsequence whenever un→ u weakly and Lun→ Lu weakly and

lim sup
n→∞

⟨z∗n,un−u⟩ ≤ 0

Lemma 25.8.7 Suppose X is the Banach space

X = D(L) , ∥u∥X ≡ ∥u∥V +∥Lu∥V ′

where L is as described in the above definition. Also assume that A is bounded. Then if A
is L pseudomonotone, it follows that A is pseudomonotone as a map from X to P (X ′). If
A is L modified bounded pseudomonotone, then A is modified bounded pseudomonotone as
a map from X to P (X ′).

Proof: Is A bounded? Of course, because the norm of X is stronger than the norm on
V . Is Au convex and closed? This also follows because X ⊆V . It is clear that Au is convex.
If {zn} ⊆ Au and zn→ z in X ′, then does it follow that z ∈ Au? Since A is bounded, there
is a further subsequence which converges weakly to w in V ′. However, Au is convex and
closed so it is weakly closed. Hence w ∈ Au and also w = z. It only remains to verify the
pseudomonotone limit condition. Suppose then that un→ u weakly in X and for z∗n ∈ Aun,

lim sup
n→∞

⟨z∗n,un−u⟩ ≤ 0

Then it follows that Lun→ Lu weakly in V ′ and un→ u weakly in V so u ∈ X . Hence the
assumption that A is L pseudomonotone implies that for every v ∈ V, and for every v ∈ X ,
there exists z∗ (v) ∈ Au⊆V ′ ⊆ X ′ such that

lim inf
n→∞
⟨z∗n,un− v⟩ ≥ ⟨z∗ (v) ,u− v⟩

The last claim goes the same way. You just have to take a subsequence. ■
Then we have the following major surjectivity result. In this theorem, we will assume

for simplicity that all spaces are real spaces. Versions of this appear to be due to Brezis [23]
and Lions [91]. Of course the theorem holds for complex spaces as well. You just need to
use Re⟨ ⟩ instead of ⟨ ⟩ .

Theorem 25.8.8 Let L : D(L)⊆V →V ′ where D(L) is dense, L is monotone, L is closed,
and L∗ is monotone, L a linear map. Let A : V →P (V ′) be L pseudomonotone, bounded,
coercive. Then L+A is onto. Here V is a reflexive Banach space such that the norms for V
and V ′ are strictly convex. In case that A is strictly monotone (⟨Au−Av,u− v⟩> 0 implies
u ̸= v) the solution u to f ∈ Lu+Au is unique. If, in addition to this, ⟨Au−Av,u− v⟩ ≥
r (∥u− v∥U ) where U is some Banach space containing V, and r is a positive strictly in-
creasing function for which limt→0+ r (t) = 0, then the map f → u where f ∈ Lu+Au is
continuous as a map from V ′ to U. The conclusion holds if A is only L modified bounded
pseudomonotone.
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Proof: Let F be the duality map for p = 2. Consider the Banach space X given by

X = D(L) , ∥u∥X ≡ ∥u∥V +∥Lu∥V ′

This is isometric with the graph of L with the graph norm and so X is reflexive. Now define
a set valued map Gε on X as follows. z∗ ∈ Gε (u) means there exists w∗ ∈ Au such that.

⟨z∗,v⟩X ′,X = ε
〈
Lv,F−1 (Lu)

〉
V ′,V + ⟨Lu,v⟩V ′,V + ⟨w∗,v⟩V ′,V

It follows from Lemma 25.8.7 that Gε is the sum of a set valued L modified bounded pseu-
domonotone operator with an operator which is demicontinuous, bounded, and monotone,
hence pseudomonotone. Thus by Lemma 25.5.2 it is L modified bounded pseudomonotone.
Is it coercive?

lim
∥u∥X→∞

inf

{
⟨z∗,u⟩+ ε

〈
Lu,F−1 (Lu)

〉
V ′,V + ⟨Lu,u⟩V ′,V

||u||X
: z∗ ∈ Au

}
= ∞?

It equals

lim
∥u∥X→∞

inf

{
⟨z∗,u⟩+ ε

〈
FF−1 (Lu) ,F−1 (Lu)

〉
V ′,V + ⟨Lu,u⟩V ′,V

||u||X
: z∗ ∈ Au

}
and this is

≥ lim
∥u∥X→∞

inf

{
⟨z∗,u⟩+ ε

∥∥F−1 (Lu)
∥∥2

V
||u||X

: z∗ ∈ Au

}

= lim
∥u∥X→∞

inf

{
⟨z∗,u⟩+ ε ∥Lu∥2

V ′

∥u∥V +∥Lu∥V ′
: z∗ ∈ Au

}
because L is monotone. Now let M be an arbitrary positive number. By assumption, there
exists R such that if ∥u∥V > R, then

inf
{
⟨z∗,u⟩
∥u∥V

: z∗ ∈ Au
}
> M

and so for every z∗ ∈ Au,

⟨z∗,u⟩
∥u∥V

> M, ⟨z∗,u⟩> M ∥u∥V

Thus if ∥u∥V > R,

inf

{
⟨z∗,u⟩+ ε ∥Lu∥2

V ′

∥u∥V +∥Lu∥V ′
: z∗ ∈ Au

}
≥

M ∥u∥V + ε ∥Lu∥2
V ′

∥u∥V +∥Lu∥V ′

I claim that if ∥u∥X is large enough, the above is larger than M/2. If not, then there exists
{un} such that ∥un∥X → ∞ but the right side is less than M/2. First say ∥Lun∥ is bounded.
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then there is an obvious contradiction since the right hand side then converges to M. Thus
it can be assumed that ∥Lun∥V ′ →∞. Hence, for all n large enough, ε ∥Lu∥2

V ′ > M ∥Lun∥V ′ .
However, this implies the right side is larger than

M ∥un∥V +M ∥Lun∥V ′
∥un∥V +∥Lun∥V ′

= M > M/2

This is a contradiction. Hence the right side is larger than M/2 for all n large enough. It
follows since M is arbitrary, that

lim
∥u∥X→∞

inf

{
⟨z∗,u⟩+ ε ∥Lu∥2

V ′

∥u∥V +∥Lu∥V ′
: z∗ ∈ Au

}
= ∞

It follows from Theorem 25.5.4 that if f ∈ V ′, there exists uε such that for all v ∈
D(L) = X ,

ε
〈
Lv,F−1 (Luε)

〉
V ′,V + ⟨Luε ,v⟩V ′,V + ⟨w∗ε ,v⟩V ′,V = ⟨ f ,v⟩ , w∗ε ∈ Auε (25.8.91)

First we get an estimate.

ε
〈
Luε ,F−1 (Luε)

〉
V ′,V + ⟨Luε ,uε⟩V ′,V + ⟨w∗ε ,uε⟩V ′,V = ⟨ f ,uε⟩

ε ∥Luε∥2
V ′ + ⟨Luε ,uε⟩V ′,V + ⟨w∗ε ,uε⟩V ′,V = ⟨ f ,uε⟩

Hence it follows from the coercivity of A that ∥uε∥V is bounded independent of ε . Thus
the w∗ε are also bounded in V ′ because it is assumed that A is bounded. Now from the
equation solved 25.8.91, it follows that F−1 (Luε) ∈ D(L∗) . Thus the first term is just
ε
〈
L∗
(
F−1 (Luε)

)
,v
〉

V ′,V . It follows, since D(L) = X is dense in V that

εL∗
(
F−1 (Luε)

)
+Luε +w∗ε = f (25.8.92)

Then act on F−1 (Luε) on both sides. From monotonicity of L∗, this yields ∥Luε∥V ′ is
bounded independent of ε > 0. Thus there is a subsequence still denoted with a subscript
of ε such that

uε ⇀ u in V

Luε ⇀ Lu in V ′

This because of the fact that the graph of L is closed, hence weakly closed. Thus u ∈ X .
Also

w∗ε ⇀ w∗ in V ′.

It follows that we can pass to a limit in 25.8.92 and obtain

Lu+w∗ = f (25.8.93)

Now by assumption on A, it is L modified bounded pseudomonotone and so there is a
subsequence, still denoted as uε such that the liminf pseudomonotone limit condition holds.
This will be what is referred to in what follows. Then〈

εL∗
(
F−1 (Luε)

)
,uε −u

〉
+ ⟨Luε ,uε −u⟩+ ⟨w∗ε ,uε −u⟩= ⟨ f ,uε −u⟩
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and so,

ε
〈
F−1 (Luε) ,Luε −Lu

〉
+ ⟨Luε ,uε −u⟩+ ⟨w∗ε ,uε −u⟩= ⟨ f ,uε −u⟩

using the monotonicity of L,

ε
〈
Luε −Lu,F−1 (Luε)−F−1 (Lu)

〉
+ ε
〈
Luε −Lu,F−1 (Lu)

〉
+⟨Lu,uε −u⟩+ ⟨w∗ε ,uε −u⟩ ≤ ⟨ f ,uε −u⟩

Now using monotonicity of F−1,

ε
〈
Luε −Lu,F−1 (Lu)

〉
+ ⟨Lu,uε −u⟩+ ⟨w∗ε ,uε −u⟩ ≤ ⟨ f ,uε −u⟩

and so, passing to a limit as ε → 0,

lim sup
ε→0
⟨w∗ε ,uε −u⟩ ≤ 0

It follows that for all v ∈ X = D(L) there exists w∗ (v) ∈ Au

lim inf
ε→0
⟨w∗ε ,uε − v⟩ ≥ ⟨w∗ (v) ,u− v⟩

But the left side equals

lim inf
ε→0

[⟨w∗ε ,uε −u⟩+ ⟨w∗ε ,u− v⟩]

≤ lim sup
ε→0
⟨w∗ε ,uε −u⟩+ ⟨w∗,u− v⟩ ≤ ⟨w∗,u− v⟩

and so
⟨w∗,u− v⟩ ≥ ⟨w∗ (v) ,u− v⟩

for all v.
Is w∗ ∈ Au? Suppose not. Then Au is a closed convex set and w∗ is not in it. Hence,

since V is reflexive, there exists z ∈ V such that whenever y∗ ∈ Au,⟨w∗,z⟩ < ⟨y∗,z⟩ . Now
simply choose v such that u− v = z and it follows that

⟨w∗ (v) ,u− v⟩> ⟨w∗,u− v⟩ ≥ ⟨w∗ (v) ,u− v⟩

which is clearly a contradiction. Hence w∗ ∈ Au. Thus from 25.8.93, this has shown that
L+A is onto.

Consider the claim about uniqueness and continuous dependence. Say you have fi ∈
Lui +Aui, i = 1,2. Let z∗i ∈ Aui be such that equality holds in the two inclusions. Then

f1− f2 = z∗1− z∗2 +Lu1−Lu2

It follows that

⟨ f1− f2,u1−u2⟩= ⟨z∗1− z∗2 +Lu1−Lu2,u1−u2⟩ ≥ r (∥u1−u2∥)

Thus if f1 = f2, then u1 = u2. If fn→ f in V ′, then r (∥u−un∥)→ 0 where un goes with fn
and u with f as just described, and so un→ u because the coercivity estimate given above
shows that the un and u are all bounded. Thus the map just described is continuous. ■

The following lemma is interesting in terms of the hypotheses of the above theorem.
[23]



25.8. PERTURBATION THEOREMS 927

Lemma 25.8.9 Let L : D(L)→ X ′ where D(L) is dense and L is a closed operator. Then
L is maximal monotone if and only if both L,L∗ are monotone.

Proof: Suppose both L,L∗ are monotone. One must show that λF+L is onto. However,
F is monotone and hemicontinuous (actually demicontinuous) and coercive. Hence the fact
that λF +L is onto follows from Theorem 25.8.8. Next suppose L is maximal monotone.
If L is maximal monotone, then for every ε > 0 there exists a solution uε such that εLuε +
F (uε −u) = 0. Here u ∈ D(L∗). This is from Lemma 25.7.28. It is originally due to
Browder [26]. Then

ε ⟨Luε ,uε⟩+ ⟨F (uε −u) ,uε⟩= 0

and so ⟨F (uε −u) ,uε⟩ ≤ 0. Then

⟨F (uε −u) ,uε −u⟩ ≤ ⟨F (uε −u) ,u⟩

so ∥uε −u∥2 ≤ ∥uε −u∥∥u∥ and so

∥uε −u∥ ≤ ∥u∥

Thus the uε are bounded.
Next let v ∈ D(L).

∥uε −u∥2 = ⟨F (uε −u) ,uε −u⟩= ⟨F (uε −u) ,uε − v⟩+ ⟨F (uε −u) ,v−u⟩

≤ ε ⟨Luε ,v−uε⟩+ ⟨F (uε −u) ,v−u⟩ ≤ ε ⟨Lv,v−uε⟩+ ⟨F (uε −u) ,v−u⟩

Hence

lim sup
ε→0
∥uε −u∥2 ≤ lim sup

ε→0
(ε ⟨Lv,v−uε⟩+ ⟨F (uε −u) ,v−u⟩)

≤ lim sup
ε→0
⟨F (uε −u) ,v−u⟩ ≤ lim sup

ε→0
∥uε −u∥∥v−u∥

and so uε → u strongly. Also

⟨F (uε −u) ,uε⟩=−ε ⟨Luε ,uε⟩ ≤ 0

Then
⟨L∗u,u⟩= lim

ε→0
⟨L∗u,uε⟩= lim

ε→0
⟨Luε ,u⟩= lim

ε→0

1
ε
⟨−F (uε −u) ,u⟩

= lim
ε→0

1
ε
⟨F (uε −u) ,uε −u⟩− lim

ε→0

1
ε
⟨F (uε −u) ,uε⟩

Both of these last terms are nonnegative, the first obviously and the second from the above
where it was shown that ⟨F (uε −u) ,uε⟩ ≤ 0. ■

In the hypotheses of Theorem 25.8.8, one could have simply said that L is closed, linear,
densely defined and maximal monotone. One can also show that if L is maximal monotone,
then it must be densely defined. This is done in [23].

One can go further in obtaining a perturbation theorem like the above. Let linear L
be densely defined with L closed and L,L∗ monotone. In short, L is densely defined and
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maximal monotone, L : X→ X ′. Let A be a set valued L pseudomonotone operator which is
coercive and bounded. Also let B : D(B)→P (X) be maximal monotone. It is of interest
to consider whether L+A+B is onto X ′. In considering this, I will add further assumptions
as needed. First note that ⟨Lx,x⟩= ⟨Lx−L0,x−0⟩ ≥ 0.

Definition 25.8.10 Define limsupm,n→∞ am,n ≡ limk→∞ sup{am,n : min(m,n)≥ k}

Then

lim sup
m,n→∞

am,n ≥ lim sup
m→∞

(
lim sup

n→∞

am,n

)
.

To see this, suppose a > limsupm,n→∞ am,n. Then there exist k such that whenever m,n > k,

am,n < a

It follows that for m≥ k,
lim sup

n→∞

am,n ≤ a

Hence

lim sup
m→∞

(
lim sup

n→∞

am,n

)
≤ a

Since a > limsupm,n→∞ am,n is arbitrary, it follows that

lim sup
m→∞

(
lim sup

n→∞

am,n

)
≤ lim sup

m,n→∞

am,n.

Then the following lemma is useful. I found this result in a paper by Gasinski, Migorski and
Ochal [54]. They begin with the following interesting lemma or something like it which
is similar to some of the ideas used in the section on approximation of maximal monotone
operators.

Lemma 25.8.11 Suppose A is a set valued operator, A : X→P (X) and u∗n ∈Aun. Suppose
also that un→ u weakly and u∗n→ u∗ weakly. Suppose also that

lim sup
m,n→∞

⟨u∗n−u∗m,un−um⟩ ≤ 0

Then one can conclude that
lim sup

n→∞

⟨u∗n,un−u⟩ ≤ 0

Proof: Let α ≡ limsupn→∞ ⟨u∗n,un⟩ . It is a finite number because these sequences are
bounded. Then using the weak convergence,

0 ≥ lim sup
m→∞

(
lim sup

n→∞

⟨u∗n−u∗m,un−um⟩
)

= lim sup
m→∞

(
lim sup

n→∞

(⟨u∗n,un⟩+ ⟨u∗m,um⟩−⟨u∗n,um⟩−⟨u∗m,un⟩)
)

= lim sup
m→∞

(α + ⟨u∗m,um⟩−⟨u∗,um⟩−⟨u∗m,u⟩)

= (α +α−⟨u∗,u⟩−⟨u∗,u⟩) = 2α−2⟨u∗,u⟩
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Now
lim sup

n→∞

⟨u∗n,un−u⟩= α−⟨u∗,u⟩ ≤ 0. ■

To begin with, consider the approximate problem which is to determine whether L+
A+Bλ is onto. Here Bλ x = −λ

−1F (xλ − x) where 0 ∈ F (xλ − x)+ λBx. In the nota-
tion given above, Bλ x = −λ

−1F (Jλ x− x). Then by Theorem 25.7.36, Bλ is monotone,
demicontinuous, and bounded. In addition, we assume 0 ∈ D(B) . Then

⟨Bλ x,x⟩ ≥ ⟨Bλ 0,x⟩ ≥ −|B(0)|∥x∥ (25.8.94)

Lemma 25.8.12 Let A be pseudomonotone, bounded and coercive and let 0 ∈D(B). Then
if y∗ ∈ X ′, there exists a solution xλ to

y∗ ∈ Lxλ +Axλ +Bλ xλ

Proof: From the inequality 25.8.94, A+Bλ is coercive. It is also bounded and pseu-
domonotone. It is pseudomonotone from Theorem 25.7.27. Therefore, there exists a solu-
tion xλ by Theorem 25.8.8. ■

Acting on xλ and using the inequality 25.8.94, it follows that these solutions xλ lie in a
bounded set. The details follow. Letting z∗

λ
∈ Axλ be such that equality holds in the above

inclusion,
y∗ = Lxλ + z∗

λ
+Bλ xλ (25.8.95)

∥y∗∥ ≥ ⟨y∗,xλ ⟩
∥xλ∥

=
⟨Lxλ ,xλ ⟩+

〈
z∗

λ
,xλ

〉
+ ⟨Bλ xλ ,xλ ⟩

∥xλ∥

≥
⟨Lxλ ,xλ ⟩+

〈
z∗

λ
,xλ

〉
−|B(0)|∥xλ∥

∥xλ∥

≥
〈
z∗

λ
,xλ

〉
∥xλ∥

− |B(0)|

Thus, from coercivity, ∥xλ∥ are bounded. Then since A is bounded, the z∗
λ

are all bounded
also independent of λ . The top line shows also that

⟨y∗,xλ ⟩ = ⟨Lxλ ,xλ ⟩+
〈
z∗

λ
,xλ

〉
+ ⟨Bλ xλ ,xλ ⟩ ≥

〈
z∗

λ
,xλ

〉
+ ⟨Bλ xλ ,xλ ⟩

≥ ⟨Bλ xλ ,xλ ⟩− M̂ ≥−|B(0)|∥xλ∥− M̂ (25.8.96)

where
∣∣〈z∗

λ
,xλ

〉∣∣≤ M̂ for all λ . Hence there is a constant M such that

|⟨Bλ xλ ,xλ ⟩| ≤M

Definition 25.8.13 A set valued operator B is quasi-bounded if whenever x ∈ D(B) and
x∗ ∈ Bx are such that

|⟨x∗,x⟩| , ∥x∥ ≤M,

it follows that ∥x∗∥ ≤ KM . Bounded would mean that if ∥x∥ ≤M, then ∥x∗∥ ≤ KM . Here
you only know this if there is another condition.



930 CHAPTER 25. NONLINEAR OPERATORS

Lemma 25.8.14 In the above situation, suppose the maximal monotone operator B is
quasi-bounded and |⟨Bλ xλ ,xλ ⟩| ≤M. Then the Bλ xλ are bounded. Also

∥Jλ xλ − xλ∥2 ≤Mλ

Proof: Now Bλ xλ ∈ BJλ xλ

−|B(0)|∥xλ∥ ≤ ⟨Bλ xλ ,xλ ⟩= ⟨Bλ xλ ,Jλ xλ ⟩+ ⟨Bλ xλ ,xλ − Jλ xλ ⟩

= ⟨Bλ xλ ,Jλ xλ ⟩+
〈

λ
−1F (Jλ xλ − xλ ) ,Jλ xλ − xλ

〉
= ⟨Bλ xλ ,Jλ xλ ⟩+λ

−1 ∥Jλ xλ − xλ∥2 ≤M

This inequality shows that Jλ xλ −xλ → 0 and so Jλ xλ is bounded as is xλ which was shown
above. Also Bλ xλ ∈ BJλ xλ and since B is quasi-bounded, it follows that Bλ xλ is bounded.
■

Assume from now on that B is quasi-bounded. Then the estimate 25.8.96 and this
lemma shows that Bλ xλ is also bounded independent of λ . Thus, adjusting the constants,
there exists an estimate of the form

∥xλ∥+∥Jλ xλ∥+∥Bλ xλ∥+
∥∥z∗

λ

∥∥+∥Lxλ∥ ≤C, ∥xλ − Jλ xλ∥ ≤
√

λM (25.8.97)

Let λ = 1/n. Also denote by Jn the the operator J1/n to save notation. There exists a
subsequence

xn→ x weakly,

Jnxn→ x weakly,

Bnxn→ g∗ weakly,

z∗n→ z∗ weakly,

Lxn→ Lx weakly

Now from the inclusion satisfied,

0 = ⟨z∗n− z∗m,xn− xm⟩+ ⟨Bnxn−Bmxm,xn− xm⟩ (25.8.98)

Consider that last term. Bnxn ∈ BJnxn similar for Bmxm. Hence this term is of the form

⟨Bnxn−Bmxm,xn− xm⟩=
≥0︷ ︸︸ ︷

⟨Bnxn−Bmxm,Jnxn− Jmxm⟩

+⟨Bnxn−Bmxm,(xn− Jnxn)− (xm− Jmxm)⟩

From the estimate 25.8.97,

⟨Bnxn−Bmxm,xn− xm⟩ ≥ ⟨Bnxn−Bmxm,(xn− Jnxn)− (xm− Jmxm)⟩

and

|⟨Bnxn−Bmxm,(xn− Jnxn)− (xm− Jmxm)⟩| ≤ 2C

(√
1
n
+

√
1
m

)
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Then from 25.8.98,
0≥ ⟨z∗n− z∗m,xn− xm⟩+ en,m

where en,m→ 0 as n,m→ ∞. Hence

lim sup
m,n→∞

⟨z∗n− z∗m,xn− xm⟩ ≤ 0

From Lemma 25.8.11,
lim sup

n→∞

⟨z∗n,xn− x⟩ ≤ 0

Hence, since A is pseudomonotone, for every y, there exists z∗ (y) ∈ Ax such that

lim inf
n→∞
⟨z∗n,xn− y⟩ ≥ ⟨z∗ (y) ,x− y⟩

In particular, if x = y, this shows that

lim inf
n→∞
⟨z∗n,xn− x⟩ ≥ 0≥ lim sup

n→∞

⟨z∗n,xn− x⟩

showing that
lim
n→∞
⟨z∗n,xn⟩= ⟨z∗,x⟩

Next, returning to the inclusion solved,

0 = Lxn + z∗n +Bnxn

Act on (xn− x) . Then from monotonicity of L,

0≥ ⟨Lx,xn− x⟩+ ⟨z∗n,xn− x⟩+ ⟨Bnxn,xn− x⟩

Thus, taking limsup of both sides,

lim sup
n→∞

⟨Bnxn,xn− x⟩= lim sup
n→∞

⟨Bnxn,Jnxn− x⟩ ≤ 0

Hence
lim sup

n→∞

⟨Bnxn,Jnxn⟩ ≤ ⟨g∗,x⟩

Letting [a,b∗] ∈ G (B) ,

⟨Bnxn−b∗,Jnxn−a⟩= ⟨Bnxn,Jnxn⟩−⟨Bnxn,a⟩−⟨b∗,Jnxn⟩+ ⟨b∗,a⟩

Then taking limsup,

0 ≤ lim sup
n→∞

⟨Bnxn−b∗,Jnxn−a⟩

≤ ⟨g∗,x⟩−⟨g∗,a⟩−⟨b∗,x⟩+ ⟨b∗,a⟩= ⟨g∗−b∗,x−a⟩

It follows that g∗ ∈ B(x) and x ∈ D(B).
Thus, passing to the limit in the equation 25.8.95 where, as explained λ = 1/n, one

obtains
y∗ = Lu+ z∗+g∗

where z∗ ∈ Ax and g∗ ∈ Bx. This proves the following nice generalization of the above
perturbation theorem.
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Theorem 25.8.15 Let B be maximal monotone from X to P (X ′), 0 ∈ D(B) , and B is
quasi-bounded as explained above. Let A : X →P (X ′) be pseudomonotone, bounded,
and coercive. Also let L be a densely defined linear operator such that both L and L∗ are
monotone. (That is, L is linear and maximal monotone.) Then L+A+B is onto X ′.



Chapter 26

Integrals And Derivatives
26.1 The Fundamental Theorem Of Calculus

The version of the fundamental theorem of calculus found in Calculus has already been
referred to frequently. It says that if f is a Riemann integrable function, the function

x→
∫ x

a
f (t)dt,

has a derivative at every point where f is continuous. It is natural to ask what occurs for f
in L1. It is an amazing fact that the same result is obtained aside from a set of measure zero
even though f , being only in L1 may fail to be continuous anywhere. Proofs of this result
are based on some form of the Vitali covering theorem presented above. In what follows,
the measure space is (Rn,S ,m) where m is n-dimensional Lebesgue measure although the
same theorems can be proved for arbitrary Radon measures [84]. To save notation, m is
written in place of mn.

By Lemma 12.1.9 on Page 278 and the completeness of m, the Lebesgue measurable
sets are exactly those measurable in the sense of Caratheodory. Also, to save on notation m
is also the name of the outer measure defined on all of P(Rn) which is determined by mn.
Recall

B(p,r) = {x : |x−p|< r}. (26.1.1)

Also define the following.

If B = B(p,r), then B̂ = B(p,5r). (26.1.2)

The first version of the Vitali covering theorem presented above will now be used to
establish the fundamental theorem of calculus. The space of locally integrable functions is
the most general one for which the maximal function defined below makes sense.

Definition 26.1.1 f ∈ L1
loc(Rn) means f XB(0,R) ∈ L1(Rn) for all R > 0. For f ∈ L1

loc(Rn),
the Hardy Littlewood Maximal Function, M f , is defined by

M f (x)≡ sup
r>0

1
m(B(x,r))

∫
B(x,r)

| f (y)|dy.

Theorem 26.1.2 If f ∈ L1(Rn), then for α > 0,

m([M f > α])≤ 5n

α
|| f ||1.

(Here and elsewhere, [M f > α] ≡ {x ∈ Rn : M f (x) > α} with other occurrences of [ ]
being defined similarly.)

Proof: Let S≡ [M f > α]. For x ∈ S, choose rx > 0 with

1
m(B(x,rx))

∫
B(x,rx)

| f | dm > α.

933
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The rx are all bounded because

m(B(x,rx))<
1
α

∫
B(x,rx)

| f | dm <
1
α
|| f ||1.

By the Vitali covering theorem, there are disjoint balls B(xi,ri) such that

S⊆ ∪∞
i=1B(xi,5ri)

and
1

m(B(xi,ri))

∫
B(xi,ri)

| f | dm > α.

Therefore

m(S) ≤
∞

∑
i=1

m(B(xi,5ri)) = 5n
∞

∑
i=1

m(B(xi,ri))

≤ 5n

α

∞

∑
i=1

∫
B(xi,ri)

| f | dm

≤ 5n

α

∫
Rn
| f | dm,

the last inequality being valid because the balls B(xi,ri) are disjoint. This proves the theo-
rem.

Note that at this point it is unknown whether S is measurable. This is why m(S) and not
m(S) is written.

The following is the fundamental theorem of calculus from elementary calculus.

Lemma 26.1.3 Suppose g is a continuous function. Then for all x,

lim
r→0

1
m(B(x,r))

∫
B(x,r)

g(y)dy = g(x).

Proof: Note that
g(x) =

1
m(B(x,r))

∫
B(x,r)

g(x)dy

and so ∣∣∣∣g(x)− 1
m(B(x,r))

∫
B(x,r)

g(y)dy
∣∣∣∣

=

∣∣∣∣ 1
m(B(x,r))

∫
B(x,r)

(g(y)−g(x))dy
∣∣∣∣

≤ 1
m(B(x,r))

∫
B(x,r)

|g(y)−g(x)|dy.

Now by continuity of g at x, there exists r > 0 such that if |x−y| < r, |g(y)−g(x)| < ε .
For such r, the last expression is less than

1
m(B(x,r))

∫
B(x,r)

εdy < ε.

This proves the lemma.
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Definition 26.1.4 Let f ∈ L1
(
Rk,m

)
. A point, x ∈ Rk is said to be a Lebesgue point if

limsup
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm = 0.

Note that if x is a Lebesgue point, then

lim
r→0

1
m(B(x,r))

∫
B(x,r)

f (y)dm = f (x) .

and so the symmetric derivative exists at all Lebesgue points.

Theorem 26.1.5 (Fundamental Theorem of Calculus) Let f ∈ L1(Rk). Then there exists a
set of measure 0,N, such that if x /∈ N, then

lim
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dy = 0.

Proof: Let λ > 0 and let ε > 0. By density of Cc
(
Rk
)

in L1
(
Rk,m

)
there exists g ∈

Cc
(
Rk
)

such that ||g− f ||L1(Rk) < ε . Now since g is continuous,

limsup
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm

= limsup
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm

− lim
r→0

1
m(B(x,r))

∫
B(x,r)

|g(y)−g(x)|dm

= limsup
r→0

(
1

m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|− |g(y)−g(x)|dm
)

≤ limsup
r→0

(
1

m(B(x,r))

∫
B(x,r)

|| f (y)− f (x)|− |g(y)−g(x)||dm
)

≤ limsup
r→0

(
1

m(B(x,r))

∫
B(x,r)

| f (y)−g(y)− ( f (x)−g(x))|dm
)

≤ limsup
r→0

(
1

m(B(x,r))

∫
B(x,r)

| f (y)−g(y)|dm
)
+ | f (x)−g(x)|

≤ M ([ f −g]) (x)+ | f (x)−g(x)| .

Therefore, [
x : limsup

r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm > λ

]
⊆

[
M ([ f −g])>

λ

2

]
∪
[
| f −g|> λ

2

]
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Now

ε >
∫
| f −g|dm≥

∫
[| f−g|> λ

2 ]
| f −g|dm

≥ λ

2
m
([
| f −g|> λ

2

])
This along with the weak estimate of Theorem 26.1.2 implies

m
([

x : limsup
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm > λ

])
<

(
2
λ

5k +
2
λ

)
|| f −g||L1(Rk)

<

(
2
λ

5k +
2
λ

)
ε.

Since ε > 0 is arbitrary, it follows

mn

([
x : limsup

r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm > λ

])
= 0.

Now let

N =

[
x : limsup

r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm > 0
]

and

Nn =

[
x : limsup

r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm >
1
n

]
It was just shown that m(Nn) = 0. Also, N =∪∞

n=1Nn. Therefore, m(N) = 0 also. It follows
that for x /∈ N,

limsup
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dm = 0

and this proves a.e. point is a Lebesgue point.
Of course it is sufficient to assume f is only in L1

loc

(
Rk
)
.

Corollary 26.1.6 (Fundamental Theorem of Calculus) Let f ∈ L1
loc(Rk). Then there exists

a set of measure 0,N, such that if x /∈ N, then

lim
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dy = 0.

Proof: Consider B(0,n) where n is a positive integer. Then fn ≡ f XB(0,n) ∈ L1
(
Rk
)

and so there exists a set of measure 0, Nn such that if x ∈ B(0,n)\Nn, then

lim
r→0

1
m(B(x,r))

∫
B(x,r)

| fn(y)− fn(x)|dy

= lim
r→0

1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dy = 0.

Let N = ∪∞
n=1Nn. Then if x /∈ N, the above equation holds.
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Corollary 26.1.7 If f ∈ L1
loc(Rn), then

lim
r→0

1
m(B(x,r))

∫
B(x,r)

f (y)dy = f (x) a.e. x. (26.1.3)

Proof: ∣∣∣∣ 1
m(B(x,r))

∫
B(x,r)

f (y)dy− f (x)
∣∣∣∣

≤ 1
m(B(x,r))

∫
B(x,r)

| f (y)− f (x)|dy

and the last integral converges to 0 a.e. x.

Definition 26.1.8 For N the set of Theorem 26.1.5 or Corollary 26.1.6, NC is called the
Lebesgue set or the set of Lebesgue points.

The next corollary is a one dimensional version of what was just presented.

Corollary 26.1.9 Let f ∈ L1(R) and let

F(x) =
∫ x

−∞

f (t)dt.

Then for a.e. x, F ′(x) = f (x).

Proof: For h > 0

1
h

∫ x+h

x
| f (y)− f (x)|dy≤ 2(

1
2h

)
∫ x+h

x−h
| f (y)− f (x)|dy

By Theorem 26.1.5, this converges to 0 a.e. Similarly

1
h

∫ x

x−h
| f (y)− f (x)|dy

converges to 0 a.e. x.∣∣∣∣F(x+h)−F(x)
h

− f (x)
∣∣∣∣≤ 1

h

∫ x+h

x
| f (y)− f (x)|dy (26.1.4)

and ∣∣∣∣F(x)−F(x−h)
h

− f (x)
∣∣∣∣≤ 1

h

∫ x

x−h
| f (y)− f (x)|dy. (26.1.5)

Now the expression on the right in 26.1.4 and 26.1.5 converges to zero for a.e. x. Therefore,
by 26.1.4, for a.e. x the derivative from the right exists and equals f (x) while from 26.1.5
the derivative from the left exists and equals f (x) a.e. It follows

lim
h→0

F(x+h)−F(x)
h

= f (x) a.e. x

This proves the corollary.
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26.2 Absolutely Continuous Functions
Definition 26.2.1 Let [a,b] be a closed and bounded interval and let F : [a,b]→ R. Then
F is said to be absolutely continuous if for every ε > 0 there exists δ > 0 such that if
∑

m
i=1 |yi− xi|< δ where the intervals (xi,yi) are non-overlapping, then

m

∑
i=1
|F (yi)−F (xi)|< ε.

Definition 26.2.2 A finite subset, P of [a,b] is called a partition of [x,y] ⊆ [a,b] if P =
{x0,x1, · · · ,xn} where

x = x0 < x1 < · · · ,< xn = y.

For f : [a,b]→ R and P = {x0,x1, · · · ,xn} define

VP [x,y]≡
n

∑
i=1
| f (xi)− f (xi−1)| .

Denoting by P [x,y] the set of all partitions of [x,y] define

V [x,y]≡ sup
P∈P[x,y]

VP [x,y] .

For simplicity, V [a,x] will be denoted by V (x) . It is called the total variation of the func-
tion, f .

There are some simple facts about the total variation of an absolutely continuous func-
tion, f which are contained in the next lemma.

Lemma 26.2.3 Let f be an absolutely continuous function defined on [a,b] and let V be
its total variation function as described above. Then V is an increasing bounded function.
Also if P and Q are two partitions of [x,y] with P ⊆ Q, then VP [x,y] ≤ VQ [x,y] and if
[x,y]⊆ [z,w] ,

V [x,y]≤V [z,w] (26.2.6)

If P = {x0,x1, · · · ,xn} is a partition of [x,y] , then

V [x,y] =
n

∑
i=1

V [xi,xi−1] . (26.2.7)

Also if y > x,
V (y)−V (x)≥ | f (y)− f (x)| (26.2.8)

and the function, x→ V (x)− f (x) is increasing. The total variation function, V is abso-
lutely continuous.

Proof: The claim that V is increasing is obvious as is the next claim about P ⊆ Q
leading to VP [x,y] ≤ VQ [x,y] . To verify this, simply add in one point at a time and verify
that from the triangle inequality, the sum involved gets no smaller. The claim that V is
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increasing consistent with set inclusion of intervals is also clearly true and follows directly
from the definition.

Now let t < V [x,y] where P0 = {x0,x1, · · · ,xn} is a partition of [x,y] . There exists a
partition, P of [x,y] such that t <VP [x,y] . Without loss of generality it can be assumed that
{x0,x1, · · · ,xn}⊆P since if not, you can simply add in the points of P0 and the resulting sum
for the total variation will get no smaller. Let Pi be those points of P which are contained
in [xi−1,xi] . Then

t <Vp [x,y] =
n

∑
i=1

VPi [xi−1,xi]≤
n

∑
i=1

V [xi−1,xi] .

Since t <V [x,y] is arbitrary,

V [x,y]≤
n

∑
i=1

V [xi,xi−1] (26.2.9)

Note that 26.2.9 does not depend on f being absolutely continuous. Suppose now that f is
absolutely continuous. Let δ correspond to ε = 1. Then if [x,y] is an interval of length no
larger than δ , the definition of absolute continuity implies

V [x,y]< 1.

Then from 26.2.9

V [a,nδ ]≤
n

∑
i=1

V [a+(i−1)δ ,a+ iδ ]<
n

∑
i=1

1 = n.

Thus V is bounded on [a,b]. Now let Pi be a partition of [xi−1,xi] such that

VPi [xi−1,xi]>V [xi−1,xi]−
ε

n
Then letting P = ∪Pi,

−ε +
n

∑
i=1

V [xi−1,xi]<
n

∑
i=1

VPi [xi−1,xi] =VP [x,y]≤V [x,y] .

Since ε is arbitrary, 26.2.7 follows from this and 26.2.9.
Now let x < y

V (y)− f (y)− (V (x)− f (x)) = V (y)−V (x)− ( f (y)− f (x))

≥ V (y)−V (x)−| f (y)− f (x)| ≥ 0.

It only remains to verify that V is absolutely continuous.
Let ε > 0 be given and let δ correspond to ε/2 in the definition of absolute continuity

applied to f . Suppose ∑
n
i=1 |yi− xi| < δ and consider ∑

n
i=1 |V (yi)−V (xi)|. By 26.2.9 this

last is no larger than ∑
n
i=1 V [xi,yi] . Now let Pi be a partition of [xi,yi] such that VPi [xi,yi]+

ε

2n >V [xi,yi] . Then by the definition of absolute continuity,
n

∑
i=1
|V (yi)−V (xi)| =

n

∑
i=1

V [xi,yi]

≤
n

∑
i=1

VPi [xi,yi]+η < ε/2+ ε/2 = ε.
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and shows V is absolutely continuous as claimed.

Lemma 26.2.4 Suppose f : [a,b]→ R is absolutely continuous and increasing. Then f ′

exists a.e., is in L1 ([a,b]) , and

f (x) = f (a)+
∫ x

a
f ′ (t)dt.

Proof: Define L, a positive linear functional on C ([a,b]) by

Lg≡
∫ b

a
gd f

where this integral is the Riemann Stieltjes integral with respect to the integrating function,
f . By the Riesz representation theorem for positive linear functionals, there exists a unique
Radon measure, µ such that Lg =

∫
gdµ. Now consider the following picture for gn ∈

C ([a,b]) in which gn equals 1 for x between x+1/n and y.

x y+1/nx+1/n y

Then gn (t)→X(x,y] (t) pointwise. Therefore, by the dominated convergence theorem,

µ ((x,y]) = lim
n→∞

∫
gndµ.

However, (
f (y)− f

(
x+

1
n

))
≤

∫
gndµ =

∫ b

a
gnd f ≤

(
f
(

y+
1
n

)
− f (y)

)
+

(
f (y)− f

(
x+

1
n

))
+

(
f
(

x+
1
n

)
− f (x)

)
and so as n→ ∞ the continuity of f implies

µ ((x,y]) = f (y)− f (x) .

Similarly, µ (x,y) = f (y)− f (y) and µ ([x,y]) = f (y)− f (x) , the argument used to estab-
lish this being very similar to the above. It follows in particular that

f (x)− f (a) =
∫
[a,x]

dµ.
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Note that up till now, no referrence has been made to the absolute continuity of f . Any
increasing continuous function would be fine.

Now if E is a Borel set such that m(E) = 0, Then the outer regularity of m implies
there exists an open set, V containing E such that m(V ) < δ where δ corresponds to ε in
the definition of absolute continuity of f . Then letting {Ik} be the connected components
of V it follows E ⊆∪∞

k=1Ik with ∑k m(Ik) = m(V )< δ . Therefore, from absolute continuity
of f , it follows that for Ik = (ak,bk) and each n

µ (∪n
k=1Ik) =

n

∑
k=1

µ (Ik) =
n

∑
k=1
| f (bk)− f (ak)|< ε

and so letting n→ ∞,

µ (E)≤ µ (V ) =
∞

∑
k=1
| f (bk)− f (ak)| ≤ ε.

Since ε is arbitrary, it follows µ (E) = 0. Therefore, µ≪m and so by the Radon Nikodym
theorem there exists a unique h ∈ L1 ([a,b]) such that

µ (E) =
∫

E
hdm.

In particular,

µ ([a,x]) = f (x)− f (a) =
∫
[a,x]

hdm.

From the fundamental theorem of calculus f ′ (x) = h(x) at every Lebesgue point of h.
Therefore, writing in usual notation,

f (x) = f (a)+
∫ x

a
f ′ (t)dt

as claimed. This proves the lemma.
With the above lemmas, the following is the main theorem about absolutely continuous

functions.

Theorem 26.2.5 Let f : [a,b]→R be absolutely continuous if and only if f ′ (x) exists a.e.,
f ′ ∈ L1 ([a,b]) and

f (x) = f (a)+
∫ x

a
f ′ (t)dt.

Proof: Suppose first that f is absolutely continuous. By Lemma 26.2.3 the total varia-
tion function, V is absolutely continuous and f (x) = V (x)− (V (x)− f (x)) where both V
and V − f are increasing and absolutely continuous. By Lemma 26.2.4

f (x)− f (a) = V (x)−V (a)− [(V (x)− f (x))− (V (a)− f (a))]

=
∫ x

a
V ′ (t)dt−

∫ x

a
(V − f )′ (t)dt.
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Now f ′ exists and is in L1 becasue f = V − (V − f ) and V and V − f have derivatives in
L1. Therefore, (V − f )′ =V ′− f ′ and so the above reduces to

f (x)− f (a) =
∫ x

a
f ′ (t)dt.

This proves one half of the theorem.
Now suppose f ′ ∈ L1 and f (x) = f (a)+

∫ x
a f ′ (t)dt. It is necessary to verify that f is

absolutely continuous. But this follows easily from Lemma 11.5.2 on Page 256 which im-
plies that a single function, f ′ is uniformly integrable. This lemma implies that if ∑i |yi− xi|
is sufficiently small then

∑
i

∣∣∣∣∫ yi

xi

f ′ (t)dt
∣∣∣∣= ∑

i
| f (yi)− f (xi)|< ε.

The following simple corollary is a case of Rademacher’s theorem.

Corollary 26.2.6 Suppose f : [a,b]→ R is Lipschitz continuous,

| f (x)− f (y)| ≤ K |x− y| .

Then f ′ (x) exists a.e. and

f (x) = f (a)+
∫ x

a
f ′ (t)dt.

Proof: It is easy to see that f is absolutely continuous. Therefore, Theorem 26.2.5
applies.

26.3 Weak Derivatives
A related concept is that of weak derivatives. Let Ω ⊆ Rn. A distribution on Ω is defined
to be a linear functional on C∞

c (Ω), called the space of test functions. The space of all such
linear functionals will be denoted by D∗ (Ω) . Actually, more is sometimes done here. One
imposes a topology on C∞

c (Ω) making it into a topological vector space, and when this has
been done, D ′ (Ω) is defined as the dual space of this topological vector space. To see this,
consult the book by Yosida [127] or the book by Rudin [114].

Example: The space L1
loc (Ω) may be considered as a subset of D∗ (Ω) as follows.

f (φ)≡
∫

Ω

f (x)φ (x)dx

for all φ ∈C∞
c (Ω). Recall that f ∈ L1

loc (Ω) if f XK ∈ L1 (Ω) whenever K is compact.
The following lemma is the main result which makes this identification possible.

Lemma 26.3.1 Suppose f ∈ L1
loc (Rn) and suppose∫

f φdx = 0

for all φ ∈C∞
c (Rn). Then f (x) = 0 a.e. x.
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Proof: Without loss of generality f is real-valued. Let

E ≡ { x : f (x)> ε}

and let
Em ≡ E ∩B(0,m).

We show that m(Em) = 0. If not, there exists an open set, V , and a compact set K satisfying

K ⊆ Em ⊆V ⊆ B(0,m) , m(V \K)< 4−1m(Em) ,∫
V\K
| f |dx < ε4−1m(Em) .

Let H and W be open sets satisfying

K ⊆ H ⊆ H ⊆W ⊆W ⊆V

and let
H ≺ g≺W

where the symbol, ≺, has the same meaning as it does in Chapter 12. Then let φ δ be a
mollifier and let h≡ g∗φ δ for δ small enough that

K ≺ h≺V.

Thus

0 =
∫

f hdx =
∫

K
f dx+

∫
V\K

f hdx

≥ εm(K)− ε4−1m(Em)

≥ ε
(
m(Em)−4−1m(Em)

)
− ε4−1m(Em)

≥ 2−1
εm(Em).

Therefore, m(Em) = 0, a contradiction. Thus

m(E)≤
∞

∑
m=1

m(Em) = 0

and so, since ε > 0 is arbitrary,

m({ x : f ( x)> 0}) = 0.

Similarly m({ x : f ( x)< 0}) = 0. This proves the lemma.
Example: δ x ∈D∗ (Ω) where δ x (φ)≡ φ (x).
It will be observed from the above two examples and a little thought that D∗ (Ω) is

truly enormous. We shall define the derivative of a distribution in such a way that it agrees
with the usual notion of a derivative on those distributions which are also continuously
differentiable functions. With this in mind, let f be the restriction to Ω of a smooth function
defined on Rn. Then Dxi f makes sense and for φ ∈C∞

c (Ω)

Dxi f (φ)≡
∫

Ω

Dxi f (x)φ (x)dx =−
∫

Ω

f Dxiφdx =− f (Dxiφ).

Motivated by this, here is the definition of a weak derivative.
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Definition 26.3.2 For T ∈D∗ (Ω)

DxiT (φ)≡−T (Dxiφ).

Of course one can continue taking derivatives indefinitely. Thus,

Dxix j T ≡ Dxi

(
Dx j T

)
and it is clear that all mixed partial derivatives are equal because this holds for the functions
in C∞

c (Ω). Thus one can differentiate virtually anything, even functions that may be dis-
continuous everywhere. However the notion of “derivative” is very weak, hence the name,
“weak derivatives”.

Example: Let Ω = R and let

H (x)≡
{

1 if x≥ 0,
0 if x < 0.

Then
DH (φ) =−

∫
H (x)φ

′ (x)dx = φ (0) = δ 0(φ).

Note that in this example, DH is not a function.
What happens when D f is a function?

Theorem 26.3.3 Let Ω = (a,b) and suppose that f and D f are both in L1 (a,b). Then f is
equal to a continuous function a.e., still denoted by f and

f (x) = f (a)+
∫ x

a
D f (t)dt.

The proof of Theorem 26.3.3 depends on the following lemma.

Lemma 26.3.4 Let T ∈D∗ (a,b) and suppose DT = 0. Then there exists a constant C such
that

T (φ) =
∫ b

a
Cφdx.

Proof: T (Dφ) = 0 for all φ ∈C∞
c (a,b) from the definition of DT = 0. Let

φ 0 ∈C∞
c (a,b) ,

∫ b

a
φ 0 (x)dx = 1,

and let

ψφ (x) =
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

for φ ∈C∞
c (a,b). Thus ψφ ∈C∞

c (a,b) and

Dψφ = φ −
(∫ b

a
φ (y)dy

)
φ 0.
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Therefore,

φ = Dψφ +

(∫ b

a
φ (y)dy

)
φ 0

and so

T (φ) = T (Dψφ )+

(∫ b

a
φ (y)dy

)
T (φ 0) =

∫ b

a
T (φ 0)φ (y)dy.

Let C = T φ 0. This proves the lemma.
Proof of Theorem 36.2.2 Since f and D f are both in L1 (a,b),

D f (φ)−
∫ b

a
D f (x)φ (x)dx = 0.

Consider

f (·)−
∫ (·)

a
D f (t)dt

and let φ ∈C∞
c (a,b).

D
(

f (·)−
∫ (·)

a
D f (t)dt

)
(φ)

≡−
∫ b

a
f (x)φ

′ (x)dx+
∫ b

a

(∫ x

a
D f (t)dt

)
φ
′ (x)dx

= D f (φ)+
∫ b

a

∫ b

t
D f (t)φ

′ (x)dxdt

= D f (φ)−
∫ b

a
D f (t)φ (t)dt = 0.

By Lemma 36.2.3, there exists a constant, C, such that(
f (·)−

∫ (·)

a
D f (t)dt

)
(φ) =

∫ b

a
Cφ (x)dx

for all φ ∈C∞
c (a,b). Thus∫ b

a
{
(

f (x)−
∫ x

a
D f (t)dt

)
−C}φ (x)dx = 0

for all φ ∈C∞
c (a,b). It follows from Lemma 26.3.1 in the next section that

f (x)−
∫ x

a
D f (t)dt−C = 0 a.e. x.

Thus we let f (a) =C and write

f (x) = f (a)+
∫ x

a
D f (t)dt.

This proves Theorem 36.2.2.
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Theorem 36.2.2 says that

f (x) = f (a)+
∫ x

a
D f (t)dt

whenever it makes sense to write
∫ x

a D f (t)dt, if D f is interpreted as a weak derivative.
Somehow, this is the way it ought to be. It follows from the fundamental theorem of
calculus that f ′ (x) exists for a.e. x in the classical sense where the derivative is taken in
the sense of a limit of difference quotients and f ′ (x) = D f (x). This raises an interesting
question. Suppose f is continuous on [a,b] and f ′ (x) exists in the classical sense for a.e.
x. Does it follow that

f (x) = f (a)+
∫ x

a
f ′ (t)dt?

The answer is no. You can build such an example from the Cantor function which is
increasing and has a derivative a.e. which equals 0 a.e. and yet climbs from 0 to 1. Thus
this function is not recovered from integrating its classical derivative. Thus, in a sense weak
derivatives are more agreeable than the classical ones.

26.4 Lipschitz Functions
Definition 26.4.1 A function f : [a,b]→ R is Lipschitz if there is a constant K such that
for all x,y,

| f (x)− f (y)| ≤ K |x− y| .

More generally, f is Lipschitz on a subset of Rn if for all x,y in this set,

|f(x)− f(y)| ≤ K |x−y| .

Lemma 26.4.2 Suppose f : [a,b]→ R is Lipschitz continuous and increasing. Then f ′

exists a.e., is in L1 ([a,b]) , and

f (x) = f (a)+
∫ x

a
f ′ (t)dt.

If f : R→ R is Lipschitz, then it is in L1
loc (R).

Proof: The Dini derivates are defined as follows.

D+ f (x) ≡ lim sup
h→0+

f (x+h)− f (x)
h

, D+ f (x)≡ lim inf
h→0+

f (x+h)− f (x)
h

D− f (x) ≡ lim sup
h→0+

f (x)− f (x−h)
h

,D− f (x)≡ lim inf
h→0+

f (x)− f (x−h)
h

For convenience, just let f equal f (a) for x < a and equal f (b) for x > b. Let (a,b) be an
open interval and let

Nab ≡
{

x ∈ (a,b) : D+ f (x)> q > p > D+ f (x)
}
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Let V ⊆ (a,b) be an open set containing Npq such that m(V )<m(Npq)+ε . By assumption,
if x ∈ Npq, there exist arbitrarily small h such that

f (x+h)− f (x)
h

< p,

These intervals [x,x+h] are then a Vitali covering of Npq. It follows from Corollary 13.4.6
that there is a disjoint union of countably many, {[xi,xi +hi]}∞

i=1 which cover all of Npq
except for a set of measure zero. Thus also the open intervals {(xi,xi +hi)}∞

i=1 also cover
all of Npq except for a set of measure zero. Now for points x′ of Npq so covered, there are
arbitrarily small h such that

f (x′+h′)− f (x′)
h′

> q

and [x′,x′+h′] is contained in one of these original open intervals (xi,xi +hi). By the Vitali
covering theorem again, Corollary 13.4.6, it follows that there exists a countable disjoint
sequence

{[
x′j,x

′
j +h′j

]}∞

j=1
which covers all of Npq except for a set of measure zero, each

of these
[
x′j,x

′
j +h′j

]
being contained in some (xi,xi +hi) . Then it follows that

qm(Npq) ≤ q∑
j

h′j ≤∑
j

f
(
x′j +h′j

)
− f

(
x′j
)
≤∑

i
f (xi +hi)− f (xi)

≤ p∑
i

hi ≤ pm(V )≤ p(m(Npq)+ ε)

Since ε > 0 is arbitrary, this shows that qm(Npq) ≤ pm(Npq) and so m(Npq) = 0. Now
taking the union of all Npq for p,q ∈Q, it follows that for a.e. x,D+ f (x) = D+ f (x) and so
the derivative from the right exists. Similar reasoning shows that off a set of measure zero
the derivative from the left also exists. You just do the same argument using D− f (x) and
D− f (x) to obtain the existence of a derivative from the left. Next you can use the same
argument to verify that D− f (x) = D+ f (x) off a set of measure zero. This is outlined next.
Define a new Npq,

Npq ≡
{

x ∈ (a,b) : D+ f (x)> q > p > D− f (x)
}

Let V be an open set containing Npq such that m(V )< m(Npq)+ ε. For each x ∈ Npq there
are arbitrarily small h such that

f (x)− f (x−h)
h

< p

Then as before, there is a countable disjoint sequence of closed intervals contained in
V,{[xi−hi,xi]}∞

i=1 such that their union includes all of Npq except a set of measure zero.
Thus this is also true of the open intervals {(xi−hi,xi)}∞

i=1. Then for the points of Npq
covered by these open intervals x′, there are arbitrarily small h′ such that

f (x′+h′)− f (x′)
h′

> q.
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and each [x′,x′+h′] is contained in an interval (xi−hi,xi). Then by the Vitali cover-
ing theorem again, Corollary 13.4.6 there are countably many disjoint closed intervals{[

x′j,x
′
j +h′j

]}∞

j=1
whose union includes all of Npq except for a set of measure zero such

that each of these is contained in some (xi−hi,xi) described earlier. Then as before,

qm(Npq) ≤ q∑
j

h′j ≤∑
j

f
(
x′j +h′j

)
− f

(
x′j
)
≤∑

i
f (xi)− f (xi−hi)

≤ p∑
i

hi ≤ pm(V )≤ p(m(Npq)+ ε)

Then as before, this shows that qm(Npq) ≤ pm(Npq) and so m(Npq) = 0. Then taking the
union of all such for p,q ∈Q yields D+ f (x) = D− f (x) for a.e. x. Taking the union of all
these sets of measure zero and considering points not in this union, it follows that f ′ (x)
exists for a.e. x. Thus f ′ (t)≥ 0 and is a limit of measurable even continuous functions for
a.e. x so f ′ is clearly measurable. The issue is whether f (y)− f (x) =

∫
X[x,y] (t) f ′ (t)dm.

Up to now, the only thing used has been that f is increasing.
Let h > 0. ∫ x

a

f (t)− f (t−h)
h

dt =
1
h

∫ x

a
f (t)dt− 1

h

∫ x

a
f (t−h)dt

=
1
h

∫ x

a
f (t)dt− 1

h

∫ x−h

a−h
f (t)dt

=
1
h

∫ x

x−h
f (t)dt− 1

h

∫ a

a−h
f (t)dt

=
1
h

∫ x

x−h
f (t)dt− f (a)

Therefore, by continuity of f it follows from Fatou’s lemma that∫ x

a
D− f (t)dt =

∫ x

a
f ′ (t)dt ≤ lim inf

h→0+

∫ x

a

f (t)− f (t−h)
h

dt = f (x)− f (a)

and this shows that f ′ is in L1. This part only used the fact that f is increasing and contin-
uous. That f is Lipschitz has not been used.

If it were known that there is a dominating function for t→ f (t)− f (t−h)
h , then you could

simply apply the dominated convergence theorem in the above inequality instead of Fatou’s
lemma and get the desired result. But from Lipschitz continuity, you have∣∣∣∣ f (t)− f (t−h)

h

∣∣∣∣≤ K

and so one can indeed apply the dominated convergence theorem and conclude that∫ x

a
f ′ (t)dt = f (x)− f (a)

The last claim follows right away from consideration of intervals since the restriction of a
Lipschitz function is Lipschitz. ■



26.5. RADEMACHER’S THEOREM 949

With the above lemmas, the following is the main theorem about absolutely continuous
functions.

The following simple corollary is a case of Rademacher’s theorem.

Corollary 26.4.3 Suppose f : [a,b]→ R is Lipschitz continuous,

| f (x)− f (y)| ≤ K |x− y| .

Then f ′ (x) exists a.e. and

f (x) = f (a)+
∫ x

a
f ′ (t)dt.

Proof: If f were increasing, this would follow from the above lemma. Let g(x) =
2Kx− f (x) . Then g is Lipschitz with a different Lipschitz constant and also if x < y,

g(y)−g(x) = 2Ky− f (y)− (2Kx− f (x))

≥ 2K (y− x)−K |y− x|= k |y− x| ≥ 0

and so Lemma 26.4.2 applies to g and this shows that f ′ (t) exists for a.e. t and g′ (x) =
2K− f ′ (x) . Also

2K (x−a)− ( f (x)− f (a))

= g(x)−g(a) = 2Kx− f (x)− (2Ka− f (a)) =
∫ x

a

(
2K− f ′ (t)

)
= 2K (x−a)−

∫ x

a
f ′ (t)dt

showing that f (x)− f (a) =
∫ x

a f ′ (t)dt. ■

26.5 Rademacher’s Theorem
To begin with is a useful proposition which says the the set where a sequence converges is
a measurable set.

Proposition 26.5.1 Let { fn} be measurable with values in a complete normed vector space.
Let A≡ {ω : { fn (ω)} converges} . Then A is measurable.

Proof: The set A is the same as the set on which { fn (ω)} is a Cauchy sequence. This
set is

∩∞
n=1∪∞

m=1∩p,q>m

[∥∥ fp (ω)− fq (ω)
∥∥< 1

n

]
which is a measurable set thanks to the measurability of each fn. ■

It turns out that Lipschitz functions on Rp can be differentiated a.e. This is called
Rademacher’s theorem. It also can be shown to follow from the Lebesgue theory of differ-
entiation. We denote Dv f (x) the directional derivative of f in the direction v. Here v is a
unit vector. In the following lemma, notation is abused slightly. The symbol f (x+tv) will
mean t→ f (x+tv) and d

dt f (x+tv) will refer to the derivative of this function of t.
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Lemma 26.5.2 Let u : Rp → R be Lipschitz with Lipschitz constant K. Let un ≡ u ∗ φ n
where {φ n} is a mollifier,

φ n (y)≡ np
φ (ny) ,

∫
φ (y)dmp (y) = 1,φ (y)≥ 0,φ ∈C∞

c (B(0,1))

Then
∇un (x) = ∇u∗φ n (x) (26.5.10)

where ∇u is defined almost everywhere according to Corollary 26.2.6. In fact,∫ b

a

∂u
∂xi

(x+ tei)dt = u(x+bei)−u(x+aei) (26.5.11)

and
∣∣∣ ∂u

∂xi

∣∣∣ ≤ K. Also, un (x)→ u(x) uniformly on Rp and for a suitable subsequence, still

denoted with n, ∇un (x)→ ∇u(x) for a.e. x.

Proof: To get the existence of the gradient satisfying the condition given in 26.5.11,
apply the corollary to each variable. Now

un (x+hei)−un (x)
h

=
∫
Rp

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dmp (y)

=
∫

B(0, 1
n )

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dmp (y)

Now that difference quotient converges to ∂u
∂xi

(x−y) for yi off a set of measure zero N (ŷ)
where m1 (N) = 0 and ŷ ∈ Rp−1. You just use Corollary 26.2.6 on the ith variable. Also,
the difference quotients are bounded thanks to the Lipshitz condition. Therefore, you can
apply the dominated convergence theorem to get

lim
h→0

∫
Rp−1

∫
R

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dm1 (yi)dmp−1 (ŷ)

=
∫
Rp−1

∫
R

∂u(x−y)
∂xi

φ n (y)dm1 (yi)dmp−1 (ŷ) =
∂u
∂xi
∗φ n (x)

The set of y in Rp where u(x+hei−y)−u(x−y)
h converges as h→ 0 through a sequence of

values is a measurable set thanks to Proposition 26.5.1 and for each ŷ, the convergence
takes place off a set of m1 measure zero. Thus there are no measurability issues here and
off a set of measure zero, the difference quotient converges to the partial derivative. This
proves 26.5.10.

∥un (x)−u(x)∥ ≤
∫
Rp
∥u(x−y)−u(x)∥φ n (y)dmp (y)

by uniform continuity of u coming from the Lipschitz condition, when n is large enough,
this is no larger than ∫

Rp
εψn (y)dmp (y) = ε
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and so uniform convergence holds.
Now consider the last claim. From the first part,

∥unxi (x)−uxi (x)∥ =

∥∥∥∥∥
∫

B(0, 1
n )

uxi (x−y)φ n (y)dmp (y)−uxi (x)

∥∥∥∥∥
=

∥∥∥∥∥
∫

B(x, 1
n )

uxi (z)φ n (x− z)dmp (z)−uxi (x)

∥∥∥∥∥
∥unxi (x)−uxi (x)∥ ≤

∫
Rp
∥uxi (x−y)−uxi (x)∥φ n (y)dmp (y)

=
∫

B(0, 1
n )
∥uxi (x−y)−uxi (x)∥φ n (y)dmp (y)

Now φ n (y) = npφ (ny) = mp(B(0,1))
mp(B(0, 1

n ))
φ (ny) . Therefore, the above equals

=
mp (B(0,1))
mp
(
B
(
0, 1

n

)) ∫
B(0, 1

n )
∥uxi (x−y)−uxi (x)∥φ (ny)dmp (y)

=
mp (B(0,1))
mp
(
B
(
0, 1

n

)) ∫
B(x, 1

n )
∥uxi (z)−uxi (x)∥φ (n(x− z))dmp (z)

≤ C
mp (B(0,1))
mp
(
B
(
x, 1

n

)) ∫
B(x, 1

n )
∥uxi (z)−uxi (x)∥dmp (z)

which converges to 0 for a.e. x, in fact at any Lebesgue point. This is because uxi is bounded
by K and so is in L1

loc. ■
The following lemma gives an interesting inequality due to Morrey. To simplify nota-

tion dz will mean dmp (z).

Lemma 26.5.3 Let u be a C1 function on Rp. Then there exists a constant C, depending
only on p such that for any x, y ∈ Rp,

|u(x)−u(y)|

≤C
(∫

B(x,2|x−y|)
|∇u(z) |qdz

)1/q(
| x− y|(1−p/q)

)
. (26.5.12)

Here q > p.

Proof: In the argument C will be a generic constant which depends on p. Consider the
following picture.

xU W Vy
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This is a picture of two balls of radius r in Rp, U and V having centers at x and y
respectively, which intersect in the set W. The center of U is on the boundary of V and the
center of V is on the boundary of U as shown in the picture. There exists a constant, C,
independent of r depending only on p such that

m(W )

m(U)
=

m(W )

m(V )
=

1
C
.

You could compute this constant if you desired but it is not important here.
Then

|u(x)−u(y)| =
1

m(W )

∫
W
|u(x)−u(y)|dz

≤ 1
m(W )

∫
W
|u(x)−u(z)|dz+

1
m(W )

∫
W
|u(z)−u(y)|dz

=
C

m(U)

[∫
W
|u(x)−u(z)|dz+

∫
W
|u(z)−u(y)|dz

]
≤ C

m(U)

[∫
U
|u(x)−u(z)|dz+

∫
V
|u(y)−u(z)|dz

]
Now consider these two terms. Let q > p

Using spherical coordinates and letting U0 denote the ball of the same radius as U but
with center at 0,

1
m(U)

∫
U
|u(x)−u(z)|dz

=
1

m(U0)

∫
U0

|u(x)−u(z+x)|dz

Now using spherical coordinates, Section 13.9, and letting C denote a generic constant
which depends on p,

=
1

m(U0)

∫ r

0
ρ

p−1
∫

Sp−1
|u(x)−u(ρw+x)|dσ (w)dρ

≤ 1
m(U0)

∫ r

0
ρ

p−1
∫

Sp−1

∫
ρ

0
|Dwu(x+ tw)|dtdσ (w)dρ

=
1

m(U0)

∫ r

0
ρ

p−1
∫

Sp−1

∫
ρ

0
|∇u(x+ tw) ·w|dtdσ (w)dρ

≤ 1
m(U0)

∫ r

0
ρ

p−1
∫

Sp−1

∫ r

0
|∇u(x+ tw) ·w|dtdσ (w)dρ

=
1

m(U0)

∫
Sp−1

∫ r

0
|∇u(x+ tw) ·w|

∫ r

0
ρ

p−1dρdtdσ (w)

=C
∫ r

0

∫
Sp−1
|∇u(x+ tw)|dσ (w)dt =C

∫ r

0

∫
Sp−1

|∇u(x+ tw)|
t p−1 t p−1dσ (w)dt
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But this is just the polar coordinates description of what follows.

=C
∫

U0

|∇u(x+ z)|
|z|p−1 dz

≤C
(∫

U0

|∇u(x+ z)|q dz
)1/q(∫

U0

|z|q
′−pq′

)1/q′

= C
(∫

U
|∇u(z)|q dz

)1/q(∫
Sp−1

∫ r

0
ρ

q′−pq′
ρ

p−1dρdσ

)(q−1)/q

= C
(∫

U
|∇u(z)|q dz

)1/q
(∫

Sp−1

∫ r

0

1

ρ
p−1
q−1

dρdσ

)(q−1)/q

= C
(

q−1
q− p

)(q−1)/q(∫
U
|∇u(z)|q dz

)1/q

r1− p
q

= C
(

q−1
q− p

)(q−1)/q(∫
U
|∇u(z)|q dz

)1/q

|x−y|1−
p
q

Similarly,

1
m(V )

∫
U
|u(y)−u(z)|dz≤C

(
q−1
q− p

)(q−1)/q(∫
V
|∇u(z)|q dz

)1/q

|x−y|1−
p
q

Therefore,

|u(x)−u(y)| ≤C
(

q−1
q− p

)(q−1)/q(∫
B(x,2|x−y|)

|∇u(z)|q dz
)1/q

|x−y|1−
p
q

because B(x,2 |x−y|)⊇V ∪U. ■

Corollary 26.5.4 Let u be Lipschitz on Rp with constant K. Then there is a constant C
depending only on p such that

|u(x)−u(y)| ≤C
(∫

B(x,2|x−y|)
|∇u(z) |qdz

)1/q(
| x− y|(1−p/q)

)
. (26.5.13)

Here q > p.

Proof: Let un = u ∗ φ n where {φ n} is a mollifier as in Lemma 26.5.2. Then from
Lemma 26.5.3, there is a constant depending only on p such that

|un (x)−un (y)| ≤C
(∫

B(x,2|x−y|)
|∇un (z) |qdz

)1/q(
| x− y|(1−p/q)

)
.
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Now |∇un| = |∇u∗φ n| by Lemma 26.5.2 and this last is bounded. Also, by this lemma,
∇un (z)→ ∇u(z) a.e. and un (x)→ u(x) for all x. Therefore, we can pass to a limit in the
above and obtain 26.5.13. ■

Note you can write 26.5.13 in the form

|u(x)−u(y)| ≤ C
(

1
|x−y|p

∫
B(x,2|x−y|)

|∇u(z) |qdz
)1/q

|x−y|

= Ĉ
(

1
mp (B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z) |qdz
)1/q

|x−y|

Before leaving this remarkable formula, note that if you are in any situation where the
above formula holds and ∇u exists in some sense and is in Lq,q > p, then u would need to
be continuous. This is the basis for the Sobolev embedding theorem.

Here is Rademacher’s theorem.

Theorem 26.5.5 Suppose u is Lipschitz with constant K then if x is a point where ∇u(x)
exists,

|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |qdz
)1/q

| x− y|. (26.5.14)

Also u is differentiable at a.e. x and also

u(x+tv)−u(x) =
∫ t

0
Dvu(x+ sv)ds (26.5.15)

Proof: This follows easily from letting g(y) ≡ u(y)− u(x)−∇u(x) ·(y−x) . As ex-
plained above, |∇u(x)| ≤√pK at every point where ∇u exists, the exceptional points being
in a set of measure zero. Then g(x) = 0, and ∇g(y) =∇u(y)−∇u(x) at the points y where
the gradient of g exists. From Corollary 26.5.4,

|u(y)−u(x)−∇u(x) · (y−x)|
= |g(y)|= |g(y)−g(x)|

≤ C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |qdz

)1/q

|x−y|1−
p
q

= C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |qdz

)1/q 1
|x−y|p

1
q
|x−y|

= C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |qdz
)1/q

|x− y|.

Now this is no larger than

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x)|(2√pK)q−1 dz
)1/q

|x− y|
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It follows that at Lebesgue points of ∇u, the above expression is o(|x−y|) and so at all
such points u is differentiable. As to 26.5.15, this follows from an application of Corollary
26.2.6 to f (t) = u(x+tv). ■

Note that for a.e. x,Dvu(x) = ∇u(x) ·v. If you have a line with direction vector v, does
it follow that Du(x+ tv) exists for a.e. t? We know the directional derivative exists a.e. t
but it might not be clear that it is ∇u(x) ·v.

For |w| = 1, denote the measure of Section 13.9 defined on the unit sphere Sp−1 as σ .
Let Nw be defined as those t ∈ [0,∞) for which Dwu(x+ tw) ̸= ∇u(x+ tw) ·w.

B≡
{

w ∈ Sp−1 : Nw has positive measure
}

This is contained in the set of points of Rp where the derivative of v(·) ≡ u(x+ ·) fails to
exist.Thus from Section 13.9 the measure of this set is∫

B

∫
Nw

ρ
n−1dρdσ (w)

This must equal zero from what was just shown about the derivative of the Lipschitz func-
tion v existing a.e. and so σ (B) = 0. The claimed formula follows from this. Thus we
obtain the following corollary.

Corollary 26.5.6 Let u be Lipschitz. Then for any x and v ∈ Sp−1 \Bx where σ (Bx) = 0,
it follows that for all t,

u(x+tv)−u(x) =
∫ t

0
Dvu(x+ sv)ds =

∫ t

0
∇u(x+ sv) ·vds

In the all of the above, the function u is defined on all of Rp. However, it is always the
case that Lipschitz functions can be extended off a given set. Thus if a Lipschitz function is
defined on some set Ω, then it can always be considered the restriction to Ω of a Lipschitz
map defined on all of Rp.

Theorem 26.5.7 If h : Ω→ Rm is Lipschitz, then there exists h : Rp→ Rm which extends
h and is also Lipschitz.

Proof: It suffices to assume m = 1 because if this is shown, it may be applied to the
components of h to get the desired result. Suppose

|h(x)−h(y)| ≤ K |x−y|. (26.5.16)

Define
h(x)≡ inf{h(w)+K |x−w| : w ∈Ω}. (26.5.17)

If x ∈Ω, then for all w ∈Ω,

h(w)+K |x−w| ≥ h(x)

by 26.5.16. This shows h(x) ≤ h(x). But also you could take w = x in 26.5.17 which
yields h(x)≤ h(x). Therefore h(x) = h(x) if x ∈Ω.
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Now suppose x,y ∈ Rp and consider
∣∣h(x)−h(y)

∣∣. Without loss of generality assume
h(x)≥ h(y) . (If not, repeat the following argument with x and y interchanged.) Pick w∈Ω

such that
h(w)+K |y−w|− ε < h(y).

Then ∣∣h(x)−h(y)
∣∣= h(x)−h(y)≤ h(w)+K |x−w|−

[h(w)+K |y−w|− ε]≤ K |x−y|+ ε.

Since ε is arbitrary, ∣∣h(x)−h(y)
∣∣≤ K |x−y| ■

26.6 Rademacher’s Theorem
It turns out that Lipschitz functions on Rn can be differentiated a.e. This is called Radem-
acher’s theorem. It also can be shown to follow from the Lebesgue theory of differentiation.

26.6.1 Morrey’s Inequality
The following inequality will be called Morrey’s inequality. It relates an expression which
is given pointwise to an integral of the pth power of the derivative.

Lemma 26.6.1 Let u∈C1 (Rn) and p > n. Then there exists a constant, C, depending only
on n such that for any x, y ∈ Rn,

|u(x)−u(y)|

≤C
(∫

B(x,2|x−y|)
|∇u(z) |pdz

)1/p(
| x− y|(1−n/p)

)
. (26.6.18)

Proof: In the argument C will be a generic constant which depends on n. Consider the
following picture.

xU W Vy

This is a picture of two balls of radius r in Rn, U and V having centers at x and y
respectively, which intersect in the set, W. The center of U is on the boundary of V and the
center of V is on the boundary of U as shown in the picture. There exists a constant, C,
independent of r depending only on n such that

m(W )

m(U)
=

m(W )

m(V )
=C.

You could compute this constant if you desired but it is not important here.
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Define the average of a function over a set, E ⊆ Rn as follows.∫
−

E
f dx≡ 1

m(E)

∫
E

f dx.

Then

|u(x)−u(y)| =
∫
−

W
|u(x)−u(y)|dz

≤
∫
−

W
|u(x)−u(z)|dz+

∫
−

W
|u(z)−u(y)|dz

=
C

m(U)

[∫
W
|u(x)−u(z)|dz+

∫
W
|u(z)−u(y)|dz

]
≤ C

[∫
−

U
|u(x)−u(z)|dz+

∫
−

V
|u(y)−u(z)|dz

]
Now consider these two terms. Using spherical coordinates and letting U0 denote the ball
of the same radius as U but with center at 0,∫

−
U
|u(x)−u(z)|dz

=
1

m(U0)

∫
U0

|u(x)−u(z+x)|dz

=
1

m(U0)

∫ r

0
ρ

n−1
∫

Sn−1
|u(x)−u(ρw+x)|dσ (w)dρ

≤ 1
m(U0)

∫ r

0
ρ

n−1
∫

Sn−1

∫
ρ

0
|∇u(x+ tw) ·w|dtdσdρ

≤ 1
m(U0)

∫ r

0
ρ

n−1
∫

Sn−1

∫
ρ

0
|∇u(x+ tw)|dtdσdρ

≤ C
1
r

∫ r

0

∫
Sn−1

∫ r

0
|∇u(x+ tw)|dtdσdρ

= C
1
r

∫ r

0

∫
Sn−1

∫ r

0

|∇u(x+ tw)|
tn−1 tn−1dtdσdρ

= C
∫

Sn−1

∫ r

0

|∇u(x+ tw)|
tn−1 tn−1dtdσ

= C
∫

U0

|∇u(x+ z)|
|z|n−1 dz

≤ C
(∫

U0

|∇u(x+ z)|p dz
)1/p(∫

U
|z|p

′−np′
)1/p′
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= C
(∫

U
|∇u(z)|p dz

)1/p(∫
Sn−1

∫ r

0
ρ

p′−np′
ρ

n−1dρdσ

)(p−1)/p

= C
(∫

U
|∇u(z)|p dz

)1/p
(∫

Sn−1

∫ r

0

1

ρ
n−1
p−1

dρdσ

)(p−1)/p

= C
(

p−1
p−n

)(p−1)/p(∫
U
|∇u(z)|p dz

)1/p

r1− n
p

= C
(

p−1
p−n

)(p−1)/p(∫
U
|∇u(z)|p dz

)1/p

|x−y|1−
n
p

Similarly,∫
−

V
|u(y)−u(z)|dz≤C

(
p−1
p−n

)(p−1)/p(∫
V
|∇u(z)|p dz

)1/p

|x−y|1−
n
p

Therefore,

|u(x)−u(y)| ≤C
(

p−1
p−n

)(p−1)/p(∫
B(x,2|x−y|)

|∇u(z)|p dz
)1/p

|x−y|1−
n
p

because B(x,2 |x−y|)⊇V ∪U. This proves the lemma.
The following corollary is also interesting

Corollary 26.6.2 Suppose u ∈C1 (Rn) . Then

|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|. (26.6.19)

Proof: This follows easily from letting g(y) ≡ u(y)− u(x)−∇u(x) ·(y−x) . Then
g ∈C1 (Rn), g(x) = 0, and ∇g(z) = ∇u(z)−∇u(x) . From Lemma 26.6.1,

|u(y)−u(x)−∇u(x) · (y−x)|
= |g(y)|= |g(y)−g(x)|

≤ C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |pdz

)1/p

|x−y|1−
n
p

= C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|.

This proves the corollary.
It may be interesting at this point to recall the definition of differentiability on Page

117. If you knew the above inequality held for ∇u having components in L1
loc (Rn) , then at

Lebesgue points of ∇u, the above would imply Du(x) exists.
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26.6.2 Rademacher’s Theorem
Lemma 26.6.3 Let u be a Lipschitz continuous function which vanishes outside some com-
pact set. Then there exists a unique u,i ∈ L∞ (Rn) such that

lim
h→0

u(·+h)−u(·)
h

= u,i weak ∗ in L∞ (Rn) .

Proof: By the Lipschitz condition, the above difference quotient is bounded in L∞ by
K the Lipschitz constant of u. It follows from the Banach Aloglu theorem and Corollary
17.5.6 on Page 463 that there exists a subsequence hk→ 0 and g ∈ L∞ (Rn) such that

u(·+hk)−u(·)
hk

→ g weak ∗ in L∞ (Rn)

Letting φ ∈C∞
c (Rn) , it follows∫

gφdx = lim
k→∞

∫ u(·+hk)−u(·)
hk

φdx =−
∫

uφ ,idx

This also shows that g must vanish outside some compact set because the integral on the
right shows that if sptφ does not intersect sptu, then

∫
gφdx = 0. Thus g ∈ L2 (Rn). If g1

is a weak ∗ limit of another subsequence h j → 0, the same result follows. Thus for any
φ ∈C∞

c (Rn) ∫
(g−g1)φdx = 0

and since C∞
c (Rn) is dense in L2 (Rn) , this requires g = g1 in L2 and so they are equal a.e.

Since every sequence of h→ 0 has a subsequence which when applied to the difference
quotient, always converges to the same thing, it follows the claimed limit exists. This is
called u,i. This proves the lemma.

Lemma 26.6.4 Let u be a Lipschitz continuous function which vanishes outside a compact
set and let u,i be described above. For φ ε a mollifier and uε ≡ u∗φ ε ,

uε,i = u,i ∗φ ε

where the symbol uε,i means the usual partial derivative with respect to the ith variable.
Also for any p > n,

uε,i→ u,i in Lp (Rn) .

Proof: This follows from a computation and Lemma 26.6.3.

uε,i (x)≡ lim
h→0

∫ u(x−y+hei)−u(x−y)
h

φ ε (y)dy

= lim
h→0

∫ u(z+hei)−u(z)
h

φ ε (x− z)dz

=
∫

u,i (z)φ ε (x− z)dz = u,i ∗φ ε (x)
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It remains to verify the last assertion. Note that u,i ∈ Lp (Rn) for any p > 1 because it is
bounded and vanishes outside some compact set. By the first part,(∫

|uε,i−u,i|p dx
)1/p

=

(∫ ∣∣∣∣∫ (u,i (x−y)−u,i (x))φ ε (y)dy
∣∣∣∣p dx

)1/p

and by Minkowski’s inequality,

≤
∫

φ ε (y)
(∫
|(u,i (x−y)−u,i (x))|p dx

)1/p

dy

=
∫

B(0,ε)
φ ε (y)

∣∣∣∣∣∣(u,i)y−u,i
∣∣∣∣∣∣

Lp(Rn)
dy

which converges to 0 from continuity of translation. This proves the lemma.
Now from Corollary 26.6.2 applied to uε just described and letting y−x = v

|uε (x+v)−uε (x)−∇uε (x) ·v|

≤C
(

1
m(B(x,2 |v|))

∫
B(x,2|v|)

|∇uε (z)−∇uε (x) |pdz
)1/p

|v|.

From Lemma 26.6.4, there is a subsequence, still denoted as ε such that for each i,uε,i→ u,i
pointwise a.e. and in Lp (Rn) where p > n is given. ∇u is the vector (u,1,u,2, · · · ,u,n)T .
Then passing to the limit as ε → 0, for a.e. x,

|u(x+v)−u(x)−∇u(x) ·v|

≤C
(

1
m(B(x,2 |v|))

∫
B(x,2|v|)

|∇u(z)−∇u(x) |pdz
)1/p

|v|.

At every Lebesgue point x of ∇u, the above shows u(x+v)− u(x)−∇u(x) · v = o(v).
Thus this has proved the following.

Lemma 26.6.5 Let u be Lipschitz continuous and vanish outside some bounded set. Then
Du(x) exists for a.e. x.

This is a good result but it is easy to give an even easier to use result. First here is a
theorem which says you can extend a Lipschitz map.

Theorem 26.6.6 If h : Ω→ Rm is Lipschitz, then there exists h : Rn→ Rm which extends
h and is also Lipschitz.

Proof: It suffices to assume m = 1 because if this is shown, it may be applied to the
components of h to get the desired result. Suppose

|h(x)−h(y)| ≤ K |x−y|. (26.6.20)

Define
h(x)≡ inf{h(w)+K |x−w| : w ∈Ω}. (26.6.21)
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If x ∈Ω, then for all w ∈Ω,

h(w)+K |x−w| ≥ h(x)

by 26.6.20. This shows h(x) ≤ h(x). But also you could take w = x in 26.6.21 which
yields h(x)≤ h(x). Therefore h(x) = h(x) if x ∈Ω.

Now suppose x,y ∈ Rn and consider
∣∣h(x)−h(y)

∣∣. Without loss of generality assume
h(x)≥ h(y) . (If not, repeat the following argument with x and y interchanged.) Pick w∈Ω

such that
h(w)+K |y−w|− ε < h(y).

Then ∣∣h(x)−h(y)
∣∣= h(x)−h(y)≤ h(w)+K |x−w|−

[h(w)+K |y−w|− ε]≤ K |x−y|+ ε.

Since ε is arbitrary, ∣∣h(x)−h(y)
∣∣≤ K |x−y|

and this proves the theorem.
With this theorem, here is the main result called Rademacher’s theorem.

Theorem 26.6.7 Let h : Ω→Rm be Lipschitz on Ω where Ω is some nonempty measurable
set in Rn. Then Dh(x) exists for a.e. x ∈Ω. If Ω = Rn, then for each ei,

lim
h→0

h(·+hei)−h(·)
h

= h,i weak ∗ in L∞ (Rn)

and whenever φ ε is a mollifier,

(h∗φ ε),i→ h,i in Lp (Rn;Rm) .

Proof: The last two claims follow from the above argument applied to the components
of h. By Theorem 26.6.6 the function can be extended to a Lipschitz function defined on all
of Rn, still denoted as h. Let Ωr ≡Ω∩B(0,r) . Now let ψ ∈C∞

c (B(0,2r)) such that ψ = 1
on B

(
0, 3

2 r
)
. Then ψh is Lipschitz on Rn and vanishes off a bounded set. It follows from

Lemma 26.6.5 applied to the components of h that this function has a derivative off a set
of measure zero Nr. If x ∈Ωr \Nr it follows since ψ = 1 near x that Dh(x) exists. Letting
N = ∪∞

r=1Nr, it follows that if x ∈Ω\N, then Dh(x) exists. This proves the theorem.
For u Lipschitz as described above, the limit of the difference quotient u,i is called the

weak partial derivative of u. For p > n and an assertion that the difference quotients are
bounded in Lp everything done above would work out the same way and one can therefore
generalize parts of the above theorem. The extension is problematic but one can give the
following results with essentially the same proof as the above.

Lemma 26.6.8 Let u ∈ Lp (Rn). There exists u,i ∈ Lp (Rn) such that

lim
h→0

u(·+hei)−u(·)
h

= u,i weakly in Lp (Rn)

if and only if the difference quotients u(·+hei)−u(·)
h are bounded in Lp (Rn) for all nonzero h.
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Proof: If the weak limit exists, then the difference quotients must be bounded. This
follows from the uniform boundedness theorem, Theorem 17.1.8. Here is why. Denote the
difference quotient by Dh to save space. Weak convergence requires

∫
Dh f →

∫
u.i f for all

f ∈ Lp′ . Could there exist hk such that
∣∣∣∣Dhk

∣∣∣∣
Lp → ∞? Not unless a subsequence satisfies

hk→ 0 because if this sequence is bounded away from 0, the formula for Dh will yield the
difference quotients are bounded. However, if hk→ 0, then for each f ∈ Lp′ ,

sup
k

∫
Dhk f < ∞

because in fact, limk→∞

∫
Dhk f exists so it must be bounded. Now Dhk can be considered in(

Lp′
)′

and this shows it is pointwise bounded on Lp′ . Therefore, Dhk is bounded in
(

Lp′
)′

but the norm on this is the same as the norm in Lp. Thus Dhk is bounded after all.
Conversely, if the difference quotients are bounded, the same argument used earlier,

involving convergence of a subsequence, this time coming from the Eberlein Smulian the-
orem, Theorem 17.5.12 and showing that every subsequence converges to the same thing,
shows the difference quotients converge weakly in Lp (Rn) to something we can call u,i.
This proves the lemma.

Definition 26.6.9 A function f ∈ Lp (Rn) is said to have weak partial derivatives in Lp (Rn)

if the difference quotients u(·+hei)−u(·)
h for each i = 1,2, · · · ,n are bounded for h ̸= 0. If

f ∈ Lp (Rn;Rm), it has weak partial derivatives in Lp (Rn;Rm) if each component function
has weak partial derivatives in Lp (Rn) .

This following theorem may also be referred to as Rademacher’s theorem.

Theorem 26.6.10 Let h be in Lp (Rn;Rm) , p > n, and suppose it has weak derivatives
h,i ∈ Lp (Rn;Rm) for i = 1, · · · ,n. Then Dh(x) exists a.e. and h is almost everywhere equal
to a continuous function. Also if φ ε is a mollifier,

(h∗φ ε),i = h,i ∗φ ε , (h∗φ ε),i→ h,i

in Lp (Rn;Rm) .

Proof: As before,

(h∗φ ε),i (x)≡ lim
h→0

∫ h(x+hei−y)−h(x−y)
h

φ ε (y)dy

= lim
h→0

∫ h(z+hei)−h(z)
h

φ ε (x− z)dy≡
∫

h,i (z)φ ε (x−y)dy

= h,i ∗φ ε (x)

and now (h∗φ ε),i→ h,i follows as before from a use of Minkowski’s inequality. Letting u
be one of the component functions of h, Morrey’s inequality holds for uε ≡ u∗φ ε . Thus

|uε (x)−uε (y)| ≤C
(∫

B(x,2|x−y|)
|∇uε (z)|p dz

)1/p(
|x−y|1−n/p

)
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Now there exists a subsequence such that uε → u pointwise a.e. and also each uε,i → u,i
pointwise a.e. as well as in Lp. Therefore, for x,y not in a set of measure zero,

|u(x)−u(y)| ≤C
(∫

B(x,2|x−y|)
|∇u(z)|p dz

)1/p(
|x−y|1−n/p

)
which shows the claim about u being equal to a continuous function off a set of measure
zero. Thus h is also continuous off a set of measure zero.

As before, letting g(y) ≡ uε (y)− uε (x)−∇uε (x) · (y−x) and writing Morrey’s in-
equality,

|uε (y)−uε (x)−∇uε (x) · (y−x)|

≤ C
(∫

B(x,2|x−y|)
|∇uε (z)−∇uε (x)|p dz

)1/p(
|x−y|1−n/p

)
Then taking a suitable subsequence and passing to the limit while also letting v = y−x, it
follows

|u(x+v)−u(x)−∇u(x) ·v|

≤ C
(∫

B(x,2|v|)
|∇u(z)−∇u(x)|p dz

)1/p(
|v|1−n/p

)
= C

(
1
|v|n

∫
B(x,2|v|)

|∇u(z)−∇u(x)|p dz
)1/p

|v|

= C′
(

1
B(x,2 |v|)

∫
B(x,2|v|)

|∇u(z)−∇u(x)|p dz
)1/p

|v|

for all x,x+v /∈ N, a set of measure zero. Defining u,∇u at the points of N so that the
inequality continues to hold, Du(x) exists at every Lebesgue point of ∇u. Also Dh exists
a.e. because this is true of the component functions. This proves the theorem.

26.7 Differentiation Of Measures
Recall the Vitali covering theorem in Corollary 13.4.5 on Page 350.

Corollary 26.7.1 Let E ⊆ Rn and let F , be a collection of open balls of bounded radii
such that F covers E in the sense of Vitali. Then there exists a countable collection of
disjoint balls from F , {B j}∞

j=1, such that m(E \∪∞
j=1B j) = 0.

Definition 26.7.2 Let µ be a Radon measure defined on Rn. Then

dµ

dm
(x)≡ lim

r→0

µ (B(x,r))
m(B(x,r))

whenever this limit exists.

It turns out this limit exists for m a.e. x. To verify this here is another definition.
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Definition 26.7.3 Let f (r) be a function having values in [−∞,∞] . Then

lim sup
r→0+

f (r) ≡ lim
r→0

(sup{ f (t) : t ∈ [0,r]})

lim inf
r→0+

f (r) ≡ lim
r→0

(inf{ f (t) : t ∈ [0,r]})

This is well defined because the function r→ inf{ f (t) : t ∈ [0,r]} is increasing and r→
sup{ f (t) : t ∈ [0,r]} is decreasing. Also note that limr→0+ f (r) exists if and only if

lim sup
r→0+

f (r) = lim inf
r→0+

f (r)

and if this happens

lim
r→0+

f (r) = lim inf
r→0+

f (r) = lim sup
r→0+

f (r) .

The claims made in the above definition follow immediately from the definition of what
is meant by a limit in [−∞,∞] and are left for the reader.

Theorem 26.7.4 Let µ be a Borel measure on Rn then dµ

dm (x) exists in [−∞,∞] m a.e.

Proof:Let p < q and let p,q be rational numbers. Define

Npq (M) ≡
{

x ∈ Rn such that lim sup
r→0+

µ (B(x,r))
m(B(x,r))

> q

> p > lim inf
r→0+

µ (B(x,r))
m(B(x,r))

}
∩B(0,M) ,

Npq ≡
{

x ∈ Rn such that lim sup
r→0+

µ (B(x,r))
m(B(x,r))

> q

> p > lim inf
r→0+

µ (B(x,r))
m(B(x,r))

}
,

N ≡
{

x ∈ Rn such that lim sup
r→0+

µ (B(x,r))
m(B(x,r))

>

lim inf
r→0+

µ (B(x,r))
m(B(x,r))

}
.

I will show m(Npq (M)) = 0. Use outer regularity to obtain an open set, V containing
Npq (M) such that

m(Npq (M))+ ε > m(V ) .

From the definition of Npq (M) , it follows that for each x ∈ Npq (M) there exist arbitrar-
ily small r > 0 such that

µ (B(x,r))
m(B(x,r))

< p.



26.7. DIFFERENTIATION OF MEASURES 965

Only consider those r which are small enough to be contained in B(0,M) so that the collec-
tion of such balls has bounded radii. This is a Vitali cover of Npq (M) and so by Corollary
26.7.1 there exists a sequence of disjoint balls of this sort, {Bi}∞

i=1 such that

µ (Bi)< pm(Bi) , m(Npq (M)\∪∞
i=1Bi) = 0. (26.7.22)

Now for x ∈ Npq (M) ∩ (∪∞
i=1Bi) (most of Npq (M)), there exist arbitrarily small balls,

B(x,r) , such that B(x,r) is contained in some set of {Bi}∞

i=1 and

µ (B(x,r))
m(B(x,r))

> q.

This is a Vitali cover of Npq (M)∩ (∪∞
i=1Bi) and so there exists a sequence of disjoint balls

of this sort,
{

B′j
}∞

j=1
such that

m
(
(Npq (M)∩ (∪∞

i=1Bi))\∪∞
j=1B′j

)
= 0, µ

(
B′j
)
> qm

(
B′j
)
. (26.7.23)

It follows from 26.7.22 and 26.7.23 that

m(Npq (M))≤ m((Npq (M)∩ (∪∞
i=1Bi)))≤ m

(
∪∞

j=1B′j
)

(26.7.24)

Therefore,

∑
j

µ
(
B′j
)

> q∑
j

m
(
B′j
)
≥ qm(Npq (M)∩ (∪iBi)) = qm(Npq (M))

≥ pm(Npq (M))≥ p(m(V )− ε)≥ p∑
i

m(Bi)− pε

≥ ∑
i

µ (Bi)− pε ≥∑
j

µ
(
B′j
)
− pε.

It follows
pε ≥ (q− p)m(Npq (M))

Since ε is arbitrary, m(Npq (M)) = 0. Now Npq ⊆ ∪∞
M=1Npq (M) and so m(Npq) = 0. Now

N = ∪p.q∈QNpq

and since this is a countable union of sets of measure zero, m(N) = 0 also. This proves the
theorem.

From Theorem 20.2.5 on Page 605 it follows that if µ is a complex measure then |µ| is
a finite measure. This makes possible the following definition.

Definition 26.7.5 Let µ be a real measure. Define the following measures. For E a mea-
surable set,

µ
+ (E) ≡ 1

2
(|µ|+µ)(E) ,

µ
− (E) ≡ 1

2
(|µ|−µ)(E) .
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These are measures thanks to Theorem 20.2.3 on Page 603 and µ+−µ− = µ . These mea-
sures have values in [0,∞). They are called the positive and negative parts of µ respectively.
For µ a complex measure, define Re µ and Im µ by

Re µ (E) ≡ 1
2

(
µ (E)+µ (E)

)
Im µ (E) ≡ 1

2i

(
µ (E)−µ (E)

)
Then Re µ and Im µ are both real measures. Thus for µ a complex measure,

µ = Re µ
+−Re µ

−+ i
(
Im µ

+− Im µ
−)

= ν1−ν1 + i(ν3−ν4)

where each ν i is a real measure having values in [0,∞).

Then there is an obvious corollary to Theorem 26.7.4.

Corollary 26.7.6 Let µ be a complex Borel measure on Rn. Then dµ

dm (x) exists a.e.

Proof: Letting ν i be defined in Definition 26.7.5. By Theorem 26.7.4, for m a.e. x,
dν i
dm (x) exists. This proves the corollary because µ is just a finite sum of these ν i.

Theorem 20.1.2 on Page 597, the Radon Nikodym theorem, implies that if you have two
finite measures, µ and λ , you can write λ as the sum of a measure absolutely continuous
with respect to µ and one which is singular to µ in a unique way. The next topic is related
to this. It has to do with the differentiation of a measure which is singular with respect to
Lebesgue measure.

Theorem 26.7.7 Let µ be a Radon measure onRn and suppose there exists a µ measurable
set, N such that for all Borel sets, E, µ (E) = µ (E ∩N) where m(N) = 0. Then

dµ

dm
(x) = 0 m a.e.

Proof: For k ∈ N, let

Bk (M) ≡
{

x ∈ NC : lim sup
r→0+

µ (B(x,r))
m(B(x,r))

>
1
k

}
∩B(0,M) ,

Bk ≡
{

x ∈ NC : lim sup
r→0+

µ (B(x,r))
m(B(x,r))

>
1
k

}
,

B ≡
{

x ∈ NC : lim sup
r→0+

µ (B(x,r))
m(B(x,r))

> 0
}
.

Let ε > 0. Since µ is regular, there exists H, a compact set such that H ⊆ N ∩B(0,M)
and

µ (N∩B(0,M)\H)< ε.
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B(0,M)

N∩B(0,M)

H

Bi

Bk(M)

For each x ∈ Bk (M) , there exist arbitrarily small r > 0 such that B(x,r)⊆ B(0,M)\H
and

µ (B(x,r))
m(B(x,r))

>
1
k
. (26.7.25)

Two such balls are illustrated in the above picture. This is a Vitali cover of Bk (M) and so
there exists a sequence of disjoint balls of this sort, {Bi}∞

i=1 such that m(Bk (M)\∪iBi) = 0.
Therefore,

m(Bk (M)) ≤ m(Bk (M)∩ (∪iBi))≤∑
i

m(Bi)≤ k∑
i

µ (Bi)

= k∑
i

µ (Bi∩N) = k∑
i

µ (Bi∩N∩B(0,M))

≤ kµ (N∩B(0,M)\H)< εk

Since ε was arbitrary, this shows m(Bk (M)) = 0.
Therefore,

m(Bk)≤
∞

∑
M=1

m(Bk (M)) = 0

and m(B)≤ ∑k m(Bk) = 0. Since m(N) = 0, this proves the theorem.
It is easy to obtain a different version of the above theorem. This is done with the aid

of the following lemma.

Lemma 26.7.8 Suppose µ is a Borel measure on Rn having values in [0,∞). Then there
exists a Radon measure, µ1 such that µ1 = µ on all Borel sets.

Proof: By assumption, µ (Rn) < ∞ and so it is possible to define a positive linear
functional, L on Cc (Rn) by

L f ≡
∫

f dµ.
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By the Riesz representation theorem for positive linear functionals of this sort, there exists
a unique Radon measure, µ1 such that for all f ∈Cc (Rn) ,∫

f dµ1 = L f =
∫

f dµ.

Now let V be an open set and let Kk ≡
{

x ∈V : dist
(
x,VC

)
≤ 1/k

}
∩B(0,k). Then {Kk} is

an incresing sequence of compact sets whose union is V. Let Kk ≺ fk ≺ V. Then fk (x)→
XV (x) for every x. Therefore,

µ1 (V ) = lim
k→∞

∫
fkdµ1 = lim

k→∞

∫
fkdµ = µ (V )

and so µ = µ1 on open sets. Now if K is a compact set, let

Vk ≡ {x ∈ Rn : dist(x,K)< 1/k} .

Then Vk is an open set and ∩kVk = K. Letting K ≺ fk ≺Vk, it follows that fk (x)→XK (x)
for all x ∈ Rn. Therefore, by the dominated convergence theorem with a dominating func-
tion, XRn

µ1 (K) = lim
k→∞

∫
fkdµ1 = lim

k→∞

∫
fkdµ = µ (K)

and so µ and µ1 are equal on all compact sets. It follows µ = µ1 on all countable unions
of compact sets and countable intersections of open sets.

Now let E be a Borel set. By regularity of µ1, there exist sets, H and G such that
H is the countable union of an increasing sequence of compact sets, G is the countable
intersection of a decreasing sequence of open sets, H ⊆ E ⊆ G, and µ1 (H) = µ1 (G) =
µ1 (E) . Therefore,

µ1 (H) = µ (H)≤ µ (E)≤ µ (G) = µ1 (G) = µ1 (E) = µ1 (H) .

therefore, µ (E) = µ1 (E) and this proves the lemma.

Corollary 26.7.9 Suppose µ is a complex Borel measure defined on Rn for which there
exists a µ measurable set, N such that for all Borel sets, E, µ (E) = µ (E ∩N) where
m(N) = 0. Then

dµ

dm
(x) = 0 m a.e.

Proof: Each of Re µ+,Re µ−, Im µ+, and Im µ− are real measures having values in
[0,∞) and so by Lemma 26.7.8 each is a Radon measure having the same property that µ

has in terms of being supported on a set of m measure zero. Therefore, for ν equal to any
of these, dν

dm (x) = 0 m a.e. This proves the corollary.

26.8 Exercises
1. Suppose A and B are sets of positive Lebesgue measure in Rn. Show that A−B must

contain B(c,ε) for some c ∈ Rn and ε > 0.

A−B≡ {a−b : a ∈ A and b ∈ B} .
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Hint: First assume both sets are bounded. This creates no loss of generality. Next
there exist a0 ∈ A, b0 ∈ B and δ > 0 such that∫

B(a0,δ )
XA (t)dt >

3
4

m(B(a0,δ )) ,
∫

B(b0,δ )
XB (t)dt >

3
4

m(B(b0,δ )) .

Now explain why this implies

m(A−a0∩B(0,δ ))>
3
4

m(B(0,δ ))

and
m(B−b0∩B(0,δ ))>

3
4

m(B(0,δ )) .

Explain why

m((A−a0)∩ (B−b0))>
1
2

m(B(0,δ ))> 0.

Let
f (x)≡

∫
XA−a0 (x+ t)XB−b0 (t)dt.

Explain why f (0) > 0. Next explain why f is continuous and why f (x) > 0 for all
x∈ B(0,ε) for some ε > 0. Thus if |x|< ε, there exists t such that x+ t∈ A−a0 and
t ∈ B−b0. Subtract these.

2. Show M f is Borel measurable by verifying that [M f > λ ] ≡ Eλ is actually an open
set. Hint: If x ∈ Eλ then for some r,

∫
B(x,r) | f |dm > λm(B(x,r)) . Then for δ a small

enough positive number,
∫

B(x,r) | f |dm > λm(B(x,r+2δ )) . Now pick y ∈ B(x,δ )
and argue that B(y,δ + r)⊇ B(x,r) . Therefore show that,∫

B(y,δ+r)
| f |dm >

∫
B(x,r)

| f |dm > λB(x,r+2δ )≥ λm(B(y,r+δ )) .

Thus B(x,δ )⊆ Eλ .

3. Consider the following nested sequence of compact sets, {Pn}.Let P1 = [0,1], P2 =[
0, 1

3

]
∪
[ 2

3 ,1
]
, etc. To go from Pn to Pn+1, delete the open interval which is the

middle third of each closed interval in Pn. Let P = ∩∞
n=1Pn. By the finite intersection

property of compact sets, P ̸= /0. Show m(P) = 0. If you feel ambitious also show
there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus, although P has measure zero, it has the same number of points in it as
[0,1] in the sense that there is a one to one and onto mapping from one to the other.
Hint: There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the topological properties of the Cantor set rather than some
silly representation in terms of sums of powers of two and three. All you need to do
is use the Schroder Bernstein theorem and show there is an onto map from the Cantor
set to [0,1]. If you do this right and remember the theorems about characterizations
of compact metric spaces, Proposition 7.6.5 on Page 144, you may get a pretty good
idea why every compact metric space is the continuous image of the Cantor set.
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4. Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of
these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor
set of Problem 3. This function is called the Cantor function.It is a very important
example to remember. Note it has derivative equal to zero a.e. and yet it succeeds
in climbing from 0 to 1. Explain why this interesting function is not absolutely
continuous although it is continuous. Hint: This isn’t too hard if you focus on
getting a careful estimate on the difference between two successive functions in the
list considering only a typical small interval in which the change takes place. The
above picture should be helpful.

5. A function, f : [a,b]→ R is Lipschitz if | f (x)− f (y)| ≤ K |x− y| . Show that every
Lipschitz function is absolutely continuous. Thus every Lipschitz function is differ-
entiable a.e., f ′ ∈ L1, and f (y)− f (x) =

∫ y
x f ′ (t)dt.

6. Suppose f ,g are both absolutely continuous on [a,b] . Show the product of these
functions is also absolutely continuous. Explain why ( f g)′ = f ′g+g′ f and show the
usual integration by parts formula

f (b)g(b)− f (a)g(a)−
∫ b

a
f g′dt =

∫ b

a
f ′gdt.

7. In Problem 4 f ′ failed to give the expected result for
∫ b

a f ′dx 1 but at least f ′ ∈ L1.
Suppose f ′ exists for f a continuous function defined on [a,b] . Does it follow that f ′

is measurable? Can you conclude f ′ ∈ L1 ([a,b])?

8. A sequence of sets, {Ei} containing the point x is said to shrink to x nicely if there
exists a sequence of positive numbers, {ri} and a positive constant, α such that ri→ 0
and

m(Ei)≥ αm(B(x,ri)) , Ei ⊆ B(x,ri) .

Show the above theorems about differentiation of measures with respect to Lebesgue
measure all have a version valid for Ei replacing B(x,r) .

9. Suppose F (x) =
∫ x

a f (t)dt. Using the concept of nicely shrinking sets in Problem 8
show F ′ (x) = f (x) a.e.

1In this example, you only know that f ′ exists a.e.
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10. A random variable, X is a measurable real valued function defined on a measure
space, (Ω,S ,P) where P is just a measure with P(Ω) = 1 called a probability
measure. The distribution function for X is the function, F (x) ≡ P([X ≤ x]) in
words, F (x) is the probability that X has values no larger than x. Show that F is
a right continuous increasing function with the property that limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.

11. Suppose F is an increasing right continuous function.

(a) Show that L f ≡
∫ b

a f dF is a well defined positive linear functional on Cc (R)
where here [a,b] is a closed interval containing the support of f ∈Cc (R) .

(b) Using the Riesz representation theorem for positive linear functionals on Cc (R) ,
let µ denote the Radon measure determined by L. Show that µ ((a,b]) =F (b)−
F (a) and µ ({b}) = F (b)−F (b−) where F (b−)≡ limx→b−F (x) .

(c) Review Corollary 20.1.4 on Page 601 at this point. Show that the conditions
of this corollary hold for µ and m. Consider µ⊥+ µ ||, the Lebesgue decom-
position of µ where µ ||≪ m and there exists a set of m measure zero, N such
that µ⊥ (E) = µ⊥ (E ∩N) . Show µ ((0,x]) = µ⊥ ((0,x])+

∫ x
0 h(t)dt for some

h ∈ L1 (m) . Using Theorem 26.7.7 show h(x) = F ′ (x) m a.e. Explain why
F (x) = F (0)+S (x)+

∫ x
0 F ′ (t)dt for some function, S (x) which is increasing

but has S′ (x) = 0 a.e. Note this shows in particular that a right continuous
increasing function has a derivative a.e.

12. Suppose now that G is just an increasing function defined on R. Show that G′ (x)
exists a.e. Hint: You can mimic the proof of Theorem 26.7.4. The Dini derivates are
defined as

D+G(x) ≡ lim inf
h→0+

G(x+h)−G(x)
h

,

D+G(x) ≡ lim sup
h→0+

G(x+h)−G(x)
h

D−G(x) ≡ lim inf
h→0+

G(x)−G(x−h)
h

,

D−G(x) ≡ lim sup
h→0+

G(x)−G(x−h)
h

.

When D+G(x) = D+G(x) the derivative from the right exists and when D−G(x) =
D−G(x) , then the derivative from the left exists. Let (a,b) be an open interval and
let

Npq ≡
{

x ∈ (a,b) : D+G(x)> q > p > D+G(x)
}
.

Let V ⊆ (a,b) be an open set containing Npq such that m(V ) < m(Npq)+ ε . Show
using a Vitali covering theorem there is a disjoint sequence of intervals contained in
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V , {(xi,xi +hi)}∞

i=1 such that

G(xi +hi)−G(xi)

hi
< p.

Next show there is a disjoint sequence of intervals
{(

x′i,x
′
j +h′j

)}∞

j=1
such that each

of these is contained in one of the former intervals and

G
(

x′j +h′j
)
−G

(
x′j
)

h′j
> q, ∑

j
h′j ≥ m(Npq) .

Then

qm(Npq) ≤ q∑
j

h′j ≤∑
j

G
(
x′j +h′j

)
−G

(
x′j
)
≤∑

i
G(xi +hi)−G(xi)

≤ p∑
i

hi ≤ pm(V )≤ p(m(Npq)+ ε) .

Since ε was arbitrary, this shows m(Npq) = 0. Taking a union of all Npq for p,q
rational, shows the derivative from the right exists a.e. Do a similar argument to
show the derivative from the left exists a.e. and then show the derivative from the left
equals the derivative from the right a.e. using a simlar argument. Thus G′ (x) exists
on (a,b) a.e. and so it exists a.e. on R because (a,b) was arbitrary.



Chapter 27

Orlitz Spaces
27.1 Basic Theory

All the theorems about the Lp spaces have generalizations to something called an Orlitz
space. [1], [94] Instead of the convex function, A(t) = t p/p, one considers a more general
convex increasing function called an N function.

Definition 27.1.1 A : [0,∞)→ [0,∞) is an N function if the following two conditions hold.

A is convex and strictly increasing (27.1.1)

lim
t→0+

A(t)
t

= 0, lim
t→∞

A(t)
t

= ∞. (27.1.2)

For A an N function,
Ã(s)≡max{st−A(t) : t ≥ 0} . (27.1.3)

As an example see the following picture of a typical N function.

A(t)

Note that from the assumption, 27.1.2 the maximum in the definition of Ã must exist.
This is because for t ̸= 0

(s−A(t)/t) t

is negative for all t large enough. On the other hand, it equals 0 when t = 0 and so it suffices
to consider only t in a compact set.

Lemma 27.1.2 Let φ : R→ R be a convex function. Then φ is Lipschitz continuous on
[a,b] .

Proof: Since it is convex, the difference quotients,

φ (t)−φ (a)
t−a

are increasing because by convexity, if a < t < x

t−a
x−a

φ (x)+
(

1− t−a
x−a

)
φ (a)≥ φ (t)

973
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and this reduces to
φ (t)−φ (a)

t−a
≤ φ (x)−φ (a)

x−a
.

Also these difference quotients are bounded below by

φ (a)−φ (a−1)
1

= φ (a)−φ (a−1) .

Let

A≡ inf
{

φ (t)−φ (a)
t−a

: t ∈ (a,b)
}
.

Then A is some finite real number. Similarly there exists a real number B such that for all
t ∈ (a,b) ,

B≥ φ (b)−φ (t)
b− t

.

Now let a≤ s < t ≤ b. Then

φ (t)−φ (s)
t− s

≥ φ (t)−θφ (a)− (1−θ)φ (t)
t− s

where θ is such that θa+(1−θ) t = s. Thus

θ =
t− s
t− t1

and so the above implies

φ (t)−φ (s)
t− s

≥ t− s
t− t1

φ (t)−φ (a)
t− s

=
φ (t)−φ (a)

t− t1
≥ A.

Similarly,

φ (t)−φ (s)
t− s

≤ θφ (b)+(1−θ)φ (s)−φ (s)
t− s

=
t− s
b− s

φ (b)−φ (s)
t− s

≤ B.

It follows
|φ (t)−φ (s)| ≤ (|A|+ |B|) |t− s|

and this proves the lemma.
The following is like the inequality, st ≤ t p/p+ sq/q, important in the study of Lp

spaces.

Proposition 27.1.3 If A is an N function, then so is Ã and

A(t) = max
{

ts− Ã(s) : s≥ 0
}
, (27.1.4)
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so ˜̃A = A. Also
st ≤ A(t)+ Ã(s) for all s, t ≥ 0 (27.1.5)

and for all s > 0,

A

(
Ã(s)

s

)
≤ Ã(s) . (27.1.6)

Proof: First consider the claim Ã is convex. Let λ ∈ [0,1] .

Ã(λ s1 +(1−λ )s2)≡max{[s1λ +(1−λ )s2] t−A(t) : t ≥ 0}

≤ λ max{s1t−A(t) : t ≥ 0}+(1−λ )max{s2t−A(t) : t ≥ 0}

= λ Ã(s1)+(1−λ ) Ã(s2) .

It is obvious Ã is stictly increasing because st is strictly increasing in s. Next consider
27.1.2.

For s > 0 let ts denote the number where the maximum is achieved. That is,

Ã(s)≡ sts−A(ts) .

Thus
Ã(s)

s
= ts−

A(ts)
s
≥ 0. (27.1.7)

It follows from this that
lim

s→0+
ts = 0

since otherwise, a contradiction results to 27.1.7, the expression becoming negative for
small enough s. Thus

ts ≥
Ã(s)

s
≥ 0

and this shows

lim
s→0+

Ã(s)
s

= 0.

which shows 27.1.2.
To verify the second part of 27.1.2, let ts be as just described. Then for any t > 0

Ã(s)
s

= ts−
A(ts)

s
≥ t− A(t)

s

It follows

lim inf
s→∞

Ã(s)
s
≥ t.

Since t is arbitrary, this proves the second part of 27.1.2.
The inequality 27.1.5 follows from the definition of Ã(s) .
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Next consider 27.1.4. It must be shown that

A(t0) = max
{

t0s− Ã(s) : s≥ 0
}
.

To do so, first note

Ã(s) = max{st−A(t) : t ≥ 0} ≥ st0−A(t0) .

Hence
max

{
t0s− Ã(s) : s≥ 0

}
≤max{t0s− [st0−A(t0)]}= A(t0) .

Now let

s0 ≡ inf
{

A(t)−A(t0)
t− t0

: t > t0

}
.

By convexity, the above difference quotients are nondecreasing in t and so

s0 (t− t0)≤ A(t)−A(t0)

for all t ̸= t0. Hence for all t,

s0t−A(t)≤ s0t0−A(t0)

and so
Ã(s0) = s0t0−A(t0)

implying
A(t0) = s0t0− Ã(s0)≤max

{
st0− Ã(s) : s≥ 0

}
≤ A(t0) .

Therefore, 27.1.4 holds.
Consider 27.1.6 next. To do so, let a = A′ so that

A(t) =
∫ t

0
a(r)dr, a increasing.

This is possible by Rademacher’s theorem, Corollary 26.4.3 and the fact that since A is
convex, it is locally Lipshitz found in Lemma 27.1.2 above. That a is increasing follows
from convexity of A. Here is why. For a.e. s, t ≥ 0, and letting λ ∈ [0,1] ,

A(s+λ (t− s))−A(s)
λ

≤ (1−λ )A(s)+λA(t)−A(s)
λ

= A(t)−A(s)

Then passing to a limit as λ → 0+,

a(s)(t− s)≤ A(t)−A(s) .

Similarly
a(t)(s− t)≤ A(s)−A(t)
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and so
(a(t)−a(s))(t− s)≥ 0.

(If you like, you can simply assume from the beginning that A(t) is given this way as an
integral of a positive increasing function, a, and verify directly that such an A is convex and
satisfies the properties of an N function. There is no loss of generality in doing so.) Thus
geometrically, A(t) equals the area under the curve defined by a and above the x axis from
x = 0 to x = t. In the definition of Ã(s) let ts be the point where the maximum is achieved.
Then

Ã(s) = sts−A(ts)

and so at this point, Ã(s)+A(ts) = sts. This means that Ã(s) is the area to the left of the
graph of a which is to the right of the y axis for y between 0 and a(ts) and that in fact
a(ts) = s. The following picture illustrates the reasoning which follows.

Ã(s)

t0

s

A(t0)

graph of a

Therefore,

Ã(s)
s

= ts−
A(ts)

s
= ts−

1
s

∫ ts

0
a(r)dr

= ts−
1

a(ts)

∫ ts

0
a(r)dr =

1
a(ts)

(
tss−

∫ ts

0
a(r)dr

)
and so

A

(
Ã(s)

s

)
=

∫ Ã(s)/s

0
a(r)dr =

∫ 1
a(ts)

∫ ts
0 (s−a(r))dr

0
a(τ)dτ

≤
∫ ts

0
s−a(r)dr = sts−A(ts) = Ã(s) .

The inequality results from replacing a(τ) with a(ts) in the last integral on the top line.
An example of an N function is A(t) = t p

p for t ≥ 0 and p > 1. For this example,

Ã(s) = sp′

p′ where 1
p +

1
p′ = 1.

Definition 27.1.4 Let A be an N function and let (Ω,S , µ) be a measure space. Define

KA (Ω)≡
{

u measurable such that
∫

Ω

A(|u|)dµ < ∞

}
. (27.1.8)
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This is called the Orlitz class. Also define

LA (Ω)≡ {λu : u ∈ KA (Ω) and λ ∈ F} (27.1.9)

where F is the field of scalars, assumed to be either R or C.
The pair (A,Ω) is called ∆ regular if either of the following conditions hold.

A(rx)≤ KrA(x) for all x ∈ [0,∞) (27.1.10)

or µ (Ω)< ∞ and for all r > 0, there exists Mr and Kr > 0 such that

A(rx)≤ KrA(x) for all x≥Mr. (27.1.11)

Note there are N functions which are not ∆ regular. For example, consider

A(x)≡ ex2 −1.

It can’t be ∆ regular because

lim
r→∞

er2x2 −1
ex2 −1

= ∞.

However, functions like xp/p for p > 1 are ∆ regular.
Then the following proposition is important.

Proposition 27.1.5 If (A,Ω) is ∆ regular, then KA (Ω) = LA (Ω) . In any case, LA (Ω) is a
vector space and KA (Ω)⊆ LA (Ω) .

Proof: Suppose (A,Ω) is ∆ regular. Then I claim KA (Ω) is a vector space. This will
verify KA (Ω) = LA (Ω) . Let f ,g ∈ KA (Ω) and suppose 27.1.10. Then

A(| f +g|) = A
(

2
(
| f +g|

2

))
≤ K2A

(
| f +g|

2

)
≤ K2

1
2
[A(| f |)+A(|g|)]

so f +g ∈ KA (Ω) in this case. Now suppose 27.1.11∫
Ω

A(| f +g|)dµ =
∫
[| f+g|≤M2]

A(| f +g|)dµ +
∫
[| f+g|>M2]

A(| f +g|)dµ

≤ A(M2)µ (Ω)+
∫

Ω

K2

2
(A(| f |)+A(|g|))dµ < ∞.

Thus f +g ∈ KA (Ω) in this case also.
Next consider scalar multiplication. First consider the case of 27.1.10. If f ∈ KA (Ω)

and α ∈ F, ∫
Ω

A(|α| | f |)dµ ≤ K|α|
∫

Ω

A( f )dµ

so in the case of 27.1.10 α f ∈ KA (Ω) whenever f ∈ KA (Ω) . In the case of 27.1.11,∫
Ω

A(|α| | f |)dµ =
∫
[|α|| f |≤M|α|]

A(|α| | f |)dµ +
∫
[|α|| f |>M|α|]

A(|α| | f |)dµ

≤ A
(
M|α|

)
µ (Ω)+

∫
Ω

K|α|A(| f |)dµ < ∞.
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This establishes the first part of the proposition.
Next consider the claim that LA (Ω) is always a vector space. First note KA (Ω) is

always convex due to convexity of A. Let λu,αv ∈ LA (Ω) where u,v ∈ KA (Ω) and let a,b
be scalars in F. Then

aλu+bαv = |aλ |ωu+ |bα|θv

where |ω|= |θ |= 1. Then

= (|aλ |+ |bα|)
(
|aλ |ωu+ |bα|θv
|aλ |+ |bα|

)
which exhibits aλu + bαv as a multiple of a convex combination of two elements of
KA (Ω) ,ωu and θv. Thus LA (Ω) is closed with respect to linear combinations. This shows
it is a vector space. This proves the proposition.

The following norm for LA (Ω) is due to Luxemburg [94]. You might compare this to
the definition of a Minkowski functional. The definition of LA (Ω) above was cooked up so
that the following norm does make sense.

Definition 27.1.6 Define

||u||A = ||u||A,Ω ≡ inf
{

t > 0 :
∫

Ω

A
(
|u(x)|

t

)
dµ ≤ 1

}
.

If two functions of LA (Ω) are equal a.e. they are considered to be the same in the usual
way.

Proposition 27.1.7 The number defined in Definition 27.1.6 is a norm on LA (Ω) . Also, if
Ω1 ⊆Ω, then

||u||A,Ω1
≤ ||u||A,Ω .

Proof: Clearly ||u||A≥ 0. Is ||u||A finite for u∈ LA (Ω)? Let u∈ LA (Ω) so u= λv where
v ∈ KA (Ω) . Then for s > 0∫

Ω

A
(
|u|

s |λ |

)
dµ =

∫
Ω

A
(
|v|
s

)
dµ < ∞

whenever s > 1. Therefore, from the dominated convergence theorem, if s is large enough,∫
Ω

A
(
|u|

s |λ |

)
dµ ≤ 1

and this shows there are values of t > 0 such that∫
Ω

A
(
|u(x)|

t

)
dµ ≤ 1.

Thus ||u||A is finite as hoped.
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Now suppose ||u||A = 0 and let

En ≡
{

x : |u(x)| ≥ 1
n

}
.

Then for arbitrarily small values of t,∫
En

A
(
(1/n)

t

)
dµ ≤

∫
Ω

A
(
|u(x)|

t

)
dµ ≤ 1

and so for arbitrarily small values of t,

A
(
(1/n)

t

)
µ (En)≤ 1.

Letting t→ 0+ yields a contradiction unless µ (En) = 0. Now

µ ([|u(x)|> 0])≤
∞

∑
n=1

µ (En) = 0.

Thus u = 0 as claimed.
Consider the other axioms of a norm. Let u,v ∈ LA (Ω) and let α,β be scalars. Then

||αu+βv||A ≡ inf
{

t > 0 :
∫

Ω

A
(
|u(x)+ v(x)|

t

)
dµ ≤ 1

}
Without loss of generality ||u||A , ||v||A < ∞ since otherwise there is nothing to prove.

||u+ v||A ≡ inf
{

t > 0 :
∫

Ω

A
(
|αu(x)+βv(x)|

t

)
dµ ≤ 1

}
.

≤ inf
{

t > 0 :
∫

Ω

A
(
|α| |u|+ |β | |v|

t

)
dµ ≤ 1

}

= inf

{
t > 0 :

∫
Ω

A

(
|α| (|α|+|β |)|u|t + |β | (|α|+|β |)|v|t

(|α|+ |β |)

)
dµ ≤ 1

}

≤ inf
{

t > 0 :
|α|

(|α|+ |β |)

∫
Ω

A
(

|u|
t/(|α|+ |β |)

)
dµ ≤ 1

}
+ inf

{
t > 0 :

|β |
(|α|+ |β |)

∫
Ω

A
(

|v|
t/(|α|+ |β |)

)
dµ ≤ 1

}

= |α| inf
{

t/(|α|+ |β |)> 0 :
∫

Ω

A
(

|u|
t/(|α|+ |β |)

)
dµ ≤ 1

}
+ |β | inf

{
t/(|α|+ |β |)> 0 :

∫
Ω

A
(

|v|
t/(|α|+ |β |)

)
dµ ≤ 1

}
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= |α| ||u||A + |β | ||v||A .
Now let Ω1 ⊆Ω.

||u||A,Ω1
≡ inf

{
t > 0 :

∫
Ω1

A
(
|u(x)|

t

)
dµ ≤ 1

}
≤ inf

{
t > 0 :

∫
Ω

A
(
|u(x)|

t

)
dµ ≤ 1

}
≡ ||u||A,Ω .

This occurs because if t is in the second set, then it is in the first so the infimum of the
second is no smaller than that of the first. This proves the proposition.

Next it is shown that LA (Ω) is a Banach space.

Theorem 27.1.8 LA (Ω) is a Banach space and every Cauchy sequence has a subsequence
which also converges pointwise a.e.

Proof: Let { fn} be a Cauchy sequence in LA (Ω) and select a subsequence
{

fnk

}
such

that ∣∣∣∣ fnk+1 − fnk

∣∣∣∣
A ≤ 2−k.

Thus

fnm (x) = fn1 (x)+
m−1

∑
k=1

fnk+1 (x)− fnk (x) .

Let

gm (x)≡ | fn1 (x)|+
m−1

∑
k=1

∣∣ fnk+1 (x)− fnk (x)
∣∣ .

Then

||gm||A ≤ || fn1 ||A +
∞

∑
k=1

2−k ≡ K < ∞.

Let

g(x)≡ lim
m→∞

gm (x)≡ | fn1 (x)|+
∞

∑
k=1

∣∣ fnk+1 (x)− fnk (x)
∣∣ .

Now K > ||gm||A so

1≥
∫

Ω

A
(
|gm (x)|

K

)
dµ.

By the monotone convergence theorem,

1≥
∫

Ω

A
(
|g(x)|

K

)
dµ

showing g(x)< ∞ a.e., say for all x /∈ E where E is a measurable set having measure zero.
Let

f (x) ≡ XEC (x)

(
fn1 (x)+

∞

∑
k=1

(
fnk+1 (x)− fnk (x)

))
= lim

m→∞
XEC (x) fnm (x) .
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Thus f is measurable and fnm (x)→ f (x) a.e. as m→ ∞.
For l > k, ∣∣∣∣ fnk − fnl

∣∣∣∣
A <

1
2k−2

and so

1≥
∫

Ω

A

∣∣ fnl (x)− fnk (x)
∣∣(

1
2k−2

)
dµ.

By Fatou’s lemma, let l→ ∞ and obtain

1≥
∫

Ω

A

∣∣ f (x)− fnk (x)
∣∣(

1
2k−2

)
dµ

and so
(

f − fnk

)
2k−2 ∈ KA (Ω) and so f − fnk ∈ LA (Ω) , fnk ∈ LA (Ω) . Since LA (Ω) is a

vector space, this shows f ∈ LA (Ω) . Also

∣∣∣∣ f − fnk

∣∣∣∣
A ≤

1
2k−2 ,

showing that fnk → f in LA (Ω) . Since a subsequence converges in LA (Ω) , it follows the
original Cauchy sequence also converges to f in LA (Ω). This proves the theorem.

Next consider the space, EA (Ω) which will be a subspace of the Orlitz class, KA (Ω)
just as LA (Ω) is a vector space containing the Orlitz class.

Definition 27.1.9 Let S denote the set of simple functions, s, such that

µ ({x : s(x) ̸= 0})< ∞.

Then define
EA (Ω)≡ the closure in LA (Ω) of S.

Proposition 27.1.10 EA (Ω)⊆ KA (Ω)⊆ LA (Ω) and they are all equal if (A,Ω) is ∆ regu-
lar.

Proof: First note that S⊆ KA (Ω)∩EA (Ω) . Let f ∈ EA (Ω) . Then by the definition of
EA (Ω) , there exists sn ∈ S such that

||sn− f ||A→ 0.

Therefore, for n large enough,

||sn− f ||A <
1
2

and so ∫
Ω

A

(
| f − sn|( 1

2

) )
dµ =

∫
Ω

A(|2 f −2sn|)dµ < ∞.
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Since S⊆ KA (Ω) , ∫
Ω

A(2 |sn|)dµ < ∞.

Therefore, 2 f −2sn ∈ KA (Ω) and 2sn ∈ KA (Ω) and so, since KA (Ω) is convex,

2 f −2sn

2
+

2sn

2
= f ∈ KA (Ω) .

This shows EA (Ω)⊆ KA (Ω) .
Next consider the claim these spaces are all equal in the case that (A,Ω) is ∆ regular. It

was already shown in Proposition 27.1.5 that in this case,

KA (Ω) = LA (Ω)

so it remains to show EA (Ω) = KA (Ω). Is every f ∈KA (Ω) the limit in LA (Ω) of functions
from S? First suppose µ (Ω) = ∞. Then A(r | f |) ≤ KrA(| f |) and so A(r | f |) ∈ L1 (Ω) for
any r. Let ε > 0 be given and let

Ωδ ≡ {x : | f (x)| ≥ δ}

Then by the dominated convergence theorem,

lim
δ→0+

∫
Ω\Ωδ

A
(
| f |
ε

)
dµ = 0.

Choose δ such that ∫
Ω\Ωδ

A
(
| f |
ε

)
dµ <

1
2

and let sn→ f XΩδ
pointwise with |sn| ≤

∣∣ f XΩδ

∣∣ . Then sn = 0 on Ω\Ωδ and so

∫
Ω

A
(
| f − sn|

ε

)
dµ =

∫
Ωδ

A
(
| f − sn|

ε

)
dµ

+
∫

Ω\Ωδ

A
(
| f |
ε

)
dµ ≤

∫
Ωδ

A
(
| f − sn|

ε

)
dµ +

1
2
.

By the dominated convergence theorem,∫
Ωδ

A
(
| f − sn|

ε

)
dµ <

1
2

for all n large enough. Therefore, for such n,∫
Ω

A
(
| f − sn|

ε

)
dµ < 1

and so || f − sn||A ≤ ε showing that in this case EA (Ω)⊇ KA (Ω) since ε > 0 is arbitrary.
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Now suppose µ (Ω)< ∞. In this case, only assume A(rt)≤ KrA(t) for t large enough,
say for t ≥Mr. However, this is enough to conclude A(r | f |)∈ L1 (Ω) for any r > 0 because
µ (Ω)< ∞ and f ∈ KA (Ω) . Let sn→ f pointwise with |sn| ≤ | f | , and s simple. Then

A
(
| f − sn|

ε

)
≤ A

(
2
ε
| f |
)
∈ L1 (Ω)

and so the dominated convergence theorem implies

lim
n→∞

∫
Ω

A
(
| f − sn|

ε

)
dµ = 0.

Hence ∫
Ω

A
(
| f − sn|

ε

)
dµ < 1

for all n large enough and so for such n,

|| f − sn||A ≤ ε

which proves the proposition.
It turns out EA (Ω) is the largest linear subspace of KA (Ω) .

Proposition 27.1.11 EA (Ω) is the maximal linear subspace of KA (Ω) .

Proof: Let M be a subspace of KA (Ω) . Is M ⊆ EA (Ω)? For f ∈M, f/ε ∈ KA (Ω) for
all ε > 0 because of the fact that M is a subspace and f ∈M. Thus A(| f |/ε) is in L1 (Ω).
Let ε > 0 be given, choose δ > 0 and let

Fδ ≡ {x : | f (x)| ≤ δ}

By the dominated convergence theorem there exists δ small enough that∫
Fδ

A
(

2 | f |
ε

)
dµ <

1
2
.

Let |sn| ≤ | f |XFC
δ

and sn→ f XFC
δ

pointwise for sn a simple function. Thus sn = 0 on Fδ

and so sn ∈ S because µ
(
FC

δ

)
< ∞. Now∫

Ω

A
(
| f − sn|

ε

)
dµ =

∫
Fδ

A
(
| f |
ε

)
dµ +

∫
FC

δ

A
(
| f − sn|

ε

)
dµ

<
1
2
+
∫

FC
δ

A
(
| f − sn|

ε

)
dµ.

The integrand in the last integral is no larger than 2| f |
ε

and so by the dominated convergence
theorem, this integral converges to 0 as n→ ∞. In particular, it is eventually less than 1

2 .
Therefore, for such n,

|| f − sn||A ≤ r.
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Since r is arbitrary, this shows that f ∈ EA (Ω) which proves the proposition.
Next is a comparison of these function spaces for different choices of the N function.

The notation X ↪→Y for two normed linear spaces means X is a subset of Y and the identity
map is continuous.

Proposition 27.1.12 LB (Ω) ↪→ LA (Ω) if either

B(t)≥ A(t) for all t ≥ 0 (27.1.12)

or if
B(t)≥ A(t) for all t > M (27.1.13)

and µ (Ω)< ∞.

Proof: Let f ∈ LB (Ω) and let ∫
Ω

B
(
| f |
t

)
dµ ≤ 1.

Then if 27.1.12 holds, it follows ∫
Ω

A
(
| f |
t

)
dµ ≤ 1.

Thus if t ≥ || f ||B then t ≥ || f ||A which implies || f ||B ≥ || f ||A .
Now suppose 27.1.13 holds and µ (Ω) < ∞. Then max(A,B) is an N function domi-

nating both A and B for all t. By what was just shown Lmax(A,B) (Ω) ↪→ LB (Ω) . Then let
f ∈ LB (Ω) and let ∫

Ω

B
(
| f |
t

)
dµ < 1.

Then ∫
Ω

max(A,B)
(
| f |
t

)
dµ =

∫[
| f |
t >M

]B
(
| f |
t

)
dµ

+
∫[
| f |
t ≤M

]max(A,B)
(
| f |
t

)
dµ

≤
∫

Ω

B
(
| f |
t

)
dµ +µ (Ω)max(A,B)(M)< ∞.

It follows | f |t ∈ Kmax(A,B) (Ω) and so f ∈ Lmax(A,B) (Ω) . Hence LB (Ω) = Lmax(A,B) (Ω) and
the identity map from Lmax(A,B) (Ω) to LB (Ω) is continuous. Therefore, by the open map-
ping theorem, the norms || ||B and || ||max(A,B) are equivalent. Hence for f ∈ LB (Ω) ,

|| f ||A ≤ || f ||max(A,B) ≤C || f ||B .

This proves the proposition.
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Corollary 27.1.13 Suppose there exists C > 0, a constant such that either

CB(t)≥ A(t)

for all t ≥ 0 or
CB(t)≥ A(t)

for all t > M and µ (Ω)< ∞. Then

LB (Ω) ↪→ LA (Ω) .

Proof: If f ∈ LB (Ω) then f = λu where u ∈ KB (Ω) = KCB (Ω) . Hence LCB (Ω) =
LB (Ω) and the two norms on LB (Ω) ,

|| ||CB , and || ||B ,

are equivalent norms by the open mapping theorem. Hence by the Proposition 27.1.12, if
f ∈ LB (Ω) ,

|| f ||A ≤C1 || f ||CB ≤C2 || f ||B
which proves the corollary.

Definition 27.1.14 A increases essentially more slowly than B if for all a > 0,

lim
t→∞

A(at)
B(t)

= 0

The next theorem gives added information on how these spaces are related in case that
one N function increases essentially more slowly than the other.

Theorem 27.1.15 Suppose µ (Ω) < ∞ and A increases essentially more slowly than B.
Then

LB (Ω) ↪→ EA (Ω)

Proof: Let f ∈ LB (Ω) . Then there exists λ > 0 such that∫
Ω

B
(
| f |
λ

)
dµ ≤ 1.

Let r be such that for t ≥ r,
A(|λ | t)≤ B(t) .

Then ∫
Ω

A(| f |)dµ =
∫
[| f |≥r]

A(| f |)dµ +
∫
[| f |<r]

A(| f |)dµ

≤
∫

Ω

B
(
| f |
|λ |

)
dµ +A(r)µ (Ω)

< 1+A(r)µ (Ω) .
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Therefore, LB (Ω) is a linear space contained in KA (Ω) . It follows from Proposition 27.1.11
that LB (Ω)⊆ EA (Ω) . This proves the theorem.

The norm of EA (Ω) is the same as the norm on LA (Ω) so this shows LB (Ω) ↪→ LA (Ω) .
Note that for 1 < p < q and A(t) = t p/p,B(t) = tq/q,

A(rt) = rpt p

and

lim
t→∞

A(rt)
B(t)

= 0

showing this case is covered by the above theorem.
If A is increasing essentially more slowly than B and µ (Ω) < ∞, this has shown the

following inclusions

EB (Ω)⊆ KB (Ω)⊆ LB (Ω) ↪→ EA (Ω)⊆ KA (Ω)⊆ LA (Ω) .

In the case of A(t) = t p/p,B(t) = tq/q both (A,Ω) and (B,Ω) are ∆ regular and so in this
case or any other case where the N functions are ∆ regular, the above sequence of inclusions
reduces to

EB (Ω) = KB (Ω) = LB (Ω) ↪→ EA (Ω) = KA (Ω) = LA (Ω) .

27.2 Dual Spaces In Orlitz Space
Recall that for s, t ≥ 0,

st ≤ A(t)+ Ã(s) .

Let v ∈ LÃ (Ω) and u ∈ LA (Ω) . Then there is a version of Holder’s inequality as follows.
For ε > 0,

|v|
||v||Ã + ε

∈ KÃ (Ω) ,
|u|

||u||A + ε
∈ KA (Ω) .

Therefore, ∫
Ω

(
|u|

||u||A + ε

)(
|v|

||v||Ã + ε

)
dµ ≤

∫
Ω

A
(

|u|
||u||A + ε

)
dµ

+
∫

Ω

Ã
(

|v|
||v||Ã + ε

)
dµ ≤ 2

and so uv ∈ L1 (Ω) and∣∣∣∣∫
Ω

uvdµ

∣∣∣∣≤ ∫
Ω

|u| |v|dµ ≤ 2
(
||v||Ã + ε

)
(||u||A + ε) .

Since ε is arbitrary this shows∣∣∣∣∫
Ω

uvdµ

∣∣∣∣≤ ∫
Ω

|u| |v|dµ ≤ 2 ||v||Ã ||u||A . (27.2.14)
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Defining Lv for v ∈ Ã by

Lv (u)≡
∫

Ω

uvdµ,

it follows Lv ∈ LA (Ω)′ . From now on assume the measure space is σ finite. That is, there
exist measurable sets, Ωk satisfying the following:

Ω = ∪∞
k=1Ωk, µ (Ωk)< ∞, Ωk ⊆Ωk+1.

Then

Proposition 27.2.1 For v ∈ LÃ (Ω) , the following inequality holds.

||v||Ã ≤ ||Lv|| ≤ 2 ||v||Ã .

Here Lv is considered as either an element of EA (Ω)′ or LA (Ω)′ and ||Lv|| refers to the
operator norm in either dual space.

Proof: The inequality 27.2.14 implies ||Lv|| ≤ 2 ||v||Ã . It remains to show the other half
of the inequality. If Lv = 0 there is nothing to show because this would imply that v = 0 so
assume ||Lv||> 0. Define a measurable function, u, as follows. Letting r ∈ (0,1) ,

u(x)≡

{
Ã
(

r|v(x)|
||Lv||

)
/ v(x)
||Lv|| if v(x) ̸= 0

0 if v(x) = 0.
(27.2.15)

Now let
Fn ≡ {x : |u(x)| ≤ n}∩Ωn∩{x : v(x) ̸= 0} (27.2.16)

and define
un (x)≡ u(x)XFn (x) . (27.2.17)

Thus un is bounded and equals zero off a set which has finite measure. It follows that

A
(
|un|
α

)
∈ L1 (Ω)

for all α > 0. I claim that ||un||A ≤ 1. If not, there exists ε > 0 such that ||un||A− ε > 1.
Then since A is convex,

1 <
∫

Ω

A
(

|un|
||un||A− ε

)
dµ ≤ 1

||un||A− ε

∫
Ω

A(|un|)dµ.

Taking ε → 0+, using 27.1.6, and convexity of A along with 27.2.15 and 27.2.17,

||un||A ≤
∫

Ω

A(|un|)dµ =
∫

Fn

A
(

rÃ
(

r |v(x)|
||Lv||

)
/

rv(x)
||Lv||

)
dµ

≤ r
∫

Fn

A
(

Ã
(

r |v(x)|
||Lv||

)
/

rv(x)
||Lv||

)
dµ ≤ r

∫
Fn

Ã
(

r |v(x)|
||Lv||

)
dµ

= r
1
||Lv||

∫
Ω

un (x)v(x)dµ ≤ r
1
||Lv||

||un||A ||Lv||= r ||un||A ,
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a contradiction since r < 1. Therefore, from 27.2.15,

||Lv|| ≥ |Lv (un)| ≡
∫

Fn

v(x)u(x)dµ = ||Lv||
∫

Fn

Ã
(

r |v(x)|
||Lv||

)
dµ

and so

1≥
∫

Fn

Ã
(

r |v(x)|
||Lv||

)
dµ

By the monotone convergence theorem, letting n→ ∞,

1≥
∫

Ω

Ã
(

r |v(x)|
||Lv||

)
dµ

showing that

||v||Ã ≤
||Lv||

r
.

Since this holds for all r ∈ (0,1), it follows ||Lv|| ≥ ||v||Ã as claimed. This proves the
proposition.

Now what follows is the Riesz representation theorem for the dual space of EA (Ω) .

Theorem 27.2.2 Suppose µ (Ω)< ∞ and suppose L ∈ EA (Ω)′ . Then the map v→ Lv from
LÃ (Ω) to EA (Ω)′ is one to one continuous, linear, and onto. If (Ω,A) is ∆ regular then
v→ Lv is one to one, linear, onto and continuous as a map from LÃ (Ω) to LA (Ω)′ .

Proof: It is obvious this map is linear. From Proposition 27.2.1 it is continuous and
one to one. It remains only to verify that it is onto. Let L ∈ EA (Ω)′ and define a complex
valued function, λ , mapping the measurable sets to C as follows.

λ (F)≡ L(XF) .

In case µ (F) ̸= 0,∫
Ω

A
(

XF (x)A−1
(

1
µ (F)

))
dµ =

∫
F

A
(

A−1
(

1
µ (F)

))
dµ

=
∫

F

1
µ (F)

dµ = 1

and so

||XF ||A ≤
1

A−1
(

1
µ(F)

) . (27.2.18)

In fact, λ is actually a complex measure. To see this, suppose Fi ↑ F. Then from the formula
just derived,

||XFi −XF ||A =
∣∣∣∣XF\Fi

∣∣∣∣
A ≤

1

A−1
(

1
µ(F\Fi)

)
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which converges to zero as i→ ∞. Therefore, if the Fi are disjoint and F = ∪∞
i=1Fi, let

Sm ≡ ∪m
i=1Fi so that Sm ↑ F. Then since XSm →XF in EA (Ω) and L is continuous,

λ (F) ≡ L(XF) = lim
m→∞

L(XSm)

= lim
m→∞

m

∑
i=1

L(XFi) =
∞

∑
i=1

λ (Fi) .

Next observe that λ is absolutely continuous with respect to µ. To see this, suppose
µ (F) = 0. Then if t > 0, ∫

Ω

A
(

XF (x)
t

)
dµ = 0 < 1

for all t > 0 and so ||XF ||A = 0. Therefore, λ (F)≡ L(XF) = 0.
It follows by the Radon Nikodym theorem there exists v ∈ L1 (Ω) such that

L(XF) = λ (F) =
∫

F
vdµ.

Therefore, for all s ∈ S,
L(s) =

∫
F

svdµ. (27.2.19)

I need to show that v is actually in LÃ (Ω) . If v = 0 a.e., there is nothing to prove so assume
this is not so. Let u be defined by.

u(x)≡

{
Ã
(

r|v(x)|
||L||

)
/ v(x)
||L|| if v(x) ̸= 0

0 if v(x) = 0.
(27.2.20)

for r ∈ (0,1) . Now let

Fn ≡ {x : |u(x)| ≤ n}∩{x : v(x) ̸= 0} (27.2.21)

and define
un (x)≡ u(x)XFn (x) . (27.2.22)

I claim ||un||A ≤ 1. It is clear that since µ (Ω)< ∞, un ∈ EA (Ω) . If ||un||A > 1, Then for ε

small enough,
||un||A− ε > 1

and so, by convexity of A and the fact that A(0) = 0,

1 <
∫

Ω

A
(
|un (x)|
||un||A− ε

)
dµ ≤ 1

||un||A− ε

∫
Ω

A(|un (x)|)dµ

and so, letting ε→ 0+ and using 27.1.6 and convexity of A as in the proof of the preceeding
proposition,

||un||A ≤
∫

Ω

A(|un (x)|)dµ ≤
∫

Fn

A
(

rÃ
(

r |v(x)|
||L||

)
/

r |v(x)|
||L||

)
dµ

≤ r
∫

Fn

A
(

Ã
(

r |v(x)|
||L||

)
/

r |v(x)|
||L||

)
dµ ≤ r

∫
Fn

Ã
(

r |v(x)|
||L||

)
dµ

≤ r
1
||L||

∫
Fn

u(x)v(x)dµ =
r
||L||

∫
Ω

unvdµ. (27.2.23)
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Now by Theorem 11.3.9 applied to the positive and negative parts of real and imaginary
parts, there exists a uniformly bounded sequence of simple functions, {sk} converging
uniformly to un, implying convergence in EA (Ω) , and so

Lun = lim
k→∞

Lsk = lim
k→∞

∫
Ω

skvdµ =
∫

Ω

unvdµ. (27.2.24)

therefore, from 27.2.23,

||un||A ≤
r
||L||

∫
Ω

unvdµ =
r
||L||

L(un)≤
r
||L||
||L|| ||un||A ,

which is a contradiction since r < 1. Therefore, ||un||A ≤ 1 and from 27.2.23,

||L|| ≥ ||L|| ||un||A ≥ |Lun|=
∫

Ω

unvdµ

≥ ||L||
∫

Fn

Ã
(

r |v(x)|
||L||

)
dµ.

Letting n→ ∞ the monotone convergence theorem and the above imply∫
Ω

Ã
(

r |v(x)|
||L||

)
dµ ≤ 1

which shows that v ∈ LÃ (Ω) and ||v||Ã ≤
||L||

r for all r ∈ (0,1) . Therefore, ||v||Ã ≤ ||L|| .
Since v ∈ LÃ (Ω) it follows Lv = L on S and so Lv = L because S is dense in the set

EA (Ω) . The last assertion follows from Proposition 27.1.10. This completes the proof.
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Chapter 28

Hausdorff Measure
28.1 The Definition

This chapter is on Hausdorff measures. First I will discuss some outer measures. In all that
is done here, α (n) will be the volume of the ball in Rn which has radius 1.

Definition 28.1.1 For a set E, denote by r (E) the number which is half the diameter of E.
Thus

r (E)≡ 1
2

sup{|x−y| : x,y ∈ E} ≡ 1
2

diam(E)

Let E ⊆ Rn.

H s
δ
(E)≡ inf{

∞

∑
j=1

β (s)(r (C j))
s : E ⊆ ∪∞

j=1C j,diam(C j)≤ δ}

H s(E)≡ lim
δ→0+

H s
δ
(E).

Note that H s
δ
(E) is increasing as δ → 0+ so the limit clearly exists.

In the above definition, β (s) is an appropriate positive constant depending on s. It will
turn out that for n an integer, β (n) = α (n) where α (n) is the Lebesgue measure of the unit
ball, B(0,1) where the usual norm is used to determine this ball.

Lemma 28.1.2 H s and H s
δ

are outer measures.

Proof: It is clear that H s( /0) = 0 and if A ⊆ B, then H s(A) ≤H s(B) with similar
assertions valid for H s

δ
. Suppose E = ∪∞

i=1Ei and H s
δ
(Ei)< ∞ for each i. Let {Ci

j}∞
j=1 be

a covering of Ei with
∞

∑
j=1

β (s)(r(Ci
j))

s− ε/2i < H s
δ
(Ei)

and diam(Ci
j)≤ δ . Then

H s
δ
(E) ≤

∞

∑
i=1

∞

∑
j=1

β (s)(r(Ci
j))

s

≤
∞

∑
i=1

H s
δ
(Ei)+ ε/2i

≤ ε +
∞

∑
i=1

H s
δ
(Ei).

It follows that since ε > 0 is arbitrary,

H s
δ
(E)≤

∞

∑
i=1

H s
δ
(Ei)

993
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which shows H s
δ

is an outer measure. Now notice that H s
δ
(E) is increasing as δ → 0.

Picking a sequence δ k decreasing to 0, the monotone convergence theorem implies

H s(E)≤
∞

∑
i=1

H s(Ei). ■

The outer measure H s is called s dimensional Hausdorff measure when restricted to
the σ algebra of H s measurable sets.

Next I will show the σ algebra of H s measurable sets includes the Borel sets. This is
done by the following very interesting condition known as Caratheodory’s criterion.

28.1.1 Properties
Definition 28.1.3 For two sets, A,B in a metric space, we define

dist(A,B)≡ inf{d (x,y) : x ∈ A,y ∈ B} .

Theorem 28.1.4 Let µ be an outer measure on the subsets of (X ,d), a metric space. If

µ(A∪B) = µ(A)+µ(B)

whenever dist(A,B)> 0, then the σ algebra of measurable sets contains the Borel sets.

Proof: It suffices to show that closed sets are in S , the σ -algebra of measurable sets,
because then the open sets are also in S and consequently S contains the Borel sets. Let
K be closed and let S be a subset of Ω. Is µ(S)≥ µ(S∩K)+µ(S\K)? It suffices to assume
µ(S)< ∞. Let

Kn ≡ {x : dist(x,K)≤ 1
n
}

By Lemma 7.1.7 on Page 136, x→ dist(x,K) is continuous and so Kn is closed. By the
assumption of the theorem,

µ(S)≥ µ((S∩K)∪ (S\Kn)) = µ(S∩K)+µ(S\Kn) (28.1.1)

since S∩K and S\Kn are a positive distance apart. Now

µ(S\Kn)≤ µ(S\K)≤ µ(S\Kn)+µ((Kn \K)∩S). (28.1.2)

If limn→∞ µ((Kn \K)∩ S) = 0 then the theorem will be proved because this limit along
with 28.1.2 implies limn→∞ µ (S\Kn) = µ (S\K) and then taking a limit in 28.1.1, µ(S)≥
µ(S∩K)+µ(S\K) as desired. Therefore, it suffices to establish this limit.

Since K is closed, a point, x /∈ K must be at a positive distance from K and so

Kn \K = ∪∞
k=nKk \Kk+1.

Therefore

µ(S∩ (Kn \K))≤
∞

∑
k=n

µ(S∩ (Kk \Kk+1)). (28.1.3)
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If
∞

∑
k=1

µ(S∩ (Kk \Kk+1))< ∞, (28.1.4)

then µ(S∩ (Kn \K))→ 0 because it is dominated by the tail of a convergent series so it
suffices to show 28.1.4.

M

∑
k=1

µ(S∩ (Kk \Kk+1)) =

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1)). (28.1.5)

By the construction, the distance between any pair of sets, S∩(Kk \Kk+1) for different even
values of k is positive and the distance between any pair of sets, S∩(Kk \Kk+1) for different
odd values of k is positive. Therefore,

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1))≤

µ(
⋃

k even

S∩ (Kk \Kk+1))+µ(
⋃

k odd

S∩ (Kk \Kk+1))≤ 2µ (S)< ∞

and so for all M, ∑
M
k=1 µ(S∩ (Kk \Kk+1))≤ 2µ (S) showing 28.1.4 ■.

With the above theorem, the following theorem is easy to obtain.

Theorem 28.1.5 The σ algebra of H s measurable sets contains the Borel sets and H s

has the property that for all E ⊆ Rn, there exists a Borel set F ⊇ E such that H s(F) =
H s(E).

Proof: Let dist(A,B) = 2δ 0 > 0. Is it the case that

H s(A)+H s(B) = H s(A∪B)?

This is what is needed to use Caratheodory’s criterion.
Let {C j}∞

j=1be a covering of A∪B such that diam(C j)≤ δ < δ 0 for each j and

H s
δ
(A∪B)+ ε >

∞

∑
j=1

β (s)(r (C j))
s.

Thus
H s

δ
(A∪B)̇+ ε > ∑

j∈J1

β (s)(r (C j))
s + ∑

j∈J2

β (s)(r (C j))
s

where
J1 = { j : C j ∩A ̸= /0}, J2 = { j : C j ∩B ̸= /0}.

Recall dist(A,B) = 2δ 0, J1∩ J2 = /0. It follows

H s
δ
(A∪B)+ ε > H s

δ
(A)+H s

δ
(B).
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Letting δ → 0, and noting ε > 0 was arbitrary, yields

H s(A∪B)≥H s(A)+H s(B).

Equality holds because H s is an outer measure. By Caratheodory’s criterion, H s is a
Borel measure.

To verify the second assertion, note first there is no loss of generality in letting H s (E)<
∞. Let

E ⊆ ∪∞
j=1C j, r(C j)< δ ,

and

H s
δ
(E)+δ >

∞

∑
j=1

β (s)(r (C j))
s.

Let
Fδ = ∪∞

j=1C j.

Thus Fδ ⊇ E and

H s
δ
(E) ≤ H s

δ
(Fδ )≤

∞

∑
j=1

β (s)(r
(
C j
)
)s

=
∞

∑
j=1

β (s)(r (C j))
s < δ +H s

δ
(E).

Let δ k→ 0 and let F = ∩∞
k=1Fδ k

. Then F ⊇ E and

H s
δ k
(E)≤H s

δ k
(F)≤H s

δ k
(Fδ )≤ δ k +H s

δ k
(E).

Letting k→ ∞,
H s(E)≤H s(F)≤H s(E) ■

A measure satisfying the conclusion of Theorem 28.1.5 is called a Borel regular mea-
sure.

28.2 H p and mp
Next I will compare H p and mp. To do this, recall the following covering theorem which
is a summary of Corollary 13.4.5 found on Page 350.

Theorem 28.2.1 Let E ⊆Rp and let F be a collection of balls of bounded radii such that
F covers E in the sense of Vitali. Then there exists a countable collection of disjoint balls
from F , {B j}∞

j=1, such that mp(E \∪∞
j=1B j) = 0.

In the next lemma, the balls are the usual balls taken with respect to the usual distance
in Rp coming from the Euclidean norm.

Lemma 28.2.2 If S⊆Rp and mp (S) = 0, then H p (S) =H p
δ
(S) = 0. Also, there exists a

constant k such that H p (E)≤ kmp (E) for all E Borel k ≡ β (p)
α(p) . Also, if Q0 ≡ [0,1)p, the

unit cube, then H p ([0,1)p)> 0.
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Proof: Suppose first mp (S) = 0. Without loss of generality, S is bounded. Then by
outer regularity, there exists a bounded open V containing S and mp (V ) < ε . For each

x ∈ S, there exists a ball Bx such that B̂x ⊆ V and δ > r
(

B̂x

)
. By the Vitali covering

theorem there is a sequence of disjoint balls {Bk} such that
{

B̂k

}
covers S. Here B̂k has

the same center as Bk but 5 times the radius. Then letting α (p) be the Lebesgue measure
of the unit ball in Rp

H p
δ
(S) ≤ ∑

k
β (p)r

(
B̂k

)p
=

β (p)
α (p)

5p
∑
k

α (p)r (Bk)
p

≤ β (p)
α (p)

5pmp (V )<
β (p)
α (p)

5p
ε

Since ε is arbitrary, this shows H p
δ
(S) = 0 and now it follows that

H p (S)≡ lim
δ→0

H p
δ
(S) = 0.

Letting U be an open set and δ > 0, consider all balls B contained in U which have
diameters less than δ . This is a Vitali covering of U and therefore by Theorem 28.2.1, there
exists {Bi} , a sequence of disjoint balls of radii less than δ contained in U such that ∪∞

i=1Bi
differs from U by a set of Lebesgue measure zero. Let α (p) be the Lebesgue measure of
the unit ball in Rp. Then from what was just shown,

H p
δ
(U) = H p

δ
(∪iBi)≤

∞

∑
i=1

β (p)r (Bi)
p =

β (p)
α (p)

∞

∑
i=1

α (p)r (Bi)
p

=
β (p)
α (p)

∞

∑
i=1

mp (Bi) =
β (p)
α (p)

mp (U)≡ kmp (U) , k ≡ β (p)
α (p)

Now letting E be Lebesgue measurable, it follows from the outer regularity of mp there
exists a decreasing sequence of open sets, {Vi} containing E such such that mp (Vi)→
mp (E) . Then from the above,

H p
δ
(E)≤ lim

i→∞
H p

δ
(Vi)≤ lim

i→∞
kmp (Vi) = kmp (E) .

Since δ > 0 is arbitrary, it follows that also H p (E) ≤ kmp (E) . This proves the first part
of the lemma.

To verify the second part, note that it is obvious H p
δ

and H p are translation invariant
because diameters of sets do not change when translated. Therefore, if H p ([0,1)p) = 0,
it follows H p (Rp) = 0 because Rp is the countable union of translates of Q0 ≡ [0,1)p.
Since each H p

δ
is no larger than H p, H p

δ
([0,1)p) = 0. Therefore, there exists a sequence

of sets, {Ci} each having diameter less than δ such that the union of these sets equals Rp

but 1 > ∑
∞
i=1 β (p)r (Ci)

p . Now let Bi be a ball having radius ri equal to diam(Ci) = 2r (Ci)
which contains Ci. These Bi cover Rp, 1

2 ri = r (Ci) . It follows that

1 >
∞

∑
i=1

β (p)r (Ci)
p =

∞

∑
i=1

β (p)
α (p)2p mp (Bi) = ∞,

a contradiction. ■
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Lemma 28.2.3 Every open set U in Rp is a countable disjoint union of half open boxes of
the form Q≡∏

p
i=1[ai,ai +2−k) where ai = l2−k for l some integer.

Proof: It is clear that there exists Qk a countable disjoint collection of these half open
boxes each of sides of length 2−k whose union is all of Rp. Let B1 be those sets of Q1
which are contained in U, if any. Having chosen Bk−1, let Bk consist of those sets of Qk
which are contained in U such that none of these are contained in Bk−1. Then ∪∞

k=1Bk is
a countable collection of disjoint boxes of the right sort whose union is U . This is because
if R is a box of Qk and R̂ is a box of Qk−1, then either R⊆ R̂ or R∩ R̂ = /0. ■

Theorem 28.2.4 By choosing β (p) properly, one can obtain H p = mp on all Lebesgue
measurable sets.

Proof: I will show H p is a positive multiple of mp for any choice of β (p) . Define k =
mp(Q0)
H p(Q0)

where Q0 = [0,1)p is the half open unit cube inRp. I will show kH p (E) = mp (E)
for any Lebesgue measurable set. When this is done, it will follow that by adjusting β (p)
the multiple can be taken to be 1.

Let Q = ∏
p
i=1[ai,ai +2−k) be a half open box where ai = l2−k. Thus Q0 is the union of(

2k
)p of these identical half open boxes. By translation invariance, of H p and mp,(

2k
)p

H p (Q) = H p (Q0) =
1
k

mp (Q0) =
1
k

(
2k
)p

mp (Q) .

Therefore, kH p (Q) = mp (Q) for any such half open box and by translation invariance,
for the translation of any such half open box. It follows that kH p (U) = mp (U) for all
open sets because each open set is a countable disjoint union of such half open boxes. It
follows immediately, since every compact set is the countable intersection of open sets
that kH p = mp on compact sets. Therefore, kH p = mp on all closed sets because every
closed set is the countable union of compact sets. Now let F be an arbitrary Lebesgue
measurable set. I will show that F is H p measurable and that kH p (F) = mp (F). Let
Fl = B(0, l)∩F. By Proposition 11.7.3, there exists H a countable union of compact sets
and G a countable intersection of open sets such that H ⊆ Fl ⊆G and mp (G\H) = 0 which
implies by Lemma 28.2.2 that mp (G\H) = kH p (G\H) = 0. Then by completeness of
H p it follows Fl is H p measurable and kH p (Fl) = kH p (H) = mp (H) = mp (Fl) . Now
taking l→∞, it follows F is H p measurable and kH p (F) = mp (F). Therefore, adjusting
β (p) it can be assumed the constant k is 1. ■

The exact determination of β (p) is more technical.

28.3 Technical Considerations
Let α(n) be the volume of the unit ball in Rn. Thus the volume of B(0,r) in Rn is α(n)rn

from the change of variables formula. There is a very important and interesting inequality
known as the isodiametric inequality which says that if A is any set in Rn, then

m(A)≤ α(n)(2−1diam(A))n = α (n)r (A)n .
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This inequality may seem obvious at first but it is not really. The reason it is not is that
there are sets which are not subsets of any sphere having the same diameter as the set. For
example, consider an equilateral triangle.

Lemma 28.3.1 Let f : Rn−1→ [0,∞) be Borel measurable and let

S = {(x,y) :|y|< f (x)}.

Then S is a Borel set in Rn.

Proof: Set sk be an increasing sequence of Borel measurable functions converging
pointwise to f .

sk(x) =
Nk

∑
m=1

ck
mXEk

m
(x).

Let
Sk = ∪Nk

m=1Ek
m× (−ck

m,c
k
m).

Then (x,y) ∈ Sk if and only if f (x) > 0 and |y| < sk(x) ≤ f (x). It follows that Sk ⊆ Sk+1
and

S = ∪∞
k=1Sk.

But each Sk is a Borel set and so S is also a Borel set. This proves the lemma.
Let Pi be the projection onto

span(e1, · · ·,ei−1,ei+1, · · · ,en)

where the ek are the standard basis vectors in Rn, ek being the vector having a 1 in the kth

slot and a 0 elsewhere. Thus Pix≡ ∑ j ̸=i x je j. Also let

APix ≡ {xi : (x1, · · · ,xi, · · · ,xn) ∈ A}xAPix

Pix ∈ span{e1, · · ·,ei−1ei+1, · · ·,en}.Lemma 28.3.2 Let A ⊆ Rn be a Borel set. Then Pix→ m(APix) is a Borel measurable
function defined on Pi(Rn).

Proof: Let K be the π system consisting of sets of the form ∏
n
j=1 A j where Ai is Borel.

Also let G denote those Borel sets of Rn such that if A ∈ G then

Pix→ m((A∩Rk)Pix) is Borel measurable.

where Rk = (−k,k)n. Thus K ⊆ G . If A ∈ G

Pix→ m
((

AC ∩Rk
)

Pix

)
is Borel measurable because it is of the form

m
(
(Rk)Pix

)
−m

(
(A∩Rk)Pix

)
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and these are Borel measurable functions of Pix. Also, if {Ai} is a disjoint sequence of sets
in G then

m
(
(∪iAi∩Rk)Pix

)
= ∑

i
m
(
(Ai∩Rk)Pix

)
and each function of Pix is Borel measurable. Thus by the lemma on π systems, Lemma
12.12.3, G = B (Rn) and this proves the lemma.

Now let A⊆ Rn be Borel. Let Pi be the projection onto

span(e1, · · · ,ei−1,ei+1, · · · ,en)

and as just described,
APix = {y ∈ R : Pix+ yei ∈ A}

Thus for x = (x1, · · · ,xn),

APix = {y ∈ R : (x1, · · · ,xi−1,y,xi+1, · · · ,xn) ∈ A}.

Since A is Borel, it follows from Lemma 28.3.1 that

Pix→ m(APix)

is a Borel measurable function on PiRn = Rn−1.

28.3.1 Steiner Symmetrization
Define

S(A,ei)≡ {x =Pix+ yei : |y|< 2−1m(APix)}

Lemma 28.3.3 Let A be a Borel subset of Rn. Then S(A,ei) satisfies

Pix+ yei ∈ S(A,ei) if and only if Pix− yei ∈ S(A,ei),

S(A,ei) is a Borel set in Rn,

mn(S(A,ei)) = mn(A), (28.3.6)

diam(S(A,ei))≤ diam(A). (28.3.7)

Proof: The first assertion is obvious from the definition. The Borel measurability of
S(A,ei) follows from the definition and Lemmas 28.3.2 and 28.3.1. To show Formula
28.3.6,

mn(S(A,ei)) =
∫

PiRn

∫ 2−1m(APix)

−2−1m(APix)
dxidx1 · · ·dxi−1dxi+1 · · ·dxn

=
∫

PiRn
m(APix)dx1 · · ·dxi−1dxi+1 · · ·dxn

= m(A).
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Now suppose x1 and x2 ∈ S(A,ei)

x1 = Pix1 + y1ei, x2 = Pix2 + y2ei.

For x ∈ A define
l(x) =sup{y : Pix+yei ∈ A}.

g(x) = inf{y : Pix+yei ∈ A}.

Then it is clear that
l(x1)−g(x1)≥ m(APix1)≥ 2|y1|, (28.3.8)

l(x2)−g(x2)≥ m(APix2)≥ 2|y2|. (28.3.9)

Claim: |y1− y2| ≤ |l(x1)−g(x2)| or |y1− y2| ≤ |l(x2)−g(x1)|.
Proof of Claim: If not,

2|y1− y2|> |l(x1)−g(x2)|+ |l(x2)−g(x1)|

≥ |l(x1)−g(x1)+ l(x2)−g(x2)|

= l(x1)−g(x1)+ l(x2)−g(x2).

≥ 2 |y1|+2 |y2|

by 28.3.8 and 28.3.9 contradicting the triangle inequality.
Now suppose |y1− y2| ≤ |l(x1)−g(x2)|. From the claim,

|x1−x2| = (|Pix1−Pix2|2 + |y1− y2|2)1/2

≤ (|Pix1−Pix2|2 + |l(x1)−g(x2)|2)1/2

≤ (|Pix1−Pix2|2 +(|z1− z2|+2ε)2)1/2

≤ diam(A)+O(
√

ε)

where z1 and z2 are such that Pix1 + z1ei ∈ A, Pix2 + z2ei ∈ A, and

|z1− l(x1)|< ε and |z2−g(x2)|< ε.

If |y1− y2| ≤ |l(x2)−g(x1)|, then we use the same argument but let

|z1−g(x1)|< ε and |z2− l(x2)|< ε,

Since x1,x2 are arbitrary elements of S(A,ei) and ε is arbitrary, this proves 28.3.7.
The next lemma says that if A is already symmetric with respect to the jth direction,

then this symmetry is not destroyed by taking S (A,ei).

Lemma 28.3.4 Suppose A is a Borel set in Rn such that Pjx+ e jx j ∈ A if and only if
Pjx+(−x j)e j ∈ A. Then if i ̸= j, Pjx+ e jx j ∈ S(A,ei) if and only if Pjx+(−x j)e j ∈ S(A,ei).
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Proof: By definition,
Pjx+ e jx j ∈ S(A,ei)

if and only if
|xi|< 2−1m(APi(Pjx+e jx j)).

Now
xi ∈ APi(Pjx+e jx j)

if and only if
xi ∈ APi(Pjx+(−x j)e j)

by the assumption on A which says that A is symmetric in the e j direction. Hence

Pjx+ e jx j ∈ S(A,ei)

if and only if
|xi|< 2−1m(APi(Pjx+(−x j)e j))

if and only if
Pjx+(−x j)e j ∈ S(A,ei).

This proves the lemma.

28.3.2 The Isodiametric Inequality
The next theorem is called the isodiametric inequality. It is the key result used to compare
Lebesgue and Hausdorff measures.

Theorem 28.3.5 Let A be any Lebesgue measurable set in Rn. Then

mn(A)≤ α(n)(r (A))n.

Proof: Suppose first that A is Borel. Let A1 = S(A,e1) and let Ak = S(Ak−1,ek). Then
by the preceding lemmas, An is a Borel set, diam(An)≤ diam(A), mn(An) = mn(A), and An
is symmetric. Thus x ∈ An if and only if −x ∈ An. It follows that

An ⊆ B(0,r (An)).

(If x ∈ An \B(0,r (An)), then −x ∈ An \B(0,r (An)) and so diam(An)≥ 2|x|>diam(An).)
Therefore,

mn(An)≤ α(n)(r (An))
n ≤ α(n)(r (A))n.

It remains to establish this inequality for arbitrary measurable sets. Letting A be such a set,
let {Kn} be an increasing sequence of compact subsets of A such that

m(A) = lim
k→∞

m(Kk).

Then

m(A) = lim
k→∞

m(Kk)≤ lim sup
k→∞

α(n)(r (Kk))
n

≤ α(n)(r (A))n.

This proves the theorem.
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28.4 The Proper Value Of β (n)
I will show that the proper determination of β (n) is α (n), the volume of the unit ball.
Since β (n) has been adjusted such that k = 1, mn (B(0,1)) = H n (B(0,1)). There exists a
covering of B(0,1) of sets of radii less than δ ,{Ci}∞

i=1 such that

H n
δ
(B(0,1))+ ε > ∑

i
β (n)r (Ci)

n

Then by Theorem 28.3.5, the isodiametric inequality,

H n
δ
(B(0,1))+ ε > ∑

i
β (n)r (Ci)

n =
β (n)
α (n) ∑

i
α (n)r

(
Ci
)n

≥ β (n)
α (n) ∑

i
mn
(
Ci
)
≥ β (n)

α (n)
mn (B(0,1)) =

β (n)
α (n)

H n (B(0,1))

Now taking the limit as δ → 0,

H n (B(0,1))+ ε ≥ β (n)
α (n)

H n (B(0,1))

and since ε > 0 is arbitrary, this shows α (n)≥ β (n).
By the Vitali covering theorem, there exists a sequence of disjoint balls, {Bi} such that

B(0,1) = (∪∞
i=1Bi)∪N

where mn (N) = 0. Then H n
δ
(N) = 0 can be concluded because H n

δ
≤H n and Lemma

28.2.2. Using mn (B(0,1)) = H n (B(0,1)) again,

H n
δ
(B(0,1)) = H n

δ
(∪iBi)≤

∞

∑
i=1

β (n)r (Bi)
n

=
β (n)
α (n)

∞

∑
i=1

α (n)r (Bi)
n =

β (n)
α (n)

∞

∑
i=1

mn (Bi)

=
β (n)
α (n)

mn (∪iBi) =
β (n)
α (n)

mn (B(0,1)) =
β (n)
α (n)

H n (B(0,1))

which implies α (n) ≤ β (n) and so the two are equal. This proves that if α (n) = β (n) ,
then the H n = mn on the measurable sets of Rn.

This gives another way to think of Lebesgue measure which is a particularly nice way
because it is coordinate free, depending only on the notion of distance.

For s< n, note that H s is not a Radon measure because it will not generally be finite on
compact sets. For example, let n= 2 and consider H 1(L) where L is a line segment joining
(0,0) to (1,0). Then H 1(L) is no smaller than H 1(L) when L is considered a subset of
R1,n = 1. Thus by what was just shown, H 1(L) ≥ 1. Hence H 1([0,1]× [0,1]) = ∞.
The situation is this: L is a one-dimensional object inside R2 and H 1 is giving a one-
dimensional measure of this object. In fact, Hausdorff measures can make such heuristic
remarks as these precise. Define the Hausdorff dimension of a set, A, as

dim(A) = inf{s : H s(A) = 0}
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28.4.1 A Formula For α (n)

What is α(n)? Recall the gamma function which makes sense for all p > 0.

Γ(p)≡
∫

∞

0
e−tt p−1dt.

Lemma 28.4.1 The following identities hold.

pΓ(p) = Γ(p+1),

Γ(p)Γ(q) =
(∫ 1

0
xp−1(1− x)q−1dx

)
Γ(p+q),

Γ

(
1
2

)
=
√

π

Proof: Using integration by parts,

Γ(p+1) =
∫

∞

0
e−tt pdt =−e−tt p|∞0 + p

∫
∞

0
e−tt p−1dt

= pΓ(p)

Next

Γ(p)Γ(q) =
∫

∞

0
e−tt p−1dt

∫
∞

0
e−ssq−1ds

=
∫

∞

0

∫
∞

0
e−(t+s)t p−1sq−1dtds

=
∫

∞

0

∫
∞

s
e−u (u− s)p−1 sq−1duds

=
∫

∞

0

∫ u

0
e−u (u− s)p−1 sq−1dsdu

=
∫

∞

0

∫ 1

0
e−u (u−ux)p−1 (ux)q−1 udxdu

=
∫

∞

0

∫ 1

0
e−uup+q−1 (1− x)p−1 xq−1dxdu

= Γ(p+q)
(∫ 1

0
xp−1(1− x)q−1dx

)
.

It remains to find Γ
( 1

2

)
.

Γ

(
1
2

)
=
∫

∞

0
e−tt−1/2dt =

∫
∞

0
e−u2 1

u
2udu = 2

∫
∞

0
e−u2

du

Now (∫
∞

0
e−x2

dx
)2

=
∫

∞

0
e−x2

dx
∫

∞

0
e−y2

dy =
∫

∞

0

∫
∞

0
e−(x2+y2)dxdy

=
∫

∞

0

∫
π/2

0
e−r2

rdθdr =
1
4

π
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and so

Γ

(
1
2

)
= 2

∫
∞

0
e−u2

du =
√

π

This proves the lemma.
Next let n be a positive integer.

Theorem 28.4.2 α(n) = πn/2(Γ(n/2+1))−1 where Γ(s) is the gamma function

Γ(s) =
∫

∞

0
e−tts−1dt.

Proof: First let n = 1.

Γ(
3
2
) =

1
2

Γ

(
1
2

)
=

√
π

2
.

Thus
π

1/2(Γ(1/2+1))−1 =
2√
π

√
π = 2 = α (1) .

and this shows the theorem is true if n = 1.
Assume the theorem is true for n and let Bn+1 be the unit ball in Rn+1. Then by the

result in Rn,

mn+1(Bn+1) =
∫ 1

−1
α(n)(1− x2

n+1)
n/2dxn+1

= 2α(n)
∫ 1

0
(1− t2)n/2dt.

Doing an integration by parts and using Lemma 28.4.1

= 2α(n)n
∫ 1

0
t2(1− t2)(n−2)/2dt

= 2α(n)n
1
2

∫ 1

0
u1/2(1−u)n/2−1du

= nα(n)
∫ 1

0
u3/2−1(1−u)n/2−1du

= nα(n)Γ(3/2)Γ(n/2)(Γ((n+3)/2))−1

= nπ
n/2(Γ(n/2+1))−1(Γ((n+3)/2))−1

Γ(3/2)Γ(n/2)

= nπ
n/2(Γ(n/2)(n/2))−1(Γ((n+1)/2+1))−1

Γ(3/2)Γ(n/2)

= 2π
n/2

Γ(3/2)(Γ((n+1)/2+1))−1

= π
(n+1)/2(Γ((n+1)/2+1))−1.

This proves the theorem.
From now on, in the definition of Hausdorff measure, it will always be the case that

β (s) = α (s) . As shown above, this is the right thing to have β (s) to equal if s is a posi-
tive integer because this yields the important result that Hausdorff measure is the same as
Lebesgue measure. Note the formula, πs/2(Γ(s/2+1))−1 makes sense for any s≥ 0.
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28.4.2 Hausdorff Measure And Linear Transformations
Hausdorff measure makes possible a unified development of n dimensional area. As in the
case of Lebesgue measure, the first step in this is to understand basic considerations related
to linear transformations. Recall that for L ∈L

(
Rk,Rl

)
,L∗ is defined by

(Lu,v) = (u,L∗v) .

Also recall Theorem 5.9.6 on Page 94 which is stated here for convenience. This theorem
says you can write a linear transformation as the composition of two linear transformations,
one which preserves length and the other which distorts, the right polar decomposition.
The one which distorts is the one which will have a nontrivial interaction with Hausdorff
measure while the one which preserves lengths does not change Hausdorff measure. These
ideas are behind the following theorems and lemmas.

Theorem 28.4.3 Let F be an n×m matrix where m≥ n. Then there exists an m×n matrix
R and a n×n matrix U such that

F = RU, U =U∗,

all eigenvalues of U are non negative,

U2 = F∗F, R∗R = I,

and |Rx|= |x|.

Lemma 28.4.4 Let R ∈L (Rn,Rm), n≤ m, and R∗R = I. Then if A⊆ Rn,

H n(RA) = H n(A).

In fact, if P : Rn→ Rm satisfies |Px−Py|= |x−y| , then

H n (PA) = H n (A) .

Proof: Note that

|R(x−y)|2=(R(x−y) ,R(x−y)) = (R∗R(x−y) ,x−y) = |x−y|2

Thus R preserves lengths.
Now let P be an arbitrary mapping which preserves lengths and let A be bounded,

P(A)⊆ ∪∞
j=1C j, r(C j)< δ , and

H n
δ
(PA)+ ε >

∞

∑
j=1

α(n)(r(C j))
n.

Since P preserves lengths, it follows P is one to one on P(Rn) and P−1 also preserves
lengths on P(Rn) . Replacing each C j with C j ∩ (PA),

H n
δ
(PA)+ ε >

∞

∑
j=1

α(n)r(C j ∩ (PA))n

=
∞

∑
j=1

α(n)r
(
P−1 (C j ∩ (PA))

)n

≥ H n
δ
(A).
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Thus H n
δ
(PA)≥H n

δ
(A).

Now let A⊆ ∪∞
j=1C j,diam(C j)≤ δ , and

H n
δ
(A)+ ε ≥

∞

∑
j=1

α(n)(r (C j))
n

Then

H n
δ
(A)+ ε ≥

∞

∑
j=1

α(n)(r (C j))
n

=
∞

∑
j=1

α(n)(r (PC j))
n ≥H n

δ
(PA).

Hence H n
δ
(PA) = H n

δ
(A). Letting δ → 0 yields the desired conclusion in the case where

A is bounded. For the general case, let Ar = A∩B(0,r). Then H n(PAr) = H n(Ar). Now
let r→ ∞. ■

Lemma 28.4.5 Let F ∈L (Rn,Rm),n≤ m, and let F = RU where R and U are described
in Theorem 5.9.6 on Page 94. Then if A⊆ Rn is Lebesgue measurable,

H n(FA) = det(U)mn(A).

Proof: Using Theorem 13.5.7 on Page 354 and Theorem 28.2.4,

H n(FA) = H n(RUA)

= H n(UA) = mn(UA) = det(U)mn(A). ■

Definition 28.4.6 Define J to equal det(U). Thus

J = det((F∗F)1/2) = (det(F∗F))1/2.
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Chapter 29

The Area Formula
I am grateful to those who have found errors in this material, some of which were egregious.
I would not have found these mistakes because I never teach this material and I don’t use it
in my research. I do think it is wonderful mathematics however.

To begin with is a simple theorem about extending Lipschitz functions.

Theorem 29.0.1 If h : Ω→ Rm is Lipschitz, then there exists h : Rp→ Rm which extends
h and is also Lipschitz.

Proof: It suffices to assume m = 1 because if this is shown, it may be applied to the
components of h to get the desired result. Suppose

|h(x)−h(y)| ≤ K |x−y|. (29.0.1)

Define
h(x)≡ inf{h(w)+K |x−w| : w ∈Ω}. (29.0.2)

If x ∈Ω, then for all w ∈Ω,

h(w)+K |x−w| ≥ h(x)

by 29.0.1. This shows h(x)≤ h(x). But also you could take w = x in 29.0.2 which yields
h(x)≤ h(x). Therefore h(x) = h(x) if x ∈Ω.

Now suppose x,y ∈ Rp and consider
∣∣h(x)−h(y)

∣∣. Without loss of generality assume
h(x)≥ h(y) . (If not, repeat the following argument with x and y interchanged.) Pick w∈Ω

such that
h(w)+K |y−w|− ε < h(y).

Then ∣∣h(x)−h(y)
∣∣= h(x)−h(y)≤ h(w)+K |x−w|−

[h(w)+K |y−w|− ε]≤ K |x−y|+ ε.

Since ε is arbitrary, ∣∣h(x)−h(y)
∣∣≤ K |x−y| ■

29.1 Estimates for Hausdorff Measure
It was shown in Lemma 28.4.5 that

H n(FA) = det(U)mn(A)

where F = RU with R preserving distances and U a symmetric matrix having all positive
eigenvalues. The area formula gives a generalization of this simple relationship to the case
where F is replaced by a nonlinear mapping h. It contains as a special case the earlier
change of variables formula. There are two parts to this development. The first part is
to generalize Lemma 28.4.5 to the case of nonlinear maps. When this is done, the area
formula can be presented.

1009
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In the first version of the area formula h will be a Lipschitz function,

|h(x)−h(y)| ≤ K |x−y|

defined on Rn. This is no loss of generality because of Theorem 29.0.1.
The following lemma states that Lipschitz maps take sets of measure zero to sets of

measure zero. It also gives a convenient estimate. It involves the consideration of H n as
an outer measure. Thus it is not necessary to know the set B is measurable.

Lemma 29.1.1 If h is Lipschitz with Lipschitz constant K then

H n (h(B))≤ KnH n (B)

Also, if T is a set in Rn, mn (T ) = 0, then H n (h(T )) = 0. It is not necessary that h be one
to one.

Proof: Let {Ci}∞

i=1 cover B with each having diameter less than δ and let this cover be
such that

∑
i

β (n)
1
2

diam(Ci)
n < H n

δ
(B)+ ε

Then {h(Ci)} covers h(B) and each set has diameter no more than Kδ . Then

H n
Kδ

(h(B)) ≤ ∑
i

β (n)
(

1
2

diam(h(Ci))

)n

≤ Kn
∑

i
β (n)

(
1
2

diam(Ci)

)n

≤ Kn (H n
δ
(B)+ ε

)
Since ε is arbitrary, this shows that

H n
Kδ

(h(B))≤ KnH n
δ
(B)

Now take a limit as δ → 0. The second claim follows from mn = H n on Lebesgue mea-
surable sets of Rn. ■

Lemma 29.1.2 If S is a Lebesgue measurable set and h is Lipschitz then h(S) is H n

measurable. Also, if h is Lipschitz with constant K,

H n (h(S))≤ Knmn (S)

It is not necessary that h be one to one.

Proof: The estimate follows from Lemma 29.1.1 and the observation that, as shown
before, Theorem 28.2.4, if S is Lebesgue measurable in Rn, then H n (S) = mn (S). The
estimate also shows that h maps sets of Lebesgue measure zero to sets of H n measure zero.
Why is h(S)H n measurable if S is Lebesgue measurable? This follows from completeness
of H n. Indeed, let F be Fσ and contained in S with mn (S\F) = 0. Then

h(S) = h(S\F)∪h(F)
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The second set is Borel and the first has H n measure zero. By completeness of H n, h(S)
is H n measurable. ■

By Theorem 5.9.6 on Page 94, when Dh(x) exists,

Dh(x) = R(x)U (x)

where (U (x)u,v) = (U (x)v,u) ,(U (x)u,u)≥ 0 and R∗R = I so R preserves lengths. This
convention will be used in what follows.

Lemma 29.1.3 In this situation where R∗R = I, |R∗u| ≤ |u|.

Proof: First note that

(u−RR∗u,RR∗ u) = (u,RR∗ u)−|RR∗u|2

= |R∗u|2−|R∗u|2 = 0,

and so

|u|2 = |u−RR∗u+RR∗u|2

= |u−RR∗u|2 + |RR∗u|2

= |u−RR∗u|2 + |R∗u|2. ■

Then the following corollary follows from Lemma 29.1.3.

Corollary 29.1.4 Let T ⊆ Rm. Then

H n (T )≥H n (R∗T ).

29.2 Comparison Theorems
First is a simple lemma which is fairly interesting which involves comparison of two linear
transformations.

Lemma 29.2.1 Suppose S,T are linear defined on a finite dimensional normed linear
space, S−1 exists and let δ ∈ (0,1). Then whenever ∥S−T∥ is small enough, it follows
that

|T v|
|Sv|
∈ (1−δ ,1+δ ) (29.2.3)

for all v ̸= 0. Similarly if T−1 exists and ∥S−T∥ is small enough,

|T v|
|Sv|
∈ (1−δ ,1+δ )

Proof: Say S−1 exists. Then v→ |Sv| is a norm. Then by equivalence of norms,
Theorem 8.4.9, there exists η > 0 such that for all v, |Sv| ≥ η |v| . Say ∥T −S∥< r < δη

|Sv|−∥T −S∥|v|
|Sv|

≤ |T v|
|Sv|

=
|[S+(T −S)]v|

|Sv|
≤ |Sv|+∥T −S∥|v|

|Sv|
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and so

1−δ ≤ 1− r |v|
η |v|

≤ |Sv|−∥T −S∥|v|
|Sv|

≤ |T v|
|Sv|

≤ |Sv|+∥T −S∥|v|
|Sv|

≤ 1+
r |v|
η |v|

= 1+δ

The last assertion follows by noting that if T−1 is given to exist and S is close to T then

|Sv|
|T v|

∈ (1−δ ,1+δ ) so
|T v|
|Sv|
∈
(

1
1+δ

,
1

1−δ

)
⊆
(

1− δ̂ ,1+ δ̂

)
By choosing δ appropriately, one can achieve the last inclusion for given δ̂ . ■

In short, the above lemma says that if one of S,T is invertible and the other is close to it,
then it is also invertible and the quotient of |Sv| and |T v| is close to 1. Then the following
lemma is fairly obvious.

Lemma 29.2.2 Let S,T be n×n matrices which are invertible. Then

o(T v) = o(Sv) = o(v)

and if L is a continuous linear transformation such that for a < b,

sup
v̸=0

|Lv|
|Sv|

< b, inf
v̸=0

|Lv|
|Sv|

> a

If ∥S−T∥ is small enough, it follows that the same inequalities hold with S replaced with
T . Here ∥·∥ denotes the operator norm.

Proof: Consider the first claim. For

|o(T v)|
|v|

=
|o(T v)|
|T v|

|T v|
|v|
≤ |o(T v)|
|T v|

∥T∥

Thus o(T v) = o(v) . It is similar for T replaced with S.
Consider the second claim. Pick δ sufficiently small. Then by Lemma 29.2.1

sup
v̸=0

|Lv|
|T v|

= sup
v̸=0

|Lv|
|Sv|
|Sv|
|T v|

≤ (1+δ )sup
v̸=0

|Lv|
|Sv|

< b

if δ is small enough. The other inequality is shown exactly similar. ■

29.3 A Decomposition
This follows [47] which is where I encountered this material. Assume the following:

Dh(x) exists at a.e.x ∈ G say at all x ∈ A⊆ G (29.3.4)
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By regularity, we can and will assume A is a Borel set. Of course this is automatic if h
is Lipschitz. I have in mind the assumption that h is Lipschitz. This makes things very
convenient because then h(E) is H n Hausdorff measurable whenever E is n dimensional
Lebesgue measurable. However, there are interesting things which don’t depend on Lips-
chitz continuity. Initially, I will only assume that h is continuous on G and differentiable
on A.

For x ∈ A, let Dh(x)≡ R(x)U (x) where R(x) preserves lengths and

U (x)≡
(
Dh(x)∗Dh(x)

)1/2

Let A+ denote those points of A for which U (x)−1 exists. Thus this is a measurable subset
of A.

Let B be a Borel measurable subset of A+ and let b ∈ B. Let S be a countable dense
subset of the space of symmetric invertible matrices and let C be a countable dense subset
of B. The idea is to decompose B into countably many Borel sets E on which h is one to
one and Lipschitz with h−1 Lipschitz on h(E) . This will be done by establishing 29.3.10
given below where T is an invertible symmetric transformation.

Let ε be a small number. Since U (b) is invertible, Lemma 29.2.2 implies o(a−b) =
o(U (b)(a−b)) and so

|h(a)−h(b)−Dh(b)(a−b)|< ε |U (b)(a−b)| (29.3.5)

provided that a ∈ B
(
b, 2

i

)
for i sufficiently large. By Lemma 29.2.1,

|h(a)−h(b)−Dh(b)(a−b)|< ε |T (a−b)| (29.3.6)

where U (b) is replaced by another linear one to one and onto symmetric mapping T pro-
vided T is sufficiently close to U (b).

Now let c ∈ C be close enough to b that b ∈ B
(
c, 1

i

)
. Thus b ∈ E (T,c, i) where for

i ∈ N,c ∈ C , T ∈S , E (T,c, i) consists of those b ∈ B
(
c, 1

i

)
such that for all a ∈ B

(
b, 2

i

)
,

29.3.6 holds and also

inf
v̸=0

|Dh(b)v|
|T v|

= inf
v̸=0

|U (b)v|
|T v|

> 1− ε, (29.3.7)

sup
v̸=0

|Dh(b)v|
|T v|

= sup
v̸=0

|U (b)v|
|T v|

< 1+ ε (29.3.8)

It follows then from the above inequalities and 29.3.6 that for all a ∈ B
(
b, 2

i

)
,

|h(a)−h(b)| ≤ (1+2ε) |T (a−b)|
|h(a)−h(b)| ≥ (1−2ε) |T (a−b)| (29.3.9)

and so

(1−2ε) |T (a−b)| ≤ |h(a)−h(b)| ≤ (1+2ε) |T (a−b)| (29.3.10)

Then if a,b ∈ E (T,c, i) , 29.3.10 holds for these two a,b because |a−b|< 2/i.
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•b
•c

B(c, 1
i )

B(b, 2
i )

Note that this proves that on E (T,c, i) the function h is one to one and T is a close
approximation to U (b) for each b ∈ E (T,c, i). It also shows the Lipschitz continuity of h
and h−1 on E by comparison with T . What has just been shown is a very interesting result
for its own sake. It is summarized in the following lemma.

29.4 Estimates and a Limit
Lemma 29.4.1 Let h be differentiable on A⊆G and let A+ consist of those points x where
det
(
Dh(x)∗Dh(x)

)
> 0. Then if B is any Borel subset of A+, there is a disjoint sequence

of Borel sets and invertible symmetric transformations Tk, {(Ek,Tk)} ,∪kEk = B such that
h is Lipschitz on Ek and h−1 is Lipschitz on h(E (T,c, i)). Also for any b ∈ Ek,29.3.7 and
29.3.8 both hold. Also, for b ∈ Ek

(1− ε) |Tkv|< |Dh(b)v|= |U (b)v|< (1+ ε) |Tkv| (29.4.11)

One can also conclude that for b ∈ Ek,

(1− ε)−n |det(Tk)| ≤ det(U (b))≤ (1+ ε)n |det(Tk)| (29.4.12)

Proof: It follows from 29.3.10 that for x,y ∈ T (E (T,c, i))∣∣h(T−1 (x)
)
−h

(
T−1 (y)

)∣∣≤ (1+2ε) |x−y| (29.4.13)

and for x,y in h(E (T,c, i)) ,∣∣T (h−1 (x)
)
−T

(
h−1 (y)

)∣∣≤ 1
(1−2ε)

|x−y| (29.4.14)

The symbol h−1 refers to the restriction to h(E (T,c, i)) of the inverse image of h. Thus,
on this set, h−1 is actually a function even though h might not be one to one. This also
shows that h−1 is Lipschitz on h(E (T,c, i)) and h is Lipschitz on E (T,c, i). Indeed, from
29.4.13, letting T−1 (x) = a and T−1 (y) = b,

|h(a)−h(b)| ≤ (1+2ε) |T (a)−T (b)| ≤ (1+2ε)∥T∥|a−b| (29.4.15)

and using the fact that T is one to one, there is δ > 0 such that |T z| ≥ δ |z| so 29.4.14
implies that ∣∣h−1 (x)−h−1 (y)

∣∣≤ 1
δ (1−2ε)

|x−y| (29.4.16)

Now let (Ek,Tk) result from a disjoint union of measurable subsets of the countably
many E (T,c, i) such that B = ∪kEk. Thus the above Lipschitz conditions 29.4.13 and
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29.4.14 hold for Tk in place of T . It is not necessary to assume h is one to one in this
lemma. h−1 refers to the inverse image of h restricted to h(Ek) as discussed above.

Finally, consider 29.4.12. 29.4.11 implies that

(1− ε) |v|<
∣∣U (b)T−1

k v
∣∣< (1+ ε) |v|

A generic vector in B(0,1− ε) is (1− ε)v where |v|< 1. Thus, the above inequality implies

B(0,1− ε)⊆U (b)T−1
k B(0,1)⊆ B(0,1+ ε)

This implies
α (n)(1− ε)n ≤ det

(
U (b)T−1

k

)
α (n)≤ α (n)(1+ ε)n

and so (1− ε)n ≤ det(U (b))det
(
T−1

k

)
≤ (1+ ε)n and so for b ∈ Ek,

(1− ε)n |det(Tk)| ≤ det(U (b))≤ (1+ ε)n |det(Tk)| ■

Recall that B was a Borel measurable subset of A+ the set where U (x)−1 exists. Now
the above estimates can be used to estimate H n (h(Ek)) . There is no problem about mea-
surability of h(Ek) due to Lipschitz continuity of h on Ek. From Lemma 29.1.1 about the
relationship between Hausdorff measure and Lipschitz mappings, it follows from 29.4.13
and 29.4.12,

H n (h(Ek)) = H n (h◦T−1
k (Tk (Ek))

)
≤ (1+2ε)n H n (Tk (Ek))

= (1+2ε)n mn (Tk (Ek))≤ (1+2ε)n |det(Tk)|mn (Ek)

also,

mn (Tk (Ek)) = H n ((Tk ◦h−1 (h(Ek))
))
≤
(

1
1−2ε

)n

H n (h(Ek)) (29.4.17)

Summarizing,(
1

1−2ε

)n

H n (h(Ek))≥ mn (Tk (Ek))≥
1

(1+2ε)n H n (h(Ek))

Then the above inequality and 29.4.12, 29.4.17 imply the following.

1
(1+2ε)n H n (h(Ek))≤ mn (Tk (Ek))≤

(
1

1−2ε

)n

|det(Tk)|mn (Ek)

≤
(

1
1−2ε

)n

(1− ε)n
∫

Ek

det(U (x))dmn ≤
(

1
1−2ε

)n

(1+ ε)n |det(Tk)|mn (Ek)

≤ (1+2ε)n

(1−2ε)n mn (TkEk)≤
(1+2ε)n

(1−2ε)n

(
1

1−2ε

)n

H n (h(Ek)) (29.4.18)

Assume now that h is one to one on B. Summing over all Ek yields the following thanks
to the assumption that h is one to one.

1
(1+2ε)n H n (h(B))≤ (1−2ε)−n (1− ε)n

∫
B

det(U (x))dx
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≤ (1+2ε)n

(1−2ε)n

(
1

1−2ε

)n

H n (h(B))

ε was arbitrary and so when h is one to one on B,

H n (h(B))≤
∫

B
det(U (x))dx≤H n (h(B))

Now B was completely arbitrary. Let it equal B(x,r)∩A+ where x ∈ A+. Then for
x ∈ A+,

H n (h(B(x,r)∩A+
))

=
∫

B(x,r)
XA+ (y)det(U (y))dy

Divide by mn (B(x,r)) and use the fundamental theorem of calculus. This yields that for x
off a set of mn measure zero,

lim
r→0

H n (h(B(x,r)∩A+))

mn (B(x,r))
= XA+ (x)det(U (x)) (29.4.19)

This has proved the following lemma.

Lemma 29.4.2 Let h be continuous on G and differentiable on A ⊆ G and one to one on
A+ which is as defined above. There is a set of measure zero N such that for x ∈ A+ \N,

lim
r→0+

H n (h(B(x,r)∩A+))

mn (B(x,r))
= det(U (x))

The next theorem removes the assumption that U (x)−1 exists and replaces A+ with
A. From now on J∗ (x) ≡ det(U (x)) . Also note that if F is measurable and a subset of
A+,h(Ek ∩F) is Hausdorff measurable because of the Lipschitz continuity of h on Ek.

Theorem 29.4.3 Let h : G ⊆ Rn→ Rm for n ≤ m,G an open set in Rn, and suppose h is
continuous on G differentiable and one to one on A. Then for a.e. x ∈ A, the set in G where
Dh(x) exists,

J∗ (x) = lim
r→0

H n (h(B(x,r)∩A))
mn (B(x,r))

, (29.4.20)

where J∗ (x)≡ det(U (x)) = det
(
Dh(x)∗Dh(x)

)1/2.

Proof: The above argument shows that the conclusion of the theorem holds when
J∗ (x) ̸= 0 at least with A replaced with A+. I will apply this to a modified function in
which the corresponding U (x) always has an inverse. Let k : Rn→ Rm×Rn be defined as

k(x)≡
(

h(x)
εx

)
in which dependence of k on ε is suppressed. Then Dk(x)∗Dk(x) = Dh(x)∗Dh(x)+ε2In
and so

J∗k(x)2 ≡ det
(
Dh(x)∗Dh(x)+ ε

2In
)
= det

(
Q∗DQ+ ε

2In
)
> 0
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where D is a diagonal matrix having the nonnegative eigenvalues of Dh(x)∗ Dh(x) down
the main diagonal, Q an orthogonal matrix. A is where h is differentiable. However, it is
A+ when referring to k. Then Lemma 29.4.2 implies

lim
r→0

H n (k(B(x,r)∩A))
mn (B(x,r))

= J∗k(x)

This is true for each choice of ε > 0. Pick such an ε small enough that J∗k(x)< J∗h(x)+δ .
Let

T ≡
{
(h(w) ,0)T : w ∈ B(x,r)∩A

}
,

Tε ≡
{
(h(w) ,εw)T : w ∈ B(x,r)∩A

}
≡ k(B(x,r)∩A) ,

then T =
(

PTε 0
)T where P is the projection map defined by P

(
x
y

)
≡ x. Since P

decreases distances, it follows from Lemma 29.1.1

H n (h(B(x,r)∩A)) = H n (PTε)≤H n (Tε) = H n (k(B(x,r))∩A) .

Thus for a.e. x ∈ A+,

J∗h(x)+δ ≥ J∗k(x) = lim
r→0

H n (k(B(x,r)∩A))
mn (B(x,r))

≥ limsup
r→0

H n (h(B(x,r)∩A))
mn (B(x,r))

≥ lim inf
r→0

H n (h(B(x,r)∩A))
mn (B(x,r))

≥ lim
r→0

H n (h(B(x,r)∩A+))

mn (B(x,r))
= J∗h(x) (29.4.21)

Thus, since δ is arbitrary, limr→0
H n(h(B(x,r)∩A))

mn(B(x,r)) = det
(
Dh(x)∗Dh(x)

)1/2 when x ∈ A+.
If x /∈ A+, the above 29.4.21 shows that

J∗h(x) = 0≥ limsup
r→0

H n (h(B(x,r)∩A))
mn (B(x,r))

≥ 0

and so this has shown that for a.e.x ∈ A,

lim
r→0

H n (h(B(x,r)∩A))
mn (B(x,r))

= J∗ (x) ■

Another good idea is in the following lemma.

Lemma 29.4.4 Let k be as defined above. Let A be the set of points where Dh exists so
A = A+ relative to k. Then if F is Lebesgue measurable, h(F ∩A) is H n measurable. Also
H n (h(N∩A)) = 0 if mn (N) = 0.

Proof: By Lemma 29.4.1, there are disjoint Borel sets Ek such that k is Lipschitz on
each Ek and ∪kEk = A = A+ where A+ refers to k. Thus

Pk(Ek ∩F ∩A) = h(Ek ∩F ∩A)

is Hn measurable by Lemma 29.1.2. Hence h(F ∩A) = ∪kh(Ek ∩F ∩A) is H n measur-
able. The last claim follows from Lemma 29.1.2.

H n (h(Ek ∩N∩A))≤H n (k(Ek ∩N∩A)) = 0

and so the result follows. ■
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29.5 The Area Formula
At this point, I will begin assuming h is Lipschitz continuous to avoid the fuss with whether
sets are appropriately measurable and to ensure that the measure considered below is ab-
solutely continuous without any heroics. Let h be Lipschitz continuous on G, an open
set containing A, the set where h is differentiable. Suppose also that h is one to one on
A. Then H n (h(G\A)) = 0 because mn (G\A) = 0 by Rademacher’s theorem. Hence
Lemma 29.1.2 applies.

Lemma 29.5.1 Let h be Lipschitz. Let h be one to one and differentiable on A with
mn (G\A) = 0. If N ⊆ G has measure zero, then h(N) has H n measure zero and if
E is Lebesgue measurable subset of G, then h(E) is H n measurable subset of Rm. If
ν (E)≡H n (h(E)) , then ν ≪ mn.

Proof: Lemma 29.1.2 implies h(N) = 0 if mn (N) = 0.Also from this lemma, h(E) is
H n measurable if E is. Is ν a measure? Suppose {Ei} are disjoint Lebesgue measurable
subsets of G. Then for A the set where Dh exists as above,

ν (∪iEi) ≡ H n (h(∪iEi))≤H n (h(∪iEi∩A)∪h(G\A))

≤ ∑
i

H n (h(Ei∩A))+H n (h(G\A)) = ∑
i

H n (h(Ei∩A)) = ∑
i

ν (Ei)

Thus ν ≪ mn. ■
It follows from the Radon Nikodym theorem for Radon measures, that

ν (E)≡H n (h(E)) =
∫

E
Dmnνdmn

but Dmnν ≡ limr→0
H n(h(B(x,r)))

mn(x,r) = limr→0
H n(h(B(x,r))∩A)

mn(x,r) = J∗ (x) for a.e. x from Theorem
29.4.3. Also, ν is finite on closed balls so it is regular thanks to Corollary 11.6.8. This
shows from the Radon Nikodym theorem, Theorem 31.3.5 that∫

Xh(E)dH n =
∫

E
Dmnνdmn =

∫
XE (x)J∗dmn

Note also that, since AC has measure zero,∫
h(A)

Xh(E)dH n =
∫

A
XE (x)J∗dmn

Now let F be a Borel set in Rm. Recall this implies F is H n measurable. Then∫
h(A)

XF (y)dH n =
∫

XF∩h(A) (y)dH n = H n (h(h−1 (F)∩A
))

= ν
(
h−1 (F)

)
=
∫

XA∩h−1(F) (x)J∗ (x)dmn

=
∫

A
XF (h(x))J∗ (x)dmn. (29.5.22)
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Note there are no measurability questions in the above formula because h−1 (F) is a Borel
set due to the continuity of h. The Borel measurability of J∗ (x) also follows from the
observation that h is continuous and therefore, the partial derivatives are Borel measurable,
being the limit of continuous functions. Then J∗ (x) is just a continuous function of these
partial derivatives. However, things are not so clear if F is only assumed H n measurable.
Is there a similar formula for F only H n measurable?

Let λ (E) ≡ H n (E ∩h(A)) for E an arbitrary bounded H n measurable set. This
measure is finite on finite balls from what was shown above. Therefore, from Proposition
11.7.3, there exists an Fσ set F and a Gδ set H such that F ⊆ E ⊆ H and λ (H \F) = 0.
Thus

XF (h(x))J∗ (x)≤XE (h(x))J∗ (x)≤XH (h(x))J∗ (x)

where the functions on the ends are measurable. Then∫
A
(XH (h(x))−XF (h(x))J∗ (x))J∗ (x)dmn

= λ (H)−λ (F) = 0

and so XE (h(x))J∗ (x) = XF (h(x))J∗ (x) = XF (h(x))J∗ (x) off a set of Lebesgue mea-
sure zero showing by completeness of Lebesgue measure that x→XE (h(x))J∗ (x) is Leb-
esgue measurable. Then∫

h(A)
XF (y)dH n =

∫
A
XF (h(x))J∗ (x)dmn =

∫
A
XE (h(x))J∗ (x)dmn

=
∫

A
XH (h(x))J∗ (x)dmn =

∫
h(A)

XH (y)dH n

=
∫

h(A)
XE (y)dH n =

∫
h(A)

XF (y)dH n

If E is not bounded, then replace with Er ≡ E ∩B(0,r) and pass to a limit using the mono-
tone convergence theorem. This proves the following lemma.

Lemma 29.5.2 Whenever E is Lebesgue measurable,∫
h(A)

XE (y)dH n =
∫

A
XE (h(x))J∗ (x)dmn. (29.5.23)

From this, it follows that if s is a nonnegative, H n measurable simple function, 29.5.23
continues to be valid with s in place of XE . Then approximating an arbitrary nonnegative
H n measurable function g by an increasing sequence of simple functions, it follows that
29.5.23 holds with g in place of XE and there are no measurability problems because
x→ g(h(x))J∗ (x) is Lebesgue measurable. This proves the following theorem which is
the area formula.

Theorem 29.5.3 Let h : Rn → Rm be Lipschitz continuous for m ≥ n. Let A ⊆ G for G
an open set be the set of x ∈ G on which Dh(x) exists, and let g : h(A)→ [0,∞] be H n

measurable. Then
x→ (g◦h)(x)J∗ (x)
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is Lebesgue measurable and∫
h(A)

g(y)dH n =
∫

A
g(h(x))J∗ (x)dmn

where J∗ (x) = det(U (x)) = det
(
Dh(x)∗Dh(x)

)1/2.

Since H n = mn on Rn, this is just a generalization of the usual change of variables
formula. This is much better because it is not limited to h having values in Rn. Also
note that you could replace A with G since they differ by a set of measure zero thanks
to Rademacher’s theorem. Note that if you assume that h is Lipschitz on G then it has a
Lipschitz extension to Rn. The conclusion has to do with integrals over G. It is not really
necessary to have h be Lipschitz continuous on Rn, but you might as well assume this
because of the existence of the Lipschitz extension. Here is another interesting change of
variables theorem.

Theorem 29.5.4 Let h : G⊆Rn→Rm be continuous where G is an open set and let A⊆G
where A is the Borel measurable set consisting of x where Dh(x) exists. Suppose h is
differentiable and one to one on A. Also let g : h(G)→ [0,∞] be H n measurable. Then

x→ (g◦h)(x)J∗ (x)

is Lebesgue measurable and∫
h(A)

g(y)dH n =
∫

A
g(h(x))J∗ (x)dmn (29.5.24)

where J∗ (x) = det(U (x)) = det
(
Dh(x)∗Dh(x)

)1/2.

Proof: By Lemma 29.4.4, ν (E)≡H n (h(E ∩A)) is a measure defined on the Lebesgue
measurable sets contained in G and ν ≪ mn. The reason it is a measure is

ν (∪iEi) ≡ H n (h(∪iEi∩A)) = H n (h(∪iEi∩A))

= H n (∪ih(Ei∩A)) = ∑
i

H n (Ei∩A) = ∑
i

ν (Ei)

This measure is finite on compact sets. Therefore, by Corollary 11.6.8, it is a regular
measure. By the Radon Nikodym theorem for Radon measures, Theorem 31.3.5,

ν (E) =
∫

E
Dmnνdmn

where Dmnν is the symmetric derivative given by

lim
r→0

H n (B(x,r)∩A)
mn (B(x,r))

However, from Theorem 29.4.3 this limit equals J∗ (x) described above as

det
(
Dh(x)∗Dh(x)

)1/2

Now the rest of the argument is identical to that presented above leading to Theorem
29.5.3. ■

Note that from 29.5.24, H n (h(A\A+)) = 0 so this also gives a generalization of
Sard’s theorem used earlier in the case that h is one to one.
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29.6 Mappings that are not One to One
Let h : Rn → Rm be Lipschitz. We drop the requirement that h be one to one. Again, let
A be the set on which Dh(x) exists. Let k be as used earlier in Theorem 29.4.3. Thus
Jk(x) ̸= 0 for all x ∈ A the set where Dh(x) exists. Thus there is a sequence of disjoint
Borel sets {Ek} whose union is A such that k is Lipschitz on Ek. Let S be given by

S≡
{

x ∈ A, such that U (x)−1 does not exist
}

Then S is a Borel set and so letting Sk j ≡ S∩Ek ∩B(0, j) , the change of variables formula
above implies

H n (h(Sk j
))
≤H n (k(Sk j

))
=
∫

k(Sk j)
dH n =

∫
A
XSk j (x)J∗k(x)dmn ≤ δmn

(
Sk j
)

where k is chosen with ε small enough that J∗k(x)< δ . δ is arbitrary, so H n
(
h
(
Sk j
))

= 0
and so H n (h(S∩Ek)) = 0. Consequently H n (h(S)) = 0. This is stated as the following
lemma. Note how this includes the earlier Sard’s theorem.

Lemma 29.6.1 For S defined above, H n (h(S)) = 0.

Thus mn (N) = 0 where N is the set where Dh(x) does not exist. Then by Lemma
29.1.2

H n (h(S∪N))≤H n (h(S))+H n (h(N)) = 0. (29.6.25)

Let B≡ Rn \ (S∪N).
Recall Lemma 29.4.1 above which said that for each x ∈ A+ the set where U (x) is

invertible there is a Borel set F containing x on which h is one to one. In fact it was one
of countably many sets of the form E (T,c, i) . By enumerating these sets as done earlier,
referring to them as Ek, one can let F1 ≡ E1, and if F1, · · · ,Fn have been chosen, Fn+1 ≡
En+1 \∪n

i=1Fi to obtain the result of the following lemma.

Lemma 29.6.2 There exists a sequence of disjoint measurable sets, {Fi}, such that

∪∞
i=1Fi = B⊆ A+

and h is one to one on Fi.

The following corollary will not be needed right away but it is of interest. Recall that
A is the set where h is differentiable and A+ is the set where det

(
Dh(x)∗Dh(x)

)
> 0. Part

of Lemma 29.4.1 is reviewed in the following corollary.

Corollary 29.6.3 For each Fi in Lemma 29.6.2, h−1 is Lipschitz on h(Fi).

Now let g : h(Rn)→ [0,∞] be H n measurable. By Theorem 29.5.3,∫
h(A)

Xh(Fi) (y)g(y)dH n =
∫

Fi

g(h(x))J∗ (x)dm. (29.6.26)
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Now define

n(y) =
∞

∑
i=1

Xh(Fi) (y).

By Lemma 29.1.2, h(Fi) is H n measurable and so n is a H n measurable function. For
each y ∈ B, n(y) gives the number of elements in h−1 (y)∩B. From 29.6.26,∫

h(Rn)
n(y)g(y)dH n =

∫
B

g(h(x))J∗ (x)dm. (29.6.27)

Now define

#(y)≡ number of elements in h−1 (y).

Theorem 29.6.4 Let h : Rn→ Rm be Lipschitz. Then the function y→ #(y) is H n mea-
surable and if

g : h(Rn)→ [0,∞]

is H n measurable, then∫
h(Rn)

g(y)#(y)dH n =
∫
Rn

g(h(x))J∗ (x)dm.

Proof: If y /∈ h(S∪N), then n(y) = #(y). By 29.6.25

H n (h(S∪N)) = 0

and so n(y) = #(y) a.e. Since H n is a complete measure, #(·) is H n measurable. Letting

G≡ h(Rn)\h(S∪N),

29.6.27 implies∫
h(Rn)

g(y)#(y)dH n =
∫

G
g(y)n(y)dH n =

∫
B

g(h(x))J∗ (x)dm

=
∫
Rn

g(h(x))J∗ (x)dmn. ■

Note that the same argument would hold if h : G→Rm is continuous and if A is the set
where h is differentiable and H n (h(G\A)) = 0, then for g as above,∫

h(A)
g(y)#(y)dH n =

∫
A

g(h(x))J∗ (x)dmn

The details are left to the reader.
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29.7 The Divergence Theorem
As an important application of the area formula I will give a general version of the diver-
gence theorem for sets in Rp. It will always be assumed p≥ 2. Actually it is not necessary
to make this assumption but what results in the case where p = 1 is nothing more than
the fundamental theorem of calculus and the considerations necessary to draw this conclu-
sion seem unneccessarily tedious. You have to consider H 0, zero dimensional Hausdorff
measure. It is left as an exercise but I will not present it.

It will be convenient to have some lemmas and theorems in hand before beginning
the proof. First recall the Tietze extension theorem on Page 158. It is stated next for
convenience.

Theorem 29.7.1 Let M be a closed nonempty subset of a metric space (X ,d) and let f :
M→ [a,b] be continuous at every point of M. Then there exists a function, g continuous on
all of X which coincides with f on M such that g(X)⊆ [a,b] .

The next topic needed is the concept of an infinitely differentiable partition of unity.
This was discussed earlier in Lemma 37.1.6.

Definition 29.7.2 Let C be a set whose elements are subsets of Rp.1 Then C is said to be
locally finite if for every x ∈ Rp, there exists an open set, Ux containing x such that Ux has
nonempty intersection with only finitely many sets of C.

The following was proved mostly in Theorem 7.5.5.

Lemma 29.7.3 Let C be a set whose elements are open subsets ofRp and suppose ∪C⊇H,
a closed set. Then there exists a countable list of open sets, {Ui}∞

i=1 such that each Ui is
bounded, each Ui is a subset of some set of C, and ∪∞

i=1Ui ⊇ H. One can also assume that
{Ui}∞

i=1 is locally finite.

Proof: The first part was proved earlier. Since Rp is separable, it is completely sep-
arable with a countable basis of balls called B. For each x ∈ H, let U be a ball from B
having diameter no more than 1 which is contained in some set of C. This collection of
balls is countable because B is. Let Hm ≡ B(0,m)∩H \(B(0,m−1)∩H) where H0 ≡ /0.
Thus each Hm is compact closed and bounded. Let {Ui}km

i=1 ≡ Um be a finite subset of
{Ui}∞

i=1 ≡ U which have nonempty intersection with Hm and whose union includes Hm.
Thus ∪∞

k=1Uk is a locally finite cover of H. To see this, if x is any point, consider B
(
x, 1

4

)
.

Can it intersect a set of Um for arbitrarily large m? If so, x would need to be within 2
of Hm for arbitrarily large m. However, this is not possible because it would require that
∥x∥ ≥ m− 3 for infinitely many m. Thus this ball can intersect only finitely many sets of
∪∞

k=1Uk. ■
Recall Corollary 11.6.8 and Proposition 11.7.3. What is needed is listed here for con-

venience.

Lemma 29.7.4 Let Ω be a complete separable metric space and suppose µ is a complete
measure defined on a σ algebra which contains the Borel sets of Ω which is finite on balls,
the closures of these balls being compact. Then µ must be both inner and outer regular.

1The definition applies with no change to a general topological space in place of Rn.
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One more lemma will be useful. It involves approximating a continuous function uni-
formly with one which is infinitely differentiable.

Lemma 29.7.5 Let V be a bounded open set and let X be the closed subspace of C
(
V
)
,

the space of continuous functions defined on V , which is given by the following.

X = {u ∈C
(
V
)

: u(x) = 0 on ∂V}.

Then C∞
c (V ) is dense in X with respect to the norm given by

∥u∥= max
{
|u(x)| : x ∈V

}
Proof: Let O ⊆ O ⊆W ⊆W ⊆ V be such that dist

(
O,VC

)
< η and let ψδ (·) be a

mollifier. Let u ∈ X and consider XW u∗ψδ . Let ε > 0 be given and let η be small enough
that |u(x) |< ε/2 whenever x∈V \O. Then if δ is small enough |XW u∗ψδ (x)−u(x) |< ε

for all x ∈ O and XW u∗ψδ is in C∞
c (V ). For x ∈V \O, |XW u∗ψδ (x) | ≤ ε/2 and so for

such x,
|XW u∗ψδ (x)−u(x) | ≤ ε.

This proves the lemma since ε was arbitrary. ■

Lemma 29.7.6 Let α1, · · · ,α p be real numbers and let A(α1, · · · ,α p) be the matrix which
has 1+α2

i in the iith slot and α iα j in the i jth slot when i ̸= j. Then

detA = 1+
p

∑
i=1

α
2
i .

Proof of the claim: The matrix, A(α1, · · · ,α p) is of the form

A(α1, · · · ,α p) =


1+α2

1 α1α2 · · · α1α p
α1α2 1+α2

2 α2α p
...

. . .
...

α1α p α2α p · · · 1+α2
p


Now consider the product of a matrix and its transpose, BT B below.

1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
−α1 −α2 · · · −α p 1




1 0 · · · 0 −α1
0 1 0 −α2
...

. . .
...

0 1 −α p
α1 α2 · · · α p 1

 (29.7.28)

This product equals a matrix of the form(
A(α1, · · · ,α p) 0

0 1+∑
p
i=1 α2

i

)
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Therefore,
(
1+∑

p
i=1 α2

i
)

det(A(α1, · · · ,α p)) = det(B)2 = det
(
BT
)2
. However, using row

operations,

detBT = det


1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
0 0 · · · 0 1+∑

p
i=1 α2

i

= 1+
p

∑
i=1

α
2
i

and therefore, (
1+

p

∑
i=1

α
2
i

)
det(A(α1, · · · ,α p)) =

(
1+

p

∑
i=1

α
2
i

)2

which shows det(A(α1, · · · ,α p)) =
(
1+∑

p
i=1 α2

i
)
. ■

Definition 29.7.7 A bounded open set, U ⊆ Rp is said to have a Lipschitz boundary and
to lie on one side of its boundary if the following conditions hold. There exist open boxes,
Q1, · · · ,QN ,

Qi =
p

∏
j=1

(
ai

j,b
i
j
)

such that ∂U ≡U \U is contained in their union. Also, for each Qi, there exists k and a
Lipschitz function, gi such that U ∩Qi is of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏

k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and ai

k < xk < gi (x1, · · · ,xk−1,xk+1, · · · ,xp)

 (29.7.29)

or else of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏
k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and gi (x1, · · · ,xk−1,xk+1, · · · ,xp)< xk < bi

j

 (29.7.30)

The function, gi has a derivative on Ai ⊆∏
k−1
j=1

(
ai

j,b
i
j

)
×∏

p
j=k+1

(
ai

j,b
i
j

)
where

mp−1

(
k−1

∏
j=1

(
ai

j,b
i
j
)
×

p

∏
j=k+1

(
ai

j,b
i
j
)
\Ai

)
= 0.

Also, there exists an open set, Q0 such that Q0 ⊆ Q0 ⊆U and U ⊆ Q0∪Q1∪·· ·∪QN .

Note that since there are only finitely many Qi and each gi is Lipschitz, it follows from
an application of Lemma 29.1.1 that H p−1 (∂U)< ∞. Also from Lemma 29.7.4 H p−1 is
inner and outer regular on ∂U . In the following, dx will be used in place of dmp to conform
with more standard notation from calculus.
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Lemma 29.7.8 Suppose U is a bounded open set as described above. Then there exists a
unique function in L∞

(
∂U,H p−1

)p
, n(y) for y ∈ ∂U such that |n(y)| = 1,n is H p−1

measurable, (meaning each component of n is H p−1 measurable) and for every w ∈ Rp

satisfying |w|= 1, and for every f ∈C1
c (Rp) ,

lim
t→0

∫
U

f (x+ tw)− f (x)
t

dx =
∫

∂U
f (n ·w)dH p−1

Proof: Let U ⊆V ⊆V ⊆ ∪N
i=0Qi and let {ψ i}

N
i=0 be a C∞ partition of unity on V such

that spt(ψ i)⊆ Qi. Then for all t small enough and x ∈U ,

f (x+ tw)− f (x)
t

=
1
t

N

∑
i=0

ψ i f (x+ tw)−ψ i f (x) .

Thus using the dominated convergence theorem and Rademacher’s theorem,

lim
t→0

∫
U

f (x+ tw)− f (x)
t

dx

= lim
t→0

∫
U

(
1
t

N

∑
i=0

ψ i f (x+ tw)−ψ i f (x)

)
dx

=
∫

U

N

∑
i=0

p

∑
j=1

D j (ψ i f )(x)w jdx

=
∫

U

p

∑
j=1

D j (ψ0 f )(x)w jdx+
N

∑
i=1

∫
U

p

∑
j=1

D j (ψ i f )(x)w jdx (29.7.31)

Since spt(ψ0)⊆ Q0, it follows the first term in the above equals zero. In the second term,
fix i. Without loss of generality, suppose the k in the above definition equals p and 29.7.29
holds. This just makes things a little easier to write. Thus gi is a function of

(x1, · · · ,xp−1) ∈
p−1

∏
j=1

(
ai

j,b
i
j
)
≡ Bi

Then ∫
U

p

∑
j=1

D j (ψ i f )(x)w jdx

=
∫

Bi

∫ gi(x1,··· ,xp−1)

ai
p

p

∑
j=1

D j (ψ i f )(x)w jdxpdx1 · · ·dxp−1

=
∫

Bi

∫ gi(x1,··· ,xp−1)

−∞

p

∑
j=1

D j (ψ i f )(x)w jdxpdx1 · · ·dxp−1
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Letting xp = y+gi (x1, · · · ,xp−1) and changing the variable, this equals

=
∫

Bi

∫ 0

−∞

p

∑
j=1

D j (ψ i f )(x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)) ·

w jdydx1 · · ·dxp−1

=
∫

Ai

∫ 0

−∞

p

∑
j=1

D j (ψ i f )(x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)) ·

w jdydx1 · · ·dxp−1

Recall Ai is all of Bi except for the set of measure zero where the derivative does not exist.
Also D j refers to the partial derivative taken with respect to the entry in the jth slot. In the
pth slot is found not just xp but y+ gi (x1, · · · ,xp−1) so a differentiation with respect to x j
will not be the same as D j. In fact, it will introduce another term involving gi, j. Thus from
the chain rule,

=
∫

Ai

∫ 0

−∞

p−1

∑
j=1

∂

∂x j
(ψ i f (x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)))w j−

Dp (ψ i f )(x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)) ·gi, j (x1, · · · ,xp−1)w jdydx1 · · ·dxp−1

+
∫

Ai

∫ 0

−∞

Dp (ψ i f )(x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1))wpdydx1 · · ·dxp−1 (29.7.32)

Consider the term∫
Ai

∫ 0

−∞

p−1

∑
j=1

∂

∂x j
(ψ i f (x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)))w jdydx1 · · ·dxp−1

This equals

∫
Bi

∫ 0

−∞

p−1

∑
j=1

∂

∂x j
(ψ i f (x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1)))w jdydx1 · · ·dxp−1,

and now interchanging the order of integration and using the fact that spt(ψ i) ⊆ Qi, it
follows this term equals zero. The reason this is valid is that

x j→ ψ i f (x1, · · · ,xp−1,y+gi (x1, · · · ,xp−1))

is the composition of Lipschitz functions and is therefore Lipschitz. Therefore, this func-
tion can be recovered by integrating its derivative, Lemma 26.2.6.

Then, changing the variable back to xp it follows 29.7.32 reduces to

−
∫

Ai

∫ gi(x1,··· ,xp−1)

−∞

 ∑
p−1
j=1 Dp (ψ i f )(x1, · · · ,xp−1,xp)

·gi, j (x1, · · · ,xp−1)w j

dxpdx1 · · ·dxp−1
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+
∫

Ai

∫ gi(x1,··· ,xp−1)

−∞

Dp (ψ i f (x1, · · · ,xp−1,xp))wpdxpdx1 · · ·dxp−1

Doing the integrals using the observation that gi, j (x1, · · · ,xp−1) does not depend on xp, this
reduces further to∫

Ai

(ψ i f )(x1, · · · ,xp−1,xp)Ni (x1, · · · ,xp−1,gi (x1, · · · ,xp−1)) ·wdmp−1 (29.7.33)

where Ni (x1, · · · ,xp−1,gi (x1, · · · ,xp−1)) is given by

(−gi,1 (x1, · · · ,xp−1) ,−gi,2 (x1, · · · ,xp−1) , · · · ,−gi,p−1 (x1, · · · ,xp−1) ,1) . (29.7.34)

At this point I need a technical lemma which will allow the use of the area formula. The
part of the boundary of U which is contained in Qi is the image of the map, hi (x1, · · · ,xp−1)
given by (x1, · · · ,xp−1,gi (x1, · · · ,xp−1)) for (x1, · · · ,xp−1) ∈ Ai. I need a formula for

det
(
Dhi (x1, · · · ,xp−1)

∗Dhi (x1, · · · ,xp−1)
)1/2

.

To avoid interupting the argument, I will state the lemma here and prove it later.

Lemma 29.7.9

det
(
Dhi (x1, · · · ,xp−1)

∗Dhi (x1, · · · ,xp−1)
)1/2

=

√√√√1+
p−1

∑
j−1

gi, j (x1, · · · ,xp−1)
2 ≡ J∗i (x1, · · · ,xp−1) .

For
y = (x1, · · · ,xp−1,gi (x1, · · · ,xp−1)) ∈ ∂U ∩Qi

and n defined by

ni (y) =
1

J∗i (x1, · · · ,xp−1)
Ni (y)

it follows from the description of J∗i (x1, · · · ,xp−1) given in the above lemma, that ni is a
unit vector. All components of ni are continuous functions of limits of continuous func-
tions. Therefore, ni is Borel measurable and so it is H p−1 measurable. Now 29.7.33
reduces to ∫

Ai

(ψ i f )(x1, · · · ,xp−1,gi (x1, · · · ,xp−1))×

ni (x1, · · · ,xp−1,gi (x1, · · · ,xp−1)) ·wJ∗i (x1, · · · ,xp−1)dmp−1.

By the area formula this equals∫
h(Ai)

ψ i f (y)ni (y) ·wdH p−1.
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Now by Lemma 29.1.1 and the equality of mp−1 and H p−1 on Rp−1, the above integral
equals ∫

∂U∩Qi

ψ i f (y)ni (y) ·wdH p−1 =
∫

∂U
ψ i f (y)ni (y) ·wdH p−1.

Similar arguments apply to the other terms and therefore,

lim
t→0

∫
U

f (x+ tw)− f (x)
t

dmp =
N

∑
i=1

∫
∂U

ψ i f (y)ni (y) ·wdH p−1

=
∫

∂U
f (y)

N

∑
i=1

ψ i (y)ni (y) ·wdH p−1 =
∫

∂U
f (y)n(y) ·wdH p−1 (29.7.35)

Then let n(y)≡ ∑
N
i=1 ψ i (y)ni (y) .

I need to show first there is no other n which satisfies 29.7.35 and then I need to show
that |n(y)| = 1. Note that it is clear |n(y)| ≤ 1 because each ni is a unit vector and this is
just a convex combination of these. Suppose then that n1 ∈ L∞

(
∂U,H p−1

)
also works in

29.7.35. Then for all f ∈C1
c (Rp) ,∫

∂U
f (y)n(y) ·wdH p−1 =

∫
∂U

f (y)n1 (y) ·wdH p−1.

Suppose h ∈C (∂U) . Then by the Tietze extension theorem, there exists f ∈Cc (Rp) such
that the restriction of f to ∂U equals h. Now by Lemma 29.7.5 applied to a bounded
open set containing the support of f , there exists a sequence { fm} of functions in C1

c (Rp)
converging uniformly to f . Therefore,∫

∂U
h(y)n(y) ·wdH p−1 = lim

m→∞

∫
∂U

fm (y)n(y) ·wdH p−1

= lim
m→∞

∫
∂U

fm (y)n1 (y) ·wdH p−1 =
∫

∂U
h(y)n1 (y) ·wdH p−1.

Now H p−1 is a Radon measure on ∂U and so the continuous functions on ∂U are dense
in L1

(
∂U,H p−1

)
. It follows n ·w = n1 ·w a.e. Now let {wm}∞

m=1 be a countable dense
subset of the unit sphere. From what was just shown, n ·wm= n1 ·wm except for a set of
measure zero, Nm. Letting N = ∪mNm, it follows that for y /∈ N,n(y) ·wm= n1 (y) ·wm for
all m. Since the set is dense, it follows n(y) ·w = n1 (y) ·w for all y /∈ N and for all w a
unit vector. Therefore, n(y) = n1 (y) for all y /∈N and this shows n is unique. In particular,
although it appears to depend on the partition of unity {ψ i} from its definition, this is not
the case.

It only remains to verify |n(y)|= 1 a.e. I will do this by showing how to compute n. In
particular, I will show that n = ni a.e. on ∂U ∩Qi. Let W ⊆W ⊆Qi∩∂U where W is open
in ∂U. Let O be an open set such that O∩ ∂U = W and O ⊆ Qi. Using Corollary 16.1.2
there exists a C∞ partition of unity {ψm} such that ψ i = 1 on O. Therefore, if m ̸= i,ψm = 0
on O. Then if f ∈C1

c (O) , ∫
W

f w ·ndH p−1 =
∫

∂U
f w ·ndH p−1

=
∫

U
∇ f ·wdmp =

∫
U

∇(ψ i f ) ·wdmp
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which by the first part of the argument given above equals∫
W

ψ i f ni ·wdH p−1 =
∫

W
f w ·nidH p−1.

Thus for all f ∈C1
c (O) , ∫

W
f w ·ndH p−1 =

∫
W

f w ·nidH p−1 (29.7.36)

Since C1
c (O) is dense in Cc (O) , the above equation is also true for all f ∈ Cc (O). Now

letting h ∈ Cc (W ) , the Tietze extension theorem implies there exists f1 ∈ C
(
O
)

whose
restriction to W equals h. Let f be defined by

f1 (x)
dist
(
x,OC

)
dist(x,spt(h))+dist(x,OC)

= f (x) .

Then f = h on W and so this has shown that for all h ∈ Cc (W ) , 29.7.36 holds for h in
place of f . But as observed earlier, H p−1 is outer and inner regular on ∂U and so Cc (W )
is dense in L1

(
W,H p−1

)
which implies w ·n(y) = w ·ni (y) for a.e. y. Considering a

countable dense subset of the unit sphere as above, this implies n(y) = ni (y) a.e. y. This
proves |n(y)|= 1 a.e. and in fact n(y) can be computed by using the formula for ni (y). ■

It remains to prove Lemma 29.7.9.
Proof of Lemma 29.7.9: Let h(x) = (x1, · · · ,xp−1,g(x1, · · · ,xp−1))

T

Dh(x) =


1 0
...

. . .
...

0 1
g,x1 · · · g,xp−1


Then,

J∗ (x) =
(
det
(
Dh(x)∗Dh(x)

))1/2
.

Therefore, J∗ (x) is the square root of the determinant of the following (p−1)× (p−1)
matrix. 

1+(g,x1)
2 g,x1 g,x2 · · · g,x1g,xp−1

g,x2g,x1 1+(g,x2)
2 · · · g,x2g,xp−1

...
. . .

...
g,xp−1g,x1 g,xp−1g,x2 · · · 1+(g,xp−1)

2

 . (29.7.37)

By Lemma 29.7.6, this determinant is 1+∑
p−1
i=1 (g,xi (x))

2 .■
Now Lemma 29.7.8 implies the divergence theorem.

Theorem 29.7.10 Let U be a bounded open set with a Lipschitz boundary which lies on
one side of its boundary. Then if f ∈C1

c (Rp) ,∫
U

f,k (x)dmp =
∫

∂U
f nkdH p−1 (29.7.38)
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where n = (n1, · · · ,nn) is the H p−1 measurable unit vector of Lemma 29.7.8. Also, if F is
a vector field such that each component is in C1

c (Rp) , then∫
U

∇ ·F(x)dmp =
∫

∂U
F ·ndH p−1. (29.7.39)

Proof: To obtain 29.7.38 apply Lemma 29.7.8 to w = ek. Then to obtain 29.7.39 from
this, ∫

U
∇ ·F(x)dmp

=
p

∑
j=1

∫
U

Fj, jdmp =
p

∑
j=1

∫
∂U

Fjn jdH p−1

=
∫

∂U

p

∑
j=1

Fjn jdH p−1 =
∫

∂U
F ·ndH p−1. ■

What is the geometric significance of the vector, n? Recall that in the part of the bound-
ary contained in Qi, this vector points in the same direction as the vector

Ni (x1, · · · ,xp−1,gi (x1, · · · ,xp−1))

given by

(−gi,1 (x1, · · · ,xp−1) ,−gi,2 (x1, · · · ,xp−1) , · · · ,−gi,p−1 (x1, · · · ,xp−1) ,1) (29.7.40)

in the case where k = p. This vector is the gradient of the function,

xp−gi (x1, · · · ,xp−1)

and so is perpendicular to the level surface given by

xp−gi (x1, · · · ,xp−1) = 0

in the case where gi is C1. It also points away from U so the vector n is the unit outer
normal. The other cases work similarly.

29.8 The Reynolds Transport Formula
Next is an interesting version of the chain rule for Lipschitz maps. The proof of this theorem
is based on the following lemma.

Lemma 29.8.1 If h : Rn→ Rn is Lipschitz, then if h(x) = 0 for all x ∈ A, then

det(Dh(x)) = 0 a.e.x ∈ A

Proof: By the area formula, 0 =
∫
{0} #(y)dy =

∫
A |det(Dh(x))|dx, and so it follows

that det(Dh(x)) = 0 a.e. ■
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Theorem 29.8.2 Let f, g be Lipschitz mappings from Rn to Rn with g(f(x)) = x on A,
a measurable set. Then for a.e. x ∈ A, Dg(f(x)), Df(x), and D(g◦ f)(x) all exist and
I = D(g◦ f)(x) = Dg(f(x))Df(x).

Proof: By Lemma 29.8.1 there is a set of measure zero N1 off which det(D(g◦ f)(x)− I)=
0 and in particular D(g◦ f)(x) exists. Let N2 be the set of measure zero off which f is dif-
ferentiable. Let M be the set of points in f(Rn \N2) where, g fails to be differentiable.
What about f−1 (M)? If x ∈ f−1 (M) then Dg(f(x)) fails to exist and so x is in the first ex-
ceptional set N1 or else in N2 because D(g◦ f)(x) will fail to exist. Thus f−1 (M) is a set of
measure zero. So let x /∈ N1∪N2. Then for such x, D(g◦ f)(x) ,Dg(f(x)) ,Df(x) all exist
and I = Dg(f(x))Df(x). ■

You could give a generalization to the above by essentially repeating the argument.

Corollary 29.8.3 Suppose h is differentiable on A, a measurable set and that f,g are Lip-
schitz with g(f(x)) = h(x) for x ∈ A. Then for a.e. x ∈ A,

Dh(x) = Dg(f(x))Df(x)

In other words, the chain rule holds off a set of measure zero.
The Reynolds transport formula is an interesting application of the divergence theorem

which is a generalization of the formula for taking the derivative under an integral.

d
dt

∫ b(t)

a(t)
f (x, t)dx =

∫ b(t)

a(t)

∂ f
∂ t

(x, t)dx+ f (b(t) , t)b′ (t)− f (a(t) , t)a′ (t)

First is an interesting lemma about the determinant. A p× p matrix can be thought of
as a vector in Cp2

. Just imagine stringing it out into one long list of numbers. In fact, a
way to give the norm of a matrix is just ∑i ∑ j

∣∣Ai j
∣∣2 ≡ ∥A∥2. This is called the Frobenius

norm for a matrix. It makes no difference since all norms are equivalent, but this one is
convenient in what follows. Also recall that det maps p× p matrices to C. It makes sense
to ask for the derivative of det on the set of invertible matrices, an open subset of Cp2

with
the norm measured as just described because A→ det(A) is continuous, so the set where
det(A) ̸= 0 would be an open set. Recall from linear algebra that the sum of the entries
on the main diagonal satisfies trace(AB) = trace(BA) whenever both products make sense.
Indeed, trace(AB)≡ ∑i ∑ j Ai jB ji = trace(BA)

This next lemma is a very interesting observation about the determinant of a matrix
added to the identity.

Lemma 29.8.4 det(I +U) = 1+ trace(U)+ o(U) where o(U) is defined in terms of the
Frobenius norm for p× p matrices.

Proof: This is obvious if p= 1 or 2. Assume true for n−1. Then for U an n×n, expand
the matrix along the last column and use induction on the cofactor of 1+Unn. ■

With this lemma, it is easy to find Ddet(F) whenever F is invertible.

det(F +U) = det
(
F
(
I +F−1U

))
= det(F)det

(
I +F−1U

)
= det(F)

(
1+ trace

(
F−1U

)
+o(U)

)
= det(F)+det(F) trace

(
F−1U

)
+o(U)
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Therefore,
det(F +U)−det(F) = det(F) trace

(
F−1U

)
+o(U)

This proves the following.

Proposition 29.8.5 Let F−1 exist. Then Ddet(F)(U) = det(F) trace
(
F−1U

)
.

From this, suppose F (t) is a p× p matrix and all entries are differentiable. Then the
following describes d

dt det(F)(t) .

Proposition 29.8.6 Let F (t) be a p× p matrix and all entries are differentiable. Then for
a.e. t

d
dt

det(F)(t) = det(F (t)) trace
(
F−1 (t)F ′ (t)

)
= det(F (t)) trace

(
F ′ (t)F−1 (t)

)
(29.8.41)

Let y = h(t,x) with F = F (t,x) = D2h(t,x) . I will write ∇y to indicate the gradient
with respect to the y variables and F ′ to indicate ∂

∂ t F (t,x). Note that h(t,x) = y and so by
the inverse function theorem, this defines x as a function of y, also as smooth as h because
it is always assumed detF > 0.

Now let Vt be h(t,V0) where V0 is an open bounded set. Let V0 have a Lipschitz bound-
ary so one can use the divergence theorem on V0. Let (t,y)→ f(t,y) be Lipschitz. The idea
is to simplify d

dt
∫

Vt
f(t,y)dmp (y). This will involve the change of variables in which the Ja-

cobian will be det(F) which is assumed positive. In applications of this theory, det(F)≤ 0
is not physically possible. Since h(t, ·) is Lipschitz and the boundary of V0 is Lipschitz, Vt
will be such that one can use the divergence theorem because the composition of Lipschitz
functions is Lipschitz. Then, using the dominated convergence theorem as needed along
with the area formula,

d
dt

∫
Vt

f(t,y)dmp (y) =
d
dt

∫
V0

f(t,h(t,x))det(F)dmp (x) (29.8.42)

=
∫

V0

∂

∂ t
f(·,h(·,x))det(F)dmp (x)+

∫
V0

f(t,h(t,x))
∂

∂ t
(det(F))dmp (x)

=
∫

V0

∂

∂ t
(f(t,h(t,x)))det(F)dmp (x)

+
∫

V0

f(t,h(t,x)) trace
(
F ′F−1)det(F)dmp (x)

=
∫

V0

(
∂

∂ t
f(t,h(t,x))+∑

i

∂ f
∂yi

∂yi

∂ t

)
det(F)dmp (x)

+
∫

V0

f(t,h(t,x)) trace
(
F ′F−1)det(F)dmp (x)
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=
∫

Vt

∂

∂ t
f(t,y)dmp (y)+

∫
Vt

∑
i

∂ f
∂yi

∂yi

∂ t
+ f(t,y) trace

(
F ′F−1)dmp (y)

Now v≡ ∂

∂ t h(t,x) and also, as noted above, y≡ h(t,x) defines y as a function of x and so
trace

(
F ′F−1

)
= ∑α

∂vi
∂xα

∂xα

∂yi
. Hence the double sum ∑α,i

∂vi
∂xα

∂xα

∂yi
is ∂vi

∂yi
= ∇y ·v. The above

then gives ∫
Vt

∂

∂ t
f(t,y)dmp (y)+

∫
Vt

(
∑

i

∂ f
∂yi

∂yi

∂ t
+ f(t,y)∇y ·v

)
dmp (y)

=
∫

Vt

∂

∂ t
f(t,y)dmp (y)+

∫
Vt

(D2f(t,y)v+ f(t,y)∇y ·v)dmp (y) (29.8.43)

Now consider the ith component of the second integral in the above. It is∫
Vt

∇y fi (t,y) ·v+ fi (t,y)∇y ·vdmp (y)

=
∫

Vt

∇y · ( fi (t,y)v)dmp (y)

At this point, use the divergence theorem to get this equals =
∫

∂Vt
fi (t,y)v ·ndH p−1.

Therefore, from 29.8.43 and 29.8.42,

d
dt

∫
Vt

f(t,y)dmp (y) =
∫

Vt

∂

∂ t
f(t,y)dmp (y)+

∫
∂Vt

f(t,y)v ·ndA (29.8.44)

this is the Reynolds transport formula.

Proposition 29.8.7 Let y = h(t,x) where h is Lipschitz continuous and let f also be Lip-
schitz continuous and let Vt ≡ h(t,V0) where V0 is a bounded open set which is on one
side of a Lipschitz boundary so that the divergence theorem holds for V0. Then 29.8.44 is
obtained.

29.9 The Coarea Formula
The area formula was discussed above. This formula implies that for E a measurable set

H n (f(E)) =
∫

XE (x)J∗ (x)dm

where f : Rn → Rm for f a Lipschitz mapping and m ≥ n. It is a version of the change of
variables formula for multiple integrals. The coarea formula is a statement about the Haus-
dorff measure of a set which involves the inverse image of f. It is somewhat reminiscent
of Fubini’s theorem. Recall that if n > m and Rn = Rm×Rn−m, we may take a product
measurable set, E ⊆ Rn, and obtain its Lebesgue measure by the formula

mn (E) =
∫
Rm

∫
Rn−m

XE (y,x)dmn−mdmm

=
∫
Rm

mn−m (Ey)dmm =
∫
Rm

H n−m (Ey)dmm.
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Let π1 and π2 be defined by π2 (y,x) = x,π1 (y,x) = y. Then Ey = π2
(
π
−1
1 (y)∩E

)
and

so

mn (E) =
∫
Rm

H n−m (
π2
(
π
−1
1 (y)∩E

))
dmm

=
∫
Rm

H n−m (
π
−1
1 (y)∩E

)
dmm. (29.9.45)

Thus, the notion of product measure yields a formula for the measure of a set in terms
of the inverse image of one of the projection maps onto a smaller dimensional subspace.
The coarea formula gives a generalization of 29.9.45 in the case where π1 is replaced by
an arbitrary Lipschitz function mapping Rn to Rm. In general, we will take m < n in this
presentation. Whereas in the area formula the Lipschitz function has m≥ n.

It is possible to obtain the coarea formula as a computation involving the area formula
and some simple linear algebra and this is the approach taken here. I found this formula
in [47]. This is a good place to obtain a slightly different proof. This argument follows
[84] which came from [47]. I find this material very hard, so I hope what follows doesn’t
have grievous errors. I have never had occasion to use this coarea formula, but I think it is
obviously of enormous significance and gives a very interesting geometric assertion. I will
use the form of the chain rule in Theorem 29.8.2 as needed.

To begin with we give the linear algebra identity which will be used. Recall that for a
real matrix A∗ is just the transpose of A. Thus AA∗ and A∗A are symmetric.

Theorem 29.9.1 Let A be an m× n matrix and let B be an n×m matrix for m ≤ n. Then
for I an appropriate size identity matrix,

det(I +AB) = det(I +BA)

Proof: Use block multiplication to write(
I +AB 0

B I

)(
I A
0 I

)
=

(
I +AB A+ABA

B BA+ I

)
(

I A
0 I

)(
I 0
B I +BA

)
=

(
I +AB A+ABA

B I +BA

)
Hence (

I +AB 0
B I

)(
I A
0 I

)
=

(
I A
0 I

)(
I 0
B I +BA

)
so (

I A
0 I

)−1( I +AB 0
B I

)(
I A
0 I

)
=

(
I 0
B I +BA

)
which shows that the two matrices(

I +AB 0
B I

)
,

(
I 0
B I +BA

)
are similar and so they have the same determinant. Thus

det(I +AB) = det(I +BA)

Note that the two matrices are different sizes. ■
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Corollary 29.9.2 Let A be an m×n real matrix. Then

det(I +AA∗) = det(I +A∗A) .

It is convenient to define the following [47] for a measure space (Ω,S ,µ) and f : Ω→
[0,∞], an arbitrary function, maybe not measurable.∫ ∗

f dµ ≡
∫ ∗

Ω

f dµ ≡ inf
{∫

Ω

gdµ : g≥ f , and g measurable
}

This is just like an outer measure. It resembles an old idea found in Hobson [66] called a
generalized Stieltjes integral.

Lemma 29.9.3 Suppose fn ≥ 0 and limsupn→∞

∫ ∗ fndµ = 0. Then there is a subsequence
fnk such that fnk (ω)→ 0 a.e. ω.

Proof: For n large enough,
∫ ∗ fndµ < ∞. Let n be this large and pick gn ≥ fn, gn

measurable, such that ∫ ∗
fndµ +n−1 >

∫
gndµ.

Thus
limsup

∫
gndµ = liminf

∫
gndµ = lim

∫
gndµ = 0.

If n = 1,2, · · · , let kn > max(kn−1,n) be such that
∫

gkndµ < 2−n. Thus

µ
(
[gkn ≥ n−1]

)
≤ 2−nn and

∞

∑
n=1

µ
(
[gkn ≥ n−1]

)
< ∞

so for all N,

µ
(
∩∞

n=1∪m≥n [gkm ≥ m−1]
)
≤

∞

∑
n=N

µ
(
[gkm ≥ m−1]

)
≤

∞

∑
n=N

n2−n.

Thus µ
(
∩∞

n=1∪m≥n [gkm ≥ m−1]
)
= 0. Therefore, for ω /∈ ∩∞

n=1 ∪m≥n [gkm ≥ m−1], a set
of measure zero, for all m large enough, [gkm < m−1] and so gkm (ω)→ 0 a.e. ω. Since
fkm (ω)≤ gkm (ω), this proves the lemma. ■

It might help a little before proceeding further to recall the concept of a level surface
of a function of n variables. If f : U ⊆ Rn→ R, such a level surface is of the form f−1 (y)
and we would expect it to be an n−1 dimensional thing in some sense. In the next lemma,
consider a more general construction in which the function has values in Rm,m≤ n. In this
more general case, one would expect f−1 (y) to be something which is in some sense n−m
dimensional. As earlier, sets will not be assumed measurable and H k will refer to an outer
measure.

Lemma 29.9.4 Let A⊆ Rp and let f : Rp→ Rm be Lipschitz. Then∫ ∗
Rm

H s (A∩ f−1 (y)
)

dH m ≤ β (s)β (m)

β (s+m)
(Lip(f))m H s+m (A).
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Proof: The formula is obvious if H s+m (A) = ∞ so assume H s+m (A)< ∞. The diam-
eter of the closure of a set is the same as the diameter of the set and so one can assume

A⊆ ∪∞
i=1B j

i , r
(

B j
i

)
≤ j−1, B j

i is closed,

and

H s+m
j−1 (A)+ j−1 ≥

∞

∑
i=1

β (s+m)
(

r
(

B j
i

))s+m
(29.9.46)

Now define g j
i (y) ≡ β (s)

(
r
(

B j
i

))s
X

f
(

B j
i

) (y). If f−1 (y) /∈ B j
i , this indicator function

X
f
(

B j
i

) just gives 0. If f−1 (y) ∈ B j
i then y ∈ B j

i . Thus

H s
j−1

(
A∩ f−1 (y)

)
≤

∞

∑
i=1

β (s)
(

r
(

B j
i

))s
X

f
(

B j
i

) (y) = ∞

∑
i=1

g j
i (y),

a Borel measurable function. It follows,∫ ∗
Rm

H s (A∩ f−1 (y)
)

dH m =
∫ ∗
Rm

lim
j→∞

H s
j−1

(
A∩ f−1 (y)

)
dH m

≤
∫ ∗
Rm

lim inf
j→∞

∞

∑
i=1

g j
i (y)dH m.

By Borel measurability of the integrand, the last term is no more than∫
Rm

lim inf
j→∞

∞

∑
i=1

g j
i (y)dH m

By Fatou’s lemma,

≤ lim inf
j→∞

∫
Rm

∞

∑
i=1

g j
i (y)dH m = lim inf

j→∞

∞

∑
i=1

β (s)
(

r
(

B j
i

))s ∫
Rm

X
f
(

B j
i

) (y)dH m

= lim inf
j→∞

∞

∑
i=1

β (s)
(

r
(

B j
i

))s
H m

(
f
(

B j
i

))
.

Recall the equality of H m and Lebesgue measure on Rm, (Recall this was how β (m) was
chosen. Theorem 28.2.4) Then the above is

≤ lim inf
j→∞

∞

∑
i=1

β (s)
(

r
(

B j
i

))s
mm

(
f
(

B j
i

))

≤ lim inf
j→∞

∞

∑
i=1

β (s)α (m)Lip(f)m r
(

B j
i

)m(
r
(

B j
i

))s

= Lip(f)m
β (s)α (m) lim inf

j→∞

∞

∑
i=1

r
(

B j
i

)m(
r
(

B j
i

))s
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= Lip(f)m β (s)α (m)

β (m+ s)
lim inf

j→∞

∞

∑
i=1

β (m+ s)r
(

B j
i

)m+s

≤ Lip(f)m β (s)α (m)

β (m+ s)
H s+m (A)

from 29.9.46. However, it was shown earlier that α (m) = β (m). ■
This last identification that α (m) = β (m) depended on the technical material involving

isodiametric inequality. It isn’t all that important to know the exact value of this constant
β (s)α(m)
β (m+s) so one could simply write C (s,m) in its place and suffer no lack of utility.

Can one change
∫ ∗ to

∫
? The next lemma will enable the change in notation.

Lemma 29.9.5 Let A⊆ Rn be Lebesgue measurable and

f : Rn→ Rm

be Lipschitz, m < n. Then
y→H n−m (A∩ f−1 (y)

)
is Lebesgue measurable. If A is compact, this function is Borel measurable.

Proof: Suppose first that A is compact. Then A∩ f−1 (y) is also and so it is H n−m

measurable. Suppose H n−m
(
A∩ f−1 (y)

)
< t. Then for all δ > 0,

H n−m
δ

(
A∩ f−1 (y)

)
< t

and so there exist sets Si, satisfying

r (Si)< δ , A∩ f−1 (y)⊆ ∪∞
i=1Si,

∞

∑
i=1

β (n−m)(r (Si))
n−m < t

Replacing Si with the open set Ŝi ≡ Si +B(0,η i) where the Ŝi satisfy the above inequality,
it can be assumed each Si is open.

Claim: If z is close enough to y, then A∩ f−1 (z)⊆ ∪∞
i=1Si.

Proof: If not, then there exists a sequence {zk} such that zk → y, and xk ∈ (A ∩
f−1 (zk))\∪∞

i=1Si. Thus f(xk) = zk. Taking a subsequence still denoted by k we can have

zk→ y,xk→ x ∈ A\∪∞
i=1Si.

Hence f(x) = limk→∞ f(xk) = limk→∞ zk = y, so x ∈ f−1 (y)∩A \∪∞
i=1Si contrary to the

assumption that A∩ f−1 (y)⊆ ∪∞
i=1Si.

It follows from this claim that whenever z is close enough to y,

H n−m
δ

(
A∩ f−1 (z)

)
< t.

Thus if
Uδ ≡ {z : H n−m

δ

(
A∩ f−1 (z)

)
< t +δ},
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then Uδ is open. Hence, letting δ i→ 0+,

{z : H n−m (A∩ f−1 (z)
)
≤ t}= ∩∞

i=1Uδ i = Borel set.

Thus, if A is compact, then for each y ∈ Rm, A∩ f−1 (y) is H n−m measurable and also the
function

y→H n−m (A∩ f−1 (y)
)

is a Borel measurable function, hence Lebesgue measurable.
Let A be Lebesgue measurable not just compact. Then by regularity, there exists F ⊆ A

where F is the countable union of compact sets and mm (A\F) = 0. Say F = ∪kFk,Fk+1 ⊇
Fk and each Fk is compact. Then H n−m

(
F ∩ f−1 (y)

)
= limn→∞ H n−m

(
Fn∩ f−1 (y)

)
so

y→H n−m
(
F ∩ f−1 (y)

)
is Lebesgue measurable.∫ ∗

Rm
H n−m ((A\F)∩ f−1 (y)

)
dH n−m ≤Cm,nH

n (A\F) =Cm,nmn (A\F) = 0

From Lemma 29.9.3 H n−m
(
(A\F)∩ f−1 (y)

)
= 0 for H n−m a.e. y. Hence, regarding

H n−m as an outer measure,

H n−m (F ∩ f−1 (y)
)
≤ H n−m (A∩ f−1 (y)

)
≤ H n−m ((A\F)∩ f−1 (y)

)
+H n−m (F ∩ f−1 (y)

)
= H n−m (F ∩ f−1 (y)

)
and so y→H n−m

(
A∩ f−1 (y)

)
= H n−m

(
F ∩ f−1 (y)

)
is Lebesgue measurable. ■

With this lemma proved, it is possible to obtain the following useful inequality which
will be used repeatedly.

Lemma 29.9.6 If A⊆ Rn is Lebesgue measurable, then∫
Rm

H n−m (A∩ f−1 (y)
)

dy

≤C (n,m)(Lip(f))m mn (A), C (n,m) =
β (n−m)β (m)

β (n)

Proof: This follows from Lemma 29.9.4 and Lemma 29.9.5. Since

y→H n−m (A∩ f−1 (y)
)

is measurable, ∫
Rm

H n−m (A∩ f−1 (y)
)

dy =
∫ ∗
Rm

H n−m (A∩ f−1 (y)
)

dy.

Now let p = n, and s = n−m in Lemma 29.9.4. ■
With these lemmas it is now possible to establish the coarea formula. First we define

Λ(n,m) as all possible ordered lists of m numbers taken from {1,2, ...,n} . Recall x ∈
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Rn and f(x) ∈ Rm where m ≤ n. Recall that this was part of the Binet Cauchy theorem,
Theorem 30.2.1,

det
(
Df(x)Df(x)∗

)
= ∑

i∈Λ(n,m)

(
detDxi f(x)

)2

Now let ic ∈Λ(n,n−m) consist of the remaining indices taken in order where i∈Λ(n,m) .
For i = (i1, · · · , im), define xi ≡ (xi1 , ...,xim) and xic to be the other components of x taken
in order. Then let

fi (x)≡
(

f(x)
xic

)
Thus there are C (n,n−m) = D(n,m) different fi.

Example 29.9.7 Say f : R4→ R2. Here are some examples for fi:
f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x2
x4

 ,


f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x1
x2

 ,


f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x3
x4


Thus fi : Rn→ Rn. For example, if i consists of the first m of these indices, you have

Dfi (x) =
(

Dxi f(x) ∗
0 I

)
and so

detDfi (x) = detDxi f(x) . (29.9.47)

It is the same with other i ∈ Λ(n,m), except you may have a minus sign. This will not
matter here.

Earlier with the area formula, we integrated J∗ (x) ≡ det
(
Df(x)∗Df(x)

)1/2. With the

coarea formula, we integrate J∗ (x)≡ det
(
Df(x)Df(x)∗

)1/2. This proof involves doing this
integration and seeing what happens.

Theorem 29.9.8 Let A be a measurable set in Rn and let f : Rn→ Rm be a Lipschitz map.
Then the following formula holds along with all measurability assertions needed for it to
make sense. ∫

Rm
H n−m (A∩ f−1 (y)

)
dy =

∫
A

J∗ (x)dx (29.9.48)

where
J∗ (x)≡ det

(
Df(x)Df(x)∗

)1/2
.

Proof: First note that det
(
Df(x)Df(x)∗

)
=∑i∈Λ(n,m) det

(
Dfi (x)

)2 by the Binet Cauchy
theorem. Let S ≡ {x : J∗ (x) = 0}. For each i, fi ({x : det

(
Dfi (x)

)
= 0
})

has measure
zero due to Sard’s theorem and so it will follow from the argument presented below that
Si ≡ fi ({x : det

(
Dfi (x)

)
= 0
})

has measure zero. Thus Si \S can be neglected. For N ≡
{x : Df(x) does not exist} ,mn (N) = 0 by Rademacher’s theorem.Thus in what follows, we
can always assume that either Dfi (x) does not exist or det

(
Dfi (x)

)
exists and is not 0. This
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will be clear from the argument. Let A be a closed subset of Rn \ {S∪N}. By Lemma

29.4.1, there exist disjoint Borel measurable sets
{

F i
j

}∞

j=1
such that fi is one to one on F i

j ,(
fi)−1 is Lipschitz on fi

(
F i

j

)
, and

∪∞
j=1F i

j =
{

x : Dfi (x) exists anddetDfi (x) ̸= 0
}
.

If x ∈ Rn \{S∪N}, it follows x ∈ F i
j for some i and j. Hence ∪i, jF i

j ⊇ A.

Now let
{

E i
j

}
be measurable sets such that E i

j ⊆ F i
k for some k, the sets E i

j are disjoint,

and their union coincides with ∪i, jF i
j . Let g :Rn→Rn be a Lipschitz function which equals(

fi)−1 on fi
(

E i
j

)
. I am supressing the dependence on i. Then for any x ∈ E i

j,g
(
fi (x)

)
= x.

In particular, gic
(
fi (x)

)
= xic where

gi (y)≡
(

gi1 (y) · · · gim (y)
)T

for i≡ (i1, · · · , im) with gic (y) defined similarly and x ∈ E i
j, with

y≡
(

y1
y2

)
≡
(

f(x)
xic

)
≡ fi (x) ∈ fi

(
E i

j

)
,

xi = gi

(
fi (x)

)
, y2 ≡ xic = gic

(
fi (x)

)
(29.9.49)

Then, by definition, ∫
A

J∗ (x)dx≡
∫

A
det
(
Df(x)Df(x)∗

)1/2 dx (29.9.50)

First, using Theorem 29.8.2, and the fact that Lipschitz mappings take sets of measure zero
to sets of measure zero, replace E i

j with Ẽ i
j ⊆ E i

j such that E i
j \ Ẽ i

j has measure zero and

Dfi (g(y))Dg(y) = I, |det(Dg(y))|=
∣∣∣detDfi (g(y))

∣∣∣−1
(29.9.51)

on fi
(

Ẽ i
j

)
. Changing the variables using the area formula and 29.9.51, the expression in

29.9.50 equals∫
A

J∗ (x)dx =
∞

∑
j=1

∑
i ∈Λ(n,m)

∫
Ẽ i

j∩A

(
det
(
Df(x)Df(x)∗

))1/2 dx

=
∞

∑
j=1

∑
i ∈Λ(n,m)

∫
E i

j∩A

(
det
(
Df(x)Df(x)∗

))1/2 dx

=
∞

∑
j=1

∑
i ∈Λ(n,m)

∫
fi
(

E i
j∩A

) (det
(
Df(g(y))Df(g(y))∗

))1/2
∣∣∣detDfi (g(y))

∣∣∣−1
dy (29.9.52)
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Recall everything is Borel measurable. I will consider one of the integrals in the sum. For
convenience, replace E i

j with a compact set, Ki
j contained in it to obtain Borel measurability

in what follows. ∫
Ki

j∩A
det
(
Df(x)Df(x)∗

)1/2 dx (29.9.53)

=
∫

fi
(

Ki
j∩A

) det
(
Df(g(y))Df(g(y))∗

)1/2|Dg(y)|dy

=
∫

fi
(

Ki
j∩A

) det
(
Df(g(y))Df(g(y))∗

)1/2
∣∣∣detDfi (g(y))

∣∣∣−1
dy

Now
(

y1
y2

)
= fi (x) =

(
f(x)
xic

)
for x ∈ Ki

j ∩A if and only if x is also in f−1 (y1) which

recall is a vector in Rn. Therefore, by 29.9.47, the above equals the following iterated
integral.

=
∫
Rm

∫
f−1(y1)∩Ki

j∩A
det
(
Df(g(y))Df(g(y))∗

)1/2∣∣detDfxi (g(y))
∣∣−1 dy2dy1 (29.9.54)

where y1 = f(x) and y2 = xic . Since y1 is fixed in the inner integral of 29.9.54, and y1 =
f(g(y)), and by definition gic

(
fi (x)

)
= y2, one can take the partial derivative of y1 =

f(g(y)) with respect to y2 to obtain

0 = Dxi f(g(y))Dy2gi (y)+Dxic
f(g(y))Dy2gic (y)

= Dxi f(g(y))Dy2gi (y)+Dxic
f(g(y)). (29.9.55)

Now consider the inner integral in 29.9.54 in which y1 is fixed. The integrand equals

det
[(

Dxi f(g(y)) Dxic
f(g(y))

)( Dxi f(g(y))
∗

Dxic
f(g(y))∗

)]1/2 ∣∣detDfxi (g(y))
∣∣−1

. (29.9.56)

Let A ≡ Dxi f(g(y)) so A is m×m and B ≡ Dy2gi (y) an m× (n−m) , and using 29.9.55,
29.9.56 is of the form

det
[(

A −AB
)( A∗

−B∗A∗

)]1/2

|detA|−1

= det [AA∗+ABB∗A∗]1/2 |detA|−1

= det [A(I +BB∗)A∗]1/2 |detA|−1 = det(I +BB∗)1/2

which, by Corollary 29.9.2, equals det(I +B∗B)1/2. (Note the size of the identity changes
in these two expressions.) Since B = Dy2gi (y) and Dy2gic (y) = I, the above reduces to

det(I +B∗B)1/2 = det
[(

B∗ I
)( B

I

)]1/2

=

det
[(

Dy2gi (y)∗ Dy2gic (y)
∗ )( Dy2gi (y)

Dy2gic (y)

)]1/2

= det
(
Dy2g(y)∗Dy2g(y)

)1/2



29.9. THE COAREA FORMULA 1043

Therefore, 29.9.53 reduces to
∫

Ki
j∩A det

(
Df(x)Df(x)∗

)1/2 dx =∫
Rm

∫
f−1(y1)∩Ki

j∩A
det
(
Dy2g(y)∗Dy2g(y)

)1/2 dy2dy1. (29.9.57)

Then z ∈ g
(

y1, f−1 (y1)∩Ki
j ∩A

)
if and only if

fi (z) =
(

f(z)
zic

)
∈
(

y1
f−1 (y1)∩Ki

j ∩A

)
if and only if z ∈ f−1 (y1) and zic ∈ f−1 (y1)∩Ki

j ∩ A. Letting ĝ be the function y2 →
g(y1,y2) , this shows that z ∈ ĝ

(
f−1 (y1)∩Ki

j ∩A
)

if and only if y2 = zic ∈ f−1 (y1)∩Ki
j∩A

and so ĝ
(

f−1 (y1)∩Ki
j ∩A

)
= f−1 (y1)∩Ki

j ∩A. Of course ĝ actually depends on y1 but
this is suppressed here. Therefore,

g
(

y1, f−1 (y1)∩Ki
j ∩A

)
= f−1 (y1)∩Ki

j ∩A

By this observation and the area formula, the equations 29.9.53, 29.9.57 imply∫
Ki

j∩A
det
(
Df(x)Df(x)∗

)1/2 dx =
∫
Rm

H n−m
(

f−1 (y1)∩Ki
j ∩A

)
dy1.

Using Lemmas 29.9.6 and 29.9.5, along with the inner regularity of Lebesgue measure, Ki
j

can be replaced with E i
j. Therefore, summing the terms over all i and j,∫

A
det
(
Df(x)Df(x)∗

)1/2 dx =
∫
Rm

H n−m (f−1 (y)∩A
)

dy

which verifies the coarea formula whenever A is a closed subset of Rn \{S∪N} .
By Lemma 29.9.6 again, this formula is true for all A a closed subset of Rn \S. Using

the same two lemmas again, we see this coarea formula holds for all A a measurable subset
of Rn \S.

It remains to verify the formula for all measurable sets A, regardless of whether they
intersect S. Recall

S≡

{
x : ∑

i
det
(

Dfi (x)
)2

= 0

}
= {x : detU (x)≡ J∗ (x) = 0} .

Consider the case where A ⊆ S. Let A be compact so that by Lemma 29.9.5, y →
H n−m

(
A∩ f−1 (y)

)
is Borel measurable. For ε > 0, define kε , p : Rn×Rm → Rm by

kε (x,z)≡ f(x)+ εz, p(x,z)≡ z.

Then Dkε (x,z) =
(

Df(x) εI
)
=
(

UR εI
)

where the dependence of U and R on
x has been suppressed. Here RR∗ = I and U is a non-negative symmetric transformation.
Thus

(J∗kε)
2 = det

(
UR εI

)( R∗U
εI

)
= det

(
U2 + ε

2I
)
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= det
(
Q∗DQQ∗DQ+ ε

2I
)
= det

(
D2 + ε

2I
)

=
m

∏
i=1

(
λ

2
i + ε

2
)
∈ [ε2m,C2

ε
2] (29.9.58)

since one of the λ i equals 0 due to det(U) = 0. All the eigenvalues of U must be bounded
independent of x, since ∥Df(x)∥ is bounded independent of x due to the assumption that f
is Lipschitz. Since the corresponding S = /0, the first part of the argument implies

εCmn+m

(
A×B(0,1)

)
≥
∫

A×B(0,1)
|J∗kε |dmn+m

=
∫
Rm

H n
(

k−1
ε (y)∩A×B(0,1)

)
dy (29.9.59)

Now it is clear that k−1
ε (y)⊇ f−1 (y) . Indeed, if f(x) = y, then f(x)+ ε0 = y.

Note that A⊆ Rn and B(0,1) ∈ Rm. By Lemma 29.9.4, and what was just noted,

H n
(

k−1
ε (y)∩A×B(0,1)

)
≥

Cnm
1

(Lip(p))m

∫
Rm

H n−m
(

k−1
ε (y)∩p−1 (w)∩A×B(0,1)

)
dw

Therefore, from 29.9.59,
εCmn+m

(
A×B(0,1)

)
≥

Cnm

∫
Rm

∫
Rm

H n−m
(

k−1
ε (y)∩p−1 (w)∩A×B(0,1)

)
dwdy (29.9.60)

≥Cnm

∫
Rm

∫
Rm

H n−m
(

f−1 (y)∩p−1 (w)∩A×B(0,1)
)

dwdy

The inside set is f−1 (y)∩p−1 (w)∩A×B(0,1). That is,{
(x,w) ∈ A×B(0,1) : f(x) = y

}
thus the set inside H n−m is

(
f−1 (y)∩A

)
×B(0,1), then continuing the chain of inequali-

ties,

≥ Cnm

∫
Rm

∫
Rm

H n−m
((

f−1 (y)∩A
)
×B(0,1)

)
dwdy

≥ Cnm

∫
Rm

∫
B(0,1)

H n−m (f−1 (y)∩A
)

dwdy

= Cnm

∫
B(0,1)

∫
Rm

H n−m (f−1 (y)∩A
)

dydw

= Cnmαn

∫
Rm

H n−m (f−1 (y)∩A
)

dy
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Since ε is arbitrary in 29.9.60, this shows that
∫
Rm H n−m

(
f−1 (y)∩A

)
dy= 0=

∫
A J∗ (x)dx.

Since this holds for arbitrary compact sets in S, it follows from Lemma 29.9.6 and inner
regularity of Lebesgue measure that the equation holds for all measurable subsets of S. This
completes the proof of the coarea formula. ■

There is a simple corollary to this theorem in the case of locally Lipschitz maps.

Corollary 29.9.9 Let f : Rn→ Rm where m≤ n and f is locally Lipschitz. This means that
for each r > 0, f is Lipschitz on B(0,r) . Then the coarea formula, 29.9.48, holds for f.

Proof: Let A ⊆ B(0,r) and let fr be Lipschitz with f(x) = fr (x) for x ∈ B(0,r+1) .
Then ∫

A
J∗f(x)dx =

∫
A

J(Dfr (x))dx =
∫
Rm

H n−m (A∩ f−1
r (y)

)
dy

=
∫

fr(A)
H n−m (A∩ f−1

r (y)
)

dy =
∫

f(A)
H n−m (A∩ f−1 (y)

)
dy

=
∫
Rm

H n−m (A∩ f−1 (y)
)

dy

Now for arbitrary measurable A the above shows for k = 1,2, · · ·∫
A∩B(0,k)

J∗f(x)dx =
∫
Rm

H n−m (A∩B(0,k)∩ f−1 (y)
)

dy.

Use the monotone convergence theorem to obtain 29.9.48. ■
From the definition of Hausdorff measure, it is easy to verify that H 0 (E) equals the

number of elements in E. Thus, if n = m, the Coarea formula implies∫
A

J∗f(x)dx =
∫

f(A)
H 0 (A∩ f−1 (y)

)
dy =

∫
f(A)

#(y)dy

Note also that this gives a version of Sard’s theorem by letting S = A.

29.10 Change of Variables
We say that the coarea formula holds for f : Rn→ Rm,n≥ m if whenever A is a Lebesgue
measurable subset of Rn, 29.9.48 holds. Note this is the same as∫

A
J∗ (x)dx =

∫
f(A)

H n−m (A∩ f−1 (y)
)

dy, J∗ (x)≡ det
(
Df(x)Df(x)∗

)1/2

Now let s(x) = ∑
p
i=1 ciXEi (x) where Ei is measurable and ci ≥ 0. Then∫

Rn
s(x)J∗f(x)dx =

p

∑
i=1

ci

∫
Ei

J∗f(x)dx =
p

∑
i=1

ci

∫
f(Ei)

H n−m (Ei∩ f−1(y)
)

dy

=
∫

f(Rn)

p

∑
i=1

ciH
n−m (Ei∩ f−1(y)

)
dy =

∫
f(Rn)

[∫
f−1(y)

s dH n−m
]

dy

=
∫

f(Rn)

[∫
f−1(y)

s dH n−m
]

dy. (29.10.61)
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Theorem 29.10.1 Let g≥ 0 be Lebesgue measurable and let

f : Rn→ Rm, n≥ m

satisfy the Coarea formula. Then∫
Rn

g(x)J∗f(x)dx =
∫

f(Rn)

[∫
f−1(y)

g dH n−m
]

dy.

Proof: Let si ↑ g where si is a simple function satisfying 29.10.61. Then let i→ ∞

and use the monotone convergence theorem to replace si with g. This proves the change of
variables formula. ■

Note that this formula is a nonlinear version of Fubini’s theorem. The “n−m di-
mensional surface”, f−1 (y), plays the role of Rn−m and H n−m is like n−m dimensional
Lebesgue measure. The term, J∗f(x), corrects for the error occurring because of the lack
of flatness of f−1 (y).

The following is an easy example of the use of the coarea formula to give a familiar
relation.

Example 29.10.2 Let f : Rn → R be given by f (x) ≡ |x| . Then J∗ (x) ends up being 1.
Then by the coarea formula,∫

B(0,r)
dmn =

∫ r

0
H n−1 (B(0,r)∩ f−1 (y)

)
dy =

∫ r

0
H n−1 (∂B(0,y))dy

Then mn (B(0,r))≡ αnrn =
∫ r

0 H n−1 (∂B(0,y))dy. Then differentiate both sides to obtain
nαnrn−1 =H n−1 (∂B(0,r)) . In particular H 2 (∂B(0,r)) = 3 4

3 πr2 = 4πr2. Of course αn
was computed earlier. Recall from Theorem 28.4.2 on Page 1005

αn = π
n/2(Γ(n/2+1))−1

Therefore, the n−1 dimensional Hausdorf measure of the boundary of the ball of radius r
in Rn is nπ p/2(Γ(n/2+1))−1rn−1.

I think it is clear that you could generalize this to other more complicated situations.
The above is nice because J∗ (x) = 1. This won’t be so in general when considering other
level surfaces.

29.11 Integration and the Degree
There is a very interesting application of the degree to integration [52]. Recall Lemma
23.1.11. I want to generalize this to the case where h : Rn→ Rn is only Lipschitz continu-
ous, vanishing outside a bounded set. In the following proposition, let φ ε be a symmetric
nonnegative mollifier,

φ ε (x)≡
1
εn φ

(x
ε

)
,sptφ ⊆ B(0,1) .

Ω will be a bounded open set. By Theorem 26.6.7, h satisfies

Dh(x) exists a.e., (29.11.62)
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For any p > n,
lim

m→∞
D(h∗ψm) = Dh in Lp (Rn;Rn×n) (29.11.63)

where ψm is a mollifier.

Proposition 29.11.1 Let S⊆ h(∂Ω)C such that

dist(S,h(∂Ω))> 0

where Ω is a bounded open set and also let h be Lipschitz continuous, vanishing outside
some bounded set. Then whenever ε > 0 is small enough,

d (h,Ω,y) =
∫

Ω

φ ε (h(x)−y)detDh(x)dx

for all y ∈ S.

Proof: Let ε0 > 0 be small enough that for all y ∈ S,

B(y,5ε0)∩h(∂Ω) = /0.

Now let ψm be a mollifier as m→ ∞ with support in B
(
0,m−1

)
and let

hm ≡ h∗ψm.

Thus hm ∈C∞
(
Ω;Rn

)
and for any p > n,

||hm−h||L∞(Ω) , ||Dhm−Dh||Lp(Ω)→ 0 (29.11.64)

as m→∞. The first claim above is obvious and the second follows by 29.11.63. Choose M
such that for m≥M,

∥hm−h∥
∞
< ε0. (29.11.65)

Thus hm ∈Uy∩C2
(
Ω;Rn

)
for all y ∈ S.

For y ∈ S, let z ∈ B(y,ε) where ε < ε0 and suppose x ∈ ∂Ω, and k,m ≥M. Then for
t ∈ [0,1] ,

|(1− t)hm (x)+hk (x) t− z| ≥ |hm (x)− z|− t |hk (x)−hm (x)|
> 2ε0− t2ε0 ≥ 0

showing that for each y ∈ S, B(y,ε)∩ ((1− t)hm + thk)(∂Ω) = /0. By Lemma 23.1.11, for
all y ∈ S, ∫

Ω

φ ε (hm (x)−y)det(Dhm (x))dx =∫
Ω

φ ε (hk (x)−y)det(Dhk (x))dx (29.11.66)

for all k,m ≥M. By this lemma again, which says that for small enough ε the integral is
constant and the definition of the degree in Definition 23.1.10,

d (y,Ω,hm) =
∫

Ω

φ ε (hm (x)−y)det(Dhm (x))dx (29.11.67)
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for all ε small enough. For x ∈ ∂Ω, y ∈ S, and t ∈ [0,1],

|(1− t)h(x)+hm (x) t−y| ≥ |h(x)−y|− t |h(x)−hm (x)|
> 3ε0− t2ε0 > 0

and so by Theorem 23.2.2, the part about homotopy, for each y ∈ S,

d (y,Ω,h) = d (y,Ω,hm) =∫
Ω

φ ε (hm (x)−y)det(Dhm (x))dx

whenever ε is small enough. Fix such an ε < ε0 and use 29.11.66 to conclude the right side
of the above equation is independent of m > M.

By 29.11.64, there exists a subsequence still denoted by m such that Dhm (x)→Dh(x)
a.e. Since p > n, det(Dhm) is bounded in Lr (Ω) for some r > 1 and so the integrands in
the following are uniformly integrable. By the Vitali convergence theorem, one can pass to
the limit as follows.

d (y,Ω,h) = lim
m→∞

∫
Ω

φ ε (hm (x)−y)det(Dhm (x))dx

=
∫

Ω

φ ε (h(x)−y)det(Dh(x))dx.

This proves the proposition.
Next is an interesting change of variables theorem. Let Ω be a bounded open set with

the property that ∂Ω has measure zero and let h be Lipschitz continuous on Rn. Then from
Lemma 29.1.1, h(∂Ω) also has measure zero.

Now suppose f ∈Cc

(
h(∂Ω)C

)
. There are finitely many components of h(∂Ω)C which

have nonempty intersection with spt( f ). From the Proposition above,∫
f (y)d (y,Ω,h)dy =

∫
f (y) lim

ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dxdy

Actually, there exists an ε small enough that for all y ∈ spt( f ) ,

lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dx =
∫

Ω

φ ε (h(x)−y)detDh(x)dx

= d (y,Ω,h)

This is because spt( f ) is at a positive distance from the compact set h(∂Ω)C. Therefore,
for all ε small enough,∫

f (y)d (y,Ω,h)dy =
∫ ∫

Ω

f (y)φ ε (h(x)−y)detDh(x)dxdy

=
∫

Ω

detDh(x)
∫

f (y)φ ε (h(x)−y)dydx
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Using the uniform continuity of f , you can now pass to a limit and obtain using the fact
that detDh(x) is in Lr (Rn) for some r > 1,∫

f (y)d (y,Ω,h)dy =
∫

Ω

f (h(x))detDh(x)dx

This has proved the following interesting lemma.

Lemma 29.11.2 Let f ∈ Cc

(
h(∂Ω)C

)
for Ω a bounded open set and let h be Lipschitz

on Rn. Say ∂Ω has measure zero so that h(∂Ω) has measure zero. Then everything is
measurable which needs to be and∫

f (y)d (y,Ω,h)dy =
∫

Ω

det(Dh(x)) f (h(x))dx.

Note that h is not necessarily one to one. Next is a simple corollary which replaces
Cc (Rn) with L1

loc (Rn) in the case that h is one to one. Also another assumption is made on
there being finitely many components.

Corollary 29.11.3 Let f ∈ L1
loc (Rn) and let h be one to one and satisfy 29.11.62 - 29.11.63,

∂Ω has measure zero for Ω a bounded open set and h(∂Ω)C has finitely many components.
Then everything is measurable which needs to be and∫

f (y)d (y,Ω,h)dy =
∫

Ω

detDh(x) f (h(x))dx.

Proof: Since d (y,Ω,h) = 0 for all |y| large enough due to y /∈ h(Ω) for large y,there is
no loss of generality in assuming f is in L1 (Rn). For all y /∈ h(∂Ω), a set of measure zero,
d (y,Ω,h) is bounded by some constant, depending on the maximum of the degree on the
various components of h(∂Ω)C. Then from Proposition 29.11.1∫

f (y)d (y,Ω,h)dy =
∫

f (y) lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dxdy (29.11.68)

This time, use the area formula to write∣∣∣∣∫
Ω

φ ε (h(x)−y)detDh(x)dx
∣∣∣∣≤ ∫Rn

φ ε (h(x)−y) |detDh(x)|dx

≤ K
∫
Rn

φ ε (z−y)dz < ∞

and so using the dominated convergence theorem in 29.11.68, it equals

lim
ε→0

∫
Ω

detDh(x)
∫

f (y)φ ε (h(x)−y)dydx

= lim
ε→0

∫
Ω

detDh(x)
∫

f (h(x)−y)φ ε (y)dydx

= lim
ε→0

∫
Ω

detDh(x)
∫

B(0,1)
f (h(x)− εu)φ (u)dudx
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Now ∣∣∣∣∫
Ω

detDh(x)
∫

B(0,1)
f (h(x)− εu)φ (u)dudx

−
∫

Ω

detDh(x) f (h(x))dx
∣∣∣∣≤∣∣∣∣∫B(0,1)

∫
Ω

|detDh(x)| | f (h(x)− εu)− f (h(x))|dxφ (u)du
∣∣∣∣

which needs to converge to 0 as ε → 0. However, from the area formula, Theorem 29.5.3
applied to the inside integral, the above equals∫

B(0,1)

∫
h(Ω)
| f (y− εu)− f (y)|dyφ (u)du≤

∫
B(0,1)

|| fεu− f ||L1(Rn) φ (u)du

which converges to 0 by continuity of translation in L1 (Rn). Thus as in the lemma,∫
f (y)d (y,Ω,h)dy = lim

ε→0

∫
f (y)

∫
Ω

φ ε (h(x)−y)detDh(x)dxdy

= lim
ε→0

∫
Ω

detDh(x)
∫

B(0,1)
f (h(x)− εu)φ (u)dudx

=
∫

Ω

detDh(x) f (h(x))dx

and this proves the corollary.
Note that in this corollary h is one to one.

29.12 The Case Of W 1,p

There is a very interesting application of the degree to integration [52]. Recall Lemma
23.1.11. I want to generalize this to the case where h :Rn → Rn has the property that its
weak partial derivatives and h are in Lp (Rn;Rn) , p > n. This is denoted by saying

h ∈W 1,p (Rn;Rn) .

In the following proposition, let φ ε be a symmetric nonnegative mollifier,

φ ε (x)≡
1
εn φ

(x
ε

)
,sptφ ⊆ B(0,1) .

Ω will be a bounded open set. By Theorem 26.6.10, h may be considered continuous and
it satisfies

Dh(x) exists a.e., (29.12.69)

For any p > n,
lim

m→∞
D(h∗ψm) = Dh in Lp (Rn;Rn×n) (29.12.70)

where ψm is a mollifier. Here Rn×n denotes the n×n matrices with any norm you like.
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Proposition 29.12.1 Let S⊆ h(∂Ω)C such that

dist(S,h(∂Ω))> 0

where Ω is a bounded open set and also let h be in W 1,p (Rn;Rn). Then whenever ε > 0 is
small enough,

d (h,Ω,y) =
∫

Ω

φ ε (h(x)−y)detDh(x)dx

for all y ∈ S.

Proof: Let ε0 > 0 be small enough that for all y ∈ S,

B(y,3ε0)∩h(∂Ω) = /0.

Now let ψm be a mollifier as m→ ∞ with support in B
(
0,m−1

)
and let

hm ≡ h∗ψm.

Thus hm ∈C∞
(
Ω;Rn

)
and,

||hm−h||L∞(Ω) , ||Dhm−Dh||Lp(Ω)→ 0 (29.12.71)

as m→∞. The first claim above follows from the definition of convolution and the uniform
continuity of h on the compact set Ω and the second follows by 29.12.70. Choose M such
that for m≥M,

||hm−h||L∞(Ω) < ε0. (29.12.72)

Thus hm ∈Uy∩C2
(
Ω;Rn

)
for all y ∈ S.

For y ∈ S, let z ∈ B(y,ε) where ε < ε0 and suppose x ∈ ∂Ω, and k,m ≥M. Then for
t ∈ [0,1] ,

|(1− t)hm (x)+hk (x) t− z| ≥ |hm (x)− z|− t |hk (x)−hm (x)|
> 2ε0− t2ε0 ≥ 0

showing that for each y ∈ S, B(y,ε)∩ ((1− t)hm + thk)(∂Ω) = /0. By Lemma 23.1.11, for
all y ∈ S, ∫

Ω

φ ε (hm (x)−y)det(Dhm (x))dx =∫
Ω

φ ε (hk (x)−y)det(Dhk (x))dx (29.12.73)

for all k,m ≥M. By this lemma again, which says that for small enough ε the integral is
constant and the definition of the degree in Definition 23.1.10,

d (y,Ω,hm) =
∫

Ω

φ ε (hm (x)−y)det(Dhm (x))dx (29.12.74)

for all ε small enough. For x ∈ ∂Ω, y ∈ S, and t ∈ [0,1],

|(1− t)h(x)+hm (x) t−y| ≥ |h(x)−y|− t |h(x)−hm (x)|
> 3ε0− t2ε0 > 0
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and so by Theorem 23.2.2, the part about homotopy, for each y ∈ S,

d (y,Ω,h) = d (y,Ω,hm) =∫
Ω

φ ε (hm (x)−y)det(Dhm (x))dx

whenever ε is small enough. Fix such an ε < ε0 and use 29.12.73 to conclude the right side
of the above equation is independent of m > M.

By 29.12.71, there exists a subsequence still denoted by m such that Dhm (x)→Dh(x)
a.e. Since p > n, det(Dhm) is bounded in Lr (Ω) for some r > 1 and so the integrands in
the following are uniformly integrable. By the Vitali convergence theorem, one can pass to
the limit as follows.

d (y,Ω,h) = lim
m→∞

∫
Ω

φ ε (hm (x)−y)det(Dhm (x))dx

=
∫

Ω

φ ε (h(x)−y)det(Dh(x))dx.

This proves the proposition.
Next is an interesting change of variables theorem. Let Ω be a bounded open set and

let h ∈W 1,p (Rn). Also assume
m(h(∂Ω)) = 0.

From Proposition 29.12.1, for y /∈ h(∂Ω),

d (y,Ω,h) = lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dx,

showing that y→ d (y,Ω,h) is a measurable function since it is the limit of continuous
functions off the set of measure zero h(∂Ω).

Now suppose f ∈Cc

(
h(∂Ω)C

)
. There are finitely many components of h(∂Ω)C which

have nonempty intersection with spt( f ). From the Proposition above,∫
f (y)d (y,Ω,h)dy =

∫
f (y) lim

ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dxdy

Actually, from Proposition 29.12.1 there exists an ε small enough that for all y ∈ spt( f ) ,

lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dx =
∫

Ω

φ ε (h(x)−y)detDh(x)dx

= d (y,Ω,h)

This is because spt( f ) is at a positive distance from h(∂Ω)C. Therefore, for all ε small
enough, ∫

f (y)d (y,Ω,h)dy =
∫ ∫

Ω

f (y)φ ε (h(x)−y)detDh(x)dxdy

=
∫

Ω

detDh(x)
∫

f (y)φ ε (h(x)−y)dydx

=
∫

Ω

detDh(x)
∫

f (h(x)− εu)φ (u)dudx
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Using the uniform continuity of f , you can now pass to a limit as ε → 0 and obtain, using
the fact that detDh(x) is in Lr (Rn) for some r > 1,∫

f (y)d (y,Ω,h)dy =
∫

Ω

f (h(x))detDh(x)dx

This has proved the following interesting lemma.

Lemma 29.12.2 Let f ∈Cc

(
h(∂Ω)C

)
and let h ∈W 1,p (Rn;Rn) , p > n, h(∂Ω) has mea-

sure zero for Ω a bounded open set. Then everything is measurable which needs to be
and ∫

f (y)d (y,Ω,h)dy =
∫

Ω

det(Dh(x)) f (h(x))dx.

Note that h is not necessarily one to one. The difficult issue is handling d (y,Ω,h) which
has integer values constant on each component of h(∂Ω)C and the difficulty arrises in not
knowing how many components there are. What if there are infinitely many, for example,
and what if the degree changes sign. If this happens, it is hard to exploit convergence
theorems to get generalizations of f ∈ Cc

(
h(∂Ω)C

)
. One way around this is to insist h

be one to one and that Ω be connected having a boundary which separates Rn into two
components, three if n = 1. That way, you can use the Jordan separation theorem and assert
h(∂Ω) also separates Rn into the same number of components with h(Ω) being the only
one on which the degree is nonzero.

First recall the following proposition.

Proposition 29.12.3 Let Ω be an open connected bounded set in Rn,n≥ 1 such that Rn \
∂Ω consists of two, three if n = 1, connected components. Let f ∈C

(
Ω;Rn

)
be continuous

and one to one. Then f(Ω) is the bounded component of Rn \ f(∂Ω) and for y ∈ f(Ω) ,
d (f,Ω,y) either equals 1 or −1.

Proof: First suppose n ≥ 2. By the Jordan separation theorem, Rn \ f(∂Ω) consists
of two components, a bounded component B and an unbounded component U . Using the
Tietze extention theorem, there exists g defined on Rn such that g = f−1 on f

(
Ω
)
. Thus on

∂Ω,g◦ f = id. It follows from this and the product formula that

1 = d (id,Ω,g(y)) = d (g◦ f,Ω,g(y))
= d (g,B,g(y))d (f,Ω,B)+d (f,Ω,U)d (g,U,g(y))
= d (g,B,g(y))d (f,Ω,B)

Therefore, d (f,Ω,B) ̸= 0 and so for every z ∈ B, it follows z ∈ f(Ω) . Thus B ⊆ f(Ω) .
On the other hand, f(Ω) cannot have points in both U and B because it is a connected
set. Therefore f(Ω) ⊆ B and this shows B = f(Ω). Thus d (f,Ω,B) = d (f,Ω,y) for each
y ∈ B and the above formula shows this equals either 1 or −1 because the degree is an
integer. In the case where n = 1, the argument is similar but here you have 3 components
in R1 \ f(∂Ω) so there are more terms in the above sum although two of them give 0. This
proves the proposition.

The following is a version of the area formula.
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Lemma 29.12.4 Let h∈W 1,p (Rn;Rn) , p> n where h is one to one, h(∂Ω) ,∂Ω have mea-
sure zero for Ω a bounded open connected set in Rn. Then h(∂Ω)C has two components,
three if n = 1, and for y ∈ h(Ω) , and f ∈Cc (Rn) .∫

h(Ω)
f (y)dy =

∫
Ω

|det(Dh(x))| f (h(x))dx

If O is an open set, it is also true that∫
h(Ω)

XO (y)dy =
∫

Ω

|det(Dh(x))|XO (h(x))dx

Also if f is any nonnegative Borel measurable function∫
h(Ω)

f (y)dy =
∫

Ω

|det(Dh(x))| f (h(x))dx

Proof: Consider the first claim. Let δ be such that B(x1,δ ) ⊆ Ω and let
{

f j (y)
}∞

j=1
be nonnegative, increasing in j and converging pointwise to Xh(B(x1,δ )) (y). This can be
done because h(B(x1,δ )) is an open bounded set thanks to invariance of domain, Theorem
23.4.3. By Proposition 29.12.3, d (y,Ω,h) either equals 1 or −1. Suppose it equals −1.
Then from Lemma 29.11.2∫

h(Ω)
f j (y)dy =−

∫
Ω

det(Dh(x)) f j (h(x))dx

The integrand on the right is uniformly integrable thanks to the fact the f j are bounded and
det(Dh(x)) is in Lr (Ω) for some r > 1. Therefore, by the Vitali convergence theorem and
the monotone convergence theorem,∫

h(Ω)
Xh(B(x1,δ )) (y)dy =−

∫
Ω

det(Dh(x))XB(x1,δ ) (x)dx

so

m(h(B(x1,δ )))
1

m(B(x1,δ ))
=− 1

m(B(x1,δ ))

∫
B(x1,δ )

det(Dh(x))dx

If x1 is a Lebesgue point of det(Dh(x)) , then you can pass to the limit as δ → 0 and
conclude

−det(Dh(x1))≥ 0

Since a.e. point is a Lebesgue point, it follows that in the case where d (y,Ω,h) =−1,

−det(Dh(x)) = |det(Dh(x))| a.e. x ∈Ω

The case where the degree equals 1 is similar. Thus det(Dh(x)) has the same sign on
h(Ω).

Now let O be an open set. Then by invariance of domain, h(O) is also an open set. Let
Vk denote a decreasing sequence of open sets, Vk ⊇Vk+1 whose intersection is the compact



29.12. THE CASE OF W 1,p 1055

set h(∂Ω) such that m
(
Vk
)
< 1/k. Then if f ≺ h(O)\Vk, it follows since h(O)\Vk is an

open set which is at a positive distance from h(∂Ω) , Lemma 29.11.2 implies∫
h(Ω)

f (y)dy =
∫

Ω

|det(Dh(x))| f (h(x))dx

Taking a sequence of such f increasing to Xh(O)\Vk
, it follows from monotone convergence

theorem in the above that∫
h(Ω)

Xh(O)\Vk
(y)dy =

∫
Ω

|det(Dh(x))|Xh(O)\Vk
(h(x))dx

=
∫

Ω

|det(Dh(x))|XO\h−1(Vk) (x)dx

Now letting k→ ∞, it follows from the monotone convergence theorem that∫
h(Ω)

Xh(O)\h(∂Ω) (y)dy =
∫

Ω

|det(Dh(x))|XO\∂Ω (x)dx

Since both ∂Ω and h(∂Ω) have measure zero, this implies∫
h(Ω)

Xh(O) (y)dy =
∫

Ω

|det(Dh(x))|XO (x)dx

Now let G denote the Borel sets E with the property that∫
h(Ω)

Xh(E) (y)dy =
∫

Ω

|det(Dh(x))|XE (x)dx

It follows easily that if E ∈ G then so does EC. This is because h(Ω) has finite measure
and |det(Dh(x))| is in L1 (Ω). If Ei is a sequence of disjoint sets of G then the monotone
convergence theorem implies ∪Ei is also in G . It was shown above that the π system of
open sets is contained in G . Therefore, it follows from the lemma on π systems, Lemma
12.12.3 on Page 329, G equals the Borel sets. Now the desired result follows from ap-
proximating f ≥ 0 and Borel measurable with a sequence of Borel simple functions which
converge pointwise to f . This proves the theorem.

The following corollary follows right away by splitting f into positive and negative
parts of real and imaginary parts.

Corollary 29.12.5 Let h be one to one and in W 1,p (Rn;Rn) , p > n. Let Ω be a bounded,
open, connected set in Rn and suppose ∂Ω,h(∂Ω) have measure zero. Let f ∈ L1 (h(Ω))
where f is also Borel measurable. Then∫

h(Ω)
f (y)dy =

∫
Ω

|det(Dh(x))| f (h(x))dx

It can also be written in the form∫
f (y)d (y,Ω,h)dy =

∫
Ω

det(Dh(x)) f (h(x))dx
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Note this is a general area formula under somewhat more restrictive hypotheses than the
usual area formula because it involves an assumption that Ω is connected and a troublesome
condition on the measure of h(∂Ω) ,∂Ω being zero, but it does not require h to be Lipschitz.
It looks like a strange result because |detDh(x)| is not in L∞ and so it is not clear why the
integral on the right should even be finite just because f is in L1. If the result is correct, it
is surprising.

The condition on the measure of ∂Ω and h(∂Ω) is not necessary. Neither is it necessary
to assume Ω is connected. This is shown next.

Theorem 29.12.6 Let h be one to one on Ω and in W 1,p (Rn;Rn) , p > n. Let Ω be a
bounded, open set in Rn. Let f ∈ L1 (h(Ω)) where f is also Borel measurable. Then∫

h(Ω)
f (y)dy =

∫
Ω

|det(Dh(x))| f (h(x))dx

It can also be written in the form∫
f (y)d (y,Ω,h)dy =

∫
Ω

det(Dh(x)) f (h(x))dx

Proof: Let Ω ⊆ [−R,R]n ≡ Q. Let pi (x) ≡ xi where x =(x1, · · · ,xn)
T . Then here is a

claim.
Claim: Let b be given. There exists a, |a−b| ≤ 4−k such that

m(h([pix = a]∩Q)) = 0.

Here [pix = a] is short for {x : pix = a}.
Proof of claim: If this is not so, then for every a in an interval centered at b,

m(h([pix = a]∩Q))> 0

However,

m
(
∪a∈[b−4−k,b+4−k]h([pix = a]∩Q)

)
= m

(
h

(
∏

j
A j

))
where A j = [−R,R] if j ̸= i and Ai =

[
b−4−k,b+4−k

]
. This is finite because h

(
∏ j A j

)
is

a compact set, being the continuous image of such a set. Since h is one to one, this com-
pact set would then be the union of uncountably many disjoint sets, each having positive
measure. Thus for some 1/l > 0 there must be infinitely many of these disjoint sets having
measure larger than 1/l, l ∈ N a contradiction to the set having finite measure. This proves
the claim.

Now from the claim, consider bk,k∈Z given by bk = k2−(m+1) and for each i= 1, · · · ,n,
let aik denote a value of the claim, |aik−bk| ≤ 4−m. Thus

m(h([pix = aik]∩Q)) = 0, i = 1, · · · ,n

Thus also ∣∣aik−ai(k+1)
∣∣≤ |aik−bk|+

∣∣bk+1−ai(k+1)
∣∣+ |bk+1−bk|
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≤ 4−m +4−m +2−(m+1) < 2−m

Consider boxes of the form ∏
n
i=1
[
aik,ai(k+1)

]
. Denote these boxes as Bm. Thus they

are non overlapping boxes the sides of which are of length less than 2−m. Let Ω1 denote the
union of the finitely many boxes of B1 which are contained in Ω. Next let Ω2 denote the
union of the boxes of B2∪B1 which are contained in Ω and so forth. Then ∪∞

k=1Ωk ⊆Ω.
Suppose now that p ∈ Ω. Then it is at positive distance from ∂Ω. Let k be the first such
that p is contained in a box of Bk which is contained in Ω. Then p ∈ Ωk. Therefore, this
has shown that Ω is a countable union of non overlapping closed boxes B which have the
property that ∂B,h(∂B) have measure zero. Denote these boxes as {Bk}.

First assume f is nonnegative and Borel measurable. Then from Corollary 29.12.5,∫
h(Bk)

f (y)dy =
∫

Bk

|det(Dh(x))| f (h(x))dx

Since h(∂Bk) has measure zero,

∫
h(∪m

k=1Bk)
f (y)dy =

m

∑
k=1

∫
h(Bk)

f (y)dy

=
m

∑
k=1

∫
Bk

|det(Dh(x))| f (h(x))dx

=
∫
∪m

k=1Bk

|det(Dh(x))| f (h(x))dx

and now letting m→ ∞ and using the monotone convergence theorem,∫
h(Ω)

f (y)dy =
∫

Ω

|det(Dh(x))| f (h(x))dx (29.12.75)

Next assume in addition that f is also in L1 (h(Ω)). Recall that from properties of the
degree, d (y,U,h) is constant on h(U) for U a component of Ω. Since h is one to one,
Proposition 23.6.4 implies this constant is either −1 or 1. Let the components of Ω be
{Ui}∞

i=1 . Also from Theorem 23.2.2 and the assumption that h is one to one, if y ∈ h(Ui) ,
then y /∈ h

(
∪ j ̸=iU j

)
and

d (y,Ui,h)+d
(
y,∪ j ̸=iU j,h

)
= d (y,Ω,h)

Since y /∈ h
(
∪ j ̸=iU j

)
the second term on the left is 0 and so d (y,Ui,h) = d (y,Ω,h) . There-

fore, by Corollary 29.12.5,∫
h(Ω)

f (y)d (y,Ω,h)dy =
∞

∑
i=1

∫
h(Ui)

f (y)d (y,Ω,h)dy

=
∞

∑
i=1

∫
h(Ui)

f (y)d (y,Ui,h)dy =
∞

∑
i=1

∫
XUi (x) f (h(x))det(Dh(x))dx (29.12.76)
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From 29.12.75
∞

∑
i=1

∫
XUi (x) f (h(x)) |det(Dh(x))|dx

=
∫ ∞

∑
i=1

XUi (x) f (h(x)) |det(Dh(x))|dx

=
∫

XΩ f (h(x)) |det(Dh(x))|dx < ∞

and so by Fubini’s theorem, the sum and the integral may be interchanged in 29.12.76 to
obtain from the dominated convergence theorem,∫ ∞

∑
i=1

XUi (x) f (h(x))det(Dh(x))dx

=
∫

Ω

f (h(x))det(Dh(x))dx

which shows ∫
h(Ω)

f (y)d (y,Ω,h)dy =
∫

Ω

f (h(x))det(Dh(x))dx (29.12.77)

Now if f is Borel measurable and in L1 (Ω) , the above may be applied to the positive
parts of the real and imaginary parts of f to obtain 29.12.77 for such f . This proves the
theorem.

Not surprisingly, it is not necessary to assume f is Borel measurable.

Corollary 29.12.7 Let h be one to one on Ω and in W 1,p (Rn;Rn) , p > n. Let Ω be a
bounded, open set in Rn. Let f ∈ L1 (h(Ω)) where f is Lebesgue measurable. Then
x→|det(Dh(x))| f (h(x)) is Lebesgue measurable and∫

h(Ω)
f (y)dy =

∫
Ω

|det(Dh(x))| f (h(x))dx (29.12.78)

It can also be written in the form∫
f (y)d (y,Ω,h)dy =

∫
Ω

det(Dh(x)) f (h(x))dx (29.12.79)

Proof: Let E be a Lebesgue measurable subset of h(Ω) . By regularity of the measure,
there exist Borel sets F ⊆E ⊆G such that F and G are both Borel measurable sets contained
in h(Ω) with m(G\F) = 0. Then by Theorem 29.12.6∫

Ω

|det(Dh(x))|XF (h(x))dx =
∫

h(Ω)
XF (y)dy

=
∫

h(Ω)
XE (y)dy =

∫
h(Ω)

XG (y)dy

=
∫

Ω

|det(Dh(x))|XG (h(x))dx (29.12.80)
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which shows that

|det(Dh(x))|XF (h(x)) = |det(Dh(x))|XG (h(x))
= |det(Dh(x))|XE (h(x))

a.e. and so, by completeness, it follows x→|det(Dh(x))|XE (h(x)) must be Lebesgue
measurable. This is because the function x→|det(Dh(x))|XG (h(x)) is Borel measurable
due to the continuity of h which forces x→det(Dh(x)) to be Borel measurable, and the
other function in the product is of the form Xh−1(G) (x) and since G is Borel, so is h−1 (G).
Now the desired result follows because∫

Ω

|det(Dh(x))|XE (h(x))dx

is between the ends of 29.12.80. The rest of the argument involves the usual technique
of approximating a nonnegative function with an increasing sequence of simple functions
followed by consideration of the positive and negative parts of the real and imaginary parts
of an arbitrary function in L1 (Ω). The other version of the formula follows as in the proof
of Theorem 29.12.6. This proves the corollary.
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Chapter 30

Integration Of Differential Forms
30.1 Manifolds

Manifolds are sets which resemble Rn locally. To make the concept of a manifold more
precise, here is a definition.

Definition 30.1.1 Let Ω ⊆ Rm. A set, U, is open in Ω if it is the intersection of an open
set from Rm with Ω. Equivalently, a set, U is open in Ω if for every point, x ∈U, there
exists δ > 0 such that if |x−y| < δ and y ∈ Ω, then y ∈U. A set, H, is closed in Ω if it
is the intersection of a closed set from Rm with Ω. Equivalently, a set, H, is closed in Ω if
whenever, y is a limit point of H and y ∈Ω, it follows y ∈ H.

Recall the following definition.

Definition 30.1.2 Let V ⊆ Rn. Ck
(
V ;Rm

)
is the set of functions which are restrictions to

V of some function defined on Rn which has k continuous derivatives and compact support.
When k = 0, it means the restriction to V of continuous functions with compact support.

Definition 30.1.3 A closed and bounded subset of Rm, Ω, will be called an n dimen-
sional manifold with boundary, n ≥ 1, if there are finitely many sets, Ui, open in Ω and
continuous one to one functions, Ri ∈ C0

(
Ui,Rn

)
such that RiUi is relatively open in

Rn
≤ ≡ {u ∈ Rn : u1 ≤ 0} , R−1

i is continuous. These mappings, Ri, together with their do-
mains, Ui, are called charts and the totality of all the charts, (Ui,Ri) just described is called
an atlas for the manifold. Define

int(Ω)≡ {x ∈Ω : for some i,Rix ∈ Rn
<}

where Rn
< ≡ {u ∈ Rn : u1 < 0}. Also define

∂Ω≡ {x ∈Ω : for some i,Rix ∈ Rn
0}

where
Rn

0 ≡ {u ∈ Rn : u1 = 0}

and ∂Ω is called the boundary of Ω. Note that if n = 1, Rn
0 is just the single point 0. By

convention, we will consider the boundary of such a 0 dimensional manifold to be empty.

This definition is a little too restrictive. In general the collection of sets, Ui is not finite.
However, in the case where Ω is closed and bounded, compactness of Ω can be used to
get a finite covering and since this is the case of most interest here, the assumption that the
collection of sets, Ui, is finite is made. However, most of what is presented here can be
generalized to the case of a locally finite atlas.

Theorem 30.1.4 Let ∂Ω and int(Ω) be as defined above. Then int(Ω) is open in Ω and
∂Ω is closed in Ω. Furthermore, ∂Ω∩ int(Ω) = /0, Ω = ∂Ω∪ int(Ω), and for n≥ 2, ∂Ω is
an n− 1 dimensional manifold for which ∂ (∂Ω) = /0. The property of being in int(Ω) or
∂Ω does not depend on the choice of atlas.

1061
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Proof: It is clear that Ω = ∂Ω∪ int(Ω). First consider the claim that ∂Ω∩ int(Ω) = /0.
Suppose this does not happen. Then there would exist x ∈ ∂Ω∩ int(Ω). Therefore, there
would exist two mappings Ri and R j such that R jx ∈ Rn

0 and Rix ∈ Rn
< with x ∈Ui ∩U j.

Now consider the map, R j ◦R−1
i , a continuous one to one map from Rn

≤ to Rn
≤ having a

continuous inverse. By continuity, there exists r > 0 small enough that,

R−1
i B(Rix,r)⊆Ui∩U j.

Therefore, R j ◦R−1
i (B(Rix,r)) ⊆ Rn

≤ and contains a point on Rn
0,R jx. However, this

cannot occur because it contradicts the theorem on invariance of domain, Theorem 23.4.3,
which requires that R j ◦R−1

i (B(Rix,r)) must be an open subset of Rn and this one isn’t
because of the point on Rn

0. Therefore, ∂Ω∩ int(Ω) = /0 as claimed. This same argument
shows that the property of being in int(Ω) or ∂Ω does not depend on the choice of the atlas.

To verify that ∂ (∂Ω) = /0, let Si be the restriction of Ri to ∂Ω∩Ui. Thus

Si (x) = (0,(Rix)2 , · · · ,(Rix)n)

and the collection of such points for x ∈ ∂Ω∩Ui is an open bounded subset of

{u ∈ Rn : u1 = 0} ,

identified with Rn−1. Si (∂Ω∩Ui) is bounded because Si is the restriction of a continuous
function defined on Rm and ∂Ω∩Ui ≡ Vi is contained in the compact set Ω. Thus if Si is
modified slightly, to be of the form

S′i (x) = ((Rix)2− ki, · · · ,(Rix)n)

where ki is chosen sufficiently large enough that (Ri (Vi))2−ki < 0, it follows that {(Vi,S′i)}
is an atlas for ∂Ω as an n−1 dimensional manifold such that every point of ∂Ω is sent to
to Rn−1

< and none gets sent to Rn−1
0 . It follows ∂Ω is an n− 1 dimensional manifold with

empty boundary. In case n = 1, the result follows by definition of the boundary of a 0
dimensional manifold.

Next consider the claim that int(Ω) is open in Ω. If x ∈ int(Ω) , are all points of
Ω which are sufficiently close to x also in int(Ω)? If this were not true, there would
exist {xn} such that xn ∈ ∂Ω and xn → x. Since there are only finitely many charts of
interest, this would imply the existence of a subsequence, still denoted by xn and a single
map, Ri such that Ri (xn) ∈ Rn

0. But then Ri (xn)→ Ri (x) and so Ri (x) ∈ Rn
0 showing

x∈ ∂Ω, a contradiction to int(Ω)∩∂Ω = /0. Now it follows that ∂Ω is closed in Ω because
∂Ω = Ω\ int(Ω). This proves the Theorem.

Definition 30.1.5 An n dimensional manifold with boundary, Ω is a Ck manifold with
boundary for some k ≥ 1 if

R j ◦R−1
i ∈Ck

(
Ri (Ui∩U j);Rn

)
and R−1

i ∈ Ck
(
RiUi;Rm

)
. It is called a continuous or Lipschitz manifold with boundary

if the mappings, R j ◦R−1
i , R−1

i ,Ri are respectively continuous or Lipschitz continuous. In
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the case where Ω is a Ck,k ≥ 1 manifold, it is called orientable if in addition to this there
exists an atlas, (Ur,Rr), such that whenever Ui∩U j ̸= /0,

det
(
D
(
R j ◦R−1

i
))

(u)> 0 for all u ∈ Ri (Ui∩U j) (30.1.1)

The mappings, Ri ◦R−1
j are called the overlap maps. In the case where k = 0, the Ri

are only assumed continuous so there is no differentiability available and in this case, the
manifold is oriented if whenever A is an open connected subset of int(Ri (Ui∩U j)) whose
boundary has measure zero and separates Rn into two components,

d
(
y,A,R j ◦R−1

i
)
∈ {1,0} (30.1.2)

depending on whether y∈R j ◦R−1
i (A). An atlas satisfying 30.1.1 or more generally 30.1.2

is called an oriented atlas.

It follows from Proposition 23.6.4 the degree in 30.1.2 is either undefined if y ∈ R j ◦
R−1

i ∂A or it is 1, -1,or 0.
The study of manifolds is really a generalization of something with which everyone

who has taken a normal calculus course is familiar. We think of a point in three dimensional
space in two ways. There is a geometric point and there are coordinates associated with
this point. There are many different coordinate systems which describe a point. There are
spherical coordinates, cylindrical coordinates and rectangular coordinates to name the three
most popular coordinate systems. These coordinates are like the vector u. The point, x is
like the geometric point although it is always assumed x has rectangular coordinates in Rm

for some m. Under fairly general conditions, it can be shown there is no loss of generality
in making such an assumption. Next is some algebra.

30.2 The Binet Cauchy Formula
The Binet Cauchy formula is a generalization of the theorem which says the determinant
of a product is the product of the determinants. The situation is illustrated in the following
picture.

B A

Theorem 30.2.1 Let A be an n×m matrix with n ≥ m and let B be a m× n matrix. Also
let Ai

i = 1, · · · ,C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be
the m×m submatrices of B which are obtained by deleting corresponding n−m columns.
Then

det(BA) =
C(n,m)

∑
k=1

det(Bk)det(Ak)
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Proof: This follows from a computation. By Corollary 5.4.5 on Page 71, det(BA) =

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm)(BA)i1 j1 (BA)i2 j2 · · ·(BA)im jm

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

n

∑
r1=1

Bi1r1Ar1 j1

n

∑
r2=1

Bi2r2 Ar2 j2 · · ·
n

∑
rm=1

BimrmArm jm

Now denote by Ik one subsets of {1, · · · ,n} having m elements. Thus there are C (n,m) of
these. Then the above equals

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

Bi1r1Ar1 j1Bi2r2Ar2 j2 · · ·BimrmArm jm

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
sgn(i1 · · · im)Bi1r1 Bi2r2 · · ·Bimrm ·

∑
( j1··· jm)

sgn( j1 · · · jm)Ar1 j1Ar2 j2 · · ·Arm jm

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m!

sgn(r1 · · ·rm)
2 det(Bk)det(Ak)

=
C(n,m)

∑
k=1

det(Bk)det(Ak)

since there are m! ways of arranging the indices {r1, · · · ,rm}. ■

30.3 Integration Of Differential Forms On Manifolds
This section presents the integration of differential forms on manifolds. This topic is a
higher dimensional version of what is done in calculus in finding the work done by a force
field on an object which moves over some path. There you evaluated line integrals. Dif-
ferential forms are just a higher dimensional version of this idea and it turns out they are
what it makes sense to integrate on manifolds. The following lemma, on Page 429 used in
establishing the definition of the degree and in giving a proof of the Brouwer fixed point
theorem is also a fundamental result in discussing the integration of differential forms.
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Lemma 30.3.1 Let g : U →V be C2 where U and V are open subsets of Rn. Then

n

∑
j=1

(cof(Dg))i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

.

Also recall the interesting relation of the degree to integration in Corollary 29.11.3

Corollary 30.3.2 Let f ∈ Lp
loc (R

n) for p≥ 1 and let h be Lipschitz where ∂U has measure
zero for U a bounded open set and h(∂U)C has finitely many components. Then everything
is measurable which needs to be and∫

f (y)d (y,U ,h)dy =
∫

U
detDh(x) f (h(x))dx.

(Recall that if y /∈ h(U) , then d (y,U ,h) = 0.)

Recall Proposition 23.6.4.

Proposition 30.3.3 Let Ω be an open connected bounded set in Rn such that Rn \ ∂Ω

consists of two, three if n = 1, connected components. Let f ∈ C
(
Ω;Rn

)
be continuous

and one to one. Then f(Ω) is the bounded component of Rn \ f(∂Ω) and for y ∈ f(Ω) ,
d (f,Ω,y) either equals 1 or −1.

Also recall the following fundamental lemma on partitions of unity in Corollary 15.5.9.

Lemma 30.3.4 Let K be a compact set in Rn and let {Ui}∞

i=1 be an open cover of K. Then
there exist functions, ψk ∈C∞

c (Ui) such that ψ i ≺Ui and for all x ∈ K,

∞

∑
i=1

ψ i (x) = 1.

If K is a compact subset of U1 (Ui)there exist such functions such that also ψ1 (x) = 1
(ψ i (x) = 1) for all x ∈ K.

With the above, what follows is the definition of what a differential form is and how to
integrate one.

Definition 30.3.5 Let I denote an ordered list of n indices taken from the set, {1, · · · ,m}.
Thus I = (i1, · · · , in). It is an ordered list because the order matters. A differential form of
order n in Rm is a formal expression,

ω = ∑
I

aI (x)dxI

where aI is at least Borel measurable dxI is short for the expression

dxi1 ∧·· ·∧dxin ,
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and the sum is taken over all ordered lists of indices taken from the set, {1, · · · ,m}. For Ω

an orientable n dimensional manifold with boundary, define∫
Ω

ω (30.3.3)

according to the following procedure in which it is assumed the integrals which occur
make sense. Let {(Ui,Ri)} be an oriented atlas for Ω. Each Ui is the intersection of an
open set in Rm, Oi, with Ω and so there exists a C∞ partition of unity subordinate to the
open cover, {Oi} which sums to 1 on Ω. Thus ψ i ∈C∞

c (Oi), has values in [0,1] and satisfies
∑i ψ i (x) = 1 for all x ∈Ω. Then define 30.3.3 by

∫
Ω

ω ≡
p

∑
i=1

∑
I

∫
RiUi

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du (30.3.4)

where that symbol at the end denotes

det


xi1,u1 xi1,u2 · · · xi1,un

xi2,u1 xi2,u2 · · · xi2,u2
...

...
. . .

...
xin,u1 xin,u2 · · · xin,un

(u)

for (x1,x2, · · · ,xn) = R−1
i (u).

Of course there are all sorts of questions related to whether this definition is well de-
fined. The formula 30.3.3 makes no mention of partitions of unity or a particular atlas.
What if you had a different atlas and a different partition of unity? Would

∫
Ω

ω change?
In general, the answer is yes. However, there is a sense in which 30.3.3 is well defined.
This involves the concept of orientation. This looks a lot like the concept of an oriented
manifold.

Definition 30.3.6 Suppose Ω is an n dimensional orientable manifold with boundary and
let (Ui,Ri) and (Vi,Si) be two oriented atlass of Ω. They have the same orientation if for
all open connected sets A ⊆ S j (Vj ∩Ui) with ∂A having measure zero and separating Rn

into two components,

d
(

u,Ri ◦S−1
j ,A

)
∈ {0,1}

depending on whether u ∈ Ri ◦S−1
j (A).

The above definition of
∫

Ω
ω is well defined in the sense that any two atlass which have

the same orientation deliver the same value for this symbol.

Theorem 30.3.7 Suppose Ω is an n dimensional Lipschitz orientable manifold with bound-
ary and let (Ui,Ri) and (Vi,Si) be two oriented atlass of Ω. Suppose the two atlass have the
same orientation. Then if

∫
Ω

ω is computed with respect to the two atlass the same number
is obtained.
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Proof: Let {ψ i} be a partition of unity as described in Lemma 30.3.4 which is asso-
ciated with the atlas (Ui,Ri) and let {η i} be a partition of unity associated in the same
manner with the atlas (Vi,Si). First note the following.

∑
I

∫
RiUi

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du (30.3.5)

=
q

∑
j=1

∑
I

∫
Ri(Ui∩V j)

η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

=
q

∑
j=1

∑
I

∫
intRi(Ui∩V j)

η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

The reason this can be done is that points not on the interior of Ri (Ui∩Vj) are on the plane
u1 = 0 which is a set of measure zero.

Now let A be an open connected set contained in S j (Ui∩Vj) whose boundary ∂A sep-
arates Rn into two components. Then by assumption,∫

Ri◦S−1
j (A)

η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du (30.3.6)

=
∫

Ri◦S−1
j (A)

η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
)

·
∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
d
(

u,A,Ri ◦S−1
j

)
du

because that degree is given to be 1. (Unless u ∈ Ri ◦S−1
j (A) , the above degree equals 0.)

By Corollary 30.3.2, this equals∫
A

η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)
·

∂ (xi1 · · ·xin)

∂ (u1 · · ·un)

(
Ri ◦S−1

j (v)
)

det
(

D
(

Ri ◦S−1
j

)
(v)
)

dv

and by the chain rule and Rademacher’s theorem, Theorem 26.6.7, this equals∫
A

η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv (30.3.7)

Thus for every open A of the sort described 30.3.7 = 30.3.6. By the Vitali covering theorem,
there exists a sequence of disjoint open balls {Bk} whose union fills up int(S j (Ui∩Vj))

except for a set of measure zero N. Since Ri ◦S−1
j is Lipschitz, it follows Ri ◦S−1

j (N) also
has measure zero. Therefore,∫

Ri(Ui∩V j)
η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du (30.3.8)
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=
∫

intRi(Ui∩V j)
η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

=
∞

∑
k=1

∫
Ri◦S−1

j (Bk)
η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

=
∞

∑
k=1

∫
Bk

η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv

=
∫

intS j(Ui∩V j)
η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv

=
∫

S j(Ui∩V j)
η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv (30.3.9)

The equality of 30.3.8 and 30.3.9 was the goal. With this, the definition of
∫

ω using the
atlas (Ui,Ri) and partition of unity {ψ i}

p
i=1 given in 30.3.5 is

p

∑
i=1

∑
I

∫
RiUi

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

=
q

∑
j=1

p

∑
i=1

∑
I

∫
Ri(Ui∩V j)

η j
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

aI
(
R−1

i (u)
) ∂ (xi1 · · ·xin)

∂ (u1 · · ·un)
du

and from 30.3.8 - 30.3.9, this equals

=
q

∑
j=1

p

∑
i=1

∑
I

∫
S j(Ui∩V j)

η j

(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv

=
q

∑
j=1

∑
I

∫
S j(V j)

η j

(
S−1

j (v)
)

aI

(
S−1

j (v)
)

∂ (xi1 · · ·xin)

∂ (v1 · · ·vn)
dv

which is the definition of
∫

ω using the other atlas and partition of unity. This proves the
theorem.

30.3.1 The Derivative Of A Differential Form
The derivative of a differential form is defined next.

Definition 30.3.8 Let ω = ∑I aI (x)dxi1 ∧ ·· ·∧dxin−1 be a differential form of order n−1
where aI has weak partial derivatives. Then define dω , a differential form of order n by
replacing aI (x) with

daI (x)≡
m

∑
k=1

∂aI (x)
∂xk

dxk (30.3.10)

and putting a wedge after the dxk. Therefore,

dω ≡∑
I

m

∑
k=1

∂aI (x)
∂xk

dxk ∧dxi1 ∧·· ·∧dxin−1 . (30.3.11)
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30.4 Stoke’s Theorem And The Orientation Of ∂Ω

Here Ω will be an n dimensional orientable Lipschitz manifold with boundary in Rm. Let
an oriented manifold for it be {Ui,Ri}p

i=1 and let a C∞ partition of unity be {ψ i}
p
i=1. Also

let
ω = ∑

I
aI (x)dxi1 ∧·· ·∧dxin−1

be a differential form such that aI is C1
(
Ω
)
. Since ∑ψ i (x) = 1 on Ω,

dω = ∑
I

m

∑
k=1

p

∑
j=1

∂

(
ψ jaI

)
∂xk

(x)dxk ∧dxi1 ∧·· ·∧dxin−1

It follows

∫
dω = ∑

I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaI

)
∂xk

(
R−1

j (u)
)

∂
(
xk,xi1 · · ·xin−1

)
∂ (u1, · · · ,un)

du

= ∑
I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaI

)
∂xk

(
R−1

jε (u)
)

∂
(
xkε ,xi1ε · · ·xin−1ε

)
∂ (u1, · · · ,un)

du+

∑
I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaI

)
∂xk

(
R−1

j (u)
)

∂
(
xk,xi1 · · ·xin−1

)
∂ (u1, · · · ,un)

du

−∑
I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaI

)
∂xk

(
R−1

jε (u)
)

∂
(
xkε ,xi1ε · · ·xin−1ε

)
∂ (u1, · · · ,un)

du (30.4.12)

where those last two expressions sum to e(ε) which converges to 0 as ε → 0 for a suitable
subsequence. Here is why.

∂

(
ψ jaI

)
∂xk

(
R−1

jε (u)
)
→

∂

(
ψ jaI

)
∂xk

(
R−1

j (u)
)

because of the uniform convergence of R−1
jε to R−1

j . In addition to this,

∂
(
xkε ,xi1ε · · ·xin−1ε

)
∂ (u1, · · · ,un)

→
∂
(
xk,xi1 · · ·xin−1

)
∂ (u1, · · · ,un)

in Lr (R j (U j)) for any r > 0 and so a suitable subsequence converges pointwise. The inte-
grands are also uniformly integrable. Thus the Vitali convergence theorem can be applied to
each of the integrals in the above sum and obtain that for a suitable subsequence, e(ε)→ 0.

Then 30.4.12 equals

= ∑
I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaI

)
∂xk

(
R−1

jε (u)
) m

∑
l=1

∂xkε

∂ul
A1ldu+ e(ε)
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where A1l is the 1lth cofactor for the determinant

∂
(
xkε ,xi1ε · · ·xin−1ε

)
∂ (u1, · · · ,un)

which is determined by a particular I. I am suppressing the ε for the sake of notation. Then
the above reduces to

= ∑
I

p

∑
j=1

∫
R j(U j)

n

∑
l=1

A1l

m

∑
k=1

∂

(
ψ jaI

)
∂xk

(
R−1

jε (u)
)

∂xkε

∂ul
du+ e(ε)

= ∑
I

p

∑
j=1

n

∑
l=1

∫
R j(U j)

A1l
∂

∂ul

(
ψ jaI ◦R−1

jε

)
(u)du+ e(ε) (30.4.13)

(Note l goes up to n not m.) Recall R j (U j) is relatively open in Rn
≤. Consider the integral

where l > 1. Integrate first with respect to ul . In this case the boundary term vanishes
because of ψ j and you get

−
∫

R j(U j)
A1l,l

(
ψ jaI ◦R−1

jε

)
(u)du (30.4.14)

Next consider the case where l = 1. Integrating first with respect to u1, the term reduces to∫
R jV j

ψ jaI ◦R−1
jε (0,u2, · · · ,un)A11du1−

∫
R j(U j)

A11,1

(
ψ jaI ◦R−1

jε

)
(u)du (30.4.15)

where R jVj is an open set in Rn−1 consisting of{
(u2, · · · ,un) ∈ Rn−1 : (0,u2, · · · ,un) ∈ R j (U j)

}
and du1 represents du2du3 · · ·dun on R jVj for short. Thus Vj is just the part of ∂Ω which
is in U j and the mappings S−1

j given on R jVj = R j (U j ∩∂Ω) by

S−1
j (u2, · · · ,un)≡ R−1

j (0,u2, · · · ,un)

are such that
{
(S j,Vj)

}
is an atlas for ∂Ω. Then if 30.4.14 and 30.4.15 are placed in

30.4.13, then it follows from Lemma 30.3.1 that this reduces to

∑
I

p

∑
j=1

∫
R jV j

ψ jaI ◦R−1
jε (0,u2, · · · ,un)A11du1 + e(ε)

Now as before, there exists a subsequence, still denoted as ε such that each ∂xsε/∂ur
converges pointwise to ∂xs/∂ur and then using that these are bounded in every Lp, one can
use the Vitali convergence theorem to pass to a limit obtaining finally

∑
I

p

∑
j=1

∫
R jV j

ψ jaI ◦R−1
j (0,u2, · · · ,un)A11du1

= ∑
I

p

∑
j=1

∫
S jV j

ψ jaI ◦S−1
j (u2, · · · ,un)A11du1
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= ∑
I

p

∑
j=1

∫
S jV j

ψ jaI ◦S−1
j (u2, · · · ,un)

∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

(0,u2, · · · ,un)du1 (30.4.16)

This of course is the definition of
∫

∂Ω
ω provided ∂Ω is orientable. This is shown next.

What if sptaI ⊆ K ⊆Ui∩U j for each I? Then using Lemma 30.3.4 it can be shown that∫
dω =

∑
I

∫
S j(V j∩V j)

aI ◦S−1
j (u2, · · · ,un)

∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

(0,u2, · · · ,un)du1

This is done by using a partition of unity which has the property that ψ j equals 1 on K
which forces all the other ψk to equal zero there. Using the same trick involving a judicious
choice of the partition of unity,

∫
dω is also equal to

∑
I

∫
Si(V j∩V j)

aI ◦S−1
i (v2, · · · ,vn)

∂
(
xi1 · · ·xin−1

)
∂ (v2, · · · ,vn)

(0,v2, · · · ,vn)dv1

Similarly if A is an open connected subset of Si (Vj ∩Vj) whose measure zero boundary
separates Rn into two components, and K is a compact subset of S−1

i (A) , containing sptaI
for all I,

∫
dω equals each of 30.4.18 and 30.4.17 below.

∑
I

∫
A

aI ◦S−1
i (v2, · · · ,vn)

∂
(
xi1 · · ·xin−1

)
∂ (v2, · · · ,vn)

(0,v2, · · · ,vn)dv1 (30.4.17)

∑
I

∫
S j◦S−1

i (A)
aI ◦S−1

j (u2, · · · ,un)
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

du1 (30.4.18)

By Corollary 30.3.2 applied to S j ◦S−1
i (v1) = u1, the expression in 30.4.17 equals

∑
I

∫
S j◦S−1

i (A)
aI ◦S−1

j (u2, · · · ,un)
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

d
(
u1,A,S j ◦S−1

i
)

du1

and so, subtracting 30.4.18 and the above,

∑
I

∫
S j◦S−1

i (A)
aI ◦S−1

j (u2, · · · ,un)
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

·

(
1−d

(
u1,A,S j ◦S−1

i
))

du1 = 0

Now by invariance of domain, it follows S j ◦S−1
i (A) is an open connected set contained in a

single component of
(
S j ◦S−1

i (∂A)
)C

and so the above degree is constant on S j ◦S−1
i (A) .

If this degree is not 1 then it follows that for any choice of the aI having compact support
in S−1

i (A) ,

∑
I

∫
S j◦S−1

i (A)
aI ◦S−1

j (u2, · · · ,un)
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

du1 = 0 (30.4.19)
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Next let I always denote an increasing list of indices. Note that S j ◦S−1
i maps the open

set A to an open set which therefore has positive Lebesgue measure. It follows from the
area formula that

det
(
D
(
S j ◦S−1

i
))

= det


n×m︷ ︸︸ ︷

D
(
S j
(
S−1

i (u)
)) m×n︷ ︸︸ ︷

DS−1
i (u)

 (30.4.20)

must be nonzero on a set of positive measure. It follows that at least some

∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

must be nonzero since by the Binet Cauchy theorem, the above determinant in 30.4.20 is
the sum of products of these multiplied by other determinants which come from deleting
corresponding columns in the matrix for D

(
S j
(
S−1

i (u)
))

. It follows that

∑
I

(
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

)2

is positive on a set of positive measure. Let

lim
p→∞

aI p ◦S−1
j =

∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

in L2
(
S j ◦S−1

i (A)
)

for each I = (i1, · · · , in−1) . Replacing aI ◦S−1
j with aI p ◦S−1

j in 30.4.19
and passing to the limit, it follows

0 = lim
p→∞

∫
S j◦S−1

i (A)
∑

I
aI p ◦S−1

j (u1)
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

du1

=
∫

S j◦S−1
i (A)

∑
I

(
∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

)2

du1 > 0

a contradiction. Therefore, d
(
u1,A,S j ◦S−1

i

)
= 1 and this shows the atlas is an oriented

atlas for ∂Ω. This has proved a general Stokes theorem.

Theorem 30.4.1 Let Ω be an oriented Lipschitz manifold and let

ω = ∑
I

aI (x)dxi1 ∧·· ·∧dxin−1 .

where each aI is C1
(
Ω
)
. For

{
U j,R j

}p
j=0 an oriented atlas for Ω where R j (U j) is a

relatively open set in
{u ∈ Rn : u1 ≤ 0} ,
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define an atlas for ∂Ω,
{

Vj,S j
}

where Vj ≡ ∂Ω∩U j and S j is just the restriction of R j to
Vj. Then this is an oriented atlas for ∂Ω and∫

∂Ω

ω =
∫

Ω

dω

where the two integrals are taken with respect to the given oriented atlass.

What if aI is only the restriction to Ω of a function in W 1,p (Rm) , p > 1? Would the
same formula still hold? Let φ ε be a mollifier and let aIε ≡ aI ∗φ ε . Then Stoke’s theorem
applies to the mollified situation and it follows∫

Ω

dωε

= ∑
I

m

∑
k=1

p

∑
j=1

∫
R j(U j)

∂

(
ψ jaIε

)
∂xk

(
R−1

j (u)
)

∂
(
xk,xi1 · · ·xin−1

)
∂ (u1, · · · ,un)

du

= ∑
I

p

∑
j=1

∫
S jV j

ψ jaIε ◦S−1
j (u2, · · · ,un)

∂
(
xi1 · · ·xin−1

)
∂ (u2, · · · ,un)

(0,u2, · · · ,un)du1

≡
∫

∂Ω

ωε

Now if you let ε → 0, it follows from the definition of convolution that

∂

(
ψ jaIε

)
∂xk

→
∂

(
ψ jaI

)
∂xk

in Lp (Rm)

and so there is a subsequence such that for each k,

∂

(
ψ jaIε

)
∂xk

(x)→
∂

(
ψ jaI

)
∂xk

(x)

pointwise a.e. Since R−1
j ,R j are Lipschitz, they take sets of measure zero to sets of measure

zero. Hence
∂

(
ψ jaIε

)
∂xk

◦R−1
j →

∂

(
ψ jaI

)
∂xk

◦R−1
j

pointwise a.e. on R j (U j) . Similar considerations apply to aIε . Using the Vitali conver-
gence theorem in

∫
Ω

dωε ,
∫

Ω
ωε , it is possible to pass to the limit. This is because the

integrands are bounded in Lp and so they are uniformly integrable. This proves the follow-
ing corollary.

Corollary 30.4.2 Let Ω be an oriented Lipschitz manifold and let

ω = ∑
I

aI (x)dxi1 ∧·· ·∧dxin−1 .
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where each aI is in W 1,p (Rm) where p > 1. For
{

U j,R j
}p

j=0 an oriented atlas for Ω where
R j (U j) is a relatively open set in

{u ∈ Rn : u1 ≤ 0} ,

define an atlas for ∂Ω,
{

Vj,S j
}

where Vj ≡ ∂Ω∩U j and S j is just the restriction of R j to
Vj. Then this is an oriented atlas for ∂Ω and∫

∂Ω

ω =
∫

Ω

dω

where the two integrals are taken with respect to the given oriented atlass.

30.5 Green’s Theorem
Green’s theorem is a well known result in calculus and it pertains to a region in the plane.
I am going to generalize to an open set in Rnwith sufficiently smooth boundary using the
methods of differential forms described above.

30.5.1 An Oriented Manifold
A bounded open subset, Ω, of Rn,n≥ 2 has Lipschitz boundary and lies locally on one side
of its boundary if it satisfies the following conditions.

For each p ∈ ∂Ω ≡ Ω \Ω, there exists an open set, Q, containing p, an open interval
(a,b), a bounded open set B⊆Rn−1, and an orthogonal transformation R such that detR =
1,

B× (a,b) = RQ,

and letting W = Q∩Ω,

RW = {u ∈ Rn : a < u1 < g(u2, · · · ,un) ,(u2, · · · ,un) ∈ B}

where g is Lipschitz continuous on Rn−1, g(u2, · · · ,un) < b for (u2, · · · ,un) ∈ B, and g
vanishing outside some compact set in Rn−1.

R(∂Ω∩Q) = {u ∈ Rn : u1 = g(u2, · · · ,un) ,(u2, · · · ,un) ∈ B} .

Note that finitely many of these sets Q cover ∂Ω because ∂Ω is compact. The following
picture describes the situation.

x
W

Q

R

R(W )

a b

R(Q)

u
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Define P1 : Rn→ Rn−1 by
P1u≡ (u2, · · · ,un)

and Σ : Rn→ Rn given by
Σu≡ u−g(P1u)e1

≡ u−g(u2, · · · ,un)e1

≡ (u1−g(u2, · · · ,un) ,u2, · · · ,un)

Thus Σ is invertible and
Σ
−1u = u+g(P1u)e1

≡ (u1 +g(u2, · · · ,un) ,u2, · · · ,un)

For x∈ ∂Ω∩Q, it follows the first component of Rx is g(P1 (Rx)). Now define R :W →Rn
≤

as
u≡ Rx≡ Rx−g(P1 (Rx))e1 ≡ ΣRx

and so it follows
R−1 = R∗Σ−1.

These mappings R involve first a rotation followed by a variable sheer in the direction of
the u1 axis.

Since ∂Ω is compact, there are finitely many of these open sets, Q1, · · · ,Qp which
cover ∂Ω. Let the orthogonal transformations and other quantities described above also be
indexed by k for k = 1, · · · , p. Also let Q0 be an open set with Q0 ⊆ Ω and Ω is covered
by Q0,Q1, · · · ,Qp. Let u≡ R0x≡ x− ke1 where k is large enough that R0Q0 ⊆ Rn

<. Thus
in this case, the orthogonal transformation R0 equals I and Σ0x ≡ x− ke1. I claim Ω is an
oriented manifold with boundary and the charts are (Wi,Ri) .

Letting A be an open set contained in Ri (Wi∩Wj) such that ∂A has measure 0 and ∂A
separates Rn into two components, consider

d
(
u,A,R j ◦R−1

i
)
, u /∈ R j ◦R−1

i (∂A)

By convolving g with a mollifier, there exists a sequence of infinitely differentiable func-
tions gε which converge uniformly to g on all of Rn−1 as ε → 0. Therefore, letting Σε be
the corresponding functions defined above with g replaced with gε , it follows the Σε will
converge uniformly to Σ and Σ−1

ε will converge uniformly to Σ−1. Thus from the above
descriptions of R−1

j , it follows R−1
jε converges uniformly to R−1

j for each j. Therefore,
if ε is small enough, u /∈

(
tR jε ◦R−1

iε +(1− t)R j ◦R−1
i

)
(∂A) and so from properties of

the degree, the mappings R j and R−1
i can be replaced with smooth ones in computing the

degree. To save on notation, I will drop the ε . The mapping involved is

Σ jR jR∗i Σ
−1
i

and it is a one to one mapping. What is the determinant of its derivative? By the chain rule,

D
(
Σ jR jR∗i Σ

−1
i
)
= DΣ j

(
R jR∗i Σ

−1
i
)

DR j
(
R∗i Σ

−1
i
)

DR∗i
(
Σ
−1
i
)

DΣ
−1
i
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However,

det(DΣ j) = 1 = det
(

DΣ
−1
j

)
and det(Ri) = det(R∗i ) = 1 by assumption. Therefore, if u ∈

(
R j ◦R−1

i

)
(A) , the above

degree is 1 and if u is not in this set, the above degree is 0 or undefined if u is on(
R j ◦R−1

i

)
(∂A). By Definition 30.1.5 Ω is indeed an oriented manifold.

30.5.2 Green’s Theorem

The general Green’s theorem is the following. It follows from Corollary 30.4.2.

Theorem 30.5.1 Let Ω be a bounded open set having Lipschitz boundary as described
above. Also let

ω = ∑
I

aI (x)dxi1 ∧·· ·∧dxin−1

be a differential form where aI is assumed to be the restriction to Ω of a function in
W 1,p (Rn) , p > 1. Then ∫

∂Ω

ω =
∫

Ω

dω

It can be shown that, since the boundary is Lipschitz, it would have sufficed to assume
u ∈W 1,p (Ω) and then it is automatically the restriction of one in W 1,p (Rn) . However,
these terms have not all been defined and the necessary results are not proved till the topic
of Sobolev spaces is discussed.

Another thing to notice is that, while the above result is pretty general, including the
usual calculus result in the plane as a special case, it does not have the generality of the best
results in the plane which involve only a rectifiable simple closed curve. The issue whether
∂Ω is an oriented manifold was dealt with in the general Stokes theorem described above.

Next is a general version of the divergence theorem which comes from choosing the
differential form in an auspicious manner.

30.6 The Divergence Theorem
From Green’s theorem, one can quickly obtain a general Divergence theorem for Ω as
described above in Section 30.5.1. First note that from the above description of the R j,

∂
(
xk,xi1 , · · ·xin−1

)
∂ (u1, · · · ,un)

= sgn(k, i1 · · · , in−1) .

So let F(x) be a Lipschitz vector field. Say F = (F1, · · · ,Fn) . Consider the differential form

ω (x)≡
n

∑
k=1

Fk (x)(−1)k−1 dx1∧·· ·∧ d̂xk ∧·· ·∧dxn
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where the hat means dxk is being left out. Here it is assumed Fk is the restriction to Ω of a
function in W 1,p (Rn) where p > 1.Then

dω (x) =
n

∑
k=1

n

∑
j=1

∂Fk

∂x j
(−1)k−1 dx j ∧dx1∧·· ·∧ d̂xk ∧·· ·∧dxn

=
n

∑
k=1

∂Fk

∂xk
dx1∧·· ·∧dxk ∧·· ·∧dxn

≡ div(F)dx1∧·· ·∧dxk ∧·· ·∧dxn

The assertion between the first and second lines follows right away from properties of
determinants and the definition of the integral of the above wedge products in terms of
determinants. From Green’s theorem and the change of variables formula applied to the
individual terms in the description of

∫
Ω

dω∫
Ω

div(F)dx =

p

∑
j=1

∫
B j

n

∑
k=1

(−1)k−1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)

(
ψ jFk

)
◦R−1

j (0,u2, · · · ,un)du1,

du1 short for du2du3 · · ·dun. Also, this shows the result on the right of the equal sign does
not depend on the choice of partition of unity or on the atlas.

I want to write this in a more attractive manner which will give more insight in terms
of the Hausdorff measure on ∂Ω. The above involves a particular partition of unity, the
functions being the ψ i. Replace F in the above with ψsF. Next let

{
η j
}

be a partition of
unity η j ≺ O j such that ηs = 1 on sptψs. This partition of unity exists by Lemma 30.3.4.
Then ∫

Ω

div(ψsF)dx =

p

∑
j=1

∫
B j

n

∑
k=1

(−1)k−1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)

(
η jψsFk

)
◦R−1

j (0,u2, · · · ,un)du1

=
∫

Bs

n

∑
k=1

(−1)k−1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)
(ψsFk)◦R−1

s (0,u2, · · · ,un)du1 (30.6.21)

because since ηs = 1 on sptψs, it follows all the other η j equal zero there. Consider the
vector defined for u1 ∈ Rs (Ws)∩Rn

0 whose kth component is

(−1)k−1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)
= (−1)k+1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)
(30.6.22)

Suppose you dot this vector with a “tangent” vector ∂R−1
s /∂ui. For each j this yields

∑
j
(−1)k+1 ∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)

∂xk

∂ui
= 0
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because it is the expansion of ∣∣∣∣∣∣∣∣∣
x1,i x1,2 · · · x1,n
x2,i x2,2 · · · x2,n

...
...

. . .
...

xn,i xn,2 · · · xn,n

∣∣∣∣∣∣∣∣∣ ,
a determinant with two equal columns. Thus this vector is at least in some sense normal to
Ω. Since it works in the divergence theorem, it is called the exterior normal.

One could normalize the vector of 30.6.22 by dividing by its magnitude. Then it would
be the unit exterior normal n. Letting J (u1) be its usual Euclidean norm, this equals

J (u1)
2 =

n

∑
k=1

(
∂ (x1, · · · x̂k · · · ,xn)

∂ (u2, · · · ,un)

)2

and by the Binet Cauchy theorem this equals

det
(
DR−1

s (u)∗DR−1
s (u)

)1/2

Thus the expression in 30.6.21 reduces to∫
Bs

(
ψsF◦R−1

s (u1)
)
·n
(
R−1

s (u1)
)

J (u1)du1.

By the area formula, Theorem 29.5.3, this reduces to∫
∂Ω∩Ws

ψsF ·ndH n−1 =
∫

∂Ω

ψsF ·ndH n−1

It follows upon summing over s and using that the ψs add to 1,∫
∂Ω

F ·ndH n−1 =
∫

Ω

p

∑
s=1

div(ψsF)dx

=
∫

Ω

p

∑
s=1

ψs,kFk +ψs div(F)dx =
∫

Ω

Fk

(
p

∑
s=1

ψs

)
,k

+ψs div(F)dx

=
∫

Ω

div(F)dx

This proves the following general divergence theorem.

Theorem 30.6.1 Let Ω be a bounded open set having Lipschitz boundary as described
above. Also let F be a vector field with the property that for each component function of
F, Fk is the restriction to Ω of a function in W 1,p (Rn), p > 1. Then there exists a normal
vector n which is defined a.e. on ∂Ω such that∫

∂Ω

F ·ndH n−1 =
∫

Ω

div(F)dx



30.6. THE DIVERGENCE THEOREM 1079

It is clear n is unique H n−1 a.e. since if there were two, then a simple manipulation
shows for all such F, ∫

∂Ω

F·(n−n1)dH n−1 = 0

Thus n−n1 = 0 a.e.
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Chapter 31

Differentiation, Radon Measures
This is a brief chapter on certain important topics on the differentiation theory for general
Radon measures. For different proofs and some results which are not discussed here, a
good source is [47] which is where I first read some of these things.

31.1 Fundamental Theorem Of Calculus
In this section the Besicovitch covering theorem will be used to give a generalization of the
Lebesgue differentiation theorem to general Radon measures. In what follows, µ will be a
Radon measure,

Z ≡ {x ∈ Rn : µ (B(x,r)) = 0 for some r > 0},

Lemma 31.1.1 Z is measurable and µ (Z) = 0.

Proof: For each x ∈ Z, there exists a ball B(x,r) with µ (B(x,r)) = 0. Let C be the
collection of these balls. Since Rn has a countable basis, a countable subset, C̃ , of C also
covers Z. Let

C̃ = {Bi}∞

i=1 .

Then letting µ denote the outer measure determined by µ ,

µ (Z)≤
∞

∑
i=1

µ (Bi) =
∞

∑
i=1

µ (Bi) = 0

Therefore, Z is measurable and has measure zero as claimed. ■
Let M f : Rn→ [0,∞] by

M f (x)≡
{

supr≤1
1

µ(B(x,r))
∫

B(x,r) | f |dµ if x /∈ Z
0 if x ∈ Z

.

Theorem 31.1.2 Let µ be a Radon measure and let f ∈ L1 (Rn,µ). Then for a.e.x,

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y) = 0

Proof: First consider the following claim which is a weak type estimate of the same
sort used when differentiating with respect to Lebesgue measure.

Claim 1: The following inequality holds for Nn the constant of the Besicovitch covering
theorem.

µ ([M f > ε])≤ Nnε
−1 || f ||1

Proof: First note [M f > ε]∩ Z = /0 and without loss of generality, you can assume
µ ([M f > ε])> 0. Next, for each x ∈ [M f > ε] there exists a ball Bx = B(x,rx) with rx ≤ 1
and

µ (Bx)
−1
∫

B(x,rx)
| f |dµ > ε.

1081
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Let F be this collection of balls so that [M f > ε] is the set of centers of balls of F . By the
Besicovitch covering theorem,

[M f > ε]⊆ ∪Nn
i=1 {B : B ∈ Gi}

where Gi is a collection of disjoint balls of F . Now for some i,

µ ([M f > ε])/Nn ≤ µ (∪{B : B ∈ Gi})

because if this is not so, then

µ ([M f > ε]) ≤
Nn

∑
i=1

µ (∪{B : B ∈ Gi})

<
Nn

∑
i=1

µ ([M f > ε])

Nn
= µ ([M f > ε]),

a contradiction. Therefore for this i,

µ ([M f > ε])

Nn
≤ µ (∪{B : B ∈ Gi}) = ∑

B∈Gi

µ (B)≤ ∑
B∈Gi

ε
−1
∫

B
| f |dµ

≤ ε
−1
∫
Rn
| f |dµ = ε

−1 || f ||1 .

This shows Claim 1.
Claim 2: If g is any continuous function defined on Rn, then for x /∈ Z,

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dµ (y) = 0

and
lim
r→0

1
µ (B(x,r))

∫
B(x,r)

g(y)dµ (y) = g(x). (31.1.1)

Proof: Since g is continuous at x, whenever r is small enough,

1
µ (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dµ (y)≤ 1
µ (B(x,r))

∫
B(x,r)

ε dµ (y) = ε.

31.1.1 follows from the above and the triangle inequality. This proves the claim.
Now let g ∈ Cc (Rn) and x /∈ Z. Then from the above observations about continuous

functions,

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> ε

])
(31.1.2)

≤ µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)−g(y)|dµ (y)>
ε

2

])
+µ

([
x /∈ Z : |g(x)− f (x)|> ε

2

])
.
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≤ µ

([
M ( f −g)>

ε

2

])
+µ

([
| f −g|> ε

2

])
(31.1.3)

Now ∫
[| f−g|> ε

2 ]
| f −g|dµ ≥ ε

2
µ

([
| f −g|> ε

2

])
and so from Claim 1 31.1.3 and hence 31.1.2 is dominated by(

2
ε
+

Nn

ε

)
|| f −g||L1(Rn,µ) .

But by regularity of Radon measures, Cc (Rn) is dense in L1 (Rn,µ) , and so since g in the
above is arbitrary, this shows 31.1.2 equals 0. Now

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> 0
])

≤
∞

∑
k=1

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)>
1
k

])
= 0

By completeness of µ this implies[
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> 0
]

is a set of µ measure zero. ■
The following corollary is the main result referred to as the Lebesgue Besicovitch Dif-

ferentiation theorem.

Corollary 31.1.3 If f ∈ L1
loc (Rn,µ), then for a.e.x /∈ Z,

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y) = 0 . (31.1.4)

Proof: If f is replaced by f XB(0,k) then the conclusion 31.1.4 holds for all x /∈Fk where
Fk is a set of µ measure 0. Letting k = 1,2, · · · , and F ≡ ∪∞

k=1Fk, it follows that F is a set
of measure zero and for any x /∈ F , and k ∈ {1,2, · · ·}, 31.1.4 holds if f is replaced by
f XB(0,k). Picking any such x, and letting k > |x|+1, this shows

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)

= lim
r→0

1
µ (B(x,r))

∫
B(x,r)

∣∣ f XB(0,k) (y)− f XB(0,k) (x)
∣∣dµ (y) = 0. ■
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31.2 Slicing Measures
Let µ be a finite Radon measure. I will show here that a formula of the following form
holds.

µ (F) =
∫

F
dµ =

∫
Rn

∫
Rm

XF (x,y)dνx (y)dα (x)

where α (E) = µ (E×Rm). When this is done, the measures, νx, are called slicing mea-
sures and this shows that an integral with respect to µ can be written as an iterated integral
in terms of the measure α and the slicing measures, νx. This is like going backwards in
the construction of product measure. One starts with a measure µ , defined on the Cartesian
product and produces α and an infinite family of slicing measures from it whereas in the
construction of product measure, one starts with two measures and obtains a new measure
on a σ algebra of subsets of the Cartesian product of two spaces. These slicing measures
are dependent on x. Later, this will be tied to the concept of independence or not of random
variables. First here are two technical lemmas.

Lemma 31.2.1 The space Cc (Rm) with the norm

|| f || ≡ sup{| f (y)| : y ∈ Rm}

is separable.

Proof: Let Dl consist of all functions which are of the form

∑
|α|≤N

aα yα

(
dist
(

y,B(0,l +1)C
))nα

where aα ∈Q, α is a multi-index, and nα is a positive integer. Consider D ≡∪lDl . Then D
is countable. If f ∈Cc (Rn) , then choose l large enough that spt( f )⊆ B(0,l +1), a locally
compact space, f ∈ C0 (B(0, l +1)). Then since Dl separates the points of B(0,l +1) is
closed with respect to conjugates, and annihilates no point, it is dense in C0 (B(0, l +1)) by
the Stone Weierstrass theorem. Alternatively, D is dense in C0 (Rn) by Stone Weierstrass
and Cc (Rn) is a subspace so it is also separable. So is Cc (Rn)+ , the nonnegative functions
in Cc (Rn). ■

From the regularity of Radon measures, the following lemma follows.

Lemma 31.2.2 If µ and ν are two Radon measures defined on σ algebras, Sµ and Sν , of
subsets of Rn and if µ (V ) = ν (V ) for all V open, then µ = ν and Sµ = Sν .

Proof: Every compact set is a countable intersection of open sets so the two measures
agree on every compact set. Hence it is routine that the two measures agree on every Gδ and
Fσ set. (Recall Gδ sets are countable intersections of open sets and Fσ sets are countable
unions of closed sets.) Now suppose E ∈ Sν is a bounded set. Then by regularity of ν

there exists G a Gδ set and F, an Fσ set such that F ⊆ E ⊆ G and ν (G\F) = 0. Then it is
also true that µ (G\F) = 0. Hence E = F ∪ (E \F) and E \F is a subset of G\F, a set of
µ measure zero. By completeness of µ, it follows E ∈Sµ and

µ (E) = µ (F) = ν (F) = ν (E) .
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If E ∈Sν not necessarily bounded, let Em = E ∩B(0,m) and then Em ∈Sµ and µ (Em) =
ν (Em) . Letting m→ ∞,E ∈ Sµ and µ (E) = ν (E) . Similarly, Sµ ⊆ Sν and the two
measures are equal on Sµ .

The main result in the section is the following theorem.

Theorem 31.2.3 Let µ be a finite Radon measure on Rn+m defined on a σ algebra, F .
Then there exists a unique finite Radon measure α, defined on a σ algebra S , of sets of
Rn which satisfies

α (E) = µ (E×Rm) (31.2.5)

for all E Borel. There also exists a Borel set of α measure zero N, such that for each x /∈N,
there exists a Radon probability measure νx such that if f is a nonnegative µ measurable
function or a µ measurable function in L1 (µ),

y→ f (x,y) is νx measurable α a.e.

x→
∫
Rm

f (x,y)dνx (y) is α measurable (31.2.6)

and ∫
Rn+m

f (x,y)dµ =
∫
Rn

(∫
Rm

f (x,y)dνx (y)
)

dα (x). (31.2.7)

If ν̂x is any other collection of Radon measures satisfying 31.2.6 and 31.2.7, then ν̂x = νx
for α a.e. x.

Proof:

Existence and uniqueness of α

First consider the uniqueness of α . Suppose α1 is another Radon measure satisfying
31.2.5. Then in particular, α1 and α agree on open sets and so the two measures are the
same by Lemma 31.2.2.

To establish the existence of α , define α0 on Borel sets by

α0 (E) = µ (E×Rm).

Thus α0 is a finite Borel measure and so it is finite on compact sets. Lemma 14.2.3 on Page
388 implies the existence of the Radon measure α extending α0.

Uniqueness of νx

Next consider the uniqueness of νx. Suppose νx and ν̂x satisfy all conclusions of the
theorem with exceptional sets denoted by N and N̂ respectively. Then, enlarging N and N̂,
one may also assume, using Lemma 31.1.1, that for x /∈ N ∪ N̂, α (B(x,r)) > 0 whenever
r > 0. Now let

A =
m

∏
i=1

(ai,bi]
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where ai and bi are rational. Thus there are countably many such sets. Then from the
conclusion of the theorem, if x0 /∈ N∪ N̂,

1
α (B(x0,r))

∫
B(x0,r)

∫
Rm

XA (y)dνx (y)dα

=
1

α (B(x0,r))

∫
B(x0,r)

∫
Rm

XA (y)dν̂x (y)dα,

and by the Lebesgue Besicovitch Differentiation theorem, there exists a set of α measure
zero, EA, such that if x0 /∈ EA∪N∪ N̂, then the limit in the above exists as r→ 0 and yields

νx0 (A) = ν̂x0 (A).

Letting E denote the union of all the sets EA for A as described above, it follows that E is
a set of measure zero and if x0 /∈ E ∪N ∪ N̂ then νx0 (A) = ν̂x0 (A) for all such sets A. But
every open set can be written as a disjoint union of sets of this form and so for all such
x0, νx0 (V ) = ν̂x0 (V ) for all V open. By Lemma 31.2.2 this shows the two measures are
equal and proves the uniqueness assertion for νx. It remains to show the existence of the
measures νx.

Existence of νx

For f ≥ 0, f ,g ∈Cc (Rm) and Cc (Rn) respectively, define

g→
∫
Rn+m

g(x) f (y)dµ

Since f ≥ 0, this is a positive linear functional on Cc (Rn). Therefore, there exists a unique
Radon measure ν f such that for all g ∈Cc (Rn) ,∫

Rn+m
g(x) f (y)dµ =

∫
Rn

g(x)dν f .

I claim that ν f ≪ α, the two being considered as measures on B (Rn) . Suppose then that
K is a compact set and α (K) = 0. Then let K ≺ g≺V where V is open.

ν f (K) =
∫
Rn

XK (x)dν f (x)≤
∫
Rn

g(x)dν f (x) =
∫
Rn+m

g(x) f (y)dµ

≤
∫
Rm+m

XV×Rm (x,y) f (y)dµ ≤ || f ||
∞

µ (V ×Rm) = ∥ f∥
∞

α (V )

Then for any ε > 0, one can choose V such that the right side is less than ε . Therefore,
ν f (K) = 0 also. By regularity considerations, ν f ≪ α as claimed.

It follows from the Radon Nikodym theorem the existence of a function h f ∈ L1 (α)
such that for all g ∈Cc (Rn) ,∫

Rn+m
g(x) f (y)dµ =

∫
Rn

g(x)dν f =
∫
Rn

g(x)h f (x)dα. (31.2.8)
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It is obvious from the formula that the map from f ∈Cc (Rm) to L1 (α) given by f → h f
is linear. However, this is not sufficiently specific because functions in L1 (α) are only
determined a.e. However, for h f ∈ L1 (α) , you can specify a particular representative α

a.e. By the fundamental theorem of calculus,

ĥ f (x)≡ lim
r→0

1
α (B(x,r))

∫
B(x,r)

h f (z)dα (z) (31.2.9)

exists off some set of measure zero Z f . Note that since this involves the integral over a ball,
it does not matter which representative of h f is placed in the formula. Therefore, ĥ f (x) is
well defined pointwise for all x not in some set of measure zero Z f . Since ĥ f = h f a.e. it
follows that ĥ f is well defined and will work in the formula 31.2.8. Let

Z = ∪
{

Z f : f ∈D
}

where D is a countable dense subset of Cc (Rm)+. Of course it is desired to have the limit
31.2.9 hold for all f , not just f ∈D . We will show that this limit holds for all x /∈ Z. Thus,
we will have x→ ĥ f (x) defined by the above limit off Z and so, since ĥ f (x) = h f (x) a.e.,
it follows that

∫
Rn+m

g(x) f (y)dµ =
∫
Rn

g(x)dν f =
∫
Rn

g(x) ĥ f (x)dα

One could then take ĥ f (x) to be defined as 0 for x /∈ Z.

For f an arbitrary function in Cc (Rm)+ and f ′ ∈ D , a dense countable subset of
Cc (Rn)+ , it follows from 31.2.8,

∣∣∣∣∫Rn
g(x)

(
h f (x)−h f ′ (x)

)
dα

∣∣∣∣≤ ∣∣∣∣ f − f ′
∣∣∣∣

∞

∫
Rn+m
|g(x)|dµ

Let gk (x) ↑ XB(z,r) (x) where z /∈ Z. Then by the dominated convergence theorem, the
above implies

∣∣∣∣∫B(z,r)

(
h f (x)−h f ′ (x)

)
dα

∣∣∣∣≤ ∣∣∣∣ f − f ′
∣∣∣∣

∞

∫
B(z,r)×Rm

dµ =
∣∣∣∣ f − f ′

∣∣∣∣
∞

α (B(z,r)) .

Dividing by α (B(z,r)) , it follows that if α (B(z,r))> 0 for all r > 0, then for all r > 0,

∣∣∣∣ 1
α (B(z,r))

∫
B(z,r)

(
h f (x)−h f ′ (x)

)
dα

∣∣∣∣≤ ∣∣∣∣ f − f ′
∣∣∣∣

∞
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It follows that for f ∈Cc (Rm)+ arbitrary and z /∈ Z,

limsup
r→0

1
α (B(z,r))

∫
B(z,r)

h f (x)dα− lim inf
r→0

1
α (B(z,r))

∫
B(z,r)

h f (x)dα

= limsup
r→0

1
α (B(z,r))

∫
B(z,r)

(
h f (x)−h f ′ (x)

)
dα (x)

− lim inf
r→0

1
α (B(z,r))

∫
B(z,r)

(
h f (x)−h f ′ (x)

)
dα (x)

≤
∣∣∣∣limsup

r→0

1
α (B(z,r))

∫
B(z,r)

(
h f (x)−h f ′ (x)

)
dα (x)

∣∣∣∣
+

∣∣∣∣lim inf
r→0

1
α (B(z,r))

∫
B(z,r)

(
h f (x)−h f ′ (x)

)
dα (x)

∣∣∣∣
≤ 2

∣∣∣∣ f − f ′
∣∣∣∣

∞

and since f ′ is arbitrary, it follows that the limit of 31.2.9 holds for all f ∈Cc (Rm)+ when-
ever z /∈ Z, the above set of measure zero.

Now for f an arbitrary real valued function of Cc (Rn) , simply apply the above result to
positive and negative parts to obtain h f ≡ h f+ −h f− and ĥ f ≡ ĥ f+ − ĥ f− . Then it follows
that for all f ∈Cc (Rm) and g ∈Cc (Rm)∫

Rn+m
g(x) f (y)dµ =

∫
Rn

g(x) ĥ f (x)dα.

It is obvious from the description given above that for each x /∈ Z, the set of measure zero
given above, that f → ĥ f (x) is a positive linear functional. It is clear that it acts like a
linear map for nonnegative f and so the usual trick just described above is well defined
and delivers a positive linear functional. Hence by the Riesz representation theorem, there
exists a unique νx such that for all x

ĥ f (x) =
∫
Rm

f (y)dνx (y) .

It follows that∫
Rn+m

g(x) f (y)dµ =
∫
Rn

∫
Rm

g(x) f (y)dνx (y)dα (x) (31.2.10)

and x→
∫
Rm f (y)dνx is α measurable and νx is a Radon measure.

Now let fk ↑XRm and g≥ 0. Then by monotone convergence theorem,∫
Rn+m

g(x)dµ =
∫
Rn

g(x)
∫
Rm

dνxdα

If gk ↑XRn , the monotone convergence theorem shows that x→
∫
Rm dνx is L1 (α).

Next let gk ↑XB(x,r) and use monotone convergence theorem to write

α (B(x,r))≡
∫

B(x,r)×Rm
dµ =

∫
B(x,r)

∫
Rm

dνxdα
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Then dividing by α (B(x,r)) and taking a limit as r → 0, it follows that for α a.e. x,
1 = νx (Rm) , so these νx are probability measures off a set of α measure zero. Letting
gk (x) ↑ XA (x) , fk (y) ↑ XB (y) for A,B open, it follows that 31.2.10 is valid for g(x)
replaced with XA (x) and f (y) replaced with XB (y).

Now let G denote the Borel sets F of Rn+m such that∫
Rn+m

XF (x,y)dµ (x,y) =
∫
Rn

∫
Rm

XF (x,y)dνx (y)dα (x)

and that all the integrals make sense. As just explained, this includes all Borel sets of the
form F = A×B where A,B are open. It is clear that G is closed with respect to countable
disjoint unions and complements, while sets of the form A×B for A,B open form a π

system. Therefore, by Lemma 12.12.3, G contains the Borel sets which is the smallest σ

algebra which contains such products of open sets. It follows from the usual approximation
with simple functions that if f ≥ 0 and is Borel measurable, then∫

Rn+m
f (x,y)dµ (x,y) =

∫
Rn

∫
Rm

f (x,y)dνx (y)dα (x)

with all the integrals making sense.
This proves the theorem in the case where f is Borel measurable and nonnegative.

It just remains to extend this to the case where f is only µ measurable. However, from
regularity of µ there exist Borel measurable functions g,h,g≤ f ≤ h such that∫

Rn+m
f (x,y)dµ (x,y) =

∫
Rn+m

g(x,y)dµ (x,y)

=
∫
Rn+m

h(x,y)dµ (x,y)

It follows ∫
Rn

∫
Rm

g(x,y)dνx (y)dα (x) =
∫
Rn

∫
Rm

h(x,y)dνx (y)dα (x)

and so, since for α a.e. x,y→ g(x,y) and y→ h(x,y) are νx measurable with

0 =
∫
Rm

(h(x,y)−g(x,y))dνx (y)

and νx is a Radon measure, hence complete, it follows for α a.e. x, y→ f (x,y) must be
νx measurable because it is equal to y→ g(x,y) , νx a.e. Therefore, for α a.e. x, it makes
sense to write ∫

Rm
f (x,y)dνx (y) .

Similar reasoning applies to the above function of x being α measurable due to α being
complete. It follows∫

Rn+m
f (x,y)dµ (x,y) =

∫
Rn+m

g(x,y)dµ (x,y)

=
∫
Rn

∫
Rm

g(x,y)dνx (y)dα (x)

=
∫
Rn

∫
Rm

f (x,y)dνx (y)dα (x)

with everything making sense. ■
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31.3 Differentiation of Radon Measures
This section is a generalization of earlier ideas in which differentiation was with respect
to Lebesgue measure. Here an arbitrary Radon measure, not necessarily an integral with
respect to Lebesuge measure, will be differentiated with respect to another arbitrary Radon
measure. This requires a more sophisticated covering theorem. In this section, B(x,r) will
denote a closed ball with center x and radius r. Also, let λ and µ be Radon measures and
as above, Z will denote a µ measure zero set off of which µ (B(x,r))> 0 for all r > 0.

Definition 31.3.1 For x /∈Z, define the upper and lower symmetric derivatives as

Dµ λ (x)≡ limsup
r→0

λ (B(x,r))
µ (B(x,r))

, Dµ λ (x)≡ lim inf
r→0

λ (B(x,r))
µ (B(x,r))

.

respectively. Also define
Dµ λ (x)≡ Dµ λ (x) = Dµ λ (x)

in the case when both the upper and lower derivatives are equal.

Lemma 31.3.2 Let λ and µ be Radon measures. If A is a bounded subset of{
x /∈ Z : Dµ λ (x)≥ a

}
,

then
λ (A)≥ aµ (A)

and if A is a bounded subset of
{

x /∈ Z : Dµ λ (x)≤ a
}
, then

λ (A)≤ aµ (A)

The same conclusion holds even if A is not necessarily bounded.

Proof: Suppose first that A is a bounded subset of
{

x /∈ Z : Dµ λ (x)≥ a
}

, let ε > 0,
and let V be a bounded open set with V ⊇ A and λ (V )− ε < λ (A) ,µ (V )− ε < µ (A) .
Then if x ∈ A,

λ (B(x,r))
µ (B(x,r))

> a− ε, B(x,r)⊆V,

for infinitely many values of r which are arbitrarily small. Thus the collection of such balls
constitutes a Vitali cover for A. By Corollary 13.14.3 there is a disjoint sequence of these
closed balls {Bi} such that

µ (A\∪∞
i=1Bi) = 0. (31.3.11)

Therefore,

(a− ε)
∞

∑
i=1

µ (Bi)<
∞

∑
i=1

λ (Bi)≤ λ (V )< ε +λ (A)

and so

a
∞

∑
i=1

µ (Bi) ≤ ε + εµ (V )+λ (A)

≤ ε + ε (µ (A)+ ε)+λ (A) (31.3.12)
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Now
µ (A\∪∞

i=1Bi)+µ (∪∞
i=1Bi)≥ µ (A)

and so by 31.3.11 and the fact the Bi are disjoint, it follows from 31.3.12,

aµ (A) ≤ aµ (∪∞
i=1Bi) = a

∞

∑
i=1

µ (Bi)

≤ ε + ε (µ (A)+ ε)+λ (A) . (31.3.13)

Hence aµ (A)≤ λ (A) since ε > 0 was arbitrary.
Now suppose A is a bounded subset of

{
x /∈ Z : Dµ λ (x)≤ a

}
and let V be a bounded

open set containing A with µ (V )− ε < µ (A) . Then if x ∈ A,

λ (B(x,r))
µ (B(x,r))

< a+ ε, B(x,r)⊆V

for values of r which are arbitrarily small. Therefore, by Corollary 13.14.3 again, there
exists a disjoint sequence of these balls, {Bi} satisfying this time,

λ (A\∪∞
i=1Bi) = 0.

Then by arguments similar to the above,

λ (A)≤
∞

∑
i=1

λ (Bi)< (a+ ε)µ (V )< (a+ ε)(µ (A)+ ε) .

Since ε was arbitrary, this proves the lemma in case A is bounded. In general, for

A ∈
{

x /∈ Z : Dµ λ (x)≥ a
}

One obtains from the first part

λ (A∩B(0,n))≥ aµ (A∩B(0,n))

Then, passing to a limit as n→ ∞ gives the desired result. The case where

A⊆
{

x /∈ Z : Dµ λ (x)≤ a
}

is similar. ■

Theorem 31.3.3 There exists a set of measure zero N containing Z such that for x /∈
N, Dµ λ (x) exists and also XNC (·)Dµ λ (·) is a µ measurable function. Furthermore,
Dµ λ (x)< ∞ µ a.e.

Proof: First I show Dµ λ (x) exists a.e. Let 0 ≤ a < b < ∞ and let A be any bounded
subset of

N (a,b)≡
{

x /∈ Z : Dµ λ (x)> b > a > Dµ λ (x)
}
.

By Lemma 31.3.2,
aµ (A)≥ λ (A)≥ bµ (A)
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and so µ (A) = 0 and A is µ measurable. It follows µ (N (a,b)) = 0 because

µ (N (a,b))≤
∞

∑
m=1

µ (N (a,b)∩B(0,m)) = 0.

Define
N0 ≡

{
x /∈ Z : Dµ λ (x)> Dµ λ (x)

}
.

Thus µ (N0) = 0 because

N0 ⊆ ∪{N (a,b) : 0≤ a < b, and a,b ∈Q}

Therefore, N0 is also µ measurable and has µ measure zero. Letting N ≡ N0 ∪Z, it fol-
lows Dµ λ (x) exists on NC. We can assume also that N is a Gδ set. It remains to verify
XNC (·)Dµ λ (·) is finite a.e. and is µ measurable.

Let
I =

{
x : Dµ λ (x) = ∞

}
.

Then by Lemma 31.3.2

λ (I∩B(0,m))≥ aµ (I∩B(0,m))

for all a and since λ is finite on bounded sets, the above implies µ (I∩B(0,m)) = 0 for
each m which implies that I is µ measurable and has µ measure zero since

I = ∪∞
m=1I∩B(0,m) .

Now the issue is measurability. Let λ be an arbitrary Radon measure. I need show that
x→ λ (B(x,r)) is measurable. Here is where it is convenient to have the balls be closed
balls. If V is an open set containing B(x,r) , then for y close enough to x,B(y,r)⊆V also
and so,

lim sup
y→x

λ (B(y,r))≤ λ (V )

However, since V is arbitrary and λ is outer regular or observing that B(x,r) the closed
ball is the intersection of nested open sets, it follows that

lim sup
y→x

λ (B(y,r))≤ λ (B(x,r))

Thus x→ λ (B(x,r)) is upper semicontinuous and so,

x→λ (B(x,r))
µ (B(x,r))

is measurable. Hence XNC (x)Dµ (λ )(x) = limri→0 XNC (x) λ (B(x,r))
µ(B(x,r)) is also measurable.

■
Typically I will write Dµ λ (x) rather than the more precise XNC (x)Dµ λ (x) since the

values on the set of measure zero N are not important due to the completeness of the
measure µ .
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31.3.1 Radon Nikodym Theorem for Radon Measures
The Radon Nikodym theorem is an abstract result but this will be a special version for
Radon measures which is based on these covering theorems and related theory.

Definition 31.3.4 Let λ ,µ be two Radon measures defined on F , a σ algebra of subsets
of an open set U. Then λ ≪ µ means that whenever µ (E) = 0, it follows that λ (E) = 0.

Next is a representation theorem for λ in terms of an integral involving Dµ λ .

Theorem 31.3.5 Let λ and µ be Radon measures defined on F a σ algebra of the open
set U then there exists a set of µ measure zero N such that Dµ λ (x) exists off N and if
E ⊆ NC,E ∈F , then

λ (E) =
∫

U

(
Dµ λ

)
XEdµ.

If λ ≪ µ,λ (E) =
∫

E Dµ λdµ . In any case, λ (E)≥
∫

E Dµ λdµ .

Proof: The proof is based on Lemma 31.3.2. Let E ⊆ NC where N has measure 0
and includes the set Z along with the set where the symmetric derivative does not exist.
It can be assumed that N is a Gδ set. Assume E is bounded to begin with. Then E ∩{

x ∈ NC : Dµ λ (x) = 0
}

has measure zero. This is because by Lemma 31.3.2,

λ
(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
≤ aµ

(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
≤ aµ (E) , µ (E)< ∞

for all positive a and so

λ
(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
= 0

Thus, the set where Dµ λ (x) = 0 can be ignored.
Let
{

an
k

}∞

k=1 be positive numbers such that
∣∣an

k−an
k+1

∣∣= 2−n. Specifically, let
{

an
k

}∞

k=0
be given by

0,2−n,2
(
2−n) ,3(2−n) ,4(2−n) , ...

Define disjoint half open intervals whose union is all of (0,∞) , In
k having end points an

k−1
and an

k . Say In
k = (an

k−1,a
n
k ].

En
k ≡ E ∩

{
x ∈ Rp : Dµ λ (x) ∈ In

k
}
≡ E ∩

(
Dµ λ

)−1
(In

k )

Since the intervals are Borel sets,
(
Dµ λ

)−1 (In
k

)
is measurable. Thus ∪∞

k=1En
k = E and the

k→ En
k are disjoint measurable sets. From Lemma 31.3.2,

µ (En
k )an

k ≥ λ (En
k )≥ an

k−1µ (En
k )

Then
∞

∑
k=1

an
k µ (En

k )≥ λ (E) =
∞

∑
k=1

λ (En
k )≥

∞

∑
k=1

an
k−1µ (En

k )
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Let ln (x) ≡ ∑
∞
k=1 an

k−1X(Dµ λ)
−1
(In

k )
(x) and un (x) ≡ ∑

∞
k=1 an

kX(Dµ λ)
−1
(In

k )
(x) . Then the

above implies

λ (E) ∈
[∫

E
lndµ,

∫
E

undµ

]
Now both ln and un converge to Dµ λ (x) which is nonnegative and measurable as shown
earlier. The construction shows that ln increases to Dµ λ (x) . Also, un (x)− ln (x) = 2−n.
Thus

λ (E) ∈
[∫

E
lndµ,

∫
E

lndµ +2−n
µ (E)

]
By the monotone convergence theorem, this shows λ (E) =

∫
E Dµ λdµ.

Now if E is an arbitrary set in NC, maybe not bounded, the above shows

λ (E ∩B(0,n)) =
∫

E∩B(0,n)
Dµ λdµ

Let n→ ∞ and use the monotone convergence theorem. Thus for all E ⊆ NC, λ (E) =∫
E Dµ λdµ . For the last claim,

∫
E Dµ λdµ =

∫
E∩NC Dµ λdµ = λ

(
E ∩NC

)
≤ λ (E).

In case, λ ≪ µ, it does not matter that E ⊆ NC because, since µ (N) = 0, so is λ (N)
and so

λ (E) = λ
(
E ∩NC)= ∫

E∩NC
Dµ λdµ =

∫
E

Dµ λdµ

for any E ∈F . ■
What if λ and µ are just two arbitrary Radon measures defined on F ? What then? It

was shown above that Dµ λ (x) exists for µ a.e. x, off a Gδ set N of µ measure 0 which
includes Z, the set of x where µ (B(x,r)) = 0 for some r > 0. Also, it was shown above
that if E ⊆ NC, then λ (E) =

∫
E Dµ λ (x)dµ. Define for arbitrary E ∈F ,

λ µ (E)≡ λ
(
E ∩NC) , λ⊥ (E)≡ λ (E ∩N)

Then

λ (E) = λ (E ∩N)+λ
(
E ∩NC)= λ⊥ (E)+λ µ (E)

= λ (E ∩N)+
∫

E∩NC
Dµ λ (x)dµ

= λ (E ∩N)+
∫

E
Dµ λ (x)dµ ≡ λ (E ∩N)+λ µ (E)

≡ λ⊥ (E)+λ µ (E)

This shows most of the following corollary.

Corollary 31.3.6 Let µ,λ be two Radon measures. Then there exist two measures, λ µ ,λ⊥
such that

λ µ ≪ µ, λ = λ µ +λ⊥

and a set of µ measure zero N such that

λ⊥ (E) = λ (E ∩N)
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Also λ µ is given by the formula

λ µ (E)≡
∫

E
Dµ λ (x)dµ

Proof: If x ∈ N, this could happen two ways, either x ∈ Z or Dµ λ (x) fails to exist.
It only remains to verify that λ µ given above satisfies λ µ ≪ µ. However, this is obvious
because if µ (E) = 0, then clearly

∫
E Dµ λ (x)dµ = 0. ■

Since Dµ λ (x) = Dµ λ (x)XNC (x) , it doesn’t matter which we use but maybe Dµ λ (x)
doesn’t exist at some points of N.

This is sometimes called the Lebesgue decomposition.
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Chapter 32

Fourier Transforms
32.1 An Algebra Of Special Functions

First recall the following definition of a polynomial.

Definition 32.1.1 α = (α1, · · · ,αn) for α1 · · ·αn positive integers is called a multi-index.
For α a multi-index, |α| ≡ α1 + · · ·+αn and if x ∈ Rn,

x = (x1, · · · ,xn) ,

and f a function, define
xα ≡ xα1

1 xα2
2 · · ·x

αn
n .

A polynomial in n variables of degree m is a function of the form

p(x) = ∑
|α|≤m

aα xα .

Here α is a multi-index as just described and aα ∈ C. Also define for α = (α1, · · · ,αn) a
multi-index

Dα f (x)≡ ∂ |α| f
∂xα1

1 ∂xα2
2 · · ·∂xαn

n
.

Definition 32.1.2 Define G1 to be the functions of the form p(x)e−a|x|2 where a > 0 and
p(x) is a polynomial. Let G be all finite sums of functions in G1. Thus G is an algebra of
functions which has the property that if f ∈ G then f ∈ G .

It is always assumed, unless stated otherwise that the measure will be Lebesgue mea-
sure.

Lemma 32.1.3 G is dense in C0 (Rn) with respect to the norm,

|| f ||
∞
≡ sup{| f (x)| : x ∈ Rn}

Proof: By the Weierstrass approximation theorem, it suffices to show G separates the
points and annihilates no point. It was already observed in the above definition that f ∈ G
whenever f ∈ G . If y1 ̸= y2 suppose first that |y1| ̸= |y2| . Then in this case, you can let
f (x) ≡ e−|x|

2
and f ∈ G and f (y1) ̸= f (y2). If |y1| = |y2| , then suppose y1k ̸= y2k. This

must happen for some k because y1 ̸= y2. Then let f (x) ≡ xke−|x|
2
. Thus G separates

points. Now e−|x|
2

is never equal to zero and so G annihilates no point of Rn. This proves
the lemma.

These functions are clearly quite specialized. Therefore, the following theorem is some-
what surprising.

Theorem 32.1.4 For each p≥ 1, p < ∞,G is dense in Lp (Rn).

1097
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Proof: Let f ∈ Lp (Rn) . Then there exists g ∈Cc (Rn) such that || f −g||p < ε . Now let
b > 0 be large enough that ∫

Rn

(
e−b|x|2

)p
dx < ε

p.

Then x→ g(x)eb|x|2 is in Cc (Rn) ⊆C0 (Rn) . Therefore, from Lemma 32.1.3 there exists
ψ ∈ G such that ∣∣∣∣∣∣geb|·|2 −ψ

∣∣∣∣∣∣
∞

< 1

Therefore, letting φ (x)≡ e−b|x|2ψ (x) it follows that φ ∈ G and for all x ∈ Rn,

|g(x)−φ (x)|< e−b|x|2

Therefore, (∫
Rn
|g(x)−φ (x)|p dx

)1/p

≤
(∫

Rn

(
e−b|x|2

)p
dx
)1/p

< ε .

It follows
|| f −φ ||p ≤ || f −g||p + ||g−φ ||p < 2ε.

Since ε > 0 is arbitrary, this proves the theorem.
The following lemma is also interesting even if it is obvious.

Lemma 32.1.5 For ψ ∈ G , p a polynomial, and α,β multiindices, Dα ψ ∈ G and pψ ∈ G .
Also

sup{|xβ Dα
ψ(x)| : x ∈ Rn}< ∞

32.2 Fourier Transforms Of Functions In G

Definition 32.2.1 For ψ ∈ G Define the Fourier transform, F and the inverse Fourier
transform, F−1 by

Fψ(t)≡ (2π)−n/2
∫
Rn

e−it·x
ψ(x)dx,

F−1
ψ(t)≡ (2π)−n/2

∫
Rn

eit·x
ψ(x)dx.

where t ·x≡∑
n
i=1 tixi.Note there is no problem with this definition because ψ is in L1 (Rn)

and therefore, ∣∣eit·x
ψ(x)

∣∣≤ |ψ(x)| ,

an integrable function.

One reason for using the functions, G is that it is very easy to compute the Fourier
transform of these functions. The first thing to do is to verify F and F−1 map G to G and
that F−1 ◦F (ψ) = ψ.
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Lemma 32.2.2 The following formulas are true. (c > 0)∫
R

e−ct2
e−istdt =

∫
R

e−ct2
eistdt = e−

s2
4c

√
π√
c
, (32.2.1)

∫
Rn

e−c|t|2e−is·tdt =
∫
Rn

e−c|t|2eis·tdt = e−
|s|2
4c

(√
π√
c

)n

. (32.2.2)

Proof: Consider the first one. Let h(s) be given by the left side. Then

H (s)≡
∫
R

e−ct2
e−istdt =

∫
R

e−ct2
cos(st)dt

Then using the dominated convergence theorem to differentiate,

H ′ (s) =
∫
R
−e−ct2

t sin(st)dt =
e−ct2

2c
sin(st) |∞−∞−

s
2c

∫
R

e−ct2
cos(st)dt =− s

2c
H (s) .

Also H (0) =
∫
R e−ct2

dt. Thus H (0) =
∫
R e−cx2

dx≡ I and so

I2 =
∫
R2

e−c(x2+y2)dxdy =
∫

∞

0

∫ 2π

0
e−cr2

rdθdr =
π

c
.

Hence

H ′ (s)+
s

2c
H (s) = 0, H (0) =

√
π

c
.

It follows that H (s) = e−
s2
4c

√
π√
c . The second formula follows right away from Fubini’s

theorem. ■
With these formulas, it is easy to verify F,F−1 map G to G and F ◦F−1 = F−1 ◦F = id.

Theorem 32.2.3 Each of F and F−1 map G to G . Also F−1◦F (ψ)=ψ and F ◦F−1 (ψ)=
ψ .

Proof: The first claim will be shown if it is shown that Fψ ∈ G for ψ (x) = xα e−b|x|2

because an arbitrary function of G is a finite sum of scalar multiples of functions such as
ψ . Using Lemma 32.2.2,

Fψ (t) ≡
(

1
2π

)n/2 ∫
Rn

e−it·xxα e−b|x|2dx

=

(
1

2π

)n/2

(i)−|α|Dα
t

(∫
Rn

e−it·xe−b|x|2dx
)

=

(
1

2π

)n/2

(i)−|α|Dα
t

(
e−
|t|2
4b

(√
π√
b

)n)

and this is clearly in G because it equals a polynomial times e−
|t|2
4b .
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It remains to verify the other assertion. As in the first case, it suffices to consider
ψ (x) = xα e−b|x|2 .

F−1 ◦F (ψ)(s)≡
(

1
2π

)n/2 ∫
Rn

eis·tF (ψ)(t)dt

=

(
1

2π

)n/2 ∫
Rn

eis·t
(

1
2π

)n/2

(i)−|α|Dα
t

(
e−
|t|2
4b

(√
π√
b

)n)
dt

=

(
1

2π

)n

(i)−|α|
∫
Rn

eis·tDα
t

(
e−
|t|2
4b

(√
π√
b

)n)
dt

=

(
1

2π

)n

(i)−|α|
∫
Rn

(i)|α| sα eis·t
(

e−
|t|2
4b

(√
π√
b

)n)
dt

and by Lemma 32.2.2,

=

(
1

2π

)n(√
π√
b

)n ∫
Rn

sα eis·t
(

e−
|t|2
4b

)
dt

=

=1︷ ︸︸ ︷(
1

2π

)n(√
π√
b

)n
( √

π√
1/4b

)n

sα e−b|s|2 = ψ (s) .■

32.3 Fourier Transforms Of Just About Anything
32.3.1 Fourier Transforms Of G ∗

Definition 32.3.1 Let G ∗ denote the vector space of linear functions defined on G which
have values in C. Thus T ∈ G ∗ means T : G →C and T is linear,

T (aψ +bφ) = aT (ψ)+bT (φ) for all a,b ∈ C, ψ,φ ∈ G

Let ψ ∈ G . Then we can regard ψ as an element of G ∗ by defining

ψ (φ)≡
∫
Rn

ψ (x)φ (x)dx.

Then we have the following important lemma.

Lemma 32.3.2 The following is obtained for all φ ,ψ ∈ G .

Fψ (φ) = ψ (Fφ) ,F−1
ψ (φ) = ψ

(
F−1

φ
)

Also if ψ ∈ G and ψ = 0 in G ∗ so that ψ (φ) = 0 for all φ ∈ G , then ψ = 0 as a function.
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Proof:

Fψ (φ) ≡
∫
Rn

Fψ (t)φ (t)dt

=
∫
Rn

(
1

2π

)n/2 ∫
Rn

e−it·x
ψ(x)dxφ (t)dt

=
∫
Rn

ψ(x)
(

1
2π

)n/2 ∫
Rn

e−it·x
φ (t)dtdx

=
∫
Rn

ψ(x)Fφ (x)dx≡ ψ (Fφ)

The other claim is similar.
Suppose now ψ (φ) = 0 for all φ ∈ G . Then∫

Rn
ψφdx = 0

for all φ ∈ G . Therefore, this is true for φ = ψ and so ψ = 0. ■
This lemma suggests a way to define the Fourier transform of something in G ∗.

Definition 32.3.3 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 32.3.4 F and F−1 are both one to one, onto, and are inverses of each other.

Proof: First note F and F−1 are both linear. This follows directly from the definition.
Suppose now FT = 0. Then FT (φ) = T (Fφ) = 0 for all φ ∈ G . But F and F−1 map G
onto G because if ψ ∈ G , then as shown above, ψ = F

(
F−1 (ψ)

)
. Therefore, T = 0 and

so F is one to one. Similarly F−1 is one to one. Now

F−1 (FT )(φ)≡ (FT )
(
F−1

φ
)
≡ T

(
F
(
F−1 (φ)

))
= T φ .

Therefore, F−1 ◦F (T ) = T. Similarly, F ◦F−1 (T ) = T. Thus both F and F−1 are one to
one and onto and are inverses of each other as suggested by the notation. ■

Probably the most interesting things in G ∗ are functions of various kinds. The following
lemma will be useful in considering this situation.

Lemma 32.3.5 If f ∈ L1
loc (Rn) and

∫
Rn f φdx = 0 for all φ ∈Cc (Rn), then f = 0 a.e.

Proof: For r > 0, let

E ≡ {x : f (x)≥ r}, ER ≡ E ∩B(0,R).

Let Km be an increasing sequence of compact sets, and let Vm be a decreasing sequence of
open sets satisfying

Km ⊆ ER ⊆Vm, mn (Vm)≤ mn (Km)+2−m,V1 ⊆ B(0,R) .
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Therefore,
mn (Vm \Km)≤ 2−m.

Let
φ m ∈Cc (Vm) , Km ≺ φ m ≺Vm.

The statement Km ≺ φ m ≺ Vm means that φ m equals 1 on Km, has compact support in Vm,
maps into [0,1] , and is continuous. Then φ m (x)→XER (x) a.e. because the set where
φ m (x) fails to converge to this set is contained in the set of all x which are in infinitely
many of the sets Vm \Km. This set has measure zero because

∞

∑
m=1

mn (Vm \Km)< ∞

Thus φ m converges pointwise a.e to XER and so, by the dominated convergence theorem,

0 = lim
m→∞

∫
Rn

f φ mdx = lim
m→∞

∫
V1

f φ mdx =
∫

ER

f dx≥ rm(ER).

Thus, mn (ER) = 0 and therefore mn (E) = limR→∞ mn (ER) = 0. Since r > 0 is arbitrary, it
follows

mn ([ f > 0]) = ∪∞
k=1mn

([
f > k−1])

= ∪∞
k=1mn

([
f+ > k−1])= mn

([
f+ > 0

])
= 0.

Hence f+ = 0 a.e. It follows that
∫

f−φdx = 0 for all φ ∈Cc (Rn) because∫
f−φdx =

∫
f+φ −

∫
f φ = 0.

Thus from what was just shown, with f− taking the place of f , it follows | f
−|+ f−

2 = 0 and
so f− = 0 a.e. also. ■

Corollary 32.3.6 Let f ∈ L1 (Rn) and suppose∫
Rn

f (x)φ (x)dx = 0

for all φ ∈ G . Then f = 0 a.e.

Proof: Let ψ ∈Cc (Rn) . Then by the Stone Weierstrass approximation theorem, there
exists a sequence of functions, {φ k} ⊆ G such that φ k→ ψ uniformly. Then by the domi-
nated convergence theorem, ∫

f ψdx = lim
k→∞

∫
f φ kdx = 0.

By Lemma 32.3.5 f = 0. ■
The next theorem is the main result of this sort.
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Theorem 32.3.7 Let f ∈ Lp (Rn) , p≥ 1, or suppose f is measurable and has polynomial
growth,

| f (x)| ≤ K
(

1+ |x|2
)m

for some m ∈ N. Then if ∫
f ψdx = 0

for all ψ ∈ G , then it follows f = 0.

Proof: First note that if f ∈ Lp (Rn) or has polynomial growth, then it makes sense
to write the integral

∫
f ψdx described above. This is obvious in the case of polynomial

growth. In the case where f ∈ Lp (Rn) it also makes sense because

∫
| f | |ψ|dx≤

(∫
| f |p dx

)1/p(∫
|ψ|p

′
dx
)1/p′

< ∞

due to the fact mentioned above that all these functions in G are in Lp (Rn) for every p≥ 1.
Suppose now that f ∈ Lp, p ≥ 1. The case where f ∈ L1 (Rn) was dealt with in Corollary
32.3.6. Suppose f ∈ Lp (Rn) for p > 1. Then

| f |p−2 f ∈ Lp′ (Rn) ,

(
p′ = q,

1
p
+

1
q
= 1
)

and by density of G in Lp′ (Rn) (Theorem 32.1.4), there exists a sequence {gk} ⊆ G such
that ∣∣∣∣∣∣gk−| f |p−2 f

∣∣∣∣∣∣
p′
→ 0.

Then ∫
Rn
| f |p dx =

∫
Rn

f
(
| f |p−2 f −gk

)
dx+

∫
Rn

f gkdx

=
∫
Rn

f
(
| f |p−2 f −gk

)
dx

≤ || f ||Lp

∣∣∣∣∣∣gk−| f |p−2 f
∣∣∣∣∣∣

p′

which converges to 0. Hence f = 0.
It remains to consider the case where f has polynomial growth. Thus x→ f (x)e−|x|

2
∈

L1 (Rn) . Therefore, for all ψ ∈ G ,

0 =
∫

f (x)e−|x|
2
ψ (x)dx

because e−|x|
2
ψ (x) ∈ G . Therefore, by the first part, f (x)e−|x|

2
= 0 a.e. ■

The following theorem shows that you can consider most functions you are likely to
encounter as elements of G ∗.
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Theorem 32.3.8 Let f be a measurable function with polynomial growth,

| f (x)| ≤C
(

1+ |x|2
)N

for some N,

or let f ∈ Lp (Rn) for some p ∈ [1,∞]. Then f ∈ G ∗ if

f (φ)≡
∫

f φdx.

Proof: Let f have polynomial growth first. Then the above integral is clearly well
defined and so in this case, f ∈ G ∗.

Next suppose f ∈ Lp (Rn) with ∞ > p≥ 1. Then it is clear again that the above integral
is well defined because of the fact that φ is a sum of polynomials times exponentials of the
form e−c|x|2 and these are in Lp′ (Rn). Also φ → f (φ) is clearly linear in both cases. ■

This has shown that for nearly any reasonable function, you can define its Fourier trans-
form as described above. You could also define the Fourier transform of a finite Borel
measure µ because for such a measure

ψ →
∫
Rn

ψdµ

is a linear functional on G . This includes the very important case of probability distribution
measures. The theoretical basis for this assertion will be given a little later.

32.3.2 Fourier Transforms Of Functions In L1 (Rn)

First suppose f ∈ L1 (Rn) .

Theorem 32.3.9 Let f ∈ L1 (Rn) . Then F f (φ) =
∫
Rn gφdt where

g(t) =
(

1
2π

)n/2 ∫
Rn

e−it·x f (x)dx

and F−1 f (φ) =
∫
Rn gφdt where g(t) =

( 1
2π

)n/2 ∫
Rn eit·x f (x)dx. In short,

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx,

F−1 f (t)≡ (2π)−n/2
∫
Rn

eit·x f (x)dx.

Proof: From the definition and Fubini’s theorem,

F f (φ) ≡
∫
Rn

f (t)Fφ (t)dt =
∫
Rn

f (t)
(

1
2π

)n/2 ∫
Rn

e−it·x
φ (x)dxdt

=
∫
Rn

((
1

2π

)n/2 ∫
Rn

f (t)e−it·xdt

)
φ (x)dx.

Since φ ∈ G is arbitrary, it follows from Theorem 32.3.7 that F f (x) is given by the claimed
formula. The case of F−1 is identical. ■

Here are interesting properties of these Fourier transforms of functions in L1.
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Theorem 32.3.10 If f ∈ L1 (Rn) and || fk− f ||1 → 0, then F fk and F−1 fk converge uni-
formly to F f and F−1 f respectively. If f ∈ L1 (Rn), then F−1 f and F f are both continuous
and bounded. Also,

lim
|x|→∞

F−1 f (x) = lim
|x|→∞

F f (x) = 0. (32.3.3)

Furthermore, for f ∈ L1 (Rn) both F f and F−1 f are uniformly continuous.

Proof: The first claim follows from the following inequality.

|F fk (t)−F f (t)| ≤ (2π)−n/2
∫
Rn

∣∣e−it·x fk(x)− e−it·x f (x)
∣∣dx

= (2π)−n/2
∫
Rn
| fk (x)− f (x)|dx

= (2π)−n/2 || f − fk||1 .

which a similar argument holding for F−1.
Now consider the second claim of the theorem.∣∣F f (t)−F f

(
t′
)∣∣≤ (2π)−n/2

∫
Rn

∣∣∣e−it·x− e−it′·x
∣∣∣ | f (x)|dx

The integrand is bounded by 2 | f (x)|, a function in L1 (Rn) and converges to 0 as t′ → t
and so the dominated convergence theorem implies F f is continuous. To see F f (t) is
uniformly bounded,

|F f (t)| ≤ (2π)−n/2
∫
Rn
| f (x)|dx < ∞.

A similar argument gives the same conclusions for F−1.
It remains to verify 32.3.3 and the claim that F f and F−1 f are uniformly continuous.

|F f (t)| ≤
∣∣∣∣(2π)−n/2

∫
Rn

e−it·x f (x)dx
∣∣∣∣

Now let ε > 0 be given and let g ∈C∞
c (Rn) such that (2π)−n/2 ||g− f ||1 < ε/2. Then

|F f (t)| ≤ (2π)−n/2
∫
Rn
| f (x)−g(x)|dx

+

∣∣∣∣(2π)−n/2
∫
Rn

e−it·xg(x)dx
∣∣∣∣

≤ ε/2+
∣∣∣∣(2π)−n/2

∫
Rn

e−it·xg(x)dx
∣∣∣∣ .

Now integrating by parts, it follows that for ||t||
∞
≡max

{∣∣t j
∣∣ : j = 1, · · · ,n

}
> 0

|F f (t)| ≤ ε/2+(2π)−n/2

∣∣∣∣∣ 1
||t||

∞

∫
Rn

n

∑
j=1

∣∣∣∣∂g(x)
∂x j

∣∣∣∣dx

∣∣∣∣∣ (32.3.4)
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and this last expression converges to zero as ||t||
∞
→∞. The reason for this is that if t j ̸= 0,

integration by parts with respect to x j gives

(2π)−n/2
∫
Rn

e−it·xg(x)dx = (2π)−n/2 1
−it j

∫
Rn

e−it·x ∂g(x)
∂x j

dx.

Therefore, choose the j for which ||t||
∞
=
∣∣t j
∣∣ and the result of 32.3.4 holds. Therefore,

from 32.3.4, if ||t||
∞

is large enough, |F f (t)| < ε . Similarly, lim||t||→∞ F−1 (t) = 0. Con-
sider the claim about uniform continuity. Let ε > 0 be given. Then there exists R such
that if ||t||

∞
> R, then |F f (t)|< ε

2 . Since F f is continuous, it is uniformly continuous on
the compact set [−R−1,R+1]n. Therefore, there exists δ 1 such that if ||t− t′||

∞
< δ 1 for

t′, t ∈ [−R−1,R+1]n, then ∣∣F f (t)−F f
(
t′
)∣∣< ε/2. (32.3.5)

Now let 0 < δ < min(δ 1,1) and suppose ||t− t′||
∞
< δ . If both t, t′ are contained in

[−R,R]n, then 32.3.5 holds. If t ∈ [−R,R]n and t′ /∈ [−R,R]n, then both are contained in
[−R−1,R+1]n and so this verifies 32.3.5 in this case. The other case is that neither point
is in [−R,R]n and in this case,∣∣F f (t)−F f

(
t′
)∣∣ ≤ |F f (t)|+

∣∣F f
(
t′
)∣∣

<
ε

2
+

ε

2
= ε.■

There is a very interesting relation between the Fourier transform and convolutions.

Theorem 32.3.11 Let f ,g ∈ L1(Rn). Then f ∗g ∈ L1 and F( f ∗g) = (2π)n/2 F f Fg.

Proof: Consider ∫
Rn

∫
Rn
| f (x−y)g(y)|dydx.

The function, (x,y)→ | f (x−y)g(y)| is Lebesgue measurable and so by Fubini’s theorem,∫
Rn

∫
Rn
| f (x−y)g(y)|dydx =

∫
Rn

∫
Rn
| f (x−y)g(y)|dxdy = || f ||1 ||g||1 < ∞.

It follows that for a.e. x,
∫
Rn | f (x−y)g(y)|dy < ∞ and for each of these values of x, it

follows that
∫
Rn f (x−y)g(y)dy exists and equals a function of x which is in L1 (Rn) , f ∗

g(x). Now

F( f ∗g)(t)≡ (2π)−n/2
∫
Rn

e−it·x f ∗g(x)dx

= (2π)−n/2
∫
Rn

e−it·x
∫
Rn

f (x−y)g(y)dydx

= (2π)−n/2
∫
Rn

e−it·yg(y)
∫
Rn

e−it·(x−y) f (x−y)dxdy

= (2π)n/2 F f (t)Fg(t) . ■

There are other considerations involving Fourier transforms of functions in L1 (Rn).
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32.3.3 Fourier Transforms Of Functions In L2 (Rn)

Consider F f and F−1 f for f ∈ L2(Rn). First note that the formula given for F f and F−1 f
when f ∈ L1 (Rn) will not work for f ∈ L2(Rn) unless f is also in L1(Rn). Recall that
a+ ib = a− ib.

Theorem 32.3.12 For φ ∈ G , ||Fφ ||2 = ||F−1φ ||2 = ||φ ||2.

Proof: First note that for ψ ∈ G ,

F(ψ) = F−1(ψ) , F−1(ψ) = F(ψ). (32.3.6)

This follows from the definition. For example,

Fψ (t) = (2π)−n/2
∫
Rn

e−it·x
ψ (x)dx

= (2π)−n/2
∫
Rn

eit·xψ (x)dx

Let φ ,ψ ∈ G . It was shown above that∫
Rn
(Fφ)ψ(t)dt =

∫
Rn

φ(Fψ)dx.

Similarly, ∫
Rn

φ(F−1
ψ)dx =

∫
Rn
(F−1

φ)ψdt. (32.3.7)

Now, 32.3.6 - 32.3.7 imply∫
Rn
|φ |2dx =

∫
Rn

φF−1(Fφ)dx =
∫
Rn

φF(Fφ)dx

=
∫
Rn

Fφ(Fφ)dx =
∫
Rn
|Fφ |2dx.

Similarly
||φ ||2 = ||F−1

φ ||2. ■

Lemma 32.3.13 Let f ∈ L2 (Rn) and let φ k → f in L2 (Rn) where φ k ∈ G . (Such a se-
quence exists because of density of G in L2 (Rn).) Then F f and F−1 f are both in L2 (Rn)
and the following limits take place in L2.

lim
k→∞

F (φ k) = F ( f ) , lim
k→∞

F−1 (φ k) = F−1 ( f ) .

Proof: Let ψ ∈ G be given. Then

F f (ψ) ≡ f (Fψ)≡
∫
Rn

f (x)Fψ (x)dx

= lim
k→∞

∫
Rn

φ k (x)Fψ (x)dx = lim
k→∞

∫
Rn

Fφ k (x)ψ (x)dx.
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Also by Theorem 32.3.12 {Fφ k}
∞

k=1 is Cauchy in L2 (Rn) and so it converges to some
h ∈ L2 (Rn). Therefore, from the above,

F f (ψ) =
∫
Rn

h(x)ψ (x)

which shows that F ( f ) ∈ L2 (Rn) and h = F ( f ) . The case of F−1 is entirely similar. ■
Since F f and F−1 f are in L2 (Rn) , this also proves the following theorem.

Theorem 32.3.14 If f ∈ L2(Rn), F f and F−1 f are the unique elements of L2 (Rn) such
that for all φ ∈ G , ∫

Rn
F f (x)φ(x)dx =

∫
Rn

f (x)Fφ(x)dx, (32.3.8)∫
Rn

F−1 f (x)φ(x)dx =
∫
Rn

f (x)F−1
φ(x)dx. (32.3.9)

Theorem 32.3.15 (Plancherel)

|| f ||2 = ||F f ||2 = ||F−1 f ||2. (32.3.10)

Proof: Use the density of G in L2 (Rn) to obtain a sequence, {φ k} converging to f in
L2 (Rn). Then by Lemma 32.3.13

||F f ||2 = lim
k→∞

||Fφ k||2 = lim
k→∞

||φ k||2 = || f ||2 .

Similarly,
|| f ||2 = ||F−1 f ||2. ■

The following corollary is a simple generalization of this. To prove this corollary,
use the following simple lemma which comes as a consequence of the Cauchy Schwarz
inequality.

Lemma 32.3.16 Suppose fk→ f in L2 (Rn) and gk→ g in L2 (Rn). Then

lim
k→∞

∫
Rn

fkgkdx =
∫
Rn

f gdx

Proof: ∣∣∣∣∫Rn
fkgkdx−

∫
Rn

f gdx
∣∣∣∣≤ ∣∣∣∣∫Rn

fkgkdx−
∫
Rn

fkgdx
∣∣∣∣+∣∣∣∣∫Rn

fkgdx−
∫
Rn

f gdx
∣∣∣∣

≤ || fk||2 ||g−gk||2 + ||g||2 || fk− f ||2 .

Now || fk||2 is a Cauchy sequence and so it is bounded independent of k. Therefore, the
above expression is smaller than ε whenever k is large enough. ■
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Corollary 32.3.17 For f ,g ∈ L2(Rn),∫
Rn

f gdx =
∫
Rn

F f Fgdx =
∫
Rn

F−1 f F−1gdx.

Proof: First note the above formula is obvious if f ,g ∈ G . To see this, note∫
Rn

F f Fgdx =
∫
Rn

F f (x)
1

(2π)n/2

∫
Rn

e−ix·tg(t)dtdx

=
∫
Rn

1

(2π)n/2

∫
Rn

eix·tF f (x)dxg(t)dt =
∫
Rn

(
F−1 ◦F

)
f (t)g(t)dt

=
∫
Rn

f (t)g(t)dt.

The formula with F−1 is exactly similar.
Now to verify the corollary, let φ k→ f in L2 (Rn) and let ψk→ g in L2 (Rn). Then by

Lemma 32.3.13∫
Rn

F f Fgdx = lim
k→∞

∫
Rn

Fφ k Fψkdx = lim
k→∞

∫
Rn

φ kψkdx =
∫
Rn

f gdx

A similar argument holds for F−1. ■
How does one compute F f and F−1 f ?

Theorem 32.3.18 For f ∈ L2(Rn), let fr = f XEr where Er is a bounded measurable set
with Er ↑ Rn. Then the following limits hold in L2 (Rn) .

F f = lim
r→∞

F fr , F−1 f = lim
r→∞

F−1 fr.

Proof: || f − fr||2→ 0 and so ||F f −F fr||2→ 0 and ||F−1 f −F−1 fr||2→ 0 by Plan-
cherel’s Theorem. ■

What are F fr and F−1 fr? Let φ ∈ G∫
Rn

F frφdx =
∫
Rn

frFφdx

= (2π)−
n
2

∫
Rn

∫
Rn

fr(x)e−ix·y
φ(y)dydx

=
∫
Rn
[(2π)−

n
2

∫
Rn

fr(x)e−ix·ydx]φ(y)dy.

Since this holds for all φ ∈ G , a dense subset of L2(Rn), it follows that

F fr(y) = (2π)−
n
2

∫
Rn

fr(x)e−ix·ydx.

Similarly

F−1 fr(y) = (2π)−
n
2

∫
Rn

fr(x)eix·ydx.
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This shows that to take the Fourier transform of a function in L2 (Rn), it suffices to take the
limit as r→ ∞ in L2 (Rn) of (2π)−

n
2
∫
Rn fr(x)e−ix·ydx. A similar procedure works for the

inverse Fourier transform.
Note this reduces to the earlier definition in case f ∈ L1 (Rn). Now consider the convo-

lution of a function in L2 with one in L1.

Theorem 32.3.19 Let h ∈ L2 (Rn) and let f ∈ L1 (Rn). Then h∗ f ∈ L2 (Rn),

F−1 (h∗ f ) = (2π)n/2 F−1hF−1 f ,

F (h∗ f ) = (2π)n/2 FhF f ,

and
||h∗ f ||2 ≤ ||h||2 || f ||1 . (32.3.11)

Proof: An application of Minkowski’s inequality yields(∫
Rn

(∫
Rn
|h(x−y)| | f (y)|dy

)2

dx

)1/2

≤ || f ||1 ||h||2 . (32.3.12)

Hence
∫
|h(x−y)| | f (y)|dy < ∞ a.e. x and

x→
∫

h(x−y) f (y)dy

is in L2 (Rn). Let Er ↑ Rn, m(Er)< ∞. Thus,

hr ≡XEr h ∈ L2 (Rn)∩L1 (Rn),

and letting φ ∈ G , ∫
F (hr ∗ f )(φ)dx

≡
∫

(hr ∗ f )(Fφ)dx

= (2π)−n/2
∫ ∫ ∫

hr (x−y) f (y)e−ix·t
φ (t)dtdydx

= (2π)−n/2
∫ ∫ (∫

hr (x−y)e−i(x−y)·tdx
)

f (y)e−iy·tdyφ (t)dt

=
∫

(2π)n/2 Fhr (t)F f (t)φ (t)dt.

Since φ is arbitrary and G is dense in L2 (Rn),

F (hr ∗ f ) = (2π)n/2 FhrF f .

Now by Minkowski’s Inequality, hr ∗ f → h∗ f in L2 (Rn) and also it is clear that hr→ h in
L2 (Rn) ; so, by Plancherel’s theorem, you may take the limit in the above and conclude

F (h∗ f ) = (2π)n/2 FhF f .

The assertion for F−1 is similar and 32.3.11 follows from 32.3.12. ■
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32.3.4 The Schwartz Class

The problem with G is that it does not contain C∞
c (Rn). I have used it in presenting the

Fourier transform because the functions in G have a very specific form which made some
technical details work out easier than in any other approach I have seen. The Schwartz
class is a larger class of functions which does contain C∞

c (Rn) and also has the same nice
properties as G . The functions in the Schwartz class are infinitely differentiable and they
vanish very rapidly as |x|→∞ along with all their partial derivatives. This is the description
of these functions, not a specific form involving polynomials times e−α|x|2 . To describe this
precisely requires some notation.

Definition 32.3.20 f ∈S, the Schwartz class, if f ∈C∞(Rn) and for all positive integers
N,

ρN( f )< ∞

where
ρN( f ) = sup{(1+ |x|2)N |Dα f (x)| : x ∈ Rn , |α| ≤ N}.

Thus f ∈S if and only if f ∈C∞(Rn) and

sup{|xβ Dα f (x)| : x ∈ Rn}< ∞ (32.3.13)

for all multi indices α and β .

Also note that if f ∈S, then p( f ) ∈S for any polynomial, p with p(0) = 0 and that

S⊆ Lp(Rn)∩L∞(Rn)

for any p ≥ 1. To see this assertion about the p( f ), it suffices to consider the case of the
product of two elements of the Schwartz class. If f ,g ∈S, then Dα ( f g) is a finite sum of
derivatives of f times derivatives of g. Therefore, ρN ( f g)< ∞ for all N. You may wonder
about examples of things in S. Clearly any function in C∞

c (Rn) is in S. However there are
other functions in S. For example e−|x|

2
is in S as you can verify for yourself and so is any

function from G . Note also that the density of Cc (Rn) in Lp (Rn) shows that S is dense in
Lp (Rn) for every p.

Recall the Fourier transform of a function in L1 (Rn) is given by

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx.

Therefore, this gives the Fourier transform for f ∈ S. The nice property which S has in
common with G is that the Fourier transform and its inverse map S one to one onto S.
This means I could have presented the whole of the above theory in terms of S rather than
in terms of G . However, it is more technical.

Theorem 32.3.21 If f ∈S, then F f and F−1 f are also in S.
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Proof: To begin with, let α = e j = (0,0, · · · ,1,0, · · · ,0), the 1 in the jth slot.

F−1 f (t+he j)−F−1 f (t)
h

= (2π)−n/2
∫
Rn

eit·x f (x)(
eihx j −1

h
)dx. (32.3.14)

Consider the integrand in 32.3.14.∣∣∣∣eit·x f (x)(
eihx j −1

h
)

∣∣∣∣ = | f (x)|

∣∣∣∣∣(ei(h/2)x j − e−i(h/2)x j

h
)

∣∣∣∣∣
= | f (x)|

∣∣∣∣ isin((h/2)x j)

(h/2)

∣∣∣∣≤ | f (x)| ∣∣x j
∣∣

and this is a function in L1(Rn) because f ∈S. Therefore by the Dominated Convergence
Theorem,

∂F−1 f (t)
∂ t j

= (2π)−n/2
∫
Rn

eit·xix j f (x)dx

= i(2π)−n/2
∫
Rn

eit·xxe j f (x)dx.

Now xe j f (x) ∈ S and so one can continue in this way and take derivatives indefinitely.
Thus F−1 f ∈C∞(Rn) and from the above argument,

Dα F−1 f (t) =(2π)−n/2
∫
Rn

eit·x(ix)α f (x)dx.

To complete showing F−1 f ∈S,

tβ Dα F−1 f (t) =(2π)−n/2
∫
Rn

eit·xtβ (ix)a f (x)dx.

Integrate this integral by parts to get

tβ Dα F−1 f (t) =(2π)−n/2
∫
Rn

i|β |eit·xDβ ((ix)a f (x))dx. (32.3.15)

Here is how this is done.∫
R

eit jx j t
β j
j (ix)α f (x)dx j =

eit jx j

it j
t
β j
j (ix)α f (x) |∞−∞ +

i
∫
R

eit jx j t
β j−1
j De j((ix)α f (x))dx j

where the boundary term vanishes because f ∈S. Returning to 32.3.15, use the fact that
|eia|= 1 to conclude

|tβ Dα F−1 f (t)| ≤C
∫
Rn
|Dβ ((ix)a f (x))|dx < ∞.

It follows F−1 f ∈S. Similarly F f ∈S whenever f ∈S. ■
Of course S can be considered a subset of G ∗ as follows. For ψ ∈S,

ψ (φ)≡
∫
Rn

ψφdx
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Theorem 32.3.22 Let ψ ∈S. Then (F ◦F−1)(ψ) = ψ and (F−1 ◦F)(ψ) = ψ whenever
ψ ∈S. Also F and F−1 map S one to one and onto S.

Proof: The first claim follows from the fact that F and F−1 are inverses of each other
on G ∗ which was established above. For the second, let ψ ∈ S. Then ψ = F

(
F−1ψ

)
.

Thus F maps S onto S. If Fψ = 0, then do F−1 to both sides to conclude ψ = 0. Thus F
is one to one and onto. Similarly, F−1 is one to one and onto. ■

32.3.5 Convolution
To begin with it is necessary to discuss the meaning of φ f where f ∈ G ∗ and φ ∈ G . What
should it mean? First suppose f ∈ Lp (Rn) or measurable with polynomial growth. Then
φ f also has these properties. Hence, it should be the case that φ f (ψ) =

∫
Rn φ f ψdx =∫

Rn f (φψ)dx. This motivates the following definition.

Definition 32.3.23 Let T ∈ G ∗ and let φ ∈ G . Then φT ≡ T φ ∈ G ∗ will be defined by

φT (ψ)≡ T (φψ) .

The next topic is that of convolution. It was just shown that

F ( f ∗φ) = (2π)n/2 FφF f , F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

whenever f ∈ L2 (Rn) and φ ∈ G so the same definition is retained in the general case
because it makes perfect sense and agrees with the earlier definition.

Definition 32.3.24 Let f ∈ G ∗ and let φ ∈ G . Then define the convolution of f with an
element of G as follows.

f ∗φ ≡ (2π)n/2 F−1 (FφF f ) ∈ G ∗

There is an obvious question. With this definition, is it true that

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

as it was earlier?

Theorem 32.3.25 Let f ∈ G ∗ and let φ ∈ G .

F ( f ∗φ) = (2π)n/2 FφF f , (32.3.16)

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f . (32.3.17)

Proof: Note that 32.3.16 follows from Definition 32.3.24 and both assertions hold for
f ∈ G . Consider 32.3.17. Here is a simple formula involving a pair of functions in G .(

ψ ∗F−1F−1
φ
)
(x)
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=

(∫ ∫ ∫
ψ (x−y)eiy·y1eiy1·zφ (z)dzdy1dy

)
(2π)n

=

(∫ ∫ ∫
ψ (x−y)e−iy·ỹ1e−iỹ1·zφ (z)dzdỹ1dy

)
(2π)n

= (ψ ∗FFφ)(x) .

Now for ψ ∈ G ,

(2π)n/2 F
(
F−1

φF−1 f
)
(ψ)≡ (2π)n/2 (F−1

φF−1 f
)
(Fψ)≡

(2π)n/2 F−1 f
(
F−1

φFψ
)
≡ (2π)n/2 f

(
F−1 (F−1

φFψ
))

=

f
(
(2π)n/2 F−1 ((FF−1F−1

φ
)
(Fψ)

))
≡

f
(
ψ ∗F−1F−1

φ
)
= f (ψ ∗FFφ) (32.3.18)

Also

(2π)n/2 F−1 (FφF f )(ψ)≡ (2π)n/2 (FφF f )
(
F−1

ψ
)
≡

(2π)n/2 F f
(
FφF−1

ψ
)
≡ (2π)n/2 f

(
F
(
FφF−1

ψ
))

=

= f
(

F
(
(2π)n/2 (FφF−1

ψ
)))

= f
(

F
(
(2π)n/2 (F−1FFφF−1

ψ
)))

= f
(
F
(
F−1 (FFφ ∗ψ)

))
f (FFφ ∗ψ) = f (ψ ∗FFφ) . (32.3.19)

The last line follows from the following.∫
FFφ (x−y)ψ (y)dy =

∫
Fφ (x−y)Fψ (y)dy

=
∫

Fψ (x−y)Fφ (y)dy

=
∫

ψ (x−y)FFφ (y)dy.

From 32.3.19 and 32.3.18 , since ψ was arbitrary,

(2π)n/2 F
(
F−1

φF−1 f
)
= (2π)n/2 F−1 (FφF f )≡ f ∗φ

which shows 32.3.17. ■
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32.4 Exercises
1. For f ∈ L1 (Rn), show that if F−1 f ∈ L1 or F f ∈ L1, then f equals a continuous

bounded function a.e.

2. Suppose f ,g ∈ L1(R) and F f = Fg. Show f = g a.e.

3. Show that if f ∈ L1 (Rn) , then lim|x|→∞ F f (x) = 0.

4. ↑ Suppose f ∗ f = f or f ∗ f = 0 and f ∈ L1(R). Show f = 0.

5. For this problem define
∫

∞

a f (t)dt ≡ limr→∞

∫ r
a f (t)dt. Note this coincides with the

Lebesgue integral when f ∈ L1 (a,∞). Show

(a)
∫

∞

0
sin(u)

u du = π

2

(b) limr→∞

∫
∞

δ

sin(ru)
u du = 0 whenever δ > 0.

(c) If f ∈ L1 (R), then limr→∞

∫
R sin(ru) f (u)du = 0.

Hint: For the first two, use 1
u =

∫
∞

0 e−utdt and apply Fubini’s theorem to∫ R

0
sinu

∫
R

e−utdtdu

For the last part, first establish it for f ∈C∞
c (R) and then use the density of this set in

L1 (R) to obtain the result. This is sometimes called the Riemann Lebesgue lemma.

6. ↑Suppose that g∈ L1 (R) and that at some x > 0, g is locally Holder continuous from
the right and from the left. This means

lim
r→0+

g(x+ r)≡ g(x+)

exists,
lim

r→0+
g(x− r)≡ g(x−)

exists and there exist constants K,δ > 0 and r ∈ (0,1] such that for |x− y|< δ ,

|g(x+)−g(y)|< K |x− y|r

for y > x and
|g(x−)−g(y)|< K |x− y|r

for y < x. Show that under these conditions,

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du

=
g(x+)+g(x−)

2
.
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7. ↑ Let g ∈ L1 (R) and suppose g is locally Holder continuous from the right and from
the left at x. Show that then

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =
g(x+)+g(x−)

2
.

This is very interesting. If g ∈ L2 (R), this shows F−1 (Fg)(x) = g(x+)+g(x−)
2 , the

midpoint of the jump in g at the point, x. In particular, if g ∈ G , F−1 (Fg) = g. Hint:
Show the left side of the above equation reduces to

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du

and then use Problem 6 to obtain the result.

8. ↑ A measurable function g defined on (0,∞) has exponential growth if |g(t)| ≤Ceηt

for some η . For Re(s)> η , define the Laplace Transform by

Lg(s)≡
∫

∞

0
e−sug(u)du.

Assume that g has exponential growth as above and is Holder continuous from the
right and from the left at t. Pick γ > η . Show that

lim
R→∞

1
2π

∫ R

−R
eγteiytLg(γ + iy)dy =

g(t+)+g(t−)
2

.

This formula is sometimes written in the form

1
2πi

∫
γ+i∞

γ−i∞
estLg(s)ds

and is called the complex inversion integral for Laplace transforms. It can be used to
find inverse Laplace transforms. Hint:

1
2π

∫ R

−R
eγteiytLg(γ + iy)dy =

1
2π

∫ R

−R
eγteiyt

∫
∞

0
e−(γ+iy)ug(u)dudy.

Now use Fubini’s theorem and do the integral from −R to R to get this equal to

eγt

π

∫
∞

−∞

e−γug(u)
sin(R(t−u))

t−u
du

where g is the zero extension of g off [0,∞). Then this equals

eγt

π

∫
∞

−∞

e−γ(t−u)g(t−u)
sin(Ru)

u
du
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which equals

2eγt

π

∫
∞

0

g(t−u)e−γ(t−u)+g(t +u)e−γ(t+u)

2
sin(Ru)

u
du

and then apply the result of Problem 6.

9. Suppose f ∈S. Show F( fx j)(t) = it jF f (t).

10. Let f ∈S and let k be a positive integer.

|| f ||k,2 ≡ (|| f ||22 + ∑
|α|≤k
||Dα f ||22)1/2.

One could also define

||| f |||k,2 ≡ (
∫

Rn
|F f (x)|2(1+ |x|2)kdx)1/2.

Show both || ||k,2 and ||| |||k,2 are norms on S and that they are equivalent. These
are Sobolev space norms. For which values of k does the second norm make sense?
How about the first norm?

11. ↑ Define Hk(Rn),k ≥ 0 by f ∈ L2(Rn) such that

(
∫
|F f (x)|2(1+ |x|2)kdx)

1
2 < ∞,

||| f |||k,2 ≡ (
∫
|F f (x)|2(1+ |x|2)kdx)

1
2.

Show Hk(Rn) is a Banach space, and that if k is a positive integer, Hk(Rn) ={ f ∈
L2(Rn) : there exists {u j} ⊆ G with ||u j− f ||2→ 0 and {u j} is a Cauchy sequence
in || ||k,2 of Problem 10}. This is one way to define Sobolev Spaces. Hint: One way
to do the second part of this is to define a new measure, µ by

µ (E)≡
∫

E

(
1+ |x|2

)k
dx.

Then show µ is a Radon measure and show there exists {gm} such that gm ∈ G and
gm → F f in L2(µ). Thus gm = F fm, fm ∈ G because F maps G onto G . Then by
Problem 10, { fm } is Cauchy in the norm || ||k,2.

12. ↑ If 2k > n, show that if f ∈ Hk(Rn), then f equals a bounded continuous function
a.e. Hint: Show that for k this large, F f ∈ L1(Rn), and then use Problem 1. To do
this, write

|F f (x)|= |F f (x)|(1+ |x|2)
k
2 (1+ |x|2)

−k
2 ,

So ∫
|F f (x)|dx =

∫
|F f (x)|(1+ |x|2)

k
2 (1+ |x|2)

−k
2 dx.

Use the Cauchy Schwarz inequality. This is an example of a Sobolev imbedding
Theorem.
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13. Let u ∈ G . Then Fu ∈ G and so, in particular, it makes sense to form the integral,∫
R

Fu
(
x′,xn

)
dxn

where (x′,xn) = x ∈ Rn. For u ∈ G , define γu(x′) ≡ u(x′,0). Find a constant such
that F (γu)(x′) equals this constant times the above integral. Hint: By the dominated
convergence theorem∫

R
Fu
(
x′,xn

)
dxn = lim

ε→0

∫
R

e−(εxn)
2
Fu
(
x′,xn

)
dxn.

Now use the definition of the Fourier transform and Fubini’s theorem as required in
order to obtain the desired relationship.

14. Recall the Fourier series of a function in L2 (−π,π) converges to the function in
L2 (−π,π). Prove a similar theorem with L2 (−π,π) replaced by L2 (−mπ,mπ) and
the functions {

(2π)−(1/2) einx
}

n∈Z

used in the Fourier series replaced with{
(2mπ)−(1/2) ei n

m x
}

n∈Z

Now suppose f is a function in L2 (R) satisfying F f (t) = 0 if |t|> mπ . Show that if
this is so, then

f (x) =
1
π

∑
n∈Z

f
(
−n
m

)
sin(π (mx+n))

mx+n
.

Here m is a positive integer. This is sometimes called the Shannon sampling theo-
rem.Hint: First note that since F f ∈ L2 and is zero off a finite interval, it follows
F f ∈ L1. Also

f (t) =
1√
2π

∫ mπ

−mπ

eitxF f (x)dx

and you can conclude from this that f has all derivatives and they are all bounded.
Thus f is a very nice function. You can replace F f with its Fourier series. Then
consider carefully the Fourier coefficient of F f . Argue it equals f

(−n
m

)
or at least

an appropriate constant times this. When you get this the rest will fall quickly into
place if you use F f is zero off [−mπ,mπ].



Chapter 33

Fourier Analysis In Rn

The purpose of this chapter is to present some of the most important theorems on Fourier
analysis in Rn. These theorems are the Marcinkiewicz interpolation theorem, the Calderon
Zygmund decomposition, and Mihlin’s theorem. They are all fundamental results whose
proofs depend on the methods of real analysis.

33.1 The Marcinkiewicz Interpolation Theorem
Let (Ω,µ,S ) be a measure space.

Definition 33.1.1 Lp (Ω)+L1 (Ω) will denote the space of measurable functions, f , such
that f is the sum of a function in Lp (Ω) and L1 (Ω). Also, if T : Lp (Ω)+L1 (Ω)→ space
of measurable functions, T is subadditive if

|T ( f +g)(x)| ≤ |T f (x)|+ |T g(x)|.

T is of type (p, p) if there exists a constant independent of f ∈ Lp (Ω) such that

||T f ||p ≤ A∥ f∥p, f ∈ Lp (Ω).

T is weak type (p, p) if there exists a constant A independent of f such that

µ ([x : |T f (x)|> α])≤
(

A
α
|| f ||p

)p

, f ∈ Lp (Ω).

The following lemma involves writing a function as a sum of a functions whose values
are small and one whose values are large.

Lemma 33.1.2 If p ∈ [1,r], then Lp (Ω)⊆ L1 (Ω)+Lr (Ω).

Proof: Let λ > 0 and let f ∈ Lp (Ω)

f1 (x)≡
{

f (x) if | f (x)| ≤ λ

0 if | f (x)|> λ
, f2 (x)≡

{
f (x) if | f (x)|> λ

0 if | f (x)| ≤ λ
.

Thus f (x) = f1 (x)+ f2 (x).∫
| f1 (x)|r dµ =

∫
[| f |≤λ ]

| f (x)|r dµ ≤ λ
r−p

∫
[| f |≤λ ]

| f (x)|p dµ < ∞.

Therefore, f1 ∈ Lr (Ω).∫
| f2 (x)|dµ =

∫
[| f |>λ ]

| f (x)|dµ ≤ µ [| f |> λ ]1/p′
(∫
| f |p dµ

)1/p

< ∞.

This proves the lemma since f = f1 + f2, f1 ∈ Lr and f2 ∈ L1.
For f a function having nonnegative real values, α → µ ([ f > α]) is called the distri-

bution function.

1119
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Lemma 33.1.3 Let φ (0) = 0, φ is strictly increasing, and C1. Let f : Ω→ [0,∞) be mea-
surable. Then ∫

Ω

(φ ◦ f )dµ =
∫

∞

0
φ
′ (α)µ [ f > α]dα. (33.1.1)

Proof: First suppose

f =
m

∑
i=1

aiXEi

where ai > 0 and the ai are all distinct nonzero values of f , the sets, Ei being disjoint. Thus,∫
Ω

(φ ◦ f )dµ =
m

∑
i=1

φ (ai)µ (Ei).

Suppose without loss of generality a1 < a2 < · · ·< am. Observe

α → µ ([ f > α])

is constant on the intervals [0,a1), [a1,a2), · · · . For example, on [ai,ai+1), this function has
the value

m

∑
j=i+1

µ (E j).

The function equals zero on [am,∞). Therefore,

α → φ
′ (α)µ ([| f |> α])

is Lebesgue measurable and letting a0 = 0, the second integral in 33.1.1 equals∫
∞

0
φ
′ (α)µ ([ f > α])dα =

m

∑
i=1

∫ ai

ai−1

φ
′ (α)µ ([ f > α])dα

=
m

∑
i=1

m

∑
j=i

µ (E j)
∫ ai

ai−1

φ
′ (α)dα

=
m

∑
j=1

j

∑
i=1

µ (E j)(φ (ai)−φ (ai−1))

=
m

∑
j=1

µ (E j)φ (a j) =
∫

Ω

(φ ◦ f )dµ

and so this establishes 33.1.1 in the case when f is a nonnegative simple function. Since
every measurable nonnegative function may be written as the pointwise limit of such simple
functions, the desired result will follow by the Monotone convergence theorem and the next
claim.

Claim: If fn ↑ f , then for each α > 0,

µ ([ f > α]) = lim
n→∞

µ ([ fn > α]).
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Proof of the claim: [ fn > α] ↑ [ f > α] because if f (x) > α then for large enough n,
fn (x)> α and so

µ ([ fn > α]) ↑ µ ([ f > α]).

This proves the lemma. (Note the importance of the strict inequality in [ f > α] in proving
the claim.)

The next theorem is the main result in this section. It is called the Marcinkiewicz
interpolation theorem.

Theorem 33.1.4 Let (Ω,µ,S ) be a σ finite measure space, 1 < r < ∞, and let

T : L1 (Ω)+Lr (Ω)→ space of measurable functions

be subadditive, weak (r,r), and weak (1,1). Then T is of type (p, p) for every p ∈ (1,r)
and

||T f ||p ≤ Ap || f ||p
where the constant Ap depends only on p and the constants in the definition of weak (1,1)
and weak (r,r).

Proof: Let α > 0 and let f1 and f2 be defined as in Lemma 33.1.2,

f1 (x)≡
{

f (x) if | f (x)| ≤ α

0 if | f (x)|> α
, f2 (x)≡

{
f (x) if | f (x)|> α

0 if | f (x)| ≤ α
.

Thus f = f1 + f2 where f1 ∈ Lr and f2 ∈ L1. Since T is subadditive ,

[|T f |> α]⊆ [|T f1|> α/2]∪ [|T f2|> α/2] .

Let p ∈ (1,r). By Lemma 33.1.3,∫
|T f |p dµ ≤ p

∫
∞

0
α

p−1
µ ([|T f1|> α/2])dα+

+p
∫

∞

0
α

p−1
µ ([|T f2|> α/2])dα.

Therefore, since T is weak (1,1) and weak (r,r),∫
|T f |p dµ ≤ p

∫
∞

0
α

p−1
(

2Ar

α
|| f1||r

)r

dα + p
∫

∞

0
α

p−1 2A1

α
|| f2||1 dα. (33.1.2)

Therefore, the right side of 33.1.2 equals

p(2Ar)
r
∫

∞

0
α

p−1−r
∫

Ω

| f1|r dµdα +2A1 p
∫

∞

0
α

p−2
∫

Ω

| f2|dµdα =

p(2Ar)
r
∫

Ω

∫
∞

0
α

p−1−r | f1|r dαdµ +2A1 p
∫

Ω

∫
∞

0
α

p−2 | f2|dαdµ.
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Now f1 (x) = 0 unless | f1 (x)| ≤ α and f2 (x) = 0 unless | f2 (x)|> α so this equals

p(2Ar)
r
∫

Ω

| f (x)|r
∫

∞

| f (x)|
α

p−1−rdαdµ +2A1 p
∫

Ω

| f (x)|
∫ | f (x)|

0
α

p−2dαdµ

which equals
2rAr

r p
r− p

∫
Ω

| f (x)|p dµ +
2pA1

p−1

∫
Ω

| f (x)|p dµ

≤max
(

2rAr
r p

r− p
,

2pA1

p−1

)
|| f ||pLp(Ω)

and this proves the theorem.

33.2 The Calderon Zygmund Decomposition
For a given nonnegative integrable function, Rn can be decomposed into a set where the
function is small and a set which is the union of disjoint cubes on which the average of
the function is under some control. The measure in this section will always be Lebesgue
measure on Rn. This theorem depends on the Lebesgue theory of differentiation.

Theorem 33.2.1 Let f ≥ 0,
∫

f dx < ∞, and let α be a positive constant. Then there exist
sets F and Ω such that

Rn = F ∪Ω, F ∩Ω = /0 (33.2.3)

f (x)≤ α a.e. on F (33.2.4)

Ω = ∪∞
k=1Qk where the interiors of the cubes are disjoint and for each cube, Qk,

α <
1

m(Qk)

∫
Qk

f (x)dx≤ 2n
α. (33.2.5)

Proof: Let S0 be a tiling of Rn into cubes having sides of length M where M is chosen
large enough that if Q is one of these cubes, then

1
m(Q)

∫
Q

f dm≤ α. (33.2.6)

Suppose S0, · · · ,Sm have been chosen. To get Sm+1, replace each cube of Sm by the 2n

cubes obtained by bisecting the sides. Then Sm+1 consists of exactly those cubes of Sm for
which 33.2.6 holds and let Tm+1 consist of the bisected cubes from Sm for which 33.2.6
does not hold. Now define

F ≡ {x : x is contained in some cube from Sm for all m} ,

Ω≡ Rn \F = ∪∞
m=1∪{Q : Q ∈ Tm}

Note that the cubes from Tm have pair wise disjoint interiors and also the interiors of cubes
from Tm have empty intersections with the interiors of cubes of Tk if k ̸= m.
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Let x be a point of Ω and let x be in a cube of Tm such that m is the first index for which
this happens. Let Q be the cube in Sm−1 containing x and let Q∗ be the cube in the bisection
of Q which contains x. Therefore 33.2.6 does not hold for Q∗. Thus

α <
1

m(Q∗)

∫
Q∗

f dx≤ m(Q)

m(Q∗)

≤α︷ ︸︸ ︷
1

m(Q)

∫
Q

f dx≤ 2n
α

which shows Ω is the union of cubes having disjoint interiors for which 33.2.5 holds.
Now a.e. point of F is a Lebesgue point of f . Let x be such a point of F and suppose x

∈ Qk for Qk ∈ Sk. Let dk ≡ diameter of Qk. Thus dk→ 0.

1
m(Qk)

∫
Qk

| f (y)− f (x)|dy≤ 1
m(Qk)

∫
B(x,dk)

| f (y)− f (x)|dy

=
m(B(x,dk))

m(Qk)

1
m(B(x,dk))

∫
B(x,dk)

| f (x)− f (y)|dy

≤ Kn
1

m(B(x,dk))

∫
B(x,dk)

| f (x)− f (y)|dy

where Kn is a constant which depends on n and measures the ratio of the volume of a ball
with diamiter 2d and a cube with diameter d. The last expression converges to 0 because x
is a Lebesgue point. Hence

f (x) = lim
k→∞

1
m(Qk)

∫
Qk

f (y)dy≤ α

and this shows f (x)≤ α a.e. on F . This proves the theorem.

33.3 Mihlin’s Theorem
In this section, the Marcinkiewicz interpolation theorem and Calderon Zygmund decom-
position will be used to establish a remarkable theorem of Mihlin, a generalization of
Plancherel’s theorem to the Lp spaces. It is of fundamental importance in the study of
elliptic partial differential equations and can also be used to give proofs for the theory of
singular integrals. Mihlin’s theorem involves a conclusion which is of the form∣∣∣∣F−1

ρ ∗φ
∣∣∣∣

p ≤ Ap ||φ ||p (33.3.7)

for p> 1 and φ ∈G . Thus F−1ρ∗ extends to a continuous linear map defined on Lp because
of the density of G . It is proved by showing various weak type estimates and then applying
the Marcinkiewicz Interpolation Theorem to get an estimate like the above.

Recall that by Corollary 32.3.19, if f ∈ L2 (Rn) and if φ ∈ G , then f ∗φ ∈ L2 (Rn) and

F ( f ∗φ)(x) = (2π)n/2 Fφ (x)F f (x).

The next lemma is essentially a weak (1,1) estimate. The inequality 33.3.7 is established
under the condition, 33.3.8 and then it is shown there exist conditions which are easier to
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verify which imply condition 33.3.8. I think the approach used here is due to Hormander
[69] and is found in Berg and Lofstrom [16]. For many more references and generaliza-
tions, you might look in Triebel [124]. A different proof based on singular integrals is
in Stein [122]. Functions, ρ which yield an inequality of the sort in 33.3.7 are called Lp

multipliers.

Lemma 33.3.1 Suppose ρ ∈ L∞ (Rn)∩L2 (Rn) and suppose also there exists a constant C1
such that ∫

|x|≥2|y|

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤C1. (33.3.8)

Then there exists a constant A depending only on C1, ||ρ||∞, and n such that

m
([

x :
∣∣F−1

ρ∗φ (x)
∣∣> α

])
≤ A

α
||φ ||1

for all φ ∈ G .

Proof: Let φ ∈ G and use the Calderon decomposition to write Rn = E ∪Ω where Ω is
a union of cubes, {Qi} with disjoint interiors such that

αm(Qi)≤
∫

Qi

|φ (x)|dx≤ 2n
αm(Qi) , |φ (x)| ≤ α a.e. on E. (33.3.9)

The proof is accomplished by writing φ as the sum of a good function and a bad func-
tion and establishing a similar weak inequality for these two functions separately. Then
this information is used to obtain the desired conclusion.

g(x) =
{

φ (x) if x ∈ E
1

m(Qi)

∫
Qi

φ (x)dx if x ∈ Qi ⊆Ω
, g(x)+b(x) = φ (x). (33.3.10)

Thus ∫
Qi

b(x)dx =
∫

Qi

(φ (x)−g(x))dx =
∫

Qi

φ (x)dx−
∫

Qi

φ (x)dx = 0, (33.3.11)

b(x) = 0 if x /∈Ω. (33.3.12)

Claim:
||g||22 ≤ α (1+4n) ||φ ||1 , ||g||1 ≤ ||φ ||1. (33.3.13)

Proof of claim:
||g||22 = ||g||

2
L2(E)+ ||g||

2
L2(Ω).

Thus

||g||2L2(Ω) = ∑
i

∫
Qi

|g(x)|2 dx

≤ ∑
i

∫
Qi

(
1

m(Qi)

∫
Qi

|φ (y)|dy
)2

dx

≤ ∑
i

∫
Qi

(2n
α)2 dx≤ 4n

α
2
∑

i
m(Qi)

≤ 4n
α

2 1
α

∑
i

∫
Qi

|φ (x)|dx≤ 4n
α ||φ ||1.



33.3. MIHLIN’S THEOREM 1125

||g||2L2(E) =
∫

E
|φ (x)|2 dx≤ α

∫
E
|φ (x)|dx = α ||φ ||1.

Now consider the second of the inequalities in 33.3.13.

||g||1 =
∫

E
|g(x)|dx+

∫
Ω

|g(x)|dx

=
∫

E
|φ (x)|dx+∑

i

∫
Qi

|g|dx

≤
∫

E
|φ (x)|dx+∑

i

∫
Qi

1
m(Qi)

∫
Qi

|φ (x)|dm(x)dm

=
∫

E
|φ (x)|dx+∑

i

∫
Qi

|φ (x)|dm(x) = ||φ ||1

This proves the claim. From the claim, it follows that b ∈ L2 (Rn)∩L1 (Rn) .
Because of 33.3.13, g ∈ L1 (Rn) and so F−1ρ ∗ g ∈ L2 (Rn). (Since ρ ∈ L2, it follows

F−1ρ ∈ L2 and so this convolution is indeed in L2.) By Plancherel’s theorem,∣∣∣∣F−1
ρ ∗g

∣∣∣∣
2 =

∣∣∣∣F (F−1
ρ ∗g

)∣∣∣∣
2.

By Corollary 32.3.19 on Page 1110, the expression on the right equals

(2π)n/2 ||ρFg||2

and so ∣∣∣∣F−1
ρ ∗g

∣∣∣∣
2 = (2π)n/2 ||ρFg||2 ≤Cn ||ρ||∞ ||g||2.

From this and 33.3.13
m
([∣∣F−1

ρ ∗g
∣∣≥ α/2

])
≤ Cn ||ρ||2∞

α2 α (1+4n) ||φ ||1 =Cnα
−1 ||φ ||1. (33.3.14)

This is what is wanted so far as g is concerned. Next it is required to estimate

m
([∣∣F−1

ρ ∗b
∣∣≥ α/2

])
.

If Q is one of the cubes whose union is Ω, let Q∗ be the cube with the same center as Q
but whose sides are 2

√
n times as long.

Qi

Q∗i

yi



1126 CHAPTER 33. FOURIER ANALYSIS IN Rn

Let
Ω
∗ ≡ ∪∞

i=1Q∗i
and let

E∗ ≡ Rn \Ω
∗.

Thus E∗ ⊆ E. Let x ∈ E∗. Then because of 33.3.11,∫
Qi

F−1
ρ (x−y)b(y)dy

=
∫

Qi

[
F−1

ρ (x−y)−F−1
ρ (x−yi)

]
b(y)dy, (33.3.15)

where yi is the center of Qi. Consequently if the sides of Qi have length 2t/
√

n, 33.3.15
implies ∫

E∗

∣∣∣∣∫Qi

F−1
ρ (x−y)b(y)dy

∣∣∣∣dx≤ (33.3.16)∫
E∗

∫
Qi

∣∣F−1
ρ (x−y)−F−1

ρ (x−yi)
∣∣ |b(y)|dydx

=
∫

Qi

∫
E∗

∣∣F−1
ρ (x−y)−F−1

ρ (x−yi)
∣∣dx |b(y)|dy (33.3.17)

≤
∫

Qi

∫
|x−yi|≥2t

∣∣F−1
ρ (x−y)−F−1

ρ (x−yi)
∣∣dx |b(y)|dy (33.3.18)

since if x ∈ E∗, then |x−yi| ≥ 2t. Now for y ∈ Qi,

|y−yi| ≤

(
n

∑
j=1

(
t√
n

)2
)1/2

= t.

From 33.3.8 and the change of variables u = x−yi 33.3.16 - 33.3.18 imply∫
E∗

∣∣∣∣∫Qi

F−1
ρ (x−y)b(y)dy

∣∣∣∣dx≤C1

∫
Qi

|b(y)|dy. (33.3.19)

Now from 33.3.19, and the fact that b = 0 off Ω,∫
E∗

∣∣F−1
ρ ∗b(x)

∣∣dx =
∫

E∗

∣∣∣∣∫Rn
F−1

ρ (x−y)b(y)dy
∣∣∣∣dx

=
∫

E∗

∣∣∣∣∣ ∞

∑
i=1

∫
Qi

F−1
ρ (x−y)b(y)dy

∣∣∣∣∣dx

≤
∫

E∗

∞

∑
i=1

∣∣∣∣∫Qi

F−1
ρ (x−y)b(y)dy

∣∣∣∣dx

=
∞

∑
i=1

∫
E∗

∣∣∣∣∫Qi

F−1
ρ (x−y)b(y)dy

∣∣∣∣dx

≤
∞

∑
i=1

C1

∫
Qi

|b(y)|dy =C1 ||b||1.
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Thus, by 33.3.13, ∫
E∗

∣∣F−1
ρ ∗b(x)

∣∣dx ≤ C1 ||b||1
≤ C1 [||φ ||1 + ||g||1]
≤ C1 [||φ ||1 + ||φ ||1]
≤ 2C1 ||φ ||1 .

Consequently,

m
([∣∣F−1

ρ ∗b
∣∣≥ α

2

]
∩E∗

)
≤ 4C1

α
||φ ||1 .

From 33.3.10, 33.3.14, and 33.3.9,

m
[∣∣F−1

ρ ∗φ
∣∣> α

]
≤ m

[∣∣F−1
ρ ∗g

∣∣≥ α

2

]
+m

[∣∣F−1
ρ ∗b

∣∣≥ α

2

]
≤ Cn

α
||φ ||1 +m

([∣∣F−1
ρ ∗b

∣∣≥ α

2

]
∩E∗

)
+m(Ω∗)

≤ Cn

α
||φ ||1 +

4C1

α
||φ ||1 +Cnm(Ω)≤ A

α
||φ ||1

because
m(Ω)≤ α

−1 ||φ ||1

by 33.3.9. This proves the lemma.
The next lemma extends this lemma by giving a weak (2,2) estimate and a (2,2) esti-

mate.

Lemma 33.3.2 Suppose ρ ∈ L∞ (Rn)∩L2 (Rn) and suppose also that there exists a con-
stant C1 such that ∫

|x|>2|y|

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤C1. (33.3.20)

Then F−1ρ∗ maps L1 (Rn)+L2 (Rn) to measurable functions and there exists a constant A
depending only on C1,n, ||ρ||∞ such that

m
([∣∣F−1

ρ ∗ f
∣∣> α

])
≤ A
|| f ||1

α
if f ∈ L1 (Rn), (33.3.21)

m
([∣∣F−1

ρ ∗ f
∣∣> α

])
≤
(

A
|| f ||2

α

)2

if f ∈ L2 (Rn). (33.3.22)

Thus, F−1ρ∗ is weak type (1,1) and weak type (2,2). Also∣∣∣∣F−1
ρ ∗ f

∣∣∣∣
2 ≤ A || f ||2 if f ∈ L2 (Rn). (33.3.23)
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Proof: By Plancherel’s theorem F−1ρ is in L2 (Rn). If f ∈ L1 (Rn), then by Minkow-
ski’s inequality,

F−1
ρ ∗ f ∈ L2 (Rn) .

Now let g ∈ L2 (Rn). By Holder’s inequality,

∫ ∣∣F−1
ρ (x−y)

∣∣ |g(y)|dy≤
(∫ ∣∣F−1

ρ (x−y)
∣∣2 dy

)1/2(∫
|g(y)|2 dy

)1/2

< ∞

and so the following is well defined a.e.

F−1
ρ ∗g(x)≡

∫
F−1

ρ (x−y)g(y)dy

also, ∣∣F−1
ρ ∗g(x)−F−1

ρ ∗g
(
x′
)∣∣ ≤ ∫ ∣∣F−1

ρ (x−y)−F−1
ρ
(
x′−y

)∣∣ |g(y)|dy

≤
∣∣∣∣F−1

ρ−F−1
ρx′−x

∣∣∣∣ ||g||l2

and by continuity of translation in L2 (Rn), this shows x→ F−1ρ ∗ g(x) is continuous.
Therefore, F−1ρ∗ maps L1 (Rn)+L2 (Rn) to the space of measurable functions. (Continu-
ous functions are measurable.) It is clear that F−1ρ∗ is subadditive.

If φ ∈ G , Plancherel’s theorem implies as before,∣∣∣∣F−1
ρ ∗φ

∣∣∣∣
2 =

∣∣∣∣F (F−1
ρ ∗φ

)∣∣∣∣
2 =

(2π)n/2 ||ρFφ ||2 ≤ (2π)n/2 ||ρ||
∞
||φ ||2 . (33.3.24)

Now let f ∈ L2 (Rn) and let φ k ∈ G , with

||φ k− f ||2→ 0.

Then by Holder’s inequality,∫
F−1

ρ (x−y) f (y)dy = lim
k→∞

∫
F−1

ρ (x−y)φ k (y)dy

and so by Fatou’s lemma, Plancherel’s theorem, and 33.3.24,

∣∣∣∣F−1
ρ ∗ f

∣∣∣∣
2 =

(∫ ∣∣∣∣∫ F−1
ρ (x−y) f (y)dy

∣∣∣∣2 dx

)1/2

≤

≤ lim inf
k→∞

(∫ ∣∣∣∣∫ F−1
ρ (x−y)φ k (y)dy

∣∣∣∣2 dx

)1/2

= lim inf
k→∞

∣∣∣∣F−1
ρ ∗φ k

∣∣∣∣
2

≤ ||ρ||
∞
(2π)n/2 lim inf

k→∞

||φ k||2 = ||ρ||∞ (2π)n/2 || f ||2 .
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Thus, 33.3.23 holds with A = ||ρ||
∞
(2π)n/2. Consequently,

A || f ||2 ≥

(∫
[|F−1ρ∗ f |>α]

∣∣F−1
ρ ∗ f (x)

∣∣2 dx

)1/2

≥ αm
([∣∣F−1

ρ ∗ f
∣∣> α

])1/2

and so 33.3.22 follows.
It remains to prove 33.3.21 which holds for all f ∈G by Lemma 33.3.1. Let f ∈ L1 (Rn)

and let φ k→ f in L1 (Rn) ,φ k ∈G . Without loss of generality, assume that both f and F−1ρ

are Borel measurable. Therefore, by Minkowski’s inequality, and Plancherel’s theorem,∣∣∣∣F−1
ρ ∗φ k−F−1

ρ ∗ f
∣∣∣∣

2

≤

(∫ ∣∣∣∣∫ F−1
ρ (x−y)(φ k (y)− f (y))dy

∣∣∣∣2 dx

)1/2

≤ ||φ k− f ||1 ||ρ||2

which shows that F−1ρ ∗ φ k converges to F−1ρ ∗ f in L2 (Rn). Therefore, there exists a
subsequence such that the convergence is pointwise a.e. Then, denoting the subsequence
by k,

X[|F−1ρ∗ f |>α] (x)≤ lim inf
k→∞

X[|F−1ρ∗φ k|>α] (x) a.e. x.

Thus by Lemma 33.3.1 and Fatou’s lemma, there exists a constant, A, depending on C1,n,
and ||ρ||

∞
such that

m
([∣∣F−1

ρ ∗ f
∣∣> α

])
≤ lim inf

k→∞
m
([∣∣F−1

ρ ∗φ k

∣∣> α
])

≤ lim inf
k→∞

A
||φ k||1

α
= A
|| f ||1

α
.

This shows 33.3.21 and proves the lemma.

Theorem 33.3.3 Let ρ ∈ L2 (Rn)∩L∞ (Rn) and suppose∫
|x|≥2|y|

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤C1.

Then for each p ∈ (1,∞), there exists a constant, Ap, depending only on

p,n, ||ρ||
∞
,

and C1 such that for all φ ∈ G , ∣∣∣∣F−1
ρ ∗φ

∣∣∣∣
p ≤ Ap ||φ ||p .
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Proof: From Lemma 33.3.2, F−1ρ∗ is weak (1,1), weak (2,2), and maps

L1 (Rn)+L2 (Rn)

to measurable functions. Therefore, by the Marcinkiewicz interpolation theorem, there
exists a constant Ap depending only on p,C1,n, and ||ρ||

∞
for p ∈ (1,2], such that for

f ∈ Lp (Rn), and p ∈ (1,2], ∣∣∣∣F−1
ρ ∗ f

∣∣∣∣
p ≤ Ap || f ||p .

Thus the theorem is proved for these values of p. Now suppose p > 2. Then p′ < 2 where

1
p
+

1
p′

= 1.

By Plancherel’s theorem and Theorem 32.3.25,∫
F−1

ρ ∗φ (x)ψ (x)dx = (2π)n/2
∫

ρ (x)Fφ (x)Fψ (x)dx

=
∫

F
(
F−1

ρ ∗ψ
)

Fφdx

=
∫ (

F−1
ρ ∗ψ

)
(φ)dx.

Thus by the case for p ∈ (1,2) and Holder’s inequality,∣∣∣∣∫ F−1
ρ ∗φ (x)ψ (x)dx

∣∣∣∣ =

∣∣∣∣∫ (F−1
ρ ∗ψ

)
(φ)dx

∣∣∣∣
≤

∣∣∣∣F−1
ρ ∗ψ

∣∣∣∣
p′ ||φ ||p

≤ Ap′ ||ψ||p′ ||φ ||p .

Letting Lψ ≡
∫

F−1ρ ∗φ (x)ψ (x)dx, this shows that L∈Lp′ (Rn)′ and also that ||L||
(Lp′)

′ ≤

Ap′ ||φ ||pwhich implies by the Riesz representation theorem that F−1ρ ∗φ represents L and

||L||
(Lp′)

′ =
∣∣∣∣F−1

ρ ∗φ
∣∣∣∣

Lp ≤ Ap′ ||φ ||p

Since p′ = p/(p−1), this proves the theorem.
It is possible to give verifiable conditions on ρ which imply 33.3.20. The condition on

ρ which is presented here is the existence of a constant, C0 such that

C0 ≥ sup{|x||α| |Dα
ρ (x)| : |α| ≤ L, x ∈ Rn \{0}}, L > n/2. (33.3.25)

ρ ∈CL (Rn \{0}) where L is an integer.

Here α is a multi-index and |α| = ∑
n
i=1 α i. The condition says roughly that ρ is pretty

smooth away from 0 and all the partial derivatives vanish pretty fast as |x| →∞. Also recall
the notation

xα ≡ xα1
1 · · ·x

αn
n

where α = (α1 · · ·αn). For more general conditions, see [69].
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Lemma 33.3.4 Let 33.3.25 hold and suppose ψ ∈C∞
c (Rn \{0}). Then for each α, |α| ≤

L, there exists a constant C ≡C (α,n,ψ) independent of k such that

sup
x ∈Rn

|x||α|
∣∣∣Dα

(
ρ (x)ψ

(
2kx
))∣∣∣≤CC0.

Proof:

|x||α|
∣∣∣Dα

(
ρ (x)ψ

(
2kx
))∣∣∣≤ |x||α| ∑

β+γ=α

∣∣∣Dβ
ρ (x)

∣∣∣2k|γ|
∣∣∣Dγ

ψ

(
2kx
)∣∣∣

= ∑
β+γ=α

|x||β |
∣∣∣Dβ

ρ (x)
∣∣∣ ∣∣∣2kx

∣∣∣|γ| ∣∣∣Dγ
ψ

(
2kx
)∣∣∣

≤C0C (α,n) ∑
|γ|≤|α|

sup{|z||γ| |Dγ
ψ (z)| : z ∈ Rn}=C0C (α,n,ψ)

and this proves the lemma.

Lemma 33.3.5 There exists

φ ∈C∞
c
([

x :4−1 < |x|< 4
])
, φ (x)≥ 0,

and
∞

∑
k=−∞

φ

(
2kx
)
= 1

for each x ̸= 0.

Proof: Let
ψ ≥ 0, ψ = 1 on

[
2−1 ≤ |x| ≤ 2

]
,

spt(ψ)⊆
[
4−1 < |x|< 4

]
.

Consider

g(x) =
∞

∑
k=−∞

ψ

(
2kx
)
.

Then for each x, only finitely many terms are not equal to 0. Also, g(x)> 0 for all x ̸= 0. To
verify this last claim, note that for some k an integer, |x| ∈

[
2l ,2l+2

]
. Therefore, choose k an

integer such that 2k |x| ∈
[
2−1,2

]
. For example, let k =−l−1. This works because 2k |x| ∈[

2l2k,2l+22k
]
=
[
2l−l−1,2l+2−l−1

]
=
[
2−1,2

]
. Therefore, for this value of k, ψ

(
2kx
)
= 1

so g(x)> 0.
Now notice that

g(2rx) =
∞

∑
k=−∞

ψ

(
2k2rx

)
=

∞

∑
k=−∞

ψ

(
2kx
)
= g(x).
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Let φ (x)≡ ψ (x)g(x)−1. Then

∞

∑
k=−∞

φ

(
2kx
)
=

∞

∑
k=−∞

ψ
(
2kx
)

g(2kx)
= g(x)−1

∞

∑
k=−∞

ψ

(
2kx
)
= 1

for each x ̸= 0. This proves the lemma.
Now define

ρm (x)≡
m

∑
k=−m

ρ (x)φ

(
2kx
)
, γk (x)≡ ρ (x)φ

(
2kx
)
.

Let t > 0 and let |y| ≤ t. Consider the problem of estimating∫
|x|≥2t

∣∣F−1
γk (x−y)−F−1

γk (x)
∣∣dx. (33.3.26)

In the following estimates, C (a,b, · · · ,d) will denote a generic constant depending only on
the indicated objects, a,b, · · · ,d. For the first estimate, note that since |y| ≤ t, 33.3.26 is no
larger than

2
∫
|x|≥t

∣∣F−1
γk (x)

∣∣dx = 2
∫
|x|≥t

∣∣F−1
γk (x)

∣∣ |x|−L |x|L dx

≤ 2
(∫
|x|≥t
|x|−2L dx

)1/2(∫
|x|≥t
|x|2L ∣∣F−1

γk (x)
∣∣2 dx

)1/2

Using spherical coordinates and Plancherel’s theorem,

≤C (n,L) tn/2−L
(∫
|x|2L ∣∣F−1γk (x)

∣∣2 dx
)1/2

≤C (n,L) tn/2−L
(∫

∑
n
j=1

∣∣x j
∣∣2L ∣∣F−1γk (x)

∣∣2 dx
)1/2

≤C (n,L) tn/2−L
(

∑
n
j=1
∫ ∣∣∣F−1DL

j γk (x)
∣∣∣2 dx

)1/2

=C (n,L) tn/2−L
(

∑
n
j=1
∫

Sk

∣∣∣DL
j γk (x)

∣∣∣2 dx
)1/2

(33.3.27)

where
Sk ≡

[
x :2−2−k < |x|< 22−k

]
, (33.3.28)

a set containing the support of γk. Now from the definition of γk,∣∣DL
j γk (z)

∣∣= ∣∣∣DL
j

(
ρ (z)φ

(
2kz
))∣∣∣.

By Lemma 33.3.4, this is no larger than

C (L,n,φ)C0 |z|−L. (33.3.29)

It follows, using polar coordinates, that the last expression in 33.3.27 is no larger than

C (n,L,φ ,C0) tn/2−L
(∫

Sk

|z|−2L dz
)1/2

≤C (n,L,φ ,C0) tn/2−L· (33.3.30)
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(∫ 22−k

2−2−k
ρ

n−1−2Ldρ

)1/2

≤C (n,L,φ ,C0) tn/2−L2k(L−n/2).

Now estimate 33.3.26 in another way. The support of γk is in Sk, a bounded set, and so
F−1γk is differentiable. Therefore,∫

|x|≥2t

∣∣F−1
γk (x−y)−F−1

γk (x)
∣∣dx =

∫
|x|≥2t

∣∣∣∣∣
∫ 1

0

n

∑
j=1

D jF−1
γk (x−sy)y jds

∣∣∣∣∣dx

≤ t
∫
|x|≥2t

∫ 1

0

n

∑
j=1

∣∣D jF−1
γk (x−sy)

∣∣dsdx

≤ t
∫ n

∑
j=1

∣∣D jF−1
γk (x)

∣∣dx

≤ t
n

∑
j=1

(∫ (
1+
∣∣∣2−kx

∣∣∣2)−L

dx

)1/2

·

(∫ (
1+
∣∣∣2−kx

∣∣∣2)L ∣∣D jF−1
γk (x)

∣∣2 dx

)1/2

≤C (n,L) t2kn/2
n

∑
j=1

(∫ (
1+
∣∣∣2−kx

∣∣∣2)L ∣∣D jF−1
γk (x)

∣∣2 dx

)1/2

. (33.3.31)

Now consider the jth term in the last sum in 33.3.31.

∫ (
1+
∣∣2−kx

∣∣2)L ∣∣D jF−1γk (x)
∣∣2 dx≤

C (n,L)
∫

∑|α|≤L 2−2k|α|x2α
∣∣D jF−1γk (x)

∣∣2 dx
=C (n,L)∑|α|≤L 2−2k|α| ∫ x2α

∣∣F−1 (π jγk)(x)
∣∣2 dx

(33.3.32)

where π j (z)≡ z j. This last assertion follows from

D j

∫
e−ix·y

γk (y)dy =
∫

(−i)e−ix·yy jγk (y)dy.

Therefore, a similar computation and Plancherel’s theorem implies 33.3.32 equals

=C (n,L) ∑
|α|≤L

2−2k|α|
∫ ∣∣F−1Dα (π jγk)(x)

∣∣2 dx
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=C (n,L) ∑
|α|≤L

2−2k|α|
∫

Sk

∣∣Dα (z jγk (z))
∣∣2 dz (33.3.33)

where Sk is given in 33.3.28. Now∣∣Dα (z jγk (z))
∣∣ = 2−k

∣∣∣Dα

(
ρ (z)z j2k

φ

(
2kz
))∣∣∣

= 2−k
∣∣∣Dα

(
ρ (z)ψ j

(
2kz
))∣∣∣

where ψ j (z)≡ z jφ (z). By Lemma 33.3.4, this is dominated by

2−kC (α,n,φ , j,C0) |z|−|α| .

Therefore, 33.3.33 is dominated by

C (L,n,φ , j,C0) ∑
|α|≤L

2−2k|α|
∫

Sk

2−2k |z|−2|α| dz

≤ C (L,n,φ , j,C0) ∑
|α|≤L

2−2k|α|2−2k
(

2−2−k
)(−2|α|)(

22−k
)n

≤ C (L,n,φ , j,C0) ∑
|α|≤L

2−kn−2k

≤C (L,n,φ , j,C0)2−kn2−2k.

It follows that 33.3.31 is no larger than

C (L,n,φ ,C0) t2kn/22−kn/22−k =C (L,n,φ ,C0) t2−k. (33.3.34)

It follows from 33.3.34 and 33.3.30 that if |y| ≤ t,∫
|x|≥2t

∣∣F−1
γk (x−y)−F−1

γk (x)
∣∣dx≤

C (L,n,φ ,C0)min
(

t2−k,
(

2−kt
)n/2−L

)
.

With this inequality, the next lemma which is the desired result can be obtained.

Lemma 33.3.6 There exists a constant depending only on the indicated objects, C1 =
C (L,n,φ ,C0) such that when |y| ≤ t,∫

|x|≥2t

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤C1

∫
|x|≥2t

∣∣F−1
ρm (x−y)−F−1

ρm (x)
∣∣dx≤C1. (33.3.35)
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Proof: F−1ρ = limm→∞ F−1ρm in L2 (Rn). Let mk → ∞ be such that convergence is
pointwise a.e. Then if |y| ≤ t, Fatou’s lemma implies∫

|x|≥2t

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤

lim inf
l→∞

∫
|x|≥2t

∣∣∣F−1
ρml

(x−y)−F−1
ρml

(x)
∣∣∣dx

≤ lim inf
l→∞

ml

∑
k=−ml

∫
|x|≥2t

∣∣F−1
γk (x−y)−F−1

γk (x)
∣∣dx

≤C (L,n,φ ,C0)
∞

∑
k=−∞

min
(

t2−k,
(

2−kt
)n/2−L

)
. (33.3.36)

Now consider the sum in 33.3.36,
∞

∑
k=−∞

min
(

t2−k,
(

2−kt
)n/2−L

)
. (33.3.37)

t2 j = min
(

t2 j,
(
2 jt
)n/2−L

)
exactly when t2 j ≤ 1. This occurs if and only if

j ≤− ln(t)/ ln(2)

Therefore 33.3.37 is no larger than

∑
j≤− ln(t)/ ln(2)

2 jt + ∑
j≥− ln(t)/ ln(2)

(
2 jt
)n/2−L

.

Letting a = L−n/2, this equals

t ∑
k≥ln(t)/ ln(2)

2−k + t−α
∑

j≥− ln(t)/ ln(2)

(
2−a) j

≤ 2t
(

1
2

)ln(t)/ ln(2)

+ t−a
(

1
2a

)− ln(t)/ ln(2)

= 2t
(

1
2

)log2(t)

+ t−a
(

1
2a

)− log2(t)

= 2+1 = 3.

Similarly, 33.3.35 holds. This proves the lemma.
Now it is possible to prove Mihlin’s theorem.

Theorem 33.3.7 (Mihlin’s theorem) Suppose ρ satisfies

C0 ≥ sup{|x||α| |Dα
ρ (x)| : |α| ≤ L, x ∈ Rn \{0}},

where L is an integer greater than n/2 and ρ ∈CL (Rn \{0}). Then for every p > 1, there
exists a constant Ap depending only on p, C0, φ , n, and L, such that for all ψ ∈ G ,∣∣∣∣F−1

ρ ∗ψ
∣∣∣∣

p ≤ Ap ||ψ||p.
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Proof: Since ρm satisfies 33.3.35, and is obviously in L2 (Rn)∩ L∞ (Rn), Theorem
33.3.3 implies there exists a constant Ap depending only on p,n, ||ρm||∞, and C1 such that
for all ψ ∈ G and p ∈ (1,∞), ∣∣∣∣F−1

ρm ∗ψ
∣∣∣∣

p ≤ Ap ||ψ||p.

Now ||ρm||∞ ≤ ||ρ||∞ because

|ρm (x)| ≤ |ρ (x)|
m

∑
k=−m

φ

(
2kx
)
≤ |ρ (x)|. (33.3.38)

Therefore, since C1 =C1 (L,n,φ ,C0) and C0 ≥ ||ρ||∞,∣∣∣∣F−1
ρm ∗ψ

∣∣∣∣
p ≤ Ap (L,n,φ ,C0, p) ||ψ||p .

In particular, Ap does not depend on m. Now, by 33.3.38, the observation that ρ ∈ L∞ (Rn),
limm→∞ ρm (y) = ρ (y) and the dominated convergence theorem, it follows that for θ ∈ G .∣∣(F−1

ρ ∗ψ
)
(θ)
∣∣≡ ∣∣∣∣(2π)n/2

∫
ρ (x)Fψ (x)F−1

θ (x)dx
∣∣∣∣

= lim
m→∞

∣∣(F−1
ρm ∗ψ

)
(θ)
∣∣≤ lim

m→∞
sup
∣∣∣∣F−1

ρm ∗ψ
∣∣∣∣

p ||θ ||p′

≤ Ap (L,n,φ ,C0, p) ||ψ||p ||θ ||p′ .

Hence F−1ρ ∗ψ ∈ Lp (Rn) and
∣∣∣∣F−1ρ ∗ψ

∣∣∣∣
p ≤ Ap ||ψ||p. This proves the theorem.

33.4 Singular Integrals
If K ∈ L1 (Rn) then when p > 1,

||K ∗ f ||p ≤ || f ||p .

It turns out that some meaning can be assigned to K ∗ f for some functions K which are
not in L1. This involves assuming a certain form for K and exploiting cancellation. The
resulting theory of singular integrals is very useful. To illustrate, an application will be
given to the Helmholtz decomposition of vector fields in the next section. Like Mihlin’s
theorem, the theory presented here rests on Theorem 33.3.3, restated here for convenience.

Theorem 33.4.1 Let ρ ∈ L2 (Rn)∩L∞ (Rn) and suppose∫
|x|≥2|y|

∣∣F−1
ρ (x−y)−F−1

ρ (x)
∣∣dx≤C1.

Then for each p ∈ (1,∞), there exists a constant, Ap, depending only on

p,n, ||ρ||
∞
,

and C1 such that for all φ ∈ G , ∣∣∣∣F−1
ρ ∗φ

∣∣∣∣
p ≤ Ap ||φ ||p .
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Lemma 33.4.2 Suppose

K ∈ L2 (Rn) , ||FK||
∞
≤ B < ∞, (33.4.39)

and ∫
|x|>2|y|

|K (x−y)−K (x)|dx≤ B.

Then for all p > 1, there exists a constant, A(p,n,B), depending only on the indicated
quantities such that

||K ∗ f ||p ≤ A(p,n,B) || f ||p
for all f ∈ G .

Proof: Let FK = ρ so F−1ρ = K. Then from 33.4.39 ρ ∈ L2 (Rn)∩L∞ (Rn) and K =
F−1ρ . By Theorem 33.3.3 listed above,

||K ∗ f ||p =
∣∣∣∣F−1

ρ ∗ f
∣∣∣∣

p ≤ A(p,n,B) || f ||p

for all f ∈ G . This proves the lemma.
The next lemma provides a situation in which the above conditions hold.

Lemma 33.4.3 Suppose
|K (x)| ≤ B |x|−n , (33.4.40)∫

a<|x|<b
K (x)dx = 0, (33.4.41)

∫
|x|>2|y|

|K (x−y)−K (x)|dx≤ B. (33.4.42)

Define

Kε (x) =
{

K (x) if |x| ≥ ε,
0 if |x|< ε.

(33.4.43)

Then there exists a constant C (n) such that∫
|x|>2|y|

|Kε (x−y)−Kε (x)|dx≤C (n)B (33.4.44)

and
||FKε ||∞ ≤C (n)B. (33.4.45)

Proof: In the argument, C (n) will denote a generic constant depending only on n. Con-
sider 33.4.44 first. The integral is broken up according to whether |x| , |x−y|> ε.

|x| > ε > ε < ε < ε

|x−y| > ε < ε < ε > ε
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∫
|x|≥2|y| |Kε (x−y)−Kε (x)|dx =∫

|x|≥2|y|,|x−y|>ε,|x|<ε

|Kε (x−y)−Kε (x)|dx+

+
∫

|x|≥2|y|,|x−y|<ε,|x|≥ε

|Kε (x−y)−Kε (x)|dx+

∫
|x|≥2|y|,|x−y|>ε,|x|>ε

|Kε (x−y)−Kε (x)|dx+

+
∫

|x|≥2|y|,|x−y|<ε,|x|<ε

|Kε (x−y)−Kε (x)|dx.

(33.4.46)

Now consider the terms in the above expression. The last integral in 33.4.46 equals 0 from
the definition of Kε . The third integral on the right is no larger than B by the definition of
Kε and 33.4.42. Consider the second integral on the right. This integral is no larger than∫

|x|≥2|y|,|x|≥ε,|x−y|<ε

B |x|−n dx.

Now |x| ≤ |y|+ ε ≤ |x|/2+ ε and so |x|< 2ε . Thus this is no larger than∫
ε≤|x|≤2ε

B |x|−n dx = B
∫

Sn−1

∫ 2ε

ε

ρ
n−1 1

ρn dρdσ ≤ BC (n) ln2 =C (n)B.

It remains to estimate the first integral on the right in 33.4.46. This integral is bounded by∫
|x|≥2|y|,|x−y|>ε,|x|<ε

B |x−y|−n dx

In the integral above, |x| < ε and so |x−y| − |y| < ε. Therefore, |x−y| < ε + |y| < ε +
|x|/2 < ε +ε/2 = (3/2)ε. Hence ε ≤ |x−y| ≤ (3/2) |x−y|. Therefore, the above integral
is no larger than∫ (3/2)ε

ε

B |z|−n dz = B
∫

Sn−1

∫ (3/2)ε

ε

ρ
−1dρdσ = BC (n) ln(3/2) .

This establishes 33.4.44.
Now it remains to show 33.4.45, a statement about the Fourier transforms of Kε . Fix ε

and let y ̸= 0 also be given.

KεR (y)≡
{

Kε (y) if |y|< R,
0 if |y| ≥ R

where R > 3π

|y| . (The 3 here isn’t important. It just needs to be larger than 1.) Then

|FKεR (y)| ≤

∣∣∣∣∣∣∣
∫

0<|x|<3π|y|−1

Kε (x)e−ix·ydx

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx

∣∣∣∣∣∣∣
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= A+B. (33.4.47)

Consider A. By 33.4.41 ∫
ε<|x|<3π|y|−1

Kε (x)dx = 0

and so

A =

∣∣∣∣∣∣∣
∫

ε<|x|<3π|y|−1

Kε (x)
(
e−ix·y−1

)
dx

∣∣∣∣∣∣∣
Now ∣∣e−ix·y−1

∣∣= |2−2cos(x ·y)|1/2 ≤ 2 |x ·y| ≤ 2 |x| |y|

so, using polar coordinates, this expression is no larger than

2B
∫

ε<|x|<3π|y|−1

|x|−n |x| |y|dx≤C (n)B |y|
∫ 3π/|y|

ε

dρ ≤ BC (n).

Next, consider B. This estimate is based on the trick which follows. Let

z≡ yπ/ |y|2

so that
|z|= π/ |y| , z ·y =π.

Then ∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx = 1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx

− 1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−i(x+z)·ydx.
(33.4.48)

Here is why. Note in the second of these integrals,

−1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−i(x+z)·ydx

= −1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ye−iz·ydx

= −1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ye−iπ dx

=
1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx.
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Then changing the variables in 33.4.48,,

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx

=
1
2

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx

−1
2

∫
3π|y|−1<|x−z|≤R

Kε (x− z)e−ix·ydx.

Thus

∫
3π|y|−1<|x|≤R

Kε (x)e−ix·ydx =

1
2
∫
|x|≤R

Kε (x)e−ix·ydx− 1
2

∫
|x−z|≤R

Kε (x− z)e−ix·ydx

+ 1
2

∫
|x−z|≤3π|y|−1

Kε (x− z)e−ix·ydx− 1
2

∫
|x|≤3π|y|−1

Kε (x)e−ix·ydx.

(33.4.49)

Since |z| = π/ |y|, it follows |z| = π

|y| <
3π

|y| < R and so the following picture describes

the situation. In this picture, the radius of each ball equals either R or 3π |y|−1 and each
integral above is taken over one of the two balls in the picture, either the one centered at 0
or the one centered at z.

0 z

To begin with, consider the integrals which involve Kε (x− z).

∫
|x−z|≤R

Kε (x− z)e−ix·ydx

=
∫
|x|≤R

Kε (x− z)e−ix·ydx

−
∫

|x−z|>R,|x|<R
Kε (x− z)e−ix·ydx

+
∫

|x−z|<R,|x|>R
Kε (x− z)e−ix·ydx.

(33.4.50)
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Look at the picture. Similarly, ∫
|x−z|≤3π|y|−1

Kε (x− z)e−ix·ydx

=
∫

|x|≤3π|y|−1
Kε (x− z)e−ix·ydx

−
∫

|x−z|>3π|y|−1,|x|<3π|y|−1
Kε (x− z)e−ix·ydx+∫

|x−z|<3π|y|−1,|x|>3π|y|−1
Kε (x− z)e−ix·ydx.

(33.4.51)

The last integral in 33.4.50 is taken over a set that is contained in

B(0,R+ |z|)\B(0,R)

illustrated in the following picture as the region between the small ball centered at 0 and
the big ball which surrounds the two small balls

0 z

and so this integral is dominated by

B
(

1
(R−|z|)n

)
α (n)((R+ |z|)n−Rn),

an expression which converges to 0 as R→ ∞. Similarly, the second integral on the right
in 33.4.50 converges to zero as R→ ∞. Now consider the last two integrals in 33.4.51.
Letting 3π |y|−1 play the role of R and using |z| = π/ |y|, these are each dominated by an
expression of the form

B

 1(
3π |y|−1−|z|

)n

α (n)
((

3π |y|−1 + |z|
)n
−
(

3π |y|−1
)n)

= B

 1(
3π |y|−1−π |y|−1

)n

α (n) ·

((
3π |y|−1 +π |y|−1

)n
−
(

3π |y|−1
)n)
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= α (n)B
|y|n

(2π)n
1
|y|n

((4π)n− (3π)n) =C (n)B.

Returning to 33.4.49, the terms involving x−y have now been estimated. Thus, col-
lecting the terms which have not yet been estimated along with those that have,

B =

∣∣∣∣∣∣∣
∫

3π|y|−1<|x|≤R

Kε (x)e−ix·ydx

∣∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣∣
∫
|x|<R

Kε (x)e−ix·ydx−
∫
|x|<R

Kε (x− z)e−ix·ydx

+
∫

|x|<3π|y|−1

Kε (x− z)e−ix·ydx−
∫

|x|<3π|y|−1

Kε (x)e−ix·ydx

∣∣∣∣∣∣∣
+C (n)B+g(R)

where g(R)→ 0 as R→ ∞. Using |z|= π/ |y| again,

B≤1
2

∫
3|z|<|x|<R

|Kε (x)−Kε (x− z)|dx+C (n)B+g(R).

But the integral in the above is dominated by C (n)B by 33.4.44 which was established
earlier. Therefore, from 33.4.47,

|FKεR| ≤C (n)B+g(R)

where g(R)→ 0.
Now KεR→ Kε in L2 (Rn) because

||KεR−Kε ||L2(Rn) ≤ B
∫
|x|>R

1

|x|2n dx

= B
∫

Sn−1

∫
∞

R

1
ρn+1 dρdσ ,

which converges to 0 as R→ ∞ and so FKεR→ FKε in L2 (Rn) by Plancherel’s theorem.
Therefore, by taking a subsequence, still denoted by R, FKεR (y)→ FKε (y) a.e. which
shows

|FKε (y)| ≤C (n)B a.e.

This proves the lemma.

Corollary 33.4.4 Suppose 33.4.40 - 33.4.42 hold. Then if g ∈ C1
c (Rn), Kε ∗ g converges

uniformly and in Lp (Rn) as ε → 0.
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Proof:
Kε ∗g(x)≡

∫
Kε (y)g(x−y)dy.

Let 0 < η < ε. Then since g ∈ C1
c (Rn) , there exists a constant, K such that K |u−v| ≥

|g(u)−g(v)| for all u,v ∈ Rn.∣∣Kε ∗g(x)−Kη ∗g(x)
∣∣ ≤ BK

∫
η<|y|<ε

1
|y|n
|y|dy

= BK
∫

Sn−1

∫
ε

η

dρdσ =Cn |ε−η | .

This proves the corollary.

Theorem 33.4.5 Suppose 33.4.40 - 33.4.42. Then for Kε given by 33.4.43 and p > 1, there
exists a constant A(p,n,B) such that for all f ∈ Lp (Rn),

||Kε ∗ f ||p ≤ A(p,n,B) || f ||p . (33.4.52)

Also, for each f ∈ Lp (Rn),
T f ≡ lim

ε→0
Kε ∗ f (33.4.53)

exists in Lp (Rn) and for all f ∈ Lp (Rn),

||T f ||p ≤ A(p,n,B) || f ||p . (33.4.54)

Thus T is a linear and continuous map defined on Lp (Rn) for each p > 1.

Proof: From 33.4.40 it follows Kε ∈ Lp′ (Rn)∩L2 (Rn) where, as usual, 1/p+1/p′= 1.
By continuity of translation in Lp′ (Rn), x→ Kε ∗ f (x) is a continuous function.By Lemma
33.4.3, ||FKε ||∞ ≤C (n)B for all ε . Therefore, by Lemma 33.4.2,

||Kε ∗g||p ≤ A(p,n,B) ||g||p

for all g ∈ G . Now let f ∈ Lp (Rn) and gk→ f in Lp (Rn) where gk ∈ G . Then

|Kε ∗ f (x)−Kε ∗gk (x)| ≤
∫
|Kε (x−y)| |gk (y)− f (y)|dy

≤ ||Kε ||p′ ||gk− f ||p

which shows that Kε ∗gk (x)→ Kε ∗ f (x) pointwise and so by Fatou’s lemma,

||Kε ∗ f ||p ≤ lim inf
k→∞

||Kε ∗gk||p ≤ lim inf
k→∞

A(p,n,B) ||gk||p
= A(p,n,B) || f ||p .

This verifies 33.4.52.
To verify 33.4.53, let δ > 0 be given and let

f ∈ Lp (Rn) ,g ∈C∞
c (Rn) .
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∣∣∣∣Kε ∗ f −Kη ∗ f
∣∣∣∣

p ≤ ||Kε ∗ ( f −g)||p +
∣∣∣∣Kε ∗g−Kη ∗g

∣∣∣∣
p

+
∣∣∣∣Kη ∗ ( f −g)

∣∣∣∣
p

≤ 2A(p,n,B) || f −g||p +
∣∣∣∣Kε ∗g−Kη ∗g

∣∣∣∣
p .

Choose g such that 2A(p,n,B) || f −g||p ≤ δ/2. Then if ε,η are small enough, Corollary
33.4.4 implies the last term is also less than δ/2. Thus, limε→0 Kε ∗ f exists in Lp (Rn).
Let T f be the element of Lp (Rn) to which it converges. Then 33.4.54 follows and T is
obviously linear because

T (a f +bg) = lim
ε→0

Kε ∗ (a f +bg) = lim
ε→0

(aKε ∗ f +bKε ∗g)

= aT f +bT g.

This proves the theorem.
When do conditions 33.4.40-33.4.42 hold? It turns out this happens for K given by the

following.

K (x)≡ Ω(x)
|x|n

, (33.4.55)

where
Ω(λx) = Ω(x) for all λ > 0, (33.4.56)

Ω is Lipschitz on Sn−1,∫
Sn−1

Ω(x)dσ = 0. (33.4.57)

Theorem 33.4.6 For K given by 33.4.55 - 33.4.57, it follows there exists a constant B such
that

|K (x)| ≤ B |x|−n, (33.4.58)∫
a<|x|<b

K (x)dx = 0, (33.4.59)∫
|x|>2|y|

|K (x−y)−K (x)|dx≤ B. (33.4.60)

Consequently, the conclusions of Theorem 33.4.5 hold also.

Proof: 33.4.58 is obvious. To verify 33.4.59,∫
a<|x|<b

K (x)dx =
∫ b

a

∫
Sn−1

Ω(ρw)

ρn ρ
n−1dσdρ

=
∫ b

a

1
ρ

∫
Sn−1

Ω(w)dσdρ = 0.

It remains to show 33.4.60.

K (x−y)−K (x) = |x−y|−n
(

Ω

(
x−y
|x−y|

)
−Ω

(
x
|x|

))
+Ω(x)

(
1

|x−y|n
− 1
|x|n

)
(33.4.61)
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where 33.4.56 was used to write Ω

(
z
|z|

)
= Ω(z). The first group of terms in 33.4.61 is

dominated by

|x−y|−n Lip(Ω)

∣∣∣∣ x−y
|x−y|

− x
|x|

∣∣∣∣
and an estimate is required for |x|> 2 |y|. Since |x|> 2 |y|,

|x−y|−n ≤ (|x|− |y|)−n ≤ 2n

|x|n
.

Also ∣∣∣∣ x−y
|x−y|

− x
|x|

∣∣∣∣= ∣∣∣∣ (x−y) |x|−x |x−y|
|x| |x−y|

∣∣∣∣
≤
∣∣∣∣ (x−y) |x|−x |x−y|

|x|(|x|− |y|)

∣∣∣∣≤ ∣∣∣∣ (x−y) |x|−x |x−y|
|x|(|x|/2)

∣∣∣∣
=

2

|x|2
|x |x|−y |x|−x |x−y||= 2

|x|2
|x(|x|− |x−y|)−y |x||

≤ 2

|x|2
|x| ||x|− |x−y||+ |y| |x| ≤ 2

|x|2
(|x| |x−(x−y)|+ |y| |x|)

≤ 4

|x|2
|x| |y|= 4

|y|
|x|

.

Therefore, ∫
|x|>2|y|

|x−y|−n
∣∣∣∣Ω( x−y

|x−y|

)
−Ω

(
x
|x|

)∣∣∣∣dx

≤ 4(2n)
∫
|x|>2|y|

1
|x|n
|y|
|x|

dxLip(Ω)

=C (n,LipΩ)
∫
|x|>2|y|

|y|
|x|n+1 dx

=C (n,LipΩ)
∫
|u|>2

1

|u|n+1 du. (33.4.62)

It remains to consider the second group of terms in 33.4.61 when |x|> 2 |y|.∣∣∣∣ 1
|x−y|n

− 1
|x|n

∣∣∣∣= ∣∣∣∣ |x|n−|x−y|n

|x−y|n |x|n
∣∣∣∣

≤ 2n

|x|2n ||x|
n−|x−y|n|

≤ 2n

|x|2n |y|
[
|x|n−1 + |x|n−2 |x−y|+

· · ·+ |x| |x−y|n−2 + |x−y|n−1
]
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≤ 2n |y|C (n) |x|n−1

|x|2n =
C (n)2n |y|
|x|n+1 .

Thus ∫
|x|>2|y|

∣∣∣∣Ω(x)
(

1
|x−y|n

− 1
|x|n

)∣∣∣∣dx

≤ C (n)
∫
|x|>2|y|

|y|
|x|n+1 dx

≤C (n)
∫
|u|>2

1

|u|n+1 du. (33.4.63)

From 33.4.62 and 33.4.63,∫
|x|>2|y|

|K (x−y)−K (x)|dx≤C (n,LipΩ).

This proves the theorem.

33.5 Helmholtz Decompositions
It turns out that every vector field which has its components in Lp can be written as a sum
of a gradient and a vector field which has zero divergence. This is a very remarkable result,
especially when applied to vector fields which are only in Lp. Recall that for u a function
of n variables, ∆u = ∑

n
i=1

∂ 2u
∂x2

i
.

Definition 33.5.1 Define

Φ(y)≡

{
− 1

a1
ln |y| , if n = 2,

1
(n−2)an−1

|y|2−n , if n > 2.

where ak denotes the area of the unit sphere, Sk.

Then it is routine to verify ∆Φ = 0 away from 0. In fact, if n > 2,

Φ,ii (y) =Cn

[
1
|y|n
−n

y2
i

|y|n+2

]
, Φ,i j (y) =Cn

yiy j

|y|n+2 , (33.5.64)

while if n = 2,

Φ,22 (y) =C2
y2

1− y2
2(

y2
1 + y2

2

)2 , Φ,11 (y) =C2
y2

2− y2
1(

y2
1 + y2

2

)2 ,

Φ,i j (y) =C2
y1y2(

y2
1 + y2

2

)2 .

Also,
∇Φ(y) =

−y
an−1 |y|n

. (33.5.65)

In the above the subscripts following a comma denote partial derivatives.
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Lemma 33.5.2 For n≥ 2

Φ,i j (y) =
Ωi j (y)
|y|n

where
Ωi j is Lipschitz continuous on Sn−1, (33.5.66)

Ωi j (λy) = Ωi j (y), (33.5.67)

for all λ > 0, and ∫
Sn−1

Ωi j (y)dσ = 0. (33.5.68)

Proof:
Proof: The case n = 2 is left to the reader. 33.5.66 and 33.5.67 are obvious from the

above descriptions. It remains to verify 33.5.68. If n ≥ 3 and i ̸= j, then this formula is
also clear from 33.5.64. Thus consider the case when n≥ 3 and i = j. By symmetry,

I ≡
∫

Sn−1
1−ny2

i dσ =
∫

Sn−1
1−ny2

jdσ .

Hence

nI =
n

∑
i=1

∫
Sn−1

1−ny2
i dσ =

∫
Sn−1

(
n−n∑

i
y2

i

)
dσ

=
∫

Sn−1
(n−n)dσ = 0.

This proves the lemma.
Let U be a bounded open set locally on one side of its boundary having Lipschitz

boundary so the divergence theorem holds and let B = B(0,R) where

B⊇U−U ≡ {x−y : x ∈U,y ∈U}

Let f ∈C∞
c (U) and define for x ∈U ,

u(x)≡
∫

B
Φ(y) f (x−y)dy =

∫
U

Φ(x−y) f (y)dy.

Let h(y) = f (x−y) . Then since Φ is in L1 (B),

∆u(x) =
∫

B
Φ(y)∆ f (x−y)dy =

∫
B

Φ(y)∆h(y)dy

=
∫

B\B(0,ε)
∇ · (∇h(y)Φ(y))−∇Φ(y) ·∇h(y)dy

+
∫

B(0,ε)
Φ(y)∆h(y)dy.
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The last term converges to 0 as ε → 0 because Φ is in L1 and ∆h is bounded. Since
spt(h)⊆ B, the divergence theorem implies

∆u(x) =−
∫

∂B(0,ε)
Φ(y)∇h(y) ·ndσ −

∫
B\B(0,ε)

∇Φ(y) ·∇h(y)dy+ e(ε) (33.5.69)

where here and below, e(ε)→ 0 as ε→ 0. The first term in 33.5.69 converges to 0 as ε→ 0
because ∣∣∣∣∫

∂B(0,ε)
Φ(y)∇h(y) ·ndσ

∣∣∣∣≤{ Cnh
1

εn−2 εn−1 =Cnhε if n > 2
Ch (lnε)ε if n = 2

and since ∆Φ(y) = 0,
∇Φ(y) ·∇h(y) = ∇ · (∇Φ(y)h(y)).

Consequently

∆u(x) =−
∫

B\B(0,ε)
∇ · (∇Φ(y)h(y))dy+ e(ε).

Thus, by the divergence theorem, 33.5.65, and the definition of h above,

∆u(x) =
∫

∂B(0,ε)
f (x−y)∇Φ(y) ·ndσ + e(ε)

=
∫

∂B(0,ε)
f (x−y)

(
− y

an−1 |y|n
)
·
(
− y
|y|

)
dσ + e(ε)

= −
(∫

∂B(0,ε)
f (x−y)dσ (y)

)
1

an−1εn−1 + e(ε).

Letting ε → 0,
−∆u(x) = f (x).

This proves the following lemma.

Lemma 33.5.3 Let U be a bounded open set in Rn with Lipschitz boundary and let B ⊇
U−U where B = B(0,R). Let f ∈C∞

c (U). Then for x ∈U,∫
B

Φ(y) f (x−y)dy =
∫

U
Φ(x−y) f (y)dy,

and it follows that if u is given by one of the above formulas, then for all x ∈U,

−∆u(x) = f (x).

Theorem 33.5.4 Let f ∈ Lp (U). Then there exists u ∈ Lp (U) whose weak derivatives are
also in Lp (U) such that in the sense of weak derivatives,

−∆u = f .

It is given by

u(x) =
∫

B
Φ(y) f̃ (x−y)dy =

∫
U

Φ(x−y) f (y)dy (33.5.70)

where f̃ denotes the zero extension of f off of U.
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Proof: Let f ∈ Lp (U) and let fk ∈C∞
c (U) , || fk− f ||Lp(U)→ 0, and let uk be given by

33.5.70 with fk in place of f . Then by Minkowski’s inequality,

||u−uk||Lp(U) =

(∫
U

(∫
B

Φ(y)
∣∣∣ f̃ (x−y)− fk (x−y)

∣∣∣dy
)p

dx
)1/p

≤

(∫
B
|Φ(y)|

(∫
U

∣∣∣ f̃ (x−y)− fk (x−y)
∣∣∣p dx

)1/p

dy

)
≤

∫
B
|Φ(y)|dy || f − fk||Lp(U) =C (B) || f − fk||Lp(U)

and so uk→ u in Lp (U). Also

uk,i (x) =
∫

U
Φ,i (x−y) fk (y)dy =

∫
B

fk (x−y)Φ,i (y)dy.

Now let
wi ≡

∫
B

f̃ (x−y)Φ,i (y)dy. (33.5.71)

and since Φ,i ∈ L1 (B), it follows from Minkowski’s inequality that∣∣∣∣uk,i−wi
∣∣∣∣

Lp(U)

≤
(∫

U

(∫
B

∣∣∣ fk (x−y)− f̃ (x−y)
∣∣∣ |Φ,i (y)|dy

)p

dx
)1/p

≤
∫

B
|Φ,i (y)|

(∫
U

∣∣∣ fk (x−y)− f̃ (x−y)
∣∣∣p dx

)1/p

dy

≤ C (B) || fk− f ||Lp(U)

and so uk,i→ wi in Lp (U).
Now let φ ∈C∞

c (U). Then∫
U

wiφdx =− lim
k→∞

∫
U

ukφ ,idx =−
∫

U
uφ ,idx.

Thus u,i = wi ∈ Lp (Rn) and so if φ ∈C∞
c (U),∫

U
f φdx = lim

k→∞

∫
U

fkφdx = lim
k→∞

∫
U

∇uk ·∇φdx =
∫

U
∇u ·∇φdx

and so −∆u = f as claimed. This proves the theorem.
One could also ask whether the second weak partial derivatives of u are in Lp (U). This

is where the theory singular integrals is used. Recall from 33.5.70 and 33.5.71 along with
the argument of the above lemma, that if u is given by 33.5.70, then u,i is given by 33.5.71
which equals ∫

U
Φ,i (x−y) f (y)dy.
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Lemma 33.5.5 Let f ∈ Lp (U) and let

wi (x)≡
∫

U
Φ,i (x−y) f (y)dy.

Then wi, j ∈ Lp (U) for each j = 1 · · ·n and the map f → wi, j is continuous and linear on
Lp (U).

Proof: First let f ∈C∞
c (U). For such f ,

wi (x) =
∫

U
Φ,i (x−y) f (y)dy =

∫
Rn

Φ,i (x−y) f (y)dy

=
∫
Rn

Φ,i (y) f (x−y)dy =
∫

B
Φ,i (y) f (x−y)dy

and

wi, j (x) =
∫

B
Φ,i (y) f, j (x−y)dy

=
∫

B\B(0,ε)
Φ,i (y) f, j (x−y)dy+

∫
B(0,ε)

Φ,i (y) f, j (x−y)dy.

The second term converges to 0 because f, j is bounded and by 33.5.65, Φ,i ∈ L1
loc. Thus

wi, j (x) =
∫

B\B(0,ε)
Φ,i (y) f, j (x−y)dy+ e(ε)

=
∫

B\B(0,ε)
−(Φ,i (y) f (x−y)), j +Φ,i j (y) f (x−y)dy+ e(ε)

where e(ε)→ 0 as ε → 0. Using the divergence theorem, this yields

wi, j (x) =
∫

∂B(0,ε)
Φ,i (y) f (x−y)n jdσ +

∫
B\B(0,ε)

Φ,i j (y) f (x−y)dy+ e(ε).

Consider the first term on the right. This term equals, after letting y = εz,

ε
n−1

∫
∂B(0,1)

Φ,i (εz) f (x−εz)n jdσ = Cnε
n−1

∫
∂B(0,1)

ε
1−nziz j f (x−εz)dσ (z)

= Cn

∫
∂B(0,1)

ziz j f (x−εz)dσ (z)

and this converges to 0 if i ̸= j and it converges to

Cn f (x)
∫

∂B(0,1)
z2

i dσ (z)

if i = j. Thus

wi, j (x) =Cnδ i j f (x)+
∫

B\B(0,ε)
Φ,i j (y) f (x−y)dy+ e(ε).
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Letting

Φ
ε
i j ≡

{
0 if |y|< ε,
Φ,i j (y) if |y| ≥ ε,

it follows
wi, j (x) =Cnδ i j f (x)+Φ

ε
i j ∗ f̃ (x)+ e(ε) .

By the theory of singular integrals, there exists a continuous linear map,

Ki j ∈L (Lp (Rn) ,Lp (Rn))

such that
Ki j f ≡ lim

ε→0
Φ

ε
i j ∗ f .

Therefore, letting ε → 0,
wi, j =Cnδ i j f +Ki j f̃

whenever f ∈C∞
c (U).

Now let f ∈ Lp (U), let
|| fk− f ||Lp(U)→ 0,

where fk ∈C∞
c (U), and let

wk
i (x) =

∫
U

Φ,i (x−y) fk (y)dy.

Then it follows as before that wk
i → wi in Lp (U) and

wk
i, j =Cnδ i j fk +Ki j f̃k.

Now let φ ∈C∞
c (U).

wi, j (φ) ≡ −
∫

U
wiφ , jdx =− lim

k→∞

∫
U

wk
i φ , jdx

= lim
k→∞

∫
U

wk
i, jφdx = lim

k→∞

∫
U

(
Cnδ i j f̃k +Ki j f̃k

)
φdx

=
∫

U

(
Cnδ i j f̃ +Ki j f̃

)
φdx.

It follows
wi, j =Cnδ i j f̃ +Ki j f̃

and this proves the lemma.

Corollary 33.5.6 In the situation of Theorem 33.5.4, all weak derivatives of u of order 2
are in Lp (U) and also f → u,i j is a continuous map.
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Proof:
u,i (x) =

∫
U

Φ,i (x−y) f (y)dy

and so u,i j ∈ Lp (U) and f → u,i j is continuous by Lemma 33.5.5.
With this preparation, it is possible to consider the Helmholtz decomposition. Let F ∈

Lp (U ;Rn) and define

φ (x)≡
∫

U
∇Φ(x−y) ·F(y)dy. (33.5.72)

Then by Lemma 33.5.5,
φ , j =CnF̃j +∑

i
Ki jF̃i ∈ Lp (Rn)

and the mapping F→∇φ is continuous from Lp (U ;Rn) to Lp (U ;Rn).
Now suppose F ∈C∞

c (U ;Rn). Then

φ (x) =
∫

U

n

∑
i=1
− ∂

∂yi (Φ(x−y)Fi (y))+Φ(x−y)∇ ·F(y)dy

=
∫

U
Φ(x−y)∇ ·F(y)dy

and so by Lemma 33.5.3,
∇ ·∇φ = ∆φ =−∇ ·F.

This continues to hold in the sense of weak derivatives if F is only in Lp (U ;Rn) because
by Minkowski’s inequality and 33.5.72 the map F→φ is continuous. Also note that for F
∈C∞

c (U ;Rn),

φ (x) =
∫

B
Φ(y)∇ ·F(x−y)dy.

Next define π : Lp (U ;Rn)→ Lp (U ;Rn) by

πF =−∇φ , φ (x) =
∫

U
∇Φ(x−y) ·F(y)dy.

It was already shown that π is continuous, linear, and ∇ ·πF =∇ ·F. It is also true that π is
a projection. To see this, let F ∈C∞

c (U ;Rn). Then for B large enough,

π
2F(x) = −∇

∫
B

Φ(z)∇ ·πF(x− z)dz

= −∇

∫
B

Φ(z)∇ ·∇
∫

B
Φ(w)∇ ·F(x− z−w)dwdz

= −∇

∫
B

Φ(z)∇ ·F(x− z)dz = πF(x).

Since π is continuous and C∞
c (U ;Rn) is dense in Lp (U ;Rn), it follows that π2F =πF for all

F ∈ Lp (U ;Rn). This proves the following theorem which is the Helmholtz decomposition.
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Theorem 33.5.7 There exists a continuous projection

π : Lp (U ;Rn)→ Lp (U ;Rn)

such that πF is a gradient and
∇ · (F−πF) = 0

in the sense of weak derivatives.

Note this theorem shows that any Lp vector field is the sum of a gradient and a part
which is divergence free. F = F−πF+πF.
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Chapter 34

Gelfand Triples And Related Stuff
Let H be a separable real Hilbert space and let V ⊆ H be a separable Banach space which
is embedded continuously into H and which is also dense in H. Then identifying H and H ′

you can write
V ⊆ H = H ′ ⊆V ′.

This is called a Gelfand triple. If V is reflexive, you could conclude separability of V from
the separability of H. However, if V is not reflexive, this might not happen. For example,
you could take V = L∞ (0,1) and H = L2 (0,1).

Proposition 34.0.1 Suppose V is reflexive and a subset of H a separable Hilbert space
with the inclusion map continuous. Suppose also that V is dense in H. Then identifying H
and H ′, it follows that H is dense in V ′ and V is separable.

Proof: If H is not dense in V ′, then by the Hahn Banach theorem, there exists φ
∗∗ ∈V ′′

such that φ
∗∗ (H) = 0 but φ

∗∗ (φ ∗) ̸= 0 for some φ
∗ ∈ V ′ \H. Since V is reflexive there

exists v ∈V such that φ
∗∗ = Jv for J the standard mapping from V to V ′′. Thus

φ
∗∗ (h)≡ ⟨h,v⟩ ≡ (v,h)H = 0

for all h ∈ H. Therefore, v = 0 and so Jv = 0 = φ
∗∗ which contradicts φ

∗∗ (φ ∗) ̸= 0.
Therefore, H is dense in V ′. Now by Theorem 21.1.16 which says separability of the dual
space implies separability of the space, it follows V is separable as claimed. This proves
the proposition.

From now on, it is assumed V and V ′ are both separable and that H is dense in V ′. This
is summarized in the following definition.

Definition 34.0.2 V,H,V ′ will be called a Gelfand triple if V,V ′ are separable, V ⊆H with
the inclusion map continuous, H = H ′, and H = H ′ is dense in V ′.

What about the Borel sets on V and H?

Proposition 34.0.3 Denote by B (X) the Borel sets of X where X is any separable Banach
space. Then

B (X) = σ
(
X ′
)
.

Here σ (X ′) is the smallest σ algebra such that each φ ∈ X ′ is measurable. Also in the
context of the above definition, B (V ) = σ (i∗H ′) because H ′ is dense in V ′. Here i∗ is
the restriction to V so that i∗h(v) ≡ h(v) ≡ (h,v)H for all v ∈ V and σ (i∗H ′) denotes the
smallest σ algebra such that i∗h is measurable for each h ∈ H ′.

Proof: By Lemma 21.1.6 there exists a countable subset of the unit ball in X ′

{φ n}
∞

n=1 = D′

such that
||v||X = sup

{
|φ (v)| : φ ∈ D′

}
.

1155
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Consider a closed ball B(v0,r) in X . This equals{
v ∈ X : sup

n
|φ n (v)−φ n (v0)| ≤ r

}
= ∩∞

n=1φ
−1
n

(
B(φ n (v0) ,r)

)
and this last set is in σ (D′). Therefore, every closed ball is in σ (D′) which implies every
open ball is also in σ (D′) since open balls are the countable union of closed balls. Since
X is separable, it follows every open set is the countable union of balls and so every open
set is in σ (D′). It follows B (X) ⊆ σ (D′) ⊆ σ (X ′). On the other hand, every φ ∈ X ′ is
continuous and so it is Borel measurable. Hence σ (X ′)⊆B (X).

Now consider the last claim. From Lemma 21.1.6 and density of H ′ = H in V ′, it can
be assumed D′ ⊆ H = H ′. Therefore, from the first part of the argument

B (V )⊆ σ
(
D′
)
⊆ σ

(
i∗H ′

)
Also each i∗h is continuous on V so in fact, equality holds in the above because σ (i∗H ′)⊆
B (V ). This proves the proposition.

Next I want to verify that V is in B (H). This will be true if V is reflexive. More
generally, here is an interesting result.

Proposition 34.0.4 Let X ⊆Y, X dense in Y and suppose X, Y are Banach spaces and that
X is reflexive. Then X ∈B (Y ).

Proof: Define the functional

φ (x)≡
{
||x||X if x ∈ X
∞ if x ∈ Y \X

Then φ is lower semicontinuous on Y . Here is why. Suppose (x,a) /∈ epi(φ) so that a <
φ (x) . I need to verify this situation persists for (x,b) near (x,a). If this is not so, there
exists xn→ x and an→ a such that an ≥ φ (xn) . If liminfn→∞ φ (xn)< ∞, then there exists a
subsequence still denoted by n such that ||xn||X is bounded. Then by the Eberlein Smulian
theorem, there exists a further subsequence such that xn converges weakly in X to some
z. Now since X is dense in Y it follows Y ′ can be considered a subspace of X ′ and so for
f ∈ Y ′

f (xn)→ f (z) , f (xn)→ f (x)

and so f (z− x) = 0 for all f ∈Y ′ which requires z = x. Now x→ ||x||X is convex and lower
semicontinuous on X so it follows from Corollary 18.2.12

a = lim inf
n→∞

an ≥ lim inf
n→∞

φ (xn)≥ φ (x)> a

which is a contradiction. If liminfn→∞ φ (xn) = ∞, then

∞ > a = lim inf
n→∞

an = ∞

another contradiction. Therefore, epi(φ) is closed and so φ is lower semicontinuous as
claimed. Therefore,

X = Y \
(
∩∞

n=1φ
−1 ((n,∞))

)
and since φ is lower semicontinuous, each φ

−1 ((n,∞)) is open. Hence X is a Borel subset
of Y . This proves the proposition.
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34.1 An Unnatural Example
Recall Gelfand triples are of the form

V ⊆ H ⊆V ′

where H is a Hilbert space and V is a Banach space contained in H and each of the above
inclusions is continuous and each space is dense in the next one. The standard example of
a Gelfand triple is H1

0 (D) ⊆ L2 (D) ⊆
(
H1

0 (D)
)′ with the convention that L2 (D) is identi-

fied with its dual space. Thus for f ∈ L2 (D) , f is considered as something in
(
H1

0 (D)
)′

according to the rule
⟨ f ,φ⟩ ≡ ( f ,φ)L2(D)

This is a very pleasant thing to contemplate and it is natural and transparent. However,
there are other ways to come up with a Gelfand triple which are much more perverse. The
following is an example of such a thing along with an application. See [108] and references
given there. I think this idea is due to Lions.

First consider the following situation.

X θ→ Y

where θ is continuous, linear and one to one and X is a Banach space. Then θ (X)⊆Y and
you could define

||θx||
θ(X) ≡ ||x||X .

Then θ (X) can be considered the same thing as X because θ preserves distances and all
algebraic properties. Thus people write X ⊆Y to save space. In the above simple example,
it is obvious what θ is. This is because the things in H1

0 and things in L2 are both functions
defined on D and we can simply take θ to be the identity map. However, you might have H
be the dual space of something. Thus it consists of bounded linear transformations defined
on some Banach space. Then it becomes necessary to specify the manner in which vectors
in V can be considered as vectors of H.

Let ∞ > p ≥ 2. Then letting D be a bounded open set, H1
0 (D) embedds continuously

into Lp′ (D). That is
||φ ||Lp′ ≤C ||φ ||H1

0
. (34.1.1)

Here 1
p′ +

1
p = 1. Also note that an equivalent inner product on H1

0 (D) is

( f ,g)H1
0
≡
∫

D
∇ f ·∇gdx

Then with respect to this inner product, the Riesz map is given by −∆.

−∆ : H1
0 (D)→

(
H1

0 (D)
)′

Thus a typical vector of
(
H1

0 (D)
)′ is of the form−∆φ where φ ∈H1

0 (D) and the following
hold.

(φ ,ψ)H1
0
≡ ⟨−∆φ ,ψ⟩ , (−∆φ ,−∆ψ)

(H1
0 )
′ ≡ (φ ,ψ)H1

0
= ⟨−∆ψ,φ⟩
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The following is about the Gelfand triple

V = Lp (D)⊆
(
H1

0
)′ ⊆ (Lp (D))′

Lemma 34.1.1 It is possible to consider Lp (D)≡V as a dense subspace of
(
H1

0
)′ ≡H as

follows. For f ∈ Lp (D) and φ ∈ H1
0 (D) ,

⟨ f ,φ⟩ ≡
∫

D
f (x)φ (x)dx

One can also consider H ≡
(
H1

0
)′ as a dense subspace of (Lp (D))′ ≡ V ′ as follows. For

−∆φ ∈ H and f ∈ Lp (D) ,

⟨−∆φ , f ⟩ ≡ (−∆φ , f )H ≡ ⟨ f ,φ⟩

−∆ maps H1
0 (D) to H ≡

(
H1

0
)′ ⊆V ′.−∆ can be extended to yield a map−∆1 from Lp′ (D)

to V ′.

H1
0 (D)

−∆→
(
H1

0
)′

Lp′ (D) =V
−∆1→ V ′

Proof: First of all, note that by 34.1.1

|⟨ f ,φ⟩| ≤ || f ||Lp ||φ ||Lp′ ≤C || f ||Lp ||φ ||H1
0

and so it is certainly possible to consider Lp ⊆ H ≡
(
H1

0
)′ as just claimed. Now why

can Lp (D) be considered dense in H ≡
(
H1

0
)′? If it isn’t dense, then there exists ψ ∈

H1
0 (D) ,ψ ̸= 0 such that

(−∆ψ, f )H = 0

for all f ∈ Lp (D) . However, the above would say that for all f ∈ Lp,

(−∆ψ, f )H ≡ ⟨ f ,ψ⟩ ≡
∫

D
f ψ = 0

But ψ ∈ Lp′ (D) because H1
0 (D) embedds continuously into Lp′ (D) and so the above hold-

ing for all f ∈ Lp (D) implies by the usual Riesz representation theorem that ψ = 0 contrary
to the way ψ was chosen.

Now consider the next claim. For −∆φ ∈ H ≡
(
H1

0
)′ and f ∈ Lp (D) and from the first

part
|⟨−∆φ , f ⟩| ≡ |(−∆φ , f )H | ≡ |⟨ f ,φ⟩| ≤C || f ||Lp ||φ ||H1

0 (D)

Thus −∆φ ∈ H can be considered in (Lp (D))′ . Why should H be dense in (Lp (D))′? If it
is not dense, then there exists g∗ ∈ (Lp (D))′ which is not the limit of vectors of H. Then
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since Lp (D) is reflexive, an application of the Hahn Banach theorem shows there exists
f ∈ Lp (D) such that

⟨g∗, f ⟩(Lp(D))′,Lp(D) ̸= 0, ⟨−∆φ , f ⟩(Lp(D))′,Lp(D) = 0 (34.1.2)

for all −∆φ ∈ H. However, it was just shown H could be considered a subset of (Lp (D))′

in the manner described above. Therefore, the last equation in the above is of the form

0 = (−∆φ , f )H = ⟨ f ,φ⟩=
∫

D
f φdx

and since this holds for all φ ∈ H1
0 (D) , it follows by density of H1

0 (D) in Lp′ (D) , that
f = 0 and now this contradicts the inequality in 34.1.2.

Now ∆ is defined on H1
0 (D) and it delivers something in

(
H1

0
)′ ≡H. Of course H1

0 (D)

is dense in Lp′ (D). Can ∆ be extended to all of Lp′ (D)? The answer is yes and it is more
of the same given above. For φ ∈ H1

0 (D) ,−∆φ ∈ H ⊆ (Lp (D))′ . Then by the above, for
φ ∈ H1

0 (D) and f ∈ Lp (D) ,

⟨−∆φ , f ⟩ ≡ ⟨ f ,φ⟩ ≡
∫

D
f φdx

|⟨−∆φ , f ⟩| ≡ |⟨ f ,φ⟩| ≡
∣∣∣∣∫D

f φds
∣∣∣∣≤ ||φ ||Lp′ (D)

|| f ||Lp(D)

and so −∆ is a continuous linear mapping defined on a dense subspace H1
0 (D) of Lp′ (D)

and so this does indeed extend to a continuous linear map defined on all of Lp′ (D) given
by the formula

⟨−∆g, f ⟩ ≡
∫

D
f gdx

This proves the lemma.
Thus letting V ≡ Lp (D) , and H ≡

(
H1

0 (D)
)′
, it follows V ⊆H ⊆V ′ is a Gelfand triple

with the understanding of what it means for one space to be included in another described
above. To emphasize the above, for −∆φ ∈ H, f ∈ Lp,

⟨−∆φ , f ⟩ ≡ (−∆φ , f )H ≡ ⟨ f ,φ⟩ ≡
∫

D
f φdx

More generally, for g ∈ Lp′ (D) ,−∆g ∈ (Lp (D))′ according to the rule

⟨−∆g, f ⟩ ≡
∫

D
f gdx.

With this example of a Gelfand triple, one can define a “porous medium operator”
A : V →V ′. Let Ψ be a real valued function defined on R which satisfies

Ψ is continuous (34.1.3)

(t− s)(Ψ(t)−Ψ(s))≥ 0 (34.1.4)
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There exists p≥ 2, p < ∞ and α ∈ (0,∞) such that for all s ∈ R

sΨ(s)≥ α |s|p− c (34.1.5)

There exist c3,c4 ∈ (0,∞) such that for all s ∈ R

|Ψ(s)| ≤ c4 + c3 |s|p−1 (34.1.6)

Note that 34.1.6 implies that if v ∈ Lp (D) , Then∫
D
|Ψ(v)|p

′
dx≤C

∫
D

(
1+ |v|p

′(p−1)
)

dx =C
∫

D
(1+ |v|p)dx < ∞.

Thus for v ∈ Lp (D) ,Ψ(v) is something you can do ∆ to and obtain something in V ′. The
porous medium operator A : V →V ′ is given as follows.

⟨Av,w⟩V ′,V ≡ ⟨∆Ψ(v) ,w⟩V ′,V ≡−
∫

D
Ψ(v)wdx

What are the properties of A?

⟨A(u+λv) ,w⟩ ≡ −
∫

D
Ψ(u+λv)wdx

and this is easily seen to be a continuous function of λ Thus A is Hemicontinuous.

⟨A(u)−A(v) ,u− v⟩ ≡ −
∫

D
Ψ(u)(u− v)dx+

∫
D

Ψ(v)(u− v)dx≤ 0

Thus −A is monotone. Also there is a coercivity estimate which is routine.

⟨A(v) ,v⟩ ≡ −
∫

D
Ψ(v)v≤

∫
D

c−α |v|p dx =C−α ||v||pV

This operator also has a boundedness estimate.

||A(v)||V ′ ≡ sup
||w||V≤1

|⟨A(v) ,w⟩| ≡ sup
||w||V≤1

∣∣∣∣∫D
Ψ(v)w

∣∣∣∣
≤ sup
||w||V≤1

(∫
D

(
c4 + c3 |v|p−1

)
wdx

)

≤
(∫

D
C (1+ |v|p)dx

)1/p′

≤C+C
(∫

D
|v|p dx

)1/p′

= C+C ||v||p/p′
V =C+C ||v||p−1

V .

Since Ψ is continuous, it will also follow that A is B (V ) measurable. Consider

u→ ⟨Au,w⟩ ≡ −
∫

D
Ψ(u)wdx
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for fixed w ∈ V . Suppose un → u in V and fix w ∈ L∞ (D) ⊆ V . Then it follows from an
easy argument using the Vitali convergence theorem and the fact that from the estimates
above

Ψ(un)w

is uniformly integrable that

u→−
∫

D
Ψ(u)wdx

is continuous. For general w ∈ Lp (D) , let wn→ w in Lp (D) where each wn is in L∞ (D).
Then the function

u→−
∫

D
Ψ(u)wdx≡ ⟨Au,w⟩ (34.1.7)

is the limit of the continuous functions

u→−
∫

D
Ψ(u)wndx

and so the function 34.1.7 is Borel measurable. Now by the Pettis theorem this shows
A : V →V ′ is B (V ) measurable. This shows A is an example of an operator which satisfies
some conditions which will be considered later.

34.2 Standard Techniques In Evolution Equations
In this section, several significant theorems are presented. Unless indicated otherwise, the
measure will be Lebesgue measure. First here is a lemma.

Lemma 34.2.1 Suppose g ∈ L1 ([a,b] ;X) where X is a Banach space. Then if∫ b

a
g(t)φ (t)dt = 0

for all φ ∈C∞
c (a,b) , then g(t) = 0 a.e.

Proof: Let S be a measurable subset of (a,b) and let K ⊆ S ⊆ V ⊆ (a,b) where K
is compact, V is open and m(V \K) < ε. Let K ≺ h ≺ V as in the proof of the Riesz
representation theorem for positive linear functionals. Enlarging K slightly and convolving
with a mollifier, it can be assumed h ∈C∞

c (a,b) . Then∣∣∣∣∫ b

a
XS (t)g(t)dt

∣∣∣∣ =

∣∣∣∣∫ b

a
(XS (t)−h(t))g(t)dt

∣∣∣∣
≤

∫ b

a
|XS (t)−h(t)| ||g(t)||dt

≤
∫

V\K
||g(t)||dt.

Now let Kn ⊆ S⊆Vn with m(Vn \Kn)< 2−n. Then from the above,∣∣∣∣∫ b

a
XS (t)g(t)dt

∣∣∣∣≤ ∫ b

a
XVn\Kn (t) ||g(t)||dt
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and the integrand of the last integral converges to 0 a.e. as n→∞ because ∑n m(Vn \Kn)<
∞. By the dominated convergence theorem, this last integral converges to 0. Therefore,
whenever S⊆ (a,b) , ∫ b

a
XS (t)g(t)dt = 0.

Since the endpoints have measure zero, it also follows that for any measurable S, the above
equation holds.

Now g ∈ L1 ([a,b] ;X) and so it is measurable. Therefore, g([a,b]) is separable. Let
D be a countable dense subset and let E denote the set of linear combinations of the form
∑i aidi where ai is a rational point of F and di ∈ D. Thus E is countable. Denote by Y the
closure of E in X . Thus Y is a separable closed subspace of X which contains all the values
of g.

Now let Sn ≡ g−1 (B(yn, ||yn||/2)) where E = {yn}∞

n=1 . Then ∪nSn = g−1 (X \{0}) .
This follows because if x ∈ Y and x ̸= 0, then in B

(
x, ||x||4

)
there is a point of E,yn. There-

fore, ||yn||> 3
4 ||x|| and so ||yn||

2 > 3||x||
8 > ||x||

4 so x ∈ B(yn, ||yn||/2) . It follows that if each
Sn has measure zero, then g(t) = 0 for a.e. t. Suppose then that for some n, the set, Sn has
positive measure. Then from what was shown above,

||yn|| =

∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)dt− yn

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)− yndt
∣∣∣∣∣∣∣∣

≤ 1
m(Sn)

∫
Sn

||g(t)− yn||dt ≤ 1
m(Sn)

∫
Sn

||yn||/2dt = ||yn||/2

and so yn = 0 which implies Sn = /0, a contradiction to m(Sn)> 0. This contradiction shows
each Sn has measure zero and so as just explained, g(t) = 0 a.e. ■

Definition 34.2.2 For f ∈ L1 (a,b;X) , define an extension, f defined on

[2a−b,2b−a] = [a− (b−a) ,b+(b−a)]

as follows.

f (t)≡

 f (t) if t ∈ [a,b]
f (2a− t) if t ∈ [2a−b,a]
f (2b− t) if t ∈ [b,2b−a]

Definition 34.2.3 Also if f ∈ Lp (a,b;X) and h > 0, define for t ∈ [a,b] , fh (t) ≡ f (t−h)
for all h < b−a. Thus the map f → fh is continuous and linear on Lp (a,b;X) . It is con-
tinuous because∫ b

a
|| fh (t)||p dt =

∫ a+h

a
|| f (2a− t +h)||p dt +

∫ b−h

a
|| f (t)||p dt

=
∫ a+h

a
|| f (t)||p dt +

∫ b−h

a
|| f (t)||p dt ≤ 2 || f ||pp .

The following lemma is on continuity of translation in Lp (a,b;X) .
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Lemma 34.2.4 Let f be as defined in Definition 34.2.2. Then for f ∈ Lp (a,b;X) for p ∈
[1,∞),

lim
δ→0

∫ b

a

∣∣∣∣ f (t−δ )− f (t)
∣∣∣∣p

X dt = 0.

Proof: Regarding the measure space as (a,b) with Lebesgue measure, by regularity of
the measure, there exists g∈Cc (a,b;X) such that || f −g||p < ε. Here the norm is the norm
in Lp (a,b;X) . Therefore,

|| fh− f ||p ≤ || fh−gh||p + ||gh−g||p + ||g− f ||p
≤

(
21/p +1

)
|| f −g||p + ||gh−g||p

<
(

21/p +1
)

ε + ε

whenever h is sufficiently small. This is because of the uniform continuity of g. Therefore,
since ε > 0 is arbitrary, this proves the lemma. ■

Definition 34.2.5 Let f ∈ L1 (a,b;X) . Then the distributional derivative in the sense of X
valued distributions is given by

f ′ (φ)≡−
∫ b

a
f (t)φ

′ (t)dt

Then f ′ ∈ L1 (a,b;X) if there exists h ∈ L1 (a,b;X) such that for all φ ∈C∞
c (a,b) ,

f ′ (φ) =
∫ b

a
h(t)φ (t)dt.

Then f ′ is defined to equal h. Here f and f ′ are considered as vector valued distributions
in the same way as was done for scalar valued functions.

Lemma 34.2.6 The above definition is well defined.

Proof: Suppose both h and g work in the definition for f ′. Then for all φ ∈C∞
c (a,b) ,∫ b

a
(h(t)−g(t))φ (t)dt = 0.

Therefore, by Lemma 34.2.1, h(t)−g(t) = 0 a.e. ■
The other thing to notice about this is the following lemma. It follows immediately

from the definition.

Lemma 34.2.7 Suppose f , f ′ ∈ L1 (a,b;X) . Then if [c,d]⊆ [a,b], it follows that
(

f |[c,d]
)′
=

f ′|[c,d]. This notation means the restriction to [c,d] .

Recall that in the case of scalar valued functions, if you had both f and its weak deriva-
tive, f ′ in L1 (a,b) , then you were able to conclude that f is almost everywhere equal to a
continuous function, still denoted by f and

f (t) = f (a)+
∫ t

a
f ′ (s)ds.
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In particular, you can define f (a) to be the initial value of this continuous function. It
turns out that an identical theorem holds in this case. To begin with here is the same sort
of lemma which was used earlier for the case of scalar valued functions. It says that if
f ′ = 0 where the derivative is taken in the sense of X valued distributions, then f equals a
constant.

Lemma 34.2.8 Suppose f ∈ L1 (a,b;X) and for all φ ∈C∞
c (a,b) ,

∫ b

a
f (t)φ

′ (t)dt = 0.

Then there exists a constant, a ∈ X such that f (t) = a a.e.

Proof: Let φ 0 ∈C∞
c (a,b) ,

∫ b
a φ 0 (x)dx = 1 and define for φ ∈C∞

c (a,b)

ψφ (x)≡
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

Then ψφ ∈C∞
c (a,b) and ψ ′

φ
= φ −

(∫ b
a φ (y)dy

)
φ 0. Then

∫ b

a
f (t)(φ (t))dt =

∫ b

a
f (t)

(
ψ
′
φ (t)+

(∫ b

a
φ (y)dy

)
φ 0 (t)

)
dt

=

=0 by assumption︷ ︸︸ ︷∫ b

a
f (t)ψ

′
φ (t)dt +

(∫ b

a
φ (y)dy

)∫ b

a
f (t)φ 0 (t)dt

=

(∫ b

a

(∫ b

a
f (t)φ 0 (t)dt

)
φ (y)dy

)
.

It follows that for all φ ∈C∞
c (a,b) ,

∫ b

a

(
f (y)−

(∫ b

a
f (t)φ 0 (t)dt

))
φ (y)dy = 0

and so by Lemma 34.2.1,

f (y)−
(∫ b

a
f (t)φ 0 (t)dt

)
= 0 a.e. y ■

Theorem 34.2.9 Suppose f , f ′ both are in L1 (a,b;X) where the derivative is taken in the
sense of X valued distributions. Then there exists a unique point of X , denoted by f (a)
such that the following formula holds a.e. t.

f (t) = f (a)+
∫ t

a
f ′ (s)ds
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Proof:∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt =

∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt.

Now consider
∫ b

a
∫ t

a f ′ (s)φ
′ (t)dsdt. Let Λ ∈ X ′. Then it is routine from approximating f ′

with simple functions to verify

Λ

(∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt
)
=
∫ b

a

∫ t

a
Λ
(

f ′ (s)
)

φ
′ (t)dsdt.

Now the ordinary Fubini theorem can be applied to obtain

=
∫ b

a

∫ b

s
Λ
(

f ′ (s)
)

φ
′ (t)dtds = Λ

(∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds
)
.

Since X ′ separates the points of X , it follows∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt =
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds.

Therefore, ∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f ′ (s)φ (s)ds = 0.

Therefore, by Lemma 34.2.8, there exists a constant, denoted as f (a) such that

f (t)−
∫ t

a
f ′ (s)ds = f (a) ■

There is also a useful theorem about continuity of pointwise evaluation.

Corollary 34.2.10 Let f , f ′ ∈ L1 (a,b;X) so that

f (t) = f (0)+
∫ t

0
f ′ (s)ds (34.2.8)

where in this formula, t → f (t) is the continuous representative of f . Then there exists a
constant C such that for each t ∈ [a,b] ,

∥ f (t)∥X ≤C
(
∥ f∥L1(a,b;X)+

∥∥ f ′
∥∥

L1(a,b;X)

)



1166 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

Proof: From the integral equation 34.2.8,

f (t) = f (s)+
∫ t

s
f ′ (r)dr

∥ f (t)∥X ≤ ∥ f (s)∥X +

∣∣∣∣∫ t

s

∥∥ f ′ (r)
∥∥

X dr
∣∣∣∣

≤ ∥ f (s)∥X +
∫ b

a

∥∥ f ′ (r)
∥∥

X dr

and so, integrating both sides with respect to s

(b−a)∥ f (t)∥X ≤ ∥ f∥L1(a,b;X)+(b−a)
∥∥ f ′
∥∥

L1(a,b;X)

and so

∥ f (t)∥X ≤
(

1
b−a

+1
)(
∥ f∥L1(a,b;X)+

∥∥ f ′
∥∥

L1(a,b;X)

)
■

Let X be the space of functions f ∈ L1 (a,b;X) such that their weak derivatives f ′ are
also in L1 (a,b;X). Then X is a Banach space with norm given by

∥ f∥X ≡ ∥ f∥L1(a,b;X)+
∥∥ f ′
∥∥

L1(a,b;X)

This is because the map f → f ′ is a closed map. If fn → f in L1 (a,b;X) and f ′n → ξ in
L1 (a,b;X) , then for φ ∈C∞

c (a,b) ,∫ b

a
ξ φdt = lim

n→∞

∫ b

a
f ′nφdt = lim

n→∞
−
∫ b

a
fnφ
′dt =−

∫ b

a
f φ
′dt

showing that ξ = f ′. Thus if you have a Cauchy sequence in X, { fn} , then fn → f in
L1 (a,b;X) and f ′n→ ξ in L1 (a,b;X) for some ξ . Hence f ′ = ξ .

Then the above corollary says that pointwise evaluation is continuous as a map from
X to X . This is clearly a linear map. Also the formula obtained shows that in fact, this is
continuous into C ([a,b] ;X).

∥ f∥C([a,b];X) = sup
t∈[a,b]

∥ f (t)∥X ≤C
(
∥ f∥L1(a,b;X)+

∥∥ f ′
∥∥

L1(a,b;X)

)
=C∥ f∥X .

Now let θ : X→C ([a,b] ;X) be given by θ f (t) ≡ f (t) where f (t) = f (0)+
∫ t

0 f ′ (s)ds,
f being the continuous representative of f . Then θ is continuous and linear. If θ t f ≡ f (t)
so that it is pointwise evaluation at t, then this θ t is also continuous and linear. Suppose
X is also reflexive. It follows that if you have a sequence in X { fn} which is converging
weakly to f ∈ X, then you would also have θ t fn = fn (t)→ θ t f ≡ f (t) weakly in X . If
this is not so, then since X is reflexive, there is a subsequence, still denoted as fn such
that fn (t)→ ξ ̸= f (t). However, this says that ( f ,ξ ) is in the weak closure of the graph
of θ t . Since this graph is strongly closed and convex, it is also weakly closed and hence
ξ = θ t f ≡ f (t) , a contradiction. This proves the following nice corollary.
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Corollary 34.2.11 Suppose fn→ f weakly in X where we assume also that X is reflexive.
Then fn (t)→ f (t) weakly in X .

The integration by parts formula is also important.

Corollary 34.2.12 Suppose f , f ′ ∈ L1 (a,b;X) and suppose φ ∈ C1 ([a,b]) . Then the fol-
lowing integration by parts formula holds.

∫ b

a
f (t)φ

′ (t)dt = f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt.

Proof: From Theorem 34.2.9∫ b

a
f (t)φ

′ (t)dt

=
∫ b

a

(
f (a)+

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a

∫ t

a
f ′ (s)dsφ

′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)(φ (b)−φ (s))ds

= f (a)(φ (b)−φ (a))−
∫ b

a
f ′ (s)φ (s)ds+( f (b)− f (a))φ (b)

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (s)φ (s)ds.

The interchange in order of integration is justified as in the proof of Theorem 34.2.9. ■
With this integration by parts formula, the following interesting lemma is obtained.

This lemma shows why it was appropriate to define f as in Definition 34.2.2.

Lemma 34.2.13 Let f be given in Definition 34.2.2 and suppose f , f ′ ∈ L1 (a,b;X) . Then
f , f ′ ∈ L1 (2a−b,2b−a;X) also and

f ′ (t)≡

 f ′ (t) if t ∈ [a,b]
− f ′ (2a− t) if t ∈ [2a−b,a]
− f ′ (2b− t) if t ∈ [b,2b−a]

(34.2.9)

Proof: It is clear from the definition of f that f ∈ L1 (2a−b,2b−a;X) and that in fact∣∣∣∣ f ∣∣∣∣L1(2a−b,2b−a;X)
≤ 3 || f ||L1(a,b;X) . (34.2.10)
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Let φ ∈C∞
c (2a−b,2b−a) . Then from the integration by parts formula,∫ 2b−a

2a−b
f (t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ 2b−a

b
f (2b− t)φ

′ (t)dt +
∫ a

2a−b
f (2a− t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f (u)φ

′ (2b−u)du+
∫ b

a
f (u)φ

′ (2a−u)du

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt− f (b)φ (b)+ f (a)φ (2b−a)

+
∫ b

a
f ′ (u)φ (2b−u)du− f (b)φ (2a−b)

+ f (a)φ (a)+
∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt +

∫ b

a
f ′ (u)φ (2b−u)du+

∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt−

∫ 2b−a

b
− f ′ (2b− t)φ (t)dt−

∫ a

2a−b
− f ′ (2a− t)φ (t)dt

= −
∫ 2b−a

2a−b
f ′ (t)φ (t)dt

where f ′ (t) is given in 34.2.9. ■

Definition 34.2.14 Let V be a Banach space and let H be a Hilbert space. (Typically
H = L2 (Ω)) Suppose V ⊆ H is dense in H meaning that the closure in H of V gives H.
Then it is often the case that H is identified with its dual space, and then because of the
density of V in H, it is possible to write

V ⊆ H = H ′ ⊆V ′

When this is done, H is called a pivot space. Another notation which is often used is ⟨ f ,g⟩
to denote f (g) for f ∈V ′ and g ∈V. This may also be written as ⟨ f ,g⟩V ′,V . Another term
is that V ⊆ H = H ′ ⊆V ′ is called a Gelfand triple.

The next theorem is an example of a trace theorem. In this theorem, f ∈ Lp (0,T ;V )
while f ′ ∈ Lp (0,T ;V ′) . It makes no sense to consider the initial values of f in V because
it is not even continuous with values in V . However, because of the derivative of f it will
turn out that f is continuous with values in a larger space and so it makes sense to consider
initial values of f in this other space. This other space is called a trace space.

Theorem 34.2.15 Let V and H be a Banach space and Hilbert space as described in Def-
inition 34.2.14. Suppose f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) . Then f is a.e. equal to a
continuous function mapping [0,T ] to H. Furthermore, there exists f (0) ∈ H such that

1
2
| f (t)|2H −

1
2
| f (0)|2H =

∫ t

0

〈
f ′ (s) , f (s)

〉
ds, (34.2.11)
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and for all t ∈ [0,T ] , ∫ t

0
f ′ (s)ds ∈ H, (34.2.12)

and for a.e. t ∈ [0,T ] ,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H, (34.2.13)

Here f ′ is being taken in the sense of V ′ valued distributions and 1
p +

1
p′ = 1 and p≥ 2.

Proof: Let Ψ ∈C∞
c (−T,2T ) satisfy Ψ(t) = 1 if t ∈ [−T/2,3T/2] and Ψ(t) ≥ 0. For

t ∈ R, define

f̂ (t)≡
{

f (t)Ψ(t) if t ∈ [−T,2T ]
0 if t /∈ [−T,2T ]

and

fn (t)≡
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds (34.2.14)

where φ n is a mollifier having support in (−1/n,1/n) . Then by Minkowski’s inequality∣∣∣∣∣∣ fn− f̂
∣∣∣∣∣∣

Lp(R;V )
=

(∫
R

∣∣∣∣∣∣∣∣ f̂ (t)−∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

=

(∫
R

∣∣∣∣∣∣∣∣∫ 1/n

−1/n

(
f̂ (t)− f̂ (t− s)

)
φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

≤
(∫

R

(∫ 1/n

−1/n

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣

V
φ n (s)ds

)p

dt
)1/p

≤
∫ 1/n

−1/n
φ n (s)

(∫
R

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣p

V
dt
)1/p

ds

≤
∫ 1/n

−1/n
φ n (s)εds = ε

provided n is large enough. This follows from continuity of translation in Lp with Lebesgue
measure. Since ε > 0 is arbitrary, it follows fn → f̂ in Lp (R;V ) . Similarly, fn → f in
L2 (R;H). This follows because p ≥ 2 and the norm in V and norm in H are related by
|x|H ≤C ||x||V for some constant, C. Now

f̂ (t) =


Ψ(t) f (t) if t ∈ [0,T ] ,
Ψ(t) f (2T − t) if t ∈ [T,2T ] ,
Ψ(t) f (−t) if t ∈ [0,T ] ,
0 if t /∈ [−T,2T ] .

An easy modification of the argument of Lemma 34.2.13 yields

f̂ ′ (t) =


Ψ′ (t) f (t)+Ψ(y) f ′ (t) if t ∈ [0,T ] ,
Ψ′ (t) f (2T − t)−Ψ(t) f ′ (2T − t) if t ∈ [T,2T ] ,
Ψ′ (t) f (−t)−Ψ(t) f ′ (−t) if t ∈ [−T,0] ,
0 if t /∈ [−T,2T ] .

.
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Recall

fn (t) =
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds =

∫
R

f̂ (t− s)φ n (s)ds

=
∫
R

f̂ (s)φ n (t− s)ds.

Therefore,

f ′n (t) =
∫
R

f̂ (s)φ
′
n (t− s)ds =

∫ 2T+ 1
n

−T− 1
n

f̂ (s)φ
′
n (t− s)ds

=
∫ 2T+ 1

n

−T− 1
n

f̂ ′ (s)φ n (t− s)ds =
∫
R

f̂ ′ (s)φ n (t− s)ds

=
∫
R

f̂ ′ (t− s)φ n (s)ds =
∫ 1/n

−1/n
f̂ ′ (t− s)φ n (s)ds

and it follows from the first line above that f ′n is continuous with values in V for all t ∈ R.
Also note that both f ′n and fn equal zero if t /∈ [−T,2T ] whenever n is large enough. Exactly
similar reasoning to the above shows that f ′n→ f̂ ′ in Lp′ (R;V ′) .

Now let φ ∈C∞
c (0,T ) .∫

R
| fn (t)|2H φ

′ (t)dt =
∫
R
( fn (t) , fn (t))H φ

′ (t)dt (34.2.15)

=−
∫
R

2
(

f ′n (t) , fn (t)
)

φ (t)dt = −
∫
R

2
〈

f ′n (t) , fn (t)
〉

φ (t)dt

Now ∣∣∣∣∫R 〈 f ′n (t) , fn (t)
〉

φ (t)dt−
∫
R

〈
f ′ (t) , f (t)

〉
φ (t)dt

∣∣∣∣
≤

∫
R

(∣∣〈 f ′n (t)− f ′ (t) , fn (t)
〉∣∣+ ∣∣〈 f ′ (t) , fn (t)− f (t)

〉∣∣)φ (t)dt.

From the first part of this proof which showed that fn → f̂ in Lp (R;V ) and f ′n → f̂ ′ in
Lp′ (R;V ′) , an application of Holder’s inequality shows the above converges to 0 as n→∞.
Therefore, passing to the limit as n→ ∞ in the 34.2.16,∫

R

∣∣∣ f̂ (t)∣∣∣2
H

φ
′ (t)dt =−

∫
R

2
〈

f̂ ′ (t) , f̂ (t)
〉

φ (t)dt

which shows t→
∣∣∣ f̂ (t)∣∣∣2

H
equals a continuous function a.e. and it also has a weak derivative

equal to 2
〈

f̂ ′, f̂
〉

.

It remains to verify that f̂ is continuous on [0,T ] . Of course f̂ = f on this interval. Let
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N be large enough that fn (−T ) = 0 for all n > N. Then for m,n > N and t ∈ [−T,2T ]

| fn (t)− fm (t)|2H = 2
∫ t

−T

(
f ′n (s)− f ′m (s) , fn (s)− fm (s)

)
ds

= 2
∫ t

−T

〈
f ′n (s)− f ′m (s) , fn (s)− fm (s)

〉
V ′,V ds

≤ 2
∫
R

∣∣∣∣ f ′n (s)− f ′m (s)
∣∣∣∣

V ′ || fn (s)− fm (s)||V ds

≤ 2 || fn− fm||Lp′ (R;V ′) || fn− fm||Lp(R;V )

which shows from the above that { fn} is uniformly Cauchy on [−T,2T ] with values in H.
Therefore, there exists g a continuous function defined on [−T,2T ] having values in H such
that

lim
n→∞

max{| fn (t)−g(t)|H ; t ∈ [−T,2T ]}= 0.

However, g = f̂ a.e. because fn converges to f in Lp (0,T ;V ) . Therefore, taking a subse-
quence, the convergence is a.e. It follows from the fact that V ⊆H = H ′ ⊆V ′ and Theorem
34.2.9, there exists f (0) ∈V ′ such that for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

Now g = f a.e. and g is continuous with values in H hence continuous with values in V ′and
so

g(t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

for all t. Since g is continuous with values in H it is continuous with values in V ′. Taking the
limit as t ↓ 0 in the above, g(a) = limt→0+ g(t) = f (0) , showing that f (0)∈H. Therefore,
for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H,

∫ t

0
f ′ (s)ds ∈ H.■

Note that if f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) , then you can consider the initial
value of f and it will be in H. What if you start with something in H? Is it an initial
condition for a function f ∈ Lp (0,T ;V ) such that f ′ ∈ Lp′ (0,T ;V ′)? This is worth thinking
about. If it is not so, what is the space of initial values? How can you give this space a
norm? What are its properties? It turns out that if V is a closed subspace of the Sobolev
space, W 1,p (Ω) which contains W 1,p

0 (Ω) for p≥ 2 and H = L2 (Ω) the answer to the above
question is yes. Not surprisingly, there are many generalizations of the above ideas.

34.3 An Important Formula
It is not necessary to have p> 2 in order to do the sort of thing just described. First is an ap-
proximation theorem which says that a given functionin Lp ([0,T ] ;E) can be approximated
by step functions.
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Lemma 34.3.1 Let Φ : [0,T ]→ E, be Lebesgue measurable and suppose

Φ ∈ K ≡ Lp ([0,T ] ;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X[tk

j−1,t
k
j )
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

In the formulas, define Φ(0) = 0. The mesh points
{

tk
j

}mk

j=0
can be chosen to miss a given

set of measure zero.

Note that it would make no difference in terms of the conclusion of this lemma if you
defined

Φ
l
k (t)≡

mk

∑
j=1

Φ

(
tk

j−1

)
X(tk

j−1,t
k
j ]
(t)

because the modified function equals the one given above off a countable subset of [0,T ] ,
the union of the mesh points.

Proof: For t ∈ R let γn (t)≡ k/2n,δ n (t)≡ (k+1)/2n, where

t ∈ (k/2n,(k+1)/2n],

and 2−n < T/4. Also suppose Φ is defined to equal 0 on [0,T ]C×Ω. There exists a set of
measure zero N such that for ω /∈ N, t → ∥Φ(t,ω)∥ is in Lp (R). Therefore by continuity
of translation, as n→ ∞ it follows that for ω /∈ N, and t ∈ [0,T ] ,∫

R
||Φ(γn (t)+ s)−Φ(t + s)||pE ds→ 0

The above is dominated by∫
R

2p−1 (||Φ(s)||p + ||Φ(s)||p)X[−2T,2T ] (s)ds

=
∫ 2T

−2T
2p−1 (||Φ(s)||p + ||Φ(s)||p)ds < ∞
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Consider ∫ 2T

−2T

(∫
R
||Φ(γn (t)+ s)−Φ(t + s)||pE ds

)
dt

By the dominated convergence theorem, this converges to 0 as n→ ∞. Now Fubini. This
yields ∫

R

∫ 2T

−2T
||Φ(γn (t)+ s)−Φ(t + s)||pE dtds

Change the variables on the inside.∫
R

∫ 2T+s

−2T+s
||Φ(γn (t− s)+ s)−Φ(t)||pE dtds

Now by definition, Φ(t) vanishes if t /∈ [0,T ] , thus the above reduces to∫
R

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtds

+
∫
R

∫ 2T+s

−2T+s
X

[0,T ]C ||Φ(γn (t− s)+ s)||pE dtds

=
∫
R

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtds

+
∫
R

∫ 2T+s

−2T+s
X

[0,T ]C ||Φ(γn (t− s)+ s)−Φ(t)||pE dtds

Also by definition, γn (t− s)+ s is within 2−n of t and so the integrand in the integral on
the right equals 0 unless t ∈ [−2−n−T,T +2−n]⊆ [−2T,2T ]. Thus the above reduces to∫

R

∫ 2T

−2T
||Φ(γn (t− s)+ s)−Φ(t)||pE dtds.

This converges to 0 as n→ ∞ as was shown above. Therefore,∫ T

0

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtds

also converges to 0 as n→ ∞. The only problem is that γn (t− s) + s ≥ t − 2−n and so
γn (t− s)+ s could be less than 0 for t ∈ [0,2−n]. Since this is an interval whose measure
converges to 0 it follows∫ T

0

∫ T

0

∣∣∣∣Φ((γn (t− s)+ s)+
)
−Φ(t)

∣∣∣∣p
E dtds

converges to 0 as n→ ∞. Let

mn (s) =
∫ T

0

∣∣∣∣Φ((γn (t− s)+ s)+
)
−Φ(t)

∣∣∣∣p
E dt
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Then letting µ denote Lebesgue measure,

µ ([mn (s)> λ ])≤ 1
λ

∫ T

0
mn (s)ds.

It follows there exists a subsequence nk such that

µ

([
mnk (s)>

1
k

])
< 2−k

Hence by the Borel Cantelli lemma, there exists a set of measure zero N such that for s /∈N,

mnk (s)≤ 1/k

for all k sufficiently large. Pick such an s. Then consider t→Φ

((
γnk

(t− s)+ s
)+)

. For

nk, t→
(

γnk
(t− s)+ s

)+
has jumps at points of the form 0, s+ l2−nk where l is an integer.

Thus Pnk consists of points of [0,T ] which are of this form and these partitions are nested.

Define Φl
k (0) ≡ 0, Φl

k (t) ≡ Φ

((
γnk

(t− s)+ s
)+)

. Now suppose N1 is a set of measure

zero. Can s be chosen such that all jumps for all partitions occur off N1? Let (a,b) be
an interval contained in [0,T ]. Let S j be the points of (a,b) which are translations of the
measure zero set N1 by t l

j for some j. Thus S j has measure 0. Now pick s∈ (a,b)\∪ jS j. To
get the other sequence of step functions, the right step functions, just use a similar argument
with δ n in place of γn. Just apply the argument to a subsequence of nk so that the same s
can hold for both. ■

Theorem 34.3.2 Let V ⊆H =H ′⊆V ′ be a Gelfand triple and suppose Y ∈ Lp′ (0,T ;V ′)≡
K′ and

X (t) = X0 +
∫ t

0
Y (s)ds in V ′ (34.3.16)

where X0 ∈ H, and it is known that X ∈ Lp (0,T,V ) ≡ K for p > 1. Then t → X (t) is in
C ([0,T ] ,H) and also

1
2
|X (t)|2H =

1
2
|X0|2H +

∫ t

0
⟨Y (s) ,X (s)⟩ds

Proof: By Lemma 34.3.1, there exists a sequence of uniform partitions
{

tn
k

}mn
k=0 =

Pn,Pn ⊆Pn+1, of [0,T ] such that the step functions

mn−1

∑
k=0

X (tn
k )X(tn

k ,t
n
k+1]

(t) ≡ X l (t)

mn−1

∑
k=0

X
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ X r (t)

converge to X in K and in L2 ([0,T ] ,H).
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Lemma 34.3.3 Let s < t. Then for X ,Y satisfying 34.3.16

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 (34.3.17)

Proof: It follows from the following computations

X (t)−X (s) =
∫ t

s
Y (u)du

−|X (t)−X (s)|2 =−|X (t)|2 +2(X (t) ,X (s))−|X (s)|2

= −|X (t)|2 +2
(

X (t) ,X (t)−
∫ t

s
Y (u)du

)
−|X (s)|2

= −|X (t)|2 +2 |X (t)|2−2
〈∫ t

s
Y (u)du,X (t)

〉
−|X (s)|2

Hence
|X (t)|2 = |X (s)|2 +2

∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 ■

Lemma 34.3.4 In the above situation,

sup
t∈[0,T ]

|X (t)|H ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ X (t) is weakly continuous with values in H.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

|X (tm)|2−|X0|2 =
m−1

∑
j=0

∣∣X (t j+1
)∣∣2− ∣∣X (t j)

∣∣2

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

=
m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

∣∣X (t j)
∣∣2
H ≤ |X0|2 +2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

≤ |X0|2 +2
∫ T

0
∥Y (u)∥V ′ ∥X

r
k (u)∥V du
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≤ |X0|2 +2
(∫ T

0
∥Y (u)∥p′

V ′ du
)1/p′(∫ T

0
∥X r

k (u)∥
p
V du

)1/p

≤C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥X r

k (u)∥
p
V

)1/p

=

(∫ T

0
∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
|X (t)|<C (∥Y∥K′ ,∥X∥K)

Now let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V . This is
possible because V is separable. Then let

{
e j
}∞

j=1 be an orthonormal basis for H such that
ek ∈ span(g1, . . . ,gk) and each gk ∈ span(e1, . . . ,ek) . This is done with the Gram Schmidt
process. Then it follows that span({ek}∞

k=1) is dense in V . I claim

|y|2H =
∞

∑
j=1

∣∣〈y,e j
〉∣∣2 .

This is certainly true if y ∈ H because〈
y,e j

〉
= (y,e j)H

If y /∈ H, then the series must diverge since otherwise, you could consider the infinite sum

∞

∑
j=1

〈
y,e j

〉
e j ∈ H

because ∣∣∣∣∣ q

∑
j=p

〈
y,e j

〉
e j

∣∣∣∣∣
2

=
q

∑
j=p

∣∣〈y,e j
〉∣∣2→ 0 as p,q→ ∞.

Letting z = ∑
∞
j=1
〈
y,e j

〉
e j, it follows that

〈
y,e j

〉
is the jth Fourier coefficient of z and that

⟨z− y,v⟩= 0

for all v ∈ span({ek}∞

k=1) which is dense in V. Therefore, z = y in V ′ and so y ∈ H.
It follows

|X (t)|2 = sup
n

n

∑
j=1

∣∣〈X (t) ,e j
〉∣∣2

which is just the sup of continuous functions of t. Therefore, t→ |X (t)|2 is lower semicon-
tinuous. It follows that for any t, letting t j→ t for t j ∈ D,

|X (t)|2 ≤ lim inf
j→∞

∣∣X (t j)
∣∣2 ≤C (∥Y∥K′ ,∥X∥K)
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This proves the first claim of the lemma.
Consider now the claim that t→ X (t) is weakly continuous. Letting v ∈V,

lim
t→s

(X (t) ,v) = lim
t→s
⟨X (t) ,v⟩= ⟨X (s) ,v⟩= (X (s) ,v)

Since it was shown that |X (t)| is bounded independent of t, and since V is dense in H, the
claim follows. ■

Now

−
m−1

∑
j=0

∣∣X (t j+1
)
−X (t j)

∣∣2
H = |X (tm)|2−|X0|2−

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du

= |X (tm)|2−|X0|2−2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du

Thus, since the partitions are nested, eventually |X (tm)|2 is constant for all k large enough
and the integral term converges to ∫ tm

0
⟨Y (u) ,X (u)⟩du

It follows that the term on the left does converge to something. It just remains to consider
what it does converge to. However, from the equation solved by X ,

X
(
t j+1

)
−X (t j) =

∫ t j+1

t j

Y (u)du

Therefore, this term is dominated by an expression of the form

mk−1

∑
j=0

(∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

)

=
mk−1

∑
j=0

〈∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

〉

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)
−X (t j)

〉
du

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X (t j)

〉
=

∫ T

0
⟨Y (u) ,X r (u)⟩du−

∫ T

0

〈
Y (u) ,X l (u)

〉
du

However, both X r and X l converge to X in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t,

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (u) ,X (u)⟩du
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It remains to verify that this holds for all t. Let t /∈ D and let t (k) ∈Pk be the largest
point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

X (t (m)) = X0 +
∫ t(m)

0
Y (s)ds,

a similar formula for X (t (k)) . Thus for t > t (m) ,

X (t)−X (t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and X0 = 0. Therefore,

|X (t (k))−X (t (m))|2 = 2
∫ t(k)

t(m)
⟨Y (s) ,X (s)−X (t (m))⟩ds

Thus, for m≤ k
lim

m,k→∞

|X (t (k))−X (t (m))|2 = 0

Hence {X (t (k))}∞

k=1 is a convergent sequence in H. Does it converge to X (t)? Let ξ (t)∈H
be what it does converge to. Let v ∈V. Then

(ξ (t) ,v) = lim
k→∞

(X (t (k)) ,v) = lim
k→∞

⟨X (t (k)) ,v⟩= ⟨X (t) ,v⟩= (X (t) ,v)

because it is known that t→ X (t) is continuous into V ′ and it is also known that X (t) ∈ H
and that the X (t) for t ∈ [0,T ] are uniformly bounded. Therefore, since V is dense in H, it
follows that ξ (t) = X (t).

Now for every t ∈ D, it was shown above that

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (s) ,X (s)⟩ds

Thus, using what was just shown, if t /∈ D and tk→ t,

|X (t)|2 = lim
k→∞

|X (tk)|2 = lim
k→∞

(
|X0|2 +2

∫ tk

0
⟨Y (s) ,X (s)⟩ds

)
= |X0|2 +2

∫ t

0
⟨Y (s) ,X (s)⟩ds

which proves the desired formula. From this it follows right away that t → X (t) is con-
tinuous into H because it was just shown that t → |X (t)| is continuous and t → X (t) is
weakly continuous. Since Hilbert space is uniformly convex, this implies the t → X (t) is
continuous. To see this in the special case of Hilbert space,

|X (t)−X (s)|2 = |X (t)|2−2(X (s) ,X (t))+ |X (s)|2

Then limt→s

(
|X (t)|2−2(X (s) ,X (t))+ |X (s)|2

)
= 0 by weak convergence of X (t) to

X (s) and the convergence of |X (t)|2 to |X (s)|2. ■
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34.4 The Implicit Case
The above theorem can be generalized to the case where the formula is of the form

BX (t) = BX0 +
∫ t

0
Y (s)ds

This involves an operator B ∈L (W,W ′) and B satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩

for
V ⊆W,W ′ ⊆V ′

Where V is dense in the Banach space W . Before giving the theorem, here is a technical
lemma. First is one which is not so technical.

Lemma 34.4.1 Let V be a separable Banach space. Then there exists {gk}∞

k=1 which are
linearly independent and whose span is dense in V .

Proof: Let { fk} be a countable dense subset. Thus their span is dense. Delete fk1 such
that k1 is the first index such that fk is in the span of the other vectors. That is, it is the first
which is a finite linear combination of the others. If no such vector exists, then you have
what is wanted. Next delete fk2 where k2 is the next for which fk is a linear combination
of the others. Continue. The remaining vectors must be linearly independent. If not, there
would be a first which is a linear combination of the others. Say fm. But the process would
have eliminated it at the mth step. ■

Lemma 34.4.2 Suppose V,W are separable Banach spaces such that V is dense in W and
B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′. If B = B(ω) and B is F measurable into L (W,W ′) and if
the ei = ei (ω) are as described above, then these ei are measurable into V . If t→ B(t,ω)
is C1 ([0,T ] ,L (W,W ′)) and if for each w ∈W,〈

B′ (t,ω)w,w
〉
≤ kw,ω (t)⟨B(t,ω)w,w⟩

Where kw,ω ∈ L1 ([0,T ]) , then the vectors ei (t) can be chosen to also be right continuous
functions of t.
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In the case of dependence on t, the extra condition is trivial if ⟨B(t,ω)x,x⟩ ≥ δ ∥w∥2
W

for example. This includes the usual case of evolution equations where W = H = H ′ =W ′.
It also includes the case where B does not depend on t.

Proof: Let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V .
This is possible because V is separable. Thus, their span is also dense in W . Let n1 be the
first index such that ⟨Bgn1 ,gn1⟩ ̸= 0.

Claim: If there is no such index, then B = 0.
Proof of claim: First note that if there is no such first index, then if x = ∑

k
i=1 aigi

|⟨Bx,x⟩| =

∣∣∣∣∣∑i̸= j
aia j

〈
Bgi,g j

〉∣∣∣∣∣≤∑
i ̸= j
|ai|
∣∣a j
∣∣ ∣∣〈Bgi,g j

〉∣∣
≤ ∑

i̸= j
|ai|
∣∣a j
∣∣⟨Bgi,gi⟩1/2 〈Bg j,g j

〉1/2
= 0

Therefore, if x is given, you could take xk in the span of {g1, · · · ,gk} such that ∥xk− x∥W →
0. Then

|⟨Bx,y⟩|= lim
k→∞

|⟨Bxk,y⟩| ≤ lim
k→∞

⟨Bxk,xk⟩1/2 ⟨By,y⟩1/2 = 0

because ⟨Bxk,xk⟩ is zero by what was just shown. Hence the conclusion of the lemma is
trivially true. Just pick e1 = g1 and let {e1} be your set of vectors.

Thus assume there is such a first index. Let

e1 ≡
gn1

⟨Bgn1 ,gn1⟩
1/2

Then ⟨Be1,e1⟩= 1. Now if you have constructed e j for j ≤ k,

e j ∈ span
(
gn1 , · · · ,gnk

)
,
〈
Bei,e j

〉
= δ i j,

gn j+1 being the first in the list
{

g j
}

for which〈
Bgn j+1 −

j

∑
i=1

〈
Bgn j+1 ,ei

〉
Bei,gn j+1 −

j

∑
i=1

〈
Bgn j,ei

〉
ei

〉
̸= 0,

and
span

(
gn1 , · · · ,gnk

)
= span(e1, · · · ,ek) ,

let gnk+1 be such that gnk+1 is the first in the list {gn} nk+1 > nk such that〈
Bgnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
Bei,gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

〉
̸= 0

Note the difference between this and the Gram Schmidt process. Here you don’t necessarily
use all of the gk due to the possible degeneracy of B.

Claim: If there is no such first gnk+1 , then B(span(ei, · · · ,ek)) = BW so in this case,
{Bei}k

i=1 is actually a basis for BW .
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Proof: To see this, note that if p ∈
(
n j,n j+1

)
, then by assumption,〈

B

(
gp−

j

∑
i=1

〈
Bgp,ei

〉
ei

)
,gp−

j

∑
i=1

〈
Bgp,ei

〉
ei

〉
= 0

Therefore,

Bgp =
j

∑
i=1

〈
Bgp,ei

〉
Bei

Also, by assumption, if p > nk〈
B

(
gp−

k

∑
i=1

〈
Bgp,ei

〉
ei

)
,gp−

k

∑
i=1

〈
Bgp,ei

〉
ei

〉
= 0

so

Bgp =
k

∑
i=1

〈
Bgp,ei

〉
Bei

which shows that span
({

Bg j
}∞

j=1

)
⊆ span

(
{Bei}k

i=1

)
. If ∑

k
i=1 ciBei = 0, then for j ≤ k,

0 =
k

∑
i=1

ci
〈
Bei,e j

〉
= c j

so {Bei}k
i=1 is a basis for span

({
Bg j
}∞

j=1

)
= B

(
span

({
g j
}∞

j=1

))
. Hence if x ∈W, then

letting xr ∈ span
({

g j
}∞

j=1

)
with xr→ x in W, it follows

Bxr =
k

∑
i=1

aiBei =
k

∑
i=1
⟨Bxr,ei⟩Bei

Then passing to a limit, you get

Bx =
k

∑
i=1
⟨Bx,ei⟩Bei

Thus {Bei}k
i=1 is a basis for BW . This proves the claim.

If this happens, the process being described stops. You have found what is desired
which has only finitely many vectors involved.

If the process does not stop, let

ek+1 ≡
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei〈

B
(
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
)
,gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
〉1/2

Thus, as in the usual argument for the Gram Schmidt process,
〈
Bei,e j

〉
= δ i j for i, j≤ k+1.

This is already known for i, j≤ k. Letting l ≤ k, and using the orthogonality already shown,

⟨Bek+1,el⟩ = C

〈
B

(
gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

)
,el

〉
= C

(
⟨Bgk+1,el⟩−

〈
Bgnk+1 ,el

〉)
= 0
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Consider 〈
Bgp−B

(
k

∑
i=1

〈
Bgp,ei

〉
ei

)
,gp−

k

∑
i=1

〈
Bgp,ei

〉
ei

〉
If p ∈ (nk,nk+1) , then the above equals zero which implies

Bgp =
k

∑
i=1

〈
Bgp,ei

〉
Bei

On the other hand, suppose gp = gnk+1 for some nk+1 and so, from the construction, gnk+1 =
gp ∈ span(e1, · · · ,ek+1) and therefore,

gp =
k+1

∑
j=1

a je j

which requires easily that

Bgp =
k+1

∑
i=1

〈
Bgp,ei

〉
Bei,

the above holding for all k large enough. To see this last claim, note that the coefficients of
Bg=∑

m
j=1 a jBe j are required to be a j =

〈
Bg,e j

〉
and from the construction,

〈
Bei,e j

〉
= δ i j.

Thus if the upper limit is increased beyond what is needed, the new terms are all zero. It
follows that for any x ∈ span({gk}∞

k=1) , (finite linear combination of vectors in {gk}∞

k=1)

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei (34.4.18)

because for all k large enough,

Bx =
k

∑
i=1
⟨Bx,ei⟩Bei

Also note that for such x ∈ span
({

g j
}∞

j=1

)
,

⟨Bx,x⟩ =

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
=

k

∑
i=1
⟨Bx,ei⟩⟨Bx,ei⟩

=
k

∑
i=1
|⟨Bx,ei⟩|2 =

∞

∑
i=1
|⟨Bx,ei⟩|2

Now for x arbitrary, let xk→ x in W where xk ∈ span({gk}∞

k=1) . Then by Fatou’s lemma,

∞

∑
i=1
|⟨Bx,ei⟩|2 ≤ lim inf

k→∞

∞

∑
i=1
|⟨Bxk,ei⟩|2

= lim inf
k→∞

⟨Bxk,xk⟩= ⟨Bx,x⟩ (34.4.19)

≤ ∥Bx∥W ′ ∥x∥W ≤ ∥B∥∥x∥
2
W
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Thus the series on the left converges. Then also, from the above inequality,∣∣∣∣∣
〈

q

∑
i=p
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣≤ q

∑
i=p
|⟨Bx,ei⟩| |⟨Bei,y⟩|

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2( q

∑
i=p
|⟨By,ei⟩|2

)1/2

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∞

∑
i=1
|⟨By,ei⟩|2

)1/2

By 34.4.19,

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∥B∥∥y∥2

W

)1/2
≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 ∥y∥W

It follows that
∞

∑
i=1
⟨Bx,ei⟩Bei (34.4.20)

converges in W ′ because it was just shown that∥∥∥∥∥ q

∑
i=p
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and it was shown above that ∑
∞
i=1 |⟨Bx,ei⟩|2 < ∞, so the partial sums of the series 34.4.20

are a Cauchy sequence in W ′. Also, the above estimate shows that for ∥y∥= 1,∣∣∣∣∣
〈

∞

∑
i=1
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣ ≤
(

∞

∑
i=1
|⟨By,ei⟩|2

)1/2(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and so ∥∥∥∥∥ ∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 (34.4.21)

Now for x arbitrary, let xk ∈ span
({

g j
}∞

j=1

)
and xk→ x in W. Then for a fixed k large

enough, ∥∥∥∥∥Bx−
∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ∥Bx−Bxk∥
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+

∥∥∥∥∥Bxk−
∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
i=1
⟨Bxk,ei⟩Bei−

∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
≤ ε +

∥∥∥∥∥ ∞

∑
i=1
⟨B(xk− x) ,ei⟩Bei

∥∥∥∥∥ ,
the term ∥∥∥∥∥Bxk−

∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥
equaling 0 by 34.4.18. From 34.4.21 and 34.4.19,

≤ ε +∥B∥1/2

(
∞

∑
i=1
|⟨B(xk− x) ,ei⟩|2

)1/2

≤ ε +∥B∥1/2 ⟨B(xk− x) ,xk− x⟩1/2 < 2ε

whenever k is large enough, the second inequality being implied by 34.4.19. Therefore,

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei

in W ′. It follows that

⟨Bx,x⟩= lim
k→∞

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
= lim

k→∞

k

∑
i=1
|⟨Bx,ei⟩|2 ≡

∞

∑
i=1
|⟨Bx,ei⟩|2

Now consider the measurability assertion on the ei. Consider first e1. Begin by consid-
ering n1 (ω)

E1
k ≡ {ω : ⟨B(ω)gk,gk⟩ ̸= 0}∩∩ j<k

{
ω :
〈
B(ω)g j,g j

〉
= 0
}

As explained above, B(ω) = 0, if and only if E1
k = /0 for all k. Also note that these E1

k are
disjoint and F measurable. Then

n1 (ω)≡
{

1 if ω /∈ ∪kE1
k = /0

k if ω ∈ E1
k

Then n1 (ω) is clearly measurable because it is constant on measurable sets. Then from the
algorithm,

e1 (ω)≡X∪kE1
k
(ω)

gn1(ω)〈
Bgn1(ω),gn1(ω)

〉1/2

Thus e1 (ω)= 0 if ω /∈∪kE1
k . Also e1 (ω) is measurable because ω→ n1 (ω) is measurable.

Thus e1 has constant values on measurable sets. So suppose ni (ω) is measurable for i≤m.
Then define Em+1

p ≡{
ω :

〈
Bgp−

m

∑
i=1

〈
Bgp,ei

〉
Bei,gp−

m

∑
i=1

〈
Bgp,ei

〉
ei

〉
̸= 0

}
∩{ω : nm (ω)< p}
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∩nm(ω)<r<p

{
ω :

〈
Bgr−

m

∑
i=1
⟨Bgr,ei⟩Bei,gr−

m

∑
i=1
⟨Bgr,ei⟩ei

〉
= 0

}
As earlier, these sets

{
Em+1

p
}∞

p=1 are disjoint and measurable. As before, let nm+1 (ω) = p

where ω ∈ Em+1
p . Then from the algorithm, em+1 (ω)≡

X∪pEm+1
p

(ω)
gnm+1(ω)−∑

m
i=1
〈
Bgnm+1(ω),ei

〉
ei

Dm
,

where Dm = 〈
B
(
gnm+1(ω)−∑

m
i=1
〈
Bgnm+1(ω),ei

〉
ei
)
,

gnm+1(ω)−∑
m
i=1
〈
Bgnm+1(ω),ei

〉
ei

〉1/2

Thus the ek (ω) are all measurable into W thanks to the algorithm. However, they all have
values in V. Thus if φ ∈V ′, let φ n→ φ in V ′ where φ n ∈W ′.

⟨φ ,ek (ω)⟩V ′,V = lim
n→∞
⟨φ n,ek (ω)⟩V ′,V = lim

n→∞
⟨φ n,ek (ω)⟩W ′,W

which is the limit of measurable functions. By the Pettis theorem, this shows ek is measur-
able into V also.

To verify the assertion on right continuity, the same kind of argument holds. We sup-
press the dependence on ω . Consider first e1. Begin by considering n1 (t)

E1
k ≡ {t : ⟨B(t)gk,gk⟩ ̸= 0}∩∩ j<k

{
t :
〈
B(t)g j,g j

〉
= 0
}

As explained above, B(t) = 0, if and only if E1
k = /0 for all k. Also note that these E1

k are
disjoint. Then

n1 (t)≡
{

1 if t /∈ ∪kE1
k = /0

k if t ∈ E1
k

If t ∈ E1
k , then from the definition, ⟨B(t)gk,gk⟩ ̸= 0 and k is the first index for which this

is nonzero. Let tl ↓ t. Then by continuity, for all l large enough, ⟨B(tl)gk,gk⟩ ̸= 0. What of〈
B(tl)g j,g j

〉
for j < k? By assumption,〈

B′ (t)g j,g j
〉
≤ kg j (t)

〈
B(t)g j,g j

〉
and so, letting Kg j (t) =

∫ t
0 kg j (s)ds,

d
dt

(
e−Kg j (t)

〈
B(t)g j,g j

〉)
≤ 0

e−Kg j (tl)
〈
B(tl)g j,g j

〉
≤ e−Kg j (t)

〈
B(t)g j,g j

〉
= 0

Thus one obtains right continuity of t→ n1 (t) and for E1
k , there is an interval [t, t+δ )⊆E1

k .
From the algorithm,

e1 (t)≡X∪kE1
k
(t)

gn1(t)〈
Bgn1(t),gn1(t)

〉1/2
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Thus e1 (t) = 0 if t /∈ ∪kE1
k . Also e1 (t) is right continuous because t → n1 (t) is. Thus e1

has constant values on a small interval starting at t. But what about t /∈ ∪kE1
k ? Why should

it be right continuous there? If you have such a t, then as explained above, B(t) = 0.Then
letting s be arbitrary, s > t and x ∈W ,〈

B′ (s)x,x
〉
≤ kx ⟨B(s)x,x⟩

and so as above,
e−Kx(s) ⟨B(s)x,x⟩ ≤ 0

Thus this case reduces to having B(s) ≡ 0 for all s ≥ t and there is nothing to prove. You
have n1 (s) = 1 and e1 (s) = 0 for all s≥ t.

Suppose t→ ni (t) is right continuous for i≤m and that ei is also. Then define Em+1
p ≡{

t :

〈
Bgp−

m

∑
i=1

〈
Bgp,ei

〉
Bei,gp−

m

∑
i=1

〈
Bgp,ei

〉
ei

〉
̸= 0

}
∩{t : nm (t)< p}

∩nm(t)<r<p

{
t :

〈
Bgr−

m

∑
i=1
⟨Bgr,ei⟩Bei,gr−

m

∑
i=1
⟨Bgr,ei⟩ei

〉
= 0

}
As earlier, these sets

{
Em+1

p
}∞

p=1 are disjoint. As before, let nm+1 (t) = p where t ∈ Em+1
p .

Then by similar reasoning to the above, for small δ , [t, t +δ ) ∈ Em+1
p and nm+1 (s) = p for

s ∈ [t, t +δ ). Then from the algorithm, em+1 (t)≡

X∪pEm+1
p

(t)
gnm+1(t)−∑

m
i=1
〈
Bgnm+1(t),ei (t)

〉
ei (t)

Dm

where Dm = 〈
B
(
gnm+1(t)−∑

m
i=1
〈
Bgnm+1(t),ei (t)

〉
ei (t)

)
,

gnm+1(t)−∑
m
i=1
〈
Bgnm+1(t),ei (t)

〉
ei (t)

〉1/2

and so is right continuous. What of t /∈ ∪pEm+1
p ? In this case, the process has terminated

and what is desired has been found. ■
Then the main result in this section is the following integration by parts theorem.

Theorem 34.4.3 Let V ⊆W,W ′⊆V ′ be separable Banach spaces, and let Y ∈Lp′ (0,T ;V ′)
and

Bu(t) = Bu0 +
∫ t

0
Y (s)ds in V ′, u0 ∈W,Bu(t) = B(u(t)) for a.e. t (34.4.22)

As indicated, Bu is the name of a function satisfying the above equation which satisfies
Bu(t) = B(u(t)) for a.e. t. Thus Y = (Bu)′ as a weak derivative in the sense of V ′ valued
distributions. It is known that u ∈ Lp (0,T,V ) for p > 1. Then t → Bu(t) is continuous
into W ′ for t off a set of measure zero N and also there exists a continuous function t →
⟨Bu,u⟩(t) such that for all t /∈ N,⟨Bu,u⟩(t) = ⟨B(u(t)) ,u(t)⟩ ,Bu(t) = B(u(t)) , and for
all t,

1
2
⟨Bu,u⟩(t) = 1

2
⟨Bu0,u0⟩+

∫ t

0
⟨Y (s) ,u(s)⟩ds

Note that ⟨Bu,u⟩(0) = ⟨Bu0,u0⟩.
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Proof: By Lemma 34.3.1, there exists a sequence of partitions
{

tn
k

}mn
k=0 = Pn,Pn ⊆

Pn+1, of [0,T ] such that the lengths of the sub intervals converge uniformly to 0 as n→ ∞

and the step functions

mn−1

∑
k=0

u(tn
k )X(tn

k ,t
n
k+1]

(t) ≡ ul (t)

mn−1

∑
k=0

u
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ ur (t)

converge to u in Lp (0,T ;V )≡ K. We assume that all of these partition points have empty
intersection with the set of measure zero where Bu(t) ̸= B(u(t)). Thus, at every partition
point, Bu(tk) = B(u(tk)). As just mentioned, Lp (0,T ;V )≡ K, Lp′ (0,T ;V ′) = K′.

Lemma 34.4.4 Let s < t. Then for u,Y satisfying 34.4.22

⟨Bu(t) ,u(t)⟩= ⟨Bu(s) ,u(s)⟩

+2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨Bu(t)−Bu(s) ,u(t)−u(s)⟩ (34.4.23)

Proof: It follows from the following computations

Bu(t)−Bu(s) =
∫ t

s
Y (r)dr

and so

2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨Bu(t)−Bu(s) ,u(t)−u(s)⟩

= 2
〈∫ t

s
Y (r)dr,u(t)

〉
−⟨Bu(t)−Bu(s) ,u(t)−u(s)⟩

= 2⟨Bu(t)−Bu(s) ,u(t)⟩−⟨Bu(t)−Bu(s) ,u(t)−u(s)⟩

= 2⟨Bu(t) ,u(t)⟩−2⟨Bu(s) ,u(t)⟩−⟨Bu(t) ,u(t)⟩
+2⟨Bu(s) ,u(t)⟩−⟨Bu(s) ,u(s)⟩

= ⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩

Thus
⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩

= 2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨Bu(t)−Bu(s) ,u(t)−u(s)⟩ ■

Note that in case s = 0, you can simply write Bu(0) = Bu0 and the same argument appears
to work.
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Lemma 34.4.5 In the above situation,

sup
t∈NC
⟨Bu(t) ,u(t)⟩ ≤C (∥Y∥K′ ,∥u∥K)

Also, t→Bu(t) is weakly continuous with values in W ′ on NC where N is the set of measure
zero where Bu(t) ̸= B(u(t)).

Proof: From the above formula of Lemma 34.4.4 applied to the kth partition of [0,T ]
described above,

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩=
m−1

∑
j=0

〈
Bu
(
t j+1

)
,u
(
t j+1

)〉
−
〈
Bu(t j) ,u(t j)

〉

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)〉
dr−

〈
B
(
u
(
t j+1

)
−u(t j)

)
,u
(
t j+1

)
−u(t j)

〉
=

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (r) ,ur
k (r)⟩dr−

〈
B
(
u
(
t j+1

)
−u(t j)

)
,u
(
t j+1

)
−u(t j)

〉
Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

〈
Bu(t j) ,u(t j)

〉
≤ ⟨Bu0,u0⟩+2

∫ T

0
|⟨Y (r) ,ur

k (r)⟩|dr

≤ ⟨Bu0,u0⟩+2
∫ T

0
∥Y (r)∥V ′ ∥u

r
k (r)∥V dr

≤ ⟨Bu0,u0⟩+2
(∫ T

0
∥Y (r)∥p′

V ′ dr
)1/p′(∫ T

0
∥ur

k (r)∥
p
V dr

)1/p

≤ C (∥Y∥K′ ,∥u∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥ur

k (r)∥
p
V

)1/p

=

(∫ T

0
∥u(r)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
⟨Bu(t) ,u(t)⟩<C (∥Y∥K′ ,∥u∥K)

From Lemma 34.4.2 above, there exists {ei}⊆V such that
〈
Bei,e j

〉
= δ i j and for t /∈N,

⟨Bu(t) ,u(t)⟩=
∞

∑
k=1
|⟨Bu(t) ,ei⟩|2 = sup

m

m

∑
k=1
|⟨Bu(t) ,ei⟩|2
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Thus, if sn→ t,sn ∈ D, Fatou’s lemma implies

⟨Bu,u⟩(t) = ⟨B(u(t)) ,u(t)⟩=
∞

∑
k=1
|⟨Bu(t) ,ei⟩|2

≤ lim inf
n→∞

∞

∑
k=1
|⟨Bu(sn) ,ei⟩|2 ≤C (∥Y∥K′ ,∥u∥K)

and so
sup
t∈NC
⟨Bu,u⟩(t) = sup

t∈NC
⟨B(u(t)) ,u(t)⟩ ≤C (∥Y∥K′ ,∥u∥K)

It only remains to verify the claim about weak continuity.
Consider now the claim that t→ Bu(t) is weakly continuous on NC. Letting v ∈V,s ∈

NC,

lim
t→s
⟨Bu(t) ,v⟩= ⟨Bu(s) ,v⟩= ⟨Bu(s) ,v⟩ (34.4.24)

The limit follows from the formula 34.4.22 which implies t→ Bu(t) is continuous into V ′.
Now for t ∈ NC,

∥Bu(t)∥= sup
∥v∥≤1

|⟨Bu(t) ,v⟩| ≤ ⟨Bv,v⟩1/2 ⟨Bu(t) ,u(t)⟩1/2

which was shown to be bounded for t,s ∈ NC. Now let w ∈W . Then

|⟨Bu(t) ,w⟩−⟨Bu(s) ,w⟩| ≤ |⟨Bu(t)−Bu(s) ,w− v⟩|+ |⟨Bu(t)−Bu(s) ,v⟩|

Then the first term is less than ε if v is close enough to w and the second converges to 0 so
34.4.24 holds for all v ∈W and so this shows the weak continuity on NC. ■

Now pick t ∈ D, the union of all the mesh points. Then for all k large enough, t ∈Pk.
Say t = tm. From Lemma 34.4.4,

−
m−1

∑
j=0

〈
B
(
u
(
t j+1

)
−u(t j)

)
,
(
u
(
t j+1

)
−u(t j)

)〉
=

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩−2
m−1

∑
j=0

∫ t j+1

t j

⟨Y (r) ,ur
k (r)⟩dr

Thus, ⟨Bu(tm) ,u(tm)⟩ is constant for all k large enough and the integral term converges to∫ tm

0
⟨Y (r) ,u(r)⟩dr

It follows that the term on the left does converge to something as k→ ∞. It just remains to
consider what it does converge to. However, from the equation solved by u,

Bu
(
t j+1

)
−Bu(t j) =

∫ t j+1

t j

Y (r)dr
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Therefore, this term is dominated by an expression of the form∣∣∣∣∣mk−1

∑
j=0

〈∫ t j+1

t j

Y (r)dr,u
(
t j+1

)
−u(t j)

〉∣∣∣∣∣
=

∣∣∣∣∣mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)
−u(t j)

〉
dr

∣∣∣∣∣

=

∣∣∣∣∣mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u(t j)

〉∣∣∣∣∣
=

∣∣∣∣∫ tm

0
⟨Y (r) ,ur (r)⟩dr−

∫ tm

0

〈
Y (r) ,ul (r)

〉
dr
∣∣∣∣

≤
∫ T

0

∣∣∣〈Y (r) ,ur (r)−ul (r)
〉∣∣∣dr

However, both ur and ul converge to u in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t ∈ D,

⟨Bu(t) ,u(t)⟩= ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr

It remains to verify that this holds for all t /∈ N. Let t ∈ NC \D and let t (k) ∈Pk be the
largest point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

Bu(t (m)) = Bu0 +
∫ t(m)

0
Y (s)ds,

a similar formula for u(t (k)) . Thus for t > t (m) ,

Bu(t)−Bu(t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and u0 = 0. Therefore,

⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩

= 2
∫ t(k)

t(m)
⟨Y (s) ,u(s)−u(t (m))⟩ds

Thus, for m≤ k

lim
m,k→∞

⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩= 0 (34.4.25)



34.4. THE IMPLICIT CASE 1191

Hence {Bu(t (k))}∞

k=1 is a convergent sequence in W ′ because

|⟨B(u(t (k))−u(t (m))) ,y⟩|
≤ ⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩1/2 ⟨By,y⟩1/2

≤ ⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩1/2 ∥B∥1/2 ∥y∥W

Does it converge to Bu(t)? Let ξ (t) ∈W ′ be what it does converge to. Let v ∈V. Then

⟨ξ (t) ,v⟩= lim
k→∞

⟨Bu(t (k)) ,v⟩= lim
k→∞

⟨Bu(t (k)) ,v⟩= ⟨Bu(t) ,v⟩

because it is known that t → Bu(t) is continuous into V ′. It is also known that for t ∈ NC,
Bu(t) ∈W ′ ⊆ V ′ and that the Bu(t) for t ∈ NC are uniformly bounded in W ′. Therefore,
since V is dense in W, it follows that ξ (t) = Bu(t).

Now for every t ∈ D, it was shown above that

⟨Bu(t) ,u(t)⟩= ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr

Also it was just shown that Bu(t (k))→ Bu(t) for t /∈ N. Then for t /∈ N

|⟨Bu(t (k)) ,u(t (k))⟩−⟨Bu(t) ,u(t)⟩|

≤ |⟨Bu(t (k)) ,u(t (k))−u(t)⟩|+ |⟨Bu(t (k))−Bu(t) ,u(t)⟩|

Then the second term converges to 0. The first equals

|⟨Bu(t (k))−Bu(t) ,u(t (k))⟩|
≤ ⟨B(u(t (k))−u(t)) ,u(t (k))−u(t)⟩1/2 ⟨Bu(t (k)) ,u(t (k))⟩1/2

From the above, this is dominated by an expression of the form

⟨B(u(t (k))−u(t)) ,u(t (k))−u(t)⟩1/2 C

Then using the lower semicontinuity of t → ⟨B(u(t (k))−u(t)) ,u(t (k))−u(t)⟩ on NC

which follows from the above, this is no larger than

lim inf
m→∞
⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩1/2 C < ε

provided k is large enough. This follows from 34.4.25. Since ε is arbitrary, it follows that

lim
k→∞

|⟨Bu(t (k)) ,u(t (k))⟩−⟨Bu(t) ,u(t)⟩|= 0

Then from the formula,

⟨Bu(t) ,u(t)⟩= ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr
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valid for t ∈ D, it follows that the same formula holds for all t /∈ N. Then define ⟨Bu,u⟩(t)
to equal ⟨Bu(t) ,u(t)⟩ off N and the right side for t ∈ N. Thus t→ ⟨Bu,u⟩(t) is continuous
and for all t ∈ [0,T ] ,

⟨Bu,u⟩(t) = ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr

Also recall that t → Bu(t) was shown to be weakly continuous into W ′ on NC. Then for
t,s ∈ NC,

⟨B(u(t)−u(s)) ,u(t)−u(s)⟩
= ⟨Bu(t) ,u(t)⟩−2⟨Bu(t) ,u(s)⟩+ ⟨Bu(s) ,u(s)⟩

From this, it follows that t→ Bu(t) is continuous into W ′ on NC because limt→s of the right
side gives 0 and so the same is true of the left. Hence,

|⟨B(u(t)−u(s)) ,y⟩| ≤ ⟨By,y⟩1/2 ⟨B(u(t)−u(s)) ,u(t)−u(s)⟩1/2

≤ ∥B∥1/2 ⟨B(u(t)−u(s)) ,u(t)−u(s)⟩1/2 ∥y∥

so
∥B(u(t)−u(s))∥W ′ ≤ ∥B∥

1/2 ⟨B(u(t)−u(s)) ,u(t)−u(s)⟩1/2

which converges to 0 as t→ s. ■
Consider the case that t → B(u(t)) has a weak derivative, denoted as (Bu)′ (t) which

is in Lp′ (0,T ;V ′) . Then as shown above, there is a continuous function, denoted as Bu(t)
which equals B(u(t)) for a.e. t and

Bu(t) = Bu(0)+
∫ t

0
(Bu)′ (s)ds

Then the above theorem applies. Then one obtains the following corollary.

Corollary 34.4.6 Let V ⊆W,W ′ ⊆ V ′ be separable Banach spaces, and B ∈ L (W,W ′)
is nonnegative and self adjoint. Also suppose t → B(u(t)) has a weak derivative (Bu)′ ∈
Lp′ (0,T ;V ′) for u ∈ Lp (0,T ;V ). Then there is a continuous function denoted as Bu(t)
which equals B(u(t)) a.e. t. Say for t /∈ N. Suppose Bu(0) = Bu0, u0 ∈W. Then

Bu(t) = Bu0 +
∫ t

0
(Bu)′ (s)ds in V ′ (34.4.26)

Then t→ Bu(t) is in C
(
NC,W ′

)
and also for such t,

1
2
⟨Bu(t) ,u(t)⟩= 1

2
⟨Bu0,u0⟩+

∫ t

0

〈
(Bu)′ (s) ,u(s)

〉
ds

There exists a continuous function t → ⟨Bu,u⟩(t) which equals the right side of the above
for all t and equals ⟨Bu(t) ,u(t)⟩ off N. This also satisfies

sup
t∈[0,T ]

⟨Bu,u⟩(t)≤C
(∥∥(Bu)′

∥∥
Lp′ (0,T,V ′) ,∥u∥Lp(0,T,V )

)
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where we can take the right side to equal

⟨Bu0,u0⟩+2
∥∥(Bu)′

∥∥
Lp′ (0,T,V ′) ∥u∥Lp(0,T,V )

This follows from the above theorem, in particular Lemma 34.4.5.
This also makes it easy to verify continuity of pointwise evaluation of Bu. Let Lu =

(Bu)′ .

u = D(L)≡
{

u ∈ Lp (0,T ;V ) : Lu≡ (Bu)′ ∈ Lp′ (0,T,V ′)}
∥u∥X ≡ ∥u∥Lp(0,T,V )+∥Lu∥Lp′ (0,T,V ′) (34.4.27)

Since L is closed, this X is a Banach space.
Then the following theorem is obtained.

Theorem 34.4.7 Say (Bu)′ ∈ Lp′ (0,T,V ′) so

Bu(t) = Bu(0)+
∫ t

0
(Bu)′ (s)ds in V ′

the map u→ Bu(t) is continuous as a map from X to V ′. Also, if Y denotes those f ∈
Lp ([0,T ] ;V ) for which f ′ ∈ Lp ([0,T ] ;V ) , so that f has a representative such that f (t) =
f (0)+

∫ t
0 f ′ (s)ds, then if ∥ f∥Y ≡ ∥ f∥Lp([0,T ];V )+∥ f ′∥Lp([0,T ];V ) , the map f → f (t) is con-

tinuous.

Proof: First, why is u→ Bu(0) continuous? Say u,v ∈ X and say p≥ 2 first.

Bu(t)−Bv(t) = Bu(0)−Bv(0)+
∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

and so,

∥Bu(0)−Bv(0)∥V ′ ≤ ∥Bu(t)−Bv(t)∥V ′ +
∫ t

0

∥∥(Bu)′ (s)− (Bv)′ (s)
∥∥

V ′ ds

then using the triangle inequality,(∫ T

0
∥Bu(0)−Bv(0)∥p′

V ′ dt
)1/p′

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p′

V ′ dt
)1/p′

+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p′

dt

)1/p′

and so
∥Bu(0)−Bv(0)∥V ′ T

1/p′ ≤(
∥B∥∥u− v∥Lp′ ([0,T ];V )

+T 1/p′ ∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

)
≤
(
∥B∥∥u− v∥Lp([0,T ];V )+T 1/p′ ∥∥(Bu)′− (Bv)′

∥∥
Lp′ ([0,T ];V ′)

)
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≤C (∥B∥ ,T )∥u− v∥X

Thus u→ Bu(0) is continuous into V ′. If p < 2, then you do something similar.(∫ T

0
∥Bu(0)−Bv(0)∥p

V ′ dt
)1/p

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p

V ′ dt
)1/p

+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p

dt
)1/p

≤ ∥B∥∥u− v∥Lp([0,T ];V )+
∫ T

0

(∫ T

0

∥∥(Bu)′ (s)− (Bv)′ (s)
∥∥p dt

)1/p

ds

≤ ∥B∥∥u− v∥Lp([0,T ];V )+T 1/p
∫ T

0

∥∥(Bu)′ (s)− (Bv)′ (s)
∥∥ds

≤ ∥B∥∥u− v∥Lp([0,T ];V )+CT 1/p∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

Thus

∥Bu(0)−Bv(0)∥V ′ T
1/p ≤ ∥B∥∥u− v∥Lp([0,T ];V )+C (T )

∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

≤ C (∥B∥ ,T )∥u− v∥X .

However, one could just as easily have done this for an arbitrary s < T by repeating the
argument for

Bu(t) = Bu(s)+
∫ t

s
(Bu)′ (r)dr

Thus this mapping is certainly continuous into V ′. The last assertion is similar. You just
use f instead of Bu and make easy modifications in the argument. It is all happening in one
space in the second case. ■

For u ∈ X defined above,

Bu(t) = Bu(0)+
∫ t

0
(Bu)′ (s)ds,

and also
1
2
⟨Bu(t) ,u(t)⟩= 1

2
⟨Bu,u⟩(0)+

∫ t

0

〈
(Bu)′ (s) ,u(s)

〉
ds

This follows from a similar argument given above, (Note we write ⟨Bu,u⟩(0) instead of
⟨Bu0,u0⟩ since no u0 is mentioned. One could also use the above by considering the prob-
lem on [s, t] where s is not in the exceptional set where it makes a difference between
writing Bu(s) and B(u(s)) . Then you would get the above with 0 replaced with s and then
let s→ 0 to finally obtain the above displayed formula. ) and

sup
t∈[0,T ]

⟨Bu,u⟩(t)≤C
(∥∥(Bu)′

∥∥
Lp′ (0,T,V ′) ,∥u∥Lp(0,T,V )

)
=C (∥u∥X )
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where X was defined in 34.4.27, then

sup
t∈[0,T ]

〈
B

u
∥u∥X

,
u
∥u∥X

〉
(t)≤C (1) =C

and so
sup

t∈[0,T ]
⟨Bu,u⟩(t)≤C∥u∥2

X

Now define for u,v ∈ X

⟨Bu,v⟩(t)≡ 1
2
[⟨B(u+ v) ,u+ v⟩(t)− (⟨Bu,u⟩(t)+ ⟨Bv,v⟩(t))]

and so for a.e. t,⟨Bu,v⟩(t) = ⟨B(u(t)) ,v(t)⟩ and t → ⟨Bu,v⟩(t) is continous. Also, there
must exist C such that for all u,v and t ∈ [0,T ] ,

|⟨Bu,v⟩(t)| ≤C∥u∥X ∥v∥X

If this is not so, then you could get un,vn having norm equal to 1 in X such that

sup
t∈[0,T ]

|⟨Bun,vn⟩(t)|> n

But then, letting tn be a point where |⟨Bun,vn⟩(tn)|> n,

n < |⟨Bun,vn⟩(tn)| ≤
1
2

[
C
(
∥un + vn∥2

X +∥u∥2
X +∥v∥2

X

)]
=

C
2
(4+1+1) = 3C

which is clearly a contradiction. It follows that one can define K : X → X ′ as follows.

⟨Ku,v⟩ ≡
∫ T

0
⟨Lu,v⟩ds+ ⟨Bu,v⟩(0)

Thus K is linear and continuous. In addition,

⟨Ku,u⟩= 1
2
[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

To see this, Corollary 34.4.6 implies

1
2
⟨Bu,u⟩(T ) = 1

2
⟨Bu,u⟩(0)+

∫ T

0

〈
(Bu)′ (s) ,u(s)

〉
ds

and so
1
2
⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)

=
1
2
⟨Bu,u⟩(0)+

∫ T

0

〈
(Bu)′ (s) ,u(s)

〉
ds+ ⟨Bu,u⟩(0)

and so, this yields∫ T

0

〈
(Bu)′ (s) ,u(s)

〉
ds+ ⟨Bu,u⟩(0) = ⟨Ku,u⟩= 1

2
[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

as claimed. This proves most of the following.
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Proposition 34.4.8 Let

X =
{

u ∈ Lp (0,T ;V )≡ V : Lu≡ (Bu)′ ∈ Lp′ (0,T,V ′)}
where V is a reflexive Banach space. Let a norm on X be given by

∥u∥X ≡ ∥u∥V +∥Lu∥V ′

Then there is a continuous function t → ⟨Bu,v⟩(t) such that ⟨Bu,v⟩(t) = ⟨B(u(t)) ,v(t)⟩
a.e. t such that

sup
t∈[0,T ]

|⟨Bu,v⟩(t)| ≤C∥u∥X ∥v∥X

and if K : X → X ′

⟨Ku,v⟩ ≡
∫ T

0
⟨Lu,v⟩ds+ ⟨Bu,v⟩(0)

Then K is continuous and linear and

⟨Ku,u⟩= 1
2
[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

If u ∈ X and Bu(0) = 0 then there exists a sequence {un} such that ∥un−u∥X → 0 but
un (t) = 0 for all t close to 0.

Proof: It only remains to verify the last assertion. Let ψn be increasing and piecewise
linear such that ψn (t) = 1 for t ≥ 2/n and equals 0 on [0,1/n]. Then clearly ψnu→ u in
V .

(B(ψnu))′ = ψ
′
nBu+ψn (Bu)′

The second term converges to (Bu)′ in V ′. It remains to consider the first term.

∫ T

0

∥∥ψ
′
nBu
∥∥p′

V ′ dt ≤
∫ 2/n

0
n
∥∥∥∥∫ t

0
(Bu)′ ds

∥∥∥∥p′

dt

≤ n
∫ 2/n

0
t p′−1

∫ t

0

∥∥(Bu)′
∥∥p′

V ′ dsdt ≤
∫ 2/n

0

∥∥(Bu)′
∥∥p′

V ′ ds
1
p′
(2/n)p′ n

Since p′ > 1, this converges to 0. ■
Note that, by convolving with a mollifier, we could assume each un is also smooth.

In addition to this, we can draw a similar conclusion at the right endpoint. That is, if
Bu(T ) = 0 there is a sequence {un} ⊆ X where un (t) = 0 for t near T which converges to
u in X .

34.5 The Implicit Case, B = B(t)
The above theorem can be generalized to the case where the formula is of the form

BX (t) = BX0 +
∫ t

0
Y (s)ds
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This involves an operator B(t) ∈L (W,W ′) and B(t) satisfies

⟨B(t)x,x⟩ ≥ 0, ⟨B(t)x,y⟩= ⟨B(t)y,x⟩

for
V ⊆W,W ′ ⊆V ′

Where we assume t→ B(t) is in C1 ([0,T ] ;L (W,W ′)) and V is dense in the Banach space
W .

Then the main result in this section is the following integration by parts theorem.

Theorem 34.5.1 Let V ⊆W,W ′⊆V ′ be separable Banach spaces, and let Y ∈Lp′ (0,T ;V ′)
and

Bu(t) = Bu0 +
∫ t

0
Y (s)ds in V ′, u0 ∈W,Bu(t) = B(t)(u(t)) for a.e. t (34.5.28)

As indicated, Bu is the name of a function satisfying the above equation which satisfies
Bu(t) = B(t)(u(t)) for a.e. t. Thus Y = (Bu)′ as a weak derivative in the sense of V ′

valued distributions. Suppose that u ∈ Lp ([0,T ] ,V ) and (s, t)→ B′ (s)u(t) is bounded in
V ′ in case p < 2. (If B(t) is constant in t this is obvious.) In the case where p ≥ 2, it is
enough to assume B′ ∈C1 ([0,T ] ;L (W,W ′)). Then t→ Bu(t) is continuous into W ′ for t
off a set of measure zero N and also there exists a continuous function t→ ⟨Bu,u⟩(t) such
that for all t /∈ N,⟨Bu,u⟩(t) = ⟨B(u(t)) ,u(t)⟩ ,Bu(t) = B(t)(u(t)) , and for all t,

1
2
⟨Bu,u⟩(t)+ 1

2

∫ t

0

〈
B′u,u

〉
ds =

1
2
⟨Bu0,u0⟩+

∫ t

0
⟨Y (s) ,u(s)⟩ds

Proof: By Lemma 34.3.1, there exists a sequence of partitions
{

tn
k

}mn
k=0 = Pn,Pn ⊆

Pn+1, of [0,T ] such that the lengths of the sub intervals converge uniformly to 0 as n→ ∞

and the step functions

mn−1

∑
k=0

u(tn
k )X(tn

k ,t
n
k+1]

(t) ≡ ul
n (t)

mn−1

∑
k=0

u
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ ur
n (t)

converge to u in Lp (0,T ;V )≡ K. We assume that all of these partition points have empty
intersection with the set of measure zero where Bu(t) ̸=B(t)(u(t)). Thus, at every partition
point, Bu(tk) = B(tk)(u(tk)). As just mentioned, Lp (0,T ;V )≡ K, Lp′ (0,T ;V ′) = K′.

Taking a subsequence, we can have∥∥∥ul
n−u

∥∥∥
K
+∥ur

n−u∥K +
∥∥∥Bul

n−Bu
∥∥∥

K′
+∥Bur

n−Bu∥K′

+
∥∥B′ur

n−B′u
∥∥

L2([0,T ],W ′)+
∥∥∥B′ul

n−B′u
∥∥∥

L2([0,T ],W ′)
< 2−n (34.5.29)

and so, we can assume that a.e. convergence also takes place for Bul
n,Bur

n,B
′ul

n,B
′ur

n,u
r
n,u

l
n.

Is Bu(0) = B(0)u0? The integral equation gives this it seems. To save notation, B(0)u0
will be written as Bu0. This is not inconsistent because t → B(t)u0 is continuous and its
value at 0 is B(0)u0.



1198 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

Lemma 34.5.2 Let s < t. Then for u,Y satisfying 34.5.28

⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩

+⟨(B(t)−B(s))u(s) ,u(t)−u(s)⟩= 2
∫ t

s
⟨Y (r) ,u(t)⟩dr

−⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩ (34.5.30)

Proof: It follows from the following computations

B(t)u(t)−B(s)u(s) =
∫ t

s
Y (r)dr

and so
2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩

= 2
〈∫ t

s
Y (r)dr,u(t)

〉
−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩

= 2⟨B(t)u(t)−B(s)u(s) ,u(t)⟩−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩

= 2⟨B(t)u(t) ,u(t)⟩−2⟨B(s)u(s) ,u(t)⟩−⟨B(t)u(t) ,u(t)⟩
+⟨B(t)u(t) ,u(s)⟩+ ⟨B(s)u(s) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩

= ⟨B(t)u(t) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩
+[⟨B(t)u(t) ,u(s)⟩−⟨B(s)u(s) ,u(t)⟩]

= ⟨B(t)u(t) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩
+⟨(B(t)−B(s))u(s) ,u(t)⟩

Thus
⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩

= 2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩

Now consider the last term. It equals

⟨B(t)u(t)− (B(s)−B(t)+B(t))u(s) ,u(t)−u(s)⟩

= ⟨B(t)u(t)− ((B(s)−B(t))u(s)+B(t)u(s)) ,u(t)−u(s)⟩

= ⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)−u(s)⟩

It follows that

⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩
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+⟨(B(t)−B(s))u(s) ,u(t)−u(s)⟩

= 2
∫ t

s
⟨Y (r) ,u(t)⟩dr−⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩

Of course this computation is under the assumption that neither s, t are in the exceptional
set off which B(t)u(t) = Bu(t). In case s = 0 the same formula holds except you need to
replace u(s) with u0 and Bu(s) with B(0)u0 = Bu(0) . ■

It is good to emphasize part of the above.

⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩

= ⟨(B(s)−B(t))u(s) ,u(t)−u(s)⟩

Lemma 34.5.3 Let the partitions Pk be as above such that 34.5.29, Pk =
{

tk
j

}mk

j=0
. Then

for any m≤ mk,

m−1

∑
j=0

〈
B
(

tk
j+1

)
u
(

tk
j+1

)
−B

(
tk

j+1

)
u
(

tk
j

)
,u
(

tk
j+1

)
−u
(

tk
j

)〉
−

m−1

∑
j=0

〈
B
(

tk
j+1

)
u
(

tk
j+1

)
−B

(
tk

j

)
u
(

tk
j

)
,u
(

tk
j+1

)
−u
(

tk
j

)〉
= ε

m (k)

where limk→∞ εm (k) = 0. Here

ε
m (k) =

m−1

∑
j=0

〈(
B
(

tk
j

)
−B

(
tk

j+1

))
u
(

tk
j

)
,u
(

tk
j+1

)
−u
(

tk
j

)〉

Proof: From the above lemma, the absolute value of the left side is no larger than

m−1

∑
j=0

∣∣∣〈(B
(

tk
j

)
−B

(
tk

j+1

))
u
(

tk
j

)
,u
(

tk
j+1

)
−u
(

tk
j

)〉∣∣∣

≤
m−1

∑
j=0

∫ tk
j+1

tk
j

∥∥∥B′ (τ)u
(

tk
j

)∥∥∥
W ′

dτ

∥∥∥u
(

tk
j+1

)
−u
(

tk
j

)∥∥∥
W

(34.5.31)
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In case p≥ 2 then for C ≥maxs ∥B′ (s)∥L (W,W ′) ,

≤ C
m−1

∑
j=0

∫ tk
j+1

tk
j

∥∥∥ul (τ)
∥∥∥

W

∥∥∥ur
k (τ)−ul

k (τ)
∥∥∥

W
dτ

= C
m−1

∑
j=0

∫ tk
m

0
X[

tk
j ,t

k
j+1

] (τ)∥∥∥ul
k (τ)

∥∥∥
W

∥∥∥ur
k (τ)−ul

k (τ)
∥∥∥

W
dτ

= C
∫ tk

m

0

m−1

∑
j=0

X[
tk
j ,t

k
j+1

] (τ)∥∥∥ul
k (τ)

∥∥∥
W

∥∥∥ur
k (τ)−ul

k (τ)
∥∥∥

W
dτ

= C
∫ tk

m

0

∥∥∥ul (τ)
∥∥∥

W

∥∥∥ur
k (τ)−ul

k (τ)
∥∥∥

W
dτ

≤ C
∥∥∥ul

k

∥∥∥
Lp([0,T ],V )

∥∥∥ur
k (τ)−ul

k (τ)
∥∥∥

Lp([0,T ],V )

≤ Ĉ (2)2−k

by 34.5.29. In case p < 2, then from assumption and 34.5.31, the absolute value of the left
side is no larger than

m−1

∑
j=0

C
(

tk
j+1− tk

j

)∥∥∥u
(

tk
j+1

)
−u
(

tk
j

)∥∥∥
W

= C
m−1

∑
j=0

∫ tk
j+1

tk
j

X[
tk
j ,t

k
j+1

] (s)∥∥∥ur
k (s)−ul

k (s)
∥∥∥

W

= C
∫ tk

m

0

∥∥∥ur
k (s)−ul

k (s)
∥∥∥

W

which converges to 0 as k→ ∞ thanks to 34.5.29. ■

Lemma 34.5.4 In the above situation,

sup
t∈NC
⟨Bu(t) ,u(t)⟩+

∫ T

0

〈
B′u,u

〉
ds≤C (∥Y∥K′ ,∥u∥K)

Also, t→ Bu(t) is weakly continuous with values in W ′ on NC where N is a set of measure
zero including the set where Bu(t) ̸= B(t)(u(t)).

Proof: From the above formula of Lemma 34.5.2 applied to the kth partition of [0,T ]
described above,

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩+
m−1

∑
j=0

〈(
B
(
t j+1

)
−B(t j)

)
u(t j) ,u

(
t j+1

)〉

+

∗
m−1

∑
j=0

〈(
B
(
t j+1

)
−B(t j)

)
u(t j) ,u

(
t j+1

)
−u(t j)

〉
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=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)〉
dr−

〈
B
(
t j+1

)
u
(
t j+1

)
−B

(
t j+1

)
u(t j) ,u

(
t j+1

)
−u(t j)

〉
(34.5.32)

Consider the third term on the left,

mn−1

∑
j=0

〈(
B
(
tn

j+1
)
−B

(
tn

j
))

u
(
tn

j
)
,u
(
tn

j+1
)〉

=
∫ tmn

0

〈
mn−1

∑
j=0

X(tn
j ,t

n
j+1]

(t)
B
(

tn
j+1

)
−B

(
tn

j

)
tn

j+1− tn
j

ul
n (t) ,u

r
n (t)

〉
dt

Using a simple approximate identity argument and the assumption that t → B(t) is in
C1 ([0,T ] ,L (W,W ′)),

mn−1

∑
j=0

X(tn
j ,t

n
j+1]

(t)
B
(

tn
j+1

)
−B

(
tn

j

)
tn

j+1− tn
j

→ B′ (t)

uniformly on (0,T ]. Then

mn−1

∑
j=0

X(tn
j ,t

n
j+1]

(t)
B
(

tn
j+1

)
−B

(
tn

j

)
tn

j+1− tn
j

ul
n→ B′u

strongly in L2 ([0,T ] ,W ′) while ur
n→ u strongly in L2 ([0,T ] ;W ) . It follows that the third

term on the left in 34.5.32 is

ε (k)+2
∫ T

0

〈
B′u,u

〉
ds, ε (k)→ 0.

whenever n is sufficiently large. Also, T could be replaced with t j for any of the mesh
points.

Next consider the term labelled ∗. From Lemma 34.5.3, it is of the form εm (k) where
limk→∞ εm (k) = 0. Thus 34.5.32 reduces to

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩+
∫ tm

0

〈
B′u,u

〉
ds =

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (r) ,ur
k (r)⟩dr

−
m−1

∑
j=0

〈
B
(
t j+1

)
u
(
t j+1

)
−B

(
t j+1

)
u(t j) ,u

(
t j+1

)
−u(t j)

〉
+ ε (k) (34.5.33)

where tm ∈Pk.
Thus, discarding the negative terms which occur at the end and denoting by Pk the kth

of these partitions,

sup
t j∈Pk

〈
Bu(t j) ,u(t j)

〉
+
∫ T

0

〈
B′u,u

〉
ds≤ ⟨Bu0,u0⟩+2

∫ T

0
|⟨Y (r) ,ur

k (r)⟩|dr+ ε
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≤ ⟨Bu0,u0⟩+2
∫ T

0
∥Y (r)∥V ′ ∥u

r
k (r)∥V dr+ ε

≤ ⟨Bu0,u0⟩+2
(∫ T

0
∥Y (r)∥p′

V ′ dr
)1/p′(∫ T

0
∥ur

k (r)∥
p
V dr

)1/p

+ ε

≤ C (∥Y∥K′ ,∥u∥K)+ ε

whenever k is large enough because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥ur

k (r)∥
p
V

)1/p

=

(∫ T

0
∥u(r)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
⟨B(t)u(t) ,u(t)⟩+

∫ T

0

〈
B′u,u

〉
ds <C (∥Y∥K′ ,∥u∥K)+ ε

However, ε was arbitrary and the partitions are nested. Hence the above holds for all ε and
so

sup
t∈D
⟨B(t)u(t) ,u(t)⟩+

∫ T

0

〈
B′u,u

〉
ds <C (∥Y∥K′ ,∥u∥K)

By 34.5.29 and the integral equation, there is a set of measure zero including all the
earlier sets of measure zero N such that for t /∈ N,ul

n (t) ,u
r
n (t)→ u(t) pointwise in V. Also,

B(t)ur
n (t)→ Bu(t) in V ′. This last can be obtained from the integral equation solved. t→

Bu(t) is continuous into V ′. Then let t /∈ N. We have ur
n (t)→ u(t) in V . Now B(t)ur

n (t) =
B(t)u(sn) where sn ∈ D and sn→ t. Then Bu(t) = B(t)u(t) and

∥B(sn)u(sn)−B(t)u(t)∥V ′ ≤ ∥(B(sn)−B(t))u(sn)∥V ′ +∥B(t)(u(sn)−u(t))∥V ′

≤Ct ∥B(sn)−B(t)∥+C∥u(sn)−u(t)∥V
where Ct is a constant which comes because u(sn)→ u(t) in V and so is bounded. The
constant C is just maxt∈[0,T ] ∥B(t)∥. Then, since the two terms on the right converge to 0 as
n→∞, it follows that as sn→ t,B(sn)u(sn)→ B(t)u(t) = Bu(t) in V ′ while u(sn)→ u(t)
in V . It follows that for t /∈ N,

⟨Bu(t) ,u(t)⟩+
∫ T

0

〈
B′u,u

〉
ds = lim

n→∞
⟨Bu(sn) ,u(sn)⟩+

∫ T

0

〈
B′u,u

〉
ds≤C (∥Y∥K′ ,∥u∥K)

Hence,

sup
t /∈N
⟨Bu(t) ,u(t)⟩+

∫ T

0

〈
B′u,u

〉
ds≤C (∥Y∥K′ ,∥u∥K)

It only remains to verify the claim about weak continuity.
Consider now the claim that t→ Bu(t) is weakly continuous on NC. Letting v ∈V,s ∈

NC,
lim
t→s
⟨Bu(t) ,v⟩= ⟨Bu(s) ,v⟩= ⟨Bu(s) ,v⟩ (34.5.34)
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The limit follows from the formula 34.5.28 which implies t→ Bu(t) is continuous into V ′.
Now for t ∈ NC,

∥Bu(t)∥W ′ = sup
∥v∥W≤1

|⟨Bu(t) ,v⟩| ≤ ⟨Bv,v⟩1/2 ⟨Bu(t) ,u(t)⟩1/2

≤
(

C (∥Y∥K′ ,∥u∥K)−
∫ T

0

〈
B′u,u

〉
ds
)

sup
t /∈N
∥Bu(t)∥W ′ ≤

(
C (∥Y∥K′ ,∥u∥K)−

∫ T

0

〈
B′u,u

〉
ds
)

Now let w ∈W . Then

|⟨Bu(t) ,w⟩−⟨Bu(s) ,w⟩| ≤ |⟨Bu(t)−Bu(s) ,w− v⟩|+
∣∣∣⟨Bu(t)−Bu(s) ,v⟩V ′,V

∣∣∣
Then the first term is less than ε if v is close enough to w and the second converges to 0 by
continuity of t → Bu(t) which comes from the integral equation, so 34.5.34 holds for all
v ∈W and so this shows the weak continuity of t→ Bu(t) on NC. ■

Now pick t ∈ D, the union of all the mesh points. Then for all k large enough, t ∈Pk.
Say t = tm. From

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩+
∫ tm

0

〈
B′u,u

〉
ds =

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (r) ,ur (r)⟩dr+ ε (k)

−
m−1

∑
j=0

〈
B
(
t j+1

)
u
(
t j+1

)
−B

(
t j+1

)
u(t j) ,u

(
t j+1

)
−u(t j)

〉
(34.5.35)

where ε (k)→ 0. By Lemma 34.5.3, you can modify ε (k) and write this in the form

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩+
∫ tm

0

〈
B′u,u

〉
ds =

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (r) ,ur (r)⟩dr+ ε (k)

−
m−1

∑
j=0

〈
B
(
t j+1

)
u
(
t j+1

)
−B(t j)u(t j) ,u

(
t j+1

)
−u(t j)

〉
(34.5.36)

Thus, ⟨Bu(tm) ,u(tm)⟩ is constant for all k large enough and the integral term on the right
converges as k→ ∞ to ∫ tm

0
⟨Y (r) ,u(r)⟩dr

It follows that the last term on the right does converge to something as k → ∞. It just
remains to consider what it does converge to. However, from the equation solved by u,

Bu
(
t j+1

)
−Bu(t j) =

∫ t j+1

t j

Y (r)dr
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Therefore, this term is dominated by an expression of the form∣∣∣∣∣mk−1

∑
j=0

〈∫ t j+1

t j

Y (r)dr,u
(
t j+1

)
−u(t j)

〉∣∣∣∣∣
=

∣∣∣∣∣mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)
−u(t j)

〉
dr

∣∣∣∣∣
=

∣∣∣∣∣mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (r) ,u(t j)

〉∣∣∣∣∣
=

∣∣∣∣∫ tm

0
⟨Y (r) ,ur (r)⟩dr−

∫ tm

0

〈
Y (r) ,ul (r)

〉
dr
∣∣∣∣

≤
∫ T

0

∣∣∣〈Y (r) ,ur (r)−ul (r)
〉∣∣∣dr

However, both ur and ul converge to u in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t ∈ D,

⟨Bu(t) ,u(t)⟩+
∫ t

0

〈
B′u,u

〉
dr = ⟨Bu0,u0⟩+2

∫ t

0
⟨Y (r) ,u(r)⟩dr

It remains to verify that this holds for all t /∈ N. Let t ∈ NC \D and let t (k) ∈Pk be the
largest point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

Bu(t (m)) = Bu0 +
∫ t(m)

0
Y (s)ds,

a similar formula for u(t (k)) . Thus for t > t (m) ,

Bu(t)−Bu(t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and u0 = 0. Therefore,

⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩

+
∫ t(k)

t(m)

〈
B′ (s)(u(s)−u(t (m))) ,u(s)−u(t (m))

〉
= 2

∫ t(k)

t(m)
⟨Y (s) ,u(s)−u(t (m))⟩ds

Thus, for m≤ k

lim
m,k→∞

⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩= 0 (34.5.37)
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Hence {Bu(t (k))}∞

k=1 is a convergent sequence in W ′ because

|⟨B(u(t (k))−u(t (m))) ,y⟩|
≤ ⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩1/2 ⟨By,y⟩1/2

≤ ⟨B(u(t (k))−u(t (m))) ,u(t (k))−u(t (m))⟩1/2 ∥B∥1/2 ∥y∥W

Does it converge to Bu(t)? Let ξ (t) ∈W ′ be what it does converge to. Let v ∈V. Then

⟨ξ (t) ,v⟩= lim
k→∞

⟨Bu(t (k)) ,v⟩= lim
k→∞

⟨Bu(t (k)) ,v⟩= ⟨Bu(t) ,v⟩

because it is known that t → Bu(t) is continuous into V ′. It is also known that for t ∈ NC,
Bu(t) ∈W ′ ⊆ V ′ and that the Bu(t) for t ∈ NC are uniformly bounded in W ′. Therefore,
since V is dense in W, it follows that ξ (t) = Bu(t).

Now for every t ∈ D, it was shown above that

⟨Bu(t) ,u(t)⟩+
∫ t

0

〈
B′u,u

〉
dr = ⟨Bu0,u0⟩+2

∫ t

0
⟨Y (r) ,u(r)⟩dr

Also it was just shown that Bu(t (k))→ Bu(t) for t /∈ N. Then for t /∈ N

|⟨Bu(t (k)) ,u(t (k))⟩−⟨Bu(t) ,u(t)⟩|

≤ |⟨B(t (k))u(t (k)) ,u(t (k))−u(t)⟩|+ |⟨Bu(t (k))−Bu(t) ,u(t)⟩|

Then the second term converges to 0. The first equals

|⟨B(t (k))u(t (k))−B(t (k))u(t) ,u(t (k))⟩|
≤ ⟨B(t (k))(u(t (k))−u(t)) ,u(t (k))−u(t)⟩1/2 ⟨Bu(t (k)) ,u(t (k))⟩1/2

From the above, this is dominated by an expression of the form

⟨B(t (k))(u(t (k))−u(t)) ,u(t (k))−u(t)⟩1/2 C

Then from the choice of N and the pointwise convergence of ur
n to u off N the above

converges to 0 for each t /∈ N. It follows that

lim
k→∞

|⟨Bu(t (k)) ,u(t (k))⟩−⟨Bu(t) ,u(t)⟩|= 0

Then from the formula,

⟨Bu(t) ,u(t)⟩= ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr−

∫ t

0

〈
B′u,u

〉
dr

valid for t ∈ D, it follows that the same formula holds for all t /∈ N. Then define ⟨Bu,u⟩(t)
to equal ⟨Bu(t) ,u(t)⟩ off N and the right side for t ∈ N. Thus t→ ⟨Bu,u⟩(t) is continuous
and for all t ∈ [0,T ] ,

⟨Bu,u⟩(t) = ⟨Bu0,u0⟩+2
∫ t

0
⟨Y (r) ,u(r)⟩dr−

∫ t

0

〈
B′u,u

〉
dr
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Also recall that t → B(t)u(t) was shown to be weakly continuous into W ′ on NC. Is it
continuous on NC? Suppose t ∈ NC and let sn → t where sn ∈ D. Then u(sn) = ur

mn (t)
because sn is one of the mesh points. Since sn → t one can assume that mn → ∞. Hence
u(sn) = ur

mn (t)→ u(t) by the pointwise convergence implied by 34.5.29. Then obviously

B(sn)u(sn) = B(sn)ul
mn (t)→ B(t)u(t)

Now suppose you just have tn→ t where each of tn, t are in NC. Does it always follow that
B(tn)u(tn)→ B(t)u(t)? Suppose not. Then there exists such a sequence tn→ t of points
in NC and ε > 0 such that

∥B(tn)u(tn)−B(t)u(t)∥ ≥ ε

However, from the density of D and what was just shown, there exists sn ∈ D such that
|sn− tn|< 1

2n and

∥B(sn)u(sn)−B(tn)u(tn)∥<
1
2n

Then

ε ≤ ∥B(tn)u(tn)−B(sn)u(sn)∥+∥B(sn)u(sn)−B(t)u(t)∥

<
1
2n +∥B(sn)u(sn)−B(t)u(t)∥

Since sn→ t, what was just shown implies both terms on the right converge to 0. This is a
contradiction. Thus t→ B(t)u(t) must be continuous on NC into W ′. ■

Consider the case that t → B(u(t)) has a weak derivative, denoted as (Bu)′ (t) which
is in Lp′ (0,T ;V ′) . Then as shown above, there is a continuous function, denoted as Bu(t)
which equals B(t)(u(t)) for a.e. t and

Bu(t) = Bu(0)+
∫ t

0
(Bu)′ (s)ds

Then the above theorem applies. Then one obtains the following corollary.

Corollary 34.5.5 Let V ⊆W,W ′ ⊆V ′ be separable Banach spaces, and B(t)∈L (W,W ′)
is nonnegative and self adjoint, B ∈C1 ([0,T ] ;W ′). Also suppose t→ B(u(t)) has a weak
derivative (Bu)′ ∈ Lp′ (0,T ;V ′) for u ∈ Lp ([0,T ] ;V )∩L2 ([0,T ] ;W ). Then there is a con-
tinuous function denoted as Bu(t) which equals B(t)(u(t)) a.e. t. Say for t /∈ N. Suppose
Bu(0) = Bu0, u0 ∈W. Then

Bu(t) = Bu0 +
∫ t

0
(Bu)′ (s)ds in V ′ (34.5.38)

Then t→ Bu(t) is in C
(
NC,W ′

)
and also for such t,

1
2
⟨Bu(t) ,u(t)⟩+ 1

2

∫ t

0

〈
B′ (s)u(s) ,u(s)

〉
ds =

1
2
⟨Bu0,u0⟩+

∫ t

0

〈
(Bu)′ (s) ,u(s)

〉
ds
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There exists a continuous function t → ⟨Bu,u⟩(t) which equals the right side of the above
for all t and equals ⟨B(t)u(t) ,u(t)⟩ off N. This satisfies

sup
t∈[0,T ]

⟨Bu,u⟩(t)≤C (∥Y∥K′ ,∥u∥K)

In particular, this last inequality follows from Lemma 34.5.4 and the assumption that B′ is
bounded.

Note how if everything is nice and smooth, this integration by parts formula is what
you would be expected to get. To see this, assume u is smooth and formally work on the
right side.

d
dt
⟨Bu,u⟩ =

〈
(Bu)′ ,u

〉
+
〈
Bu,u′

〉
=

〈
(Bu)′ ,u

〉
+
〈
Bu′,u

〉
= 2

〈
(Bu)′ ,u

〉
−
〈
B′u,u

〉
Thus

1
2
⟨Bu0,u0⟩+

∫ t

0

〈
(Bu)′ (s) ,u(s)

〉
ds

=
1
2
⟨Bu0,u0⟩+

1
2

[∫ t

0

d
ds
⟨Bu,u⟩ds+

∫ t

0

〈
B′u,u

〉
ds
]

=
1
2
⟨Bu(t) ,u(t)⟩+ 1

2

∫ t

0

〈
B′u,u

〉
ds

which equals the left side.
A related topic is the continuity of pointwise evaluation of Bu. Let Lu = (Bu)′ .

u = D(L)≡
{

u ∈ Lp (0,T ;V ) : Lu ∈ Lp′ (0,T,V ′)}
∥u∥X ≡ ∥u∥Lp(0,T,V )+∥Lu∥Lp′ (0,T,V ′)

Since L is closed, this X is a Banach space. Then the following theorem is obtained.

Theorem 34.5.6 In the above corollary, the map u→ Bu(t) is continuous as a map from
X to V ′. Also if Y denotes those f ∈ Lp ([0,T ] ;V ) for which f ′ ∈ Lp ([0,T ] ;V ) , so that f
has a representative such that f (t) = f (0)+

∫ t
0 f ′ (s)ds, then if ∥ f∥Y ≡ ∥ f∥Lp([0,T ];V ) +

∥ f ′∥Lp([0,T ];V ) the map f → f (t) is continuous.

Proof: First, why is u→ Bu(0) continuous? Say u,v ∈ X and say p≥ 2 first.

Bu(t)−Bv(t) = Bu(0)−Bv(0)+
∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

and so, (∫ T

0
∥Bu(0)−Bv(0)∥p′

V ′ dt
)1/p′

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p′

V ′ dt
)1/p′
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+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p′

dt

)1/p′

and so
∥Bu(0)−Bv(0)∥V ′ T

1/p′ ≤(
∥B∥∥u− v∥Lp′ ([0,T ];V )

+T 1/p′ ∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

)
≤C (∥B∥ ,T )∥u− v∥X

Thus u→ Bu(0) is continuous into V ′. If p < 2, then you do something similar.(∫ T

0
∥Bu(0)−Bv(0)∥p

V ′ dt
)1/p

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p

V ′ dt
)1/p

+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p

dt
)1/p

∥Bu(0)−Bv(0)∥V ′ T
1/p ≤ ∥B∥∥u− v∥Lp +C (T )

∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

≤ C (∥B∥ ,T )∥u− v∥X .

However, one could just as easily have done this for an arbitrary s < T by repeating the
argument for

Bu(t) = Bu(s)+
∫ t

s
(Bu)′ (r)dr

Thus this mapping is certainly continuous into V ′. The last assertion is similar. ■

34.6 Another Approach
The above approach is pretty interesting, but there is a quicker way to do it discussed in this
section. I am also including the case where the operator B is actually a function of t. I have
never had a reason to use this level of generality, but it is here if it is of any interest. Also,
this is presented in the context of complex Banach spaces. In addition, it is shown that by
including i∗ in various formulas, you don’t need to have V dense in W . Of course, this is
typically not of any interest, but for the sake of generality, it is included. The approach is
due to Lions. It is assumed for convenience that p≥ 2. This was apparently not needed in
the last section. It may be that this approach can also be generalized to not require this.

Let B(t) ∈L (W,W ′) satisfy

⟨B(t)u,v⟩= ⟨B(t)v,u⟩, u,v ∈W (34.6.39)

⟨B(t)u,u⟩ ≥ 0 (34.6.40)

B(t) = B(0)+
∫ t

0
B′ (s)ds (34.6.41)
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where B′ ∈ L∞ (0,T ;L (W,W ′)) . Here W is a Banach space such that V ⊆W. Also VI ≡
Lp (I;V ) and WI ≡ L2 (I;W ).

Now let I = [a,b] and c < a < b < d. Here and in what follows φ n (t) = nφ (nt) where
φ ≥ 0,φ ∈C∞

0 (−1,1) , and
∫

φdt = 1. The following proposition is known and the essential
features of its proof may be found in [92]. We give a proof for the convenience of the reader.

Proposition 34.6.1 Suppose D(t) ∈ L (W,W ′) and D(t) = 0 if t /∈ (c,d). Suppose also
that

D(t) =
∫ t

c
D′ (s)ds, D′ ∈ L∞

(
c,d;L

(
W,W ′

))
.

For u ∈WI and a−n−1 > c, b+n−1 < d, define

Tnu = (D(u∗φ n))
′− ((Du)∗φ n)

′ (34.6.42)

where we let u = 0 off I. Then
||Tnu||W ′I → 0 (34.6.43)

Proof: First, we show that ||Tn|| is uniformly bounded. Letting w = 0 off I,

|⟨Tnu,w⟩|=
∣∣∣∣∫R⟨D′ (t)

∫
R

u(s)φ n (t− s)ds,w(t)⟩dt
∣∣∣∣

+

∣∣∣∣∫R⟨
∫
R
(D(t)−D(s))u(s)φ

′
n (t− s)ds,w(t)⟩dt

∣∣∣∣
≤C ||u||WI

||w||WI
+
∫
R

∫
R
||D(t)−D(s)|| ||u(s)||n2 ∣∣φ ′ (n(t− s))

∣∣ ||w(t)||dsdt

≤C ||u||WI
||w||WI

+∫
R

∫ 1

−1

∣∣∣∣∣∣D(t)−D
(

t− r
n

)∣∣∣∣∣∣ ∣∣∣∣∣∣u(t− r
n

)∣∣∣∣∣∣n2 ∣∣φ ′ (r)∣∣ ||w(t)|| 1
n

drdt

≤C ||u||WI
||w||WI

+C
∫ 1

−1

∫
R

∣∣∣∣∣∣u(t− r
n

)∣∣∣∣∣∣
W
||w(t)||W dtdr

≤C ||u||WI
||w||WI

.

Where C is a positive constant independent of n and u. Thus ||Tn|| is bounded independent
of n.

Next let u ∈C∞
0 (I;V ) , a dense subset of WI . Then a little computation shows∣∣⟨Tnu,w⟩WI

∣∣≤
C (φ)

∫ b

a

∫ 1

−1

∣∣∣∣∣∣D′ (t)−D′
(

t− r
n

)∣∣∣∣∣∣ ∣∣∣∣∣∣u(t− r
n

)∣∣∣∣∣∣
W
||w(t)||W drdt

+C (φ)
∫ b

a

∫ 1

−1

∣∣∣∣∣∣D(t)−D
(

t− r
n

)∣∣∣∣∣∣ ∣∣∣∣∣∣u′(t− r
n

)∣∣∣∣∣∣
W
||w(t)||W drdt

≡ A+B.
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Now
B≤C

(
φ ,D′

)
n−1/2||u′||WI ||w||WI .

Since u is bounded,

A ≤ C (φ ,u)
∫ b

a

∫ 1

−1

∣∣∣∣∣∣D′ (t)−D′
(

t− r
n

)∣∣∣∣∣∣ ||w(t)||W drdt

≤ C (φ ,u)
∫ b

a
||w(t)||W n

∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣dsdt

By Holder’s inequality, this is no larger than

C (φ ,u)(
∫ b

a
(n
∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣ds)2dt)1/2 ||w||WI

.

If t is a Lebesgue point,

n
∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣ds→ 0

and also

n
∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣ds≤ 4||D′||∞

so the dominated convergence theorem implies

∫ b

a
(n
∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣ds)2dt→ 0.

Hence
||Tnu||W ′I ≤

C
(
φ ,u,D′

)(
n−1/2 +(

∫ b

a
(n
∫ t+n−1

t−n−1

∣∣∣∣D′ (t)−D′ (s)
∣∣∣∣ds)2dt)1/2

)
and so Tnu→ 0 for all u in the dense subset, C∞

0 (I;V ) . ■
We have also the following simple corollary.

Corollary 34.6.2 In the situation of Proposition 34.6.1,∣∣∣∣(i∗D(u∗φ n))
′− ((i∗Du)∗φ n)

′∣∣∣∣
V ′I
→ 0

where i is the inclusion map of V into W.

For f ∈ L1 (a,b;V ′) we define f ′ in the sense of V ′ valued distributions as follows. For
φ ∈C∞

0 (a,b) ,

f ′ (φ)≡−
∫ b

a
f (t)φ

′ (t)dt.
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We say f ′ ∈ L1 (a,b;V ′) if there exists g ∈ L1 (a,b;V ′) , necessarily unique, such that for
all φ ∈C∞

0 (a,b) , ∫ b

a
g(t)φ (t)dt = f ′ (φ) .

To save on notation, we let V ≡ V [0,T ] and W ≡W [0,T ]. Define

D(L)≡ {u ∈ V : (i∗Bu)′ ∈ V ′}, (34.6.44)

Lu≡ (i∗Bu)′ for u ∈ D(L) . (34.6.45)

Note that for u ∈ D(L) , it is automatically the case that i∗Bu ∈ V ′.

Lemma 34.6.3 L is a closed operator.

We define
X ≡ D(L) , ||u||X ≡ ||Lu||V ′ + ||u||V .

Then X is isometric to a closed subspace of a product of reflexive Banach spaces and so X
is reflexive by Lemma 17.5.11.

Theorem 34.6.4 Let p≥ 2 in what follows. For u,v ∈ X , the following hold.

1. t → ⟨B(t)u(t) ,v(t)⟩W ′,W equals an absolutely continuous function a.e., denoted by
⟨Bu,v⟩(·) .

2. Re⟨Lu(t) ,u(t)⟩= 1
2 [⟨Bu,u⟩′ (t)+ ⟨B′ (t)u(t) ,u(t)⟩] a.e. t

3. |⟨Bu,v⟩(t)| ≤C ||u||X ||v||X for some C > 0 and for all t ∈ [0,T ].

4. t→ B(t)u(t) equals a function in C (0,T ;W ′) a.e., denoted by Bu(·) .

5. sup{||Bu(t)||W ′ , t ∈ [0,T ]} ≤C||u||X for some C > 0.
If K : X → X ′ is given by

⟨Ku,v⟩X ′,X ≡
∫ T

0
⟨Lu(t) ,v(t)⟩dt + ⟨Bu,v⟩(0) ,

then

6. K is linear, continuous and weakly continuous.

7. Re⟨Ku,u⟩= 1
2 [⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]+ 1

2
∫ T

0 ⟨B′ (t)u(t) ,u(t)⟩dt.

8. If Bu(0) = 0, for u∈ X , there exists un→ u in X such that un (t) is 0 near 0. A similar
conclusion could be deduced at T if Bu(T ) = 0.



1212 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

Proof: For h a function defined on [0,T ], let h1 be even, 2T periodic, and h1 (t) = h(t)
for all t ∈ [0,T ]. Let C (·) ∈C∞

0 (−T,2T ) ,C (t) ∈ [0,1],C (t) = 1 on [0,T ].

0 T 2T−T

h1(t)

0 T

C(t)

Let B̃(t) =C (t)B1 (t) for all t ∈ R and define

ũ(t) =
{

u1 (t) , t ∈ [−T,2T ]
0, t /∈ [−T,2T ] .

Now let u ∈ X . Then

(
i∗B̃ũ

)′
(t) =


0, t <−T
C′ (t)(i∗Bu)(−t)−C (t)(i∗Bu)′ (−t) , t ∈ [−T,0]
(i∗Bu)′ (t) , t ∈ [0,T ]
C′ (t)(i∗Bu)(2T − t)−C (t)(i∗Bu)′ (2T − t) , t ∈ [T,2T ]
0, t > 2T

(34.6.46)

Thus, if I ⊇ [−T,2T ], then
(
i∗B̃ũ

)′ ∈ V ′I . Defining un ≡ ũ∗φ n, then for a.e. t,

Re⟨
(
i∗B̃un

)′
(t) ,un (t)⟩=

1
2
[
⟨B̃un,un⟩′ (t)+ ⟨B̃′ (t)un (t) ,un (t)⟩

]
. (34.6.47)

From 34.6.46 and Proposition 34.6.1, the following holds in V ′[−T,2T ].

lim
n→∞

(
i∗B̃un

)′
= lim

n→∞

(
i∗B̃(ũ∗φ n)

)′ (34.6.48)

= lim
n→∞

((
i∗B̃ũ

)
∗φ n

)′
= lim

n→∞

(
i∗B̃ũ

)′ ∗φ n

=
(
i∗B̃ũ

)′
Where the second equality follows from Corollary 34.6.2, the third follows from the point-
wise a.e. equality of

((
i∗B̃ũ

)
∗φ n

)′ and
(
i∗B̃ũ

)′ ∗φ n, while the fourth follows from 34.6.46
and standard properties of convolutions.
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By choosing a subsequence we can use 34.6.48 to obtain

un→ u a.e. and in V (34.6.49)(
i∗B̃un

)′→ (i∗Bu)′ a.e. and in V ′.

From 34.6.49,

Re⟨
(
i∗B̃un

)′
(t) ,un (t)⟩ → Re⟨(i∗Bu)′ (t) ,u(t)⟩ a.e. t ∈ [0,T ] (34.6.50)

⟨B′ (t)un (t) ,un (t)⟩ → ⟨B′ (t)u(t) ,u(t)⟩ a.e. t ∈ [0,T ] . (34.6.51)

If g ∈ L∞ (0,T ) ,

lim
n→∞

∫ T

0
g(t)⟨

(
i∗B̃un

)′
(t) ,un (t)⟩dt = lim

n→∞
⟨
(
i∗B̃un

)′
,gun (t)⟩

= ⟨(i∗Bu)′ ,gu⟩=
∫ T

0
g(t)⟨(i∗Bu)′ (t) ,u(t)⟩dt.

Thus we have the following weak convergence:

Re⟨
(
i∗B̃un

)′
,un⟩⇀ Re⟨(i∗Bu)′ ,u⟩ in L1 (0,T ) .

Similarly,
⟨B′un,un⟩⇀ ⟨B′u,u⟩ in L1 (0,T )

It follows from 34.6.47 that

⟨B̃un,un⟩′ (·) converges a.e. and weakly in L1 (0,T ) .

⟨B̃un,un⟩(·) converges a.e. and strongly in L1 (0,T ) to ⟨Bu,u⟩(·) .

Therefore, ⟨B̃un,un⟩′ (·) converges a.e. and weakly in L1 (0,T ) to ⟨Bu,u⟩′ (·) . Since ⟨B̃u,u⟩
and ⟨B̃u,u⟩′ are both in L1 (0,T ) , this proves part 1 in the case where v = u. This also
establishes formula 2. To get 1 for u ̸= v, apply what was just shown to

⟨B(t)(u(t)+ v(t)) ,u(t)+ v(t)⟩.

Next let t ∈ [0,T ] and use 34.6.47 to write

⟨B̃un,un⟩(t) =

2Re
∫ t

−T
⟨
(
i∗B̃un

)′
(s) ,un (s)⟩ds−2Re

∫ t

−T
⟨B̃′ (s)un (s) ,un (s)⟩ds. (34.6.52)

Using 34.6.49, we let n→ ∞ in 34.6.52 and obtain

⟨B̃u,u⟩(t) = 2Re
∫ t

−T
⟨
(
i∗B̃ũ

)′
(s) , ũ(s)⟩ds−2Re

∫ t

−T
⟨B̃′ (s) ũ(s) , ũ(s)⟩ds. (34.6.53)

Hence from 34.6.46,

|⟨B̃u,u⟩(t) | ≤C
[
||
(
i∗B̃ũ

)′ ||V ′
[−T,2T ]

||ũ||V[−T,2T ]
+ ||ũ||2V[−T,2T ]

]
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≤C
[
∥Lu∥2

V ′
[0,T ]

+∥u∥2
V[0,T ]

]
≤C||u||2X . (34.6.54)

This verifies 3 in the case u = v. To obtain the general case,

|⟨Bu,v⟩(t)| ≤ ⟨Bu,u⟩1/2 (t)⟨Bv,v⟩1/2 (t)≤C||u||X ||v||X .

To verify 4, use 34.6.47 to write for t ∈ [0,T ] and I = [−T,2T ] ,∣∣⟨B̃un (t)− B̃um (t) ,un (t)−um (t)⟩
∣∣

≤ 2
∣∣∣∣∫ 2T

−T
⟨
(
i∗B̃(un−um)

)′
(s) ,un (s)−um (s)⟩ds

∣∣∣∣
+
∫ 2T

−T

∣∣⟨B̃′ (s)(un (s)−um (s)) ,un (s)−um (s)⟩
∣∣ds≤ (34.6.55)

C
[∥∥∥(i∗B̃un

)′− (i∗B̃um
)′∥∥∥

V ′I
||un−um||VI

+ ||un−um||2WI

]
≡ Enm.

Then from 34.6.48, limn,m→∞ Enm = 0 and so, for t ∈ [0,T ] ,∣∣⟨B̃un (t)− B̃um (t) ,w⟩
∣∣≤ E1/2

nm ⟨B(t)w,w⟩1/2 ≤CE1/2
nm ||w||W .

It follows that B̃un (·) is uniformly Cauchy in the space of continuous functions C (0,T ;W ′)
and so it converges to z ∈C (0,T ;W ′) . But B̃un converges in L2 (0,T ;W ′) to Bu(·) . There-
fore B(t)u(t) = z(t) a.e. Letting Bu(·) = z(·) , this shows 4. Formula 5 follows from 3 and
the following argument.

|⟨Bu(t) ,w⟩| ≤ ⟨Bu,u⟩1/2 (t)⟨Bw,w⟩1/2 ≤C ||u||X ||w||W .

Assertion 6 follows easily from the first five parts. It remains to get 7.

Re⟨Ku,u⟩ =
∫ T

0
Re⟨Lu,u⟩dt + ⟨Bu,u⟩(0)

=
∫ T

0

1
2
[
⟨Bu,u⟩′ (t)+ ⟨B′ (t)u(t) ,u(t)⟩

]
dt + ⟨Bu,u⟩(0)

=
1
2
⟨Bu,u⟩(T )+ 1

2
⟨Bu,u⟩(0)+ 1

2

∫ T

0
⟨B′ (t)u(t) ,u(t)⟩dt

It only remains to verify the last assertion. Let ψn be increasing and piecewise linear
such that ψn (t) = 1 for t ≥ 2/n and equals 0 on [0,1/n]. Then clearly ψnu→ u in V . Also

(B(ψnu))′ = ψ
′
nBu+ψn (Bu)′

The latter term converges to (Bu)′ in V ′. Now consider the first term.∫ T

0

∥∥ψ
′
nBu
∥∥p′

V ′ dt ≤
∫ 2/n

0
n
∥∥∥∥∫ t

0
(Bu)′ ds

∥∥∥∥p′

dt

≤ n
∫ 2/n

0
t p′−1

∫ t

0

∥∥(Bu)′
∥∥p′

V ′ dsdt ≤
∫ 2/n

0

∥∥(Bu)′
∥∥p′

V ′ ds
1
p′
(2/n)p′ n

Since p′ > 1, this converges to 0. ■
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Corollary 34.6.5 If Bu(0) = 0 for u ∈ X , then ⟨Bu,u⟩(0) = 0. The converse is also true.
An analogous result will hold with 0 replaced with T .

Proof: Let un → u in X with un (t) = 0 for all t close enough to 0. For t off a set of
measure zero consisting of the union of sets of measure zero corresponding to un and u,

⟨Bun,un⟩(t) = ⟨B(t)un (t) ,un (t)⟩ ,⟨Bu,u⟩(t) = ⟨B(t)u(t) ,u(t)⟩ ,

⟨B(u−un) ,u⟩(t) = ⟨B(t)(u(t)−un (t)) ,u(t)⟩
⟨Bun,u−un⟩(t) = ⟨B(t)un (t) ,u(t)−un (t)⟩

Then, considering such t,

⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩ = ⟨B(t)(u(t)−un (t)) ,u(t)⟩
+⟨B(t)un (t) ,u(t)−un (t)⟩

Hence from Theorem 34.6.4,

|⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩| ≤C ||u−un||X (||u||X + ||un||X )

Thus if n is sufficiently large,

|⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩|< ε

So let n be fixed and this large and now let tk→ 0 to obtain ⟨B(tk)un (tk) ,un (tk)⟩= 0 for k
large enough. Hence

⟨Bu,u⟩(0) = lim
k→∞

⟨B(tk)u(tk) ,u(tk)⟩< ε

Since ε is arbitrary, ⟨Bu,u⟩(0) = 0.
Next suppose ⟨Bu,u⟩(0) = 0. Then letting v ∈ X , with v smooth,

⟨Bu(0) ,v(0)⟩= ⟨Bu,v⟩(0) = ⟨Bu,u⟩1/2 (0)⟨Bv,v⟩1/2 (0) = 0

and it follows that Bu(0) = 0.■

34.7 Some Imbedding Theorems
The next theorem is very useful in getting estimates in partial differential equations. It is
called Erling’s lemma.

Definition 34.7.1 Let E,W be Banach spaces such that E ⊆Wand the injection map from
E into W is continuous. The injection map is said to be compact if every bounded set in E
has compact closure in W. In other words, if a sequence is bounded in E it has a convergent
subsequence converging in W. This is also referred to by saying that bounded sets in E are
precompact in W.
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Theorem 34.7.2 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then for every ε > 0 there exists a constant, Cε such that for all
u ∈ E,

||u||W ≤ ε ||u||E +Cε ||u||X

Proof: Suppose not. Then there exists ε > 0 and for each n ∈ N, un such that

||un||W > ε ||un||E +n ||un||X

Now let vn = un/ ||un||E . Therefore, ||vn||E = 1 and

||vn||W > ε +n ||vn||X

It follows there exists a subsequence, still denoted by vn such that vn converges to v in
W. However, the above inequality shows that ||vn||X → 0. Therefore, v = 0. But then the
above inequality would imply that ||vn||W > ε and passing to the limit yields 0 > ε, a
contradiction. ■

Definition 34.7.3 Define C ([a,b] ;X) the space of functions continuous at every point of
[a,b] having values in X.

You should verify that this is a Banach space with norm

||u||
∞,X = max

{∣∣∣∣unk (t)−u(t)
∣∣∣∣

X : t ∈ [a,b]
}
.

The following theorem is an infinite dimensional version of the Ascoli Arzela theorem.
It is like a well known result due to Simon [117]. It is an appropriate generalization when
you do not have weak derivatives.

Theorem 34.7.4 Let q > 1 and let E ⊆W ⊆ X where the injection map is continuous from
W to X and compact from E to W. Let S be defined by{

u such that ||u(t)||E ≤ R for all t ∈ [a,b] , and ∥u(s)−u(t)∥X ≤ R |t− s|1/q
}
.

Thus S is bounded in L∞ (a,b,E) and in addition, the functions are uniformly Holder con-
tinuous into X . Then S ⊆ C ([a,b] ;W ) and if {un} ⊆ S, there exists a subsequence,

{
unk

}
which converges to a function u ∈C ([a,b] ;W ) in the following way.

lim
k→∞

∣∣∣∣unk −u
∣∣∣∣

∞,W = 0.

Proof: First consider the issue of S being a subset of C ([a,b] ;W ) . Let ε > 0 be given.
Then by Theorem 34.7.2 there exists a constant, Cε such that for all u ∈W

||u||W ≤
ε

6R
||u||E +Cε ||u||X .
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Therefore, for all u ∈ S,

||u(t)−u(s)||W ≤ ε

6R
||u(t)−u(s)||E +Cε ||u(t)−u(s)||X

≤ ε

6R
(∥u(t)∥E +∥u(s)∥E)+Cε ∥u(t)−u(s)∥X

≤ ε

3
+Cε R |t− s|1/q . (34.7.56)

Since ε is arbitrary, it follows u ∈C ([a,b] ;W ).
Let D = Q∩ [a,b] so D is a countable dense subset of [a,b]. Let D = {tn}∞

n=1. By
compactness of the embedding of E into W, there exists a subsequence u(n,1) such that
as n→ ∞, u(n,1) (t1) converges to a point in W. Now take a subsequence of this, called
(n,2) such that as n→ ∞,u(n,2) (t2) converges to a point in W. It follows that u(n,2) (t1) also
converges to a point of W. Continue this way. Now consider the diagonal sequence, uk ≡
u(k,k) This sequence is a subsequence of u(n,l) whenever k > l. Therefore, uk (t j) converges
for all t j ∈ D.

Claim: Let {uk} be as just defined, converging at every point of D ≡ [a,b]∩Q. Then
{uk} converges at every point of [a,b].

Proof of claim: Let ε > 0 be given. Let t ∈ [a,b] . Pick tm ∈ D∩ [a,b] such that in
34.7.56 Cε R |t− tm|< ε/3. Theefore it follows that there exists N such that if l,n > N, then
||ul (tm)−un (tm)||X < ε/3. It follows that for l,n > N,

||ul (t)−un (t)||W ≤ ||ul (t)−ul (tm)||W + ||ul (tm)−un (tm)||W
+ ||un (tm)−un (t)||W

≤ 2ε

3
+

ε

3
+

2ε

3
< 2ε

Since ε was arbitrary, this shows {uk (t)}∞

k=1 is a Cauchy sequence. Since W is complete,
this shows this sequence converges.

Now for t ∈ [a,b] , it was just shown that if ε > 0 there exists Nt such that if n,m > Nt ,
then

||un (t)−um (t)||W <
ε

3
.

Now let s ̸= t. Then

||un (s)−um (s)||W ≤ ||un (s)−un (t)||W + ||un (t)−um (t)||W + ||um (t)−um (s)||W

From 34.7.56

||un (s)−um (s)||W ≤ 2
(

ε

3
+Cε R |t− s|1/q

)
+ ||un (t)−um (t)||W

and so it follows that if δ is sufficiently small and s ∈ B(t,δ ) , then when n,m > Nt

||un (s)−um (s)||< ε.

Since [a,b] is compact, there are finitely many of these balls, {B(ti,δ )}p
i=1 , such that for

s ∈ B(ti,δ ) and n,m > Nti , the above inequality holds. Let N > max
{

Nt1 , · · · ,Ntp

}
. Then
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if m,n > N and s ∈ [a,b] is arbitrary, it follows the above inequality must hold. Therefore,
this has shown the following claim.

Claim: Let ε > 0 be given. Then there exists N such that if m,n > N, then

||un−um||∞,W < ε.

Now let u(t) = limk→∞ uk (t) .

||u(t)−u(s)||W ≤ ||u(t)−un (t)||W + ||un (t)−un (s)||W + ||un (s)−u(s)||W (34.7.57)

Let N be in the above claim and fix n > N. Then

||u(t)−un (t)||W = lim
m→∞
||um (t)−un (t)||W ≤ ε

and similarly, ||un (s)−u(s)||W ≤ ε. Then if |t− s| is small enough, 34.7.56 shows the
middle term in 34.7.57 is also smaller than ε. Therefore, if |t− s| is small enough,

||u(t)−u(s)||W < 3ε.

Thus u is continuous. Finally, let N be as in the above claim. Then letting m,n > N, it
follows that for all t ∈ [a,b] ,

||um (t)−un (t)||W < ε.

Therefore, letting m→ ∞, it follows that for all t ∈ [a,b] ,

||u(t)−un (t)||W ≤ ε.

and so ||u−un||∞,W ≤ ε. ■

Here is an interesting corollary. Recall that for E a Banach space C0,α ([0,T ] ,E) is the
space of continuous functions u from [0,T ] to E such that

∥u∥
α,E ≡ ∥u∥∞,E +ρα,E (u)< ∞

where here

ρα,E (u)≡ sup
t ̸=s

∥u(t)−u(s)∥E
|t− s|α

Corollary 34.7.5 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then if γ > α, the embedding of C0,γ ([0,T ] ,E) into C0,α ([0,T ] ,X)
is compact.

Proof: Let φ ∈C0,γ ([0,T ] ,E)

∥φ (t)−φ (s)∥X
|t− s|α

≤
(
∥φ (t)−φ (s)∥W
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W

≤
(
∥φ (t)−φ (s)∥E
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W ≤ ργ,E (φ)∥φ (t)−φ (s)∥1−(α/γ)

W
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Now suppose {un} is a bounded sequence in C0,γ ([0,T ] ,E) . By Theorem 34.7.4 above,
there is a subsequence still called {un} which converges in C0 ([0,T ] ,W ) . Thus from the
above inequality

∥un (t)−um (t)− (un (s)−um (s))∥X
|t− s|α

≤ ργ,E (un−um)∥un (t)−um (t)− (un (s)−um (s))∥1−(α/γ)
W

≤ C ({un})
(

2∥un−um∥∞,W

)1−(α/γ)

which converges to 0 as n,m→ ∞. Thus

ρα,X (un−um)→ 0 as n,m→ ∞

Also ∥un−um∥∞,X → 0 as n,m→ ∞ so this is a Cauchy sequence in C0,α ([0,T ] ,X). ■
The next theorem is a well known result probably due to Lions, Temam, or Aubin.

Theorem 34.7.6 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) .

Proof: By Proposition 7.6.5 on Page 144 it suffices to show that for each η > 0, S has
an η net in Lp ([a,b] ;W ).

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (34.7.58)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 34.7.58.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)
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=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

≤
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)

and so ∫ b

a
||(un (t)−un (s))||pW ds

≤
∫ b

a

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (34.7.59)

From Theorem 34.7.2 if ε > 0, there exists Cε such that

||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX

≤ 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q

This is substituted in to 34.7.59 to obtain∫ b

a
||(un (t)−un (s))||pW ds≤

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(
2p−1

ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q
)

dsdt

=
k

∑
i=1

2p
ε

∫ ti

ti−1

||un (t)||pW +
Cε

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q dsdt

≤ 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q
∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q (ti− ti−1)

2

≤ 2p
εRp +Cε

k

∑
i=1

(ti− ti−1)
1+p/q = 2p

εRp +Cε k
(

b−a
k

)1+p/q

.
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Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows

||un−un||Lp([a,b];W ) <
η

4
.

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp (a,b;W ) and use this to contradict 34.7.58. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)

and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E

Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp (a,b;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 34.7.58. ■
You can give a different version of the above to include the case where there is, instead

of a Holder condition, a bound on u′ for u ∈ S. It is stated next. See [117].

Corollary 34.7.7 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) . The same conclusion can be drawn if it is known instead of the Holder
condition that ∥u′∥L1([a,b];X) is bounded.

Proof: The first part is Theorem 34.7.6. Therefore, we just prove the new stuff which
involves a bound on the L1 norm of the derivative. By Proposition 7.6.5 on Page 144 it
suffices to show S has an η net in Lp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (34.7.60)
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for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 34.7.60.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

And so ∫ T

0
||un (t)−un (t)||pW dt =

k

∑
i=1

∫ ti

ti−1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
dt

≤
k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt

+Cε

k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

X
dt (34.7.61)

Consider the second of these. It equals

Cε

k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

∫ t

s
u′n (τ)dτds

∥∥∥∥p

X
dt

This is no larger than

≤Cε

k

∑
i=1

∫ ti

ti−1

(
1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτds
)p

dt
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=Cε

k

∑
i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

dt

=Cε

k

∑
i=1

(
(ti− ti−1)

1/p
∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

Since p≥ 1,

≤ Cε

(
k

∑
i=1

(ti− ti−1)
1/p
∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

≤ Cε (b−a)
k

(
k

∑
i=1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

=
Cε (b−a)

k

(∥∥u′n
∥∥

L1([a,b],X)

)p
<

η p

10p

if k is chosen large enough. Now consider the first in 34.7.61. By Jensen’s inequality

k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt ≤

k

∑
i=1

∫ ti

ti−1

ε
1

ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
E dsdt

≤ ε2p−1
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(∥un (t)∥p +∥un (s)∥p)dsdt

= 2ε2p−1
k

∑
i=1

∫ ti

ti−1

(∥un (t)∥p)dt = ε (2)
(
2p−1)∥un∥Lp([a,b],E) ≤Mε

Now pick ε sufficiently small that Mε < η p

10p and then k large enough that the second term
in 34.7.61 is also less than η p/10p. Then it will follow that

∥ūn−un∥Lp([a,b],W ) <

(
2η p

10p

)1/p

= 21/p η

10
≤ η

5

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp ([a,b] ;W ) and use this to contradict 34.7.60. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)

and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E
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Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp ([a,b] ;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 34.7.60. ■

34.8 Some Evolution Inclusions
Let H be a Hilbert space and let H denote L2 (0,T ;H). Here will be an application to an
evolution equation having values in H . It will always be the case that H = H ′ so this is
the simplest sort of a Gelfand triple, V = H = H ′ =V ′. First is given a maximal monotone
operator.

Definition 34.8.1 Let D(L) ≡ {u ∈H such that u′ ∈H and u(0) = u0} . Then for u ∈
D(L) ,Lu≡ u′.

Note that L is not linear.

Lemma 34.8.2 For L as just defined, L is maximal monotone L : H →H .

Proof: To show it is maximal monotone, it suffices to verify that L+ I is onto. This is
by Theorem 25.7.13 on Page 881. Thus consider the equation

u′+u = f , u(0) = u0

Is there a solution? Of course there is and it equals

u(t) = e−tu0 +
∫ t

0
e−(t−s) f (s)ds

by the usual application of integrating factors and so forth. ■
Then with this, the following is from Theorem 25.7.55 on Page 919. This is a well

known result found in Brezis [24].

Theorem 34.8.3 Let u0 ∈ D(φ) where φ : H → [0,∞] is proper, lower semicontinuous,
and convex. Also let f ∈H be given and u0 ∈ D(φ). Then there exists a solution u to the
evolution initial value problem,

u′ (t)+∂φ (u(t)) ∋ f (t) a.e.in H, u(0) = u0

This solution satisfies u(t)∈D(∂φ) for a.e. t, there exists z∈H such that z(t)∈ ∂φ (u(t))
for a.e. t such that the inclusion is an equation with ∂φ (u(t)) replaced with z(t).
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Proof: Define a function Φ : H → R

Φ(u)≡
∫ T

0
φ (u)dt

There are no measurability issues because φ is lower semicontinuous and so the compo-
sition φ (u) will be appropriately measurable. Then this is clearly convex. It is proper
because Φ(u0) = φ (u0)T so u0 ∈ D(Φ). If un→ u in H , does it follow that

lim inf
n→∞

Φ(un)≥Φ(u)

Suppose not so Φ(u)> liminfn→∞ Φ(un) . Then choosing a subsequence such that

un→ u pointwise a.e.,

Φ(u) > lim inf
n→∞

Φ(un)≡ lim inf
n→∞

∫ T

0
φ (un)dt

≥
∫ T

0
lim inf

n→∞
φ (un)dt =

∫ T

0
φ (u)dt = Φ(u)

which is a contradiction. Thus Φ is also lower semicontinuous.
The constant function u≡ u0 is in D(L)∩D(Φ) . To use Theorem 25.7.55 on Page 919,

it is required to show that
Φ(Jλ u)≤Φ(u)+Cλ

In this case, the duality map is just the identity map. Hence Jλ u is the solution to

0 = (Jλ u−u)+λL(Jλ u)

Hence letting Jλ u be denoted by uλ , it follows that uλ would be the solution to

λu′
λ
+uλ = u, uλ (0) = u0

Using the usual integrating factor procedure, it follows that

uλ (t) = e−(1/λ )tu0 +
∫ t

0
e−(1/λ )(t−s) 1

λ
u(s)ds

Note that
e−(1/λ )t +

∫ t

0

1
λ

e−(1/λ )(t−s)ds = 1

Thus by Jensen’s inequality,

φ (uλ (t))≤ e−(1/λ )t
φ (u0)+

∫ t

0
e−(1/λ )(t−s) 1

λ
φ (u(s))ds

Then

Φ(uλ )≤
∫ T

0
e−(1/λ )t

φ (u0)dt +
∫ T

0

∫ t

0
e−(1/λ )(t−s) 1

λ
φ (u(s))dsdt
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=
∫ T

0
e−(1/λ )t

φ (u0)dt +
∫ T

0
φ (u(s))

∫ T

s
e−(1/λ )(t−s) 1

λ
dtds

Now
∫ T

s e−(1/λ )(t−s) 1
λ

dt = 1− e
1
λ

s− 1
λ

T < 1 and since φ ≥ 0, this shows that

Φ(uλ )≤ φ (u0)
∫

∞

0
e−(1/λ )tdt +

∫ T

0
φ (u(s))dt

so
Φ(uλ )≤ φ (u0)λ +Φ(u)

It follows that the conditions of Theorem 25.7.55 on Page 919 are satisfied and so L+∂Φ

is maximal monotone. Thus if f ∈H , there exists u ∈ D(L)∩D(∂Φ) such that for each
v ∈H there exists a solution uv to

u′v + zv +uv = f + v, uv (0) = u0 ∈ D(φ) .

where zv ∈ ∂Φ(uv). I will show that v→ uv has a fixed point. Note that if zi ∈ ∂Φ(ui) ,
then ∫ t

t−h
(z1− z2,u1−u2)ds≥ 0, any h≤ t

To see this, you could simply let u2 = u1 off [t−h, t] and pick z1 = z2 also on this set.
Also, you can conclude that u ∈ ∂Φ implies u(t) ∈ ∂φ for a.e. t. I show this now. Let
[a,b] ∈ G (∂φ) . Then as just noted, for [u,z] ∈ G (∂Φ) ,∫ t

t−h
(z−b,u−a)ds≥ 0

Then by the fundamental theorem of calculus, for a.e. t,(z(t)−b,u(t)−a) ≥ 0 a.e. Let-
ting {[ai,bi]}∞

i=1 be a dense subset of G (∂φ) , one can take the union of countably many
sets of measure zero, one for each [ai,bi] and conclude that off this set of measure zero,
(z(t)−bi,u(t)−ai) ≥ 0 for all i. Hence this is also true for all [a,b] ∈ G (∂φ) and so
z(t) ∈ ∂φ (u(t)) for a.e. t.

Then if you have vi, i = 1,2

Luv1 −Luv2 + zv1 − zv2 +uv1 −uv2 = v1− v2

Then taking inner products with uv1 −uv2 and integrating up to t,

1
2
|(uv1 −uv2)(t)|

2
H +

∫ t

0
(zv1 − zv2 ,uv1 −uv2)dt +

∫ t

0
|uv1 −uv2 |

2 ds

≤ 1
2

∫ t

0
|v1− v2|2 ds+

1
2

∫ t

0
|uv1 −uv2 |

2 ds

Now by monotonicity of φ and the above,

|(uv1 −uv2)(t)|
2
H ≤

∫ t

0
|v1− v2|2 ds
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which shows that a high enough power of the mapping v→ uv is a contraction map on H
and so there exists a unique fixed point u. Thus uu = u and so

u′+ z+u = f +u, uv (0) = u0 ∈ D(φ) , z(t) ∈ ∂φ (t) a.e.

and so

u′+ z = f in H , u(t) ∈ D(∂φ) a.e., z(t) ∈ ∂φ (u(t)) a.e., u′ ∈H , and u(0) = u0 ■

Note that in the above, the initial condition only needs to be in D(φ) , not in the smaller
D(∂φ) , although the solution is in D(∂φ) for a.e. t. Also note that f has no smoothness.
It only is in H . This is really a nice result.
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Chapter 35

Maximal Monotone Operators, Hilbert
Space
35.1 Basic Theory

Here is provided a short introduction to some of the most important properties of maximal
monotone operators in Hilbert space. The following definition describes them. It is more
specialized than the earlier material on maximal monotone operators from a Banach space
to its dual and therefore, better results can be obtained. More on this can be read in [24]
and [116].

Definition 35.1.1 Let H be a real Hilbert space and let A : D(A)→P (H) have the fol-
lowing properties.

1. For each y ∈ H there exists x ∈ D(A) such that y ∈ x+Ax.

2. A is monotone. That is, if z ∈ Ax and w ∈ Ay then

(z−w,x− y)≥ 0

Such an operator is called a maximal monotone operator.

It turns out that whenever A is maximal monotone, so is λA for all λ > 0.

Lemma 35.1.2 Suppose A is maximal monotone. Then so is λA. Also Jλ ≡ (I +λA)−1

makes sense for each λ > 0 and is Lipschitz continuous.

Proof: To begin with consider (I +A)−1. Suppose

x1,x2 ∈ (I +A)−1 (y)

Then y ∈ (I +A)xi and so y− xi ∈ Axi. By monotonicity

(y− x1− (y− x2) ,x1− x2)≥ 0

and so
0≥ |x1− x2|2

which shows J1 ≡ (I +A)−1 makes sense. In fact this is Lipschitz with Lipschitz constant
1. Here is why. x ∈ (I +A)J1x and y ∈ (I +A)J1y. Then

x− J1x ∈ AJ1x, y− J1y ∈ AJ1y

and so by monotonicity

0≤ (x− J1x− (y− J1y) ,J1x− J1y)

1229
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which yields

|J1x− J1y|2 ≤ (x− y,J1x− J1y)

≤ |x− y| |J1x− J1y|

which yields the result.
Next consider the claim that λA is maximal monotone. The monotone part is immedi-

ate. The only thing in question is whether I +λA is onto. Let r ∈ (−1,1) and pick f ∈ H.
Consider solving the equation for u

(1+ r)u+Au ∋ (1+ r) f (35.1.1)

This is equivalent to finding u such that

(I +A)u ∋ (1+ r) f − ru

or in other words finding u such that

u = J1 ((1+ r) f − ru)

However, if
Tu≡ J1 ((1+ r) f − ru) ,

then since |r|< 1, T is a contraction mapping and so there exists a unique solution to 35.1.1.
Thus

u+
1

1+ r
Au ∋ f

It follows for any |r| < 1,(1+ r)−1 A is maximal monotone. This takes care of all λ ∈
( 1

2 ,∞). Now do the same thing for (2/3)A to get the result for all λ ∈
(( 2

3

)( 1
2

)
,∞
)
. Now

apply the same argument to (2/3)2 A to get the result for all λ ∈
(( 2

3

)2 ( 1
2

)
,∞
)
. Next

consider the same argument to (2/3)3 A to get the desired result for all λ ∈
(( 2

3

)3 ( 1
2

)
,∞
)
.

Continuing this way shows λA is maximal monotone for all λ > 0. Also from the first part
of the proof (I +λA)−1 is Lipschitz continuous with Lipschitz constant 1. This proves the
lemma.

A maximal monotone operator can be approximated with a Lipschitz continuous oper-
ator which is also monotone and has certain salubrious properties. This operator is called
the Yosida approximation and as in the case of linear operators it is obtained by formally
considering

A
1+λA

If you do the division formally you get the definition for Aλ ,

Aλ x≡ 1
λ

x− 1
λ

Jλ x (35.1.2)

where Jλ = (I +λA)−1 as above. It is obvious that Aλ is Lipschitz continuous with Lip-
schitz constant no more than 2/λ . Actually you can show 1/λ also works but this is not
important here.
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Lemma 35.1.3 Aλ x ∈ AJλ x and |Aλ x| ≤ |y| for all y ∈ Ax whenever x ∈ D(A) . Also Aλ is
monotone.

Proof: Consider the first claim. From the definition,

Aλ x≡ 1
λ

x− 1
λ

Jλ x

Is
1
λ

x− 1
λ

Jλ x ∈ AJλ x?

Is
x− Jλ x ∈ λAJλ x?

Is
x ∈ Jλ x+λAJλ x?

Is
x ∈ (I +λA)Jλ x?

Certainly so. This is how Jλ is defined.
Now consider the second claim. Let y ∈ Ax for some x ∈ D(A) . Then by monotonicity

and what was just shown

0≤ (Aλ x− y,Jλ x− x) =−λ (Aλ x− y,Aλ x)

and so
|Aλ x|2 ≤ (y,Aλ x)≤ |y| |Aλ x|

Finally, to show Aλ is monotone,

(Aλ x−Aλ y,x− y) =(
1
λ

x− 1
λ

Jλ x−
(

1
λ

y− 1
λ

Jλ y
)
,x− y

)

=
1
λ
|x− y|2− 1

λ
(Jλ x− Jλ y,x− y)

≥ 1
λ
|x− y|2− 1

λ
|x− y| |Jλ x− Jλ y|

≥ 1
λ
|x− y|2− 1

λ
|x− y|2 = 0

and this proves the lemma.

Proposition 35.1.4 Suppose D(A) is dense in H. Then for all x ∈ H,

|Jλ x− x| → 0
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Proof: From the above, if u ∈ D(A) and y ∈ Au, then∣∣∣∣ 1
λ

u− 1
λ

Jλ u
∣∣∣∣≤ |y|

Hence Jλ u→ u. Now for x arbitrary,

|Jλ x− x| ≤ |Jλ x− Jλ u|+ |Jλ u−u|+ |u− x|
< 2ε + |Jλ u−u|

where the last term converges to 0 as λ → 0. Since ε is arbitrary, this shows the proposition.
Thus in the case where D(A) is dense, if you have

x ∈ εAxε + xε

so that xε = Jε x, then |x− xε | → 0.
The next lemma gives a way to determine whether a pair [x,y] is in the graph of A

defined as
{[x,y] : y ∈ Ax} ≡ G (A)

Here I am writing [·, ·] rather than (·, ·) to avoid confusion with the inner product. It is the
conclusion of this lemma which accounts for the use of the term “maximal”. It essentially
says there is no larger monotone graph which includes the one for A.

Lemma 35.1.5 Suppose (y1− y,x1− x)≥ 0 for all [x,y]∈G (A) where A is maximal mono-
tone. Then x1 ∈ D(A) and y1 ∈ Ax1. Also if [xk,yk] ∈ G (A) and xk → x,yk ⇀ y where the
half arrow denotes weak convergence, then [x,y] ∈ G (A).

Proof: I want to show y1 ∈ Ax1 or in other words I want to show

x1 +λy1 ∈ x1 +λAx1

or in other words
Jλ (x1 +λy1) = x1.

This is the motivation for the following argument.
From Lemma 35.1.3 Aλ (x1 +λy1) ∈ AJλ (x1 +λy1) and so by the above assumption

0≤ (y1−Aλ (x1 +λy1) ,x1− Jλ (x1 +λy1))

=

(
y1−

(
1
λ
(x1 +λy1)−

1
λ

Jλ (x1 +λy1)

)
,x1− Jλ (x1 +λy1)

)
=

((
− 1

λ
x1 +

1
λ

Jλ (x1 +λy1)

)
,x1− Jλ (x1 +λy1)

)
= − 1

λ
(x1− Jλ (x1 +λy1) ,x1− Jλ (x1 +λy1))

which requires
x1 = Jλ (x1 +λy1)
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and this says x1 ∈ D(A) because Jλ maps into D(A). Also it says

x1 +Ax1 ∋ x1 +λy1

and so y1 ∈ Ax1.
This makes the last claim pretty easy. Suppose xk → x where xk ∈ D(A) and that yk ∈

Axk and yk ⇀ y. I need to verify y = Ax and x ∈ D(A) . Let [u,v] ∈ G (A). Then

(y− v,x−u) = lim
k→∞

(yk− v,xk−u)≥ 0

and so, by the first part, x ∈ D(A) and y ∈ Ax. Why does that limit hold? It is because

|(y− v,x−u)− (yk− v,xk−u)|

≤ |(y− v,x−u)− (yk− v,x−u)|+ |(yk− v,xk− x)|

The second term is no larger than

|yk− v| |xk− x|

which converges to 0 since yk is weakly convergent, hence bounded. The first term con-
verges to 0 because of the assumption that yk converges weakly to y. This proves the
lemma.

What about the sum of maximal monotone operators? This might not be maximal
monotone but what you can say is the following.

Proposition 35.1.6 Let A be maximal monotone and let B be Lipschitz and monotone. Then
A+B is maximal monotone.

Proof: First suppose B has a Lipschitz constant less than 1. The monotonicity is obvi-
ous. I need to show that for any y there exists x ∈ D(A) such that

y ∈ x+Bx+Ax

This hapens if and only if
y−Bx ∈ (I +A)x

if and only if x = (I +A)−1 (y−Bx). Let

T x≡ (I +A)−1 (y−Bx)

Then T is clearly a contraction mapping because (I +A)−1 is Lipschits with Lipschitz
constant 1. Therefore, there exists a unique fixed point and this shows A+ B is maxi-
mal monotone. Now the same argument applied to A+B shows that A+ 2B is maximal
monotone. Continuing this way A+ nB is maximal monotone. Now for arbitrary B let
n be large enough that n−1B has Lipschitz constant less than 1. Then as just explained,
A+n

(
n−1B

)
= A+B is maximal monotone. This proves the proposition.

The following is a useful result for determining conditions under which A+B is max-
imal monotone or more particularly whether a given y is in (I +A+B)(H) where A,B are
both maximal monotone.
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Theorem 35.1.7 Let A and B be maximal monotone, let

y ∈ xλ +Bλ xλ +Axλ ,

and suppose Bλ xλ is bounded independent of λ . Then there exists x ∈ D(A)∩D(B) such
that y = x+Ax+Bx.

Proof: First of all, it follows from Proposition 35.1.6 that there exists a unique xλ . Note

y− xλ −Bλ xλ ∈ Axλ

y− xµ −Bµ xµ ∈ Axµ

and so by monotonicity of A,(
xµ − xλ +Bµ xµ −Bλ xλ ,xλ − xµ

)
≥ 0

and so ∣∣xλ − xµ

∣∣2 ≤
(
Bµ xµ −Bλ xλ ,xλ − xµ

)
= −

(
Bλ xλ −Bµ xµ ,xλ − xµ

)
(35.1.3)

I want to write as many things as possible in terms of the Bλ and Bµ . Denote as Jλ (B) the
operator (I +λB)−1 . Then

Bλ xλ =
1
λ
(xλ − Jλ (B)xλ )

and so
xλ = λBλ xλ + Jλ (B)xλ

Thus 35.1.3 becomes ∣∣xλ − xµ

∣∣2 =
−
(
Bλ xλ −Bµ xµ ,λBλ xλ + Jλ (B)xλ −

(
µBµ xµ + Jµ (B)xµ

))
= −

(
Bλ xλ −Bµ xµ ,λBλ xλ −µBµ xµ

)
+
(
Bµ xµ −Bλ xλ ,Jλ (B)xλ − Jµ (B)xµ

)
= −

(
Bλ xλ −Bµ xµ ,λBλ xλ −λBµ xµ

)
−
(
Bλ xλ −Bµ xµ ,(λ −µ)Bµ xµ

)
−
(
Bλ xλ −Bµ xµ ,Jλ (B)xλ − Jµ (B)xµ

)
Now recall Bµ x ∈ BJµ (B)x. Then by monotonicity the first and last terms to the right of
the equal sign in the above are negative. Therefore,∣∣xλ − xµ

∣∣2 ≤ ∣∣(Bλ xλ −Bµ xµ ,(λ −µ)Bµ xµ

)∣∣≤C |λ −µ|

where C is some constant which comes from the assumption the Bλ xλ are bounded.
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Therefore, letting λ denote a sequence converging to 0 it follows

lim
λ→0

xλ = x1 ∈ H

for some x, the convergence being strong convergence. Also taking a further subsequence
and using weak compactness it can be assumed

Bλ xλ ⇀ z1

where this time the convergence is weak. Taking another subsequence, it can also be as-
sumed

y− xλ −Bλ xλ ⇀ z2 (35.1.4)

the convergence being weak convergence. Recall Bλ xλ ∈ BJλ (B)xλ and also note that by
assumption there is a constant C independent of λ such that

C ≥ |Bλ xλ | ≥
1
λ
(xλ − Jλ (B)x)

which shows
Jλ (B)xλ → x1

also. Now it follows from Lemma 35.1.5 that x1 ∈ D(B) and z1 ∈ Bx1. Recall

y− xλ −Bλ xλ ∈ Axλ

and so by the same lemma again,

x1 ∈ D(A) , z2 ∈ Ax1

By 35.1.4 it follows
y− x1− z1 = z2 ∈ Ax1

Thus
y = x1 + z1 + z2 ∈ x1 +Bx1 +Ax1

and this proves the theorem.

35.2 Evolution Inclusions
One of the interesting things about maximal monotone operators is the concept of evolution
inclusions. To facilitate this, here is a little lemma.

Lemma 35.2.1 Let f : [0,T ]→ R be continuous and suppose

D+ f (t)≡ lim sup
h→0+

f (t +h)− f (t)
h

< g(t)

where g is a continuous function. Then

f (t)− f (0)≤
∫ t

0
g(s)ds.
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Proof: Suppose this is not so. Then let

S≡
{

t ∈ [0,T ] : f (t)− f (0)>
∫ t

0
g(s)ds

}
and it would follow that S ̸= /0. Let a = infS. Then there exists a decreasing sequence
hn→ 0 such that

f (a+hn)− f (0)>
∫ a+hn

0
g(s)ds (35.2.5)

First suppose a = 0. Then dividing by hn and taking the limit,

g(0)> D+ f (0)≥ g(0) ,

a contradiction. Therefore, assume a > 0. Then by continuity

f (a)− f (0)≥
∫ a

0
g(s)ds

If strict inequality holds, then a ̸= infS. It follows

f (a)− f (0) =
∫ a

0
g(s)ds

and so from 35.2.5
f (a+hn)− f (a)

hn
>

1
hn

∫ a+hn

a
g(s)ds.

Then doing limsupn→∞ to both sides,

g(a)> D+ f (a)≥ g(a)

the same sort of contradiction obtained earlier. Thus S = /0 and this proves the lemma.
The following is the main result.

Theorem 35.2.2 Let H be a Hilbert space and let A be a maximal monotone operator as
described above. Let f : [0,T ]→ H be continuous such that f ′ ∈ L2 (0,T ;H) . Then there
exists a unique solution to the evolution inclusion

y′+Ay ∋ f , y(0) = y0 ∈ D(A)

Here y′ exists a.e., y(t) ∈ D(A) a.e.,y is continuous.

Proof: Let yλ be the solution to

y′
λ
+Aλ yλ = f , yλ (0) = y0

I will base the entire proof on estimating the solutions to the corresponding integral equa-
tion

yλ (t)− y0 +
∫ t

0
Aλ yλ (s)ds =

∫ t

0
f (s)ds (35.2.6)
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Let h,k be small positive numbers. Then

yλ (t +h)− yλ (t)+
∫ t+h

t
Aλ yλ (s)ds =

∫ t+h

t
f (s)ds (35.2.7)

Next consider the difference operator

Dkg(t)≡ g(t + k)−g(t)
k

Do this Dk to both sides of 35.2.7 where k < h. This gives

Dk (yλ (t +h)− yλ (t))+
1
k

(∫ t+h+k

t+h
Aλ yλ (s)ds−

∫ t+k

t
Aλ yλ (s)ds

)

=
1
k

(∫ t+h+k

t+h
f (s)ds−

∫ t+k

t
f (s)ds

)
(35.2.8)

Now multiply both sides by yλ (t +h+ k)− yλ (t + k) . Consider the first term. To simplify
the ideas consider instead

(Dkg(t) ,g(t + k)) =
1
k

(
|g(t + k)|2− (g(t) ,g(t + k))

)
≥ 1

k

(
|g(t + k)|2−|g(t)| |g(t +h)|

)
≥ 1

k

(
1
2
|g(t + k)|2− 1

2
|g(t)|2

)
(35.2.9)

Then applying this simple observation to 35.2.8,

1
2

1
k

(
|yλ (t +h+ k)− yλ (t + k)|2−|yλ (t +h)− yλ (t)|2

)
+

(
1
k

(∫ t+h+k

t+h
Aλ yλ (s)ds−

∫ t+k

t
Aλ yλ (s)ds

)
,yλ (t +h+ k)− yλ (t + k)

)
+

≤
(

1
k

(∫ t+h+k

t+h
f (s)ds−

∫ t+k

t
f (s)ds

)
,yλ (t +h+ k)− yλ (t + k)

)
Taking limsupk→0 of both sides yields

1
2

D+
(
|yλ (t +h)− yλ (t)|2

)
+(Aλ yλ (t +h)−Aλ yλ (t) ,yλ (t +h)− yλ (t))

≤ ( f (t +h)− f (t) ,yλ (t +h)− yλ (t))

Now recall that Aλ is monotone. Therefore,

D+
(
|yλ (t +h)− yλ (t)|2

)
≤ | f (t +h)− f (t)|2 + |yλ (t +h)− yλ (t)|2
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From Lemma 35.2.1 it follows that for all ε > 0,

|yλ (t +h)− yλ (t)|2−|yλ (h)− y0|2

≤
∫ t

0
| f (s+h)− f (s)|2 ds+

∫ t

0
|yλ (s+h)− yλ (s)|2 ds+ εt

and so since ε is arbitrary, the term εt can be eliminated. By Gronwall’s inequality,

|yλ (t +h)− yλ (t)|2 ≤ et
(
|yλ (h)− y0|2 +

∫ t

0
| f (s+h)− f (s)|2 ds

)
. (35.2.10)

The last integral equals∫ t

0

∣∣∣∣∫ s+h

s
f ′ (r)dr

∣∣∣∣2 ds≤
∫ t

0
h
∫ s+h

s

∣∣ f ′ (r)∣∣2 drds

= h
[∫ h

0

∫ r

0

∣∣ f ′ (r)∣∣2 dsdr+
∫ t

h

∫ r

r−h

∣∣ f ′ (r)∣∣2 dsdr+
∫ t+h

t

∫ t

r−h

∣∣ f ′ (r)∣∣]2

dsdr

≤ h2
∫ t+h

0

∣∣ f ′ (r)∣∣2 dr

and now it follows that for all t +h < T,∣∣∣∣yλ (t +h)− yλ (t)
h

∣∣∣∣2 ≤ eT

(∣∣∣∣yλ (h)− y0

h

∣∣∣∣2 + ∣∣∣∣ f ′∣∣∣∣2L2(0,T ;H)

)
. (35.2.11)

Now return to 35.2.7.∣∣∣∣yλ (h)− y0

h

∣∣∣∣≤ ∣∣∣∣1h
∫ h

0
Aλ yλ (s)ds

∣∣∣∣+ ∣∣∣∣1h
∫ h

0
f (s)ds

∣∣∣∣
Then taking limsuph→0 of both sides

lim sup
h→0

∣∣∣∣yλ (h)− y0

h

∣∣∣∣≤ |Aλ y0|+ | f (0)|

From Lemma 35.1.3, |Aλ y0| ≤ |a| for all a ∈ Ay0. This is where y0 ∈ D(A) is used. Thus
from 35.2.11, there exists a constant C independent of t and h and λ such that∣∣∣∣yλ (t +h)− yλ (t)

h

∣∣∣∣2 ≤C

From the estimate just obtained and 35.2.7, this implies

yλ (t +h)− yλ (t)
h

+
1
h

∫ t+h

t
Aλ yλ (s)ds =

1
h

∫ t+h

t
f (s)ds (35.2.12)

Now letting h→ 0, it follows that for all t ∈ [0,T ), there exists a constant C independent of
t,λ such that

|Aλ yλ (t)| ≤C. (35.2.13)
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This is a very nice estimate. The next task is to show uniform convergence of the yλ as
λ → 0. From 35.2.7 (

Dh
(
yλ (t)− yµ (t)

)
,yλ (t +h)− yµ (t +h)

)
+(

1
h

∫ t+h

t

(
Aλ yλ (s)−Aµ yµ (s)

)
ds,yλ (t +h)− yµ (t +h)

)
= 0

Then from the argument in 35.2.9,

1
h

1
2

(∣∣yλ (t +h)− yµ (t +h)
∣∣2− ∣∣yλ (t)− yµ (t)

∣∣2)
+

(
1
h

∫ t+h

t

(
Aλ yλ (s)−Aµ yµ (s)

)
ds,yλ (t +h)− yµ (t +h)

)
≤ 0

Now take limsuph→0 to obtain

1
2

D+
∣∣yλ (t)− yµ (t)

∣∣2 + (Aλ yλ (t)−Aµ yµ (t) ,yλ (t)− yµ (t)
)
≤ 0

Using the definition of Aλ this equals

1
2

D+
∣∣yλ (t)− yµ (t)

∣∣2+(
Aλ yλ (t)−Aµ yµ (t) ,λAλ yλ (t)+ Jλ yλ (t)−

(
µAµ yµ (t)+ Jµ yµ (t)

))
≤ 0

Now this last term splits into the following sum(
Aλ yλ (t)−Aµ yµ (t) ,λAλ yλ (t)−µAµ yµ (t)

)
+
(
Aλ yλ (t)−Aµ yµ (t) ,Jλ yλ (t)− Jµ yµ (t)

)
By Lemma 35.1.3 the second of these terms is nonnegative. Also from the estimate 35.2.13,
the first term converges to 0 uniformly in t as λ ,µ → 0. Then by Lemma 35.2.1 it follows
that if λ is any sequence converging to 0, yλ (t) is uniformly Cauchy. Let

y(t)≡ lim
λ→0

yλ (t) .

Thus y is continuous because it is the uniform limit of continuous functions. Since Aλ yλ (t)
is uniformly bounded, it also follows

y(t) = lim
λ→0

Jλ yλ (t) uniformly in t. (35.2.14)

Taking a further subsequence, you can assume

Aλ yλ ⇀ z weak ∗ in L∞ (0,T ;H) . (35.2.15)

Thus z ∈ L∞ (0,T ;H) . Recall Aλ yλ ∈ AJλ yλ .



1240 CHAPTER 35. MAXIMAL MONOTONE OPERATORS, HILBERT SPACE

Now A can be considered a maximal monotone operator on L2 (0,T ;H) according to
the rule

Ay(t)≡ A(y(t))

where
D(A)≡

{
f ∈ L2 (0,T ;H) : f (t) ∈ D(A) a.e. t

}
By Lemma 35.1.5 applied to A considered as a maximal monotone operator on L2 (0,T ;H)
and using 35.2.14 and 35.2.15, it follows y(t) ∈ D(A) a.e. t and z(t) ∈ Ay(t) a.e. t. Then
passing to the limit in 35.2.6 yields

y(t)− y0 +
∫ t

0
z(s)ds =

∫ t

0
f (s)ds. (35.2.16)

Then by fundamental theorem of calculus, y′ (t) exists a.e. t and

y′+ z = f , y(0) = y0

where z(t) ∈ Ay(t) a.e.
It remains to verify uniqueness. Suppose [y1,z1] is another pair which works. Then

from 35.2.16,

y(t)− y1 (t)+
∫ t

0
(z(r)− z1 (r))dr = 0

y(s)− y1 (s)+
∫ s

0
(z(r)− z1 (r))dr = 0

Therefore for s < t,

y(t)− y1 (t)− (y(s)− y1 (s)) =
∫ t

s
(z(r)− z1 (r))dr

and so
||y(t)− y1 (t)|− |y(s)− y1 (s)|| ≤ K |s− t|

for some K depending on ||z||L∞ , ||z1||L∞ . Since y,y1 are bounded, it follows that t →
|y(t)− y1 (t)|2 is also Lipschitz. Therefore by Corollary 26.4.3, it is the integral of its
derivative which exists a.e. So what is this derivative? As before,

(Dh (y(t)− y1 (t)) ,y(t +h)− y1 (t +h))

+

(
1
h

∫ t+h

t
(z(s)− z1 (s))ds,y(t +h)− y1 (t +h)

)
= 0

and so
1
h

(
|y(t +h)− y1 (t +h)|2

2
− |y(t)− y1 (t)|2

2

)

+

(
1
h

∫ t+h

t
(z(s)− z1 (s))ds,y(t +h)− y1 (t +h)

)
≤ 0
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Then taking limh→0 it follows that for a.e. t (Lebesgue points of z− z1 intersected with the
points where |y− y1|2 has a derivative)

1
2

d
dt
|y(t)− y1 (t)|2 +(z(t)− z1 (t) ,y(t)− y1 (t))≤ 0

Thus for a.e. t,
d
dt
|y(t)− y1 (t)|2 ≤ 0

and so

|y(t)− y1 (t)|2−|y0− y0|2 =
∫ t

0

d
dt
|y(s)− y1 (s)|2 ds≤ 0.

This proves the theorem.

35.3 Subgradients
35.3.1 General Results
Definition 35.3.1 Let X be a real locally convex topological vector space. For x ∈ X,
δφ (x)⊆ X ′, possibly /0. This subset of X ′ is defined by y∗ ∈ δφ (x) means for all z ∈ X,

y∗ (z− x)≤ φ (z)−φ (x).

Also x ∈ δφ
∗ (y∗) means that for all z∗ ∈ X ′,

(z∗− y∗)(x)≤ φ
∗ (z∗)−φ

∗ (y∗).

We define dom(δφ)≡ {x : δφ (x) ̸= /0}.

The subgradient is an attempt to generalize the derivative. For example, a function
may have a subgradient but fail to be differentiable at some point. A good example is
f (x) = |x|. At x = 0, this function fails to have a derivative but it does have a subgradient.
In fact, δ f (0) = [−1,1].

To begin with consider the question of existence of the subgradient of a convex func-
tion. There is a very simple criterion for existence. It is essentially that the subgradient
is nonempty at every point of the interior of the domain of φ . First recall Lemma 18.2.15
which says the interior of a convex set is convex and if nonempty, then every point of the
convex set can be obtained as the limit of a sequence of points of the interior.

Theorem 35.3.2 Let φ : X → (−∞,∞] be convex and suppose for some u ∈ dom(φ), φ is
continuous. Then δφ (x) ̸= /0 for all x ∈ int(dom(φ)). Thus

dom(δφ)⊇ int(dom(φ)).

Proof: Let x0 ∈ int(dom(φ)) and let

A≡ {(x0,φ (x0))} ,B≡ epi(φ)∩X×R.
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Then A and B are both nonempty and convex. Recall epi(φ) can contain a point like (x,∞).
Since φ is continuous at u ∈ dom(φ),

(u,φ (u)+1) ∈ int(epiφ ∩X×R) .

Thus int(B) ̸= /0 and also int(B)∩A = /0. By Lemma 18.2.15 int(B) is convex and so by
Theorem 18.2.14 there exists x∗ ∈ X ′ and β ∈ R such that

(x∗,β ) ̸= (0,0) (35.3.17)

and for all (x,a) ∈ intB,
x∗ (x)+βa > x∗ (x0)+βφ (x0). (35.3.18)

From Lemma 18.2.15, whenever x ∈ dom(φ),

x∗ (x)+βφ (x)≥ x∗ (x0)+βφ (x0).

If β = 0, this would mean x∗ (x− x0) ≥ 0 for all x ∈ dom(φ). Since x0 ∈ int(dom(φ)),
this implies x∗ = 0, contradicting 35.3.17. If β < 0, apply 35.3.18 to the case when a =
φ (x0)+1 and x = x0 to obtain a contradiction. It follows β > 0 and so

φ (x)−φ (x0)≥−
x∗

β
(x− x0)

which says −x∗/β ∈ δφ (x0). This proves the theorem.

Definition 35.3.3 Let φ : X → (−∞,∞] be some function, not necessarily convex but satis-
fying φ (y)< ∞ for some y ∈ X. Define φ

∗ : X ′→ (−∞,∞] by

φ
∗ (x∗)≡ sup{x∗ (y)−φ (y) : y ∈ X}.

This function, φ
∗, defined above, is called the conjugate function of φ or the polar of

φ . Note φ
∗ (x∗) ̸=−∞ because φ (y)< ∞ for some y.

Theorem 35.3.4 Let X be a real Banach space. Then φ
∗ is convex and l.s.c.

Proof: Let λ ∈ [0,1]. Then

φ
∗ (λx∗+(1−λ )y∗) = sup{(λx∗+(1−λ )y∗)(y)−φ (y) : y ∈ X}

sup{λ (x∗ (y)−φ (y))+(1−λ )(y∗ (y)−φ (y)) : y ∈ X}

≤ λφ
∗ (x∗)+(1−λ )φ

∗ (y∗).

It remains to show the function is l.s.c. Consider fy (x∗)≡ x∗ (y)−φ (y). Then fy is obvi-
ously convex. Also to say that (x,α) ∈ epi(φ ∗) is to say that α ≥ x∗ (y)− φ (y) for all y.
Thus

epi(φ ∗) = ∩y∈X epi( fy).
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Therefore, if epi( fy) is closed, this will prove the theorem. If (x∗,a) /∈ epi( fy), then a <
x∗ (y)−φ (y) and, by continuity, for b close enough to a and y∗ close enough to x∗ then

b < y∗ (y)−φ (y) , (y∗,b) /∈ epi( fy)

Thus epi( fy) is closed. ■
Note this theorem holds with no change in the proof if X is only a locally convex

topological vector space and X ′ is given the weak ∗ topology.

Definition 35.3.5 We define φ
∗∗ on X by

φ
∗∗ (x)≡ sup

{
x∗ (x)−φ

∗ (x∗) ,x∗ ∈ X ′
}
.

The following lemma comes from separation theorems. First is a simple observation.

Observation 35.3.6 f ∈ (X×R)′ if and only if there exists x∗ ∈ X ′ and α ∈ R such that
f (x,λ ) = x∗ (x) + λα . To get x∗, you can simply define x∗ (x) ≡ f (x,0) and to get α

you just let αλ ≡ f (0,λ ) . Why does such an α exist? You know that f (0,aλ +bδ ) =
a f (0,α)+ b f (0,δ ) and so in fact λ → f (0,λ ) satisfies the Cauchy functional equation
g(x+ y) = g(x)+ g(y) and is continuous so there is only one thing it can be and that is
f (0,λ ) = αλ for some α .

This picture illustrates the conclusion of the following lemma.

epi(φ)

(x0,β )

β + ⟨z∗,y− x0⟩+δ < φ(y)

Lemma 35.3.7 Let φ : X → (−∞,∞] be convex and lower semicontinuous and φ (x) < ∞

for some x. (proper). Then if β < φ (x0) so that (x0,β ) is not in epi(φ) , it follows that
there exists δ > 0 and z∗ ∈ X ′ such that for all y,

z∗ (y− x0)+β +δ < φ (y) , all y ∈ X

Proof: Let C = epi(φ)∩ (X×R). Then C is a closed convex nonempty set and it does
not contain the point (x0,β ). Let β̂ > β be slightly larger so that also

(
x0, β̂

)
/∈C. Thus

there exists y∗ ∈ X ′ and α ∈ R such that for some ĉ, and all y ∈ X ,

y∗ (x0)+αβ̂ > ĉ > y∗ (y)+αφ (y)

for all y ∈ X . Now you can’t have α ≥ 0 because

α

(
β̂ −φ (y)

)
> y∗ (y− x0)
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and you can let y = x0 to have

α


<0︷ ︸︸ ︷

β̂ −φ (x0)

> 0

Hence α < 0 and so, dividing by it yields that for all y ∈ X ,

x∗ (x0)+ β̂ < c < x∗ (y)+φ (y)

where x∗ = y∗/α, ĉ/α ≡ c. Then

(−x∗)(y− x0)+β +
(

β̂ −β

)
< c− x∗ (y)< φ (y)

(−x∗)(y− x0)+β +δ < φ (y) , δ ≡ β̂ −β

Let z∗ =−x∗. ■

Theorem 35.3.8 φ
∗∗ (x) ≤ φ (x) for all x and if φ is convex and l.s.c., φ

∗∗ (x) = φ (x) for
all x ∈ X.

Proof:

φ
∗∗ (x)≡ sup

x∗ (x)−

φ∗(x∗)︷ ︸︸ ︷
sup{x∗ (y)−φ (y) : y ∈ X} : x∗ ∈ X ′


≤ sup{x∗ (x)− (x∗ (x)−φ (x))}= φ (x).

Next suppose φ is convex and l.s.c. If φ
∗∗ (x0) < φ (x0), then using Lemma 35.3.7,

there exists x∗0,δ > 0 such that for all y ∈ X ,

(x∗0)(y− x0)+φ
∗∗ (x0)+δ < φ (y)

x∗0 (y)−φ (y)+δ < x∗0 (x0)−φ
∗∗ (x0)

Thus, since this holds for all y,

φ
∗ (x∗0)+δ ≤ x∗0 (x0)−φ

∗∗ (x0)

φ
∗∗ (x0)+δ ≤ x∗0 (x0)−φ

∗ (x∗0)

Then

φ
∗∗ (x0) ≡ sup

{
x∗ (x0)−φ

∗ (x∗) ,x∗ ∈ X ′
}

≥ x∗0 (x0)−φ
∗ (x∗0)≥ φ

∗∗ (x0)+δ

a contradiction. ■
The following corollary is descriptive of the situation just discussed. It says that to find

epi(φ ∗∗) it suffices to take the intersection of all closed convex sets which contain epi(φ).
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Corollary 35.3.9 epi(φ ∗∗) is the smallest closed convex set containing epi(φ).

Proof: epi(φ ∗∗)⊇ epi(φ) from Theorem 35.3.8. Also epi(φ ∗∗) is closed by the proof
of Theorem 35.3.4. Suppose epi(φ)⊆ K ⊆ epi(φ ∗∗) and K is convex and closed. Let

ψ (x)≡min{a : (x,a) ∈ K}.

({a : (x,a) ∈ K} is a closed subset of (−∞,∞] so the minimum exists.) ψ is also a convex
function with epi(ψ) = K. To see ψ is convex, let λ ∈ [0,1]. Then, by the convexity of K,

λ (x,ψ (x))+(1−λ )(y,ψ (y))

= (λx+(1−λ )y,λψ (x)+(1−λ )ψ (y)) ∈ K.

It follows from the definition of ψ that

ψ (λx+(1−λ )y)≤ λψ (x)+(1−λ )ψ (y).

Then
φ
∗∗ ≤ ψ ≤ φ

and so from the definitions,
φ
∗∗∗ ≥ ψ

∗ ≥ φ
∗

which implies from the definitions and Theorem 35.3.8 that

φ
∗∗ = φ

∗∗∗∗ ≤ ψ
∗∗ = ψ ≤ φ

∗∗.

Therefore, ψ = φ
∗∗ and epi(φ ∗∗) is the smallest closed convex set containing epi(φ) as

claimed. ■
There is an interesting symmetry which relates δφ ,δφ

∗,φ , and φ
∗.

Theorem 35.3.10 Suppose φ is convex, l.s.c. (lower semicontinuous or in other words
having a closed epigraph), and proper. Then

y∗ ∈ δφ (x) if and only if x ∈ δφ
∗ (y∗)

where this last expression means

(z∗− y∗)(x)≤ φ
∗ (z∗)−φ

∗ (y∗)

for all z∗and in this case,
y∗ (x) = φ

∗ (y∗)+φ (x).

Proof: If y∗ ∈ δφ (x) then y∗ (z− x)≤ φ (z)−φ (x) and so

y∗ (z)−φ (z)≤ y∗ (x)−φ (x)

for all z ∈ X . Therefore,

φ
∗ (y∗)≤ y∗ (x)−φ (x)≤ φ

∗ (y∗).
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Hence
y∗ (x) = φ

∗ (y∗)+φ (x). (35.3.19)

Now if z∗ ∈ X ′ is arbitrary, 35.3.19 shows

(z∗− y∗)(x) = z∗ (x)− y∗ (x) = z∗ (x)−φ (x)−φ
∗ (y∗)≤ φ

∗ (z∗)−φ
∗ (y∗)

and this shows x ∈ δφ
∗ (y∗).

Now suppose x ∈ δφ
∗ (y∗). Then for z∗ ∈ X ′,

(z∗− y∗)(x)≤ φ
∗ (z∗)−φ

∗ (y∗)

so
z∗ (x)−φ

∗ (z∗)≤ y∗ (x)−φ
∗ (y∗)

and so, taking sup over all z∗, and using Theorem 35.3.8,

φ
∗∗ (x) = φ (x)≤ y∗ (x)−φ

∗ (y∗)≤ φ
∗∗ (x) .

Thus

y∗ (x) = φ
∗ (y∗)+φ

∗∗ (x) = φ
∗ (y∗)+φ (x)≥

≤φ∗(y∗)︷ ︸︸ ︷
y∗ (z)−φ (z)+φ (x)

for all z ∈ X and this implies for all z ∈ X ,

φ (z)−φ (x)≥ y∗ (z− x)

so y∗ ∈ δφ (x) and this proves the theorem.

Definition 35.3.11 If X is a Banach space define u ∈W 1,p ([0,T ] ;X) if there exists g ∈
Lp ([0,T ] ;X) such that

u(t) = u(0)+
∫ t

0
g(s)ds

When this occurs define u′ (·)≡ g(·) . As usual, p > 1.

The next Lemma is quite interesting for its own sake but it is also used in the next
theorem.

Lemma 35.3.12 Suppose g ∈ Lp (0,T ;X) . Then as h→ 0,

1
h

∫ (·)+h

(·)
g(s)dsX[0,T−h] (·)→ g

in Lp ([0,T ] ;X) .

Proof: Let

g̃(u)≡
{

g(u) if u ∈ [0,T ]
0 if u /∈ [0,T ] , φ h (r)≡

1
h
X[−h,0] (r) .
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Thus g̃ ∈ Lp (R;X) and

g̃∗φ h (t)≡
∫
R

g̃(t− s)φ h (s)ds.

Then

||g̃∗φ h− g̃||Lp(R;X) ≤
(∫

R

(∫
R
||g̃(t)− g̃(t− s)||X φ h (s)ds

)p

dt
)1/p

which by Minkowski’s inequality for integrals is no larger than

≤
∫
R

φ h (s)
(∫

R
||g̃(t)− g̃(t− s)||pX dt

)1/p

ds

=
1
h

∫ 0

−h

(∫
R
||g̃(t)− g̃(t− s)||pX dt

)1/p

ds <
1
h

∫ 0

−h
εds = ε

whenever h is small enough. This follows from continuity of translation in Lp (R;X) , a
consequence of the regularity of the measure. Thus, g̃∗φ h→ g̃ in Lp (R;X) . Now

g̃∗φ h (t)−
1
h

∫ t+h

t
g(s)dsX[0,T−h] (t)

=

{
0 if t ∈ [0,T −h]
1
h
∫ t+h

t g̃(u)du if t /∈ [0,T −h]

and therefore, ∣∣∣∣∣∣∣∣g̃∗φ h (·)−
1
h

∫ (·)+h

(·)
g(s)dsX[0,T−h] (·)

∣∣∣∣∣∣∣∣
Lp(R;X)

=

(∫ 0

−h

∣∣∣∣∣∣∣∣1h
∫ t+h

t
g̃(u)du

∣∣∣∣∣∣∣∣p
X

dt
)1/p

+

(∫ T

T−h

∣∣∣∣∣∣∣∣1h
∫ t+h

t
g̃(u)du

∣∣∣∣∣∣∣∣p
X

dt
)1/p

≤ 1
h

(∫ 0

−h

(∫ h

−h
||g̃(u)||X du

)p

dt
)1/p

+
1
h

(∫ T

T−h

(∫ T+h

T−h
||g̃(u)||X du

)p

dt
)1/p

which by Minkowski’s inequality for integrals is no larger than

≤ 1
h

∫ h

−h

(∫ 0

−h
||g̃(u)||pX dt

)1/p

du+
1
h

∫ T+h

T−h

(∫ T

T−h
||g̃(u)||pX dt

)1/p

du

≤ 1
h

∫ h

−h
εdu+

1
h

∫ T+h

T−h
εdu = 4ε

whenever h is small enough because of the fact that ||g̃||pX ∈ L1 (R;X). Since ε is arbitrary,
this shows ∥∥∥∥g̃∗φ h (·)−

1
h

∫ (·)+h

(·)
g(s)dsX[0,T−h] (·)

∥∥∥∥
Lp(R;X)

→ 0
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and also, it was shown above that

∥g̃∗φ h (·)− g̃∥Lp(R;X)→ 0

It follows that
1
h

∫ (·)+h

(·)
g(s)dsX[0,T−h] (·)→ g̃

in Lp (R;X) and consequently in Lp ([0,T ] ;X) as well. But g̃ = g on [0,T ] . ■
The following theorem is a form of the chain rule in which the derivative is replaced by

the subgradient.

Theorem 35.3.13 Suppose u ∈W 1,p ([0,T ] ;X) ,z ∈ Lp′ ([0,T ] ;X ′), and z(t) ∈ δφ (u(t))
a.e t ∈ [0,T ] . Then the function, t→ φ (u(t)) is in L1 (0,T ) and its weak derivative equals
⟨z,u′⟩ . In particular,

φ (u(t))−φ (u(0)) =
∫ t

0

〈
z(s) ,u′ (s)

〉
ds

Proof: Modify u on a set of measure zero such that δφ (u(t)) ̸= /0 for all t. Next modify
z on a set of measure zero such that for ũ and z̃ the modified functions, z̃(t) ∈ δφ (ũ(t)) for
all t. First I claim t→ φ (ũ(t)) is in L1 (0,T ). Pick t0 ∈ [0,T ] and let

z̃(t0) ∈ δφ (ũ(t0)) .

Then for t ∈ [0,T ],
⟨z̃(t0) , ũ(t)− ũ(t0)⟩+φ (ũ(t0))≤

φ (ũ(t))≤ ⟨z̃(t) , ũ(t)− ũ(t0)⟩+φ (ũ(t0)) (35.3.20)

Then 35.3.20 shows t→ φ (ũ(t)) is in L1 (0,T ) since z̃ ∈ Lp′ ([0,T ] ;X ′), ũ ∈ Lp ([0,T ] ;X).
Also, for t ∈ [0,T −h],〈

X[0,T−h] (t) z̃(t) ,
ũ(t +h)− ũ(t)

h

〉
≤X[0,T−h] (t)

φ (ũ(t +h))−φ (ũ(t))
h

≤
〈

X[0,T−h] (t) z̃(t +h) ,
ũ(t +h)− ũ(t)

h

〉
Now X[0,T−h] (·) z̃(·+h)→ z(·) in Lp′ (0,T ;X ′) by continuity of translation. Also,

X[0,T−h] (·)
ũ(·+h)− ũ(·)

h
= X[0,T−h] (·)

u(·+h)−u(·)
h

= X[0,T−h] (·)
1
h

∫ (·)+h

(·)
u′ (s)ds

in Lp (0,T ;X) and so by Lemma 35.3.12,

X[0,T−h] (·)
φ (ũ(·+h))−φ (ũ(·))

h
→
〈
z,u′
〉
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in L1 (0,T ).
It follows from the definition of weak derivatives that in the sense of weak derivatives,

d
dt

(φ (u(·))) =
〈
z,u′
〉
∈ L1 (0,T ).

Note that by Theorem 26.3.3 this implies that for a.e. t ∈ [0,T ], φ (u(t)) is equal to a
continuous function, φ ◦u, and that

(φ ◦u)(t)− (φ ◦u)(0) =
∫ t

0

〈
z(s) ,u′ (s)

〉
ds. ■

There are other rules of calculus which have a generalization to subgradients. The
following theorem is on such a generalization. It generalizes the theorem which states that
the derivative of a sum equals the sum of the derivatives.

Theorem 35.3.14 Let φ 1 and φ 2 be convex, l.s.c. and proper having values in (−∞,∞].
Then

δ (λφ i)(x) = λδφ i (x) , δ (φ 1 +φ 2)(x)⊇ δφ 1 (x)+δφ 2 (x) (35.3.21)

if λ > 0. If there exists x ∈ dom(φ 1)∩ dom(φ 2) and φ 1 is continuous at x then for all
x ∈ X,

δ (φ 1 +φ 2)(x) = δφ 1 (x)+δφ 2 (x). (35.3.22)

Proof: 35.3.21 is obvious so we only need to show 35.3.22. Suppose x is as described.
It is clear 35.3.22 holds whenever x /∈ dom(φ 1)∩ dom(φ 2) since then both sides equal /0.
Therefore, assume

x ∈ dom(φ 1)∩dom(φ 2)

in what follows. Let x∗ ∈ δ (φ 1 +φ 2)(x). Is x∗ is the sum of an element of δφ 1 (x) and
δφ 2 (x)? Does there exist x∗1 and x∗2 such that for every y,

x∗ (y− x) = x∗1 (y− x)+ x∗2 (y− x)

≤ φ 1 (y)−φ 1 (x)+φ 2 (y)−φ 2 (x)?

If so, then
φ 1 (y)−φ 1 (x)− x∗ (y− x)≥ φ 2 (x)−φ 2 (y) .

Define
C1 ≡ {(y,a) ∈ X×R : φ 1 (y)−φ 1 (x)− x∗ (y− x)≤ a},

C2 ≡ {(y,a) ∈ X×R : a≤ φ 2 (x)−φ 2 (y)}.

I will show int(C1)∩C2 = /0 and then by Theorem 18.2.14 there exists an element of X ′

which does something interesting.
Both C1 and C2 are convex and nonempty. C1 is nonempty because it contains

(x,φ 1 (x)−φ 1 (x)− x∗ (x− x))

since
φ 1 (x)−φ 1 (x)− x∗ (x− x)≤ φ 1 (x)−φ 1 (x)− x∗ (x− x)
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C2 is also nonempty because it contains (x,φ 2 (x)−φ 2 (x)) since

φ 2 (x)−φ 2 (x)≤ φ 2 (x)−φ 2 (x)

In addition to this,

(x,φ 1 (x)− x∗ (x− x)−φ 1 (x)+1) ∈ int(C1)

due to the assumed continuity of φ 1 at x and so int(C1) ̸= /0. If (y,a) ∈ int(C1) then

φ 1 (y)− x∗ (y− x)−φ 1 (x)≤ a− ε

whenever ε is small enough. Therefore, if (y,a) is also in C2, the assumption that x∗ ∈
δ (φ 1 +φ 2)(x) implies

a− ε ≥ φ 1 (y)− x∗ (y− x)−φ 1 (x)≥ φ 2 (x)−φ 2 (y)≥ a,

a contradiction. Therefore int(C1) ∩C2 = /0 and so by Theorem 18.2.14, there exists
(w∗,β ) ∈ X ′×R with

(w∗,β ) ̸= (0,0) , (35.3.23)

and
w∗ (y)+βa≥ w∗ (y1)+βa1, (35.3.24)

whenever (y,a) ∈C1 and (y1,a1) ∈C2.
Claim: β > 0.
Proof of claim: If β < 0 let

a = φ 1 (x)− x∗ (x− x)−φ 1 (x)+1,

a1 = φ 2 (x)−φ 2 (x) , and y = y1 = x.

Then from 35.3.24

β (φ 1 (x)− x∗ (x− x)−φ 1 (x)+1)≥ β (φ 2 (x)−φ 2 (x)) .

Dividing by β yields

φ 1 (x)− x∗ (x− x)−φ 1 (x)+1≤ φ 2 (x)−φ 2 (x)

and so
φ 1 (x)+φ 2 (x)− (φ 1 (x)+φ 2 (x))+1≤ x∗ (x− x)

≤ φ 1 (x)+φ 2 (x)− (φ 1 (x)+φ 2 (x)),

a contradiction. Therefore, β ≥ 0.
Now suppose β = 0. Letting

a = φ 1 (x)− x∗ (x− x)−φ 1 (x)+1,

(x,a) ∈ int(C1) ,
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and so there exists an open set U containing 0 and η > 0 such that

x+U× (a−η ,a+η)⊆C1.

Therefore, 35.3.24 applied to (x+ z,a) ∈C1 and (x,φ 2 (x)−φ 2 (x)) ∈C2 for z ∈U yields

w∗ (x+ z)≥ w∗ (x)

for all z ∈U . Hence w∗ (z) = 0 on U which implies w∗ = 0, contradicting 35.3.23. This
proves the claim.

Now with the claim, it follows β > 0 and so, letting z∗ = w∗/β , 35.3.24 and Lemma
18.2.15 implies

z∗ (y)+a≥ z∗ (y1)+a1 (35.3.25)

whenever (y,a) ∈C1 and (y1,a1) ∈C2. In particular,

(y,φ 1 (y)−φ 1 (x)− x∗ (y− x)) ∈C1 (35.3.26)

because
φ 1 (y)−φ 1 (x)− x∗ (y− x)≤ φ 1 (y)− x∗ (y− x)−φ 1 (x)

and
(y1,φ 2 (x)−φ 2 (y1)) ∈C2. (35.3.27)

by similar reasoning so letting y = x,

z∗ (x)+

 =0︷ ︸︸ ︷
φ 1 (x)− x∗ (x− x)−φ 1 (x)

≥ z∗ (y1)+φ 2 (x)−φ 2 (y1).

Therefore,
z∗ (y1− x)≤ φ 2 (y1)−φ 2 (x)

for all y1 and so z∗ ∈ δφ 2 (x). Now let y1 = x in 35.3.27 and using 35.3.25 and 35.3.26, it
follows

z∗ (y)+φ 1 (y)− x∗ (y− x)−φ 1 (x)≥ z∗ (x)

φ 1 (y)−φ 1 (x)≥ x∗ (y− x)− z∗ (y− x)

and so x∗ − z∗ ∈ δφ 1 (x) so x∗ = z∗ + (x∗− z∗) ∈ δφ 2 (x) + δφ 1 (x) and this proves the
theorem.

Next is a very important example known as the duality map from a Banach space to its
dual space. Before doing this, consider a Hilbert space H. Define a map R from H to H ′,
called the Riesz map, by the rule

R(x)(y)≡ (y,x).

By the Riesz representation theorem, this map is onto and one to one with the properties

R(x)(x) = ||x||2 , and ||Rx||2 = ||x||2.

The duality map from a Banach space to its dual is an attempt to generalize this notion of
Riesz map to an arbitrary Banach space.
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Definition 35.3.15 For X a Banach space define F : X →P (X ′) by

F (x)≡
{

x∗ ∈ X ′ : x∗ (x) = ||x||2 , ||x∗|| ≤ ||x||
}
. (35.3.28)

Lemma 35.3.16 With F (x) defined as above, it follows that

F (x) =
{

x∗ ∈ X ′ : x∗ (x) = ||x||2 , ||x∗||= ||x||
}

and F (x) is a closed, nonempty, convex subset of X ′.

Proof: If x∗ is in the set described in 35.3.28,

x∗
(

x
||x||

)
= ||x||

and so ||x∗|| ≥ ||x||. Therefore

x∗ ∈
{

x∗ ∈ X ′ : x∗ (x) = ||x||2 , ||x∗||= ||x||
}
.

This shows this set and the set of 35.3.28 are equal. It is also clear the set of 35.3.28 is
closed and convex. It only remains to show this set is nonempty.

Define f : Rx→ R by f (αx) = α ||x||2. Then the norm of f on Rx is ||x|| and f (x) =
||x||2. By the Hahn Banach theorem, f has an extension to all of X x∗, and this extension is
in the set of 35.3.28, showing this set is nonempty as required.

The next theorem shows this duality map is the subgradient of 1
2 ||x||

2.

Theorem 35.3.17 For X a real Banach space, let φ (x)≡ 1
2 ||x||

2. Then F (x) = δφ (x).

Proof: Let x∗ ∈ F (x). Then

⟨x∗,y− x⟩ = ⟨x∗,y⟩−⟨x∗,x⟩

≤ ||x|| ||y||− ||x||2 ≤ 1
2
||y||2− 1

2
||x||2.

This shows F (x)⊆ δφ (x).
Now let x∗ ∈ δφ (x). Then for all t ∈ R,

⟨x∗, ty⟩= ⟨x∗,(ty+ x)− x⟩ ≤ 1
2

(
||x+ ty||2−||x||2

)
. (35.3.29)

Now if t > 0, divide both sides by t. This yields

⟨x∗,y⟩ ≤ 1
2t

(
(∥x∥+ t ∥y∥)2−∥x∥2

)
=

1
2t

(
2t ||x|| ||y||+ t2 ||y||2

)
Letting t→ 0,

⟨x∗,y⟩ ≤ ||x|| ||y|| . (35.3.30)



35.3. SUBGRADIENTS 1253

Next suppose t =−s, where s > 0 in 25.7.66. Then, since when you divide by a negative,
you reverse the inequality, for s > 0

⟨x∗,y⟩ ≥ 1
2s

[
||x||2−||x− sy||2

]
≥

1
2s

[
||x− sy||2−2 ||x− sy|| ||sy|| + ||sy||2−||x− sy||

]2
. (35.3.31)

=
1
2s

[
−2 ||x− sy|| ||sy||+ ||sy||2

]
(35.3.32)

Taking a limit as s→ 0 yields
⟨x∗,y⟩ ≥ −||x|| ||y||. (35.3.33)

It follows from 35.3.33 and 35.3.30 that

|⟨x∗,y⟩| ≤ ||x|| ||y||

and that, therefore, ||x∗|| ≤ ||x|| and |⟨x∗,x⟩| ≤ ||x||2. Now return to 35.3.32 and let y = x.
Then

⟨x∗,x⟩ ≥ 1
2s

[
−2 ||x− sx|| ||sx||+ ||sx||2

]
= −∥x∥2 (1− s)+ s∥x∥2

Letting s→ 1,
⟨x∗,x⟩ ≥ ||x||2.

Since it was already shown that |⟨x∗,x⟩| ≤ ||x||2, this shows ⟨x∗,x⟩= ∥x∥2 and also ∥x∗∥ ≤
∥x∥. Thus

∥x∗∥ ≥
〈

x∗
x
∥x∥

〉
= ∥x∥

so in fact x∗ ∈ F (x) . ■
The next result gives conditions under which the subgradient is onto. This means that

if y∗ ∈ X ′, then there exists x ∈ X such that y∗ ∈ δφ (x).

Theorem 35.3.18 Suppose X is a reflexive Banach space and suppose φ : X → (−∞,∞] is
convex, proper, l.s.c., and for all y∗ ∈ X ′, x→ φ (x)− y∗ (x) is coercive. Then δφ is onto.

Proof: The function x→ φ (x)− y∗ (x) ≡ ψ (x) is convex, proper, l.s.c., and coercive.
Let

λ ≡ inf{φ (x)− y∗ (x) : x ∈ X}

and let {xn} be a minimizing sequence satisfying

λ = lim
n→∞

φ (xn)− y∗ (xn)

By coercivity,
lim
||x||→∞

φ (x)− y∗ (x) = ∞
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and so this minimizing sequence is bounded. By the Eberlein Smulian theorem, Theorem
17.5.12, there is a weakly convergent subsequence xnk → x. By Theorem 18.2.11 φ is also
weakly lower semicontinuous. Therefore,

λ = φ (x)− y∗ (x)≤ lim inf
k→∞

φ
(
xnk

)
− y∗

(
xnk

)
= λ

so there exists x which minimizes x→ φ (x)−y∗ (x)≡ψ (x). Therefore, 0∈ δψ (x) because

ψ (y)−ψ (x)≥ 0 = 0(y− x)

by Theorem 35.3.14, 0 ∈ δψ (x) = δφ (x)− y∗ and this proves the theorem.

Corollary 35.3.19 Suppose X is a reflexive Banach space and φ : X → (−∞,∞] is convex,
proper, and l.s.c. Then for each y∗ ∈ X ′ there exist x ∈ X, x∗1 ∈ F (x), and x∗2 ∈ δφ (x) such
that

y∗ = x∗1 + x∗2.

Proof: Apply Theorem 35.3.18 to the convex function 1
2 ||x||

2+φ (x) and use Theorems
35.3.14 and 35.3.17.

35.3.2 Hilbert Space
In this section the subgradients are of a slightly different form and defined on a subset of H,
a real Hilbert space. In Hilbert space the duality map is just the Riesz map defined earlier
by

Rx(y)≡ (y,x).

Definition 35.3.20 dom(∂φ)≡ dom(δφ) and for x ∈ dom(∂φ),

∂φ (x)≡ R−1
δφ (x).

Thus y ∈ ∂φ (x) if and only if for all z ∈ H,

Ry(z− x) = (y,z− x)≤ φ (z)−φ (x).

Recall the definition of a maximal monotone operator.

Definition 35.3.21 A mapping A : D(A) ⊆ H →P (H) is called monotone if whenever
yi ∈ Axi,

(y1− y2,x1− x2)≥ 0.

A monotone map is called maximal monotone if whenever z ∈H, there exists x ∈D(A) and
y ∈ A(x) such that z = y+ x. Put more simply, I +A maps D(A) onto H.

The following lemma states, among other things, that when φ is a convex, proper, l.s.c.
function defined on a Hilbert space, ∂φ is maximal monotone.

Lemma 35.3.22 If φ is a convex, proper, l.s.c. function defined on a Hilbert space, then ∂φ

is maximal monotone and (I +∂φ)−1 is a Lipschitz continuous map from H to dom(∂φ)
having Lipschitz constant 1.
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Proof: Let y ∈ H. Then Ry ∈ H ′ and by Corollary 35.3.19, there exists x ∈ dom(δφ)
such that Rx+δφ (x) ∋ Ry. Multiplying by R−1 we see y ∈ x+∂φ (x). This shows I +∂φ

is onto. If yi ∈ ∂φ (xi), then Ryi ∈ δφ (xi) and so by the definition of subgradients,

(y1− y2,x1− x2) = R(y1− y2)(x1− x2)

= Ry1 (x1− x2)−Ry2 (x1− x2)

≥ φ (x1)−φ (x2)− (φ (x1)−φ (x2)) = 0

showing ∂φ is monotone. Now suppose xi ∈ (I +∂φ)−1 (y). Then y− xi ∈ ∂φ (xi) and by
monotonicity of ∂φ ,

−|x1− x2|2 = (y− x1− (y− x2) ,x1− x2)≥ 0

and so x1 = x2. Thus (I +∂φ)−1 is well defined. If xi = (I +∂φ)−1 (yi), then by the
monotonicity of ∂φ ,

(y1− x1− (y1− x2) ,x1− x2)≥ 0

and so
|y1− y2| |x1− x2| ≥ |x1− x2|2

which shows ∣∣∣(I +∂φ)−1 (y1)− (I +∂φ)−1 (y2)
∣∣∣≤ |y1− y2|.

This proves the lemma.
Here is another proof.

Lemma 35.3.23 Let φ be convex, proper and lower semicontinuous on X a reflexive Ba-
nach space having strictly convex norm, then for each α > 0,

I +α∂φ

is onto.

Proof: By separation theorems applied to the eipgraph of φ , and since φ is proper, there
exists w∗ such that

(w∗,x)+b≤ αφ (x)

for all x. Pick y ∈ H. Then consider

1
2
|y− x|2 +αφ (x)

This functional of x is bounded below by

1
2
|y− x|2 +(w∗,x)+b

Thus it is clearly coercive. Hence any minimizing sequence has a weakly convergent sub-
sequence. It follows from lower semicontinuity that there exists x0 which minimizes this
functional. Hence, if z ̸= x0,

0≤ 1
2
|y− z|2 +αφ (z)−

(
1
2
|y− x0|2 +αφ (x0)

)
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Then writing |y− z|2 = |y− x0|2 + |z− x0|2−2(y− x0,z− x0) ,

=
1
2
|y− x0|2 +

1
2
|z− x0|2− (y− x0,z− x0)+αφ (z)− 1

2
|y− x0|2−αφ (x0)

=
1
2
|z− x0|2− (y− x0,z− x0)+αφ (z)−αφ (x0)

Thus, letting z be replaced with x0 + t (z− x0) for small positive t,

t (y− x0,z− x0)≤
t2

2
|z− x0|2 +αφ (x0 + t (z− x0))−αφ (x0)

≤ t2

2
|z− x0|2 +αφ (x0 + t (z− x0))−αφ (x0)

Using convexity of φ ,

≤ t2

2
|z− x0|2 + tαφ (z)− tαφ (x0)

Divide by t and let t→ 0 to obtain that

(y− x0,z− x0)≤ αφ (z)−αφ (x0)

and so
y− x0 ∈ ∂ (αφ (x0))

Thus y = x0 +α∂φ (x0) because ∂ (αφ) = α∂φ . ■
Thus ∂φ is maximal monotone.
There is a really amazing theorem, Moreau’s theorem. It is in [24], [13] and [116]. It

involves approximating a convex function with one which is differentiable.

Theorem 35.3.24 Let φ be a convex lower semicontinuous proper function defined on H.
Define

φ λ (x)≡min
y∈H

(
1

2λ
|x− y|2 +φ (y)

)
Then the function is well defined, convex, Frechet differentiable, and for all x ∈ H,

lim
λ→0

φ λ (x) = φ (x) ,

φ λ (x) increasing as λ decreases. In addition,

φ λ (x) =
1

2λ
|x− Jλ x|2 +φ (Jλ (x))

where Jλ x≡ (I +λ∂φ)−1 (x). The Frechet derivative at x equals Aλ x where

Aλ =
1
λ
− 1

λ
(I +λ∂φ)−1 =

1
λ
− 1

λ
Jλ

Also, there is an interesting relation between the domain of φ and the domain of ∂φ

D(∂φ)⊆ D(φ)⊆ D(∂φ)
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Proof: First of all, why does the minimum take place? By the convexity, closed epi-
graph, and assumption that φ is proper, separation theorems apply and one can say that
there exists z∗ such that for all y ∈ H,

1
2λ
|x− y|2 +φ (y)≥ 1

2λ
|x− y|2 +(z∗,y)+ c (35.3.34)

It follows easily that a minimizing sequence is bounded and so from lower semicontinuity
which implies weak lower semicontinuity, there exists yx such that

min
y∈H

(
1

2λ
|x− y|2 +φ (y)

)
=

(
1

2λ
|x− yx|2 +φ (yx)

)
Why is φ λ convex? For θ ∈ [0,1] ,

φ λ (θx+(1−θ)z) =
1

2λ

∣∣θx+(1−θ)z− y(θx+(1−θ)z)
∣∣2 +φ

(
yθx+(1−θ)z

)
≤ 1

2λ
|θx+(1−θ)z− (θyx +(1−θ)yz)|2 +φ (θyx +(1−θ)yz)

≤ θ

2λ
|x− yx|2 +

1−θ

2λ
|z− yz|2 +θφ (yx)+(1−θ)φ (yz)

= θφ λ (x)+(1−θ)φ λ (z)

So is there a formula for yx? Since it involves minimization of the functional, it follows as
in Lemma 35.3.23 that

1
λ
(x− yx) ∈ ∂φ (yx)

Thus
x ∈ yx +λ∂φ (yx)

and so
yx = Jλ x.

Thus

φ λ (x) =
1

2λ
|x− Jλ x|2 +φ (Jλ (x)) =

λ

2
|Aλ x|2 +φ (Jλ x)

Note that Jλ x ∈ D(∂φ) and so it must also be in D(φ) . Now also

Aλ x≡ x
λ
− 1

λ
Jλ x ∈ ∂φ (Jλ x)

This is so if and only if

x ∈ Jλ x+λ∂φ (Jλ x) = (I +λ∂φ)(Jλ x) = (I +λ∂φ)(I +λ∂φ)−1 x

which is clearly true by definition.
Next consider the claim about differentiability.

φ λ (y)−φ λ (x) =
λ

2
|Aλ y|2 +φ (Jλ y)−

(
λ

2
|Aλ x|2 +φ (Jλ x)

)
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=
λ

2

(
|Aλ y|2−|Aλ x|2

)
+φ (Jλ y)−φ (Jλ x)

≥ λ

2

(
|Aλ y|2−|Aλ x|2

)
+(Aλ x,Jλ y− Jλ x)

=
λ

2

(
|Aλ y|2−|Aλ x|2

)
+(Aλ x,y−λAλ y− (x−λAλ x))

=
λ

2

(
|Aλ y|2−|Aλ x|2

)
+(Aλ x,y− x)+λ (Aλ x,Aλ x−Aλ y)

≥ λ

2

(
|Aλ y|2−|Aλ x|2

)
+λ |Aλ x|2− λ

2
|Aλ x|2− λ

2
|Aλ y|2 +(Aλ x,y− x)

= (Aλ x,y− x) = (Aλ x−Aλ y,y− x)+(Aλ y,y− x) (35.3.35)

Then it follows that

−(Aλ x−Aλ y,y− x)≥ φ λ (x)−φ λ (y)− (Aλ y,x− y)

However, Aλ is Lipschitz continuous with constant 1/λ and so

1
λ
|x− y|2 ≥ φ λ (x)−φ λ (y)− (Aλ y,x− y) (35.3.36)

Then switching x,y in the equation 35.3.36,

1
λ
|x− y|2 ≥ φ λ (y)−φ λ (x)− (Aλ x,y− x) (35.3.37)

But also that term on the end in 35.3.36 equals (Aλ y,y− x)≥ (Aλ x,y− x) and so it is also
the case that

1
λ
|x− y|2 ≥ φ λ (x)−φ λ (y)+(Aλ x,y− x)

= −(φ λ (y)−φ λ (x)− (Aλ x,y− x)) (35.3.38)

From 35.3.37 and 35.3.38 it follows that

1
λ
|x− y|2 ≥ |φ λ (y)−φ λ (x)− (Aλ x,y− x)|

which shows that Dφ λ (x) = Aλ x. This proves the differentiability part.
Next recall that for any maximal monotone operatior A, if you have x ∈ D(A), then

lim
λ→0

Jλ x = x

Recall why this was so. If x ∈ D(A) , then

x− Jλ x ∈ λAx
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and so, |x− Jλ x| → 0 as λ → 0. If x is only in D(A), it also works because for y ∈ D(A)

|x− Jλ x| ≤ |x− y|+ |y− Jλ y|+ |Jλ y− Jλ x|
≤ 2 |x− y|+ |y− Jλ y|

If ε is given, simply pick |y− x|< ε/2 and then

|x− Jλ x| ≤ ε + |y− Jλ y|

and the last converges to 0. Therefore, Jλ x→ x on D(A).
Returning to the proof of the theorem, if x ∈ D(∂φ) then recall that

φ λ (x) =
1

2λ
|x− Jλ x|2 +φ (Jλ x)

and so,
lim inf

λ→0
φ λ (x)≥ lim inf

λ→0
φ (Jλ x)≥ φ (x)≥ lim sup

λ→0
φ λ (x)

which shows the desired result in case x ∈ D(∂φ) . Now consider the case where x /∈
D(∂φ). In this case, there is a positive lower bound δ to |x− Jλ x| because each Jλ x ∈
D(∂φ). Then from the definition and what was shown above,

φ λ (x) =
λ

2
|Aλ x|2 +φ (Jλ x)≥ λ

2
|Aλ x|2 +(z∗,Jλ x)+ c

≥ λ

2
|Aλ x|2 +(z∗,Jλ x− x)+(z∗,x)+ c

≥ 1
2
|Aλ x| |x− Jλ x|− |z∗| |Jλ x− x|− |z∗| |x|+ c

≥ 1
2
(|Aλ x|− |z∗|)δ −|z∗| |x|+ c

≥ 1
2

(
δ

λ
−|z∗|

)
δ −|z∗| |x|+ c

Hence φ λ (x)→ ∞ and since φ (x)≥ φ λ (x) by construction, it follows that φ (x) = ∞. The
construction of φ λ also shows that as λ decreases, φ λ (x) increases.

Note that the last part of the argument shows that if x /∈ D(∂φ), then x /∈ D(φ) . Hence
this shows that

D(∂φ)⊆ D(φ)⊆ D(∂φ) ■

35.4 A Perturbation Theorem
In this section is a simple perturbation theorem found in [24] and [116].

Recall that for B a maximal monotone operator, Bλ ,the Yosida approximation, is de-
fined by

Bλ x≡ 1
λ
(x− Jλ x) , Jλ x≡ (I +λB)−1 x.

This follows from Theorem 35.1.7 on Page 1234
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Theorem 35.4.1 Let A and B be maximal monotone operators and let xλ be the solution to

y ∈ xλ +Bλ xλ +Axλ .

Then y ∈ x+Bx+Ax for some x ∈ D(A)∩D(B) if Bλ xλ is bounded independent of λ .

The following is the perturbation theorem of this section. See [24] and [116].

Theorem 35.4.2 Let H be a real Hilbert space and let Φ be non negative, convex, proper,
and lower semicontinuous. Suppose also that A is a maximal monotone operator and there
exists

ξ ∈ D(A)∩D(Φ) . (35.4.39)

Suppose also that for Jλ x≡ (I +λA)−1 x,

Φ(Jλ x)≤Φ(x)+Cλ (35.4.40)

Then A+∂Φ is maximal monotone.

Proof: Letting Aλ be the Yosida approximation of A,

Aλ x =
1
λ
(x− Jλ x) ,

and letting y ∈ H, it follows from the Hilbert space version of Proposition 35.1.6 there
exists xλ ∈ H such that

y ∈ xλ +Aλ xλ +∂Φ(xλ ) .

Consequently,
y− xλ −Aλ xλ ∈ ∂Φ(xλ ) (35.4.41)

and so
(y− xλ −Aλ xλ ,Jλ xλ − xλ )≤Φ(Jλ xλ )−Φ(xλ )≤Cλ (35.4.42)

which implies

−(y− xλ −Aλ xλ ,Aλ xλ ) = |Aλ xλ |2−|y− xλ | |Aλ xλ | ≤C. (35.4.43)

By 35.4.41 and monotonicity of Aλ ,

Φ(ξ )−Φ(xλ )≥

 ∈∂Φ(xλ )︷ ︸︸ ︷
y− xλ −Aλ xλ ,ξ − xλ


= (y− xλ ,ξ − xλ )− (Aλ xλ ,ξ − xλ )

≥ (y− xλ ,ξ − xλ )− (Aλ ξ ,ξ − xλ )

≥ (y−ξ ,ξ − xλ )+ |ξ − xλ |2− (Aλ ξ ,ξ − xλ )

= |ξ − xλ |2 +(y−ξ −Aλ ξ ,ξ − xλ )
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≥ |ξ − xλ |2−Cξ y |ξ − xλ |
where Cξ y depends on ξ and y but is independent of λ because of the assumption that
ξ ∈D(A)∩D(Φ) and Lemma 35.1.3 which gives a bound on |Aλ ξ | in terms |y| for y ∈ Ax.
Therefore, there exist constants, C1 and C2, depending on ξ and y but not on λ such that

Φ(ξ )≥Φ(xλ )+ |xλ |2−C1 |xλ |−C2.

Since Φ≥ 0, this shows that |xλ | is bounded independent of λ .

2
(

Φ(ξ )+C2 +
C2

1
2

)
≥Φ(xλ )+ |xλ |2 .

This shows |xλ | is bounded independent of λ . Therefore, by 35.4.43, |Aλ xλ | is bounded
independent of λ . By Theorem 35.4.1 this shows there exists x ∈ D(∂Φ)∩D(A) such that

y ∈ Ax+∂Φ(x)+ x

and so A+∂Φ is maximal monotone since y ∈ H was arbitrary. ■

35.5 An Evolution Inclusion
In this section is a theorem on existence and uniqueness for the initial value problem

x′+∂φ (x) ∋ f , x(0) = x0.

Suppose φ is a mapping from H to [0,∞] which satisfy the following axioms.

φ is convex and lower semicontinuous, and proper, (35.5.44)

Lemma 35.5.1 For x ∈ L2 (0,T ;H) , t→ φ (x) is measurable.

Proof: This follows because φ is Borel measurable and so φ ◦ x is also measurable. ■
Now define the following function Φ, on the Hilbert space, L2 (0,T ;H) .

Φ(x)≡
{ ∫ T

0 φ (x(t))dt if x(t) ∈ D for a.e. t
+∞ otherwise

(35.5.45)

Lemma 35.5.2 Φ is convex, nonnegative, and lower semicontinuous on L2 (0,T ;H) .

Proof: Since φ is nonnegative and convex, it follows that Φ is also nonnegative and
convex. It remains to verify lower semicontinuity. Suppose, xn→ x in L2 (0,T ;H) and let

λ = lim inf
n→∞

Φ(xn) .

Is λ ≥ Φ(x)? Then is suffices to assume λ < ∞. Suppose not. Then λ < Φ(x) . Taking a
subsequence, we can have λ = limn→∞ Φ(xn) and we can take a further subsequence for
which convergence of xn to x is pointwise a.e. Then

λ < Φ(x)≡
∫ T

0
φ (x(t))dt ≤

∫ T

0
lim inf

n→∞
φ (xn (t))dt

≤ lim inf
n→∞

∫ T

0
φ (xn (t))dt = lim inf

n→∞
Φ(xn) = λ
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which is a contradiction. ■
Define

D(L)≡
{

x ∈ L2 (0,T ;H) : such that

x(t) = x0 +
∫ t

0
x′ (s)ds where x′ ∈ L2 (0,T ;H)

}
(35.5.46)

and for x ∈ D(L) ,
Lx≡ x′.

Then L is maximal monotone. To see this, consider the equation

λx′+ x = z, x(0) = x0

It clearly has a solution so λL+ I is onto. In fact, the solution is

x = e
−t
λ x0 +

1
λ

e
−t
λ

∫ t

0
e

1
λ

sz(s)ds

Also,

(Lx−Ly,x− y)L2(0,T ;H) =
∫ T

0

((
x′− y′

)
,x− y

)
H dt

=
∫ T

0

(
x′ (t)− y′ (t) ,

∫ t

0
x′ (s)− y′ (s)ds

)
dt

=
1
2

∫ T

0

d
dt

(∣∣∣∣∫ t

0
x′ (s)− y′ (s)ds

∣∣∣∣2
)

dt

=

∣∣∣∣∫ T

0
x′ (s)− y′ (s)ds

∣∣∣∣2
H
≥ 0

Thus we have the following lemma.

Lemma 35.5.3 L is maximal monotone and if z ∈ L2 (0,T ;H) , then Jλ z is given by

Jλ [z] (t)≡ (I +λL)−1 ([z]) (t) = e
−t
λ x0 +

1
λ

e
−t
λ

∫ t

0
e

1
λ

sz(s)ds. (35.5.47)

The main theorem is the following.

Theorem 35.5.4 Let x0 ∈ D≡ D(φ) . Then L+∂Φ is maximal monotone so there exists a
unique solution to

Lx+ x+∂Φ(x) ∋ f (35.5.48)

for every f ∈ L2 (0,T ;H). Thus there exists x ∈ L2 (0,T ;H) such that

x′ ∈ L2 (0,T ;H) ,x(0) = x0 ∈ D(φ) ,

and
x′+ x+∂Φ(x) ∋ f , x(0) = x0



35.5. AN EVOLUTION INCLUSION 1263

Proof: This is from Theorem 35.4.2. Since x0 ∈ D, it follows that φ (x0)< ∞.
Let z ∈ D(Φ) , the effective domain of Φ. Then

∫ T
0 φ (z(t))dt < ∞, so by convexity of

φ and 35.5.47,

φ (Jλ z(t))≤ e
−t
λ φ (x0)+

1
λ

e
−t
λ

∫ t

0
e

s
λ φ (z(s))ds. (35.5.49)

Then
Φ(Jλ z) =∫ T

0
φ (Jλ z(t))dt ≤ φ (x0)λ +

∫ T

0

1
λ

∫ t

0
e−(t−s)/λ

φ (z(s))dsdt

≤ λφ (x0)+
1
λ

∫ T

0
φ (z(s))

∫ T

s
e−(t−s)/λ dtds

≤ λφ (x0)+

(∫ T

0
φ (z(s))ds

)
1
λ

∫
∞

0
e−t/λ dt

= φ (x0)λ +
∫ T

0
φ (z(s))ds

= φ (x0)λ +Φ(z)

The conditions of Theorem 35.4.2 are satisfied. This proves L+∂Φ is maximal mono-
tone on L2 (0,T ;H) and consequently there exists a unique solution to the differential in-
clusion of the theorem. ■

Then the main result is the following.

Theorem 35.5.5 Let f ∈ L2 (0,T ;H) and x0 ∈ D. Let φ be as described above, a lower
semicontinuous convex proper function defined on H. Then there exists a unique solution
x ∈ L2 (0,T ;H) ,x′ ∈ L2 (0,T ;H) , to

x′+∂Φ(x) ∋ f in L2 (0,T ;H) , x(0) = x0

This satisfies the pointwise condition

x′ (t)+∂φ (x(t)) ∋ f (t) for a.e. t, x(0) = x0

Proof: From Theorem 35.5.4, there exists a unique solution to

x′v +∂Φ(xv)+ xv ∋ f + v in L2 (0,T ;H) , xv (0) = x0

whenever v ∈ L2 (0,T ;H). Then a simple argument based on fundamental theorem of cal-
culus implies that for a.e. t,

x′v (t)+∂φ (xv (t))+ xv (t) ∋ f (t)+ v(t)

Then for given v,u one can act on xv (t)− xu (t) and integrate. This yields

1
2
|xv (t)− xu (t)|2H +

∫ t

0
|xv− xu|2 ds≤

∫ t

0
|v(s)−u(s)|2H ds

It follows that a sufficiently high power of the mapping u→ xu is a contraction map on
L2 (0,T ;H) and so there exists a unique fixed point v in L2 (0,T ;H). Thus xv = v and so

v′+∂Φ(v) ∋ f in L2 (0,T ;H) , v(0) = x0 ■
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35.6 A More Complicated Perturbation Theorem
In this section is a simple perturbation theorem which is a small generalization of one found
in [24] and [116].

Recall that for B a maximal monotone operator, Bλ ,the Yosida approximation, is de-
fined by

Bλ x≡ 1
λ
(x− Jλ x) , Jλ x≡ (I +λB)−1 x.

This follows from Theorem 35.1.7 on Page 1234

Theorem 35.6.1 Let A and B be maximal monotone operators and let xλ be the solution to

y ∈ xλ +Bλ xλ +Axλ .

Then y ∈ x+Bx+Ax for some x ∈ D(A)∩D(B) if Bλ xλ is bounded independent of λ .

The following is the perturbation theorem of this section. It generalizes a well known
result in [24] and [116].

Theorem 35.6.2 Let H be a real Hilbert space and let Φ be non negative, convex, proper,
and lower semicontinuous. Suppose also that A is a maximal monotone operator and there
exists

ξ ∈ D(A)∩D(Φ) . (35.6.50)

Suppose also that for Jλ x≡ (I +λA)−1 x,

Φ(Jλ x)≤Φ(x)+C (x)λ (35.6.51)

where for some constants, K1,K2,

K2 +K1

(
Φ(x)+ |x|2

)
≥C (x) . (35.6.52)

Then A+∂Φ is maximal monotone.

Proof: Letting Aλ be the Yosida approximation of A,

Aλ x =
1
λ
(x− Jλ x) ,

and letting y ∈ H, it follows from the Hilbert space version of Proposition 35.1.6 there
exists xλ ∈ H such that

y ∈ xλ +Aλ xλ +∂Φ(xλ ) .

Consequently,
y− xλ −Aλ xλ ∈ ∂Φ(xλ ) (35.6.53)

and so

(y− xλ −Aλ xλ ,Jλ xλ − xλ )≤Φ(Jλ xλ )−Φ(xλ )≤C (xλ )λ (35.6.54)
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which implies
−(y− xλ −Aλ xλ ,Aλ xλ )≤C (xλ ) . (35.6.55)

I claim {C (xλ )} and {|xλ |}are bounded independent of λ .
By 35.6.53 and monotonicity of Aλ ,

Φ(ξ )−Φ(xλ )≥ (y− xλ −Aλ xλ ,ξ − xλ )

≥ (y− xλ ,ξ − xλ )− (Aλ xλ ,ξ − xλ )

≥ (y− xλ ,ξ − xλ )− (Aλ ξ ,ξ − xλ )

≥ (y−ξ ,ξ − xλ )+ |ξ − xλ |2− (Aλ ξ ,ξ − xλ )

≥ |ξ − xλ |2−Cξ y |ξ − xλ |
where Cξ y depends on ξ and y but is independent of λ because of the assumption that
ξ ∈D(A)∩D(Φ) and Lemma 35.1.3 which gives a bound on |Aλ ξ | in terms |y| for y ∈ Ax.
Therefore, there exist constants, C1 and C2, depending on ξ and y but not on λ such that

Φ(ξ )≥Φ(xλ )+ |xλ |2−C1 |xλ |−C2.

Since Φ≥ 0,

2
(

Φ(ξ )+C2 +
C2

1
2

)
≥Φ(xλ )+ |xλ |2 .

This shows |xλ | is bounded independent of λ . Therefore, by 35.6.52

K2 +2K1

(
Φ(ξ )+C2 +

C2
1

2

)
≥ K2 +K1

(
Φ(xλ )+ |xλ |2

)
≥C (xλ ) ,

showing that both |xλ | and C (xλ ) are bounded independent of λ . Therefore, from 35.6.55,
it follows Aλ xλ is bounded independent of λ . By Theorem 35.6.1 this shows there exists
x ∈ D(∂Φ)∩D(A) such that

y ∈ Ax+∂Φ(x)+ x

and so A+∂Φ is maximal monotone since y ∈ H was arbitrary. This proves the theorem.

35.7 An Evolution Inclusion
In this section is a theorem on existence and uniqueness for the initial value problem

x′+∂2φ (t,x) ∋ f , x(0) = x0.

Suppose {φ (t, ·)}t∈[0,T ] is a family of functions mapping H to [0,∞] which satisfy the
following axioms.

φ (t, ·) is convex and lower semicontinuous, (35.7.56)

D(φ (t, ·)) = D, independent of t ∈ [0,T ] , (35.7.57)

There exists a constant, K, such that for all x ∈ D,

|φ (t,x)−φ (s,x)| ≤ K
(

φ (r,x)+ |x|2 +1
)
|t− s| (35.7.58)

for all r ∈ [0,T ] .
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Lemma 35.7.1 Under the conditions, 35.7.56 - 35.7.58, φ : H × [0,T ]→ [0,∞] is lower
semicontinuous.

Proof: Let (xn, tn)→ (x, t) and let λ ≡ liminfn→∞ φ (tn,xn) . Is

φ (t,x)≤ λ?

It suffices to assume λ < ∞ and by taking a subsequence, xn ∈ D for all n and

φ (tn,xn)→ λ .

Then
lim inf

n→∞
φ (tn,xn) = lim inf

n→∞
[φ (tn,xn)−φ (t,xn)+φ (t,xn)] . (35.7.59)

Now
lim sup

n→∞

|φ (tn,xn)−φ (t,xn)| ≤

lim sup
n→∞

K
(

φ (tn,xn)+ |xn|2 +1
)
|tn− t|= 0.

Therefore, from 35.7.59

λ = lim inf
n→∞

φ (tn,xn) = lim inf
n→∞

φ (t,xn)≥ φ (t,x)

because of the assumption that φ (t, ·) is lower semicontinuous. This proves the lemma.
In all that follows [x] is an element of L2 (0,T ;H) . Thus [x] is the equivalence class

of measurable square integrable functions which equal x a.e. This seems a little fussy but
since the existence results are based on surjectivity theorems and the Hilbert space they
apply to is L2 (0,T ;H) , it seems best to emphasize the equivalence classes of functions by
using this notation, at least while proving theorems on existence and uniqueness.

Corollary 35.7.2 For [x] ∈ L2 (0,T ;H) , t→ φ (t,x(t)) is measurable.

Proof: This follows because, due to Lemma 35.7.1, φ is Borel measurable and so φ ◦ x
is also measurable.

Now define the following function, Φ, on the Hilbert space, L2 (0,T ;H) .

Φ([x])≡
{ ∫ T

0 φ (t,x(t))dt if x(t) ∈ D for all t for some x(·) ∈ [x]
+∞ otherwise

(35.7.60)

Note that since the functions φ (t, ·) are proper, the top condition is equivalent to the condi-
tion ∫ T

0
φ (t,x(t))dt if x(t) ∈ D a.e. for all x(·) ∈ [x] .

Lemma 35.7.3 Φ is convex, nonnegative, and lower semicontinuous on L2 (0,T ;H) .
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Proof: Since each φ (t, ·) is nonnegative and convex, it follows that Φ is also non-
negative and convex. It remains to verify lower semicontinuity. Suppose, [xn]→ [x] in
L2 (0,T ;H) and let

λ = lim inf
n→∞

Φ([xn]) .

Is λ ≥ Φ([x])? It suffices to assume λ < ∞, xn (t) ∈ D for all t, and xn (t)→ x(t) a.e. say
for t /∈ N where N has measure zero. Let

x̃(t) =
{

x(t) if t /∈ N
x1 (t) if t ∈ N

Then [x̃] = [x] and x̃(t) ∈ D for all t. Then by pointwise convergence and Fatou’s lemma,

Φ([x]) = Φ([x̃]) =
∫ T

0
φ (t, x̃(t))dt ≤

∫ T

0
lim inf

n→∞
φ (t,xn (t))dt

≤ lim inf
n→∞

∫ T

0
φ (t,xn (t))dt = lim inf

n→∞
Φ([xn])≡ λ .

This proves the lemma.
Define

D(L)≡
{
[x] ∈ L2 (0,T ;H) : for some x ∈ [x] such that

x(t) = x0 +
∫ t

0
x′ (s)ds where

[
x′
]
∈ L2 (0,T ;H)

}
(35.7.61)

and for [x] ∈ D(L) ,
L [x]≡

[
x′
]
.

The following lemma is easily obtained.

Lemma 35.7.4 L is maximal monotone and if [z]∈ L2 (0,T ;H) , then the equivalence class,
[Jλ [z]] is determined by the function,

Jλ [z] (t)≡ (I +λL)−1 ([z]) (t) = e
−t
λ x0 +

1
λ

e
−t
λ

∫ t

0
e

1
λ

sz(s)ds. (35.7.62)

The main theorem is the following.

Theorem 35.7.5 Let x0 ∈ D. Then L+ ∂Φ is maximal monotone so there exists a unique
solution to

L [x]+ [x]+∂Φ([x]) ∋ [ f ] (35.7.63)

for every [ f ] ∈ L2 (0,T ;H).

Proof: This is from Theorem 35.6.2. Since x0 ∈D, it follows from 35.7.58 that φ (t,x0)
is bounded.

Let [z] ∈ D(Φ) , the effective domain of Φ. Then there exists z ∈ [z] such that z(t) ∈ D
for all t, and

∫ T
0 φ (t,z(t))dt < ∞, so by convexity of φ (t, ·) and 35.7.62,

φ (t,Jλ [z] (t))≤ e
−t
λ φ (t,x0)+

1
λ

e
−t
λ

∫ t

0
e

s
λ φ (t,z(s))ds. (35.7.64)
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Now the first term in 35.7.64 is bounded so consider the second. The integral in this term
is of the form∫ t

0
e

s
λ φ (s,z(s))ds+

∫ t

0
e

s
λ (φ (t,z(s))−φ (s,z(s)))ds. (35.7.65)

Since [z] ∈ D(Φ) , φ (s,z(s))< ∞ for all s and also the first integral in 35.7.65 is finite. By
35.7.58, the second term in 35.7.65 is dominated by

Cλ

∫ t

0
K
(

1+φ (s,z(s))+ |z(s)|2
)
|t− s|ds < ∞.

This shows φ (t,Jλ [z] (t))< ∞ for all t and so Φ([Jλ [z]]) is given by the top line of 35.7.60.
Therefore, by convexity of φ (t, ·) and Jensen’s inequality,

Φ([Jλ [z]]) =
∫ T

0
φ

(
t,e

−t
λ x0 +

1
λ

e
−t
λ

∫ t

0
e

s
λ z(s)ds

)
dt

≤
∫ T

0

(
e
−t
λ φ (t,x0)+

1
λ

e
−t
λ

∫ t

0
e

s
λ φ (t,z(s))ds

)
dt

=
∫ T

0
e
−t
λ φ (t,x0)dt +

∫ T

0

1
λ

e
−t
λ

∫ t

0
e

s
λ φ (s,z(s))dsdt

+
∫ T

0

1
λ

e
−t
λ

∫ t

0
e

s
λ (φ (t,z(s))−φ (s,z(s)))dsdt. (35.7.66)

By 35.7.58, the last term is dominated by∫ T

0

∫ t

0

1
λ

e
−(t−s)

λ K
(

1+φ (s,z(s))+ |z(s)|2
)
|t− s|dsdt =

∫ T

0

∫ T

s
e
−(t−s)

λ

t− s
λ

dtK
(

1+φ (s,z(s))+ |z(s)|2
)

ds

≤Cλ +Cλ

(
Φ([z])+ |[z]|2

)
. (35.7.67)

for some constant, C. From 35.7.58, φ (t,x0) is bounded and so the first term in 35.7.66
is dominated by an expression of the form Cλ . Now consider the middle term of 35.7.66.
Since φ is nonnegative,∫ T

0

1
λ

e
−t
λ

∫ t

0
e

s
λ φ (s,z(s))dsdt =

∫ T

0

∫ T

s

1
λ

e
−(t−s)

λ dtφ (s,z(s))ds

≤
∫ T

0

∫
∞

0
e−uduφ (s,z(s))ds = Φ([z]) . (35.7.68)

It follows
Φ([Jλ [z]])≤Φ([z])+Cλ +Cλ

(
Φ([z])+ |[z]|2

)
.
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The conditions of Theorem 35.6.2 are satisfied with K1 = K2 = C. This proves L+ ∂Φ is
maximal monotone on L2 (0,T ;H) and consequently there exists a unique solution to the
differential inclusion of the theorem.

Of course it is desirable to be able to say that [y] ∈ ∂Φ([x]) if and only if y(t) ∈
∂2φ (t,x(t)) for some x ∈ [x] . To obtain this, here are two more assumptions. For all x ∈H,

t→ J1 (t)x is measurable, (35.7.69)

where J1 (t)x is the solution, y, to y(t)+∂2φ (t,y(t))∋ x, and there exists [ξ ]∈ L2 (0,T ;H)
such that

[J1 (·) [ξ ]] ∈ L2 (0,T ;H) . (35.7.70)

Lemma 35.7.6 If 35.7.69 and 35.7.70 hold, and if [y] ∈ L2 (0,T ;H) , then [y] ∈ ∂Φ([x]) if
and only if there exists x ∈ [x] such that ∂2φ (t,x(t)) ̸= /0 for all t and y(t) ∈ ∂2φ (t,x(t))
a.e.

Proof: First suppose y(t)∈ ∂2φ (t,x(t)) a.e. and ∂2φ (t,x(t)) ̸= /0 for all t where x∈ [x].
Then for all [w] ∈ L2 (0,T ;H),

([y] , [w])L2(0,T ;H) ≡
∫ T

0
(y(t) ,w(t))H dt

≤
∫ T

0
φ (t,x(t)+w(t))dt−

∫ T

0
φ (t,x(t))dt ≤Φ([x]+ [w])−Φ([x]) .

To prove the converse, define A : D(∂Φ)→P
(
L2 (0,T ;H)

)
as follows.

[y] ∈ A [x] if and only if for some x ∈ [x] ,

∂2φ (t,x(t)) ̸= /0 for all t and y(t) ∈ ∂2φ (t,x(t)) a.e. t.

It follows A is monotone. I will show A is maximal monotone. From the first part of the
proof, the graph of A is contained in the graph of ∂Φ. Since A is maximal, this will imply
A = ∂Φ and prove the lemma.

It remains to show A is maximal monotone. By 35.7.69, for each x ∈ H, J1 (t)x is
measurable. Now from 35.7.70, and using the fact that J1 (t) is a contraction,

|J1 (t)x− J1 (t)ξ (t)| ≤ |x−ξ (t)|

and so [J1 (·)x] is in L2 (0,T ;H) . Now if

s(t) =
n

∑
i=1

XEi (t)xi

is a simple function,

J1 (t)s(t) =
n

∑
i=1

XEi (t)J1 (t)x,
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and [J1 (·)s] is in L2 (0,T ;H) . If [ f ] ∈ L2 (0,T ;H) is arbitrary, take a sequence of simple
functions, sn converging to f pointwise and [sn]→ [ f ] in L2 (0,T ;H). Then

|J1 (t)sn (t)− J1 (t) f (t)| ≤ |sn (t)− f (t)|

and it follows J1 (t)sn (t) converges pointwise to J1 (t) f (t) showing that t → J1 (t) f (t) is
measurable. Now the equivalence class of functions equal to this one a.e. is in L2 (0,T ;H)
by Fatou’s lemma and the assumption that the simple functions, sn converge in L2 (0,T ;H) .
This shows A is maximal and proves the lemma.

Conditions 35.7.69 and 35.7.70 are just what is needed to obtain the conclusion of
Lemma 35.7.6 but it may not be clear how to verify these conditions easily. The follow-
ing lemma gives sufficient conditions which are easy to verify which imply 35.7.69 and
35.7.70.

Lemma 35.7.7 Suppose there exists [ξ ] ∈ L2 (0,T ;H) such that

J1 (t)ξ (t) ,φ (t,J1 (t)ξ (t))

are bounded independent of t ∈ [0,T ] and t → J1 (t)ξ (t) is measurable. Then the conclu-
sion of Lemma 35.7.6 holds.

Proof: Let y(t) = J1 (t)ξ (t) . Thus

y(t)+∂2φ (t,y(t)) ∋ ξ (t) .

Now suppose x ∈ H and let
x(s)+ z(s) = x (35.7.71)

where z(s) ∈ ∂2φ (s,x(s)) , so x(s) = J1 (s)x. Take the inner product of both sides with
x(s)− y(s) to obtain

(x(s) ,x(s)− y(s))H +(z(s) ,x(s)− y(s))H = (x,x(s)− y(s))H

and therefore,
1
2
|x(s)|2H −

1
2
|y(s)|2H ≤ φ (s,y(s))−φ (s,x(s))

+ |x|H |x(s)|H + |x|H |y(s)|H ≤
1
4
|x(s)|2H + c |x|2H +

1
2
|y(s)|2H

+φ (s,y(s))−φ (s,x(s)) .

Consequently,

φ (s,x(s))+
1
4
|x(s)|2H ≤ |y(s)|

2
H + c |x|2H +φ (s,y(s))<C (35.7.72)

a constant depending on x. Replacing s with t in 35.7.71 and subtracting yields

x(t)− x(s)+ z(t)− z(s) = 0.
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Now taking the inner product of this with x(t)− x(s) it follows from 35.7.58,

|x(s)− x(t)|2H = (z(s)− z(t) ,x(t)− x(s))H

≤ φ (s,x(t))−φ (s,x(s))+φ (t,x(s))−φ (t,x(t))

≤
(

K
(

φ (t,x(t))+ |x(t)|2H +1
)
+K

(
φ (s,x(s))+ |x(s)|2H +1

))
|t− s|

which shows by 35.7.72 that x(·) is Lipschitz continuous and is therefore measurable which
verifies 35.7.69. The assumptions of the lemma include 35.7.70. It follows the conclusion
of Lemma 35.7.6 holds.

Remark 35.7.8 Note that if φ (t, ·) has a minimum at ξ (t) and if t → ξ (t) and t →
φ (t,ξ (t)) are bounded and measurable, then

ξ (t)+0 = ξ (t)

and 0 ∈ ∂2φ (t,ξ (t)). Therefore, in this case J1 (t)ξ (t) = ξ (t) and so the hypotheses of
Lemma 35.7.7 hold.

Corollary 35.7.9 Assume 35.7.56 - 35.7.58 and 35.7.69, 35.7.70. Let x0 ∈ D and let [ f ] ∈
L2 (0,T ;H) . Then there exists a unique function, x, satisfying

[x] and
[
x′
]

are in L2 (0,T ;H)

which is a solution to

x′+∂2φ (t,x) ∋ f a.e., x(0) = x0, x(t) = x0 +
∫ t

0
x′ (s)ds. (35.7.73)

Proof: Let [v] ∈ L2 (0,T ;H) and let [x] be the unique solution to

L [x]+ [x]+∂Φ([x]) ∋ [ f ]+ [v] . (35.7.74)

Letting [xi] be the solution corresponding to 35.7.74 in which v is replaced with vi, and
xi ∈ [xi] is such that

xi (t) = x0 +
∫ t

0
x′i (s)ds, i = 1,2,

from Lemma 35.7.6 and 35.7.74 that for each t ∈ [0,T ] ,

1
2
|x1 (t)− x2 (t)|2H +

1
2

∫ t

0
|x1− x2|2H ds≤ 1

2

∫ t

0
|v1 (s)− v2 (s)|2H ds

and so
|x1 (t)− x2 (t)|2H ≤

∫ t

0
|v1 (s)− v2 (s)|2H ds.

Now define a mapping, Λ : L2 (0,T ;H)→ L2 (0,T ;H) by Λ [v] = [x] where [x] is the solution
to 35.7.74. Then, if [vi] is in L2 (0,T ;H) and [xi] is the corresponding solution to 35.7.74,

||Λ [v1]−Λ [v2]||2L2(0,t;H) ≡
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∫ t

0
|x1 (s)− x2 (s)|2H ds≤

∫ t

0

∫ s

0
|v1 (r)− v2 (r)|2H drds.

Iterating this inequality, by replacing Λ with Λk, it follows that for all k large enough, Λk is
a contraction map on L2 (0,T ;H). Thus there exists a unique fixed point for Λ, [x] . Thus

L [x]+ [x]+∂Φ([x]) ∋ [ f ]+ [x] .

Let x ∈ [x] be such that

x(t) = x0 +
∫ t

0
x′ (s)ds.

By Lemma 35.7.6,
x′+ x+∂2φ (t,x) ∋ f + x

This function, x(·) is the unique solution to 35.7.73 because if x1 is another solution, then
[x1] = [x] and since both functions are continuous, they must coincide. This proves the
corollary.
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Chapter 36

Weak Derivatives
36.1 Weak ∗ Convergence

A very important sort of convergence in applications of functional analysis is the concept
of weak or weak ∗ convergence. It is important because it allows you to assert the exis-
tence of a convergent subsequence of a given bounded sequence. The only problem is the
convergence is very weak so it does not tell you as much as you would like. Nevertheless,
it is a very useful concept. The big theorems in the subject are the Eberlein Smulian theo-
rem and the Banach Alaoglu theorem about the weak or weak ∗ compactness of the closed
unit balls in either a Banach space or its dual space. These theorems are proved in Yosida
[127]. Here I will present a special case which turns out to be by far the most important in
applications and it is not hard to get from the Riesz representation theorem for Lp. First I
define weak and weak ∗ convergence.

Definition 36.1.1 Let X ′ be the dual of a Banach space X and let {x∗n} be a sequence of
elements of X ′. Then x∗n converges weak ∗ to x∗ if and only if for all x ∈ X,

lim
n→∞

x∗n (x) = x∗ (x) .

A sequence in X ,{xn} converges weakly to x ∈ X if and only if for all x∗ ∈ X ′

lim
n→∞

x∗ (xn) = x∗ (x) .

The main result is contained in the following lemma.

Lemma 36.1.2 Let X ′ be the dual of a Banach space, X and suppose X is separable. Then
if {x∗n} is a bounded sequence in X ′, there exists a weak ∗ convergent subsequence.

Proof: Let D be a dense countable set in X . Then the sequence, {x∗n (x)} is bounded
for all x and in particular for all x ∈ D. Use the Cantor diagonal process to obtain a sub-
sequence, still denoted by n such that x∗n (d) converges for each d ∈ D. Now let x ∈ X be
completely arbitrary. In fact {x∗n (x)} is a Cauchy sequence. Let ε > 0 be given and pick
d ∈ D such that for all n

|x∗n (x)− x∗n (d)|<
ε

3
.

This is possible because D is dense. By the first part of the proof, there exists Nε such that
for all m,n > Nε ,

|x∗n (d)− x∗m (d)|< ε

3
.

Then for such m,n,

|x∗n (x)− x∗m (x)| ≤ |x∗n (x)− x∗n (d)|+ |x∗n (d)− x∗m (d)|

+ |x∗m (d)− x∗m (x)| <
ε

3
+

ε

3
+

ε

3
= ε.

Since ε is arbitrary, this shows {x∗n (x)} is a Cauchy sequence for all x ∈ X .

1275
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Now define f (x)≡ limn→∞ x∗n (x). Since each x∗n is linear, it follows f is also linear. In
addition to this,

| f (x)|= lim
n→∞
|x∗n (x)| ≤ K ||x||

where K is some constant which is larger than all the norms of the x∗n. Such a constant
exists because the sequence, {x∗n} was bounded. This proves the lemma.

The lemma implies the following important theorem.

Theorem 36.1.3 Let Ω be a measurable subset of Rn and let { fk} be a bounded sequence
in Lp (Ω) where 1 < p≤ ∞. Then there exists a weak ∗ convergent subsequence.

Proof: Since Lp′ (Ω) is separable, this follows from the Riesz representation theorem.
Note that from the Riesz representation theorem, it follows that if p < ∞, then the

sequence converges weakly.

36.2 Test Functions And Weak Derivatives
In elementary courses in mathematics, functions are often thought of as things which have
a formula associated with them and it is the formula which receives the most attention. For
example, in beginning calculus courses the derivative of a function is defined as the limit
of a difference quotient. You start with one function which tends to be identified with a
formula and, by taking a limit, you get another formula for the derivative. A jump in ab-
straction occurs as soon as you encounter the derivative of a function of n variables where
the derivative is defined as a certain linear transformation which is determined not by a
formula but by what it does to vectors. When this is understood, it reduces to the usual
idea in one dimension. The idea of weak partial derivatives goes further in the direction of
defining something in terms of what it does rather than by a formula, and extra generality
is obtained when it is used. In particular, it is possible to differentiate almost anything if
the notion of what is meant by the derivative is sufficiently weak. This has the advantage
of allowing the consideration of the weak partial derivative of a function without having to
agonize over the important question of existence but it has the disadvantage of not being
able to say much about the derivative. Nevertheless, it is the idea of weak partial deriva-
tives which makes it possible to use functional analytic techniques in the study of partial
differential equations and it is shown in this chapter that the concept of weak derivative is
useful for unifying the discussion of some very important theorems. Certain things which
shold be true are.

Let Ω ⊆ Rn. A distribution on Ω is defined to be a linear functional on C∞
c (Ω), called

the space of test functions. The space of all such linear functionals will be denoted by
D∗ (Ω). Actually, more is sometimes done here. One imposes a topology on C∞

c (Ω) mak-
ing it into a topological vector space, and when this has been done, D ′ (Ω) is defined as the
dual space of this topological vector space. To see this, consult the book by Yosida [127]
or the book by Rudin [114].

Example: The space L1
loc (Ω) may be considered as a subset of D∗ (Ω) as follows.

f (φ)≡
∫

Ω

f (x)φ (x)dx
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for all φ ∈C∞
c (Ω). Recall that f ∈ L1

loc (Ω) if f XK ∈ L1 (Ω) whenever K is compact.
Example: δ x ∈D∗ (Ω) where δ x (φ)≡ φ (x).
It will be observed from the above two examples and a little thought that D∗ (Ω) is

truly enormous. The derivative of a distribution will be defined in such a way that it agrees
with the usual notion of a derivative on those distributions which are also continuously
differentiable functions. With this in mind, let f be the restriction to Ω of a smooth function
defined on Rn. Then Dxi f makes sense and for φ ∈C∞

c (Ω)

Dxi f (φ)≡
∫

Ω

Dxi f (x)φ (x)dx =−
∫

Ω

f Dxiφdx =− f (Dxiφ).

This motivates the following definition.

Definition 36.2.1 For T ∈D∗ (Ω)

DxiT (φ)≡−T (Dxiφ).

Of course one can continue taking derivatives indefinitely. Thus,

Dxix j T ≡ Dxi

(
Dx j T

)
and it is clear that all mixed partial derivatives are equal because this holds for the functions
in C∞

c (Ω). In this weak sense, the derivative of almost anything exists, even functions that
may be discontinuous everywhere. However the notion of “derivative” is very weak, hence
the name, “weak derivatives”.

Example: Let Ω = R and let

H (x)≡
{

1 if x≥ 0,
0 if x < 0.

Then
DH (φ) =−

∫
H (x)φ

′ (x)dx = φ (0) = δ 0(φ).

Note that in this example, DH is not a function.
What happens when D f is a function?

Theorem 36.2.2 Let Ω = (a,b) and suppose that f and D f are both in L1 (a,b). Then f is
equal to a continuous function a.e., still denoted by f and

f (x) = f (a)+
∫ x

a
D f (t)dt.

In proving Theorem 36.2.2 the following lemma is useful.

Lemma 36.2.3 Let T ∈D∗ (a,b) and suppose DT = 0. Then there exists a constant C such
that

T (φ) =
∫ b

a
Cφdx.
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Proof: T (Dφ) = 0 for all φ ∈C∞
c (a,b) from the definition of DT = 0. Let

φ 0 ∈C∞
c (a,b) ,

∫ b

a
φ 0 (x)dx = 1,

and let

ψφ (x) =
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

for φ ∈C∞
c (a,b). Thus ψφ ∈C∞

c (a,b) and

Dψφ = φ −
(∫ b

a
φ (y)dy

)
φ 0.

Therefore,

φ = Dψφ +

(∫ b

a
φ (y)dy

)
φ 0

and so

T (φ) = T (Dψφ )+

(∫ b

a
φ (y)dy

)
T (φ 0) =

∫ b

a
T (φ 0)φ (y)dy.

Let C = T φ 0. This proves the lemma.
Proof of Theorem 36.2.2 Since f and D f are both in L1 (a,b),

D f (φ)−
∫ b

a
D f (x)φ (x)dx = 0.

Consider

f (·)−
∫ (·)

a
D f (t)dt

and let φ ∈C∞
c (a,b).

D
(

f (·)−
∫ (·)

a
D f (t)dt

)
(φ)

≡−
∫ b

a
f (x)φ

′ (x)dx+
∫ b

a

(∫ x

a
D f (t)dt

)
φ
′ (x)dx

= D f (φ)+
∫ b

a

∫ b

t
D f (t)φ

′ (x)dxdt

= D f (φ)−
∫ b

a
D f (t)φ (t)dt = 0.

By Lemma 36.2.3, there exists a constant, C, such that(
f (·)−

∫ (·)

a
D f (t)dt

)
(φ) =

∫ b

a
Cφ (x)dx



36.3. WEAK DERIVATIVES IN Lp
loc 1279

for all φ ∈C∞
c (a,b). Thus∫ b

a
{
(

f (x)−
∫ x

a
D f (t)dt

)
−C}φ (x)dx = 0

for all φ ∈C∞
c (a,b). It follows from Lemma 36.3.3 in the next section that

f (x)−
∫ x

a
D f (t)dt−C = 0 a.e. x.

Thus let f (a) =C and write

f (x) = f (a)+
∫ x

a
D f (t)dt.

This proves Theorem 36.2.2.
Theorem 36.2.2 says that

f (x) = f (a)+
∫ x

a
D f (t)dt

whenever it makes sense to write
∫ x

a D f (t)dt, if D f is interpreted as a weak derivative.
Somehow, this is the way it ought to be. It follows from the fundamental theorem of
calculus that f ′ (x) exists for a.e. x where the derivative is taken in the sense of a limit of
difference quotients and f ′ (x) = D f (x). This raises an interesting question. Suppose f is
continuous on [a,b] and f ′ (x) exists in the classical sense for a.e. x. Does it follow that

f (x) = f (a)+
∫ x

a
f ′ (t)dt?

The answer is no. To see an example, consider Problem 4 on Page 970 which gives an
example of a function which is continuous on [0,1], has a zero derivative for a.e. x but
climbs from 0 to 1 on [0,1]. Thus this function is not recovered from integrating its classical
derivative.

In summary, if the notion of weak derivative is used, one can at least give meaning to
the derivative of almost anything, the mixed partial derivatives are always equal, and, in
one dimension, one can recover the function from integrating its derivative. None of these
claims are true for the classical derivative. Thus weak derivatives are convenient and rule
out pathologies.

36.3 Weak Derivatives In Lp
loc

Definition 36.3.1 Let U be an open set in Rn. f ∈ Lp
loc (U) if f XK ∈ Lp whenever K is a

compact subset of U.

Definition 36.3.2 For α = (k1, · · · ,kn) where the ki are nonnegative integers, define

|α| ≡
n

∑
i=1
|kxi |, Dα f (x)≡ ∂ |α| f (x)

∂xk1
1 ∂xk2

2 · · ·∂xkn
n
.
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Also define φ k to be a mollifier if

spt(φ k)⊆ B
(

0,
1
k

)
,φ k ≥ 0

,
∫

φ kdx = 1, and φ k ∈ C∞
c
(
B
(
0, 1

k

))
. In the case a Greek letter like δ or ε is used as a

subscript, it will mean spt(φ δ )⊆ B(0,δ ) ,φ δ ≥ 0,
∫

φ δ dx = 1, and φ δ ∈C∞
c (B(0,δ )) . You

can always get a mollifier by letting φ ≥ 0,φ ∈C∞
c (B(0,1)) ,

∫
φdx = 1,and then defining

φ k (x)≡ knφ (kx) or in the case of a Greek subscript, φ δ (x) =
1

δ
n φ
( x

δ

)
.

Consider the case where u and Dα u for |α|= 1 are each in Lp
loc (R

n). The next lemma
is the one alluded to in the proof of Theorem 36.2.2.

Lemma 36.3.3 Suppose f ∈ L1
loc (U) and suppose∫

f φdx = 0

for all φ ∈C∞
c (U). Then f (x) = 0 a.e. x.

Proof: Without loss of generality f is real valued. Let

E ≡ {x : f (x)> ε}

and let
Em ≡ E ∩B(0,m).

Is m(Em) = 0? If not, there exists an open set, V , and a compact set K satisfying

K ⊆ Em ⊆V ⊆ B(0,m) , m(V \K)< 4−1m(Em) ,∫
V\K
| f |dx < ε4−1m(Em) .

Let H and W be open sets satisfying

K ⊆ H ⊆ H ⊆W ⊆W ⊆V

and let
H ≺ g≺W

where the symbol, ≺, in the above implies spt(g) ⊆ W, g has all values in [0,1] , and
g(x) = 1 on H. Then let φ δ be a mollifier and let h≡ g∗φ δ for δ small enough that

K ≺ h≺V.

Thus

0 =
∫

f hdx =
∫

K
f dx+

∫
V\K

f hdx

≥ εm(K)− ε4−1m(Em)

≥ ε
(
m(Em)−4−1m(Em)

)
− ε4−1m(Em)

≥ 2−1
εm(Em).
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Therefore, m(Em) = 0, a contradiction. Thus

m(E)≤
∞

∑
m=1

m(Em) = 0

and so, since ε > 0 is arbitrary,

m({x : f (x)> 0}) = 0.

Similarly m({x : f (x)< 0}) = 0. This proves the lemma.
This lemma allows the following definition.

Definition 36.3.4 Let U be an open subset of Rn and let u∈ L1
loc (U) . Then Dα u∈ L1

loc (U)
if there exists a function g ∈ L1

loc (U), necessarily unique by Lemma 36.3.3, such that for
all φ ∈C∞

c (U), ∫
U

gφdx = Dα u(φ)≡
∫

U
(−1)|α| u(Dα

φ)dx.

Then Dα u is defined to equal g when this occurs.

Lemma 36.3.5 Let u ∈ L1
loc (Rn) and suppose u,i ∈ L1

loc (Rn), where the subscript on the u
following the comma denotes the ith weak partial derivative. Then if φ ε is a mollifier and
uε ≡ u∗φ ε , it follows uε,i ≡ u,i ∗φ ε .

Proof: If ψ ∈C∞
c (Rn), then∫

u(x−y)ψ ,i (x)dx =
∫

u(z)ψ ,i (z+y)dz

= −
∫

u,i (z)ψ (z+y)dz

= −
∫

u,i (x−y)ψ (x)dx.

Therefore,

uε,i (ψ) = −
∫

uε ψ ,i =−
∫ ∫

u(x−y)φ ε (y)ψ ,i (x)d ydx

= −
∫ ∫

u(x−y)ψ ,i (x)φ ε (y)dxdy

=
∫ ∫

u,i (x−y)ψ (x)φ ε (y)dxdy

=
∫

u,i ∗φ ε (x)ψ (x)dx.

The technical questions about product measurability in the use of Fubini’s theorem may be
resolved by picking a Borel measurable representative for u. This proves the lemma.

What about the product rule? Does it have some form in the context of weak deriva-
tives?
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Lemma 36.3.6 Let U be an open set, ψ ∈ C∞ (U) and suppose u,u,i ∈ Lp
loc (U). Then

(uψ),i and uψ are in Lp
loc (U) and

(uψ),i = u,iψ +uψ ,i.

Proof: Let φ ∈C∞
c (U) then

(uψ),i (φ) ≡ −
∫

U
uψφ ,idx

= −
∫

U
u[(ψφ),i−φψ ,i]dx

=
∫

U

(
u,iψφ +uψ ,iφ

)
dx

=
∫

U

(
u,iψ +uψ ,i

)
φdx

This proves the lemma.
Recall the notation for the gradient of a function.

∇u(x)≡ (u,1 (x) · · · u,n (x))T

thus
Du(x)v =∇u(x) ·v.

36.4 Morrey’s Inequality
The following inequality will be called Morrey’s inequality. It relates an expression which
is given pointwise to an integral of the pth power of the derivative.

Lemma 36.4.1 Let u∈C1 (Rn) and p > n. Then there exists a constant, C, depending only
on n such that for any x, y ∈ Rn,

|u(x)−u(y)|

≤C
(∫

B(x,2|x−y|)
|∇u(z) |pdz

)1/p(
| x− y|(1−n/p)

)
. (36.4.1)

Proof: In the argument C will be a generic constant which depends on n. Consider the
following picture.

xU W Vy

This is a picture of two balls of radius r in Rn, U and V having centers at x and y
respectively, which intersect in the set, W. The center of U is on the boundary of V and the
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center of V is on the boundary of U as shown in the picture. There exists a constant, C,
independent of r depending only on n such that

m(W )

m(U)
=

m(W )

m(V )
=C.

You could compute this constant if you desired but it is not important here.

Define the average of a function over a set, E ⊆ Rn as follows.

∫
−

E
f dx≡ 1

m(E)

∫
E

f dx.

Then

|u(x)−u(y)| =
∫
−

W
|u(x)−u(y)|dz

≤
∫
−

W
|u(x)−u(z)|dz+

∫
−

W
|u(z)−u(y)|dz

=
C

m(U)

[∫
W
|u(x)−u(z)|dz+

∫
W
|u(z)−u(y)|dz

]
≤ C

[∫
−

U
|u(x)−u(z)|dz+

∫
−

V
|u(y)−u(z)|dz

]

Now consider these two terms. Using spherical coordinates and letting U0 denote the ball
of the same radius as U but with center at 0,

∫
−

U
|u(x)−u(z)|dz

=
1

m(U0)

∫
U0

|u(x)−u(z+x)|dz

=
1

m(U0)

∫ r

0
ρ

n−1
∫

Sn−1
|u(x)−u(ρw+x)|dσ (w)dρ

≤ 1
m(U0)

∫ r

0
ρ

n−1
∫

Sn−1

∫
ρ

0
|∇u(x+ tw) ·w|dtdσdρ

≤ 1
m(U0)

∫ r

0
ρ

n−1
∫

Sn−1

∫
ρ

0
|∇u(x+ tw)|dtdσdρ

≤ C
1
r

∫ r

0

∫
Sn−1

∫ r

0
|∇u(x+ tw)|dtdσdρ

= C
1
r

∫ r

0

∫
Sn−1

∫ r

0

|∇u(x+ tw)|
tn−1 tn−1dtdσdρ
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= C
∫

Sn−1

∫ r

0

|∇u(x+ tw)|
tn−1 tn−1dtdσ

= C
∫

U0

|∇u(x+ z)|
|z|n−1 dz

≤ C
(∫

U0

|∇u(x+ z)|p dz
)1/p(∫

U
|z|p

′−np′
)1/p′

= C
(∫

U
|∇u(z)|p dz

)1/p(∫
Sn−1

∫ r

0
ρ

p′−np′
ρ

n−1dρdσ

)(p−1)/p

= C
(∫

U
|∇u(z)|p dz

)1/p
(∫

Sn−1

∫ r

0

1

ρ
n−1
p−1

dρdσ

)(p−1)/p

= C
(

p−1
p−n

)(p−1)/p(∫
U
|∇u(z)|p dz

)1/p

r1− n
p

= C
(

p−1
p−n

)(p−1)/p(∫
U
|∇u(z)|p dz

)1/p

|x−y|1−
n
p

Similarly,∫
−

V
|u(y)−u(z)|dz≤C

(
p−1
p−n

)(p−1)/p(∫
V
|∇u(z)|p dz

)1/p

|x−y|1−
n
p

Therefore,

|u(x)−u(y)| ≤C
(

p−1
p−n

)(p−1)/p(∫
B(x,2|x−y|)

|∇u(z)|p dz
)1/p

|x−y|1−
n
p

because B(x,2 |x−y|)⊇V ∪U. This proves the lemma.
The following corollary is also interesting

Corollary 36.4.2 Suppose u ∈C1 (Rn) . Then

|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|. (36.4.2)

Proof: This follows easily from letting g(y) ≡ u(y)− u(x)−∇u(x) ·(y−x) . Then
g ∈C1 (Rn), g(x) = 0, and ∇g(z) = ∇u(z)−∇u(x) . From Lemma 36.4.1,

|u(y)−u(x)−∇u(x) · (y−x)|
= |g(y)|= |g(y)−g(x)|

≤ C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |pdz

)1/p

|x−y|1−
n
p

= C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|.
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This proves the corollary.
It may be interesting at this point to recall the definition of differentiability on Page

117. If you knew the above inequality held for ∇u having components in L1
loc (Rn) , then at

Lebesgue points of ∇u, the above would imply Du(x) exists. This is exactly the approach
taken below.

36.5 Rademacher’s Theorem
The inequality of Corollary 36.4.2 can be extended to the case where u and u,i are in
Lp

loc (R
n) for p > n. This leads to an elegant proof of the differentiability a.e. of a Lip-

schitz continuous function as well as a more general theorem.

Theorem 36.5.1 Suppose u and all its weak partial derivatives, u,i are in Lp
loc (R

n). Then
there exists a set of measure zero, E such that if x,y /∈ E then inequalities 36.4.2 and 36.4.1
are both valid. Furthermore, u equals a continuous function a.e.

Proof: Let u ∈ Lp
loc (R

n) and ψk ∈C∞
c (Rn) ,ψk ≥ 0, and ψk (z) = 1 for all z ∈ B(0,k).

Then it is routine to verify that

uψk, (uψk),i ∈ Lp(Rn).

Here is why:

(uψk),i (φ) ≡ −
∫
Rn

uψkφ ,idx

= −
∫
Rn

uψkφ ,idx−
∫
Rn

uψk,iφdx+
∫
Rn

uψk,iφdx

= −
∫
Rn

u(ψkφ),i dx+
∫
Rn

uψk,iφdx

=
∫
Rn

(
u,iψk +uψk,i

)
φdx

which shows
(uψk),i = u,iψk +uψk,i

as expected.
Let φ ε be a mollifier and consider

(uψk)ε ≡ uψk ∗φ ε .

By Lemma 36.3.5 on Page 1281,

(uψk)ε,i = (uψk),i ∗φ ε .

Therefore
(uψk)ε,i→ (uψk),i in Lp (Rn) (36.5.3)

and
(uψk)ε → uψk in Lp (Rn) (36.5.4)
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as ε → 0. By 36.5.4, there exists a subsequence ε → 0 such that for |z| < k and for each
i = 1,2, · · · ,n

(uψk)ε,i (z)→ (uψk),i (z) = u,i (z) a.e.

(uψk)ε (z)→ uψk (z) = u(z) a.e. (36.5.5)

Denoting the exceptional set by Ek, let

x,y /∈ ∪∞

k=1Ek ≡ E

and let k be so large that
B(0,k)⊇ B(x,2|x−y|).

Then by 36.4.1 and for x,y /∈ E,

|(uψk)ε (x)− (uψk)ε (y)|

≤C
(∫

B(x,2|y−x|)
|∇(uψk)ε |pdz

)1/p

|x−y|(1−n/p)

where C depends only on n. Similarly, by 36.4.2,∣∣(uψk)ε (x)− (uψk)ε (y)−∇(uψk)ε
(x) · (y−x)

∣∣≤
C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇(uψk)ε
(z)−∇(uψk)ε

(x) |pdz
)1/p

| x− y|.

Now by 36.5.5 and 36.5.3 passing to the limit as ε → 0 yields

|u(x)−u(y)| ≤C
(∫

B(x,2|y−x|)
|∇u|pdz

)1/p

|x−y|(1−n/p) (36.5.6)

and
|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|. (36.5.7)

Redefining u on the set of mesure zero, E yields 36.5.6 for all x,y. This proves the theorem.

Corollary 36.5.2 Let u,u,i ∈ Lp
loc (R

n) for i = 1, · · · ,n and p > n. Then the representative
of u described in Theorem 36.5.1 is differentiable a.e.

Proof: From Theorem 36.5.1

|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

| x− y|. (36.5.8)
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and at every Lebesgue point, x of ∇u

lim
y→x

(
1

m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |pdz
)1/p

= 0

and so at each of these points,

lim
y→x

|u(y)−u(x)−∇u(x) · (y−x)|
|x−y|

= 0

which says that u is differentiable at x and Du(x)(v) = ∇u(x) · (v) . See Page 117. This
proves the corollary.

Definition 36.5.3 Now suppose u is Lipschitz on Rn,

|u(x)−u(y)| ≤ K |x−y|

for some constant K. Define Lip(u) as the smallest value of K that works in this inequality.

The following corollary is known as Rademacher’s theorem. It states that every Lips-
chitz function is differentiable a.e.

Corollary 36.5.4 If u is Lipschitz continuous then u is differentiable a.e. and ||u,i||∞ ≤
Lip(u).

Proof: This is done by showing that Lipschitz continuous functions have weak deriva-
tives in L∞ (Rn) and then using the previous results. Let

Dh
ei

u(x)≡ h−1 [u(x+hei)−u(x)].

Then Dh
ei

u is bounded in L∞ (Rn) and

||Dh
ei

u||∞ ≤ Lip(u).

It follows that Dh
ei

u is contained in a ball in L∞ (Rn), the dual space of L1 (Rn). By Theorem
36.1.3 on Page 1276, there is a subsequence h→ 0 such that

Dh
ei

u ⇀ w, ||w||∞ ≤ Lip(u)

where the convergence takes place in the weak ∗ topology of L∞(Rn). Let φ ∈ C∞
c (Rn).

Then ∫
wφdx = lim

h→0

∫
Dh

ei
uφdx

= lim
h→0

∫
u(x)

(φ (x−hei)−φ (x))
h

dx

=−
∫

u(x)φ ,i (x)dx.

Thus w = u,i and u,i ∈ L∞ (Rn) for each i. Hence u,u,i ∈ Lp
loc (R

n) for all p > n and so u is
differentiable a.e. by Corollary 36.5.2. This proves the corollary.
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36.6 Change Of Variables Formula Lipschitz Maps
With Rademacher’s theorem, one can give a general change of variables formula involving
Lipschitz maps. First here is an elementary estimate.

Lemma 36.6.1 Suppose V is an n− 1 dimensional subspace of Rn and K is a compact
subset of V . Then letting

Kε ≡ ∪x∈KB(x,ε) = K +B(0,ε) ,

it follows that
mn (Kε)≤ 2n

ε (diam(K)+ ε)n−1 .

Proof: Let an orthonormal basis for V be {v1, · · · ,vn−1} and let

{v1, · · · ,vn−1,vn}

be an orthonormal basis for Rn. Now define a linear transformation, Q by Qvi = ei. Thus
QQ∗ = Q∗Q = I and Q preserves all distances because∣∣∣∣∣Q∑

i
aiei

∣∣∣∣∣
2

=

∣∣∣∣∣∑i
aivi

∣∣∣∣∣
2

= ∑
i
|ai|2 =

∣∣∣∣∣∑i
aiei

∣∣∣∣∣
2

.

Letting k0 ∈ K, it follows K ⊆ B(k0,diam(K)) and so,

QK ⊆ Bn−1 (Qk0,diam(QK)) = Bn−1 (Qk0,diam(K))

where Bn−1 refers to the ball taken with respect to the usual norm in Rn−1. Every point of
Kε is within ε of some point of K and so it follows that every point of QKε is within ε of
some point of QK. Therefore,

QKε ⊆ Bn−1 (Qk0,diam(QK)+ ε)× (−ε,ε) ,

To see this, let x ∈ QKε . Then there exists k ∈ QK such that |k−x| < ε . Therefore,
|(x1, · · · ,xn−1)− (k1, · · · ,kn−1)|< ε and |xn− kn|< ε and so x is contained in the set on the
right in the above inclusion because kn = 0. However, the measure of the set on the right is
smaller than

[2(diam(QK)+ ε)]n−1 (2ε) = 2n [(diam(K)+ ε)]n−1
ε.

This proves the lemma.
Next is the definition of a point of density. This is sort of like an interior point but not

as good.

Definition 36.6.2 Let E be a Lebesgue measurable set. x ∈ E is a point of density if

lim
r→0

m(E ∩B(x,r))
m(B(x,r))

= 1.
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You see that if x were an interior point of E, then this limit will equal 1. However, it
is sometimes the case that the limit equals 1 even when x is not an interior point. In fact,
these points of density make sense even for sets that have empty interior.

Lemma 36.6.3 Let E be a Lebesgue measurable set. Then there exists a set of measure
zero, N, such that if x ∈ E \N, then x is a point of density of E.

Proof: Consider the function, f (x) = XE (x). This function is in L1
loc (Rn). Let NC

denote the Lebesgue points of f . Then for x ∈ E \N,

1 = XE (x) = lim
r→0

1
mn (B(x,r))

∫
B(x,r)

XE (y)dmn

= lim
r→0

mn (B(x,r)∩E)
mn (B(x,r))

.

In this section, Ω will be a Lebesgue measurable set in Rn and h : Ω→ Rn will be
Lipschitz. Recall the following definition and theorems. See Page 13.4.2 for the proofs and
more discussion.

Definition 36.6.4 Let F be a collection of balls that cover a set, E, which have the prop-
erty that if x ∈ E and ε > 0, then there exists B ∈F , diameter of B < ε and x ∈ B. Such a
collection covers E in the sense of Vitali.

Theorem 36.6.5 Let E ⊆Rn and suppose mn(E)<∞ where mn is the outer measure deter-
mined by mn, n dimensional Lebesgue measure, and let F , be a collection of closed balls
of bounded radii such that F covers E in the sense of Vitali. Then there exists a countable
collection of disjoint balls from F , {B j}∞

j=1, such that mn(E \∪∞
j=1B j) = 0.

Now this theorem implies a simple lemma which is what will be used.

Lemma 36.6.6 Let V be an open set in Rr,mr (V ) < ∞. Then there exists a sequence of
disjoint open balls {Bi} having radii less than δ and a set of measure 0, T , such that

V = (∪∞
i=1Bi)∪T.

As in the proof of the change of variables theorem given earlier, the first step is to
show that h maps Lebesgue measurable sets to Lebesgue measurable sets. In showing this
the key result is the next lemma which states that h maps sets of measure zero to sets of
measure zero.

Lemma 36.6.7 If mn (T ) = 0 then mn (h(T )) = 0.

Proof: Let V be an open set containing T whose measure is less than ε . Now using the
Vitali covering theorem, there exists a sequence of disjoint balls {Bi}, Bi = B(xi,ri) which
are contained in V such that the sequence of enlarged balls,

{
B̂i

}
, having the same center

but 5 times the radius, covers T . Then

mn (h(T ))≤ mn

(
h
(
∪∞

i=1B̂i

))
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≤
∞

∑
i=1

mn

(
h
(

B̂i

))

≤
∞

∑
i=1

α (n)(Lip(h))n 5nrn
i = 5n (Lip(h))n

∞

∑
i=1

mn (Bi)

≤ (Lip(h))n 5nmn (V )≤ ε (Lip(h))n 5n.

Since ε is arbitrary, this proves the lemma.
With the conclusion of this lemma, the next lemma is fairly easy to obtain.

Lemma 36.6.8 If A is Lebesgue measurable, then h(A) is mn measurable. Furthermore,

mn (h(A))≤ (Lip(h))n mn (A). (36.6.9)

Proof: Let Ak = A∩B(0,k) ,k ∈N. Let V ⊇ Ak and let mn (V )< ∞. By Lemma 36.6.6,
there is a sequence of disjoint balls {Bi} and a set of measure 0, T , such that

V = ∪∞
i=1Bi∪T, Bi = B(xi,ri).

By Lemma 36.6.7,
mn (h(Ak))≤ mn (h(V ))

≤ mn (h(∪∞
i=1Bi))+mn (h(T )) = mn (h(∪∞

i=1Bi))

≤
∞

∑
i=1

mn (h(Bi))≤
∞

∑
i=1

mn (B(h(xi) ,Lip(h)ri))

≤
∞

∑
i=1

α (n)(Lip(h)ri)
n = Lip(h)n

∞

∑
i=1

mn (Bi) = Lip(h)n mn (V ).

Therefore,
mn (h(Ak))≤ Lip(h)n mn (V ).

Since V is an arbitrary open set containing Ak, it follows from regularity of Lebesgue
measure that

mn (h(Ak))≤ Lip(h)n mn (Ak). (36.6.10)

Now let k → ∞ to obtain 36.6.9. This proves the formula. It remains to show h(A) is
measurable.

By inner regularity of Lebesgue measure, there exists a set, F , which is the countable
union of compact sets and a set T with mn (T ) = 0 such that

F ∪T = Ak.

Then h(F) ⊆ h(Ak) ⊆ h(F)∪ h(T ). By continuity of h, h(F) is a countable union of
compact sets and so it is Borel. By 36.6.10 with T in place of Ak,

mn (h(T )) = 0
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and so h(T ) is mn measurable. Therefore, h(Ak) is mn measurable because mn is a complete
measure and this exhibits h(Ak) between two mn measurable sets whose difference has
measure 0. Now

h(A) = ∪∞
k=1h(Ak)

so h(A) is also mn measurable and this proves the lemma.
The following lemma, depending on the Brouwer fixed point theorem and found in

Rudin [113], will be important for the following arguments. The idea is that if a continuous
function mapping a ball in Rk to Rk doesn’t move any point very much, then the image of
the ball must contain a slightly smaller ball.

Lemma 36.6.9 Let B = B(0,r), a ball in Rk and let F : B→Rk be continuous and suppose
for some ε < 1,

|F(v)−v|< εr

for all v ∈ B. Then
F
(
B
)
⊇ B(0,r (1− ε)).

Proof: Suppose a ∈ B(0,r (1− ε))\F
(
B
)

and let

G(v)≡ r (a−F(v))
|a−F(v)|

.

Then by the Brouwer fixed point theorem, G(v) = v for some v ∈ B. Using the formula for
G, it follows |v|= r. Taking the inner product with v,

(G(v) ,v) = |v|2 = r2 =
r

|a−F(v)|
(a−F(v) ,v)

=
r

|a−F(v)|
(a−v+v−F(v) ,v)

=
r

|a−F(v)|
[(a−v,v)+(v−F(v) ,v)]

=
r

|a−F(v)|

[
(a,v)−|v|2+(v−F(v) ,v)

]
≤ r
|a−F(v)|

[
r2 (1− ε)− r2+r2

ε
]
= 0,

a contradiction. Therefore, B(0,r (1− ε))\F
(
B
)
= /0 and this proves the lemma.

Now let Ω be a Lebesgue measurable set and suppose h : Rn→ Rn is Lipschitz contin-
uous and one to one on Ω. Let

N ≡ {x ∈Ω : Dh(x) does not exist} (36.6.11)

S≡
{

x ∈Ω\N : Dh(x)−1 does not exist
}

(36.6.12)

Lemma 36.6.10 Let x ∈ Ω \ (S∪N). Then if ε ∈ (0,1) the following hold for all r small
enough.

mn

(
h
(

B(x,r)
))
≥ mn (Dh(x)B(0,r (1− ε))), (36.6.13)
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h(B(x,r))⊆ h(x)+Dh(x)B(0,r (1+ ε)), (36.6.14)

mn

(
h
(

B(x,r)
))
≤ mn (Dh(x)B(0,r (1+ ε))) (36.6.15)

If x ∈Ω\ (S∪N) is also a point of density of Ω, then

lim
r→0

mn (h(B(x,r)∩Ω))

mn (h(B(x,r)))
= 1. (36.6.16)

If x ∈Ω\N, then

|detDh(x)|= lim
r→0

mn (h(B(x,r)))
mn (B(x,r))

a.e. (36.6.17)

Proof: Since Dh(x)−1 exists,

h(x+v) = h(x)+Dh(x)v+o(|v|) (36.6.18)

= h(x)+Dh(x)

v+

=o(|v|)︷ ︸︸ ︷
Dh(x)−1 o(|v|)

 (36.6.19)

Consequently, when r is small enough, 36.6.14 holds. Therefore, 36.6.15 holds. From
36.6.19, and the assumption that Dh(x)−1 exists,

Dh(x)−1 h(x+v)−Dh(x)−1 h(x)−v =o(|v|). (36.6.20)

Letting
F(v) = Dh(x)−1 h(x+v)−Dh(x)−1 h(x),

apply Lemma 36.6.9 in 36.6.20 to conclude that for r small enough, whenever |v|< r,

Dh(x)−1 h(x+v)−Dh(x)−1 h(x)⊇ B(0,(1− ε)r).

Therefore,
h
(

B(x,r)
)
⊇ h(x)+Dh(x)B(0,(1− ε)r)

which implies
mn

(
h
(

B(x,r)
))
≥ mn (Dh(x)B(0,r (1− ε)))

which shows 36.6.13.
Now suppose that x is a point of density of Ω as well as being a point where Dh(x)−1

and Dh(x) exist. Then whenever r is small enough,

1− ε <
mn (h(B(x,r)∩Ω))

mn (h(B(x,r)))
≤ 1

and so

1− ε <
mn
(
h
(
B(x,r)∩ΩC

))
mn (h(B(x,r)))

+
mn (h(B(x,r)∩Ω))

mn (h(B(x,r)))

≤
mn
(
h
(
B(x,r)∩ΩC

))
mn (h(B(x,r)))

+1.
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which implies
mn (B(x,r)\Ω)< εα (n)rn. (36.6.21)

Then for such r,

1≥ mn (h(B(x,r)∩Ω))

mn (h(B(x,r)))

≥ mn (h(B(x,r)))−mn (h(B(x,r)\Ω))

mn (h(B(x,r)))
.

From Lemma 36.6.8, 36.6.21, and 36.6.13, this is no larger than

1− Lip(h)n
εα (n)rn

mn (Dh(x)B(0,r (1− ε)))
.

By the theorem on the change of variables for a linear map, this expression equals

1− Lip(h)n
εα (n)rn

|det(Dh(x))|rnα (n)(1− ε)n ≡ 1−g(ε)

where limε→0g(ε) = 0. Then for all r small enough,

1≥ mn (h(B(x,r)∩Ω))

mn (h(B(x,r)))
≥ 1−g(ε)

which shows 36.6.16 since ε is arbitrary. It remains to verify 36.6.17.
In case x ∈ S, for small |v| ,

h(x+v) = h(x)+Dh(x)v+o(|v|)

where |o(|v|)|< ε |v| . Therefore, for small enough r,

h(B(x,r))−h(x)⊆ K +B(0,rε)

where K is a compact subset of an n− 1 dimensional subspace contained in Dh(x)(Rn)
which has diameter no more than 2 ||Dh(x)||r. By Lemma 36.6.1 on Page 1288,

mn (h(B(x,r))) = mn (h(B(x,r))−h(x))
≤ 2n

εr (2 ||Dh(x)||r+ rε)n−1

and so, in this case, letting r be small enough,

mn (h(B(x,r)))
mn (B(x,r))

≤ 2nεr (2 ||Dh(x)||r+ rε)n−1

α (n)rn ≤Cε.

Since ε is arbitrary, the limit as r→ 0 of this quotient equals 0.
If x /∈ S, use 36.6.13 - 36.6.15 along with the change of variables formula for linear

maps. This proves the Lemma.
Since h is one to one, there exists a measure, µ, defined by

µ (E)≡ mn (h(E))
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on the Lebesgue measurable subsets of Ω. By Lemma 36.6.8 µ≪mn and so by the Radon
Nikodym theorem, there exists a nonnegative function, J (x) in L1

loc (Rn) such that whenever
E is Lebesgue measurable,

µ (E) = mn (h(E ∩Ω)) =
∫

E∩Ω

J (x)dmn. (36.6.22)

Extend J to equal zero off Ω.

Lemma 36.6.11 The function, J (x) equals |detDh(x)| a.e.

Proof: Define

Q≡ {x ∈Ω : x is not a point of density of Ω}∪N∪

{x ∈Ω : x is not a Lebesgue point of J}.

Then Q is a set of measure zero and if x /∈ Q, then by 36.6.17, and 36.6.16,

|detDh(x)|

= lim
r→0

mn (h(B(x,r)))
mn (B(x,r))

= lim
r→0

mn (h(B(x,r)))
mn (h(B(x,r)∩Ω))

mn (h(B(x,r)∩Ω))

mn (B(x,r))

= lim
r→0

1
mn (B(x,r))

∫
B(x,r)∩Ω

J (y)dmn

= lim
r→0

1
mn (B(x,r))

∫
B(x,r)

J (y)dmn = J (x) .

the last equality because J was extended to be zero off Ω. This proves the lemma.
Here is the change of variables formula for Lipschitz mappings. It is a special case of

the area formula.

Theorem 36.6.12 Let Ω be a Lebesgue measurable set, let f ≥ 0 be Lebesgue measurable.
Then for h a Lipschitz mapping defined on Rn which is one to one on Ω,∫

h(Ω)
f (y)dmn =

∫
Ω

f (h(x)) |detDh(x)|dmn. (36.6.23)

Proof: Let F be a Borel set. It follows that h−1 (F) is a Lebesgue measurable set.
Therefore, by 36.6.22,

mn
(
h
(
h−1 (F)∩Ω

))
(36.6.24)

=
∫

h(Ω)
XF (y)dmn =

∫
Ω

Xh−1(F) (x)J (x)dmn

=
∫

Ω

XF (h(x))J (x)dmn.
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What if F is only Lebesgue measurable? Note there are no measurability problems with the
above expression because x→XF (h(x)) is Borel measurable due to the assumption that h
is continuous while J is given to be Lebesgue measurable. However, if F is Lebesgue mea-
surable, not necessarily Borel measurable, then it is no longer clear that x→XF (h(x)) is
measurable. In fact this is not always even true. However, x→XF (h(x))J (x) is measur-
able and 36.6.24 holds.

Let F be Lebesgue measurable. Then by inner regularity, F = H ∪N where N has
measure zero, H is the countable union of compact sets so it is a Borel set, and H ∩N = /0.
Therefore, letting N′ denote a Borel set of measure zero which contains N,

b(x)≡XH (h(x))J (x)≤XF (h(x))J (x)

= XH (h(x))J (x)+XN (h(x))J (x)
≤ XH (h(x))J (x)+XN′ (h(x))J (x)≡ u(x)

Now since N′ is Borel,∫
Ω

(u(x)−b(x))dmn =
∫

Ω

XN′ (h(x))J (x)dmn

= mn
(
h
(
h−1 (N′)∩Ω

))
= mn

(
N′∩h(Ω)

)
= 0

and this shows XH (h(x))J (x) = XF (h(x))J (x) except on a set of measure zero. By
completeness of Lebesgue measure, it follows x→XF (h(x))J (x) is Lebesgue measurable
and also since h maps sets of measure zero to sets of measure zero,∫

Ω

XF (h(x))J (x)dmn =
∫

Ω

XH (h(x))J (x)dmn

=
∫

h(Ω)
XH (y)dmn

=
∫

h(Ω)
XF (y)dmn.

It follows that if s is any nonnegative Lebesgue measurable simple function,∫
Ω

s(h(x))J (x)dmn =
∫

h(Ω)
s(y)dmn (36.6.25)

and now, if f ≥ 0 is Lebesgue measurable, let sk be an increasing sequence of Lebesgue
measurable simple functions converging pointwise to f . Then since 36.6.25 holds for sk,
the monotone convergence theorem applies and yields 36.6.23. This proves the theorem.

It turns out that a Lipschitz function defined on some subset of Rn always has a Lips-
chitz extension to all of Rn. The next theorem gives a proof of this. For more on this sort
of theorem see Federer [50]. He gives a better but harder theorem than what follows.

Theorem 36.6.13 If h : Ω→Rm is Lipschitz, then there exists h :Rn→Rm which extends
h and is also Lipschitz.
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Proof: It suffices to assume m = 1 because if this is shown, it may be applied to the
components of h to get the desired result. Suppose

|h(x)−h(y)| ≤ K |x−y|. (36.6.26)

Define
h(x)≡ inf{h(w)+K |x−w| : w ∈Ω}. (36.6.27)

If x ∈Ω, then for all w ∈Ω,

h(w)+K |x−w| ≥ h(x)

by 36.6.26. This shows h(x) ≤ h(x). But also you could take w = x in 36.6.27 which
yields h(x)≤ h(x). Therefore h(x) = h(x) if x ∈Ω.

Now suppose x,y ∈ Rn and consider
∣∣h(x)−h(y)

∣∣. Without loss of generality assume
h(x)≥ h(y) . (If not, repeat the following argument with x and y interchanged.) Pick w∈Ω

such that
h(w)+K |y−w|− ε < h(y).

Then ∣∣h(x)−h(y)
∣∣= h(x)−h(y)≤ h(w)+K |x−w|−

[h(w)+K |y−w|− ε]≤ K |x−y|+ ε.

Since ε is arbitrary, ∣∣h(x)−h(y)
∣∣≤ K |x−y|

and this proves the theorem.
This yields a simple corollary to Theorem 36.6.12.

Corollary 36.6.14 Let h : Ω→ Rn be Lipschitz continuous and one to one where Ω is a
Lebesgue measurable set. Then if f ≥ 0 is Lebesgue measurable,∫

h(Ω)
f (y)dmn =

∫
Ω

f (h(x))
∣∣detDh(x)

∣∣dmn. (36.6.28)

where h denotes a Lipschitz extension of h.



Chapter 37

Integration On Manifolds
You can do integration on various manifolds by using the Hausdorff measure of an ap-
propriate dimension. However, it is possible to discuss this through the use of the Riesz
representation theorem and some of the machinery for accomplishing this is interesting for
its own sake so I will present this alternate point of view.

37.1 Partitions Of Unity
This material has already been mostly discussed starting on Page 1023. However, that was
a long time ago and it seems like it might be good to go over it again and so, for the sake
of convenience, here it is again.

Definition 37.1.1 Let C be a set whose elements are subsets of Rn.1 Then C is said to be
locally finite if for every x ∈ Rn, there exists an open set, Ux containing x such that Ux has
nonempty intersection with only finitely many sets of C.

Lemma 37.1.2 Let C be a set whose elements are open subsets ofRn and suppose ∪C⊇H,
a closed set. Then there exists a countable list of open sets, {Ui}∞

i=1 such that each Ui is
bounded, each Ui is a subset of some set of C, and ∪∞

i=1Ui ⊇ H.

Proof: Let Wk ≡ B(0,k) ,W0 =W−1 = /0. For each x ∈ H ∩Wk there exists an open set,
Ux such that Ux is a subset of some set of C and Ux ⊆Wk+1 \Wk−1. Then since H ∩Wk is
compact, there exist finitely many of these sets,

{
Uk

i
}m(k)

i=1 whose union contains H ∩Wk. If
H ∩Wk = /0, let m(k) = 0 and there are no such sets obtained.The desired countable list of
open sets is ∪∞

k=1

{
Uk

i
}m(k)

i=1 . Each open set in this list is bounded. Furthermore, if x ∈ Rn,

then x ∈Wk where k is the first positive integer with x ∈Wk. Then Wk \Wk−1 is an open
set containing x and this open set can have nonempty intersection only with with a set of{

Uk
i
}m(k)

i=1 ∪
{

Uk−1
i

}m(k−1)
i=1 , a finite list of sets. Therefore, ∪∞

k=1

{
Uk

i
}m(k)

i=1 is locally finite.
The set, {Ui}∞

i=1 is said to be a locally finite cover of H. The following lemma gives
some important reasons why a locally finite list of sets is so significant. First of all consider
the rational numbers, {ri}∞

i=1 each rational number is a closed set.

Q= {ri}∞

i=1 = ∪
∞
i=1{ri} ̸= ∪∞

i=1 {ri}= R

The set of rational numbers is definitely not locally finite.

Lemma 37.1.3 Let C be locally finite. Then

∪C= ∪
{

H : H ∈ C
}
.

Next suppose the elements of C are open sets and that for each U ∈ C, there exists a differ-
entiable function, ψU having spt(ψU ) ⊆U. Then you can define the following finite sum
for each x ∈ Rn

f (x)≡∑{ψU (x) : x ∈U ∈ C} .
1The definition applies with no change to a general topological space in place of Rn.

1297
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Furthermore, f is also a differentiable function2 and

D f (x) = ∑{DψU (x) : x ∈U ∈ C} .

Proof: Let p be a limit point of ∪C and let W be an open set which intersects only
finitely many sets of C. Then p must be a limit point of one of these sets. It follows
p ∈ ∪

{
H : H ∈ C

}
and so ∪C ⊆ ∪

{
H : H ∈ C

}
. The inclusion in the other direction is

obvious.
Now consider the second assertion. Letting x ∈ Rn, there exists an open set, W inter-

secting only finitely many open sets of C, U1,U2, · · · ,Um. Then for all y ∈W,

f (y) =
m

∑
i=1

ψUi
(y)

and so the desired result is obvious. It merely says that a finite sum of differentiable func-
tions is differentiable. Recall the following definition.

Definition 37.1.4 Let K be a closed subset of an open set, U. K ≺ f ≺U if f is continuous,
has values in [0,1] , equals 1 on K, and has compact support contained in U.

Lemma 37.1.5 Let U be a bounded open set and let K be a closed subset of U. Then there
exist an open set, W, such that W ⊆W ⊆U and a function, f ∈C∞

c (U) such that K≺ f ≺U.

Proof: The set, K is compact so is at a positive distance from UC. Let

W ≡
{

x : dist(x,K)< 3−1 dist
(
K,UC)} .

Also let
W1 ≡

{
x : dist(x,K)< 2−1 dist

(
K,UC)}

Then it is clear
K ⊆W ⊆W ⊆W1 ⊆W1 ⊆U

Now consider the function,

h(x)≡
dist
(
x,WC

1

)
dist
(
x,WC

1

)
+dist

(
x,W

)
Since W is compact it is at a positive distance from WC

1 and so h is a well defined continuous
function which has compact support contained in W 1, equals 1 on W, and has values in
[0,1] . Now let φ k be a mollifier. Letting

k−1 < min
(
dist
(
K,WC) ,2−1 dist

(
W 1,UC)) ,

it follows that for such k,the function, h∗φ k ∈C∞
c (U) , has values in [0,1] , and equals 1 on

K. Let f = h∗φ k.
The above lemma is used repeatedly in the following.

2If each ψU were only continuous, one could conclude f is continuous. Here the main interest is differentiable.
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Lemma 37.1.6 Let K be a closed set and let {Vi}∞

i=1 be a locally finite list of bounded
open sets whose union contains K. Then there exist functions, ψ i ∈C∞

c (Vi) such that for all
x ∈ K,

1 =
∞

∑
i=1

ψ i (x)

and the function f (x) given by

f (x) =
∞

∑
i=1

ψ i (x)

is in C∞ (Rn) .

Proof: Let K1 = K \∪∞
i=2Vi. Thus K1 is compact because K1 ⊆V1. Let

K1 ⊆W1 ⊆W 1 ⊆V1

Thus W1,V2, · · · ,Vn covers K and W 1 ⊆ V1. Suppose W1, · · · ,Wr have been defined such
that Wi ⊆Vi for each i, and W1, · · · ,Wr,Vr+1, · · · ,Vn covers K. Then let

Kr+1 ≡ K \ (
(
∪∞

i=r+2Vi
)
∪
(
∪r

j=1Wj
)
).

It follows Kr+1 is compact because Kr+1 ⊆Vr+1. Let Wr+1 satisfy

Kr+1 ⊆Wr+1 ⊆W r+1 ⊆Vr+1

Continuing this way defines a sequence of open sets, {Wi}∞

i=1 with the property

Wi ⊆Vi, K ⊆ ∪∞
i=1Wi.

Note {Wi}∞

i=1 is locally finite because the original list, {Vi}∞

i=1 was locally finite. Now let
Ui be open sets which satisfy

W i ⊆Ui ⊆U i ⊆Vi.

Similarly, {Ui}∞

i=1 is locally finite.

Wi Ui Vi

Since the set, {Wi}∞

i=1 is locally finite, it follows ∪∞
i=1Wi = ∪∞

i=1Wi and so it is possible
to define φ i and γ, infinitely differentiable functions having compact support such that

U i ≺ φ i ≺Vi, ∪∞
i=1W i ≺ γ ≺ ∪∞

i=1Ui.

Now define

ψ i(x) =
{

γ(x)φ i(x)/∑
∞
j=1 φ j(x) if ∑

∞
j=1 φ j(x) ̸= 0,

0 if ∑
∞
j=1 φ j(x) = 0.
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If x is such that ∑
∞
j=1 φ j(x) = 0, then x /∈ ∪∞

i=1Ui because φ i equals one on Ui. Conse-
quently γ (y) = 0 for all y near x thanks to the fact that ∪∞

i=1Ui is closed and so ψ i(y) = 0
for all y near x. Hence ψ i is infinitely differentiable at such x. If ∑

∞
j=1 φ j(x) ̸= 0, this

situation persists near x because each φ j is continuous and so ψ i is infinitely differentiable
at such points also thanks to Lemma 37.1.3. Therefore ψ i is infinitely differentiable. If
x ∈ K, then γ (x) = 1 and so ∑

∞
j=1 ψ j(x) = 1. Clearly 0 ≤ ψ i (x) ≤ 1 and spt(ψ j) ⊆ Vj.

This proves the theorem.
The method of proof of this lemma easily implies the following useful corollary.

Corollary 37.1.7 If H is a compact subset of Vi for some Vi there exists a partition of unity
such that ψ i (x) = 1 for all x ∈ H in addition to the conclusion of Lemma 37.1.6.

Proof: Keep Vi the same but replace Vj with Ṽj ≡Vj \H. Now in the proof above, ap-
plied to this modified collection of open sets, if j ̸= i,φ j (x)= 0 whenever x∈H. Therefore,
ψ i (x) = 1 on H.

Theorem 37.1.8 Let H be any closed set and let C be any open cover of H. Then there
exist functions {ψ i}

∞

i=1 such that spt(ψ i) is contained in some set of C and ψ i is infinitely
differentiable having values in [0,1] such that on H, ∑

∞
i=1 ψ i (x) = 1. Furthermore, the

function, f (x) ≡ ∑
∞
i=1 ψ i (x) is infinitely differentiable on Rn. Also, spt(ψ i) ⊆ Ui where

Ui is a bounded open set with the property that {Ui}∞

i=1 is locally finite and each Ui is
contained in some set of C.

Proof: By Lemma 37.1.2 there exists an open cover of H composed of bounded open
sets, Ui such that each Ui is a subset of some set of C and the collection, {Ui}∞

i=1 is locally
finite. Then the result follows from Lemma 37.1.6 and Lemma 37.1.3.

Corollary 37.1.9 Let H be any closed set and let {Vi}m
i=1 be a finite open cover of H. Then

there exist functions {φ i}
m
i=1 such that spt(φ i)⊆Vi and φ i is infinitely differentiable having

values in [0,1] such that on H, ∑
m
i=1 φ i (x) = 1.

Proof: By Theorem 37.1.8 there exists a set of functions, {ψ i}
∞

i=1 having the properties
listed in this theorem relative to the open covering, {Vi}m

i=1 . Let φ 1 (x) equal the sum of all

ψ j (x) such that spt
(

ψ j

)
⊆V1. Next let φ 2 (x) equal the sum of all ψ j (x) which have not

already been included and for which spt
(

ψ j

)
⊆ V2. Continue in this manner. Since the

open sets, {Ui}∞

i=1 mentioned in Theorem 37.1.8 are locally finite, it follows from Lemma
37.1.3 that each φ i is infinitely differentiable having support in Vi. This proves the corollary.

37.2 Integration On Manifolds
Manifolds are things which locally appear to be Rn for some n. The extent to which they
have such a local appearance varies according to various analytical characteristics which
the manifold possesses.
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Definition 37.2.1 Let U ⊆ Rn be an open set and let h : U → Rm. Then for r ∈ [0,1),
h ∈ Ck,r (U) for k a nonnegative integer means that Dα h exists for all |α| ≤ k and each
Dα h is Holder continuous with exponent r. That is

|Dα h(x)−Dα h(y)| ≤ K |x−y|r .

Also h ∈Ck,r
(
U
)

if it is the restriction of a function of Ck,r (Rn) to U.

Definition 37.2.2 Let Γ be a closed subset of Rp where p≥ n. Suppose Γ = ∪∞
i=1Γi where

Γi = Γ∩Wi for Wi a bounded open set. Suppose also {Wi}∞

i=1 is locally finite. This means
every bounded open set intersects only finitely many. Also suppose there are open bounded
sets, Ui having Lipschitz boundaries and functions hi : Ui→ Γi which are one to one, onto,
and in Cm,1 (Ui) . Suppose also there exist functions, gi : Wi→Ui such that gi is Cm,1 (Wi) ,
and gi ◦ hi = id on Ui while hi ◦ gi = id on Γi. The collection of sets, Γ j and mappings,
g j,
{(

Γ j,g j
)}

is called an atlas and an individual entry in the atlas is called a chart. Thus(
Γ j,g j

)
is a chart. Then Γ as just described is called a Cm,1 manifold. The number, m is

just a nonnegative integer. When m = 0 this would be called a Lipschitz manifold, the least
smooth of the manifolds discussed here.

For example, take p = n+1 and let

hi (u) = (u1, · · · ,ui,φ i (u) ,ui+1, · · · ,un)
T

for u =(u1, · · · ,ui,ui+1, · · · ,un)
T ∈Ui for φ i ∈Cm,1 (Ui) and gi : Ui×R→Ui given by

gi (u1, · · · ,ui,y,ui+1, · · · ,un)≡ u

for i = 1,2, · · · , p. Then for u ∈Ui, the definition gives

gi ◦hi (u) = gi (u1, · · · ,ui,φ i (u) ,ui+1, · · · ,un) = u

and for Γi ≡ hi (Ui) and (u1, · · · ,ui,φ i (u) ,ui+1, · · · ,un)
T ∈ Γi,

hi ◦gi (u1, · · · ,ui,φ i (u) ,ui+1, · · · ,un)

= hi (u) = (u1, · · · ,ui,φ i (u) ,ui+1, · · · ,un)
T .

This example can be used to describe the boundary of a bounded open set and since φ i ∈
Cm,1 (Ui) , such an open set is said to have a Cm,1 boundary. Note also that in this example,
Ui could be taken to be Rn or if Ui is given, both hi and and gi can be taken as restrictions
of functions defined on all of Rn and Rp respectively.

The symbol, I will refer to an increasing list of n indices taken from {1, · · · , p} . Denote
by Λ(p,n) the set of all such increasing lists of n indices.

Let

Ji (u)≡

 ∑
I∈Λ(p,n)

(
∂
(
xi1 · · ·xin

)
∂ (u1 · · ·un)

)2
1/2
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where here the sum is taken over all possible increasing lists of n indices, I, from {1, · · · , p}
and x = hiu. Thus there are

(p
n

)
terms in the sum. In this formula,

∂(xi1 ···xin)
∂(u1···un)

is defined to

be the determinant of the following matrix.
∂xi1
∂u1

· · · ∂xi1
∂un

...
...

∂xin

∂u1
· · · ∂xin

∂un

 .

Note that if p = n there is only one term in the sum, the absolute value of the deter-
minant of Dx(u). Define a positive linear functional, Λ on Cc (Γ) as follows: First let
{ψ i} be a C∞ partition of unity subordinate to the open sets, {Wi} . Thus ψ i ∈C∞

c (Wi) and
∑i ψ i (x) = 1 for all x ∈ Γ. Then

Λ f ≡
∞

∑
i=1

∫
giΓi

f ψ i (hi (u))Ji (u)du. (37.2.1)

Is this well defined?

Lemma 37.2.3 The functional defined in 37.2.1 does not depend on the choice of atlas or
the partition of unity.

Proof: In 37.2.1, let {ψ i} be a C∞ partition of unity which is associated with the atlas
(Γi,gi) and let {η i} be a C∞ partition of unity associated in the same manner with the atlas
(Γ′i,g′i). In the following argument, the local finiteness of the Γi implies that all sums are

finite. Using the change of variables formula with u =
(

gi ◦h′j
)

v

∞

∑
i=1

∫
giΓi

ψ i f (hi (u))Ji (u)du = (37.2.2)

∞

∑
i=1

∞

∑
j=1

∫
giΓi

η jψ i f (hi (u))Ji (u)du =
∞

∑
i=1

∞

∑
j=1

∫
g′j
(

Γi∩Γ′j

) ·

η j
(
h′j (v)

)
ψ i
(
h′j (v)

)
f
(
h′j (v)

)
Ji (u)

∣∣∣∣∣∂
(
u1 · · ·un

)
∂ (v1 · · ·vn)

∣∣∣∣∣dv

=
∞

∑
i=1

∞

∑
j=1

∫
g′j
(

Γi∩Γ′j

)η j
(
h′j (v)

)
ψ i
(
h′j (v)

)
f
(
h′j (v)

)
J j (v)dv. (37.2.3)

Thus
the definition of Λ f using (Γi,gi)≡

∞

∑
i=1

∫
giΓi

ψ i f (hi (u))Ji (u)du =

∞

∑
i=1

∞

∑
j=1

∫
g′j
(

Γi∩Γ′j

)η j
(
h′j (v)

)
ψ i
(
h′j (v)

)
f
(
h′j (v)

)
J j (v)dv
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=
∞

∑
j=1

∫
g′j
(

Γ′j

)η j
(
h′j (v)

)
f
(
h′j (v)

)
J j (v)dv

the definition of Λ f using
(
Vi,g′i

)
.

This proves the lemma.
This lemma and the Riesz representation theorem for positive linear functionals implies

the part of the following theorem which says the functional is well defined.

Theorem 37.2.4 Let Γ be a Cm,1 manifold. Then there exists a unique Radon measure, µ ,
defined on Γ such that whenever f is a continuous function having compact support which
is defined on Γ and (Γi,gi) denotes an atlas and {ψ i} a partition of unity subordinate to
this atlas,

Λ f =
∫

Γ

f dµ =
∞

∑
i=1

∫
giΓi

ψ i f (hi (u))Ji (u)du. (37.2.4)

Also, a subset, A, of Γ is µ measurable if and only if for all r,gr (Γr ∩A) is νr measurable
where νr is the measure defined by

νr (gr (Γr ∩A))≡
∫

gr(Γr∩A)
Jr (u)du

Proof: To begin, here is a claim.
Claim : A set, S ⊆ Γi, has µ measure zero if and only if giS has measure zero in giΓi

with respect to the measure, ν i.
Proof of the claim: Let ε > 0 be given. By outer regularity, there exists a set, V ⊆ Γi,

open3 in Γ such that µ (V ) < ε and S ⊆ V ⊆ Γi. Then giV is open in Rn and contains giS.
Letting h≺ giV and h1 (x)≡ h(gi (x)) for x ∈ Γi it follows h1 ≺V . By Corollary 37.1.7 on
Page 1300 there exists a partition of unity such that spt(h1)⊆ {x ∈ Rp : ψ i (x) = 1}. Thus
ψ jh1 (h j (u)) = 0 unless j = i when this reduces to h1 (hi (u)). It follows

ε ≥ µ (V )≥
∫

V
h1dµ =

∫
Γ

h1dµ

=
∞

∑
j=1

∫
g jΓ j

ψ jh1 (h j (u))J j (u)du

=
∫

giΓi

h1 (hi (u))Ji (u)du =
∫

giΓi

h(u)Ji (u)du

=
∫

giV
h(u)Ji (u)du

Now this holds for all h≺ giV and so∫
giV

Ji (u)du≤ ε.

3This means V is the intersection of an open set with Γ. Equivalently, it means that V is an open set in the
traditional way regarding Γ as a metric space with the metric it inherits from Rm.
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Since ε is arbitrary, this shows giV has measure no more than ε with respect to the measure,
ν i. Since ε is arbitrary, giS has measure zero.

Consider the converse. Suppose giS has ν i measure zero. Then there exists an open set,
O⊆ giΓi such that O⊇ giS and ∫

O
Ji (u)du < ε.

Thus hi (O) is open in Γ and contains S. Let h≺ hi (O) be such that∫
Γ

hdµ + ε > µ (hi (O))≥ µ (S) (37.2.5)

As in the first part, Corollary 37.1.7 on Page 1300 implies there exists a partition of unity
such that h(x) = 0 off the set,

{x ∈ Rp : ψ i (x) = 1}

and so as in this part of the argument,∫
Γ

hdµ ≡
∞

∑
j=1

∫
g jU j

ψ jh(h j (u))J j (u)du

=
∫

giΓi

h(hi (u))Ji (u)du

=
∫

O∩giΓi

h(hi (u))Ji (u)du

≤
∫

O
Ji (u)du < ε (37.2.6)

and so from 37.2.5 and 37.2.6 µ (S)≤ 2ε . Since ε is arbitrary, this proves the claim.
For the last part of the theorem, it suffices to let A ⊆ Γr because otherwise, the above

argument would apply to A∩Γr. Thus let A ⊆ Γr be µ measurable. By the regularity of
the measure, there exists an Fσ set, F and a Gδ set, G such that Γr ⊇ G ⊇ A ⊇ F and
µ (G\F) = 0.(Recall a Gδ set is a countable intersection of open sets and an Fσ set is a
countable union of closed sets.) Then since Γr is compact, it follows each of the closed sets
whose union equals F is a compact set. Thus if F = ∪∞

k=1Fk, gr (Fk) is also a compact set
and so gr (F) = ∪∞

k=1gr (Fk) is a Borel set. Similarly, gr (G) is also a Borel set. Now by the
claim, ∫

gr(G\F)
Jr (u)du = 0.

Since gr is one to one,
grG\grF = gr (G\F)

and so
gr (F)⊆ gr (A)⊆ gr (G)

where gr (G) \ gr (F) has measure zero. By completeness of the measure, νr, gr (A) is
measurable. It follows that if A⊆ Γ is µ measurable, then gr (Γr ∩A) is νr measurable for
all r. The converse is entirely similar. This proves the theorem.
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Corollary 37.2.5 Let f ∈ L1 (Γ; µ) and suppose f (x) = 0 for all x /∈ Γr where (Γr,gr) is
a chart. Then ∫

Γ

f dµ =
∫

Γr

f dµ =
∫

grΓr

f (hr (u))Jr (u)du. (37.2.7)

Furthermore, if {(Γi,gi)} is an atlas and {ψ i} is a partition of unity as described earlier,
then for any f ∈ L1 (Γ,µ),∫

Γ

f dµ =
∞

∑
r=1

∫
grΓr

ψr f (hr (u))Jr (u)du. (37.2.8)

Proof: Let f ∈ L1 (Γ,µ) with f = 0 off Γr. Without loss of generality assume f ≥ 0
because if the formulas can be established for this case, the same formulas are obtained for
an arbitrary complex valued function by splitting it up into positive and negative parts of
the real and imaginary parts in the usual way. Also, let K ⊆ Γr a compact set. Since µ is a
Radon measure there exists a sequence of continuous functions, { fk} , fk ∈Cc (Γr), which
converges to f in L1 (Γ,µ) and for µ a.e. x. Take the partition of unity, {ψ i} to be such
that

K ⊆ {x : ψr (x) = 1} .

Therefore, the sequence { fk (hr (·))} is a Cauchy sequence in the sense that

lim
k,l→∞

∫
gr(K)
| fk (hr (u))− fl (hr (u))|Jr (u)du = 0

It follows there exists g such that∫
gr(K)
| fk (hr (u))−g(u)|Jr (u)du→ 0,

and
g ∈ L1 (grK;νr) .

By the pointwise convergence and the claim used in the proof of Theorem 37.2.4,

g(u) = f (hr (u))

for µ a.e. hr (u) ∈ K. Therefore,∫
K

f dµ = lim
k→∞

∫
K

fkdµ = lim
k→∞

∫
gr(K)

fk (hr (u))Jr (u)du

=
∫

gr(K)
g(u)Jr (u)du =

∫
gr(K)

f (hr (u))Jr (u)du. (37.2.9)

Now let · · ·K j ⊆ K j+1 · · · and ∪∞
j=1K j = Γr where K j is compact for all j. Replace K in

37.2.9 with K j and take a limit as j→ ∞. By the monotone convergence theorem,∫
Γr

f dµ =
∫

gr(Γr)
f (hr (u))Jr (u)du.
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This establishes 37.2.7.
To establish 37.2.8, let f ∈ L1 (Γ,µ) and let {(Γi,gi)} be an atlas and {ψ i} be a partition

of unity. Then f ψ i ∈ L1 (Γ,µ) and is zero off Γi. Therefore, from what was just shown,

∫
Γ

f dµ =
∞

∑
i=1

∫
Γi

f ψ idµ

=
∞

∑
r=1

∫
gr(Γr)

ψr f (hr (u))Jr (u)du

37.3 Comparison With H n

The above gives a measure on a manifold, Γ. I will now show that the measure obtained is
nothing more than H n, the n dimensional Hausdorff measure. Recall Λ(p,n) was the set
of all increasing lists of n indices taken from {1,2, · · · , p}

Recall

Ji (u)≡

 ∑
I∈Λ(p,n)

(
∂
(
xi1 · · ·xin

)
∂ (u1 · · ·un)

)2
1/2

where here the sum is taken over all possible increasing lists of n indices, I, from {1, · · · , p}
and x = hiu and the functional was given as

Λ f ≡
∞

∑
i=1

∫
giΓi

f ψ i (hi (u))Ji (u)du (37.3.10)

where the {ψ i}
∞

i=1 was a partition of unity subordinate to the open sets, {Wi}∞

i=1 as de-
scribed above. I will show

Ji (u) = det
(
Dh(u)∗Dh(u)

)1/2

and then use the area formula. The key result is really a special case of the Binet Cauchy
theorem and this special case is presented in the next lemma.

Lemma 37.3.1 Let A = (ai j) be a real p×n matrix in which p≥ n. For I ∈Λ(p,n) denote
by AI the n×n matrix obtained by deleting from A all rows except for those corresponding
to an element of I. Then

∑
I∈Λ(p,n)

det(AI)
2 = det(A∗A)

Proof: For ( j1, · · · , jn) ∈ Λ(p,n) , define θ ( jk)≡ k. Then for

{k1, · · · ,kn}= { j1, · · · , jn}

define
sgn(k1, · · · ,kn)≡ sgn(θ (k1) , · · · ,θ (kn)) .
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Then from the definition of the determinant and matrix multiplication,

det(A∗A) = ∑
i1,··· ,in

sgn(i1, · · · , in)
p

∑
k1=1

ak1i1ak11

p

∑
k2=1

ak2i2ak22

· · ·
p

∑
kn=1

akninaknn

= ∑
J∈Λ(p,n)

∑
{k1,··· ,kn}=J

∑
i1,··· ,in

sgn(i1, · · · , in)ak1i1ak11ak2i2ak22 · · ·akninaknn

= ∑
J∈Λ(p,n)

∑
{k1,··· ,kn}=J

∑
i1,··· ,in

sgn(i1, · · · , in)ak1i1ak2i2 · · ·aknin ·ak11ak22 · · ·aknn

= ∑
J∈Λ(p,n)

∑
{k1,··· ,kn}=J

sgn(k1, · · · ,kn)det(AJ)ak11ak22 · · ·aknn

= ∑
J∈Λ(p,n)

det(AJ)det(AJ)

and this proves the lemma.
It follows from this lemma that

Ji (u) = det
(
Dh(u)∗Dh(u)

)1/2
.

From 37.3.10 and the area formula, the functional equals

Λ f ≡
∞

∑
i=1

∫
giΓi

f ψ i (hi (u))Ji (u)du

=
∞

∑
i=1

∫
Γi

f ψ i (y)dH n =
∫

Γ

f (y)dH n.

Now H n is a Borel measure defined on Γ which is finite on all compact subsets of Γ. This
finiteness follows from the above formula. If K is a compact subset of Γ, then there exists
an open set, W whose closure is compact and a continuous function with compact support,
f such that K ≺ f ≺W . Then H n (K)≤

∫
Γ

f (y)dH n < ∞ because of the above formula.

Lemma 37.3.2 µ = H n on every µ measurable set.

Proof: The Riesz representation theorem shows that∫
Γ

f dµ =
∫

Γ

f dH n

for every continuous function having compact support. Therefore, since every open set is
the countable union of compact sets, it follows µ = H n on all open sets. Since compact
sets can be obtained as the countable intersection of open sets, these two measures are also
equal on all compact sets. It follows they are also equal on all countable unions of compact
sets. Suppose now that E is a µ measurable set of finite measure. Then there exist sets,
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F,G such that G is the countable intersection of open sets each of which has finite measure
and F is the countable union of compact sets such that µ (G\F) = 0 and F ⊆ E ⊆G. Thus
H n (G\F) = 0,

H n (G) = µ (G) = µ (F) = H n (F)

By completeness of H n it follows E is H n measurable and H n (E) = µ (E) . If E is not of
finite measure, consider Er ≡ E ∩B(0,r) . This is contained in the compact set Γ∩B(0,r)
and so µ (Er) if finite. Thus from what was just shown, H n (Er) = µ (Er) and so, taking
r→ ∞ H n (E) = µ (E) .

This shows you can simply use H n for the measure on Γ.



Chapter 38

Basic Theory Of Sobolev Spaces
Definition 38.0.1 Let U be an open set of Rn. Define Xm,p (U) as the set of all functions in
Lp (U) whose weak partial derivatives up to order m are also in Lp (U) where 1 ≤ p. The
norm1 in this space is given by

||u||m,p ≡

(∫
U

∑
|α|≤m

|Dα u|p dx

)1/p

.

where α = (α1, · · · ,αn)∈Nn and |α| ≡∑α i. Here D0u≡ u.C∞
(
U
)

is defined to be the set
of functions which are restrictions to U of a function in C∞

c (Rn). Thus C∞
(
U
)
⊆W m,p (U) .

The Sobolev space, W m,p (U) is defined to be the closure of C∞
(
U
)

in Xm,p (U) with respect
to the above norm. Denote this norm by ||u||W m,p(U), ||u||Xm,p(U) , or ||u||m,p,U when it is
important to identify the open set, U.

Also the following notation will be used pretty consistently.

Definition 38.0.2 Let u be a function defined on U. Define

ũ(x)≡
{

u(x) if x ∈U
0 if x /∈U .

Theorem 38.0.3 Both Xm,p (U) and W m,p (U) are separable reflexive Banach spaces pro-
vided p > 1.

Proof: Define Λ : Xm,p (U)→ Lp (U)w where w equals the number of multi indices, α,
such that |α| ≤ m as follows. Letting {α i}w

i=1 be the set of all multi indices with α1 = 0,

Λ(u)≡ (Dα1u,Dα2u, · · · ,Dαw u) = (u,Dα2u, · · · ,Dαw u) .

Then Λ is one to one because one of the multi indices is 0. Also

Λ(Xm,p (U))

is a closed subspace of Lp (U)w . To see this, suppose

(uk,Dα2uk, · · · ,Dαwuk)→ ( f1, f2, · · · , fw)

in Lp (U)w . Then uk → f1 in Lp (U) and Dα j uk → f j in Lp (U) . Therefore, letting φ ∈
C∞

c (U) and letting k→ ∞,∫
U (Dα j uk)φdx = (−1)|α|

∫
U ukDα j φdx

↓ ↓∫
U f jφdx (−1)|α|

∫
U f1Dα j φdx ≡ Dα j ( f1)(φ)

1You could also let the norm be given by ||u||m,p ≡ ∑|α|≤m ||Dα u||p or ||u||m,p ≡ max
{
||Dα u||p : |α| ≤ m

}
because all norms are equivalent on Rp where p is the number of multi indices no larger than m. This is used
whenever convenient.

1309
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It follows Dα j ( f1) = f j and so Λ(Xm,p (U)) is closed as claimed. This is clearly also a
subspace of Lp (U)w and so it follows that Λ(Xm,p (U)) is a reflexive Banach space. This is
because Lp (U)w, being the product of reflexive Banach spaces, is reflexive and any closed
subspace of a reflexive Banach space is reflexive. Now Λ is an isometry of Xm,p (U) and
Λ(Xm,p (U)) which shows that Xm,p (U) is a reflexive Banach space. Finally, W m,p (U) is
a closed subspace of the reflexive Banach space, Xm,p (U) and so it is also reflexive. To
see Xm,p (U) is separable, note that Lp (U)w is separable because it is the finite product of
the separable hence completely separable metric space, Lp (U) and Λ(Xm,p (U)) is a subset
of Lp (U)w . Therefore, Λ(Xm,p (U)) is separable and since Λ is an isometry, it follows
Xm,p (U) is separable also. Now W m,p (U) must also be separable because it is a subset of
Xm,p (U) .

The following theorem is obvious but is worth noting because it says that if a function
has a weak derivative in Lp (U) on a large open set, U then the restriction of this weak
derivative is also the weak derivative for any smaller open set.

Theorem 38.0.4 Suppose U is an open set and U0 ⊆U is another open set. Suppose also
Dα u ∈ Lp (U) . Then for all ψ ∈C∞

c (U0) ,∫
U0

(Dα u)ψdx = (−1)|α|
∫

U0

u(Dα
ψ) .

The following theorem is a fundamental approximation result for functions in Xm,p (U) .

Theorem 38.0.5 Let U be an open set and let U0 be an open subset of U with the property
that dist

(
U0,UC

)
> 0. Then if u ∈ Xm,p (U) and ũ denotes the zero extention of u off U,

lim
l→∞

||ũ∗φ l−u||Xm,p(U0)
= 0.

Proof: Always assume l is large enough that 1/l < dist
(
U0,UC

)
. Thus for x ∈U0,

ũ∗φ l (x) =
∫

B(0, 1
l )

u(x−y)φ l (y)dy. (38.0.1)

The theorem is proved if it can be shown that Dα (ũ∗φ l)→ Dα u in Lp (U0) . Let ψ ∈
C∞

c (U0)

Dα (ũ∗φ l)(ψ) ≡ (−1)|α|
∫

U0

(ũ∗φ l)(D
α

ψ)dx

= (−1)|α|
∫

U0

∫
ũ(y)φ l (x−y)(Dα

ψ)(x)dydx

= (−1)|α|
∫

U
u(y)

∫
U0

φ l (x−y)(Dα
ψ)(x)dxdy.
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Also, (
D̃α u∗φ l

)
(ψ) ≡

∫
U0

(∫
D̃α u(y)φ l (x−y)dy

)
ψ (x)dx

=
∫

U0

(∫
U

Dα u(y)φ l (x−y)dy
)

ψ (x)dx

=
∫

U0

(∫
U

u(y)(Dα
φ l)(x−y)dy

)
ψ (x)dx

=
∫

U
u(y)

∫
U0

(Dα
φ l)(x−y)ψ (x)dxdy

= (−1)|α|
∫

U
u(y)

∫
U0

φ l (x−y)(Dα
ψ)(x)dxdy.

It follows that Dα (ũ∗φ l)=
(

D̃α u∗φ l

)
as weak derivatives defined on C∞

c (U0) . Therefore,

||Dα (ũ∗φ l)−Dα u||Lp(U0)
=

∣∣∣∣∣∣D̃α u∗φ l−Dα u
∣∣∣∣∣∣

Lp(U0)

≤
∣∣∣∣∣∣D̃α u∗φ l− D̃α u

∣∣∣∣∣∣
Lp(Rn)

→ 0.

This proves the theorem.
As part of the proof of the theorem, the following corollary was established.

Corollary 38.0.6 Let U0 and U be as in the above theorem. Then for all l large enough
and φ l a mollifier,

Dα (ũ∗φ l) =
(

D̃α u∗φ l

)
(38.0.2)

as distributions on C∞
c (U0) .

Definition 38.0.7 Let U be an open set. C∞ (U) denotes the set of functions which are
defined and infinitely differentiable on U.

Note that f (x)= 1
x is a function in C∞ (0,1) . However, it is not equal to the restriction to

(0,1) of some function which is in C∞
c (R) . This illustrates the distinction between C∞ (U)

and C∞
(
U
)
. The set, C∞

(
U
)

is a subset of C∞ (U) . The following theorem is known as
the Meyer Serrin theorem.

Theorem 38.0.8 (Meyer Serrin) Let U be an open subset of Rn. Then if δ > 0 and u ∈
Xm,p (U) , there exists J ∈C∞ (U) such that ||J−u||m,p,U < δ .

Proof: Let · · ·Uk ⊆ Uk ⊆ Uk+1 · · · be a sequence of open subsets of U whose union
equals U such that Uk is compact for all k. Also let U−3 = U−2 = U−1 = U0 = /0. Now
define Vk ≡ Uk+1 \Uk−1. Thus {Vk}∞

k=1 is an open cover of U. Note the open cover is
locally finite and therefore, there exists a partition of unity subordinate to this open cover,
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{ηk}
∞

k=1 such that each spt(ηk) ∈Cc (Vk) . Let ψm denote the sum of all the ηk which are
non zero at some point of Vm. Thus

spt(ψm)⊆Um+2 \Um−2,ψm ∈C∞
c (U) ,

∞

∑
m=1

ψm (x) = 1 (38.0.3)

for all x ∈U, and ψmu ∈W m,p (Um+2) .

Now let φ l be a mollifier and consider

J ≡
∞

∑
m=0

uψm ∗φ lm (38.0.4)

where lm is chosen large enough that the following two conditions hold:

spt
(
uψm ∗φ lm

)
⊆Um+3 \Um−3, (38.0.5)

∣∣∣∣(uψm)∗φ lm −uψm

∣∣∣∣
m,p,Um+3

=
∣∣∣∣(uψm)∗φ lm −uψm

∣∣∣∣
m,p,U <

δ

2m+5 , (38.0.6)

where 38.0.6 is obtained from Theorem 38.0.5. Because of 38.0.3 only finitely many terms
of the series in 38.0.4 are nonzero and therefore, J ∈C∞ (U) . Now let N > 10, some large
value.

||J−u||m,p,UN−3
=

∣∣∣∣∣
∣∣∣∣∣ N

∑
k=0

(
uψk ∗φ lk −uψk

)∣∣∣∣∣
∣∣∣∣∣
m,p,UN−3

≤
N

∑
k=0

∣∣∣∣∣∣uψk ∗φ lk −uψk

∣∣∣∣∣∣
m,p,UN−3

≤
N

∑
k=0

δ

2m+5 < δ .

Now apply the monotone convergence theorem to conclude that ||J−u||m,p,U ≤ δ . This
proves the theorem.

Note that J = 0 on ∂U. Later on, you will see that this is pathological.
In the study of partial differential equations it is the space W m,p (U) which is of the

most use, not the space Xm,p (U) . This is because of the density of C∞
(
U
)
. Nevertheless,

for reasonable open sets, U, the two spaces coincide.

Definition 38.0.9 An open set, U ⊆ Rn is said to satisfy the segment condition if for all
z ∈U , there exists an open set Uz containing z and a vector a such that

U ∩Uz + ta⊆U

for all t ∈ (0,1) .
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z

Uz

U

Uz
⋂

U + ta

You can imagine open sets which do not satisfy the segment condition. For example, a
pair of circles which are tangent at their boundaries. The condition in the above definition
breaks down at their point of tangency.

Here is a simple lemma which will be used in the proof of the following theorem.

Lemma 38.0.10 If u ∈W m,p (U) and ψ ∈C∞
c (Rn) , then uψ ∈W m,p (U) .

Proof: Let |α| ≤ m and let φ ∈C∞
c (U) . Then

(Dxi (uψ))(φ) ≡ −
∫

U
uψφ ,xi

dx

= −
∫

U
u
(
(ψφ),xi

−φψ ,xi

)
dx

= (Dxiu)(ψφ)+
∫

U
uψ ,xi

φdx

=
∫

U

(
ψDxiu+uψ ,xi

)
φdx

Therefore, Dxi (uψ)=ψDxiu+uψ ,xi
∈ Lp (U) . In other words, the product rule holds. Now

considering the terms in the last expression, you can do the same argument with each of
these as long as they all have derivatives in Lp (U) . Therefore, continuing this process the
lemma is proved.

Theorem 38.0.11 Let U be an open set and suppose there exists a locally finite covering2

of U which is of the form {Ui}∞

i=1 such that each Ui is a bounded open set which satisfies
the conditions of Definition 38.0.9. Thus there exist vectors, ai such that for all t ∈ (0,1) ,

Ui∩U + tai ⊆U.

Then C∞
(
U
)

is dense in Xm,p (U) and so W m,p (U) = Xm,p (U) .

2This is never a problem in Rn. In fact, every open covering has a locally finite subcovering in Rn or more
generally in any metric space due to Stone’s theorem. These are issues best left to you in case you are interested.
I am usually interested in bounded sets, U, and for these, there is a finite covering.
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Proof: Let {ψ i}
∞

i=1 be a partition of unity subordinate to the given open cover with
ψ i ∈C∞

c (Ui) and let u ∈ Xm,p (U) . Thus

u =
∞

∑
k=1

ψku.

Consider Uk for some k. Let ak be the special vector associated with Uk such that

tak +U ∩Uk ⊆U (38.0.7)

for all t ∈ (0,1) and consider only t small enough that

spt(ψk)− tak ⊆Uk (38.0.8)

Pick l (t)> 1/t which is also large enough that

tak +U ∩Uk +B
(

0,
1

l (t)

)
⊆U, spt(ψk)+B

(
0,

1
l (tk)

)
− tak ⊆Uk. (38.0.9)

This can be done because tak+U∩Uk is a compact subset of U and so has positive distance
to UC and spt(ψk)− tak is a compact subset of Uk having positive distance to UC

k . Let tk
be such a value for t and for φ l a mollifier, define

vtk (x)≡
∫
Rn

ũ(x+ tkak−y)ψk (x+ tkak−y)φ l(tk) (y)dy (38.0.10)

where as usual, ũ is the zero extention of u off U. For vtk (x) ̸= 0, it is necessary that

x+ tkak−y ∈ spt(ψk) for some y ∈ B
(

0, 1
l(tk)

)
. Therefore, using 38.0.9, for vtk (x) ̸= 0, it

is necessary that

x ∈ y− tkak +U ∩ spt(ψk)⊆ B
(

0,
1

l (tk)

)
+ spt(ψk)− tkak

⊆ B
(

0,
1

l (tk)

)
+ spt(ψk)− tkak ⊆Uk

showing that vtk has compact support in Uk. Now change variables in 38.0.10 to obtain

vtk (x)≡
∫
Rn

ũ(y)ψk (y)φ l(tk) (x+ tkak−y)dy. (38.0.11)

For x ∈U ∩Uk, the above equals zero unless

y− tkak−x ∈ B
(

0,
1

l (tk)

)
which implies by 38.0.9 that

y ∈ tkak +U ∩Uk +B
(

0,
1

l (tk)

)
⊆U
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Therefore, for such x ∈U ∩Uk,38.0.11 reduces to

vtk (x) =
∫
Rn

u(y)ψk (y)φ l(tk) (x+ tkak−y)dy

=
∫

U
u(y)ψk (y)φ l(tk) (x+ tkak−y)dy.

It follows that for |α| ≤ m, and x ∈U ∩Uk

Dα vtk (x) =
∫

U
u(y)ψk (y)Dα

φ l(tk) (x+ tkak−y)dy

=
∫

U
Dα (uψk)(y)φ l(tk) (x+ tkak−y)dy

=
∫
Rn

˜Dα (uψk)(y)φ l(tk) (x+ tkak−y)dy

=
∫
Rn

˜Dα (uψk)(x+ tkak−y)φ l(tk) (y)dy. (38.0.12)

Actually, this formula holds for all x∈U. If x∈U but x /∈Uk, then the left side of the above
formula equals zero because, as noted above, spt

(
vtk

)
⊆Uk. The integrand of the right side

equals zero unless

x ∈ B
(

0,
1

l (tk)

)
+ spt(ψk)− tkak ⊆Uk

by 38.0.9 and here x /∈Uk.
Next an estimate is obtained for

∣∣∣∣Dα vtk −Dα (uψk)
∣∣∣∣

Lp(U)
. By 38.0.12,∣∣∣∣Dα vtk −Dα (uψk)

∣∣∣∣
Lp(U)

≤(∫
U

(∫
Rn

∣∣∣ ˜Dα (uψk)(x+ tkak−y)− ˜Dα (uψk)(x)
∣∣∣φ l(tk) (y)dy

)p

dx
)1/p

≤
∫
Rn

φ l(tk) (y)
(∫

U

∣∣∣ ˜Dα (uψk)(x+ tkak−y)− ˜Dα (uψk)(x)
∣∣∣p dx

)1/p

dy

≤ ε

2k

whenever tk is taken small enough. Pick tk this small and let wk ≡ vtk . Thus

||Dα wk−Dα (uψk)||Lp(U) ≤
ε

2k

and wk ∈C∞
c (Rn) . Now let

J (x)≡
∞

∑
k=1

wk.

Since the Uk are locally finite and spt(wk)⊆Uk for each k, it follows

Dα J =
∞

∑
k=0

Dα wk
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and the sum is always finite. Similarly,

Dα
∞

∑
k=1

(ψku) =
∞

∑
k=1

Dα (ψku)

and the sum is always finite. Therefore,

||Dα J−Dα u||Lp(U) =

∣∣∣∣∣
∣∣∣∣∣ ∞

∑
k=1

Dα wk−Dα (ψku)

∣∣∣∣∣
∣∣∣∣∣
Lp(U)

≤
∞

∑
k=1
||Dα wk−Dα (ψku)||Lp(U) ≤

∞

∑
k=1

ε

2k = ε.

By choosing tk small enough, such an inequality can be obtained for∣∣∣∣∣∣Dβ J−Dβ u
∣∣∣∣∣∣

Lp(U)

for each multi index, β such that |β | ≤ m. Therefore, there exists

J ∈C∞
c (Rn)

such that
||J−u||W m,p(U) ≤ εK

where K equals the number of multi indices no larger than m. Since ε is arbitrary, this
proves the theorem.

Corollary 38.0.12 Let U be an open set which has the segment property. Then W m,p (U) =
Xm,p (U) .

Proof: Start with an open covering of U whose sets satisfy the segment condition and
obtain a locally finite refinement consisting of bounded sets which are of the sort in the
above theorem.

Now consider a situation where h : U → V where U and V are two open sets in Rn

and Dα h exists and is continuous and bounded if |α| < m− 1 and Dα h is Lipschitz if
|α|= m−1.

Definition 38.0.13 Whenever h :U→V, define h∗ mapping the functions which are defined
on V to the functions which are defined on U as follows.

h∗ f (x)≡ f (h(x)) .

h : U → V is bilipschitz if h is one to one, onto and Lipschitz and h−1 is also one to one,
onto and Lipschitz.

Theorem 38.0.14 Let h : U→V be one to one and onto where U and V are two open sets.
Also suppose that Dα h and Dα

(
h−1
)

exist and are Lipschitz continuous if |α| ≤ m−1 for
m a positive integer. Then

h∗ : W m,p (V )→W m,p (U)

is continuous, linear, one to one, and has an inverse with the same properties, the inverse
being

(
h−1
)∗
.
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Proof: It is clear that h∗ is linear. It is required to show it is one to one and continuous.
First suppose h∗ f = 0. Then

0 =
∫

V
| f (h(x))|p dx

and so f (h(x)) = 0 for a.e. x∈U. Since h is Lipschitz, it takes sets of measure zero to sets
of measure zero. Therefore, f (y) = 0 a.e. This shows h∗ is one to one.

By the Meyer Serrin theorem, Theorem 38.0.8, it suffices to verify that h∗ is continuous
on functions in C∞ (V ) . Let f be such a function. Then using the chain rule and product
rule, (h∗ f ),i (x) = f,k (h(x))hk,i (x) ,

(h∗ f ),i j (x) =
(

f,k (h(x))hk,i (x)
)
, j

= f,kl (h(x))hl, j (x)hk,i (x)+ f,k (h(x))hk,i j (x)

etc. In general, for |α| ≤ m−1, succsessive applications of the product rule and chain rule
yield that Dα (h∗ f )(x) has the form

Dα (h∗ f )(x) = ∑
|β |≤|α|

h∗
(

Dβ f
)
(x)gβ (x)

where gβ is a bounded Lipschitz function with Lipschitz constant dependent on h and its
derivatives. It only remains to take one more derivative of the functions, Dα f for |α| =
m−1. This can be done again but this time you have to use Rademacher’s theorem which
assures you that the derivative of a Lipschitz function exists a.e. in order to take the partial
derivative of the gβ (x) . When this is done, the above formula remains valid for all |α| ≤m.
Therefore, using the change of variables formula for multiple integrals, Corollary 36.6.14
on Page 1296,∫

U
|Dα (h∗ f )(x)|p dx ≤ Cm,p,h ∑

|β |≤m

∫
U

∣∣∣h∗(Dβ f
)
(x)
∣∣∣p dx

= Cm,p,h ∑
|β |≤m

∫
U

∣∣∣(Dβ f
)
(h(x))

∣∣∣p dx

= Cm,p,h ∑
|β |≤m

∫
V

∣∣∣(Dβ f
)
(y)
∣∣∣p ∣∣detDh−1 (y)

∣∣dy

≤ Cm,p,h,h−1 || f ||m,p,V

This shows h∗ is continuous on C∞ (V )∩W m,p (U) and since this set is dense, this proves
h∗ is continuous. The same argument applies to

(
h−1
)∗ and now the definitions of h∗ and(

h−1
)∗ show these are inverses.

38.1 Embedding Theorems For W m,p (Rn)

Recall Theorem 36.5.1 which is listed here for convenience.
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Theorem 38.1.1 Suppose u,u,i ∈ Lp
loc (R

n) for i = 1, · · · ,n and p > n. Then u has a repre-
sentative, still denoted by u, such that for all x,y ∈Rn,

|u(x)−u(y)| ≤C
(∫

B(x,2|y−x|)
|∇u|pdz

)1/p

|x−y|(1−n/p). (38.1.13)

This amazing result shows that every u ∈W m,p (Rn) has a representative which is con-
tinuous provided p > n.

Using the above inequality, one can give an important embedding theorem.

Definition 38.1.2 Let X ,Y be two Banach spaces and let f : X → Y be a function. Then f
is a compact map if whenever S is a bounded set in X , it follows that f (S) is precompact
in Y .

Theorem 38.1.3 Let U be a bounded open set and for u a function defined on Rn, let
rU u(x)≡ u(x) for x∈U . Then if p> n, rU :W 1,p (Rn)→C

(
U
)

is continuous and compact.

Proof: First suppose uk → 0 in W 1,p (Rn) . Then if rU uk does not converge to 0, it
follows there exists a sequence, still denoted by k and ε > 0 such that uk→ 0 in W 1,p (Rn)
but ||rU uk||∞ ≥ ε. Selecting a further subsequence which is still denoted by k, you can also
assume uk (x)→ 0 a.e. Pick such an x0 ∈U where this convergence takes place. Then from
38.1.13, for all x ∈U ,

|uk (x)| ≤ |uk (x0)|+C ||uk||1,p,Rn diam(U)

showing that uk converges uniformly to 0 on U contrary to ||rU uk||∞ ≥ ε. Therefore, rU is
continuous as claimed.

Next let S be a bounded subset of W 1,p (Rn) with ||u||1,p < M for all u ∈ S. Then for
u ∈ S

rpmn ([|u|> r]∩U)≤
∫
[|u|>r]∩U

|u|p dmn ≤Mp

and so
mn ([|u|> r]∩U)≤ Mp

rp .

Now choosing r large enough, Mp/rp < mn (U) and so, for such r, there exists xu ∈U such
that |u(xu)| ≤ r. Therefore from 38.1.13, whenever x ∈U,

|u(x)| ≤ |u(xu)|+CM diam(U)1−n/p

≤ r+CM diam(U)1−n/p

showing that {rU u : u ∈ S} is uniformly bounded. But also, for x,y ∈U ,38.1.13 implies

|u(x)−u(y)| ≤CM |x−y|1−
n
p

showing that {rU u : u ∈ S} is equicontinuous. By the Ascoli Arzela theorem, it follows
rU (S) is precompact and so rU is compact.
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Definition 38.1.4 Let α ∈ (0,1] and K a compact subset of Rn

Cα (K)≡ { f ∈C (K) : ρα ( f )+ || f || ≡ || f ||
α
< ∞}

where
|| f || ≡ || f ||

∞
≡ sup{| f (x)| : x ∈ K}

and

ρα ( f )≡ sup
{
| f (x)− f (y)|
|x−y|α

: x,y ∈ K, x ̸= y
}
.

Then (Cα (K) , ||·||
α
) is a complete normed linear space called a Holder space.

The verification that this is a complete normed linear space is routine and is left for you.
More generally, one considers the following class of Holder spaces.

Definition 38.1.5 Let K be a compact subset of Rn and let λ ∈ (0,1]. Cm,λ (K) denotes
the set of functions, u which are restrictions of functions defined on Rn to Ksuch that for
|α| ≤ m,

Dα u ∈C (K)

and if |α|= m,

Dα u ∈Cλ (K) .

Thus C0,λ (K) =Cλ (K) . The norm of a function in Cm,λ (K) is given by

||u||m,λ ≡ sup
|α|=m

ρλ (D
α u)+ ∑

|α|≤m
||Dα u||

∞
.

Lemma 38.1.6 Let m be a positive integer, K a compact subset of Rn, and let 0 < β < λ ≤
1. Then the identity map from Cm,λ (K) into Cm,β (K) is compact.

Proof: First note that the containment is obvious because for any function, f , if

ρλ ( f )≡ sup

{
| f (x)− f (y)|
|x−y|λ

: x,y ∈ K, x ̸= y

}
< ∞,

Then

ρβ ( f ) ≡ sup

{
| f (x)− f (y)|
|x−y|β

: x,y ∈ K, x ̸= y

}

= sup

{
| f (x)− f (y)|
|x−y|λ

|x−y|λ−β : x,y ∈ K, x ̸= y

}

≤ sup

{
| f (x)− f (y)|
|x−y|λ

diam(K)λ−β : x,y ∈ K, x ̸= y

}
< ∞.

Suppose the identity map, id, is not compact. Then there exists ε > 0 and a sequence,
{ fk}∞

k=1 ⊆Cm,λ (K) such that || fk||m,λ < M for all k but || fk− fl ||β ≥ ε whenever k ̸= l. By
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the Ascoli Arzela theorem, there exists a subsequence of this, still denoted by fk such that
∑|α|≤m ||Dα ( fl− fk)||∞ < δ where δ satisfies

0 < δ < min
(

ε

2
,
(

ε

8

)(
ε

8M

)β/(λ−β )
)
. (38.1.14)

Therefore, sup|α|=m ρβ (D
α ( fk− fl))≥ ε−δ for all k ̸= l. It follows that there exist pairs

of points and a multi index, α with |α|= m, {xkl ,ykl ,α} such that

ε−δ

2
<
|(Dα fk−Dα fl)(xkl)− ((Dα fk−Dα fl)(ykl))|

|xkl−ykl |β
≤ 2M |xkl−ykl |λ−β (38.1.15)

and so considering the ends of the above inequality,(
ε−δ

4M

)1/(λ−β )

< |xkl−ykl | .

Now also, since ∑|α|≤m ||Dα ( fl− fk)||∞ < δ , it follows from the first inequality in 38.1.15
that

ε−δ

2
<

2δ(
ε−δ

4M

)β/(λ−β )
.

Since δ < ε/2, this implies
ε

4
<

2δ(
ε

8M

)β/(λ−β )

and so (
ε

8

)(
ε

8M

)β/(λ−β )
< δ

contrary to 38.1.14. This proves the lemma.

Corollary 38.1.7 Let p > n,U and rU be as in Theorem 38.1.3 and let m be a nonnegative
integer. Then rU : W m+1,p (Rn)→Cm,λ

(
U
)

is continuous as a map into Cm,λ
(
U
)

for all
λ ∈ [0,1− n

p ] and rU is compact if λ < 1− n
p .

Proof: Suppose uk→ 0 in W m+1,p (Rn) . Then from 38.1.13, if λ ≤ 1− n
p and |α|= m

ρλ (D
α uk)≤C ||Dα uk||1,p diam(U)1− n

p−λ .

Therefore, ρλ (D
α uk)→ 0. From Theorem 38.1.3 it follows that for |α| ≤ m,

||Dα uk||∞→ 0

and so ||uk||m,λ → 0. This proves the claim about continuity. The claim about compactness
for λ < 1− n

p follows from Lemma 38.1.6 and this.

(Bounded in W m,p (Rn)
rU→ Bounded in Cm,1− n

p
(
U
) id→ Compact in Cm,λ

(
U
)
.)

It is just as important to consider the case where p < n. To do this case the following
lemma due to Gagliardo [53] will be of interest. See also [1].
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Lemma 38.1.8 Suppose n≥ 2 and w j does not depend on the jth component of x, x j. Then

∫
Rn

n

∏
j=1

∣∣w j (x)
∣∣dmn ≤

n

∏
i=1

(∫
Rn−1

∣∣w j (x)
∣∣n−1 dmn−1

)1/(n−1)

.

In this inequality, assume all the functions are continuous so there can be no measurability
questions.

Proof: First note that for n = 2 the inequality reduces to the statement

∫ ∫
|w1 (x2)| |w2 (x1)|dx1dx2 ≤

∫
|w1 (x2)|dx2

∫
|w2 (x1)|dx1

which is obviously true. Suppose then that the inequality is valid for some n. Using Fubini’s
theorem, Holder’s inequality, and the induction hypothesis,

∫
Rn+1

n+1

∏
j=1

∣∣w j (x)
∣∣dmn+1

=
∫
R

∫
Rn
|wn+1 (x)|

n

∏
j=1

∣∣w j (x)
∣∣dmndxn+1

=
∫
Rn
|wn+1 (x)|

∫
R

n

∏
j=1

∣∣w j (x)
∣∣dxn+1dmn

=
∫
Rn
|wn+1 (x)|

(
n

∏
j=1

∫
R

∣∣w j (x)
∣∣n dxn+1

)1/n

dmn

=
∫
Rn
|wn+1 (x)|

n

∏
j=1

(∫
R

∣∣w j (x)
∣∣n dxn+1

)1/n

dmn

≤
(∫

Rn
|wn+1 (x)|n dmn

)1/n

·∫
Rn

(
n

∏
j=1

(∫
R

∣∣w j (x)
∣∣n dxn+1

)1/n
)n/(n−1)

dmn

(n−1)/n

=

(∫
Rn
|wn+1 (x)|n dmn

)1/n

·(∫
Rn

n

∏
j=1

(∫
R

∣∣w j (x)
∣∣n dxn+1

)1/(n−1)

dmn

)(n−1)/n
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≤
(∫

Rn
|wn+1 (x)|n dmn

)1/n

·(
n

∏
j=1

(∫
Rn−1

(∫
R

∣∣w j (x)
∣∣n dxn+1

)
dmn−1

)1/(n−1)
)(n−1)/n

=

(∫
Rn
|wn+1 (x)|n dmn

)1/n n

∏
j=1

(∫
Rn

∣∣w j (x)
∣∣n dmn

)1/n

=
n+1

∏
j=1

(∫
Rn

∣∣w j (x)
∣∣n dmn

)1/n

This proves the lemma.

Lemma 38.1.9 If φ ∈C∞
c (Rn) and n≥ 1, then

||φ ||n/(n−1) ≤
1
n
√

n

n

∑
j=1

∣∣∣∣∣∣∣∣ ∂φ

∂x j

∣∣∣∣∣∣∣∣
1
.

Proof: The case where n = 1 is obvious if n/(n−1) is interpreted as ∞. Assume then
that n > 1 and note that for ai ≥ 0,

n
n

∏
i=1

ai ≤

(
n

∑
j=1

ai

)n

In fact, the term on the left is one of many terms of the expression on the right. Therefore,
taking nth roots

n

∏
i=1

a1/n
i ≤ 1

n
√

n

n

∑
j=1

ai.

Then observe that for each j = 1,2, · · · ,n,

|φ (x)| ≤
∫

∞

−∞

∣∣∣φ , j (x)
∣∣∣dx j

so

||φ ||n/(n−1)
n/(n−1) ≡

∫
Rn
|φ (x)|n/(n−1) dmn

≤
∫
Rn

n

∏
j=1

(∫
∞

−∞

∣∣∣φ , j (x)
∣∣∣dx j

)1/(n−1)

dmn

and from Lemma 38.1.8 this is dominated by

≤
n

∏
j=1

(∫
Rn

∣∣∣φ , j (x)
∣∣∣dmn

)1/(n−1)

.
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Hence ∏
n
i=1 a1/n

i ≤ 1
n√n ∑

n
j=1 ai

||φ ||n/(n−1) ≤
n

∏
j=1

(∫
Rn

∣∣∣φ , j (x)
∣∣∣dmn

)1/n

≤ 1
n
√

n

n

∑
j=1

∫
Rn

∣∣∣φ , j (x)
∣∣∣dmn

=
1
n
√

n

n

∑
j=1

∣∣∣∣φ ,i

∣∣∣∣
1

and this proves the lemma.
The above lemma is due to Gagliardo and Nirenberg.
With this lemma, it is possible to prove a major embedding theorem which follows.

Theorem 38.1.10 Let 1≤ p < n and 1
q = 1

p −
1
n . Then if f ∈W 1,p (Rn) ,

|| f ||q ≤
1
n
√

n
(n−1) p

n− p
|| f ||1,p,Rn .

Proof: From the definition of W 1,p (Rn) , C1
c (Rn) is dense in W 1,p. Here C1

c (Rn) is the
space of continuous functions having continuous derivatives which have compact support.
The desired inequality will be established for such φ and then the density of this set in
W 1,p (Rn) will be exploited to obtain the inequality for all f ∈W 1,p (Rn). First note that
the case where p= 1 follows immediately from the above lemma and so it is only necessary
to consider the case where p > 1.

Let φ ∈C1
c (Rn) and consider |φ |r where r > 1. Then a short computation shows |φ |r ∈

C1
c (Rn) and ∣∣∣|φ |r,i∣∣∣= r |φ |r−1 ∣∣φ ,i

∣∣ .
Therefore, from Lemma 38.1.9,(∫

|φ |
rn

n−1 dmn

)(n−1)/n

≤ r
n
√

n

n

∑
i=1

∫
|φ |r−1 ∣∣φ ,i

∣∣dmn

≤ r
n
√

n

n

∑
i=1

(∫ ∣∣φ ,i

∣∣p)1/p(∫ (
|φ |r−1

)p/(p−1)
dmn

)(p−1)/p

.

Now choose r such that
(r−1) p

p−1
=

rn
n−1

.

That is, let r = p(n−1)
n−p > 1 and so rn

n−1 = np
n−p . Then this reduces to(∫

|φ |
np

n−p dmn

)(n−1)/n

≤ r
n
√

n

n

∑
i=1

(∫ ∣∣φ ,i

∣∣p)1/p(∫
|φ |

np
n−p dmn

)(p−1)/p

.
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Also, n−1
n −

p−1
p = n−p

np and so, dividing both sides by the last term yields

(∫
|φ |

np
n−p dmn

) n−p
np

≤ r
n
√

n

n

∑
i=1

(∫ ∣∣φ ,i

∣∣p)1/p

≤ r
n
√

n
||φ ||1,p,Rn .

Letting q = np
n−p , it follows 1

q = n−p
np = 1

p −
1
n and

||φ ||q ≤
r

n
√

n
||φ ||1,p,Rn .

Now let f ∈ W m,p (Rn) and let ||φ k− f ||1,p,Rn → 0 as k → ∞. Taking another sub-
sequence, if necessary, you can also assume φ k (x)→ f (x) a.e. Therefore, by Fatou’s
lemma,

|| f ||q ≤ lim inf
k→∞

(∫
Rn
|φ k (x)|

q dmn

)1/q

≤ lim inf
k→∞

r
n
√

n
||φ k||1,p,Rn = || f ||1,p,Rn .

This proves the theorem.

Corollary 38.1.11 Suppose mp < n. Then W m,p (Rn) ⊆ Lq (Rn) where q = np
n−mp and the

identity map, id : W m,p (Rn)→ Lq (Rn) is continuous.

Proof: This is true if m = 1 according to Theorem 38.1.10. Suppose it is true for m−1
where m > 1. If u ∈W m,p (Rn) and |α| ≤ 1, then Dα u ∈W m−1,p (Rn) so by induction, for
all such α,

Dα u ∈ L
np

n−(m−1)p (Rn) .

Thus u ∈W 1,q1 (Rn) where
q1 =

np
n− (m−1) p

By Theorem 38.1.10, it follows that u ∈ Lq (Rn) where

1
q
=

n− (m−1) p
np

− 1
n
=

n−mp
np

.

This proves the corollary.
There is another similar corollary of the same sort which is interesting and useful.

Corollary 38.1.12 Suppose m≥ 1 and j is a nonnegative integer satisfying jp < n. Then

W m+ j,p (Rn)⊆W m,q (Rn)

for
q≡ np

n− jp
(38.1.16)

and the identity map is continuous.
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Proof: If |α| ≤ m, then Dα u ∈W j,p (Rn) and so by Corollary 38.1.11, Dα u ∈ Lq (Rn)
where q is given above. This means u ∈W m,q (Rn).

The above corollaries imply yet another interesting corollary which involves embed-
dings in the Holder spaces.

Corollary 38.1.13 Suppose jp< n< ( j+1) p and let m be a positive integer. Let U be any
bounded open set in Rn. Then letting rU denote the restriction to U , rU : W m+ j,p (Rn)→
Cm−1,λ

(
U
)

is continuous for every λ ≤ λ 0 ≡ ( j+1)− n
p and if λ < ( j+1)− n

p , then rU
is compact.

Proof: From Corollary 38.1.12 W m+ j,p (Rn)⊆W m,q (Rn) where q is given by 38.1.16.
Therefore,

np
n− jp

> n

and so by Corollary 38.1.7, W m,q (Rn)⊆Cm−1,λ
(
U
)

for all λ satisfying

0 < λ < 1− (n− jp)n
np

=
p( j+1)−n

p
= ( j+1)− n

p
.

The assertion about compactness follows from the compactness of the embedding of

Cm−1,λ 0
(
U
)

into Cm−1,λ
(
U
)

for λ < λ 0. See Lemma 38.1.6.
There are other embeddings of this sort available. You should see Adams [1] for a

more complete listing of these. Next are some theorems about compact embeddings. This
requires some consideration of which subsets of Lp (U) are compact. The main theorem is
the following. See [1].

Theorem 38.1.14 Let K be a bounded subset of Lp (U) and suppose that for all ε > 0,
there exist a δ > 0 such that if |h|< δ , then∫

Rn
|ũ(x+h)− ũ(x)|p dx < ε

p (38.1.17)

Suppose also that for each ε > 0 there exists an open set, G ⊆U such that G is compact
and for all u ∈ K, ∫

U\G
|u(x)|p dx < ε

p (38.1.18)

Then K is precompact in Lp (Rn).

Proof: To save fussing first consider the case where U = Rn so that ũ = u. Suppose
the two conditions hold and let φ k be a mollifier of the form φ k (x) = knφ (kx) where
spt(φ)⊆ B(0,1) . Consider

Kk ≡ {u∗φ k : u ∈ K} .

and verify the conditions for the Ascoli Arzela theorem for these functions defined on G.
Say ||u||p ≤M for all u ∈ K.
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First of all, for u ∈ K and x ∈ Rn,

|u∗φ k (x)|
p ≤

(∫
|u(x−y)φ k (y)|dy

)p

=

(∫
|u(y)φ k (x−y)|dy

)p

≤
∫
|u(y)|p φ k (x−y)dy

≤
(

sup
z∈Rn

φ k (z)
)∫
|u(y)|dy≤M

(
sup
z∈Rn

φ k (z)
)

showing the functions in Kk are uniformly bounded.
Next suppose x,x1 ∈ Kk and consider

|u∗φ k (x)−u∗φ k (x1)|

≤
∫
|u(x−y)−u(x1−y)|φ k (y)dy

≤
(∫
|u(x−y)−u(x1−y)|p dy

)1/p(∫
φ k (y)

q dy
)q

which by assumption 38.1.17 is small independent of the choice of u whenever |x−x1| is
small enough. Note that k is fixed in the above. Therefore, the set, Kk is precompact in
C
(
G
)

thanks to the Ascoli Arzela theorem. Next consider how well u ∈ K is approximated
by u∗φ k in Lp (Rn) . By Minkowski’s inequality,(∫

|u(x)−u∗φ k (x)|
p dx
)1/p

≤
(∫ (∫

|u(x)−u(x−y)|φ k (y)dy
)p

dx
)1/p

≤
∫

B(0, 1
k )

φ k (y)
(∫
|u(x)−u(x−y)|p dx

)1/p

dy.

Now let η > 0 be given. From 38.1.17 there exists k large enough that for all u ∈ K,∫
B(0, 1

k )
φ k (y)

(∫
|u(x)−u(x−y)|p dx

)1/p

dy≤
∫

B(0, 1
k )

φ k (y)η dy = η .

Now let ε > 0 be given and let δ and G correspond to ε as given in the hypotheses and
let 1/k < δ and also k is large enough that for all u ∈ K,

||u−u∗φ k||p < ε

as in the above inequality. By the Ascoli Arzela theorem there exists an(
ε

m
(
G+B(0,1)

))1/p
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net for Kk in C
(
G
)
. That is, there exist {ui}m

i=1 ⊆ K such that for any u ∈ K,

∣∣∣∣u∗φ k−u j ∗φ k

∣∣∣∣
∞
<

(
ε

m
(
G+B(0,1)

))1/p

for some j. Letting u ∈ K be given, let u j ∈ {ui}m
i=1 ⊆ K be such that the above inequality

holds. Then∣∣∣∣u−u j
∣∣∣∣

p ≤ ||u−u∗φ k||p +
∣∣∣∣u∗φ k−u j ∗φ k

∣∣∣∣
p +
∣∣∣∣u j ∗φ k−u j

∣∣∣∣
p

< 2ε +
∣∣∣∣u∗φ k−u j ∗φ k

∣∣∣∣
p

≤ 2ε +

(∫
G+B(0,1)

∣∣u∗φ k−u j ∗φ k

∣∣p dx
)1/p

+

(∫
Rn\(G+B(0,1))

∣∣u∗φ k−u j ∗φ k

∣∣p dx

)1/p

≤ 2ε + ε
1/p

+

(∫
Rn\(G+B(0,1))

(∫ ∣∣u(x−y)−u j (x−y)
∣∣φ k (y)dy

)p

dx

)1/p

≤ 2ε + ε
1/p

+
∫

φ k (y)

(∫
Rn\(G+B(0,1))

(
|u(x−y)|+

∣∣u j (x−y)
∣∣)p dx

)1/p

dy

≤ 2ε + ε
1/p +

∫
φ k (y)

(∫
Rn\G

(
|u(x)|+

∣∣u j (x)
∣∣)p dx

)1/p

dy

≤ 2ε + ε
1/p +2p−1

∫
φ k (y)

(∫
Rn\G

(
|u(x)|p +

∣∣u j (x)
∣∣p)dx

)1/p

dy

≤ 2ε + ε
1/p +2p−121/p

ε

and since ε > 0 is arbitrary, this shows that K is totally bounded and is therefore precom-
pact.

Now for an arbitrary open set, U and K given in the hypotheses of the theorem, let
K̃ ≡ {ũ : u ∈ K} and observe that K̃ is precompact in Lp (Rn) . But this is the same as
saying that K is precompact in Lp (U) . This proves the theorem.

Actually the converse of the above theorem is also true [1] but this will not be needed
so I have left it as an exercise for anyone interested.

Lemma 38.1.15 Let u ∈W 1,1 (U) for U an open set and let φ ∈C∞
c (U) . Then there exists

a constant,
C
(

φ , ||u||1,1,U
)
,
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depending only on the indicated quantities such that whenever v ∈ Rn with

|v|< dist
(
spt(φ) ,UC) ,

it follows that ∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣dx≤C

(
φ , ||u||1,1,U

)
|v| .

Proof: First suppose u ∈ C∞
(
U
)
. Then for any x ∈ spt(φ)∪ (spt(φ)−v) ≡ Gv, the

chain rule implies

|φu(x+v)−φu(x)| ≤
∫ 1

0

n

∑
i=1

∣∣∣(φu),i (x+ tv)vi

∣∣∣dt

≤
∫ 1

0

n

∑
i=1

∣∣(φ ,iu+u,iφ
)
(x+ tv)

∣∣dt |v| .

Therefore, for such u, ∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣dx

=
∫

Gv
|φu(x+v)−φu(x)|dx

≤
∫

Gv

∫ 1

0

n

∑
i=1

∣∣(φ ,iu+u,iφ
)
(x+ tv)

∣∣dtdx |v|

≤
∫ 1

0

∫
Gv

n

∑
i=1

∣∣(φ ,iu+u,iφ
)
(x+ tv)

∣∣dxdt |v|

≤ C
(

φ , ||u||1,1,U
)
|v|

where C is a continuous function of ||u||1,1,U . Now for general u ∈W 1,1 (U) , let uk→ u in
W 1,1 (U) where uk ∈C∞

(
U
)
. Then for |v|< dist

(
spt(φ) ,UC

)
,∫

Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣dx

=
∫

Gv
|φu(x+v)−φu(x)|dx

= lim
k→∞

∫
Gv
|φuk (x+v)−φuk (x)|dx

≤ lim
k→∞

C
(

φ , ||uk||1,1,U
)
|v|

= C
(

φ , ||u||1,1,U
)
|v| .

This proves the lemma.
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Lemma 38.1.16 Let U be a bounded open set and define for p > 1

S≡
{

u ∈W 1,1 (U)∩Lp (U) : ||u||1,1,U + ||u||Lp(U) ≤M
}

(38.1.19)

and let φ ∈C∞
c (U) and

S1 ≡ {uφ : u ∈ S} . (38.1.20)

Then S1 is precompact in Lq (U) where 1≤ q < p.

Proof: This depends on Theorem 38.1.14. The second condition is satisfied by taking
G≡ spt(φ). Thus, for w ∈ S1, ∫

U\G
|w(x)|q dx = 0 < ε

p.

It remains to satisfy the first condition. It is necessary to verify there exists δ > 0 such that
if |v|< δ , then ∫

Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣q dx < ε

p. (38.1.21)

Let spt(φ)∪ (spt(φ)−v)≡ Gv. Now if h is any measurable function, and if θ ∈ (0,1)
is chosen small enough that θq < 1,∫

Gv
|h|q dx =

∫
Gv
|h|θq |h|(1−θ)q dx

≤
(∫

Gv
|h|dx

)θq(∫
Gv

(
|h|(1−θ)q

) 1
1−θq

)1−θq

=

(∫
Gv
|h|dx

)θq(∫
Gv
|h|

(1−θ)q
1−θq

)1−θq

. (38.1.22)

Now let θ also be small enough that there exists r > 1 such that

r
(1−θ)q
1−θq

= p

and use Holder’s inequality in the last factor of the right side of 38.1.22. Then 38.1.22 is
dominated by (∫

Gv
|h|dx

)θq(∫
Gv
|h|p
) 1−θq

r
(∫

Gv
1dx
)1/r′

= C
(
||h||Lp(Gv)

,mn (Gv)
)(∫

Gv
|h|dx

)θq

.

Therefore, for u ∈ S,∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣q dx =

∫
Gv
|φu(x+v)−φu(x)|q dx≤
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C
(
||φu(·+v)−φu(·)||Lp(Gv)

,mn (Gv)
)(∫

Gv
|φu(x+v)−φu(x)|dx

)θq

≤C
(

2 ||φu(·)||Lp(U) ,mn (U)
)(∫

Gv
|φu(x+v)−φu(x)|dx

)θq

≤ C (φ ,M,mn (U))

(∫
Gv
|φu(x+v)−φu(x)|dx

)θq

= C (φ ,M,mn (U))

(∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣dx
)θq

. (38.1.23)

Now by Lemma 38.1.15,∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣dx≤C

(
φ , ||u||1,1,U

)
|v| (38.1.24)

and so from 38.1.23 and 38.1.24, and adjusting the constants∫
Rn

∣∣∣φ̃u(x+v)− φ̃u(x)
∣∣∣q dx ≤ C (φ ,M,mn (U))

(
C
(

φ , ||u||1,1,U
)
|v|
)θq

= C (φ ,M,mn (U)) |v|θq

which verifies 38.1.21 whenever |v| is sufficiently small. This proves the lemma because
the conditions of Theorem 38.1.14 are satisfied.

Theorem 38.1.17 Let U be a bounded open set and define for p > 1

S≡
{

u ∈W 1,1 (U)∩Lp (U) : ||u||1,1,U + ||u||Lp(U) ≤M
}

(38.1.25)

Then S is precompact in Lq (U) where 1≤ q < p.

Proof: If suffices to show that every sequence, {uk}∞

k=1 ⊆ S has a subsequence which
converges in Lq (U) . Let {Km}∞

m=1 denote a sequence of compact subsets of U with the
property that Km ⊆ Km+1 for all m and ∪∞

m=1Km = U. Now let φ m ∈ C∞
c (U) such that

φ m (x) ∈ [0,1] and φ m (x) = 1 for all x ∈ Km. Let Sm ≡ {φ mu : u ∈ S}. By Lemma 38.1.16
there exists a subsequence of {uk}∞

k=1 , denoted here by
{

u1,k
}∞

k=1 such that
{

φ 1u1,k
}∞

k=1
converges in Lq (U) . Now S2 is also precompact in Lq (U) and so there exists a subse-
quence of

{
u1,k
}∞

k=1 , denoted by
{

u2,k
}∞

k=1 such that
{

φ 2u2,k
}∞

k=1 converges in L2 (U) .

Thus it is also the case that
{

φ 1u2,k
}∞

k=1 converges in Lq (U) . Continue taking subse-
quences in this manner such that for all l ≤ m,

{
φ lum,k

}∞

k=1 converges in Lq (U). Let
{wm}∞

m=1 = {um,m}∞

m=1 so that {wk}∞

k=m is a subsequence of
{

um,k
}∞

k=1 . Then it follows
for all k, {φ kwm}∞

m=1 must converge in Lq (U) . For u ∈ S,

||u−φ ku||qLq(U)
=

∫
U
|u|q (1−φ k)

q dx

≤
(∫

U
|u|p dx

)q/p(∫
U
(1−φ k)

qr dx
)1/r

≤ M
(∫

U
(1−φ k)

qr dx
)1/r
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where q/p+ 1/r = 1. Now φ l (x)→XU (x) and so the integrand in the last integral con-
verges to 0 by the dominated convergence theorem. Therefore, k may be chosen large
enough that for all u ∈ S,

||u−φ ku||qLq(U)
≤
(

ε

3

)q
.

Fix such a value of k. Then ∣∣∣∣wq−wp
∣∣∣∣

Lq(U)
≤∣∣∣∣wq−φ kwq

∣∣∣∣
Lq(U)

+
∣∣∣∣φ kwq−φ kwp

∣∣∣∣
Lq(U)

+
∣∣∣∣wp−φ kwp

∣∣∣∣
Lq(U)

≤ 2ε

3
+
∣∣∣∣φ kwq−φ kwp

∣∣∣∣
Lq(U)

.

But {φ kwm}∞

m=1 converges in Lq (U) and so the last term in the above is less than ε/3
whenever p,q are large enough. Thus {wm}∞

m=1 is a Cauchy sequence and must therefore
converge in Lq (U). This proves the theorem.

38.2 An Extension Theorem
Definition 38.2.1 An open subset, U, of Rn has a Lipschitz boundary if it satisfies the
following conditions. For each p ∈ ∂U ≡U \U, there exists an open set, Q, containing p,
an open interval (a,b), a bounded open box B⊆ Rn−1, and an orthogonal transformation
R such that

RQ = B× (a,b), (38.2.26)

R(Q∩U) = {y ∈ Rn : ŷ ∈ B, a < yn < g(ŷ)} (38.2.27)

where g is Lipschitz continuous on B,a < min
{

g(x) : x ∈ B
}
, and

ŷ≡ (y1, · · · ,yn−1).

Letting W = Q∩U the following picture describes the situation.

x
W

Q

R R(W )

a

b
R(Q)

y

The following lemma is important.

Lemma 38.2.2 If U is an open subset ofRn which has a Lipschitz boundary, then it satisfies
the segment condition and so Xm,p (U) =W m,p (U) .
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Proof: For x ∈ ∂U, simply look at a single open set, Qx described in the above which
contains x. Then consider an open set whose intersection with U is of the form

RT ({y :ŷ ∈ B,g(ŷ)− ε < yn < g(ŷ)})

and a vector of the form εRT (−en) where ε is chosen smaller than min
{

g(x) : x ∈ B
}
−a.

There is nothing to prove for points of U.

One way to extend many of the above theorems to more general open sets than Rn is
through the use of an appropriate extension theorem. In this section, a fairly general one
will be presented.

Lemma 38.2.3 Let B× (a,b) be as described in Definition 38.2.1 and let

V− ≡ {(ŷ,yn) : yn < g(ŷ)} , V+ ≡ {(ŷ,yn) : yn > g(ŷ)},

for g a Lipschitz function of the sort described in this definition. Suppose u+ and u− are
Lipschitz functions defined on V+ and V− respectively and suppose that u+ (ŷ,g(ŷ)) =
u− (ŷ,g(ŷ)) for all ŷ ∈ B. Let

u(ŷ,yn)≡
{

u+ (ŷ,yn) if (ŷ,yn) ∈V+

u− (ŷ,yn) if (ŷ,yn) ∈V−

and suppose spt(u)⊆ B× (a,b). Then extending u to be 0 off of B× (a,b), u is continuous
and the weak partial derivatives, u,i, are all in L∞ (Rn)∩Lp (Rn) for all p > 1 and u,i =
(u+),i on V+ and u,i = (u−),i on V−.

Proof: Consider the following picture which is descriptive of the situation.

a

b

spt(u)

B

Note first that u is Lipschitz continuous. To see this, consider |u(y1)−u(y2)| where(
ŷi,yi

n
)
= yi. There are various cases to consider depending on whether yi

n is above g(ŷi) .

Suppose y1
n < g(ŷ1) and y2

n > g(ŷ2) . Then letting K ≥max(Lip(u+) ,Lip(u−) ,Lip(g)) ,∣∣u(ŷ1,y1
n
)
−u
(
ŷ2,y2

n
)∣∣≤
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∣∣u(ŷ1,y1
n
)
−u
(
ŷ2,y1

n
)∣∣+ ∣∣u(ŷ2,y1

n
)
−u(ŷ2,g(ŷ2))

∣∣
+
∣∣u(ŷ2,g(ŷ2))−u

(
ŷ2,y2

n
)∣∣

≤ K |ŷ1− ŷ2|+K
[
|g(ŷ2)−g(ŷ1)|+g(ŷ1)− y1

n + y2
n−g(ŷ2)

]
≤

(
2K +K2) |ŷ1− ŷ2|+K

∣∣y1
n− y2

n
∣∣

=
(
2K +K2)(|ŷ1− ŷ2|+

∣∣y1
n− y2

n
∣∣)≤ (2K +K2)√2 |y1−y2|

The other cases are similar. Thus u is a Lipschitz continuous function which has compact
support. By Corollary 36.5.4 on Page 1287 it follows that u,i ∈ L∞ (Rn)∩Lp (Rn) for all
p > 1. It remains to verify u,i = (u+),i on V+ and u,i = (u−),i on V−. The last claim is
obvious from the definition of weak derivatives.

Lemma 38.2.4 In the situation of Lemma 38.2.3 let u ∈ C1
(

V−
)
∩C1

c (B× (a,b))3 and
define

w(ŷ,yn)≡

 u(ŷ,yn) if ŷ ∈ B and yn ≤ g(ŷ) ,
u(ŷ,2g(ŷ)− yn) , if ŷ ∈ B and yn > g(ŷ)
0 if ŷ /∈ B.

Then w∈W 1,p (Rn) and there exists a constant, C depending only on Lip(g) and dimension
such that

||w||W 1,p(Rn) ≤C ||u||W 1,p(V−) .

Denote w by E0u. Thus E0 (u)(y) = u(y) for all y ∈ V− but E0u = w is defined on all of
Rn. Also, E0 is a linear mapping.

Proof: As in the previous lemma, w is Lipschitz continuous and has compact support
so it is clear w∈W 1,p (Rn) . The main task is to find w,i for ŷ∈ B and yn > g(ŷ) and then to
extract an estimate of the right sort. Denote by U the set of points of Rn with the property
that (ŷ,yn) ∈ U if and only if ŷ /∈ B or ŷ ∈ B and yn > g(ŷ) . Then letting φ ∈ C∞

c (U) ,
suppose first that i < n. Then ∫

U
w(ŷ,yn)φ ,i (y)dy

≡ lim
h→0

∫
U

φ (y)
u
(
ŷ−hen−1

i ,2g
(
ŷ−hen−1

i

)
− yn

)
−u(ŷ,2g(ŷ)− yn)

h
dy (38.2.28)

= lim
h→0

{
−1
h

∫
U

φ (y)
[
D1u(ŷ,2g(ŷ)− yn)

(
hen−1

i
)

+2D2u(ŷ,2g(ŷ)− yn)
(
g
(
ŷ−hen−1

i
)
−g(ŷ)

)]
dy

+
−1
h

∫
U

φ (y)
[
o
(
g
(
ŷ−hen−1

i
)
−g(ŷ)

)
+o(h)

]
dy
}

3This means that spt(u)⊆ B× (a,b) and u ∈C1
(

V−
)
.
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where en−1
i is the unit vector in Rn−1 having all zeros except for a 1 in the ith position. Now

by Rademacher’s theorem, Dg(ŷ) exists for a.e. ŷ and so except for a set of measure zero,
the expression, o

(
g
(
ŷ−hen−1

i

)
−g(ŷ)

)
is o(h) and also for ŷ not in the exceptional set,

g
(
ŷ−hen−1

i
)
−g(ŷ) =−hDg(ŷ)en−1

i +o(h) .

Therefore, since the integrand in 38.2.28 has compact support and because of the Lips-
chitz continuity of all the functions, the dominated convergence theorem may be applied to
obtain ∫

U
w(ŷ,yn)φ ,i (y)dy =∫

U
φ (y)

[
−D1u(ŷ,2g(ŷ)− yn)

(
en−1

i
)
+2D2u(ŷ,2g(ŷ)− yn)

(
Dg(ŷ)en−1

i
)]

dy

=
∫

U
φ (y)

[
− ∂u

∂yi
(ŷ,2g(ŷ)− yn)+2

∂u
∂yn

(ŷ,2g(ŷ)− yn)
∂g(ŷ)

∂yi

]
dy

and so

w,i (y) =
∂u
∂yi

(ŷ,2g(ŷ)− yn)−2
∂u
∂yn

(ŷ,2g(ŷ)− yn)
∂g(ŷ)

∂yi
(38.2.29)

whenever i < n which is what you would expect from a formal application of the chain rule.
Next suppose i = n. ∫

U
w(ŷ,yn)φ ,n (y)dy

= lim
h→0
−
∫

U

u(ŷ,2g(ŷ)− (yn +h))−u(ŷ,2g(ŷ)− yn)

h
φ (y)dy

= lim
h→0

∫
U

D2u(ŷ,2g(ŷ)− yn)h+o(h)
h

φ (y)dy

=
∫

U

∂u
∂yn

(ŷ,2g(ŷ)− yn)φ (y)dy

showing that

w,n (y) =
−∂u
∂yn

(ŷ,2g(ŷ)− yn) (38.2.30)

which is also expected.
From the definnition, for y ∈ Rn \U ≡ {(ŷ,yn) : yn ≤ g(ŷ)} it follows w,i = u,i and on

U,w,i is given by 38.2.29 and 38.2.30. Consider ||w,i||pLp(U)
for i < n. From 38.2.29

||w,i||pLp(U)
=
∫

U

∣∣∣∣ ∂u
∂yi

(ŷ,2g(ŷ)− yn)−2
∂u
∂yn

(ŷ,2g(ŷ)− yn)
∂g(ŷ)

∂yi

∣∣∣∣p dy

≤ 2p−1
∫

U

∣∣∣∣ ∂u
∂yi

(ŷ,2g(ŷ)− yn)

∣∣∣∣p
+2p

∣∣∣∣ ∂u
∂yn

(ŷ,2g(ŷ)− yn)

∣∣∣∣p Lip(g)p dy
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≤ 4p (1+Lip(g)p)
∫

U

∣∣∣∣ ∂u
∂yi

(ŷ,2g(ŷ)− yn)

∣∣∣∣p
+

∣∣∣∣ ∂u
∂yn

(ŷ,2g(ŷ)− yn)

∣∣∣∣p dy

= 4p (1+Lip(g)p)
∫

B

∫
∞

g(ŷ)

∣∣∣∣ ∂u
∂yi

(ŷ,2g(ŷ)− yn)

∣∣∣∣p
+

∣∣∣∣ ∂u
∂yn

(ŷ,2g(ŷ)− yn)

∣∣∣∣p dyndŷ

= 4p (1+Lip(g)p)
∫

B

∫ g(ŷ)

−∞

∣∣∣∣ ∂u
∂yi

(ŷ,zn)

∣∣∣∣p + ∣∣∣∣ ∂u
∂yn

(ŷ,zn)

∣∣∣∣p dzndŷ

= 4p (1+Lip(g)p)
∫

B

∫ g(ŷ)

a

∣∣∣∣ ∂u
∂yi

(ŷ,zn)

∣∣∣∣p
+

∣∣∣∣ ∂u
∂yn

(ŷ,zn)

∣∣∣∣p dzndŷ≤ 4p (1+Lip(g)p) ||u||p1,p,V−

Now by similar reasoning,

||w,n||pLp(U)
=

∫
U

∣∣∣∣−∂u
∂yn

(ŷ,2g(ŷ)− yn)

∣∣∣∣p dy

=
∫

B

∫
∞

g(ŷ)

∣∣∣∣−∂u
∂yn

(ŷ,2g(ŷ)− yn)

∣∣∣∣p dyndŷ

=
∫

B

∫ g(ŷ)

a

∣∣∣∣−∂u
∂yn

(ŷ,zn)

∣∣∣∣p dzndŷ = ||u,n||p1,p,V− .

It follows

||w||p1,p,Rn = ||w||p1,p,U + ||u||p1,p,V−
≤ 4pn(1+Lip(g)p) ||u||p1,p,V− + ||u||

p
1,p,V−

and so
||w||p1,p,Rn ≤ 4pn(2+Lip(g)p) ||u||p1,p,V−

which implies
||w||1,p,Rn ≤ 4n1/p (2+Lip(g)p)

1/p ||u||1,p,V−
It is obvious that E0 is a continuous linear mapping. This proves the lemma.

Now recall Definition 38.2.1, listed here for convenience.

Definition 38.2.5 An open subset, U, of Rn has a Lipschitz boundary if it satisfies the
following conditions. For each p ∈ ∂U ≡U \U, there exists an open set, Q, containing p,
an open interval (a,b), a bounded open box B⊆ Rn−1, and an orthogonal transformation
R such that

RQ = B× (a,b), (38.2.31)
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R(Q∩U) = {y ∈ Rn : ŷ ∈ B, a < yn < g(ŷ)} (38.2.32)

where g is Lipschitz continuous on B,a < min
{

g(x) : x ∈ B
}
, and

ŷ≡ (y1, · · · ,yn−1).

Letting W = Q∩U the following picture describes the situation.

x
W

Q

R R(W )

a

b
R(Q)

y

Lemma 38.2.6 In the situation of Definition 38.2.1 let u ∈C1
(
U
)
∩C1

c (Q) and define

Eu≡ R∗E0
(
RT )∗ u.

where
(
RT
)∗ maps W 1,p (U ∩Q) to W 1,p (R(W )) . Then E is linear and satisfies

||Eu||W 1,p(Rn) ≤C ||u||W 1,p(Q∩U) , Eu(x) = u(x) for x ∈ Q∩U.

where C depends only on the dimension and Lip(g) .

Proof: This follows from Theorem 38.0.14 and Lemma 38.2.4.
The following theorem is a general extension theorem for Sobolev spaces.

Theorem 38.2.7 Let U be a bounded open set which has Lipschitz boundary. Then for
each p≥ 1, there exists E ∈L

(
W 1,p (U) ,W 1,p (Rn)

)
such that Eu(x) = u(x) a.e. x ∈U.

Proof: Let ∂U ⊆ ∪p
i=1Qi Where the Qi are as described in Definition 38.2.5. Also let

Ri be the orthogonal trasformation and gi the Lipschitz functions associated with Qi as in
this definition. Now let Q0 ⊆ Q0 ⊆U be such that U ⊆ ∪p

i=0Qi, and let ψ i ∈C∞
c (Qi) with

ψ i (x) ∈ [0,1] and ∑
p
i=0 ψ i (x) = 1 on U . For u ∈C∞

(
U
)
, let E0 (ψ0u)≡ ψ0u on Q0 and 0

off Q0. Thus ∣∣∣∣E0 (ψ0u)
∣∣∣∣

1,p,Rn = ||ψ0u||1,p,U .

For i≥ 1, let
E i (ψ iu)≡ R∗i E0

(
RT )∗ (ψ iu) .

Thus, by Lemma 38.2.6 ∣∣∣∣E1 (ψ iu)
∣∣∣∣

1,p,Rn ≤C ||ψ iu||1,p,Qi∩U
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where the constant depends on Lip(gi) but is independent of u ∈C∞
(
U
)
. Now define E as

follows.

Eu≡
p

∑
i=0

E i (ψ iu) .

Thus for u ∈C∞
(
U
)
, it follows Eu(x) = u(x) for all x ∈U. Also,

||Eu||1,p,Rn ≤
p

∑
i=0

∣∣∣∣E i (ψ iu)
∣∣∣∣≤ p

∑
i=0

Ci ||ψ iu||1,p,Qi∩U

=
p

∑
i=0

Ci ||ψ iu||1,p,U ≤
p

∑
i=0

Ci ||u||1,p,U

≤ (p+1)
p

∑
i=0

Ci ||u||1,p,U ≡C ||u||1,p,U . (38.2.33)

where C depends on the ψ i and the gi but is independent of u∈C∞
(
U
)
. Therefore, by den-

sity of C∞
(
U
)

in W 1,p (U) , E has a unique continuous extension to W 1,p (U) still denoted
by E satisfying the inequality determined by the ends of 38.2.33. It remains to verify that
Eu(x) = u(x) a.e. for x ∈U .

Let uk → u in W 1,p (U) where uk ∈ C∞
(
U
)
. Therefore, by 38.2.33, Euk → Eu in

W 1,p (Rn) . Since Euk (x) = uk (x) for each k,

||u−Eu||Lp(U) = lim
k→∞

||uk−Euk||Lp(U)

= lim
k→∞

||Euk−Euk||Lp(U) = 0

which shows u(x) = Eu(x) for a.e. x ∈U as claimed. This proves the theorem.

Definition 38.2.8 Let U be an open set. Then W m,p
0 (U) is the closure of the set, C∞

c (U) in
W m,p (U) .

Corollary 38.2.9 Let U be a bounded open set which has Lipschitz boundary and let W be
an open set containing U. Then for each p≥ 1, there exists EW ∈L

(
W 1,p (U) ,W 1,p

0 (W )
)

such that EW u(x) = u(x) a.e. x ∈U.

Proof: Let ψ ∈C∞
c (W ) and ψ = 1 on U. Then let EW u≡ψEu where E is the extension

operator of Theorem 38.2.7.
Extension operators of the above sort exist for many open sets, U, not just for bounded

ones. In particular, the above discussion would apply to an open set, U, not necessarily
bounded, if you relax the condition that the Qi must be bounded but require the existence
of a finite partition of unity {ψ i}

p
i=1 having the property that ψ i and ψ i, j are uniformly

bounded for all i, j. The proof would be identical to the above. My main interest is in
bounded open sets so the above theorem will suffice. Such an extension operator will be
referred to as a (1, p) extension operator.
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38.3 General Embedding Theorems
With the extension theorem it is possible to give a useful theory of embeddings.

Theorem 38.3.1 Let 1 ≤ p < n and 1
q = 1

p −
1
n and let U be any open set for which there

exists a (1, p) extension operator. Then if u∈W 1,p (U) , there exists a constant independent
of u such that

||u||Lq(U) ≤C ||u||1,p,U .

If U is bounded and r < q, then id : W 1,p (U)→ Lr (U) is also compact.

Proof: Let E be the (1, p) extension operator. Then by Theorem 38.1.10 on Page 1323

||u||Lq(U) ≤ ||Eu||Lq(Rn) ≤
1
n
√

n
(n−1) p
(n− p)

||Eu||1,p,Rn

≤ C ||u||1,p,U .

It remains to prove the assertion about compactness. If S⊆W 1,p (U) is bounded then

sup
u∈S

{
||u||1,1,U + ||u||Lq(U)

}
< ∞

and so by Theorem 38.1.17 on Page 1330, it follows S is precompact in Lr (U) .This proves
the theorem.

Corollary 38.3.2 Suppose mp < n and U is an open set satisfying the segment condition
which has a (1, p) extension operator for all p. Then id ∈ L (W m,p (U) ,Lq (U)) where
q = np

n−mp .

Proof: This is true if m = 1 according to Theorem 38.3.1. Suppose it is true for m−1
where m > 1. If u ∈W m,p (U) and |α| ≤ 1, then Dα u ∈W m−1,p (U) so by induction, for all
such α,

Dα u ∈ L
np

n−(m−1)p (U) .

Thus, since U has the segment condition, u ∈W 1,q1 (U) where

q1 =
np

n− (m−1) p

By Theorem 38.3.1, it follows u ∈ Lq (Rn) where

1
q
=

n− (m−1) p
np

− 1
n
=

n−mp
np

.

This proves the corollary.
There is another similar corollary of the same sort which is interesting and useful.
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Corollary 38.3.3 Suppose m ≥ 1 and j is a nonnegative integer satisfying jp < n. Also
suppose U has a (1, p) extension operator for all p≥ 1 and satisfies the segment condition.
Then

id ∈L
(
W m+ j,p (U) ,W m,q (U)

)
where

q≡ np
n− jp

. (38.3.34)

If, in addition to the above, U is bounded and 1≤ r < q, then

id ∈L
(
W m+ j,p (U) ,W m,r (U)

)
and is compact.

Proof: If |α| ≤ m, then Dα u ∈W j,p (U) and so by Corollary 38.3.2, Dα u ∈ Lq (U)
where q is given above. Since U has the segment property, this means u ∈W m,q (U). It
remains to verify the assertion about compactness of id.

Let S be bounded in W m+ j,p (U) . Then S is bounded in W m,q (U) by the first part. Now
let {uk}∞

k=1 be any sequence in S. The corollary will be proved if it is shown that any
such sequence has a convergent subsequence in W m,r (U). Let {α1,α2, · · · ,αh} denote the
indices satisfying |α| ≤ m. Then for each of these indices, α,

sup
u∈S

{
||Dα u||1,1,U + ||Dα u||Lq(U)

}
< ∞

and so for each such α, satisfying |α| ≤ m, it follows from Lemma 38.1.16 on Page 1328
that {Dα u : u ∈ S} is precompact in Lr (U) . Therefore, there exists a subsequence, still de-
noted by uk such that Dα1uk converges in Lr (U) . Applying the same lemma, there exists a
subsequence of this subsequence such that both Dα1 uk and Dα2uk converge in Lr (U) . Con-
tinue taking subsequences until you obtain a subsequence, {uk}∞

k=1 for which {Dα uk}∞

k=1
converges in Lr (U) for all |α| ≤m. But this must be a convergent subsequence in W m,r (U)
and this proves the corollary.

Theorem 38.3.4 Let U be a bounded open set having a (1, p) extension operator and let
p > n. Then id : W 1,p (U)→C

(
U
)

is continuous and compact.

Proof: Theorem 38.1.3 on Page 38.1.3 implies rU : W 1,p (Rn)→C
(
U
)

is continuous
and compact. Thus

||u||
∞,U = ||Eu||

∞,U ≤C ||Eu||1,p,Rn ≤C ||u||1,p,U .

This proves continuity. If S is a bounded set in W 1,p (U) , then define S1 ≡ {Eu : u ∈ S} .
Then S1 is a bounded set in W 1,p (Rn) and so by Theorem 38.1.3 the set of restrictions to
U, is precompact. However, the restrictions to U are just the functions of S. Therefore, id
is compact as well as continuous.

Corollary 38.3.5 Let p> n, let U be a bounded open set having a (1, p) extension operator
which also satisfies the segment condition, and let m be a nonnegative integer. Then id :
W m+1,p (U)→Cm,λ

(
U
)

is continuous for all λ ∈ [0,1− n
p ] and id is compact if λ < 1− n

p .
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Proof: Let uk→ 0 in W m+1,p (U) . Then it follows that for each |α| ≤ m, Dα uk→ 0 in
W 1,p (U) . Therefore,

E (Dα uk)→ 0 in W 1,p (Rn) .

Then from Morrey’s inequality, 38.1.13 on Page 1318, if λ ≤ 1− n
p and |α|= m

ρλ (E (Dα uk))≤C ||E (Dα uk)||1,p,Rn diam(U)1− n
p−λ .

Therefore, ρλ (E (Dα uk)) = ρλ (D
α uk)→ 0. From Theorem 38.3.4 it follows that for |α| ≤

m, ||Dα uk||∞→ 0 and so ||uk||m,λ → 0. This proves the claim about continuity. The claim
about compactness for λ < 1− n

p follows from Lemma 38.1.6 on Page 1319 and this.

(Bounded in W m,p (U)
id→ Bounded in Cm,1− n

p
(
U
) id→ Compact in Cm,λ

(
U
)
.)

Theorem 38.3.6 Suppose jp < n < ( j+1) p and let m be a positive integer. Let U be
any bounded open set in Rn which has a (1, p) extension operator for each p ≥ 1 and the
segment property. Then id ∈L

(
W m+ j,p (U) ,Cm−1,λ

(
U
))

for every λ ≤ λ 0 ≡ ( j+1)− n
p

and if λ < ( j+1)− n
p , id is compact.

Proof: From Corollary 38.3.3 W m+ j,p (U) ⊆W m,q (U) where q is given by 38.3.34.
Therefore,

np
n− jp

> n

and so by Corollary 38.3.5, W m,q (U)⊆Cm−1,λ
(
U
)

for all λ satisfying

0 < λ < 1− (n− jp)n
np

=
p( j+1)−n

p
= ( j+1)− n

p
.

The assertion about compactness follows from the compactness of the embedding of

Cm−1,λ 0
(
U
)

into Cm−1,λ
(
U
)

for λ < λ 0, Lemma 38.1.6 on Page 1319.

38.4 More Extension Theorems
The theorem about the existence of a (1, p) extension is all that is needed to obtain gen-
eral embedding theorems for Sobolev spaces. However, a more general theory is needed
in order to tie the theory of Sobolev spaces presented thus far to a very appealing descrip-
tion using Fourier transforms. First the problem of extending W k,p (H) to W k,p (Rn) is
considered for H− a half space

H− ≡ {y ∈ Rn : yn < 0} . (38.4.35)

I am following Adams [1].
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Lemma 38.4.1 Let H− be a half space as in 38.4.35. Let H+ be the half space in which
yn < 0 is replaced with yn > 0. Also let (y′,yn) = y

u
(
y′,yn

)
≡
{

u+ (y′,yn) if y ∈ H+

u− (y′,yn) if y ∈ H− ,

suppose u+ ∈C∞

(
H+
)

and u− ∈C∞

(
H−
)
, and that for l ≤ k−1,

Dlenu+
(
y′,0

)
= Dlenu−

(
y′,0

)
.

Then u ∈W k,p (Rn). Furthermore,

Dα u
(
y′,yn

)
≡
{

Dα u+ (y′,yn) if y ∈ H+

Dα u− (y′,yn) if y ∈ H−

Proof: Consider the following for φ ∈C∞
c (Rn) and |α| ≤ k.

(−1)|α|
(∫

Rn−1

∫
∞

0
u+Dα

φdyndy′+
∫
Rn−1

∫ 0

−∞

u−Dα
φdyndy′

)
.

Integrating by parts, this yields

(−1)|α| (−1)|β |
(∫

Rn−1

∫
∞

0
Dβ u+Dαnenφdyndy′

+
∫
Rn−1

∫ 0

−∞

Dβ u−Dαnenφdyndy′
)

where β ≡ (α1,α2, · · ·αn−1,0) . Do integration by parts on the inside integral and by as-
sumption, the boundary terms will cancel and the whole thing reduces to

(−1)|α| (−1)|β | (−1)αn

(∫
Rn−1

∫
∞

0
Dα u+φdyndy′

+
∫
Rn−1

∫ 0

−∞

Dα u−φdyndy′
)

=

(∫
Rn−1

∫
∞

0
Dα u+φdyndy′+

∫
Rn−1

∫ 0

−∞

Dα u−φdyndy′
)

which proves the lemma.

Lemma 38.4.2 Let H− be the half space in 38.4.35 and let u ∈ C∞

(
H−
)
. Then there

exists a mapping,
E : C∞

(
H−
)
→W k,p (Rn)

and a constant, C which is independent of u ∈C∞

(
H−
)

such that E is linear and for all
l ≤ k,

||Eu||l,p,Rn ≤C ||u||l,p,H− . (38.4.36)
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Proof: Define

Eu
(
x′,xn

)
≡
{

u(x′,xn) if xn < 0
∑

k
j=1 λ ju(x′,− jxn) if xn ≥ 0

where the λ j are chosen in such a way that for l ≤ k−1,

Dlenu
(
x′,0

)
−Dlen

(
k

∑
j=1

λ ju

)(
x′,0

)
= 0

so that Lemma 38.4.1 may be applied. Do there exist such λ j? It is necessary to have the
following hold for each r = 0,1, · · · ,k−1.

k

∑
j=1

(− j)r
λ jDrenu

(
x′,0

)
= Drenu

(
x′,0

)
.

This is satisfied if
k

∑
j=1

(− j)r
λ j = 1

for r = 0,1, · · · ,k−1. This is a system of k equations for the k variables, the λ j. The matrix
of coefficients is of the form

1 1 1 · · · 1
−1 −2 −3 · · · −k
1 4 9 · · · k2

...
...

...
...

(−1)k (−2)k (−3)k · · · (−k)k


This matrix has an inverse because its determinant is nonzero.

Now from Lemma 38.4.1, it follows from the above description of E that for |α| ≤ k,

Dα (Eu)
(
x′,xn

)
≡
{

Dα u(x′,xn) if xn < 0
∑

k
j=1 λ j (− j)αn (Dα u)(x′,− jxn) if xn ≥ 0

It follows that E is linear and there exists a constant, C independent of u such that 38.4.36
holds. This proves the lemma.

Corollary 38.4.3 Let H− be the half space of 38.4.35. There exists E with the property
that E : W l,p (H−)→W l,p (Rn) and is linear and continuous for each l ≤ k.

Proof: This immediate from the density of C∞
c

(
H−
)

in W k,p
(

H−
)

and Lemma 38.4.2.
There is nothing sacred about a half space or this particular half space. It is clear that

everything works as well for a half space of the form

H−k ≡ {x : xk < 0} .

Thus the half space featured in the above discussion is H−n .
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Corollary 38.4.4 Let {k1, · · · ,kr} ⊆ {1, · · · ,n} where the ki are distinct and let

H−k1···kr
≡ H−k1

∩H−k2
∩·· ·∩H−kr

. (38.4.37)

Then there exists E : W k,p
(

H−k1···kr

)
→W k,p (Rn) such that E is linear and continuous.

Proof: Follow the above argument with minor modifications to first extend from H−k1···kr

to H−k1···kr−1
and then from from H−k1···kr−1

to H−k1···kr−2
etc.

This easily implies the ability to extend off bounded open sets which near their bound-
aries look locally like an intersection of half spaces.

Theorem 38.4.5 Let U be a bounded open set and suppose U0,U1, · · · ,Um are open sets
with the property that U ⊆∪m

k=0Uk,U0⊆U, and ∂U ⊆∪m
k=1Uk. Suppose also there exist one

to one and onto functions, hk :Rn→Rn, hk (Uk ∩U) =Wk where Wk equals the intersection
of a bounded open set with a finite intersection of half spaces, H−k1···kr

, as in 38.4.37 such
that hk (∂U ∩Uk)⊆ ∂H−k1···kr

. Suppose also that for all |α| ≤ k−1,

Dα hk and Dα h−1
k

exist and are Lipschitz continuous. Then letting W be an open set which contains U , there
exists E : W k,p (U)→W k,p (W ) such that E is a linear continuous map from W l,p (U) to
W l,p (W ) for each l ≤ k.

Proof: Let ψ j ∈C∞
c (U j), ψ j (x) ∈ [0,1] for all x ∈Rn, and ∑

m
j=0 ψ j (x) = 1 on U . This

is a C∞ partition of unity on U . By Theorem 38.0.14
(

h−1
j

)∗
uψ j ∈W k,p (Wj) . By the

assumption that h j (∂U ∩U j) ⊆ ∂H−k1···kr
, the zero extension of

(
h−1

j

)∗
uψ j to the rest of

H−k1···kr
results in an element of W k,p

(
H−k1···kr

)
. Apply Corollary 38.4.4 to conclude there

exists E j : W k,p
(

H−k1···kr

)
→W k,p (Rn) which is continuous and linear. Abusing notation

slightly, by using
(

h−1
j

)∗
uψ j as the above zero extension, it follows E j

((
h−1

j

)∗
uψ j

)
∈

W k,p (Rn) . Now let η be a function in C∞
c (h(W )) such that η (y) = 1 on h

(
U
)
. Then

Define

Eu≡
m

∑
j=0

h∗jηE j

((
h−1

j

)∗(
uψ j

))
.

Clearly Eu(x) = u(x) if x ∈U. It is also clear that E is linear. It only remains to verify E
is continuous. In what follows, C j will denote a constant which is independent of u which
may change from line to line. By Theorem 38.0.14,

||Eu||k,p,W ≤
m

∑
j=0

∣∣∣∣∣∣h∗jηE j

((
h−1

j

)∗(
uψ j

))∣∣∣∣∣∣
k,p,W

≤
m

∑
j=0

C j

∣∣∣∣∣∣ηE j

((
h−1

j

)∗(
uψ j

))∣∣∣∣∣∣
k,p,h(W )
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=
m

∑
j=0

C j

∣∣∣∣∣∣ηE j

((
h−1

j

)∗(
uψ j

))∣∣∣∣∣∣
k,p,Rn

≤
m

∑
j=0

C j

∣∣∣∣∣∣E j

((
h−1

j

)∗(
uψ j

))∣∣∣∣∣∣
k,p,Rn

≤
m

∑
j=0

C j

∣∣∣∣∣∣(h−1
j

)∗(
uψ j

)∣∣∣∣∣∣
k,p,h j(U∩U j)

≤
m

∑
j=0

C j

∣∣∣∣∣∣uψ j

∣∣∣∣∣∣
k,p,U∩Uk

≤
m

∑
j=0

C j ||u||k,p,U∩Uk
≤

(
m

∑
j=0

C j

)
||u||k,p,U .

Similarly E : W l,p (U)→W l,p (U) for l ≤ k. This proves the theorem.

Definition 38.4.6 When E is a linear continuous map from W l,p (U) to W l,p (Rn) for each
l ≤ k. it is called a strong (k, p) extension map.

There is also a very easy sort of extension theorem for the space, W m,p
0 (U) which does

not require any assumptions on the boundary of U other than mn (∂U) = 0. First here is
the definition of W m,p

0 (U) .

Definition 38.4.7 Denote by W m,p
0 (U) the closure of C∞

c (U) in W m,p (U) .

Theorem 38.4.8 For u ∈W m,p
0 (U) , define

Eu(x)≡
{

u(x) if x ∈U
0 if x /∈U

Then E is a strong (k, p) extension map.

Proof: Letting l ≤ m, it is clear that for |α| ≤ l,

Dα Eu =

{
Dα u for x ∈U
0 for x /∈U .

This follows because, since mn (∂U) = 0 it suffices to consider φ ∈C∞
c (U) and

φ ∈C∞
c

(
UC
)
.

Therefore, ||Eu||l,p,Rn = ||u||l,p,U .
There are many other extension theorems and if you are interested in pursuing this

further, consult Adams [1]. One of the most famous which is discussed in this reference is
due to Calderon and depends on the theory of singular integrals.



Chapter 39

Sobolev Spaces Based On L2

39.1 Fourier Transform Techniques
Much insight can be obtained easily through the use of Fourier transform methods. This
technique will be developed in this chapter. When this is done, it is necessary to use
Sobolev spaces of the form W k,2 (U) , those Sobolev spaces which are based on L2 (U) .
It is true there are generalizations which use Fourier transform methods in the context of
Lp but the spaces so considered are called Bessel potential spaces. They are not really
Sobolev spaces. Furthermore, it is Mihlin’s theorem rather than the Plancherel theorem
which is the main tool of the analysis. This is a hard theorem.

It is convenient to consider the Schwartz class of functions,S. These are functions
which have infinitely many derivatives and vanish quickly together with their derivatives as
|x| →∞. In particular, C∞

c (Rn) is contained in S which is not true of the functions, G used
earlier in defining the Fourier transforms which are a suspace of S. Recall the following
definition.

Definition 39.1.1 f ∈S, the Schwartz class, if f ∈C∞(Rn) and for all positive integers N,

ρN( f )< ∞

where
ρN( f ) = sup{(1+ |x|2)N |Dα f (x)| : x ∈ Rn , |α| ≤ N}.

Thus f ∈S if and only if f ∈C∞(Rn) and

sup{|xβ Dα f (x)| : x ∈ Rn}< ∞ (39.1.1)

for all multi indices α and β .

Thus all partial derivatives of a function in S are in Lp (Rn) for all p ≥ 1. Therefore,
for f ∈S, the Fourier and inverse Fourier transforms are given in the usual way,

F f (t) =
(

1
2π

)n/2 ∫
Rn

f (x)e−it·xdx, F−1 f (t) =
(

1
2π

)n/2 ∫
Rn

f (x)eit·xdx.

Also recall that the Fourier transform and its inverse are one to one and onto maps from S
to S.

To tie the Fourier transform technique in with what has been done so far, it is necessary
to make the following assumption on the set, U. This assumption is made so that it is
possible to consider elements of W k,2 (U) as restrictions of elements of W k,2 (Rn) .

Assumption 39.1.2 Assume U satisfies the segment condition and that for any m of inter-
est, there exists E ∈L (W m,p (U) ,W m,p (Rn)) such that for each

k ≤ m, E ∈L
(

W k,p (U) ,W k,p (Rn)
)
.

That is, there exists a stong (m, p) extension operator.

1345



1346 CHAPTER 39. SOBOLEV SPACES BASED ON L2

Lemma 39.1.3 The Schwartz class, S, is dense in W m,p (Rn) .

Proof: The set,Rn satisfies the segment condition and so C∞
c (Rn) is dense in W m,p (Rn) .

However, C∞
c (Rn)⊆S. This proves the lemma.

Recall now Plancherel’s theorem which states that || f ||0,2,Rn = ||F f ||0,2,Rn whenever
f ∈ L2 (Rn) . Also it is routine to verify from the definition of the Fourier transform that for
u ∈S,

F∂ku = ixkFu.

From this it follows that
||Dα u||0,2,Rn = ||xα Fu||0,2,Rn .

Here xα denotes the function x→ xα . Therefore,

||u||m,2,Rn =

(∫
Rn

∑
|α|≤m

x2α1
1 · · ·x2αn

n |Fu(x)|2 dx

)1/2

.

Also, it is not hard to verify that

∑
|α|≤m

x2α1
1 · · ·x2αn

n ≤

(
1+

n

∑
j=1

x2
j

)m

≤C (n,m) ∑
|α|≤m

x2α1
1 · · ·x2αn

n

where C (n,m) is the largest of the multinomial coefficients obtained in the expansion,(
1+

n

∑
j=1

x2
j

)m

.

Therefore, for all u ∈S,

||u||m,2,Rn ≤
(∫

Rn

(
1+ |x|2

)m
|Fu(x)|2 dx

)1/2

≤C (n,m) ||u||m,2,Rn . (39.1.2)

This motivates the following definition.

Definition 39.1.4 Let Hm (Rn)≡{
u ∈ L2 (Rn) : ||u||Hm(Rn) ≡

(∫
Rn

(
1+ |x|2

)m
|Fu(x)|2 dx

)1/2

< ∞

}
. (39.1.3)

Lemma 39.1.5 S is dense in Hm (Rn) and Hm (Rn) =W 2,m (Rn). Furthermore, the norms
are equivalent.

Proof: First it is shown that S is dense in Hm (Rn) . Let u ∈ Hm (Rn) . Let µ (E) ≡∫
E

(
1+ |x|2

)m
dx. Thus µ is a regular measure and u ∈ Hm (Rn) just means that Fu ∈

L2 (µ) , the space of functions which are in L2 (Rn) with respect to this measure, µ. There-
fore, from the regularity of the measure, µ, there exists uk ∈Cc (Rn) such that

||uk−Fu||L2(µ)→ 0.
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Now let ψε be a mollifier and pick εk small enough that∣∣∣∣∣∣uk ∗ψεk
−uk

∣∣∣∣∣∣
L2(µ)

<
1
2k .

Then uk ∗ψεk
∈C∞

c (Rn)⊆S. Therefore, there exists wk ∈ G such that Fwk = uk ∗ψεk
. It

follows
||Fwk−Fu||L2(µ) ≤ ||Fwk−uk||L2(µ)+ ||uk−Fu||L2(µ)

and these last two terms converge to 0 as k→ ∞. Therefore, wk → u in Hm (Rn) and this
proves the first part of this lemma.

Now let u ∈ Hm (Rn) . By what was just shown, there exists a sequence, uk → u in
Hm (Rn) where uk ∈S. It follows from 39.1.2 that

||uk−ul ||Hm ≥ ||uk−ul ||m,2,Rn

and so {uk} is a Cauchy sequence in W m,2 (Rn) . Therefore, there exists w∈W m,2 (Rn) such
that

||uk−w||m,2,Rn → 0.

But this implies
0 = lim

k→∞

||uk−w||0,2,Rn = lim
k→∞

||uk−u||0,2,Rn

showing u = w which verifies Hm (Rn)⊆W 2,m (Rn) . The opposite inclusion is proved the
same way, using density of S and the fact that the norms in both spaces are larger than
the norms in L2 (Rn). The equivalence of the norms follows from the density of S and the
equivalence of the norms on S. This proves the lemma.

The conclusion of this lemma with the density of S and 39.1.2 implies you can use
either norm, ||u||Hm(Rn) or ||u||m,2,Rn when working with these Sobolev spaces.

What of open sets satisfying Assumption 39.1.2? How does W m,2 (U) relate to the
Fourier transform?

Definition 39.1.6 Let U be an open set in Rn. Then

Hm (U)≡ {u : u = v|U for some v ∈ Hm (Rn)} (39.1.4)

Here the notation, v|U means v restricted to U. Define the norm in this space by

||u||Hm(U) ≡ inf
{
||v||Hm(Rn) : v|U = u

}
. (39.1.5)

Lemma 39.1.7 Hm (U) is a Banach space.

Proof: First it is necessary to verify that the given norm really is a norm. Suppose then
that u = 0. Is ||u||Hm(U) = 0? Of course it is. Just take v≡ 0. Then v|U = u and ||v||Hm = 0.
Next suppose ||u||Hm(U) = 0. Does it follow that u = 0? Letting ε > 0 be given, there exists
v ∈ Hm (Rn) such that v|U = u and ||v||Hm(Rn) < ε. Therefore,

||u||0,U ≤ ||v||0,Rn ≤ ||v||Hm(U) < ε.
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Since ε > 0 is arbitrary, it follows u = 0 a.e. Next suppose ui ∈ Hm (U) for i = 1,2. There
exists vi ∈ Hm (Rn) such that

||vi||Hm(Rn) < ||ui||Hm(U)+ ε.

Therefore,

||u1 +u2||Hm(U) ≤ ||v1 + v2||Hm(Rn) ≤ ||v1||Hm(Rn)+ ||v2||Hm(Rn)

≤ ||u1||Hm(U)+ ||u2||Hm(U)+2ε

and since ε > 0 is arbitrary, this shows the triangle inequality.
The interesting question is the one about completeness. Suppose then {uk} is a Cauchy

sequence in Hm (U) . There exists Nk such that if k, l ≥ Nk, it follows ||uk−ul ||Hm(U) <
1
2k

and the numbers, Nk can be taken to be strictly increasing in k. Thus for

l ≥ Nk,
∣∣∣∣ul−uNk

∣∣∣∣
Hm(U)

< 1/2l .

Therefore, there exists wl ∈ Hm (Rn) such that

wl |U = ul−uNk , ||wl ||Hm(Rn) <
1
2l .

Also let vNk |U = uNk with vNk ∈ Hm (Rn) and

∣∣∣∣vNk

∣∣∣∣
Hm(Rn)

<
∣∣∣∣uNk

∣∣∣∣
Hm(U)

+
1
2k .

Now for l > Nk, define vl by vl−vNk = wNk so that
∣∣∣∣vl− vNk

∣∣∣∣
Hm(Rn)

< 1/2k. In particular,∣∣∣∣vNk+1 − vNk

∣∣∣∣
Hm(Rn)

< 1/2k

which shows that
{

vNk

}∞

k=1 is a Cauchy sequence. Consequently it must converge to v ∈
Hm (Rn) . Let u = v|U . Then∣∣∣∣u−uNk

∣∣∣∣
Hm(U)

≤
∣∣∣∣v− vNk

∣∣∣∣
Hm(Rn)

which shows the subsequence,
{

uNk

}
k converges to u. Since {uk} is a Cauchy sequence, it

follows it too must converge to u. This proves the lemma.
The main result is next.

Theorem 39.1.8 Suppose U satisfies Assumption 39.1.2. Then for m a nonnegative integer,
Hm (U) =W m,2 (U) and the two norms are equivalent.

Proof: Let u ∈ Hm (U) . Then there exists v ∈ Hm (Rn) such that v|U = u. Hence
v ∈W k,2 (Rn) and so all its weak derivatives up to order m are in L2 (Rn) . Therefore, the
restrictions of these weak derivitves are in L2 (U) . Since U satisfies the segment condition,
it follows u ∈W m,2 (U) which shows Hm (U)⊆W m,2 (U) .
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Next take u ∈W m,2 (U) . Then Eu ∈W m,2 (Rn) = Hm (Rn) and this shows u ∈Hm (U) .
This has shown the two spaces are the same. It remains to verify their norms are equivalent.
Let u ∈ Hm (U) and let v|U = u where v ∈ Hm (Rn) and

||u||Hm(U)+ ε > ||v||Hm(Rn) .

Then recalling that ||·||Hm(Rn) and ||·||m,2,Rn are equivalent norms for Hm (Rn) , there exists
a constant, C such that

||u||Hm(U)+ ε > ||v||Hm(Rn) ≥C ||v||m,2,Rn ≥C ||u||m,2,U

Now consider the two Banach spaces,(
Hm (U) , ||·||Hm(U)

)
,
(

W m,2 (U) , ||·||m,2,U

)
.

The above inequality shows since ε > 0 is arbitrary that

id :
(

Hm (U) , ||·||Hm(U)

)
→
(

W m,2 (U) , ||·||m,2,U

)
is continuous. By the open mapping theorem, it follows id is continuous in the other di-
rection. Thus there exists a constant, K such that ||u||Hm(U) ≤ K ||u||k,2,U . Hence the two
norms are equivalent as claimed.

Specializing Corollary 38.3.3 and Theorem 38.3.6 starting on Page 1339 to the case of
p = 2 while also assuming more on U yields the following embedding theorems.

Theorem 39.1.9 Suppose m≥ 0 and j is a nonnegative integer satisfying 2 j < n. Also let
U bean open set which satisfies Assumption 39.1.2. Then id ∈ L

(
Hm+ j (U) ,W m,q (U)

)
where

q≡ 2n
n−2 j

. (39.1.6)

If, in addition to the above, U is bounded and 1≤ r < q, then

id ∈L
(
Hm+ j (U) ,W m,r (U)

)
and is compact.

Theorem 39.1.10 Suppose for j a nonnegative integer, 2 j < n < 2( j+1) and let m be a
positive integer. Let U be any bounded open set in Rn which satisfies Assumption 39.1.2.
Then id ∈L

(
Hm+ j (U) ,Cm−1,λ

(
U
))

for every λ ≤ λ 0 ≡ ( j+1)− n
2 and if λ < ( j+1)−

n
2 , id is compact.

39.2 Fractional Order Spaces
What has been gained by all this? The main thing is that Hm+s (U) makes sense for any
s ∈ (0,1) and m an integer. You simply replace m with m+ s in the above for s ∈ (0,1).
This gives what is meant by Hm+s (Rn)
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Definition 39.2.1 For m an integer and s ∈ (0,1) , let Hm+s (Rn)≡{
u ∈ L2 (Rn) : ||u||Hm+s(Rn) ≡

(∫
Rn

(
1+ |x|2

)m+s
|Fu(x)|2 dx

)1/2

< ∞

}
. (39.2.7)

You could also simply refer to Ht (Rn) where t is a real number replacing the m+ s in
the above formula with t but I want to emphasize the notion that t = m+ s where m is a
nonnegative integer. Therefore, I will often write m+ s. Let U be an open set in Rn. Then

Hm+s (U)≡
{

u : u = v|U for some v ∈ Hm+s (Rn)
}
. (39.2.8)

Define the norm in this space by

||u||Hm+s(U) ≡ inf
{
||v||Hm+s(Rn) : v|U = u

}
. (39.2.9)

Lemma 39.2.2 Hm+s (U) is a Banach space.

Proof: Just repeat the proof of Lemma 39.1.7.
The theorem about density of S also remains true in Hm+s (Rn) . Just repeat the proof

of that part of Lemma 39.1.5 replacing the integer, m, with the symbol, m+ s.

Lemma 39.2.3 S is dense in Hm+s (Rn).

In fact, more can be said.

Corollary 39.2.4 Let U be an open set and let S|U denote the restrictions of functions of
S to U. Then S|U is dense in Ht (U) .

Proof: Let u ∈ Ht (U) and let v ∈ Ht (Rn) such that v|U = u a.e. Then since S is dense
in Ht (Rn) , there exists w ∈S such that

||w− v||Ht (Rn) < ε.

It follows that

||u−w||Ht (U) ≤ ||u− v||Ht (U)+ ||v−w||Ht (U)

≤ 0+ ||v−w||Ht (Rn) < ε.

These fractional order spaces are important when trying to understand the trace on the
boundary. The Fourier transform description also makes it very easy to establish interesting
inequalities such as interpolation inequalities.

Lemma 39.2.5 Let 0≤ r < s < t. Then if u ∈ Ht (Rn) ,

||u||Hs(Rn) ≤ ||u||
θ

Hr(Rn) ||u||
1−θ

Ht (Rn)

where θ is a positve number such that θr+(1−θ) t = s.
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Proof: This follows from Holder’s inequality applied to the measure µ given by

µ (E) =
∫

E
|Fu|2 dx

Thus ∫ (
1+ |x|2

)s
|Fu|2 dx

=
∫ (

1+ |x|2
)rθ (

1+ |x|2
)(1−θ)t

|Fu|2 dx

≤
(∫ (

1+ |x|2
)r
|Fu|2 dx

)θ (∫ (
1+ |x|2

)(1−θ)t
|Fu|2 dx

)1−θ

= ||u||2θ

Hr(Rn) ||u||
2(1−θ)
Ht (Rn)

.

Taking square roots yields the desired inequality.

Corollary 39.2.6 Let U be an open set satisfying Assumption 39.1.2 and let p < q where
p,q are two nonnegative integers. Also let t ∈ (p,q) . Then exists a constant, C independent
of u ∈ Hq (U) such that for all u ∈ Hq (U) ,

||u||Ht (U) ≤C ||u||θH p(U) ||u||
1−θ

Hq(U)

where θ is such that t = θ p+(1−θ)q.

Proof: Let E ∈L (Hq (U) ,Hq (Rn)) such that for all positive integers, l less than or
equal to q, E ∈ L

(
H l (U) ,H l (Rn)

)
. Then Eu|U = u and Eu ∈ Ht (Rn) . Therefore, by

Lemma 39.2.5,

||u||Ht (U) ≤ ||Eu||Ht (Rn) ≤ ||Eu||θH p(Rn) ||Eu||1−θ

Hq(Rn)

≤ C ||u||θH p(U) ||u||
1−θ

Hq(U) .

Now recall the very important Theorem 38.0.14 on Page 1316 which is listed here for
convenience.

Theorem 39.2.7 Let h : U →V be one to one and onto where U and V are two open sets.
Also suppose that Dα h and Dα

(
h−1
)

exist and are Lipschitz continuous if |α| ≤ m−1 for
m a positive integer. Then

h∗ : W m,p (V )→W m,p (U)

is continuous, linear, one to one, and has an inverse with the same properties, the inverse
being

(
h−1
)∗
.

39.3 An Intrinsic Norm
Is there something like this for the fractional order spaces? Yes there is. However, in order
to prove it, it is convenient to use an equivalent norm for Hm+s (Rn) which does not depend
explicitly on the Fourier transform. The following theorem is similar to one in [68]. It
describes the norm in Hm+s (Rn) in terms which are free of the Fourier transform. This is
also called an intrinsic norm [1].
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Theorem 39.3.1 Let s ∈ (0,1) and let m be a nonnegative integer. Then an equivalent
norm for Hm+s (Rn) is

|||u|||2m+s ≡ ||u||
2
m,2,Rn + ∑

|α|=m

∫ ∫
|Dα u(x)−Dα u(y)|2 |x−y|−n−2s dxdy.

Also if |β | ≤ m, there are constants, m(s) and M (s) such that

m(s)
∫
|Fu(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz≤
∫ ∫ ∣∣∣Dβ u(x)−Dβ u(y)

∣∣∣2 |x−y|−n−2s dxdy

≤M (s)
∫
|Fu(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz (39.3.10)

Proof: Let u ∈S which is dense in Hm+s (Rn). The Fourier transform of the function,
y→ Dα u(x+y)−Dα u(y) equals(

eix·z−1
)

FDα u(z) .

Now by Fubini’s theorem and Plancherel’s theorem along with the above, taking |α|= m,∫ ∫
|Dα u(x)−Dα u(y)|2 |x−y|−n−2s dxdy

=
∫ ∫

|Dα u(y+ t)−Dα u(y)|2 |t|−n−2s dtdy

=
∫
|t|−n−2s

∫
|Dα u(y+ t)−Dα u(y)|2 dydt

=
∫
|t|−n−2s

∫ ∣∣(eit·z−1
)

FDα u(z)
∣∣2 dzdt

=
∫
|FDα u(z)|2

(∫
|t|−n−2s ∣∣(eit·z−1

)∣∣2 dt
)

dz. (39.3.11)

Consider the inside integral, the one taken with respect to t.

G(z)≡
(∫
|t|−n−2s ∣∣(eit·z−1

)∣∣2 dt
)
.

The essential thing to notice about this function of z is that it is a positive real number
whenever z ̸= 0. This is because for small |t| , the integrand is dominated by C |t|−n+2(1−s) .
Changing to polar coordinates, you see that∫

[|t|≤1]
|t|−n−2s ∣∣(eit·z−1

)∣∣2 dt < ∞

Next, for |t|> 1, the integrand is bounded by 4 |t|−n−2s , and changing to polar coordinates
shows ∫

[|t|>1]
|t|−n−2s ∣∣(eit·z−1

)∣∣2 dt ≤ 4
∫
[|t|>1]

|t|−n−2s dt < ∞.
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Now for α > 0,

G(αz) =
∫
|t|−n−2s ∣∣(eit·αz−1

)∣∣2 dt

=
∫
|t|−n−2s ∣∣(eiαt·z−1

)∣∣2 dt

=
∫ ∣∣∣ r

α

∣∣∣−n−2s ∣∣(eir·z−1
)∣∣2 1

αn dr

= α
2s
∫
|r|−n−2s ∣∣(eir·z−1

)∣∣2 dr = α
2sG(z) .

Also G is continuous and strictly positive. Letting

0 < m(s) = min{G(w) : |w|= 1}

and
M (s) = max{G(w) : |w|= 1} ,

it follows from this, and letting α = |z| ,w≡ z/ |z| , that

G(z) ∈
(

m(s) |z|2s ,M (s) |z|2s
)
.

More can be said but this will suffice. Also observe that for s ∈ (0,1) and b > 0,

(1+b)s ≤ 1+bs, 21−s (1+b)s ≥ 1+bs.

In what follows, C (s) will denote a constant which depends on the indicated quantities
which may be different on different lines of the argument. Then from 39.3.11,∫ ∫

|Dα u(x)−Dα u(y)|2 |x−y|−n−2s dxdy

≤ M (s)
∫
|FDα u(z)|2 |z|2s dz

= M (s)
∫
|Fu(z)|2 |zα |2 |z|2s dz.

No reference was made to |α|=m and so this establishes the top half of 39.3.10. Therefore,

|||u|||2m+s ≡ ||u||2m,2,Rn + ∑
|α|=m

∫ ∫
|Dα u(x)−Dα u(y)|2 |x−y|−n−2s dxdy

≤ C
∫ (

1+ |z|2
)m
|Fu(z)|2 dz+M (s)

∫
|Fu(z)|2 ∑

|α|=m
|zα |2 |z|2s dz

Recall that

∑
|α|≤m

z2α1
1 · · ·z2αn

n ≤

(
1+

n

∑
j=1

z2
j

)m

≤C (n,m) ∑
|α|≤m

z2α1
1 · · ·z2αn

n . (39.3.12)
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Therefore, where C (n,m) is the largest of the multinomial coefficients obtained in the ex-
pansion, (

1+
n

∑
j=1

z2
j

)m

.

Therefore,

|||u|||2m+s

≤ C
∫ (

1+ |z|2
)m
|Fu(z)|2 dz+M (s)

∫
|Fu(z)|2 ∑

|α|=m
|zα |2 |z|2s dz

≤ C
∫ (

1+ |z|2
)m+s

|Fu(z)|2 dz+M (s)
∫
|Fu(z)|2

(
1+ |z|2

)m
|z|2s dz

≤ C
∫ (

1+ |z|2
)m+s

|Fu(z)|2 dz =C ||u||Hm+s(Rn) .

It remains to show the other inequality. From 39.3.11,∫ ∫
|Dα u(x)−Dα u(y)|2 |x−y|−n−2s dxdy

≥ m(s)
∫
|FDα u(z)|2 |z|2s dz

= m(s)
∫
|Fu(z)|2 |zα |2 |z|2s dz.

No reference was made to |α| = m and so this establishes the bottom half of 39.3.10.
Therefore, from 39.3.12,

|||u|||2m+s

≥ C
∫ (

1+ |z|2
)m
|Fu(z)|2 dz+m(s)

∫
|Fu(z)|2 ∑

|α|=m
|zα |2 |z|2s dz

≥ C
∫ (

1+ |z|2
)m
|Fu(z)|2 dz+C

∫
|Fu(z)|2

(
1+ |z|2

)m
|z|2s dz

= C
∫ (

1+ |z|2
)m(

1+ |z|2s
)
|Fu(z)|2 dz

≥ C
∫ (

1+ |z|2
)m(

1+ |z|2
)s
|Fu(z)|2 dz

= C
∫ (

1+ |z|2
)m+s

|Fu(z)|2 dz = ||u||Hm+s(Rn) .

This proves the theorem.
With the above intrinsic norm, it becomes possible to prove the following version of

Theorem 39.2.7.

Lemma 39.3.2 Let h : Rn → Rn be one to one and onto. Also suppose that Dα h and
Dα
(
h−1
)

exist and are Lipschitz continuous if |α| ≤ m for m a positive integer. Then

h∗ : Hm+s (Rn)→ Hm+s (Rn)
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is continuous, linear, one to one, and has an inverse with the same properties, the inverse
being

(
h−1
)∗
.

Proof: Let u∈S. From Theorem 39.2.7 and the equivalence of the norms in W m,2 (Rn)
and Hm (Rn) ,

||h∗u||2Hm(Rn)+
∫ ∫

∑|α|=m |Dα h∗u(x)−Dα h∗u(y)|2 |x−y|−n−2s dxdy

≤C ||u||2Hm(Rn)+
∫ ∫

∑|α|=m |Dα h∗u(x)−Dα h∗u(y)|2 |x−y|−n−2s dxdy

=C ||u||2Hm(Rn)+
∫ ∫

∑|α|=m

∣∣∣∑|β (α)|≤m h∗
(

Dβ (α)u
)

gβ (α) (x)

−h∗
(

Dβ (α)u
)

gβ (α) (y)
∣∣∣2 |x−y|−n−2s dxdy

≤C ||u||2Hm(Rn)+C
∫ ∫

∑|α|=m ∑|β (α)|≤m

∣∣∣h∗(Dβ (α)u
)

gβ (α) (x)

−h∗
(

Dβ (α)u
)

gβ (α) (y)
∣∣∣2 |x−y|−n−2s dxdy

(39.3.13)

A single term in the last sum corresponding to a given α is then of the form,∫ ∫ ∣∣∣h∗(Dβ u
)

gβ (x)−h∗
(

Dβ u
)

gβ (y)
∣∣∣2 |x−y|−n−2s dxdy (39.3.14)

≤
[∫ ∫ ∣∣∣h∗(Dβ u

)
(x)gβ (x)−h∗

(
Dβ u

)
(y)gβ (x)

∣∣∣2 |x−y|−n−2s dxdy +

∫ ∫ ∣∣∣h∗(Dβ u
)
(y)gβ (x)−h∗

(
Dβ u

)
(y)gβ (y)

∣∣∣2 |x−y|−n−2s dxdy
]

≤
[
C (h)

∫ ∫ ∣∣∣h∗(Dβ u
)
(x)−h∗

(
Dβ u

)
(y)
∣∣∣2 |x−y|−n−2s dxdy +

∫ ∫ ∣∣∣h∗(Dβ u
)
(y)
∣∣∣2 ∣∣gβ (x)−gβ (y)

∣∣2 |x−y|−n−2s dxdy
]
.

Changing variables, and then using the names of the old variables to simplify the notation,

≤
[
C
(
h,h−1)∫ ∫ ∣∣∣(Dβ u

)
(x)−

(
Dβ u

)
(y)
∣∣∣2 |x−y|−n−2s dxdy +

∫ ∫ ∣∣∣h∗(Dβ u
)
(y)
∣∣∣2 ∣∣gβ (x)−gβ (y)

∣∣2 |x−y|−n−2s dxdy
]
.

By 39.3.10,

≤ C (h)
∫
|F (u)(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz

+
∫ ∫ ∣∣∣h∗(Dβ u

)
(y)
∣∣∣2 ∣∣gβ (x)−gβ (y)

∣∣2 |x−y|−n−2s dxdy.
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In the second term, let t = x−y. Then this term is of the form∫ ∣∣∣h∗(Dβ u
)
(y)
∣∣∣2 ∫ ∣∣gβ (y+ t)−gβ (y)

∣∣2 |t|−n−2s dtdy (39.3.15)

≤ C
∫ ∣∣∣h∗(Dβ u

)
(y)
∣∣∣2 dy≤C ||u||2Hm(Rn) . (39.3.16)

because the inside integral equals a constant which depends on the Lipschitz constants and
bounds of the function, gβ and these things depend only on h. The reason this integral is
finite is that for |t| ≤ 1,∣∣gβ (y+ t)−gβ (y)

∣∣2 |t|−n−2s ≤ K |t|2 |t|−n−2s

and using polar coordinates, you see∫
[|t|≤1]

∣∣gβ (y+ t)−gβ (y)
∣∣2 |t|−n−2s dt < ∞.

Now for |t| > 1, the integrand in 39.3.15 is dominated by 4 |t|−n−2s and using polar coor-
dinates, this yields∫

[|t|>1]

∣∣gβ (y+ t)−gβ (y)
∣∣2 |t|−n−2s dt ≤ 4

∫
[|t|>1]

|t|−n−2s dt < ∞.

It follows 39.3.14 is dominated by an expression of the form

C (h)
∫
|F (u)(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz+C ||u||2Hm(Rn)

and so the sum in 39.3.13 is dominated by

C (m,h)
∫
|F (u)(z)|2 |z|2s

∑
|β |≤m

∣∣∣zβ

∣∣∣2 dz+C ||u||2Hm(Rn)

≤ C (m,h)
∫
|F (u)(z)|2

(
1+ |z|2

)s(
1+ |z|2

)m
dz+C ||u||2Hm(Rn)

≤ C ||u||2Hm+s(Rn) .

This proves the theorem because the assertion about h−1 is obvious. Just replace h with
h−1 in the above argument.

Next consider the case where U is an open set.

Lemma 39.3.3 Let h(U) ⊆ V where U and V are open subsets of Rn and suppose that
h,h−1 :Rn→Rn are both functions in Cm,1 (Rn) . Recall this means Dα h and Dα h−1 exist
and are Lipschitz continuous for all |α| ≤ m. Then h∗ ∈L (Hm+s (V ) ,Hm+s (U)).

Proof: Let u∈Hm+s (V ) and let v∈Hm+s (Rn) such that v|V = u. Then from the above,
h∗v ∈ Hm+s (Rn) and so h∗u ∈ Hm+s (U) because h∗u = h∗v|U . Then by Lemma 39.3.2,

||h∗u||Hm+s(U) ≤ ||h
∗v||Hm+s(Rn) ≤C ||v||Hm+s(Rn)
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Since this is true for all v ∈ Hm+s (Rn) , it follows that

||h∗u||Hm+s(U) ≤C ||u||Hm+s(V ) .

With harder work, you don’t need to have h,h−1 defined on all of Rn but I don’t feel
like including the details so this lemma will suffice.

Another interesting application of the intrinsic norm is the following.

Lemma 39.3.4 Let φ ∈ Cm,1 (Rn) and suppose spt(φ) is compact. Then there exists a
constant, Cφ such that whenever u ∈ Hm+s (Rn) ,

||φu||Hm+s(Rn) ≤Cφ ||u||Hm+s(Rn) .

Proof: It is a routine exercise in the product rule to verify that

||φu||Hm(Rn) ≤Cφ ||u||Hm(Rn) .

It only remains to consider the term involving the integral. A typical term is∫ ∫
|Dα

φu(x)−Dα
φu(y)|2 |x−y|−n−2s dxdy.

This is a finite sum of terms of the form∫ ∫ ∣∣∣Dγ
φ (x)Dβ u(x)−Dγ

φ (y)Dβ u(y)
∣∣∣2 |x−y|−n−2s dxdy

where |γ| and |β | ≤ m.

≤ 2
∫ ∫

|Dγ
φ (x)|2

∣∣∣Dβ u(x)−Dβ u(y)
∣∣∣2 |x−y|−n−2s dxdy

+2
∫ ∫ ∣∣∣Dβ u(y)

∣∣∣2 |Dγ
φ (x)−Dγ

φ (y)|2 |x−y|−n−2s dxdy

By 39.3.10 and the Lipschitz continuity of all the derivatives of φ , this is dominated by

CM (s)
∫
|Fu(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz

+K
∫ ∫ ∣∣∣Dβ u(y)

∣∣∣2 |x−y|2 |x−y|−n−2s dxdy

= CM (s)
∫
|Fu(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz

+K
∫ ∣∣∣Dβ u(y)

∣∣∣2 ∫ |t|−n+2(1−s) dtdy

≤ C (s)
(∫
|Fu(z)|2

∣∣∣zβ

∣∣∣2 |z|2s dz+K
∫ ∣∣∣Dβ u(y)

∣∣∣2 dy
)

≤ C (s)
∫ (

1+ |y|2
)m+s

|Fu(y)|2 dy.

Since there are only finitely many such terms, this proves the lemma.
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Corollary 39.3.5 Let t = m+ s for s ∈ [0,1) and let U,V be open sets. Let φ ∈Cm,1
c (V ).

This means spt(φ) ⊆ V and φ ∈Cm,1 (Rn) . Then if u ∈ Ht (U) then uφ ∈ Ht (U ∩V ) and
||uφ ||Ht (U∩V ) ≤Cφ ||u||Ht (U) .

Proof: Let v|U = u a.e. where v ∈ Ht (Rn) . Then by Lemma 39.3.4, φv ∈ Ht (Rn) and
φv|U∩V = φu a.e. Therefore, φu ∈ Ht (U ∩V ) and

||φu||Ht (U∩V ) ≤ ||φv||Ht (Rn) ≤Cφ ||v||Ht (Rn) .

Taking the infimum for all such v whose restrictions equal u, this yields

||φu||Ht (U∩V ) ≤Cφ ||u||Ht (U) .

This proves the corollary.

39.4 Embedding Theorems
The Fourier transform description of Sobolev spaces makes possible fairly easy proofs of
various embedding theorems.

Definition 39.4.1 Let Cm
b (Rn) denote the functions which are m times continuously differ-

entiable and for which

sup
|α|≤m

sup
x∈Rn
|Dα u(x)| ≡ ||u||Cm

b (Rn) < ∞.

For U an open set, Cm
(
U
)

denotes the functions which are restrictions of Cm
b (Rn) to U.

It is clear this is a Banach space, the proof being a simple exercise in the use of the
fundamental theorem of calculus along with standard results about uniform convergence.

Lemma 39.4.2 Let u∈S and let n
2 +m < t. Then there exists C independent of u such that

||u||Cm
b (Rn) ≤C ||u||Ht (Rn) .

Proof: Using the fact that the Fourier transform maps S to S and the definition of the
Fourier transform,

|Dα u(x)| ≤ C ||FDα u||L1(Rn)

= C
∫
|xα | |Fu(x)|dx

≤ C
∫ (

1+ |x|2
)|α|/2

|Fu(x)|dx

≤ C
∫ (

1+ |x|2
)m/2(

1+ |x|2
)−t/2(

1+ |x|2
)t/2
|Fu(x)|dx

≤ C
(∫ (

1+ |x|2
)m−t

dx
)1/2(∫ (

1+ |x|2
)t
|Fu(x)|t

)1/2

≤ C ||u||Ht (Rn)

because for the given values of t and m the first integral is finite. This follows from a use
of polar coordinates. Taking sup over all x ∈ Rn and |α| ≤ m, this proves the lemma.
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Corollary 39.4.3 Let u ∈ Ht (Rn) where t > m+ n
2 . Then u is a.e. equal to a function of

Cm
b (Rn) still denoted by u. Furthermore, there exists a constant, C independent of u such

that
||u||Cm

b (Rn) ≤C ||u||Ht (Rn) .

Proof: This follows from the above lemma. Let {uk} be a sequence of functions of
S which converges to u in Ht and a.e. Then by the inequality of the above lemma, this
sequence is also Cauchy in Cm

b (Rn) and taking the limit,

||u||Cm
b (Rn) = lim

k→∞

||uk||Cm
b (Rn) ≤C lim

k→∞

||uk||Ht (Rn) =C ||u||Ht (Rn) .

What about open sets, U?

Corollary 39.4.4 Let t > m+ n
2 and let U be an open set with u ∈ Ht (U) . Then u is a.e.

equal to a function of Cm
(
U
)

still denoted by u. Furthermore, there exists a constant, C
independent of u such that

||u||Cm(U) ≤C ||u||Ht (U) .

Proof: Let u ∈ Ht (U) and let v ∈ Ht (Rn) such that v|U = u. Then

||u||Cm(U) ≤ ||v||Cm
b (Rn) ≤C ||v||Ht (Rn) .

Now taking the inf for all such v yields

||u||Cm(U) ≤C ||u||Ht (U) .

39.5 The Trace On The Boundary Of A Half Space
It is important to consider the restriction of functions in a Sobolev space onto a smaller
dimensional set such as the boundary of an open set.

Definition 39.5.1 For u ∈ S, define γu a function defined on Rn−1 by γu(x′) ≡ u(x′,0)
where x′ ∈ Rn−1 is defined by x = (x′,xn).

The following elementary lemma featuring trig. substitutions is the basis for the proof
of some of the arguments which follow.

Lemma 39.5.2 Consider the integral,∫
R

(
a2 + x2)−t

dx.

for a> 0 and t > 1/2. Then this integral is no more than Cta−2t+1 where Ct is some constant
which depends on t.

Proof: If t > 1/2 the integrand is in L1 (R). This is easily seen because it is of the form
1

(a2+x2)
t . Now change the variable letting x = au and the result is obtained. ■
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Lemma 39.5.3 Let u ∈S. Then there exists a constant, Cn, depending on n but indepen-
dent of u ∈S such that

Fγu
(
x′
)
=Cn

∫
R

Fu
(
x′,xn

)
dxn.

Proof: Using the dominated convergence theorem,∫
R

Fu
(
x′,xn

)
dxn ≡ lim

ε→0

∫
R

e−(εxn)
2
Fu
(
x′,xn

)
dxn

≡ lim
ε→0

∫
R

e−(εxn)
2
(

1
2π

)n/2 ∫
Rn

e−i(x′·y′+xnyn)u
(
y′,yn

)
dy′dyndxn

= lim
ε→0

(
1

2π

)n/2 ∫
Rn

u
(
y′,yn

)
e−ix′·y′

∫
R

e−(εxn)
2
e−ixnyndxndy′dyn.

Now −(εxn)
2− ixnyn =−ε2

(
xn +

iyn
2

)2
− ε2 y2

n
4 and so the above reduces to

lim
ε→0

(
1

2π

)n/2 ∫
Rn

u
(
y′,yn

)
e−ix′·y′

∫
R

e−ε2
(

xn+
iyn
2

)2
−ε2 y2

n
4 dxndy′dyn

= lim
ε→0

Kn

∫
Rn

u
(
y′,yn

)
e−ix′·y′e−ε2 y2

n
4

∫
R

e−ε2
(

xn+
iyn
2

)2

dxndy′dyn

= lim
ε→0

Kn

∫
Rn

u
(
y′,yn

)
e−ix′·y′e−ε2 y2

n
4

1
ε

dy′dyn

which is an expression of the form

lim
ε→0

Kn

∫
R

1
ε

e−ε2 y2
n
4

∫
Rn−1

u
(
y′,yn

)
e−ix′·y′dy′dyn = Kn

∫
Rn

u
(
y′,0

)
e−ix′·y′dy′

= KnFγu
(
x′
)

and this proves the lemma with Cn ≡ K−1
n .

Earlier Ht (Rn) was defined and then for U an open subset of Rn, Ht (U) was defined to
be the space of restrictions of functions of Ht (Rn) to U and a norm was given which made
Ht (U) into a Banach space. The next task is to considerRn−1×{0} , a smaller dimensional
subspace of Rn and examine the functions defined on this set, denoted by Rn−1 for short
which are restrictions of functions in Ht (Rn) . You note this is somewhat different because
heuristically, the dimension of the domain of the function is changing. An open set in Rn

is considered an n dimensional thing but Rn−1 is only n− 1 dimensional. I realize this is
vague because the standard definition of dimension requires a vector space and an open set
is not a vector space. However, think in terms of fatness. An open set is fat in n directions
whereas Rn−1 is only fat in n− 1 directions. Therefore, something interesting is likely to
happen.

Let S denote the Schwartz class of functions on Rn and S′ the Schwartz class of
functions on Rn−1. Also, y′ ∈ Rn−1 while y ∈ Rn. Let u ∈ S. Then from Lemma 39.5.3



39.5. THE TRACE ON THE BOUNDARY OF A HALF SPACE 1361

and s > 0, ∫
Rn−1

(
1+
∣∣y′∣∣2)s ∣∣Fγu

(
y′
)∣∣2 dy′

= Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s

∣∣∣∣∫RFu
(
y′,yn

)
dyn

∣∣∣∣2 dy′

=Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s

∣∣∣∣∫RFu
(
y′,yn

)(
1+ |y|2

)t/2(
1+ |y|2

)−t/2
dyn

∣∣∣∣2 dy′

Then by the Cauchy Schwarz inequality,

≤Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s ∫

R

∣∣Fu
(
y′,yn

)∣∣2(1+ |y|2
)t

dyn

∫
R

(
1+ |y|2

)−t
dyndy′.

(39.5.17)
Consider ∫

R

(
1+ |y|2

)−t
dyn =

∫
R

(
1+
∣∣y′∣∣2 + y2

n

)−t
dyn

by Lemma 39.5.2 and taking a =
(

1+ |y′|2
)1/2

, this equals

Ct

((
1+
∣∣y′∣∣2)1/2

)−2t+1

=Ct

(
1+
∣∣y′∣∣2)(−2t+1)/2

.

Now using this in 39.5.17,∫
Rn−1

(
1+
∣∣y′∣∣2)s ∣∣Fγu

(
y′
)∣∣2 dy′

≤ Cn,t

∫
Rn−1

(
1+
∣∣y′∣∣2)s ∫

R

∣∣Fu
(
y′,yn

)∣∣2(1+ |y|2
)t

dyn ·(
1+
∣∣y′∣∣2)(−2t+1)/2

dy′

= Cn,t

∫
Rn−1

(
1+
∣∣y′∣∣2)s+(−2t+1)/2 ∫

R

∣∣Fu
(
y′,yn

)∣∣2(1+ |y|2
)t

dyndy′.

What is the correct choice of t so that the above reduces to ∥u∥2
Ht (Rn)? It is clearly the one

for which
s+(−2t +1)/2 = 0

which occurs when t = s+ 1
2 . Then for this choice of t, the following inequality is obtained

for any u ∈S.
∥γu∥Ht−1/2(Rn−1) ≤Cn,t ∥u∥Ht (Rn) . (39.5.18)

This has proved part of the following theorem.

Theorem 39.5.4 For each t > 1/2 there exists a unique mapping

γ ∈L
(

Ht (Rn) ,Ht−1/2 (Rn−1))
which has the property that for u ∈S, γu(x′) = u(x′,0) . In addition to this, γ is onto. In
fact, there exists a continuous map, ζ ∈L

(
Ht−1/2

(
Rn−1

)
,Ht (Rn)

)
such that γ ◦ζ = id.
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Proof: It only remains to verify that γ is onto and that the continuous map, ζ exists.
Now define

φ (y)≡ φ
(
y′,yn

)
≡

(
1+ |y′|2

)t−1/2

(
1+ |y|2

)t .

Then for u ∈S′, let
ζ u(x)≡CF−1 (φFu)(x) =

C
∫
Rn

eiy·x

(
1+ |y′|2

)t−1/2

(
1+ |y|2

)t Fu
(
y′
)

dy (39.5.19)

Here the inside Fourier transform is taken with respect to Rn−1 because u is only defined
on Rn−1 and C will be chosen in such a way that γ ◦ ζ = id. First the existence of C such
that γ ◦ζ = id will be shown. Since u ∈S′ it follows

y→

(
1+ |y′|2

)t−1/2

(
1+ |y|2

)t Fu
(
y′
)

is in S. Hence the inverse Fourier transform of this function is also in S and so for u ∈S′,
it follows ζ u ∈S. Therefore, to check γ ◦ζ = id it suffices to plug in xn = 0. From Lemma
39.5.2 this yields

γ (ζ u)
(
x′,0

)
= C

∫
Rn

eiy′·x′

(
1+ |y′|2

)t−1/2

(
1+ |y|2

)t Fu
(
y′
)

dy

= C
∫
Rn−1

(
1+
∣∣y′∣∣2)t−1/2

eiy′·x′Fu
(
y′
)∫
R

1(
1+ |y|2

)t dyndy′

= CCt

∫
Rn−1

(
1+
∣∣y′∣∣2)t−1/2

eiy′·x′Fu
(
y′
)(

1+
∣∣y′∣∣2)−2t+1

2
dy′

= CCt

∫
Rn−1

eiy′·x′Fu
(
y′
)

dy′ =CCt (2π)n/2 F−1 (Fu)
(
x′
)

and so the correct value of C is
(

Ct (2π)n/2
)−1

to obtain γ ◦ ζ = id. It only remains to

verify that ζ is continuous. From 39.5.19, and Lemma 39.5.2,

||ζ u||2Ht (Rn)

=
∫
Rn

(
1+ |x|2

)t
|Fζ u(x)|2 dx

= C2
∫
Rn

(
1+ |x|2

)t ∣∣F (F−1 (φFu)(x)
)∣∣2 dx
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= C2
∫
Rn

(
1+ |x|2

)t ∣∣φ (x)Fu
(
x′
)∣∣2 dx

= C2
∫
Rn

(
1+ |x|2

)t

∣∣∣∣∣∣∣
(

1+ |x′|2
)t−1/2

(
1+ |x|2

)t Fu
(
x′
)∣∣∣∣∣∣∣

2

dx

= C2
∫
Rn

(
1+ |x|2

)−t
∣∣∣∣(1+

∣∣x′∣∣2)t−1/2
Fu
(
x′
)∣∣∣∣2 dx

= C2
∫
Rn−1

(
1+
∣∣x′∣∣2)2t−1 ∣∣Fu

(
x′
)∣∣2 ∫

R

(
1+ |x|2

)−t
dxndx′

= C2Ct

∫
Rn−1

(
1+
∣∣x′∣∣2)2t−1 ∣∣Fu

(
x′
)∣∣2(1+

∣∣y′∣∣2)−2t+1
2

dx′

= C2Ct

∫
Rn−1

(
1+
∣∣x′∣∣2)t−1/2 ∣∣Fu

(
x′
)∣∣2 dx′ =C2Ct ||u||2Ht−1/2(Rn−1) .

This proves the theorem because S is dense in Rn.

Actually, the assertion that γu(x′) = u(x′,0) holds for more functions, u than just u ∈
S. I will make no effort to obtain the most general description of such functions but the
following is a useful lemma which will be needed when the trace on the boundary of an
open set is considered.

Lemma 39.5.5 Suppose u is continuous and u ∈ H1 (Rn) . Then there exists a set of m1
measure zero, N such that if xn /∈ N, then for every φ ∈ L2

(
Rn−1

)
(γu,φ)H +

∫ xn

0
(u,n (·, t) ,φ)H dt = (u(·,xn) ,φ)H

where here

( f ,g)H ≡
∫
Rn−1

f gdx′,

just the inner product in L2
(
Rn−1

)
. Furthermore,

u(·,0) = γu a.e. x′.

Proof: Let {uk} be a sequence of functions from S which converges to u in H1 (Rn)
and let {φ k} denote a countable dense subset of L2

(
Rn−1

)
. Then

(
γuk,φ j

)
H
+
∫ xn

0

(
uk,n (·, t) ,φ j

)
H

dt =
(

uk (·,xn) ,φ j

)
H
. (39.5.20)
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Now (∫
∞

0

∣∣∣(uk (·,xn) ,φ j

)
H
−
(

u(·,xn) ,φ j

)
H

∣∣∣2 dxn

)1/2

=

(∫
∞

0

∣∣∣(uk (·,xn)−u(·,xn) ,φ j

)
H

∣∣∣2 dxn

)1/2

≤
(∫

∞

0
|uk (·,xn)−u(·,xn)|2H

∣∣∣φ j

∣∣∣2
H

dxn

)1/2

=
∣∣∣φ j

∣∣∣2
H

(∫
∞

0
|uk (·,xn)−u(·,xn)|2H dxn

)1/2

=
∣∣∣φ j

∣∣∣2
H

(∫
∞

0

∫
Rn−1

∣∣uk
(
x′,xn

)
−u
(
x′,xn

)∣∣2 dx′dxn

)1/2

which converges to zero. Therefore, there exists a set of measure zero, N j and a subse-
quence, still denoted by k such that if xn /∈ N j, then(

uk (·,xn) ,φ j

)
H
→
(

u(·,xn) ,φ j

)
H
.

Now by Theorem 39.5.4, γuk→ γu in H = L2
(
Rn−1

)
. It only remains to consider the term

of 39.5.20 which involves an integral.∣∣∣∣∫ xn

0

(
uk,n (·, t) ,φ j

)
H

dt−
∫ xn

0

(
u,n (·, t) ,φ j

)
H

dt
∣∣∣∣

≤
∫ xn

0

∣∣∣(uk,n (·, t)−u,n (·, t) ,φ j

)
H

∣∣∣dt

≤
∫ xn

0

∣∣uk,n (·, t)−u,n (·, t)
∣∣
H

∣∣∣φ j

∣∣∣
H

dt

≤
(∫ xn

0

∣∣uk,n (·, t)−u,n (·, t)
∣∣2
H dt

)1/2(∫ xn

0

∣∣∣φ j

∣∣∣2
H

dt
)1/2

= x1/2
n

∣∣∣φ j

∣∣∣
H

(∫ xn

0

∫
Rn−1

∣∣uk,n
(
x′, t
)
−u,n

(
x′, t
)∣∣2 dx′

)1/2

dt

and this converges to zero as k→∞. Therefore, using a diagonal sequence argument, there
exists a subsequence, still denoted by k and a set of measure zero, N ≡ ∪∞

j=1N j such that
for x′ /∈ N, you can pass to the limit in 39.5.20 and obtain that for all φ j,(

γu,φ j

)
H
+
∫ xn

0

(
u,n (·, t) ,φ j

)
H

dt =
(

u(·,xn) ,φ j

)
H
.

By density of
{

φ j

}
, this equality holds for all φ ∈ L2

(
Rn−1

)
. In particular, the equal-

ity holds for every φ ∈ Cc
(
Rn−1

)
. Since u is uniformly continuous on the compact set,

spt(φ)× [0,1] , there exists a sequence, (xn)k → 0 such that the above equality holds for
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xn replaced with (xn)k and φ in place of φ j. Now taking k→ ∞, this uniform continuity
implies

(γu,φ)H = (u(·,0) ,φ)H

This implies since Cc
(
Rn−1

)
is dense in L2

(
Rn−1

)
that γu = u(·,0) a.e. and this proves

the lemma.

Lemma 39.5.6 Suppose U is an open subset of Rnof the form

U ≡
{

u ∈ Rn : u′ ∈U ′ and 0 < un < φ
(
u′
)}

where U ′ is an open subset of Rn−1 and φ (u′) is a positive function such that φ (u′) ≤ ∞

and
inf
{

φ
(
u′
)

: u′ ∈U ′
}
= δ > 0

Suppose v ∈ Ht (Rn) such that v = 0 a.e. on U. Then γv = 0 mn−1 a.e. point of U ′. Also, if
v ∈ Ht (Rn) and φ ∈C∞

c (Rn) , then γvγφ = γ (φv) .

Proof: First consider the second claim. Let v∈Ht (Rn) and let vk→ v in Ht (Rn) where
vk ∈S. Then from Lemma 39.3.4 and Theorem 39.5.4

||γ (φv)− γφγv||Ht−1/2(Rn−1) = lim
k→∞

||γ (φvk)− γφγvk||Ht−1/2(Rn−1) = 0

because each term in the sequence equals zero due to the observation that for vk ∈S and
φ ∈C∞

c (U) , γ (φvk) = γvkγφ .
Now suppose v = 0 a.e. on U . Define for 0 < r < δ , vr (x)≡ v(x′,xn + r) .
Claim: If u ∈ Ht (Rn) , then

lim
r→0
||vr− v||Ht (Rn) = 0.

Proof of claim: First of all, let v ∈S. Then v ∈ Hm (Rn) for all m and so by Lemma
39.2.5,

||vr− v||Ht (Rn) ≤ ||vr− v||θHm(Rn) ||vr− v||1−θ

Hm+1(Rn)

where t ∈ [m,m+1] . It follows from continuity of translation in Lp (Rn) that

lim
r→0
||vr− v||θHm(Rn) ||vr− v||1−θ

Hm+1(Rn)
= 0

and so the claim is proved if v ∈S. Now suppose u ∈ Ht (Rn) is arbitrary. By density of
S in Ht (Rn) , there exists v ∈S such that

||u− v||Ht (Rn) < ε/3.

Therefore,

||ur−u||Ht (Rn) ≤ ||ur− vr||Ht (Rn)+ ||vr− v||Ht (Rn)+ ||v−u||Ht (Rn)

= 2ε/3+ ||vr− v||Ht (Rn) .
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Now using what was just shown, it follows that for r small enough, ||ur−u||Ht (Rn) < ε and
this proves the claim.

Now suppose v ∈ Ht (Rn) . By the claim,

||vr− v||Ht (Rn)→ 0

and so by continuity of γ,
γvr→ γv in Ht−1/2 (Rn−1) . (39.5.21)

Note vr = 0 a.e. on

Ur ≡
{

u ∈ Rn : u′ ∈U ′ and − r < un < φ
(
u′
)
− r
}

Let φ ∈ C∞
c (Ur) and consider φvr. Then it follows φvr = 0 a.e. on Rn. Let w ≡ 0.

Then w ∈S and so γw = 0 = γ (φvr) = γφγvr in Ht−1/2
(
Rn−1

)
. It follows that for mn−1

a.e. x′ ∈ [φ ̸= 0]∩Rn−1, γvr (x′) = 0. Now let U ′ = ∪∞
k=1Kk where the Kk are compact sets

such that Kk ⊆ Kk+1 and let φ k ∈C∞
c (U) such that φ k has values in [0,1] and φ k (x′) = 1 if

x′ ∈ Kk. Then from what was just shown, γvr = 0 for a.e. point of Kk. Therefore, γvr = 0
for mn−1 a.e. point in U ′. Therefore, since each γvr = 0, it follows from 39.5.21 that γv = 0
also. This proves the lemma.

Theorem 39.5.7 Let t > 1/2 and let U be of the form{
u ∈ Rn : u′ ∈U ′ and 0 < un < φ

(
u′
)}

where U ′ is an open subset of Rn−1 and φ (u′) is a positive function such that φ (u′) ≤ ∞

and
inf
{

φ
(
u′
)

: u′ ∈U ′
}
= δ > 0.

Then there exists a unique

γ ∈L
(

Ht (U) ,Ht−1/2 (U ′))
which has the property that if u= v|U where v is continuous and also a function of H1 (Rn) ,
then γu(x′) = u(x′,0) for a.e. x′ ∈U ′.

Proof: Let u ∈ Ht (U) . Then u = v|U for some v ∈ Ht (Rn) . Define

γu≡ γv|U ′

Is this well defined? The answer is yes because if vi|U = u a.e., then γ (v1− v2) = 0 a.e. on
U ′ which implies γv1 = γv2 a.e. and so the two different versions of γu differ only on a set
of measure zero.

If u = v|U where v is continuous and also a function of H1 (Rn) , then for a.e. x′ ∈Rn−1,
it follows from Lemma 39.5.5 on Page 1363 that γv(x′) = v(x′,0) . Hence, it follows that
for a.e. x′ ∈U ′, γu(x′)≡ u(x′,0).

In particular, γ is determined by γu(x′) = u(x′,0) on S|U and the density of S|U and
continuity of γ shows γ is unique.
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It only remains to show γ is continuous. Let u ∈ Ht (U) . Thus there exists v ∈ Ht (Rn)
such that u = v|U . Then

||γu||Ht−1/2(U ′) ≤ ||γv||Ht−1/2(Rn−1) ≤C ||v||Ht (Rn)

for C independent of v. Then taking the inf for all such v ∈ Ht (Rn) which are equal to u
a.e. on U, it follows

||γu||Ht−1/2(U ′) ≤C ||v||Ht (Rn)

and this proves γ is continuous.

39.6 Sobolev Spaces On Manifolds
39.6.1 General Theory
The type of manifold, Γ for which Sobolev spaces will be defined on is:

Definition 39.6.1 1. Γ is a closed subset of Rp where p≥ n.

2. Γ = ∪∞
i=1Γi where Γi = Γ∩Wi for Wi a bounded open set.

3. {Wi}∞

i=1 is locally finite.

4. There are open bounded sets, Ui and functions hi : Ui → Γi which are one to one,
onto, and in Cm,1 (Ui) . There exists a constant, C, such that C ≥ Liphr for all r.

5. There exist functions, gi : Wi →Ui such that gi is Cm,1 (Wi) , and gi ◦hi = id on Ui
while hi ◦gi = id on Γi.

This will be referred to as a Cm,1 manifold.

Lemma 39.6.2 Let gi, hi,Ui,Wi, and Γi be as defined above. Then

gi ◦hk : Uk ∩h−1
k (Γi)→Ui∩h−1

i (Γk)

is Cm,1. Furthermore, the inverse of this map is gk ◦hi.

Proof: First it is well to show it does indeed map the given open sets. Let x ∈Uk ∩
h−1

k (Γi) . Then hk (x) ∈ Γk ∩ Γi and so gi (hk (x)) ∈ Ui because hk (x) ∈ Γi. Now since
hk (x) ∈ Γk, gi (hk (x)) ∈ h−1

i (Γk) also and this proves the mappings do what they should
in terms of mapping the two open sets. That gi ◦hk is Cm,1 follows immediately from the
chain rule and the assumptions that the functions gi and hk are Cm,1. The claim about the
inverse follows immediately from the definitions of the functions.

Let {ψ i}
∞

i=1 be a partition of unity subordinate to the open cover {Wi} satisfying ψ i ∈
C∞

c (Wi) . Then the following definition provides a norm for Hm+s (Γ) .

Definition 39.6.3 Let s ∈ (0,1) and m is a nonnegative integer. Also let µ denote the
surface measure for Γ defined in the last section. A µ measurable function, u is in Hm+s (Γ)
if whenever {Wi,ψ i,Γi,Ui,hi,gi}∞

i=1 is described above, h∗i (uψ i) ∈ Hm+s (Ui) and

||u||Hm+s(Γ) ≡

(
∞

∑
i=1
||h∗i (uψ i)||

2
Hm+s(Ui)

)1/2

< ∞.
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Are there functions which are in Hm+s (Γ)? The answer is yes. Just take the restriction
to Γ of any function, u ∈C∞

c (Rm) . Then each h∗i (uψ i) ∈ Hm+s (Ui) and the sum is finite
because sptu has nonempty intersection with only finitely many Wi.

It is not at all obvious this norm is well defined. What if {W ′i ,ψ ′i,Γ′i,Ui,h′i,g′i}
∞

i=1 is
as described above? Would the two norms be equivalent? If they aren’t, then this is not a
good way to define Hm+s (Γ) because it would depend on the choice of partition of unity
and functions, hi and choice of the open sets, Ui. To begin with pick a particular choice for
{Wi,ψ i,Γi,Ui,hi,gi}∞

i=1 .

Lemma 39.6.4 Hm+s (Γ) as just described, is a Banach space.

Proof: Let
{

u j
}∞

j=1 be a Cauchy sequence in Hm+s (Γ) . Then
{

h∗i (u jψ i)
}∞

j=1 is a
Cauchy sequence in Hm+s (Ui) for each i. Therefore, for each i, there exists wi ∈Hm+s (Ui)
such that

lim
j→∞

h∗i (u jψ i) = wi in Hm+s (Ui) . (39.6.22)

It is required to show there exists u ∈ Hm+s (Γ) such that wi = h∗i (uψ i) for each i.
Now from Corollary 37.2.5 it follows easily by approximating with simple functions

that for ever nonnegative µ measurable function, f ,∫
Γ

f dµ =
∞

∑
r=1

∫
grΓr

ψr f (hr (u))Jr (u)du.

Therefore, ∫
Γ

∣∣u j−uk
∣∣2 dµ =

∞

∑
r=1

∫
grΓr

ψr

∣∣u j−uk
∣∣2 (hr (u))Jr (u)du

≤ C
∞

∑
r=1

∫
grΓr

ψr

∣∣u j−uk
∣∣2 (hr (u))du

= C
∞

∑
r=1

∣∣∣∣h∗r (ψr

∣∣u j−uk
∣∣)∣∣∣∣2

0,2,Ur

≤ C
∣∣∣∣u j−uk

∣∣∣∣
Hm+s(Γ)

and it follows there exists u ∈ L2 (Γ) such that∣∣∣∣u j−u
∣∣∣∣

0,2,Γ→ 0.

and a subsequence, still denoted by u j such that u j (x)→ u(x) for µ a.e. x∈Γ. It is required
to show that u ∈ Hm+s (Γ) such that wi = h∗i (uψ i) for each i. First of all, u is measurable
because it is the limit of measurable functions. The pointwise convergence just established
and the fact that sets of measure zero on Γi correspond to sets of measure zero on Ui which
was discussed in the claim found in the proof of Theorem 37.2.4 on Page 1303 shows that

h∗i (u jψ i)(x)→ h∗i (uψ i)(x)
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a.e. x. Therefore,
h∗i (uψ i) = wi

and this shows that h∗i (uψ i) ∈ Hm+s (Ui) . It remains to verify that u ∈ Hm+s (Γ) . This
follows from Fatou’s lemma. From 39.6.22,∣∣∣∣h∗i (u jψ i)

∣∣∣∣2
Hm+s(Ui)

→ ||h∗i (uψ i)||
2
Hm+s(Ui)

and so

∞

∑
i=1
||h∗i (uψ i)||

2
Hm+s(Ui)

≤ lim inf
j→∞

∞

∑
i=1

∣∣∣∣h∗i (u jψ i)
∣∣∣∣2

Hm+s(Ui)

= lim inf
j→∞

∣∣∣∣u j
∣∣∣∣2

Hm+s(Γ)
< ∞.

This proves the lemma.
In fact any two such norms are equivalent. This follows from the open mapping

theorem. Suppose ||·||1 and ||·||2 are two such norms and consider the norm ||·||3 ≡
max(||·||1 , ||·||2) . Then (Hm+s (Γ) , ||·||3) is also a Banach space and the identity map from
this Banach space to (Hm+s (Γ) , ||·||i) for i = 1,2 is continuous. Therefore, by the open
mapping theorem, there exist constants, C,C′ such that for all u ∈ Hm+s (Γ) ,

||u||1 ≤ ||u||3 ≤C ||u||2 ≤C ||u||3 ≤CC′ ||u||1

Therefore,
||u||1 ≤C ||u||2 , ||u||2 ≤C′ ||u||1 .

This proves the following theorem.

Theorem 39.6.5 Let Γ be described above. Defining Ht (Γ) as in Definition 39.6.3, any
two norms like those given in this definition are equivalent.

Suppose (Γ,Wi,Ui,Γi,hi,gi) are as defined above where hi,gi are Cm,1 functions. Take
W , an open set in Rp and define Γ′ ≡W ∩Γ. Then letting

W ′i ≡W ∩Wi,Γ
′
i ≡W ′i ∩Γ,

and
U ′i ≡ gi

(
Γ
′
i
)
= h−1

i
(
W ′i ∩Γ

)
,

it follows that U ′i is an open set because hi is continuous and (Γ′,W ′i ,U
′
i ,Γ
′
i,h′i,g′i) is also a

Cm,1 manifold if you define h′i to be the restriction of hi to U ′i and g′i to be the restriction of
gi to W ′i .

As a case of this, consider a Cm,1 manifold, Γ where (Γ,Wi,Ui,Γi,hi,gi) are as described
in Definition 39.6.1 and the submanifold consisting of Γi. The next lemma shows there is
a simple way to define a norm on Ht (Γi) which does not depend on dragging in a partition
of unity.
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Lemma 39.6.6 Suppose Γ is a Cm,1 manifold and (Γ,Wi,Ui,Γi,hi,gi) are as described in
Definition 39.6.1. Then for t ∈ [m,m+ s), it follows that if u ∈Ht (Γ) , then u ∈Ht (Γk) and
the restriction map is continuous. Also an equivalent norm for Ht (Γk) is given by

|||u|||t ≡ ||h
∗
ku||Ht (Uk)

.

Proof: Let u ∈ Ht (Γ) and let (Γk,W ′i ,U
′
i ,Γ
′
i,h′i,g′i) be the sets and functions which

define what is meant by Γk being a Cm,1 manifold as described in Definition 39.6.1. Also
let (Γ,Wi,Ui,Γi,hi,gi) be pertain to Γ in the same way and let

{
φ j

}
be a C∞ partition of

unity for the
{

Wj
}

. Since the {W ′i } are locally finite, only finitely many can intersect Γk,
say {W ′1, · · · ,W ′s} . Also only finitely many of the Wi can intersect Γk, say

{
W1, · · · ,Wq

}
.

Then letting {ψ ′i} be a C∞ partition of unity subordinate to the {W ′i } .

∞

∑
i=1

∣∣∣∣h′∗i (uψ
′
i
)∣∣∣∣

Ht(U ′i )
=

s

∑
i=1

∣∣∣∣∣
∣∣∣∣∣h′∗i

(
q

∑
j=1

φ juψ
′
i

)∣∣∣∣∣
∣∣∣∣∣
Ht(U ′i )

≤
s

∑
i=1

q

∑
j=1

∣∣∣∣∣∣h′∗i φ juψ
′
i

∣∣∣∣∣∣
Ht(U ′i )

=
q

∑
j=1

s

∑
i=1

∣∣∣∣∣∣h′∗i φ juψ
′
i

∣∣∣∣∣∣
Ht(U ′i )

=
q

∑
j=1

s

∑
i=1

∣∣∣∣∣∣(g j ◦h′i
)∗h∗jφ juψ

′
i

∣∣∣∣∣∣
Ht(U ′i )

.

By Lemma 39.3.3 on page 1356, there exists a single constant, C such that the above is
dominated by C ∑

q
j=1 ∑

s
i=1

∣∣∣∣∣∣h∗jφ juψ ′i

∣∣∣∣∣∣
Ht(U j)

. Now by Corollary 39.3.5 on Page 1358, this

is no larger than

C
q

∑
j=1

s

∑
i=1

Cψ ′i

∣∣∣∣∣∣h∗jφ ju
∣∣∣∣∣∣

Ht(U j)
≤C

q

∑
j=1

s

∑
i=1

∣∣∣∣∣∣h∗jφ ju
∣∣∣∣∣∣

Ht(U j)
≤C

q

∑
j=1

∣∣∣∣∣∣h∗jφ ju
∣∣∣∣∣∣

Ht(U j)
< ∞.

This shows that u restricted to Γk is in Ht (Γk). It also shows that the restriction map of
Ht (Γ) to Ht (Γk) is continuous.

Now consider the norm |||·|||t . For u ∈ Ht (Γk) , let (Γk,W ′i ,U
′
i ,Γ
′
i,h′i,g′i) be sets and

functions which define an atlas for Γk. Since the {W ′i } are locally finite, only finitely many
can have nonempty intersection with Γk, say {W1, · · · ,Ws} . Thus i ≤ s for some finite s.
The problem is to compare |||·|||t with ||·||Ht (Γk)

. As above, let {ψ ′i} denote a C∞ partition

of unity subordinate to the
{

W ′j
}

. Then

|||u|||t ≡ ||h
∗
ku||Ht (Uk)

=

∣∣∣∣∣
∣∣∣∣∣h∗k s

∑
j=1

ψ
′
ju

∣∣∣∣∣
∣∣∣∣∣
Ht (Uk)

≤
s

∑
j=1

∣∣∣∣∣∣h∗k (ψ
′
ju
)∣∣∣∣∣∣

Ht (Uk)

=
s

∑
j=1

∣∣∣∣∣∣(g′j ◦hk
)∗h′∗j

(
ψ
′
ju
)∣∣∣∣∣∣

Ht (Uk)
≤C

s

∑
j=1

∣∣∣∣∣∣h′∗j (ψ
′
ju
)∣∣∣∣∣∣

Ht
(

U ′j
) .
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≤C

(
s

∑
j=1

∣∣∣∣∣∣h′∗j (ψ
′
ju
)∣∣∣∣∣∣2

Ht
(

U ′j
)
)1/2

= ||u||Ht (Γk)
.

where Lemma 39.3.3 on page 1356 was used in the last step. Now also, from Lemma
39.3.3 on page 1356

||u||Ht (Γk)
=

(
s

∑
j=1

∣∣∣∣∣∣h′∗j (ψ
′
ju
)∣∣∣∣∣∣2

Ht
(

U ′j
)
)1/2

=

(
s

∑
j=1

∣∣∣∣∣∣(gk ◦h′j
)∗h∗k

(
ψ
′
ju
)∣∣∣∣∣∣2

Ht
(

U ′j
)
)1/2

≤C

(
s

∑
j=1

∣∣∣∣∣∣h∗k (ψ
′
ju
)∣∣∣∣∣∣2

Ht (Uk)

)1/2

≤C

(
s

∑
j=1
||h∗ku||2Ht (Uk)

)1/2

=Cs ||h∗ku||Ht (Uk)
= |||u|||t .

This proves the lemma.

39.6.2 The Trace On The Boundary

Definition 39.6.7 A bounded open subset, Ω, of Rn has a Cm,1boundary if it satisfies the
following conditions. For each p∈ Γ≡Ω\Ω, there exists an open set, W , containing p, an
open interval (0,b), a bounded open box U ′ ⊆Rn−1, and an affine orthogonal transforma-
tion, RW consisting of a distance preserving linear transformation followed by a translation
such that

RWW =U ′× (0,b), (39.6.23)

RW (W ∩Ω) = {u ∈ Rn : u′ ∈U ′, 0 < un < φW
(
u′
)
} ≡UW (39.6.24)

where φW ∈ Cm,1
(
U ′
)

meaning φW is the restriction to U ′ of a function, still denoted by
φW which is in Cm,1

(
Rn−1

)
and

inf
{

φW
(
u′
)

: u′ ∈U ′
}
> 0

The following picture depicts the situation.

R

W

Ω
⋂

W RW (Ω
⋂

W )

0

b

u′ ∈U ′

For the situation described in the above definition, let hW : U ′→ Γ∩W be defined by

hW
(
u′
)
≡ R−1

W
(
u′,φW

(
u′
))

, gW (x)≡ (RW x)′ , HW (u)≡ R−1
W
(
u′,φW

(
u′
)
−un

)
.

where x′ ≡ (x1, · · · ,xn−1) for x = (x1, · · · ,xn). Thus gW ◦hW = id on U ′ and hW ◦gW = id
on Γ∩W. Also note that HW is defined on all of Rn is Cm,1, and has an inverse with the
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same properties. To see this, let GW (u) = (u′,φW (u′)−un) . Then HW = R−1
W ◦GW and

G−1
W =(u′,φW (u′)−un) and so H−1

W =G−1
W ◦RW . Note also that as indicated in the picture,

RW (W ∩Ω) =
{

u ∈ Rn : u′ ∈U ′ and 0 < un < φW
(
u′
)}

.

Since Γ = ∂Ω is compact, there exist finitely many of these open sets, W, denoted by
{Wi}q

i=1 such that Γ⊆ ∪q
i=1Wi. Let the corresponding sets, U ′ be denoted by U ′i and let the

functions, φ be denoted by φ i. Also let hi = hWi etc. Now let {ψ i}
q
i=1 be a C∞ partition of

unity subordinate to the {Wi}q
i=1. If u ∈ Ht (Ω) , then by Corollary 39.3.5 on Page 1358 it

follows that uψ i ∈ Ht (Wi∩Ω) . Now

Hi : Ui ≡ {u ∈ Rn : u′ ∈U ′i , 0 < un < φ i
(
u′
)
}→Wi∩Ω

and Hi and its inverse are defined on Rn and are in Cm,1 (Rn) . Therefore, by Lemma 39.3.3
on Page 1356,

H∗i ∈L
(
Ht (Wi∩Ω) ,Ht (Ui)

)
.

Provide t = m+ s where s > 0.
Now it is possible to define the trace on Γ≡ ∂Ω. For u ∈ Ht (Ω) ,

γu≡
q

∑
i=1

g∗i (γH∗i (uψ i)) . (39.6.25)

I must show it satisfies what it should. Recall the definition of what it means for a function
to be in Ht−1/2 (Γ) where t = m+ s.

Definition 39.6.8 Let s ∈ (0,1) and m is a nonnegative integer. Also let µ denote the
surface measure for Γ. A µ measurable function, u is in Hm+s (Γ) if whenever

{Wi,ψ i,Γi,Ui,hi,gi}∞

i=1

is described above, h∗i (uψ i) ∈ Hm+s (Ui) and

||u||Hm+s(Γ) ≡

(
∞

∑
i=1
||h∗i (uψ i)||

2
Hm+s(Ui)

)1/2

< ∞.

Recall that all these norms which are obtained from various partitions of unity and
functions, hi and gi, are equivalent. Here there are only finitely many Wi so the sum is a
finite sum. The theorem is the following.

Theorem 39.6.9 Let Ω be a bounded open set having Cm,1 boundary as discussed above
in Definition 39.6.7. Then for t ≤ m+1, there exists a unique

γ ∈L
(

Ht (Ω) ,Ht−1/2 (Γ)
)

which has the property that for µ the measure on the boundary,

γu(x) = u(x) for µ a.e. x ∈ Γwhenever u ∈S|Ω. (39.6.26)
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Proof: First consider the claim that γ ∈ L
(
Ht (Ω) ,Ht−1/2 (Γ)

)
. This involves first

showing that for u ∈ Ht (Ω) ,γu ∈ Ht−1/2 (Γ) . To do this, use the above definition.

h∗j
(

ψ j (γu)
)

=
q

∑
i=1

h∗j
(

ψ jg
∗
i (γH∗i (uψ i))

)
=

q

∑
i=1

(
h∗jψ j

)(
h∗j (g

∗
i (γH∗i (uψ i)))

)
=

q

∑
i=1

(
h∗jψ j

)
(gi ◦h j)

∗ (γH∗i (uψ i)) (39.6.27)

First note that γH∗i (uψ i) ∈ Ht−1/2 (U ′i ). Now gi ◦h j and its inverse, g j ◦hi are both func-
tions in Cm,1

(
Rn−1

)
and

gi ◦h j : U ′j→U ′i .

Therefore, by Lemma 39.3.3 on Page 1356,

(gi ◦h j)
∗ (γH∗i (uψ i)) ∈ Ht−1/2 (U ′j)

and
∣∣∣∣(gi ◦h j)

∗ (γH∗i (uψ i))
∣∣∣∣

Ht−1/2
(

U ′j
) ≤ Ci j ||γH∗i (uψ i)||Ht−1/2(U ′i )

. Also it follows that

h∗jψ j ∈Cm,1
(

U ′j
)

and has compact support in U ′j and so by Corollary 39.3.5 on Page 1358(
h∗jψ j

)
(gi ◦h j)

∗ (γH∗i (uψ i)) ∈ Ht−1/2 (U ′j)
and ∣∣∣∣∣∣(h∗jψ j

)
(gi ◦h j)

∗ (γH∗i (uψ i))
∣∣∣∣∣∣

Ht−1/2
(

U ′j
)

≤ Ci j
∣∣∣∣(gi ◦h j)

∗ (γH∗i (uψ i))
∣∣∣∣

Ht−1/2
(

U ′j
) (39.6.28)

≤ Ci j ||γH∗i (uψ i)||Ht−1/2(U ′i )
. (39.6.29)

This shows γu ∈ Ht−1/2 (Γ) because each h∗j
(

ψ j (γu)
)
∈ Ht−1/2

(
U ′j
)
. Also from

39.6.29 and 39.6.27

||γu||2Ht−1/2(Γ)
≤

q

∑
j=1

∣∣∣∣∣∣h∗j (ψ j (γu)
)∣∣∣∣∣∣2

Ht−1/2
(

U ′j
)

=
q

∑
j=1

∣∣∣∣∣∣h∗j (ψ j (γu)
)∣∣∣∣∣∣2

Ht−1/2
(

U ′j
) = q

∑
j=1

∣∣∣∣∣
∣∣∣∣∣ q

∑
i=1

(
h∗jψ j

)
(gi ◦h j)

∗ (γH∗i (uψ i))

∣∣∣∣∣
∣∣∣∣∣
2

Ht−1/2
(

U ′j
)

≤ Cq

q

∑
j=1

q

∑
i=1

∣∣∣∣∣∣(h∗jψ j

)
(gi ◦h j)

∗ (γH∗i (uψ i))
∣∣∣∣∣∣2

Ht−1/2
(

U ′j
)

≤Cq

q

∑
j=1

q

∑
i=1

Ci j ||(γH∗i (uψ i))||
2
Ht−1/2(U ′i )

≤Cq

q

∑
i=1
||(γH∗i (uψ i))||

2
Ht−1/2(U ′i )
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≤Cq

q

∑
i=1
||H∗i (uψ i)||

2
Ht (Ri(Wi∩Ω)) ≤Cq

q

∑
i=1
||uψ i||

2
Ht (Wi∩Ω) ≤Cq ||u||2Ht (Ω) .

Does γ satisfy 39.6.26? Let x ∈ Γ and u ∈S|Ω. Let

Ix ≡
{

i ∈ {1,2, · · · ,q} : x = hi
(
u′i
)

for some u′i ∈U ′i
}
.

Then

γu(x) = ∑
i∈Ix

(γH∗i (uψ i))(gi (x)) = ∑
i∈Ix

(γH∗i (uψ i))
(
gi
(
hi
(
u′i
)))

= ∑
i∈Ix

(γH∗i (uψ i))
(
u′i
)
.

Now because Hi is Lipschitz continuous and uψ ∈S, it follows that H∗i (uψ i) ∈ H1 (Rn)
and is continuous and so by Theorem 39.5.7 on Page 1366 for a.e. u′i,

= ∑
i∈Ix

H∗i (uψ i)
(
u′i,0

)
= ∑

i∈Ix

h∗i (uψ i)
(
u′i
)
= ∑

i∈Ix

(uψ i)
(
hi
(
u′i
))

= u(x) for µ a.e.x.

This verifies 39.6.26 and completes the proof of the theorem.



Chapter 40

Weak Solutions
40.1 The Lax Milgram Theorem

The Lax Milgram theorem is a fundamental result which is useful for obtaining weak so-
lutions to many types of partial differential equations. It is really a general theorem in
functional analysis.

Definition 40.1.1 Let A ∈ L (V,V ′) where V is a Hilbert space. Then A is said to be
coercive if

A(v)(v)≥ δ ||v||2

for some δ > 0.

Theorem 40.1.2 (Lax Milgram) Let A ∈L (V,V ′) be coercive. Then A maps one to one
and onto.

Proof: The proof that A is onto involves showing A(V ) is both dense and closed.
Consider first the claim that A(V ) is closed. Let Axn→ y∗ ∈V ′. Then

δ ||xn− xm||2V ≤ ||Axn−Axm||V ′ ||xn− xm||V .

Therefore, {xn} is a Cauchy sequence in V. It follows xn→ x∈V and since A is continuous,
Axn→ Ax. This shows A(V ) is closed.

Now let R : V → V ′ denote the Riesz map defined by Rx(y) = (y,x) . Recall that the
Riesz map is one to one, onto, and preserves norms. Therefore, R−1 (A(V )) is a closed sub-
space of V. If there R−1 (A(V )) ̸= V, then

(
R−1 (A(V ))

)⊥ ̸= {0} . Let x ∈
(
R−1 (A(V ))

)⊥
and x ̸= 0. Then in particular,

0 =
(
x,R−1Ax

)
= R

(
R−1 (A(x))

)
(x) = A(x)(x)≥ δ ||x||2V ,

a contradiction to x ̸= 0. Therefore, R−1 (A(V )) =V and so A(V ) = R(V ) =V ′.
Since A(V ) is both closed and dense, A(V ) =V ′. This shows A is onto.
If Ax = Ay, then 0 = A(x− y)(x− y)≥ δ ||x− y||2V , and this shows A is one to one. This

proves the theorem.
Here is a simple example which illustrates the use of the above theorem. In the example

the repeated index summation convention is being used. That is, you sum over the repeated
indices.

Example 40.1.3 Let U be an open subset of Rn and let V be a closed subspace of H1 (U) .
Let α i j ∈ L∞ (U) for i, j = 1,2, · · · ,n. Now define A : V →V ′ by

A(u)(v)≡
∫

U

(
α

i j (x)u,i (x)v, j (x)+u(x)v(x)
)

dx.

Suppose also that
α

i jviv j ≥ δ |v|2

whenever v ∈ Rn. Then A maps V to V ′ one to one and onto.

1375
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Here is why. It is obvious that A is in L (V,V ′) . It only remains to verify that it is
coercive.

A(u)(u) ≡
∫

U

(
α

i j (x)u,i (x)u, j (x)+u(x)u(x)
)

dx

≥
∫

U
δ |∇u(x)|2 + |u(x)|2 dx

≥ δ ||u||2H1(U)

This proves coercivity and verifies the claim.
What has been obtained in the above example? This depends on how you choose V.

In Example 40.1.3 suppose U is a bounded open set with C0,1 boundary and V = H1
0 (U)

where
H1

0 (U)≡
{

u ∈ H1 (U) : γu = 0
}
.

Also suppose f ∈ L2 (U) . Then you can consider F ∈V ′ by defining

F (v)≡
∫

U
f (x)v(x)dx.

According to the Lax Milgram theorem and the verification of its conditions in Example
40.1.3, there exists a unique solution to the problem of finding u ∈ H1

0 (U) such that for all
v ∈ H1

0 (U) , ∫
U

(
α

i j (x)u,i (x)v, j (x)+u(x)v(x)
)

dx =
∫

U
f (x)v(x)dx (40.1.1)

In particular, this holds for all v ∈C∞
c (U) . Thus for all such v,∫

U

(
−
(
α

i j (x)u,i (x)
)
, j +u(x)− f (x)

)
v(x)dx = 0.

Therefore, in terms of weak derivatives,

−
(
α

i ju,i
)
, j +u = f

and since u ∈ H1
0 (U) , it must be the case that γu = 0 on ∂U. This is why the solution to

40.1.1 is referred to as a weak solution to the boundary value problem

−
(
α

i j (x)u,i (x)
)
, j +u(x) = f (x) , u = 0 on ∂U.

Of course you then begin to ask the important question whether u really has two derivatives.
It is not immediately clear that just because −

(
α i j (x)u,i (x)

)
, j ∈ L2 (U) it follows that the

second derivatives of u exist. Actually this will often be true and is discussed somewhat in
the next section.

Next suppose you choose V = H1 (U) and let g ∈ H1/2 (∂U). Define F ∈V ′ by

F (v)≡
∫

U
f (x)v(x)dx+

∫
∂U

g(x)γv(x)dµ.



40.1. THE LAX MILGRAM THEOREM 1377

Everything works the same way and you get the existence of a unique u ∈H1 (U) such that
for all v ∈ H1 (U) ,∫

U

(
α

i j (x)u,i (x)v, j (x)+u(x)v(x)
)

dx =
∫

U
f (x)v(x)dx+

∫
∂U

g(x)γv(x)dµ (40.1.2)

is satisfied. If you pretend u has all second order derivatives in L2 (U) and apply the diver-
gence theorem, you find that you have obtained a weak solution to

−
(
α

i ju,i
)
, j +u = f , α

i ju,in j = g on ∂U

where n j is the jth component of n, the unit outer normal. Therefore, u is a weak solution
to the above boundary value problem.

The conclusion is that the Lax Milgram theorem gives a way to obtain existence and
uniqueness of weak solutions to various boundary value problems. The following theorem
is often very useful in establishing coercivity. To prove this theorem, here is a definition.

Definition 40.1.4 Let U be an open set and δ > 0. Then

Uδ ≡
{

x ∈U : dist
(
x,UC)> δ

}
.

Theorem 40.1.5 Let U be a connected bounded open set having C0,1 boundary such that
for some sequence, ηk ↓ 0,

U = ∪∞
k=1Uηk (40.1.3)

and Uηk is a connected open set. Suppose Γ⊆ ∂U has positive surface measure and that

V ≡
{

u ∈ H1 (U) : γu = 0 a.e. on Γ
}
.

Then the norm |||·||| given by

|||u||| ≡
(∫

U
|∇u|2 dx

)1/2

is equivalent to the usual norm on V.

Proof: First it is necessary to verify this is actually a norm. It clearly satisfies all the
usual axioms of a norm except for the condition that |||u|||= 0 if and only if u = 0. Suppose
then that |||u|||= 0. Let δ 0 = ηk for one of those ηk mentioned above and define

uδ (x)≡
∫

B(0,δ )
u(x−y)φ δ (y)dy

where φ δ is a mollifier having support in B(0,δ ) . Then changing the variables, it follows
that for x ∈Uδ 0

uδ (x) =
∫

B(x,δ )
u(t)φ δ (x− t)dt =

∫
U

u(t)φ δ (x− t)dt
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and so uδ ∈C∞
(
Uδ 0

)
and

∇uδ (x) =
∫

U
u(t)∇φ δ (x− t)dt =

∫
B(0,δ )

∇u(x−y)φ δ (y)dy = 0.

Therefore, uδ equals a constant on Uδ 0 because Uδ 0 is a connected open set and uδ is a
smooth function defined on this set which has its gradient equal to 0. By Minkowski’s
inequality, (∫

Uδ0

|u(x)−uδ (x)|2 dx

)1/2

≤
∫

B(0,δ )
φ δ (y)

(∫
Uδ0

|u(x)−u(x−y)|2 dx

)1/2

dy

and this converges to 0 as δ → 0 by continuity of translation in L2. It follows there exists a
sequence of constants, cδ ≡ uδ (x) such that {cδ} converges to u in L2

(
Uδ 0

)
. Consequently,

a subsequence, still denoted by uδ , converges to u a.e. By Eggoroff’s theorem there exists
a set, Nk having measure no more than 3−kmn

(
Uδ 0

)
such that uδ converges to u uniformly

on NC
k . Thus u is constant on NC

k . Now ∑k mn (Nk) ≤ 1
2 mn

(
Uδ 0

)
and so there exists x0 ∈

Uδ 0 \∪
∞
k=1Nk. Therefore, if x /∈Nk it follows u(x)= u(x0) and so, if u(x) ̸= u(x0) it must be

the case that x ∈ ∩∞
k=1Nk, a set of measure zero. This shows that u equals a constant a.e. on

Uδ 0 =Uηk . Since k is arbitrary, 40.1.3 shows u is a.e. equal to a constant on U. Therefore,
u equals the restriction of a function of S to U and so γu equals this constant in L2 (∂Ω) .
Since the surface measure of Γ is positive, the constant must equal zero. Therefore, |||·||| is
a norm.

It remains to verify that it is equivalent to the usual norm. It is clear that |||u||| ≤ ||u||1,2 .
What about the other direction? Suppose it is not true that for some constant, K, ||u||1,2 ≤
K |||u||| . Then for every k ∈ N, there exists uk ∈V such that

||uk||1,2 > k |||uk||| .

Replacing uk with uk/ ||uk||1,2 , it can be assumed that ||uk||1,2 = 1 for all k. Therefore, using
the compactness of the embedding of H1 (U) into L2 (U) , there exists a subsequence, still
denoted by uk such that

uk → u weakly in V, (40.1.4)
uk → u strongly in L2 (U) , (40.1.5)

|||uk||| → 0, (40.1.6)
uk → u weakly in (V, |||·|||) . (40.1.7)

From 40.1.6 and 40.1.7, it follows u = 0. Therefore, |uk|L2(U)→ 0. This with 40.1.6 con-
tradicts the fact that ||uk||1,2 = 1 and this proves the equivalence of the two norms.

The proof of the above theorem yields the following interesting corollary.
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Corollary 40.1.6 Let U be a connected open set with the property that for some sequence,
ηk ↓ 0,

U = ∪∞
k=1Uηk

for Uηk a connected open set and suppose u ∈W 1,p (U) and ∇u = 0 a.e. Then u equals a
constant a.e.

Example 40.1.7 Let U be a bounded open connected subset of Rn and let V be a closed
subspace of H1 (U) defined by

V ≡
{

u ∈ H1 (U) : γu = 0 on Γ
}

where the surface measure of Γ is positive.
Let α i j ∈ L∞ (U) for i, j = 1,2, · · · ,n and define A : V →V ′ by

A(u)(v)≡
∫

U
α

i j (x)u,i (x)v, j (x)dx.

for
α

i jviv j ≥ δ |v|2

whenever v ∈ Rn. Then A maps V to V ′ one to one and onto.

This follows from Theorem 40.1.5 using the equivalent norm defined there. Define
F ∈V ′ by ∫

U
f (x)v(x)dx+

∫
∂U\Γ

g(x)γv(x)dx

for f ∈ L2 (U) and g ∈ H1/2 (∂U) . Then the equation,

Au = F in V ′

which is equivalent to u ∈V and for all v ∈V,∫
U

α
i j (x)u,i (x)v, j (x)dx =

∫
U

f (x)v(x)dx+
∫

∂U\Γ
g(x)γv(x)dµ

is a weak solution for the boundary value problem,

−
(
α

i ju,i
)
, j = f in U, α

i ju,in j = g on ∂U \Γ, u = 0 on Γ

as you can verify by using the divergence theorem formally.

40.2 An Application Of The Mountain Pass Theorem
Recall the mountain pass theorem 24.1.3.

Theorem 40.2.1 Let H be a Hilbert space and let I : H → R be a C1 functional having I′

Lipschitz continuous and such that I satisfies the Palais Smale condition. Suppose I (0) = 0
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and I (u)≥ a> 0 for all ∥u∥= r. Suppose also that there exists v,∥v∥> r such that I (v)≤ 0.
Then define

Γ≡ {g ∈C ([0,1] ;H) : g(0) = 0,g(1) = v}

Let
c≡ inf

g∈Γ
max

0≤t≤1
I (g(t))

Then c is a critical value of I meaning that there exists u such that I (u) = c and I′ (u) = 0.
In particular, there is u ̸= 0 such that I′ (u) = 0.

This nice example is in Evans [49]. Let the Hilbert space be H1
0 (U) where U is a

bounded open set. To avoid cases, assume U is in R3 or higher. The main results will work
in general but it would involve cases. Consider the functional

1
2
∥u∥2

H1
0
−
∫

U
F (u)dx≡ I1 (u)− I2 (u)

where F ′ (u) = f (u) , f (0) = 0. Here it is assumed that

| f (u)| ≤C (1+ |u|p) ,
∣∣ f ′ (u)∣∣≤C

(
1+ |u|p−1

)
, 1 < p <

n+2
n−2

(40.2.8)

Also suppose that
0≤ F (u)≤ γ f (u)u where 0 < γ < 1/2 (40.2.9)

and finally that
α |u|p+1 ≤ F (u)≤ A |u|p+1 , α,A > 0 (40.2.10)

Let R : H1
0 (U)→ H−1 (U) be the Riesz map.

Showing Functional is C1,1

Then it is not hard to verify that (I1 (u) ,v) = (u,v) and so it is clearly the case that I′ (u)
exists and is a continuous function of u. In addition to this, it is Lipschitz.

Next consider I2.

I2 (u+ v)− I2 (u) =
∫

U
F (u+ v)−F (u)dx

=
∫

U
f (u)v+

1
2

f ′ (û)v2dx, û ∈ [u,u+ v]

Now H1
0 (U) embeds continuously into L2n/(n−2) (U) . Because of the estimate for f (u) ,

we can regard f (u) as being in H−1 (U) as follows.∣∣∣∣∫U
f (u)vdx

∣∣∣∣≤ (∫U
| f (u)|2n/(n+2) dx

)(n+2)/2n(∫
U
|v|2n/(n−2)

)(n−2)/2n

≤
(∫

U
C
(

1+ |u|2n/(n−2)
)

dx
)(n+2)/2n

∥v∥H1
0
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where C will be adusted as needed here and elsewhere. Thus, writing in terms of the inner
product on H1

0 , (
I′2 (u) ,v

)
H1

0
=
(
R−1 f (u) ,v

)
H1

0

This is so if the 1
2 f ′ (û)v2 term is as it should be. We need to verify that∫

U

∣∣ 1
2 f ′ (û)v2

∣∣dx
∥v∥H1

0

→ 0

However, we can use the estimate and write that this is no larger than∫
U C
(

1+ |v|p−1 + |u|p−1
)∣∣v2

∣∣dx(∫
U |v|

2n/(n−2) dx
)(n−2)/2n

(40.2.11)

Then consider the term involving |u| .
∫

U
|u|p−1 |v|2 dx≤

(∫
U
|u|p+1

) p−1
p+1
(∫

U
|v|p+1

)2/(p+1)

Now p+1≤ 2 n
n−2 and so the first factor is finite. As to the second, it equals((∫

U
|v|2n/(n−2)

) 1
2n (n−2)

)2

and so this term from 40.2.11 is o(v) on H1
0 (U) . The term involving |v|p−1 is obviously

o(v) . Consider the constant term.

∫
U
|v|2 dx≤

((∫
U
|v|2n/(n−2) dx

)(n−2)/2n
)2

so it is also all right. Thus the derivative is as claimed. Is this derivative Lipschitz on
bounded sets?

f (û)− f (u) =
∫ 1

0
f ′ (u+ t (û−u))(û−u)dt

Thus in H−1 and using the estimates,∣∣∣∣∫U
( f (û)− f (u))vdx

∣∣∣∣≤ ∫U

∫ 1

0
C
(

1+ |u+ t (û−u)|p−1
)
|û−u|dtdx

=
∫ 1

0

∫
U

C
(

1+ |u+ t (û−u)|p−1
)
|û−u|dxdt

≤ C
(∫

U

(
1+ |û|p−1 + |u|p−1

)2n/(n+2)
) n+2

2n
(∫

U
|û−u|2n/(n−2)

)(n−2)/2n

≤ C
(∫

U

(
1+ |û|p−1 + |u|p−1

)2n/(n+2)
) n+2

2n

∥û−u∥H1
0 (U)
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Now (p−1) 2n
n+2 ≤

( n+2
n−2 −1

) 2n
n+2 = 8 n

n2−4 ≤
2n

n−2 and so the derivative is Lipschitz on
bounded sets of H1

0 (U).

Palais Smale Conditions

Here we verify the Palais Smale conditions. Suppose then that I (uk) is bounded and
I′ (uk)→ 0 in H1

0 (U). Then ∣∣∣∣12 ∥uk∥2
H1

0
−
∫

U
F (uk)dx

∣∣∣∣≤C (40.2.12)

Since I′ (uk)→ 0,
uk−R−1 f (uk)→ 0 in H1

0 (U) (40.2.13)

Take inner product of the second term with uk.(
R−1 f (uk) ,uk

)
≡ ⟨ f (uk) ,uk⟩H−1,H1

0
=
∫

U
f (uk)ukdx

Then by assumption, for ε > 0, and all k large enough,

∣∣(I′ (uk) ,uk
)∣∣≤ ∣∣∣∣∥uk∥2

H1
0 (U)−

∫
U

f (uk)ukdx
∣∣∣∣≤ ε ∥uk∥H1

0 (U)

Then also for large k, letting ε = 1,∣∣∣∣∫U
f (uk)ukdx

∣∣∣∣≤ ∥uk∥2
H1

0 (U)+∥uk∥H1
0 (U)

Now from the estimates assumed and 40.2.12,

1
2
∥uk∥2

H1
0
≤ C+

∫
U

F (uk)dx≤C+ γ

∫
U

f (uk)ukdx

≤ C+ γ

(
∥uk∥2

H1
0 (U)+∥uk∥H1

0 (U)

)
and since γ < 1/2, (

1
2
− γ

)
∥uk∥2

H1
0
≤C+∥uk∥H1

0 (U)

and so ∥uk∥H1
0 (U) is bounded. Hence it has a subsequence still denoted as uk which con-

verges weakly in H1
0 (U) to u ∈ H1

0 (U) . Since p < n+2
n−2 , it follows that

p+1 <
n+2
n−2

+1 =
2n

n−2

and so by compactness of the embedding, it follows that uk→ u strongly in Lp+1 (U). We
can assume convergence also takes place pointwise by taking a suitable subsequence.

Now | f (u)v| ≤C (1+ |u|p) |v| . Therefore, adjusting the constants,
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| f (u)v| ≤C (1+ |u|p) |v| ≤C
(

1+ |u|p+1
)p/(p+1)

|v|

∣∣∣∣∫U
f (u)vdx

∣∣∣∣ ≤ C
(∫

U

(
1+ |u|p+1

))p/(p+1)(∫
U
|v|p+1

)1/(p+1)

≤ C
(∫

U

(
1+ |u|p+1

))p/(p+1)

∥v∥H1
0 (U)

and so

∥ f (u)∥H−1(U) ≤ ∥ f (u)∥Lp+1(U) ≤C
(∫

U

(
1+ |u|p+1

))p/(p+1)

It follows that
f (uk)→ f (u) pointwise

and also
| f (uk)− f (u)|p+1 ≤Cp

(
| f (uk)|p+1 + | f (u)|p+1

)
where

lim
k→∞

∫
U

(
| f (uk)|p+1 + | f (u)|p+1

)
dx =

∫
U

2 | f (u)|p+1 dx

then by the dominated convergence theorem or more precisely Corollary 11.4.10,

lim
k→∞

(∫
U
| f (uk)− f (u)|p+1

)1/(p+1)

= 0

It follows that f (uk)→ f (u) in H−1 (U). Hence R−1 f (uk)→ R−1 f (u) in H1
0 (U) and so

from 40.2.13, uk → u strongly in H1
0 (U) also. Thus {uk} is precompact. This verifies the

Palais Smale conditions.

mountain pass conditions

It is clear that I (0) = 0. It remains to verify that for some r > 0, I (u)≥ a > 0 whenever
∥u∥H1

0 (U) = r and for some v with ∥v∥> r, I (v) = 0. Now consider ru where ∥u∥= 1.

I (ru) =
1
2

r2−
∫

U
F (ru)dx

From the assumed estimates and Sobolev embedding,

I (ru) ≥ 1
2

r2−
∫

U
A |u|p+1 rp+1dx≥ 1

2
r2−CArp+1 ∥u∥p+1

H1
0 (U)

=
1
2

r2−CArp+1

Now this is independent of u such that ∥u∥= 1. Then the derivative of the right side is

r− (p+1)CArp



1384 CHAPTER 40. WEAK SOLUTIONS

where p> 1. Thus this is positive for a while and then when r is larger, it becomes negative.
Thus there is r0 > 0 where 1

2 r2
0−CArp+1

0 ≡ a > 0. Hence when ∥u∥= r0, you have I (u)≥
a > 0. This is part of the mountain pass conditions. Now consider the other part. Letting
∥u∥= 1 be fixed, the estimates imply

I (ru)≤ 1
2

r2−
∫

U
α |u|p+1 rp+1dx≤ 1

2
r2− rp+1C

Hence, for r large enough, the right side becomes negative because p+1 > 2. Therefore,
r→ I (ru) is positive for small r and is eventually negative as r gets larger. hence there
is some value of r where this equals 0. Then v = ru. This verifies the conditions for the
mountain pass theorem.

conclusions

It follows from the mountain pass theorem that there is some u ̸= 0 such that I′ (u) = 0.
From the above computations,

u−R−1 f (u) = 0

Now R =−∆ the Laplacian. In terms of weak derivatives,

⟨−∆u,v⟩H−1,H1
0
=
∫

U
∇u ·∇vdx = (u,v)H1

0 (U)

and so in terms of weak derivatives,

−∆u = f (u) in H−1 (U) , u ∈ H1
0 (U) so u = 0 on ∂U .

This proves the following theorem.

Theorem 40.2.2 Suppose the conditions 40.2.8 - 40.2.10 hold. Then there exists a nonzero
u ∈ H1

0 (U) such that
−∆u = f (u)

One can verify that an example of such a function f (u) is

f (u) = |u|p−2 u

This is very exciting to a large number of people because it gives an interesting example of
non uniqueness of a boundary value problem. It is clear that u = 0 works.



Chapter 41

Korn’s Inequality
A fundamental inequality used in elasticity to obtain coercivity and then apply the Lax
Milgram theorem or some other theorem is Korn’s inequality. The proof given here of this
fundamental result follows [101] and [46].

41.1 A Fundamental Inequality
The proof of Korn’s inequality depends on a fundamental inequality involving negative
Sobolev space norms. The theorem to be proved is the following.

Theorem 41.1.1 Let f ∈ L2 (Ω) where Ω is a bounded Lipschitz domain. Then there exist
constants, C1 and C2 such that

C1 || f ||0,2,Ω ≤

(
|| f ||−1,2,Ω +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

)
≤C2 || f ||0,2,Ω ,

where here ||·||0,2,Ω represents the L2 norm and ||·||−1,2,Ω represents the norm in the dual
space of H1

0 (Ω) , denoted by H−1 (Ω) .

Similar conventions will apply for any domain in place of Ω. The proof of this theorem
will proceed through the use of several lemmas.

Lemma 41.1.2 Let U− denote the set,

{(x,xn) ∈ Rn : xn < g(x)}

where g : Rn−1→ R is Lipschitz and denote by U+ the set

{(x,xn) ∈ Rn : xn > g(x)} .

Let f ∈ L2 (U−) and extend f to all of Rn in the following way.

f (x,xn)≡−3 f (x,2g(x)− xn)+4 f (x,3g(x)−2xn) .

Then there is a constant, Cg, depending on g such that

|| f ||−1,2,Rn +
n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

≤Cg

(
|| f ||−1,2,U− +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,U−

)
.

Proof: Let φ ∈C∞
c (Rn) . Then,∫

Rn
f

∂φ

∂xn
dx =

∫
U+

∂φ

∂xn
[−3 f (x,2g(x)− xn)+4 f (x,3g(x)−2xn)]dx

+
∫

U−
f

∂φ

∂xn
dx. (41.1.1)
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Consider the first integral on the right in 41.1.1. Changing the variables, letting

yn = 2g(x)− xn

in the first term of the integrand and 3g(x)−2xn in the next, it equals

−3
∫

U−

∂φ

∂xn
(x,2g(x)− yn) f (x,yn)dyndx

+2
∫

U−

∂φ

∂xn

(
x,

3
2

g(x)− yn

2

)
f (x,yn)dyndx.

For (x,yn) ∈U−, and defining

ψ (x,yn)≡ φ (x,yn)+3φ (x,2g(x)− yn)−4φ

(
x,

3
2

g(x)− yn

2

)
,

it follows ψ = 0 when yn = g(x) and so∫
Rn

f
∂φ

∂xn
dx =

∫
U−

∂ψ

∂yn
f (x,yn)dxdyn.

Now from the definition of ψ given above,

||ψ||1,2,U− ≤Cg ||φ ||1,2,U− ≤Cg ||φ ||1,2,Rn

and so ∣∣∣∣∣∣∣∣ ∂ f
∂xn

∣∣∣∣∣∣∣∣
−1,2,Rn

≡

sup
{∫

Rn
f

∂φ

∂xn
dx : φ ∈C∞

c (Rn) , ||φ ||1,2,Rn ≤ 1
}
≤

sup
{∣∣∣∣∫U−

f
∂ψ

∂xn
dxdyn

∣∣∣∣ : ψ ∈ H1
0
(
U−
)
, ||ψ||1,2,U− ≤Cg

}
=Cg

∣∣∣∣∣∣∣∣ ∂ f
∂xn

∣∣∣∣∣∣∣∣
−1,2,U−

(41.1.2)

It remains to establish a similar inequality for the case where the derivatives are taken
with respect to xi for i < n. Let φ ∈C∞

c (Rn) . Then∫
Rn

f
∂φ

∂xi
dx =

∫
U−

f
∂φ

∂xi
dx

∫
U+

∂φ

∂xi
[−3 f (x,g(x)− xn)+4 f (x,3g(x)−2xn)]dx.

Changing the variables as before, this last integral equals

−3
∫

U−
Diφ (x,2g(x)− yn) f (x,yn)dyndx
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+2
∫

U−
Diφ

(
x,

3
2

g(x)− yn

2

)
f (x,yn)dyndx. (41.1.3)

Now let

ψ1 (x,yn)≡ φ (x,2g(x)− yn) , ψ2 (x,yn)≡ φ

(
x,

3
2

g(x)− yn

2

)
.

Then
∂ψ1
∂xi

= Diφ (x,2g(x)− yn)+Dnφ (x,2g(x)− yn)2Dig(x) ,

∂ψ2
∂xi

= Diφ

(
x,

3
2

g(x)− yn

2

)
+Dnφ

(
x,

3
2

g(x)− yn

2

)
3
2

Dig(x) .

Also
∂ψ1
∂yn

(x,yn) =−Dnφ (x,2g(x)− yn) ,

∂ψ2
∂yn

(x,yn) =

(
−1
2

)
Dnφ

(
x,

3
2

g(x)− yn

2

)
.

Therefore,
∂ψ1
∂xi

(x,yn) = Diφ (x,2g(x)− yn)−2
∂ψ1
∂yn

(x,yn)Dig(x) ,

∂ψ2
∂xi

(x,yn) = Diφ

(
x,

3
2

g(x)− yn

2

)
−3

∂ψ2
∂yn

(x,yn)Dig(x) .

Using this in 41.1.3, the integrals in this expression equal

−3
∫

U−

[
∂ψ1
∂xi

(x,yn)+2
∂ψ1
∂yn

(x,yn)Dig(x)
]

f (x,yn)dyndx+

2
∫

U−

[
∂ψ2
∂xi

(x,yn)+3
∂ψ2
∂yn

(x,yn)Dig(x)
]

f (x,yn)dyndx

=
∫

U−

[
−3

∂ψ1 (x,y)
∂xi

+2
∂ψ2 (x,yn)

∂xi

]
f (x,yn)dyndx.

Therefore, ∫
Rn

∂φ

∂xi
f dx =

∫
U−

[
∂φ

∂xi
−3

∂ψ1
∂xi

+2
∂ψ2
∂xi

]
f dxdyn

and also
φ (x,g(x))−3ψ1 (x,g(x))+2ψ2 (x,g(x)) =

φ (x,g(x))−3φ (x,g(x))+2φ (x,g(x)) = 0

and so φ −3ψ1 +2ψ2 ∈ H1
0 (U

−) . It also follows from the definition of the functions, ψ i
and the assumption that g is Lipschitz, that

||ψ i||1,2,U− ≤Cg ||φ ||1,2,U− ≤Cg ||φ ||1,2,Rn . (41.1.4)
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Therefore, ∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

≡ sup
{∣∣∣∣∫Rn

f
∂φ

∂xi
dx
∣∣∣∣ : ||φ ||1,2,Rn ≤ 1

}

= sup
{∣∣∣∣∫U−

f
[

∂φ

∂xi
−3

∂ψ1
∂xi

+2
∂ψ2
∂xi

]
dx
∣∣∣∣ : ||φ ||1,2,Rn ≤ 1

}
≤Cg

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,U−

where Cg is a constant which depends on g. This inequality along with 41.1.2 yields

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

≤Cg

(
n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,U−

)
.

The inequality,
|| f ||−1,2,Rn ≤Cg || f ||−1,2,U−

follows from 41.1.4 and the equation,∫
Rn

f φdx =
∫

U−
f φdx−3

∫
U−

f (x,yn)ψ1 (x,yn)dxdyn

+2
∫

U−
f (x,yn)ψ2 (x,yn)dxdyn

which results in the same way as before by changing variables using the definition of f off
U−. This proves the lemma.

The next lemma is a simple application of Fourier transforms.

Lemma 41.1.3 If f ∈ L2 (Rn) , then the following formula holds.

Cn || f ||0,2,Rn =
n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

+ || f ||−1,2,Rn

Proof: For φ ∈C∞
c (Rn)

||φ ||1,2,Rn ≡
(∫

Rn

(
1+ |t|2

)
|Fφ |2 dt

)1/2

is an equivalent norm to the usual Sobolev space norm for H1
0 (Rn) and is used in the

following argument which depends on Plancherel’s theorem and the fact that F
(

∂φ

∂xi

)
=

tiF (φ) . ∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

≡ sup
{∣∣∣∣∫Rn

∂φ

∂xi
f dx
∣∣∣∣ : ||φ ||1,2 ≤ 1

}

=Cn sup
{∣∣∣∣∫Rn

ti (Fφ)(F f )dt
∣∣∣∣ : ||φ ||1,2 ≤ 1

}
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=Cn sup


∣∣∣∣∣∣∣
∫
Rn

ti (Fφ)
(

1+ |t|2
)1/2

(
1+ |t|2

)1/2 (F f )dt

∣∣∣∣∣∣∣ : ||φ ||1,2 ≤ 1


=Cn

∫ |F f |2 t2
i(

1+ |t|2
)dt

1/2

(41.1.5)

Also,

|| f ||−1,2 ≡ sup
{∣∣∣∣∫Rn

φ f dx
∣∣∣∣ : ||φ ||1,2 ≤ 1

}

=Cn sup
{∣∣∣∣∫Rn

(Fφ)
(
F f
)

dx
∣∣∣∣ : ||φ ||1,2 ≤ 1

}

=Cn sup


∣∣∣∣∣∣∣
∫
Rn

Fφ

(
1+ |t|2

)1/2

(
1+ |t|2

)1/2 (F f )dt

∣∣∣∣∣∣∣ : ||φ ||1,2 ≤ 1


=Cn

∫
Rn

|F f |2(
1+ |t|2

)dt

1/2

This along with 41.1.5 yields the conclusion of the lemma because

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣2
−1,2

+ || f ||2−1,2 =Cn

∫
Rn
|F f |2 dx =Cn || f ||20,2 .

Now consider Theorem 41.1.1. First note that by Lemma 41.1.2 and U− defined there,
Lemma 41.1.3 implies that for f extended as in Lemma 41.1.2,

|| f ||0,2,U− ≤ || f ||0,2,Rn =Cn

(
|| f ||−1,2,Rn +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

)

≤Cgn

(
|| f ||−1,2,U− +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,U−

)
. (41.1.6)

Let Ω be a bounded open set having Lipschitz boundary which lies locally on one side
of its boundary. Let {Qi}p

i=0 be cubes of the sort used in the proof of the divergence
theorem such that Q0 ⊆Ω and the other cubes cover the boundary of Ω. Let {ψ i} be a C∞

partition of unity with spt(ψ i)⊆Qi and let f ∈ L2 (Ω) . Then for φ ∈C∞
c (Ω) and ψ one of

these functions in the partition of unity,∣∣∣∣∣∣∣∣∂ ( f ψ)

∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

≤ sup
||φ ||1,2≤1

∣∣∣∣∫
Ω

f
∂

∂xi
(ψφ)dx

∣∣∣∣+ sup
||φ ||1,2≤1

∣∣∣∣∫
Ω

f φ
∂ψ

∂xi
dx
∣∣∣∣
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Now if ||φ ||1,2 ≤ 1, then for a suitable constant, Cψ ,

||ψφ ||1,2 ≤Cψ ||φ ||1,2 ≤Cψ ,

∣∣∣∣∣∣∣∣φ ∂ψ

∂xi

∣∣∣∣∣∣∣∣
1,2
≤Cψ .

Therefore, ∣∣∣∣∣∣∣∣∂ ( f ψ)

∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

≤ sup
||η ||1,2≤Cψ

∣∣∣∣∫
Ω

f
∂η

∂xi
dx
∣∣∣∣+ sup
||η ||1,2≤Cψ

∣∣∣∣∫
Ω

f ηdx
∣∣∣∣

≤Cψ

(∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

+ || f ||−1,2,Ω

)
. (41.1.7)

Now using 41.1.7 and 41.1.6

∣∣∣∣∣∣ f ψ j

∣∣∣∣∣∣
0,2,Ω
≤Cg

∣∣∣∣∣∣ f ψ j

∣∣∣∣∣∣
−1,2,Ω

+
n

∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
∂

(
f ψ j

)
∂xi

∣∣∣∣∣∣
∣∣∣∣∣∣
−1,2,Ω


≤Cψ jCg

(
|| f ||−1,2,Ω +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

)
.

Therefore, letting C = ∑
p
j=1 Cψ jCg,

|| f ||0,2,Ω ≤
p

∑
j=1

∣∣∣∣∣∣ f ψ j

∣∣∣∣∣∣
0,2,Ω
≤C

(
|| f ||−1,2,Ω +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

)
. (41.1.8)

This proves the hard half of the inequality of Theorem 41.1.1.
To complete the proof, let f denote the zero extension of f off Ω. Then

|| f ||−1,2,Ω +
n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Ω

≤
∣∣∣∣ f ∣∣∣∣−1,2,Rn +

n

∑
i=1

∣∣∣∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣∣∣∣
−1,2,Rn

≤Cn
∣∣∣∣ f ∣∣∣∣0,2,Rn =Cn || f ||0,2,Ω .

This along with 41.1.8 proves Theorem 41.1.1.

41.2 Korn’s Inequality
The inequality in this section is known as Korn’s second inequality. It is also known as
coercivity of strains. For u a vector valued function in Rn, define

ε i j (u)≡
1
2
(ui, j +u j,i)

This is known as the strain or small strain. Korn’s inequality says that the norm given by,

|||u||| ≡

(
n

∑
i=1
||ui||20,2,Ω +

n

∑
i=1

n

∑
j=1

∣∣∣∣ε i j (u)
∣∣∣∣2

0,2,Ω

)1/2

(41.2.9)
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is equivalent to the norm,

||u|| ≡

(
n

∑
i=1
||ui||20,2,Ω +

n

∑
i=1

n

∑
j=1

∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣2
0,2,Ω

)1/2

(41.2.10)

It is very significant because it is the strain as just defined which occurs in many of the
physical models proposed in continuum mechanics. The inequality is far from obvious
because the strains only involve certain combinations of partial derivatives.

Theorem 41.2.1 (Korn’s second inequality) Let Ω be any domain for which the conclusion
of Theorem 41.1.1 holds. Then the two norms in 41.2.9 and 41.2.10 are equivalent.

Proof: Let u be such that ui ∈ H1 (Ω) for each i = 1, · · · ,n. Note that

∂ 2ui

∂x j,∂xk
=

∂

∂x j
(ε ik (u))+

∂

∂xk
(ε i j (u))−

∂

∂xi

(
ε jk (u)

)
.

Therefore, by Theorem 41.1.1,∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣
0,2,Ω
≤C

[∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣
−1,2,Ω

+
n

∑
k=1

∣∣∣∣∣∣∣∣ ∂ 2ui

∂x j,∂xk

∣∣∣∣∣∣∣∣
−1,2,Ω

]

≤C

[∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣
−1,2,Ω

+ ∑
r,s,p

∣∣∣∣∣∣∣∣∂εrs (u)
∂xp

∣∣∣∣∣∣∣∣
−1,2,Ω

]

≤C

[∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣
−1,2,Ω

+∑
r,s
||εrs (u)||0,2,Ω

]
.

But also by this theorem,

||ui||−1,2,Ω +∑
p

∣∣∣∣∣∣∣∣ ∂ui

∂xp

∣∣∣∣∣∣∣∣
−1,2,Ω

≤C ||ui||0,2,Ω

and so ∣∣∣∣∣∣∣∣ ∂ui

∂x j

∣∣∣∣∣∣∣∣
0,2,Ω
≤C

[
||ui||0,2,Ω +∑

r,s
||εrs (u)||0,2,Ω

]
This proves the theorem.

Note that Ω did not need to be bounded. It suffices to be able to conclude the result
of Theorem 41.1.1 which would hold whenever the boundary of Ω can be covered with
finitely many boxes of the sort to which Lemma 41.1.2 can be applied.
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Chapter 42

Elliptic Regularity
42.1 The Case Of A Half Space

Regularity theorems are concerned with obtaining more regularity given a weak solution.
This extra regularity is essential in order to obtain error estimates for various problems.
In this section a regularity is given for weak solutions to various elliptic boundary value
problems. To save on notation, I will use the repeated index summation convention. Thus
you sum over repeated indices. Consider the following picture.

R

Rn−1

U

V

Γ

U1

Here V is an open set,

U ≡ {y ∈V : yn < 0} ,Γ≡ {y ∈V : yn = 0}

and U1 is an open set as shown for which U1 ⊆ V ∩U. Assume also that V is bounded.
Suppose

f ∈ L2 (U) ,

α
rs ∈C0,1 (U) , (42.1.1)

α
rs (y)vrvs ≥ δ |v|2 , δ > 0. (42.1.2)

The following technical lemma gives the essential ideas.

Lemma 42.1.1 Suppose

w ∈ H1 (U) , (42.1.3)
α

rs ∈ C0,1 (U) , (42.1.4)

hs ∈ H1 (U) , (42.1.5)
f ∈ L2 (U) . (42.1.6)

and ∫
U

α
rs (y)

∂w
∂yr

∂ z
∂ys dy+

∫
U

hs (y)
∂ z
∂ys dy =

∫
U

f zdy (42.1.7)

1393
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for all z ∈ H1 (U) having the property that spt(z) ⊆ V. Then w ∈ H2 (U1) and for some
constant C, independent of f ,w, and g, the following estimate holds.

||w||2H2(U1)
≤C

(
||w||2H1(U)+ || f ||

2
L2(U)+∑

s
||hs||2H1(U)

)
. (42.1.8)

Proof: Define for small real h,

Dh
k l (y)≡ 1

h
(l (y+hek)− l (y)) .

Let U1 ⊆U1 ⊆W ⊆W ⊆ V and let η ∈ C∞
c (W ) with η (y) ∈ [0,1] , and η = 1 on U1 as

shown in the following picture.

R

Rn−1

U

V

Γ

U1

W

For h small (3h < dist
(
W ,VC

)
), let

z(y)≡ 1
h

{
η

2 (y−hek)

[
w(y)−w(y−hek)

h

]

−η
2 (y)

[
w(y+hek)−w(y)

h

]}
(42.1.9)

≡ −D−h
k

(
η

2Dh
kw
)
, (42.1.10)

where here k < n. Thus z can be used in equation 42.1.7. Begin by estimating the left side
of 42.1.7. ∫

U
α

rs (y)
∂w
∂yr

∂ z
∂ys dy

=
1
h

∫
U

α
rs (y+hek)

∂w
∂yr (y+hek)

∂
(
η2Dh

kw
)

∂ys dy

−1
h

∫
U

α
rs (y)

∂w
∂yr

∂
(
η2Dh

kw
)

∂ys dy
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=
∫

U
α

rs (y+hek)
∂
(
Dh

kw
)

∂yr

∂
(
η2Dh

kw
)

∂ys dy+

1
h

∫
U
(αrs (y+hek)−α

rs (y))
∂w
∂yr

∂
(
η2Dh

kw
)

∂ys dy (42.1.11)

Now
∂
(
η2Dh

kw
)

∂ys = 2η
∂η

∂ys Dh
kw+η

2 ∂
(
Dh

kw
)

∂ys . (42.1.12)

therefore,

=
∫

U
η

2
α

rs (y+hek)
∂
(
Dh

kw
)

∂yr

∂
(
Dh

kw
)

∂ys dy

+

{∫
W∩U

α
rs (y+hek)

∂
(
Dh

kw
)

∂yr 2η
∂η

∂ys Dh
kwdy

+
1
h

∫
W∩U

(αrs (y+hek)−α
rs (y))

∂w
∂yr

∂
(
η2Dh

kw
)

∂ys dy

}
≡ A.+{B.} . (42.1.13)

Now consider these two terms. From 42.1.2,

A.≥ δ

∫
U

η
2
∣∣∣∇Dh

kw
∣∣∣2 dy. (42.1.14)

Using the Lipschitz continuity of αrs and 42.1.12,

B.≤C (η ,Lip(α) ,α)

{∣∣∣∣∣∣Dh
kw
∣∣∣∣∣∣

L2(W∩U)

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣

L2(W∩U ;Rn)
+

||η∇w||L2(W∩U ;Rn)

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣

L2(W∩U ;Rn)

+ ||η∇w||L2(W∩U ;Rn)

∣∣∣∣∣∣Dh
kw
∣∣∣∣∣∣

L2(W∩U)

}
. (42.1.15)

≤C (η ,Lip(α) ,α)Cε

(∣∣∣∣∣∣Dh
kw
∣∣∣∣∣∣2

L2(W∩U)
+ ||η∇w||2L2(W∩U ;Rn)

)
+

εC (η ,Lip(α) ,α)

(∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(W∩U ;Rn)
+
∣∣∣∣∣∣Dh

kw
∣∣∣∣∣∣2

L2(W∩U)

)
. (42.1.16)

Now ∣∣∣∣∣∣Dh
kw
∣∣∣∣∣∣

L2(W )
≤ ||∇w||2L2(U ;Rn) . (42.1.17)

To see this, observe that if w is smooth, then(∫
W

∣∣∣∣w(y+hek)−w(y)
h

∣∣∣∣2 dy

)1/2

≤

(∫
W

∣∣∣∣1h
∫ h

0
∇w(y+ tek) · ekdt

∣∣∣∣2 dy

)1/2



1396 CHAPTER 42. ELLIPTIC REGULARITY

≤

(∫ h

0

(∫
W
|∇w(y+ tek) · ek|2 dy

)1/2 dt
h

)
≤ ||∇w||L2(U ;Rn)

so by density of such functions in H1 (U) , 42.1.17 holds. Therefore, changing ε, yields

B.≤Cε (η ,Lip(α) ,α) ||∇w||2L2(U ;Rn)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(W∩U ;Rn)
. (42.1.18)

With 42.1.14 and 42.1.18 established, consider the other terms of 42.1.7.∣∣∣∣∫U
f zdy

∣∣∣∣
≤

∣∣∣∣∫U
f
(
−D−h

k η
2Dh

kw
)

dy
∣∣∣∣

≤
(∫

U
| f |2 dy

)1/2(∫
U

∣∣∣D−h
k

(
η

2Dh
kw
)∣∣∣2 dy

)1/2

≤ || f ||L2(U)

∣∣∣∣∣∣∇(η
2Dh

kw
)∣∣∣∣∣∣

L2(U ;Rn)

≤ || f ||L2(U)

(∣∣∣∣∣∣2η∇ηDh
kw
∣∣∣∣∣∣

L2(U ;Rn)
+
∣∣∣∣∣∣η2

∇Dh
kw
∣∣∣∣∣∣

L2(U ;Rn)

)
≤ C || f ||L2(U) ||∇w||L2(U ;Rn)+ || f ||L2(U)

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣

L2(U ;Rn)

≤ Cε

(
|| f ||2L2(U)+ ||∇w||2L2(U ;Rn)

)
+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)
(42.1.19)

∣∣∣∣∫U
hs (y)

∂ z
∂ys dy

∣∣∣∣
≤

∣∣∣∣∣
∫

U
hs (y)

∂
(
−D−h

k

(
η2Dh

kw
))

∂ys dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫

U
Dh

khs (y)
∂
((

η2Dh
kw
))

∂ys

∣∣∣∣∣
≤

∫
U

∣∣∣∣Dh
khs2η

∂η

∂ys Dh
kw
∣∣∣∣dy+

∫
U

∣∣∣∣∣(ηDh
khs

)(
η

∂
(
Dh

kw
)

∂ys

)∣∣∣∣∣dy

≤ C∑
s
||hs||H1(U)

(
||w||H1(U)+

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣

L2(U ;Rn)

)
≤ Cε ∑

s
||hs||2H1(U)+ ||w||

2
H1(U)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)
. (42.1.20)

The following inequalities in 42.1.14,42.1.18, 42.1.19and 42.1.20 are summarized here.

A.≥ δ

∫
U

η
2
∣∣∣∇Dh

kw
∣∣∣2 dy,
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B.≤Cε (η ,Lip(α) ,α) ||∇w||2L2(U ;Rn)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(W∩U ;Rn)
,

∣∣∣∣∫U
f zdy

∣∣∣∣≤Cε

(
|| f ||2L2(U)+ ||∇w||2L2(U ;Rn)

)
+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)

∣∣∣∣∫U
hs (y)

∂ z
∂ys dy

∣∣∣∣ ≤ Cε ∑
s
||hs||2H1(U)

+ ||w||2H1(U)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)
.

Therefore,

δ

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)

≤ Cε (η ,Lip(α) ,α) ||∇w||2L2(U ;Rn)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)

+Cε ∑
s
||hs||2H1(U)+ ||w||

2
H1(U)+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)

+Cε

(
|| f ||2L2(U)+ ||∇w||2L2(U ;Rn)

)
+ ε

∣∣∣∣∣∣η∇Dh
kw
∣∣∣∣∣∣2

L2(U ;Rn)
.

Letting ε be small enough and adjusting constants yields∣∣∣∣∣∣∇Dh
kw
∣∣∣∣∣∣2

L2(U1;Rn)
≤
∣∣∣∣∣∣η∇Dh

kw
∣∣∣∣∣∣2

L2(U ;Rn)
≤

C
(
||w||2H1(U)+ || f ||

2
L2(U)+Cε ∑

s
||hs||2H1(U)

)
where the constant, C, depends on η ,Lip(α) ,α,δ . Since this holds for all h small enough,
it follows ∂w

∂yk ∈ H1 (U1) and ∣∣∣∣∣∣∣∣∇ ∂w
∂yk

∣∣∣∣∣∣∣∣2
L2(U1;Rn)

≤

C
(
||w||2H1(U)+ || f ||

2
L2(U)+Cε ∑

s
||hs||2H1(U)

)
(42.1.21)

for each k < n. It remains to estimate
∣∣∣∣∣∣ ∂ 2w

∂y2
n

∣∣∣∣∣∣2
L2(U1)

. To do this return to 42.1.7 which must

hold for all z ∈C∞
c (U1) . Therefore, using 42.1.7 it follows that for all z ∈C∞

c (U1) ,∫
U

α
rs (y)

∂w
∂yr

∂ z
∂ys dy =−

∫
U

∂hs

∂ys zdy+
∫

U
f zdy.
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Now from the Lipschitz assumption on αrs, it follows

F ≡ ∑
r,s≤n−1

∂

∂ys

(
α

rs ∂w
∂yr

)
+ ∑

s≤n−1

∂

∂ys

(
α

ns ∂w
∂yn

)
−∑

s

∂hs

∂ys + f

∈ L2 (U1)

and

||F ||L2(U1)
≤C

(
||w||2H1(U)+ || f ||

2
L2(U)+Cε ∑

s
||hs||2H1(U)

)
. (42.1.22)

Therefore, from density of C∞
c (U1) in L2 (U1) ,

− ∂

∂yn

(
α

nn (y)
∂w
∂yn

)
= F, no sum on n

and so

−∂αnn

∂yn
∂w
∂yn −α

nn ∂ 2w

∂ (yn)2 = F

By 42.1.2 αnn (y)≥ δ and so it follows from 42.1.22 that there exists a constant,C depend-
ing on δ such that ∣∣∣∣∣ ∂ 2w

∂ (yn)2

∣∣∣∣∣
L2(U1)

≤C
(
|F |L2(U1)

+ ||w||H1(U)

)
which with 42.1.21 and 42.1.22 implies the existence of a constant, C depending on δ such
that

||w||2H2(U1)
≤C

(
||w||2H1(U)+ || f ||

2
L2(U)+Cε ∑

s
||hs||2H1(U)

)
,

proving the lemma.
What if more regularity is known for f , hs,α

rs and w? Could more be said about the
regularity of the solution? The answer is yes and is the content of the next corollary.

First here is some notation. For α a multi-index with |α| = k− 1, α = (α1, · · · ,αn)
define

Dh
α l (y)≡

n

∏
k=1

(
Dh

k

)αk
l (y) .

Also, for α and τ multi indices, τ < α means τ i < α i for each i.

Corollary 42.1.2 Suppose in the context of Lemma 42.1.1 the following for k ≥ 1.

w ∈ Hk (U) ,

α
rs ∈ Ck−1,1 (U) ,
hs ∈ Hk (U) ,

f ∈ Hk−1 (U) ,
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and ∫
U

α
rs (y)

∂w
∂yr

∂ z
∂ys dy+

∫
U

hs (y)
∂ z
∂ys dy =

∫
U

f zdy (42.1.23)

for all z ∈ H1 (U) or H1
0 (U) such that spt(z) ⊆ V. Then there exists C independent of w

such that

||w||Hk+1(U1)
≤C

(
|| f ||Hk−1(U)+∑

s
||hs||Hk(U)+ ||w||Hk(U)

)
. (42.1.24)

Proof: The proof involves the following claim which is proved using the conclusion of
Lemma 42.1.1 on Page 1393.

Claim : If α = (α ′,0) where |α ′| ≤ k− 1, then there exists a constant independent of
w such that

||Dα w||H2(U1)
≤C

(
|| f ||Hk−1(U)+∑

s
||hs||Hk(U)+ ||w||Hk(U)

)
. (42.1.25)

Proof of claim: First note that if |α|= 0, then 42.1.25 follows from Lemma 42.1.1 on
Page 1393. Now suppose the conclusion of the claim holds for all |α| ≤ j−1 where j < k.
Let |α| = j and α = (α ′,0) . Then for z ∈ H1 (U) having compact support in V, it follows
that for h small enough,

D−h
α z ∈ H1 (U) , spt

(
Dh

α z
)
⊆V.

Therefore, you can replace z in 42.1.23 with D−h
α z. Now note that you can apply the fol-

lowing manipulation. ∫
U

p(y)D−h
α z(y)dy =

∫
U

Dh
α p(y)z(y)dy

and obtain∫
U

(
Dh

α

(
α

rs ∂w
∂yr

)
∂ z
∂ys +Dh

α (hs)
∂ z
∂ys

)
dy =

∫
U

((
Dh

α f
)

z
)

dy. (42.1.26)

Letting h→ 0, this gives∫
U

(
Dα

(
α

rs ∂w
∂yr

)
∂ z
∂ys +Dα (hs)

∂ z
∂ys

)
dy =

∫
U
((Dα f )z)dy.

Now

Dα

(
α

rs ∂w
∂yr

)
= α

rs ∂ (Dα w)
∂yr + ∑

τ<α

C (τ)Dα−τ (αrs)
∂ (Dτ w)

∂yr

where C (τ) is some coefficient. Therefore, from 42.1.26,

∫
U

α
rs ∂ (Dα w)

∂yr
∂ z
∂ys dy+

∫
U

(
∑

τ<α

C (τ)Dα−τ (αrs)
∂ (Dτ w)

∂yr +Dα (hs)

)
∂ z
∂ys dy
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=
∫

U
(Dα f )zdy. (42.1.27)

Let Û1 be as indicated in the following picture

R

Rn−1U

V

U1
Û1

Now apply the induction hypothesis to Û1 in order to write∣∣∣∣∣∣∣∣∂ (Dτ w)
∂yr

∣∣∣∣∣∣∣∣
H1(Û1)

≤ ||Dτ w||H2(Û1)

≤C
(
|| f ||Hk−1(U)+∑

s
||hs||Hk(U)+ ||w||Hk(U)

)
.

Since αrs ∈ Ck−1,1
(
U
)
, it follows that each term from the sum in 42.1.27 satisfies an

inequality of the form ∣∣∣∣∣∣∣∣C (τ)Dα−τ (αrs)
∂ (Dτ w)

∂yr

∣∣∣∣∣∣∣∣
H1(Û1)

≤

C
(
|| f ||Hk−1(U)+∑

s
||hs||Hk(U)+ ||w||Hk(U)

)
and consequently, ∣∣∣∣∣

∣∣∣∣∣∑
τ<α

C (τ)Dα−τ (αrs)
∂ (Dτ w)

∂yr +Dα (hs)

∣∣∣∣∣
∣∣∣∣∣
H1(Û1)

≤

C
(
|| f ||Hk−1(U)+∑

s
||hs||Hk(U)+ ||w||Hk(U)

)
. (42.1.28)

Now consider 42.1.27. The equation remains true if you replace U with Û1 and require
that spt(z) ⊆ Û1. Therefore, by Lemma 42.1.1 on Page 1393 there exists a constant, C
independent of w such that

||Dα w||H2(U1)
≤C

(
||Dα f ||L2(Û1) +

||Dα w||H1(Û1)+
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+ ∑
s

∣∣∣∣∣
∣∣∣∣∣∑
τ<α

C (τ)Dα−τ (αrs)
∂ (Dτ w)

∂yr +Dα (hs)

∣∣∣∣∣
∣∣∣∣∣
H1(Û1)


and by 42.1.28, this implies

||Dα w||H2(U1)
≤C

(
|| f ||Hk−1(U)+ ||w||Hk(U)+∑

s
||hs||Hk(U)

)
which proves the Claim.

To establish 42.1.24 it only remains to verify that if |α| ≤ k+1, then

||Dα w||L2(U1)
≤C

(
|| f ||Hk−1(U)+ ||w||Hk(U)+∑

s
||hs||Hk(U)

)
. (42.1.29)

If |α| < k + 1, there is nothing to show because it is given that w ∈ Hk (U) . Therefore,
assume |α| = k+ 1. If αn equals 0 the conclusion follows from the claim because in this
case, you can subtract 1 from a pair of positive α i and obtain a new multi index, β such
that |β |= k−1 and β n = 0 and then from the claim,

||Dα w||L2(U1)
≤
∣∣∣∣∣∣Dβ w

∣∣∣∣∣∣
H2(U1)

≤C
(
|| f ||Hk−1(U)+ ||w||Hk(U)+∑

s
||hs||Hk(U)

)
.

If αn = 1, then subtract 1 from some positive α i and consider

β = (α1, · · · ,α i−1,α i+1, · · · ,αn−1,0)

Then from the claim,

||Dα w||L2(U1)
≤
∣∣∣∣∣∣Dβ w

∣∣∣∣∣∣
H2(U1)

≤C
(
|| f ||Hk−1(U)+ ||w||Hk(U)+∑

s
||hs||Hk(U)

)
.

Suppose 42.1.29 holds for αn ≤ j−1 where j−1≥ 1 and consider α for which |α|= k+1
and αn = j. Let

β ≡ (α1, · · · ,αn−1,αn−2) .

Thus Dα = Dβ D2
n. Restricting 42.1.23 to z ∈ C∞

c (U1) and using the density of this set of
functions in L2 (U1) , it follows that

− ∂

∂ys

(
α

rs (y)
∂w
∂yr

)
− ∂hs

∂ys = f .

Therefore, from the product rule,

∂αrs

∂ys
∂w
∂yr +α

rs ∂ 2w
∂ys∂yr +

∂hs

∂ys =− f

and so

α
nnD2

nw = −

(
∂αrs

∂ys
∂w
∂yr + ∑

r≤n−1
∑

s≤n−1
α

rs ∂ 2w
∂ys∂yr +

∑
s

α
ns ∂ 2w

∂ys∂yn +∑
r

α
rn ∂ 2w

∂yn∂yr +
∂hs

∂ys + f
)
.
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As noted earlier, the condition, 42.1.2 implies αnn (y)≥ δ > 0 and so

D2
nw = − 1

αnn

(
∂αrs

∂ys
∂w
∂yr + ∑

r≤n−1
∑

s≤n−1
α

rs ∂ 2w
∂ys∂yr +

∑
s

α
ns ∂ 2w

∂ys∂yn +∑
r

α
rn ∂ 2w

∂yn∂yr +
∂hs

∂ys + f
)
.

It follows from Dα = Dβ D2
n that

Dα w = Dβ

[
− 1

αnn

(
∂αrs

∂ys
∂w
∂yr + ∑

r≤n−1
∑

s≤n−1
α

rs ∂ 2w
∂ys∂yr +

∑
s

α
ns ∂ 2w

∂ys∂yn +∑
r

α
rn ∂ 2w

∂yn∂yr +
∂hs

∂ys + f
)]

.

Now you note that terms like Dβ

(
∂ 2w

∂ys∂yn

)
have αn = j− 1 and so, from the induction

hypothesis along with the assumptions on the given functions,

||Dα w||L2(U1)
≤C

(
|| f ||Hk−1(U)+ ||w||Hk(U)+∑

s
||hs||Hk(U)

)
.

This proves the corollary.

42.2 The Case Of Bounded Open Sets
The main interest in all this is in the application to bounded open sets. Recall the following
definition.

Definition 42.2.1 A bounded open subset, Ω, of Rn has a Cm,1boundary if it satisfies the
following conditions. For each p∈ Γ≡Ω\Ω, there exists an open set, W , containing p, an
open interval (0,b), a bounded open box U ′ ⊆Rn−1, and an affine orthogonal transforma-
tion, RW consisting of a distance preserving linear transformation followed by a translation
such that

RWW =U ′× (0,b), (42.2.30)

RW (W ∩Ω) = {u ∈ Rn : u′ ∈U ′, 0 < un < φW
(
u′
)
} (42.2.31)

where φW ∈ Cm,1
(
U ′
)

meaning φW is the restriction to U ′ of a function, still denoted by
φW which is in Cm,1

(
Rn−1

)
and

inf
{

φW
(
u′
)

: u′ ∈U ′
}
> 0

The following picture depicts the situation.
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RW

W

Ω
⋂

W RW (Ω
⋂

W )

0

b

u′ ∈U ′

For the situation described in the above definition, let hW : U ′→ Γ∩W be defined by

hW
(
u′
)
≡ R−1

W
(
u′,φW

(
u′
))

, gW (x)≡ (RW x)′ , HW (u)≡ R−1
W
(
u′,φW

(
u′
)
−un

)
.

where x′ ≡ (x1, · · · ,xn−1) for x = (x1, · · · ,xn). Thus gW ◦hW = id on U ′ and hW ◦gW = id
on Γ∩W. Also note that HW is defined on all of Rn is Cm,1, and has an inverse with the
same properties. To see this, let GW (u) = (u′,φW (u′)−un) . Then HW = R−1

W ◦GW and
G−1

W =(u′,φW (u′)−un) and so H−1
W =G−1

W ◦RW . Note also that as indicated in the picture,

RW (W ∩Ω) =
{

u ∈ Rn : u′ ∈U ′ and 0 < un < φW
(
u′
)}

.

Since Γ = ∂Ω is compact, there exist finitely many of these open sets, W, denoted by
{Wi}q

i=1 such that Γ⊆ ∪q
i=1Wi. Let the corresponding sets, U ′ be denoted by U ′i and let the

functions, φ be denoted by φ i. Also let hi = hWi ,GWi = Gi etc. Now let

i : GiRi (Ω∩W )≡Vi→Ω∩Wi

be defined by

i (y)≡ R−1
i ◦G−1

i (y) .

Thus i,
−1
i ∈Cm,1 (Rn). The following picture might be helpful.
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Ri

Wi

Ω
⋂

Wi

spt(ψ i)

Ri(Ω
⋂

Wi)

0

b

u′ ∈U ′

Gi

0
Rn−1

y Φ
−1
i (spt(ψ i))

Vi

Φ
−1
i (Ω

⋂
Wi)

Ui

Therefore, by Lemma 39.3.3 on Page 1356, it follows that for t ∈ [m,m+1),

∗
i ∈L

(
Ht (Wi∩Ω) ,Ht (Vi)

)
.

Assume

ai j (x)viv j ≥ δ |v|2 . (42.2.32)

Lemma 42.2.2 Let W be one of the sets described in the above definition and let m ≥ 1.
Let W1 ⊆W1 ⊆W where W1 is an open set. Suppose also that

u ∈ H1 (Ω) ,

α
rs ∈ C0,1 (

Ω
)
,

f ∈ L2 (Ω) ,

hk ∈ H1 (Ω) ,

and that for all v ∈ H1 (Ω∩W ) such that spt(v)⊆Ω∩W,∫
Ω

ai j (x)u,i (x)v, j (x)dx+
∫

Ω

hk (x)v,k (x)dx =
∫

Ω

f (x)v(x)dx. (42.2.33)
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Then there exists a constant, C, independent of f ,u, and g such that

||u||2H2(Ω∩W1)
≤C

(
|| f ||2L2(Ω)+ ||u||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)
. (42.2.34)

Proof: Let
E ≡

{
v ∈ H1 (Ω∩W ) : spt(v)⊆W

}
u restricted to W ∩Ω is in H1 (Ω∩W ) and∫

Ω∩W
ai j (x)u,iv, jdx+

∫
Ω

hk (x)v,k (x)dx =
∫

Ω

f (x)v(x)dx for all v ∈ E. (42.2.35)

Now let i (y) = x. For this particular W, denote Φi more simply by Φ, Ui ≡Φi (Ω∩Wi)
by U, and Vi by V. Denoting the coordinates of V by y, and letting u(x)≡ w(y) and v(x)≡
z(y) , it follows that in terms of the new coordinates, 42.2.35 takes the form∫

U
ai j (Φ(y))

∂w
∂yr

∂yr

∂xi
∂ z
∂ys

∂ys

∂x j |detDΦ(y)|dy

+
∫

U
hk (Φ(y))

∂ z
∂yl

∂yl

∂xk |detDΦ(y)|dx

=
∫

U
f (Φ(y))z(y) |detDΦ(y)|dy

Let

α
rs (y)≡ ai j (Φ(y))

∂yr

∂xi
∂ys

∂x j |detDΦ(y)| , (42.2.36)

h̃l (y)≡ hk (Φ(y))
∂yl

∂xk |detDΦ(y)| , (42.2.37)

and
f̃ (y)≡Φ

∗ f |detDΦ|(y)≡ f (Φ(y)) |detDΦ(y)| . (42.2.38)

Now the function on the right in 42.2.36 is in C0,1
(
U
)
. This is because of the assump-

tion that m≥ 1 in the statement of the lemma. This function is therefore a finite product of
bounded functions in C0,1

(
U
)
.

The function h̃l defined in 42.2.37 is in H1 (U) and∣∣∣∣∣∣h̃l

∣∣∣∣∣∣
H1(U)

≤C∑
k
||hk||H1(Ω∩W )

again because m≥ 1.
Finally, the right side of 42.2.38 is a function in L2 (U) by Lemma 39.3.3 on Page 1356

and the observation that |detDΦ(·)| ∈C0,1
(
U
)

which follows from the assumption of the
lemma that m≥ 1 so Φ ∈C1,1 (Rn). Also∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣

L2(U)
≤C || f ||L2(Ω∩W ) .
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Therefore, 42.2.35 is of the form∫
U

α
rs (y)w,rz,sdy+

∫
U

h̃lz,ldy =
∫

U
f̃ zdy, (42.2.39)

for all z in H1 (U) having support in V.
Claim: There exists r > 0 independent of y ∈U such that for all y ∈U ,

α
rs (y)vrvs ≥ r |v|2 .

Proof of the claim: If this is not so, there exist vectors, vn, |vn| = 1, and yn ∈U such
that αrs (yn)vn

r vn
s ≤ 1

n . Taking a subsequence, there exists y ∈ U and |v| = 1 such that
αrs (y)vrvs = 0 contradicting 42.2.32.

Therefore, by Lemma 42.1.1, there exists a constant, C, independent of f ,g, and w such
that

||w||2H2(Φ−1(W1∩Ω)) ≤C

(∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣2
L2(U)

+ ||w||2H1(U)+∑
l

∣∣∣∣∣∣h̃l

∣∣∣∣∣∣2
H1(U)

)
.

Therefore,

||u||2H2(W1∩Ω) ≤ C

(
|| f ||2L2(W∩Ω)+ ||w||

2
H1(W∩Ω)+∑

k
||hk||2H1(W∩Ω)

)

≤ C

(
|| f ||2L2(Ω)+ ||w||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)
.

which proves the lemma.
With this lemma here is the main result.

Theorem 42.2.3 Let Ω be a bounded open set with C1,1 boundary as in Definition 42.2.1,
let f ∈ L2 (Ω) ,hk ∈ H1 (Ω), and suppose that for all x ∈Ω,

ai j (x)viv j ≥ δ |v|2 .

Suppose also that u ∈ H1 (Ω) and∫
Ω

ai j (x)u,i (x)v, j (x)dx+
∫

Ω

hk (x)v,k (x)dx =
∫

Ω

f (x)v(x)dx

for all v ∈ H1 (Ω) . Then u ∈ H2 (Ω) and for some C independent of f ,g, and u,

||u||2H2(Ω) ≤C

(
|| f ||2L2(Ω)+ ||u||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)
.

Proof: Let the Wi for i = 1, · · · , l be as described in Definition 42.2.1. Thus ∂Ω ⊆
∪l

j=1Wj. Then let C1 ≡ ∂Ω\∪l
i=2Wi, a closed subset of W1. Let D1 be an open set satisfying

C1 ⊆ D1 ⊆ D1 ⊆W1.
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Then D1,W2, · · · ,Wl cover ∂Ω. Let C2 = ∂Ω\
(
D1∪

(
∪l

i=3Wi
))

. Then C2 is a closed subset
of W2. Choose an open set, D2 such that

C2 ⊆ D2 ⊆ D2 ⊆W2.

Thus D1,D2,W3 · · · ,Wl covers ∂Ω. Continue in this way to get Di ⊆Wi, and ∂Ω⊆∪l
i=1Di,

and Di is an open set. Now let
D0 ≡Ω\∪l

i=1Di.

Also, let Di ⊆ Vi ⊆ Vi ⊆Wi. Therefore, D0,V1, · · · ,Vl covers Ω. Then the same estimation
process used above yields

||u||H2(D0)
≤C

(
|| f ||2L2(Ω)+ ||u||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)
.

From Lemma 42.2.2

||u||H2(Vi∩Ω) ≤C

(
|| f ||2L2(Ω)+ ||u||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)

also. This proves the theorem since

||u||H2(Ω) ≤
l

∑
i=1
||u||H2(Vi∩Ω)+ ||u||H2(D0)

.

What about the Dirichlet problem? The same differencing procedure as above yields
the following.

Theorem 42.2.4 Let Ω be a bounded open set with C1,1 boundarybrownianmotiontheorem
as in Definition 42.2.1, let f ∈ L2 (Ω) ,hk ∈ H1 (Ω), and suppose that for all x ∈Ω,

ai j (x)viv j ≥ δ |v|2 .

Suppose also that u ∈ H1
0 (Ω) and∫

Ω

ai j (x)u,i (x)v, j (x)dx+
∫

Ω

hk (x)v,k (x)dx =
∫

Ω

f (x)v(x)dx

for all v ∈ H1
0 (Ω) . Then u ∈ H2 (Ω) and for some C independent of f ,g, and u,

||u||2H2(Ω) ≤C

(
|| f ||2L2(Ω)+ ||u||

2
H1(Ω)+∑

k
||hk||2H1(Ω)

)
.

What about higher regularity?
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Lemma 42.2.5 Let W be one of the sets described in Definition 42.2.1 and let m ≥ k. Let
W1 ⊆W1 ⊆W where W1 is an open set. Suppose also that

u ∈ Hk (Ω) ,

α
rs ∈ Ck−1,1 (

Ω
)
,

f ∈ Hk−1 (Ω) ,

hs ∈ Hk (Ω) ,

and that for all v ∈ H1 (Ω∩W ) such that spt(v)⊆Ω∩W,∫
Ω

ai j (x)u,i (x)v, j (x)dx+
∫

Ω

hs (x)v,s (x)dx =
∫

Ω

f (x)v(x)dx. (42.2.40)

Then there exists a constant, C, independent of f ,u, and g such that

||u||2Hk+1(Ω∩W1)
≤C

(
|| f ||2Hk−1(Ω)+ ||u||

2
Hk(Ω)+∑

s
||hs||2Hk(Ω)

)
. (42.2.41)

Proof: Let
E ≡

{
v ∈ Hk (Ω∩W ) : spt(v)⊆W

}
u restricted to W ∩Ω is in Hk (Ω∩W ) and∫

Ω∩W
ai j (x)u,iv, jdx+

∫
Ω

hs (x)v,s (x)dx

=
∫

Ω

f (x)v(x)dx for all v ∈ E. (42.2.42)

Now let i (y) = x. For this particular W, denote Φi more simply by Φ, Ui ≡Φi (Ω∩Wi)
by U, and Vi by V. Denoting the coordinates of V by y, and letting u(x)≡ w(y) and v(x)≡
z(y) , it follows that in terms of the new coordinates, 42.2.35 takes the form∫

U
ai j (Φ(y))

∂w
∂yr

∂yr

∂xi
∂ z
∂ys

∂ys

∂x j |detDΦ(y)|dy

+
∫

U
hk (Φ(y))

∂ z
∂yl

∂yl

∂xk |detDΦ(y)|dx

=
∫

U
f (Φ(y))z(y) |detDΦ(y)|dy

Let

α
rs (y)≡ ai j (Φ(y))

∂yr

∂xi
∂ys

∂x j |detDΦ(y)| , (42.2.43)

h̃l (y)≡ hk (Φ(y))
∂yl

∂xk |detDΦ(y)| , (42.2.44)

and
f̃ (y)≡Φ

∗ f |detDΦ|(y)≡ f (Φ(y)) |detDΦ(y)| . (42.2.45)
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Now the function on the right in 42.2.43 is in Ck,1
(
U
)
. This is because of the assump-

tion that m≥ k in the statement of the lemma. This function is therefore a finite product of
bounded functions in Ck,1

(
U
)
.

The function h̃l defined in 42.2.44 is in Hk (U) and∣∣∣∣∣∣h̃l

∣∣∣∣∣∣
Hk(U)

≤C∑
s
||hs||Hk(Ω∩W )

again because m≥ k.
Finally, the right side of 42.2.45 is a function in Hk−1 (U) by Lemma 39.3.3 on Page

1356 and the observation that |detDΦ(·)| ∈Ck−1,1
(
U
)

which follows from the assumption
of the lemma that m≥ k so Φ ∈Ck−1,1 (Rn). Also∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣

Hk−1(U)
≤C || f ||Hk−1(Ω∩W ) .

Therefore, 42.2.42 is of the form∫
U

α
rs (y)w,rz,sdy+

∫
U

h̃lz,ldy =
∫

U
f̃ zdy, (42.2.46)

for all z in H1 (U) having support in V.
Claim: There exists r > 0 independent of y ∈U such that for all y ∈U ,

α
rs (y)vrvs ≥ r |v|2 .

Proof of the claim: If this is not so, there exist vectors, vn, |vn| = 1, and yn ∈U such
that αrs (yn)vn

r vn
s ≤ 1

n . Taking a subsequence, there exists y ∈ U and |v| = 1 such that
αrs (y)vrvs = 0 contradicting 42.2.32.

Therefore, by Corollary 42.1.2, there exists a constant, C, independent of f ,g, and w
such that

||w||2Hk+1(Φ−1(W1∩Ω)) ≤C

(∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣2
Hk−1(U)

+ ||w||2Hk(U)+∑
l

∣∣∣∣∣∣h̃l

∣∣∣∣∣∣2
Hk(U)

)
.

Therefore,

||u||2Hk+1(W1∩Ω) ≤ C
(
|| f ||2Hk−1(W∩Ω)+ ||w||

2
Hk(W∩Ω)+∑

s
||hs||2Hk(W∩Ω)

)
≤ C

(
|| f ||2Hk−1(Ω)+ ||w||

2
Hk(Ω)+∑

s
||hs||2Hk(Ω)

)
.

which proves the lemma.
Now here is a theorem which generalizes the one above in the case where more regu-

larity is known.

Theorem 42.2.6 Let Ω be a bounded open set with Ck,1 boundary as in Definition 42.2.1,
let f ∈ Hk−1 (Ω) ,hs ∈ Hk (Ω), and suppose that for all x ∈Ω,

ai j (x)viv j ≥ δ |v|2 .
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Suppose also that u ∈ Hk (Ω) and∫
Ω

ai j (x)u,i (x)v, j (x)dx+
∫

Ω

hk (x)v,k (x)dx =
∫

Ω

f (x)v(x)dx

for all v ∈ Hk (Ω) . Then u ∈ Hk+1 (Ω) and for some C independent of f ,g, and u,

||u||2Hk+1(Ω) ≤C
(
|| f ||2Hk−1(Ω)+ ||u||

2
Hk(Ω)+∑

s
||hs||2Hk(Ω)

)
.

Proof: Let the Wi for i = 1, · · · , l be as described in Definition 42.2.1. Thus ∂Ω ⊆
∪l

j=1Wj. Then let C1 ≡ ∂Ω\∪l
i=2Wi, a closed subset of W1. Let D1 be an open set satisfying

C1 ⊆ D1 ⊆ D1 ⊆W1.

Then D1,W2, · · · ,Wl cover ∂Ω. Let C2 = ∂Ω\
(
D1∪

(
∪l

i=3Wi
))

. Then C2 is a closed subset
of W2. Choose an open set, D2 such that

C2 ⊆ D2 ⊆ D2 ⊆W2.

Thus D1,D2,W3 · · · ,Wl covers ∂Ω. Continue in this way to get Di ⊆Wi, and ∂Ω⊆∪l
i=1Di,

and Di is an open set. Now let
D0 ≡Ω\∪l

i=1Di.

Also, let Di ⊆ Vi ⊆ Vi ⊆Wi. Therefore, D0,V1, · · · ,Vl covers Ω. Then the same estimation
process used above yields

||u||Hk+1(D0)
≤C

(
|| f ||2Hk−1(Ω)+ ||u||

2
Hk(Ω)+∑

k
||hk||2Hk(Ω)

)
.

From Lemma 42.2.5

||u||Hk+1(Vi∩Ω) ≤C

(
|| f ||2Hk−1(Ω)+ ||u||

2
Hk(Ω)+∑

k
||hk||2Hk(Ω)

)

also. This proves the theorem since

||u||Hk+1(Ω) ≤
l

∑
i=1
||u||Hk+1(Vi∩Ω)+ ||u||Hk+1(D0)

.



Chapter 43

Interpolation In Banach Space
43.1 Some Standard Techniques In Evolution Equations

43.1.1 Weak Vector Valued Derivatives
In this section, several significant theorems are presented. Unless indicated otherwise, the
measure will be Lebesgue measure. First here is a lemma.

Lemma 43.1.1 Suppose g ∈ L1 ([a,b] ;X) where X is a Banach space. Then if∫ b

a
g(t)φ (t)dt = 0

for all φ ∈C∞
c (a,b) , then g(t) = 0 a.e.

Proof: Let E be a measurable subset of (a,b) and let K ⊆ E ⊆ V ⊆ (a,b) where K
is compact, V is open and m(V \K) < ε. Let K ≺ h ≺ V as in the proof of the Riesz
representation theorem for positive linear functionals. Enlarging K slightly and convolving
with a mollifier, it can be assumed h ∈C∞

c (a,b) . Then∣∣∣∣∫ b

a
XE (t)g(t)dt

∣∣∣∣ =

∣∣∣∣∫ b

a
(XE (t)−h(t))g(t)dt

∣∣∣∣
≤

∫ b

a
|XE (t)−h(t)| ||g(t)||dt

≤
∫

V\K
||g(t)||dt.

Now let Kn ⊆ E ⊆Vn with m(Vn \Kn)< 2−n. Then from the above,∣∣∣∣∫ b

a
XE (t)g(t)dt

∣∣∣∣≤ ∫ b

a
XVn\Kn (t) ||g(t)||dt

and the integrand of the last integral converges to 0 a.e. as n→∞ because ∑n m(Vn \Kn)<
∞. By the dominated convergence theorem, this last integral converges to 0. Therefore,
whenever E ⊆ (a,b) , ∫ b

a
XE (t)g(t)dt = 0.

Since the endpoints have measure zero, it also follows that for any measurable E, the above
equation holds.

Now g ∈ L1 ([a,b] ;X) and so it is measurable. Therefore, g([a,b]) is separable. Let
D be a countable dense subset and let E denote the set of linear combinations of the form
∑i aidi where ai is a rational point of F and di ∈ D. Thus E is countable. Denote by Y the
closure of E in X . Thus Y is a separable closed subspace of X which contains all the values
of g.

1411
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Now let Sn ≡ g−1 (B(yn, ||yn||/2)) where E = {yn}∞

n=1 . Then, ∪nSn = g−1 (X \{0}) .
This follows because if x ∈ Y and x ̸= 0, then in B

(
x, ||x||4

)
there is a point of E,yn. There-

fore, ||yn||> 3
4 ||x|| and so ||yn||

2 > 3||x||
8 > ||x||

4 so x ∈ B(yn, ||yn||/2) . It follows that if each
Sn has measure zero, then g(t) = 0 for a.e. t. Suppose then that for some n, the set, Sn has
positive mesure. Then from what was shown above,

||yn|| =

∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)dt− yn

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)− yndt
∣∣∣∣∣∣∣∣

≤ 1
m(Sn)

∫
Sn

||g(t)− yn||dt ≤ 1
m(Sn)

∫
Sn

||yn||/2dt = ||yn||/2

and so yn = 0 which implies Sn = /0, a contradiction to m(Sn)> 0. This contradiction shows
each Sn has measure zero and so as just explained, g(t) = 0 a.e. ■

Definition 43.1.2 For f ∈ L1 (a,b;X) , define an extension, f defined on

[2a−b,2b−a] = [a− (b−a) ,b+(b−a)]

as follows.

f (t)≡

 f (t) if t ∈ [a,b]
f (2a− t) if t ∈ [2a−b,a]
f (2b− t) if t ∈ [b,2b−a]

Definition 43.1.3 Also if f ∈ Lp (a,b;X) and h > 0, define for t ∈ [a,b] , fh (t) ≡ f (t−h)
for all h < b−a. Thus the map f → fh is continuous and linear on Lp (a,b;X) . It is con-
tinuous because∫ b

a
|| fh (t)||p dt =

∫ a+h

a
|| f (2a− t +h)||p dt +

∫ b−h

a
|| f (t)||p dt

=
∫ a+h

a
|| f (t)||p dt +

∫ b−h

a
|| f (t)||p dt ≤ 2 || f ||pp .

The following lemma is on continuity of translation in Lp (a,b;X) .

Lemma 43.1.4 Let f be as defined in Definition 69.2.2. Then for f ∈ Lp (a,b;X) for p ∈
[1,∞),

lim
δ→0

∫ b

a

∣∣∣∣ f (t−δ )− f (t)
∣∣∣∣p

X dt = 0.

Proof: Regarding the measure space as (a,b) with Lebesgue measure, by Lemma
21.5.9 there exists g ∈ Cc (a,b;X) such that || f −g||p < ε. Here the norm is the norm in
Lp (a,b;X) . Therefore,

|| fh− f ||p ≤ || fh−gh||p + ||gh−g||p + ||g− f ||p
≤

(
21/p +1

)
|| f −g||p + ||gh−g||p

<
(

21/p +1
)

ε + ε
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whenever h is sufficiently small. This is because of the uniform continuity of g. Therefore,
since ε > 0 is arbitrary, this proves the lemma. ■

Definition 43.1.5 Let f ∈ L1 (a,b;X) . Then the distributional derivative in the sense of X
valued distributions is given by

f ′ (φ)≡−
∫ b

a
f (t)φ

′ (t)dt

Then f ′ ∈ L1 (a,b;X) if there exists h ∈ L1 (a,b;X) such that for all φ ∈C∞
c (a,b) ,

f ′ (φ) =
∫ b

a
h(t)φ (t)dt.

Then f ′ is defined to equal h. Here f and f ′ are considered as vector valued distributions
in the same way as was done for scalar valued functions.

Lemma 43.1.6 The above definition is well defined.

Proof: Suppose both h and g work in the definition. Then for all φ ∈C∞
c (a,b) ,∫ b

a
(h(t)−g(t))φ (t)dt = 0.

Therefore, by Lemma 43.1.1, h(t)−g(t) = 0 a.e. ■
The other thing to notice about this is the following lemma. It follows immediately

from the definition.

Lemma 43.1.7 Suppose f , f ′ ∈ L1 (a,b;X) . Then if [c,d]⊆ [a,b], it follows that
(

f |[c,d]
)′
=

f ′|[c,d]. This notation means the restriction to [c,d] .

Recall that in the case of scalar valued functions, if you had both f and its weak deriva-
tive, f ′ in L1 (a,b) , then you were able to conclude that f is almost everywhere equal to a
continuous function, still denoted by f and

f (t) = f (a)+
∫ t

a
f ′ (s)ds.

In particular, you can define f (a) to be the initial value of this continuous function. It
turns out that an identical theorem holds in this case. To begin with here is the same sort
of lemma which was used earlier for the case of scalar valued functions. It says that if
f ′ = 0 where the derivative is taken in the sense of X valued distributions, then f equals a
constant.

Lemma 43.1.8 Suppose f ∈ L1 (a,b;X) and for all φ ∈C∞
c (a,b) ,∫ b

a
f (t)φ

′ (t)dt = 0.

Then there exists a constant, a ∈ X such that f (t) = a a.e.
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Proof: Let φ 0 ∈C∞
c (a,b) ,

∫ b
a φ 0 (x)dx = 1 and define for φ ∈C∞

c (a,b)

ψφ (x)≡
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

Then ψφ ∈C∞
c (a,b) and ψ ′

φ
= φ −

(∫ b
a φ (y)dy

)
φ 0. Then

∫ b

a
f (t)(φ (t))dt =

∫ b

a
f (t)

(
ψ
′
φ (t)+

(∫ b

a
φ (y)dy

)
φ 0 (t)

)
dt

=

=0 by assumption︷ ︸︸ ︷∫ b

a
f (t)ψ

′
φ (t)dt +

(∫ b

a
φ (y)dy

)∫ b

a
f (t)φ 0 (t)dt

=

(∫ b

a

(∫ b

a
f (t)φ 0 (t)dt

)
φ (y)dy

)
.

It follows that for all φ ∈C∞
c (a,b) ,∫ b

a

(
f (y)−

(∫ b

a
f (t)φ 0 (t)dt

))
φ (y)dy = 0

and so by Lemma 43.1.1,

f (y)−
(∫ b

a
f (t)φ 0 (t)dt

)
= 0 a.e. y ■

Theorem 43.1.9 Suppose f , f ′ both are in L1 (a,b;X) where the derivative is taken in the
sense of X valued distributions. Then there exists a unique point of X , denoted by f (a)
such that the following formula holds a.e. t.

f (t) = f (a)+
∫ t

a
f ′ (s)ds

Proof:∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt =

∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt.

Now consider
∫ b

a
∫ t

a f ′ (s)φ
′ (t)dsdt. Let Λ ∈ X ′. Then it is routine from approximating f ′

with simple functions to verify

Λ

(∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt
)
=
∫ b

a

∫ t

a
Λ
(

f ′ (s)
)

φ
′ (t)dsdt.

Now the ordinary Fubini theorem can be applied to obtain

=
∫ b

a

∫ b

s
Λ
(

f ′ (s)
)

φ
′ (t)dtds

= Λ

(∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds
)
.
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Since X ′ separates the points of X , it follows∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt =
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds.

Therefore, ∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f ′ (s)φ (s)ds = 0.

Therefore, by Lemma 43.1.8, there exists a constant, denoted as f (a) such that

f (t)−
∫ t

a
f ′ (s)ds = f (a) ■

The integration by parts formula is also important.

Corollary 43.1.10 Suppose f , f ′ ∈ L1 (a,b;X) and suppose φ ∈ C1 ([a,b]) . Then the fol-
lowing integration by parts formula holds.∫ b

a
f (t)φ

′ (t)dt = f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt.

Proof: From Theorem 43.1.9∫ b

a
f (t)φ

′ (t)dt

=
∫ b

a

(
f (a)+

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a

∫ t

a
f ′ (s)dsφ

′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)(φ (b)−φ (s))ds

= f (a)(φ (b)−φ (a))−
∫ b

a
f ′ (s)φ (s)ds+( f (b)− f (a))φ (b)

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (s)φ (s)ds.

The interchange in order of integration is justified as in the proof of Theorem 43.1.9. ■
There is an interesting theorem which is easy to present at this point.
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Definition 43.1.11 Let
H1 (0,T,X)

denote the functions f ∈ L2 (0,T,X) whose weak derivative f ′ is also in L2 (0,T,X).

Proposition 43.1.12 Let f ∈ H1 (0,T,X). Then f ∈ C0,(1/2) ([0,T ] ,X) and the inclusion
map is continuous.

Proof: First note that

f (t)− f (s) =
∫ t

s
f ′ (r)dr

and so

∥ f (t)− f (s)∥X ≤
∫ t

s

∥∥ f ′ (r)
∥∥

X dr ≤ ∥ f∥H1 |t− s|1/2

It follows that

sup
0≤s<t≤T

∥ f (t)− f (s)∥
|t− s|1/2 ≤ ∥ f∥H1

Also

f (t) = f (0)+
∫ t

0
f ′ (s)ds

so

∥ f (t)∥ ≤ ∥ f (0)∥+
∫ t

0

∣∣ f ′ (s)∣∣ds≤ ∥ f (0)∥+T 1/2 ∥ f∥H1

Now consider ∥ f (0)∥ . Then integrating by parts yields∫ T

0
(T − t) f ′ (t)dt = (T − t) f (t) |T0 +

∫ t

0
f (t)dt

and so

T ∥ f (0)∥ ≤
∫ T

0
∥ f (t)∥dt +T

∫ T

0

∥∥ f ′ (t)
∥∥dt ≤C (T )∥ f∥H1 .

Hence
sup

t∈[0,T ]
∥ f (t)∥ ≤C (T )∥ f∥H1

Therefore, this has shown that

∥ f∥C0,(1/2)([0,T ],X) ≡ sup
t∈[0,T ]

∥ f (t)∥+ sup
0≤s<t≤T

∥ f (t)− f (s)∥
|t− s|1/2 ≤C (T )∥ f∥H1 ■

You could imagine that other interesting versions of this are available with similar proof
for the case where the function and its weak derivative are in Lp (0,T,X) for p > 1.

With this integration by parts formula, the following interesting lemma is obtained.
This lemma shows why it was appropriate to define f as in Definition 43.1.2.
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Lemma 43.1.13 Let f be given in Definition 43.1.2 and suppose f , f ′ ∈ L1 (a,b;X) . Then
f , f ′ ∈ L1 (2a−b,2b−a;X) also and

f ′ (t)≡

 f ′ (t) if t ∈ [a,b]
− f ′ (2a− t) if t ∈ [2a−b,a]
− f ′ (2b− t) if t ∈ [b,2b−a]

(43.1.1)

Proof: It is clear from the definition of f that f ∈ L1 (2a−b,2b−a;X) and that in fact∣∣∣∣ f ∣∣∣∣L1(2a−b,2b−a;X)
≤ 3 || f ||L1(a,b;X) . (43.1.2)

Let φ ∈C∞
c (2a−b,2b−a) . Then from the integration by parts formula,∫ 2b−a

2a−b
f (t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ 2b−a

b
f (2b− t)φ

′ (t)dt +
∫ a

2a−b
f (2a− t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f (u)φ

′ (2b−u)du+
∫ b

a
f (u)φ

′ (2a−u)du

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt− f (b)φ (b)+ f (a)φ (2b−a)

+
∫ b

a
f ′ (u)φ (2b−u)du− f (b)φ (2a−b)

+ f (a)φ (a)+
∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt +

∫ b

a
f ′ (u)φ (2b−u)du+

∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt−

∫ 2b−a

b
− f ′ (2b− t)φ (t)dt−

∫ a

2a−b
− f ′ (2a− t)φ (t)dt

= −
∫ 2b−a

2a−b
f ′ (t)φ (t)dt

where f ′ (t) is given in 43.1.1. ■

Definition 43.1.14 Let V be a Banach space and let H be a Hilbert space. (Typically
H = L2 (Ω)) Suppose V ⊆ H is dense in H meaning that the closure in H of V gives H.
Then it is often the case that H is identified with its dual space, and then because of the
density of V in H, it is possible to write

V ⊆ H = H ′ ⊆V ′

When this is done, H is called a pivot space. Another notation which is often used is ⟨ f ,g⟩
to denote f (g) for f ∈V ′ and g ∈V. This may also be written as ⟨ f ,g⟩V ′,V . Another term
is that V ⊆ H = H ′ ⊆V ′ is called a Gelfand triple.



1418 CHAPTER 43. INTERPOLATION IN BANACH SPACE

The next theorem is an example of a trace theorem. In this theorem, f ∈ Lp (0,T ;V )
while f ′ ∈ Lp (0,T ;V ′) . It makes no sense to consider the initial values of f in V because
it is not even continuous with values in V . However, because of the derivative of f it will
turn out that f is continuous with values in a larger space and so it makes sense to consider
initial values of f in this other space. This other space is called a trace space.

Theorem 43.1.15 Let V and H be a Banach space and Hilbert space as described in Def-
inition 43.1.14. Suppose f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) . Then f is a.e. equal to a
continuous function mapping [0,T ] to H. Furthermore, there exists f (0) ∈ H such that

1
2
| f (t)|2H −

1
2
| f (0)|2H =

∫ t

0

〈
f ′ (s) , f (s)

〉
ds, (43.1.3)

and for all t ∈ [0,T ] , ∫ t

0
f ′ (s)ds ∈ H, (43.1.4)

and for a.e. t ∈ [0,T ] ,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H, (43.1.5)

Here f ′ is being taken in the sense of V ′ valued distributions and 1
p +

1
p′ = 1 and p≥ 2.

Proof: Let Ψ ∈C∞
c (−T,2T ) satisfy Ψ(t) = 1 if t ∈ [−T/2,3T/2] and Ψ(t) ≥ 0. For

t ∈ R, define

f̂ (t)≡
{

f (t)Ψ(t) if t ∈ [−T,2T ]
0 if t /∈ [−T,2T ]

and

fn (t)≡
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds (43.1.6)

where φ n is a mollifier having support in (−1/n,1/n) . Then by Minkowski’s inequality

∣∣∣∣∣∣ fn− f̂
∣∣∣∣∣∣

Lp(R;V )
=

(∫
R

∣∣∣∣∣∣∣∣ f̂ (t)−∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

=

(∫
R

∣∣∣∣∣∣∣∣∫ 1/n

−1/n

(
f̂ (t)− f̂ (t− s)

)
φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

≤
(∫

R

(∫ 1/n

−1/n

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣

V
φ n (s)ds

)p

dt
)1/p

≤
∫ 1/n

−1/n
φ n (s)

(∫
R

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣p

V
dt
)1/p

ds

≤
∫ 1/n

−1/n
φ n (s)εds = ε
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provided n is large enough. This follows from continuity of translation in Lp with Lebesgue
measure. Since ε > 0 is arbitrary, it follows fn → f̂ in Lp (R;V ) . Similarly, fn → f in
L2 (R;H). This follows because p ≥ 2 and the norm in V and norm in H are related by
|x|H ≤C ||x||V for some constant, C. Now

f̂ (t) =


Ψ(t) f (t) if t ∈ [0,T ] ,
Ψ(t) f (2T − t) if t ∈ [T,2T ] ,
Ψ(t) f (−t) if t ∈ [0,T ] ,
0 if t /∈ [−T,2T ] .

An easy modification of the argument of Lemma 43.1.13 yields

f̂ ′ (t) =


Ψ′ (t) f (t)+Ψ(y) f ′ (t) if t ∈ [0,T ] ,
Ψ′ (t) f (2T − t)−Ψ(t) f ′ (2T − t) if t ∈ [T,2T ] ,
Ψ′ (t) f (−t)−Ψ(t) f ′ (−t) if t ∈ [−T,0] ,
0 if t /∈ [−T,2T ] .

.

Recall

fn (t) =
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds =

∫
R

f̂ (t− s)φ n (s)ds

=
∫
R

f̂ (s)φ n (t− s)ds.

Therefore,

f ′n (t) =
∫
R

f̂ (s)φ
′
n (t− s)ds =

∫ 2T+ 1
n

−T− 1
n

f̂ (s)φ
′
n (t− s)ds

=
∫ 2T+ 1

n

−T− 1
n

f̂ ′ (s)φ n (t− s)ds =
∫
R

f̂ ′ (s)φ n (t− s)ds

=
∫
R

f̂ ′ (t− s)φ n (s)ds =
∫ 1/n

−1/n
f̂ ′ (t− s)φ n (s)ds

and it follows from the first line above that f ′n is continuous with values in V for all t ∈ R.
Also note that both f ′n and fn equal zero if t /∈ [−T,2T ] whenever n is large enough. Exactly
similar reasoning to the above shows that f ′n→ f̂ ′ in Lp′ (R;V ′) .

Now let φ ∈C∞
c (0,T ) .∫

R
| fn (t)|2H φ

′ (t)dt =
∫
R
( fn (t) , fn (t))H φ

′ (t)dt (43.1.7)

=−
∫
R

2
(

f ′n (t) , fn (t)
)

φ (t)dt = −
∫
R

2
〈

f ′n (t) , fn (t)
〉

φ (t)dt

Now ∣∣∣∣∫R 〈 f ′n (t) , fn (t)
〉

φ (t)dt−
∫
R

〈
f ′ (t) , f (t)

〉
φ (t)dt

∣∣∣∣
≤

∫
R

(∣∣〈 f ′n (t)− f ′ (t) , fn (t)
〉∣∣+ ∣∣〈 f ′ (t) , fn (t)− f (t)

〉∣∣)φ (t)dt.
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From the first part of this proof which showed that fn → f̂ in Lp (R;V ) and f ′n → f̂ ′ in
Lp′ (R;V ′) , an application of Holder’s inequality shows the above converges to 0 as n→∞.
Therefore, passing to the limit as n→ ∞ in the 43.1.8,∫

R

∣∣∣ f̂ (t)∣∣∣2
H

φ
′ (t)dt =−

∫
R

2
〈

f̂ ′ (t) , f̂ (t)
〉

φ (t)dt

which shows t→
∣∣∣ f̂ (t)∣∣∣2

H
equals a continuous function a.e. and it also has a weak derivative

equal to 2
〈

f̂ ′, f̂
〉

.

It remains to verify that f̂ is continuous on [0,T ] . Of course f̂ = f on this interval. Let
N be large enough that fn (−T ) = 0 for all n > N. Then for m,n > N and t ∈ [−T,2T ]

| fn (t)− fm (t)|2H = 2
∫ t

−T

(
f ′n (s)− f ′m (s) , fn (s)− fm (s)

)
ds

= 2
∫ t

−T

〈
f ′n (s)− f ′m (s) , fn (s)− fm (s)

〉
V ′,V ds

≤ 2
∫
R

∣∣∣∣ f ′n (s)− f ′m (s)
∣∣∣∣

V ′ || fn (s)− fm (s)||V ds

≤ 2 || fn− fm||Lp′ (R;V ′) || fn− fm||Lp(R;V )

which shows from the above that { fn} is uniformly Cauchy on [−T,2T ] with values in H.
Therefore, there exists g a continuous function defined on [−T,2T ] having values in H such
that

lim
n→∞

max{| fn (t)−g(t)|H ; t ∈ [−T,2T ]}= 0.

However, g = f̂ a.e. because fn converges to f in Lp (0,T ;V ) . Therefore, taking a subse-
quence, the convergence is a.e. It follows from the fact that V ⊆H = H ′ ⊆V ′ and Theorem
43.1.9, there exists f (0) ∈V ′ such that for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

Now g = f a.e. and g is continuous with values in H hence continuous with values in V ′and
so

g(t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

for all t. Since g is continuous with values in H it is continuous with values in V ′. Taking the
limit as t ↓ 0 in the above, g(a) = limt→0+ g(t) = f (0) , showing that f (0)∈H. Therefore,
for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H,

∫ t

0
f ′ (s)ds ∈ H.■

Note that if f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) , then you can consider the initial
value of f and it will be in H. What if you start with something in H? Is it an initial
condition for a function f ∈ Lp (0,T ;V ) such that f ′ ∈ Lp′ (0,T ;V ′)? This is worth thinking
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about. If it is not so, what is the space of initial values? How can you give this space a
norm? What are its properties? It turns out that if V is a closed subspace of the Sobolev
space, W 1,p (Ω) which contains W 1,p

0 (Ω) for p≥ 2 and H = L2 (Ω) the answer to the above
question is yes. Not surprisingly, there are many generalizations of the above ideas.

43.2 An Important Formula
It is not necessary to have p > 2 in order to do the sort of thing just described. Here is a
major result which will have a much more difficult stochastic version presented later. First
is a simple version of an approximation theorem of Doob.

Lemma 43.2.1 Let Y : [0,T ]→ E, be B ([0,T ]) measurable and suppose

Y ∈ Lp (0,T ;E)≡ K, p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Y r
k (t) ≡

mk

∑
j=1

Y
(

tk
j

)
X[tk

j−1,t
k
j )
(t)

Y l
k (t) ≡

mk

∑
j=1

Y
(

tk
j−1

)
X(tk

j−1,t
k
j ]
(t)

both converge to Y in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Y
(

tk
j

)
,Y
(

tk
j−1

)
is in E. One can also assume that Y (0) = 0. The mesh points{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we can

assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j = mnk when this might not be so. In the case of the last
subinterval defined by the partition, we can assume∣∣∣tk

m− tk
m−1

∣∣∣= ∣∣∣T − tk
m−1

∣∣∣≥ 2−(nk+1)

Proof: For t ∈ R let γn (t) ≡ k/2n,δ n (t) ≡ (k+1)/2n, where t ∈ (k/2n,(k+1)/2n],

and 2−n < T/4. Also suppose Y is defined to equal 0 on [0,T ]C. Then t → ∥Y (t)∥ is in
Lp (R). Therefore by continuity of translation, as n→ ∞ it follows that for t ∈ [0,T ] ,∫

R
||Y (γn (t)+ s)−Y (t + s)||pE ds→ 0
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The above is dominated by∫
R

2p−1 (||Y (s)||p + ||Y (s)||p)X[−2T,2T ] (s)ds

=
∫ 2T

−2T
2p−1 (||Y (s)||p + ||Y (s)||p)ds < ∞

Therefore,

lim
n→∞

∫ 2T

−2T

(∫
R
||Y (γn (t)+ s)−Y (t + s)||pE ds

)
dt = 0

by the dominated convergence theorem. Now Fubini. The above equals∫
R

∫ 2T

−2T
||Y (γn (t)+ s)−Y (t + s)||pE dtds

Change the variables on the inside.∫
R

∫ 2T+s

−2T+s
||Y (γn (t− s)+ s)−Y (t)||pE dtds

Since γn (t− s)+ s is within 2−n of t and Y (t) vanishes if t /∈ [0,T ] , this reduces to∫
R

∫ 2T

−2T
||Y (γn (t− s)+ s)−Y (t)||pE dtds.

This converges to 0 as n→ ∞ as was shown above. Therefore,∫ T

0

∫ T

0
||Y (γn (t− s)+ s)−Y (t)||pE dtds

also converges to 0 as n→ ∞. The only problem is that γn (t− s) + s ≥ t − 2−n and so
γn (t− s)+ s could be less than 0 for t ∈ [0,2−n]. Since this is an interval whose measure
converges to 0 it follows∫ T

0

∫ T

0

∣∣∣∣Y ((γn (t− s)+ s)+
)
−Y (t)

∣∣∣∣p
E dtds

converges to 0 as n→ ∞. Let

mn (s) =
∫ T

0

∣∣∣∣Y ((γn (t− s)+ s)+
)
−Y (t)

∣∣∣∣p
E dt

Then

P([mn (s)> λ ])≤ 1
λ

∫ T

0
mn (s)ds.

It follows there exists a subsequence nk such that

P
([

mnk (s)>
1
k

])
< 2−k



43.2. AN IMPORTANT FORMULA 1423

Hence by the Borel Cantelli lemma, there exists a set of measure zero N such that for s /∈N,

mnk (s)≤ 1/k

for all k sufficiently large. Picking sk /∈ N,

Y l
k (t)≡ Y

((
γnk

(t− sk)+ sk

)+)

Then t→Y
((

γnk
(t− sk)+ sk

)+)
is a step function of the sort described above. Of course

you can always simply define Y l
k (0) ≡ 0. This is because the interval affected has length

which converges to 0 as k→ ∞. The jumps in t → γnk
(t− sk) determine the mesh points

of the partition. By picking sk appropriately, you can have each of these mesh points miss
a given set of measure zero except for the first and last point. This is because when you
slide sk it just moves the mesh points of Pk except for the first point and last point. Let N1
be a set of measure zero and let (a,b) ⊆ [0,T ] . Now let s move through (a,b) and denote
by A j the corresponding set of points obtained by the jth mesh point. Thus A j has positive
measure and so it is not contained in N1. Let S j be the points of (a,b) which correspond to
A j ∩N1. Thus S j has measure 0. Just pick sk ∈ (a,b)\∪ jS j. You can also choose sk such
that

T − sk− γnk
(T − sk)> 2−(nk+1)

which will cause the last condition mentioned above to hold.
To get the other sequence of step functions, just use a similar argument with δ n in place

of γn. ■

Theorem 43.2.2 Let V ⊆H =H ′⊆V ′ be a Gelfand triple and suppose Y ∈ Lp′ (0,T ;V ′)≡
K′ and

X (t) = X0 +
∫ t

0
Y (s)ds in V ′ (43.2.8)

where X0 ∈ H, and it is known that X ∈ Lp (0,T,V ) ≡ K for p > 1. Then t → X (t) is in
C ([0,T ] ,H) and also

1
2
|X (t)|2H =

1
2
|X0|2H +

∫ t

0
⟨Y (s) ,X (s)⟩ds

Proof: By Lemma 43.2.1, there exists a sequence of uniform partitions
{

tn
k

}mn
k=0 =

Pn,Pn ⊆Pn+1, of [0,T ] such that the step functions

mn−1

∑
k=0

X (tn
k )X(tn

k ,t
n
k+1]

(t) ≡ X l (t)

mn−1

∑
k=0

X
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ X r (t)

converge to X in K and in L2 ([0,T ] ,H).
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Lemma 43.2.3 Let s < t. Then for X ,Y satisfying 43.2.8

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 (43.2.9)

Proof: It follows from the following computations

X (t)−X (s) =
∫ t

s
Y (u)du

−|X (t)−X (s)|2 =−|X (t)|2 +2(X (t) ,X (s))−|X (s)|2

= −|X (t)|2 +2
(

X (t) ,X (t)−
∫ t

s
Y (u)du

)
−|X (s)|2

= −|X (t)|2 +2 |X (t)|2−2
〈∫ t

s
Y (u)du,X (t)

〉
−|X (s)|2

Hence
|X (t)|2 = |X (s)|2 +2

∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 ■

Lemma 43.2.4 In the above situation,

sup
t∈[0,T ]

|X (t)|H ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ X (t) is weakly continuous with values in H.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

|X (tm)|2−|X0|2 =
m−1

∑
j=0

∣∣X (t j+1
)∣∣2− ∣∣X (t j)

∣∣2

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

=
m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

∣∣X (t j)
∣∣2
H ≤ |X0|2 +2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

≤ |X0|2 +2
∫ T

0
∥Y (u)∥V ′ ∥X

r
k (u)∥V du
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≤ |X0|2 +2
(∫ T

0
∥Y (u)∥p′

V ′ du
)1/p′(∫ T

0
∥X r

k (u)∥
p
V du

)1/p

≤C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥X r

k (u)∥
p
V

)1/p

=

(∫ T

0
∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
|X (t)|<C (∥Y∥K′ ,∥X∥K)

Now let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V . This is
possible because V is separable. Then let

{
e j
}∞

j=1 be an orthonormal basis for H such that
ek ∈ span(g1, . . . ,gk) and each gk ∈ span(e1, . . . ,ek) . This is done with the Gram Schmidt
process. Then it follows that span({ek}∞

k=1) is dense in V . I claim

|y|2H =
∞

∑
j=1

∣∣〈y,e j
〉∣∣2 .

This is certainly true if y ∈ H because〈
y,e j

〉
= (y,e j)H

If y /∈ H, then the series must diverge since otherwise, you could consider the infinite sum

∞

∑
j=1

〈
y,e j

〉
e j ∈ H

because ∣∣∣∣∣ q

∑
j=p

〈
y,e j

〉
e j

∣∣∣∣∣
2

=
q

∑
j=p

∣∣〈y,e j
〉∣∣2→ 0 as p,q→ ∞.

Letting z = ∑
∞
j=1
〈
y,e j

〉
e j, it follows that

〈
y,e j

〉
is the jth Fourier coefficient of z and that

⟨z− y,v⟩= 0

for all v ∈ span({ek}∞

k=1) which is dense in V. Therefore, z = y in V ′ and so y ∈ H.
It follows

|X (t)|2 = sup
n

n

∑
j=1

∣∣〈X (t) ,e j
〉∣∣2

which is just the sup of continuous functions of t. Therefore, t→ |X (t)|2 is lower semicon-
tinuous. It follows that for any t, letting t j→ t for t j ∈ D,

|X (t)|2 ≤ lim inf
j→∞

∣∣X (t j)
∣∣2 ≤C (∥Y∥K′ ,∥X∥K)
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This proves the first claim of the lemma.
Consider now the claim that t→ X (t) is weakly continuous. Letting v ∈V,

lim
t→s

(X (t) ,v) = lim
t→s
⟨X (t) ,v⟩= ⟨X (s) ,v⟩= (X (s) ,v)

Since it was shown that |X (t)| is bounded independent of t, and since V is dense in H, the
claim follows. ■

Now

−
m−1

∑
j=0

∣∣X (t j+1
)
−X (t j)

∣∣2
H = |X (tm)|2−|X0|2−

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du

= |X (tm)|2−|X0|2−2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du

Thus, since the partitions are nested, eventually |X (tm)|2 is constant for all k large enough
and the integral term converges to ∫ tm

0
⟨Y (u) ,X (u)⟩du

It follows that the term on the left does converge to something. It just remains to consider
what it does converge to. However, from the equation solved by X ,

X
(
t j+1

)
−X (t j) =

∫ t j+1

t j

Y (u)du

Therefore, this term is dominated by an expression of the form

mk−1

∑
j=0

(∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

)

=
mk−1

∑
j=0

〈∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

〉

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)
−X (t j)

〉
du

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X (t j)

〉
=

∫ T

0
⟨Y (u) ,X r (u)⟩du−

∫ T

0

〈
Y (u) ,X l (u)

〉
du

However, both X r and X l converge to X in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t,

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (u) ,X (u)⟩du
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It remains to verify that this holds for all t. Let t /∈ D and let t (k) ∈Pk be the largest
point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

X (t (m)) = X0 +
∫ t(m)

0
Y (s)ds,

a similar formula for X (t (k)) . Thus for t > t (m) ,

X (t)−X (t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and X0 = 0. Therefore,

|X (t (k))−X (t (m))|2 = 2
∫ t(k)

t(m)
⟨Y (s) ,X (s)−X (t (m))⟩ds

Thus, for m≤ k
lim

m,k→∞

|X (t (k))−X (t (m))|2 = 0

Hence {X (t (k))}∞

k=1 is a convergent sequence in H. Does it converge to X (t)? Let ξ (t)∈H
be what it does converge to. Let v ∈V. Then

(ξ (t) ,v) = lim
k→∞

(X (t (k)) ,v) = lim
k→∞

⟨X (t (k)) ,v⟩= ⟨X (t) ,v⟩= (X (t) ,v)

because it is known that t→ X (t) is continuous into V ′ and it is also known that X (t) ∈ H
and that the X (t) for t ∈ [0,T ] are uniformly bounded. Therefore, since V is dense in H, it
follows that ξ (t) = X (t).

Now for every t ∈ D, it was shown above that

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (s) ,X (s)⟩ds

Thus, using what was just shown, if t /∈ D and tk→ t,

|X (t)|2 = lim
k→∞

|X (tk)|2 = lim
k→∞

(
|X0|2 +2

∫ tk

0
⟨Y (s) ,X (s)⟩ds

)
= |X0|2 +2

∫ t

0
⟨Y (s) ,X (s)⟩ds

which proves the desired formula. From this it follows right away that t → X (t) is con-
tinuous into H because it was just shown that t → |X (t)| is continuous and t → X (t) is
weakly continuous. Since Hilbert space is uniformly convex, this implies the t → X (t) is
continuous. To see this in the special cas of Hilbert space,

|X (t)−X (s)|2 = |X (t)|2−2(X (s) ,X (t))+ |X (s)|2

Then limt→s

(
|X (t)|2−2(X (s) ,X (t))+ |X (s)|2

)
= 0 by weak convergence of X (t) to

X (s) and the convergence of |X (t)|2 to |X (s)|2. ■
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43.3 The Implicit Case
The above theorem can be generalized to the case where the formula is of the form

BX (t) = BX0 +
∫ t

0
Y (s)ds

This involves an operator B ∈L (W,W ′) and B satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩

for
V ⊆W, W ′ ⊆V ′

Where V is dense in the Hilbert space W . Before giving the theorem, here is a technical
lemma.

Lemma 43.3.1 Suppose V,W are separable Banach spaces, W also a Hilbert space such
that V is dense in W and B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′.

Proof: Let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V .
This is possible because V is separable. Thus, their span is also dense in W . Let n1 be the
first index such that ⟨Bgn1 ,gn1⟩ ̸= 0.

Claim: If there is no such index, then B = 0.
Proof of claim: First note that if there is no such first index, then if x = ∑

k
i=1 aigi

|⟨Bx,x⟩| =

∣∣∣∣∣∑i̸= j
aia j

〈
Bgi,g j

〉∣∣∣∣∣≤∑
i ̸= j
|ai|
∣∣a j
∣∣ ∣∣〈Bgi,g j

〉∣∣
≤ ∑

i̸= j
|ai|
∣∣a j
∣∣⟨Bgi,gi⟩1/2 〈Bg j,g j

〉1/2
= 0

Therefore, if x is given, you could take xk in the span of {g1, · · · ,gk} such that ∥xk− x∥W →
0. Then

|⟨Bx,y⟩|= lim
k→∞

|⟨Bxk,y⟩| ≤ lim
k→∞

⟨Bxk,xk⟩1/2 ⟨By,y⟩1/2 = 0
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because ⟨Bxk,xk⟩ is zero by what was just shown.
Thus assume there is such a first index. Let

e1 ≡
gn1

⟨Bgn1 ,gn1⟩
1/2

Then ⟨Be1,e1⟩= 1. Now if you have constructed e j for j ≤ k,

e j ∈ span
(
gn1 , · · · ,gnk

)
,
〈
Bei,e j

〉
= δ i j,

gn j+1 being the first for which〈
Bgn j+1 −

j

∑
i=1

〈
Bgn j+1 ,ei

〉
Bei,gn j+1 −

j

∑
i=1

〈
Bgn j,ei

〉
ei

〉
̸= 0,

and
span

(
gn1 , · · · ,gnk

)
= span(e1, · · · ,ek) ,

let gnk+1 be such that gnk+1 is the first in the list
{

gnk

}
such that〈

Bgnk+1 −
k

∑
i=1

〈
Bgnk+1 ,ei

〉
Bei,gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

〉
̸= 0

Note the difference between this and the Gram Schmidt process. Here you don’t necessarily
use all of the gk due to the possible degeneracy of B.

Claim: If there is no such first gnk+1 , then B(span(ei, · · · ,ek)) = BW so in this case,
{Bei}k

i=1 is actually a basis for BW .
Proof: Let x ∈W . Let xr ∈ span(g1, · · · ,gr) ,r > nk such that limr→∞ xr = x in W . Then

xr =
k

∑
i=1

cr
i ei +

r

∑
i/∈{n1,··· ,nk}

dr
i gi ≡ yr + zr (43.3.10)

If l /∈ {n1, · · · ,nk} , then by the construction and the above assumption, for some j ≤ k〈
Bgl−

j

∑
i=1
⟨Bgl ,ei⟩Bei,gl−

j

∑
i=1
⟨Bgl ,ei⟩ei

〉
= 0 (43.3.11)

If l < nk, this follows from the construction. If the above is nonzero all j ≤ k, then l would
have been chosen but it wasn’t. Thus

Bgl =
j

∑
i=1
⟨Bgl ,ei⟩Bei

If l > nk, then by assumption, 43.3.11 holds for j = k. Thus, in any case, it follows that for
each l /∈ {n1, · · · ,nk} ,

Bgl ∈ B(span(ei, · · · ,ek)) .
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Now it follows from 43.3.10 that

Bxr =
k

∑
i=1

cr
i Bei +

r

∑
i/∈{n1,··· ,nk}

dr
i Bgi

=
k

∑
i=1

cr
i Bei +

r

∑
i/∈{n1,··· ,nk}

dr
i

k

∑
j=1

ci
jBe j

and so Bxr ∈ B(span(ei, · · · ,ek)) . Then

Bx = lim
r→∞

Bxr = lim
r→∞

Byr

where yr ∈ span(ei, · · · ,ek). Say

Bxr =
k

∑
i=1

ar
i Bei

It follows easily that
〈
Bxr,e j

〉
= ar

j. (Act on e j by both sides and use
〈
Bei,e j

〉
= δ i j.)

Now since xr is bounded, it follows that these ar
j are also bounded. Hence, defining

yr ≡ ∑
k
i=1 ar

i ei, it follows that yr is bounded in span(ei, · · · ,ek) and so, there exists a
subsequence, still denoted by r such that yr → y ∈ span(ei, · · · ,ek). Therefore, Bx =
limr→∞ Byr = By. In other words, BW = B(span(ei, · · · ,ek)) as claimed. This proves the
claim.

If this happens, the process being described stops. You have found what is desired
which has only finitely many vectors involved.

As long as the process does not stop, let

ek+1 ≡
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei〈

B
(
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
)
,gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
〉1/2

Thus, as in the usual argument for the Gram Schmidt process,
〈
Bei,e j

〉
= δ i j for i, j≤ k+1.

This is already known for i, j≤ k. Letting l ≤ k, and using the orthogonality already shown,

⟨Bek+1,el⟩ = C

〈
B

(
gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

)
,el

〉
= C

(
⟨Bgk+1,el⟩−

〈
Bgnk+1 ,el

〉)
= 0

Consider 〈
Bgp−B

(
k

∑
i=1

〈
Bgp,ei

〉
ei

)
,gp−

k

∑
i=1

〈
Bgp,ei

〉
ei

〉
Either this equals 0 because p is never one of the nk or eventually it equals 0 for some k
because gp = gnk for some nk and so, from the construction, gnk = gp ∈ span(e1, · · · ,ek)
and therefore,

gp =
k

∑
j=1

a je j
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which requires easily that

Bgp =
k

∑
i=1

〈
Bgp,ei

〉
Bei,

the above holding for all k large enough. It follows that for any x ∈ span({gk}∞

k=1) , (finite
linear combination of vectors in {gk}∞

k=1)

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei (43.3.12)

because for all k large enough,

Bx =
k

∑
i=1
⟨Bx,ei⟩Bei

Also note that for such x ∈ span({gk}∞

k=1) ,

⟨Bx,x⟩ =

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
=

k

∑
i=1
⟨Bx,ei⟩⟨Bx,ei⟩

=
k

∑
i=1
|⟨Bx,ei⟩|2 =

∞

∑
i=1
|⟨Bx,ei⟩|2

Now for x arbitrary, let xk→ x in W where xk ∈ span({gk}∞

k=1) . Then by Fatou’s lemma,

∞

∑
i=1
|⟨Bx,ei⟩|2 ≤ lim inf

k→∞

∞

∑
i=1
|⟨Bxk,ei⟩|2

= lim inf
k→∞

⟨Bxk,xk⟩= ⟨Bx,x⟩ (43.3.13)

≤ ∥Bx∥W ′ ∥x∥W ≤ ∥B∥∥x∥
2
W

Thus the series on the left converges. Then also, from the above inequality,∣∣∣∣∣
〈

q

∑
i=p
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣≤ q

∑
i=p
|⟨Bx,ei⟩| |⟨Bei,y⟩|

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2( q

∑
i=p
|⟨By,ei⟩|2

)1/2

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∞

∑
i=1
|⟨By,ei⟩|2

)1/2
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By 43.3.13,

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∥B∥∥y∥2

W

)1/2

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 ∥y∥W

It follows that
∞

∑
i=1
⟨Bx,ei⟩Bei (43.3.14)

converges in W ′ because it was just shown that∥∥∥∥∥ q

∑
i=p
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and it was shown above that ∑
∞
i=1 |⟨Bx,ei⟩|2 < ∞, so the partial sums of the series 43.3.14

are a Cauchy sequence in W ′. Also, the above estimate shows that for ∥y∥= 1,∣∣∣∣∣
〈

∞

∑
i=1
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣ ≤
(

∞

∑
i=1
|⟨By,ei⟩|2

)1/2(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and so ∥∥∥∥∥ ∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 (43.3.15)

Now for x arbitrary, let xk ∈ span
({

g j
}∞

j=1

)
and xk→ x in W. Then for a fixed k large

enough, ∥∥∥∥∥Bx−
∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ∥Bx−Bxk∥

+

∥∥∥∥∥Bxk−
∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
i=1
⟨Bxk,ei⟩Bei−

∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
≤ ε +

∥∥∥∥∥ ∞

∑
i=1
⟨B(xk− x) ,ei⟩Bei

∥∥∥∥∥ ,
the term ∥∥∥∥∥Bxk−

∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥
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equaling 0 by 43.3.12. From 43.3.15 and 43.3.13,

≤ ε +∥B∥1/2

(
∞

∑
i=1
|⟨B(xk− x) ,ei⟩|2

)1/2

≤ ε +∥B∥1/2 ⟨B(xk− x) ,xk− x⟩1/2 < 2ε

whenever k is large enough. Therefore,

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei

in W ′. It follows that

⟨Bx,x⟩= lim
k→∞

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
= lim

k→∞

k

∑
i=1
|⟨Bx,ei⟩|2 ≡

∞

∑
i=1
|⟨Bx,ei⟩|2 ■

Theorem 43.3.2 Let V ⊆W,W ′ ⊆ V ′ be separable Banach spaces,W a separable Hilbert
space, and let Y ∈ Lp′ (0,T ;V ′)≡ K′ and

BX (t) = BX0 +
∫ t

0
Y (s)ds in V ′ (43.3.16)

where X0 ∈W, and it is known that X ∈ Lp (0,T,V ) ≡ K for p > 1. Also assume X ∈
L2 (0,T,W ) . Then t→ BX (t) is in C ([0,T ] ,W ′) and also

1
2
⟨BX (t) ,X (t)⟩= 1

2
⟨BX0,X0⟩+

∫ t

0
⟨Y (s) ,X (s)⟩ds

Proof: By Lemma 43.2.1, there exists a sequence of uniform partitions
{

tn
k

}mn
k=0 =

Pn,Pn ⊆Pn+1, of [0,T ] such that the step functions

mn−1

∑
k=0

X (tn
k )X(tn

k ,t
n
k+1]

(t) ≡ X l (t)

mn−1

∑
k=0

X
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ X r (t)

converge to X in K and also BX l ,BX r→ BX in L2 ([0,T ] ,W ′).

Lemma 43.3.3 Let s < t. Then for X ,Y satisfying 43.3.16

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩

+2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩ (43.3.17)
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Proof: It follows from the following computations

B(X (t)−X (s)) =
∫ t

s
Y (u)du

and so

2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩

= 2⟨B(X (t)−X (s)) ,X (t)⟩−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩

= 2⟨BX (t) ,X (t)⟩−2⟨BX (s) ,X (t)⟩−⟨BX (t) ,X (t)⟩
+2⟨BX (s) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= ⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

Thus
⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= 2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩ ■

Lemma 43.3.4 In the above situation,

sup
t∈[0,T ]

⟨BX (t) ,X (t)⟩ ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ BX (t) is weakly continuous with values in W ′.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩=
m−1

∑
j=0

〈
BX
(
t j+1

)
,X
(
t j+1

)〉
−
〈
BX (t j) ,X (t j)

〉

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
du−

〈
B
(
X
(
t j+1

)
−X (t j)

)
,X
(
t j+1

)
−X (t j)

〉
=

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du−

〈
B
(
X
(
t j+1

)
−X (t j)

)
,X
(
t j+1

)
−X (t j)

〉
Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

〈
BX (t j) ,X (t j)

〉
≤ ⟨BX0,X0⟩+2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

≤ ⟨BX0,X0⟩+2
∫ T

0
∥Y (u)∥V ′ ∥X

r
k (u)∥V du
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≤ ⟨BX0,X0⟩+2
(∫ T

0
∥Y (u)∥p′

V ′ du
)1/p′(∫ T

0
∥X r

k (u)∥
p
V du

)1/p

≤ C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥X r

k (u)∥
p
V

)1/p

=

(∫ T

0
∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
⟨BX (t) ,X (t)⟩<C (∥Y∥K′ ,∥X∥K)

From Lemma 43.3.1 above, there exists {ei} ⊆V such that
〈
Bei,e j

〉
= δ i j and

⟨BX (t) ,X (t)⟩=
∞

∑
k=1
|⟨BX (t) ,ei⟩|2 = sup

m

m

∑
k=1
|⟨BX (t) ,ei⟩|2

Since each ei ∈V, and since t→ BX (t) is continuous into V ′ thanks to the formula 43.3.16,
it follows that t→ ∑

m
k=1 |⟨BX (t) ,ei⟩| is continuous and so t→ ⟨BX (t) ,X (t)⟩ is the sup of

continuous functions. Therefore, this function of t is lower semicontinuous. Since D is
dense in [0,T ] , it follows that for all t,

⟨BX (t) ,X (t)⟩ ≤C (∥Y∥K′ ,∥X∥K)

It only remains to verify the claim about weak continuity.
Consider now the claim that t→ BX (t) is weakly continuous. Letting v ∈V,

lim
t→s
⟨BX (t) ,v⟩= ⟨BX (s) ,v⟩= ⟨BX (s) ,v⟩ (43.3.18)

The limit follows from the formula 43.3.16 which implies t→ BX (t) is continuous into V ′.
Now

∥BX (t)∥= sup
∥v∥≤1

|⟨BX (t) ,v⟩| ≤ ⟨Bv,v⟩1/2 ⟨BX (t) ,X (t)⟩1/2

which was shown to be bounded for t ∈ [0,T ]. Now let w ∈W . Then

|⟨BX (t) ,w⟩−⟨BX (s) ,w⟩| ≤ |⟨BX (t)−BX (s) ,w− v⟩|+ |⟨BX (t)−BX (s) ,v⟩|

Then the first term is less than ε if v is close enough to w and the second converges to 0 so
43.3.18 holds for all v ∈W and so this shows the weak continuity. ■

Now pick t ∈ D, the union of all the mesh points. Then for all k large enough, t ∈Pk.
Say t = tm. From Lemma 43.3.3,

−
m−1

∑
j=0

〈
B
(
X
(
t j+1

)
−X (t j)

)
,
(
X
(
t j+1

)
−X (t j)

)〉
=
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⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩−2
m−1

∑
j=0

∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du

Thus, ⟨BX (tm) ,X (tm)⟩ is constant for all k large enough and the integral term converges to∫ tm

0
⟨Y (u) ,X (u)⟩du

It follows that the term on the left does converge to something as k→ ∞. It just remains to
consider what it does converge to. However, from the equation solved by X ,

BX
(
t j+1

)
−BX (t j) =

∫ t j+1

t j

Y (u)du

Therefore, this term is dominated by an expression of the form

mk−1

∑
j=0

(∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

)

=
mk−1

∑
j=0

〈∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

〉

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)
−X (t j)

〉
du

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X (t j)

〉
=

∫ T

0
⟨Y (u) ,X r (u)⟩du−

∫ T

0

〈
Y (u) ,X l (u)

〉
du

However, both X r and X l converge to X in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t ∈ D,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du

It remains to verify that this holds for all t. Let t /∈ D and let t (k) ∈Pk be the largest
point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

BX (t (m)) = BX0 +
∫ t(m)

0
Y (s)ds,

a similar formula for X (t (k)) . Thus for t > t (m) ,

BX (t)−BX (t (m)) =
∫ t

t(m)
Y (s)ds
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which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and X0 = 0. Therefore,

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩

= 2
∫ t(k)

t(m)
⟨Y (s) ,X (s)−X (t (m))⟩ds

Thus, for m≤ k

lim
m,k→∞

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩= 0 (43.3.19)

Hence {BX (t (k))}∞

k=1 is a convergent sequence in W ′ because

|⟨B(X (t (k))−X (t (m))) ,y⟩|
≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ⟨By,y⟩1/2

≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ∥B∥1/2 ∥y∥W

Does it converge to BX (t)? Let ξ (t) ∈W ′ be what it does converge to. Let v ∈V. Then

⟨ξ (t) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= ⟨BX (t) ,v⟩

because it is known that t → BX (t) is continuous into V ′. It is also known that BX (t) ∈
W ′ ⊆V ′ and that the BX (t) for t ∈ [0,T ] are uniformly bounded in W ′. Therefore, since V
is dense in W, it follows that ξ (t) = BX (t).

Now for every t ∈ D, it was shown above that

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du

Also it was just shown that BX (t (k))→ BX (t) . Then

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

≤ |⟨BX (t (k)) ,X (t (k))−X (t)⟩|+ |⟨BX (t (k))−BX (t) ,X (t)⟩|

Then the second term converges to 0. The first equals

|⟨BX (t (k))−BX (t) ,X (t (k))⟩|
≤ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2 ⟨BX (t (k)) ,X (t (k))⟩1/2

From the above, this is dominated by an expression of the form

⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2 C

Then using the lower semicontinuity of t → ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩ which
follows from the above, this is no larger than

lim inf
m→∞
⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 C < ε
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provided k is large enough. This follows from 43.3.19. Since ε is arbitrary, it follows that

lim
k→∞

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|= 0

Then from the formula,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du

valid for t ∈ D, it follows that the same formula holds for all t. This formula implies
t → ⟨BX (t) ,X (t)⟩ is continuous. Also recall that t → BX (t) was shown to be weakly
continuous into W ′. Then

⟨B(X (t)−X (s)) ,X (t)−X (s)⟩= ⟨BX (t) ,X (t)⟩−2⟨BX (t) ,X (s)⟩+ ⟨BX (s) ,X (s)⟩

From this, it follows that t→ BX (t) is continuous into W ′ because limt→s of the right side
gives 0 and so the same is true of the left. Hence,

|⟨B(X (t)−X (s)) ,y⟩|
≤ ⟨By,y⟩1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2

≤ ∥B∥1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2 ∥y∥

so
∥B(X (t)−X (s))∥W ′ ≤ ∥B∥

1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2

which converges to 0 as t→ s. ■

43.4 Some Implicit Inclusions
Let B∈L (W,W ′) and B satisfies ⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ for V ⊆W, W ′ ⊆V ′. Where
V is dense in the Hilbert space W . Now let

D(L)≡
{

u ∈ V : (Bu)′ ∈ V ′,Bu(0) = 0
}
, Lu≡ (Bu)′ (43.4.20)

Then clearly D(L) is dense in V . Here V ≡ Lp ([0,T ] ,V ) where p≥ 2 for simplicity. Now
let

D(T )≡
{

u ∈ V : u′ ∈ V and u(T ) = 0
}
, Tu≡−B

(
u′
)

(43.4.21)

The idea is to show that L = T ∗ and that T is monotone. Then this will imply using
Proposition 25.8.2 that L∗ is monotone. This is done by showing that G (L∗) = G (T ).

Lemma 43.4.1 T is monotone, T ∗ = L and L∗,L are both monotone.

Proof: First, why is T monotone?∫ T

0

〈
−Bu′,u

〉
dt =

∫ T

0
−
〈
Bu,u′

〉
dt =−⟨Bu,u⟩ |T0 +

∫ T

0

〈
(Bu)′ ,u

〉
dt

= ⟨Bu(0) ,u(0)⟩+
∫ T

0

〈
Bu′,u

〉
dt
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and so

2⟨Tu,u⟩= 2
∫ T

0

〈
−Bu′,u

〉
dt = ⟨Bu(0) ,u(0)⟩ ≥ 0

Next, why is T ∗ = L? Let u ∈ D(L) . Then for v ∈ D(T ) ,

⟨T v,u⟩ =
∫ T

0

〈
−Bv′,u

〉
dt =

∫ T

0

〈
−Bu,v′

〉
dt = ⟨−Bu,v⟩ |T0 +

∫ T

0

〈
(Bu)′ ,v

〉
ds

= ⟨Lu,v⟩

Hence u ∈ D(T ∗) and T ∗u = Lu since D(T ) is dense. Thus D(L)⊆ D(T ∗) and on D(L) ,
these two are equal. Next suppose u ∈ D(T ∗) . Then for all v ∈ D(T ) ,⟨T v,u⟩ ≤C∥v∥V .
Thus, by density and the Riesz representation theorem, there exists a unique g∗ ∈ V ′ such
that

⟨T v,u⟩=
∫ T

0
⟨g∗,v⟩dt =

∫ T

0

〈
−Bv′,u

〉
dt =−

∫ T

0

〈
Bu,v′

〉
dt

In particular, it follows from the definition of weak V ′ valued distributions that g∗ = (Bu)′ .
Simply specialize to letting v(t)= vφ (t) where φ ∈C∞

c (0,T ). Thus in particular (Bu)′ ∈V ′

and the above reduces to

⟨T v,u⟩=
∫ T

0

〈
(Bu)′ ,v

〉
dt

⟨T v,u⟩ =
∫ T

0

〈
−Bv′,u

〉
dt =

∫ T

0

〈
−Bu,v′

〉
dt = ⟨−Bu,v⟩ |T0 +

∫ T

0

〈
(Bu)′ ,v

〉
dt

= ⟨(Bu)(0) ,v(0)⟩+
∫ T

0

〈
(Bu)′ ,v

〉
dt = ⟨(Bu)(0) ,v(0)⟩+ ⟨T v,u⟩

Thus also (Bu)(0) = 0. Hence D(T ∗)⊆ D(L) and this shows that L = T ∗ as claimed.
Why is L monotone? From the material on weak derivatives,

Bu(t) =
∫ t

0
(Bu)′ (s)ds

and now use Theorem 43.3.2 to obtain

0≤ ⟨Bu(t) ,u(t)⟩= 2
∫ t

0

〈
(Bu)′ ,u

〉
ds.

In particular, this holds for t = T and so ⟨Lu,u⟩ ≥ 0.
Why is L∗ monotone? This follows from Proposition 25.8.2 and the fact that L = T ∗

shown above.
G (L∗) = (τG (L))⊥

Consider (τS)
⊥
. To say that (x,y∗) ∈ (τS)⊥ is to say that if (a,b∗) ∈ S, then

⟨(x,y∗) ,(−b∗,a)⟩= 0

or in other words, ⟨x,b∗⟩ = ⟨y∗,a⟩ . To say that (x,y∗) ∈ τ

(
S
⊥
)

is to say that (x,y∗) =
(−c,d∗) where

⟨(d∗,c) ,(a,b∗)⟩= 0



1440 CHAPTER 43. INTERPOLATION IN BANACH SPACE

for all (a,b∗)∈ S. That is, ⟨(y∗,−x) ,(a,b∗)⟩= 0 for all (a,b∗)∈ S. In other words ⟨y∗,a⟩=
⟨x,b∗⟩ for all (a,b∗) ∈ S. Thus (τS)⊥ = τ

(
S⊥
)
. Now ττ (M) = M if M is a subspace. and(

M⊥
)⊥

= M if M is a subspace. Hence

G (L∗) = (τG (L))⊥ = τ

(
G (L)⊥

)
= τ

((
τ (G (T ))

⊥)⊥)
= ττ

(
G (T )⊥

)⊥
= G (T )

Now it follows that, since T is monotone, it follows that L∗ is also monotone. ■
Note that as part of this argument, we have proved that for T a densely defined linear

operator, G (T ∗∗) = G (T ).
Now recall Theorem 25.8.8 on Page 923 which is listed next.

Theorem 43.4.2 Let L : D(L)⊆V →V ′ where D(L) is dense, L is monotone, L is closed,
and L∗ is monotone, L a linear map. Let T : V →P (V ′) be L pseudomonotone, bounded,
coercive. Then L+T is onto. Here V is a reflexive Banach space such that the norms for V
and V ′ are strictly convex.

To apply this theorem, let B be as above and V → V ≡ Lp ([0,T ] ,V ) . Letting u0 ∈ V,
let

T (u)≡ A(u+u0)

where A : V →P (V ′). Suppose that T just defined is set valued pseudomonotone and
coercive. Let Lu = (Bu)′ as described above in 43.4.20. Then from Theorem 43.4.2 and if
f ∈ V ′, there exists a solution u to

Lu+A(u+u0) ∋ f

Thus there exists ξ ∈ A(u+u0) such that Lu+ ξ = f in V ′. Then letting w = u+ u0, it
follows that ξ ∈ A(w) and L(w−w0)+ξ = f . Thus,

(Bw)′+ξ = f , (Bw)(0) = Bw0

Written in terms of A,(Bw)′+A(w) ∋ f in V ′, (Bw)(0) = Bu0.This proves the following
theorem about the existence of solutions to implicit evolution inclusions.

Theorem 43.4.3 Suppose u→ A(u+u0) is set valued pseudomonotone and coercive for
u0 ∈V . Also let

V ⊆W, W ′ ⊆V ′

where W is a Hilbert space, V is a reflexive Banach space dense in W. Suppose B : W →W ′

is self adjoint and nonnegative. Then there exists a solution w ∈ V to the implicit evolution
equation

(Bw)′+A(w) ∋ f in V ′, (Bw)(0) = Bu0.
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43.5 Some Imbedding Theorems
The next theorem is very useful in getting estimates in partial differential equations. It is
called Erling’s lemma.

Definition 43.5.1 Let E,W be Banach spaces such that E ⊆Wand the injection map from
E into W is continuous. The injection map is said to be compact if every bounded set in E
has compact closure in W. In other words, if a sequence is bounded in E it has a convergent
subsequence converging in W. This is also referred to by saying that bounded sets in E are
precompact in W.

Theorem 43.5.2 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then for every ε > 0 there exists a constant, Cε such that for all
u ∈ E,

||u||W ≤ ε ||u||E +Cε ||u||X

Proof: Suppose not. Then there exists ε > 0 and for each n ∈ N, un such that

||un||W > ε ||un||E +n ||un||X

Now let vn = un/ ||un||E . Therefore, ||vn||E = 1 and

||vn||W > ε +n ||vn||X

It follows there exists a subsequence, still denoted by vn such that vn converges to v in W.
However, the above inequality shows that ||vn||X → 0. Therefore, v = 0. But then the above
inequality would imply that ||vn||> ε and passing to the limit yields 0 > ε, a contradiction.

Definition 43.5.3 Define C ([a,b] ;X) the space of functions continuous at every point of
[a,b] having values in X.

You should verify that this is a Banach space with norm

||u||
∞,X = max

{∣∣∣∣unk (t)−u(t)
∣∣∣∣

X : t ∈ [a,b]
}
.

The following theorem is an infinite dimensional version of the Ascoli Arzela theorem.
[117].

Theorem 43.5.4 Let q > 1 and let E ⊆W ⊆ X where the injection map is continuous from
W to X and compact from E to W. Let S be defined by{

u such that ||u(t)||E +
∣∣∣∣u′∣∣∣∣Lq([a,b];X)

≤ R for all t ∈ [a,b]
}
.

Then S⊆C ([a,b] ;W ) and if {un} ⊆ S, there exists a subsequence,
{

unk

}
which converges

to a function u ∈C ([a,b] ;W ) in the following way.

lim
k→∞

∣∣∣∣unk −u
∣∣∣∣

∞,W = 0.
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Proof: First consider the issue of S being a subset of C ([a,b] ;W ) . By Theorem 43.1.9
on Page 1414 the following holds in X for u ∈ S.

u(t)−u(s) =
∫ t

s
u′ (r)dr.

Thus S⊆C ([a,b] ;X) . Let ε > 0 be given. Then by Theorem 43.5.2 there exists a constant,
Cε such that for all u ∈W

||u||W ≤
ε

4R
||u||E +Cε ||u||X .

Therefore, for all u ∈ S,

||u(t)−u(s)||W ≤ ε

6R
||u(t)−u(s)||E +Cε ||u(t)−u(s)||X

≤ ε

3
+Cε

∣∣∣∣∣∣∣∣∫ t

s
u′ (r)dr

∣∣∣∣∣∣∣∣
X

≤ ε

3
+Cε

∫ t

s

∣∣∣∣u′ (r)∣∣∣∣X dr ≤ ε

3
+Cε R |t− s|1/q . (43.5.22)

Since ε is arbitrary, it follows u ∈C ([a,b] ;W ).
Let D = Q∩ [a,b] so D is a countable dense subset of [a,b]. Let D = {tn}∞

n=1. By
compactness of the embedding of E into W, there exists a subsequence u(n,1) such that
as n→ ∞, u(n,1) (t1) converges to a point in W. Now take a subsequence of this, called
(n,2) such that as n→ ∞,u(n,2) (t2) converges to a point in W. It follows that u(n,2) (t1) also
converges to a point of W. Continue this way. Now consider the diagonal sequence, uk ≡
u(k,k) This sequence is a subsequence of u(n,l) whenever k > l. Therefore, uk (t j) converges
for all t j ∈ D.

Claim: Let {uk} be as just defined, converging at every point of D ≡ Q∩ [a,b] . Then
{uk} converges at every point of [a,b].

Proof of claim: Let ε > 0 be given. Let t ∈ [a,b] . Pick tm ∈ D∩ [a,b] such that in
43.5.22 Cε R |t− tm|< ε/3. Then there exists N such that if l,n > N, then

||ul (tm)−un (tm)||X < ε/3.

It follows that for l,n > N,

||ul (t)−un (t)||X ≤ ||ul (t)−ul (tm)||+ ||ul (tm)−un (tm)||
+ ||un (tm)−un (t)||

≤ 2ε

3
+

ε

3
+

2ε

3
< 2ε

Since ε was arbitrary, this shows {uk (t)}∞

k=1 is a Cauchy sequence. Since W is complete,
this shows this sequence converges.

Now for t ∈ [a,b] , it was just shown that if ε > 0 there exists Nt such that if n,m > Nt ,
then

||un (t)−um (t)||< ε

3
.
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Now let s ̸= t. Then

||un (s)−um (s)|| ≤ ||un (s)−un (t)||+ ||un (t)−um (t)||+ ||um (t)−um (s)||

From 43.5.22

||un (s)−um (s)|| ≤ 2
(

ε

3
+Cε R |t− s|1/q

)
+ ||un (t)−um (t)||

and so it follows that if δ is sufficiently small and s ∈ B(t,δ ) , then when n,m > Nt

||un (s)−um (s)||< ε.

Since [a,b] is compact, there are finitely many of these balls, {B(ti,δ )}p
i=1 , such that for

s ∈ B(ti,δ ) and n,m > Nti , the above inequality holds. Let N > max
{

Nt1 , · · · ,Ntp

}
. Then

if m,n > N and s ∈ [a,b] is arbitrary, it follows the above inequality must hold. Therefore,
this has shown the following claim.

Claim: Let ε > 0 be given. There exists N such that if m,n>N, then ||un−um||∞,W < ε.
Now let u(t) = limk→∞ uk (t) .

||u(t)−u(s)||W ≤ ||u(t)−un (t)||W + ||un (t)−un (s)||W + ||un (s)−u(s)||W (43.5.23)

Let N be in the above claim and fix n > N. Then

||u(t)−un (t)||W = lim
m→∞
||um (t)−un (t)||W ≤ ε

and similarly, ||un (s)−u(s)||W ≤ ε. Then if |t− s| is small enough, 43.5.22 shows the
middle term in 43.5.23 is also smaller than ε. Therefore, if |t− s| is small enough,

||u(t)−u(s)||W < 3ε.

Thus u is continuous. Finally, let N be as in the above claim. Then letting m,n > N,
it follows that for all t ∈ [a,b] , ||um (t)−un (t)|| < ε.Therefore, letting m→ ∞, it follows
that for all t ∈ [a,b] , ||u(t)−un (t)|| ≤ ε.and so ||u−un||∞,W ≤ ε. Since ε is arbitrary, this
proves the theorem.

The next theorem is another such imbedding theorem found in [91]. It is often used in
partial differential equations.

Theorem 43.5.5 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : u′ ∈ Lq ([a,b] ;X)

and ||u||Lp([a,b];E)+
∣∣∣∣u′∣∣∣∣Lq([a,b];X)

≤ R}.

Then S is precompact in Lp ([a,b] ;W ). This means that if {un}∞

n=1⊆ S, it has a subsequence{
unk

}
which converges in Lp ([a,b] ;W ) .
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Proof: By Proposition 7.6.5 on Page 144 it suffices to show S has an η net in the
complete metric space Lp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (43.5.24)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 43.5.24.

Therefore,

un (t)−un (t) =
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

≤
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)

and so ∫ b

a
||(un (t)−un (s))||pW ds

≤
∫ b

a

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (43.5.25)

From Theorems 43.5.2 and 43.1.9, if ε > 0, there exists Cε such that

||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX
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≤ 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε

∣∣∣∣∣∣∣∣∫ t

s
u′n (r)dr

∣∣∣∣∣∣∣∣p
X

≤ 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε

(∫ t

s

∣∣∣∣u′n (r)∣∣∣∣X dr
)p

≤ 2p−1
ε (||un (t)||p + ||un (s)||p)

+Cε

((∫ t

s

∣∣∣∣u′n (r)∣∣∣∣qX dr
)1/q

|t− s|1/q′
)p

= 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε Rp/q |t− s|p/q′ .

This is substituted in to 43.5.25 to obtain∫ b

a
||(un (t)−un (s))||pW ds≤

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(
2p−1

ε (||un (t)||p + ||un (s)||p)

+Cε Rp/q |t− s|p/q′
)

dsdt

=
k

∑
i=1

2p
ε

∫ ti

ti−1

||un (t)||pW +Cε Rp/q 1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q′ dsdt

= 2p
ε

∫ b

a
||un (t)||p dt +Cε Rp/q

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q′

∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2p
ε

∫ b

a
||un (t)||p dt +Cε Rp/q

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q′ (ti− ti−1)

2

≤ 2p
εRp +Cε Rp/q

k

∑
i=1

(ti− ti−1)
1+p/q′ = 2p

εRp +Cε Rp/qk
(

b−a
k

)1+p/q′

.

Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows

||un−un||Lp([a,b];W ) <
η

4
.

Now use compactness of the embedding of E into W to obtain a subsequence such that
{un} is Cauchy in Lp (a,b;W ) and use this to contradict 43.5.24. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)

and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E
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Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp (a,b;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 43.5.24. This proves the theorem.

43.6 The K Method
This considers the problem of interpolating Banach spaces. The idea is to build a Banach
space between two others in a systematic way, thus constructing a new Banach space from
old ones. The first method of defining intermediate Banach spaces is called the K method.
For more on this topic as well as the other topics on interpolation see [16] which is what I
am following. See also [124]. There is far more on these subjects in these books than what
I am presenting here! My goal is to present only enough to give an introduction to the topic
and to use it in presenting more theory of Sobolev spaces.

In what follows a topological vector space is a vector space in which vector addition and
scalar multiplication are continuous. That is · :F×X→X is continuous and + : X×X→X
is also continuous.

A common example of a topological vector space is the dual space, X ′ of a Banach
space, X with the weak ∗ topology. For S⊆ X a finite set, define

BS (x∗,r)≡
{

y∗ ∈ X ′ : |y∗ (x)− x∗ (x)|< r for all x ∈ S
}

Then the BS (x∗,r) for S a finite subset of X and r > 0 form a basis for the topology on X ′

called the weak ∗ topology. You can check that the vector space operations are continuous.

Definition 43.6.1 Let A0 and A1 be two Banach spaces with norms ||·||0 and ||·||1 respec-
tively, also written as ||·||A0

and ||·||A1
and let X be a topological vector space such that

Ai ⊆ X for i = 1,2, and the identity map from Ai to X is continuous. For each t > 0, define
a norm on A0 +A1 by

K (t,a)≡ ||a||t ≡ inf{||a0||0 + t ||a1||1 : a0 +a1 = a}.

This is short for K (t,a,A0,A1) . Thus K (t,a,A1,A0) will mean

K (t,a,A1,A0)≡ inf
{
||a1||A1

+ t ||a0||A0
: a0 +a1 = a

}
but the default is K (t,a,A0,A1) if K (t,a) is written.

The following lemma is an interesting exercise.
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Lemma 43.6.2 (A0 +A1,K (t, ·)) is a Banach space and all the norms, K (t, ·) are equiva-
lent.

Proof: First, why is K (t, ·) a norm? It is clear that K (t,a) ≥ 0 and that if a = 0 then
K (t,a) = 0. Is this the only way this can happen? Suppose K (t,a) = 0. Then there exist
a0n ∈ A0 and a1n ∈ A1 such that ||a0n||0 → 0, ||a1n||1 → 0, and a = a0n + a1n. Since the
embedding of Ai into X is continuous and since X is a topological vector space1, it follows

a = a0n +a1n→ 0

and so a = 0.
Let α be a nonzero scalar. Then

K (t,αa) = inf{||a0||0 + t ||a1||1 : a0 +a1 = αa}

= inf
{
|α|
∣∣∣∣∣∣a0

α

∣∣∣∣∣∣
0
+ t |α|

∣∣∣∣∣∣a1

α

∣∣∣∣∣∣
1

:
a0

α
+

a1

α
= a
}

= |α| inf
{∣∣∣∣∣∣a0

α

∣∣∣∣∣∣
0
+ t
∣∣∣∣∣∣a1

α

∣∣∣∣∣∣
1

:
a0

α
+

a1

α
= a
}

= |α| inf{||a0||0 + t ||a1||1 : a0 +a1 = a}= |α|K (t,a) .

It remains to verify the triangle inequality. Let ε > 0 be given. Then there exist
a0,a1,b0, and b1 in A0,A1,A0, and A1 respectively such that a0 +a1 = a,b0 +b1 = b and

ε +K (t,a)+K (t,b) > ||a0||0 + t ||a1||1 + ||b0||0 + t ||b1||1
≥ ||a0 +b0||0 + t ||b1 +a1||1 ≥ K (t,a+b) .

This has shown that K (t, ·) is at least a norm. Are all these norms equivalent? If
0 < s < t then it is clear that K (t,a)≥ K (s,a) . To show there exists a constant, C such that
CK (s,a)≥ K (t,a) for all a,

t
s

K (s,a) ≡ t
s

inf{||a0||0 + s ||a1||1 : a0 +a1 = a}

= inf
{ t

s
||a0||0 + s

t
s
||a1||1 : a0 +a1 = a

}
= inf

{ t
s
||a0||0 + t ||a1||1 : a0 +a1 = a

}
≥ inf{||a0||0 + t ||a1||1 : a0 +a1 = a}= K (t,a) .

Therefore, the two norms are equivalent as hoped.
Finally, it is required to verify that (A0 +A1,K (t, ·)) is a Banach space. Since all these

norms are equivalent, it suffices to only consider the norm, K (1, ·). Let {a0n +a1n}∞

n=1 be
a Cauchy sequence in A0 +A1. Then for m,n large enough,

K (1,a0n +a1n− (a0m +a1m))< ε.

1Vector addition is continuous is the property which is used here.
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It follows there exist xn ∈ A0 and yn ∈ A1 such that xn + yn = 0 for every n and whenever
m,n are large enough,

||a0n + xn− (a0m + xm)||0 + ||a1n + yn− (a1m + ym)||1 < ε

Hence {a1n + yn} is a Cauchy sequence in A1 and {a0n + xn} is a Cauchy sequence in A0.
Let

a0n + xn → a0 ∈ A0

a1n + yn → a1 ∈ A1.

Then

K (1,a0n +a1n− (a0 +a1)) = K (1,a0n + xn +a1n + yn− (a0 +a1))

≤ ||a0n + xn−a0||0 + ||a1n + yn−a1||1

which converges to 0. Thus A0 +A1 is a Banach space as claimed.
With this, there exists a method for constructing a Banach space which lies between

A0∩A1 and A0 +A1.

Definition 43.6.3 Let 1 ≤ q < ∞,0 < θ < 1. Define (A0,A1)θ ,q to be those elements of
A0 +A1,a, such that

||a||
θ ,q ≡

[∫
∞

0

(
t−θ K (t,a,A0,A1)

)q dt
t

]1/q

< ∞.

Theorem 43.6.4 (A0,A1)θ ,q is a normed linear space satisfying

A0∩A1 ⊆ (A0,A1)θ ,q ⊆ A0 +A1, (43.6.26)

with the inclusion maps continuous, and(
(A0,A1)θ ,q , ||·||θ ,q

)
is a Banach space. (43.6.27)

If a ∈ A0∩A1, then

||a||
θ ,q ≤

(
1

qθ (1−θ)

)1/q

||a||θ1 ||a||
1−θ

0 . (43.6.28)

If A0 ⊆ A1 with ||·||0 ≥ ||·||1, then

A0∩A1 = A0 ⊆ (A0,A1)θ ,q ⊆ A1 = A0 +A1.

Also, if bounded sets in A0 have compact closures in A1 then the same is true if A1 is
replaced with (A0,A1)θ ,q. Finally, if

T ∈L (A0,B0) ,T ∈L (A1,B1), (43.6.29)
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and T is a linear map from A0 +A1 to B0 +B1 where the Ai and Bi are Banach spaces with
the properties described above, then it follows

T ∈L
(
(A0,A1)θ ,q ,(B0,B1)θ ,q

)
(43.6.30)

and if M is its norm, and M0 and M1 are the norms of T as a map in L (A0,B0) and
L (A1,B1) respectively, then

M ≤M1−θ

0 Mθ
1 . (43.6.31)

Proof: Suppose first a ∈ A0∩A1. Then

||a||q
θ ,q ≡

∫ r

0

(
t−θ K (t,a)

)q dt
t
+
∫

∞

r

(
t−θ K (t,a)

)q dt
t

(43.6.32)

≤
∫ r

0

(
t−θ ||a||1 t

)q dt
t
+
∫

∞

r

(
t−θ ||a||0

)q dt
t

= ||a||q1
∫ r

0
tq(1−θ)−1dt + ||a||q0

∫
∞

r
t−1−θqdt

= ||a||q1
rq−qθ

q−qθ
+ ||a||q0

r−θq

θq
< ∞ (43.6.33)

Which shows the first inclusion of 43.6.26. The above holds for all r > 0 and in particular
for the value of r which minimizes the expression on the right in 43.6.33, r = ||a||0 / ||a||1.
Therefore, doing some calculus,

||a||q
θ ,q ≤

1
θq(1+θ)

||a||q(1−θ)
0 ||a||qθ

1

which shows 43.6.28. This also verifies that the first inclusion map is continuous in 43.6.26
because if an→ 0 in A0∩A1, then an→ 0 in A0 and in A1 and so the above shows an→ 0
in (A0,A1)θ ,q.

Now consider the second inclusion in 43.6.26. The inclusion is obvious since (A0,A1)θ ,q
is given to be a subset of A0 +A1 defined by(∫

∞

0

(
t−θ K (t,a)

)q dt
t

)1/q

< ∞

It remains to verify the inclusion map is continuous. Suppose an→ 0 in (A0,A1)θ ,q. Since
an→ 0 in (A0,A1)θ ,q , it follows the function, t→ t−θ K (t,an) converges to zero in Lq (0,∞)
with respect to the measure, dt/t. Therefore, taking another subsequence, still denoted as
an, you can assume this function converges to 0 a.e. Pick such a t where this convergence
takes place. Then K (t,an)→ 0 as n→ ∞ and so an → 0 in A0 + A1. (Recall all these
norms K (t, ·) are equivalent.) This shows that if an→ 0 in (A0,A1)θ ,q , then there exists a
subsequence

{
ank

}
such that ank → 0 in A0 +A1. It follows that if an→ 0 in (A0,A1)θ ,q ,

then an→ 0 in A0 +A1. This proves the continuity of the embedding.
What about 43.6.27? Suppose {an} is a Cauchy sequence in (A0,A1)θ ,q. Then from

what was just shown this is a Cauchy sequence in A0 +A1 and so there exists a ∈ A0 +A1
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such that an→ a in A0 +A1 because A0 +A1 is a Banach space. Thus, K (t,an)→ K (t,a)
for all t > 0. (Recall all these norms K (t, ·) are equivalent.) Therefore, by Fatou’s lemma,(∫

∞

0

(
t−θ K (t,a)

)q dt
t

)1/q

≤ lim inf
n→∞

(∫
∞

0

(
t−θ K (t,an)

)q dt
t

)1/q

≤ max
{
||an||θ ,q : n ∈ N

}
< ∞

and so a ∈ (A0,A1)θ ,q. Now

||a−an||θ ,q ≤ lim inf
m→∞

(∫
∞

0

(
t−θ K (t,an−am)

)q dt
t

)1/q

= lim inf
m→∞
||an−am||θ ,q < ε

whenever n is large enough. Thus (A0,A1)θ ,q is complete as claimed.
Next suppose A0 ⊆ A1 and the inclusion map is compact. In this case, A0∩A1 = A0 and

so it has been shown above that A0 ⊆ (A0,A1)θ ,q. It remains to show that every bounded
subset, S, contained in A0 has an η net in (A0,A1)θ ,q. Recall the inequality, 43.6.28

||a||
θ ,q ≤

(
1

qθ (1−θ)

)1/q

||a||θ1 ||a||
1−θ

0

=
C
ε
||a||θ1 ε ||a||1−θ

0 .

Now this implies

||a||
θ ,q ≤

(
C
ε

)1/θ

θ ||a||1 + ε
1/(1−θ) (1−θ) ||a||0

By compactness of the embedding of A0 into A1, it follows there exists an ε(1+θ)/θ net
for S in A1,

{
a1, · · · ,ap

}
. Then for a ∈ S, there exists k such that ||a−ak||1 < ε(1+θ)/θ . It

follows

||a−ak||θ ,q ≤
(

C
ε

)1/θ

θ ||a−ak||1 + ε
1/(1−θ) (1−θ) ||a−ak||0

≤
(

C
ε

)1/θ

θε
(1+θ)/θ + ε

1/(1−θ) (1−θ)2M

= C1/θ
θε + ε

1/(1−θ) (1−θ)2M

where M is large enough that ||a||0 ≤M for all a ∈ S. Since ε is arbitrary, this shows the
existence of a η net and proves the compactness of the embedding into (A0,A1)θ ,q .

It remains to verify the assertions 43.6.29-43.6.31. Let T ∈L (A0,B0) ,T ∈L (A1,B1)
with T a linear map from A0 +A1 to B0 +B1. Let a ∈ (A0,A1)θ ,q ⊆ A0 +A1 and consider
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Ta ∈ B0 +B1. Denote by K (t, ·) the norm described above for both A0 +A1 and B0 +B1
since this will cause no confusion. Then

||Ta||
θ ,q ≡

(∫
∞

0

(
t−θ K (t,Ta)

)q dt
t

)1/q

. (43.6.34)

Now let a0 +a1 = a and so Ta0 +Ta1 = Ta

K (t,Ta) ≤ ||Ta0||0 + t ||Ta1||1 ≤M0 ||a0||0 +M1t ||a1||1

≤ M0

(
||a0||0 + t

(
M1

M0

)
||a1||1

)
and so, taking inf for all a0 +a1 = a, yields

K (t,Ta)≤M0K
(

t
(

M1

M0

)
,a
)

It follows from 43.6.34 that

||Ta||
θ ,q ≡

(∫
∞

0

(
t−θ K (t,Ta)

)q dt
t

)1/q

≤
(∫

∞

0

(
t−θ M0K

(
t
(

M1

M0

)
,a
))q dt

t

)1/q

= M0

(∫
∞

0

(
t−θ K

(
t
(

M1

M0

)
,a
))q dt

t

)1/q

= M0

(∫
∞

0

((
M0

M1
s
)−θ

K (s,a)

)q
ds
s

)1/q

= Mθ
1 M(1−θ)

0

(∫
∞

0

(
s−θ K (s,a)

)q ds
s

)1/q

= Mθ
1 M(1−θ)

0 ||a||
θ ,q .

This shows T ∈L
(
(A0,A1)θ ,q ,(B0,B1)θ ,q

)
and if M is the norm of T,M ≤M1−θ

0 Mθ
1 as

claimed. This proves the theorem.

43.7 The J Method
There is another method known as the J method. Instead of

K (t,a)≡ inf
{
||a0||A0

+ t ||a1||A1
: a0 +a1 = a

}
for a ∈ A0 +A1, this method considers a ∈ A0∩A1 and J (t,a) defined below gives a norm
on A0∩A1.

Definition 43.7.1 For A0 and A1 Banach spaces as described above, and a ∈ A0∩A1,

J (t,a)≡max
(
||a||A0

, t ||a||A1

)
. (43.7.35)
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this is short for J (t,a,A0,A1). Thus

J (t,a,A1,A0)≡max
(
||a||A1

, t ||a||A0

)
but unless indicated otherwise, A0 will come first. Now for θ ∈ (0,1) and q ≥ 1, define a
space, (A0,A1)θ ,q,J as follows. The space, (A0,A1)θ ,q,J will consist of those elements, a, of
A0 +A1 which can be written in the form

a =
∫

∞

0
u(t)

dt
t
≡ lim

ε→0+

∫ 1

ε

u(t)
dt
t
+ lim

r→∞

∫ r

1
u(t)

dt
t

(43.7.36)

the limits taking place in A0 +A1 with the norm

K (1,a)≡ inf
a=a0+a1

(
||a0||A0

+ ||a1||A1

)
,

where u(t) is strongly measurable with values in A0 ∩A1 and bounded on every compact
subset of (0,∞) such that(∫

∞

0

(
t−θ J (t,u(t) ,A0,A1)

)q dt
t

)1/q

< ∞. (43.7.37)

For such a ∈ A0 +A1, define

||a||
θ ,q,J ≡ inf

u

{(∫
∞

0

(
t−θ J (t,u(t) ,A0,A1)

)q dt
t

)1/q
}

(43.7.38)

where the infimum is taken over all u satisfying 43.7.36 and 43.7.37.

Note that a norm on A0×A1 would be

||(a0,a1)|| ≡max
(
||a0||A0

, t ||a1||A1

)
and so J (t, ·) is the restriction of this norm to the subspace of A0×A1 defined by

{(a,a) : a ∈ A0∩A1}

Also for each t > 0 J (t, ·) is a norm on A0 ∩A1 and furthermore, any two of these norms
are equivalent. In fact, for 0 < t < s,

J (t,a) = max
(
||a||A0

, t ||a||A1

)
≥ max

(
||a||A0

,s ||a||A1

)
= J (s,a)

≥ max
( s

t
||a||A0

,s ||a||A1

)
=

s
t

max
(
||a||A0

, t ||a||A1

)
≥ s

t
J (t,a) .

The following lemma is significant and follows immediately from the above definition.
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Lemma 43.7.2 Suppose a ∈ (A0,A1)θ ,q,J and a =
∫

∞

0 u(t) dt
t where u is described above.

Then letting r > 1,

ur (t)≡
{

u(t) if t ∈
( 1

r ,r
)

0 otherwise
.

it follows that ∫
∞

0
ur (t)

dt
t
∈ A0∩A1.

Proof: The integral equals
∫ r

1/r u(t) dt
t .
∫ r

1/r
1
t dt = 2lnr < ∞. Now ur is measurable in

A0 ∩A1 and bounded. Therefore, there exists a sequence of measurable simple functions,
{sn} having values in A0 ∩A1 which converges pointwise and uniformly to ur. It can also
be assumed J (r,sn (t))≤ J (r,ur (t)) for all t ∈ [1/r,r]. Therefore,

lim
n,m→∞

∫ r

1/r
J (r,sm− sn)

dt
t
= 0.

It follows from the definition of the Bochner integral that

lim
n→∞

∫ r

1/r
sn

dt
t
=
∫ r

1/r
ur

dt
t
∈ A0∩A1.

This proves the lemma.
The remarkable thing is that the two spaces, (A0,A1)θ ,q and (A0,A1)θ ,q,J coincide and

have equivalent norms. The following important lemma, called the fundamental lemma of
interpolation theory in [16] is used to prove this. This lemma is really incredible.

Lemma 43.7.3 Suppose for a ∈ A0 +A1, limt→0+ K (t,a) = 0 and limt→∞
K(t,a)

t = 0. Then
for any ε > 0, there is a representation,

a =
∞

∑
i=−∞

ui = lim
n,m→∞

n

∑
i=−m

ui, ui ∈ A0∩A1, (43.7.39)

the convergences taking place in A0 +A1, such that

J
(
2i,ui

)
≤ 3(1+ ε)K

(
2i,a

)
. (43.7.40)

Proof: For each i, there exist a0,i ∈ A0 and a1,i ∈ A1 such that

a = a0,i +a1,i,

and
(1+ ε)K

(
2i,a

)
≥ ||a0,i||A0

+2i ||a1,i||A1
. (43.7.41)

This follows directly from the definition of K (t,a) . From the assumed limit conditions on
K (t,a) ,

lim
i→∞
||a1,i||A1

= 0, lim
i→−∞

||a0,i||A0
= 0. (43.7.42)



1454 CHAPTER 43. INTERPOLATION IN BANACH SPACE

Then let ui ≡ a0,i− a0,i−1 = a1,i−1− a1,i. The reason these are equal is a = a0,i + a1,i =
a0,i−1 +a1,i−1. Then

n

∑
i=−m

ui = a0,n−a0,−(m+1) = a1,−(m+1)−a1,n.

It follows a−∑
n
i=−m ui = a−

(
a0,n−a0,−(m+1)

)
= a0,−(m+1)+a1,n, and both terms converge

to zero as m and n converge to ∞ by 43.7.42. Therefore,

K

(
1,a−

n

∑
i=−m

ui

)
≤
∣∣∣∣a0,−(m+1)

∣∣∣∣+ ||a1,n||

and so this shows a = ∑
∞
i=−∞ ui which is one of the claims of the lemma. Also

J
(
2i,ui

)
≡max

(
||ui||A0

,2i ||ui||A1

)
≤ ||ui||A0

+2i ||ui||A1

≤ ||a0,i||A0
+2i ||a1,i||A1

+

≤2
(
||a0,i−1||A0

+2i−1||a1,i−1||A1

)
︷ ︸︸ ︷
||a0,i−1||A0

+2i ||a1,i−1||A1

≤ (1+ ε)K
(
2i,a

)
+2(1+ ε)K

(
2i−1,a

)
≤ 3(1+ ε)K

(
2i,a

)
because t→ K (t,a) is nondecreasing. This proves the lemma.

Lemma 43.7.4 If a ∈ A0∩A1, then K (t,a)≤min
(
1, t

s

)
J (s,a) .

Proof: If s≥ t, then min
(
1, t

s

)
= t

s and so

min
(

1,
t
s

)
J (s,a) =

t
s

max
(
||a||A0

,s ||a||A1

)
≥
( t

s

)
s ||a||A1

= t ||a||A1
≥ K (t,a) .

Now in case s < t, then min
(
1, t

s

)
= 1 and so

min
(

1,
t
s

)
J (s,a) = max

(
||a||A0

,s ||a||A1

)
≥ ||a||A0

≥ K (t,a) .

This proves the lemma.

Theorem 43.7.5 Let A0,A1,K and J be as described above. Then for all q ≥ 1 and θ ∈
(0,1) ,

(A0,A1)θ ,q = (A0,A1)θ ,q,J

and furthermore, the norms are equivalent.
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Proof: Begin with a ∈ (A0,A1)θ ,q . Thus

||a||q
θ ,q =

∫
∞

0

(
t−θ K (t,a)

)q dt
t
< ∞ (43.7.43)

and it is necessary to produce u(t) as described above,

a =
∫

∞

0
u(t)

dt
t

where
∫

∞

0

(
t−θ J (t,u(t))

)q dt
t
< ∞.

From 43.7.43, limt→0+ K (t,a) = 0 since t→ K (t,a) is nondecreasing and so if its limit is
positive, the integrand would have a non integrable singularity like t−θq−1. Next consider
what happens to K(t,a)

t as t→ ∞.

Claim: t→ K(t,a)
t is decreasing.

Proof of the claim: Choose a0 ∈ A0 and a1 ∈ A1 such that a0 +a1 = a and

K (t,a)+ εt > ||a0||A0
+ t ||a1||A1

let s > t. Then

K (t,a)+ tε
t

≥
||a0||A0

+ t ||a1||A1

t
≥
||a0||A0

+ s ||a1||A1

s
≥ K (s,a)

s
.

Since ε is arbitrary, this proves the claim.
Let r ≡ limt→∞

K(t,a)
t . Is r = 0? Suppose to the contrary that r > 0. Then the integrand

of 43.7.43, is at least as large as

t−θqK (t,a)q−1 K (t,a)
t
≥ t−θqK (t,a)q−1 r

≥ t−θq (tr)q−1 r ≥ rqtq(1−θ)−1

whose integral is infinite. Therefore, r = 0.
Lemma 43.7.3, implies there exist ui ∈ A0∩A1 such that a = ∑

∞
i=−∞ ui, the convergence

taking place in A0 +A1with the inequality of that Lemma holding,

J
(
2i,ui

)
≤ 3(1+ ε)K

(
2i,a

)
.

For i an integer and t ∈ [2i−1,2i), let

u(t)≡ ui/ ln2.

Then

a =
∞

∑
i=−∞

ui =
∫

∞

0
u(t)

dt
t
. (43.7.44)
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Now

||a||q
θ ,q,J ≤

∫
∞

0

(
t−θ J (t,u(t))

)q dt
t

=
∞

∑
i=−∞

∫ 2i

2i−1

(
t−θ J

(
t,

ui

ln2

))q dt
t

≤
(

1
ln2

)q ∞

∑
i=−∞

∫ 2i

2i−1

(
t−θ J

(
2i,ui

))q dt
t

≤
(

1
ln2

)q ∞

∑
i=−∞

∫ 2i

2i−1

(
t−θ 3(1+ ε)K

(
2i,a

))q dt
t

Using the above claim,
K(2i,a)

2i ≤ K(2i−1,a)
2i−1 and so K

(
2i,a

)
≤ 2K

(
2i−1,a

)
. Therefore, the

above is no larger than

≤ 2
(

1
ln2

)q ∞

∑
i=−∞

∫ 2i

2i−1

(
t−θ 3(1+ ε)K

(
2i−1,a

))q dt
t

≤ 2
(

1
ln2

)q ∞

∑
i=−∞

∫ 2i

2i−1

(
t−θ 3(1+ ε)K (t,a)

)q dt
t

= 2
(

3(1+ ε)

ln2

)q ∫ ∞

0

(
t−θ K (t,a)

)q dt
t
≡ 2

(
3(1+ ε)

ln2

)q

||a||q
θ ,q . (43.7.45)

This has shown that if a ∈ (A0,A1)θ ,q , then by 43.7.44 and 43.7.45, a ∈ (A0,A1)θ ,q,J and

||a||q
θ ,q,J ≤ 2

(
3(1+ ε)

ln2

)q

||a||q
θ ,q . (43.7.46)

It remains to prove the other inclusion and norm inequality, both of which are much
easier to obtain. Thus, let a ∈ (A0,A1)θ ,q,J with

a =
∫

∞

0
u(t)

dt
t

(43.7.47)

where u is a strongly measurable function having values in A0∩A1 and for which∫
∞

0

(
t−θ J (t,u(t))

)q
dt < ∞. (43.7.48)

K (t,a) = K
(

t,
∫

∞

0
u(s)

ds
s

)
≤
∫

∞

0
K (t,u(s))

ds
s
. (43.7.49)

Now by Lemma 43.7.4, this is dominated by an expression of the form

≤
∫

∞

0
min

(
1,

t
s

)
J (s,u(s))

ds
s

=
∫

∞

0
min

(
1,

1
s

)
J (ts,u(ts))

ds
s

(43.7.50)
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where the equation follows from a change of variable. From Minkowski’s inequality and
43.7.50,

||a||
θ ,q ≡

(∫
∞

0

(
t−θ K (t,a)

)q dt
t

)1/q

≤
(∫

∞

0

(
t−θ

∫
∞

0
min

(
1,

1
s

)
J (ts,u(ts))

ds
s

)q dt
t

)1/q

≤
∫

∞

0

(∫
∞

0

(
t−θ min

(
1,

1
s

)
J (ts,u(ts))

)q dt
t

)1/q ds
s
.

Now change the variable in the inside integral to obtain, letting t = τs,

≤
∫

∞

0
min

(
1,

1
s

)(∫
∞

0

(
t−θ J (ts,u(ts))

)q dt
t

)1/q ds
s

=
∫

∞

0
min

(
1,

1
s

)
sθ ds

s

(∫
∞

0

(
τ
−θ J (τ,u(τ))

)q dτ

τ

)1/q

=

(
1

(1−θ)θ

)(∫
∞

0

(
τ
−θ J (τ,u(τ))

)q dτ

τ

)1/q

.

This has shown that

||a||
θ ,q ≤

(
1

(1−θ)θ

)(∫
∞

0

(
τ
−θ J (τ,u(τ))

)q dτ

τ

)1/q

< ∞

for all u satisfying 43.7.47 and 43.7.48. Therefore, taking the infimum it follows a ∈
(A0,A1)θ ,q and

||a||
θ ,q ≤

(
1

(1−θ)θ

)
||a||

θ ,q,J .

This proves the theorem.

43.8 Duality And Interpolation
In this section it will be assumed that A0∩A1 is dense in Ai for i = 0,1. This is done so that
A′i ⊆ (A0∩A1)

′ and the inclusion map is continuous. Thus it makes sense to add something
in A′0 to something in A′1.

What is the dual space of (A0,A1)θ ,q? The answer is based on the following lemma,

[16]. Remember that
J (t,a) = max

(
||a||A0

, t ||a||A1

)
and this is a norm on A0∩A1 and

K (t,a) = inf
{
||a0||A0

+ t ||a1||A1
: a = a0 +a1

}
.
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As mentioned above, A′0+A′1 ⊆ (A0∩A1)
′. In fact these two are equal. This is the first part

of the following lemma.

Lemma 43.8.1 Suppose A0∩A1 is dense in Ai, i = 0,1. Then

A′0 +A′1 = (A0∩A1)
′ , (43.8.51)

and for a′ ∈ A′0 +A′1 = (A0∩A1)
′ ,

K
(
t,a′
)
= sup

a∈A0∩A1

|a′ (a)|
J (t−1,a)

. (43.8.52)

Thus K (t, ·) is an equivalent norm to the usual operator norm on (A0∩A1)
′ taken with

respect to J
(
t−1, ·

)
. If, in addition to this, Ai is reflexive, then for a′ ∈ A′0 ∩A′1, and a ∈

A0∩A1,
J
(
t,a′
)

K
(
t−1,a

)
≥
∣∣a′ (a)∣∣ . (43.8.53)

Proof: First consider the claim that A′0 +A′1 = (A0∩A1)
′. As noted above, ⊆ is clear.

Define a norm on A0×A1 as follows.

||(a0,a1)||A0×A1
≡max

(
||a0||A0

, t−1 ||a1||A1

)
. (43.8.54)

Let a′ ∈ (A0∩A1)
′. Let

E ≡ {(a,a) : a ∈ A0∩A1}

with the norm J
(
t−1,a

)
≡ max

(
||a||A0

, t−1 ||a||A1

)
. Now define λ on E, the subspace of

A0×A1 by
λ ((a,a))≡ a′ (a) .

Thus λ is a continuous linear map on E and in fact,

|λ ((a,a))|=
∣∣a′ (a)∣∣≤ ∣∣∣∣a′∣∣∣∣J (t−1,a

)
.

By the Hahn Banach theorem there exists an extension of λ to all of A0×A1. This extension
is of the form (a′0,a

′
1) ∈ A′0×A′1. Thus(

a′0,a
′
1
)
((a,a)) = a′0 (a)+a′1 (a) = a′ (a)

and therefore, a′0 +a′1 = a′ provided a′0 +a′1 is continuous. But∣∣(a′0 +a′1
)
(a)
∣∣ =

∣∣a′0 (a)+a′1 (a)
∣∣≤ ∣∣a′0 (a)∣∣+ ∣∣a′1 (a)∣∣

≤
∣∣∣∣a′0∣∣∣∣ ||a||A0

+
∣∣∣∣a′1∣∣∣∣ ||a||A1

≤
∣∣∣∣a′0∣∣∣∣ ||a||A0

+ t
∣∣∣∣a′1∣∣∣∣ t−1 ||a||A1

≤
(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣)J
(
t−1,a

)
which shows that a′0 +a′1 is continuous and in fact∣∣∣∣a′0 +a′1

∣∣∣∣
(A0∩A1)

′ ≤
(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣) .
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This proves the first part of the lemma.
Claim: With this definition of the norm in 43.8.54, the operator norm of (a′0,a

′
1) ∈

(A0×A1)
′ = A′0×A′1 is ∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ =
∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 . (43.8.55)

Proof of the claim:
∣∣(a′0,a′1)(a0,a1)

∣∣ ≤ ∣∣∣∣a′0∣∣∣∣ ||a0||+ ||a′1|| ||a1|| . Now suppose that
||a0||= max

(
||a0|| , t−1 ||a1||

)
. Then this is no larger than(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣) ||a0||=
(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣)max
(
||a0|| , t−1 ||a1||

)
.

The other case is that t−1 ||a1||= max
(
||a0|| , t−1 ||a1||

)
. In this case,∣∣(a′0,a′1)(a0,a1)

∣∣ ≤ ∣∣∣∣a′0∣∣∣∣ ||a0||+
∣∣∣∣a′1∣∣∣∣ ||a1||

≤
∣∣∣∣a′0∣∣∣∣ t−1 ||a1||+

∣∣∣∣a′1∣∣∣∣ ||a1||
=

(∣∣∣∣a′0∣∣∣∣+ t
∣∣∣∣a′1∣∣∣∣) t−1 ||a1||

=
(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣)max
(
||a0|| , t−1 ||a1||

)
.

This shows
∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ ≤
(∣∣∣∣a′0∣∣∣∣+ t ||a′1||

)
. Is equality achieved? Let a0n and a1n

be points of A0 and A1 respectively such that ||a0n|| , ||a1n|| ≤ 1 and limn→∞ a′i (ain) = ||a′i|| .
Then (

a′0,a
′
1
)
(a0n, ta1n)→

∣∣∣∣a′0∣∣∣∣+ t
∣∣∣∣a′1∣∣∣∣

and also, ||(a0n, ta1n)||A0×A1
= max

(
||a0n|| , t−1t ||a1n||A1

)
≤ 1. Therefore, equality is in-

deed achieved and this proves the claim.
Consider 43.8.52. Take a′ ∈ A′0 +A′1 = (A0∩A1)

′ and let

E ≡ {(a,a) ∈ A0×A1 : a ∈ A0∩A1} .

Now define a linear map, λ on E as before.

λ ((a,a))≡ a′ (a) .

If a′ = ã′0 + ã′1,

|λ ((a,a))| ≤
∣∣∣∣ã′0∣∣∣∣A′0 ||a||A0

+
∣∣∣∣ã′1∣∣∣∣A′1 ||a||A1

=
∣∣∣∣ã′0∣∣∣∣A′0 ||a||A0

+ t
∣∣∣∣ã′1∣∣∣∣A′1 t−1 ||a||A1

≤
(∣∣∣∣ã′0∣∣∣∣+ t

∣∣∣∣ã′1∣∣∣∣) ||(a,a)||A0×A1

so λ is continuous on the subspace, E of A0×A1 and

||λ ||E ′ ≤
∣∣∣∣ã′0∣∣∣∣+ t

∣∣∣∣ã′1∣∣∣∣ . (43.8.56)

By the Hahn Banach theorem, there exists an extension of λ defined on all of A0×A1 with
the same norm. Thus, from 43.8.55, there exists (a′0,a

′
1)∈ (A0×A1)

′ which is an extension
of λ such that ∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ =
∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 = ||λ ||E ′
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and for all a ∈ A0∩A1,

a′0 (a)+a′1 (a) = λ ((a,a)) = a′ (a) .

It follows that a′0 +a′1 = a′ in (A0∩A1)
′. Therefore, from 43.8.56,

||λ ||E ′ ≤ inf
{∣∣∣∣ã′0∣∣∣∣A0

+ t
∣∣∣∣ã′1∣∣∣∣A1

: a′ = ã′0 + ã′1
}
≡ K

(
t,a′
)

(43.8.57)

≤
∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 = ||λ ||E ′ ≡ sup
a∈A0∩A1

|a′ (a)|
J (t−1,a)

(43.8.58)

because on E, J
(
t−1,a

)
= ||(a,a)||A0×A1

which proves 43.8.52.
To obtain 43.8.53 in the case that Ai is reflexive, apply 43.8.52 to the case where A′′i

plays the role of Ai in 43.8.52. Thus, for a′′ ∈ A′′0 +A′′1 ,

K
(
t,a′′

)
= sup

a′∈A′0∩A′1

|a′′ (a′)|
J (t−1,a′)

.

Now a′′ = a′′1 + a′′0 = η1a1 +η0a0 where η i is the map from Ai to A′′i which is onto and
preserves norms, given by ηa(a′)≡ a′ (a) . Therefore, letting a1 +a0 = a

K (t,a) = K
(
t,a′′

)
= sup

a′∈A′0∩A′1

|a′′ (a′)|
J (t−1,a′)

= sup
a′∈A′0∩A′1

|(η1a1 +η0a0)(a′)|
J (t−1,a′)

= sup
a′∈A′0∩A′1

|(a′ (a1 +a0))|
J (t−1,a′)

and so

K (t,a) = sup
a′∈A′0∩A′1

|a′ (a)|
J (t−1,a′)

Changing t→ t−1,
K
(
t−1,a

)
J
(
t,a′
)
≥
∣∣a′ (a)∣∣ .

which proves the lemma.
Consider (A0,A1)

′
θ ,q .

Definition 43.8.2 Let q≥ 1. Then λ
θ ,q will denote the sequences, {α i}∞

i=−∞
such that

∞

∑
i=−∞

(
|α i|2−iθ

)q
< ∞.

For α ∈ λ
θ ,q,

||α||
λ

θ ,q ≡

(
∞

∑
i=−∞

(
|α i|2−iθ

)q
)1/q

.

Thus α ∈ λ
θ ,q means

{
α i2−iθ

}
∈ lq.
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Lemma 43.8.3 Let f (t) ≥ 0, and let f (t) = α i for t ∈ [2i,2i+1) where α ∈ λ
θ ,q. Then

there exists a constant, C, such that∣∣∣∣∣∣t−θ f
∣∣∣∣∣∣

Lq(0,∞; dt
t )
≤C ||α||

λ
θ ,q . (43.8.59)

Also, if whenever α ∈ λ
θ ,q, and α i ≥ 0 for all i,

∑
i

f
(
2i)2−i

α i ≤C ||α||
λ

θ ,q , (43.8.60)

then ∣∣∣∣∣∣{ f
(
2i)}∞

i=−∞

∣∣∣∣∣∣
λ

1−θ ,q′ ≤C. (43.8.61)

Proof: Consider 43.8.59.∫
∞

0

(
t−θ f (t)

)q dt
t
= ∑

i

∫ 2i+1

2i
t−θq

α
q
i

dt
t

≤∑
i

∫ 2i+1

2i

(
2−iθ

α i

)q dt
t
= ln2∑

i

(
2−iθ

α i

)q
= ln2 ||α||q

λ
θ ,q .

43.8.61 is next. By 43.8.60, whenever α ∈ λ
θ ,q,∣∣∣∣∣∑i

(
f
(
2i)2−(1−θ)i

)
2−θ i

α i

∣∣∣∣∣≤C
∣∣∣∣∣∣{2−θ i |α i|

}∣∣∣∣∣∣
lq
.

It follows from the Riesz representation theorem that
{

f
(
2i
)

2−(1−θ)i
}

is in lq′ and∣∣∣∣∣∣{ f
(
2i)2−(1−θ)i

}∣∣∣∣∣∣
lq′

=
∣∣∣∣{ f

(
2i)}∣∣∣∣

λ
1−θ ,q′ ≤C.

This proves the lemma.
The dual space of (A0,A1)θ ,q,J is discussed next.

Lemma 43.8.4 Let θ ∈ (0,1) and let q≥ 1. Then,

(A0,A1)
′
θ ,q,J ⊆

(
A′1,A

′
0
)

1−θ ,q′

and the inclusion map is continuous.

Proof: Let a′ ∈ (A0,A1)
′
θ ,q,J . Now

A0∩A1 ⊆ (A0,A1)θ ,q,J

and if
a ∈ (A0,A1)θ ,q,J ,
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then a has a representation of the form

a =
∫

∞

0
u(t)

dt
t

where ∫
∞

0

(
t−θ J (t,u(t))

)q dt
t
< ∞

where
J (t,u(t)) = max

(
||u(t)||A0

, t ||u(t)||A1

)
for u(t) ∈ A0∩A1. Now let

ur (t)≡
{

u(t) if t ∈
( 1

r ,r
)

0 otherwise
.

Then
∫

∞

0
(
t−θ J (t,ur (t))

)q dt
t < ∞ and

ar ≡
∫

∞

0
ur (t)

dt
t
∈ A0∩A1

by Lemma 43.7.2. Also

||a−ar||qθ ,q,J ≤
∫ 1

r

0

(
t−θ J (t,u(t))

)q dt
t
+

∫
∞

r

(
t−θ J (t,u(t))

)q dt
t

which is small whenever r is large enough thanks to the dominated convergence theorem.
Therefore, A0∩A1 is dense in (A0,A1)θ ,q,J and so

(A0,A1)
′
θ ,q,J ⊆ (A0∩A1)

′ = A′0 +A′1,

the equality following from Lemma 43.8.1.
It follows a′ ∈ A′0 +A′1 and so, by Lemma 43.8.1, there exists bi ∈ A0∩A1 such that

K
(
2−i,a′,A′0,A

′
1
)
− ε min

(
1,2−i)≤ a′ (bi)

J (2i,bi,A0,A1)
.

Now let α ∈ λ
θ ,q with α i ≥ 0 for all i and let

a∞ ≡∑
i

J
(
2i,bi,A0,A1

)−1
biα i. (43.8.62)

Consider first whether a∞ makes sense before proceeding further.

a∞ ≡∑
i

bi2iθ

max
(
||bi||A0

,2i ||bi||A1

)2−iθ
α i.
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Now ∣∣∣∣∣∣
∣∣∣∣∣∣ bi2iθ

max
(
||bi||A0

,2i ||bi||A1

)
∣∣∣∣∣∣
∣∣∣∣∣∣
A0+A1

≤
{

2iθ if i < 0
2−i(1−θ) if i≥ 0

. (43.8.63)

This is fairly routine to verify. Consider the case where i≥ 0. Then∣∣∣∣∣∣
∣∣∣∣∣∣ bi2iθ

max
(
||bi||A0

,2i ||bi||A1

)
∣∣∣∣∣∣
∣∣∣∣∣∣
A0+A1

≤

∣∣∣∣∣
∣∣∣∣∣ bi2iθ

2i ||bi||A1

∣∣∣∣∣
∣∣∣∣∣
A0+A1

≤ 2−i(1−θ)

because ||bi||A1
≥ ||bi||A0+A1

. Therefore,

M

∑
i=0

∣∣∣∣∣∣
∣∣∣∣∣∣ bi2iθ

max
(
||bi||A0

,2i ||bi||A1

)2−iθ
α i

∣∣∣∣∣∣
∣∣∣∣∣∣
A0+A1

≤

M

∑
i=0

2−i(1−θ)2−iθ
α i ≤

(
∞

∑
i=0

2−i(1−θ)q′
)1/q′(

∞

∑
i=0

2−iqθ
α

q
i

)1/q

< ∞

and similarly,
0

∑
i=−∞

∣∣∣∣∣∣
∣∣∣∣∣∣ bi2iθ

max
(
||bi||A0

,2i ||bi||A1

)2−iθ
α i

∣∣∣∣∣∣
∣∣∣∣∣∣
A0+A1

converges. Therefore, a∞ makes sense in A0 +A1 and also from 43.8.63, we see that{
||bi||A0+A1

2iθ

J (2i,bi)

}
∈ λ

(1−θ)q′

Now let
u(t)≡ α ibi

J (2i,bi) ln2
on [2i−1,2i).

Then ∫
∞

0
u(t)

dt
t

= ∑
i

∫ 2i

2i−1

α ibi

J (2i,bi) ln2
dt
t

= ∑
i

α ibi

J (2i,bi)
= a∞.

Also ∫
∞

0

(
t−θ J (t,u(t))

)q dt
t
≤∑

i

∫ 2i

2i−1

(
2(1−i)θ J

(
2i,u

(
2i−1))) dt

t

≤∑
i

[
2−(i−1)θ J

(
2i,u

(
2i−1))]q

ln2
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= ∑
i

[
2−(i−1)θ J

(
2i,bi

)
α i

J (2i,bi) ln2

]q

ln2

=C∑
i

(
2−iθ |α i|

)q
< ∞ (43.8.64)

and so ||a∞||θ ,q,J < ∞. Now for a′ as above, a′ ∈ (A0,A1)
′
θ ,q,J ⊆ (A0 +A1)

′ , and so since
the sum for a∞ converges in A0 +A1, we have

a′ (a∞) = ∑
i

J
(
2i,bi

)−1
α ia′ (bi) .

Therefore,

a′ (a∞) ≥ ∑
i

[
K
(
2−i,a′

)
− ε min

(
1,2−i)]

α i

= ∑
i

K
(
2−i,a′

)
α i−∑

i
ε min

(
1,2−i)

α i

= ∑
i

K
(
2−i,a′

)
α i−O(ε) (43.8.65)

The reason for this is that α ∈ λ
θ ,q so

{
α i2−iθ

}
∈ lq. Therefore,

∑
i

ε min
(
1,2−i)

α i = ε

{
∞

∑
i=0

2−i
α i +

−1

∑
i=−∞

α i

}

= ε

{
∞

∑
i=0

2−iθ 2(θ−1)i
α i +

−1

∑
i=−∞

α i2−iθ 2iθ

}

≤ ε


(

∑
i

∣∣∣α i2−iθ
∣∣∣q)1/q(

∞

∑
i=0

(
2(θ−1)i

)q′
)1/q′

+

(
∑

i

∣∣∣α i2−iθ
∣∣∣q)1/q(

∞

∑
i=0

(
2θ i
)q′
)1/q′

<Cε

Also |a′ (a∞)| ≤ ||a′||(A0,A1)
′
θ ,q,J
||a∞||(A0,A1)θ ,q,J

.Now from the definition of K,

K
(
2−i,a′,A′0,A

′
1
)
= 2−iK

(
2i,a′,A′1,A

′
0
)

and so from 43.8.65

∑
i

2−iK
(
2i,a′,A′1,A

′
0
)

α i−O(ε) ≤ a′ (a∞)

≤
∣∣∣∣a′∣∣∣∣

(A0,A1)
′
θ ,q,J

Cθ ||α||λ θ ,q .
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Since ε is arbitrary, it follows that whenever, α ∈ λ
θ ,q,α i ≥ 0,

∑
i

2−iK
(
2i,a′,A′1,A

′
0
)

α i ≤
∣∣∣∣a′∣∣∣∣

(A0,A1)
′
θ ,q,J

Cθ ||α||λ θ ,q .

By Lemma 43.8.3,
{

K
(
2i,a′,A′1,A

′
0
)}
∈ λ

1−θ ,q′ and∣∣∣∣{K
(
2i,a′,A′1,A

′
0
)}∣∣∣∣

λ
1−θ ,q′ ≤

∣∣∣∣a′∣∣∣∣
(A0,A1)

′
θ ,q,J

Cθ .

Therefore, (
1

ln2

∫
∞

0

(
K
(
t,a′,A′1,A

′
0
)

t−(1−θ)
)q′ dt

t

)1/q′

=

(
∑

i

1
ln2

∫ 2i+1

2i

(
K
(
t,a′,A′1,A

′
0
)

t−(1−θ)
)q′ dt

t

)1/q′

≤

(
∑

i

(
2−i(1−θ)K

(
2i,a′,A′1,A

′
0
))q′

)1/q′

≤
∣∣∣∣a′∣∣∣∣

(A0,A1)
′
θ ,q,J

Cθ .

Thus ∣∣∣∣a′∣∣∣∣(A′1,A
′
0)1−θ ,q′

≡
∣∣∣∣∣∣t−(1−θ)K

(
t,a′,A′1,A

′
0
)∣∣∣∣∣∣

Lq′(0,∞, dt
t )
≤C

∣∣∣∣a′∣∣∣∣
(A0,A1)

′
θ ,q,J

which shows that (A0,A1)
′
θ ,q,J ⊆ (A′1,A

′
0)1−θ ,q′ with the inclusion map continuous. This

proves the lemma.

Lemma 43.8.5 If Ai is reflexive for i = 0,1 and if A0∩A1 is dense in Ai, then(
A′1,A

′
0
)

1−θ ,q′,J ⊆ (A0,A1)
′
θ ,q

and the inclusion map is continuous.

Proof: Let a′ ∈ (A′1,A
′
0)1−θ ,q′,J . Thus, there exists u∗ bounded on compact subsets of

(0,∞) and measurable with values in A0∩A1 and

a′ =
∫

∞

0
u∗ (t)

dt
t
, (43.8.66)

∫
∞

0

(
t−(1−θ)J (t,u∗ (t))

)q′ dt
t
< ∞.

Then

a′ =
∞

∑
i=−∞

∫ 2i+1

2i
u∗ (t)

dt
t
≡

∞

∑
i=−∞

a′i
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where a′i ∈ A′1 ∩A′0, the convergence taking place in A′1 +A′0. Now let a ∈ A0 ∩A1. From
Lemma 43.8.1 ∣∣a′ (a)∣∣ ≤ ∞

∑
i=−∞

∣∣a′i (a)∣∣
≤

∞

∑
i=−∞

J
(
2−i,a′i,A

′
0,A
′
1
)

K
(
2i,a,A0,A1

)
=

∞

∑
i=−∞

2−iJ
(
2i,a′i,A

′
1,A
′
0
)

K
(
2i,a,A0,A1

)
≤

(
∑

i

(
2−(1−θ)iJ

(
2i,a′i,A

′
1,A
′
0
))q′

)1/q′

·

(
∑

i

(
2−θ iK

(
2i,a,A0,A1

))q
)1/q

≤ C
[∫

∞

0

(
t−(1−θ)J

(
t,u∗ (t) ,A′1,A

′
0
))q′ dt

t

]1/q′

·[∫
∞

0

(
t−θ K (t,a,A0,A1)

)q dt
t

]1/q

.

In going from the sums to the integrals, express the first sum as a sum of integrals on
[2i,2i+1) and the second sum as a sum of integrals on (2i−1,2i].

Taking the infimum over all u∗ representing a′,∣∣a′ (a)∣∣≤C
∣∣∣∣a′∣∣∣∣(A′1,A

′
0)1−θ ,q′,J

||a||
θ ,q .

It follows a′ ∈ (A0,A1)
′
θ ,q and ||a′||(A0,A1)

′
θ ,q
≤C ||a′||(A′1,A

′
0)1−θ ,q′,J

which proves the lemma.

With these two lemmas the main result follows.

Theorem 43.8.6 Suppose A0∩A1 is dense in Ai and Ai is reflexive. Then(
A′1,A

′
0
)

1−θ ,q′ = (A0,A1)
′
θ ,q

and the norms are equivalent.

Proof: By Theorem 43.7.5, and the last two lemmas,

(A0,A1)
′
θ ,q = (A0,A1)

′
θ ,q,J ⊆

(
A′1,A

′
0
)

1−θ ,q′

=
(
A′1,A

′
0
)

1−θ ,q′,J ⊆ (A0,A1)
′
θ ,q .

This proves the theorem.



Chapter 44

Trace Spaces
44.1 Definition And Basic Theory Of Trace Spaces

Another approach to these sorts of problems is to use trace spaces. This allows the con-
sideration of fractional order Sobolev spaces. In so far as the subject of Sobolev spaces is
concerned, I will present this material in a manner which is essentially independent of the
previous material on interpolation spaces.

As in the case of interpolation spaces, suppose A0 and A1 are two Banach spaces which
are continuously embedded in some topological vector space, X .

Definition 44.1.1 Define a norm on A0 +A1 as follows.

||a||A0+A1
≡ inf

{
||a0||A0

+ ||a1||A1
: a0 +a1 = a

}
(44.1.1)

Lemma 44.1.2 A0 +A1 with the norm just described is a Banach space.

Proof: This was already explained in the treatment of the K method of interpolation. It
is just K (1,a) .

Definition 44.1.3 Take f ′ in the sense of distributions for any

f ∈ L1
loc (0,∞;A0 +A1)

as follows.

f ′ (φ)≡
∫

∞

0
− f (t)φ

′ (t)dt

whenever φ ∈ C∞
c (0,∞) . Define a Banach space, W (A0,A1, p,θ) = W where p ≥ 1,θ ∈

(0,1). Let

|| f ||W ≡max
(∣∣∣∣∣∣tθ f

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
,
∣∣∣∣∣∣tθ f ′

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A1)

)
(44.1.2)

and let W consist of f ∈ L1
loc (0,∞;A0 +A1) such that || f ||W < ∞.

Note that to be in W, f (t) ∈ A0 and f ′ (t) ∈ A1.

Lemma 44.1.4 If f ∈W, then

Trace( f )≡ f (0)≡ lim
t→0

f (t)

exists in A0 + A1. Also Z ≡ { f ∈W : f (0) = 0} is a closed subspace of W. In addition
to this, for every f ∈ W and ε > 0 there exists a g ∈ W such that || f −g||W < ε and
g ∈C∞ (0,∞;A0) while g′ ∈C∞ (0,∞;A1).

1467
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Proof: Let 0 < s < t. Let ν + 1
p = θ . Then for a generic g,

∫
∞

0
||τν g(τ)||p dτ =

∫
∞

0

∣∣∣∣∣∣τθ g(τ)
∣∣∣∣∣∣p dτ

τ

so that tν f ′ ∈ Lp (0,∞;A1) , the measure in this case being usual Lebesgue measure. Then

f (t)− f (s) =
∫ t

s
f ′ (τ)dτ =

∫ t

s
τ

ν f ′ (τ)τ
−ν dτ.

For 1
p +

1
p′ = 1, ν p′ =

(
θ − 1

p

)
p′ < 1 because θ < 1 = 1

p′ +
1
p . Therefore,

|| f (t)− f (s)||A0+A1

≤
∫ t

s

∣∣∣∣ f ′ (τ)∣∣∣∣A0+A1
dτ

≤
∫ t

s

∣∣∣∣ f ′ (τ)∣∣∣∣A1
dτ =

∫ t

s

∣∣∣∣τν f ′ (τ)
∣∣∣∣

A1
τ
−ν dτ

≤
(∫ t

s

∣∣∣∣τν f ′ (τ)
∣∣∣∣p

A1
dτ

)1/p(∫ t

s
τ
−ν p′dτ

)1/p′

≤ || f ||W

(
t1−ν p′

1−ν p′
− s1−ν p′

1−ν p′

)
(44.1.3)

≤ || f ||W
t1−ν p′

1−ν p′
.

which converges to 0 as t→ 0. This shows that limt→0+ f (t) exists in A0 +A1.
Clearly Z is a subspace. Let fn→ f in W and suppose fn ∈ Z. Then since f ∈W, 44.1.3

implies f is continuous. Using 44.1.3 and replacing f with fn− fm and then taking a limit
as s→ 0,

|| fn (t)− fm (t)||A0+A1
≤ || fn− fm||W Cν t1−ν p′

Taking a subsequence, it can be assumed fn (t) converges to f (t) a.e. But the above inequal-
ity shows that fn (t) is a Cauchy sequence in C ([0,β ] ;A0 +A1) for all β < ∞. Therefore,
fn (t)→ f (t) for all t. Also,

|| fn (t)||A0+A1
≤Cν || fn||W t1−ν p′ ≤ Kt1−ν p′

for some K depending on max{|| fn|| : n≥ 1} and so

|| f (t)||A0+A1
≤ Kt1−ν p′

which implies f (0) = 0. Thus Z is closed.
Consider the last claim. For a generic tθ g ∈ Lp

(
0,∞, dt

t ;A
)
, changing variables t = eτ ,∫

∞

0
tθ p |g(t)|p dt

t
=
∫

∞

−∞

eτθ p |g(eτ)|p dτ
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Let g̃(τ) ≡ g(eτ) . Thus τ → eτθ g̃(τ) is Lp (R;A) and g̃ ∈ L1
loc (R) . Now let ψδ be a

mollifier and consider

eθτ g̃δ (τ) ≡
∫

∞

−∞

eθσ g̃(σ)ψδ (τ−σ)dσ

=
∫

∞

−∞

eθ(τ−σ)g̃(τ−σ)ψδ (σ)dσ

so that

g̃δ (τ) =
∫

∞

−∞

e−θσ g̃(τ−σ)ψδ (σ)dσ

=
∫

∞

−∞

e−θ(τ−σ)g̃(σ)ψδ (τ−σ)dσ

Thus g̃δ ∈C∞ (R;A) and using Minkowski’s inequality,(∫
∞

−∞

∣∣∣∣∣∣eθτ g̃δ (τ)− eθτ g̃(τ)
∣∣∣∣∣∣p dτ

)1/p

= (44.1.4)

(∫
∞

−∞

∣∣∣∣∣∣∣∣∫ ∞

−∞

(
eθ(τ−σ)g̃(τ−σ)− eθτ g̃(τ)

)
ψδ (σ)dσ

∣∣∣∣∣∣∣∣p dτ

)1/p

≤
∫

δ

−δ

ψδ (σ)

(∫
∞

−∞

∣∣∣∣∣∣eθ(τ−σ)g̃(τ−σ)− eθτ g̃(τ)
∣∣∣∣∣∣p dτ

)1/p

dσ

≤ ε

∫
∞

−∞

ψδ (σ)ds = ε

provided δ is small enough due to continuity of translation in Lp. Thus changing variables
in 44.1.4, letting τ = ln(t) and gδ (t) ≡ g̃δ (ln(t)) , it follows gδ ∈ C∞ (0,∞;A) and this
integral equals (∫

∞

0
tθ p ||gδ (t)−g(t)||p dt

t

)1/p

This result applied to f and f ′ with A = A0 and then A = A1 shows the last claim. This
proves the lemma.

Definition 44.1.5 Let W be a Banach space and let Z be a closed subspace. Then the quo-
tient space, denoted by W/Z consists of the set of equivalence classes [x] where the equiva-
lence relation is defined by x ∽ y means x− y ∈ Z. Then W/Z is a vector space if the oper-
ations are defined by α [x]≡ [αx] and [x]+ [y]≡ [x+ y] and these vector space operations
are well defined. The norm on the quotient space is defined as ||[x]|| ≡ inf{||x+ z|| : z ∈ Z} .

The verification of the algebraic claims made in the above definition is left to the reader.
It is routine. What is not as routine is the following lemma. However, it is similar to some
topics in the presentation of the K method of interpolation.

Lemma 44.1.6 Let W be a Banach space and let Z be a closed subspace of W. Then W/Z
with the norm described above is a Banach space.
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Proof: That W/Z is a vector space is left to the reader. Why is ||·|| a norm? Suppose
α ̸= 0. Then

||α [x]|| = ||[αx]|| ≡ inf{||αx+ z|| : z ∈ Z}
= inf{||αx+αz|| : z ∈ Z}
= |α| inf{||x+ z|| : z ∈ Z}= |α| ||[x]|| .

Now let ||[x]|| ≥ ||x+ z1||− ε and let ||[y]|| ≥ ||y+ z2||− ε where zi ∈ Z. Then

||[x]+ [y]|| ≡ ||[x+ y]|| ≤ ||x+ y+ z1 + z2||
≤ ||x+ z1||+ ||y+ z2|| ≤ ||[x]||+ ||[y]||+2ε.

Since ε is arbitrary, this shows the triangle inequality. Clearly, ||[x]|| ≥ 0. It remains to
show that the only way ||[x]|| = 0 is for x ∈ Z. Suppose then that ||[x]|| = 0. This means
there exist zn ∈ Z such that ||x+ zn|| → 0. Therefore, −x is a limit of a sequence of points
of Z and since Z is closed, this requires −x ∈ Z. Hence x ∈ Z also because Z is a subspace.
This shows ||·|| is a norm on W/Z. It remains to verify that W/Z is a Banach space.

Suppose {[xn]} is a Cauchy sequence in W/Z and suppose ||[xn]− [xn+1]|| < 1
2n+1 . Let

x′1 = x1. If x′n has been chosen let x′n+1 = xn+1 + zn+1 where zn+1 ∈ Z be such that

∣∣∣∣x′n+1− x′n
∣∣∣∣ ≤ ||[xn+1− xn]||+

1
2(n+1)

= ||[xn+1]− [xn]||+
1

2(n+1) <
1
2n .

It follows {x′n} is a Cauchy sequence in W and so it must converge to some x ∈W. Now

||[x]− [xn]||= ||[x− xn]||=
∣∣∣∣[x− x′n

]∣∣∣∣≤ ∣∣∣∣x− x′n
∣∣∣∣

which converges to 0. Now if {[xn]} is just a Cauchy sequence, there exists a subsequence
satisfying

∣∣∣∣[xnk

]
−
[
xnk+1

]∣∣∣∣ < 1
2k+1 and so from the first part, the subsequence converges

to some [x] ∈W/Z and so the original Cauchy sequence also converges. therefore, W/Z is
a Banach space as claimed.

Definition 44.1.7 Define T (A0,A1, p,θ) = T, to consist of{
a ∈ A0 +A1 : a = lim

t→0+
f (t) for some f ∈W (A0,A1, p,θ)

}
,

the limit taking place in A0 +A1. Let γ f be defined for f ∈W by γ f ≡ limt→0+ f (t) . Thus
T = γ (W ) . As above Z ≡ { f ∈W : γ f = 0}= ker(γ) .

Lemma 44.1.8 T is a Banach space with norm given by

||a||T ≡ inf{|| f ||W : f (0) = a} . (44.1.5)
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Proof: Define a mapping, ψ : W/Z→ T by

ψ ([ f ])≡ γ f .

Then ψ is one to one and onto. Also

||[ f ]|| ≡ inf{|| f +g|| : g ∈ Z}= inf{||h||W : γh = γ f}= ||γ ( f )||T .

Therefore, the Banach space, W/Z and T are isometric and so T must be a Banach space
since W/Z is.

The following is an important interpolation inequality.

Theorem 44.1.9 If a ∈ T, then

||a||T = inf
{∣∣∣∣∣∣tθ f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ;A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ;A1)

}
(44.1.6)

where the infimum is taken over all f ∈W such that a = f (0) . Also, if a ∈ A0 ∩A1, then
a ∈ T and

||a||T ≤ K ||a||1−θ

A1
||a||θA0

(44.1.7)

for some constant K. Also

A0∩A1 ⊆ T (A0,A1, p,θ)⊆ A0 +A1 (44.1.8)

and the inclusion maps are continuous.

Proof: First suppose f (0) = a where f ∈W . Then letting fλ (t) ≡ f (λ t) , it follows
that fλ (0) = a also and so

||a||T ≤ max
(∣∣∣∣∣∣tθ fλ

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
,
∣∣∣∣∣∣tθ ( fλ )

′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

)
= max

(
λ
−θ

∣∣∣∣∣∣tθ f
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A0)

,λ 1−θ

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

)
≡ max

(
λ
−θ R,λ 1−θ S

)
.

Now choose λ = R/S to obtain

||a||T ≤ R1−θ Sθ =
∣∣∣∣∣∣tθ f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ;A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ;A1)

.

Thus

||a||T ≤ inf
{∣∣∣∣∣∣tθ f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ;A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ;A1)

}
.

Next choose f ∈W such that f (0) = a and || f ||W ≈ ||a||T . More precisely, pick f ∈W
such that f (0) = a and ||a||T >−ε + || f ||W . Also let

R≡
∣∣∣∣∣∣tθ f

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
,S≡

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

.
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Then as before,∣∣∣∣∣∣tθ fλ

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
= λ

−θ R,
∣∣∣∣∣∣tθ ( fλ )

′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

= λ
1−θ S. (44.1.9)

so that || f ||W = max(R,S) . Then, changing the variables, letting λ = R/S,∣∣∣∣∣∣tθ fλ

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
=
∣∣∣∣∣∣tθ ( fλ )

′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

= R1−θ Sθ (44.1.10)

Since fλ (0) = a, fλ ∈W, and it is always the case that for positive R,S,

R1−θ Sθ ≤max(R,S) ,

this shows that

||a||T ≤ max
(∣∣∣∣∣∣tθ fλ

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
,
∣∣∣∣∣∣tθ ( fλ )

′
∣∣∣∣∣∣

Lp(0,∞, dt
t ;A1)

)
= R1−θ Sθ ≤max(R,S) = || f ||W < ||a||T + ε,

the first inequality holding because ||a||T is the infimum of such things on the right. This
shows 44.1.6.

It remains to verify 44.1.7. To do this, let ψ ∈C∞ ([0,∞)) , with ψ (0) = 1 and ψ (t) = 0
for all t > 1. Then consider the special f ∈W which is given by f (t) ≡ aψ (t) where
a ∈ A0 ∩A1. Thus f ∈W and f (0) = a so a ∈ T (A0,A1, p,θ) . From the first part, there
exists a constant, K such that

||a||T ≤
∣∣∣∣∣∣tθ f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ;A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ;A1)

≤ K ||a||1−θ

A0
||a||θA1

This shows 44.1.7 and the first inclusion in 44.1.8. From the inequality just obtained,

||a||T ≤ K
(
(1−θ) ||a||A0

+θ ||a||A1

)
≤ K ||a||A0∩A1

.

This shows the first inclusion map of 44.1.8 is continuous.
Now take a ∈ T. Let f ∈W be such that a = f (0) and

||a||T + ε > || f ||W ≥ ||a||T .

By 44.1.3,
||a− f (t)||A0+A1

≤Cν t1−ν p′ || f ||W

where 1
p +ν = θ , and so

||a||A0+A1
≤ || f (t)||A0+A1

+Cν t1−ν p′ || f ||W .
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Now || f (t)||A0+A1
≤ || f (t)||A0

.

||a||A0+A1
≤ tν || f (t)||A0+A1

t−ν +Cν t1−ν p′ || f ||W
≤ tν || f (t)||A0

t−ν +Cν t1−ν p′ || f ||W

Therefore, recalling that ν p′ < 1, and integrating both sides from 0 to 1,

||a||A0+A1
≤Cν || f ||W ≤Cν (||a||T + ε) .

To see this,

∫ 1

0
tν || f (t)||A0

t−ν dt ≤
(∫ 1

0

(
tν || f (t)||A0

)p
dt
)1/p(∫ 1

0
t−ν p′dt

)1/p′

≤ C || f ||W .

Since ε > 0 is arbitrary, this verifies the second inclusion and continuity of the inclusion
map completing the proof of the theorem.

The interpolation inequality, 44.1.7 is very significant. The next result concerns bounded
linear transformations.

Theorem 44.1.10 Now suppose A0,A1 and B0, B1 are pairs of Banach spaces such that Ai
embeds continuously into a topological vector space, X and Bi embeds continuously into a
topological vector space, Y. Suppose also that L ∈L (A0,B0) and L ∈L (A1,B1) where
the operator norm of L in these spaces is Ki, i = 0,1. Then

L ∈L (A0 +A1,B0 +B1) (44.1.11)

with
||La||B0+B1

≤max(K0,K1) ||a||A0+A1
(44.1.12)

and
L ∈L (T (A0,A1, p,θ) ,T (B0,B1, p,θ)) (44.1.13)

and for K the operator norm,
K ≤ K1−θ

0 Kθ
1 . (44.1.14)

Proof: To verify 44.1.11, let a ∈ A0 +A1 and pick a0 ∈ A0 and a1 ∈ A1 such that

||a||A0+A1
+ ε > ||a0||A0

+ ||a1||A1
.

Then
||L(a)||B0+B1

= ||La0 +La1||B0+B1
≤ ||La0||B0

+ ||La1||B1

≤ K0 ||a0||A0
+K1 ||a1||A1

≤max(K0,K1)
(
||a||A0+A1

+ ε

)
.

This establishes 44.1.12. Now consider the other assertions.
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Let a ∈ T (A0,A1, p,θ) and pick f ∈W (A0,A1, p,θ) such that γ f = a and

||a||T (A0,A1,p,θ)+ ε >
∣∣∣∣∣∣tθ f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ,A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ,A1)

.

Then consider L f . Since L is continuous on A0 +A1,

L f (0) = La

and L f ∈W (B0,B1, p,θ) . Therefore, by Theorem 44.1.9,

||La||T (B0,B1,p,θ) ≤
∣∣∣∣∣∣tθ L f

∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ,B0)

∣∣∣∣∣∣tθ L f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ,B1)

≤ K1−θ

0 Kθ
1

∣∣∣∣∣∣tθ f
∣∣∣∣∣∣1−θ

Lp(0,∞, dt
t ,A0)

∣∣∣∣∣∣tθ f ′
∣∣∣∣∣∣θ

Lp(0,∞, dt
t ,A1)

≤ K1−θ

0 Kθ
1

(
||a||T (A0,A1,p,θ)+ ε

)
.

and since ε > 0 is arbitrary, this proves the theorem.

44.2 Trace And Interpolation Spaces
Trace spaces are equivalent to interpolation spaces. In showing this, a more general sort of
trace space than that presented earlier will be used.

Definition 44.2.1 Define for m a positive integer, V m = V m (A0,A1, p,θ) to be the set of
functions, u such that

t→ tθ u(t) ∈ Lp
(

0,∞,
dt
t

;A0

)
(44.2.15)

and

t→ tθ+m−1u(m) (t) ∈ Lp
(

0,∞,
dt
t

;A1

)
. (44.2.16)

V m is a Banach space with the norm

||u||V m ≡max
(∣∣∣∣∣∣tθ u(t)

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A0)
,
∣∣∣∣∣∣tθ+m−1u(m) (t)

∣∣∣∣∣∣
Lp(0,∞, dt

t ;A1)

)
.

Thus V m equals W in the case when m = 1. More generally, as in [16] different expo-
nents are used for the two Lp spaces, p0 in place of p for the space corresponding to A0 and
p1 in place of p for the space corresponding to A1.

Definition 44.2.2 Denote by T m (A0,A1, p,θ) the set of all a ∈ A0 +A1 such that for some
u ∈V m,

a = lim
t→0+

u(t)≡ trace(u) , (44.2.17)

the limit holding in A0 +A1. For the norm

||a||T m ≡ inf{||u||V m : trace(u) = a} . (44.2.18)
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The case when m = 1 was discussed in Section 44.1. Note it is not known at this point
whether limt→0+ u(t) even exists for every u ∈ V m. Of course, if m = 1 this was shown
earlier but it has not been shown for m > 1. The following theorem is absolutely amazing.
Note the lack of dependence on m of the right side!

Theorem 44.2.3 The following hold.

T m (A0,A1, p,θ) = (A0,A1)θ ,p,J = (A0,A1)θ ,p . (44.2.19)

Proof: It is enough to show the first equality because of Theorem 43.7.5 which identi-
fies (A0,A1)θ ,p,J and (A0,A1)θ ,p. Let a ∈ T m. Then there exists u ∈V m such that

a = lim
t→0+

u(t) in A0 +A1.

The first task is to modify this u(t) to get a better one which is more usable in order to
show a ∈ (A0,A1)θ ,p,J . Remember, it is required to find w(t) ∈ A0 ∩A1 for all t ∈ (0,∞)

and a =
∫

∞

0 w(t) dt
t , a representation which is not known at this time. To get such a thing,

let
φ ∈C∞

c (0,∞) ,spt(φ)⊆ [α,β ] (44.2.20)

with φ ≥ 0 and ∫
∞

0
φ (t)

dt
t
= 1. (44.2.21)

Then define

ũ(t)≡
∫

∞

0
φ

( t
τ

)
u(τ)

dτ

τ
=
∫

∞

0
φ (s)u

( t
s

) ds
s
. (44.2.22)

Claim: limt→0+ ũ(t) = a and limt→∞ ũ(k) (t) = 0 in A0 +A1 for all k ≤ m.
Proof of the claim: From 44.2.22 and 44.2.21 it follows that for ||·|| referring to

||·||A0+A1
,

||ũ(t)−a|| ≤
∫

∞

0

∣∣∣∣∣∣u( t
s

)
−a
∣∣∣∣∣∣φ (s)

ds
s

=
∫

∞

0
||u(τ)−a||φ

( t
τ

) dτ

τ

=
∫ t/α

t/β

||u(τ)−a||φ
( t

τ

) dτ

τ

≤
∫ t/α

t/β

εφ

( t
τ

) dτ

τ
= ε

∫
β

α

φ (s)
ds
s

= ε

whenever t is small enough due to the convergence of u(t) to a in A0 +A1.
Now consider what occurs when t→ ∞. For ||·|| referring to the norm in A0,

ũ(k) (t) =
∫

∞

0
φ
(k)
( t

τ

) 1
τk u(τ)

dτ

τ
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and so ∣∣∣∣∣∣ũ(k) (t)∣∣∣∣∣∣
A0
≤Ck

∫ t/α

t/β

||u(τ)||A0

dτ

τ

≤C
(∫ t/α

t/β

dτ

τ

)1/p′(∫ t/α

t/β

||u(τ)||pA0

dτ

τ

)1/p

.

Now
(

β

t

)θ

τθ ≥ 1 for τ ≥ t/β and so the above expression

≤C
(

ln
β

α

)1/p′(
β

t

)θ (∫ ∞

t/β

(
τ

θ ||u(τ)||A0

)p dτ

τ

)1/p

and so limt→∞

∣∣∣∣∣∣ũ(k) (t)∣∣∣∣∣∣
A0

= 0 and therefore, this also holds in A0 +A1. This proves the

claim.
Thus ũ has the same properties as u in terms of having a as its trace. ũ is used to build

the desired w, representing a as an integral. Define

v(t)≡ (−1)m tm

(m−1)!
ũ(m) (t) =

(−1)m

(m−1)!

∫
∞

0

tm

τm φ
(m)
( t

τ

)
u(τ)

dτ

τ

=
(−1)m

(m−1)!

∫
∞

0
sm

φ
(m) (s)u

( t
s

) ds
s
. (44.2.23)

Then from the claim, and integration by parts in the last step,∫
∞

0
v
(

1
t

)
dt
t
=
∫

∞

0
v(t)

dt
t
=

(−1)m

(m−1)!

∫
∞

0
tm−1ũ(m) (t)dt = a. (44.2.24)

Thus v
( 1

t

)
represents a in the way desired for (A0,A1)θ ,p,J if it is also true that v

( 1
t

)
∈

A0 ∩A1 and t → t−θ v
( 1

t

)
is in Lp

(
0,∞, dt

t ;A0
)

and t → t1−θ v
( 1

t

)
is in Lp

(
0,∞, dt

t ;A1
)
.

First consider whether v(t)∈ A0∩A1. v(t)∈ A0 for each t from 44.2.23 and the assumption
that u ∈ Lp

(
0,∞, dt

t ;A0
)
. To verify v(t) ∈ A1, integrate by parts in 44.2.23 to obtain

v(t) =
(−1)m

(m−1)!

∫
∞

0
φ
(m) (s)

(
sm−1u

( t
s

))
ds (44.2.25)

=
1

(m−1)!

∫
∞

0
φ (s)

dm

dsm

(
sm−1u

( t
s

))
ds

=
(−1)m

(m−1)!

∫
∞

0
φ (s)

tm

sm+1 u(m)
( t

s

)
ds ∈ A1

The last step may look very mysterious. If so, consider the case where m = 2.

φ (s)
(

su
( t

s

))′′
= φ (s)

(
− t

s
u′
( t

s

)
+u
( t

s

))′
= φ (s)

((
− t

s

)
u′′
( t

s

)(
− t

s2

)
+

t
s2 u′

( t
s

)
− t

s2 u′
( t

s

))
= φ (s)

t2

s3 u′′
( t

s

)
.
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You can see the same pattern will take place for other values of m.
Now

||a||
θ ,p,J ≤

(∫
∞

0

(
t−θ J

(
t,v
(

1
t

)))p dt
t

)1/p

≤Cp

{∫
∞

0

[(
t−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A0

)
+

(
t1−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A1

)]p
dt
t

}1/p

≤Cp


(∫

∞

0

(
t−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A0

)p
dt
t

)1/p

+

(∫
∞

0

(
t1−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A1

)p
dt
t

)1/p
 . (44.2.26)

The first term equals (∫
∞

0

(
t−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A0

)p
dt
t

)1/p

=

(∫
∞

0

(
tθ ||v(t)||A0

)p dt
t

)1/p

=

(∫
∞

0

(
tθ

∣∣∣∣∣∣∣∣∫ ∞

0
sm

φ
(m) (s)u

( t
s

) ds
s

∣∣∣∣∣∣∣∣
A0

)p
dt
t

)1/p

≤
∫

∞

0

(∫
∞

0

(
tθ sm

∣∣∣φ (m) (s)
∣∣∣ ∣∣∣∣∣∣u( t

s

)∣∣∣∣∣∣
A0

)p dt
t

)1/p ds
s

≤
∫

∞

0
sm
∣∣∣φ (m) (s)

∣∣∣(∫ ∞

0

(
tθ

∣∣∣∣∣∣u( t
s

)∣∣∣∣∣∣
A0

)p dt
t

)1/p ds
s

=
∫

∞

0
sθ+m

∣∣∣φ (m) (s)
∣∣∣ ds

s

(∫
∞

0

(
τ

θ ||u(τ)||A0

)p dτ

τ

)1/p

=C
(∫

∞

0

(
τ

θ ||u(τ)||A0

)p dτ

τ

)1/p

. (44.2.27)

The second term equals(∫
∞

0

(
t1−θ

∣∣∣∣∣∣∣∣v(1
t

)∣∣∣∣∣∣∣∣
A1

)p
dt
t

)1/p

=

(∫
∞

0

(
tθ−1 ||v(t)||A1

)p dt
t

)1/p

=

(∫
∞

0

(
tθ−1

∣∣∣∣∣∣∣∣ 1
(m−1)!

∫
∞

0
φ (s)

tm

sm u(m)
( t

s

) ds
s

∣∣∣∣∣∣∣∣
A1

)p
dt
t

)1/p
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≤
∫

∞

0

(∫
∞

0

((
tθ+m−1

sm

)
|φ (s)|

∣∣∣∣∣∣u(m)
( t

s

)∣∣∣∣∣∣
A1

)p dt
t

)1/p
ds
s

≤
∫

∞

0

|φ (s)|
sm

(∫
∞

0

(
tθ+m−1

∣∣∣∣∣∣u(m)
( t

s

)∣∣∣∣∣∣
A1

)p dt
t

)1/p ds
s

=
∫

∞

0

|φ (s)|
sm sθ+m−1

(∫
∞

0

(
τ

θ+m−1
∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣
A1

)p dτ

τ

)1/p ds
s

=C
(∫

∞

0

(
τ

θ+m−1
∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣
A1

)p dτ

τ

)1/p

. (44.2.28)

Now from the estimates on the two terms in 44.2.26 found in 44.2.27 and 44.2.28, and the
simple estimate,

2max(α,β )≥ α +β ,

it follows

||a||
θ ,p,J (44.2.29)

≤ C max

((∫
∞

0

(
τ

θ ||u(τ)||A0

)p dτ

τ

)1/p

(44.2.30)

,

(∫
∞

0

(
τ

θ+m−1
∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣
A1

)p dτ

τ

)1/p
)

(44.2.31)

which shows that after taking the infimum over all u whose trace is a, it follows a ∈
(A0,A1)θ ,p,J .

||a||
θ ,p,J ≤C ||a||T m (44.2.32)

Thus T m (A0,A1,θ , p)⊆ (A0,A1)θ ,p,J .
Is (A0,A1)θ ,p,J ⊆ T m (A0,A1,θ , p)? Let a ∈ (A0,A1)θ ,p,J . There exists u having values

in A0∩A1 and such that

a =
∫

∞

0
u(t)

dt
t
=
∫

∞

0
u
(

1
t

)
dt
t
,

in A0 +A1 such that∫
∞

0

(
t−θ J (t,u(t))

)p
dt < ∞, where J (t,a) = max

(
||a||A0

, t ||a||A1

)
.

Then let

w(t)≡
∫

∞

t

(
1− t

τ

)m−1
u
(

1
τ

)
dτ

τ
= (44.2.33)

∫ 1/t

0
(1− st)m−1 u(s)

ds
s

=
∫ 1

0
(1− τ)m−1 u

(
τ

t

) dτ

τ
. (44.2.34)
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It is routine to verify from 44.2.33 that

w(m) (t) = (m−1)!(−1)m u
( 1

t

)
tm . (44.2.35)

For example, consider the case where m = 2.(∫
∞

t

(
1− t

τ

)
u
(

1
τ

)
dτ

τ

)′′
=

(
0+

∫
∞

t

(
−1

τ

)
u
(

1
τ

)
dτ

τ

)′
=

1
t2 u
(

1
t

)
.

Also from 44.2.33, it follows that trace(w) = a. It remains to verify w ∈ V m. From
44.2.35, (∫

∞

0

(
tθ+m−1

∣∣∣∣∣∣w(m) (t)
∣∣∣∣∣∣

A1

)p dt
t

)1/p

=

Cm

(∫
∞

0

(
tθ−1

∣∣∣∣∣∣∣∣u(1
t

)∣∣∣∣∣∣∣∣
A1

)p
dt
t

)1/p

=Cm

(∫
∞

0

(
t1−θ ||u(t)||A1

)p dt
t

)1/p

≤Cm

(∫
∞

0

(
t−θ J (t,u(t))

)p dt
t

)1/p

< ∞. (44.2.36)

It remains to consider
(∫

∞

0

(
tθ ||w(t)||A0

)p
dt
t

)1/p
. From 44.2.34,

(∫
∞

0

(
tθ ||w(t)||A0

)p dt
t

)1/p

=

(∫
∞

0

(
tθ

∣∣∣∣∣∣∣∣∫ 1

0
(1− τ)m−1 u

(
τ

t

) dτ

τ

∣∣∣∣∣∣∣∣
A0

)p
dt
t

)1/p

=

(∫
∞

0

(
t−θ

∣∣∣∣∣∣∣∣∫ 1

0
(1− τ)m−1 u(τt)

dτ

τ

∣∣∣∣∣∣∣∣
A0

)p
dt
t

)1/p

≤
∫ 1

0

(∫
∞

0

(
t−θ (1− τ)m−1 ||u(τt)||A0

)p dt
t

)1/p dτ

τ

=
∫ 1

0
τ

θ (1− τ)m−1
(∫

∞

0

(
s−θ ||u(s)||A0

)p ds
s

)1/p dτ

τ

=

(∫ 1

0
τ

θ−1 (1− τ)m−1 dτ

)(∫
∞

0

(
s−θ ||u(s)||A0

)p ds
s

)1/p

≤C
(∫

∞

0

(
s−θ ||u(s)||A0

)p ds
s

)1/p
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≤C
(∫

∞

0

(
t−θ J (t,u(t))

)p
dt
)1/p

< ∞. (44.2.37)

It follows that
||w||V m ≡

max

((∫
∞

0

(
tθ ||w(t)||A0

)p dt
t

)1/p

,

(∫
∞

0

(
tθ+m−1

∣∣∣∣∣∣w(m) (t)
∣∣∣∣∣∣

A1

)p dt
t

)1/p
)

≤C
(∫

∞

0

(
t−θ J (t,u(t))

)p
dt
)1/p

< ∞

which shows that a ∈ T m (A0,A1,θ , p) . Taking the infimum,

||a||T m ≤C ||a||
θ ,p,J .

This together with 44.2.32 proves the theorem.
By Theorem 44.2.3 and Theorem 43.8.6, we obtain the following important corollary

describing the dual space of a trace space.

Corollary 44.2.4 Let A0∩A1 be dense in Ai for i = 0,1 and suppose that Ai is reflexive for
i = 0,1. Then for ∞ > p≥ 1,

T m (A0,A1,θ , p)′ = T m (A′1,A′0,1−θ , p′
)



Chapter 45

Traces Of Sobolev Spaces
45.1 Traces Of Sobolev Spaces, Half Space

In this section consider the trace of W m,p
(
Rn
+

)
onto a Sobolev space of functions defined

on Rn−1. This latter Sobolev space will be defined in terms of the following theory in
such a way that the trace map is continuous. The trace map is continuous as a map from
W m,p

(
Rn
+

)
to W m−1,p

(
Rn−1

)
but here I will give a better conclusion using the above the-

ory.

Definition 45.1.1 Let θ ∈ (0,1) and let Ω be an open subset of Rm. We define

W θ ,p (Ω)≡ T
(
W 1,p (Ω) ,Lp (Ω) , p,1−θ

)
.

Thus, from the above general theory, W 1,p (Ω) ↪→ W θ ,p (Ω) ↪→ Lp (Ω) = Lp (Ω) +
W 1,p (Ω) . Now we consider the trace map for Sobolev space.

Lemma 45.1.2 Let φ ∈C∞
(
Rn
+

)
. Then γφ (x′)≡ φ (x′,0) . Then γ : C∞

(
Rn
+

)
→ Lp

(
Rn−1

)
is continuous as a map from W 1,p

(
Rn
+

)
to Lp

(
Rn−1

)
.

Proof: We know

φ
(
x′,xn

)
= γφ

(
x′
)
+
∫ xn

0

∂φ (x′, t)
∂ t

dt

Then by Jensen’s inequality,∫
Rn−1

∣∣γφ
(
x′
)∣∣p dx′

=
∫ 1

0

∫
Rn−1

∣∣γφ
(
x′
)∣∣p dx′dxn

≤ C
∫ 1

0

∫
Rn−1

∣∣φ (x′,xn
)∣∣p dx′dxn

+C
∫ 1

0

∫
Rn−1

∣∣∣∣∫ xn

0

∂φ (x′, t)
∂ t

dt
∣∣∣∣p dx′dxn

≤ C ||φ ||p0,p,Rn
+
+C

∫ 1

0
xp−1

n

∫
Rn−1

∫ xn

0

∣∣∣∣∂φ (x′, t)
∂ t

∣∣∣∣p dtdx′dxn

≤ C ||φ ||p0,p,Rn
+
+C

∫ 1

0
xp−1

n

∫
Rn−1

∫
∞

0

∣∣∣∣∂φ (x′, t)
∂ t

∣∣∣∣p dtdx′dxn

≤ C ||φ ||p0,p,Rn
+
+

C
p

∫
Rn−1

∫
∞

0

∣∣∣∣∂φ (x′, t)
∂ t

∣∣∣∣p dtdx′

≤ C ||φ ||p1,p,Rn
+

This proves the lemma.
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Definition 45.1.3 We define the trace,

γ : W 1,p (Rn
+

)
→ Lp (Rn−1)

as follows. γφ (x′)≡ φ (x′,0) whenever φ ∈C∞
(
Rn
+

)
. For u ∈W 1,p

(
Rn
+

)
, we define γu≡

limk→∞ γφ k in Lp
(
Rn−1

)
where φ k → u in W 1,p

(
Rn
+

)
. Then the above lemma shows this

is well defined.

Also from this lemma we obtain a constant, C such that

||φ ||0,p,Rn−1 ≤C ||φ ||1,p,Rn
+

and the same constant holds for all u ∈W 1,p
(
Rn
+

)
.

From the definition of the norm in the trace space, if f ∈ C∞
(
Rn
+

)
, and letting θ =

1− 1
p , it follows from the definition

||γ f ||1− 1
p ,p,Rn−1

≤ max

((∫
∞

0

(
t1/p || f (t)||1,p,Rn−1

)p dt
t

)1/p

,

(∫
∞

0

(
t1/p ∣∣∣∣ f ′ (t)∣∣∣∣0,p,Rn−1

)p dt
t

)1/p
)

≤ C || f ||1,p,Rn
+
.

Thus, if f ∈W 1,p
(
Rn
+

)
, define γ f ∈W 1− 1

p ,p
(
Rn−1

)
according to the rule,

γ f = lim
k→∞

γφ k,

where φ k → f in W 1,p
(
Rn
+

)
and φ k ∈ C∞

(
Rn
+

)
. This shows the continuity part of the

following lemma.

Lemma 45.1.4 The trace map, γ, is a continuous map from W 1,p
(
Rn
+

)
onto

W 1− 1
p ,p
(
Rn−1) .

Furthermore, for f ∈W 1,p
(
Rn
+

)
,

γ f = f (0) = lim
t→0+

f (t)

the limit taking place in Lp
(
Rn−1

)
.

Proof: It remains to verify γ is onto along with the displayed equation. But by defi-
nition, things in W 1− 1

p ,p
(
Rn−1

)
are limt→0+ f (t) where f ∈ Lp

(
0,∞;W 1,p

(
Rn−1

))
, and

f ′ ∈ Lp
(
0,∞;Lp

(
Rn−1

))
, the limit taking place in

W 1,p (Rn−1)+Lp (Rn−1)= Lp (Rn−1) ,
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and (∫
∞

0
|| f (t)||p1,p,Rn−1 dt

)1/p

+

(∫
∞

0

∣∣∣∣ f ′ (t)∣∣∣∣p0,p dt
)1/p

< ∞.

Then taking a measurable representative, we see f ∈W 1,p
(
Rn
+

)
and f,xn = f ′. Also, as an

equation in Lp
(
Rn−1

)
, the following holds for all t > 0.

f (·, t) = f (0)+
∫ t

0
f,xn (·,s)ds

But also, for a.e. x′,the following equation holds for a.e. t > 0.

f
(
x′, t
)
= γ f

(
x′
)
+
∫ t

0
f,xn

(
x′,s
)

ds, (45.1.1)

showing that

γ f = f (0) ∈W 1− 1
p ,p
(
Rn−1)≡ T

(
W 1,p (Ω) ,Lp (Ω) , p,

1
p

)
.

To see that 45.1.1 holds, approximate f with a sequence from C∞
(
Rn
+

)
and finally

obtain an equation of the form∫
Rn−1

∫
∞

0

[
f
(
x′, t
)
− γ f

(
x′
)
−
∫ t

0
f,xn

(
x′,s
)

ds
]

ψ
(
x′, t
)

dtdx′ = 0,

which holds for all ψ ∈C∞
c
(
Rn
+

)
. This proves the lemma.

Thus taking the trace on the boundary loses exactly 1
p derivatives.

45.2 A Right Inverse For The Trace For A Half Space
It is also important to show there is a continuous linear function,

R : W 1− 1
p ,p
(
Rn−1)→W 1,p (Rn

+

)
which has the property that γ (Rg) = g. Define this function as follows.

Rg
(
x′,xn

)
≡
∫
Rn−1

g
(
y′
)

φ

(
x′−y′

xn

)
1

xn−1
n

dy′ (45.2.2)

where φ is a mollifier having support in B(0,1) .

Lemma 45.2.1 Let R be defined in 45.2.2. Then Rg∈W 1,p
(
Rn
+

)
and is a continuous linear

map from W 1− 1
p ,p
(
Rn−1

)
to W 1,p

(
Rn
+

)
with the property that γRg = g.

Proof: Let f ∈W 1,p
(
Rn
+

)
be such that γ f = g. Let ψ (xn) ≡ (1− xn)+ and assume f

is Borel measurable by taking a Borel measurable representative. Then for a.e. x′ we have
the following formula holding for a.e. xn.

Rg
(
x′,xn

)
=

∫
Rn−1

[
ψ (xn) f

(
y′,ψ (xn)

)
−
∫

ψ(xn)

0
(ψ f ),n

(
y′, t
)

dt
]

φ

(
x′−y′

xn

)
x1−n

n dy′.
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Using the repeated index summation convention to save space, we obtain that in terms of
weak derivatives,

Rg,n
(
x′,xn

)
=

∫
Rn−1

[
ψ (xn) f

(
y′,ψ (xn)

)
−
∫

ψ(xn)

0
(ψ f ),n

(
y′, t
)

dt
]
·[

φ ,k

(
x′−y′

xn

)(
yk− xk

xn
n

)
+φ

(
x′−y′

xn

)
(1−n)

xn
n

]
dy′

=
∫
Rn−1

[
ψ (xn) f

(
x′− xnz′,ψ (xn)

)
−
∫

ψ(xn)

0
(ψ f ),n

(
x′− xnz′, t

)
dt
]
·[

φ ,k
(
z′
)(yk− xk

xn
n

)
zk +φ

(
z′
) (1−n)

xn
n

]
xn

ndz′

and so ∣∣Rg,n
(
x′,xn

)∣∣ ≤ C (φ)

∣∣∣∣∫B(0,1)

[
ψ (xn) f

(
x′− xnz′,ψ (xn)

)
−
∫

ψ(xn)

0
(ψ f ),n

(
x′− xnz′, t

)
dt
]∣∣∣∣

≤ C (φ)

xn−1
n

{∫
B(0,xn)

∣∣ψ (xn) f
(
x′+y′,ψ (xn)

)∣∣dy′

+
∫

B(0,xn)

∫
ψ(xn)

0

∣∣∣(ψ f ),n
(
x′+y′, t

)∣∣∣dtdy′
}

Therefore,(∫
∞

0

∫
Rn−1

∣∣Rg,n
(
x′,xn

)∣∣p dx′dxn

)1/p

≤

C (φ)

(∫
∞

0

∫
Rn−1

(
1

xn−1
n

∫
B(0,xn)

∣∣ψ (xn) f
(
x′+y′,ψ (xn)

)∣∣dy′
)p

dx′dxn

)1/p

+C (φ)

(∫
∞

0

∫
Rn−1

(
1

xn−1
n

∫
B(0,xn)

∫
ψ(xn)

0

∣∣∣(ψ f ),n
(
x′+y′, t

)∣∣∣dtdy′
)p

dx′dxn

)1/p

(45.2.3)
Consider the first term on the right. We change variables, letting y′ = z′xn. Then this term
becomes

C (φ)

(∫ 1

0

∫
Rn−1

(∫
B(0,1)

∣∣ψ (xn) f
(
x′+ xnz′,ψ (xn)

)∣∣dz′
)p

dx′dxn

)1/p

≤C (φ)
∫

B(0,1)

(∫ 1

0

∫
Rn−1

∣∣ψ (xn) f
(
x′+ xnz′,ψ (xn)

)∣∣p dx′dxn

)1/p

dz′
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Now we change variables, letting t = ψ (xn) . This yields

=C (φ)
∫

B(0,1)

(∫ 1

0

∫
Rn−1

∣∣t f
(
x′+ xnz′, t

)∣∣p dx′dt
)1/p

dz′ ≤C (φ) || f ||0,p,Rn
+
. (45.2.4)

Now we consider the second term on the right in 45.2.3. Using the same arguments which
were used on the first term involving Minkowski’s inequality and changing the variables,
we obtain the second term

≤ C (φ)
∫

B(0,1)

∫ 1

0

(∫ 1

0

∫
Rn−1

∣∣∣(ψ f ),n
(
x′+ xnz′, t

)∣∣∣p dx′dxn

)1/p

dtdy′

≤ C (φ) || f ||1,p,Rn
+
. (45.2.5)

It is somewhat easier to verify that∣∣∣∣Rg, j
∣∣∣∣

0,p,Rn
+
≤C (φ) || f ||1,p,Rn

+
.

Therefore, we have shown that whenever γ f = f (0) = g,

||Rg||1,p,Rn
+
≤C (φ) || f ||1,p,Rn

+
.

Taking the infimum over all such f and using the definition of the norm in

W 1− 1
p ,p
(
Rn−1) ,

it follows
||Rg||1,p,Rn

+
≤C (φ) ||g||1− 1

p ,p,Rn−1,

showing that this map, R, is continuous as claimed. It is obvious that

lim
xn→0

Rg(xn) = g,

the convergence taking place in Lp
(
Rn−1

)
because of general results about convolution

with mollifiers. This proves the lemma.

45.3 Intrinsic Norms
The above presentation is very abstract, involving the trace of a function in

W (A0,A1, p,θ)

and a norm which was the infimum of norms of functions in W which have trace equal to
the given function. It is very useful to have a description of the norm in these fractional
order spaces which is defined in terms of the function itself rather than functions which
have the given function as trace. This leads to something called an intrinsic norm. I am
following Adams [1].

The following interesting lemma is called Young’s inequality. It holds more generally
than stated.



1486 CHAPTER 45. TRACES OF SOBOLEV SPACES

Lemma 45.3.1 Let g = f ∗h where f ∈ L1 (R) ,h ∈ Lp (R) , and f ,h are all Borel measur-
able, p≥ 1. Then g ∈ Lp (R) and

||g||Lp(R) ≤ || f ||L1(R) ||h||Lp(R)

Proof: First of all it is good to show g is well defined. Using Minkowski’s inequality(∫ (∫
|h(t− s) f (s)|ds

)p

dt
)1/p

≤
∫ (∫

|h(t− s)|p | f (s)|p dt
)1/p

ds

=
∫
| f (s)|

(∫
|h(t− s)|p dt

)1/p

ds

= || f ||L1 ||h||Lp

Therefore, for a.e. t, ∫
|h(t− s) f (s)|ds =

∫
|h(s) f (t− s)|ds < ∞

and so for all such t the convolution f ∗h(t) makes sense. The above also shows

||g||Lp ≡
(∫ ∣∣∣∣∫ f (t− s)h(s)ds

∣∣∣∣p dt
)1/p

≤ || f ||L1 ||h||Lp

and this proves the lemma.
The following is a very interesting inequality of Hardy Littlewood and Pólya.

Lemma 45.3.2 Let f be a real valued function defined a.e. on [0,∞) and let α ∈ (−∞,1)
and

g(t) =
1
t

∫ t

0
f (ξ )dξ (45.3.6)

For 1≤ p < ∞ ∫
∞

0
tα p |g(t)|p dt

t
≤ 1

(1−α)p

∫
∞

0
tα p | f (t)|p dt

t
(45.3.7)

Proof: First it can be assumed the right side of 45.3.7 is finite since otherwise there is
nothing to show. Changing the variables letting t = eτ , the above inequality takes the form∫

∞

−∞

eτ pα |g(eτ)|p dτ ≤ 1
(1−α)p

∫
∞

−∞

eτ pα | f (eτ)|p dτ

Now from the definition of g it follows

g(eτ) = e−τ

∫ eτ

−∞

f (ξ )dξ

= e−τ

∫
τ

−∞

f (eσ )eσ dσ
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and so the left side equals ∫
∞

−∞

eτ p(α−1)
∣∣∣∣∫ τ

−∞

f (eσ )eσ dσ

∣∣∣∣p dτ

=
∫

∞

−∞

∣∣∣∣∫ τ

−∞

eτα f (eσ )e−(τ−σ)dσ

∣∣∣∣p dτ

=
∫

∞

−∞

∣∣∣∣∫ τ

−∞

e(τ−σ)α e−(τ−σ)eσα f (eσ )dσ

∣∣∣∣p dτ

=
∫

∞

−∞

∣∣∣∣∫ ∞

−∞

X(−∞,0) (τ−σ)e(τ−σ)(α−1)eσα f (eσ )dσ

∣∣∣∣p dτ

and by Lemma 45.3.1,

≤
(∫ 0

−∞

e(α−1)udu
)p ∫ ∞

−∞

epσα | f (eσ )|p dσ

=

(
1

1−α

)p ∫ ∞

−∞

epσα | f (eσ )|p dσ

which was to be shown. This proves the lemma.
Next consider the case where G(t) , t > 0 is a continuous semigroup on A1 and A0 ≡

D(Λ) where Λ is the generator of this semigroup. Recall that from Proposition 19.14.5 on
Page 577 Λ is a closed densely defined operator and so A0 is a Banach space if the norm is
given by

||u||A0
≡ ||u||A1

+ ||Λu||A1

Also assume ||G(t)|| is uniformly bounded for t ∈ [0,∞). I have in mind the case where
A1 = Lp (Rn) and G(t)u(x) = u(x+ tei) but it is notationally easier to discuss this in the
general case. First here is a simple lemma.

Lemma 45.3.3 Let A0 = D(Λ) as just described. Then for u ∈ A1

||u||A1+A0
= ||u||A1

Proof: D(Λ)⊆ A1. Now let u ∈ A1.

||u||A0+A1
≡ inf

{
||u0||A1

+ ||Λu0||A1
+ ||u1||A1

: u = u0 +u1

}
To make this as small as possible you should clearly take u1 = u because

||u0||A1
+ ||Λu0||A1

+ ||u1||A1
≥ ||u0 +u1||A1

+ ||Λu0||
= ||u||A1

+ ||Λu0||

Therefore, the result of the lemma follows.
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Lemma 45.3.4 Let Λ be the generator of G(t) and let t → g(t) be in C1 (0,∞;A1). Then
there exists a unique solution to the initial value problem

y′−Λy = g, y(0) = y0 ∈ D(Λ)

and it is given by

y(t) = G(t)y0 +
∫ t

0
G(t− s)g(s)ds. (45.3.8)

This solution is continuous having continuous derivative and has values in D(Λ).

Proof: First I show the following claim.
Claim:

∫ t
0 G(t− s)g(s)ds ∈ D(Λ) and

Λ

(∫ t

0
G(t− s)g(s)ds

)
= G(t)g(0)−g(t)+

∫ t

0
G(t− s)g′ (s)ds

Proof of the claim:

1
h

(
G(h)

∫ t

0
G(t− s)g(s)ds−

∫ t

0
G(t− s)g(s)ds

)

=
1
h

(∫ t

0
G(t− s+h)g(s)ds−

∫ t

0
G(t− s)g(s)ds

)
=

1
h

(∫ t−h

−h
G(t− s)g(s+h)ds−

∫ t

0
G(t− s)g(s)ds

)

=
1
h

∫ 0

−h
G(t− s)g(s+h)ds+

∫ t−h

0
G(t− s)

g(s+h)−g(s)
h

−1
h

∫ t

t−h
G(t− s)g(s)ds

Using the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-
rem the limit as h→ 0 of the above equals

G(t)g(0)−g(t)+
∫ t

0
G(t− s)g′ (s)ds

which proves the claim.
Since y0 ∈ D(Λ) ,

G(t)Λy0 = G(t) lim
h→0

G(h)y0− y0

h

= lim
h→0

G(t +h)−G(t)
h

y0

= lim
h→0

G(h)G(t)y0−G(t)y0

h
(45.3.9)
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Since this limit exists, the last limit in the above exists and equals

ΛG(t)y0 (45.3.10)

and G(t)y0 ∈ D(Λ). Now consider 45.3.8.

y(t +h)− y(t)
h

=
G(t +h)−G(t)

h
y0+

1
h

(∫ t+h

0
G(t− s+h)g(s)ds−

∫ t

0
G(t− s)g(s)ds

)

=
G(t +h)−G(t)

h
y0 +

1
h

∫ t+h

t
G(t− s+h)g(s)ds

+
1
h

(
G(h)

∫ t

0
G(t− s)g(s)ds−

∫ t

0
G(t− s)g(s)ds

)
From the claim and 45.3.9, 45.3.10 the limit of the right side is

ΛG(t)y0 +g(t)+Λ

(∫ t

0
G(t− s)g(s)ds

)
= Λ

(
G(t)y0 +

∫ t

0
G(t− s)g(s)ds

)
+g(t)

Hence
y′ (t) = Λy(t)+g(t)

and from the formula, y′ is continuous since by the claim and 45.3.10 it also equals

G(t)Λy0 +g(t)+G(t)g(0)−g(t)+
∫ t

0
G(t− s)g′ (s)ds

which is continuous. The claim and 45.3.10 also shows y(t) ∈ D(Λ). This proves the
existence part of the lemma.

It remains to prove the uniqueness part. It suffices to show that if

y′−Λy = 0, y(0) = 0

and y is C1 having values in D(Λ) , then y = 0. Suppose then that y is this way. Letting
0 < s < t,

d
ds

(G(t− s)y(s))

≡ lim
h→0

G(t− s−h)
y(s+h)− y(s)

h

−G(t− s)y(s)−G(t− s−h)y(s)
h
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provided the limit exists. Since y′ exists and y(s) ∈ D(Λ) , this equals

G(t− s)y′ (s)−G(t− s)Λy(s) = 0.

Let y∗ ∈ A′1. This has shown that on the open interval (0, t), s→ y∗ (G(t− s)y(s)) has a
derivative equal to 0. Also from continuity of G and y, this function is continuous on [0, t].
Therefore, it is constant on [0, t] by the mean value theorem. At s= 0, this function equals 0.
Therefore, it equals 0 on [0, t]. Thus for fixed s > 0 and letting t > s,y∗ (G(t− s)y(s)) = 0.
Now let t decrease toward s. Then y∗ (y(s)) = 0 and since y∗ was arbitrary, it follows
y(s) = 0. This proves uniqueness.

Definition 45.3.5 Let G(t) be a uniformly bounded continuous semigroup defined on A1
and let Λ be its generator. Let the norm on D(Λ) be given by

||u||D(Λ) ≡ ||u||A1
+ ||Λu||A1

so that by Lemma 45.3.3 the norm on A1 +D(Λ) is just ||·||A1
. Let

T0 ≡

{
u ∈ A1 : ||u||pA1

+
∫

∞

0
tθ p
∣∣∣∣∣∣∣∣G(t)u−u

t

∣∣∣∣∣∣∣∣p
A1

dt
t
≡ ||u||pT0

< ∞

}

Theorem 45.3.6 T0 = T (D(Λ) ,A1, p,θ)≡ T and the two norms are equivalent.

Proof: Take u ∈ T (D(Λ) ,A1, p,θ) . I will show ||u||T0
≤C (θ , p) ||u||T . By the defini-

tion of the norm in T, there exists f ∈W (D(Λ) ,A1, p,θ) such that

||u||pT +δ > || f ||pW , f (0) = u.

Now by Lemma 44.1.4 there exists gr ∈W such that ||gr− f ||W < r, gr ∈C∞ (0,∞;D(Λ))
and g′r ∈C∞ (0,∞;A1). Thus for each ε > 0,gr (ε)∈D(Λ) although possibly gr (0) /∈D(Λ) .
Then letting hr (t) be defined by

g′r (t)−Λgr (t) = hr (t)

it follows hr ∈C1 (0,∞;A1) and applying Lemma 45.3.4 on [ε,∞) it follows

gr (t) = G(t− ε)gr (ε)+
∫ t

ε

G(t− s)hr (s)ds. (45.3.11)

By Lemma 44.1.4 again, gr (ε) converges to gr (0) in A1. Thus∫ t

ε

||G(t− s)hr (s)||A1
ds≤C

for some constant independent of ε. Thus s→ G(t− s)hr (s) is in L1 (0, t;A1) and it is
possible to pass to the limit in 45.3.11 as ε → 0 to conclude

gr (t) = G(t)gr (0)+
∫ t

0
G(t− s)hr (s)ds
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Now
G(t)gr (0)−gr (0)

t
=

1
t

∫ t

0
g′r (s)ds− 1

t

∫ t

0
G(t− s)hr (s)ds

and so using the assumption that G(t) is uniformly bounded,∣∣∣∣∣∣∣∣G(t)gr (0)−gr (0)
t

∣∣∣∣∣∣∣∣≤ 1
t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1
+M ||hr||A1

≤ 1
t

∫ t

0

∣∣∣∣g′r∣∣∣∣(M+1)+M ||Λgr||ds

≤ M+1
t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1
+ ||gr||D(Λ) ds

Therefore, from Lemma 45.3.2∫
∞

0
t pθ−p ||G(t)gr (0)−gr (0)||pA1

dt
t

=
∫

∞

0
t pθ

∣∣∣∣∣∣∣∣G(t)gr (0)−gr (0)
t

∣∣∣∣∣∣∣∣p
A1

dt
t

≤
∫

∞

0
t pθ

∣∣∣∣M+1
t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1
+ ||gr||D(Λ) ds

∣∣∣∣p dt/t

≤ (M+1)p 2p−1
(

1
1−θ

)p ∫ ∞

0
t pθ

(∣∣∣∣g′r∣∣∣∣pA1
+ ||gr||pD(Λ)

)
Now since gr → f in W, it follows from Lemma 44.1.8 that gr (0)→ u in T and hence by
Theorem 44.1.9 this also in A1. Therefore, using Fatou’s lemma in the above along with
the convergence of gr to f ,∫

∞

0
t pθ−p ||G(t)u−u||pA1

dt
t

≤ (M+1)p 2p−1
(

1
1−θ

)p ∫ ∞

0
t pθ

(∣∣∣∣ f ′∣∣∣∣pA1
+ || f ||pD(Λ)

)
≤ (M+1)p 2p−1

(
1

1−θ

)p (
||u||pT +δ

)
Since u ∈ T, Theorem 44.1.9 implies u ∈ A1 and ||u||A1

≤C ||u||T . Therefore, since δ was
arbitrary, this has shown that u ∈ T0 and

||u||T0
≤C (θ , p) ||u||T .

This shows T ⊆ T0 with continuous inclusion.
Now it is necessary to take u ∈ T0 and show it is in T. Since u ∈ T0

∞ > ||u||pA1
+
∫

∞

0
tθ p
∣∣∣∣∣∣∣∣G(t)u−u

t

∣∣∣∣∣∣∣∣p dt
t
≡ ||u||pT0
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Let φ be a nonnegative decreasing infinitely differentiable function such that φ (0) = 1 and
φ (t) = 0 for all t > 1. Then define

f (t)≡ φ (t)
1
t

∫ t

0
G(τ)udτ.

It is easy to see that f (t) ∈ D(Λ) . In fact, changing variables as needed,

1
h

(
G(h)

∫ t

0
G(τ)udτ−

∫ t

0
G(τ)udτ

)

=
1
h

∫ t+h

h
G(τ)udτ− 1

h

∫ t

0
G(τ)udτ

=
1
h

∫ t+h

t
G(τ)udτ− 1

h

∫ h

0
G(τ)udτ

which converges to G(t)u−u and so

Λ

∫ t

0
G(τ)udτ = G(t)u−u. (45.3.12)

Thus ∫
∞

0
t pθ ||Λ f ||pA1

dt
t
≤

∫
∞

0
t pθ

∣∣∣∣∣∣∣∣G(t)u−u
t

∣∣∣∣∣∣∣∣p
A1

dt
t

≤ ||u||pT0

Next it is necessary to consider ∫
∞

0
t pθ
∣∣∣∣ f ′∣∣∣∣pA1

dt
t
.

f ′ (t) = φ
′ (t)

1
t

∫ t

0
G(τ)udτ+

φ (t)
(
− 1

t2

∫ t

0
G(τ)udτ +

1
t

G(t)u
)

= φ
′ (t)

1
t

∫ t

0
G(τ)udτ +φ (t)

(
1
t2

∫ t

0
(G(t)u−G(τ)u)dτ

)
and so there is a constant C depending on φ and the uniform bound on ||G(t)|| such that

∣∣∣∣ f ′ (t)∣∣∣∣A1
≤ CX[0,1] (t)

(
||u||A1

+
1
t2

∫ t

0
||G(t− τ)u−u||dτ

)
= CX[0,1] (t)

(
||u||A1

+
1
t2

∫ t

0
||G(τ)u−u||dτ

)
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Now ∫
∞

0
X[0,1] (t) t pθ ||u||pA1

dt/t ≤C (p,θ) ||u||pT0

and using Lemma 45.3.2,∫
∞

0
X[0,1] (t)

∣∣∣∣ 1
t2

∫ t

0
||G(τ)u−u||dτ

∣∣∣∣p t pθ dt
t

≤
∫

∞

0

∣∣∣∣1t
∫ t

0
||G(τ)u−u||dτ

∣∣∣∣p t p(θ−1) dt
t

≤ 1
(1− (θ −1))p

∫
∞

0
||G(τ)u−u||p t p(θ−1) dt

t

=
1

(2−θ)p

∫
∞

0

∣∣∣∣∣∣∣∣G(τ)u−u
t

∣∣∣∣∣∣∣∣p t pθ dt
t
≤C (θ , p) ||u||pT0

This proves the theorem.
Of course the case of most interest here is where A1 = Lp (Rn) and

G(t)u(x)≡ u(x+ tei)

Thus Λu = ∂u/∂xi, the weak derivative. The trace space T (D(Λ) ,Lp (Rn) , p,1−θ) then
is a space of functions in Lp (Rn) which have a fractional order partial derivative with
respect to xi.

Recall from Definition 45.1.1 that for θ ∈ (0,1) ,

W θ ,p (Rn)≡ T
(
W 1,p (Rn) ,Lp (Rn) , p,1−θ

)
Let f ∈W

(
W 1,p (Rn) ,Lp (Rn) , p,1−θ

)
. Then

|| f ||W ≡max
(∫

∞

0
t(1−θ)p || f (t)||pW 1,p

dt
t
,
∫

∞

0
t(1−θ)p ∣∣∣∣ f ′ (t)∣∣∣∣pLp

dt
t

)
Letting Gi (t)u(x)≡ u(x+ tei) and Λi its generator,

W 1,p (Ω) = ∩n
i=1DΛi∩Lp (Rn)

with the norm given by

||u||p = ||u||pLp +
n

∑
i=1
||Λiu||pLp

which is equivalent to the norm

||u||p =
n

∑
i=1
||u||pD(Λi)

.

Then by considering each of the Gi and repeating the above argument in Theorem 45.3.6,
it follows an equivalent intrinsic norm is

||u||p
W θ ,p(Rn)

= ||u||pLp(Rn)
+

n

∑
i=1

∫
∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣Gi (t)u−u
t

∣∣∣∣∣∣∣∣p
Lp

dt
t
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= ||u||pLp(Rn)
+

n

∑
i=1

∫
∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣u(·+ tei)−u(·)
t

∣∣∣∣∣∣∣∣p
Lp

dt
t

(45.3.13)

and u ∈W θ ,p (Rn) when this norm is finite. The only new detail is that in showing that for
u ∈ T0 it follows it is in T, you use the function

f (t)≡ φ (t)
1
tn

∫ t

0
· · ·
∫ t

0
G1 (τ1)G2 (τ2) · · ·Gn (τn)udτ1 · · ·dτn

and the fact that these semigroups commute. To get this started, note that

g(t)≡
∫ t

0
· · ·
∫ t

0
G1 (τ1)G2 (τ2) · · ·Gn (τn)udτ1 · · ·dτn ∈ D(Λi)

for each i. This follows from writing it as∫ t

0
Gi (τ i)(wi)dτ i

for wi ∈ Lp coming from the other integrals and then repeating the earlier argument to get

Λig(t) = Gi (t)wi−wi

and then ∫
∞

0
t p(1−θ) ||Λi f ||pLp

dt
t

≤
∫

∞

0
t p(1−θ)

∣∣∣∣∣∣∣∣Gi (t)wi−wi

t

∣∣∣∣∣∣∣∣p
Lp

dt
t

≤ C
∫

∞

0
t p(1−θ)

∣∣∣∣∣∣∣∣Gi (t)u−u
t

∣∣∣∣∣∣∣∣p
Lp

dt
t
≤C ||u||pT0

Thus all is well as far as f is concerned and the proof will work as it did earlier in Theorem
45.3.6. What about f ′? As before, the only term which is problematic is

φ (t)
(

1
tn

∫ t

0
· · ·
∫ t

0
G1 (τ1)G2 (τ2) · · ·Gn (τn)udτ1 · · ·dτn

)′
After enough massaging, it becomes

n

∑
i=1

∏
j ̸=i

1
t

∫ t

0
G j (τ j)dτ j

1
t2

∫ t

0
(Gi (t)u−Gi (τ i)u)dτ i

where the operator ∑
n
i=1 ∏ j ̸=i

1
t
∫ t

0 G j (τ j)dτ j is bounded. Thus similar arguments to those
of Theorem 45.3.6 will work, the only difference being a sum.
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Theorem 45.3.7 An equivalent norm for W θ ,p (Rn) for θ ∈ (0,1) is

||u||p
W θ ,p(Rn)

=

||u||pLp(Rn)
+

n

∑
i=1

∫
∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣Gi (t)u−u
t

∣∣∣∣∣∣∣∣p
Lp

dt
t

= ||u||pLp(Rn)
+

n

∑
i=1

∫
∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣u(·+ tei)−u(·)
t

∣∣∣∣∣∣∣∣p
Lp

dt
t

(45.3.14)

Note it is obvious from 45.3.13 that a Lipschitz map takes W θ ,p (Rn) to W θ ,p (Rn) and
is continuous.

The above description in Theorem 45.3.7 also makes possible the following corollary.

Corollary 45.3.8 W θ ,p (Rn) is reflexive.

Proof: Let u ∈W θ ,p (Rn). For each i = 1,2, · · · ,n, define for t > 0,

∆iu(t)(x)≡
u(x+ tei)−u(x)

t

Then by Theorem 45.3.7,

∆iu ∈ Lp ((0,∞) ;Lp (Rn) ,µ)≡ Y

where
µ (E)≡

∫
E

t(1−θ)pt−1dt.

Clearly the measure space is σ finite and so Y is reflexive by Corollary 21.8.9 on Page
687. Also ∆i is a closed operator whose domain is W θ ,p (Rn). To see this, suppose
un ∈W θ ,p (Rn) and un → u in Lp (Rn) while ∆iun → g in Y. Then in particular ||∆iun||Y
is bounded. Now by Fatou’s lemma,∫

∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣u(·+ tei)−u(·)
t

∣∣∣∣∣∣∣∣p
Lp(Rn)

dt
t
≤

lim inf
n→∞

∫
∞

0
t(1−θ)p

∣∣∣∣∣∣∣∣un (·+ tei)−un (·)
t

∣∣∣∣∣∣∣∣p
Lp(Rn)

dt
t
< ∞.

Letting ∆⃗≡ (∆1,∆2, · · · ,∆n) , it follows from similar reasoning that ∆⃗ is a closed oper-
ator mapping W θ ,p (Rn) to Y n. Therefore(

id, ∆⃗
)(

W θ ,p (Rn)
)
⊆ Lp (Rn)×Y n

and is a closed subspace of the reflexive space Lp (Rn)×Y n. With the norm in Lp (Rn)×Y n

given as the sum of the norms of the components, it follows the mapping
(

id, ∆⃗
)

is a
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norm preserving isomorphism between W θ ,p (Rn) and this closed subspace of Lp (Rn)×Y n.
Since Lp (Rn) and Y is reflexive, their product is reflexive. By Lemma 21.2.7 on Page 655
it follows

(
id, ∆⃗

)(
W θ ,p (Rn)

)
and hence W θ ,p (Rn) is reflexive. This proves the theorem.

One can generalize this to find an intrinsic norm for W θ ,p (Ω). The version given above
will not do because it requires the function to be defined on all of Rn in order to make sense
of the shift operators Gi. However, you can give a different version of this intrinsic norm
which will make sense for Ω ̸= Rn.

Lemma 45.3.9 Let t ̸= 0 be a number. Then there is a constant C (n,θ , p) depending on
the indicated quantities such that∫

Rn−1

1(
t2 + |s|2

) 1
2 (n+pθ)

ds =
C (n,θ , p)

|t|1+pθ

Proof: Change the integral to polar coordinates. Thus the integral equals∫
Sn−1

∫
∞

0

ρn−2

(t2 +ρ2)
1
2 (n+pθ)

dρdσ

Now change the variables, ρ = |t|u. Then the above integral becomes

Cn

∫
∞

0

|t|n−2 un−2 |t|

|t|n+pθ (1+u2)
1
2 (n+pθ)

du

=Cn
1

|t|1+pθ

∫
∞

0

un−2

(1+u2)
1
2 (n+pθ)

du≡ C (n,θ , p)

|t|1+pθ
.

This proves the lemma.
Now let u ∈W θ ,p (Rn) . This means the norm of ||u||p

W θ ,p can be taken as

||u||pLp +
n

∑
i=1

∫
∞

0
|t|(1−θ)p

∫
Rn

∣∣∣∣u(x+ tei)−u(x)
t

∣∣∣∣p dx
dt
|t|

= ||u||pLp +
1
2

n

∑
i=1

∫
∞

−∞

|t|(1−θ)p
∫
Rn

∣∣∣∣u(x+ tei)−u(x)
t

∣∣∣∣p dx
dt
|t|

That integral over Rn can be massaged and one obtains the above equal to

||u||pLp +

1
2

n

∑
i=1

∫
∞

−∞

∫
Rn−i

∫
Ri

1
t1+pθ

|u(x1, · · · ,xi + t,yi+1, · · · ,yn)

− u(x1, · · · ,xi,yi+1, · · · ,yn)|p dxidyn−idt
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where dxi refers to the first i entries and dyn−i refers to the remaining entries. From Lemma
45.3.9, the complicated expression above equals

1
C (n,θ , p)

1
2

n

∑
i=1

∫
∞

−∞

∫
Rn−i

∫
Ri

∫
Rn−1

1(
t2 + |s|2

) 1
2 (n+pθ)

|u(x1, · · · ,xi−1,xi + t,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dsdxidyn−idt

Now Fubini this to get

1
C (n,θ , p)

1
2

n

∑
i=1

∫
Rn−i

∫
Ri

∫
Rn−1

∫
∞

−∞

1(
t2 + |s|2

) 1
2 (n+pθ)

|u(x1, · · · ,xi−1,xi + t,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dtdsdxidyn−i

Changing the variable in the inside integral to t = yi− xi,this equals

1
C (n,θ , p)

1
2

n

∑
i=1

∫
Rn−i

∫
Ri

∫
Rn−1

∫
∞

−∞

1(
(yi− xi)

2 + |s|2
) 1

2 (n+pθ)

|u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dyidsdxidyn−i

Next let

(s1, · · · ,sn−1)

≡ (y1− x1, · · · ,yi−1− xi−1,xi+1− yi+1, · · · ,xn− yn)

where the new variables of integration in the integral corresponding to ds are y1, · · · ,yi−1
and xi+1, · · · ,xn. Then changing the variables, the above reduces to

1
C (n,θ , p)

1
2

n

∑
i=1

∫
Rn−i

∫
Ri

∫
Rn−1

∫
∞

−∞

1

|x−y|(n+pθ)

|u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dyidy1 · · ·dyi−1dxi+1 · · ·dxndx1 · · ·dxidyi+1 · · ·dyn

Then if you Fubini again, it reduces to the expression

1
C (n,θ , p)

1
2

n

∑
i=1∫

Rn

∫
Rn

|u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

|x−y|(n+pθ)
dxdy
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Now taking the sum inside and adjusting the constants yields

≥C (n,θ , p)
∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

Thus there exists a constant C (n,θ , p) such that

||u||W θ ,p(Rn) ≥C (n,θ , p)

(
||u||pLp +

∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

)1/p

.

Next start with the right side of the above. It suffices to consider only the complicated
term. First note that for a a vector, (

n

∑
i=1

a2
i

)p/2

≥ |ai|p

and so
n

∑
i=1
|ai|p ≤ n

(
n

∑
i=1

a2
i

)p/2

= n |a|p

from which it follows
1
n

n

∑
i=1
|ai|p ≤ |a|p

Then it follows ∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy≥ 1

n

∫
Rn

∫
Rn

∑
n
i=1 |u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

|x−y|(n+pθ)
dxdy (45.3.15)

Consider the ith term. By Fubini’s theorem it equals

1
n

∫
· · ·
∫ 1(

(yi− xi)
2 +∑ j ̸=i (y j− x j)

2
) 1

2 (n+pθ)

|u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dyidx1 · · ·dxi−1dyi+1 · · ·dyndy1 · · ·dyi−1dxi · · ·dxn

Let t = yi− xi. Then it reduces to

1
n

∫
· · ·
∫ 1(

t2 +∑ j ̸=i (y j− x j)
2
) 1

2 (n+pθ)

|u(x1, · · · ,xi−1,xi + t,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dtdx1 · · ·dxi−1dyi+1 · · ·dyndy1 · · ·dyi−1dxi · · ·dxn
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Now let
(s1, · · · ,sn−1) =

(x1− y1, · · · ,xi−1− yi−1,yi+1− xi+1, · · · ,yn− xn)

on the next n− 1 iterated integrals. Then using Fubini’s theorem again and changing the
variables, it equals

1
n

∫
· · ·
∫ 1(

t2 + |s|2
) 1

2 (n+pθ)
·

|u(s1 + y1, · · · ,yi−1 + si−1,xi + t,xi+1 + si, · · · ,xn + sn−1)

− u(s1 + y1, · · · ,yi−1 + si−1,xi,xi+1 + si, · · · ,xn + sn−1)|p

dy1 · · ·dyi−1dxi · · ·dxnds1 · · ·dsi−1dsi · · ·dsn−1dt

By translation invariance of the measure, the inside integrals corresponding to

dy1 · · ·dyi−1dxi · · ·dxn

simplify and the expression can be written as

1
n

∫
· · ·
∫ 1(

t2 + |s|2
) 1

2 (n+pθ)
·

|u(x1, · · · ,xi−1,xi + t,xi+1, · · · ,xn) − u(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)|p

dx1 · · ·dxi−1dxi · · ·dxnds1 · · ·dsi−1dsi · · ·dsn−1dt

where I just renamed the variables. Use Fubini’s theorem again to get

1
n

∫
· · ·
∫ 1(

t2 + |s|2
) 1

2 (n+pθ)
·

|u(x1, · · · ,xi−1,xi + t,xi+1, · · · ,xn) − u(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)|p

ds1 · · ·dsi−1dsi · · ·dsn−1dx1 · · ·dxi−1dxi · · ·dxndt

Now from Lemma 45.3.9, the inside n−1 integrals corresponding to

ds1 · · ·dsi−1dsi · · ·dsn−1

can be replaced with
C (n,θ , p)

|t|1+pθ

and this yields

C (n,θ , p)
∫
R

1

|t|pθ

∫
Rn
|u(x+ tei)−u(x)|p dx

dt
t

=
1
2

C (n,θ , p)
∫

∞

0
t p(1−θ)

||u(·+ tei)−u(·)||pLp(Rn)

t p
dt
t
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Applying this to each term of the sum in 45.3.15 and adjusting the constant, it follows∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy≥

C (n,θ , p)
n

∑
i=1

∫
∞

0
t p(1−θ)

||u(·+ tei)−u(·)||pLp(Rn)

t p
dt
t

Therefore,

||u||W θ ,p(Rn)

≥ C (n,θ , p)

(
||u||pLp(Rn)

+
∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

)1/p

This has proved most of the following theorem about the intrinsic norm.

Theorem 45.3.10 An equivalent norm for W θ ,p (Rn) is

||u||=(
||u||pLp(Rn)

+
∫
Rn

∫
Rn

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

)1/p

.

Also for any open subset of Rn

||u||=(
||u||pLp(Ω)

+
∫

Ω

∫
Ω

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

)1/p

. (45.3.16)

is a norm.

Proof: It only remains to verify this is a norm. Recall the lp norm on R2 given by

|(x,y)|lp
≡ (|x|p + |y|p)1/p

For u,v ∈W θ ,p denote by ρ (u) the expression(∫
Ω

∫
Ω

|u(y)−u(x)|p

|x−y|(n+pθ)
dxdy

)1/p

a similar definition holding for v. Then it follows from the usual Minkowski inequality that
ρ (u+ v)≤ ρ (u)+ρ (v). Then from 45.3.16

||u+ v||=
(
||u+ v||pLp +ρ (u+ v)p)1/p

≤ ((||u||Lp + ||v||Lp)
p +(ρ (u)+ρ (v))p)

1/p
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= |(||u||Lp ,ρ (u))+(||v||Lp ,ρ (v))|lp

≤ |(||u||Lp ,ρ (u))|lp
+ |(||v||Lp ,ρ (v))|lp

=
(
||u||pLp +ρ (u)p)1/p

+
(
||v||pLp +ρ (v)p)1/p

= ||u||+ ||v||

The other properties of a norm are obvious. This proves the theorem.
As pointed out in the above theorem, this is a norm in 45.3.16. One could define a

set of functions for which this norm is finite. In the case where Ω = Rn the conclusion of
Theorem 45.3.10 is that this space of functions is the same as W θ ,p (Rn) and the norms are
equivalent. Does this happen for other open subsets of Rn?

Definition 45.3.11 Denote by ˜W θ ,p (U) the functions in Lp (U) for which the norm of The-
orem 45.3.10 is finite. Here θ ∈ (0,1) .

Proposition 45.3.12 Let U be a bounded open set which has Lipschitz boundary and θ ∈
(0,1). Then for each p≥ 1, there exists E ∈L

(
˜W θ ,p (U),W θ ,p (Rn)

)
such that Eu(x) =

u(x) a.e. x ∈U.

Proof: In proving this, I will use the equivalent norm of Theorem 45.3.10 as the norm
of W θ ,p (Rn) Consider the following picture.

a

b

U ∩B× (a,b)

U+

b0

spt(u)

B

The wavy line signifies a part of the boundary of U and spt(u) is contained in the circle
as shown. It is drawn as a circle but this is not important. Denote by U+ the region above
the part of the boundary which is shown. Also let the boundary be given by xn = g(x̂) for
x̂ ∈ B ≡ B(ŷ0,r) ⊆ Rn−1. Of course u is only defined on U so actually the support of u is
contained in the intersection of the circle with U . Let the Lipschitz constant for g be very
small and denote it by K. In fact, assume 8K2 < 1. I will first show how to extend when
this condition holds and then I will remove it with a simple trick. Define

Eu(x̂,xn)≡

 u(x̂,xn) if xn ≤ g(x̂)
u(x̂,2g(x̂)− xn) if xn > g(x̂)
0 if x̂ /∈ B
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I will write U instead of U ∩B× (a,b) to save space but this does not matter because u is
assumed to be zero outside the indicated region. Then∫

Rn

∫
Rn

|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy

=
∫

U

∫
U

|u(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy+

∫
U+

∫
U

|u(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy+ (45.3.17)

∫
U

∫
U+

|Eu(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy+ (45.3.18)

∫
U+

∫
U+

|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy (45.3.19)

Consider the second of the integrals on the right of the equal sign. Using Fubini’s theorem,
it equals ∫

U

∫
U+

|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dydx

=
∫

U

∫
B

∫
∞

g(ŷ)

|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dyndŷdx

=
∫

U

∫
B

∫ g(ŷ)

−∞

|u(x̂,xn)−u(ŷ,zn)|p∣∣∣|x̂− ŷ|2 +(xn− (2g(ŷ)− zn))
2
∣∣∣(1/2)(n+pθ)

dzndŷdx

I need to estimate |xn− zn| .

|xn− zn| ≤ |xn−g(x̂)|+ |g(x̂)−g(ŷ)|+ |g(ŷ)− zn|

≤ g(x̂)− xn +K |x̂− ŷ|+ yn−g(ŷ)
≤ |yn− xn|+2K |x̂− ŷ|

and so

|xn− zn|2 ≤ 8K2 |x̂− ŷ|2 +2 |yn− xn|2

≤ |x̂− ŷ|2 +2 |yn− xn|2
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Thus,

(yn− xn)
2 ≥ 1

2
|xn− zn|2−

1
2
|x̂− ŷ|2

and so, the above change of variables results in an expression which is dominated by∫
U

∫
U

|u(x̂,xn)−u(ŷ,zn)|p∣∣∣ 1
2 |x̂− ŷ|2 + 1

2 (xn− zn)
2
∣∣∣(1/2)(n+pθ)

dydx

where y refers to (ŷ,zn) in the above formula. Hence there is a constant C (n.θ) such that
45.3.17 is dominated by C (n.θ) ||u||p˜W θ ,p(U)

. A similar inequality holds for the third term.

Finally consider 45.3.19.This equals∫
U+

∫
U+

|u(x̂,2g(x̂)− xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)
2
∣∣∣(1/2)(n+pθ)

dxdy

Changing variables, x′n = 2g(x̂)− xn,y′n = 2g(ŷ)− yn, it equals∫
U+

∫
U+

|u(x̂,x′n)−u(ŷ,y′n)|
p∣∣∣|x̂− ŷ|2 +(xn− yn)

2
∣∣∣(1/2)(n+pθ)

dx′dy′, (45.3.20)

each of xn,yn being a function of x′n,y
′
n where an estimate needs to be obtained on |x′n− y′n|

in terms of |xn− yn| . (
x′n− y′n

)2
= (2(g(x̂)−g(ŷ))+ yn− xn)

2

= (yn− xn)
2 +4(g(x̂)−g(ŷ))(yn− xn)

+4(g(x̂)−g(ŷ))2

≤ (yn− xn)
2 +2(g(x̂)−g(ŷ))2

+2(yn− xn)
2 +4(g(x̂)−g(ŷ))2

and so (
x′n− y′n

)2 ≤ 3(yn− xn)
2 +6K2 |x̂− ŷ|2

which implies

(yn− xn)
2 ≥ 1

3
(
x′n− y′n

)2−2K2 |x̂− ŷ|2 .

Then substituting this in to 45.3.20, a short computation shows 45.3.19 is dominated by
an expression of the form C (n,θ) ||u||p˜W θ ,p(U)

and this proves the existence of an extension

operator provided the Lipschitz constant is small enough. It is clear E is linear where E is
defined above.

Now this assumption on the smallness of K needs to be removed. For (x̂,xn)∈U define

U ′ ≡
{

x̂′ = λ

(
x̂− b̂0

)
: x̂ ∈U

}
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here this is centering at 0 and stretching B since λ will be large. Let h be the name of this
mapping. Thus

h(x̂) ≡ λ

(
x̂− b̂0

)
,

k(x̂) ≡ h−1 (x̂) =
1
λ

x̂+ b̂0

These mappings are defined on all of Rn. Now let u′ be defined on U ′ as follows.

u′ (x̂,xn)≡ k∗u(x̂,xn) .

Also let
g′ (x̂)≡ k∗g(x̂) .

Thus g′ (x̂) ≡ g
(

1
λ

x̂+ b̂0

)
= g(k(x̂)) . Then choosing λ large enough the Lipschitz con-

dition for g′ is as small as desired. Always assume λ has been chosen this large and also
λ ≥ 1. Furthermore, g′

(
x̂′
)
= x′n describes the boundary in the same way as xn = g(x̂).

Now I need to consider whether u′ ∈ ˜W θ ,p (U ′). Consider

∫
U ′

∫
U ′

∣∣∣u′(x̂′,xn

)
−u′

(
ŷ′,yn

)∣∣∣p(∣∣∣x̂′− ŷ′
∣∣∣2 +(xn− yn)

2
)p+nθ

dx′dy′

=
∫

U ′

∫
U ′

∣∣∣k∗u(x̂′,xn

)
−k∗u

(
ŷ′,yn

)∣∣∣p(∣∣∣x̂′− ŷ′
∣∣∣2 +(xn− yn)

2
)p+nθ

dx′dy′

Then change the variables x̂′ = λ

(
x̂− b̂0

)
= h(x̂) with a similar change for ŷ′, the above

expression equals (
λ

n−1
)2 ∫

U

∫
U

|u(x̂,xn)−u(ŷ,yn)|p(
λ

2 |x̂− ŷ|2 +(xn− yn)
2
)p+nθ

dxdy

Thus ∣∣∣∣u′∣∣∣∣ ˜W θ ,p(U ′)
≤ λ

n−1 ||u|| ˜W θ ,p(U)
< ∞ (45.3.21)

and k∗ : ˜W θ ,p (U) to ˜W θ ,p (U ′)is continuous and linear. Similar reasoning shows that h∗ is

continuous and linear mapping ˜W θ ,p (Rn) to ˜W θ ,p (Rn). By the first part of the argument
there exists a continuous linear map

E ′ : ˜W θ ,p (U ′)→ ˜W θ ,p (Rn)
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Now define
Eu≡ h∗E ′ (k∗u)

Say xn ≤ g(x̂) . Then (x̂,xn) ∈U and so (h(x̂) ,xn) ∈U ′. Thus

Eu(x̂,xn) ≡ h∗E ′ (k∗u)(x̂,xn)

≡ E ′ (k∗u)(h(x̂) ,xn) (45.3.22)

Now g(x̂)≥ xn and so g′ (h(x̂))≥ xn because

g′ (h(x̂))≡ k∗g(h(x̂)) = g(x̂)

and so 45.3.22 equals
= (k∗u)(h(x̂) ,xn) = u(x̂,xn)

Thus E leaves u unchanged at points (x̂,xn) where xn ≤ g(x̂) . Also

||Eu|| ˜W θ ,p(Rn)
=
∣∣∣∣h∗E ′k∗u∣∣∣∣ ˜W θ ,p(Rn)

≤ ||h∗||
∣∣∣∣E ′k∗u∣∣∣∣ ˜W θ ,p(Rn)

≤ ||h∗||
∣∣∣∣E ′∣∣∣∣ ||k∗|| ||u|| ˜W θ ,p(U)

=C ||u|| ˜W θ ,p(U)

To complete the proof, cover U with finitely many sets of this sort oriented with respect
to one of the coordinate axes as this one was along with an open set whose closure is
contained in U and then use a smooth partition of unity to localize the function to the
situation of the sort just discussed and one whose support is contained in U. Extend that
one to equal zero off its support and treat the others as above. This proves the proposition.

Recall Theorem 38.2.7 which gives an extension operator which maps from the space

W 1,p (U) to W 1,p (Rn) also denoted by E. Now it is not hard to see that ˜W θ ,p (U) =
W θ ,p (U) and the two norms are equivalent.

Theorem 45.3.13 Let U be a bounded open set which has Lipschitz boundary and θ ∈
(0,1) . Then ˜W θ ,p (U) = W θ ,p (U) and the two norms are equivalent.

Proof: Let u ∈ ˜W θ ,p (U). Letting E be the extension operator of Lemma 45.3.12, there
is a constant C such that

C ||u|| ˜W θ ,p(U)
≥ ||Eu|| ˜W θ ,p(Rn)

= ||Eu||W θ ,p(Rn) ≥ ||u||W θ ,p(U) .

Thus if u ∈ ˜W θ ,p (U), then u ∈W θ ,p (U) and the inclusion map is continuous.
Next suppose u ∈W θ ,p (U) and let γ f = u for

f ∈W
(
W 1,p (U) ,Lp (U) , p,1−θ

)
≡WU

Then from Theorem 38.2.7 and the definition of the norm in WU

E f ∈W
(
W 1,p (Rn) ,Lp (Rn) , p,1−θ

)
≡W
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where this E pertains to extending W 1,p(U).

C1 || f ||WU
≥ ||E f ||W ≥ ||Eu|| ˜W θ ,p(Rn)

≥ ||u|| ˜W θ ,p(U)

Since this is true for every f ∈WU , it follows u ∈ ˜W θ ,p (U) and

||u|| ˜W θ ,p(U)
≤C1 ||u||W θ ,p(U) .

This proves the theorem.

Corollary 45.3.14 Let U be a bounded open set with Lipschitz boundary. Then W θ ,p (U)
is reflexive.

Proof: From Proposition 45.3.12 and Theorem 45.3.13, there exists an extension oper-
ator E : W θ ,p (U)→W θ ,p (Rn) which is continuous. This operator is one to one and contin-
uous. Furthermore, ||Eu||W θ ,p(Rn) ≥ ||u||W θ ,p(U) and so E

(
W θ ,p (U)

)
is closed. Therefore,

by Corollary 21.2.8 on Page 656 and the fact W θ ,p (Rn) is reflexive which was shown in
Corollary 45.3.8, it follows W θ ,p (U) is reflexive. This proves the corollary.

There may be other sets U for which the intrinsic norm is an equivalent norm for
W θ ,p (U) but this much will suffice. It should be routine to verify that this works for U
a half space for example and the extension argument should be much easier than that pre-
sented above. More generally, the assumption that U was bounded in the above extension
argument of Proposition 45.3.12 was never needed except for giving finitely many of those
special sets covering the boundary. If you just assumed this at the outset instead of an
assumption the set is bounded, the same sort of extension would work.

45.4 Fractional Order Sobolev Spaces
Now it is time to define fractional order Sobolev spaces between W m,p and W m+1,p.

Definition 45.4.1 Let m be a nonnegative integer and let s = m + σ where σ ∈ (0,1) .
Then W s,p (Ω) will consist of those elements of W m,p (Ω) for which Dα u ∈W σ ,p (Ω) for all
|α|= m. The norm is given by the following.

||u||s,p,Ω ≡

(
||u||pm,p,Ω + ∑

|α|=m
||Dα u||p

σ ,p,Ω

)1/p

.

Corollary 45.4.2 The space, W s,p (Ω) is a reflexive Banach space whenever p > 1.

Proof: From the theory of interpolation spaces, W σ ,p (Ω) is reflexive. This is because
it is an iterpolation space for the two reflexive spaces, Lp (Ω) and W 1,p (Ω) . (Alternatively,
you could use Corollary 45.3.14 in the case where Ω is a bounded open set with Lips-
chitz boundary or you could use Corollary 45.3.8 in case Ω = Rn. In addition, the same
ideas would work if Ω were any space for which there was a continuous extension map
from W σ ,p (Ω) to W σ ,p (Rn) .) Now the formula for the norm of an element in W s,p (Ω)

shows this space is isometric to a closed subspace of W m,p (Ω)×W σ ,p (Ω)k for suitable k.
Therefore, from Corollary 21.2.8 on Page 656, W s,p (Ω) is also reflexive.
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Theorem 45.4.3 The trace map, γ : W m,p
(
Rn
+

)
→W m− 1

p ,p
(
Rn−1

)
is continuous.

Proof: Let f ∈ S, the Schwartz class. Let σ = 1− 1
p so that m−

(
1
p

)
= m− 1+σ .

Then from the definition and using f ∈S,

||γ f ||m− 1
p ,p,Rn−1 =

(
||γ f ||pm−1,p,Rn−1 + ∑

|α|=m−1
||Dα

γ f ||p
1− 1

p ,p,Rn−1

)1/p

=

(
||γ f ||pm−1,p,Rn−1 + ∑

|α|=m−1
||γDα f ||p

1− 1
p ,p,Rn−1

)1/p

and from Lemma 45.1.4, and the fact that the trace is continuous as a map from W m,p
(
Rn
+

)
to W m−1,p

(
Rn−1

)
,

||γ f ||m− 1
p ,p,Rn−1 ≤

(
C1 || f ||pm,p,Rn

+
+C2 ∑

|α|=m−1
||Dα f ||1,p,Rn

)1/p

≤ C || f ||m,p,Rn+p .

Then using density of S this implies the desired result.
With the definition of W s,p (Ω) for s not an integer, here is a generalization of an earlier

theorem.

Theorem 45.4.4 Let h : U → V where U and V are two open sets and suppose h is
bilipschitz and that Dα h and Dα h−1 exist and are Lipschitz continuous if |α| ≤ m where
m = 0,1, · · · .and s = m+σ where σ ∈ (0,1) . Then

h∗ : W s,p (V )→W s,p (U)

is continuous, linear, one to one, and has an inverse with the same properties, the inverse
being

(
h−1
)∗
.

Proof: In case m = 0, the conclusion of the theorem is immediate from the general
theory of trace spaces. Therefore, assume m≥ 1. It follows from the definition that

||h∗u||m+σ ,p,U ≡

[
||h∗u||pm,p,U + ∑

|α|=m
||Dα (h∗u)||p

σ ,p,U

]1/p

Consider the case when m = 1. Then it is routine to verify that

D jh∗u(x) = u,k (h(x))hk, j (x) .

Let Lk : W 1,p (V )→W 1,p (U) be defined by

Lkv = h∗ (v)hk, j.
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Then Lk is continuous as a map from W 1,p (V ) to W 1,p (U) and as a map from Lp (V ) to
Lp (U) and therefore, it follows that Lk is continuous as a map from W σ ,p (V ) to W σ ,p (U) .
Therefore,

||Lk (v)||σ ,p,U ≤Ck ||v||σ ,p,U

and so ∣∣∣∣D j (h∗u)
∣∣∣∣

σ ,p,U ≤ ∑
k

∣∣∣∣Lk
(
u,k
)∣∣∣∣

σ ,p,U

≤ ∑
k

Ck ||Dku||
σ ,p,V

≤ C

(
∑
k
||Dku||p

σ ,p,V

)1/p

.

Therefore, it follows that

||h∗u||1+σ ,p,U ≤

[
||h∗u||p1,p,U +∑

j
Cp

∑
k
||Dku||p

σ ,p,V

]1/p

≤ C

[
||u||p1,p,V +∑

k
||Dku||p

σ ,p,V

]1/p

=C ||u||1+σ ,p,V .

The general case is similar except for the use of a more complicated linear operator in place
of Lk. This proves the theorem.

It is interesting to prove this theorem using Theorem 45.3.13 and the intrinsic norm.
Now we prove an important interpolation inequality for Sobolev spaces.

Theorem 45.4.5 Let Ω be an open set in Rn which has the segment property and let f ∈
W m+1,p (Ω) and σ ∈ (0,1) . Then for some constant, C, independent of f ,

|| f ||m+σ ,p,Ω ≤C || f ||1−σ

m+1,p,Ω || f ||
σ

m,p,Ω .

Also, if L ∈L (W m,p (Ω) ,W m,p (Ω)) for all m = 0,1, · · · , and L◦Dα = Dα ◦L on C∞
(
Ω
)
,

then L ∈L (W m+σ ,p (Ω) ,W m+σ ,p (Ω)) for any m = 0,1, · · · .

Proof: Recall from above, W 1−θ ,p (Ω) ≡ T
(
W 1,p (Ω) ,Lp (Ω) , p,θ

)
. Therefore, from

Theorem 44.1.9, if f ∈W 1,p (Ω) ,

|| f ||1−θ ,p,Ω ≤ K || f ||θ1,p,Ω || f ||
1−θ

0,p,Ω

Therefore,

|| f ||m+σ ,p,Ω ≤

(
|| f ||pm,p,Ω + ∑

|α|=m
K
(
||Dα f ||1−σ

1,p,Ω ||D
α f ||σ0,p,Ω

)p
)1/p

≤ C
[
|| f ||pm,p,Ω +

(
|| f ||1−σ

m+1,p,Ω || f ||
σ

m,p,Ω

)p]1/p

≤ C
[(
|| f ||1−σ

m+1,p,Ω || f ||
σ

m,p,Ω

)p
+
(
|| f ||1−σ

m+1,p,Ω || f ||
σ

m,p,Ω

)p]1/p

≤ C || f ||1−σ

m+1,p,Ω || f ||
σ

m,p,Ω .
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This proves the first part. Now consider the second. Let φ ∈C∞
(
Ω
)

||Lφ ||m+σ ,p,Ω =

(
||Lφ ||pm,p,Ω + ∑

|α|=m
||Dα Lφ ||p

σ ,p,Ω

)1/p

=

(
||Lφ ||pm,p,Ω + ∑

|α|=m
||LDα

φ ||p
T(W 1,p,Lp,p,1−σ)

)1/p

=

(
||Lφ ||pm,p,Ω + ∑

|α|=m

[
inf
(∣∣∣∣t1−σ L fα

∣∣∣∣σ
1

∣∣∣∣t1−σ L f ′α
∣∣∣∣1−σ

2

)]p
)1/p

(45.4.23)

where
inf
(∣∣∣∣t1−σ L fα

∣∣∣∣σ
1

∣∣∣∣t1−σ L f ′α
∣∣∣∣1−σ

2

)
=

inf
(∣∣∣∣t1−σ L fα

∣∣∣∣σ
Lp(0,∞; dt

t ;W 1,p(Ω))

∣∣∣∣t1−σ L f ′α
∣∣∣∣1−σ

Lp(0,∞; dt
t ;Lp(Ω))

)
,

fα (0)≡ limt→0 fα (t) = Dα φ in W 1,p (Ω)+Lp (Ω) , and the infimum is taken over all such
functions. Therefore, from 45.4.23, and letting ||L||1 denote the operator norm of L in
W 1,p (Ω) and ||L||2 denote the operator norm of L in Lp (Ω) ,

||Lφ ||m+σ ,p,Ω

≤

(
||Lφ ||pm,p,Ω + ∑

|α|=m

[
inf
(
||L||σ1 ||L||

1−σ

2

∣∣∣∣t1−σ fα

∣∣∣∣σ
1

∣∣∣∣t1−σ f ′α
∣∣∣∣1−σ

2

)]p
)1/p

≤

(
||Lφ ||pm,p,Ω +

(
||L||σ1 ||L||

1−σ

2

)p
∑
|α|=m

[
inf
(∣∣∣∣t1−σ fα

∣∣∣∣σ
1

∣∣∣∣t1−σ f ′α
∣∣∣∣1−σ

2

)]p
)1/p

≤ C

(
||φ ||pm,p,Ω + ∑

|α|=m

[
||Dα

φ ||
σ ,p,Ω

]p
)1/p

=C ||φ ||m+σ ,p,Ω .

Since C∞
(
Ω
)

is dense in all the Sobolev spaces, this inequality establishes the desired
result.

Definition 45.4.6 Define for s≥ 0, W−s,p′ (Rn) to be the dual space of

W s,p (Rn) .

Here 1
p +

1
p′ = 1.

Note that in the case of m = 0 this is consistent with the Riesz representation theorem
for the Lp spaces.
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Chapter 46

Sobolev Spaces On Manifolds
46.1 Basic Definitions

Consider the following situation. There exists a set, Γ ⊆ Rm where m > n, mappings,
hi : Ui→ Γi = Γ∩Wi for Wi an open set in Rmwith Γ⊆ ∪l

i=1Wi and Ui is an open subset of
Rn which hi one to one and onto. Assume hi is of the form

hi (x) = Hi (x,0) (46.1.1)

where for some open set, Oi, Hi : Ui×Oi→Wi is bilipschitz having bilipschitz inverse such
that for G = Hi or H−1

i ,Dα G is Lipschitz for |α| ≤ k.
For example, let m = n+1 and let

Hi (x,y) =
(

x
φ (x)+ y

)
where φ is a Lipschitz function having Dα φ Lipschitz for all |α| ≤ k. This is an example of
the sort of thing just described if x ∈Ui ⊆Rn and Oi =R, because it is obvious the inverse
of Hi is given by

H−1
i (x,y) =

(
x

y−φ (x)

)
.

Also let {ψ i}
l
i=1 be a partition of unity subordinate to the open cover {Wi} satisfying ψ i ∈

C∞
c (Wi) . Then the definition of W s,p (Γ) follows.

Definition 46.1.1 u ∈ W s,p (Γ) if whenever {Wi,ψ i,Γi,Ui,hi,Hi}l
i=1 is described above

with hi ∈Ck,1, h∗i (uψ i) ∈W s,p (Ui) . The norm is given by

||u||s,p,Γ ≡
l

∑
i=1
||h∗i (uψ i)||s,p,Ui

It is not at all obvious this norm is well defined. What if{
W ′i ,φ i,Γi,Vi,gi,Gi

}r
i=1

is as described above. Would the two norms be equivalent? To begin with consider the
following lemma which involves a particular choice for {Wi,ψ i,Γi,Ui,hi,Hi}l

i=1 .

Lemma 46.1.2 W s,p (Γ) as just described, is a Banach space. If p > 1 then it is reflexive.

Proof: Let L : W s,p (Γ)→∏
l
i=1 W s,p (Ui) be defined by (Lu)i ≡ h∗i (uψ i) . Let

{
u j
}∞

j=1

be a Cauchy sequence in W s,p (Γ) . Then
{

h∗i (u jψ i)
}∞

j=1 is a Cauchy sequence in W s,p (Ui)

for each i. Therefore, for each i, there exists wi ∈W s,p (Ui) such that

lim
j→∞

h∗i (u jψ i) = wi in W s,p (Ui) .

1511
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But also, there exists a subsequence, still denoted by j such that for each i{
h∗i (u jψ i)(x)

}∞

j=1

is a Cauchy sequence for a.e. x. Since hi is given to be Lipschitz, it maps sets of measure
0 to sets of n dimensional Hausdorff measure zero. Therefore,{

u jψ i (y)
}∞

j=1

is a Cauchy sequence for µ a.e. y ∈Wi ∩Γ where µ denotes the n dimensional Hausdorff
measure. It follows that for µ a.e. y,

{
u j (y)

}∞

j=1 is a Cauchy sequence and so it converges
to a function denoted as u(y).

u j (y)→ u(y) µ a.e.

Therefore, wi (x)= h∗i (uψ i)(x) a.e. and this shows h∗i (uψ i)∈W s,p (Ui) . Thus u∈W s,p (Γ)
showing completeness. It is clear ||·||s,p,Γ is a norm. Thus L is an isometry of W s,p (Γ) and
a closed subspace of ∏

l
i=1 W s,p (Ui). By Corollary 45.4.2, W s,p (Ui) is reflexive which im-

plies the product is reflexive. Closed subspaces of reflexive spaces are reflexive by Lemma
21.2.7 on Page 655 and so W s,p (Γ) is also reflexive. This proves the lemma.

I now show that any two such norms are equivalent.
Suppose

{
W ′j ,φ j,Γ j,Vj,g j,G j

}r

j=1
and {Wi,ψ i,Γi,Ui,hi,Hi}l

i=1 both satisfy the con-

ditions described above. Let ||·||1s,p,Γ denote the norm defined by

||u||1s,p,Γ ≡
r

∑
j=1

∣∣∣∣∣∣g∗j (uφ j

)∣∣∣∣∣∣
s,p,V j

≤
r

∑
j=1

∣∣∣∣∣
∣∣∣∣∣g∗j
(

l

∑
i=1

uφ jψ i

)∣∣∣∣∣
∣∣∣∣∣
s,p,V j

≤∑
j,i

∣∣∣∣∣∣g∗j (uφ jψ i

)∣∣∣∣∣∣
s,p,V j

= ∑
j,i

∣∣∣∣∣∣g∗j (uφ jψ i

)∣∣∣∣∣∣
s,p,g−1

j

(
Wi∩W ′j

) (46.1.2)

Now define a new norm ||u||1,gs,p,Γ by the formula 46.1.2. This norm is determined by{
W ′j ∩Wi,ψ iφ j,Γ j ∩Γi,Vj,gi, j,Gi, j

}
where gi, j = g j. Thus the identity map

id :
(

W s,p (Γ) , ||·||1,gs,p,Γ

)
→
(

W s,p (Γ) , ||·||1s,p,Γ
)

is continuous. It follows the two norms, ||·||1,gs,p,Γ and ||·||1s,p,Γ , are equivalent by the open

mapping theorem. In a similar way, the norms, ||·||2,hs,p,Γ and ||·||2s,p,Γ are equivalent where

||u||2s,p,Γ ≡
l

∑
j=1
||h∗i (uψ i)||s,p,Ui
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and

||u||2,hs,p,Γ ≡∑
j,i

∣∣∣∣∣∣h∗i (uφ jψ i

)∣∣∣∣∣∣
s,p,Ui

= ∑
j,i

∣∣∣∣∣∣h∗i (uφ jψ i

)∣∣∣∣∣∣
s,p,h−1

i

(
Wi∩W ′j

)
But from the assumptions on h and g, in particular the assumption that these are restrictions
of functions which are defined on open subsets of Rm which have Lipschitz derivatives
up to order k along with their inverses, Theorem 45.4.4 implies, there exist constants Ci,
independent of u such that∣∣∣∣∣∣h∗i (uφ jψ i

)∣∣∣∣∣∣
s,p,h−1

i

(
Wi∩W ′j

) ≤C1

∣∣∣∣∣∣g∗j (uφ jψ i

)∣∣∣∣∣∣
s,p,g−1

j

(
Wi∩W ′j

)
and ∣∣∣∣∣∣g∗j (uφ jψ i

)∣∣∣∣∣∣
s,p,g−1

j

(
Wi∩W ′j

) ≤C2

∣∣∣∣∣∣h∗i (uφ jψ i

)∣∣∣∣∣∣
s,p,h−1

i

(
Wi∩W ′j

) .
Therefore, the two norms, ||·||1,gs,p,Γ and ||·||2,hs,p,Γ are equivalent. It follows that the norms,

||·||2s,p,Γ and ||·||1s,p,Γ are equivalent. This proves the following theorem.

Theorem 46.1.3 Let Γ be described above. Then any two norms for W s,p (Γ) as in Defini-
tion 39.6.3 are equivalent.

46.2 The Trace On The Boundary Of An Open Set
Next is a generalization of earlier theorems about the loss of 1

p derivatives on the boundary.

Definition 46.2.1 Define

Rn−1
k ≡ {x ∈ Rn : xk = 0} , x̂k ≡ (x1, · · · ,xk−1,0,xk+1, · · · ,xn) .

An open set, Ω is Cm,1 if there exist open sets, Wi, i = 0,1, · · · , l such that

Ω = ∪l
i=0Wi

with W0 ⊆Ω, open sets Ui ⊆Rn−1
k for some k, and open intervals, (ai,bi) containing 0 such

that for i≥ 1,

∂Ω∩Wi = {x̂k +φ i (x̂k)ek : x̂k ∈Ui} ,

Ω∩Wi = {x̂k +(φ i (x̂k)+ xk)ek : (x̂k,xk) ∈Ui× Ii} ,

where φ i is Lipschitz with partial derivatives up to order m also Lipschitz. Here Ii = (ai,0)
or (0,bi) . The case of (ai,0) is shown in the picture.
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Ω∩Wi

Ui Ω

x̂k +φ i(x̂k)ekWi

Assume Ω is Cm−1,1. Define

hi (x̂k) = x̂k +φ i (x̂k)ek,Hi (x)≡ x̂k +(φ i (x̂k)+ xk)ek,

and let ψ i ∈C∞
c (Wi) with ∑

l
i=0 ψ i (x) = 1 on Ω. Thus

{Wi,ψ i,∂Ω∩Wi,Ui,hi,Hi}l
i=1

satisfies all the conditions for defining W s,p (∂Ω) for s≤m. Let u∈C∞
(
Ω
)

and let hi be as
just described. The trace, denoted by γ is that operator which evaluates functions in C∞

(
Ω
)

on ∂Ω. Thus for u ∈C∞
(
Ω
)
, and y ∈ ∂Ω,

u(y) =
l

∑
i=1

(uψ i)(y)

and so using the notation to suppress the reference to y,

γu =
l

∑
i=1

γ (uψ i)

It is necessary to show this is a continuous map. Letting u ∈W m,p (Ω) , it follows from
Theorem 45.4.3, and Theorem 38.0.14,

||γu||m− 1
p ,p,∂Ω

=
l

∑
i=1
||h∗i (γ (ψ iu))||m− 1

p ,p,Ui

=
l

∑
i=1
||h∗i γ (ψ iu)||m− 1

p ,p,R
n−1
k
≤C

l

∑
i=1
||H∗i (ψ iu)||m,p,Rn

+

≤C
l

∑
i=1
||H∗i (ψ iu)||m,p,Ui×(ai,0) ≤C

l

∑
i=1
||(ψ iu)||m,p,Wi∩Ω
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≤C
l

∑
i=1
||(ψ iu)||m,p,Ω ≤C

l

∑
i=1
||u||m,p,Ω ≤Cl ||u||m,p,Ω .

Now use the density of C∞
(
Ω
)

in W m,p (Ω) to see that γ extends to a continuous linear map
defined on W m,p (Ω) still called γ such that for all u ∈W m,p (Ω) ,

||γu||m− 1
p ,p,∂Ω

≤Cl ||u||m,p,Ω . (46.2.3)

Also, it can be shown that γ maps W m,p (Ω) onto W m− 1
p (∂Ω) . Let g ∈W m− 1

p (∂Ω).
By definition, this means

h∗i (ψ ig) ∈W m− 1
p (Ui) , each i

and so, using a cutoff function, there exists wi ∈W m,p (Ui× Ii) such that

γwi = h∗i (ψ ig) = h∗i (γψ ig)

Thus
(
H−1

i

)∗
wi ∈W mp (Ω∩Wi) . Let

w≡
l

∑
i=1

ψ i
(
H−1

i
)∗

wi ∈W mp (Ω)

then

γw = ∑
i

γψ jγ
(
H−1

i
)∗

wi = ∑
i

γψ j
(
H−1

i
)∗

γwi

= ∑
i

γψ j
(
H−1

i
)∗h∗i (γψ ig) = g

In addition to this, in the case where m = 1, Lemma 45.2.1 implies there exists a linear
map, R, from W 1− 1

p ,p (∂Ω) to W 1,p (Ω) which has the property that γRg = g for every

g ∈W 1− 1
p ,p (∂Ω) . I show this now. Letting g ∈W 1− 1

p ,p (∂Ω) ,

g =
l

∑
i=1

ψ ig.

Then also,
h∗i (ψ ig) ∈W 1− 1

p ,p
(
Rn−1)

if extended to equal 0 off Ui. From Lemma 45.2.1, there exists an extension of this to
W 1,p

(
Rn
+

)
, Rh∗i (ψ ig) . Without loss of generality, assume that

Rh∗i (ψ ig) ∈W 1,p (Ui× (ai,0)) .

If not so, multiply by a suitable cut off function in the definition of R . Then the extension
is

Rg =
l

∑
i=1

(
H−1

i
)∗

Rh∗i (ψ ig) .
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This works because from the definition of γ on C∞
(
Ω
)

and continuity of the map estab-
lished above, γ and

(
H−1

i

)∗
commute and so

γRg ≡
l

∑
i=1

γ
(
H−1

i
)∗

Rh∗i (ψ ig)

=
l

∑
i=1

(
H−1

i
)∗

γRh∗i (ψ ig)

=
l

∑
i=1

(
H−1

i
)∗h∗i (ψ ig) = g.

This proves the following theorem about the trace.

Theorem 46.2.2 Let Ω ∈ Cm−1,1. Then there exists a constant, C independent of u ∈
W m,p (Ω) and a continuous linear map, γ : W m,p (Ω)→W m− 1

p ,p (∂Ω) such that 46.2.3
holds. This map satisfies γu(x) = u(x) for all u ∈C∞

(
Ω
)

and γ is onto. In the case where

m = 1, there exists a continuous linear map, R : W 1− 1
p ,p (∂Ω)→W 1,p (Ω) which has the

property that γRg = g for all g ∈W 1− 1
p ,p (∂Ω).

Of course more can be proved but this is all to be presented here.
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Multifunctions
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Chapter 47

The Yankov von Neumann Aumann the-
orem

The Yankov von Neumann Aumann theorem deals with the projection of a product measur-
able set. It is a very difficult but interesting theorem. The material of this chapter is taken
from [29], [30], [10], and [70]. We use the standard notation that for S and F σ algebras,
S ×F is the σ algebra generated by the measurable rectangles, the product measure σ

algebra. The next result is fairly easy and the proof is left for the reader.

Lemma 47.0.1 Let (X ,d) be a metric space. Then if d1 (x,y) =
d(x,y)

1+d(x,y) , it follows that
d1 is a metric on X and the basis of open balls taken with respect to d1 yields the same
topology as the basis of open balls taken with respect to d.

Theorem 47.0.2 Let (Xi,di) denote a complete metric space and let X ≡∏
∞
i=1 Xi. Then X

is also a complete metric space with the metric

ρ (x,y)≡
∞

∑
i=1

2−i di (xi,yi)

1+di (xi,yi)
.

Also, if Xi is separable for each i then so is X .

Proof: It is clear from the above lemma that ρ is a metric on X . We need to verify X is
complete with this metric. Let {xn} be a Cauchy sequence in X . Then it is clear from the
definition that {xn

i } is a Cauchy sequence for each i and converges to xi ∈ Xi. Therefore,
letting ε > 0 be given, we choose N such that

∞

∑
k=N

2−k <
ε

2
,

we choose M large enough that for n > M,

2−i di (xn
i ,xi)

1+di (xn
i ,xi)

<
ε

2(N +1)

for all i = 1,2, · · · ,N. Then letting x ={xi} ,

ρ (x,xn)≤ εN
2(N +1)

+
∞

∑
k=N

2−k <
ε

2
+

ε

2
= ε.

We need to verify that X is separable. Let Di denote a countable dense set in Xi,Di ≡{
ri

k

}∞

k=1 . Then let

Dk ≡ D1×·· ·×Dk×
{

rk+1
1

}
×
{

rk+2
1

}
×·· ·

Thus Dk is a countable subset of X . Let D ≡ ∪∞
k=1Dk. Then D is countable and we can

see D is dense in X as follows. The projection of Dk onto the first k entries is dense in

1519
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∏
k
i=1 Xi and for k large enough the remaining component’s contribution to the metric, ρ is

very small. Therefore, obtaining d ∈ D close to x ∈ X may be accomplished by finding
d ∈ D such that d is close to x in the first k components for k large enough. Note that we
do not use ∏

∞
k=1 Dk!

Definition 47.0.3 A complete separable metric space is called a polish space.

Theorem 47.0.4 Let X be a polish space. Then there exists f : NN→ X which is onto and
continuous. Here NN ≡∏

∞
i=1N and a metric is given according to the above theorem. Thus

for n,m ∈ NN,

ρ (n,m)≡
∞

∑
i=1

2−i |ni−mi|
1+ |ni−mi|

.

Proof: Since X is polish, there exists a countable covering of X by closed sets having
diameters no larger than 2−1,{B(i)}∞

i=1 . Each of these closed sets is also a polish space
and so there exists a countable covering of B(i) by a countable collection of closed sets,
{B(i, j)}∞

j=1 each having diameter no larger than 2−2 where B(i, j) ⊆ B(i) ̸= /0 for all j.
Continue this way. Thus

B(n1,n2, · · · ,nm) = ∪∞
i=1B(n1,n2, · · · ,nm, i)

and each of B(n1,n2, · · · ,nm, i) is a closed set contained in B(n1,n2, · · · ,nm) whose diam-
eter is at most half of the diameter of B(n1,n2, · · · ,nm) . Now we define our mapping from
NN to X . If n ={nk}∞

k=1 ∈ NN, we let f (n)≡ ∩∞
m=1B(n1,n2, · · · ,nm) . Since the diameters

of these sets converge to 0, there exists a unique point in this countable intersection and
this is f (n) .

We need to verify f is continuous. Let n ∈ NN be given and suppose m is very close
to n. The only way this can occur is for nk to coincide with mk for many k. Therefore,
both f (n) and f (m) must be contained in B(n1,n2, · · · ,nm) for some fairly large m. This
implies, from the above construction that f (m) is as close to f (n) as 2−m, proving f
is continuous. To see that f is onto, note that from the construction, if x ∈ X , then x ∈
B(n1,n2, · · · ,nm) for some choice of n1, · · · ,nm for each m. Note nothing is said about f
being one to one. It probably is not one to one.

Definition 47.0.5 We call a topological space X a Suslin space if X is a Hausdorff space
and there exists a polish space, Z and a continuous function f which maps Z onto X .

Z
f onto→

continuous
X

These Suslin spaces are also called analytic sets in some contexts but we will use the term
Suslin space in referring to them.

Corollary 47.0.6 X is a Suslin space, if and only if there exists a continuous mapping from
NN onto X .

Proof: We know there exists a polish space Z and a continuous function, h : Z → X
which is onto. By the above theorem there exists a continuous map, g : NN → Z which
is onto. Then h ◦ g is a continuous map from NN onto X . The “if” part of this theorem is
accomplished by noting that NN is a polish space.
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Lemma 47.0.7 Let X be a Suslin space and suppose Xi is a subspace of X which is also a
Suslin space. Then ∪∞

i=1Xi and ∩∞
i=1Xi are also Suslin spaces. Also every Borel set in X is

a Suslin space.

Proof: Let fi : Zi→ Xi where Zi is a polish space and fi is continuous and onto. Without
loss of generality we may assume the spaces Zi are disjoint because if not, we could replace
Zi with Zi×{i} . Now we define a metric, ρ, for Z ≡ ∪∞

i=1Zi as follows.

ρ (x,y)≡ 1 if x ∈ Zi,y ∈ Zk, i ̸= k

ρ (x,y)≡ di (x,y)
1+di (x,y)

if x,y ∈ Zi.

Here di is the metric on Zi. It is easy to verify ρ is a metric and that (Z,ρ) is a polish space.
Now we define f : Z→∪∞

i=1Xi as follows. For x ∈ Zi, f (x) ≡ fi (x) . This is well defined
because the Zi are disjoint. If y is very close to x it must be that x and y are in the same Zi
otherwise this could not happen. Therefore, continuity of f follows from continuity of fi.
This shows countable unions of Suslin subspaces of a Suslin space are Suslin spaces.

If H ⊆ X is a closed subset, then, letting f : Z→ X be onto and continuous, it follows
f : f−1 (H)→ H is onto and continuous. Since f−1 (H) is closed, it follows f−1 (H) is a
polish space. Therefore, H is a Suslin space.

Now we show countable intersections of Suslin spaces are Suslin. It is clear that θ :
∏

∞
i=1 Zi→∏

∞
i=1 Xi given by θ (z)≡ x = {xi} where xi = fi (zi) is continuous and onto, this

with respect to the usual product topology. Note that ∏
∞
i=1 Zi is a polish space because of

the assumption that each Zi is and the above considerations. Therefore, ∏
∞
i=1 Xi is a Suslin

space. Now let P ≡
{

y ∈∏
∞
i=1 fi (Zi) : yi = y j for all i, j

}
(This is how you get it on the

intersection. I guess this must be the case where each Xi ⊆ X). Then P is a closed subspace
of a Suslin space and so it is Suslin. Then we define h : P→ ∩∞

i=1Xi by h(y) ≡ fi (yi) .
This shows ∩∞

i=1Xi is Suslin because h is continuous and onto. (h◦θ : θ
−1 (P)→∩∞

i=1Xi is
continuous and θ

−1 (P) being a closed subset of a polish space is polish.)
Next let U be an open subset of X . Then f−1 (U) , being an open subset of a polish

space, can be obtained as an increasing limit of closed sets, Kn. Therefore, U =∪∞
n=1 f (Kn) .

Each f (Kn) is a Suslin space because it is the continuous image of a polish space, Kn.
Therefore, by the first part of the lemma, U is a Suslin space. Now let

F ≡
{

E ⊆ X : both EC and E are Suslin
}
.

We see that F is closed with respect to taking complements. The first part of this lemma
shows F is closed with respect to countable unions. Therefore, F is a σ algebra and so,
since it contains the open sets, must contain the Borel sets.

It turns out that Suslin spaces tend to be measurable sets. In order to develop this idea,
we need a technical lemma.

Lemma 47.0.8 Let (Ω,F ,µ) be a measure space and denote by µ∗ the outer measure
generated by µ. Thus

µ
∗ (S)≡ inf{µ (E) : E ⊇ S, E ∈F} .
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Then µ∗ is regular, meaning that for every S, there exists E ∈ F such that E ⊇ S and
µ (E) = µ∗ (S) . If Sn ↑ S, it follows that µ∗ (Sn) ↑ µ∗ (S) . Also if µ (Ω)< ∞, then a set, E
is measurable if and only if

µ
∗ (Ω)≥ µ

∗ (E)+µ
∗ (Ω\E) .

Proof: First we verify that µ∗ is regular. If µ∗ (S) = ∞, let E = Ω. Then µ∗ (S) = µ (E)
and E ⊇ S. On the other hand, if µ∗ (S)< ∞, then we can obtain En ∈F such that µ∗ (S)+
1
n ≥ µ (En) and En ⊇ S. Now let Fn = ∩n

i=1Ei. Then Fn ⊇ S and so µ∗ (S)+ 1
n ≥ µ (Fn) ≥

µ∗ (S) . Therefore, letting F = ∩∞
k=1Fk ∈F it follows µ (F) = limn→∞ µ (Fn) = µ∗ (S) .

Let En ⊇ Sn be such that En ∈ F and µ (En) = µ∗ (Sn) . Also let E∞ ⊇ S such that
µ (E∞) = µ∗ (S) and E∞ ∈F . Now consider Bn ≡ ∪n

k=1Ek. We claim

µ (Bn) = µ (Sn) . (47.0.1)

Here is why:

µ (E1 \E2) = µ (E1)−µ (E1∩E2) = µ
∗ (S1)−µ

∗ (S1) = 0.

Therefore,

µ (B2) = µ (E1∪E2) = µ (E1 \E2)+µ (E2) = µ (E2) = µ
∗ (S2) .

Continuing in this way we see that 47.0.1 holds. Now let Bn ∩E∞ ≡ Cn. Then Cn ↑ C ≡
∪∞

k=1Cn ∈F and µ (Cn) = µ∗ (Sn) . Since Sn ↑ S and each Cn ⊇ Sn, it follows C ⊇ S and
therefore,

µ
∗ (S)≤ µ (C) = lim

n→∞
µ (Cn) = lim

n→∞
µ
∗ (Sn)≤ µ

∗ (S) .

Now we verify the second claim of the lemma. It is clear the formula holds whenever
E is measurable. Suppose now that the formula holds. Let S be an arbitrary set. We need
to verify that

µ
∗ (S)≥ µ

∗ (S∩E)+µ
∗ (S\E) .

Let F ⊇ S, F ∈F , and µ (F) = µ∗ (S) . Then since µ∗ is subadditive,

µ
∗ (Ω\F)≤ µ

∗ (E \F)+µ
∗ (

Ω∩EC ∩FC) . (47.0.2)

Since F is measurable,
µ
∗ (E) = µ

∗ (E ∩F)+µ
∗ (E \F) (47.0.3)

and
µ
∗ (Ω\E) = µ

∗ (F \E)+µ
∗ (

Ω∩EC ∩FC) (47.0.4)

and by the hypothesis,
µ
∗ (Ω)≥ µ

∗ (E)+µ
∗ (Ω\E) . (47.0.5)

Therefore,

µ (Ω) ≥ µ
∗ (E)+µ

∗ (Ω\E)

= µ
∗ (E ∩F)+µ

∗ (E \F)+µ
∗ (Ω\E)

= µ
∗ (E ∩F)+µ

∗ (E \F)+µ
∗ (F \E)+µ

∗ (
Ω∩EC ∩FC)

≥ µ
∗ (Ω\F)+µ

∗ (F \E)+µ
∗ (E ∩F)

≥ µ
∗ (Ω\F)+µ

∗ (F) = µ (Ω)
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showing that all the inequalities must be equal signs. Hence, referring to the top and fourth
lines above,

µ (Ω) = µ
∗ (Ω\F)+µ

∗ (F \E)+µ
∗ (E ∩F) .

Subtracting µ∗ (Ω\F) = µ (Ω\F) from both sides gives

µ
∗ (S) = µ (F) = µ

∗ (F \E)+µ
∗ (E ∩F)≥ µ

∗ (S\E)+µ
∗ (E ∩S) ,

This proves the lemma.
The next theorem is a major result. It states that the Suslin subsets are measurable under

appropriate conditions. This is sort of interesting because something being a Suslin subset
has to do with topology and this topological condition implies that the set is measurable.

Theorem 47.0.9 Let Ω be a metric space and let (Ω,F ,µ) be a complete Borel measure
space with µ (Ω) < ∞. Denote by µ∗ the outer measure generated by µ. Then if A is a
Suslin subset of Ω, it follows that A is µ∗ measurable. Since the original measure space is
complete, it follows that the completion produces nothing new and so in fact A is in F . See
Proposition 12.1.5.

Proof: We need to verify that

µ
∗ (Ω)≥ µ

∗ (A)+µ
∗ (Ω\A) .

We know from Corollary 47.0.6, there exists a continuous map, f : NN→ A which is onto.
Let

E (k)≡
{

n ∈ NN : n1 ≤ k
}
.

Then E (k) ↑ NN and so from Lemma 47.0.8 we know µ∗ ( f (E (k))) ↑ µ∗ (A) . Therefore,
there exists m1 such that

µ
∗ ( f (E (m1)))> µ

∗ (A)− ε

2
.

Now E (k) is clearly not compact but it is trying to be as far as the first component is
concerned. Now we let

E (m1,k)≡
{

n ∈ NN : n1 ≤ m1 and n2 ≤ k
}
.

Thus E (m1,k) ↑ E (m1) and so we can pick m2 such that

µ
∗ ( f (E (m1,m2)))> µ

∗ ( f (E (m1)))−
ε

22 .

We continue in this way obtaining a decreasing list of sets, f (E (m1,m2, · · · ,mk−1,mk)) ,
such that

µ
∗ ( f (E (m1,m2, · · · ,mk−1,mk)))> µ

∗ ( f (E (m1,m2, · · · ,mk−1)))−
ε

2k .

Therefore,

µ
∗ ( f (E (m1,m2, · · · ,mk−1,mk)))−µ

∗ (A)>
k

∑
l=1
−
(

ε

2l

)
>−ε.
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Now define a closed set,

C ≡ ∩∞
k=1 f (E (m1,m2, · · · ,mk−1,mk)).

The sets f (E (m1,m2, · · · ,mk−1,mk)) are decreasing as k→ ∞ and so

µ
∗ (C) = lim

k→∞
µ
∗
(

f (E (m1,m2, · · · ,mk−1,mk))
)
≥ µ

∗ (A)− ε.

We wish to verify that C ⊆ A. If we can do this we will be done because C, being a closed
set, is measurable and so

µ
∗ (Ω) = µ

∗ (C)+µ
∗ (Ω\C)≥ µ

∗ (A)− ε +µ
∗ (Ω\A) .

Since ε is arbitrary, this will conclude the proof. Therefore, we only need to verify that
C ⊆ A.

What we know is that each f (E (m1,m2, · · · ,mk−1,mk)) is contained in A. We do not
know their closures are contained in A. We let m≡{mi}∞

i=1 where the mi are defined above.
Then letting

K ≡
{

n ∈ NN : ni ≤ mi for all i
}
,

we see that K is a closed, hence complete subset of NN which is also totally bounded due to
the definition of the distance. Therefore, K is compact and so f (K) is also compact, hence
closed due to the assumption that Ω is a Hausdorff space and we know that f (K)⊆ A. We
verify that C = f (K) . We know f (K)⊆C. Suppose therefore, p∈C. From the definition of
C, we know there exists rk ∈ E (m1,m2, · · · ,mk−1,mk) such that d

(
f
(
rk
)
, p
)
< 1

k . Denote

by r̃k the element of NN which consists of modifying rk by taking all components after the
kth equal to one. Thus r̃k ∈ K. Now

{
r̃k
}

is in a compact set and so taking a subsequence

we can have r̃k → r ∈ K. But from the metric on NN, it follows that ρ

(
r̃k,rk

)
< 1

2k−2 .

Therefore, rk→ r also and so f
(
rk
)
→ f (r) = p. Therefore, p ∈ f (K) and this proves the

theorem.
Note we could have proved this under weaker assumptions. If we had assumed only

that every point has a countable basis (first axiom of countability) and Ω is Hausdorff, the
same argument would work. We will need the following definition.

Definition 47.0.10 Let F be a σ algebra of sets from Ω and let µ denote a finite measure
defined on F . We let Fµ denote the completion of F with respect to µ. Thus we let µ∗ be
the outer measure determined by µ and Fµ will be the σ algebra of µ∗ measurable subsets
of Ω. We also define F̂ by

F̂ ≡ ∩
{
Fµ : µ is a finite measure defined on F

}
.

Also, if X is a topological space, we will denote by B(X) the Borel sets of X .

With this notation, we can give the following simple corollary of Theorem 47.0.9. This
is really quite amazing.
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Corollary 47.0.11 Let Ω be a compact metric space and let A be a Suslin subset of Ω.

Then A ∈ B̂(Ω).

Proof: Let µ be a finite measure defined on B(Ω) . By Theorem 47.0.9 A ∈ B(Ω)
µ
.

Since this is true for every finite measure, µ, it follows A ∈ B̂(Ω) as claimed. This proves
the corollary.

We give another technical lemma about the completion of measure spaces.

Lemma 47.0.12 Let µ be a finite measure on a σ algebra, Σ. Then A ∈ Σµ if and only
if there exists A1 ∈ Σ and N1 such that A = A1 ∪N1 where there exists N ∈ Σ such that
µ (N) = 0 and N1 ⊆ N.

Proof: Suppose first A = A1∪N1 where these sets are as described. Let S ∈P (Ω) and
let µ∗ denote the outer measure determined by µ. Then since A1 ∈ Σ⊆ Σµ

µ
∗ (S) ≤ µ

∗ (S\A)+µ
∗ (S∩A)

≤ µ
∗ (S\A1)+µ

∗ (S∩A1)+µ
∗ (N1)

= µ
∗ (S\A1)+µ

∗ (S∩A1) = µ
∗ (S)

showing that A ∈ Σµ .
Now suppose A∈ Σµ . Then there exists B1 ⊇ A such that µ∗ (B1) = µ∗ (A) , and B1 ∈ Σ.

Also there exists AC
1 ∈ Σ with AC

1 ⊇ AC and µ
(
AC

1

)
= µ∗

(
AC
)
. Then A1 ⊆ A⊆ B1

A⊆ A1∪ (B1 \A1) .

Now
µ (A1)+µ

∗ (AC)= µ (A1)+µ
(
AC

1
)
= µ (Ω)

and so

µ (B1 \A1) = µ
∗ (B1 \A1)

= µ
∗ (B1 \A)+µ

∗ (A\A1)

= µ
∗ (B1)−µ

∗ (A)+µ
∗ (A)−µ

∗ (A1)

= µ
∗ (A)−

(
µ (Ω)−µ

∗ (AC))= 0

because A ∈ Σµ implying A = A1∪

N1︷ ︸︸ ︷
(B1 \A1)∩A and N1 ⊆ N ≡ (B1 \A1) ∈ Σ with µ (N) =

0. This proves the lemma.
Next we need another definition.

Definition 47.0.13 We say (Ω,Σ), where Σ is a σ algebra of subsets of Ω, is separable
if there exists a sequence {An}∞

n=1 ⊆ Σ such that σ ({An}) = Σ and if w ̸= w′, then there
exists A ∈ Σ such that XA (ω) ̸=XA (ω

′) . This last condition is referred to by saying {An}
separates the points of Ω. Given two measure spaces, (Ω,Σ) and (Ω′,Σ′) , we say they
are isomorphic if there exists a function, f : Ω→ Ω′ which is one to one and f (E) ∈ Σ′

whenever E ∈ Σ and f−1 (F) ∈ Σ whenever F ∈ Σ′.
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The interesting thing about separable measure spaces is that they are isomorphic to a
very simple sort of measure space in which topology plays a significant role.

Lemma 47.0.14 Let (Ω,Σ) be separable. Then there exists E ∈ {0,1}N such that (Ω,Σ)
and (E,B(E)) are isomorphic.

Proof: First we show {An} separates the points. Here σ ({An}) = Σ. We already know
Σ separates the points but now we show the smaller set does so also. If this is not so, there
exists ω,ω1 ∈Ω such that for all n, XAn (ω) = XAn (ω1) . Then let

F ≡ {F ∈ Σ : XF (ω) = XF (ω1)}

Thus An ∈F for all n. It is also clear that F is a σ algebra and so F = Σ contradicting the
assumption that Σ separates points. Now we define a function from Ω to {0,1}N as follows.

f (ω)≡ {XAn (ω)}∞

n=1

We also let E ≡ f (Ω) . Since the {An} separate the points, we see that f is one to one. A
subbasis for the topology of {0,1}N consists of sets of the form ∏

∞
i=1 Hi where Hi = {0,1}

for all i except one, when i = j and H j equals either {0} or {1} . Therefore,

f−1 (subbasic open set) ∈ Σ

because if H j is the exceptional set then this equals A j if H j = {1} and AC
j if H j = {0} . In-

tersections of these subbasic sets with E gives a countable subbasis for E and so the inverse
image of all sets in a countable subbasis for E are in Σ, showing that f−1 (open set) ∈ Σ.
Now we consider f (An) .

f (An)≡ {{λ k}∞

k=1 : λ n = 1}∩E,

an open set in E. Hence f (An) ∈ B(E) . Now letting

F ≡ {G⊆Ω : f (G) ∈ B(E)} ,

we see that F is a σ algebra which contains {An}∞

n=1 and so F ⊇ σ ({An}) ≡ Σ. Thus
f (F) ∈ B(E) for all A ∈ Σ. This proves the lemma.

Lemma 47.0.15 Let φ : (Ω1,Σ1)→ (Ω2,Σ2) where φ
−1 (U) ∈ Σ1 for all U ∈ Σ2. Then if

F ∈ Σ̂2, it follows φ
−1 (F) ∈ Σ̂1.

Proof: Let µ be a finite measure on Σ1 and define a measure φ (µ) on Σ2 by the rule

φ (µ)(F)≡ µ
(
φ
−1 (F)

)
.

Now let A ∈ Σ2φ(µ). Then by Lemma 47.0.12, A = A1∪N1 where there exists N ∈ Σ2 with
φ (µ)(N) = 0 and A1 ∈ Σ2. Therefore, from the definition of φ (µ) , we have µ

(
φ
−1 (N)

)
=

0 and therefore, φ
−1 (A) = φ

−1 (A1)∪φ
−1 (N1) where

φ
−1 (N1)⊆ φ

−1 (N) ∈ Σ1
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and µ
(
φ
−1 (N)

)
= 0. Therefore, φ

−1 (A) ∈ Σ1µ and so if F ∈ Σ̂2, then

F ∈ ∩{Σ2ν : ν is a finite measure on Σ2} ⊆ ∩
{

Σ2φ(µ) : µ is a finite measure on Σ1
}
,

and so φ
−1 (F) ∈ Σ1µ . Since µ is arbitrary, this shows φ

−1 (F) ∈ Σ̂1.
The next lemma is a special case of the Yankov von Neumann Aumann projection

theorem. It contains the main idea of the proof of the more general theorem.

Definition 47.0.16 Let (Ω,Σ) be a measurable space and let G ∈ Σ×B(X) the product
measurable sets resulting from the Borel sets B(X) for X a Suslan space. Then

projΩ (G)≡ {ω ∈Ω : there exists x ∈ X with (ω,x) ∈ G}

What if you had G = ∪{(ω×A(ω)) : ω ∈Ω} where A(ω) is in Y some polish space
and A(ω) is, for example, a closed nonempty set? Then

projΩ (G) = {ω ∈Ω : A(ω)∩X ̸= /0}

Of course, you might ask whether this particular G is in Σ×B(X). For fixed ω the ω

section is closed which is Borel. To say that projΩ (G) ∈ Σ would be to say that each y
section is in Σ so this G is in Σ×B(X) exactly when projΩ (G) ∈ Σ. Later this will be
defined as saying that A is a measurable multifunction. It will be measurable when X is
open, strongly measurable when X is closed.

Lemma 47.0.17 Let (Ω,Σ) be separable and let X be a Suslin space. Let G ∈ Σ×B(X) .
(Recall Σ× B(X) is the σ algebra of product measurable sets, the smallest σ algebra
containing the measurable rectangles.) Then

projΩ (G) ∈ Σ̂.

Proof: Let f : (Ω,Σ)→ (E,B(E)) be the isomorphism of Lemma 47.0.14. We have the
following claim.

Claim: f × idX maps Σ×B(X) to B(E)×B(X) .
Proof of the claim: First of all, assume A×B is a measurable rectangle where A ∈ Σ

and B ∈ B(X) . Then by the assumption that f is an isomorphism, f (A) ∈ B(E) and so

f × idX (A×B) ∈ B(E)×B(X) .

Now let
F ≡ {P ∈ Σ×B(X) : f × idX (P) ∈ B(E)×B(X)} .

Then we see that F is a σ algebra and contains the elementary sets. (F is closed with
respect to complements because f is one to one.) Therefore, F = Σ× B(X) and this
proves the claim.

Therefore, since G ∈ Σ×B(X) , we see

f × idX (G) ∈ B(E)×B(X)⊆ B(E×X) .
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The set inclusion follows from the observation that if A ∈ B(E) and B ∈ B(X) then A×B
is in B(E×X) and the collection of sets in B(E)×B(X) which are in B(E×X) is a σ

algebra.
Therefore, there exists D, a Borel set in E ×X such that f × idX (G) = D∩ (E×X) .

Now from this it follows from Lemma 47.0.7 that D is a Suslin space. Letting Y be {0,1}N,
it follows that projY (D) is a Suslin space in Y. By Corollary 47.0.11, we see that projY (D)∈
B̂(Y ). Now

projΩ (G) = {ω ∈Ω : there exists x ∈ X with (ω,x) ∈ G}

= {ω ∈Ω : there exists x ∈ X with ( f (ω) ,x) ∈ f × idX (G)}

= f−1 ({y ∈ Y : there exists x ∈ X with (y,x) ∈ D})

= f−1 (projY (D)) .

Now projY (D) ∈ B̂(Y ) and so Lemma 47.0.15 shows f−1 (projY (D)) ∈ Σ̂. This proves the
lemma.

Now we are ready to prove the Yankov von Neumann Aumann projection theorem.
First we must present another technical lemma.

Lemma 47.0.18 Let X be a Hausdorff space and let G ∈ Σ×B(X) where Σ is a σ algebra
of sets of Ω. Then there exists Σ0 ⊆ Σ a countably generated σ algebra such that G ∈
Σ0×B(X) .

Proof: First suppose G is a measurable rectangle, G = A×B where A ∈ Σ and B ∈
B(X) . Letting Σ0 be the finite σ algebra,

{
/0,A,AC,Ω

}
, we see that G ∈ Σ0×B(X) . Simi-

larly, if G equals an elementary set, then the conclusion of the lemma holds for G. Let

F ≡ {H ∈ Σ×B(X) : H ∈ Σ0×B(X)}

for some countably generated σ algebra, Σ0. We just saw that F contains the elementary
sets. If H ∈F , then HC ∈ Σ0×B(X) for the same Σ0 and so F is closed with respect to
complements. Now suppose Hn ∈F . Then for each n, there exists a countably generated
σ algebra, Σ0n such that Hn ∈ Σ0n×B(X) . Then ∪∞

n=1Hn ∈ σ ({Σ0n×B(X)}) . We will be
done when we show

σ ({Σ0n×B(X)}∞

n=1)⊆ σ ({Σ0n}∞

n=1)×B(X)

because it is clear that σ ({Σ0n}∞

n=1) is countably generated. We see that

σ ({Σ0n×B(X)}∞

n=1)

is generated by sets of the form A×B where A ∈ Σ0n and B ∈ B(X) . But each such set is
also contained in σ ({Σ0n}∞

n=1)×B(X) and so the desired inclusion is obtained. Therefore,
F is a σ algebra and so since F was shown to contain the measurable rectangles, this
verifies F = Σ×B(X) and this proves the lemma.
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Theorem 47.0.19 Let (Ω,Σ) be a measure space and let G∈ Σ̂×B(X) where X is a Suslin
space. Then

projΩ (G) ∈ Σ̂.

Proof: By the previous lemma, G ∈ Σ0×B(X) where Σ0 is countably generated. If
(Ω,Σ0) were separable, we could then apply Lemma 47.0.17 and be done. Unfortunately,
we don’t know Σ0 separates the points of Ω. Therefore, we define an equivalence class on
the points of Ω as follows. We say ω ∽ ω1 if and only if XA (ω) =XA (ω1) for all A∈ Σ0.
Now the nice thing to notice about this equivalence relation is that if ω ∈ A ∈ Σ0, and if
ω ∽ ω1, then 1 = XA (ω) = XA (ω1) implying ω1 ∈ A also. Therefore, every set of Σ0
is the union of equivalence classes. It follows that for A ∈ Σ0, and π the map given by
πω ≡ [ω] where [ω] is the equivalence class determined by ω,

π (A)∩π (Ω\A) = /0.

Suppose now that Hn ∈ Σ0×B(X). If ([ω] ,x) ∈ ∩∞
n=1π× idX (Hn) , then for each n,

([w] ,x) = (πwn,x)

for some (ωn,x) ∈ Hn. But this implies ω ∽ ωn and so from the above observation that
the sets of Σ0 are unions of equivalence classes, it follows that (ω,x) ∈ Hn. Therefore,
(ω,x) ∈ ∩∞

n=1Hn and so ([ω] ,x) = π× idX (ω,x) where (ω,x) ∈ ∩∞
n=1Hn . This shows that

π× idX (∩∞
n=1Hn)⊇ ∩∞

n=1π× idX (Hn) .

In fact these two sets are equal because the other inclusion is obvious. We will denote by
Ω1 the set of equivalence classes and Σ1 will be the subsets, S1, of Ω1 such that S1 =
{[ω] : ω ∈ S ∈ Σ0} . Then (Ω1,Σ1) is clearly a measure space which is separable. Let

F ≡
{

H ∈ Σ0×B(X) : π× idX (H) ,π× idX
(
HC) ∈ Σ1×B(X)

}
.

We see that the measurable rectangles, A×B where A ∈ Σ0 and B ∈ B(X) are in F , that
from the above observation on countable intersections, F is closed with respect to count-
able unions and closed with respect to complements. Therefore, F is a σ algebra and so
F = Σ0×B(X) . By Lemma 47.0.14 (Ω1,Σ1) is isomorphic to (E,B(E)) where E is a
subspace of {0,1}N . Denoting the isomorphism by h, it follows as in Lemma 47.0.17 that
h× idX maps Σ1×B(X) to B(E)×B(X) . Therefore, we see f ≡ h◦π is a mapping from
Ω to E which has the property that f × idX maps Σ0×B(X) to B(E)×B(X) . Now from
the proof of Lemma 47.0.17 starting with the claim, we see that G ∈ Σ̂0. However, if µ is a

finite measure on Σ̂, then
(

Σ̂

)
µ

= Σµ and so Σ̂0 ⊆
(̂

Σ̂

)
⊆ Σ̂. This proves the theorem.
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Chapter 48

Multifunctions and Their Measurability
48.1 The General Case

Let X be a separable complete metric space and let (Ω,C ,µ) be a set, a σ algebra of
subsets of Ω, and a measure µ such that this is a complete σ finite measure space. Also
let Γ : Ω→PF (X) , the closed subsets of X .

Definition 48.1.1 We define Γ− (S)≡ {ω ∈Ω : Γ(ω)∩S ̸= /0}

We will consider a theory of measurability of set valued functions. The following
theorem is the main result in the subject. In this theorem the third condition is what we will
refer to as measurable.

Theorem 48.1.2 The following are equivalent in case of a complete σ finite measure
space. However 3 and 4 are equivalent for any measurable space consisting only of a
set Ω and a σ algebra C .

1. For all B a Borel set in X ,Γ− (B) ∈ C .

2. For all F closed in X , Γ− (F) ∈ C

3. For all U open in X ,Γ− (U) ∈ C

4. There exists a sequence, {σn} of measurable functions satisfying σn (ω) ∈ Γ(ω)
such that for all ω ∈Ω,

Γ(ω) = {σn (ω) : n ∈ N}

These functions are called measurable selections.

5. For all x ∈ X ,ω → dist(x,Γ(ω)) is a measurable real valued function.

6. G (Γ)≡ {(ω,x) : x ∈ Γ(ω)} ⊆ C ×B(X) .

Proof: It is obvious that 1.) ⇒ 2.). To see that 2.) ⇒ 3.) note that Γ− (∪∞
i=1Fi) =

∪∞
i=1Γ− (Fi) . Since any open set in X can be obtained as a countable union of closed sets,

this implies 2.) ⇒ 3.).
Now we verify that 3.) ⇒ 4.). For convenience, drop the assumption that Γ(ω) is

closed in this part of the argument. It will just be set valued and satisfy the measurability
condition. A measurable selection will be obtained in Γ(ω). Let {xn}∞

n=1 be a countable
dense subset of X . For ω ∈ Ω, let ψ1 (ω) = xn where n is the smallest integer such that
Γ(ω)∩B(xn,1) ̸= /0. Therefore, ψ1 (ω) has countably many values, xn1 ,xn2 , · · · where n1 <
n2 < · · · . Now

{ω : ψ1 = xn}=

{ω : Γ(ω)∩B(xn,1) ̸= /0}∩ [Ω\∪k<n {ω : Γ(ω)∩B(xk,1) ̸= /0}] ∈ C .

Thus we see that ψ1 is measurable and dist(ψ1 (ω) ,Γ(ω))< 1. Let

Ωn ≡ {ω ∈Ω : ψ1 (ω) = xn} .

1531
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Then Ωn ∈ C and Ωn∩Ωm = /0 for n ̸= m and ∪∞
n=1Ωn = Ω. Let

Dn ≡ {xk : xk ∈ B(xn,1)} .

Now for each n, and ω ∈Ωn, let ψ2 (ω) = xk where k is the smallest index such that xk ∈Dn
and B

(
xk,

1
2

)
∩Γ(ω) ̸= /0. Thus dist(ψ2 (ω) ,Γ(ω))< 1

2 and

d (ψ2 (ω) ,ψ1 (ω))< 1.

Continue this way obtaining ψk a measurable function such that

dist(ψk (ω) ,Γ(ω))<
1

2k−1 , d
(
ψk (ω) ,ψk+1 (ω)

)
<

1
2k−2 .

Then for each ω,{ψk (ω)} is a Cauchy sequence converging to a point, σ (ω) ∈ Γ(ω).

This has shown that if Γ is measurable, there exists a measurable selection, σ (ω) ∈ Γ(ω).
Of course, if Γ(ω) is closed, then σ (ω) ∈ Γ(ω). Note that this had nothing to do with the
measure. It remains to show there exists a sequence of these measurable selections σn such
that the conclusion of 4.) holds. To do this we define for Γ(ω) closed and measurable,

Γni (ω)≡
{

Γ(ω)∩B
(
xn,2−i

)
if Γ(ω)∩B

(
xn,2−i

)
̸= /0

Γ(ω) otherwise. .

Thus in the case of nonempty intersecton in the above cases,

Γ(ω)∩B
(
xn,2−(i+1)

)
⊆ Γni (ω)⊆ Γ(ω)∩B(xn,2−i).

First we show that Γni is measurable. Let U be open. Then

{ω : Γni (ω)∩U ̸= /0}=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[{

ω : Γ(ω)∩B
(
xn,2−i)= /0

}
∩{ω : Γ(ω)∩U ̸= /0}

]
=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[(

Ω\
{

ω : Γ(ω)∩B
(
xn,2−i) ̸= /0

})
∩{ω : Γ(ω)∩U ̸= /0}

]
,

a measurable set. By what was just shown, there exists σni, a measurable function such
that σni (ω) ∈ Γni (ω)⊆ Γ(ω) for all ω ∈Ω. If x ∈ Γ(ω) , then

x ∈ B
(
xn,2−(i+2)

)
whenever xn is close enough to x. Thus both x,σn(i+2) (ω) are in B

(
xn,2−(i+2)

)
and so∣∣σn(i+1) (ω)− x

∣∣< 2−i. It follows that condition 4.) holds. Note that this had nothing to do
with the measure.

Now we verify that 4.) ⇒ 3.). Suppose there exist measurable selections σn (ω) ∈
Γ(ω) satisfying condition 4.). Let U be open. Then

{ω : Γ(ω)∩U ̸= /0}= ∪∞
n=1σ

−1
n (U) ∈ C .
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Now we verify that 4.) ⇒ 5.). Let F (ω) ≡ dist(x,Γ(ω)) . Then letting U be an open
set in [0,∞), F (ω) ∈ U if and only if d (x,σn (ω)) ∈ U for some σn (ω). Let hn (ω) ≡
d (x,σn (ω)) . Then hn is measurable and F−1 (U) =∪∞

n=1h−1
n (U)∈C . This shows that for

all x ∈ X , ω → dist(x,Γ(ω)) is measurable and this proves 5.).
Now we verify that 5.) ⇒ 4.). We know dist(x,Γ(·)) is measurable and we show

{ω : Γ(ω)∩U ̸= /0} ∈C whenever U is open and then use 3.)⇒ 4.). Since X is separable,
there exists B(xi,ri) such that U = ∪∞

i=1B(xi,ri) . Then

{ω : Γ(ω)∩U ̸= /0} = ∪∞
i=1 {ω : Γ(ω)∩B(xi,ri) ̸= /0}

= ∪∞
i=1 {ω : dist(xi,Γ(ω))< ri} ∈ C .

Therefore, 5.)⇒ 4.) as claimed.
Now we must prove 5.)⇒ 6.). We note that ω → dist(x,Γ(ω)) is measurable and

x→ dist(x,Γ(ω)) is continuous. Also, the graph of Γ,G (Γ) is given by

G (Γ) = {(ω,x) : dist(x,Γ(ω)) = 0} .

We wish to show that (ω,x)→ dist(x,Γ(ω)) is product measurable because then G (Γ) ,
being the inverse image of {0} will be product measurable. Let {xk} be a countable dense
set in X and let

φ k (ω,x)≡ dist(xn,Γ(ω))

where n is the first index such that x ∈ B
(
xn,2−k

)
. Then φ k (ω,x)→ dist(x,Γ(ω)) due to

the continuity of x→ dist(x,Γ(ω)) and so we must argue that φ k is product measurable.
On

En ≡Ω×
(

B
(

xn,2−k
)
\∪m<nB

(
xm,2−k

))
,

φ k (ω,x) = dist(xn,Γ(ω)) . Thus, on this set, φ k equals a measurable function of ω and
does not depend on x on En. It follows that there are measurable simple C measurable
functions, sm (ω) which increase pointwise to dist(xn,Γ(ω)) on En. Thus sm (ω)XEn (x)
increases to φ k (ω,x) on En showing that φ kXEn is product measurable with respect to
C ×σ (τ) since En is a measurable rectangle with respect to C and σ (τ) . Therefore, φ k is
product measurable and so (ω,x)→ dist(x,Γ(ω)) is also product measurable.

It remains to prove 6.)⇒ 1.). This follows from Theorem 47.0.19.

Γ
− (B)≡ {ω : Γ(ω)∩B ̸= /0}

= projΩ (G (Γ)∩ (Ω∩B)) .

But from Theorem 47.0.19, projΩ (G (Γ)∩ (Ω∩B)) ∈ Ĉ ⊆ Cµ = C . ■
The last part results from (Ω,C ,µ) being a complete measure space. Note that without

this assumption we could not draw the conclusion desired. This required consideration of
the measure. The following theorem is like part of the above but without an assumption
that Γ(ω) is closed.

Theorem 48.1.3 The following are equivalent for any measurable space consisting only
of a set Ω and a σ algebra C . Here nothing is known about Γ(ω) other than that is a
nonempty set.
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1. For all U open in X ,Γ− (U) ∈ C

Γ
− (U)≡ {ω : Γ(ω)∩U ̸= /0}

2. There exists a sequence, {σn} of measurable functions satisfying σn (ω) ∈ Γ(ω)
such that for all ω ∈Ω,

Γ(ω) = {σn (ω) : n ∈ N}

These functions are called measurable selections.

Proof: First 1.) ⇒ 2.). A measurable selection will be obtained in Γ(ω). Let {xn}∞

n=1
be a countable dense subset of X . For ω ∈Ω, let ψ1 (ω) = xn where n is the smallest integer
such that Γ(ω)∩B(xn,1) ̸= /0. Therefore, ψ1 (ω) has countably many values, xn1 ,xn2 , · · ·
where n1 < n2 < · · · . Now

{ω : ψ1 = xn}=

{ω : Γ(ω)∩B(xn,1) ̸= /0}∩ [Ω\∪k<n {ω : Γ(ω)∩B(xk,1) ̸= /0}] ∈ C .

Thus we see that ψ1 is measurable and dist(ψ1 (ω) ,Γ(ω))< 1. Let

Ωn ≡ {ω ∈Ω : ψ1 (ω) = xn} .

Then Ωn ∈ C and Ωn∩Ωm = /0 for n ̸= m and ∪∞
n=1Ωn = Ω. Let

Dn ≡ {xk : xk ∈ B(xn,1)} .

Now for each n, and ω ∈Ωn, let ψ2 (ω) = xk where k is the smallest index such that xk ∈Dn
and B

(
xk,

1
2

)
∩Γ(ω) ̸= /0. Thus dist(ψ2 (ω) ,Γ(ω))< 1

2 and

d (ψ2 (ω) ,ψ1 (ω))< 1.

Continue this way obtaining ψk a measurable function such that

dist(ψk (ω) ,Γ(ω))<
1

2k−1 , d
(
ψk (ω) ,ψk+1 (ω)

)
<

1
2k−2 .

Then for each ω,{ψk (ω)} is a Cauchy sequence converging to a point, σ (ω) ∈ Γ(ω).

This has shown that if Γ is measurable, there exists a measurable selection, σ (ω) ∈ Γ(ω).
Of course, if Γ(ω) is closed, then σ (ω) ∈ Γ(ω). Note that this had nothing to do with a
measure.

It remains to show there exists a sequence of these measurable selections σn such that
the conclusion of 2.) holds. To do this we define

Γni (ω)≡
{

Γ(ω)∩B
(
xn,2−i

)
if Γ(ω)∩B

(
xn,2−i

)
̸= /0

Γ(ω) otherwise .

First we show that Γni is measurable. Let U be open. Then

{ω : Γni (ω)∩U ̸= /0}=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪
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[{
ω : Γ(ω)∩B

(
xn,2−i)= /0

}
∩{ω : Γ(ω)∩U ̸= /0}

]
=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[(

Ω\
{

ω : Γ(ω)∩B
(
xn,2−i) ̸= /0

})
∩{ω : Γ(ω)∩U ̸= /0}

]
,

a measurable set. By what was just shown, there exists σni, a measurable function such
that σni (ω) ∈ Γni (ω)⊆ Γ(ω) for all ω ∈Ω. If x ∈ Γ(ω), then

x ∈ B
(

xn,2−(i+2)
)

whenever xn is close enough to x. Thus both x,σn(i+2) (ω) are in B
(

xn,2−(i+2)
)

and so∣∣σn(i+1) (ω)− x
∣∣< 2−i. It follows that condition 2.) holds. Note that this had nothing to do

with a measure.
Now consider why 2.)⇒ 1.). We have {σn (ω)} ⊆ Γ(ω) and σn is measurable and

∪nσn (ω) equals Γ(ω). Why is Γ a measurable multifunction? Let U be an open set

Γ
− (U) ≡ {ω : Γ(ω)∩U ̸= /0}

=
{

ω : Γ(ω)∩U ̸= /0
}

= ∪nσ
−1
n (U) ∈ C ■

For much more on multifunctions, you should see the book by Hu and Papageorgiou .
The above proof follows the presentation in this book.

48.1.1 A Special Case Which Is Easier

The above is a pretty long and difficult argument to show that Γ− (U) ∈ C for all U open
is equivalent to Γ− (F) for all F closed. However, there is a special case for which this
is much easier to show. Suppose Γ(ω) is not just closed but is also compact. Then as
above, if Γ− (F) ∈ C for all F closed, then Γ− (U) = ∪nΓ− (Fn) where Fn is an increasing
sequence of closed sets whose union is U . This follows from the observation that

Γ(ω)∩U = ∪nΓ(ω)∩Fn

and so to say the set on the left is nonempty is to say that at least one of the sets on the right
is nonempty. Thus if Γ− (F) ∈ C for all F closed, then Γ− (U) ∈ C for all U open. This
requires no special considerations.

Now suppose Γ(ω) is compact for every ω and that Γ− (U)∈C for every U open. Then
let F be a closed set and let {Un} be a decreasing sequence of open sets whose intersection
equals F such that also, for all n, Un ⊇Un+1. Then

Γ(ω)∩F = ∩nΓ(ω)∩Un = ∩nΓ(ω)∩Un

Now because of compactness, the set on the left is nonempty if and only if each set on the
right is also nonempty. Thus Γ− (F) =∩nΓ− (Un)∈C . Thus in this special case, it is much
easier to see that these two conditions for measurability are equivalent. Note that there is
no condition on measures or completeness or any such thing. This proves the following
proposition.
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Proposition 48.1.4 Let X be a Polish space and let Γ : X →P (X) have compact values.
Then Γ is measurable if and only if it is strongly measurable, the latter being the statement
that Γ− (C) is measurable whenever C is closed.

Let Γ be strongly measurable. Let G be the sets G such that Γ− (G) and Γ−
(
GC
)

are
both in C . Then clearly G is closed with respect to complements. If G ∈ G is GC? Is
Γ−
(
GC
)

and Γ−
((

GC
)C) in C ? I guess this is just the definition of what it means to be in

G . Also if you have {Gi} ⊆ G , Then

Γ
− (∪iGi) = ∪iΓ

− (Gi) ∈ C

and so G is closed with respect to countable unions. Hence G must contain the Borel sets
because the strong measurability implies that the closed sets and hence open sets are in G .
Thus Γ− (G) ∈ C whenever G is Borel.

48.1.2 Other Measurability Considerations
Here are some general considerations about measurable multifunctions.

Lemma 48.1.5 Suppose f : K (ω)×Ω→ X ,K ⊆ X . Here X is Polish space, separable
complete metric space, and (Ω,F ) is a measurable space. Also ω→K (ω) is a measurable
multifunction as in Theorem 48.1.3. Also suppose ω → f (x,ω) is measurable and x→
f (x,ω) is continuous. Also suppose that K (ω) ≡ f (K (ω) ,ω). Then you can conclude
that ω → K (ω) is a measurable multifunction. If K (ω) is compact, then it is also
strongly measurable.

Proof: Let {xn (ω)} be a countable dense subset of K (ω) , each xn measurable. Then
if U is open,

{ω : K (ω)∩U ̸= /0}= ∪∞
n=1 f (xn (·) , ·)−1 (U)

and each of the sets in the union is measurable. The latter claim follows from the continuity
of f (·,ω) . If x(ω) is measurable, then we can express it as the limit of simple functions
sn for which ω → f (sn (ω) ,ω) is clearly measurable. Then f (x(ω) ,ω) is the limit of
f (sn (ω) ,ω). The reason for the equality is as follows. It is clear that the right side is
contained in the left. Now if K (ω)∩U ̸= /0, then by definition, f (x,ω) ∈ U for some
x ∈ K (ω) but then by continuity, f (xn (ω) ,ω) ∈U also for some xn (ω) close to x. Thus
the two sets are actually equal. Thus ω →K (ω) is measurable. If K (ω) has compact
values it will be strongly measurable. ■

This lemma gives an easy example of a measurable multifunction having compact val-
ues. In fact this is the one of most interest in what follows. However, we also have the
following general result. It gives the existence of a measurable ε net. This is formulated in
Banach space because it is convenient to add. It could also be formulated in Polish space
with a little more difficulty. One just defines things a little differently.

Proposition 48.1.6 Let ω→K (ω) be a measurable multifunction where K (ω) is a pre
compact set. Recall this means its closure is compact. Also, it must have an ε net for
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each ε > 0. Then for each ε > 0, there exists N (ω) and measurable functions y j, j =
1,2, · · · ,N (ω) , y j (ω) ∈K (ω) , such that

∪N
j=1B(y j (ω) ,ε)⊇K (ω)

for each ω . Also ω → N (ω) is measurable.

Proof: Suppose that ω →K (ω) is a measurable multifunction having compact val-
ues in X a Banach space. Let {σn (ω)} be the measurable selections such that for each
ω,{σn (ω)}∞

n=1 is dense in K (ω). Let y1 (ω) ≡ σ1 (ω) . Now let 2(ω) be the first index
after 1 such that

∥∥σ2(ω) (ω)−σ1 (ω)
∥∥> ε

2 . Thus 2(ω) = k on the measurable set{
ω ∈Ω : ∥σ k (ω)−σ1 (ω)∥> ε

2

}
∩
{

ω ∈Ω : ∩k−1
j=1

∥∥σ j (ω)−σ1 (ω)
∥∥≤ ε

2

}
Suppose 1(ω) ,2(ω) , · · · ,(m−1)(ω) have been chosen such that this is a strictly increas-
ing sequence for each ω, each is a measurable function, and for i, j ≤ m−1,∥∥σ i(ω) (ω)−σ j(ω) (ω)

∥∥> ε

2
.

Each ω → σ i(ω) (ω) is measurable because it equals

∞

∑
k=1

X[i(ω)=k] (ω)σ k (ω) .

Then m(ω) will be the first index larger than (m−1)(ω) such that∥∥σm(ω) (ω)−σ j(ω) (ω)
∥∥> ε

2

for all j (ω) < m(ω). Thus ω → m(ω) is also measurable because it equals k on the
measurable set(

∩
{

ω :
∥∥σ k (ω)−σ j(ω) (ω)

∥∥> ε

2
, j ≤ m−1

})
∩{ω : (m−1)(ω)< k}

∩
(
∪
{

ω :
∥∥σ k−1 (ω)−σ j(ω) (ω)

∥∥≤ ε

2
, j ≤ m−1

})
The top line says it does what is wanted and the second says it is the first after (m−1)(ω)
which does so. Since K (ω) is a pre compact set, it follows that the above measurable set
will be empty for all m(ω) sufficiently large called N (ω) , also a measurable function, and
so the process ends. Let yi (ω)≡ σ i(ω) (ω) . Then this gives the desired measurable ε net.
The fact that

∪N(ω)
i=1 B(yi (ω) ,ε)⊇K (ω)

follows because if there exists z ∈K (ω)\
(
∪N(ω)

i=1 B(yi (ω) ,ε)
)
, then B

(
z, ε

2

)
would have

empty intersection with all of the balls B
(
yi (ω) , ε

3

)
and by density of the σ i (ω) in K (ω) ,

there would be some σ l (ω) contained in B
(
z, ε

3

)
for arbitrarily large l and so the process

would not have ended as shown above. ■
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48.2 Existence of Measurable Fixed Points
48.2.1 Simplices And Labeling
First define an n simplex, denoted by [x0, · · · ,xn], to be the convex hull of the n+1 points,
{x0, · · · ,xn} where {xi−x0}n

i=1 are independent. Thus

[x0, · · · ,xn]≡

{
n

∑
i=0

tixi :
n

∑
i=0

ti = 1, ti ≥ 0

}
.

Since {xi−x0}n
i=1 is independent, the ti are uniquely determined. If two of them are

n

∑
i=0

tixi =
n

∑
i=0

sixi

Then
n

∑
i=0

ti (xi−x0) =
n

∑
i=0

si (xi−x0)

so ti = si for i ≥ 1. Since the si and ti sum to 1, it follows that also s0 = t0. If n ≤ 2,
the simplex is a triangle, line segment, or point. If n ≤ 3, it is a tetrahedron, triangle, line
segment or point. To say that {xi−x0}n

i=1 are independent is to say that {xi−xr}i̸=r are
independent for each fixed r. Indeed, if xi−xr = ∑ j ̸=i,r c j (x j−xr) , then you would have

xi−x0 +x0−xr = ∑
j ̸=i,r

c j (x j−x0)+

(
∑

j ̸=i,r
c j

)
x0

and it follows that xi − x0 is a linear combination of the x j − x0 for j ̸= i, contrary to
assumption.

A simplex S can be triangulated. This means it is the union of smaller sub-simplices
such that if S1,S2 are two simplices in the triangulation, with

S1 ≡
[
z1

0, · · · ,z1
m
]
, S2 ≡

[
z2

0, · · · ,z2
p
]

then
S1∩S2 =

[
xk0 , · · · ,xkr

]
where

[
xk0 , · · · ,xkr

]
is in the triangulation and{

xk0 , · · · ,xkr

}
=
{

z1
0, · · · ,z1

m
}
∩
{

z2
0, · · · ,z2

p
}

or else the two simplices do not intersect. Does there exist a triangulation in which all
sub-simplices have diameter less than ε? This is obvious if n ≤ 2. Supposing it to be true
for n− 1, is it also so for n? The barycenter b of a simplex [x0, · · · ,xn] is just 1

1+n ∑i xi.
This point is not in the convex hull of any of the faces, those simplices of the form
[x0, · · · , x̂k, · · · ,xn] where the hat indicates xk has been left out. Thus [x0, · · · ,b, · · · ,xn]
is a n simplex also. Now in general, if you have an n simplex [x0, · · · ,xn] , its diameter is
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the maximum of |xk−xl | for all k ̸= l. Consider
∣∣b−x j

∣∣ . It equals
∣∣∑n

i=0
1

n+1 (xi−x j)
∣∣ =∣∣∑i̸= j

1
n+1 (xi−x j)

∣∣≤ n
n+1 diam(S). Next consider the kth face of S [x0, · · · , x̂k, · · · ,xn]. By

induction, it has a triangulation into simplices which each have diameter no more than
n

n+1 diam(S). Let these n− 1 simplices be denoted by
{

Sk
1, · · · ,Sk

mk

}
. Then the simplices{[

Sk
i ,b
]}mk,n+1

i=1,k=1 are a triangulation of S such that diam
([

Sk
i ,b
])
≤ n

n+1 diam(S). Do for[
Sk

i ,b
]

what was just done for S obtaining a triangulation of S as the union of what is ob-

tained such that each simplex has diameter no more than
( n

n+1

)2 diam(S). Continuing this
way shows the existence of the desired triangulation.

48.2.2 Labeling Vertices
Next is a way to label the vertices. Let p0, · · · , pn be the first n+ 1 prime numbers. All
vertices of a simplex S = [x0, · · · ,xn] having {xk−x0}n

k=1 independent will be labeled with
one of these primes. In particular, the vertex xk will be labeled as pk if the simplex is
[x0, · · · ,xn]. The value of a simplex will be the product of its labels. Triangulate this
S. Consider a 1 simplex coming from the original simplex

[
xk1 ,xk2

]
, label one end as

pk1 and the other as pk2 . Then label all other vertices of this triangulation which occur
on
[
xk1 ,xk2

]
either pk1 or pk2 . Then obviously there will be an odd number of simplices

in this triangulation having value pk1 pk2 , that is a pk1 at one end and a pk2 at the other.
Suppose that the labeling has been done for all vertices of the triangulation which are on[
x j1 , . . .x jk+1

]
, {

x j1 , . . .x jk+1

}
⊆ {x0, . . .xn}

any k simplex for k ≤ n− 1, and there is an odd number of simplices from the triangula-
tion having value equal to ∏

k+1
i=1 p ji . Consider Ŝ ≡

[
x j1 , . . .x jk+1 ,x jk+2

]
. Then by induc-

tion, there is an odd number of k simplices on the sth face
[
x j1 , . . . , x̂ js , · · · ,x jk+1

]
having

value ∏i ̸=s p ji . In particular the face
[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of simplices

with value ∏i≤k+1 p ji . Now no simplex in any other face of Ŝ can have this value by
uniqueness of prime factorization. Lable the “interior” vertices, those u having all si > 0
in u = ∑

k+2
i=1 six ji , (These have not yet been labeled.) with any of the p j1 , · · · , p jk+2 . Pick a

simplex on the face
[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
which has value ∏i≤k+1 p ji and cross this simplex

into Ŝ. Continue crossing simplices having value ∏i≤k+1 p ji which have not been crossed
till the process ends. It must end because there are an odd number of these simplices hav-
ing value ∏i≤k+1 p ji . If the process leads to the outside of Ŝ, then one can always enter
it again because there are an odd number of simplices with value ∏i≤k+1 p ji available and
you will have used up an even number. When the process ends, the value of the simplex
must be ∏

k+2
i=1 p ji because it will have the additional label p jk+2 on a vertex since if not,

there will be another way out of the simplex. This identifies a simplex in the triangula-
tion with value ∏

k+2
i=1 p ji . Then repeat the process with ∏i≤k+1 p ji valued simplices on[

x j1 , . . . ,x jk+1 , x̂ jk+2

]
which have not been crossed. Repeating the process, entering from

the outside, cannot deliver a ∏
k+2
i=1 p ji valued simplex encountered earlier. This is because

you cross faces labeled ∏i≤k+1 p ji . If the remaining vertex is labeled p ji where i ̸= k+ 2,
then this yields exactly one other face to cross. There are two, the one with the first vertex
p ji and the next one with the new vertex labeled p ji substituted for the first vertex having
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this label. Thus there is either one route in to a simplex or two. Thus, starting at a simplex
labeled ∏i≤k+1 p ji one can cross faces having this value till one is led to the ∏i≤k+1 p ji
valued simplex on the selected face of Ŝ. In other words, the process is one to one in se-
lecting a ∏i≤k+1 p ji vertex from crossing such a vertex on the selected face of Ŝ. Continue
doing this, crossing a ∏i≤k+1 p ji simplex on the face of Ŝ which has not been crossed pre-
viously. This identifies an odd number of simplices having value ∏

k+2
i=1 p ji . These are the

ones which are “accessible” from the outside using this process. If there are any which are
not accessible from outside, applying the same process starting inside one of these, leads
to exactly one other inaccessible simplex with value ∏

k+2
i=1 p ji . Hence these inaccessible

simplices occur in pairs and so there are an odd number of simplices in the triangulation
having value ∏

k+2
i=1 p ji . We refer to this procedure of labeling as Sperner’s lemma. The sys-

tem of labeling is well defined thanks to the assumption that {xk−x0}n
k=1 is independent

which implies that {xk−xi}k ̸=i is also linearly independent. The following is a description
of the system of labeling the vertices.

Lemma 48.2.1 Let [x0, · · · ,xn] be an n simplex with {xk−x0}n
k=1 independent, and let

the first n+ 1 primes be p0, p1, · · · , pn. Label xk as pk and consider a triangulation of
this simplex. Labeling the vertices of this triangulation which occur on

[
xk1 , · · · ,xks

]
with

any of pk1 , · · · , pks , beginning with all 1 simplices
[
xk1 ,xk2

]
and then 2 simplices and so

forth, there are an odd number of simplices
[
yk1 , · · · ,yks

]
of the triangulation contained in[

xk1 , · · · ,xks

]
which have value pk1 , · · · , pks . This for s = 1,2, · · · ,n.

Another way To Explain The Labeling

We now give a brief discussion of the system of labeling for Sperner’s lemma from the
point of view of counting numbers of faces rather than obtaining them with an algorithm.
Let p0, · · · , pn be the first n+ 1 prime numbers. All vertices of a simplex S = [x0, · · · ,xn]
having {xk−x0}n

k=1 independent will be labeled with one of these primes. In particular,
the vertex xk will be labeled as pk. The value of a simplex will be the product of its labels.
Triangulate this S. Consider a 1 simplex coming from the original simplex

[
xk1 ,xk2

]
, label

one end as pk1 and the other as pk2 . Then label all other vertices of this triangulation
which occur on

[
xk1 ,xk2

]
either pk1 or pk2 . Then obviously there will be an odd number of

simplices in this triangulation having value pk1 pk2 , that is a pk1 at one end and a pk2 at the
other. Suppose that the labeling has been done for all vertices of the triangulation which
are on

[
x j1 , . . .x jk+1

]
, {

x j1 , . . .x jk+1

}
⊆ {x0, . . .xn}

any k simplex for k≤ n−1, and there is an odd number of simplices from the triangulation
having value equal to ∏

k+1
i=1 p ji . Consider Ŝ ≡

[
x j1 , . . .x jk+1 ,x jk+2

]
. Then by induction,

there is an odd number of k simplices on the sth face[
x j1 , . . . , x̂ js , · · · ,x jk+1

]
having value ∏i̸=s p ji . In particular the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of

simplices with value ∏
k+1
i=1 p ji := P̂k. We want to argue that some simplex in the triangu-

lation which is contained in Ŝ has value P̂k+1 := ∏
k+2
i=1 p ji . Let Q be the number of k+ 1
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simplices from the triangulation contained in Ŝ which have two faces with value P̂k (A k+1
simplex has either 1 or 2 P̂k faces.) and let R be the number of k+ 1 simplices from the
triangulation contained in Ŝ which have exactly one P̂k face. These are the ones we want
because they have value P̂k+1. Thus the number of faces having value P̂k which is described
here is 2Q+R. All interior P̂k faces being counted twice by this number. Now we count the
total number of P̂k faces another way. There are P of them on the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
and by induction, P is odd. Then there are O of them which are not on this face. These
faces got counted twice. Therefore,

2Q+R = P+2O

and so, since P is odd, so is R. Thus there is an odd number of P̂k+1 simplices in Ŝ.
We refer to this procedure of labeling as Sperner’s lemma. The system of labeling is

well defined thanks to the assumption that {xk−x0}n
k=1 is independent which implies that

{xk−xi}k ̸=i is also linearly independent. Sperner’s lemma is now a consequence of this
discussion.

48.2.3 Measurability Of Brouwer Fixed Points
First, here is a nice measurable selection theorem.

Lemma 48.2.2 Let U be a separable reflexive Banach space. Suppose there is a sequence{
u j (ω)

}∞

j=1 in U, where each ω → u j (ω) is measurable and for each ω, supi ∥ui (ω)∥<
∞. Then, there exists u(ω) ∈U such that ω → u(ω) is measurable, and a subsequence
n(ω), that depends on ω , such that the weak limit

lim
n(ω)→∞

un(ω) (ω) = u(ω)

holds.

Proof: Let {zi}∞

i=1 be a countable dense subset of U ′. Let h : U →∏
∞
i=1R be defined

by

h(u) =
∞

∏
i=1
⟨zi,u⟩ .

Let X = ∏
∞
i=1R with the product topology. Then, this is a Polish space with the metric

defined as d (x,y) = ∑
∞
i=1

|xi−yi|
1+|xi−yi|2

−i. By compactness, for a fixed ω,the h(un (ω)) are
contained in a compact subset of X . Next, define

Γn (ω) = ∪k≥nh(uk (ω)),

which is a nonempty compact subset of X . Moreover, Γn (ω) is a measurable multifunction
into X .

Next, we claim that ω → Γn (ω) is a measurable multifunction.
The proof of the claim is as follows. It is necessary to show that Γ−n (O) defined as

{ω : Γn (ω)∩O ̸= /0} is measurable whenever O is open. It suffices to verify this for O a
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basic open set in the topology of X . Thus let O = ∏
∞
i=1 Oi where each Oi is a proper open

subset of R only for i ∈ { j1, · · · , jm} . Then,

Γ
−
n (O) = ∪k≥n∩m

r=1
{

ω :
〈
z jr ,uk (ω)

〉
∈ O jr

}
,

which is a measurable set since uk is measurable.
Then, it follows that ω → Γn (ω) is strongly measurable because it has compact values

in X , thanks to Tychonoff’s theorem. Thus Γ−n (H) = {ω : H ∩Γn (ω) ̸= /0} is measurable
whenever H is a closed set. Now, let Γ(ω) be defined as ∩nΓn (ω) and then for H closed,

Γ
− (H) = ∩nΓ

−
n (H)

and each set in the intersection is measurable, so this shows that ω→ Γ(ω) is also measur-
able. Therefore, it has a measurable selection g(ω). It follows from the definition of Γ(ω)
that there exists a subsequence n(ω) such that

g(ω) = lim
n(ω)→∞

h
(
un(ω) (ω)

)
in X .

In terms of components, we have

gi (ω) = lim
n(ω)→∞

〈
zi,un(ω) (ω)

〉
.

Furthermore, there is a further subsequence, still denoted with n(ω), such that un(ω) (ω)→
u(ω) weakly. This means that for each i,

gi (ω) = lim
n(ω)→∞

〈
zi,un(ω) (ω)

〉
= ⟨zi,u(ω)⟩ .

Thus, for each zi in a dense set, ω → ⟨zi,u(ω)⟩ is measurable. Since the zi are dense,
this implies ω → ⟨z,u(ω)⟩ is measurable for every z ∈ U ′ and so by the Pettis theorem,
ω → u(ω) is measurable. ■

There is an easy version of this which follows from the same arguments.

Corollary 48.2.3 Let K (ω) be a compact subset of a separable metric space X and sup-
pose

{
u j (ω)

}∞

j=1 ⊆ K (ω) with each ω → u j (ω) measurable into X. Then there exists
u(ω) ∈ K (ω) such that ω→ u(ω) is measurable into X and a subsequence n(ω) depend-
ing on ω such that limn(ω)→∞ un(ω) (ω) = u(ω).

Proof: Define
Γn (ω) = ∪k≥nuk (ω),

This is a nonempty compact subset of K (ω)⊆ X . I claim that ω→ Γn (ω) is a measurable
multifunction into X . It is necessary to show that Γ−n (O) defined as {ω : Γn (ω)∩O ̸= /0} is
measurable whenever O is open in X . For ω ∈ Γ−n (O) it means that some uk (ω)∈O,k≥ n.
Thus Γ−n (O) = ∪k≥nu−1

k (O) and this is measurable by the assumption that each uk is.
Since Γ−n (ω) is compact, it is also strongly measurable by Proposition 48.1.4, meaning
that Γ− (H) is measurable whenever H is closed. Now, let Γ(ω) be defined as

Γ(ω)≡ ∩nΓn (ω)
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and then for H closed,
Γ
− (H) = ∩nΓ

−
n (H)

and each set in the intersection is measurable, so this shows that ω→Γ(ω) is also (strongly)
measurable. Therefore, it has a measurable selection u(ω). It follows from the definition
of Γ(ω) that there exists a subsequence n(ω) such that u(ω) = limn(ω)→∞ un(ω) (ω). ■

Now we consider the case of fixed points for simplices.
Suppose f(·,ω) : S→ S for S a simplex. Then from the Brouwer fixed point theorem,

there is a fixed point x(ω) provided f(·,ω) is continuous. Can it be arranged to have
ω→ x(ω) also measurable? In fact, it can, and this is shown here. In other words, if P(ω)
are the fixed points of f (·,ω) , there exists a measurable selection in P(ω).

S≡ [x0, · · · ,xn] is a simplex in Rn. Assume {xi−x0}n
i=1 are linearly independent. Thus

a typical point of S is of the form
n

∑
i=0

tixi

where the ti are uniquely determined and the map x→ t is continuous from S to the compact
set
{

t ∈ Rn+1 : ∑ ti = 1, ti ≥ 0
}

.
To see this, suppose xk → x in S. Let xk ≡ ∑

n
i=0 tk

i xi with x defined similarly with tk
i

replaced with ti, x≡∑
n
i=0 tixi. Then

xk−x0 =
n

∑
i=0

tk
i xi−

n

∑
i=0

tk
i x0 =

n

∑
i=1

tk
i (xi−x0)

Thus

xk−x0 =
n

∑
i=1

tk
i (xi−x0) , x−x0 =

n

∑
i=1

ti (xi−x0)

Say tk
i fails to converge to ti for all i ≥ 1. Then there exists a subsequence, still denoted

with superscript k such that for each i = 1, · · · ,n, it follows that tk
i → si where si ≥ 0 and

some si ̸= ti. But then, taking a limit, it follows that

x−x0 =
n

∑
i=1

si (xi−x0) =
n

∑
i=1

ti (xi−x0)

which contradicts independence of the xi− x0. It follows that for all i ≥ 1, tk
i → ti. Since

they all sum to 1, this implies that also tk
0 → t0. Thus the claim about continuity is verified.

Let f(·,ω) : S→ S be continuous such that ω → f(x,ω) is measurable. When doing
f(·,ω) to a point ∑

n
i=0 tixi, one obtains another point of S denoted as ∑

n
i=0 si (ω)xi. The

coefficients si must be measurable functions. This is because

ω → f(x,ω) =
n

∑
i=0

si (ω)xi

and the left side is measurable so it follows the right is also. Now as noted above, the map
which takes a point of S to its coefficients is continuous and so each si is measurable as a
function of ω . Note that if x is replaced with x(ω) , with ω → x(ω) measurable, the same
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conclusion can be drawn about the si (ω). This is because, thanks to the continuity of f in
its first argument, the function on the left in the above is measurable.

Label x j as p j where p0, · · · , pn are the first n+ 1 prime numbers. Thus the vertices
of S have been labeled. Next triangulate S so that all simplices have diameter less than ε .
If [y0, · · · ,yn] is one of these small vertices, each is of the form ∑

n
i=0 tixi where ti ≥ 0 and

∑i ti = 1. Define rk (ω) ≡ sk (ω)/tk if tk > 0 and ∞ if tk = 0. Thus this is a measurable
function.

Ek ≡ ∩ j ̸=k [ω : rk (ω)≤ r j (ω)] , F0 ≡ E0,F1 ≡ E1 \E0, · · · ,Fn ≡ En \∪n−1
i=0 Ei

Then p(yi,ω) will be the label placed on yi. It equals

p(yi,ω)≡
n

∑
k=0

pkXFk (ω)

obviously a measurable function. Note also that this new method of labeling does not
contradict the original labels placed on the vertices xi. This is because for xi, ti = 1 and
all other t j = 0 so the only ratio that is finite will be si/ti. All others are ∞ by definition.
As for the vertices which are on the kth face [x0, · · · , x̂k, · · · ,xn] , these will be labeled from
the list {p0, · · · , p̂k, · · · , pn} because tk = 0 for each of these and so rk (ω) = ∞. By the
Sperner’s lemma procedure described above, there are an odd number of simplices having
value ∏i̸=k pi on the kth face and an odd number of simplices in the triangulation of S for
which the product of the labels on their vertices equals p0 p1 · · · pn ≡ Pn. We call this the
value of the simplex. Thus if [y0, · · · ,yn] is one of these simplices, and p(yi,ω) is the label
for yi, a measurable function of ω,

n

∏
i=0

p(yi,ω) =
n

∏
i=0

pi ≡ Pn

For ω ∈ Fk, what is rk (ω)? Could it be larger than 1? rk (ω) is certainly finite because
at least some t j ̸= 0 since they sum to 1. Thus, if rk (ω) > 1, you would have sk (ω) > tk.
The s j sum to 1 and so some s j (ω)< t j since otherwise, the sum of the t j equalling 1 would
require the sum of the s j to be larger than 1. Hence rk (ω) was not really the smallest so
ω /∈ Fk. Thus rk (ω)≤ 1. Hence sk (ω)≤ tk.

Let S denote those simplices whose value is Pn for some ω . In other words, if
{y0, · · · ,yn} are the vertices of one of these simplices, and

ys =
n

∑
i=0

ts
i xi

then for some ω, rks (ω) ≤ r j (ω) for all j ̸= ks and {k0, · · · ,kn} = {0, · · · ,n}. There are
finitely many of these simplices, so S ≡ {S1, · · · ,Sm}. Let F1 ⊆Ω be defined by

F1 ≡

{
ω :

n

∏
i=0

p(yi,ω) = Pn

}
: [y0, · · · ,yn] = S1
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If F1 = Ω, then stop. If not, let

F2 ≡

{
ω /∈ F1 :

n

∏
i=0

p(yi,ω) = Pn

}
: [y0, · · · ,yn] = S2

Continue this way obtaining disjoint measurable sets Fj whose union is all of Ω. The
union is Ω because every ω is associated with at least one of the Si. Now for ω ∈ Fk
and [y0, · · · ,yn] = Sk, it follows that ∏

n
i=0 p(yi,ω) = Pn. For ω ∈ Fk, let b(ω) denote the

barycenter of Sk. Thus ω→ b(ω) is a measurable function, being constant on a measurable
set. Thus we let b(ω) = ∑

m
i=1 XFi (ω)bi where bi is the barycenter of Si.

Now do this for a sequence εk→ 0 where bk (ω) is a barycenter as above. By Lemma
48.2.2 there exists x(ω) such that ω → x(ω) is measurable and a sequence{

bk(ω)

}∞

k(ω)=1 , lim
k(ω)→∞

bk(ω) (ω) = x(ω)

This x(ω) is also a fixed point.
Consider this last claim. x(ω) = ∑

n
i=0 ti (ω)xi and after applying f(·,ω) , the result is

∑
n
i=0 si (ω)xi. Then bk(ω) ∈ σ k (ω) where σ k (ω) is a simplex having vertices{

yk
0 (ω) , · · · ,yk

n (ω)
}

and the value of
[
yk

0 (ω) , · · · ,yk
n (ω)

]
is Pn. Re ordering these if necessary, we can assume

that the label for yk
i (ω) = pi which implies that, as noted above,

si (ω)

ti (ω)
≤ 1, si (ω)≤ ti (ω)

the ith coordinate of f
(
yk

i (ω) ,ω
)

with respect to the original vertices of S decreases and
each i is represented for i = {0,1, · · · ,n} . Thus

yk
i (ω)→ x(ω)

and so the ith coordinate of yk
i (ω) , tk

i (ω) must converge to ti (ω). Hence if the ith coordi-
nate of f

(
yk

i (ω) ,ω
)

is denoted by sk
i (ω) ,

sk
i (ω)≤ tk

i (ω)

By continuity of f, it follows that sk
i (ω)→ si (ω) . Thus the above inequality is preserved

on taking k→ ∞ and so
0≤ si (ω)≤ ti (ω)

this for each i. But these si add to 1 as do the ti and so in fact, si (ω) = ti (ω) for each i and
so f(x(ω) ,ω) = x(ω). This proves the following theorem which gives the existence of a
measurable fixed point.

Theorem 48.2.4 Let S be a simplex [x0, · · · ,xn] such that {xi−x0}n
i=1 are independent.

Also let f(·,ω) : S→ S be continuous for each ω and ω→ f(x,ω) is measurable, meaning
inverse images of sets open in S are in F where (Ω,F ) is a measurable space. Then there
exists x(ω) ∈ S such that ω → x(ω) is measurable and f(x(ω) ,ω) = x(ω).
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Corollary 48.2.5 Let K be a closed convex bounded subset of Rn. Let f(·,ω) : K → K
be continuous for each ω and ω → f(x,ω) is measurable, meaning inverse images of sets
open in K are in F where (Ω,F ) is a measurable space. Then there exists x(ω) ∈ K such
that ω → x(ω) is measurable and f(x(ω) ,ω) = x(ω).

Proof: Let S be a large simplex containing K and let P be the projection map onto
K. Consider g(x,ω)≡ f(P(x) ,ω) . Then g satisfies the necessary conditions for Theorem
48.2.4 and so there exists x(ω) ∈ S such that ω → x(ω) is measurable and g(x(ω) ,ω) =
x(ω) . But this says x(ω) ∈ K and so g(x(ω) ,ω) = f(x(ω) ,ω). ■

Much shorter proof

The above gives a proof of a measurable fixed point as part of a proof of the Brouwer
fixed point theorem directly but it is a lot easier if you simply begin with the existence of
the Brouwer fixed point and show it is measurable. We sent the above to be considered
for publication and the referee pointed this out. I totally missed it because I had forgotten
about the Kuratowski selection theorem. The functions f : Ω×E → R in which f (·,ω) is
continuous are called Caratheodory functions.

Kuratowski [82] which is presented next. It is Theorem 11.1.11 in this book. I will give
an alternate proof which comes from the measurable selection result of Corollary 48.2.3.

Theorem 48.2.6 Let E be a compact metric space and let (Ω,F ) be a measure space.
Suppose ψ : E×Ω→R has the property that x→ψ (x,ω) is continuous and ω→ψ (x,ω)
is measurable. Then there exists a measurable function, f having values in E such that

ψ ( f (ω) ,ω) = max
x∈E

ψ (x,ω) .

Furthermore, ω → ψ ( f (ω) ,ω) is measurable.

Proof: Let C = {ei}∞

i=1 be a countable dense subset of E. For example, take the union
of 1/2n nets for all n. Let Cn ≡ {e1, ...,en} . Let ω → fn (ω) be measurable and satisfy

ψ ( fn (ω) ,ω) = sup
x∈Cn

ψ (x,ω)

This is easily done as follows. Let Bk ≡
{

ω : ψ (ek,ω)≥ ψ (e j,ω) for all j ̸= k
}
. Then

let A1 ≡ B1 and if A1, ...,Ak have been chosen, let Ak+1 ≡ Bk+1 \
(
∪k

j=1Bk

)
. Thus each Ak

is measurable and you let fn (ω) ≡ ek for ω ∈ Ak. Using Corollary 48.2.3, there is mea-
surable f (ω) and a subsequence n(ω) such that fn(ω) (ω)→ f (ω) . Then by continuity,
ψ ( f (ω) ,ω) = limn(ω)→∞ ψ

(
fn(ω) (ω) ,ω

)
and this is an increasing sequence in this limit.

Hence ψ ( f (ω) ,ω)≥ supx∈Cn
ψ (x,ω) for each n and so ψ ( f (ω) ,ω)≥ supx∈C ψ (x,ω) =

supx∈E ψ (x,ω). Since f is measurable, it is the limit of a sequence { fn (ω)} such that fn
has finitely many values occuring on measurable sets, Theorem 11.3.10. Hence, by con-
tinuity, ψ ( f (ω) ,ω) = limn→∞ ψ ( fn (ω) ,ω) and since ω → ψ ( fn (ω) ,ω) is measurable,
so is ψ ( f (ω) ,ω). ■

One can generalize fairly easily. It is the same argument but carrying around more ω .
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Theorem 48.2.7 Let E (ω) be a compact metric space in a separable metric space (X ,d)
and that ω → E (ω) is a measurable multifunction where (Ω,F ) be a measure space.
Suppose ψω : E (ω)×Ω→ R has the property that x→ ψω (x,ω) is continuous and ω →
ψω (x(ω) ,ω) is measurable if x(ω) ∈ E (ω) and ω → x(ω) is measurable. Then there
exists a measurable function, f with f (ω) ∈ E (ω) such that

ψω ( f (ω) ,ω) = max
x∈E(ω)

ψω (x,ω) .

Furthermore, ω → ψω ( f (ω) ,ω) is measurable.

Proof: Let C (ω) = {ei (ω)}∞

i=1 be a countable dense subset of E (ω) with each ei (ω)
measurable. Since ω → E (ω) is measurable, such a countable dense subset exists. Let
Cn (ω)≡ {e1 (ω) , ...,en (ω)} . Let ω → fn (ω) be measurable and satisfy

ψω ( fn (ω) ,ω) = sup
x∈Cn

ψ (x,ω)

This is easily done as follows. Let

Bk ≡
{

ω : ψω (ek (ω) ,ω)≥ ψω (e j (ω) ,ω) for all j ̸= k
}
.

Then let A1≡B1 and if A1, ...,Ak have been chosen, let Ak+1≡Bk+1\
(
∪k

j=1Bk

)
. Thus each

Ak is measurable and you let fn (ω)≡ ek (ω) for ω ∈Ak, so fn (ω)∈E (ω). Using Corollary
48.2.3, there is measurable f (ω) and a subsequence n(ω) such that fn(ω) (ω)→ f (ω) .
Then by continuity,

ψω ( f (ω) ,ω) = lim
n(ω)→∞

ψω

(
fn(ω) (ω) ,ω

)
and this is an increasing sequence in this limit. Hence

ψω ( f (ω) ,ω)≥ sup
x∈Cn(ω)

ψω (x,ω)

for each n and so

ψω ( f (ω) ,ω)≥ sup
x∈C(ω)

ψω (x,ω) = sup
x∈E(ω)

ψω (x,ω) .

Since f is measurable, it is the limit of a sequence { fn (ω)} such that fn has finitely
many values on measurable sets, Theorem 11.3.10. We can assume each value of fn (ω) is
in E (ω). Indeed, repeat that theorem’s proof applied to C (ω) , letting fn (ω) be the ek (ω)
in Cn (ω) closest to f (ω) as done there where this happens on a measurable set where
in fact ek (ω) is maximally close to f (ω) out of all ei (ω) , i ≤ n. Hence, by continuity,
ψω ( f (ω) ,ω) = limn→∞ ψω ( fn (ω) ,ω) and since ω → ψω ( fn (ω) ,ω) is measurable, so
is ψω ( f (ω) ,ω). ■

Note the following: If you have the simpler situation where ψ (x,ω) defined on X×Ω

with x→ ψ (x,ω) continuous and ω → ψ (x,ω) measurable but E (ω) a compact mea-
surable multifunction as above, then the conditions will hold because you would have
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ω→ψ (x(ω) ,ω) is measurable if x(ω) is. Indeed, x(ω) is the limit of a sequence {xn (ω)}
such that xn has finitely many values on measurable sets, Theorem 11.3.10. Hence, by con-
tinuity, ψ (x(ω) ,ω) = limn→∞ ψ (xn (ω) ,ω) and since ω → ψ (xn (ω) ,ω) is measurable,
so is ψ (x(ω) ,ω).

Now with the marvelous Kuratowski theorem, one gets the following interesting result
on measurability of Brouwer fixed points.

Theorem 48.2.8 Let K be a closed convex bounded subset of Rn. Let f(·,ω) : K→ K be
continuous for each ω and ω → f(x,ω) is measurable, meaning inverse images of sets
open in K are in F where (Ω,F ) is a measurable space. Then there exists x(ω) ∈ K such
that ω → x(ω) is measurable and f(x(ω) ,ω) = x(ω).

Proof: Simply consider E = K and ψ (x,ω)≡−|x− f(x,ω)| . It has a maximum x(ω)
for each ω thanks to continuity of f(·,ω). Thanks to the Brouwer fixed point theorem,
this x(ω) must be a fixed point. By the above Kuratowski theorem, one of these x(ω) is
measurable. Obviously, by continuity of f(·,ω), ω → f(x(ω) ,ω) is measurable. ■

You can also let K be replaced with K (ω) where ω → K (ω) is measurable and each
K (ω) is closed, bounded, and convex.

Corollary 48.2.9 Let K (ω) be a closed convex bounded subset of Rn and let ω → K (ω)
be a measurable multifunction for ω ∈ Ω with (Ω,F ) a measurable space. Let fω (·,ω) :
K (ω)→ K (ω) be continuous, ω → fω (x(ω) ,ω) is measurable whenever ω → x(ω) is
measurable and x(ω) ∈ K (ω). Then there exists a measurable fixed point

x(ω) , fω (x(ω) ,ω) = x(ω) .

Proof: Consider ψω (x,ω)≡−|fω (x(ω) ,ω)−x(ω)| . By the Brower fixed point the-
orem, the maximum for fixed ω is 0. Therefore, there exists such a measurable ω→ x(ω) ,
a fixed point, from Theorem 48.2.7. ■

You can show that for K (ω) a closed convex bounded subset of Rn which is also a
measurable multifunction, then the projection map ω→ P(ω)x is measurable. Suppose f :
Rn×Ω→Rn and you know that x→ f(x,ω) is continuous. Consider f(P(ω)x,ω) . Since
P(ω) is a continuous map on Rn,x→ f(P(ω)x,ω) is continuous. If x(ω) is measurable
with values in K (ω) so it is a pointwise limit of xn (ω) having finitely many values on
measurable sets, then one can assume all these values of xn (ω) are in K (ω) since you
could consider P(ω)xn (ω)→ P(ω)x(ω) = x(ω) and the measurability of ω → P(ω)x
implies ω → P(ω)xn (ω) is measurable. Thus

f(x(ω) ,ω) = lim
n→∞

f(xn (ω) ,ω)

and by assumption this last is measurable because it is a measurable function on each of
several measurable sets. Thus from Corollary 48.2.9, there is a measurable fixed point
x(ω) ∈ K (ω) for f so

f(P(ω)x(ω) ,ω) = f(x(ω) ,ω) = x(ω) .

This shows the following corollary.
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Corollary 48.2.10 Let K (ω) be a closed convex bounded subset of Rn and let ω→ K (ω)
be a measurable multifunction for ω ∈ Ω with (Ω,F ) a measurable space. Let f(·,ω) :
K (ω)→ K (ω) and x→ f(x,ω) continuous on Rn. Suppose also ω → f(x,ω) is mea-
surable for each fixed x. Then there exists a measurable fixed point x(ω) , f(x(ω) ,ω) =
x(ω) ,x(ω) ∈ K (ω) .

48.2.4 Measurability Of Schauder Fixed Points
Now we consider the Schauder fixed point theorem. Let ω → K (ω) be a measurable
multifunction having closed convex values. Here K (ω) ⊆ X a separable Banach space.
Also assume

f (·,ω) is continuous, f (·,ω) : K (ω)→ K (ω) ,

ω → f (x,ω) is measurable

Next we have the following approximation result.

Lemma 48.2.11 Let f (·,ω) be as above and f (K (ω) ,ω) ⊆ K (ω) for K (ω) convex and
closed and ω → K (ω) a measurable mutifunction. Suppose also that f (K (ω) ,ω) is a
compact set. For each r > 0 and ω, there exists a finite set of points{

y1 (ω) , · · · ,yn(ω) (ω)
}
⊆ f (K (ω) ,ω),ω → yi (ω) measurable

and continuous functions ψ i (·,ω) defined on f (K (ω) ,ω) such that for y ∈ f (K (ω) ,ω),

n(ω)

∑
i=1

ψ i (y,ω) = 1, (48.2.1)

ψ i (y,ω) = 0 if y /∈ B(yi (ω) ,r) , ψ i (y,ω)> 0 if y ∈ B(yi (ω) ,r) .

If

fr (x,ω)≡
n(ω)

∑
i=1

yi (ω)ψ i ( f (x,ω) ,ω), (48.2.2)

then whenever x ∈ K (ω),
∥ f (x,ω)− fr (x,ω)∥ ≤ r.

Proof: Using the compactness of f (K (ω) ,ω), Proposition 48.1.6 says there exist mea-
surable functions yi (ω){

y1 (ω) , · · · ,yn(ω) (ω)
}
⊆ f (K (ω) ,ω)⊆ K (ω)

such that
{B(yi (ω) ,r)}n

i=1

covers f (K,ω). Let
φ i (y,ω)≡ (r−∥y− yi (ω)∥)+
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Thus φ i is continuous in y and measurable in ω for fixed y. Also φ i (y,ω) > 0 if y ∈
B(yi (ω) ,r) and φ i (y,ω) = 0 if y /∈ B(yi (ω) ,r). For y ∈ f (K,ω), let

ψ i (y,ω)≡ φ i (y,ω)

(
n(ω)

∑
j=1

φ j (y,ω)

)−1

.

From the formula, ω → ψ i (y,ω) is measurable. Also 48.2.1 is satisfied. Indeed the de-
nominator is not zero because y is in one of the B(yi (ω) ,r). Thus it is obvious that the
sum of these equals 1 on f (K,ω). Now let fr be given by 48.2.2 for x ∈ K (ω). For such x,

f (x,ω)− fr (x,ω) =
n

∑
i=1

( f (x,ω)− yi (ω))ψ i ( f (x,ω) ,ω)

Thus

f (x,ω)− fr (x,ω) = ∑
{i: f (x)∈B(yi(ω),r)}

( f (x,ω)− yi (ω))ψ i ( f (x,ω) ,ω)

+ ∑
{i: f (x,ω)/∈B(yi(ω),r)}

( f (x,ω)− yi (ω))ψ i ( f (x,ω) ,ω)

= ∑
{i: f (x,ω)−yi(ω)∈B(0,r)}

( f (x,ω)− yi (ω))ψ i ( f (x,ω) ,ω) =

∑
{i: f (x,ω)−yi(ω)∈B(0,r)}

( f (x,ω)− yi (ω))ψ i ( f (x,ω) ,ω) ∈ B(0,r)

because 0 ∈ B(0,r), B(0,r) is convex, and 48.2.1. f (x,ω)− fr (x,ω) is a convex combi-
nation of vectors in B(0,r). ■

We think of fr (·,ω) as an approximation to f (·,ω). In fact it is uniformly within r of
f (·,ω) on K (ω). The next lemma shows that this fr (·,ω) has a fixed point. This is the
main result and comes from the Brouwer fixed point theorem in Rn. It is an approximate
fixed point.

Lemma 48.2.12 Let f (K (ω) ,ω) be compact. For each r > 0, there exists xr (ω)∈ convex
hull of f (K (ω) ,ω)⊆ K (ω) such that

fr (xr (ω) ,ω) = xr (ω) , ∥ fr (x,ω)− f (x,ω)∥< r for all x ∈ K (ω)

and ω → xr (ω) is measurable.

Proof: The upper limit in the sum of the above lemma n(ω) is a measurable function.
One can partition the measure space according to the value of n(ω). This gives a countable
set of disjoint measurable subsets {Ωn}∞

n=1 in the partition such that on the measurable
set Ωn, n(ω) = n. Specializing to the measurable space consisting of Ωn, we will assume
here that n(ω) = n and show that there exists a measurable fixed point xr (ω) ∈ K (ω) for
ω ∈ Ωn. Then the result follows by letting xr (ω) be that which has been obtained on Ωn.
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Thus, from now on, simply denote as n the upper limit and let ω ∈ Ωn. If fr (xr,ω) = xr
and

xr =
n

∑
i=1

aiyi (ω)

for ∑
n
i=1 ai = 1 and the yi described in the above lemma, we need

fr (xr,ω) ≡
n

∑
i=1

yi (ω)ψ i ( f (xr,ω) ,ω)

=
n

∑
j=1

y j (ω)ψ j

(
f

(
n

∑
i=1

aiyi,ω

)
,ω

)
=

n

∑
j=1

a jy j (ω) = xr.

Also, if this is satisfied, then we have the desired fixed point.
This will be satisfied if for each j = 1, · · · ,n,

a j = ψ j

(
f

(
n

∑
i=1

aiyi,ω

)
,ω

)
(48.2.3)

so, let

Σn−1 ≡

{
a ∈ Rn :

n

∑
i=1

ai = 1, ai ≥ 0

}
and let h(·,ω) : Σn−1→ Σn−1 be given by

h(a,ω) j ≡ ψ j

(
f

(
n

∑
i=1

aiyi,ω

)
,ω

)

Can we obtain a fixed point a(ω) such that ω → a(ω) is measurable? Since h(·,ω) is a
continuous function of a and ω → h(x,ω) is measurable, such a measurable fixed point
exists thanks to Theorem 48.2.4 or the much easier Theorem 48.2.8 above. Then xr (ω) =

∑
n
i=1 ai (ω)yi (ω) so xr is measurable. ■

The following is the Schauder fixed point theorem for measurable fixed points.

Theorem 48.2.13 Let ω → K (ω) be a measurable multifunction which has convex and
closed values in a separable Banach space. Let f (·,ω) : K (ω)→ K (ω) be continuous
and ω → f (x,ω) is measurable and f (K (ω) ,ω) is compact. Then f (·,ω) has a fixed
point x(ω) such that ω → x(ω) is measurable.

Proof: Recall that f (xr (ω) ,ω)− fr (xr (ω) ,ω) ∈ B(0,r) and fr (xr (ω) ,ω) = xr (ω)
with xr (ω) ∈ convex hull of f (K (ω) ,ω) ⊆ K (ω) . Here xr is measurable. By Lemma
48.2.2 there is a measurable function x(ω) which equals the weak limr(ω)→0 xr(ω) (ω) .

However, since f (K (ω) ,ω) is compact, there is a subsequence still denoted with r (ω)
such that f

(
xr(ω),ω

)
converges strongly to some x ∈ f (K (ω) ,ω). It follows that

fr(ω)

(
xr(ω) (ω) ,ω

)
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also converges to x strongly. But this equals xr(ω) (ω) which shows that xr(ω) (ω) converges
strongly to the measurable x(ω). Therefore,

f (x(ω) ,ω) = lim
r(ω)→0

f
(
xr(ω) (ω) ,ω

)
= lim

r(ω)→0
fr(ω)

(
xr(ω) (ω) ,ω

)
= lim

r(ω)→0
xr(ω) (ω) = x(ω) . ■

As a special case of the above, here is a corollary which generalizes the earlier result
on the Brouwer fixed point theorem.

Corollary 48.2.14 Let (Ω,F ) be a measurable space and let K (ω) be a convex and com-
pact set in Rn and ω → K (ω) is a measurable multifunction. Also let f(·,ω) : K (ω)→
K (ω) be continuous and for fixed x ∈ Rn,ω → f(x,ω) is measurable. Then there exists a
fixed point x(ω) for f(·,ω) such that ω → x(ω) is measurable.

Note that in all of these considerations, there is no loss of generality in assuming f(·,ω)
is defined on the whole space X thanks to the theorem which says that a continuous function
defined on a convex closed set can be extended to a continuous function defined on the
whole space.

In the case of a single set, the following corollary is also obtained.

Corollary 48.2.15 Let X be a Banach space and let K be a compact convex subset. Let
f : K×Ω→ K satisfy

x → f (x,ω) is continous

ω → f (x,ω) is measurable

Then f (·,ω) has a fixed point x(ω) such that ω → x(ω) is measurable.

Proof: The set K has a countable dense subset {ki}. You could consider Y as the closure
in X of the span of these ki. Thus Y is a separable Banach space which contains K. Now
apply the above result. ■

If X is only a normed linear space, you could just consider its completion and apply the
above result. Since K is compact, it is automatically complete with respect to the norm on
X .

What of the Schaefer fixed point theorem? Is there a measurable version of it? A
map h : X → X for X a Banach space is a compact map if it is continuous and it takes
bounded sets to precompact sets. If you have such a compact map and it maps a closed
ball to a closed ball, then it must have a fixed point by the Schauder theorem. If you have
h = f (·,ω) where ω→ f (x,ω) is measurable, x→ f (x,ω) compact, then if f (·,ω) maps
a closed ball to a closed ball, it must have a measurable fixed point x(ω) by the above.
Now the following is a version of the Schaefer fixed point theorem which can be used to
get measurable fixed points.

Theorem 48.2.16 Let f (·,ω) : X → X be a compact map (takes bounded sets to precom-
pact sets and continuous) where X is a Banach space. Also suppose that

sup{z ∈ f (B(0,r) ,ω)} ≤C (r)

independent of ω . Here ω → f (x,ω) is measurable for each x ∈ X. Then either
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1. There is a measurable fixed point x(ω) for t f (·,ω) for all t ∈ [0,1] or

2. For every r > 0, there exists ω and t ∈ (0,1) such that if x satisfies x = t f (x,ω), then
∥x∥> r .

Proof: Suppose that alternative 2 does not hold and yet alternative 1 also fails to hold.
Since alternative 2 does not hold, there exists M0 such that for all ω, and for all t ∈ (0,1) ,
if x = t f (x,ω) , then ∥x(ω)∥ ≤ M0. If alternative 1 fails, then there is some t with no
measurable fixed point x(ω) for t f (·,ω) . So let M > M0. By the measurable Schauder
fixed point theorem, Theorem 48.2.13, there is measurable xM (ω) such that

xM (ω) = t (rM f (xM (ω) ,ω)) , rMy = y if ∥y∥ ≤M,rMy =
My
∥y∥

if ∥y∥> M

Thus rM is continuous and so rM f (·,ω) is continuous and compact. We must have

∥ f (xM (ω̂) , ω̂)∥> M

for some ω̂ and rM f (xM (ω̂) ,ω) = M f (xM(ω̂),ω̂)
∥ f (xM(ω̂),ω̂)∥ since if ∥ f (xM (ω) ,ω)∥ ≤ M for all ω,

then
rM f (xM (ω) ,ω) = f (xM (ω) ,ω)

and there would be a measurable fixed point for this t. But then, for this ω̂

xM (ω̂) = t (rM f (xM (ω̂) , ω̂)) = t
M f (xM (ω̂) , ω̂)

∥ f (xM (ω̂) , ω̂)∥
= t̂ f (xM (ω̂) , ω̂)

From the hypotheses that 2 does not hold, ∥xM (ω̂)∥ ≤ M0. Thus ∥ f (xM (ω̂) , ω̂)∥ > M.
But this requires that C (M0) > M for all M which is clearly impossible. Hence there is a
measurable fixed point for t f (·,ω) for all t ∈ [0,1]. ■

We will use this very interesting Shaefer theorem to give an easy to use criterion for
showing the existence of measurable solutions to ordinary differential equations.

Lemma 48.2.17 Let X ≡ C ([0,T ] ;Rn) and let f(·, ·,ω) : [0,T ]×Rn → Rn where ω ∈ Ω

for (Ω,F ) a measurable space and let (t,x)→ f(t,x,ω) be continuous on [0,T ]×Rn.
Also suppose a uniform estimate of the form

sup
t∈[0,T ],|x|≤r

|f(t,x,ω)| ≤C (r) independent of ω (48.2.4)

If f is B ([0,T ]×Rn)×F measurable and ω → x0 (ω) is F measurable, then for y ∈ X ,
define F (y,ω) ∈ X by

F (y,ω)(t)≡
∫ t

0
f(s,y(s)+x0 (ω) ,ω)ds

Then
ω → F (y,ω)

is measurable into X.
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Proof: The space X is separable and so by the Riesz representation theorem and the
Pettis theorem, it suffices to verify that for y ∈ X ,

ω →
∫ T

0

∫ t

0
f(s,y(s)+x0 (ω) ,ω)ds ·σ (t)dµ (t)

is measurable whenever σ ∈ L∞ ([0,T ] ,µ) and µ is a finite Radon measure. By product
measurability, there are simple functions sn (t,x,ω) converging to f(t,x,ω) pointwise and
we can have |sn (t,x,ω)| ≤ |f(t,x,ω)| where

sn (t,x,ω) =
mn

∑
i=1

ciXEn
i
(t,x,ω) ,En

i ∈B ([0,T ]×Rn)×F .

Therefore, for fixed ω,(t,x)→ sn (t,x+x0 (ω) ,ω) is Borel measurable and so

t→ sn (t,y(t)+x0 (ω) ,ω)

is also Borel measurable so the above integral with f replaced with sn surely makes sense.
Then for y ∈ X , you would have from dominated convergence theorem and assumed esti-
mate 48.2.4, ∫ T

0

∫ t

0
sn (s,y(s)+x0 (ω) ,ω)ds ·σ (t)dµ (t)

→
∫ T

0

∫ t

0
f(s,y(s)+x0 (ω) ,ω)ds ·σ (t)dµ (t)

and so the issue devolves to whether

ω →
∫ T

0

∫ t

0
sn (s,y(s)+x0 (ω) ,ω)ds ·σ (t)dµ (t) (48.2.5)

is F measurable. Let P be the rectangles B×F where B is Borel in [0,T ]×Rn and F ∈F .
Let G ≡{

E ∈ σ (P) : ω →
∫ T

0

∫ t

0
XE (s,y(s)+x0 (ω) ,ω)ds ·σ (t)dµ (t) is F measurable

}
the above condition holding for all σdµ . Obviously G ⊇P . Indeed,

ω →XB (s,y(s)+x0 (ω))XF (ω) = XB×F (s,y(s)+x0 (ω) ,ω)

is measurable because B is Borel and composition of Borel functions with a measurable
function is measurable. It is also clear that G is closed with respect to countable disjoint
unions and complements. This follows from the monotone convergence theorem in the
case of disjoint unions and from the observation that

XE (s,y(s)+x0 (ω) ,ω)+XEC (s,y(s)+x0 (ω) ,ω) = 1

in the case of complements. Hence, by Dynkin’s lemma, G = σ (P) = B ([0,T ]×Rn)×
F . On consideration of components of sn, it follows that 48.2.5 is indeed measurable and
this establishes the needed result. ■
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There may be other conditions which will imply ω → F (y,ω) is measurable into X
but an assumption of product measurability as above is fairly attractive. In particular, one
could likely relax the estimate .

Now with this lemma, here is a very useable theorem related to measurable solutions to
ordinary differential equations.

Theorem 48.2.18 Let f(·, ·,ω) : [0,T ]×Rn→ Rn be continuous and suppose

ω → F (y,ω) (48.2.6)

is measurable into C ([0,T ] ;Rn)≡ X for

F (y,ω)(t)≡
∫ t

0
f(s,y(s)+x0 (ω) ,ω)ds

Also suppose that

sup
t∈[0,T ],|x|≤r

|f(t,x,ω)| ≤C (r) independent of ω

and suppose there exists L > 0 such that for all ω and λ ∈ (0,1), if

x′ = λ f(t,x,ω) , x(0,ω) = x0 (ω) , t ∈ [0,T ] (48.2.7)

where x0 is bounded and measurable, then for all t ∈ [0,T ], then it follows that ||x|| < L,
the norm in X ≡C ([0,T ] ;Rn) . Then there exists a solution to

x′ = f(t,x,ω) , x(0,ω) = x0 (ω) (48.2.8)

for t ∈ [0,T ] where ω → x(·,ω) is measurable into X. Thus (t,ω)→ x(t,ω) is product
measurable.

Proof: Let F (·,ω) : X → X where X described above.

F (y,ω)(t)≡
∫ t

0
f(s,y(s)+x0,ω)ds

F is clearly continuous in the first variable and is assumed measurable in the second.
Let B be a bounded set in X . Then by assumption |f(s,y(s)+x0,ω)| is bounded for

s ∈ [0,T ] if y ∈ B. Say |f(s,y(s)+x0,ω)| ≤CB. Hence F (B,ω) is bounded in X . Also, for
y ∈ B,s < t,

|F (y,ω)(t)−F (y,ω)(s)| ≤
∣∣∣∣∫ t

s
f(s,y(s)+x0,ω)ds

∣∣∣∣≤CB |t− s|

and so F (B,ω) is pre-compact by the Ascoli Arzela theorem. By the Schaefer fixed point
theorem, there are two alternatives. Either there exist ω,λ resulting in arbitrarily large
solutions y to

λF (y,ω) = y
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or there is a fixed point for λF for all λ ∈ [0,1] . In the first case, there would be unbounded
yλ ,ω solving

yλ ,ω (t) = λ

∫ t

0
f
(
s,yλ ,ω (s)+x0,ω

)
ds

Then let xλ ,ω (s) ≡ yλ ,ω (s)+ x0 and you get arbitrarily large
∥∥xλ ,ω

∥∥ for various ω and
λ ∈ (0,1). The above implies

xλ (t)−x0 = λ

∫ t

0
f(s,xλ (s) ,ω)ds

so x′
λ
= λ f(t,xλ ,ω) ,xλ (0,ω) = x0 (ω) and these would be unbounded for λ ∈ (0,1) con-

trary to the assumption that there exists an estimate for these valid for all λ ∈ (0,1). Hence
the first alternative must hold and hence there is y(ω)∈ X such that ω→ y(ω) measurable
and

F (y(ω) ,ω) = y(ω)

Then letting x(s,ω)≡ y(s,ω)+x0 (ω) , it follows that

x(t,ω)−x0 (ω) =
∫ t

0
f(s,x(s,ω) ,ω)ds

and so x(·,ω) is a solution to the differential equation on [0,T ] which is measurable into
X . In particular, one obtains that (t,ω)→ x(t,ω) is B (0,T )×F measurable where F is
the σ algebra of measurable sets. ■

48.3 A Set Valued Browder Lemma With Measurability
A simple application is a measurable version of the Browder lemma which is also valid for
upper semicontinuous set valued maps. In what follows, we do not assume that A(·,ω) is
a set valued measurable multifunction, only that it has a measurable selection which is a
weaker assumption. First is a general result on upper set valued maps (u,ω)→ A(u,ω)
where u→ A(u,ω) is upper semicontinuous and ω→ A(u,ω) has a measurable selection.

Theorem 48.3.1 Let V be a reflexive separable Banach space. Suppose ω → A(u,ω) has
a measurable selection in V ′, for each u∈V and ω ∈Ω the set A(u,ω) is closed and convex
in V ′ and u→ A(u,ω) is bounded. Also, suppose u→ A(u,ω) is upper-semicontinuous
from the strong topology of V to the weak topology of V ′ . That is, if un→ u in V strongly,
then if O is a weakly open set containing A(u,ω) , it follows that A(un,ω) ∈ O for all n
large enough. Conclusion: Then, whenever ω → u(ω) is measurable into V there is a
measurable selection for ω → A(u(ω) ,ω) into V ′.

Proof: Let ω → u(ω) be measurable into V, and let un (ω)→ u(ω) in V where un is a
simple function

un (ω) =
mn

∑
k=1

cn
kXEn

k
(ω) , the En

k disjoint, Ω = ∪kEn
k ,



48.3. A SET VALUED BROWDER LEMMA WITH MEASURABILITY 1557

each cn
k being in V . We can assume that ∥un (ω)∥ ≤ 2∥u(ω)∥ for all ω . Then, by as-

sumption, there is a measurable selection for ω→ A
(
cn

k ,ω
)

denoted as ω→ yn
k (ω) . Thus,

ω → yn
k (ω) is measurable into V ′ and yn

k (ω) ∈ A
(
cn

k ,ω
)

for all ω ∈Ω. Consider now,

yn (ω) =
mn

∑
k=1

yn
k (ω)XEn

k
(ω) .

It is measurable and for ω ∈ En
k it equals yn

k (ω) ∈ A
(
cn

k ,ω
)
= A(un (ω) ,ω) . Thus, yn

is a measurable selection of ω → A(un (ω) ,ω) . By the assumption A(·,ω) is bounded,
for each ω these yn (ω) lie in a bounded subset of V ′. The bound might depend on ω

of course. It follows now from Lemma 48.2.2 that there is a subsequence
{

yn(ω)
}

that
converges weakly to y(ω), where ω → y(ω) is measurable. But,

yn(ω) (ω) ∈ A
(
un(ω) (ω) ,ω

)
is a convex closed set for which u→ A(u,ω) is upper-semicontinuous and un(ω) → u,
hence, y(ω) ∈ A(u(ω) ,ω). This is the claimed measurable selection. ■

The next lemma is about the projection map onto a set valued map whose values are
closed convex sets.

Lemma 48.3.2 Let ω →K (ω) be measurable into Rn where K (ω) is closed and con-
vex. Then ω → PK (ω)u(ω) is also measurable into Rn if ω → u(ω) is measurable. Here
PK (ω) is the projection map giving the closest point.

Proof: It follows from standard results on measurable multi-functions [70] also in
Theorem 48.1.2 above that there is a countable collection {wn (ω)} , ω → wn (ω) being
measurable and wn (ω) ∈K (ω) for each ω such that for each ω, K (ω) = ∪nwn (ω). Let

dn (ω)≡min{∥u(ω)−wk (ω)∥ ,k ≤ n}

Let u1 (ω)≡ w1 (ω) . Let
u2 (ω) = w1 (ω)

on the set
{ω : ∥u(ω)−w1 (ω)∥< {∥u(ω)−w2 (ω)∥}}

and
u2 (ω)≡ w2 (ω) off the above set.

Thus ∥u2 (ω)−u(ω)∥= d2. Let

u3 (ω) = w1 (ω) on
{

ω : ∥u(ω)−w1 (ω)∥
<
∥∥u(ω)−w j (ω)

∥∥ , j = 2,3

}
≡ S1

u3 (ω) = w2 (ω) on S1∩
{

ω : ∥u(ω)−w1 (ω)∥
<
∥∥u(ω)−w j (ω)

∥∥ , j = 3

}
u3 (ω) = w3 (ω) on the remainder of Ω



1558 CHAPTER 48. MULTIFUNCTIONS AND THEIR MEASURABILITY

Thus ∥u3 (ω)−u(ω)∥= d3. Continue this way, obtaining un (ω) such that

∥un (ω)−u(ω)∥= dn (ω)

and un (ω) ∈K (ω) with un measurable. Thus, in effect one picks the closest of all the
wk (ω) for k ≤ n as the value of un (ω) and un is measurable and by density in K (ω) of
{wn (ω)} for each ω,{un (ω)} must be a minimizing sequence for

λ (ω)≡ inf{∥u(ω)− z∥ : z ∈K (ω)}

Then it follows that un (ω)→ PK (ω)u(ω) weakly in Rn. Here is why: Suppose it fails to
converge to PK (ω)u(ω). Since it is minimizing, it is a bounded sequence. Thus there would
be a subsequence, still denoted as un (ω) which converges to some q(ω) ̸= PK (ω)u(ω).
Then

λ (ω) = lim
n→∞
∥u(ω)−un (ω)∥ ≥ ∥u(ω)−q(ω)∥

because convex and lower semicontinuous is weakly lower semicontinuous. But this im-
plies q(ω) = PK (ω) (u(ω)) because the projection map is well defined thanks to strict
convexity of the norm used. This is a contradiction. Hence PK (ω)u(ω) = limn→∞ un (ω)
and so is a measurable function. It follows that ω → PK (ω) (u(ω) ,ω) is measurable into
Rn. ■

One way to prove the following Theorem in simpler cases is to use a measurable version
of the Kakutani fixed point theorem. It is done this way in [99] without the dependence on
ω . See also [35] for a measurable version of this fixed point theorem. However, one can
also prove it by a generalization of the proof Browder gave for a single valued case and
this is summarized here. We want to include the case where A is a sum of two set valued
operators and this involves careful consideration of the details. Such a situation occurs
when one considers operators which are a sum, one dependent on the boundary of a region,
and the other from a partial differential inclusion. Also, we will need to consider finite
dimensional subspaces which depend on ω which further complicates the considerations.

Theorem 48.3.3 Assumtions: Let B(·,ω) : V →P (V ′) ,C (·,ω) : V →P (V ′) for V a
separable Banach space. Suppose that ω → B(x,ω) ,ω → C (x,ω) each has a measur-
able selection and x→ B(x,ω) ,x→ C (x,ω) each is upper semicontinuous from strong
to weak topologies. Also let E (ω) be an n dimensional subspace of V which has a basis
{b1 (ω) , · · · ,bn (ω)} each of which is a measurable function into V, and that K (ω)⊆E (ω)
where K (ω) is a measurable multifunction which has convex closed bounded values. Also
let y(ω) be given, a measurable function into V ′. Conclusion: There exist measurable func-
tions wB (ω) ,wC (ω) and x(ω) with wB (ω) ∈ B(x(ω) ,ω) ,wC (ω) ∈ C (x(ω) ,ω) , and
x(ω) ∈ K (ω) such that for all z ∈ K (ω) ,

⟨y(ω)− (wB (ω)+wC (ω)) ,z− x(ω)⟩ ≤ 0

Proof: The argument will refer to the following commutative diagram.

E (ω)′
θ(ω)∗→ Rn

i(ω)∗A(·,ω) ↑ ↑ θ (ω)∗ i(ω)∗A(θ (ω) ·,ω)

E (ω)
θ(ω)← Rn
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where A(·,ω) will be either B(·,ω) or C (·,ω). Here θ (ω)ei ≡ bi (ω) and extended lin-
early. Then it is clear that θ (ω) maps measurable functions to measurable functions.

What of θ (ω)−1? Is ω→ θ (ω)−1 h(ω) measurable into Rn whenever h is measurable
into V ? Let h(ω) have values in E (ω) and be measurable into V . Thus

h(ω) = ∑
i

ai (ω)bi (ω)

The question reduces to whether the ai are measurable. To see that these are measurable,
consider first ∥h(ω)∥<M for all ω . Let Sr ≡

{
ω : inf|a|>r ∥∑i aibi (ω)∥> M

}
. Thus this is

a measurable set. Also every ω is in some Sr because if not, you could get a sequence |ar|→
∞ and yet ∥∑i ar

i bi (ω)∥ ≤M. But then, dividing by |ar| and taking a suitable subsequence,
one can obtain ∑i aibi (ω) = 0 for some |a| = 1. Also the Sr are increasing in r. Now
for ω ∈ Sr, define Φ(a,ω) = −∥∑i aibi (ω)−h(ω)∥ where we will let |a| ≤ r+1. Since
{bi (ω)} is a basis, there exists a(ω) such that Φ(a(ω) ,ω) = 0. This a must satisfy
|a| ≤ r + 1 because if not, then you would have ∥∑i aibi (ω)∥ ≥ M since ω ∈ Sr. But
∥∑i aibi (ω)∥= ∥h(ω)∥< M . Thus the maximum of a→Φ(a,ω) occurs on the compact
set |a| ≤ r + 1 and is 0. By Kuratowski’s theorem, we have ω → a(ω) is measurable
where h(ω) = ∑i ai (ω)bi (ω) on Sr. Thus, since every ω is in some Sr, we must have
ω→ ai (ω) is measurable in case ∥h(ω)∥ ≤M for all ω . In the general case, let am (ω) be
the measurable function which goes with hm (ω) where hm (ω) is given by a truncation of h
so that ∥hm (ω)∥ ≤ m. For each ω,hm (ω) is eventually smaller than m, so h(ω) = hm (ω).
Thus if am

i (ω) go with hm (ω) , these are constant for all m large enough. Thus letting
ai (ω)≡ limm→∞ am

i (ω) ,ai is measurable and

h(ω) = lim
m→∞

hm (ω) = lim
m→∞

∑
i

am
i (ω)bi (ω) = ∑

i
ai (ω)bi (ω)

and so the ai are indeed measurable. Thus the θ (ω)−1 h(ω) = ∑i ai (ω)ei which shows
that θ (ω)−1 does map measurable functions to measurable functions. In particular,

θ (ω)−1 K (ω)

is indeed a closed, bounded, convex, and measurable multifunction which can be seen by
considering a sequence {ki (ω)}∞

i=1 of measurable functions dense in K (ω).
Define for A = B or C,

Â(·,ω) = θ (ω)∗ i(ω)∗A(θ (ω) ·,ω) ,y(ω) = θ (ω)∗ i(ω)∗ y(ω) . (48.3.9)

We claim that ω → Â(x,ω) has a measurable selection and for fixed ω this is upper semi-
continuous in x. The second condition for fixed ω is obvious. Consider the first. It was
shown above that θ (ω)x is measurable into V . Thus, by Theorem 48.3.1, it follows that
ω → A(θ (ω)x,ω) has a measurable selection into V ′. Therefore, it suffices to show that
if z(ω) is measurable into V ′ then θ (ω)∗ i(ω)∗ z(ω) is measurable into Rn. Let w ∈ Rn.
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Then (
θ (ω)∗ i(ω)∗ z(ω) ,w

)
Rn ≡

〈
i(ω)∗ z(ω) ,θ (ω)w

〉
=

〈
i(ω)∗ z(ω) ,∑

i
wibi (ω)

〉

=

〈
z(ω) ,∑

i
wibi (ω)

〉
V ′,V

which is measurable. By the Pettis theorem, ω → θ (ω)∗ i(ω)∗ z(ω) is measurable. Thus
Â(·,ω) has the properties claimed.

Now tile Rn with n simplices, each having diameter less than ε < 1, the set of simplices
being locally finite. Define for A = B or C the single valued function Âε on all of Rn by the
following rule. If

x ∈ [x0, · · · ,xn] ,

so x =∑
n
i=0 tixi, ti ≥ 0,∑i ti = 1, then let Âε (xk,ω) be a measurable selection from Â(xk,ω)

for each xk a vertex of the simplex. However, we chose Âε (xk,ω) in the obvious way. It is
θ (ω)∗ i(ω)∗wεB

k (ω) where wεB
k (ω) is a measurable selection of B(θ (ω)xk,ω), measur-

able into V ′ when A = B and θ (ω)∗ i(ω)∗wεC
k (ω) where wεC

k (ω)is a measurable selection
of C (θ (ω)xk,ω) , measurable into V ′ when A =C. Then

B̂ε (xk,ω) = θ (ω)∗ i(ω)∗wεB
k (ω) , ω → wεB

k (ω) measurable (48.3.10)

with a similar definition holding for Ĉε .
Define single valued maps as follows. For x = ∑

n
i=0 tixi , ∑i ti = 1, ti ≥ 0, [x0, · · · ,xn] in

the tiling,

B̂ε (x,ω)≡
n

∑
k=0

tk
(
B̂ε (xk,ω)

)
,Ĉε (x,ω)≡

n

∑
k=0

tk
(
Ĉε (xk,ω)

)
Âε (x,ω)≡ B̂ε (x,ω)+Ĉε (x,ω) (48.3.11)

Thus Âε (·,ω) is a continuous map defined on Rn thanks to the local finiteness of the tiling,
and ω → Âε (x,ω) is measurable.

Let P
θ(ω)−1K(ω)

denote the projection onto the closed convex set θ (ω)−1 K (ω) . This
is a continuous mapping by Hilbert space considerations. Therefore,

x→ P
θ(ω)−1K(ω)

(
y(ω)− Âε (x,ω)+x

)
is continuous and by Lemma 48.3.2, ω → P

θ(ω)−1K(ω)

(
y(ω)− Âε (x,ω)+x

)
is measur-

able, and for each ω, this function of x maps into θ (ω)−1 K (ω) . Therefore by Corollary
48.2.14, there exists a fixed point xε (ω) ∈ θ (ω)−1 K (ω) such that ω→ xε (ω) is measur-
able and

P
θ(ω)−1K(ω)

(
y(ω)−

(
B̂ε (xε (ω) ,ω)+Ĉε (xε (ω) ,ω)

)
+xε (ω)

)
= xε (ω) .
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This requires(
y(ω)−

(
B̂ε (xε (ω) ,ω)+Ĉε (xε (ω) ,ω)

)
,z−xε (ω)

)
Rn ≤ 0 (48.3.12)

for all z ∈ θ (ω)−1 K (ω) . Note that this implies ω → B̂ε (xε (ω) ,ω) ,Ĉε (xε (ω) ,ω) are
measurable because of the continuity in first argument and measurability of ω → xε (ω)

We have

xε (ω) =
n

∑
k=0

tε
k (ω)xε

k (ω) (48.3.13)

where the xε
k (ω) are vertices of the tiling corresponding to ε .

Claim: The vertices xε
k (ω) and coordinates tε

k (ω) can be considered measurable.
Proof of claim: Let the simplices in the tiling be {σ k}∞

k=1 and let the vertices of simplices
in the tiling be

{
z j
}∞

j=1 . Say the vertices of σ k are
{

xk
0, · · · ,xk

n
}

listed in the order of the
given enumeraton of vertices of simplices in the tiling. Let Fk and Ek be defined as follows.

Fk ≡ x−1
ε (σ k) ,E1 ≡ F1, · · · ,Ek ≡ Fk \∪k−1

i=1 Fi

Then each ω is in exactly one of these measurable sets Ek which partition Ω. For ω ∈
Ek,xε (ω) ∈ σ k (ω). Thus σ k (ω) is the first simplex which contains xε (ω) and the or-
dered vertices of this simplex are constant on the measurable set Ek. These vertices are
determined this way on a measurable set Ek and so they must be measurable Rn valued
functions. Then ω → tε

k (ω) is also measurable because there is a continuous mapping to
these scalars from xε (ω) which was obtained measurable. This shows the claim.

Recall 48.3.10. Let Wε (ω) be defined as follows.

Wε (ω)≡
(

tε
0 (ω) , · · · , tε

n (ω) ,xε
0 (ω) , · · · ,xε

n (ω) ,
xε (ω) ,wεB

0 (ω) , · · · ,wεB
n (ω) ,wεC

0 (ω) , · · · ,wεC
n (ω)

)
This is in R2(n+1)× (V ′)2(n+1). Then by Theorem 48.2.2, since Wε (ω) is bounded in a
reflexive separable Banach space, there is a subsequence ε (ω)→ 0 such that Wε(ω) (ω)→
W(ω) weakly and given by

W(ω)≡
(

t0 (ω) , · · · , tn (ω) ,x0 (ω) , · · · ,xn (ω) ,
x(ω) ,wB

0 (ω) , · · · ,wB
n (ω) ,wC

0 (ω) , · · · ,wC
n (ω)

)
where each of these components is measurable into the appropriate space. Of course, in
the finite dimensional components, the convergence is strong because strong and weak
convergence is the same in finite dimensions. Since the diameter of the simplex containing
the fixed point xε(ω) (ω) converges to 0, it follows that

lim
ε(ω)→0

xε(ω)
k (ω) = x(ω)

By upper semicontinuity, for A = B,C, it follows that Â
(

xε(ω)
k (ω) ,ω

)
⊆ Â(x(ω) ,ω)+

B(0,r) for all ε (ω) small enough. Since, by the construction,

B̂ε(ω)

(
xε(ω)

k (ω) ,ω
)
= θ (ω)∗ i(ω)∗wε(ω)B

k (ω) ∈ B̂
(

xε(ω)
k (ω) ,ω

)
,
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a similar statement for Ĉ, it follows that B̂ε(ω)

(
xε(ω)

k (ω) ,ω
)
= θ (ω)∗ i(ω)∗wε(ω)B

k (ω)

is within r of the closed convex bounded set B̂(x(ω) ,ω) whenever ε (ω) is small enough,
similar for Ĉ. Thus

θ (ω)∗ i(ω)∗wB
k (ω) ∈ B̂(x(ω) ,ω) ,

similar for Ĉ. Since this last set is convex, it follows that

θ (ω)∗ i(ω)∗∑
k

tk (ω)wB
k (ω) ∈ B̂(x(ω) ,ω)

similar for Ĉ.
Now recall 48.3.9 and the inequality 48.3.12 which imply that for z ∈ θ (ω)−1 K (ω) ,(
y(ω)−θ (ω)∗ i(ω)∗

(
n

∑
k=0

tk (ω)wB
k (ω)+

n

∑
k=0

tk (ω)wC
k (ω)

)
,z−x(ω)

)
(48.3.14)

= lim
ε(ω)→0

(
y(ω)−

(
∑

n
k=0 tε(ω)

k (ω)θ (ω)∗ i(ω)∗wε(ω)B
k (ω)

+∑
n
k=0 tε(ω)

k (ω)θ (ω)∗ i(ω)∗wε(ω)C
k (ω)

)
,z−xε(ω) (ω)

)

= lim
ε(ω)→0

y(ω)−

 ∑
n
k=0 tε(ω)

k (ω) B̂ε(ω)

(
xε(ω)

k ,ω
)

+∑
n
k=0 tε(ω)

k (ω)Ĉε(ω)

(
xε(ω)

k ,ω
)  ,z−xε(ω) (ω)


Recall 48.3.11 and 48.3.13 which imply from the above conventions that the sum in the
above equals B̂ε(ω)

(
xε(ω),ω

)
+Ĉε(ω)

(
xε(ω),ω

)
. Thus the above equals

lim
ε(ω)→0

(
y(ω)−

(
B̂ε(ω)

(
xε(ω),ω

)
+Ĉε(ω)

(
xε(ω),ω

))
,z−xε(ω) (ω)

)
≤ 0

Now wε(ω)B
k (ω) ∈ B

(
θ (ω)xε(ω)

k (ω) ,ω
)

and the weak uppersemicontinuity must then

imply that wB
k (ω) ∈ B(θ (ω)x(ω) ,ω) , a similar statement holding for C. By convexity,

wB (ω)≡
n

∑
k=0

tk (ω)wB
k (ω) ∈ B(θ (ω)x(ω) ,ω) ,

similar for C. Then from 48.3.14,(
y(ω)−θ (ω)∗ i(ω)∗

(
n

∑
k=0

tk (ω)wB
k (ω)+

n

∑
k=0

tk (ω)wC
k (ω)

)
,z−x(ω)

)
=

(
θ (ω)∗ i(ω)∗ (y(ω)− (wB (ω)+wC (ω))) ,z−x(ω)

)
≤ 0

It follows that if x(ω)≡ θ (ω)x(ω) ,

⟨y(ω)− (wB (ω)+wC (ω)) ,θ (ω)z− x(ω)⟩ ≤ 0

each of x(ω),
wB (ω) ,wC (ω)

are measurable and wB (ω)∈B(x(ω) ,ω) ,wC (ω)∈C (x(ω) ,ω) . Since θ (ω)z is a generic
element of K (ω) , this proves the theorem. ■

Obviously one could have any finite sum of operators having the same properties as
B,C above and one could get a similar result.



48.4. A MEASURABLE KAKUTANI THEOREM 1563

48.4 A Measurable Kakutani Theorem
Recall the Kakutani theorem, Theorem 25.4.4.

Theorem 48.4.1 Let K be a compact convex subset of Rn and let A : K→P (K) such that
Ax is a closed convex subset of K and A is upper semicontinuous. Then there exists x such
that x ∈ Ax. This is the “fixed point”.

Here is a measurable version of this theorem. It is just like the proof of the above
Browder lemma.

Theorem 48.4.2 Let K (ω) be compact, convex, and ω → K (ω) a measurable multifunc-
tion. Let A(·,ω) : K (ω)→ K (ω) be upper semicontinuous, and let ω → A(x,ω) have a
measurable selection for each x ∈Rn. Then there exists x(ω) ∈ K (ω)∩A(K (ω) ,ω) such
that ω → x(ω) is measurable.

Proof: Tile Rn with n simplices such that the collection is locally finite and each sim-
plex has diameter less than ε < 1. This collection of simplices is determined by a countable
collection of vertices so there exists a one to one and onto map from N to the collection
of vertices. By assumption, for each vertex x, there exists Aε (x,ω) ∈ A

(
PK(ω)x,ω

)
. By

Lemma 48.3.2, ω → PK(ω)x is measurable and by Theorem 48.3.1, there is a measurable
selection for ω → A

(
PK(ω)x,ω

)
which is denoted as Aε (x,ω). By local finiteness, this

function is continuous in x on the set of vertices. Define Aε on all of Rn by the following
rule. If

x ∈ [x0, · · · ,xn],

so x =∑
n
i=0 tixi, then

Aε (x,ω)≡
n

∑
k=0

tkAε (xk,ω) .

By local finiteness, this function satisfies ω→Aε (x,ω) is measurable and also x→Aε (x,ε)
is continuous. It also maps Rn to K (ω). By Corollary 48.2.14 there is a measurable fixed
point xε (ω) satisfying xε (ω) ∈ K (ω) and Aε (xε (ω) ,ω) = xε (ω) .

Suppose xε (ω) ∈
[
xε

0 (ω) , · · · ,xε
n (ω)

]
so xε (ω) = ∑

n
k=0 tε

k (ω)xε
k (ω).

claim: The vertices xε
k (ω) can be considered measurable also as is tε

k (ω).
Proof of claim: Let the simplices in the tiling be {σ k}∞

k=1 and let the vertices of sim-
plices in the tiling be

{
z j
}∞

j=1. Let

Fk := x−1
ε (σ k) ,E1 := F1, · · · ,Ek := Fk \∪k

i=1Fi

Then ω is in exactly one of these measurable sets Ek. These measurable sets partition Ω.
Let σ k (ω) be the unique simplex for ω ∈ Ek. Thus xε (ω) ∈ σ k (ω) on the measurable
set Ek. Its vertices, are zi0 (ω) ,zi1 (ω) , · · · ,zin (ω) . These are xε

0 (ω) , · · · ,xε
n (ω) in order.

They are determined in this way on a measurable set so they are measurable Rn valued
functions. Then ω → tε

k (ω) is also measurable because there is a continuous mapping to
these scalars from xε (ω) .
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Then since xε (ω) is contained in K (ω), a compact set, and the diameter of each sim-
plex is less than 1, it follows that Aε

(
xε

k (ω) ,ω
)

is contained in

A(K (ω)+B(0,1),ω)

which is a compact set. Let Wε (ω) ∈ R2n+2n2
be defined as follows.

Wε (ω) :=
(

tε
1 (ω) , · · · , tε

n (ω) ,xε
0 (ω) , · · · ,xε

n (ω) ,xε (ω) ,
Aε (xε

1 (ω) ,ω) · · ·Aεm (xεm
n (ω) ,ω)

)
Thus Wε has values in a compact subset of R2n+2n2

and is measurable. By Lemma 48.2.2
there exists a subsequence ε (ω)→ 0 and a measurable function ω →W(ω) such that

Wε(ω) (ω)→W(ω) =

(
t1 (ω) , · · · , tn (ω) ,x0 (ω) , · · · ,

xn (ω) ,x(ω) ,y1 (ω) , · · · ,yn (ω)

)
as ε (ω)→ 0. Recall also that

Aε (xε
k (ω) ,ω)⊆ A

(
PK(ω)xε

k ,ω
)

Now ∣∣PK(ω)xε
k (ω)−xε (ω)

∣∣= ∣∣PK(ω)xε
k (ω)−PK(ω)xε (ω)

∣∣≤ |xε
k −xε |< ε

Both xε(ω)
k (ω) and xε(ω) (ω) converge to x(ω) and so the above shows that also,

PK(ω)xε
k (ω)→ x(ω)

Therefore,
Aε(ω)

(
xε(ω)

k (ω) ,ω
)
⊆ A(x(ω) ,ω)+B(0,r)

whenever ε (ω) is small enough. Since A(x(ω) ,ω) is closed, this implies

yk (ω) ∈ A(x(ω) ,ω) .

Since A(x(ω) ,ω) is convex,

n

∑
k=1

tk (ω)yk (ω) ∈ A(x(ω) ,ω) .

Also, from the construction,

xε (ω) = Aε (xε (ω) ,ω)≡
n

∑
k=0

tε
k (ω)Aε (xε

k (ω) ,ω)

so passing to the limit as ε (ω)→ 0, we get

x(ω) =
n

∑
k=0

tk (ω)yk (ω) ∈ A(x(ω) ,ω)

and this is the measurable fixed point. ■
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48.5 Some Variational Inequalities
In the following, V will be a reflexive separable Banach space. Following [99], here is
a definition of a pseudomonotone operator. Actually, we will consider a slight general-
ization of the usual definition in 25.4.17 which involves an assumption that there exists a
subsequence such that the liminf condition holds rather than use the original sequence.

Definition 48.5.1 Let V be a reflexive Banach space. Then A : V →P (V ′) is pseudomono-
tone if the following conditions hold.

Au is closed, nonempty, convex. (48.5.15)

If F is a finite dimensional subspace of V , then if u ∈ F and W ⊇ Au for W a weakly open
set in V ′, then there exists δ > 0 such that

v ∈ B(u,δ )∩F implies Av⊆W. (48.5.16)

If uk ⇀ u and if u∗k ∈ Auk is such that

lim sup
k→∞

⟨u∗k ,uk−u⟩ ≤ 0,

Then there exists a subsequence still denoted with k such that for all v ∈ V , there exists
u∗ (v) ∈ Au such that

lim inf
k→∞

⟨u∗k ,uk− v⟩ ≥ ⟨u∗ (v) ,(u− v)⟩. (48.5.17)

We say A is coercive if

lim
∥v∥→∞

inf
{
⟨z∗,v⟩
∥v∥

: z∗ ∈ Av
}
= ∞. (48.5.18)

If one assumes A is bounded, then the weak upper semicontinuity condition 48.5.16
can be proved from the other conditions. It has been known for a long time that these
operators are useful in the study of variational inequalities. In this section, we give a short
example to show how one can obtain measurable solutions to variational inequalities from
the measurable Browder lemma given above. This is the following theorem which gives a
measurable version of old results of Brezis dating from the late 1960s. This will involve
the following assumptions.

1. Measurability condition

For each u ∈V, there is a measurable selection z(ω) such that

z(ω) ∈ A(u,ω) .

2. Values of A

A(·,ω) : V →P (V ′) has bounded, closed, nonempty, convex values. A(·,ω) maps
bounded sets to bounded sets.
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3. Limit conditions

If un ⇀ u and lim sup
n→∞

⟨zn,un−u⟩ ≤ 0, zn ∈ A(un,ω)

then for given v, there exists z(v) ∈ A(u,ω) such that

lim inf
k→∞

⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩

Thus, for fixed ω,A(·,ω) is a set valued bounded pseudomonotone operator. Recall that
the sum of two of these is also a set valued bounded pseudomonotone operator.

By Theorem 48.3.1 if ω → u(ω) is measurable, then A(u(ω) ,ω) has a measurable
selection. Also, the limit condition implies that A(·,ω) is upper semicontinuous from the
strong to the weak topology. The overall approach to the following theorem is well known.
The new ingredients are Lemma 48.2.2 and Theorem 48.3.3 which are what allows us to
obtain measurable solutions. First is a standard result on the sum of two pseudomonotone
bounded operators. See Theorem 25.5.1 on Page 855.

Theorem 48.5.2 Say A,B are set valued bounded pseudomonotone operators. Then their
sum is also a set valued bounded pseudomonotone operator. Also, if un→ u weakly, zn→ z
weakly, zn ∈ A(un) , and wn→ w weakly with wn ∈ B(un) , then if

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0,

it follows that

lim inf
n→∞
⟨zn +wn,un− v⟩ ≥ ⟨z(v)+w(v) ,u− v⟩ , z(v) ∈ A(u) ,w(v) ∈ B(u) ,

and z ∈ A(u) ,w ∈ B(u).

Theorem 48.5.3 Let V be a reflexive separable Banach space. Let ω → K (ω) be a mea-
surable multifunction, K (ω) convex, closed, and bounded. Also for A = B,C let A(·, ·)
satisfy 1 - 3. Let ω→ f (ω) be measurable with values in V ′. Then there exists measurable
ω → u(ω) ∈ K (ω) and ω → wB (ω) , ω → wC (ω) with wB (ω) ∈ B(u(ω) ,ω) ,wC (ω) ∈
C (u(ω) ,ω) such that

⟨ f (ω)− (wB (ω)+wC (ω)) ,z−u(ω)⟩ ≤ 0

for all z ∈ K (ω). If it is only known that K (ω) is closed and convex, the same conclusion
can be obtained if it is also known that for some z(ω)∈K (ω) , B(·,ω)+C (·,ω) is coercive
meaning

lim
∥v∥→∞

inf
{
⟨z∗,v− z⟩
∥v∥

: z∗ ∈ B(v,ω)+C (v,ω)

}
= ∞.

Proof: Let Vn =Vn (ω) denote an increasing sequence of finite dimensional subspaces
whose union is dense in V. Let Vn (ω) contain the first n vectors of {dk (ω)}∞

k=1 where the
closure of this sequence equals K (ω) for each ω , each function being measurable. Let

Vn (ω) = span(v1, · · · ,vn,d1 (ω) , · · · ,dn (ω)) .
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where {vk}∞

k=1 is dense in V . Also let

γn (ω) = max{∥d1 (ω)∥ , · · · ,∥dn (ω)∥ ,∥v1∥ , · · · ,∥vn∥}

and Bn (ω) defined as B(0,γn (ω)). Then let

Kn (ω) =Vn∩K (ω)∩Bn (ω) ̸= /0 so ∪n Kn (ω) dense in K (ω)

Now each Kn (ω) is a set valued compact convex subset of Vn (ω) which is a measurable
multifunction. It is a measurable multifunction because the linear combinations of the mea-
surable functions {v1, · · · ,vn,d1 (ω) , · · · ,dn (ω)} having a subset of the rational numbers
as coefficients is a dense subset of Kn (ω). Then by Theorem 48.3.3, there exist measurable
functions

un (ω) ∈ Kn (ω) ,wB
n (ω) ∈ B(un (ω) ,ω) ,wC

n (ω) ∈C (un (ω) ,ω)

such that 〈
f (ω)−

(
wB

n (ω)+wC
n (ω)

)
,z−un (ω)

〉
≤ 0 (*)

for all z ∈ Kn (ω).
Thus for all w ∈ Kn (ω) ,〈

wB
n (ω)+wC

n (ω) ,un (ω)−w
〉
≤ ⟨ f (ω) ,un (ω)−w⟩ .

These un (ω) are bounded because K (ω) is a bounded set or in the other case, one can pick
the special z(ω) in the definition for coercivity to obtain that these un (ω) are bounded.
Thus, since A(·,ω) is assumed to be bounded for A = B,C, each of un (ω), wB

n (ω) ,wC
n (ω)

are bounded for each ω .
By Lemma 48.2.2, there is a subsequence n(ω) such that(

un(ω) (ω) ,wB
n(ω) (ω) ,wC

n(ω) (ω)
)

converges weakly to (u(ω) ,wB (ω) ,wC (ω)) in V ×V ′×V ′ and

ω → (u(ω) ,wB (ω) ,wC (ω))

is measurable into V ×V ′×V ′. It is now only a matter of verifying the desired variational
inequality for each ω .

By convexity, u(ω) ∈ K (ω). Now for fixed ω, let ûn(ω)→ u(ω) strongly in V where
ûn(ω) ∈ Kn (ω). Then

lim sup
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
= lim sup

n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)− ûn(ω)

〉
≤ lim sup

n(ω)→∞

〈
f (ω) ,un(ω) (ω)− ûn(ω)

〉
≤ 0.
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By Theorem 48.5.2,

wB (ω) ∈ B(u(ω) ,ω) ,wC (ω) ∈C (u(ω) ,ω) .

Also, there is a subsequence, still denoted with n(ω) such that

lim inf
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
≥ ⟨w(u(ω)) ,u(ω)−u(ω)⟩= 0

for some w(u(ω)) ∈ B(u(ω) ,ω)+C (u(ω) ,ω) because the sum of pseudomonotone op-
erators is pseudomonotone. Thus for this subsequence, since

lim sup
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
≤ 0≤ lim inf

n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
,

it follows that

lim
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
= 0.

We will consider this subsequence or a further subsequence. Then since the limsup condi-
tion holds for this subsequence, there exists for any v ∈V,

wB (v) ∈ B(u(ω) ,ω) ,wC (v) ∈C (u(ω) ,ω)

such that

⟨wB (ω)+wC (ω) ,u(ω)− v⟩

≥ lim inf
n(ω)→∞

 〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)−u(ω)

〉
+
〈

wB
n(ω) (ω)+wC

n(ω) (ω) ,u(ω)− v
〉 

= lim inf
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)− v

〉
≥ ⟨wB (v)+wC (v) ,u(ω)− v⟩

Finally, let v ∈ K (ω) . Then it follows that there exists a sequence {v̂n} such that v̂n ∈
Kn (ω) which converges strongly to v. Thus〈

wB
n (ω)+wC

n (ω) ,un (ω)− v̂n
〉
≤ ⟨ f (ω) ,un (ω)− v̂n⟩

Then
⟨wB (ω)+wC (ω) ,u(ω)− v⟩=

lim sup
n(ω)→∞


→0〈

wB
n(ω) (ω)+wC

n(ω) (ω) ,un(ω) (ω)−u(ω)
〉

+
〈

wB
n(ω) (ω)+wC

n(ω) (ω) ,u(ω)− v
〉
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= lim sup
n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)− v

〉
= lim sup

n(ω)→∞

〈
wB

n(ω) (ω)+wC
n(ω) (ω) ,un(ω) (ω)− v̂n(ω)

〉
≤ lim sup

n(ω)→∞

〈
f (ω) ,un(ω) (ω)− v̂n(ω)

〉
= ⟨ f (ω) ,u(ω)− v⟩ ■

Note that from standard results, in the case of coercivity and V = K (ω) ,the above
shows that for f measurable there is a measurable u such that f (ω) ∈ B(u(ω) ,ω) +
C (u(ω) ,ω). Specifically, there are measurable functions

wB (ω) ∈ B(u(ω) ,ω) and wC (ω) ∈C (u(ω) ,ω)

such that f (ω) = wC (ω)+wB (ω).

Example 48.5.4 We can let Ω= [0,T ] and let the measurable sets be the Lebesgue measur-
able sets, t→ f (t) measurable into V ′. Then for A(·, ·) satisfying 1 - 3 the above theorem
gives the solution u,w(t) ,u(t) ∈ K(t) to variational inequalities of the form

⟨ f (t)−w(t) ,z−u(t)⟩ ≤ 0, w(t) ∈ A(u(t) , t)

for all z ∈ K (t) where K (t) is a closed bounded convex subset of V for t → K (t) a mea-
surable multifunction. Here both u and w are measurable. If u→ A(u, t) is coercive,
this allows for K (t) only closed and convex. If A is the sum of B,C and u→ B(u, t) and
u→C (u, t) , these each satisfying the conditions 1 - 3, w(t) = wB (t)+wC (t) where both
of these summands are measurable and wB (t) ∈ B(u(t) , t) ,wC (t) ∈C (u(t) , t). If suitable
estimates hold, and f ∈ Lp′ ([0,T ] ;V ′) then one can conclude that w ∈ Lp′ ([0,T ] ;V ′) and
u ∈ Lp ([0,T ] ;V ). This paper has resolved the only difficult issue which is existence of a
measurable solution with no monotonicity or uniqueness assumptions on the problem for
fixed t.

Example 48.5.5 We can let Ω be of the form [0,T ]×Ω where (Ω,F ) is a measurable
space. In this case, we could let the σ algebra be B×F the product measurable sets and
obtain product measurable solutions to the same variational inequalities.

Example 48.5.6 In the case of a filtration {Ft}, one could let the σ algebra consist of
the progressively measurable sets and obtain the same conclusions. Thus the variational
inequality would be of the form

⟨ f (t,ω)−w(t,ω) ,z−u(t,ω)⟩ ≤ 0, w(t,ω) ∈ A(u(t,ω) , t,ω) ,z ∈ K (t,ω) .

This result is quite interesting because it is describing a situation where there is no
uniqueness or monotonicity and all that is required are conditions of measurability on f .
Also, one only needs to check the limit conditions on u→A(u,ω) for fixed ω so all Sobolev
embedding theorems are available. Nor is it necessary to assume that ω → A(u,ω) is a
measurable multifunction as is often done. It suffices to check that it has a measurable
selection. This is a strictly more general condition.
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48.6 An Example
Let σ (r, t) be a continuous function of r which satisfies

r → σ (r, t) is continuous, t→ σ (r, t) is measurable,
0 < δ (t)≤ σ (r, t)≤ 1/δ (t)

There is no uniform lower bound needed for δ (t). Then we will let V be a closed subspace
of H1 (Ω) where Ω is a bounded open set with Lipschitz boundary.

V ≡
{

u ∈ H1 (ω) : γu = 0 on Σ0
}

where α (Σ0) > 0 for α the surface measure, Σ0 a closed subset of ∂Ω and γ is the trace
map. Thus an equivalent norm for V is

∥u∥2
V =

∫
Ω

|∇u|2 dx

Also let H = L2 (Ω) and let H = H ′ so that V ⊆H = H ′ ⊆V ′. Then let A(·, t) : V →V ′ be
defined by

⟨A(u, t) ,v⟩ ≡
∫

Ω

σ (u, t)∇u ·∇v

Is this a bounded pseudomonotone map? It is clearly bounded thanks to the bounds on σ .
Suppose then that un→ u weakly in V and

lim sup
n→∞

⟨A(un, t) ,un−u⟩ ≤ 0

Does the liminf condition hold? If not, then there exists a subsequence and v ∈V such that

lim
n→∞
⟨A(un, t) ,un− v⟩< ⟨A(u, t) ,u− v⟩

By compactness, there is a further subsequence still denoted with n such that un → u
strongly in L2 (Ω) and pointwise. Consider∫

Ω

σ (un, t)∇un · (∇un−∇v)

Now by the dominated convergence theorem,∫
Ω

|σ (un, t)−σ (u, t)|2→ 0

and so in fact σ (un, t)∇un→ σ (u, t)∇u weakly in H3. Then∫
Ω

σ (un, t)∇un · (∇un−∇v) =
∫

Ω

σ (un, t)∇un · (∇un−∇u)

+
∫

Ω

σ (un, t)∇un · (∇u−∇v)
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≥
∫

Ω

σ (un, t)∇u · (∇un−∇u)+
∫

Ω

σ (un, t)∇un · (∇u−∇v)

The second term in the above converges to
∫

Ω
σ (u, t)∇u · (∇u−∇v).

Consider the first term after ≥ . It equals∫
Ω

(σ (un, t)−σ (u, t))∇u · (∇un−∇u)+
∫

Ω

σ (u, t)∇u · (∇un−∇u) (*)

The second of these terms converges to 0 because of weak convergence of un to u. As to
the first, if the measure of E is small enough, then(∫

E
|∇u|2

)1/2

< δ

By Egoroff’s theorem, there is a set E having measure this small such that off this set,
σ (un (x) , t)−σ (u(x) , t)→ 0 uniformly for x /∈E. Thus an application of Holder’s inequal-
ity shows that |

∫
EC (σ (un, t)−σ (u, t))∇u · (∇un−∇u)| ≤ δ whenever n is sufficiently

large thanks to the weak convergence of un to u which implies that ∇un−∇u is bounded
in L2 (Ω)3. As to the integral over E, the fact that σ is bounded for fixed t implies the
existence of a constant C independent of n such that∣∣∣∣∫

Ω

(σ (un, t)−σ (u, t))∇uXE · (∇un−∇u)
∣∣∣∣≤C

(∫
E
|∇u|2

)1/2

<Cδ

Thus the first term in * has absolute value no larger than (C+1)δ provided n is sufficiently
large. Since δ is arbitrary, the limit of this term is 0. Thus,

lim inf
n→∞

∫
Ω

σ (un, t)∇un · (∇un−∇v)≥
∫

Ω

σ (u, t)∇u · (∇u−∇v)

This is a contradiction. Thus the liminf condition must hold.
Next consider another operator. Let Σ1 be ∂Ω⧹ Σ0 and has positive surface measure.

Let r → a(r, t) be lower semicontinuous and r → b(r, t) be upper semicontinuous. Let
0 < δ (t) ≤ a(r, t) ≤ b(r, t) ≤ 1

δ (t) . Also let both of these functions be measurable in t.

Now γ : V → L2 (Σ1) and so γ∗ : L2 (Σ1)→ V ′ defined in the usual way. Then z ∈ B(u, t)
will mean z = γ∗w for some w ∈ L2 (Σ1) with

w(x) ∈ [a(γu(x) , t) ,b(γu(x) , t)]

for a.e. x such that
⟨z,v⟩=

∫
Σ1

w(x)γv(x)

Using Sobolev embedding theorems, if un→ u weakly in V , then from the Sobolev em-
bedding theorem un→ u strongly in a suitable Sobolev space of fractional order such that
the embedding of V into this space is compact and the trace map is still continuous. Thus
there is a subsequence such that γun (x)→ γu(x) pointwise a.e. and wn → w in L2 (Σ1).
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Then by the semicontinuity properties of a,b we obtain from routine considerations that
w(x) ∈ [a(γu(x) , t) ,b(γu(x) , t)] a.e. To see how you can do this, let

E =

{
x : w(x)≥ b(γu(x) , t)+

1
k

}
.

Then∫
Σ1

XE (x)(−b(γun (x) , t)) ≤
∫

Σ1

XE (x)(−wn (x))→
∫

Σ1

XE (x)(−w(x))

≤
∫

Σ1

XE (x)
(
−b(γu(x) , t)− 1

k

)
By lower semicontinuity of −b(·, t) and the boundedness assumption, we can use Fatou’s
lemma to take liminf of both sides and conclude that∫

Σ1

XE (x)(−b(γu(x) , t))≤
∫

Σ1

XE (x)
(
−b(γu(x) , t)− 1

k

)
an obvious contradiction unless α (E) = 0. Then taking the union of the exceptional sets
for all k, it follows that w(x) ≤ b(γu(x) , t) a.e. The other side of the inequality can be
shown similarly. Letting zn ∈ B(un, t) and v ∈V, is it true that

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,un− v⟩

for some z(v) ∈ B(u, t)? Suppose not. Then from the above, there is a subsequence such
that the limit equals the liminf but which has the inequality turned around for some v and
all z ∈ B(u, t). Then from what was just shown, letting wn go with zn, there is a further
subsequence such that wn→ w weakly in L2 (Σ1) and and γun→ γu strongly in L2 (Σ1) and

w(x) ∈ [a(γu(x) , t) ,b(γu(x) , t)] a.e. x

Then ∫
Σ1

wn (x)(γun (x)− γv(x))→
∫

Σ1

w(x)(γu(x)− γv(x)) = ⟨z,u− v⟩

where w ∈ B(u, t) and z = γ∗w so the liminf condition holds. Thus this second operator is
pseudomonotone.

Do these have measurable selections? This is obvious. Letting u∈V, t→ γ∗a(γu(x) , t)
is measurable into V ′ and is in B(u, t). Similarly t→A(u, t) is measurable into V ′. Note that
on the second operator, it was really only necessary to assume that there exists t → c(r, t)
measurable with c(r, t) ∈ [a(r, t) ,b(r, t)] and totally eliminate the assumption that either a
or b is measurable in t.

Now let t→ f (t) be measurable into V ′. Say

⟨ f (t) ,v⟩=
∫

Ω

h(t)vdx+
∫

Σ1

β (t)vdα



48.6. AN EXAMPLE 1573

and let K (t)⊆V be a closed convex subset of V . There is obviously a coercivity condition
holding for the sum of these two operators A(u, t)+B(u, t) and so there exists u(t) ∈ K (t)
such that for all v ∈ K (t)

⟨ f (t)− (A(u(t) , t)+ z(t)) ,v−u(t)⟩ ≤ 0 (*)

where t→ u(t) is measurable into V , t→ z(t) measurable into V ′, t→ A(u(t) , t) measur-
able into V ′. Is t→ w(t) measurable where z(t) = γ∗w(t)? Let φ ∈V. Then

⟨z(t) ,φ⟩V ′,V = (w(t) ,γφ)L2(Σ1)

and is given to be a measurable function of t. However, since Σ1 is open, the image of
the trace is dense in L2 (Σ1) and so by this density and Pettis theorem, t → w(t) must be
measurable into L2 (Σ1). Thus the variational inequality * is of the form(

(h(t) ,v−u(t))H +(β (t)−w(t) ,γv− γu(t))L2(Σ1)

−(σ (u(t) , t)∇u(t) ,∇v−∇u(t))H3

)
≤ 0

for all v ∈ K (t). If the inequality which gives coercivity were eliminated, we would still
have the above if K (t) were assumed bounded.

What equation is satisfied if K (t) =V ? We would have∫
Ω

σ (u(t) , t)∇u(t) ·∇vdx+
∫

Σ1

w(t)vdx =
∫

Ω

⟨ f (t) ,v⟩dx,

w(t) ∈ [a(γu(t) , t) ,b(γu(t) , t)]

Then proceding formally, we obtain∫
Ω

∇ · (σ (u(t) , t)∇u(t)v)dx−
∫

Ω

∇ · (σ (u(t) , t)∇u(t))v+
∫

Σ1

w(t)vdx

=
∫

Ω

h(t)v+
∫

Σ1

β (t)v

Then a formal application of the divergence theorem yields the boundary conditions

σ (u(t) , t)∇u(t) ·n +w(t) = β (t) on Σ1

u(t) = 0 on Σ0

where w(t) ∈ [a(γu(t) , t) ,b(γu(t) , t)] along with the partial differential equation

−∇ · (σ (u(t) , t)∇u(t)) = h(t)

Note that if either a(·, t) or b(·, t) were continuous, there would have been no point in
considering the second operator as a set valued map. One could simply replace the closed
interval [a(r, t) ,b(r, t)] with either a(r, t) or b(r, t) and obtain the desired solutions. Also
note that nothing is needed about the integrability of either t → h(t) or t → β (t). The
following lemma is convenient in considering the convex sets K (t).
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Lemma 48.6.1 Let F be those points where u = 0. Then for a.e. x ∈ F,∇u(x) = 0. Here
u ∈W 1,p (Ω) and we assume ∂Ω has measure zero.

Proof: It suffices to consider u = 0 on F contained in the interior of Ω. First I show
that u,xn = 0 a.e.

u(t1, · · · , tn−1, tn)−u(t1, · · · , tn−1, tn−h)
h

=
1
h

∫ tn

tn−h
u,xn (t1, · · · , tn−1,s)ds

Then a.e. tn is a Lebesgue point of u,xn for F(t1,··· ,tn−1)where F(t1,··· ,tn−1) consists of those
points of F where (t1, · · · , tn−1) is fixed. Also let tn be a point of density of F(t1,··· ,tn−1). Of
course m1 a.e. points of F(t1,··· ,tn−1) are points of density. Therefore, there exists a sequence
hk→ 0+ such that tn−hk→ tn as k→∞ and (tn−hk)∈ F(t1,··· ,tn−1). Otherwise there would
be some open set about tn which excludes points of F(t1,··· ,tn−1) which would imply that tn
is not actually a point of density. Then using the fundamental theorem of calculus, we get
for such points which are points of F(t1,··· ,tn−1) the fact that u,xn (t1, · · · , tn−1, tn) = 0. Thus
for a.e. tn ∈ F(t1,··· ,tn−1),u,xn (t1, · · · , tn−1, tn) = 0. Thus u,xn (t1, · · · , tn−1, tn) = 0 for a.e. tn in
F(t1,··· ,tn−1). Similar reasoning holds for differentiation with respect to the other variables.
Thus ∇u = 0 a.e. on F . ■

Lemma 48.6.2 Let V be a closed subset of W 1,p (Ω) , p> 1 and let k∈V. Then max(k,u)∈
V and if un→ u in V, then max(un,k)→max(u,k) in V.

Proof: We consider ψ (r) = |r| ,ψε (r) =
√

ε + r2. Then for φ ∈C∞
c (Ω) ,∫

Ω

ψ (u(x))φ ,xk (x) = lim
ε→0

∫
Ω

ψε (u(x))φ ,xk (x)

= − lim
ε→0

∫
Ω

u(x)√
ε +u2 (x)

u,xk (x)φ (x)

= −
∫

Ω

ξ (u(x))u,xk (x)φ (x)

where ξ (r) = 1 if r > 0,−1 if r < 0 and 0 if r = 0. Thus ψ (u) ,xk = ξ (u(x))u,xk (x) a.e.
and so ψ ◦ u is clearly in W 1,p (Ω). Of course max(u,k) = |k−u|+(k+u)

2 so this shows that
max(u,k) is in W 1,p (Ω) .

Next suppose un→ u in W 1,p (Ω) . Does

ξ (un)un,xk→ ξ (u)u,xk ?

Let G = {x : u(x) ̸= 0} . A subsequence, still denoted by un converges pointwise a.e . to u
and un,xk→ u,xk pointwise a.e. Therefore, off a set of measure zero, ξ (un (x)) = ξ (u(x))
for all n large enough on G. Also,(∫

Ω

∣∣ξ (un)un,xk−ξ (u)u,xk

∣∣p)1/p

≤
(∫

Ω

∣∣ξ (un)un,xk−ξ (un)u,xk

∣∣p)1/p

+

(∫
Ω

|ξ (un)−ξ (u)|p
∣∣u,xk

∣∣p)1/p

(*)
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That second term on the right converges to 0. It equals(∫
GC
|ξ (un)−ξ (u)|p

∣∣u,xk

∣∣p +∫
G
|ξ (un)−ξ (u)|p

∣∣u,xk

∣∣p)1/p

Now on GC,u,xk (x) = 0 a.e. and so the first term in the parentheses is 0. The second
converges to 0 by the dominated convergence theorem. Then this shows that the second
term in * converges to 0. The first obviously converges to 0 from the convergence of un,xk
to u,xk . Now consider whether ψ (un) ,xk converges to ψ (u) ,xk . Those functions ψ (un) ,xk
are bounded in Lp (Ω) from the above description and so if it fails to converge to ψ (u) ,xk in
Lp a subsequence converges weakly to ζ ̸= ψ (u) ,xk . But then, the above argument shows
that a further subsequence does converge strongly to ψ (u) ,xk contrary to ζ ̸= ψ (u) ,xk .

Now, from the description of the maximum of two functions given above, we obtain
that max(un,k)→max(u,k) in V provided un→ u in V . ■

Consider k ∈C ([0,T ] ;V ). Let

K (t)≡ {u ∈V : u(x)≥ k (t,x) a.e. x}

This is clearly a convex subset of V. Is it closed and convex? Is t → K (t) a set valued
measurable function?

Claim: K (t) is closed and convex.
Proof: It is obvious it is convex. Suppose un → u in V,un ∈ K (t). Then there is a

subsequence, still denoted as un such that un (x)→ u(x) a.e. Hence K (t) is closed.
Claim: t→ K (t) is a measurable multifunction.
Proof: Consider the subset of C ([0,T ] ;V ) defined by

{u ∈C ([0,T ] ;V ) : for a.e. t, u(t,x)≥ k (t,x) a.e. x}

This is a subset of the completely separable set C ([0,T ] ;V ) and so it is also separable.
Let {di}∞

i=1 be a dense subset of C ([0,T ] ;V ) . Then let {bi}∞

i=1 be defined by bi (t,x) ≡
max(k (t,x) ,di (t,x)). Thus the functions x→ bi (t,x) are each in K (t) because of the
above Lemma. They are also measurable into V because k,di ∈C ([0,T ] ;V ). Is {bi (t, ·)}∞

i=1
dense in K (t)? Suppose u ∈ K (t) . Then t → v(t,x)≡ u(x) is in C ([0,T ] ;V ) and so there
is a subsequence denoted by di which converges pointwise to u in C ([0,T ] ;V ). Therefore,
we can get a subsequence such that by the above lemma, max(k (t, ·) ,di (t, ·))→ u(·) in V .
Thus {bi (t, ·)}∞

i=1 is dense in K (t) and so t→ K (t) is a measurable multifunction.
As an example, you could simply take k to be the restriction to Ω× [0,T ] of a smooth

function.
This is an example of an obstacle problem in which the obstacle changes in t and there

is no uniqueness even though there exists a measurable solution to the variational inequality
for each t.

One could also replace σ (u, t) with a graph having a jump as in the second of the
two operators and get similar results by beginning with the above solutions and then using
Lemma 48.2.2, and the arguments used in the second operator to pass to a limit.

The next section is an interesting result on the pseudomonotone condition for Nemytskii
operators defined in this section.
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48.7 Limit Conditions For Nemytskii Operators
This is about the following problem. You know

u→ A(u, t)

is pseudomonotone. You can also define Â : V → V ′ by

Â(u)(t)≡ A(u(t) , t) a.e.

Then when can you obtain a useable limit condition for Â? I think the earliest solution to
this problem was given in [17]. These ideas were extended to set valued maps in [18] and
to another situation in [85].

Define V ≡ V p by
V = Lp ([0,T ] ;V ) , p > 1,

where V is a separable Banach space and H is a Hilbert space such that

V ⊆ H = H ′ ⊆V ′

with each space dense in the following one. The measure space is chosen to be

([0,T ] ,B ([0,T ]) ,m)

where m is the Lebesgue measure and B ([0,T ]) consists of all the Borel sets, although one
could use the σ algebra of Lebesgue measurable sets as well. We denote by Vp or V the
above space. If U is a Banach space, Ur will denote Lr ([0,T ] ,U).

We will assume the following measurability condition. For each u ∈ V ,

t→ A(u(t) , t) is a measurable multifunction (48.7.19)

In the case when A(·, t) is single-valued, bounded and pseudomonotone, this measura-
bility condition is satisfied and so it is measurable. Thus, this definition is a generalization
of what would be expected for single-valued operators. We use the following lemma.

Lemma 48.7.1 Let U be a separable reflexive Banach space. Suppose there is a sequence{
u j (ω)

}∞

j=1 in U, where each ω → u j (ω) is measurable and for each ω, supi ∥ui (ω)∥<
∞. Then, there exists u(ω) ∈U such that ω → u(ω) is measurable, and a subsequence
n(ω), that depends on ω , such that the weak limit

lim
n(ω)→∞

un(ω) (ω) = u(ω)

holds.

Proof. Let {zi}∞

i=1 be a countable dense subset of U ′. Let h : U →∏
∞
i=1R be defined

by

h(u) =
∞

∏
i=1
⟨zi,u⟩ .
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Let X = ∏
∞
i=1R with the product topology. Then, this is a Polish space with the metric

defined as d (x,y) = ∑
∞
i=1

|xi−yi|
1+|xi−yi|2

−i. By compactness, for a fixed ω,the h(un (ω)) are
contained in a compact subset of X . Next, define

Γn (ω) = ∪k≥nh(uk (ω)),

which is a nonempty compact subset of X .
Next, we claim that ω → Γn (ω) is a measurable multifunction.
The proof of the claim is as follows. It is necessary to show that Γ−n (O) defined as

{ω : Γn (ω)∩O ̸= /0} is measurable whenever O is open. It suffices to verify this for O a
basic open set in the topology of X . Thus let O = ∏

∞
i=1 Oi where each Oi is a proper open

subset of R only for i ∈ { j1, · · · , jm} . Then,

Γ
−
n (O) = ∪k≥n∩m

r=1
{

ω :
〈
z jr ,uk (ω)

〉
∈ O jr

}
,

which is a measurable set since uk is measurable.
Then, it follows that ω → Γn (ω) is strongly measurable because it has compact values

in X , thanks to Tychonoff’s theorem. Thus Γ−n (H) = {ω : H ∩Γn (ω) ̸= /0} is measurable
whenever H is a closed set. Now, let Γ(ω) be defined as ∩nΓn (ω) and then for H closed,

Γ
− (H) = ∩nΓ

−
n (H)

and each set in the intersection is measurable, so this shows that ω→ Γ(ω) is also measur-
able. Therefore, it has a measurable selection g(ω). It follows from the definition of Γ(ω)
that there exists a subsequence n(ω) such that

g(ω) = lim
n(ω)→∞

h
(
un(ω) (ω)

)
in X .

In terms of components, we have

gi (ω) = lim
n(ω)→∞

〈
zi,un(ω) (ω)

〉
.

Furthermore, there is a further subsequence, still denoted with n(ω), such that un(ω) (ω)→
u(ω) weakly. This means that for each i,

gi (ω) = lim
n(ω)→∞

〈
zi,un(ω) (ω)

〉
= ⟨zi,u(ω)⟩ .

Thus, for each zi in a dense set, ω → ⟨zi,u(ω)⟩ is measurable. Since the zi are dense,
this implies ω → ⟨z,u(ω)⟩ is measurable for every z ∈ U ′ and so by the Pettis theorem,
ω → u(ω) is measurable.

Also is a definition.

Definition 48.7.2 Let A(·, t) : V →P (V ′) . Then, the Nemytskii operator associated with
A,

Â : Lp ([0,T ] ;V )→P
(

Lp′ ([0,T ] ;V ′)) ,
is given by

z ∈ Â(u) if and only if z ∈ Lp′ ([0,T ] ;V ′)and z(t) ∈ A(u(t) , t) a.e. t.
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Growth and coercivity

The next three conditions on the operator A are similar to the conditions proposed by
Bian and Webb, [18] See also Berkovitz and Mustonen [17] which seems to be the paper
where these ideas originated. These specific and reasonable conditions, together with a
fourth one we add below, allow us to prove an appropriate limit condition that is based on
the assumption that u→ A(u, t) is a set-valued, bounded and pseudomonotone map from
V to P (V ′) and t→ A(u, t) has a measurable selection.

Our aim is to provide reasonable conditions under which an assumption of pseudomono-
tonicity on u→ A(u, t) transfers to a useable limit condition for the operator Â defined on
V = Lp ([0,T ] ;V ).

It is obvious that Âu is convex because this is true of A(u, t). It is also closed. To
see this, suppose zn ∈ Â(u). Then zn (t) ∈ A(u(t) , t) for a.e.t. Taking the union of the
exceptional sets, we can assume this inclusion holds off a single set of measure zero for
all n. If you have zn → w strongly in V ′, then a subsequence converges pointwise a.e.
Therefore, by upper semicontinuity of the pointwise operator u→ A(u, t) , it follows that
w(t) ∈ A(u(t) , t) for a.e. t. Thus Âu is convex and strongly closed.

We assume the following conditions on A.

1. A(·, t) : V →P (V ′) is pseudomonotone and bounded: A(u, t) is a closed convex set
for each t, u→ A(u, t) is bounded, and if

lim sup
n→∞

⟨A(un, t) ,un−u⟩ ≤ 0

then for any v ∈V,

lim inf
n→∞
⟨A(un, t) ,un− v⟩ ≥ ⟨z(v) ,u− v⟩ some z(v) ∈ A(u, t)

2. A(·, t) satisfies the estimates: There exists b1 ≥ 0 and b2 ≥ 0, such that

||z||V ′ ≤ b1 ||u||p−1
V +b2 (t) , (48.7.20)

for all z ∈ A(u, t) , b2 (·) ∈ Lp′ ([0,T ]).

3. There exist a positive constant b3 and a nonnegative function b4 that is B ([0,T ])
measurable and also b4 (·) ∈ L1 ([0,T ]), such that

inf
z∈A(u,t)

⟨z,u⟩ ≥ b3 ||u||pV −b4 (t)−λ |u|2H . (48.7.21)

4. The operators t→ A(u(t) , t) are measurable in the sense that

t→ A(u(t) , t)

is a measurable multifunction with respect to F where F will be the σ algebra of
Lebesgue measurable sets whenever t→ u(t) is in Vp.
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5. For u ∈ Vp, we define Â(u) ∈ P
(
V ′p
)

as follows: z ∈ Â(u) means that z(t) ∈
A(u(t) , t) a.e. t. Thus this is the Nemytskii operator for A(·, t).

In the following theorem and in arguments which take place below, U will be a Hilbert
space dense in V with the inclusion map compact. Such a Hilbert space always exists and
is important in probability theory where (i,U,V ) is an abstract Wiener space. However,
in most applications from partial differential equations, it suffices to take U as a suitable
Sobolev space.

Theorem 48.7.3 Suppose conditions 1 - 5 hold. Also, suppose

V ⊆ H = H ′ ⊆V ′, where V is dense in H,

Then, the operator Â satisfies the following.
Hypotheses:

un→ u weakly in V , lim sup
n→∞

⟨zn,un−u⟩V ′,V ≤ 0,

for zn ∈ Âun, and there exists a set of zero measure Σ such that for t /∈ Σ, every subsequence
of {un} has a further subsequence, possibly depending on t /∈ Σ such that

un (t)→ u(t) weakly in U ′,

where U is a Banach space dense in V . In 3, if λ > 0, then assume also that

sup
n

sup
t∈[0,T ]

|un (t)|H < ∞. (48.7.22)

Conclusion: If the above conditions hold, then for each v ∈ V , there exists z(v) with

lim inf
n→∞
⟨zn,un− v⟩V ′,V ≥ ⟨z(v) ,u− v⟩V ′,V .

where z(v) ∈ Â(u). Furthermore, Âu is a nonempty, closed and convex set in V ′.

Proof: It was argued above that Â(u) is closed and convex.
Enlarge the set of measure zero Σ, if needed, so that for each n,

zn (t) ∈ A(un (t) , t)

for each t /∈ Σ.
Next, we claim that if t /∈ Σ, then

lim inf
n→∞
⟨zn (t) ,un (t)−u(t)⟩ ≥ 0.

Proof of the claim: Let t /∈ Σ be fixed and suppose to the contrary that

lim inf
n→∞
⟨zn (t) ,un (t)−u(t)⟩< 0. (48.7.23)
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Then, there exists a subsequence {nk}, which may depend on t, such that

lim
k→∞
⟨znk (t) ,unk (t)−u(t)⟩= lim inf

n→∞
⟨zn (t) ,un (t)−u(t)⟩< 0. (48.7.24)

Now, condition 3 implies that for all k large enough,

b3
∣∣∣∣unk (t)

∣∣∣∣p
V −b4 (t)−λ

∣∣unk (t)
∣∣2
H <

∣∣∣∣znk (t)
∣∣∣∣

V ′ ||u(t)||V

≤
(

b1
∣∣∣∣unk (t)

∣∣∣∣p−1
V +b2 (t)

)
||u(t)||V ,

therefore,
∣∣∣∣unk (t)

∣∣∣∣
V and consequently

∣∣∣∣znk (t)
∣∣∣∣

V ′ are bounded. This follows from 48.7.22
in case λ > 0. Note that

∣∣∣∣znk (t)
∣∣∣∣

V ′ is bounded independently of nk because of the assump-
tion that A(·, t) is bounded and we just showed that

∣∣∣∣unk (t)
∣∣∣∣

V is bounded.
Taking a further subsequence if necessary, let unk (t)→ u(t) weakly in U ′ and unk (t)→

ξ weakly in V . Thus, by density considerations, ξ = u(t). Now, 48.7.24 and the limit con-
ditions for pseudomonotone operators imply that the liminf condition holds.There exists
z∞ ∈ A(u(t) , t) such that

lim inf
k→∞
⟨znk (t) ,unk (t)−u(t)⟩ ≥ ⟨z∞,u(t)−u(t)⟩= 0

> lim
k→∞
⟨znk (t) ,unk (t)−u(t)⟩,

which is a contradiction. This completes the proof of the claim.
We continue with the proof of the theorem. It follows from this claim that for every

t /∈ Σ,
lim inf

n→∞
⟨zn (t) ,un (t)−u(t)⟩ ≥ 0. (48.7.25)

Also, it is assumed that
lim sup

n→∞

⟨zn,un−u⟩V ≤ 0.

Then from the estimates,∫ T

0

(
b3 ||un (t)||pV −b4 (t)−λ |un (t)|2H

)
dt ≤

∫ T

0
∥u(t)∥V

(
∥un∥p−1 b1 +b2

)
dt

so it is routine to get ∥un∥V is bounded. This follows from the assumptions, in particular
48.7.22.

Now, the coercivity condition 3 shows that if y ∈ Lp ([0,T ] ;V ), then

⟨zn (t) ,un (t)− y(t)⟩ ≥ b3 ||un (t)||pV −b4 (t)−λ |un (t)|2H
−
(

b1 ||un (t)||p−1 +b2 (t)
)
||y(t)||V .

Using p−1 = p
p′ , where 1

p +
1
p′ = 1, the right-hand side of this inequality equals

b3 ||un (t)||pV −b4 (t)−b1 ||un (t)||p/p′ ||y(t)||V −b2 (t) ||y(t)||V −λ |un (t)|2H ,
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the last term being bounded independent of t,n by assumption. Thus there exists c ∈
L1 (0,T ) and a positive constant C such that

⟨zn (t) ,un (t)− y(t)⟩ ≥ −c(t)−C ||y(t)||pV . (48.7.26)

Letting y = u, we use Fatou’s lemma to write

lim inf
n→∞

∫ T

0

(
⟨zn (t) ,un (t)−u(t)⟩+ c(t)+C ||u(t)||pV

)
dt ≥

∫ T

0
lim inf

n→∞
⟨zn (t) ,un (t)−u(t)⟩+

(
c(t)+C ||u(t)||pV

)
dt

≥
∫ T

0

(
c(t)+C ||u(t)||pV

)
dt.

Here, we added the term c(t)+C ||u(t)||pV to make the integrand nonnegative in order to
apply Fatou’s lemma. Thus,

lim inf
n→∞

∫ T

0
⟨zn (t) ,un (t)−u(t)⟩dt ≥ 0.

Consequently, using the claim in the last inequality,

0 ≥ lim sup
n→∞

⟨zn,un−u⟩V ′,V

≥ lim inf
n→∞

∫ T

0
⟨zn (t) ,un (t)−u(t)⟩dt

= lim inf
n→∞
⟨zn,un−u⟩V ′,V

≥
∫ T

0
lim inf

n→∞
⟨zn (t) ,un (t)−u(t)⟩dt ≥ 0,

hence, we find that
lim
n→∞
⟨zn,un−u⟩V ′,V = 0. (48.7.27)

We need to show that if y is given in V then

lim inf
n→∞
⟨zn,un− y⟩V ′,V ≥ ⟨z(y) ,u− y⟩ V ′,V , z(y) ∈ Âu

Suppose to the contrary that there exists y such that

η = lim inf
n→∞
⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V , (48.7.28)

for all z ∈ Âu. Take a subsequence, denoted still with subscript n such that

η = lim
n→∞
⟨zn,un− y⟩V ′,V

Thus
lim
n→∞
⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V (48.7.29)
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We will obtain a contradiction to this. In what follows we continue to use the subsequence
just described which satisfies the above inequality.

The estimate 48.7.26 implies,

0≤ ⟨zn (t) ,un (t)−u(t)⟩− ≤ c(t)+C ||u(t)||pV , (48.7.30)

where c is a function in L1 (0,T ). Thanks to (48.7.25),

lim inf
n→∞
⟨zn (t) ,un (t)−u(t)⟩ ≥ 0,

and, therefore, the following pointwise limit exists,

lim
n→∞
⟨zn (t) ,un (t)−u(t)⟩− = 0,

and so we may apply the dominated convergence theorem using (48.7.30) and conclude

lim
n→∞

∫ T

0
⟨zn (t) ,un (t)−u(t)⟩−dt =

∫ T

0
lim
n→∞
⟨zn (t) ,un (t)−u(t)⟩−dt = 0

Now, it follows from (48.7.27) and the above equation, that

lim
n→∞

∫ T

0
⟨zn (t) ,un (t)−u(t)⟩+dt

= lim
n→∞

∫ T

0
⟨zn (t) ,un (t)−u(t)⟩+ ⟨zn (t) ,un (t)−u(t)⟩−dt

= lim
n→∞
⟨zn,un−u⟩V ′,V = 0.

Therefore, both
∫ T

0 ⟨zn (t) ,un (t)−u(t)⟩+dt and
∫ T

0 ⟨zn (t) ,un (t)−u(t)⟩−dt converge to 0,
thus,

lim
n→∞

∫ T

0
|⟨zn (t) ,un (t)−u(t)⟩|dt = 0 (48.7.31)

lim
n→∞
⟨zn,un−u⟩V ′,V = 0

From the above, it follows that there exists a further subsequence {nk} not depending on t
such that ∣∣⟨znk (t) ,unk (t)−u(t)⟩

∣∣→ 0 a.e. t. (48.7.32)

Therefore, by the pseudomonotone limit condition for A there exists wt ∈ A(u(t) , t)
such that for a.e. t,

α (t) ≡ lim inf
k→∞
⟨znk (t) ,unk (t)− y(t)⟩

= lim inf
k→∞
⟨znk (t) ,u(t)− y(t)⟩ ≥ ⟨wt ,u(t)− y(t)⟩.

Then on the exceptional set, let α (t)≡ ∞, and consider the set

F (t)≡ {w ∈ A(u(t) , t) : ⟨w,u(t)− y(t)⟩ ≤ α (t)} ,
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which then satisfies F (t) ̸= /0. Now F (t) is closed and convex in V ′.
Claim: t→ F (t) has a measurable selection off a set of measure zero.
Proof of claim: Letting B(0,C (t)) contain A(u(t) , t) , we can assume t→C (t) is mea-

surable by using the estimates and the measurability of u. For p∈N, let Sp≡{t : C (t)< p} .
If it is shown that F has a measurable selection on Sp, then it follows that it has a measur-
able selection. Thus in what follows, assume that t ∈ Sp.

Define

G(t)≡
{

w : ⟨w,u(t)− y(t)⟩< α (t)+
1
n

, t /∈ Σ

}
∩B(0, p)

Thus, it was shown above that this G(t) ̸= /0. For U open,

G− (U)≡
{

t ∈ Sp : for some w ∈U ∩B(0, p) ,⟨w,u(t)− y(t)⟩< α (t)+
1
n

}
(*)

Let
{

w j
}

be a dense subset of U ∩B(0, p). This is possible because V ′ is separable. The
expression in ∗ equals

∪∞
k=1

{
t ∈ Sp : ⟨wk,u(t)− y(t)⟩< α (t)+

1
n

}
which is measurable. Thus G is a measurable multifunction.

Since t → G(t) is measurable, there is a sequence {wn (t)} of measurable functions
such that ∪∞

n=1wn (t) equals

G(t) =
{

w : ⟨w,u(t)− y(t)⟩ ≤ α (t)+
1
n

, t /∈ Σ

}
∩B(0, p)

As shown above, there exists wt in A(u(t) , t) as well as G(t) . Thus there is a sequence
of wr (t) converging to wt . Since t → A(u(t) , t) is a measurable multifunction, it has a
countable subset of measurable functions {zm (t)} which is dense in A(u(t) , t). Let

Uk (t)≡ ∪mB
(

zm (t) ,
1
k

)
⊆ A(u(t) , t)+B

(
0,

2
k

)
Now define A1k = {t : w1 (t) ∈Uk (t)} . Then let A2k = {t /∈ A1k : w2 (t) ∈Uk (t)} and

A3k =
{

t /∈ ∪2
i=1Aik : w3 (t) ∈Uk (t)

}
and so forth. Any t ∈ Sp must be contained in one

of these Ark for some r since if not so, there would not be a sequence wr (t) converging
to wt ∈ A(u(t) , t). These Arp partition Sp and each is measurable since the {zk (t)} are
measurable. Let

ŵk (t)≡
∞

∑
r=1

XArk (t)wr (t)

Thus ŵk (t) is in Uk (t) for all t ∈ Sp and equals exactly one of the wm (t) ∈ G(t).
Also, by construction, the ŵk (·) are bounded in L∞ (Sp;V ′). Therefore, there is a subse-

quence of these, still called ŵk which converges weakly to a function w in L2 (Sp;V ′) .

Thus w is a weak limit point of co
(
∪∞

j=kŵ j

)
for each k. Therefore, in the open ball
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B
(
w, 1

k

)
⊆ L2 (Sp;V ′) with respect to the strong topology, there is a convex combination

∑
∞
j=k c jkŵ j (the c jk add to 1 and only finitely many are nonzero). Since G(t) is convex

and closed, this convex combination is in G(t). Off a set of measure zero, we can assume
this convergence of ∑

∞
j=k c jkŵ j as k→ ∞ happens pointwise for a suitable subsequence.

However,
∞

∑
j=k

c jkŵ j (t) ∈Uk (t)⊆ A(u(t) , t)+B
(

0,
2
k

)
.

Thus w(t) ∈ A(u(t) , t) a.e. t because A(u(t) , t) is a closed set. Since w is the pointwise
limit of measurable functions off a set of measure zero, it can be assumed measurable and
for a.e. t, w(t) ∈ A(u(t) , t)∩G(t). Now denote this measurable function wn. Then

wn (t) ∈ A(u(t) , t) ,⟨wn (t) ,u(t)− y(t)⟩ ≤ α (t)+
1
n

a.e. t

These wn (t) are bounded for each t off a set of measure zero and so by Lemma 48.7.1, there
is a measurable function t→ z(t) and a subsequence wn(t) (t)→ z(t) weakly as n(t)→ ∞.
Now A(u(t) , t) is closed and convex, hence weakly closed as well. Thus z(t) ∈ A(u(t) , t)
and

⟨z(t) ,u(t)− y(t)⟩ ≤ α (t) = lim inf
k→∞
⟨znk (t) ,unk (t)− y(t)⟩ (**)

Therefore, t → F (t) has a measurable selection on Sp excluding a set of measure zero,
namely z(t) which will be called zp (t) in what follows.

It follows that F (t) has a measurable selection on [0,T ] other than a set of measure
zero. To see this, enlarge Σ to include the exceptional sets of measure zero in the above
argument for each p. Then partition [0,T ] \Σ as follows. For p = 1,2, · · · , consider Sp \
Sp−1, p = 1,2, · · · for S0 defined as /0. Then letting zp be the selection for t ∈ Sp, let z(t) =
∑

∞
p=1 zp (t)XSp\Sp−1 (t). The estimates imply z ∈ V ′ and so z ∈ Â(u) .

From the estimates, there exists h ∈ L1 (0,T ) such that ⟨z(t) ,u(t)− y(t)⟩ ≥ −|h(t)|
Thus, from the above inequality,

∥h∥L1 + ⟨z,u− y⟩V ′,V ≤
∫ T

0
lim inf

k→∞
⟨znk (t) ,unk (t)− y(t)⟩+ |h(t)|dt

≤ lim inf
k→∞

〈
znk ,unk − y

〉
V ′,V +∥h∥L1 = lim

n→∞
⟨zn,un− y⟩V ′,V +∥h∥L1

which contradicts 48.7.29. ■
This all works for progressively measurable operators. These are discussed more later

in the material on probability. A filtration is {Ft} , t ∈ [0,T ] where each Ft is a σ algebra
of sets in Ω usually a probability space and these are increasing in t. Then the progressively
measurable sets P are S⊆Ω such that

S∩ [0, t]×Ω is B ([0, t])×Ft measurable

You can verify that this is indeed a σ algebra of sets in [0,T ]×Ω. Now here is a general-
ization of the above which will work for this situation.
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In what follows, P will be the σ algebra of progressively measurable sets. Thus there
is a filtration {Ft} and a set S is P measurable means that

(t,ω)→X[0,t]×Ω (t,ω)XS (t,ω) is a B ([0, t])×Ft

meaurable function.
We assume the following conditions on A.

1. A(·, t,ω) : V →P (V ′) is pseudomonotone and bounded: A(u, t,ω) is a closed con-
vex set for each (t,ω), u→ A(u, t,ω) is bounded, and if un→ u weakly and

lim sup
n→∞

⟨A(un, t,ω) ,un−u⟩ ≤ 0

then for any v ∈V,

lim inf
n→∞
⟨A(un, t,ω) ,un− v⟩ ≥ ⟨z(v) ,u− v⟩ some z(v) ∈ A(u, t,ω)

2. A(·, t,ω) satisfies the estimates: There exists b1 ≥ 0 and b2 ≥ 0, such that

||z||V ′ ≤ b1 ||u||p−1
V +b2 (t,ω) , (48.7.33)

for all z ∈ A(u, t,ω) , b2 (·, ·) ∈ Lp′ ([0,T ]×Ω).

3. There exist a positive constant b3 and a nonnegative function b4 that is B ([0,T ])×
FT measurable and also b4 (·, ·) ∈ L1 ([0,T ]×Ω), such that for some λ ≥ 0,

inf
z∈A(u,t,ω)

⟨z,u⟩ ≥ b3 ||u||pV −b4 (t,ω)−λ |u|2H . (48.7.34)

4. The mapping (t,ω)→ A(u(t,ω) , t,ω) is measurable in the sense that

(t,ω)→ A(u(t,ω) , t,ω)

is a measurable multifunction with respect to P whenever (t,ω)→ u(t,ω) is in
V ≡ V p ≡ Lp ([0,T ]×Ω;V,P) .

5. For u ∈ Vp, we define Â(u) ∈P
(
V ′p
)

as follows: z ∈ Â(u) means that z(t,ω) ∈
A(u(t,ω) , t,ω) a.e. (t,ω). Thus this is the Nemytskii operator for A(·, t,ω).

In the following theorem and in arguments which take place below, U will be a Hilbert
space dense in V with the inclusion map compact. Such a Hilbert space always exists and
is important in probability theory where (i,U,V ) is an abstract Wiener space. However,
in most applications from partial differential equations, it suffices to take U as a suitable
Sobolev space. Also for S a set in [0,T ]×Ω,Sω will denote {t : (t,ω) ∈ S} .
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Theorem 48.7.4 Suppose conditions 1 - 5 hold. Also, suppose U is a separable Hilbert
space dense in V, a reflexive separable Banach space with the inclusion map compact and
V is dense in a Hilbert space H. Thus

U ⊆V ⊆ H = H ′ ⊆V ′ ⊆U ′,

Then, the operator Â in the definition 5 satisfies the following.
Hypotheses:

un→ u weakly in V , lim sup
n→∞

⟨zn,un−u⟩V ′,V ≤ 0,

for zn ∈ Âun. For each ω, off a set of P measure zero N, every subsequence of un (t,ω) has
a further subsequence, possibly depending on t,ω such that

un (t,ω)→ u(t,ω) weakly in U ′,

Assume also that
sup

ω∈Ω\N
sup

n
sup

t∈[0,T ]
λ |un (t,ω)|H < ∞. (48.7.35)

Conclusion: If the above conditions hold, then there exists z(v) with

lim inf
n→∞
⟨zn,un− v⟩V ′,V ≥ ⟨z(v) ,u− v⟩V ′,V .

where z(v) ∈ Â(u).

Proof: It was argued above that Â(u) is closed and convex. Let Σ have measure zero
and for each (t,ω) /∈ Σ, zn (t,ω) ∈ A(un (t,ω) , t,ω) for each n. Now Σω has measure zero
for a.e. ω since otherwise Σ would not have measure zero. These are the ω of interest in
the following argument, and we can simply include the exceptional ω in the set of measure
zero N which is being ignored since it has measure zero.

First we claim that if t /∈ Σω , then

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0.

Proof of the claim: Let t /∈ Σω be fixed and suppose to the contrary that

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩< 0. (48.7.36)

Then, there exists a subsequence {nk}, which may depend on t,ω , such that

lim
k→∞
⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩ (48.7.37)

= lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩< 0. (48.7.38)

Now, condition 3 implies that for all k large enough,

b3
∣∣∣∣unk (t,ω)

∣∣∣∣p
V −b4 (t,ω)−λ

∣∣unk (t,ω)
∣∣2
H <

∣∣∣∣znk (t,ω)
∣∣∣∣

V ′ ||u(t,ω)||V
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≤
(

b1
∣∣∣∣unk (t,ω)

∣∣∣∣p−1
V +b2 (t,ω)

)
||u(t,ω)||V ,

therefore,
∣∣∣∣unk (t,ω)

∣∣∣∣
V and consequently

∣∣∣∣znk (t,ω)
∣∣∣∣

V ′ are bounded. This follows from
48.7.35. Note that

∣∣∣∣znk (t,ω)
∣∣∣∣

V ′ is bounded independently of nk because of the assumption
that A(·, t,ω) is bounded and we just showed that

∣∣∣∣unk (t,ω)
∣∣∣∣

V is bounded.
Taking a further subsequence if necessary, let unk (t,ω)→ u(t,ω) weakly in U ′ and

unk (t,ω)→ ξ weakly in V . Thus, by density considerations, ξ = u(t,ω). Now, 48.7.37
and the limit conditions for pseudomonotone operators imply that the liminf condition
holds.There exists z∞ ∈ A(u(t,ω) , t,ω) such that

lim inf
k→∞
⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩ ≥ ⟨z∞,u(t,ω)−u(t,ω)⟩= 0

> lim
k→∞
⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩,

which is a contradiction. This completes the proof of the claim.
We continue with the proof of the theorem. It follows from this claim that for given ω,

every t /∈ Σω ,
lim inf

n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0. (48.7.39)

Also, it is assumed that
lim sup

n→∞

⟨zn,un−u⟩V ≤ 0.

Then from the estimates,∫
Ω

∫ T

0

(
b3 ||un (t,ω)||pV −b4 (t,ω)−λ |un (t,ω)|2H

)
dtdP

≤
∫

Ω

∫ T

0
∥u(t,ω)∥V

(
∥un (t,ω)∥p−1 b1 +b2

)
dtdP

so it is routine to get ∥un∥V is bounded. This follows from the assumptions, in particular
48.7.35.

Now, the coercivity condition 3 shows that if y ∈ V , then

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ b3 ||un (t,ω)||pV −b4 (t,ω)−λ |un (t,ω)|2H
−
(

b1 ||un (t,ω)||p−1 +b2 (t,ω)
)
||y(t,ω)||V .

Using p−1 = p
p′ , where 1

p +
1
p′ = 1, the right-hand side of this inequality equals

b3 ||un (t,ω)||pV −b4 (t,ω)−b1 ||un (t,ω)||p/p′ ||y(t,ω)||V
−b2 (t,ω) ||y(t,ω)||V −λ |un (t,ω)|2H ,

the last term being bounded independent of t,n by assumption. Thus there exists c(·, ·) ∈
L1 ([0,T ]×Ω) and a positive constant C such that

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ −c(t,ω)−C ||y(t,ω)||pV . (48.7.40)
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Letting y = u, we use Fatou’s lemma to write

lim inf
n→∞

∫
Ω

∫ T

0

(
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+ c(t,ω)+C ||u(t,ω)||pV

)
dtdP≥

∫
Ω

∫ T

0
lim inf

n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+

(
c(t,ω)+C ||u(t,ω)||pV

)
dtdP

≥
∫

Ω

∫ T

0

(
c(t,ω)+C ||u(t,ω)||pV

)
dtdP.

Here, we added the term c(t,ω)+C ||u(t,ω)||pV to make the integrand nonnegative in order
to apply Fatou’s lemma. Thus,

lim inf
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0.

Consequently, using the claim in the last inequality,

0 ≥ lim sup
n→∞

⟨zn,un−u⟩V ′,V

≥ lim inf
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP

= lim inf
n→∞
⟨zn,un−u⟩V ′,V

≥
∫

Ω

∫ T

0
lim inf

n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0,

hence, we find that
lim
n→∞
⟨zn,un−u⟩V ′,V = 0. (48.7.41)

We need to show that if y is given in V then

lim inf
n→∞
⟨zn,un− y⟩V ′,V ≥ ⟨z(y) ,u− y⟩ V ′,V , z(y) ∈ Âu

Suppose to the contrary that there exists y such that

η = lim inf
n→∞
⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V , (48.7.42)

for all z ∈ Âu. Take a subsequence, denoted still with subscript n such that

η = lim
n→∞
⟨zn,un− y⟩V ′,V

Note that this subsequence does not depend on (t,ω). Thus

lim
n→∞
⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V (48.7.43)

We will obtain a contradiction to this. In what follows, we continue to use the subsequence
just described which satisfies the above inequality.
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The estimate 48.7.40 implies,

0≤ ⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩− ≤ c(t,ω)+C ||u(t,ω)||pV , (48.7.44)

where c is a function in L1 (0,T ). Thanks to (48.7.39),

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0, a.e.

and, therefore, the following pointwise limit exists,

lim
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩− = 0, a.e.

and so we may apply the dominated convergence theorem using (48.7.44) and conclude

lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP

=
∫

Ω

∫ T

0
lim
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP = 0

Now, it follows from (48.7.41) and the above equation, that

lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+dtdP

= lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩

+⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP

= lim
n→∞
⟨zn,un−u⟩V ′,V = 0.

Therefore, both ∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+dtdP

and ∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP

converge to 0, thus,

lim
n→∞

∫
Ω

∫ T

0
|⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩|dtdP = 0 (48.7.45)

From the above, it follows that there exists a further subsequence {nk} not depending on
t,ω such that ∣∣⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩

∣∣→ 0 a.e. (t,ω) . (48.7.46)

Therefore, by the pseudomonotone limit condition for A there exists

wt,ω ∈ A(u(t,ω) , t,ω)
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such that for a.e.(t,ω)

α (t,ω) ≡ lim inf
k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩

= lim inf
k→∞
⟨znk (t,ω) ,u(t,ω)− y(t,ω)⟩ ≥ ⟨wt,ω ,u(t,ω)− y(t,ω)⟩.

Then on the exceptional set, let α (t,ω)≡ ∞, and consider the set

F (t,ω)≡ {w ∈ A(u(t,ω) , t,ω) : ⟨w,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)} ,

which then satisfies F (t,ω) ̸= /0. Now F (t,ω) is closed and convex in V ′.
Claim : (t,x)→ F (t,ω) has a measurable selection off a set of measure zero.
Proof of claim: Letting B(0,C (t,ω)) contain A(u(t,ω) , t,ω) , we can assume

(t,ω)→C (t,ω)

is P measurable by using the estimates and the measurability of u. For γ ∈ N, let Sγ ≡
{(t,ω) : C (t,ω)< γ} . If it is shown that F has a measurable selection on Sγ , then it follows
that it has a measurable selection. Thus in what follows, assume that (t,ω) ∈ Sγ .

Define

G(t,ω)≡
{

w : ⟨w,u(t,ω)− y(t,ω)⟩< α (t,ω)+
1
n

, (t,ω) /∈ Σ

}
∩B(0,γ)

Thus, it was shown above that this G(t,ω) ̸= /0 at least for large enough γ . For U open,

G− (U)≡
{

(t,ω) ∈ Sγ : for some w ∈U ∩B(0,γ) ,
⟨w,u(t,ω)− y(t,ω)⟩< α (t,ω)+ 1

n

}
(*)

Let
{

w j
}

be a dense subset of U ∩B(0,γ). This is possible because V ′ is separable. The
expression in ∗ equals

∪∞
k=1

{
(t,ω) ∈ Sγ : ⟨wk,u(t,ω)− y(t,ω)⟩< α (t,ω)+

1
n

}
which is measurable. Thus G is a measurable multifunction.

Since (t,ω)→ G(t,ω) is measurable, there is a sequence {wn (t,ω)} of measurable
functions such that ∪∞

n=1wn (t,ω) equals

G(t,ω) =

{
w : ⟨w,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)+

1
n

, t /∈ Σ

}
∩B(0,γ)

As shown above, there exists wt,ω in A(u(t,ω) , t,ω) as well as G(t,ω) . Thus there is
a sequence of wr (t,ω) converging to wt,ω . Of course r will need to depend on t,ω . Since
(t,ω)→ A(u(t,ω) , t,ω) is a measurable multifunction, it has a countable subset of P
measurable functions {zk (t,ω)} which is dense in A(u(t,ω) , t,ω). Let

Uk (t,ω)≡ ∪mB
(

zm (t,ω) ,
1
k

)
⊆ A(u(t,ω) , t,ω)+B

(
0,

2
k

)
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Now define A1k = {(t,ω) : w1 (t,ω) ∈Uk (t,ω)} . Then let

A2k = {(t,ω) /∈ A1k : w2 (t,ω) ∈Uk (t,ω)}

and
A3k =

{
(t,ω) /∈ ∪2

i=1Aik : w3 (t,ω) ∈Uk (t,ω)
}

and so forth. Any (t,ω) ∈ Sγ must be contained in one of these Ark for some r since if not
so, there would not be a sequence wr (t,ω) converging to wt,ω ∈ A(u(t,ω) , t,ω). These
Arγ partition Sγ and each is measurable since the {zk (t,ω)} are measurable. Let

ŵk (t,ω)≡
∞

∑
r=1

XArk (t,ω)wr (t,ω)

Thus ŵk (t,ω) is in Uk (t,ω) for all (t,ω) ∈ Sγ and equals exactly one of the wm (t,ω) ∈
G(t,ω).

Also, by construction, the ŵk (·, ·) are bounded in L∞
(
Sγ ;V ′

)
. Therefore, there is a sub-

sequence of these, still called ŵk which converges weakly to a function w in L2
(
Sγ ;V ′

)
.

Thus w is a weak limit point of co
(
∪∞

j=kŵ j

)
for each k. Therefore, in the open ball

B
(
w, 1

k

)
⊆ L2

(
Sγ ;V ′

)
with respect to the strong topology, there is a convex combination

∑
∞
j=k c jkŵ j (the c jk add to 1 and only finitely many are nonzero). Since G(t,ω) is convex

and closed, this convex combination is in G(t,ω). Off a set of P measure zero, we can
assume this convergence of ∑

∞
j=k c jkŵ j as k→ ∞ happens pointwise a.e. for a suitable

subsequence. However,

∞

∑
j=k

c jkŵ j (t,ω) ∈Uk (t,ω)⊆ A(u(t,ω) , t,ω)+B
(

0,
2
k

)
.

Thus w(t,ω) ∈ A(u(t,ω) , t,ω) a.e. (t,ω) because A(u(t,ω) , t,ω) is a closed set. Since
w is the pointwise limit of measurable functions off a set of measure zero, it can be as-
sumed measurable and for a.e. (t,ω), w(t,ω) ∈ A(u(t,ω) , t,ω)∩G(t,ω). Now denote
this measurable function wn. Then

wn (t,ω) ∈ A(u(t,ω) , t,ω) ,⟨wn (t,ω) ,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)+
1
n

a.e. (t,ω)

These wn (t,ω) are bounded for each (t,ω) off a set of measure zero and so by Lemma
48.7.1, there is a P measurable function (t,ω)→ z(t,ω) and a subsequence wn(t,ω) (t,ω)→
z(t,ω) weakly as n(t,ω)→∞. Now A(u(t,ω) , t,ω) is closed and convex, and wn(t,ω) (t,ω)
is in A(u(t,ω) , t,ω) , and so z(t,ω) ∈ A(u(t,ω) , t,ω) and

⟨z(t,ω) ,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω) = lim inf
k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩ (**)

Therefore, t → F (t,ω) has a measurable selection on Sγ excluding a set of measure zero,
namely z(t,ω) which will be called zγ (t,ω) in what follows.

Then F (t,ω) has a measurable selection on [0,T ]×Ω other than a set of measure
zero. To see this, enlarge Σ to include the exceptional sets of measure zero in the above
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argument for each γ . Then partition [0,T ]×Ω \Σ as follows. For γ = 1,2, · · · , consider
Sγ \ Sγ−1,γ = 1,2, · · · for S0 defined as /0. Then letting zγ be the selection for (t,ω) ∈ Sγ ,

let z(t,ω) = ∑
∞
γ=1 zγ (t,ω)XSγ\Sγ−1 (t,ω). The estimates imply z ∈ V ′ and so z ∈ Â(u) .

From the estimates, there exists h ∈ L1 ([0,T ]×Ω) such that

⟨z(t,ω) ,u(t,ω)− y(t,ω)⟩ ≥ −|h(t,ω)|

Thus, from the above inequality,

∥h∥L1 + ⟨z,u− y⟩V ′,V

≤
∫

Ω

∫ T

0
lim inf

k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩+ |h(t,ω)|dtdP

≤ lim inf
k→∞

〈
znk ,unk − y

〉
V ′,V +∥h∥L1

= lim
n→∞
⟨zn,un− y⟩V ′,V +∥h∥L1

which contradicts 48.7.42. ■
The difficulty with this, is that it is hard to get the hypotheses holding. If you have

un → u weakly in V , then how do you get un (t,ω)→ u(t,ω) weakly in U ′, for a subse-
quence, this for each ω not in a set of measure zero? The weak convergence does not seem
to give pointwise weak convergence of the sort you need. More precisely, the pointwise
convergence you get, might not be the right thing because in un it will be un(ω). This is the
problem with this theorem. It seems correct but not very useful.
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Chapter 49

The Complex Numbers
The reader is presumed familiar with the algebraic properties of complex numbers, includ-
ing the operation of conjugation. Here a short review of the distance in C is presented.

The length of a complex number, referred to as the modulus of z and denoted by |z| is
given by

|z| ≡
(
x2 + y2)1/2

= (zz)1/2 ,

Then C is a metric space with the distance between two complex numbers, z and w defined
as

d (z,w)≡ |z−w| .

This metric on C is the same as the usual metric of R2. A sequence, zn→ z if and only if
xn→ x inR and yn→ y inRwhere z= x+ iy and zn = xn+ iyn. For example if zn =

n
n+1 + i 1

n ,
then zn→ 1+0i = 1.

Definition 49.0.1 A sequence of complex numbers, {zn} is a Cauchy sequence if for every
ε > 0 there exists N such that n,m > N implies |zn− zm|< ε.

This is the usual definition of Cauchy sequence. There are no new ideas here.

Proposition 49.0.2 The complex numbers with the norm just mentioned forms a complete
normed linear space.

Proof: Let {zn} be a Cauchy sequence of complex numbers with zn = xn + iyn. Then
{xn} and {yn} are Cauchy sequences of real numbers and so they converge to real numbers,
x and y respectively. Thus zn = xn+ iyn→ x+ iy. C is a linear space with the field of scalars
equal to C. It only remains to verify that | | satisfies the axioms of a norm which are:

|z+w| ≤ |z|+ |w|

|z| ≥ 0 for all z

|z|= 0 if and only if z = 0

|αz|= |α| |z| .

The only one of these axioms of a norm which is not completely obvious is the first one,
the triangle inequality. Let z = x+ iy and w = u+ iv

|z+w|2 = (z+w)(z+w) = |z|2 + |w|2 +2Re(zw)

≤ |z|2 + |w|2 +2 |(zw)|= (|z|+ |w|)2

and this verifies the triangle inequality.

Definition 49.0.3 An infinite sum of complex numbers is defined as the limit of the sequence
of partial sums. Thus,

∞

∑
k=1

ak ≡ lim
n→∞

n

∑
k=1

ak.
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Just as in the case of sums of real numbers, an infinite sum converges if and only if the
sequence of partial sums is a Cauchy sequence.

From now on, when f is a function of a complex variable, it will be assumed that f has
values in X , a complex Banach space. Usually in complex analysis courses, f has values
in C but there are many important theorems which don’t require this so I will leave it fairly
general for a while. Later the functions will have values in C. If you are only interested in
this case, think C whenever you see X .

Definition 49.0.4 A sequence of functions of a complex variable, { fn} converges uniformly
to a function, g for z ∈ S if for every ε > 0 there exists Nε such that if n > Nε , then

|| fn (z)−g(z)||< ε

for all z∈ S. The infinite sum ∑
∞
k=1 fn converges uniformly on S if the partial sums converge

uniformly on S. Here ||·|| refers to the norm in X , the Banach space in which f has its
values.

The following proposition is also a routine application of the above definition. Neither
the definition nor this proposition say anything new.

Proposition 49.0.5 A sequence of functions, { fn} defined on a set S, converges uniformly
to some function, g if and only if for all ε > 0 there exists Nε such that whenever m,n > Nε ,

|| fn− fm||∞ < ε.

Here || f ||
∞
≡ sup{|| f (z)|| : z ∈ S} .

Just as in the case of functions of a real variable, one of the important theorems is the
Weierstrass M test. Again, there is nothing new here. It is just a review of earlier material.

Theorem 49.0.6 Let { fn} be a sequence of complex valued functions defined on S ⊆ C.
Suppose there exists Mn such that || fn||∞ < Mn and ∑Mn converges. Then ∑ fn converges
uniformly on S.

Proof: Let z ∈ S. Then letting m < n∣∣∣∣∣
∣∣∣∣∣ n

∑
k=1

fk (z)−
m

∑
k=1

fk (z)

∣∣∣∣∣
∣∣∣∣∣≤ n

∑
k=m+1

|| fk (z)|| ≤
∞

∑
k=m+1

Mk < ε

whenever m is large enough. Therefore, the sequence of partial sums is uniformly Cauchy
on S and therefore, converges uniformly to ∑

∞
k=1 fk (z) on S.

49.1 The Extended Complex Plane
The set of complex numbers has already been considered along with the topology of C
which is nothing but the topology of R2. Thus, for zn = xn+ iyn, zn→ z≡ x+ iy if and only
if xn→ x and yn→ y. The norm in C is given by

|x+ iy| ≡ ((x+ iy)(x− iy))1/2 =
(
x2 + y2)1/2
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which is just the usual norm in R2 identifying (x,y) with x+ iy. Therefore, C is a complete
metric space topologically like R2 and so the Heine Borel theorem that compact sets are
those which are closed and bounded is valid. Thus, as far as topology is concerned, there
is nothing new about C.

The extended complex plane, denoted by Ĉ , consists of the complex plane, C along
with another point not in C known as ∞. For example, ∞ could be any point in R3 with
nonzero third component. A sequence of complex numbers, zn, converges to ∞ if, when-
ever K is a compact set in C, there exists a number, N such that for all n > N, zn /∈ K.
Since compact sets in C are closed and bounded, this is equivalent to saying that for all
R > 0, there exists N such that if n > N, then zn /∈ B(0,R) which is the same as saying
limn→∞ |zn|= ∞ where this last symbol has the same meaning as it does in calculus.

A geometric way of understanding this in terms of more familiar objects involves a
concept known as the Riemann sphere.

Consider the unit sphere, S2 given by (z−1)2 + y2 + x2 = 1. Define a map from the
complex plane to the surface of this sphere as follows. Extend a line from the point, p in
the complex plane to the point (0,0,2) on the top of this sphere and let θ (p) denote the
point of this sphere which the line intersects. Define θ (∞)≡ (0,0,2).

(0,0,2)

(0,0,1)
p

θ(p)

C

Then θ
−1 is sometimes called sterographic projection. The mapping θ is clearly con-

tinuous because it takes converging sequences, to converging sequences. Furthermore, it is
clear that θ

−1 is also continuous. In terms of the extended complex plane, Ĉ, a sequence,
zn converges to ∞ if and only if θzn converges to (0,0,2) and a sequence, zn converges to
z ∈ C if and only if θ (zn)→ θ (z) .

In fact this makes it easy to define a metric on Ĉ.

Definition 49.1.1 Let z,w∈ Ĉ including possibly w = ∞. Then let d (x,w)≡ |θ (z)−θ (w)|
where this last distance is the usual distance measured in R3.

Theorem 49.1.2
(
Ĉ,d

)
is a compact, hence complete metric space.

Proof: Suppose {zn} is a sequence in Ĉ. This means {θ (zn)} is a sequence in S2

which is compact. Therefore, there exists a subsequence,
{

θznk

}
and a point, z ∈ S2 such

that θznk → θz in S2 which implies immediately that d
(
znk ,z

)
→ 0. A compact metric

space must be complete.
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49.2 Exercises
1. Prove the root test for series of complex numbers. If ak ∈C and r≡ limsupn→∞ |an|1/n

then
∞

∑
k=0

ak

 converges absolutely if r < 1
diverges if r > 1
test fails if r = 1.

2. Does limn→∞ n
( 2+i

3

)n
exist? Tell why and find the limit if it does exist.

3. Let A0 = 0 and let An ≡ ∑
n
k=1 ak if n > 0. Prove the partial summation formula,

q

∑
k=p

akbk = Aqbq−Ap−1bp +
q−1

∑
k=p

Ak (bk−bk+1) .

Now using this formula, suppose {bn} is a sequence of real numbers which converges
to 0 and is decreasing. Determine those values of ω such that |ω|= 1 and ∑

∞
k=1 bkωk

converges.

4. Let f : U ⊆ C→ C be given by f (x+ iy) = u(x,y)+ iv(x,y) . Show f is continuous
on U if and only if u : U → R and v : U → R are both continuous.



Chapter 50

Riemann Stieltjes Integrals
In the theory of functions of a complex variable, the most important results are those in-
volving contour integration. I will base this on the notion of Riemann Stieltjes integrals
as in [32], [95], and [65]. The Riemann Stieltjes integral is a generalization of the usual
Riemann integral and requires the concept of a function of bounded variation.

Definition 50.0.1 Let γ : [a,b]→ C be a function. Then γ is of bounded variation if

sup

{
n

∑
i=1
|γ (ti)− γ (ti−1)| : a = t0 < · · ·< tn = b

}
≡V (γ, [a,b])< ∞

where the sums are taken over all possible lists, {a = t0 < · · ·< tn = b} . The set of points
γ ([a,b]) will also be denoted by γ∗.

The idea is that it makes sense to talk of the length of the curve γ ([a,b]) , defined as
V (γ, [a,b]) . For this reason, in the case that γ is continuous, such an image of a bounded
variation function is called a rectifiable curve.

Definition 50.0.2 Let γ : [a,b]→ C be of bounded variation and let f : γ∗ → X. Letting
P ≡ {t0, · · · , tn} where a = t0 < t1 < · · ·< tn = b, define

||P|| ≡max
{∣∣t j− t j−1

∣∣ : j = 1, · · · ,n
}

and the Riemann Steiltjes sum by

S (P)≡
n

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
where τ j ∈

[
t j−1, t j

]
. (Note this notation is a little sloppy because it does not identify the

specific point, τ j used. It is understood that this point is arbitrary.) Define
∫

γ
f dγ as the

unique number which satisfies the following condition. For all ε > 0 there exists a δ > 0
such that if ||P|| ≤ δ , then ∣∣∣∣∫

γ

f dγ−S (P)

∣∣∣∣< ε.

Sometimes this is written as ∫
γ

f dγ ≡ lim
||P||→0

S (P) .

The set of points in the curve, γ ([a,b]) will be denoted sometimes by γ∗.

Then γ∗ is a set of points in C and as t moves from a to b, γ (t) moves from γ (a)
to γ (b) . Thus γ∗ has a first point and a last point. If φ : [c,d]→ [a,b] is a continuous
nondecreasing function, then γ ◦φ : [c,d]→ C is also of bounded variation and yields the
same set of points in C with the same first and last points.
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Theorem 50.0.3 Let φ and γ be as just described. Then assuming that∫
γ

f dγ

exists, so does ∫
γ◦φ

f d (γ ◦φ)

and ∫
γ

f dγ =
∫

γ◦φ
f d (γ ◦φ) . (50.0.1)

Proof: There exists δ > 0 such that if P is a partition of [a,b] such that ||P|| < δ ,
then ∣∣∣∣∫

γ

f dγ−S (P)

∣∣∣∣< ε.

By continuity of φ , there exists σ > 0 such that if Q is a partition of [c,d] with ||Q|| <
σ ,Q = {s0, · · · ,sn} , then

∣∣φ (s j)−φ
(
s j−1

)∣∣< δ . Thus letting P denote the points in [a,b]
given by φ (s j) for s j ∈Q, it follows that ||P||< δ and so∣∣∣∣∣

∫
γ

f dγ−
n

∑
j=1

f (γ (φ (τ j)))
(
γ (φ (s j))− γ

(
φ
(
s j−1

)))∣∣∣∣∣< ε

where τ j ∈
[
s j−1,s j

]
. Therefore, from the definition 50.0.1 holds and∫

γ◦φ
f d (γ ◦φ)

exists.
This theorem shows that

∫
γ

f dγ is independent of the particular γ used in its computa-
tion to the extent that if φ is any nondecreasing continuous function from another interval,
[c,d] , mapping to [a,b] , then the same value is obtained by replacing γ with γ ◦φ .

The fundamental result in this subject is the following theorem. We have in mind
functions which have values in C but there is no change if the functions have values in any
complete normed vector space.

Theorem 50.0.4 Let f : γ∗ → X be continuous and let γ : [a,b]→ C be continuous and
of bounded variation. Then

∫
γ

f dγ exists. Also letting δ m > 0 be such that |t− s| < δ m

implies || f (γ (t))− f (γ (s))||< 1
m ,∣∣∣∣∫

γ

f dγ−S (P)

∣∣∣∣≤ 2V (γ, [a,b])
m

whenever ||P||< δ m.
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Proof: The function, f ◦ γ , is uniformly continuous because it is defined on a compact
set. Therefore, there exists a decreasing sequence of positive numbers, {δ m} such that if
|s− t|< δ m, then

| f (γ (t))− f (γ (s))|< 1
m
.

Let
Fm ≡ {S (P) : ||P||< δ m}.

Thus Fm is a closed set. (The symbol, S (P) in the above definition, means to include all
sums corresponding to P for any choice of τ j.) It is shown that

diam(Fm)≤
2V (γ, [a,b])

m
(50.0.2)

and then it will follow there exists a unique point, I ∈ ∩∞
m=1Fm. This is because X is

complete. It will then follow I =
∫

γ
f (t)dγ (t) . To verify 50.0.2, it suffices to verify that

whenever P and Q are partitions satisfying ||P||< δ m and ||Q||< δ m,

|S (P)−S (Q)| ≤ 2
m

V (γ, [a,b]) . (50.0.3)

Suppose ||P|| < δ m and Q ⊇P . Then also ||Q|| < δ m. To begin with, suppose that
P ≡

{
t0, · · · , tp, · · · , tn

}
and Q ≡

{
t0, · · · , tp−1, t∗, tp, · · · , tn

}
. Thus Q contains only one

more point than P . Letting S (Q) and S (P) be Riemann Steiltjes sums,

S (Q)≡
p−1

∑
j=1

f (γ (σ j))
(
γ (t j)− γ

(
t j−1

))
+ f (γ (σ∗))(γ (t∗)− γ (tp−1))

+ f (γ (σ∗))(γ (tp)− γ (t∗))+
n

∑
j=p+1

f (γ (σ j))
(
γ (t j)− γ

(
t j−1

))
,

S (P)≡
p−1

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
+

= f(γ(τ p))(γ(tp)−γ(tp−1))︷ ︸︸ ︷
f (γ (τ p))(γ (t∗)− γ (tp−1))+ f (γ (τ p))(γ (tp)− γ (t∗))

+
n

∑
j=p+1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
.

Therefore,

|S (P)−S (Q)| ≤
p−1

∑
j=1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣+ 1
m

∣∣γ (t∗)− γ (tp−1)
∣∣+

1
m

∣∣γ (tp)− γ (t∗)
∣∣+ n

∑
j=p+1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣≤ 1
m

V (γ, [a,b]) . (50.0.4)
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Clearly the extreme inequalities would be valid in 50.0.4 if Q had more than one extra
point. You simply do the above trick more than one time. Let S (P) and S (Q) be Riemann
Steiltjes sums for which ||P|| and ||Q|| are less than δ m and let R ≡P ∪Q. Then from
what was just observed,

|S (P)−S (Q)| ≤ |S (P)−S (R)|+ |S (R)−S (Q)| ≤ 2
m

V (γ, [a,b]) .

and this shows 50.0.3 which proves 50.0.2. Therefore, there exists a unique complex num-
ber, I ∈ ∩∞

m=1Fm which satisfies the definition of
∫

γ
f dγ. This proves the theorem.

The following theorem follows easily from the above definitions and theorem.

Theorem 50.0.5 Let f ∈C (γ∗) and let γ : [a,b]→ C be of bounded variation and contin-
uous. Let

M ≥max{|| f ◦ γ (t)|| : t ∈ [a,b]} . (50.0.5)

Then ∣∣∣∣∣∣∣∣∫
γ

f dγ

∣∣∣∣∣∣∣∣≤MV (γ, [a,b]) . (50.0.6)

Also if { fn} is a sequence of functions of C (γ∗) which is converging uniformly to the func-
tion, f on γ∗, then

lim
n→∞

∫
γ

fndγ =
∫

γ

f dγ. (50.0.7)

Proof: Let 50.0.5 hold. From the proof of the above theorem, when ||P||< δ m,∣∣∣∣∣∣∣∣∫
γ

f dγ−S (P)

∣∣∣∣∣∣∣∣≤ 2
m

V (γ, [a,b])

and so ∣∣∣∣∣∣∣∣∫
γ

f dγ

∣∣∣∣∣∣∣∣≤ ||S (P)||+ 2
m

V (γ, [a,b])

≤
n

∑
j=1

M
∣∣γ (t j)− γ

(
t j−1

)∣∣+ 2
m

V (γ, [a,b])

≤ MV (γ, [a,b])+
2
m

V (γ, [a,b]) .

This proves 50.0.6 since m is arbitrary. To verify 50.0.7 use the above inequality to write∣∣∣∣∣∣∣∣∫
γ

f dγ−
∫

γ

fndγ

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣∫
γ

( f − fn)dγ (t)
∣∣∣∣∣∣∣∣

≤max{|| f ◦ γ (t)− fn ◦ γ (t)|| : t ∈ [a,b]}V (γ, [a,b]) .

Since the convergence is assumed to be uniform, this proves 50.0.7.
It turns out to be much easier to evaluate such integrals in the case where γ is also

C1 ([a,b]) . The following theorem about approximation will be very useful but first here is
an easy lemma.
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Lemma 50.0.6 Let γ : [a,b]→C be in C1 ([a,b]) . Then V (γ, [a,b])< ∞ so γ is of bounded
variation.

Proof: This follows from the following

n

∑
j=1

∣∣γ (t j)− γ
(
t j−1

)∣∣ =
n

∑
j=1

∣∣∣∣∫ t j

t j−1

γ
′ (s)ds

∣∣∣∣
≤

n

∑
j=1

∫ t j

t j−1

∣∣γ ′ (s)∣∣ds

≤
n

∑
j=1

∫ t j

t j−1

∣∣∣∣γ ′∣∣∣∣
∞

ds

=
∣∣∣∣γ ′∣∣∣∣

∞
(b−a) .

Therefore it follows V (γ, [a,b])≤ ||γ ′||
∞
(b−a) . Here ||γ||

∞
= max{|γ (t)| : t ∈ [a,b]}.

Theorem 50.0.7 Let γ : [a,b]→ C be continuous and of bounded variation. Let Ω be an
open set containing γ∗ and let f : Ω×K→ X be continuous for K a compact set in C, and
let ε > 0 be given. Then there exists η : [a,b]→ C such that η (a) = γ (a) , γ (b) = η (b) ,
η ∈C1 ([a,b]) , and

||γ−η ||< ε, (50.0.8)∣∣∣∣∫
γ

f (·,z)dγ−
∫

η

f (·,z)dη

∣∣∣∣< ε, (50.0.9)

V (η , [a,b])≤V (γ, [a,b]) , (50.0.10)

where ||γ−η || ≡max{|γ (t)−η (t)| : t ∈ [a,b]} .

Proof: Extend γ to be defined on allR according to γ (t)= γ (a) if t < a and γ (t)= γ (b)
if t > b. Now define

γh (t)≡
1
2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

γ (s)ds.

where the integral is defined in the obvious way. That is,∫ b

a
α (t)+ iβ (t)dt ≡

∫ b

a
α (t)dt + i

∫ b

a
β (t)dt.

Therefore,

γh (b) =
1

2h

∫ b+2h

b
γ (s)ds = γ (b) ,

γh (a) =
1

2h

∫ a

a−2h
γ (s)ds = γ (a) .

Also, because of continuity of γ and the fundamental theorem of calculus,

γ
′
h (t) =

1
2h

{
γ

(
t +

2h
b−a

(t−a)
)(

1+
2h

b−a

)
−
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γ

(
−2h+ t +

2h
b−a

(t−a)
)(

1+
2h

b−a

)}
and so γh ∈C1 ([a,b]) . The following lemma is significant.

Lemma 50.0.8 V (γh, [a,b])≤V (γ, [a,b]) .

Proof: Let a = t0 < t1 < · · ·< tn = b. Then using the definition of γh and changing the
variables to make all integrals over [0,2h] ,

n

∑
j=1

∣∣γh (t j)− γh
(
t j−1

)∣∣=
n

∑
j=1

∣∣∣∣ 1
2h

∫ 2h

0

[
γ

(
s−2h+ t j +

2h
b−a

(t j−a)
)
−

γ

(
s−2h+ t j−1 +

2h
b−a

(
t j−1−a

))]∣∣∣∣
≤ 1

2h

∫ 2h

0

n

∑
j=1

∣∣∣∣γ(s−2h+ t j +
2h

b−a
(t j−a)

)
−

γ

(
s−2h+ t j−1 +

2h
b−a

(
t j−1−a

))∣∣∣∣ds.

For a given s∈ [0,2h] , the points, s−2h+ t j +
2h

b−a (t j−a) for j = 1, · · · ,n form an increas-
ing list of points in the interval [a−2h,b+2h] and so the integrand is bounded above by
V (γ, [a−2h,b+2h]) =V (γ, [a,b]) . It follows

n

∑
j=1

∣∣γh (t j)− γh
(
t j−1

)∣∣≤V (γ, [a,b])

which proves the lemma.
With this lemma the proof of the theorem can be completed without too much trouble.

Let H be an open set containing γ∗ such that H is a compact subset of Ω. Let 0 < ε <
dist
(
γ∗,HC

)
. Then there exists δ 1 such that if h < δ 1, then for all t,

|γ (t)− γh (t)| ≤
1

2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

|γ (s)− γ (t)|ds

<
1

2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

εds = ε (50.0.11)

due to the uniform continuity of γ. This proves 50.0.8.
From 50.0.2 and the above lemma, there exists δ 2 such that if ||P|| < δ 2, then for all

z ∈ K, ∣∣∣∣∣∣∣∣∫
γ

f (·,z)dγ (t)−S (P)

∣∣∣∣∣∣∣∣< ε

3
,

∣∣∣∣∣∣∣∣∫
γh

f (·,z)dγh (t)−Sh (P)

∣∣∣∣∣∣∣∣< ε

3
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for all h. Here S (P) is a Riemann Steiltjes sum of the form

n

∑
i=1

f (γ (τ i) ,z)(γ (ti)− γ (ti−1))

and Sh (P) is a similar Riemann Steiltjes sum taken with respect to γh instead of γ. Because
of 50.0.11 γh (t) has values in H ⊆ Ω. Therefore, fix the partition, P , and choose h small
enough that in addition to this, the following inequality is valid for all z ∈ K.

|S (P)−Sh (P)|< ε

3

This is possible because of 50.0.11 and the uniform continuity of f on H×K. It follows∣∣∣∣∣∣∣∣∫
γ

f (·,z)dγ (t)−
∫

γh

f (·,z)dγh (t)
∣∣∣∣∣∣∣∣≤

∣∣∣∣∣∣∣∣∫
γ

f (·,z)dγ (t)−S (P)

∣∣∣∣∣∣∣∣+ ||S (P)−Sh (P)||

+

∣∣∣∣∣∣∣∣Sh (P)−
∫

γh

f (·,z)dγh (t)
∣∣∣∣∣∣∣∣< ε.

Formula 50.0.10 follows from the lemma. This proves the theorem.
Of course the same result is obtained without the explicit dependence of f on z.
This is a very useful theorem because if γ is C1 ([a,b]) , it is easy to calculate

∫
γ

f dγ

and the above theorem allows a reduction to the case where γ is C1. The next theorem
shows how easy it is to compute these integrals in the case where γ is C1. First note that if
f is continuous and γ ∈C1 ([a,b]) , then by Lemma 50.0.6 and the fundamental existence
theorem, Theorem 50.0.4,

∫
γ

f dγ exists.

Theorem 50.0.9 If f : γ∗→ X is continuous and γ : [a,b]→ C is in C1 ([a,b]) , then∫
γ

f dγ =
∫ b

a
f (γ (t))γ

′ (t)dt. (50.0.12)

Proof: Let P be a partition of [a,b], P = {t0, · · · , tn} and ||P|| is small enough that
whenever |t− s|< ||P|| ,

| f (γ (t))− f (γ (s))|< ε (50.0.13)

and ∣∣∣∣∣
∣∣∣∣∣
∫

γ

f dγ−
n

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))∣∣∣∣∣
∣∣∣∣∣< ε.

Now
n

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
=
∫ b

a

n

∑
j=1

f (γ (τ j))X[t j−1,t j ] (s)γ
′ (s)ds
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where here

X[a,b] (s)≡
{

1 if s ∈ [p,q]
0 if s /∈ [p,q] .

Also, ∫ b

a
f (γ (s))γ

′ (s)ds =
∫ b

a

n

∑
j=1

f (γ (s))X[t j−1,t j ] (s)γ
′ (s)ds

and thanks to 50.0.13,∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

=∑
n
j=1 f(γ(τ j))(γ(t j)−γ(t j−1))︷ ︸︸ ︷∫ b

a

n

∑
j=1

f (γ (τ j))X[t j−1,t j ] (s)γ
′ (s)ds−

=
∫ b

a f (γ(s))γ ′(s)ds︷ ︸︸ ︷∫ b

a

n

∑
j=1

f (γ (s))X[t j−1,t j ] (s)γ
′ (s)ds

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≤

n

∑
j=1

∫ t j

t j−1

∣∣∣∣ f (γ (τ j))− f (γ (s))
∣∣∣∣ ∣∣γ ′ (s)∣∣ds≤

∣∣∣∣γ ′∣∣∣∣
∞ ∑

j
ε
(
t j− t j−1

)
= ε

∣∣∣∣γ ′∣∣∣∣
∞
(b−a) .

It follows that∣∣∣∣∣∣∣∣∫
γ

f dγ−
∫ b

a
f (γ (s))γ

′ (s)ds
∣∣∣∣∣∣∣∣≤

∣∣∣∣∣
∣∣∣∣∣
∫

γ

f dγ−
n

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣ n

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
−
∫ b

a
f (γ (s))γ

′ (s)ds

∣∣∣∣∣
∣∣∣∣∣≤ ε

∣∣∣∣γ ′∣∣∣∣
∞
(b−a)+ ε.

Since ε is arbitrary, this verifies 50.0.12.

Definition 50.0.10 Let Ω be an open subset of C and let γ : [a,b]→ Ω be a continuous
function with bounded variation f : Ω→ X be a continuous function. Then the following
notation is more customary. ∫

γ

f (z)dz≡
∫

γ

f dγ.

The expression,
∫

γ
f (z)dz, is called a contour integral and γ is referred to as the contour.

A function f : Ω→ X for Ω an open set in C has a primitive if there exists a function, F, the
primitive, such that F ′ (z) = f (z) . Thus F is just an antiderivative. Also if γk : [ak,bk]→C
is continuous and of bounded variation, for k = 1, · · · ,m and γk (bk) = γk+1 (ak) , define∫

∑
m
k=1 γk

f (z)dz≡
m

∑
k=1

∫
γk

f (z)dz. (50.0.14)

In addition to this, for γ : [a,b]→ C,
define −γ : [a,b]→ C by −γ (t) ≡ γ (b+a− t) . Thus γ simply traces out the points of

γ∗ in the opposite order.
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The following lemma is useful and follows quickly from Theorem 50.0.3.

Lemma 50.0.11 In the above definition, there exists a continuous bounded variation func-
tion, γ defined on some closed interval, [c,d] , such that γ ([c,d]) = ∪m

k=1γk ([ak,bk]) and
γ (c) = γ1 (a1) while γ (d) = γm (bm) . Furthermore,∫

γ

f (z)dz =
m

∑
k=1

∫
γk

f (z)dz.

If γ : [a,b]→ C is of bounded variation and continuous, then∫
γ

f (z)dz =−
∫
−γ

f (z)dz.

Re stating Theorem 50.0.7 with the new notation in the above definition,

Theorem 50.0.12 Let K be a compact set in C and let f : Ω×K→ X be continuous for Ω

an open set inC. Also let γ : [a,b]→Ω be continuous with bounded variation. Then if r > 0
is given, there exists η : [a,b]→ Ω such that η (a) = γ (a) , η (b) = γ (b) ,η is C1 ([a,b]) ,
and ∣∣∣∣∫

γ

f (z,w)dz−
∫

η

f (z,w)dz
∣∣∣∣< r, ||η− γ||< r.

It will be very important to consider which functions have primitives. It turns out, it is
not enough for f to be continuous in order to possess a primitive. This is in stark contrast to
the situation for functions of a real variable in which the fundamental theorem of calculus
will deliver a primitive for any continuous function. The reason for the interest in such
functions is the following theorem and its corollary.

Theorem 50.0.13 Let γ : [a,b]→C be continuous and of bounded variation. Also suppose
F ′ (z) = f (z) for all z ∈Ω, an open set containing γ∗ and f is continuous on Ω. Then∫

γ

f (z)dz = F (γ (b))−F (γ (a)) .

Proof: By Theorem 50.0.12 there exists η ∈ C1 ([a,b]) such that γ (a) = η (a) , and
γ (b) = η (b) such that ∣∣∣∣∣∣∣∣∫

γ

f (z)dz−
∫

η

f (z)dz
∣∣∣∣∣∣∣∣< ε.

Then since η is in C1 ([a,b]) ,∫
η

f (z)dz =
∫ b

a
f (η (t))η

′ (t)dt =
∫ b

a

dF (η (t))
dt

dt

= F (η (b))−F (η (a)) = F (γ (b))−F (γ (a)) .

Therefore, ∣∣∣∣∣∣∣∣(F (γ (b))−F (γ (a)))−
∫

γ

f (z)dz
∣∣∣∣∣∣∣∣< ε

and since ε > 0 is arbitrary, this proves the theorem.
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Corollary 50.0.14 If γ : [a,b]→C is continuous, has bounded variation, is a closed curve,
γ (a) = γ (b) , and γ∗ ⊆Ω where Ω is an open set on which F ′ (z) = f (z) , then∫

γ

f (z)dz = 0.

Another important result is a Fubini theorem for these contour integrals.

Theorem 50.0.15 Let γ i be continuous and bounded variation. Let f be continuous on
γ∗1× γ∗2 having values in X a complex complete normed linear space. Then∫

γ1

∫
γ2

f (z,w)dwdz =
∫

γ2

∫
γ1

f (z,w)dzdw

Proof: This follows quickly from the above lemma and the definition of the contour in-
tegral. Say γ i is defined on [ai,bi]. Let a partition of [a1,b1] be denoted by {t0, t1, · · · , tn}=
P1 and a partition of [a2,b2] be denoted by {s0,s1, · · · ,sm}= P2.∫

γ1

∫
γ2

f (z,w)dwdz =
n

∑
i=1

∫
γ1([ti−1,ti])

∫
γ2

f (z,w)dwdz

=
n

∑
i=1

m

∑
j=1

∫
γ1([ti−1,ti])

∫
γ2([s j−1,s j])

f (z,w)dwdz

To save room, denote γ1 ([ti−1, ti]) by γ1i and γ2
([

s j−1,s j
])

by γ2 jThen if ∥Pi∥ , i = 1,2 is
small enough, ∥∥∥∥∥

∫
γ1i

∫
γ2 j

f (z,w)dwdz−
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz

∥∥∥∥∥
=

∥∥∥∥∥
∫

γ1i

∫
γ2 j

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dwdz

∥∥∥∥∥≤
max

(∥∥∥∥∥
∫

γ2 j

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dw

∥∥∥∥∥
)

V (γ1, [ti−1, ti])

≤ εV
(
γ2,
[
s j−1,s j

])
V (γ1, [ti−1, ti]) (50.0.15)

Also from this theorem,∥∥∥∥∥
∫

γ2 j

∫
γ1i

f (z,w)dzdw−
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw

∥∥∥∥∥
≤max

(∥∥∥∥∫
γ1i

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dz
∥∥∥∥)V

(
γ2,
[
s j−1,s j

])
≤ εV

(
γ2,
[
s j−1,s j

])
V (γ1, [ti−1, ti]) (50.0.16)
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Now approximating with sums and using the definition,
∫

γ1i
dz = γ1 (t j)− γ1

(
t j−1

)
and so

∫
γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw = f (γ1 (ti) ,γ2 (s j))
∫

γ2 j

∫
γ1i

dzdw

= f (γ1 (ti) ,γ2 (s j))
∫

γ1i

∫
γ2 j

dwdz =
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz(50.0.17)

Therefore, ∥∥∥∥∫
γ1

∫
γ2

f (z,w)dwdz−
∫

γ2

∫
γ1

f (z,w)dzdw
∥∥∥∥≤

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (z,w)dwdz
−∑

n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz

∥∥∥∥∥
+

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz
−∑

n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw

∥∥∥∥∥
+

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw
−∑

n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (z,w)dzdw

∥∥∥∥∥
From 50.0.17 the middle term is 0. Thus, from the estimates 50.0.16 and 50.0.15,∥∥∥∥∫

γ1

∫
γ2

f (z,w)dwdz−
∫

γ2

∫
γ1

f (z,w)dzdw
∥∥∥∥

≤ 2εV (γ2, [a2,b2])V (γ1, [a1,b1])

Since ε is arbitrary, the two integrals are equal. ■

50.1 Exercises
1. Let γ : [a,b]→ R be increasing. Show V (γ, [a,b]) = γ (b)− γ (a) .

2. Suppose γ : [a,b]→C satisfies a Lipschitz condition, |γ (t)− γ (s)| ≤K |s− t| . Show
γ is of bounded variation and that V (γ, [a,b])≤ K |b−a| .

3. γ : [c0,cm]→ C is piecewise smooth if there exist numbers, ck,k = 1, · · · ,m such
that c0 < c1 < · · · < cm−1 < cm such that γ is continuous and γ : [ck,ck+1]→ C is
C1. Show that such piecewise smooth functions are of bounded variation and give an
estimate for V (γ, [c0,cm]) .

4. Let γ : [0,2π]→ C be given by γ (t) = r (cosmt + isinmt) for m an integer. Find∫
γ

dz
z .

5. Show that if γ : [a,b]→ C then there exists an increasing function h : [0,1]→ [a,b]
such that γ ◦h([0,1]) = γ∗.
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6. Let γ : [a,b]→ C be an arbitrary continuous curve having bounded variation and
let f ,g have continuous derivatives on some open set containing γ∗. Prove the usual
integration by parts formula.∫

γ

f g′dz = f (γ (b))g(γ (b))− f (γ (a))g(γ (a))−
∫

γ

f ′gdz.

7. Let f (z)≡ |z|−(1/2) e−i θ
2 where z= |z|eiθ . This function is called the principle branch

of z−(1/2). Find
∫

γ
f (z)dz where γ is the semicircle in the upper half plane which

goes from (1,0) to (−1,0) in the counter clockwise direction. Next do the integral in
which γ goes in the clockwise direction along the semicircle in the lower half plane.

8. Prove an open set, U is connected if and only if for every two points in U, there exists
a C1 curve having values in U which joins them.

9. Let P,Q be two partitions of [a,b] with P ⊆Q. Each of these partitions can be
used to form an approximation to V (γ, [a,b]) as described above. Recall the total
variation was the supremum of sums of a certain form determined by a partition.
How is the sum associated with P related to the sum associated with Q? Explain.

10. Consider the curve,

γ (t) =
{

t + it2 sin
( 1

t

)
if t ∈ (0,1]

0 if t = 0
.

Is γ a continuous curve having bounded variation? What if the t2 is replaced with t?
Is the resulting curve continuous? Is it a bounded variation curve?

11. Suppose γ : [a,b]→ R is given by γ (t) = t. What is
∫

γ
f (t)dγ? Explain.



Chapter 51

Fundamentals Of Complex Analysis
51.1 Analytic Functions

Definition 51.1.1 Let Ω be an open set in C and let f : Ω→ X. Then f is analytic on Ω if
for every z ∈Ω,

lim
h→0

f (z+h)− f (z)
h

≡ f ′ (z)

exists and is a continuous function of z ∈Ω. Here h ∈ C.

Note that if f is analytic, it must be the case that f is continuous. It is more common to
not include the requirement that f ′ is continuous but it is shown later that the continuity of
f ′ follows.

What are some examples of analytic functions? In the case where X = C, the simplest
example is any polynomial. Thus

p(z)≡
n

∑
k=0

akzk

is an analytic function and

p′ (z) =
n

∑
k=1

akkzk−1.

More generally, power series are analytic. This will be shown soon but first here is an
important definition and a convergence theorem called the root test.

Definition 51.1.2 Let {ak} be a sequence in X . Then ∑
∞
k=1 ak ≡ limn→∞ ∑

n
k=1 ak whenever

this limit exists. When the limit exists, the series is said to converge.

Theorem 51.1.3 Consider ∑
∞
k=1 ak and let ρ ≡ limsupk→∞ ||ak||1/k . Then if ρ < 1, the

series converges absolutely and if ρ > 1 the series diverges spectacularly in the sense
that limk→∞ ak ̸= 0. If ρ = 1 the test fails. Also ∑

∞
k=1 ak (z−a)k converges on some disk

B(a,R) . It converges absolutely if |z−a|< R and uniformly on B(a,r1) whenever r1 < R.
The function f (z) = ∑

∞
k=1 ak (z−a)k is continuous on B(a,R) .

Proof: Suppose ρ < 1. Then there exists r ∈ (ρ,1) . Therefore, ||ak|| ≤ rk for all k
large enough and so by a comparison test, ∑k ||ak|| converges because the partial sums are
bounded above. Therefore, the partial sums of the original series form a Cauchy sequence
in X and so they also converge due to completeness of X .

Now suppose ρ > 1. Then letting ρ > r > 1, it follows ||ak||1/k≥ r infinitely often. Thus
||ak|| ≥ rk infinitely often. Thus there exists a subsequence for which

∣∣∣∣ank

∣∣∣∣ converges to
∞. Therefore, the series cannot converge.

Now consider ∑
∞
k=1 ak (z−a)k. This series converges absolutely if

lim sup
k→∞

||ak||1/k |z−a|< 1

1611
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which is the same as saying |z−a|< 1/ρ where ρ ≡ limsupk→∞ ||ak||1/k. Let R = 1/ρ .

Now suppose r1 < R. Consider |z−a| ≤ r1. Then for such z,

||ak|| |z−a|k ≤ ||ak||rk
1

and

lim sup
k→∞

(
||ak||rk

1

)1/k
= lim sup

k→∞

||ak||1/k r1 =
r1

R
< 1

so ∑k ||ak||rk
1 converges. By the Weierstrass M test, ∑

∞
k=1 ak (z−a)k converges uniformly

for |z−a| ≤ r1. Therefore, f is continuous on B(a,R) as claimed because it is the uniform
limit of continuous functions, the partial sums of the infinite series.

What if ρ = 0? In this case,

lim sup
k→∞

||ak||1/k |z−a|= 0 · |z−a|= 0

and so R = ∞ and the series, ∑ ||ak|| |z−a|k converges everywhere.

What if ρ = ∞? Then in this case, the series converges only at z = a because if z ̸= a,

lim sup
k→∞

||ak||1/k |z−a|= ∞.

Theorem 51.1.4 Let f (z) ≡ ∑
∞
k=1 ak (z−a)k be given in Theorem 51.1.3 where R > 0.

Then f is analytic on B(a,R) . So are all its derivatives.

Proof: Consider g(z) = ∑
∞
k=2 akk (z−a)k−1 on B(a,R) where R = ρ−1 as above. Let
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r1 < r < R. Then letting |z−a|< r1 and h < r− r1,∣∣∣∣∣∣∣∣ f (z+h)− f (z)
h

−g(z)
∣∣∣∣∣∣∣∣

≤
∞

∑
k=2
||ak||

∣∣∣∣∣ (z+h−a)k− (z−a)k

h
− k (z−a)k−1

∣∣∣∣∣
≤

∞

∑
k=2
||ak||

∣∣∣∣∣1h
(

k

∑
i=0

(
k
i

)
(z−a)k−i hi− (z−a)k

)
− k (z−a)k−1

∣∣∣∣∣
=

∞

∑
k=2
||ak||

∣∣∣∣∣1h
(

k

∑
i=1

(
k
i

)
(z−a)k−i hi

)
− k (z−a)k−1

∣∣∣∣∣
≤

∞

∑
k=2
||ak||

∣∣∣∣∣
(

k

∑
i=2

(
k
i

)
(z−a)k−i hi−1

)∣∣∣∣∣
≤ |h|

∞

∑
k=2
||ak||

(
k−2

∑
i=0

(
k

i+2

)
|z−a|k−2−i |h|i

)

= |h|
∞

∑
k=2
||ak||

(
k−2

∑
i=0

(
k−2

i

)
k (k−1)

(i+2)(i+1)
|z−a|k−2−i |h|i

)

≤ |h|
∞

∑
k=2
||ak||

k (k−1)
2

(
k−2

∑
i=0

(
k−2

i

)
|z−a|k−2−i |h|i

)

= |h|
∞

∑
k=2
||ak||

k (k−1)
2

(|z−a|+ |h|)k−2 < |h|
∞

∑
k=2
||ak||

k (k−1)
2

rk−2.

Then

lim sup
k→∞

(
||ak||

k (k−1)
2

rk−2
)1/k

= ρr < 1

and so ∣∣∣∣∣∣∣∣ f (z+h)− f (z)
h

−g(z)
∣∣∣∣∣∣∣∣≤C |h| .

therefore, g(z) = f ′ (z) . Now by Theorem 51.1.3 it also follows that f ′ is continuous. Since
r1 < R was arbitrary, this shows that f ′ (z) is given by the differentiated series above for
|z−a| < R. Now a repeat of the argument shows all the derivatives of f exist and are
continuous on B(a,R).

51.1.1 Cauchy Riemann Equations
Next consider the very important Cauchy Riemann equations which give conditions under
which complex valued functions of a complex variable are analytic.

Theorem 51.1.5 Let Ω be an open subset of C and let f : Ω→ C be a function, such that
for z = x+ iy ∈Ω,

f (z) = u(x,y)+ iv(x,y) .
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Then f is analytic if and only if u,v are C1 (Ω) and

∂u
∂x

=
∂v
∂y

,
∂u
∂y

=−∂v
∂x

.

Furthermore,

f ′ (z) =
∂u
∂x

(x,y)+ i
∂v
∂x

(x,y) .

Proof: Suppose f is analytic first. Then letting t ∈ R,

f ′ (z) = lim
t→0

f (z+ t)− f (z)
t

=

lim
t→0

(
u(x+ t,y)+ iv(x+ t,y)

t
− u(x,y)+ iv(x,y)

t

)
=

∂u(x,y)
∂x

+ i
∂v(x,y)

∂x
.

But also

f ′ (z) = lim
t→0

f (z+ it)− f (z)
it

=

lim
t→0

(
u(x,y+ t)+ iv(x,y+ t)

it
− u(x,y)+ iv(x,y)

it

)
1
i

(
∂u(x,y)

∂y
+ i

∂v(x,y)
∂y

)
=

∂v(x,y)
∂y

− i
∂u(x,y)

∂y
.

This verifies the Cauchy Riemann equations. We are assuming that z→ f ′ (z) is continuous.
Therefore, the partial derivatives of u and v are also continuous. To see this, note that from
the formulas for f ′ (z) given above, and letting z1 = x1 + iy1∣∣∣∣∂v(x,y)

∂y
− ∂v(x1,y1)

∂y

∣∣∣∣≤ ∣∣ f ′ (z)− f ′ (z1)
∣∣ ,

showing that (x,y)→ ∂v(x,y)
∂y is continuous since (x1,y1)→ (x,y) if and only if z1→ z. The

other cases are similar.
Now suppose the Cauchy Riemann equations hold and the functions, u and v are

C1 (Ω) . Then letting h = h1 + ih2,

f (z+h)− f (z) = u(x+h1,y+h2)

+iv(x+h1,y+h2)− (u(x,y)+ iv(x,y))

We know u and v are both differentiable and so

f (z+h)− f (z) =
∂u
∂x

(x,y)h1 +
∂u
∂y

(x,y)h2+
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i
(

∂v
∂x

(x,y)h1 +
∂v
∂y

(x,y)h2

)
+o(h) .

Dividing by h and using the Cauchy Riemann equations,

f (z+h)− f (z)
h

=

∂u
∂x (x,y)h1 + i ∂v

∂y (x,y)h2

h
+

i ∂v
∂x (x,y)h1 +

∂u
∂y (x,y)h2

h
+

o(h)
h

=
∂u
∂x

(x,y)
h1 + ih2

h
+ i

∂v
∂x

(x,y)
h1 + ih2

h
+

o(h)
h

Taking the limit as h→ 0,

f ′ (z) =
∂u
∂x

(x,y)+ i
∂v
∂x

(x,y) .

It follows from this formula and the assumption that u,v are C1 (Ω) that f ′ is continuous.
It is routine to verify that all the usual rules of derivatives hold for analytic functions.

In particular, the product rule, the chain rule, and quotient rule.

51.1.2 An Important Example
An important example of an analytic function is ez ≡ exp(z) ≡ ex (cosy+ isiny) where
z = x+ iy. You can verify that this function satisfies the Cauchy Riemann equations and
that all the partial derivatives are continuous. Also from the above discussion, (ez)′ =
ex cos(y)+ iex siny = ez. Later I will show that ez is given by the usual power series. An
important property of this function is that it can be used to parameterize the circle centered
at z0 having radius r.

Lemma 51.1.6 Let γ denote the closed curve which is a circle of radius r centered at z0.
Then a parameterization this curve is γ (t) = z0 + reit where t ∈ [0,2π] .

Proof: |γ (t)− z0|2 =
∣∣reitre−it

∣∣= r2. Also, you can see from the definition of the sine
and cosine that the point described in this way moves counter clockwise over this circle.

51.2 Exercises
1. Verify all the usual rules of differentiation including the product and chain rules.

2. Suppose f and f ′ : U → C are analytic and f (z) = u(x,y)+ iv(x,y) . Verify uxx +
uyy = 0 and vxx + vyy = 0. This partial differential equation satisfied by the real and
imaginary parts of an analytic function is called Laplace’s equation. We say these
functions satisfying Laplace’s equation are harmonic functions. If u is a harmonic
function defined on B(0,r) show that v(x,y) ≡

∫ y
0 ux (x, t)dt−

∫ x
0 uy (t,0)dt is such

that u+ iv is analytic.
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3. Let f : U → C be analytic and f (z) = u(x,y)+ iv(x,y) . Show u,v and uv are all
harmonic although it can happen that u2 is not. Recall that a function, w is harmonic
if wxx +wyy = 0.

4. Define a function f (z)≡ z≡ x− iy where z = x+ iy. Is f analytic?

5. If f (z) = u(x,y)+ iv(x,y) and f is analytic, verify that

det
(

ux uy
vx vy

)
=
∣∣ f ′ (z)∣∣2 .

6. Show that if u(x,y)+ iv(x,y) = f (z) is analytic, then ∇u ·∇v = 0. Recall

∇u(x,y) = ⟨ux (x,y) ,uy (x,y)⟩.

7. Show that every polynomial is analytic.

8. If γ (t) = x(t) + iy(t) is a C1 curve having values in U, an open set of C, and if
f : U → C is analytic, we can consider f ◦ γ, another C1 curve having values in
C. Also, γ ′ (t) and ( f ◦ γ)′ (t) are complex numbers so these can be considered as
vectors in R2 as follows. The complex number, x+ iy corresponds to the vector,
⟨x,y⟩. Suppose that γ and η are two such C1 curves having values in U and that
γ (t0) = η (s0) = z and suppose that f : U → C is analytic. Show that the angle
between ( f ◦ γ)′ (t0) and ( f ◦η)′ (s0) is the same as the angle between γ ′ (t0) and
η ′ (s0) assuming that f ′ (z) ̸= 0. Thus analytic mappings preserve angles at points
where the derivative is nonzero. Such mappings are called isogonal. . Hint: To
make this easy to show, first observe that ⟨x,y⟩ · ⟨a,b⟩= 1

2 (zw+ zw) where z = x+ iy
and w = a+ ib.

9. Analytic functions are even better than what is described in Problem 8. In addi-
tion to preserving angles, they also preserve orientation. To verify this show that
if z = x+ iy and w = a+ ib are two complex numbers, then ⟨x,y,0⟩ and ⟨a,b,0⟩
are two vectors in R3. Recall that the cross product, ⟨x,y,0⟩ × ⟨a,b,0⟩, yields a
vector normal to the two given vectors such that the triple, ⟨x,y,0⟩,⟨a,b,0⟩, and
⟨x,y,0⟩×⟨a,b,0⟩ satisfies the right hand rule and has magnitude equal to the product
of the sine of the included angle times the product of the two norms of the vectors.
In this case, the cross product either points in the direction of the positive z axis or
in the direction of the negative z axis. Thus, either the vectors ⟨x,y,0⟩,⟨a,b,0⟩,k
form a right handed system or the vectors ⟨a,b,0⟩,⟨x,y,0⟩,k form a right handed
system. These are the two possible orientations. Show that in the situation of Prob-
lem 8 the orientation of γ ′ (t0) ,η ′ (s0) ,k is the same as the orientation of the vectors
( f ◦ γ)′ (t0) ,( f ◦η)′ (s0) ,k. Such mappings are called conformal. If f is analytic
and f ′ (z) ̸= 0, then we know from this problem and the above that f is a con-
formal map. Hint: You can do this by verifying that ( f ◦ γ)′ (t0)× ( f ◦η)′ (s0) =

| f ′ (γ (t0))|2 γ ′ (t0)×η ′ (s0). To make the verification easier, you might first estab-
lish the following simple formula for the cross product where here x+ iy = z and
a+ ib = w.

(x,y,0)× (a,b,0) = Re(ziw)k.
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10. Write the Cauchy Riemann equations in terms of polar coordinates. Recall the polar
coordinates are given by

x = r cosθ , y = r sinθ .

This means, letting u(x,y) = u(r,θ) ,v(x,y) = v(r,θ) , write the Cauchy Riemann
equations in terms of r and θ . You should eventually show the Cauchy Riemann
equations are equivalent to

∂u
∂ r

=
1
r

∂v
∂θ

,
∂v
∂ r

=−1
r

∂u
∂θ

11. Show that a real valued analytic function must be constant.

51.3 Cauchy’s Formula For A Disk
The Cauchy integral formula is the most important theorem in complex analysis. It will
be established for a disk in this chapter and later will be generalized to much more general
situations but the version given here will suffice to prove many interesting theorems needed
in the later development of the theory. The following are some advanced calculus results.

Lemma 51.3.1 Let f : [a,b]→ C. Then f ′ (t) exists if and only if Re f ′ (t) and Im f ′ (t)
exist. Furthermore,

f ′ (t) = Re f ′ (t)+ i Im f ′ (t) .

Proof: The if part of the equivalence is obvious.
Now suppose f ′ (t) exists. Let both t and t +h be contained in [a,b]∣∣∣∣Re f (t +h)−Re f (t)

h
−Re

(
f ′ (t)

)∣∣∣∣≤ ∣∣∣∣ f (t +h)− f (t)
h

− f ′ (t)
∣∣∣∣

and this converges to zero as h→ 0. Therefore, Re f ′ (t) =Re( f ′ (t)) . Similarly, Im f ′ (t) =
Im( f ′ (t)) .

Lemma 51.3.2 If g : [a,b]→ C and g is continuous on [a,b] and differentiable on (a,b)
with g′ (t) = 0, then g(t) is a constant.

Proof: From the above lemma, you can apply the mean value theorem to the real and
imaginary parts of g.

Applying the above lemma to the components yields the following lemma.

Lemma 51.3.3 If g : [a,b]→ Cn = X and g is continuous on [a,b] and differentiable on
(a,b) with g′ (t) = 0, then g(t) is a constant.

If you want to have X be a complex Banach space, the result is still true.

Lemma 51.3.4 If g : [a,b]→ X and g is continuous on [a,b] and differentiable on (a,b)
with g′ (t) = 0, then g(t) is a constant.
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Proof: Let Λ ∈ X ′. Then Λg : [a,b]→ C . Therefore, from Lemma 51.3.2, for each
Λ ∈ X ′,Λg(s) = Λg(t) and since X ′ separates the points, it follows g(s) = g(t) so g is
constant.

Lemma 51.3.5 Let φ : [a,b]× [c,d]→ R be continuous and let

g(t)≡
∫ b

a
φ (s, t)ds. (51.3.1)

Then g is continuous. If ∂φ

∂ t exists and is continuous on [a,b]× [c,d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂ t

ds. (51.3.2)

Proof: The first claim follows from the uniform continuity of φ on [a,b]× [c,d] , which
uniform continuity results from the set being compact. To establish 51.3.2, let t and t + h
be contained in [c,d] and form, using the mean value theorem,

g(t +h)−g(t)
h

=
1
h

∫ b

a
[φ (s, t +h)−φ (s, t)]ds

=
1
h

∫ b

a

∂φ (s, t +θh)
∂ t

hds

=
∫ b

a

∂φ (s, t +θh)
∂ t

ds,

where θ may depend on s but is some number between 0 and 1. Then by the uniform
continuity of ∂φ

∂ t , it follows that 51.3.2 holds.

Corollary 51.3.6 Let φ : [a,b]× [c,d]→ C be continuous and let

g(t)≡
∫ b

a
φ (s, t)ds. (51.3.3)

Then g is continuous. If ∂φ

∂ t exists and is continuous on [a,b]× [c,d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂ t

ds. (51.3.4)

Proof: Apply Lemma 51.3.5 to the real and imaginary parts of φ .
Applying the above corollary to the components, you can also have the same result for

φ having values in Cn.

Corollary 51.3.7 Let φ : [a,b]× [c,d]→ Cn be continuous and let

g(t)≡
∫ b

a
φ (s, t)ds. (51.3.5)

Then g is continuous. If ∂φ

∂ t exists and is continuous on [a,b]× [c,d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂ t

ds. (51.3.6)
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If you want to consider φ having values in X , a complex Banach space a similar result
holds.

Corollary 51.3.8 Let φ : [a,b]× [c,d]→ X be continuous and let

g(t)≡
∫ b

a
φ (s, t)ds. (51.3.7)

Then g is continuous. If ∂φ

∂ t exists and is continuous on [a,b]× [c,d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂ t

ds. (51.3.8)

Proof: Let Λ ∈ X ′. Then Λφ : [a,b]× [c,d]→ C is continuous and ∂Λφ

∂ t exists and is
continuous on [a,b]× [c,d] . Therefore, from 51.3.8,

Λ
(
g′ (t)

)
= (Λg)′ (t) =

∫ b

a

∂Λφ (s, t)
∂ t

ds = Λ

∫ b

a

∂φ (s, t)
∂ t

ds

and since X ′ separates the points, it follows 51.3.8 holds.
You can give a different proof of this.

Theorem 51.3.9 Let φ : [a,b]× [c,d]→ X be continuous and suppose φ t is continuous.
Then (∫ b

a
φ (s, t)ds

)
,t
=
∫ b

a

∂φ

∂ t
(s, t)ds

Here X is a complex Banach space.

Proof: Consider the following set P which is where the ordered pair (t,h) will be.

c d(t,h)

This is so that both t and t +h are in [a,b] . Then for such an ordered pair, consider

∆(s, t,h)≡
{

φ(s,t+h)−φ(s,t)
h if h ̸= 0

φ t (s, t) if h = 0

Claim: ∆ is continuous on the compact set [a,b]×P.
Proof of claim: It is obvious unless h = 0. Therefore, consider the point (s, t,0) .

∥∥∆
(
s′, t ′,h

)
−∆(s, t,0)

∥∥= ∥∥∥∥φ (s′, t ′+h)−φ (s′, t ′)
h

−φ t (s, t)
∥∥∥∥
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=

∥∥∥∥1
h

∫ t ′+h

t ′
φ t
(
s′,r
)

dr−φ t (s, t)
∥∥∥∥≤ 1

h

∫ t ′+h

t ′

∥∥φ t
(
s′,r
)
−φ t (s, t)

∥∥dr < ε

provided |(s′, t ′,h)− (s, t,0)| is small enough, this by continuity of φ t . Therefore, ∆(s, t,h)
is uniformly continuous.∥∥∥∥1

h

(∫ b

a
φ (s, t +h)ds−

∫ b

a
φ (s, t)ds

)
−
∫ b

a
φ t (s, t)ds

∥∥∥∥
≤
∫ b

a

∥∥∥∥φ (s, t +h)−φ (s, t)
h

−φ t (s, t)
∥∥∥∥ds =

∫ b

a
∥∆(s, t,h)−φ t (s, t)∥ds

Then by uniform continuity, if h is small enough, the integrand on the right is smaller than
ε . ■

The following is Cauchy’s integral formula for a disk.

Theorem 51.3.10 Let f : Ω→ X be analytic on the open set, Ω and let

B(z0,r)⊆Ω.

Let γ (t)≡ z0 + reit for t ∈ [0,2π] . Then if z ∈ B(z0,r) ,

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw. (51.3.9)

Proof: Consider for α ∈ [0,1] ,

g(α)≡
∫ 2π

0

f
(
z+α

(
z0 + reit − z

))
reit + z0− z

rieitdt.

If α equals one, this reduces to the integral in 51.3.9. The idea is to show g is a constant
and that g(0) = f (z)2πi. First consider the claim about g(0) .

g(0) =

(∫ 2π

0

reit

reit + z0− z
dt
)

i f (z)

= i f (z)

(∫ 2π

0

1
1− z−z0

reit

dt

)

= i f (z)
∫ 2π

0

∞

∑
n=0

r−ne−int (z− z0)
n dt

because
∣∣∣ z−z0

reit

∣∣∣ < 1. Since this sum converges uniformly you can interchange the sum and
the integral to obtain

g(0) = i f (z)
∞

∑
n=0

r−n (z− z0)
n
∫ 2π

0
e−intdt

= 2πi f (z)
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because
∫ 2π

0 e−intdt = 0 if n > 0.
Next consider the claim that g is constant. By Corollary 51.3.7, for α ∈ (0,1) ,

g′ (α) =
∫ 2π

0

f ′
(
z+α

(
z0 + reit − z

))(
reit + z0− z

)
reit + z0− z

rieitdt

=
∫ 2π

0
f ′
(
z+α

(
z0 + reit − z

))
rieitdt

=
∫ 2π

0

d
dt

(
f
(
z+α

(
z0 + reit − z

)) 1
α

)
dt

= f
(
z+α

(
z0 + rei2π − z

)) 1
α
− f

(
z+α

(
z0 + re0− z

)) 1
α

= 0.

Now g is continuous on [0,1] and g′ (t) = 0 on (0,1) so by Lemma 51.3.3, g equals a
constant. This constant can only be g(0) = 2πi f (z) . Thus,

g(1) =
∫

γ

f (w)
w− z

dw = g(0) = 2πi f (z) .

This proves the theorem.
This is a very significant theorem. A few applications are given next.

Theorem 51.3.11 Let f : Ω→ X be analytic where Ω is an open set in C. Then f has
infinitely many derivatives on Ω. Furthermore, for all z ∈ B(z0,r) ,

f (n) (z) =
n!

2πi

∫
γ

f (w)

(w− z)n+1 dw (51.3.10)

where γ (t)≡ z0 + reit , t ∈ [0,2π] for r small enough that B(z0,r)⊆Ω.

Proof: Let z ∈ B(z0,r) ⊆ Ω and let B(z0,r) ⊆ Ω. Then, letting γ (t) ≡ z0 + reit , t ∈
[0,2π] , and h small enough,

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw, f (z+h) =
1

2πi

∫
γ

f (w)
w− z−h

dw

Now
1

w− z−h
− 1

w− z
=

h
(−w+ z+h)(−w+ z)

and so

f (z+h)− f (z)
h

=
1

2πhi

∫
γ

h f (w)
(−w+ z+h)(−w+ z)

dw

=
1

2πi

∫
γ

f (w)
(−w+ z+h)(−w+ z)

dw.
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Now for all h sufficiently small, there exists a constant C independent of such h such that∣∣∣∣ 1
(−w+ z+h)(−w+ z)

− 1
(−w+ z)(−w+ z)

∣∣∣∣
=

∣∣∣∣∣ h

(w− z−h)(w− z)2

∣∣∣∣∣≤C |h|

and so, the integrand converges uniformly as h→ 0 to

=
f (w)

(w− z)2

Therefore, the limit as h→ 0 may be taken inside the integral to obtain

f ′ (z) =
1

2πi

∫
γ

f (w)

(w− z)2 dw.

Continuing in this way, yields 51.3.10.
This is a very remarkable result. It shows the existence of one continuous derivative im-

plies the existence of all derivatives, in contrast to the theory of functions of a real variable.
Actually, more than what is stated in the theorem was shown. The above proof establishes
the following corollary.

Corollary 51.3.12 Suppose f is continuous on ∂B(z0,r) and suppose that for all z ∈
B(z0,r) ,

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw,

where γ (t) ≡ z0 + reit , t ∈ [0,2π] . Then f is analytic on B(z0,r) and in fact has infinitely
many derivatives on B(z0,r) .

Another application is the following lemma.

Lemma 51.3.13 Let γ (t) = z0+reit , for t ∈ [0,2π], suppose fn→ f uniformly on B(z0,r),
and suppose

fn (z) =
1

2πi

∫
γ

fn (w)
w− z

dw (51.3.11)

for z ∈ B(z0,r) . Then

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw, (51.3.12)

implying that f is analytic on B(z0,r) .

Proof: From 51.3.11 and the uniform convergence of fn to f on γ ([0,2π]) , the integrals
in 51.3.11 converge to

1
2πi

∫
γ

f (w)
w− z

dw.
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Therefore, the formula 51.3.12 follows.
Uniform convergence on a closed disk of the analytic functions implies the target func-

tion is also analytic. This is amazing. Think of the Weierstrass approximation theorem for
polynomials. You can obtain a continuous nowhere differentiable function as the uniform
limit of polynomials.

The conclusions of the following proposition have all been obtained earlier in Theorem
51.1.4 but they can be obtained more easily if you use the above theorem and lemmas.

Proposition 51.3.14 Let {an} denote a sequence in X. Then there exists R ∈ [0,∞] such
that

∞

∑
k=0

ak (z− z0)
k

converges absolutely if |z− z0| < R, diverges if |z− z0| > R and converges uniformly on
B(z0,r) for all r < R. Furthermore, if R > 0, the function,

f (z)≡
∞

∑
k=0

ak (z− z0)
k

is analytic on B(z0,R) .

Proof: The assertions about absolute convergence are routine from the root test if

R≡
(

lim sup
n→∞

|an|1/n
)−1

with R = ∞ if the quantity in parenthesis equals zero. The root test can be used to verify
absolute convergence which then implies convergence by completeness of X .

The assertion about uniform convergence follows from the Weierstrass M test and Mn≡
|an|rn. ( ∑

∞
n=0 |an|rn <∞ by the root test). It only remains to verify the assertion about f (z)

being analytic in the case where R > 0.
Let 0 < r < R and define fn (z)≡∑

n
k=0 ak (z− z0)

k . Then fn is a polynomial and so it is
analytic. Thus, by the Cauchy integral formula above,

fn (z) =
1

2πi

∫
γ

fn (w)
w− z

dw

where γ (t) = z0 + reit , for t ∈ [0,2π] . By Lemma 51.3.13 and the first part of this proposi-
tion involving uniform convergence,

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw.

Therefore, f is analytic on B(z0,r) by Corollary 51.3.12. Since r < R is arbitrary, this
shows f is analytic on B(z0,R) .

This proposition shows that all functions having values in X which are given as power
series are analytic on their circle of convergence, the set of complex numbers, z, such that
|z− z0|< R. In fact, every analytic function can be realized as a power series.
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Theorem 51.3.15 If f : Ω→ X is analytic and if B(z0,r)⊆Ω, then

f (z) =
∞

∑
n=0

an (z− z0)
n (51.3.13)

for all |z− z0|< r. Furthermore,

an =
f (n) (z0)

n!
. (51.3.14)

Proof: Consider |z− z0|< r and let γ (t)= z0+reit , t ∈ [0,2π] . Then for w∈ γ ([0,2π]) ,∣∣∣∣ z− z0

w− z0

∣∣∣∣< 1

and so, by the Cauchy integral formula,

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw

=
1

2πi

∫
γ

f (w)

(w− z0)
(

1− z−z0
w−z0

)dw

=
1

2πi

∫
γ

f (w)
(w− z0)

∞

∑
n=0

(
z− z0

w− z0

)n

dw.

Since the series converges uniformly, you can interchange the integral and the sum to obtain

f (z) =
∞

∑
n=0

(
1

2πi

∫
γ

f (w)

(w− z0)
n+1

)
(z− z0)

n

≡
∞

∑
n=0

an (z− z0)
n

By Theorem 51.3.11, 51.3.14 holds.
Note that this also implies that if a function is analytic on an open set, then all of its

derivatives are also analytic. This follows from Theorem 51.1.4 which says that a function
given by a power series has all derivatives on the disk of convergence.

51.4 Exercises
1. Show that if |ek| ≤ ε, then

∣∣∑∞
k=m ek

(
rk− rk+1

)∣∣< ε if 0≤ r < 1. Hint: Let |θ |= 1
and verify that

θ

∞

∑
k=m

ek

(
rk− rk+1

)
=

∣∣∣∣∣ ∞

∑
k=m

ek

(
rk− rk+1

)∣∣∣∣∣= ∞

∑
k=m

Re(θek)
(

rk− rk+1
)

where −ε < Re(θek)< ε.
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2. Abel’s theorem says that if ∑
∞
n=0 an (z−a)n has radius of convergence equal to 1 and

if A = ∑
∞
n=0 an, then limr→1−∑

∞
n=0 anrn = A. Hint: Show

∞

∑
k=0

akrk =
∞

∑
k=0

Ak

(
rk− rk+1

)
where Ak denotes the kth partial sum of ∑a j. Thus

∞

∑
k=0

akrk =
∞

∑
k=m+1

Ak

(
rk− rk+1

)
+

m

∑
k=0

Ak

(
rk− rk+1

)
,

where |Ak−A|< ε for all k≥m. In the first sum, write Ak = A+ek and use Problem
1. Use this theorem to verify that arctan(1) = ∑

∞
k=0 (−1)k 1

2k+1 .

3. Find the integrals using the Cauchy integral formula.

(a)
∫

γ
sinz
z−i dz where γ (t) = 2eit : t ∈ [0,2π] .

(b)
∫

γ
1

z−a dz where γ (t) = a+ reit : t ∈ [0,2π]

(c)
∫

γ
cosz
z2 dz where γ (t) = eit : t ∈ [0,2π]

(d)
∫

γ

log(z)
zn dz where γ (t) = 1 + 1

2 eit : t ∈ [0,2π] and n = 0,1,2. In this prob-
lem, log(z) ≡ ln |z|+ iarg(z) where arg(z) ∈ (−π,π) and z = |z|eiarg(z). Thus
elog(z) = z and log(z)′ = 1

z .

4. Let γ (t) = 4eit : t ∈ [0,2π] and find
∫

γ
z2+4

z(z2+1)
dz.

5. Suppose f (z) = ∑
∞
n=0 anzn for all |z|< R. Show that then

1
2π

∫ 2π

0

∣∣∣ f (reiθ
)∣∣∣2 dθ =

∞

∑
n=0
|an|2 r2n

for all r ∈ [0,R). Hint: Let

fn (z)≡
n

∑
k=0

akzk,

show
1

2π

∫ 2π

0

∣∣∣ fn

(
reiθ
)∣∣∣2 dθ =

n

∑
k=0
|ak|2 r2k

and then take limits as n→ ∞ using uniform convergence.

6. The Cauchy integral formula, marvelous as it is, can actually be improved upon. The
Cauchy integral formula involves representing f by the values of f on the boundary
of the disk, B(a,r) . It is possible to represent f by using only the values of Re f on
the boundary. This leads to the Schwarz formula . Supply the details in the following
outline.
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Suppose f is analytic on |z|< R and

f (z) =
∞

∑
n=0

anzn (51.4.15)

with the series converging uniformly on |z|= R. Then letting |w|= R,

2u(w) = f (w)+ f (w)

and so

2u(w) =
∞

∑
k=0

akwk +
∞

∑
k=0

ak (w)
k . (51.4.16)

Now letting γ (t) = Reit , t ∈ [0,2π]∫
γ

2u(w)
w

dw = (a0 +a0)
∫

γ

1
w

dw

= 2πi(a0 +a0) .

Thus, multiplying 51.4.16 by w−1,

1
πi

∫
γ

u(w)
w

dw = a0 +a0.

Now multiply 51.4.16 by w−(n+1) and integrate again to obtain

an =
1
πi

∫
γ

u(w)
wn+1 dw.

Using these formulas for an in 51.4.15, we can interchange the sum and the integral
(Why can we do this?) to write the following for |z|< R.

f (z) =
1
πi

∫
γ

1
z

∞

∑
k=0

( z
w

)k+1
u(w)dw−a0

=
1
πi

∫
γ

u(w)
w− z

dw−a0,

which is the Schwarz formula. Now Rea0 =
1

2πi
∫

γ

u(w)
w dw and a0 = Rea0− i Ima0.

Therefore, we can also write the Schwarz formula as

f (z) =
1

2πi

∫
γ

u(w)(w+ z)
(w− z)w

dw+ i Ima0. (51.4.17)

7. Take the real parts of the second form of the Schwarz formula to derive the Poisson
formula for a disk,

u
(
reiα)= 1

2π

∫ 2π

0

u
(
Reiθ

)(
R2− r2

)
R2 + r2−2Rr cos(θ −α)

dθ . (51.4.18)
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8. Suppose that u(w) is a given real continuous function defined on ∂B(0,R) and define
f (z) for |z|< R by 51.4.17. Show that f , so defined is analytic. Explain why u given
in 51.4.18 is harmonic. Show that

lim
r→R−

u
(
reiα)= u

(
Reiα) .

Thus u is a harmonic function which approaches a given function on the boundary
and is therefore, a solution to the Dirichlet problem.

9. Suppose f (z) = ∑
∞
k=0 ak (z− z0)

k for all |z− z0|< R. Show that

f ′ (z) =
∞

∑
k=0

akk (z− z0)
k−1

for all |z− z0| < R. Hint: Let fn (z) be a partial sum of f . Show that f ′n converges
uniformly to some function, g on |z− z0| ≤ r for any r < R. Now use the Cauchy
integral formula for a function and its derivative to identify g with f ′.

10. Use Problem 9 to find the exact value of ∑
∞
k=0 k2

( 1
3

)k
.

11. Prove the binomial formula,

(1+ z)α =
∞

∑
n=0

(
α

n

)
zn

where (
α

n

)
≡ α · · ·(α−n+1)

n!
.

Can this be used to give a proof of the binomial formula,

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk?

Explain.

12. Suppose f is analytic on B(z0,r) and continuous on B(z0,r) and | f (z)| ≤ M on
B(z0,r). Show that then

∣∣∣ f (n) (a)∣∣∣≤ Mn!
rn .

51.5 Zeros Of An Analytic Function
In this section we give a very surprising property of analytic functions which is in stark
contrast to what takes place for functions of a real variable.

Definition 51.5.1 A region is a connected open set.

It turns out the zeros of an analytic function which is not constant on some region
cannot have a limit point. This is also a good time to define the order of a zero.
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Definition 51.5.2 Suppose f is an analytic function defined near a point, α where f (α) =
0. Thus α is a zero of the function, f . The zero is of order m if f (z) = (z−α)m g(z) where
g is an analytic function which is not equal to zero at α.

Theorem 51.5.3 Let Ω be a connected open set (region) and let f : Ω→ X be analytic.
Then the following are equivalent.

1. f (z) = 0 for all z ∈Ω

2. There exists z0 ∈Ω such that f (n) (z0) = 0 for all n.

3. There exists z0 ∈Ω which is a limit point of the set,

Z ≡ {z ∈Ω : f (z) = 0} .

Proof: It is clear the first condition implies the second two. Suppose the third holds.
Then for z near z0

f (z) =
∞

∑
n=k

f (n) (z0)

n!
(z− z0)

n

where k ≥ 1 since z0 is a zero of f . Suppose k < ∞. Then,

f (z) = (z− z0)
k g(z)

where g(z0) ̸= 0. Letting zn→ z0 where zn ∈ Z,zn ̸= z0, it follows

0 = (zn− z0)
k g(zn)

which implies g(zn) = 0. Then by continuity of g, we see that g(z0) = 0 also, contrary to
the choice of k. Therefore, k cannot be less than ∞ and so z0 is a point satisfying the second
condition.

Now suppose the second condition and let

S≡
{

z ∈Ω : f (n) (z) = 0 for all n
}
.

It is clear that S is a closed set which by assumption is nonempty. However, this set is also
open. To see this, let z ∈ S. Then for all w close enough to z,

f (w) =
∞

∑
k=0

f (k) (z)
k!

(w− z)k = 0.

Thus f is identically equal to zero near z ∈ S. Therefore, all points near z are contained
in S also, showing that S is an open set. Now Ω = S∪ (Ω\S) , the union of two disjoint
open sets, S being nonempty. It follows the other open set, Ω \ S, must be empty because
Ω is connected. Therefore, the first condition is verified. This proves the theorem. (See the
following diagram.)

1.)
↙↗ ↘

2.) ←− 3.)
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Note how radically different this is from the theory of functions of a real variable.
Consider, for example the function

f (x)≡
{

x2 sin
( 1

x

)
if x ̸= 0

0 if x = 0

which has a derivative for all x ∈ R and for which 0 is a limit point of the set, Z, even
though f is not identically equal to zero.

Here is a very important application called Euler’s formula. Recall that

ez ≡ ex (cos(y)+ isin(y)) (51.5.19)

Is it also true that ez = ∑
∞
k=0

zk

k! ?

Theorem 51.5.4 (Euler’s Formula) Let z = x+ iy. Then

ez =
∞

∑
k=0

zk

k!
.

Proof: It was already observed that ez given by 51.5.19 is analytic. So is exp(z) ≡
∑

∞
k=0

zk

k! . In fact the power series converges for all z ∈ C. Furthermore the two functions,
ez and exp(z) agree on the real line which is a set which contains a limit point. Therefore,
they agree for all values of z ∈ C.

This formula shows the famous two identities,

eiπ =−1 and e2πi = 1.

51.6 Liouville’s Theorem
The following theorem pertains to functions which are analytic on all of C, “entire” func-
tions.

Definition 51.6.1 A function, f :C→ C or more generally, f :C→ X is entire means it is
analytic on C.

Theorem 51.6.2 (Liouville’s theorem) If f is a bounded entire function having values in
X , then f is a constant.

Proof: Since f is entire, pick any z ∈ C and write

f ′ (z) =
1

2πi

∫
γR

f (w)

(w− z)2 dw

where γR (t) = z+Reit for t ∈ [0,2π] . Therefore,

∣∣∣∣ f ′ (z)∣∣∣∣≤C
1
R
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where C is some constant depending on the assumed bound on f . Since R is arbitrary,
let R→ ∞ to obtain f ′ (z) = 0 for any z ∈ C. It follows from this that f is constant for
if z j j = 1,2 are two complex numbers, let h(t) = f (z1 + t (z2− z1)) for t ∈ [0,1] . Then
h′ (t) = f ′ (z1 + t (z2− z1))(z2− z1) = 0. By Lemmas 51.3.2 - 51.3.4 h is a constant on [0,1]
which implies f (z1) = f (z2) .

With Liouville’s theorem it becomes possible to give an easy proof of the fundamental
theorem of algebra. It is ironic that all the best proofs of this theorem in algebra come from
the subjects of analysis or topology. Out of all the proofs that have been given of this very
important theorem, the following one based on Liouville’s theorem is the easiest.

Theorem 51.6.3 (Fundamental theorem of Algebra) Let

p(z) = zn +an−1zn−1 + · · ·+a1z+a0

be a polynomial where n ≥ 1 and each coefficient is a complex number. Then there exists
z0 ∈ C such that p(z0) = 0.

Proof: Suppose not. Then p(z)−1 is an entire function. Also

|p(z)| ≥ |z|n−
(
|an−1| |z|n−1 + · · ·+ |a1| |z|+ |a0|

)
and so lim|z|→∞ |p(z)| = ∞ which implies lim|z|→∞

∣∣∣p(z)−1
∣∣∣ = 0. It follows that, since

p(z)−1 is bounded for z in any bounded set, we must have that p(z)−1 is a bounded entire
function. But then it must be constant. However since p(z)−1→ 0 as |z| →∞, this constant
can only be 0. However, 1

p(z) is never equal to zero. This proves the theorem.

51.7 The General Cauchy Integral Formula
51.7.1 The Cauchy Goursat Theorem
This section gives a fundamental theorem which is essential to the development which
follows and is closely related to the question of when a function has a primitive. First of
all, if you have two points in C, z1 and z2, you can consider γ (t) ≡ z1 + t (z2− z1) for
t ∈ [0,1] to obtain a continuous bounded variation curve from z1 to z2. More generally, if
z1, · · · ,zm are points in C you can obtain a continuous bounded variation curve from z1 to
zm which consists of first going from z1 to z2 and then from z2 to z3 and so on, till in the end
one goes from zm−1 to zm. We denote this piecewise linear curve as γ (z1, · · · ,zm) . Now let
T be a triangle with vertices z1,z2 and z3 encountered in the counter clockwise direction as
shown.

z1 z2

z3
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Denote by
∫

∂T f (z)dz, the expression,
∫

γ(z1,z2,z3,z1)
f (z)dz. Consider the following pic-

ture.

TT 1
1

T 1
2

T 1
3 T 1

4
z1 z2

z3

By Lemma 50.0.11 ∫
∂T

f (z)dz =
4

∑
k=1

∫
∂T 1

k

f (z)dz. (51.7.20)

On the “inside lines” the integrals cancel as claimed in Lemma 50.0.11 because there are
two integrals going in opposite directions for each of these inside lines.

Theorem 51.7.1 (Cauchy Goursat) Let f : Ω→ X have the property that f ′ (z) exists for
all z ∈Ω and let T be a triangle contained in Ω. Then∫

∂T
f (w)dw = 0.

Proof: Suppose not. Then ∣∣∣∣∣∣∣∣∫
∂T

f (w)dw
∣∣∣∣∣∣∣∣= α ̸= 0.

From 51.7.20 it follows

α ≤
4

∑
k=1

∣∣∣∣∣∣∣∣∫
∂T 1

k

f (w)dw
∣∣∣∣∣∣∣∣

and so for at least one of these T 1
k , denoted from now on as T1,∣∣∣∣∣∣∣∣∫

∂T1

f (w)dw
∣∣∣∣∣∣∣∣≥ α

4
.

Now let T1 play the same role as T , subdivide as in the above picture, and obtain T2 such
that ∣∣∣∣∣∣∣∣∫

∂T2

f (w)dw
∣∣∣∣∣∣∣∣≥ α

42 .

Continue in this way, obtaining a sequence of triangles,

Tk ⊇ Tk+1,diam(Tk)≤ diam(T )2−k,

and ∣∣∣∣∣∣∣∣∫
∂Tk

f (w)dw
∣∣∣∣∣∣∣∣≥ α

4k .
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Then let z ∈ ∩∞
k=1Tk and note that by assumption, f ′ (z) exists. Therefore, for all k large

enough, ∫
∂Tk

f (w)dw =
∫

∂Tk

f (z)+ f ′ (z)(w− z)+g(w)dw

where ||g(w)|| < ε |w− z| . Now observe that w→ f (z) + f ′ (z)(w− z) has a primitive,
namely,

F (w) = f (z)w+ f ′ (z)(w− z)2 /2.

Therefore, by Corollary 50.0.14.∫
∂Tk

f (w)dw =
∫

∂Tk

g(w)dw.

From the definition, of the integral,

α

4k ≤
∣∣∣∣∣∣∣∣∫

∂Tk

g(w)dw
∣∣∣∣∣∣∣∣≤ ε diam(Tk)(length of ∂Tk)

≤ ε2−k (length of T )diam(T )2−k,

and so
α ≤ ε (length of T )diam(T ) .

Since ε is arbitrary, this shows α = 0, a contradiction. Thus
∫

∂T f (w)dw = 0 as claimed.
This fundamental result yields the following important theorem.

Theorem 51.7.2 (Morera1) Let Ω be an open set and let f ′ (z) exist for all z ∈ Ω. Let
D≡ B(z0,r)⊆Ω. Then there exists ε > 0 such that f has a primitive on B(z0,r+ ε).

Proof: Choose ε > 0 small enough that B(z0,r+ ε) ⊆ Ω. Then for w ∈ B(z0,r+ ε) ,
define

F (w)≡
∫

γ(z0,w)
f (u)du.

Then by the Cauchy Goursat theorem, and w ∈ B(z0,r+ ε) , it follows that for |h| small
enough,

F (w+h)−F (w)
h

=
1
h

∫
γ(w,w+h)

f (u)du

=
1
h

∫ 1

0
f (w+ th)hdt =

∫ 1

0
f (w+ th)dt

which converges to f (w) due to the continuity of f at w. This proves the theorem.
The following is a slight generalization of the above theorem which is also referred to

as Morera’s theorem.

1Giancinto Morera 1856-1909. This theorem or one like it dates from around 1886
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Corollary 51.7.3 Let Ω be an open set and suppose that whenever

γ (z1,z2,z3,z1)

is a closed curve bounding a triangle T, which is contained in Ω, and f is a continuous
function defined on Ω, it follows that∫

γ(z1,z2,z3,z1)
f (z)dz = 0,

then f is analytic on Ω.

Proof: As in the proof of Morera’s theorem, let B(z0,r)⊆Ω and use the given condition
to construct a primitive, F for f on B(z0,r) . Then F is analytic and so by Theorem 51.3.11,
it follows that F and hence f have infinitely many derivatives, implying that f is analytic
on B(z0,r) . Since z0 is arbitrary, this shows f is analytic on Ω.

51.7.2 A Redundant Assumption
Earlier in the definition of analytic, it was assumed the derivative is continuous. This
assumption is redundant.

Theorem 51.7.4 Let Ω be an open set in C and suppose f : Ω→ X has the property that
f ′ (z) exists for each z ∈Ω. Then f is analytic on Ω.

Proof: Let z0 ∈ Ω and let B(z0,r) ⊆ Ω. By Morera’s theorem f has a primitive, F
on B(z0,r) . It follows that F is analytic because it has a derivative, f , and this deriva-
tive is continuous. Therefore, by Theorem 51.3.11 F has infinitely many derivatives on
B(z0,r) implying that f also has infinitely many derivatives on B(z0,r) . Thus f is analytic
as claimed.

It follows a function is analytic on an open set, Ω if and only if f ′ (z) exists for z ∈ Ω.
This is because it was just shown the derivative, if it exists, is automatically continuous.

The same proof used to prove Theorem 51.7.2 implies the following corollary.

Corollary 51.7.5 Let Ω be a convex open set and suppose that f ′ (z) exists for all z ∈ Ω.
Then f has a primitive on Ω.

Note that this implies that if Ω is a convex open set on which f ′ (z) exists and if γ :
[a,b]→ Ω is a closed, continuous curve having bounded variation, then letting F be a
primitive of f Theorem 50.0.13 implies∫

γ

f (z)dz = F (γ (b))−F (γ (a)) = 0.

Notice how different this is from the situation of a function of a real variable! It is pos-
sible for a function of a real variable to have a derivative everywhere and yet the derivative
can be discontinuous. A simple example is the following.

f (x)≡
{

x2 sin
( 1

x

)
if x ̸= 0

0 if x = 0
.
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Then f ′ (x) exists for all x∈R. Indeed, if x ̸= 0, the derivative equals 2xsin 1
x −cos 1

x which
has no limit as x→ 0. However, from the definition of the derivative of a function of one
variable, f ′ (0) = 0.

51.7.3 Classification Of Isolated Singularities
First some notation.

Definition 51.7.6 Let B′ (a,r) ≡ {z ∈ C such that 0 < |z−a|< r}. Thus this is the usual
ball without the center. A function is said to have an isolated singularity at the point a ∈C
if f is analytic on B′ (a,r) for some r > 0.

It turns out isolated singularities can be neatly classified into three types, removable
singularities, poles, and essential singularities. The next theorem deals with the case of a
removable singularity.

Definition 51.7.7 An isolated singularity of f is said to be removable if there exists an
analytic function, g analytic at a and near a such that f = g at all points near a.

Theorem 51.7.8 Let f : B′ (a,r)→ X be analytic. Thus f has an isolated singularity at a.
Suppose also that

lim
z→a

f (z)(z−a) = 0.

Then there exists a unique analytic function, g : B(a,r)→ X such that g = f on B′ (a,r) .
Thus the singularity at a is removable.

Proof: Let h(z) ≡ (z−a)2 f (z) ,h(a) ≡ 0. Then h is analytic on B(a,r) because it is
easy to see that h′ (a) = 0. It follows h is given by a power series,

h(z) =
∞

∑
k=2

ak (z−a)k

where a0 = a1 = 0 because of the observation above that h′ (a) = h(a) = 0. It follows that
for |z−a|> 0

f (z) =
∞

∑
k=2

ak (z−a)k−2 ≡ g(z) .

This proves the theorem.
What of the other case where the singularity is not removable? This situation is dealt

with by the amazing Casorati Weierstrass theorem.

Theorem 51.7.9 (Casorati Weierstrass) Let a be an isolated singularity and suppose for
some r > 0, f (B′ (a,r)) is not dense in C. Then either a is a removable singularity or there
exist finitely many b1, · · · ,bM for some finite number, M such that for z near a,

f (z) = g(z)+
M

∑
k=1

bk

(z−a)k (51.7.21)

where g(z) is analytic near a.
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Proof: Suppose B(z0,δ ) has no points of f (B′ (a,r)) . If f (B′ (a,r)) is not dense, then
such a ball exists. Then for z ∈ B′ (a,r) , | f (z)− z0| ≥ δ > 0. It follows from Theorem
51.7.8 that 1

f (z)−z0
has a removable singularity at a. Hence, there exists h an analytic func-

tion such that for z near a,

h(z) =
1

f (z)− z0
. (51.7.22)

There are two cases. First suppose h(a) = 0. Then ∑
∞
k=1 ak (z−a)k = 1

f (z)−z0
for z near

a. If all the ak = 0, this would be a contradiction because then the left side would equal zero
for z near a but the right side could not equal zero. Therefore, there is a first m such that
am ̸= 0. Hence there exists an analytic function, k (z) which is not equal to zero in some
ball, B(a,ε) such that

k (z)(z−a)m =
1

f (z)− z0
.

Hence, taking both sides to the −1 power,

f (z)− z0 =
1

(z−a)m

∞

∑
k=0

bk (z−a)k

and so 51.7.21 holds.
The other case is that h(a) ̸= 0. In this case, raise both sides of 51.7.22 to the−1 power

and obtain
f (z)− z0 = h(z)−1 ,

a function analytic near a. Therefore, the singularity is removable. This proves the theorem.
This theorem is the basis for the following definition which classifies isolated singular-

ities.

Definition 51.7.10 Let a be an isolated singularity of a complex valued function, f . When
51.7.21 holds for z near a, then a is called a pole. The order of the pole in 51.7.21 is M. If
for every r > 0, f (B′ (a,r)) is dense in C then a is called an essential singularity.

In terms of the above definition, isolated singularities are either removable, a pole, or
essential. There are no other possibilities.

Theorem 51.7.11 Suppose f : Ω→ C has an isolated singularity at a ∈ Ω. Then a is a
pole if and only if

lim
z→a

d ( f (z) ,∞) = 0

in Ĉ.

Proof: Suppose first f has a pole at a. Then by definition, f (z) = g(z)+∑
M
k=1

bk
(z−a)k

for z near a where g is analytic. Then

| f (z)| ≥ |bM|
|z−a|M

−|g(z)|−
M−1

∑
k=1

|bk|
|z−a|k

=
1

|z−a|M

(
|bM|−

(
|g(z)| |z−a|M +

M−1

∑
k=1
|bk| |z−a|M−k

))
.
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Now limz→a

(
|g(z)| |z−a|M +∑

M−1
k=1 |bk| |z−a|M−k

)
= 0 and so the above inequality proves

limz→a | f (z)|= ∞. Referring to the diagram on Page 1597, you see this is the same as say-
ing

lim
z→a
|θ f (z)− (0,0,2)|= lim

z→a
|θ f (z)−θ (∞)|= lim

z→a
d ( f (z) ,∞) = 0

Conversely, suppose limz→a d ( f (z) ,∞) = 0. Then from the diagram on Page 1597, it
follows limz→a | f (z)| = ∞ and in particular, a cannot be either removable or an essential
singularity by the Casorati Weierstrass theorem, Theorem 51.7.9. The only case remaining
is that a is a pole. This proves the theorem.

Definition 51.7.12 Let f : Ω→ C where Ω is an open subset of C. Then f is called mero-
morphic if all singularities are isolated and are either poles or removable and this set of
singularities has no limit point. It is convenient to regard meromorphic functions as having
values in Ĉ where if a is a pole, f (a) ≡ ∞. From now on, this will be assumed when a
meromorphic function is being considered.

The usefulness of the above convention about f (a) ≡ ∞ at a pole is made clear in the
following theorem.

Theorem 51.7.13 Let Ω be an open subset of C and let f : Ω→ Ĉ be meromorphic. Then
f is continuous with respect to the metric, d on Ĉ.

Proof: Let zn → z where z ∈ Ω. Then if z is a pole, it follows from Theorem 51.7.11
that

d ( f (zn) ,∞)≡ d ( f (zn) , f (z))→ 0.

If z is not a pole, then f (zn)→ f (z) in C which implies

|θ ( f (zn))−θ ( f (z))|= d ( f (zn) , f (z))→ 0.

Recall that θ is continuous on C.

51.7.4 The Cauchy Integral Formula
This section presents the general version of the Cauchy integral formula valid for arbitrary
closed rectifiable curves. The key idea in this development is the notion of the winding
number. This is the number also called the index, defined in the following theorem. This
winding number, along with the earlier results, especially Liouville’s theorem, yields an
extremely general Cauchy integral formula.

Definition 51.7.14 Let γ : [a,b]→ C and suppose z /∈ γ∗. The winding number, n(γ,z) is
defined by

n(γ,z)≡ 1
2πi

∫
γ

dw
w− z

.

The main interest is in the case where γ is closed curve. However, the same notation will
be used for any such curve.
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Theorem 51.7.15 Let γ : [a,b]→C be continuous and have bounded variation with γ (a)=
γ (b) . Also suppose that z /∈ γ∗. Define

n(γ,z)≡ 1
2πi

∫
γ

dw
w− z

. (51.7.23)

Then n(γ, ·) is continuous and integer valued. Furthermore, there exists a sequence, ηk :
[a,b]→ C such that ηk is C1 ([a,b]) ,

||ηk− γ||< 1
k
,ηk (a) = ηk (b) = γ (a) = γ (b) ,

and n(ηk,z) = n(γ,z) for all k large enough. Also n(γ, ·) is constant on every connected
component of C\γ∗ and equals zero on the unbounded component of C\γ∗.

Proof: First consider the assertion about continuity.

|n(γ,z)−n(γ,z1)| ≤ C
∣∣∣∣∫

γ

(
1

w− z
− 1

w− z1

)
dw
∣∣∣∣

≤ C̃ (Length of γ) |z1− z|

whenever z1 is close enough to z. This proves the continuity assertion. Note this did not
depend on γ being closed.

Next it is shown that for a closed curve the winding number equals an integer. To do
so, use Theorem 50.0.12 to obtain ηk, a function in C1 ([a,b]) such that z /∈ ηk ([a,b]) for
all k large enough, ηk (x) = γ (x) for x = a,b, and∣∣∣∣ 1

2πi

∫
γ

dw
w− z

− 1
2πi

∫
ηk

dw
w− z

∣∣∣∣< 1
k
, ||ηk− γ||< 1

k
.

It is shown that each of 1
2πi
∫

ηk
dw

w−z is an integer. To simplify the notation, write η instead
of ηk. ∫

η

dw
w− z

=
∫ b

a

η ′ (s)ds
η (s)− z

.

Define

g(t)≡
∫ t

a

η ′ (s)ds
η (s)− z

. (51.7.24)

Then (
e−g(t) (η (t)− z)

)′
= e−g(t)

η
′ (t)− e−g(t)g′ (t)(η (t)− z)

= e−g(t)
η
′ (t)− e−g(t)

η
′ (t) = 0.

It follows that e−g(t) (η (t)− z) equals a constant. In particular, using the fact that η (a) =
η (b) ,

e−g(b) (η (b)− z) = e−g(a) (η (a)− z) = (η (a)− z) = (η (b)− z)
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and so e−g(b) = 1. This happens if and only if−g(b) = 2mπi for some integer m. Therefore,
51.7.24 implies

2mπi =
∫ b

a

η ′ (s)ds
η (s)− z

=
∫

η

dw
w− z

.

Therefore, 1
2πi
∫

ηk
dw

w−z is a sequence of integers converging to 1
2πi
∫

γ
dw

w−z ≡ n(γ,z) and so
n(γ,z) must also be an integer and n(ηk,z) = n(γ,z) for all k large enough.

Since n(γ, ·) is continuous and integer valued, it follows from Corollary 7.13.11 on
Page 172 that it must be constant on every connected component of C\γ∗. It is clear that
n(γ,z) equals zero on the unbounded component because from the formula,

lim
z→∞
|n(γ,z)| ≤ lim

z→∞
V (γ, [a,b])

(
1
|z|− c

)
where c≥max{|w| : w ∈ γ∗} .This proves the theorem.

Corollary 51.7.16 Suppose γ : [a,b]→ C is a continuous bounded variation curve and
n(γ,z) is an integer where z /∈ γ∗. Then γ (a) = γ (b) . Also z→ n(γ,z) for z /∈ γ∗ is contin-
uous.

Proof: Letting η be a C1 curve for which η (a) = γ (a) and η (b) = γ (b) and which is
close enough to γ that n(η ,z) = n(γ,z) , the argument is similar to the above. Let

g(t)≡
∫ t

a

η ′ (s)ds
η (s)− z

. (51.7.25)

Then (
e−g(t) (η (t)− z)

)′
= e−g(t)

η
′ (t)− e−g(t)g′ (t)(η (t)− z)

= e−g(t)
η
′ (t)− e−g(t)

η
′ (t) = 0.

Hence
e−g(t) (η (t)− z) = c ̸= 0. (51.7.26)

By assumption

g(b) =
∫

η

1
w− z

dw = 2πim

for some integer, m. Therefore, from 51.7.26

1 = e2πmi =
η (b)− z

c
.

Thus c = η (b)− z and letting t = a in 51.7.26,

1 =
η (a)− z
η (b)− z

which shows η (a) = η (b) . This proves the corollary since the assertion about continuity
was already observed.
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It is a good idea to consider a simple case to get an idea of what the winding number is
measuring. To do so, consider γ : [a,b]→ C such that γ is continuous, closed and bounded
variation. Suppose also that γ is one to one on (a,b) . Such a curve is called a simple
closed curve. It can be shown that such a simple closed curve divides the plane into exactly
two components, an “inside” bounded component and an “outside” unbounded component.
This is called the Jordan Curve theorem. This is a difficult theorem which requires some
very hard topology such as homology theory or degree theory. It won’t be used here beyond
making reference to it. For now, it suffices to simply assume that γ is such that this result
holds. This will usually be obvious anyway. Also suppose that it is possible to change
the parameter to be in [0,2π] , in such a way that γ (t)+λ

(
z+ reit − γ (t)

)
− z ̸= 0 for all

t ∈ [0,2π] and λ ∈ [0,1] . (As t goes from 0 to 2π the point γ (t) traces the curve γ ([0,2π])
in the counter clockwise direction.) Suppose z ∈ D, the inside of the simple closed curve
and consider the curve δ (t) = z+ reit for t ∈ [0,2π] where r is chosen small enough that
B(z,r)⊆ D. Then it happens that n(δ ,z) = n(γ,z) .

Proposition 51.7.17 Under the above conditions,

n(δ ,z) = n(γ,z)

and n(δ ,z) = 1.

Proof: By changing the parameter, assume that [a,b] = [0,2π] . From Theorem 51.7.15
it suffices to assume also that γ is C1. Define hλ (t) ≡ γ (t)+ λ

(
z+ reit − γ (t)

)
for λ ∈

[0,1] . (This function is called a homotopy of the curves γ and δ .) Note that for each λ ∈
[0,1] , t→ hλ (t) is a closed C1 curve. Also,

1
2πi

∫
hλ

1
w− z

dw =
1

2πi

∫ 2π

0

γ ′ (t)+λ
(
rieit − γ ′ (t)

)
γ (t)+λ (z+ reit − γ (t))− z

dt.

This number is an integer and it is routine to verify that it is a continuous function of λ .
When λ = 0 it equals n(γ,z) and when λ = 1 it equals n(δ ,z). Therefore, n(δ ,z)= n(γ,z) .
It only remains to compute n(δ ,z) .

n(δ ,z) =
1

2πi

∫ 2π

0

rieit

reit dt = 1.

This proves the proposition.
Now if γ was not one to one but caused the point, γ (t) to travel around γ∗ twice,

you could modify the above argument to have the parameter interval, [0,4π] and still find
n(δ ,z) = n(γ,z) only this time, n(δ ,z) = 2. Thus the winding number is just what its name
suggests. It measures the number of times the curve winds around the point. One might
ask why bother with the winding number if this is all it does. The reason is that the notion
of counting the number of times a curve winds around a point is rather vague. The winding
number is precise. It is also the natural thing to consider in the general Cauchy integral
formula presented below. Consider a situation typified by the following picture in which Ω

is the open set between the dotted curves and γ j are closed rectifiable curves in Ω.
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γ1γ2

γ3

Ω

The following theorem is the general Cauchy integral formula.

Definition 51.7.18 Let {γk}
n
k=1 be continuous oriented curves having bounded variation.

Then this is called a cycle if whenever, z /∈ ∪n
k=1γ∗k , ∑

n
k=1 n(γk,z) is an integer.

By Theorem 51.7.15 if each γk is a closed curve, then {γk}
n
k=1 is a cycle.

Theorem 51.7.19 Let Ω be an open subset of the plane and let f : Ω→ X be analytic. If
γk : [ak,bk]→ Ω, k = 1, · · · ,m are continuous curves having bounded variation such that
for all z /∈ ∪m

k=1γk ([ak,bk])

m

∑
k=1

n(γk,z) equals an integer

and for all z /∈Ω,
m

∑
k=1

n(γk,z) = 0.

Then for all z ∈Ω\∪m
k=1γk ([ak,bk]) ,

f (z)
m

∑
k=1

n(γk,z) =
m

∑
k=1

1
2πi

∫
γk

f (w)
w− z

dw.

Proof: Let φ be defined on Ω×Ω by

φ (z,w)≡
{ f (w)− f (z)

w−z if w ̸= z
f ′ (z) if w = z

.

Then φ is analytic as a function of both z and w and is continuous in Ω×Ω. Here is why: It
is clear that d

dw φ (z, ·)(w) exists if w ̸= z. It remains to consider whether d
dz φ (·,z)(z) exists.

One needs to consider

φ (z+h,z)−φ (z,z)
h

=
f (z+h)− f (z)

h − f ′ (z)
h

We can write f (z+h) as a power series in h whenever h is suitably small.

f (z+h)− f (z)
h − f ′ (z)

h
=
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=
1
h

(
1
h

(
f ′ (z)h+

1
2!

f ′′ (z)h2 +
1
3!

f ′′′ (z)h3 + · · ·
)
− f ′ (z)

)
=

1
h

((
f ′ (z)+

1
2!

f ′′ (z)h+
1
3!

f ′′′ (z)h2 + · · ·
)
− f ′ (z)

)
=

1
2!

f ′′ (z)+
1
3!

f ′′′ (z)h+ higher order terms

Thus the limit of the difference quotient exists and is 1
2! f ′′ (z).

Define

h(z)≡ 1
2πi

m

∑
k=1

∫
γk

φ (z,w)dw.

Is h analytic on Ω? To show this is the case, verify∫
∂T

h(z)dz = 0

for every triangle, T, contained in Ω and apply Corollary 51.7.3. This is an application of
the Fubini theorem of Theorem 50.0.15. By Theorem 50.0.15,

∫
∂T

∫
γk

φ (z,w)dwdz =
∫

γk

=0︷ ︸︸ ︷∫
∂T

φ (z,w)dzdw = 0

because φ is analytic. By Corollary 51.7.3, h is analytic on Ω as claimed.
Now let H denote the set,

H ≡

{
z ∈ C\∪m

k=1 γ
∗
k :

m

∑
k=1

n(γk,z) = 0

}

=

{
z ∈ C\∪m

k=1 γ
∗
k :

m

∑
k=1

n(γk,z) ∈ (−1/2,1/2)

}
the second equality holding because it is given that the sum of these is integer valued. Thus
H is an open set because z→∑

m
k=1 n(γk,z) is continuous. This is obvious from the formula

for n(γk,z). Also, Ω∪H = C because by assumption, ΩC ⊆ H. Extend h(z) to all of C as
follows:

g(z)≡

{
h(z)≡ 1

2πi ∑
m
k=1

∫
γk

φ (z,w)dw if z ∈Ω

1
2πi ∑

m
k=1

∫
γk

f (w)
w−z dw if z ∈ H

. (51.7.27)

Why is g(z) well defined? Then on Ω∩H, z /∈ ∪m
k=1γ∗k and so

g(z) =
1

2πi

m

∑
k=1

∫
γk

φ (z,w)dw =
1

2πi

m

∑
k=1

∫
γk

f (w)− f (z)
w− z

dw

=
1

2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw− 1
2πi

m

∑
k=1

∫
γk

f (z)
w− z

dw

=
1

2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw
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because z ∈ H. This shows g(z) is well defined. Also, g is analytic on Ω because it equals
h there. It is routine to verify that g is analytic on H also because of the second line of
51.7.27. (See discussion at the end if this is not clear. )

Therefore, g is an entire function, meaning that it is analytic on all of C.
Now note that ∑

m
k=1 n(γk,z) = 0 for all z contained in the unbounded component of

C\ ∪m
k=1 γ∗k which component contains B(0,r)C for r large enough. It follows that for

|z| > r, it must be the case that z ∈ H and so for such z, the bottom description of g(z)
found in 51.7.27 is valid. Therefore, it follows

lim
|z|→∞

∥g(z)∥= 0

and so g is bounded and analytic on all of C. By Liouville’s theorem, g is a constant.
Hence, from the above equation, the constant can only equal zero.

For z ∈Ω\∪m
k=1γ∗k , since it was just shown that h(z) = g(z) = 0 on Ω

0 = h(z) =
1

2πi

m

∑
k=1

∫
γk

φ (z,w)dw =
1

2πi

m

∑
k=1

∫
γk

f (w)− f (z)
w− z

dw =

1
2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw− f (z)
m

∑
k=1

n(γk,z) . ■

In case it is not obvious why g is analytic on H, use the formula. It reduces to showing
that

z→
∫

γk

f (w)
w− z

dw

is analytic. However, taking a difference quotient and simplifying a little, one obtains∫
γk

f (w)
w−(z+h)dw−

∫
γk

f (w)
w−z dw

h
=
∫

γk

f (w)
(w− z)(w− (z+h))

dw

considering only small h, the denominator is bounded below by some δ > 0 and also f (w)
is bounded on the compact set γ∗k , | f (w)| ≤M. Then for such small h,∣∣∣∣∣ f (w)

(w− z)(w− (z+h))
− f (w)

(w− z)2

∣∣∣∣∣
=

∣∣∣∣ 1
w− z

(
1

(w− (z+h))
− 1

(w− z)

)
f (w)

∣∣∣∣
≤

∣∣∣∣ 1
w− z

∣∣∣∣ 1
δ

hM

it follows that one obtains uniform convergence as h→ 0 of the integrand to f (w)
(w−z)2 for any

sequence h→ 0 and so the integral converges to∫
γk

f (w)

(w− z)2 dw
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Corollary 51.7.20 Let Ω be an open set and let γk : [ak,bk]→Ω, k = 1, · · · ,m, be closed,
continuous and of bounded variation. Suppose also that ∑

m
k=1 n(γk,z) = 0 for all z /∈ Ω.

Then if f : Ω→ C is analytic, ∑
m
k=1

∫
γk

f (w)dw = 0.

Proof: This follows from Theorem 51.7.19 as follows. Let

g(w) = f (w)(w− z)

where z ∈Ω\∪m
k=1γk ([ak,bk]) . Then by this theorem,

0 = 0
m

∑
k=1

n(γk,z) = g(z)
m

∑
k=1

n(γk,z) =

m

∑
k=1

1
2πi

∫
γk

g(w)
w− z

dw =
1

2πi

m

∑
k=1

∫
γk

f (w)dw.

Another simple corollary to the above theorem is Cauchy’s theorem for a simply con-
nected region.

Definition 51.7.21 An open set, Ω ⊆ C is a region if it is open and connected. A region,
Ω is simply connected if Ĉ \Ω is connected where Ĉ is the extended complex plane. In the
future, the term simply connected open set will be an open set which is connected and Ĉ
\Ω is connected .

Corollary 51.7.22 Let γ : [a,b]→ Ω be a continuous closed curve of bounded variation
where Ω is a simply connected region in C and let f : Ω→ X be analytic. Then∫

γ

f (w)dw = 0.

Proof: Let D denote the unbounded component of Ĉ\γ∗. Thus ∞ ∈ Ĉ\γ∗. Then
the connected set, Ĉ \Ω is contained in D since every point of Ĉ \Ω must be in some
component of Ĉ\γ∗ and ∞ is contained in both Ĉ\Ω and D. Thus D must be the component
that contains Ĉ \Ω. It follows that n(γ, ·) must be constant on Ĉ \Ω, its value being its
value on D. However, for z∈D,n(γ,z) = 1

2πi
∫

γ
1

w−z dw and so lim|z|→∞ n(γ,z) = 0 showing
n(γ,z) = 0 on D. Therefore this verifies the hypothesis of Theorem 51.7.19. Let z ∈Ω∩D
and define g(w)≡ f (w)(w− z) . Thus g is analytic on Ω and by Theorem 51.7.19,

0 = n(z,γ)g(z) =
1

2πi

∫
γ

g(w)
w− z

dw =
1

2πi

∫
γ

f (w)dw.

This proves the corollary.
The following is a very significant result which will be used later.

Corollary 51.7.23 Suppose Ω is a simply connected open set and f : Ω→ X is analytic.
Then f has a primitive, F, on Ω. Recall this means there exists F such that F ′ (z) = f (z)
for all z ∈Ω.
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Proof: Pick a point, z0 ∈ Ω and let V denote those points, z of Ω for which there
exists a curve, γ : [a,b]→ Ω such that γ is continuous, of bounded variation, γ (a) = z0,
and γ (b) = z. Then it is easy to verify that V is both open and closed in Ω and therefore,
V = Ω because Ω is connected. Denote by γz0,z such a curve from z0 to z and define F (z)≡∫

γz0 ,z
f (w)dw.Then F is well defined because if γ j, j = 1,2 are two such curves, it follows

from Corollary 51.7.22 that
∫

γ1
f (w)dw+

∫
−γ2

f (w)dw = 0, implying that
∫

γ1
f (w)dw =∫

γ2
f (w)dw.Now this function, F is a primitive because, thanks to Corollary 51.7.22

(F (z+h)−F (z))h−1 =
1
h

∫
γz,z+h

f (w)dw =
1
h

∫ 1

0
f (z+ th)hdt

and so, taking the limit as h→ 0, F ′ (z) = f (z) .

51.7.5 An Example Of A Cycle

The next theorem deals with the existence of a cycle with nice properties. Basically, you go
around the compact subset of an open set with suitable contours while staying in the open
set. The method involves the following simple concept.

Definition 51.7.24 A tiling ofR2 =C is the union of infinitely many equally spaced vertical
and horizontal lines. You can think of the small squares which result as tiles. To tile the
plane or R2 = C means to consider such a union of horizontal and vertical lines. It is like
graph paper. See the picture below for a representation of part of a tiling of C.

Theorem 51.7.25 Let K be a compact subset of an open set, Ω. Then there exist continu-
ous, closed, bounded variation oriented curves

{
Γ j
}m

j=1 for which Γ∗j ∩K = /0 for each j,
Γ∗j ⊆Ω, and for all p ∈ K,∑m

k=1 n(Γk, p) = 1while for all z /∈ Ω,∑m
k=1 n(Γk,z) = 0.

Proof: Let δ = dist
(
K,ΩC

)
. Since K is compact, δ > 0. Now tile the plane with

squares, each of which has diameter less than δ/2.
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K

K

Ω

Let S denote the set of all the closed squares in this tiling which have nonempty inter-
section with K.Thus, all the squares of S are contained in Ω. First suppose p is a point of
K which is in the interior of one of these squares in the tiling. Denote by ∂Sk the boundary
of Sk one of the squares in S, oriented in the counter clockwise direction and Sm denote the
square of S which contains the point, p in its interior. Let the edges of the square, S j be{

γ
j
k

}4

k=1
. Thus a short computation shows n(∂Sm, p) = 1 but n(∂S j, p) = 0 for all j ̸= m.

The reason for this is that for z in S j, the values
{

z− p : z ∈ S j
}

lie in an open square, Q
which is located at a positive distance from 0. Then Ĉ \Q is connected and 1/(z− p) is
analytic on Q. It follows from Corollary 51.7.23 that this function has a primitive on Q and
so ∫

∂S j

1
z− p

dz = 0.

Similarly, if z /∈ Ω,n(∂S j,z) = 0. On the other hand, a direct computation will verify that

n(p,∂Sm) = 1. Thus 1=∑ j,k n
(

p,γ j
k

)
=∑S j∈S n(p,∂S j) and if z /∈Ω, 0=∑ j,k n

(
z,γ j

k

)
=

∑S j∈S n(z,∂S j) .

If γ
j∗
k coincides with γ l∗

l , then the contour integrals taken over this edge are taken in
opposite directions and so the edge the two squares have in common can be deleted without
changing ∑ j,k n

(
z,γ j

k

)
for any z not on any of the lines in the tiling. For example, see the

picture,

From the construction, if any of the γ
j∗
k contains a point of K then this point is on one
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of the four edges of S j and at this point, there is at least one edge of some Sl which also
contains this point. As just discussed, this shared edge can be deleted without changing

∑k, j n
(

z,γ j
k

)
. Delete the edges of the Sk which intersect K but not the endpoints of these

edges. That is, delete the open edges. When this is done, delete all isolated points. Let the
resulting oriented curves be denoted by {γk}

m
k=1 . Note that you might have γ∗k = γ∗l . The

construction is illustrated in the following picture.

K1

K2

Ω

Then as explained above, ∑
m
k=1 n(p,γk) = 1. It remains to prove the claim about the

closed curves.
Each orientation on an edge corresponds to a direction of motion over that edge. Call

such a motion over the edge a route. Initially, every vertex, (corner of a square in S) has
the property there are the same number of routes to and from that vertex. When an open
edge whose closure contains a point of K is deleted, every vertex either remains unchanged
as to the number of routes to and from that vertex or it loses both a route away and a route
to. Thus the property of having the same number of routes to and from each vertex is
preserved by deleting these open edges. The isolated points which result lose all routes
to and from. It follows that upon removing the isolated points you can begin at any of
the remaining vertices and follow the routes leading out from this and successive vertices
according to orientation and eventually return to that end. Otherwise, there would be a
vertex which would have only one route leading to it which does not happen. Now if you
have used all the routes out of this vertex, pick another vertex and do the same process.
Otherwise, pick an unused route out of the vertex and follow it to return. Continue this
way till all routes are used exactly once, resulting in closed oriented curves, Γk. Then

∑k n(Γk, p) = ∑ j n
(

γ j, p
)
= 1.

In case p ∈ K is on some line of the tiling, it is not on any of the Γk because Γ∗k ∩K = /0
and so the continuity of z→ n(Γk,z) yields the desired result in this case also. This proves
the lemma.
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51.8 Exercises
1. If U is simply connected, f is analytic on U and f has no zeros in U, show there

exists an analytic function, F, defined on U such that eF = f .

2. Let f be defined and analytic near the point a ∈ C. Show that then

f (z) =
∞

∑
k=0

bk (z−a)k

whenever |z−a|< R where R is the distance between a and the nearest point where
f fails to have a derivative. The number R, is called the radius of convergence and
the power series is said to be expanded about a.

3. Find the radius of convergence of the function 1
1+z2 expanded about a = 2. Note

there is nothing wrong with the function, 1
1+x2 when considered as a function of a

real variable, x for any value of x. However, if you insist on using power series, you
find there is a limitation on the values of x for which the power series converges due
to the presence in the complex plane of a point, i, where the function fails to have a
derivative.

4. Suppose f is analytic on all of C and satisfies | f (z)| < A+B |z|1/2 . Show f is con-
stant.

5. What if you defined an open set, U to be simply connected if C \U is connected.
Would it amount to the same thing? Hint: Consider the outside of B(0,1) .

6. Let γ (t) = eit : t ∈ [0,2π] . Find
∫

γ
1
zn dz for n = 1,2, · · · .

7. Show i
∫ 2π

0 (2cosθ)2n dθ =
∫

γ

(
z+ 1

z

)2n ( 1
z

)
dz where γ (t) = eit : t ∈ [0,2π] . Then

evaluate this integral using the binomial theorem and the previous problem.

8. Suppose that for some constants a,b ̸= 0, a,b∈R, f (z+ ib) = f (z) for all z∈C and
f (z+a) = f (z) for all z∈C. If f is analytic, show that f must be constant. Can you
generalize this? Hint: This uses Liouville’s theorem.

9. Suppose f (z) = u(x,y) + iv(x,y) is analytic for z ∈ U, an open set. Let g(z) =
u∗ (x,y)+ iv∗ (x,y) where (

u∗

v∗

)
= Q

(
u
v

)
where Q is a unitary matrix. That is QQ∗ = Q∗Q = I. When will g be analytic?

10. Suppose f is analytic on an open set, U, except for γ∗ ⊂U where γ is a one to one
continuous function having bounded variation, but it is known that f is continuous on
γ∗. Show that in fact f is analytic on γ∗ also. Hint: Pick a point on γ∗, say γ (t0) and
suppose for now that t0 ∈ (a,b) . Pick r > 0 such that B=B(γ (t0) ,r)⊆U. Then show
there exists t1 < t0 and t2 > t0 such that γ ([t1, t2])⊆ B and γ (ti) /∈ B. Thus γ ([t1, t2]) is
a path across B going through the center of B which divides B into two open sets, B1,
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and B2 along with γ∗. Let the boundary of Bk consist of γ ([t1, t2]) and a circular arc,
Ck. Now letting z ∈ Bk, the line integral of f (w)

w−z over γ∗ in two different directions

cancels. Therefore, if z∈ Bk, you can argue that f (z) = 1
2πi
∫

C
f (w)
w−z dw. By continuity,

this continues to hold for z ∈ γ ((t1, t2)) . Therefore, f must be analytic on γ ((t1, t1))
also. This shows that f must be analytic on γ ((a,b)) . To get the endpoints, simply
extend γ to have the same properties but defined on [a− ε,b+ ε] and repeat the above
argument or else do this at the beginning and note that you get [a,b]⊆ (a− ε,b+ ε) .

11. Let U be an open set contained in the upper half plane and suppose that there are
finitely many line segments on the x axis which are contained in the boundary of U.
Now suppose that f is defined, real, and continuous on these line segments and is
defined and analytic on U. Now let Ũ denote the reflection of U across the x axis.
Show that it is possible to extend f to a function, g defined on all of

W ≡ Ũ ∪U ∪{the line segments mentioned earlier}

such that g is analytic in W . Hint: For z ∈ Ũ , the reflection of U across the x
axis, let g(z) ≡ f (z). Show that g is analytic on Ũ ∪U and continuous on the line
segments. Then use Problem 10 or Morera’s theorem to argue that g is analytic on
the line segments also. The result of this problem is know as the Schwarz reflection
principle.

12. Show that rotations and translations of analytic functions yield analytic functions
and use this observation to generalize the Schwarz reflection principle to situations
in which the line segments are part of a line which is not the x axis. Thus, give a
version which involves reflection about an arbitrary line.



Chapter 52

The Open Mapping Theorem
52.1 A Local Representation

The open mapping theorem, is an even more surprising result than the theorem about the
zeros of an analytic function. The following proof of this important theorem uses an inter-
esting local representation of the analytic function.

Theorem 52.1.1 (Open mapping theorem) Let Ω be a region in C and suppose f : Ω→ C
is analytic. Then f (Ω) is either a point or a region. In the case where f (Ω) is a region, it
follows that for each z0 ∈Ω, there exists an open set, V containing z0 and m ∈ N such that
for all z ∈V,

f (z) = f (z0)+φ (z)m (52.1.1)

where φ : V → B(0,δ ) is one to one, analytic and onto, φ (z0) = 0, φ
′ (z) ̸= 0 on V and

φ
−1 analytic on B(0,δ ) . If f is one to one then m = 1 for each z0 and f−1 : f (Ω)→Ω is

analytic.

Proof: Suppose f (Ω) is not a point. Then if z0 ∈ Ω it follows there exists r > 0 such
that f (z) ̸= f (z0) for all z ∈ B(z0,r)\{z0} . Otherwise, z0 would be a limit point of the set,

{z ∈Ω : f (z)− f (z0) = 0}

which would imply from Theorem 51.5.3 that f (z) = f (z0) for all z ∈Ω. Therefore, mak-
ing r smaller if necessary and using the power series of f ,

f (z) = f (z0)+(z− z0)
m g(z) ( ?

=
(
(z− z0)g(z)1/m

)m
)

for all z ∈ B(z0,r) , where g(z) ̸= 0 on B(z0,r) . As implied in the above formula, one
wonders if you can take the mth root of g(z) .

g′
g is an analytic function on B(z0,r) and so by Corollary 51.7.5 it has a primitive on

B(z0,r) , h. Therefore by the product rule and the chain rule,
(
ge−h

)′
= 0 and so there exists

a constant, C = ea+ib such that on B(z0,r) ,

ge−h = ea+ib.

Therefore,
g(z) = eh(z)+a+ib

and so, modifying h by adding in the constant, a+ ib, g(z) = eh(z) where h′ (z) = g′(z)
g(z) on

B(z0,r) . Letting

φ (z) = (z− z0)e
h(z)
m

implies formula 52.1.1 is valid on B(z0,r) . Now

φ
′ (z0) = e

h(z0)
m ̸= 0.

1649
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Shrinking r if necessary you can assume φ
′ (z) ̸= 0 on B(z0,r). Is there an open set V

contained in B(z0,r) such that φ maps V onto B(0,δ ) for some δ > 0?
Let φ (z) = u(x,y)+ iv(x,y) where z = x+ iy. Consider the mapping(

x
y

)
→
(

u(x,y)
v(x,y)

)
where u,v are C1 because φ is given to be analytic. The Jacobian of this map at (x,y) ∈
B(z0,r) is ∣∣∣∣ ux (x,y) uy (x,y)

vx (x,y) vy (x,y)

∣∣∣∣= ∣∣∣∣ ux (x,y) −vx (x,y)
vx (x,y) ux (x,y)

∣∣∣∣
= ux (x,y)

2 + vx (x,y)
2 =

∣∣φ ′ (z)∣∣2 ̸= 0.

This follows from a use of the Cauchy Riemann equations. Also(
u(x0,y0)
v(x0,y0)

)
=

(
0
0

)
Therefore, by the inverse function theorem there exists an open set, V, containing z0 and
δ > 0 such that (u,v)T maps V one to one onto B(0,δ ) . Thus φ is one to one onto B(0,δ )
as claimed. Applying the same argument to other points, z of V and using the fact that
φ
′ (z) ̸= 0 at these points, it follows φ maps open sets to open sets. In other words, φ

−1 is
continuous.

It also follows that φ
m maps V onto B(0,δ m) . Therefore, the formula 52.1.1 implies

that f maps the open set, V, containing z0 to an open set. This shows f (Ω) is an open
set because z0 was arbitrary. It is connected because f is continuous and Ω is connected.
Thus f (Ω) is a region. It remains to verify that φ

−1 is analytic on B(0,δ ) . Since φ
−1 is

continuous,

lim
φ(z1)→φ(z)

φ
−1 (φ (z1))−φ

−1 (φ (z))
φ (z1)−φ (z)

= lim
z1→z

z1− z
φ (z1)−φ (z)

=
1

φ
′ (z)

.

Therefore, φ
−1 is analytic as claimed.

It only remains to verify the assertion about the case where f is one to one. If m > 1,
then e

2πi
m ̸= 1 and so for z1 ∈V,

e
2πi
m φ (z1) ̸= φ (z1) . (52.1.2)

But e
2πi
m φ (z1)∈ B(0,δ ) and so there exists z2 ̸= z1(since φ is one to one) such that φ (z2) =

e
2πi
m φ (z1) . But then

φ (z2)
m =

(
e

2πi
m φ (z1)

)m
= φ (z1)

m

implying f (z2) = f (z1) contradicting the assumption that f is one to one. Thus m = 1
and f ′ (z) = φ

′ (z) ̸= 0 on V. Since f maps open sets to open sets, it follows that f−1 is
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continuous and so(
f−1)′ ( f (z)) = lim

f (z1)→ f (z)

f−1 ( f (z1))− f−1 ( f (z))
f (z1)− f (z)

= lim
z1→z

z1− z
f (z1)− f (z)

=
1

f ′ (z)
.

This proves the theorem.
One does not have to look very far to find that this sort of thing does not hold for

functions mapping R to R. Take for example, the function f (x) = x2. Then f (R) is neither
a point nor a region. In fact f (R) fails to be open.

Corollary 52.1.2 Suppose in the situation of Theorem 52.1.1 m > 1 for the local represen-
tation of f given in this theorem. Then there exists δ > 0 such that if w ∈ B( f (z0) ,δ ) =
f (V ) for V an open set containing z0, then f−1 (w) consists of m distinct points in V. ( f is
m to one on V )

Proof: Let w ∈ B( f (z0) ,δ ) . Then w = f (ẑ) where ẑ ∈V. Thus f (ẑ) = f (z0)+φ (ẑ)m .

Consider the m distinct numbers,
{

e
2kπi

m φ (ẑ)
}m

k=1
. Then each of these numbers is in B(0,δ )

and so since φ maps V one to one onto B(0,δ ) , there are m distinct numbers in V , {zk}m
k=1

such that φ (zk) = e
2kπi

m φ (ẑ). Then

f (zk) = f (z0)+φ (zk)
m = f (z0)+

(
e

2kπi
m φ (ẑ)

)m

= f (z0)+ e2kπi
φ (ẑ)m = f (z0)+φ (ẑ)m = f (ẑ) = w

This proves the corollary.

52.2 Branches Of The Logarithm
The argument used in to prove the next theorem was used in the proof of the open mapping
theorem. It is a very important result and deserves to be stated as a theorem.

Theorem 52.2.1 Let Ω be a simply connected region and suppose f : Ω→ C is analytic
and nonzero on Ω. Then there exists an analytic function, g such that eg(z) = f (z) for all
z ∈Ω.

Proof: The function, f ′/ f is analytic on Ω and so by Corollary 51.7.23 there is a
primitive for f ′/ f , denoted as g1. Then

(
e−g1 f

)′
=− f ′

f
e−g1 f + e−g1 f ′ = 0

and so since Ω is connected, it follows e−g1 f equals a constant, ea+ib. Therefore, f (z) =
eg1(z)+a+ib. Define g(z)≡ g1 (z)+a+ ib.

The function, g in the above theorem is called a branch of the logarithm of f and is
written as log( f (z)).
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Definition 52.2.2 Let ρ be a ray starting at 0. Thus ρ is a straight line of infinite length
extending in one direction with its initial point at 0.

A special case of the above theorem is the following.

Theorem 52.2.3 Let ρ be a ray starting at 0. Then there exists an analytic function, L(z)
defined on C\ρ such that

eL(z) = z.

This function, L is called a branch of the logarithm. This branch of the logarithm satisfies
the usual formula for logarithms, L(zw) = L(z)+L(w) provided zw /∈ ρ .

Proof: C\ρ is a simply connected region because its complement with respect to Ĉ
is connected. Furthermore, the function, f (z) = z is not equal to zero on C\ρ . Therefore,
by Theorem 52.2.1 there exists an analytic function L(z) such that eL(z) = f (z) = z. Now
consider the problem of finding a description of L(z). Each z ∈ C\ρ can be written in a
unique way in the form

z = |z|eiargθ (z)

where argθ (z) is the angle in (θ ,θ +2π) associated with z. (You could of course have
considered this to be the angle in (θ −2π,θ) associated with z or in infinitely many other
open intervals of length 2π. The description of the log is not unique.) Then letting L(z) =
a+ ib

z = |z|eiargθ (z) = eL(z) = eaeib

and so you can let L(z) = ln |z|+ iargθ (z) .
Does L(z) satisfy the usual properties of the logarithm? That is, for z,w ∈ C \ ρ, is

L(zw) = L(z)+L(w)? This follows from the usual rules of exponents. You know ez+w =
ezew. (You can verify this directly or you can reduce to the case where z,w are real. If z is a
fixed real number, then the equation holds for all real w. Therefore, it must also hold for all
complex w because the real line contains a limit point. Now for this fixed w, the equation
holds for all z real. Therefore, by similar reasoning, it holds for all complex z.)

Now suppose z,w ∈ C\ρ and zw /∈ ρ. Then

eL(zw) = zw, eL(z)+L(w) = eL(z)eL(w) = zw

and so L(zw) = L(z)+L(w) as claimed. This proves the theorem.
In the case where the ray is the negative real axis, it is called the principal branch of the

logarithm. Thus arg(z) is a number between −π and π .

Definition 52.2.4 Let log denote the branch of the logarithm which corresponds to the ray
for θ = π. That is, the ray is the negative real axis. Sometimes this is called the principal
branch of the logarithm.
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52.3 Maximum Modulus Theorem
Here is another very significant theorem known as the maximum modulus theorem which
follows immediately from the open mapping theorem.

Theorem 52.3.1 (maximum modulus theorem) Let Ω be a bounded region and let f : Ω→
C be analytic and f : Ω→ C continuous. Then if z ∈Ω,

| f (z)| ≤max{| f (w)| : w ∈ ∂Ω} . (52.3.3)

If equality is achieved for any z ∈Ω, then f is a constant.

Proof: Suppose f is not a constant. Then f (Ω) is a region and so if z ∈Ω, there exists
r > 0 such that B( f (z) ,r) ⊆ f (Ω) . It follows there exists z1 ∈ Ω with | f (z1)| > | f (z)| .
Hence max

{
| f (w)| : w ∈Ω

}
is not achieved at any interior point of Ω. Therefore, the point

at which the maximum is achieved must lie on the boundary of Ω and so

max{| f (w)| : w ∈ ∂Ω}= max
{
| f (w)| : w ∈Ω

}
> | f (z)|

for all z ∈Ω or else f is a constant. This proves the theorem.
You can remove the assumption that Ω is bounded and give a slightly different version.

Theorem 52.3.2 Let f : Ω→C be analytic on a region, Ω and suppose B(a,r)⊆Ω. Then

| f (a)| ≤max
{∣∣∣ f (a+ reiθ

)∣∣∣ : θ ∈ [0,2π]
}
.

Equality occurs for some r > 0 and a ∈ Ω if and only if f is constant in Ω hence equality
occurs for all such a,r.

Proof: The claimed inequality holds by Theorem 52.3.1. Suppose equality in the above
is achieved for some B(a,r) ⊆ Ω. Then by Theorem 52.3.1 f is equal to a constant, w on
B(a,r) . Therefore, the function, f (·)−w has a zero set which has a limit point in Ω and
so by Theorem 51.5.3 f (z) = w for all z ∈Ω.

Conversely, if f is constant, then the equality in the above inequality is achieved for all
B(a,r)⊆Ω.

Next is yet another version of the maximum modulus principle which is in Conway
[32]. Let Ω be an open set.

Definition 52.3.3 Define ∂∞Ω to equal ∂Ω in the case where Ω is bounded and ∂Ω∪{∞}
in the case where Ω is not bounded.

Definition 52.3.4 Let f be a complex valued function defined on a set S ⊆ C and let a be
a limit point of S.

limsup
z→a
| f (z)| ≡ lim

r→0

{
sup | f (w)| : w ∈ B′ (a,r)∩S

}
.

The limit exists because {sup | f (w)| : w ∈ B′ (a,r)∩S} is decreasing in r. In case a = ∞,

lim sup
z→∞

| f (z)| ≡ lim
r→∞
{sup | f (w)| : |w|> r,w ∈ S}
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Note that if limsupz→a | f (z)| ≤ M and δ > 0, then there exists r > 0 such that if z ∈
B′ (a,r)∩S, then | f (z)|< M+δ . If a = ∞, there exists r > 0 such that if |z|> r and z ∈ S,
then | f (z)|< M+δ .

Theorem 52.3.5 Let Ω be an open set in C and let f : Ω→ C be analytic. Suppose also
that for every a ∈ ∂∞Ω,

limsup
z→a
| f (z)| ≤M < ∞.

Then in fact | f (z)| ≤M for all z ∈Ω.

Proof: Let δ > 0 and let H ≡ {z ∈Ω : | f (z)|> M+δ} . Suppose H ̸= /0. Then H is
an open subset of Ω. I claim that H is actually bounded. If Ω is bounded, there is nothing
to show so assume Ω is unbounded. Then the condition involving the limsup implies
there exists r > 0 such that if |z| > r and z ∈ Ω, then | f (z)| ≤ M + δ/2. It follows H is
contained in B(0,r) and so it is bounded. Now consider the components of Ω. One of
these components contains points from H. Let this component be denoted as V and let
HV ≡ H ∩V. Thus HV is a bounded open subset of V. Let U be a component of HV . First
suppose U ⊆ V . In this case, it follows that on ∂U, | f (z)| = M + δ and so by Theorem
52.3.1 | f (z)| ≤ M + δ for all z ∈ U contradicting the definition of H. Next suppose ∂U
contains a point of ∂V,a. Then in this case, a violates the condition on limsup . Either way
you get a contradiction. Hence H = /0 as claimed. Since δ > 0 is arbitrary, this shows
| f (z)| ≤M.

52.4 Extensions Of Maximum Modulus Theorem
52.4.1 Phragmên Lindelöf Theorem
This theorem is an extension of Theorem 52.3.5. It uses a growth condition near the ex-
tended boundary to conclude that f is bounded. I will present the version found in Conway
[32]. It seems to be more of a method than an actual theorem. There are several versions
of it.

Theorem 52.4.1 Let Ω be a simply connected region in C and suppose f is analytic on
Ω. Also suppose there exists a function, φ which is nonzero and uniformly bounded on
Ω. Let M be a positive number. Now suppose ∂∞Ω = A∪B such that for every a ∈ A,
limsupz→a | f (z)| ≤M and for every b∈ B, and η > 0, limsupz→b | f (z)| |φ (z)|η ≤M. Then
| f (z)| ≤M for all z ∈Ω.

Proof: By Theorem 52.2.1 there exists log(φ (z)) analytic on Ω. Now define g(z) ≡
exp(η log(φ (z))) so that g(z) = φ (z)η . Now also

|g(z)|= |exp(η log(φ (z)))|= |exp(η ln |φ (z)|)|= |φ (z)|η .

Let m ≥ |φ (z)| for all z ∈ Ω. Define F (z) ≡ f (z)g(z)m−η . Thus F is analytic and for
b ∈ B,

limsup
z→b
|F (z)|= limsup

z→b
| f (z)| |φ (z)|η m−η ≤Mm−η
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while for a ∈ A,
limsup

z→a
|F (z)| ≤M.

Therefore, for α ∈ ∂∞Ω, limsupz→α |F (z)| ≤ max(M,Mη−η) and so by Theorem 52.3.5,

| f (z)| ≤
(

mη

|φ(z)|η
)

max(M,Mη−η) . Now let η → 0 to obtain | f (z)| ≤M.

In applications, it is often the case that B = {∞}.
Now here is an interesting case of this theorem. It involves a particular form for Ω, in

this case Ω =
{

z ∈ C : |arg(z)|< π

2a

}
where a≥ 1

2 .

Ω

Then ∂Ω equals the two slanted lines. Also on Ω you can define a logarithm, log(z) =
ln |z|+ iarg(z) where arg(z) is the angle associated with z between −π and π. Therefore,
if c is a real number you can define zc for such z in the usual way:

zc ≡ exp(c log(z)) = exp(c [ln |z|+ iarg(z)])
= |z|c exp(icarg(z)) = |z|c (cos(carg(z))+ isin(carg(z))) .

If |c|< a, then |carg(z)|< π

2 and so cos(carg(z))> 0. Therefore, for such c,

|exp(−(zc))| = |exp(−|z|c (cos(carg(z))+ isin(carg(z))))|
= |exp(−|z|c (cos(carg(z))))|

which is bounded since cos(carg(z))> 0.

Corollary 52.4.2 Let Ω =
{

z ∈ C : |arg(z)|< π

2a

}
where a≥ 1

2 and suppose f is analytic
on Ω and satisfies limsupz→a | f (z)| ≤M on ∂Ω and suppose there are positive constants,
P,b where b < a and

| f (z)| ≤ Pexp
(
|z|b
)

for all |z| large enough. Then | f (z)| ≤M for all z ∈Ω.

Proof: Let b < c < a and let φ (z) ≡ exp(−(zc)) . Then as discussed above, φ (z) ̸= 0
on Ω and |φ (z)| is bounded on Ω. Now

|φ (z)|η = |exp(−|z|c η (cos(carg(z))))|

lim sup
z→∞

| f (z)| |φ (z)|η ≤ lim sup
z→∞

Pexp
(
|z|b
)

|exp(|z|c η (cos(carg(z))))|
= 0≤M
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and so by Theorem 52.4.1 | f (z)| ≤M.

The following is another interesting case. This case is presented in Rudin [113]

Corollary 52.4.3 Let Ω be the open set consisting of {z ∈ C : a < Rez < b} and suppose
f is analytic on Ω , continuous on Ω, and bounded on Ω. Suppose also that f (z) ≤ 1 on
the two lines Rez = a and Rez = b. Then | f (z)| ≤ 1 for all z ∈Ω.

Proof: This time let φ (z)= 1
1+z−a . Thus |φ (z)| ≤ 1 because Re(z−a)> 0 and φ (z) ̸= 0

for all z ∈ Ω. Also, limsupz→∞ |φ (z)|η = 0 for every η > 0. Therefore, if a is a point of
the sides of Ω, limsupz→a | f (z)| ≤ 1 while limsupz→∞ | f (z)| |φ (z)|η = 0 ≤ 1 and so by
Theorem 52.4.1, | f (z)| ≤ 1 on Ω.

This corollary yields an interesting conclusion.

Corollary 52.4.4 Let Ω be the open set consisting of {z ∈ C : a < Rez < b} and suppose
f is analytic on Ω , continuous on Ω, and bounded on Ω. Define

M (x)≡ sup{| f (z)| : Rez = x}

Then for x ∈ (a,b).

M (x)≤M (a)
b−x
b−a M (b)

x−a
b−a .

Proof: Let ε > 0 and define

g(z)≡ (M (a)+ ε)
b−z
b−a (M (b)+ ε)

z−a
b−a

where for M > 0 and z ∈ C, Mz ≡ exp(z ln(M)) . Thus g ̸= 0 and so f/g is analytic on Ω

and continuous on Ω. Also on the left side,∣∣∣∣ f (a+ iy)
g(a+ iy)

∣∣∣∣=
∣∣∣∣∣ f (a+ iy)

(M (a)+ ε)
b−a−iy

b−a

∣∣∣∣∣=
∣∣∣∣∣ f (a+ iy)

(M (a)+ ε)
b−a
b−a

∣∣∣∣∣≤ 1

while on the right side a similar computation shows
∣∣∣ f

g

∣∣∣≤ 1 also. Therefore, by Corollary
52.4.3 | f/g| ≤ 1 on Ω. Therefore, letting x+ iy = z,

| f (z)| ≤
∣∣∣(M (a)+ ε)

b−z
b−a (M (b)+ ε)

z−a
b−a

∣∣∣= ∣∣∣(M (a)+ ε)
b−x
b−a (M (b)+ ε)

x−a
b−a

∣∣∣
and so

M (x)≤ (M (a)+ ε)
b−x
b−a (M (b)+ ε)

x−a
b−a .

Since ε > 0 is arbitrary, it yields the conclusion of the corollary.
Another way of saying this is that x→ ln(M (x)) is a convex function.
This corollary has an interesting application known as the Hadamard three circles the-

orem.
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52.4.2 Hadamard Three Circles Theorem
Let 0 < R1 < R2 and suppose f is analytic on {z ∈ C : R1 < |z|< R2} . Then letting R1 <
a < b < R2, note that g(z)≡ exp(z) satisfies

g : {z ∈ C : lna < Rez < b}→ {z ∈ C : a < |z|< b}

is onto and that in fact, g maps the line lnr+ iy onto the circle reiθ . Now let M (x) be defined
as above and m be defined by m(r)≡maxθ

∣∣ f (reiθ
)∣∣ .Then for a < r < b, Corollary 52.4.4

implies

m(r) = sup
y

∣∣∣ f (elnr+iy
)∣∣∣= M (lnr)≤M (lna)

lnb−lnr
lnb−lna M (lnb)

lnr−lna
lnb−lna

= m(a)ln(b/r)/ ln(b/a) m(b)ln(r/a)/ ln(b/a)

and so m(r)ln(b/a) ≤ m(a)ln(b/r) m(b)ln(r/a) . Taking logarithms, this yields

ln
(

b
a

)
ln(m(r))≤ ln

(
b
r

)
ln(m(a))+ ln

( r
a

)
ln(m(b))

which says the same as r→ ln(m(r)) is a convex function of lnr.
The next example, also in Rudin [113] is very dramatic. An unbelievably weak as-

sumption is made on the growth of the function and still you get a uniform bound in the
conclusion.

Corollary 52.4.5 Let Ω =
{

z ∈ C : |Im(z)|< π

2

}
. Suppose f is analytic on Ω, continuous

on Ω, and there exist constants, α < 1 and A < ∞ such that

| f (z)| ≤ exp(Aexp(α |x|)) for z = x+ iy

and ∣∣∣ f (x± i
π

2

)∣∣∣≤ 1

for all x ∈ R. Then | f (z)| ≤ 1 on Ω.

Proof: This time let φ (z) = [exp(Aexp(β z))exp(Aexp(−β z))]−1 where α < β < 1.
Then φ (z) ̸= 0 on Ω and for η > 0

|φ (z)|η =
1

|exp(ηAexp(β z))exp(ηAexp(−β z))|
Now

exp(ηAexp(β z))exp(ηAexp(−β z))

= exp(ηA(exp(β z)+ exp(−β z)))

= exp
[
ηA
(

cos(βy)
(

eβx + e−βx
)
+ isin(βy)

(
eβx− e−βx

))]
and so

|φ (z)|η =
1

exp
[
ηA
(
cos(βy)

(
eβx + e−βx

))]
Now cosβy > 0 because β < 1 and |y|< π

2 . Therefore, limsupz→∞ | f (z)| |φ (z)|η ≤ 0 ≤ 1
and so by Theorem 52.4.1, | f (z)| ≤ 1.
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52.4.3 Schwarz’s Lemma
This interesting lemma comes from the maximum modulus theorem. It will be used later
as part of the proof of the Riemann mapping theorem.

Lemma 52.4.6 Suppose F : B(0,1)→ B(0,1) , F is analytic, and F (0) = 0. Then for all
z ∈ B(0,1) ,

|F (z)| ≤ |z| , (52.4.4)

and ∣∣F ′ (0)∣∣≤ 1. (52.4.5)

If equality holds in 52.4.5 then there exists λ ∈ C with |λ |= 1 and

F (z) = λ z. (52.4.6)

Proof: First note that by assumption, F (z)/z has a removable singularity at 0 if its
value at 0 is defined to be F ′ (0) . By the maximum modulus theorem, if |z|< r < 1,∣∣∣∣F (z)

z

∣∣∣∣≤ max
t∈[0,2π]

∣∣F (reit
)∣∣

r
≤ 1

r
.

Then letting r→ 1, ∣∣∣∣F (z)
z

∣∣∣∣≤ 1

this shows 52.4.4 and it also verifies 52.4.5 on taking the limit as z→ 0. If equality holds in
52.4.5, then |F (z)/z| achieves a maximum at an interior point so F (z)/z equals a constant,
λ by the maximum modulus theorem. Since F (z) = λ z, it follows F ′ (0) = λ and so
|λ |= 1.

Rudin [113] gives a memorable description of what this lemma says. It says that if an
analytic function maps the unit ball to itself, keeping 0 fixed, then it must do one of two
things, either be a rotation or move all points closer to 0. (This second part follows in case
|F ′ (0)|< 1 because in this case, you must have |F (z)| ̸= |z| and so by 52.4.4, |F (z)|< |z|)

52.4.4 One To One Analytic Maps On The Unit Ball
The transformation in the next lemma is of fundamental importance.

Lemma 52.4.7 Let α ∈ B(0,1) and define

φ α (z)≡ z−α

1−αz
.

Then φ α : B(0,1)→ B(0,1) , φ α : ∂B(0,1)→ ∂B(0,1) , and is one to one and onto. Also
φ−α = φ

−1
α . Also

φ
′
α (0) = 1−|α|2 , φ

′ (α) =
1

1−|α|2
.
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Proof: First of all, for |z|< 1/ |α| ,

φ α ◦φ−α (z)≡
( z+α

1+αz

)
−α

1−α
( z+α

1+αz

) = z

after a few computations. If I show that φ α maps B(0,1) to B(0,1) for all |α|< 1, this will
have shown that φ α is one to one and onto B(0,1).

Consider
∣∣φ α

(
eiθ
)∣∣ . This yields∣∣∣∣ eiθ −α

1−αeiθ

∣∣∣∣= ∣∣∣∣1−αe−iθ

1−αeiθ

∣∣∣∣= 1

where the first equality is obtained by multiplying by
∣∣e−iθ

∣∣ = 1. Therefore, φ α maps
∂B(0,1) one to one and onto ∂B(0,1) . Now notice that φ α is analytic on B(0,1) because
the only singularity, a pole is at z = 1/α . By the maximum modulus theorem, it follows

|φ α (z)|< 1

whenever |z|< 1. The same is true of φ−α .
It only remains to verify the assertions about the derivatives. Long division gives

φ α (z) = (−α)−1 +
(
−α+(α)−1

1−αz

)
and so

φ
′
α (z) = (−1)(1−αz)−2

(
−α +(α)−1

)
(−α)

= α (1−αz)−2
(
−α +(α)−1

)
= (1−αz)−2

(
−|α|2 +1

)
Hence the two formulas follow. This proves the lemma.

One reason these mappings are so important is the following theorem.

Theorem 52.4.8 Suppose f is an analytic function defined on B(0,1) and f maps B(0,1)
one to one and onto B(0,1) . Then there exists θ such that

f (z) = eiθ
φ α (z)

for some α ∈ B(0,1) .

Proof: Let f (α)= 0. Then h(z)≡ f ◦φ−α (z) maps B(0,1) one to one and onto B(0,1)
and has the property that h(0) = 0. Therefore, by the Schwarz lemma,

|h(z)| ≤ |z| .

but it is also the case that h−1 (0) = 0 and h−1 maps B(0,1) to B(0,1). Therefore, the same
inequality holds for h−1. Therefore,

|z|=
∣∣h−1 (h(z))

∣∣≤ |h(z)|
and so |h(z)| = |z| . By the Schwarz lemma again, h(z) ≡ f

(
φ−α (z)

)
= eiθ z. Letting z =

φ α , you get f (z) = eiθ φ α (z).
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52.5 Exercises
1. Consider the function, g(z) = z−i

z+i . Show this is analytic on the upper half plane, P+
and maps the upper half plane one to one and onto B(0,1). Hint: First show g maps
the real axis to ∂B(0,1) . This is really easy because you end up looking at a complex
number divided by its conjugate. Thus |g(z)| = 1 for z on ∂ (P+) . Now show that
limsupz→∞ |g(z)|= 1. Then apply a version of the maximum modulus theorem. You
might note that g(z) = 1+ −2i

z+i . This will show |g(z)| ≤ 1. Next pick w∈ B(0,1) and
solve g(z) =w. You just have to show there exists a unique solution and its imaginary
part is positive.

2. Does there exist an entire function f which maps C onto the upper half plane?

3. Letting g be the function of Problem 1 show that
(
g−1
)′
(0) = 2. Also note that

g−1 (0) = i. Now suppose f is an analytic function defined on the upper half plane
which has the property that | f (z)| ≤ 1 and f (i) = β where |β | < 1. Find an up-
per bound to | f ′ (i)| . Also find all functions, f which satisfy the condition, f (i) =
β , | f (z)| ≤ 1, and achieve this maximum value. Hint: You could consider the func-
tion, h(z)≡ φ β ◦ f ◦g−1 (z) and check the conditions for the Schwarz lemma for this
function, h.

4. This and the next two problems follow a presentation of an interesting topic in Rudin
[113]. Let φ α be given in Lemma 52.4.7. Suppose f is an analytic function defined
on B(0,1) which satisfies | f (z)| ≤ 1. Suppose also there are α,β ∈ B(0,1) and it is

required f (α) = β . If f is such a function, show that | f ′ (α)| ≤ 1−|β |2

1−|α|2
. Hint: To

show this consider g = φ β ◦ f ◦φ−α . Show g(0) = 0 and |g(z)| ≤ 1 on B(0,1) . Now
use Lemma 52.4.6.

5. In Problem 4 show there exists a function, f analytic on B(0,1) such that f (α) =

β , | f (z)| ≤ 0, and | f ′ (α)| = 1−|β |2

1−|α|2
. Hint: You do this by choosing g in the above

problem such that equality holds in Lemma 52.4.6. Thus you need g(z) = λ z where
|λ |= 1 and solve g = φ β ◦ f ◦φ−α for f .

6. Suppose that f : B(0,1)→ B(0,1) and that f is analytic, one to one, and onto with
f (α) = 0. Show there exists λ , |λ | = 1 such that f (z) = λφ α (z) . This gives a dif-
ferent way to look at Theorem 52.4.8. Hint: Let g = f−1. Then g′ (0) f ′ (α) = 1.
However, f (α) = 0 and g(0) = α. From Problem 4 with β = 0, you can conclude
an inequality for | f ′ (α)| and another one for |g′ (0)| . Then use the fact that the prod-
uct of these two equals 1 which comes from the chain rule to conclude that equality
must take place. Now use Problem 5 to obtain the form of f .

7. In Corollary 52.4.5 show that it is essential that α < 1. That is, show there exists an
example where the conclusion is not satisfied with a slightly weaker growth condi-
tion. Hint: Consider exp(exp(z)) .

8. Suppose { fn} is a sequence of functions which are analytic on Ω, a bounded region
such that each fn is also continuous on Ω. Suppose that { fn} converges uniformly on
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∂Ω. Show that then { fn} converges uniformly on Ω and that the function to which
the sequence converges is analytic on Ω and continuous on Ω.

9. Suppose Ω is a bounded region and there exists a point z0 ∈ Ω such that | f (z0)| =
min

{
| f (z)| : z ∈Ω

}
. Can you conclude f must equal a constant?

10. Suppose f is continuous on B(a,r) and analytic on B(a,r) and that f is not constant.
Suppose also | f (z)| = C ̸= 0 for all |z−a| = r. Show that there exists α ∈ B(a,r)
such that f (α) = 0. Hint: If not, consider f/C and C/ f . Both would be analytic on
B(a,r) and are equal to 1 on the boundary.

11. Suppose f is analytic on B(0,1) but for every a∈ ∂B(0,1) , limz→a | f (z)|=∞. Show
there exists a sequence, {zn} ⊆ B(0,1) such that limn→∞ |zn|= 1 and f (zn) = 0.

52.6 Counting Zeros
The above proof of the open mapping theorem relies on the very important inverse function
theorem from real analysis. There are other approaches to this important theorem which do
not rely on the big theorems from real analysis and are more oriented toward the use of the
Cauchy integral formula and specialized techniques from complex analysis. One of these
approaches is given next which involves the notion of “counting zeros”. The next theorem
is the one about counting zeros. It will also be used later in the proof of the Riemann
mapping theorem.

Theorem 52.6.1 Let Ω be an open set in C and let γ : [a,b]→ Ω be closed, continuous,
bounded variation, and n(γ,z) = 0 for all z /∈ Ω. Suppose also that f is analytic on Ω

having zeros a1, · · · ,am where the zeros are repeated according to multiplicity, and suppose
that none of these zeros are on γ∗. Then

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
m

∑
k=1

n(γ,ak) .

Proof: Let f (z) = ∏
m
j=1 (z−a j)g(z) where g(z) ̸= 0 on Ω. Note that some of the a j

could be repeated. Hence
f ′ (z)
f (z)

=
m

∑
j=1

1
z−a j

+
g′ (z)
g(z)

and so
1

2πi

∫
γ

f ′ (z)
f (z)

dz =
m

∑
j=1

n(γ,a j)+
1

2πi

∫
γ

g′ (z)
g(z)

dz.

But the function, z→ g′(z)
g(z) is analytic and so by Corollary 51.7.20, the last integral in the

above expression equals 0. Therefore, this proves the theorem.
The following picture is descriptive of the situation described in the next theorem.
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Ω
fγ

a1

a2
a3

f (γ([a,b]))

α

Theorem 52.6.2 Let Ω be a region, let γ : [a,b]→ Ω be closed continuous, and bounded
variation such that n(γ,z)= 0 for all z /∈Ω. Also suppose f : Ω→C is analytic and that α /∈
f (γ∗) . Then f ◦ γ : [a,b]→ C is continuous, closed, and bounded variation. Also suppose
{a1, · · · ,am}= f−1 (α) where these points are counted according to their multiplicities as
zeros of the function f −α Then

n( f ◦ γ,α) =
m

∑
k=1

n(γ,ak) .

Proof: It is clear that f ◦ γ is continuous. It only remains to verify that it is of bounded
variation. Suppose first that γ∗ ⊆ B⊆ B⊆Ω where B is a ball. Then

| f (γ (t))− f (γ (s))|=∣∣∣∣∫ 1

0
f ′ (γ (s)+λ (γ (t)− γ (s)))(γ (t)− γ (s))dλ

∣∣∣∣
≤ C |γ (t)− γ (s)|

where C ≥max
{
| f ′ (z)| : z ∈ B

}
. Hence, in this case,

V ( f ◦ γ, [a,b])≤CV (γ, [a,b]) .

Now let ε denote the distance between γ∗ and C \Ω. Since γ∗ is compact, ε > 0. By
uniform continuity there exists δ = b−a

p for p a positive integer such that if |s− t|< δ , then
|γ (s)− γ (t)|< ε

2 . Then

γ ([t, t +δ ])⊆ B
(

γ (t) ,
ε

2

)
⊆Ω.

Let C ≥ max
{
| f ′ (z)| : z ∈ ∪p

j=1B
(
γ (t j) ,

ε

2

)}
where t j ≡ j

p (b−a) + a. Then from what
was just shown,

V ( f ◦ γ, [a,b]) ≤
p−1

∑
j=0

V
(

f ◦ γ,
[
t j, t j+1

])
≤ C

p−1

∑
j=0

V
(
γ,
[
t j, t j+1

])
< ∞

showing that f ◦γ is bounded variation as claimed. Now from Theorem 51.7.15 there exists
η ∈C1 ([a,b]) such that

η (a) = γ (a) = γ (b) = η (b) , η ([a,b])⊆Ω,
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and
n(η ,ak) = n(γ,ak) , n( f ◦ γ,α) = n( f ◦η ,α) (52.6.7)

for k = 1, · · · ,m. Then
n( f ◦ γ,α) = n( f ◦η ,α)

=
1

2πi

∫
f◦η

dw
w−α

=
1

2πi

∫ b

a

f ′ (η (t))
f (η (t))−α

η
′ (t)dt

=
1

2πi

∫
η

f ′ (z)
f (z)−α

dz

=
m

∑
k=1

n(η ,ak)

By Theorem 52.6.1. By 52.6.7, this equals ∑
m
k=1 n(γ,ak) which proves the theorem.

The next theorem is incredible and is very interesting for its own sake. The following
picture is descriptive of the situation of this theorem.

f

a
a1

a2

a3

a4

B(a,ε)

z
α

B(α,δ )

Theorem 52.6.3 Let f : B(a,R)→ C be analytic and let

f (z)−α = (z−a)m g(z) , ∞ > m≥ 1

where g(z) ̸= 0 in B(a,R) . ( f (z)−α has a zero of order m at z = a.) Then there exist
ε,δ > 0 with the property that for each z satisfying 0 < |z−α|< δ , there exist points,

{a1, · · · ,am} ⊆ B(a,ε) ,

such that
f−1 (z)∩B(a,ε) = {a1, · · · ,am}

and each ak is a zero of order 1 for the function f (·)− z.

Proof: By Theorem 51.5.3 f is not constant on B(a,R) because it has a zero of order
m. Therefore, using this theorem again, there exists ε > 0 such that B(a,2ε)⊆ B(a,R) and
there are no solutions to the equation f (z)−α = 0 for z ∈ B(a,2ε) except a. Also assume
ε is small enough that for 0 < |z−a| ≤ 2ε, f ′ (z) ̸= 0. This can be done since otherwise, a
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would be a limit point of a sequence of points, zn, having f ′ (zn) = 0 which would imply, by
Theorem 51.5.3 that f ′ = 0 on B(a,R) , contradicting the assumption that f −α has a zero
of order m and is therefore not constant. Thus the situation is described by the following
picture.

f −α ̸= 0

f ′ ̸= 0

2ε

Now pick γ (t) = a+ εeit , t ∈ [0,2π] . Then α /∈ f (γ∗) so there exists δ > 0 with

B(α,δ )∩ f (γ∗) = /0. (52.6.8)

Therefore, B(α,δ ) is contained on one component of C\ f (γ ([0,2π])) . Therefore,

n( f ◦ γ,α) = n( f ◦ γ,z)

for all z ∈ B(α,δ ) . Now consider f restricted to B(a,2ε) . For z ∈ B(α,δ ) , f−1 (z) must
consist of a finite set of points because f ′ (w) ̸= 0 for all w in B(a,2ε)\{a} implying that
the zeros of f (·)− z in B(a,2ε) have no limit point. Since B(a,2ε) is compact, this means
there are only finitely many. By Theorem 52.6.2,

n( f ◦ γ,z) =
p

∑
k=1

n(γ,ak) (52.6.9)

where
{

a1, · · · ,ap
}
= f−1 (z) . Each point, ak of f−1 (z) is either inside the circle traced

out by γ , yielding n(γ,ak) = 1, or it is outside this circle yielding n(γ,ak) = 0 because of
52.6.8. It follows the sum in 52.6.9 reduces to the number of points of f−1 (z) which are
contained in B(a,ε) . Thus, letting those points in f−1 (z) which are contained in B(a,ε)
be denoted by {a1, · · · ,ar}

n( f ◦ γ,α) = n( f ◦ γ,z) = r.

Also, by Theorem 52.6.1, m = n( f ◦ γ,α) because a is a zero of f −α of order m. There-
fore, for z ∈ B(α,δ )

m = n( f ◦ γ,α) = n( f ◦ γ,z) = r

It is required to show r = m, the order of the zero of f −α. Therefore, r = m. Each of these
ak is a zero of order 1 of the function f (·)−z because f ′ (ak) ̸= 0. This proves the theorem.

This is a very fascinating result partly because it implies that for values of f near a
value, α, at which f (·)−α has a zero of order m for m > 1, the inverse image of these
values includes at least m points, not just one. Thus the topological properties of the inverse
image changes radically. This theorem also shows that f (B(a,ε))⊇ B(α,δ ) .
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Theorem 52.6.4 (open mapping theorem) Let Ω be a region and f : Ω→ C be analytic.
Then f (Ω) is either a point or a region. If f is one to one, then f−1 : f (Ω)→Ω is analytic.

Proof: If f is not constant, then for every α ∈ f (Ω) , it follows from Theorem 51.5.3
that f (·)−α has a zero of order m < ∞ and so from Theorem 52.6.3, for each a ∈Ω there
exist ε,δ > 0 such that f (B(a,ε))⊇ B(α,δ ) which clearly implies that f maps open sets
to open sets. Therefore, f (Ω) is open, connected because f is continuous. If f is one to
one, Theorem 52.6.3 implies that for every α ∈ f (Ω) the zero of f (·)−α is of order 1.
Otherwise, that theorem implies that for z near α, there are m points which f maps to z
contradicting the assumption that f is one to one. Therefore, f ′ (z) ̸= 0 and since f−1 is
continuous, due to f being an open map, it follows

(
f−1)′ ( f (z)) = lim

f (z1)→ f (z)

f−1 ( f (z1))− f−1 ( f (z))
f (z1)− f (z)

= lim
z1→z

z1− z
f (z1)− f (z)

=
1

f ′ (z)
.

This proves the theorem.

52.7 An Application To Linear Algebra
Gerschgorin’s theorem gives a convenient way to estimate eigenvalues of a matrix from
easy to obtain information. For A an n× n matrix, denote by σ (A) the collection of all
eigenvalues of A.

Theorem 52.7.1 Let A be an n×n matrix. Consider the n Gerschgorin discs defined as

Di ≡

{
λ ∈ C : |λ −aii| ≤∑

j ̸=i

∣∣ai j
∣∣} .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (ai j)

∑
j ̸=i

ai jx j = (λ −aii)xi.

Therefore, if we pick k such that |xk| ≥
∣∣x j
∣∣ for all x j, it follows that |xk| ̸= 0 since |x| ̸= 0

and
|xk|∑

j ̸=k

∣∣ak j
∣∣≥ ∑

j ̸=k

∣∣ak j
∣∣ ∣∣x j

∣∣≥ |λ −akk| |xk| .

Now dividing by |xk| we see that λ is contained in the kth Gerschgorin disc.
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More can be said using the theory about counting zeros. To begin with the distance
between two n×n matrices, A = (ai j) and B = (bi j) as follows.

||A−B||2 ≡∑
i j

∣∣ai j−bi j
∣∣2 .

Thus two matrices are close if and only if their corresponding entries are close.
Let A be an n× n matrix. Recall the eigenvalues of A are given by the zeros of the

polynomial, pA (z) = det(zI−A) where I is the n× n identity. Then small changes in A
will produce small changes in pA (z) and p′A (z) . Let γk denote a very small closed circle
which winds around zk, one of the eigenvalues of A, in the counter clockwise direction so
that n(γk,zk) = 1. This circle is to enclose only zk and is to have no other eigenvalue on it.
Then apply Theorem 52.6.1. According to this theorem

1
2πi

∫
γ

p′A (z)
pA (z)

dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever every
entry of the matrix B is close enough to the corresponding entry of the matrix A, the two
matrices have the same number of zeros inside γk under the usual convention that zeros are
to be counted according to multiplicity. By making the radius of the small circle equal to
ε where ε is less than the minimum distance between any two distinct eigenvalues of A,
this shows that if B is close enough to A, every eigenvalue of B is closer than ε to some
eigenvalue of A. The next theorem is about continuous dependence of eigenvalues.

Theorem 52.7.2 If λ is an eigenvalue of A, then if ||B−A|| is small enough, some eigen-
value of B will be within ε of λ .

Consider the situation that A(t) is an n× n matrix and that t → A(t) is continuous for
t ∈ [0,1] .

Lemma 52.7.3 Let λ (t) ∈ σ (A(t)) for t < 1 and let Σt = ∪s≥tσ (A(s)) . Also let Kt be the
connected component of λ (t) in Σt . Then there exists η > 0 such that Kt ∩σ (A(s)) ̸= /0 for
all s ∈ [t, t +η ] .

Proof: Denote by D(λ (t) ,δ ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D(λ (t) ,δ )≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A(t)) contained in
D(λ (t) ,δ ) and that pA(t) has no zeroes on the boundary of this disc. Then by continu-
ity, and the above discussion and theorem, there exists η > 0, t + η < 1, such that for
s ∈ [t, t +η ] , pA(s) also has no zeroes on the boundary of this disc and that A(s) has the



52.7. AN APPLICATION TO LINEAR ALGEBRA 1667

same number of eigenvalues, counted according to multiplicity, in the disc as A(t) . Thus
σ (A(s))∩D(λ (t) ,δ ) ̸= /0 for all s ∈ [t, t +η ] . Now let

H =
⋃

s∈[t,t+η ]

σ (A(s))∩D(λ (t) ,δ ) .

I will show H is connected. Suppose not. Then H = P∪Q where P,Q are separated and
λ (t) ∈ P. Let

s0 ≡ inf{s : λ (s) ∈ Q for some λ (s) ∈ σ (A(s))} .

There exists λ (s0)∈ σ (A(s0))∩D(λ (t) ,δ ) . If λ (s0) /∈Q, then from the above discussion
there are

λ (s) ∈ σ (A(s))∩Q

for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈Q which shows that s0 > t because
λ (t) is the only element of σ (A(t)) in D(λ (t) ,δ ) and λ (t) ∈ P. Now let sn ↑ s0. Then
λ (sn) ∈ P for any

λ (sn) ∈ σ (A(sn))∩D(λ (t) ,δ )

and from the above discussion, for some choice of sn→ s0, λ (sn)→ λ (s0) which contra-
dicts P and Q separated and nonempty. Since P is nonempty, this shows Q = /0. Therefore,
H is connected as claimed. But Kt ⊇ H and so Kt ∩σ (A(s)) ̸= /0 for all s ∈ [t, t +η ] . This
proves the lemma.

The following is the necessary theorem.

Theorem 52.7.4 Suppose A(t) is an n× n matrix and that t → A(t) is continuous for
t ∈ [0,1] . Let λ (0) ∈ σ (A(0)) and define Σ≡ ∪t∈[0,1]σ (A(t)) . Let Kλ (0) = K0 denote the
connected component of λ (0) in Σ. Then K0∩σ (A(t)) ̸= /0 for all t ∈ [0,1] .

Proof: Let S ≡ {t ∈ [0,1] : K0∩σ (A(s)) ̸= /0 for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup(S) . Say σ (A(t0)) = λ 1 (t0) , · · · ,λ r (t0) . I claim at least one of these is a limit point
of K0 and consequently must be in K0 which will show that S has a last point. Why is this
claim true? Let sn ↑ t0 so sn ∈ S. Now let the discs, D(λ i (t0) ,δ ) , i = 1, · · · ,r be disjoint
with pA(t0) having no zeroes on γ i the boundary of D(λ i (t0) ,δ ) . Then for n large enough it
follows from Theorem 52.6.1 and the discussion following it that σ (A(sn)) is contained in
∪r

i=1D(λ i (t0) ,δ ). Therefore, K0∩ (σ (A(t0))+D(0,δ )) ̸= /0 for all δ small enough. This
requires at least one of the λ i (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 52.7.3, if t0 < 1, then K0∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩σ (A(s)) = /0 for
some s ∈ (t, t +η) while Kt ∩σ (A(s)) ̸= /0 for all s ∈ [t, t +η ].) Therefore, t0 = 1 and this
proves the theorem.

The following is an interesting corollary of the Gerschgorin theorem.

Corollary 52.7.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.
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Proof: Denote by A(t) the matrix
(

at
i j

)
where if i ̸= j, at

i j = tai j and at
ii = aii. Thus to

get A(t) we multiply all non diagonal terms by t. Let t ∈ [0,1] . Then

A(0) = diag(a11, · · · ,ann)

and A(1) = A. Furthermore, the map, t → A(t) is continuous. Denote by Dt
j the Ger-

schgorin disc obtained from the jth row for the matrix, A(t). Then it is clear that Dt
j ⊆ D j

the jth Gerschgorin disc for A. Then aii is the eigenvalue for A(0) which is contained in the
disc, consisting of the single point aii which is contained in Di. Letting K be the connected
component in Σ for Σ defined in Theorem 52.7.4 which is determined by aii, it follows by
Gerschgorin’s theorem that K ∩σ (A(t)) ⊆ ∪n

j=1Dt
j ⊆ ∪n

j=1D j = Di ∪
(
∪ j ̸=iD j

)
and also,

since K is connected, there are no points of K in both Di and
(
∪ j ̸=iD j

)
. Since at least one

point of K is in Di,(aii) it follows all of K must be contained in Di. Now by Theorem 52.7.4
this shows there are points of K∩σ (A) in Di. The last assertion follows immediately.

Actually, this can be improved slightly. It involves the following lemma.

Lemma 52.7.6 In the situation of Theorem 52.7.4 suppose λ (0) = K0∩σ (A(0)) and that
λ (0) is a simple root of the characteristic equation of A(0). Then for all t ∈ [0,1] ,

σ (A(t))∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A(t) .

Proof: Let S≡

{t ∈ [0,1] : K0∩σ (A(s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .

Then 0 ∈ S so it is nonempty. Let t0 = sup(S) and suppose λ 1 ̸= λ 2 are two elements
of σ (A(t0))∩K0. Then choosing η > 0 small enough, and letting Di be disjoint discs
containing λ i respectively, similar arguments to those of Lemma 52.7.3 imply

Hi ≡ ∪s∈[t0−η ,t0]σ (A(s))∩Di

is a connected and nonempty set for i = 1,2 which would require that Hi ⊆ K0. But then
there would be two different eigenvalues of A(s) contained in K0, contrary to the definition
of t0. Therefore, there is at most one eigenvalue, λ (t0) ∈ K0 ∩σ (A(t0)) . The possibility
that it could be a repeated root of the characteristic equation must be ruled out. Suppose
then that λ (t0) is a repeated root of the characteristic equation. As before, choose a small
disc, D centered at λ (t0) and η small enough that

H ≡ ∪s∈[t0−η ,t0]σ (A(s))∩D

is a nonempty connected set containing either multiple eigenvalues of A(s) or else a single
repeated root to the characteristic equation of A(s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0−η , t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 +η ] , A(s) has only simple eigenvalues in
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D and the only eigenvalues of A(s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A(t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A(s) are either
close to these eigenvalues of A(t0) at a positive distance from K0 or they are close to the
eigenvalue, λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved.

With this lemma, the conclusion of the above corollary can be improved.

Corollary 52.7.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.

Proof: In the proof of Corollary 52.7.5, first note that aii is a simple root of A(0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩σ (A(t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A(0) , the a j j, are outside Di, it
follows that K ∩σ (A(0)) = aii. Therefore, by Lemma 52.7.6, K ∩σ (A(1)) = K ∩σ (A)
consists of a single simple eigenvalue. This proves the corollary.

Example 52.7.8 Consider the matrix, 5 1 0
1 1 1
0 1 0


The Gerschgorin discs are D(5,1) ,D(1,2) , and D(0,1) . Then D(5,1) is disjoint from

the other discs. Therefore, there should be an eigenvalue in D(5,1) . The actual eigenvalues
are not easy to find. They are the roots of the characteristic equation, t3−6t2 +3t +5 = 0.
The numerical values of these are −.66966,1.4231, and 5.24655, verifying the predic-
tions of Gerschgorin’s theorem.

52.8 Exercises
1. Use Theorem 52.6.1 to give an alternate proof of the fundamental theorem of algebra.

Hint: Take a contour of the form γr = reit where t ∈ [0,2π] . Consider
∫

γr

p′(z)
p(z) dz and

consider the limit as r→ ∞.

2. Let M be an n× n matrix. Recall that the eigenvalues of M are given by the zeros
of the polynomial, pM (z) = det(M− zI) where I is the n× n identity. Formulate a
theorem which describes how the eigenvalues depend on small changes in M. Hint:
You could define a norm on the space of n×n matrices as ||M|| ≡ tr (MM∗)1/2 where
M∗ is the conjugate transpose of M. Thus

||M||=

(
∑
j,k

∣∣M jk
∣∣2)1/2

.
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Argue that small changes will produce small changes in pM (z) . Then apply Theorem
52.6.1 using γk a very small circle surrounding zk, the kth eigenvalue.

3. Suppose that two analytic functions defined on a region are equal on some set, S
which contains a limit point. (Recall p is a limit point of S if every open set which
contains p, also contains infinitely many points of S. ) Show the two functions coin-
cide. We defined ez ≡ ex (cosy+ isiny) earlier and we showed that ez, defined this
way was analytic on C. Is there any other way to define ez on all of C such that the
function coincides with ex on the real axis?

4. You know various identities for real valued functions. For example cosh2 x−sinh2 x=
1. If you define coshz≡ ez+e−z

2 and sinhz≡ ez−e−z

2 , does it follow that

cosh2 z− sinh2 z = 1

for all z ∈ C? What about

sin(z+w) = sinzcosw+ coszsinw?

Can you verify these sorts of identities just from your knowledge about what happens
for real arguments?

5. Was it necessary that U be a region in Theorem 51.5.3? Would the same conclusion
hold if U were only assumed to be an open set? Why? What about the open mapping
theorem? Would it hold if U were not a region?

6. Let f : U → C be analytic and one to one. Show that f ′ (z) ̸= 0 for all z ∈U. Does
this hold for a function of a real variable?

7. We say a real valued function, u is subharmonic if uxx + uyy ≥ 0. Show that if u is
subharmonic on a bounded region, (open connected set) U, and continuous on U and
u≤m on ∂U, then u≤m on U. Hint: If not, u achieves its maximum at (x0,y0)∈U.
Let u(x0,y0) > m+ δ where δ > 0. Now consider uε (x,y) = εx2 + u(x,y) where ε

is small enough that 0 < εx2 < δ for all (x,y) ∈U. Show that uε also achieves its
maximum at some point of U and that therefore, uεxx+uεyy≤ 0 at that point implying
that uxx +uyy ≤−ε, a contradiction.

8. If u is harmonic on some region, U, show that u coincides locally with the real part of
an analytic function and that therefore, u has infinitely many derivatives on U. Hint:
Consider the case where 0 ∈ U. You can always reduce to this case by a suitable
translation. Now let B(0,r) ⊆U and use the Schwarz formula to obtain an analytic
function whose real part coincides with u on ∂B(0,r) . Then use Problem 7.

9. Show the solution to the Dirichlet problem of Problem 8 on Page 1627 is unique.
You need to formulate this precisely and then prove uniqueness.



Chapter 53

Residues
Definition 53.0.1 The residue of f at an isolated singularity α which is a pole, written
res( f ,α) is the coefficient of (z−α)−1 where

f (z) = g(z)+
m

∑
k=1

bk

(z−α)k .

Thus res( f ,α) = b1 in the above.

At this point, recall Corollary 51.7.20 which is stated here for convenience.

Corollary 53.0.2 Let Ω be an open set and let γk : [ak,bk]→ Ω, k = 1, · · · ,m, be closed,
continuous and of bounded variation. Suppose also that

m

∑
k=1

n(γk,z) = 0

for all z /∈Ω. Then if f : Ω→ C is analytic,

m

∑
k=1

∫
γk

f (w)dw = 0.

The following theorem is called the residue theorem. Note the resemblance to Corollary
51.7.20.

Theorem 53.0.3 Let Ω be an open set and let γk : [ak,bk]→ Ω, k = 1, · · · ,m, be closed,
continuous and of bounded variation. Suppose also that

m

∑
k=1

n(γk,z) = 0

for all z /∈Ω. Then if f : Ω→ Ĉ is meromorphic such that no γ∗k contains any poles of f ,

1
2πi

m

∑
k=1

∫
γk

f (w)dw = ∑
α∈A

res( f ,α)
m

∑
k=1

n(γk,α) (53.0.1)

where here A denotes the set of poles of f in Ω. The sum on the right is a finite sum.

Proof: First note that there are at most finitely many α which are not in the unbounded
component of C \∪m

k=1γk ([ak,bk]) . Thus there exists a finite set, {α1, · · · ,αN} ⊆ A such
that these are the only possibilities for which ∑

n
k=1 n(γk,α) might not equal zero. There-

fore, 53.0.1 reduces to

1
2πi

m

∑
k=1

∫
γk

f (w)dw =
N

∑
j=1

res( f ,α j)
n

∑
k=1

n(γk,α j)

1671
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and it is this last equation which is established. Near α j,

f (z) = g j (z)+
m j

∑
r=1

b j
r

(z−α j)
r ≡ g j (z)+Q j (z) .

where g j is analytic at and near α j. Now define

G(z)≡ f (z)−
N

∑
j=1

Q j (z) .

It follows that G(z) has a removable singularity at each α j. Therefore, by Corollary
51.7.20,

0 =
m

∑
k=1

∫
γk

G(z)dz =
m

∑
k=1

∫
γk

f (z)dz−
N

∑
j=1

m

∑
k=1

∫
γk

Q j (z)dz.

Now

m

∑
k=1

∫
γk

Q j (z)dz =
m

∑
k=1

∫
γk

(
b j

1
(z−α j)

+
m j

∑
r=2

b j
r

(z−α j)
r

)
dz

=
m

∑
k=1

∫
γk

b j
1

(z−α j)
dz≡

m

∑
k=1

n(γk,α j) res( f ,α j)(2πi) .

Therefore,

m

∑
k=1

∫
γk

f (z)dz =
N

∑
j=1

m

∑
k=1

∫
γk

Q j (z)dz

=
N

∑
j=1

m

∑
k=1

n(γk,α j) res( f ,α j)(2πi)

= 2πi
N

∑
j=1

res( f ,α j)
m

∑
k=1

n(γk,α j)

= (2πi) ∑
α∈A

res( f ,α)
m

∑
k=1

n(γk,α)

which proves the theorem.
The following is an important example. This example can also be done by real variable

methods and there are some who think that real variable methods are always to be preferred
to complex variable methods. However, I will use the above theorem to work this example.

Example 53.0.4 Find limR→∞

∫ R
−R

sin(x)
x dx

Things are easier if you write it as

lim
R→∞

1
i

(∫ −R−1

−R

eix

x
dx+

∫ R

R−1

eix

x
dx

)
.
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This gives the same answer because cos(x)/x is odd. Consider the following contour in
which the orientation involves counterclockwise motion exactly once around.

−R R−R−1 R−1

Denote by γR−1 the little circle and γR the big one. Then on the inside of this contour
there are no singularities of eiz/z and it is contained in an open set with the property that
the winding number with respect to this contour about any point not in the open set equals
zero. By Theorem 51.7.22

1
i

(∫ −R−1

−R

eix

x
dx+

∫
γR−1

eiz

z
dz+

∫ R

R−1

eix

x
dx+

∫
γR

eiz

z
dz

)
= 0 (53.0.2)

Now ∣∣∣∣∫
γR

eiz

z
dz
∣∣∣∣= ∣∣∣∣∫ π

0
eR(icosθ−sinθ)idθ

∣∣∣∣≤ ∫ π

0
e−Rsinθ dθ

and this last integral converges to 0 by the dominated convergence theorem. Now consider
the other circle. By the dominated convergence theorem again,

∫
γR−1

eiz

z
dz =

∫ 0

π

eR−1(icosθ−sinθ)idθ →−iπ

as R→ ∞. Then passing to the limit in 53.0.2,

lim
R→∞

∫ R

−R

sin(x)
x

dx

= lim
R→∞

1
i

(∫ −R−1

−R

eix

x
dx+

∫ R

R−1

eix

x
dx

)

= lim
R→∞

1
i

(
−
∫

γR−1

eiz

z
dz−

∫
γR

eiz

z
dz

)
=
−1
i

(−iπ) = π.

Example 53.0.5 Find limR→∞

∫ R
−R eixt sinx

x dx. Note this is essentially finding the inverse
Fourier transform of the function, sin(x)/x.
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This equals

lim
R→∞

∫ R

−R
(cos(xt)+ isin(xt))

sin(x)
x

dx

= lim
R→∞

∫ R

−R
cos(xt)

sin(x)
x

dx

= lim
R→∞

∫ R

−R
cos(xt)

sin(x)
x

dx

= lim
R→∞

1
2

∫ R

−R

sin(x(t +1))+ sin(x(1− t))
x

dx

Let t ̸= 1,−1. Then changing variables yields

lim
R→∞

(
1
2

∫ R(1+t)

−R(1+t)

sin(u)
u

du+
1
2

∫ R(1−t)

−R(1−t)

sin(u)
u

du
)
.

In case |t| < 1 Example 53.0.4 implies this limit is π. However, if t > 1 the limit equals 0
and this is also the case if t <−1. Summarizing,

lim
R→∞

∫ R

−R
eixt sinx

x
dx =

{
π if |t|< 1
0 if |t|> 1 .

53.1 Rouche’s Theorem And The Argument Principle
53.1.1 Argument Principle
A simple closed curve is just one which is homeomorphic to the unit circle. The Jordan
Curve theorem states that every simple closed curve in the plane divides the plane into
exactly two connected components, one bounded and the other unbounded. This is a very
hard theorem to prove. However, in most applications the conclusion is obvious. Nev-
ertheless, to avoid using this big topological result and to attain some extra generality, I
will state the following theorem in terms of the winding number to avoid using it. This
theorem is called the argument principle. First recall that f has a zero of order m at α if
f (z) = g(z)(z−α)m where g is an analytic function which is not equal to zero at α. This
is equivalent to having f (z) = ∑

∞
k=m ak (z−α)k for z near α where am ̸= 0. Also recall that

f has a pole of order m at α if for z near α, f (z) is of the form

f (z) = h(z)+
m

∑
k=1

bk

(z−α)k (53.1.3)

where bm ̸= 0 and h is a function analytic near α .

Theorem 53.1.1 (argument principle) Let f be meromorphic in Ω. Also suppose γ∗ is a
closed bounded variation curve containing none of the poles or zeros of f with the property
that for all z /∈ Ω,n(γ,z) = 0 and for all z ∈ Ω,n(γ,z) either equals 0 or 1. Now let
{p1, · · · , pm} and {z1, · · · ,zn} be respectively the poles and zeros for which the winding
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number of γ about these points equals 1. Let zk be a zero of order rk and let pk be a pole of
order lk. Then

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
n

∑
k=1

rk−
m

∑
k=1

lk

Proof: This theorem follows from computing the residues of f ′/ f which has residues
only at poles and zeros. I will do this now. First suppose f has a pole of order p at α. Then
f has the form given in 53.1.3. Therefore,

f ′ (z)
f (z)

=
h′ (z)−∑

p
k=1

kbk
(z−α)k+1

h(z)+∑
p
k=1

bk
(z−α)k

=
h′ (z)(z−α)p−∑

p−1
k=1 kbk (z−α)−k−1+p− pbp

(z−α)

h(z)(z−α)p +∑
p−1
k=1 bk (z−α)p−k +bp

=
r (z)− pbp

(z−α)

s(z)+bp

where s(α) = 0, limz→α (z−α)r (α) = 0. It has a simple pole at α and so the residue is

res
(

f ′

f
,α

)
= lim

z→α
(z−α)

r (z)− pbp
(z−α)

s(z)+bp
=−p

the order of the pole.
Next suppose f has a zero of order p at α. Then

f ′ (z)
f (z)

=
k

z−α

∑
∞
k=p ak (z−α)k−1

∑
∞
k=p ak (z−α)k−1 =

k
z−α

and from this it is clear res( f ′/ f ) = p, the order of the zero. The conclusion of this theorem
now follows from the residue theorem Theorem 53.0.3. ■

One can also generalize the theorem to the case where there are many closed curves
involved. This is proved in the same way as the above.

Theorem 53.1.2 (argument principle) Let f be meromorphic in Ω and let γk : [ak,bk]→Ω,
k = 1, · · · ,m, be closed, continuous and of bounded variation. Suppose also that

m

∑
k=1

n(γk,z) = 0

and for all z /∈ Ω and for z ∈ Ω, ∑
m
k=1 n(γk,z) either equals 0 or 1. Now let {p1, · · · , pm}

and {z1, · · · ,zn} be respectively the poles and zeros for which the above sum of winding
numbers equals 1. Let zk be a zero of order rk and let pk be a pole of order lk. Then

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
n

∑
k=1

rk−
m

∑
k=1

lk
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There is also a simple extension of this important principle which I found in [65].

Theorem 53.1.3 (argument principle) Let f be meromorphic in Ω. Also suppose γ∗ is a
closed bounded variation curve with the property that for all z /∈Ω,n(γ,z) = 0 and for all
z ∈ Ω,n(γ,z) either equals 0 or 1. Now let {p1, · · · , pm} and {z1, · · · ,zn} be respectively
the poles and zeros for which the winding number of γ about these points equals 1 listed
according to multiplicity. Thus if there is a pole of order m there will be this value repeated
m times in the list for the poles. Also let g(z) be an analytic function. Then

1
2πi

∫
γ

g(z)
f ′ (z)
f (z)

dz =
n

∑
k=1

g(zk)−
m

∑
k=1

g(pk)

Proof: This theorem follows from computing the residues of g( f ′/ f ) . It has residues
at poles and zeros. I will do this now. First suppose f has a pole of order m at α. Then f
has the form given in 53.1.3. Therefore,

g(z)
f ′ (z)
f (z)

=
g(z)

(
h′ (z)−∑

m
k=1

kbk
(z−α)k+1

)
h(z)+∑

m
k=1

bk
(z−α)k

= g(z)
h′ (z)(z−α)m−∑

m−1
k=1 kbk (z−α)−k−1+m− mbm

(z−α)

h(z)(z−α)m +∑
m−1
k=1 bk (z−α)m−k +bm

From this, it is clear res(g( f ′/ f ) ,α) = −mg(α) , where m is the order of the pole. Thus
α would have been listed m times in the list of poles. Hence the residue at this point is
equivalent to adding −g(α) m times.

Next suppose f has a zero of order m at α. Then

g(z)
f ′ (z)
f (z)

= g(z)
∑

∞
k=m akk (z−α)k−1

∑
∞
k=m ak (z−α)k = g(z)

∑
∞
k=m akk (z−α)k−1−m

∑
∞
k=m ak (z−α)k−m

and from this it is clear res(g( f ′/ f )) = g(α)m, where m is the order of the zero. The
conclusion of this theorem now follows from the residue theorem, Theorem 53.0.3.

The way people usually apply these theorems is to suppose γ∗ is a simple closed
bounded variation curve, often a circle. Thus it has an inside and an outside, the outside
being the unbounded component of C\γ∗. The orientation of the curve is such that you go
around it once in the counterclockwise direction. Then letting rk and lk be as described, the
conclusion of the theorem follows. In applications, this is likely the way it will be.

53.1.2 Rouche’s Theorem
With the argument principle, it is possible to prove Rouche’s theorem . In the argument
principle, denote by Z f the quantity ∑

m
k=1 rk and by Pf the quantity ∑

n
k=1 lk. Thus Z f is the
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number of zeros of f counted according to the order of the zero with a similar definition
holding for Pf . Thus the conclusion of the argument principle is.

1
2πi

∫
γ

f ′ (z)
f (z)

dz = Z f −Pf

Rouche’s theorem allows the comparison of Zh−Ph for h = f ,g. It is a wonderful and
amazing result.

Theorem 53.1.4 (Rouche’s theorem)Let f ,g be meromorphic in an open set Ω. Also sup-
pose γ∗ is a closed bounded variation curve with the property that for all z /∈Ω,n(γ,z) = 0,
no zeros or poles are on γ∗, and for all z ∈ Ω,n(γ,z) either equals 0 or 1. Let Z f and Pf
denote respectively the numbers of zeros and poles of f , which have the property that the
winding number equals 1, counted according to order, with Zg and Pg being defined simi-
larly. Also suppose that for z ∈ γ∗

| f (z)+g(z)|< | f (z)|+ |g(z)| . (53.1.4)

Then
Z f −Pf = Zg−Pg.

Proof: From the hypotheses,∣∣∣∣1+ f (z)
g(z)

∣∣∣∣< 1+
∣∣∣∣ f (z)
g(z)

∣∣∣∣
which shows that for all z ∈ γ∗,

f (z)
g(z)

∈ C\ [0,∞).

Letting l denote a branch of the logarithm defined on C\ [0,∞), it follows that l
(

f (z)
g(z)

)
is a

primitive for the function,
( f/g)′

( f/g)
=

f ′

f
− g′

g
.

Therefore, by the argument principle,

0 =
1

2πi

∫
γ

( f/g)′

( f/g)
dz =

1
2πi

∫
γ

(
f ′

f
− g′

g

)
dz

= Z f −Pf − (Zg−Pg) .

This proves the theorem.
Often another condition other than 53.1.4 is used.

Corollary 53.1.5 In the situation of Theorem 53.1.4 change 53.1.4 to the condition,

| f (z)−g(z)|< | f (z)|

for z ∈ γ∗. Then the conclusion is the same.

Proof: The new condition implies
∣∣∣1− g

f (z)
∣∣∣< ∣∣∣ g(z)

f (z)

∣∣∣ on γ∗. Therefore, g(z)
f (z) /∈ (−∞,0]

and so you can do the same argument with a branch of the logarithm.
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53.1.3 A Different Formulation

In [115] I found this modification for Rouche’s theorem concerned with the counting of
zeros of analytic functions. This is a very useful form of Rouche’s theorem because it
makes no mention of a contour.

Theorem 53.1.6 Let Ω be a bounded open set and suppose f ,g are continuous on Ω and
analytic on Ω. Also suppose | f (z)|< |g(z)| on ∂Ω. Then g and f +g have the same number
of zeros in Ω provided each zero is counted according to multiplicity.

Proof: Let K =
{

z ∈Ω : | f (z)| ≥ |g(z)|
}
. Then letting λ ∈ [0,1] , if z /∈K, then | f (z)|<

|g(z)| and so

0 < |g(z)|− | f (z)| ≤ |g(z)|−λ | f (z)| ≤ |g(z)+λ f (z)|

which shows that all zeros of g+λ f are contained in K which must be a compact subset
of Ω due to the assumption that | f (z)|< |g(z)| on ∂Ω. By Theorem 51.7.25 on Page 1644
there exists a cycle, {γk}

n
k=1 such that ∪n

k=1γ∗k ⊆ Ω \K,∑n
k=1 n(γk,z) = 1 for every z ∈ K

and ∑
n
k=1 n(γk,z) = 0 for all z /∈ Ω. Then as above, it follows from the residue theorem or

more directly, Theorem 53.1.2,

n

∑
k=1

1
2πi

∫
γk

λ f ′ (z)+g′ (z)
λ f (z)+g(z)

dz =
p

∑
j=1

m j

where m j is the order of the jth zero of λ f +g in K, hence in Ω. However,

λ →
n

∑
k=1

1
2πi

∫
γk

λ f ′ (z)+g′ (z)
λ f (z)+g(z)

dz

is integer valued and continuous so it gives the same value when λ = 0 as when λ = 1.
When λ = 0 this gives the number of zeros of g in Ω and when λ = 1 it is the number of
zeros of f +g. This proves the theorem.

Here is another formulation of this theorem.

Corollary 53.1.7 Let Ω be a bounded open set and suppose f ,g are continuous on Ω and
analytic on Ω. Also suppose | f (z)−g(z)| < |g(z)| on ∂Ω. Then f and g have the same
number of zeros in Ω provided each zero is counted according to multiplicity.

Proof: You let f − g play the role of f in Theorem 53.1.6. Thus f − g+ g = f and
g have the same number of zeros. Alternatively, you can give a proof of this directly as
follows.

Let K = {z ∈Ω : | f (z)−g(z)| ≥ |g(z)|} . Then if g(z)+λ ( f (z)−g(z)) = 0 it follows

0 = |g(z)+λ ( f (z)−g(z))| ≥ |g(z)|−λ | f (z)−g(z)|
≥ |g(z)|− | f (z)−g(z)|
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and so z ∈ K. Thus all zeros of g(z)+ λ ( f (z)−g(z)) are contained in K. By Theorem
51.7.25 on Page 1644 there exists a cycle, {γk}

n
k=1 such that∪n

k=1γ∗k ⊆Ω\K,∑n
k=1 n(γk,z)=

1 for every z ∈ K and ∑
n
k=1 n(γk,z) = 0 for all z /∈Ω. Then by Theorem 53.1.2,

n

∑
k=1

1
2πi

∫
γk

λ ( f ′ (z)−g′ (z))+g′ (z)
λ ( f (z)−g(z))+g(z)

dz =
p

∑
j=1

m j

where m j is the order of the jth zero of λ ( f −g)+ g in K, hence in Ω. The left side is
continuous as a function of λ and so the number of zeros of g corresponding to λ = 0
equals the number of zeros of f corresponding to λ = 1. This proves the corollary.

53.2 Singularities And The Laurent Series
53.2.1 What Is An Annulus?
In general, when you consider singularities, isolated or not, the fundamental tool is the
Laurent series. This series is important for many other reasons also. In particular, it is
fundamental to the spectral theory of various operators in functional analysis and is one
way to obtain relationships between algebraic and analytical conditions essential in various
convergence theorems. A Laurent series lives on an annulus. In all this f has values in X
where X is a complex Banach space. If you like, let X = C.

Definition 53.2.1 Define ann(a,R1,R2)≡ {z : R1 < |z−a|< R2} .

Thus ann(a,0,R) would denote the punctured ball, B(a,R)\{0} and when R1 > 0, the
annulus looks like the following.

a

The annulus is the stuff between the two circles.
Here is an important lemma which is concerned with the situation described in the

following picture.

a
z

a
z

Lemma 53.2.2 Let γr (t) ≡ a+ reit for t ∈ [0,2π] and let |z−a| < r. Then n(γr,z) = 1. If
|z−a|> r, then n(γr,z) = 0.
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Proof: For the first claim, consider for t ∈ [0,1] ,

f (t)≡ n(γr,a+ t (z−a)) .

Then from properties of the winding number derived earlier, f (t) ∈ Z, f is continuous,
and f (0) = 1. Therefore, f (t) = 1 for all t ∈ [0,1] . This proves the first claim because
f (1) = n(γr,z) .

For the second claim,

n(γr,z) =
1

2πi

∫
γr

1
w− z

dw

=
1

2πi

∫
γr

1
w−a− (z−a)

dw

=
1

2πi
−1

z−a

∫
γr

1
1−
(w−a

z−a

)dw

=
−1

2πi(z−a)

∫
γr

∞

∑
k=0

(
w−a
z−a

)k

dw.

The series converges uniformly for w ∈ γr because∣∣∣∣w−a
z−a

∣∣∣∣= r
r+ c

for some c > 0 due to the assumption that |z−a| > r. Therefore, the sum and the integral
can be interchanged to give

n(γr,z) =
−1

2πi(z−a)

∞

∑
k=0

∫
γr

(
w−a
z−a

)k

dw = 0

because w→
(w−a

z−a

)k has an antiderivative. This proves the lemma.
Now consider the following picture which pertains to the next lemma.

γr

a

Lemma 53.2.3 Let g be analytic on ann(a,R1,R2) . Then if γr (t)≡ a+ reit for t ∈ [0,2π]
and r ∈ (R1,R2) , then

∫
γr

g(z)dz is independent of r.
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Proof: Let R1 < r1 < r2 < R2 and denote by −γr (t) the curve, −γr (t)≡ a+ rei(2π−t)

for t ∈ [0,2π] . Then if z∈ B(a,R1), Lemma 53.2.2 implies both n
(
γr2

,z
)

and n
(
γr1

,z
)
= 1

and so
n
(
−γr1

,z
)
+n
(
γr2

,z
)
=−1+1 = 0.

Also if z /∈ B(a,R2) , then Lemma 53.2.2 implies n
(

γr j
,z
)
= 0 for j = 1,2. Therefore,

whenever z /∈ ann(a,R1,R2) , the sum of the winding numbers equals zero. Therefore,
by Theorem 51.7.19 applied to the function, f (w) = g(z)(w− z) and z ∈ ann(a,R1,R2)\
∪2

j=1γr j
([0,2π]) ,

f (z)
(
n
(
γr2

,z
)
+n
(
−γr1

,z
))

= 0
(
n
(
γr2

,z
)
+n
(
−γr1

,z
))

=

1
2πi

∫
γr2

g(w)(w− z)
w− z

dw− 1
2πi

∫
γr1

g(w)(w− z)
w− z

dw

=
1

2πi

∫
γr2

g(w)dw− 1
2πi

∫
γr1

g(w)dw

which proves the desired result.

53.2.2 The Laurent Series
The Laurent series is like a power series except it allows for negative exponents. First here
is a definition of what is meant by the convergence of such a series.

Definition 53.2.4 ∑
∞
n=−∞ an (z−a)n converges if both the series,

∞

∑
n=0

an (z−a)n and
∞

∑
n=1

a−n (z−a)−n

converge. When this is the case, the symbol, ∑
∞
n=−∞ an (z−a)n is defined as

∞

∑
n=0

an (z−a)n +
∞

∑
n=1

a−n (z−a)−n .

Lemma 53.2.5 Suppose

f (z) =
∞

∑
n=−∞

an (z−a)n

for all |z−a| ∈ (R1,R2) . Then both ∑
∞
n=0 an (z−a)n and ∑

∞
n=1 a−n (z−a)−n converge abso-

lutely and uniformly on {z : r1 ≤ |z−a| ≤ r2} for any r1 < r2 satisfying R1 < r1 < r2 < R2.

Proof: Let R1 < |w−a|= r1−δ < r1. Then ∑
∞
n=1 a−n (w−a)−n converges and so

lim
n→∞
|a−n| |w−a|−n = lim

n→∞
|a−n|(r1−δ )−n = 0

which implies that for all n sufficiently large,

|a−n|(r1−δ )−n < 1.
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Therefore,
∞

∑
n=1
|a−n| |z−a|−n =

∞

∑
n=1
|a−n|(r1−δ )−n (r1−δ )n |z−a|−n .

Now for |z−a| ≥ r1,

|z−a|−n ≤ 1
rn

1
and so for all sufficiently large n

|a−n| |z−a|−n ≤ (r1−δ )n

rn
1

.

Therefore, by the Weierstrass M test, the series, ∑
∞
n=1 a−n (z−a)−n converges absolutely

and uniformly on the set
{z ∈ C : |z−a| ≥ r1} .

Similar reasoning shows the series, ∑
∞
n=0 an (z−a)n converges uniformly on the set

{z ∈ C : |z−a| ≤ r2} .

This proves the Lemma.

Theorem 53.2.6 Let f be analytic on ann(a,R1,R2) . Then there exist numbers, an ∈ C
such that for all z ∈ ann(a,R1,R2) ,

f (z) =
∞

∑
n=−∞

an (z−a)n , (53.2.5)

where the series converges absolutely and uniformly on ann(a,r1,r2) whenever R1 < r1 <
r2 < R2. Also

an =
1

2πi

∫
γ

f (w)

(w−a)n+1 dw (53.2.6)

where γ (t) = a+ reit , t ∈ [0,2π] for any r ∈ (R1,R2) . Furthermore the series is unique in
the sense that if 53.2.5 holds for z ∈ ann(a,R1,R2) , then an is given in 53.2.6.

Proof: Let R1 < r1 < r2 < R2 and define γ1 (t) ≡ a + (r1− ε)eit and γ2 (t) ≡ a +
(r2 + ε)eit for t ∈ [0,2π] and ε chosen small enough that R1 < r1− ε < r2 + ε < R2.

a

z

γ1

γ2
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Then using Lemma 53.2.2, if z /∈ ann(a,R1,R2) then

n(−γ1,z)+n(γ2,z) = 0

and if z ∈ ann(a,r1,r2) ,
n(−γ1,z)+n(γ2,z) = 1.

Therefore, by Theorem 51.7.19, for z ∈ ann(a,r1,r2)

f (z) =
1

2πi

[∫
−γ1

f (w)
w− z

dw+
∫

γ2

f (w)
w− z

dw
]

=
1

2πi

[∫
γ1

f (w)
(z−a)

[
1− w−a

z−a

]dw+
∫

γ2

f (w)
(w−a)

[
1− z−a

w−a

]dw

]

=
1

2πi

∫
γ2

f (w)
w−a

∞

∑
n=0

(
z−a
w−a

)n

dw+

1
2πi

∫
γ1

f (w)
(z−a)

∞

∑
n=0

(
w−a
z−a

)n

dw. (53.2.7)

From the formula 53.2.7, it follows that for z ∈ ann(a,r1,r2), the terms in the first sum are

bounded by an expression of the form C
(

r2
r2+ε

)n
while those in the second are bounded by

one of the form C
(

r1−ε

r1

)n
and so by the Weierstrass M test, the convergence is uniform and

so the integrals and the sums in the above formula may be interchanged and after renaming
the variable of summation, this yields

f (z) =
∞

∑
n=0

(
1

2πi

∫
γ2

f (w)

(w−a)n+1 dw

)
(z−a)n+

−1

∑
n=−∞

(
1

2πi

∫
γ1

f (w)

(w−a)n+1

)
(z−a)n . (53.2.8)

Therefore, by Lemma 53.2.3, for any r ∈ (R1,R2) ,

f (z) =
∞

∑
n=0

(
1

2πi

∫
γr

f (w)

(w−a)n+1 dw

)
(z−a)n+

−1

∑
n=−∞

(
1

2πi

∫
γr

f (w)

(w−a)n+1

)
(z−a)n . (53.2.9)

and so

f (z) =
∞

∑
n=−∞

(
1

2πi

∫
γr

f (w)

(w−a)n+1 dw

)
(z−a)n .

where r ∈ (R1,R2) is arbitrary. This proves the existence part of the theorem. It remains to
characterize an.



1684 CHAPTER 53. RESIDUES

If f (z) = ∑
∞
n=−∞ an (z−a)n on ann(a,R1,R2) let

fn (z)≡
n

∑
k=−n

ak (z−a)k . (53.2.10)

This function is analytic in ann(a,R1,R2) and so from the above argument,

fn (z) =
∞

∑
k=−∞

(
1

2πi

∫
γr

fn (w)

(w−a)k+1 dw

)
(z−a)k . (53.2.11)

Also if k > n or if k <−n,

(
1

2πi

∫
γr

fn (w)

(w−a)k+1 dw

)
= 0.

and so

fn (z) =
n

∑
k=−n

(
1

2πi

∫
γr

fn (w)

(w−a)k+1 dw

)
(z−a)k

which implies from 53.2.10 that for each k ∈ [−n,n] ,

1
2πi

∫
γr

fn (w)

(w−a)k+1 dw = ak

However, from the uniform convergence of the series,

∞

∑
n=0

an (w−a)n

and

∞

∑
n=1

a−n (w−a)−n

ensured by Lemma 53.2.5 which allows the interchange of sums and integrals, if k ∈
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[−n,n] ,

1
2πi

∫
γr

f (w)

(w−a)k+1 dw

=
1

2πi

∫
γr

∑
∞
m=0 am (w−a)m +∑

∞
m=1 a−m (w−a)−m

(w−a)k+1 dw

=
∞

∑
m=0

am
1

2πi

∫
γr

(w−a)m−(k+1) dw

+
∞

∑
m=1

a−m

∫
γr

(w−a)−m−(k+1) dw

=
n

∑
m=0

am
1

2πi

∫
γr

(w−a)m−(k+1) dw

+
n

∑
m=1

a−m

∫
γr

(w−a)−m−(k+1) dw

=
1

2πi

∫
γr

fn (w)

(w−a)k+1 dw

because if l > n or l <−n, ∫
γr

al (w−a)l

(w−a)k+1 dw = 0

for all k ∈ [−n,n] . Therefore,

ak =
1

2πi

∫
γr

f (w)

(w−a)k+1 dw

and so this establishes uniqueness. This proves the theorem.

53.2.3 Contour Integrals And Evaluation Of Integrals

Here are some examples of hard integrals which can be evaluated by using residues. This
will be done by integrating over various closed curves having bounded variation.

Example 53.2.7 The first example we consider is the following integral.∫
∞

−∞

1
1+ x4 dx

One could imagine evaluating this integral by the method of partial fractions and it
should work out by that method. However, we will consider the evaluation of this integral
by the method of residues instead. To do so, consider the following picture.
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x

y

Let γr (t) = reit , t ∈ [0,π] and let σ r (t) = t : t ∈ [−r,r] . Thus γr parameterizes the top
curve and σ r parameterizes the straight line from −r to r along the x axis. Denoting by Γr
the closed curve traced out by these two, we see from simple estimates that

lim
r→∞

∫
γr

1
1+ z4 dz = 0.

This follows from the following estimate.∣∣∣∣∫
γr

1
1+ z4 dz

∣∣∣∣≤ 1
r4−1

πr.

Therefore, ∫
∞

−∞

1
1+ x4 dx = lim

r→∞

∫
Γr

1
1+ z4 dz.

We compute
∫

Γr
1

1+z4 dz using the method of residues. The only residues of the integrand
are located at points, z where 1+ z4 = 0. These points are

z = −1
2

√
2− 1

2
i
√

2,z =
1
2

√
2− 1

2
i
√

2,

z =
1
2

√
2+

1
2

i
√

2,z =−1
2

√
2+

1
2

i
√

2

and it is only the last two which are found in the inside of Γr. Therefore, we need to
calculate the residues at these points. Clearly this function has a pole of order one at each
of these points and so we may calculate the residue at α in this list by evaluating

lim
z→α

(z−α)
1

1+ z4

Thus

Res
(

f ,
1
2

√
2+

1
2

i
√

2
)

= lim
z→ 1

2
√

2+ 1
2 i
√

2

(
z−
(

1
2

√
2+

1
2

i
√

2
))

1
1+ z4

= −1
8

√
2− 1

8
i
√

2
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Similarly we may find the other residue in the same way

Res
(

f ,−1
2

√
2+

1
2

i
√

2
)

= lim
z→− 1

2
√

2+ 1
2 i
√

2

(
z−
(
−1

2

√
2+

1
2

i
√

2
))

1
1+ z4

= −1
8

i
√

2+
1
8

√
2.

Therefore, ∫
Γr

1
1+ z4 dz = 2πi

(
−1

8
i
√

2+
1
8

√
2+
(
−1

8

√
2− 1

8
i
√

2
))

=
1
2

π
√

2.

Thus, taking the limit we obtain 1
2 π
√

2 =
∫

∞

−∞

1
1+x4 dx.

Obviously many different variations of this are possible. The main idea being that the
integral over the semicircle converges to zero as r→ ∞.

Sometimes we don’t blow up the curves and take limits. Sometimes the problem of
interest reduces directly to a complex integral over a closed curve. Here is an example of
this.

Example 53.2.8 The integral is ∫
π

0

cosθ

2+ cosθ
dθ

This integrand is even and so it equals

1
2

∫
π

−π

cosθ

2+ cosθ
dθ .

For z on the unit circle, z = eiθ , z = 1
z and therefore, cosθ = 1

2

(
z+ 1

z

)
. Thus dz = ieiθ dθ

and so dθ = dz
iz . Note this is proceeding formally to get a complex integral which reduces

to the one of interest. It follows that a complex integral which reduces to the one desired is

1
2i

∫
γ

1
2

(
z+ 1

z

)
2+ 1

2

(
z+ 1

z

) dz
z

=
1
2i

∫
γ

z2 +1
z(4z+ z2 +1)

dz

where γ is the unit circle. Now the integrand has poles of order 1 at those points where
z
(
4z+ z2 +1

)
= 0. These points are

0,−2+
√

3,−2−
√

3.

Only the first two are inside the unit circle. It is also clear the function has simple poles at
these points. Therefore,

Res( f ,0) = lim
z→0

z
(

z2 +1
z(4z+ z2 +1)

)
= 1.
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Res
(

f ,−2+
√

3
)
=

lim
z→−2+

√
3

(
z−
(
−2+

√
3
)) z2 +1

z(4z+ z2 +1)
=−2

3

√
3.

It follows ∫
π

0

cosθ

2+ cosθ
dθ =

1
2i

∫
γ

z2 +1
z(4z+ z2 +1)

dz

=
1
2i

2πi
(

1− 2
3

√
3
)

= π

(
1− 2

3

√
3
)
.

Other rational functions of the trig functions will work out by this method also.
Sometimes you have to be clever about which version of an analytic function that re-

duces to a real function you should use. The following is such an example.

Example 53.2.9 The integral here is ∫
∞

0

lnx
1+ x4 dx.

The same curve used in the integral involving sinx
x earlier will create problems with the

log since the usual version of the log is not defined on the negative real axis. This does
not need to be of concern however. Simply use another branch of the logarithm. Leave out
the ray from 0 along the negative y axis and use Theorem 52.2.3 to define L(z) on this set.
Thus L(z) = ln |z|+ iarg1 (z) where arg1 (z) will be the angle, θ , between −π

2 and 3π

2 such
that z = |z|eiθ . Now the only singularities contained in this curve are

1
2

√
2+

1
2

i
√

2,−1
2

√
2+

1
2

i
√

2

and the integrand, f has simple poles at these points. Thus using the same procedure as in
the other examples,

Res
(

f ,
1
2

√
2+

1
2

i
√

2
)
=

1
32

√
2π− 1

32
i
√

2π

and

Res
(

f ,
−1
2

√
2+

1
2

i
√

2
)
=

3
32

√
2π +

3
32

i
√

2π.

Consider the integral along the small semicircle of radius r. This reduces to∫ 0

π

ln |r|+ it

1+(reit)4

(
rieit)dt
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which clearly converges to zero as r→ 0 because r lnr→ 0. Therefore, taking the limit as
r→ 0, ∫

large semicircle

L(z)
1+ z4 dz+ lim

r→0+

∫ −r

−R

ln(−t)+ iπ
1+ t4 dt+

lim
r→0+

∫ R

r

ln t
1+ t4 dt = 2πi

(
3
32

√
2π +

3
32

i
√

2π +
1

32

√
2π− 1

32
i
√

2π

)
.

Observing that
∫

large semicircle
L(z)
1+z4 dz→ 0 as R→ ∞,

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

∫ 0

−∞

1
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2

where e(R)→ 0 as R→ ∞. From an earlier example this becomes

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

(√
2

4
π

)
=

(
−1

8
+

1
4

i
)

π
2
√

2.

Now letting r→ 0+ and R→ ∞,

2
∫

∞

0

ln t
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2− iπ

(√
2

4
π

)

= −1
8

√
2π

2,

and so ∫
∞

0

ln t
1+ t4 dt =− 1

16

√
2π

2,

which is probably not the first thing you would thing of. You might try to imagine how this
could be obtained using elementary techniques.

The next example illustrates the use of what is referred to as a branch cut. It includes
many examples.

Example 53.2.10 Mellin transformations are of the form∫
∞

0
f (x)xα dx

x
.

Sometimes it is possible to evaluate such a transform in terms of the constant, α.

Assume f is an analytic function except at isolated singularities, none of which are on
(0,∞) . Also assume that f has the growth conditions,

| f (z)| ≤ C

|z|b
,b > α

for all large |z| and assume that

| f (z)| ≤ C′

|z|b1
,b1 < α



1690 CHAPTER 53. RESIDUES

for all |z| sufficiently small. It turns out there exists an explicit formula for this Mellin
transformation under these conditions. Consider the following contour.

−R

In this contour the small semicircle in the center has radius ε which will converge to 0.
Denote by γR the large circular path which starts at the upper edge of the slot and continues
to the lower edge. Denote by γε the small semicircular contour and denote by γεR+ the
straight part of the contour from 0 to R which provides the top edge of the slot. Finally
denote by γεR− the straight part of the contour from R to 0 which provides the bottom edge
of the slot. The interesting aspect of this problem is the definition of f (z)zα−1. Let

zα−1 ≡ e(ln|z|+iarg(z))(α−1) = e(α−1) log(z)

where arg(z) is the angle of z in (0,2π) . Thus you use a branch of the logarithm which is
defined on C\ (0,∞) . Then it is routine to verify from the assumed estimates that

lim
R→∞

∫
γR

f (z)zα−1dz = 0

and
lim

ε→0+

∫
γε

f (z)zα−1dz = 0.

Also, it is routine to verify

lim
ε→0+

∫
γεR+

f (z)zα−1dz =
∫ R

0
f (x)xα−1dx

and

lim
ε→0+

∫
γεR−

f (z)zα−1dz =−ei2π(α−1)
∫ R

0
f (x)xα−1dx.
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Therefore, letting ΣR denote the sum of the residues of f (z)zα−1 which are contained in
the disk of radius R except for the possible residue at 0,

e(R)+
(

1− ei2π(α−1)
)∫ R

0
f (x)xα−1dx = 2πiΣR

where e(R)→ 0 as R→ ∞. Now letting R→ ∞,

lim
R→∞

∫ R

0
f (x)xα−1dx =

2πi
1− ei2π(α−1) Σ =

πe−πiα

sin(πα)
Σ

where Σ denotes the sum of all the residues of f (z)zα−1 except for the residue at 0.
The next example is similar to the one on the Mellin transform. In fact it is a Mellin

transform but is worked out independently of the above to emphasize a slightly more infor-
mal technique related to the contour.

Example 53.2.11
∫

∞

0
xp−1

1+x dx, p ∈ (0,1) .

Since the exponent of x in the numerator is larger than −1. The integral does converge.
However, the techniques of real analysis don’t tell us what it converges to. The contour
to be used is as follows: From (ε,0) to (r,0) along the x axis and then from (r,0) to (r,0)
counter clockwise along the circle of radius r, then from (r,0) to (ε,0) along the x axis
and from (ε,0) to (ε,0) , clockwise along the circle of radius ε. You should draw a picture
of this contour. The interesting thing about this is that zp−1 cannot be defined all the way
around 0. Therefore, use a branch of zp−1 corresponding to the branch of the logarithm
obtained by deleting the positive x axis. Thus

zp−1 = e(ln|z|+iA(z))(p−1)

where z = |z|eiA(z) and A(z) ∈ (0,2π) . Along the integral which goes in the positive direc-
tion on the x axis, let A(z) = 0 while on the one which goes in the negative direction, take
A(z) = 2π. This is the appropriate choice obtained by replacing the line from (ε,0) to (r,0)
with two lines having a small gap joined by a circle of radius ε and then taking a limit as
the gap closes. You should verify that the two integrals taken along the circles of radius ε

and r converge to 0 as ε → 0 and as r→ ∞. Therefore, taking the limit,∫
∞

0

xp−1

1+ x
dx+

∫ 0

∞

xp−1

1+ x

(
e2πi(p−1)

)
dx = 2πiRes( f ,−1) .

Calculating the residue of the integrand at −1, and simplifying the above expression,(
1− e2πi(p−1)

)∫ ∞

0

xp−1

1+ x
dx = 2πie(p−1)iπ .

Upon simplification ∫
∞

0

xp−1

1+ x
dx =

π

sin pπ
.
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Example 53.2.12 The Fresnel integrals are∫
∞

0
cos
(
x2)dx,

∫
∞

0
sin
(
x2)dx.

To evaluate these integrals consider f (z) = eiz2
on the curve which goes from the origin

to the point r on the x axis and from this point to the point r
(

1+i√
2

)
along a circle of radius

r, and from there back to the origin as illustrated in the following picture.

x

y

Thus the curve to integrate over is shaped like a slice of pie. Denote by γr the curved
part. Since f is analytic,

0 =
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
ei
(

t
(

1+i√
2

))2(1+ i√
2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
e−t2

(
1+ i√

2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
√

π

2

(
1+ i√

2

)
+ e(r)

where e(r)→ 0 as r→ ∞. Here we used the fact that
∫

∞

0 e−t2
dt =

√
π

2 . Now consider the
first of these integrals. ∣∣∣∣∫

γr

eiz2
dz
∣∣∣∣ =

∣∣∣∣∫ π
4

0
ei(reit)

2
rieitdt

∣∣∣∣
≤ r

∫ π
4

0
e−r2 sin2tdt

=
r
2

∫ 1

0

e−r2u
√

1−u2
du

≤ r
2

∫ r−(3/2)

0

1√
1−u2

du+
r
2

(∫ 1

0

1√
1−u2

)
e−(r1/2)
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which converges to zero as r→ ∞. Therefore, taking the limit as r→ ∞,

√
π

2

(
1+ i√

2

)
=
∫

∞

0
eix2

dx

and so ∫
∞

0
sinx2dx =

√
π

2
√

2
=
∫

∞

0
cosx2dx.

The following example is one of the most interesting. By an auspicious choice of the
contour it is possible to obtain a very interesting formula for cotπz known as the Mittag-
Leffler expansion of cotπz.

Example 53.2.13 Let γN be the contour which goes from −N − 1
2 −Ni horizontally to

N + 1
2 −Ni and from there, vertically to N + 1

2 +Ni and then horizontally to −N− 1
2 +Ni

and finally vertically to−N− 1
2−Ni. Thus the contour is a large rectangle and the direction

of integration is in the counter clockwise direction. Consider the following integral.

IN ≡
∫

γN

π cosπz
sinπz(α2− z2)

dz

where α ∈ R is not an integer. This will be used to verify the formula of Mittag Leffler,

1
α2 +

∞

∑
n=1

2
α2−n2 =

π cotπα

α
. (53.2.12)

You should verify that cotπz is bounded on this contour and that therefore, IN → 0
as N → ∞. Now you compute the residues of the integrand at ±α and at n where |n| <
N + 1

2 for n an integer. These are the only singularities of the integrand in this contour and
therefore, you can evaluate IN by using these. It is left as an exercise to calculate these
residues and find that the residue at ±α is

−π cosπα

2α sinπα

while the residue at n is
1

α2−n2 .

Therefore,

0 = lim
N→∞

IN = lim
N→∞

2πi

[
N

∑
n=−N

1
α2−n2 −

π cotπα

α

]
which establishes the following formula of Mittag Leffler.

lim
N→∞

N

∑
n=−N

1
α2−n2 =

π cotπα

α
.

Writing this in a slightly nicer form, yields 53.2.12.
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53.3 Exercises
1. Example 53.2.7 found the integral of a rational function of a certain sort. The tech-

nique used in this example typically works for rational functions of the form f (x)
g(x)

where deg(g(x)) ≥ deg f (x)+ 2 provided the rational function has no poles on the
real axis. State and prove a theorem based on these observations.

2. Fill in the missing details of Example 53.2.13 about IN → 0. Note how important it
was that the contour was chosen just right for this to happen. Also verify the claims
about the residues.

3. Suppose f has a pole of order m at z = a. Define g(z) by

g(z) = (z−a)m f (z) .

Show

Res( f ,a) =
1

(m−1)!
g(m−1) (a) .

Hint: Use the Laurent series.

4. Give a proof of Theorem 53.1.1. Hint: Let p be a pole. Show that near p, a pole of
order m,

f ′ (z)
f (z)

=
−m+∑

∞
k=1 bk (z− p)k

(z− p)+∑
∞
k=2 ck (z− p)k

Show that Res( f , p) =−m. Carry out a similar procedure for the zeros.

5. Use Rouche’s theorem to prove the fundamental theorem of algebra which says that
if p(z) = zn+an−1zn−1 · · ·+a1z+a0, then p has n zeros in C. Hint: Let q(z) =−zn

and let γ be a large circle, γ (t) = reit for r sufficiently large.

6. Consider the two polynomials z5 + 3z2− 1 and z5 + 3z2. Show that on |z| = 1, the
conditions for Rouche’s theorem hold. Now use Rouche’s theorem to verify that
z5 +3z2−1 must have two zeros in |z|< 1.

7. Consider the polynomial, z11+7z5+3z2−17. Use Rouche’s theorem to find a bound
on the zeros of this polynomial. In other words, find r such that if z is a zero of the
polynomial, |z|< r. Try to make r fairly small if possible.

8. Verify that
∫

∞

0 e−t2
dt =

√
π

2 . Hint: Use polar coordinates.

9. Use the contour described in Example 53.2.7 to compute the exact values of the
following improper integrals.

(a)
∫

∞

−∞

x

(x2+4x+13)
2 dx

(b)
∫

∞

0
x2

(x2+a2)
2 dx
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(c)
∫

∞

−∞

dx
(x2+a2)(x2+b2)

,a,b > 0

10. Evaluate the following improper integrals.

(a)
∫

∞

0
cosax

(x2+b2)
2 dx

(b)
∫

∞

0
xsinx

(x2+a2)
2 dx

11. Find the Cauchy principle value of the integral∫
∞

−∞

sinx
(x2 +1)(x−1)

dx

defined as

lim
ε→0+

(∫ 1−ε

−∞

sinx
(x2 +1)(x−1)

dx+
∫

∞

1+ε

sinx
(x2 +1)(x−1)

dx
)
.

12. Find a formula for the integral
∫

∞

−∞

dx

(1+x2)
n+1 where n is a nonnegative integer.

13. Find
∫

∞

−∞

sin2 x
x2 dx.

14. If m < n for m and n integers, show∫
∞

0

x2m

1+ x2n dx =
π

2n
1

sin
( 2m+1

2n π
) .

15. Find
∫

∞

−∞

1

(1+x4)
2 dx.

16. Find
∫

∞

0
ln(x)
1+x2 dx = 0.

17. Suppose f has an isolated singularity at α. Show the singularity is essential if and
only if the principal part of the Laurent series of f has infinitely many terms. That
is, show f (z) = ∑

∞
k=0 ak (z−α)k +∑

∞
k=1

bk
(z−α)k where infinitely many of the bk are

nonzero.

18. Suppose Ω is a bounded open set and fn is analytic on Ω and continuous on Ω.
Suppose also that fn→ f uniformly on Ω and that f ̸= 0 on ∂Ω. Show that for all n
large enough, fn and f have the same number of zeros on Ω provided the zeros are
counted according to multiplicity.
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Chapter 54

Functional Analysis Applications
54.1 The Spectral Radius

As a very important application of the theory of Laurent series, I will give a short descrip-
tion of the spectral radius. This is a fundamental result which must be understood in order
to prove convergence of various important numerical methods such as the Gauss Seidel or
Jacobi methods.

Definition 54.1.1 Let X be a complex Banach space and let A ∈L (X ,X) . Then

r (A)≡
{

λ ∈ C : (λ I−A)−1 ∈L (X ,X)
}

This is called the resolvent set. The spectrum of A, denoted by σ (A) is defined as all the
complex numbers which are not in the resolvent set. Thus

σ (A)≡ C\ r (A)

Lemma 54.1.2 λ ∈ r (A) if and only if λ I−A is one to one and onto X . Also if |λ |> ||A|| ,
then λ ∈ σ (A). If the Neumann series,

1
λ

∞

∑
k=0

(
A
λ

)k

converges, then
1
λ

∞

∑
k=0

(
A
λ

)k

= (λ I−A)−1 .

Proof: Note that to be in r (A) ,λ I−A must be one to one and map X onto X since
otherwise, (λ I−A)−1 /∈L (X ,X) .

By the open mapping theorem, if these two algebraic conditions hold, then (λ I−A)−1

is continuous and so this proves the first part of the lemma. Now suppose |λ | > ||A|| .
Consider the Neumann series

1
λ

∞

∑
k=0

(
A
λ

)k

.

By the root test, Theorem 51.1.3 on Page 1611 this series converges to an element of
L (X ,X) denoted here by B. Now suppose the series converges. Letting Bn≡ 1

λ
∑

n
k=0
( A

λ

)k
,

(λ I−A)Bn = Bn (λ I−A) =
n

∑
k=0

(
A
λ

)k

−
n

∑
k=0

(
A
λ

)k+1

= I−
(

A
λ

)n+1

→ I

1697
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as n→ ∞ because the convergence of the series requires the nth term to converge to 0.
Therefore,

(λ I−A)B = B(λ I−A) = I

which shows λ I−A is both one to one and onto and the Neumann series converges to
(λ I−A)−1 . This proves the lemma.

This lemma also shows that σ (A) is bounded. In fact, σ (A) is closed.

Lemma 54.1.3 r (A) is open. In fact, if λ ∈ r (A) and |µ−λ | <
∣∣∣∣∣∣(λ I−A)−1

∣∣∣∣∣∣−1
, then

µ ∈ r (A).

Proof: First note

(µI−A) =
(

I− (λ −µ)(λ I−A)−1
)
(λ I−A) (54.1.1)

= (λ I−A)
(

I− (λ −µ)(λ I−A)−1
)

(54.1.2)

Also from the assumption about |λ −µ| ,∣∣∣∣∣∣(λ −µ)(λ I−A)−1
∣∣∣∣∣∣≤ |λ −µ|

∣∣∣∣∣∣(λ I−A)−1
∣∣∣∣∣∣< 1

and so by the root test,
∞

∑
k=0

(
(λ −µ)(λ I−A)−1

)k

converges to an element of L (X ,X) . As in Lemma 54.1.2,

∞

∑
k=0

(
(λ −µ)(λ I−A)−1

)k
=
(

I− (λ −µ)(λ I−A)−1
)−1

.

Therefore, from 54.1.1,

(µI−A)−1 = (λ I−A)−1
(

I− (λ −µ)(λ I−A)−1
)−1

.

This proves the lemma.

Corollary 54.1.4 σ (A) is a compact set.

Proof: Lemma 54.1.2 shows σ (A) is bounded and Lemma 54.1.3 shows it is closed.

Definition 54.1.5 The spectral radius, denoted by ρ (A) is defined by

ρ (A)≡max{|λ | : λ ∈ σ (A)} .

Since σ (A) is compact, this maximum exists. Note from Lemma 54.1.2, ρ (A)≤ ||A||.

There is a simple formula for the spectral radius.
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Lemma 54.1.6 If |λ |> ρ (A) , then the Neumann series,

1
λ

∞

∑
k=0

(
A
λ

)k

converges.

Proof: This follows directly from Theorem 53.2.6 on Page 1682 and the observation
above that 1

λ
∑

∞
k=0
( A

λ

)k
= (λ I−A)−1 for all |λ | > ||A||. Thus the analytic function, λ →

(λ I−A)−1 has a Laurent expansion on |λ |> ρ (A) by Theorem 53.2.6 and it must coincide
with 1

λ
∑

∞
k=0
( A

λ

)k
on |λ | > ||A|| so the Laurent expansion of λ → (λ I−A)−1 must equal

1
λ

∑
∞
k=0
( A

λ

)k
on |λ |> ρ (A) . This proves the lemma.

The theorem on the spectral radius follows. It is due to Gelfand.

Theorem 54.1.7 ρ (A) = limn→∞ ||An||1/n.

Proof: If
|λ |< lim sup

n→∞

||An||1/n

then by the root test, the Neumann series does not converge and so by Lemma 54.1.6
|λ | ≤ ρ (A) . Thus

ρ (A)≥ lim sup
n→∞

||An||1/n .

Now let p be a positive integer. Then λ ∈ σ (A) implies λ
p ∈ σ (Ap) because

λ
pI−Ap = (λ I−A)

(
λ

p−1 +λ
p−2A+ · · ·+Ap−1

)
=

(
λ

p−1 +λ
p−2A+ · · ·+Ap−1

)
(λ I−A)

It follows from Lemma 54.1.2 applied to Apthat for λ ∈ σ (A) , |λ p| ≤ ||Ap|| and so |λ | ≤
||Ap||1/p . Therefore, ρ (A)≤ ||Ap||1/p and since p is arbitrary,

lim inf
p→∞
||Ap||1/p ≥ ρ (A)≥ lim sup

n→∞

||An||1/n .

This proves the theorem.

54.2 Analytic Semigroups
54.3 Sectorial Operators and Analytic Semigroups

In solving ordinary differential equations, the main result involves the fundamental matrix
Φ(t) where Φ′ (t) = AΦ(t) ,Φ(0) = I, or Φ′ (t)+AΦ(t) = 0,Φ(0) = I and the variation of
constants formula. Recall that Φ(t + s) = Φ(t)Φ(s). This idea generalizes to the situation
where A is a closed densely defined operator defined on D(A)⊆ X , a Banach space under
some conditions which are sufficiently general to include what was done above with A an
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n×n matrix as a special case. The identity Φ(t)Φ(s) = Φ(t + s) holds for any t,s ∈R and
so is called a group of transformations. However, in the more general case, the identity only
holds for t,s≥ 0 which is why it is called a semigroup. In this more general setting, I will
call it S (t). I am mostly following the presentation in Henry [63] in this short introduction.
In what follows H will be a Banach space unless specified to be a Hilbert space. This new
material differs in letting A be only a closed densely defined operator. It might not be a
bounded operator.

These semigroups are useful in considering various partial differential equations which
can be considered just like they were ordinary differential equations in the form u′+Au =
f (u). The semigroups discussed here, when applied to actual examples, have the property
of allowing one to begin with a very un-smooth initial condition, something in H, and
making S (t)x in D(A) for all t > 0. When applied to partial differential equations, this
typically has the effect of making a solution t → S (t)x smoother for positive t than the
initial condition.

One can show that λ → (λ I−A)−1 is analytic on its so called resolvent set. This
follows from two things, the resolvant identity

(λ I−A)−1 (µI−A)−1 = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
which follows from an observation that (µI−A), (λ I−A) are onto so the identity holds if
and only if

(λ I−A)−1 (µI−A)−1 (µI−A) = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
(µI−A)

if and only if

(λ I−A)−1 = (µ−λ )−1
(
(λ I−A)−1 (µI−A)− I

)
= (µ−λ )−1

(
(λ I−A)−1 ((µ−λ ) I +(λ I−A))− I

)
if and only if

(µ−λ )(λ I−A)−1 = (λ I−A)−1 ((µ−λ ) I +(λ I−A))− I

= (µ−λ )(λ I−A)−1 + I− I,

and an assumption that supλ

∥∥∥(λ I−A)−1 x
∥∥∥ < ∞ for all λ near µ which by the Uniform

boundedness theorem implies
∥∥∥(λ I−A)−1

∥∥∥ is bounded for λ near µ .

Thus I will always assume this resolvent λ → (λ I−A)−1 is analytic for λ on its resol-
vent set, where this function is analytic. As to the resolvent set, the following describes it
in this case of sectorial operators.

Definition 54.3.1 Let φ < π/2 and for a ∈ R, let Saφ denote the sector in the complex
plane

{z ∈ C\{a} : |arg(z−a)| ≤ π−φ}
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This sector is as shown below.

Saφ

aφ

A closed, densely defined linear operator A is called sectorial if for some sector as
described above, it follows that for all λ ∈ Saφ ,

(λ I−A)−1 ∈L (H,H) , (54.3.3)

and for some M ∥∥∥(λ I−A)−1
∥∥∥≤ M
|λ −a|

(54.3.4)

The following perturbation theorem is very useful for sectorial operators. I won’t use it
here, but in applications of this theory, it is useful. First note that for λ ∈ Saφ ,

A(λ I−A)−1 =−I +λ (λ I−A)−1 (54.3.5)

Also, if x ∈ D(A) ,
(λ −A)−1 Ax =−x+λ (λ I−A)−1 x (54.3.6)

This follows from algebra and noting that λ I−A maps D(A) onto H because (λ I−A)−1 ∈
L (H,H). Thus the above is true if and only if A =

(
−I +λ (λ I−A)−1

)
(λ I−A) which

is obviously true. 54.3.6 is similar. Thus from 54.3.5,∥∥∥A(λ I−A)−1
∥∥∥≤ 1+ |λ |

∥∥∥(λ I−A)−1
∥∥∥≤ 1+ |λ | M

|λ −a|
≤C (54.3.7)

for some constant C whenever |λ | is large enough and in Saφ .

Proposition 54.3.2 Suppose A is a sectorial operator as defined above so it is a densely
defined closed operator on D(A)⊆ H which satisfies∥∥∥A(λ I−A)−1

∥∥∥≤C (54.3.8)

whenever |λ | ,λ ∈ Saφ , is sufficiently large and suppose B is a densely defined closed oper-
ator such that D(B)⊇ D(A) and for all x ∈ D(A) ,

∥Bx∥ ≤ ε ∥Ax∥+K ∥x∥ (54.3.9)

where εC < 1. Then A+B is also sectorial.
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Proof: I need to consider (λ I− (A+B))−1 . This equals((
I−B(λ I−A)−1

)
(λ I−A)

)−1
. (54.3.10)

The issue is whether this makes any sense for all λ ∈ Sbφ for some b∈R. Let b > a be very
large so that if λ ∈ Sbφ , then 54.3.8 holds. Then from 54.3.9, it follows that for ∥x∥ ≤ 1,∥∥∥B(λ I−A)−1 x

∥∥∥ ≤ ε

∥∥∥A(λ I−A)−1 x
∥∥∥+K

∥∥∥(λ I−A)−1 x
∥∥∥

≤ εC+K/ |λ −a|

and so if b is made sufficiently large and λ ∈ Sbφ , then for all ∥x∥ ≤ 1,∥∥∥B(λ I−A)−1 x
∥∥∥≤ εC+K/ |λ −a|< r < 1

Therefore, for such b, (
I−B(λ I−A)−1

)−1
=

∞

∑
k=0

(
B(λ I−A)−1

)k

exists and so for such b, the expression in 54.3.10 makes sense and equals

(λ I−A)−1
(

I−B(λ I−A)−1
)−1

and furthermore,∥∥∥∥(λ I−A)−1
(

I−B(λ I−A)−1
)−1

∥∥∥∥≤ M
|λ −a|

1
1− r

≤ M′

|λ −b|
by adjusting the constants because

M
|λ −a|

|λ −b|
1− r

is bounded for λ ∈ Sbφ . ■
In finite dimensions, this kind of thing just shown always holds. There you have D(A)

is the whole space typically and B will satisfy such an inequality in 54.3.9. The following
example shows that all the bounded operators are sectorial.

Example 54.3.3 If A ∈L (H,H) , then A is sectorial.

The spectrum σ (A) is bounded by ∥A∥ and so there is clearly a sector of the above form
contained in the resolvent set of A. As to the estimate 54.3.4, let a be larger than 2∥A∥ and
let Saφ be contained in the resolvent set. Then for λ ∈ Saφ , |λ |> 2∥A∥ and so∥∥∥(λ I−A)−1

∥∥∥= |λ |−1

∥∥∥∥∥
(

I− A
λ

)−1
∥∥∥∥∥≤ |λ |−1

∥∥∥∥∥ ∞

∑
k=0

(
A
λ

)k
∥∥∥∥∥≤ |λ |−1 2

Now for λ ∈ Saφ ,
∣∣∣λ−a

λ

∣∣∣≤M for some constant M and so∥∥∥(λ I−A)−1
∥∥∥≤ 2M
|λ −a|
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Definition 54.3.4 Let ε > 0 and for a sectorial operator as defined above, let the contour
γε,φ be as shown next where the orientation is also as shown by the arrow, a being the
center of the small circle.

Saφ

φ

The little circle has radius ε in the above contour but ε is not necessarily small.

Definition 54.3.5 For t ∈ S0
0(φ+π/2) the open sector shown in the following picture,

0
S0(φ+π/2)

φ +π/2

define

S (t)≡ 1
2πi

∫
γε,φ

eλ t (λ I−A)−1 dλ (54.3.11)

where ε is some positive number. Since the integrand is analytic, two different values for ε

give the same result in 54.3.11. The following picture shows S0
0(φ+π/2) and S0φ . Note how

the dotted line is at right angles to the solid line.

Sa(φ+π/2)

t
φ π/2−φ

Also define S (0)≡ I.

I need to move A in and out of an integral.

Lemma 54.3.6 Let f (λ ) ,A f (y) be bounded and continuous on γ∗
ε,φ and have values in

D(A). Then A
∫

γε,φ
eλ t f (λ )dλ =

∫
γε,φ

eλ tA f (λ )dλ provided t ∈ S0
0(φ+π/2). Also, for large

R, and ΓR the circle a+Reiθ with θ ∈ [π−φ ,π +φ ] , limR→∞

∫
ΓR

eλ t f (λ )dλ = 0.
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Proof: On one of the straight lines making up the contour, we have λ = a+ yw where
|w| = 1,y ≥ ε . Then eλ t = eat+ywt = eatey|t|ei(argw+arg t)

= eatey(cos(argw+arg t)+isin(argw+arg t)).
Now for t ∈ S0

0(φ+π/2),

argw+ arg t >
π

2

and so cos(argw+ arg t)< 0. Therefore,
∣∣eλ t
∣∣≤ |eat |e−y|t|δ t where δ t > 0. Thus this part

of the contour integral is of the form
∫

∞

ε
eat+ytw f (a+ yw)wdy and∥∥∥∥∫ ∞

R
eat+ytw f (a+ yw)wdy

∥∥∥∥≤C
∣∣eat ∣∣∫ ∞

R
e−y|t|δ t dy < η

if R is large enough. Now consider A
∫ R

ε

g(y)︷ ︸︸ ︷
eat+ytw f (a+ yw)wdy. There is a sequence of

Riemann sums converging to the integral, {S (g,Pn)} as ∥Pn∥ → 0 for Pn a partition. Each
of these sums is in the D(A) . Then

S (g,Pn)→
∫ R

ε

g(y)dy,AS (g,Pn) = S (Ag,Pn)→
∫ R

ε

Ag(y)dy

Since A is a closed operator,
∫ R

ε
g(y)dy ∈ D(A) and A

(∫ R
ε

g(y)dy
)
=
∫ R

ε
Ag(y)dy. Now∫ R

ε
g(y)dy ∈ D(A) and limR→∞

∫ R
ε

g(y)dy =
∫

∞

ε
g(y)dy while

lim
R→∞

A
∫ R

ε

g(y)dy = lim
R→∞

∫ R

ε

Ag(y)dy =
∫

∞

ε

Ag(y)dy

Since A is closed,
∫

∞

ε
Ag(y)dy = A

∫
∞

ε
g(y)dy and

∫
∞

ε
g(y)dy ∈ D(A). The other straight

line is similar. As to the circular part, it is easier because it is not an improper integral. The
argument for taking A on the inside is similar, approximating with Riemann sums and then
passing to a limit.

It remains to consider the other claim. On the circle, λ = a+Reiθ so dλ = Rieiθ dθ

and ∫
ΓR

eλ t f (λ )dλ =
∫

π+φ

π−φ

eat+|t|R(cos(θ+arg t)+isin(θ+arg t)) f (λ )Rieiθ dθ

Now for t ∈ S0
0(φ+π/2) and θ as indicated, θ + arg t > π

2 and θ + arg t < 3π

2 and so the
magnitude of the above integral is no more than an expresson of the form

∣∣eat ∣∣C∫ π+φ

π−φ

e−|t|Rδ Rdθ

which clearly converges to 0 as R→ ∞. ■
Because of this lemma, I will move A into and out of the integrals which occur in what

follows. Also, it is possible to approximate contour integrals over γε,φ with closed contours
and use the Cauchy integral formula.

Next is consideration of the above definition along with estimates.
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Lemma 54.3.7 The above definition is well defined for t ∈ S0
0(φ+π/2). Also there is a con-

stant Mr such that
∥S (t)∥ ≤Mreat

for every t ∈ S0
0(φ+π/2) such that |arg t| ≤ r <

(
π

2 −φ
)
. If Sr is the sector just described, t

such that |arg t| ≤ r <
(

π

2 −φ
)
, then for any x ∈ H,

lim
t→0,t∈Sr

S (t)x = x (54.3.12)

Also, for |arg t| ≤ r <
(

π

2 −φ
)
∥AS (t)∥ ≤Mr

∣∣eat ∣∣ 1
|t|

+Nr
∣∣eat ∣∣ |a| (54.3.13)

Proof: In the definition of S (t)

S (t)≡ 1
2πi

∫
γε,φ

eλ t (λ I−A)−1 dλ

Since S (t) does not depend on ε, we can take ε = 1/ |t| . Then the circular part of the

contour is λ = a + 1
|t|e

iθ . Then eλ t = e
(

a+ 1
|t| e

iθ
)
(|t|(eiarg t))

= eateei(θ+arg(t))
. Then on the

circle which is part of γε,φ the contour integral equals

1
2π

∫
π−φ

φ−π

eateei(θ+arg(t))
((

a+
1
|t|

eiθ
)

I−A
)−1 1
|t|

eiθ dθ

Now ∣∣∣eei(θ+arg(t))
∣∣∣= ∣∣∣ecos(θ+arg t)+isin(θ+arg t)

∣∣∣≤ e

and by assumption, the norm of the integrand is no larger than eeat M
1/|t|

1
|t| and so the norm of

this integral is dominated by

eeatM
2π

∫
π−φ

φ−π

dθ =
eeatM

2π
(2π−2φ)≤ eatM

where M is independent of t.
Now consider the part of the contour used to define S (t) which is the top line segment.

λ = yw+a where arg(w) = π−φ ,y > 1/ |t|. This part of the contour integral equals

1
2πi

∫
∞

1/|t|
e(yw+a)t ((yw+a) I−A)−1 wdy

Then from the resolvent estimate 54.3.4, the norm of this is dominated by

eat 1
2πi

∫
∞

1/|t|
eyeiargw(|t|eiarg t)M

y
dy = eat 1

2πi

∫
∞

1/|t|
e|t|yei(argw+arg t) M

y
dy
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By assumption |arg(t)| ≤ r <
(

π

2 −φ
)

and so

arg(w)+ arg(t)≥ (π−φ)− r =
π

2
+
(

π

2
−φ

)
− r ≡ π

2
+δ (r) , δ (r)> 0.

ei(argw+arg t) = cos(argw+ arg t)+ isin(argw+ arg t) , so cos(argw+ arg t)< 0

It follows the integral dominated by an expression of the form

eat 1
2π

∫
∞

1/|t|
exp(−c(r) |t|y) M

y
dy = eat 1

2π

∫
∞

1
exp(−c(r)x)

M |t|
x

1
|t|

dx

= eat 1
2π

∫
∞

1
exp(−c(r)x)

M
x

dx

where c(r)< 0 independent of |arg(t)| ≤ r. A similar estimate holds for the integral on the
bottom segment. Thus for |arg(t)| ≤ r, ∥S (t)∥ is bounded by Meat for some constant M. In
particular, ∥S (t)∥e−at is bounded for t ∈ [0,∞).

Now let x ∈ D(A) . From 54.3.6,

eλ t

λ
(λ −A)−1 Ax+

eλ t

λ
x = eλ t (λ I−A)−1 x (54.3.14)

On the circular part of the contour, λ = a+ 1
|t|e

iθ . Consider the first term on the left in the
above equation. The contour integral is of the form

∫
π−φ

φ−π

eateei(θ+arg(t)) 1
a+ 1

|t|e
iθ

((
a+

1
|t|

eiθ
)

I−A
)−1

Ax
i
|t|

eiθ dθ

which is dominated by

e
∣∣eat ∣∣∫ π−φ

φ−π

1∣∣∣a+ 1
|t|e

iθ
∣∣∣ M∣∣∣ 1
|t|e

iθ
∣∣∣ ∥Ax∥ 1

|t|
≤ eatM̂ ∥Ax∥

∫
π−φ

φ−π

|t|
|a |t|+ eiθ |

dθ

≤ eatM̂ ∥Ax∥
∫

π−φ

φ−π

|t|
1−|a| |t|

dθ

which converges to 0 as t→ 0. On the other part of the contour, λ = yw+a where arg(w) =
π−φ ,y > 1/ |t|.

eat

2πi

∫
∞

1/|t|
eywt 1

yw+a
((yw+a) I−A)−1 wdy

As above, arg(w)+arg(t)> π

2 +δ (r) ,δ (r)> 0 for |arg t| ≤ r <
(

π

2 −φ
)
. Thus, as above,

this integral is dominated by

eat

2π

∫
∞

1/|t|
e−y|t|c(r) 1

|yw+a|
M
|y|

dy =
eat

2π

∫
∞

1
e−uc(r) |t|

|uw+a |t||
M
|u|

du
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Which converges to 0 as t→ 0 in the sector |arg t| ≤ r <
(

π

2 −φ
)
. Also note that for t close

to 0, the contour contains 0 on the left. Similarly the integral over the other straight line
converges to 0 as t→ 0 in that sector.

S (t)x = ε (t)+
1

2πi

∫
γ1/|t|,φ

eλ t

λ
xdλ , lim

t→0+
ε (t) = 0

Now approximate γ1/|t|,φ with a closed contour having a large circular arc of radius R such
that the resulting bounded contour ΓR has 0 on its inside and∣∣∣∣∣ 1

2πi

∫
γ1/|t|,φ

eλ t

λ
xdλ − 1

2πi

∫
ΓR

eλ t

λ
xdλ

∣∣∣∣∣< η (R) .

By the Cauchy integral formula, this shows that

S (t)x = ε (t)+η (R)+ x, lim
t→0+

ε (t) = 0 = lim
R→∞

η (R)

So let R→ ∞ and obtain S (t)x = ε (t)+ x and now let t → 0 to obtain S (t)x→ x. By the
first part, ∥S (t)∥ is bounded for small t in that sector so it follows that for any x ∈ H,

∥S (t)x− x∥ ≤ ∥S (t)x−S (t)y∥+∥S (t)y− y∥+∥y− x∥
≤ C∥x− y∥+∥S (t)y− y∥

Choosing ∥x− y∥ small enough for y∈D(A) , the above is no more than ε/2+∥S (t)y− y∥
and the second term converges to 0 from what was just shown. Hence, for all x ∈ H,

lim
t→0

S (t)x = x

where t is in the sector |arg t| ≤ r <
(

π

2 −φ
)
.

Now for |arg t| ≤ r <
(

π

2 −φ
)
, AS (t) = 1

2πi
∫

γε,φ
eλ tA(λ I−A)−1 dλ . From 54.3.5 this

is
1

2πi

∫
γε,φ

eλ t
(
−I +λ (λ I−A)−1

)
dλ

As above, let ε = 1/ |t| . On the circle, λ = a+ 1
|t|e

iθ and as above, this is

∫
π−φ

φ−π

eateei(θ+arg(t))

(
−I +

(
a+

1
|t|

eiθ
)((

a+
1
|t|

eiθ
)

I−A
)−1

)
i
|t|

eiθ dθ

As before, because of the choice of t, the above is dominated by

e
∣∣eat ∣∣∫ π−φ

φ−π

1+M

∣∣∣a+ 1
|t|e

iθ
∣∣∣

1/ |t|

 1
|t|

dθ = e
∣∣eat ∣∣M ∫

π−φ

φ−π

(
1+
∣∣∣a |t|+ eiθ

∣∣∣) 1
|t|

dθ

= e
∣∣eat ∣∣M ∫

π−φ

φ−π

(
1
|t|

+

∣∣∣∣a+ eiθ 1
|t|

∣∣∣∣)dθ

≤ e
∣∣eatM

∣∣2π
2
|t|

+Me
∣∣eat ∣∣ |a|2π (54.3.15)
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Now consider one of the straight lines. On either of these λ = a+wy where |w| = 1
and y≥ 1/ |t|. Then the contour integral is

eat

2πi

∫
∞

1/|t|
eywt

(
−I +(a+wy)((a+wy) I−A)−1

)
wdy

As earlier, the norm of this is dominated by |e
at |

2π

∫
∞

1/|t| e
−y|t|c(r)

(
1+M |a+wy|

|wy|

)
dy =

=
|eat |
2π

∫
∞

1
e−xc(r)

(
1+M

|a+w(x/ |t|)|
|w(x/ |t|)|

)
1
|t|

dx

=
|eat |
2π

∫
∞

1
e−xc(r)

(
1+M

|a |t|+wx|
|x|

)
1
|t|

dx≤ |e
at |

2π

(
Mr

1
|t|

)
+Nr |a|

|eat |
2π

Combining this with 54.3.15 and adjusting constants,

∥AS (t)∥ ≤Mr
∣∣eat ∣∣ 1
|t|

+Nr
∣∣eat ∣∣ |a| ■

Also note that if the contour is shifted to the right slightly, the integral over the shifted
contour, γ ′

ε,φ coincides with the integral over γε,φ thanks to the Cauchy integral formula
and Lemma 54.3.6 which allows the approximation of the above integrals with one on a
closed contour. The following is the main result.

Theorem 54.3.8 Let A be a sectorial operator as defined in Definition 54.3.1 for the sector
Sa,φ . Then there exists a semigroup S (t) for t ∈ |argz| ≤ r <

(
π

2 −φ
)

which satisfies the
following conditions.

1. Then S (t) given above in 54.3.11 is analytic for t ∈ S0
0,(φ+π/2).

2. For any x ∈ H and t ∈ S0
0,(φ+π/2), then for n a positive integer, S(n) (t)x = AnS (t)x

3. S is a semigroup on the open sector, S0
0,(φ+π/2). That is, for all t,s ∈ S0

0(φ+π/2),

S (t + s) = S (t)S (s)

4. limt→0,t∈Sr S (t)x = x for all x ∈ H where |arg t| ≤ r <
(

π

2 −φ
)

5. For some constants M,N, if t is positive and real,∥S (t)∥≤Meat , ∥AS (t)∥≤Meat 1
|t|+

N |eat | |a|

Proof: Consider the first claim. This follows right away from the formula: S (t) ≡
1

2πi
∫

γε,φ
eλ t (λ I−A)−1 dλ . One can differentiate under the integral sign using the domi-

nated convergence theorem to obtain

S′ (t)≡ 1
2πi

∫
γε,φ

λeλ t (λ I−A)−1 dλ =
1

2πi

∫
γε,φ

eλ t
(

I +A(λ I−A)−1
)

dλ

=
1

2πi

∫
γε,φ

eλ tA(λ I−A)−1 dλ

because of Lemma 54.3.6 the Cauchy integral theorem, and approximating γε,φ with closed
contours.
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Now from Lemma 54.3.6 one can take A out of the inte-
gral and

S′ (t) = A

(
1

2πi

∫
γε,φ

eλ t (λ I−A)−1 dλ

)
= AS (t)

To get the higher derivatives, note S (t) has infinitely many derivatives due to t being a
complex variable. Therefore,

S′′ (t) = lim
h→0

S′ (t +h)−S′ (t)
h

= lim
h→0

A
S (t +h)−S (t)

h

and S(t+h)−S(t)
h → AS (t) and so since A is closed, AS (t) ∈ D(A) and the above becomes

A2S (t). Continuing this way yields the claims 1.) and 2.). Note this also implies S (t)x ∈
D(A) for each t ∈ S0

0(φ+π/2) which says more than S (t)x ∈H. In practice this has the effect
of regularizing the solution to an initial value problem.

Next consider the semigroup property. Let s, t ∈ S0
0,(φ+π/2). As described above let γ ′

ε,φ

denote the contour shifted slightly to the right. Then

S (t)S (s) =
(

1
2πi

)2 ∫
γε,φ

∫
γ ′

ε,φ

eλ t (λ I−A)−1 eµs (µI−A)−1 dµdλ (54.3.16)

Using the resolvent identity,

(λ I−A)−1 (µI−A)−1 = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
,

then substituting this resolvent identity in 54.3.16, it equals(
1

2πi

)2 ∫
γε,φ

∫
γ ′

ε,φ

eµseλ t
(
(µ−λ )−1

(
(λ I−A)−1− (µI−A)−1

))
dµdλ

= −
(

1
2πi

)2 ∫
γε,φ

eλ t
∫

γ ′
ε,φ

eµs (µ−λ )−1 (µI−A)−1 dµdλ

+

(
1

2πi

)2 ∫
γε,φ

∫
γ ′

ε,φ

eµseλ t (µ−λ )−1 (λ I−A)−1 dµdλ

The order of integration can be interchanged because of the absolute convergence and Fu-
bini’s theorem. Then this reduces to

= −
(

1
2πi

)2 ∫
γ ′

ε,φ

(µI−A)−1 eµs
∫

γε,φ

eλ t (µ−λ )−1 dλdµ

+

(
1

2πi

)2 ∫
γε,φ

(λ I−A)−1 eλ t
∫

γ ′
ε,φ

eµs (µ−λ )−1 dµdλ
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Now the following diagram might help in drawing some interesting conclusions.

The first iterated integral equals 0. This can be seen from the above picture. By Lemma
54.3.6, the inner integral taken over γε,φ is essentially equal to the integral over the closed
contour in the above picture provided the radius of the part of the large circle in the above
closed contour is large enough. This closed contour integral equals 0 by the Cauchy integral
theorem. The second iterated integral equals

1
2πi

∫
γε,φ

(λ I−A)−1 eλ teλ sdλ = S (t + s)

from the Cauchy integral formula. This verifies the semigroup identity.
4.) is done in Lemma 54.3.7 which also includes 5.) when you let t be positive and real.

■

54.3.1 The Numerical Range

In Hilbert space, there is a useful easy to check criterion which implies an operator is
sectorial.

Definition 54.3.9 Let A be a closed densely defined operator A : D(A)→H for H a Hilbert
space. The numerical range is the following set.

{(Au,u) : u ∈ D(A)}

Also recall the resolvent set, r (A) consists of those λ ∈C such that (λ I−A)−1 ∈L (H,H) .
Thus, to be in this set λ I−A is one to one and onto with continuous inverse.

Proposition 54.3.10 Suppose the numerical range of A,a closed densely defined operator
A : D(A)→ H for H a Hilbert space is contained in the set

{z ∈ C : |arg(z)| ≥ π−φ}

where 0 < φ < π/2 and suppose A−1 ∈L (H,H) ,(0 ∈ r (A)). Then A is sectorial with the
sector S0,φ ′ where π/2 > φ

′ > φ . Here arg(z) is the angle which is between −π and π .

Proof: Here is a picture of the situation along with details used to motivate the proof.
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φ
(A u
|u| ,

u
|u| )

λ

In the picture the angle which is a little larger than φ is φ
′. Let λ be as shown with

|argλ | ≤ π−φ
′. Then from the picture and trigonometry, if u ∈ D(A) ,

|λ |sin
(
φ
′−φ

)
<

∣∣∣∣λ −(A
u
|u|

,
u
|u|

)∣∣∣∣
and so |u| |λ |sin(φ ′−φ) <

∣∣∣(λu−Au, u
|u|

)∣∣∣ ≤ ∥(λ I−A)u∥ . Hence for all λ such that

|argλ | ≤ π−φ
′ and u ∈ D(A) ,

|u|<
(

1
sin(φ ′−φ)

)
1
|λ |
|(λ I−A)u| ≡ M

|λ |
|(λ I−A)u|

Thus (λ I−A) is one to one on S0,φ ′ and if λ ∈ r (A) , then∥∥∥(λ I−A)−1
∥∥∥< M
|λ |

.

By assumption 0 ∈ r (A). Now if |µ| is small, (µI−A)−1 must exist because it equals((
µA−1− I

)
A
)−1 and for |µ|<

∥∥A−1
∥∥ ,(µA−1− I

)−1 ∈L (H,H) since the infinite series

∞

∑
k=0

(−1)k (
µA−1)k

converges and must equal to
(
µA−1− I

)−1
. Therefore, there exists µ ∈ S0,φ ′ such that

µ ̸= 0 and µ ∈ r (A). Also if µ ̸= 0 and µ ∈ S0,φ ′ , then if |λ −µ| < |µ|
M ,(λ I−A)−1 must

exist because

(λ I−A)−1 =
[(

(λ −µ)(µI−A)−1− I
)
(µI−A)

]−1

where
(
(λ −µ)(µI−A)−1− I

)−1
exists because

∥∥∥(λ −µ)(µI−A)−1
∥∥∥= |λ −µ|

∥∥∥(µI−A)−1
∥∥∥< |µ|

M
· M
|µ|

= 1.

It follows that if S ≡
{

λ ∈ S0,φ ′ : λ ∈ r (A)
}
, then S is open in S0,φ . However, S is also

closed because if λ = limn→∞ λ n where λ n ∈ S, then if λ = 0, it is given λ ∈ S. If λ ̸= 0,
then for large enough n, |λ −λ n| < |λ n|

M and so λ ∈ S. Since S0,φ ′ is connected, it follows
S = S0,φ ′ . ■
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Corollary 54.3.11 If for some a ∈ R, the numerical values of −aI + A are in the set
{λ : |λ | ≥ π−φ} where 0 < φ < π/2, and a ∈ r (A) then A is sectorial.

Proof: By assumption, 0∈ r (−aI +A) and also from Proposition 54.3.10, for µ ∈ S0,φ ′

where π/2 > φ
′ > φ ,

((−aI +A)−µI)−1 ∈L (H,H) ,
∥∥∥((−aI +A)−µI)−1

∥∥∥≤ M
|µ|

Therefore, for µ ∈ S0,φ ′ ,µ +a ∈ r (A) . Therefore, if λ ∈ Sa,φ ′ ,λ −a ∈ S0,φ ′∥∥∥(A−λ I)−1
∥∥∥= ∥∥∥(A−aI− (λ −a) I)−1

∥∥∥≤ M
|λ −a|

■

54.3.2 An Interesting Example
In this section related to this example, for V a Banach space, V ′ will denote the space of
continuous conjugate linear functions defined on V . Usually the symbol has meant the
space of continuous linear functions but here they will be conjugate linear. That is f ∈ V ′

means
f (ax+by) = a f (x)+b f (y)

and f is continuous.
Let Ω be a bounded open set in Rn and define

V0 ≡
{

u ∈C∞
(
Ω
)

: u = 0 on Γ
}

where Γ is some measurable subset of the boundary of Ω and C∞
(
Ω
)

denotes the restric-
tions of functions in C∞

c (Rn) to Ω. By Corollary 15.5.11 V0 is dense in L2 (Ω) . Now define
the following for u,v ∈V0.

A0u(v)≡−a
∫

Ω

uvdx−
∫

Ω

a(x)∇u ·∇vdx

where a > 0 and a(x)≥ 0 is a C1
(
Ω
)

function. Also define the following inner product on
V0.

(u,v)1 ≡
∫

Ω

(
auv+a(x)∇u ·∇v

)
dx

Let ||·||1 denote the corresponding norm.
Of course V0 is not a Banach space because it fails to be complete. u∈V will mean that

u ∈ L2 (Ω) and there exists a sequence {un} ⊆V0 such that

lim
m,n→∞

||un−um||1 = 0

and
lim
n→∞
|un−u|L2(Ω) = 0.
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For u ∈V, define ∇u to be that element of L2 (Ω;Cn,a(x)dmn) , the space of vector valued
L2 functions taken with respect to the measure a(x)dmn which satisfies

|∇u−∇un|L2(Ω;Cn,a(x)dmn)
→ 0.

Denote this space by W for simplicity of notation.

Observation 54.3.12 V is a Hilbert space with inner product given by

(u,v)1 ≡
∫

Ω

(
auv+a(x)∇u ·∇v

)
dx

Everything is obvious except completeness. Suppose then that {un} is a Cauchy se-
quence in V. Then there exists a unique u ∈ L2 (Ω) such that |un−u|L2(Ω)→ 0. Now let

|wn−un|L2(Ω)+ |∇wn−∇un|W < 1/2n

It follows {∇wn} is also a Cauchy sequence in W while {wn} is a Cauchy sequence in
L2 (Ω) converging to u. Thus the thing to which ∇wn converges in W is the definition of
∇u and u ∈V. Thus

||un−u||1 ≤ ||un−wn||1 + ||wn−u||1

<
1
2n + ||wn−u||1

and the last term converges to 0. Hence V is complete as claimed.
Then it is clear V is a Hilbert space. The next observation is a simple one involving the

Riesz map.

Definition 54.3.13 Let V be a Hilbert space and let V ′ be the space of continuous conju-
gate linear functions defined on V . Then define R : V →V ′ by

Rx(y)≡ (x,y) .

This is called the Riesz map.

Lemma 54.3.14 The Riesz map is one to one and onto and linear.

Proof: It is obvious it is one to one and linear. The only challenge is to show it is onto.
Let z∗ ∈V ′. If z∗ (V ) = {0} , then letting z = 0, it follows Rz = z∗. If z∗ (V ) ̸= 0, then

ker(z∗)≡ {x ∈V : z∗ (x) = 0}

is a closed subspace. It is closed because z∗ is continuous and it is just z∗−1 (0) . Since
ker(z∗) is not everything in V there exists

w ∈ ker(z∗)⊥ ≡ {x : (x,y) = 0 for all y ∈ ker(z∗)}

and w ̸= 0. Then

z∗
(

z∗ (x)w− z∗ (w)x
)
= z∗ (x)z∗ (w)− z∗ (w)z∗ (x) = 0
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and so z∗ (x)w− z∗ (w)x ∈ ker(z∗) . Therefore, for any x ∈V,

0 =
(

w,z∗ (x)w− z∗ (w)x
)

= z∗ (x)(w,w)− z∗ (w)(w,x)

and so

z∗ (x) =

(
z∗ (w)

||w||2
,x

)
so let z = w/ ||w||2 . Then Rz = z∗ and so R is onto. This proves the lemma.

Now for the V described above,

Ru(v) =
∫

Ω

(
auv+a(x)∇u ·∇v

)
dx

Also, as noted above V is dense in H ≡ L2 (Ω) and so if H is identified with H ′, it follows

V ⊆ H = H ′ ⊆V ′.

Let A : D(A)→ H be given by

D(A)≡ {u ∈V : Ru ∈ H}

and
A≡−R

on D(A). Then the numerical range for A is contained in (−∞,−a] and so A is sectorial by
Proposition 54.3.10 provided A is closed and densely defined.

Why is D(A) dense? It is because it contains C∞
c (Ω) which is dense in L2 (Ω) . This

follows from integration by parts which shows that for u,v ∈C∞
c (Ω) ,

−
∫

Ω

auvdx−
∫

Ω

a(x)∇u ·∇vdx

=−
∫

Ω

auvdx+
∫

Ω

∇ · (a(x)∇u)vdx

and since C∞
c (Ω) is dense in H,

Au =−au+∇ · (a(x)∇u) ∈ L2 (Ω) = H.

Why is A closed? If un ∈ D(A) and un→ u in H while Aun→ ξ in H, then it follows
from the definition that Run→−ξ and {un} converges to u in V so for any v ∈V,

Ru(v) = lim
n→∞

Run (v) = lim
n→∞

(Run,v)H = (−ξ ,v)H

which shows Ru =−ξ ∈H and so u ∈D(A) and Au = ξ . Thus A is closed. This completes
the example.
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Obviously you could follow identical reasoning to include many other examples of
more complexity. What does it mean for u ∈ D(A)? It means that in a weak sense

−au+∇ · (a(x)∇u) ∈ H.

Since A is sectorial for S−a,φ for any 0 < φ < π/2, this has shown the existence of a weak
solution to the partial differential equation along with appropriate boundary conditions,

−au+∇ · (a(x)∇u) = f , u ∈V.

What are these appropriate boundary conditions? u = 0 on Γ is one. the other would be
a variational boundary condition which comes from integration by parts. Letting v ∈ V,
formally do the following using the divergence theorem.

( f ,v)H =
∫

Ω

(−au+∇ · (a(x)∇u))vdx

=
∫

Ω

−auvdx+
∫

∂Ω

(a(x)∇uv) ·nds−
∫

Ω

a(x)∇u(x) ·∇v(x)dx

= ( f ,v)H +
∫

∂Ω\Γ
(a(x)∇u) ·nvds

and so the other boundary condition is

a(x)
∂u
∂n

= 0 on ∂Ω\Γ.

To what extent this weak solution is really a classical solution depends on more technical
considerations.

54.3.3 Fractional Powers Of Sectorial Operators
It will always be assumed in this section that A is sectorial for the sector S−a,φ where
a > 0. To begin with, here is a useful lemma which will be used in the presentation of these
fractional powers.

Lemma 54.3.15 The following holds for α ∈ (0,1) and σ < t.∫ t

σ

(t− s)α−1 (s−σ)−α ds =
π

sin(πα)

In particular, ∫ 1

0
(1− s)α−1 s−α ds =

π

sin(πα)
.

Also for α,β > 0

Γ(α)Γ(β ) =

(∫ 1

0
xα−1 (1− x)β−1 dx

)
Γ(α +β ) .
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Proof: First change variables to get rid of the σ . Let y = (t−σ)−1 (s−σ) . Then the
integral becomes ∫ 1

0
(t− [(t−σ)y+σ ])α−1 (t−σ)−α y−α (t−σ)dy

=
∫ 1

0
((t−σ)(1− y))α−1 (t−σ)−α y−α (t−σ)dy

=
∫ 1

0
(1− y)α−1 y−α dy

Next let y = x2. The integral is

2
∫ 1

0

(
1− x2)α−1

x1−2α dx

Next let x = sinθ

2
∫ 1

2 π

0
(cos(θ))2α−1 sin(1−2α) (θ)dθ = 2

∫ 1
2 π

0

(
cos(θ)
sin(θ)

)2α−1

dθ

Now change the variable again. Let u = cot(θ) . Then this yields

2
∫

∞

0

u2α−1

1+u2 du

This is fairly easy to evaluate using contour integrals. Consider the following contour called
ΓR for large R. As R→ ∞, the integral over the little circle converges to 0 and so does the
integral over the big circle. There is one singularity at i.

−R R−R−1 R−1

Thus

lim
R→∞

∫
ΓR

e(ln|z|+iarg(z))(1−2α)

1+ z2 dz =

= (1+ cos(1−2α)π)
∫

∞

0

u2α−1

1+u2 du

+isin((1−2α)π)
∫

∞

0

u2α−1

1+u2 du
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= π

(
cos
(

π

2
(1−2α)

)
+ isin

(
π

2
(1−2α)

))
Then equating the imaginary parts yields

sin((1−2α)π)
∫

∞

0

u2α−1

1+u2 du = π sin
(

π

2
(1−2α)

)
and so using the trig identities for the sum of two angles,∫

∞

0

u2α−1

1+u2 du =
π
(
sin
(

π

2 (1−2α)
))

2sin
(

π

2 (1−2α)
)

cos
(

π

2 (1−2α)
)

=
π

2cos
(

π

2 (1−2α)
) = π

2sin(πα)

It remains to verify the last identity.

Γ(α)Γ(β ) ≡
∫

∞

0

∫
∞

0
tα−1e−tsβ−1e−sdsdt

=
∫

∞

0

∫
∞

t
tα−1e−u (u− t)β−1 dudt

=
∫

∞

0
e−u

∫ u

0
tα−1 (u− t)β−1 dtdu

=
∫ 1

0
xα−1 (1− x)β−1 dx

∫
∞

0
e−uuα+β−1du

=

(∫ 1

0
xα−1 (1− x)β−1 dx

)
Γ(α +β )

This proves the lemma.
If it is not stated otherwise, in all that follows α > 0.

Definition 54.3.16 Let A be a sectorial operator corresponding to the sector S−aφ where
−a < 0. Then define for α > 0,

(−A)−α ≡ 1
Γ(α)

∫
∞

0
tα−1S (t)dt

where S (t) is the analytic semigroup generated by A as in Corollary 54.3.8. Note that
from the estimate, ||S (t)|| ≤ Me−at of this corollary, the integral is well defined and is in
L (H,H).

Theorem 54.3.17 For (−A)−α as defined in Definition 54.3.16

(−A)−α (−A)−β = (−A)−(α+β ) (54.3.17)

Also
(−A)−1 (−A) = I, (−A)(−A)−1 = I (54.3.18)

and (−A)−α is one to one if α ≥ 0, defining A0 ≡ I.
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If α < β , then
(−A)−β (H)⊆ (−A)−α (H) . (54.3.19)

If α ∈ (0,1) , then

(−A)−α =
sin(πα)

π

∫
∞

0
λ
−α (λ I−A)−1 dλ (54.3.20)

Proof: Consider 54.3.17.

(−A)−α (−A)−β ≡ 1
Γ(α)Γ(β )

∫
∞

0

∫
∞

0
tα−1sβ−1S (t + s)dsdt

Changing variables and using Fubini’s theorem which is justified because of the abolute
convergence of the iterated integrals, which follows from Corollary 54.3.8, this becomes

1
Γ(α)Γ(β )

∫
∞

0

∫
∞

t
tα−1 (u− t)β−1 S (u)dudt

=
1

Γ(α)Γ(β )

∫
∞

0

∫ u

0
tα−1 (u− t)β−1 S (u)dtdu

=
1

Γ(α)Γ(β )

∫
∞

0
S (u)

∫ 1

0
(ux)α−1 (u−ux)β−1 udxdu

=
1

Γ(α)Γ(β )

(∫ 1

0
xα−1 (1− x)β−1 dx

)∫
∞

0
S (u)uα+β−1du

=
1

Γ(α)Γ(β )

(∫ 1

0
xα−1 (1− x)β−1 dx

)
Γ(α +β )(−A)−(α+β )

= (−A)−(α+β )

This proves the first part of the theorem.
Consider 54.3.18. Since A is a closed operator, and approximating the integral with an

appropriate sequence of Riemann sums, (−A) can be taken inside the integral and so

(−A)
1

Γ(1)

∫
∞

0
t1−1S (t)dt =

∫
∞

0
(−A)S (t)dt

=
∫

∞

0
− d

dt
(S (t))dt = S (0) = I.

Next let x ∈ D(−A) . Then

1
Γ(1)

∫
∞

0
t1−1S (t)dt (−A)x =−

∫
∞

0
S (t)Axdt

=−
∫

∞

0
AS (t)xdt =

∫
∞

0
− d

dt
(S (t))dt = Ix

This shows that the integral in which α = 1 deserves to be called A−1 so the definition is
not bad notation. Also, by assumption, A−1 is one to one. Thus

(−A)−1 (−A)−1 x = 0
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implies
(−A)−1 x = 0

hence x = 0 so that (−A)−2 is also one to one. Similarly, (−A)−m is one to one for all
positive integers m.

From what was just shown, if (−A)−α x = 0 for α ∈ (0,1) , then

(−A)−1 x = (−A)−(1−α) (−A)−α x = 0

and so x = 0. This shows (−A)−α is one to one for all α ∈ [0,1] if is defined as (−A)0 ≡ I.
What about α > 1? For such α, it is of the form m+ β where β ∈ [0,1) and m is a

positive integer. Therefore, if
(−A)−(m+β ) x = 0

then
(−A)−β

(
(−A)−m)x = 0

and so from what was just shown, (
(−A)−m)x = 0

and now this implies x = 0 so that (−A)−α is one to one for all α ≥ 0.
Consider 54.3.19. It was shown above that

(−A)−α (−A)−β = (−A)−(α+β )

Let x = (−A)−(α+β ) y. Then

x = (−A)−α (−A)−β y⊆ (−A)−α (−A)−β (H)⊆ (−A)−α (H) .

This proves 54.3.19. If α < β , (−A)−β (H)⊆ (−A)−α (H) .
Now consider the problem of writing (−A)−α for α ∈ (0,1) in terms of A, not men-

tioning S (t) . By Proposition 19.14.5,

(λ I−A)−1 x =
∫

∞

0
e−λ tS (t)xdt

Then ∫
∞

0
λ
−α (λ I−A)−1 dλ =

∫
∞

0
λ
−α

∫
∞

0
e−λ tS (t)dtdλ

=
∫

∞

0
S (t)

∫
∞

0
λ
−α e−λ tdλdt

=
∫

∞

0
S (t)

∫
∞

0
λ

β−1e−λ tdλdt

where β ≡ 1−α. Then using Lemma 54.3.15, this equals∫
∞

0
S (t)

∫
∞

0
µ

β−1t1−β e−µ t−1dµdt =
∫

∞

0
t−β S (t)

∫
∞

0
µ

β−1e−µ dµdt
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= Γ(1−α)
∫

∞

0
tα−1S (t)dt = Γ(α)Γ(1−α)(−A)−α

=

(∫ 1

0
xα−1 (1− x)−α dx

)
(−A)−α =

π

sin(πα)
(−A)−α

and so this gives the formula

(−A)−α =
sin(πα)

π

∫
∞

0
λ
−α (λ I−A)−1 dλ .

This proves 54.3.20.

Definition 54.3.18 For α ≥ 0, define (−A)α on D
(
(−A)α

)
≡ (−A)−α (H) by

(−A)α ≡
(
(−A)−α

)−1

Note that if α,β > 0, then if x ∈ D
(
(−A)α+β

)
,

(−A)α+β x =
(
(−A)−(α+β )

)−1
x =(

(−A)−α (−A)−β
)−1

x = (−A)β (−A)α x. (54.3.21)

Next let β > α > 0 and let x ∈ D
(
(−A)β

)
. Then from what was just shown,

(−A)α (−A)β−α x = (−A)β x

and so
(−A)β−α x = (−A)−α (−A)β x

If x ∈D
(
(−A)β

)
, does it follow that (−A)−α x ∈D

(
(−A)β

)
? Note x = (−A)−β y and so

(−A)−α x = (−A)−α (−A)−β y = (−A)−(α+β ) y ∈ D
(
(−A)α+β

)
.

Therefore, from 54.3.21,

(−A)β−α x = (−A)β−α (−A)α
(
(−A)−α x

)
= (−A)β (−A)−α x.

Theorem 54.3.19 The definition of (−A)α is well defined and (−A)α is densely defined
and closed. Also for any α > 0,∣∣∣∣(−A)α S (t)

∣∣∣∣≤ Cα

δ

1
tα

e−δ t (54.3.22)

where −δ > −a. Furthermore, Cα is bounded as α → 0+ and is bounded on compact
intervals of (0,∞). Also for α ∈ (0,1) and x ∈ D

(
(−A)α

)
,

||(S (t)− I)x|| ≤ C1−α

αδ
tα
∣∣∣∣(−A)α x

∣∣∣∣ (54.3.23)
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There exists a constant C independent of α ∈ [0,1) such that for x ∈ D(A) and ε > 0,∣∣∣∣(−A)α x
∣∣∣∣≤ ε ||(−A)x||+Cε

−α/(1−α) ||x|| (54.3.24)

There exists a constant C′ independent of α ∈ [0,1] such that for x ∈ D(A) ,∣∣∣∣(−A)α x
∣∣∣∣≤C′ ||(−A)x||α ||x||1−α (54.3.25)

The formula 54.3.25 is called an interpolation inequality.

Proof: It is obvious (−A)α is densely defined because its domain is at least as large as
D(A) which was assumed to be dense. It is a closed operator because if xn ∈ D

(
(−A)α

)
and

xn→ x, (−A)α xn→ y,

then
(−A)−α xn→ (−A)−α x, xn = (−A)−α (−A)α xn→ (−A)−α y

and so
(−A)−α y = x

showing x ∈ D
(
(−A)α

)
and y = (−A)−α x. Thus (−A)α is closed and densely defined.

Let−δ >−a where the sector for A was S−a,φ ,a> 0. Then recall from Corollary 54.3.8
there is a constant, N such that

||(−A)S (t)|| ≤ N
t

e−δ t

What about
∣∣∣∣(−A)α S (t)

∣∣∣∣? First note that for α ∈ [0,1) this at least makes sense because
S (t) maps into D(A). For any α > 0,

S (t)(−A)−α = (−A)−α S (t)

follows from the definiton of (−A)−α . Therefore,

(−A)α S (t)(−A)−α = S (t) . (54.3.26)

Note this implies that on D
(
(−A)α

)
,

(−A)α S (t) = S (t)(−A)α .

Also
(−A)−1 S (t) = S (t)(−A)−1 = S (t)(−A)−α (−A)−(1−α)

and so
S (t) = (−A)S (t)(−A)−α (−A)−(1−α)

From 54.3.26 it follows

(−A)α S (t) = (−A)(−A)α S (t)(−A)−α (−A)−(1−α)

= (−A)S (t)(−A)−(1−α) (54.3.27)
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Then with this formula,∣∣∣∣(−A)α S (t)
∣∣∣∣ =

∣∣∣∣∣∣(−A)S (t)(−A)−(1−α)
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ 1
Γ(1−α)

∫
∞

0
s1−α (−A)S (t + s)ds

∣∣∣∣∣∣∣∣
≤ N

Γ(1−α)

∫
∞

0

s1−α

(t + s)
e−δ (s+t)ds

=
N

Γ(1−α)

∫
∞

t

(u− t)1−α

u
e−δuds

≤ N
Γ(1−α)

∫
∞

t

(
1− t

u

)1−α 1
uα

e−δuds

≤ N
Γ(1−α)

1
tα

∫
∞

t
e−δuds =

N
Γ(1−α)δ

1
tα

e−δ t

≡ Cα

δ

1
tα

e−δ t .

this establishes the formula when α ∈ [0,1). Next suppose α = m, a positive integer.

||AmS (t)|| =

∣∣∣∣∣∣∣∣AmS
( t

m

)m
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣(AS
( t

m

))m
∣∣∣∣∣∣∣∣≤ N

tm mm.

This is why the above inequality holds.
If α,β > 0, ∣∣∣∣∣∣Aα+β S (t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣Aα+β S

( t
2

)
S
( t

2

)∣∣∣∣∣∣
=

∣∣∣∣∣∣Aα S
( t

2

)
Aβ S

( t
2

)∣∣∣∣∣∣
≤ Cα

tα

Cβ

tβ
e−2δ t =

C
tα+β

e−δ t

Suppose now that α > 0. Then
α = m+β

where β ∈ [0,1). Then from what was just shown,∣∣∣∣∣∣Am+β S (t)
∣∣∣∣∣∣≤ C

tm+β
e−δ t .

Next consider 54.3.23. First note that whenever α > 0,

(−A)−α S (s) = S (s)(−A)−α
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and so on D
(
(−A)α

)
,

S (s) = (−A)α S (s)(−A)−α , S (s)(−A)α = (−A)α S (s)

Now for x ∈ D
(
(−A)α

)
,

||(S (t)− I)x|| =

∣∣∣∣∣∣∣∣−∫ t

0
(−A)S (s)xds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣−∫ t

0
(−A)1−α (−A)α S (s)xds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣−∫ t

0
(−A)1−α S (s)(−A)α xds

∣∣∣∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣∣(−A)1−α S (s)
∣∣∣∣∣∣ds

∣∣∣∣(−A)α x
∣∣∣∣

≤
∫ t

0

C1−α

δ

1
s1−α

e−δ sds
∣∣∣∣(−A)α x

∣∣∣∣
≤ C1−α

δ

1
α

tα
∣∣∣∣(−A)α x

∣∣∣∣
and this shows 54.3.23.

Next consider 54.3.24. Let x ∈ H and β ∈ (0,1) . Then∣∣∣∣∣∣(−A)−β x
∣∣∣∣∣∣= 1

Γ(β )

∣∣∣∣∣∣∣∣∫ ∞

0
tβ−1S (t)xdt

∣∣∣∣∣∣∣∣
=

1
Γ(β )

∣∣∣∣∣∣∣∣∫ η

0
tβ−1S (t)xdt +

∫
∞

η

tβ−1S (t)xdt
∣∣∣∣∣∣∣∣

≤ 1
Γ(β )

∫
η

0
tβ−1 ||S (t)x||dt +

1
Γ(β )

∣∣∣∣∣∣∣∣∫ ∞

η

tβ−1S (t)xdt
∣∣∣∣∣∣∣∣

≤ C
Γ(β )

ηβ

β
||x||+ 1

Γ(β )

∣∣∣∣∣∣∣∣∫ ∞

η

tβ−1S (t)xdt
∣∣∣∣∣∣∣∣

≤ C
Γ(β )

ηβ

β
||x||+

1
Γ(β )

∣∣∣∣∣∣∣∣ηβ−1S (η)A−1x+(1−β )
∫

∞

η

tβ−2S (t)A−1xdt
∣∣∣∣∣∣∣∣

≤ 1
Γ(β )

(
Cηβ

β
||x||+η

β−1 ∣∣∣∣A−1x
∣∣∣∣+(1−β )

∣∣∣∣A−1x
∣∣∣∣∫ ∞

η

tβ−2dt

)

=
1

Γ(β )

(
Cηβ

β
||x||+2η

β−1 ∣∣∣∣A−1x
∣∣∣∣) .
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Now let δ =Cηβ so η =C−1/β δ
1/β and ηβ−1 =C

1−β

β δ
(β−1)/β . Thus for all x ∈ H,∣∣∣∣∣∣(−A)−β x

∣∣∣∣∣∣≤ 1
Γ(β )

(
δ

β
||x||+2C

1−β

β δ
(β−1)/β

∣∣∣∣A−1x
∣∣∣∣) .

Let ε = δ

βΓ(β ) =
δ

Γ(1+β ) . Then the above is of the form

∣∣∣∣∣∣(−A)−β x
∣∣∣∣∣∣ ≤ ε ||x||+2

C
1−β

β

Γ(β )
(εΓ(1+β ))(β−1)/β

∣∣∣∣A−1x
∣∣∣∣

≤ ε ||x||+2C
1−β

β (εΓ(1+β ))(β−1)/β
∣∣∣∣A−1x

∣∣∣∣
because Γ is decreasing on (0,1) . I need to verify that for β ∈ (0,1) ,

Γ(1+β )(β−1)/β

is bounded. It is continuous on (0,1] and so if I can show limβ→0+ Γ(1+β )(β−1)/β exists,
then it will follow the function is bounded. It suffices to show

lim
β→0+

β −1
β

lnΓ(1+β ) =− lim
β→0+

lnΓ(1+β )

β

exists. Consider this. By L’Hospital’s rule and dominated convergence theorem, this is

lim
β→0+

∫
∞

0 ln(t) tβ e−tdt
Γ(1+β )

= lim
β→0+

∫
∞

0
ln(t) tβ e−tdt

= lim
β→0+

∫
∞

0
ln(t)e−tdt.

Thus the function is bounded independent of β ∈ (0,1) . This shows there is a constant
C which is independent of β ∈ (0,1) such that for any x ∈ H,∣∣∣∣∣∣(−A)−β x

∣∣∣∣∣∣≤ ε ||x||+Cε
(β−1)/β

∣∣∣∣A−1x
∣∣∣∣ . (54.3.28)

Now let y ∈ D(A) = D((−A)) and let x = (−A)y. Then the above becomes∣∣∣∣∣∣(−A)−β (−A)y
∣∣∣∣∣∣≤ ε ||(−A)y||+Cε

(β−1)/β ||y||

I claim that
(−A)−β (−A)y = (−A)1−β y.

The reason for this is as follows.

(−A)β (−A)1−β y = (−A)y

and so the desired result follows from multiplying on the left by (−A)−β . Hence∣∣∣∣∣∣(−A)1−β y
∣∣∣∣∣∣≤ ε ||(−A)y||+Cε

(β−1)/β ||y||
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Now let 1−β = α and obtain∣∣∣∣(−A)α y
∣∣∣∣≤ ε ||(−A)y||+Cε

−α/(1−α) ||y||

This proves 54.3.24.
Finally choose ε to minimize the right side of the above expression. Thus let

ε =

(
α ||y||C

||(−A)y||(1−α)

)1−α

Then the above expression becomes∣∣∣∣(−A)α y
∣∣∣∣ ≤ ||(−A)y||

(
α ||y||C

||(−A)y||(1−α)

)1−α

+C

((
α ||y||C

||(−A)y||(1−α)

)1−α
)−α/(1−α)

||y||

= ||(−A)y||α ||y||1−α

(
αC

(1−α)

)1−α

+ ||(−A)y||α ||y||1−α

(
αC

(1−α)

)−α

=

((
αC

(1−α)

)1−α

+

(
αC

(1−α)

)−α
)
||(−A)y||α ||y||1−α

≤ C′ ||(−A)y||α ||y||1−α

where C′ does not depend on α ∈ (0,1) . To see such a constant exists, note

lim
α→1

(
αC

(1−α)

)1−α

= 1

and

lim
α→1

(
αC

(1−α)

)−α

= 0

while

lim
α→0

(
αC

(1−α)

)1−α

= 0, lim
α→0

(
αC

(1−α)

)−α

= 1

Of course C′ depends on C but as shown above, this did not depend on α ∈ (0,1) . This
proves 54.3.25.

The following corollary follows from the proof of the above theorem.

Corollary 54.3.20 Let α ∈ (0,1) . Then for all ε > 0, there exists a constant C (α,ε) such
that ∣∣∣∣(−A)−α x

∣∣∣∣≤ ε ||x||+C (ε,α)
∣∣∣∣∣∣(−A)−1 x

∣∣∣∣∣∣
Also if A−1 is compact, then so is (−A)−α for all α ∈ (0,1).
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Proof: The first part is done in the above theorem. Let S be a bounded set and let
η > 0. Then let ε > 0 be small enough that for all x ∈ S,ε ||x|| < η/4. Let

{
(−A)−1 xn

}
be a η/(2+2C (ε,α)) net for (−A)−1 (S) . Then if (−A)−α x ∈ (−A)−α S, there exists xn
such that ∣∣∣∣∣∣(−A)−1 xn− (−A)−1 x

∣∣∣∣∣∣< η

2+2C (ε,α)
.

Then∣∣∣∣(−A)−α xn− (−A)−α x
∣∣∣∣ ≤ ε ||xn− x||+C (ε,α)

∣∣∣∣∣∣(−A)−1 xn− (−A)−1 x
∣∣∣∣∣∣

<
η

2
+

η

2
= η

showing (−A)−α (S) has a η net. Thus (−A)−α is compact. This proves the corollary.
The next proposition gives a general interpolation inequality.

Proposition 54.3.21 Let 0 < α < β and let

γ = θβ +(1−θ)α, θ ∈ (0,1) .

Then there exists a constant, C such that for all x ∈ D
(
(−A)β

)
,

∣∣∣∣(−A)γ x
∣∣∣∣≤C

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣θ ∣∣∣∣(−A)α x

∣∣∣∣1−θ
.

Proof: This is an exercise in using 54.3.22. Letting x ∈ D
(
(−A)β

)
,

(−A)γ x = (−A)θ (−A)−θ (−A)γ x

Therefore, letting C denote a generic constant, it follows since (−A)θ is closed,

Γ(θ)
∣∣∣∣(−A)γ x

∣∣∣∣= ∣∣∣∣∣∣∣∣∫ ∞

0
tθ−1 (−A)θ S (t)(−A)γ xdt

∣∣∣∣∣∣∣∣
≤

∫
η

0
tθ−1

∣∣∣∣∣∣(−A)θ (−A)γ−β S (t)(−A)β x
∣∣∣∣∣∣dt

+
∫

∞

η

tθ−1
∣∣∣∣∣∣(−A)θ (−A)γ−α S (t)(−A)α x

∣∣∣∣∣∣dt

≤ C
∫

η

0
tθ−1t−θ tβ−γ dt

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣+C

∫
∞

η

tθ−1t−θ tα−γ dt
∣∣∣∣(−A)α x

∣∣∣∣
= C

(
ηβ−γ

β − γ

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣+ η−(γ−α)

γ−α

∣∣∣∣(−A)α x
∣∣∣∣)
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and now writing in what γ is in terms of θ yields

Γ(θ)
∣∣∣∣(−A)γ x

∣∣∣∣≤C
(

1
β −α

)((
ηβ−α

)1−θ

(1−θ)

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣+ (ηβ−α

)−θ

θ

∣∣∣∣(−A)α x
∣∣∣∣)

Letting λ = ηβ−α , it follows

Γ(θ)
∣∣∣∣(−A)γ x

∣∣∣∣≤C
(

1
β −α

)(
λ

1−θ

(1−θ)

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣+ λ

−θ

θ

∣∣∣∣(−A)α x
∣∣∣∣)

then let

λ =

∣∣∣∣(−A)α x
∣∣∣∣∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣

which is obtained from minimizing the expression on the right in the above. then placing
this in the inequality yields

Γ(θ)
∣∣∣∣(−A)γ x

∣∣∣∣
≤ C

(
1

β −α

)

(
||(−A)α x||∣∣∣∣∣∣(−A)β x

∣∣∣∣∣∣
)1−θ

(1−θ)

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣

+

(
||(−A)α x||∣∣∣∣∣∣(−A)β x

∣∣∣∣∣∣
)−θ

θ

∣∣∣∣(−A)α x
∣∣∣∣


=C
(

1
β −α

)(
1

(1−θ)
+

1
θ

)∣∣∣∣(−A)α x
∣∣∣∣1−θ

∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣θ

and this proves the proposition.
Note that the constant is not bounded as θ → 1.
Here is another interesting result about compactness.

Proposition 54.3.22 Let A be sectorial for S−a,φ where −a < 0. Then the following are
equivalent.

1. (−A)−α is compact for all α > 0.

2. S (t) is compact for each t > 0.
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Proof: First suppose (−A)−α is compact for all α > 0. Then

Γ(α)(−A)−α =
∫ t

0
sα−1S (s)ds+

∫
∞

t
sα−1S (s)ds

=
tα

α
S (t)−

∫ t

0

sα

α
AS (s)ds+ sα−1S (s)A−1|∞t

−(α−1)
∫

∞

t
sα−2S (s)A−1ds

Now ∣∣∣∣∣∣∣∣ sα

α
AS (s)

∣∣∣∣∣∣∣∣≤C
sα−1

α

and so the second integral satisfies∣∣∣∣∣∣∣∣∫ t

0

sα

α
AS (s)ds

∣∣∣∣∣∣∣∣≤C
tα

α2

Γ(α)(−A)−α = O
(

tα

α2

)
+

tα

α
S (t)

−tα−1A−1S (t)− (α−1)
∫

∞

t
sα−2S (s)dsA−1

It follows that for t > 0, and ε > 0 given,

S (t) =

(
tα

α
− tα−1

)−1 (
Γ(α)(−A)−α

+(α−1)
∫

∞

t
sα−2S (s)dsA−1 +O

(
tα

α2

))
=

(
tα

α
− tα−1

)−1 (
Γ(α)(−A)−α

+(α−1)
∫

∞

t
sα−2S (s)dsA−1

)
+O

(
1
α

)
= Nα +O

(
1
α

)
.

where Nα is a compact operator. Now let B be a bounded set in H, ||x|| ≤M for all x∈B and
let η > 0 be given. Then choose α large enough that

∣∣∣∣O( 1
α

)∣∣∣∣< η

4+4M . Then there exists
a η/2 net, {Nα xn}N

n=1 for Nα (B) . Then consider {S (t)xn}N
n=1 . For x ∈ B, there exists xn

such that ||Nα xn−Nα x||< η/2. Then

||S (t)x−S (t)xn|| ≤ ||S (t)x−Nα x||
+ ||Nα x−Nα xn||+ ||Nα xn−S (t)xn||
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≤ η

4+4M
M+

η

2
+

η

4+4M
M < η

Thus S (t)(B) has an η net for every η > 0 and so S (t) is compact.
Next suppose S (t) is compact for all t > 0. Then

(−A)−α =
1

Γ(α)

∫
∞

0
tα−1S (t)dt

and the integral is a limit in norm of Riemann sums of the form
m

∑
k=1

tα−1
k S (tk)∆tk

and each of these operators is compact. Since (−A)−α is the limit in norm of compact
operators, it must also be compact. This proves the proposition.

Here are some observations which are listed in the book by Henry [63]. Like the above
proposition, these are exercises in this book.

Observation 54.3.23 For each x ∈H, t→ tAS (t) is continuous and limt→0+ tAS (t)x = 0.

The reason for this is that if x ∈ D(A) , then

tAS (t)x = |tS (t)Ax| → 0

as t→ 0. Now suppose y ∈ H is arbitrary. Then letting x ∈ D(A) ,

|tAS (t)y| ≤ |tAS (t)(y− x)|+ |tAS (t)x|
≤ ε + |tAS (t)x|

provided x is close enough to y. The last term converges to 0 and so

lim sup
t→0+

|tAS (t)y| ≤ ε

where ε > 0 is arbitrary. Thus
lim

t→0+
|tAS (t)y|= 0.

Why is t→ tAS (t)x continuous on [0,T ]? This is true if x ∈ D(A) because t→ tS (t)Ax is
continuous. If y ∈ H is arbitrary, let xn converge to y in H where xn ∈ D(A) . Then

|tAS (t)y− tAS (t)xn| ≤C |y− xn|

and so the convergence is uniform. Thus t → tAS (t)y is continuous because it is the uni-
form limit of a sequence of continuous functions.

Observation 54.3.24 If x ∈H and A is sectorial for S−a,φ ,−a < 0, then for any α ∈ [0,1] ,

lim
t→0+

tα
∣∣∣∣(−A)α S (t)x

∣∣∣∣= 0.

This follows as above because you can verify this is true for x ∈ D(A) and then use the
fact shown above that

tα
∣∣∣∣(−A)α S (t)

∣∣∣∣≤C

to extend it to x arbitrary.
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54.3.4 A Scale Of Banach Spaces
Next I will present an important and interesting theorem which can be used to prove equiv-
alence of certain norms.

Theorem 54.3.25 Let A,B be sectorial for S−a,φ where −a < 0 and suppose D(A) =
D(B) . Also suppose

(A−B)(−A)−α ,(A−B)(−B)−α

are both bounded on D(A) for some α ∈ (0,1). Then for all β ∈ [0,1] ,

(−A)β (−B)−β ,(−B)β (−A)−β

are both bounded on D(A) = D(B). Also D
(
(−A)β

)
= D

(
(−B)β

)
.

Proof: First of all it is a good idea to verify (A−B)(−A)−α ,(A−B)(−B)−α make
sense on D(A) . If x ∈D(A) , then why is (−A)−α x ∈D(A)? Here is why. Since x ∈D(A) ,

x = (−A)−1 y

for some y ∈ H. Then

(−A)−α x = (−A)−α (−A)−1 y = (−A)−1 (−A)−α y ∈ D(A) .

The case of (A−B)(−B)−α is similar.
Next for β ∈ (0,1) and λ > 0, use 54.3.25 to write∣∣∣∣∣∣(−A)β (λ I−A)−1 x

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣(−A)(λ I−A)−1 x
∣∣∣∣∣∣β ∣∣∣∣∣∣(λ I−A)−1 x

∣∣∣∣∣∣1−β

≤ C
∣∣∣∣∣∣(−A)(λ I−A)−1

∣∣∣∣∣∣β ∣∣∣∣∣∣(λ I−A)−1
∣∣∣∣∣∣1−β

||x||

≤ C
∣∣∣∣∣∣I−λ (λ I−A)−1

∣∣∣∣∣∣β M

(λ +δ )1−β
||x||

≤ C
(

1+
λ

(λ +δ )

)β M

(λ +δ )1−β
||x|| ≡ C

(λ +δ )1−β
||x|| (54.3.29)

where −a <−δ < 0 where C denotes a generic constant. Similarly, for all β ∈ (0,1) ,∣∣∣∣∣∣(−B)β (λ I−B)−1 x
∣∣∣∣∣∣≤ C

(λ +δ )1−β
||x|| (54.3.30)

Now from Theorem 54.3.17 and letting β ∈ (0,1) ,

(−B)−β − (−A)−β =
sin(πβ )

π

∫
∞

0
λ
−β
(
(λ I−B)−1− (λ I−A)−1

)
dλ
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=
sin(πβ )

π

∫
∞

0
λ
−β (λ I−B)−1 (A−B)(λ I−A)−1 dλ . (54.3.31)

Therefore, letting x ∈ D(A) and letting C denote a generic constant which can be changed
from line to line and using 54.3.29 and 54.3.30,∣∣∣∣∣∣x− (−B)β (−A)−β x

∣∣∣∣∣∣
≤ C

∫
∞

0

1

λ
β

∣∣∣∣∣∣(−B)β (λ I−B)−1 (A−B)(λ I−A)−1 x
∣∣∣∣∣∣dλ

The reason (−B)β goes inside the integral is that it is a closed operator. Then the above

≤ C
∫

∞

0

1

λ
β (λ +δ )1−β

∣∣∣∣∣∣(A−B)(−A)−α (−A)α (λ I−A)−1 x
∣∣∣∣∣∣dλ

≤ C
∫

∞

0

1

λ
β (λ +δ )1−β

∣∣∣∣∣∣(−A)α (λ I−A)−1 x
∣∣∣∣∣∣dλ

≤ C
∫

∞

0

1

λ
β (λ +δ )1−β

1

(λ +δ )1−α
dλ ||x||=C ||x|| .

It follows (−B)β (−A)−β is bounded on D(A).
Next reverse A and B in 54.3.31. This yields

(−A)−β − (−B)−β =
sin(πβ )

π

∫
∞

0
λ
−β (λ I−A)−1 (B−A)(λ I−B)−1 dλ .

Letting x ∈ D(A) , ∣∣∣∣∣∣x− (−A)β (−B)−β x
∣∣∣∣∣∣

≤ C
∫

∞

0
λ
−β

∣∣∣∣∣∣(−A)β (λ I−A)−1 (B−A)(λ I−B)−1 x
∣∣∣∣∣∣dλ

≤ C
∫

∞

0

1

λ
β (λ +δ )1−β

∣∣∣∣∣∣(B−A)(−B)−α (−B)α (λ I−B)−1 x
∣∣∣∣∣∣dλ (54.3.32)

≤ C
∫

∞

0

1

λ
β (λ +δ )1−β (λ +δ )1−α

dλ ||x||=C ||x|| (54.3.33)

This shows (−A)β (−B)−β is bounded on D(A) = D(B) . Note the assertion these are
bounded refers to the norm on H.

It remains to verify D
(
(−A)β

)
= D

(
(−B)β

)
. Since D(A) is dense in H there exists

a unique L(A,B) ∈L (H,H) such that L(A,B) = (−A)β (−B)−β on D(A). Let L(B,A) be
defined similarly as a continuous linear map which equals (−B)β (−A)−β on D(A) . Then

(−A)−β L(A,B) = (−B)−β

(−B)−β L(B,A) = (−A)−β
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The first of these equations shows D
(
(−B)β

)
⊆ D

(
(−A)β

)
and the second turns the

inclusion around. Thus they are equal as claimed.
Next consider the case where β = 1. In this case

(A−B)B−α

is bounded on D(A) and so
(A−B)B−α B−1+α

is also bounded on D(A) . But this equals

(A−B)B−1.

Thus AB−1 is bounded on D(A) . Similarly you can show

(B−A)A−1

is bounded which implies BA−1 is bounded on D(A). This proves the theorem.

Definition 54.3.26 Let A be sectorial for the sector Sa,φ . Let b > a so that A−bI is secto-
rial for S−δ ,φ where δ = b−a. Then for each α ∈ [0,1] , define a norm on D

(
(bI−A)α

)
≡

Hα by
||x||

α
≡
∣∣∣∣(bI−A)α x

∣∣∣∣
The {Hα}α∈[0,1] is called a scale of Banach spaces.

Proposition 54.3.27 The Hα above are Banach spaces and they decrease in α. Further-
more, if bi > a for i = 1,2 then the two norms associated with the bi are equivalent.

Proof: That the Hα are decreasing was shown above in Theorem 54.3.17. They are
Banach spaces because (bI−A)α is a closed mapping which is also one to one.

It only remains to verify the claim about the equivalence of the norms. Let b2 > b1 > a.
Then if α ∈ (0,1) ,

((b1I−A)− (b2I−A))(b2I−A)−α

= (b1−b2)(b2I−A)−α ∈L (H,H)

and so by Theorem 54.3.25, for each β ∈ [0,1] ,

D
(
(b1I−A)β

)
= D

(
(b2I−A)β

)
so the spaces, Hβ are the same for either choice of b > a. Also from this theorem,

(b1I−A)β (b2I−A)−β , (b2I−A)β (b1I−A)−β

are both bounded on D(A) . Therefore, for x ∈ Hβ∣∣∣∣∣∣(b1I−A)β x
∣∣∣∣∣∣ =

∣∣∣∣∣∣(b1I−A)β (b2I−A)−β (b2I−A)β x
∣∣∣∣∣∣

≤ C
∣∣∣∣∣∣(b2I−A)β x

∣∣∣∣∣∣
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Similarly using the boundedness of (b2I−A)β (b1I−A)−β , it follows∣∣∣∣∣∣(b2I−A)β x
∣∣∣∣∣∣≤C′

∣∣∣∣∣∣(b1I−A)β x
∣∣∣∣∣∣

Thus showing the two norms are equivalent. This proves the proposition.
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Chapter 55

Complex Mappings
55.1 Conformal Maps

If γ (t) = x(t)+ iy(t) is a C1 curve having values in U, an open set of C, and if f : U → C
is analytic, consider f ◦ γ, another C1 curve having values in C. Also, γ ′ (t) and ( f ◦ γ)′ (t)
are complex numbers so these can be considered as vectors in R2 as follows. The complex
number, x+iy corresponds to the vector, (x,y) . Suppose that γ and η are two such C1 curves
having values in U and that γ (t0) = η (s0) = z and suppose that f : U→C is analytic. What
can be said about the angle between ( f ◦ γ)′ (t0) and ( f ◦η)′ (s0)? It turns out this angle is
the same as the angle between γ ′ (t0) and η ′ (s0) assuming that f ′ (z) ̸= 0. To see this, note
(x,y) · (a,b) = 1

2 (zw+ zw) where z = x+ iy and w = a+ ib. Therefore, letting θ be the
cosine between the two vectors, ( f ◦ γ)′ (t0) and ( f ◦η)′ (s0) , it follows from calculus that

cosθ

=
( f ◦ γ)′ (t0) · ( f ◦η)′ (s0)∣∣( f ◦η)′ (s0)

∣∣ ∣∣( f ◦ γ)′ (t0)
∣∣

=
1
2

f ′ (γ (t0))γ ′ (t0) f ′ (η (s0))η ′ (s0)+ f ′ (γ (t0))γ ′ (t0) f ′ (η (s0))η ′ (s0)

| f ′ (γ (t0))| | f ′ (η (s0))|

=
1
2

f ′ (z) f ′ (z)γ ′ (t0)η ′ (s0)+ f ′ (z) f ′ (z)γ ′ (t0)η ′ (s0)

| f ′ (z)| | f ′ (z)|

=
1
2

γ ′ (t0)η ′ (s0)+η ′ (s0)γ ′ (t0)
1

which equals the angle between the vectors, γ ′ (t0) and η ′ (t0) . Thus analytic mappings pre-
serve angles at points where the derivative is nonzero. Such mappings are called isogonal.
.

Actually, they also preserve orientations. If z = x+ iy and w = a+ ib are two complex
numbers, then (x,y,0) and (a,b,0) are two vectors in R3. Recall that the cross product,
(x,y,0)× (a,b,0) , yields a vector normal to the two given vectors such that the triple,
(x,y,0) ,(a,b,0) , and (x,y,0)× (a,b,0) satisfies the right hand rule and has magnitude
equal to the product of the sine of the included angle times the product of the two norms
of the vectors. In this case, the cross product will produce a vector which is a multiple of
k, the unit vector in the direction of the z axis. In fact, you can verify by computing both
sides that, letting z = x+ iy and w = a+ ib,

(x,y,0)× (a,b,0) = Re(ziw)k.

Therefore, in the above situation,

( f ◦ γ)′ (t0)× ( f ◦η)′ (s0)

= Re
(

f ′ (γ (t0))γ
′ (t0) i f ′ (η (s0))η ′ (s0)

)
k

=
∣∣ f ′ (z)∣∣2 Re

(
γ
′ (t0) iη ′ (s0)

)
k

1735
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which shows that the orientation of γ ′ (t0), η ′ (s0) is the same as the orientation of

( f ◦ γ)′ (t0) ,( f ◦η)′ (s0)

Mappings which preserve both orientation and angles are called conformal mappings and
this has shown that analytic functions are conformal mappings if the derivative does not
vanish.

55.2 Fractional Linear Transformations
55.2.1 Circles And Lines
These mappings map lines and circles to either lines or circles.

Definition 55.2.1 A fractional linear transformation is a function of the form

f (z) =
az+b
cz+d

(55.2.1)

where ad−bc ̸= 0.

Note that if c = 0, this reduces to a linear transformation (a/d)z+(b/d) . Special cases
of these are defined as follows.

dilations: z→ δ z, δ ̸= 0, inversions: z→ 1
z
,

translations: z→ z+ρ.

The next lemma is the key to understanding fractional linear transformations.

Lemma 55.2.2 The fractional linear transformation, 55.2.1 can be written as a finite com-
position of dilations, inversions, and translations.

Proof: Let

S1 (z) = z+
d
c
,S2 (z) =

1
z
,S3 (z) =

(bc−ad)
c2 z

and
S4 (z) = z+

a
c

in the case where c ̸= 0. Then f (z) given in 55.2.1 is of the form

f (z) = S4 ◦S3 ◦S2 ◦S1.

Here is why.

S2 (S1 (z)) = S2

(
z+

d
c

)
≡ 1

z+ d
c

=
c

zc+d
.

Now consider

S3

(
c

zc+d

)
≡ (bc−ad)

c2

(
c

zc+d

)
=

bc−ad
c(zc+d)

.
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Finally, consider

S4

(
bc−ad

c(zc+d)

)
≡ bc−ad

c(zc+d)
+

a
c
=

b+az
zc+d

.

In case that c = 0, f (z) = a
d z+ b

d which is a translation composed with a dilation. Because
of the assumption that ad− bc ̸= 0, it follows that since c = 0, both a and d ̸= 0. This
proves the lemma.

This lemma implies the following corollary.

Corollary 55.2.3 Fractional linear transformations map circles and lines to circles or
lines.

Proof: It is obvious that dilations and translations map circles to circles and lines to
lines. What of inversions? If inversions have this property, the above lemma implies a
general fractional linear transformation has this property as well.

Note that all circles and lines may be put in the form

α
(
x2 + y2)−2ax−2by = r2−

(
a2 +b2)

where α = 1 gives a circle centered at (a,b) with radius r and α = 0 gives a line. In terms
of complex variables you may therefore consider all possible circles and lines in the form

αzz+β z+β z+ γ = 0, (55.2.2)

To see this let β = β 1 + iβ 2 where β 1 ≡ −a and β 2 ≡ b. Note that even if α is not 0 or 1
the expression still corresponds to either a circle or a line because you can divide by α if
α ̸= 0. Now I verify that replacing z with 1

z results in an expression of the form in 55.2.2.
Thus, let w = 1

z where z satisfies 55.2.2. Then(
α +βw+βw+ γww

)
=

1
zz

(
αzz+β z+β z+ γ

)
= 0

and so w also satisfies a relation like 55.2.2. One simply switches α with γ and β with β .
Note the situation is slightly different than with dilations and translations. In the case of an
inversion, a circle becomes either a line or a circle and similarly, a line becomes either a
circle or a line. This proves the corollary.

The next example is quite important.

Example 55.2.4 Consider the fractional linear transformation, w = z−i
z+i .

First consider what this mapping does to the points of the form z = x+ i0. Substituting
into the expression for w,

w =
x− i
x+ i

=
x2−1−2xi

x2 +1
,

a point on the unit circle. Thus this transformation maps the real axis to the unit circle.
The upper half plane is composed of points of the form x+ iy where y > 0. Substituting

in to the transformation,

w =
x+ i(y−1)
x+ i(y+1)

,
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which is seen to be a point on the interior of the unit disk because |y−1| < |y+1| which
implies |x+ i(y+1)| > |x+ i(y−1)|. Therefore, this transformation maps the upper half
plane to the interior of the unit disk.

One might wonder whether the mapping is one to one and onto. The mapping is clearly
one to one because it has an inverse, z = −i w+1

w−1 for all w in the interior of the unit disk.
Also, a short computation verifies that z so defined is in the upper half plane. There-
fore, this transformation maps {z ∈ C such that Imz > 0} one to one and onto the unit disk
{z ∈ C such that |z|< 1} .

A fancy way to do part of this is to use Theorem 52.3.5. limsupz→a
∣∣ z−i

z+i

∣∣≤ 1 whenever
a is the real axis or ∞. Therefore,

∣∣ z−i
z+i

∣∣≤ 1. This is a little shorter.

55.2.2 Three Points To Three Points
There is a simple procedure for determining fractional linear transformations which map a
given set of three points to another set of three points. The problem is as follows: There are
three distinct points in the extended complex plane, z1,z2, and z3 and it is desired to find
a fractional linear transformation such that zi → wi for i = 1,2,3 where here w1,w2, and
w3 are three distinct points in the extended complex plane. Then the procedure says that to
find the desired fractional linear transformation solve the following equation for w.

w−w1

w−w3
· w2−w3

w2−w1
=

z− z1

z− z3
· z2− z3

z2− z1

The result will be a fractional linear transformation with the desired properties. If any of
the points equals ∞, then the quotient containing this point should be adjusted.

Why should this procedure work? Here is a heuristic argument to indicate why you
would expect this to happen rather than a rigorous proof. The reader may want to tighten
the argument to give a proof. First suppose z = z1. Then the right side equals zero and so
the left side also must equal zero. However, this requires w = w1. Next suppose z = z2.
Then the right side equals 1. To get a 1 on the left, you need w = w2. Finally suppose
z = z3. Then the right side involves division by 0. To get the same bad behavior, on the left,
you need w = w3.

Example 55.2.5 Let Imξ > 0 and consider the fractional linear transformation which
takes ξ to 0, ξ to ∞ and 0 to ξ/ξ , .

The equation for w is
w−0

w−
(

ξ/ξ

) =
z−ξ

z−0
· ξ −0

ξ −ξ

After some computations,

w =
z−ξ

z−ξ
.

Note that this has the property that x−ξ

x−ξ
is always a point on the unit circle because it is a

complex number divided by its conjugate. Therefore, this fractional linear transformation
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maps the real line to the unit circle. It also takes the point, ξ to 0 and so it must map the
upper half plane to the unit disk. You can verify the mapping is onto as well.

Example 55.2.6 Let z1 = 0,z2 = 1, and z3 = 2 and let w1 = 0,w2 = i, and w3 = 2i.

Then the equation to solve is

w
w−2i

· −i
i

=
z

z−2
· −1

1

Solving this yields w = iz which clearly works.

55.3 Riemann Mapping Theorem
From the open mapping theorem analytic functions map regions to other regions or else to
single points. The Riemann mapping theorem states that for every simply connected region,
Ω which is not equal to all ofC there exists an analytic function, f such that f (Ω)=B(0,1)
and in addition to this, f is one to one. The proof involves several ideas which have been
developed up to now. The proof is based on the following important theorem, a case of
Montel’s theorem. Before, beginning, note that the Riemann mapping theorem is a classic
example of a major existence theorem. In mathematics there are two sorts of questions,
those related to whether something exists and those involving methods for finding it. The
real questions are often related to questions of existence. There is a long and involved
history for proofs of this theorem. The first proofs were based on the Dirichlet principle
and turned out to be incorrect, thanks to Weierstrass who pointed out the errors. For more
on the history of this theorem, see Hille [65].

The following theorem is really wonderful. It is about the existence of a subsequence
having certain salubrious properties. It is this wonderful result which will give the existence
of the mapping desired. The other parts of the argument are technical details to set things
up and use this theorem.

55.3.1 Montel’s Theorem

Theorem 55.3.1 Let Ω be an open set in C and let F denote a set of analytic functions
mapping Ω to B(0,M)⊆C. Then there exists a sequence of functions from F , { fn}∞

n=1 and
an analytic function, f such that f (k)n converges uniformly to f (k) on every compact subset
of Ω.

Proof: First note there exists a sequence of compact sets, Kn such that Kn ⊆ intKn+1 ⊆
Ω for all n where here intK denotes the interior of the set K, the union of all open sets con-
tained in K and∪∞

n=1Kn =Ω. In fact, you can verify that B(0,n)∩
{

z ∈Ω : dist
(
z,ΩC

)
≤ 1

n

}
works for Kn. Then there exist positive numbers, δ n such that if z ∈ Kn, then B(z,δ n) ⊆
intKn+1. Now denote by Fn the set of restrictions of functions of F to Kn. Then let z ∈ Kn
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and let γ (t)≡ z+δ neit , t ∈ [0,2π] . It follows that for z1 ∈ B(z,δ n) , and f ∈F ,

| f (z)− f (z1)| =

∣∣∣∣ 1
2πi

∫
γ

f (w)
(

1
w− z

− 1
w− z1

)
dw
∣∣∣∣

≤ 1
2π

∣∣∣∣∫
γ

f (w)
z− z1

(w− z)(w− z1)
dw
∣∣∣∣

Letting |z1− z|< δ n
2 ,

| f (z)− f (z1)| ≤
M
2π

2πδ n
|z− z1|
δ

2
n/2

≤ 2M
|z− z1|

δ n
.

It follows that Fn is equicontinuous and uniformly bounded so by the Arzela Ascoli theo-
rem there exists a sequence, { fnk}∞

k=1 ⊆F which converges uniformly on Kn. Let { f1k}∞

k=1
converge uniformly on K1. Then use the Arzela Ascoli theorem applied to this sequence to
get a subsequence, denoted by { f2k}∞

k=1 which also converges uniformly on K2. Continue
in this way to obtain { fnk}∞

k=1 which converges uniformly on K1, · · · ,Kn. Now the sequence
{ fnn}∞

n=m is a subsequence of { fmk} ∞
k=1 and so it converges uniformly on Km for all m. De-

noting fnn by fn for short, this is the sequence of functions promised by the theorem. It is
clear { fn}∞

n=1 converges uniformly on every compact subset of Ω because every such set
is contained in Km for all m large enough. Let f (z) be the point to which fn (z) converges.
Then f is a continuous function defined on Ω. Is f is analytic? Yes it is by Lemma 51.3.13.
Alternatively, you could let T ⊆Ω be a triangle. Then∫

∂T
f (z)dz = lim

n→∞

∫
∂T

fn (z)dz = 0.

Therefore, by Morera’s theorem, f is analytic.
As for the uniform convergence of the derivatives of f , recall Theorem 51.7.25 about

the existence of a cycle. Let K be a compact subset of int(Kn) and let {γk}
m
k=1 be closed

oriented curves contained in
int(Kn)\K

such that ∑
m
k=1 n(γk,z) = 1 for every z ∈ K. Also let η denote the distance between ∪ jγ

∗
j

and K. Then for z ∈ K,∣∣∣ f (k) (z)− f (k)n (z)
∣∣∣ =

∣∣∣∣∣ k!
2πi

m

∑
j=1

∫
γ j

f (w)− fn (w)

(w− z)k+1 dw

∣∣∣∣∣
≤ k!

2π
|| fk− f ||Kn

m

∑
j=1

(length of γk)
1

ηk+1 .

where here || fk− f ||Kn
≡ sup{| fk (z)− f (z)| : z ∈ Kn} . Thus you get uniform convergence

of the derivatives.
Since the family, F satisfies the conclusion of Theorem 55.3.1 it is known as a normal

family of functions. More generally,
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Definition 55.3.2 Let F denote a collection of functions which are analytic on Ω, a region.
Then F is normal if every sequence contained in F has a subsequence which converges
uniformly on compact subsets of Ω.

The following result is about a certain class of fractional linear transformations. Recall
Lemma 52.4.7 which is listed here for convenience.

Lemma 55.3.3 For α ∈ B(0,1) , let

φ α (z)≡ z−α

1−αz
.

Then φ α maps B(0,1) one to one and onto B(0,1), φ
−1
α = φ−α , and

φ
′
α (α) =

1

1−|α|2
.

The next lemma, known as Schwarz’s lemma is interesting for its own sake but will
also be an important part of the proof of the Riemann mapping theorem. It was stated and
proved earlier but for convenience it is given again here.

Lemma 55.3.4 Suppose F : B(0,1)→ B(0,1) , F is analytic, and F (0) = 0. Then for all
z ∈ B(0,1) ,

|F (z)| ≤ |z| , (55.3.3)

and ∣∣F ′ (0)∣∣≤ 1. (55.3.4)

If equality holds in 55.3.4 then there exists λ ∈ C with |λ |= 1 and

F (z) = λ z. (55.3.5)

Proof: First note that by assumption, F (z)/z has a removable singularity at 0 if its
value at 0 is defined to be F ′ (0) . By the maximum modulus theorem, if |z|< r < 1,∣∣∣∣F (z)

z

∣∣∣∣≤ max
t∈[0,2π]

∣∣F (reit
)∣∣

r
≤ 1

r
.

Then letting r→ 1, ∣∣∣∣F (z)
z

∣∣∣∣≤ 1

this shows 55.3.3 and it also verifies 55.3.4 on taking the limit as z→ 0. If equality holds in
55.3.4, then |F (z)/z| achieves a maximum at an interior point so F (z)/z equals a constant,
λ by the maximum modulus theorem. Since F (z) = λ z, it follows F ′ (0) = λ and so
|λ |= 1. This proves the lemma.

Definition 55.3.5 A region, Ω has the square root property if whenever f , 1
f : Ω→ C are

both analytic1, it follows there exists φ : Ω→ C such that φ is analytic and f (z) = φ
2 (z) .

The next theorem will turn out to be equivalent to the Riemann mapping theorem.
1This implies f has no zero on Ω.
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55.3.2 Regions With Square Root Property
Theorem 55.3.6 Let Ω ̸= C for Ω a region and suppose Ω has the square root property.
Then for z0 ∈ Ω there exists h : Ω→ B(0,1) such that h is one to one, onto, analytic, and
h(z0) = 0.

Proof: Define F to be the set of functions, f such that f : Ω→ B(0,1) is one to one
and analytic. The first task is to show F is nonempty. Then, using Montel’s theorem it will
be shown there is a function in F , h, such that |h′ (z0)| ≥ |ψ ′ (z0)| for all ψ ∈F . When
this has been done it will be shown that h is actually onto. This will prove the theorem.

Claim 1: F is nonempty.
Proof of Claim 1: Since Ω ̸=C it follows there exists ξ /∈Ω. Then it follows z−ξ and

1
z−ξ

are both analytic on Ω. Since Ω has the square root property, there exists an analytic

function, φ : Ω→ C such that φ
2 (z) = z− ξ for all z ∈ Ω, φ (z) =

√
z−ξ . Since z− ξ

is not constant, neither is φ and it follows from the open mapping theorem that φ (Ω) is a
region. Note also that φ is one to one because if φ (z1) = φ (z2) , then you can square both
sides and conclude z1−ξ = z2−ξ implying z1 = z2.

Now pick a ∈ φ (Ω) . Thus
√

za−ξ = a. I claim there exists a positive lower bound to∣∣∣√z−ξ +a
∣∣∣ for z ∈Ω. If not, there exists a sequence, {zn} ⊆Ω such that√

zn−ξ +a =
√

zn−ξ +
√

za−ξ ≡ εn→ 0.

Then √
zn−ξ =

(
εn−

√
za−ξ

)
(55.3.6)

and squaring both sides,

zn−ξ = ε
2
n + za−ξ −2εn

√
za−ξ .

Consequently, (zn− za) = ε2
n − 2εn

√
za−ξ which converges to 0. Taking the limit in

55.3.6, it follows 2
√

za−ξ = 0 and so ξ = za, a contradiction to ξ /∈ Ω. Choose r > 0

such that for all z ∈Ω,
∣∣∣√z−ξ +a

∣∣∣> r > 0. Then consider

ψ (z)≡ r√
z−ξ +a

. (55.3.7)

This is one to one, analytic, and maps Ω into B(0,1) (
∣∣∣√z−ξ +a

∣∣∣ > r). Thus F is not
empty and this proves the claim.

Claim 2: Let z0 ∈Ω. There exists a finite positive real number, η , defined by

η ≡ sup
{∣∣ψ ′ (z0)

∣∣ : ψ ∈F
}

(55.3.8)

and an analytic function, h ∈F such that |h′ (z0)|= η . Furthermore, h(z0) = 0.
Proof of Claim 2: First you show η < ∞. Let γ (t) = z0 + reit for t ∈ [0,2π] and r

is small enough that B(z0,r) ⊆ Ω. Then for ψ ∈F , the Cauchy integral formula for the
derivative implies

ψ
′ (z0) =

1
2πi

∫
γ

ψ (w)

(w− z0)
2 dw
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and so |ψ ′ (z0)| ≤ (1/2π)2πr
(
1/r2

)
= 1/r. Therefore, η < ∞ as desired. For ψ defined

above in 55.3.7

ψ
′ (z0) =

−rφ
′ (z0)

(φ (z0)+a)2 =
−r (1/2)

(√
z0−ξ

)−1

(φ (z0)+a)2 ̸= 0.

Therefore, η > 0. It remains to verify the existence of the function, h.
By Theorem 55.3.1, there exists a sequence, {ψn}, of functions in F and an analytic

function, h, such that ∣∣ψ ′n (z0)
∣∣→ η (55.3.9)

and
ψn→ h,ψ ′n→ h′, (55.3.10)

uniformly on all compact subsets of Ω. It follows∣∣h′ (z0)
∣∣= lim

n→∞

∣∣ψ ′n (z0)
∣∣= η (55.3.11)

and for all z ∈Ω,
|h(z)|= lim

n→∞
|ψn (z)| ≤ 1. (55.3.12)

By 55.3.11, h is not a constant. Therefore, in fact, |h(z)|< 1 for all z ∈Ω in 55.3.12 by
the open mapping theorem.

Next it must be shown that h is one to one in order to conclude h ∈F . Pick z1 ∈ Ω

and suppose z2 is another point of Ω. Since the zeros of h−h(z1) have no limit point, there
exists a circular contour bounding a circle which contains z2 but not z1 such that γ∗ contains
no zeros of h−h(z1).

z1

γ

z2

Using the theorem on counting zeros, Theorem 52.6.1, and the fact that ψn is one to
one,

0 = lim
n→∞

1
2πi

∫
γ

ψ ′n (w)
ψn (w)−ψn (z1)

dw

=
1

2πi

∫
γ

h′ (w)
h(w)−h(z1)

dw,

which shows that h− h(z1) has no zeros in B(z2,r) . In particular z2 is not a zero of h−
h(z1) . This shows that h is one to one since z2 ̸= z1 was arbitrary. Therefore, h ∈F . It
only remains to verify that h(z0) = 0.
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If h(z0) ̸= 0,consider φ h(z0)
◦h where φ α is the fractional linear transformation defined

in Lemma 55.3.3. By this lemma it follows φ h(z0)
◦h ∈F . Now using the chain rule,∣∣∣∣(φ h(z0)

◦h
)′
(z0)

∣∣∣∣ =
∣∣∣φ ′h(z0)

(h(z0))
∣∣∣ ∣∣h′ (z0)

∣∣
=

∣∣∣∣∣ 1

1−|h(z0)|2

∣∣∣∣∣ ∣∣h′ (z0)
∣∣

=

∣∣∣∣∣ 1

1−|h(z0)|2

∣∣∣∣∣η > η

Contradicting the definition of η . This proves Claim 2.
Claim 3: The function, h just obtained maps Ω onto B(0,1).
Proof of Claim 3: To show h is onto, use the fractional linear transformation of Lemma

55.3.3. Suppose h is not onto. Then there exists α ∈ B(0,1) \ h(Ω) . Then 0 ̸= φ α ◦ h(z)
for all z ∈Ω because

φ α ◦h(z) =
h(z)−α

1−αh(z)

and it is assumed α /∈ h(Ω) . Therefore, since Ω has the square root property, you can
consider an analytic function z→

√
φ α ◦h(z). This function is one to one because both

φ α and h are. Also, the values of this function are in B(0,1) by Lemma 55.3.3 so it is in
F .

Now let
ψ ≡ φ√

φα◦h(z0)
◦
√

φ α ◦h. (55.3.13)

Thus
ψ (z0) = φ√

φα◦h(z0)
◦
√

φ α ◦h(z0) = 0

and ψ is a one to one mapping of Ω into B(0,1) so ψ is also in F . Therefore,

∣∣ψ ′ (z0)
∣∣≤ η ,

∣∣∣∣(√φ α ◦h
)′
(z0)

∣∣∣∣≤ η . (55.3.14)

Define s(w)≡ w2. Then using Lemma 55.3.3, in particular, the description of φ
−1
α = φ−α ,

you can solve 55.3.13 for h to obtain

h(z) = φ−α ◦ s◦φ−
√

φα◦h(z0)
◦ψ

=

 ≡F︷ ︸︸ ︷
φ−α ◦ s◦φ−

√
φα◦h(z0)

◦ψ

(z)

= (F ◦ψ)(z) (55.3.15)

Now
F (0) = φ−α ◦ s◦φ−

√
φα◦h(z0)

(0) = φ
−1
α (φ α ◦h(z0)) = h(z0) = 0
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and F maps B(0,1) into B(0,1). Also, F is not one to one because it maps B(0,1) to
B(0,1) and has s in its definition. Thus there exists z1 ∈B(0,1) such that φ−

√
φα◦h(z0)

(z1)=

− 1
2 and another point z2 ∈ B(0,1) such that φ−

√
φα◦h(z0)

(z2) =
1
2 . However, thanks to

s,F (z1) = F (z2).
Since F (0) = h(z0) = 0, you can apply the Schwarz lemma to F . Since F is not one to

one, it can’t be true that F (z) = λ z for |λ |= 1 and so by the Schwarz lemma it must be the
case that |F ′ (0)|< 1. But this implies from 55.3.15 and 55.3.14 that

η =
∣∣h′ (z0)

∣∣= ∣∣F ′ (ψ (z0))
∣∣ ∣∣ψ ′ (z0)

∣∣
=

∣∣F ′ (0)∣∣ ∣∣ψ ′ (z0)
∣∣< ∣∣ψ ′ (z0)

∣∣≤ η ,

a contradiction. This proves the theorem.
The following lemma yields the usual form of the Riemann mapping theorem.

Lemma 55.3.7 Let Ω be a simply connected region with Ω ̸= C. Then Ω has the square
root property.

Proof: Let f and 1
f both be analytic on Ω. Then f ′

f is analytic on Ω so by Corollary

51.7.23, there exists F̃ , analytic on Ω such that F̃ ′ = f ′
f on Ω. Then

(
f e−F̃

)′
= 0 and so

f (z) = CeF̃ = ea+ibeF̃ . Now let F = F̃ + a+ ib. Then F is still a primitive of f ′/ f and
f (z) = eF(z). Now let φ (z) ≡ e

1
2 F(z). Then φ is the desired square root and so Ω has the

square root property.

Corollary 55.3.8 (Riemann mapping theorem) Let Ω be a simply connected region with
Ω ̸= C and let z0 ∈ Ω. Then there exists a function, f : Ω→ B(0,1) such that f is one to
one, analytic, and onto with f (z0) = 0. Furthermore, f−1 is also analytic.

Proof: From Theorem 55.3.6 and Lemma 55.3.7 there exists a function, f : Ω→B(0,1)
which is one to one, onto, and analytic such that f (z0) = 0. The assertion that f−1 is
analytic follows from the open mapping theorem.

55.4 Analytic Continuation
55.4.1 Regular And Singular Points

Given a function which is analytic on some set, can you extend it to an analytic function
defined on a larger set? Sometimes you can do this. It was done in the proof of the Cauchy
integral formula. There are also reflection theorems like those discussed in the exercises
starting with Problem 10 on Page 1647. Here I will give a systematic way of extending an
analytic function to a larger set. I will emphasize simply connected regions. The subject
of analytic continuation is much larger than the introduction given here. A good source for
much more on this is found in Alfors [3]. The approach given here is suggested by Rudin
[113] and avoids many of the standard technicalities.
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Definition 55.4.1 Let f be analytic on B(a,r) and let β ∈ ∂B(a,r) . Then β is called a
regular point of f if there exists some δ > 0 and a function, g analytic on B(β ,δ ) such
that g = f on B(β ,δ )∩B(a,r) . Those points of ∂B(a,r) which are not regular are called
singular.

a

β

Theorem 55.4.2 Suppose f is analytic on B(a,r) and the power series

f (z) =
∞

∑
k=0

ak (z−a)k

has radius of convergence r. Then there exists a singular point on ∂B(a,r).

Proof: If not, then for every z∈ ∂B(a,r) there exists δ z > 0 and gz analytic on B(z,δ z)
such that gz = f on B(z,δ z)∩B(a,r) . Since ∂B(a,r) is compact, there exist z1, · · · ,zn,
points in ∂B(a,r) such that

{
B
(
zk,δ zk

)}n
k=1 covers ∂B(a,r) . Now define

g(z)≡
{

f (z) if z ∈ B(a,r)
gzk (z) if z ∈ B

(
zk,δ zk

)
Is this well defined? If z∈B(zi,δ zi)∩B

(
z j,δ z j

)
, is gzi (z)= gz j (z)? Consider the following

picture representing this situation.

You see that if z ∈ B(zi,δ zi)∩B
(
z j,δ z j

)
then I ≡ B(zi,δ zi)∩B

(
z j,δ z j

)
∩B(a,r) is

a nonempty open set. Both gzi and gz j equal f on I. Therefore, they must be equal on
B(zi,δ zi)∩B

(
z j,δ z j

)
because I has a limit point. Therefore, g is well defined and analytic

on an open set containing B(a,r). Since g agrees with f on B(a,r) , the power series for g
is the same as the power series for f and converges on a ball which is larger than B(a,r)
contrary to the assumption that the radius of convergence of the above power series equals
r. This proves the theorem.
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55.4.2 Continuation Along A Curve
Next I will describe what is meant by continuation along a curve. The following definition
is standard and is found in Rudin [113].

Definition 55.4.3 A function element is an ordered pair, ( f ,D) where D is an open ball
and f is analytic on D. ( f0,D0) and ( f1,D1) are direct continuations of each other if
D1 ∩D0 ̸= /0 and f0 = f1 on D1 ∩D0. In this case I will write ( f0,D0) ∼ ( f1,D1) . A
chain is a finite sequence, of disks, {D0, · · · ,Dn} such that Di−1 ∩Di ̸= /0. If ( f0,D0) is a
given function element and there exist function elements, ( fi,Di) such that {D0, · · · ,Dn}
is a chain and

(
f j−1,D j−1

)
∼ ( f j,D j) then ( fn,Dn) is called the analytic continuation of

( f0,D0) along the chain {D0, · · · ,Dn}. Now suppose γ is an oriented curve with parameter
interval [a,b] and there exists a chain, {D0, · · · ,Dn} such that γ∗ ⊆ ∪n

k=1Dk,γ (a) is the
center of D0,γ (b) is the center of Dn, and there is an increasing list of numbers in [a,b] ,a=
s0 < s1 · · · < sn = b such that γ ([si,si+1]) ⊆ Di and ( fn,Dn) is an analytic continuation of
( f0,D0) along the chain. Then ( fn,Dn) is called an analytic continuation of ( f0,D0) along
the curve γ . (γ will always be a continuous curve. Nothing more is needed. )

In the above situation it does not follow that if Dn∩D0 ̸= /0, that fn = f0! However, there
are some cases where this will happen. This is the monodromy theorem which follows.
This is as far as I will go on the subject of analytic continuation. For more on this subject
including a development of the concept of Riemann surfaces, see Alfors [3].

Lemma 55.4.4 Suppose ( f ,B(0,r)) for r < 1 is a function element and ( f ,B(0,r)) can be
analytically continued along every curve in B(0,1) that starts at 0. Then there exists an
analytic function, g defined on B(0,1) such that g = f on B(0,r) .

Proof: Let

R = sup{r1 ≥ r such that there exists gr1

analytic on B(0,r1) which agrees with f on B(0,r) .}

Define gR (z)≡ gr1 (z) where |z|< r1. This is well defined because if you use r1 and r2, both
gr1 and gr2 agree with f on B(0,r), a set with a limit point and so the two functions agree at
every point in both B(0,r1) and B(0,r2). Thus gR is analytic on B(0,R) . If R < 1, then by
the assumption there are no singular points on B(0,R) and so Theorem 55.4.2 implies the
radius of convergence of the power series for gR is larger than R contradicting the choice
of R. Therefore, R = 1 and this proves the lemma. Let g = gR.

The following theorem is the main result in this subject, the monodromy theorem.

Theorem 55.4.5 Let Ω be a simply connected proper subset of C and suppose ( f ,B(a,r))
is a function element with B(a,r) ⊆ Ω. Suppose also that this function element can be
analytically continued along every curve through a. Then there exists G analytic on Ω such
that G agrees with f on B(a,r).

Proof: By the Riemann mapping theorem, there exists h : Ω→ B(0,1) which is ana-
lytic, one to one and onto such that f (a) = 0. Since h is an open map, there exists δ > 0
such that

B(0,δ )⊆ h(B(a,r)) .
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It follows f ◦ h−1 can be analytically continued along every curve through 0. By Lemma
55.4.4 there exists g analytic on B(0,1) which agrees with f ◦ h−1 on B(0,δ ). Define
G(z) ≡ g(h(z)) . For z = h−1 (w) , it follows G

(
h−1 (w)

)
= g(w) . If w ∈ B(0,δ ) , then

G
(
h−1 (w)

)
= f ◦h−1 (w) and so G = f on h−1 (B(0,δ )) , an open set contained in B(a,r).

Therefore, G = f on B(a,r) because h−1 (B(0,δ )) has a limit point. This proves the theo-
rem.

Actually, you sometimes want to consider the case where Ω =C. This requires a small
modification to obtain from the above theorem.

Corollary 55.4.6 Suppose ( f ,B(a,r)) is a function element with B(a,r) ⊆ C. Suppose
also that this function element can be analytically continued along every curve through a.
Then there exists G analytic on C such that G agrees with f on B(a,r).

Proof: Let Ω1 ≡ {z ∈ C : a+ it : t > a} and Ω2 ≡ {z ∈ C : a− it : t > a} . Here is a
picture of Ω1.

Ω1

a

A picture of Ω2 is similar except the line extends down from the boundary of B(a,r).
Thus B(a,r) ⊆ Ωi and Ωi is simply connected and proper. By Theorem 55.4.5 there

exist analytic functions, Gi analytic on Ωi such that Gi = f on B(a,r). Thus G1 = G2 on
B(a,r) , a set with a limit point. Therefore, G1 = G2 on Ω1 ∩Ω2. Now let G(z) = Gi (z)
where z ∈Ωi. This is well defined and analytic on C. This proves the corollary.

55.5 The Picard Theorems
The Picard theorem says that if f is an entire function and there are two complex numbers
not contained in f (C) , then f is constant. This is certainly one of the most amazing things
which could be imagined. However, this is only the little Picard theorem. The big Picard
theorem is even more incredible. This one asserts that to be non constant the entire function
must take every value of C but two infinitely many times! I will begin with the little Picard
theorem. The method of proof I will use is the one found in Saks and Zygmund [115],
Conway [32] and Hille [65]. This is not the way Picard did it in 1879. That approach is
very different and is presented at the end of the material on elliptic functions. This approach
is much more recent dating it appears from around 1924.

Lemma 55.5.1 Let f be analytic on a region containing B(0,r) and suppose∣∣ f ′ (0)∣∣= b > 0, f (0) = 0,

and | f (z)| ≤M for all z ∈ B(0,r). Then f (B(0,r))⊇ B
(

0, r2b2

6M

)
.
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Proof: By assumption,

f (z) =
∞

∑
k=0

akzk, |z| ≤ r. (55.5.16)

Then by the Cauchy integral formula for the derivative,

ak =
1

2πi

∫
∂B(0,r)

f (w)
wk+1 dw

where the integral is in the counter clockwise direction. Therefore,

|ak| ≤
1

2π

∫ 2π

0

∣∣ f (reiθ
)∣∣

rk dθ ≤ M
rk .

In particular, br ≤M. Therefore, from 55.5.16

| f (z)| ≥ b |z|−
∞

∑
k=2

M
rk |z|

k = b |z|−
M
(
|z|
r

)2

1− |z|r

= b |z|− M |z|2

r2− r |z|

Suppose |z|= r2b
4M < r. Then this is no larger than

1
4

b2r2 3M−br
M (4M−br)

≥ 1
4

b2r2 3M−M
M (4M−M)

=
r2b2

6M
.

Let |w|< r2b
4M . Then for |z|= r2b

4M and the above,

|w|= |( f (z)−w)− f (z)|< r2b
4M
≤ | f (z)|

and so by Rouche’s theorem, z→ f (z)−w and z→ f (z) have the same number of zeros
in B

(
0, r2b

4M

)
. But f has at least one zero in this ball and so this shows there exists at least

one z ∈ B
(

0, r2b
4M

)
such that f (z)−w = 0. This proves the lemma.

55.5.1 Two Competing Lemmas
Lemma 55.5.1 is a really nice lemma but there is something even better, Bloch’s lemma.
This lemma does not depend on the bound of f . Like the above two lemmas it is interesting
for its own sake and in addition is the key to a fairly short proof of Picard’s theorem. It
features the number 1

24 . The best constant is not currently known.

Lemma 55.5.2 Let f be analytic on an open set containing B(0,R) and suppose | f ′ (0)|>
0. Then there exists a ∈ B(0,R) such that

f (B(0,R))⊇ B
(

f (a) ,
| f ′ (0)|R

24

)
.
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Proof: Let K (ρ)≡max{| f ′ (z)| : |z|= ρ} . For simplicity, let Cρ ≡ {z : |z|= ρ}.
Claim: K is continuous from the left.
Proof of claim: Let zρ ∈Cρ such that

∣∣ f ′ (zρ

)∣∣= K (ρ) . Then by the maximum mod-
ulus theorem, if λ ∈ (0,1) ,∣∣ f ′ (λ zρ

)∣∣≤ K (λρ)≤ K (ρ) =
∣∣ f ′ (zρ

)∣∣ .
Letting λ → 1 yields the claim.

Let ρ0 be the largest such that

(R−ρ0)K (ρ0) = R
∣∣ f ′ (0)∣∣ .

(Note (R−0)K (0) =R | f ′ (0)| .) Thus ρ0 <R because (R−R)K (R) = 0. Let |a|= ρ0 such
that | f ′ (a)|= K (ρ0). Thus ∣∣ f ′ (a)∣∣(R−ρ0) =

∣∣ f ′ (0)∣∣R (55.5.17)

Now let r = R−ρ0
2 . From 55.5.17,

∣∣ f ′ (a)∣∣r = 1
2

∣∣ f ′ (0)∣∣R, B(a,r)⊆ B(0,ρ0 + r)⊆ B(0,R) . (55.5.18)

0

a

Therefore, if z ∈ B(a,r) , it follows from the maximum modulus theorem and the defi-
nition of ρ0 that

∣∣ f ′ (z)∣∣ ≤ K (ρ0 + r)<
R | f ′ (0)|

R−ρ0− r
=

2R | f ′ (0)|
R−ρ0

=
2R | f ′ (0)|

2r
=

R | f ′ (0)|
r

(55.5.19)

Let g(z) = f (a+ z)− f (a) where z ∈ B(0,r) . Then |g′ (0)| = | f ′ (a)| > 0 and for z ∈
B(0,r),

|g(z)| ≤
∣∣∣∣∫

γ(a,z)
g′ (w)dw

∣∣∣∣≤ |z−a| R | f
′ (0)|
r

= R
∣∣ f ′ (0)∣∣ .
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By Lemma 55.5.1 and 55.5.18,

g(B(0,r)) ⊇ B

(
0,

r2 | f ′ (a)|2

6R | f ′ (0)|

)

= B

(
0,

r2
( 1

2r | f
′ (0)|R

)2

6R | f ′ (0)|

)
= B

(
0,
| f ′ (0)|R

24

)
Now g(B(0,r)) = f (B(a,r))− f (a) and so this implies

f (B(0,R))⊇ f (B(a,r))⊇ B
(

f (a) ,
| f ′ (0)|R

24

)
.

This proves the lemma.
Here is a slightly more general version which allows the center of the open set to be

arbitrary.

Lemma 55.5.3 Let f be analytic on an open set containing B(z0,R) and suppose | f ′ (z0)|>
0. Then there exists a ∈ B(z0,R) such that

f (B(z0,R))⊇ B
(

f (a) ,
| f ′ (z0)|R

24

)
.

Proof: You look at g(z)≡ f (z0 + z)− f (z0) for z ∈ B(0,R) . Then g′ (0) = f ′ (z0) and
so by Lemma 55.5.2 there exists a1 ∈ B(0,R) such that

g(B(0,R))⊇ B
(

g(a1) ,
| f ′ (z0)|R

24

)
.

Now g(B(0,R)) = f (B(z0,R))− f (z0) and g(a1) = f (a)− f (z0) for some a ∈ B(z0,R)
and so

f (B(z0,R))− f (z0) ⊇ B
(

g(a1) ,
| f ′ (z0)|R

24

)
= B

(
f (a)− f (z0) ,

| f ′ (z0)|R
24

)
which implies

f (B(z0,R))⊇ B
(

f (a) ,
| f ′ (z0)|R

24

)
as claimed. This proves the lemma.

No attempt was made to find the best number to multiply by R | f ′ (z0)|. A discussion of
this is given in Conway [32]. See also [65]. Much larger numbers than 1/24 are available
and there is a conjecture due to Alfors about the best value. The conjecture is that 1/24 can
be replaced with

Γ
( 1

3

)
Γ
( 11

12

)(
1+
√

3
)1/2

Γ
( 1

4

) ≈ .47186
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You can see there is quite a gap between the constant for which this lemma is proved above
and what is thought to be the best constant.

Bloch’s lemma above gives the existence of a ball of a certain size inside the image of
a ball. By contrast the next lemma leads to conditions under which the values of a function
do not contain a ball of certain radius. It concerns analytic functions which do not achieve
the values 0 and 1.

Lemma 55.5.4 Let F denote the set of functions, f defined on Ω, a simply connected
region which do not achieve the values 0 and 1. Then for each such function, it is possible
to define a function analytic on Ω, H (z) by the formula

H (z)≡ log

[√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

]
.

There exists a constant C independent of f ∈F such that H (Ω) does not contain any ball
of radius C.

Proof: Let f ∈F . Then since f does not take the value 0, there exists g1 a primitive
of f ′/ f . Thus

d
dz

(
e−g1 f

)
= 0

so there exists a,b such that f (z)e−g1(z) = ea+bi. Letting g(z) = g1 (z)+a+ ib, it follows
eg(z) = f (z). Let log( f (z)) = g(z). Then for n ∈ Z, the integers,

log( f (z))
2πi

,
log( f (z))

2πi
−1 ̸= n

because if equality held, then f (z) = 1 which does not happen. It follows log( f (z))
2πi and

log( f (z))
2πi −1 are never equal to zero. Therefore, using the same reasoning, you can define a

logarithm of these two quantities and therefore, a square root. Hence there exists a function
analytic on Ω, √

log( f (z))
2πi

−
√

log( f (z))
2πi

−1. (55.5.20)

For n a positive integer, this function cannot equal
√

n±
√

n−1 because if it did, then(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)
=
√

n±
√

n−1 (55.5.21)

and you could take reciprocals of both sides to obtain(√
log( f (z))

2πi
+

√
log( f (z))

2πi
−1

)
=
√

n∓
√

n−1. (55.5.22)

Then adding 55.5.21 and 55.5.22

2

√
log( f (z))

2πi
= 2
√

n
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which contradicts the above observation that log( f (z))
2πi is not equal to an integer.

Also, the function of 55.5.20 is never equal to zero. Therefore, you can define the
logarithm of this function also. It follows

H (z)≡ log

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)
̸= ln

(√
n±
√

n−1
)
+2mπi

where m is an arbitrary integer and n is a positive integer. Now

lim
n→∞

ln
(√

n+
√

n−1
)
= ∞

and limn→∞ ln
(√

n−
√

n−1
)
= −∞ and so C is covered by rectangles having vertices at

points ln
(√

n±
√

n−1
)
+ 2mπi as described above. Each of these rectangles has height

equal to 2π and a short computation shows their widths are bounded. Therefore, there
exists C independent of f ∈F such that C is larger than the diameter of all these rectangles.
Hence H (Ω) cannot contain any ball of radius larger than C.

55.5.2 The Little Picard Theorem
Now here is the little Picard theorem. It is easy to prove from the above.

Theorem 55.5.5 If h is an entire function which omits two values then h is a constant.

Proof: Suppose the two values omitted are a and b and that h is not constant. Let
f (z) = (h(z)−a)/(b−a). Then f omits the two values 0 and 1. Let H be defined in
Lemma 55.5.4. Then H (z) is clearly not of the form az+ b because then it would have
values equal to the vertices ln

(√
n±
√

n−1
)
+2mπi or else be constant neither of which

happen if h is not constant. Therefore, by Liouville’s theorem, H ′ must be unbounded. Pick
ξ such that |H ′ (ξ )| > 24C where C is such that H (C) contains no balls of radius larger

than C. But by Lemma 55.5.3 H (B(ξ ,1)) must contain a ball of radius |H
′(ξ )|
24 > 24C

24 =C,
a contradiction. This proves Picard’s theorem.

The following is another formulation of this theorem.

Corollary 55.5.6 If f is a meromophic function defined on C which omits three distinct
values, a,b,c, then f is a constant.

Proof: Let φ (z) ≡ z−a
z−c

b−c
b−a . Then φ (c) = ∞,φ (a) = 0, and φ (b) = 1. Now consider

the function, h = φ ◦ f . Then h misses the three points ∞,0, and 1. Since h is meromorphic
and does not have ∞ in its values, it must actually be analytic. Thus h is an entire function
which misses the two values 0 and 1. Therefore, h is constant by Theorem 55.5.5.

55.5.3 Schottky’s Theorem

Lemma 55.5.7 Let f be analytic on an open set containing B(0,R) and suppose that f
does not take on either of the two values 0 or 1. Also suppose | f (0)| ≤ β . Then letting
θ ∈ (0,1) , it follows

| f (z)| ≤M (β ,θ)
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for all z ∈ B(0,θR) , where M (β ,θ) is a function of only the two variables β ,θ . (In
particular, there is no dependence on R.)

Proof: Consider the function, H (z) used in Lemma 55.5.4 given by

H (z)≡ log

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)
. (55.5.23)

You notice there are two explicit uses of logarithms. Consider first the logarithm inside the
radicals. Choose this logarithm such that

log( f (0)) = ln | f (0)|+ iarg( f (0)) , arg( f (0)) ∈ (−π,π]. (55.5.24)

You can do this because

elog( f (0)) = f (0) = eln| f (0)|eiα = eln| f (0)|+iα

and by replacing α with α + 2mπ for a suitable integer, m it follows the above equation
still holds. Therefore, you can assume 55.5.24. Similar reasoning applies to the logarithm
on the outside of the parenthesis. It can be assumed H (0) equals

ln

∣∣∣∣∣
√

log( f (0))
2πi

−
√

log( f (0))
2πi

−1

∣∣∣∣∣+ iarg

(√
log( f (0))

2πi
−
√

log( f (0))
2πi

−1

)
(55.5.25)

where the imaginary part is no larger than π in absolute value.
Now if ξ ∈ B(0,R) is a point where H ′ (ξ ) ̸= 0, then by Lemma 55.5.2

H (B(ξ ,R−|ξ |))⊇ B
(

H (a) ,
|H ′ (ξ )|(R−|ξ |)

24

)
where a is some point in B(ξ ,R−|ξ |). But by Lemma 55.5.4 H (B(ξ ,R−|ξ |)) contains
no balls of radius C where C depended only on the maximum diameters of those rectan-
gles having vertices ln

(√
n±
√

n−1
)
+ 2mπi for n a positive integer and m an integer.

Therefore,
|H ′ (ξ )|(R−|ξ |)

24
<C

and consequently ∣∣H ′ (ξ )∣∣< 24C
R−|ξ |

.

Even if H ′ (ξ ) = 0, this inequality still holds. Therefore, if z ∈ B(0,R) and γ (0,z) is the
straight segment from 0 to z,

|H (z)−H (0)| =

∣∣∣∣∫
γ(0,z)

H ′ (w)dw
∣∣∣∣= ∣∣∣∣∫ 1

0
H ′ (tz)zdt

∣∣∣∣
≤

∫ 1

0

∣∣H ′ (tz)z
∣∣dt ≤

∫ 1

0

24C
R− t |z|

|z|dt

= 24C ln
(

R
R−|z|

)
.
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Therefore, for z ∈ ∂B(0,θR) ,

|H (z)| ≤ |H (0)|+24C ln
(

1
1−θ

)
. (55.5.26)

By the maximum modulus theorem, the above inequality holds for all |z|< θR also.
Next I will use 55.5.23 to get an inequality for | f (z)| in terms of |H (z)|. From 55.5.23,

H (z) = log

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)
and so

2H (z) = log

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)2

−2H (z) = log

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)−2

= log

(√
log( f (z))

2πi
+

√
log( f (z))

2πi
−1

)2

Therefore, (√
log( f (z))

2πi
+

√
log( f (z))

2πi
−1

)2

+

(√
log( f (z))

2πi
−
√

log( f (z))
2πi

−1

)2

= exp(2H (z))+ exp(−2H (z))

and (
log( f (z))

πi
−1
)
=

1
2
(exp(2H (z))+ exp(−2H (z))) .

Thus
log( f (z)) = πi+

πi
2
(exp(2H (z))+ exp(−2H (z)))

which shows

| f (z)| =

∣∣∣∣exp
[

πi
2
(exp(2H (z))+ exp(−2H (z)))

]∣∣∣∣
≤ exp

∣∣∣∣πi
2
(exp(2H (z))+ exp(−2H (z)))

∣∣∣∣
≤ exp

∣∣∣π
2
(|exp(2H (z))|+ |exp(−2H (z))|)

∣∣∣
≤ exp

∣∣∣π
2
(exp(2 |H (z)|)+ exp(|−2H (z)|))

∣∣∣
= exp(π exp2 |H (z)|) .
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Now from 55.5.26 this is dominated by

exp
(

π exp2
(
|H (0)|+24C ln

(
1

1−θ

)))
= exp

(
π exp(2 |H (0)|)exp

(
48C ln

(
1

1−θ

)))
(55.5.27)

Consider exp(2 |H (0)|). I want to obtain an inequality for this which involves β . This
is where I will use the convention about the logarithms discussed above. From 55.5.25,

2 |H (0)|= 2

∣∣∣∣∣log

(√
log( f (0))

2πi
−
√

log( f (0))
2πi

−1

)∣∣∣∣∣

≤ 2

(ln

∣∣∣∣∣
√

log( f (0))
2πi

−
√

log( f (0))
2πi

−1

∣∣∣∣∣
)2

+π
2

1/2

≤ 2

∣∣∣∣∣ln
(∣∣∣∣∣
√

log( f (0))
2πi

∣∣∣∣∣+
∣∣∣∣∣
√

log( f (0))
2πi

−1

∣∣∣∣∣
)∣∣∣∣∣

2

+π
2

1/2

≤ 2

∣∣∣∣∣ln
(∣∣∣∣∣
√

log( f (0))
2πi

∣∣∣∣∣+
∣∣∣∣∣
√

log( f (0))
2πi

−1

∣∣∣∣∣
)∣∣∣∣∣+2π

≤ ln
(

2
(∣∣∣∣ log( f (0))

2πi

∣∣∣∣+ ∣∣∣∣ log( f (0))
2πi

−1
∣∣∣∣))+2π

= ln
((∣∣∣∣ log( f (0))

πi

∣∣∣∣+ ∣∣∣∣ log( f (0))
πi

−2
∣∣∣∣))+2π (55.5.28)

Consider
∣∣∣ log( f (0))

πi

∣∣∣
log( f (0))

πi
=− ln | f (0)|

π
i+

arg( f (0))
π

and so

∣∣∣∣ log( f (0))
πi

∣∣∣∣ =

(∣∣∣∣ ln | f (0)|π

∣∣∣∣2 +(arg( f (0))
π

)2
)1/2

≤

(∣∣∣∣ lnβ

π

∣∣∣∣2 +(π

π

)2
)1/2

=

(∣∣∣∣ lnβ

π

∣∣∣∣2 +1

)1/2

.
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Similarly, ∣∣∣∣ log( f (0))
πi

−2
∣∣∣∣ ≤

(∣∣∣∣ lnβ

π

∣∣∣∣2 +(2+1)2

)1/2

=

(∣∣∣∣ lnβ

π

∣∣∣∣2 +9

)1/2

It follows from 55.5.28 that

2 |H (0)| ≤ ln

2

(∣∣∣∣ lnβ

π

∣∣∣∣2 +9

)1/2
+2π.

Hence from 55.5.27
| f (z)| ≤

exp

π exp

ln

2

(∣∣∣∣ lnβ

π

∣∣∣∣2 +9

)1/2
+2π

exp
(

48C ln
(

1
1−θ

))
and so, letting M (β ,θ) be given by the above expression on the right, the lemma is proved.

The following theorem will be referred to as Schottky’s theorem. It looks just like the
above lemma except it is only assumed that f is analytic on B(0,R) rather than on an open
set containing B(0,R). Also, the case of an arbitrary center is included along with arbitrary
points which are not attained as values of the function.

Theorem 55.5.8 Let f be analytic on B(z0,R) and suppose that f does not take on either
of the two distinct values a or b. Also suppose | f (z0)| ≤ β . Then letting θ ∈ (0,1) , it
follows

| f (z)| ≤M (a,b,β ,θ)

for all z ∈ B(z0,θR) , where M (a,b,β ,θ) is a function of only the variables β ,θ ,a,b. (In
particular, there is no dependence on R.)

Proof: First you can reduce to the case where the two values are 0 and 1 by considering

h(z)≡ f (z)−a
b−a

.

If there exists an estimate of the desired sort for h, then there exists such an estimate for
f . Of course here the function, M would depend on a and b. Therefore, there is no loss of
generality in assuming the points which are missed are 0 and 1.

Apply Lemma 55.5.7 to B(0,R1) for the function, g(z) ≡ f (z0 + z) and R1 < R. Then
if β ≥ | f (z0)|= |g(0)| , it follows |g(z)|= | f (z0 + z)| ≤M (β ,θ) for every z ∈ B(0,θR1) .
Now let θ ∈ (0,1) and choose R1 < R large enough that θR = θ 1R1 where θ 1 ∈ (0,1) .
Then if |z− z0|< θR, it follows

| f (z)| ≤M (β ,θ 1) .

Now let R1→ R so θ 1→ θ .
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55.5.4 A Brief Review

First recall the definition of the metric on Ĉ. For convenience it is listed here again. Con-
sider the unit sphere, S2 given by (z−1)2 + y2 + x2 = 1. Define a map from the complex
plane to the surface of this sphere as follows. Extend a line from the point, p in the complex
plane to the point (0,0,2) on the top of this sphere and let θ (p) denote the point of this
sphere which the line intersects. Define θ (∞)≡ (0,0,2).

(0,0,2)

(0,0,1)
p

θ(p)

C
Then θ

−1 is sometimes called sterographic projection. The mapping θ is clearly con-
tinuous because it takes converging sequences, to converging sequences. Furthermore, it is
clear that θ

−1 is also continuous. In terms of the extended complex plane, Ĉ, a sequence,
zn converges to ∞ if and only if θzn converges to (0,0,2) and a sequence, zn converges to
z ∈ C if and only if θ (zn)→ θ (z) .

In fact this makes it easy to define a metric on Ĉ.

Definition 55.5.9 Let z,w ∈ Ĉ. Then let d (x,y) ≡ |θ (z)−θ (w)| where this last distance
is the usual distance measured in R3.

Theorem 55.5.10
(
Ĉ,d

)
is a compact, hence complete metric space.

Proof: Suppose {zn} is a sequence in Ĉ. This means {θ (zn)} is a sequence in S2

which is compact. Therefore, there exists a subsequence,
{

θznk

}
and a point, z ∈ S2 such

that θznk → θz in S2 which implies immediately that d
(
znk ,z

)
→ 0. A compact metric

space must be complete.
Also recall the interesting fact that meromorphic functions are continuous with values

in Ĉ which is reviewed here for convenience. It came from the theory of classification of
isolated singularities.

Theorem 55.5.11 Let Ω be an open subset of C and let f : Ω→ Ĉ be meromorphic. Then
f is continuous with respect to the metric, d on Ĉ.

Proof: Let zn → z where z ∈ Ω. Then if z is a pole, it follows from Theorem 51.7.11
that

d ( f (zn) ,∞)≡ d ( f (zn) , f (z))→ 0.

If z is not a pole, then f (zn)→ f (z) in C which implies

|θ ( f (zn))−θ ( f (z))|= d ( f (zn) , f (z))→ 0.
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Recall that θ is continuous on C.
The fundamental result behind all the theory about to be presented is the Ascoli Arzela

theorem also listed here for convenience.

Definition 55.5.12 Let (X ,d) be a complete metric space. Then it is said to be locally
compact if B(x,r) is compact for each r > 0.

Thus if you have a locally compact metric space, then if {an} is a bounded sequence, it
must have a convergent subsequence.

Let K be a compact subset of Rn and consider the continuous functions which have
values in a locally compact metric space, (X ,d) where d denotes the metric on X . Denote
this space as C (K,X) .

Definition 55.5.13 For f ,g ∈ C (K,X) , where K is a compact subset of Rn and X is a
locally compact complete metric space define

ρK ( f ,g)≡ sup{d ( f (x) ,g(x)) : x ∈ K} .

The Ascoli Arzela theorem, Theorem 7.8.4 is a major result which tells which subsets
of C (K,X) are sequentially compact.

Definition 55.5.14 Let A ⊆ C (K,X) for K a compact subset of Rn. Then A is said to be
uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that whenever x,y∈K
with |x−y|< δ and f ∈ A,

d ( f (x) , f (y))< ε.

The set, A is said to be uniformly bounded if for some M < ∞, and a ∈ X ,

f (x) ∈ B(a,M)

for all f ∈ A and x ∈ K.

The Ascoli Arzela theorem follows.

Theorem 55.5.15 Suppose K is a nonempty compact subset of Rn and A ⊆ C (K,X) , is
uniformly bounded and uniformly equicontinuous where X is a locally compact complete
metric space. Then if { fk} ⊆ A, there exists a function, f ∈ C (K,X) and a subsequence,
fkl such that

lim
l→∞

ρK
(

fkl , f
)
= 0.

In the cases of interest here, X = Ĉ with the metric defined above.

55.5.5 Montel’s Theorem
The following lemma is another version of Montel’s theorem. It is this which will make
possible a proof of the big Picard theorem.
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Lemma 55.5.16 Let Ω be a region and let F be a set of functions analytic on Ω none of
which achieve the two distinct values, a and b. If { fn} ⊆F then one of the following hold:
Either there exists a function, f analytic on Ω and a subsequence,

{
fnk

}
such that for any

compact subset, K of Ω,
lim
k→∞

∣∣∣∣ fnk − f
∣∣∣∣

K,∞
= 0. (55.5.29)

or there exists a subsequence
{

fnk

}
such that for all compact subsets K,

lim
k→∞

ρK
(

fnk ,∞
)
= 0. (55.5.30)

Proof: Let B(z0,2R) ⊆ Ω. There are two cases to consider. The first case is that
there exists a subsequence, nk such that

{
fnk (z0)

}
is bounded. The second case is that

limn→∞

∣∣ fnk (z0)
∣∣= ∞.

Consider the first case. By Theorem 55.5.8
{

fnk (z)
}

is uniformly bounded on B(z0,R)
because by this theorem, and letting θ = 1/2 applied to B(z0,2R) , it follows

∣∣ fnk (z)
∣∣ ≤

M
(
a,b, 1

2 ,β
)

where β is an upper bound to the numbers,
∣∣ fnk (z0)

∣∣. The Cauchy integral
formula implies the existence of a uniform bound on the

{
f ′nk

}
which implies the func-

tions are equicontinuous and uniformly bounded. Therefore, by the Ascoli Arzela theorem
there exists a further subsequence which converges uniformly on B(z0,R) to a function, f
analytic on B(z0,R). Thus denoting this subsequence by

{
fnk

}
to save on notation,

lim
k→∞

∣∣∣∣ fnk − f
∣∣∣∣

B(z0,R),∞
= 0. (55.5.31)

Consider the second case. In this case, it follows {1/ fn (z0)} is bounded on B(z0,R) and
so by the same argument just given {1/ fn (z)} is uniformly bounded on B(z0,R). Therefore,
a subsequence converges uniformly on B(z0,R). But {1/ fn (z)} converges to 0 and so this
requires that {1/ fn (z)} must converge uniformly to 0. Therefore,

lim
k→∞

ρB(z0,R)

(
fnk ,∞

)
= 0. (55.5.32)

Now let {Dk} denote a countable set of closed balls, Dk = B(zk,Rk) such that

B(zk,2Rk)⊆Ω

and ∪∞
k=1 int(Dk) = Ω. Using a Cantor diagonal process, there exists a subsequence,

{
fnk

}
of { fn} such that for each D j, one of the above two alternatives holds. That is, either

lim
k→∞

∣∣∣∣ fnk −g j
∣∣∣∣

D j ,∞
= 0 (55.5.33)

or,
lim
k→∞

ρD j

(
fnk ,∞

)
. (55.5.34)

Let A =
{
∪ int(D j) : 55.5.33 holds

}
, B =

{
∪ int(D j) : 55.5.34 holds

}
. Note that the balls

whose union is A cannot intersect any of the balls whose union is B. Therefore, one of A or
B must be empty since otherwise, Ω would not be connected.

If K is any compact subset of Ω, it follows K must be a subset of some finite collection
of the D j. Therefore, one of the alternatives in the lemma must hold. That the limit func-
tion, f must be analytic follows easily in the same way as the proof in Theorem 55.3.1 on
Page 1739. You could also use Morera’s theorem. This proves the lemma.
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55.5.6 The Great Big Picard Theorem
The next theorem is the main result which the above lemmas lead to. It is the Big Picard
theorem, also called the Great Picard theorem.Recall B′ (a,r) is the deleted ball consisting
of all the points of the ball except the center.

Theorem 55.5.17 Suppose f has an isolated essential singularity at 0. Then for every
R > 0, and β ∈ C, f−1 (β )∩B′ (0,R) is an infinite set except for one possible exceptional
β .

Proof: Suppose this is not true. Then there exists R1 > 0 and two points, α and β such
that f−1 (β )∩B′ (0,R1) and f−1 (α)∩B′ (0,R1) are both finite sets. Then shrinking R1 and
calling the result R, there exists B(0,R) such that

f−1 (β )∩B′ (0,R) = /0, f−1 (α)∩B′ (0,R) = /0.

Now let A0 denote the annulus
{

z ∈ C : R
22 < |z|< 3R

22

}
and let An denote the annulus{

z ∈ C : R
22+n < |z|< 3R

22+n

}
. The reason for the 3 is to insure that An ∩An+1 ̸= /0. This

follows from the observation that 3R/22+1+n > R/22+n. Now define a set of functions on
A0 as follows:

fn (z)≡ f
( z

2n

)
.

By the choice of R, this set of functions missed the two points α and β . Therefore, by
Lemma 55.5.16 there exists a subsequence such that one of the two options presented there
holds.

First suppose limk→∞

∣∣∣∣ fnk − f
∣∣∣∣

K,∞
= 0 for all K a compact subset of A0 and f is ana-

lytic on A0. In particular, this happens for γ0 the circular contour having radius R/2. Thus
fnk must be bounded on this contour. But this says the same thing as f (z/2nk) is bounded
for |z|=R/2, this holding for each k = 1,2, · · · . Thus there exists a constant, M such that on
each of a shrinking sequence of concentric circles whose radii converge to 0, | f (z)| ≤M.
By the maximum modulus theorem, | f (z)| ≤M at every point between successive circles
in this sequence. Therefore, | f (z)| ≤M in B′ (0,R) contradicting the Weierstrass Casorati
theorem.

The other option which might hold from Lemma 55.5.16 is that limk→∞ ρK
(

fnk ,∞
)
= 0

for all K compact subset of A0. Since f has an essential singularity at 0 the zeros of f in
B(0,R) are isolated. Therefore, for all k large enough, fnk has no zeros for |z| < 3R/22.
This is because the values of fnk are the values of f on Ank , a small anulus which avoids all
the zeros of f whenever k is large enough. Only consider k this large. Then use the above
argument on the analytic functions 1/ fnk . By the assumption that limk→∞ ρK

(
fnk ,∞

)
= 0,

it follows limk→∞

∣∣∣∣1/ fnk −0
∣∣∣∣

K,∞
= 0 and so as above, there exists a shrinking sequence

of concentric circles whose radii converge to 0 and a constant, M such that for z on any
of these circles, |1/ f (z)| ≤ M. This implies that on some deleted ball, B′ (0,r) where
r ≤ R, | f (z)| ≥ 1/M which again violates the Weierstrass Casorati theorem. This proves
the theorem.

As a simple corollary, here is what this remarkable theorem says about entire functions.
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Corollary 55.5.18 Suppose f is entire and nonconstant and not a polynomial. Then f
assumes every complex value infinitely many times with the possible exception of one.

Proof: Since f is entire, f (z) = ∑
∞
n=0 anzn. Define for z ̸= 0,

g(z)≡ f
(

1
z

)
=

∞

∑
n=0

an

(
1
z

)n

.

Thus 0 is an isolated essential singular point of g. By the big Picard theorem, Theorem
55.5.17 it follows g takes every complex number but possibly one an infinite number of
times. This proves the corollary.

Note the difference between this and the little Picard theorem which says that an entire
function which is not constant must achieve every value but two.

55.6 Exercises
1. Prove that in Theorem 55.3.1 it suffices to assume F is uniformly bounded on each

compact subset of Ω.

2. Find conditions on a,b,c,d such that the fractional linear transformation, az+b
cz+d maps

the upper half plane onto the upper half plane.

3. Let D be a simply connected region which is a proper subset of C. Does there exist
an entire function, f which maps C onto D? Why or why not?

4. Verify the conclusion of Theorem 55.3.1 involving the higher order derivatives.

5. What if Ω = C? Does there exist an analytic function, f mapping Ω one to one and
onto B(0,1)? Explain why or why not. Was Ω ̸=C used in the proof of the Riemann
mapping theorem?

6. Verify that |φ α (z)|= 1 if |z|= 1. Apply the maximum modulus theorem to conclude
that |φ α (z)| ≤ 1 for all |z|< 1.

7. Suppose that | f (z)| ≤ 1 for |z| = 1 and f (α) = 0 for |α| < 1. Show that | f (z)| ≤
|φ α (z)| for all z ∈ B(0,1) . Hint: Consider f (z)(1−αz)

z−α
which has a removable sin-

gularity at α. Show the modulus of this function is bounded by 1 on |z| = 1. Then
apply the maximum modulus theorem.

8. Let U and V be open subsets of C and suppose u : U → R is harmonic while h is an
analytic map which takes V one to one onto U . Show that u◦h is harmonic on V .

9. Show that for a harmonic function, u defined on B(0,R) , there exists an analytic
function, h = u+ iv where

v(x,y)≡
∫ y

0
ux (x, t)dt−

∫ x

0
uy (t,0)dt.
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10. Suppose Ω is a simply connected region and u is a real valued function defined on Ω

such that u is harmonic. Show there exists an analytic function, f such that u = Re f .
Show this is not true if Ω is not a simply connected region. Hint: You might use the
Riemann mapping theorem and Problems 8 and 9. For the second part it might be
good to try something like u(x,y) = ln

(
x2 + y2

)
on the annulus 1 < |z|< 2.

11. Show that w = 1+z
1−z maps {z ∈ C : Imz > 0 and |z|< 1} to the first quadrant,

{z = x+ iy : x,y > 0} .

12. Let f (z) = az+b
cz+d and let g(z) = a1z+b1

c1z+d1
. Show that f ◦g(z) equals the quotient of two

expressions, the numerator being the top entry in the vector(
a b
c d

)(
a1 b1
c1 d1

)(
z
1

)
and the denominator being the bottom entry. Show that if you define

φ

((
a b
c d

))
≡ az+b

cz+d
,

then φ (AB) = φ (A)◦φ (B) . Find an easy way to find the inverse of f (z) = az+b
cz+d and

give a condition on the a,b,c,d which insures this function has an inverse.

13. The modular group2 is the set of fractional linear transformations, az+b
cz+d such that

a,b,c,d are integers and ad− bc = 1. Using Problem 12 or brute force show this
modular group is really a group with the group operation being composition. Also
show the inverse of az+b

cz+d is dz−b
−cz+a .

14. Let Ω be a region and suppose f is analytic on Ω and that the functions fn are also
analytic on Ω and converge to f uniformly on compact subsets of Ω. Suppose f is
one to one. Can it be concluded that for an arbitrary compact set, K ⊆ Ω that fn is
one to one for all n large enough?

15. The Vitali theorem says that if Ω is a region and { fn} is a uniformly bounded se-
quence of functions which converges pointwise on a set, S ⊆ Ω which has a limit
point in Ω, then in fact, { fn} must converge uniformly on compact subsets of Ω to
an analytic function. Prove this theorem. Hint: If the sequence fails to converge,
show you can get two different subsequences converging uniformly on compact sets
to different functions. Then argue these two functions coincide on S.

16. Does there exist a function analytic on B(0,1) which maps B(0,1) onto B′ (0,1) ,
the open unit ball in which 0 has been deleted?

2This is the terminology used in Rudin’s book Real and Complex Analysis.
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Chapter 56

Approximation By Rational Functions
56.1 Runge’s Theorem

Consider the function, 1
z = f (z) for z defined on Ω≡ B(0,1)\{0}= B′ (0,1) . Clearly f is

analytic on Ω. Suppose you could approximate f uniformly by polynomials on ann
(
0, 1

2 ,
3
4

)
,

a compact subset of Ω. Then, there would exist a suitable polynomial p(z) , such that∣∣∣ 1
2πi
∫

γ
f (z)− p(z)dz

∣∣∣ < 1
10 where here γ is a circle of radius 2

3 . However, this is impos-

sible because 1
2πi
∫

γ
f (z)dz = 1 while 1

2πi
∫

γ
p(z)dz = 0. This shows you can’t expect to

be able to uniformly approximate analytic functions on compact sets using polynomials.
This is just horrible! In real variables, you can approximate any continuous function on
a compact set with a polynomial. However, that is just the way it is. It turns out that the
ability to approximate an analytic function on Ω with polynomials is dependent on Ω being
simply connected.

All these theorems work for f having values in a complex Banach space. However, I
will present them in the context of functions which have values inC. The changes necessary
to obtain the extra generality are very minor.

Definition 56.1.1 Approximation will be taken with respect to the following norm.

|| f −g||K,∞ ≡ sup{|| f (z)−g(z)|| : z ∈ K}

56.1.1 Approximation With Rational Functions
It turns out you can approximate analytic functions by rational functions, quotients of poly-
nomials. The resulting theorem is one of the most profound theorems in complex analysis.
The basic idea is simple. The Riemann sums for the Cauchy integral formula are rational
functions. The idea used to implement this observation is that if you have a compact subset,
K of an open set, Ω there exists a cycle composed of closed oriented curves

{
γ j

}n

j=1
which

are contained in Ω\K such that for every z ∈ K,∑n
k=1 n(γk,z) = 1. One more ingredient is

needed and this is a theorem which lets you keep the approximation but move the poles.
To begin with, consider the part about the cycle of closed oriented curves. Recall

Theorem 51.7.25 which is stated for convenience.

Theorem 56.1.2 Let K be a compact subset of an open set, Ω. Then there exist continuous,
closed, bounded variation oriented curves

{
γ j

}m

j=1
for which γ∗j ∩K = /0 for each j, γ∗j ⊆

Ω, and for all p ∈ K,
m

∑
k=1

n(p,γk) = 1.

and
m

∑
k=1

n(z,γk) = 0

for all z /∈Ω.

1765
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This theorem implies the following.

Theorem 56.1.3 Let K ⊆Ω where K is compact and Ω is open. Then there exist oriented
closed curves, γk such that γ∗k ∩K = /0 but γ∗k ⊆Ω, such that for all z ∈ K,

f (z) =
1

2πi

p

∑
k=1

∫
γk

f (w)
w− z

dw. (56.1.1)

Proof: This follows from Theorem 51.7.25 and the Cauchy integral formula. As shown
in the proof, you can assume the γk are linear mappings but this is not important.

Next I will show how the Cauchy integral formula leads to approximation by rational
functions, quotients of polynomials.

Lemma 56.1.4 Let K be a compact subset of an open set, Ω and let f be analytic on Ω.
Then there exists a rational function, Q whose poles are not in K such that

||Q− f ||K,∞ < ε .

Proof: By Theorem 56.1.3 there are oriented curves, γk described there such that for
all z ∈ K,

f (z) =
1

2πi

p

∑
k=1

∫
γk

f (w)
w− z

dw. (56.1.2)

Defining g(w,z) ≡ f (w)
w−z for (w,z) ∈ ∪p

k=1γ∗k ×K, it follows since the distance between K
and ∪kγ∗k is positive that g is uniformly continuous and so there exists a δ > 0 such that if
||P||< δ , then for all z ∈ K,∣∣∣∣∣ f (z)− 1

2πi

p

∑
k=1

n

∑
j=1

f (γk (τ j))(γk (ti)− γk (ti−1))

γk (τ j)− z

∣∣∣∣∣< ε

2
.

The complicated expression is obtained by replacing each integral in 56.1.2 with a Riemann
sum. Simplifying the appearance of this, it follows there exists a rational function of the
form

R(z) =
M

∑
k=1

Ak

wk− z

where the wk are elements of components of C \K and Ak are complex numbers or in the
case where f has values in X , these would be elements of X such that

||R− f ||K,∞ <
ε

2
.

This proves the lemma.

56.1.2 Moving The Poles And Keeping The Approximation
Lemma 56.1.4 is a nice lemma but needs refining. In this lemma, the Riemann sum handed
you the poles. It is much better if you can pick the poles. The following theorem from
advanced calculus, called Merten’s theorem, will be used
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56.1.3 Merten’s Theorem.

Theorem 56.1.5 Suppose ∑
∞
i=r ai and ∑

∞
j=r b j both converge absolutely1. Then(

∞

∑
i=r

ai

)(
∞

∑
j=r

b j

)
=

∞

∑
n=r

cn

where

cn =
n

∑
k=r

akbn−k+r.

Proof: Let pnk = 1 if r ≤ k ≤ n and pnk = 0 if k > n. Then

cn =
∞

∑
k=r

pnkakbn−k+r.

Also,

∞

∑
k=r

∞

∑
n=r

pnk |ak| |bn−k+r| =
∞

∑
k=r
|ak|

∞

∑
n=r

pnk |bn−k+r|

=
∞

∑
k=r
|ak|

∞

∑
n=k
|bn−k+r|

=
∞

∑
k=r
|ak|

∞

∑
n=k

∣∣bn−(k−r)
∣∣

=
∞

∑
k=r
|ak|

∞

∑
m=r
|bm|< ∞.

Therefore,

∞

∑
n=r

cn =
∞

∑
n=r

n

∑
k=r

akbn−k+r =
∞

∑
n=r

∞

∑
k=r

pnkakbn−k+r

=
∞

∑
k=r

ak

∞

∑
n=r

pnkbn−k+r =
∞

∑
k=r

ak

∞

∑
n=k

bn−k+r

=
∞

∑
k=r

ak

∞

∑
m=r

bm

and this proves the theorem.
It follows that ∑

∞
n=r cn converges absolutely. Also, you can see by induction that you

can multiply any number of absolutely convergent series together and obtain a series which
is absolutely convergent. Next, here are some similar results related to Merten’s theorem.

1Actually, it is only necessary to assume one of the series converges and the other converges absolutely. This
is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the bibliography.
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Lemma 56.1.6 Let ∑
∞
n=0 an (z) and ∑

∞
n=0 bn (z) be two convergent series for z ∈ K which

satisfy the conditions of the Weierstrass M test. Thus there exist positive constants, An and
Bn such that |an (z)| ≤ An, |bn (z)| ≤ Bn for all z ∈ K and ∑

∞
n=0 An < ∞,∑∞

n=0 Bn < ∞. Then
defining the Cauchy product,

cn (z)≡
n

∑
k−0

an−k (z)bk (z) ,

it follows ∑
∞
n=0 cn (z) also converges absolutely and uniformly on K because cn (z) satisfies

the conditions of the Weierstrass M test. Therefore,

∞

∑
n=0

cn (z) =

(
∞

∑
k=0

ak (z)

)(
∞

∑
n=0

bn (z)

)
. (56.1.3)

Proof:

|cn (z)| ≤
n

∑
k=0
|an−k (z)| |bk (z)| ≤

n

∑
k=0

An−kBk.

Also,

∞

∑
n=0

n

∑
k=0

An−kBk =
∞

∑
k=0

∞

∑
n=k

An−kBk

=
∞

∑
k=0

Bk

∞

∑
n=0

An < ∞.

The claim of 56.1.3 follows from Merten’s theorem. This proves the lemma.

Corollary 56.1.7 Let P be a polynomial and let ∑
∞
n=0 an (z) converge uniformly and abso-

lutely on K such that the an satisfy the conditions of the Weierstrass M test. Then there exists
a series for P(∑∞

n=0 an (z)) ,∑∞
n=0 cn (z) , which also converges absolutely and uniformly for

z ∈ K because cn (z) also satisfies the conditions of the Weierstrass M test.

The following picture is descriptive of the following lemma. This lemma says that if
you have a rational function with one pole off a compact set, then you can approximate on
the compact set with another rational function which has a different pole.

V a

b

K
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Lemma 56.1.8 Let R be a rational function which has a pole only at a ∈ V, a component
of C \K where K is a compact set. Suppose b ∈ V. Then for ε > 0 given, there exists a
rational function, Q, having a pole only at b such that

||R−Q||K,∞ < ε. (56.1.4)

If it happens that V is unbounded, then there exists a polynomial, P such that

||R−P||K,∞ < ε. (56.1.5)

Proof: Say that b ∈ V satisfies P if for all ε > 0 there exists a rational function, Qb,
having a pole only at b such that

||R−Qb||K,∞ < ε

Now define a set,
S≡ {b ∈V : b satisfies P } .

Observe that S ̸= /0 because a ∈ S.
I claim S is open. Suppose b1 ∈ S. Then there exists a δ > 0 such that∣∣∣∣b1−b

z−b

∣∣∣∣< 1
2

(56.1.6)

for all z ∈ K whenever b ∈ B(b1,δ ) . In fact, it suffices to take |b−b1| < dist(b1,K)/4
because then ∣∣∣∣b1−b

z−b

∣∣∣∣ <

∣∣∣∣dist(b1,K)/4
z−b

∣∣∣∣≤ dist(b1,K)/4
|z−b1|− |b1−b|

≤ dist(b1,K)/4
dist(b1,K)−dist(b1,K)/4

≤ 1
3
<

1
2
.

Since b1 satisfies P, there exists a rational function Qb1 with the desired properties. It
is shown next that you can approximate Qb1 with Qb thus yielding an approximation to R
by the use of the triangle inequality,∣∣∣∣R−Qb1

∣∣∣∣
K,∞

+
∣∣∣∣Qb1 −Qb

∣∣∣∣
K,∞
≥ ||R−Qb||K,∞ .

Since Qb1 has poles only at b1, it follows it is a sum of functions of the form αn
(z−b1)

n .

Therefore, it suffices to consider the terms of Qb1 or that Qb1 is of the special form

Qb1 (z) =
1

(z−b1)
n .

However,
1

(z−b1)
n =

1

(z−b)n
(

1− b1−b
z−b

)n
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Now from the choice of b1, the series

∞

∑
k=0

(
b1−b
z−b

)k

=
1(

1− b1−b
z−b

)
converges absolutely independent of the choice of z ∈ K because∣∣∣∣∣

(
b1−b
z−b

)k
∣∣∣∣∣< 1

2k .

By Corollary 56.1.7 the same is true of the series for 1(
1− b1−b

z−b

)n . Thus a suitable partial sum

can be made uniformly on K as close as desired to 1
(z−b1)

n . This shows that b satisfies P

whenever b is close enough to b1 verifying that S is open.
Next it is shown S is closed in V. Let bn ∈ S and suppose bn→ b∈V. Then since bn ∈ S,

there exists a rational function, Qbn such that

||Qbn −R||K,∞ <
ε

2
.

Then for all n large enough,
1
2

dist(b,K)≥ |bn−b|

and so for all n large enough, ∣∣∣∣b−bn

z−bn

∣∣∣∣< 1
2
,

for all z ∈ K. Pick such a bn. As before, it suffices to assume Qbn , is of the form 1
(z−bn)

n .

Then
Qbn (z) =

1
(z−bn)

n =
1

(z−b)n
(

1− bn−b
z−b

)n

and because of the estimate, there exists M such that for all z ∈ K∣∣∣∣∣∣ 1(
1− bn−b

z−b

)n −
M

∑
k=0

ak

(
bn−b
z−b

)k
∣∣∣∣∣∣< ε (dist(b,K))n

2
. (56.1.7)

Therefore, for all z ∈ K ∣∣∣∣∣Qbn (z)−
1

(z−b)n

M

∑
k=0

ak

(
bn−b
z−b

)k
∣∣∣∣∣ =∣∣∣∣∣∣ 1

(z−b)n
(

1− bn−b
z−b

)n −
1

(z−b)n

M

∑
k=0

ak

(
bn−b
z−b

)k
∣∣∣∣∣∣ ≤

ε (dist(b,K))n

2
1

dist(b,K)n =
ε

2



56.1. RUNGE’S THEOREM 1771

and so, letting Qb (z) = 1
(z−b)n ∑

M
k=0 ak

(
bn−b
z−b

)k
,

||R−Qb||K,∞ ≤ ||R−Qbn ||K,∞ + ||Qbn −Qb||K,∞

<
ε

2
+

ε

2
= ε

showing that b ∈ S. Since S is both open and closed in V it follows that, since S ̸= /0, S =V .
Otherwise V would fail to be connected.

It remains to consider the case where V is unbounded. Pick b ∈V large enough that∣∣∣ z
b

∣∣∣< 1
2

(56.1.8)

for all z ∈ K. From what was just shown, there exists a rational function, Qb having a pole
only at b such that ||Qb−R||K,∞ < ε

2 . It suffices to assume that Qb is of the form

Qb (z) =
p(z)

(z−b)n = p(z)(−1)n 1
bn

1(
1− z

b

)n

= p(z)(−1)n 1
bn

(
∞

∑
k=0

( z
b

)k
)n

Then by an application of Corollary 56.1.7 there exists a partial sum of the power series for
Qb which is uniformly close to Qb on K. Therefore, you can approximate Qb and therefore
also R uniformly on K by a polynomial consisting of a partial sum of the above infinite
sum. This proves the theorem.

If f is a polynomial, then f has a pole at ∞. This will be discussed more later.

56.1.4 Runge’s Theorem
Now what follows is the first form of Runge’s theorem.

Theorem 56.1.9 Let K be a compact subset of an open set, Ω and let
{

b j
}

be a set which
consists of one point from each component of Ĉ\K. Let f be analytic on Ω. Then for each
ε > 0, there exists a rational function, Q whose poles are all contained in the set,

{
b j
}

such that
||Q− f ||K,∞ < ε. (56.1.9)

If Ĉ\K has only one component, then Q may be taken to be a polynomial.

Proof: By Lemma 56.1.4 there exists a rational function of the form

R(z) =
M

∑
k=1

Ak

wk− z

where the wk are elements of components of C\K and Ak are complex numbers such that

||R− f ||K,∞ <
ε

2
.
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Consider the rational function, Rk (z) ≡ Ak
wk−z where wk ∈ Vj, one of the components of

C\K, the given point of Vj being b j. By Lemma 56.1.8, there exists a function, Qk which
is either a rational function having its only pole at b j or a polynomial, depending on whether
Vj is bounded such that

||Rk−Qk||K,∞ <
ε

2M
.

Letting Q(z)≡ ∑
M
k=1 Qk (z) ,

||R−Q||K,∞ <
ε

2
.

It follows
|| f −Q||K,∞ ≤ || f −R||K,∞ + ||R−Q||K,∞ < ε.

In the case of only one component of C\K, this component is the unbounded component
and so you can take Q to be a polynomial. This proves the theorem.

The next version of Runge’s theorem concerns the case where the given points are con-
tained in Ĉ \Ω for Ω an open set rather than a compact set. Note that here there could
be uncountably many components of Ĉ \Ω because the components are no longer open
sets. An easy example of this phenomenon in one dimension is where Ω = [0,1]\P for P
the Cantor set. Then you can show that R \Ω has uncountably many components. Nev-
ertheless, Runge’s theorem will follow from Theorem 56.1.9 with the aid of the following
interesting lemma.

Lemma 56.1.10 Let Ω be an open set in C. Then there exists a sequence of compact sets,
{Kn} such that

Ω = ∪∞
k=1Kn, · · · ,Kn ⊆ intKn+1 · · · , (56.1.10)

and for any K ⊆Ω,

K ⊆ Kn, (56.1.11)

for all n sufficiently large, and every component of Ĉ\Kn contains a component of Ĉ\Ω.

Proof: Let

Vn ≡ {z : |z|> n}∪
⋃
z/∈Ω

B
(

z,
1
n

)
.

Thus {z : |z|> n} contains the point, ∞. Now let

Kn ≡ Ĉ\Vn = C\Vn ⊆Ω.

You should verify that 56.1.10 and 56.1.11 hold. It remains to show that every component
of Ĉ\Kn contains a component of Ĉ\Ω. Let D be a component of Ĉ\Kn ≡Vn.

If ∞ /∈ D, then D contains no point of {z : |z|> n} because this set is connected and D
is a component. (If it did contain a point of this set, it would have to contain the whole
set.) Therefore, D ⊆

⋃
z/∈Ω

B
(
z, 1

n

)
and so D contains some point of B

(
z, 1

n

)
for some z /∈

Ω. Therefore, since this ball is connected, it follows D must contain the whole ball and
consequently D contains some point of ΩC. (The point z at the center of the ball will do.)
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Since D contains z /∈Ω, it must contain the component, Hz, determined by this point. The
reason for this is that

Hz ⊆ Ĉ\Ω⊆ Ĉ\Kn

and Hz is connected. Therefore, Hz can only have points in one component of Ĉ\Kn. Since
it has a point in D, it must therefore, be totally contained in D. This verifies the desired
condition in the case where ∞ /∈ D.

Now suppose that ∞∈D. ∞ /∈Ω because Ω is given to be a set inC. Letting H∞ denote
the component of Ĉ\Ω determined by ∞, it follows both D and H∞ contain ∞. Therefore,
the connected set, H∞ cannot have any points in another component of Ĉ\Kn and it is a set
which is contained in Ĉ\Kn so it must be contained in D. This proves the lemma.

The following picture is a very simple example of the sort of thing considered by
Runge’s theorem. The picture is of a region which has a couple of holes.

a1 a2
Ω

However, there could be many more holes than two. In fact, there could be infinitely
many. Nor does it follow that the components of the complement of Ω need to have any
interior points. Therefore, the picture is certainly not representative.

Theorem 56.1.11 (Runge) Let Ω be an open set, and let A be a set which has one point
in each component of Ĉ \Ω and let f be analytic on Ω. Then there exists a sequence of
rational functions, {Rn} having poles only in A such that Rn converges uniformly to f on
compact subsets of Ω.

Proof: Let Kn be the compact sets of Lemma 56.1.10 where each component of Ĉ\Kn

contains a component of Ĉ\Ω. It follows each component of Ĉ\Kn contains a point of A.
Therefore, by Theorem 56.1.9 there exists Rn a rational function with poles only in A such
that

||Rn− f ||Kn,∞
<

1
n
.

It follows, since a given compact set, K is a subset of Kn for all n large enough, that Rn→ f
uniformly on K. This proves the theorem.

Corollary 56.1.12 Let Ω be simply connected and f analytic on Ω. Then there exists a
sequence of polynomials, {pn} such that pn→ f uniformly on compact sets of Ω.

Proof: By definition of what is meant by simply connected, Ĉ \Ω is connected and
so there are no bounded components of Ĉ\Ω. Therefore, in the proof of Theorem 56.1.11
when you use Theorem 56.1.9, you can always have Rn be a polynomial by Lemma 56.1.8.
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56.2 The Mittag-Leffler Theorem
56.2.1 A Proof From Runge’s Theorem
This theorem is fairly easy to prove once you have Theorem 56.1.9. Given a set of complex
numbers, does there exist a meromorphic function having its poles equal to this set of
numbers? The Mittag-Leffler theorem provides a very satisfactory answer to this question.
Actually, it says somewhat more. You can specify, not just the location of the pole but also
the kind of singularity the meromorphic function is to have at that pole.

Theorem 56.2.1 Let P ≡ {zk}∞

k=1 be a set of points in an open subset of C, Ω. Suppose
also that P⊆ Ω ⊆ C. For each zk, denote by Sk (z) a function of the form

Sk (z) =
mk

∑
j=1

ak
j

(z− zk)
j .

Then there exists a meromorphic function, Q defined on Ω such that the poles of Q are the
points, {zk}∞

k=1 and the singular part of the Laurent expansion of Q at zk equals Sk (z) . In
other words, for z near zk,Q(z) = gk (z)+Sk (z) for some function, gk analytic near zk.

Proof: Let {Kn} denote the sequence of compact sets described in Lemma 56.1.10.
Thus ∪∞

n=1Kn = Ω, Kn ⊆ int(Kn+1) ⊆ Kn+1 · · · , and the components of Ĉ\Kn contain the
components of Ĉ \Ω. Renumbering if necessary, you can assume each Kn ̸= /0. Also let
K0 = /0. Let Pm ≡ P∩ (Km \Km−1) and consider the rational function, Rm defined by

Rm (z)≡ ∑
zk∈Km\Km−1

Sk (z) .

Since each Km is compact, it follows Pm is finite and so the above really is a rational func-
tion. Now for m > 1,this rational function is analytic on some open set containing Km−1.
There exists a set of points, A one point in each component of Ĉ \Ω. Consider Ĉ \Km−1.
Each of its components contains a component of Ĉ\Ω and so for each of these components
of Ĉ \Km−1, there exists a point of A which is contained in it. Denote the resulting set of
points by A′. By Theorem 56.1.9 there exists a rational function, Qm whose poles are all
contained in the set, A′ ⊆ΩC such that

||Rm−Qm||Km−1,∞
<

1
2m .

The meromorphic function is

Q(z)≡ R1 (z)+
∞

∑
k=2

(Rk (z)−Qk (z)) .

It remains to verify this function works. First consider K1. Then on K1, the above sum
converges uniformly. Furthermore, the terms of the sum are analytic in some open set
containing K1. Therefore, the infinite sum is analytic on this open set and so for z ∈ K1
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The function, f is the sum of a rational function, R1, having poles at P1 with the specified
singular terms and an analytic function. Therefore, Q works on K1. Now consider Km for
m > 1. Then

Q(z) = R1 (z)+
m+1

∑
k=2

(Rk (z)−Qk (z))+
∞

∑
k=m+2

(Rk (z)−Qk (z)) .

As before, the infinite sum converges uniformly on Km+1 and hence on some open set, O
containing Km. Therefore, this infinite sum equals a function which is analytic on O. Also,

R1 (z)+
m+1

∑
k=2

(Rk (z)−Qk (z))

is a rational function having poles at ∪m
k=1Pk with the specified singularities because the

poles of each Qk are not in Ω. It follows this function is meromorphic because it is ana-
lytic except for the points in P. It also has the property of retaining the specified singular
behavior.

56.2.2 A Direct Proof Without Runge’s Theorem
There is a direct proof of this important theorem which is not dependent on Runge’s the-
orem in the case where Ω = C. I think it is arguably easier to understand and the Mittag-
Leffler theorem is very important so I will give this proof here.

Theorem 56.2.2 Let P ≡ {zk}∞

k=1 be a set of points in C which satisfies limn→∞ |zn| = ∞.
For each zk, denote by Sk (z) a polynomial in 1

z−zk
which is of the form

Sk (z) =
mk

∑
j=1

ak
j

(z− zk)
j .

Then there exists a meromorphic function, Q defined on C such that the poles of Q are the
points, {zk}∞

k=1 and the singular part of the Laurent expansion of Q at zk equals Sk (z) . In
other words, for z near zk,

Q(z) = gk (z)+Sk (z)

for some function, gk analytic in some open set containing zk.

Proof: First consider the case where none of the zk = 0. Letting

Kk ≡ {z : |z| ≤ |zk|/2} ,

there exists a power series for 1
z−zk

which converges uniformly and absolutely on this set.
Here is why:

1
z− zk

=

(
−1

1− z
zk

)
1
zk

=
−1
zk

∞

∑
l=0

(
z
zk

)l
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and the Weierstrass M test can be applied because∣∣∣∣ z
zk

∣∣∣∣< 1
2

on this set. Therefore, by Corollary 56.1.7, Sk (z) , being a polynomial in 1
z−zk

, has a power
series which converges uniformly to Sk (z) on Kk. Therefore, there exists a polynomial,
Pk (z) such that

||Pk−Sk||B(0,|zk|/2),∞ <
1
2k .

Let

Q(z)≡
∞

∑
k=1

(Sk (z)−Pk (z)) . (56.2.12)

Consider z ∈ Km and let N be large enough that if k > N, then |zk|> 2 |z|

Q(z) =
N

∑
k=1

(Sk (z)−Pk (z))+
∞

∑
k=N+1

(Sk (z)−Pk (z)) .

On Km, the second sum converges uniformly to a function analytic on int(Km) (interior of
Km) while the first is a rational function having poles at z1, · · · ,zN . Since any compact set
is contained in Km for large enough m, this shows Q(z) is meromorphic as claimed and has
poles with the given singularities.

Now consider the case where the poles are at {zk}∞

k=0 with z0 = 0. Everything is similar
in this case. Let

Q(z)≡ S0 (z)+
∞

∑
k=1

(Sk (z)−Pk (z)) .

The series converges uniformly on every compact set because of the assumption that

lim
n→∞
|zn|= ∞

which implies that any compact set is contained in Kk for k large enough. Choose N such
that z ∈ int(KN) and zn /∈ KN for all n≥ N +1. Then

Q(z) = S0 (z)+
N

∑
k=1

(Sk (z)−Pk (z))+
∞

∑
k=N+1

(Sk (z)−Pk (z)) .

The last sum is analytic on int(KN) because each function in the sum is analytic due to the
fact that none of its poles are in KN . Also, S0 (z)+∑

N
k=1 (Sk (z)−Pk (z)) is a finite sum of

rational functions so it is a rational function and Pk is a polynomial so zm is a pole of this
function with the correct singularity whenever zm ∈ int(KN).

56.2.3 Functions Meromorphic On Ĉ
Sometimes it is useful to think of isolated singular points at ∞.
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Definition 56.2.3 Suppose f is analytic on {z ∈ C : |z|> r} . Then f is said to have a re-
movable singularity at ∞ if the function, g(z) ≡ f

( 1
z

)
has a removable singularity at 0. f

is said to have a pole at ∞ if the function, g(z) = f
( 1

z

)
has a pole at 0. Then f is said to

be meromorphic on Ĉ if all its singularities are isolated and either poles or removable.

So what is f like for these cases? First suppose f has a removable singularity at ∞

( f
( 1

z

)
= g(z) has a removable singularity at 0). Then zg(z) converges to 0 as z→ 0. It

follows g(z) must be analytic near 0 and so can be given as a power series. Thus f (z) is of
the form f (z)= g

( 1
z

)
=∑

∞
n=0 an

( 1
z

)n
. Next suppose f has a pole at ∞. This means g(z) has

a pole at 0 so g(z) is of the form g(z) = ∑
m
k=1

bk
zk +h(z) where h(z) is analytic near 0. Thus

in the case of a pole at ∞, f (z) is of the form f (z) = g
( 1

z

)
= ∑

m
k=1 bkzk +∑

∞
n=0 an

( 1
z

)n
.

It turns out that the functions which are meromorphic on Ĉ are all rational functions.
To see this, suppose f is meromorphic on Ĉ and note that there exists r > 0 such that f (z)
is analytic for |z| > r. This is required if ∞ is to be isolated. Therefore, there are only
finitely many poles of f for |z| ≤ r,{a1, · · · ,am} , because by assumption, these poles are
isolated and this is a compact set. Let the singular part of f at ak be denoted by Sk (z) .
Then f (z)−∑

m
k=1 Sk (z) is analytic on all of C. Therefore, it is bounded on |z| ≤ r. In

one case, f has a removable singularity at ∞. In this case, f is bounded as z→ ∞ and
∑k Sk also converges to 0 as z→ ∞. Therefore, by Liouville’s theorem, f (z)−∑

m
k=1 Sk (z)

equals a constant and so f −∑k Sk is a constant. Thus f is a rational function. In the other
case that f has a pole at ∞, f (z)−∑

m
k=1 Sk (z)−∑

m
k=1 bkzk = ∑

∞
n=0 an

( 1
z

)n−∑
m
k=1 Sk (z) .

Now f (z)−∑
m
k=1 Sk (z)−∑

m
k=1 bkzk is analytic on C and so is bounded on |z| ≤ r. But now

∑
∞
n=0 an

( 1
z

)n−∑
m
k=1 Sk (z) converges to 0 as z→ ∞ and so by Liouville’s theorem, f (z)−

∑
m
k=1 Sk (z)−∑

m
k=1 bkzk must equal a constant and again, f (z) equals a rational function.

56.2.4 Great And Glorious Theorem, Simply Connected Regions

Here is given a laundry list of properties which are equivalent to an open set being simply
connected. Recall Definition 51.7.21 on Page 1643 which said that an open set, Ω is simply
connected means Ĉ \Ω is connected. Recall also that this is not the same thing at all as
saying C \Ω is connected. Consider the outside of a disk for example. I will continue to
use this definition for simply connected because it is the most convenient one for complex
analysis. However, there are many other equivalent conditions. First here is an interesting
lemma which is interesting for its own sake. Recall n(p,γ) means the winding number of γ

about p. Now recall Theorem 51.7.25 implies the following lemma in which BC is playing
the role of Ω in Theorem 51.7.25.

Lemma 56.2.4 Let K be a compact subset of BC, the complement of a closed set. Then
there exist continuous, closed, bounded variation oriented curves

{
Γ j
}m

j=1 for which Γ∗j ∩
K = /0 for each j, Γ∗j ⊆Ω, and for all p ∈ K,

m

∑
k=1

n(Γk, p) = 1.
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while for all z ∈ B
m

∑
k=1

n(Γk,z) = 0.

Definition 56.2.5 Let γ be a closed curve in an open set, Ω,γ : [a,b]→Ω. Then γ is said to
be homotopic to a point, p in Ω if there exists a continuous function, H : [0,1]× [a,b]→Ω

such that H (0, t) = p,H (α,a) = H (α,b) , and H (1, t) = γ (t) . This function, H is called
a homotopy.

Lemma 56.2.6 Suppose γ is a closed continuous bounded variation curve in an open set,
Ω which is homotopic to a point. Then if a /∈Ω, it follows n(a,γ) = 0.

Proof: Let H be the homotopy described above. The problem with this is that it is not
known that H (α, ·) is of bounded variation. There is no reason it should be. Therefore,
it might not make sense to take the integral which defines the winding number. There are
various ways around this. Extend H as follows. H (α, t) = H (α,a) for t < a,H (α, t) =
H (α,b) for t > b. Let ε > 0.

Hε (α, t)≡ 1
2ε

∫ t+ 2ε

(b−a) (t−a)

−2ε+t+ 2ε

(b−a) (t−a)
H (α,s)ds, Hε (0, t) = p.

Thus Hε (α, ·) is a closed curve which has bounded variation and when α = 1, this con-
verges to γ uniformly on [a,b]. Therefore, for ε small enough, n(a,Hε (1, ·)) = n(a,γ)
because they are both integers and as ε → 0,n(a,Hε (1, ·))→ n(a,γ) . Also, Hε (α, t)→
H (α, t) uniformly on [0,1]× [a,b] because of uniform continuity of H. Therefore, for small
enough ε, you can also assume Hε (α, t) ∈ Ω for all α, t. Now α → n(a,Hε (α, ·)) is con-
tinuous. Hence it must be constant because the winding number is integer valued. But

lim
α→0

1
2πi

∫
Hε (α,·)

1
z−a

dz = 0

because the length of Hε (α, ·) converges to 0 and the integrand is bounded because a /∈Ω.
Therefore, the constant can only equal 0. This proves the lemma.

Now it is time for the great and glorious theorem on simply connected regions. The
following equivalence of properties is taken from Rudin [113]. There is a slightly different
list in Conway [32] and a shorter list in Ash [7].

Theorem 56.2.7 The following are equivalent for an open set, Ω ̸= C.

1. Ω is homeomorphic to the unit disk, B(0,1) .

2. Every closed curve contained in Ω is homotopic to a point in Ω.

3. If z /∈Ω, and if γ is a closed bounded variation continuous curve in Ω, then n(γ,z) =
0.

4. Ω is simply connected, (Ĉ\Ω is connected and Ω is connected. )
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5. Every function analytic on Ω can be uniformly approximated by polynomials on com-
pact subsets.

6. For every f analytic on Ω and every closed continuous bounded variation curve, γ,∫
γ

f (z)dz = 0.

7. Every function analytic on Ω has a primitive on Ω.

8. If f ,1/ f are both analytic on Ω, then there exists an analytic, g on Ω such that
f = exp(g) .

9. If f ,1/ f are both analytic on Ω, then there exists φ analytic on Ω such that f = φ
2.

Proof: 1⇒2. Assume 1 and let γ be a closed curve in Ω. Let h be the homeomorphism,
h : B(0,1)→Ω. Let H (α, t) = h

(
α
(
h−1γ (t)

))
. This works.

2⇒3 This is Lemma 56.2.6.
3⇒4. Suppose 3 but 4 fails to hold. Then if Ĉ\Ω is not connected, there exist disjoint

nonempty sets, A and B such that A∩B = A∩B = /0. It follows each of these sets must be
closed because neither can have a limit point in Ω nor in the other. Also, one and only one
of them contains ∞. Let this set be B. Thus A is a closed set which must also be bounded.
Otherwise, there would exist a sequence of points in A, {an} such that limn→∞ an = ∞

which would contradict the requirement that no limit points of A can be in B. Therefore, A
is a compact set contained in the open set, BC ≡ {z ∈ C : z /∈ B} . Pick p ∈ A. By Lemma
56.2.4 there exist continuous bounded variation closed curves {Γk}m

k=1 which are contained
in BC, do not intersect A and such that

1 =
m

∑
k=1

n(p,Γk)

However, if these curves do not intersect A and they also do not intersect B then they
must be all contained in Ω. Since p /∈ Ω, it follows by 3 that for each k, n(p,Γk) = 0, a
contradiction.

4⇒5 This is Corollary 56.1.12 on Page 1773.
5⇒6 Every polynomial has a primitive and so the integral over any closed bounded

variation curve of a polynomial equals 0. Let f be analytic on Ω. Then let { fn} be a
sequence of polynomials converging uniformly to f on γ∗. Then

0 = lim
n→∞

∫
γ

fn (z)dz =
∫

γ

f (z)dz.

6⇒7 Pick z0 ∈ Ω. Letting γ (z0,z) be a bounded variation continuous curve joining z0
to z in Ω, you define a primitive for f as follows.

F (z) =
∫

γ(z0,z)
f (w)dw.
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This is well defined by 6 and is easily seen to be a primitive. You just write the difference
quotient and take a limit using 6.

lim
w→0

F (z+w)−F (z)
w

= lim
w→0

1
w

(∫
γ(z0,z+w)

f (u)du−
∫

γ(z0,z)
f (u)du

)
= lim

w→0

1
w

∫
γ(z,z+w)

f (u)du

= lim
w→0

1
w

∫ 1

0
f (z+ tw)wdt = f (z) .

7⇒8 Suppose then that f ,1/ f are both analytic. Then f ′/ f is analytic and so it has a
primitive by 7. Let this primitive be g1. Then(

e−g1 f
)′

= e−g1
(
−g′1

)
f + e−g1 f ′

= −e−g1

(
f ′

f

)
f + e−g1 f ′ = 0.

Therefore, since Ω is connected, it follows e−g1 f must equal a constant. (Why?) Let the
constant be ea+ibi. Then f (z) = eg1(z)ea+ib. Therefore, you let g(z) = g1 (z)+a+ ib.

8⇒9 Suppose then that f ,1/ f are both analytic on Ω. Then by 8 f (z) = eg(z). Let
φ (z)≡ eg(z)/2.

9⇒1 There are two cases. First suppose Ω = C. This satisfies condition 9 because if
f ,1/ f are both analytic, then the same argument involved in 8⇒9 gives the existence of
a square root. A homeomorphism is h(z) ≡ z√

1+|z|2
. It obviously maps onto B(0,1) and

is continuous. To see it is 1 - 1 consider the case of z1 and z2 having different arguments.
Then h(z1) ̸= h(z2) . If z2 = tz1 for a positive t ̸= 1, then it is also clear h(z1) ̸= h(z2) .
To show h−1 is continuous, note that if you have an open set in C and a point in this open
set, you can get a small open set containing this point by allowing the modulus and the
argument to lie in some open interval. Reasoning this way, you can verify h maps open sets
to open sets. In the case where Ω ̸= C, there exists a one to one analytic map which maps
Ω onto B(0,1) by the Riemann mapping theorem. This proves the theorem.

56.3 Exercises
1. Let a ∈ C. Show there exists a sequence of polynomials, {pn} such that pn (a) = 1

but pn (z)→ 0 for all z ̸= a.

2. Let l be a line in C. Show there exists a sequence of polynomials {pn} such that
pn (z)→ 1 on one side of this line and pn (z)→ −1 on the other side of the line.
Hint: The complement of this line is simply connected.

3. Suppose Ω is a simply connected region, f is analytic on Ω, f ̸= 0 on Ω, and n ∈ N.
Show that there exists an analytic function, g such that g(z)n = f (z) for all z ∈ Ω.
That is, you can take the nth root of f (z) . If Ω is a region which contains 0, is it
possible to find g(z) such that g is analytic on Ω and g(z)2 = z?
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4. Suppose Ω is a region (connected open set) and f is an analytic function defined on
Ω such that f (z) ̸= 0 for any z ∈ Ω. Suppose also that for every positive integer, n
there exists an analytic function, gn defined on Ω such that gn

n (z) = f (z) . Show that
then it is possible to define an analytic function, L on f (Ω) such that eL( f (z)) = f (z)
for all z ∈Ω.

5. You know that φ (z) ≡ z−i
z+i maps the upper half plane onto the unit ball. Its inverse,

ψ (z) = i 1+z
1−z maps the unit ball onto the upper half plane. Also for z in the upper

half plane, you can define a square root as follows. If z = |z|eiθ where θ ∈ (0,π) , let
z1/2 ≡ |z|1/2 eiθ/2 so the square root maps the upper half plane to the first quadrant.
Now consider

z→ exp

(
−i log

[
i
(

1+ z
1− z

)]1/2
)
. (56.3.13)

Show this is an analytic function which maps the unit ball onto an annulus. Is it
possible to find a one to one analytic map which does this?
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Chapter 57

Infinite Products
The Mittag-Leffler theorem gives existence of a meromorphic function which has specified
singular part at various poles. It would be interesting to do something similar to zeros of an
analytic function. That is, given the order of the zero at various points, does there exist an
analytic function which has these points as zeros with the specified orders? You know that
if you have the zeros of the polynomial, you can factor it. Can you do something similar
with analytic functions which are just limits of polynomials? These questions involve the
concept of an infinite product.

Definition 57.0.1 ∏
∞
n=1 (1+un) ≡ limn→∞ ∏

n
k=1 (1+uk) whenever this limit exists. If

un = un (z) for z ∈ H, we say the infinite product converges uniformly on H if the partial
products, ∏

n
k=1 (1+uk (z)) converge uniformly on H.

The main theorem is the following.

Theorem 57.0.2 Let H ⊆ C and suppose that ∑
∞
n=1 |un (z)| converges uniformly on H

where un (z) bounded on H. Then

P(z)≡
∞

∏
n=1

(1+un (z))

converges uniformly on H. If (n1,n2, · · ·) is any permutation of (1,2, · · ·) , then for all z∈H,

P(z) =
∞

∏
k=1

(
1+unk (z)

)
and P has a zero at z0 if and only if un (z0) =−1 for some n.

Proof: First a simple estimate:

n

∏
k=m

(1+ |uk (z)|)

= exp

(
ln

(
n

∏
k=m

(1+ |uk (z)|)

))
= exp

(
n

∑
k=m

ln(1+ |uk (z)|)

)

≤ exp

(
∞

∑
k=m
|uk (z)|

)
< e

for all z ∈ H provided m is large enough. Since ∑
∞
k=1 |uk (z)| converges uniformly on H,

|uk (z)| < 1
2 for all z ∈ H provided k is large enough. Thus you can take log(1+uk (z)) .

Pick N0 such that for n > m≥ N0,

|um (z)|< 1
2
,

n

∏
k=m

(1+ |uk (z)|)< e. (57.0.1)

1783
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Now having picked N0, the assumption the un are bounded on H implies there exists a
constant, C, independent of z ∈ H such that for all z ∈ H,

N0

∏
k=1

(1+ |uk (z)|)<C. (57.0.2)

Let N0 < M < N. Then∣∣∣∣∣ N

∏
k=1

(1+uk (z))−
M

∏
k=1

(1+uk (z))

∣∣∣∣∣
≤

N0

∏
k=1

(1+ |uk (z)|)

∣∣∣∣∣ N

∏
k=N0+1

(1+uk (z))−
M

∏
k=N0+1

(1+uk (z))

∣∣∣∣∣
≤ C

∣∣∣∣∣ N

∏
k=N0+1

(1+uk (z))−
M

∏
k=N0+1

(1+uk (z))

∣∣∣∣∣
≤ C

(
M

∏
k=N0+1

(1+ |uk (z)|)

)∣∣∣∣∣ N

∏
k=M+1

(1+uk (z))−1

∣∣∣∣∣
≤ Ce

∣∣∣∣∣ N

∏
k=M+1

(1+ |uk (z)|)−1

∣∣∣∣∣ .
Since 1≤∏

N
k=M+1 (1+ |uk (z)|)≤ e, it follows the term on the far right is dominated by

Ce2

∣∣∣∣∣ln
(

N

∏
k=M+1

(1+ |uk (z)|)

)
− ln1

∣∣∣∣∣
≤ Ce2

N

∑
k=M+1

ln(1+ |uk (z)|)

≤ Ce2
N

∑
k=M+1

|uk (z)|< ε

uniformly in z ∈ H provided M is large enough. This follows from the simple observation
that if 1< x< e, then x−1≤ e(lnx− ln1). Therefore, {∏m

k=1 (1+uk (z))}∞

m=1 is uniformly
Cauchy on H and therefore, converges uniformly on H. Let P(z) denote the function it
converges to.

What about the permutations? Let {n1,n2, · · ·} be a permutation of the indices. Let
ε > 0 be given and let N0 be such that if n > N0,∣∣∣∣∣ n

∏
k=1

(1+uk (z))−P(z)

∣∣∣∣∣< ε

for all z ∈ H. Let {1,2, · · · ,n} ⊆
{

n1,n2, · · · ,np(n)
}

where p(n) is an increasing sequence.
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Then from 57.0.1 and 57.0.2,

∣∣∣∣∣P(z)−
p(n)

∏
k=1

(
1+unk (z)

)∣∣∣∣∣
≤

∣∣∣∣∣P(z)−
n

∏
k=1

(1+uk (z))

∣∣∣∣∣+
∣∣∣∣∣ n

∏
k=1

(1+uk (z))−
p(n)

∏
k=1

(
1+unk (z)

)∣∣∣∣∣
≤ ε +

∣∣∣∣∣ n

∏
k=1

(1+uk (z))−
p(n)

∏
k=1

(
1+unk (z)

)∣∣∣∣∣
≤ ε +

∣∣∣∣∣ n

∏
k=1

(1+ |uk (z)|)

∣∣∣∣∣
∣∣∣∣∣1− ∏

nk>n

(
1+unk (z)

)∣∣∣∣∣
≤ ε +

∣∣∣∣∣ N0

∏
k=1

(1+ |uk (z)|)

∣∣∣∣∣
∣∣∣∣∣ n

∏
k=N0+1

(1+ |uk (z)|)

∣∣∣∣∣
∣∣∣∣∣1− ∏

nk>n

(
1+unk (z)

)∣∣∣∣∣
≤ ε +Ce

∣∣∣∣∣∏nk>n

(
1+
∣∣unk (z)

∣∣)−1

∣∣∣∣∣≤ ε +Ce

∣∣∣∣∣M(p(n))

∏
k=n+1

(
1+
∣∣unk (z)

∣∣)−1

∣∣∣∣∣
where M (p(n)) is the largest index in the permuted list,

{
n1,n2, · · · ,np(n)

}
. then from

57.0.1, this last term is dominated by

ε +Ce2

∣∣∣∣∣ln
(

M(p(n))

∏
k=n+1

(
1+
∣∣unk (z)

∣∣))− ln1

∣∣∣∣∣
≤ ε +Ce2

∞

∑
k=n+1

ln
(
1+
∣∣unk

∣∣)≤ ε +Ce2
∞

∑
k=n+1

∣∣unk

∣∣< 2ε

for all n large enough uniformly in z ∈ H. Therefore,
∣∣∣P(z)−∏

p(n)
k=1

(
1+unk (z)

)∣∣∣ < 2ε

whenever n is large enough. This proves the part about the permutation.

It remains to verify the assertion about the points, z0, where P(z0) = 0. Obviously, if
un (z0) =−1, then P(z0) = 0. Suppose then that P(z0) = 0 and M > N0. Then

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣=
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∏
k=1

(1+uk (z0))−
∞

∏
k=1

(1+uk (z0))

∣∣∣∣∣
≤

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
∣∣∣∣∣1− ∞

∏
k=M+1

(1+uk (z0))

∣∣∣∣∣
≤

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
∣∣∣∣∣ ∞

∏
k=M+1

(1+ |uk (z0)|)−1

∣∣∣∣∣
≤ e

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
∣∣∣∣∣ln ∞

∏
k=M+1

(1+ |uk (z0)|)− ln1

∣∣∣∣∣
≤ e

(
∞

∑
k=M+1

ln(1+ |uk (z)|)

)∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
≤ e

∞

∑
k=M+1

|uk (z)|

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣ M

∏
k=1

(1+uk (z0))

∣∣∣∣∣
whenever M is large enough. Therefore, for such M,

M

∏
k=1

(1+uk (z0)) = 0

and so uk (z0) =−1 for some k ≤M. This proves the theorem.

57.1 Analytic Function With Prescribed Zeros
Suppose you are given complex numbers, {zn} and you want to find an analytic func-
tion, f such that these numbers are the zeros of f . How can you do it? The prob-
lem is easy if there are only finitely many of these zeros, {z1,z2, · · · ,zm} . You just write
(z− z1)(z− z2) · · ·(z− zm) . Now if none of the zk = 0 you could also write it as

m

∏
k=1

(
1− z

zk

)
and this might have a better chance of success in the case of infinitely many prescribed
zeros. However, you would need to verify something like ∑

∞
n=1

∣∣∣ z
zn

∣∣∣ < ∞ which might not

be so. The way around this is to adjust the product, making it ∏
∞
k=1

(
1− z

zk

)
egk(z) where

gk (z) is some analytic function. Recall also that for |x| < 1, ln
(
(1− x)−1

)
= ∑

∞
n=1

xn

n . If

you had x/xn small and real, then 1 = (1− x/xn)exp
(

ln
(
(1− x/xn)

−1
))

and ∏
∞
k=1 1 of

course converges but loses all the information about zeros. However, this is why it is not



57.1. ANALYTIC FUNCTION WITH PRESCRIBED ZEROS 1787

too unreasonable to consider factors of the form(
1− z

zk

)
e∑

pk
k=1

(
z

zk

)k 1
k

where pk is suitably chosen.
First here are some estimates.

Lemma 57.1.1 For z ∈ C,
|ez−1| ≤ |z|e|z|, (57.1.3)

and if |z| ≤ 1/2, ∣∣∣∣∣ ∞

∑
k=m

zk

k

∣∣∣∣∣≤ 1
m
|z|m

1−|z|
≤ 2

m
|z|m ≤ 1

m
1

2m−1 . (57.1.4)

Proof: Consider 57.1.3.

|ez−1|=

∣∣∣∣∣ ∞

∑
k=1

zk

k!

∣∣∣∣∣≤ ∞

∑
k=1

|z|k

k!
= e|z|−1≤ |z|e|z|

the last inequality holding by the mean value theorem. Now consider 57.1.4.∣∣∣∣∣ ∞

∑
k=m

zk

k

∣∣∣∣∣ ≤ ∞

∑
k=m

|z|k

k
≤ 1

m

∞

∑
k=m
|z|k

=
1
m
|z|m

1−|z|
≤ 2

m
|z|m ≤ 1

m
1

2m−1 .

This proves the lemma.
The functions, Ep in the next definition are called the elementary factors.

Definition 57.1.2 Let E0 (z)≡ 1− z and for p≥ 1,

Ep (z)≡ (1− z)exp
(

z+
z2

2
+ · · ·+ zp

p

)
In terms of this new symbol, here is another estimate. A sharper inequality is available

in Rudin [113] but it is more difficult to obtain.

Corollary 57.1.3 For Ep defined above and |z| ≤ 1/2,∣∣Ep (z)−1
∣∣≤ 3 |z|p+1 .

Proof: From elementary calculus, ln(1− x) =−∑
∞
n=1

xn

n for all |x|< 1. Therefore, for
|z|< 1,

log(1− z) =−
∞

∑
n=1

zn

n
, log

(
(1− z)−1

)
=

∞

∑
n=1

zn

n
,
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because the function log(1− z) and the analytic function, −∑
∞
n=1

zn

n both are equal to
ln(1− x) on the real line segment (−1,1) , a set which has a limit point. Therefore, us-
ing Lemma 57.1.1, ∣∣Ep (z)−1

∣∣
=

∣∣∣∣(1− z)exp
(

z+
z2

2
+ · · ·+ zp

p

)
−1
∣∣∣∣

=

∣∣∣∣∣(1− z)exp

(
log
(
(1− z)−1

)
−

∞

∑
n=p+1

zn

n

)
−1

∣∣∣∣∣
=

∣∣∣∣∣exp

(
−

∞

∑
n=p+1

zn

n

)
−1

∣∣∣∣∣
≤

∣∣∣∣∣− ∞

∑
n=p+1

zn

n

∣∣∣∣∣e
∣∣∣−∑

∞
n=p+1

zn
n

∣∣∣

≤ 1
p+1

·2 · e1/(p+1) |z|p+1 .≤ 3 |z|p+1

This proves the corollary.
With this estimate, it is easy to prove the Weierstrass product formula.

Theorem 57.1.4 Let {zn} be a sequence of nonzero complex numbers which have no limit
point in C and let {pn} be a sequence of nonnegative integers such that

∞

∑
n=1

(
R
|zn|

)pn+1

< ∞ (57.1.5)

for all R ∈ R. Then

P(z)≡
∞

∏
n=1

Epn

(
z
zn

)
is analytic on C and has a zero at each point, zn and at no others. If w occurs m times in
{zn} , then P has a zero of order m at w.

Proof: Since {zn} has no limit point, it follows limn→∞ |zn| = ∞. Therefore, if pn =
n−1 the condition, 57.1.5 holds for this choice of pn. Now by Theorem 57.0.2, the infinite
product in this theorem will converge uniformly on |z| ≤ R if the same is true of the sum,

∞

∑
n=1

∣∣∣∣Epn

(
z
zn

)
−1
∣∣∣∣ . (57.1.6)

But by Corollary 57.1.3 the nth term of this sum satisfies∣∣∣∣Epn

(
z
zn

)
−1
∣∣∣∣≤ 3

∣∣∣∣ z
zn

∣∣∣∣pn+1

.
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Since |zn| → ∞, there exists N such that for n > N, |zn| > 2R. Therefore, for |z| < R and
letting 0 < a = min{|zn| : n≤ N} ,

∞

∑
n=1

∣∣∣∣Epn

(
z
zn

)
−1
∣∣∣∣ ≤ 3

N

∑
n=1

∣∣∣∣Ra
∣∣∣∣pn+1

+3
∞

∑
n=N

(
R
2R

)pn+1

< ∞.

By the Weierstrass M test, the series in 57.1.6 converges uniformly for |z| < R and so the
same is true of the infinite product. It follows from Lemma 51.3.13 on Page 1622 that P(z)
is analytic on |z|< R because it is a uniform limit of analytic functions.

Also by Theorem 57.0.2 the zeros of the analytic P(z) are exactly the points, {zn} ,
listed according to multiplicity. That is, if zn is a zero of order m, then if it is listed m times
in the formula for P(z) , then it is a zero of order m for P. This proves the theorem.

The following corollary is an easy consequence and includes the case where there is a
zero at 0.

Corollary 57.1.5 Let {zn} be a sequence of nonzero complex numbers which have no limit
point and let {pn} be a sequence of nonnegative integers such that

∞

∑
n=1

(
r
|zn|

)1+pn

< ∞ (57.1.7)

for all r ∈ R. Then

P(z)≡ zm
∞

∏
n=1

Epn

(
z
zn

)
is analytic Ω and has a zero at each point, zn and at no others along with a zero of order m
at 0. If w occurs m times in {zn} , then P has a zero of order m at w.

The above theory can be generalized to include the case of an arbitrary open set. First,
here is a lemma.

Lemma 57.1.6 Let Ω be an open set. Also let {zn} be a sequence of points in Ω which is
bounded and which has no point repeated more than finitely many times such that {zn} has
no limit point in Ω. Then there exist {wn} ⊆ ∂Ω such that limn→∞ |zn−wn|= 0.

Proof: Since ∂Ω is closed, there exists wn ∈ ∂Ω such that dist(zn,∂Ω) = |zn−wn| .
Now if there is a subsequence,

{
znk

}
such that

∣∣znk −wnk

∣∣ ≥ ε for all k, then
{

znk

}
must

possess a limit point because it is a bounded infinite set of points. However, this limit
point can only be in Ω because

{
znk

}
is bounded away from ∂Ω. This is a contradiction.

Therefore, limn→∞ |zn−wn|= 0. This proves the lemma.

Corollary 57.1.7 Let {zn} be a sequence of complex numbers contained in Ω, an open
subset of C which has no limit point in Ω. Suppose each zn is repeated no more than finitely
many times. Then there exists a function f which is analytic on Ω whose zeros are exactly
{zn} . If w ∈ {zn} and w is listed m times, then w is a zero of order m of f .
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Proof: There is nothing to prove if {zn} is finite. You just let f (z) = ∏
m
j=1 (z− z j)

where {zn}= {z1, · · · ,zm}.
Pick w ∈ Ω \ {zn}∞

n=1 and let h(z) ≡ 1
z−w . Since w is not a limit point of {zn} , there

exists r > 0 such that B(w,r) contains no points of {zn} . Let Ω1 ≡ Ω \ {w}. Now h is
not constant and so h(Ω1) is an open set by the open mapping theorem. In fact, h maps
each component of Ω to a region. |zn−w| > r for all zn and so |h(zn)| < r−1. Thus the
sequence, {h(zn)} is a bounded sequence in the open set h(Ω1) . It has no limit point in
h(Ω1) because this is true of {zn} and Ω1. By Lemma 57.1.6 there exist wn ∈ ∂ (h(Ω1))
such that limn→∞ |wn−h(zn)|= 0. Consider for z ∈Ω1

f (z)≡
∞

∏
n=1

En

(
h(zn)−wn

h(z)−wn

)
. (57.1.8)

Letting K be a compact subset of Ω1, h(K) is a compact subset of h(Ω1) and so if z ∈ K,
then |h(z)−wn| is bounded below by a positive constant. Therefore, there exists N large
enough that for all z ∈ K and n≥ N,∣∣∣∣h(zn)−wn

h(z)−wn

∣∣∣∣< 1
2

and so by Corollary 57.1.3, for all z ∈ K and n≥ N,∣∣∣∣En

(
h(zn)−wn

h(z)−wn

)
−1
∣∣∣∣≤ 3

(
1
2

)n

. (57.1.9)

Therefore,
∞

∑
n=1

∣∣∣∣En

(
h(zn)−wn

h(z)−wn

)
−1
∣∣∣∣

converges uniformly for z ∈ K. This implies ∏
∞
n=1 En

(
h(zn)−wn
h(z)−wn

)
also converges uniformly

for z∈ K by Theorem 57.0.2. Since K is arbitrary, this shows f defined in 57.1.8 is analytic
on Ω1.

Also if zn is listed m times so it is a zero of multiplicity m and wn is the point from
∂ (h(Ω1)) closest to h(zn) , then there are m factors in 57.1.8 which are of the form

En

(
h(zn)−wn

h(z)−wn

)
=

(
1− h(zn)−wn

h(z)−wn

)
egn(z)

=

(
h(z)−h(zn)

h(z)−wn

)
egn(z)

=
zn− z

(z−w)(zn−w)

(
1

h(z)−wn

)
egn(z)

= (z− zn)Gn (z) (57.1.10)

where Gn is an analytic function which is not zero at and near zn. Therefore, f has a zero
of order m at zn. This proves the theorem except for the point, w which has been left out
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of Ω1. It is necessary to show f is analytic at this point also and right now, f is not even
defined at w.

The {wn} are bounded because {h(zn)} is bounded and limn→∞ |wn−h(zn)|= 0 which
implies |wn−h(zn)| ≤ C for some constant, C. Therefore, there exists δ > 0 such that if
z ∈ B′ (w,δ ) , then for all n,∣∣∣∣∣ h(zn)−w( 1

z−w

)
−wn

∣∣∣∣∣=
∣∣∣∣h(zn)−wn

h(z)−wn

∣∣∣∣< 1
2
.

Thus 57.1.9 holds for all z ∈ B′ (w,δ ) and n so by Theorem 57.0.2, the infinite product in
57.1.8 converges uniformly on B′ (w,δ ) . This implies f is bounded in B′ (w,δ ) and so w is
a removable singularity and f can be extended to w such that the result is analytic. It only
remains to verify f (w) ̸= 0. After all, this would not do because it would be another zero
other than those in the given list. By 57.1.10, a partial product is of the form

N

∏
n=1

(
h(z)−h(zn)

h(z)−wn

)
egn(z) (57.1.11)

where

gn (z)≡

(
h(zn)−wn

h(z)−wn
+

1
2

(
h(zn)−wn

h(z)−wn

)2

+ · · ·+ 1
n

(
h(zn)−wn

h(z)−wn

)n
)

Each of the quotients in the definition of gn (z) converges to 0 as z→ w and so the partial
product of 57.1.11 converges to 1 as z→ w because

(
h(z)−h(zn)
h(z)−wn

)
→ 1 as z→ w.

If f (w) = 0, then if z is close enough to w, it follows | f (z)|< 1
2 . Also, by the uniform

convergence on B′ (w,δ ) , it follows that for some N, the partial product up to N must also
be less than 1/2 in absolute value for all z close enough to w and as noted above, this does
not occur because such partial products converge to 1 as z→ w. Hence f (w) ̸= 0. This
proves the corollary.

Recall the definition of a meromorphic function on Page 1636. It was a function which
is analytic everywhere except at a countable set of isolated points at which the function has
a pole. It is clear that the quotient of two analytic functions yields a meromorphic function
but is this the only way it can happen?

Theorem 57.1.8 Suppose Q is a meromorphic function on an open set, Ω. Then there exist
analytic functions on Ω, f (z) and g(z) such that Q(z) = f (z)/g(z) for all z not in the set
of poles of Q.

Proof: Let Q have a pole of order m(z) at z. Then by Corollary 57.1.7 there exists an
analytic function, g which has a zero of order m(z) at every z ∈ Ω. It follows gQ has a
removable singularity at the poles of Q. Therefore, there is an analytic function, f such that
f (z) = g(z)Q(z) . This proves the theorem.

Corollary 57.1.9 Suppose Ω is a region and Q is a meromorphic function defined on Ω

such that the set, {z ∈Ω : Q(z) = c} has a limit point in Ω. Then Q(z) = c for all z ∈Ω.
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Proof: From Theorem 57.1.8 there are analytic functions, f ,g such that Q = f
g . There-

fore, the zero set of the function, f (z)−cg(z) has a limit point in Ω and so f (z)−cg(z) = 0
for all z ∈Ω. This proves the corollary.

57.2 Factoring A Given Analytic Function
The next theorem is the Weierstrass factorization theorem which can be used to factor a
given analytic function f . If f has a zero of order m when z = 0, then you could factor out
a zm and from there consider the factorization of what remains when you have factored out
the zm. Therefore, the following is the main thing of interest.

Theorem 57.2.1 Let f be analytic on C, f (0) ̸= 0, and let the zeros of f , be {zk} ,listed
according to order. (Thus if z is a zero of order m, it will be listed m times in the list, {zk} .)
Choosing nonnegative integers, pn such that for all r > 0,

∞

∑
n=1

(
r
|zn|

)pn+1

< ∞,

There exists an entire function, g such that

f (z) = eg(z)
∞

∏
n=1

Epn

(
z
zn

)
. (57.2.12)

Note that eg(z) ̸= 0 for any z and this is the interesting thing about this function.
Proof: {zn} cannot have a limit point because if there were a limit point of this se-

quence, it would follow from Theorem 51.5.3 that f (z) = 0 for all z, contradicting the
hypothesis that f (0) ̸= 0. Hence limn→∞ |zn|= ∞ and so

∞

∑
n=1

(
r
|zn|

)1+n−1

=
∞

∑
n=1

(
r
|zn|

)n

< ∞

by the root test. Therefore, by Theorem 57.1.4

P(z) =
∞

∏
n=1

Epn

(
z
zn

)
a function analytic on C by picking pn = n−1 or perhaps some other choice. ( pn = n−1
works but there might be another choice that would work.) Then f/P has only removable
singularities in C and no zeros thanks to Theorem 57.1.4. Thus, letting h(z) = f (z)/P(z) ,
Corollary 51.7.23 implies that h′/h has a primitive, g̃. Then(

he−g̃
)′

= 0

and so
h(z) = ea+ibeg̃(z)

for some constants, a,b. Therefore, letting g(z) = g̃(z) + a + ib, h(z) = eg(z) and thus
57.2.12 holds. This proves the theorem.
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Corollary 57.2.2 Let f be analytic on C, f has a zero of order m at 0, and let the other
zeros of f be {zk} , listed according to order. (Thus if z is a zero of order l, it will be listed
l times in the list, {zk} .) Also let

∞

∑
n=1

(
r
|zn|

)1+pn

< ∞ (57.2.13)

for any choice of r > 0. Then there exists an entire function, g such that

f (z) = zmeg(z)
∞

∏
n=1

Epn

(
z
zn

)
. (57.2.14)

Proof: Since f has a zero of order m at 0, it follows from Theorem 51.5.3 that {zk} can-
not have a limit point in C and so you can apply Theorem 57.2.1 to the function, f (z)/zm

which has a removable singularity at 0. This proves the corollary.

57.2.1 Factoring Some Special Analytic Functions
Factoring a polynomial is in general a hard task. It is true it is easy to prove the factors
exist but finding them is another matter. Corollary 57.2.2 gives the existence of factors of a
certain form but it does not tell how to find them. This should not be surprising. You can’t
expect things to get easier when you go from polynomials to analytic functions. Neverthe-
less, it is possible to factor some popular analytic functions. These factorizations are based
on the following Mitag-Leffler expansions. By an auspicious choice of the contour and the
method of residues it is possible to obtain a very interesting formula for cotπz .

Example 57.2.3 Let γN be the contour which goes from −N− 1
2 −Ni horizontally to N +

1
2 −Ni and from there, vertically to N + 1

2 +Ni and then horizontally to −N− 1
2 +Ni and

finally vertically to −N− 1
2 −Ni. Thus the contour is a large rectangle and the direction of

integration is in the counter clockwise direction. Consider the integral

IN ≡
∫

γN

π cosπz
sinπz(α2− z2)

dz

where α ∈ R is not an integer. This will be used to verify the formula of Mittag-Leffler,

1
α
+

∞

∑
n=1

2α

α2−n2 = π cotπα. (57.2.15)

First you show that cotπz is bounded on this contour. This is easy using the formula
for cot(z) = eiz+e−iz

eiz−e−iz . Therefore, IN → 0 as N→ ∞ because the integrand is of order 1/N2

while the diameter of γN is of order N. Next you compute the residues of the integrand at
±α and at n where |n| < N + 1

2 for n an integer. These are the only singularities of the
integrand in this contour and therefore, using the residue theorem, you can evaluate IN by
using these. You can calculate these residues and find that the residue at ±α is

−π cosπα

2α sinπα
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while the residue at n is
1

α2−n2 .

Therefore

0 = lim
N→∞

IN = lim
N→∞

2πi

[
N

∑
n=−N

1
α2−n2 −

π cotπα

α

]
which establishes the following formula of Mittag Leffler.

lim
N→∞

N

∑
n=−N

1
α2−n2 =

π cotπα

α
.

Writing this in a slightly nicer form, you obtain 57.2.15.
This is a very interesting formula. This will be used to factor sin(πz) . The zeros of

this function are at the integers. Therefore, considering 57.2.13 you can pick pn = 1 in the
Weierstrass factorization formula. Therefore, by Corollary 57.2.2 there exists an analytic
function g(z) such that

sin(πz) = zeg(z)
∞

∏
n=1

(
1− z

zn

)
ez/zn (57.2.16)

where the zn are the nonzero integers. Remember you can permute the factors in these
products. Therefore, this can be written more conveniently as

sin(πz) = zeg(z)
∞

∏
n=1

(
1−
( z

n

)2
)

and it is necessary to find g(z) . Differentiating both sides of 57.2.16

π cos(πz) = eg(z)
∞

∏
n=1

(
1−
( z

n

)2
)
+ zg′ (z)eg(z)

∞

∏
n=1

(
1−
( z

n

)2
)

+zeg(z)
∞

∑
n=1
−
(

2z
n2

)
∏
k ̸=n

(
1−
( z

k

)2
)

Now divide both sides by sin(πz) to obtain

π cot(πz) =
1
z
+g′ (z)−

∞

∑
n=1

2z/n2

(1− z2/n2)

=
1
z
+g′ (z)+

∞

∑
n=1

2z
z2−n2 .

By 57.2.15, this yields g′ (z) = 0 for z not an integer and so g(z) = c, a constant. So far this
yields

sin(πz) = zec
∞

∏
n=1

(
1−
( z

n

)2
)
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and it only remains to find c. Divide both sides by πz and take a limit as z→ 0. Using the
power series of sin(πz) , this yields

1 =
ec

π

and so c = lnπ . Therefore,

sin(πz) = zπ

∞

∏
n=1

(
1−
( z

n

)2
)
. (57.2.17)

Example 57.2.4 Find an interesting formula for tan(πz) .

This is easy to obtain from the formula for cot(πz) .

cot
(

π

(
z+

1
2

))
=− tanπz

for z real and therefore, this formula holds for z complex also. Therefore, for z+ 1
2 not an

integer

π cot
(

π

(
z+

1
2

))
=

2
2z+1

+
∞

∑
n=1

2z+1( 2z+1
2

)2−n2

57.3 The Existence Of An Analytic Function With Given
Values

The Weierstrass product formula, Theorem 57.1.4, along with the Mittag-Leffler theorem,
Theorem 56.2.1 can be used to obtain an analytic function which has given values on a
countable set of points, having no limit point. This is clearly an amazing result and indi-
cates how potent these theorems are. In fact, you can show that it isn’t just the values of
the function which may be specified at the points in this countable set of points but the
derivatives up to any finite order.

Theorem 57.3.1 Let P≡{zk}∞

k=1 be a set of points in C,which has no limit point. For each
zk, consider

mk

∑
j=0

ak
j (z− zk)

j . (57.3.18)

Then there exists an analytic function defined on C such that the Taylor series of f at zk
has the first mk terms given by 57.3.18.1

Proof: By the Weierstrass product theorem, Theorem 57.1.4, there exists an analytic
function, f defined on all of Ω such that f has a zero of order mk +1 at zk. Consider this zk
Thus for z near zk,

f (z) =
∞

∑
j=mk+1

c j (z− zk)
j

1This says you can specify the first mk derivatives of the function at the point zk .
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where cmk+1 ̸= 0. You choose b1,b2, · · · ,bmk+1 such that

f (z)

(
mk+1

∑
l=1

bl

(z− zk)
k

)
=

mk

∑
j=0

ak
j (z− zk)

j +
∞

∑
k=mk+1

ck
j (z− zk)

j .

Thus you need

mk+1

∑
l=1

∞

∑
j=mk+1

c jbl (z− zk)
j−l =

mk

∑
r=0

ak
r (z− zk)

r +Higher order terms.

It follows you need to solve the following system of equations for b1, · · · ,bmk+1.

cmk+1bmk+1 = ak
0

cmk+2bmk+1 + cmk+1bmk = ak
1

cmk+3bmk+1 + cmk+2bmk + cmk+1bmk−1 = ak
2

...
cmk+mk+1bmk+1 + cmk+mk bmk + · · ·+ cmk+1b1 = ak

mk

Since cmk+1 ̸= 0, it follows there exists a unique solution to the above system. You first
solve for bmk+1 in the top. Then, having found it, you go to the next and use cmk+1 ̸= 0
again to find bmk and continue in this manner. Let Sk (z) be determined in this manner for
each zk. By the Mittag-Leffler theorem, there exists a Meromorphic function, g such that
g has exactly the singularities, Sk (z) . Therefore, f (z)g(z) has removable singularities at
each zk and for z near zk, the first mk terms of f g are as prescribed. This proves the theorem.

Corollary 57.3.2 Let P ≡ {zk}∞

k=1 be a set of points in Ω, an open set such that P has no
limit points in Ω. For each zk, consider

mk

∑
j=0

ak
j (z− zk)

j . (57.3.19)

Then there exists an analytic function defined on Ω such that the Taylor series of f at zk
has the first mk terms given by 57.3.19.

Proof: The proof is identical to the above except you use the versions of the Mittag-
Leffler theorem and Weierstrass product which pertain to open sets.

Definition 57.3.3 Denote by H (Ω) the analytic functions defined on Ω, an open subset
of C. Then H (Ω) is a commutative ring2 with the usual operations of addition and mul-
tiplication. A set, I ⊆ H (Ω) is called a finitely generated ideal of the ring if I is of the
form {

n

∑
k=1

gk fk : fk ∈ H (Ω) for k = 1,2, · · · ,n

}
2It is not a field because you can’t divide two analytic functions and get another one.
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where g1, · · · ,gn are given functions in H (Ω). This ideal is also denoted as [g1, · · · ,gn] and
is called the ideal generated by the functions, {g1, · · · ,gn}. Since there are finitely many
of these functions it is called a finitely generated ideal. A principal ideal is one which is
generated by a single function. An example of such a thing is [1] = H (Ω) .

Then there is the following interesting theorem.

Theorem 57.3.4 Every finitely generated ideal in H (Ω) for Ω a connected open set (re-
gion) is a principal ideal.

Proof: Let I = [g1, · · · ,gn] be a finitely generated ideal as described above. Then if any
of the functions has no zeros, this ideal would consist of H (Ω) because then g−1

i ∈ H (Ω)
and so 1 ∈ I. It follows all the functions have zeros. If any of the functions has a zero of
infinite order, then the function equals zero on Ω because Ω is connected and can be deleted
from the list. Similarly, if the zeros of any of these functions have a limit point in Ω, then
the function equals zero and can be deleted from the list. Thus, without loss of generality,
all zeros are of finite order and there are no limit points of the zeros in Ω. Let m(gi,z)
denote the order of the zero of gi at z. If gi has no zero at z, then m(gi,z) = 0.

I claim that if no point of Ω is a zero of all the gi, then the conclusion of the theorem
is true and in fact [g1, · · · ,gn] = [1] = H (Ω) . The claim is obvious if n = 1 because this
assumption that no point is a zero of all the functions implies g ̸= 0 and so g−1 is analytic.
Hence 1 ∈ [g1] . Suppose it is true for n− 1 and consider [g1, · · · ,gn] where no point of
Ω is a zero of all the gi. Even though this may be true of {g1, · · · ,gn} , it may not be true
of {g1, · · · ,gn−1} . By Corollary 57.1.7 there exists φ , a function analytic on Ω such that
m(φ ,z) = min{m(gi,z) , i = 1,2, · · · ,n−1} . Thus the functions {g1/φ , · · · ,gn−1/φ} .are
all analytic. Could they all equal zero at some point, z? If so, pick i where m(φ ,z) =
m(gi,z) . Thus gi/φ is not equal to zero at z after all and so these functions are analytic there
is no point of Ω which is a zero of all of them. By induction, [g1/φ , · · · ,gn−1/φ ] = H (Ω).
(Also there are no new zeros obtained in this way.)

Now this means there exist functions fi ∈ H (Ω) such that

n

∑
i=1

fi

(
gi

φ

)
= 1

and so φ = ∑
n
i=1 figi. Therefore, [φ ] ⊆ [g1, · · · ,gn−1] . On the other hand, if ∑

n−1
k=1 hkgk ∈

[g1, · · · ,gn−1] you could define h≡∑
n−1
k=1 hk (gk/φ ) , an analytic function with the property

that hφ = ∑
n−1
k=1 hkgk which shows [φ ] = [g1, · · · ,gn−1]. Therefore,

[g1, · · · ,gn] = [φ ,gn]

Now φ has no zeros in common with gn because the zeros of φ are contained in the set of
zeros for g1, · · · ,gn−1. Now consider a zero, α of φ . It is not a zero of gn and so near α,
these functions have the form

φ (z) =
∞

∑
k=m

ak (z−α)k , gn (z) =
∞

∑
k=0

bk (z−α)k , b0 ̸= 0.
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I want to determine coefficients for an analytic function, h such that

m(1−hgn,α)≥ m(φ ,α) . (57.3.20)

Let

h(z) =
∞

∑
k=0

ck (z−α)k

and the ck must be determined. Using Merten’s theorem, the power series for 1−hgn is of
the form

1−b0c0−
∞

∑
j=1

(
j

∑
r=0

b j−rcr

)
(z−α) j .

First determine c0 such that 1− c0b0 = 0. This is no problem because b0 ̸= 0. Next you
need to get the coefficients of (z−α) to equal zero. This requires

b1c0 +b0c1 = 0.

Again, there is no problem because b0 ̸= 0. In fact, c1 = (−b1c0/b0) . Next consider the
second order terms if m≥ 2.

b2c0 +b1c1 +b0c2 = 0

Again there is no problem in solving, this time for c2 because b0 ̸= 0. Continuing this
way, you see that in every step, the ck which needs to be solved for is multiplied by b0 ̸=
0. Therefore, by Corollary 57.1.7 there exists an analytic function, h satisfying 57.3.20.
Therefore, (1−hgn)/φ has a removable singularity at every zero of φ and so may be
considered an analytic function. Therefore,

1 =
1−hgn

φ
φ +hgn ∈ [φ ,gn] = [g1 · · ·gn]

which shows [g1 · · ·gn] = H (Ω) = [1] . It follows the claim is established.
Now suppose {g1 · · ·gn} are just elements of H (Ω) . As explained above, it can be

assumed they all have zeros of finite order and the zeros have no limit point in Ω since
if these occur, you can delete the function from the list. By Corollary 57.1.7 there exists
φ ∈ H (Ω) such that m(φ ,z) ≤ min{m(gi,z) : i = 1, · · · ,n} . Then gk/φ has a removable
singularity at each zero of gk and so can be regarded as an analytic function. Also, as before,
there is no point which is a zero of each gk/φ and so by the first part of this argument,
[g1/φ · · ·gn/φ ] = H (Ω) . As in the first part of the argument, this implies [g1 · · ·gn] = [φ ]
which proves the theorem. [g1 · · ·gn] is a principal ideal as claimed.

The following corollary follows from the above theorem. You don’t need to assume Ω

is connected.

Corollary 57.3.5 Every finitely generated ideal in H (Ω) for Ω an open set is a principal
ideal.

Proof: Let [g1, · · · ,gn] be a finitely generated ideal in H (Ω) . Let {Uk} be the compo-
nents of Ω. Then applying the above to each component, there exists hk ∈H (Uk) such that
restricting each gi to Uk, [g1, · · · ,gn] = [hk] . Then let h(z) = hk (z) for z ∈Uk. This is an
analytic function which works.
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57.4 Jensen’s Formula
This interesting formula relates the zeros of an analytic function to an integral. The proof
given here follows Alfors, [3]. First, here is a technical lemma.

Lemma 57.4.1 ∫
π

−π

ln
∣∣∣1− eiθ

∣∣∣dθ = 0.

Proof: First note that the only problem with the integrand occurs when θ = 0. However,
this is an integrable singularity so the integral will end up making sense. Letting z = eiθ ,
you could get the above integral as a limit as ε→ 0 of the following contour integral where
γε is the contour shown in the following picture with the radius of the big circle equal to 1
and the radius of the little circle equal to ε..∫

γε

ln |1− z|
iz

dz.

1

On the indicated contour, 1− z lies in the half plane Rez > 0 and so log(1− z) =
ln |1− z|+ iarg(1− z). The above integral equals∫

γε

log(1− z)
iz

dz−
∫

γε

arg(1− z)
z

dz

The first of these integrals equals zero because the integrand has a removable singularity at
0. The second equals

i
∫ −ηε

−π

arg
(

1− eiθ
)

dθ + i
∫

π

ηε

arg
(

1− eiθ
)

dθ

+εi
∫ −π

− π
2−λ ε

θdθ + εi
∫ π

2−λ ε

π

θdθ

where ηε ,λ ε → 0 as ε → 0. The last two terms converge to 0 as ε → 0 while the first
two add to zero. To see this, change the variable in the first integral and then recall that
when you multiply complex numbers you add the arguments. Thus you end up integrating
arg(real valued function) which equals zero.

In this material on Jensen’s equation, ε will denote a small positive number. Its value
is not important as long as it is positive. Therefore, it may change from place to place.
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Now suppose f is analytic on B(0,r+ ε) , and f has no zeros on B(0,r). Then you can
define a branch of the logarithm which makes sense for complex numbers near f (z) . Thus
z→ log( f (z)) is analytic on B(0,r+ ε). Therefore, its real part, u(x,y) ≡ ln | f (x+ iy)|
must be harmonic. Consider the following lemma.

Lemma 57.4.2 Let u be harmonic on B(0,r+ ε) . Then

u(0) =
1

2π

∫
π

−π

u
(

reiθ
)

dθ .

Proof: For a harmonic function, u defined on B(0,r+ ε) , there exists an analytic func-
tion, h = u+ iv where

v(x,y)≡
∫ y

0
ux (x, t)dt−

∫ x

0
uy (t,0)dt.

By the Cauchy integral theorem,

h(0) =
1

2πi

∫
γr

h(z)
z

dz =
1

2π

∫
π

−π

h
(

reiθ
)

dθ .

Therefore, considering the real part of h,

u(0) =
1

2π

∫
π

−π

u
(

reiθ
)

dθ .

This proves the lemma.
Now this shows the following corollary.

Corollary 57.4.3 Suppose f is analytic on B(0,r+ ε) and has no zeros on B(0,r). Then

ln | f (0)|= 1
2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣ (57.4.21)

What if f has some zeros on |z| = r but none on B(0,r)? It turns out 57.4.21 is still
valid. Suppose the zeros are at

{
reiθ k

}m
k=1 , listed according to multiplicity. Then let

g(z) =
f (z)

∏
m
k=1 (z− reiθ k)

.

It follows g is analytic on B(0,r+ ε) but has no zeros in B(0,r). Then 57.4.21 holds for g
in place of f . Thus

ln | f (0)|−
m

∑
k=1

ln |r|

=
1

2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣dθ − 1
2π

∫
π

−π

m

∑
k=1

ln
∣∣∣reiθ − reiθ k

∣∣∣dθ

=
1

2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣dθ − 1
2π

∫
π

−π

m

∑
k=1

ln
∣∣∣eiθ − eiθ k

∣∣∣dθ −
m

∑
k=1

ln |r|

=
1

2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣dθ − 1
2π

∫
π

−π

m

∑
k=1

ln
∣∣∣eiθ −1

∣∣∣dθ −
m

∑
k=1

ln |r|
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Therefore, 57.4.21 will continue to hold exactly when 1
2π

∫
π

−π ∑
m
k=1 ln

∣∣eiθ −1
∣∣dθ = 0. But

this is the content of Lemma 57.4.1. This proves the following lemma.

Lemma 57.4.4 Suppose f is analytic on B(0,r+ ε) and has no zeros on B(0,r) . Then

ln | f (0)|= 1
2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣ (57.4.22)

With this preparation, it is now not too hard to prove Jensen’s formula. Suppose there
are n zeros of f in B(0,r) ,{ak}n

k=1, listed according to multiplicity, none equal to zero. Let

F (z)≡ f (z)
n

∏
i=1

r2−aiz
r (z−ai)

.

Then F is analytic on B(0,r+ ε) and has no zeros in B(0,r) . The reason for this is that
f (z)/∏

n
i=1 r (z−ai) has no zeros there and r2−aiz cannot equal zero if |z|< r because if

this expression equals zero, then

|z|= r2

|ai|
> r.

The other interesting thing about F (z) is that when z = reiθ ,

F
(

reiθ
)

= f
(

reiθ
) n

∏
i=1

r2−aireiθ

r (reiθ −ai)

= f
(

reiθ
) n

∏
i=1

r−aieiθ

(reiθ −ai)
= f

(
reiθ
)

eiθ
n

∏
i=1

re−iθ −ai

reiθ −ai

so
∣∣F (reiθ

)∣∣= ∣∣ f (reiθ
)∣∣.

Theorem 57.4.5 Let f be analytic on B(0,r+ ε) and suppose f (0) ̸= 0. If the zeros of f
in B(0,r) are {ak}n

k=1, listed according to multiplicity, then

ln | f (0)|=−
n

∑
i=1

ln
(

r
|ai|

)
+

1
2π

∫ 2π

0
ln
∣∣∣ f (reiθ

)∣∣∣dθ .

Proof: From the above discussion and Lemma 57.4.4,

ln |F (0)|= 1
2π

∫
π

−π

ln
∣∣∣ f (reiθ

)∣∣∣dθ

But F (0) = f (0)∏
n
i=1

r
ai

and so ln |F (0)|= ln | f (0)|+∑
n
i=1 ln

∣∣∣ r
ai

∣∣∣ . Therefore,

ln | f (0)|=−
n

∑
i=1

ln
∣∣∣∣ r
ai

∣∣∣∣+ 1
2π

∫ 2π

0
ln
∣∣∣ f (reiθ

)∣∣∣dθ

as claimed.
Written in terms of exponentials this is

| f (0)|
n

∏
k=1

∣∣∣∣ r
ak

∣∣∣∣= exp
(

1
2π

∫ 2π

0
ln
∣∣∣ f (reiθ

)∣∣∣dθ

)
.
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57.5 Blaschke Products
The Blaschke3 product is a way to produce a function which is bounded and analytic on
B(0,1) which also has given zeros in B(0,1) . The interesting thing here is that there may
be infinitely many of these zeros. Thus, unlike the above case of Jensen’s inequality, the
function is not analytic on B(0,1). Recall for purposes of comparison, Liouville’s theorem
which says bounded entire functions are constant. The Blaschke product gives examples of
bounded functions on B(0,1) which are definitely not constant.

Theorem 57.5.1 Let {αn} be a sequence of nonzero points in B(0,1) with the property
that

∞

∑
n=1

(1−|αn|)< ∞.

Then for k ≥ 0, an integer

B(z)≡ zk
∞

∏
k=1

αn− z
1−αnz

|αn|
αn

is a bounded function which is analytic on B(0,1) which has zeros only at 0 if k > 0 and at
the αn.

Proof: From Theorem 57.0.2 the above product will converge uniformly on B(0,r) for
r < 1 to an analytic function if

∞

∑
k=1

∣∣∣∣ αn− z
1−αnz

|αn|
αn
−1
∣∣∣∣

converges uniformly on B(0,r) . But for |z|< r,∣∣∣∣ αn− z
1−αnz

|αn|
αn
−1
∣∣∣∣

=

∣∣∣∣ αn− z
1−αnz

|αn|
αn
− αn (1−αnz)

αn (1−αnz)

∣∣∣∣
=

∣∣∣∣∣ |αn|αn−|αn|z−αn + |αn|2 z
(1−αnz)αn

∣∣∣∣∣
=

∣∣∣∣∣ |αn|αn−αn−|αn|z+ |αn|2 z
(1−αnz)αn

∣∣∣∣∣
= ||αn|−1|

∣∣∣∣ αn + z |αn|
(1−αnz)αn

∣∣∣∣
= ||αn|−1|

∣∣∣∣1+ z(|αn|/αn)

(1−αnz)

∣∣∣∣
≤ ||αn|−1|

∣∣∣∣1+ |z|1−|z|

∣∣∣∣≤ ||αn|−1|
∣∣∣∣1+ r
1− r

∣∣∣∣
3Wilhelm Blaschke, 1915
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and so the assumption on the sum gives uniform convergence of the product on B(0,r) to
an analytic function. Since r < 1 is arbitrary, this shows B(z) is analytic on B(0,1) and has
the specified zeros because the only place the factors equal zero are at the αn or 0.

Now consider the factors in the product. The claim is that they are all no larger in
absolute value than 1. This is very easy to see from the maximum modulus theorem. Let
|α| < 1 and φ (z) = α−z

1−αz . Then φ is analytic near B(0,1) because its only pole is 1/α .
Consider z = eiθ . Then ∣∣∣φ (eiθ

)∣∣∣= ∣∣∣∣ α− eiθ

1−αeiθ

∣∣∣∣= ∣∣∣∣1−αe−iθ

1−αeiθ

∣∣∣∣= 1.

Thus the modulus of φ (z) equals 1 on ∂B(0,1) . Therefore, by the maximum modulus
theorem, |φ (z)| < 1 if |z| < 1. This proves the claim that the terms in the product are no
larger than 1 and shows the function determined by the Blaschke product is bounded. This
proves the theorem.

Note in the conditions for this theorem the one for the sum, ∑
∞
n=1 (1−|αn|) < ∞. The

Blaschke product gives an analytic function, whose absolute value is bounded by 1 and
which has the αn as zeros. What if you had a bounded function, analytic on B(0,1) which
had zeros at {αk}? Could you conclude the condition on the sum? The answer is yes. In
fact, you can get by with less than the assumption that f is bounded but this will not be
presented here. See Rudin [113]. This theorem is an exciting use of Jensen’s equation.

Theorem 57.5.2 Suppose f is an analytic function on B(0,1) , f (0) ̸= 0, and | f (z)| ≤
M for all z ∈ B(0,1) . Suppose also that the zeros of f are {αk}∞

k=1 , listed according to
multiplicity. Then ∑

∞
k=1 (1−|αk|)< ∞.

Proof: If there are only finitely many zeros, there is nothing to prove so assume there
are infinitely many. Also let the zeros be listed such that |αn| ≤ |αn+1| · · · Let n(r) denote
the number of zeros in B(0,r) . By Jensen’s formula,

ln | f (0)|+
n(r)

∑
i=1

lnr− ln |α i|=
1

2π

∫ 2π

0
ln
∣∣∣ f (reiθ

)∣∣∣dθ ≤ ln(M) .

Therefore, by the mean value theorem,

n(r)

∑
i=1

1
r
(r−|α i|)≤

n(r)

∑
i=1

lnr− ln |α i| ≤ ln(M)− ln | f (0)|

As r→ 1−,n(r)→ ∞, and so an application of Fatous lemma yields

∞

∑
i=1

(1−|α i|)≤ lim inf
r→1−

n(r)

∑
i=1

1
r
(r−|α i|)≤ ln(M)− ln | f (0)| .

This proves the theorem.
You don’t need the assumption that f (0) ̸= 0.
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Corollary 57.5.3 Suppose f is an analytic function on B(0,1) and | f (z)| ≤ M for all
z ∈ B(0,1) . Suppose also that the nonzero zeros4 of f are {αk}∞

k=1 , listed according to
multiplicity. Then ∑

∞
k=1 (1−|αk|)< ∞.

Proof: Suppose f has a zero of order m at 0. Then consider the analytic function,
g(z) ≡ f (z)/zm which has the same zeros except for 0. The argument goes the same
way except here you use g instead of f and only consider r > r0 > 0. Thus from Jensen’s
equation,

ln |g(0)|+
n(r)

∑
i=1

lnr− ln |α i|

=
1

2π

∫ 2π

0
ln
∣∣∣g(reiθ

)∣∣∣dθ

=
1

2π

∫ 2π

0
ln
∣∣∣ f (reiθ

)∣∣∣dθ − 1
2π

∫ 2π

0
m ln(r)

≤ M+
1

2π

∫ 2π

0
m ln

(
r−1)

≤ M+m ln
(

1
r0

)
.

Now the rest of the argument is the same.
An interesting restatement yields the following amazing result.

Corollary 57.5.4 Suppose f is analytic and bounded on B(0,1) having zeros {αn} . Then
if ∑

∞
k=1 (1−|αn|) = ∞, it follows f is identically equal to zero.

57.5.1 The Müntz-Szasz Theorem Again

Corollary 57.5.4 makes possible an easy proof of a remarkable theorem named above
which yields a wonderful generalization of the Weierstrass approximation theorem. In
what follows b > 0. The Weierstrass approximation theorem states that linear combina-
tions of 1, t, t2, t3, · · · (polynomials) are dense in C ([0,b]) . Let λ 1 < λ 2 < λ 3 < · · · be an
increasing list of positive real numbers. This theorem tells when linear combinations of
1, tλ 1 , tλ 2 , · · · are dense in C ([0,b]). The proof which follows is like the one given in Rudin
[113]. There is a much longer one in Cheney [33] which discusses more aspects of the
subject. See also Page 533 where the version given in Cheney is presented. This other
approach is much more elementary and does not depend in any way on the theory of func-
tions of a complex variable. There are those of us who automatically prefer real variable
techniques. Nevertheless, this proof by Rudin is a very nice and insightful application of
the preceding material. Cheney refers to the theorem as the second Müntz theorem. I guess
Szasz must also have been involved.

4This is a fun thing to say: nonzero zeros.
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Theorem 57.5.5 Let λ 1 < λ 2 < λ 3 < · · · be an increasing list of positive real numbers
and let a > 0. If

∞

∑
n=1

1
λ n

= ∞, (57.5.23)

then linear combinations of 1, tλ 1 , tλ 2 , · · · are dense in C ([0,b]).

Proof: Let X denote the closure of linear combinations of
{

1, tλ 1 , tλ 2 , · · ·
}

in C ([0,b]) .
If X ̸= C ([0,b]) , then letting f ∈ C ([0,b]) \X , define Λ ∈ C ([0,b])′ as follows. First let
Λ0 : X +C f be given by Λ0 (g+α f ) = α || f ||

∞
. Then

sup
||g+α f ||≤1

|Λ0 (g+α f )| = sup
||g+α f ||≤1

|α| || f ||
∞

= sup
||g/α+ f ||≤ 1

|α|

|α| || f ||
∞

= sup
||g+ f ||≤ 1

|α|

|α| || f ||
∞

Now dist( f ,X) > 0 because X is closed. Therefore, there exists a lower bound, η > 0 to
||g+ f || for g ∈ X . Therefore, the above is no larger than

sup
|α|≤ 1

η

|α| || f ||
∞
=

(
1
η

)
|| f ||

∞

which shows that ||Λ0|| ≤
(

1
η

)
|| f ||

∞
. By the Hahn Banach theorem Λ0 can be extended to

Λ ∈C ([0,b])′ which has the property that Λ(X) = 0 but Λ( f ) = || f || ̸= 0. By the Weier-
strass approximation theorem, Theorem 9.1.7 or one of its cases, there exists a polynomial,
p such that Λ(p) ̸= 0. Therefore, if it can be shown that whenever Λ(X) = 0, it is the case
that Λ(p) = 0 for all polynomials, it must be the case that X is dense in C ([0,b]).

By the Riesz representation theorem the elements of C ([0,b])′ are complex measures.
Suppose then that for µ a complex measure it follows that for all tλ k ,∫

[0,b]
tλ k dµ = 0.

I want to show that then ∫
[0,b]

tkdµ = 0

for all positive integers. It suffices to modify µ is necessary to have µ ({0}) = 0 since this
will not change any of the above integrals. Let µ1 (E) = µ (E ∩ (0,b]) and use µ1. I will
continue using the symbol, µ .

For Re(z)> 0, define

F (z)≡
∫
[0,b]

tzdµ =
∫
(0,b]

tzdµ
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The function tz = exp(z ln(t)) is analytic. I claim that F (z) is also analytic for Rez > 0.
Apply Morera’s theorem. Let T be a triangle in Rez > 0. Then∫

∂T
F (z)dz =

∫
∂T

∫
(0,b]

e(z ln(t))
ξ d |µ|dz

Now
∫

∂T can be split into three integrals over intervals ofR and so this integral is essentially
a Lebesgue integral taken with respect to Lebesgue measure. Furthermore, e(z ln(t)) is a
continuous function of the two variables and ξ is a function of only the one variable, t.
Thus the integrand is product measurable. The iterated integral is also absolutely integrable
because

∣∣∣e(z ln(t))
∣∣∣ ≤ ex ln t ≤ ex lnb where x+ iy = z and x is given to be positive. Thus the

integrand is actually bounded. Therefore, you can apply Fubini’s theorem and write∫
∂T

F (z)dz =
∫

∂T

∫
(0,b]

e(z ln(t))
ξ d |µ|dz

=
∫
(0,b]

ξ

∫
∂T

e(z ln(t))dzd |µ|= 0.

By Morera’s theorem, F is analytic on Rez > 0 which is given to have zeros at the λ k.
Now let φ (z) = 1+z

1−z . Then φ maps B(0,1) one to one onto Rez > 0. To see this let
0 < r < 1.

φ

(
reiθ
)
=

1+ reiθ

1− reiθ =
1− r2 + i2r sinθ

1+ r2−2r cosθ

and so Reφ
(
reiθ
)
> 0. Now the inverse of φ is φ

−1 (z) = z−1
z+1 . For Rez > 0,

∣∣φ−1 (z)
∣∣2 = z−1

z+1
· z−1

z+1
=
|z|2−2Rez+1

|z|2 +2Rez+1
< 1.

Consider F ◦φ , an analytic function defined on B(0,1). This function is given to have zeros
at zn where φ (zn) =

1+zn
1−zn

= λ n. This reduces to zn =
−1+λ n
1+λ n

. Now

1−|zn| ≥
c

1+λ n

for a positive constant, c. It is given that ∑
1

λ n
= ∞. so it follows ∑(1−|zn|) = ∞ also.

Therefore, by Corollary 57.5.4, F ◦φ = 0. It follows F = 0 also. In particular, F (k) for k a
positive integer equals zero. This has shown that if Λ ∈C ([0,b])′ and Λ sends 1 and all the
tλ n to 0, then Λ sends 1 and all tk for k a positive integer to zero. As explained above, X is
dense in C ((0,b]) .

The converse of this theorem is also true and is proved in Rudin [113].

57.6 Exercises
1. Suppose f is an entire function with f (0) = 1. Let

M (r) = max{| f (z)| : |z|= r} .
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Use Jensen’s equation to establish the following inequality.

M (2r)≥ 2n(r)

where n(r) is the number of zeros of f in B(0,r).

2. The version of the Blaschke product presented above is that found in most complex
variable texts. However, there is another one in [89]. Instead of αn−z

1−αnz
|αn|
αn

you use

αn− z
1

αn
− z

Prove a version of Theorem 57.5.1 using this modification.

3. The Weierstrass approximation theorem holds for polynomials of n variables on any
compact subset of Rn. Give a multidimensional version of the Müntz-Szasz theorem
which will generalize the Weierstrass approximation theorem for n dimensions. You
might just pick a compact subset of Rn in which all components are positive. You
have to do something like this because otherwise, tλ might not be defined.

4. Show cos(πz) = ∏
∞
k=1

(
1− 4z2

(2k−1)2

)
.

5. Recall sin(πz) = zπ ∏
∞
n=1

(
1−
( z

n

)2
)
. Use this to derive Wallis product,

π

2
=

∞

∏
k=1

4k2

(2k−1)(2k+1)
.

6. The order of an entire function, f is defined as

inf
{

a≥ 0 : | f (z)| ≤ e|z|
a

for all large enough |z|
}

If no such a exists, the function is said to be of infinite order. Show the order of an
entire function is also equal to

lim sup
r→∞

ln(ln(M (r)))
ln(r)

where M (r)≡max{| f (z)| : |z|= r}.

7. Suppose Ω is a simply connected region and let f be meromorphic on Ω. Suppose
also that the set, S ≡ {z ∈Ω : f (z) = c} has a limit point in Ω. Can you conclude
f (z) = c for all z ∈Ω?

8. This and the next collection of problems are dealing with the gamma function. Show
that ∣∣∣(1+

z
n

)
e
−z
n −1

∣∣∣≤ C (z)
n2
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and therefore,
∞

∑
n=1

∣∣∣(1+
z
n

)
e
−z
n −1

∣∣∣< ∞

with the convergence uniform on compact sets.

9. ↑ Show ∏
∞
n=1
(
1+ z

n

)
e
−z
n converges to an analytic function on C which has zeros

only at the negative integers and that therefore,

∞

∏
n=1

(
1+

z
n

)−1
e

z
n

is a meromorphic function (Analytic except for poles) having simple poles at the
negative integers.

10. ↑Show there exists γ such that if

Γ(z)≡ e−γz

z

∞

∏
n=1

(
1+

z
n

)−1
e

z
n ,

then Γ(1) = 1. Thus Γ is a meromorphic function having simple poles at the negative
integers. Hint: ∏

∞
n=1 (1+n)e−1/n = c = eγ .

11. ↑ Now show that

γ = lim
n→∞

[
n

∑
k=1

1
k
− lnn

]

12. ↑Justify the following argument leading to Gauss’s formula

Γ(z) = lim
n→∞

(
n

∏
k=1

(
k

k+ z

)
e

z
k

)
e−γz

z

= lim
n→∞

(
n!

(1+ z)(2+ z) · · ·(n+ z)
ez(∑

n
k=1

1
k )
)

e−γz

z

= lim
n→∞

n!
(1+ z)(2+ z) · · ·(n+ z)

ez(∑
n
k=1

1
k )e−z[∑n

k=1
1
k−lnn]

= lim
n→∞

n!nz

(1+ z)(2+ z) · · ·(n+ z)
.

13. ↑ Verify from the Gauss formula above that Γ(z+1) = Γ(z)z and that for n a non-
negative integer, Γ(n+1) = n!.

14. ↑ The usual definition of the gamma function for positive x is

Γ1 (x)≡
∫

∞

0
e−ttx−1dt.
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Show
(
1− t

n

)n ≤ e−t for t ∈ [0,n] . Then show∫ n

0

(
1− t

n

)n
tx−1dt =

n!nx

x(x+1) · · ·(x+n)
.

Use the first part to conclude that

Γ1 (x) = lim
n→∞

n!nx

x(x+1) · · ·(x+n)
= Γ(x) .

Hint: To show
(
1− t

n

)n ≤ e−t for t ∈ [0,n] , verify this is equivalent to showing
(1−u)n ≤ e−nu for u ∈ [0,1].

15. ↑Show Γ(z) =
∫

∞

0 e−ttz−1dt. whenever Rez > 0. Hint: You have already shown that
this is true for positive real numbers. Verify this formula for Rez > 0 yields an
analytic function.

16. ↑Show Γ
( 1

2

)
=
√

π. Then find Γ
( 5

2

)
.

17. Show that
∫

∞

−∞
e
−s2

2 ds =
√

2π . Hint: Denote this integral by I and observe that

I2 =
∫
R2 e−(x2+y2)/2dxdy. Then change variables to polar coordinates, x = r cos(θ),

y = r sinθ .

18. ↑ Now that you know what the gamma function is, consider in the formula for
Γ(α +1) the following change of variables. t = α +α1/2s. Then in terms of the
new variable, s, the formula for Γ(α +1) is

e−α
α

α+ 1
2

∫
∞

−
√

α

e−
√

αs
(

1+
s√
α

)α

ds

= e−α
α

α+ 1
2

∫
∞

−
√

α

eα

[
ln
(

1+ s√
α

)
− s√

α

]
ds

Show the integrand converges to e−
s2
2 . Show that then

lim
α→∞

Γ(α +1)
e−α αα+(1/2) =

∫
∞

−∞

e
−s2

2 ds =
√

2π.

Hint: You will need to obtain a dominating function for the integral so that you can
use the dominated convergence theorem. You might try considering s∈

(
−
√

α,
√

α
)

first and consider something like e1−(s2/4) on this interval. Then look for another
function for s >

√
α . This formula is known as Stirling’s formula.

19. This and the next several problems develop the zeta function and give a relation
between the zeta and the gamma function. Define for 0 < r < 2π

Ir (z) ≡
∫ 2π

0

e(z−1)(lnr+iθ)

ereiθ −1
ireiθ dθ +

∫
∞

r

e(z−1)(ln t+2πi)

et −1
dt (57.6.24)

+
∫ r

∞

e(z−1) ln t

et −1
dt
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Show that Ir is an entire function. The reason 0 < r < 2π is that this prevents ereiθ −1
from equaling zero. The above is just a precise description of the contour integral,∫

γ
wz−1

ew−1 dw where γ is the contour shown below.

in which on the integrals along the real line, the argument is different in going from
r to ∞ than it is in going from ∞ to r. Now I have not defined such contour integrals
over contours which have infinite length and so have chosen to simply write out ex-
plicitly what is involved. You have to work with these integrals given above anyway
but the contour integral just mentioned is the motivation for them. Hint: You may
want to use convergence theorems from real analysis if it makes this more convenient
but you might not have to.

20. ↑ In the context of Problem 19 define for small δ > 0

Irδ (z)≡
∫

γr,δ

wz−1

ew−1
dw

where γrδ is shown below.

2δ

r

x

Show that limδ→0 Irδ (z) = Ir (z) . Hint: Use the dominated convergence theorem if
it makes this go easier. This is not a hard problem if you use these theorems but you
can probably do it without them with more work.

21. ↑ In the context of Problem 20 show that for r1 < r, Irδ (z)− Ir1δ (z) is a contour
integral, ∫

γr,r1 ,δ

wz−1

ew−1
dw
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where the oriented contour is shown below.

γr,r1,δ

In this contour integral, wz−1 denotes e(z−1) log(w) where log(w) = ln |w|+ iarg(w)
for arg(w) ∈ (0,2π) . Explain why this integral equals zero. From Problem 20 it
follows that Ir = Ir1 . Therefore, you can define an entire function, I (z)≡ Ir (z) for all
r positive but sufficiently small. Hint: Remember the Cauchy integral formula for
analytic functions defined on simply connected regions. You could argue there is a
simply connected region containing γr,r1,δ

.

22. ↑ In case Rez > 1, you can get an interesting formula for I (z) by taking the limit as
r→ 0. Recall that

Ir (z) ≡
∫ 2π

0

e(z−1)(lnr+iθ)

ereiθ −1
ireiθ dθ +

∫
∞

r

e(z−1)(ln t+2πi)

et −1
dt (57.6.25)

+
∫ r

∞

e(z−1) ln t

et −1
dt

and now it is desired to take a limit in the case where Rez > 1. Show the first integral
above converges to 0 as r→ 0. Next argue the sum of the two last integrals converges
to (

e(z−1)2πi−1
)∫ ∞

0

e(z−1) ln(t)

et −1
dt.

Thus

I (z) =
(
ez2πi−1

)∫ ∞

0

e(z−1) ln(t)

et −1
dt (57.6.26)

when Rez > 1.

23. ↑ So what does all this have to do with the zeta function and the gamma function?
The zeta function is defined for Rez > 1 by

∞

∑
n=1

1
nz ≡ ζ (z) .

By Problem 15, whenever Rez > 0,

Γ(z) =
∫

∞

0
e−ttz−1dt.
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Change the variable and conclude

Γ(z)
1
nz =

∫
∞

0
e−nssz−1ds.

Therefore, for Rez > 1,

ζ (z)Γ(z) =
∞

∑
n=1

∫
∞

0
e−nssz−1ds.

Now show that you can interchange the order of the sum and the integral. This is pos-
sibly most easily done by using Fubini’s theorem. Show that ∑

∞
n=1

∫
∞

0

∣∣e−nssz−1
∣∣ds<

∞ and then use Fubini’s theorem. I think you could do it other ways though. It is
possible to do it without any reference to Lebesgue integration. Thus

ζ (z)Γ(z) =
∫

∞

0
sz−1

∞

∑
n=1

e−nsds

=
∫

∞

0

sz−1e−s

1− e−s ds =
∫

∞

0

sz−1

es−1
ds

By 57.6.26,

I (z) =
(
ez2πi−1

)∫ ∞

0

e(z−1) ln(t)

et −1
dt

=
(
ez2πi−1

)
ζ (z)Γ(z)

=
(
e2πiz−1

)
ζ (z)Γ(z)

whenever Rez > 1.

24. ↑ Now show there exists an entire function, h(z) such that

ζ (z) =
1

z−1
+h(z)

for Rez > 1. Conclude ζ (z) extends to a meromorphic function defined on all of C
which has a simple pole at z = 1, namely, the right side of the above formula. Hint:
Use Problem 10 to observe that Γ(z) is never equal to zero but has simple poles at
every nonnegative integer. Then for Rez > 1,

ζ (z)≡ I (z)
(e2πiz−1)Γ(z)

.

By 57.6.26 ζ has no poles for Rez > 1. The right side of the above equation is
defined for all z. There are no poles except possibly when z is a nonnegative integer.
However, these points are not poles either because of Problem 10 which states that Γ

has simple poles at these points thus cancelling the simple zeros of
(
e2πiz−1

)
. The
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only remaining possibility for a pole for ζ is at z = 1. Show it has a simple pole at
this point. You can use the formula for I (z)

I (z) ≡
∫ 2π

0

e(z−1)(lnr+iθ)

ereiθ −1
ireiθ dθ +

∫
∞

r

e(z−1)(ln t+2πi)

et −1
dt (57.6.27)

+
∫ r

∞

e(z−1) ln t

et −1
dt

Thus I (1) is given by

I (1)≡
∫ 2π

0

1
ereiθ −1

ireiθ dθ +
∫

∞

r

1
et −1

dt +
∫ r

∞

1
et −1

dt

=
∫

γr
dw

ew−1 where γr is the circle of radius r. This contour integral equals 2πi by the
residue theorem. Therefore,

I (z)
(e2πiz−1)Γ(z)

=
1

z−1
+h(z)

where h(z) is an entire function. People worry a lot about where the zeros of ζ are
located. In particular, the zeros for Rez ∈ (0,1) are of special interest. The Riemann
hypothesis says they are all on the line Rez = 1/2. This is a good problem for you
to do next.

25. There is an important relation between prime numbers and the zeta function due to
Euler. Let {pn}∞

n=1 be the prime numbers. Then for Rez > 1,

∞

∏
n=1

1
1− p−z

n
= ζ (z) .

To see this, consider a partial product.

N

∏
n=1

1
1− p−z

n
=

N

∏
n=1

∞

∑
jn=1

(
1
pz

n

) jn
.

Let SN denote all positive integers which use only p1, · · · , pN in their prime factoriza-
tion. Then the above equals ∑n∈SN

1
nz . Letting N→∞ and using the fact that Rez > 1

so that the order in which you sum is not important (See Theorem 58.0.1 or recall
advanced calculus. ) you obtain the desired equation. Show ∑

∞
n=1

1
pn

= ∞.
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Chapter 58

Elliptic Functions
This chapter is to give a short introduction to elliptic functions. There is much more avail-
able. There are books written on elliptic functions. What I am presenting here follows
Alfors [3] although the material is found in many books on complex analysis. Hille, [65]
has a much more extensive treatment than what I will attempt here. There are also many
references and historical notes available in the book by Hille. Another good source for
more having much the same emphasis as what is presented here is in the book by Saks and
Zygmund [115]. This is a very interesting subject because it has considerable overlap with
algebra.

Before beginning, recall that an absolutely convergent series can be summed in any
order and you always get the same answer. The easy way to see this is to think of the series
as a Lebesgue integral with respect to counting measure and apply convergence theorems
as needed. The following theorem provides the necessary results.

Theorem 58.0.1 Suppose ∑
∞
n=1 |an|< ∞ and let θ ,φ :N→ N be one to one and onto map-

pings. Then ∑
∞
n=1 aφ(n) and ∑

∞
n=1 aθ(n) both converge and the two sums are equal.

Proof: By the monotone convergence theorem,

∞

∑
n=1
|an|= lim

n→∞

n

∑
k=1

∣∣aφ(k)
∣∣= lim

n→∞

n

∑
k=1

∣∣aθ(k)
∣∣

but these last two equal ∑
∞
k=1

∣∣aφ(k)
∣∣ and ∑

∞
k=1

∣∣aθ(k)
∣∣ respectively. Therefore, ∑

∞
k=1 aθ(k)

and ∑
∞
k=1 aφ(k) exist (n→ aθ(n) is in L1 with respect to counting measure.) It remains to

show the two are equal. There exists M such that if n > M then

∞

∑
k=n+1

∣∣aθ(k)
∣∣< ε,

∞

∑
k=n+1

∣∣aφ(k)
∣∣< ε

∣∣∣∣∣ ∞

∑
k=1

aφ(k)−
n

∑
k=1

aφ(k)

∣∣∣∣∣< ε,

∣∣∣∣∣ ∞

∑
k=1

aθ(k)−
n

∑
k=1

aθ(k)

∣∣∣∣∣< ε

Pick such an n denoted by n1. Then pick n2 > n1 > M such that

{θ (1) , · · · ,θ (n1)} ⊆ {φ (1) , · · · ,φ (n2)} .

Then
n2

∑
k=1

aφ(k) =
n1

∑
k=1

aθ(k)+ ∑
φ(k)/∈{θ(1),··· ,θ(n1)}

aφ(k).

Therefore, ∣∣∣∣∣ n2

∑
k=1

aφ(k)−
n1

∑
k=1

aθ(k)

∣∣∣∣∣=
∣∣∣∣∣ ∑
φ(k)/∈{θ(1),··· ,θ(n1)},k≤n2

aφ(k)

∣∣∣∣∣
1815
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Now all of these φ (k) in the last sum are contained in {θ (n1 +1) , · · ·} and so the last sum
above is dominated by

≤
∞

∑
k=n1+1

∣∣aθ(k)
∣∣< ε.

Therefore, ∣∣∣∣∣ ∞

∑
k=1

aφ(k)−
∞

∑
k=1

aθ(k)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞

∑
k=1

aφ(k)−
n2

∑
k=1

aφ(k)

∣∣∣∣∣
+

∣∣∣∣∣ n2

∑
k=1

aφ(k)−
n1

∑
k=1

aθ(k)

∣∣∣∣∣
+

∣∣∣∣∣ n1

∑
k=1

aθ(k)−
∞

∑
k=1

aθ(k)

∣∣∣∣∣ < ε + ε + ε = 3ε

and since ε is arbitrary, it follows ∑
∞
k=1 aφ(k) = ∑

∞
k=1 aθ(k) as claimed. This proves the

theorem.

58.1 Periodic Functions
Definition 58.1.1 A function defined on C is said to be periodic if there exists w such that
f (z+w) = f (z) for all z ∈ C. Denote by M the set of all periods. Thus if w1,w2 ∈M and
a,b ∈ Z, then aw1 + bw2 ∈ M. For this reason M is called the module of periods.1In all
which follows it is assumed f is meromorphic.

Theorem 58.1.2 Let f be a meromorphic function and let M be the module of periods.
Then if M has a limit point, then f equals a constant. If this does not happen then ei-
ther there exists w1 ∈ M such that Zw1 = M or there exist w1,w2 ∈ M such that M =
{aw1 +bw2 : a,b ∈ Z} and w1/w2 is not real. Also if τ = w2/w1,

|τ| ≥ 1,
−1
2
≤ Reτ ≤ 1

2
.

Proof: Suppose f is meromorphic and M has a limit point, w0. By Theorem 57.1.8
on Page 1791 there exist analytic functions, p,q such that f (z) = p(z)

q(z) . Now pick z0 such
that z0 is not a pole of f . Then letting wn → w0 where {wn} ⊆ M, f (z0 +wn) = f (z0) .
Therefore, p(z0 +wn) = f (z0)q(z0 +wn) and so the analytic function, p(z)− f (z0)q(z)
has a zero set which has a limit point. Therefore, this function is identically equal to zero
because of Theorem 51.5.3 on Page 1628. Thus f equals a constant as claimed.

This has shown that if f is not constant, then M is discrete. Therefore, there exists
w1 ∈ M such that |w1| = min{|w| : w ∈M}. Suppose first that every element of M is a
real multiple of w1. Thus, if w ∈ M, it follows there exists a real number, x such that
w = xw1. Then there exist positive integers, k,k+1 such that k ≤ x < k+1. If x > k, then
w− kw1 = (x− k)w1 is a period having smaller absolute value than |w1| which would be a
contradiction. Hence, x = k and so M = Zw1.

1A module is like a vector space except instead of a field of scalars, you have a ring of scalars.
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Now suppose there exists w2 ∈ M which is not a real multiple of w1. You can let
w2 be the element of M having this property which has smallest absolute value. Now let
w ∈ M. Since w1 and w2 point in different directions, it follows w = xw1 + yw2 for some
real numbers, x,y. Let |m− x| ≤ 1

2 and |n− y| ≤ 1
2 where m,n are integers. Therefore,

w = mw1 +nw2 +(x−m)w1 +(y−n)w2

and so
w−mw1−nw2 = (x−m)w1 +(y−n)w2 (58.1.1)

Now since w2/w1 /∈ R,

|(x−m)w1 +(y−n)w2| < |(x−m)w1|+ |(y−n)w2|

=
1
2
|w1|+

1
2
|w2| .

Therefore, from 58.1.1,

|w−mw1−nw2| = |(x−m)w1 +(y−n)w2|

<
1
2
|w1|+

1
2
|w2| ≤ |w2|

and so the period, w−mw1− nw2 cannot be a non real multiple of w1 because w2 is the
one which has smallest absolute value and this period has smaller absolute value than w2.
Therefore, the ratio w−mw1−nw2/w1 must be a real number, x. Thus

w−mw1−nw2 = xw1

Since w1 has minimal absolute value of all periods, it follows |x| ≥ 1. Let k≤ x < k+1 for
some integer, k. If x > k, then

w−mw1−nw2− kw1 = (x− k)w1

which would contradict the choice of w1 as being the period having minimal absolute value
because the expression on the left in the above is a period and it equals something which
has absolute value less than |w1|. Therefore, x = k and w is an integer linear combination
of w1 and w2. It only remains to verify the claim about τ .

From the construction, |w1| ≤ |w2| and |w2| ≤ |w1−w2| , |w2| ≤ |w1 +w2| . Therefore,

|τ| ≥ 1, |τ| ≤ |1− τ| , |τ| ≤ |1+ τ| .

The last two of these inequalities imply −1/2≤ Reτ ≤ 1/2.
This proves the theorem.

Definition 58.1.3 For f a meromorphic function which has the last of the above alterna-
tives holding in which M = {aw1 +bw2 : a,b ∈ Z} , the function, f is called elliptic. This
is also called doubly periodic.

Theorem 58.1.4 Suppose f is an elliptic function which has no poles. Then f is constant.
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Proof: Since f has no poles it is analytic. Now consider the parallelograms determined
by the vertices, mw1 + nw2 for m,n ∈ Z. By periodicity of f it must be bounded because
its values are identical on each of these parallelograms. Therefore, it equals a constant by
Liouville’s theorem.

Definition 58.1.5 Define Pa to be the parallelogram determined by the points

a+mw1 +nw2,a+(m+1)w1 +nw2,a+mw1 +(n+1)w2,

a+(m+1)w1 +(n+1)w2

Such Pa will be referred to as a period parallelogram. The sum of the orders of the poles in
a period parallelogram which contains no poles or zeros of f on its boundary is called the
order of the function. This is well defined because of the periodic property of f .

Theorem 58.1.6 The sum of the residues of any elliptic function, f equals zero on every Pa
if a is chosen so that there are no poles on ∂Pa.

Proof: Choose a such that there are no poles of f on the boundary of Pa. By periodicity,∫
∂Pa

f (z)dz = 0

because the integrals over opposite sides of the parallelogram cancel out because the values
of f are the same on these sides and the orientations are opposite. It follows from the
residue theorem that the sum of the residues in Pa equals 0.

Theorem 58.1.7 Let Pa be a period parallelogram for a nonconstant elliptic function, f
which has order equal to m. Then f assumes every value in f (Pa) exactly m times.

Proof: Let c ∈ f (Pa) and consider Pa′ such that f−1 (c)∩Pa′ = f−1 (c)∩Pa and Pa′

contains the same poles and zeros of f − c as Pa but Pa′ has no zeros of f (z)− c or poles
of f on its boundary. Thus f ′ (z)/ ( f (z)− c) is also an elliptic function and so Theorem
58.1.6 applies. Consider

1
2πi

∫
∂Pa′

f ′ (z)
f (z)− c

dz.

By the argument principle, this equals Nz−Np where Nz equals the number of zeros of
f (z)− c and Np equals the number of the poles of f (z). From Theorem 58.1.6 this must
equal zero because it is the sum of the residues of f ′/( f − c) and so Nz = Np. Now Np
equals the number of poles in Pa counted according to multiplicity.

There is an even better theorem than this one.

Theorem 58.1.8 Let f be a non constant elliptic function with poles p1, · · · , pm and zeros,
z1, · · · ,zm in Pα , listed according to multiplicity where ∂Pα contains no poles or zeros of f .
Then ∑

m
k=1 zk−∑

m
k=1 pk ∈M, the module of periods.
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Proof: You can assume ∂Pa contains no poles or zeros of f because if it did, then you
could consider a slightly shifted period parallelogram, Pa′ which contains no new zeros and
poles but which has all the old ones but no poles or zeros on its boundary. By Theorem
53.1.3 on Page 1676

1
2πi

∫
∂Pa

z
f ′ (z)
f (z)

dz =
m

∑
k=1

zk−
m

∑
k=1

pk. (58.1.2)

Denoting by γ (z,w) the straight oriented line segment from z to w,∫
∂Pa

z
f ′ (z)
f (z)

dz

=
∫

γ(a,a+w1)
z

f ′ (z)
f (z)

dz+
∫

γ(a+w1+w2,a+w2)
z

f ′ (z)
f (z)

dz

+
∫

γ(a+w1,a+w2+w1)
z

f ′ (z)
f (z)

dz+
∫

γ(a+w2,a)
z

f ′ (z)
f (z)

dz

=
∫

γ(a,a+w1)
(z− (z+w2))

f ′ (z)
f (z)

dz

+
∫

γ(a,a+w2)
(z− (z+w1))

f ′ (z)
f (z)

dz

Now near these line segments f ′(z)
f (z) is analytic and so there exists a primitive, gwi (z) on

γ (a,a+wi) by Corollary 51.7.5 on Page 1633 which satisfies egwi (z) = f (z). Therefore,

=−w2 (gw1 (a+w1)−gw1 (a))−w1 (gw2 (a+w2)−gw2 (a)) .

Now by periodicity of f it follows f (a+w1) = f (a) = f (a+w2) . Hence

gwi (a+w1)−gwi (a) = 2mπi

for some integer, m because

egwi (a+wi)− egwi (a) = f (a+wi)− f (a) = 0.

Therefore, from 58.1.2, there exist integers, k, l such that

1
2πi

∫
∂Pa

z
f ′ (z)
f (z)

dz

=
1

2πi
[−w2 (gw1 (a+w1)−gw1 (a))−w1 (gw2 (a+w2)−gw2 (a))]

=
1

2πi
[−w2 (2kπi)−w1 (2lπi)]

= −w2k−w1l ∈M.

From 58.1.2 it follows
m

∑
k=1

zk−
m

∑
k=1

pk ∈M.
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This proves the theorem.
Hille says this relation is due to Liouville. There is also a simple corollary which

follows from the above theorem applied to the elliptic function, f (z)− c.

Corollary 58.1.9 Let f be a non constant elliptic function and suppose the function, f (z)−
c has poles p1, · · · , pm and zeros, z1, · · · ,zm on Pα , listed according to multiplicity where
∂Pα contains no poles or zeros of f (z)− c. Then ∑

m
k=1 zk−∑

m
k=1 pk ∈ M, the module of

periods.

58.1.1 The Unimodular Transformations
Definition 58.1.10 Suppose f is a nonconstant elliptic function and the module of periods
is of the form {aw1 +bw2} where a,b are integers and w1/w2 is not real. Then by analogy
with linear algebra, {w1,w2} is referred to as a basis. The unimodular transformations
will refer to matrices of the form (

a b
c d

)
where all entries are integers and

ad−bc =±1.

These linear transformations are also called the modular group.

The following is an interesting lemma which ties matrices with the fractional linear
transformations.

Lemma 58.1.11 Define

φ

((
a b
c d

))
≡ az+b

cz+d
.

Then
φ (AB) = φ (A)◦φ (B) , (58.1.3)

φ (A)(z) = z if and only if
A = cI

where I is the identity matrix and c ̸= 0. Also if f (z) = az+b
cz+d , then f−1 (z) exists if and only

if ad− cb ̸= 0. Furthermore it is easy to find f−1.

Proof: The equation in 58.1.3 is just a simple computation. Now suppose φ (A)(z) = z.

Then letting A =

(
a b
c d

)
, this requires

az+b = z(cz+d)

and so az+b = cz2 +dz. Since this is to hold for all z it follows c = 0 = b and a = d. The
other direction is obvious.
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Consider the claim about the existence of an inverse. Let ad− cb ̸= 0 for f (z) = az+b
cz+d .

Then

f (z) = φ

((
a b
c d

))
It follows

(
a b
c d

)−1

exists and equals 1
ad−bc

(
d −b
−c a

)
. Therefore,

z = φ (I)(z) = φ

((
a b
c d

)(
1

ad−bc

(
d −b
−c a

)))
(z)

= φ

((
a b
c d

))
◦φ

((
1

ad−bc

(
d −b
−c a

)))
(z)

= f ◦ f−1 (z)

which shows f−1 exists and it is easy to find.
Next suppose f−1 exists. I need to verify the condition ad− cb ̸= 0. If f−1 exists, then

from the process used to find it, you see that it must be a fractional linear transformation.

Letting A =

(
a b
c d

)
so φ (A) = f , it follows there exists a matrix B such that

φ (BA)(z) = φ (B)◦φ (A)(z) = z.

However, it was shown that this implies BA is a nonzero multiple of I which requires that
A−1 must exist. Hence the condition must hold.

Theorem 58.1.12 If f is a nonconstant elliptic function with a basis {w1,w2} for the mod-
ule of periods, then {w′1,w′2} is another basis, if and only if there exists a unimodular

transformation,
(

a b
c d

)
= A such that(

w′1
w′2

)
=

(
a b
c d

)(
w1
w2

)
. (58.1.4)

Proof: Since {w1,w2} is a basis, there exist integers, a,b,c,d such that 58.1.4 holds.
It remains to show the transformation determined by the matrix is unimodular. Taking
conjugates, (

w′1
w′2

)
=

(
a b
c d

)(
w1
w2

)
.

Therefore, (
w′1 w′1
w′2 w′2

)
=

(
a b
c d

)(
w1 w1
w2 w2

)
Now since {w′1,w′2} is also given to be a basis, there exits another matrix having all integer

entries,
(

e f
g h

)
such that

(
w1
w2

)
=

(
e f
g h

)(
w′1
w′2

)
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and (
w1
w2

)
=

(
e f
g h

)(
w′1
w′2

)
.

Therefore, (
w′1 w′1
w′2 w′2

)
=

(
a b
c d

)(
e f
g h

)(
w′1 w′1
w′2 w′2

)
.

However, since w′1/w′2 is not real, it is routine to verify that

det
(

w′1 w′1
w′2 w′2

)
̸= 0.

Therefore, (
1 0
0 1

)
=

(
a b
c d

)(
e f
g h

)
and so det

(
a b
c d

)
det
(

e f
g h

)
= 1. But the two matrices have all integer entries and

so both determinants must equal either 1 or −1.
Next suppose (

w′1
w′2

)
=

(
a b
c d

)(
w1
w2

)
(58.1.5)

where
(

a b
c d

)
is unimodular. I need to verify that {w′1,w′2} is a basis. If w ∈M, there

exist integers, m,n such that

w = mw1 +nw2 =
(

m n
)( w1

w2

)
From 58.1.5

±
(

d −b
−c a

)(
w′1
w′2

)
=

(
w1
w2

)
and so

w =±
(

m n
)( d −b
−c a

)(
w′1
w′2

)
which is an integer linear combination of {w′1,w′2} . It only remains to verify that w′1/w′2 is
not real.

Claim: Let w1 and w2 be nonzero complex numbers. Then w2/w1 is not real if and
only if

w1w2−w1w2 = det
(

w1 w1
w2 w2

)
̸= 0

Proof of the claim: Let λ = w2/w1. Then

w1w2−w1w2 = λw1w1−w1λw1 =
(

λ −λ

)
|w1|2
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Thus the ratio is not real if and only if
(

λ −λ

)
̸= 0 if and only if w1w2−w1w2 ̸= 0.

Now to verify w′2/w′1 is not real,

det
(

w′1 w′1
w′2 w′2

)
= det

((
a b
c d

)(
w1 w1
w2 w2

))
= ±det

(
w1 w1
w2 w2

)
̸= 0

This proves the theorem.

58.1.2 The Search For An Elliptic Function
By Theorem 58.1.4 and 58.1.6 if you want to find a nonconstant elliptic function it must
fail to be analytic and also have either no terms in its Laurent expansion which are of the
form b1 (z−a)−1 or else these terms must cancel out. It is simplest to look for a function
which simply does not have them. Weierstrass looked for a function of the form

℘(z)≡ 1
z2 + ∑

w ̸=0

(
1

(z−w)2 −
1

w2

)
(58.1.6)

where w consists of all numbers of the form aw1 +bw2 for a,b integers. Sometimes people
write this as ℘(z,w1,w2) to emphasize its dependence on the periods, w1 and w2 but I
won’t do so. It is understood there exist these periods, which are given. This is a reasonable
thing to try. Suppose you formally differentiate the right side. Never mind whether this is
justified for now. This yields

℘
′ (z) =

−2
z3 − ∑

w̸=0

−2

(z−w)3 = ∑
w

−2

(z−w)3

which is clearly periodic having both periods w1 and w2. Therefore, ℘(z+w1)−℘(z) and
℘(z+w2)−℘(z) are both constants, c1 and c2 respectively. The reason for this is that
since ℘′ is periodic with periods w1 and w2, it follows ℘′ (z+wi)−℘′ (z) = 0 as long as z
is not a period. From 58.1.6 you can see right away that

℘(z) =℘(−z)

Indeed

℘(−z) =
1
z2 + ∑

w̸=0

(
1

(−z−w)2 −
1

w2

)

=
1
z2 + ∑

w̸=0

(
1

(−z+w)2 −
1

w2

)
=℘(z) .
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and so

c1 = ℘

(
−w1

2
+w1

)
−℘

(
−w1

2

)
= ℘

(w1

2

)
−℘

(
−w1

2

)
= 0

which shows the constant for ℘(z+w1)−℘(z) must equal zero. Similarly the constant
for ℘(z+w2)−℘(z) also equals zero. Thus ℘ is periodic having the two periods w1,w2.

Of course to justify this, you need to consider whether the series of 58.1.6 converges.
Consider the terms of the series.∣∣∣∣∣ 1

(z−w)2 −
1

w2

∣∣∣∣∣= |z|
∣∣∣∣∣ 2w− z

(z−w)2 w2

∣∣∣∣∣
If |w|> 2 |z| , this can be estimated more. For such w,∣∣∣∣∣ 1

(z−w)2 −
1

w2

∣∣∣∣∣
= |z|

∣∣∣∣∣ 2w− z

(z−w)2 w2

∣∣∣∣∣≤ |z| (5/2) |w|
|w|2 (|w|− |z|)2

≤ |z| (5/2) |w|
|w|2 ((1/2) |w|)2 = |z| 10

|w|3
.

It follows the series in 58.1.6 converges uniformly and absolutely on every compact set, K
provided ∑w̸=0

1
|w|3

converges. This question is considered next.

Claim: There exists a positive number, k such that for all pairs of integers, m,n, not
both equal to zero,

|mw1 +nw2|
|m|+ |n|

≥ k > 0.

Proof of claim: If not, there exists mk and nk such that

lim
k→∞

mk

|mk|+ |nk|
w1 +

nk

|mk|+ |nk|
w2 = 0

However,
(

mk
|mk|+|nk|

, nk
|mk|+|nk|

)
is a bounded sequence in R2 and so, taking a subsequence,

still denoted by k, you can have(
mk

|mk|+ |nk|
,

nk

|mk|+ |nk|

)
→ (x,y) ∈ R2

and so there are real numbers, x,y such that xw1 + yw2 = 0 contrary to the assumption that
w2/w1 is not equal to a real number. This proves the claim.
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Now from the claim,

∑
w̸=0

1

|w|3

= ∑
(m,n)̸=(0,0)

1

|mw1 +nw2|3
≤ ∑

(m,n)̸=(0,0)

1

k3 (|m|+ |n|)3

=
1
k3

∞

∑
j=1

∑
|m|+|n|= j

1

(|m|+ |n|)3 =
1
k3

∞

∑
j=1

4 j
j3 < ∞.

Now consider the series in 58.1.6. Letting z ∈ B(0,R) ,

℘(z) ≡ 1
z2 + ∑

w̸=0,|w|≤R

(
1

(z−w)2 −
1

w2

)

+ ∑
w̸=0,|w|>R

(
1

(z−w)2 −
1

w2

)
and the last series converges uniformly on B(0,R) to an analytic function. Thus ℘ is a
meromorphic function and also the argument given above involving differentiation of the
series termwise is valid. Thus ℘ is an elliptic function as claimed. This is called the
Weierstrass ℘ function. This has proved the following theorem.

Theorem 58.1.13 The function ℘ defined above is an example of an elliptic function. On
any compact set, ℘ equals a rational function added to a series which is uniformly and
absolutely convergent on the compact set.

58.1.3 The Differential Equation Satisfied By ℘

For z not a pole,

℘
′ (z) =

−2
z3 − ∑

w̸=0

2

(z−w)3

Also since there are no poles of order 1 you can obtain a primitive for ℘, −ζ .2 To do
so, recall

℘(z)≡ 1
z2 + ∑

w ̸=0

(
1

(z−w)2 −
1

w2

)
where for |z|< R this is the sum of a rational function with a uniformly convergent series.
Therefore, you can take the integral along any path, γ (0,z) from 0 to z which misses the
poles of ℘. By the uniform convergence of the above integral, you can interchange the sum
with the integral and obtain

ζ (z) =
1
z
+ ∑

w̸=0

1
z−w

+
z

w2 +
1
w

(58.1.7)

2I don’t know why it is traditional to refer to this antiderivative as −ζ rather than ζ but I am following the
convention. I think it is to minimize the number of minus signs in the next expression.
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This function is odd. Here is why.

ζ (−z) =
1
−z

+ ∑
w ̸=0

1
−z−w

− z
w2 +

1
w

while

−ζ (z) =
1
−z

+ ∑
w̸=0

−1
z−w

− z
w2 −

1
w

=
1
−z

+ ∑
w̸=0

−1
z+w

− z
w2 +

1
w
.

Now consider 58.1.7. It will be used to find the Laurent expansion about the origin for ζ

which will then be differentiated to obtain the Laurent expansion for ℘ at the origin. Since
w ̸= 0 and the interest is for z near 0 so |z|< |w| ,

1
z−w

+
z

w2 +
1
w

=
z

w2 +
1
w
− 1

w
1

1− z
w

=
z

w2 +
1
w
− 1

w

∞

∑
k=0

( z
w

)k

= − 1
w

∞

∑
k=2

( z
w

)k

From 58.1.7

ζ (z) =
1
z
+ ∑

w̸=0

(
−

∞

∑
k=2

zk

wk+1

)

=
1
z
−

∞

∑
k=2

∑
w̸=0

zk

wk+1 =
1
z
−

∞

∑
k=2

∑
w ̸=0

z2k−1

w2k

because the sum over odd powers must be zero because for each w ̸= 0, there exists−w ̸= 0
such that the two terms z2k

w2k+1 and z2k

(−w)2k+1 cancel each other. Hence

ζ (z) =
1
z
−

∞

∑
k=2

Gkz2k−1

where Gk = ∑w̸=0
1

w2k . Now with this,

−ζ
′ (z) = ℘(z) =

1
z2 +

∞

∑
k=2

Gk (2k−1)z2k−2

=
1
z2 +3G2z2 +5G3z4 + · · ·

Therefore,

℘
′ (z) =

−2
z3 +6G2z+20G3z3 + · · ·
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℘
′ (z)2 =

4
z6 −

24G2

z2 −80G3 + · · ·

4℘(z)3 = 4
(

1
z2 +3G2z2 +5G3z4 · · ·

)3

=
4
z6 +

36
z2 G2 +60G3 + · · ·

and finally

60G2℘(z) =
60G2

z2 +0+ · · ·

where in the above, the positive powers of z are not listed explicitly. Therefore,

℘
′ (z)2−4℘(z)3 +60G2℘(z)+140G3 =

∞

∑
n=1

anzn

In deriving the equation it was assumed |z| < |w| for all w = aw1 + bw2 where a,b are
integers not both zero. The left side of the above equation is periodic with respect to w1
and w2 where w2/w1 is not a real number. The only possible poles of the left side are at
0, w1, w2, and w1 +w2, the vertices of the parallelogram determined by w1 and w2. This
follows from the original formula for ℘(z) . However, the above equation shows the left
side has no pole at 0. Since the left side is periodic with periods w1 and w2, it follows it has
no pole at the other vertices of this parallelogram either. Therefore, the left side is periodic
and has no poles. Consequently, it equals a constant by Theorem 58.1.4. But the right side
of the above equation shows this constant is 0 because this side equals zero when z = 0.
Therefore, ℘ satisfies the differential equation,

℘
′ (z)2−4℘(z)3 +60G2℘(z)+140G3 = 0.

It is traditional to define 60G2 ≡ g2 and 140G3 ≡ g3. Then in terms of these new quantities
the differential equation is

℘
′ (z)2 = 4℘(z)3−g2℘(z)−g3.

Suppose e1,e2 and e3 are zeros of the polynomial 4w3− g2w− g3 = 0. Then the above
equation can be written in the form

℘
′ (z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) . (58.1.8)

58.1.4 A Modular Function
The next task is to find the ei in 58.1.8. First recall that ℘ is an even function. That is
℘(−z) =℘(z). This follows from 58.1.6 which is listed here for convenience.

℘(z)≡ 1
z2 + ∑

w ̸=0

(
1

(z−w)2 −
1

w2

)
(58.1.9)
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Thus

℘(−z) =
1
z2 + ∑

w̸=0

(
1

(−z−w)2 −
1

w2

)

=
1
z2 + ∑

w̸=0

(
1

(−z+w)2 −
1

w2

)
=℘(z) .

Therefore, ℘(w1− z) = ℘(z−w1) = ℘(z) and so −℘′ (w1− z) = ℘′ (z) . Letting z =
w1/2, it follows℘′ (w1/2) = 0. Similarly,℘′ (w2/2) = 0 and℘′ ((w1 +w2)/2) = 0. There-
fore, from 58.1.8

0 = 4(℘(w1/2)− e1)(℘(w1/2)− e2)(℘(w1/2)− e3) .

It follows one of the ei must equal ℘(w1/2) . Similarly, one of the ei must equal ℘(w2/2)
and one must equal ℘((w1 +w2)/2).

Lemma 58.1.14 The numbers, ℘(w1/2) ,℘(w2/2) , and ℘((w1 +w2)/2) are distinct.

Proof: Choose Pa, a period parallelogram which contains the pole 0, and the points
w1/2, w2/2, and (w1 +w2)/2 but no other pole of ℘(z) . Also ∂P∗a does not contain any
zeros of the elliptic function, z→℘(z)−℘(w1/2). This can be done by shifting P0 slightly
because the poles are only at the points aw1 +bw2 for a,b integers and the zeros of ℘(z)−
℘(w1/2) are discrete.

0
w1

w2

w1 +w2

a

If℘(w2/2)=℘(w1/2) , then℘(z)−℘(w1/2) has two zeros, w2/2 and w1/2 and since
the pole at 0 is of order 2, this is the order of ℘(z)−℘(w1/2) on Pa hence by Theorem
58.1.7 on Page 1818 these are the only zeros of this function on Pa. It follows by Corollary
58.1.9 on Page 1820 which says the sum of the zeros minus the sum of the poles is in M,
w1
2 + w2

2 ∈M. Thus there exist integers, a,b such that

w1 +w2

2
= aw1 +bw2

which implies (2a−1)w1 +(2b−1)w2 = 0 contradicting w2/w1 not being real. Similar
reasoning applies to the other pairs of points in {w1/2,w2/2,(w1 +w2)/2} . For example,
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consider (w1 +w2)/2 and choose Pa such that its boundary contains no zeros of the elliptic
function, z→℘(z)−℘((w1 +w2)/2) and Pa contains no poles of ℘ on its interior other
than 0. Then if ℘(w2/2) =℘((w1 +w2)/2) , it follows from Theorem 58.1.7 on Page
1818 w2/2 and (w1 +w2)/2 are the only two zeros of ℘(z)−℘((w1 +w2)/2) on Pa and
by Corollary 58.1.9 on Page 1820

w1 +w1 +w2

2
= aw1 +bw2 ∈M

for some integers a,b which leads to the same contradiction as before about w1/w2 not
being real. The other cases are similar. This proves the lemma.

Lemma 58.1.14 proves the ei are distinct. Number the ei such that

e1 =℘(w1/2) ,e2 =℘(w2/2)

and
e3 =℘((w1 +w2)/2) .

To summarize, it has been shown that for complex numbers, w1 and w2 with w2/w1 not
real, an elliptic function, ℘has been defined. Denote this function as℘(z) =℘(z,w1,w2) .
This in turn determined numbers, ei as described above. Thus these numbers depend on w1
and w2 and as described above,

e1 (w1,w2) = ℘

(w1

2
,w1,w2

)
, e2 (w1,w2) =℘

(w2

2
,w1,w2

)
e3 (w1,w2) = ℘

(
w1 +w2

2
,w1,w2

)
.

Therefore, using the formula for ℘, 58.1.9,

℘(z)≡ 1
z2 + ∑

w ̸=0

(
1

(z−w)2 −
1

w2

)
you see that if the two periods w1 and w2 are replaced with tw1 and tw2 respectively, then

ei (tw1, tw2) = t−2ei (w1,w2) .

Let τ denote the complex number which equals the ratio, w2/w1 which was assumed in all
this to not be real. Then

ei (w1,w2) = w−2
1 ei (1,τ)

Now define the function, λ (τ)

λ (τ)≡ e3 (1,τ)− e2 (1,τ)
e1 (1,τ)− e2 (1,τ)

(
=

e3 (w1,w2)− e2 (w1,w2)

e1 (w1,w2)− e2 (w1,w2)

)
. (58.1.10)

This function is meromorphic for Imτ > 0 or for Imτ < 0. However, since the denominator
is never equal to zero the function must actually be analytic on both the upper half plane
and the lower half plane. It never is equal to 0 because e3 ̸= e2 and it never equals 1 because
e3 ̸= e1. This is stated as an observation.
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Observation 58.1.15 The function, λ (τ) is analytic for τ in the upper half plane and never
assumes the values 0 and 1.

This is a very interesting function. Consider what happens when(
w′1
w′2

)
=

(
a b
c d

)(
w1
w2

)
and the matrix is unimodular. By Theorem 58.1.12 on Page 1821 {w′1,w′2} is just another
basis for the same module of periods. Therefore, ℘(z,w1,w2) =℘(z,w′1,w

′
2) because both

are defined as sums over the same values of w, just in different order which does not matter
because of the absolute convergence of the sums on compact subsets of C. Since ℘ is
unchanged, it follows ℘′ (z) is also unchanged and so the numbers, ei are also the same.
However, they might be permuted in which case the function λ (τ) defined above would
change. What would it take for λ (τ) to not change? In other words, for which unimodular
transformations will λ be left unchanged? This happens if and only if no permuting takes
place for the ei. This occurs if ℘

(w1
2

)
=℘

(
w′1
2

)
and ℘

(w2
2

)
=℘

(
w′2
2

)
. If

w′1
2
− w1

2
∈M,

w′2
2
− w2

2
∈M

then℘
(w1

2

)
=℘

(
w′1
2

)
and so e1 will be unchanged and similarly for e2 and e3. This occurs

exactly when
1
2
((a−1)w1 +bw2) ∈M,

1
2
(cw1 +(d−1)w2) ∈M.

This happens if a and d are odd and if b and c are even. Of course the stylish way to say
this is

a≡ 1mod2, d ≡ 1mod2, b≡ 0mod2, c≡ 0mod2. (58.1.11)

This has shown that for unimodular transformations satisfying 58.1.11 λ is unchanged.
Letting τ be defined as above,

τ
′ =

w′2
w′1
≡ cw1 +dw2

aw1 +bw2
=

c+dτ

a+bτ
.

Thus for unimodular transformations,
(

a b
c d

)
satisfying 58.1.11, or more succinctly,

(
a b
c d

)
∼
(

1 0
0 1

)
mod2 (58.1.12)

it follows that

λ

(
c+dτ

a+bτ

)
= λ (τ) . (58.1.13)

Furthermore, this is the only way this can happen.
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Lemma 58.1.16 λ (τ) = λ (τ ′) if and only if

τ
′ =

aτ +b
cτ +d

where 58.1.12 holds.

Proof: It only remains to verify that if ℘(w′1/2) =℘(w1/2) then it is necessary that

w′1
2
− w1

2
∈M

with a similar requirement for w2 and w′2. If w′1
2 −

w1
2 /∈ M, then there exist integers, m,n

such that
−w′1

2
+mw1 +nw2

is in the interior of P0, the period parallelogram whose vertices are 0,w1,w1 +w2, and
w2. Therefore, it is possible to choose small a such that Pa contains the pole, 0, w1

2 , and
−w′1

2 +mw1 + nw2 but no other poles of ℘ and in addition, ∂P∗a contains no zeros of z→
℘(z)−℘

(w1
2

)
. Then the order of this elliptic function is 2. By assumption, and the fact

that ℘ is even,

℘

(
−w′1

2
+mw1 +nw2

)
=℘

(
−w′1

2

)
=℘

(
w′1
2

)
=℘

(w1

2

)
.

It follows both −w′1
2 +mw1 + nw2 and w1

2 are zeros of ℘(z)−℘
(w1

2

)
and so by Theorem

58.1.7 on Page 1818 these are the only two zeros of this function in Pa. Therefore, from
Corollary 58.1.9 on Page 1820

w1

2
− w′1

2
+mw1 +nw2 ∈M

which shows w1
2 −

w′1
2 ∈M. This completes the proof of the lemma.

Note the condition in the lemma is equivalent to the condition 58.1.13 because you can
relabel the coefficients. The message of either version is that the coefficient of τ in the
numerator and denominator is odd while the constant in the numerator and denominator is
even.

Next,
(

1 0
2 1

)
∼
(

1 0
0 1

)
mod2 and therefore,

λ

(
2+ τ

1

)
= λ (τ +2) = λ (τ) . (58.1.14)

Thus λ is periodic of period 2.
Thus λ leaves invariant a certain subgroup of the unimodular group. According to the

next definition, λ is an example of something called a modular function.
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Definition 58.1.17 When an analytic or meromorphic function is invariant under a group
of linear transformations, it is called an automorphic function. A function which is auto-
morphic with respect to a subgroup of the modular group is called a modular function or
an elliptic modular function.

Now consider what happens for some other unimodular matrices which are not con-
gruent to the identity mod2. This will yield other functional equations for λ in addition to
the fact that λ is periodic of period 2. As before, these functional equations come about
because ℘ is unchanged when you change the basis for M, the module of periods. In
particular, consider the unimodular matrices

(
1 0
1 1

)
,

(
0 1
1 0

)
. (58.1.15)

Consider the first of these. Thus

(
w′1
w′2

)
=

(
w1

w1 +w2

)



58.1. PERIODIC FUNCTIONS 1833

Hence τ ′ = w′2/w′1 = (w1 +w2)/w1 = 1+ τ . Then from the definition of λ ,

λ
(
τ
′) = λ (1+ τ)

=
℘

(
w′1+w′2

2

)
−℘

(
w′2
2

)
℘

(
w′1
2

)
−℘

(
w′2
2

)
=

℘
(w1+w2+w1

2

)
−℘

(w1+w2
2

)
℘
(w1

2

)
−℘

(w1+w2
2

)
=

℘
(w2

2 +w1
)
−℘

(w1+w2
2

)
℘
(w1

2

)
−℘

(w1+w2
2

)
=

℘
(w2

2

)
−℘

(w1+w2
2

)
℘
(w1

2

)
−℘

(w1+w2
2

)
= −

℘
(w1+w2

2

)
−℘

(w2
2

)
℘
(w1

2

)
−℘

(w1+w2
2

)
= −

℘
(w1+w2

2

)
−℘

(w2
2

)
℘
(w1

2

)
−℘

(w2
2

)
+℘

(w2
2

)
−℘

(w1+w2
2

)

= −

(
℘

(
w1+w2

2

)
−℘(w2

2 )
℘(w1

2 )−℘(w2
2 )

)

1+

(
℘(w2

2 )−℘

(
w1+w2

2

)
℘(w1

2 )−℘(w2
2 )

)

=

(
℘

(
w1+w2

2

)
−℘(w2

2 )
℘(w1

2 )−℘(w2
2 )

)
(

℘

(
w1+w2

2

)
−℘(w2

2 )
℘(w1

2 )−℘(w2
2 )

)
−1

=
λ (τ)

λ (τ)−1
. (58.1.16)

Summarizing the important feature of the above,

λ (1+ τ) =
λ (τ)

λ (τ)−1
. (58.1.17)

Next consider the other unimodular matrix in 58.1.15. In this case w′1 = w2 and w′2 = w1.



1834 CHAPTER 58. ELLIPTIC FUNCTIONS

Therefore, τ ′ = w′2/w′1 = w1/w2 = 1/τ. Then

λ
(
τ
′) = λ (1/τ)

=
℘

(
w′1+w′2

2

)
−℘

(
w′2
2

)
℘

(
w′1
2

)
−℘

(
w′2
2

)
=

℘
(w1+w2

2

)
−℘

(w1
2

)
℘
(w2

2

)
−℘

(w1
2

)
=

e3− e1

e2− e1
=−e3− e2 + e2− e1

e1− e2

= −(λ (τ)−1) =−λ (τ)+1. (58.1.18)

You could try other unimodular matrices and attempt to find other functional equations
if you like but this much will suffice here.

58.1.5 A Formula For λ

Recall the formula of Mittag-Leffler for cot(πα) given in 57.2.15. For convenience, here
it is.

1
α
+

∞

∑
n=1

2α

α2−n2 = π cotπα.

As explained in the derivation of this formula it can also be written as

∞

∑
n=−∞

α

α2−n2 = π cotπα.

Differentiating both sides yields

π
2 csc2 (πα) =

∞

∑
n=−∞

α2 +n2

(α2−n2)2

=
∞

∑
n=−∞

(α +n)2−2αn

(α +n)2 (α−n)2

=
∞

∑
n=−∞

(α +n)2

(α +n)2 (α−n)2 −

=0︷ ︸︸ ︷
∞

∑
n=−∞

2αn

(α2−n2)2

=
∞

∑
n=−∞

1

(α−n)2 . (58.1.19)

Now this formula can be used to obtain a formula for λ (τ) . As pointed out above, λ

depends only on the ratio w2/w1 and so it suffices to take w1 = 1 and w2 = τ. Thus

λ (τ) =
℘
( 1+τ

2

)
−℘

(
τ

2

)
℘
( 1

2

)
−℘

(
τ

2

) . (58.1.20)
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From the original formula for ℘,

℘

(
1+ τ

2

)
−℘

(
τ

2

)
=

1( 1+τ

2

)2 −
1(
τ

2

)2 + ∑
(k,m)̸=(0,0)

1(
k− 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k+
(
m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1(
k− 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k+
(
m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1(
k− 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k+
(
m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1(
k− 1

2 +
(
−m− 1

2

)
τ
)2 −

1(
k+
(
−m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1( 1
2 +
(
m+ 1

2

)
τ− k

)2 −
1((

m+ 1
2

)
τ− k

)2 . (58.1.21)

Similarly,

℘

(
1
2

)
−℘

(
τ

2

)
=

1( 1
2

)2 −
1(
τ

2

)2 + ∑
(k,m)̸=(0,0)

1(
k− 1

2 +mτ
)2 −

1(
k+
(
m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1(
k− 1

2 +mτ
)2 −

1(
k+
(
m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1(
k− 1

2 −mτ
)2 −

1(
k+
(
−m− 1

2

)
τ
)2

= ∑
(k,m)∈Z2

1( 1
2 +mτ− k

)2 −
1((

m+ 1
2

)
τ− k

)2 . (58.1.22)

Now use 58.1.19 to sum these over k. This yields,

℘

(
1+ τ

2

)
−℘

(
τ

2

)
= ∑

m

π2

sin2 (
π
( 1

2 +
(
m+ 1

2

)
τ
)) − π2

sin2 (
π
(
m+ 1

2

)
τ
)

= ∑
m

π2

cos2
(
π
(
m+ 1

2

)
τ
) − π2

sin2 (
π
(
m+ 1

2

)
τ
)
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and

℘

(
1
2

)
−℘

(
τ

2

)
= ∑

m

π2

sin2 (
π
( 1

2 +mτ
)) − π2

sin2 (
π
(
m+ 1

2

)
τ
)

= ∑
m

π2

cos2 (πmτ)
− π2

sin2 (
π
(
m+ 1

2

)
τ
) .

The following interesting formula for λ results.

λ (τ) =
∑m

1
cos2(π(m+ 1

2 )τ)
− 1

sin2(π(m+ 1
2 )τ)

∑m
1

cos2(πmτ)
− 1

sin2(π(m+ 1
2 )τ)

. (58.1.23)

From this it is obvious λ (−τ) = λ (τ) . Therefore, from 58.1.18,

−λ (τ)+1 = λ

(
1
τ

)
= λ

(
−1
τ

)
(58.1.24)

(It is good to recall that λ has been defined for τ /∈ R.)

58.1.6 Mapping Properties Of λ

The two functional equations, 58.1.24 and 58.1.17 along with some other properties pre-
sented above are of fundamental importance. For convenience, they are summarized here
in the following lemma.

Lemma 58.1.18 The following functional equations hold for λ .

λ (1+ τ) =
λ (τ)

λ (τ)−1
,1 = λ (τ)+λ

(
−1
τ

)
(58.1.25)

λ (τ +2) = λ (τ) , (58.1.26)

λ (z) = λ (w) if and only if there exists a unimodular matrix,(
a b
c d

)
∼
(

1 0
0 1

)
mod2

such that

w =
az+b
cz+d

(58.1.27)

Consider the following picture.
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Ω

C l2l1

11
2

In this picture, l1 is the y axis and l2 is the line, x = 1 while C is the top half of the circle
centered at

( 1
2 ,0
)

which has radius 1/2. Note the above formula implies λ has real values
on l1 which are between 0 and 1. This is because 58.1.23 implies

λ (ib) =
∑m

1
cos2(π(m+ 1

2 )ib)
− 1

sin2(π(m+ 1
2 )ib)

∑m
1

cos2(πmib) −
1

sin2(π(m+ 1
2 )ib)

=
∑m

1
cosh2(π(m+ 1

2 )b)
+ 1

sinh2(π(m+ 1
2 )b)

∑m
1

cosh2(πmb)
+ 1

sinh2(π(m+ 1
2 )b)

∈ (0,1) . (58.1.28)

This follows from the observation that

cos(ix) = cosh(x) , sin(ix) = isinh(x) .

Thus it is clear from 58.1.28 that limb→0+ λ (ib) = 1.
Next I need to consider the behavior of λ (τ) as Im(τ)→ ∞. From 58.1.23 listed here

for convenience,

λ (τ) =
∑m

1
cos2(π(m+ 1

2 )τ)
− 1

sin2(π(m+ 1
2 )τ)

∑m
1

cos2(πmτ)
− 1

sin2(π(m+ 1
2 )τ)

, (58.1.29)

it follows

λ (τ) =

1
cos2(π(− 1

2 )τ)
− 1

sin2(π(− 1
2 )τ)

+ 1
cos2(π

1
2 τ)
− 1

sin2(π
1
2 τ)

+A(τ)

1+B(τ)

=

2
cos2(π( 1

2 )τ)
− 2

sin2(π( 1
2 )τ)

+A(τ)

1+B(τ)
(58.1.30)

Where A(τ) ,B(τ)→ 0 as Im(τ)→ ∞. I took out the m = 0 term involving 1/cos2 (πmτ)
in the denominator and the m = −1 and m = 0 terms in the numerator of 58.1.29. In fact,
e−iπ(a+ib)A(a+ ib) ,e−iπ(a+ib)B(a+ ib) converge to zero uniformly in a as b→ ∞.

Lemma 58.1.19 For A,B defined in 58.1.30, e−iπ(a+ib)C (a+ ib)→ 0 uniformly in a for
C = A,B.
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Proof: From 58.1.23,

e−iπτ A(τ) = ∑
m ̸=0

m ̸=−1

e−iπτ

cos2
(
π
(
m+ 1

2

)
τ
) − e−iπτ

sin2 (
π
(
m+ 1

2

)
τ
)

Now let τ = a+ ib. Then letting αm = π
(
m+ 1

2

)
,

cos(αma+ iαmb) = cos(αma)cosh(αmb)− isinh(αmb)sin(αma)

sin(αma+ iαmb) = sin(αma)cosh(αmb)+ icos(αma)sinh(αmb)

Therefore,∣∣cos2 (αma+ iαmb)
∣∣ = cos2 (αma)cosh2 (αmb)+ sinh2 (αmb)sin2 (αma)

≥ sinh2 (αmb) .

Similarly,∣∣sin2 (αma+ iαmb)
∣∣ = sin2 (αma)cosh2 (αmb)+ cos2 (αma)sinh2 (αmb)

≥ sinh2 (αmb) .

It follows that for τ = a+ ib and b large∣∣e−iπτ A(τ)
∣∣

≤ ∑
m ̸=0

m ̸=−1

2eπb

sinh2 (
π
(
m+ 1

2

)
b
)

≤
∞

∑
m=1

2eπb

sinh2 (
π
(
m+ 1

2

)
b
) + −2

∑
m=−∞

2eπb

sinh2 (
π
(
m+ 1

2

)
b
)

= 2
∞

∑
m=1

2eπb

sinh2 (
π
(
m+ 1

2

)
b
) = 4

∞

∑
m=1

eπb

sinh2 (
π
(
m+ 1

2

)
b
)

Now a short computation shows

eπb

sinh2(π(m+1+ 1
2 )b)

eπb

sinh2(π(m+ 1
2 )b)

=
sinh2 (

π
(
m+ 1

2

)
b
)

sinh2 (
π
(
m+ 3

2

)
b
) ≤ 1

e3πb .

Therefore, for τ = a+ ib,∣∣e−iπτ A(τ)
∣∣ ≤ 4

eπb

sinh
( 3πb

2

) ∞

∑
m=1

(
1

e3πb

)m

≤ 4
eπb

sinh
( 3πb

2

) 1/e3πb

1− (1/e3πb)

which converges to zero as b→ ∞. Similar reasoning will establish the claim about B(τ) .
This proves the lemma.
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Lemma 58.1.20 limb→∞ λ (a+ ib)e−iπ(a+ib) = 16 uniformly in a ∈ R.

Proof: From 58.1.30 and Lemma 58.1.19, this lemma will be proved if it is shown

lim
b→∞

(
2

cos2
(
π
( 1

2

)
(a+ ib)

) − 2
sin2 (

π
( 1

2

)
(a+ ib)

))e−iπ(a+ib) = 16

uniformly in a ∈ R. Let τ = a+ ib to simplify the notation. Then the above expression
equals  8(

ei π
2 τ + e−i π

2 τ

)2 +
8(

ei π
2 τ − e−i π

2 τ

)2

e−iπτ

=

(
8eiπτ

(eiπτ +1)2 +
8eiπτ

(eiπτ −1)2

)
e−iπτ

=
8

(eiπτ +1)2 +
8

(eiπτ −1)2

= 16
1+ e2πiτ

(1− e2πiτ)2 .

Now ∣∣∣∣∣ 1+ e2πiτ

(1− e2πiτ)2 −1

∣∣∣∣∣ =

∣∣∣∣∣ 1+ e2πiτ

(1− e2πiτ)2 −
(
1− e2πiτ

)2

(1− e2πiτ)2

∣∣∣∣∣
≤

∣∣3e2πiτ − e4πiτ
∣∣

(1− e−2πb)
2 ≤

3e−2πb + e−4πb

(1− e−2πb)
2

and this estimate proves the lemma.

Corollary 58.1.21 limb→∞ λ (a+ ib) = 0 uniformly in a ∈ R. Also λ (ib) for b > 0 is real
and is between 0 and 1, λ is real on the line, l2 and on the curve, C and limb→0+ λ (1+ ib)=
−∞.

Proof: From Lemma 58.1.20,∣∣∣λ (a+ ib)e−iπ(a+ib)−16
∣∣∣< 1

for all a provided b is large enough. Therefore, for such b,

|λ (a+ ib)| ≤ 17e−πb.

58.1.28 proves the assertion about λ (−bi) real.
By the first part, limb→∞ |λ (ib)|= 0. Now from 58.1.24

lim
b→0+

λ (ib) = lim
b→0+

(
1−λ

(
−1
ib

))
= lim

b→0+

(
1−λ

(
i
b

))
= 1. (58.1.31)
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by Corollary 58.1.21.
Next consider the behavior of λ on line l2 in the above picture. From 58.1.17 and

58.1.28,

λ (1+ ib) =
λ (ib)

λ (ib)−1
< 0

and so as b→ 0+ in the above, λ (1+ ib)→−∞.
It is left as an exercise to show that the map τ → 1− 1

τ
maps l2 onto the curve, C.

Therefore, by 58.1.25, for τ ∈ l2,

λ

(
1− 1

τ

)
=

λ
(−1

τ

)
λ
(−1

τ

)
−1

(58.1.32)

=
1−λ (τ)

(1−λ (τ))−1
=

λ (τ)−1
λ (τ)

∈ R (58.1.33)

It follows λ is real on the boundary of Ω in the above picture. This proves the corollary.
Now, following Alfors [3], cut off Ω by considering the horizontal line segment, z =

a+ ib0 where b0 is very large and positive and a ∈ [0,1] . Also cut Ω off by the images
of this horizontal line, under the transformations z = 1

τ
and z = 1− 1

τ
. These are arcs of

circles because the two transformations are fractional linear transformations. It is left as
an exercise for you to verify these arcs are situated as shown in the following picture. The
important thing to notice is that for b0 large the points of these circles are close to the origin
and (1,0) respectively. The following picture is a summary of what has been obtained so
far on the mapping by λ .

real small positive

near 1 and real
C2C1

large, real, negative

small, real, negative
z = a+ ib0

Ω

C

l2l1

11
2

In the picture, the descriptions are of λ acting on points of the indicated boundary of Ω.
Consider the oriented contour which results from λ (z) as z moves first up l2 as indicated,
then along the line z = a+ ib and then down l1 and then along C1 to C and along C till
C2 and then along C2 to l2. As indicated in the picture, this involves going from a large
negative real number to a small negative real number and then over a smooth curve which
stays small to a real positive number and from there to a real number near 1. λ (z) stays



58.1. PERIODIC FUNCTIONS 1841

fairly near 1 on C1 provided b0 is large so that the circle, C1 has very small radius. Then
along C, λ (z) is real until it hits C2. What about the behavior of λ on C2? For z ∈ C2, it
follows from the definition of C2 that z = 1− 1

τ
where τ is on the line, a+ ib0. Therefore,

by Lemma 58.1.20, 58.1.17, and 58.1.24

λ (z) = λ

(
1− 1

τ

)
=

λ
(−1

τ

)
λ
(−1

τ

)
−1

=
λ
( 1

τ

)
λ
( 1

τ

)
−1

=
1−λ (τ)

(1−λ (τ))−1
=

λ (τ)−1
λ (τ)

= 1− 1
λ (τ)

which is approximately equal to

1− 1
16eiπ(a+ib0)

= 1− eπb0e−iaπ

16
.

These points are essentially on a large half circle in the upper half plane which has radius
approximately eπb0

16 .
Now let w∈Cwith Im(w) ̸= 0. Then for b0 large enough, the motion over the boundary

of the truncated region indicated in the above picture results in λ tracing out a large simple
closed curve oriented in the counter clockwise direction which includes w on its interior if
Im(w)> 0 but which excludes w if Im(w)< 0.

Theorem 58.1.22 Let Ω be the domain described above. Then λ maps Ω one to one
and onto the upper half plane of C, {z ∈ C such that Im(z)> 0} . Also, the line λ (l1) =
(0,1) ,λ (l2) = (−∞,0) , and λ (C) = (1,∞).

Proof: Let Im(w)> 0 and denote by γ the oriented contour described above and illus-
trated in the above picture. Then the winding number of λ ◦ γ about w equals 1. Thus

1
2πi

∫
λ◦γ

1
z−w

dz = 1.

But, splitting the contour integrals into l2,the top line, l1,C1,C, and C2 and changing vari-
ables on each of these, yields

1 =
1

2πi

∫
γ

λ
′ (z)

λ (z)−w
dz

and by the theorem on counting zeros, Theorem 52.6.1 on Page 1661, the function, z→
λ (z)−w has exactly one zero inside the truncated Ω. However, this shows this function
has exactly one zero inside Ω because b0 was arbitrary as long as it is sufficiently large.
Since w was an arbitrary element of the upper half plane, this verifies the first assertion of
the theorem. The remaining claims follow from the above description of λ , in particular
the estimate for λ on C2. This proves the theorem.

Note also that the argument in the above proof shows that if Im(w)< 0, then w is not in
λ (Ω) . However, if you consider the reflection of Ω about the y axis, then it will follow that
λ maps this set one to one onto the lower half plane. The argument will make significant
use of Theorem 52.6.3 on Page 1663 which is stated here for convenience.



1842 CHAPTER 58. ELLIPTIC FUNCTIONS

Theorem 58.1.23 Let f : B(a,R)→ C be analytic and let

f (z)−α = (z−a)m g(z) , ∞ > m≥ 1

where g(z) ̸= 0 in B(a,R) . ( f (z)−α has a zero of order m at z = a.) Then there exist
ε,δ > 0 with the property that for each z satisfying 0 < |z−α|< δ , there exist points,

{a1, · · · ,am} ⊆ B(a,ε) ,

such that
f−1 (z)∩B(a,ε) = {a1, · · · ,am}

and each ak is a zero of order 1 for the function f (·)− z.

Corollary 58.1.24 Let Ω be the region above. Consider the set of points, Q = Ω∪Ω′ \
{0,1} described by the following picture.

Ω′

−1

Ω

C l2l1

11
2

Then λ (Q) = C\{0,1} . Also λ
′ (z) ̸= 0 for every z in ∪∞

k=−∞
(Q+2k)≡ H.

Proof: By Theorem 58.1.22, this will be proved if it can be shown that λ (Ω′) =
{z ∈ C : Im(z)< 0} . Consider λ 1 defined on Ω′ by

λ 1 (x+ iy)≡ λ (−x+ iy).

Claim: λ 1 is analytic.
Proof of the claim: You just verify the Cauchy Riemann equations. Letting λ (x+ iy)=

u(x,y)+ iv(x,y) ,

λ 1 (x+ iy) = u(−x,y)− iv(−x,y)

≡ u1 (x,y)+ iv(x,y) .

Then u1x (x,y) =−ux (−x,y) and v1y (x,y) =−vy (−x,y) =−ux (−x,y) since λ is analytic.
Thus u1x = v1y. Next, u1y (x,y) = uy (−x,y) and v1x (x,y) = vx (−x,y) =−uy (−x,y) and so
u1y =−vx.

Now recall that on l1,λ takes real values. Therefore, λ 1 = λ on l1, a set with a limit
point. It follows λ = λ 1 on Ω′ ∪Ω. By Theorem 58.1.22 λ maps Ω one to one onto the
upper half plane. Therefore, from the definition of λ 1 = λ , it follows λ maps Ω′ one to one
onto the lower half plane as claimed. This has shown that λ is one to one on Ω∪Ω′. This
also verifies from Theorem 52.6.3 on Page 1663 that λ

′ ̸= 0 on Ω∪Ω′.
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Now consider the lines l2 and C. If λ
′ (z) = 0 for z∈ l2, a contradiction can be obtained.

Pick such a point. If λ
′ (z) = 0, then z is a zero of order m ≥ 2 of the function, λ −λ (z) .

Then by Theorem 52.6.3 there exist δ ,ε > 0 such that if w ∈ B(λ (z) ,δ ) , then λ
−1 (w)∩

B(z,ε) contains at least m points.

Ω′

−1

Ω

C l2l1

11
2

z1 B(z,ε)z

λ (z1)

B(λ (z),δ )

λ (z)

In particular, for z1 ∈ Ω∩B(z,ε) sufficiently close to z,λ (z1) ∈ B(λ (z) ,δ ) and so
the function λ −λ (z1) has at least two distinct zeros. These zeros must be in B(z,ε)∩Ω

because λ (z1) has positive imaginary part and the points on l2 are mapped by λ to a real
number while the points of B(z,ε) \Ω are mapped by λ to the lower half plane thanks to
the relation, λ (z+2) = λ (z) . This contradicts λ one to one on Ω. Therefore, λ

′ ̸= 0 on l2.
Consider C. Points on C are of the form 1− 1

τ
where τ ∈ l2. Therefore, using 58.1.33,

λ

(
1− 1

τ

)
=

λ (τ)−1
λ (τ)

.

Taking the derivative of both sides,

λ
′
(

1− 1
τ

)(
1
τ2

)
=

λ
′ (τ)

λ (τ)2 ̸= 0.

Since λ is periodic of period 2 it follows λ
′ (z) ̸= 0 for all z ∈ ∪∞

k=−∞
(Q+2k) .

Lemma 58.1.25 If Im(τ)> 0 then there exists a unimodular
(

a b
c d

)
such that

c+dτ

a+bτ

is contained in the interior of Q. In fact,
∣∣ c+dτ

a+bτ

∣∣≥ 1 and

−1/2≤ Re
(

c+dτ

a+bτ

)
≤ 1/2.
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Proof: Letting a basis for the module of periods of ℘ be {1,τ} , it follows from Theo-
rem 58.1.2 on Page 1816 that there exists a basis for the same module of periods, {w′1,w′2}
with the property that for τ ′ = w′2/w′1∣∣τ ′∣∣≥ 1,

−1
2
≤ Reτ

′ ≤ 1
2
.

Since this is a basis for the same module of periods, there exists a unimodular matrix,(
a b
c d

)
such that (

w′1
w′2

)
=

(
a b
c d

)(
1
τ

)
.

Hence,

τ
′ =

w′2
w′1

=
c+dτ

a+bτ
.

Thus τ ′ is in the interior of H. In fact, it is on the interior of Ω′∪Ω≡ Q.

0 11/2−1 −1/2

τ
′

58.1.7 A Short Review And Summary

With this lemma, it is easy to extend Corollary 58.1.24. First, a simple observation and
review is a good idea. Recall that when you change the basis for the module of periods, the
Weierstrass ℘ function does not change and so the set of ei used in defining λ also do not
change. Letting the new basis be {w′1,w′2} , it was shown that(

w′1
w′2

)
=

(
a b
c d

)(
w1
w2

)

for some unimodular transformation,
(

a b
c d

)
. Letting τ = w2/w1 and τ ′ = w′2/w′1

τ
′ =

c+dτ

a+bτ
≡ φ (τ)
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Now as discussed earlier

λ
(
τ
′) = λ (φ (τ))≡

℘

(
w′1+w′2

2

)
−℘

(
w′2
2

)
℘

(
w′1
2

)
−℘

(
w′2
2

)
=

℘

(
1+τ ′

2

)
−℘

(
τ ′
2

)
℘
( 1

2

)
−℘

(
τ ′
2

)
These numbers in the above fraction must be the same as ℘

( 1+τ

2

)
,℘
(

τ

2

)
, and ℘

( 1
2

)
but

they might occur differently. This is because ℘ does not change and these numbers are
the zeros of a polynomial having coefficients involving only numbers and ℘(z) . It could
happen for example that ℘

(
1+τ ′

2

)
=℘

(
τ

2

)
in which case this would change the value of

λ . In effect, you can keep track of all possibilities by simply permuting the ei in the formula
for λ (τ) given by e3−e2

e1−e2
. Thus consider the following permutation table.

1 2 3
2 3 1
3 1 2
2 1 3
1 3 2
3 2 1

.

Corresponding to this list of 6 permutations, all possible formulas for λ (φ (τ)) can be
obtained as follows. Letting τ ′ = φ (τ) where φ is a unimodular matrix corresponding to a
change of basis,

λ
(
τ
′)= e3− e2

e1− e2
= λ (τ) (58.1.34)

λ
(
τ
′)= e1− e3

e2− e3
=

e3− e2 + e2− e1

e3− e2
= 1− 1

λ (τ)
=

λ (τ)−1
λ (τ)

(58.1.35)

λ
(
τ
′) =

e2− e1

e3− e1
=−

[
e3− e2− (e1− e2)

e1− e2

]−1

= − [λ (τ)−1]−1 =
1

1−λ (τ)
(58.1.36)

λ
(
τ
′) =

e3− e1

e2− e1
=−

[
e3− e2− (e1− e2)

e1− e2

]
= − [λ (τ)−1] = 1−λ (τ) (58.1.37)

λ
(
τ
′)= e2− e3

e1− e3
=

e3− e2

e3− e2− (e1− e2)
=

1
1− 1

λ (τ)

=
λ (τ)

λ (τ)−1
(58.1.38)

λ
(
τ
′)= e1− e3

e3− e2
=

1
λ (τ)

(58.1.39)
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Corollary 58.1.26 λ
′ (τ) ̸= 0 for all τ in the upper half plane, denoted by P+.

Proof: Let τ ∈ P+. By Lemma 58.1.25 there exists φ a unimodular transformation and
τ ′ in the interior of Q such that τ ′ = φ (τ). Now from the definition of λ in terms of the ei,
there is at worst a permutation of the ei and so it might be the case that λ (φ (τ)) ̸= λ (τ)
but it is the case that λ (φ (τ)) = ξ (λ (τ)) where ξ

′ (z) ̸= 0. Here ξ is one of the functions
determined by 58.1.34 - 58.1.39. (Since λ (τ) /∈ {0,1} , ξ

′ (λ (z)) ̸= 0. This follows from
the above possibilities for ξ listed above in 58.1.34 - 58.1.39.) All the possibilities are
ξ (z) =

z,
z−1

z
,

1
1− z

,1− z,
z

z−1
,

1
z

and these are the same as the possibilities for ξ
−1. Therefore,

λ
′ (φ (τ))φ

′ (τ) = ξ
′ (λ (τ))λ

′ (τ)

and so λ
′ (τ) ̸= 0 as claimed.

Now I will present a lemma which is of major significance. It depends on the remark-
able mapping properties of the modular function and the monodromy theorem from ana-
lytic continuation. A review of the monodromy theorem will be listed here for convenience.
First recall the definition of the concept of function elements and analytic continuation.

Definition 58.1.27 A function element is an ordered pair, ( f ,D) where D is an open ball
and f is analytic on D. ( f0,D0) and ( f1,D1) are direct continuations of each other if
D1 ∩D0 ̸= /0 and f0 = f1 on D1 ∩D0. In this case I will write ( f0,D0) ∼ ( f1,D1) . A
chain is a finite sequence, of disks, {D0, · · · ,Dn} such that Di−1 ∩Di ̸= /0. If ( f0,D0) is a
given function element and there exist function elements, ( fi,Di) such that {D0, · · · ,Dn}
is a chain and

(
f j−1,D j−1

)
∼ ( f j,D j) then ( fn,Dn) is called the analytic continuation of

( f0,D0) along the chain {D0, · · · ,Dn}. Now suppose γ is an oriented curve with parameter
interval [a,b] and there exists a chain, {D0, · · · ,Dn} such that γ∗ ⊆ ∪n

k=1Dk,γ (a) is the
center of D0,γ (b) is the center of Dn, and there is an increasing list of numbers in [a,b] ,a=
s0 < s1 · · · < sn = b such that γ ([si,si+1]) ⊆ Di and ( fn,Dn) is an analytic continuation of
( f0,D0) along the chain. Then ( fn,Dn) is called an analytic continuation of ( f0,D0) along
the curve γ . (γ will always be a continuous curve. Nothing more is needed. )

Then the main theorem is the monodromy theorem listed next, Theorem 55.4.5 and its
corollary on Page 1747.

Theorem 58.1.28 Let Ω be a simply connected subset of C and suppose ( f ,B(a,r)) is a
function element with B(a,r)⊆ Ω. Suppose also that this function element can be analyt-
ically continued along every curve through a. Then there exists G analytic on Ω such that
G agrees with f on B(a,r).

Here is the lemma.

Lemma 58.1.29 Let λ be the modular function defined on P+ the upper half plane. Let V
be a simply connected region in C and let f : V → C\{0,1} be analytic and nonconstant.
Then there exists an analytic function, g : V → P+ such that λ ◦g = f .
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Proof: Let a ∈V and choose r0 small enough that f (B(a,r0)) contains neither 0 nor 1.
You need only let B(a,r0)⊆V . Now there exists a unique point in Q,τ0 such that λ (τ0) =
f (a). By Corollary 58.1.24, λ

′ (τ0) ̸= 0 and so by the open mapping theorem, Theorem
52.6.3 on Page 1663, There exists B(τ0,R0) ⊆ P+ such that λ is one to one on B(τ0,R0)
and has a continuous inverse. Then picking r0 still smaller, it can be assumed f (B(a,r0))⊆
λ (B(τ0,R0)). Thus there exists a local inverse for λ , λ

−1
0 defined on f (B(a,r0)) having

values in B(τ0,R0)∩ λ
−1 ( f (B(a,r0))). Then defining g0 ≡ λ

−1
0 ◦ f , (g0,B(a,r0)) is a

function element. I need to show this can be continued along every curve starting at a in
such a way that each function in each function element has values in P+.

Let γ : [α,β ]→ V be a continuous curve starting at a,(γ (α) = a) and suppose that if
t < T there exists a nonnegative integer m and a function element (gm,B(γ (t) ,rm)) which
is an analytic continuation of (g0,B(a,r0)) along γ where gm (γ (t))∈ P+ and each function
in every function element for j ≤ m has values in P+. Thus for some small T > 0 this has
been achieved.

Then consider f (γ (T )) ∈ C\{0,1} . As in the first part of the argument, there exists
a unique τT ∈ Q such that λ (τT ) = f (γ (T )) and for r small enough there is an analytic
local inverse, λ

−1
T between f (B(γ (T ) ,r)) and λ

−1 ( f (B(γ (T ) ,r)))∩B(τT ,RT )⊆ P+ for
some RT > 0. By the assumption that the analytic continuation can be carried out for t < T,
there exists {t0, · · · , tm = t} and function elements (g j,B(γ (t j) ,r j)) , j = 0, · · · ,m as just
described with g j (γ (t j)) ∈ P+,λ ◦ g j = f on B(γ (t j) ,r j) such that for t ∈ [tm,T ] ,γ (t) ∈
B(γ (T ) ,r). Let

I = B(γ (tm) ,rm)∩B(γ (T ) ,r) .

Then since λ
−1
T is a local inverse, it follows for all z ∈ I

λ (gm (z)) = f (z) = λ

(
λ
−1
T ◦ f (z)

)
Pick z0 ∈ I . Then by Lemma 58.1.18 on Page 1836 there exists a unimodular mapping of
the form

φ (z) =
az+b
cz+d

where (
a b
c d

)
∼
(

1 0
0 1

)
mod2

such that
gm (z0) = φ

(
λ
−1
T ◦ f (z0)

)
.

Since both gm (z0) and φ

(
λ
−1
T ◦ f (z0)

)
are in the upper half plane, it follows ad− cb = 1

and φ maps the upper half plane to the upper half plane. Note the pole of φ is real and
all the sets being considered are contained in the upper half plane so φ is analytic where it
needs to be.

Claim: For all z ∈ I,
gm (z) = φ ◦λ

−1
T ◦ f (z) . (58.1.40)
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Proof: For z = z0 the equation holds. Let

A =
{

z ∈ I : gm (z) = φ

(
λ
−1
T ◦ f (z)

)}
.

Thus z0 ∈ I. If z ∈ I and if w is close enough to z, then w ∈ I also and so both sides of
58.1.40 with w in place of z are in λ

−1
m ( f (I)) . But by construction, λ is one to one on this

set and since λ is invariant with respect to φ ,

λ (gm (w)) = λ

(
λ
−1
T ◦ f (w)

)
= λ

(
φ ◦λ

−1
T ◦ f (w)

)
and consequently, w ∈ A. This shows A is open. But A is also closed in I because the
functions are continuous. Therefore, A = I and so 58.1.40 is obtained.

Letting f (z) ∈ f (B(γ (T )) ,r) ,

λ

(
φ

(
λ
−1
T ( f (z))

))
= λ

(
λ
−1
T ( f (z))

)
= f (z)

and so φ ◦λ
−1
T is a local inverse for λ on f (B(γ (T )) ,r) . Let the new function element be

gm+1︷ ︸︸ ︷
φ ◦λ

−1
T ◦ f ,B(γ (T ) ,r)

 . This has shown the initial function element can be continued

along every curve through a.
By the monodromy theorem, there exists g analytic on V such that g has values in P+

and g = g0 on B(a,r0) . By the construction, it also follows λ ◦ g = f . This last claim is
easy to see because λ ◦g = f on B(a,r0) , a set with a limit point so the equation holds for
all z ∈V . This proves the lemma.

58.2 The Picard Theorem Again
Having done all this work on the modular function which is important for its own sake,
there is an easy proof of the Picard theorem. In fact, this is the way Picard did it in 1879. I
will state it slightly differently since it is no trouble to do so, [65].

Theorem 58.2.1 Let f be meromorphic on C and suppose f misses three distinct points,
a,b,c. Then f is a constant function.

Proof: Let φ (z) ≡ z−a
z−c

b−c
b−a . Then φ (c) = ∞,φ (a) = 0, and φ (b) = 1. Now consider

the function, h = φ ◦ f . Then h misses the three points ∞,0, and 1. Since h is meromorphic
and does not have ∞ in its values, it must actually be analytic. Thus h is an entire function
which misses the two values 0 and 1. If h is not constant, then by Lemma 58.1.29 there
exists a function, g analytic on C which has values in the upper half plane, P+ such that
λ ◦ g = h. However, g must be a constant because there exists ψ an analytic map on the
upper half plane which maps the upper half plane to B(0,1) . You can use the Riemann
mapping theorem or more simply, ψ (z) = z−i

z+i . Thus ψ ◦g equals a constant by Liouville’s
theorem. Hence g is a constant and so h must also be a constant because λ (g(z)) = h(z) .
This proves f is a constant also. This proves the theorem.
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58.3 Exercises
1. Show the set of modular transformations is a group. Also show those modular trans-

formations which are congruent mod2 to the identity as described above is a sub-
group.

2. Suppose f is an elliptic function with period module M. If {w1,w2} and {w′1,w′2}
are two bases, show that the resulting period parallelograms resulting from the two
bases have the same area.

3. Given a module of periods with basis {w1,w2} and letting a typical element of this
module be denoted by w as described above, consider the product

σ (z)≡ z ∏
w̸=0

(
1− z

w

)
e(z/w)+ 1

2 (z/w)2
.

Show this product converges uniformly on compact sets, is an entire function, and
satisfies

σ
′ (z)/σ (z) = ζ (z)

where ζ (z) was defined above as a primitive of ℘(z) and is given by

ζ (z) =
1
z
+ ∑

w ̸=0

1
z−w

+
z

w2 +
1
w
.

4. Show ζ (z+wi) = ζ (z)+η i where η i is a constant.

5. Let Pa be the parallelogram shown in the following picture.

0
w1

w2

a

Show that 1
2πi
∫

∂Pa
ζ (z)dz = 1 where the contour is taken once around the parallelo-

gram in the counter clockwise direction. Next evaluate this contour integral directly
to obtain Legendre’s relation,

η1w2−η2w1 = 2πi.

6. For σ defined in Problem 3, 4 explain the following steps. For j = 1,2

σ ′ (z+w j)

σ (z+w j)
= ζ (z+w j) = ζ (z)+η j =

σ ′ (z)
σ (z)

+η j
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Therefore, there exists a constant, C j such that

σ (z+w j) =C jσ (z)eη jz.

Next show σ is an odd function, (σ (−z) =−σ (z)) and then let z = −w j/2 to find

C j =−e
η jw j

2 and so

σ (z+w j) =−σ (z)eη j

(
z+

w j
2

)
. (58.3.41)

7. Show any even elliptic function, f with periods w1 and w2 for which 0 is neither a
pole nor a zero can be expressed in the form

f (0)
n

∏
k=1

℘(z)−℘(ak)

℘(z)−℘(bk)

where C is some constant. Here ℘ is the Weierstrass function which comes from the
two periods, w1 and w2. Hint: You might consider the above function in terms of the
poles and zeros on a period parallelogram and recall that an entire function which is
elliptic is a constant.

8. Suppose f is any elliptic function with {w1,w2} a basis for the module of periods.
Using Theorem 58.1.8 and 58.3.41 show that there exists constants a1, · · · ,an and
b1, · · · ,bn such that for some constant C,

f (z) =C
n

∏
k=1

σ (z−ak)

σ (z−bk)
.

Hint: You might try something like this: By Theorem 58.1.8, it follows that if {αk}
are the zeros and {bk} the poles in an appropriate period parallelogram, ∑αk−∑bk
equals a period. Replace αk with ak such that ∑ak−∑bk = 0. Then use 58.3.41 to
show that the given formula for f is bi periodic. Anyway, you try to arrange things
such that the given formula has the same poles as f . Remember an entire elliptic
function equals a constant.

9. Show that the map τ → 1− 1
τ

maps l2 onto the curve, C in the above picture on the
mapping properties of λ .

10. Modify the proof of Theorem 58.1.22 to show that λ (Ω)∩{z ∈ C : Im(z)< 0}= /0.
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Chapter 59

Basic Probability
Caution: This material on probability and stochastic processes may be half baked in places.
I have not yet rewritten it several times. This is not to say that nothing else is half baked.
However, the probability is higher here.

59.1 Random Variables And Independence
Recall Lemma 14.2.3 on Page 388 which is stated here for convenience.

Lemma 59.1.1 Let M be a metric space with the closed balls compact and suppose λ is a
measure defined on the Borel sets of M which is finite on compact sets. Then there exists a
unique Radon measure, λ which equals λ on the Borel sets. In particular λ must be both
inner and outer regular on all Borel sets.

Also important is the following fundamental result which is called the Borel Cantelli
lemma.

Lemma 59.1.2 Let (Ω,F ,λ ) be a measure space and let {Ai} be a sequence of measur-
able sets satisfying

∞

∑
i=1

λ (Ai)< ∞.

Then letting S denote the set of ω ∈ Ω which are in infinitely many Ai, it follows S is a
measurable set and λ (S) = 0.

Proof: S = ∩∞
k=1∪∞

m=k Am. Therefore, S is measurable and also

λ (S)≤ λ (∪∞
m=kAm)≤

∞

∑
m=k

λ (Ak)

and this converges to 0 as k→ ∞ because of the convergence of the series. ■
Here is another nice observation.

Proposition 59.1.3 Suppose Ei is a separable Banach space. Then if Bi is a Borel set of
Ei, it follows ∏

n
i=1 Bi is a Borel set in ∏

n
i=1 Ei.

Proof: An easy way to do this is to consider the projection maps.

π ix≡ xi

Then these projection maps are continuous. Hence for U an open set,

π
−1
i (U)≡

n

∏
j=1

A j, A j = E j if j ̸= i and Ai =U.

Thus π
−1
i (open) equals an open set. Let

S ≡
{

V ⊆ R : π
−1
i (V ) is Borel

}
1853
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Then S contains all the open sets and is clearly a σ algebra. Therefore, S contains the
Borel sets. Let Bi be a Borel set in Ei. Then

n

∏
i=1

Bi = ∩n
i=1π

−1
i (Bi) ,

a finite intersection of Borel sets. ■

Definition 59.1.4 A probability space is a measure space, (Ω,F ,P) where P is a measure
satisfying P(Ω) = 1. A random vector (variable) is a measurable function, X : Ω→ Z
where Z is some topological space. It is often the case that Z will equal Rp. Assume Z is a
separable Banach space. Define the following σ algebra.

σ (X)≡
{

X−1 (E) : E is Borel in Z
}

Thus σ (X)⊆F . For E a Borel set in Z define

λ X (E)≡ P
(
X−1 (E)

)
.

This is called the distribution of the random variable, X. If∫
Ω

|X(ω)|dP < ∞

then define

E (X)≡
∫

Ω

XdP

where the integral is defined as the Bochner integral.

Recall the following fundamental result which was proved earlier but which I will give
a short proof of now.

Proposition 59.1.5 Let (Ω,S ,µ) be a measure space and let X : Ω→ Z where Z is a
separable Banach space. Then X is strongly measurable if and only if X−1 (U) ∈S for all
U open in Z.

Proof: To begin with, let D(a,r) be the closure of the open ball B(a,r). By Lemma
21.1.6, there exists { fi} ⊆ B′, the unit ball in Z′ such that

∥z∥Z = sup
i
{| fi (z)|}

Then
D(a,r) = {z : ∥a− z∥ ≤ r}= ∩i {z : | fi (z)− fi (a)| ≤ r}

= ∩i f−1
i

(
B( fi (a) ,r)

)
It follows that

X−1 (D(a,r)) = ∩iX−1
(

f−1
i

(
B( fi (a) ,r)

))
= ∩i ( fi ◦X)−1

(
B( fi (a) ,r)

)
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If X is strongly measurable, then it is weakly measurable and so each fi ◦X is a real (com-
plex) valued measurable function. Hence the expression on the right in the above is mea-
surable. Now if U is any open set in Z, then it is the countable union of such closed disks
U = ∪iDi. Therefore, X−1 (U) = ∩iX−1 (Di) ∈ S . It follows that strongly measurable
implies inverse images of open sets are in S .

Conversely, suppose X−1 (U) ∈ S for every open U . Then for f ∈ Z′, f ◦X is real
valued and measurable. Therefore, X is weakly measurable. By the Pettis theorem, it
follows that f ◦X is strongly measurable. ■

Proposition 59.1.6 If X : Ω→ Z is measurable, then σ (X) equals the smallest σ algebra
such that X is measurable with respect to it. Also if Xi are random variables having values
in separable Banach spaces Zi, then σ (X) = σ (X1, · · · ,Xn) where X is the vector mapping
Ω to ∏

n
i=1 Zi and σ (X1, · · · ,Xn) is the smallest σ algebra such that each Xi is measurable

with respect to it.

Proof: Let G denote the smallest σ algebra such that X is measurable with respect
to this σ algebra. By definition X−1 (open) ∈ G . Furthermore, the set of all E such that
X−1 (E) ∈ G is a σ algebra. Hence it includes all the Borel sets. Hence X−1 (Borel) ∈ G
and so G ⊇ σ (X) . However, σ (X) defined above is a σ algebra such that X is measurable
with respect to σ (X) . Therefore, G = σ (X).

Letting Bi be a Borel set in Zi,∏
n
i=1 Bi is a Borel set by Proposition 59.1.3 and so

X−1

(
n

∏
i=1

Bi

)
= ∩n

i=1X−1
i (Bi) ∈ σ (X1, · · · ,Xn)

If G denotes the Borel sets F ⊆ ∏
n
i=1 Zi such that X−1 (F) ∈ σ (X1, · · · ,Xn) , then G is

clearly a σ algebra which contains the open sets. Hence G = B the Borel sets of ∏
n
i=1 Zi.

This shows that σ (X)⊆ σ (X1, · · · ,Xn) . Next we observe that σ (X) is a σ algebra with the
property that each Xi is measurable with respect to σ (X) . This follows from X−1

i (Bi) =

X−1
(

∏
n
j=1 A j

)
∈ σ (X) , where each A j = Z j except for Ai = Bi.Since σ (X1, · · · ,Xn) is

defined as the smallest such σ algebra, it follows that σ (X)⊇ σ (X1, · · · ,Xn) .■
For random variables having values in a separable Banach space or even more generally

for a separable metric space, much can be said about regularity of λ X.

Definition 59.1.7 A measure, µ defined on B (E) will be called inner regular if for all
F ∈B (E) ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed}

A measure, µ defined on B (E) will be called outer regular if for all F ∈B (E) ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open}

When a measure is both inner and outer regular, it is called regular.

For probability measures, the above definition of regularity tends to come free. Note
it is a little weaker than the usual definition of regularity because K is only assumed to be
closed, not compact.
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Lemma 59.1.8 Let µ be a finite measure defined on B (E) where E is a metric space.
Then µ is regular.

Proof: First note every open set is the countable union of closed sets and every closed
set is the countable intersection of open sets. Here is why. Let V be an open set and let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V. Next, for K closed let

Vk ≡ {x ∈ X : dist(x,K)< 1/k} .

Clearly the intersection of the Vk equals K. Therefore, letting V denote an open set and K a
closed set,

µ (V ) = sup{µ (K) : K ⊆V and K is closed}
µ (K) = inf{µ (V ) : V ⊇ K and V is open} .

Also since V is open and K is closed,

µ (V ) = inf{µ (U) : U ⊇V and U is open}
µ (K) = sup{µ (L) : L⊆ K and L is closed}

In words, µ is regular on open and closed sets. Let

F ≡{F ∈B (X) such that µ is regular on F} .

Then F contains the open sets and the closed sets.
Suppose F ∈F . Then there exists V ⊇ F with µ (V \F)< ε. It follows VC ⊆ FC and

µ
(
FC \VC)= µ (V \F)< ε.

Thus µ is inner regular on FC. Since F ∈F , there exists K ⊆ F where K is closed and
µ (F \K)< ε . Then also KC ⊇ FC and

µ
(
KC \FC)= µ (F \K)< ε.

Thus if F ∈F so is FC.
Suppose now that {Fi} ⊆F , the Fi being disjoint. Is ∪Fi ∈F ? There exists Ki ⊆ Fi

such that µ (Ki)+ ε/2i > µ (Fi) . Then

µ (∪∞
i=1Fi) =

∞

∑
i=1

µ (Fi)≤ ε +
∞

∑
i=1

µ (Ki)

< 2ε +
N

∑
i=1

µ (Ki) = 2ε +µ
(
∪N

i=1Ki
)
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provided N is large enough. Thus it follows µ is inner regular on ∪∞
i=1Fi. Why is it outer

regular? Let Vi ⊇ Fi such that µ (Fi)+ ε/2i > µ (Vi) and

µ (∪∞
i=1Fi) =

∞

∑
i=1

µ (Fi)>−ε +
∞

∑
i=1

µ (Vi)≥−ε +µ (∪∞
i=1Vi)

which shows µ is outer regular on ∪∞
i=1Fi. It follows F contains the π system consisting of

open sets and is closed with respect to countable disjoint unions and complements, and so
by the Lemma on π systems, Lemma 12.12.3, F contains σ (τ) where τ is the set of open
sets. Hence F contains the Borel sets and is itself a subset of the Borel sets by definition.
Therefore, F = B (X) . ■

One can say more if the metric space is complete and separable. In fact in this case the
above definition of inner regularity can be shown to imply the usual one.

Lemma 59.1.9 Let µ be a finite measure on a σ algebra containing B (X) , the Borel sets
of X , a separable complete metric space. Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, µ is inner regular
in the sense that for all F ∈B (X) ,

µ (F) = sup{µ (K) : K ⊆ F and K is compact}

Proof: Let {ak} be a countable dense subset of C. Thus ∪∞
k=1B

(
ak,

1
n

)
⊇C. Therefore,

there exists mn such that

µ

(
C \∪mn

k=1B
(

ak,
1
n

))
≡ µ (C \Cn)<

ε

2n .

Now let K =C∩ (∩∞
n=1Cn) . Then K is a subset of Cn for each n and so for each ε > 0 there

exists an ε net for K since Cn has a 1/n net, namely a1, · · · ,amn . Since K is closed, it is
complete and so it is also compact since it is complete and totally bounded, Theorem 7.6.5.
Now

µ (C \K)≤ µ (∪∞
n=1 (C \Cn))<

∞

∑
n=1

ε

2n = ε.

Thus µ (C) can be approximated by µ (K) for K a compact subset of C. The last claim
follows from Lemma 59.1.8. ■

Definition 59.1.10 A measurable function X : (Ω,F ,µ)→ Z a topological space is called
a random variable when µ (Ω) = 1. For such a random variable, one can define a distri-
bution measure λ X on the Borel sets of Z as follows.

λ X (G)≡ µ
(
X−1 (G)

)
This is a well defined measure on the Borel sets of Z because it makes sense for every G
open and G ≡

{
G⊆ Z : X−1 (G) ∈F

}
is a σ algebra which contains the open sets, hence

the Borel sets. Such a measurable function is also called a random vector.
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Corollary 59.1.11 Let X be a random variable (random vector) with values in a complete
metric space, Z. Then λ X is an inner and outer regular measure defined on B (Z).

Proposition 59.1.12 For X a random vector defined above, X having values in a complete
separable metric space Z, then λ X is inner and outer regular and Borel.

(Ω,P) X→ (Z,λ X)
h→ E

If h is Borel measurable and h ∈ L1 (Z,λ X;E) for E a Banach space, then∫
Ω

h(X(ω))dP =
∫

Z
h(x)dλ X. (59.1.1)

In the case where Z = E, a separable Banach space, if X is measurable then X ∈
L1 (Ω;E) if and only if the identity map on E is in L1 (E;λ X) and∫

Ω

X(ω)dP =
∫

E
xdλ X (x) (59.1.2)

Proof: The regularity claims are established above. It remains to verify 59.1.1.
Since h ∈ L1 (Z,E) , it follows there exists a sequence of simple functions {hn} such

that
hn (x)→ h(x) ,

∫
Z
||hm−hn||dλ X→ 0 as m,n→ ∞.

The first convergence above implies

hn ◦X→ h◦X pointwise on Ω (59.1.3)

Then letting hn (x) = ∑
m
k=1 xkXEk (x) , where the Ek are disjoint and Borel, it follows easily

that hn ◦X is also a simple function of the form hn ◦X(ω) = ∑
m
k=1 xkXX−1(Ek)

(ω) and by
assumption X−1 (Ek) ∈F . From the definition of the integral, it is easily seen∫

hn ◦XdP =
∫

hndλ X,
∫
||hn|| ◦XdP =

∫
||hn||dλ X

Also, hn ◦X−hm ◦X is a simple function and so∫
||hn ◦X−hm ◦X||dP =

∫
||hn−hm||dλ X (59.1.4)

It follows from the definition of the Bochner integral and 59.1.3, and 59.1.4 that h◦X is in
L1 (Ω;E) and ∫

h◦XdP = lim
n→∞

∫
hn ◦XdP = lim

n→∞

∫
hndλ X =

∫
hdλ X.

Finally consider the case that E = Z and suppose X ∈ L1 (Ω;E). Then letting h be the
identity map on E, it follows h is obviously separably valued and h−1 (U) ∈B (E) for all
U open and so h is measurable. Why is it in L1 (E;E)?∫

E
||h(x)||dλ X =

∫
∞

0
λ X ([||h||> t])dt ≡

∫
∞

0
P(X ∈ [||x||> t])dt

≡
∫

∞

0
P([||X||> t])dt =

∫
Ω

||X||dP < ∞
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Thus the identity map on E is in L1 (E;λ X) . Next suppose the identity map h is in ab-
solutely integrable, in L1 (E;λ X) . Then X(ω) = h ◦X(ω) and so from the first part,
X ∈ L1 (Ω;E) and from 59.1.1, 59.1.2 follows. ■

59.2 Kolmogorov Extension Theorem For Polish Spaces
Let Mt be a complete separable metric space. This is called a Polish space. I will denote
a totally ordered index set, (Like R) and the interest will be in building a measure on the
product space, ∏t∈I Mt . By the well ordering principle, you can always put an order on any
index set so this order is no restriction, but we do not insist on a well order and in fact, index
sets of great interest are R or [0,∞). Also for X a topological space, B (X) will denote the
Borel sets.

Notation 59.2.1 The symbol J will denote a finite subset of I,J = (t1, · · · , tn) , the ti taken
in order. EJ will denote a set which has a set Et of B (Mt) in the tth position for t ∈ J and
for t /∈ J, the set in the tth position will be Mt . KJ will denote a set which has a compact set
in the tth position for t ∈ J and for t /∈ J, the set in the tth position will be Mt . Also denote
by RJ the sets EJ and R the union of the RJ . Let EJ denote finite disjoint unions of sets of
RJ and let E denote finite disjoint unions of sets of R. Thus if F is a set of E , there exists
J such that F is a finite disjoint union of sets of RJ . For F ∈ Ω, denote by πJ (F) the set
∏t∈J Ft where F =∏t∈I Ft .

Lemma 59.2.2 The sets, E ,EJ defined above form an algebra of sets of ∏t∈I Mt .

Proof: First consider RJ . If A,B ∈RJ , then A∩B ∈RJ also. Is A\B a finite disjoint
union of sets of RJ? It suffices to verify that πJ (A\B) is a finite disjoint union of πJ (RJ).
Let |J| denote the number of indices in J. If |J| = 1, then it is obvious that πJ (A\B) is a
finite disjoint union of sets of πJ (RJ). In fact, letting J = (t) and the tth entry of A is A and
the tth entry of B is B, then the tth entry of A\B is A\B, a Borel set of Mt , a finite disjoint
union of Borel sets of Mt .

Suppose then that for A,B sets of RJ , πJ (A\B) is a finite disjoint union of sets of
πJ (RJ) for |J| ≤ n, and consider J = (t1, · · · , tn, tn+1) . Let the tth

i entry of A and B be
respectively Ai and Bi. It follows that πJ (A\B) has the following in the entries for J

(A1×A2×·· ·×An×An+1)\ (B1×B2×·· ·×Bn×Bn+1)

Letting A represent A1×A2×·· ·×An and B represent B1×B2×·· ·×Bn, this is of the form

A× (An+1 \Bn+1)∪ (A\B)× (An+1∩Bn+1)

By induction, (A\B) is the finite disjoint union of sets of R(t1,··· ,tn). Therefore, the above
is the finite disjoint union of sets of RJ . It follows that EJ is an algebra.

Now suppose A,B ∈ R. Then for some finite set J, both are in RJ . Then from what
was just shown,

A\B ∈ EJ ⊆ E , A∩B ∈R.

By Lemma 12.10.2 on Page 318 this shows E is an algebra. ■
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With this preparation, here is the Kolmogorov extension theorem. In the statement and
proof of the theorem, Fi,Gi, and Ei will denote Borel sets. Any list of indices from I will
always be assumed to be taken in order. Thus, if J ⊆ I and J = (t1, · · · , tn) , it will always
be assumed t1 < t2 < · · ·< tn.

Theorem 59.2.3 For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt such that the following consistency condition holds. If

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,

then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(59.2.5)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices, tk, then Gsi = Msi .
Then for E defined in Definition 59.2.1, there exists a probability measure, P and a σ

algebra F = σ (E ) such that (
∏
t∈I

Mt ,P,F

)
is a probability space. Also there exist measurable functions, Xs : ∏t∈I Mt →Ms defined as

Xsx≡ xs

for each s ∈ I such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(59.2.6)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn

=
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (59.2.7)

Proof: Let E be the algebra of sets defined in Definition 14.4.1. I want to define a
measure on E . For F ∈ E , there exists J such that F is the finite disjoint unions of sets of
RJ . Define

P0 (F)≡ νJ (πJ (F))
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Then P0 is well defined because of the consistency condition on the measures νJ . P0 is
clearly finitely additive because the νJ are measures and one can pick J as large as desired
to include all t where there may be something other than Mt . Also, from the definition,

P0 (Ω)≡ P0

(
∏
t∈I

Mt

)
= ν t1 (Mt1) = 1.

Next I will show P0 is a finite measure on E . After this it is only a matter of using the
Caratheodory extension theorem to get the existence of the desired probability measure P.

Claim: Suppose En is in E and suppose En ↓ /0. Then P0 (En) ↓ 0.
Proof of the claim: If not, there exists a sequence such that although En ↓ /0,P0 (En) ↓

ε > 0. Let En ∈ EJn . Thus it is a finite disjoint union of sets of RJn . By regularity of the
measures νJ , which follows from Lemmas 59.1.8 and 59.1.9, there exists a compact set
KJn ⊆ En such that

νJn (πJn (KJn))+
ε

2n+2 > νJn (πJn (E
n))

Thus

P0 (KJn)+
ε

2n+2 ≡ νJn (πJn (KJn))+
ε

2n+2

> νJn (πJn (E
n))≡ P0 (En)

The interesting thing about these KJn is: they have the finite intersection property. Here is
why.

ε ≤ P0
(
∩m

k=1KJk

)
+P0

(
Em \∩m

k=1KJk

)
≤ P0

(
∩m

k=1KJk

)
+P0

(
∪m

k=1Ek \KJk

)
< P0

(
∩m

k=1KJk

)
+

∞

∑
k=1

ε

2k+2 < P0
(
∩m

k=1KJk

)
+ ε/2,

and so P0
(
∩m

k=1KJk

)
> ε/2. In considering all the En, there are countably many entries in

the product space which have something other than Mt in them. Say these are {t1, t2, · · ·} .
Let pti be a point which is in the intersection of the ti components of the sets KJn . The
compact sets in the ti position must have the finite intersection property also because if not,
the sets KJn can’t have it. Thus there is such a point. As to the other positions, use the
axiom of choice to pick something in each of these. Thus the intersection of these KJn

contains a point which is contrary to En ↓ /0 because these sets are contained in the En.
With the claim, it follows P0 is a measure on E . Here is why: If E = ∪∞

k=1Ek where
E,Ek ∈ E , then (E\∪n

k=1Ek) ↓ /0 and so

P0 (∪n
k=1Ek)→ P0 (E) .

Hence if the Ek are disjoint, P0
(
∪n

k=1Ek
)
= ∑

n
k=1 P0 (Ek)→ P0 (E) . Thus for disjoint Ek

having ∪kEk = E ∈ E ,

P0 (∪∞
k=1Ek) =

∞

∑
k=1

P0 (Ek) .
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Now to conclude the proof, apply the Caratheodory extension theorem to obtain P
a probability measure which extends P0 to a σ algebra which contains σ (E ) the sigma
algebra generated by E with P = P0 on E . Thus for EJ ∈ E , P(EJ) = P0 (EJ) = νJ (PJE j) .

Next, let (∏t∈I Mt ,F ,P) be the probability space and for x ∈ ∏t∈I Mt let Xt (x) = xt ,
the tth entry of x. It follows Xt is measurable (also continuous) because if U is open in Mt ,
then X−1

t (U) has a U in the tth slot and Ms everywhere else for s ̸= t. Thus inverse images
of open sets are measurable. Also, letting J be a finite subset of I and for J = (t1, · · · , tn) ,
and Ft1 , · · · ,Ftn Borel sets in Mt1 · · ·Mtn respectively, it follows FJ , where FJ has Fti in the
tth
i entry, is in E and therefore,

P([Xt1 ∈ Ft1 ]∩ [Xt2 ∈ Ft2 ]∩·· ·∩ [Xtn ∈ Ftn ]) =

P([(Xt1 ,Xt2 , · · · ,Xtn) ∈ Ft1 ×·· ·×Ftn ]) = P(FJ) = P0 (FJ)

= ν t1···tn (Ft1 ×·· ·×Ftn)

Finally consider the claim about the integrals. Suppose f (xt1 , · · · ,xtn) = XF where F
is a Borel set of ∏t∈J Mt where J = (t1, · · · , tn). To begin with suppose

F = Ft1 ×·· ·×Ftn (59.2.8)

where each Ft j is in B
(
Mt j

)
. Then∫

Mt1×···×Mtn

XF (xt1 , · · · ,xtn)dν t1···tn = ν t1···tn (Ft1 ×·· ·×Ftn)

= P

(
∏
t∈I

Ft

)
=
∫

Ω

X∏t∈I Ft (x)dP

=
∫

Ω

XF (xt1 , · · · ,xtn)dP (59.2.9)

where Ft = Mt if t /∈ J. Let K denote sets, F of the sort in 59.2.8. It is clearly a π system.
Now let G denote those sets F in B (∏t∈J Mt) such that 59.2.9 holds. Thus G ⊇K . It is
clear that G is closed with respect to countable disjoint unions and complements. Hence
G ⊇ σ (K ) but σ (K ) = B (∏t∈J Mt) because every open set in ∏t∈J Mt is the countable
union of rectangles like 59.2.8 in which each Fti is open. Therefore, 59.2.9 holds for every
F ∈B (∏t∈J Mt) .

Passing to simple functions and then using the monotone convergence theorem yields
the final claim of the theorem. ■

59.3 Independence
The concept of independence is probably the main idea which separates probability from
analysis and causes some of us to struggle to understand what is going on.
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Definition 59.3.1 Let (Ω,F ,P) be a probability space. The sets in F are called events. A
set of events, {Ai}i∈I is called independent if whenever

{
Aik

}m
k=1 is a finite subset

P
(
∩m

k=1Aik

)
=

m

∏
k=1

P
(
Aik

)
.

Each of these events defines a rather simple σ algebra,
(
Ai,AC

i , /0,Ω
)

denoted by Fi.
Now the following lemma is interesting because it motivates a more general notion of
independent σ algebras.

Lemma 59.3.2 Suppose Bi ∈Fi for i ∈ I. Then for any m ∈ N

P
(
∩m

k=1Bik

)
=

m

∏
k=1

P
(
Bik

)
.

Proof: The proof is by induction on the number l of the Bik which are not equal to Aik .
First suppose l = 0. Then the above assertion is true by assumption. Suppose it is so for
some l and there are l + 1 sets not equal to Aik . If any equals /0 there is nothing to show.
Both sides equal 0. If any equals Ω, there is also nothing to show. You can ignore that set
in both sides and then you have by induction the two sides are equal because you have no
more than l sets different than Aik . The only remaining case is where some Bik = AC

ik
. Say

Bim+1 = AC
im+1

for simplicity.

P
(
∩m+1

k=1 Bik

)
= P

(
AC

im+1
∩∩m

k=1Bik

)
= P

(
∩m

k=1Bik

)
−P

(
Aim+1 ∩∩

m
k=1Bik

)
Then by induction,

=
m

∏
k=1

P
(
Bik

)
−P

(
Aim+1

) m

∏
k=1

P
(
Bik

)
=

m

∏
k=1

P
(
Bik

)(
1−P

(
Aim+1

))
= P

(
AC

im+1

) m

∏
k=1

P
(
Bik

)
=

m+1

∏
k=1

P
(
Bik

)
thus proving it for l +1. ■

This motivates a more general notion of independence in terms of σ algebras.

Definition 59.3.3 If {Fi}i∈I is any set of σ algebras contained in F , they are said to be
independent if whenever Aik ∈Fik for k = 1,2, · · · ,m, then

P
(
∩m

k=1Aik

)
=

m

∏
k=1

P
(
Aik

)
.

A set of random variables {Xi}i∈I is independent if the σ algebras {σ (Xi)}i∈I are inde-
pendent σ algebras. Here σ (X) denotes the smallest σ algebra such that X is measurable.
Thus σ (X) =

{
X−1 (U) : U is a Borel set

}
. More generally, σ (Xi : i ∈ I) is the smallest σ

algebra such that each Xi is measurable.
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Note that by Lemma 59.3.2 you can consider independent events in terms of indepen-
dent σ algebras. That is, a set of independent events can always be considered as events
taken from a set of independent σ algebras. This is a more general notion because here the
σ algebras might have infinitely many sets in them.

Lemma 59.3.4 Suppose the set of random variables, {Xi}i∈I is independent. Also suppose
I1 ⊆ I and j /∈ I1. Then the σ algebras σ (Xi : i ∈ I1) , σ (X j) are independent σ algebras.

Proof: Let B ∈ σ (X j) . I want to show that for any A ∈ σ (Xi : i ∈ I1) , it follows that
P(A∩B) = P(A)P(B) . Let K consist of finite intersections of sets of the form X−1

k (Bk)
where Bk is a Borel set and k ∈ I1. Thus K is a π system and σ (K ) = σ (Xi : i ∈ I1) .
Now if you have one of these sets of the form A = ∩m

k=1X−1
k (Bk) where without loss of

generality, it can be assumed the k are distinct since X−1
k (Bk)∩X−1

k

(
B′k
)
= X−1

k

(
Bk ∩B′k

)
,

then

P(A∩B) = P
(
∩m

k=1X−1
k (Bk)∩B

)
= P(B)

m

∏
k=1

P
(
X−1

k (Bk)
)

= P(B)P
(
∩m

k=1X−1
k (Bk)

)
.

Thus K is contained in

G ≡ {A ∈ σ (Xi : i ∈ I1) : P(A∩B) = P(A)P(B)} .

Now G is closed with respect to complements and countable disjoint unions. Here is why:
If each Ai ∈ G and the Ai are disjoint,

P((∪∞
i=1Ai)∩B) = P(∪∞

i=1 (Ai∩B))

= ∑
i

P(Ai∩B) = ∑
i

P(Ai)P(B)

= P(B)∑
i

P(Ai) = P(B)P(∪∞
i=1Ai)

If A ∈ G ,
P
(
AC ∩B

)
+P(A∩B) = P(B)

and so

P
(
AC ∩B

)
= P(B)−P(A∩B)

= P(B)−P(A)P(B)

= P(B)(1−P(A)) = P(B)P
(
AC) .

Therefore, from the lemma on π systems, Lemma 12.12.3 on Page 329, it follows G ⊇
σ (K ) = σ (Xi : i ∈ I1). ■

Lemma 59.3.5 If {Xk}r
k=1 are independent random variables having values in Z a sep-

arable metric space, and if gk is a Borel measurable function, then {gk (Xk)}r
k=1 is also
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independent. Furthermore, if the random variables have values in R, and they are all
bounded, then

E

(
r

∏
i=1

Xi

)
=

r

∏
i=1

E (Xi) .

More generally, the above formula holds if it is only known that each Xi ∈ L1 (Ω;R) and

r

∏
i=1

Xi ∈ L1 (Ω;R) .

Proof: First consider the claim about {gk (Xk)}r
k=1. Letting O be an open set in Z,

(gk ◦Xk)
−1 (O) = X−1

k

(
g−1

k (O)
)
= X−1

k (Borel set) ∈ σ (Xk) .

It follows (gk ◦Xk)
−1 (E) is in σ (Xk) whenever E is Borel because the sets whose inverse

images are measurable includes the Borel sets. Thus σ (gk ◦Xk) ⊆ σ (Xk) and this proves
the first part of the lemma.

Let X1 = ∑
m
i=1 ciXEi ,X2 = ∑

m
j=1 d jXFj where P(EiFj) = P(Ei)P(Fj). Then

∫
X1X2dP = ∑

i, j
d jciP(Ei)P(Fj) =

(∫
X1dP

)(∫
X2dP

)
In general for X1,X2 independent, there exist sequences of bounded simple functions

{sn} ,{tn}

measurable with respect to σ (X1) and σ (X2) respectively such that sn→ X1 pointwise and
tn→ X2 pointwise. Then from the above and the dominated convergence theorem,∫

X1X2dP = lim
n→∞

∫
sntndP = lim

n→∞

(∫
sndP

)(∫
tndP

)
=

(∫
X1dP

)(∫
X2dP

)
Next suppose there are m of these independent bounded random variables. Then ∏

m
i=2 Xi ∈

σ (X2, · · · ,Xm) and by Lemma 59.3.4 the two random variables X1 and ∏
m
i=2 Xi are inde-

pendent. Hence from the above and induction,∫ m

∏
i=1

XidP =
∫

X1

m

∏
i=2

XidP =
∫

X1dP
∫ m

∏
i=2

XidP =
m

∏
i=1

∫
XidP

Now consider the last claim. Replace each Xi with Xn
i where this is just a truncation of

the form

Xn
i ≡

 Xi if |Xi| ≤ n
n if Xi > n
−n if Xi < n
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Then by the first part

E

(
r

∏
i=1

Xn
i

)
=

r

∏
i=1

E (Xn
i )

Now |∏r
i=1 Xn

i | ≤ |∏r
i=1 Xi| ∈ L1 and so by the dominated convergence theorem, you can

pass to the limit in both sides to get the desired result. ■
Maybe this would be a good place to put a really interesting result known as the Doob

Dynkin lemma. This amazing result is illustrated with the following diagram in which
X =(X1, · · · ,Xm). By Proposition 59.1.6 σ (X) = σ (X1, · · · ,Xn) .

(Ω,σ (X))
X→ F

X
↘

g
↗

(∏m
i=1 Ei,B (∏m

i=1 Ei))

You start with X and can write it as the composition g◦X provided X is σ (X) measurable.

Lemma 59.3.6 Let (Ω,F ) be a measure space and let Xi : Ω→ Ei where Ei is a separable
Banach space. Suppose also that X : Ω→ F where F is a separable Banach space. Then
X is σ (X1, · · · ,Xm) measurable if and only if there exists a Borel measurable function
g : ∏

m
i=1 Ei→ F such that X = g(X1, · · · ,Xm).

Proof: First suppose X (ω) = f XW (ω) where f ∈ F and W ∈ σ (X1, · · · ,Xm) . Then
by Proposition 59.1.6, W is of the form (X1, · · · ,Xm)

−1 (B)≡ X−1 (B) where B is Borel in
∏

m
i=1 Ei. Therefore,

X (ω) = f XX−1(B) (ω) = f XB (X(ω)) .

Now suppose X is measurable with respect to σ (X1, · · · ,Xm) . Then there exist simple func-
tions

Xn (ω) =
mn

∑
k=1

fkXBk (X(ω))≡ gn (X(ω))

where the Bk are Borel sets in ∏
m
i=1 Ei, such that Xn (ω)→ X (ω) , each gn being Borel.

Thus gn converges on X(Ω) . Furthermore, the set on which gn does converge is a Borel set
equal to

∩∞
n=1∪∞

m=1∩p,q≥m

[∣∣∣∣gp−gq
∣∣∣∣< 1

n

]
which contains X(Ω) . Therefore, modifying gn by multiplying it by the indicator function
of this Borel set containing X(Ω), we can conclude that gn converges to a Borel function g
and, passing to a limit in the above,

X (ω) = g(X(ω))

Conversely, suppose X (ω) = g(X(ω)) . Why is X σ (X) measurable?

X−1 (open) = X−1 (g−1 (open)
)
= X−1 (Borel) ∈ σ (X) ■
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59.4 Banach Space Valued Random Variables
Recall that for X a random variable, σ (X) is the smallest σ algebra containing all the sets
of the form X−1 (F) where F is Borel. Since such sets, X−1 (F) for F Borel form a σ

algebra it follows σ (X) =
{

X−1 (F) : F is Borel
}
.

Next consider the case where you have a set of σ algebras. The following lemma is
helpful when you try to verify such a set of σ algebras is independent. It says you only
need to check things on π systems contained in the σ algebras. This is really nice because
it is much easier to consider the smaller π systems than the whole σ algebra.

Lemma 59.4.1 Suppose {Fi}i∈I is a set of σ algebras contained in F where F is a σ

algebra of sets of Ω. Suppose that Ki ⊆Fi is a π system and Fi = σ (Ki). Suppose also
that whenever J is a finite subset of I and A j ∈K j for j ∈ J, it follows

P(∩ j∈JA j) = ∏
j∈J

P(A j) .

Then {Fi}i∈I is independent.

Proof: I need to verify that under the given conditions, if { j1, j2, · · · , jn} ⊆ I and A jk ⊆
F jk , then

P
(
∩n

k=1A jk

)
=

n

∏
k=1

P
(
A jk

)
.

By hypothesis, this is true if each A jk ∈K jk . Suppose it is true whenever there are at most
r−1≥ 0 of the A jk which are not in K jk . Consider

∩n
k=1A jk

where there are r sets which are not in the corresponding K jk . Without loss of generality,
say there are at most r−1 sets in the first n−1 which are not in the corresponding K jk .

Pick
(
A j1 · · · ,A jn−1

)
let

G(
A j1 ···A jn−1

) ≡
{

B ∈F jn : P
(
∩n−1

k=1A jk ∩B
)
=

n−1

∏
k=1

P
(
A jk

)
P(B)

}
I am going to show G(

A j1 ···A jn−1

) is closed with respect to complements and countable

disjoint unions and then apply the Lemma on π systems. By the induction hypothesis,
K jn ⊆ G(

A j1 ···A jn−1

). If B ∈ G(
A j1 ···A jn−1

),
n−1

∏
k=1

P
(
A jk

)
= P

(
∩n−1

k=1A jk

)
= P

((
∩n−1

k=1A jk ∩BC)∪ (∩n−1
k=1A jk ∩B

))
= P

(
∩n−1

k=1A jk ∩BC)+P
(
∩n−1

k=1A jk ∩B
)

= P
(
∩n−1

k=1A jk ∩BC)+ n−1

∏
k=1

P
(
A jk

)
P(B)
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and so

P
(
∩n−1

k=1A jk ∩BC) =
n−1

∏
k=1

P
(
A jk

)
(1−P(B))

=
n−1

∏
k=1

P
(
A jk

)
P
(
BC)

showing if B ∈ G(
A j1 ··· ,A jn−1

), then so is BC. It is clear that G(
A j1 ··· ,A jn−1

) is closed with

respect to disjoint unions also. Here is why. If
{

B j
}∞

j=1 are disjoint sets in G(
A j1 ···A jn−1

),

P
(
∪∞

i=1Bi∩∩n−1
k=1A jk

)
=

∞

∑
i=1

P
(
Bi∩∩n−1

k=1A jk

)
=

∞

∑
i=1

P(Bi)
n−1

∏
k=1

P
(
A jk

)
=

n−1

∏
k=1

P
(
A jk

) ∞

∑
i=1

P(Bi)

=
n−1

∏
k=1

P
(
A jk

)
P(∪∞

i=1Bi)

Therefore, by the π system lemma, Lemma 12.12.3 G(
A j1 ···A jn−1

) = F jn . This proves the

induction step in going from r−1 to r. ■

What is a useful π system for B (E) , the Borel sets of E where E is a Banach space?

Recall the fundamental lemma used to prove the Pettis theorem. It was proved on Page
645.

Lemma 59.4.2 Let E be a separable real Banach space. Sets of the form

{x ∈ E : x∗i (x)≤ α i, i = 1,2, · · · ,m}

where x∗i ∈ D′, a dense subspace of the unit ball of E ′ and α i ∈ [−∞,∞) are a π system,
and denoting this π system by K , it follows σ (K ) = B (E). The sets of K are examples
of cylindrical sets. The D′ is that set for the proof of the Pettis theorem.

Proof: The sets described are obviously a π system. I want to show σ (K ) contains
the closed balls because then σ (K ) contains the open balls and hence the open sets and
the result will follow. Let D′ be described in Lemma 21.1.6. As pointed out earlier it can
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be any dense subset of B′. Then

{x ∈ E : ||x−a|| ≤ r}

=

{
x ∈ E : sup

f∈D′
| f (x−a)| ≤ r

}

=

{
x ∈ E : sup

f∈D′
| f (x)− f (a)| ≤ r

}
= ∩ f∈D′ {x ∈ E : f (a)− r ≤ f (x)≤ f (a)+ r}
= ∩ f∈D′ {x ∈ E : f (x)≤ f (a)+ r and (− f )(x)≤ r− f (a)}

which equals a countable intersection of sets of the given π system. Therefore, every closed
ball is contained in σ (K ). It follows easily that every open ball is also contained in σ (K )
because

B(a,r) = ∪∞
n=1B

(
a,r− 1

n

)
.

Since the Banach space is separable, it is completely separable and so every open set is the
countable union of balls. This shows the open sets are in σ (K ) and so σ (K ) ⊇B (E) .
However, all the sets in the π system are closed hence Borel because they are inverse images
of closed sets. Therefore, σ (K )⊆B (E) and so σ (K ) = B (E). ■

As mentioned above, we can replace D′ in the above with M, any dense subset of E ′.

Observation 59.4.3 Denote by Cα,n the set {β ∈ Rn : β i ≤ α i} . Also denote by gn an ele-
ment of Mn with the understanding that gn : E→ Rn according to the rule

gn (x)≡ (g1 (x) , · · · ,gn (x)) .

Then the sets in the above lemma can be written as g−1
n (Cα,n). In other words, sets of the

form g−1
n (Cα,n) form a π system for B (E).

Next suppose you have some random variables having values in a separable Banach
space, E, {Xi}i∈I . How can you tell if they are independent? To show they are independent,
you need to verify that

P
(
∩n

k=1X−1
ik

(
Fik

))
=

n

∏
k=1

P
(

X−1
ik

(
Fik

))
whenever the Fik are Borel sets in E. It is desirable to find a way to do this easily.

Lemma 59.4.4 Let K be a π system of sets of E, a separable real Banach space and let
(Ω,F ,P) be a probability space and X : Ω→ E be a random variable. Then

X−1 (σ (K )) = σ
(
X−1 (K )

)
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Proof: First note that X−1 (σ (K )) is a σ algebra which contains X−1 (K ) and so it
contains σ

(
X−1 (K )

)
. Thus

X−1 (σ (K ))⊇ σ
(
X−1 (K )

)
Now let

G ≡
{

A ∈ σ (K ) : X−1 (A) ∈ σ
(
X−1 (K )

)}
Then G ⊇K . If A ∈ G , then

X−1 (A) ∈ σ
(
X−1 (K )

)
and so

X−1 (A)C = X−1 (AC) ∈ σ
(
X−1 (K )

)
because σ

(
X−1 (K )

)
is a σ algebra. Hence AC ∈ G . Finally suppose {Ai} is a sequence

of disjoint sets of G . Then

X−1 (∪∞
i=1Ai) = ∪∞

i=1X−1 (Ai) ∈ σ
(
X−1 (K )

)
again because σ

(
X−1 (K )

)
is a σ algebra. It follows from Lemma 12.12.3 on Page 329

that G ⊇ σ (K ) and this shows that whenever

A ∈ σ (K ) ,X−1 (A) ∈ σ
(
X−1 (K )

)
.

Thus X−1 (σ (K ))⊆ σ
(
X−1 (K )

)
. ■

With this lemma, here is the desired result about independent random variables. Essen-
tially, you can reduce to the case of random vectors having values in Rn.

59.5 Reduction To Finite Dimensions
Let E be a Banach space and let g ∈ (E ′)n . Then for x ∈ E, g◦x is the vector in Fn which
equals (g1 (x) ,g2 (x) , · · · ,gn (x)).

Theorem 59.5.1 Let Xi be a random variable having values in E a real separable Banach
space. The random variables {Xi}i∈I are independent if whenever

{i1, · · · , in} ⊆ I,

mi1 , · · · ,min are positive integers, and gmi1
, · · · ,gmin

are respectively in

(M)mi1 , · · · ,(M)min

for M a dense subspace of E ′,
{

gmi j
◦Xi j

}n

j=1
are independent random vectors having

values in Rmi1 , · · · ,Rmin respectively.
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Proof: It is necessary to show that the events X−1
i j

(
Bi j

)
are independent events when-

ever Bi j are Borel sets. By Lemma 59.4.1 and the above Lemma 59.4.2, it suffices to verify
that the events

X−1
i j

(
g−1

mi j

(
Cα̃,mi j

))
=
(

gmi j
◦Xi j

)−1(
Cα̃,mi j

)
are independent where Cα̃,mi j

are the cones described in Lemma 59.4.2. Thus

α̃ =
(
αk1 , · · · ,αkm

)
Cα̃,mi j

=

mi j

∏
i=1

(−∞,αki ]

But this condition is implied when the finite dimensional valued random vectors gmi j
◦Xi j

are independent. ■
The above assertion also goes the other way as you may want to show.

59.6 0,1 Laws
I am following [120] for the proof of many of the following theorems. Recall the set of ω

which are in infinitely many of the sets {An} is

∩∞
n=1∪∞

m=n Am.

This is because ω is in the above set if and only if for every n there exists m≥ n such that
it is in Am.

Theorem 59.6.1 Suppose An ∈Fn where the σ algebras {Fn}∞

n=1 are independent. Sup-
pose also that

∞

∑
k=1

P(Ak) = ∞.

Then
P(∩∞

n=1∪∞
m=n Am) = 1.

Proof: It suffices to verify that

P
(
∪∞

n=1∩∞
m=n AC

m
)
= 0

which can be accomplished by showing

P
(
∩∞

m=nAC
m
)
= 0

for each n. The sets
{

AC
k

}
satisfy AC

k ∈Fk. Therefore, noting that e−x ≥ 1− x,

P
(
∩∞

m=nAC
m
)

= lim
N→∞

P
(
∩N

m=nAC
m
)
= lim

N→∞

N

∏
m=n

P
(
AC

m
)

= lim
N→∞

N

∏
m=n

(1−P(Am))≤ lim
N→∞

N

∏
m=n

e−P(Am)

= lim
N→∞

exp

(
−

N

∑
m=n

P(Am)

)
= 0. ■
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The Kolmogorov zero one law follows next. It has to do with something called a tail
event.

Definition 59.6.2 Let {Fn} be a sequence of σ algebras. Then Tn ≡ σ
(
∪∞

k=nFk
)

where
this means the smallest σ algebra which contains each Fk for k ≥ n. Then a tail event is a
set which is in the σ algebra, T ≡∩∞

n=1 Tn.

As usual, (Ω,F ,P) is the underlying probability space such that all σ algebras are
contained in F .

Lemma 59.6.3 Suppose {Fn}∞

n=1 are independent σ algebras and suppose A is a tail event
and Aki ∈Fki , i = 1, · · · ,m are given sets. Then

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A)

Proof: Let K be the π system consisting of finite intersections of the form

Bm1 ∩Bm2 ∩·· ·∩Bm j

where mi ∈Fki for ki > max{k1, · · · ,km} ≡ N. Thus σ (K ) = σ
(
∪∞

i=N+1Fi
)
. Now let

G ≡
{

B ∈ σ (K ) : P
(
Ak1 ∩·· ·∩Akm ∩B

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(B)

}
Then clearly K ⊆ G . It is also true that G is closed with respect to complements and
countable disjoint unions. By the lemma on π systems, G = σ (K ) = σ

(
∪∞

i=N+1Fi
)
.

Since A is in σ
(
∪∞

i=N+1Fi
)

due to the assumption that it is a tail event, it follows that

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A) ■

Theorem 59.6.4 Suppose the σ algebras, {Fn}∞

n=1 are independent and suppose A is a
tail event. Then P(A) either equals 0 or 1.

Proof: Let A ∈T . I want to show that P(A) = P(A)2. Let K denote sets of the form
Ak1 ∩·· ·∩Akm for some m, Ak j ∈Fk j where each k j > n. Thus K is a π system and

σ (K ) = σ
(
∪∞

k=n+1Fk
)
≡Tn+1

Let
G ≡

{
B ∈Tn+1 ≡ σ

(
∪∞

k=n+1Fk
)

: P(A∩B) = P(A)P(B)
}

Thus K ⊆ G because

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A)

by Lemma 59.6.3. However, G is closed with respect to countable disjoint unions and
complements. Here is why. If B ∈ G ,

P
(
A∩BC)+P(A∩B) = P(A)
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and so
P
(
A∩BC)= P(A)−P(A∩B) = P(A)(1−P(B)) = P(A)P

(
BC) .

and so BC ∈ G . If {Bi}∞

i=1 are disjoint sets in G ,

P(A∩∪∞
k=1Bk) =

∞

∑
k=1

P(A∩Bk) = P(A)
∞

∑
k=1

P(Bk)

= P(A)P(∪∞
k=1Bk)

and so ∪∞
k=1Bk ∈ G . Therefore by the Lemma on π systems Lemma 12.12.3 on Page 329,

it follows G = σ (K ) = σ
(
∪∞

k=n+1Fk
)
.

Thus for any B ∈ σ
(
∪∞

k=n+1Fk
)
= Tn+1,P(A∩B) = P(A)P(B). However, A is in all

of these Tn+1 and so P(A∩A) = P(A) = P(A)2 so P(A) equals either 0 or 1. ■
What sorts of things are tail events of independent σ algebras?

Theorem 59.6.5 Let {Xk} be a sequence of independent random variables having values
in Z a Banach space. Then

A≡ {ω : {Xk (ω)} converges}

is a tail event of the independent σ algebras {σ (Xk)} . So is

B≡

{
ω :

{
∞

∑
k=1

Xk (ω)

}
converges

}
.

Proof: Since Z is complete, A is the same as the set where {Xk (ω)} is a Cauchy
sequence. This set is

∩∞
n=1∩∞

p=1∪∞
m=p∩l,k≥m {ω : ||Xk (ω)−Xl (ω)||< 1/n}

Note that

∪∞
m=p∩l,k≥m {ω : ||Xk (ω)−Xl (ω)||< 1/n} ∈ σ

(
∪∞

j=pσ (X j)
)

for every p is the set where ultimately any pair of Xk,Xl are closer together than 1/n,

∩∞
p=1∪∞

m=p∩l,k≥m {ω : ||Xk (ω)−Xl (ω)||< 1/n}

is a tail event. The set where {Xk (ω)} is a Cauchy sequence is the intersection of all these
and is therefore, also a tail event.

Now consider B. This set is the same as the set where the partial sums are Cauchy
sequences. Let Sn ≡ ∑

n
k=1 Xk. The set where the sum converges is then

∩∞
n=1∩∞

p=2∪∞
m=p∩l,k≥m {ω : ||Sk (ω)−Sl (ω)||< 1/n}

Say k < l and consider for m≥ p

{ω : ||Sk (ω)−Sl (ω)||< 1/n, k ≥ m}
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This is the same as{
ω :

∣∣∣∣∣
∣∣∣∣∣ l

∑
j=k−1

X j (ω)

∣∣∣∣∣
∣∣∣∣∣< 1/n,k ≥ m

}
∈ σ

(
∪∞

j=p−1σ (X j)
)

Thus
∪∞

m=p∩l,k≥m {ω : ||Sk (ω)−Sl (ω)||< 1/n} ∈ σ
(
∪∞

j=p−1σ (X j)
)

and so the intersection for all p of these is a tail event. Then the intersection over all n of
these tail events is a tail event. ■

From this it can be concluded that if you have a sequence of independent random vari-
ables, {Xk} the set where it converges is either of probability 1 or probability 0. A similar
conclusion holds for the set where the infinite sum of these random variables converges.
This is stated in the next corollary. This incredible assertion is the next corollary.

Corollary 59.6.6 Let {Xk} be a sequence of random variables having values in a Banach
space. Then

lim
n→∞

Xn (ω)

either exists for a.e. ω or the convergence fails to take place for a.e. ω. Also if

A≡

{
ω :

∞

∑
k=1

Xk (ω) converges

}
,

then P(A) = 0 or 1.

59.7 Kolmogorov’s Inequality, Strong Law of Large Num-
bers

Kolmogorov’s inequality is a very interesting inequality which depends on independence
of a set of random vectors. The random vectors have values in Rn or more generally some
real separable Hilbert space.

Lemma 59.7.1 If Y,X are independent random variables having values in a real separable
Hilbert space, H with E

(
|X|2

)
,E
(
|Y|2

)
< ∞, then

∫
Ω

(X,Y)dP =

(∫
Ω

XdP,
∫

Ω

YdP
)
.

Proof: Let {ek} be a complete orthonormal basis. Thus∫
Ω

(X,Y)dP =
∫

Ω

∞

∑
k=1

(X,ek)(Y,ek)dP

Now ∫
Ω

∞

∑
k=1
|(X,ek)(Y,ek)|dP≤

∫
Ω

(
∑
k
|(X,ek)|

2

)1/2(
∑
k
|(Y,ek)|

2

)1/2

dP
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=
∫

Ω

|X| |Y|dP≤
(∫

Ω

|X|2 dP
)1/2(∫

Ω

|Y|2 dP
)1/2

< ∞

and so by Fubini’s theorem,∫
Ω

(X,Y)dP =
∫

Ω

∞

∑
k=1

(X,ek)(Y,ek)dP =
∞

∑
k=1

∫
Ω

(X,ek)(Y,ek)dP

=
∞

∑
k=1

∫
Ω

(X,ek)dP
∫

Ω

(Y,ek)dP =
∞

∑
k=1

(∫
Ω

XdP,ek

)(∫
Ω

YdP,ek

)
dP

=

(∫
Ω

XdP,
∫

Ω

YdP
)

■

Now here is Kolmogorov’s inequality.

Theorem 59.7.2 Suppose {Xk}n
k=1 are independent with E (|Xk|) < ∞, E (Xk) = 0. Then

for any ε > 0,

P

([
max

1≤k≤n

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

n

∑
j=1

E
(
|Xk|2

)
.

Proof: Let

A =

[
max

1≤k≤n

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣≥ ε

]
Now let A1 ≡ [|X1| ≥ ε] and if A1, · · · ,Am have been chosen,

Am+1 ≡

[∣∣∣∣∣m+1

∑
j=1

X j

∣∣∣∣∣≥ ε

]
∩

m⋂
r=1

[∣∣∣∣∣ r

∑
j=1

X j

∣∣∣∣∣< ε

]

Thus the Ak partition A and ω ∈ Ak means∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣≥ ε

but this did not happen for
∣∣∣∑r

j=1 X j

∣∣∣ for any r < k. Note also that Ak ∈ σ (X1, · · · ,Xk) .

Then from algebra, ∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

=

(
k

∑
i=1

Xi +
n

∑
j=k+1

X j,
k

∑
i=1

Xi +
n

∑
j=k+1

X j

)

=

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
2

+ ∑
i≤k, j>k

(Xi,X j)+ ∑
i≤k, j>k

(X j,Xi)+ ∑
i>k, j>k

(X j,Xi)
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Written more succinctly, ∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

=

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
2

+ ∑
j>k or i>k

(Xi,X j)

Now multiply both sides by XAk and integrate. Suppose i ≤ k for one of the terms in the
second sum. Then by Lemma 59.3.4 and Ak ∈ σ (X1, · · · ,Xk), the two random vectors
XAk Xi,X j are independent,∫

Ω

XAk (Xi,X j)dP =

(∫
Ω

XAk XidP,
∫

Ω

X jdP
)
= 0

the last equality holding because by assumption E (X j) = 0. Therefore, it can be assumed
both i, j are larger than k and

∫
Ω

XAk

∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

dP =
∫

Ω

XAk

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
2

dP

+ ∑
j>k,i>k

∫
Ω

XAk (Xi,X j)dP (59.7.10)

The last term on the right is interesting. Suppose i > j. The integral inside the sum is of the
form ∫

Ω

(
Xi,XAk X j

)
dP (59.7.11)

The second factor in the inner product is in

σ (X1, · · · ,Xk,X j)

and Xi is not included in the list of random vectors. Thus by Lemma 59.3.4, the two random
vectors Xi,XAk X j are independent and so 59.7.11 reduces to(∫

Ω

XidP,
∫

Ω

XAk X jdP
)
=

(
0,
∫

Ω

XAk X jdP
)
= 0.

A similar result holds if j > i. Thus the mixed terms in the last term of 59.7.10 are all equal
to 0. Hence 59.7.10 reduces to

∫
Ω

XAk

∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

dP =
∫

Ω

XAk

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
2

dP

+∑
i>k

∫
Ω

XAk |Xi|2 dP

and so ∫
Ω

XAk

∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

dP≥
∫

Ω

XAk

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
2

dP≥ ε
2P(Ak) .
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Now, summing these yields

ε
2P(A)≤

∫
Ω

XA

∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

dP≤
∫

Ω

∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
2

dP

= ∑
i, j

∫
Ω

(Xi,X j)dP

By independence of the random vectors the mixed terms of the above sum equal zero and
so it reduces to

n

∑
i=1

∫
Ω

|Xi|2 dP ■

This theorem implies the following amazing result.

Theorem 59.7.3 Let {Xk}∞

k=1 be independent random vectors having values in a separable
real Hilbert space and suppose E (|Xk|)< ∞ for each k and E (Xk) = 0. Suppose also that

∞

∑
j=1

E
(∣∣X j

∣∣2)< ∞.

Then
∞

∑
j=1

X j

converges a.e.

Proof: Let ε > 0 be given. By Kolmogorov’s inequality, Theorem 59.7.2, it follows
that for p≤ m < n

P

([
max

m≤k≤n

∣∣∣∣∣ k

∑
j=m

X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

n

∑
j=p

E
(∣∣X j

∣∣2)
≤ 1

ε2

∞

∑
j=p

E
(∣∣X j

∣∣2) .
Therefore, letting n→ ∞ it follows that for all m,n such that p≤ m≤ n

P

([
max

p≤m≤n

∣∣∣∣∣ n

∑
j=m

X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

∞

∑
j=p

E
(∣∣X j

∣∣2) .
It follows from the assumption

∞

∑
j=1

E
(∣∣X j

∣∣2)< ∞

there exists a sequence, {pn} such that if m≥ pn

P

([
max

k≥m≥pn

∣∣∣∣∣ k

∑
j=m

X j

∣∣∣∣∣≥ 2−n

])
≤ 2−n.
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By the Borel Cantelli lemma, Lemma 59.1.2, there is a set of measure 0, N such that for
ω /∈ N, ω is in only finitely many of the sets,[

max
k≥m≥pn

∣∣∣∣∣ k

∑
j=m

X j

∣∣∣∣∣≥ 2−n

]

and so for ω /∈ N, it follows that for large enough n,[
max

k≥m≥pn

∣∣∣∣∣ k

∑
j=m

X j (ω)

∣∣∣∣∣< 2−n

]

However, this says the partial sums
{

∑
k
j=1 X j (ω)

}∞

k=1
are a Cauchy sequence. Therefore,

they converge. ■
With this amazing result, there is a simple proof of the strong law of large numbers. In

the following lemma, sk and a j could have values in any normed linear space.

Lemma 59.7.4 Suppose sk→ s. Then

lim
n→∞

1
n

n

∑
k=1

sk = s.

Also if
∞

∑
j=1

a j

j

converges, then

lim
n→∞

1
n

n

∑
j=1

a j = 0.

Proof: Consider the first part. Since sk → s, it follows there is some constant, C such
that |sk|<C for all k and |s|<C also. Choose K so large that if k ≥ K, then for n > K,

|s− sk|< ε/2.∣∣∣∣∣s− 1
n

n

∑
k=1

sk

∣∣∣∣∣≤ 1
n

n

∑
k=1
|sk− s|

=
1
n

K

∑
k=1
|sk− s|+ 1

n

n

∑
k=K
|sk− s|

≤ 2CK
n

+
ε

2
n−K

n
<

2CK
n

+
ε

2
Therefore, whenever n is large enough,∣∣∣∣∣s− 1

n

n

∑
k=1

sk

∣∣∣∣∣< ε.
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Now consider the second claim. Let

sk =
k

∑
j=1

a j

j

and s = limk→∞ sk Then by the first part,

s = lim
n→∞

1
n

n

∑
k=1

sk = lim
n→∞

1
n

n

∑
k=1

k

∑
j=1

a j

j

= lim
n→∞

1
n

n

∑
j=1

a j

j

n

∑
k= j

1 = lim
n→∞

1
n

n

∑
j=1

a j

j
(n− j)

= lim
n→∞

(
n

∑
j=1

a j

j
− 1

n

n

∑
j=1

a j

)
= s− lim

n→∞

1
n

n

∑
j=1

a j ■

Now here is the strong law of large numbers.

Theorem 59.7.5 Suppose {Xk} are independent random variables and E (|Xk|) < ∞ for
each k and E (Xk) = mk. Suppose also

∞

∑
j=1

1
j2 E

(∣∣X j−m j
∣∣2)< ∞. (59.7.12)

Then

lim
n→∞

1
n

n

∑
j=1

(X j−m j) = 0

Proof: Consider the sum
∞

∑
j=1

X j−m j

j
.

This sum converges a.e. because of 59.7.12 and Theorem 59.7.3 applied to the random
vectors

{
X j−m j

j

}
. Therefore, from Lemma 59.7.4 it follows that for a.e. ω,

lim
n→∞

1
n

n

∑
j=1

(X j (ω)−m j) = 0 ■

The next corollary is often called the strong law of large numbers. It follows immedi-
ately from the above theorem.

Corollary 59.7.6 Suppose
{

X j
}∞

j=1 are independent having mean m and variance equal
to

σ
2 ≡

∫
Ω

∣∣X j−m
∣∣2 dP < ∞.

Then for a.e. ω ∈Ω

lim
n→∞

1
n

n

∑
j=1

X j (ω) = m
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59.8 The Characteristic Function
One of the most important tools in probability is the characteristic function. To begin with,
assume the random variables have values in Rp.

Definition 59.8.1 Let X be a random variable as above. The characteristic function is

φ X (t)≡ E
(
eit·X)≡ ∫

Ω

eit·X(ω)dP =
∫
Rp

eit·xdλ X

the last equation holding by Proposition 59.1.12.

Recall the following fundamental lemma and definition, Lemma 32.3.4 on Page 1101.

Definition 59.8.2 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 59.8.3 F and F−1 are both one to one, onto, and are inverses of each other.

The main result on characteristic functions is the following.

Theorem 59.8.4 Let X and Y be random vectors with values in Rp and suppose E
(
eit·X)

= E
(
eit·Y) for all t ∈ Rp. Then λ X = λ Y.

Proof: For ψ ∈ G , let λ X (ψ) ≡
∫
Rp ψdλ X and λ Y (ψ) ≡

∫
Rp ψdλ Y . Thus both λ X

and λ Y are in G ∗. Then letting ψ ∈ G and using Fubini’s theorem,∫
Rp

∫
Rp

eit·y
ψ (t)dtdλ Y =

∫
Rp

∫
Rp

eit·ydλ Yψ (t)dt

=
∫
Rp

E
(
eit·Y)

ψ (t)dt

=
∫
Rp

E
(
eit·X)

ψ (t)dt

=
∫
Rp

∫
Rp

eit·xdλ Xψ (t)dt

=
∫
Rp

∫
Rp

eit·x
ψ (t)dtdλ X.

Thus λ Y
(
F−1ψ

)
= λ X

(
F−1ψ

)
. Since ψ ∈ G is arbitrary and F−1 is onto, this implies λ X

= λ Y in G ∗. But G is dense in C0 (Rp) from the Stone Weierstrass theorem and so λ X = λ Y
as measures. Recall from real analysis the dual space of C0 (Rn) is the space of complex
measures.

Alternatively, the above shows that since F−1 is onto, for all ψ ∈ G ,∫
Rp

ψdλ Y =
∫
Rp

ψdλ X

and then, by a use of the Stone Weierstrass theorem, the above will hold for all ψ ∈Cc (Rn)
and now, by the Riesz representation theorem for positive linear functionals, the two mea-
sures are equal. ■

You can also give a version of this theorem in which reference is made only to the
probability distribution measures.
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Definition 59.8.5 For µ a probability measure on the Borel sets of Rn,

φ µ (t)≡
∫
Rn

eit·xdµ.

Theorem 59.8.6 Let µ and ν be probability measures on the Borel sets of Rp and suppose
φ µ (t) = φ ν (t) . Then µ = ν .

Proof: The proof is identical to the above. Just replace λ X with µ and λ Y with ν . ■

59.9 Conditional Probability
Here I will consider the concept of conditional probability depending on the theory of
differentiation of general Radon measures. This leads to a different way of thinking about
independence.

If X,Y are two random vectors defined on a probability space having values in Rp1 and
Rp2 respectively, and if E is a Borel set in the appropriate space, then (X,Y) is a random
vector with values inRp1×Rp2 and λ (X,Y) (E×Rp2) = λ X (E), λ (X,Y) (Rp1 ×E) = λ Y (E).
Thus, by Theorem 31.2.3 on Page 1085, there exist probability measures, denoted here by
λ X|y and λ Y|x, such that whenever E is a Borel set in Rp1 ×Rp2 ,∫

Rp1×Rp2
XEdλ (X,Y) =

∫
Rp1

∫
Rp2

XEdλ Y|xdλ X,

and ∫
Rp1×Rp2

XEdλ (X,Y) =
∫
Rp2

∫
Rp1

XEdλ X|ydλ Y.

Definition 59.9.1 Let X and Y be two random vectors defined on a probability space. The
conditional probability measure of Y given X is the measure λ Y|x in the above. Similarly
the conditional probability measure of X given Y is the measure λ X|y.

More generally, one can use the theory of slicing measures to consider any finite list of
random vectors, {Xi}, defined on a probability space with Xi ∈Rpi , and write the following
for E a Borel set in ∏

n
i=1Rpi .∫

Rp1×···×Rpn
XEdλ (X1,···,Xn)

=
∫
Rp1×···×Rpn−1

∫
Rpn

XEdλ Xn|(x1,··· ,xn−1)dλ (X1,···,Xn−1)

=
∫
Rp1×···×Rpn−2

∫
Rpn−1

∫
Rpn

XEdλ Xn|(x1,··· ,xn−1)dλ Xn−1|(x1,··· ,xn−2)dλ (X1,···,Xn−2)

...∫
Rp1
· · ·
∫
Rpn

XEdλ Xn|(x1,··· ,xn−1)dλ Xn−1|(x1,··· ,xn−2) · · ·dλ X2|x1dλ X1 . (59.9.13)

Obviously, this could have been done in any order in the iterated integrals by simply modi-
fying the “given” variables, those occurring after the symbol |, to be those which have been
integrated in an outer level of the iterated integral. For simplicity, write

λ Xn|(x1,··· ,xn−1) = λ Xn|x1,··· ,xn−1
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Definition 59.9.2 Let {X1, · · · ,Xn} be random vectors defined on a probability space hav-
ing values in Rp1 , · · · ,Rpn respectively. The random vectors are independent if for every E
a Borel set in Rp1 ×·· ·×Rpn , ∫

Rp1×···×Rpn
XEdλ (X1,··· ,Xn)

=
∫
Rp1
· · ·
∫
Rpn

XEdλ Xndλ Xn−1 · · ·dλ X2dλ X1 (59.9.14)

and the iterated integration may be taken in any order. If A is any set of random vectors
defined on a probability space, A is independent if any finite set of random vectors from
A is independent.

Thus, the random vectors are independent exactly when the dependence on the givens
in 59.9.13 can be dropped.

Does this amount to the same thing as discussed earlier? Suppose you have three ran-
dom variables X,Y,Z. Let A = X−1 (E), B = Y−1 (F) ,C = Z−1 (G) where E,F,G are
Borel sets. Thus these inverse images are typical sets in σ (X) ,σ (Y) ,σ (Z) respectively.
First suppose that the random variables are independent in the earlier sense. Then

P(A∩B∩C) = P(A)P(B)P(C)

=
∫
Rp1

XE (x)dλ X

∫
Rp2

XF (y)dλ Y

∫
Rp3

XG (z)dλ Z

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Zdλ Ydλ X

Also
P(A∩B∩C) =

∫
Rp1×Rp2×Rp3

XE (x)XF (y)XG (z)dλ (X,Y,Z)

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Z|xydλ Y|xdλ X

Thus ∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Zdλ Ydλ X

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Z|xydλ Y|xdλ X

Now letting G = Rp3 , it follows that∫
Rp1

∫
Rp2

XE (x)XF (y)dλ Ydλ X

=
∫
Rp1

∫
Rp2

XE (x)XF (y)dλ Y|xdλ X

By uniqueness of the slicing measures or an application of the Besikovitch differentiation
theorem, it follows that for λ X a.e. x,

λ Y = λ Y|x
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Thus, using this in the above,∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Zdλ Ydλ X

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Z|xydλ Ydλ X

and also it reduces to ∫
Rp1×Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Zdλ (X,Y)

=
∫
Rp1×Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλ Z|xydλ (X,Y)

Now by uniqueness of the slicing measures again, for λ (X,Y) a.e. (x,y) , it follows that

λ Z = λ Z|xy

Similar conclusions hold for λ X,λ Y. In each case, off a set of measure zero the distribution
measures equal the slicing measures.

Conversely, if the distribution measures equal the slicing measures off sets of measure
zero as described above, then it is obvious that the random variables are independent. The
same reasoning applies for any number of random variables.

Thus this gives a different and more analytical way to think of independence of finitely
many random variables. Clearly, the argument given above will apply to any finite set of
random variables.

Proposition 59.9.3 Equations 59.9.14 and 59.9.13 hold with XE replaced by any non-
negative Borel measurable function and for any bounded continuous function or for any
function in L1.

Proof: The two equations hold for simple functions in place of XE and so an appli-
cation of the monotone convergence theorem applied to an increasing sequence of simple
functions converging pointwise to a given nonnegative Borel measurable function yields the
conclusion of the proposition in the case of the nonnegative Borel function. For a bounded
continuous function or one in L1, one can apply the result just established to the positive
and negative parts of the real and imaginary parts of the function.

Lemma 59.9.4 Let X1, · · · ,Xn be random vectors with values in Rp1 , · · · ,Rpn respectively
and let g : Rp1 × ·· ·×Rpn → Rk be Borel measurable. Then g(X1, · · · ,Xn) is a random
vector with values in Rk and if h : Rk→ [0,∞), then∫

Rk
h(y)dλ g(X1,··· ,Xn) (y) =∫

Rp1×···×Rpn
h(g(x1, · · · ,xn))dλ (X1,··· ,Xn). (59.9.15)

If Xi is a random vector with values in Rpi , i = 1,2, · · · and if gi : Rpi → Rki , where gi is
Borel measurable, then the random vectors gi (Xi) are also independent whenever the Xi
are independent.



1884 CHAPTER 59. BASIC PROBABILITY

Proof: First let E be a Borel set in Rk. From the definition,

λ g(X1,··· ,Xn) (E) = P(g(X1, · · · ,Xn) ∈ E)

= P
(
(X1, · · · ,Xn) ∈ g−1 (E)

)
= λ (X1,··· ,Xn)

(
g−1 (E)

)
∫
Rk

XEdλ g(X1,··· ,Xn) =
∫
Rp1×···×Rpn

Xg−1(E)dλ (X1,··· ,Xn)

=
∫
Rp1×···×Rpn

XE (g(x1, · · · ,xn))dλ (X1,··· ,Xn).

This proves 59.9.15 in the case when h is XE . To prove it in the general case, approximate
the nonnegative Borel measurable function with simple functions for which the formula is
true, and use the monotone convergence theorem.

It remains to prove the last assertion that functions of independent random vectors are
also independent random vectors. Let E be a Borel set in Rk1 ×·· ·×Rkn . Then for

π i (x1, · · · ,xn)≡ xi,∫
Rk1×···×Rkn

XEdλ (g1(X1),··· ,gn(Xn))

≡
∫
Rp1×···×Rpn

XE ◦ (g1 ◦π1, · · · ,gn ◦πn)dλ (X1,··· ,Xn)

=
∫
Rp1
· · ·
∫
Rpn

XE ◦ (g1 ◦π1, · · · ,gn ◦πn)dλ Xn · · ·dλ X1

=
∫
Rk1
· · ·
∫
Rkn

XEdλ gn(Xn) · · ·dλ g1(X1)

and this proves the last assertion.

Proposition 59.9.5 Let ν1, · · · ,νn be Radon probability measures defined on Rp. Then
there exists a probability space and independent random vectors {X1, · · · ,Xn} defined on
this probability space such that λ Xi = ν i.

Proof: Let (Ω,S ,P) ≡ ((Rp)n ,S1×·· ·×Sn,ν1×·· ·×νn) where this is just the
product σ algebra and product measure which satisfies the following for measurable rect-
angles.

(ν1×·· ·×νn)

(
n

∏
i=1

Ei

)
=

n

∏
i=1

ν i (Ei).

Now let Xi (x1, · · · ,xi, · · · ,xn) = xi. Then from the definition, if E is a Borel set in Rp,

λ Xi (E)≡ P{Xi ∈ E}

= (ν1×·· ·×νn)(Rp×·· ·×E×·· ·×Rp) = ν i (E).
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Let M consist of all Borel sets of (Rp)n such that∫
Rp
· · ·
∫
Rp

XE (x1, · · · ,xn)dλ X1 · · ·dλ Xn =
∫
(Rp)n

XEdλ (X1,··· ,Xn).

From what was just shown and the definition of (ν1×·· ·×νn) that M contains all sets
of the form ∏

n
i=1 Ei where each Ei ∈ Borel sets of Rp. Therefore, M contains the algebra

of all finite disjoint unions of such sets. It is also clear that M is a monotone class and
so by the theorem on monotone classes, M equals the Borel sets. You could also note
that M is closed with respect to complements and countable disjoint unions and apply
Lemma 12.12.3. Therefore, the given random vectors are independent and this proves the
proposition.

The following Lemma was proved earlier in a different way.

Lemma 59.9.6 If {Xi}n
i=1 are independent random variables having values in R,

E

(
n

∏
i=1

Xi

)
=

n

∏
i=1

E (Xi).

Proof: By Lemma 59.9.4 and denoting by P the product, ∏
n
i=1 Xi,

E

(
n

∏
i=1

Xi

)
=

∫
R

zdλ P (z) =
∫
Rn

n

∏
i=1

xidλ (X1,··· ,Xn)

=
∫
R
· · ·
∫
R

n

∏
i=1

xidλ X1 · · ·dλ Xn =
n

∏
i=1

E (Xi).

59.10 Conditional Expectation
Definition 59.10.1 Let X and Y be random vectors having values in Fp1 and Fp2 respec-
tively. Then if ∫

|x|dλ X|y (x)< ∞,

we define

E (X|y)≡
∫

xdλ X|y (x).

Proposition 59.10.2 Suppose
∫
Fp1×Fp2 |x|dλ (X,Y) (x)< ∞. Then E (X|y) exists for λ Y a.e.

y and ∫
Fp2

E (X|y)dλ Y =
∫
Fp1

xdλ X (x) = E (X).

Proof: ∞ >
∫
Fp1×Fp2 |x|dλ (X,Y) =

∫
Fp2

∫
Fp1 |x|dλ X|y (x)dλ Y (y) and so∫

Fp1
|x|dλ X|y (x)< ∞

, λ Ya.e. Now ∫
Fp2

E (X|y)dλ Y
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=
∫
Fp2

∫
Fp1

xdλ X|y (x)dλ Y (y) =
∫
Fp1×Fp2

xdλ (X,Y)

=
∫
Fp1

∫
Fp2

xdλ Y|x (y)dλ X (x) =
∫
Fp2

xdλ X (x) = E (X).

Definition 59.10.3 Let {Xn} be any sequence, finite or infinite, of random variables with
values in R which are defined on some probability space, (Ω,S ,P). We say {Xn} is a
Martingale if

E (Xn|xn−1, · · ·,x1) = xn−1

and we say {Xn} is a submartingale if

E (Xn|xn−1, · · ·,x1)≥ xn−1.

Next we define what is meant by an upcrossing.

Definition 59.10.4 Let {xi}I
i=1 be any sequence of real numbers, I ≤∞. Define an increas-

ing sequence of integers {mk} as follows. m1 is the first integer ≥ 1 such that xm1 ≤ a, m2
is the first integer larger than m1 such that xm2 ≥ b, m3 is the first integer larger than m2
such that xm3 ≤ a, etc. Then each sequence,

{
xm2k−1 , · · ·,xm2k

}
, is called an upcrossing of

[a,b].

Proposition 59.10.5 Let {Xi}n
i=1 be a finite sequence of real random variables defined on

Ω where (Ω,S ,P) is a probability space. Let U[a,b] (ω) denote the number of upcrossings
of Xi (ω) of the interval [a,b]. Then U[a,b] is a random variable.

Proof: Let X0 (ω)≡ a+1, let Y0 (ω)≡ 0, and let Yk (ω) remain 0 for k = 0, · · ·, l until
Xl (ω) ≤ a. When this happens (if ever), Yl+1 (ω) ≡ 1. Then let Yi (ω) remain 1 for i =
l + 1, · · ·,r until Xr (ω) ≥ b when Yr+1 (ω) ≡ 0. Let Yk (ω) remain 0 for k ≥ r + 1 until
Xk (ω) ≤ a when Yk (ω) ≡ 1 and continue in this way. Thus the upcrossings of Xi (ω) are
identified as unbroken strings of ones with a zero at each end, with the possible exception
of the last string of ones which may be missing the zero at the upper end and may or may
not be an upcrossing.

Note also that Y0 is measurable because it is identically equal to 0 and that if Yk is
measurable, then Yk+1 is measurable because the only change in going from k to k+1 is a
change from 0 to 1 or from 1 to 0 on a measurable set determined by Xk. Now let

Zk (ω) =

{
1 if Yk (ω) = 1 and Yk+1 (ω) = 0,
0 otherwise,

if k < n and

Zn (ω) =

{
1 if Yn (ω) = 1 and Xn (ω)≥ b,
0 otherwise.

Thus Zk (ω) = 1 exactly when an upcrossing has been completed and each Zi is a random
variable.

U[a,b] (ω) =
n

∑
k=1

Zk (ω)

so U[a,b] is a random variable as claimed.
The following corollary collects some key observations found in the above construction.
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Corollary 59.10.6 U[a,b] (ω) ≤ the number of unbroken strings of ones in the sequence,
{Yk (ω)} there being at most one unbroken string of ones which produces no upcrossing.
Also

Yi (ω) = ψ i

({
X j (ω)

}i−1
j=1

)
, (59.10.16)

where ψ i is some function of the past values of X j (ω).

Lemma 59.10.7 (upcrossing lemma) Let {Xi}n
i=1 be a submartingale and suppose

E (|Xn|)< ∞.

Then

E
(
U[a,b]

)
≤ E (|Xn|)+ |a|

b−a
.

Proof: Let φ (x)≡ a+(x−a)+. Thus φ is a convex and increasing function.

φ (Xk+r)−φ (Xk) =
k+r

∑
i=k+1

φ (Xi)−φ (Xi−1)

=
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))Yi +
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi).

The upcrossings of φ (Xi) are exactly the same as the upcrossings of Xi and from Formula
59.10.16,

E

(
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi)

)

=
k+r

∑
i=k+1

∫
Ri
(φ (xi)−φ (xi−1))

(
1−ψ i

({
x j
}i−1

j=1

))
dλ (X1,···,Xi)

=
k+r

∑
i=k+1

∫
Ri−1

∫
R
(φ (xi)−φ (xi−1))·(

1−ψ i

({
x j
}i−1

j=1

))
dλ Xi|x1···xi−1dλ (X1,···,Xi−1)

=
k+r

∑
i=k+1

∫
Ri−1

(
1−ψ i

({
x j
}i−1

j=1

))
.

∫
R
(φ (xi)−φ (xi−1))dλ Xi|x1···xi−1dλ (X1,···,Xi−1)

By Jensen’s inequality, Problem 10 of Chapter 15,

≥
k+r

∑
i=k+1

∫
Ri−1

(
1−ψ i

({
x j
}i−1

j=1

))
·

[φ (E (Xi|x1, · · ·,xi−1))−φ (xi−1)]dλ (X1,···,Xi−1)
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≥
k+r

∑
i=k+1

∫
Ri−1

(
1−ψ i

({
x j
}i−1

j=1

))
[φ (xi−1)−φ (xi−1)]dλ (X1,···,Xi−1) = 0

because of the assumption that our sequence of random variables is a submartingale and
the observation that φ is both convex and increasing.

Now let the unbroken strings of ones for {Yi (ω)} be

{k1, · · ·,k1 + r1} ,{k2, · · ·,k2 + r2} , · · ·,{km, · · ·,km + rm} (59.10.17)

where m = V (ω) ≡ the number of unbroken strings of ones in the sequence {Yi (ω)}. By
Corollary 59.10.6 V (ω)≥U[a,b] (ω).

φ (Xn (ω))−φ (X1 (ω))

=
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))Yk (ω)

+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)).

Summing the first sum over the unbroken strings of ones (the terms in which Yi (ω) = 0
contribute nothing), implies

φ (Xn (ω))−φ (X1 (ω))

≥U[a,b] (ω)(b−a)+0+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)) (59.10.18)

where the zero on the right side results from a string of ones which does not produce an
upcrossing. It is here that we use φ (x) ≥ a. Such a string begins with φ (Xk (ω)) = a and
results in an expression of the form φ (Xk+m (ω))−φ (Xk (ω))≥ 0 since φ (Xk+m (ω))≥ a.
If we had not replaced Xk with φ (Xk) , it would have been possible for φ (Xk+m (ω)) to be
less than a and the zero in the above could have been a negative number.

Therefore from Formula 59.10.18,

(b−a)E
(
U[a,b]

)
≤ E (φ (Xn)−φ (X1))≤ E (φ (Xn)−a)

= E
(
(Xn−a)+

)
≤ |a|+E (|Xn|)

and this proves the lemma.

Theorem 59.10.8 (submartingale convergence theorem) Let {Xi}∞

i=1 be a submartingale
with K ≡ sup{E (|Xn|) : n≥ 1} < ∞. Then there exists a random variable, X∞, such that
E (|X∞|)≤ K and limn→∞ Xn (ω) = X∞ (ω) a.e.

Proof: Let a,b ∈ Q and let a < b. Let Un
[a,b] (ω) be the number of upcrossings of

{Xi (ω)}n
i=1. Then let

U[a,b] (ω)≡ lim
n→∞

Un
[a,b] (ω) = number of upcrossings of {Xi} .
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By the upcrossing lemma,

E
(

Un
[a,b]

)
≤ E (|Xn|)+ |a|

b−a
≤ K + |a|

b−a

and so by the monotone convergence theorem,

E
(
U[a,b]

)
≤ K + |a|

b−a
< ∞

which shows U[a,b] (ω) is finite a.e., for all ω /∈ S[a,b] where P
(
S[a,b]

)
= 0. Define

S≡ ∪
{

S[a,b] : a,b ∈Q, a < b
}
.

Then P(S) = 0 and if ω /∈ S, {Xk}∞

k=1 has only finitely many upcrossings of every inter-
val having rational endpoints. Thus, for ω /∈ S, limsupk→∞ Xk (ω) = liminfk→∞ Xk (ω) =
limk→∞ Xk (ω)≡ X∞ (ω). Letting X∞ (ω) = 0 for ω ∈ S, Fatou’s lemma implies∫

Ω

|X∞|dP =
∫

Ω

lim inf
n→∞
|Xn|dP≤ lim inf

n→∞

∫
Ω

|Xn|dP≤ K

and so this proves the theorem.

59.11 Characteristic Functions, Independence
There is a way to tell if random vectors are independent by using their characteristic func-
tions.

Proposition 59.11.1 If Xi is a random vector having values in Rpi , then the random vec-
tors are independent if and only if

E
(
eiP)= n

∏
j=1

E
(
eit j ·X j

)
where P≡ ∑

n
j=1 t j ·X j for t j ∈ Rp j .

The proof of this proposition will depend on the following lemma.

Lemma 59.11.2 Let Y be a random vector with values in Rp and let f be bounded and
measurable with respect to the Radon measure λ Y, and satisfy∫

f (y)eit·ydλ Y = 0

for all t ∈ Rp. Then f (y) = 0 for λ Y a.e. y.

Proof: You could write the following for φ ∈ G∫
φ (t)

∫
f (y)eit·ydλ Ydt = 0 =

∫
f (y)

(∫
φ (t)eit·ydt

)
dλ Y
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and now recall that the inverse Fourier transform maps G onto G . Hence∫
f (y)ψ (y)dλ Y = 0

for all ψ ∈ G . Thus this is also so for every ψ ∈ C∞
0 (Rp) by an obvious application of

the Stone Weierstrass theorem. Let {φ k} be a sequence of functions in C∞
c (Rp) which

converges to

sgn( f )≡
{

f̄/ | f | if f ̸= 0
0 if f = 0

pointwise and in L1 (Rp,λ Y) , each |φ k| ≤ 2. Then for any ψ ∈C∞
0 (Rp) ,

0 =
∫

f (y)φ n (y)ψ (y)dλ Y→
∫
| f (y)|ψ (y)dλ Y

Also, the above holds for any ψ ∈Cc (Rp) as can be seen by taking such a ψ and convolving
with a mollifier. By the Riesz representation theorem, f (y) = 0 λ Y a.e. (The measure
µ (E)≡

∫
E | f (y)|dλ Y equals 0.) ■

Proof of the proposition: If the X j are independent, the formula follows from Lemma
59.9.6 and Lemma 59.9.4.

Now suppose the formula holds. Thus

n

∏
j=1

E
(
eit j ·X j

)
=

∫
Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1 eit2·x2 · · ·eitn·xndλ X1dλ X2 · · ·dλ Xn = E
(
eiP)

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn·xndλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn . (59.11.19)

Then from the above Lemma 59.11.2, the following equals 0 for λ Xn a.e. xn.∫
Rpn−1

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−1·xn−1dλ X1dλ X2 · · ·dλ Xn−1−∫
Rpn−1

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−1·xn−1dλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn−1|xn

Let ti = 0 for i = 1,2, · · · ,n−2. Then this implies∫
Rpn−1

eitn−1·xn−1dλ Xn−1 =
∫
Rpn−1

eitn−1·xn−1dλ Xn−1|xn

By the fact that the characteristic function determines the distribution measure, Theorem
59.8.4, it follows that for these xn off a set of λ Xn measure zero,λ Xn−1 = λ Xn−1|xn . Return-
ing to 59.11.19, one can replace λ Xn−1|xn with λ Xn−1 to obtain∫

Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn·xndλ X1dλ X2 · · ·dλ Xn−1dλ Xn



59.11. CHARACTERISTIC FUNCTIONS, INDEPENDENCE 1891

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn·xndλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn−1 dλ Xn

Next let tn = 0 and applying the above Lemma 59.11.2 again, this implies that for λ Xn−1
a.e. xn−1, the following equals 0.∫

Rpn−2
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2dλ X1dλ X2 · · ·dλ Xn−2−∫
Rpn−2

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2dλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn−2|xnxn−1

Let ti = 0 for i = 1,2, · · · ,n−3. Then you obtain∫
Rpn−2

eitn−2·xn−2dλ Xn−2 =
∫
Rpn−2

eitn−2·xn−2dλ Xn−2|xnxn−1

and so λ Xn−2 = λ Xn−2|xnxn−1 for xn−1 off a set of λ Xn−1 measure zero. Continuing this way,
it follows that

λ Xn−k = λ Xn−k|xnxn−1···xn−k+1

for xn−k+1 off a set of λ Xn−k+1 measure zero. Thus if E is Borel in Rpn−1 ×·· ·×Rp1 ,∫
Rpn×···×Rp1

XEdλ (X1···Xn) =∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn−1|xndλ Xn∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλ X1|x2···xndλ X2|x3···xn · · ·dλ Xn−1dλ Xn

...

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλ X1 dλ X2 · · ·dλ Xn

One could achieve this iterated integral in any order by similar arguments to the above. By
Definition 59.9.2 and the discussion which follows, this implies that the random variables
Xi are independent. ■

Here is another proof of the Doob Dynkin lemma based on differentiation theory.

Lemma 59.11.3 Suppose X,Y1,Y2, · · · ,Yk are random vectors X having values inRn and
Y j having values in Rp j and

X,Y j ∈ L1 (Ω) .

Suppose X is σ (Y1, · · · ,Yk) measurable. Thus

{
X−1 (E) : E Borel

}
⊆

{
(Y1, · · · ,Yk)

−1 (F) : F is Borel in
k

∏
j=1
Rp j

}

Then there exists a Borel function, g :∏
k
j=1Rp j → Rn such that

X = g(Y1,Y2, · · · ,Yk) .
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Proof: For the sake of brevity, denote by Y the vector (Y1, · · · ,Yk) and by y the vector
(y1, · · · ,yk) and let ∏

k
j=1Rp j ≡ RP. For E a Borel set of Rn,∫
Y−1(E)

XdP =
∫
Rn×RP

XRn×E (x,y)xdλ (X,Y)

=
∫

E

∫
Rn

xdλ X|ydλ Y. (59.11.20)

Consider the function
y→

∫
Rn

xdλ X|y.

Since dλ Y is a Radon measure having inner and outer regularity, it follows the above
function is equal to a Borel function for λ Y a.e. y. This function will be denoted by g.
Then from 59.11.20∫

Y−1(E)
XdP =

∫
E

g(y)dλ Y =
∫
RP

XE (y)g(y)dλ Y

=
∫

Ω

XE (Y(ω))g(Y(ω))dP

=
∫

Y−1(E)
g(Y(ω))dP

and since Y−1 (E) is an arbitrary element of σ (Y) , this shows that since X is σ (Y) mea-
surable,

X = g(Y) P a.e. ■

What about the case where X is not necessarily measurable in σ (Y1, · · · ,Yk)?

Lemma 59.11.4 There exists a unique function Z(ω) which satisfies∫
F

X(ω)dP =
∫

F
Z(ω)dP

for all F ∈ σ (Y1, · · · ,Yk) such that Z is σ (Y1, · · · ,Yk) measurable. It is denoted by

E (X|σ (Y1, · · · ,Yk))

Proof: It is like the above. Letting E be a Borel set in Rp,∫
Y−1(E)

XdP =
∫
Rn×RP

XRn×E (x,y)xdλ (X,Y)

=
∫

E

∫
Rn

xdλ X|ydλ Y.

Now let g(y)≡ E (X|y1, · · · ,yk) be a Borel representative of∫
Rn

xdλ X|y
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It follows ω → g(Y(ω)) = E (X|Y1 (ω) , · · · ,Yk (ω)) is σ (Y1, · · · ,Yk) measurable be-
cause by definition ω→Y(ω) is σ (Y1, · · · ,Yk) measurable and a Borel measurable func-
tion composed with a measurable one is still measurable. It follows that for all E Borel in
Rp, ∫

Y−1(E)
XdP =

∫
E

E (X|y1, · · · ,yk)dλ Y

=
∫

Y−1(E)
E (X|Y1 (ω) , · · · ,Yk (ω))dP

and so Z(ω) = E (X|Y1 (ω) , · · · ,Yk (ω)) works because a generic set of σ (Y1, · · · ,Yk) is
Y−1 (E) for E a Borel set in Rp. If both Z,Z1 work, then for all F ∈ σ (Y1, · · · ,Yk) ,∫

F
(Z−Z1)dP = 0

Since F is arbitrary, some routine computations show Z = Z1 a.e. ■

Observation 59.11.5 Note that a.e.

E (X|Y1 (ω) , · · · ,Yk (ω)) = E (X|σ (Y1, · · · ,Yk))

where the one on the left is the expected value of X given values of Y j (ω). This one
corresponds to the sort of thing we say in words. The one on the right is an abstract
concept which is usually obtained using the Radon Nikodym theorem and its description is
given in the lemma. This lemma shows that its meaning is really to take the expected value
of X given values for the Yk.

59.12 Characteristic Functions For Measures
Recall the characteristic function for a random variable having values in Rn. I will give
a review of this to begin with. Then the concept will be generalized to random variables
(vectors) which have values in a real separable Banach space.

Definition 59.12.1 Let X be a random variable. The characteristic function is

φ X (t)≡ E
(
eit·X)≡ ∫

Ω

eit·X(ω)dP =
∫
Rp

eit·xdλ X

the last equation holding by Proposition 59.1.12 on Page 1858.

Recall the following fundamental lemma and definition, Lemma 32.3.4 on Page 1101.

Definition 59.12.2 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 59.12.3 F and F−1 are both one to one, onto, and are inverses of each other.

The main result on characteristic functions is the following in Theorem 59.8.4 on Page
1880 which is stated here for convenience.
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Theorem 59.12.4 Let X and Y be random vectors with values in Rp and suppose E
(
eit·X)

= E
(
eit·Y) for all t ∈ Rp. Then λ X = λ Y.

I want to do something similar for random variables which have values in a separable
real Banach space, E instead of Rp.

Corollary 59.12.5 Let K be a π system of subsets of Ω and suppose two probability mea-
sures, µ and ν defined on σ (K ) are equal on K . Then µ = ν .

Proof: This follows from the Lemma 12.12.3 on Page 329. Let

G ≡{E ∈ σ (K ) : µ (E) = ν (E)}

Then K ⊆ G , since µ and ν are both probability measures, it follows that if E ∈ G , then
so is EC. Since these are measures, if {Ai} is a sequence of disjoint sets from G then

µ (∪∞
i=1Ai) = ∑

i
µ (Ai) = ∑

i
ν (Ai) = ν (∪∞

i=1A)

and so from Lemma 12.12.3, G = σ (K ) . ■
Next recall the following fundamental lemma used to prove Pettis’ theorem. It is proved

on Page 645 but is stated here for convenience.

Lemma 59.12.6 If E is a separable Banach space with B′ the closed unit ball in E ′, then
there exists a sequence { fn}∞

n=1 ≡ D′ ⊆ B′ with the property that for every x ∈ E,

||x||= sup
f∈D′
| f (x)|

Definition 59.12.7 Let E be a separable real Banach space. A cylindrical set is one which
is of the form

{x ∈ E : x∗i (x) ∈ Γi, i = 1,2, · · · ,m}

where here x∗i ∈ E ′ and Γi is a Borel set in R.

It is obvious that /0 is a cylindrical set and that the intersection of two cylindrical sets
is another cylindrical set. Thus the cylindrical sets form a π system. What is the smallest
σ algebra containing the cylindrical sets? It is the Borel sets of E. This is a special case
of Lemma 59.4.2. Recall why this was. Letting { fn}∞

n=1 = D′ be the sequence of Lemma
59.12.6 it follows that

{x ∈ E : ||x−a|| ≤ δ}

=

{
x ∈ E : sup

f∈D′
| f (x−a)| ≤ δ

}

=

{
x ∈ E : sup

f∈D′
| f (x)− f (a)| ≤ δ

}
= ∩∞

n=1

{
x ∈ E : fn (x) ∈ B( fn (a) ,δ )

}
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which yields a countable intersection of cylindrical sets. It follows the smallest σ algebra
containing the cylindrical sets contains the closed balls and hence the open balls and con-
sequently the open sets and so it contains the Borel sets. However, each cylindrical set is a
Borel set and so in fact this σ algebra equals B (E).

From Corollary 59.12.5 it follows that two probability measures which are equal on the
cylindrical sets are equal on the Borel sets B (E).

Definition 59.12.8 Let µ be a probability measure on B (E) where E is a real separable
Banach space. Then for x∗ ∈ E ′,

φ µ (x
∗)≡

∫
E

eix∗(x)dµ (x) .

φ µ is called the characteristic function for the measure µ .

Note this is a little different than earlier when the symbol φ X (t) was used and X was
a random variable. Here the focus is more on the measure than a random variable, X such
that L (X) = µ . It might appear this is a more general concept but in fact this is not the
case. You could just consider the separable Banach space or Polish space with the Borel σ

algebra as your probabililty space and then consider the identity map as a random variable
having the given measure as a distribution measure. Of course a major result is the one
which says that the characteristic function determines the measures.

Theorem 59.12.9 Let µ and ν be two probability measures on B (E) where E is a sepa-
rable real Banach space. Suppose

φ µ (x
∗) = φ ν (x

∗)

for all x∗ ∈ E ′. Then µ = ν .

Proof: It suffices to verify that µ (A) = ν (A) for all A ∈ K where K is the set of
cylindrical sets. Fix gn ∈ (E ′)n . Thus the two measures are equal if for all such gn, n ∈ N,

µ
(
g−1

n (B)
)
= ν

(
g−1

n (B)
)

for B a Borel set in Rn. Of course, for such a choice of gn ∈ (E ′)n , there are measures
defined on the Borel sets of Rn µn and νn which are given by

µn (B)≡ µ
(
g−1

n (B)
)
, νn (B)≡ ν

(
g−1

n (B)
)

and so it suffices to verify that these two measures are equal. So what are their character-
istic functions? Note that gn is a random variable taking E to Rn and µn, νn are just the
probability distribution measures of this random variable. Therefore,

φ µn
(t)≡

∫
Rn

eit·sdµn =
∫

E
eit·gn(x)dµ

Similarly,

φ νn
(t)≡

∫
Rn

eit·sdνn =
∫

E
eit·gn(x)dν

Now t ·gn ∈ E ′ and so by assumption, the two ends of the above are equal. Hence φ µn
(t) =

φ νn
(t) and so by Theorem 59.8.6, µn = νn which, as shown above, implies µ = ν . ■
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59.13 Characteristic Functions In Banach Space
I will consider the relation between the characteristic function and independence of random
variables having values in a Banach space. Recall an earlier proposition which relates
independence of random vectors with characteristic functions. It is proved starting on Page
1889.

Proposition 59.13.1 Let {Xk}n
k=1be random vectors such that Xk has values in Rpk . Then

the random vectors are independent if and only if

E
(
eiP)= n

∏
j=1

E
(
eit j ·X j

)
where P≡ ∑

n
j=1 t j ·X j for t j ∈ Rp j .

It turns out there is a generalization of the above proposition to the case where the
random variables have values in a real separable Banach space. Before proving this recall
an earlier theorem which had to do with reducing to the case where the random variables
had values in Rn, Theorem 59.5.1. It is restated here for convenience.

Theorem 59.13.2 The random variables {Xi}i∈I are independent if whenever

{i1, · · · , in} ⊆ I,

mi1 , · · · ,min are positive integers, and gmi1
, · · · ,gmin

are in(
E ′
)mi1 , · · · ,

(
E ′
)min

respectively,
{

gmi j
◦Xi j

}n

j=1
are independent random vectors having values in

Rmi1 , · · · ,Rmin

respectively.

Now here is the theorem about independence and the characteristic functions.

Theorem 59.13.3 Let {Xk}n
k=1be random variables such that Xk has values in Ek, a real

separable Banach space. Then the random variables are independent if and only if

E
(
eiP)= n

∏
j=1

E
(

eit∗j (X j)
)

where P≡ ∑
n
j=1 t∗j (X j) for t∗j ∈ E ′j.

Proof: If the random variables are independent, then so are the random variables,
t∗j (X j) and so the equation follows.

The interesting case is when the equation holds.
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It suffices to consider only the case where each Ek = E. This is because you can con-
sider each X j to have values in ∏

n
k=1 Ek by letting X j take its values in the jth component

of the product and 0 in the other components. Can you draw the conclusion the random
variables are independent? By Theorem 59.5.1, it suffices to show the random variables{

gmk ◦Xk
}n

k=1 are independent where gmk =
(
x∗1, · · · ,x∗mk

)
∈ (E ′)mk . This happens if when-

ever tmk ∈ Rmk and

P =
n

∑
k=1

tmk ·
(
gmk ◦Xk

)
,

it follows

E
(
eiP)= n

∏
k=1

E
(

eitmk ·(gmk◦Xk)
)
. (59.13.21)

However, the expression on the right in 59.13.21 equals

n

∏
k=1

E
(

ei(tmk ·gmk)◦Xk
)

and tmk · gmk ≡ ∑
mk
j=1 t jx∗j ∈ E ′. Also the expression on the left equals E

(
ei∑

n
k=1 tmk ·gmk◦Xk

)
Therefore, by assumption, 59.13.21 holds. ■

There is an obvious corollary which is useful.

Corollary 59.13.4 Let {Xk}n
k=1be random variables such that Xk has values in Ek, a real

separable Banach space. Then the random variables are independent if and only if

E
(
eiP)= n

∏
j=1

E
(

eit∗j (X j)
)

where P≡ ∑
n
j=1 t∗j (X j) for t∗j ∈M j where M j is a dense subset of E ′j.

Proof: The easy direction follows from Theorem 59.13.3. Suppose then the above
equation holds for all t∗j ∈M j. Then let t∗j ∈ E ′ and let

{
t∗n j

}
be a sequence in M j such that

lim
n→∞

t∗n j = t∗j in E ′

Then define

P≡
n

∑
j=1

t∗j X j, Pn ≡
n

∑
j=1

t∗n jX j.

It follows

E
(
eiP) = lim

n→∞
E
(
eiPn
)

= lim
n→∞

n

∏
j=1

E
(

eit∗n j(X j)
)

=
n

∏
j=1

E
(

eit∗j (X j)
)
■
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59.14 Convolution And Sums
Lemma 59.1.9 on Page 1857 makes possible a definition of convolution of two probability
measures defined on B (E) where E is a separable Banach space as well as some other
interesting theorems which held earlier in the context of locally compact spaces. I will first
show a little theorem about density of continuous functions in Lp (E) and then define the
convolution of two finite measures. First here is a simple technical lemma.

Lemma 59.14.1 Suppose K is a compact subset of U an open set in E a metric space.
Then there exists δ > 0 such that

dist(x,K)+dist
(
x,UC)≥ δ for all x ∈ E.

Proof: For each x ∈ K, there exists a ball, B(x,δ x) such that B(x,3δ x) ⊆U . Finitely
many of these balls cover K because K is compact, say {B(xi,δ xi)}

m
i=1. Let

0 < δ < min(δ xi : i = 1,2, · · · ,m) .

Now pick any x ∈ K. Then x ∈ B(xi,δ xi) for some xi and so B(x,δ ) ⊆ B(xi,2δ xi) ⊆
U. Therefore, for any x ∈ K,dist

(
x,UC

)
≥ δ . If x ∈ B(xi,2δ xi) for some xi, it follows

dist
(
x,UC

)
≥ δ because then B(x,δ ) ⊆ B(xi,3δ xi) ⊆U. If x /∈ B(xi,2δ xi) for any of the

xi, then x /∈ B(y,δ ) for any y ∈ K because all these sets are contained in some B(xi,2δ xi) .
Consequently dist(x,K)≥ δ . This proves the lemma.

From this lemma, there is an easy corollary.

Corollary 59.14.2 Suppose K is a compact subset of U, an open set in E a metric space.
Then there exists a uniformly continuous function f defined on all of E, having values in
[0,1] such that f (x) = 0 if x /∈U and f (x) = 1 if x ∈ K.

Proof: Consider

f (x)≡
dist
(
x,UC

)
dist(x,UC)+dist(x,K)

.

Then some algebra yields ∣∣ f (x)− f
(
x′
)∣∣≤

1
δ

(∣∣dist
(
x,UC)−dist

(
x′,UC)∣∣+ ∣∣dist(x,K)−dist

(
x′,K

)∣∣)
where δ is the constant of Lemma 59.14.1. Now it is a general fact that∣∣dist(x,S)−dist

(
x′,S

)∣∣≤ d
(
x,x′
)
.

Therefore, ∣∣ f (x)− f
(
x′
)∣∣≤ 2

δ
d
(
x,x′
)

and this proves the corollary.
Now suppose µ is a finite measure defined on the Borel sets of a separable Banach

space, E. It was shown above that µ is inner and outer regular. Lemma 59.1.9 on Page
1857 shows that µ is inner regular in the usual sense with respect to compact sets. This
makes possible the following theorem.
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Theorem 59.14.3 Let µ be a finite measure on B (E) where E is a separable Banach space
and let f ∈ Lp (E; µ) . Then for any ε > 0, there exists a uniformly continuous, bounded g
defined on E such that

|| f −g||Lp(E) < ε.

Proof: As usual in such situations, it suffices to consider only f ≥ 0. Then by Theorem
11.3.9 on Page 241 and an application of the monotone convergence theorem, there exists
a simple measurable function,

s(x)≡
m

∑
k=1

ckXAk (x)

such that || f − s||Lp(E) < ε/2. Now by regularity of µ there exist compact sets, Kk and

open sets, Vk such that 2∑
m
k=1 |ck|µ (Vk \K)1/p < ε/2 and by Corollary 59.14.2 there exist

uniformly continuous functions gk having values in [0,1] such that gk = 1 on Kk and 0 on
VC

k . Then consider

g(x) =
m

∑
k=1

ckgk (x) .

This function is bounded and uniformly continuous. Furthermore,

||s−g||Lp(E) ≤

(∫
E

∣∣∣∣∣ m

∑
k=1

ckXAk (x)−
m

∑
k=1

ckgk (x)

∣∣∣∣∣
p

dµ

)1/p

≤

(∫
E

(
m

∑
k=1
|ck|
∣∣XAk (x)−gk (x)

∣∣)p)1/p

≤
m

∑
k=1
|ck|
(∫

E

∣∣XAk (x)−gk (x)
∣∣p dµ

)1/p

≤
m

∑
k=1
|ck|
(∫

Vk\Kk

2pdµ

)1/p

= 2
m

∑
k=1
|ck|µ (Vk \K)1/p < ε/2.

Therefore,
|| f −g||Lp ≤ || f − s||Lp + ||s−g||Lp < ε/2+ ε/2.

This proves the theorem.

Lemma 59.14.4 Let A ∈B (E) where µ is a finite measure on B (E) for E a separable
Banach space. Also let xi ∈ E for i = 1,2, · · · ,m. Then for x ∈ Em,

x→ µ

(
A+

m

∑
i=1

xi

)
, x→ µ

(
A−

m

∑
i=1

xi

)
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are Borel measurable functions. Furthermore, the above functions are

B (E)×·· ·×B (E)

measurable where the above denotes the product measurable sets as described in Theorem
12.12.6 on Page 332.

Proof: First consider the case where A =U, an open set. Let

y ∈

{
x ∈ Em : µ

(
U +

m

∑
i=1

xi

)
> α

}
(59.14.22)

Then from Lemma 59.1.9 on Page 1857 there exists a compact set, K ⊆U +∑
m
i=1 yi such

that µ (K)> α. Then if y′ is close enough to y, it follows K ⊆U +∑
m
i=1 y′i also. Therefore,

for all y′ close enough to y,

µ

(
U +

m

∑
i=1

y′i

)
≥ µ (K)> α.

In other words the set described in 59.14.22 is an open set and so y→ µ (U +∑
m
i=1 yi) is

Borel measurable whenever U is an open set in E.
Define a π system, K to consist of all open sets in E. Then define G as{

A ∈ σ (K ) = B (E) : y→ µ

(
A+

m

∑
i=1

yi

)
is Borel measurable

}

I just showed G ⊇K . Now suppose A ∈ G . Then

µ

(
AC +

m

∑
i=1

yi

)
= µ (E)−µ

(
A+

m

∑
i=1

yi

)

and so AC ∈ G whenever A ∈ G . Next suppose {Ai} is a sequence of disjoint sets of G .
Then

µ

(
(∪∞

i=1Ai)+
m

∑
j=1

y j

)
= µ

(
∪∞

i=1

(
Ai +

m

∑
j=1

y j

))

=
∞

∑
i=1

µ

(
Ai +

m

∑
j=1

y j

)

and so ∪∞
i=1Ai ∈ G because the above is the sum of Borel measurable functions. By the

lemma on π systems, Lemma 12.12.3 on Page 329, it follows G = σ (K ) = B (E) . Sim-
ilarly, x→ µ

(
A−∑

m
j=1 x j

)
is also Borel measurable whenever A ∈B (E). Finally note

that
B (E)×·· ·×B (E)
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contains the open sets of Em because the separability of E implies the existence of a count-
able basis for the topology of Em consisting of sets of the form ∏

m
i=1 Ui where the Ui come

from a countable basis for E. Since every open set is the countable union of sets like the
above, each being a measurable box, the open sets are contained in

B (E)×·· ·×B (E)

which implies B (Em)⊆B (E)×·· ·×B (E) also. This proves the lemma.
With this lemma, it is possible to define the convolution of two finite measures.

Definition 59.14.5 Let µ and ν be two finite measures on B (E) , for E a separable Banach
space. Then define a new measure, µ ∗ν on B (E) as follows

µ ∗ν (A)≡
∫

E
ν (A− x)dµ (x) .

This is well defined because of Lemma 59.14.4 which says that x → ν (A− x) is Borel
measurable.

Here is an interesting theorem about convolutions. However, first here is a little lemma.
The following picture is descriptive of the set described in the following lemma.

A
E

E

SA

Lemma 59.14.6 For A a Borel set in E, a separable Banach space, define

SA ≡ {(x,y) ∈ E×E : x+ y ∈ A}

Then SA ∈B (E)×B (E) , the σ algebra of product measurable sets, the smallest σ alge-
bra which contains all the sets of the form A×B where A and B are Borel.

Proof: Let K denote the open sets in E. Then K is a π system. Let

G ≡ {A ∈ σ (K ) = B (E) : SA ∈B (E)×B (E)} .

Then K ⊆ G because if U ∈K then SU is an open set in E×E and all open sets are in
B (E)×B (E) because a countable basis for the topology of E ×E are sets of the form
B×C where B and C come from a countable basis for E. Therefore, K ⊆ G . Now let
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A ∈ G . For (x,y) ∈ E×E, either x+ y ∈ A or x+ y /∈ A. Hence E×E = SA ∪ SAC which
shows that if A ∈ G then so is AC. Finally if {Ai} is a sequence of disjoint sets of G

S∪∞
i=1Ai = ∪

∞
i=1SAi

and this shows that G is also closed with respect to countable unions of disjoint sets. There-
fore, by the lemma on π systems, Lemma 12.12.3 on Page 329 it follows G = σ (K ) =
B (E) . This proves the lemma.

Theorem 59.14.7 Let µ, ν , and λ be finite measures on B (E) for E a separable Banach
space. Then

µ ∗ν = ν ∗µ (59.14.23)

(µ ∗ν)∗λ = µ ∗ (ν ∗λ ) (59.14.24)

If µ is the distribution for an E valued random variable, X and if ν is the distribution for an
E valued random variable, Y, and X and Y are independent, then µ ∗ν is the distribution
for the random variable, X +Y . Also the characteristic function of a convolution equals
the product of the characteristic functions.

Proof: First consider 59.14.23. Letting A ∈B (E) , the following computation holds
from Fubini’s theorem and Lemma 59.14.6

µ ∗ν (A) ≡
∫

E
ν (A− x)dµ (x) =

∫
E

∫
E

XSA (x,y)dν (y)dµ (x)

=
∫

E

∫
E

XSA (x,y)dµ (x)dν (y) = ν ∗µ (A) .

Next consider 59.14.24. Using 59.14.23 whenever convenient,

(µ ∗ν)∗λ (A) ≡
∫

E
(µ ∗ν)(A− x)dλ (x)

=
∫

E

∫
E

ν (A− x− y)dµ (y)dλ (x)

while

µ ∗ (ν ∗λ )(A) ≡
∫

E
(ν ∗λ )(A− y)dµ (y)

=
∫

E

∫
E

ν (A− y− x)dλ (x)dµ (y)

=
∫

E

∫
E

ν (A− y− x)dµ (y)dλ (x) .

The necessary product measurability comes from Lemma 59.14.4.
Recall

(µ ∗ν)(A)≡
∫

E
ν (A− x)dµ (x) .
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Therefore, if s is a simple function, s(x) = ∑
n
k=1 ckXAk (x) ,∫

E
sd (µ ∗ν) =

n

∑
k=1

ck

∫
E

ν (Ak− x)dµ (x)

=
∫

E

n

∑
k=1

ckν (Ak− x)dµ (x)

=
∫

E

n

∑
k=1

ckXAk−x (y)dν (y)dµ (x)

=
∫

E

∫
E

s(x+ y)dν (y)dµ (x)

Approximating with simple functions it follows that whenever f is bounded and measurable
or nonnegative and measurable,∫

E
f d (µ ∗ν) =

∫
E

∫
E

f (x+ y)dν (y)dµ (x) (59.14.25)

Therefore, letting Z = X +Y, and λ the distribution of Z, it follows from independence of
X and Y that for t∗ ∈ E ′,

φ λ (t
∗)≡ E

(
eit∗(Z)

)
= E

(
eit∗(X+Y )

)
= E

(
eit∗(X)

)
E
(

eit∗(Y )
)

But also, it follows from 59.14.25

φ (µ∗ν) (t
∗) =

∫
E

eit∗(z)d (µ ∗ν)(z)

=
∫

E

∫
E

eit∗(x+y)dν (y)dµ (x)

=
∫

E

∫
E

eit∗(x)eit∗(y)dν (y)dµ (x)

=

(∫
E

eit∗(y)dν (y)
)(∫

E
eit∗(x)dµ (x)

)
= E

(
eit∗(X)

)
E
(

eit∗(Y )
)

Since φ λ (t
∗) = φ (µ∗ν) (t

∗) , it follows λ = µ ∗ν .
Note the last part of this argument shows the characteristic function of a convolution

equals the product of the characteristic functions. This proves the theorem.

59.15 The Convergence Of Sums
It turns out that when random variables have symmetric distributions, some remarkable
things can be said about infinite sums of these random variables. Conditions are given
here that enable one to conclude the convergence of the sequence of partial sums from the
convergence of some subsequence of partial sums.

The following lemma is like an earlier result but is proved here for convenience.
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Definition 59.15.1 Let X be a random variable. L (X) = µ means λ X = µ. This is called
the law of X. It is the same as saying the distribution measure of X is µ.

Lemma 59.15.2 Let (Ω,F ,P) be a probability space and let X : Ω→ E be a random
variable, where E is a real separable Banach space. Also let L (X) = µ, a probability
measure defined on B (E) , the Borel sets of E. Suppose h : E → R is in L1 (E; µ) or is
nonnegative and Borel measurable. Then∫

Ω

(h◦X)dP =
∫

E
h(x)dµ.

Proof: First suppose A is a Borel set in E. Then∫
E

XA (x)dµ ≡ µ (A)≡ P([X ∈ A])∫
Ω

(XA ◦X)dP =
∫

Ω

XX−1(A) (ω)dP≡ P
(
X−1 (A)

)
≡ P([X ∈ A])

Thus for nonnegative simple Borel measurable functions s, it follows∫
Ω

(s◦X)dP =
∫

E
s(x)dµ

Now approximating with an increasing sequence of nonnegative simple functions and us-
ing the monotone convergence theorem, the desired formula holds for nonnegative Borel
measurable functions h.

If h is Borel measurable and in L1 (E; µ) , then you can consider the formula for the
positive and negative parts and get the result in this case also. This proves the lemma.

Here is a simple definition and lemma about random variables whose distribution is
symmetric.

Definition 59.15.3 Let X be a random variable defined on a probability space, (Ω,F ,P)
having values in a Banach space, E. Then it has a symmetric distribution if whenever A is
a Borel set,

P([X ∈ A]) = P([X ∈ −A])

In terms of the distribution,
λ X = λ−X .

It is good to observe that if X ,Y are independent random variables defined on a prob-
ability space, (Ω,F ,P) such that each has symmetric distribution, then X +Y also has
symmetric distribution. Here is why. Let A be a Borel set in E. Then by Theorem 59.14.7
on Page 1902,

λ X+Y (A) =
∫

E
λ X (A− z)dλY (z)

=
∫

E
λ−X (A− z)dλ−Y (z)

= λ−(X+Y ) (A) = λ X+Y (−A)
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By induction, it follows that if you have n independent random variables each having sym-
metric distribution, then their sum has symmetric distribution.

Here is a simple lemma about random variables having symmetric distributions. It will
depend on Lemma 59.15.2 on Page 1904.

Lemma 59.15.4 Let X≡ (X1, · · · ,Xn) and Y be random variables defined on a probability
space, (Ω,F ,P) such that Xi, i = 1,2, · · · ,n and Y have values in E a separable Banach
space. Thus X has values in En. Suppose also that {X1, · · · ,Xn,Y} are independent and
that Y has symmetric distribution. Then if A ∈B (En) , it follows

P

(
[X ∈ A]∩

[∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

Xi +Y

∣∣∣∣∣
∣∣∣∣∣< r

])

= P

(
[X ∈ A]∩

[∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

Xi−Y

∣∣∣∣∣
∣∣∣∣∣< r

])

You can also change the inequalities in the obvious way, < to ≤ , > or ≥.

Proof: Denote by λ X and λY the distribution measures for X and Y respectively. Since
the random variables are independent, the distribution for the random variable, (X,Y ) map-
ping into En+1 is λ X×λY where this denotes product measure. Since the Banach space is
separable, the Borel sets are contained in the product measurable sets. Then by symmetry
of the distribution of Y

P

(
[X ∈ A]∩

[∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

Xi +Y

∣∣∣∣∣
∣∣∣∣∣< r

])

=
∫

En×E
XA (x)XB(0,r)

(
n

∑
i=1

xi + y

)
d (λ X×λY )(x,y)

=
∫

E

∫
En

XA (x)XB(0,r)

(
n

∑
i=1

xi + y

)
dλ XdλY

=
∫

E

∫
En

XA (x)XB(0,r)

(
n

∑
i=1

xi + y

)
dλ Xdλ−Y

=
∫

En×E
XA (x)XB(0,r)

(
n

∑
i=1

xi + y

)
d (λ X×λ−Y )(x,y)

= P

(
[X ∈ A]∩

[∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

Xi +(−Y )

∣∣∣∣∣
∣∣∣∣∣< r

])

This proves the lemma. Other cases are similar.
Now here is a really interesting lemma.
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Lemma 59.15.5 Let E be a real separable Banach space. Assume ξ 1, · · · ,ξ N are indepen-
dent random variables having values in E, a separable Banach space which have symmet-
ric distributions. Also let Sk = ∑

k
i=1 ξ i. Then for any r > 0,

P

([
sup
k≤N
||Sk||> r

])
≤ 2P([||SN ||> r]) .

Proof: First of all,

P

([
sup
k≤N
||Sk||> r

])

= P

([
sup
k≤N
||Sk||> r and ||SN ||> r

])

+P

([
sup

k≤N−1
||Sk||> r and ||SN || ≤ r

])

≤ P([||SN ||> r])+P

([
sup

k≤N−1
||Sk||> r and ||SN || ≤ r

])
. (59.15.26)

I need to estimate the second of these terms. Let

A1 ≡ [||S1||> r] , · · · ,Ak ≡
[
||Sk||> r,

∣∣∣∣S j
∣∣∣∣≤ r for j < k

]
.

Thus Ak consists of those ω where ||Sk (ω)||> r for the first time at k. Thus[
sup

k≤N−1
||Sk||> r and ||SN || ≤ r

]
= ∪N−1

j=1 A j ∩ [||SN || ≤ r]

and the sets in the above union are disjoint. Consider A j ∩ [||SN || ≤ r] . For ω in this set,∣∣∣∣S j (ω)
∣∣∣∣> r, ||Si (ω)|| ≤ r if i < j.

Since ||SN (ω)|| ≤ r in this set, it follows

||SN (ω)||=

∣∣∣∣∣
∣∣∣∣∣S j (ω)+

N

∑
i= j+1

ξ i (ω)

∣∣∣∣∣
∣∣∣∣∣≤ r

Thus
P(A j ∩ [||SN || ≤ r]) (59.15.27)

= P

(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩

[∣∣∣∣∣
∣∣∣∣∣S j +

N

∑
i= j+1

ξ i

∣∣∣∣∣
∣∣∣∣∣≤ r

])
(59.15.28)
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Now ∩ j−1
i=1 [||Si|| ≤ r]∩

[∣∣∣∣S j
∣∣∣∣> r

]
is of the form[(

ξ 1, · · · ,ξ j

)
∈ A
]

for some Borel set, A. Then letting Y = ∑
N
i= j+1 ξ i in Lemma 59.15.4 and Xi = ξ i, 59.15.28

equals

P

(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩

[∣∣∣∣∣
∣∣∣∣∣S j−

N

∑
i= j+1

ξ i

∣∣∣∣∣
∣∣∣∣∣≤ r

])
= P

(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩
[∣∣∣∣S j− (SN−S j)

∣∣∣∣≤ r
])

= P
(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩
[∣∣∣∣2S j−SN

∣∣∣∣≤ r
])

Now since
∣∣∣∣S j (ω)

∣∣∣∣> r,[∣∣∣∣2S j−SN
∣∣∣∣≤ r

]
⊆

[
2
∣∣∣∣S j
∣∣∣∣−||SN || ≤ r

]
⊆ [2r−||SN ||< r]

= [||SN ||> r]

and so, referring to 59.15.27, this has shown

P(A j ∩ [||SN || ≤ r])

= P
(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩
[∣∣∣∣2S j−SN

∣∣∣∣≤ r
])

≤ P
(
∩ j−1

i=1 [||Si|| ≤ r]∩
[∣∣∣∣S j

∣∣∣∣> r
]
∩ [||SN ||> r]

)
= P(A j ∩ [||SN ||> r]) .

It follows that

P

([
sup

k≤N−1
||Sk||> r and ||SN || ≤ r

])
=

N−1

∑
i=1

P(A j ∩ [||SN || ≤ r])

≤
N−1

∑
i=1

P(A j ∩ [||SN ||> r])≤ P([||SN ||> r])

and using 59.15.26, this proves the lemma.
This interesting lemma will now be used to prove the following which concludes a

sequence of partial sums converges given a subsequence of the sequence of partial sums
converges.

Lemma 59.15.6 Let {ζ k} be a sequence of independent random variables having values in
a separable real Banach space, E whose distributions are symmetric. Letting Sk ≡∑

k
i=1 ζ i,

suppose
{

Snk

}
converges a.e. Also suppose that for every m > nk,

P
([∣∣∣∣Sm−Snk

∣∣∣∣
E > 2−k

])
< 2−k. (59.15.29)
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Then in fact,
Sk (ω)→ S (ω) a.e.ω (59.15.30)

and off a set of measure zero, the convergence of Sk to S is uniform.

Proof: Let nk ≤ l ≤ m. Then by Lemma 59.15.5

P

([
sup

nk<l≤m

∣∣∣∣Sl−Snk

∣∣∣∣> 2−k

])
≤ 2P

([∣∣∣∣Sm−Snk

∣∣∣∣> 2−k
])

In using this lemma, you could renumber the ζ i so that the sum

l

∑
j=nk+1

ζ j

corresponds to
l−nk

∑
j=1

ξ j

where ξ j = ζ j+nk
.

Then using 59.15.29,

P

([
sup

nk<l≤m

∣∣∣∣Sl−Snk

∣∣∣∣> 2−k

])
≤ 2P

([∣∣∣∣Sm−Snk

∣∣∣∣> 2−k
])

< 2−(k−1)

If Sl (ω) fails to converge then ω must be in infinitely many of the sets,[
sup
nk<l

∣∣∣∣Sl−Snk

∣∣∣∣> 2−k

]

each of which has measure no more than 2−(k−1). Thus ω must be in a set of measure zero.
This proves the lemma.

59.16 The Multivariate Normal Distribution
Definition 59.16.1 A random vector, X, with values in Rp has a multivariate normal dis-
tribution written as X∼Np (m,Σ) if for all Borel E ⊆ Rp,

λ X (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

for µ a given vector and Σ a given positive definite symmetric matrix.

Theorem 59.16.2 For X∼ Np (m,Σ) ,m = E (X) and

Σ = E
(
(X−m)(X−m)∗

)
.
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Proof: Let R be an orthogonal transformation such that

RΣR∗ = D = diag
(
σ

2
1, · · · ,σ2

p
)
.

Changing the variable by x−m = R∗y,

E (X) ≡
∫
Rp

xe
−1
2 (x−m)∗Σ−1(x−m)dx

(
1

(2π)p/2 det(Σ)1/2

)

=
∫
Rp

(R∗y+m)e−
1
2 y∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)

= m
∫
Rp

e−
1
2 y∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)
= m

by Fubini’s theorem and the easy to establish formula

1√
2πσ

∫
R

e−
y2

2σ2 dy = 1.

Next let M ≡ E
(
(X−m)(X−m)∗

)
. Thus, changing the variable as above by x−m =

R∗y

M =
∫
Rp

(x−m)(x−m)∗ e
−1
2 (x−m)∗Σ−1(x−m)dx

(
1

(2π)p/2 det(Σ)1/2

)

= R∗
∫
Rp

yy∗e−
1
2 y∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)
R

Therefore,

(RMR∗)i j =
∫
Rp

yiy je−
1
2 y∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)
= 0,

so; RMR∗ is a diagonal matrix.

(RMR∗)ii =
∫
Rp

y2
i e−

1
2 y∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)
.

Using Fubini’s theorem and the easy to establish equations,

1√
2πσ

∫
R

e−
y2

2σ2 dy = 1,
1√

2πσ

∫
R

y2e−
y2

2σ2 dy = σ
2,

it follows (RMR∗)ii = σ2
i . Hence RMR∗ = D and so M = R∗DR = Σ. ■

Theorem 59.16.3 Suppose X1 ∼ Np (m1,Σ1) , X2 ∼ Np (m2,Σ2) and the two random vec-
tors are independent. Then

X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2). (59.16.31)
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Also, if X∼ Np (m,Σ) then −X∼ Np (−m,Σ) . Furthermore, if X∼ Np (m,Σ) then

E
(
eit·X)= eit·me−

1
2 t∗Σt (59.16.32)

Also if a is a constant and X∼ Np (m,Σ) then aX∼ Np
(
am,a2Σ

)
.

Proof: Consider E
(
eit·X) for X∼ Np (m,Σ).

E
(
eit·X)≡ 1

(2π)p/2 (detΣ)1/2

∫
Rp

eit·xe−
1
2 (x−m)∗Σ−1(x−m)dx.

Let R be an orthogonal transformation such that

RΣR∗ = D = diag
(
σ

2
1, · · · ,σ2

p
)
.

Then let R(x−m) = y. Then

E
(
eit·X)= 1

(2π)p/2
∏

p
i=1 σ i

∫
Rp

eit·(R∗y+m)e−
1
2 y∗D−1ydy.

Therefore
E
(
eit·X)= 1

(2π)p/2
∏

p
i=1 σ i

∫
Rp

eis·(y+Rm)e−
1
2 y∗D−1ydy

where s =Rt. This equals

eit·m
p

∏
i=1

(∫
R

eisiyie
− 1

2σ2
i

y2
i
dyi

)
1√

2πσ i

= eit·m
p

∏
i=1

(∫
R

eisiσ iue−
1
2 u2

du
)

1√
2π

= eit·m
p

∏
i=1

e−
1
2 s2

i σ2
i

1√
2π

∫
R

e−
1
2 (u−isiσ i)

2
du

= eit·me−
1
2 ∑

p
i=1 s2

i σ2
i = eit·me−

1
2 t∗Σt

This proves 59.16.32.
Since X1 and X2 are independent, eit·X1 and eit·X2 are also independent. Hence

E
(
eit·X1+X2

)
= E

(
eit·X1

)
E
(
eit·X2

)
.

Thus,

E
(
eit·X1+X2

)
= E

(
eit·X1

)
E
(
eit·X2

)
= eit·m1e−

1
2 t∗Σ1teit·m2e−

1
2 t∗Σ2t

= eit·(m1+m2)e−
1
2 t∗(Σ1+Σ2)t
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which is the characteristic function of a random vector distributed as

Np (m1 +m2,Σ1 +Σ2).

Now it follows that X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2) by Theorem 59.8.4. This proves
59.16.31.

The assertion about −X is also easy to see because

E
(

eit·(−X)
)

= E
(

ei(−t)·X
)

=
1

(2π)p/2 (detΣ)1/2

∫
Rp

ei(−t)·xe−
1
2 (x−m)∗Σ−1(x−m)dx

=
1

(2π)p/2 (detΣ)1/2

∫
Rp

eit·xe−
1
2 (x+m)∗Σ−1(x+m)dx

which is the characteristic function of a random variable which is N (−m,Σ) . Theorem
59.8.4 again implies −X ∼ N (−m,Σ) . Finally consider the last claim. You apply what is
known about X with t replaced with at and then massage things. This gives the character-
istic function for aX is given by

E (exp(it·aX)) = exp(it·am)exp
(
−1

2
t∗Σa2t

)
which is the characteristic function of a normal random vector having mean am and co-
variance a2Σ. This proves the theorem.

Following [103] a random vector has a generalized normal distribution if its character-
istic function is given as

eit·me−
1
2 t∗Σt (59.16.33)

where Σ is symmetric and has nonnegative eigenvalues. For a random real valued vari-
able, m is scalar and so is Σ so the characteristic function of such a generalized normally
distributed random variable is

eitµ e−
1
2 t2σ2

(59.16.34)

These generalized normal distributions do not require Σ to be invertible, only that the eigen-
values be nonnegative. In one dimension this would correspond the characteristic function
of a dirac measure having point mass 1 at µ. In higher dimensions, it could be a mixture of
such things with more familiar things. I won’t try very hard to distinguish between gener-
alized normal distributions and normal distributions in which the covariance matrix has all
positive eigenvalues.

Here are some other interesting results about normal distributions found in [103]. The
next theorem has to do with the question whether a random vector is normally distributed
in the above generalized sense.

Theorem 59.16.4 Let X = (X1, · · · ,Xp) where each Xi is a real valued random variable.
Then X is normally distributed in the above generalized sense if and only if every linear
combination, ∑

p
j=1 aiXi is normally distributed. In this case the mean of X is

m = (E (X1) , · · · ,E (Xp))
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and the covariance matrix for X is

Σ jk = E
(
(X j−m j)(Xk−mk)

∗) .
Proof: Suppose first X is normally distributed. Then its characteristic function is of the

form
φ X (t) = E

(
eit·X)= eit·me−

1
2 t∗Σt.

Then letting a = (a1, · · · ,ap)

E
(

eit ∑
p
j=1 aiXi

)
= E

(
eita·X)= eita·me−

1
2 a∗Σat2

which is the characteristic function of a normally distributed random variable with mean
a ·m and variance σ2 = a∗Σa. This proves half of the theorem. If X is normally distributed,
then every linear combination is normally distributed.

Next suppose ∑
p
j=1 a jX j = a ·X is normally distributed with mean µ and variance σ2

so that its characteristic function is given in 59.16.34. I will now relate µ and σ2 to various
quantities involving the X j. Letting m j = E (X j) ,m = (m1, · · · ,mp)

∗

µ =
p

∑
j=1

a jE (X j) =
p

∑
j=1

a jm j, σ
2 = E

( p

∑
j=1

a jX j−
p

∑
j=1

a jm j

)2


= E

( p

∑
j=1

a j (X j−m j)

)2
= ∑

j,k
a jakE ((X j−m j)(Xk−mk))

It follows the mean of the normally distributed random variable, a ·X is

µ = ∑
j

a jm j = a ·m

and its variance is
σ

2 = a∗E
(
(X−m)(X−m)∗

)
a

Therefore,
E
(
eita·X)= eitµ e−

1
2 t2σ2

= eita·me−
1
2 t2a∗E((X−m)(X−m)∗)a.

Then letting s = ta this shows

E
(
eis·X) = eis·me−

1
2 s∗E((X−m)(X−m)∗)s

= eis·me−
1
2 s∗Σs

which is the characteristic function of a normally distributed random variable with m given
above and Σ given by

Σ jk = E ((X j−m j)(Xk−mk)) .

By assumption, a is completely arbitrary and so it follows that s is also. Hence, X is
normally distributed as claimed. ■
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Corollary 59.16.5 Let X=(X1, · · · ,Xp) ,Y= (Y1, · · · ,Yp) where each Xi,Yi is a real valued
random variable. Suppose also that for every a ∈ Rp, a ·X and a ·Y are both normally
distributed with the same mean and variance. Then X and Y are both multivariate normal
random vectors with the same mean and variance.

Proof: In the Proof of Theorem 59.16.4 the proof implies that the characteristic func-
tions of a ·X and a ·Y are both of the form

eitme−
1
2 σ2t2

.

Then as in the proof of that theorem, it must be the case that

m =
p

∑
j=1

a jm j

where E (Xi) = mi = E (Yi) and

σ
2 = a∗E

(
(X−m)(X−m)∗

)
a

= a∗E
(
(Y−m)(Y−m)∗

)
a

and this last equation must hold for every a. Therefore,

E
(
(X−m)(X−m)∗

)
= E

(
(Y−m)(Y−m)∗

)
≡ Σ

and so the characteristic function of both X and Y is eis·me−
1
2 s∗Σs as in the proof of Theorem

59.16.4. ■

Theorem 59.16.6 Suppose X = (X1, · · · ,Xp) is normally distributed with mean m and co-
variance Σ. Then if X1 is uncorrelated with any of the Xi, meaning

E ((X1−m1)(X j−m j)) = 0 for j > 1,

then X1 and (X2, · · · ,Xp) are both normally distributed and the two random vectors are
independent. Here m j ≡ E (X j) . More generally, if the covariance matrix is a diagonal
matrix, the random variables,

{
X1, · · · ,Xp

}
are independent.

Proof: From Theorem 59.16.2

Σ = E
(
(X−m)(X−m)∗

)
.

Then by assumption,

Σ =

(
σ2

1 0
0 Σp−1

)
. (59.16.35)

I need to verify that if E ∈ σ (X1) and F ∈ σ (X2, · · · ,Xp) , then

P(E ∩F) = P(E)P(F) .
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Let E = X−1
1 (A) and

F = (X2, · · · ,Xp)
−1 (B)

where A and B are Borel sets in R and Rp−1 respectively. Thus I need to verify that

P([(X1,(X2, · · · ,Xp)) ∈ (A,B)]) =

µ(X1,(X2,··· ,Xp)) (A×B) = µX1
(A)µ(X2,··· ,Xp) (B) . (59.16.36)

Using 59.16.35, Fubini’s theorem, and definitions,

µ(X1,(X2,··· ,Xp)) (A×B) =

∫
Rp

XA×B (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

=
∫
R

XA (x1)
∫
Rp−1

XB (X2, · · · ,Xp) ·

1

(2π)(p−1)/2√2π
(
σ2

1

)1/2 det(Σp−1)
1/2

e
−(x1−m1)

2

2σ2
1 ·

e
−1
2 (x′−m′)

∗
Σ
−1
p−1

(
x
′−m′

)
dx′dx1

where x′ = (x2, · · · ,xp) and m′ = (m2, · · · ,mp) . Now this equals

∫
R

XA (x1)
1√

2πσ2
1

e
−(x1−m1)

2

2σ2
1

∫
B

1

(2π)(p−1)/2 det(Σp−1)
1/2 · (59.16.37)

e
−1
2 (x′−m′)

∗
Σ
−1
p−1

(
x
′−m′

)
dx′dx. (59.16.38)

In case B = Rp−1, the inside integral equals 1 and

µX1
(A) = µ(X1,(X2,··· ,Xp))

(
A×Rp−1)

=
∫
R

XA (x1)
1√

2πσ2
1

e
−(x1−m1)

2

2σ2
1 dx1

which shows X1 is normally distributed as claimed. Similarly, letting A = R,

µ(X2,··· ,Xp) (B)

= µ(X1,(X2,··· ,Xp)) (R×B)

=
∫

B

1

(2π)(p−1)/2 det(Σp−1)
1/2 e

−1
2 (x′−m′)

∗
Σ
−1
p−1

(
x
′−m′

)
dx′
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and (X2, · · · ,Xp) is also normally distributed with mean m′ and covariance Σp−1. Now from
59.16.37, 59.16.36 follows. In case the covariance matrix is diagonal, the above reasoning
extends in an obvious way to prove the random variables,

{
X1, · · · ,Xp

}
are independent.

However, another way to prove this is to use Proposition 59.11.1 on Page 1889 and
consider the characteristic function. Let E (X j) = m j and

P =
p

∑
j=1

t jX j.

Then since X is normally distributed and the covariance is a diagonal,

D≡

 σ2
1 0

. . .
0 σ2

p


,

E
(
eiP) = E

(
eit·X)= eit·me−

1
2 t∗Σt

= exp

(
p

∑
j=1

it jm j−
1
2

t2
j σ

2
j

)
(59.16.39)

=
p

∏
j=1

exp
(

it jm j−
1
2

t2
j σ

2
j

)
Also,

E
(
eit jX j

)
= E

(
exp

(
it jX j + ∑

k ̸= j
i0Xk

))

= exp
(

it jm j−
1
2

t2
j σ

2
j

)
With 59.16.39, this shows

E
(
eiP)= p

∏
j=1

E
(
eit jX j

)
which shows by Proposition 59.11.1 that the random variables,{

X1, · · · ,Xp
}

are independent. ■

59.17 Use Of Characteristic Functions To Find Moments
Let X be a random variable with characteristic function

φ X (t)≡ E (exp(itX))
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Then this can be used to find moments of the random variable assuming they exist. The kth

moment is defined as

E
(

Xk
)
.

This can be done by using the dominated convergence theorem to differentiate the charac-
teristic function with respect to t and then plugging in t = 0. For example,

φ
′
X (t) = E (iX exp(itX))

and now plugging in t = 0 you get iE (X) . Doing another differentiation you obtain

φ
′′
X (t) = E

(
−X2 exp(itX)

)
and plugging in t = 0 you get −E

(
X2
)

and so forth.
An important case is where X is normally distributed with mean 0 and variance σ2. In

this case, as shown above, the characteristic function is

e−
1
2 t2σ2

Also all moments exist when X is normally distributed. So what are these moments?

Dt

(
e−

1
2 t2σ2

)
=−tσ2e−

1
2 t2σ2

and plugging in t = 0 you find the mean equals 0 as expected.

Dt

(
−tσ2e−

1
2 t2σ2

)
=−σ

2e−
1
2 t2σ2

+ t2
σ

4e−
1
2 t2σ2

and plugging in t = 0 you find the second moment is σ2. Then do it again.

Dt

(
−σ

2e−
1
2 t2σ2

+ t2
σ

4e−
1
2 t2σ2

)
= 3σ

4te−
1
2 t2σ2 − t3

σ
6e−

1
2 t2σ2

Then E
(
X3
)
= 0.

Dt

(
3σ

4te−
1
2 t2σ2 − t3

σ
6e−

1
2 t2σ2

)
= 3σ

4e−
1
2 t2σ2 −6σ

6t2e−
1
2 t2σ2

+ t4
σ

8e−
1
2 t2σ2

and so E
(
X4
)
= 3σ4. By now you can see the pattern. If you continue this way, you find

the odd moments are all 0 and

E
(
X2m)=Cm

(
σ

2)m
. (59.17.40)

This is an important observation.
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59.18 The Central Limit Theorem
The central limit theorem is one of the most marvelous theorems in mathematics. It can be
proved through the use of characteristic functions. Recall for x ∈ Rp,

||x||
∞
≡max

{∣∣x j
∣∣ , j = 1, · · · , p

}
.

Also recall the definition of the distribution function for a random vector, X.

FX (x)≡ P(X j ≤ x j, j = 1, · · · , p) .

Definition 59.18.1 Let {Xn} be random vectors with values in Rp. Then {λ Xn}
∞

n=1 is
called “tight” if for all ε > 0 there exists a compact set, Kε such that

λ Xn ([x /∈ Kε ])< ε

for all λ Xn . Similarly, if {µn} is a sequence of probability measures defined on the Borel
sets of Rp, then this sequence is “tight” if for each ε > 0 there exists a compact set, Kε

such that
µn ([x /∈ Kε ])< ε

for all µn.

Lemma 59.18.2 If {Xn}is a sequence of random vectors with values in Rpsuch that

lim
n→∞

φ Xn
(t) = ψ (t)

for all t, where ψ (0) = 1 and ψ is continuous at 0, then {λ Xn}
∞

n=1 is tight.

Proof: Let e j be the jth standard unit basis vector.∣∣∣∣1u
∫ u

−u

(
1−φ Xn

(te j)
)

dt
∣∣∣∣

=

∣∣∣∣1u
∫ u

−u

(
1−

∫
Rp

eitx j dλ Xn

)
dt
∣∣∣∣

=

∣∣∣∣1u
∫ u

−u

(∫
Rp

(
1− eitx j

)
dλ Xn

)
dt
∣∣∣∣

=

∣∣∣∣∫Rp

1
u

∫ u

−u

(
1− eitx j

)
dtdλ Xn (x)

∣∣∣∣
=

∣∣∣∣2∫Rp

(
1−

sin(ux j)

ux j

)
dλ Xn (x)

∣∣∣∣
≥ 2

∫
[|x j|≥ 2

u ]

(
1− 1∣∣ux j

∣∣
)

dλ Xn (x)
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≥ 2
∫
[|x j|≥ 2

u ]

(
1− 1
|u|(2/u)

)
dλ Xn (x)

=
∫
[|x j|≥ 2

u ]
1dλ Xn (x)

= λ Xn

([
x :
∣∣x j
∣∣≥ 2

u

])
.

If ε > 0 is given, there exists r > 0 such that if u≤ r,

1
u

∫ u

−u
(1−ψ (te j))dt < ε/p

for all j = 1, · · · , p and so, by the dominated convergence theorem, the same is true with
φ Xn

in place of ψ provided n is large enough, say n≥ N (u). Thus, if u≤ r, and n≥ N (u),

λ Xn

([
x :
∣∣x j
∣∣≥ 2

u

])
< ε/p

for all j ∈ {1, · · · , p}. It follows that for u≤ r and n≥ N (u) ,

λ Xn

([
x : ||x||

∞
≥ 2

u

])
< ε.

because [
x : ||x||

∞
≥ 2

u

]
⊆ ∪p

j=1

[
x :
∣∣x j
∣∣≥ 2

u

]
This proves the lemma because there are only finitely many measures, λ Xn for n < N (u)
and the compact set can be enlarged finitely many times to obtain a single compact set, Kε

such that for all n,λ Xn ([x /∈ Kε ])< ε. This proves the lemma.

Lemma 59.18.3 If φ Xn
(t)→ φ X (t) for all t, then whenever ψ ∈S,

λ Xn (ψ)≡
∫
Rp

ψ (y)dλ Xn (y)→
∫
Rp

ψ (y)dλ X (y)≡ λ X (ψ)

as n→ ∞.

Proof: Recall that if X is any random vector, its characteristic function is given by

φ X (y)≡
∫
Rp

eiy·xdλ X (x) .

Also remember the inverse Fourier transform. Letting ψ ∈S, the Schwartz class,

F−1 (λ X)(ψ) ≡ λ X
(
F−1

ψ
)
≡
∫
Rp

F−1
ψdλ X

=
1

(2π)p/2

∫
Rp

∫
Rp

eiy·x
ψ (x)dxdλ X (y)

=
1

(2π)p/2

∫
Rp

ψ (x)
∫
Rp

eiy·xdλ X (y)dx

=
1

(2π)p/2

∫
Rp

ψ (x)φ X (x)dx
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and so, considered as elements of S∗,

F−1 (λ X) = φ X (·)(2π)−(p/2) ∈ L∞.

By the dominated convergence theorem

(2π)p/2 F−1 (λ Xn)(ψ) ≡
∫
Rp

φ Xn
(t)ψ (t)dt

→
∫
Rp

φ X (t)ψ (t)dt

= (2π)p/2 F−1 (λ X)(ψ)

whenever ψ ∈S. Thus

λ Xn (ψ) = FF−1
λ Xn (ψ)≡ F−1

λ Xn (Fψ)→ F−1
λ X (Fψ)

≡ F−1Fλ X (ψ) = λ X (ψ).

This proves the lemma.

Lemma 59.18.4 If φ Xn
(t)→ φ X (t) , then if ψ is any bounded uniformly continuous func-

tion,
lim
n→∞

∫
Rp

ψdλ Xn =
∫
Rp

ψdλ X.

Proof: Let ε > 0 be given, let ψ be a bounded function in C∞ (Rp). Now let η ∈C∞
c (Qr)

where Qr ≡ [−r,r]p satisfy the additional requirement that η = 1 on Qr/2 and η (x) ∈ [0,1]
for all x. By Lemma 59.18.2 the set, {λ Xn}

∞

n=1 , is tight and so if ε > 0 is given, there exists
r sufficiently large such that for all n,∫

[x/∈Qr/2]
|1−η | |ψ|dλ Xn <

ε

3
,

and ∫
[x/∈Qr/2]

|1−η | |ψ|dλ X <
ε

3
.

Thus, ∣∣∣∣∫Rp
ψdλ Xn −

∫
Rp

ψdλ X

∣∣∣∣≤ ∣∣∣∣∫Rp
ψdλ Xn −

∫
Rp

ψηdλ Xn

∣∣∣∣+∣∣∣∣∫Rp
ψηdλ Xn −

∫
Rp

ψηdλ X

∣∣∣∣+ ∣∣∣∣∫Rp
ψηdλ X−

∫
Rp

ψdλ X

∣∣∣∣
≤ 2ε

3
+

∣∣∣∣∫Rp
ψηdλ Xn −

∫
Rp

ψηdλ X

∣∣∣∣< ε

whenever n is large enough by Lemma 59.18.3 because ψη ∈ S. This establishes the
conclusion of the lemma in the case where ψ is also infinitely differentiable. To consider
the general case, let ψ only be uniformly continuous and let ψk = ψ ∗ φ k where φ k is a
mollifier whose support is in (−(1/k) ,(1/k))p. Then ψk converges uniformly to ψ and so
the desired conclusion follows for ψ after a routine estimate. This proves the lemma.
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Definition 59.18.5 Let µ be a Radon measure on Rp. A Borel set, A, is a µ continuity set
if µ (∂A) = 0 where ∂A≡ A\ int(A) and int denotes the interior.

The main result is the following continuity theorem. More can be said about the equiv-
alence of various criteria [19].

Theorem 59.18.6 If φ Xn
(t)→ φ X (t) then λ Xn (A)→ λ X (A) whenever A is a λ X continu-

ity set.

Proof: First suppose K is a closed set and let

ψk (x)≡ (1− k dist(x,K))+.

Thus, since K is closed limk→∞ψk (x) = XK (x). Choose k large enough that∫
Rp

ψkdλ X ≤ λ X (K)+ ε.

Then by Lemma 59.18.4, applied to the bounded uniformly continuous function ψk,

lim sup
n→∞

λ Xn (K)≤ lim sup
n→∞

∫
ψkdλ Xn =

∫
ψkdλ X ≤ λ X (K)+ ε.

Since ε is arbitrary, this shows

lim sup
n→∞

λ Xn (K)≤ λ X (K)

for all K closed.
Next suppose V is open and let

ψk (x) = 1−
(
1− k dist

(
x,VC))+.

Thus ψk (x) ∈ [0,1] ,ψk = 1 if dist
(
x,VC

)
≥ 1/k, and ψk = 0 on VC. Since V is open, it

follows
lim
k→∞

ψk (x) = XV (x).

Choose k large enough that ∫
ψkdλ X ≥ λ X (V )− ε.

Then by Lemma 59.18.4,

lim inf
n→∞

λ Xn (V )≥ lim inf
n→∞

∫
ψk (x)dλ Xn =

=
∫

ψk (x)dλ X ≥ λ X (V )− ε

and since ε is arbitrary,
lim inf

n→∞
λ Xn (V )≥ λ X (V ).
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Now let λ X (∂A) = 0 for A a Borel set.

λ X (int(A)) ≤ lim inf
n→∞

λ Xn (int(A))≤ lim inf
n→∞

λ Xn (A)≤

lim sup
n→∞

λ Xn (A) ≤ lim sup
n→∞

λ Xn

(
A
)
≤ λ X

(
A
)
.

But λ X (int(A)) = λ X
(
A
)

by assumption and so limn→∞ λ Xn (A) = λ X (A) as claimed. This
proves the theorem.

As an application of this theorem the following is a version of the central limit theorem
in the situation in which the limit distribution is multivariate normal. It concerns a sequence
of random vectors, {Xk}∞

k=1, which are identically distributed, have finite mean m, and
satisfy

E
(
|Xk|2

)
< ∞. (59.18.41)

Definition 59.18.7 For X a random vector with values in Rp, let

FX (x)≡ P
({

X j ≤ x j for each j = 1,2, ..., p
})

.

Theorem 59.18.8 Let {Xk}∞

k=1 be random vectors satisfying 59.18.41, which are inde-
pendent and identically distributed with mean m and positive definite covariance ≡
E
(
(X−m)(X−m)∗

)
. Let

Zn ≡
n

∑
j=1

X j−m√
n

. (59.18.42)

Then for Z∼Np (0, ) ,
lim
n→∞

FZn (x) = FZ (x) (59.18.43)

for all x.

Proof: The characteristic function of Zn is given by

φ Zn
(t) = E

(
eit·∑n

j=1
X j−m
√

n

)
=

n

∏
j=1

E

(
e

it·
(

X j−m
√

n

))
.

By Taylor’s theorem applied to real and imaginary parts of eix, it follows

eix = 1+ ix− f (x)
x2

2

where | f (x)|< 2 and
lim
x→0

f (x) = 1.

Denoting X j as X, this implies

eit·
(

X−m√
n

)
= 1+ it·X−m√

n
− f

(
t·
(

X−m√
n

))
(t·(X−m))2

2n
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Thus

eit·
(

X−m√
n

)
= 1+ it·X−m√

n
− (t·(X−m))2

2n

+

(
1− f

(
t·
(

X−m√
n

)))
(t·(X−m))2

2n
.

Thus

φ Zn
(t) =

n

∏
j=1

[
1−E

(
(t·(X−m))2

2n

)

+E

((
1− f

(
t·
(

X−m√
n

)))
(t·(X−m))2

2n

)]

=
n

∏
j=1

[
1− 1

2n
t∗Σt +

1
2n

E
((

1− f
(

t·
(

X−m√
n

)))
(t·(X−m))2

)]
. (59.18.44)

(Note (t·(X−m))2 = t∗ (X−m)(X−m)∗ t.) Now here is a simple inequality for complex
numbers whose moduli are no larger than one. I will give a proof of this at the end. It
follows easily by induction.

|z1 · · ·zn−w1 · · ·wn| ≤
n

∑
k=1
|zk−wk|. (59.18.45)

Also for each t, and all n large enough,∣∣∣∣ 1
2n

E
((

1− f
(

t·
(

X−m√
n

)))
(t·(X−m))2

)∣∣∣∣< 1.

Applying 59.18.45 to 59.18.44,

φ Zn
(t) =

(
n

∏
j=1

(
1− 1

2n
t∗Σt

))
+ en

=

(
1− 1

2n
t∗Σt

)n

+ en

where

|en| ≤
n

∑
j=1

∣∣∣∣ 1
2n

E
((

1− f
(

t·
(

X−m√
n

)))
(t·(X−m))2

)∣∣∣∣
=

1
2

∣∣∣∣E((1− f
(

t·
(

X−m√
n

)))
(t·(X−m))2

)∣∣∣∣
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which converges to 0 as n→ ∞ by the Dominated Convergence theorem. Therefore,

lim
n→∞

∣∣∣∣φ Zn
(t)−

(
1− t∗Σt

2n

)n∣∣∣∣= 0

and so
lim
n→∞

φ Zn
(t) = e−

1
2 t∗Σt = φ Z (t)

where Z∼Np (0, ). Therefore, FZn (x)→ FZ (x) for all x because Rx ≡∏
p
k=1(−∞,xk] is a

set of λ Z continuity due to the assumption that λ Z≪mp which is implied by Z∼Np (0, ).
This proves the theorem.

Here is the proof of the little inequality used above. The inequality is obviously true
if n = 1. Assume it is true for n. Then since all the numbers have absolute value no larger
than one, ∣∣∣∣∣n+1

∏
i=1

zi−
n+1

∏
i=1

wi

∣∣∣∣∣ ≤
∣∣∣∣∣n+1

∏
i=1

zi− zn+1

n

∏
i=1

wi

∣∣∣∣∣
+

∣∣∣∣∣zn+1

n

∏
i=1

wi−
n+1

∏
i=1

wi

∣∣∣∣∣
≤

∣∣∣∣∣ n

∏
i=1

zi−
n

∏
i=1

wi

∣∣∣∣∣+ |zn+1−wn+1|

≤
n+1

∑
k=1
|zk−wk|

by induction.
Suppose X is a random vector with covariance Σ and mean m, and suppose also that

Σ−1 exists. Consider Σ−(1/2) (X−m)≡ Y. Then E (Y) = 0 and

E (YY∗) = E
(

Σ
−(1/2) (X−m)(X∗−m)Σ

−(1/2)
)

= Σ
−(1/2)E ((X−m)(X∗−m))Σ

−(1/2) = I.

Thus Y has zero mean and covariance I. This implies the following corollary to Theorem
59.18.8.

Corollary 59.18.9 Let independent identically distributed random variables,{
X j
}∞

j=1

have mean m and positive definite covariance where −1 exists. Then if

Zn ≡
n

∑
j=1

−(1/2) (X j−m)√
n

,

it follows that for Z∼Np (0,I) ,
FZn (x)→ FZ (x)

for all x.
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59.19 Characteristic Functions, Prokhorov Theorem
Recall one can define the characteristic function of a probability measure. In a sense it is
more natural.

Definition 59.19.1 Let µ be a probability measure defined on the Borel sets of Rp. Then

φ µ (t)≡
∫
Rp

eit·xdµ.

Also {µn}
∞

n=1 is called “tight” if for all ε > 0 there exists a compact set, Kε such that

µn ([x /∈ Kε ])< ε

for all µn.

Then there is a version of Lemma 59.18.2 whose proof is identical to the proof of that
lemma.

Lemma 59.19.2 If {µn}is a sequence of Borel probability measures defined on the Borel
sets of Rpsuch that

lim
n→∞

φ µn
(t) = ψ (t)

for all t, where ψ (0) = 1 and ψ is continuous at 0, then {µn}
∞

n=1 is tight.

Proof: Let e j be the jth standard unit basis vector. Letting t = te j in the definition,∣∣∣∣1u
∫ u

−u

(
1−φ µn

(te j)
)

dt
∣∣∣∣ (59.19.46)

=

∣∣∣∣1u
∫ u

−u

(
1−

∫
Rp

eitx j dµn (x)
)

dt
∣∣∣∣

=

∣∣∣∣1u
∫ u

−u

(∫
Rp

(
1− eitx j

)
dµn (x)

)
dt
∣∣∣∣

=

∣∣∣∣∫Rp

1
u

∫ u

−u

(
1− eitx j

)
dtdµn (x)

∣∣∣∣
=

∣∣∣∣2∫Rp

(
1−

sin(ux j)

ux j

)
dµn (x)

∣∣∣∣
≥ 2

∫
[|x j|≥ 2

u ]

(
1− 1∣∣ux j

∣∣
)

dµn (x)

≥ 2
∫
[|x j|≥ 2

u ]

(
1− 1
|u|(2/u)

)
dµn (x)
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=
∫
[|x j|≥ 2

u ]
1dµn (x)

= µn

([
x :
∣∣x j
∣∣≥ 2

u

])
.

If ε > 0 is given, there exists r > 0 such that if u≤ r,

1
u

∫ u

−u
(1−ψ (te j))dt < ε/p

for all j = 1, · · · , p and so, by the dominated convergence theorem, the same is true with
φ µn

in place of ψ provided n is large enough, say n≥ N (u). Thus, from 59.19.46, if u≤ r,
and n≥ N (u),

µn

([
x :
∣∣x j
∣∣≥ 2

u

])
< ε/p

for all j ∈ {1, · · · , p}. It follows that for u≤ r and n≥ N (u) ,

µn

([
x : ||x||

∞
≥ 2

u

])
< ε.

because [
x : ||x||

∞
≥ 2

u

]
⊆ ∪p

j=1

[
x :
∣∣x j
∣∣≥ 2

u

]
This proves the lemma because there are only finitely many measures, µn for n < N (u) and
the compact set can be enlarged finitely many times to obtain a single compact set, Kε such
that for all n,µn ([x /∈ Kε ])< ε. ■

As before, there are simple modifications of Lemmas 59.18.3 and 59.18.4. The first of
these is as follows.

Lemma 59.19.3 If φ µn
(t)→ φ µ (t) for all t, then whenever ψ ∈S, the Schwartz class,

µn (ψ)≡
∫
Rp

ψ (y)dµn (y)→
∫
Rp

ψ (y)dµ (y)≡ µ (ψ)

as n→ ∞.

Proof: By definition,

φ µ (y)≡
∫
Rp

eiy·xdµ (x) .

Also remember the inverse Fourier transform. Letting ψ ∈S, the Schwartz class,

F−1 (µ)(ψ) ≡ µ
(
F−1

ψ
)
≡
∫
Rp

F−1
ψdµ

=
1

(2π)p/2

∫
Rp

∫
Rp

eiy·x
ψ (x)dxdµ (y)

=
1

(2π)p/2

∫
Rp

ψ (x)
∫
Rp

eiy·xdµ (y)dx

=
1

(2π)p/2

∫
Rp

ψ (x)φ µ (x)dx
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and so, considered as elements of S∗,

F−1 (µ) = φ µ (·)(2π)−(p/2) ∈ L∞.

By the dominated convergence theorem

(2π)p/2 F−1 (µn)(ψ) ≡
∫
Rp

φ µn
(t)ψ (t)dt

→
∫
Rp

φ µ (t)ψ (t)dt

= (2π)p/2 F−1 (µ)(ψ)

whenever ψ ∈S. Thus

µn (ψ) = FF−1
µn (ψ)≡ F−1

µn (Fψ)→ F−1
µ (Fψ)

≡ F−1Fµ (ψ) = µ (ψ). ■

The version of Lemma 59.18.4 is the following.

Lemma 59.19.4 If φ µn
(t)→ φ µ (t) where {µn} and µ are probability measures defined

on the Borel sets of Rp, then if ψ is any bounded uniformly continuous function,

lim
n→∞

∫
Rp

ψdµn =
∫
Rp

ψdµ.

Proof: Let ε > 0 be given, let ψ be a bounded function in C∞ (Rp). Now let η ∈
C∞

c (Qr) where Qr ≡ [−r,r]p satisfy the additional requirement that η = 1 on Qr/2 and
η (x) ∈ [0,1] for all x. By Lemma 59.19.2 the set, {µn}

∞

n=1 , is tight and so if ε > 0 is
given, there exists r sufficiently large such that for all n,∫

[x/∈Qr/2]
|1−η | |ψ|dµn <

ε

3
,

and ∫
[x/∈Qr/2]

|1−η | |ψ|dµ <
ε

3
.

Thus, ∣∣∣∣∫Rp
ψdµn−

∫
Rp

ψdµ

∣∣∣∣≤ ∣∣∣∣∫Rp
ψdµn−

∫
Rp

ψηdµn

∣∣∣∣+∣∣∣∣∫Rp
ψηdµn−

∫
Rp

ψηdµ

∣∣∣∣+ ∣∣∣∣∫Rp
ψηdµ−

∫
Rp

ψdµ

∣∣∣∣
≤ 2ε

3
+

∣∣∣∣∫Rp
ψηdµn−

∫
Rp

ψηdµ

∣∣∣∣< ε

whenever n is large enough by Lemma 59.19.3 because ψη ∈ S. This establishes the
conclusion of the lemma in the case where ψ is also infinitely differentiable. To consider
the general case, let ψ only be uniformly continuous and let ψk = ψ ∗ φ k where φ k is a
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mollifier whose support is in (−(1/k) ,(1/k))p. Then ψk converges uniformly to ψ and so
the desired conclusion follows for ψ after a routine estimate. ■

The next theorem is really important. It gives the existence of a measure based on an
assumption that a set of measures is tight. The next theorem is Prokhorov’s theorem about
a tight set of measures. Recall that Λ is tight means that for every ε > 0 there exists K
compact such that µ

(
KC
)
< ε for all µ ∈ Λ.

Theorem 59.19.5 Let Λ = {µn}
∞

n=1 be a sequence of probability measures defined on the
Borel sets of Rp. If Λ is tight then there exists a probability measure, λ and a subsequence
of {µn}

∞

n=1 , still denoted by {µn}
∞

n=1 such that whenever φ is a continuous bounded com-
plex valued function defined on E,

lim
n→∞

∫
φdµn =

∫
φdλ .

Proof: By tightness, there exists an increasing sequence of compact sets, {Kn} such
that

µ (Kn)> 1− 1
n

for all µ ∈ Λ. Now letting µ ∈ Λ and φ ∈C (Kn) such that ||φ ||
∞
≤ 1, it follows∣∣∣∣∫Kn

φdµ

∣∣∣∣≤ µ (Kn)≤ 1

and so the restrictions of the measures of Λ to Kn are contained in the unit ball of C (Kn)
′ .

Recall from the Riesz representation theorem, the dual space of C (Kn) is a space of com-
plex Borel measures. Theorem 17.5.5 on Page 462 implies the unit ball of C (Kn)

′ is weak
∗ sequentially compact. This follows from the observation that C (Kn) is separable which
follows easily from the Weierstrass approximation theorem. Thus the unit ball in C (Kn)

′ is
actually metrizable by Theorem 17.5.5 on Page 462. Therefore, there exists a subsequence
of Λ, {µ1k} such that their restrictions to K1 converge weak ∗ to a measure, λ 1 ∈C (K1)

′.
That is, for every φ ∈C (K1) ,

lim
k→∞

∫
K1

φdµ1k =
∫

K1

φdλ 1

By the same reasoning, there exists a further subsequence {µ2k} such that the restrictions
of these measures to K2 converge weak ∗ to a measure λ 2 ∈ C (K2)

′ etc. Continuing this
way,

µ11,µ12,µ13, · · · → Weak∗ in C (K1)
′

µ21,µ22,µ23, · · · → Weak∗ in C (K2)
′

µ31,µ32,µ33, · · · → Weak∗ in C (K3)
′

...

Here the jth sequence is a subsequence of the ( j−1)th. Let λ n denote the measure in
C (Kn)

′ to which the sequence {µnk}
∞

k=1 converges weak ∗. Let {µn} ≡ {µnn} , the diag-
onal sequence. Thus this sequence is ultimately a subsequence of every one of the above
sequences and so µn converges weak ∗ in C (Km)

′ to λ m for each m.
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Claim: For p > n, the restriction of λ p to the Borel sets of Kn equals λ n.
Proof of claim: Let H be a compact subset of Kn. Then there are sets, Vl open in Kn

which are decreasing and whose intersection equals H. This follows because this is a metric
space. Then let H ≺ φ l ≺Vl . It follows

λ n (Vl) ≥
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≥ λ p (H) .

Now considering the ends of this inequality, let l→ ∞ and pass to the limit to conclude

λ n (H)≥ λ p (H) .

Similarly,

λ n (H) ≤
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≤ λ p (Vl) .

Then passing to the limit as l→ ∞, it follows

λ n (H)≤ λ p (H) .

Thus the restriction of λ p,λ p|Kn to the compact sets of Kn equals λ n. Then by inner regu-
larity it follows the two measures, λ p|Kn , and λ n are equal on all Borel sets of Kn. Recall
that for finite measures on the Borel sets of separable metric spaces, regularity is obtained
for free.

It is fairly routine to exploit regularity of the measures to verify that λ m (F)≥ 0 for all
F a Borel subset of Km. (Whenever φ ≥ 0,

∫
Km

φdλ m ≥ 0 because
∫

Km
φdµk ≥ 0. Now you

can approximate XF with a suitable nonnegative φ using regularity of the measure.) Also,
letting φ ≡ 1,

1≥ λ m (Km)≥ 1− 1
m
. (59.19.47)

Define for F a Borel set,

λ (F)≡ lim
n→∞

λ n (F ∩Kn) .

The limit exists because the sequence on the right is increasing due to the above observation
that λ n = λ m on the Borel subsets of Km whenever n > m. Thus for n > m

λ n (F ∩Kn)≥ λ n (F ∩Km) = λ m (F ∩Km) .

Now let {Fk} be a sequence of disjoint Borel sets. Then

λ (∪∞
k=1Fk) ≡ lim

n→∞
λ n (∪∞

k=1Fk ∩Kn) = lim
n→∞

λ n (∪∞
k=1 (Fk ∩Kn))

= lim
n→∞

∞

∑
k=1

λ n (Fk ∩Kn) =
∞

∑
k=1

λ (Fk)
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the last equation holding by the monotone convergence theorem.
It remains to verify

lim
k→∞

∫
φdµk =

∫
φdλ

for every φ bounded and continuous. This is where tightness is used again. Suppose
||φ ||

∞
< M. Then as noted above,

λ n (Kn) = λ (Kn)

because for p > n,λ p (Kn) = λ n (Kn) and so letting p→ ∞, the above is obtained. Also,
from 59.19.47,

λ
(
KC

n
)

= lim
p→∞

λ p
(
KC

n ∩Kp
)

≤ lim sup
p→∞

(λ p (Kp)−λ p (Kn))

≤ lim sup
p→∞

(λ p (Kp)−λ n (Kn))

≤ lim sup
p→∞

(
1−
(

1− 1
n

))
=

1
n

Consequently,∣∣∣∣∫ φdµk−
∫

φdλ

∣∣∣∣≤ ∣∣∣∣∫KC
n

φdµk +
∫

Kn

φdµk−
(∫

Kn

φdλ +
∫

KC
n

φdλ

)∣∣∣∣
≤
∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk−
∫

KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk

∣∣∣∣+ ∣∣∣∣∫KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ M
n
+

M
n

First let n be so large that 2M/n < ε/2 and then pick k large enough that the above expres-
sion is less than ε. ■

Definition 59.19.6 Let µ,{µn} be probability measures defined on the Borel sets of Rp

and let the sequence of probability measures, {µn} satisfy

lim
n→∞

∫
φdµn =

∫
φdµ.

for every φ a bounded continuous function. Then µn is said to converge weakly to µ .

With the above, it is possible to prove the following amazing theorem of Levy.
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Theorem 59.19.7 Suppose {µn} is a sequence of probability measures defined on the

Borel sets of Rp and let
{

φ µn

}
denote the corresponding sequence of characteristic func-

tions. If there exists ψ which is continuous at 0, ψ (0) = 1, and for all t,

φ µn
(t)→ ψ (t) ,

then there exists a probability measure, λ defined on the Borel sets of Rp and

φ λ (t) = ψ (t) .

That is, ψ is a characteristic function of a probability measure. Also, {µn} converges
weakly to λ .

Proof: By Lemma 59.19.2 {µn} is tight. Therefore, there exists a subsequence
{

µnk

}
converging weakly to a probability measure, λ . In particular,

φ λ (t) =
∫

eit·xdλ (x) = lim
n→∞

∫
eit·xdµnk

(x)

= lim
n→∞

φ µnk
(t) = ψ (t)

The last claim follows from this and Lemma 59.19.4. ■
Note how it was only necessary to assume ψ (0) = 1 and ψ is continuous at 0 in order

to conclude that ψ is a characteristic function. Thus you find that |ψ (t)| ≤ 1 for free. This
helps to see why Prokhorov’s and Levy’s theorems are so amazing.

59.20 Generalized Multivariate Normal
In this section is a further explanation of generalized multivariable normal random vari-
ables. Recall that these have characteristic function equal to eit·me−

1
2 t∗Σt where Σ≥ 0,Σ =

Σ∗. The new detail is the case that det(Σ) = 0.

Definition 59.20.1 A random vector, X, with values in Rp has a multivariate normal dis-
tribution written as

X∼Np (m,Σ)

if for all Borel E ⊆ Rp, the distribution measure is given by

λ X (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

for m a given vector and Σ a given positive definite symmetric matrix. Recall also that the
characteristic function of this random variable is

E
(
eit·X)= eit·me−

1
2 t∗Σt (59.20.48)
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So what if det(Σ) = 0? Is there a probability measure having characteristic equation

eit·me−
1
2 t∗Σt?

Let Σn→ Σ in the Frobenius norm, det(Σn)> 0. That is the i jth components converge. Let
Xn be the random variable which is associated with m and Σn. Thus for φ ∈C0 (Rp) ,

|λ Xn (φ)| ≡

∣∣∣∣∣
∫
Rp

φ (x)
1

(2π)p/2 det(Σn)
1/2 e

−1
2 (x−m)∗Σ−1

n (x−m)dx

∣∣∣∣∣≤ ∥φ∥C0(Rp)

Thus these λ Xn are bounded in the weak ∗ topology of C0 (Rp)′ which is the space of signed
measures. By the separability of C0 (Rp) and the Banach Alaoglu theorem and the Riesz
representation theorem for C0 (Rp)′, there is a subsequence still denoted as λ Xn which
converges weak ∗ to a finite measure µ . Is µ a probability measure? Is the characteristic
function of this measure eit·me−

1
2 t∗Σt?

Note that E
(
eit·Xn

)
= eit·me−

1
2 t∗Σnt→ eit·me−

1
2 t∗Σt and this last function of t is contin-

uous at 0. Therefore, by Lemma 59.18.2, these measures λ Xn are also tight. Let ε > 0 be
given. Then there is a compact set Kε such that λ Xn (x /∈ Kε)< ε. Now let φ = 1 on Kε and
φ ∈Cc (Rp), φ ≥ 0,φ (x) ∈ [0,1]. Then

(1− ε)≤
∫
Rp

φdλ Xn →
∫
Rp

φdµ ≤ µ (Rp)

and so, since ε is arbitrary, this shows that µ (Rp)≥ 1. However, µ (Rp)≤ 1 because

µ (Rn)≤
∫
Rp

ψdµ + ε ≤
∫
Rp

ψdλ Xn +2ε ≤ 1+2ε

for suitable ψ ∈ Cc (Rp) having values in [0,1] and n. Thus µ is indeed a probability
measure.

Now what of its characteristic function?

eit·me−
1
2 t∗Σt = lim

n→∞
eit·me−

1
2 t∗Σnt = lim

n→∞

∫
Rp

eit·xdλ Xn (x) (59.20.49)

Is this equal to ∫
Rp

eit·xdµ (x)?

Using tightness again,∣∣∣∣∫Rp
eit·xdµ (x)−

∫
Rp

eit·xdλ Xn (x)
∣∣∣∣≤ ∣∣∣∣∫Rp

eit·xdµ (x)−
∫
Rp

ψeit·xdµ (x)
∣∣∣∣

+

∣∣∣∣∫Rp
ψeit·xdµ (x)−

∫
Rp

ψeit·xdλ Xn (x)
∣∣∣∣+ ∣∣∣∣∫Rp

ψeit·xdλ Xn (x)−
∫
Rp

eit·xdλ Xn (x)
∣∣∣∣

≤ ε +

∣∣∣∣∫Rp
ψeit·xdµ (x)−

∫
Rp

ψeit·xdλ Xn (x)
∣∣∣∣+ ε
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for a suitable choice of ψ ∈ Cc (Rp) having values in [0,1]. The middle term is less than
ε if n large enough thanks to the weak ∗ convergence of λ Xn to µ . Hence the last limit
in 59.20.49 equals

∫
Rp eit·xdµ (x) as hoped. Letting X be a random variable having µ

as its distribution measure, (You could take Ω = Rp and the measurable sets the Borel
sets.) what about E

(
(X−m)(X−m)∗

)
? Is it equal to Σ? What about the question whether

X ∈ Lq (Ω;Rp) for all q > 1? This is clearly true for the case where Σ−1 exists, but what of
the case where det(Σ) = 0?

For simplicity, say m = 0.∫
Ω

|X|q dP =
∫

∞

0
P(|X|q > λ )dλ =

∫
∞

0
µ (|x|q > λ )dλ

≤
∫

∞

0
µ (|x|q > λ )dλ ≤

∫
∞

0

∫
Rp

(1−ψλ )dµdλ

where ψλ = 1 on B
(

0, 1
2 λ

1/q
)

is nonnegative, and is in Cc

(
B
(

0,λ 1/q
))

. Now from the
above, µ (Rp) = λ Xn (Rp) = 1 and so the inside integral satisfies∫

Rp
(1−ψλ )dµ = lim

n→∞

∫
Rp

(1−ψλ )dλ Xn (59.20.50)

because ∫
Rp

dµ =
∫
Rp

dλ Xn = 1

and as to the other terms, the weak ∗ convergence gives∫
Rp

ψλ dµ = lim
n→∞

∫
Rp

ψλ dλ Xn

Each of these integrals in 59.20.50 is no larger than 1. Hence from Fatou’s lemma,∫
Ω

|X|q dP≤
∫

∞

0

∫
Rp

(1−ψλ )dµdλ ≤ lim inf
n→∞

∫
∞

0

∫
Rp

(1−ψλ )dλ Xndλ

Is this on the right finite? It is dominated by

lim inf
n→∞

∫
∞

0
λ Xn

(
|x|q > 1

2q λ

)
dλ = lim inf

n→∞
2q
∫

∞

0
λ Xn (|x|

q > δ )dδ

= lim inf
n→∞

2qE (|Xn|q)

So is a subsequence of {E (|Xn|q)} bounded? It equals∫
Rp
|x|q 1

(2π)p/2 det(Σn)
1/2 e

−1
2 (x−m)∗Σ−1

n (x−m)dx

and for q an even integer, this moment can be computed using the characteristic function.

e−
1
2 t∗Σnt =

∫
Rp

eit·xdλ Xn
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Also, it suffices to consider E
(
Xq

k

)
. Differentiate both sides. Using the repeated index

summation convention,

e−
1
2 t∗Σt (−Σnk jt j

)
=
∫
Rp

ixkeit·xdµ

Now differentiate again.

e−
1
2 t∗Σt (−Σnk jt j

)(
−Σnk jt j

)
+(−Σnkk) =−

∫
Rp

x2
keit·xdλ Xn

Next let t = 0 to conclude that E
(
X2

nk

)
= Σnkk. Of course you can continue differentiating

as long as desired and obtain E
(
X2m

nk

)
is equal to some polynomial formula involving Σnkk

and these are given to converge to Σkk. Therefore, for any q > 1,{E (|Xn|q)} is bounded
and so from the above, ∫

Ω

|X|q dP≤ lim inf
n→∞

2qE (|Xn|q)< ∞

So yes, X is indeed in Lq (Ω,Rp) for every q. What about the covariance?
From the definition of the characteristic function,

e−
1
2 t∗Σt =

∫
Rp

eit·xdµ

and so taking the derivative with respect to tk of both sides,

e−
1
2 t∗Σt (−Σk jt j

)
=
∫
Rp

ixkeit·xdµ

Now differentiate with respect to tl on both sides.

e−
1
2 t∗Σt (−Σliti)

(
−Σk jt j

)
+ e−

1
2 t∗Σt (−Σkl)

=
∫
Rp

ixk (ixl)eit·xdµ =−
∫
Rp

xkxleit·xdµ

Now let t = 0 to obtain
Σkl =

∫
Rp

xkxleit·xdµ = E (XkXl)

If m ̸= 0, the same kind of argument holds with a little more details. This proves the
following theorem.

Theorem 59.20.2 Let Σ be nonnegative and self adjoint p× p matrix. Then there exists a
random variable X whose distribution measure λ X has characteristic function

eit·me−
1
2 t∗Σt

Also
E
(
(X−m)(X−m)∗

)
= Σ

that is
E
(
(X−m)i (X−m) j

)
= Σi j

This is generalized normally distributed random variable.
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There is an interesting corollary to this theorem.

Corollary 59.20.3 Let H be a real Hilbert space. There exist random variables W (h) for
h ∈H such that each is normally distributed with mean 0 and for every h,g,(W (h) ,W (g))
is normally distributed and

E (W (h)W (g)) = (h,g)H

Furthermore, if {ei} is an orthogonal set of vectors of H, then {W (ei)} are independent
random variables. Also for any finite set { f1, f2, · · · , fn},

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed.

Proof: Let µh1···hm
be a multivariate normal distribution with covariance Σi j = (hi,h j)

and mean 0. Thus the characteristic function of this measure is

e−
1
2 t∗Σt

Now suppose µk1···kn
is another such measure where for simplicity,

{h1 · · ·hm,km+1 · · ·kn}= {k1 · · ·kn}

Let ν be a measure on B (Rm) which is given by

ν (E)≡ µk1···kn

(
E×Rn−m)

Then does it follow that ν = µh1···hm
? If so, then the Kolmogorov consistency condition will

hold for these measures µh1···hm
. To determine whether this is so, take the characteristic

function of ν . Let Σ1 be the n×n matrix which comes from the {k1 · · ·kn} and let Σ2 be the
one which comes from the {h1 · · ·hm}.∫

Rm
eit·xdν (x) ≡

∫
Rn−m

∫
Rm

ei(t,0)·(x,y)dµk1···kn
(x,y)

= e−
1
2 (t
∗,0∗)Σ1(t,0) = e−

1
2 t∗Σ2t

which is the characteristic function for µh1···hm
. Therefore, these two measures are the same

and the Kolmogorov consistency condition holds. It follows that there exists a measure µ

defined on the Borel sets of ∏h∈HR which extends all of these measures. This argument
also shows that if a random vector X has characteristic function e−

1
2 t∗Σt, then if Xk is one

of its components, then the characteristic function of Xk is e−
1
2 t2|hk|2so this scalar valued

random variable has mean zero and variance |hk|2. Then if ω ∈∏h∈HR

W (h)(ω)≡ πh (ω)

where πh denotes the projection onto position h in this product. Also define

(W ( f1) ,W ( f2) , · · · ,W ( fn))≡ π f1··· fn (ω)
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Then this is a random variable whose covariance matrix is just Σi j = ( fi, f j)H and whose
characteristic equation is e−

1
2 t∗Σt so this verifies that

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed with covariance Σ. If you have two of them, W (g) ,W (h) , then
E (W (h)W (g)) = (h,g)H . This follows from what was just shown that (W ( f ) ,W (g)) is
normally distributed and so the covariance will be(

| f |2 ( f ,g)
( f ,g) |g|2

)
=

 E
(

W ( f )2
)

E (W ( f )W (g))

E (W ( f )W (g)) E
(

W (g)2
) 

Finally consider the claim about independence. Any finite subset of {W (ei)} is gener-
alized normal with the covariance matrix being a diagonal. Therefore, writing in terms of
the distribution measures, this diagonal matrix allows the iterated integrals to be split apart
and it follows that

E

(
exp

(
i

m

∑
k=1

tkW (ek)

))
=

m

∏
k=1

exp(itkW (ek))

and so this follows from Proposition 59.11.1. Note that in this case, the covariance matrix
will not have zero determinant. ■

59.21 Positive Definite Functions, Bochner’s Theorem
First here is a nice little lemma about matrices.

Lemma 59.21.1 Suppose M is an n×n matrix. Suppose also that

α
∗Mα = 0

for all α ∈ Cn. Then M = 0.

Proof: Suppose λ is an eigenvalue for M and let α be an associated eigenvector.

0 = α
∗Mα = α

∗
λα = λα

∗
α = λ |α|2

and so all the eigenvalues of M equal zero. By Schur’s theorem there is a unitary matrix U
such that

M =U

 0 ∗1
. . .

0 0

U∗ (59.21.51)

where the matrix in the middle has zeros down the main diagonal and zeros below the main
diagonal. Thus

M∗ =U

 0 0
. . .

∗2 0

U∗
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where M∗ has zeros down the main diagonal and zeros above the main diagonal. Also
taking the adjoint of the given equation for M, it follows that for all α,

α
∗M∗α = 0

Therefore, M+M∗ is Hermitian and has the property that

α
∗ (M+M∗)α = 0.

Thus M+M∗ = 0 because it is unitarily similar to a diagonal matrix and the above equation
can only hold for all α if M+M∗ has all zero eigenvalues which implies the diagonal matrix
has zeros down the main diagonal. Therefore, from the formulas for M,M∗,

0 =U


 0 0

. . .
∗2 0

+

 0 ∗1
. . .

0 0


U∗

and so the sum of the two matrices in the middle must also equal 0. Hence the entries of
the matrix in the middle in 59.21.51 are all equal to zero. Thus M = 0 as claimed.

Definition 59.21.2 A Borel measurable function, f : Rn → C is called positive definite if
whenever {tk}p

k=1⊆R
n,α ∈Cp

∑
k, j

f (t j− tk)α jαk ≥ 0 (59.21.52)

The first thing to notice about a positive definite function is the following which implies
these functions are automatically bounded.

Lemma 59.21.3 If f is positive definite then whenever {tk}p
k=1 are p points in Rn,∣∣ f (t j− tk)

∣∣≤ f (0) .

In particular, for all t, | f (t)| ≤ f (0) .

Proof: Let F be the p× p matrix such that

Fk j = f (t j− tk) .

Then 59.21.52 is of the form
α
∗Fα = (Fα,α)≥ 0 (59.21.53)

where this is the inner product in Cp. Letting [α,β ]≡ (Fα,β )≡ β
∗Fα, it is obvious that

[α,β ] satisfies
[α,α]≥ 0, [aα +bβ ,γ] = a [α,γ]+b [β ,γ] .

I claim it also satisfies
[α,β ] = [β ,α].
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To verify this last claim, note that since α∗Fα is real,

α
∗F∗α = α

∗Fα ≥ 0

and so for all α ∈ Cp,
α
∗ (F∗−F)α = 0

which from Lemma 59.21.1 implies F∗ = F. Hence F is self adjoint and it follows

[α,β ]≡ β
∗Fα = β

∗F∗α = α
T F∗T β = α∗Fβ = [β ,α].

Therefore, the Cauchy Schwarz inequality holds for [·, ·] and it follows

|[α,β ]|= |(Fα,β )| ≤ (Fα,α)1/2 (Fβ ,β )1/2 .

Letting α = ek and β = e j, it follows Fss ≥ 0 for all s and∣∣Fk j
∣∣≤ F1/2

kk F1/2
j j

which says nothing more than∣∣ f (t j− tk)
∣∣≤ f (0)1/2 f (0)1/2 = f (0) .

This proves the lemma.
With this information, here is another useful lemma involving positive definite func-

tions. It is interesting because it looks like the formula which defines what it means for the
function to be positive definite.

Lemma 59.21.4 Let f be a positive definite function as defined above and let µ be a finite
Borel measure. Then ∫

Rn

∫
Rn

f (x−y)dµ (x)dµ (y)≥ 0. (59.21.54)

If µ also has the property that it is symmetric, µ (F) = µ (−F) for all F Borel, then∫
Rn

f (x)d (µ ∗µ)(x)≥ 0. (59.21.55)

Proof: By definition if
{

t j
}p

j=1 ⊆ R
n, and letting α = (1, · · · ,1)T ∈ Rn,

∑
j,k

f (t j− tk)≥ 0.

Therefore, integrating over each of the variables,

0≤
p

∑
j=1

∫
Rn

∫
Rn

f (t j− t j)dµ (t j)dµ (t j)+ ∑
j ̸=k

∫
Rn

∫
Rn

f (t j− tk)dµ (t j)dµ (tk)

and so
0≤ f (0)µ (Rn)2 p+ p(p−1)

∫
Rn

∫
Rn

f (x−y)dµ (x)dµ (y) .
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Dividing both sides by p(p−1) and letting p→ ∞, it follows

0≤
∫
Rn

∫
Rn

f (x−y)dµ (x)dµ (y)

which shows 59.21.54.
To verify 59.21.55, use 59.14.25.∫

Rn
f d (µ ∗µ) =

∫
Rn

∫
Rn

f (x+y)dµ (x)dµ (y)

and since µ is symmetric, this equals∫
Rn

∫
Rn

f (x−y)dµ (x)dµ (y)≥ 0

by the first part of the lemma. This proves the lemma.

Lemma 59.21.5 Let µ t be the measure defined on B (Rn) by

µ t (F)≡
∫

F

1(√
2πt
)n e−

1
2t |x|

2
dx

for t > 0. Then µ t ∗µ t = µ2t and each µ t is a probability measure.

Proof: By Theorem 59.14.7,

φ µt∗µt
(s) = φ µt

(s)φ µt
(s) =

(
e−

1
2 t|s|2

)2
= e−

1
2 (2t)|s|2 = φ µ2t

(s) .

Each µ t is a probability measure because it is the distribution of a normally distributed
random variable of mean 0 and covariance tI.

Now let µ be a probability measure on B (Rn) .

φ µ (t)≡
∫

eit·ydµ (y)

and so by the dominated convergence theorem, φ µ is continuous and also φ µ (0) = 1. I
claim φ µ is also positive definite. Let α ∈ Cp and {tk}p

k=1 a sequence of points of Rn.
Then

∑
k, j

φ µ (tk− t j)αkα j = ∑
k, j

∫
eitk·yαke−it j ·yα jdµ (y)

=
∫

∑
k, j

eitk·yαkeit j ·yα jdµ (y) .

Now let β (y)≡
(
eit1·yα1, · · · ,eitp·yα p

)T
. Then the above equals

∫
(1, · · · ,1)β (y)β

∗ (y)

 1
...
1

dµ
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The integrand is of the formβ
∗

 1
...
1



β

∗

 1
...
1


≥ 0

because it is just a complex number times its conjugate.
Thus every characteristic function is continuous, equals 1 at 0, and is positive definite.

Bochner’s theorem goes the other direction.
To begin with, suppose µ is a finite measure on B (Rn) . Then for S the Schwartz

class, µ can be considered to be in the space of linear transformations defined on S, S∗ as
follows.

µ ( f )≡
∫

f dµ.

Recall F−1 (µ) is defined as

F−1 (µ)( f )≡ µ
(
F−1 f

)
=
∫
Rn

F−1 f dµ

=
1

(2π)n/2

∫
Rn

∫
Rn

eix·y f (y)dydµ

=
∫
Rn

(
1

(2π)n/2

∫
Rn

eix·ydµ

)
f (y)dy

and so F−1 (µ) is the bounded continuous function

y→ 1

(2π)n/2

∫
Rn

eix·ydµ.

Now the following lemma has the main ideas for Bochner’s theorem.

Lemma 59.21.6 Suppose ψ (t) is positive definite, t→ ψ (t) is in L1 (Rn,mn) where mn
is Lebesgue measure, ψ (0) = 1, and ψ is continuous at 0. Then there exists a unique
probability measure, µ defined on the Borel sets of Rn such that

φ µ (t) = ψ (t) .

Proof: If the conclusion is true, then

ψ (t) =
∫
Rn

eit·xdµ (x) = (2π)n/2 F−1 (µ)(t) .

Recall that µ ∈S∗, the algebraic dual of S . Therefore, in S∗,

1

(2π)n/2 F (ψ) = µ.
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That is, for all f ∈S,∫
Rn

f (y)dµ (y) =
1

(2π)n/2

∫
Rn

F (ψ)(y) f (y)dy

=
1

(2π)n

∫
Rn

f (y)
(∫

Rn
e−iy·x

ψ (x)dx
)

dy. (59.21.56)

I will show

f → 1
(2π)n

∫
Rn

f (y)
(∫

Rn
e−iy·x

ψ (x)dx
)

dy

is a positive linear functional and then it will follow from 59.21.56 that µ is unique. Thus it
is needed to show the inside integral in 59.21.56 is nonnegative. First note that the integrand
is a positive definite function of x for each fixed y. This follows from

∑
k, j

e−iy·(xk−x j)ψ (xk−x j)αkα j

= ∑
k, j

ψ (xk−x j)
(

e−iy·(xk)αk

)
e−iy·(x j)α j ≥ 0.

Let t > 0 and

h2t (x)≡
1

(4πt)1/2 e−
1
4t |x|

2
.

Then by dominated convergence theorem,∫
Rn

e−iy·x
ψ (x)dx = lim

t→∞

∫
Rn

e−iy·x
ψ (x)h2t (x)dx

Letting dη2t = h2t (x)dx, it follows from Lemma 59.21.5 η2t = η t ∗η t and since these are
symmetric measures, it follows from Lemma 59.21.4 the above equals

lim
t→∞

∫
Rn

e−iy·x
ψ (x)d (η t ∗η t)≥ 0

Thus the above functional is a positive linear functional and so there exists a unique Radon
measure, µ satisfying∫

Rn
f (y)dµ (y) =

1

(2π)n/2

∫
Rn

F (ψ)(y) f (y)dy

=
1

(2π)n

∫
Rn

f (y)
(∫

Rn
e−iy·x

ψ (x)dx
)

dy

=
1

(2π)n/2

∫
Rn

ψ (x)

(
1

(2π)n/2

∫
Rn

f (y)e−iy·xdy

)
dx
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for all f ∈Cc (Rn). Thus from the dominated convergence theorem, the above holds for all
f ∈S also. Hence for all f ∈S and considering µ as an element of S∗,

F−1
µ (F f ) = µ ( f ) =

∫
Rn

f (y)dµ (y)

=
1

(2π)n/2

∫
Rn

ψ (x)F ( f )(x)dx

=
1

(2π)n/2 F (ψ)( f )≡ 1

(2π)n/2 ψ (F f ) .

It follows that in S∗,

ψ = (2π)n/2 F−1
µ

Thus
ψ (t) =

∫
Rn

eit·xdµ

in L1. Since the right side is continuous and the left is given continuous at t = 0 and equal
to 1 there, it follows

1 = ψ (0) =
∫
Rn

ei0·xdµ = µ (Rn)

and so µ is a probability measure as claimed. This proves the lemma.
The following is Bochner’s theorem.

Theorem 59.21.7 Let ψ be positive definite, continuous at 0, and ψ (0) = 1. Then there
exists a unique Radon probability measure µ such that ψ = φ µ .

Proof: If ψ ∈ L1 (Rn,mn) , then the result follows from Lemma 59.21.6. By Lemma
59.21.3 ψ is bounded. Consider

ψ t (x)≡ ψ (x)
1

(2πt)n/2 e−
1
2t |x|

2
.

Then ψ t (0) = 1, x→ψ t (x) is continuous at 0, and ψ t ∈ L1 (Rn,mn) . Therefore, by Lemma
59.21.6 there exists a unique Radon probability measure µ t such that

ψ t (x) =
∫
Rn

eix·ydµ t (y) = φ µt
(x)

Now letting t→ ∞,
lim
t→∞

ψ t (x) = lim
t→∞

φ µt
(x) = ψ (x) .

By Levy’s theorem, Theorem 59.19.7 it follows there exists µ, a probability measure on
B (Rn) such that ψ (x) = φ µ (x) . The measure is unique because the characteristic func-
tions are uniquely determined by the measure. This proves the theorem.
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Chapter 60

Conditional, Martingales
60.1 Conditional Expectation

From Observation 59.11.5 on Page 1893, it was shown that the conditional expectation
of a random variable X given some others really is just what the words suggest. Given
ω ∈ Ω, it results in a value for the “other” random variables and then you essentially take
the expectation of X given this information which yields the value of the conditional ex-
pectation of X given the other random variables. It was also shown in Lemma 59.11.4 that
this gives the same result as finding a σ (X1, · · · ,Xn) measurable function Z such that for
all F ∈ σ (X1, · · · ,Xn) , ∫

F
XdP =

∫
F

ZdP

This was done for a particular type of σ algebra but there is no need to be this specialized.
The following is the general version of conditional expectation given a σ algebra. It makes
perfect sense to ask for the conditional expectation given a σ algebra and this is what will
be done from now on.

Definition 60.1.1 Let (Ω,M ,P) be a probability space and let S ⊆ F be two σ alge-
bras contained in M . Let f be F measurable and in L1 (Ω). Then E ( f |S ) , called the
conditional expectation of f with respect to S is defined as follows:

E ( f |S ) is S measurable

For all E ∈S , ∫
E

E ( f |S )dP =
∫

E
f dP

Lemma 60.1.2 The above is well defined. Also, if S ⊆F then

E (X |S ) = E (E (X |F ) |S ) . (60.1.1)

If Z is bounded and measurable in S then

ZE (X |S ) = E (ZX |S ) . (60.1.2)

Proof: Let a finite measure on S , µ be given by

µ (E)≡
∫

E
f dP.

Then µ ≪ P and so by the Radon Nikodym theorem, there exists a unique S measurable
function, E ( f |S ) such that ∫

E
f dP≡ µ (E) =

∫
E

E ( f |S )dP

for all E ∈S .

1943
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Let F ∈S . Then∫
F

E (E (X |F ) |S )dP ≡
∫

F
E (X |F )dP

≡
∫

F
XdP≡

∫
F

E (X |S )dP

and so, by uniqueness, E (E (X |F ) |S ) = E (X |S ). This shows 60.1.1.
To establish 60.1.2, note that if Z = XF where F ∈S ,∫

XF E (X |S )dP =
∫

XF XdP =
∫

E (XF X |S )dP

which shows 60.1.2 in the case where Z is the indicator function of a set in S . It follows
this also holds for simple functions. Let {sn} be a sequence of simple functions which
converges uniformly to Z and let F ∈S . Then by what was just shown,∫

F
snE (X |S )dP =

∫
F

snXdP =
∫

F
E (snX |S )dP

Now ∣∣∣∣∫F
E (snX |S )dP−

∫
F

E (ZX |S )dP
∣∣∣∣

≤
∫

F
|snX−ZX |dP =

∫
F
|sn−Z| |X |dP

which converges to 0 by the dominated convergence theorem. Then passing to the limit
using the dominated convergence theorem, yields∫

F
ZE (X |S )dP =

∫
F

ZXdP≡
∫

F
E (ZX |S )dP.

Since this holds for every F ∈S , this shows 60.1.2. ■
The next major result is a generalization of Jensen’s inequality whose proof depends on

the following lemma about convex functions.

Lemma 60.1.3 Let φ be a convex real valued function defined on an interval I. Then for
each x ∈ I, there exists ax such that for all t ∈ I,

φ (t)≥ ax (t− x)+φ (x) .

Also φ is continuous on I.

Proof: Let x ∈ I and let t > x. Then by convexity of φ ,

φ (x+λ (t− x))−φ (x)
λ (t− x)

≤ φ (x)(1−λ )+λφ (t)−φ (x)
λ (t− x)

=
φ (t)−φ (x)

t− x
.



60.1. CONDITIONAL EXPECTATION 1945

Therefore t→ φ(t)−φ(x)
t−x is increasing if t > x. If t < x

φ (x+λ (t− x))−φ (x)
λ (t− x)

≥ φ (x)(1−λ )+λφ (t)−φ (x)
λ (t− x)

=
φ (t)−φ (x)

t− x

and so t→ φ(t)−φ(x)
t−x is increasing for t ̸= x. Let

ax ≡ inf
{

φ (t)−φ (x)
t− x

: t > x
}
.

Then if t1 < x, and t > x,

φ (t1)−φ (x)
t1− x

≤ ax ≤
φ (t)−φ (x)

t− x
.

Thus for all t ∈ I,
φ (t)≥ ax (t− x)+φ (x). (60.1.3)

The continuity of φ follows easily from this and the observation that convexity simply
says that the graph of φ lies below the line segment joining two points on its graph. Thus,
we have the following picture which clearly implies continuity. ■

Lemma 60.1.4 Let I be an open interval on R and let φ be a convex function defined on I.
Then there exists a sequence {(an,bn)} such that

φ (t) = sup{ant +bn,n = 1, · · ·} .

Proof: Let ax be as defined in the above lemma. Let

ψ (x)≡ sup{ar (x− r)+φ (r) : r ∈Q∩ I}.

Thus if r1 ∈Q,

ψ (r1)≡ sup{ar (r1− r)+φ (r) : r ∈Q∩ I} ≥ φ (r1)

Then ψ is convex on I so ψ is continuous. Therefore, ψ (t)≥ φ (t) for all t ∈ I. By 60.1.3,

ψ (t)≥ φ (t)≥ sup{ar (t− r)+φ (r) ,r ∈Q∩ I} ≡ ψ (t).

Thus ψ (t) = φ (t) . Let Q∩ I = {rn}, an = arn and bn =−arnrn +φ (rn). ■
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Lemma 60.1.5 If X ≤ Y, then E (X |S )≤ E (Y |S ) a.e. Also

X → E (X |S )

is linear.

Proof: Let A ∈S . ∫
A

E (X |S )dP≡
∫

A
XdP

≤
∫

A
Y dP≡

∫
A

E (Y |S )dP.

Hence E (X |S )≤ E (Y |S ) a.e. as claimed. It is obvious X → E (X |S ) is linear.

Theorem 60.1.6 (Jensen’s inequality)Let X (ω) ∈ I and let φ : I→ R be convex. Suppose

E (|X |) ,E (|φ (X)|)< ∞.

Then
φ (E (X |S ))≤ E (φ (X) |S ).

Proof: Let φ (x) = sup{anx+bn}. Letting A ∈S ,

1
P(A)

∫
A

E (X |S )dP =
1

P(A)

∫
A

XdP ∈ I a.e.

whenever P(A) ̸= 0. Hence E (X |S )(ω) ∈ I a.e. and so it makes sense to consider
φ (E (X |S )). Now

anE (X |S )+bn = E (anX +bn|S )≤ E (φ (X) |S ).

Thus
sup{anE (X |S )+bn}

= φ (E (X |S ))≤ E (φ (X) |S ) a.e. ■

60.2 Discrete Martingales
Definition 60.2.1 Let Sk be an increasing sequence of σ algebras which are subsets of S
and Xk be a sequence of real-valued random variables with E (|Xk|)< ∞ such that Xk is Sk
measurable. Then this sequence is called a martingale if

E (Xk+1|Sk) = Xk,

a submartingale if
E (Xk+1|Sk)≥ Xk,

and a supermartingale if
E (Xk+1|Sk)≤ Xk.

Saying that Xk is Sk measurable is referred to by saying {Xk} is adapted to Sk.
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Note that if {Xk} is a martingale, then {|Xk|} is a submartingale and that if {Xk} is a
submartingale and φ is convex and increasing, then {φ (Xk)} is a submartingale.

An upcrossing occurs when a sequence goes from a up to b. Thus it crosses the interval,
[a,b] in the up direction, hence upcrossing. More precisely,

Definition 60.2.2 Let {xi}I
i=1 be any sequence of real numbers, I ≤ ∞. Define an increas-

ing sequence of integers {mk} as follows. m1 is the first integer ≥ 1 such that xm1 ≤ a, m2
is the first integer larger than m1 such that xm2 ≥ b, m3 is the first integer larger than m2
such that xm3 ≤ a, etc. Then each sequence,

{
xm2k−1 , · · · ,xm2k

}
, is called an upcrossing of

[a,b].

Here is a picture of an upcrossing.

b

a

Proposition 60.2.3 Let {Xi}n
i=1 be a finite sequence of real random variables defined on Ω

where (Ω,S ,P) is a probability space. Let U[a,b] (ω) denote the number of upcrossings of
Xi (ω) of the interval [a,b]. Then U[a,b] is a random variable.

Proof: Let X0 (ω) ≡ a + 1, let Y0 (ω) ≡ 0, and let Yk (ω) remain 0 for k = 0, · · · , l
until Xl (ω) ≤ a. When this happens (if ever), Yl+1 (ω) ≡ 1. Then let Yi (ω) remain 1 for
i = l + 1, · · · ,r until Xr (ω) ≥ b when Yr+1 (ω) ≡ 0. Let Yk (ω) remain 0 for k ≥ r + 1
until Xk (ω)≤ a when Yk (ω)≡ 1 and continue in this way. Thus the upcrossings of Xi (ω)
are identified as unbroken strings of ones for Yk with a zero at each end, with the possible
exception of the last string of ones which may be missing the zero at the upper end and
may or may not be an upcrossing.

Note also that Y0 is measurable because it is identically equal to 0 and that if Yk is
measurable, then Yk+1 is measurable because the only change in going from k to k+1 is a
change from 0 to 1 or from 1 to 0 on a measurable set determined by Xk. In particular,

Y−1
k+1 (1) = ([Yk = 1]∩ [Xk < b])∪ ([Yk = 0]∩ [Xk ≤ a])

This set is in S by induction. Of course, Y−1
k+1 (0) is just the complement of this set. Thus

Yk+1 is S measurable since 0,1 are the only two values possible. Now let

Zk (ω) =

{
1 if Yk (ω) = 1 and Yk+1 (ω) = 0,
0 otherwise,

if k < n and

Zn (ω) =

{
1 if Yn (ω) = 1 and Xn (ω)≥ b,
0 otherwise.
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Thus Zk (ω) = 1 exactly when an upcrossing has been completed and each Zi is a random
variable.

U[a,b] (ω) =
n

∑
k=1

Zk (ω)

so U[a,b] is a random variable as claimed.
The following corollary collects some key observations found in the above construction.

Corollary 60.2.4 U[a,b] (ω) ≤ the number of unbroken strings of ones in the sequence,
{Yk (ω)} there being at most one unbroken string of ones which produces no upcrossing.
Also

Yi (ω) = ψ i

({
X j (ω)

}i−1
j=1

)
, (60.2.4)

where ψ i is some function of the past values of X j (ω).

Lemma 60.2.5 Let φ be a convex and increasing function and suppose

{(Xn,Sn)}

is a submartingale. Then if E (|φ (Xn)|)< ∞, it follows

{(φ (Xn) , Sn)}

is also a submartingale.

Proof: It is given that E (Xn+1,Sn)≥ Xn and so

φ (Xn)≤ φ (E (Xn+1|Sn))≤ E (φ (Xn+1) |Sn)

by Jensen’s inequality.
The following is called the upcrossing lemma.

60.2.1 Upcrossings

Lemma 60.2.6 (upcrossing lemma) Let {(Xi,Si)}n
i=1 be a submartingale and let U[a,b] (ω)

be the number of upcrossings of [a,b]. Then

E
(
U[a,b]

)
≤ E (|Xn|)+ |a|

b−a
.

Proof: Let φ (x) ≡ a+(x−a)+ so that φ is an increasing convex function always at
least as large as a. By Lemma 60.2.5 it follows that {(φ (Xk) ,Sk)} is also a submartingale.

φ (Xk+r)−φ (Xk) =
k+r

∑
i=k+1

φ (Xi)−φ (Xi−1)

=
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))Yi +
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi).
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Observe that Yi is Si−1 measurable from its construction in Proposition 60.2.3, Yi depend-
ing only on X j for j < i.

Now let the unbroken strings of ones for {Yi (ω)} be

{k1, · · · ,k1 + r1} ,{k2, · · · ,k2 + r2} , · · · ,{km, · · · ,km + rm} (60.2.5)

where m = V (ω) ≡ the number of unbroken strings of ones in the sequence {Yi (ω)}. By
Corollary 60.2.4 V (ω)≥U[a,b] (ω).

φ (Xn (ω))−φ (X1 (ω))

=
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))Yk (ω)

+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)).

The first sum in the above reduces to summing over the unbroken strings of ones because
the terms in which Yi (ω) = 0 contribute nothing. Therefore,

φ (Xn (ω))−φ (X1 (ω))

≥U[a,b] (ω)(b−a)+0+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)) (60.2.6)

where the zero on the right side results from a string of ones which does not produce
an upcrossing. It is here that it is important that φ (x) ≥ a. Such a string begins with
φ (Xk (ω)) = a and results in an expression of the form φ (Xk+m (ω))−φ (Xk (ω))≥ 0 since
φ (Xk+m (ω))≥ a. If Xk had not been replaced with φ (Xk) , it would have been possible for
φ (Xk+m (ω)) to be less than a and the zero in the above could have been a negative number
This would have been inconvenient.

Next take the expected value of both sides in 60.2.6. This results in

E (φ (Xn)−φ (X1)) ≥ (b−a)E
(
U[a,b]

)
+E

(
n

∑
k=1

(φ (Xk)−φ (Xk−1))(1−Yk)

)
≥ (b−a)E

(
U[a,b]

)
The reason for the last inequality where the term at the end was dropped is

E ((φ (Xk)−φ (Xk−1))(1−Yk))

= E (E ((φ (Xk)−φ (Xk−1))(1−Yk) |Fk−1))

= E ((1−Yk)E (φ (Xk) |Fk−1)− (1−Yk)E (φ (Xk−1) |Fk−1))

≥ E ((1−Yk)(φ (Xk−1)−φ (Xk−1))) = 0.

Recall that Yk is Sk−1 measurable and that (φ (Xk) ,Sk) is a submartingale. ■
The reason for this lemma is to prove the amazing submartingale convergence theorem.
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60.2.2 The Submartingale Convergence Theorem

Theorem 60.2.7 (submartingale convergence theorem) Let

{(Xi,Si)}∞

i=1

be a submartingale with K ≡ supE (|Xn|) < ∞. Then there exists a random variable, X ,
such that E (|X |)≤ K and

lim
n→∞

Xn (ω) = X (ω) a.e.

Proof: Let a,b ∈ Q and let a < b. Let Un
[a,b] (ω) be the number of upcrossings of

{Xi (ω)}n
i=1. Then let

U[a,b] (ω)≡ lim
n→∞

Un
[a,b] (ω) = number of upcrossings of {Xi} .

By the upcrossing lemma,

E
(

Un
[a,b]

)
≤ E (|Xn|)+ |a|

b−a
≤ K + |a|

b−a

and so by the monotone convergence theorem,

E
(
U[a,b]

)
≤ K + |a|

b−a
< ∞

which shows U[a,b] (ω) is finite a.e., for all ω /∈ S[a,b] where P
(
S[a,b]

)
= 0. Define

S≡ ∪
{

S[a,b] : a,b ∈Q, a < b
}
.

Then P(S) = 0 and if ω /∈ S, {Xk}∞

k=1 has only finitely many upcrossings of every interval
having rational endpoints. For such ω it cannot be the case that

lim sup
k→∞

Xk (ω)> lim inf
k→∞

Xk (ω)

because then you could pick rational a,b such that [a,b] is between the limsup and the
liminf and there would be infinitely many upcrossings of [a,b]. Thus, for ω /∈ S,

lim sup
k→∞

Xk (ω) = lim inf
k→∞

Xk (ω)

= lim
k→∞

Xk (ω)≡ X∞ (ω) .

Letting X∞ (ω) ≡ 0 for ω ∈ S, Fatou’s lemma implies∫
Ω

|X∞|dP =
∫

Ω

lim inf
n→∞
|Xn|dP≤ lim inf

n→∞

∫
Ω

|Xn|dP≤ K ■
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60.2.3 Doob Submartingale Estimate
Another very interesting result about submartingales is the Doob submartingale estimate.

Theorem 60.2.8 Let {(Xi,Si)}∞

i=1 be a submartingale. Then for λ > 0,

P
([

max
1≤k≤n

Xk ≥ λ

])
≤ 1

λ

∫
Ω

X+
n dP

Proof: Let

A1 ≡ [X1 ≥ λ ] ,A2 ≡ [X2 ≥ λ ]\A1,

· · · ,Ak ≡ [Xk ≥ λ ]\
(
∪k−1

i=1 Ai

)
· · ·

Thus each Ak is Sk measurable, the Ak are disjoint, and their union equals[
max

1≤k≤n
Xk ≥ λ

]
.

Therefore from the definition of a submartingale and Jensen’s inequality,

P
([

max
1≤k≤n

Xk ≥ λ

])
=

n

∑
k=1

P(Ak)≤
1
λ

n

∑
k=1

∫
Ak

XkdP

≤ 1
λ

n

∑
k=1

∫
Ak

E (Xn|Sk)dP

≤ 1
λ

n

∑
k=1

∫
Ak

E (Xn|Sk)
+ dP

≤ 1
λ

n

∑
k=1

∫
Ak

E
(
X+

n |Sk
)

dP

=
1
λ

n

∑
k=1

∫
Ak

X+
n dP≤ 1

λ

∫
Ω

X+
n dP. ■

60.3 Optional Sampling And Stopping Times
60.3.1 Stopping Times And Their Properties Overview
I will give a brief overview of the main ideas about stopping times first and then repeat
them in what follows. I think that these things are so important that it is good to have a
short synopsis of what to expect. I think that the optional sampling theorem of Doob is
amazing. That is why it gets repeated quite a bit. It is one of those theorems that you read
and when you get to the end, having followed the argument, you sit back and feel amazed
at what you just went through. You ask yourself if it is really true or whether you made
some mistake. At least this is how it effects me.

First it is necessary to define the notion of a stopping time. If you have an increasing
sequence of σ algebras {Fn} and a process {Xn} such that Xn is Fn measurable, the idea
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of a stopping time T is that T is a measurable function and for such a process {Xn} ,ω →
Xn∧T (ω) (ω) is also Fn measurable. In other words, by stopping with this stopping time,
we preserve the Fn measurability. We want to have

X−1
n∧T (O) ∈Fn

where O is an open set in some metric space where Xn has its values.

X−1
n∧T (O) = [T ≤ n]∩

[
ω : XT (ω) (ω) ∈ O

]
∪ [T > n]∩ [ω : Xn (ω) ∈ O]

Now
[T ≤ n]∩

[
ω : XT (ω) (ω) ∈ O

]
= ∪n

k=1 [T = k]∩ [Xk ∈ O]

To have this in Fn, we should have [T = k] ∈Fk. That is [T ≤ k] ∈Fk. Now once this
is done, [T > n] = [T ≤ n]C ∈Fn also. This motivates the following definition and shows
that the requirement that [T ≤ n] ∈Fn implies that ω → Xn∧T (ω) (ω) is Fn measurable if
this is true of Xn.

Definition 60.3.1 Let (Ω,F ,P) be a probability space and let {Fn}∞

n=1 be an increasing
sequence of σ algebras each contained in F . A stopping time is a measurable function, T
which maps Ω to N,

T−1 (A) ∈F for all A ∈P (N) ,

such that for all n ∈ N,
[T ≤ n] ∈Fn.

Note this is equivalent to saying
[T = n] ∈Fn

because
[T = n] = [T ≤ n]\ [T ≤ n−1] .

For T a stopping time define FT as follows.

FT ≡ {A ∈F : A∩ [T ≤ n] ∈Fn for all n ∈ N}

These sets in FT are referred to as “prior” to T .

Of course T has values i, a countable well ordered set of numbers, i ≤ i+1. Then we
have the following about the relation with stopping times and conditional expectations.

Lemma 60.3.2 Let X be in L1 (Ω). Then FT ∩ [T = i] = Fi ∩ [T = i] and E (X |FT ) =
E (X |Fi) a.e. on the set [T = i] . Also if A ∈FT , then A∩ [T = i] ∈Fi ∩FT . Also FT ∩
[T ≤ i] = Fi∩ [T ≤ i] and E (X |FT ) = E (X |Fi) a.e. on the set [T ≤ i] .

Proof: Let

1. Typical set in FT ∩ [T = i] is A∩ [T = i] where A ∈FT . Thus A∩ [T = i] = B ∈Fi
so A∩ [T = i] = A∩ [T = i]∩ [T = i] = B∩ [T = i] ∈Fi∩ [T = i] .
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2. Typical set in Fi∩ [T = i] is A∩ [T = i] where A ∈Fi. Then A∩ [T = i]∩ [T = j] ∈
F j for all j. If j ̸= i, you get /0 and if j = i, you get A∩ [T = i] ∈ Fi = F j so
A∩ [T = i] = B ∈FT and so A∩ [T = i]∩ [T = i] = B∩ [T = i] ∈FT ∩ [T = i].

Now let A ∈FT . Then∫
A∩[T=i]

E (X |Fi)dP =
∫

A∩[T=i]
XdP≡

∫
A∩[T=i]

E (X |FT )dP

because the set A∩ [T = i] ∈Fi and is also in FT . A typical set in FT ∩ [T = i] = Fi ∩
[T = i] is of this form which was just shown above and so, since this holds for all sets in
FT ∩ [T = i] =Fi∩ [T = i] , it must be the case that E (X |Fi) = E (X |FT ) a.e. on [T = i] .
The last claim is obvious from this. Indeed, if A ∈FT ∩ [T ≤ i] , then it is of the form

A = B∩∪k≤i [T = k] = ∪k≤iB∩ [T = k]

and each set in the union is in Fi∩ [T ≤ i]. For the other direction, if A ∈Fi∩ [T ≤ i] then

A = ∪k≤iB∩ [T = k] ,B ∈Fi,

and each set in the union is in FT ∩ [T ≤ i] . Now note that if A∈FT , then A∩ [T ≤ i]∈Fi
by definition and A∩ [T ≤ i]∩ [T ≤ j] ∈F j ⊆Fi if j ≤ i wile if j > i, this set is equal to
A∩ [T ≤ i] which is in Fi and so the same argument above gives the result that E (X |FT ) =
E (X |Fi) a.e. on the set [T ≤ i] . ■

One of the big results is the optional sampling theorem. Suppose Xn is a martingale. In
particular, each Xn ∈ L1 (Ω) and E (Xn|Fk) = Xk whenever k ≤ n. We can assume Xn has
values in some separable Banach space. Then ∥Xn∥ is a submartingale because if k ≤ n,
then if A ∈Fk, ∫

A
E (∥Xn∥|Fk)dP≥

∫
A
∥E (Xn|Fk)∥dP =

∫
A
∥Xk∥dP

Now suppose we have two stopping times τ and σ and τ is bounded meaning it has values
in {1,2, · · · ,n} . The optional sampling theorem says the following. Here M is a martingale.

M (σ ∧ τ) = E (M (τ) |Fσ )

Furthermore, it all makes sense. First of all, why does it make sense? We need to verify
that M (τ) is integrable.∫

∥M (τ)∥ =
n

∑
k=1

∫
[τ=k]
∥M (k)∥=

n

∑
k=1

∫
[τ=k]
∥E (M (n) |Fk)∥

≤
n

∑
k=1

∫
[τ=k]

E (∥M (n)∥|Fk)≤
n

∑
k=1

∫
E (∥M (n)∥|Fk)

=
n

∑
k=1

E (∥M (n)∥)< ∞
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Similarly, M (σ ∧ τ) is integrable. Now let A ∈Fσ . Then using Lemma 60.3.2 as needed,∫
A

M (σ ∧ τ) =
n

∑
i=1

∫
A∩[τ=i]

M (σ ∧ i) =
n

∑
i=1

∞

∑
j=1

∫
A∩[τ=i]∩[σ= j]

M ( j∧ i)

=
n

∑
i=1

∞

∑
j=1

∫
A∩[τ=i]∩[σ= j]

E (M (i) |F j)

There are two cases here. If j ≤ i it is the martingale definition. If j > i the third term
has integrand equal to M (i) which is F j measurable so the formula is still valid. Then the
above equals

n

∑
i=1

∞

∑
j=1

∫
A∩[τ=i]∩[σ= j]

E (M (i) |Fσ ) =
∞

∑
j=1

n

∑
i=1

∫
A∩[τ=i]∩[σ= j]

E (M (i) |Fσ )

=
∞

∑
j=1

∫
A∩[σ= j]

E (M (τ) |Fσ ) =
∫

A
E (M (τ) |Fσ )

Since A is an arbitrary element of Fσ , this shows the optional sampling theorem that
M (σ ∧ τ) = E (M (τ) |Fσ ) .

Proposition 60.3.3 Let M be a martingale having values in some separable Banach space.
Let τ be a bounded stopping time and let σ be another stopping time. Then everything
makes sense in the following formula and

M (σ ∧ τ) = E (M (τ) |Fσ ) a.e.

60.4 Stopping Times
The following lemma is fundamental to understand.

Lemma 60.4.1 In the situation of Definition 60.3.1, if S≤ T for two stopping times, S and
T, then FS ⊆FT . Also FT is a σ algebra.

Proof: Let A ∈FS. Then this means

A∩ [S≤ n] ∈Fn for all n.

Then I claim that
A∩ [T ≤ n] = ∪n

i=1 (A∩ [S≤ i])∩ [T ≤ n] (60.4.7)

Suppose ω is in the set on the left. Then if T (ω) < n, it is clearly in the set on the right.
If T (ω) = n, then ω ∈ [S≤ i] for some i ≤ n and it is also in [T ≤ n] . Thus the set on the
left is contained in the set on the right. Next suppose ω is in the set on the right. Then
ω ∈ [T ≤ n] and it only remains to verify ω ∈ A. However, ω ∈ A∩ [S≤ i] for some i and
so ω ∈ A also.

Now from 60.4.7 it follows A∩ [T ≤ n] ∈Fn because

A∩ [S≤ i] ∈Fi ⊆Fn
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and [T ≤ n] ∈Fn because T is a stopping time. Since n is arbitrary, this shows FS ⊆FT .
It remains to verify FT is a σ algebra. Suppose {Ai} is a sequence of sets in FT . Then

I need to show that (∪∞
i=1Ai)∩ [T ≤ j] ∈F j for all j.

∪∞
i=1Ai∩ [T ≤ j] = ∪∞

i=1 (Ai∩ [T ≤ j])

Now each (Ai∩ [T ≤ j]) is in F j and so the countable union of these sets is also in F j.
Next suppose A ∈FT . I need to verify AC∩ [T ≤ j] ∈F j for all j. However, [T ≤ j] ∈F j
and Ω ∈F j so Ω ∈FT . Thus

Ω∩ [T ≤ j] = (A∩ [T ≤ j])∪
(
AC ∩ [T ≤ j]

)
and so (

AC ∩ [T ≤ j]
)
= Ω∩ [T ≤ j]\ (A∩ [T ≤ j]) ∈F j.

This proves the lemma. ■

Lemma 60.4.2 Let T be a stopping time and let {Xn} be a sequence of random variables
such that Xn is Fn measurable. Then XT (ω)≡ XT (ω) (ω) is also a random variable and it
is measurable with respect to FT .

Proof: I assume the Xn have values in some topological space and each is measurable
because the inverse image of an open set is in Fn. I need to show X−1

T (U)∩ [T ≤ n] ∈Fn
for all n whenever U is open.

X−1
T (U) = ∪∞

i=1X−1
i (U)∩ [T = i] .

It follows X−1
T (U) ∈F . Furthermore,

X−1
T (U)∩ [T ≤ n] = ∪∞

i=1X−1
i (U)∩ [T = i]∩ [T ≤ n]

= ∪n
i=1X−1

i (U)∩ [T = i]∩ [T ≤ n]

= ∪n
i=1

in Fi︷ ︸︸ ︷
X−1

i (U)∩ [T = i] ∈Fn

and so XT is FT is measurable as claimed. This proves the lemma. ■

Lemma 60.4.3 Let S≤ T be two stopping times such that T is bounded above and let {Xn}
be a submartingale (martingale) adapted to the increasing sequence of σ algebras, {Fn} .
Then

E (XT |FS)≥ XS

in the case where {Xn} is a submartingale and

E (XT |FS) = XS

in the case where {Xn} is a martingale.
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Proof: I will prove the case where {Xn} is a submartingale and note the other case will
only involve replacing ≥ with =. First recall that from Lemma 60.4.1 FS ⊆FT . Also let
m be an upper bound for T . Then it follows from this that

E (|XT |) =
m

∑
i=1

∫
[T=i]
|Xi|dP < ∞

with a similar formula holding for E (|XS|). Thus it makes sense to speak of E (XT |FS) .
I need to show that if B ∈FS, so that B∩ [S≤ n] ∈Fn for all n, then∫

B
XT dP≡

∫
B

E (XT |FS)dP≥
∫

B
XSdP. (60.4.8)

It suffices to do this for B of the special form

B = A∩ [S = i]

because if this is done, then the result follows from summing over all possible values of S.
Note that if B = A∩ [S = m] , then XT = XS = Xm and there is nothing to prove in 60.4.8 so
it can be assumed i≤ m−1. Then let B be of this form.∫

A∩[S=i]
XT dP =

m

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP

=
m−1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≥m]
XmdP

And so ∫
A∩[S=i]

XT dP =
m−1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≥m]
XmdP (60.4.9)

=
m−1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≤m−1]C
XmdP

≥
m−1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≤m−1]C
Xm−1dP

=
m−1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T>m−1]
Xm−1dP

provided m−1≥ i because {Xn} is a submartingale and

A∩ [S = i]∩ [T ≤ m−1]C ∈Fm−1

Now combine the top term of the sum with the term on the right to obtain

=
m−2

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≥m−1]
Xm−1dP
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which is exactly the same form as 60.4.9 except m is replaced with m−1. Now repeat this
process till you get the following inequality∫

A∩[S=i]
XT dP≥

i+1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≥i+2]
Xi+2dP

The right hand side equals

i+1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≤i+1]C
Xi+2dP

≥
i+1

∑
j=i

∫
A∩[S=i]∩[T= j]

XT dP+
∫

A∩[S=i]∩[T≤i+1]C
Xi+1dP

=
∫

A∩[S=i]∩[T=i]
XT dP+

∫
A∩[S=i]∩[T=i+1]

XT dP+
∫

A∩[S=i]∩[T≤i+1]C
Xi+1dP

=
∫

A∩[S=i]∩[T=i]
XidP+

∫
A∩[S=i]∩[T=i+1]

Xi+1dP+
∫

A∩[S=i]∩[T>i+1]
Xi+1dP

=
∫

A∩[S=i]∩[T=i]
XidP+

∫
A∩[S=i]∩[T≥i+1]

Xi+1dP

=
∫

A∩[S=i]∩[T=i]
XidP+

∫
A∩[S=i]∩[T≤i]C

Xi+1dP

≥
∫

A∩[S=i]∩[T=i]
XidP+

∫
A∩[S=i]∩[T≤i]C

XidP

=
∫

A∩[S=i]∩[T=i]
XidP+

∫
A∩[S=i]∩[T>i]

XidP

=
∫

A∩[S=i]∩[T≥i]
XidP =

∫
A∩[S=i]

XidP =
∫

A∩[S=i]
XSdP

In the case where {Xn} is a martingale, you replace every occurance of ≥ in the above
argument with =. This proves the lemma. ■

This lemma is called the optional sampling theorem. Another version of this theorem
is the case where you have an increasing sequence of stopping times, {Tn}∞

n=1 . Thus if
{Xn} is a sequence of random variables each Fn measurable, the sequence {XTn} is also a
sequence of random variables such that XTn is measurable with respect to FTn where FTn

is an increasing sequence of σ fields. In the case where Xn is a submartingale (martingale)
it is reasonable to ask whether {XTn} is also a submartingale (martingale). The optional
sampling theorem says this is often the case.

Theorem 60.4.4 Let {Tn} be an increasing bounded sequence of stopping times and let
{Xn} be a submartingale (martingale) adapted to the increasing sequence of σ algebras,
{Fn} . Then {XTn} is a submartingale (martingale) adapted to the increasing sequence of
σ algebras {FTn} .
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Proof: This follows from Lemma 60.4.3

Example 60.4.5 Let {Xn} be a sequence of real random variables such that Xn is Fn
measurable and let A be a Borel subset of R. Let T (ω) denote the first time Xn (ω) is in A.
Then T is a stopping time. It is called the first hitting time.

To see this is a stopping time,

[T ≤ l] = ∪l
i=1X−1

i (A) ∈Fl .

60.5 Optional Stopping Times And Martingales
60.5.1 Stopping Times And Their Properties
The purpose of this section is to consider a special optional sampling theorem for martin-
gales which is superior to the one presented earlier. I have presented a different treatment
of the fundamental properties of stopping times also. See Kallenberg [77] for more.

Definition 60.5.1 Let (Ω,F ,P) be a probability space and let {Fn}∞

n=1 be an increasing
sequence of σ algebras each contained in F . A stopping time is a measurable function, τ

which maps Ω to N,
τ
−1 (A) ∈F for all A ∈P (N) ,

such that for all n ∈ N,
[τ ≤ n] ∈Fn.

Note this is equivalent to saying
[τ = n] ∈Fn

because
[τ = n] = [τ ≤ n]\ [τ ≤ n−1] .

For τ a stopping time define Fτ as follows.

Fτ ≡ {A ∈F : A∩ [τ ≤ n] ∈Fn for all n ∈ N}

These sets in Fτ are referred to as “prior” to τ .

First note that for τ a stopping time, Fτ is a σ algebra. This is in the next proposition.

Proposition 60.5.2 For τ a stopping time, Fτ is a σ algebra and if Y (k) is Fk measurable
for all k, then

ω → Y (τ (ω))

is Fτ measurable.

Proof: Let An ∈Fτ . I need to show ∪nAn ∈Fτ . In other words, I need to show that

∪nAn∩ [τ ≤ k] ∈Fk
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The left side equals
∪n (An∩ [τ ≤ k])

which is a countable union of sets of Fk and so Fτ is closed with respect to countable
unions. Next suppose A ∈Fτ .(

AC ∩ [τ ≤ k]
)
∪ (A∩ [τ ≤ k]) = Ω∩ [τ ≤ k]

and Ω∩ [τ ≤ k] ∈Fk. Therefore, so is AC ∩ [τ ≤ k] . It remains to verify the last claim. It
suffices to verify that [Y (τ)≤ a] ∈Fτ . Is [Y (τ)≤ a]∩ [τ ≤ l] ∈Fl?

[Y (τ)≤ a] = ∪k [τ = k]∩ [Y (k)≤ a]

Thus
[Y (τ)≤ a]∩ [τ ≤ l] = ∪k [τ = k]∩ [Y (k)≤ a]∩ [τ ≤ l]

Consider a term in the union. If l ≥ k the term reduces to [τ = k]∩ [Y (k)≤ a] ∈Fk while
if l < k, this term reduces to /0, also a set of Fk. Therefore, Y (τ) must be Fτ measurable.
This proves the proposition. ■

The following lemma contains the fundamental properties of stopping times.

Lemma 60.5.3 In the situation of Definition 60.5.1, let σ ,τ be two stopping times. Then

1. τ is Fτ measurable

2. Fσ ∩ [σ ≤ τ]⊆Fσ∧τ = Fσ ∩Fτ

3. Fτ =Fk on [τ = k] for all k. That is if A∈Fk, then A∩ [τ = k]∈Fτ and if A∈Fτ ,
then A∩ [τ = k] ∈Fk. Also if A ∈Fτ ,∫

A∩[τ=k]
E (Y |Fτ)dP =

∫
A∩[τ=k]

E (Y |Fk)dP

and
E (Y |Fτ) = E (Y |Fk) a.e.

on [τ = k].

Proof: Consider the first claim. I need to show that [τ ≤ a]∩ [τ ≤ k] ∈Fk for every k.
However, this is easy if a≥ k because the left side is then [τ ≤ k] which is given to be in Fk
since τ is a stopping time. If a < k, it is also easy because then the left side is [τ ≤ a]∈F[a]
where [a] is the greatest integer less than or equal to a.

Next consider the second claim. Let A ∈Fσ . I want to show first that

A∩ [σ ≤ τ] ∈Fτ (60.5.10)

In other words, I want to show

A∩ [σ ≤ τ]∩ [τ ≤ k] ∈Fk
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for all k. This will be done if I can show

A∩ [σ ≤ j]∩ [τ ≤ k] ∈Fk

for each j ≤ k because

∪ j≤kA∩ [σ ≤ j]∩ [τ ≤ k] = A∩ [σ ≤ τ]∩ [τ ≤ k]

However, since A ∈Fσ , it follows A∩ [σ ≤ j] ∈F j ⊆Fk for each j≤ k and [τ ≤ k] ∈Fk
and so this has shown what I wanted to show, A∩ [σ ≤ τ] ∈Fτ .

Now replace the stopping time, τ with the stopping time τ ∧σ in what was just shown.
Note

[τ ∧σ ≤ n] = [τ ≤ n]∪ [σ ≤ n] ∈Fn

so τ ∧σ really is a stopping time. This yields

A∩ [σ ≤ τ ∧σ ] ∈Fτ∧σ

However the left side equals A∩ [σ ≤ τ] . Thus

A∩ [σ ≤ τ] ∈Fτ∧σ

This has shown the first part of 2.), Fσ ∩ [σ ≤ τ] ⊆ Fτ∧σ . Now 60.5.10 implies if A ∈
Fσ∧τ ,

A = A∩
all of Ω︷ ︸︸ ︷

[σ ∧ τ ≤ τ] ∈Fτ

and so Fσ∧τ ⊆Fτ . Similarly, Fσ∧τ ⊆Fσ which shows

Fσ∧τ ⊆Fτ ∩Fσ .

Next let A ∈Fτ ∩Fσ . Then is it in Fσ∧τ ? Is A∩ [σ ∧ τ ≤ k] ∈Fk? Of course this is so
because

A∩ [σ ∧ τ ≤ k] = A∩ ([σ ≤ k]∪ [τ ≤ k])

= (A∩ [σ ≤ k])∪ (A∩ [τ ≤ k]) ∈Fk

since both σ ,τ are stopping times. This proves part 2.).
Now consider part 3.). Note that [τ = k] is in both Fk and Fτ . This is because τ is a

stopping time so it is in Fk. Why is it in Fτ ? Is [τ = k]∩ [τ ≤ j] ∈F j for all j? If j < k,
then the intersection is /0 ∈F j. If j ≥ k, then the intersection reduces to [τ = k] and this is
in Fk ⊆F j so yes, [τ = k] is in both Fk and Fτ .

Let A ∈Fk. I need to show

Fτ ∩ [τ = k] = Fk ∩ [τ = k]

where G∩ [τ = k] means all sets of the form A∩ [τ = k] where A ∈ G . Let A ∈Fτ . Then

A∩ [τ = k] = (A∩ [τ ≤ k])\ (A∩ [τ ≤ k−1]) ∈Fk
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Therefore, there exists B ∈Fk such that B = A∩ [τ = k] and so

B∩ [τ = k] = A∩ [τ = k]

which shows Fτ ∩ [τ = k]⊆Fk ∩ [τ = k]. Now let A ∈Fk so that

A∩ [τ = k] ∈Fk ∩ [τ = k]

Then
A∩ [τ = k]∩ [τ ≤ j] ∈F j

because in case j < k, the set on the left is /0 and if j ≥ k it reduces to A∩ [τ = k] and both
A and [τ = k] are in Fk ⊆F j. Therefore, the two σ algebras of subsets of [τ = k] ,

Fτ ∩ [τ = k] ,Fk ∩ [τ = k]

are equal. Thus for A in either Fτ or Fk, A∩ [τ = k] is a set of both Fτ and Fk because if
A ∈Fk, then from the above, there exists B ∈Fτ such that

A∩ [τ = k] = B∩ [τ = k] ∈Fτ

with similar reasoning holding if A∈Fτ . In other words, if g is Fτ or Fk measurable, then
the restriction of g to [τ = k] is measurable with respect to Fτ ∩ [τ = k] and Fk ∩ [τ = k] .
Let Y be an arbitrary random variable in L1 (Ω,F ) . It follows∫

A∩[τ=k]
E (Y |Fτ)dP ≡

∫
A∩[τ=k]

Y dP

≡
∫

A∩[τ=k]
E (Y |Fk)dP

Since this holds for an arbitrary set in Fτ ∩ [τ = k] = Fk ∩ [τ = k] , it follows

E (Y |Fτ) = E (Y |Fk) a.e. on [τ = k]

This proves the third claim and the Lemma. ■
With this lemma, here is a major theorem, the optional sampling theorem of Doob. This

one is special for martingales.

Theorem 60.5.4 Let {M (k)} be a real valued martingale with respect to the increasing
sequence of σ algebras, {Fk} and let σ ,τ be two stopping times such that τ is bounded.
Then M (τ) defined as

ω →M (τ (ω))

is integrable and
M (σ ∧ τ) = E (M (τ) |Fσ ) .

Proof: By Proposition 62.6.3 M (τ) is Fτ measurable.
Next note that since τ is bounded by some l,∫

Ω

||M (τ (ω))||dP≤
l

∑
i=1

∫
[τ=i]
||M (i)||dP < ∞.
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This proves the first assertion and makes possible the consideration of conditional expecta-
tion.

Let l ≥ τ as described above. Then for k ≤ l, by Lemma 62.6.4,

Fk ∩ [τ = k] = Fτ ∩ [τ = k]≡ G

implying that if g is either Fk measurable or Fτ measurable, then its restriction to [τ = k]
is G measurable and so if A ∈Fk ∩ [τ = k] = Fτ ∩ [τ = k] ,∫

A
E (M (l) |Fτ)dP ≡

∫
A

M (l)dP

=
∫

A
E (M (l) |Fk)dP

=
∫

A
M (k)dP

=
∫

A
M (τ)dP (on A,τ = k)

Therefore, since A was arbitrary,

E (M (l) |Fτ) = M (τ) a.e.

on [τ = k] for every k ≤ l. It follows

E (M (l) |Fτ) = M (τ) a.e. (60.5.11)

since it is true on each [τ = k] for all k ≤ l.
Now consider E (M (τ) |Fσ ) on the set [σ = i]∩ [τ = j]. By Lemma 62.6.4, on this set,

E (M (τ) |Fσ ) = E (M (τ) |Fi) = E (E (M (l) |Fτ) |Fi) = E (E (M (l) |F j) |Fi)

If j ≤ i, this reduces to

E (M (l) |F j) = M ( j) = M (σ ∧ τ) .

If j > i, this reduces to
E (M (l) |Fi) = M (i) = M (σ ∧ τ)

and since this exhausts all possibilities for values of σ and τ, it follows

E (M (τ) |Fσ ) = M (σ ∧ τ) a.e. ■

This is a really amazing theorem. Note it says M (σ ∧ τ) = E (M (τ) |Fσ ) . I would
have expected something involving E (M (τ) |Fσ∧τ) on the right.

What about submartingales? Recall {X (k)}∞

k=1 is a submartingale if

E (X (k+1) |Fk)≥ X (k)

where the Fk are an increasing sequence of σ algebras in the usual way. The following is
a very interesting result.
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Lemma 60.5.5 Let {X (k)}∞

k=0 be a submartingale adapted to the increasing sequence of
σ algebras, {Fk} . Then there exists a unique increasing process {A(k)}∞

k=0 such that
A(0) = 0 and A(k+1) is Fk measurable for all k and a martingale, {M (k)}∞

k=0 such that

X (k) = A(k)+M (k) .

Furthermore, for τ a stopping time, A(τ) is Fτ measurable.

Proof: Define ∑
−1
k=0 ̸= 0. First consider the uniqueness assertion. Suppose A is a process

which does what is supposed to do.

n−1

∑
k=0

E (X (k+1)−X (k) |Fk) =
n−1

∑
k=0

E (A(k+1)−A(k) |Fk)

+
n−1

∑
k=0

E (M (k+1)−M (k) |Fk)

Then since {M (k)} is a martingale,

n−1

∑
k=0

E (X (k+1)−X (k) |Fk) =
n−1

∑
k=0

A(k+1)−A(k) = A(n)

This shows uniqueness and gives a formula for A(n) assuming it exists. It is only a matter
of verifying this does work. Define

A(n)≡
n−1

∑
k=0

E (X (k+1)−X (k) |Fk) , A(0) = 0.

Then A is increasing because from the definition,

A(n+1)−A(n) = E (X (n+1)−X (n) |Fn)≥ 0.

Also from the definition above, A(n) is Fn−1 measurable, consider

{X (k)−A(k)} .

Why is this a martingale?

E (X (k+1)−A(k+1) |Fk)

= E (X (k+1) |Fk)−A(k+1)

= E (X (k+1) |Fk)−
k

∑
j=0

E (X ( j+1)−X ( j) |F j)

= E (X (k+1) |Fk)−E (X (k+1)−X (k) |Fk)

−
k−1

∑
j=0

E (X ( j+1)−X ( j) |F j)

= X (k)−
k−1

∑
j=0

E (X ( j+1)−X ( j) |F j) = X (k)−A(k)
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Let M (k)≡ X (k)−A(k). A(τ) is Fτ measurable by Proposition 62.6.3. ■
Note the nonnegative integers could be replaced with any finite set or ordered countable

set of numbers with no change in the conclusions of this lemma or the above optional
sampling theorem.

Next consider the case of a submartingale.

Theorem 60.5.6 Let {X (k)} be a submartingale with respect to the increasing sequence
of σ algebras, {Fk} and let σ ,τ be two stopping times such that τ is bounded. Then X (τ)
defined as

ω → X (τ (ω))

is integrable and
X (σ ∧ τ)≤ E (X (τ) |Fσ ) .

Proof: The claim about X (τ) being integrable is the same as in Theorem 62.6.5. If
τ ≤ l,

E (|X (τ (ω))|) =
l

∑
i=1

∫
[τ=i]
|X (i)|dP < ∞

By Lemma 60.5.5 there is a martingale, {M (k)} and an increasing process {A(k)} such
that A(k+1) is Fk measurable such that

X (k) = M (k)+A(k) .

Then using Theorem 62.6.5 on the martingale and the fact A is increasing

E (X (τ) |Fσ ) = E (M (τ)+A(τ) |Fσ ) = M (τ ∧σ)+E (A(τ) |Fσ )

≥ M (τ ∧σ)+E (A(τ ∧σ) |Fσ )

= M (τ ∧σ)+A(τ ∧σ) = X (τ ∧σ) .

because in the above, it follows from Lemma 60.5.5, A(τ ∧σ) is Fτ∧σ measurable and
from Lemma 62.6.4,

Fτ∧σ = Fτ ∩Fσ ⊆Fσ

and so
E (A(τ ∧σ) |Fσ ) = A(τ ∧σ) . ■

60.6 Submartingale Convergence Theorem
60.6.1 Upcrossings

Let {X (k)} be an adapted stochastic process, k = 0,1,2, · · · ,M adapted to the increasing
σ algebras Fk. Also let [a,b] be an interval. An upcrossing occurs when X (k) < a and
you have X (k+ l) > b while X (r) < b for all r ∈ [k,k+ l−1]. In order to understand
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upcrossings, consider the following:

τ0 ≡ min(inf{k : X (k)≤ a} ,M) ,

τ1 ≡ min
(
inf
{

k : (X (k∨ τ0)−X (τ0))+ ≥ b−a
}
,M
)
,

τ2 ≡ min
(
inf
{

k : (X (τ1)−X (k∨ τ1))+ ≥ b−a
}
,M
)
,

τ3 ≡ min
(
inf
{

k : (X (k∨ τ2)−X (τ2))+ ≥ b−a
}
,M
)
,

τ4 ≡ min
(
inf
{

k : (X (τ3)−X (k∨ τ3))+ ≥ b−a
}
,M
)
,

...

As usual, inf( /0)≡ ∞. Are the above stopping times? If α ≥ 0, and τ is a stopping time, is
k→ (X (τ)−X (k∨ τ))+ adapted?[

(X (τ)−X (k∨ τ))+ > α
]
=
[
(X (τ)−X (k))+ > α

]
∩ [τ ≤ k]

Now [
(X (τ)−X (k))+ > α

]
∩ [τ ≤ k] = ∪k

i=0
[
(X (i)−X (k))+ > α

]
∩ [τ ≤ k] ∈Fk

If α < 0, then
[
(X (τ1)−X (k∨ τ1))+ > α

]
=Ω and so k→ (X (τ)−X (k∨ τ))+ is adapted.

Similarly k→ (X (k∨ τ)−X (τ))+ is adapted. Therefore, all those τk are stopping times.
Now consider the following random variable for odd M, 2n+1 = M

U [a,b]
M ≡ lim

ε→0

n

∑
k=0

X (τ2k+1)−X (τ2k)

ε +X (τ2k+1)−X (τ2k)
≤ 1

b−a

n

∑
k=0

X (τ2k+1)−X (τ2k)

Now suppose {X (k)} is a nonnegative submartingale. Then since E (X (2τ) |F2τ−1)≥
X (τ2k−1)

E

(
n

∑
k=1

X (τ2k)−X (τ2k−1)

)
≥ 0

Hence

E
(

U [a,b]
M

)
≤ 1

b−a

n

∑
k=0

E (X (τ2k+1)−X (τ2k))

≤ 1
b−a

n

∑
k=0

E (X (τ2k+1)−X (τ2k))+
1

b−a

n

∑
k=1

E (X (τ2k)−X (τ2k−1))

=
1

b−a

n

∑
k=0

E (X (τk)−X (τk−1))≤
1

b−a
E (X (τk))

Now by the optional sampling theorem X (0) ,X (τk) ,X (M) is a submartingale. Therefore,
the above is no larger than

1
b−a

E (|X (M)|)

Now note that U [a,b]
M is at least as large as the number of upcrossings of {X (k)} for k ≤M.

This is because every time an upcrossing occurs, it will follow that X (τ2k+1)−X (τ2k)> 0
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and so a one will occur in the above sum which defines U [a,b]
M . However, this might be larger

than the number of upcrossings. The above discussion has proved the following upcrossing
lemma.

Lemma 60.6.1 Let {X (k)} be a nonnegative submartingale. Let

U [a,b]
M ≡ lim

ε→0

n

∑
k=0

X (τ2k+1)−X (τ2k)

ε +X (τ2k+1)−X (τ2k)
, 2n+1 = M

Then
E
(

U [a,b]
M

)
≤ 1

b−a
E (X (M))

Suppose that there exists a constant C ≥ E (X (M)) for all M. That is, {X (k)} is bounded
in L1 (Ω). Then letting

U [a,b] ≡ lim
M→∞

U [a,b]
M ,

it follows that

E
(

U [a,b]
)
≤C

1
b−a

The second half follows from the first part and the monotone convergence theorem.
Now with this estimate, it is easy to prove the submartingale convergence theorem.

Theorem 60.6.2 Let {X (k)} be a submartingale which is bounded in L1 (Ω) ,

∥X (k)∥L1(Ω) ≤C

Then there is a set of measure zero N such that for ω /∈ N, limk→∞ X (k)(ω) exists. If
X (ω) = limk→∞ X (k)(ω) , then X ∈ L1 (Ω) .

Proof: Let a < b and consider the submartingale (X (k)−a)+ . Let U [0,b−a] be the ran-
dom variable of the above lemma which is associated with this submartingale. Thus

E
(

U [0,b−a]
)
≤ C

b−a

It follows that U [0,b−a] is finite for a.e. ω . As noted above, U [0,b−a] is an upper bound to
the number of upcrossings of (X (k)−a)+ and each of these corresponds to an upcrossing
of [a,b] by X (k). Thus for all ω /∈ Na,b where P

(
Na,b

)
= 0, it follows that

U [0,b−a] < ∞.

If limk→∞ X (k)(ω) fails to exist, then there exists a < b both rational such that

lim sup
k→∞

X (k)> b > a > lim inf
k→∞

X (k)

Thus ω ∈ Na,b because there are infinitely many upcrossings of [a,b]. Let

N = ∪
{

Na,b : a,b ∈Q
}

Then for ω /∈ N, the limit just discussed must exist. Letting X (ω) = limk→∞ X (k)(ω) for
ω /∈ N and letting X (ω) = 0 on N, it follows from Fatou’s lemma that X is in L1 (Ω) . ■
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60.6.2 Maximal Inequalities
Next I will show that stopping times and the optional sampling theorem, Lemma 60.4.3,
can be used to establish maximal inequalities for submartingales very easily.

Lemma 60.6.3 Let {X (k)} be real valued and adapted to the increasing sequence of σ

algebras {Fk} . Let
T (ω)≡ inf{k : X (k)≥ λ}

Then T is a stopping time. Similarly,

T (ω)≡ inf{k : X (k)≤ λ}

is a stopping time.

Proof: Is [T ≤ p] ∈Fp for all p?

[T = p] =

∈Fp−1︷ ︸︸ ︷
∩p−1

i=1 [X (i)< λ ]∩

∈Fp︷ ︸︸ ︷
[X (p)≥ λ ]

Therefore,
[T ≤ p] = ∪p

i=1 [T = i] ∈Fp ■

Theorem 60.6.4 Let {Xk} be a real valued submartingale with respect to the σ algebras
{Fk} . Then for λ > 0

λP
([

max
1≤k≤n

Xk ≥ λ

])
≤ E

(
X+

n
)
, (60.6.12)

λP
([

min
1≤k≤n

Xk ≤−λ

])
≤ E (|Xn|+ |X1|) , (60.6.13)

λP
([

max
1≤k≤n

|Xk| ≥ λ

])
≤ 2E (|Xn|+ |X1|) . (60.6.14)

Proof: Let T (ω) be the first time Xk (ω) is ≥ λ or if this does not happen for k ≤ n,
then T (ω)≡ n. Thus

T (ω)≡min(min{k : Xk (ω)≥ λ} ,n)

Note
[T > k] = ∩k

i=1 [Xi < λ ] ∈Fk

and so the complement, [T ≤ k] is also in Fk which shows T is indeed a stopping time.
Then 1,T (ω) ,n are stopping times, 1≤ T (ω)≤ n. Therefore, from the optional sam-

pling theorem, Lemma 60.4.3, X1,XT ,Xn is a submartingale. It follows

E (Xn) ≥ E (XT ) =
∫
[maxk Xk≥λ ]

XT dP+
∫
[maxk Xk<λ ]

XT dP

=
∫
[maxk Xk≥λ ]

XT dP+
∫
[maxk Xk<λ ]

XndP
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and so, subtracting the last term on the right from both sides,

E
(
X+

n
)
≥

∫
[maxk Xk≥λ ]

XndP =
∫
[maxk Xk≥λ ]

XT dP

≥ λP
([

max
k

Xk ≥ λ

])
because XT (ω)≥ λ on [maxk Xk ≥ λ ] from the definition of T . This establishes 60.6.12.

Next let T (ω) be the first time Xk (ω) is≤−λ or if this does not happen for k≤ n, then
T (ω)≡ n. Then this is a stopping time by similar reasoning and 1≤ T (ω)≤ n are stopping
times and so by the optional stopping theorem, X1,XT ,Xn is a submartingale. Therefore, on[

min
k

Xk ≤−λ

]
, XT (ω)≤−λ

and E (XT |F1)≥ X1 and so

E (X1)≤ E (E (XT |F1)) = E (XT )

which implies

E (X1) ≤ E (XT ) =
∫
[mink Xk≤−λ ]

XT dP+
∫
[mink Xk>−λ ]

XT dP

=
∫
[mink Xk≤−λ ]

XT dP+
∫
[mink Xk>−λ ]

XndP

and so

E (X1)−
∫
[mink Xk>−λ ]

XndP ≤
∫
[mink Xk≤−λ ]

XT dP

≤ −λP
([

min
k

Xk ≤−λ

])
which implies

λP
([

min
k

Xk ≤−λ

])
≤

∫
[mink Xk>−λ ]

XndP−E (X1)

≤
∫

Ω

(|Xn|+ |X1|)dP

and this proves 60.6.13.
The last estimate follows from these. Here is why.[

max
1≤k≤n

|Xk| ≥ λ

]
⊆
[

max
1≤k≤n

Xk ≥ λ

]
∪
[

min
1≤k≤n

Xk ≤−λ

]
and so

λP
([

max
1≤k≤n

|Xk| ≥ λ

])
≤ λP

([
max

1≤k≤n
Xk ≥ λ

]
∪
[

min
1≤k≤n

Xk ≤−λ

])



60.6. SUBMARTINGALE CONVERGENCE THEOREM 1969

≤ λP
([

max
1≤k≤n

Xk ≥ λ

])
+λP

([
min

1≤k≤n
Xk ≤−λ

])
≤ 2E (|X1|+ |Xn|)

and this proves the last estimate.

60.6.3 The Upcrossing Estimate

A very interesting example of stopping times is next. It has to do with upcrossings. First
here is a lemma.

Lemma 60.6.5 Let {Fk} be an increasing sequence of σ algebras and let {X (k)} be
adapted to this sequence. Suppose that X (k) has all values in [a,b] and suppose σ is
a stopping time with the property that X (σ) = a. Let τ (ω) be the first k > σ such that
X (k) = b. If no such k exists, then τ ≡ ∞. Then τ is a stopping time. Also, you can switch
a,b in the above and obtain the same conclusion that τ is a stopping time.

Proof: Let I be an interval and consider X (k∨σ) . Is k→ X (k∨σ) adapted? Let I be
an interval. Is

A≡ X (k∨σ)−1 (I) ∈Fk?

We know that this set is in Fk∨σ .

A = A∩ [σ ≤ k]∪
(

X (k∨σ)−1 (I)∩ [σ > k]
)

(♠)

Consider the second set in♠. There are two cases, a∈ I and a /∈ I. First suppose a /∈ I. Then
if ω ∈ [σ > k] , it follows that X (k∨σ) = X (σ) = a. Therefore, in this case, the set on the
right in ♠ is empty and the empty set is in Fk. Next suppose a ∈ I. Then for ω ∈ [σ > k] ,

X (k∨σ (ω)) = X (σ (ω)) = a ∈ I

and so each ω ∈ [σ > k] is in the set X (k∨σ)−1 (I) and so, in this case, the set on the right
equals

[σ > k] ∈Fk

Now consider the first set in ♠,

A∩ [σ ≤ k] = A∩ [σ ∨ k ≤ k] ∈Fk

by the definition of what it means for the set A to be in Fk∨σ . The argument proceeds in
the same way when you switch a,b. ■

Definition 60.6.6 Let {Xk} be a sequence of random variables adapted to the increasing
sequence of σ algebras, {Fk} . Let [a,b] be an interval. An upcrossing is a sequence
Xn (ω) , · · · ,Xn+p (ω) such that Xn (ω)≤ a,Xn+i (ω)< b for i < p, and Xn+p (ω)≥ b.
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Example 60.6.7 Let {Fn} be an increasing sequence of σ algebras contained in F where
(Ω,F ,P) is a probability space and let {Xn} be a sequence of real valued random variables
such that Xn is Fn measurable. Also let a < b. Define

T0 ≡ inf{n : X (n)≤ a}

T1 ≡ inf{n > T0 : X (n)≥ b}
T2 ≡ inf{n > T1 : X (n)≤ a}

...

T2k−1 ≡ inf{n > T2k−2 : X (n)≥ b}
T2k ≡ inf{n > T2k−1 : X (n)≤ a}

If Xn (ω) is never in the desired interval for any n > Tj (ω) , then define Tj+1 (ω)≡∞. Then
this is an increasing sequence of stopping times.

It happens that the above gives an increasing sequence of stopping times.

Lemma 60.6.8 The above example gives an increasing sequence of stopping times.

Proof: You could consider the modified random variables

Y (k)≡ (X (k)∨a)∧b

Then these new random variables stay in [a,b] and if you replace X (n) in the above with
Y (n) , you get the same sequence of stopping times. Now apply Lemma 60.6.5. ■

Now there is an interesting application of these stopping times to the concept of up-
crossings. Let {Xn} be a submartingale such that Xn is Fn measurable and let a < b.
Assume X0 (ω)≤ a. The function, x→ (x−a)+ is increasing and convex so

{
(Xn−a)+

}
is also a submartingale. Furthermore, {Xn} goes from≤ a to≥ b if and only if

{
(Xn−a)+

}
goes from 0 to ≥ b−a. That is, a subsequence of the form Yn (ω) ,Yn+1 (ω) , · · · ,Yn+r (ω)
for Y equal to either X or (X−a)+ starts out below a (0) and ends up above b (b−a) .
Such a sequence is called an upcrossing of [a,b] . The idea is to estimate the expected
number of upcrossings for n ≤ N. For the stopping times defined in Example 60.6.7, let
T ′k ≡ min(Tk,N) . Thus T ′k , a continuous function of the stopping time, is also a stopping
time which is bounded. Moreover, T ′k ≤ T ′k+1. Now pick n such that 2n > N. Then for each
ω ∈Ω

(XN (ω)−a)+− (X0 (ω)−a)+

must equal the sum of all successive terms of the form((
XT ′k+1

(ω)−a
)+
−
(

XT ′k
(ω)−a

)+)
for k = 1,2, · · · ,2n. This is because

{
T ′k (ω)

}
is a strictly increasing sequence which starts

with 0 due to the assumption X0 (ω)≤ a and ends with N < 2n. Therefore,

(XN−a)+− (X0−a)+ =
2n

∑
k=1

(
XT ′k
−a
)+
−
(

XT ′k−1
−a
)+



60.6. SUBMARTINGALE CONVERGENCE THEOREM 1971

=

odds − evens︷ ︸︸ ︷
n−1

∑
k=0

((
XT ′2k+1

−a
)+
−
(

XT ′2k
−a
)+)

+

evens − odds︷ ︸︸ ︷
n

∑
k=1

((
XT ′2k
−a
)+
−
(

XT ′2k−1
−a
)+)

.

Now denote by UN
[a,b] the number of upcrossings. When T ′k is such that k is odd,

(
XT ′k
−a
)+

is above b− a and when k is even, it equals 0. Therefore, in the first sum XT ′2k+1
−XT ′2k

≥
b− a and there are UN

[a,b] terms which are nonzero in this sum. (Note this might not be n
because many of the terms in the sum could be 0 due to the definition of T ′k .) Hence

(XN−a)+− (X0−a)+ = (XN−a)+

≥ (b−a)UN
[a,b]+

n

∑
k=1

((
XT ′2k
−a
)+
−
(

XT ′2k−1
−a
)+)

. (60.6.15)

Now UN
[a,b] is a random variable. To see this, let Zk (ω) = 1 if T ′2k+1 > T ′2k and 0 otherwise.

Thus UN
[a,b] (ω) = ∑

n−1
k=0 Zk (ω) . Therefore, it makes sense to take the expected value of both

sides of 60.6.15. By the optional sampling theorem,
{(

XT ′k
−a
)+}

is a submartingale and
so

E
((

XT ′2k
−a
)+
−
(

XT ′2k−1
−a
)+)

=
∫

Ω

E
((

XT ′2k
−a
)+
|FT ′2k−1

)
dP−

∫
Ω

(
XT ′2k−1

−a
)+

dP≥ 0.

Therefore,

E
(
(XN−a)+

)
≥ (b−a)E

(
UN
[a,b]

)
. (60.6.16)

This proves most of the following fundamental upcrossing estimate.

Theorem 60.6.9 Let {Xn} be a real valued submartingale such that Xn is Fn measurable.
Then letting UN

[a,b] denote the upcrossings of {Xn} from a to b for n≤ N,

E
(

UN
[a,b]

)
≤ 1

b−a
E
(
(XN−a)+

)
.

Proof: The estimate 60.6.16 was based on the assumption that X0 (ω) ≤ a. If this is
not so, modify X0. Change it to min(X0,a) . Then the inequality holds for the modified
submartingale which has at least as many upcrossings. Therefore, the inequality remains.
■

Note this theorem holds if the submartingale starts at the index 1 rather than 0. Just
adjust the argument.
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60.7 The Submartingale Convergence Theorem
With this estimate it is now possible to prove the amazing submartingale convergence the-
orem.

Theorem 60.7.1 Let {Xn} be a real valued submartingale such that

E (|Xn|)< M

for all n. Then there exists X ∈ L1 (Ω,F ) such that Xn (ω) converges to X (ω) a.e. ω and
X ∈ L1 (Ω) .

Proof: Let a < b be two rational numbers. From Theorem 60.6.9 it follows that for all
N, ∫

Ω

UN
[a,b]dP ≤ 1

b−a
E
(
(XN−a)+

)
≤ 1

b−a
(E (|XN |)+ |a|)≤

M+ |a|
b−a

.

Therefore, letting N→∞, it follows that for a.e. ω, there are only finitely many upcrossings
of [a,b] . Denote by S[a,b] the exceptional set. Then letting S ≡ ∪a,b∈QS[a,b], it follows that
P(S) = 0 and for ω /∈ S,{Xn (ω)} is a Cauchy sequence because if

lim sup
n→∞

Xn (ω)> lim inf
n→∞

Xn (ω)

then you can pick liminfn→∞ Xn (ω) < a < b < limsupn→∞ Xn (ω) with a,b rational and
conclude ω ∈ S[a,b].

Let X (ω) = limn→∞ Xn (ω) if ω /∈ S and let X (ω) = 0 if ω ∈ S. Then it only remains
to verify X ∈ L1 (Ω) . Since X is the pointwise limit of measurable functions, it follows X
is measurable. By Fatou’s lemma,∫

Ω

|X (ω)|dP≤ lim inf
n→∞

∫
Ω

|Xn (ω)|dP

Thus X ∈ L1 (Ω). This proves the theorem.
As a simple application, here is an easy proof of a nice theorem about convergence of

sums of independent random variables.

Theorem 60.7.2 Let {Xk} be a sequence of independent real valued random variables
such that E (|Xk|)< ∞,E (Xk) = 0, and

∞

∑
k=1

E
(
X2

k
)
< ∞.

Then ∑
∞
k=1 Xk converges a.e.
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Proof: Let Fn ≡ σ (X1, · · · ,Xn) . Consider Sn ≡ ∑
n
k=1 Xk.

E (Sn+1|Fn) = Sn +E (Xn+1|Fn) .

Letting A ∈Fn it follows from independence that∫
A

E (Xn+1|Fn)dP ≡
∫

A
Xn+1dP

=
∫

Ω

XAXn+1dP

= P(A)
∫

Ω

Xn+1dP = 0

and so E (Xn+1|Fn) = 0. Therefore, {Sn} is a martingale. Now using independence again,

E (|Sn|)≤ E
(∣∣S2

n
∣∣)= n

∑
k=1

E
(
X2

k
)
≤

∞

∑
k=1

E
(
X2

k
)
< ∞

and so {Sn} is an L1 bounded martingale. Therefore, it converges a.e. and this proves the
theorem.

Corollary 60.7.3 Let {Xk} be a sequence of independent real valued random variables
such that E (|Xk|)< ∞,E (Xk) = mk, and

∞

∑
k=1

E
(
|Xk−mk|2

)
< ∞.

Then ∑
∞
k=1 (Xk−mk) converges a.e.

This can be extended to the case where the random variables have values in a separable
Hilbert space.

Theorem 60.7.4 Let {Xk} be a sequence of independent H valued random variables where
H is a real separable Hilbert space such that E (|Xk|H)< ∞,E (Xk) = 0, and

∞

∑
k=1

E
(
|Xk|2H

)
< ∞.

Then ∑
∞
k=1 Xk converges a.e.

Proof: Let {ek} be an orthonormal basis for H. Then {(Xn,ek)H}
∞

n=1 are real valued,
independent, and their mean equals 0. Also

∞

∑
n=1

E
(∣∣∣(Xn,ek)

2
H

∣∣∣)≤ ∞

∑
n=1

E
(
|Xn|2H

)
< ∞

and so from Theorem 60.7.2, the series,
∞

∑
n=1

(Xn,ek)H
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converges a.e. Therefore, there exists a set of measure zero such that for ω not in this set,
∑n (Xn (ω) ,ek)H converges for each k. For ω not in this exceptional set, define

Yk (ω)≡
∞

∑
n=1

(Xn (ω) ,ek)H

Next define

S (ω)≡
∞

∑
k=1

Yk (ω)ek. (60.7.17)

Of course it is not clear this even makes sense. I need to show ∑
∞
k=1 |Yk (ω)|2 < ∞. Using

the independence of the Xn

E
(
|Yk|2

)
= E

( ∞

∑
n=1

(Xn,ek)H

)2


= E

((
∞

∑
n=1

∞

∑
m=1

(Xn,ek)H (Xm,ek)H

))

≤ lim inf
N→∞

E

((
N

∑
n=1

N

∑
m=1

(Xn,ek)H (Xm,ek)H

))

= lim inf
N→∞

E

(
N

∑
n=1

(Xn,ek)
2
H

)

=
∞

∑
n=1

E
(
(Xn,ek)

2
H

)
Hence from the above,

E

(
∑
k
|Yk|2

)
= ∑

k
E
(
|Yk|2

)
≤∑

k
∑
n

E
(
(Xn,ek)

2
H

)
and by the monotone convergence theorem or Fubini’s theorem,

= E

(
∑
k

∑
n
(Xn,ek)

2
H

)
= E

(
∑
n

∑
k
(Xn,ek)

2
H

)

= E
(

∑
n
|Xn|2H

)
= ∑

n
E
(
|Xn|2H

)
< ∞ (60.7.18)

Therefore, for ω off a set of measure zero, and for

Yk (ω)≡
∞

∑
n=1

(Xn (ω) ,ek)H ,

∑
k
|Yk (ω)|2 < ∞
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and also for these ω,

∑
n

∑
k
(Xn (ω) ,ek)

2
H < ∞.

It follows from the estimate 60.7.18 that for ω not on a suitable set of measure zero, S (ω)
defined by 60.7.17,

S (ω)≡
∞

∑
k=1

Yk (ω)ek

makes sense. Thus for these ω

S (ω) = ∑
l
(S (ω) ,el)el = ∑

l
Yl (ω)el ≡∑

l
∑
n
(Xn (ω) ,el)H el

= ∑
n

∑
l
(Xn (ω) ,el)el = ∑

n
Xn (ω) .

This proves the theorem.
Now with this theorem, here is a strong law of large numbers.

Theorem 60.7.5 Suppose {Xk} are independent random variables and E (|Xk|) < ∞ for
each k and E (Xk) = mk. Suppose also

∞

∑
j=1

1
j2 E

(∣∣X j−m j
∣∣2)< ∞. (60.7.19)

Then

lim
n→∞

1
n

n

∑
j=1

(X j−m j) = 0 a.e.

Proof: Consider the sum
∞

∑
j=1

X j−m j

j
.

This sum converges a.e. because of 60.7.19 and Theorem 60.7.4 applied to the random
vectors

{
X j−m j

j

}
. Therefore, from Lemma 59.7.4 it follows that for a.e. ω,

lim
n→∞

1
n

n

∑
j=1

(X j (ω)−m j) = 0

This proves the theorem.
The next corollary is often called the strong law of large numbers. It follows immedi-

ately from the above theorem.

Corollary 60.7.6 Suppose
{

X j
}∞

j=1 are independent random vectors, λ Xi = λ X j for all
i, j having mean m and variance equal to

σ
2 ≡

∫
Ω

∣∣X j−m
∣∣2 dP < ∞.

Then for a.e. ω ∈Ω

lim
n→∞

1
n

n

∑
j=1

X j (ω) = m
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60.8 A Reverse Submartingale Convergence Theorem
Definition 60.8.1 Let {Xn}∞

n=0 be a sequence of real random variables such that E (|Xn|)<
∞ for all n and let {Fn} be a sequence of σ algebras such that Fn ⊇Fn+1 for all n. Then
{Xn} is called a reverse submartingale if for all n,

E (Xn|Fn+1)≥ Xn+1.

Note it is just like a submartingale only the indices are going the other way. Here is an
interesting lemma. This lemma gives uniform integrability for a reverse submartingale.

Lemma 60.8.2 Suppose E (|Xn|) < ∞ for all n, Xn is Fn measurable, Fn+1 ⊆ Fn for
all n ∈ N, and there exist X∞ F∞ measurable such that F∞ ⊆ Fn for all n and X0 F0
measurable such that F0 ⊇Fn for all n such that for all n ∈ {0,1, · · ·} ,

E (Xn|Fn+1)≥ Xn+1, E (Xn|F∞)≥ X∞,

where E (|X∞|)< ∞. Then {Xn : n ∈ N} is uniformly integrable.

Proof:
E (Xn+1)≤ E (E (Xn|Fn+1)) = E (Xn)

Therefore, the sequence {E (Xn)} is a decreasing sequence bounded below by E (X∞) so it
has a limit. I am going to show the functions are equiintegrable. Let k be large enough that∣∣∣E (Xk)− lim

m→∞
E (Xm)

∣∣∣< ε (60.8.20)

and suppose n > k. Then if λ > 0,∫
[|Xn|≥λ ]

|Xn|dP =
∫
[Xn≥λ ]

XndP+
∫
[Xn≤−λ ]

(−Xn)dP

=
∫
[Xn≥λ ]

XndP+
∫

Ω

(−Xn)dP−
∫
[−Xn<λ ]

(−Xn)dP

=
∫
[Xn≥λ ]

XndP−
∫

Ω

XndP+
∫
[−Xn<λ ]

XndP

From 60.8.20,

≤
∫
[Xn≥λ ]

XndP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

XndP

By assumption,

E (Xk|Fn)≥ Xn
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and so the above

≤
∫
[Xn≥λ ]

E (Xk|Fn)dP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

E (Xk|Fn)dP

=
∫
[Xn≥λ ]

XkdP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

XkdP

=
∫
[Xn≥λ ]

XkdP−
∫

Ω

XkdP+ ε +
∫
[Xn>−λ ]

XkdP

=
∫
[Xn≥λ ]

XkdP+

(∫
Ω

(−Xk)dP−
∫
[Xn>−λ ]

(−Xk)dP
)
+ ε

=
∫
[Xn≥λ ]

XkdP+
∫
[Xn≤−λ ]

(−Xk)dP+ ε =
∫
[|Xn|≥λ ]

|Xk|dP+ ε

Applying the maximal inequality for submartingales, Theorem 60.6.4,

P
([

max
{∣∣X j

∣∣ : j = n, · · · ,1
}
≥ λ

])
≤ 1

λ
(E (|X0|)+E (|X∞|))≤

C
λ

and taking sup for all n,

P
([

sup
{∣∣X j

∣∣}≥ λ
])
≤ C

λ

It follows since the single function, Xk is equiintegrable that for all λ large enough,∫
[|Xn|≥λ ]

|Xn|dP≤ 2ε

and since ε is arbitrary, this shows {Xn} for n > k is equiintegrable. Since there are only
finitely many X j for j ≤ k, this shows {Xn} is equiintegrable. Hence {Xn} is uniformly
integrable. This proves the lemma.

Now with this lemma and the upcrossing lemma it is easy to prove an important con-
vergence theorem.

Theorem 60.8.3 Let {Xn,Fn}∞

n=0 be a backwards submartingale as described above and
suppose supn≥0 E (|Xn|)< ∞. Then {Xn} converges a.e. and in L1 (Ω) to a function, X∞.

Proof: By the upcrossing lemma applied to the submartingale {Xk}N
k=0 , the number

of upcrossings (Downcrossings is probably a better term. They are upcrossings as n gets
smaller.) of the interval [a,b] satisfies the inequality

E
(

UN
[a,b]

)
≤ 1

b−a
E
(
(X0−a)+

)
Letting N → ∞, it follows the expected number of upcrossings, E

(
U[a,b]

)
is bounded.

Therefore, there exists a set of measure 0 Nab such that if ω /∈ Nab,U[a,b] (ω) < ∞. Let
N = ∪{Nab : a,b ∈Q}. Then for ω /∈ N,

lim sup
n→∞

Xn (ω) = lim inf
n→∞

Xn (ω)
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because if inequality holds, then letting

lim inf
n→∞

Xn (ω)< a < b < lim sup
n→∞

Xn (ω)

it would follow U[a,b] (ω) = ∞, contrary to ω /∈ Nab.
Let X∞ (ω)≡ limn→∞ Xn (ω) . Then by Fatou’s lemma,∫

Ω

|X∞ (ω)|dP≤ lim inf
n→∞

∫
Ω

|Xn|dP < ∞.

and so X∞ is in L1 (Ω) . By the Vitali convergence theorem and Lemma 62.7.16 which
shows {|Xn|} is uniformly integrable, it follows

lim
n→∞

∫
Ω

|X∞ (ω)−Xn (ω)|dP = 0.

This proves the theorem.

60.9 Strong Law Of Large Numbers
There is a version of the strong law of large numbers which does not depend on the random
variables having finite variance. First are some preparatory lemmas. The approach followed
here is from Ash [7].

Lemma 60.9.1 Let {Xn} be a sequence of independent random variables with E (|Xk|)<∞

for all k and let Sn ≡ ∑
n
k=1 Xk. Then for k ≤ n,

E (Xk|σ (Sn)) = E (Xk|σ (Sn,Y)) a.e.

where Y =(Xn+1,Xn+2, · · ·) ∈ RN. Also for k ≤ n as above,

σ (Sn,Y) = σ (Sn,Sn+1, · · ·) .

Proof: Note that RN with the usual product topology has a countable basis. Here it is.
Let BN denote sets of the form ∏

∞
i=1 Di where for i ≤ N,Di ∈B, a countable basis for R

and for i > N,Di = R. Then BN is countable and so is D ≡ ∪∞
N=1BN . From the definition

of the product topology, this is a countable basis for the product topology.
Let V ∈D and U be an open set of R. Then if A ∈ (Sn,Y)−1 (U×V ) ,by independence

of the {Xn} , ∫
(Sn,Y)−1(U×V )

E (Xk|σ (Sn,Y))dP≡
∫
(Sn,Y)−1(U×V )

XkdP

=
∫

Ω

XS−1
n (U) (ω)XY−1(V ) (ω)XkdP = P

(
Y−1 (V )

)∫
Ω

XS−1
n (U) (ω)XkdP

= P
(
Y−1 (V )

)∫
S−1

n (U)
E (Xk|σ (Sn))dP.



60.9. STRONG LAW OF LARGE NUMBERS 1979

Now by independence again, {Sn,Xn+1,Xn+2, · · ·} are independent and so the above equals∫
S−1

n (U)
XY−1(V )E (Xk|σ (Sn))dP =

∫
(Sn,Y)−1(U×V )

E (Xk|σ (Sn))dP.

Letting

S ≡
{

A ∈B
(
R×RN

)
:
∫
(Sn,Y)−1(A)

E (Xk|σ (Sn))dP

=
∫
(Sn,Y)−1(A)

E (Xk|σ (Sn,Y))dP
}

the above has shown this is true for all A in a countable basis. Therefore, it is true for all A
open in R×RN. Finally, it is clear that S is a σ algebra which shows the above holds for
all A Borel in R×RN. Thus, for all B ∈ σ (Sn,Y) ,∫

B
E (Xk|σ (Sn))dP =

∫
B

E (Xk|σ (Sn,Y))dP

and thus E (Xk|σ (Sn)) = E (Xk|σ (Sn,Y)) a.e.
It only remains to prove the last assertion. For k > 0,

Xn+k = Sn+k−Sn+k−1

Thus

σ (Sn,Y) = σ (Sn,Xn+1, · · ·)
= σ (Sn,(Sn+1−Sn) ,(Sn+2−Sn+1) , · · ·)
⊆ σ (Sn,Sn+1, · · ·)

On the other hand,

σ (Sn,Sn+1, · · ·) = σ (Sn,Xn+1 +Sn,Xn+2 +Xn+1 +Sn, · · ·)
⊆ σ (Sn,Xn+1,Xn+2, · · ·)

To see this, note that for an open set, and hence for a Borel set, B,(
Sn +

m

∑
k=n+1

Xk

)−1

(B) = (Sn,Xn+1, · · · ,Xm)
−1 (B′)

for some B′ ∈ Rm+1. Thus
(
Sn +∑

m
k=n+1 Xk

)−1
(B) for B a Borel set is contained in

σ (Sn,Xn+1,Xn+2, · · ·)

Similar considerations apply to the other inclusion stated earlier. This proves the lemma.

Lemma 60.9.2 Let {Xk} be a sequence of independent identically distributed random vari-
ables such that E (|Xk|)< ∞. Then letting Sn = ∑

n
k=1 Xk, it follows that for k ≤ n

E (Xk|σ (Sn,Sn+1, · · ·)) = E (Xk|σ (Sn)) =
Sn

n
.
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Proof: It was shown in Lemma 60.9.1 the first equality holds. It remains to show the
second. Letting A = S−1

n (B) where B is Borel, it follows there exists B′ ⊆ Rn a Borel set
such that

S−1
n (B) = (X1, · · · ,Xn)

−1 (B′) .
Then ∫

A
E (Xk|σ (Sn))dP =

∫
S−1

n (B)
XkdP

=
∫
(X1,··· ,Xn)

−1(B′)
XkdP =

∫
(X1,··· ,Xn)

−1(B′)
xkdλ (X1,··· ,Xn)

=
∫
· · ·
∫

X
(X1,··· ,Xn)

−1(B′) (x)xkdλ X1dλ X2 · · ·dλ Xn

=
∫
· · ·
∫

X
(X1,··· ,Xn)

−1(B′) (x)xldλ X1dλ X2 · · ·dλ Xn

=
∫

A
E (Xl |σ (Sn))dP

and so since A ∈ σ (Sn) is arbitrary,

E (Xl |σ (Sn)) = E (Xk|σ (Sn))

for each k, l ≤ n. Therefore,

Sn = E (Sn|σ (Sn)) =
n

∑
j=1

E (X j|σ (Sn)) = nE (Xk|σ (Sn)) a.e.

and so
E (Xk|σ (Sn)) =

Sn

n
a.e.

as claimed. This proves the lemma.
With this preparation, here is the strong law of large numbers for identically distributed

random variables.

Theorem 60.9.3 Let {Xk} be a sequence of independent identically distributed random
variables such that E (|Xk|)< ∞ for all k. Letting m = E (Xk) ,

lim
n→∞

1
n

n

∑
k=1

Xk (ω) = m a.e.

and convergence also takes place in L1 (Ω).

Proof: Consider the reverse submartingale {E (X1|σ (Sn,Sn+1, · · ·))} . By Theorem
60.8.3, this converges a.e. and in L1 (Ω) to a random variable, X∞. However, from Lemma
60.9.2, E (X1|σ (Sn,Sn+1, · · ·)) = Sn/n. Therefore, Sn/n converges a.e. and in L1 (Ω) to X∞.
I need to argue that X∞ is constant and also that it equals m. For a ∈ R let

Ea ≡ [X∞ ≥ a]
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For a small enough, P(Ea) ̸= 0. Then since Ea is a tail event for the independent ran-
dom variables, {Xk} it follows from the Kolmogorov zero one law, Theorem 59.6.4, that
P(Ea) = 1. Let b ≡ sup{a : P(Ea) = 1}. The sets, Ea are decreasing as a increases. Let
{an} be a strictly increasing sequence converging to b. Then

[X∞ ≥ b] = ∩n [X∞ ≥ an]

and so
1 = P(Eb) = lim

n→∞
P(Ean) .

On the other hand, if c > b, then P(Ec) < 1 and so P(Ec) = 0. Hence P([X = b]) = 1. It
remains to show b = m. This is easy because by the L1 convergence,

b =
∫

Ω

X∞dP = lim
n→∞

∫
Ω

Sn

n
dP = lim

n→∞
m = m.

This proves the theorem.
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Chapter 61

Probability In Infinite Dimensions
61.1 Conditional Expectation In Banach Spaces

Let (Ω,F ,P) be a probability space and let X ∈ L1 (Ω;R). Also let G ⊆F where G is
also a σ algebra. Then the usual conditional expectation is defined by∫

A
XdP =

∫
A

E (X |G )dP

where E (X |G ) is G measurable and A ∈ G is arbitrary. Recall this is an application of the
Radon Nikodym theorem. Also recall E (X |G ) is unique up to a set of measure zero.

I want to do something like this here. Denote by L1 (Ω;E,G ) those functions in
L1 (Ω;E) which are measurable with respect to G .

Theorem 61.1.1 Let E be a separable Banach space and let X ∈ L1 (Ω;E,F ) where X is
measurable with respect to F and let G be a σ algebra which is contained in F . Then
there exists a unique Z ∈ L1 (Ω;E,G ) such that for all A ∈ G ,∫

A
XdP =

∫
A

ZdP

Denoting this Z as E (X |G ) , it follows

∥E (X |G )∥ ≤ E (∥X∥ |G ) .

Proof: First consider uniqueness. Suppose Z′ is another in L1 (Ω;E,G ) which works.

Consider a dense subset of E {an}∞

n=1. Then the balls
{

B
(

an,
∥an∥

4

)}∞

n=1
must cover E \

{0}. Here is why. If y ̸= 0, pick an ∈ B
(

y, ||y||5

)
.

y an

0

Then ||an|| ≥ 4 ||y||/5 and so ||an− y||< ||y||/5. Thus

y ∈ B(an, ||y||/5)⊆ B
(

an,
||an||

4

)
Now suppose Z is G measurable and ∫

A
ZdP = 0

1983
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for all A ∈ G . The letting A≡ Z−1
(

B
(

an,
||an||

4

))
it follows

0 =
∫

A
Z−an +andP

and so

||an||P(A) =
∣∣∣∣∣∣∣∣∫A

andP
∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣∫A

(an−Z)dP
∣∣∣∣∣∣∣∣

≤
∫

Z−1
(

B
(

an,
||an ||

4

)) ||an−Z||dP≤ ||an||
4

P(A)

which is a contradiction unless P(A) = 0. Therefore, letting

N ≡ ∪∞
n=1Z−1

(
B
(

an,
||an||

4

))
= Z−1 (E \{0})

it follows N has measure zero and so Z = 0 a.e. This proves uniqueness because if Z,Z′

both hold, then from the above argument, Z−Z′ = 0 a.e.
Next I will show Z exists. To do this recall Theorem 21.2.4 on Page 652 which is stated

below for convenience.

Theorem 61.1.2 An E valued function, X, is Bochner integrable if and only if X is strongly
measurable and ∫

Ω

||X (ω)||dP < ∞. (61.1.1)

In this case there exists a sequence of simple functions {Xn} satisfying∫
Ω

||Xn (ω)−Xm (ω)||dP→ 0 as m,n→ ∞. (61.1.2)

Xn (ω) converging pointwise to X (ω),

||Xn (ω)|| ≤ 2 ||X (ω)|| (61.1.3)

and
lim
n→∞

∫
Ω

||X (ω)−Xn (ω)||dP = 0. (61.1.4)

Now let {Xn} be the simple functions just defined and let

Xn (ω) =
m

∑
k=1

xkXFk (ω)

where Fk ∈F , the Fk being disjoint. Then define

Zn ≡
m

∑
k=1

xkE
(
XFk |G

)
.
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Thus, if A ∈ G , ∫
A

ZndP =
m

∑
k=1

xk

∫
A

E
(
XFk |G

)
dP

=
m

∑
k=1

xk

∫
A
XFk dP

=
m

∑
k=1

xkP(Fk ∩A) =
∫

A
XndP (61.1.5)

Then since E
(
XFk |G

)
≥ 0,

||Zn|| ≤
m

∑
k=1
||xk||E

(
XFk |G

)
Thus if A ∈ G ,

E (||Zn||XA) ≤ E

(
m

∑
k=1
||xk||XAE

(
XFk |G

))
=

m

∑
k=1
||xk||

∫
A

E
(
XFk |G

)
dP

=
m

∑
k=1
||xk||

∫
A
XFk dP = E (XA ||Xn||) . (61.1.6)

Note the use of ≤ in the first step in the above. Although the Fk are disjoint, all that is
known about E

(
XFk |G

)
is that it is nonnegative. Similarly,

E (||Zn−Zm||)≤ E (||Xn−Xm||)

and this last term converges to 0 as n,m→∞ by the properties of the Xn. Therefore, {Zn} is
a Cauchy sequence in L1 (Ω;E;G ) . It follows it converges to some Z in L1 (Ω;E,G ) . Then
letting A ∈ G , and using 61.1.5,∫

A
ZdP =

∫
XAZdP = lim

n→∞

∫
XAZndP = lim

n→∞

∫
A

ZndP

= lim
n→∞

∫
A

XndP =
∫

A
XdP.

Then define Z ≡ E (X |G ).
It remains to verify ||E (X |G )|| ≡ ||Z|| ≤ E (||X || |G ) . This follows because, from the

above,
||Zn|| → ||Z|| , ||Xn|| → ||X || in L1 (Ω)

and so if A ∈ G , then from 61.1.6,

1
P(A)

∫
A
||Zn||dP≤ 1

P(A)

∫
A
||Xn||dP

and so, passing to the limit,

1
P(A)

∫
A
||Z||dP≤ 1

P(A)

∫
A
||X ||dP =

1
P(A)

∫
A

E (∥X∥|G )dP
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Since A is arbitrary, this shows that

||E (X |G )|| ≡ ||Z|| ≤ E (||X || |G ) . ■

In the case where E is reflexive, one could also use Corollary 21.7.6 on Page 681 to get
the above result. You would define a vector measure on G ,

ν (F)≡
∫

F
XdP

and then you would use the fact that reflexive separable Banach spaces have the Radon
Nikodym property to obtain Z ∈ L1 (Ω;E,G ) such that

ν (F) =
∫

F
XdP =

∫
F

ZdP.

The function, Z whose existence and uniqueness is guaranteed by Theorem 61.1.2 is
called E (X |G ).

61.2 Probability Measures And Tightness
Here and in what remains, B (E) will denote the Borel sets of E where E is a topological
space, usually at least a Banach space. Because of the fact that probability measures are
finite, you can use a simpler definition of what it means for a measure to be regular. Recall
that there were two ingredients, inner regularity which said that the measure of a set is
the supremum of the measures of compact subsets and outer regularity which says that the
measure of a set is the infimum of the measures of the open sets which contain the given
set. Here the definition will be similar but instead of using compact sets, closed sets are
substituted. Thus the following definition is a little different than the earlier one. I will
show, however, that in many interesting cases, this definition of regularity is actually the
same as the earlier one.

Definition 61.2.1 A measure, µ defined on B (E) will be called inner regular if for all
F ∈B (E) ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed}

A measure, µ defined on B (E) will be called outer regular if for all F ∈B (E) ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open}

When a measure is both inner and outer regular, it is called regular.

For probability measures, regularity tends to come free.

Lemma 61.2.2 Let µ be a finite measure defined on B (E) where E is a metric space.
Then µ is regular.
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Proof: First note every open set is the countable union of closed sets and every closed
set is the countable intersection of open sets. Here is why. Let V be an open set and let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V. Next, for K closed let

Vk ≡ {x ∈ E : dist(x,K)< 1/k} .

Clearly the intersection of the Vk equals K. Therefore, letting V denote an open set and K a
closed set,

µ (V ) = sup{µ (K) : K ⊆V and K is closed}
µ (K) = inf{µ (V ) : V ⊇ K and V is open} .

Also since V is open and K is closed,

µ (V ) = inf{µ (U) : U ⊇V and V is open}
µ (K) = sup{µ (L) : L⊆ K and L is closed}

In words, µ is regular on open and closed sets. Let

F ≡{F ∈B (E) such that µ is regular on F} .

Then F contains the open sets. I want to show F is a σ algebra and then it will follow
F = B (E).

First I will show F is closed with respect to complements. Let F ∈F . Then since µ is
finite and F is inner regular, there exists K⊆F such that µ (F \K)< ε. But KC \FC =F \K
and so µ

(
KC \FC

)
< ε showning that FC is outer regular. I have just approximated the

measure of FC with the measure of KC, an open set containing FC. A similar argument
works to show FC is inner regular. You start with V ⊇ F such that µ (V \F) < ε , note
FC \VC = V \ F, and then conclude µ

(
FC \VC

)
< ε, thus approximating FC with the

closed subset, VC.
Next I will show F is closed with respect to taking countable unions. Let {Fk} be a

sequence of sets in F . Then µ is inner regular on each of these so there exist {Kk} such
that Kk ⊆ Fk and µ (Fk \Kk)< ε/2k+1. First choose m large enough that

µ ((∪∞
k=1Fk)\ (∪m

k=1Fk))<
ε

2
.

Then

µ ((∪m
k=1Fk)\ (∪m

k=1Kk))≤
m

∑
k=1

ε

2k+1 <
ε

2

and so

µ ((∪∞
k=1Fk)\ (∪m

k=1Kk)) ≤ µ ((∪∞
k=1Fk)\ (∪m

k=1Fk))

+µ ((∪m
k=1Fk)\ (∪m

k=1Kk))

<
ε

2
+

ε

2
= ε
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showing µ is inner regular on ∪∞
k=1Fk. Since µ is outer regular on Fk, there exists Vk such

that µ (Vk \Fk)< ε/2k. Then

µ ((∪∞
k=1Vk)\ (∪∞

k=1Fk)) ≤
∞

∑
k=1

µ (Vk \Fk)

<
∞

∑
k=1

ε

2k = ε

and this shows µ is outer regular on ∪∞
k=1Fk and this proves the lemma.

Lemma 61.2.3 Let µ be a finite measure on B (E) , the Borel sets of E, a separable com-
plete metric space. Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

Proof: Let {ak} be a countable dense subset of C. Thus ∪∞
k=1B

(
ak,

1
n

)
⊇C. Therefore,

there exists mn such that

µ

(
C \∪mn

k=1B
(

ak,
1
n

))
≡ µ (C \Cn)<

ε

2n .

Now let K =C∩ (∩∞
n=1Cn) . Then K is a subset of Cn for each n and so for each ε > 0 there

exists an ε net for K since Cn has a 1/n net, namely a1, · · · ,amn . Since K is closed, it is
complete and so it is also compact. Now

µ (C \K) = µ (∪∞
n=1 (C \Cn))<

∞

∑
n=1

ε

2n = ε.

Thus µ (C) can be approximated by µ (K) for K a compact subset of C. This proves the
lemma.

This shows that for a finite measure on the Borel sets of a separable metric space, the
above definition of regular coincides with the earlier one.

61.3 Tight Measures
Now here is a definition of what it means for a set of measures to be tight.

Definition 61.3.1 Let Λ be a set of probability measures defined on the Borel sets of a
topological space. Then Λ is “tight” if for all ε > 0 there exists a compact set, Kε such that

µ ([x /∈ Kε ])< ε

for all µ ∈ Λ.

Lemma 61.2.3 implies a single probability measure on the Borel sets of a separable
metric space is tight. The proof of that lemma generalizes slightly to give a simple criterion
for a set of measures to be tight.
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Lemma 61.3.2 Let E be a separable complete metric space and let Λ be a set of Borel
probability measures. Then Λ is tight if and only if for every ε > 0 and r > 0 there exists a
finite collection of balls, {B(ai,r)}m

i=1 such that

µ

(
∪m

i=1B(ai,r)
)
> 1− ε

for every µ ∈ Λ.

Proof: If Λ is tight, then there exists a compact set, Kε such that

µ (Kε)> 1− ε

for all µ ∈ Λ. Then consider the open cover, {B(x,r) : x ∈ Kε} . Finitely many of these
cover Kε and this yields the above condition.

Now suppose the above condition and let

Cn ≡ ∪mn
i=1B(an

i ,1/n)

satisfy µ (Cn) > 1− ε/2n for all µ ∈ Λ. Then let Kε ≡ ∩∞
n=1Cn. This set Kε is a compact

set because it is a closed subset of a complete metric space and is therefore complete, and
it is also totally bounded by construction. For µ ∈ Λ,

µ
(
KC

ε

)
= µ

(
∪nCC

n
)
≤∑

n
µ
(
CC

n
)
< ∑

n

ε

2n = ε

Therefore, Λ is tight. ■
Prokhorov’s theorem is an important result which also involves tightness. In order to

give a proof of this important theorem, it is necessary to consider some simple results from
topology which are interesting for their own sake.

Theorem 61.3.3 Let H be a compact metric space. Then there exists a compact subset of
[0,1] ,K and a continuous function, θ which maps K onto H.

Proof: Without loss of generality, it can be assumed H is an infinite set since otherwise
the conclusion is trivial. You could pick finitely many points of [0,1] for K.

Since H is compact, it is totally bounded. Therefore, there exists a 1 net for H {hi}m1
i=1 .

Letting H1
i ≡ B(hi,1), it follows H1

i is also a compact metric space and so there exists a 1/2

net for each H1
i ,
{

hi
j

}mi

j=1
. Then taking the intersection of B

(
hi

j,
1
2

)
with H1

i to obtain sets

denoted by H2
j and continuing this way, one can obtain compact subsets of H,

{
H i

k

}
which

satisfies: each H i
j is contained in some H i−1

k , each H i
j is compact with diameter less than

i−1, each H i
j is the union of sets of the form H i+1

k which are contained in it. Denoting by{
H i

j

}mi

j=1
those sets corresponding to a superscript of i, it can also be assumed mi < mi+1.

If this is not so, simply add in another point to the i−1 net. Now let
{

Ii
j

}mi

j=1
be disjoint

closed intervals in [0,1] each of length no longer than 2−mi which have the property that
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Ii
j is contained in Ii−1

k for some k. Letting Ki ≡ ∪mi
j=1Ii

j, it follows Ki is a sequence of
nested compact sets. Let K = ∩∞

i=1Ki. Then each x ∈ K is the intersection of a unique

sequence of these closed intervals,
{

Ik
jk

}∞

k=1
. Define θx ≡ ∩∞

k=1Hk
jk
. Since the diameters

of the H i
j converge to 0 as i→ ∞, this function is well defined. It is continuous because

if xn → x, then ultimately xn and x are both in Ik
jk
, the kth closed interval in the sequence

whose intersection is x. Hence, d (θxn,θx)≤ diameter(Hk
jk
)≤ 1/k. To see the map is onto,

let h ∈ H. Then from the construction, there exists a sequence
{

Hk
jk

}∞

k=1
of the above sets

whose intersection equals h. Then θ

(
∩∞

i=1Ik
jk

)
= h. ■

Note θ is maybe not one to one.
As an important corollary, it follows that the continuous functions defined on any com-

pact metric space is separable.

Corollary 61.3.4 Let H be a compact metric space and let C (H) denote the continuous
functions defined on H with the usual norm,

|| f ||
∞
≡max{| f (x)| : x ∈ H}

Then C (H) is separable.

Proof: The proof is by contradiction. Suppose C (H) is not separable. Let Hk de-
note a maximal collection of functions of C (H) with the property that if f ,g ∈Hk, then
|| f −g||

∞
≥ 1/k. The existence of such a maximal collection of functions is a consequence

of a simple use of the Hausdorff maximality theorem. Then ∪∞
k=1Hk is dense. Therefore,

it cannot be countable by the assumption that C (H) is not separable. It follows that for
some k,Hk is uncountable. Now by Theorem 61.3.3 there exists a continuous function, θ

defined on a compact subset, K of [0,1] which maps K onto H. Now consider the functions
defined on K

Gk ≡ { f ◦θ : f ∈Hk} .

Then Gk is an uncountable set of continuous functions defined on K with the property
that the distance between any two of them is at least as large as 1/k. This contradicts
separability of C (K) which follows from the Weierstrass approximation theorem in which
the separable countable set of functions is the restrictions of polynomials that involve only
rational coefficients. ■

Now here is Prokhorov’s theorem.

Theorem 61.3.5 Let Λ= {µn}
∞

n=1 be a sequence of probability measures defined on B (E)
where E is a separable complete metric space. If Λ is tight then there exists a probability
measure, λ and a subsequence of {µn}

∞

n=1 , still denoted by {µn}
∞

n=1 such that whenever φ

is a continuous bounded complex valued function defined on E,

lim
n→∞

∫
φdµn =

∫
φdλ .
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Proof: By tightness, there exists an increasing sequence of compact sets, {Kn} such
that

µ (Kn)> 1− 1
n

for all µ ∈ Λ. Now letting µ ∈ Λ and φ ∈C (Kn) such that ||φ ||
∞
≤ 1, it follows∣∣∣∣∫Kn

φdµ

∣∣∣∣≤ µ (Kn)≤ 1

and so the restrictions of the measures of Λ to Kn are contained in the unit ball of C (Kn)
′ .

Recall from the Riesz representation theorem, the dual space of C (Kn) is a space of com-
plex Borel measures. Theorem 17.5.5 on Page 462 implies the unit ball of C (Kn)

′ is weak
∗ sequentially compact. This follows from the observation that C (Kn) is separable which
is proved in Corollary 61.3.4 and leads to the fact that the unit ball in C (Kn)

′ is actually
metrizable by Theorem 17.5.5 on Page 462. Therefore, there exists a subsequence of Λ,
{µ1k} such that their restrictions to K1 converge weak ∗ to a measure, λ 1 ∈C (K1)

′. That
is, for every φ ∈C (K1) ,

lim
k→∞

∫
K1

φdµ1k =
∫

K1

φdλ 1

By the same reasoning, there exists a further subsequence {µ2k} such that the restrictions
of these measures to K2 converge weak ∗ to a measure λ 2 ∈ C (K2)

′ etc. Continuing this
way,

µ11,µ12,µ13, · · · → Weak∗ in C (K1)
′

µ21,µ22,µ23, · · · → Weak∗ in C (K2)
′

µ31,µ32,µ33, · · · → Weak∗ in C (K3)
′

...

Here the jth sequence is a subsequence of the ( j−1)th. Let λ n denote the measure in
C (Kn)

′ to which the sequence {µnk}
∞

k=1 converges weak∗. Let {µn} ≡ {µnn} , the diag-
onal sequence. Thus this sequence is ultimately a subsequence of every one of the above
sequences and so µn converges weak∗ in C (Km)

′ to λ m for each m. Note that this is all
happening on different sets so there is no contradiction with something converging to two
different things.

Claim: For p > n, the restriction of λ p to the Borel sets of Kn equals λ n.
Proof of claim: Let H be a compact subset of Kn. Then there are sets, Vl open in Kn

which are decreasing and whose intersection equals H. This follows because this is a metric
space. Then let H ≺ φ l ≺Vl . It follows

λ n (Vl) ≥
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≥ λ p (H) .

Now considering the ends of this inequality, let l→ ∞ and pass to the limit to conclude

λ n (H)≥ λ p (H) .
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Similarly,

λ n (H) ≤
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≤ λ p (Vl) .

Then passing to the limit as l→ ∞, it follows

λ n (H)≤ λ p (H) .

Thus the restriction of λ p,λ p|Kn to the compact sets of Kn equals λ n. Then by inner regu-
larity it follows the two measures, λ p|Kn , and λ n are equal on all Borel sets of Kn. Recall
that for finite measures on separable metric spaces, regularity is obtained for free.

It is fairly routine to exploit regularity of the measures to verify that λ m (F) ≥ 0 for
all F a Borel subset of Km.Note that φ →

∫
Kn

φdλ n is a positive linear functional and so
λ n ≥ 0. Also, letting φ ≡ 1,

1≥ λ m (Km)≥ 1− 1
m
. (61.3.7)

Define for F a Borel set,

λ (F)≡ lim
n→∞

λ n (F ∩Kn) .

The limit exists because the sequence on the right is increasing due to the above observation
that λ n = λ m on the Borel subsets of Km whenever n > m. Thus for n > m

λ n (F ∩Kn)≥ λ n (F ∩Km) = λ m (F ∩Km) .

Now let {Fk} be a sequence of disjoint Borel sets. Then

λ (∪∞
k=1Fk) ≡ lim

n→∞
λ n (∪∞

k=1Fk ∩Kn) = lim
n→∞

λ n (∪∞
k=1 (Fk ∩Kn))

= lim
n→∞

∞

∑
k=1

λ n (Fk ∩Kn) =
∞

∑
k=1

λ (Fk)

the last equation holding by the monotone convergence theorem.
It remains to verify

lim
k→∞

∫
φdµk =

∫
φdλ

for every φ bounded and continuous. This is where tightness is used again. Then as noted
above,

λ n (Kn) = λ (Kn)

because for p > n,λ p (Kn) = λ n (Kn) and so letting p→ ∞, the above is obtained. Also,
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from 61.3.7,

λ
(
KC

n
)

= lim
p→∞

λ p
(
KC

n ∩Kp
)

≤ lim sup
p→∞

(λ p (Kp)−λ p (Kn))

≤ lim sup
p→∞

(λ p (Kp)−λ n (Kn))

≤ lim sup
p→∞

(
1−
(

1− 1
n

))
=

1
n

Suppose ||φ ||
∞
< M. Then∣∣∣∣∫ φdµk−

∫
φdλ

∣∣∣∣≤ ∣∣∣∣∫KC
n

φdµk +
∫

Kn

φdµk−
(∫

Kn

φdλ +
∫

KC
n

φdλ

)∣∣∣∣
≤
∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk−
∫

KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk

∣∣∣∣+ ∣∣∣∣∫KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ M
n
+

M
n

First let n be so large that 2M/n < ε/2 and then pick k large enough that the above expres-
sion is less than ε. ■

Definition 61.3.6 Let E be a complete separable metric space and let µ and the sequence
of probability measures, {µn} defined on B (E) satisfy

lim
n→∞

∫
φdµn =

∫
φdµ.

for every φ a bounded continuous function. Then µn is said to converge weakly to µ .

61.4 A Major Existence And Convergence Theorem
Here is an interesting lemma about weak convergence.

Lemma 61.4.1 Let µn converge weakly to µ and let U be an open set with µ (∂U) = 0.
Then

lim
n→∞

µn (U) = µ (U) .

Proof: Let {ψk} be a sequence of bounded continuous functions which decrease to
XU . Also let {φ k} be a sequence of bounded continuous functions which increase to XU .
For example, you could let

ψk (x) ≡ (1− k dist(x,U))+ ,

φ k (x) ≡ 1−
(
1− k dist

(
x,UC))+ .
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Let ε > 0 be given. Then since µ (∂U) = 0, the dominated convergence theorem implies
there exists ψ = ψk and φ = φ k such that

ε >
∫

ψdµ−
∫

φdµ

Next use the weak convergence to pick N large enough that if n≥ N,∫
ψdµn ≤

∫
ψdµ + ε,

∫
φdµn ≥

∫
φdµ− ε.

Therefore, for n this large,

µ (U) ,µn (U) ∈
[∫

φdµ− ε,
∫

ψdµ + ε

]
and so

|µ (U)−µn (U)|< 3ε.

since ε is arbitrary, this proves the lemma.

Definition 61.4.2 Let (Ω,F ,P) be a probability space and let X : Ω→ E be a random
variable where here E is some topological space. Then one can define a probability mea-
sure, λ X on B (E) as follows:

λ X (F)≡ P([X ∈ F ])

More generally, if µ is a probability measure on B (E) , and X is a random variable defined
on a probability space, L (X) = µ means

µ (F)≡ P([X ∈ F ]) .

The following amazing theorem is due to Skorokhod. It starts with a measure, µ on
B (E) and produces a random variable, X for which L (X) = µ. It also has something to
say about the convergence of a sequence of such random variables.

Theorem 61.4.3 Let E be a separable complete metric space and let {µn} be a sequence of
Borel probability measures defined on B (E) such that µn converges weakly to µ another
probability measure on B (E). Then there exist random variables, Xn,X defined on the
probability space, ([0,1),B ([0,1)) ,m) where m is one dimensional Lebesgue measure
such that

L (X) = µ, L (Xn) = µn, (61.4.8)

each random variable, X ,Xn is continuous off a set of measure zero, and

Xn (ω)→ X (ω) m a.e.

Proof: Let {ak} be a countable dense subset of E.

Construction of sets in E
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First I will describe a construction. Letting C ∈B (E) and r > 0,

Cr
1 ≡ C∩B(a1,r) ,Cr

2 ≡ B(a2,r)∩C \Cr
1, · · · ,

Cr
n ≡ B(an,r)∩C \

(
∪n−1

k=1Cr
k
)
.

Thus the sets, Cr
k for k = 1,2, · · · are disjoint Borel sets whose union is all of C. Of course

many may be empty.
Cr(size)

n(index of the {ak} it is close to)

Now let C = E, the whole metric space. Also let {rk} be a decreasing sequence of positive
numbers which converges to 0. Let

Ak ≡ Er1
k , k = 1,2, · · ·

Thus {Ak} is a sequence of Borel sets, Ak ⊆ B(ak,r1) , and the union of the Ak equals E.
For (i1, · · · , im) ∈ Nm, suppose Ai1,··· ,im has been defined. Then for k ∈ N,

Ai1,··· ,imk ≡ (Ai1,··· ,im)
rm+1
k

Thus Ai1,··· ,imk ⊆ B(ak,rm+1), is a Borel set, and

∪∞
k=1Ai1,··· ,imk = Ai1,··· ,im . (61.4.9)

Also note that Ai1,··· ,im could be empty. This is because Ai1,··· ,imk⊆B(ak,rm+1) but Ai1,··· ,im ⊆
B(aim ,rm) which might have empty intersection with B(ak,rm+1) . Applying 61.4.9 repeat-
edly,

E = ∪i1 · · ·∪im Ai1,··· ,im

and also, the construction shows the Borel sets, Ai1,··· ,im are disjoint. Note that to get
Ai1,··· ,imk, you do to Ai1,··· ,im what was done for E but you consider smaller sized pieces.

Construction of intervals depending on the measure

Next I will construct intervals, Iν
i1,··· ,in in [0,1) corresponding to these Ai1,··· ,in . In what

follows, ν = µn or µ . These intervals will depend on the measure chosen as indicated in
the notation.

Iν
1 ≡ [0,ν (A1)), · · · , Iν

j ≡

[
j−1

∑
k=1

ν (Ak) ,
j

∑
k=1

ν (Ak)

)
for j = 1,2, · · · . Note these are disjoint intervals whose union is [0,1). Also note

m
(
Iν

j
)
= ν (A j) .

The endpoints of these intervals as well as their lengths depend on the measures of the sets
Ak. Now supposing Iν

i1,··· ,im = [α,β ) where β −α = ν (Ai1··· ,im) , define

Iν
i1··· ,im, j ≡

[
α +

j−1

∑
k=1

ν
(
Ai1··· ,im,k

)
,α +

j

∑
k=1

ν
(
Ai1··· ,im,k

))
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Thus m
(

Iν
i1··· ,im, j

)
= ν (Ai1··· ,im, j) and

ν (Ai1··· ,im) =
∞

∑
k=1

ν
(
Ai1··· ,im,k

)
=

∞

∑
k=1

m
(
Iν
i1··· ,im,k

)
= β −α,

the intervals, Iν
i1··· ,im, j being disjoint and

Iν

i1 ··· ,im
= ∪∞

j=1Iν
i1··· ,im, j.

These intervals satisfy the same inclusion properties as the sets {Ai1,··· ,im} . They are just
on [0,1) rather than on E. The intervals Iν

i1 ··· ,imk
correspond to the sets Ai1··· ,im,k and in fact

the Lebesgue measure of the interval is the same as ν
(
Ai1··· ,im,k

)
.

Choosing the sequence {rk} in an auspicious manner

There are at most countably many positive numbers, r such that for ν = µn or µ ,

ν (∂B(ai,r))> 0

This is because ν is a finite measure. Taking the countable union of these countable sets,
there are only countably many r such that ν (∂B(ai,r))> 0 for some ai. Let the sequence
avoid all these bad values of r. Thus for

F ≡ ∪∞
m=1∪∞

k=1 ∂B(ak,rm)

and ν = µ or µn,ν (F) = 0. Here the rm are all good values such that for all k,m, ∂B(ak,rm)
has µ measure zero and µn measure zero.

Claim 1: ∂Ai1,··· ,ik ⊆ F. This really follows from the construction. However, the details
follow.

Proof of claim: Suppose C is a Borel set for which ∂C ⊆ F. I need to show ∂Cri
k ∈ F.

First consider k = 1. Then Cri
1 ≡ B(a1,ri)∩C. If x ∈ ∂Cri

1 , then B(x,δ ) contains points
of B(a1,ri)∩C and points of B(a1,ri)

C ∪CC for every δ > 0. First suppose x ∈ B(a1,ri) .

Then a small enough neighborhood of x has no points of B(a1,ri)
C and so every B(x,δ )

has points of C and points of CC so that x ∈ ∂C ⊆ F by assumption. If x ∈ ∂Cri
1 , then it

can’t happen that ||x−a1|| > ri because then there would be a neighborhood of x having
no points of Cri

1 . The only other case to consider is that ||x−ai|| = ri but this says x ∈ F.
Now assume ∂Cri

j ⊆ F for j ≤ k−1 and consider ∂Cri
k .

Cri
k ≡ B(ak,ri)∩C \∪k−1

j=1Cri
j

= B(ak,ri)∩C∩
(
∩k−1

j=1

(
Cri

j

)C
)

(61.4.10)

Consider x ∈ ∂Cri
k . If x ∈ int(B(ak,ri)∩C)(int≡ interior) then a small enough ball about

x contains no points of (B(ak,ri)∩C)C and so every ball about x must contain points of(
∩k−1

j=1

(
Cri

j

)C
)C

= ∪k−1
j=1Cri

j
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Since there are only finitely many sets in the union, there exists s≤ k−1 such that every ball
about x contains points of Cri

s but from 61.4.10, every ball about x contains points of
(
Cri

s
)C

which implies x ∈ ∂Cri
s ⊆ F by induction. It is not possible that d (x,ak)> ri and yet have

x in ∂Cri
k . This follows from the description in 61.4.10. If d (x,ak) = ri then by definition,

x ∈ F. The only other case to consider is that x /∈ int(B(ak,ri)∩C) but x ∈ B(ak,ri). From
61.4.10, every ball about x contains points of C. However, since x ∈ B(ak,ri) , a small
enough ball is contained in B(ak,ri) . Therefore, every ball about x must also contain points
of CC since otherwise, x ∈ int(B(ak,ri)∩C) . Thus x ∈ ∂C⊆ F by assumption. Now apply
what was just shown to the case where C = E, the whole space. In this case, ∂E ⊆ F
because ∂E = /0. Then keep applying what was just shown to the Ai1,··· ,in . This proves the
claim.

From the claim, ν (int(Ai1,··· ,in)) = ν (Ai1,··· ,in) whenever ν = µ or µn. This is because
that in Ai1,··· ,in which is not in int(Ai1,··· ,in) is in F which has measure zero.

Some functions on [0,1)

By the axiom of choice, there exists xi1,··· ,im ∈ int(Ai1,··· ,im) whenever

int(Ai1,··· ,im) ̸= /0.

For ν = µn or µ, define the following functions. For ω ∈ Iν
i1,··· ,im

Zν
m (ω)≡ xi1,··· ,im .

This defines the functions, Zµn
m and Zµ

m. Note these functions have the same values but on
slightly different intervals. Here is an important claim.

Claim 2 (Limit on µn): For a.e. ω ∈ [0,1), limn→∞ Zµn
m (ω) = Zµ

m (ω) .
Proof of the claim: This follows from the weak convergence of µn to µ and Lemma

61.4.1. This lemma implies µn (int(Ai1,··· ,im))→ µ (int(Ai1,··· ,im)) . Thus by the construc-
tion described above, µn (Ai1,··· ,im)→ µ (Ai1,··· ,im) because of claim 1 and the construction

of F in which it is always a set of measure zero. It follows that if ω ∈ int
(

Iµ

i1,··· ,im

)
, then

for all n large enough, ω ∈ int
(

Iµn
i1,··· ,im

)
and so Zµn

m (ω) = Zµ
m (ω) . Note this convergence

is very far from being uniform.
Claim 3 (Limit on size of sets, fixed measure): For ν = µn or µ,{Zν

m}
∞

m=1 is uniformly
Cauchy independent of ν .

Proof of the claim: For ω ∈ Iν
i1,··· ,im , then by the construction,

ω ∈ Iν
i1,··· ,im,im+1··· ,in

for some im+1 · · · , in. Therefore, Zν
m (ω) and Zν

n (ω) are both contained in Ai1,··· ,im which
is contained in B(aim ,rm) . Since ω ∈ [0,1) was arbitrary, and rm → 0, it follows these
functions are uniformly Cauchy as claimed.

Let Xν (ω) = limm→∞ Zν
m (ω). Since each Zν

m is continuous off a set of measure zero, it
follows from the uniform convergence that Xν is also continuous off a set of measure zero.

Claim 4: For a.e. ω,
lim
n→∞

X µn (ω) = X µ (ω) .
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Proof of the claim: From Claim 3 and letting ε > 0 be given, there exists m large
enough that for all n,

sup
ω

d
(
Zµn

m (ω) ,X µn (ω)
)
< ε/3, sup

ω

d (Zµ
m (ω) ,X µ (ω))< ε/3.

for ω off a set of measure zero. Now pick ω ∈ [0,1) such that ω is not equal to any
of the end points of any of the intervals,

{
Iν
i1,··· ,im

}
, this countable set of endpoints, a

set of Lebesgue measure zero. Then by Claim 2, there exists N such that if n ≥ N, then
d
(
Zµn

m (ω) ,Zµ
m (ω)

)
< ε/3. Therefore, for such n and this ω,

d (X µn (ω) ,X µ (ω)) ≤ d
(
X µn (ω) ,Zµn

m (ω)
)
+d
(
Zµn

m (ω) ,Zµ
m (ω)

)
+d (Zµ

m (ω) ,X µ (ω))

< ε/3+ ε/3+ ε/3 = ε.

This proves the claim.

Showing L (Xν) = ν .

This has mostly proved the theorem except for the claim that L (Xν) = ν for ν =

µn and µ. To do this, I will first show m
(
(Xν)−1 (∂Ai1,··· ,im)

)
= 0. By the construction,

ν (∂Ai1,··· ,im) = 0. Let ε > 0 be given and let δ > 0 be small enough that

Hδ ≡ {x ∈ E : dist(x,∂Ai1,··· ,im)≤ δ}

is a set of measure less than ε/2. Denote by Gk the sets of the form Ai1,··· ,ik where
(i1, · · · , ik) ∈ Nk. Recall also that corresponding to Ai1,··· ,ik is an interval, Iν

i1,··· ,ik having
length equal to ν

(
Ai1,··· ,ik

)
. Denote by Bk those sets of Gk which have nonempty inter-

section with Hδ and let the corresponding intervals be denoted by I ν
k . If ω /∈ ∪I ν

k , then
from the construction, Zν

p (ω) is at a distance of at least δ from ∂Ai1,··· ,im for all p≥ k. (If
Zν

k (ω) were in some set of Bk, this would require ω to be in the corresponding Iν
k and it is

assumed this does not happen. Then for any p > k,Zν
p (ω) cannot be in any set of Gp which

intersects Hδ either. If it did, you would need to have ω /∈ ∪I ν
p but all of these intervals

are inside the intervals I ν
k .) Passing to the limit as p→ ∞, it follows Xν (ω) /∈ ∂Ai1,··· ,im .

Therefore,
(Xν)

−1
(∂Ai1,··· ,im)⊆ ∪I ν

k

Recall that Ai1,··· ,ik ⊆ B
(
aik ,rk

)
and the rk→ 0. Therefore, if k is large enough,

ν (∪Bk)< ε

because ∪Bk approximates Hδ closely (In fact, ∩∞
k=1 (∪Bk) = Hδ .). Therefore,

m
(
(Xν)

−1
(∂Ai1,··· ,im)

)
≤ m(∪I ν

k )

= ∑
Iν
i1 ,··· ,ik

∈I ν
k

m
(
Iν
i1,··· ,ik

)
= ∑

Ai1 ,··· ,ik∈Bk

ν
(
Ai1,··· ,ik

)
= ν (∪Bk)< ε.
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Since ε > 0 is arbitrary, this shows m
(
(Xν)−1 (∂Ai1,··· ,im)

)
= 0.

If ω ∈ Iν
i1,··· ,im , then from the construction, Zν

p (ω) ∈ int(Ai1,··· ,im) for all p ≥ k. There-
fore, taking a limit, as p→ ∞,

Xν (ω) ∈ int(Ai1,··· ,im)∪∂Ai1,··· ,im

and so
Iν
i1,··· ,im ⊆ (Xν)

−1
(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

but also, if Xν (ω) ∈ int(Ai1,··· ,im) , then Zν
p (ω) ∈ int(Ai1,··· ,im) for all p large enough and

so

(Xν)
−1

(int(Ai1,··· ,im))

⊆ Iν
i1,··· ,im ⊆ (Xν)

−1
(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

Therefore,

m
(
(Xν)

−1
(int(Ai1,··· ,im))

)
≤ m

(
Iν
i1,··· ,im

)
≤ m

(
(Xν)

−1
(int(Ai1,··· ,im))

)
+m

(
(Xν)

−1
(∂Ai1,··· ,im)

)
= m

(
(Xν)

−1
(int(Ai1,··· ,im))

)
which shows

m
(
(Xν)

−1
(int(Ai1,··· ,im))

)
= m

(
Iν
i1,··· ,im

)
= ν (Ai1,··· ,im) . (61.4.11)

Also

m
(
(Xν)

−1
(int(Ai1,··· ,im))

)
≤ m

(
(Xν)

−1
(Ai1,··· ,im)

)
≤ m

(
(Xν)

−1
(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

)
= m

(
(Xν)

−1
(int(Ai1,··· ,im))

)
Hence from 61.4.11,

ν (Ai1,··· ,im) = m
(
(Xν)

−1
(int(Ai1,··· ,im))

)
= m

(
(Xν)

−1
(Ai1,··· ,im)

)
(61.4.12)

Now let U be an open set in E. Then letting

Hk =
{

x ∈U : dist
(
x,UC)≥ rk

}
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it follows
∪kHk =U.

Next consider the sets of Gk which have nonempty intersection with Hk,Hk. Then Hk is
covered by Hk and every set of Hk is contained in U, the sets of Hk also being disjoint.
Then from 61.4.12,

m
(
(Xν)

−1
(∪Hk)

)
= ∑

A∈Hk

m
(
(Xν)

−1
(A)
)

= ∑
A∈Hk

ν (A) = ν (∪Hk) .

Therefore, letting k→ ∞ and passing to the limit in the above,

m
(
(Xν)

−1
(U)
)
= ν (U) .

Since this holds for every open set, it is routine to verify using regularity that it holds for
every Borel set and so L (Xν) = ν as claimed. ■

61.5 Bochner’s Theorem In Infinite Dimensions
Let X be a real vector space and let X∗ denote the space of real valued linear mappings
defined on X . Then you can consider each x ∈ X as a linear transformation defined on X∗

by the convention x∗→ x∗ (x) . Now let Λ be a Hamel basis. For a description of what one
of these is, see Page 2726. It is just the usual notion of a basis. Thus every vector of X is a
finite linear combination of vectors of Λ in a unique way.

Now consider RΛ the space of all mappings from Λ to R. In different notation, this is
of the form

RΛ ≡∏
y∈Λ

R

Since Λ is a Hamel basis, there exists a one to one and onto mapping, θ : X∗→RΛ defined
as

θ (x∗)≡∏
y∈Λ

x∗ (y) .

Now denote by σ (X) the smallest σ algebra of sets of X∗ such that each x is measurable
with respect to this σ algebra. Thus

{x∗ : x∗ (x) ∈ B} ∈ σ (X)

whenever B is a Borel set in R.
Let E denote the algebra of disjoint unions of sets of RΛ of the form

∏
y∈Λ

Ay

where Ay = R except for finitely many y.
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Lemma 61.5.1 Let A denote sets of the form

{x∗ : θ (x∗) ∈U}

where U ∈ E . Then A is an algebra and σ (A ) = σ (X). Also{
θ
−1 (U) : U ∈ σ (E )

}
= σ (X)

Proof: Since E is an algebra it is clear A is also an algebra. Also, A ⊆ σ (X) because
you could let U have only one Ay not equal to R and all the others equal to R and then

{x∗ : θ (x∗) ∈U}=
{

x∗ : y(x∗)≡ x∗ (y) ∈ Ay
}
∈ σ (X) .

Therefore, σ (A ) ⊆ σ (X) . I need to verify that for an arbitrary x, it is measurable with
respect to σ (A ) . However, this is true because if x is arbitrary, it is a linear combination
of {y1, · · · ,yn} , some finite set of functions in Λ and so, x being a linear combination of
measurable functions implies it is itself measurable.

By definition, θ
−1 (U) is in A whenever U ∈ E . Now let G denote those sets, U

in σ (E ) such that θ
−1 (U) ∈ σ (A ). Then G is a σ algebra which contains E and so

G ⊇ σ (E )⊇ G . This proves the last claim. This proves the lemma.

Definition 61.5.2 Let ψ : X → C. Then ψ is said to be pseudo continuous if whenever
{x1, · · · ,xn} is a finite subset of X and a = (a1, · · · ,an) ∈ Rn,

a→ ψ

(
n

∑
k=1

akxk

)
is continuous. ψ is said to be positive definite if

∑
j,k

ψ (xk− x j)αkα j ≥ 0

ψ is said to be a characteristic function if there exists a probability measure, µ defined on
σ (X) such that

ψ (x) =
∫

X∗
eix∗(x)dµ (x∗)

Note that x∗→ eix∗(x) is σ (X) measurable.
Using Kolmogorov’s extension theorem on Page 59.2.3, there exists a generalization of

Bochner’s theorem found in [125]. For convenience, here is Kolmogorov’s theorem.

Theorem 61.5.3 (Kolmogorov extension theorem) For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt for Mt =Rnt for nt an integer, such that the following consistency condition holds.
If

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,
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then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(61.5.13)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices, tk, then Gsi = Msi .
Then for E defined as in Definition 14.4.1, adjusted so that ±∞ never appears as any
endpoint of any interval, there exists a probability measure, P and a σ algebra F = σ (E )
such that (

∏
t∈I

Mt ,P,F

)
is a probability space. Also there exist measurable functions, Xs : ∏t∈I Mt →Ms defined as

Xsx≡ xs

for each s ∈ I such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(61.5.14)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn

=
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (61.5.15)

Theorem 61.5.4 Let X be a real vector space and let X∗ be the space of linear functionals
defined on X. Also let ψ : X → C. Then ψ is a characteristic function if and only if
ψ (0) = 1 and ψ is pseudo continuous at 0.

Proof: Suppose first ψ is a characteristic function as just described. I need to show it
is positive definite and pseudo continuous. It is obvious ψ (0) = 1 in this case. Also

ψ

(
∑
k

akxk

)
=
∫

X∗
exp

(
ix∗
(

∑
k

akxk

))
dµ (x∗)

and this is obviously a continuous function of a by the dominated convergence theorem. It
only remains to verify the function is positive definite. However,

∑
k, j

exp(ix∗ (xk− x j))αkα j = ∑
k, j

eix∗(xk)αkeix∗(x j)α j ≥ 0

as in the earlier discussion of what it means to be positive definite given on Page 1938.
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Next suppose the conditions hold. Define for t ∈ Rn and {y1, · · · ,yn} ⊆ Λ

ψ{y1,··· ,yn} (t)≡ ψ

(
n

∑
j=1

t jy j

)
.

Then ψ{y1,··· ,yn} is continuous at 0, equals 1 there, and is positive definite. It follows from
Bochner’s theorem, Theorem 59.21.7 on Page 1941 there exists a measure µ{y1,··· ,yn} de-
fined on the Borel sets of Rn such that

ψ

(
n

∑
j=1

t jy j

)
= ψ{y1,··· ,yn} (t) =

∫
Rn

eit·xdµ{y1,··· ,yn} (x) . (61.5.16)

Thus if
{

y1, · · · ,yn,yn+1, · · · ,yp
}
⊆ Λ,

ψ

(
n

∑
j=1

t jy j +
p−n

∑
j=1

s jy j+n

)
= ψ{y1,··· ,yp} (t,s)

=
∫
Rp−n

eis·x
∫
Rn

eit·xdµ{y1,··· ,yp} (x)

I need to verify the measures are consistent to use Kolmogorov’s theorem. Specifically, I
need to show

µ{y1,··· ,yp}
(
A×Rp−n)= µ{y1,··· ,yn} (A) .

Letting
λ (A) = µ{y1,··· ,yp}

(
A×Rp−n)

it follows ∫
Rn

eit·xdλ =
∫
Rp−n

∫
Rn

eit·xdµ{y1,··· ,yp} (x)

=
∫
Rp−n

ei0·x
∫
Rn

eit·xdµ{y1,··· ,yp} (x)

= ψ

(
n

∑
j=1

t jy j +
p−n

∑
j=1

0y j+n

)

= ψ

(
n

∑
j=1

t jy j

)
=

∫
Rn

eit·xdµ{y1,··· ,yn} (x)

and so, by uniqueness of characteristic functions,

λ = µ{y1,··· ,yn}

which verifies the necessary consistency condition for Kolmogorov’s theorem.
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It follows there exists a probability measure µ defined on σ (E ) and random variables,
Xy for each y ∈ Λ such that whenever

{
y1, · · · ,yp

}
⊆ Λ,

µ{y1,··· ,yp} (Ay1 ×·· ·×Ayn) = µ

(
∏
y∈Λ

Ay

)

where Ay = R whenever y /∈
{

y1, · · · ,yp
}

. This defines a measure on σ (E ) which consists
of sets of RΛ.

By Lemma 61.5.1 it follows
{

θ
−1 (U) : U ∈ σ (E )

}
= σ (A ) which equals σ (X) . De-

fine ν on σ (X) by
ν (F)≡ µ (θF) .

Thus ν is a measure because µ is and θ is one to one.
I need to check whether ν works. Let x = ∑

m
k=1 tkyk and let a typical element of RΛ be

denoted by z. Then by Kolmogorov’s theorem above,∫
X∗

exp

(
ix∗
(

m

∑
k=1

tkyk

))
dν =

∫
X∗

exp

(
i

(
m

∑
k=1

tkx∗ (yk)

))
dν

=
∫

X∗
exp

(
i

(
m

∑
k=1

tkπyk (θx∗)

))
dν =

∫
RΛ

exp

(
i

(
m

∑
k=1

tkπyk z

))
dµ

=
∫
Rm

exp(i(t ·x))dµ{y1,··· ,ym} (x) = ψ

(
m

∑
k=1

tkyk

)
where the last equality comes from 61.5.16. Since Λ is a Hamel basis, it follows that for
every x ∈ X ,

ψ (x) =
∫

X∗
exp(ix∗ (x))dν

This proves the theorem.

61.6 The Multivariate Normal Distribution
Here I give a review of the main theorems and definitions about multivariate normal random
variables. Recall that for a random vector (variable), X having values in Rp, λ X is the law
of X defined by

P([X ∈ E]) = λ X (E)

for all E a Borel set inRp. In different notaion, L (X)= λ X. Then the following definitions
and theorems are proved and presented starting on Page 1908

Definition 61.6.1 A random vector, X, with values in Rp has a multivariate normal distri-
bution written as X∼Np (m,Σ) if for all Borel E ⊆ Rp,

λ X (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

for µ a given vector and Σ a given positive definite symmetric matrix.
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Theorem 61.6.2 For X∼ Np (m,Σ) ,m = E (X) and

Σ = E
(
(X−m)(X−m)∗

)
.

Theorem 61.6.3 Suppose X1∼Np (m1,Σ1) , X2∼Np (m2,Σ2) and the two random vectors
are independent. Then

X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2). (61.6.17)

Also, if X∼ Np (m,Σ) then −X∼ Np (−m,Σ) . Furthermore, if X∼ Np (m,Σ) then

E
(
eit·X)= eit·me−

1
2 t∗Σt (61.6.18)

Also if a is a constant and X∼ Np (m,Σ) then aX∼ Np
(
am,a2Σ

)
.

Following [103] a random vector has a generalized normal distribution if its character-
istic function is given as

eit·me−
1
2 t∗Σt (61.6.19)

where Σ is symmetric and has nonnegative eigenvalues. For a random real valued vari-
able, m is scalar and so is Σ so the characteristic function of such a generalized normally
distributed random variable is

eitme−
1
2 t2σ2

(61.6.20)

These generalized normal distributions do not require Σ to be invertible, only that the eigen-
values be nonnegative. In one dimension this would correspond the characteristic function
of a dirac measure having point mass 1 at m. In higher dimensions, it could be a mixture
of such things with more familiar things. I will often not bother to distinguish between
generalized normal and normal distributions.

Here are some other interesting results about normal distributions found in [103]. The
next theorem has to do with the question whether a random vector is normally distributed
in the above generalized sense. It is proved on Page 1911.

Theorem 61.6.4 Let X = (X1, · · · ,Xp) where each Xi is a real valued random variable.
Then X is normally distributed in the above generalized sense if and only if every linear
combination, ∑

p
j=1 aiXi is normally distributed. In this case the mean of X is

m = (E (X1) , · · · ,E (Xp))

and the covariance matrix for X is

Σ jk = E ((X j−m j)(Xk−mk))

where m j = E (X j).

Also proved there is the interesting corollary listed next.

Corollary 61.6.5 Let X = (X1, · · · ,Xp) ,Y = (Y1, · · · ,Yp) where each Xi,Yi is a real valued
random variable. Suppose also that for every a ∈ Rp, a ·X and a ·Y are both normally
distributed with the same mean and variance. Then X and Y are both multivariate normal
random vectors with the same mean and variance.
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Theorem 61.6.6 Suppose X = (X1, · · · ,Xp) is normally distributed with mean m and co-
variance Σ. Then if X1 is uncorrelated with any of the Xi,

E ((X1−m1)(X j−m j)) = 0 for j > 1

then X1 and (X2, · · · ,Xp) are both normally distributed and the two random vectors are
independent. Here m j ≡ E (X j) .

Next I will consider the question of existence of independent random variables having
a given law.

Lemma 61.6.7 Let µ be a probability measure on B (E) , the Borel subsets of a separable
real Banach space. Then there exists a probability space (Ω,F ,P) and two independent
random variables, X ,Y mapping Ω to E such that L (X) = L (Y ) = µ.

Proof: First note that if A,B are Borel sets of E then A×B is a Borel set in E×E where
the norm on E×E is given by

||(x,y)|| ≡max(||x|| , ||y||) .

This can be proved by letting A be open and considering

G ≡ {B ∈B (E) : A×B ∈B (A×B)} .

Show G is a σ algebra and it contains the open sets. Therefore, this will show A×B is in
B (A×B) whenever A is open and B is Borel. Next repeat a similar argument to show that
this is true whenever either set is Borel. Since E is separable, it is completely separable
and so is E×E. Thus every open set in E×E is the union of balls from a countable set.
However, these balls are of the form B1×B2 where Bi is a ball in E. Now let

K ≡ {A×B : A,B are Borel}

Then K ⊆B (E×E) as was just shown and also every open set from E×E is in σ (K ).
It follows σ (K ) equals the σ algebra of product measurable sets, B (E)×B (E) and you
can consider the product measure, µ×µ . By Skorokhod’s theorem, Theorem 61.4.3, there
exists (X ,Y ) a random variable with values in E ×E and a probability space, (Ω,F ,P)
such that L ((X ,Y )) = µ×µ . Then for A,B Borel sets in E

P(X ∈ A,Y ∈ B) = (µ×µ)(A×B) = µ (A)µ (B) .

Also, P(X ∈ A) = P(X ∈ A,Y ∈ E) = µ (A) and similarly, P(Y ∈ B) = µ (B) showing
L (X) = L (Y ) = µ and X ,Y are independent.

Now here is an interesting theorem in [36].

Theorem 61.6.8 Suppose ν is a probability measure on the Borel sets of R and suppose
that ξ and ζ are independent random variables such that L (ξ ) = L (ζ ) = ν and when-
ever α2 +β

2 = 1 it follows L (αξ +βζ ) = ν . Then

L (ξ ) = N
(
0,σ2)

for some σ ≥ 0. Also if L (ξ ) = L (ζ ) = N
(
0,σ2

)
where ξ ,ζ are independent, then if

α2 +β
2 = 1, it follows L (αξ +βζ ) = N

(
0,σ2

)
.
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Proof: Let ξ ,ζ be independent random variables with L (ξ ) = L (ζ ) = ν and when-
ever α2 +β

2 = 1 it follows L (αξ +βζ ) = ν .
By independence of ξ and ζ ,

φ ν (t) ≡ φ αξ+αζ (t)

= E
(

eit(αξ+βζ )
)

= E
(

eitαξ

)
E
(

eitβζ

)
= φ ξ (αt)φ ζ (β t)

≡ φ ν (αt)φ ν (β t)

In simpler terms and suppressing the subscript,

φ (t) = φ (cos(θ) t)φ (sin(θ) t) . (61.6.21)

Since ν is a probability measure, φ (0) = 1. Also, letting θ = π/4, this yields

φ (t) = φ

(√
2

2
t

)2

(61.6.22)

and so if φ has real values, then φ (t)≥ 0.
Next I will show φ is real. To do this, it follows from the definition of φ ν ,

φ ν (−t)≡
∫
R

e−itxdν =
∫
R

eitxdν = φ ν (t).

Then letting θ = π,
φ (t) = φ (−t) ·φ (0) = φ (−t) = φ (t)

showing φ has real values. It is positive near 0 because φ (0) = 1 and φ is a continuous
function of t thanks to the dominated convergence theorem. However, this and 61.6.22 im-
plies it is positive everywhere. Here is why. If not, let tm be the smallest positive value of t
where φ (t) = 0. Then tm > 0 by continuity. Now from 61.6.22, an immediate contradiction
results. Therefore, φ (t)> 0 for all t > 0. Similar reasoning yields the same conclusion for
t < 0.

Next note that φ (t) = φ (−t) also implies φ depends only on |t| because it takes the
same value for t as for −t. More simply, φ depends only on t2. Thus one can define a new
function of the form φ (t) = f

(
t2
)

and 61.6.21 implies the following for α ∈ [0,1] .

f
(
t2)= f

(
α

2t2) f
((

1−α
2) t2) .

Taking ln of both sides, one obtains the following.

ln f
(
t2)= ln f

(
α

2t2)+ ln f
((

1−α
2) t2) .

Now let x,y ≥ 0. Then choose t such that t2 = x+ y. Then for some α ∈ [0,1] , x = α2t2

and so y = t2
(
1−α2

)
. Thus for x,y≥ 0,

ln f (x+ y) = ln f (x)+ ln f (y) .
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Hence ln f (x) = kx and so ln f
(
t2
)
= kt2 and so φ (t) = f

(
t2
)
= ekt2

for all t. The con-
stant, k must be nonpositive because φ (t) is bounded due to its definition. Therefore, the
characteristic function of ν is

φ ν (t) = e−
1
2 t2σ2

for some σ ≥ 0. That is, ν is the law of a generalized normal random variable.
Note the other direction of the implication is obvious. If ξ ,ζ ∼ N (0,σ) and they are

independent, then if α2 +β
2 = 1, it follows

αξ +βζ ∼ N
(
0,σ2)

because

E
(

eit(αξ+βζ )
)

= E
(

eitαξ

)
E
(

eitβζ

)
= e−

1
2 (αt)2

σ2
e−

1
2 (β t)2

σ2

= e−
1
2 t2σ2

,

the characteristic function for a random variable which is N (0,σ). This proves the theorem.
The next theorem is a useful gimmick for showing certain random variables are inde-

pendent in the context of normal distributions.

Theorem 61.6.9 Let X and Y be random vectors having values in Rp and Rq respectively.
Suppose also that (X,Y) is multivariate normally distributed and

E
(
(X−E (X))(Y−E (Y))∗

)
= 0.

Then X and Y are independent random vectors.

Proof: Let Z =(X,Y) ,m = p+q. Then by hypothesis, the characteristic function of Z
is of the form

E
(
eit·Z)= eit·me−

1
2 it∗Σt

where m = (mX,mY) = E (Z) = E (X,Y) and

Σ =

(
E
(
(X−E (X))(X−E (X))∗

)
0

0 E
(
(Y−E (Y))(Y−E (Y))∗

) )
≡

(
ΣX 0
0 ΣY

)
.

Therefore, letting t = (u,v) where u ∈ Rp and v ∈ Rq

E
(
eit·Z) = E

(
ei(u,v)·(X,Y)

)
= E

(
ei(u·X+v·Y)

)
= eiu·mXe−

1
2 u∗ΣXueiv·mY e−

1
2 v∗ΣYv

= E
(
eiu·X)E

(
eiv·Y) . (61.6.23)
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Where the last equality needs to be justified. When this is done it will follow from Propo-
sition 59.11.1 on Page 1889 which is proved on Page 1889 that X and Y are independent.
Thus all that remains is to verify

E
(
eiu·X)= eiu·mXe−

1
2 u∗ΣXu, E

(
eiv·Y)= eiv·mYe−

1
2 v∗ΣYv.

However, this follows from 61.6.23. To get the first formula, let v = 0. To get the second,
let u = 0. This proves the Theorem.

Note that to verify the conclusion of this theorem, it suffices to show

E (Xi−E (Xi)(Yj−E (Yj))) = 0.

61.7 Gaussian Measures
61.7.1 Definitions And Basic Properties
First suppose X is a random vector having values in Rn and its distribution function is
N (m,Σ) where m is the mean and Σ is the covariance. Then the characteristic function of
X or equivalently, the characteristic function of its distribution is

eit·me−
1
2 t∗Σt

What is the distribution of a ·X where a∈Rn? In other words, if you take a linear functional
and do it to X to get a scalar valued random variable, what is the distribution of this scalar
valued random variable? Let Y = a ·X. Then

E
(
eitY )= E

(
eita·X)

which from the above formula is
eia·mte−

1
2 a∗Σat2

which is the characteristic function of a random variable whose distribution is the normal
distribution N (a ·m,a∗Σa) . In other words, it is normally distributed having mean equal to
a ·m and variance equal to a∗Σa. Obviously such a concept generalizes to a Banach space
in place of Rn and this motivates the following definition.

Definition 61.7.1 Let E be a real separable Banach space. A probability measure, µ de-
fined on B (E) is called a Gaussian measure if for every h ∈ E ′, the law of h considered as
a random variable defined on the probability space, (E,B (E) ,µ) is normal. That is, for
A⊆ R a Borel set,

λ h (A)≡ µ
(
h−1 (A)

)
is given by ∫

A

1√
2πσ

e−
1

2σ2 (x−m)2
dx

for some σ and m. A Gaussian measure is called symmetric if m is always equal to 0.
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There is another definition of symmetric. First here are a few simple conventions. For
f ∈ E ′,x→ f (x) is normally distributed. In particular,∫

E
| f (x)|dµ < ∞

and so it makes sense to define

mµ ( f )≡
∫

E
f (x)dµ.

Thus mµ ( f ) is the mean of the random variable x→ f (x). It is obvious that f →mµ ( f ) is
linear. Also define the variance σ2 ( f ) by

σ
2 ( f )≡

∫
E

(
f (x)−mµ ( f )

)2 dµ

This is finite because x→ f (x) is normally distributed. The following lemma gives such
an equivalent condition for µ to be symmetric.

Lemma 61.7.2 Let µ be a Gaussian measure defined on B (E) . Then µ (F) = µ (−F) for
all F Borel if and only if mµ ( f ) = 0 for all f ∈ E ′. Such a Gaussian measure is called
symmetric.

Proof: Suppose first mµ ( f ) = 0 for all f ∈ E ′. Let

G≡ f−1
1 (F1)∩ f−1

2 (F2)∩·· ·∩ f−1
m (Fm)

where Fi is a Borel set of R and each fi ∈ E ′. Since every linear combination of the fi
is in E ′, every such linear combination is normally distributed and so f ≡ ( f1, · · · , fm) is
multivariate normal. That is, λ f the distribution measure, is multivariate normal. Since
each mµ ( f ) = 0, it follows

µ (G) = λ f

(
m

∏
i=1

Fi

)
= λ f

(
m

∏
i=1
−Fi

)
= µ (−G) (61.7.24)

By Lemma 21.1.6 on Page 645 there exists a countable subset, D ≡ { fk}∞

k=1 of the closed
unit ball such that for every x ∈ E,

||x||= sup
f∈D
| f (x)| .

Therefore, letting D(a,r) denote the closed ball centered at a having radius r, it follows

D(a,r) = ∩∞
k=1 f−1

k (D( fk (a) ,r))

Let
Dn (a,r) = ∩n

k=1 f−1
k (D( fk (a) ,r))

Then by 61.7.24
µ (Dn (a,r)) = µ (−Dn (a,r))
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and letting n→ ∞, it follows

µ (D(a,r)) = µ (−D(a,r))

Therefore the same is true with D(a,r) replaced with an open ball. Now consider

D(a,r1)∩D(b,r2) = ∩∞
k=1 f−1

k (D( fk (a) ,r1))∩∩∞
k=1 f−1

k (D( fk (b) ,r2))

The intersection of these two closed balls is the intersection of sets of the form

∩n
k=1 f−1

k (D( fk (a) ,r1))∩∩n
k=1 f−1

k (D( fk (b) ,r2))

to which 61.7.24 applies. Therefore, by continuing this way it follows that if G is any finite
intersection of closed balls,

µ (G) = µ (−G) .

Let K denote the set of finite intersections of closed balls, a π system. Thus for G ∈K
the above holds. Now let

G ≡ {F ∈ σ (K ) : µ (F) = µ (−F)}

Thus G contains K and it is clearly closed with respect to complements and countable
disjoint unions. By the π system lemma, G ⊇ σ (K ) but σ (K ) clearly contains the open
sets since every open ball is the countable union of closed disks and every open set is the
countable union of open balls. Therefore, µ (G) = µ (−G) for all Borel G.

Conversely suppose µ (G) = µ (−G) for all G Borel. If for some f ∈ E ′,mµ ( f ) ̸= 0,
then

µ
(

f−1 (0,∞)
)
≡ λ f (0,∞) ̸= λ f (−∞,0)

≡ µ
(

f−1 (−∞,0)
)
= µ

(
− f−1 (0,∞)

)
a contradiction. This proves the lemma.

Lemma 61.7.3 Let µ = L (X) where X is a random variable defined on a probability
space, (Ω,F ,P) which has values in E, a Banach space. Suppose also that for all φ ∈
E ′,φ ◦X is normally distributed. Then µ is a Gaussian measure. Conversely, suppose µ

is a Gaussian measure on B (E) and X is a random variable having values in E such that
L (X) = µ . Then for every h ∈ E ′, h◦X is normally distributed.

Proof: First suppose µ is a Gaussian measure and X is a random variable such that
L (X) = µ. Then if F is a Borel set in R, and h ∈ E ′

P
(
(h◦X)−1 (F)

)
= P

(
X−1 (h−1 (F)

))
= µ

(
h−1 (F)

)
=

1√
2πσ

∫
F

e−
|x−m|2

2σ2 dx
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for some m and σ2 showing that h◦X is normally distributed.
Next suppose h ◦ X is normally distributed whenever h ∈ E ′ and L (X) = µ. Then

letting F be a Borel set in R, I need to verify

µ
(
h−1 (F)

)
=

1√
2πσ

∫
F

e−
|x−m|2

2σ2 dx.

However, this is easy because

µ
(
h−1 (F)

)
= P

(
X−1 (h−1 (F)

))
= P

(
(h◦X)−1 (F)

)
which is given to equal

1√
2πσ

∫
F

e−
|x−m|2

2σ2 dx

for some m and σ2. This proves the lemma.
Here is another important observation. Suppose X is as just described, a random vari-

able having values in E such that L (X) = µ and suppose h1, · · · ,hn are each in E ′. Then
for scalars, t1, · · · , tn,

t1h1 ◦X + · · ·+ tnhn ◦X

= (t1h1 + · · ·+ tnhn)◦X

and this last is assumed to be normally distributed because (t1h1 + · · ·+ tnhn) ∈ E ′. There-
fore, by Theorem 61.6.4

(h1 ◦X , · · · ,hn ◦X)

is distributed as a multivariate normal.
Obviously there exist examples of Gaussian measures defined on E, a Banach space.

Here is why. Let ξ be a random variable defined on a probability space, (Ω,F ,P) which is
normally distributed with mean 0 and variance σ2. Then let X (ω)≡ ξ (ω)e where e ∈ E.
Then let µ ≡L (X) . For A a Borel set of R and h ∈ E ′,

µ ([h(x) ∈ A]) ≡ P([X (ω) ∈ [x : h(x) ∈ A]])

= P([h◦X ∈ A]) = P([ξ (ω)h(e) ∈ A])

=
1

|h(e)|σ
√

2π

∫
A

e
− 1

2|h(e)|2σ2 x2

dx

because h(e)ξ is a random variable which has variance |h(e)|2 σ2 and mean 0. Thus µ is
indeed a Gaussian measure. Similarly, one can consider finite sums of the form

n

∑
i=1

ξ i (ω)ei

where the ξ i are independent normal random variables having mean 0 for convenience.
However, this is a rather trivial case.
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61.7.2 Fernique’s Theorem
The following is an interesting lemma.

Lemma 61.7.4 Suppose µ is a symmetric Gaussian measure on the real separable Ba-
nach space, E. Then there exists a probability space, (Ω,F ,P) and independent random
variables, X and Y mapping Ω to E such that L (X) = L (Y ) = µ. Also, the two random
variables,

1√
2
(X−Y ) ,

1√
2
(X +Y )

are independent and

L

(
1√
2
(X−Y )

)
= L

(
1√
2
(X +Y )

)
= µ.

Proof: Letting X ′ ≡ 1√
2
(X +Y ) and Y ′ ≡ 1√

2
(X−Y ) , it follows from Theorem 59.13.2

on Page 1896, that X ′ and Y ′ are independent if whenever h1, · · · ,hm ∈ E ′ and g1, · · · ,gk ∈
E ′, the two random vectors,(

h1 ◦X ′, · · · ,hm ◦X ′
)

and
(
g1 ◦Y ′, · · · ,gk ◦Y ′

)
are independent. Now consider linear combinations

m

∑
j=1

t jh j ◦X ′+
k

∑
i=1

sigi ◦Y ′.

This equals

1√
2

m

∑
j=1

t jh j (X)+
1√
2

m

∑
j=1

t jh j (Y )

+
1√
2

k

∑
i=1

sigi (X)− 1√
2

k

∑
i=1

sigi (Y )

=
1√
2

(
m

∑
j=1

t jh j +
k

∑
i=1

sigi

)
(X)

+
1√
2

(
m

∑
j=1

t jh j−
k

∑
i=1

sigi

)
(Y )

and this is the sum of two independent normally distributed random variables so it is also
normally distributed. Therefore, by Theorem 61.6.4(

h1 ◦X ′, · · · ,hm ◦X ′,g1 ◦Y ′, · · · ,gk ◦Y ′
)

is a random variable with multivariate normal distribution and by Theorem 61.6.9 the two
random vectors (

h1 ◦X ′, · · · ,hm ◦X ′
)

and
(
g1 ◦Y ′, · · · ,gk ◦Y ′

)



2014 CHAPTER 61. PROBABILITY IN INFINITE DIMENSIONS

are independent if
E
((

hi ◦X ′
)(

g j ◦Y ′
))

= 0

for all i, j. This is what I will show next.

E
((

hi ◦X ′
)(

g j ◦Y ′
))

=
1
4

E ((hi (X)+hi (Y ))(g j (X)−g j (Y )))

=
1
4

E (hi (X)g j (X))− 1
4

E (hi (X)g j (Y ))

+
1
4

E (hi (Y )g j (X))− 1
4

E (hi (Y )g j (Y )) (61.7.25)

Now from the above observation after the definition of Gaussian measure hi (X)g j (X)
and hi (Y )g j (Y ) are both in L1 because each term in each product is normally distributed.
Therefore, by Lemma 59.15.2,

E (hi (X)g j (X)) =
∫

Ω

hi (Y )g j (Y )dP

=
∫

E
hi (y)g j (y)dµ

=
∫

Ω

hi (X)g j (X)dP

= E (hi (Y )g j (Y ))

and so 61.7.25 reduces to

1
4
(E (hi (Y )g j (X)−hi (X)g j (Y ))) = 0

because hi (X) and g j (Y ) are independent due to the assumption that X and Y are indepen-
dent. Thus

E (hi (X)g j (Y )) = E (hi (X))E (g j (Y )) = 0

due to the assumption that µ is symmetric which implies the mean of these random vari-
ables equals 0. The other term works out similarly. This has proved the independence of
the random variables, X ′ and Y ′.

Next consider the claim they have the same law and it equals µ . To do this, I will use
Theorem 59.12.9 on Page 1895. Thus I need to show

E
(

eih(X ′)
)
= E

(
eih(Y ′)

)
= E

(
eih(X)

)
(61.7.26)

for all h∈ E ′. Pick such an h. Then h◦X is normally distributed and has mean 0. Therefore,
for some σ ,

E
(

eith◦X
)
= e−

1
2 t2σ2

.
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Now since X and Y are independent,

E
(

eith◦X ′
)

= E
(

eith
(

1√
2

)
(X+Y )

)
= E

(
eith

(
1√
2

)
X
)

E
(

eith
(

1√
2

)
Y
)

the product of two characteristic functions of two random variables, 1√
2
X and 1√

2
Y. The

variance of these two random variables which are normally distributed with zero mean is
1
2 σ2 and so

E
(

eith◦X ′
)
= e−

1
2 (

1
2 σ2)e−

1
2 (

1
2 σ2) = e−

1
2 σ2

= E
(

eith◦X
)
.

Similar reasoning shows E
(

eith◦Y ′
)
= E

(
eith◦Y ) = E

(
eith◦X) . Letting t = 1, this yields

61.7.26. This proves the lemma.
With this preparation, here is an incredible theorem due to Fernique.

Theorem 61.7.5 Let µ be a symmetric Gaussian measure on B (E) where E is a real
separable Banach space. Then for λ sufficiently small and positive,∫

E
eλ ||x||2dµ < ∞.

More specifically, if λ and r are chosen such that

ln

µ ([x : ||x||> r])

µ

(
B(0,r)

)
+25λ r2 <−1,

then ∫
E

eλ ||x||2dµ ≤ exp
(
λ r2)+ e2

e2−1
.

Proof: Let X ,Y be independent random variables having values in E such that L (X) =
L (Y ) = µ . Then by Lemma 61.7.4

1√
2
(X−Y ) ,

1√
2
(X +Y )

are also independent and have the same law. Now let 0≤ s≤ t and use independence of the
above random variables along with the fact they have the same law as X and Y to obtain

P(||X || ≤ s, ||Y ||> t) = P(||X || ≤ s)P(||Y ||> t)

= P
(∣∣∣∣∣∣∣∣ 1√

2
(X−Y )

∣∣∣∣∣∣∣∣≤ s
)

P
(∣∣∣∣∣∣∣∣ 1√

2
(X +Y )

∣∣∣∣∣∣∣∣> t
)

= P
(∣∣∣∣∣∣∣∣ 1√

2
(X−Y )

∣∣∣∣∣∣∣∣≤ s,
∣∣∣∣∣∣∣∣ 1√

2
(X +Y )

∣∣∣∣∣∣∣∣> t
)

≤ P
(

1√
2
|||X ||− ||Y ||| ≤ s,

1√
2
(||X ||+ ||Y ||)> t

)
.
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Now consider the following picture in which the region, R represents the points, (||X || , ||Y ||)
such that

1√
2
|||X ||− ||Y ||| ≤ s and

1√
2
(||X ||+ ||Y ||)> t.

(?, t−s√
2
)

( t−s√
2
,?)

R

Therefore, continuing with the chain of inequalities above,

P(||X || ≤ s)P(||Y ||> t)

≤ P
(
||X ||> t− s√

2
, ||Y ||> t− s√

2

)
= P

(
||X ||> t− s√

2

)2

.

Since X ,Y have the same law, this can be written as

P(||X ||> t)≤
P
(
||X ||> t−s√

2

)2

P(||X || ≤ s)
.

Now define a sequence as follows. t0 ≡ r > 0 and tn+1 ≡ r +
√

2tn. Also, in the above
inequality, let s≡ r and then it follows

P(||X ||> tn+1) ≤
P
(
||X ||> tn+1−r√

2

)2

P(||X || ≤ r)

=
P(||X ||> tn)

2

P(||X || ≤ r)
.

Let

αn (r)≡
P(||X ||> tn)
P(||X || ≤ r)

.

Then it follows

αn+1 (r)≤ αn (r)
2 , α0 (r) =

P(||X ||> r)
P(||X || ≤ r)

.
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Consequently, αn (r)≤ α0 (r)
2n

and also

P(||X ||> tn) = αn (r)P(||X || ≤ r)

≤ P(||X || ≤ r)α0 (r)
2n

= P(||X || ≤ r)eln(α0(r))2n
. (61.7.27)

Now using the distribution function technique and letting λ > 0,∫
E

eλ ||x||2dµ =
∫

∞

0
µ

([
eλ ||x||2 > t

])
dt

= 1+
∫

∞

1
µ

([
eλ ||x||2 > t

])
dt

= 1+
∫

∞

1
P
([

eλ ||X ||2 > t
])

dt. (61.7.28)

From 61.7.27,

P
([

exp
(

λ ||X ||2
)
> exp

(
λ t2

n
)])
≤ P([||X || ≤ r])eln(α0(r))2n

.

Now split the above improper integral into intervals,
(
exp
(
λ t2

n
)
,exp

(
λ t2

n+1
))

for n =

0,1, · · · and note that P
([

eλ ||X ||2 > t
])

is decreasing in t. Then from 61.7.28,

∫
E

eλ ||x||2 dµ ≤ exp
(
λ r2)+ ∞

∑
n=0

∫ exp(λ t2
n+1)

exp(λ t2
n)

P
([

eλ ||X ||2 > t
])

dt

≤ exp
(
λ r2)+ ∞

∑
n=0

P
([

eλ ||X ||2 > exp
(
λ t2

n
)])(

exp
(
λ t2

n+1
)
− exp

(
λ t2

n
))

≤ exp
(
λ r2)+ ∞

∑
n=0

P([||X || ≤ r])eln(α0(r))2n
exp
(
λ t2

n+1
)

≤ exp
(
λ r2)+ ∞

∑
n=0

eln(α0(r))2n
exp
(
λ t2

n+1
)
.

It remains to estimate tn+1. From the description of the tn,

tn =

(
n

∑
k=0

(√
2
)k
)

r = r

(√
2
)n+1

−1
√

2−1
≤
√

2√
2−1

r
(√

2
)n

and so
tn+1 ≤ 5r

(√
2
)n

Therefore, ∫
E

eλ ||x||2 dµ ≤ exp
(
λ r2)+ ∞

∑
n=0

eln(α0(r))2n+λ25r22n
.
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Now first pick r large enough that ln(α0 (r)) < −2 and then let λ be small enough that
25λ r2 < 1 or some such scheme and you obtain ln(α0 (r))+λ25r2 < −1. Then for this
choice of r and λ , or for any other choice which makes ln(α0 (r))+λ25r2 <−1,∫

E
eλ ||x||2dµ ≤ exp

(
λ r2)+ ∞

∑
n=0

e−2n

≤ exp
(
λ r2)+ ∞

∑
n=0

e−2n

= exp
(
λ r2)+ e2

e2−1
.

This proves the theorem.

61.8 Gaussian Measures For A Separable Hilbert Space
First recall the Kolmogorov extension theorem, Theorem 59.2.3 on Page 1860 which is
stated here for convenience. In this theorem, I is an ordered index set, possibly infinite,
even uncountable.

Theorem 61.8.1 (Kolmogorov extension theorem) For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt where Mt = Rnt such that if

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,

then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(61.8.29)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices, tk, then Gsi = Msi .
Then there exists a probability space, (Ω,P,F ) and measurable functions, Xt : Ω→Mt for
each t ∈ I such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ]) . (61.8.30)

Lemma 61.8.2 There exists a sequence, {ξ k}
∞

k=1 of random variables such that

L (ξ k) = N (0,1)

and {ξ k}
∞

k=1 is independent.

Proof: Let i1 < i2 · · ·< in be positive integers and define

µ i1···in (F1×·· ·×Fn)≡
1(√
2π
)n

∫
F1×···×Fn

e−|x|
2/2dx.
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Then for the index set equal to N the measures satisfy the necessary consistency condition
for the Kolmogorov theorem above. Therefore, there exists a probability space, (Ω,P,F )
and measurable functions, ξ k : Ω→ R such that

P
([

ξ i1 ∈ Fi1

]
∩
[
ξ i2 ∈ Fi2

]
· · ·∩

[
ξ in ∈ Fin

])
= µ i1···in (F1×·· ·×Fn)

= P
([

ξ i1 ∈ Fi1

])
· · ·P

([
ξ in ∈ Fin

])
which shows the random variables are independent as well as normal with mean 0 and
variance 1. This proves the Lemma.

A random variable X defined on a probability space (Ω,F ,P) is called Gaussian if

P([X ∈ A]) =
1√

2πσ (v)2

∫
A

e
− 1

2σ(v)2
(x−m(v))2

dx

for all A a Borel set in R. Therefore, for the probability space (X ,B (X) ,µ) it is natural to
say µ is a Gaussian measure if every x∗ in the dual space X ′ is a Gaussian random variable.
That is, normally distributed.

Definition 61.8.3 Let µ be a measure defined on B (X) , the Borel sets of X , a separable
Banach space. It is called a Gaussian measure if each of the functions in the dual space
X ′ is normally distributed. As a special case, when X =U a separable real Hilberts space,
µ is called a Gaussian measure if for each v ∈ U, the function u→ (u,v)U is normally
distributed. That is, denoting this random variable as v′, it follows for A a Borel set in R

λ v′ (A)≡ µ
([

u : v′ (u) ∈ A
])

=
1√

2πσ (v)2

∫
A

e
− 1

2σ(v)2
(x−m(v))2

dx

in case σ (v)> 0. In case σ (v) = 0

λ v′ ≡ δ m(v)

In other words, the random variables v′ for v ∈ U are all normally distributed on the
probability space (U,B (U) ,µ) .

Also recall the definition of the characteristic function of a measure.

Definition 61.8.4 The Borel sets in a topological space X will be denoted by B (X) . For a
Borel probability measure µ defined on B (U) for U a real separable Hilbert space, define
its characteristic function as follows.

φ µ (u)≡ µ̂ (u)≡
∫

U
ei(u,v)dµ (v) (61.8.31)

More generally, if µ is a probability measure defined on B (X) where X is a separable
Banach space, then the characteristic function is defined as

φ µ (x
∗) = µ̂ (x∗)≡

∫
U

eix∗(x)dµ (x)
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One can tell whether µ is a Gaussian measure by looking at its characteristic func-
tion. In fact you can show the following theorem. One part of this theorem is that if µ is
Gaussian, then m and σ2 have a certain form.

Theorem 61.8.5 A measure µ on B (U) is Gaussian if and only if there exists m ∈U and
Q ∈L (U) such that Q is nonnegative symmetric with finite trace,

∑
k
(Qek,ek)< ∞

for a complete orthonormal basis for U, and

φ µ (u) = µ̂ (u) = ei(m,u)− 1
2 (Qu,u) (61.8.32)

In this case µ is called N (m,Q) where m is the mean and Q is called the covariance. The
measure µ is uniquely determined by m and Q. Also for all h,g ∈U∫

(x,h)U dµ (x) = (m,h)U (61.8.33)∫
((x,h)− (m,h))((x,g)− (m,g))dµ (x) = (Qh,g) (61.8.34)∫

||x−m||2U dµ (x) = trace(Q) . (61.8.35)

Proof: First of all suppose 61.8.32 holds. Why is µ Gaussian? Consider the random
variable u′ defined by u′ (v)≡ (v,u) . Why is λ u′ a Gaussian measure on R? By the defini-
tion in 61.8.31, ∫

U
eitu′(v)dµ (v) ≡

∫
U

eit(v,u)dµ (v) =
∫
R

eixdλ u′ (x)

=
∫

U
ei(v,tu)dµ (v) = eit(m,u)− 1

2 t2(Qu,u)

and this is the characteristic equation for a random variable having mean (m,u) and vari-
ance (Qu,u) . In case (Qu,u) = 0, you get eit(m,u) which is the characteristic function for
a random variable having distribution δ (m,u). Thus if 61.8.32 holds, then u′ is normally
distributed as desired. Thus µ is Gaussian by definition.

The next task is to suppose µ is Gaussian and show the existence of m,Q which have
the desired properties. This involves the following lemma.

Lemma 61.8.6 Let U be a real separable Hilbert space and let µ be a probability measure
defined on B (U) . Suppose for some positive integer, k∫

U
|(x,z)|k dµ (x)< ∞

for all z ∈U. Then the transformation,

(h1, · · · ,hk)→
∫

U
(h1,x) · · ·(hk,x)dµ (x) (61.8.36)

is a continuous k−linear form.
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Proof: I need to show that for each h∈Uk, the integral in 61.8.36 exists. From this it is
obvious it is k− linear, meaning linear in each argument. Then it is shown it is continuous.

First note
|(h1,x) · · ·(hk,x)| ≤ |(h1,x)|k + · · ·+ |(hk,x)|k

This follows from observing that one of
∣∣(h j,x)

∣∣ is largest. Then the left side is smaller

than
∣∣(h j,x)

∣∣k. Therefore, the above inequality is valid. This inequality shows the integral
in 61.8.36 makes sense.

I need to establish an estimate of the form∫
U
|(x,h)|k dµ (x)<C < ∞

for every h ∈U such that ||h|| is small enough.
Let

Un ≡
{

z ∈U :
∫

U
|(x,z)|k dµ (x)≤ n

}
Then by assumption U = ∪∞

n=1Un and it is also clear from Fatou’s lemma that each Un is
closed. Therefore, by the Bair category theorem, at least one of these Un0 contains an open
ball, B(z0,r) . Then letting |y|< r,∫

U
|(x,z0 + y)|k dµ (x) ,

∫
U
|(x,z0)|k dµ (x)≤ n0,

and so for such y,∫
U
|(x,y)|k dµ =

∫
U
|(x,z0 + y)− (x,z0)|k dµ

≤
∫

U
2k |(x,z0 + y)|k +2k |(x,z0)|k dµ (x)

≤ 2k (n0 +n0) = 2k+1n0.

It follows that for arbitrary nonzero y ∈U

∫
U

∣∣∣∣(x,
(r/2)y
||y||

)∣∣∣∣k dµ ≤ 2k+1n0

and so ∫
U
|(x,y)|k dµ ≤

(
2k+2/r

)
n0 ||y||k ≡C ||y||k .

Thus by Holder’s inequality,

∫
U
|(h1,x) · · ·(hk,x)|dµ (x) ≤

k

∏
j=1

(∫
U

∣∣(h j,x)
∣∣k dµ (x)

)1/k

≤ C
k

∏
j=1

∣∣∣∣h j
∣∣∣∣
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This proves the lemma.
Now continue with the proof of the theorem. I need to identify m and Q. It is assumed

µ is Gaussian. Recall this means h′ is normally distributed for each h ∈U . Then using

|x| ≤ |x−m(h)|+ |m(h)|∫
U
|(x,h)U |dµ (x) =

∫
R
|x|dλ h′ (x)

=
1√

2πσ2 (h)

∫
R
|x|e−

1
2σ2 (x−m(h))2

dx

≤ 1√
2πσ2 (h)

∫
R
|x−m(h)|e−

1
2σ2 (x−m(h))2

dx

+ |m(h)|

Then using the Cauchy Schwarz inequality, with respect to the probability measure

1√
2πσ2 (h)

e−
1

2σ2 (x−m(h))2
dx,

≤ 1√
2πσ2 (h)

(∫
R
|x−m(h)|2 e−

1
2σ2 (x−m(h))2

dx
)1/2

+ |m(h)|< ∞

Thus by Lemma 61.8.6

h→
∫

U
(x,h)dµ (x)

is a continuous linear transformation and so by the Riesz representation theorem, there
exists a unique m ∈U such that

(h,m)U =
∫

U
(h,x)dµ (x)

Also the above says (h,m) is the mean of the random variable x→ (x,h) so in the above,

m(h) = (h,m)U .

Next it is necessary to find Q. To do this let Q be given by 61.8.34. Thus

(Qh,g) ≡
∫

U
((x,h)− (m,h))((x,g)− (m,g))dµ (x)

=
∫

U
(x−m,h)(x−m,g)dµ (x)

It is clear Q is linear and the above is a bilinear form (The integral makes sense because of
the assumption that h′,g′ are normally distributed.) but is it continuous? Does (Qh,h) =
σ2 (h)?
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First, the above equals∫
U
(x,h)(x−m,g)dµ−

∫
U
(m,h)(x−m,g)dµ (x)

=
∫

U
(x,h)(x−m,g)dµ (61.8.37)

because from the first part,∫
U
(x−m,g)dµ (x) =

∫
U
(x,g)dµ (x)− (m,g)U = 0.

Now by the first part, the term in 61.8.37 is∫
U
(x,h)(x,g)dµ (x)− (m,g)

∫
U
(x,h)dµ (x)

=
∫

U
(x,h)(x,g)dµ (x)− (m,g)(m,h) .

Thus
|(Qh,g)| ≤

∫
U
|(x,h)(x,g)|dµ (x)+ ||m||2 ||h|| ||g||

and since the random variables h′ and g′ given by x→ (x,h) and x→ (x,g) respectively
are given to be normally distributed with variance σ2 (h) and σ2 (g) respectively, the above
integral is finite. Also for all h, ∫

U
|(x,h)|2 dµ (x)< ∞

because the random variable h′ is given to be normally distributed. Therefore from Lemma
61.8.6, there exists some constant C such that

|(Qh,g)| ≤C ||h|| ||g||

which shows Q is continuous as desired.
Why is σ2 (h) = (Qh,h)? This follows because from the above

(Qh,h) ≡
∫

U
(h,x−m)2 dµ (x)

=
∫

U
((x,h)− (h,m))2 dµ (x) =

∫
R
(t− (h,m))2 dλ h′ (t)

=
1√

2πσ2 (h)

∫
R
(t− (h,m))2 e

− 1
2σ2(h)

(t−(h,m))2

dt = σ
2 (h)

from a standard result for the normal distribution function which follows from an easy
change of variables argument.

Why must Q have finite trace? For h ∈U, it follows from the above that h′ is normally
distributed with mean (h,m) and variance (Qh,h). Therefore, the characteristic function of
h′ is known. In fact ∫

U
eit(x,h)dµ (x) = eit(h,m)e−

1
2 t2(Qh,h)
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Thus also ∫
U

eit(x−m,h)dµ (x) = e−
1
2 t2(Qh,h)

and letting t = 1 this yields ∫
U

ei(x−m,h)dµ (x) = e−
1
2 (Qh,h)

From this it follows ∫
U

(
1− ei(x−m,h)

)
dµ = 1− e−

1
2 (Qh,h)

and since the right side is real, this implies∫
U
(1− cos(x−m,h))dµ (x) = 1− e−

1
2 (Qh,h)

Thus
1− e−

1
2 (Qh,h) ≤

∫
[||x−m||≤c]

(1− cos(x−m,h))dµ (x)

+2
∫
[||x−m||>c]

dµ (x)

Now it is routine to show

1− cos t ≤ 1
2

t2

and so

1− e−
1
2 (Qh,h) ≤ 1

2

∫
[||x−m||≤c]

|(x−m,h)|2 dµ (x)

+2µ ([||x−m||> c])

Pick c large enough that the last term is smaller than 1/8. This can be done because the
sets decrease to /0 as c→ ∞ and µ is given to be a finite measure. Then with this choice of
c,

7
8
− 1

2

∫
[||x−m||≤c]

|(x−m,h)|2 dµ (x)≤ e−
1
2 (Qh,h) (61.8.38)

For each h the integral in the above is finite. In fact∫
[||x−m||≤c]

|(x−m,h)|2 dµ (x)≤ c2 ||h||2

Let
(Qch,h1)≡

∫
[||x−m||≤c]

(x−m,h)(x−m,h1)dµ (x)

and let A denote those h ∈U such that

(Qch,h)< 1.
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Then from 61.8.38 it follows that for h ∈ A,

3
8
=

7
8
− 1

2
≤ 7

8
− 1

2
(Qch,h)≤ e−

1
2 (Qh,h)

Therefore, for such h,
8
3
≥ e

1
2 (Qh,h) ≥ 1+

1
2
(Qh,h)

and so for h ∈ A,

(Qh,h)≤
(

8
3
−1
)

2 =
10
3

Now let h be arbitrary. Then for each ε > 0

h

ε +
√
(Qch,h)

∈ A

and so (
Q

(
h

ε +
√
(Qch,h)

)
,

h

ε +
√
(Qch,h)

)
≤ 10

3

which implies

(Qh,h)≤ 10
3

(
ε +
√
(Qch,h)

)2

Since ε is arbitrary,

(Qh,h)≤ 10
3
(Qch,h) . (61.8.39)

However, Qc has finite trace. To see this, let {ek} be an orthonormal basis in U . Then

∑
k
(Qcek,ek) = ∑

k

∫
[||x−m||≤c]

|(x−m,ek)|2 dµ (x)

=
∫
[||x−m||≤c]

∑
k
|(x−m,ek)|2 dµ (x) =

∫
[||x−m||≤c]

||x−m||2 dµ (x)≤ c2

It follows from 61.8.39 Q that Q must also have finite trace.
That µ is uniquely determined by m and Q follows from Theorem 59.12.9. This proves

the theorem.
Suppose you have a given Q having finite trace and m ∈U. Does there exist a Gaussian

measure on B (U) having these as the covariance and mean respectively?

Proposition 61.8.7 Let U be a real separable Hilbert space and let m∈U and Q be a pos-
itive, symmetric operator defined on U which has finite trace. Then there exists a Gaussian
measure with mean m and covariance Q.
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Proof: By Lemma 61.8.2 which comes from Kolmogorov’s extension theorem, there
exists a probability space (Ω,F ,P) and a sequence {ξ i} of independent random variables
which are normally distributed with mean 0 and variance 1. Then let

X (ω)≡ m+
∞

∑
j=1

√
λ jξ j (ω)e j

where the
{

e j
}

are the eigenvectors of Q such that Qe j = λ je j. The series in the above
converges in L2 (Ω;U) because∣∣∣∣∣

∣∣∣∣∣ n

∑
j=m

√
λ jξ je j

∣∣∣∣∣
∣∣∣∣∣
2

L2(Ω;U)

=
∫

Ω

n

∑
j=m

λ jξ
2
j (ω)dP =

n

∑
j=m

λ j

and so the partial sums form a Cauchy sequence in L2 (Ω;U).
Now if h ∈U, I need to show that ω → (X (ω) ,h) is normally distributed. From this it

will follow that L (X) is Gaussian. A subsequence{
m+

nk

∑
j=1

√
λ jξ j (ω)e j

}
≡
{

Snk (ω)
}

of the above sequence converges pointwise a.e. to X .

E (exp(it (X ,h)))

= lim
k→∞

E
(
exp
(
it
(
Snk ,h

)))
= exp(it (m,h)) lim

k→∞
E

(
exp

(
it

nk

∑
j=1

√
λ jξ j (ω)(e j,h)

))
Since the ξ j are independent,

= exp(it (m,h)) lim
k→∞

nk

∏
j=1

E
(

exp
(

it
√

λ j (e j,h)
)

ξ j

)

= exp(it (m,h)) lim
k→∞

nk

∏
j=1

e−
1
2 t2λ j(e j ,h)

2

= exp(it (m,h)) lim
k→∞

exp

(
−1

2
t2

nk

∑
j=1

λ j (e j,h)
2

)
. (61.8.40)

Now

(Qh,h) =

(
Q

∞

∑
k=1

(ek,h)ek,
∞

∑
j=1

(e j,h)e j

)

=

(
∞

∑
k=1

(ek,h)λ kek,
∞

∑
j=1

(e j,h)e j

)

=
∞

∑
j=1

λ j (e j,h)
2
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and so, passing to the limit in 61.8.40 yields

exp(it (m,h))exp
(
−1

2
t2 (Qh,h)

)
(61.8.41)

which implies that ω → (X (ω) ,h) is normally distributed with mean (m,h) and variance
(Qh,h).

Now let µ = L (X) . That is, for all B ∈B (U) ,

µ (B)≡ P([X ∈ B])

In particular, B could be the cylindrical set

B≡ [x : (x,h) ∈ A]

for A a Borel set in R. Then by definition, if h ∈U, and A is a Borel set in R,

µ (B) = µ ([x : (x,h) ∈ A])≡ P({ω : (X (ω) ,h) ∈ A})

=
∫

A

1√
2π (Qh,h)

e−
(t−(m,h))2

2(Qh,h) dt

and so x→ (x,h) is normally distributed. Therefore by definition, µ is a Gaussian measure.
Letting t = 1 in 61.8.41 it follows∫

U
ei(x,h)dµ (x) =

∫
Ω

ei(X(ω),h)dP = exp(i(m,h))exp
(
−1

2
(Qh,h)

)
which is the characteristic function of a Gaussian measure on U having covariance Q and
mean m. This proves the proposition.

61.9 Abstract Wiener Spaces
This material follows [21], [71] and [58]. More can be found on this subject in these
references. Here H will be a separable real Hilbert space.

Definition 61.9.1 Cylinder sets in H are of the form

{x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F}

where F ∈ B (Rn) , the Borel sets of Rn and {ek} are given vectors in H. Denote this
collection of cylinder sets as C .

Proposition 61.9.2 The cylinder sets form an algebra of sets.

Proof: First note the complement of a cylinder set is a cylinder set.

{x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F}C

=
{

x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ FC} .
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Now consider the intersection of two of these cylinder sets. Let the cylinder sets be

{x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ E} ,
{x ∈ H : ((x, f1) , · · · ,(x, fm)) ∈ F}

The first of these equals

{x ∈ H : ((x,e1) , · · · ,(x,en) ,(x, f1) , · · · ,(x, fm)) ∈ E×Rm}

and the second equals

{x ∈ H : ((x,e1) , · · · ,(x,en) ,(x, f1) , · · · ,(x, fm)) ∈ Rn×F}

Therefore, their intersection equals

{x ∈ H : ((x,e1) , · · · ,(x,en) ,(x, f1) , · · · ,(x, fm))

∈ E×Rm∩Rn×F} ,

a cylinder set.
Now it is clear the whole of H and /0 are cylinder sets given by

{x ∈ H : (e,x) ∈ R} , {x ∈ H : (e,x) ∈ /0}

respectively and so if C1,C2 are two cylinder sets,

C1 \C2 ≡C1∩CC
2 ,

which was just shown to be a cylinder set. Hence

C1∪C2 =
(
CC

1 ∩CC
2
)C

,

a cylinder set. This proves the proposition.
It is good to have a more geometrical description of cylinder sets. Letting A be a

cylinder set as just described, let P denote the orthogonal projection onto span(e1, · · · ,en) .
Also let α : PH→ Rn be given by

α (x)≡ ((x,e1) , · · · ,(x,en)) .

This is continuous but might not be one to one if the ei are not a basis for example. Then
consider α−1 (F) , those x ∈ PH such that

((x,e1) , · · · ,(x,en)) ∈ F.

For any x ∈ H,
((I−P)x,ek) = 0

for each k and so

((x,e1) , · · · ,(x,en)) = ((Px,e1) , · · · ,(Px,en)) ∈ F
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Thus Px ∈ α−1 (F) , which is a Borel set of PH and

x = Px+(I−P)x

so the cylinder set is contained in

α
−1 (F)+(PH)⊥

which is of the form
(Borel set of PH)+(PH)⊥

On the other hand, consider a set of the form

G+(PH)⊥

where G is a Borel set in PH. There is a basis for PH consisting of a subset of {e1 · · · ,en} .
For simplicity, suppose it is {e1 · · · ,ek}. Then let α1 : PH→ Rk be given by

α1 (x)≡ ((x,e1) , · · · ,(x,ek))

Thus α is a homeomorphism of PH and Rk so α1 (G) is a Borel set of Rk. Now

α
−1
(

α1 (G)×Rn−k
)
= G

and α1 (G)×Rn−k is a Borel set ofRn. This has proved the following important Proposition
illustrated by the following picture.

B

B+M⊥

Proposition 61.9.3 The cylinder sets are sets of the form

B+M⊥

where M is a finite dimensional subspace and B is a Borel subset of M. Furthermore, the
collection of cylinder sets is an algebra.

Lemma 61.9.4 σ (C ) , the smallest σ algebra containing C , contains the Borel sets of
H,B (H).

Proof: It follows from the definition of these cylinder sets that if fi (x) ≡ (x,ei) , so
that fi ∈ H ′, then with respect to σ (C ) , each fi is measurable. It follows that every linear
combination of the fi is also measurable with respect to σ (C ). However, this set of linear
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combinations is dense in H ′ and so the conclusion of the lemma follows from Lemma
59.4.2 on Page 1868. This proves the lemma.

Also note that the mapping

x→ ((x,e1) , · · · ,(x,en))

is a σ (C ) measurable map. Restricting it to span(e1, · · · ,en) , it is Borel measurable. Next
is a definition of a Gaussian measure defined on C . While this is what it is called, it is a
fake measure in general because it cannot be extended to a countably additive measure on
σ (C ). This will be shown below.

Definition 61.9.5 Let Q ∈L (H,H) be self adjoint and satisfy

(Qx,x)> 0

for all x ∈ H,x ̸= 0. Define ν on the cylinder sets, C by the following rule. For {ek}n
k=1 an

orthonormal set in H,

ν ({x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F})

≡ 1

(2π)n/2 (det(θ ∗Qθ))1/2

∫
F

e−
1
2 t∗θ∗Q−1θ tdt.

where here

θ t≡
n

∑
i=1

tiei.

Note that the cylinder set is of the form

θF + span(e1, · · · ,en)
⊥ .

Thus if B+M⊥ is a typical cylinder set, choose an orthonormal basis for M,{ek}n
k=1 and

do the above definition with F = θ
−1B.

To see this last claim which is like what was done earlier, let

((x,e1) , · · · ,(x,en)) ∈ F.

Then θ ((x,e1) , · · · ,(x,en)) = ∑i (x,ei)ei = Px and so

x = x−Px+Px = x−Px+θ ((x,e1) , · · · ,(x,en))

∈ θF + span(e1, · · · ,en)
⊥

Thus
{x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F} ⊆ θF + span(e1, · · · ,en)

⊥

To see the other inclusion, if t ∈ F and y ∈ span(e1, · · · ,en)
⊥ , then if x = θ t, it follows

ti = (x,ei)

and so ((x,e1) , · · · ,(x,en)) ∈ F. But (y,ek) = 0 for all k and so x+ y is in

{x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F} .
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Lemma 61.9.6 The above definition is well defined.

Proof: Let { fk} be another orthonormal set such that for F,G Borel sets in Rn,

A = {x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ F}
= {x ∈ H : ((x, f1) , · · · ,(x, fn)) ∈ G}

I need to verify ν (A) is the same using either { fk} or {ek}. Let a ∈ G. Then

x≡
n

∑
i=1

ai fi ∈ A

because (x, fk) = ak. Therefore, for this x it is also true that ((x,e1) , · · ·(x,en))∈ F. In other
words for a ∈ G, (

n

∑
i=1

(e1, fi)ai, · · · ,
n

∑
i=1

(en, fi)ai

)
∈ F

Let L ∈L (Rn,Rn) be defined by

La≡∑
i

L jiai, L ji ≡ (e j, fi) .

Since the
{

e j
}

and { fk} are orthonormal, this mapping is unitary. Also this has shown that

LG⊆ F.

Similarly
L∗F ⊆ G

where L∗ has the i jth entry L∗i j = ( fi,e j) as above and L∗ is the inverse of L because L is
unitary. Thus

F = L(L∗ (F))⊆ L(G)⊆ F

showing that LG = F and L∗F = G.
Now let θ et≡∑i tiei with θ f defined similarly. Then the definition of ν (A) correspond-

ing to {ei} is

ν (A)≡ 1

(2π)n/2 (det(θ ∗eQθ e))
1/2

∫
F

e−
1
2 t∗θ∗eQ−1θ etdt

Now change the variables letting t = Ls where s ∈ G.
From the definition,

θ eLs = ∑
j
∑

i
(e j, fi)sie j

= ∑
j

(
e j,∑

i
fisi

)
e j = ∑

j

(
e j,θ f s

)
e j

and so
Ls =

((
e1,θ f s

)
, · · · ,

(
en,θ f s

))
= θ

∗
eθ f s
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where from the definition,

(θ ∗eθ es, t) = ∑
i

ti

(
∑

j
s je j,ei

)
= ∑

i
tisi = (s, t)

and so θ
∗
eθ e is the identity on Rn and similar reasoning yields θ eθ

∗
e is the identity on

θ e (Rn). Then using the change of variables formula and the fact |det(L)|= 1,

1

(2π)n/2 (det(θ ∗eQθ e))
1/2

∫
F

e−
1
2 t∗θ∗eQ−1θ etdt

=
1

(2π)n/2 (det(θ ∗eQθ e))
1/2

∫
G

e−
1
2 s∗L∗θ∗eQ−1θ eLsds

=
1

(2π)n/2 (det
(
θ
∗
f Qθ f

))1/2

∫
G

e−
1
2 s∗θ∗f θ eθ

∗
eQ−1θ eθ

∗
eθ f sds

=
1

(2π)n/2 (det
(
θ
∗
f Qθ f

))1/2

∫
G

e−
1
2 s∗θ∗f Q−1θ f sds

where part of the justification is as follows.

det
(
θ
∗
f Qθ f

)
= det

(
θ
∗
f θ eθ

∗
eQθ eθ

∗
eθ f
)

= det
(
θ
∗
f θ e
)

det(θ ∗eQθ e)det
(
θ
∗
eθ f
)

= det(θ ∗eQθ e)

because
det
(
θ
∗
f θ e
)

det
(
θ
∗
eθ f
)
= det

(
θ
∗
f θ eθ

∗
eθ f
)
= det

(
θ
∗
f θ f
)
= 1.

This proves the lemma.
It would be natural to try to extend ν to the σ algebra determined by C and obtain a

measure defined on this σ algebra. However, this is always impossible in the case where
Q = I.

Proposition 61.9.7 For Q = I, ν cannot be extended to a measure defined on σ (C ) when-
ever H is infinite dimensional.

Proof: Let {en} be a complete orthonormal set of vectors in H. Then first note that H
is a cylinder set.

H = {x ∈ H : (x,e1) ∈ R}

and so
ν (H) =

1√
2π

∫
R

e−
1
2 t2

dt = 1.
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However, H is also equal to the countable union of the sets,

An ≡
{

x ∈ H : ((x,e1)H , · · · ,(x,ean)H) ∈ B(0,n)
}

where an→ ∞.

ν (An) ≡ 1(√
2π
)an

∫
B(0,n)

e−
1
2 |t|

2
dt

≤ 1(√
2π
)an

∫ n

−n
· · ·
∫ n

−n
e−|t|

2/2dt1 · · ·dtan

=

(∫ n
−n e−x2/2dx
√

2π

)an

Now pick an so large that the above is smaller than 1/2n+1. This can be done because for
no matter what choice of n, ∫ n

−n e−x2/2dx
√

2π
< 1.

Then
∞

∑
n=1

ν (An)≤
∞

∑
n=1

1
2n+1 =

1
2
.

This proves the proposition and shows something else must be done to get a countably
additive measure from ν .

However, let µ (C) ≡ νM (C) where C is a cylinder set of the form C = B+M⊥ for M
a finite dimensional subspace.

Proposition 61.9.8 µ is finitely additive on C the algebra of cylinder sets.

Proof: Let
A≡ {x ∈ H : ((x,e1) , · · · ,(x,en)) ∈ E} ,

B≡ {x ∈ H : ((x, f1) , · · · ,(x, fm)) ∈ F}

be two disjoint cylinder sets. Then writing them differently as was done earlier they are

{x ∈ H : ((x,e1) , · · · ,(x,en) ,(x, f1) , · · · ,(x, fm)) ∈ E×Rm}

and
{x ∈ H : ((x,e1) , · · · ,(x,en) ,(x, f1) , · · · ,(x, fm)) ∈ Rn×F}

respectively. Hence the two sets E ×Rm,Rn×F must be disjoint. Then the definition
yields µ (A∪B) = µ (A)+µ (B). This proves the proposition.

Definition 61.9.9 Let H be a separable Hilbert space and let ||·|| be a norm defined on H
which has the following property. Whenever {en} is an orthonormal sequence of vectors
in H and F ({en}) consists of the set of all orthogonal projections onto the span of finitely
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many of the ek the following condition holds. For every ε > 0 there exists Pε ∈F ({en})
such that if P ∈F ({en}) and PPε = 0, then

ν ({x ∈ H : ||Px||> ε})< ε.

Then ||·|| is called Gross measurable.

The following lemma is a fundamental result about Gross measurable norms. It is about
the continuity of ||·|| . It is obvious that with respect to the topology determined by ||·|| that
x→ ||x|| is continuous. However, it would be interesting if this were the case with respect
to the topology determined by the norm on H, |·| . This lemma shows this is the case and
so the funny condition above implies x→ ||x|| is a continuous, hence Borel measurable
function.

Lemma 61.9.10 Let ||·|| be Gross measurable. Then there exists c > 0 such that

||x|| ≤ c |x|

for all x ∈ H. Furthermore, the above definition is well defined.

Proof: First it is important to consider the question whether the above definition is well
defined. To do this note that on PH, the two norms are equivalent because PH is a finite
dimensional space. Let G = {y ∈ PH : ||y||> ε} so G is an open set in PH. Then

{x ∈ H : ||Px||> ε}

equals
{x ∈ H : Px ∈ G}

which equals a set of the form{
x ∈ H :

(
(x,ei1)H , · · · ,(x,eim)H

)
∈ G′

}
for G′ an open set in Rm and so everything makes sense in the above definition.

Now it is necessary to verify ||·|| ≤ c |·|. If it is not so, there exists e1 such that

||e1|| ≥ 1, |e1|= 1.

Suppose {ek}n
k=1 have been chosen such that each is a unit vector in H and ||ek|| ≥ k. Then

considering span(e1, · · · ,en)
⊥ if for every x ∈ span(e1, · · · ,en)

⊥ , ||x|| ≤ c |x| , then if z ∈H
is arbitrary, z = x+y where y ∈ span(e1, · · · ,en) and so since the two norms are equivalent
on a finite dimensional subspace, there exists c′ corresponding to span(e1, · · · ,en) such that

||z||2 ≤ (||x||+ ||y||)2 ≤ 2 ||x||2 +2 ||y||2

≤ 2c2 |x|2 +2c′ |y|2

≤
(
2c2 +2c′2

)(
|x|2 + |y|2

)
=

(
2c2 +2c′2

)
|z|2
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and the lemma is proved. Therefore it can be assumed, there exists

en+1 ∈ span(e1, · · · ,en)
⊥

such that |en+1|= 1 and ||en+1|| ≥ n+1.
This constructs an orthonormal set of vectors, {ek} . Letting 0 < ε < 1

2 , it follows since
||·|| is measurable, there exists Pε ∈F ({en}) such that if PPε = 0 where P ∈F ({en}) ,
then

ν ({x ∈ H : ||Px||> ε})< ε.

Say Pε is the projection onto the span of finitely many of the ek, the last one being eN . Then
for n > N and Pn the projection onto en, it follows Pε Pn = 0 and from the definition of ν ,

ε > ν ({x ∈ H : ||Pnx||> ε})
= ν ({x ∈ H : |(x,en)| ||en+1||> ε})
= ν ({x ∈ H : |(x,en)|> ε/ ||en+1||})
≥ ν ({x ∈ H : |(x,en)|> ε/(n+1)})

>
1√
2π

∫
∞

ε/(n+1)
e−x2/2dx

which yields a contradiction for all n large enough. This proves the lemma.
What are examples of Gross measurable norms defined on a separable Hilbert space,

H? The following lemma gives an important example.

Lemma 61.9.11 Let H be a separable Hilbert space and let A ∈ L2 (H,H) , a Hilbert
Schmidt operator. Thus A is a continuous linear operator with the property that for any
orthonormal set, {ek} ,

∞

∑
k=1
|Aek|2 < ∞.

Then define ||·|| by
||x|| ≡ |Ax|H .

Then if ||·|| is a norm, it is measurable1.

Proof: Let {ek} be an orthonormal sequence. Let Pn denote the orthogonal projection
onto span(e1, · · · ,en) . Let ε > 0 be given. Since A is a Hilbert Schmidt operator, there
exists N such that

∞

∑
k=N
|Aek|2 < α

where α is chosen very small. In fact, α is chosen such that α < ε2/r2 where r is suffi-
ciently large that

2√
2π

∫
∞

r
e−t2/2dt < ε. (61.9.42)

1If it is only a seminorm, it satisfies the same conditions.
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Let P denote an orthogonal projection in F ({ek}) such that PPN = 0. Thus P is the pro-
jection on to span(ei1 , · · · ,eim) where each ik > N. Then

ν ({x ∈ H : ||Px||> ε})
= ν ({x ∈ H : |APx|> ε})

Now Px = ∑
m
j=1
(
x,ei j

)
ei j and the above reduces to

ν

({
x ∈ H :

∣∣∣∣∣ m

∑
j=1

(
x,ei j

)
Aei j

∣∣∣∣∣> ε

})
≤

ν

x ∈ H :

(
m

∑
j=1

∣∣(x,ei j

)∣∣2)1/2( m

∑
j=1

∣∣Aei j

∣∣2)1/2

> ε




≤ ν

x ∈ H :

(
m

∑
j=1

∣∣(x,ei j

)∣∣2)1/2

α
1/2 > ε




= ν

x ∈ H :

(
m

∑
j=1

∣∣(x,ei j

)∣∣2)1/2

>
ε

α1/2




= ν

({
x ∈ H : ((x,ei1) , · · · ,(x,eim)) ∈ B

(
0,

ε

α1/2

)C
})

≤ ν

({
x ∈ H : max

{∣∣(x,ei j

)∣∣}> ε
√

mα1/2

})
This is no larger than

1(√
2π
)m

∫
|t1|> ε√

m
√

α

∫
|t2|> ε√

m
√

α

· · ·
∫
|tm|> ε√

m
√

α

e−|t|
2/2dtm · · ·dt1

=

2
∫

∞

ε/(
√

mα1/2) e−t2/2dt
√

2π

m

which by Jensen’s inequality is no larger than

2
∫

∞

ε/(
√

mα1/2) e−mt2/2dt
√

2π
=

2 1√
m

∫
∞

ε/(α1/2) e−t2/2dt
√

2π

≤
2
∫

∞

ε/(ε/r) e−t2/2dt
√

2π

=
2
∫

∞

r e−t2/2dt√
2π

< ε

By 61.9.42. This proves the lemma.
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Definition 61.9.12 A triple, (i,H,B) is called an abstract Wiener space if B is a separable
Banach space and H is a separable Hilbert space such that H is dense and continuously
embedded in B and the norm ||·|| on B is Gross measurable.

Next consider a weaker norm for H which comes from the inner product

(x,y)E ≡
∞

∑
k=1

1
k2 (x,ek)H (y,ek)H .

Then let E be the completion of H with respect to this new norm. Thus {kek} is a complete
orthonormal basis for E. This follows from the density of H in E along with the obvious
observation that in the above inner product, {kek} is an orthonormal set of vectors.

Lemma 61.9.13 There exists a countably additive Gaussian measure, λ defined on B (E).
This measure is the law of the random variable,

X (ω)≡
∞

∑
k=1

ξ k (ω)ek,

where {ξ k} denotes a sequence of independent normally distributed random variables hav-
ing mean 0 and variance 1, the series converging pointwise a.e. in E. Also

k2 (X (ω) ,ek)E = ξ k (ω) a.e.

Proof: Observe that ∑
∞
k=1

1
k2 (kek)⊗ (kek) is a nuclear operator on the Hilbert space,

E. Letting {ξ k} be a sequence of independent random variables each normally distributed
with mean 0 and variance 1, that

X (ω)≡
∞

∑
k=1

1
k

ξ k (ω)kek =
∞

∑
k=1

ξ k (ω)ek (61.9.43)

is a random variable with values in E and L (X) is a Gaussian measure on B (E) , the series
converging pointwise a.e. in E. Let λ be the name of this Gaussian measure and denote the
probability space on which the ξ k are defined as (Ω,F ,P). Thus for F ∈B (E) ,

λ (F)≡ P({ω ∈Ω : X (ω) ∈ F})

Finally, denoting by XN , the partial sum,

XN (ω)≡
N

∑
k=1

ξ k (ω)ek,

the definition of (·, ·)E on H and a simple computation yields

ξ k (ω) = lim
N→∞

k2 (XN (ω) ,ek)E

= k2 (X (ω) ,ek)E . (61.9.44)

One can pass to the limit because XN (ω) converges to X (ω) in E. This proves the lemma.
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Theorem 61.9.14 Let (i,H,B) be an abstract Wiener space. Then there exists a Gaussian
measure on the Borel sets of B.

Proof: Let E be defined above as the completion of H with respect to that weaker norm.
Then from Lemma 61.9.13 and X (ω) given above in 61.9.43,

k2 (X (ω) ,ek)E = ξ k (ω) a.e. ω.

Let {en} be a complete orthonormal set for H. There exists an increasing sequence
of projections, {Qn} ⊆F ({en}) such that Qnx→ x in H for each x ∈ H. Say Qn is the
orthogonal projection onto span(e1, · · · ,epn) . Then since ||·|| is measurable, these can be
chosen such that if Q is the orthogonal projection onto span(e1, · · · ,ek) for some k > pn
then

ν
({

x : ||Qx−Qnx||> 2−n})< 2−n.

In particular,
ν
({

x : ||Qnx−Qmx||> 2−m})< 2−m

whenever n≥ m.
I would like to consider the infinite series,

S (ω)≡
∞

∑
k=1

k2 (X (ω) ,ek)E ek ∈ B.

converging in B but of course this might make no sense because the series might not con-
verge. It was shown above that the series converges in E but it has not been shown to
converge in B.

Suppose the series did converge a.e. Then let f ∈ B′ and consider the random variable
f ◦ S which maps Ω to R. I would like to verify this is normally distributed. First note
that the following finite sum is weakly measurable and separably valued so it is strongly
measurable with values in B.

Spn (ω)≡
pn

∑
k=1

k2 (X (ω) ,ek)E ek,

Since f ∈ B′ which is a subset of H ′ due to the assumption that H is dense in B, there exists
a unique v ∈ H such that f (x) = (x,v) for all x ∈ H. Then from the above sum,

f (Spn (ω)) = (Spn (ω) ,v) =
pn

∑
k=1

k2 (X (ω) ,ek)E (ek,v)

which by Lemma 61.9.13 equals

pn

∑
k=1

(ek,v)H ξ k (ω)

a finite linear combination of the independent N (0,1) random variables, ξ k (ω) . Then it
follows

ω → f (Spn (ω))
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is also normally distributed and has mean 0 and variance equal to

pn

∑
k=1

(ek,v)
2
H .

Then it seems reasonable to suppose

E
(
eit f◦S) = lim

n→∞
E
(
eit f◦Spn

)
= lim

n→∞
e−t2

∑
pn
k=1(ek,v)

2
H

= e−t2
∑

∞
k=1(ek,v)

2
H

= e−t2|v|2H (61.9.45)

the characteristic function of a random variable which is N
(

0, |v|2H
)

. Thus at least formally,

this would imply for all f ∈ B′, f ◦S is normally distributed and so if µ = L (S) , then by
Lemma 61.7.3 it follows µ is a Gaussian measure.

What is missing to make the above a proof? First of all, there is the issue of the sum.
Next there is the problem of passing to the limit in the little argument above in which the
characteristic function is used.

First consider the sum. Note that QnX (ω) ∈ H. Then for any n > pm,

P
({

ω ∈Ω :
∣∣∣∣Sn (ω)−Spm (ω)

∣∣∣∣> 2−m})

= P

({
ω ∈Ω :

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=pm+1

k2 (X (ω) ,ek)E ek

∣∣∣∣∣
∣∣∣∣∣> 2−m

})

= P

({
ω ∈Ω :

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=pm+1

ξ k (ω)ek

∣∣∣∣∣
∣∣∣∣∣> 2−m

})
(61.9.46)

Let Q be the orthogonal projection onto span(e1, · · · ,en) . Define

F ≡
{

x ∈ (Q−Qm)H : ||x||> 2−m}
Then continuing the chain of equalities ending with 61.9.46,

= P

({
ω ∈Ω :

n

∑
k=pm+1

ξ k (ω)ek ∈ F

})

= P
({

ω ∈Ω :
(
ξ n (ω) , · · · ,ξ pm+1 (ω)

)
∈ F ′

})
= ν

({
x ∈ H :

(
(x,en)H , · · · ,(x,epm+1)H

)
∈ F ′

})
= ν ({x ∈ H : Q(x)−Qm (x) ∈ F})
= ν

({
x ∈ H : ||Q(x)−Qm (x)||> 2−m})< 2−m.
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This has shown that

P
({

ω ∈Ω :
∣∣∣∣Sn (ω)−Spm (ω)

∣∣∣∣> 2−m})< 2−m (61.9.47)

for all n > pm. In particular, the above is true if n = pn for n > m.
If
{

Spn (ω)
}

fails to converge, then ω must be contained in the set,

A≡ ∩∞
m=1∪∞

n=m
{

ω ∈Ω :
∣∣∣∣Spn (ω)−Spm (ω)

∣∣∣∣> 2−m} (61.9.48)

because if ω is in the complement of this set,

∪∞
m=1∩∞

n=m
{

ω ∈Ω :
∣∣∣∣Spn (ω)−Spm (ω)

∣∣∣∣≤ 2−m} ,
it follows

{
Spn (ω)

}∞

n=1 is a Cauchy sequence and so it must converge. However, the set in
61.9.48 is a set of measure 0 because of 61.9.47 and the observation that for all m,

P(A) ≤
∞

∑
n=m

P
({

ω ∈Ω :
∣∣∣∣Spn (ω)−Spm (ω)

∣∣∣∣> 2−m})
≤

∞

∑
n=m

1
2m

Thus the subsequence
{

Spn

}
of the sequence of partial sums of the above series does

converge pointwise in B and so the dominated convergence theorem also verifies that the
computations involving the characteristic function in 61.9.45 are correct.

The random variable obtained as the limit of the partial sums,
{

Spn (ω)
}

described
above is strongly measurable because each Spn (ω) is strongly measurable due to each of
these being weakly measurable and separably valued. Thus the measure given as the law
of S defined as

S (ω)≡ lim
n→∞

Spn (ω)

is defined on the Borel sets of B.This proves the theorem.
Also, there is an important observation from the proof which I will state as the following

corollary.

Corollary 61.9.15 Let (i,H,B) be an abstract Wiener space. Then there exists a Gaussian
measure on the Borel sets of B. This Gaussian measure equals L (S) where S (ω) is the
a.e. limit of a subsequence of the sequence of partial sums,

Spn (ω)≡
pn

∑
k=1

ξ k (ω)ek

for {ξ k} a sequence of independent random variables which are normal with mean 0 and
variance 1 which are defined on a probability space, (Ω,F ,P). Furthermore, for any
k > pn,

P
({

ω ∈Ω :
∣∣∣∣Sk (ω)−Spn (ω)

∣∣∣∣> 2−n})< 2−n.
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61.10 White Noise
In an abstract Wiener space as discussed above there is a Gaussian measure, µ defined
on the Borel sets of B. This measure is the law of a random variable having values in B
which is the limit of a subsequence of a sequence of partial sums. I will show here that the
sequence of partial sums also converges pointwise a.e.

Now with this preparation, here is the theorem about white noise.

Theorem 61.10.1 Let (i,H,B) be an abstract Wiener space and {ek} is a complete or-
thonormal sequence in H. Then there exists a Gaussian measure on the Borel sets of B.
This Gaussian measure equals L (S) where S (ω) is the a.e. limit of the sequence of partial
sums,

Sn (ω)≡
n

∑
k=1

ξ k (ω)ek

for {ξ k} a sequence of independent random variables which are normal with mean 0 and
variance 1, defined on a probability space, (Ω,F ,P)

Proof: By Corollary 61.9.15 there is a subsequence,
{

Spn

}
of these partial sums which

converge pointwise a.e. to S (ω). However, this corollary also states that

P
({

ω ∈Ω :
∣∣∣∣Sk (ω)−Spn (ω)

∣∣∣∣> 2−n})< 2−n

whenever k > pn and so by Lemma 59.15.6 the original sequence of partial sums also con-
verges uniformly of a set of measure zero. The reason this lemma applies is that ξ k (ω)ek
has symmetric distribution. This proves the theorem.

61.11 Existence Of Abstract Wiener Spaces
It turns out that if E is a separable Banach space, then it is the top third of an abstract
Wiener space. This is what will be shown in this section. Therefore, it follows from the
above that there exists a Gaussian measure on E which is the law of an a.e. convergent
series as discussed above. First recall Lemma 17.4.2 on Page 458.

Lemma 61.11.1 Let E be a separable Banach space. Then there exists an increasing se-
quence of subspaces, {Fn} such that dim(Fn+1)−dim(Fn)≤ 1 and equals 1 for all n if the
dimension of E is infinite. Also ∪∞

n=1Fn is dense in E.

Lemma 61.11.2 Let E be a separable Banach space. Then there exists a sequence {en} of
points of E such that whenever |β | ≤ 1 for β ∈ Fn,

n

∑
k=1

β kek ∈ B(0,1)

the unit ball in E.
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Proof: By Lemma 61.11.1, let {z1, · · · ,zn} be a basis for Fn where ∪∞
n=1Fn is dense in E.

Then let α1 be such that e1≡α1z1 ∈B(0,1) . Thus β 1e1 ∈B(0,1) whenever |β 1| ≤ 1. Sup-
pose α i has been chosen for i = 1,2, · · · ,n such that for all β ∈ Dn ≡ {α ∈ Fn : |α| ≤ 1} ,
it follows

n

∑
k=1

β kαkzk ∈ B(0,1) .

Then

Cn ≡

{
n

∑
k=1

β kαkzk : β ∈ Dn

}
is a compact subset of B(0,1) and so it is at a positive distance from the complement of
B(0,1) ,δ . Now let 0 < αn+1 < δ/ ||zn+1|| . Then for β ∈ Dn+1,

n

∑
k=1

β kαkzk ∈Cn

and so ∣∣∣∣∣
∣∣∣∣∣n+1

∑
k=1

β kαkzk−
n

∑
k=1

β kαkzk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣β n+1αn+1zn+1
∣∣∣∣

< ||αn+1zn+1||< δ

which shows
n+1

∑
k=1

β kαkzk ∈ B(0,1) .

This proves the lemma. Let ek ≡ αkzk.
Now the main result is the following. It says that any separable Banach space is the

upper third of some abstract Wiener space.

Theorem 61.11.3 Let E be a real separable Banach space with norm ||·||. Then there
exists a separable Hilbert space, H such that H is dense in E and the inclusion map is
continuous. Furthermore, if ν is the Gaussian measure defined earlier on the cylinder sets
of H, ||·|| is Gross measurable.

Proof: Let {ek} be the points of E described in Lemma 61.11.2. Then let H0 denote
the subspace of all finite linear combinations of the {ek}. It follows H0 is dense in E. Next
decree that {ek} is an orthonormal basis for H0. Thus for

n

∑
k=1

ckek,
n

∑
j=1

d jek ∈ H0,

(
n

∑
k=1

ckek,
n

∑
j=1

d je j

)
H0

≡
n

∑
k=1

ckdk
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this being well defined because the {ek} are independent. Let the norm on H0 be denoted
by |·|H0

. Let H1 be the completion of H0 with respect to this norm.
I want to show that |·|H0

is stronger than ||·||. Suppose then that∣∣∣∣∣ n

∑
k=1

β kek

∣∣∣∣∣
H0

≤ 1.

It follows then from the definition of |·|H0
that∣∣∣∣∣ n

∑
k=1

β kek

∣∣∣∣∣
2

H0

=
n

∑
k=1

β
2
k ≤ 1

and so from the construction of the ek, it follows that∣∣∣∣∣
∣∣∣∣∣ n

∑
k=1

β kek

∣∣∣∣∣
∣∣∣∣∣< 1

Stated more simply, this has just shown that if h∈H0 then since
∣∣∣h/ |h|H0

∣∣∣
H0
≤ 1, it follows

that
||h||/ |h|H0

< 1

and so
||h||< |h|H0

.

It follows that the completion of H0 must lie in E because this shows that every Cauchy
sequence in H0 is a Cauchy sequence in E. Thus H1 embedds continuously into E and is
dense in E. Denote its norm by |·|H1

.
Now consider the nuclear operator,

A =
∞

∑
k=1

λ kek⊗ ek

where each λ k > 0 and ∑k λ k < ∞. This operator is clearly one to one. Also it is clear the
operator is Hilbert Schmidt because ∑k λ

2
k < ∞. Let

H ≡ AH1.

and for x ∈ H, define
|x|H ≡

∣∣A−1x
∣∣
H1

.

Since each ek is in H it follows that H is dense in E. Note also that H ⊆H1 because A maps
H1 to H1.

Ax≡
∞

∑
k=1

λ k (x,ek)ek



2044 CHAPTER 61. PROBABILITY IN INFINITE DIMENSIONS

and the series converges in H1 because

∞

∑
k=1

λ k |(x,ek)| ≤

(
∞

∑
k=1

λ
2
k

)1/2(
∞

∑
k=1
|(x,ek)|2

)1/2

< ∞.

Also H is a Hilbert space with inner product given by

(x,y)H ≡
(
A−1x,A−1y

)
H1

.

H is complete because if {xn} is a Cauchy sequence in H, this is the same as
{

A−1xn
}

being a Cauchy sequence in H1 which implies A−1xn→ y for some y ∈H1. Then it follows
xn = A

(
A−1xn

)
→ Ay in H.

For x ∈ H ⊆ H1,

||x|| ≤ |x|H1
=
∣∣AA−1x

∣∣
H1
≤ ||A||

∣∣A−1x
∣∣
H1
≡ ||A|| |x|H

and so the embedding of H into E is continuous. Why is ||·|| a measurable norm on H?
Note first that for x ∈ H ⊆ H1,

|Ax|H ≡
∣∣A−1Ax

∣∣
H1

= |x|H1
≥ ||x||E . (61.11.49)

Therefore, if it can be shown A is a Hilbert Schmidt operator on H, the desired measurabil-
ity will follow from Lemma 61.9.11 on Page 2035.

Claim: A is a Hilbert Schmidt operator on H.

Proof of the claim: From the definition of the inner product in H, it follows an or-
thonormal basis for H is {λ kek} . This is because

(λ kek,λ je j)H ≡
(
λ kA−1ek,λ jA−1e j

)
H1

= (ek,e j)H1
= δ jk.

To show that A is Hilbert Schmidt, it suffices to show that

∑
k
|A(λ kek)|2H < ∞

because this is the definition of an operator being Hilbert Schmidt. However, the above
equals

∑
k

∣∣A−1A(λ kek)
∣∣2
H1

= ∑
k

λ
2
k < ∞.

This proves the claim.
Now consider 61.11.49. By Lemma 61.9.11, it follows the norm ||x||′ ≡ |Ax|H is Gross

measurable on H. Therefore, ||·||E is also Gross measurable because it is smaller. This
proves the theorem.

Using Theorem 61.11.3 and Theorem 61.10.1 this proves most of the following impor-
tant corollary.
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Corollary 61.11.4 Let E be any real separable Banach space. Then there exists a se-
quence, {ek} ⊆ E such that for any {ξ k} a sequence of independent random variables such
that L (ξ k) = N (0,1), it follows

X (ω)≡
∞

∑
k=1

ξ k (ω)ek

converges a.e. and its law is a Gaussian measure defined on B (E). Furthermore, ||ek||E ≤
λ k where ∑k λ k < ∞.

Proof: From the proof of Theorem 61.11.3 a basis for H is {λ kek} . Therefore, by
Theorem 61.10.1, if {ξ k} is a sequence of independent N (0,1) random variables, then
∑

∞
k=1 ξ k (ω)λ kek converges a.e. to a random variable whose law is Gaussian. Also from

the proof of Theorem 61.10.1, each ek in that proof has the property that ||ek|| ≤ 1 because
if ||ek||> 1, then you could consider β ≡(0,0, · · · ,1) and from the construction of the ek,
you would need 1ek ∈ B(0,1) which is a contradiction. Thus ||λ kek|| ≤ λ k and changing
the notation, replacing λ kek with ek, this proves the corollary.
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Chapter 62

Stochastic Processes
62.1 Fundamental Definitions And Properties

Here E will be a separable Banach space and B (E) will be the Borel sets of E. Let
(Ω,F ,P) be a probability space and I will be an interval of R. A set of E valued random
variables, one for each t ∈ I, {X (t) : t ∈ I} is called a stochastic process. Thus for each t,
X (t) is a measurable function of ω ∈ Ω. Set X (t,ω) ≡ X (t)(ω) . Functions t → X (t,ω)
are called trajectories. Thus there is a trajectory for each ω ∈Ω. A stochastic process, Y is
called a version or a modification of a stochastic process, X if for all t ∈ I,

X (t,ω) = Y (t,ω) a.e. ω

There are several descriptions of stochastic processes.

1. X is measurable if X (·, ·) : I×Ω→ E is B(I)×F measurable. Note that a stochastic
process, X is not necessarily measurable.

2. X is stochastically continuous at t0 ∈ I means: for all ε > 0 and δ > 0 there exists
ρ > 0 such that

P([||X (t)−X (t0)|| ≥ ε])≤ δ whenever |t− t0|< ρ, t ∈ I.

Note the above condition says that for each ε > 0,

lim
t→t0

P([||X (t)−X (t0)|| ≥ ε]) = 0.

3. X is stochastically continuous if it is stochastically continuous at every t ∈ I.

4. X is stochastically uniformly continuous if for every ε,δ > 0 there exists ρ > 0 such
that whenever s, t ∈ I with |s− t|< ρ, it follows

P([||X (t)−X (s)|| ≥ ε])≤ δ .

5. X is mean square continuous at t0 ∈ I if

lim
t→t0

E
(
||X (t)−X (t0)||2

)
≡ lim

t→t0

∫
Ω

||X (t)(ω)−X (t0)(ω)||2 dP = 0.

6. X is mean square continuous in I if it is mean square continuous at every point of I.

7. X is continuous with probability 1 or continuous if t→ X (t,ω) is continuous for all
ω outside some set of measure 0.

8. X is Hölder continuous if t→ X (t,ω) is Hölder continuous for a.e. ω.

Lemma 62.1.1 A stochastically continuous process on [a,b]≡ I is uniformly stochastically
continuous on [a,b]≡ I.

2047
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Proof: If this is not so, there exists ε,δ > 0 and points of I,sn, tn such that even though

|tn− sn|<
1
n
,

P([||X (sn)−X (tn)|| ≥ ε])> δ . (62.1.1)

Taking a subsequence, still denoted by sn and tn there exists t ∈ I such that the above hold
and

lim
n→∞

sn = lim
n→∞

tn = t.

Then

P([||X (sn)−X (tn)|| ≥ ε])

≤ P([||X (sn)−X (t)|| ≥ ε/2])+P([||X (t)−X (tn)|| ≥ ε/2]) .

But the sum of the last two terms converges to 0 as n→ ∞ by stochastic continuity of X at
t, violating 62.1.1 for all n large enough. This proves the lemma.

For a stochastically continuous process defined on a closed and bounded interval, there
always exists a measurable version. This is significant because then you can do things with
product measure and iterated integrals.

Proposition 62.1.2 Let X be a stochastically continuous process defined on a closed inter-
val, I ≡ [a,b]. Then there exists a measurable version of X.

Proof: By Lemma 62.1.1 X is uniformly stochastically continuous and so there exists
a sequence of positive numbers, {ρn} such that if |s− t|< ρn, then

P
([
||X (t)−X (s)|| ≥ 1

2n

])
≤ 1

2n . (62.1.2)

Then let
{

tn
0 , t

n
1 , · · · , tn

mn

}
be a partition of [a,b] in which

∣∣tn
i − tn

i−1

∣∣< ρn. Now define Xn as
follows:

Xn (t) ≡
mn

∑
i=1

X
(
tn
i−1
)
X[tn

i−1,t
n
i )
(t)

Xn (b) ≡ X (b) .

Then Xn is obviously B(I)×F measurable because it is the sum of functions which are.
Consider the set, A on which {Xn (t,ω)} is a Cauchy sequence. This set is of the form

A = ∩∞
n=1∪∞

m=1∩p,q≥m

[∣∣∣∣Xp−Xq
∣∣∣∣< 1

n

]
and so it is a B(I)×F measurable set. Now define

Y (t,ω)≡
{

limn→∞ Xn (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A
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I claim Y (t,ω) = X (t,ω) for a.e. ω. To see this, consider 62.1.2. From the construction of
Xn, it follows that for each t,

P
([
||Xn (t)−X (t)|| ≥ 1

2n

])
≤ 1

2n

Also, for a fixed t, if Xn (t,ω) fails to converge to X (t,ω) , then ω must be in infinitely
many of the sets,

Bn ≡
[
||Xn (t)−X (t)|| ≥ 1

2n

]
which is a set of measure zero by the Borel Cantelli lemma. Recall why this is so.

P(∩∞
k=1∪∞

n=k Bn)≤
∞

∑
n=k

P(Bn)<
1

2k−1

Therefore, for each t,(t,ω)∈A for a.e. ω. Hence X (t) =Y (t) a.e. and so Y is a measurable
version of X .

Lemma 62.1.3 Let D be a dense subset of an interval, I = [0,T ] and suppose X : D→ E
satisfies ∣∣∣∣X (d)−X

(
d′
)∣∣∣∣≤C

∣∣d−d′
∣∣γ

for all d′,d ∈ D. Then X extends uniquely to a continuous Y defined on [0,T ] such that∣∣∣∣Y (t)−Y
(
t ′
)∣∣∣∣≤C

∣∣t− t ′
∣∣γ .

Proof: Let t ∈ I and let dk → t where dk ∈ D. Then {X (dk)} is a Cauchy sequence
because ||X (dk)−X (dm)|| ≤C |dk−dm|γ . Therefore, X (dk) converges. The thing it con-
verges to will be called Y (t) . Note this is well defined, giving X (t) if t ∈D. Also, if dk→ t
and d′k → t, then

∣∣∣∣X (dk)−X
(
d′k
)∣∣∣∣ ≤ C

∣∣dk−d′k
∣∣γ and so X (dk) and X

(
d′k
)

converge to
the same thing. Therefore, it makes sense to define Y (t)≡ limd→t X (d). It only remains to
verify the estimate. But letting |d− t| and |d′− t ′| be small enough,∣∣∣∣Y (t)−Y

(
t ′
)∣∣∣∣ =

∣∣∣∣X (d)−X
(
d′
)∣∣∣∣+ ε

≤ C
∣∣d′−d

∣∣+ ε ≤C
∣∣t− t ′

∣∣+2ε.

Since ε is arbitrary, this proves the existence part of the lemma. Uniqueness follows from
observing that Y (t) must equal limd→t X (d). This proves the lemma.

62.2 Kolmogorov Čentsov Continuity Theorem

Lemma 62.2.1 Let rm
j denote j

( T
2m

)
where j ∈ {0,1, · · · ,2m} . Also let Dm =

{
rm

j

}2m

j=1
and

D = ∪∞
m=1Dm. Suppose X (t) satisfies∣∣∣∣∣∣X (rk

j+1

)
−X

(
rk

j

)∣∣∣∣∣∣≤ 2−γk (62.2.3)
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for all k ≥M. Then if d,d′ ∈ Dm for m > n≥M such that |d−d′| ≤ T 2−n, then

∣∣∣∣X (d′)−X (d)
∣∣∣∣≤ 2

m

∑
j=n+1

2−γ j.

Also, there exists a constant C depending on M such that for all d,d′ ∈ D,∣∣∣∣X (d)−X
(
d′
)∣∣∣∣≤C

∣∣d−d′
∣∣γ .

Proof: Suppose d′ < d. Suppose first m = n+ 1. Then d = (k+1)T 2−(n+1) and d′ =
kT 2−(n+1). Then from 62.2.3

∣∣∣∣X (d′)−X (d)
∣∣∣∣≤ 2−γ(n+1) ≤ 2

n+1

∑
j=n+1

2−γ j.

Suppose the claim is true for some m > n and let d,d′ ∈ Dm+1 with |d−d′| < T 2−n. If
there is no point of Dm between these, then d′,d are adjacent points either in Dm or in
Dm+1. Consequently,

∣∣∣∣X (d′)−X (d)
∣∣∣∣≤ 2−γm < 2

m+1

∑
j=n+1

2−γ j.

Assume therefore, there exist points of Dm between d′ and d. Let d′ ≤ d′1 ≤ d1 ≤ d where
d1,d′1 are in Dm and d′1 is the smallest element of Dm which is at least as large as d′ and
d1 is the largest element of Dm which is no larger than d. Then |d′−d′1| ≤ T 2−(m+1) and
|d1−d| ≤ T 2−(m+1) while all of these points are in Dm+1 which contains Dm. Therefore,
from 62.2.3 and induction, ∣∣∣∣X (d′)−X (d)

∣∣∣∣
≤

∣∣∣∣X (d′)−X
(
d′1
)∣∣∣∣+ ∣∣∣∣X (d′1)−X (d1)

∣∣∣∣
+ ||X (d1)−X (d)||

≤ 2×2−γ(m+1)+2
m

∑
j=n+1

2−γ j = 2
m+1

∑
j=n+1

2−γ j

≤ 2

(
2−γ(n+1)

1−2−γ

)
=

(
2T−γ

1−2−γ

)(
T 2−(n+1)

)γ

(62.2.4)

It follows the above holds for any d,d′ ∈D such that |d−d′| ≤ T 2−n because they are both
in some Dm for m > n.

Consider the last claim. Let d,d′ ∈D, |d−d′| ≤ T 2−M. Then d,d′ are both in some Dm
for m > M. The number |d−d′| satisfies

T 2−(n+1) <
∣∣d−d′

∣∣≤ T 2−n
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for large enough n ≥ M. Just pick the first n such that T 2−(n+1) < |d−d′| . Then from
62.2.4, ∣∣∣∣X (d′)−X (d)

∣∣∣∣ ≤ (
2T−γ

1−2−γ

)(
T 2−(n+1)

)γ

≤
(

2T−γ

1−2−γ

)(∣∣d−d′
∣∣)γ

Now [0,T ] is covered by 2M intervals of length T 2−M and so for any pair d,d′ ∈ D,∣∣∣∣X (d)−X
(
d′
)∣∣∣∣≤C

∣∣d−d′
∣∣γ

where C is a suitable constant depending on 2M . ■
For γ ≤ 1, you can show, using convexity arguments, that it suffices to have C =(

2T−γ

1−2−γ

)1/γ (
2M
)1−γ

. Of course the case where γ > 1 is not interesting because it would
result in X being a constant.

The following is the amazing Kolmogorov Čentsov continuity theorem [78].

Theorem 62.2.2 Suppose X is a stochastic process on [0,T ] . Suppose also that there exists
a constant, C and positive numbers, α,β such that

E
(
||X (t)−X (s)||α

)
≤C |t− s|1+β (62.2.5)

Then there exists a stochastic process Y such that for a.e. ω, t → Y (t)(ω) is Hölder con-
tinuous with exponent γ < β

α
and for each t, P([||X (t)−Y (t)||> 0]) = 0. (Y is a version

of X .)

Proof: Let rm
j denote j

( T
2m

)
where j ∈ {0,1, · · · ,2m} . Also let Dm =

{
rm

j

}2m

j=1
and

D = ∪∞
m=1Dm. Consider the set,

[||X (t)−X (s)||> δ ]

By 62.2.5,

P([||X (t)−X (s)||> δ ])δ
α ≤

∫
[||X(t)−X(s)||>δ ]

||X (t)−X (s)||α dP

≤ C |t− s|1+β . (62.2.6)

Letting t = rk
j+1, s = rk

j ,and δ = 2−γk where

γ ∈
(

0,
β

α

)
,

this yields

P
([∣∣∣∣∣∣X (rk

j+1

)
−X

(
rk

j

)∣∣∣∣∣∣> 2−γk
])
≤C2αγk

(
T 2−k

)1+β
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=CT 1+β 2k(αγ−(1+β ))

There are 2k of these differences and so letting

Nk = ∪2k

j=1

[∣∣∣∣∣∣X (rk
j+1

)
−X

(
rk

j

)∣∣∣∣∣∣> 2−γk
]

it follows

P(Nk)≤C2αγk
(

T 2−k
)1+β

2k =C2k(αγ−β )T 1+β .

Since γ < β/α,
∞

∑
k=1

P(Nk)≤CT 1+β
∞

∑
k=1

2k(αγ−β ) < ∞

and so by the Borel Cantelli lemma, Lemma 59.1.2, there exists a set of measure zero N,
such that if ω /∈ N, then ω is in only finitely many Nk. In other words, for ω /∈ N, there
exists M (ω) such that if k ≥M (ω) , then for each j,∣∣∣∣∣∣X (rk

j+1

)
(ω)−X

(
rk

j

)
(ω)
∣∣∣∣∣∣≤ 2−γk. (62.2.7)

It follows from Lemma 62.2.1 that t → X (t)(ω) is Holder continuous on D with Holder
exponent γ. Note the constant is a measurable function of ω, depending on how many
measurable Nk which contain ω .

By Lemma 62.1.3, one can define Y (t)(ω) to be the unique function which extends
d → X (d)(ω) off D for ω /∈ N and let Y (t)(ω) = 0 if ω ∈ N. Thus by Lemma 62.1.3
t → Y (t)(ω) is Holder continuous. Also, ω → Y (t)(ω) is measurable because it is the
pointwise limit of measurable functions

Y (t)(ω) = lim
d→t

X (d)(ω)XNC (ω) . (62.2.8)

It remains to verify the claim that Y (t)(ω) = X (t)(ω) a.e.

X[||Y (t)−X(t)||>ε]∩NC (ω)≤ lim inf
d→t

X[||X(d)−X(t)||>ε]∩NC (ω)

because if ω ∈ N both sides are 0 and if ω ∈ NC then the above limit in 62.2.8 holds and
so if ||Y (t)(ω)−X (t)(ω)|| > ε, the same is true of ||X (d)(ω)−X (t)(ω)|| whenever d
is close enough to t and so by Fatou’s lemma,

P([||Y (t)−X (t)||> ε]) =
∫

X[||Y (t)−X(t)||>ε]∩NC (ω)dP

≤
∫

lim inf
d→t

X[||X(d)−X(t)||>ε] (ω)dP

≤ lim inf
d→t

∫
X[||X(d)−X(t)||>ε] (ω)dP

≤ lim inf
d→t

P
([
||X (d)−X (t)||α > ε

α
])

≤ lim inf
d→t

ε
−α

∫
[||X(d)−X(t)||α>εα ]

||X (d)−X (t)||α dP

≤ lim inf
d→t

C
εα
|d− t|1+β = 0.
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Therefore,

P([||Y (t)−X (t)||> 0])

= P
(
∪∞

k=1

[
||Y (t)−X (t)||> 1

k

])
≤

∞

∑
k=1

P
([
||Y (t)−X (t)||> 1

k

])
= 0. ■

A few observations are interesting. In the proof, the following inequality was obtained.∣∣∣∣X (d′)(ω)−X (d)(ω)
∣∣∣∣ ≤ 2

T γ (1−2−γ)

(
T 2−(n+1)

)γ

≤ 2
T γ (1−2−γ)

(∣∣d−d′
∣∣)γ

which was so for any d′,d ∈ D with |d′−d| < T 2−(M(ω)+1). Thus the Holder continuous
version of X will satisfy

||Y (t)(ω)−Y (s)(ω)|| ≤ 2
T γ (1−2−γ)

(|t− s|)γ

provided |t− s|< T 2−(M(ω)+1). Does this translate into an inequality of the form

||Y (t)(ω)−Y (s)(ω)|| ≤ 2
T γ (1−2−γ)

(|t− s|)γ

for any pair of points t,s ∈ [0,T ]? It seems it does not for any γ < 1 although it does yield

||Y (t)(ω)−Y (s)(ω)|| ≤C (|t− s|)γ

where C depends on the number of intervals having length less than T 2−(M(ω)+1) which
it takes to cover [0,T ] . First note that if γ > 1, then the Holder continuity will imply t →
Y (t)(ω) is a constant. Therefore, the only case of interest is γ < 1. Let s, t be any pair of
points and let s = x0 < · · ·< xn = t where |xi− xi−1|< T 2−(M(ω)+1). Then

||Y (t)(ω)−Y (s)(ω)|| ≤
n

∑
i=1
||Y (xi)(ω)−Y (xi−1)(ω)||

≤ 2
T γ (1−2−γ)

n

∑
i=1

(|xi− xi−1|)γ (62.2.9)

How does this compare to (
n

∑
i=1
|xi− xi−1|

)γ

= |t− s|γ ?

This last expression is smaller than the right side of 62.2.9 for any γ < 1. Thus for γ < 1,
the constant in the conclusion of the theorem depends on both T and ω /∈ N.

In the case where α ≥ 1, here is another proof of this theorem. It is based on the one in
the book by Stroock [121].
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Theorem 62.2.3 Suppose X is a stochastic process on [0,T ] having values in the Banach
space E. Suppose also that there exists a constant, C and positive numbers α,β ,α ≥ 1,
such that

E
(
||X (t)−X (s)||α

)
≤C |t− s|1+β (62.2.10)

Then there exists a stochastic process Y such that for a.e. ω, t → Y (t)(ω) is Hölder con-
tinuous with exponent γ < β

α
and for each t, P([||X (t)−Y (t)||> 0]) = 0. (Y is a version

of X .) Also

E
(

sup
0≤s<t≤T

∥Y (t)−Y (s)∥
(t− s)γ

)
≤C

where C depends on α,β ,T,γ .

Proof: The proof considers piecewise linear approximations of X which are automat-
ically continuous. These are shown to converge to Y in Lα (Ω;C ([0,T ] ,E)) so it follows
that Y must be continuous for a.e. ω . Finally, it is shown that Y is a version of X and
is Holder continuous. In the proof, I will use C to denote a constant which depends on
the quantities γ,α,β ,T . Let

{
tn
k

}2n

k=0 be a uniform partition of the interval [0,T ] so that
tn
k+1− tn

k = T 2−n. Now let

Mn ≡max
k≤2n

∥∥X (tn
k )−X

(
tn
k−1
)∥∥

Then it follows that

Mα
n ≤

2n

∑
k=1

∥∥X (tn
k )−X

(
tn
k−1
)∥∥α

and so

E (Mα
n )≤

2n

∑
k=1

C
(
T 2−n)1+β

=C2n2−n(1+β ) =C2−nβ (62.2.11)

Next denote by Xn the piecewise linear function which results from the values of X at
the points tn

k . Consider the following picture which illustrates a part of the graphs of Xn and
Xn+1.

tn
k−1 tn

k
tn+1
2k−2 tn+1

2ktn+1
2k−1

Then

max
t∈[0,T ]

∥Xn+1 (t)−Xn (t)∥ ≤ max
1≤k≤2n+1

∥∥∥∥∥X
(
tn+1
2k−1

)
−

X
(
tn
k

)
+X

(
tn
k−1

)
2

∥∥∥∥∥
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≤ max
k≤2n+1

(
1
2

∥∥X
(
tn+1
2k−1

)
−X

(
tn+1
2k

)∥∥+ 1
2

∥∥X
(
tn+1
2k−1

)
−X

(
tn+1
2k−2

)∥∥)≤Mn+1

Denote by ∥·∥
∞

the usual norm in C ([0,T ] ,E) ,

max
t∈[0,T ]

∥Z (t)∥ ≡ ∥Z∥
∞
,

Then from what was just established,

E
(
∥Xn+1−Xn∥α

∞

)
=
∫

Ω

∥Xn+1−Xn∥α

∞
dP≤ E

(
Mα

n+1
)
=C2−nβ

which shows that

∥Xn+1−Xn∥Lα (Ω;C([0,T ],E)) =

(∫
Ω

∥Xn+1−Xn∥α

∞
dP
)1/α

≤C
(

2(β/α)
)−n

Also, for m > n, it follows from the assumption that α ≥ 1,

∥Xm−Xn∥Lα (Ω;C([0,T ],E)) ≤

∞

∑
k=n

C
(

2(β/α)
)−k
≤C

(
2(β/α)

)−n

1−2(−β/α)
=C

(
2(β/α)

)−n
(62.2.12)

Thus {Xn} is a Cauchy sequence in Lα (Ω;C ([0,T ] ,E)) and so it converges to some Y in
this space, a subsequence converging pointwise. Then from Fatou’s lemma,

∥Y −Xn∥Lα (Ω;C([0,T ],E)) ≤C
(

2(β/α)
)−n

. (62.2.13)

Also, for a.e. ω, t→ Y (t) is in C ([0,T ] ,E) . It remains to verify that Y (t) = X (t) a.e.
From the construction, it follows that for any n and m≥ n

Y (tn
k ) = Xm (tn

k ) = X (tn
k )

Thus

∥Y (t)−X (t)∥ ≤ ∥Y (t)−Y (tn
k )∥+∥Y (tn

k )−X (t)∥
= ∥Y (t)−Y (tn

k )∥+∥X (tn
k )−X (t)∥

Now from the hypotheses of the theorem,

P
(
∥X (tn

k )−X (t)∥α > ε
)
≤ 1

ε
E
(
∥X (tn

k )−X (t)∥α
)
≤ C

ε
|tn

k − t|1+β

Thus, there exists a sequence of mesh points {sn} converging to t such that

P
(
∥X (sn)−X (t)∥α > 2−n)≤ 2−n
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Then by the Borel Cantelli lemma, there is a set of measure zero N such that for ω /∈ N,

∥X (sn)−X (t)∥α ≤ 2−n

for all n large enough. Then

∥Y (t)−X (t)∥ ≤ ∥Y (t)−Y (sn)∥+∥X (sn)−X (t)∥

which shows that, by continuity of Y, for ω not in an exceptional set of measure zero,
∥Y (t)−X (t)∥= 0.

It remains to verify the assertion about Holder continuity of Y . Let 0≤ s < t ≤ T. Then
for some n,

2−(n+1)T ≤ t− s≤ 2−nT (62.2.14)

Thus
∥Y (t)−Y (s)∥ ≤ ∥Y (t)−Xn (t)∥+∥Xn (t)−Xn (s)∥+∥Xn (s)−Y (s)∥

≤ 2 sup
τ∈[0,T ]

∥Y (τ)−Xn (τ)∥+∥Xn (t)−Xn (s)∥ (62.2.15)

Now
∥Xn (t)−Xn (s)∥

t− s
≤ ∥Xn (t)−Xn (s)∥

2−(n+1)T
From 62.2.14 a picture like the following must hold.

s t tn+1
k+1tn+1

ktn+1
k−1

Therefore, from the above,

∥Xn (t)−Xn (s)∥
t− s

≤
∥∥X
(
tn+1
k−1

)
−X

(
tn+1
k

)∥∥+∥∥X
(
tn+1
k+1

)
−X

(
tn+1
k

)∥∥
2−(n+1)T

≤ C2nMn+1

It follows from 62.2.15,

∥Y (t)−Y (s)∥ ≤ 2∥Y −Xn∥∞
+C2nMn+1 (t− s)

Next, letting γ < β/α, and using 62.2.14,

∥Y (t)−Y (s)∥
(t− s)γ ≤ 2

(
T−12n+1)γ ∥Y −Xn∥∞

+C2n (2−n)1−γ Mn+1

= C2nγ (∥Y −Xn∥∞
+Mn+1)

The above holds for any s, t satisfying 62.2.14. Then

sup
{
∥Y (t)−Y (s)∥

(t− s)γ ,0≤ s < t ≤ T, |t− s| ∈
[
2−(n+1)T,2−nT

]}
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≤C2nγ (∥Y −Xn∥∞
+Mn+1)

Denote by Pn the ordered pairs (s, t) satisfying the above condition that

0≤ s < t ≤ T, |t− s| ∈
[
2−(n+1)T,2−nT

]
,

sup
(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ ≤C2nγ (∥Y −Xn∥∞

+Mn+1)

Thus for a.e. ω, and for all n,(
sup

(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ

)α

≤C
∞

∑
k=0

2kαγ
(
∥Y −Xk∥α

∞
+Mα

k+1
)

Note that n is arbitrary. Hence

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤

sup
n

sup
(s,t)∈Pn

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤ sup
n

(
sup

(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ

)α

≤
∞

∑
k=0

C2kαγ
(
∥Y −Xk∥α

∞
+Mα

k+1
)

By continuity of Y, the result on the left is unchanged if the ordered pairs are restricted to
lie in Q∩ [0,T ]×Q∩ [0,T ] , a countable set. Thus the left side is measurable. It follows
from 62.2.11 and 62.2.13 which say

∥Y −Xk∥Lα (Ω;C([0,T ],E)) ≤C
(

2(β/α)
)−k

, E (Mα
k )≤C2−kβ

that

E
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α)
≤

∞

∑
k=0

C2kαγ 2−βk ≡C < ∞

because αγ−β < 0. By continuity of Y, there are no measurability concerns in taking the
above expectation. Note that this implies, since α ≥ 1,

E
(

sup
0≤s<t≤T

∥Y (t)−Y (s)∥
(t− s)γ

)
≤
(

E
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α))1/α

≤C1/α ≡C

Now

P
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

> 2αk
)
≤ 1

2αk C

and so there exists a set of measure zero N such that for ω /∈ N,

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤ 2αk
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for all k large enough. Pick such a k, depending on ω /∈ N. Then for any s, t,

∥Y (t)−Y (s)∥
(t− s)γ ≤ 2k

and so, this has shown that for ω /∈ N,

∥Y (t)−Y (s)∥ ≤C (ω)(t− s)γ ■

Note that if X (t) is known to be continuous off a set of measure zero, then the piece-
wise linear approximations converge to X (t) in C ([0,T ] ,E) off this set of measure zero.
Therefore, it must be that off a set of measure zero, Y (t) = X (t) and so in fact X (t) is
Holder continuous off a set of measure zero and the condition on expectation also must
hold, that is

E
(

sup
0≤s<t≤T

∥X (t)−X (s)∥
(t− s)γ

)
≤C.

62.3 Filtrations
Instead of having a sequence of σ algebras, one can consider an increasing collection of σ

algebras indexed by t ∈ R. This is called a filtration.

Definition 62.3.1 Let X be a stochastic process defined on an interval, I = [0,T ] or [0,∞).
Suppose the probability space, (Ω,F ,P) has an increasing family of σ algebras, {Ft}.
This is called a filtration. If for arbitrary t ∈ I the random variable X (t) is Ft measurable,
then X is said to be adapted to the filtration {Ft}. Denote by Ft+ the intersection of all
Fs for s > t. The filtration is normal if

1. F0 contains all A ∈F such that P(A) = 0

2. Ft = Ft+ for all t ∈ I.

X is called progressively measurable if for every t ∈ I, the mapping

(s,ω) ∈ [0, t]×Ω, (s,ω)→ X (s,ω)

is B([0, t])×Ft measurable.

Thus X is progressively measurable means

(s,ω)→X[0,t] (s)X (s,ω)

is B([0, t])×Ft measurable. As an example of a normal filtration, here is an example.

Example 62.3.2 For example, you could have a stochastic process, X (t) and you could
define

Gt ≡ σ (X (s) : s≤ t),
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the completion of the smallest σ algebra such that each X (s) is measurable for all s ≤ t.
This gives an example of a filtration to which X (t) is adapted which satisfies 1. More
generally, suppose X (t) is adapted to a filtration, Gt . Define

Ft ≡ ∩s>tGs

Then
Ft+ ≡ ∩s>tFs = ∩s>t ∩r>s Gr = ∩s>tFs ≡Ft .

and each X (t) is measurable with respect to Ft . Thus there is no harm in assuming a
stochastic process adapted to a filtration can be modified so the filtration is normal. Also
note that Ft defined this way will be complete so if A∈Ft has P(A) = 0 and if B⊆ A, then
B ∈Ft also. This is because this relation between the sets and the probability of A being
zero, holds for this pair of sets when considered as elements of each Gs for s > t. Hence
B ∈ Gs for each s > t and is therefore one of the sets in Ft .

What is the description of a progressively measurable set?

t

QQ
⋂
[0, t]×Ω

It means that for Q progressively measurable, Q∩ [0, t]×Ω as shown in the above
picture is B ([0, t])×Ft measurable. It is like saying a little more descriptively that the
function is progressively product measurable.

I shall generally assume the filtration is normal.

Observation 62.3.3 If X is progressively measurable, then it is adapted. Furthermore the
progressively measurable sets, those E ∩ [0,T ]×Ω for which XE is progressively measur-
able form a σ algebra.

To see why this is, consider X progressively measurable and fix t. Then (s,ω) →
X (s,ω) for (s,ω)∈ [0, t]×Ω is given to be B ([0, t])×Ft measurable, the ordinary product
measure and so fixing any s∈ [0, t] , it follows the resulting function of ω is Ft measurable.
In particular, this is true upon fixing s = t. Thus ω→ X (t,ω) is Ft measurable and so X (t)
is adapted.

A set E ⊆ [0,T ]×Ω is progressively measurable means that XE is progressively mea-
surable. That is XE restricted to [0, t]×Ω is B ([0, t])×Ft measurable. In other words, E
is progressively measurable if

E ∩ ([0, t]×Ω) ∈B ([0, t])×Ft .

If Ei is progressively measurable, does it follow that E ≡∪∞
i=1Ei is also progressively mea-

surable? Yes.

E ∩ ([0, t]×Ω) = ∪∞
i=1Ei∩ ([0, t]×Ω) ∈B ([0, t])×Ft
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because each set in the union is in B ([0, t])×Ft . If E is progressively measurable, is EC?

EC ∩ ([0, t]×Ω)∪

∈B([0,t])×Ft︷ ︸︸ ︷
(E ∩ ([0, t]×Ω)) =

∈B([0,t])×Ft︷ ︸︸ ︷
[0, t]×Ω

and so EC ∩ ([0, t]×Ω) ∈B ([0, t])×Ft . Thus the progressively measurable sets are a σ

algebra.
Another observation of interest is in the following lemma.

Lemma 62.3.4 Suppose Q is in B ([0,a])×Fr. Then if b≥ a and t ≥ r, then Q is also in
B ([0,b])×Ft .

Proof: Consider a measurable rectangle A×B where A ∈B ([0,a]) and B ∈Fr. Is it
true that A×B∈B ([0,b])×Ft? This reduces to the question whether A∈B ([0,b]). If A is
an interval, it is clear that A∈B ([0,b]). Consider the π system of intervals and let G denote
those Borel sets A ∈B ([0,a]) such that A ∈B ([0,b]). If A ∈ G , then [0,b]\A ∈B ([0,b])
by assumption (the difference of Borel sets is surely Borel). However, this set equals

([0,a]\A)∪ (a,b]

and so
[0,b] = ([0,a]\A)∪ (a,b]∪A

The set on the left is in B ([0,b]) and the sets on the right are disjoint and two of them are
also in B ([0,b]). Therefore, the third, ([0,a]\A) is in B ([0,b]). It is obvious that G is
closed with respect to countable disjoint unions. Therefore, by Lemma 12.12.3, Dynkin’s
lemma, G ⊇ σ (Intervals) = B ([0,a]).

Therefore, such a measurable rectangle A×B where A ∈B ([0,a]) and B ∈Fr is in
B ([0,b])×Ft and in fact it is a measurable rectangle in B ([0,b])×Ft . Now let K
denote all these measurable rectangles A×B where A ∈B ([0,a]) and B ∈Fr. Let G (new
G ) denote those sets Q of B ([0,a])×Fr which are in B ([0,b])×Ft . Then if Q ∈ G ,

Q∪ ([0,a]×Ω\Q)∪ (a,b]×Ω = [a,b]×Ω

Then the sets are disjoint and all but [0,a]×Ω\Q are in B ([0,b])×Ft . Therefore, this one
is also in B ([0,b])×Ft . If Qi ∈ G and the Qi are disjoint, then ∪iQi is also in B ([0,b])×
Ft and so G is closed with respect to countable disjoint unions and complements. Hence
G ⊇ σ (K ) = B ([0,a])×Fr which shows

B ([0,a])×Fr ⊆B ([0,b])×Ft ■

A significant observation is the following which states that the integral of a progres-
sively measurable function is progressively measurable.

Proposition 62.3.5 Suppose X : [0,T ]×Ω→E where E is a separable Banach space. Also
suppose that X (·,ω) ∈ L1 ([0,T ] ,E) for each ω . Here Ft is a filtration and with respect to
this filtration, X is progressively measurable. Then

(t,ω)→
∫ t

0
X (s,ω)ds

is also progressively measurable.
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Proof: Suppose Q ∈ [0,T ]×Ω is progressively measurable. This means for each t,

Q∩ [0, t]×Ω ∈B ([0, t])×Ft

What about
(s,ω) ∈ [0, t]×Ω, (s,ω)→

∫ s

0
XQdr?

Is that function on the right B ([0, t])×Ft measurable? We know that Q∩ [0,s]×Ω is
B ([0,s])×Fs measurable and hence B ([0, t])×Ft measurable. When you integrate a
product measurable function, you do get one which is product measurable. Therefore, this
function must be B ([0, t])×Ft measurable. This shows that (t,ω)→

∫ t
0 XQ (s,ω)ds is

progressively measurable. Here is a claim which was just used.
Claim: If Q is B ([0, t])×Ft measurable, then (s,ω)→

∫ s
0 XQdr is also B ([0, t])×Ft

measurable.
Proof of claim: First consider A×B where A ∈B ([0, t]) and B ∈Ft . Then∫ s

0
XA×Bdr =

∫ s

0
XAXBdr = XB (ω)

∫ s

0
XA (s)dr

This is clearly B ([0, t])×Ft measurable. It is the product of a continuous function of s
with the indicator function of a set in Ft . Now let

G ≡
{

Q ∈B ([0, t])×Ft : (s,ω)→
∫ s

0
XQ (r,ω)dr is B ([0, t])×Ft measurable

}
Then it was just shown that G contains the measurable rectangles. It is also clear that
G is closed with respect to countable disjoint unions and complements. Therefore, G ⊇
σ (Kt) = B ([0, t])×Ft where Kt denotes the measurable rectangles A×B where B ∈Ft
and A ∈B ([0, t]) = B ([0,T ])∩ [0, t]. This proves the claim.

Thus if Q is progressively measurable, it follows that (s,ω)→
∫ s

0 XQ (r,ω)dr≡ f (s,ω)
is progressively measurable because for (s,ω) ∈ [0, t]×Ω,(s,ω)→ f (s,ω) is B ([0, t])×
Ft measurable. This is what was to be proved in this special case.

Now consider the conclusion of the proposition. By considering the positive and neg-
ative parts of φ (X) for φ ∈ E ′, and using Pettis theorem, it suffices to consider the case
where X ≥ 0. Then there exists an increasing sequence of progressively measurable simple
functions {Xn} converging pointwise to X . From what was just shown,

(t,ω)→
∫ t

0
Xnds

is progressively measurable. Hence, by the monotone convergence theorem, (t,ω) →∫ t
0 Xds is also progressively measurable. ■

What else can you do to something which is progressively measurable and obtain some-
thing which is progressively measurable? It turns out that shifts in time can preserve pro-
gressive measurability. Let Ft be a filtration on [0,T ] and extend the filtration to be equal
to F0 and FT for t < 0 and t > T , respectively. Recall the following definition of progres-
sively measurable sets.
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Definition 62.3.6 Denote by P those sets Q in FT ×B ([0,T ]) such that for t ∈ [−∞,T ]

Ω× (−∞, t]∩Q ∈Ft ×B ((−∞, t]) .

Lemma 62.3.7 Define Q+h as

Q+h≡ {(t +h,ω) : (t,ω) ∈ Q} .

Then if Q ∈P, it follows that Q+h ∈P .

Proof: This is most easily seen through the use of the following diagram. In this dia-
gram, Q is in P so it is progressively measurable.

QS Q+h

tt−h
By definition, S in the picture is B ((−∞, t−h])×Ft−h measurable. Hence S+ h ≡

Q+ h∩Ω× (−∞, t] is B ((−∞, t])×Ft−h measurable. To see this, note that if B×A ∈
B ((−∞, t−h])×Ft−h, then translating it by h gives a set in B ((−∞, t])×Ft−h. Then if
G consists of sets S in B ((−∞, t−h])×Ft−h for which S+ h is in B ((−∞, t])×Ft−h,
G is closed with respect to countable disjoint unions and complements. Thus, G equals
B ((−∞, t−h])×Ft−h. In particular, it contains the set S just described. ■

Now for h > 0,

τh f (t)≡
{

f (t−h) if t ≥ h,
0 if t < h. .

Lemma 62.3.8 Let Q ∈P. Then τhXQ is P measurable.

Proof: If τhXQ (t,ω) = 1, then you need to have (t−h,ω) ∈ Q and so (t,ω) ∈ Q+h.
Thus

τhXQ = XQ+h,

which is P measurable since Q ∈P . In general,

τhXQ = X[h,T ]×ΩXQ+h,

which is P measurable. ■
This lemma implies the following.

Lemma 62.3.9 Let f (t,ω) have values in a separable Banach space and suppose f is P
measurable. Then τh f is P measurable.

Proof: Taking values in a separable Banach space and being P measurable, f is the
pointwise limit of P measurable simple functions. If sn is one of these, then from the above
lemmas, τhsn is P measurable. Then, letting n→ ∞, it follows that τh f is P measurable.
■

The following is similar to Proposition 62.1.2. It shows that under pretty weak condi-
tions, an adapted process has a progressively measurable adapted version.



62.3. FILTRATIONS 2063

Proposition 62.3.10 Let X be a stochastically continuous adapted process for a normal
filtration defined on a closed interval, I ≡ [0,T ]. Then X has a progressively measurable
adapted version.

Proof: By Lemma 62.1.1 X is uniformly stochastically continuous and so there exists
a sequence of positive numbers, {ρn} such that if |s− t|< ρn, then

P
([
||X (t)−X (s)|| ≥ 1

2n

])
≤ 1

2n . (62.3.16)

Then let
{

tn
0 , t

n
1 , · · · , tn

mn

}
be a partition of [0,T ] in which

∣∣tn
i − tn

i−1

∣∣< ρn. Now define Xn as
follows:

Xn (t)(ω) ≡
mn

∑
i=1

X
(
tn
i−1
)
(ω)X[tn

i−1,t
n
i )
(t)

Xn (T ) ≡ X (T ) .

Then (s,ω)→ Xn (s,ω) for (s,ω) ∈ [0, t]×Ω is obviously B([0, t])×Ft measurable. Con-
sider the set, A on which {Xn (t,ω)} is a Cauchy sequence. This set is of the form

A = ∩∞
n=1∪∞

m=1∩p,q≥m

[∣∣∣∣Xp−Xq
∣∣∣∣< 1

n

]
and so it is a B(I)×F measurable set and A∩ [0, t]×Ω is B([0, t])×Ft measurable for
each t ≤ T because each Xq in the above has the property that its restriction to [0, t]×Ω is
B([0, t])×Ft measurable. Now define

Y (t,ω)≡
{

limn→∞ Xn (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A

I claim that for each t,Y (t,ω) = X (t,ω) for a.e. ω. To see this, consider 62.3.16. From
the construction of Xn, it follows that for each t,

P
([
||Xn (t)−X (t)|| ≥ 1

2n

])
≤ 1

2n

Also, for a fixed t, if Xn (t,ω) fails to converge to X (t,ω) , then ω must be in infinitely
many of the sets,

Bn ≡
[
||Xn (t)−X (t)|| ≥ 1

2n

]
which is a set of measure zero by the Borel Cantelli lemma. Recall why this is so.

P(∩∞
k=1∪∞

n=k Bn)≤
∞

∑
n=k

P(Bn)<
1

2k−1

Therefore, for each t,(t,ω)∈A for a.e. ω. Hence X (t) =Y (t) a.e. and so Y is a measurable
version of X . Y is adapted because the filtration is normal and hence Ft contains all sets of
measure zero. Therefore, Y (t) differs from X (t) on a set which is Ft measurable. ■

There is a more specialized situation in which the measurability of a stochastic process
automatically implies it is adapted. Furthermore, this can be defined easily in terms of a π

system of sets.
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Definition 62.3.11 Let Ft be a filtration on (Ω,F ,P) and denote by P∞ the smallest σ

algebra of sets of [0,∞)×Ω containing the sets

(s, t]×F,F ∈Fs {0}×F, F ∈F0.

This is called the predictable σ algebra. and the sets in this σ algebra are called the
predictable sets. Denote by PT the intersection of P∞ to [0,T ]×Ω. A stochastic process
X which maps either [0,T ]×Ω or [0,∞)×Ω to E, a separable real Banach space is called
predictable if for every Borel set A ∈B (E) , it follows X−1 (A) ∈PT or P∞.

This is a lot like product measure except one of the σ algebras is changing.

Proposition 62.3.12 Let Ft be a filtration as above and let X be a predictable stochastic
process. Then X is Ft adapted.

Proof: Let s0 > 0 and define

Gs0 ≡
{

S ∈P∞ : Ss0 ∈Fs0

}
where

Ss0 ≡ {ω ∈Ω : (s0,ω) ∈ S} .

Ω
Ss0

s0

It is clear Gs0 is a σ algebra. The next step is to show Gs0 contains the sets

(s, t]×F,F ∈Fs (62.3.17)

and
{0}×F, F ∈F0. (62.3.18)

It is clear {0}×F is contained in Gs0 because ({0}×F)s0
= /0 ∈Fs0 . Similarly, if s ≥ s0

or if s, t < s0 then ((s, t]×F)s0
= /0 ∈Fs0 . The only case left is for s < s0 and t ≥ s0. In

this case, letting As ∈Fs, ((s, t]×As)s0
= As ∈Fs ⊆Fs0 . Therefore, Gs0 contains all the

sets of the form given in 62.3.17 and 62.3.18 and so since P∞ is the smallest σ algebra
containing these sets, it follows P∞ = Gs0 . The case where s0 = 0 is entirely similar but
shorter.

Therefore, if X is predictable, letting A ∈B (E) , X−1 (A) ∈P∞ or PT and so(
X−1 (A)

)
s ≡ {ω ∈Ω : X (s,ω) ∈ A}= X (s)−1 (A) ∈Fs

showing X (t) is Ft adapted. This proves the proposition.
Another way to see this is to recall the progressively measurable functions are adapted.

Then show the predictable sets are progressively measurable.
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Proposition 62.3.13 Let P denote the predictable σ algebra and let R denote the pro-
gressively measurable σ algebra. Then P ⊆R.

Proof: Let G denote those sets of P such that they are also in R. Then G clearly
contains the π system of sets {0}×A,A ∈F0, and (s, t]×A,A ∈Fs. Furthermore, G is
closed with respect to countable disjoint unions and complements. It follows G contains
the σ algebra generated by this π systems which is P . This proves the proposition.

Proposition 62.3.14 Let X (t) be a stochastic process having values in E a complete metric
space and let it be Ft adapted and left continuous. Then it is predictable. Also, if X (t) is
stochastically continuous and adapted on [0,T ] , then it has a predictable version.

Proof:Define Im,k ≡ ((k−1)2−mT,k2−mT ] if k≥ 1 and Im,0 = {0} if k = 1. Then define

Xm (t) ≡
2m

∑
k=1

X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ] (t)

+X (0)X[0,0] (t)

Here the sum means that Xm (t) has value X (T (k−1)2−m) on the interval

((k−1)2−mT,k2−mT ].

Thus Xm is predictable because each term in the sum is. Thus

X−1
m (U) = ∪2m

k=1
(
X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ]

)−1
(U)

= ∪2m

k=1((k−1)2−mT,k2−mT ]×
(
X
(
T (k−1)2−m))−1

(U) ,

a finite union of predictable sets. Since X is left continuous,

X (t,ω) = lim
m→∞

Xm (t,ω)

and so X is predictable.
Next consider the other claim. Since X is stochastically continuous on [0,T ] , it is

uniformly stochastically continuous on this interval by Lemma 62.1.1. Therefore, there
exists a sequence of partitions of [0,T ] , the mth being

0 = tm,0 < tm,1 < · · ·< tm,n(m) = T

such that for Xm defined as above, then for each t

P
([

d (Xm (t) ,X (t))≥ 2−m])≤ 2−m (62.3.19)

Then as above, Xm is predictable. Let A denote those points of PT at which Xm (t,ω)
converges. Thus A is a predictable set because it is just the set where Xm (t,ω) is a Cauchy
sequence. Now define the predictable function Y

Y (t,ω)≡
{

limm→∞ Xm (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A
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From 62.3.19 it follows from the Borel Cantelli lemma that for fixed t, the set of ω which
are in infinitely many of the sets,[

d (Xm (t) ,X (t))≥ 2−m]
has measure zero. Therefore, for each t, there exists a set of measure zero, N (t) such that
for ω /∈ N (t) and all m large enough

d (Xm (t,ω) ,X (t,ω))< 2−m

Hence for ω /∈ N (t) , (t,ω) ∈ A and so Xm (t,ω)→ Y (t,ω) which shows

d (Y (t,ω) ,X (t,ω)) = 0 if ω /∈ N (t) .

The predictable version of X (t) is Y (t). ■
Here is a summary of what has been shown above.

adapted and left continuous
⇓

predictable
⇓

progressively measurable
⇓

adapted

Also

stochastically continuous and adapted =⇒ progressively measurable version

62.4 Martingales
Definition 62.4.1 Let X be a stochastic process defined on an interval, I with values in a
separable Banach space, E. It is called integrable if E (||X (t)||)< ∞ for each t ∈ I. Also let
Ft be a filtration. An integrable and adapted stochastic process X is called a martingale if
for s≤ t

E (X (t) |Fs) = X (s) P a.e. ω.

Recalling the definition of conditional expectation this says that for F ∈Fs∫
F

X (t)dP =
∫

F
E (X (t) |Fs)dP =

∫
F

X (s)dP

for all F ∈ Fs. A real valued stochastic process is called a submartingale if whenever
s≤ t,

E (X (t) |Fs)≥ X (s) a.e.

and a supermartingale if
E (X (t) |Fs)≤ X (s) a.e.
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Example 62.4.2 Let Ft be a filtration and let Z be in L1 (Ω,FT ,P) . Then let X (t) =
E (Z|Ft).

This works because for s < t, E (X (t) |Fs) = E (E (Z|Ft) |Fs) = E (Z|Fs) = X (s).

Proposition 62.4.3 The following statements hold for a stochastic process defined on the
product [0,T ]×Ω having values in a real separable Banach space, E.

1. If X (t) is a martingale then ||X (t)|| , t ∈ [0,T ] is a submartingale.

2. If g is an increasing convex function from [0,∞) to [0,∞) and E (g(||X (t)||))< ∞ for
all t ∈ [0,T ] then then g(||X (t)||) , t ∈ [0,T ] is a submartingale.

Proof:Let s≤ t

||X (s)|| = ||E (X (s)−X (t) |Fs)+E (X (t) |Fs)||

≤
=0 a.e.︷ ︸︸ ︷

||E (X (s)−X (t) |Fs)||+ ||E (X (t) |Fs)||
≤ ||E (X (t) |Fs)|| .

Now by Theorem 61.1.1 on Page 1983

||E (X (t) |Fs)|| ≤ E (||X (t)|| |Fs) .

Thus ||X (s)|| ≤ E (||X (t)|| |Fs) which shows ||X || is a submartingale as claimed.
Consider the second claim. Recall Jensen’s inequality for submartingales, Theorem

60.1.6 on Page 1946. From the first part

||X (s)|| ≤ E (||X (t)|| |Fs) a.e.

and so from Jensen’s inequality,

g(||X (s)||)≤ g(E (||X (t)|| |Fs))≤ E (g(||X (t)||) |Fs) a.e.,

showing that g(||X (t)||) is also a submartingale. This proves the proposition.

62.5 Some Maximal Estimates
Martingales and submartingales have some very interesting maximal estimates. I will
present some of these here. The proofs are fairly general and do not require the filtration to
be normal.

Lemma 62.5.1 Let {Ft} be a filtration and let {X (t)} be a nonnegative valued submartin-
gale for t ∈ [S,T ] . Then for λ > 0 and any p ≥ 1, if At is a Ft measurable subset of
[X (t)≥ λ ] , then

P(At)≤
1

λ
p

∫
At

X (T )p dP.
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Proof: From Jensen’s inequality,

λ
pP(At) ≤

∫
At

X (t)p dP≤
∫

At

E (X (T ) |Ft)
p dP

≤
∫

At

E (X (T )p |Ft)dP =
∫

At

X (T )p dP

and this proves the lemma.
The following theorem is the main result.

Theorem 62.5.2 Let {Ft} be a filtration and let {X (t)} be a nonnegative valued right
continuous1 submartingale for t ∈ [S,T ] . Then for all λ > 0 and p≥ 1, for

X∗ ≡ sup
t∈[S,T ]

X (t) ,

P([X∗ ≥ λ ])≤ 1
λ

p

∫
Ω

X[X∗≥λ ]X (T )p dP

In the case that p > 1, it is also true that

E ((X∗)p)≤
(

p
p−1

)
E (X (T )p)

1/p
(E ((X∗)p))

1/p′

Also there are no measurability issues related to the above supt∈[S,T ] X (t)≡ X∗

Proof: Let S≤ tm
0 < tm

1 < · · ·< tm
Nm

= T where tm
j+1− tm

j = (T −S)2−m. First consider
m = 1.

At1
0
≡
{

ω ∈Ω : X
(
t1
0
)
(ω)≥ λ

}
, At1

1
≡
{

ω ∈Ω : X
(
t1
1
)
(ω)≥ λ

}
\At1

0

At1
2
≡
{

ω ∈Ω : X
(
t1
2
)
(ω)≥ λ

}
\
(

At1
0
∪At1

0

)
.

Do this type of construction for m = 2,3,4, · · · yielding disjoint sets,
{

Atm
j

}2m

j=0
whose

union equals
∪t∈Dm [X (t)≥ λ ]

where Dm =
{

tm
j

}2m

j=0
. Thus Dm ⊆Dm+1. Then also, D≡∪∞

m=1Dm is dense and countable.

From Lemma 62.5.1,

P(∪t∈Dm [X (t)≥ λ ]) = P

(
sup

t∈Dm

X (t)≥ λ

)
=

2m

∑
j=0

P
(

Atm
j

)
≤ 1

λ
p

2m

∑
j=0

∫
Atmj

X[supt∈Dm X(t)≥λ ]X (T )p dP

≤ 1
λ

p

∫
Ω

X[supt∈D X(t)≥λ ]X (T )p dP.

1t→M (t)(ω) is continuous from the right for a.e. ω .
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Let m→ ∞ in the above to obtain

P(∪t∈D [X (t)≥ λ ]) = P
([

sup
t∈D

X (t)≥ λ

])
≤ 1

λ
p

∫
Ω

X[supt∈D X(t)≥λ ]X (T )p dP.

(62.5.20)
From now on, assume that for a.e. ω ∈Ω, t→ X (t)(ω) is right continuous. Then with this
assumption, the following claim holds.

sup
t∈[S,T ]

X (t)≡ X∗ = sup
t∈D

X (t)

which verifies that X∗ is measurable. Then from 62.5.20,

P([X∗ ≥ λ ]) = P
([

sup
t∈D

X (t)≥ λ

])
≤ 1

λ
p

∫
Ω

X[supt∈D X(t)≥λ ]X (T )p dP

=
1

λ
p

∫
Ω

X[X∗≥λ ]X (T )p dP

Now consider the other inequality. Using the distribution function technique and the
above estimate obtained in the first part,

E ((X∗)p) =
∫

∞

0
pα

p−1P([X∗ > α])dα

≤
∫

∞

0
pα

p−1P([X∗ ≥ α])dα

≤
∫

∞

0
pα

p−1 1
α

∫
Ω

X[X∗≥α]X (T )dPdα

= p
∫

Ω

∫ X∗

0
α

p−2dαX (T )dP

=
p

p−1

∫
Ω

(X∗)p−1 X (T )dP

≤ p
p−1

(∫
Ω

(X∗)p
)1/p′(∫

Ω

X (T )p
)1/p

=
p

p−1
E (X (T )p)

1/p E ((X∗)p)
1/p′

. ■

Of course it would be nice to divide both sides by E ((X∗)p)
1/p′ but we don’t know that

this is finite. One can use a stopped submartingale which will have X (t) bounded, divide,
and then let the stopping time increase to ∞. However, this is discussed later.

With Theorem 62.5.2, here is an important maximal estimate for martingales having
values in E, a real separable Banach space.
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Theorem 62.5.3 Let X (t) for t ∈ I = [0,T ] be an E valued right continuous martingale
with respect to a filtration, Ft . Then for p≥ 1,

P
([

sup
t∈I
∥X (t)∥ ≥ λ

])
≤ 1

λ
p E (∥X (T )∥p) . (62.5.21)

If p > 1,

E

((
sup

t∈[S,T ]
∥X (t)∥

)p)
≤
(

p
p−1

)
E (∥X (T )∥p)

1/p E

((
sup

t∈[S,T ]
∥X (t)∥

)p)1/p′

(62.5.22)

Proof: By Proposition 62.4.3 ∥X (t)∥ , t ∈ I is a submartingale and so from Theorem
62.5.2, it follows 62.5.21 and 62.5.22 hold. ■

Definition 62.5.4 Let K be a set of functions of L1 (Ω,F ,P). Then K is called equi inte-
grable if

lim
λ→∞

sup
f∈K

∫
[| f |≥λ ]

| f |dP = 0.

Recall that from Corollary 20.9.6 on Page 640 such an equi integrable set of functions
is weakly sequentially precompact in L1 (Ω,F ,P) in the sense that if { fn}⊆K, there exists
a subsequence,

{
fnk

}
and a function, f ∈ L1 (Ω,F ,P) such that for all g ∈ L1 (Ω,F ,P)′ ,

g
(

fnk

)
→ g( f ) .

62.6 Optional Sampling Theorems
62.6.1 Stopping Times And Their Properties
The optional sampling theorem is very useful in the study of martingales and submartin-
gales as will be shown.

First it is necessary to define the notion of a stopping time.

Definition 62.6.1 Let (Ω,F ,P) be a probability space and let {Fn}∞

n=1 be an increasing
sequence of σ algebras each contained in F , called a discrete filtration. A stopping time
is a measurable function, τ which maps Ω to N,

τ
−1 (A) ∈F for all A ∈P (N) ,

such that for all n ∈ N,
[τ ≤ n] ∈Fn.

Note this is equivalent to saying
[τ = n] ∈Fn

because
[τ = n] = [τ ≤ n]\ [τ ≤ n−1] .
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For τ a stopping time define Fτ as follows.

Fτ ≡ {A ∈F : A∩ [τ ≤ n] ∈Fn for all n ∈ N}

These sets in Fτ are referred to as “prior” to τ .

The most important example of a stopping time is the first hitting time.

Example 62.6.2 The first hitting time of an adapted process X (n) of a Borel set G is a
stopping time. This is defined as

τ ≡min{k : X (k) ∈ G}

To see this, note that

[τ = n] = ∩k<n
[
X (k) ∈ GC]∩ [X (n) ∈ G] ∈Fn.

Proposition 62.6.3 For τ a stopping time, Fτ is a σ algebra and if Y (k) is Fk measurable
for all k,Y (k) having values in a separable Banach space E, then

ω → Y (τ (ω))

is Fτ measurable.

Proof: Let An ∈Fτ . I need to show ∪nAn ∈Fτ . In other words, I need to show that

∪nAn∩ [τ ≤ k] ∈Fk

The left side equals
∪n (An∩ [τ ≤ k])

which is a countable union of sets of Fk and so Fτ is closed with respect to countable
unions. Next suppose A ∈Fτ .(

AC ∩ [τ ≤ k]
)
∪ (A∩ [τ ≤ k]) = Ω∩ [τ ≤ k]

and Ω∩ [τ ≤ k] ∈Fk. Therefore, so is AC ∩ [τ ≤ k] .
It remains to verify the last claim. Let B be an open set in E. Is

[Y (τ) ∈ B] ∈Fτ ?

Is
[Y (τ) ∈ B]∩ [τ ≤ k] ∈Fk for all k?

This equals

∪k
i=1 [Y (τ) ∈ B]∩ [τ = i] = ∪k

i=1 [Y (i) ∈ B]∩ [τ = i] ∈Fk

Therefore, Y (τ) must be Fτ measurable. ■
The following lemma contains the fundamental properties of stopping times for discrete

filtrations.
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Lemma 62.6.4 In the situation of Definition 62.6.1, let σ ,τ be two stopping times. Then

1. τ is Fτ measurable

2. Fσ ∩ [σ ≤ τ]⊆Fσ∧τ = Fσ ∩Fτ

3. Fτ =Fk on [τ = k] for all k. That is if A∈Fk, then A∩ [τ = k]∈Fτ and if A∈Fτ ,
then A∩ [τ = k] ∈Fk. In other words, the two σ algebras

[τ = k]∩Fτ , [τ = k]∩Fk

are equal. Letting G denote this σ algebra, if g is either Fτ or Fk measurable then
its restriction to [τ = k] is G measurable. Also if A ∈Fτ , and Y ∈ L1 (Ω;E) ,∫

A∩[τ=k]
E (Y |Fτ)dP =

∫
A∩[τ=k]

E (Y |Fk)dP

and
E (Y |Fτ) = E (Y |Fk) a.e.

on [τ = k].

Proof: Consider the first claim. [τ ≤ l]∩ [τ ≤ m] = [τ ≤ ⌊l⌋∧m] ∈F[l]∧m ⊆Fm and
so τ is Fτ measurable. Here ⌊l⌋ is the greatest integer less than or equal to l. Next note
that σ ∧ τ is a stopping time because

[σ ∧ τ ≤ k] = [σ ≤ k]∪ [τ ≤ k] ∈Fk

Next consider the second claim. Let A ∈Fσ . I want to show

A∩ [σ ≤ τ] ∈Fτ∧σ (62.6.23)

In other words, I want to show

A∩ [σ ≤ τ]∩ [τ ∧σ ≤ k] ∈Fk (62.6.24)

for all k. However, the set on the left equals

A∩ [σ ≤ τ]∩ [σ ≤ k]

= ∪k
j=1A∩ [σ = j]∩ [τ ≥ j]∩ [σ ≤ k]

= ∪k
j=1A∩ [σ = j]∩ [τ ≤ j−1]C ∩ [σ ≤ k] ∈Fk

Now let A ∈Fσ∧τ . I want to show it is in both Fτ and Fσ . To show it is in Fτ I need
to show that

A∩ [τ ≤ k] ∈Fk

for all k. However,
A∩ [τ = k] = ∪∞

i=1A∩ [σ = i]∩ [τ = k]
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= ∪k−1
i=1

∈Fi︷ ︸︸ ︷
A∩ [σ ∧ τ = i]∩

∈Fk︷ ︸︸ ︷
[τ = k]∪∪∞

i=kA∩ [σ = i]∩ [τ = k]

= ∪k−1
i=1

∈Fi︷ ︸︸ ︷
A∩ [σ ∧ τ = i]∩

∈Fk︷ ︸︸ ︷
[τ = k]∪

∈Fk︷ ︸︸ ︷
A∩ [σ ∧ τ = k]∩

∈Fk︷ ︸︸ ︷
[τ = k]

and so this is in Fk. Thus A∩ [τ ≤ k] ∈ Fk being the finite union of sets which are.
Similarly A∩ [σ ≤ k] ∈Fk for all k and so A ∈Fτ ∩Fσ .

Next let A ∈Fτ ∩Fσ . Then is it in Fσ∧τ ? Is A∩ [σ ∧ τ ≤ k] ∈Fk? Of course this is
so because

A∩ [σ ∧ τ ≤ k] = A∩ ([σ ≤ k]∪ [τ ≤ k])

= (A∩ [σ ≤ k])∪ (A∩ [τ ≤ k]) ∈Fk

since both σ ,τ are stopping times. This proves part 2.).
Now consider part 3.). Note that [τ = k] is in both Fk and Fτ . First consider the claim

it is in Fτ .
[τ = k]∩ [τ ≤ l] = /0 if l < k

which is in Fl . If l ≥ k, it reduces to [τ = k] ∈Fk ⊆Fl so it is in Fτ . [τ = k] is obviously
in Fk.

I need to show
Fτ ∩ [τ = k] = Fk ∩ [τ = k]

where H ∩ [τ = k] means all sets of the form A∩ [τ = k] where A ∈H . Let A ∈Fτ . Then

A∩ [τ = k] = (A∩ [τ ≤ k])\ (A∩ [τ ≤ k−1]) ∈Fk

Therefore, there exists B ∈Fk such that B = A∩ [τ = k] and so

B∩ [τ = k] = A∩ [τ = k]

which shows Fτ ∩ [τ = k]⊆Fk ∩ [τ = k]. Now let A ∈Fk so that

A∩ [τ = k] ∈Fk ∩ [τ = k]

Then
A∩ [τ = k]∩ [τ ≤ j] ∈F j

because in case j < k, the set on the left is /0 and if j ≥ k it reduces to A∩ [τ = k] and both
A and [τ = k] are in Fk ⊆F j. Thus A∩ [τ = k] = B ∈Fτ and so

A∩ [τ = k] = B∩ [τ = k] ∈Fτ ∩ [τ = k] .

Therefore, the two σ algebras of subsets of [τ = k] ,

Fτ ∩ [τ = k] ,Fk ∩ [τ = k]

are equal. Thus for A in either Fτ or Fk, A∩ [τ = k] is a set of both Fτ and Fk because if
A ∈Fk, then from the above, there exists B ∈Fτ such that

A∩ [τ = k] = B∩

∈Fτ∩Fk︷ ︸︸ ︷
[τ = k] ∈Fτ
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with similar reasoning holding if A∈Fτ . In other words, if g is Fτ or Fk measurable, then
the restriction of g to [τ = k] is measurable with respect to Fτ ∩ [τ = k] and Fk ∩ [τ = k] .
Let Y be an arbitrary random variable in L1 (Ω,F ) . It follows, since A∩ [τ = k] is in both
Fτ and Fk, ∫

A∩[τ=k]
E (Y |Fτ)dP ≡

∫
A∩[τ=k]

Y dP

≡
∫

A∩[τ=k]
E (Y |Fk)dP

Since this holds for an arbitrary set in Fτ ∩ [τ = k] = Fk ∩ [τ = k] , it follows

E (Y |Fτ) = E (Y |Fk) a.e. on [τ = k] ■

The assertion that
E (Y |Fτ) = E (Y |Fk) a.e.

on [τ = k] and that a function g which is Fτ or Fk measurable when restricted to [τ = k]
is G measurable for

G =[τ = k]∩Fτ = [τ = k]∩Fk

is the main result in the above lemma and this fact leads to the amazing Doob optional
sampling theorem below. Also note that if Y (k) is any process defined on the positive
integers k, then by definition, Y (k)(ω) = Y (τ (ω))(ω) on the set [τ = k] because τ is
constant on this set.

62.6.2 Doob Optional Sampling Theorem
With this lemma, here is a major theorem, the optional sampling theorem of Doob. This
one is for martingales having values in a Banach space. To begin with, consider the case of
a martingale defined on a countable set.

Theorem 62.6.5 Let {M (k)} be a martingale having values in E a separable real Banach
space with respect to the increasing sequence of σ algebras, {Fk} and let σ ,τ be two
stopping times such that τ is bounded. Then M (τ) defined as

ω →M (τ (ω))

is integrable and
M (σ ∧ τ) = E (M (τ) |Fσ ) .

Proof: By Proposition 62.6.3 M (τ) is Fτ measurable.
Next note that since τ is bounded by some l,∫

Ω

||M (τ (ω))||dP≤
l

∑
i=1

∫
[τ=i]
||M (i)||dP < ∞.

This proves the first assertion and makes possible the consideration of conditional expecta-
tion.
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Let l ≥ τ as described above. Then for k ≤ l, by Lemma 62.6.4,

Fk ∩ [τ = k] = Fτ ∩ [τ = k]≡ G

implying that if g is either Fk measurable or Fτ measurable, then its restriction to [τ = k]
is G measurable and so if A ∈Fk ∩ [τ = k] = Fτ ∩ [τ = k] ,∫

A
E (M (l) |Fτ)dP ≡

∫
A

M (l)dP

=
∫

A
E (M (l) |Fk)dP

=
∫

A
M (k)dP

=
∫

A
M (τ)dP (on A,τ = k)

Therefore, since A was arbitrary,

E (M (l) |Fτ) = M (τ) a.e.

on [τ = k] for every k ≤ l. It follows

E (M (l) |Fτ) = M (τ) a.e.

since it is true on each [τ = k] for all k ≤ l.
Now consider E (M (τ) |Fσ ) on the set [σ = i]∩ [τ = j]. By Lemma 62.6.4, on this set,

E (M (τ) |Fσ ) = E (M (τ) |Fi) = E (E (M (l) |Fτ) |Fi) = E (E (M (l) |F j) |Fi)

If j ≤ i, this reduces to

E (M (l) |F j) = M ( j) = M (σ ∧ τ) .

If j > i, this reduces to
E (M (l) |Fi) = M (i) = M (σ ∧ τ)

and since this exhausts all possibilities for values of σ and τ, it follows

E (M (τ) |Fσ ) = M (σ ∧ τ) a.e. ■

You can also give a version of the above to submartingales. This requires the following
very interesting decomposition of a submartingale into the sum of an increasing stochastic
process and a martingale.

Theorem 62.6.6 Let {Xn} be a submartingale. Then there exists a unique stochastic pro-
cess, {An} and martingale, {Mn} such that

1. An (ω)≤ An+1 (ω) , A1 (ω) = 0,

2. An is Fn−1 adapted for all n≥ 1 where F0 ≡F1.
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and also Xn = Mn +An.

Proof: Let A1 ≡ 0 and define

An ≡
n

∑
k=2

E (Xk−Xk−1|Fk−1) .

It follows An is Fn−1 measurable. Since {Xk} is a submartingale, An is increasing because

An+1−An = E (Xn+1−Xn|Fn)≥ 0 (62.6.25)

It is a submartingale because

E (An|Fn−1) = E

(
n

∑
k=2

E (Xk−Xk−1|Fk−1) |Fn−1

)

=
n

∑
k=2

E (Xk−Xk−1|Fk−1)≡ An ≥ An−1

Now let Mn be defined by
Xn = Mn +An.

Then from 62.6.25,

E (Mn+1|Fn) = E (Xn+1|Fn)−E (An+1|Fn)

= E (Xn+1|Fn)−E (An+1−An|Fn)−An

= E (Xn+1|Fn)−E (E (Xn+1−Xn|Fn) |Fn)−An

= E (Xn+1|Fn)−E (Xn+1−Xn|Fn)−An

= E (Xn|Fn)−An

= Xn−An ≡Mn

This proves the existence part.
It remains to verify uniqueness. Suppose then that

Xn = Mn +An = M′n +A′n

where {An} and {A′n} both satisfy the conditions of the theorem and {Mn} and {M′n} are
both martingales. Then

Mn−M′n = A′n−An

and so, since A′n−An is Fn−1 measurable and {Mn−M′n} is a martingale,

Mn−1−M′n−1 = E
(
Mn−M′n|Fn−1

)
= E

(
A′n−An|Fn−1

)
= A′n−An = Mn−M′n.

Continuing this way shows Mn−M′n is a constant. However, since A′1−A1 = 0 = M1−M′1,
it follows Mn = M′n and this proves uniqueness. ■

Now here is a version of the optional sampling theorem for submartingales.
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Theorem 62.6.7 Let {X (k)} be a real valued submartingale with respect to the increasing
sequence of σ algebras, {Fk} and let σ ≤ τ be two stopping times such that τ is bounded.
Then M (τ) defined as

ω → X (τ (ω))

is integrable and
X (σ)≤ E (X (τ) |Fσ ) .

Without assuming σ ≤ τ, one can write

X (σ ∧ τ)≤ E (X (τ) |Fσ )

Proof: That ω→ X (τ (ω)) is integrable follows right away as in the optional sampling
theorem for martingales. You just consider the finitely many values of τ .

Use Theorem 62.6.6 above to write

X (n) = M (n)+A(n)

where M is a martingale and A is increasing with A(n) being Fn−1 measurable and A(0) =
0 as discussed in Theorem 62.6.6. Then

E (X (τ) |Fτ) = E (M (τ)+A(τ) |Fσ )

Now since A is increasing, you can use the optional sampling theorem for martingales,
Theorem 62.6.5 to conclude that, since Fσ∧τ ⊆Fσ and A(σ ∧ τ) is Fσ∧τ measurable,

≥ E (M (τ)+A(σ ∧ τ) |Fσ ) = E (M (τ) |Fσ )+A(σ ∧ τ)

= M (σ ∧ τ)+A(σ ∧ τ) = X (σ ∧ τ) .■

In summary, the main results for stopping times for discrete filtrations are the following
definitions and theorems.

[τ ≤ m] ∈Fm

A ∈Fτ means A∩ [τ ≤ m] ∈Fm for any m

X adapted implies X (τ) is Fτ measurable

Fσ∧τ = Fσ ∩Fτ

[τ = k]∩Fk = [τ = k]∩Fτ

This last theorem implies the following amazing result. From these fundamental properties,
we obtain the optional sampling theorem for martingales and submartingales.

E (Y |Fτ) = E (Y |Fk) a.e. on [τ = k]
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62.7 Doob Optional Sampling Continuous Case
62.7.1 Stopping Times
Let X (t) be a stochastic process adapted to a filtration {Ft} for t ∈ [0,T ]. We will assume
two things. The stochastic process is right continuous and the filtration is normal.

Definition 62.7.1 A normal filtration is one which satisfies the following :

1. F0 contains all A ∈F such that P(A) = 0. Here F is the σ algebra which contains
all Ft .

2. Ft = Ft+ for all t ∈ I where Ft+ ≡ ∩s>tFs.

For an F measurable [0,∞) valued function τ to be a stopping time, we want to have
the stopped process Xτ defined by Xτ (t)(ω)≡ X (t ∧ τ (ω))(ω) to be adapted whenever X
is right continuous and adapted. Thus a stopping time is a measurable function which can
be used to stop the process while retaining the property of being adapted. We want to find
a simple criterion which will ensure that this happens.

Let X (t) be adapted. Let O be an open set in some metric space where X has its values.
This could probably be generalized. Then we need to have

Xτ (t)−1 (O) ∈Ft

Thus we need to have

[τ ≤ t]∩
[
X (τ)−1 (O)

]
∪ [τ > t]∩

[
X (t)−1 (O)

]
∈Ft

How does this happen? Consider τk (ω)≡∑
∞
n=0 X

τ−1((n2−k,(n+1)2−k]) (ω)(n+1)2−k. Thus
for each ω,τk (ω) ↓ τ (ω). Since X is right continuous for each ω, it follows that, since O
is open,

[τ ≤ t]∩
[
X (τ)−1 (O)

]
= [τ ≤ t]∩

(
∪m∩k≥m

[
X (τk)

−1 (O)
])

= ∪m∩k≥m∪∞
n=0τ

−1
(
(n2−k,(n+1)2−k ∧ t]

)
∩
[

X
(
(n+1)2−k

)−1
(O)

]
the last union being a disjoint union. Now

τ
−1
(
(n2−k,(n+1)2−k ∧ t]

)
∩
[

X
(
(n+1)2−k

)−1
(O)

]
is a set of F(n+1)2−k intersected with

[
τ ∈ (n2−k,(n+1)2−k]

]
∩ [τ ∈ (0, t]] . If we assume

[τ ≤ t] ∈Ft , for all t, then this shows that the above expression is a set of Ft+2−k . Since

this is true for each k, and the filtration is normal, this implies [τ ≤ t]∩
[
X (τ)−1 (O)

]
∈Ft .

Also with this assumption, [τ > t] = [τ ≤ t]C ∈Ft and so we get Xτ (t)−1 (O) ∈Ft . This
is why we define stopping times this way. It is so that when you have a right continuous
adapted process, then the stopped process is also adapted.
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Definition 62.7.2 τ an F measurable function is a stopping time if [τ ≤ t] ∈Ft .

What follows will be more discussion of this simple idea of preserving the process of
being adapted when the process is stopped.

Then the above discussion shows the following proposition.

Proposition 62.7.3 Let {Ft} be a normal filtration and let X (t) be a right continuous
process adapted to {Ft} . Then if τ is a stopping time, it follows that the stopped process
Xτ defined by Xτ (t)≡ X (τ ∧ t) is also adapted.

Definition 62.7.4 Let (Ω,F ,P) be a probability space and let Ft be a filtration. A mea-
surable function, τ : Ω→ [0,∞] is called a stopping time if

[τ ≤ t] ∈Ft

for all t ≥ 0. Associated with a stopping time is the σ algebra, Fτ defined by

Fτ ≡ {A ∈F : A∩ [τ ≤ t] ∈Ft for all t} .

These sets are also called those “prior” to τ.

Note that Fτ is obviously closed with respect to countable unions. If A ∈Fτ , then

AC ∩ [τ ≤ t] = [τ ≤ t]\ (A∩ [τ ≤ t]) ∈Ft

Thus Fτ is a σ algebra.

Proposition 62.7.5 Let B be an open subset of topological space E and let X (t) be a right
continuous Ft adapted stochastic process such that Ft is normal. Then define

τ (ω)≡ inf{t > 0 : X (t)(ω) ∈ B} .

This is called the first hitting time. Then τ is a stopping time. If X (t) is continuous and
adapted to Ft , a normal filtration, then if H is a nonempty closed set such that H =∩∞

n=1Bn
for Bn open, Bn ⊇ Bn+1,

τ (ω)≡ inf{t > 0 : X (t)(ω) ∈ H}

is also a stopping time.

Proof: Consider the first claim. ω ∈ [τ = a] implies that for each n ∈ N, there exists
t ∈
[
a,a+ 1

n

]
such that X (t) ∈ B. Also for t < a, you would need X (t) /∈ B. By right

continuity, this is the same as saying that X (d) /∈ B for all rational d < a. (If t < a, you
could let dn ↓ t where X (dn) ∈ BC, a closed set. Then it follows that X (t) is also in the
closed set BC.) Thus, aside from a set of measure zero, for each m ∈ N,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ]
[X (t) ∈ B]

)
∩
(
∩t∈[0,a)

[
X (t) ∈ BC])
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Since X (t) is right continuous, this is the same as(
∩∞

n=m∪d∈Q∩[a,a+ 1
n ]
[X (d) ∈ B]

)
∩
(
∩d∈Q∩[0,a)

[
X (d) ∈ BC]) ∈Fa+ 1

m

Thus, since the filtration is normal,

[τ = a] ∈ ∩∞
m=1Fa+ 1

m
= Fa+ = Fa

Now what of [τ < a]? This is equivalent to saying that X (t) ∈ B for some t < a. Since X is
right continuous, this is the same as saying that X (t) ∈ B for some t ∈Q, t < a. Thus

[τ < a] = ∪d∈Q,d<a [X (d) ∈ B] ∈Fa

It follows that [τ ≤ a] = [τ < a]∪ [τ = a] ∈Fa.
Now consider the claim involving the additional assumption that X (t) is continuous and

it is desired to hit a closed set H = ∩∞
n=1Bn where Bn is open, Bn ⊇ Bn+1. (Note that if the

topological space is a metric space, this is always possible so this is not a big restriction.)
Then let τn be the first hitting time of Bn by X (t). Then it can be shown that

[τ ≤ a] = ∩n [τn ≤ a] ∈Fa

To show this, first note that ω ∈ [τ ≤ a] if and only if there exists t ≤ a such that X (t)(ω)∈
H. This follows from continuity and the fact that H is closed. Thus τn ≤ a for all n
because for some t ≤ a, X (t) ∈ H ⊆ Bn for all n. Next suppose ω ∈ [τn ≤ a] for all n.
Then for δ n ↓ 0, there exists tn ∈ [0,a+δ n] such that X (tn)(ω) ∈ Bn. It follows there is
a subsequence, still denoted by tn such that tn→ t ∈ [0,a]. By continuity of X , it must be
the case that X (t)(ω) ∈H and so ω ∈ [τ ≤ a] . This shows the above formula. Now by the
first part, each [τn ≤ a] ∈Fa and so [τ ≤ a] ∈Fa also. ■

Another useful result for real valued stochastic process is the following.

Proposition 62.7.6 Let X (t) be a real valued stochastic process which is Ft adapted for
a normal filtration Ft , with the property that off a set of measure zero in Ω, t → X (t) is
lower semicontinuous. Then

τ ≡ inf{t : X (t)> α}

is a stopping time.

Proof: As above, for each m > 0,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ]
[X (t)> α]

)
∩
(
∩t∈[0,a) [X (t)≤ α]

)
Now

∩t∈[0,a) [X (t)≤ α]⊆ ∩t∈[0,a),t∈Q [X (t)≤ α]

If ω is in the right side, then for arbitrary t < a, let tn ↓ t where tn ∈ Q and t < a. Then
X (t)≤ liminfn→∞ X (tn)≤ α and so ω is in the left side also. Thus

∩t∈[0,a) [X (t)≤ α] = ∩t∈[0,a),t∈Q [X (t)≤ α]
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∪t∈[a,a+ 1
n ]
[X (t)> α]⊇ ∪t∈[a,a+ 1

n ],t∈Q
[X (t)> α]

If ω is in the left side, then for some t in the given interval, X (t) > α. If for all s ∈[
a,a+ 1

n

]
∩Q you have X (s)≤ α, then you could take sn→ t where X (sn)≤ α and con-

clude from lower semicontinuity that X (t) ≤ α also. Thus there is some rational s where
X (s)> α and so the two sides are equal. Hence,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ],t∈Q

[X (t)> α]
)
∩
(
∩t∈[0,a),t∈Q [X (t)≤ α]

)
The first set on the right is in Fa+(1/m) and so is the next set on the right. Hence [τ = a] ∈
∩mFa+(1/m) = Fa. To be a stopping time, one needs [τ ≤ a] ∈Fa. What of [τ < a]? This
equals ∪t∈[0,a) [X (t)> α] = ∪t∈[0,a)∩Q [X (t)> α] ∈Fa, the equality following from lower
semicontinuity. Thus [τ ≤ a] = [τ = a]∪ [τ < a] ∈Fa. ■

Thus there do exist stopping times, the first hitting time above being an example. When
dealing with continuous stopping times on a normal filtration, one uses the following dis-
crete stopping times

τn ≡
∞

∑
k=1

X[τ∈(tn
k ,t

n
k+1]]

tn
k+1

where here
∣∣tn

k − tn
k+1

∣∣= rn for all k where rn→ 0. Then here is an important lemma.

Lemma 62.7.7 τn is a stopping time ([τn ≤ t] ∈Ft .) Also the inclusion Fτ ⊆Fτn holds
and for each ω,τn (ω) ↓ τ (ω).

Proof: Say t ∈ (tn
k−1, t

n
k ]. Then [τn ≤ t] =

[
τ ≤ tn

k−1

]
if t < tn

k and it equals
[
τ ≤ tn

k

]
if

t = tn
k . Either way [τn ≤ t] ∈Ft so it is a stopping time. Also from the definition, it follows

that τn ≥ τ and |τn (ω)− τ (ω)| ≤ rn which is given to converge to 0. Now suppose A∈Fτ

and say t ∈ (tn
k−1, t

n
k ] as above. Then

A∩ [τn ≤ t] = A∩
[
τ ≤ tn

k−1
]
∈Ftn

k−1
⊆Ft if t < tn

k

and
A∩ [τn ≤ t] = A∩ [τ ≤ tn

k ] ∈Ftn
k
= Ft if t = tn

k

Thus Fτ ⊆Fτn as claimed. ■
Next is the claim that if X (t) is adapted to Ft , then X (τ) is adapted to Fτ just like the

discrete case.

Proposition 62.7.8 Let (Ω,F ,P) be a probability space and let σ ≤ τ be two stopping
times with respect to a filtration, Ft . Then Fσ ⊆Fτ . If X (t) is a right continuous stochas-
tic process adapted to a normal filtration Ft and τ is a stopping time, ω → X (τ (ω)) is
Fτ measurable.

Proof: Let A ∈Fσ . Then A∩ [σ ≤ t] ∈Ft for all t ≥ 0. Since σ ≤ τ,

A∩ [τ ≤ t] =

∈Ft︷ ︸︸ ︷
A∩ [σ ≤ t]∩ [τ ≤ t] ∈Ft
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Thus A ∈Fτ and so Fσ ⊆Fτ .
Consider the following approximation of τ in which tn

k = k2−n.

τn ≡
∞

∑
k=1

X[τ∈(tn
k ,t

n
k+1]]

tn
k+1

Thus τn ↓ τ . Consider for U an open set, X (τn)
−1 (U)∩ [τn < t] . Say t ∈ (tn

k , t
n
k+1]. Then

from the above definition of τn,

[τn < t] = [τ ≤ tn
k ] ∈Ftn

k
⊆Ft

It follows that

X (τn)
−1 (U)∩ [τn < t] = ∪k

j=1

∈Ftnj

X
(
tn

j
)−1

(U)∩
∈Ftnj[

τn = tn
j
]

and so this set is in Ftn
k
⊆Ft . The reason

[
τn = tn

j

]
∈Ftn

j
is that it equals

[
τ ∈ (tn

j−1, t
n
j ]
]
∈

Ftn
j

by assumption that τ is a stopping time.
By right continuity of X , it follows that

X (τ)−1 (U)∩ [τ < t] = ∪∞
m=1∩n≥m X (τn)

−1 (U)∩ [τn < t] ∈Ft

It follows that for every m,

X (τ)−1 (U)∩ [τ ≤ t] = ∩∞
n=mX (τ)−1 (U)∩

[
τ < t +

1
n

]
∈Ft+ 1

m

Since the filtration is normal, it follows that

X (τ)−1 (U)∩ [τ ≤ t] ∈Ft+ = Ft . ■

Now consider an increasing family of stopping times, τ (t) (ω→ τ (t)(ω)). It turns out
this is a submartingale.

Example 62.7.9 Let {τ (t)} be an increasing family of stopping times. Then τ (t) is adapted
to the σ algebras Fτ(t) and {τ (t)} is a submartingale adapted to these σ algebras.

First I need to show that a stopping time, τ is Fτ measurable. Consider [τ ≤ s] . Is
this in Fτ ? Is [τ ≤ s]∩ [τ ≤ r] ∈Fr for each r? This is obviously so if s ≤ r because the
intersection reduces to [τ ≤ s] ∈Fs ⊆Fr. On the other hand, if s > r then the intersection
reduces to [τ ≤ r] ∈Fr and so it is clear that τ is Fτ measurable. It remains to verify it is
a submartingale.

Let s < t and let A ∈Fτ(s)∫
A

E
(
τ (t) |Fτ(s)

)
dP≡

∫
A

τ (t)dP≥
∫

A
τ (s)dP

and this shows E
(
τ (t) |Fτ(s)

)
≥ τ (s) . ■

Now here is an important example. First note that for τ a stopping time, so is t ∨ τ .
Here is why.

[t ∨ τ ≤ s] = [t ≤ s]∩ [τ ≤ s] ∈Fs.
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Example 62.7.10 Let τ be a stopping time and let X be continuous and adapted to the
filtration Ft . Then for a > 0, define σ as

σ (ω)≡ inf{t > τ (ω) : ||X (t)(ω)−X (τ (ω))||= a}

Then σ is also a stopping time.

To see this is so, let

Y (t)(ω) = ||X (t ∨ τ)(ω)−X (τ (ω))||

Then Y (t) is Ft∨τ measurable. It is desired to show that Y is Ft adapted. Hence if U is
open in R, then

Y (t)−1 (U) =
(

Y (t)−1 (U)∩ [τ ≤ t]
)
∪
(

Y (t)−1 (U)∩ [τ > t]
)

The second set in the above union on the right equals either /0 or [τ > t] depending on
whether 0 ∈ U. If τ > t, then Y (t) = 0 and so the second set equals [τ > t] if 0 ∈ U. If
0 /∈U, then the second set equals /0. Thus the second set above is in Ft . It is necessary to
show the first set is also in Ft . The first set equals

Y (t)−1 (U)∩ [τ ≤ t] = Y (t)−1 (U)∩ [τ ∨ t ≤ t]

because [τ ∨ t ≤ t] = [τ ≤ t]. However, Y (t)−1 (U) ∈Ft∨τ and so the set on the right in the
above is in Ft . Therefore, Y (t) is adapted. Then σ is just the first hitting time for Y (t) to
equal the closed set a. Therefore, σ is a stopping time by Proposition 62.7.5. ■

62.7.2 The Optional Sampling Theorem Continuous Case
Next I want a version of the Doob optional sampling theorem which applies to martingales
defined on [0,L],L≤∞. First recall Theorem 61.1.2 part of which is stated as the following
lemma.

Lemma 62.7.11 Let f ∈ L1 (Ω;E,F ) where E is a separable Banach space. Then if G is
a σ algebra G ⊆F ,

||E ( f |G )|| ≤ E (∥ f∥|G ) .

Here is a lemma which is the main idea for the proofs of the optional sampling theorem
for the continuous case.

Lemma 62.7.12 Let X (t) be a right continuous nonnegative submartingale such that the
filtration {Ft} is normal. Recall this includes

Ft = ∩s>tFs.

Also let τ be a stopping time with values in [0,T ] . Let Pn =
{

tn
k

}mn+1
k=1 be a sequence of

partitions of [0,T ] which have the property that

Pn ⊆Pn+1, lim
n→∞
||Pn||= 0,
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where
||Pn|| ≡ sup

{∣∣tn
k − tn

k+1
∣∣ : k = 1,2, · · · ,mn

}
Then let

τn (ω)≡
mn

∑
k=0

tn
k+1Xτ−1((tn

k ,t
n
k+1])

(ω)

It follows that τn is a stopping time and also the functions |X (τn)| are uniformly integrable.
Furthermore, |X (τ)| is integrable.

Proof: First of all, say t ∈ (tn
k , t

n
k+1]. If t < tn

k+1, then

[τn ≤ t] = [τ ≤ tn
k ] ∈Ftn

k
⊆Ft

and if t = tn
k+1, then [

τn ≤ tn
k+1
]
=
[
τ ≤ tn

k+1
]
∈Ftn

k+1
= Ft

and so τn is a stopping time. It follows from Proposition 62.7.8 that X (τn) is Fτn measur-
able.

Now from Lemma 60.4.3 or Theorem 62.6.7, X (0) ,X (τn) ,X (T ) is a submartingale.
Then ∫

[X(τn)≥λ ]
X (τn)dP ≤

∫
[X(τn)≥λ ]

E (X (T ) |Fτn)dP

=
∫

Ω

E
(
X[X(τn)≥λ ]X (T ) |Fτn

)
dP

=
∫
[X(τn)≥λ ]

X (T )dP

From maximal estimates, for example Theorem 60.2.8,

P([X (τn)≥ λ ])≤ 1
λ

∫
Ω

X (T )+ dP =
1
λ

∫
Ω

X (T )dP

and now it follows from the above that the random variables X (τn) are equiintegrable.
Recall this means that

lim
λ→∞

sup
n

∫
[X(τn)≥λ ]

X (τn)dP = 0

Hence they are uniformly integrable.
To verify that |X (τ)| is integrable, note that by right continuity, X (τn)→ X (τ) point-

wise. Apply the Vitali convergence theorem to obtain∫
Ω

|X (τ)|dP = lim
n→∞

∫
Ω

|X (τn)|dP≤
∫

Ω

X (T )dP < ∞. ■

In fact, you do not need to assume X is nonnegative.
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Lemma 62.7.13 Let X (t) be a right continuous submartingale such that the filtration {Ft}
is normal. Recall this includes

Ft = ∩s>tFs.

Also let τ be a stopping time with values in [0,T ] . Let Pn =
{

tn
k

}mn+1
k=1 be a sequence of

partitions of [0,T ] which have the property that

Pn ⊆Pn+1, lim
n→∞
||Pn||= 0,

where
||Pn|| ≡ sup

{∣∣tn
k − tn

k+1
∣∣ : k = 1,2, · · · ,mn

}
Then let

τn (ω)≡
mn

∑
k=0

tn
k+1Xτ−1((tn

k ,t
n
k+1])

(ω)

It follows that τn is a stopping time and also the functions |X (τn)| are uniformly integrable.
Furthermore, |X (τ)| is integrable.

Proof: It was shown above that τn is a stopping time. Also, tn
k → X

(
tn
k

)
is a discrete

submartingale. Then by Theorem 62.6.6 there is a martingale tn
k →M

(
tn
k

)
and an increasing

submartingale tn
k → A

(
tn
k

)
such that A≥ 0 and is increasing

X (tn
k ) = M (tn

k )+A(tn
k )

You define A
(
tm
0
)
≡ 0 and for n≥ 1,

A(tm
n )≡

n

∑
k=1

E
(

X (tm
k )−X

(
tm
k−1
)
|Ftm

k−1

)
and repeat the arguments in that theorem. You know that A(0) ,A(τn) ,A(T ) is a submartin-
gale by the optional sampling theorem given earlier, Theorem 62.6.7, and so

P(A(τn)> λ )≤ 1
λ

∫
[A(τn)>λ ]

A(τn)dP≤ 1
λ

∫
[A(τn)>λ ]

A(T )dP≤ ∥A(T )∥L1

λ

It also follows from the definition of A that

∥A(T )∥L1 =
∫

Ω

X (T )−X (0)dP < ∞

Hence
lim

λ→∞

∫
[A(τn)>λ ]

A(τn)dP≤ lim
λ→∞

∫
[A(τn)>λ ]

A(T )dP = 0

Because P(A(τn)> λ )→ 0 and a single function in L1 is uniformly integrable. Thus
these functions A(τn) are equi-integrable. Hence they are uniformly integrable. Now tn

k →∣∣M (tn
k

)∣∣ is also a nonnegative submartingale. Thus

|M (0)| , |M (τn)| , |M (T )|
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is a submartingale by the optional sampling theorem for discrete submartingales given ear-
lier. Therefore,

P(|M (τn)|> λ )≤ 1
λ

∫
[|M(τn)|>λ ]

|M (τn)|dP≤ 1
λ

∫
[|M(τn)|>λ ]

|M (T )|dP≤ ∥M (T )∥L1

λ

Of course ∥M (T )∥L1 is finite because it is dominated by∫
Ω

A(T )+ |X (T )|dP < ∞

Hence

lim
λ→∞

sup
n

∫
[|M(τn)|>λ ]

|M (τn)|dP≤ lim
λ→∞

sup
n

∫
[|M(τn)|>λ ]

|M (T )|dP = 0

because a single function in L1 is uniformly integrable and the above estimate shows that
P([|M (τn)|> λ ])→ 0 uniformly in n. Thus, in fact X (τn) must be uniformly integrable
since it is the sum of two which are. ■

Theorem 62.7.14 Let {M (t)} be a right continuous martingale having values in E a sepa-
rable real Banach space with respect to the increasing sequence of σ algebras, {Ft} which
is assumed to be a normal filtration satisfying,

Ft = ∩s>tFs,

for t ∈ [0,L] , L≤∞ and let σ ,τ be two stopping times with τ bounded. Then M (τ) defined
as

ω →M (τ (ω))

is integrable and
M (σ ∧ τ) = E (M (τ) |Fσ ) .

Proof: Since M (t) is a martingale, ∥M (t)∥ is a submartingale. Let

τn (ω)≡
∞

∑
k=0

2−n (k+1)TXτ−1((k2−nT,(k+1)T 2−n]) (ω) .

By Lemma 62.7.13, τn is a stopping time and the functions ||M (τn)|| are uniformly in-
tegrable. Also ||M (τ)|| is integrable. Similarly ||M (τn∧σn)|| are uniformly integrable
where σn is defined similarly to τn.

Consider the main claim now. Letting σ ,τ be stopping times with τ bounded, it follows
that for σn and τn as above, it follows from Theorem 62.6.5

M (σn∧ τn) = E (M (τn) |Fσn)

Thus, taking A ∈Fσ and recalling σ ≤ σn so that by Proposition 62.7.8, Fσ ⊆Fσn ,∫
A

M (σn∧ τn)dP =
∫

A
E (M (τn) |Fσn)dP =

∫
A

M (τn)dP.
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Now passing to a limit as n→∞, the Vitali convergence theorem, Theorem 11.5.3 on Page
257 and the right continuity of M implies one can pass to the limit in the above and conclude∫

A
M (σ ∧ τ)dP =

∫
A

M (τ)dP.

By Proposition 62.7.8, M (σ ∧ τ) is Fσ∧τ ⊆Fσ measurable showing

E (M (τ) |Fσ ) = M (σ ∧ τ) . ■

A similar theorem is available for submartingales defined on [0,L] ,L≤ ∞.

Theorem 62.7.15 Let {X (t)} be a right continuous submartingale with respect to the in-
creasing sequence of σ algebras, {Ft} which is assumed to be a normal filtration,

Ft = ∩s>tFs,

for t ∈ [0,L] , L≤∞ and let σ ,τ be two stopping times with τ bounded. Then X (τ) defined
as

ω → X (τ (ω))

is integrable and
X (σ ∧ τ)≤ E (X (τ) |Fσ ) .

Proof: Let

τn (ω)≡ ∑
k≥0

2−n (k+1)TXτ−1((k2−nT,(k+1)T 2−n]) (ω) .

Then by Lemma 62.7.13 τn is a stopping time, the functions |X (τn)| are uniformly in-
tegrable, and |X (τ)| is also integrable. For σn defined similarly to τn, it also follows
|X (τn∧σn)| are uniformly integrable.

Let A∈Fσ . Since σ ≤σn, it follows that Fσ ⊆Fσn . By the discrete optional sampling
theorem for submartingales, Theorem 62.6.7,

X (σn∧ τn)≤ E (X (τn) |Fσn)

and so ∫
A

X (σn∧ τn)dP≤
∫

A
E (X (τn) |Fσn)dP =

∫
A

X (τn)dP

and now taking limn→∞ of both sides and using the Vitali convergence theorem along with
the right continuity of X , it follows∫

A
X (σ ∧ τ)dP≤

∫
A

X (τ)dP≡
∫

A
E (X (τ) |Fσ )dP

By Proposition 62.7.8, Fσ∧τ ⊆Fσ , and so since A ∈Fσ was arbitrary,

E (X (τ) |Fσ )≥ X (σ ∧ τ) a.e. ■

Note that a function defined on a countable ordered set such as the integers or equally
spaced points is right continuous.

Here is an interesting lemma.
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Lemma 62.7.16 Suppose E (|Xn|) < ∞ for all n, Xn is Fn measurable, Fn+1 ⊆ Fn for
all n ∈ N, and there exist X∞ F∞ measurable such that F∞ ⊆ Fn for all n and X0 F0
measurable such that F0 ⊇Fn for all n such that for all n ∈ {0,1, · · ·} ,

E (Xn|Fn+1)≥ Xn+1, E (Xn|F∞)≥ X∞.

Then {Xn : n ∈ N} is uniformly integrable.

Proof:
E (Xn+1)≤ E (E (Xn|Fn+1)) = E (Xn)

Therefore, the sequence E (Xn) is a decreasing sequence bounded below by E (X∞) so it has
a limit. Let k be large enough that∣∣∣E (Xk)− lim

m→∞
E (Xm)

∣∣∣< ε (62.7.26)

and suppose n > k. Then if λ > 0,∫
[|Xn|≥λ ]

|Xn|dP =
∫
[Xn≥λ ]

XndP+
∫
[Xn≤−λ ]

(−Xn)dP

=
∫
[Xn≥λ ]

XndP+
∫

Ω

(−Xn)dP−
∫
[−Xn<λ ]

(−Xn)dP

=
∫
[Xn≥λ ]

XndP−
∫

Ω

XndP+
∫
[−Xn<λ ]

XndP

From 62.7.26,
≤
∫
[Xn≥λ ]

XndP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

XndP

By assumption,
E (Xk|Fn)≥ Xn

and so

≤
∫
[Xn≥λ ]

E (Xk|Fn)dP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

E (Xk|Fn)dP

=
∫
[Xn≥λ ]

XkdP−
∫

Ω

XkdP+ ε +
∫
[−Xn<λ ]

XkdP

=
∫
[Xn≥λ ]

XkdP−
∫

Ω

XkdP+ ε +
∫
[Xn>−λ ]

XkdP

=
∫
[Xn≥λ ]

XkdP+

(∫
Ω

(−Xk)dP−
∫
[Xn>−λ ]

(−Xk)dP
)
+ ε

=
∫
[Xn≥λ ]

XkdP+
∫
[Xn≤−λ ]

(−Xk)dP+ ε =
∫
[|Xn|≥λ ]

|Xk|dP+ ε

Applying the maximal inequality for submartingales, Theorem 60.6.4,

P
(
max

{∣∣X j
∣∣ : j = n, · · · ,1

}
≥ λ

)
≤ 1

λ
(E (|X0|)+E (|X∞|))≤

C
λ



62.8. RIGHT CONTINUITY OF SUBMARTINGALES 2089

and taking sup for all n,

P
(
sup
{∣∣X j

∣∣}≥ λ
)
≤ C

λ

It follows that for all λ large enough,∫
[|Xn|≥λ ]

|Xn|dP≤ 2ε

and since ε is arbitrary, this shows {Xn} for n > k is equiintegrable. Since there are only
finitely many X j for j ≤ k, this shows {Xn} is equiintegrable. Hence {Xn} is uniformly
integrable. ■

62.8 Right Continuity Of Submartingales
The following theorem is an attempt to consider the question of right continuity. It turns
out that you can always assume right continuity of a submartingale by going to a suitable
version and this theorem is a first step in this direction.

Theorem 62.8.1 Let {X (t)} be a real valued submartingale adapted to the filtration Ft .
Then there exists a set of measure zero N, P(N) = 0, such that if ω /∈ N then,

lim
r→t+,r∈Q

X (r,ω) , lim
r→t−,r∈Q

X (r,ω)

both exist. There also exists a set of measure zero N such that for Q+ the nonnegative
rationals and ω /∈ N,

sup
t∈Q+∩[0,M]

|X (t,ω)|< ∞

is bounded for each M ∈ N. Q can be replaced with any countable dense subset of R.

Proof: Let {rk}∞

k=1 be an enumeration of the nonnegative rationals. Let t > 0 be given.
Then let {s1,s2, · · · ,sn} be such that these are in order and {s2, · · · ,sn−1} are the first n−2
rationals less than t listed in order and s1 = 0 while sn = t. Then let Yk ≡ X (sk) . It follows
{Yk} is a submartingale and so from the maximal inequality in Theorem 60.6.4,

P
([

max
1≤k≤n

|Yk| ≥ 2m
])

≤ 1
2m (2E (|Yn|+ |Y1|))

= 2−m (2E (|X (t)|+ |X (0)|))

Then letting n→ ∞, it follows upon letting Ct = 2E (|X (t)|+ |X (0)|) ,

P

([
sup

r∈Q+∩[0,t]
|X (r)| ≥ 2m

])
≤ 2−mCt .

By the Borel Cantelli lemma, there exists a set of measure 0, Nt such that for ω /∈ Nt ,ω is
contained in only finitely many of the sets[

sup
r∈Q+∩[0,t]

|X (r)| ≥ 2m

]
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which shows that for ω /∈ Nt ,supr∈Q+∩[0,t] |X (r)| is bounded. Now let N = ∪∞
j=1N j. This

proves the second claim.
Next consider the first claim. By the upcrossing estimate, Theorem 60.6.9 or Lemma

60.2.6, and letting a < b and Un
[a,b] [c,d] the upcrossings of Yk from a to b on [c,d] for d ≤ t

and c≥ 0,

E
(

Un
[a,b] [0, t]

)
≤ 1

b−a
E
(
(Yn−a)+

)
=

1
b−a

E
(
(X (t)−a)+

)
.

Hence

P
([

Un
[a,b] [0, t]≥M

])
≤ 1

M

(
1

b−a
E
(
(X (t)−a)+

))
. (62.8.27)

Suppose for some s < t,

lim sup
r→s+,r∈Q

X (r,ω)> b > a > lim inf
r→s+,r∈Q

X (r,ω) . (62.8.28)

If this is so, then in (s, t)∩Q there must be infinitely many values of r ∈ Q such that
X (r,ω) ≥ b as well as infinitely many values of r ∈ Q such that X (r,ω) ≤ a. Note this
involves the consideration of a limit from one side. Thus, since it is a limit from one side
only, there are an arbitrarily large number of upcrossings between s and t. Therefore, letting
M be a large positive number, it follows that for all n sufficiently large,

Un
[a,b] [0, t] (ω)≥M

which implies
ω ∈

[
Un
[a,b] [0, t]≥M

]
which from 62.8.27 is a set of measure no more than

1
M

(
1

b−a
E
(
(X (t)−a)+

))
.

This has shown that the set of ω such that for some s ∈ [0, t) 62.8.28 holds is contained in
the set

N[a,b] ≡ ∩∞
M=1∪∞

n=1

[
Un
[a,b] [0, t]≥M

]
Now the sets, [

Un
[a,b] [0, t]≥M

]
are increasing in n and each has measure less than

1
M

(
1

b−a
E
(
(X (t)−a)+

))
and so

P
(
∪∞

n=1

[
Un
[a,b] [0, t]≥M

])
≤ 1

M

(
1

b−a
E
(
(X (t)−a)+

))
.
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which shows that

P
(
N[a,b]

)
≤ 1

M

(
1

b−a
E
(
(X (t)−a)+

))
for every M and therefore, P

(
N[a,b]

)
= 0.

Therefore, corresponding to a < b, there exists a set of measure 0, N[a,b] such that for
ω /∈ N[a,b] 62.8.28 is not true for any s ∈ [0, t). Let N ≡ ∪a,b∈QN[a,b], a set of measure 0
with the property that if ω /∈ N, then 62.8.28 fails to hold for any pair of rational numbers,
a < b for any s ∈ [0, t). Thus for ω /∈ N,

lim
r→s+,r∈Q

X (r,ω)

exists for all s ∈ [0, t). Similar reasoning applies to show the existence of the limit

lim
r→s−,r∈Q

X (r,ω) .

for all s ∈ (0, t] whenever ω is outside of a set of measure zero. Of course, this exceptional
set depends on t. However, if this exceptional set is denoted as Nt , one could consider
N ≡ ∪∞

n=1Nn. It is obvious there is no change if Q is replaced with any countable dense
subset. This proves the theorem.

Of course the above theorem does not say the left and right limits are equal, just that
they exist in some way for ω not in some set of measure zero. Also it has not been shown
that limr→s+,r∈QX (r,ω) = X (r,ω) for a.e. ω .

Corollary 62.8.2 In the situation of Theorem 62.8.1, let s > 0 and let D1 and D2 be two
countable dense subsets of R. Then

lim
r→s−,r∈D1

X (r,ω) = lim
r→s−,r∈D2

X (r,ω) a.e. ω

lim
r→s+,r∈D1

X (r,ω) = lim
r→s+,r∈D2

X (r,ω) a.e. ω

Proof: Let
{

ri
n
}

be an increasing sequence from Di converging to s and let N be the
exceptional set corresponding to the countable dense set D1 ∪D2. Then for ω /∈ N, and
i = 1,2,

lim
r→s−,r∈D1∪D2

X (r,ω) = lim
n→∞

X
(
ri

n,ω
)
= lim

r→s−,r∈Di
X (r,ω)

The other claim is similar. This proves the corollary.
Now here is an impressive lemma about submartingales and uniform integrability.

Lemma 62.8.3 Let X (t) be a submartingale adapted to a filtration Ft . Let {rk} ⊆ [s, t) be
a decreasing sequence converging to s. Then

{
X (r j)

}∞

j=1 is uniformly integrable.

Proof: First I will show the sequence is equiintegrable. I need to show that for all ε > 0
there exists λ large enough that for all n∫

[|X(rn)|≥λ ]
|X (rn)|dP < ε.
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Let ε > 0 be given. Since {X (r)}r≥0 is a submartingale, E (X (rn)) is a decreasing sequence
bounded below by E (X (s)). This is because for rn < rk,

E (X (rn))≤ E (E (X (rk) |Fn)) = E (X (rk))

Pick k such that

E (X (rk))− lim
n→∞

E (X (rn))

=
∣∣∣E (X (rk))− lim

n→∞
E (X (rn))

∣∣∣< ε/2.

Then for n > k,∫
[|X(rn)|≥λ ]

|X (rn)|dP =
∫
[X(rn)≥λ ]

X (rn)dP+
∫
[X(rn)≤−λ ]

−X (rn)dP

=
∫
[X(rn)≥λ ]

X (rn)dP+
∫
[X(rn)>−λ ]

X (rn)dP−
∫

Ω

X (rn)dP

≤
∫
[X(rn)≥λ ]

X (rn)dP+
∫
[X(rn)>−λ ]

E (X (rk) |Fn)dP−
∫

Ω

X (rn)dP

≤
∫
[X(rn)≥λ ]

X (rk)dP+
∫
[X(rn)>−λ ]

X (rk)dP−
∫

Ω

X (rk)dP+ ε/2

=
∫
[X(rn)≥λ ]

X (rk)dP+
∫
[X(rn)≤−λ ]

(−X (rk))dP+ ε/2

=
∫
[|X(rn)|≥λ ]

|X (rk)|dP+ ε/2

≤
∫[

sup
{
|X(r)|≥λ :r∈{r j}∞

j=1

}] |X (rk)|dP+ ε/2 (62.8.29)

From maximal inequalities of Theorem 60.6.4

P

([
sup

r∈{rn,rn−1,··· ,r1}
|X (r)| ≥ λ

])
≤ 2E (|X (t)|+ |X (0)|)

λ
≡ C

λ

and so, letting n→ ∞,

P

([
sup

r∈{rn}∞n=1

|X (r)| ≥ λ

])
≤ C

λ
.

It follows that for λ sufficiently large the first term in 62.8.29 is smaller than ε/2 because
k is fixed. Now this shows there is a choice of λ such that for all n > k,∫

[|X(rn)|≥λ ]
|X (rn)|dP < ε

There are only finitely many rn for n ≤ k and by choosing λ sufficiently large the above
formula can be made to hold for these also, thus showing {X (rn)} is equi integrable.
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Now this implies the sequence of random variables is uniformly integrable as well. Let
ε > 0 be given and choose λ large enough that for all n,∫

[|X(rn)|≥λ ]
|X (rn)|dP < ε/2

Then let A be a measurable set.∫
A
|X (rn)|dP =

∫
A∩[|X(rn)|≥λ ]

|X (rn)|dP+
∫

A∩[|X(rn)|<λ ]
|X (rn)|dP

< ε/2+
∫

A∩[|X(rn)|<λ ]
|X (rn)|dP≤ ε

2
+λP(A)

and now you see that if P(A) is sufficiently small then for all n,∫
A
|X (rn)|dP < ε

which shows the set of functions is uniformly integrable as claimed. This proves the lemma.
You can often consider a submartingale to be right continuous. This is the importance

of the following theorem.

Theorem 62.8.4 Let {X (t)} be a submartingale adapted to a normal filtration Ft . There
exists a right continuous submartingale having left limits, {Y (t)} such that Y (t) = X (t)
a.e. for every t ∈Q+. Furthermore {X (t)} has a right continuous left limits version if and
only if

t→ E (X (t))

is right continuous. More generally, Y (t) = X (t) a.e. at every point where the above
function is right continuous.

Proof: From Theorem 62.8.1, there exists a set of measure zero, N such that for ω /∈N,
left and right limits of the following form exist.

lim
r→t+,r∈Q

X (r,ω) , lim
r→t−,r∈Q

X (r,ω) .

Then define for each t and ω /∈ N,

Y (t,ω)≡ lim
r→t+,r∈Q

X (r,ω) .

and for ω ∈ N,
Y (t,ω)≡ 0

Thus Y (t)(ω) = X (t)(ω) a.e. for t ∈Q+. For each ω /∈ N, there exists δ > 0 such that if
r ∈Q, t < r < t +2δ , then

|Y (t,ω)−X (r,ω)|< ε/2.

Now suppose s ∈ (t, t +δ ) . Then there exists δ 1 < δ such that if s < r < s+δ 1 then

|Y (s,ω)−X (r,ω)|< ε/2.
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pick r ∈Q∩ (s, t +δ ) . Then both of the above two inequalities hold and so it follows

|Y (t,ω)−Y (s,ω)| < |Y (t,ω)−X (r,ω)|+ |X (r,ω)−Y (s,ω)|
< ε/2+ ε/2 = ε.

Therefore, t→ Y (t,ω) is right continuous as claimed.
From the definition of Y (t,ω) , it follows ω → Y (t,ω) is measurable in Ft+ because

it is the limit of a sequence, X (rn,ω)XNC where rn→ t + . Now each X (rn, ·) is Frn mea-
surable and so Y (t, ·) is Frn measurable also for each rn. Thus Y (t, ·) is Ft+ measurable.
Since the filtration is normal, Ft = Ft+ and it follows Y (t, ·) is Ft measurable. Why is
Y (t, ·) ∈ L1 (Ω)?

From Lemma 62.8.3, the collection {X (rn)} is uniformly integrable. Therefore, from
the Vitali convergence theorem, Theorem 11.5.3 on Page 257,

lim
n→∞

∫
Ω

|Y (s)−X (rn)|dP = 0 (62.8.30)

and Y (s) ∈ L1 (Ω).
It remains to verify {Y (s)} is a submartingale. For s < t, is it true that

E (Y (t) |Fs)≥ Y (s)?

Fix A ∈Fs. From the above construction, there exists w ∈Q and w≥ t such that∫
A

Y (t)dP≥
∫

A
X (w)dP− ε.

Then also, there exists r ∈Q∩(s, t) such that∫
A

X (r)dP≥
∫

A
Y (s)dP− ε.

Now ∫
A

E (Y (t) |Fs)dP =
∫

A
Y (t)dP≥

∫
A

X (w)dP− ε

=
∫

A
E (X (w) |Fr)dP− ε

≥
∫

A
X (r)dP− ε ≥

∫
A

Y (s)dP−2ε.

Since ε was arbitrary, this shows∫
A

E (Y (t) |Fs)dP≥
∫

A
Y (s)dP

for any A ∈Fs and so this verifies since A is arbitrary that

E (Y (t) |Fs)≥ Y (s)
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so Y is a submartingale.
By Theorem 62.8.1 there exists a set of measure 0, N such that the left limits of Y (r,ω)

exist through rational numbers if ω /∈ N.
Is {Y (t)} a version of {X (t)}? This is where the assumption t→E (X (t)) is continuous

is used. We know E (X (rn) |Fs)≥ X (s) and also for A ∈Fs∫
A

X (rn)dP =
∫

A
E (X (rn) |Fs)dP≥

∫
A

X (s)dP.

Hence taking a limit yields ∫
A

Y (s)dP≥
∫

A
X (s)dP

and since A is arbitrary, Y (s)≥ X (s) . Now since t→ E (X (t)) is continuous,∫
Ω

|Y (s)−X (s)|dP = E (Y (s))−E (X (s))

= lim
n→∞

(E (X (rn))−E (X (rn))) = 0.

It only remains to verify the only way X (t) has a right continuous version is for
t → E (X (t)) to be continuous. Suppose then that {X (t)} has a right continuous ver-
sion, {Y (t)} . Letting rn ↓ s, Lemma 62.8.3 implies {Y (rn)} is uniformly integrable. Also
Y (s)(ω) = limn→∞ Y (rn)(ω) a.e. and so by the Vitali convergence theorem,

lim
n→∞

∫
Ω

|X (rn)−X (s)|dP = lim
n→∞

∫
Ω

|Y (rn)−Y (s)|dP = 0.

This proves the theorem.
Note that the condition t→ E (X (t)) being continuous holds for any martingale. There-

fore, every martingale has a right continuous version. The condition that t → E (X (t)) is
right continuous is not a very stringent assumption. For {X (t)} a submartingale, this is an
increasing function. Therefore, the only points where the condition might not hold com-
prise a countable set.

62.9 Some Maximal Inequalities
As in the case of discrete martingales and submartingales, there are maximal inequalities
available.

Lemma 62.9.1 Let X be right continuous and adapted such that the given filtration is
complete in the sense that F0 contains all sets A of F such that P(A) = 0. Then there exists
a set of measure zero N and a F ×B (R) measurable function Y such that if ω /∈ N, then
Y (t)(ω) = X (t)(ω). Also, if f is F measurable and nonnegative then (λ ,ω)→X[ f>λ ]

is F ×B (R) measurable.

Proof: Let
{

tn
0 , t

n
1 , · · · , tn

mn

}
be a partition of [0,T ] in which

∣∣tn
i − tn

i−1

∣∣ < ρn where
ρn→ 0. Now define Xn as follows:

Xn (t)(ω) ≡
mn

∑
i=1

X (tn
i )(ω)X(tn

i−1,t
n
i ]
(t)

Xn (0) ≡ X (0) .
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then each Xn is obviously product measurable because it is the sum of functions which are.
By right continuity, Xn converges pointwise to X for ω /∈ N where N is a set of measure
zero and so if Y (t)(ω)≡ X (t)(ω) for all ω /∈ N and Y (t)(ω) = 0 for all ω ∈ N, this is the
desired product measurable function.

To see the last claim, let s be a nonnegative simple function, s(ω) = ∑
n
k=1 ckXEk (ω)

where the ck are strictly increasing in k. Also let Fk = ∪n
i=kEi. Then

X[s>λ ] =
n

∑
k=1

X[ck−1,ck) (λ )XFk (ω)

which is clearly product measurable. For arbitrary f ≥ 0 and measurable, there is an in-
creasing sequence of simple functions sn converging pointwise to f . Therefore,

lim
n→∞

X[sn>λ ] = X[ f>λ ]

and so X[ f>λ ] is product measurable. ■

Definition 62.9.2 Let X (t) be a right continuous submartingale for t ∈ I and let {τn} be
a sequence of stopping times such that limn→∞ τn = ∞. Then Xτn is called the stopped
submartingale and it is defined by

Xτn (t)≡ X (t ∧ τn) .

Proposition 62.9.3 The stopped submartingale just defined is a submartingale.

Proof: By the optional sampling theorem for submartingales, Theorem 62.7.15, it fol-
lows that for s < t,

E (Xτn (t) |Fs) ≡ E (X (t ∧ τn) |Fs)≥ X (t ∧ τn∧ s)

= X (τn∧ s)≡ Xτn (s) . ■

Theorem 62.9.4 Let {X (t)} be a right continuous nonnegative submartingale adapted to
the normal filtration Ft for t ∈ [0,T ]. Let p≥ 1. Define

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0.

Then for λ > 0, if X (t)p is in L1 (Ω) for each t,

P([X∗ (T )> λ ])≤ 1
λ

p

∫
X[X∗(T )>λ ]X (T )p dP (62.9.31)

If X (t) is continuous, the above inequality holds without this assumption. In case p > 1,
and X (t) continuous, then for each t ≤ T,(∫

Ω

|X∗ (t)|p dP
)1/p

≤ p
p−1

(∫
Ω

X (T )p dP
)1/p

(62.9.32)
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Proof: The first inequality follows from Theorem 62.5.2. However, it can also be
obtained a different way using stopping times.

Define the stopping time

τ ≡ inf{t > 0 : X (t)> λ}∧T.

(The infimum over an empty set will equal ∞.)This is a stopping time by 62.7.5 because it
is just a continuous function of the first hitting time of an open set. Also from the definition
of X∗ in which the supremum is taken over an open interval,

[τ < t] = [X∗ (t)> λ ]

Note this also shows X∗ (t) is Ft measurable. Then it follows that X p (t) is also a sub-
martingale since rp is increasing and convex. By the optional sampling theorem, the se-
quence given by X (0)p ,X (τ)p ,X (T )p is a submartingale. Also [τ < T ] ∈Fτ and so

∫
[τ<T ]

X (τ)p dP≤
∫
[τ<T ]

E (X (T )p |Fτ)dP =
∫
[τ<T ]

X (T )p dP

By right continuity, on [τ < T ] , X (τ)≥ λ . Therefore,

λ
pP([X∗ (T )> λ ]) = λ

pP([τ < T ])

≤
∫
[τ<T ]

X (τ)p dP≤
∫
[X∗(T )>λ ]

X (T )p dP

Next suppose X (t) is continuous and let {τn} be a localizing sequence,

τn ≡ inf{t : X (t)> n} .

Then by continuity, Xτn is bounded because X (τn∧ t) ≤ n, and so from what was just
shown,

λ
pP
([
(Xτn)∗ (T )> λ

])
≤
∫
[(Xτn )∗(T )>λ ]

(Xτn)(T )p dP

Then (Xτn)(T ) is increasing as τn → ∞ so the result follows from the monotone conver-
gence theorem. This proves the first part.

Let Xτn be as just defined. Thus it is a bounded submartingale. To save on notation, the
X in the following argument is really Xτn . This is done so that all the integrals are finite. If
p > 1, then from the first part using the case of p = 1,

∫
Ω

|X∗ (t)|p dP≤
∫

Ω

|X∗ (T )|p dP =
∫

∞

0
pλ

p−1

≤ 1
λ

∫
X[X∗(T )>λ ]X(T )dP︷ ︸︸ ︷

P([X∗ (T )> λ ]) dλ
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≤ p
∫

∞

0
λ

p−1 1
λ

∫
X[X∗(T )>λ ]X (T )dPdλ

= p
∫

Ω

X (T )
∫ X∗(T )

0
λ

p−2dλdP

= p
∫

Ω

X (T )
X∗ (T )p−1

p−1
dP

≤ p
p−1

(∫
Ω

X∗ (T )p dP
)1/p′(∫

Ω

X (T )p dP
)1/p

Now divide both sides by (
∫

Ω
X∗ (T )p dP)1/p′

. Substituting Xτn for X(∫
Ω

|Xτn∗ (t)|p dP
)1/p

≤
(∫

Ω

Xτn∗ (T )p dP
)1/p

≤ p
p−1

(∫
Ω

Xτn (T )p dP
)1/p

Now let n→ ∞ and use the monotone convergence theorem to obtain the inequality of
the theorem. This establishes 62.9.32. The use of Fubini’s theorem follows from Lemma
62.9.1. ■

Here is another sort of maximal inequality in which X (t) is not assumed nonnegative.

Theorem 62.9.5 Let {X (t)} be a right continuous submartingale adapted to the normal
filtration Ft for t ∈ [0,T ] and X∗ (t) defined as in Theorem 62.9.4

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0,

P([X∗ (T )> λ ])≤ 1
λ

E (|X (T )|) (62.9.33)

For t > 0, let
X∗ (t) = inf{X (s) : s < t} .

Then
P([X∗ (T )<−λ ])≤ 1

λ
E (|X (T )|+ |X (0)|) (62.9.34)

Also
P([sup{|X (s)| : s < T}> λ ])

≤ 2
λ

E (|X (T )|+ |X (0)|) (62.9.35)

Proof: The function f (r)= r+≡ 1
2 (|r|+ r) is convex and increasing. Therefore, X+ (t)

is also a submartingale but this one is nonnegative. Also

[X∗ (T )> λ ] =
[(

X+
)∗
(T )> λ

]
and so from Theorem 62.9.4,

P([X∗ (T )> λ ]) = P
([(

X+
)∗
(T )> λ

])
≤ 1

λ
E
(
X+ (T )

)
≤ 1

λ
E (|X (T )|) .
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Next let

τ = min(inf{t : X (t)<−λ} ,T )

then as before, X (0) ,X (τ) ,X (T ) is a submartingale and so∫
[τ<T ]

X (τ)dP+
∫
[τ=T ]

X (τ)dP =
∫

Ω

X (τ)dP≥
∫

Ω

X (0)dP

Now for ω ∈ [τ < T ] ,X (t)(ω)<−λ for some t <T and so by right continuity, X (τ)(ω)≤
−λ . therefore,

−λ

∫
[τ<T ]

dP≥−
∫
[τ=T ]

X (T )dP+
∫

Ω

X (0)dP

If X∗ (T ) < −λ , then from the definition given above, there exists t < T such that X (t) <
−λ and so τ < T. If τ < T, then by definition, there exists t < T such that X (t)<−λ and
so X∗ (T )<−λ . Hence [τ < T ] = [X∗ (T )<−λ ] . It follows that

P([X∗ (T )<−λ ]) = P([τ < T ])

≤ 1
λ

∫
[τ=T ]

X (T )dP− 1
λ

∫
Ω

X (0)dP

≤ 1
λ

E (|X (T )|+ |X (0)|)

and this proves 62.9.34.
Finally, combining the above two inequalities,

P([sup{|X (s)| : s < T}> λ ])

= P([X∗ (T )<−λ ])+P([X∗ (T )> λ ])

≤ 2
λ

E (|X (T )|+ |X (0)|) . ■

62.10 Continuous Submartingale Convergence Theorem
In this section, {Y (t)} will be a continuous submartingale and a < b. Let

X (t)≡ (Y (t)−a)++a

so X (0)≥ a. Then X is also a submartingale. It is an increasing convex function of one. If
Y (t) has an upcrossing of [a,b] , then X (t) starts off at a and ends up at least as large as b.
If X (t) has an upcrossing of [a,b] then it must start off at a since it cannot be smaller and
it ends up at least as large as b. Thus we can count the upcrossings of Y (t) by considering
the upcrossings of X (t).
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The next task is to consider an upcrossing estimate as was done before for discrete
submartingales.

τ0 ≡ min(inf{t > 0 : X (t) = a} ,M) ,

τ1 ≡ min
(
inf
{

t > 0 : (X (t ∨ τ0)−X (τ0))+ = b−a
}
,M
)
,

τ2 ≡ min
(
inf
{

t > 0 : (X (τ1)−X (t ∨ τ1))+ = b−a
}
,M
)
,

τ3 ≡ min
(
inf
{

t > 0 : (X (t ∨ τ2)−X (τ2))+ = b−a
}
,M
)
,

τ4 ≡ min
(
inf
{

t > 0 : (X (τ3)−X (t ∨ τ3))+ = b−a
}
,M
)
,

...

If X (t) is never a, then τ0 = M and there are no upcrossings. It is obvious τ1 ≥ τ0 since
otherwise, the inequality could not hold. Thus the evens have X (τ2k) = a and X (τ2k+1) =
b.

Lemma 62.10.1 The above τ i are stopping times for t ∈ [0,M].

Proof: It is obvious that τ0 is a stopping time because it is the minimum of M and the
first hitting time of a closed set by a continuous adapted process. Consider a stopping time
η ≤M and let

σ ≡ inf
{

t > 0 : (X (t ∨η)−X (η))+ = b−a
}

I claim that t→ X (t ∨η)−X (η) is adapted to Ft . Suppose α ≥ 0 and consider[
(X (t ∨η)−X (η))+ > α

]
(62.10.36)

The above set equals([
(X (t ∨η)−X (η))+ > α

]
∩ [η ≤ t]

)
∩
([
(X (t ∨η)−X (η))+ > α

]
∩ [η > t]

)
Consider the second of the above two sets. Since α ≥ 0, this set is /0. This is because for
η > t, X (t ∨η)−X (η) = 0. Now consider the first. It equals[

(X (t ∨η)−X (η))+ > α
]
∩ [η ∨ t ≤ t] ,

a set of Ft∨η intersected with [η ∨ t ≤ t] and so it is in Ft from properties of stopping
times.

If α < 0, then 62.10.36 reduces to Ω, also in Ft . Therefore, by Proposition 62.7.5, σ

is a stopping time because it is the first hitting time of a closed set of a continuous adapted
process. It follows that σ ∧M is also a stopping time. Similarly t → X (η)−X (t ∨η) is
adapted and

σ ≡ inf
{

t > 0 : (X (η)−X (t ∨η))+ = b−a
}

is also a stopping time from the same reasoning. It follows that the τ i defined above are all
stopping times. ■

Note that in the above, if η = M, then σ = M also. Thus in the definition of the τ i, if
any τ i = M, it follows that also τ i+1 = M and so there is no change in the stopping times.
Also note that these stopping times τ i are increasing as i increases.
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Let

UnM
[a,b] ≡ lim

ε→0

n

∑
k=0

X (τ2k+1)−X (τ2k)

ε +X (τ2k+1)−X (τ2k)

Note that if an upcrossing occurs after τ2k on [0,M], then τ2k+1 > τ2k because there exists
t such that

(X (t ∨ τ2k)−X (τ2k))+ = b−a

However, you could have τ2k+1 > τ2k without an upcrossing occuring. This happens when
τ2k < M and τ2k+1 = M which may mean that X (t) never again climbs to b. You break the
sum into those terms where X (τ2k+1)−X (τ2k) = b− a and those where this is less than
b− a. Suppose for a fixed ω, the terms where the difference is b− a are for k ≤ m. Then
there might be a last term for which X (τ2k+1)−X (τ2k)< b−a because it fails to complete
the up crossing. There is only one of these at k = m+1. Then the above sum is

≤ 1
b−a

m

∑
k=0

X (τ2k+1)−X (τ2k)+
X (M)−a

ε +X (M)−a

≤ 1
b−a

n

∑
k=0

X (τ2k+1)−X (τ2k)+
X (M)−a

ε +X (M)−a

≤ 1
b−a

n

∑
k=0

X (τ2k+1)−X (τ2k)+1

Then UnM
[a,b] is clearly a random variable which is at least as large as the number of

upcrossings occurring for t ≤M using only 2n+1 of the stopping times. From the optional
sampling theorem,

E (X (τ2k))−E (X (τ2k−1)) =
∫

Ω

X (τ2k)−X (τ2k−1)dP

=
∫

Ω

E
(
X (τ2k) |Fτ2k−1

)
−X (τ2k−1)dP

≥
∫

Ω

X (τ2k−1)−X (τ2k−1)dP = 0

Note that, X (τ2k) = a while X (τ2k−1) = b so the above may seem surprising. However,
the two stopping times can both equal M so this is actually possible. For example, it could
happen that X (t) = a for all t ∈ [0,M].

Next, take the expectation of both sides,

E
(

UnM
[a,b]

)
≤ 1

b−a

n

∑
k=0

E (X (τ2k+1))−E (X (τ2k))+1

≤ 1
b−a

n

∑
k=0

E (X (τ2k+1))−E (X (τ2k))+
1

b−a

n

∑
k=1

E (X (τ2k))−E (X (τ2k−1))+1

=
1

b−a
(E (X (τ1))−E (X (τ0)))+

1
b−a

n

∑
k=1

E (X (τ2k+1))−E (X (τ2k−1))+1
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≤ 1
b−a

(E (X (τ2n+1))−E (X (τ0)))+1

≤ 1
b−a

(E (X (M))−a)+1

which does not depend on n. The last inequality follows because 0≤ τ2n+1 ≤M and X (t)
is a submartingale. Let n→ ∞ to obtain

E
(

UM
[a,b]

)
≤ 1

b−a
(E (X (M))−a)+1

where UM
[a,b] is an upper bound to the number of upcrossings of {X (t)} on [0,M] . This

proves the following interesting upcrossing estimate.

Lemma 62.10.2 Let {Y (t)} be a continuous submartingale adapted to a normal filtration
Ft for t ∈ [0,M] . Then if UM

[a,b] is defined as the above upper bound to the number of
upcrossings of {Y (t)} for t ∈ [0,M] , then this is a random variable and

E
(

UM
[a,b]

)
≤ 1

b−a

(
E (Y (M)−a)++a−a

)
+1

=
1

b−a
E |Y (M)|+ 1

b−a
|a|+1

With this it is easy to prove a continuous submartingale convergence theorem.

Theorem 62.10.3 Let {X (t)} be a continuous submartingale adapted to a normal filtra-
tion such that

sup
t
{E (|X (t)|)}=C < ∞.

Then there exists X∞ ∈ L1 (Ω) such that

lim
t→∞

X (t)(ω) = X∞ (ω) a.e. ω.

Proof: Let U[a,b] be defined by

U[a,b] = lim
M→∞

UM
[a,b].

Thus the random variable U[a,b] is an upper bound for the number of upcrossings. From
Lemma 62.10.2 and the assumption of this theorem, there exists a constant C independent
of M such that

E
(

UM
[a,b]

)
≤ C

b−a
+1.

Letting M→ ∞, it follows from monotone convergence theorem that

E
(
U[a,b]

)
≤ C

b−a
+1
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also. Therefore, there exists a set of measure 0 Nab such that if ω /∈Nab, then U[a,b] (ω)<∞.
That is, there are only finitely many upcrossings. Now let

N = ∪{Nab : a,b ∈Q} .

It follows that for ω /∈ N, it cannot happen that

lim sup
t→∞

X (t)(ω)− lim inf
t→∞

X (t)(ω)> 0

because if this expression is positive, there would be arbitrarily large values of t where
X (t)(ω) > b and arbitrarily large values of t where X (t)(ω) < a where a,b are rational
numbers chosen such that

lim sup
t→∞

X (t)(ω)> b > a > lim inf
t→∞

X (t)(ω)

Thus there would be infinitely many upcrossings which is not allowed for ω /∈N. Therefore,
the limit limt→∞ X (t)(ω) exists for a.e. ω . Let X∞ (ω) equal this limit for ω /∈ N and let
X∞ (ω) = 0 for ω ∈ N. Then X∞ is measurable and by Fatou’s lemma,∫

Ω

|X∞ (ω)|dP≤ lim inf
n→∞

∫
Ω

|X (n)(ω)|dP <C. ■

Now here is an interesting result due to Doob.

Theorem 62.10.4 Let {M (t)} be a continuous real martingale adapted to the normal fil-
tration Ft . Then the following are equivalent.

1. The random variables M (t) are equiintegrable.

2. There exists M (∞) ∈ L1 (Ω) such that limt→∞ ∥M (∞)−M (t)∥L1(Ω) = 0.

In this case, M (t) = E (M (∞) |Ft) and convergence also takes place pointwise.

Proof: Suppose the equiintegrable condition. Then there exists λ large enough that for
all t, ∫

[|M(t)|≥λ ]
|M (t)|dt < 1.

It follows that for all t,∫
Ω

|M (t)|dP =
∫
[|M(t)|≥λ ]

|M (t)|dP+
∫
[|M(t)|<λ ]

|M (t)|dP

≤ 1+λ .

Since the martingale is bounded in L1, by Theorem 62.10.3 there exists M (∞) ∈ L1 (Ω)
such that limt→∞ M (t)(ω) =M (∞)(ω) pointwise a.e. By the assumption {M (t)} are equi-
integrable, it follows these functions are uniformly integrable. Letting δ > 0 be such that
if P(E)< δ , then ∫

E
|M (t)|dP <

ε

5
,
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and tn→∞, Egoroff’s theorem implies that there exists a set E of measure less than δ such
that on EC, the convergence of the M (tn) is uniform. Thus∫

Ω

|M (tm)−M (tn)|dP =
∫

E
|M (tm)−M (tn)|dP+

∫
EC
|M (tm)−M (tn)|dP

≤ 2ε

5
+
∫

EC
|M (tm)−M (tn)|dP < ε

whenever m,n are large enough. Therefore, the sequence {M (tn)} is Cauchy in L1 (Ω)
which implies it converges to something in L1 (Ω) which must equal M (∞) a.e.

Next suppose there is a function M (∞) to which M (t) converges in L1 (Ω) . Then for t
fixed and A ∈Ft , then as s→ ∞,s > t∫

A
M (t)dP =

∫
A

E (M (s) |Ft)dP≡
∫

A
M (s)dP

→
∫

A
M (∞)dP =

∫
A

E (M (∞) |Ft)

which shows E (M (∞) |Ft) = M (t) a.e. since A ∈Ft is arbitrary. By Lemma 62.7.11,∫
[|M(t)|≥λ ]

|M (t)|dP =
∫
[|M(t)|≥λ ]

|E (M (∞) |Ft)|dP

≤
∫
[|M(t)|≥λ ]

E (|M (∞)| |Ft)dP

=
∫
[|M(t)|≥λ ]

|M (∞)|dP (62.10.37)

Now from this,

λP([|M (t)| ≥ λ ]) ≤
∫
[|M(t)|≥λ ]

|M (t)|dP≤
∫

Ω

|E (M (∞) |Ft)|dP

≤
∫

Ω

E (|M (∞)| |Ft)dP =
∫

Ω

|M (∞)|dP

and so
P([|M (t)| ≥ λ ])≤ C

λ

From 62.10.37, this shows {M (t)} is uniformly integrable because this is true of the single
function |M (∞)|. By the submartingale convergence theorem, the convergence to M (∞)
also takes place pointwise. ■

62.11 Hitting This Before That
Let {M (t)} be a real valued martingale for t ∈ [0,T ] where T ≤ ∞ and M (0) = 0. In case
T = ∞, assume the conditions of Theorem 62.10.4 are satisfied. Thus there exists M (∞)
and the M (t) are equiintegrable. With the Doob optional sampling theorem it is possible to
estimate the probability that M (t) hits a before it hits b where a < 0 < b. There is no loss
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of generality in assuming T = ∞ since if it is less than ∞, you could just let M (t)≡M (T )
for all t > T. In this case, the equiintegrability of the M (t) follows because for t < T,∫

[|M(t)|>λ ]
|M (t)|dP =

∫
[|M(t)|>λ ]

|E (M (T ) |Ft)|dP

≤
∫
[|M(t)|>λ ]

|M (T )|dP

and from Theorem 62.9.5,

P(|M (t)|> λ )≤ P([M∗ (t)> λ ])≤ 1
λ

∫
Ω

|M (T )|dP.

Definition 62.11.1 Let M be a process adapted to the filtration Ft and let τ be a stopping
time. Then Mτ , called the stopped process is defined by

Mτ (t)≡M (τ ∧ t) .

With this definition, here is a simple lemma.

Lemma 62.11.2 Let M be a right continuous martingale adapted to the normal filtration
Ft and let τ be a stopping time. Then Mτ is also a martingale adapted to the filtration Ft .

Proof:Let s < t. By the Doob optional sampling theorem,

E (Mτ (t) |Fs)≡ E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = Mτ (s) .

Theorem 62.11.3 Let {M (t)} be a continuous real valued martingale adapted to the nor-
mal filtration Ft and let

M∗ ≡ sup{|M (t)| : t ≥ 0}

and M (0) = 0. Letting
τx ≡ inf{t > 0 : M (t) = x}

Then if a < 0 < b the following inequalities hold.

(b−a)P([τb ≤ τa])≥−aP([M∗ > 0])≥ (b−a)P([τb < τa])

and
(b−a)P([τa < τb])≤ bP([M∗ > 0])≤ (b−a)P([τa ≤ τb]) .

In words, P([τb ≤ τa]) is the probability that M (t) hits b no later than when it hits a. (Note
that if τa = ∞ = τb then you would have [τa = τb] .)

Proof: For x ∈ R, define

τx ≡ inf{t ∈ R such that M (t) = x}

with the usual convention that inf( /0) = ∞. Let a < 0 < b and let

τ = τa∧ τb
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Then the following claim will be important.
Claim: E (M (τ)) = 0.
Proof of the claim: Let t > 0. Then by the Doob optional sampling theorem,

E (M (τ ∧ t)) = E (E (M (t) |Fτ)) = E (M (t)) (62.11.38)
= E (E (M (t) |F0)) = E (M (0)) = 0. (62.11.39)

Observe the martingale Mτ must be bounded because it is stopped when M (t) equals either
a or b. There are two cases according to whether τ = ∞. If τ = ∞, then M (t) never hits a
or b so M (t) has values between a and b. In this case Mτ (t) = M (t) ∈ [a,b] . On the other
hand, you could have τ < ∞. Then in this case Mτ (t) is eventually equal to either a or b
depending on which it hits first. In either case, the martingale Mτ is bounded and by the
martingale convergence theorem, Theorem 62.10.3, there exists Mτ (∞) such that

lim
t→∞

Mτ (t)(ω) = Mτ (∞)(ω) = M (τ)(ω)

and since the Mτ (t) are bounded, the dominated convergence theorem implies

E (M (τ)) = lim
t→∞

E (M (τ ∧ t)) = 0.

This proves the claim.
Recall

M∗ (ω)≡ sup{|M (t)(ω)| : t ∈ [0,∞]} .
Also note that [τa = τb] = [τ = ∞]. Now from the claim,

0 = E (M (τ)) =
∫
[τa<τb]

M (τ)dP

+
∫
[τb<τa]

M (τ)dP+
∫
[τa=τb]∩[M∗>0]

M (∞)dP (62.11.40)

+
∫
[τa=τb]∩[M∗=0]

M (∞)dP

The last term equals 0. By continuity, M (τ) is either equal to a or b depending on whether
τa < τb or τb < τa. Thus

0 = E (M (τ)) = aP([τa < τb])

+bP([τb < τa])+
∫
[τa=τb]∩[M∗>0]

M (∞)dP (62.11.41)

Consider this last term. By the definition, [τa = τb] corresponds to M (t) never hitting
either a or b. Since M (0) = 0, this can only happen if M (t) has values in [a,b] . Therefore,
this last term satisfies

aP([τa = τb]∩ [M∗ > 0])

≤
∫
[τa=τb]∩[M∗>0]

M (∞)dP

≤ bP([τa = τb]∩ [M∗ > 0]) (62.11.42)
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It follows

aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])≤

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa]) (62.11.43)

Note that [τb < τa] , [τa < τb]⊆ [M∗ > 0] and so

[τb < τa]∪ [τa < τb]∪ ([τa = τb]∩ [M∗ > 0]) = [M∗ > 0] (62.11.44)

The following diagram may help in keeping track of the various substitutions.

[τa < τb] [τb < τa] [τb = τa]∩ [M∗ > 0]

[M∗ > 0]

Left side of 62.11.43

From 62.11.44, this yields on substituting for P([τa < τb])

0 ≥ aP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]
+bP([τb < τa])

and so since [τa ̸= τb]⊆ [M∗ > 0] ,

0≥ a [P([M∗ > 0])−P([τa > τb])]+bP([τb < τa])

−aP([M∗ > 0])≥ (b−a)P([τb < τa]) (62.11.45)

Next use 62.11.44 to substitute for P([τb < τa])

0≥ aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])

+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

= aP([τa ≤ τb]∩ [M∗ > 0])+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

and so
(b−a)P([τa ≤ τb])≥ bP([M∗ > 0]) (62.11.46)

Right side of 62.11.43

From 62.11.44, used to substitute for P([τa < τb]) this yields

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= bP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]
+bP([τb < τa])



2108 CHAPTER 62. STOCHASTIC PROCESSES

= bP([τa ≥ τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]

and so
(b−a)P([τa ≥ τb])≥−aP([M∗ > 0]) (62.11.47)

Next use 62.11.44 to substitute for the term P([τb < τa]) and write

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])

+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

= aP([τa < τb])+bP([M∗ > 0])−bP([τa < τb]∩ [M∗ > 0])
= aP([τa < τb])+bP([M∗ > 0])−bP([τa < τb])

and so
(b−a)P([τa < τb])≤ bP([M∗ > 0]) (62.11.48)

Now the boxed in formulas in 62.11.45 - 62.11.48 yield the conclusion of the theorem. This
proves the theorem.

Note P([τa < τb]) means M (t) hits a before it hits b with other occurrences of similar
expressions being defined similarly.

62.12 The Space M p
T (E)

Here p≥ 1.

Definition 62.12.1 Let M be an E valued martingale. Then M ∈M p
T (E) if t→M (t)(ω)

is continuous for a.e. ω and

E

(
sup

t∈[0,T ]
||M (t)||p

)
< ∞

Here E is a separable Banach space.

Proposition 62.12.2 Define a norm on M p
T (E) by

||M||M p
T (E) ≡ E

(
sup

t∈[0,T ]
||M (t)||p

)1/p

.

Then with this norm, M p
T (E) is a Banach space.

Proof: First it is good to observe that supt∈[0,T ] ||M (t)||p is measurable. This follows
because of the continuity of t →M (t) . Let D be a dense countable set in [0,T ] . Then by
continuity,

sup
t∈[0,T ]

||M (t)||p = sup
t∈D
||M (t)||p



62.12. THE SPACE M p
T (E) 2109

and the expression on the right is measurable because D is countable.
Next it is necessary to show this is a norm. It is clear that

||M||M p
T (E) ≥ 0

and equals 0 only if

0 = E

(
sup

t∈[0,T ]
||M (t)||p

)
which requires M (t) = 0 for all t for ω off a set of measure zero so that M = 0. It is also
clear that

||αM||M p
T (E) = |α| ||M||M p

T (E) .

It remains to check the triangle inequality. Let M,N ∈M p
T (E) .

||M+N||M p
T (E) ≡ E

(
sup

t∈[0,T ]
||M (t)+N (t)||p

)1/p

≤ E

(
sup

t∈[0,T ]
(||M (t)||+ ||N (t)||)p

)1/p

≤ E

((
sup

t∈[0,T ]
||M (t)||+ sup

t∈[0,T ]
||N (t)||

)p)1/p

≡

(∫
Ω

(
sup

t∈[0,T ]
||M (t)||+ sup

t∈[0,T ]
||N (t)||

)p

dP

)1/p

≤

(∫
Ω

(
sup

t∈[0,T ]
||M (t)||

)p

dP

)1/p

+

(∫
Ω

(
sup

t∈[0,T ]
||N (t)||

)p

dP

)1/p

≡ ||M||M p
T (E)+ ||N||M p

T (E)

Next consider the claim that M p
T (E) is a Banach space. Let {Mn} be a Cauchy se-

quence. Then

E

(
sup

t∈[0,T ]
||Mn (t)−Mm (t)||p

)
→ 0 (62.12.49)

as m,n→ ∞. From continuity,

sup
t∈[0,T ]

||Mn (t)−Mm (t)||= sup
t∈(0,T )

||Mn (t)−Mm (t)||

Then from theorem 62.5.3 or 62.9.4,

P

(
sup

t∈[0,T ]
||Mn (t)−Mm (t)||> λ

)
≤ 1

λ
p E (||Mn (T )−Mm (T )||p)
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Therefore, one can extract a subsequence
{

Mnk

}
such that

P

(
sup

t∈[0,T ]

∣∣∣∣Mnk (t)−Mnk+1 (t)
∣∣∣∣> 2−k

)
≤ 2−k.

By the Borel Cantelli lemma, it follows
{

Mnk (t)(ω)
}

converges uniformly on [0,T ] for
a.e. ω . Denote by M (t)(ω) the thing to which it converges, a continuous process because
of the uniform convergence. Also, because it is the pointwise limit off a set of measure
zero, ω →M (t)(ω) is Ft measurable. Also, from 62.12.49 and Fatou’s lemma∫

Ω

sup
t∈[0,T ]

||Mn (t)−M (t)||p dP

≤ lim inf
k→∞

∫
Ω

sup
t∈[0,T ]

∣∣∣∣Mn (t)−Mnk (t)
∣∣∣∣p dP≤ ε

whenever n is large enough, this from the assumption that {Mn } is Cauchy. Thus

lim
n→∞

E

(
sup

t∈[0,T ]
||Mn (t)−M (t)||p

)
= 0

and so for each t,Mn (t)→M (t) in Lp (Ω). This also shows that for large, n

E

(
sup

t∈[0,T ]
||M (t)||p

)
≤ E

(
sup

t∈[0,T ]
(||M (t)−Mn (t)||+ ||Mn (t)||)p

)

≤ 2p−1E

(
sup

t∈[0,T ]
||M (t)−Mn (t)||p + sup

t∈[0,T ]
(||Mn (t)||)p

)
< ∞

It only remains to verify M is a martingale. Let s≤ t and let B ∈Fs. For each s, Mn (s)→
M (s) in Lp (Ω). Then from the above, ω →M (s)(ω) is Fs measurable. Then it follows
that ∫

B
M (s)dP = lim

n→∞

∫
B

Mn (s)dP = lim
n→∞

∫
B

E (Mn (t) |Fs)dP

= lim
n→∞

∫
B

Mn (t)dP =
∫

B
M (t)dP

and so by definition, E (M (t) |Fs) = M (s) which shows M is a martingale. ■

Proposition 62.12.3 The functions M (t) for each M ∈M p
T (E) are equi integrable.

Proof: This follows because∫
[||M(t)||≥λ ]

||M (t)||p dP≤
∫
[supt∈[0,T ]||M(t)||≥λ ]

(
sup

t∈[0,T ]
||M (t)||p

)
dP (62.12.50)
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which converges to 0 due to the definition of M p
T (E) which requires that

sup
t∈[0,T ]

||M (t)||p ∈ L1 (Ω,F ,P) .

Since the sets
[
supt∈[0,T ] ||M (t)|| ≥ λ

]
decrease to /0 as λ →∞, the dominated convergence

theorem implies the integral on the right in 62.12.50 converges to 0. ■
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Chapter 63

The Quadratic Variation Of A Martin-
gale
63.1 How To Recognize A Martingale

The main ideas are most easily understood in the special case where it is assumed the
martingale is bounded. Then one can extend to more general situations using a localizing
sequence of stopping times.

Let {M (t)} be a continuous martingale having values in a separable Hilbert space. The
idea is to consider the submartingale,

{
||M (t)||2

}
and write it as the sum of a martingale

and a submartingale. An important part of the argument is the following lemma which
gives a checkable criterion for a stochastic process to be a martingale.

Lemma 63.1.1 Let {X (t)} be a stochastic process adapted to the filtration {Ft} for t ≥ 0.
Then it is a martingale for the given filtration if for every stopping time σ it follows

E (X (t)) = E (X (σ)) .

In fact, it suffices to check this on stopping times which have two values.

Proof: Let s < t and A ∈Fs. Define a stopping time

σ (ω)≡ sXA (ω)+ tXAC (ω)

This is a stopping time because [σ ≤ l] = Ω if l ≥ t. Also [σ ≤ l] = A ∈Fs if l ∈ [s, t) and
[σ ≤ l] = /0 if l < s. Then by assumption,∫

A
X (t)dP+

∫
AC

X (t)dP =

by assumption︷ ︸︸ ︷∫
X (t)dP =

∫
X (σ)dP =

∫
A

X (s)dP+
∫

AC
X (t)dP

Therefore, ∫
A

X (t)dP =
∫

A
X (s)dP

and since X (s) is Fs measurable, it follows E (X (t) |Fs) = X (s) a.e. and this shows
{X (t)} is a martingale. ■

Note that if t ∈ [0,T ] , it suffices to check the expectation condition for stopping times
which have two values no larger than T .

The following lemma will be useful.

Lemma 63.1.2 Suppose Xn→ X in L1 (Ω,F ,P;E) where E is a separable Banach space.
Then letting G be a σ algebra contained in F ,

E (Xn|G )→ E (X |G )

in L1 (Ω) .

2113
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Proof: This follows from the definitions and Theorem 61.1.1 on Page 1983.∫
Ω

||E (X |G )−E (Xn|G )||dP =
∫

Ω

||E (Xn−X |G )||dP

≤
∫

Ω

E (||Xn−X || |G )dP

=
∫

Ω

||Xn−X ||dP ■

Corollary 63.1.3 Let X ,Y be in L2 (Ω,F ,P;H) where H is a separable Hilbert space and
let X be G measurable where G ⊆F . Then

E ((X ,Y ) |G ) = (X ,E (Y |G )) a.e.

Proof: First let X = aXB where B ∈ G . Then for A ∈ G ,∫
A

E ((aXB,Y ) |G )dP =
∫

A
XBE ((a,Y ) |G )dP =

∫
A
XB (a,Y )dP

=
∫

A∩B
(a,Y )dP =

(
a,
∫

A∩B
Y dP

)
∫

A
(aXB,E (Y |G ))dP =

∫
A
XB (a,E (Y |G ))dP

=

(
a,
∫

A
XBE (Y |G )dP

)
=

(
a,
∫

A∩B
Y dP

)
It follows that the formula holds for X simple.

Therefore, letting Xn be a sequence of G measurable simple functions converging point-
wise to X and also in L2 (Ω) ,

E ((Xn,Y ) |G ) = (Xn,E (Y |G ))

Now the desired formula holds from Lemma 63.1.2. ■
The following is related to something called a martingale transform. It is a lot like what

will happen later with the Ito integral.

Proposition 63.1.4 Let {τk} be an increasing sequence of stopping times for the normal
filtration {Ft} such that

lim
k→∞

τk = ∞, τ0 = 0.

Also let ξ k be Fτk measurable with values in H, a separable Hilbert space and let M (t) be
a right continuous martingale adapted to the normal filtration Ft which has the property
that M (t) ∈ L2 (Ω;H) for all t,M (0) = 0. Then if |ξ k| ≤C,

E

(∑
k≥0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2


≤C2E
(
||M (t)||2

)
(63.1.1)
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Proof: First of all, the sum converges because eventually τk∧t = t. Therefore, for large
enough k, M (τk+1∧ t)−M (τk ∧ t)≡ ∆Mk = 0. Consider first the finite sum, k ≤ q.

E

( q

∑
k=0

(ξ k,∆Mk)

)2
 (63.1.2)

When the sum is multiplied out, you get mixed terms. Consider one of these mixed
terms, j < k

E
(
(ξ k,∆Mk)

(
ξ j,∆M j

))
Using Corollary 63.1.3 and Doob’s optional sampling theorem, Theorem 60.5.4, this equals

E
(

E
(
(ξ k,∆Mk)

(
ξ j,∆M j

)
|Fτk

))
= E

((
ξ j,∆M j

)
E
(
(ξ k,∆Mk) |Fτk

))
= E

((
ξ j,∆M j

)(
ξ k,E

(
M (τk+1∧ t)−M (τk ∧ t) |Fτk

)))
= E

((
ξ j,∆M j

)
(ξ k,0)

)
= 0

Note that in using the optional sampling theorem, the stopping time τk+1∧ t is bounded.
Therefore, the only terms which survive in 63.1.2 are the non mixed terms and so this

expression reduces to

q

∑
k=0

E (ξ k,∆Mk)
2 ≤C2

q

∑
k=0

E
(
||∆Mk||2

)

=C2
q

∑
k=0

E
(
||M (τk+1∧ t)−M (τk ∧ t)||2

)

= C2
q

∑
k=0

E
(
||M (τk+1∧ t)||2

)
+E

(
||M (τk ∧ t)||2

)
−2E ((M (τk ∧ t) ,M (τk+1∧ t))) (63.1.3)

Consider the term E ((M (τk ∧ t) ,M (τk+1∧ t))) . By Doob’s optional sampling theorem for
martingales and Corollary 63.1.3 again, this equals

E
(
E
(
(M (τk ∧ t) ,M (τk+1∧ t)) |Fτk

))
= E

((
M (τk ∧ t) ,E

(
M (τk+1∧ t) |Fτk

)))
= E ((M (τk ∧ t) ,M (τk+1∧ t ∧ τk)))

= E
(
||M (τk ∧ t)||2

)
It follows 63.1.3 equals

C2
q

∑
k=0

E
(
||M (τk+1∧ t)||2

)
−E

(
||M (τk ∧ t)||2

)
≤C2E

(
||M (t)||2

)
.
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Then from Fatou’s lemma,

E

(∑
k≥0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2
≤

lim inf
q→∞

E

( q

∑
k=0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2


≤ C2E
(
||M (t)||2

)
■

Now here is an interesting lemma which will be used to prove uniqueness in the main
result.

Lemma 63.1.5 Let Ft be a normal filtration and let A(t) ,B(t) be adapted to Ft , continu-
ous, and increasing with A(0) = B(0) = 0 and suppose A(t)−B(t) is a martingale. Then
A(t)−B(t) = 0 for all t.

Proof: I shall show A(l) = B(l) where l is arbitrary. Let M (t) be the name of the
martingale. Define a stopping time

τ ≡ inf{t > 0 : |M (t)|>C}∧ l∧ inf{t > 0 : A(t)>C}
∧ inf{t > 0 : B(t)>C}

where inf( /0)≡ ∞ and denote the stopped martingale

Mτ (t)≡M (t ∧ τ) .

Then I claim this is also a martingale with respect to the filtration Ft because by Doob’s
optional sampling theorem for martingales, if s < t,

E (Mτ (t) |Fs)≡ E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = M (τ ∧ s) = Mτ (s)

Note the bounded stopping time is τ∧t and the other one is σ = s in this theorem. Then Mτ

is a continuous martingale which is also uniformly bounded. It equals Aτ −Bτ . The stop-
ping time ensures Aτ and Bτ are uniformly bounded by C. Thus all of |Mτ (t)| ,Bτ (t) ,Aτ (t)
are bounded by C on [0, l] . Now let Pn≡{tk}n

k=1 be a uniform partition of [0, l] and let
Mτ (Pn) denote

Mτ (Pn)≡max{|Mτ (ti+1)−Mτ (ti)|}n
i=1 .

Then

E
(

Mτ (l)2
)
= E

(n−1

∑
k=0

Mτ (tk+1)−Mτ (tk)

)2


Now consider a mixed term in the sum where j < k.

E
(
(Mτ (tk+1)−Mτ (tk))

(
Mτ
(
t j+1

)
−Mτ (t j)

))
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= E
(
E
(
(Mτ (tk+1)−Mτ (tk))

(
Mτ
(
t j+1

)
−Mτ (t j)

)
|Ftk

))
= E

((
Mτ
(
t j+1

)
−Mτ (t j)

)
E
(
(Mτ (tk+1)−Mτ (tk)) |Ftk

))
= E

((
Mτ
(
t j+1

)
−Mτ (t j)

)
(Mτ (tk)−Mτ (tk))

)
= 0

It follows

E
(

Mτ (l)2
)

= E

(
n−1

∑
k=0

(Mτ (tk+1)−Mτ (tk))
2

)

≤ E

(
n−1

∑
k=0

Mτ (Pn) |Mτ (tk+1)−Mτ (tk)|
)

≤ E

(
n−1

∑
k=0

Mτ (Pn)(|Aτ (tk+1)−Aτ (tk)|+ |Bτ (tk+1)−Bτ (tk)|)

)

≤ E

(
Mτ (Pn)

n−1

∑
k=0

(|Aτ (tk+1)−Aτ (tk)|+ |Bτ (tk+1)−Bτ (tk)|)

)
≤ E (Mτ (Pn)2C)

the last step holding because A and B are increasing. Now letting n→ ∞, the right side
converges to 0 by the dominated convergence theorem and the observation that for a.e. ω,

lim
n→∞

Mτ (Pn)(ω) = 0

because of continuity of M. Thus for τ = τC given above,

M (l∧ τC) = 0 a.e.

Now let C ∈ N and let NC be the exceptional set off which M (l∧ τC) = 0. Then letting Nl
denote the union of all these exceptional sets for C ∈N, it is also a set of measure zero and
for ω not in this set, M (l∧ τC) = 0 for all C. Since the martingale is continuous, it follows
for each such ω, eventually τC > l and so M (l) = 0. Thus for ω /∈ Nl ,

M (l)(ω) = 0

Now let N = ∪l∈Q∩[0,∞)Nl . Then for ω /∈ N,M (l)(ω) = 0 for all l ∈ Q∩ [0,∞) and so by
continuity, this is true for all positive l. ■

Note this shows a continuous martingale is not of bounded variation unless it is a
constant.

63.2 The Quadratic Variation
This section is on the quadratic variation of a martingale. Actually, you can also consider
the quadratic variation of a local martingale which is more general. Therefore, this concept
is defined first. We will generally assume M (0) = 0 since there is no real loss of generality
in doing so. One can simply subtract M (0) otherwise.
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Definition 63.2.1 Let {M (t)} be adapted to the normal filtration Ft for t > 0. Then {M (t)}
is a local martingale (submartingale) if there exist stopping times τn increasing to infin-
ity such that for each n, the process Mτn (t) ≡M (t ∧ τn) is a martingale (submartingale)
with respect to the given filtration. The sequence of stopping times is called a localizing se-
quence. The martingale Mτn is called the stopped martingale . Exactly the same convention
applies to a localized submartingale.

Proposition 63.2.2 If M (t) is a continuous local martingale (submartingale) for a nor-
mal filtration as above, M (0) = 0, then there exists a localizing sequence τn such that
for each n the stopped martingale(submartingale) Mτn is uniformly bounded. Also if M
is a martingale, then Mτ is also a martingale (submartingale). If τn is an increasing se-
quence of stopping times such that limn→∞ τn =∞, and for each τn and real valued stopping
time δ , there exists a function X of τn∧δ such that X (τn∧δ ) is Fτn∧δ measurable, then
limn→∞ X (τn∧δ )≡ X (δ ) exists for each ω and X (δ ) is Fδ measurable.

Proof: First consider the claim about Mτ being a martingale (submartingale) when M
is. By optional sampling theorem,

E (Mτ (t) |Fs) = E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = Mτ (s) .

The case where M is a submartingale is similar.
Next suppose σn is a localizing sequence for the local martingale(submartingale) M.

Then define
ηn ≡ inf{t > 0 : ||M (t)||> n} .

Therefore, by continuity of M, ||M (ηn)|| ≤ n. Now consider τn ≡ ηn ∧σn. This is an
increasing sequence of stopping times. By continuity of M, it must be the case that ηn→∞.
Hence σn∧ηn→ ∞.

Finally, consider the last claim. Pick ω. Then X (τn (ω)∧δ (ω))(ω) is eventually con-
stant as n→ ∞ because for all n large enough, τn (ω) > δ (ω) and so this sequence of
functions converges pointwise. That which it converges to, denoted by X (δ ) , is Fδ mea-
surable because each function ω → X (τn (ω)∧δ (ω))(ω) is Fδ∧τn ⊆ Fδ measurable.
■

One can also give a generalization of Lemma 63.1.5 to conclude a local martingale
must be constant or else they must fail to be of bounded variation.

Corollary 63.2.3 Let Ft be a normal filtration and let A(t) ,B(t) be adapted to Ft , con-
tinuous, and increasing with A(0) = B(0) = 0 and suppose A(t)−B(t)≡M (t) is a local
martingale. Then M (t) = A(t)−B(t) = 0 a.e. for all t.

Proof: Let {τn} be a localizing sequence for M. For given n, consider the martingale,

Mτn (t) = Aτn (t)−Bτn (t)

Then from Lemma 63.1.5, it follows Mτn (t) = 0 for all t for all ω /∈ Nn, a set of measure
0. Let N = ∪nNn. Then for ω /∈ N, M (τn (ω)∧ t)(ω) = 0. Let n→ ∞ to conclude that
M (t)(ω) = 0. Therefore, M (t)(ω) = 0 for all t. ■

Recall Example 62.7.10 on Page 2083. For convenience, here is a version of what it
says.



63.2. THE QUADRATIC VARIATION 2119

Lemma 63.2.4 Let X (t) be continuous and adapted to a normal filtration Ft and let η be
a stopping time. Then if K is a closed set,

τ ≡ inf{t > η : X (t) ∈ K}

is also a stopping time.

Proof: First consider Y (t) = X (t ∨η)− X (η) . I claim that Y (t) is adapted to Ft .
Consider U and open set and [Y (t) ∈U ] . Is it in Ft? We know it is in Ft∨η . It equals

([Y (t) ∈U ]∩ [η ≤ t])∪ ([Y (t) ∈U ]∩ [η > t])

Consider the second of these sets. It equals

([X (η)−X (η) ∈U ]∩ [η > t])

If 0 ∈U, then it reduces to [η > t] ∈Ft . If 0 /∈U, then it reduces to /0 still in Ft . Next
consider the first set. It equals

[X (t ∨η)−X (η) ∈U ]∩ [η ≤ t]

= [X (t ∨η)−X (η) ∈U ]∩ [t ∨η ≤ t] ∈Ft

from the definition of Ft∨η . (You know that [X (t ∨η)−X (η) ∈U ] ∈Ft∨η and so when
this is intersected with [t ∨η ≤ t] one obtains a set in Ft . This is what it means to be in
Ft∨η .) Now τ is just the first hitting time of Y (t) of the closed set. ■

Proposition 63.2.5 Let M (t) be a continuous local martingale for t ∈ [0,T ] having values
in H a separable Hilbert space adapted to the normal filtration {Ft} such that M (0) = 0.
Then there exists a unique continuous, increasing, nonnegative, local submartingale [M] (t)
called the quadratic variation such that

||M (t)||2− [M] (t)

is a real local martingale and [M] (0) = 0. Here t ∈ [0,T ] . If δ is any stopping time[
Mδ

]
= [M]δ

Proof: First it is necessary to define some stopping times. Define stopping times
τn

0 ≡ ηn
0 ≡ 0.

η
n
k+1 ≡ inf

{
s > η

n
k : ||M (s)−M (ηn

k)||= 2−n} ,
τ

n
k ≡ η

n
k ∧T

where inf /0 ≡ ∞. These are stopping times by Example 62.7.10 on Page 2083. See also
Lemma 63.2.4. Then for t > 0 and δ any stopping time, and fixed ω, for some k,

t ∧δ ∈ Ik (ω) , I0 (ω)≡ [τn
0 (ω) ,τn

1 (ω)] , Ik (ω)≡ (τn
k (ω) ,τn

k+1 (ω)] some k
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Here is why. The sequence
{

τn
k (ω)

}∞

k=1 eventually equals T for all n sufficiently large.
This is because if it did not, it would converge, being bounded above by T and then by
continuity of M,

{
M
(
τn

k (ω)
)}∞

k=1 would be a Cauchy sequence contrary to the requirement
that ∣∣∣∣M (τn

k+1 (ω)
)
−M (τn

k (ω))
∣∣∣∣

=
∣∣∣∣M (ηn

k+1 (ω)
)
−M (ηn

k (ω))
∣∣∣∣= 2−n.

Note that if δ is any stopping time, then∣∣∣∣M (t ∧δ ∧ τ
n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∣∣∣∣

=
∣∣∣∣∣∣Mδ

(
t ∧ τ

n
k+1
)
−Mδ (t ∧ τ

n
k)
∣∣∣∣∣∣≤ 2−n

You can see this is the case by considering the cases, t ∧ δ ≥ τn
k+1, t ∧ δ ∈ [τn

k ,τ
n
k+1), and

t ∧ δ < τn
k . It is only this approximation property and the fact that the τn

k partition [0,T ]
which is important in the following argument.

Now let αn be a localizing sequence such that Mαn is bounded as in Proposition 63.2.2.
Thus Mαn (t) ∈ L2 (Ω) and this is all that is needed. In what follows, let δ be a stopping
time and denote Mα p∧δ by M to save notation. Thus M will be uniformly bounded and
from the definition of the stopping times τn

k , for t ∈ [0,T ] ,

M (t)≡ ∑
k≥0

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k) , (63.2.4)

and the terms of the series are eventually 0, as soon as ηn
k = ∞.

Therefore,

||M (t)||2 =

∣∣∣∣∣
∣∣∣∣∣∑k≥0

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)

∣∣∣∣∣
∣∣∣∣∣
2

Then this equals
= ∑

k≥0

∣∣∣∣M (t ∧ τ
n
k+1
)
−M (t ∧ τ

n
k)
∣∣∣∣2

+ ∑
j ̸=k

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,
(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)))

(63.2.5)

Consider the second sum. It equals

2 ∑
k≥0

k−1

∑
j=0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,
(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)))

= 2 ∑
k≥0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,

k−1

∑
j=0

(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)))

= 2 ∑
k≥0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,M (t ∧ τ

n
k)
)
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This last sum equals Pn (t) defined as

2 ∑
k≥0

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))
≡ Pn (t) (63.2.6)

This is because in the kth term, if t ≥ τn
k , then it reduces to(

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))

while if t < τn
k , then the term reduces to 0 which is also the same as(

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))

.

This is a finite sum because eventually, for large enough k, τn
k = T . However the number

of nonzero terms depends on ω . This is not a good thing. However, a little more can be
said. In fact the sum also converges in L2 (Ω). Say ||M (t,ω)|| ≤C.

E

( q

∑
k≥p

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))2



=
q

∑
k≥p

E
((

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))2
)
+ mixed terms (63.2.7)

Consider one of these mixed terms for j < k.

E


M

(
τ

n
j
)
,


∆ j︷ ︸︸ ︷

M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)
 ·

M (τn
k) ,


∆k︷ ︸︸ ︷

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)





Then it equals

E
(
E
((

M
(
τ

n
j
)
,∆ j
)(

M
(
τ

n
j
)
,∆k
)
|Fτk

))
= E

((
M
(
τ

n
j
)
,∆ j
)

E
((

M
(
τ

n
j
)
,∆k
)
|Fτk

))
= E

((
M
(
τ

n
j
)
,∆ j
)(

M
(
τ

n
j
)
,E
(
∆k|Fτk

)))
= 0

Now since the mixed terms equal 0, it follows from 63.2.7, that expression is dominated by

C2
q

∑
k≥p

E
(∣∣∣∣M (t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
∣∣∣∣2)
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Using a similar manipulation to what was just done to show the mixed terms equal 0, this
equals

C2
q

∑
k=p

E
(∣∣∣∣M (t ∧ τ

n
k+1
)∣∣∣∣2)−E

(
||M (t ∧ τ

n
k)||

2
)

≤ C2E
(∣∣∣∣M (t ∧ τ

n
q+1
)∣∣∣∣2− ∣∣∣∣M (t ∧ τ

n
p
)∣∣∣∣2)

The integrand converges to 0 as p,q→ ∞ and the uniform bound on M allows a use of the
dominated convergence theorem. Thus the partial sums of the series of 63.2.6 converge in
L2 (Ω) as claimed.

By adding in the values of
{

τ
n+1
k

}
Pn (t) can be written in the form

2 ∑
k≥0

(
M
(
τ

n+1′
k

)
,
(
M
(
t ∧ τ

n+1
k+1

)
−M

(
t ∧ τ

n+1
k

)))
where τ

n+1′
k has some repeats. From the construction,∣∣∣∣M (τn+1′

k

)
−M

(
τ

n+1
k

)∣∣∣∣≤ 2−(n+1)

Thus

Pn (t)−Pn+1 (t) = 2 ∑
k≥0

(
M
(
τ

n+1′
k

)
−M

(
τ

n+1
k

)
,
(
M
(
t ∧ τ

n+1
k+1

)
−M

(
t ∧ τ

n+1
k

)))
and so from Proposition 63.1.4 applied to ξ k ≡M

(
τ

n+1′
k

)
−M

(
τ

n+1
k

)
,

E
(
||Pn (t)−Pn+1 (t)||2

)
≤
(

2−2nE
(
||M (t)||2

))
. (63.2.8)

Now t→ Pn (t) is continuous because it is a finite sum of continuous functions. It is also
the case that {Pn (t)} is a martingale. To see this use Lemma 63.1.1. Let σ be a stopping
time having two values. Then using Corollary 63.1.3 and the Doob optional sampling
theorem, Theorem 62.7.14

E

(
q

∑
k=0

(
M (τn

k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

M (τn
k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

E
(
M (τn

k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
))
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
σ ∧ τ

n
k+1∧ τ

n
k
)
−M (σ ∧ τ

n
k)
)))

= 0
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Note the Doob theorem applies because σ ∧τn
k+1 is a bounded stopping time due to the fact

σ has only two values. Similarly

E

(
q

∑
k=0

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

E
(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
t ∧ τ

n
k+1∧ τ

n
k
)
−M (t ∧ τ

n
k)
)))

= 0

It follows each partial sum for Pn (t) is a martingale. As shown above, these partial sums
converge in L2 (Ω) and so it follows that Pn (t) is also a martingale. Note the Doob theorem
applies because t ∧ τn

k+1 is a bounded stopping time.
I want to argue that Pn is a Cauchy sequence in M 2

T (R). By Theorem 62.9.4 and
continuity of Pn

E

((
sup
t≤T
|Pn (t)−Pn+1 (t)|

)2
)1/2

≤ 2E
(
|Pn (T )−Pn+1 (T )|2

)1/2

By 63.2.8,

≤ 2−nE
(
||M (T )||2

)1/2

which shows {Pn} is indeed a Cauchy sequence in M 2
T (R).

Therefore, by Proposition 62.12.2, there exists {N (t)} ∈M 2
T (R) such that Pn→ N in

M 2
T (H) . That is

lim
n→∞

E

(
sup

t∈[0,T ]
|Pn (t)−N (t)|2

)1/2

= 0.

Since {N (t)} ∈M 2
T (R) , it is a continuous martingale and N (t) ∈ L2 (Ω) , and N (0) = 0

because this is true of each Pn (0) . From the above 63.2.5,

||M (t)||2 = Qn (t)+Pn (t) (63.2.9)

where
Qn (t) = ∑

k≥0

∣∣∣∣M (t ∧ τ
n
k+1
)
−M (t ∧ τ

n
k)
∣∣∣∣2
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and Pn (t) is a martingale. Then from 63.2.9, Qn (t) is a submartingale and converges for
each t to something, denoted as [M] (t) in L1 (Ω) uniformly in t ∈ [0,T ]. This is because
Pn (t) converges uniformly on [0,T ] to N (t) in L2 (Ω) and ||M (t)||2 does not depend on n.
Then also [M] is a submartingale which equals 0 at 0 because this is true of Qn and because
if A ∈Fs where s < t,∫

A
E ([M] (t) |Fs)dP≡

∫
A
[M] (t)dP = lim

n→∞

∫
A

(
||M (t)||2−Pn (t)

)
dP

= lim
n→∞

∫
A

E
(
||M (t)||2−Pn (t) |Fs

)
dP≥ lim inf

n→∞

∫
A
||M (s)||2−Pn (s)dP

= lim inf
n→∞

∫
A

Qn (s)dP =
∫

A
[M] (s)dP.

Note that Qn (t) is increasing because as t increases, the definition allows for the pos-
sibility of more nonzero terms in the sum. Therefore, [M] (t) is also increasing in t. The
function t→ [M] (t) is continuous because ||M (t)||2 = [M] (t)+N (t) and t→ N (t) is con-
tinuous as is t → ||M (t)||2 . That is, off a set of measure zero, these are both continuous
functions of t and so the same is true of [M] .

Now put back in Mα p∧δ in place of M. From the above, this has shown∣∣∣∣∣∣Mα p∧δ (t)
∣∣∣∣∣∣2 = [Mα p∧δ

]
(t)+Np (t)

where Np is a martingale and[
Mα p∧δ

]
(t) = lim

n→∞
∑
k≥0

∣∣∣∣∣∣Mα p∧δ
(
t ∧ τ

n
k+1
)
−Mα p∧δ (t ∧ τ

n
k)
∣∣∣∣∣∣2

= lim
n→∞

∑
k≥0

∣∣∣∣M (t ∧ τ
n
k+1∧α p∧δ

)
−M (t ∧ τ

n
k ∧α p∧δ )

∣∣∣∣2 in L1 (Ω) , (63.2.10)

the convergence being uniform on [0,T ] . The above formula shows that
[
Mα p∧δ

]
(t) is a

Ft∧δ∧α p measurable random variable which depends on t ∧ δ ∧α p.(Note that t ∧ δ is a
real valued stopping time even if δ = ∞.) Therefore, by Proposition 63.2.2, there exists a
random variable, denoted as

[
Mδ
]
(t) which is the pointwise limit as p→∞ of these random

variables which is Ft∧δ measurable because, for a given ω, when α p becomes larger than t,
the sum in 63.2.10 loses its dependence on p. Thus from pointwise convergence in 63.2.10,[

Mδ

]
(t)≡ lim

n→∞
∑
k≥0

∣∣∣∣M (t ∧δ ∧ τ
n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∣∣∣∣2

In case δ = ∞, the above gives an Ft measurable random variable denoted by [M] (t) such
that

[M] (t)≡ lim
n→∞

∑
k≥0

∣∣∣∣M (t ∧ τ
n
k+1
)
−M (t ∧ τ

n
k)
∣∣∣∣2

Now stopping with the stopping time δ , this shows that[
Mδ

]
(t)≡ lim

n→∞
∑
k≥0

∣∣∣∣M (t ∧δ ∧ τ
n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∣∣∣∣2 = [M]δ (t)
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That is, the quadratic variation of the stopped local martingale makes sense a.e. and equals
the stopped quadratic variation of the local martingale.

This has now shown that

||Mαn (t)||2− [M]αn (t) = ||Mαn (t)||2− [Mαn ] (t)

= Nn (t) , Nn (t) a martingale

and both of the random variables on the left converge pointwise as n→ ∞ to a function
which is Ft measurable. Hence so does Nn (t). Of course Nn (t) is likewise a function
of αn ∧ t and so by Proposition 63.2.2 again, it converges pointwise to a Ft measurable
function called N (t) and N (t) is a continuous local martingale.

It remains to consider the claim about the uniqueness. Suppose then there are two
which work, [M] , and [M]1. Then [M]− [M]1 equals a local martingale G which is 0 when
t = 0. Thus the uniqueness assertion follows from Corollary 63.2.3. ■

Here is a corollary which tells how to manipulate stopping times. It is contained in the
above proposition, but it is worth emphasizing it from a different point of view.

Corollary 63.2.6 In the situation of Proposition 63.2.5 let τ be a stopping time. Then

[Mτ ] = [M]τ .

Proof:

[M]τ (t)+N1 (t) =
(
||M||2

)τ

(t) = ||Mτ ||2 (t) = [Mτ ] (t)+N2 (t)

where Ni is a local martingale. Therefore,

[M]τ (t)− [Mτ ] (t) = N2 (t)−N1 (t) ,

a local martingale. Therefore, by Corollary 63.2.3, this shows [M]τ (t)− [Mτ ] (t) = 0. ■

63.3 The Covariation
Definition 63.3.1 The covariation of two continuous H valued local martingales for H a
separable Hilbert space M,N,M (0) = 0 = N (0) , is defined as follows.

[M,N]≡ 1
4
([M+N]− [M−N])

Lemma 63.3.2 The following hold for the covariation.

[M] = [M,M]

[M,N] = local martingale+
1
4

(
||M+N||2−||M−N||2

)
= (M,N)+ local martingale.
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Proof: From the definition of covariation,

[M] = ||M||2−N1

[M,M] =
1
4
([M+M]− [M−M]) =

1
4

(
||M+M||2−N2

)
= ||M||2− 1

4
N2

where Ni is a local martingale. Thus [M]− [M,M] is equal to the difference of two in-
creasing continuous adapted processes and it also equals a local martingale. By Corollary
63.2.3, this process must equal 0. Now consider the second claim.

[M,N] =
1
4
([M+N]− [M−N]) =

1
4

(
||M+N||2−||M−N||2 +N

)
= (M,N)+

1
4
N

where N is a local martingale. ■

Corollary 63.3.3 Let M,N be two continuous local martingales, M (0) = N (0) = 0, as in
Proposition 63.2.5. Then [M,N] is of bounded variation and

(M,N)H − [M,N]

is a local martingale. Also for τ a stopping time,

[M,N]τ = [Mτ ,Nτ ] = [Mτ ,N] = [M,Nτ ] .

In addition to this,
[M−Mτ ] = [M]− [Mτ ]≤ [M]

and also
(M,N)→ [M,N]

is bilinear and symmetric.

Proof: Since [M,N] is the difference of increasing functions, it is of bounded variation.

(M,N)H − [M,N] =

(M,N)H︷ ︸︸ ︷
1
4

(
||M+N||2−||M−N||2

)

−

[M,N]︷ ︸︸ ︷
1
4
([M+N]− [M−N])

which equals a local martingale from the definition of [M+N] and [M−N]. It remains to
verify the claim about the stopping time. Using Corollary 63.2.6

[M,N]τ =
1
4
([M+N]− [M−N])τ
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=
1
4
(
[M+N]τ − [M−N]τ

)
=

1
4
([Mτ +Nτ ]− [Mτ −Nτ ])≡ [Mτ ,Nτ ] .

The really interesting part is the next equality. This will involve Corollary 63.2.3.

[M,N]τ − [Mτ ,N] = [Mτ ,Nτ ]− [Mτ ,N]

≡ 1
4
([Mτ +Nτ ]− [Mτ −Nτ ])− 1

4
([Mτ +N]− [Mτ −N])

=
1
4
([Mτ +Nτ ]+ [Mτ −N])− 1

4
([Mτ +N]+ [Mτ −Nτ ]) , (63.3.11)

the difference of two increasing adapted processes. Also, this equals

local martingale − (Mτ ,N)+(Mτ ,Nτ)

Claim: (Mτ ,N)− (Mτ ,Nτ) = (Mτ ,N−Nτ) is a local martingale. Let σn be a localizing
sequence for both M and M. Such a localizing sequence is of the form τM

n ∧τN
n where these

are localizing sequences for the indicated local submartingale. Then obviously,

(−(Mτ ,N)+(Mτ ,Nτ))σn =−
(
Mσn∧τ ,Nσn

)
+
(
Mσn∧τ ,Nσn∧τ

)
where Nσn and Mσn are martingales. To save notation, denote these by M and N respec-
tively. Now use Lemma 63.1.1. Let σ be a stopping time with two values.

E ((Mτ (σ) ,N (σ)−Nτ (σ))) = E (E ((Mτ (σ) ,N (σ)−Nτ (σ)) |Fτ))

Now Mτ (σ) is M (σ ∧ τ) which is Fτ measurable and so by the Doob optional sampling
theorem,

= E (Mτ (σ) ,E (N (σ)−Nτ (σ) |Fτ))

= E (Mτ (σ) ,N (σ ∧ τ)−N (τ ∧σ)) = 0

while
E ((Mτ (t) ,N (t)−Nτ (t))) = E (E ((Mτ (t) ,N (t)−Nτ (t)) |Fτ))

Since Mτ (t) is Fτ measurable,

= E ((Mτ (t) ,E (N (t)−Nτ (t) |Fτ)))

= E ((Mτ (t) ,E (N (t ∧ τ)−N (t ∧ τ)))) = 0

This shows the claim is true.
Now from 63.3.11 and Corollary 63.3.3,

[M,N]τ − [Mτ ,N] = 0.

Similarly
[M,N]τ − [M,Nτ ] = 0
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Now consider the next claim that [M−Mτ ] = [M]− [Mτ ]. From the definition, it follows

[M−Mτ ]− ([M]+ [Mτ ]−2 [M,Mτ ])

= ||M−Mτ ||2−
(
||M||2 + ||Mτ ||2−2(M,Mτ)

)
+ local martingale

= local martingale.

By the first part of the corollary which ensures [M,Mτ ] is of bounded variation, the left side
is the difference of two increasing adapted processes and so by Corollary 63.2.3 again, the
left side equals 0. Thus from the above,

[M−Mτ ] = [M]+ [Mτ ]−2 [M,Mτ ]

= [M]+ [Mτ ]−2 [Mτ ,Mτ ]

= [M]+ [Mτ ]−2 [Mτ ]

= [M]− [Mτ ]≤ [M]

Finally consider the claim that [M,N] is bilinear. From the definition, letting M1,M2,N
be H valued local martingales,

(aM1 +bM2,N)H = [aM1 +bM2,N]+ local martingale
a(M1,N)+b(M2,N)H = a [M1,N]+b [M2,N]+ local martingale

Hence
[aM1 +bM2,N]− (a [M1,N]+b [M2,N]) = local martingale.

The left side can be written as the difference of two increasing functions thanks to [M,N]
of bounded variation and so by Lemma 63.1.5 it equals 0. [M,N] is obviously symmetric
from the definition. ■

63.4 The Burkholder Davis Gundy Inequality
Define

M∗ (ω)≡ sup{||M (t)(ω)|| : t ∈ [0,T ]} .

The Burkholder Davis Gundy inequality is an amazing inequality which involves M∗ and
[M] (T ).

Before presenting this, here is the good lambda inequality, Theorem 12.7.1 on Page 299
listed here for convenience.

Theorem 63.4.1 Let (Ω,F ,µ) be a finite measure space and let F be a continuous in-
creasing function defined on [0,∞) such that F (0) = 0. Suppose also that for all α > 1,
there exists a constant Cα such that for all x ∈ [0,∞),

F (αx)≤Cα F (x) .
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Also suppose f ,g are nonnegative measurable functions and there exists β > 1,0 < r ≤ 1,
such that for all λ > 0 and 1 > δ > 0,

µ ([ f > βλ ]∩ [g≤ rδλ ])≤ φ (δ )µ ([ f > λ ]) (63.4.12)

where limδ→0+ φ (δ ) = 0 and φ is increasing. Under these conditions, there exists a con-
stant C depending only on β ,φ ,r such that∫

Ω

F ( f (ω))dµ (ω)≤C
∫

Ω

F (g(ω))dµ (ω) .

The proof of this important inequality also will depend on the hitting this before that
theorem which is listed next for convenience.

Theorem 63.4.2 Let {M (t)} be a continuous real valued martingale adapted to the nor-
mal filtration Ft and let

M∗ ≡ sup{|M (t)| : t ≥ 0}

and M (0) = 0. Letting
τx ≡ inf{t > 0 : M (t) = x}

Then if a < 0 < b the following inequalities hold.

(b−a)P([τb ≤ τa])≥−aP([M∗ > 0])≥ (b−a)P([τb < τa])

and
(b−a)P([τa < τb])≤ bP([M∗ > 0])≤ (b−a)P([τa ≤ τb]) .

In words, P([τb ≤ τa]) is the probability that M (t) hits b no later than when it hits a. (Note
that if τa = ∞ = τb then you would have [τa = τb] .)

Then the Burkholder Davis Gundy inequality is as follows. Generalizations will be
presented later.

Theorem 63.4.3 Let {M (t)} be a continuous H valued martingale which is uniformly
bounded, M (0) = 0, where H is a separable Hilbert space and t ∈ [0,T ] . Then if F is
a function of the sort described in the good lambda inequality above, there are constants,
C and c independent of such martingales M such that

c
∫

Ω

F
(
([M] (T ))1/2

)
dP≤

∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
([M] (T ))1/2

)
dP

where
M∗ (ω)≡ sup{||M (t)(ω)|| : t ∈ [0,T ]} .

Proof: Using Corollary 63.3.3, let

N (t) ≡ ||M (t)−Mτ (t)||2− [M−Mτ ] (t)

= ||M (t)−Mτ (t)||2− [M] (t)+ [M]τ (t)
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where
τ ≡ inf{t ∈ [0,T ] : ||M (t)||> λ}

Thus N is a martingale and N (0)= 0. In fact N (t)= 0 as long as t ≤ τ . As usual inf( /0)≡∞.
Note

[τ < ∞] = [M∗ > λ ]⊇ [N∗ > 0] .

This is because to say τ < ∞ is to say there exists t < T such that ||M (t)||> λ which is the
same as saying M∗ > λ . Thus the first two sets are equal. If τ = ∞, then from the formula
for N (t) above, N (t) = 0 for all t ∈ [0,T ] and so it can’t happen that N∗ > 0. Thus the third
set is contained in [τ < ∞] as claimed.

Let β > 2 and let δ ∈ (0,1) . Then

β −1 > 1 > δ > 0

Consider the following which is set up to use the good lambda inequality.

Sr ≡ [M∗ > βλ ]∩
[
([M] (T ))1/2 ≤ rδλ

]
where 0 < r < 1.It is shown that Sr corresponds to hitting “this before that” and there is an
estimate for this which involves P([N∗ > 0]) which is bounded above by P([M∗ > λ ]) as
discussed above. This will satisfy the hypotheses of the good lambda inequality.

Claim: For ω ∈ Sr, N (t) hits λ
2
(

1−δ
2
)
.

Proof of claim: For ω ∈ Sr, there exists a t < T such that ||M (t)||> βλ and so using
Corollary 63.3.3,

N (t) ≥ |||M (t)||− ||Mτ (t)|||2− [M−Mτ ] (t)≥ |βλ −λ |2− [M] (t)

≥ (β −1)2
λ

2−δ
2
λ

2

which shows that N (t) hits (β −1)2
λ

2 − δ
2
λ

2 for ω ∈ Sr. By the intermediate value
theorem, it also hits λ

2
(

1−δ
2
)

. This proves the claim.

Claim: N (t)(ω) never hits −δ
2
λ

2 for ω ∈ Sr.

Proof of claim: Suppose t is the first time N (t) reaches −δ
2
λ

2. Then t > τ and so

N (t) = −δ
2
λ

2 ≥ |||M (t)||−λ |2− [M] (t)+ [Mτ ] (t)

≥ −r2
λ

2
δ

2,

a contradiction since r < 1. This proves the claim.
Therefore, for all ω ∈ Sr, N (t)(ω) reaches λ

2
(

1−δ
2
)

before it reaches −δ
2
λ

2. It
follows

P(Sr)≤ P
(

N (t) reaches λ
2
(

1−δ
2
)

before −δ
2
λ

2
)

and because of Theorem 62.11.3 this is no larger than

P([N∗ > 0])
δ

2
λ

2

λ
2
(

1−δ
2
)
−
(
−δ

2
λ

2
) = P([N∗ > 0])δ

2 ≤ δ
2P([M∗ > λ ]) .
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Thus
P
(
[M∗ > βλ ]∩

[
([M] (T ))1/2 ≤ rδλ

])
≤ P([M∗ > λ ])δ

2

By the good lambda inequality,∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
([M] (T ))1/2

)
dP

which is one half the inequality.
Now consider the other half. This time define the stopping time τ by

τ ≡ inf
{

t ∈ [0,T ] : ([M] (t))1/2 > λ

}
and let

Sr ≡
[
([M] (T ))1/2 > βλ

]
∩ [2M∗ ≤ rδλ ] .

Then there exists t < T such that [M] (t)> β
2
λ

2. This time, let

N (t)≡ [M] (t)− [Mτ ] (t)−||M (t)−Mτ (t)||2

This is still a martingale since by Corollary 63.3.3

[M] (t)− [Mτ ] (t) = [M−Mτ ] (t)

Claim: N (t)(ω) hits λ
2
(

1−δ
2
)

for some t < T for ω ∈ Sr.

Proof of claim: Fix such a ω ∈ Sr. Let t < T be such that [M] (t)> β
2
λ

2. Then t > τ

and so for that ω,

N (t) > β
2
λ

2−λ
2−||M (t)−M (τ)||2

≥ (β −1)2
λ

2− (||M (t)||+ ||M (τ)||)2

≥ (β −1)2
λ

2− r2
δ

2
λ

2 ≥ λ
2−δ

2
λ

2

By the intermediate value theorem, it hits λ
2
(

1−δ
2
)
. This proves the claim.

Claim: N (t)(ω) never hits −δ
2
λ

2 for ω ∈ Sr.
Proof of claim: By Corollary 63.3.3, if it did at t, then t > τ because N (t) = 0 for

t ≤ τ, and so

0 ≤ [M] (t)− [Mτ ] (t) = ||M (t)−M (τ)||2−δ
2
λ

2

≤ (||M (t)||+ ||M (τ)||)2−δ
2
λ

2 ≤ r2
δ

2
λ

2−δ
2
λ

2 < 0,

a contradiction. This proves the claim.
It follows that for each r ∈ (0,1) ,

P(Sr)≤ P
(

N (t) hits λ
2
(

1−δ
2
)

before −δ
2
λ

2
)
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By Theorem 62.11.3 this is no larger than

P([N∗ > 0])
δ

2
λ

2

λ
2
(

1−δ
2
)
+δ

2
λ

2
= P([N∗ > 0])δ

2

≤ P([τ < ∞])δ
2 = P

([
([M] (T ))1/2 > λ

])
δ

2

Now by the good lambda inequality, there is a constant k independent of M such that∫
Ω

F
(
([M] (T ))1/2

)
dP≤ k

∫
Ω

F (2M∗)dP≤ kC2

∫
Ω

F (M∗)dP

by the assumptions about F . Therefore, combining this result with the first part,

(kC2)
−1
∫

Ω

F
(
([M] (T ))1/2

)
dP ≤

∫
Ω

F (M∗)dP

≤ C
∫

Ω

F
(
([M] (T ))1/2

)
dP ■

Of course, everything holds for local martingales in place of martingales.

Theorem 63.4.4 Let {M (t)} be a continuous H valued local martingale, M (0) = 0, where
H is a separable Hilbert space and t ∈ [0,T ] . Then if F is a function of the sort described
in the good lambda inequality, that is,

F (0) = 0, F continuous, F increasing,

F (αx)≤ cα F (x) ,

there are constants, C and c independent of such local martingales M such that

c
∫

Ω

F
(
[M] (T )1/2

)
dP≤

∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
[M] (T )1/2

)
dP

where
M∗ (ω)≡ sup{||M (t)(ω)|| : t ∈ [0,T ]} .

Proof: Let {τn} be an increasing localizing sequence for M such that Mτn is uniformly
bounded. Such a localizing sequence exists from Proposition 63.2.2. Then from Theorem
63.4.3 there exist constants c,C independent of τn such that

c
∫

Ω

F
(
[Mτn ] (T )1/2

)
dP ≤

∫
Ω

F
(
(Mτn)∗

)
dP

≤ C
∫

Ω

F
(
[Mτn ] (T )1/2

)
dP

By Corollary 63.3.3, this implies

c
∫

Ω

F
((

[M]τn
)
(T )1/2

)
dP ≤

∫
Ω

F
(
(Mτn)∗

)
dP

≤ C
∫

Ω

F
((

[M]τn
)
(T )1/2

)
dP
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and now note that
(
[M]τn

)
(T )1/2 and (Mτn)∗ increase in n to [M] (T )1/2 and M∗ respec-

tively. Then the result follows from the monotone convergence theorem. ■
Here is a corollary [108].

Corollary 63.4.5 Let {M (t)} be a continuous H valued local martingale and let ε,δ ∈
(0,∞) . Then there is a constant C, independent of ε,δ such that

P


 M∗(T )︷ ︸︸ ︷

sup
t∈[0,T ]

||M (t)|| ≥ ε


≤ C

ε
E
(
[M]1/2 (T )∧δ

)
+P

(
[M]1/2 (T )> δ

)

Proof: Let the stopping time τ be defined by

τ ≡ inf
{

t > 0 : [M]1/2 (t)> δ

}
Then

P([M∗ ≥ ε]) = P([M∗ ≥ ε]∩ [τ = ∞])+P([M∗ ≥ ε]∩ [τ < ∞])

On the set where [τ = ∞] , Mτ = M and so P([M∗ ≥ ε])≤

≤ 1
ε

∫
Ω

(Mτ)∗ dP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
By Theorem 63.4.4 and Corollary 63.3.3,

≤ C
ε

∫
Ω

[Mτ ]1/2 (T )dP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
=

C
ε

∫
Ω

(
[M]τ

)1/2
(T )dP+P

(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
≤ C

ε

∫
Ω

[M]1/2 (T )∧δdP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
≤ C

ε

∫
Ω

[M]1/2 (T )∧δdP+P
([

[M]1/2 (T )> δ

])
■

The Burkholder Davis Gundy inequality along with the properties of the covariation implies
the following amazing proposition.

Proposition 63.4.6 The space M2
T (H) is a Hilbert space. Here H is a separable Hilbert

space.

Proof: We already know from Proposition 62.12.2 that this space is a Banach space. It
is only necessary to exhibit an equivalent norm which makes it a Hilbert space. However,
you can let F (λ )= λ

2 in the Burkholder Davis Gundy theorem and obtain for M ∈M2
T (H) ,

the two norms (∫
Ω

[M] (T )dP
)1/2

=

(∫
Ω

[M,M] (T )dP
)1/2
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and (∫
Ω

(M∗)2 dP
)1/2

are equivalent. The first comes from an inner product since from Corollary 63.3.3, [·, ·] is
bilinear and symmetric and nonnegative. If [M,M] (T ) = [M] (T ) = 0 in L1 (Ω) , then from
the Burkholder Davis Gundy inequality, M∗ = 0 in L2 (Ω) and so M = 0. Hence∫

Ω

[M,N] (T )dP

is an inner product which yields the equivalent norm. ■

Example 63.4.7 An example of a real martingale is the Wiener process, W (t). It has the
property that whenever t1 < t2 < · · · < tn, the increments {W (ti)−W (ti−1)} are indepen-
dent and whenever s < t,W (t)−W (s) is normally distributed with mean 0 and variance
(t− s). For the Wiener process, we let

Ft ≡ ∩u>tσ (W (s)−W (r) : r < s≤ u)

and it is with respect to this normal filtration that W is a continuous martingale. What is
the quadratic variation of such a process?

The quadratic variation of the Wiener process is just t. This is because if A ∈Fs,s < t,

E
(
XA

(
|W (t)|2− t

))
=

E
(
XA

(
|W (t)−W (s)|2 + |W (s)|2 +2(W (s) ,W (t)−W (s))− (t− s+ s)

))
Now

E (XA (2(W (s) ,W (t)−W (s)))) = P(A)E (2W (s))E (W (t)−W (s)) = 0

by the independence of the increments. Thus the above reduces to

E
(
XA

(
|W (t)−W (s)|2 + |W (s)|2− (t− s+ s)

))

= E
(
XA

(
|W (t)−W (s)|2− (t− s)

))
+E

(
XA

(
|W (s)|2− s

))
= P(A)E

(
|W (t)−W (s)|2− (t− s)

)
+E

(
XA

(
|W (s)|2− s

))
= E

(
XA

(
|W (s)|2− s

))
and so E

(
|W (t)|2− t|Fs

)
= |W (s)|2− s showing that t → |W (t)|2− t is a martingale.

Hence, by uniqueness, [W ] (t) = t.
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63.5 The Quadratic Variation And Stochastic Integra-
tion

Let Ft be a normal filtration and let {M (t)} be a continuous local martingale adapted to
Ft having values in U a separable real Hilbert space.

Definition 63.5.1 Let Ft be a normal filtration and let

f (t)≡
n−1

∑
k=0

fkX(tk,tk+1] (t)

where {tk}n
k=0 is a partition of [0,T ] and each fk is Ftk measurable, fkM∗ ∈ L2 (Ω) where

M∗ (ω)≡ sup
t∈[0,T ]

||M (t)(ω)||

Such a function is called an elementary function. Also let {M (t)} be a local martingale
adapted to Ft which has values in a separable real Hilbert space U such that M (0) = 0.
For such an elementary real valued function define

∫ t

0
f dM ≡

n−1

∑
k=0

fk (M (t ∧ tk+1)−M (t ∧ tk)) .

Then with this definition, here is a wonderful lemma.

Lemma 63.5.2 For f an elementary function as above,
{∫ t

0 f dM
}

is a continuous local
martingale and

E

(∣∣∣∣∣∣∣∣∫ t

0
f dM

∣∣∣∣∣∣∣∣2
U

)
=
∫

Ω

∫ t

0
f (s)2 d [M] (s)dP. (63.5.13)

If N is another continuous local martingale adapted to Ft and both f ,g are elementary
functions such that for each k,

fkM∗,gkN∗ ∈ L2 (Ω) ,

then

E
((∫ t

0
f dM,

∫ t

0
gdN

)
U

)
=
∫

Ω

∫ t

0
f gd [M,N] (63.5.14)

and both sides make sense.

Proof: Let {τ l} be a localizing sequence for M such that Mτ l is a bounded martingale.
Then from the definition, for each ω∫ t

0
f dM = lim

l→∞

∫ t

0
f dMτ l = lim

l→∞

(∫ t

0
f dM

)τ l
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and it is clear that
{∫ t

0 f dMτ l
}

is a martingale because it is just the sum of some martin-
gales. Thus {τ l} is a localizing sequence for

∫ t
0 f dM. It is also clear

∫ t
0 f dM is continuous

because it is a finite sum of continuous random variables.
Next consider the formula which is really a version of the Ito isometry. There is no loss

of generality in assuming the mesh points are the same for the two elementary functions
because if not, one can simply add in points to make this happen. It suffices to consider
63.5.14 because the other formula is a special case. To begin with, let {τ l} be a localizing
sequence which makes both Mτ l and Nτ l into bounded martingales. Consider the stopped
process.

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)

= E

((
n−1

∑
k=0

fk (Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,

n−1

∑
k=0

gk (Nτ l (t ∧ tk+1)−Nτ l (t ∧ tk))

))
To save on notation, write Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)≡ ∆Mk (t) , similar for ∆Nk. Thus

∆Mk = Mτ l∧tk+1 −Mτ l∧tk ,

similar for ∆Nk. Then the above equals

E

(
n−1

∑
k=0

(
fk∆Mk,

n−1

∑
k=0

gk∆Nk

))
= E

(
∑
k, j

fkg j (∆Mk,∆N j)

)
Now consider one of the mixed terms with j < k.

E (( fk∆Mk,g j∆N j)) = E
(
E
(
( fk∆Mk,g j∆N j) |Ftk

))
= E

(
g j∆N j, fkE

(
∆Mk|Ftk

))
= 0

since E
(
∆Mk|Ftk

)
= E

(
(Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) |Ftk

)
= 0 by the Doob optional sam-

pling theorem. Thus

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)
= (63.5.15)

=
n−1

∑
k=0

E ( fkgk (∆Mk,∆Nk)) =
n−1

∑
k=0

E ( fkgk ([∆Mk,∆Nk]+Nk)) (63.5.16)

where Nk is a martingale such that Nk (t) = 0 for all t ≤ tk. This is because the martin-
gale (Nτ l )tk+1 − (Nτ l )tk = ∆Nk equals 0 for such t; and so E (Nk (t)) = 0. Thus fkgkNk
is a martingale which equals zero when t = 0. Therefore, its expectation also equals 0.
Consequently the above reduces to

n−1

∑
k=0

E ( fkgk [∆Mk,∆Nk]) .
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At this point, recall the definition of the covariation. The above equals

1
4

n−1

∑
k=0

E ( fkgk ([∆Mk +∆Nk]− [∆Mk−∆Nk]))

Rewriting this yields

=
1
4

n−1

∑
k=0

E
(

fkgk
([
(Mτ l )tk+1 +(Nτ l )tk+1 −

(
(Mτ l )tk +(Nτ l )tk

)]
−
[
(Mτ l )tk+1 − (Nτ l )tk+1 −

(
(Mτ l )tk − (Nτ l )tk

)]))
To save on notation, denote

(Mτ l )tk+1 +(Nτ l )tk+1 −
(
(Mτ l )tk +(Nτ l )tk

)
≡ ∆k (Mτ l +Nτ l )

(Mτ l )tk+1 − (Nτ l )tk+1 −
(
(Mτ l )tk − (Nτ l )tk

)
≡ ∆k (Mτ l −Nτ l )

Thus the above equals

1
4

n−1

∑
k=0

E ( fkgk ([∆k (Mτ l +Nτ l )]− [∆k (Mτ l −Nτ l )]))

Now from Corollary 63.3.3,

=
1
4

n−1

∑
k=0

E
(

fkgk
(
[∆k (M+N)]τ l − [∆k (M−N)]τ l

))
Letting l→ ∞, this reduces to

=
1
4

n−1

∑
k=0

E ( fkgk ([∆k (M+N)]− [∆k (M−N)]))

=
1
4

(∫
Ω

∫ t

0
f g(d [M+N]−d [M−N])

)
=

∫
Ω

∫ t

0
f gd [M,N]

Now consider the left side of 63.5.16.

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)

≡
∫

Ω
∑
k, j

fkg j ((Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,(
Nτ l
(
t ∧ t j+1

)
−Nτ l (t ∧ t j)

))
dP
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Then for each ω, the integrand converges as l→ ∞ to

∑
k, j

fkg j
(
(M (t ∧ tk+1)−M (t ∧ tk)) ,

(
N
(
t ∧ t j+1

)
−N (t ∧ t j)

))
But also you can do a sloppy estimate which will allow the use of the dominated conver-
gence theorem.∥∥∥∥∥∑k, j fkg j (Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,

(
Nτ l
(
t ∧ t j+1

)
−Nτ l (t ∧ t j)

)∥∥∥∥∥
≤∑

k, j
| fk|
∣∣g j
∣∣4M∗N∗ ∈ L1 (Ω)

by assumption. Thus the left side of 63.5.16 converges as l→ ∞ to∫
Ω

∑
k, j

fkg j
(
(M (t ∧ tk+1)−M (t ∧ tk)) ,

(
N
(
t ∧ t j+1

)
−N (t ∧ t j)

))
dP

=
∫

Ω

(∫ t

0
f dM,

∫ t

0
gdN

)
U

dP ■

Note for each ω, the inside integral in 63.5.13 is just a Stieltjes integral taken with
respect to the increasing integrating function [M].

Of course, with this estimate it is obvious how to extend the integral to a larger class of
functions.

Definition 63.5.3 Let ν (ω) denote the Radon measure representing the functional

Λ(ω)(g)≡
∫ T

0
gd [M] (t)(ω)

(t→ [M] (t)(ω) is a continuous increasing function and ν (ω) is the measure representing
the Stieltjes integral, one for each ω .) Then let GM denote functions f (s,ω) which are the
limit of such elementary functions in the space L2

(
Ω;L2 ([0,T ] ,ν (·))

)
, the norm of such

functions being

|| f ||2G ≡
∫

Ω

∫ T

0
f (s)2 d [M] (s)dP

For f ∈ G just defined, ∫ t

0
f dM ≡ lim

n→∞

∫ t

0
fndM

where { fn} is a sequence of elementary functions converging to f in

L2 (
Ω;L2 ([0,T ] ,ν (·))

)
.

Now here is an interesting lemma.
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Lemma 63.5.4 Let M,N be continuous local martingales, M (0)=N (0)= 0 having values
in a separable Hilbert space, U. Then

[M+N]1/2 ≤
(
[M]1/2 +[N]1/2

)
(63.5.17)

[M+N]≤ 2([M]+ [N]) (63.5.18)

Also, letting νM+N denote the measure obtained from the increasing function [M+N] and
νN ,νM defined similarly,

νM+N ≤ 2(νM +νN) (63.5.19)

on all Borel sets.

Proof: Since (M,N)→ [M,N] is bilinear and satisfies

[M,N] = [N,M]

[aM+bM1,N] = a [M,N]+b [M1,N]

[M,M] ≥ 0

which follows from Corollary 63.3.3, the usual Cauchy Schwarz inequality holds and so

|[M,N]| ≤ [M]1/2 [N]1/2

Thus

[M+N] ≡ [M+N,M+N] = [M,M]+ [N,N]+2 [M,N]

≤ [M]+ [N]+2 [M]1/2 [N]1/2 =
(
[M]1/2 +[N]1/2

)2

This proves 63.5.17. Now square both sides. Then the right side is no larger than

2([M]+ [N])

and this shows 63.5.18.
Now consider the claim about the measures. It was just shown that

[(M+N)− (M+N)s]≤ 2([M−Ms]+ [N−Ns])

and from Corollary 63.3.3 this implies that for t > s

[M+N] (t)− [M+N] (s∧ t)

= [M+N] (t)− [M+N]s (t)

= [M+N− (Ms +Ns)] (t)

= [M−Ms +(N−Ns)] (t)

≤ 2 [M−Ms] (t)+2 [N−Ns] (t)

≤ 2([M] (t)− [M] (s))+2([N] (t)− [N] (s))
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Thus
νM+N ([s, t])≤ 2(νM ([s, t])+νN ([s, t]))

By regularity of the measures, this continues to hold with any Borel set F in place of [s, t].
■

Theorem 63.5.5 The integral is well defined and has a continuous version which is a local
martingale. Furthermore it satisfies the Ito isometry,

E

(∣∣∣∣∣∣∣∣∫ t

0
f dM

∣∣∣∣∣∣∣∣2
U

)
=
∫

Ω

∫ t

0
f (s)2 d [M] (s)dP

Let the norm on GN ∩GM be the maximum of the norms on GN and GM and denote by EN
and EM the elementary functions corresponding to the martingales N and M respectively.
Define GNM as the closure in GN ∩GM of EN ∩EM . Then for f ,g ∈ GNM,

E
((∫ t

0
f dM,

∫ t

0
gdN

))
=
∫

Ω

∫ t

0
f gd [M,N] (63.5.20)

Proof: It is clear the definition is well defined because if { fn} and {gn} are two se-
quences of elementary functions converging to f in L2

(
Ω;L2 ([0,T ] ,ν (·))

)
and if

∫ 1t
0 f dM

is the integral which comes from {gn} ,

∫
Ω

∣∣∣∣∣∣∣∣∫ 1t

0
f dM−

∫ t

0
f dM

∣∣∣∣∣∣∣∣2 dP

= lim
n→∞

∫
Ω

∣∣∣∣∣∣∣∣∫ t

0
gndM−

∫ t

0
fndM

∣∣∣∣∣∣∣∣2 dP

≤ lim
n→∞

∫
Ω

∫ T

0
||gn− fn||2 dνdP = 0.

Consider the claim the integral has a continuous version. Recall Theorem 62.9.4, part
of which is listed here for convenience.

Theorem 63.5.6 Let {X (t)} be a right continuous nonnegative submartingale adapted to
the normal filtration Ft for t ∈ [0,T ]. Let p≥ 1. Define

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0.

Then for λ > 0

P([X∗ (T )> λ ])≤ 1
λ

p

∫
Ω

X (T )p dP (63.5.21)

Let { fn} be a sequence of elementary functions converging to f in

L2 (
Ω;L2 ([0,T ] ,ν (·))

)
.



63.5. THE QUADRATIC VARIATION AND STOCHASTIC INTEGRATION 2141

Then letting

Xτ l
n,m (t) =

∣∣∣∣∣∣∣∣∫ t

0
( fn− fm)dMτ l

∣∣∣∣∣∣∣∣
U
,

Xn,m (t) =

∣∣∣∣∣∣∣∣∫ t

0
( fn− fm)dM

∣∣∣∣∣∣∣∣
U

=

∣∣∣∣∣∣∣∣∫ t

0
fndM−

∫ t

0
fmdM

∣∣∣∣∣∣∣∣
U

It follows Xτ l
n,m is a continuous nonnegative submartingale and from Theorem 62.9.4 just

listed,

P
([

Xτ l∗
n,m (T )> λ

])
≤ 1

λ
2

∫
Ω

Xτ l
n,m (T )2 dP

≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [Mτ l ]dP

≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [M]dP

Letting l→ ∞,

P
([

X∗n,m (T )> λ
])
≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [M]dP

Therefore, there exists a subsequence, still denoted by { fn} such that

P
([

X∗n,n+1 (T )> 2−n])< 2−n

Then by the Borel Cantelli lemma, the ω in infinitely many of the sets[
X∗n,n+1 (T )> 2−n]

has measure 0. Denoting this exceptional set as N, it follows that for ω /∈ N, there exists
n(ω) such that for n > n(ω) ,

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣∫ t

0
fndM−

∫ t

0
fn+1dM

∣∣∣∣∣∣∣∣≤ 2−n

and this implies uniform convergence of
{∫ t

0 fndM
}

. Letting

G(t) = lim
n→∞

∫ t

0
fndM,

for ω /∈N and G(t) = 0 for ω ∈N, it follows that for each t, the continuous adapted process
G(t) equals

∫ t
0 f dM a.e. Thus

{∫ t
0 f dM

}
has a continuous version.
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It suffices to verify 63.5.20. Let { fn} and {gn} be sequences of elementary functions
converging to f and g in GM ∩GN . By Lemma 63.5.2,

E
((∫ t

0
fndM,

∫ t

0
gndN

)
U

)
=
∫

Ω

∫ t

0
fngnd [M,N]

Then by the Holder inequality and the above definition,

lim
n→∞

E
((∫ t

0
fndM,

∫ t

0
gndN

)
U

)
= E

((∫ t

0
f dM,

∫ t

0
gdN

)
U

)
Consider the right side which equals

1
4

∫
Ω

∫ t

0
fngnd [M+N]dP− 1

4

∫
Ω

∫ t

0
fngnd [M−N]dP

Now from Lemma 63.5.4,∣∣∣∣∫
Ω

∫ t

0
fngnd [M+N]dP−

∫
Ω

∫ t

0
f gd [M+N]dP

∣∣∣∣
=

∣∣∣∣∫
Ω

∫ t

0
fngndνM+NdP−

∫
Ω

∫ t

0
f gdνM+NdP

∣∣∣∣
≤ 2

(∫
Ω

∫ t

0
| fngn− f g|dνMdP+

∫
Ω

∫ t

0
| fngn− f g|dνNdP

)
and by the choice of the fn and gn, these both converge to 0. Similar considerations apply
to ∣∣∣∣∫

Ω

∫ t

0
fngnd [M−N]dP−

∫
Ω

∫ t

0
f gd [M−N]dP

∣∣∣∣
and show

lim
n→∞

∫
Ω

∫ t

0
fngnd [M,N] =

∫
Ω

∫ t

0
f gd [M,N] ■

63.6 Another Limit For Quadratic Variation
The problem to consider first is to define an integral∫ t

0
f dM

where f has values in H ′ and M is a continuous martingale having values in H. For the
sake of simplicity assume M (0) = 0. The process of definition is the same as before. First
consider an elementary function

f (t)≡
m−1

∑
k=0

fkX(tk,tk+1] (t) (63.6.22)

where fk is measurable into H ′ with respect to Ftk . Then define∫ t

0
f dM ≡

m−1

∑
k=0

fk (M (t ∧ tk+1)−M (t ∧ tk)) ∈ R (63.6.23)



63.6. ANOTHER LIMIT FOR QUADRATIC VARIATION 2143

Lemma 63.6.1 The kth term in the above sum is a martingale and the integral is also a
martingale.

Proof: Let σ be a stopping time with two values. Then

E ( fk (M (σ ∧ tk+1)−M (σ ∧ tk)))

= E
(
E
(

fk (M (σ ∧ tk+1)−M (σ ∧ tk)) |Ftk

))
= E

(
fkE
(
(M (σ ∧ tk+1)−M (σ ∧ tk)) |Ftk

))
= 0

and it works the same with σ replaced with t. Hence by the lemma about recognizing
martingales, Lemma 63.1.1, each term is a martingale and so it follows that the integral∫ t

0 f dM is also a martingale. ■
Note also that, since M is continuous, this is a continuous martingale.
As before, it is important to estimate this.

E

(∣∣∣∣∫ t

0
f dM

∣∣∣∣2
)
≤?

Consider a mixed term. For j < k, it follows from measurability considerations that

E
(
( fk (M (t ∧ tk+1)−M (t ∧ tk)))

(
f j
(
M
(
t ∧ t j+1

)
−M (t ∧ t j)

)))
= E

(
E
[
( fk (M (t ∧ tk+1)−M (t ∧ tk)))

(
f j
(
M
(
t ∧ t j+1

)
−M (t ∧ t j)

))
|Ftk

])
= E

((
f j
(
M
(
t ∧ t j+1

)
−M (t ∧ t j)

))
fkE
[
(M (t ∧ tk+1)−M (t ∧ tk)) |Ftk

])
= 0

Therefore,

E

(∣∣∣∣∫ t

0
f dM

∣∣∣∣2
)

= E

(
m−1

∑
k=0
| fk (M (t ∧ tk+1)−M (t ∧ tk))|2

)

≤ E

(
m−1

∑
k=0
∥ fk∥2 |M (t ∧ tk+1)−M (t ∧ tk)|2

)

= E

(
m−1

∑
k=0
∥ fk∥2 ([Mtk+1 −Mtk

]
(t)+Nk (t)

))

= E

(
m−1

∑
k=0
∥ fk∥2 ([Mtk+1

]
(t)−

[
Mtk
]
(t)+Nk (t)

))

= E

(
m−1

∑
k=0
∥ fk∥2 ([M] (t ∧ tk+1)− [M] (t ∧ tk)+Nk (t))

)

= E

(
m−1

∑
k=0
∥ fk∥2 ([M] (t ∧ tk+1)− [M] (t ∧ tk))

)
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where Nk is a martingale which equals 0 for t ≤ tk. The above equals

E
(∫ t

0
∥ f∥2 d [M]

)
≡ E

(∫ t

0
∥ f∥2 dν

)
the integral inside being the ordinary Lebesgue Stieltjes integral for the step function where
ν is the measure determined by the positive linear functional

Λg =
∫ T

0
gd [M]

where the integral on the right is the ordinary Stieltjes integral. Thus, the following in-
equality is obtained.

E

(∣∣∣∣∫ t

0
f dM

∣∣∣∣2
)
≤ E

(∫ t

0
∥ f∥2 d [M] ,

)
(63.6.24)

Now what would it take for

E

(∣∣∣∣∫ t

0
f dM

∣∣∣∣2
)

(63.6.25)

to be well defined? A convenient condition would be to insist that each ∥ fk∥M∗ is in
L2 (Ω) where

M∗ (ω)≡ sup
t∈[0,T ]

|M (t)(ω)|H

Is this condition also sufficient for the above integral 63.6.25 to be finite? From the
above, that integral equals

E

(
m−1

∑
k=0
∥ fk∥2 |M (t ∧ tk+1)−M (t ∧ tk)|2

)

≤ E

(
4

m−1

∑
k=0
∥ fk∥2 (M∗)2

)
Thus the condition that for each k,∥ fk∥M∗ ∈ L2 (Ω) is sufficient for all of the above to
consist of real numbers and be well defined.

Definition 63.6.2 A function f is called an elementary function if it is a step function of the
form given in 63.6.22 where each fk is Ftk measurable and for each k,∥ fk∥M∗ ∈ L2 (Ω).
Define GM to be the collection of functions f having values in H ′ which have the property
that there exists a sequence of elementary functions { fn} with fn→ f in the space

L2 (
Ω;L2 ([0,T ] ,ν)

)
Then picking such an approximating sequence,∫ t

0
f dM ≡ lim

n→∞

∫ t

0
fndM

the convergence happening in L2 (Ω).
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The inequality 63.6.24 shows that this definition is well defined. So what are the prop-
erties of the integral just defined? Each

∫ t
0 fndM is a continuous martingale because it is

the sum of continuous martingales. Since convergence happens in L2 (Ω) , it follows that∫ t
0 f dM is also a martingale. Is it continuous? By the maximal inequality Theorem 62.9.4,

it follows that

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
fmdM−

∫ t

0
fndM

∣∣∣∣> λ

])
≤ 1

λ
2 E

(∣∣∣∣∫ T

0
( fm− fn)dM

∣∣∣∣2
)

≤ 1

λ
2 E
(∫ T

0
∥ fm− fn∥2 d [M]

)
and it follows that there exists a subsequence, still called n such that for all p positive,

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
fn+pdM−

∫ t

0
fndM

∣∣∣∣> 1
n

])
< 2−n

By the Borel Cantelli lemma, there exists a set of measure zero N such that for ω /∈ N,{∫ t
0 fndM

}
is a Cauchy sequence. Thus, what it converges to is continuous in t for each

ω /∈ N and for each t, it equals
∫ t

0 f dM a.e. Hence we can regard
∫ t

0 f dM as this continuous
version.

What is an example of such a function in GM?

Lemma 63.6.3 Let R : H→ H ′ be the Riesz map.

⟨R f ,g⟩ ≡ ( f ,g)H .

Also suppose M is a uniformly bounded continuous martingale with values in H. Then
RM ∈ GM .

Proof: I need to exhibit an approximating sequence of elementary functions as de-
scribed above. Consider

Mn (t)≡
mn−1

∑
i=0

M (ti)X(tn
i ,t

n
i+1]

(t)

Then clearly RMn (ti)M∗ ∈ L∞ (Ω) and so in particular it is in L2 (Ω) . Here

lim
n→∞

max
{∣∣tn

i − tn
i+1
∣∣ , i = 0, · · · ,mn

}
= 0.

Say M∗ (ω)≤C. Furthermore, I claim that

lim
n→∞

E
(∫ T

0
∥RMn−RM∥2 d [M]

)
= 0. (63.6.26)

This requires a little proof. Recall the description of [M] (t) . It was as follows. You con-
sidered

Pn (t)≡ 2 ∑
k≥0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,M (t ∧ τ

n
k)
)
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where the stopping times were defined such that τn
k+1 is the first time t > τn

k such that∣∣M (t)−M
(
τn

k

)∣∣2 = 2−n and τn
0 = 0. Recall that limk→∞ τn

k = ∞ or T in the way it was
formulated earlier. Then it was shown that Pn (t) converged to a martingale P(t) in L1 (Ω).
Then by the usual procedure using the Borel Cantelli lemma, a subsequence converges to
P(t) uniformly off a set of measure zero. It is easy to estimate Pn (t) .

|Pn (t)| ≤ ∑
k≥0

∣∣M (t ∧ τ
n
k+1
)∣∣2−|M (t ∧ τ

n
k)|

2 = |M (t)|2 ≤M∗

This follows from the observation that(
M
(
t ∧ τ

n
k+1
)
,M (t ∧ τ

n
k)
)
≤ 1

2

(∣∣M (t ∧ τ
n
k+1
)∣∣2 + |M (t ∧ τ

n
k)|

2
)

Then it follows that supt∈[0,T ] |P(t)(ω)| ≤M∗ (ω)≤C for a.e. ω. The quadratic variation
[M] was defined as

|M (t)|2 = P(t)+ [M] (t)

Thus [M] (t) ≤ 2(M∗)2. Now consider the above limit in 63.6.26. From the assumption
that M is uniformly bounded,∫ T

0
∥RMn−RM∥2 d [M]≤

∫ T

0
4C2d [M] = 4C2 [M] (T )≤ 4C2 (2C2)< ∞

Also, by the continuity of the martingale, for each ω,

lim
n→∞
∥RMn−RM∥2 = 0

By the dominated convergence theorem, and the fact that the integrand is bounded,

lim
n→∞

∫ T

0
∥RMn−RM∥2 d [M] = 0.

Then from the above estimate and the dominated convergence theorem again, 63.6.26 fol-
lows. Thus RM ∈ GM . ■

From the above lemma, it makes sense to speak of∫ t

0
(RM)dM

and this is a continuous martingale having values in R. Also from the above argument, if{
tn
k

}mn
k=0 is a sequence of partitions such that

lim
n→∞

max
{∣∣tn

i − tn
i+1
∣∣ , i = 0, · · · ,mn

}
= 0,

then it follows that
mn−1

∑
i=0

RM (ti)(M (t ∧ tk+1)−M (t ∧ tk))→
∫ t

0
(RM)dM

in L2 (Ω), this for each t ∈ [0,T ].
Now here is the main result.
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Theorem 63.6.4 Let H be a Hilbert space and suppose (M,Ft) , t ∈ [0,T ] is a uniformly
bounded continuous martingale with values in H. Also let

{
tn
k

}mn
k=1 be a sequence of parti-

tions satisfying

lim
n→∞

max
{∣∣tn

i − tn
i+1
∣∣ , i = 0, · · · ,mn

}
= 0, {tn

k }
mn
k=1 ⊆

{
tn+1
k

}mn+1
k=1 .

Then

[M] (t) = lim
n→∞

mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)
−M (t ∧ tn

k )
∣∣2
H

the limit taking place in L2 (Ω). In case M is just a continuous local martingale, the above
limit happens in probability.

Proof: First suppose M is uniformly bounded.

mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)
−M (t ∧ tn

k )
∣∣2
H

=
mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)∣∣2−|M (t ∧ tn

k )|
2−2

mn−1

∑
k=0

(
M (t ∧ tn

k ) ,M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

= |M (t)|2H −2
mn−1

∑
k=0

(
M (t ∧ tn

k ) ,M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

= |M (t)|2H −2
mn−1

∑
k=0

RM (t ∧ tn
k )
(
M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

= |M (t)|2H −2
mn−1

∑
k=0

RM (tn
k )
(
M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

Then by Lemma 63.6.3, the right side converges to

|M (t)|2H −2
∫ t

0
(RM)dM

Therefore, in L2 (Ω) ,

lim
n→∞

mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)
−M (t ∧ tn

k )
∣∣2
H +2

∫ t

0
(RM)dM = |M (t)|2H

That term on the left involving the limit is increasing and equal to 0 when t = 0. Therefore,
it must equal [M] (t).

Next suppose M is only a continuous local martingale. By Proposition 63.2.2 there
exists an increasing localizing sequence {τk} such that Mτk is a uniformly bounded mar-
tingale. Then

P(∪∞
k=1 [τk = ∞]) = 1
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To save notation, let

Qn (t)≡
mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)
−M (t ∧ tn

k )
∣∣2
H

Let η ,ε > 0 be given. Then there exists k large enough that P([τk = ∞])> 1−η/2. This
is because the sets [τk = ∞] increase to Ω other than a set of measure zero. Then,[∣∣Qτk

n − [M]τk (t)
∣∣> ε

]
∩ [τk = ∞] = [|Qn− [M] (t)|> ε]∩ [τk = ∞]

Thus

P([|Qn− [M] (t)|> ε]) ≤ P([|Qn− [M] (t)|> ε]∩ [τk = ∞])

+P([τk < ∞])

≤ P
([∣∣Qτk

n − [M]τk (t)
∣∣> ε

])
+η/2

From the first part, the convergence in probability of Qτk
n (t) to [M]τk (t) follows from the

convergence in L2 (Ω) and so if n is large enough, the right side of the above inequality is
less than η/2+η/2 = η . Since η was arbitrary, this proves convergence in probability. ■

63.7 Doob Meyer Decomposition
This section is on the Doob Meyer decomposition which is a way of starting with a sub-
martingale and writing it as the sum of a martingale and an increasing adapted stochastic
process of a certain form. This is more general than what was done above with the sub-
martingales ||M (t)||2 for M (t) ∈M 2

T (H) where M is a continuous martingale. There are
two forms for this theorem, one for discrete martingales and one for martingales defined on
an interval of the real line which is much harder. According to [74], this material is found
in [78] however, I am following [74] for the continuous version of this theorem.

Theorem 63.7.1 Let {Xn} be a submartingale. Then there exists a unique stochastic pro-
cess, {An} and martingale, {Mn} such that

1. An (ω)≤ An+1 (ω) , A1 (ω) = 0,

2. An is Fn−1 adapted for all n≥ 1 where F0 ≡F1.

and also Xn = Mn +An.

Proof: Let A1 ≡ 0 and define

An ≡
n

∑
k=2

E (Xk−Xk−1|Fk−1) .

It follows An is Fn−1 measurable. Since {Xk} is a submartingale, An is increasing because

An+1−An = E (Xn+1−Xn|Fn)≥ 0 (63.7.27)
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It is a submartingale because

E (An|Fn−1) = An ≥ An−1.

Now let Mn be defined by
Xn = Mn +An.

Then from 63.7.27,

E (Mn+1|Fn) = E (Xn+1|Fn)−E (An+1|Fn)

= E (Xn+1|Fn)−E (An+1−An|Fn)−An

= E (Xn+1|Fn)−E (E (Xn+1−Xn|Fn) |Fn)−An

= E (Xn+1|Fn)−E (Xn+1−Xn|Fn)−An

= E (Xn|Fn)−An

= Xn−An ≡Mn

This proves the existence part.
It remains to verify uniqueness. Suppose then that

Xn = Mn +An = M′n +A′n

where {An} and {A′n} both satisfy the conditions of the theorem and {Mn} and {M′n} are
both martingales. Then

Mn−M′n = A′n−An

and so, since A′n−An is Fn−1 measurable and {Mn−M′n} is a martingale,

Mn−1−M′n−1 = E
(
Mn−M′n|Fn−1

)
= E

(
A′n−An|Fn−1

)
= A′n−An = Mn−M′n.

Continuing this way shows Mn−M′n is a constant. However, since A′1−A1 = 0 = M1−M′1,
it follows Mn = M′n and this proves uniqueness. This proves the theorem.

Definition 63.7.2 A stochastic process, {An} which satisfies the conditions of Theorem
63.7.1,

An (ω)≤ An+1 (ω)

and

An is Fn−1 adapted for all n≥ 1

where F0 ≡F1 is said to be natural.
The Doob Meyer theorem needs to be extended to continuous submartingales and this

will require another description of what it means for a stochastic process to be natural. To
get an idea of what this condition should be, here is a lemma.
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Lemma 63.7.3 Let a stochastic process, {An} be natural. Then for every martingale,
{Mn} ,

E (MnAn) = E

(
n−1

∑
j=1

M j
(
A j+1−A j

))

Proof: Start with the right side.

E

(
n−1

∑
j=1

M j
(
A j+1−A j

))
= E

(
n

∑
j=2

M j−1A j−
n−1

∑
j=1

M jA j

)

= E

(
n−1

∑
j=2

A j
(
M j−1−M j

))
+E (Mn−1An)

Then the first term equals zero because since A j is F j−1 measurable,∫
Ω

A jM j−1dP−
∫

Ω

A jM j =
∫

Ω

A jE
(
M j|F j−1

)
dP−

∫
Ω

A jM jdP

=
∫

Ω

E
(
A jM j|F j−1

)
dP−

∫
Ω

A jM jdP

=
∫

Ω

A jM jdP−
∫

Ω

A jM jdP = 0.

The last term equals∫
Ω

Mn−1AndP =
∫

Ω

E (Mn|Fn−1)AndP

=
∫

Ω

E (MnAn|Fn−1)dP = E (MnAn) .

This proves the lemma.

Definition 63.7.4 Let A be an increasing function defined on R. By Theorem 4.3.4 on Page
50 there exists a positive linear functional, L defined on Cc (R) given by

L f ≡
∫ b

a
f dA where spt( f )⊆ [a,b]

where the integral is just the Riemann Stieltjes integral. Then by the Riesz representation
theorem, Theorem 12.3.2 on Page 288, there exists a unique Radon measure, µ which
extends this functional, as described in the Riesz representation theorem. Then for B a
measurable set, I will write either ∫

B
f dµ or

∫
B

f dA

to denote the Lebesgue integral, ∫
XB f dµ.
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Lemma 63.7.5 Let f be right continuous. Then f is Borel measurable. Also, if the limit
from the left exists, then f− (x) ≡ f (x)− ≡ limy→x− f (y) is also Borel measurable. If A
is an increasing right continuous function and f is right continuous and f−, the left limit
function exists, then if f is bounded, on [a,b], and if{

xp
0 , · · · ,x

p
np

}∞

p=1

is a sequence of partitions of [a,b] such that

lim
p→∞

max
{∣∣xp

k − xp
k−1

∣∣ : k = 1,2, · · · ,np
}
= 0 (63.7.28)

then ∫
(a,b]

f−dA = lim
p→∞

np

∑
k=1

f
(
xp

k−1

)(
A
(
xp

k

)
−A

(
xp

k−1

))
(63.7.29)

More generally, let
D≡ ∪∞

p=1

{
xp

0 , · · · ,x
p
np

}∞

p=1

and
f− (t) = lim

s→t−,s∈D
f (s) .

Then 63.7.29 holds.

Proof: For x ∈ f−1 ((a,∞)) , denote by Ix the union of all intervals containing x such
that f (y) is larger than a for all y in the interval. Since f is right continuous, each Ix has
positive length. Now if Ix and Iy are two of these intervals, then either they must have empty
intersection or they are the same interval. Thus f−1 ((a,∞)) is of the form ∪x∈ f−1((a,∞))Ix
and there can only be countably many distinct intervals because each has positive length and
R is separable. Hence f−1 ((a,∞)) equals the countable union of intervals and is therefore,
Borel measurable. Now

f− (x) = lim
n→∞

f (x− rn)≡ lim
n→∞

frn (x)

where rn is a decreasing sequence converging to 0. Now each frn is Borel measurable by
the first part of the proof because it is right continuous and so it follows the same is true of
f−.

Finally consider the claim about the integral. Since A is right continuous, a simple
argument involving the dominated convergence theorem and approximating (c,d] with a
piecewise linear continuous function nonzero only on (c,d +h) which approximates X(c,d]
will show that for µ the measure of Definition 63.7.4

µ ((c,d]) = A(d)−A(c) .

Therefore, the sum in 63.7.29 is of the form

np

∑
k=1

f
(
xp

k−1

)
µ ((xk−1,xk]) =

∫
(a,b]

np

∑
k=1

f
(
xp

k−1

)
X(xk−1,xk]dµ
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and by 63.7.28

lim
p→∞

np

∑
k=1

f
(
xp

k−1

)
X(xk−1,xk] (x) = f− (x)

for each x ∈ (a,b]. Therefore, since f is bounded, 63.7.29 follows from the dominated
convergence theorem. The last claim follows the same way. This proves the lemma.

Definition 63.7.6 An increasing stochastic process, {A(t)} which is right continuous is
said to be natural if A(0) = 0 and whenever {ξ (t)} is a bounded right continuous martin-
gale,

E (A(t)ξ (t)) = E
(∫

(0,t]
ξ− (s)dA(s)

)
. (63.7.30)

Here
ξ− (s,ω)≡ lim

r→s−,r∈D
ξ (r,ω)

a.e. where D is a countable dense subset of [0, t] . By Corollary 62.8.2 the right side of
63.7.30 is not dependent on the choice of D since if ξ− is computed using two different
dense subsets, the two random variables are equal a.e.

Some discussion is in order for this definition. Pick ω ∈ Ω. Then since A is right
continuous, the function t → A(t,ω) is increasing and right continuous. Therefore, one
can do the Lebesgue Stieltjes integral defined in Definition 63.7.4 for each ω whenever f is
Borel measurable and bounded. Now it is assumed {ξ (t)} is bounded and right continuous.
By Lemma 63.7.5 ξ− (t)≡ limr→t−,r∈D ξ (r) is measurable and by this lemma,

∫
(0,t]

ξ− (s)dA(s) = lim
p→∞

np

∑
k=1

ξ
(
t p
k−1

)(
A
(
t p
k

)
−A

(
t p
k−1

))
where

{
t p
k

}np
k=1 is a sequence of partitions of [0, t] such that

lim
p→∞

max
{∣∣t p

k − t p
k−1

∣∣ : k = 1,2, · · · ,np
}
= 0. (63.7.31)

and D≡ ∪∞
p=1∪

np
k=1

{
t p
k

}np
k=1 .

Also, if t → A(t,ω) is right continuous, hence Borel measurable, then for ξ (t) the
above bounded right continuous martingale, it follows it makes sense to write∫

(0,t]
ξ (s)dA(s) .

Consider the right sum,
np

∑
k=1

ξ
(
t p
k

)(
A
(
t p
k

)
−A

(
t p
k−1

))
This equals ∫

(0,t]

np

∑
k=1

ξ
(
t p
k

)
X(t p

k−1,t
p
k ]
(s)dA(s)
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and by right continuity, it follows

lim
p→∞

np

∑
k=1

ξ
(
t p
k

)
X(t p

k−1,t
p
k ]
(s) = ξ (s)

and so the dominated convergence theorem applies and it follows

lim
p→∞

np

∑
k=1

ξ
(
t p
k

)(
A
(
t p
k

)
−A

(
t p
k−1

))
=
∫
(0,t]

ξ (s)dA(s)

where this is a random variable. Thus

E
(∫

(0,t]
ξ (s)dA(s)

)
=
∫

Ω

(
lim
p→∞

∫
(0,t]

np

∑
k=1

ξ
(
t p
k

)
X(t p

k−1,t
p
k ]
(s)dA(s)

)
dP (63.7.32)

Now as mentioned above,∫
(0,t]

np

∑
k=1

ξ
(
t p
k

)
X(t p

k−1,t
p
k ]
(s)dA(s) =

np

∑
k=1

ξ
(
t p
k

)(
A
(
t p
k

)
−A

(
t p
k−1

))
and since A is increasing, this is bounded above by an expression of the form CA(t) , a
function in L1. Therefore, by the dominated convergence theorem, 63.7.32 reduces to

lim
p→∞

∫
Ω

∫
(0,t]

np

∑
k=1

ξ
(
t p
k

)
X(t p

k−1,t
p
k ]
(s)dA(s)dP

= lim
p→∞

∫
Ω

np

∑
k=1

ξ
(
t p
k

)(
A
(
t p
k

)
−A

(
t p
k−1

))
dP

= lim
p→∞

∫
Ω

(
np

∑
k=1

ξ
(
t p
k

)
A
(
t p
k

)
−

np−1

∑
k=0

ξ
(
t p
k+1

)
A
(
t p
k

))
dP

= lim
p→∞

np−1

∑
k=1

∫
Ω

(
ξ
(
t p
k

)
−ξ

(
t p
k+1

))
A
(
t p
k

)
dP+

∫
Ω

ξ (t)A(t)dP. (63.7.33)

Since ξ is a martingale,∫
Ω

ξ
(
t p
k+1

)
A
(
t p
k

)
dP =

∫
Ω

E
(

ξ
(
t p
k+1

)
A
(
t p
k

)
|Ft p

k

)
dP

=
∫

Ω

A
(
t p
k

)
E
(

ξ
(
t p
k+1

)
|Ft p

k

)
dP

=
∫

Ω

A
(
t p
k

)
ξ
(
t p
k

)
dP

and so in 63.7.33 the term with the sum equals 0 and it reduces to

E (ξ (t)A(t)) .

This is sufficiently interesting to state as a lemma.



2154 CHAPTER 63. THE QUADRATIC VARIATION OF A MARTINGALE

Lemma 63.7.7 Let A be an increasing adapted stochastic process which is right continu-
ous. Also let ξ (t) be a bounded right continuous martingale. Then

E (ξ (t)A(t)) = E
(∫

(0,t]
ξ (s)dA(s)

)

and A is natural, if and only if for all such bounded right continuous martingales,

E (ξ (t)A(t)) = E
(∫

(0,t]
ξ (s)dA(s)

)
= E

(∫
(0,t]

ξ− (s)dA(s)
)

Lemma 63.7.8 Let (Ω,F ,P) be a probability space and let G be a σ algebra contained in
F . Suppose also that { fn} is a sequence in L1 (Ω) which converges weakly to f in L1 (Ω) .
That is, for every h ∈ L∞ (Ω) ,

∫
Ω

fnhdP→
∫

Ω

f hdP.

Then E ( fn|G ) converges weakly in L1 (Ω) to E ( f |G ).

Proof:First note that if h ∈ L∞ (Ω,F ) , then E (h|G ) ∈ L∞ (Ω,G ) because if A ∈ G ,

∫
A
|E (h|G )|dP≤

∫
A

E (|h| |G )dP =
∫

A
|h|dP

and so if A = [|E (h|G )|> ||h||
∞
] , then if P(A)> 0,

||h||
∞

P(A)<
∫

A
|E (h|G )|dP≤

∫
A
|h|dP≤ ||h||

∞
P(A) ,

a contradiction. Hence P(A)= 0 and so E (h|G )∈L∞ (Ω,G ) as claimed. Let h∈L∞ (Ω,G ) .

∫
Ω

E ( fn|G )hdP =
∫

Ω

E (E ( fn|G )h|G )dP

=
∫

Ω

E ( fn|G )E (h|G )dP

=
∫

Ω

E ( fnE (h|G ) |G )dP

=
∫

Ω

fnE (h|G )dP
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and so

lim
n→∞

∫
Ω

E ( fn|G )hdP = lim
n→∞

∫
Ω

fnE (h|G )dP

=
∫

Ω

f E (h|G )dP

=
∫

Ω

E ( f E (h|G ) |G )dP

=
∫

Ω

E (h|G )E ( f |G )dP

=
∫

Ω

E (E ( f |G )h|G )dP

=
∫

Ω

E ( f |G )hdP

and this proves the lemma.
Next suppose {X (t)} is a real submartingale and suppose X (t) = M (t)+A(t) where

A(t) is an increasing stochastic process adapted to Ft such that A(0) = 0 and {M (t)} is a
martingale adapted to Ft . Also let T be a stopping time bounded above by a. Then by the
optional sampling theorem, and the observation that {|M (t)|} is a submartingale∫

[|X(T )|≥λ ]
|X (T )|dP

≤
∫
[|X(T )|≥λ ]

|M (T )|dP+
∫
[|X(T )|≥λ ]

A(T )dP

≤
∫
[|X(T )|≥λ ]

E (|M (a)| |FT )dP+
∫
[|X(T )|≥λ ]

E (A(a) |FT )dP

≤
∫
[|X(T )|≥λ ]

|M (a)|dP+
∫
[|X(T )|≥λ ]

A(a)dP

Now by Theorem 60.6.4,

P([|XT | ≥ λ ])≤ 2
λ

E (|X (0)|+ |X (a)|)

and so P([|X (T )| ≥ λ ])→ 0 uniformly for T a stopping time bounded by a as λ → ∞ and
so this shows equi integrability of {X (T )} because A(t,ω)≥ 0.

This motivates the following definition.

Definition 63.7.9 A stochastic process, {X (t)} is called DL if for all a > 0, the set of
random variables, {X (T )} for T a stopping time bounded by a is equi integrable.

Example 63.7.10 Let {M (t)} be a continuous martingale. Then {M (t)} is of class DL.

To show this, let a > 0 be given and let T be a stopping time bounded by a. Then by
the optional sampling theorem, M (0) ,M (T ) ,M (a) is a martingale and so

E (M (a) |FT ) = M (T )
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and so by Jensen’s inequality, |M (T )| ≤ E (|M (a)| |FT ) . Therefore,∫
[|M(T )|≥λ ]

|M (T )|dP ≤
∫
[|M(T )|≥λ ]

E (|M (a)| |FT )dP

=
∫
[|M(T )|≥λ ]

|M (a)|dP. (63.7.34)

Now by Theorem 62.5.3,

P([|M (T )| ≥ λ ])≤ 1
λ

E (|M (a)|)

and so since a given L1 function is uniformly integrable, there exists δ such that if P(A)< δ

then ∫
A
|M (a)|dP < ε.

Now choose λ large enough that

1
λ

E (|M (a)|)< δ .

Then for such λ , it follows from 63.7.34 that for any stopping time bounded by a,∫
[|M(T )|≥λ ]

|M (T )|dP < ε.

This shows M is DL.

Example 63.7.11 Let {X (t)} be a nonnegative submartingale with t→E (X (t)) right con-
tinuous so {X (t)} can be considered right continuous. Then {X (t)} is DL.

To show this, let T be a stopping time bounded by a > 0. Then by the optional sampling
theorem, ∫

[X(T )≥λ ]
X (T )dP≤

∫
[X(T )≥λ ]

X (a)dP

and now by Theorem 60.6.4 on Page 1967

P([X (T )≥ λ ])≤ 1
λ

E
(
X+

a
)
.

Thus if ε > 0 is given, there exists λ large enough that for any stopping time, T ≤ a,∫
[X(T )≥λ ]

X (T )dP≤ ε

Thus the submartingale is DL.
Now with this preparation, here is the Doob Meyer decomposition.
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Theorem 63.7.12 Let {X (t)} be a submartingale of class DL. Then there exists a martin-
gale, {M (t)} and an increasing submartingale, {A(t)} such that for each t,

X (t) = M (t)+A(t) .

If {A(t)} is chosen to be natural and A(0) = 0, then with this condition, {M (t)} and
{A(t)} are unique.

Proof: First I will show uniqueness. Suppose then that

X (t) = M (t)+A(t) = M′ (t)+A′ (t)

where M,M′ and A,A′ satisfy the given conditions. Let t > 0 and consider s ∈ [0, t] . Then

A(s)−A′ (s) = M′ (s)−M (s)

Since A,A′ are natural, it follows that for ξ (t) a right continuous bounded martingale,

E
(
ξ (t)

(
A(t)−A′ (t)

))
= E

(∫
(0,t]

ξ− (s)dA(s)
)
−E

(∫
(0,t]

ξ− (s)dA′ (s)
)

= E

(
lim
n→∞

mn

∑
k=1

ξ
(
tn
k−1
)(

A(tn
k )−A

(
tn
k−1
))
−

mn

∑
k=1

ξ
(
tn
k−1
)(

A′ (tn
k )−A′

(
tn
k−1
)))

where
{

tn
k

}mn
k=0 is a sequence of partitions of [0, t] such that these are equally spaced points,

limn→∞ tn
k+1−tn

k = 0, and
{

tn
k

}mn
k=0 ⊆

{
tn+1
k

}mn+1
k=0 . Then since A(t) and A′ (t) are increasing,

the absolute value of each sum is bounded above by an expression of the form

CA(t) or CA′ (t)

and so the dominated convergence theorem can be applied to get the above expression to
equal

lim
n→∞

E

(
mn

∑
k=1

ξ
(
tn
k−1
)(

A(tn
k )−A

(
tn
k−1
))
−

mn

∑
k=1

ξ
(
tn
k−1
)(

A′ (tn
k )−A′

(
tn
k−1
)))

Now using X = A+M and X = A′+M′

= lim
n→∞

E

(
mn

∑
k=1

ξ
(
tn
k−1
)(

M (tn
k )−M

(
tn
k−1
))
−

mn

∑
k=1

ξ
(
tn
k−1
)(

M′ (tn
k )−M′

(
tn
k−1
)))

.

Both terms in the above equal 0. Here is why.

E
(
ξ
(
tn
k−1
)

M (tn
k )
)

= E
(

E
(

ξ
(
tn
k−1
)

M (tn
k ) |Ftn

k−1

))
= E

(
ξ
(
tn
k−1
)

E
(

M (tn
k ) |Ftn

k−1

))
= E

(
ξ
(
tn
k−1
)

M
(
tn
k−1
))

.
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Thus the expected value of the first sum equals 0. Similarly, the expected value of the sec-
ond sum equals 0. Hence this has shown that for any bounded right continuous martingale,
{ξ (s)} and t > 0,

E
(
ξ (t)

(
A(t)−A′ (t)

))
= 0.

Now let ξ be a bounded random variable and let ξ (t) be a right continuous version of the
martingale E (ξ |Ft) . Then

0 = E
(
E (ξ |Ft)

(
A(t)−A′ (t)

))
= E

(
E
(
ξ
(
A(t)−A′ (t)

)
|Ft
))

= E
(
ξ
(
A(t)−A′ (t)

))
and since ξ is arbitrary, it follows that A(t) = A′ (t) a.e. which proves uniqueness.

Because of the uniqueness assertion, it suffices to prove the theorem on an arbitrary
interval, [0,a].

Without loss of generality, it can be assumed X (0) = 0 since otherwise, you could sim-
ply consider X (t)−X (0) in its place and then at the end, add X (0) to M (t) . Let

{
tn
k

}mn
k=0

be a sequence of partitions of [0,a] such that these are equally spaced points, limn→∞ tn
k+1−

tn
k = 0, and

{
tn
k

}mn
k=0 ⊆

{
tn+1
k

}mn+1
k=0 . Then consider the submartingale,

{
X
(
tn
k

)}mn
k=0 . Theo-

rem 63.7.1 implies there exists a unique martingale, and increasing submartingale,

{M (tn
k )}

mn
k=0 and {A(tn

k )}
mn
k=0

respectively such that M (0) = 0 = A(0) ,

X (tn
k ) = Mn (tn

k )+An (tn
k ) .

and An
(
tn
k

)
is Ftn

k−1
measurable. Recall how these were defined.

An (tn
k ) =

k

∑
j=1

E
(

X
(
tn

j
)
−X

(
tn

j−1
)
|Ftn

j−1

)
, An (0) = 0

Mn (tn
k ) = X (tn

k )−An (tn
k ) .

I want to show that {An (a)} is equi integrable. From this there will be a weakly conver-
gent subsequence and nice things will happen. Define T n (ω) to equal tn

j−1 where tn
j is the

first time where An
(

tn
j ,ω
)
≥ λ or T n (ω) = a if this never happens. I want to say that T n is

a stopping time and so I need to verify that
[
T n ≤ tn

j

]
∈Ftn

j
for each j. If ω ∈

[
T n ≤ tn

j

]
,

then this means the first time, tn
k , where An

(
tn
k ,ω

)
≥ λ is such that tn

k ≤ tn
j+1. Since An

k is
increasing in k, [

T n ≤ tn
j
]

= ∪ j+1
k=0 [A

n (tn
k )≥ λ ]

=
[
An (tn

j+1
)
≥ λ

]
∈Ftn

j
.

Note T n only has the values tn
k . Thus for t ∈ [tn

j−1, t
n
j ),

[T n ≤ t] =
[
T n ≤ tn

j−1
]
∈Ftn

j−1
⊆Ft .
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Thus T n is one of those stopping times bounded by a. Since {X (t)} is DL, this shows
{X (T n)} is equi integrable. Now from the definition of T n, it follows

An (T n)≤ λ

Recall T n (ω) = tn
j−1 where tn

j is the first time where An
(

tn
j ,ω
)
≥ λ or T n (ω) = a if this

never happens. Thus T n is such that it is before An gets larger than λ . Thus,∫
[An(a)≥2λ ]

1
2

An (a)dP≤
∫
[An(a)≥2λ ]

(An (a)−λ )dP

≤
∫
[An(a)≥2λ ]

(An (a)−An (T n))dP

≤
∫

Ω

(An (a)−An (T n))dP

=
∫

Ω

(X (a)−Mn (a)− (X (T n))−Mn (T n))dP

=
∫

Ω

(X (a)−X (T n))dP

Because by the discrete optional sampling theorem,∫
Ω

(Mn (a)−Mn (T n))dP = 0.

Remember
{

Mn
(
tn
k

)}mn
k=0 was a martingale.∫

Ω

(X (a)−X (T n))dP =
∫
[An(a)≥λ ]

(X (a)−X (T n))dP

+
∫
[An(a)<λ ]

(X (a)−X (T n))dP.

The second of the integrals on the right is such that for ω in this set, T n (ω) = a and so the
second integral equals 0. Hence from the above,∫

[An(a)≥2λ ]

1
2

An (a)dP≤
∫
[An(a)≥λ ]

(X (a)−X (T n))dP

and since {X (t)} is DL, this shows {An (a)}∞

n=1 is equi integrable.
By Corollary 20.9.6 on Page 640 there exists a subsequence {Ank (a)}∞

k=1 which con-
verges weakly in L1 (Ω) to A(a) . By Lemma 63.7.8 it also follows that E (Ank (a) |Ft)
converges weakly to E (A(a) |Ft) in L1 (Ω) . Now define

M (t)≡ E (X (a)−A(a) |Ft) .

Thus it is obvious from properties of conditional expectation that {M (t)} is a martingale
adapted to Ft and without loss of generality, it is a right continuous version. Let

A(t)≡ X (t)−M (t) .
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Then since {X (t)} is a submartingale, it follows {A(t)} is also a submartingale.
It remains to show several things. First, it is necessary to show A(t) is increasing in t

and A(0) = 0. To see this, let s < t,s, t ∈ ∪∞
n=1∪

mn
k=0 tn

k . Then letting n large enough both s, t
are in ∪mn

k=0tn
k . Only consider such n. Let t = tn

k(t),s = tn
k(s) and let h ∈ L∞ (Ω) ,h≥ 0. Then∫

Ω

(A(t)−A(s))hdP =
∫

Ω

(X (t)−M (t)− (X (s)−M (s)))hdP∫
Ω

(X (t)−E (X (a)−A(a) |Ft)− (X (s)−E (X (a)−A(a) |Fs)))hdP. (63.7.35)

Now by Lemma 63.7.8, the following weak limit holds.

E (X (a)−A(a) |Ft) = lim
k→∞

E

 Mnk (a)︷ ︸︸ ︷
X (a)−Ank (a)|Ft


= lim

k→∞
Mnk (t)

A similar formula holds for s in place of t. Then the expression in 63.7.35 equals

= lim
k→∞

∫
Ω

(X (t)−Mnk (t)− (X (s)−Mnk (s)))hdP

= lim
k→∞

∫
Ω

(Ank (t)−Ank (s))hdP≥ 0

Since h ≥ 0 is arbitrary, this shows A(t)−A(s) ≥ 0 a.e. Not requiring h ≥ 0, the above
argument also shows that for s, t ∈ ∪∞

n=1∪
mn
k=0 tn

k ,

A(t)−A(s) = weak lim
p→∞

Anp (t)−Anp (s) . (63.7.36)

Now consider the claim that A(0) = 0. Recall

A(0)≡ X (0)−E (X (a)−A(a) |F0) =−E (X (a)−A(a) |F0)

and so

A(0) = lim
k→∞
−E (X (a)−Ank (a) |F0)

= lim
k→∞
−E (Mnk (a) |F0) = lim

k→∞
−Mnk (0) = 0.

This proves the theorem except for the claim that A(t) is natural. Let ξ (t) be a bounded
right continuous martingale. I need to consider

E
(∫

(0,t]
ξ− (s)dA(s)

)
and show it equals ξ (t)A(t). First consider the case t = a. By Lemma 63.7.5,

E
(∫

(0,a]
ξ− (s)dA(s)

)
≡ E

(
lim
k→∞

mnk

∑
j=1

ξ

(
tnk

j−1

)(
A
(

tnk
j

)
−A

(
tnk

j−1

)))
(63.7.37)
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Since ξ is bounded, you can take the limit outside. This follows from the dominated
convergence theorem and the fact, shown above that A is increasing and nonnegative. Here
is why.

0≤
∣∣∣ξ (tnk

j−1

)∣∣∣A(tnk
j

)
≤ A(a)C

where C is a constant larger than the values of ξ . Thus the above equals

lim
k→∞

E

(mnk

∑
j=1

ξ

(
tnk

j−1

)(
A
(

tnk
j

)
−A

(
tnk

j−1

)))

= lim
k→∞

E

(mnk

∑
j=1

ξ

(
tnk

j−1

)(
X
(

tnk
j

)
−M

(
tnk

j

)
−
(

X
(

tnk
j−1

)
−M

(
tnk

j−1

))))

= lim
k→∞

E

(mnk

∑
j=1

ξ

(
tnk

j−1

)(
X
(

tnk
j

)
−X

(
tnk

j−1

)))
(63.7.38)

because

E
(

ξ

(
tnk

j−1

)
M
(

tnk
j

))
= E

(
E
(

ξ

(
tnk

j−1

)
M
(

tnk
j

)
|Ft

nk
j−1

))
= E

(
ξ

(
tnk

j−1

)
E
(

M
(

tnk
j

)
|Ft

nk
j−1

))
= E

(
ξ

(
tnk

j−1

)
M
(

tnk
j−1

))
since M is a martingale. Now by a similar trick, this time using that

{
Mnk

(
tnk

j

)}mnk

j=0
is a

martingale, 63.7.38 equals

lim
k→∞

E

(mnk

∑
j=1

ξ

(
tnk

j−1

)(
Ank
(

tnk
j

)
−Ank

(
tnk

j−1

)))
(63.7.39)

and now recall that Ank

(
tnk

j

)
is Ft

nk
j−1

measurable. This will now be used to change the

subscript of tnk
j−1 in ξ

(
tnk

j−1

)
to a j. 63.7.39 equals

= lim
k→∞

mnk

∑
j=1

E
(

E
(

ξ

(
tnk

j

)
|Ft

nk
j−1

)(
Ank
(

tnk
j

)
−Ank

(
tnk

j−1

)))

= lim
k→∞

mnk

∑
j=1

E
(

E
(

ξ

(
tnk

j

)(
Ank
(

tnk
j

)
−Ank

(
tnk

j−1

))
|Ft

nk
j−1

))

= lim
k→∞

mnk

∑
j=1

E
(

ξ

(
tnk

j

)(
Ank
(

tnk
j

)
−Ank

(
tnk

j−1

)))
= lim

k→∞
E

(mnk

∑
j=1

ξ

(
tnk

j

)(
Ank
(

tnk
j

)
−Ank

(
tnk

j−1

)))
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From this all that remains is to write the above as

lim
k→∞

E

(mnk

∑
j=1

ξ

(
tnk

j

)
Ank
(

tnk
j

)
−

mnk−1

∑
j=0

ξ

(
tnk

j+1

)
Ank
(

tnk
j

))

= lim
k→∞

(
E (ξ (a)Ank (a))+E

(mnk−1

∑
j=1

(
ξ

(
tnk

j

)
−ξ

(
tnk

j+1

))
Ank
(

tnk
j

)))

Now using the fact ξ is a martingale, this last term equals 0. Here is why.

E
(

ξ

(
tnk

j+1

)
Ank
(

tnk
j

))
= E

(
E
(

ξ

(
tnk

j+1

)
Ank
(

tnk
j

)
|Ft

nk
j

))
= E

(
Ank
(

tnk
j

)
E
(

ξ

(
tnk

j+1

)
|Ft

nk
j

)
|Ft

nk
j

)
= E

(
Ank
(

tnk
j

)
ξ

(
tnk

j

)
|Ft

nk
j

)
The first term converges to E (ξ (a)A(a)) because this was how A(a) was obtained, as a
weak limit in L1 (Ω) of Ank (a). Also by Lemma 63.7.7,

E (ξ (a)A(a)) = E
(∫

(0,a]
ξ (s)dA(s)

)
From 63.7.37 this has now shown that

E (ξ (a)A(a)) = E
(∫

(0,a]
ξ− (s)dA(s)

)
To get the desired result on (0, t], apply what was just shown to a “stopped martingale”,

ξ
t (s)≡

{
ξ (s) if s≤ t
ξ (t) if s > t

E
(∫

(0,t]
ξ (s)dA(s)

)
+(A(a)−A(t))E (ξ (t))

= E
(∫

(0,a]
ξ

t (s)dA(s)
)

From what was shown above,

= E
(∫

(0,a]
ξ

t
− (s)dA(s)

)
= E

(∫
(0,t]

ξ− (s)dA(s)+
∫
(t,a]

ξ (t)sA(s)
)

= E
(∫

(0,t]
ξ− (s)dA(s)

)
+(A(a)−A(t))E (ξ (t))
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and so

E
(∫

(0,t]
ξ (s)dA(s)

)
= E

(∫
(0,t]

ξ− (s)dA(s)
)

which shows A is natural by Lemma 63.7.7. This proves the theorem.
There is another interesting variation of the above theorem. It involves the following

definition.

Definition 63.7.13 A submartingale, {X (t)} is said to be D if

{XT : T < ∞ is a stopping time}

is equi integrable.

In this case, you can consider partitions of the entire positive real line and the mar-
tingales,

{
M
(
tn
k

)}∞

k=0 and
{

A
(
tn
k

)}∞

k=0 as before. This time you don’t stop at mn. By the
submartingale convergence theorem, you can argue there exists An

∞ = limk→∞ A
(
tn
k

)
. Then

repeat the above argument using An
∞ in place of An (a) . This time you get {A(t)} equi

integrable. Thus the following corollary is obtained.

Corollary 63.7.14 Let {X (t)} be a right continuous submartingale of class D. Then there
exists a right continuous martingale, {M (t)} and a right continuous increasing submartin-
gale, {A(t)} such that for each t,

X (t) = M (t)+A(t) .

If {A(t)} is chosen to be natural and A(0) = 0, then with this condition, {M (t)} and
{A(t)} are unique. Furthermore {M (t)} and {A(t)} are equi integrable on [0,∞).

In the above theorem, {X (t)} was a submartingale and so it has a right continuous
version. What if {X (t)} is actually continuous? Can one conclude that A(t) and M (t) are
also continuous? The answer is yes.

Theorem 63.7.15 Let {X (t)} be a right continuous submartingale of class DL. Then there
exists a right continuous martingale, {M (t)} and a right continuous increasing submartin-
gale, {A(t)} such that for each t,

X (t) = M (t)+A(t) .

If {A(t)} is chosen to be natural and A(0) = 0, then with this condition, {M (t)} and
{A(t)} are unique. Also, if {X (t)} is continuous, (t → X (t,ω) is continuous for a.e. ω)
then the same is true of {A(t)} and {M (t)} .

Proof: The first part is done above. Let {X (t)} be continuous. As before, let
{

tn
k

}mn
k=0

be a sequence of partitions of [0,a] such that these are equally spaced points, limn→∞ tn
k+1−

tn
k = 0, and

{
tn
k

}mn
k=0 ⊆

{
tn+1
k

}mn+1
k=0 where here a > 0 is an arbitrary positive number and let

λ > 0 be an arbitrary positive number. Define

ξ
n (t)≡ E

(
min

(
λ ,A

(
tn

j
))
|Ft
)

for tn
j−1 < t ≤ tn

j
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Thus on (tn
j−1, t

n
j ] ξ

n (t) is a bounded martingale. Assuming we are dealing with a right
continuous version of this martingale so there are no measurability questions, it follows
since A is natural,

E

(∫
(tn

j−1,t
n
j ]

ξ
n (s)dA(s)

)
= E

(∫
(tn

j−1,t
n
j ]

ξ
n
− (s)dA(s)

)

where here
ξ

n
− (s,ω)≡ lim

r→s−,r∈D
ξ

n (s,ω) a.e.

for D≡ ∪∞
n=1∪

mn
k=1

{
tn
k

}mn
k=0 . Thus, adding these up for all the intervals, (tn

j−1, t
n
j ] yields

E
(∫

(0,a]
ξ

n (s)dA(s)
)
= E

(∫
(0,a]

ξ
n
− (s)dA(s)

)
I want to show that for a.e. ω, ξ

nk (t,ω) converges uniformly to

min(λ ,A(t,ω))≡ λ ∧A(t,ω)

on (0,a]. From this it will follow

E
(∫

(0,a]
λ ∧A(s,ω)dA(s)

)
= E

(∫
(0,a]

λ ∧A− (s,ω)dA(s)
)

Now since s→ A(s,ω) is increasing, there is no problem in writing A− (s,ω) and the above
equation will suffice to show with simple considerations that for a.e. ω,s→ A(s,ω) is left
continuous. Since {A(s)} is a submartingale already, it has a right continuous version
which we are using in the above. Thus for a.e. ω it must be the case that s→ A(s,ω) is
continuous. Let t ∈ (tn

j−1, t
n
j ]. Then since λ ∧A(t) is Ft measurable,

ξ
n (t)−λ ∧A(t)≡ E

(
λ ∧A

(
tn

j
)
−λ ∧A(t) |Ft

)
≥ 0

because A(t) is increasing.
Now define a stopping time, T n (ε) for ε > 0 by letting T n (ε) be the infimum of all

t ∈ [0,a] with the property that

ξ
n (t)−λ ∧A(t)> ε

or if this does not happen, then T n (ε) = a. Thus

T n (ε)(ω) = a∧ inf{t ∈ [0,a] : ξ
n (t,ω)−λ ∧A(t,ω)> ε}

I need to verify T n (ε) really is a stopping time. Letting s < a, it follows that if ω ∈
[T n (ε)≤ s] , then for each N, there exists t ∈ [s,s+ 1

N ) such that ξ
n (t,ω)−λ ∧A(t,ω)> ε.

Then by right continuity it follows there exists r ∈ D∩ [s,s+ 1
N ) such that

ξ
n (r,ω)−λ ∧A(r,ω)> ε
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Thus
[T n (ε)≤ s] = ∩∞

N=1∪r∈D∩[s,s+ 1
N ) [ξ

n (r,ω)−λ ∧A(r,ω)> ε]

and each ∪r∈D∩[s,s+ 1
N ) [ξ

n (r,ω)−λ ∧A(r,ω)> ε] ∈Fs+1/N and so

[T n (ε)≤ s] ∈ ∩r∈D,r≥sFr = Fs+ = Fs

due to the assumption that the filtration is normal. What if s≥ a? Then from the definition,
[T n (ε)≤ a] = Ω ∈Fa. Thus this really is a stopping time.

Now let B j ≡
[
tn

j−1 < T n (ε)≤ tn
j

]
. Note that T n (ε)∧ tn

j is also a stopping time.

∫
Ω

ξ
n
T n(ε)dP =

mn

∑
j=1

∫
B j

ξ
n
T n(ε)dP =

mn

∑
j=1

∫
B j

ξ
n
T n(ε)∧tn

j
dP

=
mn

∑
j=1

∫
B j

E
(

ξ
n
T n(ε)∧tn

j
|FT n(ε)∧tn

j

)
dP.

This is because B j ∈FT n(ε)∧tn
j
. Thus from the definition, the above equals

=
mn

∑
j=1

∫
B j

E
(

E
(

λ ∧A
(
tn

j
)
|FT n(ε)∧tn

j

)
|FT n(ε)∧tn

j

)
dP

=
mn

∑
j=1

∫
B j

E
(

λ ∧A
(
tn

j
)
|FT n(ε)∧tn

j

)
dP

=
mn

∑
j=1

∫
B j

λ ∧A
(
tn

j
)

dP =
∫

Ω

λ ∧A(⌈T n (ε)⌉)dP (63.7.40)

where on (tn
j−1, t

n
j ], ⌈T n (ε)⌉ ≡ tn

j . Now ⌈T n (ε)⌉ is also a bounded stopping time. Here is
why. Suppose s ∈ (tn

j−1, t
n
j ]. Then

[⌈T n (ε)⌉ ≤ s] =
[
T n (ε)≤ tn

j−1
]
∈Ftn

j−1
⊆Fs.

Now let
Qn ≡ sup

t∈[0,a]
|ξ n (t)−λ ∧A(t)| .

Then first note that

[Qn > ε] =

[
sup

t∈[0,a)
|ξ n (t)−λ ∧A(t)|> ε

]

because Qn (a) = 0 follows from the definition of ξ
n (t) as

E
(
λ ∧A

(
tn

j
)
|Ft
)

for tn
j−1 < t ≤ tn

j

and so
ξ

n (a) = E (λ ∧A(a) |Fa) = λ ∧A(a) .
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Thus it suffices to take the supremum over the half open interval, [0,a). It follows

[Qn > ε] = [T n (ε)< a]

By right continuity,
ξ

n (T n (ε))−λ ∧A(T n (ε))≥ ε

on [Qn > ε] .

εP([Qn > ε]) = εP([T n (ε)< a])

≤
∫
[Qn>ε]

(ξ n (T n (ε))−λ ∧A(T n (ε)))dP

≤
∫

Ω

(ξ n (T n (ε))−λ ∧A(T n (ε)))dP

Therefore, from 63.7.40,

P([Qn > ε]) ≤ 1
ε

∫
Ω

(λ ∧A(⌈T n (ε)⌉)−λ ∧A(T n (ε)))dP

≤ 1
ε

∫
Ω

(A(⌈T n (ε)⌉)−A(T n (ε)))dP (63.7.41)

By optional sampling theorem,

E (M (T n (ε))) = E (M (0)) = 0

and also
E (M (⌈T n (ε)⌉)) = E (M (0)) = 0.

Therefore, 63.7.41 reduces to

P([Qn > ε])≤ 1
ε

∫
Ω

(X (⌈T n (ε)⌉)−X (T n (ε)))dP

By the assumption that {X (t)} is DL, it follows the functions in the above integrand are
equi integrable and so since limn→∞ X (⌈T n (ε)⌉)−X (T n (ε)) = 0, the above integral con-
verges to 0 as n→ ∞ by Vitali’s convergence theorem, Theorem 11.5.3 on Page 257. It
follows that there is a subsequence, nk such that

P
([

Qnk > 2−k
])
≤ 2−k

and so from the definition of Qn,

lim
k→∞

sup
t∈[0,a]

|ξ nk (t)−λ ∧A(t)|

giving uniform convergence. Now recall that

E
(∫

(0,a]
ξ

nk (s)dA(s)
)
= E

(∫
(0,a]

ξ
nk
− (s)dA(s)

)
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and so passing to the limit as k→ ∞ with the uniform convergence yields

E
(∫

(0,a]
λ ∧A(s)dA(s)

)
= E

(∫
(0,a]

λ ∧A− (s)dA(s)
)

Now let λ → ∞. Then from the monotone convergence theorem,

E
(∫

(0,a]
A(s)dA(s)

)
= E

(∫
(0,a]

A− (s)dA(s)
)

and so for a.e. ω, ∫
(0,a]

(A(s)−A− (s))dA(s) = 0.

Thus letting the measure associated with this Lebesgue integral be denoted by µ,

A(s)−A− (s) = 0 µ a.e.

Suppose then that A(s)−A− (s) > 0. Then µ ({s}) = 0 = A(s)−A(s−) , a contradiction.
Hence A(s)−A− (s) = 0 for all s. It is already the case that s→ A(s) is right continuous.
Therefore, this proves the theorem.

Example 63.7.16 Suppose {M (t)} is a continuous martingale. Assume

sup
t∈[0,a]

||M (t)||L2(Ω) < ∞

Then {||M (t)||} is a submartingale and so is
{
||M (t)||2

}
. By Example 63.7.11, this is DL.

Then there exists a unique Doob Meyer decomposition,

||M (t)||2 = Y (t)+ ⟨||M (t)||⟩

where Y (t) is a martingale and {⟨||M (t)||⟩} is a submartingale which is continuous, nat-
ural, increasing and equal to 0 when t = 0. This submartingale is called the quadratic
variation.

63.8 Levy’s Theorem
This remarkable theorem has to do with when a martingale is a Wiener process. The proof
I am giving here follows [44].

Definition 63.8.1 Let W (t) be a stochastic process which has the properties that whenever
t1 < t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent and whenever s< t, it
follows W (t)−W (s) is normally distributed with variance t−s and mean 0. Also t→W (t)
is Holder continuous with every exponent γ < 1/2 and W (0) = 0. This is called a Wiener
process.

First here is a lemma.
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Lemma 63.8.2 Let {X (t)} be a real martingale adapted to the filtration Ft for t ∈ [a,b]

some interval such that for all t ∈ [a,b] ,E
(

X (t)2
)
< ∞. Then

{
X (t)2− t

}
is also a mar-

tingale if and only if whenever s < t,

E
(
(X (t)−X (s))2 |Fs

)
= t− s.

Proof: Suppose first
{

X (t)2− t
}

is a real martingale. Then since {X (t)} is a martin-
gale,

E
(
(X (t)−X (s))2 |Fs

)
= E

(
X (t)2−2X (t)X (s)+X (s)2 |Fs

)
= E

(
X (t)2 |Fs

)
−2E (X (t)X (s) |Fs)+X (s)2

= E
(

X (t)2 |Fs

)
−2X (s)E (X (t) |Fs)+X (s)2

= E
(

X (t)2 |Fs

)
−2X (s)2 +X (s)2

= E
(

X (t)2− t|Fs

)
+ t−X (s)2

= X (s)2− s+ t−X (s)2 = t− s

Next suppose E
(
(X (t)−X (s))2 |Fs

)
= t− s. Then since {X (t)} is a martingale,

t− s = E
(

X (t)2−X (s)2 |Fs

)
= E

(
X (t)2− t|Fs

)
+ t−X (s)2

and so
0 = E

(
X (t)2− t|Fs

)
−
(

X (s)2− s
)

which proves the converse.

Theorem 63.8.3 Suppose {X (t)} is a real stochastic process which satisfies all the con-
ditions of a real Wiener process except the requirement that it be continuous. Then both
{X (t)} and

{
X (t)2− t

}
are martingales.

Proof: First define the filtration to be

Ft ≡ σ (X (s)−X (r) : r ≤ s≤ t) .

Claim: If A ∈Fs, then∫
Ω

XA (X (t)−X (s))dP = P(A)
∫

Ω

(X (t)−X (s))dP.

Proof of claim: Let G denote those sets of Fs for which the above formula holds.
Then it is clear that G is closed with respect to countable unions of disjoint sets and
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complements. Let K denote those sets which are finite intersections of sets of the form
(X (u)−X (r))−1 (B) where B is a Borel set and r≤ u≤ s. Say a set, A of K is of the form

∩m
i=1 (X (ui)−X (ri))

−1 (Bi)

Then since disjoint increments are independent, linear combinations of the random vari-
ables, X (ui)−X (ri) are normally distributed. Consequently,

(X (u1)−X (r1) , · · · ,X (um)−X (rm) ,X (t)−X (s))

is multivariate normal. The covariance matrix is of the form(
A 0
0 t− s

)
and so the random vector, (X (u1)−X (r1) , · · · ,X (um)−X (rm)) and the random variable
X (t)−X (s) are independent. Consequently, XA is independent of X (t)−X (s) for any
A ∈ K . Then by the lemma on π systems, Lemma 12.12.3 on Page 329, Fs ⊇ G ⊇
σ (K ) = Fs. This proves the claim.

Thus ∫
A
(X (t)−X (s))dP =

∫
Ω

(X (t)−X (s))XAdP

= P(A)
∫

Ω

(X (t)−X (s))dP = 0

which shows that since A ∈Fs was arbitrary,

E (X (t) |Fs) = X (s)

and {X (t)} is a martingale.
Now consider whether

{
X (t)2− t

}
is a martingale. By assumption,

L (X (t)−X (s)) = L (X (t− s)) = N (0, t− s) .

Then for A ∈Fs, the independence of XA and X (t)−X (s) shows∫
A

E
(
(X (t)−X (s))2 |Fs

)
dP =

∫
A
(X (t)−X (s))2 dP

= P(A)(t− s) =
∫

A
(t− s)dP

and since A ∈Fs is arbitrary,

E
(
(X (t)−X (s))2 |Fs

)
= t− s

and so the result follows from Lemma 63.8.2. This proves the theorem.
The next lemma is the main result from which Levy’s theorem will be established.
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Lemma 63.8.4 Let {X (t)} be a real continuous martingale adapted to the filtration Ft

for t ∈ [a,b] some interval such that for all t ∈ [a,b] ,E
(

X (t)2
)
< ∞. Suppose also that{

X (t)2− t
}

is a martingale. Then for λ real,

E
(

eiλX(b)
)
= E

(
eiλX(a)

)
e−(b−a) λ2

2

Proof: Let λ ∈ [−p, p] where for most of the proof, p is fixed but arbitrary. Let
{

tn
k

}2n

k=0
be uniform partitions such that tn

k − tn
k−1 = δ n ≡ (b−a)/2n. Now for ε > 0 define a stop-

ping time τε,n to be the first time, t such that there exist s1,s2 ∈ [a, t] with |s1− s2| < δ n
but

|X (s1)−X (s2)|= ε.

If no such time exists, then τε,n ≡ b.
Then τε,n really is a stopping time because from continuity of X (t) and denoting by

r,r1 elements of Q, then

[τε,n > t] =
∞⋃

m=1

⋂
0≤r1,r2≤t,|r1−r2|≤δ n

[
|X (r1)−X (r2)| ≤ ε− 1

m

]
∈Ft

because to be in [τε,n > t] it means that by t the absolute value of the differences must
always be less than ε. Hence [τε,n ≤ t] = Ω\ [τε,n > t] ∈Ft .

Now consider [τε,n = b] for various n. By continuity, it follows that for each ω ∈Ω,

τε,n (ω) = b

for all n large enough. Thus
/0 = ∩∞

n=1 [τε,n < b] ,

the sets in the intersection decreasing. Thus there exists n(ε) such that

P
([

τε,n(ε) < b
])

< ε. (63.8.42)

Denote τε,n(ε) as τε for short and it will always be assumed that n(ε) is at least this large
and that limε→0+ n(ε) = ∞. In addition to this, n(ε) will also be large enough that

1− λ
2

2
δ n(ε) > 0

for all λ ∈ [−p, p] . To save on notation, t j will take the place of tn
j . Then consider the

stopping times τε ∧ t j for j = 0,1, · · · ,2n(ε).
Let y j ≡ X (τε ∧ t j)−X

(
τε ∧ t j−1

)
, it follows from the definition of the stopping time

that ∣∣y j
∣∣≤ ε (63.8.43)

because both τε ∧ t j and τε ∧ t j−1 are less than τε and closer together than δ n(ε) and so if∣∣y j
∣∣> ε, then τε ≤ t j, t j−1 and so y j would need to equal 0.
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By the optional stopping theorem,
{

X (τε ∧ t j)
}

j is a martingale as is also{
X (τε ∧ t j)− τε ∧ t j

}
j .

Thus for A ∈Fτε∧t j−1 ,∫
A

E
(

y2
j |Fτε∧t j−1

)
dP =

∫
A

E
((

X (τε ∧ t j)−X
(
τε ∧ t j−1

))2 |Fτε∧t j−1

)
dP

=
∫

A
E
(

X (τε ∧ t j)
2 |Fτε∧t j−1

)
+X

(
τε ∧ t j−1

)2

−2X
(
τε ∧ t j−1

)
E
(

X (τε ∧ t j) |Fτε∧t j−1

)
dP

=
∫

A
E
(

X (τε ∧ t j)
2− τε ∧ t j|Fτε∧t j−1

)
dP+

∫
A

E
(

τε ∧ t j|Fτε∧t j−1

)
dP

+
∫

A
X
(
τε ∧ t j−1

)2 dP−2
∫

A
X
(
τε ∧ t j−1

)2 dP

=
∫

A
X
(
τε ∧ t j−1

)2 dP−
∫

A
τε ∧ t j−1dP+

∫
A

E
(

τε ∧ t j|Fτε∧t j−1

)
dP

+
∫

A
X
(
τε ∧ t j−1

)2 dP−2
∫

A
X
(
τε ∧ t j−1

)2 dP

=
∫

A
E
(

τε ∧ t j|Fτε∧t j−1

)
dP−

∫
A

τε ∧ t j−1dP

=
∫

A

(
τε ∧ t j− τε ∧ t j−1

)
dP≤

∫
A

t j− t j−1dP.

Thus, since A is arbitrary,

σ
2
j ≡

∫
A

E
(

y2
j |Fτε∧t j−1

)
dP =

E
((

X (τε ∧ t j)−X
(
τε ∧ t j−1

))2 |Fτε∧t j−1

)
≤ t j− t j−1 = δ n(ε) (63.8.44)

Also,

E
(

y j|Fτε∧t j−1

)
= E

(
X (τε ∧ t j)−X

(
τε ∧ t j−1

)
|Fτε∧t j−1

)
= 0. (63.8.45)

Now it is time to find E
(

eiλX(τε∧t j)
)

.

E
(

eiλX(τε∧t j)
)
= E

(
eiλ(X(τε∧t j−1)+y j)

)
= E

(
eiλX(τε∧t j−1)E

(
eiλy j |Fτε∧t j−1

))
. (63.8.46)
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Now let o(1) denote any quantity which converges to 0 as ε → 0 for all λ ∈ [−p, p] and
O(1) is a quantity which is bounded as ε → 0. Then from 63.8.45 and 63.8.46 you can
consider the power series for eiλy j which converges uniformly due to 63.8.43 and write
63.8.46 as

E

(
eiλX(τε∧t j−1)

(
1− λ

2

2
σ

2
j (1+o(1))

))
.

then noting that from 63.8.44 which shows σ2
j is o(1) ,it is routine to verify

1− λ
2

2
σ

2
j (1+o(1)) = e−

λ2
2 σ2

j (1+o(1)).

Now this shows

E
(

eiλX(τε∧t j)
)
= E

(
eiλX(τε∧t j−1)e−

λ2
2 σ2

j (1+o(1))
)

Recall that σ2
j ≤ δ n = t j− t j−1. Consider∣∣∣∣E (eiλX(τε∧t j)

)
−E

(
eiλX(τε∧t j−1)e−

λ2
2 δ n

)∣∣∣∣
=

∣∣∣∣E(eiλX(τε∧t j−1)e−
λ2
2 σ2

j (1+o(1))
)
−E

(
eiλX(τε∧t j−1)e−

λ2
2 δ n

)∣∣∣∣
=

∣∣∣∣E(eiλX(τε∧t j−1)
(

e−
λ2
2 σ2

j (1+o(1))− e−
λ2
2 δ n

))∣∣∣∣
=

∣∣∣∣E(eiλX(τε∧t j−1)e−
λ2
2 δ n

(
e−

λ2
2 σ2

j (1+o(1))+ λ2
2 δ n −1

))∣∣∣∣
≤ E

(∣∣∣∣e λ2
2 (δ n−σ2

j)+σ2
j o(1)−1

∣∣∣∣)
Everything in the exponent is o(1) and so the above expression is bounded by

O(1)E

(∣∣∣∣∣λ 2

2
(
δ n−σ

2
j
)
+σ

2
jo(1)

∣∣∣∣∣
)

≤ O(1)E
((

δ n−σ
2
j
)
+δ n |o(1)|

)
= O(1)

[
δ n−E

(
y2

j
)
+δ no(1)

]
. (63.8.47)

Therefore, ∣∣∣∣E (eiλX(τε∧t j)
)
−E

(
eiλX(τε∧t j−1)e−

λ2
2 δ n

)∣∣∣∣
≤ O(1)

[
δ n−E

(
y2

j
)
+δ no(1)

]
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and so it also follows ∣∣∣∣E (eiλX(τε∧t j)
)

e
λ2
2 t j −E

(
eiλX(τε∧t j−1)e

λ2
2 t j−1

)∣∣∣∣
≤ O(1)

[
δ n−E

(
y2

j
)
+δ no(1)

]
Now also remember

y j = X (τε ∧ t j)−X
(
τε ∧ t j−1

)
and that

{
X (τε ∧ t j)

}
j is a martingale. Therefore it is routine to show,

E
(
y2

j
)
= E

(
X (τε ∧ t j)

2
)
−E

(
X
(
τε ∧ t j−1

)2
)
.

and so ∣∣∣∣E (eiλX(τε∧t j)
)

e
λ2
2 t j −E

(
eiλX(τε∧t j−1)e

λ2
2 t j−1

)∣∣∣∣
≤ O(1)

[
δ n−

(
E
(

X (τε ∧ t j)
2
)
−E

(
X
(
τε ∧ t j−1

)2
))

+δ no(1)
]

and so, summing over all j = 1, · · · ,2n(ε),∣∣∣∣E (eiλX(τε∧b)
)

e
λ2
2 b−E

(
eiλX(a)e

λ2
2 a
)∣∣∣∣

≤ O(1)
(
(1+o(1))(b−a)−

(
E
(

X (τε ∧b)2
)
−E

(
X (a)2

)))
. (63.8.48)

Now recall 63.8.42 which said
P([τε < b])< ε.

Let εk ≡ 2−k and then by the Borel Cantelli lemma,

X (τε ∧b)→ X (b)

a.e. since if ω is such that convergence does not take place, ω must be in infinitely many of
the sets,

[
τεk < b

]
, a set of measure 0. Also since

{
X (τε ∧ t j)

}
j is a martingale, it follows

from optional sampling theorem that
{

X (a)2 ,X (τε ∧b)2 ,X (b)2
}

is a submartingale and
so ∫

[X(τε∧b)2≥α]
X (τε ∧b)2 dP≤

∫
[X(τε∧b)2≥α]

X (b)2 dP

and also from the maximal inequalities, Theorem 60.6.4 on Page 1967 it follows

P
([

X (τε ∧b)2 ≥ α

])
≤ 1

α
E
(

X (b)2
)

and so the functions,
{

X
(
τεk ∧b

)2
}

εk
are uniformly integrable which implies by the Vitali

convergence theorem, Theorem 11.5.3 on Page 257, that you can pass to the limit as εk→ 0



2174 CHAPTER 63. THE QUADRATIC VARIATION OF A MARTINGALE

in the inequality, 63.8.48 and conclude∣∣∣∣E (eiλX(b)
)

e
λ2
2 b−E

(
eiλX(a)e

λ2
2 a
)∣∣∣∣

≤ O(1)
(
(b−a)−

(
E
(

X (b)2
)
−E

(
X (a)2

)))
= 0.

Therefore,

E
(

eiλX(b)
)
= E

(
eiλX(a)

)
e−

λ2
2 (b−a)

This proves the lemma because p was arbitrary.
Now from this lemma, it is not hard to establish Levy’s theorem.

Theorem 63.8.5 Let {X (t)} be a real continuous martingale adapted to the filtration

Ft for t ∈ [0,a] some interval such that for all t ∈ [0,a] ,E
(

X (t)2
)
< ∞. Suppose also

that
{

X (t)2− t
}

is a martingale. Then for s < t,X (t)− X (s) is normally distributed
with mean 0 and variance t − s. Also if 0 ≤ t0 < t1 < · · · < tm ≤ b, then the increments{

X (t j)−X
(
t j−1

)}
are independent.

Proof: Let the t j be as described above and consider the interval [tm−1, tm] in place of
[a,b] in Lemma 63.8.4. Also let λ k for k = 1,2, · · · ,m be given. For t ∈ [tm−1, tm] , and
λ m ̸= 0,

Zλ m (t) =
1

λ m

m−1

∑
j=1

λ j
(
X (t j)−X

(
t j−1

))
+(X (t)−X (tm−1))

Then it is clear that
{

Zλ m (t)
}

is a martingale on [tm−1, tm] . What is possibly less clear is that{
Zλ m (t)

2− t
}

is also a martingale. Note that Zλ m (t) = X (t)+Y where Y is measurable in
Ftm−1 . Therefore, for s < t,s ∈ [tm−1, tm] ,

E
(

Zλ m (t)
2− t|Fs

)
= E

(
X (t)2 +2X (t)Y +Y 2− t|Fs

)

= X (s)2− s+2E (X (t)Y |Fs)+Y 2

= X (s)2− s+2Y X (s)+Y 2 = Zλ m (s)
2− s

and so Lemma 63.8.4 can be applied to conclude

E
(

eiλZλm (tm)
)
= E

(
eiλZλm (tm−1)

)
e−

λ2
2 (tm−tm−1).

Now letting λ = λ m,

E
(

ei∑
m
j=1 λ j(X(t j)−X(t j−1))

)
= E

(
ei∑

m−1
j=1 λ j(X(t j)−X(t j−1))

)
e−

λ2
m
2 (tm−tm−1).
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By continuity, this equation continues to hold for λ m = 0. Then iterate this, using a similar
argument on the first factor of the right side to eventually obtain

E
(

ei∑
m
j=1 λ j(X(t j)−X(t j−1))

)
=

m

∏
j=1

e−
λ2

j
2 (t j−t j−1).

Then letting all but one λ j equal zero, this shows the increment, X (t j)− X
(
t j−1

)
is a

random variable which is normally distributed having variance t j− t j−1 and mean 0. The
above formula also shows from Proposition 59.11.1 on Page 1889 that the increments are
independent. This proves the theorem.
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Chapter 64

Wiener Processes
A real valued random variable X is normally distributed with mean 0 and variance σ2 if

P(X ∈ A) =
1√

2πσ

∫
A

e−
1
2

x2

σ2 dx

Consider the characteristic function. By definition it is

φ X (λ )≡
∫
R

eiλxdλ X (x)

where λ X is the distribution measure for this random variable. Thus the characteristic
function of this random variable is

1√
2πσ

∫
∞

−∞

eiλxe−
1

2σ2 x2
dx

One can then show through routine arguments that this equals exp
(
− 1

2 σλ
2
)

.

64.1 Real Wiener Processes
Here is the definition of a Wiener process.

Definition 64.1.1 Let W (t) be a stochastic process which has the properties that whenever
t1 < t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent and whenever s< t, it
follows W (t)−W (s) is normally distributed with variance t−s and mean 0. Also t→W (t)
is Holder continuous with every exponent γ < 1/2 and W (0) = 0. This is called a Wiener
process.

Do Wiener processes exist? Yes, they do. First here is a simple lemma which has really
been done before. It depends on the Kolmogorov extension theorem, Theorem 59.2.3 on
Page 1860.

Lemma 64.1.2 There exists a sequence, {ξ k}
∞

k=1 of random variables such that

L (ξ k) = N (0,1)

and {ξ k}
∞

k=1 is independent.

Proof: Let i1 < i2 · · ·< in be positive integers and define

µ i1···in (F1×·· ·×Fn)≡
1(√
2π
)n

∫
F1×···×Fn

e−|x|
2/2dx.

Then for the index set equal to N the measures satisfy the necessary consistency condition
for the Kolmogorov theorem. Therefore, there exists a probability space, (Ω,P,F ) and

2177
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measurable functions, ξ k : Ω→ R such that

P
([

ξ i1 ∈ Fi1

]
∩
[
ξ i2 ∈ Fi2

]
· · ·∩

[
ξ in ∈ Fin

])
= µ i1···in (F1×·· ·×Fn)

= P
([

ξ i1 ∈ Fi1

])
· · ·P

([
ξ in ∈ Fin

])
which shows the random variables are independent as well as normal with mean 0 and
variance 1. ■

Recall that the sum of independent normal random variables is normal. The Wiener
process is just an infinite weighted sum of the above independent normal random variables,
the weights depending on t. Therefore, if the sum converges, it is not too surprising that
the result will be normally distributed and the variance will depend on t. This is the idea
behind the following theorem.

Theorem 64.1.3 There exists a real Wiener process as defined in Definition 64.1.1. Fur-
thermore, the distribution of W (t)−W (s) is the same as the distribution of W (t− s) and
W is Holder continuous with exponent γ for any γ < 1/2. Also for each α > 1,

E
(
|W (t)−W (s)|α

)
≤Cα |t− s|α/2 E

(
|W (1)|α

)
Proof: Let {gm}∞

m=1 be a complete orthonormal set in L2 (0,∞) . Thus, if f ∈ L2 (0,∞) ,

f =
∞

∑
i=1

( f ,gi)L2 gi.

The Wiener process is defined as

W (t,ω)≡
∞

∑
i=1

(
X(0,t),gi

)
L2 ξ i (ω)

where the random variables, {ξ i} are as described in Lemma 64.1.2. The series converges
in L2 (Ω) where (Ω,F ,P) is the probability space on which the random variables, ξ i are
defined. This will first be shown. Note first that from the independence of the ξ i,∫

Ω

ξ iξ jdP = 0

Therefore,

∫
Ω

∣∣∣∣∣ n

∑
i=m

(
X(0,t),gi

)
L2 ξ i (ω)

∣∣∣∣∣
2

dP =
n

∑
i=m

(
X(0,t),gi

)2
L2

∫
Ω

|ξ i|
2 dP

=
n

∑
i=m

(
X(0,t),gi

)2
L2

which converges to 0 as m,n → ∞. Thus the partial sums are a Cauchy sequence in
L2 (Ω,P) .
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It just remains to verify this definition satisfies the desired conditions. First I will show
that ω →W (t,ω) is normally distributed with mean 0 and variance t. That it should be
normally distributed is not surprising since it is just a sum of independent random variables
which are this way. Selecting a suitable subsequence, {nk} it can be assumed

W (t,ω) = lim
k→∞

nk

∑
i=1

(
X(0,t),gi

)
L2 ξ i (ω) a.e.

and so from the dominated convergence theorem and the independence of the ξ i,

E (exp(iλW (t))) = lim
k→∞

E

(
exp

(
iλ

nk

∑
j=1

(
X(0,t),g j

)
L2 ξ j (ω)

))

= lim
k→∞

E

(
nk

∏
j=1

exp
(

iλ
(
X(0,t),g j

)
L2 ξ j (ω)

))

= lim
k→∞

nk

∏
j=1

E
(

exp
(

iλ
(
X(0,t),g j

)
L2 ξ j (ω)

))
= lim

k→∞

nk

∏
j=1

e−
1
2 λ

2(X(0,t),g j)
2
L2

= lim
k→∞

exp

(
nk

∑
j=1
−1

2
λ

2 (X(0,t),g j
)2

L2

)

= exp
(
−1

2
λ

2 ∣∣∣∣X(0,t)
∣∣∣∣2

L2

)
= exp

(
−1

2
λ

2t
)
,

the characteristic function of a normally distributed random variable having variance t and
mean 0.

It is clear W (0) = 0. It remains to verify the increments are independent. To do this,
consider

E (exp(i [λ (W (t)−W (s))+µ (W (s)−W (r))])) (64.1.1)

Is this equal to

E (exp(i [λ (W (t)−W (s))]))E (exp(i [µ (W (s)−W (r))]))? (64.1.2)

Letting nk→ ∞ such that convergence happens pointwise for each function of interest, and
using the independence of the ξ i, and the dominated convergence theorem as needed,

E

(
exp

(
i

[
∞

∑
i=1

λ
(
X(s,t),gi

)
L2 ξ i +

∞

∑
i=1

µ
(
X(r,s),gi

)
L2 ξ i

]))

= lim
k→∞

E

(
exp

(
i

[
nk

∑
j=1

(
λ
(
X(s,t),g j

)
L2 +µ

(
X(r,s),g j

)
L2

)
ξ j

]))
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= lim
k→∞

E

(
nk

∏
j=1

exp
(

i
(

λ
(
X(s,t),g j

)
L2 +µ

(
X(r,s),g j

)
L2

)
ξ j

))

= lim
k→∞

nk

∏
j=1

E
(

exp
(

i
(

λ
(
X(s,t),g j

)
L2 +µ

(
X(r,s),g j

)
L2

)
ξ j

))

= lim
k→∞

nk

∏
j=1

exp
(
−1

2
(
λX(s,t)+µX(r,s),g j

)2
L2

)

= lim
k→∞

exp

(
−1

2

nk

∑
j=1

(
λX(s,t)+µX(r,s),g j

)2
L2

)

= exp

(
−1

2

∞

∑
j=1

(
λX(s,t)+µX(r,s),g j

)2
L2

)
= exp

(
−1

2

∥∥λX(s,t)+µX(r,s)
∥∥2

L2

)

= exp
(
−1

2

[
λ

2∥∥X(s,t)
∥∥2

L2 +µ
2∥∥X(r,s)

∥∥2
L2

])
because the functions λX(s,t),µX(r,s) are orthogonal. Then this equals

= exp
(
−1

2

[
λ

2 (t− s)+µ
2 (s− r)

])

= exp
(
−1

2
(t− s)λ

2
)

exp
(
−1

2
(s− r)µ

2
)

which equals 64.1.2 and this shows the increments are independent. Obviously, this same
argument shows this holds for any finite set of disjoint increments.

From the definition, if t > s

W (t− s) =
∞

∑
k=1

(
X(0,t−s),gk

)
L2 ξ k

while

W (t)−W (s) =
∞

∑
k=1

(
X(s,t),gk

)
L2 ξ k.

Then the same argument given above involving the characteristic function to show W (t)
is normally distributed shows both of these random variables are normally distributed with
mean 0 and variance t− s because they have the same characteristic function.
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For example, ignoring the limit questions and proceding formally,

E (exp(iλ (W (t)−W (s)))) = E

(
exp

(
iλ

(
∞

∑
k=1

(
X(s,t),gk

)
L2 ξ k

)))

= E

(
∞

∏
k=1

exp
(

iλ
(
X(s,t),gk

)
L2 ξ k

))

=
∞

∏
k=1

E
(

exp
(

iλ
(
X(s,t),gk

)
L2 ξ k

))
=

∞

∏
k=1

e−
1
2 λ

2(X(s,t),gk)
2
L2

= exp

(
−1

2
λ

2
∞

∑
k=1

(
X(s,t),gk

)2
L2

)

= exp
(
−1

2
λ

2 (t− s)
)

which is the characteristic function of a random variable having mean 0 and variance t− s.
Finally note the distribution of W (t− s) is the same as the distribution of

W (1)(t− s)1/2 =
∞

∑
k=1

(
X(0,1),gk

)
L2 ξ k (t− s)1/2

because the characteristic function of this last random variable is the same as the charac-
teristic function of W (t− s) which is e−

1
2 λ

2(t−s) which follows from a simple computation.
Since W (1) is a normally distrubuted random variable with mean 0 and variance 1,

E
(

exp
(

iλW (1)(t− s)1/2
))

= e−
1
2 λ

2(t−s)

which is the same as the characteristic function of W (t− s).
Hence for any positive α,

E
(
|W (t)−W (s)|α

)
= E

(
|W (t− s)|α

)
= E

(∣∣∣(t− s)1/2 W (1)
∣∣∣α)

= |t− s|α/2 E
(
|W (1)|α

)
(64.1.3)

It follows from Theorem 62.2.2 that W (t) is Holder continuous with exponent γ where γ is
any positive number less than β/α where α/2 = 1+β . Thus γ is any constant less than

α

2 −1
α

=
1
2

α−2
α

Thus γ is any constant less than 1
2 . ■

The proof of the theorem, which only depended on {ξ i}
∞

i=1 being independent random
variables each normal with mean 0 and variance 1, implies the following corollary.
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Corollary 64.1.4 Let {ξ i}
∞

i=1 be independent random variables each normal with mean 0
and variance 1. Then

W (t,ω)≡
∞

∑
i=1

(
X[0,t],gi

)
L2 ξ i (ω)

is a real Wiener process. Furthermore, the distribution of W (t)−W (s) is the same as the
distribution of W (t− s) and W is Holder continuous with exponent γ for any γ < 1/2. Also
for each α > 1,

E
(
|W (t)−W (s)|α

)
≤Cα |t− s|α/2 E

(
|W (1)|α

)
64.2 Nowhere Differentiability of Wiener Processes

If W (t) is a Wiener process, it turns out that t →W (t,ω) is nowhere differentiable for
a.e. ω. This fact is based on the independence of the increments and the fact that these
increments are normally distributed.

First note that W (t)−W (s) has the same distribution as (t− s)1/2 W (1) . This is be-
cause they have the same characteristic function. Next it follows that because of the inde-
pendence of the increments and what was just noted that,

P
(
∩5

r=1 [|W (t + rδ )−W (t +(r−1)δ )| ≤ Kδ ]
)

=
5

∏
r=1

P([|W (t + rδ )−W (t +(r−1)δ )| ≤ Kδ ])

=
5

∏
r=1

P
([∣∣∣δ 1/2W (1)

∣∣∣≤ Kδ

])
=

(
1√
2π

∫ K
√

δ

−K
√

δ

e−
1
2 t2

dt

)5

≤ Cδ
5/2. (64.2.4)

With this observation, here is the proof which follows [120] and according to this reference
is due to Payley, Wiener and Zygmund and the proof is like one given by Dvoretsky, Erdös
and Kakutani.

Theorem 64.2.1 Let W (t) be a Wiener process. Then there exists a set of measure 0, N
such that for all ω /∈ N,

t→W (t,ω)

is nowhere differentiable.

Proof: Let [0,a] be an interval. If for some ω, t→W (t,ω) is differentiable at some s,
then for some n, p > 0, ∣∣∣∣W (t,ω)−W (s,ω)

t− s

∣∣∣∣≤ p

whenever |t− s|< 5a2−n ≡ 5δ n. Define Cnp by{
ω : for some s ∈ [0,a),

∣∣∣∣W (t,ω)−W (s,ω)

t− s

∣∣∣∣≤ p if |t− s| ≤ 5δ n

}
. (64.2.5)
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Thus ∪n,p∈NCnp contains the set of ω such that t →W (t,ω) is differentiable for some
s ∈ [0,a).

Now define uniform partitions of [0,a),
{

tn
k

}2n

k=0 such that∣∣tn
k − tn

k−1
∣∣= a2−n ≡ δ n

Let
Dnp ≡ ∪2n−1

i=0

(
∩5

r=1 [|W (tn
i + rδ n)−W (tn

i +(r−1)δ n)| ≤ 10pδ n]
)

If ω ∈Cnp, then for some s∈ [0,a), the condition of 64.2.5 holds. Suppose k is the number
such that s ∈ [tn

k−1, t
n
k ). Then for r ∈ {1,2,3,4,5} ,∣∣W (

tn
k−1 + rδ n,ω

)
−W

(
tn
k−1 +(r−1)δ n,ω

)∣∣
≤
∣∣W (

tn
k−1 + rδ n,ω

)
−W (s,ω)

∣∣+ ∣∣W (s,ω)−W
(
tn
k−1 +(r−1)δ n,ω

)∣∣
≤ 5pδ n +5pδ n = 10pδ n

Thus Cnp ⊆ Dnp. Now from 64.2.4,

P(Dnp)≤ 2nCδ
5/2
n =Ca5/22n (2−n)5/2

=C
(√

a
)5 2−

3
2 n (64.2.6)

Let
Cp = ∪∞

n=1∩∞
k=n Ckp ⊆ ∪∞

n=1∩∞
k=n Dkp.

It was just shown in 64.2.6 that P
(
∩∞

k=nDkp
)
= 0 and so Cp has measure 0. Thus

∪∞
p=1Cp, the set of points, ω where t →W (t,ω) could have a derivative has measure 0.

Taking the union of the exceptional sets corresponding to intervals [0,n) for n ∈ N, this
proves the theorem.

This theorem on nowhere differentiability is very important because it shows it is doubt-
ful one can define an integral

∫
f (s)dW (s) by simply fixing ω and then doing some sort

of Stieltjes integral in time. The reason for this is that the nowhere differentiability of W
implies it is also not of bounded variation on any interval since if it were, it would equal the
difference of two increasing functions and would therefore have a derivative at a.e. point.

I have presented the theorem on nowhere differentiability for one dimensional Wiener
processes but the same proof holds with minor modifications if you have defined the Wiener
process in Rn or you could simply consider the components and apply the above result.

64.3 Wiener Processes In Separable Banach Space
Here is an important lemma on which the existence of Wiener processes will be based.

Lemma 64.3.1 There exists a sequence of real Wiener processes, {ψk (t)}
∞

k=1 which have
the following properties. Let t0 < t1 < · · ·< tn be an arbitrary sequence. Then the random
variables {

ψk (tq)−ψk
(
tq−1

)
: (q,k) ∈ (1,2, · · · ,n)× (k1, · · · ,km)

}
(64.3.7)

are independent. Also each ψk is Holder continuous with exponent γ for any γ < 1/2 and
for each m ∈ N there exists a constant Cm independent of k such that∫

Ω

|ψk (t)−ψk (s)|
2m dP≤Cm |t− s|m (64.3.8)
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Proof: First, there exists a sequence
{

ξ i j

}
(i, j)∈N×N

such that the
{

ξ i j

}
are indepen-

dent and each normally distributed with mean 0 and variance 1. This follows from Lemma
64.1.2. Let {ξ i}

∞

i=1 be independent and normally distributed with mean 0 and variance 1.
(Let θ be a one to one and onto map from N to N×N. Then define ξ i j ≡ ξ

θ
−1(i, j).)

Let

ψk (t) =
∞

∑
j=1

(
X[0,t],g j

)
L2 ξ k j (64.3.9)

where
{

g j
}

is a orthonormal basis for L2 (0,∞). By Corollary 64.1.4, this defines a real
Wiener process satisfying 64.3.8. It remains to show that the random variables

ψkr
(tq)−ψkr

(
tq−1

)
(64.3.10)

are independent.
Let

P =
n

∑
q=1

m

∑
r=1

sqr
(
ψkr

(tq)−ψkr

(
tq−1

))
and consider E

(
eiP
)
. I want to use Proposition 59.11.1 on Page 1889. To do this I need to

show E
(
eiP
)

equals

n

∏
q=1

m

∏
r=1

E
(
exp
(
isqr
(
ψkr

(tq)−ψkr

(
tq−1

))))
.

Using 64.3.9, E
(
eiP
)

equals

E

(
exp

(
i

n

∑
q=1

m

∑
r=1

sqr

∞

∑
j=1

(
X[tq−1,tq],g j

)
L2

ξ kr j

))

= lim
N→∞

E

(
exp

(
i

n

∑
q=1

m

∑
r=1

sqr

N

∑
j=1

(
X[tq−1,tq],g j

)
L2

ξ kr j

))
Now the ξ kr j are independent by construction. Therefore, the above equals

= lim
N→∞

n

∏
q=1

m

∏
r=1

N

∏
j=1

E
(

exp
(

isqr

(
X[tq−1,tq],g j

)
L2

ξ kr j

))

= lim
N→∞

n

∏
q=1

m

∏
r=1

N

∏
j=1

exp
(
−1

2
s2

qr

(
X[tq−1,tq],g j

)2

L2

)

=
n

∏
q=1

m

∏
r=1

lim
N→∞

exp

(
−1

2
s2

qr

N

∑
j=1

(
X[tq−1,tq],g j

)2

L2

)

=
n

∏
q=1

m

∏
r=1

exp
(
−1

2
s2

qr
(
tq− tq−1

))
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=
n

∏
q=1

m

∏
r=1

E
(
exp
(
isqr
(
ψkr

(tq)−ψkr

(
tq−1

))))
because ψkr

(tq)−ψkr

(
tq−1

)
is normally distributed with variance tq− tq−1 and mean 0.

By Proposition 59.11.1 on Page 1889, it follows the random variables of 64.3.10 are inde-
pendent. Note that as a special case, this also shows the random variables, {ψk (t)}

∞

k=1 are
independent due to the fact ψk (0) = 0. ■

Recall Corollary 61.11.4 which is stated here for convenience.

Corollary 64.3.2 Let E be any real separable Banach space. Then there exists a sequence,
{ek} ⊆ E such that for any {ξ k} a sequence of independent random variables such that
L (ξ k) = N (0,1), it follows

X (ω)≡
∞

∑
k=1

ξ k (ω)ek

converges a.e. and its law is a Gaussian measure defined on B (E). Furthermore, ||ek||E ≤
λ k where ∑k λ k < ∞.

Now let {ψk (t)} be the sequence of Wiener processes described in Lemma 64.3.1.
Then define a process with values in E by

W (t)≡
∞

∑
k=1

ψk (t)ek (64.3.11)

Then ψk (t)/
√

t is N (0,1) and so by Corollary 61.11.4 the law of

W (t)/
√

t =
∞

∑
k=1

(
ψk (t)/

√
t
)

ek

is a Gaussian measure. Therefore, the same is true of W (t) . Similar reasoning applies to
the increments, W (t)−W (s) to conclude the law of each of these is Gaussian. Consider
the question whether the increments are independent. Let 0 ≤ t0 < t1 < · · · < tm and let
φ j ∈ E ′. Then by the dominated convergence theorem and the properties of the {ψk} ,

E

(
exp

(
i

m

∑
j=1

φ j
(
W (t j)−W

(
t j−1

))))

= E

(
exp

(
i

m

∑
j=1

(
∞

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

)))

= E

(
m

∏
j=1

exp

(
i

∞

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))
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= lim
n→∞

E

(
m

∏
j=1

exp

(
i

n

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))

= lim
n→∞

m

∏
j=1

n

∏
k=1

E
(

exp
(

i
(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))
= lim

n→∞

m

∏
j=1

E

(
exp

(
i

n

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))

= lim
n→∞

E

(
m

∏
j=1

exp

(
i

n

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))

= lim
n→∞

m

∏
j=1

n

∏
k=1

E
(

exp
(

i
(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))
= lim

n→∞

m

∏
j=1

E

(
exp

(
i

n

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))

=
m

∏
j=1

E

(
exp

(
i

∞

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
φ j (ek)

))

=
m

∏
j=1

E

(
exp

(
iφ j

(
∞

∑
k=1

(
ψk (t j)−ψk

(
t j−1

))
ek

)))

=
m

∏
j=1

E
(

exp
(

iφ j
(
W (t j)−W

(
t j−1

))))
which shows by Theorem 59.13.3 on Page 1896 that the random vectors,{

W (t j)−W
(
t j−1

)}m
j=1

are independent.
It is also routine to verify using properties of the ψk and characteristic functions that

L (W (t)−W (s)) = L (W (t− s)). To see this, let φ ∈ E ′

E (exp(iφ (W (t)−W (s))))

= E

((
exp

(
iφ

∞

∑
k=1

(ψk (t)−ψk (s))ek

)))

= lim
n→∞

E

((
exp

(
iφ

n

∑
k=1

(ψk (t)−ψk (s))ek

)))
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= lim
n→∞

n

∏
k=1

E (exp(iφ (ek)(ψk (t)−ψk (s))))

= lim
n→∞

n

∏
k=1

E
(

exp
(
−1

2
φ (ek)

2 (t− s)
))

= lim
n→∞

E

(
exp

n

∑
k=1

(
−1

2
φ (ek)

2 (t− s)
))

which is the same as the result for

E (exp(iφ (W (t− s))))

and
E
(
exp
(
iφ
(√

t− sW (1)
)))

.

This has proved the following lemma.

Lemma 64.3.3 Let E be a real separable Banach space. Then there exists an E valued
stochastic process, W (t) such that L (W (t)) and L (W (t)−W (s)) are Gaussian mea-
sures and the increments, {W (t)−W (s)} are independent. Furthermore, the increment
W (t)−W (s) has the same distribution as W (t− s) and W (t) has the same distribution as√

tW (1).

Now I want to consider the question of Holder continuity of the functions, t→W (t,ω).∫
Ω

||W (t)−W (s)||α dP =
∫

E
||x||α dµW (t)−W (s)

=
∫

E
||x||α dµW (t−s) =

∫
E
||x||α dµ√t−sW (1)

=
∫

Ω

∣∣∣∣√t− sW (1)
∣∣∣∣α dP

= |t− s|α/2
∫

Ω

||W (1)||α dP =Cα |t− s|α/2

by Fernique’s theorem, Theorem 61.7.5. From the Kolmogorov Čentsov theorem, Theorem
62.2.2, it follows {W (t)} is Holder continuous with exponent γ <

(
α

2 −1
)
/α.

This completes the proof of the following theorem.

Theorem 64.3.4 Let E be a separable real Banach space. Then there exists a stochas-
tic process, {W (t)} such that the distribution of W (t) and every increment, W (t)−W (s)
is Gaussian. Furthermore, the increments corresponding to disjoint intervals are indepen-
dent, L (W (t)−W (s)) =L (W (t− s)) =L

(√
t− sW (1)

)
. Also for a.e. ω, t→W (t,ω)

is Holder continuous with exponent γ < 1/2.

64.4 Independent Increments and Martingales
Here is an interesting lemma.
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Lemma 64.4.1 Let (W (t) ,Ft) be a stochastic process which has independent increments
having values in E a real separable Banach space. Let

A ∈Fs ≡ σ (W (u)−W (r) : 0≤ r < u≤ s)

Suppose g(W (t)−W (s)) ∈ L1 (Ω;E) . Then the following formula holds.∫
Ω

XAg(W (t)−W (s))dP = P(A)
∫

Ω

g(W (t)−W (s))dP (64.4.12)

Proof: Let G denote the set, of all A∈Fs such that 64.4.12 holds. Then it is obvious G
is closed with respect to complements and countable disjoint unions. Let K denote those
sets which are finite intersections of the form

A = ∩m
i=1Ai

where each Ai is in a set of σ (W (ui)−W (ri)) for some 0 ≤ ri < ui ≤ s. For such A, it
follows

A ∈ σ (W (ui)−W (ri) , i = 1, · · · ,m) .

Now consider the random vector having values in Em+1,

(W (u1)−W (r1) , · · · ,W (um)−W (rm) ,g(W (t)−W (s)))

Let t∗ ∈ (E ′)m and s∗ ∈ E ′.

t∗ · (W (u1)−W (r1) , · · · ,W (um)−W (rm))

can be written in the form g∗ · (W (τ1)−W (η1) , · · · ,W (τ l)−W (η l)) where the intervals,(
η j,τ j

)
are disjoint and each τ j ≤ s. For example, suppose you have

a(W (2)−W (1))+b(W (2)−W (0))+ c(W (3)−W (1)) ,

where obviously the increments are not disjoint. Then you would write the above expres-
sion as

a(W (2)−W (1))+b(W (2)−W (1))+b(W (1)−W (0))
+c(W (3)−W (2))+ c(W (2)−W (1))

and then you would collect the terms to obtain

b(W (1)−W (0))+(a+b+ c)(W (2)−W (1))+ c(W (3)−W (2))

and now these increments are disjoint.
Therefore, by independence of the increments,

E (exp i(t∗ · (W (u1)−W (r1) , · · · ,W (um)−W (rm))+ s∗ (g(W (t)−W (s)))))

= E (exp i(g∗ · (W (τ1)−W (η1) , · · · ,W (τ l)−W (η l))+ s∗ (g(W (t)−W (s)))))
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=
l

∏
j=1

E
(
exp
(
ig j
(
W (τ j)−W

(
η j
))))

E (exp(is∗ (g(W (t)−W (s)))))

= E (exp(i(t∗ · (W (u1)−W (r1) , · · · ,W (um)−W (rm))))) ·
E (exp(is∗ (g(W (t)−W (s))))) .

By Theorem 59.13.3, it follows the vector (W (u1)−W (r1) , · · · ,W (um)−W (rm)) is inde-
pendent of the random variable g(W (t)−W (s)) which shows that for A ∈K , XA, mea-
surable in σ (W (u1)−W (r1) , · · · ,W (um)−W (rm)) is independent of g(W (t)−W (s)) .
Therefore, ∫

Ω

XAg(W (t)−W (s))dP =
∫

Ω

XAdP
∫

Ω

g(W (t)−W (s))dP

= P(A)
∫

Ω

g(W (t)−W (s))dP

Thus K ⊆ G and so by the lemma on π systems, Lemma 12.12.3 on Page 329, it follows
G ⊇ σ (K )⊇Fs ⊇ G . ■

Lemma 64.4.2 Let {W (t)} be a stochastic process having values in a separable Banach
space which has the property that if t1 < t2 · · ·< tn, then the increments,

{W (tk)−W (tk−1)}

are independent and integrable and E (W (t)−W (s)) = 0. Suppose also that W (t) is right
continuous, meaning that for ω off a set of measure zero, t→W (t)(ω) is right continuous.
Also suppose that for some q > 1

||W (t)−W (s)||Lq(Ω)

is bounded independent of s ≤ t. Then {W (t)} is also a martingale with respect to the
normal filtration defined by

Fs ≡ ∩t>sσ (W (u)−W (r) : 0≤ r < u≤ t)

where this denotes the intersection of the completions of the σ algebras

σ (W (u)−W (r) : 0≤ r < u≤ t)

Also, in the same situation but without the assumption that E (W (t)−W (s)) = 0, if t > s
and A ∈Fs it follows that if g is a continuous function such that

||g(W (t)−W (s))||Lq(Ω) (64.4.13)

is bounded independent of s≤ t for some q > 1 then for t > s,∫
Ω

XAg(W (t)−W (s))dP = P(A)
∫

Ω

g(W (t)−W (s))dP. (64.4.14)
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Proof: Consider first the claim, 64.4.14. To begin with I show that if A ∈Fs then for
all ε small enough that t > s+ ε,1∫

Ω

XAg(W (t)−W (s+ ε))dP = P(A)
∫

Ω

g(W (t)−W (s+ ε))dP (64.4.15)

This will happen if XA and g(W (t)−W (s+ ε)) are independent. First note that from the
definition

A ∈ σ (W (u)−W (r) : 0≤ r < u≤ s+ ε)

and so from the process of completion of a measure space, there exists

B ∈ σ (W (u)−W (r) : 0≤ r < u≤ s+ ε)

such that B⊇ A and P(B\A) = 0. Therefore, letting φ ∈ E ′,

E (exp(itXA + iφ (g(W (t)−W (s+ ε)))))

= E (exp(itXB + iφ (g(W (t)−W (s+ ε)))))

= E (exp(itXB))E (exp(iφ (g(W (t)−W (s+ ε)))))

because XB is independent of g(W (t)−W (s+ ε)) by Lemma 64.4.1 above. Then the
above equals

= E (exp(itXA))E (exp(iφ (g(W (t)−W (s+ ε)))))

Now by Theorem 59.13.3, 64.4.15 follows. Next pass to the limit in both sides of 64.4.15
as ε→ 0. One can do this because of 64.4.13 which implies the functions in the integrands
are uniformly integrable and Vitali’s convergence theorem, Theorem 21.5.7. This yields
64.4.14.

Now consider the part about the stochastic process being a martingale. Let g be the
identity map. If A ∈Fs, the above implies∫

A
E (W (t) |Fs)dP =

∫
A

W (t)dP =
∫

A
(W (t)−W (s))dP+

∫
A

W (s)dP

= P(A)
∫

Ω

(W (t)−W (s))dP+
∫

A
W (s)dP =

∫
A

W (s)dP

and so since A is arbitrary, E (W (t) |Fs) =W (s). ■
Note this implies immediately from Lemma 63.1.5 that Wiener process is not of bounded

variation on any interval. This is because this lemma implies if it were of bounded varia-
tion, then it would be constant which is not the case due to

L (W (t)−W (s)) = L (W (t− s)) = L
(√

t− sW (1)
)
.

Here is an interesting theorem about approximation.

1Note how the σ algebra Fs are defined, as the intersection of completions of σ algebras corresponding to t
strictly larger than s.
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Theorem 64.4.3 Let {W (t)} be a Wiener process having values in a separable Banach
space as described in Theorem 64.3.4. There exists a set of measure 0, N such that for
ω /∈ N, the sum in 64.3.11 converges uniformly to W (t,ω) on any interval, [0,T ] . That is,
for each ω not in a set of measure zero, the partial sums of the sum in that formula converge
uniformly to t→W (t,ω) on [0,T ].

Proof: By Lemma 64.4.2 the independence of the increments imply

n

∑
k=m

ψk (t)ek

is a martingale and so by Theorem 62.5.3,

P

([
sup

t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=m

ψk (t)ek

∣∣∣∣∣
∣∣∣∣∣≥ α

])
≤ 1

α

∫
Ω

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=m

ψk (T )ek

∣∣∣∣∣
∣∣∣∣∣dP

From Corollary 64.3.2

∫
Ω

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=m

ψk (T )ek

∣∣∣∣∣
∣∣∣∣∣dP ≤

n

∑
k=m

∫
Ω

|ψk (T )|dPλ k

≤
n

∑
k=m

λ k

which shows that there exists a subsequence, ml such that whenever n > ml ,

P

([
sup

t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣ n

∑
k=ml

ψk (t)ek

∣∣∣∣∣
∣∣∣∣∣≥ 2−k

])
≤ 2−k.

Recall Lemma 59.15.6 stated below for convenience.

Lemma 64.4.4 Let {ζ k} be a sequence of random variables having values in a separable
real Banach space, E whose distributions are symmetric. Letting Sk ≡ ∑

k
i=1 ζ i, suppose{

Snk

}
converges a.e. Also suppose that for every m > nk,

P
([∣∣∣∣Sm−Snk

∣∣∣∣
E > 2−k

])
< 2−k. (64.4.16)

Then in fact,
Sk (ω)→ S (ω) a.e.ω (64.4.17)

Apply this lemma to the situation in which the Banach space, E is C ([0,T ] ;E) and
ζ k = ψkek. Then you can conclude uniform convergence of the partial sums,

m

∑
k=1

ψk (t)ek.

This proves the theorem.
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Why is C ([0,T ] ;E) separable? You can assume without loss of generality that the
interval is [0,1] and consider the Bernstein polynomials

pn (t)≡
n

∑
k=0

(
n
k

)
f
(

k
n

)
tk (1− t)n−k

These converge uniformly to f Now look at all polynomials of the form

n

∑
k=0

aktk
(

1− tk
)

where the ak is one of the countable dense set and n ∈ N. Each Bernstein polynomial
uniformly close to one of these and also uniformly close to f . Hence polynomials of this
sort are countable and dense in C ([0,T ] ;E).

64.5 Hilbert Space Valued Wiener Processes
Next I will consider the case of Hilbert space valued Wiener processes. This will include
the case of Rn valued Wiener processes. I will present this material independent of the
more general case of E valued Wiener processes.

Definition 64.5.1 Let W (t) be a stochastic process with values in H, a real separable
Hilbert space which has the properties that t →W (t,ω) is continuous, whenever t1 <
t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent, W (0) = 0, and whenever
s < t,

L (W (t)−W (s)) = N (0,(t− s)Q)

which means that whenever h ∈ H,

L ((h,W (t)−W (s))) = N (0,(t− s)(Qh,h))

Also
E ((h1,W (t)−W (s))(h2,W (t)−W (s))) = (Qh1,h2)(t− s) .

Here Q is a nonnegative trace class operator. Recall this means

Q =
∞

∑
i=1

λ iei⊗ ei

where {ei} is a complete orthonormal basis, λ i ≥ 0, and

∞

∑
i=1

λ i < ∞

Such a stochastic process is called a Q Wiener process. In the case where these have values
in Rn tQ ends up being the covariance matrix of W (t).
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Note the characteristic function of a Q Wiener process is

E
(

ei(h,W (t))
)
= e−

1
2 t2(Qh,h) (64.5.18)

Note that by Theorem 61.8.5 if you simply say that the distribution measure of W (t)
is Gaussian, then it follows there exists a trace class operator Qt and mt ∈ H such that this
measure is N (mt ,Qt) . Thus for W (t) a Wiener process, Qt = tQ and mt = 0. In addition,
the increments are independent so this is much more specific than the earlier definition of
a Gaussian measure.

What is a Q Wiener process if the Hilbert space is Rn? In particular, what is Q? It is
given that

L ((h,W (t)−W (s))) = N (0,(t− s)(Qh,h))

In this case everything is a vector in Rn and so for h ∈ Rn,

E
(

eiλ (h,W (t)−W (s))
)
= e−

1
2 λ

2(t−s)(Qh,h)

In particular, letting λ = 1 this shows W (t)−W (s) is normally distributed with covariance
(t− s)Q because its characteristic function is e−

1
2 h∗(t−s)Qh.

With this and definition, one can describe Hilbert space valued Wiener processes in a
fairly general setting.

Theorem 64.5.2 Let U be a real separable Hilbert space and let J : U0→U be a Hilbert
Schmidt operator where U0 is a real separable Hilbert space. Then let {gk} be a complete
orthonormal basis for U0 and define for t ∈ [0,T ]

W (t)≡
∞

∑
k=1

ψk (t)Jgk

Then W (t) is a Q Wiener process for Q = JJ∗ as in Definition 64.5.1. Furthermore, the
distribution of W (t)−W (s) is the same as the distribution of W (t− s) , and W is Holder
continuous with exponent γ for any γ < 1/2. There also is a subsequence denoted by N
such that the convergence of the series

N

∑
k=1

ψk (t)Jgk

is uniform for all ω not in some set of measure zero.

Proof: First it is necessary to show the series converges in L2 (Ω;U) for each t. For
convenience I will consider the series for W (t)−W (s) . (Always, it is assumed t > s.)
Then since ψk (t)−ψk (s) is normal with mean 0 and variance (t− s) and ψk (t)−ψk (s)
and ψ l (t)−ψ l (s) are independent,

∫
Ω

∣∣∣∣∣ n

∑
k=m

(ψk (t)−ψk (s))Jgk

∣∣∣∣∣
2

U

dP

=
∫

Ω

n

∑
k,l=m

((ψk (t)−ψk (s))Jgk,(ψ l (t)−ψ l (s))Jgl)
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= (t− s)
n

∑
k=m

(Jgk,Jgk) = (t− s)
n

∑
k=m
||Jgk||2U

which converges to 0 as m,n→ ∞ thanks to the assumption that J is Hilbert Schmidt.
It follows the above sum converges in L2 (Ω;U) . Now letting m < n, it follows by the
maximal estimate, Theorem 62.5.3, and the above

P

([
sup

t∈[0,T ]

∣∣∣∣∣ m

∑
k=1

ψk (t)Jgk−
n

∑
k=1

ψk (t)Jgk

∣∣∣∣∣
U

≥ λ

])

≤ 1

λ
2 E

∣∣∣∣∣ n

∑
k=m+1

ψk (T )Jgk

∣∣∣∣∣
2

U

≤ 1

λ
2 T

n

∑
k=m
||Jgk||2U

and so there exists a subsequence nl such that for all p≥ 0,

P

([
sup

t∈[0,T ]

∣∣∣∣∣ nl

∑
k=1

ψk (t)Jgk−
nl+p

∑
k=1

ψk (t)Jgk

∣∣∣∣∣
U

≥ 2−l

])
< 2−l

Therefore, by Borel Cantelli lemma, there is a set of measure zero such that for ω not in
this set,

lim
l→∞

nl

∑
k=1

ψk (t)Jgk =
∞

∑
k=1

ψk (t)Jgk

is uniform on [0,T ]. From now on denote this subsequence by N to save on notation.
I need to consider the characteristic function of (h,W (t)−W (s))U for h ∈U. Then

E (exp(ir (h,(W (t)−W (s)))U ))

= lim
N→∞

E

(
exp

(
ir

(
N

∑
j=1

(
ψ j (t)−ψ j (s)

)
(h,Jg j)

)))

= lim
N→∞

E

(
N

∏
j=1

eir(ψ j(t)−ψ j(s))(h,Jg j)

)
Since the random variables ψ j (t)−ψ j (s) are independent,

= lim
N→∞

N

∏
j=1

E
(

eir(h,Jg j)(ψ j(t)−ψ j(s))
)

Since ψ j (t)−ψ j (s) is a Gaussian random variable having mean 0 and variance (t− s), the
above equals

= lim
N→∞

N

∏
j=1

e−
1
2 r2(h,Jg j)

2
(t−s)
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= lim
N→∞

exp

(
N

∑
j=1
−1

2
r2 (h,Jg j)

2 (t− s)

)

= exp

(
−1

2
r2 (t− s)

∞

∑
j=1

(h,Jg j)
2
U

)

= exp

(
−1

2
r2 (t− s)

∞

∑
j=1

(J∗h,g j)
2
U0

)

= exp
(
−1

2
r2 (t− s) ||J∗h||2U0

)
= exp

(
−1

2
r2 (t− s)(JJ∗h,h)U

)
= exp

(
−1

2
r2 (t− s)(Qh,h)U

)
(64.5.19)

which shows (h,W (t)−W (s))U is normally distributed with mean 0 and variance

(t− s)(Qh,h)

where Q ≡ JJ∗. It is obvious from the definition that W (0) = 0. Note that Q is of trace
class because if {ek} is an orthonormal basis for U,

∑
k
(Qek,ek)U = ∑

k
||J∗ek||2U0

= ∑
k

∑
l
(J∗ek,gl)

2
U0

= ∑
l

∑
k
(ek,Jgl)

2
U = ∑

l
||Jgl ||2U < ∞

To find the covariance, consider

E ((h1,W (t)−W (s))(h2,W (t)−W (s))) ,

This equals

E

(
∞

∑
k=1

(ψk (t)−ψk (s))(h1,Jgk)
∞

∑
j=1

(
ψ j (t)−ψ j (s)

)
(h2,Jg j)

)
.

Since the series converge in L2 (Ω;U) , the independence of the ψk (t)−ψk (s) implies the
above equals

= lim
n→∞

E

(
n

∑
k=1

(ψk (t)−ψk (s))(h1,Jgk)
n

∑
j=1

(
ψ j (t)−ψ j (s)

)
(h2,Jg j)

)

= lim
n→∞

(t− s)
n

∑
k=1

(h1,Jgk)(h2,Jgk)

= lim
n→∞

(t− s)
n

∑
k=1

(J∗h1,gk)U0
(J∗h2,gk)U0

= (t− s)
∞

∑
k=1

(J∗h1,gk)U0
(J∗h2,gk)U0

= (t− s)(J∗h1,J∗h2) = (t− s)(Qh1,h2) .
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Next consider the claim that the increments are independent. Let W N (t) be given by
the appropriate partial sum and let

{
h j
}m

j=1 be a finite list of vectors of U . Then from the
independence properties of ψ j explained above,

E

(
exp

m

∑
j=1

i
(
h j,W N (t j)−W N (t j−1

))
U

)

E

(
exp

m

∑
j=1

i

(
h j,

N

∑
k=1

Jgk
(
ψk (t j)−ψk

(
t j−1

)))
U

)

= E

(
exp

m

∑
j=1

N

∑
k=1

i(h j,Jgk)U
(
ψk (t j)−ψk

(
t j−1

)))

= E

(
∏
j,k

exp
(
i(h j,Jgk)U

(
ψk (t j)−ψk

(
t j−1

))))

= ∏
j,k

E
(
exp
(
i(h j,Jgk)U

(
ψk (t j)−ψk

(
t j−1

))))

This can be done because of the independence of the random variables

{
ψk (t j)−ψk

(
t j−1

)}
j,k .

Thus the above equals

∏
j,k

exp
(
−1

2
(h j,Jgk)

2
U

(
t j− t j−1

))

=
m

∏
j=1

exp

(
−1

2

N

∑
k=1

(h j,Jgk)
2
U

(
t j− t j−1

))

because ψk (t j)−ψk
(
t j−1

)
is normally distributed having variance t j− t j−1. Now letting
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N→ ∞, this implies

E

(
exp

m

∑
j=1

i
(
h j,W (t j)−W

(
t j−1

))
U

)

=
m

∏
j=1

exp

(
−1

2

∞

∑
k=1

(h j,Jgk)
2
U

(
t j− t j−1

))

=
m

∏
j=1

exp

(
−1

2
(
t j− t j−1

) ∞

∑
k=1

(J∗h j,gk)
2
U0

)

=
m

∏
j=1

exp
(
−1

2
(
t j− t j−1

)∣∣∣∣J∗h j
∣∣∣∣2

U0

)
=

m

∏
j=1

exp
(
−1

2
(
t j− t j−1

)
(Qh j,h j)U

)
=

m

∏
j=1

exp
(
i
(
h j,W (t j)−W

(
t j−1

))
U

)
(64.5.20)

from 64.5.19, letting r = 1. By Theorem 59.13.3 on Page 1896, this shows the increments
are independent.

It remains to verify the Holder continuity. Recall

W (t) =
∞

∑
k=1

Jgkψk (t)

where ψk is a real Wiener process.
Next consider the claim about Holder continuity. It was shown above that

E (exp(ir (h,(W (t)−W (s)))U )) = exp
(
−1

2
r2 (t− s)(Qh,h)U

)
Therefore, taking a derivative with respect to r two times yields

E
((
−(h,(W (t)−W (s)))2

U

)
exp(ir (h,(W (t)−W (s)))U )

)
= −(t− s)(Qh,h)exp

(
−1

2
r2 (t− s)(Qh,h)U

)
+

r2 (t− s)2 (Qh,h)2
U exp

(
−1

2
r2 (t− s)(Qh,h)U

)
Now plug in r = 0 to obtain

E
(
(h,(W (t)−W (s)))2

U

)
= (t− s)(Qh,h) .

Similarly, taking 4 derivatives, it follows that an expression of the following form holds.

E
(
(h,(W (t)−W (s)))4

U

)
=C2 (Qh,h)2 (t− s)2 ,
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and in general,

E
(
(h,(W (t)−W (s)))2m

U

)
=Cm (Qh,h)m (t− s)m .

Now it follows from Minkowsky’s inequality applied to the two integrals ∑
∞
i=1 and

∫
Ω

that

[
E
(
|W (t)−W (s)|2m

)]1/m
=

[
E

((
∞

∑
k=1

(ek,W (t)−W (s))2

)m)]1/m

≤
∞

∑
k=1

[
E
(
(ek,W (t)−W (s))2m

)]1/m

=
∞

∑
k=1

[Cm (Qek,ek)
m (t− s)m]

1/m

= C1/m
m |t− s|

(
∞

∑
k=1

(Qek,ek)

)
≡C′m |t− s| .

Hence there exists a constant Cm such that

E
(
|W (t)−W (s)|2m

)
≤Cm |t− s|m

By the Kolmogorov Čentsov Theorem, Theorem 62.2.2, it follows that off a set of
measure 0, t→W (t,ω) is Holder continuous with exponent γ such that

γ <
m−1

2m
, m > 2.

Finally, from 64.5.19 with r = 1,

E (exp i(h,W (t)−W (s))U ) = exp
(
−1

2
(t− s)(Qh,h)

)
which is the same as E (exp i(h,W (t− s))U ) due to the fact W (0) = 0. ■

The above has shown that W (t) satisfies the conditions of Lemma 64.4.2 and so it is a
martingale with respect to the filtration given there. What is its quadratic variation?

E
(
||W (t)||2

)
=

∞

∑
k=1

E ((W (t) ,ek)(W (t) ,ek)) =
∞

∑
k=1

(Qek,ek) t = trace(Q) t

Is it the case that [W ] (t) = trace(Q) t? Let the filtration be as in Lemma 64.4.2 and let
A ∈Fs. Then using the result of that lemma,∫

A

(
||W (t)||2− t trace(Q) |Fs

)
dP

=
∫

A

(
||W (t)−W (s)||2 +2(W (t) ,W (s))−||W (s)||2

−(t− s) traceQ− traceQs|Fs)dP
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= P(A)
∫

Ω

||W (t)−W (s)||2− (t− s) traceQdP

+
∫

A

(
2(W (t) ,W (s))−||W (s)||2− trace(Q)s|Fs

)
dP

=
∫

A
2(W (s) ,E (W (t) |Fs))dP−

∫
A
||W (s)||2 dP−

∫
A

s traceQdP

=
∫

A

(
||W (s)||2− s traceQ

)
dP

and this shows that the quadratic variation [W ] (t) = t trace(Q) by uniqueness of the quad-
ratic variation.

Now suppose you start with a nonnegative trace class operator Q. Then in this case also
one can define a Q Wiener process. It is possible to get this theorem from Theorem 64.5.2
but this will not be done here.

Theorem 64.5.3 Let U be a real separable Hilbert space and let Q be a nonnegative trace
class operator defined on U. Then there exists a Q Wiener process as defined in Definition
64.5.1. Furthermore, the distribution of W (t)−W (s) is the same as the distribution of
W (t− s) and W is Holder continuous with exponent γ for any γ < 1/2.

Proof: One can obtain this theorem as a corollary of Theorem 64.5.2 but this will not
be done here.

Let

Q =
∞

∑
i=1

λ iei⊗ ei

where {ei} is a complete orthonormal set and λ i ≥ 0 and ∑λ i < ∞. Now the definition of
the Q Wiener process is

W (t)≡
∞

∑
k=1

√
λ kekψk (t) (64.5.21)

where {ψk (t)} are the real Wiener processes defined in Lemma 64.3.1.
Now consider 64.5.21. From this formula, if s < t

W (t)−W (s) =
∞

∑
k=1

√
λ kek (ψk (t)−ψk (s)) (64.5.22)

First it is necessary to show this sum converges. Since ψ j (t) is a Wiener process,

∫
Ω

∣∣∣∣∣ n

∑
j=m

√
λ j

(
ψ j (t)−ψ j (s)

)
e j

∣∣∣∣∣
2

U

dP

=
∫

Ω

n

∑
j=m

λ j

(
ψ j (t)−ψ j (s)

)2
dP

= (t− s)
n

∑
j=m

λ j
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and this converges to 0 as m,n→ ∞ because it was given that

∞

∑
j=1

λ j < ∞

so the series in 64.5.22 converges in L2 (Ω;U) .
Therefore, there exists a subsequence{

N

∑
k=1

√
λ kek (ψk (t)−ψk (s))

}

which converges pointwise a.e. to W (t)−W (s) as well as in L2 (Ω;U) as N → ∞. Then
letting h ∈U,

(h,W (t)−W (s))U =
∞

∑
k=1

√
λ k (ψk (t)−ψk (s))(h,ek) (64.5.23)

Then by the dominated convergence theorem,

E (exp(ir (h,(W (t)−W (s)))U ))

= lim
N→∞

E

(
exp

(
ir

(
N

∑
j=1

√
λ j

(
ψ j (t)−ψ j (s)

)
(h,e j)

)))

= lim
N→∞

E

(
N

∏
j=1

eir
√

λ j(ψ j(t)−ψ j(s))(h,e j)

)
Since the random variables ψ j (t)−ψ j (s) are independent,

= lim
N→∞

N

∏
j=1

E
(

eir
√

λ j(ψ j(t)−ψ j(s))(h,e j)
)

Since ψ j (t) is a real Wiener process,

= lim
N→∞

N

∏
j=1

e−
1
2 r2λ j(t−s)(h,e j)

2

= lim
N→∞

exp

(
N

∑
j=1
−1

2
r2

λ j (t− s)(h,e j)
2

)

= exp

(
−1

2
r2 (t− s)

∞

∑
j=1

λ j (h,e j)
2

)

= exp
(
−1

2
r2 (t− s)(Qh,h)

)
(64.5.24)
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Thus (h,W (t)−W (s)) is normally distributed with mean 0 and variance (t− s)(Qh,h). It
is obvious from the definition that W (0) = 0. Also to find the covariance, consider

E ((h1,W (t)−W (s))(h2,W (t)−W (s))) ,

and use 64.5.23 to obtain this is equal to

E

(
∞

∑
k=1

√
λ k (ψk (t)−ψk (s))(h1,ek)

∞

∑
j=1

√
λ j

(
ψ j (t)−ψ j (s)

)
(h2,e j)

)

= lim
n→∞

E

(
n

∑
k=1

√
λ k (ψk (t)−ψk (s))(h1,ek)

n

∑
j=1

√
λ j

(
ψ j (t)−ψ j (s)

)
(h2,e j)

)

= lim
n→∞

(t− s)
n

∑
k=1

λ k (h1,ek)(h2,e j) = (t− s)(Qh1,h2)

(Recall Q≡ ∑k λ kek⊗ ek.)
Next I show the increments are independent. Let N be the subsequence defined above

and let W N (t) be given by the appropriate partial sum and let
{

h j
}m

j=1 be a finite list of
vectors of U . Then from the independence properties of ψ j explained above,

E

(
exp

m

∑
j=1

i
(
h j,W N (t j)−W N (t j−1

))
U

)

E

(
exp

m

∑
j=1

i

(
h j,

N

∑
k=1

√
λ kek

(
ψk (t j)−ψk

(
t j−1

)))
U

)

= E

(
exp

m

∑
j=1

N

∑
k=1

i
√

λ k (h j,ek)U
(
ψk (t j)−ψk

(
t j−1

)))

= E

(
∏
j,k

exp
(

i
√

λ k (h j,ek)U
(
ψk (t j)−ψk

(
t j−1

))))

= ∏
j,k

E
(

exp
(

i
√

λ k (h j,ek)U
(
ψk (t j)−ψk

(
t j−1

))))
This can be done because of the independence of the random variables{

ψk (t j)−ψk
(
t j−1

)}
j,k .

Thus the above equals

=
m

∏
j=1

exp

(
−1

2

N

∑
k=1

λ k (h j,ek)
2
U

(
t j− t j−1

))
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because ψk (t j)−ψk
(
t j−1

)
is normally distributed having variance t j− t j−1 and mean 0.

Now letting N→ ∞, this implies

E

(
exp

m

∑
j=1

i
(
h j,W (t j)−W

(
t j−1

))
U

)

=
m

∏
j=1

exp

(
−1

2
(
t j− t j−1

) ∞

∑
k=1

λ k (h j,ek)
2
U

)

=
m

∏
j=1

exp
(
−1

2
(
t j− t j−1

)
(Qh,h)U

)
=

m

∏
j=1

exp
(
i
(
h j,W (t j)−W

(
t j−1

))
U

)
(64.5.25)

because of the fact shown above that (h,W (t)−W (s)) is normally distributed with mean 0
and variance (t− s)(Qh,h). By Theorem 59.13.3 on Page 1896, this shows the increments
are independent.

Next consider the continuity assertion. Recall

W (t) =
∞

∑
k=1

√
λ kekψk (t)

where ψk is a real Wiener process. Therefore, letting 2m > 2,m ∈ N and using 64.1.3 for
ψk and Jensen’s inequality along with Lemma 64.3.1,

E
(
|W (t)−W (s)|2m

)
= E

∣∣∣∣∣ ∞

∑
k=1

√
λ kek (ψk (t)−ψk (s))

∣∣∣∣∣
2m


= E

((
∞

∑
k=1

λ k |ψk (t)−ψk (s)|
2

)m)

≤ E

( ∞

∑
k=1

λ k

)m−1
∞

∑
k=1

λ k |ψk (t)−ψk (s)|
2m


≤ Cm

∞

∑
k=1

λ kE
(
|ψk (t)−ψk (s)|

2m
)

(64.5.26)

≤ Cm |t− s|m (64.5.27)

By the Kolmogorov Čentsov Theorem, Theorem 62.2.2, it follows that off a set of measure
0, t→W (t,ω) is Holder continuous with exponent γ such that

γ <
m−1

2m
.

Finally, from 64.5.24 taking r = 1,

E (exp i(h,W (t)−W (s))U ) = exp
(
−1

2
(t− s)(Qh,h)

)
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which is the same as E (exp i(h,W (t− s))U ) due to the fact W (0) = 0. This proves the
theorem.

The above shows there exists Q Wiener processes in any separable Hilbert space. Next
I will show the way described above is the only way it can happen.

Theorem 64.5.4 Suppose {W (t)} is a Q Wiener process in U, a real separable Hilbert
space. Then letting

Q =
∞

∑
k=1

λ kek⊗ ek

where the {ek} are orthonormal, λ k ≥ 0, and ∑
∞
k=1 λ k < ∞, it follows

W (t) =
∞

∑
k=1

√
λ kψk (t)ek (64.5.28)

where

ψk (t)≡

{
1√
λ k

(W (t) ,ek)U if λ k ̸= 0

0 if λ k = 0

then {ψk (t)} is a Wiener process and for t0 < t1 < · · ·< tn the random variables{
ψk (tq)−ψk

(
tq−1

)
: (q,k) ∈ (1,2, · · · ,n)× (k1, · · · ,km)

}
are independent. Furthermore, the sum in 64.5.28 converges uniformly for a.e. ω on any
closed interval, [0,T ].

Proof: First of all, the fact that W (t) has values in U and that {ek} is an orthonormal
basis implies the sum in 64.5.28 converges for each ω. Consider

E (exp(irψk (t))) = E

(
exp

(
ir

1√
λ k

(W (t) ,ek)U

))
Since W (t) is given to be a Q Wiener process, (W (t) ,ek)U is normally distributed with
mean 0 and variance t (Qh,h) . Therefore, the above equals

= e
− 1

2 r2 1
λk

t(Qek,ek) = e
− 1

2 r2 1
λk

tλ k = e−
1
2 r2t ,

the characteristic function for a random variable which is N (0, t) . The independence of the
increments for a given ψk (t) follows right away from the independence of the increments
of W (t) and the distribution of the increments being N (0,(t− s)) follows similarly to the
above.

For t1 < t2 < · · ·< tn, why are the random variables,{
(W (tq) ,ek)U −

(
W
(
tq−1

)
,ek
)

U : (q,k) ∈ (1,2, · · · ,n)× (k1, · · · ,km)
}

(64.5.29)

independent? Let

P =
n

∑
q=1

m

∑
j=1

sq j

((
W (tq) ,ek j

)
U
−
(

W
(
tq−1

)
,ek j

)
U

)
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and consider E
(
eiP
)
. This equals

eiP = E

(
exp

(
i

n

∑
q=1

m

∑
j=1

sq j

((
W (tq) ,ek j

)
U
−
(

W
(
tq−1

)
,ek j

)
U

)))
(64.5.30)

= E

(
exp

(
i

n

∑
q=1

((
W (tq) ,

m

∑
j=1

sq jek j

)
U

−

(
W
(
tq−1

)
,

m

∑
j=1

sq jek j

)
U

)))

= E

(
n

∏
q=1

exp

(
i

(
W (tq)−W

(
tq−1

)
,

m

∑
j=1

sq jek j

)
U

))
Now recall that by assumption the increments W (t)−W (s) are independent. Therefore,
the above equals

n

∏
q=1

E

(
exp

(
i

(
W (tq)−W

(
tq−1

)
,

m

∑
j=1

sq jek j

)
U

))

Recall that by assumption (W (t)−W (s) ,h)U is normally distributed with variance given
by the expresson (t− s)(Qh,h) and mean 0. Therefore, the above equals

n

∏
q=1

exp

(
−1

2
(
tq− tq−1

)(
Q

m

∑
j=1

sq jek j ,
m

∑
j=1

sq jek j

))

=
n

∏
q=1

exp

(
−1

2
(
tq− tq−1

) m

∑
j=1

s2
q jλ k j

)

exp

(
−1

2

n

∑
q=1

m

∑
j=1

(
tq− tq−1

)
s2

q jλ k j

)
(64.5.31)

Also
n

∏
q=1

n

∏
j=1

E
(

exp
(

isq j

((
W (tq) ,ek j

)
U
−
(

W
(
tq−1

)
,ek j

)
U

)))
(64.5.32)

=
n

∏
q=1

n

∏
j=1

E
(

exp
(

isq j

((
W (tq)−W

(
tq−1

)
,ek j

)
U

)))
=

n

∏
q=1

n

∏
j=1

exp
(
−1

2
(
tq− tq−1

)
s2

q j

(
Qek j ,ek j

))

=
n

∏
q=1

n

∏
j=1

exp
(
−1

2
(
tq− tq−1

)
s2

q jλ k j

)

= exp

(
−1

2

n

∑
q=1

m

∑
j=1

(
tq− tq−1

)
s2

q jλ k j

)
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Therefore, eiP equals the expression in 64.5.32 because both equal the expression in 64.5.31
and it follows from Proposition 59.11.1 on Page 1889 that the random variables of 64.5.29
are independent.

What about the claim of uniform convergence? By the independence of the increments,
it follows from Lemma 64.4.2 that {W (t)} is a martingale and each real valued function,
(W (t) ,ek)U is also a martingale. Therefore, Theorem 62.5.3 can be applied to conclude

P

([
sup

t∈[0,T ]

∣∣∣∣∣ n

∑
k=m

(W (t) ,ek)U ek

∣∣∣∣∣≥ α

])
≤ 1

α

∫
Ω

∣∣∣∣∣ n

∑
k=m

(W (T ) ,ek)U ek

∣∣∣∣∣dP

≤ 1
α

∫
Ω

∣∣∣∣∣ n

∑
k=m

(W (T ) ,ek)U ek

∣∣∣∣∣
2

dP =
1
α

n

∑
k=m

∫
Ω

(W (T ) ,ek)
2
U dP

=
1
α

n

∑
k=m

(Qek,ek)T =
T
α

n

∑
k=m

λ k ≤
T
α

∞

∑
k=m

λ k

Since ∑
∞
k=1 λ k < ∞, there exists a sequence, {ml} such that if n > ml

P

([
sup

t∈[0,T ]

∣∣∣∣∣ n

∑
k=ml

(W (t) ,ek)U ek

∣∣∣∣∣> 2−k

])
< 2−k

and so by the Borel Cantelli lemma, off a set of measure 0 the partial sums{
ml

∑
k=1

(W (t) ,ek)U ek

}
converge uniformly on [0,T ] . This is very interesting but more can be said. In fact the
original partial sums converge.

Recall Lemma 59.15.6 stated below for convenience.

Lemma 64.5.5 Let {ζ k} be a sequence of random variables having values in a separable
real Banach space, E whose distributions are symmetric. Letting Sk ≡ ∑

k
i=1 ζ i, suppose{

Snk

}
converges a.e. Also suppose that for every m > nk,

P
([∣∣∣∣Sm−Snk

∣∣∣∣
E > 2−k

])
< 2−k. (64.5.33)

Then in fact,
Sk (ω)→ S (ω) a.e.ω (64.5.34)

Apply this lemma to the situation in which the Banach space, E is C ([0,T ] ;U) . Then
you can conclude uniform convergence of the partial sums,

m

∑
k=1

(W (t) ,ek)U ek.

This proves the theorem.
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64.6 Wiener Processes, Another Approach
64.6.1 Lots Of Independent Normally Distributed Random Variables
You can use the Kolmogorov extension theorem to prove the following corollary. It is
Corollary 59.20.3 on Page 1934.

Corollary 64.6.1 Let H be a real Hilbert space. Then there exist real valued random
variables W (h) for h ∈H such that each is normally distributed with mean 0 and for every
h,g,(W ( f ) ,W (g)) is normally distributed and

E (W (h)W (g)) = (h,g)H

Furthermore, if {ei} is an orthogonal set of vectors of H, then {W (ei)} are independent
random variables. Also for any finite set { f1, f2, · · · , fn} ,

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed.

Corollary 64.6.2 The map h→W (h) is linear. Also, {W (h) : h ∈ H} is a closed subspace
of L2 (Ω,F ,P) where F = σ (W (h) : h ∈ H).

Proof: This follows from the above description.

E
(
[W (g+h)− (W (g)+W (h))]2

)
= E

(
W (g+h)2

)
+E
(
(W (g)+W (h))2

)
−2E (W (g+h)(W (g)+W (h)))

= |g+h|2 + |g|2 + |h|2 +2(g,h)−2(g+h,g)−2(g+h,h)

= |g|2 + |h|2 +2(g,h)++2(g,h)+ |g|2

+ |h|2−2 |g|2−2(g,h)−2(g,h)−2 |h|2 = 0

Hence W (h+g) =W (g)+W (h).

E
(
(W (α f )−αW ( f ))2

)
= E

(
W (α f )2

)
+E

(
α

2W ( f )2
)
−2E (W (α f )αW ( f ))

= α
2 | f |2 +α

2 | f |2−2α (α f , f ) = 0.

Why is {W (h) : h ∈ H} a subspace? This is obvious because W is linear. Why is it
closed? Say W (hn)→ f ∈ L2 (Ω) . This requires that {hn} is a Cauchy sequence. Thus
hn→ h and so

E
(
| f −W (h)|2

)
≤ 2

[
lim
n→∞

E
(
| f −W (hn)|2

)
+E

(
|W (hn)−W (h)|2

)]
= 2 lim

n→∞
E
(
|W (hn)−W (h)|2

)
= 2 lim

n→∞
|hn−h|2H = 0

and so f =W (h) showing that this is indeed a closed subspace. ■
Next is a technical lemma which will be of considerable use.
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Lemma 64.6.3 Let X ≥ 0 and measurable. Also define a finite measure on B (Rp)

ν (B)≡
∫

Ω

XXB (Y)dP

Then let f : Rp→ [0,∞) be Borel measurable. Then∫
Ω

f (Y)XdP =
∫
Rp

f (y)dν (y)

where here Y is a given measurable function with values in Rp. Formally, XdP = dν .

Note that Y is given and X is just some random variable which here has nonnegative
values. Of course similar things will work without this stipulation.

Proof: First say X = XD and replace f (Y) with XY−1(B). Then∫
Ω

XDXY−1(B)dP = P
(
D∩Y−1 (B)

)
∫
Rp

XB (y)dν (y) ≡ ν (B)≡
∫

Ω

XDXB (Y)dP

=
∫

Ω

XDXY−1(B)dP = P
(
D∩Y−1 (B)

)
Thus ∫

Ω

XDXY−1(B)dP =
∫

Ω

XDXB (Y)dP =
∫
Rp

XB (y)dν (y)

Now let sn (y) ↑ f (y) , and let sn (y) = ∑
m
k=1 ckXBk (y) where Bk is a Borel set. Then∫

Rp
sn (y)dν (y) =

∫
Rp

m

∑
k=1

ckXBk (y)dν (y) =
m

∑
k=1

ck

∫
Rp

XBk (y)dν (y)

=
m

∑
k=1

ckP
(
D∩Y−1 (Bk)

)
∫

Ω

sn (Y)XDdP =
m

∑
k=1

ck

∫
Ω

XDXBk (Y)dP =
m

∑
k=1

ckP
(
D∩Y−1 (Bk)

)
which is the same thing. Therefore,∫

Ω

sn (Y)XDdP =
∫
Rp

sn (y)dν (y)

Now pass to a limit using the monotone convergence theorem to obtain∫
Ω

f (Y)XDdP =
∫
Rp

f (y)dν (y)

Next replace XD with ∑
m
k=1 dkXDk ≡ sn (ω) , a simple function.∫

Ω

f (Y)
m

∑
k=1

dkXDk dP =
m

∑
k=1

dk

∫
Ω

f (Y)XDk dP
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=
m

∑
k=1

dk

∫
Rp

f (Y)dνk

where νk (B)≡
∫

Ω
XDkXB (Y)dP. Now let

νn (B)≡
∫

Ω

m

∑
k=1

dkXDkXB (Y) =
∫

Ω

snXB (Y)dP

It is indexed with n thanks to sn. Then

νn (B) =
m

∑
k=1

dk

∫
Ω

XDkXB (Y)dP =
m

∑
k=1

dkνk (B)

Hence ∫
Ω

f (Y)sndP =
∫

Ω

f (Y)
m

∑
k=1

dkXDk dP =
m

∑
k=1

dk

∫
Rp

f (y)dνk

=
∫
Rp

f (y)
m

∑
k=1

dkdνk =
∫
Rp

f (y)dνn

(sndP = dνn so to speak.) Then let sn (ω) ↑ X (ω) . Clearly νn ≪ ν and so by the Radon
Nikodym theorem dνn = hndν where hn ↑ 1. It follows from the monotone convergence
theorem that one can pass to a limit in the above and obtain∫

Ω

f (Y)XdP =
∫
Rp

f (y)dν ■

The interest here is to let f (Y) ≡ eλ ·Y so f (y) = eλ ·y. To remember this, XdP = dν in a
sort of sloppy way then the above formula holds.

Lemma 64.6.4 Each eW (h) is in Lp (Ω) for every h ∈ H and for every p≥ 1. In fact,∫
Ω

(
eW (h)

)p
dP =

∫
Ω

eW (ph)dP = e
1
2 |ph|2H .

In addition to this,
n

∑
k=0

W (h)k

k!
→ eW (h) in Lp (Ω,F ,P) , p > 1

Proof: It suffices to verify this for all positive integers p. Let p be such an integer. Note
that from the linearity of W,

(
eW (h)

)p
= epW (h) = eW (ph) and so it suffices to verify that for

each h ∈ H,eW (h) is in L1 (Ω). From Lemma 64.6.3,∫
Ω

eW (h)dP =
∫
R

eydν (y)

where ν (B)≡
∫

Ω
XB (W (h))dP =

∫
RXB (y)dν (y) . In using this lemma, Y =W (h) ,X =

1. Thus∫
Ω

eW (h)dP =
∫

∞

0
ν (ey > λ )dλ =

∫
∞

0

1√
2π |h|

∫
[y>ln(λ )]

e
− 1

2
y2

|h|2 dydλ ,u = ln(λ ) ,
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=
1√

2π |h|

∫
∞

−∞

eu
∫

∞

u
e
− 1

2
y2

|h|2 dydu =
1√
2π

∫
∞

−∞

∫
∞

u/|h|
eue−

1
2 v2

dvdu

=
1√
2π

∫
∞

−∞

∫ |h|v
−∞

eue−
1
2 v2

dudv =
1√
2π

∫
∞

−∞

e−
1
2 v2

e|h|vdv

=
1√
2π

√
2
√

πe|h|
2/2 = e

1
2 |h|

2
< ∞

If h = 0,W (h) would be 0 because by the construction, E
(

W (0)2
)
= (0,0)H = 0. Then

∫
Ω

eW (h)dP =
∫

Ω

e0dP = 1

Consider the last claim. It is enough to assume p is an integer.∣∣∣∣∣ n

∑
k=0

W (h)k

k!
− eW (h)

∣∣∣∣∣ =

∣∣∣∣∣ ∞

∑
k=n+1

W (h)k

k!

∣∣∣∣∣= ∣∣∣W (h)n+1
∣∣∣ ∣∣∣∣∣ ∞

∑
k=0

W (h)k

(n+1+ k)!

∣∣∣∣∣
=

∣∣∣W (h)n+1
∣∣∣ ∣∣∣∣∣ ∞

∑
k=0

W (h)k

k!
k!

(n+1+ k)!

∣∣∣∣∣
≤

∣∣∣W (h)n+1
∣∣∣ 1
(n+1)!

∣∣∣∣∣ ∞

∑
k=0

W (h)k

k!

∣∣∣∣∣=
∣∣∣∣∣W (h)n+1

(n+1)!

∣∣∣∣∣eW (h)

This converges to 0 for each ω because it says nothing more than that the nth term of a
convergent sequence converges to 0.

∫
Ω

(∣∣∣∣∣W (h)n+1

(n+1)!

∣∣∣∣∣eW (h)

)2p

dP =
∫

Ω

(
W (h)n+1

(n+1)!

)2p(
eW (h)

)2p
dP

=

(
1

(n+1)!

)2p 1√
2π |h|

∫
R

e
− 1

2
x2

|h|2 e2pxx2p(n+1)dx

=

(
1

(n+1)!

)2p 1√
2π |h|

e2p|h|2
∫
R

e
− 1

2|h|2
(x−2p|h|2)

2

x2p(n+1)dx

≤
(

1
(n+1)!

)2p 22p(n+1)
√

2π |h|
e2p|h|2

∫
R

e
− 1

2|h|2
(x−2p|h|2)

2 (
x−2p |h|2

)2p(n+1)
dx

+

(
1

(n+1)!

)2p 22p(n+1)
√

2π |h|
e2p|h|2

∫
R

e
− 1

2|h|2
(x−2p|h|2)

2 (
2p |h|2

)2p(n+1)
dx
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The second term clearly converges to 0 as n→ ∞. Consider the first term. To simplify, let
t = x−2p|h|

|h| . Then this term reduces to(
1

(n+1)!

)2p 22p(n+1) |h|2p(n+1) |h|√
2π

e2p|h|2
∫
R

e−t2
t2p(n+1)dt

= 2
(

1
(n+1)!

)2p 22p(n+1) |h|2p(n+1) |h|√
2π

e2p|h|2
∫

∞

0
e−t2

t2p(n+1)dt

Now let t2 = u. Then this becomes

2
(

1
(n+1)!

)2p 22p(n+1) |h|2p(n+1) |h|√
2π

e2p|h|2
∫

∞

0
e−uup(n+1)u−(1/2) 1

2
du

=

(
1

(n+1)!

)2p 22p(n+1) |h|2p(n+1) |h|√
2π

e2p|h|2
∫

∞

0
e−uup+np− 1

2 du

≤ C (h)(2 |h|)2p(n+1) 1
(n+1)!

1

((n+1)!)2p−1 Γ

(
p(n+1)− 1

2

)
= C (h)

(2 |h|)2p(n+1)

(n+1)!
Γ
(

p(n+1)− 1
2

)
((n+1)!)2p−1

≤ C (h)

(
22 |h|2

)p(n+1)

(n+1)!
Γ
(

p(n+1)− 1
2

)
((n+1)!)2p−1

= C (h)

(
22 |h|2

)p(n+1)

(n+1)!
(p(n+1))!

((n+1)!)2p−1

this converges to 0 as n→ ∞. This is obvious for (22|h|2)
p(n+1)

(n+1)! . Consider (p(n+1))!
((n+1)!)2p−1 .By

the ratio test, ∑n
(p(n+1))!

((n+1)!)2p−1 < ∞ so this also converges to 0. The details of this ratio test
argument are as follows. The ratio, after simplifying is

p factors︷ ︸︸ ︷
(pn+2p)(pn+2p−1) · · ·(pn+ p+1)

(n+2)2p−1 ≤ pp (n+ p)p

(n+2)2p−1

which clearly converges to 0 since 2p−1 > p since p is an integer larger than 1.

Therefore,
{∣∣∣W (h)n+1

(n+1)!

∣∣∣eW (h)
}∞

n=1
is bounded in L2p (Ω). Then

∫
Ω

∣∣∣∣∣ n

∑
k=0

W (h)k

k!
− eW (h)

∣∣∣∣∣
p

dP→ 0

because the integrand is bounded by
(∣∣∣W (h)n+1

(n+1)!

∣∣∣eW (h)
)p

and it was just shown that these

functions are bounded in L2 (Ω) . Therefore, the claimed convergence follows from the
Vitali convergence theorem. ■
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The following lemma shows that the functions eW (h) are dense in Lp (Ω) for every p> 1.

Lemma 64.6.5 Let F be the σ algebra determined by the random variables W (h). If
X ∈ Lp (Ω,F ,P) , p > 1 and

∫
Ω

XeW (h)dP = 0 for every h ∈ H, then X = 0.

Proof: Let h1, · · · ,hp be given. Then for ti ∈ R,

∑
i

tihi ∈ H

and so since W is linear,∫
Ω

Xet·W(h)dP = 0, W(h)≡ (W (h1) , · · · ,W (hp))

Now by Lemma 64.6.3,∫
Ω

X+et·(W (h1),··· ,W(hp))dP =
∫
Rp

et·ydν+ (y)

where ν+ (B) = E (X+XB (W(h))) . From Lemma 64.6.4, this function of t is finite for all
t ∈ Rp. Similarly, ∫

Ω

X−et·(W (h1),··· ,W(hp))dP =
∫
Rp

et·ydν− (y)

where ν− (B) = E (X−XB (W(h))). Thus for ν equal to the signed measure ν ≡ ν+−ν−,

f (t)≡
∫
Rp

et·ydν (y) = 0

for t ∈ Rp. Also ∫
Ω

X+eit·(W(h))dP =
∫
Rp

eit·ydν+ (y)

with a similar formula holding for X−. Thus

f (t)≡
∫
Rp

et·ydν (y) ∈ C

is well defined for all t ∈ Cp. Consider∫
Rp

et·ydν+ (y)

Is this function analytic in each tk? Take a difference quotient. It equals for h ∈ C,

∫
Ω

X+

(
e(t+hek)·(W(h))− et·(W(h))

)
h

dP =
∫

Ω

X+et·W(h)

(
ehek·(W(h))−1

)
h

dP

In case ek ·W(h) = 0 there is nothing to show. Assume then that this is not 0. Then this
equals ∫

Ω

X+ek·(W(h))et·W(h)

(
ehek·(W(h))−1

)
h(ek·(W(h)))

dP
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Now ∣∣∣∣ez−1
z

∣∣∣∣=
∣∣∣∣∣1z ∞

∑
k=1

zk

k!

∣∣∣∣∣≤ ∞

∑
k=0
≤ |ez|

and so the integrand is dominated by∣∣∣∣∣∣X+ek·(W(h))et·W(h)

(
ehek·(W(h))−1

)
h(ek·(W(h)))

∣∣∣∣∣∣ ≤ X+
∣∣∣ek·(W(h))et·W(h)eh(ek·(W(h)))

∣∣∣
= X+

∣∣∣ek·(W(h))e(t+hek)·W(h)
∣∣∣

From Lemma 64.6.4 which says that eW (h) is in Lq (Ω) for each q > 1, this is in particular
true for q = mp where m is an arbitrary positive integer satisfying

p >
m+1

m

Then the integrand is of the form f gh where f ∈ Lp and gh is bounded in Lmp. Therefore,

α ≡ (pm)/(m+1)> 1

and ∫
Ω

| f gh|α dP =
∫

Ω

| f |α |gh|α dP≤
(∫

Ω

| f |p dP
)m/(m+1)(∫

Ω

|gh|pm dP
)1/(m+1)

which is bounded. By the Vitali convergence theorem,

lim
h→0

∫
Ω

X+

(
e(t+hek)·(W(h))− et·(W(h))

)
h

dP =
∫

Ω

X+ek·(W(h))et·W(h)dP

and so this function of tk is analytic. Similarly one can do the same thing for the integral
involving X−. Thus

0 =
∫
Rp

et·ydν (y)

whenever t j ∈R for all j and t1→
∫
Rp et·ydν (y) is analytic onC. Thus this analytic function

of t1 is zero for all t1 ∈ C since it is zero on a set which has a limit point, and in particular∫
Rp

eit1y1+t2y2+···+tpypdν (y) = 0

where each t j is real. Now repeat the argument with respect to t2 and conclude that∫
Rp

eit1y1+it2y2+···+tpypdν (y) = 0,

and continue this way to conclude that

0 =
∫
Rp

eit·ydν (y)
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which shows that the inverse Fourier transform of ν is 0. Thus ν = 0. To see this, let ψ ∈S,
the Schwartz class. Then neglecting troublesome constants in the Fourier transform,

0 =
∫
Rp

ψ (t)
∫
Rp

eit·ydν (y)dt =
∫
Rp

∫
Rp

ψ (t)eit·ydtdν (y) = ν
(
F−1

ψ
)

Now F−1 maps S onto S and so this reduces to∫
Rp

ψdν = 0

for all ψ ∈S. By density of S in C0 (Rp) , it follows that the above holds for all ψ ∈C0 (Rp)
and so ν = 0.

It follows that for every B Borel and for every such description of W(h).

0 =
∫

Ω

XXB (W(h))dP =
∫

Ω

XXW(h)−1(B)dP

Let K be sets of the form W(h)−1 (B) where B is of the form B1×·· ·×Bp,Bi open, this
for some p. Then this is clearly a π system because the intersection of any two of them is
another one and

/0,Ω = W(h)−1 (Rp)

are both in K . Also σ (K ) = F . Let G be those sets F of F such that

0 =
∫

Ω

XXF dP (64.6.35)

This is true for F ∈K . Now it is clear that G is closed with respect to complements and
countable disjoint unions. It is closed with respect to complements because∫

Ω

XXFC dP =
∫

Ω

X (1−XF)dP =
∫

Ω

XdP−
∫

Ω

XXF dP = 0

By Dynkin’s lemma, G = F and so 64.6.35 holds for all F ∈F which requires X = 0. ■

64.6.2 The Wiener Processes
Recall the definition of the Wiener process.

Definition 64.6.6 Let W (t) be a stochastic process which has the properties that whenever
t1 < t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent and whenever s< t, it
follows W (t)−W (s) is normally distributed with variance t−s and mean 0. Also t→W (t)
is Holder continuous with every exponent γ < 1/2, W (0) = 0. This is called a Wiener
process.

Now in the definition of W above, you begin with a Hilbert space H. There exists a
probability space

(
Ω,F̂ ,P

)
and a linear mapping W such that

E (W ( f )W (g)) = ( f ,g)
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and (W ( f1) ,W ( f2) , · · · ,W ( fn)) is normally distributed with mean 0. Next define F =
σ (W (h) : h ∈ H) .

Consider the special example where H = L2 (0,∞;R) , real valued functions which are
square integrable with respect to Lebesgue measure. Note that for each t ∈ [0,∞),X[0,t) ∈
H. Let

W (t)≡W
(
X(0,t)

)
Then from definition, if t1 < t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are indepen-
dent. This is because, due to the linearity of W, each of these equals

W
(
X(0,ti)−X(0,ti−1)

)
=W

(
X(ti−1,ti)

)
and from Corollary 64.6.1, the random vector

(
W
(
X(t1,t2)

)
, · · · ,W

(
X(tm,tm−1)

))
is nor-

mally distributed with covariance equal to a diagonal matrix. Also

E
(

W (t)2
)
= E

(
W
(
X(0,t)

)2
)
=
∫

∞

0
X 2

(0,t)ds = t.

More generally,

W (t)−W (s) =W
(
X(0,t)

)
−W

(
X(0,s)

)
=W

(
X(s,t)

)
W (t− s) =W

(
X(0,t−s)

)
so both W (t)−W (s) and W (t− s) are normally distrubuted with mean 0 and variance t−s.
What about the Holder continuity? The characteristic function of W (t)−W (s) is

E
(

eiλ (W (t−s))
)
= e

1
2 λ

2|t−s|

Consider a few derivatives of the right side with respect to λ and then let λ = 0. This will
yield E ((W (t)−W (s))n) for n = 1,2,3,4.

0, |s− t| ,0,3 |s− t|2

You see the pattern. By induction, you can show that E
(
(W (t)−W (s))2m

)
=Cm |t− s|m.

By the Kolmogorov Centsov theorem, Theorem 62.2.3,

E
(

sup
0≤s<t≤T

∥W (t)−W (s)∥
(t− s)γ

)
≤Cm

whenever γ < β/α = m−1
2m . Thus the above is true whenever γ < 1/2. It follows that there

exists a set of measure zero off which t →W (t) is Holder continuous with exponent γ <
1/2.

Thus this gives a construction of the real Wiener process. Now consider the normal
filtration

Fs ≡ ∩t>sσ (W (u)−W (r) : 0≤ r < u≤ t)

By Lemma 64.4.2, {W (t)} is a martingale with respect to this filtration, because of the
independence of the increments.
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You could also take an arbitrary f ∈ L2 (0,∞) and consider W (t) ≡W
(
X(0,t) f

)
. You

could consider this as an integral and write it in the notation

W (t)≡
∫ t

0
f dW ≡W

(
f X(0,t)

)
Then from the construction,

E

((∫ t

0
f dW

)2
)

= E
(

W
(

f X(0,t)
)2
)
=
∫ T

0
f 2X(0,t)ds =

∫ t

0
| f |2 ds = E

(∫ t

0
| f |2 ds

)
because f does not depend on ω . This of course is formally the Ito isometry.

64.6.3 Q Wiener Processes In Hilbert Space
Now let U be a real separable Hilbert space. Let an orthonormal basis for U be {gi}. Now
let L2 (0,∞,U) be H in the above construction. For h,g ∈ L2 (0,∞,U) .

E (W (h)W (g)) = (h,g)L2(0,∞,U) ≡ (h,g)H

Here each W (g) will be a real valued normal random variable, the variance of W (g) is
|g|2L2(0,∞,U) and its mean is 0, every vector (W (h1) , · · · ,W (hn)) being generalized multi-
variate normal. Let

ψk (t) =W
(
X(0,t)gk

)
.

Then this is a real valued random variable. Disjoint increments are obviously independent
in the same way as before. Also

E
(

ψk (t)ψ j (s)
)
= E

(
W
(
X(0,t)gk

)
W
(
X(0,s)g j

))
≡
∫

∞

0
X(0,t∧s) (gk,g j)U dt = 0

(64.6.36)
if j ̸= k. Thus the random variables ψk (t) and ψ j (s) are independent. This is because, from

the construction,
(

ψk (t) ,ψ j (s)
)

is normally distributed and the covariance is a diagonal
matrix. Also

ψk (t)−ψk (s) =W
(
X(0,t)Jgk

)
−W

(
X(0,s)Jgk

)
=W

(
X(s,t)Jgk

)
ψk (t− s)≡W

(
X(0,t−s)Jgk

)
so ψk (t− s) has the same mean, 0 and variance, |t− s| , as ψk (t)−ψs (s). Thus these have
the same distribution because both are normally distributed.

Now let J be a Hilbert Schmidt map from U to H. Then consider

W (t) = ∑
k

ψk (t)Jgk. (64.6.37)

This has values in H. It is shown below that the series converges in L2 (Ω;H). Recall the
definition of a Q Wiener process.
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Definition 64.6.7 Let W (t) be a stochastic process with values in H, a real separable
Hilbert space which has the properties that t →W (t,ω) is continuous, whenever t1 <
t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent, W (0) = 0, and whenever
s < t,

L (W (t)−W (s)) = N (0,(t− s)Q)

which means that whenever h ∈ H,

L ((h,W (t)−W (s))) = N (0,(t− s)(Qh,h))

Also
E ((h1,W (t)−W (s))(h2,W (t)−W (s))) = (Qh1,h2)(t− s) .

Here Q is a nonnegative trace class operator. Recall this means

Q =
∞

∑
i=1

λ iei⊗ ei

where {ei} is a complete orthonormal basis, λ i ≥ 0, and

∞

∑
i=1

λ i < ∞

Such a stochastic process is called a Q Wiener process. In the case where these have values
in Rn, tQ ends up being the covariance matrix of W (t).

Proposition 64.6.8 The process defined in 64.6.37 is a Q Wiener process in H where Q =
JJ∗.

Proof: First, why does the sum converge? Consider the sum for an increment in time.
Let ti−1 = 0 to obtain the convergence of the sum for a given t. Consider the difference of
two partial sums.

E

(
n

∑
k,l=m

(ψk (ti)−ψk (ti−1))Jgk,(ψ l (ti)−ψ l (ti−1))Jgk

)

= E

(
n

∑
k,l=m

(J∗Jgk,gl)(ψk (ti)−ψk (ti−1))(ψ l (ti)−ψ l (ti−1))

)

=
n

∑
k,l=m

(J∗Jgk,gl)E ((ψk (ti)−ψk (ti−1))(ψ l (ti)−ψ l (ti−1)))

=
n

∑
k=m

(J∗Jgk,gk)E
(

ψk (ti)−ψk (ti−1)
2
)
=

n

∑
k=m

(J∗Jgk,gk)(ti− ti−1)

=
n

∑
k=m
|Jgk|2H (ti− ti−1)

and this converges to 0 as m,n→ ∞ since J is Hilbert Schmidt. Thus the sum converges in
L2 (Ω,H). Why are the disjoint increments independent?
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Let λ k ∈ H. Consider t0 < t1 < · · ·< tn.

E

(
exp i

n

∑
k=1

(λ k,W (tk)−W (tk−1))

)
=

n

∏
k=1

E (exp(i(λ k,W (tk)−W (tk−1))))? (64.6.38)

Start with the left. There are finitely many increments concerned and so it can be assumed
that for each k one can have m→ ∞ such that the partial sums up to m in the definition of
W (tk)−W (tk−1) converge pointwise a.e. Thus

E

(
exp i

n

∑
k=1

(λ k,W (tk)−W (tk−1))

)

= lim
m→∞

E

(
exp i

n

∑
k=1

(
λ k,

m

∑
j=1

(
ψ j (tk)−ψ j (tk−1)

)
Jg j

))

= lim
m→∞

E

(
exp

n

∑
k=1

m

∑
j=1

i
(

λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

))

= lim
m→∞

E

(
m

∏
j=1

exp

(
n

∑
k=1

i
(

λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

)))

Now from 64.6.36,
{

∑
n
k=1 i

(
λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

)}m

j=1
are independent. Hence

the above equals

= lim
m→∞

m

∏
j=1

E

(
exp

(
n

∑
k=1

i
(

λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

)))

= lim
m→∞

m

∏
j=1

E

(
n

∏
k=1

exp
(

i
(

λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

)))
Now from independence of the increments for the ψ j, this equals

= lim
m→∞

m

∏
j=1

n

∏
k=1

E
(

exp
(

i
(

λ k,
(

ψ j (tk)−ψ j (tk−1)
)

Jg j

)))

= lim
m→∞

m

∏
j=1

n

∏
k=1

E
(

exp
(

i(λ k,Jg j)
(

ψ j (tk)−ψ j (tk−1)
)))

= lim
m→∞

m

∏
j=1

n

∏
k=1

e−
1
2 (λ k,Jg j)

2
(tk−tk−1) = lim

m→∞

m

∏
j=1

e−
1
2 ∑

n
k=1(λ k,Jg j)

2
(tk−tk−1)

= lim
m→∞

exp

(
−1

2

m

∑
j=1

n

∑
k=1

(λ k,Jg j)
2 (tk− tk−1)

)

= exp

(
−1

2

n

∑
k=1

∞

∑
j=1

(J∗λ k,g j)
2 (tk− tk−1)

)
(64.6.39)
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What is the right side of 64.6.38.
n

∏
k=1

E (exp(i(λ k,W (tk)−W (tk−1))))

=
n

∏
k=1

E

[
exp

(
i

(
λ k,

∞

∑
j=1

(
ψ j (tk)−ψ j (tk−1)

)
Jg j

))]

= lim
m→∞

n

∏
k=1

E

[
exp

(
i

(
λ k,

m

∑
j=1

(
ψ j (tk)−ψ j (tk−1)

)
Jg j

))]

= lim
m→∞

n

∏
k=1

E

[
exp

(
i

m

∑
j=1

(Jg j,λ k)
(

ψ j (tk)−ψ j (tk−1)
))]

= lim
m→∞

n

∏
k=1

E

(
m

∏
j=1

i(J∗λ k,g j)
(

ψ j (tk)−ψ j (tk−1)
))

and by independence, 64.6.36,

= lim
m→∞

n

∏
k=1

m

∏
j=1

E
[
i(J∗λ k,g j)

(
ψ j (tk)−ψ j (tk−1)

)]
= lim

m→∞

n

∏
k=1

m

∏
j=1

e−
1
2 (J∗λ k,g j)

2
(tk−tk−1) = lim

m→∞

n

∏
k=1

exp

(
−1

2

m

∑
j=1

(J∗λ k,g j)
2 (tk− tk−1)

)

=
n

∏
k=1

exp

(
−1

2

∞

∑
j=1

(J∗λ k,g j)
2 (tk− tk−1)

)

= exp

(
−1

2

n

∑
k=1

∞

∑
j=1

(J∗λ k,g j)
2 (tk− tk−1)

)
which is exactly the same thing as 64.6.39. Thus the disjoint increments are independent.

You could also do something like the following. Let Wm (t) denote the partial sum for
W (t) and since there are only finitely many increments, we can assume the partial sums
converge a.e. Then we need to consider the random variables

{(Wm (tk)−Wm (tk−1))}m
k=1 =

{(
m

∑
i=1

(ψ i (tk)−ψ i (tk−1))Jgi

)}m

k=1

Then for any h ∈ H, you could consider{(
m

∑
i=1

(ψ i (tk)−ψ i (tk−1))(Jgi,h)H

)}m

k=1

and the vector whose kth component is ∑
m
i=1 (ψ i (tk)−ψ i (tk−1))(Jgi,h)H for k = 1,2, · · · ,n

is normally distributed and the covariance is a diagonal matrix. Hence these are indepen-
dent random variables as hoped. Now you can pass to a limit as m→ ∞. Since this is true
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for any h ∈H that the random variables (W (tk)−W (tk−1) ,h)H are independent, it follows
that the random variables W (tk)−W (tk−1) are also.

What of the Holder continuity? In the above computation for independence, as a special
case, for λ ∈ H,

E (exp i(λ ,W (t)−W (s))) = exp
(
−1

2
|J∗λ |2U (t− s)

)
(64.6.40)

In particular, replacing λ with λ r for r real,

E (exp ir (λ ,W (t)−W (s))) = exp
(
−1

2
r2 |J∗λ |2U (t− s)

)
Now we differentiate with respect to r and then take r = 0 as before to obtain finally that

E
(
(λ ,W (t)−W (s))2m

)
≤Cm |J∗λ |2m |t− s|m =Cm (Qλ ,λ )m |t− s|m

Then letting {hk} be an orthonormal basis for H, and using the above inequality with
Minkowski’s inequalitiy,

(
E
(
|W (t)−W (s)|2m

))1/m
=

(
E

([
∞

∑
k=1

(W (t)−W (s) ,hk)
2

]m))1/m

≤
∞

∑
k=1

[
E
(
(W (t)−W (s) ,hk)

2m
)]1/m

≤
∞

∑
k=1

(
Cm (t− s)m |J∗hk|2m

U

)1/m

= C1/m
m |t− s|

∞

∑
k=1
|J∗hk|2U =C1/m

m |t− s|
∞

∑
k=1

∞

∑
j=1

(J∗hk,g j)
2

= C1/m
m |t− s|

∞

∑
j=1

∞

∑
k=1

(hk,Jg j)
2 = |t− s|C1/m

m

∞

∑
j=1

∣∣Jg j
∣∣2
H

and since J is Hilbert Schmidt, modifying the constant yields

E
(
|W (t)−W (s)|2m

)
≤Cm |t− s|m

By the Kolmogorov Centsov theorem, Theorem 62.2.3,

E
(

sup
0≤s<t≤T

∥W (t)−W (s)∥
(t− s)γ

)
≤Cm

whenever γ < β/α = m−1
2m . Thus the above is true whenever γ < 1/2. Hence off a set of

measure zero, t→W (t) is Holder continuous.
What of the covariance condition? From 64.6.40, letting f ,g be two elements of H,

E (exp i(α f +βg,W (t)−W (s))) = exp
(
−1

2
(Q(α f +βg) ,α f +βg)(t− s)

)
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Differentiate with respect to α

E (i( f ,W (t)−W (s))exp i(α f +βg,W (t)−W (s)))

= − [α (Q f , f )+(Q f ,βg)] (t− s)exp
(
−1

2
(Q(α f +βg) ,α f +βg)(t− s)

)
Let α = 0.

E (i( f ,W (t)−W (s))exp i(βg,W (t)−W (s)))

= − [(Q f ,βg)] (t− s)exp
(
−1

2
(Q(βg) ,βg)(t− s)

)
Now differentiate with respect to β

E (−( f ,W (t)−W (s))(g,W (t)−W (s))exp i(βg,W (t)−W (s)))

=− [(Q f ,g)] (t− s)exp
(
−1

2
(Q(βg) ,βg)(t− s)

)
+− [(Q f ,βg)] (t− s)(something)

Now let β = 0.

E (( f ,W (t)−W (s))(g,W (t)−W (s))) = (Q f ,g)(t− s)

Finally, Q = JJ∗. It is self adjoint and nonnegative and so there is a complete orthonor-
mal basis {ei} such that Qei = λ iei. Then λ i = (Qei,ei)H and so

∑
i

λ i = ∑
i
(Qei,ei) = ∑

i
|J∗ei|2U < ∞

because J and hence J∗ are both Hilbert Schmidt operators. ■
Recall the notion of the Hilbert space LU in Definition 19.2.1.
What if you have a given Q ∈L (H,H) which is trace class,Q = Q∗, and nonnegative.

Does there exist a Q Wiener process of the sort just described? It appears this amounts to
obtaining a Hilbert Schmidt map J from some Hilbert space U to H such that Q = JJ∗.

Since Q is trace class and is self adjoint, it follows that there is an orthonormal basis
{ei} ,Qei = λ iei, where λ i is positive for i≤ L or positive for all i. Then

Q1/2 =
L

∑
i=1

√
λ iei⊗ ei

and
Q1/2ei =

√
λ iei.

Then also on Q1/2H, (
Q1/2ei,Q1/2e j

)
Q1/2H

≡ (ei,e j)H

and so an orthonormal basis in Q1/2H is
{√

λ iei
}L

i=1. Then define J : Q1/2H→ H

Jx≡
L

∑
k=1

(
x,
√

λ kek

)
Q1/2H

√
λ kek
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It follows from the above that

Je j =
L

∑
k=1

1√
λ j

δ i j︷ ︸︸ ︷(√
λ je j,

√
λ kek

)
Q1/2H

√
λ kek = e j

Then

L

∑
i=1

∣∣∣J√λ iei

∣∣∣2
H

=
L

∑
i=1

∣∣∣∣∣ L

∑
k=1

(√
λ iei,

√
λ kek

)
Q1/2H

√
λ kek

∣∣∣∣∣
2

H

=
L

∑
i=1

∣∣∣√λ iei

∣∣∣2
H
=

L

∑
i=1

λ i < ∞

Thus it is clear that J is Hilbert Schmidt. Is JJ∗ = Q? For y ∈ Q1/2H,x ∈ H,

(J∗x,y)Q1/2H ≡ (x,J (y))H =

(
x,

L

∑
k=1

(
y,
√

λ kek

)
Q1/2H

√
λ kek

)
H

=
L

∑
k=1

(
x,
√

λ kek

)
H

(
y,
√

λ kek

)
Q1/2H

Thus for y ∈ H,x ∈ H,

(J∗x,J∗y)Q1/2H =
L

∑
k=1

(
x,
√

λ kek

)
H

(
J∗y,

√
λ kek

)
Q1/2H

≡
L

∑
k=1

(
x,
√

λ kek

)
H

(
y,
√

λ kJek

)
H

=
L

∑
k=1

λ k (x,ek)H (y,ek)H = (Qx,y)

and so (JJ∗x,y) = (Qx,y) showing that JJ∗ = Q. This shows the following.

Proposition 64.6.9 Let Q ∈ L (H,H) where H is a real separable Hilbert space and
(Qx,x) ≥ 0 and is trace class. Then there exists a one to one Hilbert Schmidt map J :
Q1/2H → H such that JJ∗ = Q. Then the Q Wiener process is W (t) = ∑

∞
k=1 ψk (t)Jgk

where {gk} is a complete orthonormal basis for the Hilbert space Q1/2H.

Note that in case H is Rp and Q is any symmetric p× p matrix, having nonnegative
eigenvalues, this is automatically trace class and so the above conclusion holds. In partic-
ular, the covariance condition says in this case that

E ((ei,W(t)−W(s))(e j,W(t)−W(s)))

= E ((Wi (t)−Wi (s))(Wj (t)−Wj (s))) = (Qei,e j) = Qi j

This is a p dimensional Wiener process.
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64.6.4 Levy’s Theorem In Hilbert Space
Recall the concept of quadratic variation. Let W (t) be a Q Wiener process. Does it follow
{W (t)} ∈M 2

T (H)? The Wiener process is continuous. Furthermore,

E
(
|W (t)|2H

)
< ∞

for each t ∈ [0,T ] . Since {W (t)} is a martingale, Theorem 62.5.3 can be applied to con-
clude

E
(
|W (t)|2H

)1/2
≤ E

( sup
t∈[0,T ]

|W (t)|
)2
1/2

≤ 2E
(
|W (T )|2H

)1/2

and so {W (t)}∈M 2
T (H) . Therefore, by the Doob Meyer decomposition, Theorem 63.7.15,

there exists an increasing natural process, A(t) and a martingale, Y (t) such that

|W (t)|2H = Y (t)+A(t) .

What is A(t)? Consider the process
|W (t)|2

From Theorem 64.5.4 this equals
∞

∑
k=1

λ kψk (t)
2

where ψk (t) is a one dimensional Wiener process and

Q =
∞

∑
k=1

λ kek⊗ ek,
∞

∑
k=1

λ k < ∞.

By Lemma 64.4.2, {W (t)} is a martingale. Therefore, for s< t and A∈Fs, it follows since
XA is independent of W (t)−W (s) as in the proof of Lemma 64.4.2 that the following
holds. ∫

A
E
(
|W (t)|2 |Fs

)
−|W (s)|2 dP

=
∫

A
E
(
|W (t)|2 + |W (s)|2−2W (t) ·W (s) |Fs

)
dP

=
∫

A
E
(
|W (t)−W (s)|2 |Fs

)
dP =

∫
A
|W (t)−W (s)|2 dP

= P(A)
∫

Ω

|W (t)−W (s)|2 dP

= P(A)
∞

∑
k=1

λ kE
(
(ψk (t)−ψk (s))

2
)

= P(A)(t− s)
∞

∑
k=1

λ k = P(A)(t− s) tr(Q) .
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Therefore, ∫
A

E
(
|W (t)|2− t tr(Q) |Fs

)
−
(
|W (s)|2− s tr(Q)

)
dP = 0

and since A ∈Fs is arbitrary, this shows
{
|W (t)|2− t tr(Q)

}
is a martingale. Hence the

Doob Meyer decomposition for |W (t)|2 is

|W (t)|2 = Y (t)+ t tr(Q)

where Y (t) is a martingale.
There is a generalization of Levy’s theorem to Hilbert space valued Wiener processes.

Theorem 64.6.10 Let {W (t)} ∈M 2
T (H) ,E (W (t)) = 0, where H is a real separable Hil-

bert space. Then for Q a nonnegative symmetric trace class operator, {W (t)} is a Q Wiener

process if and only if both {W (t)} and
{
(W (t) ,h)2− t (Qh,h)

}
are martingales for every

h ∈ H.

Proof: First suppose {W (t)} is a Q Wiener process. Then defining the filtration to be

Ft ≡ σ (W (s)−W (u) : u≤ s≤ t) ,

it follows from Lemma 64.4.2 that {W (t)} is a martingale. Consider{
(W (t) ,h)2− t (Qh,h)

}
.

Let A ∈Fs where s≤ t. Then using the fact {W (t)} is a martingale,∫
A

E
(
(W (t)−W (s) ,h)2 |Fs

)
dP

=
∫

A
E
(
(W (t) ,h)2 +(W (s) ,h)2−2(W (t) ,h)(W (s) ,h) |Fs

)
dP

=
∫

A
E
(
(W (t) ,h)2 |Fs

)
+(W (s) ,h)2−E (2(W (t) ,h)(W (s) ,h) |Fs)dP

=
∫

A
E
(
(W (t) ,h)2 |Fs

)
dP+

∫
A
(W (s) ,h)2 dP

−
∫

A
(W (s) ,h)E (2(W (t) ,h) |Fs)dP

=
∫

A
E
(
(W (t) ,h)2 |Fs

)
dP−

∫
A
(W (s) ,h)2 dP.

Also since XA is independent of (W (t)−W (s) ,h)2 as in the proof of Lemma 64.4.2, and
{W (t)} is a Q Wiener process, ∫

A
E
(
(W (t)−W (s) ,h)2 |Fs

)
dP

=
∫

A
(W (t)−W (s) ,h)2 dP

= P(A)
∫

Ω

(W (t)−W (s) ,h)2 dP

= P(A)(t− s)(Qh,h) .
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Thus, this has shown that for all A ∈Fs,∫
A

E
(
(W (t) ,h)2 |Fs

)
dP−

∫
A
(W (s) ,h)2 dP

= P(A)(t− s)(Qh,h) =
∫

A
(t− s)(Qh,h)dP

and since A ∈Fs is arbitrary, this proves

E
(
(W (t) ,h)2− t (Qh,h) |Fs

)
= (W (s) ,h)2− s(Qh,h)

This proves one half of the theorem.
Next suppose both {W (t)} and

{
(W (t) ,h)2− t (Qh,h)

}
are martingales for any h∈H.

It follows that both {(W (t) ,h)} and
{
(W (t) ,h)2− t (Qh,h)

}
are martingales also. There-

fore, by Levy’s theorem, Theorem 63.8.5, {(W (t) ,h)} is a Wiener process with the prop-
erty that its variance at t equals (Qh,h) t instead of t. Thus the time increments are normal
and independent. I need to verify that {W (t)} is a Q Wiener process. One of the things
which needs to be shown is that

E ((W (t)−W (s) ,h1)(W (t)−W (s) ,h2)) = (Qh1,h2)(t− s) . (64.6.41)

I have just shown
E
(
(W (t)−W (s) ,h)2

)
= (t− s)(Qh,h) (64.6.42)

which follows from Levy’s theorem which concludes {(W (t) ,h)} is a Wiener process.
Therefore,

E ((W (t)−W (s) ,h1 +h2)(W (t)−W (s) ,h2 +h1))

= (Q(h1 +h2) ,(h1 +h2))(t− s)

Now using 64.6.42, it follows from this that

E ((W (t)−W (s) ,h1)(W (t)−W (s) ,h2)) = (Qh1,h2)(t− s)

which shows 64.6.41. This completes the proof.
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Stochastic Integration
65.1 Integrals Of Elementary Processes

Stochastic integration starts with a Q Wiener process having values in a separable Hilbert
space U . Thus it satisfies the following definition.

Definition 65.1.1 Let W (t) be a stochastic process with values in U, a real separable
Hilbert space which has the properties that t →W (t,ω) is continuous. Whenever t1 <
t2 < · · ·< tm, the increments {W (ti)−W (ti−1)} are independent, W (0) = 0, and whenever
s < t,

L (W (t)−W (s)) = N (0,(t− s)Q)

which means that whenever h ∈ H,

L ((h,W (t)−W (s))) = N (0,(t− s)(Qh,h))

Also
E ((h1,W (t)−W (s))(h2,W (t)−W (s))) = (Qh1,h2)(t− s) .

Here Q is a nonnegative trace class operator. Recall this means

Q =
∞

∑
i=1

λ iei⊗ ei

where {ei} is a complete orthonormal basis, λ i ≥ 0, and

∞

∑
i=1

λ i < ∞

Such a stochastic process is called a Q Wiener process.

Recall that such Wiener processes are always of the form

∞

∑
k=1

ψk (t)Jgk

where J is a Hilbert Schmidt operator from a suitable space U0 to U and the ψk are real
independent Wiener processes described earlier. This follows from Theorem 64.5.4 where
you let U0 ⊆U be such that for J the inclusion map, Jek =

√
λ kek for Q = ∑k λ kek⊗ ek,

the ek an orthonormal set in U . Thus

(Qx,y) =

(
∑
k

λ kek (x,ek) ,y

)
= ∑

k

(
x,
√

λ kek

)(
y,
√

λ kek

)
= ∑

k
(x,Jek)(y,Jek) = ∑

k
(J∗x,ek)(J∗y,ek) = (J∗x,J∗y) = (JJ∗x,y)

so it follows that Q = JJ∗. Of course in finite dimensions, there is no issue because the
identity map is Hilbert Schmidt.

2225
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Recall the definition of L2 (U,H) ≡L2 the space of Hilbert Schmidt operators. Ψ ∈
L2 (U,H) means Ψ has the property that for some (equivalently all) orthonormal basis of
U {ek} , it follows

∞

∑
k=1
||Ψ(ek)||2 < ∞

and the inner product for two of these, Ψ,Φ is given by

(Ψ,Φ)L2
≡∑

k
(Ψ(ek) ,Φ(ek))

Then for such a Hilbert Schmidt operator, the norm in L2 is given by(
∞

∑
k=1
||Ψ(ek)||2

)1/2

≡ ||Ψ||L2
.

Note this is the same as (
∞

∑
k=1

∞

∑
j=1

(Ψ(ek) , f j)
2

)1/2

(65.1.1)

where
{

f j
}

is an orthonormal basis for H. This is the analog of the Frobenius norm for
matrices obtained as

trace(MM∗)1/2 =

(
∑

i
(MM∗)ii

)1/2

=

(
∑
i, j

M2
i j

)1/2

Also 65.1.1 shows right away that if Ψ ∈L2 (U,H) , then

||Ψ||2L2(U,H) =
∞

∑
k=1

∞

∑
j=1

(Ψek, f j)
2
H

=
∞

∑
k=1

∞

∑
j=1

(ek,Ψ
∗ f j)

2
U = ||Ψ∗||2L2(H,U)

and that Ψ and Ψ∗ are Hilbert Schmidt together.
The filtration will continue to be denoted by Ft . It will be defined as the following

normal filtration in which

σ (W (s)−W (r) : 0≤ r < s≤ u)

is the completion of σ (W (s)−W (r) : 0≤ r < s≤ u).

Ft ≡ ∩u>tσ (W (s)−W (r) : 0≤ r < s≤ u). (65.1.2)

and σ (W (s)−W (r) : 0≤ r < s≤ u) denotes the σ algebra of all sets of the form

(W (s)−W (r))−1 (Borel)

where 0≤ r < s≤ u.
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Definition 65.1.2 Let Φ(t)∈L (U,H) be constant on each interval, (tm, tm+1] determined
by a partition of [a,T ] , 0 ≤ a = t0 < t1 · · · < tn = T. Then Φ(t) is said to be elementary if
also Φ(tm) is Ftm measurable and Φ(tm) equals a sum of the form

Φ(tm)(ω) =
m

∑
j=1

Φ jXA j

where Φ j ∈L (U,H), A j ∈Ftm . What does the measurability assertion mean? It means
that if O is an open (Borel) set in the topological space L (U,H), Φ(tm)

−1 (O) ∈ Ftm .
Thus an elementary function is of the form

Φ(t) =
n−1

∑
k=0

Φ(tk)X(tk,tk+1] (t) .

Then for Φ elementary, the stochastic integral is defined by

∫ t

a
Φ(s)dW (s)≡

n−1

∑
k=0

Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk)) .

It is also sometimes denoted by Φ ·W (t) .

The above definition is the same as saying that for t ∈ (tm, tm+1],∫ t

a
Φ(s)dW (s) =

m−1

∑
k=0

Φ(tk)(W (tk+1)−W (tk))

+Φ(tm)(W (t)−W (tm)) . (65.1.3)

The following lemma will be useful.

Lemma 65.1.3 Let f ,g∈ L2 (Ω;H) and suppose g is G measurable and f is F measurable
where F ⊇ G . Then

E (( f ,g)H |G ) = (E ( f |G ) ,g)H a.e.

Similarly if Φ is G measurable as a map into L (U,H) with∫
Ω

||Φ||2 dP < ∞

and f is F measurable as a map into U such that f ∈ L2 (Ω;H) , then

E (Φ f |G ) = ΦE ( f |G ) .

Proof: Let A∈ G . Let {gn} be a sequence of simple functions, measurable with respect
to G ,

gn (ω)≡
mn

∑
k=1

an
kXEn

k
(ω)
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which converges in L2 (Ω;H) and pointwise to g.Then∫
A
(E ( f |G ) ,g)H dP = lim

n→∞

∫
A
(E ( f |G ) ,gn)H dP

= lim
n→∞

∫
A

mn

∑
k=1

(
E ( f |G ) ,an

kXEn
k

)
H

dP = lim
n→∞

∫
A

mn

∑
k=1

E
(
( f ,an

k)H |G
)
XEn

k
dP

= lim
n→∞

∫
A

mn

∑
k=1

E
((

f ,an
kXEn

k

)
H
|G
)

dP = lim
n→∞

∫
A

E

((
f ,

mn

∑
k=1

an
kXEn

k

)
H

|G

)
dP

= lim
n→∞

∫
A

E (( f ,gn)H |G )dP = lim
n→∞

∫
A
( f ,gn)H dP =

∫
A
( f ,g)H dP

which shows
(E ( f |G ) ,g)H = E (( f ,g)H |G )

as claimed.
Consider the other claim. Let

Φn (ω) =
mn

∑
k=1

Φ
n
kXEn

k
(ω) , En

k ∈ G

where Φn
k ∈L (U,H) be such that Φn converges to Φ pointwise in L (U,H) and also∫

Ω

||Φn−Φ||2 dP→ 0.

Then letting A ∈ G and using Corollary 21.2.6 as needed,∫
A

ΦE ( f |G )dP

= lim
n→∞

∫
A

ΦnE ( f |G )dP = lim
n→∞

∫
A

mn

∑
k=1

Φ
n
kE ( f |G )XEn

k
dP

= lim
n→∞

mn

∑
k=1

Φ
n
k

∫
A

E ( f |G )XEn
k
dP = lim

n→∞

mn

∑
k=1

Φ
n
k

∫
A

E
(
XEn

k
f |G
)

dP

= lim
n→∞

mn

∑
k=1

Φ
n
k

∫
A
XEn

k
f dP = lim

n→∞

∫
A

mn

∑
k=1

Φ
n
kXEn

k
f dP

= lim
n→∞

∫
A

Φn f dP = lim
n→∞

∫
A

Φ f dP≡
∫

A
E (Φ f |G )dP

Since A ∈ G is arbitrary, this proves the lemma. ■

Lemma 65.1.4 Let J : U0→U be a Hilbert Schmidt operator and let W (t) be the resulting
Wiener process

W (t) =
∞

∑
k=1

ψk (t)Jgk
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where {gk} is an orthonormal basis for U0. Let f ∈ H. Then considering one of the terms
of the integral defined above,

E
(
(Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk)) , f )2

)
= E

((
(W (t ∧ tk+1)−W (t ∧ tk)) ,Φ(tk)

∗ f
)2
)

= (t ∧ tk+1− t ∧ tk)E
(∣∣∣∣J∗Φ(tk)

∗ f
∣∣∣∣2

U0

)
.

Proof: For simplicity, write ∆Wk (t) for W (t ∧ tk+1)−W (t ∧ tk) and ∆k (t)= (t ∧ tk+1)−
(t ∧ tk) . If Φ(tk) were a constant, then the result would follow right away from the fact that
W (t) is a Wiener process. Therefore, suppose for disjoint Ei,

Φ(tk)(ω) =
m

∑
i=1

ΦiXEi (ω)

where Φi ∈L (U,H) and Ei ∈Ftk . Then, since the Ei are disjoint,

E
(
(Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk)) , f )2

)
=

m

∑
i=1

E
(
((∆kW (t)) ,Φ∗i f XEi)

2
)
=

m

∑
i=1

∫
Ω

(
XEi ((∆kW (t)) ,Φ∗i f )2

)
dP

Each Ei is Ftk measurable. By Lemma 64.4.2, and the properties of the Wiener process,
this equals

m

∑
i=1

P(Ei)
∫

Ω

(
((∆kW (t)) ,Φ∗i f )2

)
dP =

m

∑
i=1

P(Ei)∆kt (QΦ
∗
i f ,Φ∗i f )U

where Q = JJ∗. Then the above reduces to

(t ∧ tk+1− t ∧ tk)E
(∣∣∣∣J∗Φ(tk)

∗ f
∣∣∣∣2

U0

)
. ■

Now here is a major result on the integral of elementary functions. The last assertion in
the following proposition is called the Ito isometry.

Proposition 65.1.5 Let Φ(t) be an elementary process as defined in Definition 65.1.2 and
let W (t) be a Wiener process.

W (t) =
∞

∑
k=1

ψk (t)Jgk

where J : U0→U is Hilbert Schmidt and the ψk are real independent Wiener processes as
described above.

U0
{gk}

J→ U
W (t)

Φ→ H
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Then
∫ t

a Φ(s)dW is a continuous square integrable H valued martingale with respect
to the σ algebras of 65.1.2 on [0,T ] and

E

(∣∣∣∣∫ t

a
Φ(s)dW

∣∣∣∣2
H

)
=
∫ t

a
E
(
||Φ◦ J||2L2(U0,H)

)
ds

Proof: Start with the left side. Denote by ∆kW (t)≡W (t ∧ tk+1)−W (t ∧ tk) . Then

E

(∣∣∣∣∫ t

a
Φ(s)dW

∣∣∣∣2
H

)
= E

∣∣∣∣∣n−1

∑
k=0

Φ(tk)∆kW (t)

∣∣∣∣∣
2

H

 .

Consider a mixed term for j < k. Using Lemma 65.1.3 and the fact that W (t) is a martin-
gale,

E
(
(Φ(tk)∆kW (t) ,Φ(t j)∆ jW (t))H

)
= E

(
E
(
(Φ(tk)∆kW (t) ,Φ(t j)∆ jW (t))H

)
|Ftk

)
= E

((
Φ(t j)∆ jW (t) ,E

(
Φ(tk)∆kW (t) |Ftk

)))
= E

((
Φ(t j)∆ jW (t) ,Φ(tk)E

(
∆kW (t) |Ftk

)))
= E ((Φ(t j)∆ jW (t) ,Φ(tk)0)) = 0.

Therefore, from Lemma 65.1.4, and letting
{

f j
}

be an orthonormal basis for H, it follows
that since the mixed terms disappeared,

E

(∣∣∣∣∫ t

a
Φ(s)dW

∣∣∣∣2
H

)
=

n−1

∑
k=0

E ((Φ(tk)∆kW (t) ,Φ(tk)∆kW (t)))

=
n−1

∑
k=0

E

(
∞

∑
j=1

(Φ(tk)∆kW (t) , f j)
2

)
=

n−1

∑
k=0

∞

∑
j=1

E
(
(Φ(tk)∆kW (t) , f j)

2
)

=
n−1

∑
k=0

∞

∑
j=1

(t ∧ tk+1− t ∧ tk)E
(∣∣∣∣J∗Φ(tk)

∗ f j
∣∣∣∣2

U0

)
=

n−1

∑
k=0

(t ∧ tk+1− t ∧ tk)E
(∣∣∣∣J∗Φ(tk)

∗∣∣∣∣2
L2(H,U0)

)
=

n−1

∑
k=0

(t ∧ tk+1− t ∧ tk)E
(
||Φ(tk)J||2L2(U0,H)

)
=
∫ t

a
E
(
||Φ◦ J||2L2(U0,H)

)
ds

It is obvious that
∫ t

a Φ(s)dW is a continuous square integrable martingale from the defini-
tion, because it is just a finite sum of such things. ■

Of course this is a version of the Ito isometry. The presence of the J is troublesome
but it is hidden in the definition of W on the left side of the conclusion of the proposition.
In finite dimensions one could just let J = I and this fussy detail would not be there to
cause confusion. The next task is to generalize the above integral to a more general class
of functions and obtain a process which is not explicitly dependent on J.



65.2. DIFFERENT DEFINITION OF ELEMENTARY FUNCTIONS 2231

65.2 Different Definition Of Elementary Functions
What if elementary functions had been defined in terms of X[tk,tk+1)? That is, what if the
elementary functions had been of the form

Φ(t) =
n−1

∑
k=0

Φ(tk)X[tk,tk+1) (t)?

Would anything change? If you go over the arguments given, it is clear that nothing would
change at all. Furthermore, this elementary function equals the one described above off a
finite set of mesh points so the convergence properties in L2

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
,

which will be important in what follows are exactly the same. Thus it does not matter
whether we give elementary functions in this form or in the form described above. How-
ever, some arguments given later about localization depend on it being in the earlier form.

65.3 Approximating With Elementary Functions
Here is a really surprising result about approximating with step functions which is due
to Doob. See [78] which is where I found this lemma. This is based on continuity of
translation in the Lp (R;E) .

Lemma 65.3.1 Let Φ : [0,T ]×Ω→ E, be B ([0,T ])×F measurable and suppose

Φ ∈ K ≡ Lp ([0,T ]×Ω;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X[tk

j−1,t
k
j )
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Φ

(
tk

j

)
,Φ
(

tk
j−1

)
is in Lp (Ω;E). One can also assume that Φ(0) = 0. The mesh

points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we

can assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j =mnk when this is so, you could have
∣∣∣tk

j − tk
j−1

∣∣∣< 2−nk .
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Note that it would make no difference in terms of the conclusion of this lemma if you
defined

Φ
l
k (t)≡

mk

∑
j=1

Φ

(
tk

j−1

)
X(tk

j−1,t
k
j ]
(t)

because the modified function equals the one given above off a countable subset of [0,T ] ,
the union of the mesh points. One could change Φr

k similarly with no change in the conclu-
sion.

Proof: For t ∈ R let γn (t) ≡ k/2n,δ n (t) ≡ (k+1)/2n, where t ∈ (k/2n,(k+1)/2n],

and 2−n < T/4. Also suppose Φ is defined to equal 0 on [0,T ]C×Ω. There exists a set of
measure zero N such that for ω /∈ N, t → ∥Φ(t,ω)∥ is in Lp (R). Therefore by continuity
of translation, as n→ ∞ it follows that for ω /∈ N, and t ∈ [0,T ] ,∫

R
||Φ(γn (t)+ s)−Φ(t + s)||pE ds→ 0

The above is dominated by∫
R

2p−1 (||Φ(s)||p + ||Φ(s)||p)X[−2T,2T ] (s)ds

=
∫ 2T

−2T
2p−1 (||Φ(s)||p + ||Φ(s)||p)ds < ∞

Consider ∫
Ω

∫ 2T

−2T

(∫
R
||Φ(γn (t)+ s)−Φ(t + s)||pE ds

)
dtdP

By the dominated convergence theorem, this converges to 0 as n→ ∞. This is because the
integrand with respect to ω is dominated by∫ 2T

−2T

(∫
R

2p−1 (||Φ(s)||p + ||Φ(s)||p)X[−2T,2T ] (s)ds
)

dt

and this is in L1 (Ω) by assumption that Φ ∈ K. Now Fubini. This yields∫
Ω

∫
R

∫ 2T

−2T
||Φ(γn (t)+ s)−Φ(t + s)||pE dtdsdP

Change the variables on the inside.∫
Ω

∫
R

∫ 2T+s

−2T+s
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdsdP

Now by definition, Φ(t) vanishes if t /∈ [0,T ] , thus the above reduces to∫
Ω

∫
R

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdsdP

+
∫

Ω

∫
R

∫ 2T+s

−2T+s
X

[0,T ]C ||Φ(γn (t− s)+ s)||pE dtdsdP
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=
∫

Ω

∫
R

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdsdP

+
∫

Ω

∫
R

∫ 2T+s

−2T+s
X

[0,T ]C ||Φ(γn (t− s)+ s)−Φ(t)||pE dtdsdP

Also by definition, γn (t− s)+ s is within 2−n of t and so the integrand in the integral on
the right equals 0 unless t ∈ [−2−n−T,T +2−n]⊆ [−2T,2T ]. Thus the above reduces to∫

Ω

∫
R

∫ 2T

−2T
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdsdP.

Now Fubini again. ∫
R

∫
Ω

∫ 2T

−2T
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdPds

This converges to 0 as n→ ∞ as was shown above. Therefore,∫ T

0

∫
Ω

∫ T

0
||Φ(γn (t− s)+ s)−Φ(t)||pE dtdPds

also converges to 0 as n→ ∞. The only problem is that γn (t− s) + s ≥ t − 2−n and so
γn (t− s)+ s could be less than 0 for t ∈ [0,2−n]. Since this is an interval whose measure
converges to 0 it follows∫ T

0

∫
Ω

∫ T

0

∣∣∣∣Φ((γn (t− s)+ s)+
)
−Φ(t)

∣∣∣∣p
E dtdPds

converges to 0 as n→ ∞. Let

mn (s) =
∫

Ω

∫ T

0

∣∣∣∣Φ((γn (t− s)+ s)+
)
−Φ(t)

∣∣∣∣p
E dtdP

Then letting µ denote Lebesgue measure,

µ ([mn (s)> λ ])≤ 1
λ

∫ T

0
mn (s)ds.

It follows there exists a subsequence nk such that

µ

([
mnk (s)>

1
k

])
< 2−k

Hence by the Borel Cantelli lemma, there exists a set of measure zero N such that for s /∈N,

mnk (s)≤ 1/k

for all k sufficiently large. Pick such an s. Then consider t→Φ

((
γnk

(t− s)+ s
)+)

. For

nk, t→
(

γnk
(t− s)+ s

)+
has jumps at points of the form 0, s+ l2−nk where l is an integer.
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Thus Pnk consists of points of [0,T ] which are of this form and these partitions are nested.

Define Φl
k (0) ≡ 0, Φl

k (t) ≡ Φ

((
γnk

(t− s)+ s
)+)

. Now suppose N1 is a set of measure

zero. Can s be chosen such that all jumps for all partitions occur off N1? Let (a,b) be
an interval contained in [0,T ]. Let S j be the points of (a,b) which are translations of the
measure zero set N1 by t l

j for some j. Thus S j has measure 0. Now pick s ∈ (a,b)\∪ jS j.
It will be assumed that all these mesh points miss the set of all t such that ω→Φ(t,ω)

is not in Lp (Ω;E). To get the other sequence of step functions, the right step functions, just
use a similar argument with δ n in place of γn. Just apply the argument to a subsequence of
nk so that the same s can hold for both. ■

The following proposition says that elementary functions can be used to approximate
progressively measurable functions under certain conditions.

Proposition 65.3.2 Let Φ ∈ Lp ([0,T ]×Ω,E) , p≥ 1, be progressively measurable. Then
there exists a sequence of elementary functions which converges to Φ in

Lp ([0,T ]×Ω,E) .

These elementary functions have values in E0, a dense subset of E. If εn→ 0, and

Φn (t) =
mn

∑
k=1

Ψ
n
kX(tk,tk+1] (t)

Ψn
k having values in E0, it can be assumed that

mn

∑
k=1
||Ψn

k−Φ(tk)||Lp(Ω;E) < εn. (65.3.4)

Proof: By Lemma 65.3.1 there exists a sequence of step functions

Φ
l
k (t) =

mk

∑
j=1

Φ

(
tk

j−1

)
X(tk

j−1,t
k
j ]
(t)

which converges to Φ in Lp ([0,T ]×Ω,E) where at the left endpoint Φ(0) can be modified
as described above. Now each Φ

(
tk

j−1

)
is in Lp (Ω,E) and is F

(
tk

j−1

)
measurable and so

it can be approximated as closely as desired in Lp (Ω) with a simple function

s
(

tk
j−1

)
≡

mk

∑
i=1

c j
i XFi (ω) , Fi ∈F

(
tk

j−1

)
.

Furthermore, by density of E0 in E, it can be assumed each c j
i ∈ E0 and the condition 65.3.4

holds. Replacing each Φ

(
tk

j−1

)
with s

(
tk

j−1

)
, the result is an elementary function which

approximates Φl
k. ■

Of course everything in the above holds with obvious modifications replacing [0,T ]
with [a,T ] where a < T .

Here is another interesting proposition about the time integral being adapted.
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Proposition 65.3.3 Suppose f ≥ 0 is progressively measureable and Ft is a filtration.
Then

ω →
∫ t

a
f (s,ω)ds

is Ft adapted.

Proof: This follows right away from the fact f is B ([a, t])×Ft measurable. This is
just product measure and so the integral from a to t is Ft measurable. See also Proposition
62.3.5. ■

65.4 Some Hilbert Space Theory
Recall the following definition which makes LU into a Hilbert space where L ∈L (U,H) .

Definition 65.4.1 Let L∈L (U,H), the bounded linear maps from U to H for U,H Hilbert
spaces. For y ∈ L(U) , let L−1y denote the unique vector in

{x : Lx = y} ≡My

which is closest in U to 0.

{x : Lx = y}
L−1(y)

Note this is a good definition because {x : Lx = y} is closed thanks to the continuity of
L and it is obviously convex. Thus Theorem 19.1.8 applies. With this definition define an
inner product on L(U) as follows. For y,z ∈ L(U) ,

(y,z)L(U) ≡
(
L−1y,L−1z

)
U

Thus it is obvious that L−1 : LU →U is continuous. The notation is abominable because
L−1 (y) is the normal notation for My.

With this definition, here is one of the main results. It is Theorem 19.2.3 proved earlier.

Theorem 65.4.2 Let U,H be Hilbert spaces and let L ∈L (U,H) . Then Definition 65.4.1
makes L(U) into a Hilbert space. Also L : U → L(U) is continuous and L−1 : L(U)→U
is continuous. Furthermore there is a constant C independent of x ∈U such that

∥L∥L (U,H) ||Lx||L(U) ≥ ||Lx||H (65.4.5)

If U is separable, so is L(U). Also
(
L−1 (y) ,x

)
= 0 for all x∈ ker(L) , and L−1 : L(U)→U

is linear. Also, in case that L is one to one, both L and L−1 preserve norms.
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Let U be a separable Hilbert space and let Q be a positive self adjoint operator. Then
consider

J : Q1/2U →U1,

a one to one Hilbert Schmidt operator, where U1 is a separable real Hilbert space. First of
all, there is the obvious question whether there are any examples.

Lemma 65.4.3 Let A ∈L (U,U) be a bounded linear transformation defined on U a sep-
arable real Hilbert space. There exists a one to one Hilbert Schmidt operator J : AU →U1
where U1 is a separable real Hilbert space. In fact you can take U1 =U.

Proof: Let αk > 0 and ∑
∞
k=1 α2

k < ∞. Then let {gk}L
k=1 be an orthonormal basis for AU,

the inner product and norm given in Definition 65.4.1 above, and let

Jx≡
L

∑
k=1

(x,gk)AU αkgk.

Then it is clear that J ∈L (AU,U) . This is because,

||Jx||U ≤
L

∑
k=1
|(x,gk)AU |αk ||gk||U

≤ C
L

∑
k=1
|(x,gk)AU |αk

=1︷ ︸︸ ︷
||gk||AU

≤ C

(
L

∑
k=1
|(x,gk)AU |

2

)1/2( L

∑
k=1

α
2
k

)1/2

= C

(
L

∑
k=1

α
2
k

)1/2

||x||AU

Also, from the definition, Jg j = α jg j. Say g j = A f j where f j ∈ U and 1 =
∥∥g j
∥∥

AU =∥∥ f j
∥∥

U . Since A is continuous,∥∥g j
∥∥

U =
∥∥A f j

∥∥
U ≤ ∥A∥

∥∥ f j
∥∥

U = ∥A∥
∥∥g j
∥∥

AU = ∥A∥ ≡C1/2

Thus
L

∑
j=1

∣∣∣∣Jg j
∣∣∣∣2

U =
L

∑
j=1

α
2
j
∣∣∣∣g j
∣∣∣∣2

U ≤C
L

∑
j=1

α
2
j < ∞

and so J is also a Hilbert Schmidt operator which maps AU to U . It is clear that J is one to
one because each αk > 0. If AU is finite dimensional, L < ∞ and so the above sum is finite.
■

Definition 65.4.4 Let U1,U,H be real separable Hilbert spaces and let Q be a nonnegative
self adjoint operator, Q∈L (U,U) . Let Q1/2U be the Hilbert space described in Definition
65.4.1. Let J be a one to one Hilbert Schmidt map from Q1/2U to U1.

U1
J← Q1/2U Φ→ H
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Then denote by L (U1,H)0 the space of restrictions of elements of L (U1,H) to the Hilbert
space JQ1/2U ⊆U1.

Here is a diagram to keep this straight.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

Lemma 65.4.5 In the context of the above definition, L (U1,H)0 is dense in

L2

(
JQ1/2U,H

)
,

the Hilbert Schmidt operators from JQ1/2U to H. That is, if f ∈L2
(
JQ1/2U,H

)
, there

exists
g ∈L (U1,H)0 ,∥g− f∥L2(JQ1/2U,H) < ε.

Proof: The operator JJ∗ ≡ Q1 : U1 →U1 is self adjoint and nonnegative. It is also
compact because J is Hilbert Schmidt. Therefore, by Theorem 21.3.9 on Page 663,

Q1 =
L

∑
k=1

λ kek⊗ ek

where the λ k are decreasing and positive, the {ek} are an orthonormal basis for U1, and λ L
is the last positive λ j. (This is a lot like the singular value matrix in linear algebra.) Thus
also

Q1ek = λ kek

If the λ k are all positive, then L≡ ∞. Then for k ≤ L if L < ∞, k < ∞ otherwise,(
J∗ek√

λ k
,

J∗e j√
λ j

)
Q1/2(U)

=

(
JJ∗ek√

λ k
,

e j√
λ j

)
U1

=

(
λ kek√

λ k
,

e j√
λ j

)
U1

=

√
λ k√
λ j

δ k j = δ jk

Now in case L < ∞, J
(
Q1/2 (U)

)
⊆ span(e1, · · · ,eL) . Here is why. First note that Q1 is one

to one on span(e1, · · · ,eL) and maps this space onto itself because Q1 maps ek to a nonzero
multiple of ek. Hence its restriction to this subspace has an inverse which does the same. It
also maps all of U1 to span(e1, · · · ,eL). This follows from the definition of Q1 given in the
above sum. For x ∈ Q1/2 (U) , Jx ∈U1 and so

JJ∗Jx = Q1 (Jx) ∈ span(e1, · · · ,eL)

Hence Jx ∈ Q−1
1 (span(e1, · · · ,eL)) ∈ span(e1, · · · ,eL) . Recall that J is one to one so there

is only one element of J−1x.
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Then for x ∈ Q1/2U,

L

∑
j=1

√
λ je j⊗Q1/2U

J∗e j√
λ j

(x) =
L

∑
j=1

√
λ je j

(
J∗e j√

λ j
,x

)
Q1/2(U)

=
L

∑
j=1

√
λ je j

(
e j√
λ j

,Jx

)
U1

=
L

∑
j=1

e j (e j,Jx)U1

=
∞

∑
j=1

e j (e j,Jx)U1
= Jx.

(
J
(

Q1/2 (U)
)
⊆ span(e1, · · · ,eL) if L < ∞

)
Thus,

J =
L

∑
j=1

√
λ je j⊗Q1/2U

J∗e j√
λ j

It follows that an orthonormal basis in JQ1/2U is
{

JJ∗e j√
λ j

}L

j=1
. This is because an or-

thonormal basis for Q1/2U is
{

J∗ek√
λ k

}
. Since J is one to one, it preserves norms between

Q1/2U and JQ1/2U . Let Φ ∈L2
(
JQ1/2U,H

)
. Then by the discussion of Hilbert Schmidt

operators given earlier, in particular the demonstration that these operators are compact,

Φ =
∞

∑
i=1

∞

∑
j=1

φ i j fi⊗JQ1/2U
JJ∗e j√

λ j

where { fi} is an orthonormal basis for H. In fact,
{

fi⊗
JJ∗e j√

λ j

}
i, j

is an orthonormal basis

for L2
(
JQ1/2U,H

)
and ∑i ∑ j φ

2
i j < ∞, the φ i j being the Fourier coefficients of Φ. Then

consider

Φn =
n

∑
i=1

n

∑
j=1

φ i j fi⊗JQ1/2U
JJ∗e j√

λ j
(65.4.6)

Consider one of the finitely many operators in this sum. For x ∈ JQ1/2U, since J preserves
norms,

fi⊗JQ1/2U
JJ∗e j√

λ j
(x)≡ fi

(
JJ∗e j√

λ j
,x

)
JQ1/2U

= fi

(
J∗e j√

λ j
,J−1x

)
Q1/2U

= fi

(
e j√
λ j

,JJ−1x

)
U1

= fi

(
e j√
λ j

,x

)
U1

≡ Λi j (x)

Recall how, since J is one to one, it preserves norms and inner products. Now Λi j makes
sense from the above formula for all x ∈U1 and is also a continuous linear map from U1 to



65.4. SOME HILBERT SPACE THEORY 2239

H because ∥∥∥∥∥∥ fi

(
e j√
λ j

,x

)
U1

∥∥∥∥∥∥
H

≤ ∥ fi∥H
1√
λ j
∥x∥U1

Thus each term in the finite sum of 65.4.6 is in L (U1,H)0 and this proves the lemma. ■
It is interesting to note that Q1/2

1 U1 = J
(
Q1/2 (U)

)
.

L

∑
j=1

√
λ je j

(
J∗e j√

λ j
,x

)
Q1/2(U)

= Jx

and
{

J∗e j√
λ j

}
are an orthonormal set in Q1/2 (U). Therefore, the sum of the squares of(

J∗e j√
λ j
,x
)

Q1/2(U)

is finite. Hence you can define y ∈U1 by

y≡
L

∑
j=1

(
J∗e j√

λ j
,x

)
Q1/2(U)

e j

Also
L

∑
i=1

√
λ iei⊗ ei (y) =

L

∑
i=1

√
λ iei

(
J∗ei√

λ i
,x
)

Q1/2(U)

=
L

∑
i=1

ei (ei,Jx)U1
= Jx

Now you can show that Q1/2
1 = ∑

L
i=1
√

λ iei⊗ ei. You do this by showing that it works and
commutes with every operator which commutes with Q1. Thus Jx = Q1/2

1 y. This shows
that J

(
Q1/2 (U)

)
⊆ Q1/2

1 (U1). However, you can also turn the inclusion around. Thus if
you start with y ∈U1 and form

Q1/2
1 y =

L

∑
i=1

√
λ iei⊗ ei (y) =

L

∑
i=1

√
λ iei (y,ei) ,

then the (y,ei)
2
U1

has a finite sum because the {ei} are orthonormal. Thus you can form

x≡
L

∑
i=1

(y,ei)U1

J∗ei√
λ i
∈ Q1/2 (U)

Then since the
{

J∗e j√
λ j

}
are orthonormal,

J (x) =
L

∑
j=1

√
λ je j

(
J∗e j√

λ j
,x

)
Q1/2(U)

=
L

∑
j=1

√
λ je j (y,e j)U1

=
L

∑
j=1

√
λ je j⊗ e j (y) = Q1/2

1 (y)
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It follows that Q1/2
1 (U1)⊆ J

(
Q1/2 (U)

)
.

One can also show that W (t) ≡ ∑
L
k=1 ψk (t)Jgk where the ψk (t) are the real Wiener

processes described earlier and {gk} is an orthonormal basis for Q1/2 (U), is a Q1 Wiener
process. To see this, recall the above definition of a Wiener process in terms of Hilbert
Schmidt operators, the convergence happening in U1 in this case. Then by independence of
the ψ j,

E

((
h,

L

∑
k=1

ψk (t− s)Jgk

)(
l,

L

∑
j=1

ψ j (t− s)Jg j

))

= E

(
∑
k
(h,Jgk)(l,Jg j)ψk (t− s)ψ j (t− s)

)

= ∑
k
(h,Jgk)(l,Jgk)E

(
ψ

2
k (t− s)

)
= (t− s)∑

k
(h,Jgk)(l,Jgk)

= (t− s)∑
k
(J∗h,gk)Q1/2(U) (J

∗l,gk)Q1/2(U) = (t− s)(J∗h,J∗l)Q1/2(U)

= (t− s)(JJ∗h, l)U1
≡ (t− s)(Q1h, l)U1

65.5 The General Integral
It is time to generalize the integral. The following diagram illustrates the ingredients of the
next lemma.

W (t) ∈U1
J← Q1/2U Φ→ H

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

Lemma 65.5.1 Let Φ ∈ L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
and suppose also that Φ is pro-

gressively measurable with respect to the usual filtration associated with the Wiener pro-
cess

W (t) =
L

∑
k=1

ψk (t)Jgk

which has values in U1 for U1 a separable real Hilbert space such that J : Q1/2U → U1
is Hilbert Schmidt and one to one, {gk} an orthonormal basis in Q1/2U. Then letting
J−1 : JQ1/2U → Q1/2U be the map described in Definition 65.4.1, it follows that

Φ◦ J−1 ∈ L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
.

Also there exists a sequence of elementary functions {Φn} having values in L (U1,H)0
which converges to Φ◦ J−1 in L2

(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
.
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Proof: First, why is Φ◦ J−1 ∈ L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
? This follows from the

observation that A is Hilbert Schmidt if and only if A∗ is Hilbert Schmidt. In fact, the Hilbert
Schmidt norms of A and A∗ are the same. Now since Φ is Hilbert Schmidt, it follows that
Φ∗ is and since J−1 is continuous, it follows

(
J−1
)∗

Φ∗ =
(
Φ◦ J−1

)∗ is Hilbert Schmidt.
Also letting L2 be the appropriate space of Hilbert Schmidt operators,∣∣∣∣∣∣(J−1)∗∣∣∣∣∣∣ ||Φ||L2

=
∣∣∣∣∣∣(J−1)∗∣∣∣∣∣∣ ||Φ∗||L2

≥
∣∣∣∣∣∣(Φ◦ J−1)∗∣∣∣∣∣∣

L2
=
∣∣∣∣Φ◦ J−1∣∣∣∣

L2

Thus Φ◦ J−1 has values in L2
(
JQ1/2U,H

)
. This also shows that

Φ◦ J−1 ∈ L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
.

Since Φ is given to be progressively measurable, so is Φ◦ J−1. Therefore, the existence of
the desired sequence of elementary functions follows from Proposition 65.3.2 and Lemma
65.4.5. ■

Definition 65.5.2 Let Φ ∈ L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
and be progressively measur-

able where Q is a self adjoint nonnegative operator defined on U. Let J : Q1/2U →U1 be
Hilbert Schmidt. Then the stochastic integral∫ t

a
ΦdW (65.5.7)

is defined as

lim
n→∞

∫ t

a
ΦndW in L2 (Ω;H)

where W (t) is a Wiener process

∞

∑
k=1

ψk (t)Jgk, {gk} orthonormal basis in Q1/2U,

and Φn is an elementary function which has values in L (U1,H) and converges to Φ◦ J−1

in
L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
,

such a sequence exists by Lemma 65.4.5 and Proposition 65.3.2.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

It is necessary to show that this is well defined and does not depend on the choice of U1
and J.
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Theorem 65.5.3 The stochastic integral 65.5.7 is well defined. It also is a continuous
martingale and does not depend on the choice of J and U1. Furthermore,

E

(∣∣∣∣∫ t

a
Φ(s)dW

∣∣∣∣2
H

)
=
∫ t

a
E
(
||Φ||2

L2(Q1/2U,H)

)
ds

Proof: First of all, it is obvious that it is well defined in the sense that the same stochas-
tic process is obtained from two different sequences of elementary functions. This follows
from the isometry of Proposition 65.1.5 with U1 in place of U and Q1/2U in place of U0.
Thus if {Ψn} and {Φn} are two sequences of elementary functions converging to Φ ◦ J−1

in L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
,

E

(∣∣∣∣∫ T

a
(Φn (s)−Ψn (s))dW

∣∣∣∣2
H

)
=
∫ T

a
E
(
||(Φn−Ψn)◦ J||2

L2(Q1/2U,H)

)
ds (65.5.8)

Now for Φ ∈L2 (U1,H) and {gk} an orthonormal basis for Q1/2U,

||Φ◦ J||2
L2(Q1/2U,H) ≡

∞

∑
k=1
|Φ(J (gk))|2H = ||Φ||2

L2(JQ1/2U,H)

because, by definition, {Jgk} is an orthonormal basis in JQ1/2U. Hence 65.5.8 reduces to∫ T

a
E
(
||(Φn−Ψn)||2L2(JQ1/2U,H)

)
ds

which is given to converge to 0. This reasoning also shows that the sequence
{∫ t

a ΦndW
}

is indeed a Cauchy sequence in L2 (Ω,H).
Why is

∫ t
a ΦdW a continuous martingale? The integrals

∫ t
a ΦndW are martingales and

so, by the maximal estimate of Theorem 62.5.3,

P

([
sup

t∈[a,T ]

∣∣∣∣∫ t

a
ΦndW −

∫ t

a
ΦmdW

∣∣∣∣
H
≥ λ

])
≤ 1

λ
2 E

(∣∣∣∣∫ T

a
(Φn−Φm)dW

∣∣∣∣2
)

=
1

λ
2

∫ T

a
E
(
||(Φn−Φm)◦ J||2

L2(Q1/2U,H)

)
ds

=
1

λ
2

∫ T

a
E
(
||(Φn−Φm)||2L2(JQ1/2U,H)

)
ds (65.5.9)

which is given to converge to 0 as m,n→ ∞. Therefore, there exists a subsequence {nk}
such that

P

([
sup

t∈[a,T ]

∣∣∣∣∫ t

a
Φnk dW −

∫ t

a
Φnk+1dW

∣∣∣∣
H
≥ 2−k

])
≤ 2−k.

Consequently, by the Borel Cantelli lemma, there is a set of measure zero N such that if ω /∈
N, then the convergence of

∫ t
a Φnk dW to

∫ t
a ΦdW is uniform on [a,T ] . Hence t→

∫ t
a ΦdW

is continuous as claimed.
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Why is it a martingale? Let s < t and A ∈Fs. Then∫
A

(∫ t

a
ΦdW

)
dP = lim

n→∞

∫
A

(∫ t

a
ΦndW

)
dP = lim

n→∞

∫
A

E
((∫ t

a
ΦndW

)
|Fs

)
dP

= lim
n→∞

∫
A

(∫ s

a
ΦndW

)
dP =

∫
A

(∫ s

a
ΦdW

)
dP

Hence this is a martingale as claimed.
It remains to verify that the stochastic process does not depend on J and U1. Let the

approximating sequence of elementary functions be

Φn (t) =
mn

∑
j=0

f n
j X(tn

j ,t
n
j+1]

(t)

where f n
j is Ftn

j
measurable and has finitely many values in L (U1,H)0 , the restrictions

of things in L (U1,H) to JQ1/2U . These are the elementary functions which converge to
Φ◦ J−1. Also let the partitions be such that

Φ
n ◦ J−1 ≡

mn

∑
j=0

Φ
(
tn

j
)
◦ J−1X(tn

j ,t
n
j+1]

(65.5.10)

converges to Φ◦ J−1 in L2
(
[a,T ]×Ω;L2

(
JQ1/2 (U) ,H

))
. Then by definition,∫ t

a
ΦndW =

mn

∑
j=0

f n
j
(
W
(
t ∧ tn

j+1
)
−W

(
t ∧ tn

j
))

=
mn

∑
j=0

f n
j

∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Jgk

where {gk} is an orthonormal basis for Q1/2U. The infinite sum converges in L2 (Ω;U1)
and f n

j is continuous on U1. Therefore, f n
j can go inside the infinite sum, and this last

expression equals

=
mn

∑
j=0

∞

∑
k=1

(ψk (t ∧ tk+1)−ψk (t ∧ tk)) f n
j Jgk, (65.5.11)

the infinite sum converging in L2 (Ω,H).
Now consider the left sum 65.5.10. Since Φ

(
tn

j

)
∈L2

(
Q1/2U,H

)
, it follows that the

sum
∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Φ
(
tn

j
)

gk

=
∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Φ
(
tn

j
)
◦ J−1 (Jgk) (65.5.12)

must converge in L2 (Ω,H) . Lets review why this is.
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Diversion The reason the series converges goes as follows. Estimate

E

∣∣∣∣∣ q

∑
k=p

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Φ
(
tn

j
)

gk

∣∣∣∣∣
2

H


First consider the mixed terms. Let ∆ψk = ψk

(
t ∧ tn

j+1

)
−ψk

(
t ∧ tn

j

)
. For l < k,

E
((

∆ψkΦ
(
tn

j
)

gk,∆ψ lΦ
(
tn

j
)

gl
))

= E
(
∆ψk∆ψ l

(
Φ
(
tn

j
)

gk,Φ
(
tn

j
)

gl
))

Now by independence, this equals

E (∆ψk∆ψ l)E
((

Φ
(
tn

j
)

gk,Φ
(
tn

j
)

gl
))

= E (∆ψk)E (∆ψ l)E
((

Φ
(
tn

j
)

gk,Φ
(
tn

j
)

gl
))

= 0

Thus you only need to consider the non mixed terms, and the thing you want to estimate is
of the form

q

∑
k=p

E
(∣∣(ψk

(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Φ
(
tn

j
)

gk
∣∣2)

Now by independence again, this equals

q

∑
k=p

E
((

∆ψkΦ
(
tn

j
)

gk,∆ψkΦ
(
tn

j
)

gk
))

=
q

∑
k=p

E
(
∆ψ

2
k
(
Φ
(
tn

j
)

gk,Φ
(
tn

j
)

gk
))

=
q

∑
k=p

E
(
∆ψ

2
k
)

E
(
Φ
(
tn

j
)

gk,Φ
(
tn

j
)

gk
)

=
((

t ∧ tn
j+1
)
−
(
t ∧ tn

j
)) q

∑
k=p

E
(∣∣Φ(tn

j
)

gk
∣∣2
H

)
and this sum is just a part of the convergent infinite sum for∫

Ω

∥∥Φ
(
tn

j
)∥∥2

L2(Q1/2U,H)
dP < ∞

Therefore, this converges to 0 as p,q → ∞ and so the sum converges in L2 (Ω,H) as
claimed.

End of diversion
The J and the J−1 cancel in 65.5.12 because J is one to one. It follows that 65.5.11

equals
mn

∑
j=0

∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))

Φ
(
tn

j
)

gk+
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mn

∑
j=0

∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))((

f n
j −Φ

(
tn

j
)
◦ J−1)(Jgk)

)
The first expression does not depend on J or U1. I need only argue that the second expres-
sion converges to 0 as n→ ∞. The infinite sum converges in L2 (Ω;H) and also, as in the
above diversion, the independence of the ψk implies that

E

∣∣∣∣∣ mn

∑
j=0

∞

∑
k=1

(
ψk
(
t ∧ tn

j+1
)
−ψk

(
t ∧ tn

j
))((

f n
j −Φ

(
tn

j
)
◦ J−1)(Jgk)

)∣∣∣∣∣
2

H


=

mn

∑
j=0

(
t ∧ tn

j+1− t ∧ tn
j
) ∞

∑
k=1

E
(∣∣( f n

j −Φ
(
tn

j
)
◦ J−1)(Jgk)

∣∣2
H

)

=
mn

∑
j=0

(
t ∧ tn

j+1− t ∧ tn
j
)

E
(∣∣∣∣ f n

j −Φ
(
tn

j
)
◦ J−1∣∣∣∣2

L2(JQ1/2U,H)

)
=

∫ t

a
E
(∣∣∣∣Φn−Φ

n ◦ J−1∣∣∣∣2
L2(JQ1/2U,H)

)
ds

which is given to converge to 0 since both converge to Φ◦J−1. Consequently, the stochastic
integral defined above does not depend on J or U1. ■

It is interesting to note that in the above definition, the approximate problems do appear
to depend on J and U1 but the limiting stochastic process does not. Since it is the case that
the stochastic integral is independent of U1 and J, it can only be dependent on Q1/2U and
U, and so we refer to W (t) as a cylindrical process on U. By Lemma 65.4.3 you can take
U1 = U and so you can consider the finite sums defining the Wiener process to be in U
itself. From the proof of this lemma, you can even have J being the identity on the span
of the first n vectors in the orthonormal basis for Q1/2U . The case where Q is trace class
follows in the next section. In this case, W is an actual Q Wiener process on U .

The following corollary follows right away from the above theorem.

Corollary 65.5.4 Let Φ,Ψ ∈ L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
and suppose they are both

progressively measurable. Then

E
((∫ t

a
ΦdW,

∫ t

a
ΨdW

)
H

)
= E

(∫ t

a
(Φ,Ψ)L2(Q1/2U,H) ds

)
Also if L is in L∞ (Ω,L (H,H)) and is Fa measurable, then

L
∫ t

a
ΦdW =

∫ t

a
LΦdW (65.5.13)

and

E
((

L
∫ t

a
ΦdW,

∫ t

a
ΨdW

)
H

)
= E

(∫ t

a
(LΦ,Ψ)L2(Q1/2U,H) ds

)
. (65.5.14)
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Proof: First note that(∫ t

a
ΦdW,

∫ t

a
ΨdW

)
H
=

1
4

[∣∣∣∣∫ t

a
(Φ+Ψ)dW

∣∣∣∣2
H
−
∣∣∣∣∫ t

a
(Φ−Ψ)dW

∣∣∣∣2
H

]

and so from the above theorem,

E
((∫ t

a
ΦdW,

∫ t

a
ΨdW

)
H

)
=

= E

(
1
4

[∣∣∣∣∫ t

a
(Φ+Ψ)dW

∣∣∣∣2
H
−
∣∣∣∣∫ t

a
(Φ−Ψ)dW

∣∣∣∣2
H

])
1
4

E
(∫ t

a
||Φ+Ψ||2

L2(Q1/2U,H) ds
)
+

1
4

E
(∫ t

a
||Φ−Ψ||2

L2(Q1/2U,H) ds
)

= E
(∫ t

a

1
4

[
||Φ+Ψ||2

L2(Q1/2U,H) + ||Φ−Ψ||2
L2(Q1/2U,H)

]
ds
)

= E
(∫ t

a
(Φ,Ψ)L2(Q1/2U,H) ds

)
.

Now consider the last claim. First suppose L = lXA where A ∈Fa, and l ∈L (H,H).
Also suppose Φ is an elementary function

Φ =
n

∑
i=0

ψ iX(si,si+1]

Then

L
∫ t

a
ΦdW = lXA

n

∑
i=0

ψ i (W (t ∧ si+1)−W (t ∧ si))

=
n

∑
i=0

lXAψ i (W (t ∧ si+1)−W (t ∧ si))

Thus 65.5.13 also holds for L a simple function which is Fa measurable. For general
L ∈ L∞ (Ω,L (H,H)) , approximating with a sequence of such simple functions Ln yields

L
∫ t

a
ΦdW = lim

n→∞
Ln

∫ t

a
ΦdW = lim

n→∞

∫ t

a
LnΦdW =

∫ t

a
LΦdW

because LnΦ→ LΦ in L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
. Now what about general Φ? Let

{Φn} be elementary functions converging to Φ ◦ J−1 in L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
.

Then by definition of the integral,

L
∫ t

a
ΦdW = lim

n→∞
L
∫ t

a
ΦndW = lim

n→∞

∫ t

a
LΦndW =

∫ t

a
LΦdW
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The remaining claim now follows from the first part of the proof. ■
The above has discussed the integral of Φ ∈ L2

(
[a,T ]×Ω;L2

(
Q1/2U,H

))
. An obvi-

ous case to consider is when

Φ =
n−1

∑
k=0

ΦkX(tk,tk+1] (t)

and Φk ∈L2
(
Ω;L2

(
Q1/2U,H

))
with Φk measurable with respect to Ftk . What is

∫ t
0 ΦdW?

First note that Φk ◦ J−1 ∈ L2
(
Ω;L2

(
JQ1/2U,H

))
. Let

lim
m→∞

Φ
m
k →Φk ◦ J−1

in L2
(
Ω;L2

(
JQ1/2U,H

))
where Φm

k is Ftk measurable and is a simple function having
values in L (U1,H). Thus

Φm ≡
n−1

∑
k=0

Φ
m
k X(tk,tk+1] (t)

is an elementary function and it converges to Φ ◦ J−1 in L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
.

It follows that∫ t

a
ΦdW ≡ lim

m→∞

∫ t

a
ΦmdW ≡ lim

m→∞

n−1

∑
k=0

Φ
m
k (W (t ∧ tk+1)−W (t ∧ tk))

=
n−1

∑
k=0

Φk ◦ J−1 (W (t ∧ tk+1)−W (t ∧ tk)) .

Note again how it appears to depend on J but really doesn’t because there is a J in the
definition of W .

65.6 The Case That Q Is Trace Class
In this special case, you have a Q Wiener process with values in U and still you have

Φ ∈ L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
with Φ progressively measurable. The difference here is that in fact, Q is trace class.

Q =
L

∑
i=1

λ iei⊗ ei

where λ i > 0, ∑i λ i < ∞, and the ei form an orthonormal set of vectors. L is either a
positive integer or ∞. Then let U0 = Q1/2U. Then Q1/2 = ∑

L
i=1
√

λ iei⊗ ei because this
works, and the square root is unique. Hence Q1/2ei =

√
λ iei and so an orthonormal basis

for U0 = Q1/2U is
{√

λ iei
}L

i=1. Now consider J = ∑
L
i=1
√

λ i
(
ei⊗
√

λ iei
)
,J : U0 → U,

where the tensor product is defined in the usual way,

u⊗ v(w)≡ u(w,v)U0
.



2248 CHAPTER 65. STOCHASTIC INTEGRATION

Then J∗ = ∑
L
i=1
√

λ i
(√

λ iei⊗ ei
)

and JJ∗ = ∑
L
i=1 λ iei ⊗ ei = Q. Also, J is a Hilbert

Schmidt map into U from U0.

L

∑
i=1

∥∥∥J
(√

λ iei

)∥∥∥2

U
=

L

∑
i=1

∥∥∥√λ iei

∥∥∥2

U
=

L

∑
i=1

λ i < ∞

and so J is a Hilbert Schmidt mapping. In addition to this, from the construction, the span
of {ei}L

i=1 is dense in U0 and Jei = ei because

Jek =
L

∑
i=1

√
λ i

(
ei⊗

√
λ iei

)
(ek) = ek

√
λ k

(
ek,
√

λ kek

)
U0

= ek

so in fact J is just the injection map of U0 into U . Hence J−1 must also be the identity
map. Now we can let U1 =U with J the injection map. Thus, in this case, the elementary
functions Φn simply converge to Φ in

L2 ([a,T ]×Ω;L2 (JU0,H))

Note that
∣∣∣∣J√λ iei

∣∣∣∣
U =

√
λ i whereas

∣∣∣∣√λ iei
∣∣∣∣

Q1/2U = 1, and so J definitely does not
preserve norms. That is, the norm in U0 is not the same as the norm in U . Then everything
else is the same. In particular

E

(∣∣∣∣∫ t

a
ΦdW

∣∣∣∣2
H

)
=
∫ t

a
E
(
||Φ||2L2(U0,H)

)
ds.

65.7 A Short Comment On Measurability
It will also be important to consider the composition of functions. The following is the main
result. With the explanation of progressively measurable given, it says the composition of
progressively measurable functions is progressively measurable.

Proposition 65.7.1 Let A : [a,T ]×V ×Ω → U where V,U are topological spaces and
suppose A satisfies its restriction to [a, t]×V ×Ω is B ([a, t])×B (V )×Ft measurable.
This will be referred to as A is progressively measurable. Then if X : [a,T ]×Ω→ V is
progressively measurable, then so is the map

(t,ω)→ A(t,X (t,ω) ,ω)

Proof: Consider the restriction of this map to [a, t0]×Ω. For such (t,ω) , to say

A(t,X (t,ω) ,ω) ∈ O

for O a Borel set in U is to say that

X (t,ω) ∈
{

v : (t,v,ω) ∈ A−1 (O) , t ≤ t0
}
≡ A−1 (O)tω

Consider the set {
(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈ A−1 (O)tω

}
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Is this in B ([a, t0])×Ft0? This is what needs to be checked. Since A is progressively
measurable,

A−1 (O)∩ [a, t0]×V ×Ω ∈B ([a, t0])×B (V )×Ft0 ≡Pt0

because A−1 (O) is a progressively measurable set. So let

G ≡
{

S ∈Pt0 : {(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈ Stω} ∈B ([a, t0])×Ft0

}
It is clear that G contains the π system composed of sets of the form I×B×W where I is
an interval in [a, t0], B is Borel, and W ∈Ft0 . This is because for S of this form, Stω = B or
/0. Thus if not empty,

{(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈ Stω}
= X−1 (B)∩ [0, t0]×Ω ∈B ([a, t0])×Ft0

because X is given to be progressively measurable. Now if S∈ G , what about SC? You have(
SC
)

tω = (Stω)
C thus {

(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈
(
SC)

tω

}
=

{
(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈ (Stω)

C
}

which is the complement with respect to [a, t0]×Ω of a set in B ([a, t0])×Ft0 . Therefore,
G is closed with respect to complements. It is clearly closed with respect to countable
disjoint unions. It follows, G = Pt0 . Thus

{(t,ω) ∈ [a, t0]×Ω : X (t,ω) ∈ Stω} ∈B ([a, t0])×Ft0

where S = A−1 (O)∩ [a, t0]×V ×Ω. In other words,

{(t,ω) , t ≤ t0 : A(t,X (t,ω) ,ω) ∈ O} ∈B ([0, t0])×Ft0

and so (t,ω)→ A(t,X (t,ω) ,ω) is progressively measurable. ■

65.8 Localization For Elementary Functions
It is desirable to extend everything to stochastically square integrable functions. This will
involve localization using a suitable stopping time. First it is necessary to understand lo-
calization for elementary functions. As above, we are in the situation described by the
following diagram.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H
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The elementary functions {Φn} have values in L (U1,H)0 meaning they are restrictions of
functions in L (U1,H) to JQ1/2U and converge to Φ◦ J−1 in

L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
where Φ ∈ L2

(
[a,T ]×Ω;L2

(
Q1/2U,H

))
is given. Let

Φ(t)≡
n−1

∑
k=0

Φ(tk)X(tk,tk+1] (t)

be an elementary function. In particular, let Φ(tk) be Ftk measurable as a map into
L (U1,H), and has finitely many values. As just mentioned, the topic of interest is the
elementary functions Φn in the above diagram. Thus Φ will be one of these elementary
functions.

Let τ be a stopping time having values from the set of mesh points {tk} for the elemen-
tary function. Then from the definition of the integral for elementary functions,

∫ t∧τ

a
ΦdW ≡

n−1

∑
k=0

Φ(tk)(W (t ∧ τ ∧ tk+1)−W (t ∧ τ ∧ tk))

If ω is such that τ (ω) = t j, then to get something nonzero, you must have t j > tk so
k ≤ j−1. Thus the above on the right reduces to

j−1

∑
k=0

Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk))

It clearly is 0 if j = 0. Define ∑
−1
k=0 ≡ 0. Thus the integral equals

n

∑
j=0

X[τ=t j]

j−1

∑
k=0

Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk))

Interchanging the order of summation, k ≤ j−1 so j ≥ k+1 and this equals

n−1

∑
k=0

n

∑
j=k+1

X[τ=t j]Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk))

=
n−1

∑
k=0

Ftk measurable︷ ︸︸ ︷
X[τ>tk]Φ(tk)(W (t ∧ tk+1)−W (t ∧ tk))

Therefore ∫ t∧τ

a
ΦdW =

∫ t

a

n−1

∑
k=0

X[τ>tk]Φ(tk)X(tk,tk+1]dW (65.8.15)
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Now observe

X[a,τ] (t)Φ(t) =
n−1

∑
k=0

X[a,τ] (t)Φ(tk)X(tk,tk+1] (t)

=
n−1

∑
k=0

X[τ≥t]Φ(tk)X(tk,tk+1] (t)

=
n−1

∑
k=0

X[τ>tk]Φ(tk)X(tk,tk+1] (t) (65.8.16)

The last step occurs because of the following reasoning. The kth term of the sum in the
middle expression above equals Φ(tk) if and only if t > tk and τ ≥ t. If the two conditions
do not hold, then the kth term equals 0. As to the third line, if τ > tk and t ∈ (tk, tk+1], then
τ ≥ tk+1 ≥ t which is the same as the situation in the second line. The term equals Φ(tk).
Note that X[τ>tk] (ω) is Ftk measurable, because [τ > tk] is the complement of [τ ≤ tk].
Therefore, this is an elementary function. Thus, from 65.8.15 -65.8.16, X[a,τ] (t)Φ(t) is an
elementary function and∫ t∧τ

a
ΦdW =

∫ t

a

n−1

∑
k=0

X[τ>tk]Φ(tk)X(tk,tk+1] (t)dW =
∫ t

a
X[a,τ] (t)Φ(t)dW

From Proposition 65.1.5, if you have Φ,Ψ two of these elementary functions

E

(∥∥∥∥∫ t

a
X[a,τ] (t)Φ(t)dW −

∫ t

a
X[a,τ] (t)Ψ(t)dW

∥∥∥∥2

H

)
=

∫ t

a

∫
Ω

X[a,τ] (t)∥(Φ(s)−Ψ(s))◦ J∥2
L2(Q1/2U,H) dPds

≤
∫ t

a

∫
Ω

∥(Φ(s)−Ψ(s))◦ J∥2
L2(Q1/2U,H) dPds (65.8.17)

65.9 Localization In General
Next, what about the general case where Φ ∈ L2

(
[a,T ]×Ω;L2

(
Q1/2U,H

))
and is pro-

gressively measurable? Is it the case that for an arbitrary stopping time τ,∫ t∧τ

a
ΦdW =

∫ t

a
X[a,τ]ΦdW?

This is the sort of thing which would be expected for an ordinary Stieltjes integral which
of course this isn’t. Let

L2
(
[a,T ]×Ω;L2

(
JQ1/2U,H

))
= K

From Doob’s result Proposition 65.3.2 and Lemma 65.3.1, there exists a sequence of
elementary functions {Φk}

Φk (t) =
mk−1

∑
j=0

Φ

(
tk

j

)
X(tk

j ,t
k
j+1]

(t)
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which converges to Φ◦ J−1 in K where also the lengths of the sub intervals converge uni-
formly to 0 as k→ ∞.

Now let τ be an arbitrary stopping time. The partition points corresponding to Φk are{
tk

j

}mk

j=0
. Let τk = tk

j+1 on τ−1(tk
j , t

k
j+1]. Then τk is a stopping time because

[τk ≤ t] ∈Ft

Here is why. If t ∈ (tk
j , t

k
j+1], then if t = tk

j+1, it would follow that τk (ω) ≤ t would be

the same as saying ω ∈
[
τ ≤ tk

j+1

]
= [τ ≤ t] ∈ Ft . On the other hand, if t < tk

j+1, then

[τk ≤ t] =
[
τ ≤ tk

j

]
∈Ftk

j
⊆Ft because τk can only take the values tk

j .

Consider X[a,τk]Φk. It is given that Φk→Φ◦J−1 in K. Does it follow that X[a,τk]Φk→
X[a,τ]Φ◦ J−1 in K? Consider first the indicator function. Let τ (ω) ∈ (tk

j , t
k
j+1]. Fixing t, if

X[a,τ] (t) = 1, then also X[a,τk] (t) = 1 because τk ≥ τ . Therefore, in this case

lim
k→∞

X[a,τk] (t) = X[a,τ] (t) .

Next suppose X[a,τ] (t) = 0 so that τ (ω) < t. Since the intervals defined by the partition
points have lengths which converge to 0, it follows that for all k large enough, τk (ω) < t
also and so X[a,τk] (t) = 0. Therefore,

lim
k→∞

X[a,τk(ω)] (t) = X[a,τ(ω)] (t) .

It follows that X[a,τk]Φk →X[a,τ]Φ◦ J−1 in K. Now from 65.8.16, the function X[a,τk]Φk

is progressively measurable. Therefore, the same is true of X[a,τ]Φ◦ J−1.
From the proof of Theorem 65.5.3, the part depending on maximal estimates and the

fact that
∫ t

a X[a,τk]ΦkdW is a continuous martingale, there is a set of measure zero N, such
that off this set, a suitable subsequence satisfies∫ t

a
X[a,τk]ΦkdW →

∫ t

a
X[a,τ]ΦdW

uniformly on [a,T ] . But also, since Φk→Φ◦ J−1 in K, a suitable subsequence satisfies,∫ t

a
ΦkdW →

∫ t

a
ΦdW

uniformly on [a,T ] a.e. ω. In particular,
∫ t∧τk

a ΦkdW →
∫ t∧τ

a ΦdW. Therefore,∫ t

a
X[a,τ]ΦdW = lim

k→∞

∫ t

a
X[a,τk]ΦkdW

= lim
k→∞

∫ t∧τk

a
ΦkdW

=
∫ t∧τ

a
ΦdW

This has proved the following major localization lemma. This is a marvelous result. It
says that the stochastic integral acts algebraically like an ordinary Stieltjes integral, one for
each ω off a set of measure zero.
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Lemma 65.9.1 Let Φ be progressively measurable and in

L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
Let W (t) be a cylindrical Wiener process as described above. Then for τ a stopping time,
X[a,τ]Φ is progressively measurable, in K, and

∫ t∧τ

a
ΦdW =

∫ t

a
X[a,τ]ΦdW.

65.10 The Stochastic Integral As A Local Martingale
With Lemma 65.9.1, it becomes possible to define the stochastic integral on functions
which are only stochastically square integrable.

Definition 65.10.1 Φ is stochastically square integrable in L2
(
Q1/2U,H

)
if Φ is progres-

sively measurable and

P
([∫ T

a
∥Φ(s)∥2

L2(Q1/2U,H) ds < ∞

])
= 1

Thus equivalently, there exists N such that P(N) = 0 and for ω /∈ N,∫ T

a
∥Φ(s,ω)∥2

L2(Q1/2U,H) ds < ∞.

Lemma 65.10.2 Suppose Φ is L2
(
Q1/2U,H

)
progressively measurable and

P
([∫ T

a
∥Φ∥2

L2(Q1/2U,H) ds < ∞

])
= 1.

Define

τn (ω)≡ inf
{

t ∈ [a,T ] :
∫ t

a
∥Φ∥2

L2(Q1/2U,H) ds≥ n
}
,

By convention, let inf /0 = ∞. Then τn is a stopping time. Furthermore, τn has the following
properties.

1. {τn} is an increasing sequence and for ω outside a set of measure zero N, for every
t ∈ [a,T ] there exists n such that τn (ω) > t. (It is a localizing sequence of stopping
times.)

2. For each n, X[a,τn]Φ is progressively measurable and

E
(∫ T

a

∥∥X[a,τn]Φ
∥∥2

L2(Q1/2U,H) dt
)
< ∞
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Proof: It follows from Proposition 62.7.5 that τn is a stopping time because it is the
first hitting time of a closed set by an adapted continuous process.

It remains to verify the two claims. There exists a set of measure 0, N such that for
ω /∈ N ∫ T

a
∥Φ∥2

L2(Q1/2U,H) dt < ∞

Therefore, for such ω, there exists n large enough that∫ t

a
∥Φ∥2

L2(Q1/2U,H) ds < n

and so τn (ω)≥ t. Now consider the second claim.

E
(∫ T

a

∥∥X[a,τn]Φ
∥∥2

L2(Q1/2U,H) dt
)

= E
(∫

τn(ω)∧T

a
∥Φ∥2

L2(Q1/2U,H) dt
)
≤ E (n) = n.■

With this lemma, it is possible to give the following definition.

Definition 65.10.3 Suppose Φ is L2
(
Q1/2U,H

)
progressively measurable and

P
([∫ T

a
∥Φ∥2

L2(Q1/2U,H) ds < ∞

])
= 1. (65.10.18)

More generally, suppose there exists a localizing sequence of stopping times τn having the
two properties of Lemma 65.10.2. Then for all ω not in the exceptional set N.∫ t

a
ΦdW ≡ lim

n→∞

∫ t

a
X[a,τn]ΦdW

Lemma 65.10.4 The above definition is well defined. For all ω not in a set of measure
zero, ∫ t

a
ΦdW (ω)≡ lim

n→∞

∫ t

a
X[a,τn]ΦdW (ω)

the function on the right being constant for all n large enough for a given ω . The random
variable

∫ t
a ΦdW is also Ft adapted.

Proof: Let {τn} be a sequence of stopping times as described in 1 and 2 of Lemma
65.10.2. Such a sequence exists by Lemma 65.10.2. It makes sense to define the random
variable ∫ t

a
X[a,τn]ΦdW

Now what if both τm and τn are at least as large as t for some ω? Do the two random
variables coincide at that value of ω? Say m > n so that τm (ω)≥ τn (ω)> t. For the given
ω, ∫ t

a
X[a,τm]ΦdW =

∫ t∧τm

a
X[a,τm]ΦdW
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For the particular ω of interest,

=
∫ t∧τn

a
X[a,τm]ΦdW

and this equals

=
∫ t

a
X[a,τn]X[a,τm]ΦdW =

∫ t

a
X[a,τn]ΦdW

for all ω, in particular for the given ω . Therefore, for the particular ω of interest,∫ t

a
X[a,τn]ΦdW =

∫ t

a
X[a,τm]ΦdW

Thus the limit exists because for all n large enough, the integral is eventually constant.
Then

∫ t
a ΦdW is Ft adapted because for U an open set in H,(∫ t

a
ΦdW

)−1

(U) = ∪∞
n=1

((∫ t

a
X[a,τn]ΦdW

)−1

(U)∩ [τn > t]

)
∈Ft . ■

The next lemma says that even when
∫ t

a Φ(s)dW (s) is only a local martingale relative
to a suitable localizing sequence, it is still the case that∫ t∧σ

a
ΦdW =

∫ t

a
X[a,σ ]ΦdW.

Lemma 65.10.5 Let Φ be progressively measurable and suppose there exists the localizing
sequence described above. Then if σ is a stopping time,∫ t∧σ

a
ΦdW (s) =

∫ t

a
X[a,σ ]ΦdW (s)

Proof: Let {τn} be the localizing sequence described above for which, when the local
martingale is stopped, it results in a martingale, (satisfying 1 and 2 on Page 2253). Then
by definition,∫ t∧σ

a
ΦdW (s) ≡ lim

n→∞

∫ t∧τn∧σ

a
ΦdW (s)

= lim
n→∞

∫ t∧τn

a
X[a,σ ]ΦdW (s) =

∫ t

a
X[a,σ ]ΦdW (s)

since t ∧ τn = t for all n large enough. ■

65.11 The Quadratic Variation Of The Stochastic Inte-
gral

An important corollary of Lemma 65.9.1 concerns the quadratic variation of
∫ t

a ΦdW . It is
convenient here to use the notation

∫ t
a ΦdW ≡Φ ·W (t) . Recall this is a local submartingale

[Φ ·W ] such that
∥Φ ·W (t)∥2

H = [Φ ·W ] (t)+N (t)
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where N is a local martingale. Recall the quadratic variation is unique so that if it acts like
the quadratic variation, then it is the quadratic variation. Recall also why this was so. If
you have a local martingale equal to the difference of increasing adapted processes which
equals 0 when t = 0, then the local martingale was equal to 0. Of course you can substitute
a for 0.

Corollary 65.11.1 Suppose Φ is L2
(
Q1/2U,H

)
progressively measurable and has the lo-

calizing sequence with the two properties in Lemma 65.10.2. Then the quadratic variation,
[Φ ·W ] is given by the formula

[Φ ·W ] (t) =
∫ t

a
||Φ(s)||2

L2(Q1/2U,H) ds

Proof: By the above discussion,
∫ t

a ΦdW is a local martingale. Let {τn} be a local-
izing sequence for which the stopped local martingale is a martingale and ΦX[a,τn] is in
L2
(
[a,T ]×Ω,L2

(
Q1/2U,H

))
. Also let σ be a stopping time with two values no larger

than T . Then from Lemma 65.10.5,

E

(∣∣∣∣∫ τn∧σ

a
ΦdW

∣∣∣∣2
H
−
∫

τn∧σ

a
||Φ(s)||2

L2(Q1/2U,H) ds

)

E

(∣∣∣∣∫ T∧τn∧σ

a
ΦdW

∣∣∣∣2
H
−
∫ T∧τn∧σ

a
||Φ(s)||2

L2(Q1/2U,H) ds

)

= E

(∣∣∣∣∫ T

a
X[a,τn]X[0,σ ]ΦdW

∣∣∣∣2
H
−
∫ T

a
X[a,τn]X[0,σ ] ||Φ(s)||2

L2(Q1/2U,H) ds

)

= E
(∫ T

a

∥∥X[a,τn]X[0,σ ]Φ
∥∥2

L2
dt
)
−E

(∫ T

a

∣∣∣∣X[a,τn]X[0,σ ]Φ(s)
∣∣∣∣2

L2
ds
)
= 0

thanks to the Ito isometry. There is also no change in letting σ = t. You still get 0. It
follows from Lemma 63.1.1, the lemma about recognizing a martingale when you see one,
that

t→
∣∣∣∣∫ t∧τn

a
ΦdW

∣∣∣∣2
H
−
∫ t∧τn

a
||Φ(s)||2

L2(Q1/2U,H) ds

is a martingale. Therefore,∣∣∣∣∫ t

a
ΦdW

∣∣∣∣2
H
−
∫ t

a
||Φ(s)||2

L2(Q1/2U,H) ds

is a local martingale and so, by uniqueness of the quadratic variation,

[Φ ·W ] (t) =
∫ t

a
||Φ(s)||2

L2(Q1/2U,H) ds ■

Here is an interesting little lemma which seems to be true.
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Lemma 65.11.2 Let Φ,Φn all be in L2
(
[0,T ] ,L2

(
Q1/2U,H

))
off some set of measure

zero. These are all progressively measurable. Thus there are all stochastically square
integrable.

P
(∫ T

0
∥Φ∥2 ds

)
= 1

Suppose also that for each ω /∈ N, the exceptional set,∫ T

0
∥Φn−Φ∥2

L2
dt→ 0

Then there exists a set of measure zero, still denoted as N and a subsequence, still denoted
as n such that for each ω /∈ N,

lim
n→∞

∫ T

0
ΦndW =

∫ T

0
ΦdW

Proof: Define stopping times

τnp ≡ inf
{

t ∈ [0,T ] :
∫ t

0
∥Φn∥2 ds > p

}
Let τ p be similar but defined with reference to Φ. Then by Ito isometry,

E

(∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣2
)

= E
(∫ T

0

∥∥∥X[0,τnp]Φn−X[0,τ p]Φ
∥∥∥2

L2
dt
)

(65.11.19)

The integrand in the right side is bounded by 2p2. Also this integrand converges to 0 for
each ω as n→ ∞. This is shown next.∫ T

0

∥∥∥X[0,τnp]Φn−X[0,τ p]Φ
∥∥∥2

L2
dt

≤ 2
∫ T

0

(∥∥∥X[0,τnp]Φn−X[0,τnp]Φ
∥∥∥2

L2
+
∥∥∥X[0,τnp]Φ−X[0,τ p]Φ

∥∥∥2

L2

)
dt

≤ 2
∫ T

0
∥Φn−Φ∥2

L2
dt +2

∫ T

0

∣∣∣X[0,τnp] (t)−X[0,τ p] (t)
∣∣∣2 ∥Φ∥2

L2
dt

The first converges to 0 by assumption. Problem is, it does not look like this second integral
converges to 0. We do know that

∫ t
0 ∥Φn∥2 ds→

∫ t
0 ∥Φ∥

2 ds uniformly so τnp→ τ p is likely.
However, this does not imply X[0,τnp]→X[0,τ p]. However, it would converge in L2 (0,T )
and so there is a subsequence such that convergence takes place a.e. t. Then restricting
to this subsequence, the second integral converges to 0. Actually, it may be easier than
this. X[0,τ p] has a single point of discontinuity and convergence takes place at every other
point. Thus it appears that the integrand in 65.11.19 converges to 0 for each ω . Thus, by
dominated convergence theorem the whole expectation converges to 0.
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Now consider

P

(∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣2 > λ

)

≤
E
(∣∣∣∫ T

0 X[0,τnp]ΦndW −
∫ T

0 X[0,τ p]ΦdW
∣∣∣2)

λ

and so, there exists a subsequence, still denoted as n such that

P

(∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣2 > 1
n

)
< 2−k

It follows that N can be enlarged so that for ω /∈ Np∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣2 ≤ 1
n

for all n large enough. Now obtain a succession of subsequences for p = 1,2, · · · , each a
subsequence of the preceeding one such that the above convergence takes place and let N
include ∪pNp. Then for ω /∈ N, and letting n denote the diagonal sequence, it follows that
for all p,

lim
n→∞

∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣= 0

For ω /∈ N, there is a p such that τ p = ∞. Then this means
∫ T

0 ∥Φ∥
2 ds < p. It follows that

the same is true for Φn for all n large enough. Hence τnp = ∞ also. Thus, for large enough
n, ∣∣∣∣∫ T

0
ΦndW −

∫ T

0
ΦdW

∣∣∣∣= ∣∣∣∣∫ T

0
X[0,τnp]ΦndW −

∫ T

0
X[0,τ p]ΦdW

∣∣∣∣
and the latter was just shown to converge to 0. ■

65.12 The Holder Continuity Of The Integral
Let Φ ∈ L2

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
. Then you can consider the stochastic integral as

described above and it yields a continuous function off a set of measure zero. What if
Φ ∈ L∞

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
? Can you say more? The short answer is yes. You

obtain a Holder condition in addition to continuity. This is a consequence of the Burkolder
Davis Gundy inequality and Corollary 65.11.1 above. Let α > 2. Let ∥Φ∥

∞
denote the

norm in L∞
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
. By the Burkholder Davis Gundy inequality,∫

Ω

(∣∣∣∣∫ t

s
ΦdW

∣∣∣∣)α

dP≤

∫
Ω

(
sup

r∈[s,t]

∣∣∣∣∫ r

s
ΦdW

∣∣∣∣
)α

dP≤C
∫

Ω

(∫ t

s
∥Φ∥2 dτ

)α/2

dP
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≤C∥Φ∥α

∞

∫
Ω

(∫ t

s
dτ

)α/2

dP =C∥Φ∥α

∞
|t− s|α/2

By the Kolmogorov Čentsov theorem, Theorem 62.2.2, this shows that t →
∫ t

0 ΦdW is
Holder continuous with exponent

γ <
(α/2)−1

α
=

1
2
− 1

α

Since α > 2 is arbitrary, this shows that for any γ < 1/2, the stochastic integral is Holder
continuous with exponent γ . This is exactly the same kind of continuity possessed by the
Wiener process.

Theorem 65.12.1 Suppose Φ ∈ L∞
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
and is progressively mea-

surable. Then if γ < 1/2, there exists a set of measure zero such that off this set,

t→
∫ t

0
ΦdW

is Holder continuous with exponent γ .

65.13 Taking Out A Linear Transformation
When is

L
∫ T

a
ΦdW =

∫ T

a
LΦdW?

It is assumed L ∈L (H,H1) where H1 is another separable real Hilbert space. First of all,
here is a lemma which shows

∫ t
a LΦdW at least makes sense.

Proposition 65.13.1 Suppose Φ is L2
(
Q1/2U,H

)
progressively measurable and

P
([∫ T

a
||Φ||2

L2(Q1/2U,H) ds < ∞

])
= 1.

Then the same is true of LΦ. Furthermore, for each t ∈ [a,T ]∫ t

a
LΦdW = L

∫ t

a
ΦdW

Proof: First note that if Φ ∈L2
(
Q1/2U,H

)
, then LΦ ∈L2

(
Q1/2U,H1

)
and that the

map Φ→ LΦ is continuous. It follows LΦ is L2
(
Q1/2U,H1

)
progressively measurable.

All that remains is to check the appropriate integral.∫ T

a
||LΦ||2

L2(Q1/2U,H1)
dt ≤

∫ T

a
||L||2 ||Φ||2

L2(Q1/2U,H) dt

and so this proves LΦ satisfies the same conditions as Φ, being stochastically square inte-
grable.
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It follows one can consider ∫ T

a
LΦdW.

Assume to begin with that Φ∈L2
(
[a,T ]×Ω;L2

(
Q1/2U,H

))
. Next recall the situation

in which the definition of the integral is considered.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

Letting {Φn} be an approximating sequence of elementary functions satisfying

E
(∫ T

a

∣∣∣∣Φn−Φ◦ J−1∣∣∣∣2
L2(JQ1/2U,H) dt

)
→ 0,

it is also the case that

E
(∫ T

a

∣∣∣∣LΦn−LΦ◦ J−1∣∣∣∣2
L2(JQ1/2U,H1)

dt
)
→ 0

By the definition of the integral, for each t∫ t

a
LΦdW = lim

n→∞

∫ t

a
LΦndW = lim

n→∞
L
∫ t

a
ΦndW

= L lim
n→∞

∫ t

a
ΦndW = L

∫ t

a
ΦdW

The second equality is obvious for elementary functions.
Now consider the case where Φ is only stochastically square integrable so that all is

known is that

P
([∫ T

a
||Φ||2

L2(Q1/2U,H) dt < ∞

])
= 1.

Then define τn as above

τn ≡ inf
{

t :
∫ t

a
||Φ||2

L2(Q1/2U,H) dt ≥ n
}

This sequence of stopping times works for LΦ also. Recall there were two conditions the
sequence of stopping times needed to satisfy. The first is obvious. Here is why the second
holds.∫ T

a

∣∣∣∣X[a,τn]LΦ
∣∣∣∣2

L2(Q1/2U,H1)
dt ≤ ||L||2

∫ T

a

∣∣∣∣X[a,τn]Φ
∣∣∣∣2

L2(Q1/2U,H) dt

= ||L||2
∫

τn

a
||Φ||2

L2(Q1/2U,H) dt ≤ ||L||2 n
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Then let t be given and pick n such that τn (ω)≥ t. Then from the first part, for that ω,

L
∫ t

a
ΦdW ≡ L

∫ t

a
X[a,τn]ΦdW

=
∫ t

a
LX[a,τn]ΦdW

=
∫ t

a
X[a,τn]LΦdW ≡

∫ t

a
LΦdW ■

65.14 A Technical Integration By Parts Result
Let Z ∈ L2

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
where this has reference to the usual diagram

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

Also suppose X ∈ L2 ([0,T ]×Ω,H) , both X and Z being progressively measurable. Let{
tn

j

}mn

j=1
denote a sequence of partitions of the sort discussed earlier where

Xn (t)≡
mn−1

∑
j=0

X
(
tn

j
)
X[tn

j ,t
n
j+1)

(t)

converges to X in L2 ([0,T ]×Ω,H) . Thus Xn (t) is right continuous. Let

τ
n
p = inf{t : |Xn (t)|H > p} .

This is the first hitting time of a right continuous adapted process so it is a stopping time.
Also there exists a set of measure zero N such that for ω /∈ N, then given t,

τ
n
p ≥ t

if p is large enough because of the assumption on X . Here is why. There exists a set of
measure 0 N such that if ω /∈ N, then∫ T

0
|Xn (t)|2H dt =

mn−1

∑
j=0
|X (tn

k )|
2
H

(
tn

j+1− tn
j
)
< ∞.

It follows that there exists an upper bound, depending on ω which dominates each of the
values

∣∣X (tn
k

)∣∣2
H . Then if p is larger than this upper bound, τn

p = ∞ > t.
Next consider the expression

m−1

∑
j=0

(∫ tn
j+1∧t

tn
j∧t

Z (u)dW,X
(
tn

j
))

H

. (65.14.20)
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This expression is a function of ω .
I want to write this in the form of a stochastic integral. To begin with, consider one of

the terms. For simplicity of notation, consider(∫ b

a
Z (u)dW,X (a)

)
H

where Z ∈ L2
(
[a,b]×Ω,L2

(
Q1/2U,H

))
and X (a) ∈ L2 (Ω,H). Also assume the func-

tion of ω, |X (a)|H , is bounded. There is an Ito integral involved in the above. Let
Zn be a sequence of elementary functions defined on [a,b] which converges to Z ◦ J−1

in L2
(
[a,b]×Ω,L2

(
JQ1/2U,H

))
. Then by the definition of the integral,∥∥∥∥∫ t

a
Z (u)dW −

∫ t

a
Zn (u)dW

∥∥∥∥
L2(Ω,H)

→ 0

Also, by the use of a maximal inequality and the fact that the two integrals above are
martingales, there is a subsequence, still called n and a set of measure zero N such that for
ω /∈ N, the convergence ∫ t

a
Zn (u)dW (ω)→

∫ t

a
Z (u)dW (ω)

is uniform for t ∈ [a,b]. Therefore, for such ω,(∫ t

a
Z (u)dW,X (a)

)
H
= lim

n→∞

(∫ t

a
Zn (u)dW,X (a)

)
H

Say Zn (u) = ∑
mn−1
k=0 Zn

k X[tn
k ,t

n
k+1)

(u) where Zn
k has finitely many values in L (U1,H)0 , the

restrictions of L (U1,H) to JQ1/2U . Then the inner product in the above formula on the
right is of the form

mn−1

∑
k=0

(
Zn

k
(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)
,X (a)

)
H

=
mn−1

∑
k=0

((
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)
,(Zn

k )
∗X (a)

)
U1

=
mn−1

∑
k=0

R
(
(Zn

k )
∗X (a)

)(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)

≡
∫ t

a
R (Z∗nX (a))dW

where R is the Riesz map from U1 to U ′1. Note that R (Z∗nX (a)) has values in

L (U1,R)0 ⊆L2

(
JQ1/2U,R

)
.
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Now let {gi} be an orthonormal basis for Q1/2U, so it follows that {Jgi} is an orthonormal
basis for JQ1/2U. Then

∑
i

∣∣∣R(Z∗nX (a)−
(
Z ◦ J−1)∗X (a)

)
(Jgi)

∣∣∣2

≡∑
i

∣∣∣∣(Z∗nX (a)−
(
Z ◦ J−1)∗X (a) ,Jgi

)
U1

∣∣∣∣2 = ∑
i

∣∣(X (a) ,
(
Zn−Z ◦ J−1)Jgi

)
H

∣∣2
≤∑

i
|X (a)|2H

∣∣(Zn−Z ◦ J−1)Jgi
∣∣2
H = |X (a)|2H

∥∥Zn−Z ◦ J−1∥∥2
L2(JQ1/2U,H)

When integrated over [a,b]×Ω, it is given that this converges to 0. This has shown that

R (Z∗nX (a))→R
((

Z ◦ J−1)∗X (a)
)

in L2
(
JQ1/2U,R

)
. In other words

R (Z∗nX (a))→
(
R
((

Z ◦ J−1)∗X (a)
)
◦ J
)
◦ J−1

It follows that (∫ t

a
Z (u)dW,X (a)

)
H
=
∫ t

a
R
((

Z ◦ J−1)∗X (a)
)
◦ JdW

From localization,(∫ b∧τn
p

a∧τn
p

Z (u)dW,X (a)

)
H

=

(∫ b

a
X[0,τn

p]
Z (u)dW,X (a)

)
H

=
∫ b

a
X[0,τn

p]
R
((

Z ◦ J−1)∗X (a)
)
◦ JdW

=
∫ b∧τn

p

a∧τn
p

R
((

Z ◦ J−1)∗X (a)
)
◦ JdW

Then it follows that, using the stopping time,

m−1

∑
j=0

(∫ tn
j+1∧τn

p∧t

tn
j∧τn

p∧t
Z (u)dW,X

(
tn

j
))

H

=
m−1

∑
j=0

∫ tn
j+1∧τn

p∧t

tn
j∧τn

p∧t
R
((

Z ◦ J−1)∗Xn
(
tn

j
))
◦ JdW

=
∫ tn

m∧τn
p∧t

0
R
((

Z ◦ J−1)∗(X l
n

))
◦ JdW

where X l
n is the step function

X l
n (t)≡

mn−1

∑
k=0

X (tn
k )X[tn

k ,t
n
k+1)

(t)
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By localization, this is ∫ t

0
X[0,τn

p]
R
((

Z ◦ J−1)∗(X l
n

))
◦ JdW

If ω is not in a suitable set of measure zero, then τn
p (ω) ≥ t provided p is large enough.

Thus, for such ω, if p is large enough,

mn−1

∑
j=0

(∫ tn
j+1∧τn

p∧t

tn
j∧τn

p∧t
Z (u)dW,X

(
tn

j
))

H

=
∫ t

0
X[0,τn

p]
R
((

Z ◦ J−1)∗(X l
n

))
◦ JdW

=
∫ t

0
R
((

Z ◦ J−1)∗(X l
n

))
◦ JdW

This shows that the expression is a local martingale. Also note that the expression on the
left does not depend on J or U1 so the same must be true of the expression on the right
although it does not look that way. This has proved the following important theorem.

Theorem 65.14.1 Let Z ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
and let X ∈ L2 ([0,T ]×Ω,H) ,

both X ,Z progressively measurable. Also let
{

tn
j

}mn

j=1
be a sequence of partitions of [0,T ]

such that each X
(

tn
j

)
is in L2 (Ω,H) . Then

m−1

∑
j=0

(∫ tn
j+1∧t

tn
j∧t

Z (u)dW,X
(
tn

j
))

H

(65.14.21)

is a stochastic integral of the form∫ t

0
R
((

Z ◦ J−1)∗(X l
n

))
◦ JdW

where
{

τn
p
}∞

p=1 is a localizing sequence used to define the above integral whose integrand

is only stochastically square integrable. Here X l
n is the step function defined by

X l
n (t)≡

mn−1

∑
k=0

X (tn
k )X[tn

k ,t
n
k+1)

(t)

In particular, 65.14.21 is a local martingale.

Of course it would be very interesting to see what happens in the case where X l
n→ X

in L2 ([0,T ]×Ω,H). Is it the case that convergence to∫ t

0
R
((

Z ◦ J−1)∗ (X)
)
◦ JdW (65.14.22)

happens in some sense? Also, does the above stochastic integral even make sense? First
of all, consider the question whether it makes sense. It would be nice to define a stopping
time

τn ≡ inf{t : |X (t)|H > n}
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because then X[0,τn]R
((

Z ◦ J−1
)∗
(X)
)
◦ J would end up being integrable in the right way

and you could define the stochastic integral provided τn > t whenever n is large enough.
However, this is problematic because t → X (t) is not known to be continuous. Therefore,
some other condition must be assumed.

Lemma 65.14.2 Suppose t → X (t) is weakly continuous into H for a.e.ω, and that X is
adapted. Then the τn described above is a stopping time.

Proof: Let B≡ {x ∈ H : |x|> n} . Then the complement of B is a closed convex set. It
follows that BC is also weakly closed. Hence B must be weakly open. Now t → X (t) is
adapted as a function mapping into the topological space consisting of H with the weak
topology because it is in fact adapted into the strong topolgy. Therefore, the above τn is
just the first hitting time of an open set by a continuous process so τn is a stopping time by
Proposition 62.7.5. Also, by the assumption that t→ X (t) is weakly continuous, it follows
that X (t) for t ∈ [0,T ] is weakly bounded. Hence, for each ω off a set of measure zero,
|X (t)| is bounded for t ∈ [0,T ] . This follows from the uniform boundedness theorem. It
follows that τn = ∞ for n large enough. ■

Hence the weak continuity of t → X (t) suffices to define the stochastic integral in
65.14.22. It remains to verify some sort of convergence in the case that

lim
n→∞

[
max

j≤mn−1

(
tn

j+1− tn
j
)]

= 0

Lemma 65.14.3 Let X (s)−X l
k (s)≡ ∆k (s) . Here Z ∈ L2

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
and

let X ∈ L2 ([0,T ]×Ω,H) with both X and Z progressively measurable, t → X (t) being
weakly continuous into H,

lim
k→∞

∥∥∥X−X l
k

∥∥∥
L2([0,T ]×Ω,H)

= 0

Then the integral ∫ t

0
R
((

Z ◦ J−1)∗ (X)
)
◦ JdW

exists as a local martingale and the following limit occurs for a suitable subsequence, still
called k.

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

])
= 0. (65.14.23)

That is,

sup
t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
k (s)

))
◦ JdW (s)

∣∣∣∣
converges to 0 in probability.

Proof: Let k denote a subsequence for which X l
k also converges pointwise to X .
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The existence of the integral follows from Lemma 65.14.2. From the assumption of
weak continuity, supt∈[0,T ] |X (t)| ≤ C (ω) for a.e.ω . For the first part of the argument,
assume C does not depend on ω off a set of measure zero. Let

M (t)≡
∫ t

0
ZdW

Let {ek} be an orthonormal basis for H and let Pn be the orthogonal projection onto
span(e1, · · · ,en). For each ei

lim
k→∞

∣∣∣(X (s)−X l
k (s) ,ei

)∣∣∣= 0

and so, by weak continuity,

lim
k→∞

Pn

(
X (s)−X l

k (s)
)
= 0 for a.e.ω

Then

lim
k→∞

∫
Ω

∫ T

0

∣∣∣Pn

(
X (s)−X l

k (s)
)∣∣∣2 ∥Z (s)∥2

L2
dsdP = 0

because you can apply the dominated convergence theorem with respect to the measure
∥Z (s)∥2

L2
dsdP.

Therefore,

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗Pn∆k (s)
)
◦ JdW (s)

∣∣∣∣≥ ε/2

])
= 0 (65.14.24)

Here is why. By the Burkholder Davis Gundy theorem, Theorem 63.4.4 and Corollary
65.11.1 which describes the quadratic variation of the stochastic integral,

∫
Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗Pn∆k (s)
)

dW (s)
∣∣∣∣
)

dP

≤C
∫

Ω

(∫ T

0

∣∣∣Pn

(
X (s)−X l

k (s)
)∣∣∣2 ||Z (s)||2L2

ds
)1/2

dP

Consider the following two probabilities.

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗ ( I−Pn)X (s)
)
◦ JdW (s)

∣∣∣∣≥ ε/2

])
(65.14.25)

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗ ( I−Pn)X l
k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε/2

])
(65.14.26)

By Corollary 63.4.5 which depends on the Burkholder Davis Gundy inequality and
Corollary 65.11.1 which describes the quadratic variation of the stochastic integral, 65.14.25
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is dominated by

C
ε

E

((∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

)1/2

∧δ

)

+P

([(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

)1/2

> δ

])

≤ Cδ

ε
+P

([(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

)1/2

> δ

])
(65.14.27)

Let η > 0 be given. Then let δ be small enough that the first term is less than η . Fix such
a δ .

Consider the second of the above terms.

P

([(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

)1/2

> δ

])

≤ 1
δ

(
E
(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

))1/2

and this converges to 0 because ( I−Pn)X (s) is assumed to be bounded and converges to
0. Next consider 65.14.26. By similar reasoning, we end up with having to estimate

1
δ

(
E
(∫ T

0
||Z (s)||2

∣∣∣( I−Pn)X l
k (s)

∣∣∣2 ds
))1/2

.

But this is dominated by

2
δ

(
E
(∫ T

0
||Z (s)||2

∣∣∣X l
k (s)−X (s)

∣∣∣2 ds
))1/2

+
2
δ

(
E
(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

))1/2

The first term is no larger than η provided k is large enough, independent of n thanks to the
pointwise convergence and the assumption that X is bounded. Thus, there exists K such
that if k > K, then the term in 65.14.26 is dominated by

2η +
2
δ

(
E
(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

))1/2

It follows that for k > K, the sum of 65.14.25 and 65.14.26 is dominated by

3η +
3
δ

(
E
(∫ T

0
||Z (s)||2 |( I−Pn)X (s)|2 ds

))1/2
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This is then no larger than 4η provided n is large enough. Pick such an n. Then for all
k > K, this has shown that

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

])

≤ P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗Pn∆k (s)
)
◦ JdW (s)

∣∣∣∣≥ ε/2

])
+

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗ (I−Pn)∆k (s)
)
◦ JdW (s)

∣∣∣∣≥ ε/2

])

≤ P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗Pn∆k (s)
)
◦ JdW (s)

∣∣∣∣≥ ε/2

])
+4η

By 65.14.24 this whole thing is less than 5η provided k is large enough. This has proved
that under the assumption that X is bounded uniformly off a set of measure zero,

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

])
= 0

This is what was desired to show. It remains to remove the extra assumption that X is
bounded.

Now to finish the argument, define the stopping time

τm ≡ inf{t > 0 : |X (t)|H > m} .

As observed in Lemma 65.14.2, this is a valid stopping time. Also define ∆
τm
k ≡ Xτm −(

X l
k

)τm . Using this stopping time on X and X l
k does not affect the pointwise convergence to

0 as k→ ∞ of ∆
τm
k on which the above argument depends.

Consider

Akε ≡

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

]

Then

P(Akε ∩ [τm = ∞])≤ P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆

τm
k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

])

which converges to 0 as k→ ∞ by the first part of the argument. This is because |Xτm | and∣∣∣(X l
k

)τm
∣∣∣ are both bounded by m and the same pointwise convergence condition still holds.

Now
Akε = ∪∞

m=1Akε ∩ ([τm = ∞]\ [τm−1 < ∞])
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Thus

P(Akε) =
∞

∑
m=1

P(Akε ∩ ([τm = ∞]\ [τm−1 < ∞])) (65.14.28)

Also
P(Akε ∩ ([τm = ∞]\ [τm−1 < ∞]))≤ P([τm = ∞]\ [τm−1 < ∞])

which is summable because these are disjoint sets. Hence one can apply the dominated
convergence theorem in 65.14.28 and conclude

lim
k→∞

P(Akε) =
∞

∑
m=1

lim
k→∞

P(Akε ∩ ([τm = ∞]\ [τm−1 < ∞])) = 0 ■
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Chapter 66

The Integral
∫ t

0 (Y,dM)H
First the integral is defined for elementary functions.

Definition 66.0.1 Let an elementary function be one which is of the form

m−1

∑
i=0

YiX(ti,ti+1] (t)

where Yi is Fti measurable with values in H a separable real Hilbert space for 0 = t0 <
t1 < · · ·< tm = T.

Definition 66.0.2 Now let M be a H valued continuous local martingale, M (0) = 0. Then
for Y a simple function as above,∫ t

0
(Y,dM)≡

m−1

∑
i=0

(Yi,M (t ∧ ti+1)−M (t ∧ ti))H

Assumption 66.0.3 We will always assume that d [M] is absolutely continuous with respect
to Lebesgue measure. Thus d [M] = kdt where k ≥ 0 and is in L1 ([0,T ]×Ω). This is done
to avoid technical questions related to whether t→

∫ t
0 d [M] is continuous and also to make

it easier to get examples of a certain class of functions.

This includes the usual stochastic integral M (t) =
∫ t

0 ΦdW where [M] (t) =
∫ t

0 ∥Φ∥
2
L2

ds
so d [M] = ∥Φ∥2 dt.

Next is to consider how this relates to stopping times which have values in the {ti}. Let
τ be a stopping time which takes the values {ti}m

i=0. Then∫ t∧τ

0
(Y,dM)≡

m−1

∑
i=0

(Yi,M (t ∧ ti+1∧ τ)−M (t ∧ ti∧ τ))H (66.0.1)

Now consider X[0,τ]Y. Is it also an elementary function?

X[0,τ]Y =
m−1

∑
i=0

X[0,τ] (t)YiX(ti,ti+1] (t)

To get the ith term to be non zero, you must have τ ≥ t and t ∈ (ti, ti+1]. Thus it must be the
case that τ > ti. Also, if τ > ti and t ∈ (ti, ti+1], then τ ≥ ti+1 because τ has only the values
ti. Hence also τ ≥ t. Thus the above sum reduces to

m−1

∑
i=0

X[τ>ti] (ω)YiX(ti,ti+1] (t)

This shows that X[0,τ]Y is of the right sort, the sum of Fti measurable functions times
X(ti,ti+1] (t). Thus from the definition of this funny integral,

∫ t

0

(
X[0,τ]Y,dM

)
≡

m−1

∑
i=0


Fti︷ ︸︸ ︷

X[τ>ti] (ω)Yi,M (t ∧ ti+1)−M (t ∧ ti)


H

(66.0.2)
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∫ t

0 (Y,dM)H

Are the right sides of 66.0.1 and 66.0.2 equal?
Begin with the right side of 66.0.1 and consider τ = t j. Then to get something nonzero

in the terms of the sum in 66.0.1, you would need to have t j ≥ ti+1. Otherwise, t j ≤ ti and
the difference involving M would give 0. Hence, for such ω you would need to have the
sum in 66.0.1 equal to

j−1

∑
i=0

(Yi,M (t ∧ ti+1)−M (t ∧ ti))H

Thus this sum in 66.0.1 equals

m

∑
j=0

X[τ=t j]

j−1

∑
i=0

(Yi,M (t ∧ ti+1)−M (t ∧ ti))H

Of course when j = 0 the term in the sum in 66.0.1 equals 0 so there is no harm in defining
∑
−1
i=0 ≡ 0. Then from the sum, you have i ≤ j−1 and so when you interchange the order,

you get that
∫ t∧τ

0 (Y,dM) =

m−1

∑
i=0

m

∑
j=i+1

X[τ=t j] (Yi,M (t ∧ ti+1)−M (t ∧ ti))H

=
m−1

∑
i=0

(
X[τ>ti] (ω)Yi,M (t ∧ ti+1)−M (t ∧ ti)

)
H

Thus the right side of 66.0.1 equals the right side of 66.0.2.

∫ t

0

(
X[0,τ]Y,dM

)
=

m−1

∑
i=0

(
X[τ>ti] (ω)Yi,M (t ∧ ti+1)−M (t ∧ ti)

)
=
∫ t∧τ

0
(Y,dM)

This has proved the first part of the following lemma.

Lemma 66.0.4 For an elementary function Y, and a stopping time τ having values in the
{ti} , the points of discontinuity of Y, it follows that X[0,τ]Y is also an elementary function
and ∫ t∧τ

0
(Y,dM) =

∫ t

0

(
X[0,τ]Y,dM

)
=
∫ t

0
(Y,dMτ)

Proof: Consider the second equal sign. By definition,

∫ t∧τ

0
(Y,dM) =

m−1

∑
i=0

(Yi,M (t ∧ ti+1∧ τ)−M (t ∧ ti∧ τ))H

=
m−1

∑
i=0

(Yi,Mτ (t ∧ ti+1)−Mτ (t ∧ ti))H ≡
∫ t

0
(Y,dMτ) ■

Next is another lemma about these integrals of elementary functions. First recall the
following definition

M∗ ≡ sup{∥M (t)∥ : t ∈ [0,T ]}
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Lemma 66.0.5 Let M be a local martingale on [0,T ] where M (0)= 0 and M is continuous.
Let 0 < r < s < T and consider (Y,(Mτ ps−Mτ pr)(t)) where Y (Mτ p)∗ ∈ L2 (Ω) and Y is
Fr measurable and τ p is a localizing sequence of stopping times for which Mτ p is a L2

martingale. Then this is a martingale on [0,T ] which equals 0 at t = 0 and

[(Y,(Mτ ps−Mτ pr))] (t) ≤ ∥Y∥2 [Mτ ps−Mτ pr] (t)

= ∥Y∥2 ([Mτ p ]s (t)− [Mτ p ]r (t)
)

= ∥Y∥2 ([Mτ p ] (t ∧ s)− [Mτ p ] (t ∧ r))

It follows that for Y an elementary function where each Yi (Mτ p)∗ is in L2 (Ω),∫ t

0
(Y,dM)

is a local martingale.

Proof: To save notation, M is written in place of Mτ p . It is clear that (Y,(Ms−Mr)(t))=
0 if t ≤ r. Is it a martingale?

E ((Y,(Ms−Mr)(t))) = E (E ((Y,(Ms−Mr)(t)) |Fr))

= E ((Y,E ((M (s∧ t)−M (r∧ t)) |Fr))) = 0

because M is a martingale. Now let σ be a bounded stopping time with two values. Then
using the optional sampling theorem where needed,

E ((Y,(Ms−Mr)(σ))) = E (E ((Y,(Ms−Mr)(σ)) |Fr))

= E ((Y,E ((M (s∧σ)−M (r∧σ)) |Fr)))

= E ((Y,M (s∧σ ∧ r)−M (r∧σ)))

= E ((Y,M (σ ∧ r)−M (r∧σ))) = 0

It follows that this is indeed a martingale as claimed.
By the definition of the quadratic variation,

|(Y,(Ms−Mr)(t))|2 ≤ ∥Y∥2 ∥(Ms−Mr)(t)∥2

= ∥Y∥2 [(Ms−Mr)] (t)+∥Y∥2 N̂ (t)

where N̂ (t) is a martingale. It equals 0 if t ≤ r. By similar reasoning to the above,
∥Y∥2 N̂ (t) is a martingale. To see this,

E
(
∥Y∥2 N̂ (σ)

)
= E

(
E
(
∥Y∥2 N̂ (σ) |Fr

))
= E

(
∥Y∥2 E

(
N̂ (σ) |Fr

))
= E

(
∥Y∥2 N (σ ∧ r)

)
= 0

One also sees that E
(
∥Y∥2 N̂ (t)

)
= 0.
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∫ t

0 (Y,dM)H

Now it follows from Corollary 63.3.3 that

[(Ms−Mr)] = [Ms]− [Mr] = [M]s− [M]r

Hence

[(Y,(Ms−Mr))] (t)≤ ∥Y∥2 [Ms−Mr] (t) = ∥Y∥2 ([M]s (t)− [M]r (t))

as claimed.
The last claim is easy. Let τ p be a localizing sequence for which Mτ p is a martingale.

Then ∫ t∧τ p

0
(Y,dM) ≡

m−1

∑
i=0

(Yi,M (t ∧ ti+1∧ τ p)−M (t ∧ ti∧ τ p))H

=
m−1

∑
i=0

(Yi,Mτ p (t ∧ ti+1)−Mτ p (t ∧ ti))H

a finite sum of martingales. ■
Note that this is just a definition and did not use the above localization lemma. In

particular, τ p is not restricted to having only the partition points as values.
Next one needs to generalize past the elementary functions.
Continue writing M in place of Mτ p in what follows. Consider an elementary function

Y ≡
mn−1

∑
k=0

YkX(tk,tk+1] (t)

where YkM∗ ∈ L2 (Ω). Consider

∫ t

0
(Y,dM)≡

mn−1

∑
k=0

(Yk,M (t ∧ tk+1)−M (t ∧ tk)) (66.0.3)

Then it is routine to verify that

E

(mn−1

∑
k=0

(Yk,M (t ∧ tk+1)−M (t ∧ tk))H

)2


=
mn−1

∑
k=0

E
(
(Yk,M (t ∧ tk+1)−M (t ∧ tk))

2
H

)
(66.0.4)

This is because the mixed terms all vanish. This follows from the following reasoning. Let
t j < tk

E
(
(Yk,M (t ∧ tk+1)−M (t ∧ tk))H

(
Yj,M

(
t ∧ t j+1

)
−M

(
t ∧ t j+1

))
H

)
= E

(
E
(
(Yk,∆kM (t))H (Yj,∆ jM (t))H |Ftk

))
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= E
(
(Yj,∆ jM (t))H E

(
(Yk,∆kM (t))H |Ftk

))
= E

(
(Yj,∆ jM (t))H

(
Yk,E

(
∆kM (t) |Ftk

))
H

)
= E

(
(Yj,∆ jM (t))H (Yk,0)H

)
= 0

Now

mn−1

∑
k=0

E
(
(Yk,M (t ∧ tk+1)−M (t ∧ tk))

2
H

)
=

mn−1

∑
k=0

E
((

Yk,
(
Mtk+1 −Mtk

)
(t)
)2

H

)
It follows from 66.0.4

E

(mn−1

∑
k=0

(Yk,M (t ∧ tk+1)−M (t ∧ tk))H

)2
=

mn−1

∑
k=0

E
((

Yk,
(
Mtk+1 −Mtk

)
(t)
)2

H

)

=
mn−1

∑
k=0

E
([(

Yk,
(
Mtk+1 −Mtk

)
(t)
)]

+Nk (t)
)

where Nk is a martingale equal to 0 for t ≤ tk. Then this equals

mn−1

∑
k=0

E
([(

Yk,
(
Mtk+1 −Mtk

)
(t)
)])

From Lemma 66.0.5

≤ E

(
mn−1

∑
k=0
∥Yk∥2

H
(
[M]tk+1 (t)− [M]tk (t)

))

= E

(
mn−1

∑
k=0
∥Yk∥2

H
(
[M]
(
tn
k+1∧ t

)
− [M] (tn

k ∧ t)
))

(66.0.5)

= E
(∫ t

0
∥Y∥2

H d [Mτ p ]

)
= E

(∫ t

0
∥Y∥2

H d [M]τ p

)
Note that everything makes sense because it is assumed that ∥Yk∥M∗ ∈ L2 (Ω). This proves
the following lemma.

Lemma 66.0.6 Let ∥Y (t)∥(Mτ p)∗ ∈ L2 (Ω) for each t, where Y is an elementary function
and let τ p be a stopping time for which Mτ p is a L2 martingale. Then

E

(∣∣∣∣∫ t

0
(Y,dMτ p)

∣∣∣∣2
)
≤ E

(∫ t

0
∥Y∥2

H d [M]τ p

)
The condition that ∥Y (t)∥(Mτ p)∗ ∈ L2 (Ω) ensures that

E
(
(Yk,Mτ p (t ∧ tk+1)−Mτ p (t ∧ tk+1))

2
H

)
always is finite.
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Definition 66.0.7 Let G denote those functions Y which are adapted and have the property
that for each p,

lim
n→∞

E
(∫ T

0
∥Y −Y n∥2

H d [M]τ p

)
= 0

for some sequence Y n of elementary functions for which ∥Y n (t)∥M∗ ∈ L2 (Ω) for each t.
Here d [M]τ p signifies the Lebesgue Stieltjes measure determined by the increasing function
t→ [Mτ p ] (t). Let Mτ p be an L2 martingale. Recall that τ p is just a localizing sequence for
the local martingale M.

It is not known whether this increasing function is absolutely continuous.

Definition 66.0.8 Let Y ∈ G . Then∫ t

0
(Y,dMτ p)≡ lim

n→∞

∫ t

0
(Y n,dMτ p) in L2 (Ω)

For example, suppose Y is a bounded continuous process having values in H. Then you
could look at the left step functions

Y n (t)≡
mn−1

∑
i=0

Y (ti)X[ti,ti+1) (t)

The Y n would converge to Y pointwise on [0,T ] for each ω and these Y n are bounded. In
fact, in this case, these converge uniformly to Y on [0,T ]. Thus this is an example of the
situation in the above definition. In this case, the integrand would be bounded by C for
some C and

E
(∫ T

0
Cd [M]τ p

)
= E

(
[M]τ p (T )

)
= E

(
∥Mτ p (T )∥2

)
< ∞

by assumption. Hence, by the dominated convergence theorem,

lim
n→∞

E
(∫ T

0
∥Y −Y n∥2

H d [M]τ p

)
= 0.

What if [M]τ p were bounded and absolutely continuous with respect to Lebesgue mea-
sure? This could be the case if you had τ p a stopping time of the form

τ p = inf{t : [M] (t)> p}

Then if Y ∈ L2 ([0,T ]×Ω,H) , and progressively measurable there are left step functions
which converge to Y in L2 ([0,T ]×Ω,H) . Say d [Mτ p ] = k (t,ω)dm where k is bounded.
Then

E
(∫ T

0
∥Y −Y n∥2

H d [M]τ p

)
= E

(∫ T

0
∥Y −Y n∥2

H kdt
)
→ 0
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Lemma 66.0.9 The above definition is well defined. Also,
∫ t

0 (Y,dMτ p) is a continuous
martingale. The inequality

E

(∣∣∣∣∫ t

0
(Y,dMτ p)

∣∣∣∣2
)
≤ E

(∫ t

0
∥Y∥2

H d [M]τ p

)
is also valid. For any sequence of elementary functions {Y n} ,∥Y n (t)∥M∗ ∈ L2 (Ω) ,

∥Y n−Y∥L2(Ω;L2([0,T ];H,d[Mτ p ]))→ 0

there exists a subsequence, still denoted as {Y n} of elementary functions for which∫ t

0
(Y n,dMτ p)

converges uniformly to
∫ t

0 (Y,dMτ p) on [0,T ] for ω off some set of measure zero.

Proof: First of all, why does the limit even exist? From Lemma 66.0.6,

E

(∣∣∣∣∫ t

0
(Y n,dMτ p)−

∫ t

0
(Y m,dMτ p)

∣∣∣∣2
)
≤ E

(∫ T

0
∥Y n−Y m∥2

H d [M]τ p

)
which converges to 0 as n,m→∞ by definition of Y ∈G . This also shows that the definition
is well defined and that the same thing is obtained from any other sequence converging to
Y .

{∫ t
0 (Y

n,dMτ p)
}

is a Cauchy sequence in L2 (Ω). Hence it converges to something
N (t) ∈ L2 (Ω) . This is a martingale because if A ∈Fs,s < t∫

A
N (t)dP = lim

n→∞

∫
A

∫ t

0
(Y n,dMτ p)dP

= lim
n→∞

∫
A

∫ s

0
(Y n,dMτ p)dP =

∫
A

N (s)dP

Since A is arbitrary, this shows that E (N (t) |Fs) = N (s) . Then

N (t)≡
∫ t

0
(Y n,dMτ p)

In fact, this has a continuous version off a set of measure zero.
These are martingales and so actually, by maximal theorems,

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
(Y n,dMτ p)−

∫ t

0
(Y m,dMτ p)

∣∣∣∣2 > λ

)

≤ 1
λ

E

(∣∣∣∣∫ T

0
(Y n,dMτ p)−

∫ T

0
(Y m,dMτ p)

∣∣∣∣2
)

≤ 1
λ

E
(∫ T

0
∥Y n−Y m∥2

H d [M]τ p

)
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which converges to 0. Thus there is a subsequence still denoted with index k such that

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Y k,dMτ p

)
−
∫ t

0

(
Y k+1,dMτ p

)∣∣∣∣2 > 2−k

)
< 2−k

and so there exists a set of measure zero N such that for ω /∈ N,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Y k,dMτ p

)
−
∫ t

0

(
Y k+1,dMτ p

)∣∣∣∣2 ≤ 2−k

for all k large enough and so for this subsequence, the convergence is uniform. Hence
t→

∫ t
0 (Y

n,dMτ p) has a continuous version obtained from the uniform limit of these.
Finally,

E

(∣∣∣∣∫ t

0
(Y,dMτ p)

∣∣∣∣2
)

= lim
n→∞

E

(∣∣∣∣∫ t

0
(Y n,dMτ p)

∣∣∣∣2
)

≤ lim
n→∞

E
(∫ t

0
∥Y n∥2

H d [M]τ p

)
= E

(∫ t

0
∥Y∥2

H d [M]τ p

)
■

What is the quadratic variation of the martingale in the above lemma? I am not going
to give it exactly but it is easy to give an estimate for it. Recall the following result. It is
Theorem 63.6.4.

Theorem 66.0.10 Let H be a Hilbert space and suppose (M,Ft) , t ∈ [0,T ] is a uniformly
bounded continuous martingale with values in H. Also let

{
tn
k

}mn
k=1 be a sequence of parti-

tions satisfying

lim
n→∞

max
{∣∣tn

i − tn
i+1
∣∣ , i = 0, · · · ,mn

}
= 0, {tn

k }
mn
k=1 ⊆

{
tn+1
k

}mn+1
k=1 .

Then

[M] (t) = lim
n→∞

mn−1

∑
k=0

∣∣M (t ∧ tn
k+1
)
−M (t ∧ tn

k )
∣∣2
H

the limit taking place in L2 (Ω). In case M is just a continuous local martingale, the above
limit happens in probability.

In the above Lemma, you would find the quadratic variation according to this theorem
as follows. [∫ (·)

0
(Y,dMτ p)

]
(t) = lim

n→∞

mn−1

∑
k=0

∣∣∣∣∫ t∧tn
k+1

t∧tn
k

(Y,dMτ p)

∣∣∣∣2
H

where the limit is in probability. Thus

lim
n→∞

P

(∣∣∣∣∣
[∫ (·)

0
(Y,dMτ p)

]
(t)−

mn−1

∑
k=0

∣∣∣∣∫ t∧tn
k+1

t∧tn
k

(Y,dMτ p)

∣∣∣∣2
∣∣∣∣∣≥ ε

)
= 0
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Then you can obtain from this and the usual appeal to the Borel Cantelli lemma a set of
measure zero Nt and a subsequence still denoted with n satisfying that for all ω /∈ Nt and n
large enough, ∣∣∣∣∣

[∫ (·)

0
(Y,dMτ p)

]
(t)−

mn−1

∑
k=0

∣∣∣∣∫ t∧tn
k+1

t∧tn
k

(Y,dMτ p)

∣∣∣∣2
∣∣∣∣∣≤ 1

n

Hence [∫ (·)

0
(Y,dMτ p)

]
(t)≤ 1

n
+

mn−1

∑
k=0

∫ t∧tn
k+1

t∧tn
k

∥Y∥2
H d [M]τ p

=
1
n
+
∫ t

0
∥Y∥2

H d [M]τ p

Then for that t, you have on taking a limit as n→ ∞,[∫ (·)

0
(Y,dMτ p)

]
(t)≤

∫ t

0
∥Y∥2

H d [M]τ p

Now take the union of Nt for t ∈ Q∩ [0,T ]. Denote this as N. Then if ω /∈ N, the above
shows that for such t, [∫ (·)

0
(Y,dMτ p)

]
(t)≤

∫ t

0
∥Y∥2

H d [M]τ p

But both sides are continuous in t and so this inequality holds for all t ∈ [0,T ]. Thus the
following corollary is obtained.

Corollary 66.0.11 Let M be a continuous local martingale and τ p a localizing sequence
which makes Mτ p an L2 martingale and assume that Y ∈ G . Then the quadratic variation
of this martingale satisfies[∫ (·)

0
(Y,dMτ p)

]
(t)≤

∫ t

0
∥Y∥2

H d [M]τ p ≤
∫ t

0
∥Y∥2

H d [M]

for ω off a set of measure zero.

Does the localization stuff hold for an arbitrary stopping time? Let
{

tk
i
}

denote the
kth partition of a sequence of nested partitions whose maximum length between successive
points converges to 0. Let τ be a stopping time and let τk = tk

j+1 on τ−1(tk
j , t

k
j+1]. Then τk

is a stopping time because
[τk ≤ t] ∈Ft

Here is why. If t ∈ (tk
j , t

k
j+1], then if t = tk

j+1, it would follow that τk (ω) ≤ t would be

the same as saying ω ∈
[
τ ≤ tk

j+1

]
= [τ ≤ t] ∈ Ft . On the other hand, if t < tk

j+1, then

[τk ≤ t] =
[
τ ≤ tk

j

]
∈Ftk

j
⊆Ft because τk can only take the values tk

j .



2280 CHAPTER 66. THE INTEGRAL
∫ t

0 (Y,dM)H

Let Y be one of those elementary functions which is in G , ∥Y (t)∥M∗ ∈ L2 (Ω).

Y (t) =
mk−1

∑
i=0

YiX(tk
i ,t

k
i+1]

(t)

and consider X[0,τk]Y. Here Y will be always the same for the different partitions. It is
just that some of the Yi will be repeated on smaller and smaller intervals. Does it follow
that X[0,τk]Y →X[0,τ]Y for each fixed ω? This depends only on the indicator function.
Let τ (ω) ∈ (tk

j , t
k
j+1]. Fixing t, if X[0,τ] (t) = 1, then also X[0,τk] (t) = 1 because τk ≥ τ .

Therefore, in this case limk→∞ X[0,τk] (t) = X[0,τ] (t) . Next suppose X[0,τ] (t) = 0 so that
τ (ω) < t. Since the intervals defined by the partition points have lengths which converge
to 0, it follows that for all k large enough, τk (ω)< t also and so X[0,τk] (t) = 0. Therefore,

lim
k→∞

X[0,τk(ω)] (t) = X[0,τ(ω)] (t) .

It follows that X[0,τk]Y →X[0,τ]Y . Also it is clear from the dominated convergence theo-
rem, ∥∥X[0,τk]Y −X[0,τ]Y

∥∥2
H ≤ 4∥Y∥2

H ,

that

lim
k→∞

E
(∫ T

0

∥∥X[0,τk]Y −X[0,τ]Y
∥∥2

H d [Mτ p ]

)
= 0

Thus X[0,τ]Y ∈ G . By Lemma 66.0.9, there is a subsequence, still denoted as X[0,τk]Y such
that off a set of measure zero,∫ t

0

(
X[0,τk]Y,dMτ p

)
→
∫ t

0

(
X[0,τ]Y,dMτ p

)
uniformly on [0,T ]. Therefore, from the localization for elementary functions and this
uniform convergence,∫ t

0

(
X[0,τ]Y,dMτ p

)
= lim

n→∞

∫ t

0

(
X[0,τn]Y,dMτ p

)
= lim

n→∞

∫ t∧τn

0
(Y,dMτ p) =

∫ t∧τ

0
(Y,dMτ p)

This proves most of the following lemma.

Lemma 66.0.12 Let Y be an elementary function. Then if τ is any stopping time, then off
a set of measure zero,∫ t∧τ

0
(Y,dMτ p) =

∫ t

0

(
X[0,τ]Y,dMτ p

)
=
∫ t

0

(
Y,dMτ∧τ p

)
Proof: It remains to prove the second equation.∫ t∧τ

0
(Y,dMτ p) ≡

m−1

∑
i=0

(Yi,Mτ p (t ∧ ti+1∧ τ)−Mτ p (t ∧ ti∧ τ))

≡
m−1

∑
i=0

(
Yi,Mτ∧τ p (t ∧ ti+1)−Mτ p (t ∧ ti)

)
≡

∫ t

0

(
Y,dMτ∧τ p

)
■
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Lemma 66.0.13 Let Y ∈ G . Then for any stopping time τ,∫ t∧τ

0
(Y,dMτ p) =

∫ t

0

(
X[0,τ]Y,dMτ p

)
=
∫ t

0

(
Y,dMτ∧τ p

)
for ω off some set of measure zero.

Proof: From Lemma 66.0.9, there exists a sequence of elementary functions Y n such
that t →

∫ t
0 (Y

n,dM) converges uniformly to t →
∫ t

0 (Y,dMτ p) on [0,T ] for each ω /∈ N, a
set of measure zero. Then∫ t∧τ

0
(Y,dMτ p) = lim

n→∞

∫ t∧τ

0
(Y n,dMτ p)

= lim
n→∞

∫ t

0

(
X[0,τ]Y

n,dMτ p
)
=
∫ t

0

(
X[0,τ]Y,dMτ p

)
The last claim needs a little clarification. As shown in the above discussion proving Lemma
66.0.12, while X[0,τ]Y n is no longer obviously an elementary function due to the fact that
τ has values which are not partition points, it is still the limit of a sequence of elementary
functions X[0,τk]Y

n and so the integral makes sense. Then from the inequality of Lemma
66.0.9,

E

(∣∣∣∣∫ t

0

(
X[0,τ]Y

n,dMτ p
)
−
∫ t

0

(
X[0,τ]Y,dMτ p

)∣∣∣∣2
)
≤ E

(∫ T

0
∥Y n−Y∥2

H d [M]τ p

)
and so by the same Borel Canteli argument of that lemma, there is a further subsequence
for which the convergence is uniform off a set of measure zero as n→ ∞. (Actually, the
same subsequence as in the first part of the argument works.) Therefore, the conclusion
follows.

What of the second equation? Let {Y n} be as above where uniform convergence takes
place for the stochastic integrals. Then from Lemma 66.0.12∫ t

0

(
X[0,τ]Y

n,dMτ p
)
=
∫ t

0

(
Y n,dMτ∧τ p

)
Hence

E

(∣∣∣∣∫ t

0

(
Y n,dMτ∧τ p

)
−
∫ t

0

(
X[0,τ]Y,dMτ p

)∣∣∣∣2
)
≤ E

(∫ T

0
∥Y n−Y∥2

H d [M]τ p

)
Now by the usual application of the Borel Canelli lemma, there is a subsequence and a set
of measure zero off which

∫ t
0 (Y

n,dMτ∧τ p) converges uniformly to
∫ t

0 (Y,dMτ∧τ p) on [0,T ]
and as n→ ∞, and also ∫ t

0

(
Y n,dMτ∧τ p

)
→
∫ t

0

(
X[0,τ]Y,dMτ p

)
uniformly on t ∈ [0,T ]. Then from the above,∫ t

0

(
Y n,dMτ∧τ p

)
→
∫ t

0

(
X[0,τ]Y,dMτ p

)
=
∫ t∧τ

0
(Y,dMτ p)

uniformly. Thus
∫ t

0 (Y,dMτ∧τ p) =
∫ t∧τ

0 (Y,dMτ p) . ■



2282 CHAPTER 66. THE INTEGRAL
∫ t

0 (Y,dM)H

Definition 66.0.14 Let τ p be an increasing sequence of stopping times for which

lim
p→∞

τ p = ∞

and such that Mτ p is a L2 martingale and X[0,τ p]Y ∈ G . Then the definition of
∫ t

0 (Y,dM)

is as follows. For each ω,∫ t

0
(Y,dM)≡ lim

p→∞

∫ t

0

(
X[0,τ p]Y,dMτ p

)
In fact, this is well defined.

Theorem 66.0.15 The above definition is well defined. Also this makes
∫ t

0 (Y,dM) a local
martingale. In particular,∫ t∧τ p

0
(Y,dM) =

∫ t

0

(
X[0,τ p]Y,dMτ p

)
In addition to this, if σ is any stopping time,∫ t∧σ

0
(Y,dM) =

∫ t

0

(
X[0,σ ]Y,dM

)
In this last formula, X[0,σ ]X[0,τ p]Y ∈ G . In addition, the following estimate holds for the
quadratic variation. [∫ (·)

0
(Y,dM)

]
(t)≤

∫ t

0
∥Y∥2 d [M]

Proof: Suppose for some ω, t < τ p < τq. Let ω be such that both τ p,τq are larger than
t. Then for all ω, and τ a stopping time,∫ t∧τ

0

(
X[0,τq]Y,dMτq

)
=
∫ t

0

(
X[0,τq]Y,d

(
(Mτq)τ

))
In particular, for the given ω,∫ t

0

(
X[0,τq]Y,d (M

τq)τq
)
=
∫ t

0

(
X[0,τq]Y,dMτq

)
=
∫ t∧τq

0

(
X[0,τq]Y,dMτq

)
For the particular ω, this equals ∫ t∧τ p

0

(
X[0,τq]Y,dMτq

)
Now for all ω including the particular one, this equals∫ t

0

(
X[0,τq]Y,d

(
(Mτq)τ p

))
=
∫ t

0

(
X[0,τq]Y,dMτ p

)
For the ω of interest, this is ∫ t∧τ p

0

(
X[0,τq]Y,dMτ p

)
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and for all ω, including the one of interest, the above equals∫ t

0

(
X[0,τ p]X[0,τq]Y,dMτ p

)
=
∫ t

0

(
X[0,τ p]Y,dMτ p

)
thus for this particular ω, you get the same for both p and q. Thus the definition is well
defined because for a given ω,

∫ t
0

(
X[0,τ p]Y,dMτ p

)
is constant for all p large enough.

Next consider the claim about this process being a local martingale. Is∫ t∧τ p

0
(Y,dM)

is a martingale? From the definition,∫ t∧τ p

0
(Y,dM) = lim

q→∞

∫ t∧τ p

0

(
X[0,τq]Y,dMτq

)

= lim
q→∞

∫ t

0

(
X[0,τq]Y,d (M

τq)τ p
)
= lim

q→∞

∫ t∧τ p

0

(
X[0,τq]Y,dMτ p

)
= lim

q→∞

∫ t

0

(
X[0,τ p]X[0,τq]Y,dMτ p

)
=
∫ t

0

(
X[0,τ p]Y,dMτ p

)
(66.0.6)

which is known to be a martingale since X[0,τ p]Y ∈ G . This is what it means to be a local
martingale. You localize and get a martingale.

Next consider the claim about an arbitrary stopping time. Why is X[0,σ ]X[0,τ p]Y ∈ G ?

This is part of a more general question. Suppose Ŷ ∈ G . Then why is X[0,σ ]Ŷ ∈ G . It
suffices to show this. Let {Y n} be the sequence of elementary functions which converge to
Ŷ as in the definition. Also let σn be the stopping time with discreet values which equals
tn
k+1 when σ ∈ (tn

k , t
n
k+1],

{
tn
k

}mn
k=0 being the partition associated with Y n. Then, as explained

earlier, X[0,σn]Y
n is an acceptable elementary function and also

{
E
(∫ T

0

∥∥X[0,σn]Y
n−X[0,σ ]Ŷ

∥∥2 d [M]

)}1/2

≤
{

E
(∫ T

0

∥∥X[0,σn]Y
n−X[0,σn]Ŷ

∥∥2 d [M]

)}1/2

+

{
E
(∫ T

0

∥∥X[σ ,σn]Ŷ
∥∥2 d [M]

)}1/2

≤
{

E
(∫ T

0

∥∥Y n− Ŷ
∥∥2 d [M]

)}1/2

+

{
E
(∫ T

0

∥∥X[σ ,σn]Ŷ
∥∥2 d [M]

)}1/2

which converges to 0 from the definition of Ŷ ∈ G and the dominated convergence theorem.
Thus X[0,σ ]Ŷ ∈ G .
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From the above definition, for each ω off a suitable set of measure zero, from Lemma
66.0.13,∫ t∧σ

0
(Y,dM) ≡ lim

p→∞

∫ t∧σ

0

(
X[0,τ p]Y,dMτ p

)
= lim

p→∞

∫ t

0

(
X[0,τ p]X[0,σ ]Y,dMτ p

)
≡
∫ t

0

(
X[0,σ ]Y,dM

)
Finally, consider the claim about the quadratic variation. Using 66.0.6,[(∫ (·)

0
(Y,dM)

)]τ p

(t) =

[(∫ (·)

0
(Y,dM)

)τ p
]
(t) =

[∫ (·)

0

(
X[0,τ p]Y,dMτ p

)]
(t)

≤
∫ t

0

∥∥∥X[0,τ p]Y
∥∥∥2

d [M]τ p ≤
∫ t

0
∥Y∥2 d [M]

Now letting τ p→ ∞, [(∫ (·)

0
(Y,dM)

)]
(t)≤

∫ t

0
∥Y∥2 d [M] ■

Next is the case in which Y is continuous in t but not necessarily bounded nor assumed
to be in any kind of L2 space either.

Definition 66.0.16 Let Y be continuous in t and adapted. Let M be a continuous local
martingale M (0) = 0. Then the definition of a local martingale

∫ t
0 (Y,dM) is as follows.

Let τ p be an increasing sequence of stopping times for which [M]τ p ,∥Mτ p∥ ,
∥∥∥X[0,τ p]Y

∥∥∥
are all bounded by p. Then∫ t

0
(Y,dM)≡ lim

p→∞

∫ t

0

(
X[0,τ p]Y,dMτ p

)
Then it is clear that X[0,τ p]Y ∈ G . Therefore, the above Theorem yields the following

corollary.

Corollary 66.0.17 The above definition is well defined. Also this makes
∫ t

0 (Y,dM) a local
martingale. In particular,∫ t∧τ p

0
(Y,dM) =

∫ t

0

(
X[0,τ p]Y,dMτ p

)
In addition to this, if σ is any stopping time,∫ t∧σ

0
(Y,dM) =

∫ t

0

(
X[0,σ ]Y,dM

)
In this last formula, X[0,σ ]Y has the same properties as Y, being the pointwise limit on
[0,T ] of a bounded seuqence of elementary functions for each ω . In addition to this, there
is an estimate for the quadratic variation[∫ (·)

0
(Y,dM)

]
(t)≤

∫ t

0
∥Y∥2 d [M]
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Of course there is no change in anything if M has its values in a Hilbert space W while
Y has its values in its dual space. Then one defines

∫ t
0 ⟨Y,dM⟩W ′,W by analogy to the above

for Y an elementary function, step function which is adapted.
We use the following definition.

Definition 66.0.18 Let τ p be an increasing sequence of stopping times for which Mτ p is a
L2 martingale. If M is already an L2 martingale, simply let τ p ≡ ∞. Let G denote those
functions Y which are adapted and for which there is a sequence of elementary functions
{Y n} satisfying ∥Y n (t)∥W ′M∗ ∈ L2 (Ω) for each t with

lim
n→∞

E
(∫ T

0
∥Y −Y n∥2

W ′ d [M]τ p

)
= 0

for each τ p.

Then exactly the same arguments given above yield the following simple generaliza-
tions.

Definition 66.0.19 Let Y ∈ G . Then∫ t

0
⟨Y,dMτ p⟩W ′,W ≡ lim

n→∞

∫ t

0
⟨Y n,dMτ p⟩W ′,W in L2 (Ω)

Lemma 66.0.20 The above definition is well defined. Also,
∫ t

0 ⟨Y,dMτ p⟩W ′,W is a continu-
ous martingale. The inequality

E

(∣∣∣∣∫ t

0
⟨Y,dMτ p⟩W ′,W

∣∣∣∣2
)
≤ E

(∫ t

0
∥Y∥2

W ′ d [M]τ p

)

is also valid. For any sequence of elementary functions {Y n} ,∥Y n (t)∥W ′M∗ ∈ L2 (Ω) ,

∥Y n−Y∥L2(Ω;L2([0,T ];W ′,d[Mτ p ]))→ 0

there exists a subsequence, still denoted as {Y n} of elementary functions for which∫ t

0
⟨Y n,dMτ p⟩W ′,W

converges uniformly to
∫ t

0 ⟨Y,dMτ p⟩W ′,W on [0,T ] for ω off some set of measure zero. In
addition, the quadratic variation satisfies the following inequality.[∫ (·)

0
⟨Y,dMτ p⟩W ′,W

]
(t)≤

∫ t

0
∥Y∥2

W ′ d [M]τ p ≤
∫ t

0
∥Y∥2

W ′ d [M]

As before, you can consider the case where you only know X[0,τ p]Y ∈ G . This yields
a local martingale as before.
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∫ t

0 (Y,dM)H

Definition 66.0.21 Let τ p be an increasing sequence of stopping times for which

lim
p→∞

τ p = ∞

and such that Mτ p is a martingale and X[0,τ p]Y ∈ G . Then the definition of
∫ t

0 ⟨Y,dM⟩W ′,W
is as follows. For each ω off a set of measure zero,∫ t

0
⟨Y,dM⟩W ′,W ≡ lim

p→∞

∫ t

0

〈
X[0,τ p]Y,dMτ p

〉
W ′,W

where
∫ t

0

〈
X[0,τ p]Y,dMτ p

〉
W ′,W

is a martingale.

In fact, this is well defined.

Theorem 66.0.22 The above definition is well defined. Also this makes
∫ t

0 ⟨Y,dM⟩W ′,W a
local martingale. In particular,∫ t∧τ p

0
⟨Y,dM⟩W ′,W =

∫ t

0

〈
X[0,τ p]Y,dMτ p

〉
W ′,W

In addition to this, if σ is any stopping time,∫ t∧σ

0
⟨Y,dM⟩W ′,W =

∫ t

0

〈
X[0,σ ]Y,dM

〉
W ′,W

In this last formula, X[0,σ ]X[0,τ p]Y ∈ G . In addition, the following estimate holds for the
quadratic variation. [∫ (·)

0
⟨Y,dM⟩W ′,W

]
(t)≤

∫ t

0
∥Y∥2

W ′ d [M]

Note that from Definition 66.0.21 it is also true that∫ t

0
⟨Y,dM⟩W ′,W ≡ lim

p→∞

∫ t

0

〈
X[0,τ p]Y,dMτ p

〉
W ′,W

in probability. In addition, since τ p → ∞, it follows that for each ω, eventually τ p > T .

Therefore, t →
∫ t

0 ⟨Y,dM⟩W ′,W is continuous, being equal to
∫ t

0

〈
X[0,τ p]Y,dMτ p

〉
W ′,W

for

that ω .



Chapter 67

The Easy Ito Formula
First recall 64.5.26 where it is shown that for every α

E
(
|W (t)−W (s)|α

)
≤Cα |t− s|α/2 ,

and so by Kolmogorov Čentsov continuity theorem

|W (t)−W (s)| ≤Cγ |t− s|γ (67.0.1)

for every γ < 1/2.

67.1 The Situation
The idea is as follows. You have a sufficiently smooth function F : [0,T ]×H → R where
H is a separable Hilbert space. You also have the random variable

X (t) = X0 +
∫ t

0
φ (s)ds+

∫ t

0
ΦdW

where Φ is progressively measurable and in L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
where Q : U→

U is a positive self adjoint operator. Also assume X0 is F0 measurable with values in H.
Recall the descriptive diagram.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

Here the Wiener process is in U1 and the filtration with respect to which Φ is progressively
measurable is the usual filtration determined by this Wiener process. Then the Ito formula
is about writing the random variable F (t,X (t)) in terms of various integrals and derivatives
of F .

67.2 Assumptions And A Lemma
Assume F : [0,T ]×H×Ω→ R1 has continuous partial derivatives Ft ,FX , and FXX which
are uniformly continuous and bounded on bounded subsets of [0,T ]×H independent of
ω ∈Ω. Also assume FXX is uniformly bounded and that FXXX exists. Let φ : [0,T ]×Ω→H
be progressively measurable and Bochner integrable for each ω . Assume Φ is progressively
measurable, and is in L2

(
[0,T ]×Ω;L2

(
Q1/2U,H

))
.

Now here is the important lemma which makes the Ito formula possible.

2287
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Lemma 67.2.1 Suppose η j are real random variables E
(

η2
j

)
< ∞, such that ηk is mea-

surable with respect to G j for all j > k where {Gk} is increasing. Then

E

[m−1

∑
k=0

ηk−
m−1

∑
k=0

E (ηk|Gk)

]2
 (67.2.2)

= E

(
m−1

∑
k=0

η
2
k−E (ηk|Gk)

2

)

Proof: First consider a mixed term i < k.

E ((η i−E (η i|Gi))(ηk−E (ηk|Gk)))

This equals

E (η iηk)−E (η iE (ηk|Gk))−E (ηkE (η i|Gi))+E (E (η i|Gi)E (ηk|Gk))

= E (η iηk)−E (E (η iηk|Gk))−E (ηkE (η i|Gi))+E (E (ηkE (η i|Gi) |Gk))

= E (η iηk)−E (E (η iηk|Gk))−E (ηkE (η i|Gi))+E (ηkE (η i|Gi))

= E (η iηk)−E (η iηk)−E (ηkE (η i|Gi))+E (ηkE (η i|Gi)) = 0

Thus 67.2.2 equals
m−1

∑
k=0

E
(
(ηk−E (ηk|Gk))

2
)

which equals

m−1

∑
k=0

E
(
η

2
k
)
−2E (ηkE (ηk|Gk))+E

(
E (ηk|Gk)

2
)

=
m−1

∑
k=0

E
(
η

2
k
)
−2E (E (ηkE (ηk|Gk)) |Gk)+E

(
E (ηk|Gk)

2
)

=
m−1

∑
k=0

E
(
η

2
k
)
−2E (E (ηk|Gk)E (ηk|Gk))+E

(
E (ηk|Gk)

2
)

=
m−1

∑
k=0

E
(
η

2
k
)
−2E

(
E (ηk|Gk)

2
)
+E

(
E (ηk|Gk)

2
)

=
m−1

∑
k=0

E
(
η

2
k
)
−E

(
E (ηk|Gk)

2
)
■
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67.3 A Special Case
To make it simpler, first consider the situation in which Φ=Φ0 where Φ0 is F0 measurable
and has finitely many values in L (U1,H), and φ = φ 0 where φ 0 is F0 measurable and a
simple function with values in H. Thus

X (t) = X0 +
∫ t

0
φ 0ds+

∫ t

0
Φ0dW

Now let
{

tn
k

}mn
k=0 denote the nth partition of [0,T ] , referred to as Pn such that

lim
n→∞

(
max

{∣∣tn
k − tn

k−1
∣∣ ,k = 0,1,2, · · · ,mn

})
≡ lim

n→∞
||Pn||= 0.

The superscript n will be suppressed to save notation. Then

F (T,X (T ))−F (0,X0) =
mn−1

∑
k=0

(F (tk+1,X (tk+1))−F (tk,X (tk)))

=
mn−1

∑
k=0

(F (tk+1,X (tk+1))−F (tk,X (tk+1)))

+
mn−1

∑
k=0

(F (tk,X (tk+1))−F (tk,X (tk)))

This equals
mn−1

∑
k=0

Ft (tk,X (tk+1))(tk+1− tk)+o(|tk+1− tk|) (67.3.3)

+
mn−1

∑
k=0

FX (tk,X (tk))(X (tk+1)−X (tk)) (67.3.4)

+
1
2

mn−1

∑
k=0

(FXX (tk,X (tk))(X (tk+1)−X (tk)) ,(X (tk+1)−X (tk)))H (67.3.5)

+
mn−1

∑
k=0

O
(
|X (tk+1)−X (tk)|3H

)
(67.3.6)

Recall
X (t) = X0 +

∫ t

0
φ 0ds+

∫ t

0
Φ0dW

From the properties of the Wiener process in 67.0.1, the term in 67.3.6 converges to 0
as n→ ∞ since these properties of the Wiener process imply X is Holder continuous with
exponent 2/5.

Now consider the term of 67.3.5. All terms converge to 0 except

1
2

mn−1

∑
k=0

(
FXX (tk,X (tk))

∫ tk+1

tk
Φ0dW,

∫ tk+1

tk
Φ0dW

)
H

(67.3.7)
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Consider one of the terms in 67.3.7. Let A ∈Ftk .By Corollary 65.5.4,∫
A

1
2

(
FXX (tk,X (tk))

∫ tk+1

tk
Φ0dW,

∫ tk+1

tk
Φ0dW

)
H

dP

=
∫

A

1
2

(∫ tk+1

tk
FXX (tk,X (tk))Φ0dW,

∫ tk+1

tk
Φ0dW

)
H

dP

By independence,

= P(A)
1
2

∫
Ω

(∫ tk+1

tk
FXX (tk,X (tk))Φ0dW,

∫ tk+1

tk
Φ0dW

)
H

dP

By the Ito isometry results presented earlier,

=
∫

Ω

XA
1
2

∫ tk+1

tk
(FXX (tk,X (tk))Φ0,Φ0)L2

dsdP

=
∫

A

Ftk measurable︷ ︸︸ ︷
1
2

∫ tk+1

tk
(FXX (tk,X (tk))Φ0,Φ0)L2

dsdP

=
∫

A

1
2
(FXX (tk,X (tk))Φ0,Φ0)L2

(tk+1− tk)dP

Since A ∈Ftk was arbitrary,

E
(

1
2

(
FXX (tk,X (tk))

∫ tk+1

tk
Φ0dW,

∫ tk+1

tk
Φ0dW

)
H
|Ftk

)
=

1
2
(FXX (tk,X (tk))Φ0,Φ0)L2

(tk+1− tk) .

From what was just shown, and Lemma 67.2.1,

E

([
1
2

mn−1

∑
k=0

(FXX (tk,X (tk))Φ0∆W (tk) ,Φ0∆W (tk))H −

mn−1

∑
k=0

1
2
(FXX (tk,X (tk))Φ0,Φ0)L2

(tk+1− tk)

]2
 (67.3.8)

=
1
4

E

(
mn−1

∑
k=0

(FXX (tk,X (tk))Φ0∆W (tk) ,Φ0∆W (tk))
2
H

−
mn−1

∑
k=0

(FXX (tk,X (tk))Φ0,Φ0)
2
L2

(tk+1− tk)
2

)
Now FXX is bounded and so there exists a constant M independent of k and n,

M ≥ ||Φ∗0FXX (tk,X (tk))Φ0|| ,
∣∣∣(FXX (tk,X (tk))Φ0,Φ0)L2

∣∣∣
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Hence the above is dominated by

≤ 1
4

M2
mn−1

∑
k=0

E ||∆W (tk)||4U1
+

1
4

M2
mn−1

∑
k=0

(tk+1− tk)
2

≤ M2

4

(
mn−1

∑
k=0

(C4 +1)(tk+1− tk)
2

)

which converges to 0 as n→ ∞. Then from 67.3.8, and referring to 67.3.5,

lim
n→∞

1
2

mn−1

∑
k=0

(FXX (tk,X (tk))(X (tk+1)−X (tk)) ,(X (tk+1)−X (tk)))H (67.3.9)

= lim
n→∞

1
2

mn−1

∑
k=0

(
FXX (tk,X (tk))

∫ tk+1

tk
Φ0dW,

∫ tk+1

tk
Φ0dW

)
H

= lim
n→∞

1
2

mn−1

∑
k=0

(FXX (tk,X (tk))Φ0,Φ0)L2
(tk+1− tk)

if this last limit exists in L2 (Ω). However, since FXX is bounded, this limit certainly exists
for a.e. ω and equals

=
1
2

∫ T

0
(FXX (t,X (t))Φ0,Φ0)L2

dt,

The limit also exists in L2 (Ω) obviously, since FXX is assumed bounded. Therefore, a
subsequence of 67.3.9, still denoted as n must converge for a.e. ω to the above integral as
n→ ∞.

Next consider 67.3.4.

mn−1

∑
k=0

FX (tk,X (tk))(X (tk+1)−X (tk)) =
mn−1

∑
k=0

FX (tk,X (tk))
(∫ tk+1

tk
φ 0ds

)

+
mn−1

∑
k=0

FX (tk,X (tk))
∫ tk+1

tk
Φ0dW (67.3.10)

Consider the second of these in 67.3.10. From Corollary 65.5.4, it equals

mn−1

∑
k=0

∫ tk+1

tk
FX (tk,X (tk))Φ0dW

=
∫ T

0

(
mn−1

∑
k=0

X(tk,tk+1] (t)FX (tk,X (tk))

)
Φ0dW

which converges as n→ ∞ to ∫ T

0
FX (t,X (t))Φ0dW
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because

lim
n→∞

(
mn−1

∑
k=0

X(tk,tk+1] (t)FX (tk,X (tk))

)
Φ0 = FX (t,X (t))Φ0

in L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
. Next consider the first on the right in 67.3.10. It equals

mn−1

∑
k=0

(FX (tk,X (tk))φ 0 (tk+1− tk))

and converges to ∫ T

0
FX (t,X (t))φ 0dt.

Finally, it is obviously the case that 67.3.3 converges to∫ T

0
Ft (t,X (t))dt

This has shown

F (T,X (T )) = F (0,X0)+
∫ T

0
Ft (t,X (t))+FX (t,X (t))φ 0dt

+
∫ T

0
FX (t,X (t))Φ0dW +

1
2

∫ T

0
(FXX (t,X (t))Φ0,Φ0)L2(Q1/2U,H) dt

when
X (t) = X0 +

∫ t

0
φ 0ds+

∫ t

0
Φ0dW,

φ 0,Φ0F0 measurable as described above. This is the first version of the Ito formula.

67.4 The Case Of Elementary Functions
Of course there was nothing special about the interval [0,T ] . It follows that for [a,b] ⊆
[0,T ] , Φa ∈L (U1,U) and Fa measurable, having finitely many values, φ a a simple func-
tion which is Fa measurable,

X (t) = X (a)+
∫ t

a
φ adt +

∫ t

a
ΦadW

F (b,X (b)) = F (a,X (a))+
∫ b

a
(Ft (t,X (t))+FX (t,X (t))φ a)dt

+
∫ b

a
FX (t,X (t))ΦadW +

1
2

∫ b

a
(FXX (t,X (t))Φa,Φa)L2(Q1/2U,H) dt.

Therefore, if Φ is any elementary function, being a sum of functions like ΦaX(a,b], and φ

a similar sort of elementary fuction with

X (t) = X0 +
∫ t

0
φds+

∫ t

0
ΦdW,
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then

F (T,X (T )) = F (0,X0)+
∫ T

0
Ft (t,X (t))+FX (t,X (t))φ (t)dt

+
∫ T

0
FX (t,X (t))ΦdW +

1
2

∫ T

0
(FXX (t,X (t))Φ,Φ)L2(Q1/2U,H) dt (67.4.11)

This has proved the following lemma.

Lemma 67.4.1 Let Φ,φ be elementary functions as described and let

X (t) = X0 +
∫ t

0
φ (s)ds+

∫ t

0
ΦdW

Then 67.4.11 holds.

67.5 The Integrable Case
Now let Φ ∈ L2

(
[0,T ]×Ω;L2

(
Q1/2U,H

))
,φ ∈ L1 ([0,T ]×Ω;H) and be progressively

measurable. Let φ be as above, and let

X (t) = X0 +
∫ t

0
φ (t)dt +

∫ t

0
ΦdW (67.5.12)

Suppose also the additional condition that for some M,

|X (t,ω)|< M for all (t,ω) ∈ [0,T ]×NC, P(N) = 0.

Does it follow that 67.4.11 holds?
There exists a sequence of elementary functions {Φn} converging to Φ◦ J−1 in

L2
(
[0,T ]×Ω;L2

(
JQ1/2U,H

))
Similarly let {φ n} converge to φ in L1 ([0,T ]×Ω;H) where φ n is also an elementary func-
tion, |φ n| ≤ |φ | at the mesh points. You could use that theorem about approximating with
left and right step functions if desired, Lemma 65.3.1. Let

Xn (t) = X0 +
∫ t

0
φ n (s)ds+

∫ t

0
ΦndW.

Also let τn be the stopping times

τn ≡ inf{t > 0 : |Xn (t)|> M} .

Since Xn is continuous, this is a well defined stopping time. Thus

Xτn
n (t) = X0 +

∫ t

0
X[0,τn]φ n (t)dt +

∫ t

0
X[0,τn]ΦndW

and as noted in the discussion of localization for elementary functions, X[0,τn]Φn is an
elementary function.
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Claim: limn→∞ X[0,τn] = 1.
Proof of claim: From maximal estimates as in the construction of the stochastic integral

and the Borel Cantelli lemma, it follows that there exists a subsequence still denoted by n
and a set of measure zero N such that for ω /∈ N1,∫ t

0
ΦndW →

∫ t

0
ΦdW

uniformly on [0,T ] . Also one can show that off a set of measure zero, there is a subsequence
still called n such that

∫ t
0 φ n (s)ds→

∫ t
0 φ (s)ds uniformly on [0,T ] . Here is why.

E
(∣∣∣∣∫ t

0
φ n (s)ds−

∫ t

0
φ (s)ds

∣∣∣∣)≤ ∫
Ω

∫ T

0
|φ n−φ |dtdP

which is given to converge to 0. Thus

P
(

max
t∈[0,T ]

∣∣∣∣∫ t

0
φ n (s)ds−

∫ t

0
φ (s)ds

∣∣∣∣> λ

)
≤ P

(∫ T

0
|φ n (s)−φ (s)|ds > λ

)

≤ 1
λ

∫
[
∫ T

0 |φn(s)−φ(s)|ds>λ ]

∫ T

0
|φ n (s)−φ (s)|dsdP

≤ 1
λ

∫
Ω

∫ T

0
|φ n (s)−φ (s)|dsdP

Thus

P
(

max
t∈[0,T ]

∣∣∣∣∫ t

0
φ n (s)ds−

∫ t

0
φ (s)ds

∣∣∣∣> 2−k
)
≤ 2k

∫
Ω

∫ T

0
|φ n (s)−φ (s)|dsdP

If n > nk, the right side is less than 2−k. Use φ nk
. Then there exists a set of measure zero

N2 such that for ω /∈ N2, ∣∣∣∣∫ t

0
φ n (s)ds−

∫ t

0
φ (s)ds

∣∣∣∣→ 0

uniformly. Hence, you can take a couple of subsequences and assert that there exists a
subsequence still called n and a set of measure zero N such that Xn (t)→ X (t) uniformly
on [0,T ] for each ω /∈ N. Since |X (t,ω)| < M, it follows that for each ω /∈ N, when n is
large enough, τn = ∞ and this proves the claim.

From the claim, it follows that X[0,τn]Φn→ Φ◦ J−1 in L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
and X[0,τn]φ n → φ in L1 ([0,T ]×Ω;H ) . Thus you can replace Φn in the above with
X[0,τn]Φn and φ n with X[0,τn]φ n. Thus there exists a subsequence, still called n and a
set of measure zero N such that for ω /∈ N,∫ t

0
X[0,τn]ΦndW →

∫ t

0
ΦdW
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uniformly and ∫ t

0
X[0,τn]φ nds→

∫ t

0
φds

uniformly. Hence also Xτn
n (t)→ X (t) uniformly on [0,T ] whenever ω /∈ N. Of course

|Xτn
n (t)|H has the advantage of being bounded by M.

From the above,

F (T,Xτn
n (T )) = F (0,X0)+

∫ T

0
Ft (t,Xτn

n (t))+FX (t,Xτn
n (t))X[0,τn]φ n (t)dt

+
∫ T

0
FX (t,Xτn

n (t))ΦndW +
1
2

∫ T

0

(
FXX (t,Xτn

n (t))X[0,τn]Φn,X[0,τn]Φn
)
L2(Q1/2U,H) dt

Then it is obvious that one can pass to the limit in each of the non stochastic integrals in
the above. It is necessary to consider the other one.

From the above claim, X[0,τn]Φn → Φ ◦ J−1 in L2
(
[0,T ]×Ω;L2

(
JQ1/2U,H

))
and

also, from the stopping times τn, FX (t,Xτn
n (t)) is bounded and converges to FX (t,X (t)) .

Hence the dominated convergence theorem applies, and letting n→ ∞, the following is
obtained for a.e. ω

F (T,X (T )) = F (0,X0)+
∫ T

0
Ft (t,X (t))+FX (t,X (t))φ (t)dt

+
∫ T

0
FX (t,X (t))ΦdW +

1
2

∫ T

0
(FXX (t,X (t))Φ,Φ)L2(Q1/2U,H) dt (67.5.13)

This is the Ito formula in case that Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
and |X | is bounded

above by M.
It is easy to remove this assumption on |X | . Let X be given in 67.5.12. Let τn be the

stopping time
τn ≡ inf{t > 0 : |X |> n}

Then 67.5.13 holds for the stopped process Xτn and Φ and φ replaced with ΦX[0,τn] and
φX[0,τn] respectively. Then let n→ ∞ in this expression, using the continuity of X and the
fact that τn→ ∞ to to recover 67.5.13 without the restriction on |X |.

67.6 The General Stochastically Integrable Case
Now suppose that Φ is only progressively measurable and stochastically integrable

P
([∫ T

0
∥Φ∥2

L2(Q1/2U,H) dt < ∞

])
= 1.

Also φ is only progressively measurable and Bochner integrable in t. Define a stopping
time

τ (ω) = inf
{

t ≥ 0 : |X (t,ω)|H +
∫ t

0
||Φ||2 ds+

∫ t

0
|φ |ds >C

}
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This is just the first hitting time of an open set so it is a stopping time. For t ≤ τ, all of the
above quantities must be no larger than C. In particular,

X[0,τ]Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
.

Then
Xτ (t) = X0 +

∫ t

0
X[0,τ]φds+

∫ t

0
X[0,τ]ΦdW

and so 67.5.13 holds with X → Xτ ,Φ→X[0,τ]Φ and φ →X[0,τ]φ . Now simply let C→∞

and exploit the continuity of X given by the formula 67.5.12 to obtain the validity of 67.5.13
without any reference to the stopping time. Of course arbitrary t can replace T. This leads
to the main result.

Theorem 67.6.1 Let Φ be a progressively measurable with values in L2
(
Q1/2U,H

)
which

is stochastically integrable in [0,T ] because

P
([∫ T

0
||Φ||2

L2(Q1/2U,H) dt < ∞

])
= 1

and let φ : [0,T ]×Ω→ H be progressively measurable and Bochner integrable on [0,T ]
for a.e. ω, and let X0 be F0 measurable and H valued. Let

X (t)≡ X0 +
∫ t

0
φ (s)ds+

∫ t

0
ΦdW.

Let F : [0,T ]×H×Ω→ R1 be progressively measurable, have continuous partial deriva-
tives Ft ,FX ,FXX which are uniformly continuous on bounded subsets of [0,T ]×H indepen-
dent of ω ∈ Ω. Also assume FXX is bounded and let FXXX exist and be bounded. Then the
following formula holds for a.e. ω.

F (t,X (t)) = F (0,X0)+
∫ t

0
FX (·,X (·))ΦdW+

∫ t

0
Ft (s,X (s))+FX (s,X (s))φ (s)ds+

1
2

∫ t

0
(FXX (s,X (s))Φ,Φ)L2(Q1/2U,H) ds

The dependence of F on ω is suppressed.

That last term is interesting and can be written differently. Let
{

g j
}

be an orthonormal
basis for Q1/2U. Then this integrand equals

L

∑
i=1

(FXX (s,X (s))Φgi,Φgi)H =
L

∑
i=1

(Φ∗FXX (s,X (s))Φgi,gi)Q1/2H

and we write this as
trace(Φ∗ (s)FXX (s,X (s))Φ(s)) .

A simple special case is where Q = I and then Q1/2U =U . Thus it is only required that Φ

have values in L2 (U,H).
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67.7 Remembering The Formula
I find it almost impossible to remember this formula. Here is a way to do it. Recall that
|∆W |2 is like ∆t. Therefore, in what follows, neglect all terms which are like dWdt, dt2,
but keep terms which are dW,dt,dW 2. Then you start with dX = φdt +ΦdW. Thus for
F (t,X) ,

dF = Ftdt +FX dX +
1
2
(FXX dX ,dX)

other terms from Taylor’s formula are neglected because they involve dtdW or dt2. Now
the above equals

dF = Ftdt +FX (φdt +ΦdW )+
1
2
(FXX ΦdW,ΦdW )

Since the dW occurs twice, in that inner product, you get a dt out of it. Hence you get

dF = (Ft +FX φ)dt +
1
2
(FXX Φ,Φ)dt +FX ΦdW

Now place an
∫ t

0 in front of everything and you have the Ito formula.

67.8 An Interesting Formula
Suppose everything is real valued and φ is progressively measurable and in

L2 ([0,T ]×Ω) .

Let

X (t) =
∫ t

0
φdW − 1

2

∫ t

0
φ

2ds

and consider F (X) = eX . Then from the Ito formula,

dF =−
(

eX
φ

2 1
2

)
dt +

1
2

eX
φ

2dt + eX
φdW

dF = eX
φdW

and then do an integral

eX(t)−1 =
∫ t

0
eX

φdW

Thus

eX(t) = 1+
∫ t

0
eX(s)

φdW

That expression on the right is obviously a local martingale and so the expression on the
left is also. To see this, you can use a localizing sequence of stopping times which depend
on the size of X (t). This will work fine because X (t) is continuous.



2298 CHAPTER 67. THE EASY ITO FORMULA

67.9 Some Representation Theorems
In this section is a very interesting representation theorem which comes from the Ito for-
mula. In all of this, W will be a Q Wiener process having values in Rn for which Q = I.
Recall that, letting

Gt ≡ σ (W(s) : s≤ t)

the normal filtration determined by the Wiener process is given by

Ft ≡ ∩s>tGs

where Gs is the completion of Gs. In this section, the theorems will all feature the smaller
filtration Gt , not the filtration Ft . First here are some simple observations which tie this
specialized material to what was presented earlier.

When you have f an Gt adapted function in L2 (Ω,Rn) , you can consider

fT ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2Rn,R

))
as follows. Letting {gi} be an orthonormal basis for the subspace Q1/2Rn in the norm of
Q1/2Rn,

∥f∥2
L2(Q1/2Rn,R) ≡∑

i

(
fT gi

)2
< ∞

For simplicity, let Q = I. Then you have the simple situation that∥∥fT∥∥
L2(Q1/2Rn,R) = ∥f∥

2
Rn

In what follows Wt will be the Q Wiener process onRn where Q = I. Then the Ito isometry
is nothing more than the following lemma.

Lemma 67.9.1 Let f be Ft adapted in the sense that every component is Ft adapted and
f ∈ L2 (Ω;Rn). Here Ft is the normal filtration coming from the Wiener process. Then∣∣∣∣∣∣∣∣∫ T

0
f(s)T dW

∣∣∣∣∣∣∣∣
L2(Ω)

= ||f||L2(Ω×[0,T ];Rn) .

Lemma 67.9.2 Let X ≥ 0 and measurable and integrable. Also define a finite measure ν

on B (Rp) by

ν (B)≡
∫

Ω

XXB (Y)dP

Then ∫
Ω

g(Y)XdP =
∫
Rp

g(y)dν (y)

where here Y is a measurable function with values in Rp and g ≥ 0 is Borel measurable.
Formally, XdP = dν .
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Proof: First say X = XD and replace g(Y) with XY−1(B). Let

µ (B)≡
∫

Ω

XDXB (Y)dP

Then ∫
Ω

XDXY−1(B)dP = P
(
D∩Y−1 (B)

)
∫
Rp

XB (y)dµ (y) = µ (B)≡
∫

Ω

XDXB (Y)dP

=
∫

Ω

XDXY−1(B)dP = P
(
D∩Y−1 (B)

)
Thus ∫

Ω

XDXY−1(B)dP =
∫

Ω

XDXB (Y)dP =
∫
Rp

XB (y)dµ (y)

Now let sn (y) ↑ g(y) , and let sn (y) = ∑
m
k=1 ckXBk (y) where Bk is a Borel set. Then∫

Rp
sn (y)dµ (y) =

∫
Rp

m

∑
k=1

ckXBk (y)dµ (y) =
m

∑
k=1

ck

∫
Rp

XBk (y)dµ (y)

=
m

∑
k=1

ckP
(
D∩Y−1 (Bk)

)
∫

Ω

sn (Y)XDdP =
m

∑
k=1

ck

∫
Ω

XDXBk (Y)dP =
m

∑
k=1

ckP
(
D∩Y−1 (Bk)

)
which is the same thing. Therefore,∫

Ω

sn (Y)XDdP =
∫
Rp

sn (y)dµ (y)

Now pass to a limit using the monotone convergence theorem to obtain∫
Ω

g(Y)XDdP =
∫
Rp

g(y)dµ (y)

Next replace XD with ∑
m
k=1 dkXDk (ω) ≡ sn (ω) , a simple function. Then from what was

just shown, ∫
Ω

g(Y)
m

∑
k=1

dkXDk dP =
m

∑
k=1

dk

∫
Ω

g(Y)XDk dP

=
m

∑
k=1

dk

∫
Rp

g(y)dµk

where µk (B)≡
∫

Ω
XDkXB (Y)dP. Now let

νn (B)≡
∫

Ω

m

∑
k=1

dkXDkXB (Y) =
∫

Ω

snXB (Y)dP
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Then

νn (B) =
m

∑
k=1

dk

∫
Ω

XDkXB (Y)dP =
m

∑
k=1

dkµk (B)

Hence ∫
Ω

g(Y)sndP =
∫

Ω

g(Y)
m

∑
k=1

dkXDk dP =
m

∑
k=1

dk

∫
Rp

g(y)dµk

=
∫
Rp

g(y)
m

∑
k=1

dkdµk =
∫
Rp

g(y)dνn

Then let sn (ω) ↑ X (ω) . Clearly νn ≪ ν and so by the Radon Nikodym theorem dνn =
hndν . Then by the monotone convergence theorem, for any B Borel in Rp,∫

B
hndν = νn (B)≡

∫
Ω

sn (ω)XB (Y(ω))dP ↑
∫

Ω

X (ω)XB (Y(ω))dP≡ ν (B)

Thus for each B Borel, 0≤ hn ≤ 1 and∫
B

hndν → ν (B)

and so hn ↑ 1 ν a.e. Thus, from the above,∫
Ω

g(Y)sndP =
∫
Rp

g(y)dνn =
∫
Rp

g(y)hn (y)dν

It follows from the monotone convergence theorem that one can pass to a limit in the
above and obtain ∫

Ω

g(Y)XdP =
∫
Rp

g(y)dν ■

Note that the same conclusion will hold if the functions are suitably integrable without
any restriction on the sign. In particular, this will hold if g(y) is bounded. One just con-
siders positive and negative parts of real and imaginary parts of g and applies the above
lemma.

Let
Gt ≡ σ (W(s) : s≤ t)

thus the normal filtration for the Wiener process and the Ito integral and so forth is

Ft = ∩s>tGs

Lemma 67.9.3 Let h be a deterministic step function of the form

h =
m−1

∑
i=0

aiX[ti,ti+1), tm = t

Then for h of this form, linear combinations of functions of the form

exp
(∫ t

0
hT dW− 1

2

∫ t

0
h ·hdτ

)
(67.9.14)

are dense in L2 (Ω,Gt ,P) for each t.
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Proof: I will show in the process of the proof that functions of the form 67.9.14 are in
L2 (Ω,P). Let g ∈ L2 (Ω,Gt ,P) be such that∫

Ω

g(ω)exp
(∫ t

0
hT dW− 1

2

∫ t

0
h ·hdτ

)
dP

= exp
(
−1

2

∫ t

0
h ·hdτ

)∫
Ω

g(ω)exp
(∫ t

0
hT dW

)
dP = 0

for all such h. It is required to show that whenever this happens for all such functions
exp
(∫ t

0 hT dW− 1
2
∫ t

0 h ·hdt
)

then g = 0.
Letting h be given as above,

∫ t
0 hT dW

=
m−1

∑
i=0

aT
i (W(ti+1)−W(ti)) (67.9.15)

=
m

∑
i=1

aT
i−1W(ti)−

m−1

∑
i=0

aT
i W(ti)

=
m−1

∑
i=1

(
aT

i−1−aT
i
)

W(ti)+aT
0 W(t0)+aT

n−1W(tn) . (67.9.16)

Also 67.9.15 shows exp
(∫ t

0 hT dW
)

is in L2 (Ω,P) . To see this recall the W(ti+1)−W(ti)
are independent and the density of W(ti+1)−W(ti) is

C (n,∆ti)exp

(
−1

2
|x|2

(ti+1− ti)

)
, ∆ti ≡ ti+1− ti,

so ∫
Ω

(
exp
(∫ t

0
hT dW

))2

dP =
∫

Ω

exp
(

2
∫ t

0
hT dW

)
dP

=
∫

Ω

exp

(
m−1

∑
i=0

2aT
i (W(ti+1)−W(ti))

)
dP

=
∫

Ω

m−1

∏
i=0

exp
(
2aT

i (W(ti+1)−W(ti))
)

dP

=
m−1

∏
i=0

∫
Ω

exp
(
2aT

i (W(ti+1)−W(ti))
)

dP

=
m−1

∏
i=0

∫
Rn

C (n,∆ti)exp
(
2aT

i x
)

exp

(
−1

2
|x|2

∆ti

)
dx < ∞

Choosing the ai appropriately in 67.9.16, the formula in 67.9.16 is of the form

m

∑
i=0

yT
i Wti
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where yi is an arbitrary vector in Rn. It follows that for all choices of y j ∈ Rn,

∫
Ω

g(ω)exp

(
m

∑
j=0

yT
j Wt j (ω)

)
dP = 0.

Now the mapping

y = (y0, · · · ,ym)→
∫

Ω

g(ω)exp

(
m

∑
j=0

yT
j Wt j (ω)

)
dP

is analytic on C(m+1)n and equals zero on R(m+1)n so from standard complex variable the-
ory, this analytic function must equal zero on C(m+1)n, not just on R(m+1)n. In particular,
for all y = (y0, · · · ,ym) ∈ Rn(m+1),

∫
Ω

g(ω)exp

(
m

∑
j=0

iyT
j Wt j (ω)

)
dP = 0. (67.9.17)

This left side equals

∫
Ω

g+ (ω)exp

(
m

∑
j=0

iyT
j Wt j (ω)

)
dP−

∫
Ω

g− (ω)exp

(
m

∑
j=0

iyT
j Wt j (ω)

)
dP

where g+ and g− are the positive and negative parts of g. By the Lemma 67.9.2 and the
observation at the end, this equals

∫
Rnm

exp

(
m

∑
j=0

iyT
j x j

)
dν+−

∫
Rnm

exp

(
m

∑
j=0

iyT
j x j

)
dν−

where ν+ (B)≡
∫

Ω
g+ (ω)XB (Wt1 (ω) , · · · ,Wtm (ω))dP and ν− is defined similarly. Then

letting ν be the measure ν+−ν−, it follows that

0 =
∫
Rnm

exp

(
m

∑
j=0

iyT
j x j

)
dν (y)

and this just says that the inverse Fourier transform of ν is 0. It follows that ν = 0. Thus∫
Ω

g(ω)XB (Wt1 (ω) , · · · ,Wtm (ω))dP

=
∫

Ω

g(ω)XW−1
m (B) (ω)dP = 0

for every B Borel in Rnm where

Wm (ω)≡ (Wt1 (ω) , · · · ,Wtm (ω))

Let K be the π system defined as W−1
m (B) for B of the form ∏

m
i=1 Ui where Ui is open

in Rn, this for some m a positive integer. This is indeed a π system because it includes
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W−1
1 (Rn) = Ω and the empty set. Also it is closed with respect to intersections because, in

the situation where each si is larger than every ti,(
Wt1 , · · · ,Wtm1

)−1
(

m1

∏
i=1

Ui

)
∩
(

Ws1 , · · · ,Wsm2

)−1
(

m2

∏
i=1

Vi

)
=

(
Wt1 , · · · ,Wtm1

,Ws1 , · · · ,Wsm2

)−1
(

m1

∏
i=1

Ui×
m2

∏
k=1
Rn

)

∩

((
Wt1 , · · · ,Wtm1

,Ws1 , · · · ,Wsm2

)−1
(

m1

∏
i=1
Rn×

m2

∏
k=1

Vi

))

=
(

Wt1 , · · · ,Wtm1
,Ws1 , · · · ,Wsm2

)−1
(

m1

∏
i=1

Ui×
m2

∏
k=1

Vk

)
In general, you would just make the obvious modification where you insert a copy of Rn

in the appropriate position after rearranging so that the indices are increasing. It was just
shown that K ⊆ G where

G ≡
{

U ∈ Gt :
∫

Ω

gXU dP = 0
}
.

Now it is clear that G is closed with respect to countable disjoint unions and complements.
The case of complements goes as follows. Ω ∈K and so if U ∈ G ,∫

Ω

gXUC dP+
∫

Ω

gXU dP =
∫

Ω

gdP

The last on the left and the integral on the right are both 0 so it follows that
∫

Ω
gXUC dP = 0

also. It follows from Dynkin’s lemma that G ⊇ σ (K ). Now σ (K ) is σ (W(u) : u≤ t)≡
Gt . Hence, G = G t and so g is in L2 (Ω,Gt) and for every U ∈ Gt ,∫

Ω

gXU dP = 0

which requires g = 0. Thus functions of the above form are indeed dense in L2 (Ω,Gt). ■
Note that this involves g being Gt measurable, not Ft measurable. It is not clear to

me whether it suffices to assume only that g is Ft measurable. If true, this above has not
proved it. The problem is the argument at the end using Dynkin’s lemma to conclude that
g = 0.

Why such a funny lemma? It is because of the following computation which depends
on Itô’s formula. Let

X =
∫ t

0
hT dW− 1

2

∫ t

0
h ·hdτ

and g(x) = ex and consider g(X) = Y. Recall the Ito formula. Formally,

dY = g′ (X)dX +
1
2

g′′ (X)(dX)2
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dY = g(X)

(
hT dW− 1

2
|h|2 dt

)
+

1
2

g(X)

(
hT dW− 1

2
|h|2 dt

)(
hT dW− 1

2
|h|2 dt

)
= Y

(
hT dW− 1

2
|h|2 dt

)
+

1
2

Y
[(

hT dW
)(

hT dW
)
−hT dW |h|2 dt +

1
4
|h|2 dt2

]
Then neglecting the terms of the form dWdt,dt2 and so forth,

dY = Y hT dW−1
2

Y |h|2 dt +
1
2

Y
(
hT dW

)(
hT dW

)
Now the dW occurs twice in the last term so it leads to a dt and you get

dY = Y hT dW−1
2

Y |h|2 dt +
1
2
(
Y hT ,hT )dt

dY = Y hT dW−1
2

Y |h|2 dt +
1
2

Y |h|2 dt

dY = Y hT dW

Note that
∥∥hT

∥∥
L2(Rn,R) ≡ ∑

n
k=1
(
hT ek

)2
= |h|2Rn . Place an

∫ t
0 in place of both sides to

obtain

Y (t)−Y (0) =
∫ t

0
Y hT dW

Y (t) = 1+
∫ t

0
Y hT dW (67.9.18)

Now here is the interesting part of this formula.

E
(∫ t

0
Y hT dW

)
= 0

because the stochastic integral is a martingale and equals 0 at t = 0.

E
(∫ t

0
Y hT dW

)
= E

(
E
(∫ t

0
Y hT dW|F0

))
= 0

Thus
E (Y (t)) = 1

and for Y one obtains

Y (t) = E (Y (t))+
∫ t

0
Y hT dW

≡ E (Y (t))+
∫ t

0
fT dW

where fT is adapted and square integrable. It is just Y hT where h does not depend on ω

and Y is a function of an adapted function.
Does such a function f exist for all F ∈ L2 (Ω,Gt ,P)? The answer is yes and this is the

content of the next theorem which is called the Itô representation theorem.
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Theorem 67.9.4 Let F ∈ L2 (Ω,Gt ,P) . Then there exists a unique Gt adapted

f ∈ L2 (Ω× [0, t] ;Rn)

such that F = E (F)+
∫ t

0 f(s,ω)T dW.

Proof: By Lemma 67.9.3, the span of functions of the form

exp
(∫ t

0
hT dW− 1

2

∫ t

0
h ·hdt

)
where h is a vector valued deterministic step function of the sort described in this lemma,
are dense in L2 (Ω,Gt ,P). Given F ∈ L2 (Ω,Gt ,P) , {Gk}∞

k=1 be functions in the subspace of
linear combinations of the above functions which converge to F in L2 (Ω,Gt ,P). For each
of these functions there exists fk an adapted step function such that

Gk = E (Gk)+
∫ t

0
fk (s,ω)T dW.

Then from the Itô isometry, and the observation that E (Gk−Gl)
2→ 0 as k, l→ ∞ by the

above definition of Gk in which the Gk converge to F in L2 (Ω) ,

0 = lim
k,l→∞

E
(
(Gk−Gl)

2
)

= lim
k,l→∞

E

((
E (Gk)+

∫ t

0
fk (s,ω)T dW−

(
E (Gl)+

∫ t

0
fl (s,ω)T dW

))2
)

= lim
k,l→∞

{
E (Gk−Gl)

2 +2E (Gk−Gl)
∫

Ω

∫ t

0
(fk− fl)

T dWdP

+
∫

Ω

(∫ t

0
(fk− fl)

T dW
)2

dP

}

= lim
k,l→∞

{
E (Gk−Gl)

2+
∫

Ω

(∫ t

0
(fk− fl)

T dW
)2

dP

}
=

lim
k,l→∞

∫
Ω

(∫ t

0
(fk− fl)

T dW
)2

dP = lim
k,l→∞

||fk− fl ||L2(Ω×[0,T ];Rn) (67.9.19)

Going from the third to the fourth equations, is justified because∫
Ω

∫ t

0
(fk− fl)

T dWdP = 0

thanks to the fact that the Ito integral is a martingale which equals 0 at t = 0.
This shows {fk}∞

k=1 is a Cauchy sequence in L2 (Ω× [0, t] ;Rn,P) , where P denotes
the progressively measurable sets. It follows there exists a subsequence and

f ∈ L2 (Ω× [0, t] ;Rn)
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such that fk converges to f in L2 (Ω× [0, t] ;Rn,P) with f being progressively measurable.
Then by the Itô isometry and the equation

Gk = E (Gk)+
∫ t

0
fk (s,ω)T dW

you can pass to the limit as k→ ∞ and obtain

F = E (F)+
∫ t

0
f(s,ω)T dW

Now E (Gk)→ E (F) . Consider the stochastic integrals. By the maximal estimate, Theo-
rem 62.9.4, and the Ito isometry,

P

 sup
s∈[0,t]

nonnegative submartingale︷ ︸︸ ︷∣∣∣∣∫ s

0
fk (·,ω)T dW−

∫ s

0
f(·,ω)T dW

∣∣∣∣> δ



<

E
(∣∣∣∫ t

0 fk (·,ω)T dW−
∫ t

0 f(·,ω)T dW
∣∣∣2)

δ
2

=
E
(∫ t

0 ∥fk− f∥2
Rn ds

)
δ

2

From the above convergence result and an application of the Borel Cantelli lemma, there
is a set of measure zero N and a subsequence, still denoted as fk such that for ω /∈ N, the
convergence of the stochastic integrals for this subsequence is uniform. Thus for ω /∈ N,

F = E (F)+
∫ t

0
f(s,ω)T dW

This proves the existence part of this theorem.
It remains to consider the uniqueness. Suppose then that

F = E (F)+
∫ T

0
f(t,ω)T dW = E (F)+

∫ T

0
f1 (t,ω)T dW.

Then ∫ T

0
f(t,ω)T dW =

∫ T

0
f1 (t,ω)T dW

and so ∫ T

0

(
f(t,ω)T − f1 (t,ω)T

)
dW = 0

and by the Itô isometry,

0 =

∣∣∣∣∣∣∣∣∫ T

0

(
f(t,ω)T − f1 (t,ω)T

)
dW
∣∣∣∣∣∣∣∣

L2(Ω)

= ||f− f1||L2(Ω×[0,T ];Rn)
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which proves uniqueness. ■
With the above major result, here is another interesting representation theorem. Recall

that if you have an Ft adapted function f and f ∈ L2 (Ω× [0,T ] ;Rn) , then
∫ t

0 fT dW is a
martingale. The next theorem is sort of a converse. It starts with a Gt martingale and
represents it as an Itô integral. In this theorem, Gt continues to be the filtration determined
by n dimensional Wiener process.

Theorem 67.9.5 Let M be an Gt martingale and suppose M (t) ∈ L2 (Ω) for all t ≥ 0.
Then there exists a unique stochastic process, g(s,ω) such that g is Gt adapted and in
L2 (Ω× [0, t]) for each t > 0, and for all t ≥ 0,

M (t) = E (M (0))+
∫ t

0
gT dW

Proof: First suppose f is an adapted function of the sort that g is. Then the following
claim is the first step in the proof.

Claim: Let t1 < t2. Then

E
(∫ t2

t1
fT dW|Gt1

)
= 0

Proof of claim: This follows from the fact that the Ito integral is a martingale adapted
to Gt . Hence the above reduces to

E
(∫ t2

0
fT dW−

∫ t1

0
fT dW|Gt1

)
=
∫ t1

0
fT dW−

∫ t1

0
fT dW = 0.

Now to prove the theorem, it follows from Theorem 67.9.4 and the assumption that M
is a martingale that for t > 0 there exists ft ∈ L2 (Ω× [0,T ] ;Rn) such that

M (t) = E (M (t))+
∫ t

0
ft (s, ·)T dW

= E (M (0))+
∫ t

0
ft (s, ·)T dW.

Now let t1 < t2. Then since M is a martingale and so is the Ito integral,

M (t1) = E (M (t2) |Gt1) = E
(

E (M (0))+
∫ t2

0
ft2 (s, ·)T dW|Gt1

)

= E (M (0))+E
(∫ t1

0
ft2 (s, ·)T dW

)
Thus

M (t1) = E (M (0))+
∫ t1

0
ft2 (s, ·)T dW = E (M (0))+

∫ t1

0
ft1 (s, ·)T dW

and so
0 =

∫ t1

0
ft1 (s, ·)T dW−

∫ t1

0
ft2 (s, ·)T dW
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and so by the Itô isometry, ∣∣∣∣ft1 − ft2
∣∣∣∣

L2(Ω×[0,t1];Rn)
= 0.

Letting N ∈ N, it follows that

M (t) = E (M (0))+
∫ t

0
fN (s, ·)T dW

for all t ≤ N. Let g = fN for t ∈ [0,N] . Then asside from a set of measure zero, this is well
defined and for all t ≥ 0

M (t) = E (M (0))+
∫ t

0
g(s, ·)T dW ■

Surely this is an incredible theorem. Note that it implies all the martingales adapted to
Gt which are in L2 for each t must be continuous a.e. and are obtained from an Ito integral.
Also, any such martingale satisfies M (0) = E (M (0)) . Isn’t that amazing? Also note that
this featured Rn as where W has its values and n was arbitrary. One could have n = 1 if
desired.

The above theorems can also be obtained from another approach. It involves showing
that random variables of the form

φ (W(t1) , · · · ,W(tk))

are dense in L2 (Ω,GT ). This theorem is interesting for its own sake and it involves inter-
esting results discussed earlier. Recall the Doob Dynkin lemma, Lemma 59.3.6 on Page
1866 which is listed here.

Lemma 67.9.6 Suppose X,Y1,Y2, · · · ,Yk are random vectors, X having values in Rn and
Y j having values in Rp j and

X,Y j ∈ L1 (Ω) .

Suppose X is σ (Y1, · · · ,Yk) measurable. Thus

{
X−1 (E) : E Borel

}
⊆

{
(Y1, · · · ,Yk)

−1 (F) : F is Borel in
k

∏
j=1
Rp j

}

Then there exists a Borel function, g :∏
k
j=1Rp j → Rn such that

X = g(Y) .

Recall also the submartingale convergence theorem.

Theorem 67.9.7 (submartingale convergence theorem) Let

{(Xi,Si)}∞

i=1

be a submartingale with K ≡ supE (|Xn|)<∞. Then there exists a random variable X , such
that E (|X |)≤ K and

lim
n→∞

Xn (ω) = X (ω) a.e.
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Recall
Gt ≡ σ (W(u)−W(r) : 0≤ r < u≤ t)

It suffices to consider only t and u,r in a countable dense subset of R denoted as D. This
follows from continuity of the Wiener process. To see this, let 0≤ r < u≤ t U be open and
Un ↑U where each Un is open and Un ⊆Un+1,∪nUn =U . Then letting un ↑ u and rn ↑ r,unrn
being in the countable dense set,

(W(u)−W(r))−1 (Un) ⊆ ∪∞
k=1∩ j≥k (W(u j)−W(r j))

−1 (Un)

⊆ (W(u)−W(r))−1 (Un
)

and so

(W(u)−W(r))−1 (U) = ∪n (W(u)−W(r))−1 (Un)

⊆ ∪∞
n=1∪∞

k=1∩ j≥k (W(u j)−W(r j))
−1 (Un)

⊆ ∪n (W(u)−W(r))−1 (Un
)
= (W(u)−W(r))−1 (U)

Now the set in the middle which has two countable unions and a countable intersection is
in

σ (W(u)−W(r) : 0≤ r < u≤ t,r,u ∈ D)

Thus in particular, one would get the same filtration from

Gt = σ (W(u)−W(r) : 0≤ r < u≤ t,r,u ∈ D)

Since W(0) = 0, this is the same as

Gt = σ (W(u) : 0≤ u≤ t,u ∈ D)

Lemma 67.9.8 Random variables of the form

φ (W(t1) , · · · ,W(tk)) , φ ∈C∞
c

(
Rk
)

are dense in L2 (Ω,GT ,P) where t1 < t2 · · ·< tk is a finite increasing sequence of

(Q∪{T})∩ [0,T ] .

Proof: Let g ∈ L2 (Ω,GT ,P) . Also let
{

t j
}∞

j=1 be the points of (Q∪{T})∩ [0,T ] . Let

Gm ≡ σ (W(tk) : k ≤ m)

Thus the Gm are increasing but each is generated by finitely many W(tk). Also as explained
above,

GT = σ (W(u) : 0≤ u≤ T,u ∈ (Q∪{T})∩ [0,T ])
= σ (Gm,m < ∞) .
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Now consider the martingale, {E (gM|Gm)}∞

m=1. where here

gM (ω)≡

 g(ω) if g(ω) ∈ [−M,M]
M if g(ω)> M
−M if g(ω)<−M

and M is chosen large enough that

||g−gM||L2(Ω) < ε/4. (67.9.20)

Now the terms of this martingale are uniformly bounded by M because

|E (gM|Gm)| ≤ E (|gM| |Gm)≤ E (M|Gm) = M.

It follows the martingale is certainly bounded in L1 and so the martingale convergence
theorem stated above can be applied, and so there exists f measurable in σ (Gm,m < ∞)
such that limm→∞ E (gM|Gm)(ω) = f (ω) a.e. Also | f (ω)| ≤M a.e. Since all functions are
bounded, it follows that this convergence is also in L2 (Ω).

Now letting A ∈ σ (Gm,m < ∞) , it follows from the dominated convergence theorem
that ∫

A
f dP = lim

m→∞

∫
A

E (gM|Gm)dP =
∫

A
gMdP

Now GT = σ (W(tk) , tk ≤ T ) = σ (Gm,m≥ 1) and so the above equation implies that f =
gM a.e.

By the Doob Dynkin lemma listed above, there exists a Borel measurable h : Rnm→ R
such that

E (gM|Gm) = h(Wt1 , · · · ,Wtm) a.e.
Of course h is not in C∞

c (Rnm) . Let m be large enough that

||gM−E (gM|Gm)||L2 = || f −E (gM|Gm)||L2 <
ε

4
. (67.9.21)

Let λ (Wt1 ,··· ,Wtm)
be the distribution measure of the random vector (Wt1 , · · · ,Wtm) . Thus

λ (Wt1 ,··· ,Wtm)
is a Radon measure and so there exists φ ∈Cc (Rnm) such that(∫

Ω

|E (gM|Gm)−φ (Wt1 , · · · ,Wtm)|
2 dP

)1/2

=

(∫
Ω

|h(Wt1 , · · · ,Wtm)−φ (Wt1 , · · · ,Wtm)|
2 dP

)1/2

=

(∫
Rnm
|h(x1, · · · ,xm)−φ (x1, · · · ,xm)|2 dλ (Wt1 ,··· ,Wtm)

)1/2

< ε/4.

By convolving with a mollifier, one can assume that φ ∈ C∞
c (Rnm) also. It follows from

67.9.20 and 67.9.21 that

||g−φ (Wt1 , · · · ,Wtm)||L2

≤ ||g−gM||L2 + ||gM−E (gM|Gm)||L2

+ ||E (gM|Gm)−φ (Wt1 , · · · ,Wtm)||L2

≤ 3
(

ε

4

)
< ε ■



Chapter 68

A Different Kind Of Stochastic Integra-
tion

For more on this material, see [102] which is what this is based on. Recall the following
corollary. It is Corollary 59.20.3 on Page 1934.

Corollary 68.0.1 Let H be a real Hilbert space. Then there exist random variables W (h)
for h ∈ H such that each is normally distributed with mean 0 and for every h,g, it follows
that (W (h) ,W (g)) is normally distributed and

E (W (h)W (g)) = (h,g)H

Furthermore, if {ei} is an orthogonal set of vectors of H, then {W (ei)} are independent
random variables. Also for any finite set { f1, f2, · · · , fn},

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed.

Here are some simple examples.

Example 68.0.2 Let H = L2 ([0,T ]) . For f ∈ H, let

W ( f )≡
∫ T

0
f (u)dW

where W (t) is the one dimensional Wiener process.

First of all, note that the integrand is adapted to the usual filtration determined by the
Wiener process. This is because f does not depend on ω. That W ( f ) is normally distributed
can be seen from the approximation of the Ito integral with the integral of elementary
functions. These are clearly normally distributed because they are just linear combinations
of increments of the Wiener process. Recall these increments were independent. Thus the
integrals of these elementary functions are all normally distributed. If In (ω) is one of these,
then In→ I in L2 (Ω) where I is the above Ito integral. It follows that

E
(
eiIt)= lim

n→∞
E
(
eiInt)= lim

n→∞
e−(1/2)∥ fn∥2L2 t = e−(1/2)∥ f∥2

L2 t

so in fact, W ( f ) is normally distributed with mean 0 and variance ∥ f∥2
L2 . As to the other

condition, the Ito isometry implies that

E (W ( f )W (g)) =
∫ T

0
f (u)g(u)du = ( f ,g)H

One can verify this by considering E
(

W ( f +g)2
)
,E
(

W ( f −g)2
)

.
This example is called the isonormal Gaussian process. There is a measure space

(Ω,F ,P) where σ (W (s) : s≤ T )≡F . There must be an underlying measure space which
comes from having to define the Wiener process.

2311
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Example 68.0.3 You could let H = R and let ξ be normally distributed density with mean
0 and variance 1. Then let W (a)≡ ξ a. Does it work?

E
(

abξ
2
)
= abE

(
ξ

2
)
= ab

Is W (a) normally distributed? E
(

eiaξ t
)
=
∫
R eiaxtξ dx = e−(1/2)a2t2

which is the charac-
teristic function of a normally distributed random variable having mean 0 and variance
a2. It is clear that any linear combination of aiξ is normally distributed and so the vector
(a1ξ , · · · ,anξ ) is normally distributed. This is by Theorem 59.16.4.

The above implies W is actually linear.

E
(
(W ( f +g)− (W ( f )+W (g)))2

)
= E

(
(W ( f +g))2 +

[
W ( f )2 +W (g)2 +2W ( f )W (g)

]
−2 [W ( f +g)W ( f )+W ( f +g)W (g)]

)

= E
(
(W ( f +g))2

)
+E

(
W ( f )2

)
+E

(
W (g)2

)
+E (W ( f )W (g))

−2(E (W ( f +g)W ( f ))+E (W ( f +g)W (g)))

which from the above equals

| f +g|2 + | f |2 + |g|2 +2( f ,g)−2 [( f +g, f )+( f +g) ,g]

= 2 | f |2 +2 |g|2 +4( f ,g)−2
[
| f |2 + |g|2 +2( f ,g)

]
= 0

Thus W ( f +g)− (W ( f )+W (g)) = 0. Is it true that

(W (a f )) = aW ( f )?

This is easier to show.

E
(
(W (a f )−aW ( f ))2

)
= E

(
W (a f )2−2W (a f )aW ( f )+a2W ( f )2

)

= |a f |2−2aE (W (a f )W ( f ))+a2E
(

W ( f )2
)

= a2 | f |2−2a2 | f |2 +a2 | f |2 = 0

Thus W is indeed linear.

68.1 Hermite Polynomials
Consider

exp
(

tx− t2

2

)
= exp

(
x2

2
− 1

2
(x− t)2

)
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Now the Hermite polynomials are the coefficients of the power series of this function ex-
panded in powers of t. Thus the nth one of these is

Hn (x) = exp
(

x2

2

)
1
n!

dn

dtn

(
exp
(
−1

2
(x− t)2

))
|t=0 (68.1.1)

and

exp
(

tx− t2

2

)
=

∞

∑
n=0

Hn (x) tn (68.1.2)

Note that H0 (x) = 1,

H1 (x) = exp
(

x2

2

)
d
dt

(
exp
(
−1

2
(x− t)2

))
|t=0

= −e−
1
2 (t−x)2

e
1
2 x2

(t− x) |t=0 = x

From 68.1.2, differentiating both sides formally with respect to x,

t exp
(

tx− t2

2

)
=

∞

∑
n=1

H ′n (x) tn

and so
∞

∑
n=0

Hn (x) tn = exp
(

tx− t2

2

)
=

∞

∑
n=1

H ′n (x) tn−1 =
∞

∑
n=0

H ′n+1 (x) tn

showing that
H ′n (x) = Hn−1 (x) ,n≥ 1, H0 (x) = 0,H1 (x) = x

which could have been obtained with more work from 68.1.1. Also, differentiating both
sides of 68.1.2 with respect to t,

−exp
(

tx− t2

2

)
(t− x) =

∞

∑
n=0

nHn (x) tn−1

Thus

(x− t)
∞

∑
n=0

Hn (x) tn =
∞

∑
n=0

nHn (x) tn−1 =
∞

∑
n=0

(n+1)Hn+1 (x) tn

and so
∞

∑
n=0

xHn (x) tn−
∞

∑
n=0

Hn (x) tn+1 =
∞

∑
n=0

(n+1)Hn+1 (x) tn

and so
∞

∑
n=0

xHn (x) tn−
∞

∑
n=1

Hn−1 (x) tn =
∞

∑
n=0

(n+1)Hn+1 (x) tn

Thus for n≥ 1,
xHn (x)−Hn−1 (x) = (n+1)Hn+1 (x)
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Now also

exp
(

t (−x)− t2

2

)
=

∞

∑
n=0

Hn (−x) tn

and taking successive derivatives with respect to t of the left side and evaluating at t = 0
yields

Hn (−x) = (−1)n Hn (x) .

Summarizing these as in [102],

H ′n (x) = Hn−1 (x) ,n≥ 1, H0 (x) = 0,H1 (x) = x
xHn (x)−Hn−1 (x) = (n+1)Hn+1 (x) , n≥ 1

Hn (−x) = (−1)n Hn (x)
(68.1.3)

Clearly, these relations show that all of these Hn are polynomials. Also the degree of Hn (x)
is n and the coefficient of xn is 1/n!.

Definition 68.1.1 You can also consider Hermite polynomials which depend on λ . These
are defined as follows:

Hn (x,λ )≡
(−λ )n

n!
e

1
2λ

x2 ∂ n

∂xn

(
e−

1
2λ

x2
)

You can see clearly that these are polynomials in x. For example, let n = 2. Then you
would have from the above definition.

H0 (x,λ ) = 1, H1 (x,λ ) =
(−λ )1

1!
e

1
2λ

x2 ∂

∂x

(
e−

1
2

x2
λ

)
= x

H2 (x,λ )≡
(−λ )2

2!
e

1
2λ

x2 ∂ 2

∂x2

(
e−

1
2λ

x2
)
=

1
2

x2− 1
2

λ

The idea is you end up with polynomials of degree n times e−x2/2λ in the derivative part
and then this cancels with ex2/2λ to leave you with a polynomial of degree n. Also the
leading term will always be xn

n! which is easily seen from the above. Then there are some
relationships satisfied by these.

Say n > 1 in what follows.

∂

∂x
Hn (x,λ ) =

x
λ

(−λ )n e
1
2

x2
λ

n!
∂ n

∂xn

(
e−

1
2λ

x2
)
+

(−λ )n

n!
e

1
2λ

x2 ∂ n

∂xn

(
∂

∂x
e−

1
2λ

x2
)

=
x
λ

(−λ )n e
1
2

x2
λ

n!
∂ n

∂xn

(
e−

1
2λ

x2
)
+

(−λ )n

n!
e

1
2λ

x2 ∂ n

∂xn

(
− x

λ
e−

1
2

x2
λ

)
Now since n > 1, that last term reduces to

(−λ )n

n!
e

1
2λ

x2
[
− x

λ

∂ n

∂xn

(
e−

1
2

x2
λ

)
+n

∂

∂x

(
− x

λ

)
∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)]
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,this by Leibniz formula. Thus this cancels with the first term to give

∂

∂x
Hn (x,λ ) =

(−λ )n n
n!

(
− 1

λ

)
e

1
2λ

x2 ∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)
=

(−λ )n−1

(n−1)!
e

1
2λ

x2 ∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)
≡ Hn−1 (x,λ )

In case of n = 1, this appears to also work. ∂

∂x H1 (x,λ ) = 1 = H0 (x,λ ) from the above
computations. This shows that

∂

∂x
Hn (x,λ ) = Hn−1 (x,λ )

Next, is the claim that

(n+1)Hn+1 (x,λ ) = xHn (x,λ )−λHn−1 (x,λ )

If n = 1, this says that

2H2 (x,λ ) = xH1 (x,λ )−λH0 (x,λ )

= x2−λ

and so the formula does indeed give the correct description of H2 (x,λ ) when n = 1. Thus
assume n > 1 in what follows. The left side equals

(−λ )n+1

n!
e

1
2λ

x2 ∂ n+1

∂xn+1

(
e−

1
2λ

x2
)

This equals
(−λ )n+1

n!
e

1
2λ

x2 ∂ n

∂xn

(
− x

λ
e−

1
2

x2
λ

)
Now by Liebniz formula,

=
(−λ )n+1

n!
e

1
2λ

x2
[
− x

λ

∂ n

∂xn e−
1
2

x2
λ +n

(
−1
λ

)
∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)]
=

(−λ )n+1

n!
e

1
2λ

x2
(
− x

λ

∂ n

∂xn e−
1
2

x2
λ

)
+

(−λ )n+1

n!
e

1
2λ

x2
n
(
−1
λ

)
∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)
= x

(−λ )n

n!
e

1
2λ

x2 ∂ n

∂xn e−
1
2

x2
λ +

(−λ )n

(n−1)!
e

1
2λ

x2 ∂ n−1

∂xn−1

(
e−

1
2

x2
λ

)
= xHn (x,λ )−λHn−1 (x,λ )

which shows the formula is valid for all n≥ 1.
Next is the claim that

Hn (−x,λ ) = (−1)n Hn (x,λ )
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This is easy to see from the observation that

∂

∂x
=

∂

∂ (−x)
(−1)

Thus if it involves n derivatives, you end up multiplying by (−1)n.
Finally is the claim that

∂

∂λ
Hn (x,λ ) =−

1
2

∂ 2

∂x2 Hn (x,λ )

It is certainly true for n = 0,1,2. So suppose it is true for all k≤ n. Then from earlier claims
and induction,

(n+1)H(n+1)λ (x,λ ) = xHnλ (x,λ )−H(n−1) (x,λ )−λH(n−1)λ (x,λ )

= x
(
−1
2

)
Hnxx−Hn−1 +λ

1
2

H(n−1)xx = x
(
−1
2

)
Hn−2−Hn−1 +λ

1
2

H(n−3)

=−1
2
(xHn−2−λHn−3 +2Hn−1) =−

1
2
((n−1)Hn−1 +2Hn−1) =−

1
2
((n+1)Hn−1)

comparing the ends,

H(n+1)λ =−1
2

Hn−1 =−
1
2

H(n+1)xx

This proves the following theorem.

Theorem 68.1.2 Let Hn (x,λ ) be defined by

Hn (x,λ )≡
(−λ )n

n!
e

1
2λ

x2 ∂ n

∂xn

(
e−

1
2λ

x2
)

for λ > 0. Then the following properties are valid.

∂

∂x
Hn (x,λ ) = Hn−1 (x,λ ) (68.1.4)

(n+1)Hn+1 (x,λ ) = xHn (x,λ )−λHn−1 (x,λ ) (68.1.5)

Hn (−x,λ ) = (−1)n Hn (x,λ ) (68.1.6)

∂

∂λ
Hn (x,λ ) =−

1
2

∂ 2

∂x2 Hn (x,λ ) (68.1.7)

With this theorem, one can also prove the following.

Theorem 68.1.3 The Hermite polynomials are the coefficients of a certain power series.
Specifically,

exp
(

tx− 1
2

t2
λ

)
=

∞

∑
n=0

Hn (x,λ ) tn
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Proof: Replace Hn with Kn which really are the coefficients of the power series and
then show Kn = Hn. Thus

exp
(

tx− 1
2

t2
λ

)
=

∞

∑
n=0

Kn (x,λ ) tn

Then K0 = 1 = H0 (x) . Also K1 (x) = x = H1 (x) .

∂

∂ t

(
exp
(

tx− 1
2

t2
λ

))
= exp

(
tx− 1

2
t2

λ

)
(x− tλ )

=
∞

∑
n=0

xKn (x,λ ) tn−
∞

∑
n=0

λKn (x,λ ) tn+1 =
∞

∑
n=0

xKn (x,λ ) tn−
∞

∑
n=1

λKn−1 (x,λ ) tn

Also,

∂

∂ t

(
exp
(

tx− 1
2

t2
λ

))
=

∞

∑
n=1

nKn (x,λ ) tn−1 =
∞

∑
n=0

(n+1)Kn+1 (x,λ ) tn

It follows that for n≥ 1,

(n+1)Kn+1 (x,λ ) = xKn (x,λ )−λKn−1 (x,λ )

Thus the first two K0,K1 coincide with H0 and H1 respectively. Then since both Kn and Hn
satisfy the recursion relation 68.1.5, it follows that Kn = Hn for all n. ■

The first version is just letting λ = 1 in the second version.
There is something very interesting about these Hermite polynomials Hn (x,λ ) . Let W

be the real Wiener process. Consider the stochastic process Hn (W (t) , t) ,n≥ 1. This ends
up being a martingale. Using Ito’s formula, the easy to remember version of it presented
above, and the above properties of the Hermite polynomials,

dHn = Hnx (W (t) , t)dW +Hnt (W (t) , t)dt +
1
2

Hnxx (W (t) , t)dW 2

= Hn−1 (W (t) , t)dW − 1
2

Hnxx (W (t) , t)dt +
1
2

Hnxx (W (t) , t)dt

Note that if n < 2, both of the last two terms are 0. In general, they cancel and so

dHn = Hn−1 (W (t) , t)dW

and so
Hn (W (t) , t) = Hn (W (0) ,0)+

∫ t

0
Hn−1 (W (t) , t)dW

now the constant term in the above equation is F0 measurable and the stochastic integral is
a martingale. Thus this is indeed a martingale assuming everything is suitably integrable.
However, this is not hard to see because these Hn are just polynomials. It was shown in
Theorem 64.1.3 that W (t) ∈ Lq (Ω) for all q. Hence there is no integrability issue in doing
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these things. Actually, Hn (W (0) ,0) = 0 To see this, note that E
(

W (0)2
)
= (0,0)H = 0

and so W (0) = 0. Now it is not hard to see that Hn (0,0) = 0. Indeed,

exp
(

tx− 1
2

t2
λ

)
=

∞

∑
n=0

Hn (x,λ ) tn

Thus Hn (x,0) = ∑
∞
n=0 Hn (x,0) tn = exp(tx) = ∑

∞
n=0

(tx)n

n! = ∑
∞
n=0 xn tn

n! and so for all n ≥
1,Hn (0,0) = 0. Thus in fact, for n ≥ 1, t → Hn (W (t) , t) is a martingale which equals 0
when t = 0.

68.2 A Remarkable Theorem, Hermite Polynomials
Lemma 68.2.1 Say (X ,Y ) is generalized normally distributed and

E (X) = E (Y ) = 0,E
(
X2)= E

(
Y 2)= 1.

Then for m,n≥ 0,

E (Hn (X)Hm (Y )) =
{

0 if n ̸= m
1
n! (E (XY ))n if n = m

Proof: By assumption, sX + tY is normal distributed with mean 0. This follows from
Theorem 59.16.4. Also

σ
2 ≡ E

(
(sX + tY )2

)
= s2 + t2 +2E (XY )st

and so its characteristic function is

E (exp(iλ (sX + tY ))) = φ sX+tY (λ ) = e−
1
2 σ2λ

2
= e−

1
2 (s2+t2)λ

2
e−E(XY )stλ 2

So let λ =−i. You can do this because both sides are analytic in λ ∈ C and they are equal
for real λ , a set with a limit point. This leads to

E (exp(sX + tY )) = e
1
2 (s2+t2)eE(XY )st

Hence, multiplying both sides by e−
1
2 (s2+t2),

e−
1
2 (s2+t2)E (exp(sX + tY )) = E

(
exp
(

sX− s2

2

)
exp
(

tY − t2

2

))
= exp(stE (XY ))

Now take ∂ n+m

∂ ns∂ mt of both sides. Recall the description of the Hermite polynomials given
above

n!Hn (x) =
dn

dtn exp
(

tx− t2

2

)
|t=0

Thus

E (n!Hn (X)m!Hm (Y )) =
∂ n+m

∂ ns∂ mt
exp(stE (XY )) |s=t=0
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Consider m < n

∂ n+m

∂ ns∂ mt
exp(stE (XY )) =

∂ m

∂ tm ((tE (XY ))n exp(stE (XY )))

You have something like

∂ m

∂ tm [tn ((E (XY ))n exp(stE (XY )))]

and m < n so when you take partial derivatives with respect to t, m times and set s, t = 0,
you must have 0. Hence, if n > m,

E (n!Hn (X)m!Hm (Y )) = 0

Similarly this equals 0 if m > n. So assume m = n. Then you will go through the same
process just described but this time at the end you will have something of the form

n!E (XY )n + terms multiplied by s or t

Hence, in this case,
E (n!Hn (X)n!Hn (Y )) = n!E (XY )n

and so
E (Hn (X)Hn (Y )) =

1
n!

E (XY )n ■

Let W be the function defined above, W (h) is normally distributed with mean 0 and
variance |h|2 and E (W (h)W (g)) = (h,g)H . Then from Lemma 68.2.1,

E (Hn (W (h))Hm (W (g))) =

{
0 if n ̸= m

1
n! (E (W (h)W (g)))n if n = m

=

{
0 if n ̸= m

1
n! (h,g)

n
H if n = m

This is a really neat result. From definition of W,

E
(
(W (h)W (g))1

)
= (h,g)H

Note this is a special case of the above result because H1 (x) = x. However, we don’t know
that E ((W (h)W (g))n) is equal to something times (h,g)n

H but we know that this is true of
some nth degree polynomials in W (h) and W (g).

Definition 68.2.2 Let Hn ≡ span{Hn (W (h)) : h ∈ H, |h|H = 1}.

Thus Hn is a closed subspace of L2 (Ω,F ). Recall F ≡ σ (W (h) : h ∈ H). This sub-
space Hn is called the Wiener chaos of order n.

Theorem 68.2.3 L2 (Ω,F ,P) =⊕∞
n=0Hn. The symbol denotes the infinite orthogonal sum

of the closed subspaces Hn. That is, if f ∈ L2 (Ω) , there exists fn ∈Hn and constants such
that f = ∑n cn fn and if f ∈Hn,g ∈Hn, then ( f ,g)L2(Ω) = 0.
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Proof: Clearly each Hn is a closed subspace. Also, if f ∈Hn and g ∈Hm for n ̸= m,
what about ( f ,g)L2(Ω)?

( f ,g)L2(Ω) = lim
l→∞

E

(
Ml

∑
k=1

al
kHn

(
W
(

hl
k

))
,

Mp

∑
j=1

al
jHm

(
W
(

hl
j

)))

= lim
l→∞

∑
k, j

al
kal

jE
(

Hn

(
W
(

hl
k

))
Hm

(
W
(

hl
j

)))
= 0

Thus these are orthogonal subspaces. Clearly L2 (Ω) ⊇ ⊕H n. Suppose X is orthogonal
to each Hn. Is X = 0? Each xn can be obtained as a linear combination of the Hk (x) for
k≤ n. This is clear because the space of polynomials of degree n is of dimension n+1 and
{H0 (x) ,H1 (x) , · · · ,Hn (x)} is independent on R.

This is easily seen as follows. Suppose

n

∑
k=0

ckHk (x) = 0

and that not all ck = 0. Let m be the smallest index such that

m

∑
k=0

ckHk (x) = 0

with cm ̸= 0. Then just differentiate both sides and obtain

m

∑
k=1

ckHk−1 (x) = 0

contradicting the choice of m.
Therefore, each xn is really a unique linear combination of the Hk as claimed. Say

xn =
n

∑
k=0

ckHk (x)

Then for |h|= 1,

W (h)n =
n

∑
k=0

ckHk (W (h)) ∈Hn

Hence (X ,W (h)n)L2(Ω) = 0 whenever |h| = 1. It follows that for h ∈ H arbitrary, and the
fact that W is linear,

(X ,W (h)n)L2 =

(
X ,

(
|h|W

(
h
|h|

))n)
= |h|n

(
X ,W

(
h
|h|

)n)
= 0

Therefore, X is perpendicular to eW (h) for every h ∈ H and so from Lemma 64.6.5, X = 0.
Thus ⊕H n is dense in L2 (Ω). ■

Note that from Lemma 64.6.4, every polynomial in W (h) is in Lp (Ω) for all p > 1.
Now what is next is really tricky.
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Corollary 68.2.4 Let P0
n denote all polynomials of the form

p(W (h1) , · · · ,W (hk)) , degree of p≤ n, some h1, · · · ,hk

Also let Pn denote the closure in L2 (Ω,F ,P) of P0
n . Then

Pn =⊕n
i=0Hi

Proof: It is obvious that Pn ⊇⊕n
i=0Hi because the thing on the right is just the closure

of a set of polynomials of degree no more than n, a possibly smaller set than the polyno-
mials used to determine P0

n and hence Pn. If Pn is orthogonal to Hm for all m > n, then
from the above Theorem 68.2.3, you must have Pn ⊆ ⊕n

i=0Hi. So consider Hm (W (h)) .
Recall that Hm is the closure of the span of things like this for |h|H = 1. Thus we need to
consider

E (p(W (h1) , · · · ,W (hk))Hm (W (h))) , |h|H = 1,

and show that this is 0. Now here is the tricky part. Let {e1, · · · ,es,h} be an orthonormal
basis for

span(h1, · · · ,hk,h) .

Then since W is linear, there is a polynomial q of degree no more than n such that

p(W (h1) , · · · ,W (hk)) = q(W (e1) , · · · ,W (es) ,W (h))

Then consider a term of q(W (e1) , · · · ,W (es) ,W (h))Hm (W (h))

aW (e1)
r1 · · ·W (es)

rs W (h)r Hm (W (h))

Now from Corollary 64.6.1 these random variables {W (e1) , · · · ,W (es) ,W (h)} are inde-
pendent due to the fact that the vector (W (e1) , · · · ,W (es) ,W (h)) is multivariate normally
distributed and the covariance is diagonal. Therefore,

E (aW (e1)
r1 · · ·W (es)

rs W (h)r Hm (W (h)))

= aE (W (e1)
r1) · · ·E (W (es)

rs)E (W (h)r Hm (W (h)))

Now since r ≤ n, W (h)r = ∑
r
k=1 ckHk (W (h)) for some choice of scalars ck. By Lemma

68.2.1, this last term,

E (W (h)r Hm (W (h))) = ∑
k

ckE (Hk (W (h))Hm (W (h))) = 0

since each k < m. ■
Note how remarkable this is. P0

n includes all polynomials in W (h1) , · · · ,W (hk) some
h1, · · · ,hk, of degree no more than n, including those which have mixed terms but a typical
thing in ⊕n

i=0Hi is a sum of Hermite polynomials in W (hk). It is not the case that you
would have terms like W (h1)W (h2) as could happen in the case of Pn.

Obviously it would be a good idea to obtain an orthonormal basis for L2 (Ω,F ,P). This
is done next. Let Λ be the multiindices, (a1,a2, · · ·) each ak a nonnegative integer. Also in
the description of Λ assume that ak = 0 for all k large enough. For such a multiindex a∈Λ,

a!≡
∞

∏
i=1

ai!, |a| ≡∑
i

ai
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Also for a ∈ Λ, define

Ha (x)≡
∞

∏
j=1

Hai (x)

This is well defined because H0 (x) = 1 and all but finitely many terms of this infinite
product are therefore equal to 1. Now let {ei} be an orthonormal basis for H. For a ∈ Λ,

Φa ≡
√

a!
∞

∏
i=1

Hai (W (ei)) ∈ L2 (Ω)

Suppose a,b ∈ Λ.∫
Ω

ΦaΦbdP =
√

a!
√

b!
∫

Ω

∞

∏
i=1

Hai (W (ei))Hbi (W (ei))dP

Now recall from Corollary 64.6.1 the random variables {W (ei)} are independent. There-
fore, the above equals

√
a!
√

b!
∞

∏
i=1

∫
Ω

Hai (W (ei))Hbi (W (ei))dP =

{
1 if a = b
0 if a ̸= b

Thus {Φa : a ∈ Λ} is an orthonormal set in L2 (Ω).

Lemma 68.2.5 If sk → h, then for n ∈ N, there is a subsequence, still called sk for which
W (sk)

n→W (h)n in L2 (Ω).

Proof: If sk→ h, does W (sk)
n→W (h)n in L2 (Ω) for some subsequence? First of all,

∥W (h)−W (sk)∥2
L2(Ω) = |sk−h|2H → 0

and so there is a subsequence, still called k such that W (sk)(ω)→W (h)(ω) for a.e. ω .
Consider ∫

Ω

|W (h)n−W (sk)
n|2 dP (68.2.8)

Does this converge to 0? The integrand is bounded by 2
(

W (h)2n +W (sk)
2n
)
. Since

W (h) ,W (sk) are symmetric,∫
Ω

(
2
(

W (h)2n +W (sk)
2n
))2

dP≤ 8
∫

Ω

(
W (h)4n +W (sk)

4n
)

dP

= 16
∫

Ω∩[W (h)≥0]
e4nW (h)dP+16

∫
Ω∩[W (sk)≥0]

e4nW (sk)dP

≤ 16
∫

Ω

e4nW (h)dP+16
∫

Ω

e4nW (sk)dP

≤ 16e
1
2 |4nh|+16e

1
2 |4nsk|
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which is bounded independent of k, the last step following from Lemma 64.6.4. Therefore,
the Vitali convergence theorem applies in 68.2.8. ■

Given an h ∈ H, let sk = ∑
k
j=1 (h,e j)e j, the kth partial sum in the Fourier series for h.

W (sk)
m =

(
k

∑
j=1

(h,e j)W (e j)

)m

= p(W (e1) , · · · ,W (ek))

where p is a homogeneous polynomial of degree m. Now this equals

q(H0 (W (e1)) , · · · ,H0 (W (ek)) · · ·Hm (W (e1)) , · · · ,Hm (W (ek)))

where q is a polynomial. This is because each W (e j)
r is a linear combination of Hs (W (e j))

for s≤ r. Now you look at terms of this polynomial. They are all of the form cΦa for some
constant c and a∈Λ. Therefore, if X ∈ L2 (Ω) , there is a subsequence, still denoted as {sk}
such that

E (W (h)n X) = lim
k→∞

E (W (sk)
n X)

Now if X is orthogonal to each Φa, then for any h and n, there is a subsequence still denoted
with k such that

E (W (h)n X) = lim
k→∞

E (W (sk)
n X) = 0

It follows from Lemma 64.6.4, the part about the convergence of the partial sums to eW (h)

that X is orthogonal to eW (h) for any h. Here are the details. From the lemma, for large n,∣∣∣∣∣E (eW (h)X
)
−E

(
n

∑
j=0

W (h) j

j!
X

)∣∣∣∣∣< ε,

Also for large k,∣∣∣∣∣E
(

n

∑
j=0

W (h) j

j!
X

)
−E

(
n

∑
j=0

W (sk)
j

j!
X

)∣∣∣∣∣=
∣∣∣∣∣E
(

n

∑
j=0

W (h) j

j!
X

)∣∣∣∣∣< ε

Therefore, ∣∣∣E (eW (h)X
)∣∣∣< 2ε

Since ε is arbitrary, this proves the desired result. By Lemma 64.6.5, X = 0 and this shows
that {Φa,a ∈ Λ} is complete.

Proposition 68.2.6 {Φa : a ∈ Λ} is a complete orthonormal set for L2 (Ω,F ,P).

68.3 A Multiple Integral
Consider trying to find ∫ 1

0

∫ 1

0
dBsdBt
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Here Bt is just one dimensional Wiener process. You would want it to equal

2
∫ 1

0

∫ t

0
dBsdBt = 2

∫ 1

0
BtdBt

So what should this equal? Let F (x) = x2 so F ′ (x) = 2x,F ′′ (x) = 2. Consider F (Bt) .
Then using the formalism for the Ito formula,

dF (Bt) = d
(
B2

t
)
= 2BtdBt +

1
2
(2)(dBt)

2

= 2BtdBt +dt

Therefore,

B2
t = 2

∫ t

0
BsdBs + t

and letting t = 1,
1
2

B2
1−

1
2
=
∫ 1

0
BsdBs =

∫ 1

0

∫ s

0
dBrdBs

and so we would want to have

B2
1−1 = 2

∫ 1

0

∫ s

0
dBrdBs

and we want this to equal
∫ 1

0
∫ 1

0 dBsdBt so we need to be defining this in a way such that this
will result. Of course, this is just the simplest example of an iterated integral with respect
to these one dimensional Wiener processes.

Now partition [0,1) as 0= t0 < t1 < · · · , tn = 1. Then sum over all [ti−1, ti)× [t j−1, t j) but
leave out those which are on the “diagonal”. These would be of the form [ti−1, ti)× [ti−1, ti).

Here you would have in the sum products of the form
(
Bti −Bti−1

)(
Bt j −Bt j−1

)
. Thus you

would have

∑
i, j

(
Bti −Bti−1

)(
Bt j −Bt j−1

)
−

n

∑
i=1

(
Bti −Bti−1

)2

=

(
∑

i
Bti −Bti−1

)2

−
n

∑
i=1

(
Bti −Bti−1

)2

= (B1−B0)
2−

n

∑
i=1

(
Bti −Bti−1

)2

Then of course you take a limit as the norm of the partition goes to 0. This yields in the
limit

B2
1−1

which is the thing which is wanted. Thus the idea is to consider only functions which are
equal to 0 on the “diagonal” and define an integral for these. Then hopefully these will be
dense in L2 ([0,T ]n) and the multiple integral can then be defined as some sort of limit.
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Now in the above construction, from now on, unless indicated otherwise, H = L2 (T )
where the measure is ordinary Lebesgue measure on T = [0,T ] or [0,∞) or some other
interval of time. However, it could be more general, but for the sake of simplicity let it be
Lebesgue measure. Generalities appear to be nothing but identifying that which works in
the case of Lebesgue measure. If µ≪m everything would work also. A careful description
of what kind of measures work is in [102]. Also, for A a Borel set having finite Lebesgue
measure,

W (A)≡W (XA) .

This is a random variable, and as explained earlier, since any finite set of these is nor-
mally distributed, if all the sets are pairwise disjoint, the random variables are independent
because the covariance is a diagonal matrix.

Definition 68.3.1 Let D ≡
{
(t1, · · · , tm) : ti = t j for some i ̸= j

}
. This is called the diago-

nal set. Here D⊆ T m where T is an interval [0,T ). Assume T < ∞ here. Let

0 = τ0 < τ1 < · · ·< τk = T

Then this can be used to partition T m into sets of the form

[τ i1−1,τ i1)×·· ·× [τ im−1,τ im)

such that T m is the disjoint union of these. An off diagonal step function f is one which is
of the form

f (t1, · · · , tm) =
k

∑
i1··· ,im

ai1,··· ,imX[τ i1−1,τ i1 )×···×[τ im−1,τ im ) (t1, · · · , tm)

where ai1,··· ,im = 0 if ip = iq. This would correspond to a diagonal term because it would
result in a repeated half open interval. Thus we assume all these are equal to 0. The
collection of all such off diagonal step functions will be denoted as Em. The m corresponds
to the dimension.

Definition 68.3.2 Let Im : Em→ L2 (Ω) be defined in the obvious way.

Im

(
k

∑
i1··· ,im

ai1,··· ,imX[τ i1−1,τ i1 )×···×[τ im−1,τ im ) (t1, · · · , tm)

)

≡
k

∑
i1··· ,im

ai1,··· ,im

m

∏
p=1

(
Bτ ip
−Bτ ip−1

)
Then Im is linear. If you had two different partitions, you could take the union of them both
and by letting coefficients be repeated on the smaller boxes, one can assume that a single
partition is being used. This is why it is clear that Im is linear.

Definition 68.3.3 Let f ∈ L2 (T m) . The symetrization of f is given by

f̃ (t1, · · · , tm)≡
1

m! ∑
σ∈Sm

f (tσ1 , · · · , tσm)
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Lemma 68.3.4 The following holds for f ∈ Em∥∥ f̃
∥∥

L2(T m)
≤ ∥ f∥L2(T m)

also
Im ( f ) = Im

(
f̃
)

Proof: This follows because, thanks to the properties of Lebesgue measure,∫
T m
| f (t1, · · · , tm)|2 dt1 · · ·dtm =

∫
T m
| f (tσ1 , · · · , tσm)|

2 dt1 · · ·dtm

≡
∫

T m
| fσ |2 dt1 · · ·dtm

therefore, ∥∥ f̃
∥∥

L2(T m)
≤ 1

m! ∑
σ∈Sm

∥ fσ∥L2(T m) =
1

m! ∑
σ∈Sm

∥ f∥L2(T m) = ∥ f∥L2(T m)

The next claim follows because on the right, the terms making up the sum just happen in a
different order for each σ . ■

More generally, here is a lemma about off diagonal things. It uses sets Ai rather than
intervals [a,b).

Lemma 68.3.5 Let {A1, · · · ,Am} be pairwise disjoint sets in B (T ) each having finite mea-
sure. Then the products Ai1 ×·· ·×Ain are pairwise disjoint. Also to say that the function

(t1, · · · , tn)→∑
i

ciXAi1×···×Ain
(t1, · · · , tn)

equals 0 whenever some t j = ti, i ̸= j is to say that ci = 0 whenever there is a repeated index
in i.

Proof: Suppose the condition that the Ak are pairwise disjoint holds and consider two
of these products, Ai1 × ·· · ×Ain and A j1 × ·· · ×A jn . If the two ordered lists (i1, · · · , in)
and ( j1, · · · , jn) are different, then since the Ak are disjoint the two products have empty
intersection because they differ in some position.

Now suppose that ci = 0 whenever there is a repeated index. Then the sum is taken over
all permutations of n things taken from {1, · · · ,m} and so if some tr = ts for r ̸= s, all terms
of the sum equal zero because XAi1×···×Ain

̸= 0 only if t ∈ Ai1 ×·· ·×Ain and since tr = ts
and the sets {Ak} are disjoint, there must be the same set in positions r and s so ci = 0.
Hence the function equals 0.

Conversely, suppose the sum ∑i ciXAi1×···×Ain
equals zero whenever some tr = ts for

s ̸= r. Does it follow that ci = 0 whenever some tr = ts? The value of this function at
t ∈ Ai1 ×·· ·×Ain is ci because for any other ordered list of indices, the resulting product
has empty intersecton with Ai1 ×·· ·×Ain . Thus, since tr = ts, it is given that this function
equals 0 which equals ci. ■
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This says that when you consider such a function ∑i ciXAi1×···×Ain
with the Ak pairwise

disjoint, then to say that it equals 0 whenever some ti = t j is to say that it is really a sum over

all permutations of n indices taken from {1, · · · ,m} . Thus there are
(

m
n

)
n! = P(m,n)

possible non zero terms in this sum.

Lemma 68.3.6 Consider the set of all ordered lists of n indices from {1,2, · · · ,m} . Thus
two lists are the same if they consist of the same numbers in the same positions. We denote
by i or j such an index, i from {1, · · · ,m} and j from {1, · · · ,q}. Also let

{A1, · · · ,Am} ,
{

B1, · · · ,Bq
}

are two lists of pairwise disjoint Borel sets from T having finite Lebesgue measure. Also
suppose

∑
i

ciXAi1×···×Ain
= ∑

j
djXB j1×···×B jn

Then

∑
i

ci

n

∏
k=1

W
(
Aik

)
= ∑

j
dj

n

∏
k=1

W
(
B jk

)
Proof: Suppose that n = 1 first. Then you have

∑
i

ciXAi = ∑
j

d jXB j (68.3.9)

where the sets {Ai} and
{

B j
}

are disjoint. Clearly

Ai ⊇ ∪ jAi∩B j (68.3.10)

Consider
ciXAi ,∑

j
ciXAi∩B j (68.3.11)

If strict inequality holds in 68.3.10, then you must have a point in Ai\ ∪ jAi ∩B j where
the left side of ∑i ciXAi equals ci but the right side would equal 0. Hence ci = 0 and
so ∑ j ciXAi∩B j = 0 which shows that the two expressions in 68.3.11 are equal. If Ai =
∪ jAi∩B j, it is also true that the two expressions in 68.3.11 are equal. Thus

∑
i

ciXAi = ∑
i

∑
j

ciXAi∩B j

Similar considerations apply to the right side. Thus

∑
i

∑
j

ciXAi∩B j = ∑
j
∑

i
d jXAi∩B j

∑
i, j
(ci−d j)XAi∩B j = 0
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hence if W (Ai∩B j) ̸= 0, then, since these sets are disjoint, ci−d j = 0. It follows that

∑
i, j
(ci−d j)W (Ai∩B j) = 0

and so

∑
i

ciW (Ai) = ∑
i

∑
j

ciW (Ai∩B j) = ∑
j
∑

i
d jW (Ai∩B j) = ∑

j
d jW (B j)

This proves the theorem if n = 1. Consider the general case. Let i′ be

(i1, · · · , in−1) , ik ≤ m
m

∑
in=1

∑
i′

c(i′,in)XAin
(tn)XAi1×···×Ain−1

= ∑
i

ciXAi1×···×Ain

= ∑
j

djXB j1×···×B jn
=

m

∑
jn=1

∑
j′

d(j′, jn)XB jn
(tn)XB j1×···×B jn−1

Now pick (t1, · · · , tn−1) . The above is then

m

∑
in=1

(
∑
i′

c(i′,in)XAi1×···×Ain−1
(t1, · · · , tn−1)

)
XAin

(tn)

=
m

∑
jn=1

(
∑
j′

d(j′, jn)XB j1×···×B jn−1
(t1, · · · , tn−1)

)
XB jn

(tn)

and by what was just shown for n = 1, for each such choice,

∑
in

(
∑
i′

c(i′,in)XAi1×···×Ain−1

)
W (Ain)

= ∑
jn

(
∑
j′

d(j′, jn)XB j1×···×B jn−1

)
W (B jn)

Then

∑
i′


function of ω︷ ︸︸ ︷

∑
in

W (Ain)c(i′,in)

 not a function of ω︷ ︸︸ ︷
XAi1×···×Ain−1

=

∑
j′

(
∑
jn

W (B jn)d(j′, jn)

)
XB j1×···×B jn−1

Pick ω = ω0. Then by induction,

∑
i′

(
∑
in

W (Ain)(ω0)c(i′,in)

)
W (Ai1) · · ·W

(
Ain−1

)
= ∑

j′

(
∑
jn

W (B jn)(ω0)d(j′, jn)

)
W (B j1) · · ·W

(
B jn−1

)
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and this reduces to what was to be shown because ω0 was arbitrary. ■
In what follows it will be assumed ci = 0 if any two of the ik are equal. That is

∑
i

ciXAi1×···×Ain
(t1, · · · , tn) = 0

if any ti = t j.

Definition 68.3.7 Let En be functions of the form

f (t1, · · · , tn)≡∑
i

ciXAi1×···×Ain
(t1, · · · , tn)

where the Ak come from some list of the form {A1,A2, · · · ,Am} where this list of sets is
pairwise disjoint, each Ak ̸= /0 and ci = 0 whenever two indices are equal. By Lemma
68.3.5 this is the same as saying that f = 0 if ti = t j for some i ̸= j. A function of n
variables f is symmetric means that for σ a permutation,

f (t1, · · · , tn) = f
(
tσ(1), · · · , tσ(n)

)
Lemma 68.3.8 Let f (t1, · · · , tn)≡∑i ciXAi1×···×Ain

(t1, · · · , tn) . Then f is symmetric if and
only if for all {ci1,··· ,in}

ci1,··· ,in = ciσ(1),··· ,iσ(n)

Proof: First of all, every ci = 0 if there are repeated indices so it suffices to consider
only the case where all indices are distinct.

Consider all the terms associated with a particular set of indices {i1, · · · , in} . Then,
since these sets Aik are disjoint, the function f is symmetric if and only if the part of the
sum in the definition of f associated with each such set of indices is symmetric. To save on
notation, denote such a list by {1,2, · · · ,n} . It suffices then to show that

f (t1, · · · , tn) = ∑
σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n) (t1, · · · , tn)

is symmetric if and only if for all σ ,cσ(1)···σ(n) = c1···n. Suppose then that f is symmetric.
Then

f
(
tβ (1), · · · , tβ (n)

)
= ∑

σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n)

(
tβ (1), · · · , tβ (n)

)
= ∑

σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n) (t1, · · · , tn) = f (t1, · · · , tn)

However,

∑
σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n)

(
tβ (1), · · · , tβ (n)

)
= ∑

σ∈Sn

cσ(1)···σ(n)XA
β−1σ(1)

×···×A
β−1σ(n)

(t1, · · · , tn) (68.3.12)
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It is supposed to equal

∑
σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n) (t1, · · · , tn)

= ∑
σ∈Sn

c
β
−1

σ(1)···β−1
σ(n)XA

β−1σ(1)
×···×A

β−1σ(n)
(t1, · · · , tn) (68.3.13)

Thus

∑
σ∈Sn

cσ(1)···σ(n)XA
β−1σ(1)

×···×A
β−1σ(n)

(t1, · · · , tn)

= ∑
σ∈Sn

c
β
−1

σ(1)···β−1
σ(n)XA

β−1σ(1)
×···×A

β−1σ(n)
(t1, · · · , tn) (68.3.14)

Since the sets Ak are distinct, as explained above, this requires that

XAσ(1)×···×Aσ(n) ̸= XAα(1)×···×Aα(n)

if α ̸= σ . Therefore, 68.3.14 requires that for all β and each σ ,

cσ(1)···σ(n) = c
β
−1

σ(1)···β−1
σ(n)

In particular, this is true if β = σ and so cσ(1)···σ(n) = c1···n.
The converse of this is also clear. If cσ(1)···σ(n) = c1···n for each σ , then

f
(
tβ (1), · · · , tβ (n)

)
= ∑

σ∈Sn

cσ(1)···σ(n)XAσ(1)×···×Aσ(n)

(
tβ (1), · · · , tβ (n)

)
= ∑

σ∈Sn

cσ(1)···σ(n)XA
β−1σ(1)

×···×A
β−1σ(n)

(t1, · · · , tn)

= ∑
σ∈Sn

c1···nXA
β−1σ(1)

×···×A
β−1σ(n)

(t1, · · · , tn)

= ∑
α∈Sn

c1···nXAα(1)×···×Aα(n) (t1, · · · , tn)

= ∑
α∈Sn

cα(1)···α(n)XAα(1)×···×Aα(n) (t1, · · · , tn)

= f (t1, · · · , tn) ■

Observe that En is a vector space because if you have two such functions

∑
i

ciXAi1×···×Ain
(t1, · · · , tn) ,∑

i
diXBi1×···×Bin

(t1, · · · , tn)

where the Aik are from {A1,A2, · · · ,Am} and the Bik are from
{

B1,B2, · · · ,Bq
}

. Then con-
sider the single list consisting of the sets of the form Ak∩B j. You could write each of these
functions in terms of indicator functions of products of these disjoint sets. Thus the sum of
the two functions can be written in the desired form. Since each are equal to 0 when some
t j = tk, the same is true of their sum. Thus En is closed with respect to sums. It is obviously
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closed with respect to scalar multiplication. Hence it is a subspace of the vector space of
all functions and it is therefore, a vector space.

Following [102], for f one of these elementary functions,

f (t1, · · · , tn)≡∑
i

ciXAi1×···×Ain
(t1, · · · , tn)

where if any two indices are repeated, then ci = 0, and the Ak are all disjoint,

In ( f )≡∑
i

ciW (Ai1) · · ·W (Ain)

Lemma 68.3.9 In is linear on En. If f ∈ En and σ is a permutation of (1, · · · ,n) and

fσ (t1, · · · , tn)≡ f
(
tσ(1), · · · , tσ(tn)

)
,

and f is symmetric, then
In ( fσ ) = In ( f )

For f = ∑i ciXAi1×···×Ain
, one can conclude that

In ( f ) = n! ∑
i1<i2<···<in

ci1,··· ,in ∏W (Ain) (68.3.15)

Also, the following holds for the expectation. For f ,g ∈ En,Em respectively,

E (In ( f ) Im (g)) =
{

0 if n ̸= m
n!
(

f̃ , g̃
)

L2(T n)
if n = m

where f̃ denotes the symetrization of f given by

f̃ (t1, · · · , tn)≡
1
n! ∑

σ∈Sn

f
(
tσ(1), · · · , tσ(n)

)
Proof: It is clear from the definition being well defined that In is linear. In particular,

consider

In

(
a∑

i
ciXAi1×···×Ain

+b∑
j

djXB j1×···×B jn

)
.

As explained above in the observation that En is a vector space, it can be assumed that the
Aik and B jk are all from a single set of disjoint Borel sets of T . Then the above is of the
form

a∑
i

ci ∏
k

W
(
Aik

)
+b∑

j
dj ∏

k
W
(
B jk

)
= aIn

(
∑

i
ciXAi1×···×Ain

)
+bIn

(
∑

j
djXB j1×···×B jn

)
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Next consider for i = (i1 · · · in) ,

fσ (t1, · · · , tn) = ∑
i

ciXAi1×···×Ain

(
tσ(1), · · · , tσ(n)

)
= ∑

i
ci

n

∏
j=1

XAi j

(
tσ( j)

)
= ∑

i
ci

n

∏
j=1

XAi
σ−1( j)

(t j)

= ∑
i

ciXAi
σ−1(1)

×···×Ai
σ−1(n)

(t1, · · · , tn)

Thus, it appears that fσ ̸= f . However,

In ( fσ )≡∑
i

ci

n

∏
k=1

W
(

Ai
σ−1(k)

)
= In ( f ) (68.3.16)

because one just considers the factors in a different order than the other. The permutation
acts on (i1 · · · in). Define the symetrization of f by f̃ given by

f̃ (t1, · · · , tn)≡
1
n! ∑

σ

fσ (t1, · · · , tn)

Then In
(

f̃
)
= In ( f ) and

f̃
(
tσ(1), · · · , tσ(n)

)
= f̃ (t1, · · · , tn) .

If f
(
tσ(1), · · · , tσ(n)

)
= f (t1, · · · , tn) for all σ then f̃ = f . From the above, f̃ equals

1
n! ∑

σ

∑
i

ciXAi
σ−1(1)

×···×Ai
σ−1(n)

(t1, · · · , tn)

Note that 68.3.16 implies that

In ( f ) = In
(

f̃
)
= n! ∑

i1<i2<···<in

ci1,··· ,in ∏
k

W
(
Aik

)
(68.3.17)

Now consider

f̃ = ∑
i

ciXAi1×···×Ain
and g̃ = ∑

i
diXAi1×···×Ain

where without loss of generality, these sets Ak come from a single list of disjoint sets. As
above, In ( f ) = In

(
f̃
)

and so it follows that

E (In ( f ) In (g)) = E
(
In
(

f̃
)

In (g̃)
)
.

From the above, E
(
In
(

f̃
)

In (g̃)
)
=

E

(
(n!)2

∑
i1<···<in

∑
j1<···< jn

ci1,··· ,ind j1,··· , jn ∏
k

W
(
Aik

)
∏

l
W
(
A jl

))

= (n!)2
∑

i1<···<in
∑

j1<···< jn

ci1,··· ,ind j1,··· , jnE

(
∏

k
W
(
Aik

)
∏

l
W
(
A jl

))

= (n!)2
∑

i1<···<in
∑

j1<···< jn

ci1,··· ,ind j1,··· , jnE

(
∏

k
W
(
Aik

)
W
(
A jk

))
(68.3.18)
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That product is of independent random variables. Recall any collection of the W (Ak) are
normally distributed and also the covariance is diagonal and so these will all be independent
random variables. If any one of them is not repeated, say W

(
Aik

)
, then

E

(
∏

k
W
(
Aik

)
W
(
A jk

))
= E

(
W
(
Aik

))
(stuff) = 0

It follows that to get something nonzero out of this, all Aik are repeated. That is, you must
have j = i and 68.3.18 reduces to E (In ( f ) In (g)) =

(n!)2
∑

i1<···<in

ci1,··· ,indi1,··· ,inE

(
∏

k
W
(
Aik

)2

)
= (n!)2

∑
i1<···<in

ci1,··· ,indi1,··· ,in ∏
k

E
(

W
(
Aik

)2
)

= (n!)2
∑

i1<···<in

ci1,··· ,indi1,··· ,in ∏
k

m
(
Aik

)
(68.3.19)

By Lemma 68.3.8, used at the end of the following string of equalities, and the observation
that

XAi1×···×Ain
XA j1×···×A jn

= 0

to eliminate mixed terms, (
f̃ , g̃
)

L2(T n)
=

=
∫

∞

0
· · ·
∫

∞

0

(
∑

i
ciXAi1×···×Ain

)(
∑

i
diXAi1×···×Ain

)
dt · · ·dt

=
∫

∞

0
· · ·
∫

∞

0

(
∑

i
cidiXAi1×···×Ain

)
dt · · ·dt

= ∑
i

cidi ∏
k

m
(
Aik

)
= n! ∑

i1<···<in

ci1···indi1···in ∏
k

m
(
Aik

)
Now it follows from this and 68.3.19 that

E (In ( f ) In (g)) = n!
(

f̃ , g̃
)

L2(T n)
.

What happens if you consider E (In ( f ) Im (g)) where m < n? You would still get
E (In ( f ) Im (g)) = E

(
In
(

f̃
)

Im (g̃)
)

= E
(

(n!)(m!)∑i1<i2<···<in ∑ j1<···< jm ci1,··· ,ind j1,··· , jmW (Ai1)
· · ·W (Ain)W (A j1) · · ·W (A jm)

)
Then at least one of the W

(
Aik

)
is not repeated. This is because n > m. That product is

a product of independent random variables at least one of which is of the form W
(
Aik

)
.



2334 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATION

Hence the expectation of the product it is of the form E
(
W
(
Aik

))
(Other terms) = 0. Thus

if n ̸= m, the result is 0 as claimed. ■
An integral has now been defined on the functions of the form

f (t1, · · · , tn)≡∑
i

ciXAi1×···×Ain
(t1, · · · , tn)

where f = 0 if any ti = t j for i ̸= j. This integral defined on these elementary functions is
interesting because for such functions f ,g

E (In ( f ) Im (g)) =
{

0 if n ̸= m
n!
(

f̃ , g̃
)

L2(T n)
if n = m

where f̃ is the symmetrization of f . It is desired to extend this integral to L2 (T n). Simple
functions are always dense in L2 (T ) . Also, there is an easy lemma which can be concluded
for L2 (T n).

Lemma 68.3.10 Let B0 (T ) be the Borel sets having finite measure. Linear combinations
of functions of the form

XA1×···×An

where Ai ∈ B0 (T ) are dense in L2 (T,Bn) where of course Bn refers to the product σ

algebra.

Proof: If you have U = A1× ·· · ×An in T n one can approximate XU∩Rp for Rp ≡
(−p, p)n in L2 with linear combinations of sets of the desired form. In fact, you just con-
sider XA1∩(−p,p)×···×An(−p,p) and you get equality. Now let K denote the π system of sets
of this sort. Let G denote those Borel sets G such that there exists a sequence of linear com-
binations of sets of the form XA,A =A1×·· ·×An which converges to XG∩Rp in L2 (T n).
Thus G ⊇K .

Let {Gk} be a disjoint sequence of sets of G . Is G≡ ∪kGk ∈ G ? By monotone conver-
gence theorem, ∥∥∥∥∥XG∩Rp −

m

∑
k=1

XGk∩Rp

∥∥∥∥∥
L2(T n)

< ε

provided m is large enough. Now by definition of G there exists Lk a linear combination of
these special sets such that ∥∥XGk∩Rp −Lk

∥∥
L2(T n)

<
ε

m
It follows that ∥∥∥∥∥XG∩Rp −

m

∑
k=1

Lk

∥∥∥∥∥
L2

≤

∥∥∥∥∥XG∩Rp −
m

∑
k=1

XGk∩Rp

∥∥∥∥∥
L2

+

∥∥∥∥∥ m

∑
k=1

XGk∩Rp −
m

∑
k=1

Lk

∥∥∥∥∥ < ε + ε
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and so, it follows that G ∈ G . If G ∈ G , does it follow that GC is also?

XRp = XRp∩G +XRp∩GC

Hence
XRp −XRp∩G = XRp∩GC

Both of the functions on the left can be approximated in L2 by the desired kind of functions
and so the one on the right can also. It follows from Dynkin’s lemma that G ≡ σ (K )
which is the product measurable sets. Thus if U is any set in Bn, it follows that XU can be
approximated in L2 (T n) with linear combinations of sets like XA1×···×An . ■

Of course nothing is known about whether the sets Ai are disjoint. Also it is not known
whether these linear combinations of these functions equals 0 if ti = t j. Thus there is
something which needs to be proved.

Lemma 68.3.11 The functions in En mentioned above are dense in L2 (T n).

Proof: From Lemma 68.3.10, it suffices to show that XA1×···×An can be approximated
in L2 (T n) with functions in En. This is where it will be important that the measure is
sufficiently like Lebesgue measure. Let

{
Bi

k

}m
k=1 be a partition of Ai such that m

(
Bi

k

)
≤

2m(Ai)
m . Let {Bk}p

k=1 denote all these sets so p = mn. They are not necessarily disjoint
because it is not known that the Ai are disjoint. However, one can say that it is possible to
choose ei equal to either 0 or 1 such that

XA1×···×An = ∑
i

eiXBi1×···×Bin

where we can have Bik ⊆ Ak. Let J be those indices i which involve a repeated set. That is
some Bi j = Bik for some j ̸= k. How many possibilities are there? There are no more than
C (n,2)m because there are C (n,2) possibilities for duplicates among the Ak and then there
are m sets in the partition of Ak.

∫
T
· · ·
∫

T

(
∑
i∈J

eiXBi1×···×Bin

)2

dt · · ·dt

=
∫

T
· · ·
∫

T
C (n,2)mXBi1×···×Bin

dt · · ·dt

≤ C (n,2)m
n

∏
k=1

m
(
Bik

)
The mixed terms are 0 because for a fixed k,

{
Bik

}m
i=1 are disjoint. Now from the description

of these, m
(
Bik

)
m < m(Ak) and so

∫
T
· · ·
∫

T

(
∑
i∈J

eiXBi1×···×Bin

)2

dt · · ·dt

≤ C (n,2)m
n

∏
k=1

2m(Ak)

m
=

C (n,2)m
mn

n

∏
k=1

m(Ak)
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which clearly converges to 0 as m→ ∞ provided that n≥ 2. In case n = 1, all you have to
do is approximate XA from something in E1 and of course you just use XA. ■

Let f ,g ∈ En. Then from Lemma 68.3.9,

E
(
(In ( f −g))2

)
= n!

∥∥ f̃ − g̃
∥∥2

L2(T n)

∥∥ f̃
∥∥

L2(T n)
=

(∫
T
· · ·
∫

T

∣∣ f̃ (t)∣∣2 dt
)1/2

=

∫
T
· · ·
∫

T

∣∣∣∣∣ 1
n! ∑

σ

f
(
tσ(1), · · · , tσ(n)

)∣∣∣∣∣
2

dt

1/2

≤ 1
n! ∑

σ

(∫
T
· · ·
∫

T

∣∣ f (tσ(1), · · · , tσ(n)
)∣∣2 dt

)1/2

=
1
n! ∑

σ

∥ f∥L2(T n) = ∥ f∥L2(T n)

Therefore,

E
(
(In ( f −g))2

)
= n!

∥∥ f̃ − g̃
∥∥2

L2(T n)
≤ n!∥ f −g∥2

L2(T n) . (68.3.20)

The following theorem comes right away from this and Lemma 68.3.11.

Theorem 68.3.12 The integral In defined on En extends uniquely to an integral In defined
on L2 (T n) . This integral satisfies

In ( f ) ∈ L2 (Ω)

Also
E (In ( f ) In (g)) = n!

(
f̃ , g̃
)

L2(T n)

Proof: This follows right away from the density of En in L2 (T n) and the inequality
68.3.20. ■

Obviously one wonders whether linear combinations ∑n cnIn ( fn) are dense in L2 (Ω) . It
looks like the important thing to notice is that for f ∈ En, In ( f ) is a polynomial in W

(
Aik

)
≡

W
(
XAik

)
. Recall the corollary above, Corollary 68.2.4,

Corollary 68.3.13 Let P0
n denote all polynomials of the form

p(W (h1) , · · · ,W (hk)) , degree of p≤ n, some h1, · · · ,hk

Also let Pn denote the closure in L2 (Ω,F ,P) of P0
n . Then

Pn =⊕n
i=0Hi
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Consider ∪p≤n
{

Ip ( f ) : f ∈ Ep
}

. This is a subset of P0
n and so it is a subset of⊕n

i=0Hi.
Now for h ∈ L2 (T n) , it was shown above that there exists a sequence gk → h in L2 (T n)
where each hk ∈ En. Then In (gk)→ In (h). In particular, if h ∈ L2 (T )≡ H, then there is a
sequence gk ∈ E1 such that gk→ h in L2 (T ) . Then clearly

E
(
|W (gk)−W (h)|2

)
= E

(
|W (gk−h)|2

)
= ∥gk−h∥2

L2(T )→ 0

and so each polynomial p(W (h1) , · · · ,W (hk)) can be approximated in L2 (Ω) by one
which is of the form p(W (g1) , · · · ,W (gk)) where each g j ∈ E1. Corresponding to each
g j there is a list of disjoint sets. Now consider the union of all the sets just described and
let {Ak} be a partition of this union such that the Ak are pairwise disjoint and for each j,
every set corresponding to g j is partitioned by a subset of the {Ak}. Thus

g j = ∑
i

ciXBi = ∑
i

ci

m j

∑
s=1

XAi
s

where Bi is partitioned by the Ai
s. Then consider p(g1, · · · ,gk) . Then the terms of degree m

are of the form
pm ≡∑

i
ciXAi1×···×Aim

(68.3.21)

where the Aik come from the list of disjoint sets {Ak}. The terms of degree m in

p(W (g1) , · · · ,W (gk))

are also of the form

pm (W (g1) , · · · ,W (gk))≡∑
i

ci ∏
k

W
(
Aik

)
The problem is that 68.3.21 is not in Em because it is not known whether ci = 0 if

two indices are repeated. However, as explained in the proof of Lemma 68.3.11 there is a
further partition such that the contribution of those terms corresponding to i in which two
indices are repeated can be made as small as desired. Therefore, the terms of order m are
approximated in L2 (T m) by gm ∈ Em. Assume this approximation is good enough that,
from the estimates given above in Lemma 68.3.9,

E
(
|Im (gm)− pm (W (g1) , · · · ,W (gk))|2

)1/2
<

ε

n+1

Thus, taking a succession of partitions if necessary,

E

∣∣∣∣∣p(W (g1) , · · · ,W (gk))−
n

∑
m=0

Im (gm)

∣∣∣∣∣
2
1/2

≤
n

∑
m=1

E
(
|Im (gm)− pm (W (g1) , · · · ,W (gk))|2

)1/2
<

n

∑
m=1

ε

n+1
< ε.

This has proved the following lemma.
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Lemma 68.3.14 Let n be given. Then ∪p≤n
{

Ip ( f ) : f ∈ Ep
}

is dense in Pn = ⊕n
i=0Hi.

Consequently, every f ∈ L2 (Ω,F ) may be written as an infinite sum

f =
∞

∑
k=1

ckIk (gk)

where gk ∈ Ek and it can also be assumed that gk is symmetric.

Proof: It only remains to verify that gk can be symmetric. However, this is obvious
because if gk is replaced with g̃k the integral Ik is unchanged. ■

68.4 The Skorokhod Integral
This integral allows for one to obtain a stochastic integral of functions which are not
adapted. It is a generalization of the Ito integral. There is also a strange sort of deriva-
tive which can be defined and the two are related in a natural way.

68.4.1 The Derivative
Let F : Rn→ R be smooth and have polynomial growth. Then consider

F (W (h1) , · · · ,W (hn))

where W is defined above. Recall that h ∈ H a separable real Hilbert space and W (h) ∈
L2 (Ω,F ,P) where F = σ (W (h) ,h ∈ H). Also (W (h1) , · · · ,W (hn)) is multivariate nor-
mal and E (W (g)W (h)) = (h,g)H .

Definition 68.4.1 In the above situation,

DF ≡
n

∑
k=1

DkF (W (h1) , · · · ,W (hn))hk

Thus from Lemma 64.6.4, F, DkF are in Lp (Ω) and so DF is in Lp (Ω;H) for every p.

First it is good to consider whether DF is well defined.

Lemma 68.4.2 The derivative is well defined. Also, if F (W (h1) , · · · ,W (hn)) = 0 for
{h1, · · · ,hn} independent, then for all x,F (x) = 0.

Proof: Suppose
F (W (h1) , · · · ,W (hn)) = 0.

Is it true that DF = 0? Let λ be the distribution measure of (W (h1) , · · · ,W (hn))≡W(h) .
Then the above requires that for any ball B in Rn,

E
(
XB (W(h))F2 (W(h))

)
=
∫

B
F2 (x)dλ (x) = 0
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If {h1, · · · ,hn} is independent, then λ has a normal density function and λ ≪ mn and so
F2 (x) = 0 for a.e. x. Since F is smooth, this means that F = 0 everywhere. Hence DkF = 0
and so DF = 0. Thus the case where the hi are independent is easy.

Next suppose without loss of generality that a basis for

span(h1, · · · ,hn)

is
{h1, · · · ,hr}

where r < n. Say hk = ∑
r
i=1 ck

i hi for k > r. Then

0 = F

(
W (h1) , · · ·W (hr) ,W

(
r

∑
i=1

cr+1
i hi

)
· · ·W

(
r

∑
i=1

cn
i hi

))

= F

(
W (h1) , · · ·W (hr) ,

r

∑
j=1

cr+1
j W (h j) · · ·

r

∑
j=1

cn
jW (h j)

)
≡ G(W (h1) , · · ·W (hr))

and so in terms of {h1, · · · ,hr} ,

DF =
r

∑
i=1

(DiF)hi +
n

∑
i=r+1

(DiF)

=hi︷ ︸︸ ︷
r

∑
j=1

ci
jh j

=
r

∑
j=1

(D jF)h j +
r

∑
j=1

n

∑
i=r+1

(DiF)ci
jh j

=
r

∑
j=1

(
D jF +

n

∑
i=r+1

(DiF)ci
j

)
h j

Now it was just shown that G(x) is identically 0 and so D jG = 0, j ≤ r. So what is D jG?
From the above, it equals

D jF +
n

∑
i=r+1

(DiF)ci
j = 0

Hence DF = 0. Now if F (W (h1) , · · · ,W (hn)) = G(W (k1) , · · · ,W (km)) , then F−G = 0
and so from what was just shown, D(F−G) = DF−DG = 0. Thus the derivative is well
defined. ■

Lemma 68.4.3 Let P denote the set of all polynomials in W (h) for h ∈ H. Then P is
dense in Lp (Ω).

Proof: Let g ∈ Lp′ (Ω) and suppose that for every f ∈ D,
∫

Ω
g f dP = 0. Does it follow

that g = 0? If so, then by the Riesz representation theorem, P is dense in Lp (Ω). From



2340 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATION

Lemma 64.6.4, for a given h, there is a sequence of functions of P,{ fn} which converges
to eW (h) in Lp (Ω). It follows that∫

Ω

geW (h)dP = lim
n→∞

∫
Ω

g fndP = 0

Hence by Lemma 64.6.5 it follows that g = 0. Hence P is dense in Lp (Ω). ■
Let D1,p denote the closure in Lp (Ω) of functions in P with respect to the seminorm

∥ f∥1,p ≡
(
∥ f∥p

Lp(Ω)
+∥D f∥p

Lp(Ω,H)

)1/p

By this we mean the following. The above ∥ f∥1,p makes perfect sense for every f ∈P and
is algebraically like a norm. Thus it makes P into a normed linear space. D1,p is just the
completion of this normed linear space. Then for f ∈D1,p, we define D f ≡ limn→∞ D fn in
Lp (Ω,H) where fn ∈P .

68.4.2 The Integral
The derivative has been defined above. Now here is the definition of the integral defined on
functions in Lp′ (Ω,H), possibly not all of them.

Definition 68.4.4 We say a random variable F is “smooth” if it is of the form F (ω) =
F (W (h1) , · · ·W (hr)) where x→ F (x) is a smooth function of the real variables xi. It has
polynomial growth if

|F (x)|(
1+ |x|2

)m

is bounded for some positive integer m. Let u ∈ Lp′ (Ω,H) . Then u ∈ D(δ ) if for all F
smooth having polynomial growth in the W (h) ,

|E ⟨DF,u⟩| ≤C (u)∥F∥Lp(Ω)

Then δu ∈ Lp′ (Ω) is defined by

E ⟨DF,u⟩ ≡ E (Fδu)

Thus you have δ is the adjoint of D.

Lp′ (Ω)
δ← D(δ )⊆ Lp′ (Ω,H)

Lp (Ω)⊇ D(D)
D→ Lp (Ω,H)

Next it is shown that there are functions in D(δ ) by giving examples of them. It turns
out that functions of the form ∑i Fihi where Fi is smooth with polynomial growth are in
D(δ ). Consider

E ⟨DG,F (W (h1) , · · · ,W (hn))h⟩
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where G = G(W (k1) , · · · ,W (kp)) and for simplicity, ∥h∥H = 1.
Consider the vectors

{
h,h1, · · · ,hn,k1, · · · ,kp

}
. Starting with the left and moving to-

ward the right, delete vectors which are dependent on the preceding vectors, obtaining a
linearly independent set of vectors which includes h. Then let

{
h,e1, · · · ,eq

}
be an or-

thonormal basis having the same span as the original vectors
{

h,h1, · · · ,hn,k1, · · · ,kp
}

.
Then from the fact that W is linear, there are smooth functions having polynomial growth
Ĝ, F̂ such that

G(W (k1) , · · · ,W (kp)) = Ĝ(W (h) ,W (e1) , · · · ,W (eq))

F (W (h1) , · · · ,W (hn)) = F̂ (W (h) ,W (e1) , · · · ,W (eq))

Note that hi = ∑
q
j=1 (hi,e j)e j +(hi,h)h. Thus

F (W (h1) , · · · ,W (hn)) =

F

(
W

(
q

∑
j=1

(h1,e j)e j +(h1,h)h

)
, · · · ,W

(
q

∑
j=1

(hn,e j)e j +(hn,h)h

))

= F

(
q

∑
j=1

(h1,e j)W (e j)+(h1,h)W (h) , · · · ,
q

∑
j=1

(hn,e j)W (e j)+(hn,h)W (h)

)
and so, D1F̂ is given by

D1F̂ =
n

∑
i=1

Di (F (W (h1) , · · · ,W (hn)))(hi,h)

Then by Lemma 68.4.2

E ⟨DG,F (W (h1) , · · · ,W (hn))h⟩= E
〈
DĜ, F̂h

〉
= E

〈
D1
(
Ĝ
)

h+
q

∑
k=1

Dk
(
Ĝ
)

ek, F̂h

〉
= E

(
D1
(
Ĝ
)

F̂
)

=
1(√

2π
)q+1

∫
Rq

∫
R

D1Ĝ(x) F̂ (x)e−
1
2 |x|

2
dx1dx̂1

=
−1(√
2π
)q+1

∫
Rq

∫
R

Ĝ(x)D1

(
F̂ (x)e−

1
2 |x|

2
)

dx1dx̂1

=
−1(√
2π
)q+1

∫
Rq

∫
R

Ĝ(x)
((

D1F̂
)
(x)e−

1
2 |x|

2
− F̂ (x)x1e−

1
2 |x|

2
)

dx1dx̂1

= E
((

F̂W (h)−D1F̂
)

Ĝ
)
= E

((
FW (h)−

n

∑
i=1

Di (F)(hi,h)

)
G

)
Thus Fh ∈ D(δ ) and

δ (Fh) = FW (h)−
n

∑
i=1

Di (F)(hi,h)
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Since δ is an adjoint map, it is clearly linear. Hence, if h is arbitrary, h ̸= 0 of course,

δ (Fh) = ∥h∥δ

(
F
(

W (h)
∥h∥

))
= ∥h∥F

W (h)
∥h∥

−∥h∥
n

∑
i=1

Di (F)

(
hi,

h
∥h∥

)
= FW (h)−

n

∑
i=1

Di (F)(hi,h)H = FW (h)−⟨DF,h⟩ (68.4.22)

Note how this looks just like integration by parts. More generally,

δ

(
m

∑
j=1

Fjh j

)
=

m

∑
j=1

δ (Fjh j) =
m

∑
j=1

FjW (h j)−
〈
DFj,h j

〉
Are functions like ∑

m
j=1 Fjh j where Fj is a polynomial in variables of the form W (h)

dense in Lp (Ω,H)? It was shown earlier in Lemma 68.4.3 that polynomial functions F in
the W (h) are dense in Lp (Ω) for any p. Let s(ω) = ∑

n
k=1 hkXEk be a simple function.

Then XEk is clearly in Lp (Ω) and so there exists Fk a polynomial in the W (h) which is
as close as desired to XEk in Lp. Hence ∑

n
k=1 hkFk is close to s in Lp (Ω,H) and so since

these simple functions are dense, it follows that these kinds of functions are indeed dense in
Lp (Ω,H), this for any p > 1. The above discussion is summarized in the following lemma.

Lemma 68.4.5 Functions of the form ∑
n
k=1 Fkhk where Fk is a polynomial in the W (h)

(Fj ∈P) are dense in Lp (Ω,H) for any p > 1. Also each function of this form is in Dδ

and

δ

(
m

∑
j=1

Fjh j

)
=

m

∑
j=1

δ (Fjh j) =
m

∑
j=1

FjW (h j)−
〈
DFj,h j

〉
What does D do to δ (Fh)? It is shown above that δ (Fh) = FW (h)− ⟨DF,h⟩ . Say

F = F (W (h1) , · · · ,W (hn)) . Then when you do D to δ (Fh), you would get

Fh+
n

∑
k=1

Dk (F)W (h)hk−
n

∑
k=1

n

∑
j=1

D j (Dk (F))h j (hk,h)

In other words,
Fh+W (h)D(F)−D⟨DF,h⟩

Recall that DG is well defined. This means that we can replace {h1, · · · ,hn,h} with an
orthonormal basis

{
e1, · · · ,ep,h

}
as in

G(W (h1) , · · · ,W (hn) ,W (h)) = Ĝ(W (e1) , · · · ,W (ep) ,W (h))

where we assume ∥h∥= 1 for simplicity. Thus the above equals

D(δ (F)) = D
(
δ
(
F̂
))

= F̂h+W (h)D
(
F̂
)
−D

〈
DF̂ ,h

〉
Now consider E

(
δ (Fh)2

)
= E ⟨D(δ (Fh)) ,Fh⟩ . Thus the following must be considered.

E
〈
F̂h+W (h)D

(
F̂
)
−D

〈
DF̂ ,h

〉
, F̂h

〉
(68.4.23)
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Consider the terms involved. The first term is just E
(∥∥F̂h

∥∥2
H

)
= E

(
∥Fh∥2

H

)
. Now con-

sider the third term. It equals

−E
(
D
(
Dp+1

(
F̂
))

, F̂h
)
=−E

(
D2

p+1
(
F̂
)

F̂
)

=
−1(√
2π
)p+1

∫
Rp

∫
R

D2
p+1
(
F̂ (x)

)
F̂ (x)e−

1
2 |x|

2
dxp+1dx̂p+1

=
1(√

2π
)p+1

∫
Rp

∫
R

Dp+1
(
F̂ (x)

)
Dp+1

(
F̂ (x)

)
e−

1
2 |x|

2
dxp+1dx̂p+1

− 1(√
2π
)p+1

∫
Rp

∫
R

Dp+1
(
F̂ (x)

)(
xp+1F̂ (x)

)
e−

1
2 |x|

2
dxp+1dx̂p+1

= E
((

Dp+1F̂
)2
)
−E

(
W (h)Dp+1

(
F̂
)

F̂
)

= E
((

Dp+1F̂
)2
)
−E

(
W (h)D

(
F̂
)
, F̂h

)
Hence 68.4.23 reduces to

E
(∥∥F̂h

∥∥2
)
+E

((
Dp+1F̂

)2
)

= E
(∥∥F̂h

∥∥2
)
+E

(〈
D
(
F̂
)
,h
〉2
)

= E
(
∥Fh∥2

)
+E

(
⟨D(F) ,h⟩2

)
This assumed that ∥h∥= 1. For arbitrary nonzero h,

E
(

δ (Fh)2
)

= ∥h∥2 E

(
δ

(
F

h
∥h∥

)2
)

= ∥h∥2

(
E

(∥∥∥∥F
h
∥h∥

∥∥∥∥2
)
+E

(〈
D(F) ,

h
∥h∥

〉2
))

= E
(
∥Fh∥2

)
+E

(
⟨D(F) ,h⟩2

)
Next consider a generalization, u = ∑

m
j=1 Fjh j where the

{
h j
}

is an orthonormal set of
vectors. Say Fj = Fj

(
W (k1) , · · · ,W

(
kn j

))
. Let

{
h1, · · · ,hm,e1, · · · ,ep

}
= {gi}m+p

i=1 be an
orthonormal basis for the span of all the h j and ki. Thus gi = hi for i≤ m. Then let

Fj
(
W (k1) , · · · ,W

(
kn j

))
= F̂j (W (h1) , · · · ,W (hm) ,W (e1) , · · · ,W (ep))

The computations will be done with respect to this orthonormal set because it will be sim-
pler. Also, the above argument using the density function for the normal distribution will
be used without explicitly repeating it.

It is desired to consider E
(

δ (u)2
)

. Recall that

D(δ (Fh)) = Fh+W (h)D(F)−D⟨DF,h⟩ .
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Thus E
(

δ (u)2
)
=

m

∑
j,k=1

E
(
δ
(
F̂jh j

)
δ
(
F̂khk

))
=

m

∑
j,k=1

E
(〈

D
(
δ
(
F̂jh j

))
,
(
F̂khk

)〉)
m

∑
j,k=1

E
(〈

F̂jh j +W (h j)D
(
F̂j
)
−D

〈
DF̂j,h j

〉
,
(
F̂khk

)〉)
Separating out the first term this is

= E

(
m

∑
k=1

∥∥F̂k
∥∥2

)
+∑

k,k
E
(〈

W (h j)D
(
F̂j
)
, F̂khk

〉)
−∑

j,k
E
(
Dk
(
D jF̂j

)
Fk
)

= E

(
m

∑
k=1

∥∥F̂k
∥∥2

)
+∑

k,k
E
(〈

W (h j)D
(
F̂j
)
, F̂khk

〉)
−∑

j,k
E
(
Dk
(
D jF̂j

)
F̂k
)

= E

(
m

∑
k=1

∥∥F̂k
∥∥2

)
+∑

k,k
E
(
W (h j)Dk

(
F̂j
)

F̂k
)

−∑
j,k

E
(
Dk
(
D jF̂j

)
F̂k
)

(68.4.24)

By equality of mixed partial derivatives, the third term equals

−∑
j,k

E
(
D j
(
DkF̂j

)
F̂k
)
= ∑

j,k
E
((

DkF̂j
)(

D jF̂k
))
−∑

j,k
E
(
Dk
(
F̂j
)

F̂kW (h j)
)

Therefore, 68.4.24 reduces to

E

δ

(
m

∑
j=1

Fjh j

)2
 = E

(
m

∑
k=1

∥∥F̂k
∥∥2

H

)
+

m

∑
j,k=1

E
((

DkF̂j
)(

D jF̂k
))

= E

(
m

∑
k=1

∥∥F̂k
∥∥2

H

)
+

m

∑
j,k=1

E
(〈

DF̂j,hk
〉〈

DF̂k,h j
〉)

= E

(
m

∑
k=1
∥Fk∥2

H

)
+

m

∑
j,k=1

E
(〈

DFj,hk
〉〈

DFk,h j
〉)

because the derivative is well defined. All of this assumes the hk form an orthonormal set.
Suppose these are just orthogonal but nonzero. Then

E

δ

(
m

∑
j=1

Fjh j

)2
= E

( m

∑
j=1

δ (Fjh j)

)2
= E

(
∑
j,k

δ (Fjh j)δ (Fkhk)

)
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= E

(
∑
j,k

∥∥h j
∥∥∥hk∥δ

(
Fjh j/

∥∥h j
∥∥)δ (Fkhk/∥hk∥)

)
and doing exactly the same steps but keeping the factor

∥∥h j
∥∥∥hk∥ throughout, this yields

E

(
m

∑
k=1
∥hk∥2 ∥Fk∥2

H

)
+

m

∑
j,k=1

E
(∥∥h j

∥∥∥hk∥
〈
DFj,hk/∥hk∥

〉〈
DFk,h j/

∥∥h j
∥∥〉)

= E

(
m

∑
k=1
∥Fkhk∥2

H

)
+

m

∑
j,k=1

E
(〈

DFj,hk
〉〈

DFk,h j
〉)

= E

∥∥∥∥∥ m

∑
k=1

Fkhk

∥∥∥∥∥
2

H

+
m

∑
j,k=1

E
(〈

DFj,hk
〉〈

DFk,h j
〉)

It appears from the computations to be correct, but it does not look right. This is
because the second term is not clearly nonnegative. It is the expectation of the trace of A2

where A is the matrix whose jkth entry is
〈
DFj,hk

〉
. One wonders whether the end result is

nonnegative.

68.4.3 The Ito And Skorokhod Integrals

If you let H = L2 (0,∞;U) where U is a separable Hilbert space, and if f ∈D(δ ) , it is very
natural to ask whether f X(0,t) ∈ D(δ ). This is not so. There is a counter example given
in [102]. However, this is true if you change the definition of the integral such that in the
definition of δ , it is only necessary for

|⟨DF,G⟩| ≤C∥F∥Lp(Ω)

where F is in P . When you see why this is so, it will be clear why it is not so for the
definition given above.

Lemma 68.4.6 Suppose the definition of the Skorokhod integral δ is changed so that it is
only necessary to have

|⟨DF,G⟩| ≤C∥F∥Lp(Ω)

for all F in P . Then let H ≡ L2 (0,∞;U) or L2 ([0,T ] ;U) where U is a separable real
Hilbert space. For this modified definition of the integral, if f ∈ D(δ ) , it follows that
f X(0,t) ∈ D(δ ).

Proof: The case L2 (0,∞;U) is considered here. The other case is similar. δ will be
defined on some things in L2

(
Ω,L2 (0,∞;U) ,F

)
where, as discussed earlier,

F = σ (W (h) : h ∈ H)

Then if you have f ∈ D(δ ) so f ∈ L2
(
Ω,L2 (0,∞;U)

)
, does it follow that f X[0,t] ∈ D(δ )

also? Let F be one of those polynomial functions of some W (h) . Assume first that a0, the
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constant term is 0 and consider

E
〈
DF, f X[0,t]

〉
≡ E

〈
∑
k

Dk (F)hk, f X[0,t]

〉

Since hk ∈ H = L2 (0,∞;U) , so is hkX[0,t]. Thus the above reduces to

= ∑
k

E
〈
Dk (F)hk, f X[0,t]

〉
= ∑

k
E
(∫

∞

0
Dk (F (W (h1) , · · ·W (hn)))hkX[0,t] f dt

)
Since F is just a polynomial and W is linear and X q

[0,t] = X[0,t], this equals

∑
k

E
(∫

∞

0
Dk
(
F
(
W
(
X[0,t]h1

)
, · · ·W

(
X[0,t]hn

)))
hkX[0,t] f dt

)
Let Ft = F

(
W
(
X[0,t]h1

)
, · · ·W

(
X[0,t]hn

))
and so the above is nothing more than

E
〈
DF, f X[0,t]

〉
= E ⟨DFt , f ⟩

and since f ∈ D(δ ) ,∣∣E 〈DF, f X[0,t]
〉∣∣= |E ⟨DFt , f ⟩| ≤C ( f )∥Ft∥L2(Ω)

Also

∥Ft∥2
L2(Ω) =

∫
Ω

F
(
W
(
X[0,t]h1

)
, · · ·W

(
X[0,t]hn

))2 dP

=
∫

Ω

X[0,t]F (W (h1) , · · ·W (hn))
2 dP

≤
∫

Ω

F (W (h1) , · · ·W (hn))
2 dP

Thus for such F which have zero constant term,∣∣E 〈DF, f X[0,t]
〉∣∣≤C∥F∥L2(Ω)

Now what if F is a constant a? In this case, DF = Da = 0∣∣E 〈Da, f X[0,t]
〉∣∣= 0≤ ∥a∥L2(Ω)

It follows that X[0,t] f ∈ D(δ ) whenever f is. ■
Note how it was essential in this argument to have F be a polynomial or perhaps more

generally an analytic function. However, in the definition of the Skorokhod integral, one
must test with functions F which are smooth and have polynomial growth. In particular,
this would include functions which are infinitely differentiable with compact support, none
of which have valid power series.
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How does the Skorokhod integral relate to the Ito integral? What about elementary
functions and so forth? Let 0 = t0 < t1 < · · ·< tn = T. Consider

n−1

∑
k=0

FkX(tk,tk+1)

As shown above, this is one of the things in D(δ ) .

δ

(
X(0,t)

n−1

∑
k=0

FkX(tk,tk+1)

)
= δ

(
n−1

∑
k=0

FkX[tk∧t,t∧tk+1]

)

=
n−1

∑
k=0

FkW
(
X[tk∧t,t∧tk+1]

)
−
〈

DFk,X[tk∧t,t∧tk+1]

〉
=

n−1

∑
k=0

Fk

(
W
(
X(0,t∧tk+1)

)
−W

(
X(0,t∧tk)

))
−
〈

DFk,X[tk∧t,t∧tk+1]

〉
In terms of the Wiener process, this is of the form

=
n−1

∑
k=0

Fk (W (t ∧ tk+1)−W (t ∧ tk))−
〈

DFk,X[0,t∧tk+1]−X[0,t∧tk]

〉
H

What if
Fk = Fk

(
W
(
X[0,tk]h1

)
, · · ·W

(
X[0,tk]hn

))
?

Let Ft ≡ σ
(
W
(
X[0,t]h

)
: h ∈ H

)
. Then this is clearly a filtration. If Fk is as just described,

then Fk is Ftk adapted.〈
DFk,X[0,t∧tk+1]−X[0,t∧tk]

〉
=
∫

∞

0
∑
s

Ds (Fk)X(0,tk)hsX(t∧tk,t∧tk+1) = 0

because the intervals are disjoint. In this case, the troublesome term at the end vanishes
and you are left with

n−1

∑
k=0

Fk (W (t ∧ tk+1)−W (t ∧ tk)) (68.4.25)

which is similar to the usual definition for the Ito integral.
What if F ∈ L2 (Ω× [0,T ]) and is progressively measurable. Does it have a Skorokhod

integral, and if so, is it the same as the Ito integral? Recall the following useful lemma. It
is Lemma 65.3.1 on Page 2231.

Lemma 68.4.7 Let Φ : [0,T ]×Ω→ E, be B ([0,T ])×F measurable and suppose

Φ ∈ K ≡ Lp ([0,T ]×Ω;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
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such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X[tk

j−1,t
k
j )
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Φ

(
tk

j

)
,Φ
(

tk
j−1

)
is in Lp (Ω;E). One can also assume that Φ(0) = 0. The mesh

points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we

can assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j =mnk when this is so, you could have
∣∣∣tk

j − tk
j−1

∣∣∣< 2−nk .

Theorem 68.4.8 Let F ∈ L2 (Ω× [0,T ]) and is progressively measurable. Then it has a
Skorokhod integral which coincides with the Ito integral.

Proof: From Lemma 68.4.7, there is a sequence of left step functions denoted here as{
F l

k

}∞

k=1 which converges to F in L2 (Ω× [0,T ]) where F l
k

(
tk

j

)
= F

(
tk

j

)
. We can take a

subsequence if necessary and assume∥∥∥F l
k −F

∥∥∥
L2([0,T ]×Ω)

< 2−k

Here the
{

tk
j

}
are mesh points corresponding to the kth partition described above. Thus

each F l
k

(
tk

j

)
is in L2 (Ω). By Lemma 68.4.3 there exists a random variable Gl

k

(
tk

j

)
which

is a polynomial function of some W (h) for h ∈ L2
(

0, tk
j

)
which can approximate F l

k

(
tk

j

)
as closely as desired in L2 (Ω). Then choosing these sufficiently close, it can be assumed
that the step functions

Gl
k ≡

mk−1

∑
j=0

Gl
k

(
tk

j

)
X(

tk
j ,t

k
j+1

)
also converge in L2 (Ω× [0,T ]) to F . Of course, each of these last step functions are in
D(δ ).

The idea is to show that δ
(
Gl

k

)
is Cauchy in L2 (Ω) as k→∞ and then use the fact that,

since δ is an adjoint, it must be a closed operator. This will show that F ∈ L2 (Ω× [0,T ]) ,
considered as a subspace of L2

(
Ω;L2 (0,∞,R)

)
, is in D(δ ) and δ (F) is equal to the above
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limit. Using 68.4.25 which comes from the fact that the functions are adapted to the given
filtration, ∥∥∥δ

(
X[0,T ]G

l
k

)
−δ

(
X[0,T ]G

l
k+1

)∥∥∥2

L2(Ω)

= E

(
mk+1−1

∑
j=0

(
Gl

k

(
tk+1

j+1

)
−Gl

k+1

(
tk+1

j

))(
W
(

tk+1
j+1

)
−W

(
tk+1

j

)))2

Consider a mixed term. To save on space, let ∆ j = Gl
k

(
tk+1

j+1

)
−Gl

k+1

(
tk+1

j

)
and say i < j.

Then
E
(
(∆ j)(∆i)

(
W
(

tk+1
j+1

)
−W

(
tk+1

j

))(
W
(

tk+1
i+1

)
−W

(
tk+1
i

)))
By independence of the increments for W, this is

E
(

W
(

tk+1
j+1

)
−W

(
tk+1

j

))
E
(
(∆ j)(∆i)

(
W
(

tk+1
i+1

)
−W

(
tk+1
i

)))
= 0

and so the above reduces to

mk+1−1

∑
j=0

E
(

∆
2
j

(
W
(

tk+1
j+1

)
−W

(
tk+1

j

))2
)

=
mk+1−1

∑
j=0

E
(
∆

2
j
)

E
((

W
(

tk+1
j+1

)
−W

(
tk+1

j

))2
)

=
mk+1−1

∑
j=0

E
((

Gl
k

(
tk+1

j+1

)
−Gl

k+1

(
tk+1

j

))2
)(

tk+1
j+1 − tk+1

j

)
= E

(∫ T

0

(
Gl

k−Gl
k+1

)2
dt
)
≤ 2

(
E
∫ T

0

(
Gl

k−F
)2

dt +E
∫ T

0

(
F−Gl

k+1

)2
dt
)

which is given to converge to 0 as k→ ∞. It follows that

X[0,T ]G
l
k→X[0,T ]F

in L2
(
Ω,L2 (0,∞,R)

)
by construction and δ

(
X[0,T ]Gl

k

)
is a Cauchy sequence in L2 (Ω) .

Therefore, it converges to something in L2 (Ω) and since δ is a closed operator, that which
it converges to is δ (F).

However, by the definition of the Ito integral, δ
(
X[0,T ]Gl

k

)
also converges to the Ito

integral
∫ T

0 FdW . ■
It follows that the Skorokhod integral is more general than the Ito integral but it gives

the Ito integral in the special case where the function is adapted. This also shows that
the progressively measurable functions in L2 ([0,T ]×Ω) are in D(δ ), but as shown above,
there are many other functions which are not progressively measurable but which are still
in D(δ ). Just consider, for example ∑

n
k=1 Fhk where F is just a polynomial in W (h) for

h ∈ L2 (0,∞;R).
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Chapter 69

Gelfand Triples
Let H be a separable real Hilbert space and let V ⊆ H be a separable Banach space which
is embedded continuously into H and which is also dense in H. Then identifying H and H ′

you can write
V ⊆ H = H ′ ⊆V ′.

This is called a Gelfand triple. If V is reflexive, you could conclude separability of V from
the separability of H. However, if V is not reflexive, this might not happen. For example,
you could take V = L∞ (0,1) and H = L2 (0,1).

Proposition 69.0.1 Suppose V is reflexive and a subset of H a separable Hilbert space
with the inclusion map continuous. Suppose also that V is dense in H. Then identifying H
and H ′, it follows that H is dense in V ′ and V is separable.

Proof: If H is not dense in V ′, then by the Hahn Banach theorem, there exists φ
∗∗ ∈V ′′

such that φ
∗∗ (H) = 0 but φ

∗∗ (φ ∗) ̸= 0 for some φ
∗ ∈ V ′ \H. Since V is reflexive there

exists v ∈V such that φ
∗∗ = Jv for J the standard mapping from V to V ′′. Thus

φ
∗∗ (h)≡ ⟨h,v⟩ ≡ (v,h)H = 0

for all h ∈ H. Therefore, v = 0 and so Jv = 0 = φ
∗∗ which contradicts φ

∗∗ (φ ∗) ̸= 0.
Therefore, H is dense in V ′. Now by Theorem 21.1.16 which says separability of the dual
space implies separability of the space, it follows V is separable as claimed. This proves
the proposition.

From now on, it is assumed V and V ′ are both separable and that H is dense in V ′. This
is summarized in the following definition.

Definition 69.0.2 V,H,V ′ will be called a Gelfand triple if V,V ′ are separable, V ⊆H with
the inclusion map continuous, H = H ′, and H = H ′ is dense in V ′.

What about the Borel sets on V and H?

Proposition 69.0.3 Denote by B (X) the Borel sets of X where X is any separable Banach
space. Then

B (X) = σ
(
X ′
)
.

Here σ (X ′) is the smallest σ algebra such that each φ ∈ X ′ is measurable. Also in the
context of the above definition, B (V ) = σ (i∗H ′) because H ′ is dense in V ′. Here i∗ is
the restriction to V so that i∗h(v) ≡ h(v) ≡ (h,v)H for all v ∈ V and σ (i∗H ′) denotes the
smallest σ algebra such that i∗h is measurable for each h ∈ H ′.

Proof: By Lemma 21.1.6 there exists a countable subset of the unit ball in X ′

{φ n}
∞

n=1 = D′

such that
||v||X = sup

{
|φ (v)| : φ ∈ D′

}
.

2351
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Consider a closed ball B(v0,r) in X . This equals{
v ∈ X : sup

n
|φ n (v)−φ n (v0)| ≤ r

}
= ∩∞

n=1φ
−1
n

(
B(φ n (v0) ,r)

)
and this last set is in σ (D′). Therefore, every closed ball is in σ (D′) which implies every
open ball is also in σ (D′) since open balls are the countable union of closed balls. Since
X is separable, it follows every open set is the countable union of balls and so every open
set is in σ (D′). It follows B (X) ⊆ σ (D′) ⊆ σ (X ′). On the other hand, every φ ∈ X ′ is
continuous and so it is Borel measurable. Hence σ (X ′)⊆B (X).

Now consider the last claim. From Lemma 21.1.6 and density of H ′ = H in V ′, it can
be assumed D′ ⊆ H = H ′. Therefore, from the first part of the argument

B (V )⊆ σ
(
D′
)
⊆ σ

(
i∗H ′

)
Also each i∗h is continuous on V so in fact, equality holds in the above because σ (i∗H ′)⊆
B (V ). This proves the proposition.

Next I want to verify that V is in B (H). This will be true if V is reflexive. More
generally, here is an interesting result.

Proposition 69.0.4 Let X ⊆Y, X dense in Y and suppose X, Y are Banach spaces and that
X is reflexive. Then X ∈B (Y ).

Proof: Define the functional

φ (x)≡
{
||x||X if x ∈ X
∞ if x ∈ Y \X

Then φ is lower semicontinuous on Y . Here is why. Suppose (x,a) /∈ epi(φ) so that a <
φ (x) . I need to verify this situation persists for (x,b) near (x,a). If this is not so, there
exists xn→ x and an→ a such that an ≥ φ (xn) . If liminfn→∞ φ (xn)< ∞, then there exists a
subsequence still denoted by n such that ||xn||X is bounded. Then by the Eberlein Smulian
theorem, there exists a further subsequence such that xn converges weakly in X to some
z. Now since X is dense in Y it follows Y ′ can be considered a subspace of X ′ and so for
f ∈ Y ′

f (xn)→ f (z) , f (xn)→ f (x)

and so f (z− x) = 0 for all f ∈Y ′ which requires z = x. Now x→ ||x||X is convex and lower
semicontinuous on X so it follows from Corollary 18.2.12

a = lim inf
n→∞

an ≥ lim inf
n→∞

φ (xn)≥ φ (x)> a

which is a contradiction. If liminfn→∞ φ (xn) = ∞, then

∞ > a = lim inf
n→∞

an = ∞

another contradiction. Therefore, epi(φ) is closed and so φ is lower semicontinuous as
claimed. Therefore,

X = Y \
(
∩∞

n=1φ
−1 ((n,∞))

)
and since φ is lower semicontinuous, each φ

−1 ((n,∞)) is open. Hence X is a Borel subset
of Y . This proves the proposition.
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69.1 An Unnatural Example
Recall Gelfand triples are of the form

V ⊆ H ⊆V ′

where H is a Hilbert space and V is a Banach space contained in H and each of the above
inclusions is continuous and each space is dense in the next one. The standard example of
a Gelfand triple is H1

0 (D) ⊆ L2 (D) ⊆
(
H1

0 (D)
)′ with the convention that L2 (D) is identi-

fied with its dual space. Thus for f ∈ L2 (D) , f is considered as something in
(
H1

0 (D)
)′

according to the rule
⟨ f ,φ⟩ ≡ ( f ,φ)L2(D)

This is a very pleasant thing to contemplate and it is natural and transparent. However,
there are other ways to come up with a Gelfand triple which are much more perverse. The
following is an example of such a thing along with an application. See [108] and references
given there.

First consider the following situation.

X θ→ Y

where θ is continuous, linear and one to one and X is a Banach space. Then θ (X)⊆Y and
you could define

||θx||
θ(X) ≡ ||x||X .

Then θ (X) can be considered the same thing as X because θ preserves distances and all
algebraic properties. Thus people write X ⊆Y to save space. In the above simple example,
it is obvious what θ is. This is because the things in H1

0 and things in L2 are both functions
defined on D and we can simply take θ to be the identity map. However, you might have H
be the dual space of something. Thus it consists of bounded linear transformations defined
on some Banach space. Then it becomes necessary to specify the manner in which vectors
in V can be considered as vectors of H.

Let ∞ > p ≥ 2. Then letting D be a bounded open set, H1
0 (D) embedds continuously

into Lp′ (D). That is
||φ ||Lp′ ≤C ||φ ||H1

0
. (69.1.1)

Here 1
p′ +

1
p = 1. Also note that an equivalent inner product on H1

0 (D) is

( f ,g)H1
0
≡
∫

D
∇ f ·∇gdx

Then with respect to this inner product, the Riesz map is given by −∆.

−∆ : H1
0 (D)→

(
H1

0 (D)
)′

Thus a typical vector of
(
H1

0 (D)
)′ is of the form−∆φ where φ ∈H1

0 (D) and the following
hold.

(φ ,ψ)H1
0
≡ ⟨−∆φ ,ψ⟩ , (−∆φ ,−∆ψ)

(H1
0 )
′ ≡ (φ ,ψ)H1

0
= ⟨−∆ψ,φ⟩
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The following is about the Gelfand triple

V = Lp (D)⊆
(
H1

0
)′ ⊆ (Lp (D))′

Lemma 69.1.1 It is possible to consider Lp (D)≡V as a dense subspace of
(
H1

0
)′ ≡H as

follows. For f ∈ Lp (D) and φ ∈ H1
0 (D) ,

⟨ f ,φ⟩ ≡
∫

D
f (x)φ (x)dx

One can also consider H ≡
(
H1

0
)′ as a dense subspace of (Lp (D))′ ≡ V ′ as follows. For

−∆φ ∈ H and f ∈ Lp (D) ,

⟨−∆φ , f ⟩ ≡ (−∆φ , f )H ≡ ⟨ f ,φ⟩

−∆ maps H1
0 (D) to H ≡

(
H1

0
)′ ⊆V ′.−∆ can be extended to yield a map−∆1 from Lp′ (D)

to V ′.

H1
0 (D)

−∆→
(
H1

0
)′

Lp′ (D) =V
−∆1→ V ′

Proof: First of all, note that by 69.1.1

|⟨ f ,φ⟩| ≤ || f ||Lp ||φ ||Lp′ ≤C || f ||Lp ||φ ||H1
0

and so it is certainly possible to consider Lp ⊆ H ≡
(
H1

0
)′ as just claimed. Now why

can Lp (D) be considered dense in H ≡
(
H1

0
)′? If it isn’t dense, then there exists ψ ∈

H1
0 (D) ,ψ ̸= 0 such that

(−∆ψ, f )H = 0

for all f ∈ Lp (D) . However, the above would say that for all f ∈ Lp,

(−∆ψ, f )H ≡ ⟨ f ,ψ⟩ ≡
∫

D
f ψ = 0

But ψ ∈ Lp′ (D) because H1
0 (D) embedds continuously into Lp′ (D) and so the above hold-

ing for all f ∈ Lp (D) implies by the usual Riesz representation theorem that ψ = 0 contrary
to the way ψ was chosen.

Now consider the next claim. For −∆φ ∈ H ≡
(
H1

0
)′ and f ∈ Lp (D) and from the first

part
|⟨−∆φ , f ⟩| ≡ |(−∆φ , f )H | ≡ |⟨ f ,φ⟩| ≤C || f ||Lp ||φ ||H1

0 (D)

Thus −∆φ ∈ H can be considered in (Lp (D))′ . Why should H be dense in (Lp (D))′? If it
is not dense, then there exists g∗ ∈ (Lp (D))′ which is not the limit of vectors of H. Then
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since Lp (D) is reflexive, an application of the Hahn Banach theorem shows there exists
f ∈ Lp (D) such that

⟨g∗, f ⟩(Lp(D))′,Lp(D) ̸= 0, ⟨−∆φ , f ⟩(Lp(D))′,Lp(D) = 0 (69.1.2)

for all −∆φ ∈ H. However, it was just shown H could be considered a subset of (Lp (D))′

in the manner described above. Therefore, the last equation in the above is of the form

0 = (−∆φ , f )H = ⟨ f ,φ⟩=
∫

D
f φdx

and since this holds for all φ ∈ H1
0 (D) , it follows by density of H1

0 (D) in Lp′ (D) , that
f = 0 and now this contradicts the inequality in 69.1.2.

Now ∆ is defined on H1
0 (D) and it delivers something in

(
H1

0
)′ ≡H. Of course H1

0 (D)

is dense in Lp′ (D). Can ∆ be extended to all of Lp′ (D)? The answer is yes and it is more
of the same given above. For φ ∈ H1

0 (D) ,−∆φ ∈ H ⊆ (Lp (D))′ . Then by the above, for
φ ∈ H1

0 (D) and f ∈ Lp (D) ,

⟨−∆φ , f ⟩ ≡ ⟨ f ,φ⟩ ≡
∫

D
f φdx

|⟨−∆φ , f ⟩| ≡ |⟨ f ,φ⟩| ≡
∣∣∣∣∫D

f φds
∣∣∣∣≤ ||φ ||Lp′ (D)

|| f ||Lp(D)

and so −∆ is a continuous linear mapping defined on a dense subspace H1
0 (D) of Lp′ (D)

and so this does indeed extend to a continuous linear map defined on all of Lp′ (D) given
by the formula

⟨−∆g, f ⟩ ≡
∫

D
f gdx

This proves the lemma.
Thus letting V ≡ Lp (D) , and H ≡

(
H1

0 (D)
)′
, it follows V ⊆H ⊆V ′ is a Gelfand triple

with the understanding of what it means for one space to be included in another described
above. To emphasize the above, for −∆φ ∈ H, f ∈ Lp,

⟨−∆φ , f ⟩ ≡ (−∆φ , f )H ≡ ⟨ f ,φ⟩ ≡
∫

D
f φdx

More generally, for g ∈ Lp′ (D) ,−∆g ∈ (Lp (D))′ according to the rule

⟨−∆g, f ⟩ ≡
∫

D
f gdx.

With this example of a Gelfand triple, one can define a “porous medium operator”
A : V →V ′. Let Ψ be a real valued function defined on R which satisfies

Ψ is continuous (69.1.3)

(t− s)(Ψ(t)−Ψ(s))≥ 0 (69.1.4)
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There exists p≥ 2, p < ∞ and α ∈ (0,∞) such that for all s ∈ R

sΨ(s)≥ α |s|p− c (69.1.5)

There exist c3,c4 ∈ (0,∞) such that for all s ∈ R

|Ψ(s)| ≤ c4 + c3 |s|p−1 (69.1.6)

Note that 69.1.6 implies that if v ∈ Lp (D) , Then∫
D
|Ψ(v)|p

′
dx≤C

∫
D

(
1+ |v|p

′(p−1)
)

dx =C
∫

D
(1+ |v|p)dx < ∞.

Thus for v ∈ Lp (D) ,Ψ(v) is something you can do ∆ to and obtain something in V ′. The
porous medium operator A : V →V ′ is given as follows.

⟨Av,w⟩V ′,V ≡ ⟨∆Ψ(v) ,w⟩V ′,V ≡−
∫

D
Ψ(v)wdx

What are the properties of A?

⟨A(u+λv) ,w⟩ ≡ −
∫

D
Ψ(u+λv)wdx

and this is easily seen to be a continuous function of λ Thus A is Hemicontinuous.

⟨A(u)−A(v) ,u− v⟩ ≡ −
∫

D
Ψ(u)(u− v)dx+

∫
D

Ψ(v)(u− v)dx≤ 0

Thus −A is monotone. Also there is a coercivity estimate which is routine.

⟨A(v) ,v⟩ ≡ −
∫

D
Ψ(v)v≤

∫
D

c−α |v|p dx =C−α ||v||pV

This operator also has a boundedness estimate.

||A(v)||V ′ ≡ sup
||w||V≤1

|⟨A(v) ,w⟩| ≡ sup
||w||V≤1

∣∣∣∣∫D
Ψ(v)w

∣∣∣∣
≤ sup
||w||V≤1

(∫
D

(
c4 + c3 |v|p−1

)
wdx

)

≤
(∫

D
C (1+ |v|p)dx

)1/p′

≤C+C
(∫

D
|v|p dx

)1/p′

= C+C ||v||p/p′
V =C+C ||v||p−1

V .

Since Ψ is continuous, it will also follow that A is B (V ) measurable. Consider

u→ ⟨Au,w⟩ ≡ −
∫

D
Ψ(u)wdx
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for fixed w ∈ V . Suppose un → u in V and fix w ∈ L∞ (D) ⊆ V . Then it follows from an
easy argument using the Vitali convergence theorem and the fact that from the estimates
above

Ψ(un)w

is uniformly integrable that

u→−
∫

D
Ψ(u)wdx

is continuous. For general w ∈ Lp (D) , let wn→ w in Lp (D) where each wn is in L∞ (D).
Then the function

u→−
∫

D
Ψ(u)wdx≡ ⟨Au,w⟩ (69.1.7)

is the limit of the continuous functions

u→−
∫

D
Ψ(u)wndx

and so the function 69.1.7 is Borel measurable. Now by the Pettis theorem this shows
A : V →V ′ is B (V ) measurable. This shows A is an example of an operator which satisfies
some conditions which will be considered later.

69.2 Standard Techniques In Evolution Equations
In this section, several significant theorems are presented. Unless indicated otherwise, the
measure will be Lebesgue measure. First here is a lemma.

Lemma 69.2.1 Suppose g∈ L1 ([a,b] ;X) where X is a Banach space. If
∫ b

a g(t)φ (t)dt = 0
for all φ ∈C∞

c (a,b) , then g(t) = 0 a.e.

Proof: Let E be a measurable subset of (a,b) and let K ⊆ E ⊆ V ⊆ (a,b) where K
is compact, V is open and m(V \K) < ε. Let K ≺ h ≺ V as in the proof of the Riesz
representation theorem for positive linear functionals. Enlarging K slightly and convolving
with a mollifier, it can be assumed h ∈C∞

c (a,b) . Then∣∣∣∣∫ b

a
XE (t)g(t)dt

∣∣∣∣ =

∣∣∣∣∫ b

a
(XE (t)−h(t))g(t)dt

∣∣∣∣
≤

∫ b

a
|XE (t)−h(t)| ||g(t)||dt

≤
∫

V\K
||g(t)||dt.

Now let Kn ⊆ E ⊆Vn with m(Vn \Kn)< 2−n. Then from the above,∣∣∣∣∫ b

a
XE (t)g(t)dt

∣∣∣∣≤ ∫ b

a
XVn\Kn (t) ||g(t)||dt
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and the integrand of the last integral converges to 0 a.e. as n→∞ because ∑n m(Vn \Kn)<
∞. By the dominated convergence theorem, this last integral converges to 0. Therefore,
whenever E ⊆ (a,b) , ∫ b

a
XE (t)g(t)dt = 0.

Since the endpoints have measure zero, it also follows that for any measurable E, the above
equation holds.

Now g ∈ L1 ([a,b] ;X) and so it is measurable. Therefore, g([a,b]) is separable. Let
D be a countable dense subset and let E denote the set of linear combinations of the form
∑i aidi where ai is a rational point of F and di ∈ D. Thus E is countable. Denote by Y the
closure of E in X . Thus Y is a separable closed subspace of X which contains all the values
of g.

Now let Sn ≡ g−1 (B(yn, ||yn||/2)) where E = {yn}∞

n=1 . Thus, ∪nSn = g−1 (X \{0}) .
This follows because if x ∈ Y and x ̸= 0, then in B

(
x, ||x||4

)
there is a point of E,yn. There-

fore, ||yn||> 3
4 ||x|| and so ||yn||

2 > 3||x||
8 > ||x||

4 so x ∈ B(yn, ||yn||/2) . It follows that if each
Sn has measure zero, then g(t) = 0 for a.e. t. Suppose then that for some n, the set, Sn has
positive measure. Then from what was shown above,

||yn|| =

∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)dt− yn

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣ 1
m(Sn)

∫
Sn

g(t)− yndt
∣∣∣∣∣∣∣∣

≤ 1
m(Sn)

∫
Sn

||g(t)− yn||dt ≤ 1
m(Sn)

∫
Sn

||yn||/2dt = ||yn||/2

and so yn = 0 which implies Sn = /0, a contradiction to m(Sn)> 0. This contradiction shows
each Sn has measure zero and so as just explained, g(t) = 0 a.e. ■

Definition 69.2.2 For f ∈ L1 (a,b;X) , define an extension, f defined on

[2a−b,2b−a] = [a− (b−a) ,b+(b−a)]

as follows.

f (t)≡

 f (t) if t ∈ [a,b]
f (2a− t) if t ∈ [2a−b,a]
f (2b− t) if t ∈ [b,2b−a]

Definition 69.2.3 Also if f ∈ Lp (a,b;X) and h > 0, define for t ∈ [a,b] , fh (t) ≡ f (t−h)
for all h < b−a. Thus the map f → fh is continuous and linear on Lp (a,b;X) . It is con-
tinuous because∫ b

a
|| fh (t)||p dt =

∫ a+h

a
|| f (2a− t +h)||p dt +

∫ b−h

a
|| f (t)||p dt

=
∫ a+h

a
|| f (t)||p dt +

∫ b−h

a
|| f (t)||p dt ≤ 2 || f ||pp .

The following lemma is on continuity of translation in Lp (a,b;X) .
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Lemma 69.2.4 Let f be as defined in Definition 69.2.2. Then for f ∈ Lp (a,b;X) for p ∈
[1,∞),

lim
δ→0

∫ b

a

∣∣∣∣ f (t−δ )− f (t)
∣∣∣∣p

X dt = 0.

Proof: Regarding the measure space as (a,b) with Lebesgue measure, by regularity of
the measure, there exists g∈Cc (a,b;X) such that || f −g||p < ε. Here the norm is the norm
in Lp (a,b;X) . Therefore,

|| fh− f ||p ≤ || fh−gh||p + ||gh−g||p + ||g− f ||p
≤

(
21/p +1

)
|| f −g||p + ||gh−g||p

<
(

21/p +1
)

ε + ε

whenever h is sufficiently small. This is because of the uniform continuity of g. Therefore,
since ε > 0 is arbitrary, this proves the lemma. ■

Definition 69.2.5 Let f ∈ L1 (a,b;X) . Then the distributional derivative in the sense of X
valued distributions is given by

f ′ (φ)≡−
∫ b

a
f (t)φ

′ (t)dt

Then f ′ ∈ L1 (a,b;X) if there exists h ∈ L1 (a,b;X) such that for all φ ∈C∞
c (a,b) ,

f ′ (φ) =
∫ b

a
h(t)φ (t)dt.

Then f ′ is defined to equal h. Here f and f ′ are considered as vector valued distributions
in the same way as was done for scalar valued functions.

Lemma 69.2.6 The above definition is well defined.

Proof: Suppose both h and g work in the definition. Then for all φ ∈C∞
c (a,b) ,∫ b

a
(h(t)−g(t))φ (t)dt = 0.

Therefore, by Lemma 69.2.1, h(t)−g(t) = 0 a.e. ■
The other thing to notice about this is the following lemma. It follows immediately

from the definition.

Lemma 69.2.7 Suppose f , f ′ ∈ L1 (a,b;X) . Then if [c,d]⊆ [a,b], it follows that
(

f |[c,d]
)′
=

f ′|[c,d]. This notation means the restriction to [c,d] .

Recall that in the case of scalar valued functions, if you had both f and its weak deriva-
tive, f ′ in L1 (a,b) , then you were able to conclude that f is almost everywhere equal to a
continuous function, still denoted by f and

f (t) = f (a)+
∫ t

a
f ′ (s)ds.
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In particular, you can define f (a) to be the initial value of this continuous function. It
turns out that an identical theorem holds in this case. To begin with here is the same sort
of lemma which was used earlier for the case of scalar valued functions. It says that if
f ′ = 0 where the derivative is taken in the sense of X valued distributions, then f equals a
constant.

Lemma 69.2.8 Suppose f ∈ L1 (a,b;X) and for all φ ∈C∞
c (a,b) ,

∫ b

a
f (t)φ

′ (t)dt = 0.

Then there exists a constant, a ∈ X such that f (t) = a a.e.

Proof: Let φ 0 ∈C∞
c (a,b) ,

∫ b
a φ 0 (x)dx = 1 and define for φ ∈C∞

c (a,b)

ψφ (x)≡
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

Then ψφ ∈C∞
c (a,b) and ψ ′

φ
= φ −

(∫ b
a φ (y)dy

)
φ 0. Then

∫ b

a
f (t)(φ (t))dt =

∫ b

a
f (t)

(
ψ
′
φ (t)+

(∫ b

a
φ (y)dy

)
φ 0 (t)

)
dt

=

=0 by assumption︷ ︸︸ ︷∫ b

a
f (t)ψ

′
φ (t)dt +

(∫ b

a
φ (y)dy

)∫ b

a
f (t)φ 0 (t)dt

=

(∫ b

a

(∫ b

a
f (t)φ 0 (t)dt

)
φ (y)dy

)
.

It follows that for all φ ∈C∞
c (a,b) ,

∫ b

a

(
f (y)−

(∫ b

a
f (t)φ 0 (t)dt

))
φ (y)dy = 0

and so by Lemma 69.2.1,

f (y)−
(∫ b

a
f (t)φ 0 (t)dt

)
= 0 a.e. y ■

Theorem 69.2.9 Suppose f , f ′ both are in L1 (a,b;X) where the derivative is taken in the
sense of X valued distributions. Then there exists a unique point of X , denoted by f (a)
such that the following formula holds a.e. t.

f (t) = f (a)+
∫ t

a
f ′ (s)ds
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Proof:∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt =

∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt.

Now consider
∫ b

a
∫ t

a f ′ (s)φ
′ (t)dsdt. Let Λ ∈ X ′. Then it is routine from approximating f ′

with simple functions to verify

Λ

(∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt
)
=
∫ b

a

∫ t

a
Λ
(

f ′ (s)
)

φ
′ (t)dsdt.

Now the ordinary Fubini theorem can be applied to obtain

=
∫ b

a

∫ b

s
Λ
(

f ′ (s)
)

φ
′ (t)dtds = Λ

(∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds
)
.

Since X ′ separates the points of X , it follows

∫ b

a

∫ t

a
f ′ (s)φ

′ (t)dsdt =
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds.

Therefore,

∫ b

a

(
f (t)−

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a

∫ b

s
f ′ (s)φ

′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt−
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f ′ (s)φ (s)ds = 0.

Therefore, by Lemma 69.2.8, there exists a constant, denoted as f (a) such that

f (t)−
∫ t

a
f ′ (s)ds = f (a) ■

The integration by parts formula is also important.

Corollary 69.2.10 Suppose f , f ′ ∈ L1 (a,b;X) and suppose φ ∈ C1 ([a,b]) . Then the fol-
lowing integration by parts formula holds.

∫ b

a
f (t)φ

′ (t)dt = f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt.
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Proof: From Theorem 69.2.9

∫ b

a
f (t)φ

′ (t)dt

=
∫ b

a

(
f (a)+

∫ t

a
f ′ (s)ds

)
φ
′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a

∫ t

a
f ′ (s)dsφ

′ (t)dt

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)

∫ b

s
φ
′ (t)dtds

= f (a)(φ (b)−φ (a))+
∫ b

a
f ′ (s)(φ (b)−φ (s))ds

= f (a)(φ (b)−φ (a))−
∫ b

a
f ′ (s)φ (s)ds+( f (b)− f (a))φ (b)

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (s)φ (s)ds.

The interchange in order of integration is justified as in the proof of Theorem 69.2.9. ■

With this integration by parts formula, the following interesting lemma is obtained.
This lemma shows why it was appropriate to define f as in Definition 69.2.2.

Lemma 69.2.11 Let f be given in Definition 69.2.2 and suppose f , f ′ ∈ L1 (a,b;X) . Then
f , f ′ ∈ L1 (2a−b,2b−a;X) also and

f ′ (t)≡

 f ′ (t) if t ∈ [a,b]
− f ′ (2a− t) if t ∈ [2a−b,a]
− f ′ (2b− t) if t ∈ [b,2b−a]

(69.2.8)

Proof: It is clear from the definition of f that f ∈ L1 (2a−b,2b−a;X) and that in fact

∣∣∣∣ f ∣∣∣∣L1(2a−b,2b−a;X)
≤ 3 || f ||L1(a,b;X) . (69.2.9)
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Let φ ∈C∞
c (2a−b,2b−a) . Then from the integration by parts formula,∫ 2b−a

2a−b
f (t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ 2b−a

b
f (2b− t)φ

′ (t)dt +
∫ a

2a−b
f (2a− t)φ

′ (t)dt

=
∫ b

a
f (t)φ

′ (t)dt +
∫ b

a
f (u)φ

′ (2b−u)du+
∫ b

a
f (u)φ

′ (2a−u)du

= f (b)φ (b)− f (a)φ (a)−
∫ b

a
f ′ (t)φ (t)dt− f (b)φ (b)+ f (a)φ (2b−a)

+
∫ b

a
f ′ (u)φ (2b−u)du− f (b)φ (2a−b)

+ f (a)φ (a)+
∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt +

∫ b

a
f ′ (u)φ (2b−u)du+

∫ b

a
f ′ (u)φ (2a−u)du

= −
∫ b

a
f ′ (t)φ (t)dt−

∫ 2b−a

b
− f ′ (2b− t)φ (t)dt−

∫ a

2a−b
− f ′ (2a− t)φ (t)dt

= −
∫ 2b−a

2a−b
f ′ (t)φ (t)dt

where f ′ (t) is given in 69.2.8. ■

Definition 69.2.12 Let V be a Banach space and let H be a Hilbert space. (Typically
H = L2 (Ω)) Suppose V ⊆ H is dense in H meaning that the closure in H of V gives H.
Then it is often the case that H is identified with its dual space, and then because of the
density of V in H, it is possible to write

V ⊆ H = H ′ ⊆V ′

When this is done, H is called a pivot space. Another notation which is often used is ⟨ f ,g⟩
to denote f (g) for f ∈V ′ and g ∈V. This may also be written as ⟨ f ,g⟩V ′,V . Another term
is that V ⊆ H = H ′ ⊆V ′ is called a Gelfand triple.

The next theorem is an example of a trace theorem. In this theorem, f ∈ Lp (0,T ;V )
while f ′ ∈ Lp (0,T ;V ′) . It makes no sense to consider the initial values of f in V because
it is not even continuous with values in V . However, because of the derivative of f it will
turn out that f is continuous with values in a larger space and so it makes sense to consider
initial values of f in this other space. This other space is called a trace space.

Theorem 69.2.13 Let V and H be a Banach space and Hilbert space as described in Def-
inition 69.2.12. Suppose f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) . Then f is a.e. equal to a
continuous function mapping [0,T ] to H. Furthermore, there exists f (0) ∈ H such that

1
2
| f (t)|2H −

1
2
| f (0)|2H =

∫ t

0

〈
f ′ (s) , f (s)

〉
ds, (69.2.10)
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and for all t ∈ [0,T ] , ∫ t

0
f ′ (s)ds ∈ H, (69.2.11)

and for a.e. t ∈ [0,T ] ,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H, (69.2.12)

Here f ′ is being taken in the sense of V ′ valued distributions and 1
p +

1
p′ = 1 and p≥ 2.

Proof: Let Ψ ∈C∞
c (−T,2T ) satisfy Ψ(t) = 1 if t ∈ [−T/2,3T/2] and Ψ(t) ≥ 0. For

t ∈ R, define

f̂ (t)≡
{

f (t)Ψ(t) if t ∈ [−T,2T ]
0 if t /∈ [−T,2T ]

and

fn (t)≡
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds (69.2.13)

where φ n is a mollifier having support in (−1/n,1/n) . Then by Minkowski’s inequality∣∣∣∣∣∣ fn− f̂
∣∣∣∣∣∣

Lp(R;V )
=

(∫
R

∣∣∣∣∣∣∣∣ f̂ (t)−∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

=

(∫
R

∣∣∣∣∣∣∣∣∫ 1/n

−1/n

(
f̂ (t)− f̂ (t− s)

)
φ n (s)ds

∣∣∣∣∣∣∣∣p
V

dt
)1/p

≤
(∫

R

(∫ 1/n

−1/n

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣

V
φ n (s)ds

)p

dt
)1/p

≤
∫ 1/n

−1/n
φ n (s)

(∫
R

∣∣∣∣∣∣ f̂ (t)− f̂ (t− s)
∣∣∣∣∣∣p

V
dt
)1/p

ds

≤
∫ 1/n

−1/n
φ n (s)εds = ε

provided n is large enough. This follows from continuity of translation in Lp with Lebesgue
measure. Since ε > 0 is arbitrary, it follows fn → f̂ in Lp (R;V ) . Similarly, fn → f in
L2 (R;H). This follows because p ≥ 2 and the norm in V and norm in H are related by
|x|H ≤C ||x||V for some constant, C. Now

f̂ (t) =


Ψ(t) f (t) if t ∈ [0,T ] ,
Ψ(t) f (2T − t) if t ∈ [T,2T ] ,
Ψ(t) f (−t) if t ∈ [0,T ] ,
0 if t /∈ [−T,2T ] .

An easy modification of the argument of Lemma 69.2.11 yields

f̂ ′ (t) =


Ψ′ (t) f (t)+Ψ(y) f ′ (t) if t ∈ [0,T ] ,
Ψ′ (t) f (2T − t)−Ψ(t) f ′ (2T − t) if t ∈ [T,2T ] ,
Ψ′ (t) f (−t)−Ψ(t) f ′ (−t) if t ∈ [−T,0] ,
0 if t /∈ [−T,2T ] .

.
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Recall

fn (t) =
∫ 1/n

−1/n
f̂ (t− s)φ n (s)ds =

∫
R

f̂ (t− s)φ n (s)ds

=
∫
R

f̂ (s)φ n (t− s)ds.

Therefore,

f ′n (t) =
∫
R

f̂ (s)φ
′
n (t− s)ds =

∫ 2T+ 1
n

−T− 1
n

f̂ (s)φ
′
n (t− s)ds

=
∫ 2T+ 1

n

−T− 1
n

f̂ ′ (s)φ n (t− s)ds =
∫
R

f̂ ′ (s)φ n (t− s)ds

=
∫
R

f̂ ′ (t− s)φ n (s)ds =
∫ 1/n

−1/n
f̂ ′ (t− s)φ n (s)ds

and it follows from the first line above that f ′n is continuous with values in V for all t ∈ R.
Also note that both f ′n and fn equal zero if t /∈ [−T,2T ] whenever n is large enough. Exactly
similar reasoning to the above shows that f ′n→ f̂ ′ in Lp′ (R;V ′) .

Now let φ ∈C∞
c (0,T ) .∫

R
| fn (t)|2H φ

′ (t)dt =
∫
R
( fn (t) , fn (t))H φ

′ (t)dt (69.2.14)

=−
∫
R

2
(

f ′n (t) , fn (t)
)

φ (t)dt = −
∫
R

2
〈

f ′n (t) , fn (t)
〉

φ (t)dt

Now ∣∣∣∣∫R 〈 f ′n (t) , fn (t)
〉

φ (t)dt−
∫
R

〈
f ′ (t) , f (t)

〉
φ (t)dt

∣∣∣∣
≤

∫
R

(∣∣〈 f ′n (t)− f ′ (t) , fn (t)
〉∣∣+ ∣∣〈 f ′ (t) , fn (t)− f (t)

〉∣∣)φ (t)dt.

From the first part of this proof which showed that fn → f̂ in Lp (R;V ) and f ′n → f̂ ′ in
Lp′ (R;V ′) , an application of Holder’s inequality shows the above converges to 0 as n→∞.
Therefore, passing to the limit as n→ ∞ in the 69.2.15,∫

R

∣∣∣ f̂ (t)∣∣∣2
H

φ
′ (t)dt =−

∫
R

2
〈

f̂ ′ (t) , f̂ (t)
〉

φ (t)dt

which shows t→
∣∣∣ f̂ (t)∣∣∣2

H
equals a continuous function a.e. and it also has a weak derivative

equal to 2
〈

f̂ ′, f̂
〉

.

It remains to verify that f̂ is continuous on [0,T ] . Of course f̂ = f on this interval. Let
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N be large enough that fn (−T ) = 0 for all n > N. Then for m,n > N and t ∈ [−T,2T ]

| fn (t)− fm (t)|2H = 2
∫ t

−T

(
f ′n (s)− f ′m (s) , fn (s)− fm (s)

)
ds

= 2
∫ t

−T

〈
f ′n (s)− f ′m (s) , fn (s)− fm (s)

〉
V ′,V ds

≤ 2
∫
R

∣∣∣∣ f ′n (s)− f ′m (s)
∣∣∣∣

V ′ || fn (s)− fm (s)||V ds

≤ 2 || fn− fm||Lp′ (R;V ′) || fn− fm||Lp(R;V )

which shows from the above that { fn} is uniformly Cauchy on [−T,2T ] with values in H.
Therefore, there exists g a continuous function defined on [−T,2T ] having values in H such
that

lim
n→∞

max{| fn (t)−g(t)|H ; t ∈ [−T,2T ]}= 0.

However, g = f̂ a.e. because fn converges to f in Lp (0,T ;V ) . Therefore, taking a subse-
quence, the convergence is a.e. It follows from the fact that V ⊆H = H ′ ⊆V ′ and Theorem
69.2.9, there exists f (0) ∈V ′ such that for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

Now g = f a.e. and g is continuous with values in H hence continuous with values in V ′and
so

g(t) = f (0)+
∫ t

0
f ′ (s)ds in V ′

for all t. Since g is continuous with values in H it is continuous with values in V ′. Taking the
limit as t ↓ 0 in the above, g(a) = limt→0+ g(t) = f (0) , showing that f (0)∈H. Therefore,
for a.e. t,

f (t) = f (0)+
∫ t

0
f ′ (s)ds in H,

∫ t

0
f ′ (s)ds ∈ H.■

Note that if f ∈ Lp (0,T ;V ) and f ′ ∈ Lp′ (0,T ;V ′) , then you can consider the initial
value of f and it will be in H. What if you start with something in H? Is it an initial
condition for a function f ∈ Lp (0,T ;V ) such that f ′ ∈ Lp′ (0,T ;V ′)? This is worth thinking
about. If it is not so, what is the space of initial values? How can you give this space a
norm? What are its properties? It turns out that if V is a closed subspace of the Sobolev
space, W 1,p (Ω) which contains W 1,p

0 (Ω) for p≥ 2 and H = L2 (Ω) the answer to the above
question is yes. Not surprisingly, there are many generalizations of the above ideas.

69.3 An Important Formula
It is not necessary to have p > 2 in order to do the sort of thing just described. Here is a
major result which will have a much more difficult stochastic version presented later. First
is an approximation theorem of Doob. See Lemma 65.3.1.
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Lemma 69.3.1 Let Y : [0,T ]→ E, be B ([0,T ]) measurable and suppose

Y ∈ Lp (0,T ;E)≡ K, p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Y r
k (t) ≡

mk

∑
j=1

Y
(

tk
j

)
X[tk

j−1,t
k
j )
(t)

Y l
k (t) ≡

mk

∑
j=1

Y
(

tk
j−1

)
X(tk

j−1,t
k
j ]
(t)

both converge to Y in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Y
(

tk
j

)
,Y
(

tk
j−1

)
is in E. One can also assume that Y (0) = 0. The mesh points{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we can

assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j = mnk when this might not be so. In the case of the last
subinterval defined by the partition, we can assume∣∣∣tk

m− tk
m−1

∣∣∣= ∣∣∣T − tk
m−1

∣∣∣≥ 2−(nk+1)

Theorem 69.3.2 Let V ⊆H =H ′⊆V ′ be a Gelfand triple and suppose Y ∈ Lp′ (0,T ;V ′)≡
K′ and

X (t) = X0 +
∫ t

0
Y (s)ds in V ′ (69.3.15)

where X0 ∈ H, and it is known that X ∈ Lp (0,T,V ) ≡ K for p > 1. Then t → X (t) is in
C ([0,T ] ,H) and also

1
2
|X (t)|2H =

1
2
|X0|2H +

∫ t

0
⟨Y (s) ,X (s)⟩ds

Proof: By Lemma 65.3.1, there exists a sequence of uniform partitions
{

tn
k

}mn
k=0 =

Pn,Pn ⊆Pn+1, of [0,T ] such that the step functions

mn−1

∑
k=0

X (tn
k )X(tn

k ,t
n
k+1]

(t) ≡ X l (t)

mn−1

∑
k=0

X
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ X r (t)

converge to X in K and in L2 ([0,T ] ,H).
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Lemma 69.3.3 Let s < t. Then for X ,Y satisfying 69.3.15

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 (69.3.16)

Proof: It follows from the following computations

X (t)−X (s) =
∫ t

s
Y (u)du

−|X (t)−X (s)|2 =−|X (t)|2 +2(X (t) ,X (s))−|X (s)|2

= −|X (t)|2 +2
(

X (t) ,X (t)−
∫ t

s
Y (u)du

)
−|X (s)|2

= −|X (t)|2 +2 |X (t)|2−2
〈∫ t

s
Y (u)du,X (t)

〉
−|X (s)|2

Hence
|X (t)|2 = |X (s)|2 +2

∫ t

s
⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 ■

Lemma 69.3.4 In the above situation,

sup
t∈[0,T ]

|X (t)|H ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ X (t) is weakly continuous with values in H.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

|X (tm)|2−|X0|2 =
m−1

∑
j=0

∣∣X (t j+1
)∣∣2− ∣∣X (t j)

∣∣2

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

=
m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du−

∣∣X (t j+1
)
−X (t j)

∣∣2
H

Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

∣∣X (t j)
∣∣2
H ≤ |X0|2 +2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

≤ |X0|2 +2
∫ T

0
∥Y (u)∥V ′ ∥X

r
k (u)∥V du
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≤ |X0|2 +2
(∫ T

0
∥Y (u)∥p′

V ′ du
)1/p′(∫ T

0
∥X r

k (u)∥
p
V du

)1/p

≤C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥X r

k (u)∥
p
V

)1/p

=

(∫ T

0
∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
|X (t)|<C (∥Y∥K′ ,∥X∥K)

Now let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V . This is
possible because V is separable. Then let

{
e j
}∞

j=1 be an orthonormal basis for H such that
ek ∈ span(g1, . . . ,gk) and each gk ∈ span(e1, . . . ,ek) . This is done with the Gram Schmidt
process. Then it follows that span({ek}∞

k=1) is dense in V . I claim

|y|2H =
∞

∑
j=1

∣∣〈y,e j
〉∣∣2 .

This is certainly true if y ∈ H because〈
y,e j

〉
= (y,e j)H

If y /∈ H, then the series must diverge since otherwise, you could consider the infinite sum

∞

∑
j=1

〈
y,e j

〉
e j ∈ H

because ∣∣∣∣∣ q

∑
j=p

〈
y,e j

〉
e j

∣∣∣∣∣
2

=
q

∑
j=p

∣∣〈y,e j
〉∣∣2→ 0 as p,q→ ∞.

Letting z = ∑
∞
j=1
〈
y,e j

〉
e j, it follows that

〈
y,e j

〉
is the jth Fourier coefficient of z and that

⟨z− y,v⟩= 0

for all v ∈ span({ek}∞

k=1) which is dense in V. Therefore, z = y in V ′ and so y ∈ H.
It follows

|X (t)|2 = sup
n

n

∑
j=1

∣∣〈X (t) ,e j
〉∣∣2

which is just the sup of continuous functions of t. Therefore, t→ |X (t)|2 is lower semicon-
tinuous. It follows that for any t, letting t j→ t for t j ∈ D,

|X (t)|2 ≤ lim inf
j→∞

∣∣X (t j)
∣∣2 ≤C (∥Y∥K′ ,∥X∥K)
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This proves the first claim of the lemma.
Consider now the claim that t→ X (t) is weakly continuous. Letting v ∈V,

lim
t→s

(X (t) ,v) = lim
t→s
⟨X (t) ,v⟩= ⟨X (s) ,v⟩= (X (s) ,v)

Since it was shown that |X (t)| is bounded independent of t, and since V is dense in H, the
claim follows. ■

Now

−
m−1

∑
j=0

∣∣X (t j+1
)
−X (t j)

∣∣2
H = |X (tm)|2−|X0|2−

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du

= |X (tm)|2−|X0|2−2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du

Thus, since the partitions are nested, eventually |X (tm)|2 is constant for all k large enough
and the integral term converges to ∫ tm

0
⟨Y (u) ,X (u)⟩du

It follows that the term on the left does converge to something. It just remains to consider
what it does converge to. However, from the equation solved by X ,

X
(
t j+1

)
−X (t j) =

∫ t j+1

t j

Y (u)du

Therefore, this term is dominated by an expression of the form

mk−1

∑
j=0

(∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

)

=
mk−1

∑
j=0

〈∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

〉

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)
−X (t j)

〉
du

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X (t j)

〉
=

∫ T

0
⟨Y (u) ,X r (u)⟩du−

∫ T

0

〈
Y (u) ,X l (u)

〉
du

However, both X r and X l converge to X in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t,

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (u) ,X (u)⟩du
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It remains to verify that this holds for all t. Let t /∈ D and let t (k) ∈Pk be the largest
point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

X (t (m)) = X0 +
∫ t(m)

0
Y (s)ds,

a similar formula for X (t (k)) . Thus for t > t (m) ,

X (t)−X (t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and X0 = 0. Therefore,

|X (t (k))−X (t (m))|2 = 2
∫ t(k)

t(m)
⟨Y (s) ,X (s)−X (t (m))⟩ds

Thus, for m≤ k
lim

m,k→∞

|X (t (k))−X (t (m))|2 = 0

Hence {X (t (k))}∞

k=1 is a convergent sequence in H. Does it converge to X (t)? Let ξ (t)∈H
be what it does converge to. Let v ∈V. Then

(ξ (t) ,v) = lim
k→∞

(X (t (k)) ,v) = lim
k→∞

⟨X (t (k)) ,v⟩= ⟨X (t) ,v⟩= (X (t) ,v)

because it is known that t→ X (t) is continuous into V ′ and it is also known that X (t) ∈ H
and that the X (t) for t ∈ [0,T ] are uniformly bounded. Therefore, since V is dense in H, it
follows that ξ (t) = X (t).

Now for every t ∈ D, it was shown above that

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (s) ,X (s)⟩ds

Thus, using what was just shown, if t /∈ D and tk→ t,

|X (t)|2 = lim
k→∞

|X (tk)|2 = lim
k→∞

(
|X0|2 +2

∫ tk

0
⟨Y (s) ,X (s)⟩ds

)
= |X0|2 +2

∫ t

0
⟨Y (s) ,X (s)⟩ds

which proves the desired formula. From this it follows right away that t → X (t) is con-
tinuous into H because it was just shown that t → |X (t)| is continuous and t → X (t) is
weakly continuous. Since Hilbert space is uniformly convex, this implies the t → X (t) is
continuous. To see this in the special cas of Hilbert space,

|X (t)−X (s)|2 = |X (t)|2−2(X (s) ,X (t))+ |X (s)|2

Then limt→s

(
|X (t)|2−2(X (s) ,X (t))+ |X (s)|2

)
= 0 by weak convergence of X (t) to

X (s) and the convergence of |X (t)|2 to |X (s)|2. ■
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69.4 The Implicit Case
The above theorem can be generalized to the case where the formula is of the form

BX (t) = BX0 +
∫ t

0
Y (s)ds

This involves an operator B ∈L (W,W ′) and B satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩

for
V ⊆W,W ′ ⊆V ′

Where V is dense in the Hilbert space W . Before giving the theorem, here is a technical
lemma.

Lemma 69.4.1 Suppose V,W are separable Banach spaces, W also a Hilbert space such
that V is dense in W and B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′.

Proof: Let {gk}∞

k=1 be linearly independent vectors of V whose span is dense in V .
This is possible because V is separable. Thus, their span is also dense in W . Let n1 be the
first index such that ⟨Bgn1 ,gn1⟩ ̸= 0.

Claim: If there is no such index, then B = 0.
Proof of claim: First note that if there is no such first index, then if x = ∑

k
i=1 aigi

|⟨Bx,x⟩| =

∣∣∣∣∣∑i̸= j
aia j

〈
Bgi,g j

〉∣∣∣∣∣≤∑
i ̸= j
|ai|
∣∣a j
∣∣ ∣∣〈Bgi,g j

〉∣∣
≤ ∑

i̸= j
|ai|
∣∣a j
∣∣⟨Bgi,gi⟩1/2 〈Bg j,g j

〉1/2
= 0

Therefore, if x is given, you could take xk in the span of {g1, · · · ,gk} such that ∥xk− x∥W →
0. Then

|⟨Bx,y⟩|= lim
k→∞

|⟨Bxk,y⟩| ≤ lim
k→∞

⟨Bxk,xk⟩1/2 ⟨By,y⟩1/2 = 0
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because ⟨Bxk,xk⟩ is zero by what was just shown.
Thus assume there is such a first index. Let

e1 ≡
gn1

⟨Bgn1 ,gn1⟩
1/2

Then ⟨Be1,e1⟩= 1. Now if you have constructed e j for j ≤ k,

e j ∈ span
(
gn1 , · · · ,gnk

)
,
〈
Bei,e j

〉
= δ i j,

gn j+1 being the first for which〈
Bgn j+1 −

j

∑
i=1

〈
Bgn j+1 ,ei

〉
Bei,gn j+1 −

j

∑
i=1

〈
Bgn j,ei

〉
ei

〉
̸= 0,

and
span

(
gn1 , · · · ,gnk

)
= span(e1, · · · ,ek) ,

let gnk+1 be such that gnk+1 is the first in the list
{

gnk

}
such that〈

Bgnk+1 −
k

∑
i=1

〈
Bgnk+1 ,ei

〉
Bei,gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

〉
̸= 0

Note the difference between this and the Gram Schmidt process. Here you don’t necessarily
use all of the gk due to the possible degeneracy of B.

Claim: If there is no such first gnk+1 , then B(span(ei, · · · ,ek)) = BW so in this case,
{Bei}k

i=1 is actually a basis for BW .
Proof: Let x ∈W . Let xr ∈ span(g1, · · · ,gr) ,r > nk such that limr→∞ xr = x in W . Then

xr =
k

∑
i=1

cr
i ei +

r

∑
i/∈{n1,··· ,nk}

dr
i gi ≡ yr + zr (69.4.17)

If l /∈ {n1, · · · ,nk} , then by the construction and the above assumption, for some j ≤ k〈
Bgl−

j

∑
i=1
⟨Bgl ,ei⟩Bei,gl−

j

∑
i=1
⟨Bgl ,ei⟩ei

〉
= 0 (69.4.18)

If l < nk, this follows from the construction. If the above is nonzero all j ≤ k, then l would
have been chosen but it wasn’t. Thus

Bgl =
j

∑
i=1
⟨Bgl ,ei⟩Bei

If l > nk, then by assumption, 69.4.18 holds for j = k. Thus, in any case, it follows that for
each l /∈ {n1, · · · ,nk} ,

Bgl ∈ B(span(ei, · · · ,ek)) .
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Now it follows from 69.4.17 that

Bxr =
k

∑
i=1

cr
i Bei +

r

∑
i/∈{n1,··· ,nk}

dr
i Bgi

=
k

∑
i=1

cr
i Bei +

r

∑
i/∈{n1,··· ,nk}

dr
i

k

∑
j=1

ci
jBe j

and so Bxr ∈ B(span(ei, · · · ,ek)) . Then

Bx = lim
r→∞

Bxr = lim
r→∞

Byr

where yr ∈ span(ei, · · · ,ek). Say

Bxr =
k

∑
i=1

ar
i Bei

It follows easily that
〈
Bxr,e j

〉
= ar

j. (Act on e j by both sides and use
〈
Bei,e j

〉
= δ i j.)

Now since xr is bounded, it follows that these ar
j are also bounded. Hence, defining

yr ≡ ∑
k
i=1 ar

i ei, it follows that yr is bounded in span(ei, · · · ,ek) and so, there exists a
subsequence, still denoted by r such that yr → y ∈ span(ei, · · · ,ek). Therefore, Bx =
limr→∞ Byr = By. In other words, BW = B(span(ei, · · · ,ek)) as claimed. This proves the
claim.

If this happens, the process being described stops. You have found what is desired
which has only finitely many vectors involved.

As long as the process does not stop, let

ek+1 ≡
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei〈

B
(
gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
)
,gnk+1 −∑

k
i=1
〈
Bgnk+1 ,ei

〉
ei
〉1/2

Thus, as in the usual argument for the Gram Schmidt process,
〈
Bei,e j

〉
= δ i j for i, j≤ k+1.

This is already known for i, j≤ k. Letting l ≤ k, and using the orthogonality already shown,

⟨Bek+1,el⟩ = C

〈
B

(
gnk+1 −

k

∑
i=1

〈
Bgnk+1 ,ei

〉
ei

)
,el

〉
= C

(
⟨Bgk+1,el⟩−

〈
Bgnk+1 ,el

〉)
= 0

Consider 〈
Bgp−B

(
k

∑
i=1

〈
Bgp,ei

〉
ei

)
,gp−

k

∑
i=1

〈
Bgp,ei

〉
ei

〉
Either this equals 0 because p is never one of the nk or eventually it equals 0 for some k
because gp = gnk for some nk and so, from the construction, gnk = gp ∈ span(e1, · · · ,ek)
and therefore,

gp =
k

∑
j=1

a je j
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which requires easily that

Bgp =
k

∑
i=1

〈
Bgp,ei

〉
Bei,

the above holding for all k large enough. It follows that for any x ∈ span({gk}∞

k=1) , (finite
linear combination of vectors in {gk}∞

k=1)

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei (69.4.19)

because for all k large enough,

Bx =
k

∑
i=1
⟨Bx,ei⟩Bei

Also note that for such x ∈ span({gk}∞

k=1) ,

⟨Bx,x⟩ =

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
=

k

∑
i=1
⟨Bx,ei⟩⟨Bx,ei⟩

=
k

∑
i=1
|⟨Bx,ei⟩|2 =

∞

∑
i=1
|⟨Bx,ei⟩|2

Now for x arbitrary, let xk→ x in W where xk ∈ span({gk}∞

k=1) . Then by Fatou’s lemma,

∞

∑
i=1
|⟨Bx,ei⟩|2 ≤ lim inf

k→∞

∞

∑
i=1
|⟨Bxk,ei⟩|2

= lim inf
k→∞

⟨Bxk,xk⟩= ⟨Bx,x⟩ (69.4.20)

≤ ∥Bx∥W ′ ∥x∥W ≤ ∥B∥∥x∥
2
W

Thus the series on the left converges. Then also, from the above inequality,∣∣∣∣∣
〈

q

∑
i=p
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣≤ q

∑
i=p
|⟨Bx,ei⟩| |⟨Bei,y⟩|

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2( q

∑
i=p
|⟨By,ei⟩|2

)1/2

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∞

∑
i=1
|⟨By,ei⟩|2

)1/2

By 69.4.20,

≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2(
∥B∥∥y∥2

W

)1/2
≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 ∥y∥W
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It follows that
∞

∑
i=1
⟨Bx,ei⟩Bei (69.4.21)

converges in W ′ because it was just shown that∥∥∥∥∥ q

∑
i=p
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
q

∑
i=p
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and it was shown above that ∑
∞
i=1 |⟨Bx,ei⟩|2 < ∞, so the partial sums of the series 69.4.21

are a Cauchy sequence in W ′. Also, the above estimate shows that for ∥y∥= 1,∣∣∣∣∣
〈

∞

∑
i=1
⟨Bx,ei⟩Bei,y

〉∣∣∣∣∣ ≤
(

∞

∑
i=1
|⟨By,ei⟩|2

)1/2(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and so ∥∥∥∥∥ ∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
W ′
≤

(
∞

∑
i=1
|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 (69.4.22)

Now for x arbitrary, let xk ∈ span
({

g j
}∞

j=1

)
and xk→ x in W. Then for a fixed k large

enough, ∥∥∥∥∥Bx−
∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ∥Bx−Bxk∥

+

∥∥∥∥∥Bxk−
∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
i=1
⟨Bxk,ei⟩Bei−

∞

∑
i=1
⟨Bx,ei⟩Bei

∥∥∥∥∥
≤ ε +

∥∥∥∥∥ ∞

∑
i=1
⟨B(xk− x) ,ei⟩Bei

∥∥∥∥∥ ,
the term ∥∥∥∥∥Bxk−

∞

∑
i=1
⟨Bxk,ei⟩Bei

∥∥∥∥∥
equaling 0 by 69.4.19. From 69.4.22 and 69.4.20,

≤ ε +∥B∥1/2

(
∞

∑
i=1
|⟨B(xk− x) ,ei⟩|2

)1/2

≤ ε +∥B∥1/2 ⟨B(xk− x) ,xk− x⟩1/2 < 2ε
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whenever k is large enough. Therefore,

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei

in W ′. It follows that

⟨Bx,x⟩= lim
k→∞

〈
k

∑
i=1
⟨Bx,ei⟩Bei,x

〉
= lim

k→∞

k

∑
i=1
|⟨Bx,ei⟩|2 ≡

∞

∑
i=1
|⟨Bx,ei⟩|2 ■

Theorem 69.4.2 Let V ⊆W,W ′ ⊆ V ′ be separable Banach spaces,W a separable Hilbert
space, and let Y ∈ Lp′ (0,T ;V ′)≡ K′ and

BX (t) = BX0 +
∫ t

0
Y (s)ds in V ′ (69.4.23)

where X0 ∈W, and it is known that X ∈ Lp (0,T,V ) ≡ K for p > 1. Then t → BX (t) is in
C ([0,T ] ,W ′) and also

1
2
⟨BX (t) ,X (t)⟩= 1

2
⟨BX0,X0⟩+

∫ t

0
⟨Y (s) ,X (s)⟩ds

Proof: By Lemma 65.3.1, there exists a sequence of uniform partitions
{

tn
k

}mn
k=0 =

Pn,Pn ⊆Pn+1, of [0,T ] such that the step functions

mn−1

∑
k=0

X (tn
k )X(tn

k ,t
n
k+1]

(t) ≡ X l (t)

mn−1

∑
k=0

X
(
tn
k+1
)
X(tn

k ,t
n
k+1]

(t) ≡ X r (t)

converge to X in K and also BX l ,BX r→ BX in L2 ([0,T ] ,W ′).

Lemma 69.4.3 Let s < t. Then for X ,Y satisfying 69.4.23

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩

+2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩ (69.4.24)

Proof: It follows from the following computations

B(X (t)−X (s)) =
∫ t

s
Y (u)du

and so
2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩

= 2⟨B(X (t)−X (s)) ,X (t)⟩−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩
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= 2⟨BX (t) ,X (t)⟩−2⟨BX (s) ,X (t)⟩−⟨BX (t) ,X (t)⟩
+2⟨BX (s) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= ⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

Thus
⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= 2
∫ t

s
⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩ ■

Lemma 69.4.4 In the above situation,

sup
t∈[0,T ]

⟨BX (t) ,X (t)⟩ ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ BX (t) is weakly continuous with values in W ′.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩=
m−1

∑
j=0

〈
BX
(
t j+1

)
,X
(
t j+1

)〉
−
〈
BX (t j) ,X (t j)

〉

=
m−1

∑
j=0

2
∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
du−

〈
B
(
X
(
t j+1

)
−X (t j)

)
,X
(
t j+1

)
−X (t j)

〉
=

m−1

∑
j=0

2
∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du−

〈
B
(
X
(
t j+1

)
−X (t j)

)
,X
(
t j+1

)
−X (t j)

〉
Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

sup
t j∈Pk

〈
BX (t j) ,X (t j)

〉
≤ ⟨BX0,X0⟩+2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

≤ ⟨BX0,X0⟩+2
∫ T

0
∥Y (u)∥V ′ ∥X

r
k (u)∥V du

≤ ⟨BX0,X0⟩+2
(∫ T

0
∥Y (u)∥p′

V ′ du
)1/p′(∫ T

0
∥X r

k (u)∥
p
V du

)1/p

≤C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

lim
k→∞

(∫ T

0
∥X r

k (u)∥
p
V

)1/p

=

(∫ T

0
∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

sup
t∈D
⟨BX (t) ,X (t)⟩<C (∥Y∥K′ ,∥X∥K)
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From Lemma 69.4.1 above, there exists {ei} ⊆V such that
〈
Bei,e j

〉
= δ i j and

⟨BX (t) ,X (t)⟩=
∞

∑
k=1
|⟨BX (t) ,ei⟩|2 = sup

m

m

∑
k=1
|⟨BX (t) ,ei⟩|2

Since each ei ∈V, and since t→ BX (t) is continuous into V ′ thanks to the formula 69.4.23,
it follows that t→ ∑

m
k=1 |⟨BX (t) ,ei⟩| is continuous and so t→ ⟨BX (t) ,X (t)⟩ is the sup of

continuous functions. Therefore, this function of t is lower semicontinuous. Since D is
dense in [0,T ] , it follows that for all t,

⟨BX (t) ,X (t)⟩ ≤C (∥Y∥K′ ,∥X∥K)

It only remains to verify the claim about weak continuity.
Consider now the claim that t→ BX (t) is weakly continuous. Letting v ∈V,

lim
t→s
⟨BX (t) ,v⟩= ⟨BX (s) ,v⟩= ⟨BX (s) ,v⟩ (69.4.25)

The limit follows from the formula 69.4.23 which implies t→ BX (t) is continuous into V ′.
Now

∥BX (t)∥= sup
∥v∥≤1

|⟨BX (t) ,v⟩| ≤ ⟨Bv,v⟩1/2 ⟨BX (t) ,X (t)⟩1/2

which was shown to be bounded for t ∈ [0,T ]. Now let w ∈W . Then

|⟨BX (t) ,w⟩−⟨BX (s) ,w⟩| ≤ |⟨BX (t)−BX (s) ,w− v⟩|+ |⟨BX (t)−BX (s) ,v⟩|

Then the first term is less than ε if v is close enough to w and the second converges to 0 so
69.4.25 holds for all v ∈W and so this shows the weak continuity. ■

Now pick t ∈ D, the union of all the mesh points. Then for all k large enough, t ∈Pk.
Say t = tm. From Lemma 69.4.3,

−
m−1

∑
j=0

〈
B
(
X
(
t j+1

)
−X (t j)

)
,
(
X
(
t j+1

)
−X (t j)

)〉
=

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩−2
m−1

∑
j=0

∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du

Thus, ⟨BX (tm) ,X (tm)⟩ is constant for all k large enough and the integral term converges to∫ tm

0
⟨Y (u) ,X (u)⟩du

It follows that the term on the left does converge to something as k→ ∞. It just remains to
consider what it does converge to. However, from the equation solved by X ,

BX
(
t j+1

)
−BX (t j) =

∫ t j+1

t j

Y (u)du
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Therefore, this term is dominated by an expression of the form

mk−1

∑
j=0

(∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

)

=
mk−1

∑
j=0

〈∫ t j+1

t j

Y (u)du,X
(
t j+1

)
−X (t j)

〉

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)
−X (t j)

〉
du

=
mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X

(
t j+1

)〉
−

mk−1

∑
j=0

∫ t j+1

t j

〈
Y (u) ,X (t j)

〉
=

∫ T

0
⟨Y (u) ,X r (u)⟩du−

∫ T

0

〈
Y (u) ,X l (u)

〉
du

However, both X r and X l converge to X in K = Lp (0,T,V ). Therefore, this term must
converge to 0. Passing to a limit, it follows that for all t ∈ D, the desired formula holds.
Thus, for such t ∈ D,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du

It remains to verify that this holds for all t. Let t /∈ D and let t (k) ∈Pk be the largest
point of Pk which is less than t. Suppose t (m)≤ t (k) so that m≤ k. Then

BX (t (m)) = BX0 +
∫ t(m)

0
Y (s)ds,

a similar formula for X (t (k)) . Thus for t > t (m) ,

BX (t)−BX (t (m)) =
∫ t

t(m)
Y (s)ds

which is the same sort of thing already looked at except that it starts at t (m) rather than at
0 and X0 = 0. Therefore,

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩

= 2
∫ t(k)

t(m)
⟨Y (s) ,X (s)−X (t (m))⟩ds

Thus, for m≤ k

lim
m,k→∞

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩= 0 (69.4.26)
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Hence {BX (t (k))}∞

k=1 is a convergent sequence in W ′ because

|⟨B(X (t (k))−X (t (m))) ,y⟩|
≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ⟨By,y⟩1/2

≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ∥B∥1/2 ∥y∥W

Does it converge to BX (t)? Let ξ (t) ∈W ′ be what it does converge to. Let v ∈V. Then

⟨ξ (t) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= ⟨BX (t) ,v⟩

because it is known that t → BX (t) is continuous into V ′. It is also known that BX (t) ∈
W ′ ⊆V ′ and that the BX (t) for t ∈ [0,T ] are uniformly bounded in W ′. Therefore, since V
is dense in W, it follows that ξ (t) = BX (t).

Now for every t ∈ D, it was shown above that

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du

Also it was just shown that BX (t (k))→ BX (t) . Then

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

≤ |⟨BX (t (k)) ,X (t (k))−X (t)⟩|+ |⟨BX (t (k))−BX (t) ,X (t)⟩|

Then the second term converges to 0. The first equals

|⟨BX (t (k))−BX (t) ,X (t (k))⟩|
≤ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2 ⟨BX (t (k)) ,X (t (k))⟩1/2

From the above, this is dominated by an expression of the form

⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2 C

Then using the lower semicontinuity of t → ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩ which
follows from the above, this is no larger than

lim inf
m→∞
⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 C < ε

provided k is large enough. This follows from 69.4.26. Since ε is arbitrary, it follows that

lim
k→∞

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|= 0

Then from the formula,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (u)⟩du



2382 CHAPTER 69. GELFAND TRIPLES

valid for t ∈ D, it follows that the same formula holds for all t. This formula implies
t → ⟨BX (t) ,X (t)⟩ is continuous. Also recall that t → BX (t) was shown to be weakly
continuous into W ′. Then

⟨B(X (t)−X (s)) ,X (t)−X (s)⟩
= ⟨BX (t) ,X (t)⟩−2⟨BX (t) ,X (s)⟩+ ⟨BX (s) ,X (s)⟩

From this, it follows that t→ BX (t) is continuous into W ′ because limt→s of the right side
gives 0 and so the same is true of the left. Hence,

|⟨B(X (t)−X (s)) ,y⟩| ≤ ⟨By,y⟩1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2

≤ ∥B∥1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2 ∥y∥

so
∥B(X (t)−X (s))∥W ′ ≤ ∥B∥

1/2 ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2

which converges to 0 as t→ s. ■

69.5 Some Imbedding Theorems
The next theorem is very useful in getting estimates in partial differential equations. It is
called Erling’s lemma.

Definition 69.5.1 Let E,W be Banach spaces such that E ⊆Wand the injection map from
E into W is continuous. The injection map is said to be compact if every bounded set in E
has compact closure in W. In other words, if a sequence is bounded in E it has a convergent
subsequence converging in W. This is also referred to by saying that bounded sets in E are
precompact in W.

Theorem 69.5.2 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then for every ε > 0 there exists a constant, Cε such that for all
u ∈ E,

||u||W ≤ ε ||u||E +Cε ||u||X

Proof: Suppose not. Then there exists ε > 0 and for each n ∈ N, un such that

||un||W > ε ||un||E +n ||un||X

Now let vn = un/ ||un||E . Therefore, ||vn||E = 1 and

||vn||W > ε +n ||vn||X

It follows there exists a subsequence, still denoted by vn such that vn converges to v in W.
However, the above inequality shows that ||vn||X → 0. Therefore, v = 0. But then the above
inequality would imply that ||vn||> ε and passing to the limit yields 0 > ε, a contradiction.
■
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Definition 69.5.3 Define C ([a,b] ;X) the space of functions continuous at every point of
[a,b] having values in X.

You should verify that this is a Banach space with norm

||u||
∞,X = max

{∣∣∣∣unk (t)−u(t)
∣∣∣∣

X : t ∈ [a,b]
}
.

The following theorem is an infinite dimensional version of the Ascoli Arzela theorem.
It is like a well known result due to Simon. It is the appropriate generalization to stochastic
problems in which you do not have weak derivatives. See Theorem 65.12.1 on the Holder
continuity of the stochastic integral.

Theorem 69.5.4 Let q > 1 and let E ⊆W ⊆ X where the injection map is continuous from
W to X and compact from E to W. Let S be defined by{

u such that ||u(t)||E ≤ R for all t ∈ [a,b] , and ∥u(s)−u(t)∥X ≤ R |t− s|1/q
}
.

Thus S is bounded in L∞ (0,T,E) and in addition, the functions are uniformly Holder con-
tinuous into X . Then S ⊆ C ([a,b] ;W ) and if {un} ⊆ S, there exists a subsequence,

{
unk

}
which converges to a function u ∈C ([a,b] ;W ) in the following way.

lim
k→∞

∣∣∣∣unk −u
∣∣∣∣

∞,W = 0.

Proof: First consider the issue of S being a subset of C ([a,b] ;W ) . Let ε > 0 be given.
Then by Theorem 69.5.2 there exists a constant, Cε such that for all u ∈W

||u||W ≤
ε

4R
||u||E +Cε ||u||X .

Therefore, for all u ∈ S,

||u(t)−u(s)||W ≤ ε

6R
||u(t)−u(s)||E +Cε ||u(t)−u(s)||X

≤ ε

6R
(∥u(t)∥E +∥u(s)∥E)+Cε ∥u(t)−u(s)∥X

≤ ε

3
+Cε R |t− s|1/q . (69.5.27)

Since ε is arbitrary, it follows u ∈C ([a,b] ;W ).
Let D = Q∩ [a,b] so D is a countable dense subset of [a,b]. Let D = {tn}∞

n=1. By
compactness of the embedding of E into W, there exists a subsequence u(n,1) such that
as n→ ∞, u(n,1) (t1) converges to a point in W. Now take a subsequence of this, called
(n,2) such that as n→ ∞,u(n,2) (t2) converges to a point in W. It follows that u(n,2) (t1) also
converges to a point of W. Continue this way. Now consider the diagonal sequence, uk ≡
u(k,k) This sequence is a subsequence of u(n,l) whenever k > l. Therefore, uk (t j) converges
for all t j ∈ D.

Claim: Let {uk} be as just defined, converging at every point of D ≡ [a,b]∩Q. Then
{uk} converges at every point of [a,b].
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Proof of claim: Let ε > 0 be given. Let t ∈ [a,b] . Pick tm ∈ D∩ [a,b] such that in
69.5.27 Cε R |t− tm|< ε/3. There exists N such that if l,n > N, then ||ul (tm)−un (tm)||X <
ε/3. It follows that for l,n > N,

||ul (t)−un (t)||W ≤ ||ul (t)−ul (tm)||W + ||ul (tm)−un (tm)||W
+ ||un (tm)−un (t)||W

≤ 2ε

3
+

ε

3
+

2ε

3
< 2ε

Since ε was arbitrary, this shows {uk (t)}∞

k=1 is a Cauchy sequence. Since W is complete,
this shows this sequence converges.

Now for t ∈ [a,b] , it was just shown that if ε > 0 there exists Nt such that if n,m > Nt ,
then

||un (t)−um (t)||W <
ε

3
.

Now let s ̸= t. Then

||un (s)−um (s)||W ≤ ||un (s)−un (t)||W + ||un (t)−um (t)||W + ||um (t)−um (s)||W

From 69.5.27

||un (s)−um (s)||W ≤ 2
(

ε

3
+Cε R |t− s|1/q

)
+ ||un (t)−um (t)||W

and so it follows that if δ is sufficiently small and s ∈ B(t,δ ) , then when n,m > Nt

||un (s)−um (s)||< ε.

Since [a,b] is compact, there are finitely many of these balls, {B(ti,δ )}p
i=1 , such that for

s ∈ B(ti,δ ) and n,m > Nti , the above inequality holds. Let N > max
{

Nt1 , · · · ,Ntp

}
. Then

if m,n > N and s ∈ [a,b] is arbitrary, it follows the above inequality must hold. Therefore,
this has shown the following claim.

Claim: Let ε > 0 be given. There exists N such that if m,n>N, then ||un−um||∞,W < ε.
Now let u(t) = limk→∞ uk (t) .

||u(t)−u(s)||W ≤ ||u(t)−un (t)||W + ||un (t)−un (s)||W + ||un (s)−u(s)||W (69.5.28)

Let N be in the above claim and fix n > N. Then

||u(t)−un (t)||W = lim
m→∞
||um (t)−un (t)||W ≤ ε

and similarly, ||un (s)−u(s)||W ≤ ε. Then if |t− s| is small enough, 69.5.27 shows the
middle term in 69.5.28 is also smaller than ε. Therefore, if |t− s| is small enough,

||u(t)−u(s)||W < 3ε.

Thus u is continuous. Finally, let N be as in the above claim. Then letting m,n > N, it
follows that for all t ∈ [a,b] ,

||um (t)−un (t)||W < ε.
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Therefore, letting m→ ∞, it follows that for all t ∈ [a,b] ,

||u(t)−un (t)||W ≤ ε.

and so ||u−un||∞,W ≤ ε. ■

Here is an interesting corollary. Recall that for E a Banach space C0,α ([0,T ] ,E) is the
space of continuous functions u from [0,T ] to E such that

∥u∥
α,E ≡ ∥u∥∞,E +ρα,E (u)< ∞

where here

ρα,E (u)≡ sup
t ̸=s

∥u(t)−u(s)∥E
|t− s|α

Corollary 69.5.5 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Then if γ > α, the embedding of C0,γ ([0,T ] ,E) into C0,α ([0,T ] ,X)
is compact.

Proof: Let φ ∈C0,γ ([0,T ] ,E)

∥φ (t)−φ (s)∥X
|t− s|α

≤
(
∥φ (t)−φ (s)∥W
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W

≤
(
∥φ (t)−φ (s)∥E
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W ≤ ργ,E (φ)∥φ (t)−φ (s)∥1−(α/γ)

W

Now suppose {un} is a bounded sequence in C0,γ ([0,T ] ,E) . By Theorem 69.5.4 above,
there is a subsequence still called {un} which converges in C0 ([0,T ] ,W ) . Thus from the
above inequality

∥un (t)−um (t)− (un (s)−um (s))∥X
|t− s|α

≤ ργ,E (un−um)∥un (t)−um (t)− (un (s)−um (s))∥1−(α/γ)
W

≤ C ({un})
(

2∥un−um∥∞,W

)1−(α/γ)

which converges to 0 as n,m→ ∞. Thus

ρα,X (un−um)→ 0 as n,m→ ∞

Also ∥un−um∥∞,X → 0 as n,m→ ∞ so this is a Cauchy sequence in C0,α ([0,T ] ,X). ■
The next theorem is a well known result probably due to Lions.

Theorem 69.5.6 Let E ⊆W ⊆ X where the injection map is continuous from W to X and
compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q
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and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) .

Proof: By Proposition 7.6.5 on Page 144 it suffices to show that S has an η net in
Lp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (69.5.29)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡
k

∑
i=1

uniX[ti−1,ti) (t) , uni ≡
1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence of
the {un} is a Cauchy sequence yielding a contradiction to 69.5.29.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=
k

∑
i=1

∣∣∣∣∣∣∣∣ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∣∣∣∣∣∣∣∣p

W
X[ti−1,ti) (t)

≤
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)

and so ∫ b

a
||(un (t)−un (s))||pW ds

≤
∫ b

a

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (69.5.30)
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From Theorem 69.5.2 if ε > 0, there exists Cε such that

||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX

≤ 2p−1
ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q

This is substituted in to 69.5.30 to obtain∫ b

a
||(un (t)−un (s))||pW ds≤

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(
2p−1

ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q
)

dsdt

=
k

∑
i=1

2p
ε

∫ ti

ti−1

||un (t)||pW +
Cε

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q dsdt

≤ 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q
∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2p
ε

∫ b

a
||un (t)||p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q (ti− ti−1)

2

≤ 2p
εRp +Cε

k

∑
i=1

(ti− ti−1)
1+p/q = 2p

εRp +Cε k
(

b−a
k

)1+p/q

.

Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows

||un−un||Lp([a,b];W ) <
η

4
.

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp (a,b;W ) and use this to contradict 69.5.29. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =
k

∑
i=1
||un

i ||E X[ti−1,ti) (t)

and so

R≥
∫ b

a
||un (t)||pE dt =

T
k

k

∑
i=1
||un

i ||
p
E

Therefore, the {un
i } are all bounded. It follows that after taking subsequences k times there

exists a subsequence
{

unk

}
such that unk is a Cauchy sequence in Lp (a,b;W ) . You simply

get a subsequence such that unk
i is a Cauchy sequence in W for each i. Then denoting this

subsequence by n,

||un−um||Lp(a,b;W ) ≤ ||un−un||Lp(a,b;W )

+ ||un−um||Lp(a,b;W )+ ||um−um||Lp(a,b;W )

≤ η

4
+ ||un−um||Lp(a,b;W )+

η

4
< η
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provided m,n are large enough, contradicting 69.5.29. ■



Chapter 70

Measurability Without Uniqueness
With the Ito formula which holds for a single space, it is time to consider stochastic ordinary
differential equations. First is a general theory which allows one to consider measurable
solutions to stochastic equations in which there is no uniqueness available. Unfortunately, it
does not include obtaining adapted solutions. Instead, it includes measurability of functions
with respect to a single σ algebra. Then when path uniqueness is available, one can include
the concept of adapted solutions rather easily and this will be done for ordinary differential
equations. First is a general result about multifunctions.

70.1 Multifunctions And Their Measurability
Let X be a separable complete metric space and let (Ω,C ,µ) be a set, a σ algebra of
subsets of Ω, and a measure µ such that this is a complete σ finite measure space. Also let
Γ : Ω→PF (X) , the closed subsets of X .

Definition 70.1.1 We define Γ− (S)≡ {ω ∈Ω : Γ(ω)∩S ̸= /0}

We will consider a theory of measurability of set valued functions. The following
theorem is the main result in the subject. In this theorem the third condition is what we will
refer to as measurable. The second condition is called strongly measurable. More can be
said than what we will prove here.

Theorem 70.1.2 In the following, 1.⇒ 2.⇒ 3.⇒ 4.

1. For all B a Borel set in X ,Γ− (B) ∈ C .

2. For all F closed in X , Γ− (F) ∈ C

3. For all U open in X ,Γ− (U) ∈ C

4. There exists a sequence, {σn} of measurable functions satisfying σn (ω) ∈ Γ(ω)
such that for all ω ∈Ω,

Γ(ω) = {σn (ω) : n ∈ N}

These functions are called measurable selections.

Also 4.⇒ 3. If Γ(ω) is compact for each ω , then also 3.⇒ 2.

Proof: It is obvious that 1.) ⇒ 2.). To see that 2.) ⇒ 3.) note that Γ− (∪∞
i=1Fi) =

∪∞
i=1Γ− (Fi) . Since any open set in X can be obtained as a countable union of closed sets,

this implies 2.) ⇒ 3.).
Now we verify that 3.)⇒ 4.). Let {xn}∞

n=1 be a countable dense subset of X . For ω ∈Ω,
let ψ1 (ω) = xn where n is the smallest integer such that Γ(ω)∩B(xn,1) ̸= /0. Therefore,
ψ1 (ω) has countably many values, xn1 ,xn2 , · · · where n1 < n2 < · · · . Now

{ω : ψ1 = xn}=

2389
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{ω : Γ(ω)∩B(xn,1) ̸= /0}∩ [Ω\∪k<n {ω : Γ(ω)∩B(xk,1) ̸= /0}] ∈ C .

Thus we see that ψ1 is measurable and dist(ψ1 (ω) ,Γ(ω))< 1. Let

Ωn ≡ {ω ∈Ω : ψ1 (ω) = xn} .

Then Ωn ∈ C and Ωn∩Ωm = /0 for n ̸= m and ∪∞
n=1Ωn = Ω. Let Dn ≡ {xk : xk ∈ B(xn,1)} .

Now for each n, and ω ∈ Ωn, let ψ2 (ω) = xk where k is the smallest index such that xk ∈
Dn and B

(
xk,

1
2

)
∩Γ(ω) ̸= /0. Thus dist(ψ2 (ω) ,Γ(ω)) < 1

2 and d (ψ2 (ω) ,ψ1 (ω)) < 1.
Continue this way obtaining ψk a measurable function such that

dist(ψk (ω) ,Γ(ω))<
1

2k−1 , d
(
ψk (ω) ,ψk+1 (ω)

)
<

1
2k−2 .

Then for each ω,{ψk (ω)} is a Cauchy sequence converging to a point, σ (ω) ∈ Γ(ω) .
This has shown that if Γ is measurable there exists a measurable selection, σ (ω) ∈ Γ(ω) .
It remains to show there exists a sequence of these measurable selections, σn such that the
conclusion of 4.) holds. To do this we define

Γni (ω)≡
{

Γ(ω)∩B
(
xn,2−i

)
if Γ(ω)∩B

(
xn,2−i

)
̸= /0

Γ(ω) otherwise. .

First we show that Γni is measurable. Let U be open. Then

{ω : Γni (ω)∩U ̸= /0}=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[{

ω : Γ(ω)∩B
(
xn,2−i)= /0

}
∩{ω : Γ(ω)∩U ̸= /0}

]
=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[(

Ω\
{

ω : Γ(ω)∩B
(
xn,2−i) ̸= /0

})
∩{ω : Γ(ω)∩U ̸= /0}

]
,

a measurable set. By what was just shown there exists σni, a measurable function such that
σni (ω) ∈ Γni (ω)⊆ Γ(ω) for all ω ∈ Ω. If x ∈ Γ(ω) , then x ∈ B

(
xn,2−i

)
whenever xn is

close enough to x. Therefore, |σni (ω)− x|< 2−i. And it follows that condition 4.) holds.
Now we verify that 4.) ⇒ 3.). Suppose there exist measurable selections σn (ω) ∈

Γ(ω) satisfying condition 4.). Let U be open. Then

{ω : Γ(ω)∩U ̸= /0}= ∪∞
n=1σ

−1
n (U) ∈ C .

Now suppose Γ(ω) is compact for every ω and that Γ− (U)∈C for every U open. Then
let F be a closed set and let {Un} be a decreasing sequence of open sets whose intersection
equals F such that also, for all n, Un ⊇Un+1. Then

Γ(ω)∩F = ∩nΓ(ω)∩Un = ∩nΓ(ω)∩Un

Now because of compactness, the set on the left is nonempty if and only if each set on the
right is also nonempty. Thus Γ− (F) = ∩nΓ−1 (Un) ∈ C . ■

Actually these are all equivalent in the case of complete measure spaces but we do not
need this and it is much harder to show.
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70.2 A Measurable Selection
This section deals with the problem of getting product measurable functions in a context of
no uniqueness. The following is the main result. It is stated in great generality because it
has fairly wide application although it will be used first in finite dimensions.

Theorem 70.2.1 Let V be a reflexive separable Banach space and V ′ its dual and 1
p +

1
p′ =

1 where p > 1 as usual. For n ∈ N let the functions t → un (t,ω) be in Lp′ ([0,T ] ;V ′) and
(t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into V ′. Suppose there is a set of
measure zero N such that if ω /∈ N, then for all n,

sup
t∈[0,T ]

∥un (t,ω)∥V ′ ≤C (ω) .

Also suppose for each ω /∈ N, each subsequence of {un} has a further subsequence which
converges weakly in Lp′ ([0,T ] ;V ′) to u(·,ω) ∈ Lp′ ([0,T ] ;V ′) such that t → u(t,ω) is
weakly continuous into V ′. Then there exists u product measurable, with t→ u(t,ω) being
weakly continuous into V ′. Moreover, there exists, for each ω /∈ N, a subsequence un(ω)

such that un(ω) (·,ω)→ u(·,ω) weakly in Lp′ ([0,T ] ;V ′).

Note that the exceptional set is given. It could be the empty set with no change in the
conclusion of the theorem.

Let X = ∏
∞
k=1 C ([0,T ]) with the product topology. One can consider this as a metric

space using the metric

d (f,g)≡
∞

∑
k=1

2−k ∥ fk−gk∥
1+∥ fk−gk∥

,

where the norm is the maximum norm in C ([0,T ]) . With this metric, X is complete and
separable.

Lemma 70.2.2 Let {fn} be a sequence in X and suppose that the kth components fnk are
bounded in C0,1 ([0,T ]). (This refers to the Hölder space with γ = 1.) Then there exists
a subsequence converging to some f ∈ X. Thus if {fn} has each component bounded in
C0,1 ([0,T ]) , then {fn} is pre-compact in X.

Proof: By the Ascoli−Arzelà theorem, there exists a subsequence n1 such that the first
component fn11 converges in C ([0,T ]). Then taking a subsequence, one can obtain n2 a
subsequence of n1 such that both the first and second components of fn2 converge. Contin-
uing this way one obtains a sequence of subsequences, each a subsequence of the previous
one such that fn j has the first j components converging to functions in C ([0,T ]). There-
fore, the diagonal subsequence has the property that it has every component converging to
a function in C ([0,T ]) . The resulting function in ∏k C ([0,T ]) is f. ■

Now for m ∈ N and φ ∈V ′, define lm(t)≡max(0, t− (1/m)) and

ψm,φ : Lp′ ([0,T ] ;V ′)→C ([0,T ])
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as follows

ψm,φ u(t)≡
∫ T

0

〈
mφX[lm(t),t] (s) ,u(s)

〉
V,V ′ ds = m

∫ t

lm(t)
⟨φ ,u(s)⟩V,V ′ ds.

Let D = {φ r}
∞

r=1 denote a countable dense subset of V . Then the pairs (φ ,m) for φ ∈ D

and m ∈ N yield a countable set. Let
(

mk,φ rk

)
denote an enumeration of these pairs

(m,φ) ∈ N×D . To save notation, we denote

fk (u)(t)≡ ψmk,φ rk
(u)(t) = mk

∫ t

lmk (t)

〈
φ rk

,u(s)
〉

V,V ′
ds

For fixed ω /∈ N and k, the functions
{

t→ fk (u j (·,ω))(t)
}

j are uniformly bounded
and equicontinuous because they are in C0,1 ([0,T ]). Indeed,

∣∣ fk (u j (·,ω))(t)
∣∣= ∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V,V ′
ds

∣∣∣∣∣≤C (ω)
∥∥∥φ rk

∥∥∥
V
,

and for t ≤ t ′ ∣∣ fk (u j (·,ω))(t)− fk (u j (·,ω))
(
t ′
)∣∣

≤

∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V,V ′
ds−mk

∫ t ′

lmk (t
′)

〈
φ rk

,u j (s,ω)
〉

V,V ′
ds

∣∣∣∣∣
≤ 2mk

∣∣t ′− t
∣∣∥∥∥φ rk

∥∥∥
V ′

C (ω) .

By Lemma 70.2.2, the set of functions
{

f(u j (·,ω))
}∞

j=n is pre-compact in the space defined
as X = ∏k C ([0,T ]) . Then define a set valued map Γn : Ω→ X as follows.

Γ
n (ω)≡ ∪ j≥n

{
f(u j (·,ω))

}
,

where the closure is taken in X . Then Γn (ω) is the closure of a pre-compact set in
∏k C ([0,T ]) and so Γn (ω) is compact in ∏k C ([0,T ]) . From the definition, a function f
is in Γn (ω) if and only if d (f, f(wl))→ 0 as l→ ∞, where each wl is one of the u j (·,ω)
for j ≥ n. From the topology on X this happens if and only if for every k,

fk (t) = lim
l→∞

mk

∫ t

lmk (t)

〈
φ rk

,wl (s,ω)
〉

V,V ′
ds,

where the limit is the uniform limit in t.
Note that in the case of a filtration, instead of a single σ -algebra F where each u j is

progressively measurable, if the sequence wl does not have the index l dependent on ω, then
if such a limit holds for each ω, it follows that (t,ω)→ fk (t,ω) will inherit progressive
measurability from the wl . This situation will be typical when dealing with stochastic
equations with path uniqueness known. Thus this is a reasonable way to attempt to consider
measurability and the more difficult question of whether a process is adapted.
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Lemma 70.2.3 ω → Γn (ω) is a F measurable set valued map with values in X. If σ is
a measurable selection, (σ (ω) ∈ Γn (ω) so σ = σ (·,ω) a continuous function. To have
this measurable would mean that σ

−1
k (open) ∈F where the open set is in C ([0,T ]).) then

for each t, ω → σ (t,ω) is F measurable and (t,ω)→ σ (t,ω) is B ([0,T ])×F ≡P
measurable.

Proof: Let O be a basic open set in X . Thus O = ∏
∞
k=1 Ok where Ok is a proper open

set of C ([0,T ]) only for k ∈ {k1, · · · ,kr}. We need to consider whether

Γ
n− (O)≡ {ω : Γ

n (ω)∩O ̸= /0} ∈F .

Now Γn− (O) equals
∩r

i=1

{
ω : Γ

n (ω)ki
∩Oki ̸= /0

}
Thus we consider whether {

ω : Γ
n (ω)ki

∩Oki ̸= /0
}
∈F (70.2.1)

From the definition of Γn (ω) , this is equivalent to the condition that for some j ≥ n,

fki (u j (·,ω)) = (f(u j (·,ω)))ki
∈ Oki

and so the above set in 70.2.1 is of the form

∪∞
j=n

{
ω : (f(u j (·,ω)))ki

∈ Oki

}
Now ω → (f(u j (·,ω)))ki

is F measurable into C ([0,T ]) and so the above set is in F . To
see this, let g ∈C ([0,T ]) and consider the inverse image of the ball B(g,r) ,{

ω :
∥∥∥(f(u j (·,ω)))ki

−g
∥∥∥

C([0,T ])
< r
}
.

By continuity considerations,∥∥∥(f(u j (·,ω)))ki
−g
∥∥∥

C([0,T ])
= sup

t∈Q∩[0,T ]

∣∣∣(f(u j (t,ω)))ki
−g(t)

∣∣∣
which is the sup of countably many F measurable functions. Thus it is F measurable.
Since every open set is the countable union of such balls, it follows that the claim about F
measurability is valid. Thus Γn− (O) is F measurable whenever O is a basic open set.

Now X is a separable metric space and so every open set is a countable union of these
basic sets. Let U be an open set in X and let U = ∪∞

l=1Ol where Ol is a basic open set as
above. Then

Γ
n− (U) = ∪∞

l=1Γ
n−
(

Ol
)
∈F .

That there exists a measurable selection follows from the standard theory of measurable
multi-functions [10], [70]. This is proved in Theorem 70.1.2 above. For σ one of these
measurable selections, the evaluation at t is F measurable. Thus ω → σ (t,ω) is F mea-
surable with values in R∞. Also t→ σ (t,ω) is continuous, and so it follows that in fact σ

is product measurable as claimed. ■
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Definition 70.2.4 Let Γ(ω)≡ ∩∞
n=1Γn (ω).

Lemma 70.2.5 Γ is a nonempty F measurable set valued function having values in the
compact sub-sets of X. There exists a measurable selection γ . For γ a F measurable
selection, (t,ω)→ γ (t,ω) is P measurable. Also, for each ω, there exists a subsequence,
un(ω) (·,ω) such that for each k,

γk (t,ω) = lim
n(ω)→∞

f
(
un(ω) (t,ω)

)
k = lim

n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,un(ω) (s,ω)
〉

V,V ′
ds

Proof: Consider Γ(ω) =∩∞
n=1Γn (ω) . Then ω→ Γ(ω) is a compact set valued map in

X . It is nonempty because each Γn (ω) is nonempty and compact, and these sets are nested.
Is it F measurable? Each Γn is compact valued and F measurable. Hence if F is closed,

Γ(ω)∩F = ∩∞
n=1Γ

n (ω)∩F

and the left is non empty if and only if each Γn (ω)∩F ̸= /0. Hence for F closed,

{ω : Γ(ω)∩F ̸= /0}= ∩n {ω : Γ
n (ω)∩F ̸= /0}

and so
Γ
− (F) = ∩nΓ

n− (F) ∈F

The last claim follows from the theory of multi-functions Theorem 70.1.2, [10], [70]. Since
Γn (ω) is compact, the measurability of Γn, that Γn− (U)∈F for U open implies the strong
measurability of Γn, that Γn− (F) ∈F . Thus ω → Γ(ω) is non empty compact valued in
X and F measurable.

From standard theory of measurable multi-functions, Theorem 70.1.2, [10], [70], there
exists a F measurable selection ω→ γ (ω) with γ (ω) ∈ Γ(ω) for each ω . Now it follows
that t → γk (t,ω) is continuous. This is what it means for γ (ω) ∈ X . What of the product
measurability of γk? We know that ω → γk (ω) is F measurable into C ([0,T ]) and so
since pointwise evaluation is continuous, ω → γk (t,ω) is F measurable. Then since t →
γk (t,ω) is continuous, it follows that γk is a P measurable real valued function and that γ

is a P measurable R∞ valued function.
Since γ (ω) ∈ Γ(ω) , it follows that for each n,γ (ω) ∈ Γn (ω) . Therefore, there exists

jn ≥ n such that for each ω,

d (f(u jn (·,ω)) ,γ (ω))< 2−n

It follows that, taking a suitable subsequence, denoted as
{

un(ω) (·,ω)
}

,

γ (ω) = lim
n(ω)→∞

f
(
un(ω) (·,ω)

)
for each ω . In particular, for each k

γk (t,ω) = lim
n(ω)→∞

f
(
un(ω) (t,ω)

)
k = lim

n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,un(ω) (s,ω)
〉

V,V ′
ds (70.2.2)
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for each t. ■
Note that it is not clear that (t,ω)→ f

(
un(ω) (t,ω)

)
is P measurable although (t,ω)→

γ (t,ω) is P measurable.
Proof of the theorem: By assumption, there exists a further subsequence still denoted

by n(ω) such that, in addition to 70.2.2 above, the weak limit

lim
n(ω)→∞

un(ω) (·,ω) = u(·,ω)

exists in Lp′ ([0,T ] ;V ′) such that t→ u(t,ω) is weakly continuous into V ′. Then the above
equation 70.2.2 continues to hold for this further subsequence and in addition to this,

mk

∫ t

lmk (t)

〈
φ rk

,u(s,ω)
〉

V,V ′
ds = lim

n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,un(ω) (s,ω)
〉

V,V ′
ds = γk (t,ω)

Letting φ ∈ D given, there exists a sub-sequence denoted by k such that mk → ∞ and
φ rk

= φ for all k. Then passing to a limit and using the assumed continuity of s→ u(s,ω) ,
the left side of this equation converges to ⟨φ ,u(t,ω)⟩V,V ′ and so the right side, γk (t,ω)
must also converge, this for each ω . Since the right side is a product measurable function
of (t,ω) , it follows that the pointwise limit is also product measurable. Hence (t,ω)→
⟨φ ,u(t,ω)⟩V,V ′ is product measurable, this for each φ ∈ D . Since D is a dense set, it
follows that (t,ω)→ ⟨φ ,u(t,ω)⟩V,V ′ is P measurable for all φ ∈ V and so by the Pettis
theorem, [127], (t,ω)→ u(t,ω) is P measurable into V ′. ■

One can say more about the measurability of the approximating sequence. In fact, we
can obtain one for which ω → un(ω) (t,ω) is also F measurable.

Lemma 70.2.6 Suppose, un(ω) → u weakly in Lp′ ([0,T ] ;V ′) where u is product measur-
able measurable and

{
un(ω)

}
is a subsequence of {un} where

sup
t∈[0,T ]

∥un (t,ω)∥V ′ <C (ω) , for ω /∈ N a set of measure zero,

Then for each ω /∈ N, there exists a subsequence of {un} denoted as
{

uk(ω)

}
such that

uk(ω)→ u weakly in Lp′ ([0,T ] ;V ′), ω → k (ω) is F measurable, and ω → uk(ω) (t,ω) is
also F measurable, the last assertions holding for all ω /∈ N.

Proof: For f ,g ∈ Lp′ ([0,T ] ;V ′) ≡ V ′, Lp ([0,T ] ;V ) ≡ V , let {φ k} be a countable
dense subset of Lp ([0,T ] ;V ). Then a bounded set in Lp′ ([0,T ] ;V ′) with the weak topology
can be considered a complete metric space using the following metric.

d ( f ,g)≡
∞

∑
j=1

2− j

∣∣∣⟨φ k, f −g⟩V ,V ′

∣∣∣
1+
∣∣∣⟨φ k, f −g⟩V ,V ′

∣∣∣
Now let k (ω) be the first index from the indices of {un} at least as large as k such that

d
(
uk(ω),u

)
≤ 2−k
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Such an index exists because there exists a convergent sequence un(ω) which does converge
weakly to u. This is just picking another one which happens to also retain measurability.
In fact,

{ω : k (ω) = l}=
{

ω : d (ul ,u)≤ 2−k
}
∩∩k−1

j=k

{
ω : d (u j,u)> 2−k

}
Since u is product measurable and each ul is also product measurable, these are all measur-
able sets with respect to F and so ω → k (ω) is F measurable. Now we have uk(ω)→ u
weakly in Lp′ ([0,T ] ;V ′) for each ω with each function being F measurable because

uk(ω) (t,ω) =
∞

∑
j=1

X[k(ω)= j]u j (t,ω)

and every term in the sum is F measurable. ■
The following obvious corollary shows the significance of this lemma.

Corollary 70.2.7 Let V be a reflexive separable Banach space and V ′ its dual and 1
p +

1
p′ = 1 where p > 1 as usual. Let the functions t → un(ω) (t,ω) be in Lp′ ([0,T ] ;V ′) and
(t,ω)→ un(ω) (t,ω) be B ([0,T ])×F ≡P measurable into V ′. Here

{
un(ω)

}∞

n=1 is a
sequence, one for each ω . Suppose there is a set of measure zero N such that if ω /∈N, then
for all n,

sup
t∈[0,T ]

∥∥un(ω) (t,ω)
∥∥

V ′ ≤C (ω) .

Also suppose for each ω /∈ N, each subsequence of
{

un(ω)

}
has a further subsequence

which converges weakly in Lp′ ([0,T ] ;V ′) to u(·,ω) ∈ Lp′ ([0,T ] ;V ′) such that t→ u(t,ω)
is weakly continuous into V ′. Then there exists u product measurable, with t → u(t,ω)
being weakly continuous into V ′. Moreover, there exists, for each ω /∈ N, a subsequence
un(ω) such that un(ω) (·,ω)→ u(·,ω) weakly in Lp′ ([0,T ] ;V ′).

Proof: It suffices to consider the functions vn (t,ω)≡ un(ω) (t,ω) and use the result of
Theorem 70.2.1. ■

Of course when you have all functions having values in H a separable Hilbert space,
there is no change in the argument to obtain the following theorem.

Theorem 70.2.8 Let H be a real separable Hilbert space. For n ∈ N let the functions t→
un (t,ω) be in L2 ([0,T ] ;H) and (t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into
H. Suppose there is a set of measure zero N such that if ω /∈ N, then for all n,

sup
t∈[0,T ]

|un (t,ω)|H ≤C (ω) .

Also suppose for each ω /∈ N, each subsequence of {un} has a further subsequence which
converges weakly in L2 ([0,T ] ;H) to u(·,ω)∈ L2 ([0,T ] ;H) such that t→ u(t,ω) is weakly
continuous into H. Then there exists u product measurable, with t→ u(t,ω) being weakly
continuous into H. Moreover, there exists, for each ω /∈ N, a subsequence un(ω) such that
un(ω) (·,ω)→ u(·,ω) weakly in L2 ([0,T ] ;H).
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70.3 Measurability In Finite Dimensional Problems
What follows is like the Peano existence theorem from ordinary differential equations ex-
cept that it provides a solution which retains product measurability. It is a nice example of
the above theory. It will be used in the next section in the Galerkin method.

Lemma 70.3.1 Suppose N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and

(t,u,v,w,ω)→ N(t,u,v,w,ω)

is progressively measurable relative to the filtration consisting of the single σ algebra F .
Also suppose that (t,u,v,w)→ N(t,u,v,w,ω) is continuous and that also N(t,u,v,w,ω)
is uniformly bounded in (t,u,v,w) by M (ω) . Let f be P measurable and f(·,ω) ∈
L2
(
[0,T ] ;Rd

)
. Then for h > 0, there exists a P measurable solution u to the integral

equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω)ω)ds =

∫ t

0
f(s,ω)ds.

Here u0 has values in Rd and is F measurable, u(s−h,ω) ≡ u0 (ω) if s−h < 0 and for
w0 a given F measurable function,

w(t,ω)≡ w0 (ω)+
∫ t

0
u(s,ω)ds.

Proof: Let un be the solution to the following equation:

un (t,ω)−u0(ω)+
∫ t

0
N
(
s,τ1/nun(s,ω),un (s−h,ω) ,τ1/nwn(s,ω),ω

)
ds

=
∫ t

0
f(s,ω)ds.

where here τ1/n is defined as follows. For δ > 0,

τδ u(s)≡
{

u(s−δ ) if s > δ

0 if s−δ ≤ 0

It follows that (t,ω)→ un (t,ω) is P measurable. From the assumptions on N, it follows
that for fixed ω,{un (·,ω)} is uniformly bounded:

sup
t∈[0,T ]

|un (t,ω)| ≤ |u0(ω)|+
∫ T

0
M (ω)ds+

∫ T

0
|f(s,ω)|ds =: C (ω) ,

and is also equicontinuous because for s < t,

|un (t,ω)−un (s,ω)|

≤
∫ t

s

∣∣N(r,τ1/nun(r,ω),un (r−h,ω) ,τ1/nwn (r,ω) ,ω
)∣∣dr
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+
∫ t

s
|f(r,ω)|dr ≤C (ω, f) |t− s|1/2 .

Therefore, by the Ascoli−Arzelà theorem, for each ω, there exists a subsequence ñ(ω)
depending on ω and a function ũ(t,ω) such that

uñ(ω) (t,ω)→ ũ(t,ω) uniformly in C
(
[0,T ] ;Rd

)
.

This verifies the assumptions of Theorem 70.2.8.
It follows that there exists ū product measurable and a subsequence

{
un(ω)

}
for each

ω such that
lim

n(ω)→∞

un(ω) (·,ω) = ū(·,ω) weakly in L2
(
[0,T ] ;Rd

)
and that t → ū(t,ω) is continuous. (Note that weak continuity is the same as continuity
in Rd .) The same argument given above applied to the un(ω) for a fixed ω yields a further
subsequence, denoted as

{
un̄(ω) (·,ω)

}
which converges uniformly to a function u(·,ω) on

[0,T ]. So ū(t,ω) = u(t,ω) in L2
(
[0,T ] ;Rd

)
. Since both of these functions are continuous

in t, they must be equal for all t. Hence, (t,ω)→ u(t,ω) is product measurable. Pass-
ing to the limit in the equation solved by

{
un̄(ω) (·,ω)

}
using the dominated convergence

theorem, we obtain

u(t,ω)−u0 (ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds =

∫ t

0
f(s,ω)ds.

Thus t→ u(t,ω) is a product measurable solution to the integral equation. ■
This lemma gives the existence of the approximate solutions in the following theorem

in which the assumption that the integrand is bounded is replaced with an estimate. The
following elementary consideration will be used whenever convenient. Note that it holds
for all ω .

Remark 70.3.2 When w(t)≡ w0 (ω)+
∫ t

0 u(s,ω)ds,

v(t) =
{

u(t−h) if t ≥ h
u0 if t < h

and when the estimate

(N(t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
holds, it follows that∫ t

0
(N(t,u,v,w,ω) ,u)ds≥−C

(
C (ω)+

∫ t

0
|u|2 ds

)
for some constant C depending on the initial data but not on u.

To see this, ∫ t

0
|u(s−h)|2 ds =

∫ h

0
|u0|2 ds+

∫ t

h
|u(s−h)|2 ds
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= |u0|2 h+
∫ t−h

0
|u(s)|2 ds≤ |u0|2 h+

∫ t

0
|u(s)|2 ds

if t ≥ h and if s < h, this is dominated by

|u0|2 t ≤ |u0|2 h≤ |u0|2 h+
∫ t

0
|u(s)|2 ds

As to the terms from w,∫ t

0
|w(s)|2 ds

≤
∫ t

0

∣∣∣∣w0 +
∫ s

0
u(r)dr

∣∣∣∣2 ds≤
∫ t

0

(
|w0|+

∣∣∣∣∫ s

0
u(r)dr

∣∣∣∣)2

ds

≤
∫ t

0

(
|w0|2 +2 |w0|

∣∣∣∣∫ s

0
u(r)dr

∣∣∣∣+ ∣∣∣∣∫ s

0
u(r)dr

∣∣∣∣2
)

ds

≤ T |w0|2 +T |w0|2 +
∫ t

0

∣∣∣∣∫ s

0
u(r)dr

∣∣∣∣2 ds+
∫ t

0

∣∣∣∣∫ s

0
u(r)dr

∣∣∣∣2 ds

≤ 2T |w0|2 +2
∫ t

0

(∫ s

0
|u(r)|dr

)2

ds≤ 2T |w0|2 +2
∫ t

0
s
∫ s

0
|u(r)|2 drds

≤ 2T |w0|2 +2T
∫ t

0

∫ s

0
|u(r)|2 drds≤ 2T |w0|2 +2T 2

∫ t

0
|u(r)|2 dr

From this, the claimed result follows.

Theorem 70.3.3 Suppose N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and

(t,u,v,w,ω)→ N(t,u,v,w,ω)

is progressively measurable with respect to a constant filtration Ft = F . Also suppose
(t,u,v,w)→N(t,u,v,w,ω) is continuous and satisfies C (·,ω)≥ 0 in L1 ([0,T ]) and some
µ > 0:

(N(t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
.

Also let f be product measurable and f(·,ω) ∈ L2
(
[0,T ] ;Rd

)
. Then for h > 0, there exists

a product measurable solution u to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds =

∫ t

0
f(s,ω)ds, (70.3.3)

where u0 has values inRd and is F measurable. Here u(s−h,ω)≡ u0 (ω) for all s−h≤ 0
and for w0 a given F measurable function,

w(t,ω)≡ w0 (ω)+
∫ t

0
u(s,ω)ds
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Proof: Let Pm denote the projection onto the closed ball B(0,9m). Then from the above
lemma, there exists a product measurable solution um to the integral equation

um (t,ω)−u0 (ω)+
∫ t

0
N(s,Pmum(s,ω),Pmum(s−h,ω),Pmwm (s,ω) ,ω)ds

=
∫ t

0
f(s,ω)ds.

Define a stopping time

τm(ω)≡ inf
{

t ∈ [0,T ] : |um (t,ω)|2 + |wm (t,ω)|2 > 2m
}
,

where inf /0≡ T . Localizing with the stopping time,

uτm
m (t,ω)−u0 (ω)+

∫ t

0
X[0,τm]N(s,uτm

m (s,ω),uτm
m (s−h,ω),wτm

m (s,ω) ,ω)ds

=
∫ t

0
X[0,τm]f(s,ω)ds.

Note how the stopping time allowed the elimination of the projection map in the equation.
Then we get

1
2
|uτm

m (t,ω)|2− 1
2
|u0(ω)|2

+
∫ t

0

(
X[0,τm]N(s,uτm

m (s,ω),uτm
m (s−h,ω),wτm

m (s,ω) ,ω) ,uτm
m (s,ω)

)
ds

=
∫ t

0
X[0,τm] (f(s,ω) ,uτm

m (s,ω))ds.

From the estimate,

1
2
|uτm

m (t,ω)|2− 1
2
|u0(ω)|2 ≤

∫ t

0

(
µ

(
|uτm

m (s,ω)|2 + |uτm
m (s−h,ω)|2 + |wτm

m (s,ω)|2
)

+C (s,ω)+
1
2
|f(s,ω)|2

)
ds+

1
2

∫ t

0
|uτm

m (s,ω)|2 ds.

Note that
|u0|2 h+

∫ t

0
|uτn

n (s)|2 ds≥
∫ t

0
|uτn

n (s−h,ω)|2 ds

and ∫ t

0
|wτn

n (s,ω)|2 ds =
∫ t

0

∣∣∣∣w0 +
∫ s

0
X[0,τn]un (r)dr

∣∣∣∣2 ds

=
∫ t

0

∣∣∣∣w0 +
∫ s

0
X[0,τn]u

τn
n (r)dr

∣∣∣∣2 ds

≤C (w0 (ω))+CT
∫ t

0
|uτn

n |
2 ds
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By Gronwall’s inequality,

|uτm
m (t,ω)|2 ≤ C

(
u0(ω),w0 (ω) ,µ,∥C (·,ω)∥L1([0,T ];Rd) ,T,∥f(·,ω)∥L2([0,T ];Rd)

)
≡ C (ω) .

Thus, for a.e. ω,τm = T for all m large enough, say for m≥M (ω) where

C (ω)≤ 2M(ω).

Then define the functions
yn (t,ω)≡ uτn

n (t,ω) .

These are product measurable and

yn (t,ω)−u0 (ω)+∫ t

0
X[0,τn]N

(
s,yn(s,ω),yn (s−h,ω) ,w0 (ω)+

∫ s

0
yn (r,ω)dr,ω

)
ds

=
∫ t

0
X[0,τn]f(s,ω)ds.

So each is continuous in t. For large enough n,τn = T and hence

yn (t,ω)−u0 (ω)+
∫ t

0
N
(

s,yn(s,ω),yn (s−h,ω) ,w0 (ω)+
∫ s

0
yn (r,ω)dr,ω

)
ds

=
∫ t

0
f(s,ω)ds.

Also these satisfy the inequality

sup
t∈[0,T ]

|yn (t,ω)|2 ≤C (ω)≤ 2M(ω) < 9M(ω), (70.3.4)

the constant on the right not depending on n. Thus for fixed ω, we can regard N as bounded
and the same reasoning used in the above lemma involving the Ascoli−Arzelà theorem
implies that every subsequence has a further subsequence which converges to a solution
to the integral equation for that ω . Thus it is continuous into Rd . It follows from the
measurable selection theorem above that there exists u product measurable and continuous
in t such that u(·,ω) = limn(ω)→∞ yn(ω) (·,ω) in L2

(
[0,T ] ;Rd

)
. By the reasoning of the

above lemma, there is a further subsequence, denoted the same way, for which limn→∞ yn(ω)

in C
(
[0,T ] ;Rd

)
solves the integral equation for a fixed ω . Thus u is a product measurable

solution to the integral equation as claimed. ■
We made use of an estimate in order to get the conclusion of this theorem. However,

all that is really needed is the following.

Corollary 70.3.4 Suppose N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and

(t,u,v,w,ω)→ N(t,u,v,w,ω)
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is progressively measurable with respect to a constant filtration Ft = F . Also suppose
(t,u,v,w)→ N(t,u,v,w,ω) is continuous. Suppose for each ω, there exists an estimate
for any solution u(·,ω) to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds =

∫ t

0
f(s,ω)ds, (70.3.5)

which is of the form
sup

t∈[0,T ]
|u(t,ω)| ≤C (ω)< ∞

Also let f be product measurable and f(·,ω) ∈ L1
(
[0,T ] ;Rd

)
. Here u0 has values in Rd

and is F measurable and u(s−h,ω)≡ u0 (ω) whenever s−h≤ 0 and

w(t,ω)≡ w0 (ω)+
∫ t

0
u(s,ω)ds

where w0 is a given F measurable function. Then for h > 0, there exists a product mea-
surable solution u to the integral equation 70.3.5.

Of course the same conclusions apply when there is no dependence in the integral
equation on u(s−h,ω) or the integral w(t,ω). Note that these theorems hold for all ω .

70.4 The Navier−Stokes Equations
In this section, we study the stochastic Navier−Stokes equations of arbitrary dimension.
We prove there exists a global solution which is product measurable. The main result is
Theorem 70.4.6. We use the Galerkin method and Theorem 70.3.3 to get product measur-
able approximate solutions. Then we take weak limits and get path solutions. After this,
we apply Theorem 70.2.8 to get product measurable global solutions.

As in [15], an important part of our argument is the theorem in Lions [91] which fol-
lows. See Theorem 69.5.6.

Theorem 70.4.1 Let W, H, and V ′ be separable Banach spaces. Suppose W ⊆ H ⊆ V ′

where the injection map is continuous from H to V ′ and compact from W to H. Let q1 ≥ 1,
q2 > 1, and define

S≡ {u ∈ Lq1 ([a,b] ;W ) : u′ ∈ Lq2
(
[a,b] ;V ′

)
and ||u||Lq1 ([a,b];W )+

∣∣∣∣u′∣∣∣∣Lq2 ([a,b];V ′) ≤ R}.

Then S is pre-compact in Lq1 ([a,b] ;H). This means that if {un}∞

n=1 ⊆ S, it has a subse-
quence

{
unk

}
which converges in Lq1 ([a,b] ;H) .

A proof of a generalization of this theorem is found on Page 2385. Let U be a bounded
open set in Rd and let S denote the functions which are infinitely differentiable having zero
divergence and also having compact support in U . We have in mind d = 3, but the approach
is not limited by dimension. We use the same Galerkin method found in [15], the details
being included in slightly abbreviated form for convenience of the reader. The difference is
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that we switch the roles of V and W along with a few other minor modifications. This is the
part of the argument which gives a solution for each ω and it is standard material. Define

V ≡ S in
(

Hd∗ (U)
)d

, W ≡ S in
(
H1 (U)

)d
, and H ≡ S in

(
L2 (U)

)d
,

where d∗ is such that for w ∈
(
Hd∗ (U)

)d
then ∥Dw∥L∞(U) < ∞. For example, you could

take d∗ = 3 for d = 3. In [15], they take d∗ = 8 which is large enough to work for all
dimensions of interest.

Let A : W →W ′ and N : W →V ′ be defined by

⟨Au,v⟩ ≡
∫

U
∇ui ·∇vidx, ⟨Nu,v⟩ ≡ −

∫
U

uiu jv j,idx.

Then N is a continuous function. Indeed, pick v ∈V and suppose un→ u in W, then

|⟨Nu−Nun,v⟩|

≤
∫

U

∣∣∣∣∣∑i, j (uniun j−uiu j)v j,i

∣∣∣∣∣dx≤C∥v∥V
∫

U
(|un|+ |u|)(|un−u|)dx

≤ C∥v∥V
(∫

U
|un|2 + |u|2 dx

)1/2(∫
U
|un−u|2 dx

)1/2

,

where what multiplies ∥v∥V clearly converges to 0.
An abstract form for the incompressible Navier−Stokes equations is

u′+νAu+Nu = f, u(0) = u0,

where f ∈ L2 ([0,T ] ;W ′), for some fixed T > 0. As in [15], we will let ν = 1 to simplify
the presentation. A stochastic version of this would be the integral equation in V ′

u(t,ω)−u0 (ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N (u(s,ω))ds =

∫ t

0
f(s,ω)ds+q(t,ω) ,

where q(·,ω) will be continuous into V , (t,ω)→ q(t,ω) will be product measurable hav-
ing values in V , and q(0,ω) = 0. So q here is a fixed stochastic process, which serves as
the random source. Also (t,ω)→ f(t,ω) will be product measurable into W ′ as well as
having t → f(t,ω) in L2 ([0,T ] ;W ′). Our problem is to show the existence of a product
measurable solution.

Let T be any fixed positive number and let q be any fixed process satisfying the above.

Definition 70.4.2 A global solution to the above integral equation is a process u(t,ω), for
which ω→ u(t,ω) is F measurable and satisfies for each ω outside a set of measure zero
and all t ∈ [0,T ],

u(t,ω)−u0 (ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N (u(s,ω))ds =

∫ t

0
f(s,ω)ds+q(t,ω) .
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In order to apply the earlier result, let w(t,ω)=u(t,ω)−q(t,ω) and write the equation
in terms of w,

w(t,ω)−u0 (ω)+
∫ t

0
A(w(s,ω)+q(s,ω))ds+

∫ t

0
N (w(s,ω)+q(s,ω))ds

=
∫ t

0
f(s,ω)ds.

It turns out that it is convenient to define

⟨B(u,v) ,w⟩ ≡ −
∫

U
uiv jw j,idx,

and write the equation in the following form:

w(t,ω)−u0 (ω)+
∫ t

0
A(w(s,ω))ds+

∫ t

0
N̂ (w(s,ω))ds =

∫ t

0
f̂(s,ω)ds,

where

N̂ (w(t,ω))≡ N (w(t,ω))+B(w(t,ω),q(t,ω))+B(q(t,ω),w(t,ω)) ,

f̂(t,ω)≡ f(t,ω)−A(q(t,ω))−N (q(t,ω)) .

This is an equation in V ′. Moreover, we have the following:

Lemma 70.4.3 For fixed ω ∈Ω, f̂ ∈ L2 ([0,T ] ;W ′) , and

(t,w)→ B(w,q(t,ω)) , (t,w)→ B(q(t,ω),w)

are continuous functions having values in W ′. For fixed w ∈W,

(t,ω)→ B(w,q(t,ω)) , (t,ω)→ B(q(t,ω) ,w)

are product measurable. In addition to this, if z ∈W,

|⟨B(w,q(t,ω)) ,z⟩| ≤ C∥q(t,ω)∥V ∥w∥H ∥z∥H ,

|⟨B(q(t,ω),w) ,z⟩| ≤ C∥q(t,ω)∥V ∥w∥H ∥z∥H .

Proof: The first claim is straightforward to prove from the definition of A and N. Con-
sider the next claim about continuity. Let z ∈W be given. Then from the fact that all the
functions are divergence free,

|⟨B(w,q(t))−B(w̄,q(s)) ,z⟩|

≡
∣∣∣∣∫U

(wiq j (t)− w̄iq j (s))z j,idx
∣∣∣∣= ∣∣∣∣∫U

(wiq j,i (t)− w̄iq j,i (s))z jdx
∣∣∣∣

≤
∣∣∣∣∫U

(wiq j,i (t)− w̄iq j,i (t))z jdx
∣∣∣∣+ ∣∣∣∣∫U

(w̄iq j,i (t)− w̄iq j,i (s))z jdx
∣∣∣∣

≤ C
(
∥q(t)∥V

∫
U
|w− w̄| |z|dx+∥q(t)−q(s)∥V

∫
U
|w̄| |z|dx

)
≤ C (∥q(t)∥V |w− w̄|H +∥q(t)−q(s)∥V |w̄|H) |z|H ,
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where we have suppressed the dependence of q on ω to simplify the notation. The other
function is similar.

As to the claim about product measurability, this follows from the above definition and
assumptions about q being product measurable. For the estimates,

|⟨B(w,q) ,z⟩|=
∣∣∣∣∫U

wiq jz j,i

∣∣∣∣= ∣∣∣∣∫U
wiq j,iz j

∣∣∣∣≤C∥q∥V
∫

U
|w| |z|dx,

and apply Hölder’s inequality. The other estimate is similar. ■
This has shown that it suffices to verify that there exists a global solution u to the

equation

u(t,ω)−u0 (ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N̂ (u(s,ω))ds =

∫ t

0
f(s,ω)ds,

where f(·,ω) ∈ L2 ([0,T ] ;W ′) for each ω ∈Ω.
Let R be the Riesz map from V to V ′, so ⟨Rv1,v2⟩V ′,V = (v1,v2)V for any v1,v2 ∈ V .

The compactness of the embeddings imply that R−1 is a compact self adjoint operator on
H and so there is a complete orthonormal basis {wk} for H such that R−1wk = µkwk,
where {µk} is a decreasing sequence of positive numbers which converges to 0. Thus
Rwk = λ kwk, where limk→∞ λ k = ∞. {wk} is a special basis. It is orthonormal in H and
orthogonal in V , since (wk,wl)V = ⟨Rwk,wl⟩= (λ kwk,wl)H .

To use the Galerkin method, let Vn = span(w1, · · · ,wn) . Clearly ∪nVn is dense in H.
This is also dense in V. If not, then there exists φ ∈ V ′ such that φ ̸= 0 but ∪nVn ⊆ kerφ .
Then φ = Ry. Hence for z ∈ ∪M

n=1Vn

0 = ⟨Ry,z⟩= ⟨Rz,y⟩= (Rz,y)H .

But Rz ∈ span(w1, · · · ,wM) and in fact, R maps Vn onto Vn and so this shows that y is
perpendicular to span(w1, · · · ,wM) for each M so y = 0 and φ = 0 after all. Thus ∪nVn is
also dense in V and hence it is also dense in W .

Let un (t,ω) = ∑
n
k=1 xk (t,ω)wk, where x(t,ω) = (x1(t,ω), · · · ,xn(t,ω))T ∈ Rn. We

consider the problem of finding x(t,ω) such that for all wk,k ≤ n,

(un (t,ω) ,wk)H − (u0n (ω) ,wk)H +
∫ t

0
⟨A(un(s,ω)),wk⟩ds

+
∫ t

0

〈
N̂(un(s,ω)),wk

〉
ds =

∫ t

0
⟨f(s,ω),wk⟩ds, (70.4.6)

where u0n is the orthogonal projection of u0 onto Vn.
By the continuity of the operators described above, and the orthogonality of the wk,

this is nothing but an ordinary differential equation for the vector x(t,ω) . By Theorem
70.2.8, there exists a product measurable solution x and therefore, un (t,ω) is also product
measurable in H.
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Take the derivative, multiply by xk (t,ω) , add, and integrate again in the usual way to
obtain

1
2
|un (t,ω)|2H −

1
2
|u0n (ω)|2H

= −
∫ t

0
⟨A(un(s,ω)),un(s,ω)⟩ds−

∫ t

0

〈
N̂(un(s,ω)),un(s,ω)

〉
ds

+
∫ t

0
⟨f(s,ω),un(s,ω)⟩ds.

Recall that N̂ (u(t,ω)) = N (u(t,ω))+B(u(t,ω),q(s,ω))+B(q(t,ω),u(t,ω)) . From the
above lemma and that all functions are divergence free, we obtain∫ t

0
⟨B(q(s,ω),un(s,ω)) ,un(s,ω)⟩ds = 0,

and ∣∣∣∣∫ t

0
⟨B(un(s,ω),q(s,ω)) ,un(s,ω)⟩ds

∣∣∣∣≤C
∫ t

0
∥q(s,ω)∥V |un(s,ω)|2H ds.

Then one can obtain an inequality of the following form

1
2
|un (t,ω)|2H +

∫ t

0
∥un(s,ω)∥2

W ds

≤ 1
2
|u0n (ω)|2H +C

∫ t

0
∥q(s,ω)∥V |un(s,ω)|2H ds

+C
∫ t

0
∥f(s,ω)∥2

W ′ ds+
1
2

∫ t

0
∥un(s,ω)∥2

W ds.

Since t → ∥q(t,ω)∥V is continuous, it follows from Gronwall’s inequality that there is an
estimate of the form

|un (t,ω)|2H +
∫ t

0
∥un(s,ω)∥2

W ds≤C (u0, f,q,T,ω) . (70.4.7)

The next task is to estimate ∥u′n(ω)∥L2([0,T ];V ′) for each fixed ω ∈ Ω. We will sup-
press the dependence on ω of all functions whenever it is appropriate. With 70.4.6, the
fundamental theorem of calculus implies that for each w ∈Vn,〈

u′n (t) ,w
〉

V ′,V + ⟨A(un(t)),w⟩V ′,V +
〈
N̂(un(t)),w

〉
= ⟨f(t),w⟩ .

In terms of inner products in V,(
R−1u′n (t)+R−1A(un(t))+R−1N̂(un(t))−R−1f(t),w

)
V = 0

for all w ∈ Vn. This is equivalent to saying that for Pn the orthogonal projection in V onto
Vn, (

R−1u′n (t)+R−1A(un(t))+R−1N̂(un(t))−R−1f(t),Pnw
)

V = 0
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for all w ∈V . This is to say that

R−1u′n (t)+PnR−1A(un (t))+PnR−1N̂ (un (t)) = PnR−1f(t) .

Now the projection map decreases norms and R−1 preserves norms. Hence∥∥u′n (t)
∥∥

V ′ =
∥∥R−1u′n (t)

∥∥
V ≤ ∥A(un (t))∥V ′ +

∥∥N̂ (un (t))
∥∥

V ′ +∥f(t)∥V ′ ,

from which it follows that u′n is bounded in L2 ([0,T ] ;V ′). Indeed, this is the case because
A(un) and N̂ (un) are both bounded in L2 ([0,T ] ;V ′) . The term

∥∥N̂ (un (t))
∥∥

V ′ can be split
further into terms involving ∥N (un)∥ ,∥B(un,q)∥ , and ∥B(q,un)∥. For example, consider
N (un) which is the least obvious. Let w ∈ L2 ([0,T ] ;V ) . From the definitions,∣∣∣⟨N (un) ,w⟩L2([0,T ],V )

∣∣∣= ∣∣∣∣∫ T

0

∫
U

uniun jw j,idxdt
∣∣∣∣

≤ C
∫ T

0
∥w(t)∥V |un|2H dt

≤ C∥w∥L2([0,T ],V )C (u0, f,q,T,ω) .

We have now shown that

sup
t∈[0,T ]

|un (t,ω)|2H +
∫ T

0
∥un(s,ω)∥2

W ds+
∥∥u′n(ω)

∥∥
L2([0,T ];V ′) ≤C (u0, f,q,T,ω) . (70.4.8)

This condition holds for all ω. Now for each ω, one can take a subsequence such that a
solution to the evolution equation is obtained. Then, when this is done, we will apply the
measurable selection result to obtain a product measurable solution.

It follows from the above estimate 70.4.8 that there is a subsequence, still denoted as n
and a function u(t,ω) such that

un→ u weak ∗ in L∞ ([0,T ] ;H) , (70.4.9)

u′n→ u′ weakly in L2 ([0,T ] ;V ′) ,
un→ u weakly in L2 ([0,T ] ;W ) ,

un→ u strongly in L2 ([0,T ] ;H) . (70.4.10)

This last convergence follows from Theorem 70.4.1. The sequence is bounded in the space
L2 ([0,T ] ;W ) and the derivative is bounded in L2 ([0,T ] ;V ′) so such a strongly convergent
subsequence exists. Since A is linear, we can also assume that

Aun→ Au weakly in L2 ([0,T ] ;W ′) . (70.4.11)
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What happens with the nonlinear operator N̂? Let w ∈ L∞ ([0,T ] ;V ) . A computation
shows then that∣∣∣∣∫ T

0
⟨Nun(t)−Nu(t),w(t)⟩dt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫
U
(uni(t)un j(t)−ui(t)u j(t))w j,idxdt

∣∣∣∣
≤ ∥w∥L∞([0,T ],V )

∫ T

0

∫
U
(|un(t)|+ |u(t)|)(|u(t)−un(t)|)dxdt

≤ ∥w∥L∞([0,T ],V )

(∫ T

0

∫
U
(|un|+ |u|)2 dxdt

)1/2(∫ T

0

∫
U
(|u−un|)2 dxdt

)1/2

.

This converges to 0 thanks to the estimates and the strong convergence 70.4.10. Similar
convergence holds for the other nonlinear terms B(un (t) ,q) ,B(q,un (t)).

We have shown that for any n≥ m, and w ∈Vm,〈
u′n (t) ,w

〉
V ′,V + ⟨A(un(t)),w⟩V ′,V +

〈
N̂(un(t)),w

〉
= ⟨f(t),w⟩ . (70.4.12)

Let ζ ∈C∞ ([0,T ]) be such that ζ (T ) = 0. Then〈
u′n (t) ,wζ (t)

〉
V ′,V + ⟨A(un(t)),wζ (t)⟩V ′,V +

〈
N̂(un(t)),wζ (t)

〉
= ⟨f(t),wζ (t)⟩ .

Integrating this equation from 0 to T we obtain

−(u0n (ω) ,wζ (0))H −
∫ T

0
ζ
′ (s)(un (s,ω) ,w)H ds

= −
∫ T

0
⟨A(un (s,ω)),wζ (s)⟩ds−

∫ T

0

〈
N̂(un (s,ω)),wζ (s)

〉
ds

+
∫ T

0
⟨f(s,ω) ,wζ (s)⟩ds.

Now letting n→ ∞, from the above list of convergent sequences,

−(u0 (ω) ,wζ (0))H −
∫ T

0
ζ
′ (s)(u(s,ω) ,w)H ds

= −
∫ T

0
⟨A(u(s,ω)),wζ (s)⟩ds−

∫ T

0

〈
N̂(u(s,ω)),wζ (s)

〉
ds

+
∫ T

0
⟨f(s) ,wζ (s)⟩ds.

It follows that in the sense of V ′ valued distributions,

u′(ω)+A(u(ω))+ N̂(u(ω)) = f(ω) (70.4.13)

along with the initial condition
u(0) = u0. (70.4.14)

This has proved most of the following lemma:
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Lemma 70.4.4 Let u0 have values in H and be F measurable, and let un be a solution to
70.4.6. Then for each ω, the estimate 70.4.8 holds. Also there is a subsequence, still called
un such that the convergence for 70.4.9 - 70.4.11 are valid. For all ω , the function u(·,ω)
is a solution to 70.4.13 - 70.4.14 and satisfies

u(·,ω) ∈ L∞ ([0,T ] ;H)∩L2 ([0,T ] ;W ) ,u′ ∈ L2 ([0,T ] ;V ′) .
This solution is also weakly continuous into H for each ω .

Proof: All that remains to show is the last claim about weak continuity into H. The
equation 70.4.13 shows that u(·,ω) is continuous into V ′. However, the weak convergence
and the estimate 70.4.8 show that u(·,ω) is bounded in H. It follows from density of V in
H that t→ u(t,ω) is weakly continuous into H. ■

From 70.4.13, 70.4.14, the following integral equation for a path solution holds:

u(t,ω)−u0(ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N̂ (u(s,ω))ds =

∫ t

0
f(s,ω)ds.

We apply Theorem 70.2.8 to prove the above solution could be taken product measurable.

Theorem 70.4.5 Let f(t,ω), q(t,ω) be product measurable and u0 be measurable, such
that for each ω ∈ Ω, f(·,ω) ∈ L2 ([0,T ] ;W ′), q(·,ω) ∈ C ([0,T ] ;V ) with q(0) = 0, and
u0(ω) ∈ H. Then there exists a global solution to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N̂ (u(s,ω))ds =

∫ t

0
f(s,ω)ds.

Proof: Letting un be a solution to 70.4.6, we verify the conditions of Theorem 70.2.8
for un.

The assumption in this theorem that the un are bounded follows from the above esti-
mate 70.4.8. Then it was shown in the above lemma that whenever a sequence satisfies the
estimate 70.4.8, it has a subsequence which converges as in 70.4.9 - 70.4.11 to a weakly
continuous u(·,ω). Therefore, by Theorem 70.2.8 there is a subsequence un(ω)(·,ω) con-
verging weakly to u(·,ω), such that (t,ω)→ u(t,ω) is a product measurable function into
H. Then a further subsequence converges to a path solution to the above integral equation,
which must be the same function because when a sequence converges, all subsequences
converge to the same thing. In addition to this, u is also product measurable into W . This
follows from the above estimate 70.4.8. For φ ∈ H,(t,ω)→ (φ ,u(t,ω)) is product mea-
surable. However, H is dense in W ′ and so if ψ ∈W ′, there is a sequence {φ n} in H such
that φ n→ ψ . Then

⟨ψ,u⟩= lim
n→∞

(φ n,u) ,

so by the Pettis theorem [127], u is product measurable into W also.■
This shows much of the following theorem which is the main result.

Theorem 70.4.6 Let f(t,ω), q(t,ω) be product measurable and u0 be measurable, such
that for each ω ∈ Ω, f(·,ω) ∈ L2 ([0,T ] ;W ′), q(·,ω) ∈ C ([0,T ] ;V ) with q(0) = 0, and
u0(ω) ∈ H. Then there exists a global solution to the integral equation

u(t,ω)−u0 (ω)+
∫ t

0
A(u(s,ω))ds+

∫ t

0
N(u(s,ω))ds =

∫ t

0
f(s,ω)ds+q(t,ω) .
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In addition to this, t→ u(t,ω) is continuous into H and satisfies

u(·,ω) ∈ L∞ ([0,T ] ;H)∩L2 ([0,T ] ;W ) .

If, in addition to the above, u0 ∈ L2 (Ω;H) and f ∈ L2 ([0,T ]×Ω;W ′) and

q ∈ L2 ([0,T ]×Ω;V ) ,

then the solution u is in L2 ([0,T ]×Ω;H)∩L2 ([0,T ]×Ω;W ).

Proof: The last claim follows from the estimates used in the Galerkin method, taking
expectations and passing to a limit. To verify the continuity into H, one can observe that
from the integral equation, u is continuous into V ′. One has

|u(t)|2H =
∞

∑
k=1

(u(t) ,wk)
2 =

∞

∑
k=1
⟨u(t) ,wk⟩2 ,

and so t→ |u(t)|2H is lower semi-continuous. Since it is in L∞, this implies this function is
bounded. Hence the continuity into V ′ and density of V in H implies that u(t) is weakly
continuous into H. Then one can use the formulation in Theorem 70.4.5 to verify t →
|u(t)|H is continuous and apply uniform convexity of the Hilbert space H. ■

One can replace q(t,ω) with q(t,ω,u) and f(t,ω) with f(t,ω,u) in the above with no
change in the argument, provided it is assumed that

(t,ω,u)→ q(t,ω,u) , f(t,ω,u)

are product measurable, continuous in (t,u) and bounded.

70.5 A Friction contact problem
In this section we will consider a friction contact problem which has a coefficient of friction
which is dependent on the slip speed.

üi = σ i j, j(u, u̇)+ fi for (t,x) ∈ (0,T )×U, (70.5.15)

u(0,x) = u0(x), (70.5.16)

u̇(0,x) = v0(x), (70.5.17)

where U is a bounded open subset of R3 having Lipschitz boundary, along with some
boundary conditions which pertain to a part of the boundary of U , ΓC. For x ∈ ΓC,

σn =−p((un−g)+)Cn, (70.5.18)

This is the normal compliance boundary condition.

|σT | ≤ F((un−g)+)µ
(∣∣u̇T − U̇T

∣∣) , (70.5.19)

|σT |< F((un−g)+)µ
(∣∣u̇T − U̇T

∣∣) implies u̇T − U̇T = 0, (70.5.20)
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|σT |= F((un−g)+)µ
(∣∣u̇T − U̇T

∣∣) implies u̇T − U̇T =−λσT (u, u̇). (70.5.21)

Here Cn is a positive function in L∞(ΓC), which we take equal to 1 to simplify notation, U̇T
is the velocity of the foundation, λ is non negative, and µ is a bounded positive function
having a bounded continuous derivative. We could also let µ depend on x ∈ ΓC to model
the roughness of the contact surface but we will suppress this dependence in the interest
of simpler notation. Also, n is the unit outward normal to ∂U and un,uT ,σT , and σn are
defined by the following.

un = u ·n

uT = u−(u ·n)n

σn = σ i jn jni

σTi = σ i jn j−σnni,

written more simply,
σT = σn−σnn

Systems like the above model dynamic friction contact problems [93], [51] [46]. The
function g represents the gap between the contact surface of U , ΓC, and a foundation which
is sliding tangent to ΓC with tangential velocity U̇T .

The new ingredient in this paper is that we allow

g = g(t,x,ω)

where ω ∈ (Ω,F ) and we assume (t,x,ω)→ g(x,ω) is B ([0,T ]×ΓC)×F measurable.
Also, we make the reasonable assumption that

0≤ g(t,x,ω)≤ l < ∞

for all (t,x,ω). We also assume that the given motion of the foundation U̇T is a stochastic
process

U̇T = U̇T (t,x,ω)

and is B ([0,T ]×ΓC)×F measurable. Here B ([0,T ]×ΓC) denotes the Borel sets of
[0,T ]×ΓC. We make the reasonable assumption that U̇T (t,x,ω) is uniformly bounded. In
the interest of notation, we will often suppress the dependence on t,x, and ω .

The condition 70.5.18 is the contact condition. It says the normal component of the
traction force density is dependent on the normal penetration of the body into the foun-
dation surface. Conditions 70.5.19 -70.5.21 model friction. They say that the tangential
part of the traction force density is bounded by a function determined by the normal force
or penetration. No sliding takes place until |σT | reaches this bound, F((un− g)+)µ (0),
70.5.20. When this occurs, the tangential force density has a direction opposite the relative
tangential velocity 70.5.21. The dependence of the friction coefficient on the magnitude
of the slip velocity,

∣∣u̇T − U̇T
∣∣ may be experimentally verified and so it has been included.

The new feature in this model is the assumption that the gap is a random variable for each
x ∈ ΓC and we want to consider measurability of the solutions. Thus for a fixed ω, we have
a standard friction problem and it is the measurability which is of interest here.
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In this paper, we assume the following on p and F . The functions p and F are increasing
and

δ
2r−K ≤ p(r)≤ K(1+ r), r ≥ 0, (70.5.22)

p(r) = 0, r < 0,

F(r)≤ K(1+ r) r ≥ 0, (70.5.23)

F(r) = 0 if r < 0,

|µ (r1)−µ (r2)| ≤ Lip(µ) |r1− r2| , ||µ||∞ ≤C, (70.5.24)

and for a = F, p,and r1,r2 ≥ 0,

|a(r1)−a(r2)| ≤ K|r1− r2|. (70.5.25)

One can consider more general growth conditions than this, but we are keeping this part
simple to emphasize the new stochastic considerations.

It will be assumed that
σ i j = Ai jkluk,l +Ci jkl u̇k,l , (70.5.26)

where A and C are in L∞(U) and for B = A or C, we have the following symmetries.

Bi jkl = Bi jlk , B jikl = Bi jkl , Bi jkl = Bkli j , (70.5.27)

and we also assume for B = A or C that

Bi jklHi jHkl ≥ εHrsHrs (70.5.28)

for all symmetric H.
Throughout the paper, V will be a closed subspace of (H1(U))3 containing the test

functions(C∞
0 (U))3, ⇀ will denote weak or weak ∗ convergence while→ will mean strong

convergence. γ will denote the trace map from W 12(U) into L2(∂U). H will denote (
L2(U))3 and we will always identify H and H ′ to write

V ⊆ H = H ′ ⊆V ′

We define
V = L2 (0,T ;V ) ,H = L2 (0,T,H) ,V ′ = L2 (0,T ;V ′

)
70.5.1 The Abstract Problem
We shall use two theorems found in Lions [91], and Simon [117] respectively. These
theorems apply for fixed ω . Proofs of generalizations of these theorems begin on Page
2383.

Theorem 70.5.1 If p≥ 1 , q > 1 ,and W ⊆U ⊆ Y where the inclusion map of W into U is
compact and the inclusion map of U into Y is continuous, let

S = {u ∈ Lp(0,T ;W ) : u′ ∈ Lq(0,T ;Y ) and

||u||Lp(0,T ;W )+ ||u′||Lq(0,T ;Y ) < R}
Then S is pre compact in Lp(0,T ;U).
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Theorem 70.5.2 Let W,U, and Y be as in Theorem 70.5.1 and let

S = {u : ||u(t)||W + ||u′||Lq(0,T ;Y ) ≤ R for t ∈ [0,T ]}

for q > 1. Then S is pre compact in C(0,T ;U).

Now we give an abstract formulation of the problem described roughly in 70.5.15 -
70.5.21. We begin by defining several operators. Let M,A : V →V ′ be given by

⟨Mu,v⟩=
∫

U
Ci jkluk,lvi, jdx, (70.5.29)

⟨Au,v⟩=
∫

U
Ai jkluk,lvi, jdx. (70.5.30)

Also let the operator v→ P(u) map V to V ′ be given by

⟨P(u),w⟩=
∫ T

0

∫
ΓC

p((un−g)+)wndαdt, (70.5.31)

where

u(t) = u0 +
∫ t

0
v(s)ds (70.5.32)

for u0 ∈Vq. (Technically, P depends on u0 but we suppress this in favor of simpler notation
). Let

γ
∗
T : L2

(
0,T ;L2 (ΓC)

3
)
→ V ′

is defined as

⟨γ∗T ξ ,w⟩ ≡
∫ T

0

∫
ΓC

ξ ·wT dαdt.

Now the abstract form of the problem, denoted by P , is the following.

v′+Mv+Au+Pu+ γ
∗
T ξ = f in V ′, (70.5.33)

v(0) = v0 ∈ H, (70.5.34)

where

u(t) = u0 +
∫ t

0
v(s)ds, u0 ∈Vp, (70.5.35)

and for all w ∈V ,

⟨γ∗T ξ ,w⟩ ≤
∫ T

0

∫
ΓC

F((un−g)+)µ
(∣∣vT − U̇T

∣∣) ·
[∣∣vT − U̇T +wT

∣∣− ∣∣vT − U̇T
∣∣]dαdt. (70.5.36)

Also f ∈ L2(0,T ;V ′) so f can include the body force as well as traction forces on various
parts of ∂U. If v solves the above abstract problem, then u can be considered a weak
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solution to 70.5.15 -70.5.21 along with other variational and stable boundary conditions
depending on the choice of W and f ∈ L2(0,T ;V ′).

In order to carry out our existence and uniqueness proofs, we assume M and A satisfy
the following for some δ > 0, λ ≥ 0.

⟨Bu,u⟩ ≥ δ
2||u||2W −λ |u|2H , ⟨Bu,u⟩ ≥ 0 , ⟨Bu,v⟩= ⟨Bv,u⟩ , (70.5.37)

for B = M or A. This is the assumption that we use, and we note that 70.5.37 is a conse-
quence of 70.5.26 -70.5.28 and Korn’s inequality [104].

70.5.2 An Approximate Problem
We will use the Galerkin method. To do this, we will first regularize that subgradient
material. Let

ψε (r) =
√
|r|2 + ε

Then this is a convex, Lipschitz continuous function having bounded derivative which con-
verges uniformly to ψ (r) = |r| on R. Also

|ψε (x)−ψε (y)| ≤ |x−y| ,
∣∣ψ ′ε (t)∣∣≤ 1

And finally, ψ ′ε is Lipschitz continuous with a Lipschitz constant C/
√

ε . Here ψ ′ε denotes
the gradient or Frechet derivative of the scalar valued function.

Our approximate problem for which we will apply the Galerkin method will be Pε

given by

v′+Mv+Au+Pu+ γ
∗
T F
(
(un−g)+

)
µ
(∣∣vT − U̇T

∣∣)ψ
′
ε

(
vT − U̇T

)
= f in V ′, (70.5.38)

v(0) = v0 ∈ H, (70.5.39)

where
u(t) = u0 +

∫ t

0
v(s)ds, u0 ∈V, (70.5.40)

Here the long operator on the left is defined in the following manner.〈
γ
∗
T F
(
(un−g)+

)
µ
(∣∣vT − U̇T

∣∣)ψ
′
ε

(
vT − U̇T

)
,w
〉

=
∫

ΓC

F
(
(un−g)+

)
µ
(∣∣vT − U̇T

∣∣)ψ
′
ε

(
vT − U̇T

)
·wT dS

Let R denote the Riesz map from V to V ′ defined by ⟨Ru,v⟩= (u,v)V . Then R−1 : H→
V is a compact self adjoint operator and so there exists a complete orthonormal basis for
H, {ek} ⊆V such that

Rek = λ kek

where λ k → ∞. Let Vn = span(e1, · · · ,en). Thus ∪nVn is dense in H. In addition ∪nVn is
dense in V and {ek} is also orthogonal in V . To see first that {ek} is orthogonal in V,

0 = (ek,el)H =
1

λ k
(Rek,el)H =

1
λ k
⟨Rek,el⟩=

1
λ k

(el ,ek)V
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Next consider why ∪nVn is dense in V. If this is not so, then there exists f ∈V ′, f ̸= 0 such
that ∪nVn is in ker( f ) . But f = Ru and so

0 = ⟨Ru,ek⟩= ⟨Rek,u⟩= λ k (ek,u)H

for all ek and so u = 0 by density of ∪nVn in H. Hence Ru = 0 = f after all, a contradiction.
Hence ∪nVn is dense in V as claimed.

Now we set up the Galerkin method for Problem Pε . Let

vk (t,ω) =
k

∑
j=1

x j (t,ω)e j, uk(t) = u0 +
∫ t

0
vk(s)ds

and let vk be the solution to the following integral equation for each ω and j ≤ k. The
dependence on ω is suppressed in most terms in order to save space.〈

vk (t)−v0k +
∫ t

0 Mvk +Auk +Puk + γ∗T F
(
(ukn−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) ,e j

〉

=
∫ t

0

〈
f,e j
〉

ds (70.5.41)

Here v0k → v0 ∈ H and the equation holds for each e j for each j ≤ k. Then this integral
equation reduces to a system of ordinary differential equations for the vector x(t,ω) whose
jth component is x j (t,ω) mentioned above. Differentiate, multiply by x j and add. Then
integrate. This will yield some terms which need to be estimated. Here is the one which
comes from the long term.∫ t

0

∫
ΓC

F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
ε

(
vkT − U̇T

)
·vkT dSds

=
∫ t

0

∫
ΓC

F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
ε

(
vkT − U̇T

)
·
(
vkT − U̇T

)
dSds

+
∫ t

0

∫
ΓC

F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
ε

(
vkT − U̇T

)
· U̇T dSds

The first of these is nonnegative and the second is bounded below by an expression of the
form

−C
∫ t

0

∫
ΓC

(1+ |ukn|)
∣∣U̇T

∣∣dSds ≥ −C
∫ t

0
∥uk∥W

∥∥U̇T
∥∥

L2(ΓC)
3 ds−C

≥ −C
∫ t

0
∥uk∥W −C

Where W embedds compactly into V and the trace map from W to L2 (ΓC)
3 is continuous.

In the above, C is independent of ε,ω and k. To estimate the term from P one exploits the
linear growth condition of P in 70.5.22 to obtain a suitable estimate.
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It follows from equivalence of norms in finite dimensional spaces, the assumed esti-
mates on M, A, and P and standard manipulations depending on compact embeddings that
there exists an estimate suitable to apply Theorem 70.3.3 to obtain the existence of a solu-
tion such that (t,ω)→ x(t,ω) is measurable into Rk which implies that (t,ω)→ vk (t,ω)
is product measurable into V and H. This yields the measurable Galerkin approximation.

Also, the estimates and compact embedding results for Sobolev spaces imply an in-
equality of the form

|vk (t)|2H +
∫ T

0
∥vk∥2

V ds+∥uk (t)∥2
V ≤C (70.5.42)

where in fact C does not depend on ε,ω or k. Everything would work if C depended on ω

but because of our simplifying assumptions, we can get a single C as above.
Next we need to estimate the time derivative in V ′. The integral equation implies that

for all w ∈Vk,〈
v′k (t) ,w

〉
V ′,V +

〈
Mvk +Auk +Puk + γ∗T F

(
(ukn−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) ,w
〉

V ′,V

= ⟨f,w⟩ (70.5.43)

where the dependence on t and ω is suppressed in most terms. In terms of inner products
in V this reduces to(

R−1v′k (t) ,w
)

V +

(
R−1

(
Mvk +Auk +Puk + γ∗T F

(
(un−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) )
,w
)

V

=
(
R−1f,w

)
V

In terms of Pk the orthogonal projection in V onto Vk, this takes the form(
R−1v′k (t) ,Pkw

)
V +(

R−1
(

Mvk +Auk +Puk + γ∗T F
(
(un−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) )
,Pkw

)
V

=
(
R−1f,Pkw

)
V

for all w ∈V . Now v′k (t) ∈Vk and so the first term can be simplified and we can write(
R−1v′k (t) ,w

)
V +(

R−1
(

Mvk +Auk +Puk + γ∗T F
(
(un−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) )
,Pkw

)
V

=
(
R−1f,Pkw

)
V

for all w ∈V . Then it follows that for all w ∈V,(
R−1v′k (t) ,w

)
V +
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(
PkR−1

(
Mvk +Auk +Puk + γ∗T F

(
(un−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) )
,w
)

V

=
(
PkR−1f,w

)
V

Thus in V we have

R−1v′k (t)+PkR−1
(

Mvk +Auk +Puk + γ∗T F
(
(un−g(ω))+

)
·

µ
(∣∣vkT − U̇T

∣∣)ψ ′ε
(
vkT − U̇T

) )
= PkR−1f

and R−1 preserves norms while Pk decreases them. Hence the estimate 70.5.42 implies that∥∥v′k
∥∥

V ′ is also bounded independent of ε,ω and k. Then summarizing this yields

|vk (t,ω)|H +∥vk (·,ω)∥V +
∥∥v′k (·,ω)

∥∥
V ′ +∥uk (t,ω)∥V ≤C (ω) (70.5.44)

where C is some constant which does not depend on ε,ω, and k. Also, integrating 70.5.43,
it follows that

i∗k

(
vk (t)−v0k +

∫ t

0
Mvkds+

∫ t

0
Aukds+

∫ t

0
Pukds+

∫ t

0
γ
∗
T F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
ε

(
vkT − U̇T

)
ds
)
= i∗k

∫ t

0
fds (70.5.45)

Where i∗k is the dual map to the inclusion map ik : Vk→V .
Let

V ⊆W, V dense in W,

where the embedding is compact and the trace map onto the boundary of U is continuous.
Using Theorem 70.5.2 and 70.5.1, it follows that for a fixed ω, there exist the following
convergences valid for a suitable subsequence, still denoted as {vk} which may depend on
ω .

vk ⇀ v in V (70.5.46)

v′k ⇀ v′ in V ′ (70.5.47)

vk→ v strongly in C
(
[0,T ] ,W ′

)
(70.5.48)

vk→ v strongly in L2 ([0,T ] ;W ) (70.5.49)

vk (t)→ v(t) in W for a.e.t (70.5.50)

uk→ u strongly in C ([0,T ] ;W ) (70.5.51)

Auk ⇀ Au in V ′ (70.5.52)

Mvk ⇀ Mv in V ′ (70.5.53)

Now from these convergences and the density of ∪nVn, it follows on passing to a limit and
using dominated convergence theorem and the strong convergences above in the nonlinear
terms, we obtain the following equation which holds in V ′.

v(t)−v0 +
∫ t

0
Mvds+

∫ t

0
Auds+

∫ t

0
Puds+
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∫ t

0
γ
∗
T F
(
(un−g(ω))+

)
µ
(∣∣vT − U̇T

∣∣)ψ
′
ε

(
vT − U̇T

)
ds
)
=
∫ t

0
fds (70.5.54)

Thus t → v(t,ω) is continuous into V ′. This along with the estimate 70.5.44, implies
that the conditions of Theorem 70.2.1 are satisfied. It follows that there is a function v̄
which is product measurable into V ′ and weakly continuous in t and for each ω, a subse-
quence vk(ω) such that vk(ω) (·,ω)⇀ v̄(·,ω) in V ′. Then by a repeat of the above argument,
for each ω, there exists a further subsequence still denoted as vk(ω) which converges in V ′

to v(·,ω) which is a solution to the above integral equation which is continuous into V ′.
Hence, v̄(·,ω) = v(·,ω) and since these are both weakly continuous into V ′ they must be
the same function. Hence, there is a product measurable solution v.

Next we pass to a limit as ε → 0. Denoting the product measurable solution to the
above integral equation as vk, where ε = 1/k. The estimate 70.5.42 is obtained as before.
Then we get a subsequence, still denoted as vk which has the same convergences as in
70.5.46 - 70.5.53. Thus we obtain these convergences along with the fact that vk is product
measurable and for each ω, it is a solution of

vk (t)−v0 +
∫ t

0
Mvkds+

∫ t

0
Aukds+

∫ t

0
Pukds+

∫ t

0
γ
∗
T F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
1/k

(
vkT − U̇T

)
ds =

∫ t

0
fds (70.5.55)

Now in addition to these convergences, we can also obtain

ψ
′
1/k

(
vkT − U̇T

)
⇀ ξ in L∞

(
[0,T ] ;L∞ (ΓC)

3
)

We have also

ψ
′
1/k

(
vkT − U̇T

)
·wT ≤ ψ1/k

(
vkT − U̇T +wT

)
−ψ1/k

(
vkT − U̇T

)
and so, passing to a limit, using the strong convergence of vkT to vT in L2 ([0,T ] ;W ) ,
uniform convergence of ψ1/k to ∥·∥ , and pointwise convergence in W, we obtain using the
dominated convergence theorem that for w ∈ V ,∫ t

0

∫
ΓC

F
(
(ukn−g(ω))+

)
µ
(∣∣vkT − U̇T

∣∣)ψ
′
1/k

(
vkT − U̇T

)
·wT dxds

→
∫ t

0

∫
ΓC

F
(
(un−g(ω))+

)
µ
(∣∣vT − U̇T

∣∣)ξ ·wT dxds

where ∫ t

0

∫
ΓC

ξ ·wT dαds≤
∫ t

0

∫
ΓC

∣∣vkT − U̇T +wT
∣∣− ∣∣vkT − U̇T

∣∣dαds (70.5.56)

Then passing to the limit in the integral equation 70.5.55, we obtain that v is a solution for
each ω to the integral equation

v(t)−v0 +
∫ t

0
Mvds+

∫ t

0
Auds+

∫ t

0
Puds+
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∫ t

0
γ
∗
T F
(
(un−g(ω))+

)
µ
(∣∣vT − U̇T

∣∣)ξ ds =
∫ t

0
fds (70.5.57)

where ξ satisfies the inequality 70.5.56. In particular, v is continuous into V ′ and now,
the conclusion of the measurable selection theorem applies and yields the existence of a
measurable solution to the integral equation just displayed for each ω . Taking a weak
derivative, it follows that we have obtained a measurable solution to the system 70.5.33 -
70.5.36.

In this case of Lipschitz µ one can show that the solution for each ω to the above in-
tegral equation is unique although this it is not an obvious theorem. This follows standard
procedures involving Gronwall’s inequality and estimates. Therefore, it is possible to ob-
tain the measurability using more elementary methods. In addition, it becomes possible to
include a stochastic integral of the form

∫ t
0 ΦdW. In this case one must consider a filtration

and obtain solutions which are adapted to the filtration. In the next section we consider
the case of discontinuous friction coefficient and in this case it is not clear whether there is
uniqueness but we have still obtained a measurable solution.

70.5.3 Discontinuous coefficient of friction

In this section we consider the case where the coefficient of friction is a discontinuous
function of the slip speed. This is the case described in elementary physics courses which
state that the coefficient of sliding friction is less than the coefficient of static friction.
Specifically, we assume the function µ, has a jump discontinuity at 0, becoming smaller
when the speed is positive.

µ0

µs

ν
µs(0)

η = (µ0−µs(0))/2

Fig. 2. The graph of µ vs. the slip rate |v∗|, and ν .

We assume the function µs of the picture is Lipschitz continuous and decreasing just as
shown. The new function ν is extended for r < 0 as shown and is just µs (r)+η for r > 0.

Let
hε (r)≡

(
η

2r2 + ε
)1/2

µε (r) = ν (r)−h′ε (r)

Thus µε is bounded, Lipschitz continuous and as ε→ 0,µε (r)→ µ (r) for r > 0. Thus,
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for each ε = 1/k, there exists a measurable solution to the integral equation

vk (t)−v0 +
∫ t

0
Mvkds+

∫ t

0
Aukds+

∫ t

0
Pukds+

∫ t

0
γ
∗
T F
(
(ukn−g(ω))+

)
µ1/k

(∣∣vkT − U̇T
∣∣)ξ kds =

∫ t

0
fds (70.5.58)

where ∫ t

0

∫
ΓC

ξ k ·wT dαds≤
∫ t

0

∫
ΓC

∣∣vkT − U̇T +wT
∣∣− ∣∣vkT − U̇T

∣∣dαds (70.5.59)

Now for a given ω, the same estimate obtained earlier, 70.5.42 is available. Thus

|vk (t)|2H +
∫ T

0
∥vk∥2

V ds+∥uk (t)∥2
V ≤C

where C is not dependent on k. Recall also that ξ k is bounded. Hence from 70.5.58, and
this estimate, it also follows that v′k is bounded in V ′. Thus

|vk (t)|2H +
∫ T

0
∥vk∥2

V ds+∥uk (t)∥2
V +

∥∥v′k
∥∥

V ′ ≤C

As earlier, we can take C independent of k and ω although we do not need this constant to
be independent of ω . Now for fixed ω, there exists a subsequence, still denoted as {vk}
such that the convergences obtained earlier all hold, that is 70.5.46 - 70.5.53. Taking a
further subsequence, we may assume also that

ψ−h′1/k

(∣∣vkT − U̇T
∣∣)⇀ 0 in L∞ ([0,T ] ,L∞ (ΓC)) ,

ξ k ⇀ ξ weak ∗ in L∞

(
[0,T ] ,L∞ (ΓC)

3
)
.

That is, h′1/k

(∣∣v(1/k)T − U̇T
∣∣) converges weak ∗ in L∞ ([0,T ] ,L∞ (ΓC)) to some ψ . This is

because

h′ε (r) =
η2r√

r2η2 + ε

and this is bounded. Letting w ∈ L1
(
[0,T ] ;L1 (ΓC)

)
,∫ T

0

∫
ΓC

h′(1/k)

(∣∣vkT − U̇T
∣∣)wdαdt

≤
∫ T

0

∫
ΓC

h(1/k)
(∣∣vkT − U̇T

∣∣+w
)
−h(1/k)

(∣∣vkT − U̇T
∣∣)dαdt

Thanks to the strong convergences and the uniform convergence of h(1/k) (r) to |ηr| ,∫ T

0

∫
ΓC

ψwdαdt ≤
∫ T

0

∫
ΓC

∣∣η (∣∣vT − U̇T
∣∣+w

)∣∣−η
∣∣vT − U̇T

∣∣dαdt
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Therefore, for a.e.t, ψ (t,x,ω) is in the subgradient of the function φ η (r) = |ηr| for a.e.x∈
ΓC at the point r =

∣∣vkT − U̇T
∣∣. In particular, ψ ∈ [−η ,η ] so that ν

(∣∣vkT − U̇T
∣∣)−ψ is

between µs (0) and µ0 if
∣∣vkT − U̇T

∣∣ = 0. If this quantity is positive, then ψ = η and
ν
(∣∣vkT − U̇T

∣∣)−ψ reduces to µs
(∣∣vkT − U̇T

∣∣) . Thus(∣∣vkT − U̇T
∣∣ ,ν (∣∣vkT − U̇T

∣∣)−ψ
)

is in the graph of µ a.e. Similar reasoning based on strong convergence and 70.5.59 implies
that for a.e.t, ξ ∈ ∂γ where γ (y) = |y| at the point vkT − U̇T for a.e.x ∈ ΓC.

Consider the friction terms in 70.5.58. Letting w ∈V and recalling that µ(1/k) (r) =
ν (r)−h′(1/k) (r) , ∫ T

0

∫
ΓC

F
(
(ukn−g)+

)
µ(1/k)

(∣∣vkT − U̇T
∣∣)ξ k ·wT dαdt

=
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ν
(∣∣vkT − U̇T

∣∣)−h′(1/k)

(∣∣vkT − U̇T
∣∣))ξ k ·wT dαdt

=
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ν
(∣∣vkT − U̇T

∣∣)−ψ
)

ξ k ·wT dαdt (70.5.60)

+
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣))ξ k ·wT dαdt (70.5.61)

Now consider the first integral. The strong convergence yields that this integral in
70.5.60 converges to∫ T

0

∫
ΓC

F
(
(un−g)+

)(
ν
(∣∣vT − U̇T

∣∣)−ψ
)

ξ ·wT dαdt

where ν
(∣∣vT − U̇T

∣∣)−ψ is in the graph of µ a.e.
Consider the second integral in 70.5.61.∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣))ξ k ·wT dαdt

≤
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣)) ·(∣∣vkT − U̇T +wT

∣∣− ∣∣vkT − U̇T
∣∣)dαdt

Similarly,

−
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣))ξ k ·wT dαdt

≤
∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣)) ·(∣∣vkT − U̇T −wT

∣∣− ∣∣vkT − U̇T
∣∣)dαdt
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Each of these integrals on the right side converge to 0 because, from the strong convergence
results,

F
(
(ukn−g)+

)(∣∣vkT − U̇T ±wT
∣∣− ∣∣vkT − U̇T

∣∣)
converges in L1

(
[0,T ] ,L1 (ΓC)

)
and so the weak ∗ convergence to 0 of

ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣)

implies that these integrals converge to 0. Thus the integral in 70.5.61∫ T

0

∫
ΓC

F
(
(ukn−g)+

)(
ψ−h′(1/k)

(∣∣vkT − U̇T
∣∣))ξ k ·wT dαdt

is between two sequences each of which converges to 0 so it also converges to 0.
To save space, denote by

µ̂ = ν
(∣∣vT − U̇T

∣∣)−ψ

Then passing to the limit in this subsequence, we obtain for fixed ω the existence of a
solution to the following integral equation.

v(t)−v0 +
∫ t

0
Mvds+

∫ t

0
Auds+

∫ t

0
Puds+

∫ t

0
γ
∗
T F
(
(un−g)+

)
µ̂ξ ds =

∫ t

0
fds

(70.5.62)
where

u(t) = u0 +
∫ t

0
v(s)ds (70.5.63)

and
(∣∣vkT − U̇T

∣∣ , µ̂) is contained in the graph of µ a.e. Also for each w ∈ V ,∫ T

0

∫
ΓC

ξ ·wT dαds≤
∫ T

0

∫
ΓC

∣∣vkT − U̇T +wT
∣∣− ∣∣vkT − U̇T

∣∣dαds (70.5.64)

The remaining issue concerns the existence of a measurable solution. However, this
follows in the same way as before from the measurable selection theorem, Theorem 70.2.1.
From the above reasoning, for fixed ω any sequence has a subsequence which leads to a
solution to the integral equation 70.5.62 - 70.5.64 which is continuous into V ′. There is
also an estimate of the right sort for all of the vk. Therefore, from this theorem, there is a
function v(·,ω) in V ′ which is weakly continuous into V ′ and a sequence vk(ω) (·,ω) con-
verging to v(·,ω). Then from the above argument, a subsequence converges to a solution
to the integral equation and since both are weakly continuous into V ′, it follows that the
solution to the integral equation equals this measurable function for all t, this for each ω .
Thus there is a measurable solution to the stochastic friction problem. The result is stated
in the following theorem.

Theorem 70.5.3 For each ω let u0 (ω) ∈V,v0 (ω) ∈H. Let f ∈ V ′. Also assume the gap g
and sliding velocity U̇T are F measurable. Then there exists a solution v, to the problem
summarized in 70.5.62 - 70.5.64 for each ω . This solution (t,ω)→ v(t,ω) is measurable
into V ′,H ′ and V ′.

It only remains to check the last claim about measurability into the other spaces. By
density of V into H, it follows that H ′ is dense in V ′ and so a simple Pettis theorem argument
implies right away that ω → v(t,ω) is F measurable into both V and H.



Chapter 71

Stochastic O.D.E. One Space
71.1 Adapted Solutions With Uniqueness

Instead of a single σ algebra F , one can generalize to the case of a normal filtration
Ft and obtain adapted solutions to finite dimensional theorems, provided one also knows
path uniqueness of the solutions. Recall that a filtration is normal includes the following
condition which is what we will use.

Ft = ∩s>tFs (71.1.1)

Theorem 71.1.1 Suppose N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and

(t,u,v,w,ω)→ N(t,u,v,w,ω)

is progressively measurable with respect to a normal filtration or more generally one which
satisfies 71.1.1. Also suppose (t,u,v,w)→N(t,u,v,w,ω) is continuous. Suppose for each
ω, there exists an estimate for any solution u(·,ω) to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds =

∫ t

0
f(s,ω)ds, (71.1.2)

which is of the form
sup

t∈[0,T ]
|u(t,ω)| ≤C (ω)< ∞

Also let f be progressively measurable and f(·,ω) ∈ L1
(
[0,T ] ;Rd

)
. Here u0 has values in

Rd and is F0 measurable and u(s−h,ω)≡ u0 (ω) whenever s−h≤ 0 and

w(t,ω)≡ w0 (ω)+
∫ t

0
u(s,ω)ds

where w0 is a given F0 measurable function. Also assume that for each ω there is at most
one solution to the integral equation 71.1.2. Then for h > 0, there exists a progressively
measurable solution u to the integral equation 71.1.2.

Proof: Let 0 = t0 < t1 < · · ·< tn = T . From Theorem 70.3.3, there exists a solution to
the integral equation u which has the property that u(t ∧ t j) is Ft j measurable. One simply
applies this theorem to the succession of intervals determined by the given partition. Now
suppose Pn consists of the points k2−nT ≡ tn

j so that these satisfy Pn ⊆Pn+1 and the
lengths of the sub-intervals decreases to 0 with increasing n. Let un denote the solution just
described corresponding to Pn such that un

(
t ∧ tn

j

)
is Ftn

j
measurable. As before, using

the estimate, these un (·,ω) for a fixed ω are uniformly bounded and equicontinuous. This
is because it is a solution to the integral equation for each ω and so by assumption, there
is an estimate. Therefore, for fixed ω, there exists u(·,ω) and a subsequence, denoted
as un (·,ω) which converges uniformly to u(·,ω) on [0,T ]. Therefore, u(·,ω) will be a

2423
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solution to the integral equation for that ω . It follows from the uniqueness assumption, that
it is not necessary to take a subsequence. Thus

u(t,ω) = lim
n→∞

un (t,ω)

For t ∈ (tn
j−1, t

n
j ], it follows that ω → u(t,ω) is Ftn

j
measurable. Since this is true for each

n and the filtration is assumed to be a normal filtration, we conclude that ω → u(t,ω) is
Ft measurable. ■

Why can’t this be generalized to the situation where no uniqueness is known? We have
been unable to do this. It appears that the difficulty is related to the need to use theorems
about measurable selections and these theorems pertain to a single σ algebra. Attempts to
use the σ - algebra of progressively measurable sets have not been successful either.

71.2 Including Stochastic Integrals
It is not surprising that Theorem 71.1.1 is sufficient to allow the inclusion of a stochastic
integral. Thus, with the same descriptions of the symbols used in that theorem, one could
consider the following integral equation.

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f(s,ω)ds+

∫ t

0
ΦdW

where, as usual Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,Rd

))
where U is a Hilbert space. It could

be Rd of course. To include a stochastic integral, you define a new variable.

û(t) = u(t)−
∫ t

0
ΦdW

Then in terms of this new variable, the integral equation is

û(t,ω)−u0 (ω)+
∫ t

0
N
(

s, û(s,ω)+
∫ s

0
ΦdW, û(s−h,ω) +

∫ s−h

0
ΦdW,

∫ s

0

(
û(r)+

∫ r

0
ΦdW

)
dr,ω

)
ds =

∫ t

0
f(s,ω)ds

This is in the situation of Theorem 71.1.1 provided N is progressively measurable with
respect to the normal filtration Ft determined by the Wiener process and there exists an
estimate of the sort in this theorem and for a given ω there is at most one solution t →
û(t,ω) to the above integral equation.

Theorem 71.2.1 Suppose N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and

(t,u,v,w,ω)→ N(t,u,v,w,ω)
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is progressively measurable with respect to the normal filtration Ft determined by a given
Wiener process W (t). Also suppose

(t,u,v,w)→ N(t,u,v,w,ω)

is continuous and satisfies the following conditions for C (·,ω)≥ 0 in L1 ([0,T ]) and some
µ > 0:

(N(t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
. (71.2.3)

Also let f be progressively measurable and f(·,ω) ∈ L2
(
[0,T ] ;Rd

)
. Let

Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,Rd

))
where U is some Hilbert space, Rd , for example. Also suppose path uniqueness. That is,
for each ω, there is at most one solution to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f(s,ω)ds+

∫ t

0
ΦdW, (71.2.4)

Then for h > 0, there exists a unique progressively measurable solution u to the integral
equation 71.2.4 where u0 has values in Rd and is F0 measurable. Here u(s−h,ω) ≡
u0 (ω) for all s−h≤ 0 and for w0 a given F0 measurable function,

w(t,ω)≡ w0 (ω)+
∫ t

0
u(s,ω)ds

Proof: The only thing left is to observe that the given estimate is sufficient to obtain an
estimate for the solutions to the integral equation for û defined above. Then from Theorem
71.1.1, there exists a unique progressively measurable solution for û and hence for u. ■

Note that the integral equation holds for all t for each ω . There is no exceptional set of
measure zero which might depend on the initial condition needed.

What is a sufficient condition for path uniqueness? Suppose the following weak mono-
tonicity condition for µ = µ (ω) .

(N(t,u1,v1,w1,ω)−N(t,u2,v2,w2,ω) ,u1−u2)

≥ −µ

(
|u1−u2|2 + |v1−v2|2 + |w1−w2|2

)
(71.2.5)

Then path uniqueness will hold. This follows from subtracting the two integral equations,
one for u1 and one for u2, using the estimate and then applying Gronwall’s inequality.

Recall the Ito formula

u(t)−u0 +
∫ t

0
Nds =

∫ t

0
f ds+

∫ t

0
ΦdW
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where u(t) ∈ H a Hilbert space. Consider F (u) = 1
2 |u|

2 . Also let R denote the Riesz map
from H → H ′ such that ⟨Rx,y⟩ ≡ (x,y)H . Then proceding formally, to see what the Ito
formula says,

dF = DF (u)du+
1
2

D2F (u)(du,du)+O
(
du3)

Recall then that du =−Ndt + f dt +ΦdW and so recalling (dW,dW ) = dt,

R(u)(−Ndt + f dt +ΦdW )+
1
2
∥Φ∥2 dt

Hence

1
2
|u(t)|2H −

1
2
|u0|2H +

∫ t

0
(N,u)H ds− 1

2

∫ t

0
∥Φ∥2

L2
ds =

∫ t

0
( f ,u)ds+

∫ t

0
Ru(Φ)dW

The last term is a martingale or local martingale M whose quadratic variation is given by

[M] (t) =
∫ t

0
∥Φ∥2

L2
|u|2 ds

This is all that is of importance in what follows. Therefore, this martingale may be simply
denoted as M (t) in what follows.

Under the assumption 71.2.5 you can include instead of the term
∫ t

0 ΦdW, the more
general term

∫ t
0 σ (s,u,ω)dW . This will be shown by doing the argument and indicating

what extra assumptions are needed as this is done. Let z be progressively measurable and
in L2 (Ω;C ([0,T ] ;Rn)). Also assume that σ has linear growth. That is

∥σ (s,u,ω)∥L2
≤ a+b |u|Rn (71.2.6)

Then from the above theorem, there exists a unique progressively measurable solution u to

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f(s,ω)ds+

∫ t

0
σ (s,z)dW, (71.2.7)

This holds for all ω . There is no exceptional set needed. Now assume

u0 ∈ L2 (Ω) (71.2.8)

and also a Lipschitz condition

∥σ (s,u,ω)−σ (s, û,ω)∥L2
≤ K |u− û| (71.2.9)

Then let u coincide with z and û come from ẑ. Then applying the Ito formula, one can
obtain the following for a constant C which does not depend on u, û.

1
2
|u(t)− û(t)|2−C

∫ t

0
|u(s)− û(s)|2 ds−K

∫ t

0
|u(s)−û(s)|2 ds = M (t)
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where M (t) is a local martingale whose quadratic variation satisfies

[M] (t) =
∫ t

0
∥σ (s,z,ω)−σ (s, ẑ,ω)∥2

L2
|u− û|2 ds

Thus, simplifying the constants,

sup
s∈[0,t]

|u(s)− û(s)|2 ≤C
∫ t

0
|u(s)− û(s)|2 ds+M∗ (t)

where M∗ (t) = sups∈[0,t] |M (s)|. Then by Gronwall’s inequality,

sup
s∈[0,t]

|u(s)− û(s)|2 ≤CM∗ (t)

Then take the expectation of both sides. Using the Burkholder Davis Gundy inequality,

E

(
sup

s∈[0,t]
|u(s)− û(s)|2

)
≤CE

((∫ t

0
K |z− ẑ|2 |u− û|2 ds

)1/2
)

Then adjusting the constant again,

≤ 1
2

E

(
sup

s∈[0,t]
|u(s)− û(s)|2

)
+CE

(∫ t

0
K |z− ẑ|2 ds

)
and so,

E

(
sup

s∈[0,t]
|u(s)− û(s)|2

)
≤C

∫ t

0
E

(
sup

r∈[0,s]
|z(s)−ẑ(s)|2

)
ds

Letting T z = u where u is defined from z in the integral equation 71.2.7, the above in-
equality implies that

E

(
sup

s∈[0,t]
|T nz1 (s)−T nz2 (s)|2H

)
≤C

∫ t

0
E

(
sup

r∈[0,s]

∣∣T n−1z1 (r)−T n−1z2 (r)
∣∣2)ds

≤C2
∫ t

0

∫ s

0
E

(
sup

r1∈[0,r]

∣∣T n−2z1 (r1)−T n−2z2 (r1)
∣∣2 )drds

One can iterate this, eventually finding that

E

(
sup

s∈[0,t]
|T nz1 (s)−T nz2 (s)|2H

)

≤ Cn
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dtn−1 · · ·dtE

(
sup

s∈[0,t]
|z1 (s)− z2 (s)|2H

)

=
CnT n

(n!)
E

(
sup

s∈[0,t]
|z1 (s)− z2 (s)|2H

)
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In particular, this holds for t = T and so, letting z ∈ L2 (Ω,C ([0,T ] ,Rn)) , {T nz} is a
Cauchy sequence in this space because a high enough power is a contraction map, so it
converges to a unique fixed point u. Each T nz is progressively measurable and so the
fixed point is also. In L2 (Ω,C ([0,T ] ,Rn)) , you get the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N(s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f(s,ω)ds+

∫ t

0
σ (s,u)dW, (71.2.10)

Thus off a set of measure zero, the equation holds for all t and u is progressively measur-
able. The place where u0 ∈ L2 (Ω) is needed is in having T z ∈ L2 (Ω,C ([0,T ] ;Rn)). One
uses a similar procedure involving the Ito formula, the growth condition

(N(t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
.

and the Burkholder Davis Gundy inequality to verify this. Since T depends on u0, it
appears that the set of measure zero, off which the integral equation holds, will also depend
on u0. It appears that this ultimately results from the need to take an expectation in order to
deal with the stochastic integral. If this integral could be generalized in such a way that it
made sense for each ω as in the usual Riemann Stieltjes integral, then likely this restriction
could be removed. It is a problem because the Wiener process is not of bounded variation.

Theorem 71.2.2 Suppose the weak monotonicity condition 71.2.5 and the growth estimate
71.2.3. Also assume N(t,u,v,w,ω) ∈ Rd for u,v,w ∈ Rd , t ∈ [0,T ] and (t,u,v,w,ω)→
N(t,u,v,w,ω) is progressively measurable with respect to the normal filtration Ft de-
termined by a given Wiener process W (t). Also suppose (t,u,v,w)→ N(t,u,v,w,ω) is
continuous. Let f ∈ L2 (Ω,C ([0,T ] ,Rn)) and (t,u,ω)→ σ (t,u,ω) is progressively mea-
surable and satisfies the linear growth condition 71.2.6 and the Lipschitz condition 71.2.9.
Also suppose u0 is F0 measurable and in L2 (Ω,Rn). Then there exists a progressively
measurable solution u to 71.2.10. If û is another such solution, then there is a set of mea-
sure zero N such that for ω /∈ N, û(t) = u(t) for all t.

Proof: It only remains to verify the uniqueness assertion. This happens because the
fixed point is unique in L2 (Ω,C ([0,T ] ,Rn)). Therefore, off a set of measure zero the two
solutions are equal for all t. ■

71.3 Stochastic Differential Equations
In this section, ordinary differential equations in Hilbert space which are of the form

du+N (u)dt = f dt +σ (u)dW

are considered under Lipschitz assumptions on N and σ . A very satisfactory theorem can
be proved.

The assumptions made are as follows.

∥σ (t,u,ω)−σ (t, û,ω)∥L2(Q1/2U,H) ≤ K |u−û|H , (71.3.11)
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|N (t,u1,v1,w1,ω)−N (t,u2,v2,w2,ω)| ≤ K (|u1−u2|+ |v1− v2|+ |w1−w2|) (71.3.12)

where the norms |·| refer here to the Hilbert space H. Assume N,σ are both progressively
measurable. From the Lipschitz condition given above,

|N (t,u,v,w,ω)−N (t,0,0,0,ω)| ≤ K (|u|+ |v|+ |w|)

and it is assumed that
t→ N (t,0,0,0,ω) (71.3.13)

is in L2 (Ω,C ([0,T ] ;H)). Also consider the growth condition which is implied by the above
condition and the Lipschitz assumption.

(N (t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
(71.3.14)

where C ∈ L1 ([0,T ]×Ω) and the linear growth condition for σ ,

∥σ (t,u,ω)∥ ≤ a+b |u|H (71.3.15)

71.3.1 The Lipschitz Case
Theorem 71.3.1 Suppose 71.3.11, 71.3.13, 71.3.15, 71.3.12 and let

w(t) = w0 +
∫ t

0
u(s)ds, w0 ∈ L2 (Ω) , w0 is F0 measurable.

Then there exists a unique progressively measurable solution u to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N (s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f (s,ω)ds+

∫ t

0
σ (s,u,ω)dW. (71.3.16)

71.3.16 where u ∈ L2 (Ω,C ([0,T ] ;H)) ,u0 ∈ L2 (Ω) ,u0 is F0 measurable, f is progres-
sively measurable and in L2 ([0,T ]×Ω;H) . Here there is a set of measure zero such that
if ω is not in this set, then u(·,ω) solves the above integral equation 71.3.16 and further-
more, if û(·,ω) is another solution to it, then u(t,ω) = û(t,ω) for all t if ω is off some set
of measure zero.

Proof: Let v ∈ L2 (Ω;C ([0,T ] ;H)) where v is also progressively measurable. Then let
u be given by

u(t,ω)−u0(ω)+
∫ t

0
N (s,v(s,ω),v(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f (s,ω)ds+

∫ t

0
σ (s,v,ω)dW. (71.3.17)

The Lipschitz condition 71.3.12, the assumption 71.3.13, and the linear growth assertion
71.3.15, implies that u is also in L2 (Ω;C ([0,T ] ;H)) . The proof of this involves the same
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arguments about to be given in order to show that this determines a mapping which has a
sufficiently high power a contraction map. They are also the same arguments to be used
in the following theorem to establish estimates which imply a stopping time is eventually
infinity.

Let v1,v2 be two given functions of this sort and let the corresponding u be denoted by
u1,u2 respectively. Then

u1 (t)−u2 (t)+
∫ t

0
N (s,v1(s),v1 (s−h) ,w1 (s))−N (s,v2(s),v2 (s−h) ,w2 (s))ds

=
∫ t

0
σ (s,v1,ω)−σ (s,v2,ω)dW

Use the Ito formula and the Lipschitz condition on N to obtain an expression of the form

1
2
|u1 (t)−u2 (t)|2−C

∫ t

0
|v1− v2|2 ds−C

∫ t

0
|u1−u2|2 ds

−1
2

∫ t

0
∥σ (s,v1,ω)−σ (s,v2,ω)∥2 ds≤ |M (t)|

where M (t) is a martingale whose quadratic variation is dominated by

C
∫ t

0
∥σ (s,v1,ω)−σ (s,v2,ω)∥2 |u1−u2|2 ds

Therefore, using the Lipschitz condition on σ and the Burkholder-Davis-Gundy inequality,
the above implies

E

(
sup

s∈[0,t]
|u1 (s)−u2 (s)|2

)
≤ CE

∫ t

0
sup

r∈[0,s]
|u1 (r)−u2 (r)|2 ds

+CE
∫ t

0
sup

r∈[0,s]
|v1 (r)− v2 (r)|2 ds

+CE

((∫ t

0
∥σ (s,v1,ω)−σ (s,v2,ω)∥2 |u1−u2|2 ds

)1/2
)

Then a use of Gronwall’s inequality allows this to be simplified to an expression of the
form

E

(
sup

s∈[0,t]
|u1 (s)−u2 (s)|2

)
≤CE

∫ t

0
sup

r∈[0,s]
|v1 (r)− v2 (r)|2 ds

+CE

((∫ t

0
∥σ (s,v1,ω)−σ (s,v2,ω)∥2 |u1−u2|2 ds

)1/2
)

≤C
∫ t

0
E

(
sup

r∈[0,s]
|v1 (r)− v2 (r)|2

)
ds+

1
2

E

(
sup

s∈[0,t]
|u1 (s)−u2 (s)|2

)
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+CE
(∫ t

0
∥σ (s,v1,ω)−σ (s,v2,ω)∥2 ds

)
Now using the Lipschitz condition on σ , this simplifies further to give an inequality of the
form

E

(
sup

s∈[0,t]
|u1 (s)−u2 (s)|2

)
≤C

∫ t

0
E

(
sup

r∈[0,s]
|v1 (r)− v2 (r)|2

)
ds

Letting T v = u where u is defined from v in the integral equation 71.3.17, the above
inequality implies that

E

(
sup

s∈[0,t]
|T nv1 (s)−T nv2 (s)|2H

)
≤C

∫ t

0
E

(
sup

r∈[0,s]

∣∣T n−1v1 (r)−T n−1v2 (r)
∣∣2)ds

≤C2
∫ t

0

∫ s

0
E

(
sup

r1∈[0,r]

∣∣T n−2v1 (r1)−T n−2v2 (r1)
∣∣2 )drds

One can iterate this, eventually finding that

E

(
sup

s∈[0,t]
|T nv1 (s)−T nv2 (s)|2H

)

≤ Cn
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dtn−1 · · ·dtE

(
sup

s∈[0,t]
|v1 (s)− v2 (s)|2H

)

=
CnT n

(n!)
E

(
sup

s∈[0,t]
|v1 (s)− v2 (s)|2H

)
In particular, one could take t = T . This shows that for all n large enough, T n is a contrac-
tion map on L2 (Ω,C ([0,T ] ;H)). Therefore, picking v∈ L2 (Ω,C ([0,T ] ;H)) , such that v is
also progressively measurable,

{
T kv

}∞

k=1 converges in L2 (Ω,C ([0,T ] ;H)) to the unique
fixed point of T denoted as u. Thus T u = u in L2 (Ω;C ([0,T ] ;H)) . That is,∫

Ω

sup
t
|T u−u|2 dP = 0

It follows that there is a set of measure zero such that for ω not in this set,

u(t,ω)−u0(ω)+
∫ t

0
N (s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f (s,ω)ds+

∫ t

0
σ (s,u,ω)dW. (71.3.18)

The function u is progressively measurable because each T nv is progressively measurable
and there exists a subsequence still indexed with n such that for ω off a set of measure zero,
T nv(·,ω)→ u(·,ω) in C ([0,T ] ;H).

Note that the fixed point of T is unique in the space L2 (Ω;C ([0,T ] ;H)) and so any
solution to the integral equation in this space must equal this one. Hence, there exists a set
of measure zero such that for ω off this set, the two solutions are equal for all t. ■
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71.3.2 The Locally Lipschitz Case
Now replace the Lipschitz assumpton 71.3.12 with the locally Lipschitz assumption which
says that if max(|u| , |v| , |w|)< R, then there is a constant KR such that

|N (t,u1,v1,w1,ω)−N (t,u2,v2,w2,ω)| ≤ K (R)(|u1−u2|+ |v1− v2|+ |w1−w2|)
(71.3.19)

Also assume the growth condition

(N (t,u,v,w,ω) ,u)≥−C (t,ω)−µ

(
|u|2 + |v|2 + |w|2

)
(71.3.20)

and the linear growth condition on σ

∥σ (t,u,ω)∥ ≤ a+b |u|H

and the Lipschitz condition on σ 71.3.11. This can likely be relaxed as in the case of the
Lipschitz condition for N but for simplicity, we keep it.

Theorem 71.3.2 Suppose 71.3.11, 71.3.14, 71.3.15,71.3.13, 71.3.19 and let

w(t) = w0 +
∫ t

0
u(s)ds, w0 ∈ L2 (Ω) , w0 is F0 measurable.

Then there exists a unique progressively measurable solution u to the integral equation

u(t,ω)−u0(ω)+
∫ t

0
N (s,u(s,ω),u(s−h,ω) ,w(s,ω) ,ω)ds

=
∫ t

0
f (s,ω)ds+

∫ t

0
σ (s,u,ω)dW. (71.3.21)

71.3.16 where u ∈ L2 (Ω,C ([0,T ] ;H)) ,u0 ∈ L2 (Ω,H) ,u0 is F0 measurable, f is progres-
sively measurable and in L2 ([0,T ]×Ω;H) . Here there is a set of measure zero such that
if ω is not in this set, then u(·,ω) solves the above integral equation 71.3.16 and further-
more, if û(·,ω) is another solution to it, then u(t,ω) = û(t,ω) for all t if ω is off some set
of measure zero.

Proof: Let un be the unique solution to the integral equation

un (t,ω)−u0(ω)+
∫ t

0
N (s,Pnun(s,ω),Pnun (s−h,ω) ,Pnwn (s,ω) ,ω)ds

=
∫ t

0
f (s,ω)ds+

∫ t

0
σ (s,un,ω)dW. (71.3.22)

where Pn is the projection onto B(0,9n). Thus the modified problem is in the situation of
Theorem 71.3.1 so there exists such a solution. Then let

τn = inf{t : |un (t)|+ |wn (t)|> 2n}
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Then stopping the equation with this stopping time, we can write

uτn
n (t,ω)−u0(ω)+

∫ t

0
X[0,τn]N (s,uτn

n (s,ω),uτn
n (s−h,ω) ,wτn

n (s,ω) ,ω)ds

=
∫ t

0
X[0,τn] f (s,ω)ds+

∫ t

0
X[0,τn]σ (s,uτn

n ,ω)dW. (71.3.23)

Then using the growth condition 71.3.20 and the Ito formula,

1
2
|uτn

n (t)|2H ≤C (u0,w0, f )+C
∫ t

0
|uτn

n |
2
H ds+ sup

s∈[0,t]
|M (t)|

where M (t) is a martingale whose quadratic variation is dominated by∫ t

0
∥σ (s,uτn

n )∥2 |uτn
n |

2 ds

Then it follows by the Burkholder-Davis-Gundy inequality

E

(
sup

s∈[0,t]
|uτn

n (s)|2H

)
≤ E (C (u0,w0, f ))+C

∫ t

0
E

(
sup

r∈[0,s]
|uτn

n (r)|2 dr

)
ds

+CE

((∫ t

0
∥σ (s,uτn

n )∥2 |uτn
n |

2 ds
)1/2

)
Now apply Gronwall’s inequality and modify the constants so that

E

(
sup

s∈[0,t]
|uτn

n (s)|2H

)
≤ E (C (u0,w0, f ))+CE

((∫ t

0
∥σ (s,uτn

n )∥2 |uτn
n |

2 ds
)1/2

)

≤ E (C (u0,w0, f ))+
1
2

E

(
sup

s∈[0,t]
|uτn

n (s)|2H

)
+CE

(∫ t

0
∥σ (s,uτn

n )∥2 ds
)

Then, using the linear growth condition on σ , it follows on modification of the constants
again that

E

(
sup

s∈[0,t]
|uτn

n (s)|2H

)
≤ E (C (u0,w0, f ))+CE

(∫ t

0
|uτn

n |
2 ds
)

≤ E (C (u0,w0, f ))+CE

(∫ t

0
sup

r∈[0,s]
|uτn

n |
2 dr

)

and so, another application of Gronwall’s inequality implies that

E

(
sup

s∈[0,T ]
|uτn

n (s)|2H

)
≤ E (C (u0,w0, f ))< ∞
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Then

P

(
sup

s∈[0,T ]
|uτn

n (s)|2H >

(
3
2

)n
)
≤ E (C (u0,w0, f ))

(
2
3

)n

Now an application of the Borel Cantelli lemma shows that there exists a set of measure
zero N̂ such that for ω /∈ N̂, it follows that for all n large enough,

sup
s∈[0,T ]

|uτn
n (s)|2H < (3/2)n

and so τn = ∞ for all n large enough.
Claim: For m< n, there is a set of measure zero Nmn such that if ω /∈Nmn, then uτn

n (s)=
uτm

m (s) on [0,T ∧ τm].
Proof of the claim: Note that τm ≤ τn. Therefore, these are both progressively mea-

surable solutions to the integral equation

u(t ∧ τm,ω)−u0(ω)+
∫ t

0
X[0,τm]N (s,u(s,ω),u(s−h,ω) ,wu (s,ω) ,ω)ds

=
∫ t

0
X[0,τm] f (s,ω)ds+

∫ t

0
X[0,τm]σ (s,u,ω)dW. (71.3.24)

where
wu (t) = w0 +

∫ t

0
u(s)ds.

To save notation, refer to these functions as u,v and let τm = τ . Subtract and use the Ito
formula to obtain

1
2
|u(t ∧ τ)− v(t ∧ τ)|2H ≤

∫ t

0
X[0,τm] (N (s,u(s),u(s−h) ,wu (s))−N (s,v(s),v(s−h) ,wu−v (s)) ,u− v)ds

+ sup
s∈[0,t]

|M (t)|

where the quadratic variation of the martingale M (t) is dominated by∫ t

0
X[0,τ] ∥σ (s,u,ω)−σ (s,v,ω)∥2 |u− v|2 ds

Then from the assumption that N is locally Lipschitz and routine manipulations,

1
2
|u(t ∧ τ)− v(t ∧ τ)|2H ≤Cm

∫ t

0
X[0,τ] |u− v|2 ds+ sup

s∈[0,t]
|M (s)|

and so, adjusting the constants yields

sup
s∈[0,t]

|u(s∧ τ)− v(s∧ τ)|2H

≤ Cm

∫ t

0
X[0,τ] sup

r∈[0,s]
|u(r∧ τ)− v(r∧ τ)|2 ds+ sup

s∈[0,t]
|M (s)|
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and so, by Gronwall’s inequality followed by the Burkholder-Davis-Gundy inequality,

E

(
sup

s∈[0,t]
|u(s∧ τ)− v(s∧ τ)|2H

)
≤

CE

((∫ t

0
X[0,τ] ∥σ (s,u,ω)−σ (s,v,ω)∥2 |u(s∧ τ)− v(s∧ τ)|2 ds

)1/2
)

≤ 1
2

E

(
sup

s∈[0,t]
|u(s∧ τ)− v(s∧ τ)|2H

)
+CE

(∫ t

0
X[0,τ] ∥σ (s,u)−σ (s,v)∥2 ds

)
and so, adjusting the constant again,

E

(
sup

s∈[0,t]
|u(s∧ τ)− v(s∧ τ)|2H

)

≤ CE
(∫ t

0
X[0,τ] ∥σ (s,u(s∧ τ))−σ (s,v(s∧ τ))∥2 ds

)

≤CE
(∫ t

0
X[0,τ]K |u(s∧ τ)− v(s∧ τ)|2 ds

)

≤C
∫ t

0
E

(
sup

r∈[0,s]
|u(r∧ τ)− v(r∧ τ)|2

)
ds

and so, Gronwall’s inequality shows that for every t,

E

(
sup

s∈[0,t]
|u(s∧ τ)− v(s∧ τ)|2H

)
= 0

In particular, for t = T this holds. Hence

E

(
sup

s∈[0,T ]
|u(s∧ τ)− v(s∧ τ)|2H

)
= 0

It follows that

E

(
sup

s∈[0,τ∧T ]
|u(s)− v(s)|2H

)
= 0

so that off a set of measure zero, u(s) = v(s) for all s ∈ [0,τ]. This proves the claim.
Now let the set of measure zero N be given by N ≡ ∪m<nNmn ∪ N̂ where N̂ is the set

of measure zero off which τm = ∞ for all m large enough. Then for ω /∈ N, it follows that
uτn

n (s) = uτm
m (s) on [0,τm∧T ] and, for all m large enough, τm = ∞. Hence for all m large

enough, and such ω, un (s,ω) = um (s,ω) for all s∈ [0,T ] . Thus, for ω off N, it follows that
limm→∞ uτm

m (s,ω)≡ u(s,ω) exists, this for each s ∈ [0,T ] and ω off a fixed set of measure
zero. In fact, this convergence is uniform on [0,T ] because for all n sufficiently large
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and for such a fixed ω /∈ N, there is no change in increasing m. Hence, u is progressively
measurable and satisfies the integral equation 71.3.21.

It remains to verify uniqueness. Suppose there are two solutions u,v each progressively
measurable solutions of the given integral equation. Then let τn be a stopping time

τn = inf{t : |u(t)|+ |v(t)|> 2n}

Then a repeat of the arguments given in the above claim shows that on [0,τn∧T ] the two
functions uτn ,vτn are equal on [0,τn∧T ] off a set of measure zero Nn. Let N be the union
of the exceptional sets. Then for ω /∈ N, u(t,ω) = v(t,ω) for all t ∈ [0,τn∧T ]. However,
τn (ω) = ∞ for all n large enough because each of these functions is continuous. Hence,
the two functions are equal on [0,T ] for such ω . This shows uniqueness. ■



Chapter 72

The Hard Ito Formula
Recall the following definition of stochastically continuous.

X is stochastically continuous at t0 ∈ I means: for all ε > 0 and δ > 0 there exists ρ > 0
such that

P([||X (t)−X (t0)|| ≥ ε])≤ δ whenever |t− t0|< ρ, t ∈ I.

Note the above condition says that for each ε > 0,

lim
t→t0

P([||X (t)−X (t0)|| ≥ ε]) = 0.

72.1 Predictable And Stochastic Continuity
Definition 72.1.1 Let Ft be a filtration. The predictable sets consists of those sets which
are in the smallest σ algebra which contains the sets E ×{0} for E ∈F0 and E× (a,b]
where E ∈Fa. Thus every predictable set is a progressively measurable set.

First of all, here is an important observation.

Proposition 72.1.2 Let X (t) be a stochastic process having values in E a complete metric
space and let it be Ft adapted and left continuous where Ft is a normal filtration. Then
it is predictable. If t → X (t,ω) is continuous for all ω /∈ N,P(N) = 0, then (t,ω)→
X (t,ω)XNC (ω) is predictable. Also, if X (t) is stochastically continuous and adapted on
[0,T ] , then it has a predictable version. If X ∈C ([0,T ] ;Lp (Ω;F)) , p≥ 1 for F a Banach
space, then X is stochastically continuous.

Proof: First suppose X is continuous for all ω ∈Ω. Define

Im,k ≡ ((k−1)2−mT,k2−mT ]

if k ≥ 1 and Im,0 = {0} if k = 1. Then define

Xm (t) ≡
2m

∑
k=1

X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ] (t)

+X (0)X[0,0] (t)

Here the sum means that Xm (t) has value X (T (k−1)2−m) on the interval

((k−1)2−mT,k2−mT ].

Thus Xm is predictable because each term in the formal sum is. Thus

X−1
m (U) = ∪2m

k=1
(
X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ]

)−1
(U)

= ∪2m

k=1((k−1)2−mT,k2−mT ]×
(
X
(
T (k−1)2−m))−1

(U) ,

2437
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a finite union of predictable sets. Since X is left continuous,

X (t,ω) = lim
m→∞

Xm (t,ω)

and so X is predictable.
Now suppose that for ω /∈ N, P(N) = 0, t→ X (t,ω) is continuous. Then applying the

above argument to X (t)XNC it follows X (t)XNC is predictable by completeness of Ft ,
X (t)XNC is Ft measurable.

Next consider the other claim. Since X is stochastically continuous on [0,T ] it is uni-
formly stochastically continuous on this interval by Lemma 62.1.1. Therefore, there exists
a sequence of partitions of [0,T ] , the mth being

0 = tm,0 < tm,1 < · · ·< tm,n(m) = T

such that for Xm defined as above, then for each t

P
([

d (Xm (t) ,X (t))≥ 2−m])≤ 2−m (72.1.1)

Then as above, Xm is predictable. Let A denote those points of PT at which Xm (t,ω)
converges. Thus A is a predictable set because it is just the set where Xm (t,ω) is a Cauchy
sequence. Now define the predictable function Y

Y (t,ω)≡
{

limm→∞ Xm (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A

From 72.1.1 it follows from the Borel Cantelli lemma that for fixed t, the set of ω which
are in infinitely many of the sets,[

d (Xm (t) ,X (t))≥ 2−m]
has measure zero. Therefore, for each t, there exists a set of measure zero, N (t) such that
for ω /∈ N (t) and all m large enough[

d (Xm (t,ω) ,X (t,ω))< 2−m]
Hence for ω /∈ N (t) , (t,ω) ∈ A and so Xm (t,ω)→ Y (t,ω) which shows

d (Y (t,ω) ,X (t,ω)) = 0 if ω /∈ N (t) .

The predictable version of X (t) is Y (t).
Finally consider the claim about the specific example where

X ∈C ([0,T ] ;Lp (Ω;F)) .

P([||X (t)−X (s)||F ≥ ε])ε
p ≤

∫
Ω

||X (t)−X (s)||pF dP≤ ε
p
δ

provided |s− t| sufficiently small. Thus

P([||X (t)−X (s)||F ≥ ε])< δ

when |s− t| is small enough. ■
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72.2 Approximating With Step Functions
This Ito formula seems to be the fundamental idea which allows one to obtain solutions to
stochastic partial differential equations using a variational point of view. I am following
the treatment found in [108]. The following lemma is fundamental to the presentation. It
approximates a function with a sequence of two step functions X r

k ,X
l
k where X r

k has the
value of X at the right end of each interval and X l

k gives the value X at the left end of the
interval. The lemma is very interesting for its own sake. You can obviously do this sort of
thing for a continuous function but here the function is not continuous and in addition, it is
a stochastic process depending on ω also. This lemma was proved earlier Lemma 65.3.1.

Lemma 72.2.1 Let Φ : [0,T ]×Ω→V, be B ([0,T ])×F measurable and suppose

Φ ∈ K ≡ Lp ([0,T ]×Ω;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X(tk

j−1,t
k
j ]
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Φ

(
tk

j

)
,Φ
(

tk
j−1

)
is in Lp (Ω;E). One can also assume that Φ(0) = 0. The mesh

points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we

can assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j = mnk when this might not be so. In the case of the last
subinterval defined by the partition, we can assume∣∣∣tk

m− tk
m−1

∣∣∣= ∣∣∣T − tk
m−1

∣∣∣≥ 2−(nk+1)

The following lemma is convenient.

Lemma 72.2.2 Let fn→ f in Lp ([0,T ]×Ω,E) . Then there exists a subsequence nk and a
set of measure zero N such that if ω /∈ N, then

fnk (·,ω)→ f (·,ω)

in Lp ([0,T ] ,E) and for a.e. t.
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Proof: We have

P
([
∥ fn− f∥Lp([0,T ],E) > λ

])
≤ 1

λ

∫
Ω

∥ fn− f∥Lp([0,T ],E) dP

≤ 1
λ
∥ fn− f∥Lp([0,T ]×Ω,E)

Hence there exists a subsequence nk such that

P
([∥∥ fnk − f

∥∥
Lp([0,T ],E) > 2−k

])
≤ 2−k

Then by the Borel Cantelli lemma, it follows that there exists a set of measure zero N such
that for all k large enough and ω /∈ N,∥∥ fnk − f

∥∥
Lp([0,T ],E) ≤ 2−k ■

Because of this lemma, it can also be assumed that for a.e. ω pointwise convergence
is obtained on [0,T ] as well as convergence in Lp ([0,T ]). This kind of assumption will be
tacitly made whenever convenient in the context of the above lemma.

Also recall the diagram for the definition of the integral.

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Φn ↘ ↓ Φ

H

The idea was to get
∫ t

0 ΦdW where Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
. Here W (t) was a

cylindrical Wiener process. This meant that it was a Q1 Wiener process on U1 for Q1 = JJ∗

and J was a Hilbert Schmidt operator mapping Q1/2U to U1.

72.3 The Situation
Now consider the following situation.

Situation 72.3.1 Let X satisfy the following.

X (t) = X0 +
∫ t

0
Y (s)ds+

∫ t

0
Z (s)dW (s) , (72.3.2)

X0 ∈ L2 (Ω;H) and is F0 measurable, where Z is L2
(
Q1/2U,H

)
progressively measurable

and ∫ T

0

∫
Ω

||Z (s)||2
L2(Q1/2U,H) dPdt < ∞

so that the stochastic integral makes sense. Also X has a measurable representative X̄
which has values in V . (For a.e.t, X̄ (t) = X (t) for P a.e. ω). This representative satisfies

X̄ ∈ L2 ([0,T ]×Ω,B ([0,T ]×F ,H))∩Lp ([0,T ]×Ω,B ([0,T ])×F ,V )
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Assume Y (s) satisfies

Y ∈ K′ = Lp′ ([0,T ]×Ω;V ′
)

where 1/p′+ 1/p = 1 and Y is V ′ progressively measurable. The situation in which the
equation holds is as follows. For a.e. ω, the equation holds for all t ∈ [0,T ] in V ′. Thus
it follows that X (t) is automatically progressively measurable into V ′ from Proposition
72.1.2. Also W (t) is a Wiener process on U1 in the above diagram. Thus X is continuous
into V ′ off a set of measure zero, and it is also V ′ predictable.

The goal is to prove the following Ito formula.

|X (t)|2 = |X0|2 +
∫ t

0

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t

0
R
((

Z (s)◦ J−1)∗ X̄ (s)
)
◦ JdW (s) (72.3.3)

where R is the Riesz map which takes U1 to U ′1. The main thing is that the last term above
be a local martingale.

In all that follows, the mesh points t j will be points where X̄ (t j) = X (t j) a.e. ω .

Lemma 72.3.2 Let X be as in Situation 72.3.1 and let X l
k be as in Lemma 72.2.1 corre-

sponding to X̄ above. Say

X l
k (t) =

mk

∑
j=0

X̄ (t j)X[t j ,t j+1)
(t) , X l

k (0)≡ 0.

Then each term in the above sum for which t j > 0 is predictable into H. As mentioned
earlier, we can take X (0) ≡ 0 in the definition of the “left step function”. Since, at the
mesh points, X̄ = X a.e., it makes no difference off a set of measure zero whether we use
X̄ (t j) or X (t j) at the left end point.

Proof: This is a step function and a typical term is of the form X (a)X[a,b) (t) . I will
try and show this is predictable. Let an be an increasing sequence converging to a and let
bn be an increasing sequence converging to b. Then for a.e. ω,

X (an)X(an,bn] (t)→ X (a)X[a,b) (t)

in V ′ due to the fact that t→ X (t) is continuous into V ′ for a.e. ω . Therefore, letting v ∈V
be given, it follows that for a.e. ω〈

X (an)X(an,bn] (t) ,v
〉
→
〈
X (a)X[a,b) (t) ,v

〉
,

and since the filtration is a normal filtration in which all sets of measure zero from FT are
in F0, this shows

(t,ω)→
〈
X (a)X[a,b) (t) ,v

〉
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is real predictable because it is the pointwise limit of real predictable functions, those in the
sequence being real predictable because of the continuity of X (t) into V ′ and Propositon
72.1.2. Now since H ⊆V ′ it follows that for all v ∈V,

(t,ω)→
(
X (a)X[a,b) (t) ,v

)
is real predictable. This holds for h ∈ H replacing v in the above because V is dense in H.
By the Pettis theorem, this proves the lemma. ■

Lemma 72.3.3 In Situation 72.3.1 the following formula holds for a.e. ω for 0 < s < t
where M (t) ≡

∫ t
0 Z (u)dW (u). Here and elsewhere, |·| denotes the norm in H and ⟨·, ·⟩

denotes the duality pairing between V,V ′. Also X = X̄ for a.e. ω at t,s so that it makes no
difference off a set of measure zero whether we write ⟨Y (u) ,X (t)⟩ or ⟨Y (u) , X̄ (t)⟩

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du+2(X (s) ,M (t)−M (s))

+ |M (t)−M (s)|2−|X (t)−X (s)− (M (t)−M (s))|2 (72.3.4)

Also for t > 0

|X (t)|2 = |X0|2 +2
∫ t

0
⟨Y (u) ,X (t)⟩du+2(X0,M (t))

+ |M (t)|2−|X (t)−X0−M (t)|2 (72.3.5)

Proof: The formula is a straight forward computation which holds a.e. ω .

|M (t)−M (s)|2−|X (t)−X (s)− (M (t)−M (s))|2 +2(X (s) ,M (t)−M (s))

= |M (t)−M (s)|2−|X (t)−X (s)|2−|M (t)−M (s)|2

+2(X (t)−X (s) ,M (t)−M (s))+2(X (s) ,M (t)−M (s))

=−|X (t)−X (s)|2 +2(X (t) ,M (t)−M (s))

=−|X (t)−X (s)|2 +2(X (t) ,X (t)−X (s))−2
〈∫ t

s
Y (u)du,X (t)

〉

= −|X (t)|2−|X (s)|2 +2(X (t) ,X (s))+2 |X (t)|2−2(X (t) ,X (s))

−2
∫ t

s
⟨Y (u) ,X (t)⟩du

= |X (t)|2−|X (s)|2−2
∫ t

s
⟨Y (u) ,X (t)⟩du
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Comparing the ends of this string of equations,

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du+2(X (s) ,M (t)−M (s))

+ |M (t)−M (s)|2−|X (t)−X (s)− (M (t)−M (s))|2

which is what was to be shown.
Now it is time to prove the other assertion.

|M (t)|2−|X (t)−X0−M (t)|2 +2(X0,M (t))

=−|X (t)−X0|2 +2(X (t)−X0,M (t))+2(X0,M (t))

=−|X (t)−X0|2 +2(X (t) ,M (t))

= −|X (t)−X0|2 +2(X (t) ,X (t)−X0)−2
〈∫ t

0
Y (s)ds,X (t)

〉
= |X (t)|2−|X0|2−2

〈∫ t

0
⟨Y (s) ,X (t)⟩ds

〉
■

Noting that X (0) = X0 ∈ L2 (Ω,H) and is F0 measurable, the first formula works in
both cases.

72.4 The Main Estimate
The following phenomenal estimate holds and it is this estimate which is the main idea in
proving the Ito formula. The last assertion about continuity is like the well known result
that if y ∈ Lp (0,T ;V ) and y′ ∈ Lp′ (0,T ;V ′) , then y is actually continuous with values in
H. Later, this continuity result is strengthened further to give strong continuity.

Lemma 72.4.1 In the Situation 72.3.1,

E

(
sup

t∈[0,T ]
|X (t)|2H

)
<C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥X0∥L2(Ω,H)

)
< ∞.

where

J = L2
(
[0,T ]×Ω;L2

(
Q1/2U ;H

))
,K ≡ Lp ([0,T ]×Ω;V ) ,

K′ ≡ Lp′ ([0,T ]×Ω;V ′
)
.

Also, C is a continuous function of its arguments and C (0,0,0,0) = 0. Thus for a.e. ω,

sup
t∈[0,T ]

|X (t,ω)|H ≤C (ω)< ∞.

Also for a.e. ω, t→ X (t,ω) is weakly continuous with values in H.
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Proof: Consider the formula in Lemma 72.3.3.

|X (t)|2 = |X (s)|2 +2
∫ t

s
⟨Y (u) ,X (t)⟩du+2(X (s) ,M (t)−M (s))

+ |M (t)−M (s)|2−|X (t)−X (s)− (M (t)−M (s))|2 (72.4.6)

Now let t j denote a point of Pk from Lemma 72.2.1. Then for t j > 0,X (tk) is just the value
of X at tk but when t = 0, the definition of X (0) in this step function is X (0)≡ 0. Thus

|X (tm)|2−|X0|2 =
m−1

∑
j=1

∣∣X (t j+1
)∣∣2− ∣∣X (t j)

∣∣2 + |X (t1)|2−|X0|2

Using the formula in Lemma 72.3.3, for t = tm this yields

|X (tm)|2−|X0|2 = 2
m−1

∑
j=1

∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du+

+2
m−1

∑
j=1

(∫ t j+1

t j

Z (u)dW,X (t j)

)
H
+

m−1

∑
j=1

∣∣M (t j+1
)
−M (t j)

∣∣2
−

m−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2
+2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2

(
X0,
∫ t1

0
Z (u)dW

)
+ |M (t1)|2

−|X (t1)−X0−M (t1)|2 (72.4.7)

Of course

2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2

(
X0,
∫ t1

0
Z (u)dW

)
+ |M (t1)|2

converges to 0 for a.e. ω as k→∞ because the norms of the partitions converge to 0 and the
stochastic integral is continuous off a set of measure zero. Actually this is not completely
clear for the first of the above terms. This term is dominated by(∫ t1

0
∥Y (u)∥p′ du

)1/p(∫ T

0
∥X r

k (u)∥
p du

)1/p

≤ C (ω)

(∫ t1

0
∥Y (u)∥p′ du

)1/p

Hence this converges to 0 for a.e. ω . At this time, not much is known about the last term in
72.4.7, but it is negative and is about to be neglected anyway.The Ito isometry implies the
other two terms converge to 0 in L1 (Ω) also, in addition to converging for a.e. ω . At this
time, not much is known about the last term in 72.4.7, but it is negative and is about to be
neglected anyway.



72.4. THE MAIN ESTIMATE 2445

The term involving the stochastic integral equals

2
m−1

∑
j=1

(∫ t j+1

t j

Z (u)dW,X (t j)

)
H

By Theorem 65.14.1, this equals

2
∫ tm

t1
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW,

t→
∫ t

0 R
((

Z (u)◦ J−1
)∗X l

k (u)
)
◦ JdW being a local martingale. Therefore, 72.4.7 equals

|X (tm)|2−|X0|2 = 2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+ e(k)

2
∫ tm

t1
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW +

m−1

∑
j=1

∣∣M (t j+1
)
−M (t j)

∣∣2
−

m−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2−|X (t1)−X0−M (t1)|2

where e(k) converges to 0 in L1 (Ω) and for a.e. ω . Note that X l
k (u) = 0 on [0, t1) and so

that stochastic integral equals∫ tm

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW.

Therefore, from the above,

|X (tm)|2−|X0|2 = 2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+ e(k)

2
∫ tm

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW +

m−1

∑
j=0

∣∣M (t j+1
)
−M (t j)

∣∣2−|M (t1)|2

−
m−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2−|X (t1)−X0−M (t1)|2

Then since |M (t1)|2 converges to 0 in L1 (Ω) and for a.e. ω, as discussed above,

|X (tm)|2−|X0|2 = 2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+ e(k)

+2
∫ tm

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW +

m−1

∑
j=0

∣∣M (t j+1
)
−M (t j)

∣∣2
−|X (t1)−X0−M (t1)|2
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−
m−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2 (72.4.8)

where e(k)→ 0 for a.e. ω and also in L1 (Ω).
Now it follows on discarding the negative terms,

sup
t j∈Pk

∣∣X (t j)
∣∣2 ≤ |X0|2 +2

∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du

+2 sup
t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW

∣∣∣∣+mk−1

∑
j=0

∣∣∣∣∫ t j+1

t j

Z (u)dW
∣∣∣∣2

where there are mk +1 points in Pk.
Do

∫
Ω

to both sides. Using the Ito isometry, this yields

∫
Ω

(
sup

t j∈Pk

∣∣X (t j)
∣∣2)dP ≤ E

(
|X0|2

)
+2 ||Y ||K′ ||X

r
k ||K

+
mk−1

∑
j=0

∫ t j+1

t j

∫
Ω

||Z (u)||2 dPdu

+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ T

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW

∣∣∣∣
)

dP+E (|e(k)|)

≤C+
∫ T

0

∫
Ω

||Z (u)||2 dPdu+

+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ T

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW

∣∣∣∣
)

dP

≤C+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ T

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW

∣∣∣∣
)

dP

where the result of Lemma 72.2.1 that X r
k converges to X̄ in K shows that the term which

is the product 2 ||Y ||K′
∣∣∣∣X r

k

∣∣∣∣
K is bounded. The constant C is a continuous function of

||Y ||K′ , ||X̄ ||K , ||Z||J ,∥X0∥L2(Ω,H)

which equals zero when all are equal to zero. The term involving the stochastic integral is
next.

Applying the Burkholder Davis Gundy inequality, Theorem 63.4.4 for F (r) = r along
with the description of the quadratic variation of the Ito integral found in Corollary 65.11.1∫

Ω

sup
t j∈Pk

|X (tk)|2 dP

≤ C+C
∫

Ω

(∫ T

0

∣∣∣∣∣∣R((Z (u)◦ J−1)∗X l
k (u)

)
◦ J
∣∣∣∣∣∣2 du

)1/2

dP
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≤C+C
∫

Ω

(∫ T

0
||Z (u)||2

∣∣∣X l
k (u)

∣∣∣2 du
)1/2

dP

Now for each ω, there are only finitely many values of X l
k (u) and they equal X (t j) for

t j ∈Pk with the convention that X (0) = 0. Therefore, the above is dominated by

C+C
∫

Ω

(
sup

t j∈Pk

∣∣X (t j)
∣∣2)1/2(∫ T

0
||Z (u)||2 du

)1/2

dP

≤C+
1
2

∫
Ω

sup
t j∈Pk

∣∣X (t j)
∣∣2 +C

∫
Ω

∫ T

0
||Z (u)||2

L2(Q1/2U,H) dudP

and so
1
2

∫
Ω

sup
t j∈Pk

|X (tk)|2 dP≤C

for some constant C independent of Pk dependent on
∫

Ω

∫ T
0 ||Z (u)||2

L2(Q1/2U,H) dudP. This

constant is dependent on ||Y ||K′ , ||X̄ ||K , ||Z||J ,∥X0∥L2(Ω,H) and equals zero when all of
these quantities equal 0.

Let D denote the union of all the Pk. Thus D is a dense subset of [0,T ] and it has just
been shown that for a constant C independent of Pk,

E
(

sup
t∈D
|X (t)|2

)
≤C.

Let
{

e j
}

be an orthonormal basis for H which is also contained in V and has the prop-
erty that span({ek}∞

k=1) is dense in V . I claim that for y ∈V ′

|y|2H = sup
n

n

∑
j=1

∣∣〈y,e j
〉∣∣2

This is certainly true if y ∈ H because in this case〈
y,e j

〉
= (y,e j)

If y /∈ H, then the series must diverge. If not, you could consider the infinite sum

z≡
∞

∑
j=1

〈
y,e j

〉
e j ∈ H

and argue that ⟨z− y,v⟩= 0 for all v ∈ span({ek}∞

k=1) which would also imply that this is
true for all v ∈V . Then since z = y in V ′, it follows that y ∈ H contrary to the assumption
that y /∈ H.

It follows

|X (t)|2 = sup
n

n

∑
j=1

∣∣〈X (t) ,e j
〉∣∣2
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and for a.e. ω, this is just the sup of continuous functions of t. Therefore, for given ω off
a set of measure zero,

t→ |X (t)|2

is lower semicontinuous. Hence letting t ∈ [0,T ] and t j→ t where t j ∈ D,

|X (t)|2 ≤ lim inf
j→∞

∣∣X (t j)
∣∣2

so it follows for a.e. ω

sup
t∈[0,T ]

|X (t)|2 ≤ sup
t∈D
|X (t)|2 ≤ sup

t∈[0,T ]
|X (t)|2

Hence

E

(
sup

t∈[0,T ]
|X (t)|2

)
≤C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥X0∥L2(Ω,H)

)
. (72.4.9)

Note the above shows that for a.e. ω, supt∈[0,T ] |X (t)|H < ∞ so that for such ω,X (t)
has values in H. Note that we began by assuming it had a representative with values in H
although the equation only held in V ′. Say

|X (t,ω)| ≤C (ω) .

Hence if v ∈V, then for a.e. ω

lim
t→s

(X (t) ,v) = lim
t→s
⟨X (t) ,v⟩= ⟨X (s) ,v⟩= (X (s) ,v)

Therefore, since for such ω, |X (t,ω)| is bounded, the above holds for all h ∈H in place of
v as well. Therefore, for a.e. ω, t→ X (t,ω) is weakly continuous with values in H. ■

Eventually, it is shown that in fact, the function t → X (t,ω) is continuous with values
in H.

This lemma also provides a way to simplify one of the formulas derived earlier in the
case that X0 ∈ Lp (Ω,V ). Refer to 72.4.8. One term there is |X (t1)−X0−M (t1)|2 .

|X (t1)−X0−M (t1)|2 ≤ 2 |X (t1)−X0|2 +2 |M (t1)|2

It was shown above that 2 |M (t1)|2→ 0 a.e. and also in L1 (Ω) as k→ ∞. Apply the above
lemma to |X (t)−X0|2 using [0, t1] instead of [0,T ] . The new X0 equals 0. Then from the
estimate 72.4.9, it follows that

E
(
|X (t1)−X0|2

)
→ 0

as k→ ∞. Taking a subsequence, we could also assume that |X (t1)−X0|2 → 0 a.e. ω as
k→ ∞. Then, using this subsequence, it would follow from 72.4.8,

|X (tm)|2−|X0|2 = 2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+ e(k)
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+2
∫ tm

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW +

m−1

∑
j=0

∣∣M (t j+1
)
−M (t j)

∣∣2
−

m−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2 (72.4.10)

where e(k)→ 0 in L1 (Ω) and a.e. ω .
Can you obtain something similar even in case X0 is not assumed to be in Lp (Ω,V )?

Let Z0k ∈ Lp (Ω,V )∩L2 (Ω,H) ,Z0k→ X0 in L2 (Ω,H) . Then

|X (t1)−X0| ≤ |X (t1)−Z0k|+ |Z0k−X0|

Also, restoring the superscript to identify the parition,

X
(

tk
1

)
−Z0k = X0−Z0k +

∫ tk
1

0
Y (s)ds+

∫ tk
1

0
Z (s)dW.

Of course ∥X̄−Z0k∥K is not bounded but for each k it is at least finite. There is a sequence
of partitions Pk,∥Pk∥ → 0 such that all the above holds. In the definitions of K,K′,J
replace [0,T ] with [0, t] and let the resulting spaces be denoted by Kt ,K′t ,Jt . Let nk denote
a subsequence of {k} such that

∥X̄−Z0k∥K
t
nk
1

< 1/k.

Then from the above lemma,

E

 sup
t∈[0,t

nk
1 ]

∣∣X (tnk
1

)
−Z0k

∣∣2
H


≤ C

(
||Y ||K′

t
nk
1

,∥X̄−Z0k∥K
t
nk
1

, ||Z||J
t
nk
1

,∥X0−Z0k∥L2(Ω,H)

)

≤ C

(
||Y ||K′

t
nk
1

,
1
k
, ||Z||J

t
nk
1

,∥X0−Z0k∥L2(Ω,H)

)

Hence
E
(∣∣X (tnk

1

)
−X0

∣∣2)≤ 2E
(∣∣X (tnk

1

)
−Z0k

∣∣2
H

)
+2E

(
|Z0k−X0|2H

)
≤ 2C

(
||Y ||K′

t
nk
1

,
1
k
, ||Z||J

t
nk
1

,∥X0−Z0k∥L2(Ω,H)

)
+2∥Z0k−X0∥2

which converges to 0 as k→ ∞. It follows that there exists a suitable subsequence such
that 72.4.10 holds even in the case that X0 is only known to be in L2 (Ω,H). From now on,
assume this subsequence for the paritions Pk. Thus k will really be nk.
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72.5 Converging In Probability
I am working toward the Ito formula 72.3.3. In order to get this, there is a technical result
which will be needed.

Lemma 72.5.1 Let X (s)−X l
k (s)≡ ∆k (s) . Then the following limit occurs.

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗
∆k (s)

)
◦ JdW (s)

∣∣∣∣≥ ε

])
= 0. (72.5.11)

That is,

sup
t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
k (s)

))
◦ JdW (s)

∣∣∣∣
converges to 0 in probability. Also the stochastic integral makes sense because X is H
predictable.

Proof: First note that from Lemma 72.4.1, for a.e. ω, X (t) has values in H for t ∈ [0,T ]
and so it makes sense to consider it in the stochastic integral provided it is H progressively
measurable. However, as noted in Situation 72.3.1, this function is automatically V ′ pre-
dictable. Therefore,

⟨X (t) ,v⟩= (X (t) ,v)

is real predictable for every v ∈V. Now if h ∈ H, let vn→ h in H and so for each ω,

(X (t,ω) ,vn)→ (X (t,ω) ,h)

By the Pettis theorem, X is H predictable, hence progressively measurable. Also it was
shown above that t → X (t) is weakly continuous into H. Therefore, the desired result
follows from Lemma 65.14.3 on Page 2265. ■

72.6 The Ito Formula
Now at long last, here is the first version of the Ito formula.

Lemma 72.6.1 In Situation 72.3.1, let D be as above, the union of all the positive mesh
points for all the Pk. Also assume X0 ∈ L2 (Ω;H) . Then for every t ∈ D,

|X (t)|2 = |X0|2 +
∫ t

0

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t

0
R
((

Z (s)◦ J−1)∗X (s)
)
◦ JdW (s) (72.6.12)

Note that it was shown above that X (t,ω) has values in H for a.e. ω .

Proof: Let t ∈ D. Then t ∈Pk for all k large enough. Consider 72.4.10,

|X (t)|2−|X0|2 = 2
∫ t

0
⟨Y (u) ,X r

k (u)⟩du
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+2
∫ t

0
R
((

Z (u)◦ J−1)∗X l
k (u)

)
◦ JdW +

qk−1

∑
j=0

∣∣M (t j+1
)
−M (t j)

∣∣2
−

qk−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2 + e(k) (72.6.13)

where tqk = t. By Lemma 72.5.1 the second term on the right, the stochastic integral,
converges to

2
∫ t

0
R
((

Z (u)◦ J−1)∗ X̄ (u)
)
◦ JdW

in probability. The first term on the right converges to

2
∫ t

0
⟨Y (u) , X̄ (u)⟩du

in L1 (Ω) because X r
k → X in K. Therefore, this also happens in probability. Consider the

next term.

E

(
qk−1

∑
j=0

∣∣M (t j+1
)
−M (t j)

∣∣2) .

It is known from the theory of the quadratic variation that this term converges in probability
to [M] (t) =

∫ t
0 ||Z (s)||2 ds. See Theorem 63.6.4 on Page 2147 and the description of the

quadratic variation in Corollary 65.11.1.
Thus all the terms in 72.6.13 converge in probability except for the last term which also

must converge in probability because it equals the sum of terms which do. It remains to
find what this last term converges to. Thus

|X (t)|2−|X0|2 = 2
∫ t

0
⟨Y (u) , X̄ (u)⟩du

+2
∫ t

0
R
((

Z (u)◦ J−1)∗X (u)
)
◦ JdW +

∫ t

0
||Z (s)||2

L2(Q1/2U,H) ds−a

where a is the limit in probability of the term

qk−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2
Let Pn be the projection onto span(e1, · · · ,en) as before where {ek} is an orthonormal basis
for H with each ek ∈V . Then using

X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)
=
∫ t j+1

t j

Y (s)ds

the troublesome term above is of the form

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X

(
t j+1

)
−X (t j)−Pn

(
M
(
t j+1

)
−M (t j)

)〉
ds (72.6.14)
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−
qk−1

∑
j=1

(
X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)
,( I−Pn)

(
M
(
t j+1

)
−M (t j)

))
(72.6.15)

The sum in 72.6.15 is dominated by(
qk−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2)1/2

·

(
qk−1

∑
j=1

∣∣( I−Pn)
(
M
(
t j+1

)
−M (t j)

)∣∣2)1/2

(72.6.16)

Now it is known that ∑
qk−1
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2 converges in proba-
bility to a. If you take the expectation of the other factor it is

E

(
qk−1

∑
j=1

∣∣∣∣( I−Pn)
∫ t j+1

t j

Z (s)dW (s)
∣∣∣∣2
)

=
qk−1

∑
j=1

E

(∣∣∣∣∫ t j+1

t j

( I−Pn)Z (s)dW (s)
∣∣∣∣2
)

=
qk−1

∑
j=1

E
(∫ t j+1

t j

||( I−Pn)Z (s)||2
L2(Q1/2U,H)

)
ds

≤ E
(∫ T

0
||( I−Pn)Z (s)||2

L2(Q1/2U,H) ds
)

=
∫

Ω

∫ T

0

∞

∑
i=n+1

(Z (s) ,ei)
2 dsdP

The integrand converges to 0 as n→∞ and is dominated by ∑
∞
i=1 (Z (s) ,ei)

2 which is given
to be in L1 ([0,T ]×Ω). Therefore, it converges to 0.

Thus the expression in 72.6.16 is of the form fkgnk where fk converges in probability
to a as k→ ∞ and gnk converges in probability to 0 as n→ ∞ independently of k. Now this
implies fkgnk converges in probability to 0. Here is why.

P([| fkgnk|> ε]) ≤ P(2δ | fk|> ε)+P(2Cδ |gnk|> ε)

≤ P(2δ | fk−a|+2δ |a|> ε)+P(2Cδ |gnk|> ε)

where δ | fk|+Cδ |gkn|> | fkgnk| and limδ→0 Cδ = ∞. Pick δ small enough that ε−2δ |a|>
ε/2. Then this is dominated by

≤ P(2δ | fk−a|> ε/2)+P(2Cδ |gnk|> ε)

Fix n large enough that the second term is less than η . Now taking k large enough, the
above is less than η . It follows the expression in 72.6.16 and consequently in 72.6.15
converges to 0 in probability.
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Now consider the other term, 72.6.14 using the n just determined. This term is of the
form

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

=
∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

where Mr
k denotes the step function

Mr
k (t) =

mk−1

∑
i=0

M (ti+1)X(ti,ti+1] (t)

and Ml
k is defined similarly. The term∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

converges to 0 for a.e. ω as k→ ∞.This is because the integrand converges to 0 thanks to
the continuity of M (t) and also since this is a projection onto a finite dimensional subspace
of V, Therefore, for each ω off a set of measure zero,∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

≤
∫ t

t1
∥Y (s)∥V ′

∥∥∥Pn

(
Mr

k (s)−Ml
k (s)

)∥∥∥
V

ds

and this last integral converges to 0 as k→ ∞ because Pn (M (s)) is uniformly bounded
in V so there is no problem getting a dominating function for the dominated convergence
theorem. Let

Ak ≡
[∣∣∣∣∫ t

t1
∥Y (s)∥V ′

∥∥∥Pn

(
Mr

k (s)−Ml
k (s)

)∥∥∥
V

ds
∣∣∣∣> ε

]
Then since the partitions are increasing, these sets are decreasing as k increases and their
intersection has measure zero. Hence P(Ak)→ 0. It follows that

lim
k→∞

P
([∣∣∣∣∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds
∣∣∣∣> ε

])
≤

lim
k→∞

P
([∣∣∣∣∫ t

t1
∥Y (s)∥V ′

∥∥∥Pn

(
Mr

k (s)−Ml
k (s)

)∥∥∥
V

ds
∣∣∣∣> ε

])
= 0

Now consider ∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)

〉
ds

This converges to 0 in L1 (Ω) because it is of the form∫ t

t1
⟨Y (s) ,X r

k (s)⟩ds−
∫ t

t1

〈
Y (s) ,X l

k (s)
〉

ds
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and both X l
k and X r

k converge to X in K. Therefore, the expression

qk−1

∑
j=1

∣∣X (t j+1
)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)∣∣2
converges to 0 in probability. ■

In fact, the formula 72.6.12 is valid for all t ∈ [0,T ] .

Theorem 72.6.2 In Situation 72.3.1, off a set of measure zero, for every t ∈ [0,T ] ,

|X (t)|2 = |X0|2 +
∫ t

0

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t

0
R
((

Z (s)◦ J−1)∗X (s)
)
◦ JdW (s) (72.6.17)

Furthermore, for t ∈ [0,T ] , t→ X (t) is continuous as a map into H for a.e. ω . In addition
to this,

E
(
|X (t)|2

)
= E

(
|X0|2

)
+E

(∫ t

0

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds
)

(72.6.18)

Proof: Let t /∈D. For t > 0, let t (k) denote the largest point of Pk which is less than t.
Suppose t (m)< t (k). Hence m≤ k. Then

X (t (m)) = X0 +
∫ t(m)

0
Y (s)ds+

∫ t(m)

0
Z (s)dW (s) ,

a similar formula holding for X (t (k)) . Thus for t > t (m) ,

X (t)−X (t (m)) =
∫ t

t(m)
Y (s)ds+

∫ t

t(m)
Z (s)dW (s)

which is the same sort of thing studied so far except that it starts at t (m) rather than at 0
and X0 = 0. Therefore, from Lemma 72.6.1 it follows

|X (t (k))−X (t (m))|2 =
∫ t(k)

t(m)

(
2⟨Y (s) ,X (s)−X (t (m))⟩+ ||Z (s)||2

)
ds

+2
∫ t(k)

t(m)
R
((

Z (s)◦ J−1)∗ (X (s)−X (t (m)))
)
◦ JdW (s) (72.6.19)

Consider that last term. It equals

2
∫ t(k)

t(m)
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s) (72.6.20)

This is dominated by

2
∣∣∣∣∫ t(k)

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s)

− 2
∫ t(m)

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s)

∣∣∣∣
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≤ 2
∣∣∣∣∫ t(k)

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s)

∣∣∣∣
+2
∣∣∣∣∫ t(m)

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s)

∣∣∣∣
≤ 4 sup

t∈[0,T ]

∣∣∣∣∫ t

0
R
((

Z (s)◦ J−1)∗(X (s)−X l
m (s)

))
◦ JdW (s)

∣∣∣∣
In Lemma 72.5.1 the above expression was shown to converge to 0 in probability. There-
fore, by the usual appeal to the Borel Canteli lemma, there is a subsequence still referred
to as {m} , such that it converges to 0 pointwise in ω for all ω off some set of measure 0
as m→ ∞. It follows there is a set of measure 0 such that for ω not in that set, 72.6.20
converges to 0 in R. Note that t > 0 is arbitrary. Similar reasoning shows the first term in
the non stochastic integral of 72.6.19 is dominated by an expression of the form

4
∫ T

0

∣∣∣〈Y (s) , X̄ (s)−X l
m (s)

〉∣∣∣ds

which clearly converges to 0 for ω not in some set of measure zero because X l
m converges

in K to X̄ . Finally, it is obvious that

lim
m→∞

∫ t(k)

t(m)
||Z (s)||2 ds = 0 for a.e. ω

due to the assumptions on Z.
This shows that for ω off a set of measure 0

lim
m,k→∞

|X (t (k))−X (t (m))|2 = 0

and so {X (t (k))}∞

k=1 is a convergent sequence in H. Does it converge to X (t)? Let ξ (t) ∈
H be what it converges to. Let v ∈V then

(ξ (t) ,v) = lim
k→∞

(X (t (k)) ,v) = lim
k→∞

⟨X (t (k)) ,v⟩= ⟨X (t) ,v⟩= (X (t) ,v)

and now, since V is dense in H, this implies ξ (t) = X (t).
Now for every t ∈ D,

|X (t)|2 = |X0|2 +
∫ t

0

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t

0
R
((

Z (s)◦ J−1)∗ X̄ (s)
)
◦ JdW (s)

and so, using what was just shown along with the obvious continuity of the functions of t
on the right of the equal sign, it follows the above holds for all t ∈ [0,T ] off a set of measure
zero.

It only remains to verify t→ X (t) is continuous with values in H. However, the above
shows t→|X (t)|2 is continuous and it was shown in Lemma 72.4.1 that t→X (t) is weakly
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continuous into H. Therefore, from the uniform convexity of the norm in H it follows
t→ X (t) is continuous.This is very easy to see in Hilbert space. Say an ⇀ a and |an|→ |a| .
From the parallelogram identity.

|an−a|2 + |an +a|2 = 2 |an|2 +2 |a|2

so
|an−a|2 = 2 |an|2 +2 |a|2−

(
|an|2 +2(an,a)+ |a|2

)
Then taking limsup both sides,

0≤ lim sup
n→∞

|an−a|2 ≤ 2 |a|2 +2 |a|2−
(
|a|2 +2(a,a)+ |a|2

)
= 0.

Of course this fact also holds in any uniformly convex Banach space.
Now consider the last claim. If the last term in 72.6.17 were a martingale, then there

would be nothing to prove. This is because if M (t) is a martingale which equals 0 when
t = 0, then

E (M (t)) = E (E (M (t) |F0)) = E (M (0)) = 0.

However, that last term is unfortunately only a local martingale. One can obtain a localizing
sequence as follows.

τn (ω)≡ inf{t : |X (t,ω)|> n}

where as usual inf( /0) ≡ ∞. This is all right because it was shown above that t → X (t,ω)
is continuous into H for a.e. ω . Then stopping both processes on the two sides of 72.6.17
with τn,

|X (t ∧ τn)|2 = |X0|2 +
∫ t∧τn

0

(
2⟨Y (s) ,X (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t∧τn

0
R
((

Z (s)◦ J−1)∗X (s)
)
◦ JdW (s)

Now from Lemma 65.10.5,

|X (t ∧ τn)|2 = |X0|2 +
∫ t

0
X[0,τn] (s)

(
2⟨Y (s) ,X (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds

+2
∫ t

0
X[0,τn] (s)R

((
Z (s)◦ J−1)∗X (s)

)
◦ JdW (s)

That last term is now a martingale and so you can take the expectation of both sides. This
gives

E
(
|X (t ∧ τn)|2

)
= E

(
|X0|2

)
+E
(∫ t

0
X[0,τn] (s)

(
2⟨Y (s) , X̄ (s)⟩+ ||Z (s)||2

L2(Q1/2U,H)

)
ds
)

Letting n→∞ and using the dominated convergence theorem and τn→∞ yields the desired
result. ■
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Notation 72.6.3 The stochastic integrals are unpleasant to look at.∫ t

0
R
((

Z (s)◦ J−1)∗X (s)
)
◦ JdW (s)

≡
∫ t

0
(X (s) ,Z (s)dW (s)) .
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Chapter 73

The Hard Ito Formula, Implicit Case
73.1 Approximating With Step Functions

This Ito formula seems to be the fundamental idea which allows one to obtain solutions to
stochastic partial differential equations using a variational point of view. I am following
the treatment found in [108]. The following lemma is fundamental to the presentation. It
approximates a function with a sequence of two step functions X r

k ,X
l
k where X r

k has the
value of X at the right end of each interval and X l

k gives the value X at the left end of the
interval. The lemma is very interesting for its own sake. You can obviously do this sort of
thing for a continuous function but here the function is not continuous and in addition, it is
a stochastic process depending on ω also. This lemma was proved earlier, Lemma 65.3.1.

Lemma 73.1.1 Let Φ : [0,T ]×Ω→V, be B ([0,T ])×F measurable and suppose

Φ ∈ K ≡ Lp ([0,T ]×Ω;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X(tk

j−1,t
k
j ]
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Φ

(
tk

j

)
,Φ
(

tk
j−1

)
is in Lp (Ω;E). One can also assume that Φ(0) = 0. The mesh

points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we

can assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j = mnk when this might not be so. In the case of the last
subinterval defined by the partition, we can assume∣∣∣tk

m− tk
m−1

∣∣∣= ∣∣∣T − tk
m−1

∣∣∣≥ 2−(nk+1)

The following lemma is convenient.

2459
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Lemma 73.1.2 Let fn→ f in Lp ([0,T ]×Ω,E) . Then there exists a subsequence nk and a
set of measure zero N such that if ω /∈ N, then

fnk (·,ω)→ f (·,ω)

in Lp ([0,T ] ,E) and for a.e. t.

Proof: We have

P
([
∥ fn− f∥Lp([0,T ],E) > λ

])
≤ 1

λ

∫
Ω

∥ fn− f∥Lp([0,T ],E) dP

≤ 1
λ
∥ fn− f∥Lp([0,T ]×Ω,E)

Hence there exists a subsequence nk such that

P
([∥∥ fnk − f

∥∥
Lp([0,T ],E) > 2−k

])
≤ 2−k

Then by the Borel Cantelli lemma, it follows that there exists a set of measure zero N such
that for all k large enough and ω /∈ N,∥∥ fnk − f

∥∥
Lp([0,T ],E) ≤ 2−k

Now by the usual arguments used in proving completeness, fnk (t)→ f (t) for a.e.t. ■
Because of this lemma, it can also be assumed that for a.e. ω, pointwise convergence

is obtained on [0,T ] as well as convergence in Lp ([0,T ]). This kind of assumption will be
tacitly made whenever convenient.

Also recall the diagram for the definition of the integral which has values in a Hilbert
space W .

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

Zn ↘ ↓ Z

W

The idea was to get
∫ t

0 ZdW where Z ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,W

))
. Here W (t) was a

cylindrical Wiener process. This meant that it was a Q1 Wiener process on U1 for Q1 = JJ∗

and J was a Hilbert Schmidt operator mapping Q1/2U to U1. To get
∫ t

0 ZdW, Z ◦ J−1 was
approximated by a sequence of elementary functions {Zn} having values in L (U1,W ) .
Then ∫ t

0
ZdW ≡ lim

n→∞

∫ t

0
ZndW

and this limit exists in L2 (Ω,W ) and is independent of the choice of U1 and J. In fact, U1
can be assumed to be U .
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73.2 The Situation
Now consider the following situation. There are real separable Banach spaces V,W such
that W is a Hilbert space and

V ⊆W, W ′ ⊆V ′

where V is dense in W . Also let B ∈L (W,W ′) satisfy

⟨Bw,w⟩ ≥ 0, ⟨Bu,v⟩= ⟨Bv,u⟩

Note that B does not need to be one to one. Also allowed is the case where B is the Riesz
map. It could also happen that V =W .

Situation 73.2.1 Let X have values in V and satisfy the following

BX (t) = BX0 +
∫ t

0
Y (s)ds+B

∫ t

0
Z (s)dW (s) , (73.2.1)

X0 ∈ L2 (Ω;W ) and is F0 measurable, where Z is L2
(
Q1/2U,W

)
progressively measurable

and
∥Z∥L2([0,T ]×Ω,L2(Q1/2U,W)) < ∞.

This is what is needed to define the stochastic integral in the above formula. Here Q is a
nonnegative self adjoint operator defined on U. It could even be I.

Assume X ,Y satisfy

BX ,Y ∈ K′ ≡ Lp′ ([0,T ]×Ω;V ′
)
,

the σ algebra of measurable sets defining K′ will be the progressively measurable sets.
Here 1/p′+1/p = 1, p > 1.

Also the sense in which the equation holds is as follows. For a.e. ω, the equation holds
in V ′ for all t ∈ [0,T ]. Thus we are considering a particular representative X of K for which
this happens. Also it is only assumed that BX (t) = B(X (t)) for a.e. t. Thus BX is the
name of a function having values in V ′ for which BX (t) = B(X (t)) for a.e. t. Assume
that X is progressively measurable also and

X ∈ Lp ([0,T ]×Ω,V )

Also W (t) is a JJ∗ Wiener process on U1 in the above diagram. U1 can be assumed to be
U.

The goal is to prove the following Ito formula valid for a.e. t for each ω off a set of
measure zero.

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (73.2.2)
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The most significant feature of the last term is that it is a local martingale. The term
⟨BZ,Z⟩L2

will be discussed later, as will the meaning of the stochastic integral.
The idea is that

(
Z ◦ J−1

)∗BX ◦ J has values in L2
(
Q1/2U,R

)
and so it makes sense

to consider this stochastic integral. To see this, BX ∈W ′ and(
Z ◦ J−1)∗ ∈L2

(
W ′,

(
JQ1/2U

)′)
and so (

Z ◦ J−1)∗BX ∈
(

JQ1/2U
)′

and so
(
Z ◦ J−1

)∗BX ◦J ∈L2
(
Q1/2U,R

)
=
(
Q1/2U

)′
. Note that in general H ′=L2 (H,R)

because if you have {ei} an orthonormal basis in H, then for f ∈ H ′,

∑
i

∣∣(R−1 f ,ei
)∣∣2 = ∑

i
|⟨ f ,ei⟩|2 = ∥ f∥2

H ′ .

The main item of interest relative to this stochastic integral will be a statement about its
quadratic variation. It appears to depend on J but this is not the case because the other
terms in the formula do not.

73.3 Preliminary Results
Here are discussed some preliminary results which will be needed. From the integral equa-
tion, if φ ∈ Lq (Ω;V ) and ψ ∈C∞

c (0,T ) for q = max(p,2) ,∫
Ω

∫ T

0

(
(BX)(t)−B

∫ t

0
Z (s)dW (s)−BX0

)
ψ
′
φdtdP

=
∫

Ω

∫ T

0

∫ t

0
Y (s)ψ

′ (t)dsφdtdP

Then the term on the right equals∫
Ω

∫ T

0

∫ T

s
Y (s)ψ

′ (t)dtdsφ (ω)dP =
∫

Ω

(
−
∫ T

0
Y (s)ψ (s)ds

)
φ (ω)dP

It follows that, since φ is arbitrary,∫ T

0

(
(BX)(t)−B

∫ t

0
Z (s)dW (s)−BX0

)
ψ
′ (t)dt =−

∫ T

0
Y (s)ψ (s)ds

in Lq′ (Ω;V ′) and so the weak time derivative of

t→ (BX)(t)−B
∫ t

0
Z (s)dW (s)−BX0

equals Y in Lq′
(
[0,T ] ;Lq′ (Ω,V ′)

)
.Thus, by Theorem 34.2.9, for a.e. t, say t /∈ N̂ ⊆

[0,T ] ,m
(
N̂
)
= 0,

B
(

X (t)−
∫ t

0
Z (s)dW (s)

)
= BX0 +

∫ t

0
Y (s)ds in Lq′ (

Ω,V ′
)
.
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That is,

(BX)(t) = BX0 +
∫ t

0
Y (s)ds+B

∫ t

0
Z (s)dW (s)

holds in Lq′ (Ω,V ′) where (BX)(t) = B(X (t)) a.e. t, in addition to holding for all t for
each ω . Now let

{
tn
k

}mn∞

k=1n=1 be partitions for which, from Lemma 73.1.1 there are left
and right step functions X l

k ,X
r
k , which converge in Lp ([0,T ]×Ω;V ) to X and such that

each
{

tn
k

}mn
k=1 has empty intersection with the set of measure zero N̂ where, in Lp′ (Ω;V ′) ,

(BX)(t) ̸= B(X (t)) in Lq′ (Ω;V ′). Thus for tk a generic partition point,

BX (tk) = B(X (tk)) in Lq′ (
Ω;V ′

)
Hence there is an exceptional set of measure zero,N (tk)⊆Ω such that for

ω /∈ N (tk) ,BX (tk)(ω) = B(X (tk,ω)) .

We define an exceptional set N ⊆Ω to be the union of all these N (tk) . There are countably
many and so N is also a set of measure zero. Then for ω /∈ N, and tk any mesh point
at all, BX (tk)(ω) = B(X (tk,ω)) . This will be important in what follows. In addition to
this, from the integral equation, for each of these ω /∈ N, BX (t)(ω) = B(X (t,ω)) for all
t /∈ Nω ⊆ [0,T ] where Nω is a set of Lebesgue measure zero. Thus the tk from the various
partitions are always in NC

ω . By Lemma 69.4.1, there exists a countable set {ei} of vectors
in V such that 〈

Bei,e j
〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=0
|⟨Bx,ei⟩|2 , Bx =

∞

∑
i=1
⟨Bx,ei⟩Bei

Thus the conclusion of the above discussion is that at the mesh points, it is valid to write

⟨(BX)(tk) ,X (tk)⟩ = ⟨B(X (tk)) ,X (tk)⟩
= ∑

i
⟨(BX)(tk) ,ei⟩2 = ∑

i
⟨B(X (tk)) ,ei⟩2

just as would be the case if (BX)(t) = B(X (t)) for every t. In all which follows, the mesh
points will be like this and an appropriate set of measure zero which may be replaced with
a larger set of measure zero finitely many times is being neglected. Obviously, one can
take a subsequence of the sequence of partitions described above without disturbing the
above observations. We will denote these partitions as Pk. As a case of this, we obtain
the following interesting lemma.

Lemma 73.3.1 In the above situation, there exists a set of measure zero N ⊆Ω and a dense
subset of [0,T ] , D such that for ω /∈ N, BX (t,ω) = B(X (t,ω)) for all t ∈ D.

Theorem 73.3.2 Let Z be progressively measurable and in

L2
(
[0,T ]×Ω,L2

(
Q1/2U,W

))
.
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Also suppose X is progressively measurable and in L2 ([0,T ]×Ω,W ). Let
{

tn
j

}mn

j=0
be a

sequence of partitions of the sort in Lemma 73.1.1 such that if

Xn (t)≡
mn−1

∑
j=0

X
(
tn

j
)
X[tn

j ,t
n
j+1)

(t)≡ X l
n (t)

then Xn→ X in Lp ([0,T ]×Ω,W ) . Also, it can be assumed that none of these mesh points
are in the exceptional set off which BX (t) = B(X (t)). (Thus it will make no difference
whether we write BX (t) or B(X (t)) in what follows for all t one of these mesh points.)
Then the expression

mn−1

∑
j=0

〈
B
∫ tn

j+1∧t

tn
j∧t

ZdW,X
(
tn

j
)〉

=
mn−1

∑
j=0

〈
BX
(
tn

j
)
,
∫ tn

j+1∧t

tn
j∧t

ZdW

〉
(73.3.3)

is a local martingale which can be written in the form∫ t

0

(
Z ◦ J−1)∗BX l

n ◦ JdW

where

X l
n (t) =

mn−1

∑
k=0

X (tn
k )X[tn

k ,t
n
k+1)

(t)

Proof: First suppose that
〈
BX
(
tn
k

)
,X
(
tn
k

)〉
∈ L∞ (Ω). Then〈

BX
(
tn

j
)
,
∫ tn

j+1∧t

tn
j∧t

ZdW

〉

is in L1 (Ω) for each t since both entries are in L2 (Ω). Why is this a martingale?

E

(〈
BX
(
tn

j
)
,
∫ tn

j+1∧t

tn
j∧t

ZdW

〉)
= E

(
E

(〈
BX
(
tn

j
)
,
∫ tn

j+1∧t

tn
j∧t

ZdW

〉
|Ftn

j

))

= E

(〈
BX
(
tn

j
)
,E

(∫ tn
j+1∧t

tn
j∧t

ZdW |Ftn
j

)〉)
= E

(〈
BX
(
tn

j
)
,0
〉)

= 0

because the stochastic integral is a martingale. Now let σ be a bounded stopping time.

E

(〈
BX
(
tn

j
)
,
∫ tn

j+1∧σ

tn
j∧σ

ZdW

〉)
= E

(
E

(〈
BX
(
tn

j
)
,
∫ tn

j+1∧σ

tn
j∧σ

ZdW

〉
|Ftn

j

))

= E

(〈
BX
(
tn

j
)
,

(
E
∫ tn

j+1∧σ

tn
j∧σ

ZdW |Ftn
j

)〉)
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= E
(〈

BX
(
tn

j
)
,E
(∫ tn

j+1∧σ

0
ZdW −

∫ tn
j∧σ

0
ZdW |Ftn

j

)〉)
= E

(〈
BX
(
tn

j
)
,0
〉)

= 0

and so this is a martingale by Lemma 63.1.1. I want to write the formula in 73.3.3 as a
stochastic integral. First note that W has values in U1.

Consider one of the terms of the sum more simply as〈
B
∫ b

a
ZdW,X (a)

〉
, a = tn

k ∧ t, b = tn
k+1∧ t.

Then from the definition of the integral, let Zn be a sequence of elementary functions con-
verging to Z ◦ J−1 in L2

(
[a,b]×Ω,L2

(
JQ1/2U,W

))
and∥∥∥∥∫ t

a
ZdW −

∫ t

a
ZndW

∥∥∥∥
L2(Ω,W )

→ 0

Using a maximal inequality and the fact that the two integrals are martingales along with the
Borel Cantelli lemma, there exists a set of measure 0 N such that for ω /∈N, the convergence
of a suitable subsequence of these integrals, still denoted by n, is uniform for t ∈ [a,b]. It
follows that for such ω,〈

B
∫ t

a
ZdW,X (a)

〉
= lim

n→∞

〈
B
∫ t

a
ZndW,X (a)

〉
. (73.3.4)

Say

Zn (u) =
mn−1

∑
k=0

Zn
k X[tn

k ,t
n
k+1)

(u)

where Zn
k has finitely many values in L (U1,W )0 , the restrictions of maps in L (U1,W ) to

JQ1/2U, and the tn
k refer to a partition of [a,b]. Then the product on the right in 73.3.4 is of

the form
mn−1

∑
k=0

〈
BZn

k
(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)
,X (a)

〉
W ′,W

Note that it makes sense because Zn
k is the restriction to J

(
Q1/2U

)
of a map from U1 to W

and so BZn
k is a map from U1 to W ′. Then the Wiener process has values in U1 so when you

apply BZn
k to W

(
t ∧ tn

k+1

)
−W

(
t ∧ tn

k

)
, you get something in W ′ and so the duality pairing

is between W ′ and W as shown. Also, Zn
k

(
W
(
t ∧ tn

k+1

)
−W

(
t ∧ tn

k

))
gives something in W

because the Wiener process has values in U1 and Zn
k acts on these things to give something

in W . Thus the above equals

=
mn−1

∑
k=0

〈
BX (a) ,Zn

k
(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)〉

W ′,W
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=
mn−1

∑
k=0

〈
(Zn

k )
∗BX (a) ,

(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)〉

U ′1,U1

=
mn−1

∑
k=0

(Zn
k )
∗BX (a)

(
W
(
t ∧ tn

k+1
)
−W (t ∧ tn

k )
)

=
∫ t

a
Z∗nBX (a)dW

Note that the restriction of (Zn)
∗BX (a) is in

L (U1,R)0 ⊆L2

(
JQ1/2U,R

)
.

Recall also that the space on the left is dense in the one on the right. Now let {gi} be an
orthonormal basis for Q1/2U, so that {Jgi} is an orthonormal basis for JQ1/2U. Then

∞

∑
i=1

∣∣∣((Zn)
∗BX (a)−

(
Z ◦ J−1)∗BX (a)

)
(Jgi)

∣∣∣2
=

∞

∑
i=1

∣∣〈BX (a) ,
(
Zn−Z ◦ J−1)(Jgi)

〉∣∣2
≤ ⟨BX (a) ,X (a)⟩

∞

∑
i=1

〈
B
(
Zn−Z ◦ J−1)(Jgi) ,

(
Zn−Z ◦ J−1)(Jgi)

〉

≤ ⟨BX (a) ,X (a)⟩∥B∥
∞

∑
i=1

∥∥(Zn−Z ◦ J−1)(Jgi)
∥∥2

W

= ⟨BX (a) ,X (a)⟩∥B∥
∥∥Zn−Z ◦ J−1∥∥2

L2(JQ1/2U,W)

When integrated over [a,b]×Ω, it is given that this converges to 0, if it is assumed that
⟨BX (a) ,X (a)⟩ ∈ L∞ (Ω) , which is assumed for now.

It follows that, with this assumption,

Z∗nBX (a)→
(
Z ◦ J−1)∗BX (a)

in L2
(
[a,b]×Ω,L2

(
JQ1/2U,R

))
. Writing this differently, it says

Z∗nBX (a)→
((

Z ◦ J−1)∗BX (a)◦ J
)
◦ J−1 in L2

(
[a,b]×Ω,L2

(
JQ1/2U,R

))
It follows from the definition of the integral that the Ito integrals converge. Therefore,〈

B
∫ t

a
ZdW,X (a)

〉
=
∫ t

a

(
Z ◦ J−1)∗BX (a)◦ JdW

The term on the right is a martingale because the one on the left is.
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Next it is necessary to drop the assumption that ⟨BX (a) ,X (a)⟩ ∈ L∞ (Ω). Note that X l
n

is right continuous and BX l
n progressively measurable. Thus,〈

BX l
n (t) ,X

l
n (t)

〉
= ∑

i

〈
BX l

n (t) ,ei

〉2

where {ei} is the set defined in Lemma 76.2.1 each in V . Thus
〈
BX l

n,X
l
n
〉

is also progres-
sively measurable and right continuous, and one can define the stopping time

σ
n
q ≡ inf

{
t :
〈

BX l
n (t) ,X

l
n (t)

〉
> q
}
, (73.3.5)

the first hitting time of an open set. Also, for each ω, there are only finitely many values
for
〈
BX l

n (t) ,X
l
n (t)

〉
and so σn

q = ∞ for all q large enough.
From localization of the stochastic integral,〈

B
∫ t∧σn

q

a∧σn
q

ZdW,X (a)

〉
=

〈
B
∫ t

a
X[0,σn

q]
ZdW,X (a)

〉
=

∫ t

a

(
X[0,σn

q]
Z ◦ J−1

)∗
BX (a)◦ JdW

=
∫ t∧σn

q

a∧σn
q

(
Z ◦ J−1)∗BX (a)◦ JdW

Then it follows that, using the stopping time,

mn−1

∑
j=0

〈
B
∫ tn

j+1∧t∧σn
q

tn
j∧t∧σn

q

ZdW,X
(
tn

j
)〉

=
∫ t∧σn

q

0

(
Z ◦ J−1)∗BX l

n ◦ JdW

where X l
n is the step function

X l
n (t) =

mn−1

∑
k=0

X (tn
k )X[tn

k ,t
n
k+1)

(t) .

Thus the given sum equals the local martingale∫ t

0

(
Z ◦ J−1)∗BX l

n ◦ JdW. ■

Note that the sum 73.3.3 does not depend on J or on U1 so the same must be true of
what it equals although it does not look that way. The question of convergence as n→∞ is
considered later.

What follows is the main estimate and discrete formulas.

73.4 The Main Estimate
The argument will be based on a formula which follows in the next lemma.
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Lemma 73.4.1 In Situation 73.2.1 the following formula holds for a.e. ω for 0 < s < t
where M (t) ≡

∫ t
0 Z (u)dW (u) which has values in W. In the following, ⟨·, ·⟩ denotes the

duality pairing between V,V ′.

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩+

+2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩

+2⟨BX (s) ,M (t)−M (s)⟩ (73.4.6)

Also for t > 0

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (t)⟩du+2⟨BX0,M (t)⟩+

⟨BM (t) ,M (t)⟩−⟨BX (t)−BX0−BM (t) ,X (t)−X0−M (t)⟩ (73.4.7)

Proof: From the formula which is assumed to hold,

BX (t) = BX0 +
∫ t

0
Y (u)du+BM (t)

BX (s) = BX0 +
∫ s

0
Y (u)du+BM (s)

Then
BM (t)−BM (s)+

∫ t

s
Y (u)du = BX (t)−BX (s)

It follows that
⟨B(M (t)−M (s)) ,M (t)−M (s)⟩−

⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩

+2⟨BX (s) ,M (t)−M (s)⟩

= ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩−⟨BX (t)−BX (s) ,X (t)−X (s)⟩
+2⟨BX (t)−BX (s) ,M (t)−M (s)⟩

−⟨B(M (t)−M (s)) ,M (t)−M (s)⟩+2⟨BX (s) ,M (t)−M (s)⟩

Some terms cancel and this yields

=−⟨BX (t)−BX (s) ,X (t)−X (s)⟩+2⟨BX (t) ,M (t)−M (s)⟩

=−⟨BX (t)−BX (s) ,X (t)−X (s)⟩+2⟨B(M (t)−M (s)) ,X (t)⟩

= −⟨B(X (t)−X (s)) ,X (t)−X (s)⟩

+2
〈

BX (t)−BX (s)−
∫ t

s
Y (u)du,X (t)

〉
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= −⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩
+2⟨BX (t) ,X (s)⟩+2⟨BX (t) ,X (t)⟩

−2⟨BX (s) ,X (t)⟩−2
∫ t

s
⟨Y (u) ,X (t)⟩du

= ⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩−2
∫ t

s
⟨Y (u) ,X (t)⟩du

Therefore,

⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= 2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩

+2⟨BX (s) ,M (t)−M (s)⟩

The case with X0 is similar. ■
The following phenomenal estimate holds and it is this estimate which is the main idea

in proving the Ito formula. The last assertion about continuity is like the well known result
that if y ∈ Lp (0,T ;V ) and y′ ∈ Lp′ (0,T ;V ′) , then y is actually continuous a.e. with values
in H, for V,H,V ′ a Gelfand triple. Later, this continuity result is strengthened further to
give strong continuity. In all of this, X l

k and X r
k are as described above, converging in K to

X .

Lemma 73.4.2 In the Situation 73.2.1, the following holds. For a.e. t

E (⟨BX (t) ,X (t)⟩)

< C
(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
< ∞. (73.4.8)

where K,K′ were defined earlier and

J = L2
(
[0,T ]×Ω;L2

(
Q1/2U ;W

))
In fact,

E

(
sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

)
≤C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
Also, C is a continuous function of its arguments, increasing in each one, and C (0,0,0,0)=
0. Thus for a.e. ω,

sup
t /∈NC

ω

⟨BX (t,ω) ,X (t,ω)⟩ ≤C (ω)< ∞.

Also for ω off a set of measure zero described earlier, t→ BX (t)(ω) is weakly continuous
with values in W ′ on [0,T ] . Also t→ ⟨BX (t) ,X (t)⟩ is lower semicontinuous on NC

ω .
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Proof: Consider the formula in Lemma 73.4.1.

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩

+2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨B(X (t)−X (s)− (M (t)−M (s))) ,X (t)−X (s)− (M (t)−M (s))⟩
+2⟨BX (s) ,M (t)−M (s)⟩ (73.4.9)

Now let t j denote a point of Pk from Lemma 73.1.1. Then for t j > 0,X (t j) is just the value
of X at t j but when t = 0, the definition of X (0) in this step function is X (0)≡ 0. Thus

m−1

∑
j=1

〈
BX
(
t j+1

)
,X
(
t j+1

)〉
−
〈
BX (t j) ,X (t j)

〉
+⟨BX (t1) ,X (t1)⟩−⟨BX0,X0⟩

= ⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩

Using the formula in Lemma 73.4.1, for t = tm this yields

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= 2
m−1

∑
j=1

∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du+

+2
m−1

∑
j=1

〈
B
∫ t j+1

t j

Z (u)dW,X (t j)

〉

+
m−1

∑
j=1

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉

−
m−1

∑
j=1

〈
B
(
X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

))
,

X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)〉
+2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2

〈
BX0,

∫ t1

0
Z (u)dW

〉
+ ⟨BM (t1) ,M (t1)⟩

−⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩ (73.4.10)

First consider

2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2

〈
BX0,

∫ t1

0
Z (u)dW

〉
+ ⟨BM (t1) ,M (t1)⟩ .
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Each term of the above converges to 0 for a.e. ω as k→ ∞ and in L1 (Ω). This follows
right away for the second two terms from the Ito isometry and continuity properties of the
stochastic integral. Consider the first term. This term is dominated by(∫ t1

0
∥Y (u)∥p′ du

)1/p′(∫ T

0
∥X r

k (u)∥
p du

)1/p

≤ C (ω)

(∫ t1

0
∥Y (u)∥p′ du

)1/p′

,

(∫
Ω

C (ω)p dP
)1/p

< ∞

Hence this converges to 0 for a.e. ω and also converges to 0 in L1 (Ω).
At this time, not much is known about the last term in 73.4.10, but it is negative and is

about to be neglected anyway.
The term involving the stochastic integral equals

2
m−1

∑
j=1

〈
B
∫ t j+1

t j

Z (u)dW,X (t j)

〉
By Theorem 73.3.2 this equals

2
∫ tm

t1

(
Z ◦ J−1)∗BX l

k ◦ JdW

Also note that since ⟨BM (t1) ,M (t1)⟩ converges to 0 in L1 (Ω) and for a.e. ω, the sum
involving 〈

B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
can be started at 0 rather than 1 at the expense of adding in a term which converges to 0
a.e. and in L1 (Ω). Thus 73.4.10 is of the form

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= e(k)+2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+

+2
∫ tm

0

(
Z ◦ J−1)∗BX l

k ◦ JdW

+
m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉

−
m−1

∑
j=1

〈
B
(
X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

))
,

X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)〉
−⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩ (73.4.11)

where e(k)→ 0 for a.e. ω and also in L1 (Ω).
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By definition, M
(
t j+1

)
−M (t j)=

∫ t j+1
t j ZdW. Now it follows, on discarding the negative

terms,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩ ≤ e(k)+2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+

+2
∫ tm

0

(
Z ◦ J−1)∗BX l

k ◦ JdW +
m−1

∑
j=0

〈
B
∫ t j+1

t j

ZdW,
∫ t j+1

t j

ZdW
〉

Therefore,

sup
tm∈Pk

⟨BX (tm) ,X (tm)⟩ ≤ ⟨BX0,X0⟩+ e(k)+2
∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du+

+2 sup
tm∈Pk

∣∣∣∣∫ tm

0

(
Z ◦ J−1)∗BX l

k ◦ JdW
∣∣∣∣

+
mk−1

∑
j=0

〈
B
(∫ t j+1

t j

Z (u)dW
)
,
∫ t j+1

t j

Z (u)dW
〉

where there are mk +1 points in Pk.
The next task is to somehow take the expectation of both sides. However, this is prob-

lematic because the stochastic integral is only a local martingale. Let

τ p = inf
{

t :
〈

BX l
k (t) ,X

l
k (t)

〉
> p
}

By right continuity this is a well defined stopping time. Then you obtain the above inequal-
ity for

(
X l

k

)τ p in place of X l
k . Take the expectation and use the Ito isometry to obtain

∫
Ω

(
sup

tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉)
dP

≤ E (⟨BX0,X0⟩)+2 ||Y ||K′ ||X
r
k ||K

+∥B∥
mk−1

∑
j=0

∫ t j+1

t j

∫
Ω

||Z (u)||2 dPdu

+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
X[0,τ p]

(
Z ◦ J−1)∗B

(
X l

k

)τ p
◦ JdW

∣∣∣∣
)

dP+E (|e(k)|)

≤C+∥B∥
∫ T

0

∫
Ω

∥Z (u)∥2 dPdu+E (|e(k)|)

+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B

(
X l

k

)τ p
◦ JdW

∣∣∣∣
)

dP≤

C+E (|e(k)|)+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B

(
X l

k

)τ p
◦ JdW

∣∣∣∣
)

dP (73.4.12)
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where the convergence of X r
k to X in K shows the term 2 ||Y ||K′

∣∣∣∣X r
k

∣∣∣∣
K is bounded. Thus

the constant C can be assumed to be a continuous function of

||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

which equals zero when all are equal to zero and is increasing in each. The term involving
the stochastic integral is next.

Let M (t) =
∫ t

0
(
Z ◦ J−1

)∗B
(
X l

k

)τ p ◦ JdW. Then thanks to Corollary 65.11.1

d [M ] =
∥∥∥(Z ◦ J−1)∗B

(
X l

k

)τ p
◦ J
∥∥∥2

ds

Applying the Burkholder Davis Gundy inequality, Theorem 63.4.4 for F (r) = r in that
stochastic integral,

2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B

(
X l

k

)τ p
◦ JdW

∣∣∣∣
)

dP

≤C
∫

Ω

(∫ T

0

∥∥∥(Z ◦ J−1)∗B
(

X l
k

)τ p
◦ J
∥∥∥2

L2(Q1/2U,R)
ds
)1/2

dP (73.4.13)

So let {gi} be an orthonormal basis for Q1/2U and consider the integrand in the above. It
equals

∞

∑
i=1

(((
Z ◦ J−1)∗B

(
X l

k

)τ p)
(J (gi))

)2
=

∞

∑
i=1

〈
B
(

X l
k

)τ p
,Z (gi)

〉2

≤
∞

∑
i=1

〈
B
(

X l
k

)τ p
,
(

X l
k

)τ p〉
⟨BZ (gi) ,Z (gi)⟩

≤

(
sup

tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉)
∥B∥∥Z∥2

L2

It follows that the integral in 73.4.13 is dominated by

C
∫

Ω

sup
tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉1/2
∥B∥1/2

(∫ T

0
∥Z∥2

L2
ds
)1/2

dP

Now return to 73.4.12. From what was just shown,

E

(
sup

tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉)

≤ C+E (|e(k)|)+2
∫

Ω

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B

(
X l

k

)τ p
◦ JdW

∣∣∣∣
)

dP

≤ C+C
∫

Ω

sup
tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉1/2
·

∥B∥1/2
(∫ T

0
∥Z∥2

L2
ds
)1/2

dP+E (|e(k)|)
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≤ C+
1
2

E

(
sup

tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉)
+C∥Z∥2

L 2([0,T ]×Ω,L2)
+E (|e(k)|) .

It follows that

1
2

E

(
sup

tm∈Pk

〈
B
(

X l
k

)τ p
(tm) ,

(
X l

k

)τ p
(tm)

〉)
≤C+E (|e(k)|)

Now let p→ ∞ and use the monotone convergence theorem to obtain

E

(
sup

tm∈Pk

〈
BX l

k (tm) ,X
l
k (tm)

〉)
= E

(
sup

tm∈Pk

⟨BX (tm) ,X (tm)⟩
)
≤C+E (|e(k)|)

(73.4.14)
As mentioned above, this constant C is a continuous function of

||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω,H)

and equals zero when all of these quantities equal 0 and is increasing with respect to each
of the above quantities. Also, for each ε > 0,

E

(
sup

tm∈Pk

⟨BX (tm) ,X (tm)⟩
)
≤C+ ε

whenever k is large enough.
Let D denote the union of all the Pk. Thus D is a dense subset of [0,T ] and it has just

been shown, since the Pk are nested, that for a constant C dependent only on the above
quantities which is independent of Pk,

E
(

sup
t∈D
⟨BX (t) ,X (t)⟩

)
≤C+ ε.

Since ε > 0 is arbitrary,

E
(

sup
t∈D
⟨BX (t) ,X (t)⟩

)
≤C (73.4.15)

Thus, enlarging N, for ω /∈ N,

sup
t∈D
⟨BX (t) ,X (t)⟩=C (ω)< ∞ (73.4.16)

where
∫

Ω
C (ω)dP < ∞. By Lemma 69.4.1, there exists a countable set {ei} of vectors in

V such that 〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=0
⟨Bx,ei⟩2 , Bx =

∞

∑
i=1
⟨Bx,ei⟩Bei
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Thus for t not in a set of measure zero off which BX (t) = B(X (t)) ,

⟨BX (t) ,X (t)⟩=
∞

∑
i=0
⟨BX (t) ,ei⟩2 = sup

m

m

∑
k=1
⟨BX (t) ,ei⟩2

Now from the formula for BX (t) , it follows that BX is continuous into V ′. For any t /∈ N̂
so that (BX)(t) = B(X (t)) in Lq′ (Ω;V ′) and letting tk → t where tk ∈ D, Fatou’s lemma
implies

E (⟨BX (t) ,X (t)⟩) = ∑
i

E
(
⟨BX (t) ,ei⟩2

)
= ∑

i
lim inf

k→∞
E
(
⟨BX (tk) ,ei⟩2

)

≤ lim inf
k→∞

∑
i

E
(
⟨BX (tk) ,ei⟩2

)
= lim inf

k→∞
E (⟨BX (tk) ,X (tk)⟩)

≤ C
(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
In addition to this, for arbitrary t ∈ [0,T ] , and tk→ t from D,

∑
i
⟨BX (t) ,ei⟩2 ≤ lim inf

k→∞
∑

i
⟨BX (tk) ,ei⟩2 ≤ sup

s∈D
⟨BX (s) ,X (s)⟩

Hence

sup
t∈[0,T ]

∑
i
⟨BX (t) ,ei⟩2 ≤ sup

s∈D
⟨BX (s) ,X (s)⟩

= sup
s∈D

∑
i
⟨BX (s) ,ei⟩2 ≤ sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

It follows that supt∈[0,T ] ∑i ⟨BX (t) ,ei⟩2 is measurable and

E

(
sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

)
≤ E

(
sup
s∈D
⟨BX (s) ,X (s)⟩

)
≤ C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
And so, for ω off a set of measure zero, supt∈[0,T ] ∑i ⟨BX (t) ,ei⟩2 is bounded above.

Also for t /∈ Nω and a given ω /∈ N, letting tk→ t for tk ∈ D,

⟨BX (t) ,X (t)⟩ = ∑
i
⟨BX (t) ,ei⟩2 ≤ lim inf

k→∞
∑

i
⟨BX (tk) ,ei⟩2

= lim inf
k→∞

⟨BX (tk) ,X (tk)⟩ ≤ sup
t∈D
⟨BX (t) ,X (t)⟩

and so
sup
t /∈Nω

⟨BX (t) ,X (t)⟩ ≤ sup
t∈D
⟨BX (t) ,X (t)⟩ ≤ sup

t /∈Nω

⟨BX (t) ,X (t)⟩
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From 73.4.16,

sup
t /∈Nω

⟨BX (t) ,X (t)⟩=C (ω) a.e.ω

where
∫

Ω
C (ω)dP < ∞. In particular, supt /∈Nω

⟨BX (t) ,X (t)⟩ is bounded for a.e. ω say for
ω /∈N where N includes the earlier sets of measure zero. This shows that BX (t) is bounded
in W ′ for t ∈ NC

ω .
If v ∈V, then for ω /∈ N,

lim
t→s
⟨BX (t) ,v⟩= ⟨BX (s) ,v⟩ , t,s

Therefore, since for such ω, ∥BX (t)∥W ′ is bounded for t /∈ Nω , the above holds for all
v ∈W also. Therefore, for a.e. ω, t → BX (t,ω) is weakly continuous with values in W ′

for t /∈ Nω .
Note also that

∥BX∥2
W ′ ≡

(
sup
∥y∥W≤1

⟨BX ,y⟩
)2

≤ sup
∥y∥≤1

(
⟨BX ,X⟩1/2 ⟨By,y⟩1/2

)2

≤ ⟨BX ,X⟩∥B∥

and so ∫ T

0

∫
Ω

∥BX (t)∥2 dPdt ≤
∫

Ω

∫ T

0
∥B∥⟨BX (t) ,X (t)⟩dtdP

≤C
(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
∥B∥T (73.4.17)

Eventually, it is shown that in fact, the function t→ BX (t,ω) is continuous with values
in W ′. The above shows that BX ∈ L2 ([0,T ]×Ω,W ′).

Finally consider the claim of weak continuity of BX into W ′. From the integral equa-
tion, BX is continuous into V ′. Also BX is bounded on NC

ω . Let s ∈ [0,T ] be arbitrary. I
claim that if tn→ s, tn ∈D, it follows that BX (tn)→ BX (s) weakly in W ′. If not, then there
is a subsequence, still denoted as tn such that BX (tn)→ Y weakly in W ′ but Y ̸= BX (s) .
However, the continuity into V ′ means that for all v ∈V,

⟨Y,v⟩= lim
n→∞
⟨BX (tn) ,v⟩= ⟨BX (s) ,v⟩

which is a contradiction since V is dense in W . This establishes the claim. Also this shows
that BX (s) is bounded in W ′.

|⟨BX (s) ,w⟩|= lim
n→∞
|⟨BX (tn) ,w⟩| ≤ lim inf

n→∞
∥BX (tn)∥W ′ ∥w∥W ≤C (ω)∥w∥W

Now a repeat of the above argument shows that s→ BX (s) is weakly continuous into W ′.
■
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73.5 A Simplification Of The Formula
This lemma also provides a way to simplify one of the formulas derived earlier in the case
that X0 ∈ Lp (Ω,V ) so that X−X0 ∈ Lp ([0,T ]×Ω,V ). Refer to 73.4.11. One term there is

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

Also,
⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

≤ 2⟨B(X (t1)−X0) ,X (t1)−X0⟩+2⟨BM (t1) ,M (t1)⟩

It was observed above that 2⟨BM (t1) ,M (t1)⟩ → 0 a.e. and also in L1 (Ω) as k→∞. Apply
the above lemma to ⟨B(X (t1)−X0) ,X (t1)−X0⟩ using [0, t1] instead of [0,T ] . The new X0
equals 0. Then from the estimate 73.4.8, it follows that

E (⟨B(X (t1)−X0) ,X (t1)−X0⟩)→ 0

as k→ ∞. Taking a subsequence, we could also assume that

⟨B(X (t1)−X0) ,X (t1)−X0⟩ → 0

a.e. ω as k→ ∞. Then, using this subsequence, it would follow from 73.4.11,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= e(k)+2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+

+2
∫ tm

0

(
Z ◦ J−1)∗BX l

k ◦ JdW

+
m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
−

m−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(73.5.18)

where e(k)→ 0 in L1 (Ω) and a.e. ω and

∆X (t j)≡ X
(
t j+1

)
−X (t j)

∆M (t j) being defined similarly. Note how this eliminated the need to consider the term

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

in passing to a limit. This is a very desirable thing to be able to conclude.
Can you obtain something similar even in case X0 is not assumed to be in Lp (Ω,V )?

Let Z0k ∈ Lp (Ω,V )∩ L2 (Ω,W ) ,Z0k → X0 in L2 (Ω,W ) . Then from the usual arguments
involving the Cauchy Schwarz inequality,

⟨B(X (t1)−X0) ,X (t1)−X0⟩1/2 ≤ ⟨B(X (t1)−Z0k) ,X (t1)−Z0k⟩1/2

+⟨B(Z0k−X0) ,Z0k−X0⟩1/2
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Also, restoring the superscript to identify the parition,

B
(

X
(

tk
1

)
−Z0k

)
= B(X0−Z0k)+

∫ tk
1

0
Y (s)ds+B

∫ tk
1

0
Z (s)dW.

Of course ∥X−Z0k∥K is not bounded, but for each k it is finite. There is a sequence of
partitions Pk,∥Pk∥ → 0 such that all the above holds. In the definitions of K,K′,J re-
place [0,T ] with [0, t] and let the resulting spaces be denoted by Kt ,K′t ,Jt . Let nk denote a
subsequence of {k} such that

∥X−Z0k∥K
t
nk
1

< 1/k.

Then from the above lemma,

E
(〈

B
(
X
(
tnk
1

)
−Z0k

)
,X
(
tnk
1

)
−Z0k

〉)
≤C

(
||Y ||K′

t
nk
1

,∥X−Z0k∥K
t
nk
1

, ||Z||J
t
nk
1

,⟨B(X0−Z0k) ,X0−Z0k⟩L1(Ω)

)

≤C

(
||Y ||K′

t
nk
1

,
1
k
, ||Z||J

t
nk
1

,⟨B(X0−Z0k) ,X0−Z0k⟩L1(Ω)

)
Hence

E
(〈

B
(
X
(
tnk
1

)
−X0

)
,X
(
tnk
1

)
−X0

〉)
≤ 2E

(〈
B
(
X
(
tnk
1

)
−Z0k

)
,X
(
tnk
1

)
−Z0k

〉)
+2E (⟨B(Z0k−X0) ,Z0k−X0⟩)

≤ 2C

(
||Y ||K′

t
nk
1

,
1
k
, ||Z||J

t
nk
1

,⟨B(X0−Z0k) ,X0−Z0k⟩L1(Ω)

)
+2∥B∥∥Z0k−X0∥2

L2(Ω,W )

which converges to 0 as k→ ∞. It follows that there exists a suitable subsequence such
that 73.5.18 holds even in the case that X0 is only known to be in L2 (Ω,W ). From now on,
assume this subsequence for the partitions Pk. Thus k will really be nk and it suffices to
consider the limit as k→ ∞ of the equation of 73.5.18. To emphasize this point again, the
reason for the above observations is to argue that, even when X0 is only in L2 (Ω,W ) , one
can neglect

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

in passing to the limit as k→ ∞ provided a suitable subsequence is used.

73.6 Convergence
The question is whether the above stochastic integral

∫ t
0
(
Z ◦ J−1

)∗BX l
n ◦JdW converges as

n→ ∞ in some sense to ∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (73.6.19)
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and whether the above is also a local martingale. Maybe it is well to pause and consider
the integral and and what it means. Z ◦ J−1 maps JQ1/2U to W and so

(
Z ◦ J−1

)∗ maps W ′

to
(
JQ1/2U

)′
. Thus

(
Z ◦ J−1)∗BX ∈

(
JQ1/2U

)′
, so

(
Z ◦ J−1)∗BX ◦ J ∈ Q1/2 (U)′ = L2

(
Q1/2U,R

)
Thus it has the right values.

Does the stochastic integral just written even make sense? The integrand is Hilbert
Schmidt and has values in R so it seems like we ought to be able to define an integral. The
problem is that the integrand is not in L2

(
[0,T ]×Ω;L2

(
Q1/2U,R

))
.

By assumption, t→ BX (t) is continuous into V ′ thanks to the integral equation solved,
and also BX (t) = B(X (t)) for t /∈ Nω a set of measure zero. For such t, it follows from
Lemma 69.4.1,

⟨BX (t) ,X (t)⟩= ∑
i
⟨BX (t) ,ei⟩2V ′,V a.e.ω

and so t → ∑i ⟨BX (t) ,ei⟩2 is lower semicontinuous and so it equals ⟨BX (t) ,X (t)⟩ for
a.e. t, this for each ω /∈ N, a single set of measure zero. Also, t → ∑i ⟨BX (t) ,ei⟩2V ′,V is
progressively measurable and lower semicontinuous in t so by Proposition 62.7.6, one can
define a stopping time

τ p ≡ inf

{
t : ∑

i
⟨BX (t) ,ei⟩2V ′,V > p

}
,τ0 ≡ 0 (73.6.20)

Instead of referring to this Proposition, you could consider

τ
m
p ≡ inf

{
t :

m

∑
i=1
⟨BX (t) ,ei⟩2V ′,V > p

}

which is clearly a stopping time because t→ ∑
m
i=1 ⟨BX (t) ,ei⟩2V ′,V is a continuous process.

Then observe that τ p = supm τm
p . Then

[τ p ≤ t] = ∪m
[
τ

m
p ≤ t

]
∈Ft .

Is it the case that τ p = ∞ for all p large enough? Yes, this follows from Lemma 73.4.2.

Lemma 73.6.1 Suppose τ p = ∞ for all p large enough off a set of measure zero, then

P
(∫ T

0

∣∣∣(Z ◦ J−1)∗BX ◦ J
∣∣∣2 dt < ∞

)
= 1

Also
∫ t

0
(
Z ◦ J−1

)∗BX ◦ JdW can be defined as a local martingale.

Proof: Let

A≡
{

ω :
∫ T

0

∣∣∣(Z ◦ J−1)∗BX ◦ J
∣∣∣2 dt = ∞

}
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Then from the assumption that τ p = ∞ for all p large enough, it follows that

A = ∪∞
m=1A∩ ([τm = ∞]\ [τm−1 < ∞])

Now

P(A∩ [τm = ∞])≤ P
(

ω :
∫ T

0
X[0,τm]

∣∣∣(Z ◦ J−1)∗BX ◦ J
∣∣∣2 dt = ∞

)
(73.6.21)

Consider the integrand. What is the meaning of
∣∣(Z ◦ J−1

)∗BX ◦ J
∣∣2? You have

(
Z ◦ J−1

)∗ ∈
L2

(
W ′,J

(
Q1/2U

)′)
while BX ∈W ′ and so

(
Z ◦ J−1

)∗BX ∈L2

(
J
(
Q1/2U

)′
,R
)

which

is just
(
J
(
Q1/2U

))′
. Thus

(
Z ◦ J−1

)∗BX ◦J would be in
(
Q1/2U

)′
and to get the L2 norm,

you would take an orthonormal basis in Q1/2U denoted as {gi} and the square of this norm
is just

∑
i

[((
Z ◦ J−1)∗BX ◦ J

)
(gi)
]2
≡ ∑

i

[(
Z ◦ J−1)∗BX (Jgi)

]2

≡ ∑
i

[
BX
(
Z ◦ J−1 (Jgi)

)]2
= ∑

i
[(BX)(Zgi)]

2

≤ ∑
i
∥BX∥2 ∥Zgi∥2

W

Now incorporating the stopping time, you know that for a.e. t,

⟨BX ,X⟩(t) = ⟨BX (t) ,X (t)⟩ ≤ m

and so ∥BX (t)∥can be estimated in terms of m as follows.

|⟨B(X (t)) ,w⟩| ≤ ⟨B(X (t)) ,X (t)⟩1/2 ∥B∥1/2 ∥w∥W

=

(
∑

i
⟨BX (t) ,ei⟩2V ′,V

)1/2

∥B∥1/2 ∥w∥W

≤
√

m∥B∥1/2 ∥w∥W , so ∥BX (t)∥ ≤ m∥B∥1/2

Thus the integrand satisfies for a.e. t

X[0,τm]

∣∣∣(Z ◦ J−1)∗BX ◦ J
∣∣∣2 ≤ m∥B∥∥Z∥2

L2

Hence, from 73.6.21, P(A∩ [τm = ∞])

≤ P
(

ω :
∫ T

0
∥Z∥2

L2
m∥B∥dt = ∞

)
However, ∫

Ω

∫ T

0
∥Z∥2

L2
m∥B∥dtdP < ∞
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by the assumptions on Z. Therefore, P(A∩ [τm = ∞]) = 0. It follows that

P(A) = ∑
m

P(A∩ ([τm = ∞]\ [τm−1 < ∞])) = ∑
m

0 = 0

It follows that P
(∫ T

0

∣∣(Z ◦ J−1
)∗BX ◦ J

∣∣2 dt < ∞

)
= 1 and so from Definition 65.10.3, one

can define
∫ t

0
(
Z ◦ J−1

)∗BX ◦ JdW as a local martingale. ■
Convergence will be shown for a subsequence and from now on every sequence will

be a subsequence of this one. As part of Lemma 73.4.2, see 73.4.17, it was shown that
BX ∈ L2 ([0,T ]×Ω,W ′). Therefore, there exist partitions of [0,T ] like the above such that

BX r
k ,BX l

k → BX in L2 ([0,T ]×Ω,W ′
)

in addition to the convergence of X l
k ,X

r
k to X in K. From now on, the argument will involve

a subsequence of these.

Lemma 73.6.2 There exists a subsequence still denoted with the subscript k and an en-
larged set of measure zero N including the earlier one such that BX l

k (t) ,BX r
k (t) also con-

verges pointwise a.e. t to BX (t) in W ′ and X l
k (t) ,X

r
k (t) converge pointwise a.e. in V to

X (t) for ω /∈ N as well as having convergence of X l
k (·,ω) to X (·,ω) in Lp ([0,T ] ;V ) and

BX l
k (·,ω) to BX (·,ω) in L2 ([0,T ] ;W ).

Proof: To see that such a sequence exists, let nk be such that∫
Ω

∫ T

0

∥∥BX r
nk
(t)−BX (t)

∥∥2
W ′

dtdP+
∫

Ω

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dtdP+

∫
Ω

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dtdP+

∫
Ω

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dtdP < 4−k.

Then

P
(∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dt +

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dt > 2−k

)
≤ 2k

(
4−k
)
= 2−k

and so by Borel Cantelli lemma, there is a set of measure zero N such that if ω /∈ N,∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dt+

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dt ≤ 2−k

for all k large enough. By the usual proof of completeness of Lp, it follows that X l
nk
(t)→

X (t) for a.e. t, this for each ω /∈ N, a similar assertion holding for X r
nk

. We denote these
subsequences as

{
X r

k

}∞

k=1 ,
{

X l
k

}∞

k=1 . ■
Now with this preparation, it is possible to show the desired convergence.
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Lemma 73.6.3 In the above context, let X (s)−X l
k (s)≡ ∆k (s) . Then the integral∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

exists as a local martingale and the following limit is valid for the subsequence of Lemma
73.6.2

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣≥ ε

])
= 0.

That is,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣
converges to 0 in probability.

Proof: In the argument τm will be defined in 73.6.20. Let

Ak ≡

{
ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣≥ ε

}
then

Ak ∩{ω : τm = ∞} ⊆

{
ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆

τm
k ◦ JdW

∣∣∣∣≥ ε

}
By Burkholder Davis Gundy inequality,

P(Ak ∩{ω : τm = ∞}) ≤ C
ε

∫
Ω

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆

τm
k ◦ JdW

∣∣∣∣dP

≤ C
ε

∫
Ω

(∫ T

0
∥Z∥2

L2

∥∥B∆
τm
k

∥∥2 dt
)1/2

dP

≤ C
ε

(∫
Ω

∫ T

0
∥Z∥2

L2

∥∥B∆
τm
k

∥∥2 dtdP
)1/2

Recall that if ⟨Bx,x⟩ ≤ m, then ∥Bx∥W ′ ≤ m1/2 ∥B∥1/2. Then the integrand is bounded for
a.e. t by ∥Z∥2

L2
4m∥B∥ . Next use the result of Lemma 73.6.2 and the dominated con-

vergence theorem to conclude that the above converges to 0 as k → ∞. Then from the
assumption that τm = ∞ for all m large enough,

P(Ak) =
∞

∑
m=1

P(Ak ∩ ([τm = ∞]\ [τm−1 < ∞]))

Now ∑m P([τm = ∞]\ [τm−1 < ∞]) = 1 and so, one can apply the dominated convergence
theorem to conclude that

lim
k→∞

P(Ak) =
∞

∑
m=1

lim
k→∞

P(Ak ∩ ([τm = ∞]\ [τm−1 < ∞])) = 0 ■
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Lemma 73.6.4 Let X be as in Situation 73.2.1 and let X l
k be as in Lemma 73.1.1 corre-

sponding to X above. Let X l
k and X r

k both converge to X in K and also

BX l
k ,BX r

k → BX in L2 ([0,T ]×Ω,W ′
)

Say

X l
k (t) =

mk

∑
j=0

X (t j)X[t j ,t j+1)
(t) , (73.6.22)

BX l
k (t) =

mk

∑
j=0

BX (t j)X[t j ,t j+1)
(t) (73.6.23)

Then the sum in 73.6.23 is progressively measurable into W ′. As mentioned earlier, we can
take X (0)≡ 0 in the definition of the “left step function”.

Proof: This follows right away from the definition of progressively measurable. ■
One can take a further subsequence such that uniform convergence of the stochastic

integral is obtained.

Lemma 73.6.5 Let X (s)−X l
k (s)≡ ∆k (s) . Then the following limit occurs.

lim
k→∞

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣≥ ε

])
= 0

The stochastic integral ∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

makes sense because BX is W ′ progressively measurable and is in L2 ([0,T ]×Ω;W ′). Also,
there exists a further subsequence, still denoted as k such that∫ t

0

(
Z ◦ J−1)∗BX l

k ◦ JdW →
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

uniformly on [0,T ] for a.e. ω .

Proof: This follows from Lemma 73.6.3. The last conclusion follows from the usual
use of the Borel Cantelli lemma. There exists a further subsequence, still denoted with
subscript k such that

P

([
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣≥ 1
k

])
< 2−k

Then by the Borel Cantelli lemma, one can enlarge the set of measure zero such that for
ω /∈ N,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B∆k ◦ JdW

∣∣∣∣< 1
k

for all k large enough. That is, the claimed uniform convergence holds. ■
From now on, the sequence will either be this subsequence or a further subsequence.
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73.7 The Ito Formula
Now at long last, here is the first version of the Ito formula valid on the partition points.

Lemma 73.7.1 In Situation 73.2.1, let D be as above, the union of all the positive mesh
points for all the Pk. Also assume X0 ∈ L2 (Ω;W ) . Then for ω /∈ N the exceptional set of
measure zero in Ω and every t ∈ D,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (73.7.24)

where, in the above formula,

⟨BZ,Z⟩L2
≡
(
R−1BZ,Z

)
L2(Q1/2U,W)

for R the Riesz map from W to W ′.

Note first that for {gi} an orthonormal basis for Q1/2 (U) ,(
R−1BZ,Z

)
L2
≡∑

i

(
R−1BZ (gi) ,Z (gi)

)
W = ∑

i
⟨BZ (gi) ,Z (gi)⟩W ′W ≥ 0

Proof: Let t ∈ D. Then t ∈Pk for all k large enough. Consider 73.5.18,

⟨BX (t) ,X (t)⟩−⟨BX0,X0⟩= e(k)+2
∫ t

0
⟨Y (u) ,X r

k (u)⟩du

+2
∫ t

0

(
Z ◦ J−1)∗BX l

k ◦ JdW +
qk−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
−

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(73.7.25)

where tqk = t, ∆X (t j) = X
(
t j+1

)
−X (t j) and e(k)→ 0 in probability. By Lemma 73.6.5

the stochastic integral on the right converges uniformly for t ∈ [0,T ] to

2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

for ω off a set of measure zero. The deterministic integral on the right converges uniformly
for t ∈ [0,T ] to

2
∫ t

0
⟨Y (u) ,X (u)⟩du

thanks to Lemma 73.6.2.∣∣∣∣∫ t

0
⟨Y (u) ,X (u)⟩du−

∫ t

0
⟨Y (u) ,X r

k (u)⟩du
∣∣∣∣ ≤ ∫ T

0
∥Y (u)∥V ′ ∥X (u)−X r

k (u)∥V

≤ ∥Y∥Lp′ ([0,T ]) 2−k
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for all k large enough. Consider the fourth term. It equals

qk−1

∑
j=0

(
R−1B

(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

)
W (73.7.26)

where R−1 is the Riesz map from W to W ′. This equals

1
4

(
qk−1

∑
j=0

∥∥R−1BM
(
t j+1

)
+M

(
t j+1

)
−
(
R−1BM (t j)+M (t j)

)∥∥2

−
qk−1

∑
j=0

∥∥R−1BM
(
t j+1

)
−M

(
t j+1

)
−
(
R−1BM (t j)−M (t j)

)∥∥2
)

From Theorem 63.6.4, as k→ ∞, the above converges in probability to (tqk = t)

1
4
([

R−1BM+M
]
(t)−

[
R−1BM−M

]
(t)
)

However, from the description of the quadratic variation of M, the above equals

1
4

(∫ t

0

∥∥R−1BZ +Z
∥∥2

L2
ds−

∫ t

0

∥∥R−1BZ−Z
∥∥2

L2
ds
)

which equals ∫ t

0

(
R−1BZ,Z

)
L2

ds≡
∫ t

0
⟨BZ,Z⟩L2

ds

This is what was desired.
Note that in the case of a Gelfand triple, when W = H = H ′, the term ⟨BZ,Z⟩L2

will
end up reducing to nothing more than ∥Z∥2

L2
.

Thus all the terms in 73.7.25 converge in probability except for the last term which also
must converge in probability because it equals the sum of terms which do. It remains to
find what this last term converges to. Thus

⟨BX (t) ,X (t)⟩−⟨BX0,X0⟩= 2
∫ t

0
⟨Y (u) ,X (u)⟩du

+2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW +

∫ t

0
⟨BZ,Z⟩L2

ds−a

where a is the limit in probability of the term

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(73.7.27)

Let Pn be the projection onto span(e1, · · · ,en) where {ek} is an orthonormal basis for W
with each ek ∈V . Then using

BX
(
t j+1

)
−BX (t j)−

(
BM

(
t j+1

)
−BM (t j)

)
=
∫ t j+1

t j

Y (s)ds
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the troublesome term of 73.7.27 above is of the form
qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,∆X (t j)−∆M (t j)

〉
ds

=
qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,∆X (t j)−Pn∆M (t j)

〉
ds

+
qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,−(I−Pn)∆M (t j)

〉
ds

which equals

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X

(
t j+1

)
−X (t j)−Pn

(
M
(
t j+1

)
−M (t j)

)〉
ds (73.7.28)

+
qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,−( I−Pn)

(
M
(
t j+1

)
−M (t j)

)〉
(73.7.29)

The reason for the Pn is to get Pn
(
M
(
t j+1

)
−M (t j)

)
in V . The sum in 73.7.29 is dominated

by (
qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))

〉)1/2

·

(
qk−1

∑
j=1

∣∣〈B( I−Pn)∆M (t j) ,( I−Pn)∆M (t j)
〉∣∣2)1/2

(73.7.30)

Now it is known from the above that ∑
qk−1
j=1

〈
B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))

〉
converges in probability to a ≥ 0. If you take the expectation of the square of the other
factor, it is no larger than

∥B∥E

(
qk−1

∑
j=1

∥∥( I−Pn)∆M (t j)
∥∥2

W

)

= ∥B∥E

(
qk−1

∑
j=1

∥∥∥∥( I−Pn)
∫ t j+1

t j

Z (s)dW (s)
∥∥∥∥2

W

)

= ∥B∥
qk−1

∑
j=1

E

(∥∥∥∥∫ t j+1

t j

( I−Pn)Z (s)dW (s)
∥∥∥∥2
)

= ∥B∥
qk−1

∑
j=1

E
(∫ t j+1

t j

∥( I−Pn)Z (s)∥2
L2(Q1/2U,W) ds

)
≤ ∥B∥E

(∫ T

0
∥( I−Pn)Z (s)∥2

L2(Q1/2U,H) ds
)
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Now letting {gi} be an orthonormal basis for Q1/2U,

= ∥B∥
∫

Ω

∫ T

0

∞

∑
i=1
∥( I−Pn)Z (s)(gi)∥2

W dsdP (73.7.31)

The integrand ∑
∞
i=1 ∥( I−Pn)Z (s)(gi)∥2

W converges to 0. Also, it is dominated by

∞

∑
i=1
∥Z (s)(gi)∥2

W ≡ ∥Z∥
2
L2(Q1/2U,W)

which is given to be in L1 ([0,T ]×Ω) . Therefore, from the dominated convergence theo-
rem, the expression in 73.7.31 converges to 0 as n→ ∞.

Thus the expression in 73.7.30 is of the form fkgnk where fk converges in probability
to a1/2 as k→ ∞ and gnk converges in probability to 0 as n→ ∞ independently of k. Now
this implies fkgnk converges in probability to 0. Here is why.

P([| fkgnk|> ε]) ≤ P(2δ | fk|> ε)+P(2Cδ |gnk|> ε)

≤ P
(

2δ

∣∣∣ fk−a1/2
∣∣∣+2δ

∣∣∣a1/2
∣∣∣> ε

)
+P(2Cδ |gnk|> ε)

where δ | fk|+Cδ |gkn|> | fkgnk| and limδ→0 Cδ =∞. Pick δ small enough that ε−2δa1/2 >
ε/2. Then this is dominated by

≤ P
(

2δ

∣∣∣ fk−a1/2
∣∣∣> ε/2

)
+P(2Cδ |gnk|> ε)

Fix n large enough that the second term is less than η for all k. Now taking k large enough,
the above is less than η . It follows the expression in 73.7.30 and consequently in 73.7.29
converges to 0 in probability.

Now consider the other term 73.7.28 using the n just determined. This term is of the
form

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X

(
t j+1

)
−X (t j)−Pn

(
M
(
t j+1

)
−M (t j)

)〉
ds =

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

=
∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

where Mr
k denotes the step function

Mr
k (t) =

mk−1

∑
i=0

M (ti+1)X(ti,ti+1] (t)

and Ml
k is defined similarly. The term∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds
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converges to 0 for a.e. ω as k→ ∞ thanks to continuity of t → M (t). However, more is
needed than this. Define the stopping time

τ p = inf{t > 0 : ∥M (t)∥W > p} .

Then τ p = ∞ for all p large enough, this for a.e. ω. Let

Ak =

[∣∣∣∣∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds
∣∣∣∣> ε

]

P(Ak) =
∞

∑
p=0

P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞])) (73.7.32)

Now
P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞]))≤ P(Ak ∩ ([τ p = ∞]))

≤ P
([∣∣∣∣∫ t

t1

〈
Y (s) ,Pn

(
(Mτ p)r

k (s)− (Mτ p)l
k (s)

)〉
ds
∣∣∣∣> ε

])
This is so because if τ p = ∞, then it has no effect but also it could happen that the defin-
ing inequality may hold even if τ p < ∞ hence the inequality. This is no larger than an
expression of the form

Cn

ε

∫
Ω

∫ T

0
∥Y (s)∥V ′

∥∥∥(Mτ p)r
k (s)− (Mτ p)l

k (s)
∥∥∥

W
dsdP (73.7.33)

The inside integral converges to 0 by continuity of M. Also, thanks to the stopping time,
the inside integral is dominated by an expression of the form∫ T

0
∥Y (s)∥V ′ 2pds

and this is a function in L1 (Ω) by assumption on Y . It follows that the integral in 73.7.33
converges to 0 as k→ ∞ by the dominated convergence theorem. Hence

lim
k→∞

P(Ak ∩ ([τ p = ∞])) = 0.

Since the sets [τ p = ∞] \ [τ p−1 < ∞] are disjoint, the sum of their probabilities is finite.
Hence there is a dominating function in 73.7.32 and so, by the dominated convergence
theorem applied to the sum,

lim
k→∞

P(Ak) =
∞

∑
p=0

lim
k→∞

P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞])) = 0

Thus
∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds converges to 0 in probability as k→ ∞.

Now consider∣∣∣∣∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)

〉
ds
∣∣∣∣ ≤ ∫ T

0
|⟨Y (s) ,X r

k (s)−X (s)⟩|ds

+
∫ T

0

∣∣∣〈Y (s) ,X l
k (s)−X (s)

〉∣∣∣ds
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≤ 2∥Y (·,ω)∥Lp′ (0,T ) 2−k

for all k large enough, this by Lemma 73.6.2. Therefore,

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
converges to 0 in probability. This establishes the desired formula for t ∈ D. ■

In fact, the formula 73.7.24 is valid for all t ∈ NC
ω .

Theorem 73.7.2 In Situation 73.2.1, for ω off a set of measure zero, for every t /∈ Nω ,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (73.7.34)

Also, there exists a unique continuous, progressively measurable function ⟨BX ,X⟩ such that
it equals ⟨BX (t) ,X (t)⟩ for a.e. t and ⟨BX ,X⟩(t) equals the right side of the above for all
t. In addition to this,

E (⟨BX ,X⟩(t)) =

E (⟨BX0,X0⟩)+E
(∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds
)

(73.7.35)

Also the quadratic variation of the stochastic integral in 73.7.34 is dominated by

C
∫ t

0
∥Z∥2

L2
∥BX∥2

W ′ ds (73.7.36)

for a suitable constant C. Also t→ BX (t) is continuous with values in W ′ for t ∈ NC
ω .

Proof: Let t ∈ NC
ω \D. For t > 0, let t (k) denote the largest point of Pk which is less

than t. Suppose t (m)< t (k). Hence m≤ k. Then

BX (t (m)) = BX0 +
∫ t(m)

0
Y (s)ds+B

∫ t(m)

0
Z (s)dW (s) ,

a similar formula holding for X (t (k)) . Thus for t > t (m) , t /∈ Nω ,

B(X (t)−X (t (m))) =
∫ t

t(m)
Y (s)ds+B

∫ t

t(m)
Z (s)dW (s)

which is the same sort of thing studied so far except that it starts at t (m) rather than at 0
and BX0 = 0. Therefore, from Lemma 73.7.1 it follows

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩

=
∫ t(k)

t(m)

(
2⟨Y (s) ,X (s)−X (t (m))⟩+ ⟨BZ,Z⟩L2

)
ds
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+2
∫ t(k)

t(m)

(
Z ◦ J−1)∗B(X (s)−X (t (m)))◦ JdW (73.7.37)

Consider that last term. It equals

2
∫ t(k)

t(m)

(
Z ◦ J−1)∗B

(
X (s)−X l

m (s)
)
◦ JdW (73.7.38)

This is dominated by

2
∣∣∣∣∫ t(k)

0

(
Z ◦ J−1)∗B

(
X (s)−X l

m (s)
)
◦ JdW

−
∫ t(m)

0

(
Z ◦ J−1)∗B

(
X (s)−X l

m (s)
)
◦ JdW

∣∣∣∣
≤ 4 sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1)∗B

(
X (s)−X l

m (s)
)
◦ JdW

∣∣∣∣
In Lemma 73.6.5 the above expression was shown to converge to 0 in probability. There-
fore, by the usual appeal to the Borel Canteli lemma, there is a subsequence still referred
to as {m} , such that it converges to 0 pointwise in ω for all ω off some set of measure 0 as
m→ ∞. It follows there is a set of measure 0 including the earlier one such that for ω not
in that set, 73.7.38 converges to 0 in R. Similar reasoning shows the first term on the right
in the non stochastic integral of 73.7.37 is dominated by an expression of the form

4
∫ T

0

∣∣∣〈Y (s) ,X (s)−X l
m (s)

〉∣∣∣ds

which clearly converges to 0 thanks to Lemma 73.6.2. Finally, it is obvious that

lim
m→∞

∫ t(k)

t(m)
⟨BZ,Z⟩L2

ds = 0 for a.e. ω

due to the assumptions on Z. For {gi} an orthonormal basis of Q1/2 (U) ,

⟨BZ,Z⟩L2
≡ ∑

i

(
R−1BZ (gi) ,Z (gi)

)
= ∑

i
⟨BZ (gi) ,Z (gi)⟩

≤ ∥B∥∑
i
∥Z (gi)∥2

W ∈ L1 (0,T ) a.e.

This shows that for ω off a set of measure 0

lim
m,k→∞

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩= 0

Then for x ∈W,

|⟨B(X (t (k))−X (t (m))) ,x⟩|
≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ⟨Bx,x⟩1/2

≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ∥B∥1/2 ∥x∥W
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and so
lim

m,k→∞

∥BX (t (k))−BX (t (m))∥W ′ = 0

Recall t was arbitrary in NC
ω and {t (k)} is a sequence converging to t. Then the above has

shown that {BX (t (k))}∞

k=1 is a convergent sequence in W ′. Does it converge to BX (t)? Let
ξ (t) ∈W ′ be what it converges to. Letting v ∈ V then, since the integral equation shows
that t→ BX (t) is continuous into V ′,

⟨ξ (t) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= ⟨BX (t) ,v⟩ ,

and now, since V is dense in W, this implies ξ (t) = BX (t) = B(X (t)). Recall also that it
was shown earlier that BX is weakly continuous into W ′ hence the strong convergence of
{BX (t (k))}∞

k=1 in W ′ implies that it converges to BX (t), this for any t ∈ NC
ω .

For every t ∈ D and for ω off the exceptional set of measure zero described earlier,

⟨B(X (t)) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

ds
)

ds

+2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (73.7.39)

Does this formula hold for all t ∈ [0,T ]? Maybe not. However, it will hold for t /∈ Nω . So
let t /∈ Nω .

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

≤ |⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t (k))⟩|
+ |⟨BX (t) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

= |⟨B(X (t (k))−X (t)) ,X (t (k))⟩|+ |⟨B(X (t (k))−X (t)) ,X (t)⟩|

Then using the Cauchy Schwarz inequality on each term,

≤ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2

·
(
⟨BX (t (k)) ,X (t (k))⟩1/2 + ⟨BX (t) ,X (t)⟩1/2

)
As before, one can use the lower semicontinuity of

t→ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩

on NC
ω along with the boundedness of ⟨BX (t) ,X (t)⟩ also shown earlier off Nω to conclude

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|
≤ C ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2

≤C lim inf
m→∞
⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 < ε
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provided k is sufficiently large. Since ε is arbitrary,

lim
k→∞

⟨BX (t (k)) ,X (t (k))⟩= ⟨BX (t) ,X (t)⟩ .

It follows that the formula 73.7.39 is valid for all t /∈Nω . Now define the function ⟨BX ,X⟩(t)
as

⟨BX ,X⟩(t)≡
{

⟨B(X (t)) ,X (t)⟩ , t /∈ Nω

The right side of 73.7.39 if t ∈ Nω

Then in short, ⟨BX ,X⟩(t) equals the right side of 73.7.39 for all t ∈ [0,T ] and is conse-
quently progressively measurable and continuous. Furthermore, for a.e. t, this function
equals ⟨B(X (t)) ,X (t)⟩. Since it is known on a dense subset, it must be unique.

This implies that t → BX (t) is continuous with values in W ′ for t /∈ Nω . Here is why.
The fact that the formula 73.7.39 holds for all t /∈ Nω implies that t → ⟨BX (t) ,X (t)⟩ is
continuous on NC

ω . Then for x ∈W,

|⟨BX (t)−BX (s) ,x⟩| ≤ ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2 ∥B∥1/2 ∥x∥W . (73.7.40)

Also

⟨B(X (t)−X (s)) ,X (t)−X (s)⟩
= ⟨BX (t) ,X (t)⟩+ ⟨BX (s) ,X (s)⟩−2⟨BX (t) ,X (s)⟩

By weak continuity of t→ BX (t) shown earlier,

lim
t→s
⟨BX (t) ,X (s)⟩= ⟨BX (s) ,X (s)⟩ .

Therefore,
lim
t→s
⟨B(X (t)−X (s)) ,X (t)−X (s)⟩= 0

and so the inequality 73.7.40 implies the continuity of t→ BX (t) into W ′ for t /∈ Nω . Note
that by assumption this function is continuous into V ′ for all t. It was also shown that it is
weakly continuous into W ′ on [0,T ] and hence it is bounded in W ′.

Now consider the claim about the expectation. Since the stochastic integral

2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

is only a local martingale, it is necessary to employ a stopping time. We use the function
⟨BX ,X⟩ to define this stopping time as

τ p ≡ inf{t > 0 : ⟨BX ,X⟩(t)> p}

This is the first hitting time of a continuous process and so it is a valid stopping time. Using
this, leads to

⟨BX ,X⟩τ p (t) = ⟨BX0,X0⟩+
∫ t

0
X[0,τ p] (s)

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

ds
)

ds



73.7. THE ITO FORMULA 2493

+2
∫ t

0
X[0,τ p] (s)

(
Z ◦ J−1)∗BXτ p ◦ JdW (73.7.41)

By continuity of ⟨BX ,X⟩ ,τ p = ∞ for all p large enough. Take expectation of both sides
of the above. In the integrand of the last term, BX refers to the function BX (t,ω) ≡
B(X (t,ω)) and so it is progressively measurable because X is assumed to be so. Hence
BXτ p is also progressively measurable and for a.e. Also, for a.e. s,

∥∥BX (s∧ τ p)
∥∥

W ′ ≤√
p
√
∥B∥. Therefore, one can take expectations and get

E
(
⟨BX ,X⟩τ p (t)

)
= E (⟨BX0,X0⟩)

+E
(∫ t

0
X[0,τ p] (s)

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

ds
)

ds
)

Now let p→ ∞ and use the monotone convergence theorem on the left and the dominated
convergence theorem on the right to obtain the desired result 73.7.35. The claim about the
quadratic variation follows from Corollary 65.11.1. ■
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Chapter 74

A More Attractive Version
The following lemma is convenient.

Lemma 74.0.1 Let fn→ f in Lp ([0,T ]×Ω,E) . Then there exists a subsequence nk and a
set of measure zero N such that if ω /∈ N, then

fnk (·,ω)→ f (·,ω)

in Lp ([0,T ] ,E) and for a.e. t.

Proof: We have

P
([
∥ fn− f∥Lp([0,T ],E) > λ

])
≤ 1

λ

∫
Ω

∥ fn− f∥Lp([0,T ],E) dP

≤ 1
λ
∥ fn− f∥Lp([0,T ]×Ω,E)

Hence there exists a subsequence nk such that

P
([∥∥ fnk − f

∥∥
Lp([0,T ],E) > 2−k

])
≤ 2−k

Then by the Borel Cantelli lemma, it follows that there exists a set of measure zero N such
that for all k large enough and ω /∈ N,∥∥ fnk − f

∥∥
Lp([0,T ],E) ≤ 2−k

Now by the usual arguments used in proving completeness, fnk (t)→ f (t) for a.e.t. ■
Also, we have the approximation lemma proved earlier, Lemma 65.3.1.

Lemma 74.0.2 Let Φ : [0,T ]×Ω→V, be B ([0,T ])×F measurable and suppose

Φ ∈ K ≡ Lp ([0,T ]×Ω;E) , p≥ 1

Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

Φ
r
k (t) ≡

mk

∑
j=1

Φ

(
tk

j

)
X(tk

j−1,t
k
j ]
(t)

Φ
l
k (t) ≡

mk

∑
j=1

Φ

(
tk

j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to Φ in K as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

2495
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Also, each Φ

(
tk

j

)
,Φ
(

tk
j−1

)
is in Lp (Ω;E). One can also assume that Φ(0) = 0. The mesh

points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero. In addition to this, we

can assume that ∣∣∣tk
j − tk

j−1

∣∣∣= 2−nk

except for the case where j = 1 or j = mnk when this might not be so. In the case of the last
subinterval defined by the partition, we can assume∣∣∣tk

m− tk
m−1

∣∣∣= ∣∣∣T − tk
m−1

∣∣∣≥ 2−(nk+1)

74.1 The Situation
Now consider the following situation. There are real separable Banach spaces V,W such
that W is a Hilbert space and

V ⊆W, W ′ ⊆V ′

where V is dense in W . Also let B ∈L (W,W ′) satisfy

⟨Bw,w⟩ ≥ 0, ⟨Bu,v⟩= ⟨Bv,u⟩

Note that B does not need to be one to one. Also allowed is the case where B is the
Riesz map. It could also happen that V = W . Assume that B = B(ω) where B is F0
measurable into L (W,W ′). This dependence on ω will be suppressed in the interest of
simpler notation. For convenience, assume ∥B(ω)∥ is bounded. This is assumed mainly
so that an estimate can be made on ⟨BX0,X0⟩ for X0 given in L2 (Ω) . It probably suffices to
simply give an estimate on ∥⟨BX0,X0⟩∥L1(Ω) along with something else on the Ito integral.
However, it seems at this time like this is more trouble than it is worth.

Situation 74.1.1 Let X have values in V and satisfy the following

BX (t) = BX0 +
∫ t

0
Y (s)ds+BM (t) , (74.1.1)

X0 ∈ L2 (Ω;W ) and is F0 measurable. Here M (t) is a continuous L2 martingale having
values in W. By this is meant that limt→0+ ∥M (t)∥L2(Ω) = 0 and for each ω, limt→0+ M (t)=

0, ∥M∥2
W ∈ L2 ([0,T ]×Ω) . Assume that d [M] = kdm for k ∈ L1 ([0,T ]×Ω), that is, the

measure determined by the quadratic variation for the martingale is absolutely continuous
with respect to Lebesgue measure as just described.

Assume Y satisfies
Y ∈ K′ ≡ Lp′ ([0,T ]×Ω;V ′

)
,

the σ algebra of measurable sets defining K′ will be the progressively measurable sets.
Here 1/p′+1/p = 1, p > 1.

Also the sense in which the equation holds is as follows. For a.e. ω, the equation holds
in V ′ for all t ∈ [0,T ]. Thus we are considering a particular representative X for which this
happens. Also it is only assumed that BX (t) = B(X (t)) for a.e. t. Thus BX is the name
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of a function having values in V ′ for which BX (t) = B(X (t)) for a.e. t. Assume that X is
progressively measurable also and X ∈ Lp ([0,T ]×Ω,V ).

The goal is to prove the following Ito formula valid for a.e. t for each ω off a set of
measure zero.

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0
(2⟨Y (s) ,X (s)⟩)ds

+
[
R−1BM,M

]
(t)+2

∫ t

0
⟨BX ,dM⟩ (74.1.2)

where R is the Riesz map from W to W ′. The most significant feature of the last term is that
it is a local martingale. The third term on the right is the covariation of the two martingales
R−1BM and M. It will follow from the argument that this will be nonnegative.

Note that the assumptions on M imply that [M] ∈ L1 ([0,T ]×Ω).

74.2 Preliminary Results
Here are discussed some preliminary results which will be needed. From the integral equa-
tion, if φ ∈ Lq (Ω;V ) and ψ ∈C∞

c (0,T ) for q = max(p,2) ,∫
Ω

∫ T

0
((BX)(t)−BM (t)−BX0)ψ

′
φdtdP

=
∫

Ω

∫ T

0

∫ t

0
Y (s)ψ

′ (t)dsφdtdP

Then the term on the right equals∫
Ω

∫ T

0

∫ T

s
Y (s)ψ

′ (t)dtdsφ (ω)dP =
∫

Ω

(
−
∫ T

0
Y (s)ψ (s)ds

)
φ (ω)dP

It follows that, since φ is arbitrary,∫ T

0
((BX)(t)−BM (t)−BX0)ψ

′ (t)dt =−
∫ T

0
Y (s)ψ (s)ds

in Lq′ (Ω;V ′) and so the weak time derivative of

t→ (BX)(t)−BM (t)−BX0

equals Y in Lq′
(
[0,T ] ;Lq′ (Ω,V ′)

)
.Thus, by Theorem 34.2.9, for a.e. t,

B(X (t)−M (t)) = BX0 +
∫ t

0
Y (s)ds in Lq′ (

Ω,V ′
)
.

That is,

(BX)(t) = BX0 +
∫ t

0
Y (s)ds+BM (t) , t /∈ N̂, m

(
N̂
)
= 0
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holds in Lq′ (Ω,V ′) where (BX)(t) = B(X (t)) a.e. t in this space, for all t /∈ N̂, a set of
Lebesgue measure zero, in addition to holding for all t for each ω . Now let

{
tn
k

}mn∞

k=1n=1
be partitions for which, from Lemma 74.0.2 there are left and right step functions X l

k ,X
r
k ,

which converge in Lp ([0,T ]×Ω;V ) to X and such that each
{

tn
k

}mn
k=1 has empty intersection

with the set of measure zero N̂ where, in Lq′ (Ω;V ′) , (BX)(t) ̸= B(X (t)) in Lq′ (Ω;V ′).
Thus for tk a generic partition point,

BX (tk) = B(X (tk)) in Lq′ (
Ω;V ′

)
Hence there is an exceptional set of measure zero,N (tk)⊆Ω such that for

ω /∈ N (tk) ,BX (tk)(ω) = B(X (tk,ω)) .

Define an exceptional set N ⊆ Ω to be the union of all these N (tk) . There are countably
many and so N is also a set of measure zero. Then for ω /∈ N, and tk any mesh point
at all, BX (tk)(ω) = B(X (tk,ω)) . This will be important in what follows. In addition to
this, from the integral equation, for each of these ω /∈ N, BX (t)(ω) = B(X (t,ω)) for all
t /∈ Nω ⊆ [0,T ] where Nω is a set of Lebesgue measure zero. Thus the tk from the various
partitions are always in Nω . By Lemma 69.4.1, there exists a countable set {ei} of vectors
in V such that 〈

Bei,e j
〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=0
|⟨Bx,ei⟩|2 , Bx =

∞

∑
i=1
⟨Bx,ei⟩Bei

By this lemma, if B = B(ω) where B is F0 measurable into L (W,W ′) , then the ei are
also F0 measurable into V . Thus the conclusion of the above discussion is that at the mesh
points, it is valid to write

⟨(BX)(tk) ,X (tk)⟩ = ⟨B(X (tk)) ,X (tk)⟩
= ∑

i
⟨(BX)(tk) ,ei⟩2 = ∑

i
⟨B(X (tk)) ,ei⟩2

just as would be the case if (BX)(t) = B(X (t)) for every t. In all which follows, the mesh
points will be like this and an appropriate set of measure zero which may be replaced with
a larger set of measure zero finitely many times is being neglected. Obviously, one can
take a subsequence of the sequence of partitions described above without disturbing the
above observations. We will denote these partitions as Pk. Thus we obtain the following
interesting lemma.

Lemma 74.2.1 In the above situation, there exists a set of measure zero N ⊆ Ω and a
dense subset of [0,T ] , D such that for ω /∈ N, BX (t,ω) = B(X (t,ω)) for all t ∈ D. This

set D is the union of nested paritions {Pk}=
{

tk
j

}mk∞

j=1,k=1
such that the left and right step

functions
{

X l
k

}
,
{

X r
k

}
converge to X in Lp ([0,T ]×Ω;V ). There is also a set of Lebesgue



74.2. PRELIMINARY RESULTS 2499

measure zero N̂ ⊆ [0,T ] such that BX (t) = B(X (t)) in Lq′ (Ω;V ′) for all t /∈ N̂. Thus for
such t,BX (t)(ω) = B(X (t,ω)) for a.e.ω . In particular, for such t /∈ N̂,

⟨BX (t)(ω) ,X (t,ω)⟩= ∑
i
⟨B(X (t)) ,ei⟩2 a.e.ω.

D has empty intersection with N̂. There is also a set of Lebesgue measure zero Nω for each
ω /∈ N defined by BX (t,ω) = B(X (t,ω)) for all t /∈ Nω .

Now define a stopping time.

σ
n
q ≡ inf

{
t :
〈

BX l
n (t) ,X

l
n (t)

〉
> q
}
, (74.2.3)

Thus this pertains to the nth partition. Since X l
n is right continuous, this will be a well

defined stopping time. Thus, for t one of the partition points,〈
BXσn

q (t,ω) ,Xσn
q (t,ω)

〉
≤ q (74.2.4)

From the definition of X l
n and the observation that these partitions are nested,

lim
n→∞

σ
n
q ≡ σq

exists because this is a decreasing sequence. There are more available times to consider as
n gets larger and so when the inf is taken, it can only get smaller. Thus

[σq ≤ t] = ∩∞
m=1∪∞

k=1∩n≥k

[
σ

n
q ≤ t +

1
m

]
∈ ∩∞

m=1Ft+(1/m) = Ft

since it is assumed that the filtration is normal. Thus this appears to be a stopping time.
However, I don’t know how to use this.

Theorem 74.2.2 Let
{

tn
j

}mn

j=0
be the above sequence of partitions of the sort in Lemma

74.0.2 such that if

X l
n (t)≡

mn−1

∑
j=0

X
(
tn

j
)
X[tn

j ,t
n
j+1)

(t)

then Xn→ X in Lp ([0,T ]×Ω,V ) with the other conditions holding which were discussed
above. In particular, BX (t) = B(X (t)) for t one of these mesh points. Then the expression

mn−1

∑
j=0

〈
B
(
M
(
tn

j+1∧ t
)
−M

(
tn

j ∧ t
))

,X
(
tn

j
)〉

=
mn−1

∑
j=0

〈
BX
(
tn

j
)
,
(
M
(
tn

j+1∧ t
)
−M

(
tn

j ∧ t
))〉

(74.2.5)

is a local martingale ∫ t

0

〈
BX l

k ,dM
〉

with
{

σn
q
}∞

q=1 being a localizing sequence.
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Proof: This follows from Lemma 66.0.20. This can be seen because, thanks to the fact

that BX
lσ k

q
k is bounded, the function BX l

k is in the set G described there. This is a place
where we use that d [M] = kdt. ■

74.3 The Main Estimate
The argument will be based on a formula which follows in the next lemma.

Lemma 74.3.1 In Situation 74.1.1 the following formula holds for a.e. ω for 0 < s < t. In
the following, ⟨·, ·⟩ denotes the duality pairing between V,V ′.

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩+

+2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩

+2⟨BX (s) ,M (t)−M (s)⟩ (74.3.6)

Also for t > 0

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+2
∫ t

0
⟨Y (u) ,X (t)⟩du+2⟨BX0,M (t)⟩+

⟨BM (t) ,M (t)⟩−⟨BX (t)−BX0−BM (t) ,X (t)−X0−M (t)⟩ (74.3.7)

Proof: From the formula which is assumed to hold,

BX (t) = BX0 +
∫ t

0
Y (u)du+BM (t)

BX (s) = BX0 +
∫ s

0
Y (u)du+BM (s)

Then

BM (t)−BM (s)+
∫ t

s
Y (u)du = BX (t)−BX (s)

It follows that
⟨B(M (t)−M (s)) ,M (t)−M (s)⟩−

⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩

+2⟨BX (s) ,M (t)−M (s)⟩

= ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩−⟨BX (t)−BX (s) ,X (t)−X (s)⟩
+2⟨BX (t)−BX (s) ,M (t)−M (s)⟩

−⟨B(M (t)−M (s)) ,M (t)−M (s)⟩+2⟨BX (s) ,M (t)−M (s)⟩
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Some terms cancel and this yields

=−⟨BX (t)−BX (s) ,X (t)−X (s)⟩+2⟨BX (t) ,M (t)−M (s)⟩

=−⟨BX (t)−BX (s) ,X (t)−X (s)⟩+2⟨B(M (t)−M (s)) ,X (t)⟩

= −⟨B(X (t)−X (s)) ,X (t)−X (s)⟩

+2
〈

BX (t)−BX (s)−
∫ t

s
Y (u)du,X (t)

〉
= −⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

+2⟨BX (t) ,X (s)⟩+2⟨BX (t) ,X (t)⟩

−2⟨BX (s) ,X (t)⟩−2
∫ t

s
⟨Y (u) ,X (t)⟩du

= ⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩−2
∫ t

s
⟨Y (u) ,X (t)⟩du

Therefore,

⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= 2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨BX (t)−BX (s)− (M (t)−M (s)) ,X (t)−X (s)− (M (t)−M (s))⟩
+2⟨BX (s) ,M (t)−M (s)⟩ ■

The following phenomenal estimate holds and it is this estimate which is the main idea
in proving the Ito formula. The last assertion about continuity is like the well known result
that if y ∈ Lp (0,T ;V ) and y′ ∈ Lp′ (0,T ;V ′) , then y is actually continuous a.e. with values
in H, for V,H,V ′ a Gelfand triple. Later, this continuity result is strengthened further to
give strong continuity.

Lemma 74.3.2 In the Situation 74.1.1, the following holds for all t /∈ N̂,

E (⟨BX (t) ,X (t)⟩)

< C
(
||Y ||K′ , ||X ||K ,E ([M] (T )) ,∥⟨BX0,X0⟩∥L1(Ω)

)
< ∞. (74.3.8)

where K,K′ were defined earlier. In fact,

E

(
sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

)
≤C

(
||Y ||K′ , ||X ||K ,E ([M] (T )) ,∥⟨BX0,X0⟩∥L1(Ω)

)
Also, C is a continuous function of its arguments, increasing in each one, and C (0,0,0,0)=
0. Thus for a.e. ω,

sup
t /∈NC

ω

⟨BX (t,ω) ,X (t,ω)⟩ ≤C (ω)< ∞.

Also for ω off a set of measure zero described earlier, t→ BX (t)(ω) is weakly continuous
with values in W ′ on [0,T ] . Also t→ ⟨BX (t) ,X (t)⟩ is lower semicontinuous on NC

ω .
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Proof: Consider the formula in Lemma 74.3.1.

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩

+2
∫ t

s
⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨B(X (t)−X (s)− (M (t)−M (s))) ,X (t)−X (s)− (M (t)−M (s))⟩
+2⟨BX (s) ,M (t)−M (s)⟩ (74.3.9)

Now let t j denote a point of Pk from Lemma 74.0.2. Then for t j > 0,X (t j) is just the value
of X at t j but when t = 0, the definition of X (0) in this step function is X (0)≡ 0. Thus

m−1

∑
j=1

〈
BX
(
t j+1

)
,X
(
t j+1

)〉
−
〈
BX (t j) ,X (t j)

〉
+⟨BX (t1) ,X (t1)⟩−⟨BX0,X0⟩

= ⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩

Using the formula in Lemma 74.3.1, for t = tm this yields

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= 2
m−1

∑
j=1

∫ t j+1

t j

⟨Y (u) ,X r
k (u)⟩du+

+2
m−1

∑
j=1

〈
BX (t j) ,M

(
t j+1

)
−M (t j)

〉
+

m−1

∑
j=1

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉

−
m−1

∑
j=1

〈
B
(
X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

))
,

X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)〉
+2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2⟨BX0,M (t1)⟩+ ⟨BM (t1) ,M (t1)⟩

−⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩ (74.3.10)

First consider

2
∫ t1

0
⟨Y (u) ,X (t1)⟩du+2⟨BX0,M (t1)⟩+ ⟨BM (t1) ,M (t1)⟩ .

Each term of the above converges to 0 for a.e. ω as k→ ∞ and in L1 (Ω). This follows
right away for the second two terms from the assumptions on M given in the situation.
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Recall it was assumed that ∥B(ω)∥ is bounded. This is where it is convenient to make this
assumption. Consider the first term. This term is dominated by(∫ t1

0
∥Y (u)∥p′ du

)1/p′(∫ T

0
∥X r

k (u)∥
p du

)1/p

≤ C (ω)

(∫ t1

0
∥Y (u)∥p′ du

)1/p′

,

(∫
Ω

C (ω)p dP
)1/p

< ∞

Hence this converges to 0 for a.e. ω and also converges to 0 in L1 (Ω).
At this time, not much is known about the last term in 74.3.10, but it is negative and is

about to be neglected anyway.
The second term on the right equals

2
∫ tm

t1

〈
BX l

k ,dM
〉
= 2

∫ tm

0

〈
BX l

k ,dM
〉
+ e(k)

where e(k)→ 0 for a.e. ω and in L1 (Ω). Also note that since ⟨BM (t1) ,M (t1)⟩ converges
to 0 in L1 (Ω) and for a.e. ω, the sum involving〈

B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
can be started at 0 rather than 1 at the expense of adding in a term which converges to 0
a.e. and in L1 (Ω). Thus 74.3.10 is of the form

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= e(k)+2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+

+2
∫ tm

0

〈
BX l

k ,dM
〉

+
m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉

−
m−1

∑
j=1

〈
B
(
X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

))
,

X
(
t j+1

)
−X (t j)−

(
M
(
t j+1

)
−M (t j)

)〉
−⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩ (74.3.11)

where e(k)→ 0 for a.e. ω and also in L1 (Ω).
Now it follows, on discarding the negative terms,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩ ≤ e(k)+2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du+

+2
∫ tm

0

〈
BX l

k ,dM
〉
+

m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
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Therefore,

sup
tm∈Pk

⟨BX (tm) ,X (tm)⟩ ≤ ⟨BX0,X0⟩+ e(k)+2
∫ T

0
|⟨Y (u) ,X r

k (u)⟩|du+

+2 sup
tm∈Pk

∣∣∣∣∫ tm

0

〈
BX l

k ,dM
〉∣∣∣∣

+
m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
(74.3.12)

where there are mk +1 points in Pk. Consider that last term. It is no larger than

∥B∥
m−1

∑
j=0

∥∥M
(
t j+1

)
−M (t j)

∥∥2

Say the last point in the partition is tp = T and consider the sum

p−1

∑
j=0

∥∥M
(
t j+1∧ t

)
−M (t j ∧ t)

∥∥2
=

p−1

∑
j=0

∥∥Mt j+1 −Mt j
∥∥2

(t)

=
p−1

∑
j=0

[
Mt j+1 −Mt j

]
(t)+N j (t) =

p−1

∑
j=0

[M]t j+1 (t)− [M]t j (t)+N j (t)

for N j a martingale which equals 0 for t ≤ t j. Now when you put in t = tm, this becomes

m−1

∑
j=0

[M]t j+1 (tm)− [M]t j (tm)+N j (tm)

Thus the expectation of that last term in 74.3.12 is no larger than

∥B∥E

(
m−1

∑
j=0

[M]t j+1 (tm)− [M]t j (tm)

)
= ∥B∥E ([M] (tm))

The next task is to take the expectation of both sides of 74.3.12. Of course there is
a small problem with things not being in L1. Hence it is appropriate to localize with the
stopping time σ k

q defined in 74.2.3. That is, we obtain all of the above with X replaced with

Xσk
q , stopping the original integral equation by introducing X[0,σ k

q]
in the integrals. Then

carry out the following argument and pass to a limit as q→ ∞. In fact σ k
q = ∞ if q is large

enough. Then carry out everything with Xσ k
q . We don’t write it, but this is what is being

done in the following argument.

E

(
sup

tm∈Pk

⟨BX (tm) ,X (tm)⟩
)
≤ E (⟨BX0,X0⟩)+E (|e(k)|)+2∥Y∥K′ ∥X

r
k∥K
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+2E

(
sup

tm∈Pk

∣∣∣∣∫ tm

0

〈
BX l

k ,dM
〉∣∣∣∣
)
+∥B∥E ([M] (T ))

Now using the Burkholder Davis Gundy inequality and the inequality for the quadratic
variation of that funny integral involving

〈
BX l

k ,dM
〉
,

≤ E (⟨BX0,X0⟩)+E (|e(k)|)+2∥Y∥K′ ∥X
r
k∥K

+CE

((∫ T

0

∥∥∥BX l
k

∥∥∥2
d [M]

)1/2
)
+∥B∥E ([M] (T ))

Now ∥Bv∥2
W ′ ≤ ∥B∥⟨Bv,v⟩. Hence the above reduces to the following after adjusting the

constant C,

≤ E (⟨BX0,X0⟩)+E (|e(k)|)+2∥Y∥K′ ∥X
r
k∥K

+CE

((∫ T

0

〈
BX l

k ,X
l
k

〉
d [M]

)1/2
)
+∥B∥E ([M] (T ))

≤ 1
2

sup
tm∈Pk

⟨BX (tm) ,X (tm)⟩+(C+∥B∥)E ([M] (T ))

+C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X
r
k∥K)+E (|e(k)|)

It follows on subtracting the first term on the right and adjusting constants again,

E

(
sup

tm∈Pk

⟨BX (tm) ,X (tm)⟩
)

≤ (C+∥B∥)E ([M] (T ))+C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X
r
k∥K)+E (|e(k)|)

Now let q→ ∞ and use the monotone convergence theorem which yields the above for
un-modified X .

Observe that these partitions are nested and that the constant C (· · ·) is continuous and
increasing in each argument with C (0) = 0,C (· · ·) not depending on T . Thus the left side
is increasing and for given ε > 0, there exists N such that k≥ N implies the right side is no
larger than

C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X∥K)+(C+∥B∥)E ([M] (T ))+ ε (74.3.13)

Now let D denote the union of these nested partitions. Then from the monotone conver-
gence theorem,

E
(

sup
t∈D
⟨BX (t) ,X (t)⟩

)
is no larger than the right side of 74.3.13. Since this is true for all ε > 0, it follows

E
(

sup
t∈D
⟨BX (t) ,X (t)⟩

)
≤C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X∥K ,E ([M] (T ))) (74.3.14)
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where C (· · ·) is increasing in each argument, continuous, and C (0) = 0. Thus, enlarging
N, for ω /∈ N,

sup
t∈D
⟨BX (t) ,X (t)⟩=C (ω)< ∞ (74.3.15)

where
∫

Ω
C (ω)dP < ∞. By Lemma 69.4.1, there exists a countable set {ei} of vectors in

V such that 〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=0
⟨Bx,ei⟩2 , Bx =

∞

∑
i=1
⟨Bx,ei⟩Bei

Thus for t not in a set of measure zero off which BX (t) = B(X (t)) ,

⟨BX (t) ,X (t)⟩=
∞

∑
i=0
⟨BX (t) ,ei⟩2 = sup

m

m

∑
k=1
⟨BX (t) ,ei⟩2

Now from the formula for BX (t) , it follows that BX is continuous into V ′. For any t /∈ N̂
so that (BX)(t) = B(X (t)) in Lq′ (Ω;V ′) and letting tk → t where tk ∈ D, Fatou’s lemma
implies

E (⟨BX (t) ,X (t)⟩) = ∑
i

E
(
⟨BX (t) ,ei⟩2

)
= ∑

i
lim inf

k→∞
E
(
⟨BX (tk) ,ei⟩2

)

≤ lim inf
k→∞

∑
i

E
(
⟨BX (tk) ,ei⟩2

)
= lim inf

k→∞
E (⟨BX (tk) ,X (tk)⟩)

≤ C
(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
In addition to this, for arbitrary t ∈ [0,T ] , and tk→ t from D,

∑
i
⟨BX (t) ,ei⟩2 ≤ lim inf

k→∞
∑

i
⟨BX (tk) ,ei⟩2 ≤ sup

s∈D
⟨BX (s) ,X (s)⟩

Hence

sup
t∈[0,T ]

∑
i
⟨BX (t) ,ei⟩2 ≤ sup

s∈D
⟨BX (s) ,X (s)⟩

= sup
s∈D

∑
i
⟨BX (s) ,ei⟩2 ≤ sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

It follows that supt∈[0,T ] ∑i ⟨BX (t) ,ei⟩2 is measurable and

E

(
sup

t∈[0,T ]
∑

i
⟨BX (t) ,ei⟩2

)
≤ E

(
sup
s∈D
⟨BX (s) ,X (s)⟩

)
≤ C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
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And so, for ω off a set of measure zero, supt∈[0,T ] ∑i ⟨BX (t) ,ei⟩2 is bounded above. Include
this exceptional set in N.

Also for t /∈ Nω and a given ω /∈ N, letting tk→ t for tk ∈ D,

⟨BX (t) ,X (t)⟩ = ∑
i
⟨BX (t) ,ei⟩2 ≤ lim inf

k→∞
∑

i
⟨BX (tk) ,ei⟩2

= lim inf
k→∞

⟨BX (tk) ,X (tk)⟩ ≤ sup
t∈D
⟨BX (t) ,X (t)⟩

and so
sup
t /∈Nω

⟨BX (t) ,X (t)⟩ ≤ sup
t∈D
⟨BX (t) ,X (t)⟩ ≤ sup

t /∈Nω

⟨BX (t) ,X (t)⟩

From 74.3.15,
sup
t /∈Nω

⟨BX (t) ,X (t)⟩=C (ω) a.e.ω

where
∫

Ω
C (ω)dP < ∞. In particular, supt /∈Nω

⟨BX (t) ,X (t)⟩ is bounded for a.e. ω say for
ω /∈N where N includes the earlier sets of measure zero. This shows that BX (t) is bounded
in W ′ for t ∈ NC

ω .
If v ∈V, then for ω /∈ N,

lim
t→s
⟨BX (t) ,v⟩= ⟨BX (s) ,v⟩ , t,s

Therefore, since for such ω, ∥BX (t)∥W ′ is bounded for t /∈ Nω , the above holds for all
v ∈W also. Therefore, for a.e. ω, t → BX (t,ω) is weakly continuous with values in W ′

for t /∈ Nω .
Note also that∫ T

0

∫
Ω

∥BX (t)∥2 dPdt ≤
∫

Ω

∫ T

0
∥B∥1/2 ⟨BX (t) ,X (t)⟩dtdP

≤C
(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
∥B∥1/2 T (74.3.16)

Eventually, it is shown that in fact, the function t→ BX (t,ω) is continuous with values
in W ′. The above shows that BX ∈ L2 ([0,T ]×Ω,W ′).

Finally consider the claim of weak continuity of BX into W ′. From the integral equa-
tion, BX is continuous into V ′. Also t → BX (t) is bounded in W ′ on NC

ω . Let s ∈ [0,T ] be
arbitrary. I claim that if tn → s, tn ∈ D, it follows that BX (tn)→ BX (s) weakly in W ′. If
not, then there is a subsequence, still denoted as tn such that BX (tn)→ Y weakly in W ′ but
Y ̸= BX (s) . However, the continuity into V ′ means that for all v ∈V,

⟨Y,v⟩= lim
n→∞
⟨BX (tn) ,v⟩= ⟨BX (s) ,v⟩

which is a contradiction since V is dense in W . This establishes the claim. Also this shows
that BX (s) is bounded in W ′.

|⟨BX (s) ,w⟩|= lim
n→∞
|⟨BX (tn) ,w⟩| ≤ lim inf

n→∞
∥BX (tn)∥W ′ ∥w∥W ≤C (ω)∥w∥W

Now a repeat of the above argument shows that s→ BX (s) is weakly continuous into W ′.
■
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74.4 A Simplification Of The Formula
This estimate in Lemma 74.3.2 also provides a way to simplify one of the formulas derived
earlier in the case that X0 ∈ Lp (Ω,V ) so that X−X0 ∈ Lp ([0,T ]×Ω,V ). Refer to 74.3.11.
One term there is

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

Also,
⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

≤ 2⟨B(X (t1)−X0) ,X (t1)−X0⟩+2⟨BM (t1) ,M (t1)⟩
It was observed above that 2⟨BM (t1) ,M (t1)⟩ → 0 a.e. and also in L1 (Ω) as k→∞. Apply
the above lemma to ⟨B(X (t1)−X0) ,X (t1)−X0⟩ using [0, t1] instead of [0,T ] . The new X0
equals 0. Then from the estimate 74.3.8, it follows that

E (⟨B(X (t1)−X0) ,X (t1)−X0⟩)→ 0

as k→ ∞. Taking a subsequence, we could also assume that

⟨B(X (t1)−X0) ,X (t1)−X0⟩ → 0

a.e. ω as k→ ∞. Then, using this subsequence, it would follow from 74.3.11,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= e(k)+

2
∫ tm

0
⟨Y (u) ,X r

k (u)⟩du++2
∫ tm

0

〈
BX l

k ,dM
〉

+
m−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
−

m−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(74.4.17)

where e(k)→ 0 in L1 (Ω) and a.e. ω and

∆X (t j)≡ X
(
t j+1

)
−X (t j)

∆M (t j) being defined similarly. Note how this eliminated the need to consider the term

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩

in passing to a limit. This is a very desirable thing to be able to conclude.
Can you obtain something similar even in case X0 is not assumed to be in Lp (Ω,V )?

Let X0k ∈ Lp (Ω,V )∩L2 (Ω,W ) ,X0k → X0 in L2 (Ω,W ) . Then from the usual arguments
involving the Cauchy Schwarz inequality,

⟨B(X (t1)−X0) ,X (t1)−X0⟩1/2 ≤ ⟨B(X (t1)−X0k) ,X (t1)−X0k⟩1/2

+⟨B(X0k−X0) ,X0k−X0⟩1/2
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Also, restoring the superscript to identify the parition,

B
(

X
(

tk
1

)
−X0k

)
= B(X0−X0k)+

∫ tk
1

0
Y (s)ds+BM

(
tk
1

)
.

Of course ∥X−X0k∥K is not bounded, but for each k it is finite. There is a sequence of par-
titions Pk,∥Pk∥→ 0 such that all the above holds. In the definitions of K,K′,E ([M] (T ))
replace [0,T ] with [0, t] and let the resulting spaces be denoted by Kt ,K′t . Let nk denote a
subsequence of {k} such that

∥X−X0k∥K
t
nk
1

< 1/k.

Then from the above lemma,

E
(〈

B
(
X
(
tnk
1

)
−X0k

)
,X
(
tnk
1

)
−X0k

〉)
≤C

(
⟨B(X0−X0k) ,X0−X0k⟩L1(Ω) , ||Y ||K′

t
nk
1

,∥X−X0k∥K
t
nk
1

,E
(
[M]
(
tnk
1

)))
(74.4.18)

≤C

(
⟨B(X0−X0k) ,X0−X0k⟩L1(Ω) , ||Y ||K′

t
nk
1

,
1
k
,E
(
[M]
(
tnk
1

)))
Hence

E
(〈

B
(
X
(
tnk
1

)
−X0

)
,X
(
tnk
1

)
−X0

〉)
≤ 2E

(〈
B
(
X
(
tnk
1

)
−X0k

)
,X
(
tnk
1

)
−X0k

〉)
+2E (⟨B(X0k−X0) ,X0k−X0⟩)

≤ 2C

(
⟨B(X0−X0k) ,X0−X0k⟩L1(Ω) , ||Y ||K′

t
nk
1

,
1
k
,E
(
[M]
(
tnk
1

)))
+2∥B∥∥X0k−X0∥2

L2(Ω,W )

which converges to 0 as k→ ∞. It follows that there exists a suitable subsequence such
that 74.4.17 holds even in the case that X0 is only known to be in L2 (Ω,W ). From now on,
assume this subsequence for the partitions Pk. Thus k will really be nk and it suffices to
consider the limit as k→ ∞ of the equation of 74.4.17. To emphasize this point again, the
reason for the above observations is to argue that, even when X0 is only in L2 (Ω,W ) , one
can neglect

⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩
in passing to the limit as k→ ∞ provided a suitable subsequence is used.

74.5 Convergence
Convergence will be shown for a subsequence and from now on every sequence will be
a subsequence of this one. Since BX ∈ L2 ([0,T ]×Ω;W ′) which was shown above, there
exists a sequence of partitions of the sort described above such that also, in addition to the
other claims

BX l
k → BX ,BX r

k → BX

in L2 ([0,T ]×Ω,W ′). Then the next lemma improves on this.
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Lemma 74.5.1 There exists a subsequence still denoted with the subscript k and an en-
larged set of measure zero N including the earlier one such that BX l

k (t) ,BX r
k (t) also con-

verges pointwise a.e. t to BX (t) in W ′ and X l
k (t) ,X

r
k (t) converge pointwise a.e. in V to

X (t) for ω /∈ N as well as having convergence of X l
k (·,ω) to X (·,ω) in Lp ([0,T ] ;V ) and

BX l
k (·,ω) to BX (·,ω) in L2 ([0,T ] ;W ′).

Proof: To see that such a sequence exists, let nk be such that∫
Ω

∫ T

0

∥∥BX r
nk
(t)−BX (t)

∥∥2
W ′

dtdP+
∫

Ω

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dtdP+

∫
Ω

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dtdP+

∫
Ω

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dtdP < 4−k.

Then

P
(∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dt +

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dt > 2−k

)
≤ 2k

(
4−k
)
= 2−k

and so by Borel Cantelli lemma, there is a set of measure zero N such that if ω /∈ N,∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥X r
nk
(t)−X (t)

∥∥p
V

dt+

∫ T

0

∥∥∥BX l
nk
(t)−BX (t)

∥∥∥2

W ′
dt +

∫ T

0

∥∥∥X l
nk
(t)−X (t)

∥∥∥p

V
dt ≤ 2−k

for all k large enough. By the usual proof of completeness of Lp, it follows that X l
nk
(t)→

X (t) for a.e. t, this for each ω /∈ N, a similar assertion holding for X r
nk

. Also BX l
nk
(t)→

BX (t) for a.e. t, similar for BX r
nk
(t). Denote these subsequences as

{
X r

k

}∞

k=1 ,
{

X l
k

}∞

k=1 . ■
Define the following stopping time.

τ p ≡ inf

{
t : ∑

i
⟨BX (t) ,ei⟩2 > p

}

By Lemma 74.3.2 τ p = ∞ for all p large enough off some set of measure zero. Also,
BX (t)(ω) = B(X (t,ω)) for a.e. t and so for a.e.t,⟨BX (t) ,X (t)⟩= ∑i ⟨BX (t) ,ei⟩2 and so
∥BXτ p (t)∥W ′ ≤ ∥B∥

√
p for a.e.t. Hence BXτ p ∈ L∞ ([0,T ]×Ω,W ′).

Lemma 74.5.2 The process
∫ t

0
〈
BX l

k ,dM
〉

converges in probability as k→∞ to
∫ t

0 ⟨BX ,dM⟩
which is a local martingale. Also, there is a subsequence and an enlarged set of measure
zero N such that for ω not in this set, the convergence is uniform on [0,T ].
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Proof: By assumption, d [M] = kdt for some k∈ L1 ([0,T ]×Ω) and so BXτ p ∈G where
G was the class of functions for which one can write

∫ t
0 ⟨BX ,dM⟩. By the Burkholder Davis

Gundy inequality,

P
(

sup
t

∣∣∣∣∫ t∧τ p

0

〈
B
(

X l
k

)
−BX ,dM

〉∣∣∣∣> ε

)
= P

(
sup

t

∣∣∣∣∫ t

0
X[0,τ p]

〈
B
(

X l
k

)
−BX ,dM

〉∣∣∣∣> ε

)
≤ C

ε

∫
Ω

(∫ T∧τ p

0

∥∥∥B
(

X l
k

)
−BX

∥∥∥2

W
kdt
)1/2

dP

=
C
ε

∫
Ω

(∫ T

0
X[0,τ p]

∥∥∥B
(

X l
k

)
−BX

∥∥∥2

W
kdt
)1/2

dP (74.5.19)

Let

Ak =

[
sup

t

∣∣∣∣∫ t

0

〈
BX l

k−BX ,dM
〉∣∣∣∣> ε

]
Then, since τ p = ∞ for all p large enough,

Ak = ∪∞
p=0Ak ∩ ([τ p = ∞]\ [τ p−1 ̸= ∞])

Consider BX lτ p
k . If t > τ p, what of the values of BX lτ p

k ? It equals BX (s) where s is one of
the mesh points s≤ τ p because this is a left step function. Therefore,〈

BX lτ p
k (s) ,X lτ p

k (s)
〉
=
〈

B
(

X lτ p
k (s)

)
,X lτ p

k (s)
〉

= ∑
i
⟨BX (s) ,ei⟩2 ≤ p

As to X[0,τ p]BX , it follows that for all t ≤ τ p you have ∑i ⟨BX (t) ,ei⟩2≤ p and so, since this

equals ⟨B(X (t)) ,X (t)⟩ a.e. t, it follows that
∥∥∥X[0,τ p]BX (t)

∥∥∥
W ′

is bounded by a constant

depending on p for a.e.t. It follows that BX and BX l
k are bounded. Now by Lemma 74.5.1,

BX l
k (t)→ BX (t) a.e. t and the term

∥∥B
(
X l

k

)
−BX

∥∥2
W is essentially bounded. Therefore, in

74.5.19, the integral converges to 0. From this formula,

P(Ak ∩ ([τ p = ∞]\ [τ p−1 ̸= ∞]))≤ P(Ak ∩ ([τ p = ∞]))

≤ C
ε

∫
Ω

(∫ T

0
X[0,τ p]

∥∥∥B
(

X l
k

)
−BX

∥∥∥2

W
kdt
)1/2

dP

Thus
lim
k→∞

P(Ak ∩ ([τ p = ∞]\ [τ p−1 ̸= ∞])) = 0

Then

P(Ak) =
∞

∑
p=1

P(Ak ∩ ([τ p = ∞]\ [τ p−1 ̸= ∞]))
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and taking limits using the dominated convergence theorem on the sum on the right,

lim
k→∞

P(Ak) =
∞

∑
p=1

lim
k→∞

P(Ak ∩ ([τ p = ∞]\ [τ p−1 ̸= ∞])) = 0

This proves convergence in probability.

lim
k→∞

P
(

sup
t

∣∣∣∣∫ t

0

〈
B
(

X l
k

)
−BX ,dM

〉∣∣∣∣> ε

)
= 0

Then selecting a subsequence, still denoted with k, we can obtain

P
(

sup
t

∣∣∣∣∫ t

0

〈
B
(

X l
k

)
−BX ,dM

〉∣∣∣∣> 1
k

)
< 2−k

and so, by the Borel Cantelli lemma, there is a set of measure zero N such that for this
subsequence, for all ω /∈ N,

sup
t

∣∣∣∣∫ t

0

〈
B
(

X l
k

)
−BX ,dM

〉∣∣∣∣≤ 1
k

for all k large enough. Thus convergence is uniform. ■
From now on, include N in the exceptional set and every subsequence will be a subse-

quence of this one.

74.6 The Ito Formula
Now at long last, here is the first version of the Ito formula valid on the partition points.

Lemma 74.6.1 In Situation 74.1.1, let D be as above, the union of all the positive mesh
points for all the Pk. Also assume X0 ∈ L2 (Ω;W ) . Then for ω /∈ N the exceptional set of
measure zero in Ω and every t ∈ D,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0
2⟨Y (s) ,X (s)⟩ds

+
[
R−1BM,M

]
(t)+2

∫ t

0
⟨BX ,dM⟩ (74.6.20)

for R the Riesz map from W to W ′. The covariation term
[
R−1BM,M

]
(t) is nonnegative.

Proof: Let t ∈ D. Then t ∈Pk for all k large enough. Consider 74.4.17,

⟨BX (t) ,X (t)⟩−⟨BX0,X0⟩= e(k)+2
∫ t

0
⟨Y (u) ,X r

k (u)⟩du

+2
∫ t

0

〈
BX l

k ,dM
〉
+

qk−1

∑
j=0

〈
B
(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

〉
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−
qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(74.6.21)

where tqk = t, ∆X (t j) = X
(
t j+1

)
−X (t j) and e(k)→ 0 in probability. By Lemma 74.5.2

the stochastic integral on the right converges uniformly for t ∈ [0,T ] to

2
∫ t

0
⟨BX ,dM⟩

for ω off a set of measure zero. The deterministic integral on the right converges uniformly
for t ∈ [0,T ] to

2
∫ t

0
⟨Y (u) ,X (u)⟩du

Thanks to Lemma 74.5.1. ∣∣∣∣∫ t

0
⟨Y (u) ,X (u)⟩du−

∫ t

0
⟨Y (u) ,X r

k (u)⟩du
∣∣∣∣

≤
∫ T

0
∥Y (u)∥V ′ ∥X (u)−X r

k (u)∥V

≤ ∥Y∥Lp′ ([0,T ])

(
2−k
)1/p

for all k large enough. Consider the fourth term. It equals

qk−1

∑
j=0

(
R−1B

(
M
(
t j+1

)
−M (t j)

)
,M
(
t j+1

)
−M (t j)

)
W (74.6.22)

where R−1 is the Riesz map from W to W ′. This equals

1
4

(
qk−1

∑
j=0

∥∥R−1BM
(
t j+1

)
+M

(
t j+1

)
−
(
R−1BM (t j)+M (t j)

)∥∥2

−
qk−1

∑
j=0

∥∥R−1BM
(
t j+1

)
−M

(
t j+1

)
−
(
R−1BM (t j)−M (t j)

)∥∥2
)

From Theorem 63.6.4, as k→ ∞, the above converges in probability to (tqk = t)

1
4
([

R−1BM+M
]
(t)−

[
R−1BM−M

]
(t)
)
≡
[
R−1BM,M

]
(t)

Also note that from 74.6.22, this term must be nonnegative since it is a limit of nonnegative
quantities. This is what was desired.

Thus all the terms in 74.6.21 converge in probability except for the last term which also
must converge in probability because it equals the sum of terms which do. It remains to
find what this last term converges to. Thus

⟨BX (t) ,X (t)⟩−⟨BX0,X0⟩= 2
∫ t

0
⟨Y (u) ,X (u)⟩du
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+2
∫ t

0
⟨BX ,dM⟩+

[
R−1BM,M

]
(t)−a

where a is the limit in probability of the term

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
(74.6.23)

Let Pn be the projection onto span(e1, · · · ,en) where {ek} is an orthonormal basis for W
with each ek ∈V . Then using

BX
(
t j+1

)
−BX (t j)−

(
BM

(
t j+1

)
−BM (t j)

)
=
∫ t j+1

t j

Y (s)ds

the troublesome term of 74.6.23 above is of the form

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,∆X (t j)−∆M (t j)

〉
ds

=
qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,∆X (t j)−Pn∆M (t j)

〉
ds

+
qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,−(I−Pn)∆M (t j)

〉
ds

which equals

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X

(
t j+1

)
−X (t j)−Pn

(
M
(
t j+1

)
−M (t j)

)〉
ds (74.6.24)

+
qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,−( I−Pn)

(
M
(
t j+1

)
−M (t j)

)〉
(74.6.25)

The reason for the Pn is to get Pn
(
M
(
t j+1

)
−M (t j)

)
in V . The sum in 74.6.25 is dominated

by (
qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))

〉)1/2

·

(
qk−1

∑
j=1

∣∣〈B( I−Pn)∆M (t j) ,( I−Pn)∆M (t j)
〉∣∣2)1/2

(74.6.26)

Now it is known from the above that

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))

〉
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converges in probability to a ≥ 0. If you take the expectation of the square of the other
factor, it is no larger than

∥B∥E

(
qk−1

∑
j=1

∥∥( I−Pn)∆M (t j)
∥∥2

W

)

= ∥B∥E

(
qk−1

∑
j=1

∥∥( I−Pn)
(
M
(
t j+1

)
−M (t j)

)∥∥2
W

)

= ∥B∥
qk−1

∑
j=1

E
(∥∥( I−Pn)

(
M
(
t j+1

)
−M (t j)

)∥∥2
W

)
Then∥∥( I−Pn)

(
M
(
t j+1∧ t

)
−M (t j ∧ t)

)∥∥2
W =

[
(1−Pn)Mt j+1 − (1−Pn)Mt j

]
(t)+N (t)

= [(1−Pn)M]t j+1 (t)− [(1−Pn)M]t j (t)+N (t)

for N (t) a martingale. In particular, taking t = tqk , the above reduces to

∥B∥
qk−1

∑
j=1

E
(∥∥( I−Pn)

(
M
(
t j+1

)
−M (t j)

)∥∥2
W

)
= ∥B∥

qk−1

∑
j=1

E
(
[(1−Pn)M]

(
t j+1

)
− [(1−Pn)M] (t j)

)
= ∥B∥E

(
[(1−Pn)M]

(
tqk

))
= ∥B∥E

(∥∥(1−Pn)M
(
tqk

)∥∥2
W

)
From maximal theorems, Theorem 62.9.4,

∥B∥E

(
sup
tqk

∥∥(1−Pn)M
(
tqk

)∥∥2
W

)
≤ 2∥B∥E

(
∥(1−Pn)M (T )∥2

W

)
and this on the right converges to zero as n→ ∞ by assumption that M (t) is in L2 and the
dominated convergence theorem. In particular, this shows that(

qk−1

∑
j=1

∣∣〈B( I−Pn)∆M (t j) ,( I−Pn)∆M (t j)
〉∣∣2)1/2

converges to 0 in L2 (Ω) independent of k as n→ ∞.
Thus the expression in 74.6.26 is of the form fkgnk where fk converges in probability to

a1/2 as k→ ∞ and gnk converges in probability to 0 as n→ ∞ independent of k. Now this
implies fkgnk converges in probability to 0. Here is why.

P([| fkgnk|> ε]) ≤ P(2δ | fk|> ε)+P(2Cδ |gnk|> ε)

≤ P
(

2δ

∣∣∣ fk−a1/2
∣∣∣+2δ

∣∣∣a1/2
∣∣∣> ε

)
+P(2Cδ |gnk|> ε)
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where δ | fk|+Cδ |gkn|> | fkgnk| and limδ→0 Cδ =∞. Pick δ small enough that ε−2δa1/2 >
ε/2. Then this is dominated by

≤ P
(

2δ

∣∣∣ fk−a1/2
∣∣∣> ε/2

)
+P(2Cδ |gnk|> ε)

Fix n large enough that the second term is less than η for all k. Now taking k large enough,
the above is less than η . It follows the expression in 74.6.26 and consequently in 74.6.25
converges to 0 in probability.

Now consider the other term 74.6.24 using the n just determined. This term is of the
form

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X

(
t j+1

)
−X (t j)−Pn

(
M
(
t j+1

)
−M (t j)

)〉
ds =

qk−1

∑
j=1

∫ t j+1

t j

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

=
∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)−Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

where Mr
k denotes the step function

Mr
k (t) =

mk−1

∑
i=0

M (ti+1)X(ti,ti+1] (t)

and Ml
k is defined similarly. The term∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds

converges to 0 for a.e. ω as k→ ∞ thanks to continuity of t → M (t). However, more is
needed than this. Define the stopping time

τ p = inf{t > 0 : ∥M (t)∥W > p} .

Then τ p = ∞ for all p large enough, this for a.e. ω. Let

Ak =

[∣∣∣∣∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds
∣∣∣∣> ε

]

P(Ak) =
∞

∑
p=0

P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞])) (74.6.27)

Now
P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞]))≤ P(Ak ∩ ([τ p = ∞]))

≤ P
([∣∣∣∣∫ t

t1

〈
Y (s) ,Pn

(
(Mτ p)r

k (s)− (Mτ p)l
k (s)

)〉
ds
∣∣∣∣> ε

])
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This is so because if τ p = ∞, then it has no effect but also it could happen that the defin-
ing inequality may hold even if τ p < ∞ hence the inequality. This is no larger than an
expression of the form

Cn

ε

∫
Ω

∫ T

0
∥Y (s)∥V ′

∥∥∥(Mτ p)r
k (s)− (Mτ p)l

k (s)
∥∥∥

W
dsdP (74.6.28)

The inside integral converges to 0 by continuity of M. Also, thanks to the stopping time,
the inside integral is dominated by an expression of the form∫ T

0
∥Y (s)∥V ′ 2pds

and this is a function in L1 (Ω) by assumption on Y . It follows that the integral in 74.6.28
converges to 0 as k→ ∞ by the dominated convergence theorem. Hence

lim
k→∞

P(Ak ∩ ([τ p = ∞])) = 0.

Since the sets [τ p = ∞] \ [τ p−1 < ∞] are disjoint, the sum of their probabilities is finite.
Hence there is a dominating function in 74.6.27 and so, by the dominated convergence
theorem applied to the sum,

lim
k→∞

P(Ak) =
∞

∑
p=0

lim
k→∞

P(Ak ∩ ([τ p = ∞]\ [τ p−1 < ∞])) = 0

Thus
∫ t

t1

〈
Y (s) ,Pn

(
Mr

k (s)−Ml
k (s)

)〉
ds converges to 0 in probability as k→ ∞.

Now consider∣∣∣∣∫ t

t1

〈
Y (s) ,X r

k (s)−X l
k (s)

〉
ds
∣∣∣∣ ≤ ∫ T

0
|⟨Y (s) ,X r

k (s)−X (s)⟩|ds

+
∫ T

0

∣∣∣〈Y (s) ,X l
k (s)−X (s)

〉∣∣∣ds

≤ 2∥Y (·,ω)∥Lp′ (0,T )

(
2−k
)1/p

for all k large enough, this by Lemma 74.5.1. Therefore,

qk−1

∑
j=1

〈
B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)

〉
converges to 0 in probability. This establishes the desired formula for t ∈ D. ■

In fact, the formula 74.6.20 is valid for all t ∈ NC
ω .

Theorem 74.6.2 In Situation 74.1.1, for ω off a set of measure zero, it follows that for
every t ∈ NC

ω ,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0
2⟨Y (s) ,X (s)⟩ds
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[
R−1BM,M

]
(t)+2

∫ t

0
⟨BX ,dM⟩ (74.6.29)

Also, there exists a unique continuous, progressively measurable function which is denoted
here as ⟨BX ,X⟩ such that it equals ⟨BX (t) ,X (t)⟩ for a.e. t and ⟨BX ,X⟩(t) equals the right
side of the above for all t. In addition to this,

E (⟨BX ,X⟩(t)) =

E (⟨BX0,X0⟩)+E
(∫ t

0
2⟨Y (s) ,X (s)⟩ds+

[
R−1BM,M

]
(t)
)

(74.6.30)

Also the quadratic variation of the stochastic integral in 74.6.29 is dominated by∫ t

0
∥BX∥2

W ′ d [M] (74.6.31)

Also t→ BX (t) is continuous with values in W ′ for t ∈ NC
ω .

Proof: Let t ∈ NC
ω \D. For t > 0, let t (k) denote the largest point of Pk which is less

than t. Suppose t (m)< t (k). Hence m≤ k. Then

BX (t (m)) = BX0 +
∫ t(m)

0
Y (s)ds+BM (t (m)) ,

a similar formula holding for X (t (k)) . Thus for t > t (m) , t ∈ NC
ω ,

B(X (t)−X (t (m))) =
∫ t

t(m)
Y (s)ds+B(M (t)−M (t (m)))

which is the same sort of thing studied so far except that it starts at t (m) rather than at 0
and BX0 = 0. Therefore, from Lemma 74.6.1 it follows

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩

=
∫ t(k)

t(m)
2⟨Y (s) ,X (s)−X (t (m))⟩ds

+
[
R−1BM,M

]
(t (k))−

[
R−1BM,M

]
(t (m))

+2
∫ t(k)

t(m)
⟨B(X−X (t (m))) ,dM⟩ (74.6.32)

Consider that last term. It equals

2
∫ t(k)

t(m)

〈
B
(

X−X l
m

)
,dM

〉
(74.6.33)

This is dominated by

2
∣∣∣∣∫ t(k)

0

〈
B
(

X−X l
m

)
,dM

〉
−
∫ t(m)

0

〈
B
(

X−X l
m

)
,dM

〉∣∣∣∣
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≤ 4 sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
B
(

X−X l
m

)
,dM

〉∣∣∣∣
In Lemma 74.5.2 the above expression converges to 0. It follows there is a set of measure
0 including the earlier one such that for ω not in that set, 74.6.33 converges to 0 in R.
Similar reasoning shows the first term on the right in the non stochastic integral of 74.6.32
is dominated by an expression of the form

4
∫ T

0

∣∣∣〈Y (s) ,X (s)−X l
m (s)

〉∣∣∣ds

which clearly converges to 0 thanks to Lemma 74.5.1. Finally, it is obvious that

lim
m,k→∞

[
R−1BM,M

]
(t (k))−

[
R−1BM,M

]
(t (m)) = 0 for a.e. ω

due to the continuity of the quadratic variation.
This shows that for ω off a set of measure 0

lim
m,k→∞

⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩= 0

Then for x ∈W,

|⟨B(X (t (k))−X (t (m))) ,x⟩|
≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ⟨Bx,x⟩1/2

≤ ⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 ∥B∥1/2 ∥x∥W

and so
lim

m,k→∞

∥BX (t (k))−BX (t (m))∥W ′ = 0

Recall t was arbitrary and {t (k)} is a sequence converging to t. Then the above has shown
that {BX (t (k))}∞

k=1 is a convergent sequence in W ′. Does it converge to BX (t)? Let ξ (t)∈
W ′ be what it converges to. Letting v ∈ V then, since the integral equation shows that
t→ BX (t) is continuous into V ′,

⟨ξ (t) ,v⟩= lim
k→∞

⟨BX (t (k)) ,v⟩= ⟨BX (t) ,v⟩ ,

and now, since V is dense in W, this implies ξ (t) = BX (t) = B(X (t)) since t /∈ Nω . Recall
also that it was shown earlier that BX is weakly continuous into W ′ on [0,T ] hence the
strong convergence of {BX (t (k))}∞

k=1 in W ′ implies that it converges to BX (t), this for any
t ∈ NC

ω .
For every t ∈ D and for ω off the exceptional set of measure zero described earlier,

⟨B(X (t)) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0
2⟨Y (s) ,X (s)⟩ds+

[
R−1BM,M

]
(t)+2

∫ t

0
⟨BX ,dM⟩ (74.6.34)
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Does this formula hold for all t ∈ [0,T ]? Maybe not. However, it will hold for t /∈ Nω . So
let t /∈ Nω .

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

≤ |⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t (k))⟩|
+ |⟨BX (t) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|

= |⟨B(X (t (k))−X (t)) ,X (t (k))⟩|+ |⟨B(X (t (k))−X (t)) ,X (t)⟩|

Then using the Cauchy Schwarz inequality on each term,

≤ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2

·
(
⟨BX (t (k)) ,X (t (k))⟩1/2 + ⟨BX (t) ,X (t)⟩1/2

)
As before, one can use the lower semicontinuity of

t→ ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩

on NC
ω along with the boundedness of ⟨BX (t) ,X (t)⟩ also shown earlier off Nω to conclude

|⟨BX (t (k)) ,X (t (k))⟩−⟨BX (t) ,X (t)⟩|
≤ C ⟨B(X (t (k))−X (t)) ,X (t (k))−X (t)⟩1/2

≤C lim inf
m→∞
⟨B(X (t (k))−X (t (m))) ,X (t (k))−X (t (m))⟩1/2 < ε

provided k is sufficiently large. Since ε is arbitrary,

lim
k→∞

⟨BX (t (k)) ,X (t (k))⟩= ⟨BX (t) ,X (t)⟩ .

It follows that the formula 74.6.34 is valid for all t ∈NC
ω . Now define the function ⟨BX ,X⟩(t)

as

⟨BX ,X⟩(t)≡
{

⟨B(X (t)) ,X (t)⟩ , t /∈ Nω

The right side of 74.6.34 if t ∈ Nω

Then in short, ⟨BX ,X⟩(t) equals the right side of 74.6.34 for all t ∈ [0,T ] and is conse-
quently progressively measurable and continuous. Furthermore, for a.e. t, this function
equals ⟨B(X (t)) ,X (t)⟩. Since it is known on a dense subset, it must be unique.

This implies that t → BX (t) is continuous with values in W ′ for t ∈ NC
ω . Here is why.

The fact that the formula 74.6.34 holds for all t ∈ NC
ω implies that t → ⟨BX (t) ,X (t)⟩ is

continuous on NC
ω . Then for x ∈W, t,s ∈ NC

ω

|⟨BX (t)−BX (s) ,x⟩| ≤ ⟨B(X (t)−X (s)) ,X (t)−X (s)⟩1/2 ∥B∥1/2 ∥x∥W . (74.6.35)

Also

⟨B(X (t)−X (s)) ,X (t)−X (s)⟩
= ⟨BX (t) ,X (t)⟩+ ⟨BX (s) ,X (s)⟩−2⟨BX (t) ,X (s)⟩
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By weak continuity of t→ BX (t) shown earlier,

lim
t→s
⟨BX (t) ,X (s)⟩= ⟨BX (s) ,X (s)⟩ .

Therefore,
lim
t→s
⟨B(X (t)−X (s)) ,X (t)−X (s)⟩= 0

and so the inequality 74.6.35 implies the continuity of t→ BX (t) into W ′ for t /∈ Nω . Note
that by assumption this function is continuous into V ′ for all t.

Now consider the claim about the expectation. Use the function ⟨BX ,X⟩ to define a
stopping time as

τ p ≡ inf{t > 0 : ⟨BX ,X⟩(t)> p}

This is the first hitting time of a continuous process and so it is a valid stopping time. Using
this, leads to

⟨BX ,X⟩τ p (t) = ⟨BX0,X0⟩+
∫ t

0
X[0,τ p]2⟨Y (s) ,X (s)⟩ds+

[
R−1BM,M

]τ p
(t)+2

∫ t

0
X[0,τ p] ⟨BX ,dM⟩ (74.6.36)

The term at the end is now a martingale because X[0,τ p]BX is bounded. Hence the expec-
tation of the martingale at the end equals 0. Thus you obtain

E
(
⟨BX ,X⟩τ p (t)

)
= E (⟨BX0,X0⟩)

+E
(∫ t

0
X[0,τ p]2⟨Y (s) ,X (s)⟩ds

)
+E

([
R−1BM,M

]τ p
(t)
)

Now use the monotone convergence theorem and the dominated convergence theorem to
pass to a limit as p→∞ and obtain 74.6.30. The claim about the quadratic variation follows
from Theorem 66.0.22. ■

What of the special case where W = H = H ′ and you are in the context of a Gelfand
triple

V ⊆ H = H ′ ⊆V ′

and B is simply the identity. Then we obtain the following theorem as a special case.

Theorem 74.6.3 In Situation 74.1.1 in which W = H = H ′ and B = I, it follows that off
a set of measure zero, for every t ∈ [0,T ] , there is a set of measure zero N such that for
ω /∈ N, there is a continuous function ⟨X ,X⟩ which equals |X (t)|2H for a.e. t such that

⟨X ,X⟩(t) = |X0|2H +
∫ t

0
2⟨Y (s) ,X (s)⟩ds

+[M] (t)+2
∫ t

0
(X ,dM) (74.6.37)
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Furthermore,off a set of measure zero, t→ X (t) is continuous as a map into H for a.e. ω .
In addition to this,

E (⟨X ,X⟩(t)) =

E
(
|X0|2

)
+E

(∫ t

0
2⟨Y (s) ,X (s)⟩ds

)
+E ([M] (t)) (74.6.38)

The quadratic variation of the stochastic integral satisfies[∫ (·)

0
(X ,dM)

]
(t)≤

∫ t

0
∥X∥2

H d [M]

It is more attractive to write |X (t)|2H in place of ⟨X ,X⟩(t). However, I guess this is not
strictly right although the discrepancy is only on a set of measure zero so it seems fairly
harmless to indulge in this sloppiness. However, for t /∈ Nω ,

|X (t)|2H = ∑
i
(X (t) ,ei)

2

where the orthonormal basis {ei} is in V . Then for s ∈ Nω , you can get the following. Let
tn→ s where tn ∈ Nω . Then in the above notation,

∑
i
⟨X (s) ,ei⟩2 ≤ lim inf

n→∞
∑

i
(X (tn) ,ei)

2
H = lim inf

n→∞
|X (tn)|2H ≤C (ω)

It follows that in fact X (s) ∈ H and you can take X (s) = ∑i ⟨X (s) ,ei⟩ei ∈ H because
∑i ⟨X (s) ,ei⟩2 < ∞. Hence

|X (s)|2 = ∑
i
⟨X (s) ,ei⟩2 ≤ lim inf

n→∞
|X (tn)|2H

so X has values in H and is lower semicontinuous on [0,T ].



Chapter 75

Some Nonlinear Operators
In this chapter is a description and properties of some standard nonlinear maps.

75.1 An Assortment Of Nonlinear Operators
Definition 75.1.1 For V a real Banach space, A : V → V ′ is a pseudomonotone map if
whenever

un ⇀ u (75.1.1)

and
lim sup

n→∞

⟨Aun,un−u⟩ ≤ 0 (75.1.2)

it follows that for all v ∈V,

lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩. (75.1.3)

The half arrows denote weak convergence.

Definition 75.1.2 A : V →V ′ is monotone if for all v,u ∈V,

⟨Au−Av,u− v⟩ ≥ 0,

and A is Hemicontinuous if for all v,u ∈V,

lim
t→0+
⟨A(u+ t (v−u)) ,u− v⟩= ⟨Au,u− v⟩.

Theorem 75.1.3 Let V be a Banach space and let A : V →V ′ be monotone and hemicon-
tinuous. Then A is pseudomonotone.

Proof: Let A be monotone and Hemicontinuous. First here is a claim.
Claim: If 75.1.1 and 75.1.2 hold, then limn→∞⟨Aun,un−u⟩= 0.
Proof of the claim: Since A is monotone,

⟨Aun−Au,un−u⟩ ≥ 0

so
⟨Aun,un−u⟩ ≥ ⟨Au,un−u⟩.

Therefore,

0 = lim inf
n→∞
⟨Au,un−u⟩ ≤ lim inf

n→∞
⟨Aun,un−u⟩ ≤ lim sup

n→∞

⟨Aun,un−u⟩ ≤ 0.

Now using that A is monotone again, then letting t > 0,

⟨Aun−A(u+ t (v−u)) ,un−u+ t (u− v)⟩ ≥ 0

and so
⟨Aun,un−u+ t (u− v)⟩ ≥ ⟨A(u+ t (v−u)) ,un−u+ t (u− v)⟩.

2523
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Taking the liminf on both sides and using the claim and t > 0,

t lim inf
n→∞
⟨Aun,u− v⟩ ≥ t⟨A(u+ t (v−u)) ,(u− v)⟩.

Next divide by t and use the Hemicontinuity of A to conclude that

lim inf
n→∞
⟨Aun,u− v⟩ ≥ ⟨Au,u− v⟩.

From the claim,

lim inf
n→∞
⟨Aun,u− v⟩= lim inf

n→∞
(⟨Aun,un− v⟩+ ⟨Aun,u−un⟩)

= lim inf
n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩.■

Monotonicity is very important in the above proof. The next example shows that even
if the operator is linear and bounded, it is not necessarily pseudomonotone.

Example 75.1.4 Let H be any Hilbert space and let A : H→ H ′ be given by

⟨Ax,y⟩ ≡ (−x,y)H .

Then A fails to be pseudomonotone.

Proof: Let {xn}∞

n=1 be an orthonormal set of vectors in H. Then Parsevall’s inequality
implies

||x||2 ≥
∞

∑
n=1
|(xn,x)|2

and so for any x ∈ H, limn→∞ (xn,x) = 0. Thus xn ⇀ 0≡ x. Also

lim sup
n→∞

⟨Axn,xn− x⟩=

lim sup
n→∞

⟨Axn,xn−0⟩= lim sup
n→∞

(
−||xn||2

)
=−1≤ 0.

If A were pseudomonotone, we would need to be able to conclude that for all y ∈ H,

lim inf
n→∞
⟨Axn,xn− y⟩ ≥ ⟨Ax,x− y⟩= 0.

However,
lim inf

n→∞
⟨Axn,xn−0⟩=−1 < 0 = ⟨A0,0−0⟩.

Now the following proposition is useful.

Proposition 75.1.5 Suppose A : V →V ′ is pseudomonotone and bounded where V is sep-
arable. Then it must be demicontinuous. This means that if un→ u, then Aun ⇀ Au.
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Proof: Since un→ u is strong convergence and since Aun is bounded, it follows

lim sup
n→∞

⟨Aun,un−u⟩= lim
n→∞
⟨Aun,un−u⟩= 0.

Suppose this is not so that Aun converges weakly to Au. Since A is bounded, there exists a
subsequence, still denoted by n such that Aun ⇀ ξ weak ∗. I need to verify ξ = Au. From
the above, it follows that for all v ∈V

⟨Au,u− v⟩ ≤ lim inf
n→∞
⟨Aun,un− v⟩

= lim inf
n→∞
⟨Aun,u− v⟩= ⟨ξ ,u− v⟩

Hence ξ = Au. ■
There is another type of operator which is more general than pseudomonotone.

Definition 75.1.6 Let A : V → V ′ be an operator. Then A is called type M if whenever
un ⇀ u and Aun ⇀ ξ , and

lim sup
n→∞

⟨Aun,un⟩ ≤ ⟨ξ ,u⟩

it follows that Au = ξ .

Proposition 75.1.7 If A is pseudomonotone, then A is type M.

Proof: Suppose A is pseudomonotone and un ⇀ u and Aun ⇀ ξ , and

lim sup
n→∞

⟨Aun,un⟩ ≤ ⟨ξ ,u⟩

Then
lim sup

n→∞

⟨Aun,un−u⟩= lim sup
n→∞

⟨Aun,un⟩−⟨ξ ,u⟩ ≤ 0

Hence
lim inf

n→∞
⟨Aun,un− v⟩ ≥ ⟨Au,u− v⟩

for all v ∈V . Consequently, for all v ∈V,

⟨Au,u− v⟩ ≤ lim inf
n→∞
⟨Aun,un− v⟩

= lim inf
n→∞

(⟨Aun,u− v⟩+ ⟨Aun,un−u⟩)

= ⟨ξ ,u− v⟩+ lim inf
n→∞
⟨Aun,un−u⟩ ≤ ⟨ξ ,u− v⟩

and so Au = ξ . ■
An interesting result is the the following which states that a monotone linear function

added to a type M is also type M.

Proposition 75.1.8 Suppose A : V → V ′ is type M and suppose L : V → V ′ is monotone,
bounded and linear. Then L+A is type M. Let V be separable or reflexive so that the weak
convergences in the following argument are valid.
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Proof: Suppose un ⇀ u and Aun +Lun ⇀ ξ and also that

lim sup
n→∞

⟨Aun +Lun,un⟩ ≤ ⟨ξ ,u⟩

Does it follow that ξ = Au+ Lu? Suppose not. There exists a further subsequence, still
called n such that Lun ⇀ Lu. This follows because L is linear and bounded. Then from
monotonicity,

⟨Lun,un⟩ ≥ ⟨Lun,u⟩+ ⟨L(u) ,un−u⟩

Hence with this further subsequence, the limsup is no larger and so

lim sup
n→∞

⟨Aun,un⟩+ lim
n→∞

(⟨Lun,u⟩+ ⟨L(u) ,un−u⟩)≤ ⟨ξ ,u⟩

and so
lim sup

n→∞

⟨Aun,un⟩ ≤ ⟨ξ −Lu,u⟩

It follows since A is type M that Au = ξ −Lu, which contradicts the assumption that ξ ̸=
Au+Lu. ■

There is also the following useful generalization of the above proposition.

Corollary 75.1.9 Suppose A : V → V ′ is type M and suppose L : V → V ′ is monotone,
bounded and linear. Then for u0 ∈V define M (u)≡ L(u−u0) . Then M+A is type M. Let
V be separable or reflexive so that the weak convergences in the following argument are
valid.

Proof: Suppose un ⇀ u and Aun +Mun ⇀ ξ and also that

lim sup
n→∞

⟨Aun +Mun,un⟩ ≤ ⟨ξ ,u⟩

Does it follow that ξ = Au+Mu? Suppose not. By assumption, un−u0 ⇀ u−u0 and so,
since L is bounded, there is a further subsequence, still called n such that

Mun = L(un−u0)⇀ L(u−u0) = Mu.

Since M is monotone,
⟨Mun−Mu,un−u⟩ ≥ 0

Thus
⟨Mun,un⟩−⟨Mun,u⟩−⟨Mu,un⟩+ ⟨Mu,u⟩ ≥ 0

and so
⟨Mun,un⟩ ≥ ⟨Mun,u⟩+ ⟨Mu,un−u⟩

Hence with this further subsequence, the limsup is no larger and so

lim sup
n→∞

⟨Aun,un⟩+ lim
n→∞

(⟨Mun,u⟩+ ⟨M (u) ,un−u⟩)≤ ⟨ξ ,u⟩

and so
lim sup

n→∞

⟨Aun,un⟩ ≤ ⟨ξ −Mu,u⟩
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It follows since A is type M that Au = ξ −Mu, which contradicts the assumption that
ξ ̸= Au+Mu. ■

The following is Browder’s lemma. It is a very interesting application of the Brouwer
fixed point theorem.

Lemma 75.1.10 (Browder) Let K be a convex closed and bounded set in Rn and let A :
K→ Rn be continuous and f ∈ Rn. Then there exists x ∈ K such that for all y ∈ K,

(f−Ax,y−x)≤ 0

Proof: Let PK denote the projection onto K. Thus PK is Lipschitz continuous.

x→ PK (f−Ax+x)

is a continuous map from K to K. By the Brouwer fixed point theorem, it has a fixed point
x ∈ K. Therefore, for all y ∈ K,

(f−Ax+x−x,y−x) = (f−Ax,y−x)≤ 0 ■

From this lemma, there is an interesting theorem on surjectivity.

Proposition 75.1.11 Let A : Rn→ Rn be continuous and coercive,

lim
|x|→∞

(A(x+x0) ,x)
|x|

= ∞

for some x0. Then for all f ∈ Rn, there exists x ∈ Rn such that Ax = f.

Proof: Define the closed convex sets Bn ≡ B(x0,n). By Browder’s lemma, there exists
xn such that

(f−Axn,y−xn)≤ 0

for all y ∈ Bn. Then taking y = x0, it follows from the coercivity condition that the xn−x0
are bounded. It follows that for large n, xn is an interior point of Bn. Therefore,

(f−Axn,z)≤ 0

for all z in some open ball centered at x0. Hence f = Axn. ■

Lemma 75.1.12 Let A : V →V ′ be type M and bounded and suppose V is reflexive or V is
separable. Then A is demicontinuous.

Proof: Suppose un → u and Aun fails to converge weakly to Au. Then there is a fur-
ther subsequence, still denoted as un such that Aun ⇀ ζ ̸= Au. Then thanks to the strong
convergence, you have

lim sup
n→∞

⟨Aun,un⟩= ⟨ζ ,un⟩

which implies ζ = Au after all. ■
With these lemmas and the above proposition, there is a very interesting surjectivity

result.
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Theorem 75.1.13 Let A : V →V ′ be type M, bounded, and coercive

lim
∥u∥→∞

⟨A(u+u0) ,u⟩
∥u∥

= ∞, (75.1.4)

for some u0, where V is a separable reflexive Banach space. Then A is surjective.

Proof: Since V is separable, there exists an increasing sequence of finite dimensional
subspaces {Vn} such that ∪nVn =V . Say span(v1, · · · ,vn) =Vn. Then consider the follow-
ing diagram.

Rn θ
∗
← V ′n

i∗← V ′

Rn θ→ Vn
i→ V

Here the map θ is the one which does the following.

θ (x) =
n

∑
i=1

xivi.

The map i is the inclusion map. Consider the map θ
∗i∗Aiθ . By Lemma 75.1.12 this map

is continuous. The map θ is continuous, one to one, and onto. Thus its inverse is also
continuous. Let x0 correspond to u0. Then for some constant C,

(θ ∗i∗Aiθ (x+x0) ,x)
|x|

≥ ⟨Aiθ (x+x0) , iθx⟩
C∥iθx∥V

and to say |x| →∞ is the same as saying that ∥iθx∥V →∞. Hence θ
∗i∗Aiθ is coercive. Let

f ∈V ′. Then from 75.1.11, there exists xn such that

θ
∗i∗Aiθxn = θ

∗i∗f

Thus, i∗Aiθxn = i∗ f and this implies that for vn ≡ θxn,

i∗Aivn = i∗ f

In other words,
⟨Avn,y⟩= ⟨ f ,y⟩ (75.1.5)

for all y ∈ Vn. Then from the coercivity condition 75.1.4, the vn are bounded independent
of n. Since V is reflexive, there is a subsequence, still called {vn} which converges weakly
to v ∈V. Since A is bounded, it can also be assumed that Avn ⇀ ζ ∈V ′. Then

lim sup
n→∞

⟨Avn,vn⟩= lim sup
n→∞

⟨ f ,vn⟩= ⟨ f ,v⟩

Also, passing to the limit in 75.1.5,

⟨ζ ,y⟩= ⟨ f ,y⟩

for any y ∈Vn, this for any n. Since the union of these Vn is dense, it follows that the above
equation holds for all y ∈V. Therefore, f = ζ and so

lim sup
n→∞

⟨Avn,vn⟩= lim sup
n→∞

⟨ f ,vn⟩= ⟨ f ,v⟩= ⟨ζ ,v⟩

Since A is type M,
Av = ζ = f ■
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75.2 Duality Maps
The duality map is an attempt to duplicate some of the features of the Riesz map in Hilbert
space which is discussed in the chapter on Hilbert space.

Definition 75.2.1 A Banach space is said to be strictly convex if whenever ||x||= ||y|| and
x ̸= y, then ∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣< ||x||.
F : X→ X ′ is said to be a duality map if it satisfies the following: a.) ||F(x)||= ||x||p−1. b.)
F(x)(x) = ||x||p, where p > 1.

Duality maps exist. Here is why. Let

F (x)≡
{

x∗ : ||x∗|| ≤ ||x||p−1 and x∗ (x) = ||x||p
}

Then F (x) is not empty because you can let f (αx) = α ||x||p . Then f is linear and defined
on a subspace of X . Also

sup
||αx||≤1

| f (αx)|= sup
||αx||≤1

|α| ||x||p ≤ ||x||p−1

Also from the definition,
f (x) = ||x||p

and so, letting x∗ be a Hahn Banach extension, it follows x∗ ∈ F (x). Also, F (x) is closed
and convex. It is clearly closed because if x∗n→ x∗, the condition on the norm clearly holds
and also the other one does too. It is convex because

||x∗λ +(1−λ )y∗|| ≤ λ ||x∗||+(1−λ ) ||y∗|| ≤ λ ||x||p−1 +(1−λ ) ||x||p−1

If the conditions hold for x∗, then we can show that in fact ||x∗|| = ||x||p−1. This is
because

||x∗|| ≥
∣∣∣∣x∗( x

||x||

)∣∣∣∣= 1
||x||
|x∗ (x)|= ||x||p−1 .

Now how many things are in F (x) assuming the norm on X ′ is strictly convex? Suppose
x∗1, and x∗2 are two things in F (x) . Then by convexity, so is (x∗1 + x∗2)/2. Hence by strict
convexity, if the two are different, then∣∣∣∣∣∣∣∣x∗1 + x∗2

2

∣∣∣∣∣∣∣∣= ||x||p−1 <
1
2
||x∗1||+

1
2
||x∗2||= ||x||

p−1

which is a contradiction. Therefore, F is an actual mapping.
What are some of its properties? First is one which is similar to the Cauchy Schwarz

inequality. Since p−1 = p/p′,

sup
||y||≤1

|⟨Fx,y⟩|= ||x||p/p′
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and so for arbitrary y ̸= 0,

|⟨Fx,y⟩| = ||y||
∣∣∣∣〈Fx,

y
||y||

〉∣∣∣∣≤ ||y|| ||x||p/p′

= |⟨Fy,y⟩|1/p |⟨Fx,x⟩|1/p′

Next we can show that F is monotone.

⟨Fx−Fy,x− y⟩ = ⟨Fx,x⟩−⟨Fx,y⟩−⟨Fy,x⟩+ ⟨Fy,y⟩
≥ ||x||p + ||y||p−||y|| ||x||p/p′ −||y||p/p′ ||x||

≥ ||x||p + ||y||p−
(
||y||p

p
+
||x||p

p′

)
−
(
||y||p

p′
+
||x||p

p

)
= 0

Next it can be shown that F is hemicontinuous. By the construction, F (x+ ty) is
bounded as t→ 0. Let t→ 0 be a subsequence such that

F (x+ ty)→ ξ weak ∗

Then we ask: Does ξ do what it needs to do in order to be F (x)? The answer is yes. First
of all ||F (x+ ty)||= ||x+ ty||p−1→ ||x||p−1 . The set{

x∗ : ||x∗|| ≤ ||x||p−1 + ε

}
is closed and convex and so it is weak ∗ closed as well. For all small enough t, it follows
F (x+ ty) is in this set. Therefore, the weak limit is also in this set and it follows ||ξ || ≤
||x||p−1 + ε. Since ε is arbitrary, it follows ||ξ || ≤ ||x||p−1 . Is ξ (x) = ||x||p? We have

||x||p = lim
t→0
||x+ ty||p = lim

t→0
⟨F (x+ ty) ,x+ ty⟩

= lim
t→0
⟨F (x+ ty) ,x⟩= ⟨ξ ,x⟩

and so, ξ does what it needs to do to be F (x). This would be clear if ||ξ || = ||x||p−1 .

However, |⟨ξ ,x⟩|= ||x||p and so ||ξ || ≥
∣∣∣〈ξ , x

||x||

〉∣∣∣= ||x||p−1 . Thus ||ξ ||= ||x||p−1 which

shows ξ does everyting it needs to do to equal F (x) and so it is F (x) . Since this conclusion
follows for any convergent sequence, it follows that F (x+ ty) converges to F (x) weakly
as t → 0. This is what it means to be hemicontinuous. This proves the following theorem.
One can show also that F is demicontinuous which means strongly convergent sequences
go to weakly convergent sequences. Here is a proof for the case where p = 2. You can
clearly do the same thing for arbitrary p.

Lemma 75.2.2 Let F be a duality map for p = 2 where X ,X ′ are reflexive and have strictly
convex norms. (If X is reflexive, there is always an equivalent strictly convex norm [8].)
Then F is demicontinuous.
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Proof: Say xn→ x. Then does it follow that Fxn ⇀ Fx? Suppose not. Then there is a
subsequence, still denoted as xn such that xn→ x but Fxn ⇀ y ̸= Fx where here ⇀ denotes
weak convergence. This follows from the Eberlein Smulian theorem. Then

⟨y,x⟩= lim
n→∞
⟨Fxn,xn⟩= lim

n→∞
∥xn∥2 = ∥x∥2

Also, there exists z,∥z∥= 1 and ⟨y,z⟩ ≥ ∥y∥− ε. Then

∥y∥− ε ≤ ⟨y,z⟩= lim
n→∞
⟨Fxn,z⟩ ≤ lim inf

n→∞
∥Fxn∥= lim inf

n→∞
∥xn∥= ∥x∥

and since ε is arbitrary, ∥y∥ ≤ ∥x∥ . It follows from the above construction of Fx, that
y = Fx after all, a contradiction. ■

Theorem 75.2.3 Let X be a reflexive Banach space with X ′ having strictly convex norm1.
Then for p > 1, there exists a mapping F : X → X ′ which is bounded, monotone, hemi-
continuous, coercive in the sense that lim|x|→∞ ⟨Fx,x⟩/ |x| = ∞, which also satisfies the
inequalities

|⟨Fx,y⟩| ≤ |⟨Fx,x⟩|1/p′ |⟨Fy,y⟩|1/p

Note that these conclusions about duality maps show that they map onto the dual space.
The duality map was onto and it was monotone. This was shown above. Consider the

form of a duality map for the Lp spaces. Let F : Lp→ (Lp)′ be the one which satisfies

||F f ||= || f ||p−1 , ⟨F f , f ⟩= || f ||p

Then in this case,
F f = | f |p−2 f

This is because it does what it needs to do.

||F f ||Lp′ =

(∫
Ω

(
| f |p−1

)p′

dµ

)1/p′

=

(∫
Ω

(
| f |p/p′

)p′

dµ

)1/p′

=

(∫
Ω

| f |p dµ

)1−(1/p)

=

((∫
Ω

| f |p dµ

)1/p
)p−1

= || f ||p−1
Lp

while it is obvious that
⟨F f , f ⟩=

∫
Ω

| f |p dµ = || f ||pLp(Ω)
.

Now here is an interesting inequality which I will only consider in the case where the
quantities are real valued.

Lemma 75.2.4 Let p > 2. Then for a,b real numbers,(
|a|p−2 a−|b|p−2 b

)
(a−b)≥C |a−b|p

for some constant C independent of a,b.
1It is known that if the space is reflexive, then there is an equivalent norm which is strictly convex. However,

in most examples, this strict convexity is obvious.
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Proof: There is nothing to show if a = b. Without loss of generality, assume a > b.
Also assume p ≥ 2. There is nothing to show if p = 2. I want to show that there exists a
constant C such that for a > b,

|a|p−2 a−|b|p−2 b

|a−b|p−1 ≥C (75.2.6)

First assume also that b≥ 0. Now it is clear that as a→∞, the quotient above converges to
1. Take the derivative of this quotient. This yields

(p−1) |a−b|p−2
|a|p−2 |a−b|−

(
|a|p−2 a−|b|p−2 b

)
|a−b|2p−2

Now remember a > b. Then the above reduces to

(p−1) |a−b|p−2 b
|b|p−2−|a|p−2

|a−b|2p−2

Since b ≥ 0, this is negative and so 1 would be a lower bound. Now suppose b < 0. Then
the above derivative is negative for b < a≤−b and then it is positive for a >−b. It equals
0 when a =−b. Therefore the quotient in 75.2.6 achieves its minimum value when a =−b.
This value is

|−b|p−2 (−b)−|b|p−2 b

|−b−b|p−1 = |b|p−2 −2b

|2b|p−1 = |b|p−2 1

|2b|p−2 =
1

2p−2 .

Therefore, the conclusion holds whenever p≥ 2. That is(
|a|p−2 a−|b|p−2 b

)
(a−b)≥ 1

2p−2 |a−b|p .

This proves the lemma.
This holds for p > 1 also, but I don’t remember how to show this at this time.
However, in the context of strictly convex norms on the reflexive Banach space X , the

following important result holds. I will give it for the case where p = 2 since this is the
case of most interest.

Theorem 75.2.5 Let X be a reflexive Banach space and X ,X ′ have strictly convex norms
as discussed above. Let F be the duality map with p = 2. Then F is strictly monotone. This
means

⟨Fu−Fv,u− v⟩ ≥ 0

and it equals 0 if and only if u− v.

Proof: First why is it monotone? By definition of F, ⟨F (u) ,u⟩ = ∥u∥2 and ∥F (u)∥ =
∥u∥. Then

|⟨Fu,v⟩|=
∣∣∣∣〈Fu,

v
∥v∥

〉∣∣∣∣∥v∥ ≤ ∥Fu∥∥v∥= ∥u∥∥v∥
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Hence

⟨Fu−Fv,u− v⟩ = ∥u∥2 +∥v∥2−⟨Fu,v⟩−⟨Fv,u⟩
≥ ∥u∥2 +∥v∥2−2∥u∥∥v∥ ≥ 0

Now suppose ∥x∥= ∥y∥= 1 but x ̸= y. Then〈
Fx,

x+ y
2

〉
≤
∥∥∥∥x+ y

2

∥∥∥∥< ∥x∥+∥y∥2
= 1

It follows that
1
2
⟨Fx,x⟩+ 1

2
⟨Fx,y⟩= 1

2
+

1
2
⟨Fx,y⟩< 1

and so
⟨Fx,y⟩< 1

For arbitrary x,y, x/∥x∥ ̸= y/∥y∥

⟨Fx,y⟩= ∥x∥∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
It is easy to check that F (αx) = αF (x) . Therefore,

|⟨Fx,y⟩|= ∥x∥∥y∥
〈

F
(

x
∥x∥

)
,

(
y
∥y∥

)〉
< ∥x∥∥y∥

Now say that x ̸= y and consider

⟨Fx−Fy,x− y⟩

First suppose x = αy. Then the above is

⟨F (αy)−Fy,(α−1)y⟩ = (α−1)
(
⟨F (αy) ,y⟩−∥y∥2

)
= (α−1)

(
⟨αF (y) ,y⟩−∥y∥2

)
= (α−1)2 ∥y∥2 > 0

The other case is that x/∥x∥ ̸= y/∥y∥ and in this case,

⟨Fx−Fy,x− y⟩= ∥x∥2 +∥y∥2−⟨Fx,y⟩−⟨Fy,x⟩

> ∥x∥2 +∥y∥2−2∥x∥∥y∥ ≥ 0

Thus F is strictly monotone as claimed. ■
Another useful observation about duality maps for p = 2 is that

∥∥F−1y∗
∥∥

V = ∥y∗∥V ′ .
This is because

∥y∗∥V ′ =
∥∥FF−1y∗

∥∥
V ′ =

∥∥F−1y∗
∥∥

V

also from similar reasoning,〈
y∗,F−1y∗

〉
=
〈
FF−1y∗,F−1y∗

〉
=
∥∥F−1y∗

∥∥2
V = ∥y∗∥2

V ′
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Chapter 76

Implicit Stochastic Equations
76.1 Introduction

In this chapter, implicit evolution equations are considered. These are of the form

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(t,ω) ,ω)ds =

∫ t

0
f (s)ds+B

∫ t

0
ΦdW

the term on the end being a stochastic integral. The novelty is in allowing B to be an
operator which could vanish or have other interesting features. Thus the integral equation
could degenerate to a non stochastic elliptic equation. This generalization of evolution
equations has proven useful in the study of deterministic evolution equations and we give
some interesting examples which indicate that this may be true in the case of stochastic
equations also. In any case, it is an interesting generalization and equations of the usual
form are recovered by using a Gelfand triple in which B = I.

Like deterministic equations, there are many ways to consider stochastic equations.
Here it is based on an approach due to Bardos and Brezis [14] which avoids the consider-
ation of finite dimensional problems. A generalized Ito formula is summarized in the next
section. It is Theorem 76.2.3.

76.2 Preliminary Results
Let X have values in W and satisfy the following

BX (t) = BX0 +
∫ t

0
Y (s)ds+B

∫ t

0
Z (s)dW (s) , (76.2.1)

X0 ∈ L2 (Ω;W ) and is F0 measurable, where Z is L2
(
Q1/2U,W

)
progressively measurable

and
∥Z∥L2([0,T ]×Ω,L2(Q1/2U,W)) < ∞.

This is what is needed to define the stochastic integral in the above formula. Here Q is
a nonnegative self adjoint operator defined on a separable real Hilbert space U . In what
follows, J will denote a one to one Hilbert Schmidt operator mapping Q1/2U into another
separable Hilbert space U1. For more explanation on this situation see [108].

Assume X ,Y satisfy

X ∈ K ≡ Lp ([0,T ]×Ω;V ) ,Y ∈ K′ = Lp′ ([0,T ]×Ω;V ′
)

where 1/p′+1/p = 1, p > 1, and X ,Y are progressively measurable into V and V ′ respec-
tively.

The sense in which the equation 76.2.1 holds is as follows. For a.e. ω, the equation
holds in V ′ for all t ∈ [0,T ]. Assume that

X ∈ L2 ([0,T ]×Ω,W ) ,

BX ∈ L2 ([0,T ]×Ω,B ([0,T ])×F ,W ′
)
, X ∈ Lp ([0,T ]×Ω,B ([0,T ])×F ,V )

2535
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Note that, since X is progressively measurable into V, this implies that BX is progressively
measurable into W ′. Also W (t) is a JJ∗ Wiener process on U1 in the following diagram.
(W is a cylindrical Wiener process.)

U
↓ Q1/2

U1 ⊇ JQ1/2U J←
1−1

Q1/2U

↓ Φ

W

We will also make use of the following generalization of familiar concepts from Hilbert
space.

Lemma 76.2.1 Suppose V,W are separable Banach spaces, W also a Hilbert space such
that V is dense in W and B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′.

Then in the above situation, we have the following fundamental estimate.

Lemma 76.2.2 In the above situation where, off a set of measure zero, 76.2.1 holds for all
t ∈ [0,T ], and X is progressively measurable into V ,

E

(
sup

t∈[0,T ]
⟨BX ,X⟩(t)

)
< C

(
||Y ||K′ , ||X ||K , ||Z||J ,∥⟨BX0,X0⟩∥L1(Ω)

)
< ∞.

where ⟨BX ,X⟩(t) = ⟨B(X (t)) ,X (t)⟩ a.e. and ⟨BX ,X⟩ is progressively measurable and
continuous in t.

J = L2
(
[0,T ]×Ω;L2

(
Q1/2U ;W

))
,K ≡ Lp ([0,T ]×Ω;V ) ,

K′ ≡ Lp′ ([0,T ]×Ω;V ′
)
.
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Also, C is a continuous function of its arguments and C (0,0,0,0) = 0. Thus for a.e. ω,

sup
t∈[0,T ]

⟨BX ,X⟩(t)≤C (ω)< ∞.

For a.e. ω, t→ BX (t,ω) is weakly continuous with values in W ′ for t off a set of measure
zero. Also t→ ⟨BX (t) ,X (t)⟩ is lower semicontinuous off a set of measure zero.

Then from this fundamental lemma, the following Ito formula is valid. The proof of
this theorem follows the same methods used for a similar result in [108].

Theorem 76.2.3 Off a set of measure zero, for every t ∈ [0,T ] ,

⟨BX ,X⟩(t) = ⟨BX0,X0⟩+
∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+2
∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW (76.2.2)

Also
E (⟨BX ,X⟩(t)) =

E (⟨BX0,X0⟩)+E
(∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds
)

(76.2.3)

The quadratic variation of the stochastic integral is dominated by

C
∫ t

0
∥Z∥2

L2
∥BX∥2

W ′ ds (76.2.4)

for a suitable constant C. Also t→ BX (t) is continuous with values in W ′ for t ∈ NC
ω .

We will often abuse the notation and write ⟨BX (t) ,X (t)⟩ instead of the more precise
⟨BX ,X⟩(t). No harm is done because these two are equal a.e.

In addition to the above, we will use the following basic theorems about nonlinear
operators. This is Proposition 75.1.8 above.

Proposition 76.2.4 Suppose A : V → V ′ is type M, see [91], and suppose L : V → V ′ is
monotone, bounded and linear. Here V is a separable reflexive Banach space. Then L+A
is type M.

As an important example, we give the following definition.

Definition 76.2.5 Let f : [0,T ]×Ω→V

τh f (t,ω)≡
{

f (t−h,ω) if t ≥ h
0 if t < h
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Then letting B be a monotone nonnegative, self adjoint operator, B : W →W ′ for W a
separable Hilbert space, consider the linear operator L : L2 (0,T,W )≡W → L2 (0,T,W ′)≡
W ′ given as

Lu≡
(

I− τh

h

)
Bu.

Is it the case that L is monotone? Clearly it is linear and so it suffices to consider ⟨Lu,u⟩W ′,W
which equals

1
h

∫ T

0
⟨Bu(t) ,u(t)⟩dt− 1

h

∫ T

h
⟨Bu(t−h) ,u(t)⟩dt

=
1
h

∫ T

0
⟨Bu(t) ,u(t)⟩dt− 1

h

∫ T−h

0
⟨Bu(t) ,u(t +h)⟩dt

≥ 1
h

∫ T

0
⟨Bu(t) ,u(t)⟩dt

−1
h

∫ T−h

0

(
1
2
⟨Bu(t) ,u(t)⟩+ 1

2
⟨Bu(t +h) ,u(t +h)⟩

)
dt

=
1

2h

∫ T−h

0
⟨Bu(t) ,u(t)⟩dt +

1
h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt

− 1
2h

∫ T−h

0
⟨Bu(t +h) ,u(t +h)⟩dt

=
1

2h

∫ T−h

0
⟨Bu(t) ,u(t)⟩dt +

1
h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt

− 1
2h

∫ T

h
⟨Bu(t) ,u(t)⟩dt

=
1

2h

∫ T−h

h
⟨Bu(t) ,u(t)⟩dt +

1
2h

∫ h

0
⟨Bu(t) ,u(t)⟩dt

+
1
h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt− 1

2h

∫ T

h
⟨Bu(t) ,u(t)⟩dt

=
1
2h

∫ T−h

h
⟨Bu(t) ,u(t)⟩dt +

1
h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt

− 1
2h

∫ T−h

h
⟨Bu(t) ,u(t)⟩dt

+
1

2h

∫ h

0
⟨Bu(t) ,u(t)⟩dt− 1

2h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt

=
1

2h

∫ T

T−h
⟨Bu(t) ,u(t)⟩dt +

1
2h

∫ h

0
⟨Bu(t) ,u(t)⟩dt ≥ 0 (76.2.5)

The following is a restatement of Theorem 75.1.13
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Theorem 76.2.6 Let A : V →V ′ be type M, bounded, and coercive

lim
∥u∥→∞

⟨A(u+u0) ,u⟩
∥u∥

= ∞, (76.2.6)

for some u0 ∈V , where V is a separable reflexive Banach space. Then A is surjective.

In addition, there is a fundamental definition and theorem about weak derivatives which
will be used.

Definition 76.2.7 Let f ∈ L1 (a,b,V ′) where V ′ is the dual of a Banach space V . Let
D∗ (a,b) linear mappings from C∞

c (a,b) to V ′. Then we can consider f ∈ D∗ (a,b) , the
linear transformations defined on C∞

c (a,b) as follows.

f (φ)≡
∫ b

a
f φds

This is well defined due to regularity considerations for Lebesgue measure. Then define
D f ∈D∗ (a,b) by

D f (φ)≡−
∫ b

a
f φ
′ds

To say that D f ∈ L1 (a,b,V ′) is to say that there exists g ∈ L1 (a,b,V ′) such that

D f (φ)≡−
∫ b

a
f φ
′ds =

∫ b

a
gφds

for all φ ∈C∞
c (a,b). Note that regularity considerations imply that g is unique if it exists.

The following is Theorem 69.2.9.

Theorem 76.2.8 Suppose that f and D f are both in L1 (a,b,V ′). Then f is equal to a
continuous function a.e., still denoted by f and

f (x) = f (a)+
∫ x

a
D f (t)dt.

In the next section are theorems about how shifts in time relate to progressive measur-
ability.

76.3 The Existence Of Approximate Solutions
The situation is as follows. There are spaces V ⊆W where V is a reflexive separable Banach
space and W is a separable Hilbert space. It is assumed that V is dense in W. Define the
spaces

V ≡ Lp ([0,T ]×Ω,V ) , W ≡ L2 ([0,T ]×Ω,W )

where in each case, the σ algebra of measurable sets will be the progressively measurable
sets. Thus, from the Riesz representation theorem,

V ′ = Lp′ ([0,T ]×Ω,V ′
)
, W ′ = L2 ([0,T ]×Ω,W ′

)
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It will be assumed for the sake of convenience that p≥ 2. It follows that

V ⊆W , W ′ ⊆ V ′

The entire presentation will be based on the following lemma.

Lemma 76.3.1 Let V ≡ Lp ([0,T ]×Ω,V ) where V is a separable Banach space and the
σ algebra of measurable sets consists of those which are progressively measurable. Then
for h ∈ (0,T ) , τh : V → V .

Proof: First consider Q which is a progressively measurable set. Is it the case that
τhXQ is also progressively measurable? Define Q+h as

Q+h≡ {(t +h,ω) : (t,ω) ∈ Q}

Then

τhXQ (t,ω) =

{
XQ+h (t,ω) if t ≥ h
0 if t < h

Is this function progressively measurable? For (s,ω) ∈ [0, t]×Ω, we have the following

0 < α ≤ 1, [(s,ω) : τhXQ (s,ω)≥ α] = [h, t]×Ω∩ (Q+h)

α > 1, [(s,ω) : τhXQ (s,ω)≥ α] = /0 ∈B ([0, t])×Ft

α ≤ 0, [(s,ω) : τhXQ (s,ω)≥ α] = [0, t]×Ω ∈B ([0, t])×Ft

It suffices to show that for t ≥ h, [h, t]×Ω∩ (Q+h) is B ([0, t])×Ft measurable. It is
known that [0, t]×Ω∩Q is B ([0, t])×Ft measurable and also that [0, t−h]×Ω∩Q is
B ([0, t−h])×Ft−h measurable. Let

G ≡{Q ∈B ([0, t−h])×Ft−h : [h, t]×Ω∩Q+h ∈B ([0, t])×Ft}

First consider I×B where I is an interval in B ([0, t−h]) and B ∈Ft−h. Then

[h, t]×Ω∩
=h+I×B

(I +h)×B = I′×B

where I′ is in B ([0, t]) and of course B ∈Ft−h ⊆Ft . Thus the sets of this form, are in G .
Next suppose Q ∈ G . Is QC ∈ G ?(

[h, t]×Ω∩
(
QC +h

))
∪ [h, t]×Ω∩ (Q+h)∪ [0,h)×Ω = [0, t]×Ω

Then all of these disjoint sets but the first are in B ([0, t])×Ft . It follows that the first is
also in B ([0, t])×Ft . It is clear that G is also closed with respect to countable disjoint
unions. Therefore, G contains the π system of sets of the form I×B just described. It
follows that G = B ([0, t−h])×Ft−h.

Now if Q is progressively measurable, then [0, t−h]×Ω∩Q is B ([0, t−h])×Ft−h
measurable and so from what was just shown, [h, t]×Ω∩Q+ h ∈B ([0, t])×Ft . Thus
τhXQ is progressively measurable. It follows that if f ∈ V , you could consider φ ( f ) for
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φ ∈ V ′ and the positive and negative parts of this function. Each of these is the limit of
a sequence of simple functions involving combinations of indicator functions of the form
XQ. Thus τhφ ( f ) = φ (τh f ) is the limit of simple functions involving combinations of
functions τhXQ and, as just shown, these simple functions are progressively measurable.
Thus τh f is also progressively measurable by the Pettis theorem. ■

This Lemma states that you can do τh to progressively measurable functions and end
up with one which is progressively measurable. Let

B ∈L
(
W,W ′

)
satisfy

⟨Bx,y⟩= ⟨By,x⟩ , ⟨Bx,x⟩ ≥ 0 (76.3.7)

Also suppose that

A is monotone and hemicontinuous from V to V ′ (76.3.8)

This means the operator is monotone:

⟨Au−Au,u− v⟩V ′,V ≥ 0

and hemicontinuous:
lim
t→0
⟨A(u+ tv) ,w⟩V ′,V = ⟨Au,w⟩V ′,V

Also we assume that A is bounded and takes the form

Au(t,ω) = A(t,u(t,ω) ,ω)

for u ∈ V . Such an operator is type M and this is what we use. Such an operator is defined
by:

If un→ u weakly in V and Aun→ ξ weakly in V ′ and lim sup
n→∞

⟨Aun,un⟩ ≤ ⟨ξ ,u⟩

Then the above implies
Au = ξ .

We define Vω as Lp (0,T,V ) with the definition of V ′ω similar, the subscript denoting
that ω is fixed, the σ algebra of measurable sets being the Borel sets, B ([0,T ]). Also,

(t,u,ω)→ A(t,u,ω) (76.3.9)

is progressively measurable.
Suppose A(ω) is monotone and hemicontinuous and bounded from Vω to V ′ω . Thus

A(ω) is type M from Vω to V ′ω (76.3.10)

where
A(ω)u≡ A(t,u,ω)

We assume the estimates found in the next lemma.
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Lemma 76.3.2 If p≥ 2 and

⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.3.11)

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.3.12)

where c≥ 0, c ∈ L1 ([0,T ]×Ω) , then if (t,ω)→ q(t,ω) is in V ,, it follows that for a.e. ω,
similar inequalities hold for Ā given by

Ā(t,u,ω)≡ A(t,u+q(t,ω) ,ω) (76.3.13)

Proof: Letting q be progressively measurable, q(t,ω) ∈ V only consider ω such that
t→ q(t,ω) is in Lp (0,T,V ). 〈

Ā(t,u,ω) ,u
〉
=

⟨A(t,u+q(t,ω) ,ω) ,u⟩ = ⟨A(t,u+q(t,ω) ,ω) ,u+q(t,ω)⟩
−⟨A(t,u+q(t,ω) ,ω) ,q(t,ω)⟩

≥ δ ∥u+q(t,ω)∥p
V − k∥u+q(t,ω)∥p−1

V ∥q(t,ω)∥V − c1/p′ (t,ω)∥q(t,ω)∥V − c(t,ω)

≥ δ ∥u+q(t,ω)∥p
V − k∥u+q(t,ω)∥p−1

V ∥q(t,ω)∥V −∥q(t,ω)∥p
V −2c(t,ω)

≥ δ

2
∥u+q(t,ω)∥p

V −C (k,δ ,T )∥q(t,ω)∥p
V −2c(t,ω)

Now
∥u+q(t,ω)∥ ≥ ∥u∥−∥q(t,ω)∥

and so by convexity,

∥u+q(t,ω)∥p +∥q(t,ω)∥p

2
≥
(
∥u+q(t,ω)∥+∥q(t,ω)∥

2

)p

≥
(
∥u∥

2

)p

This implies

∥u+q(t,ω)∥p ≥ 2
(
∥u∥p

2p −
∥q(t,ω)∥p

2

)
Therefore, 〈

Ā(t,u,ω) ,u
〉
=

⟨A(t,u+q(t,ω) ,ω) ,u⟩ ≥ δ

2

(
2
(
∥u∥p

2p −
∥q(t,ω)∥p

2

))
−C (k,δ ,T )∥q(t,ω)∥p

V −2c(t,ω)

≥ δ

2p ∥u∥
p− c′ (t,ω)

where c′ ∈ L1 ([0,T ]×Ω).
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Consider the other inequality. Let ∥z∥V ≤ 1.Then

|⟨A(t,u+q(t,ω) ,ω) ,z⟩| ≤ k∥u+q(t,ω)∥p−1 + c1/p′ (t,ω)

Since p≥ 2, a convexity argument shows that

⟨A(t,u+q(t,ω) ,ω) ,z⟩ ≤ k
(

2p−2 ∥u∥p−1 +2p−2 ∥q(t,ω)∥p−1
)
+ c1/p′ (t,ω)

= 2p−2k∥u∥p−1 +(c̄(t,ω))1/p′

where c̄ ∈ L1 ([0,T ]×Ω). Thus the same two inequalities continue to hold. ■
In what follows, c≥ 0 and is in L1 ([0,T ]×Ω) , the σ algebra being B ([0,T ])×FT .

⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.3.14)

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.3.15)

Letting Ā be defined above in 76.3.13,

Ā(t,u,ω)≡ A(t,u+q,ω)≡ Ā(ω)(t,u)

Assume the following pathwise uniqueness condition which is the hypothesis of the fol-
lowing lemma.

Lemma 76.3.3 Suppose it is true that whenever u,v ∈ Vω and

Bu(t)−Bv(t)+
∫ t

0
A(u)−A(v) = 0 (76.3.16)

it follows that u = v. Then if

(Bu)′+ Ā(ω)u = f in V ′ω , Bu(0) = Bu0

(Bv)′+ Ā(ω)v = f in V ′ω , Bv(0) = Bu0 (76.3.17)

it follows that u = v in Vω . Here u0 ∈W.

Proof: If (Bu)′+ Ā(ω)u = f and (Bv)′+ Ā(ω)v = f , then

Bu(t)−Bv(t)+
∫ t

0
A(u+q)−A(v+q)ds = 0

Hence

B(u(t)+q(t))−B(v(t)+q(t))+
∫ t

0
A(u+q)−A(v+q)ds = 0

and so u+q = v+q showing that u = v. ■
We give the following measurability lemma.
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Lemma 76.3.4 Suppose fn is progressively measurable and converges weakly to f̄ in

Lα ([0,T ]×Ω,X ,B ([0,T ])×FT ) , α > 1

where X is a reflexive separable Banach space. Also suppose that for each ω /∈ N a set of
measure zero,

fn (·,ω)→ f (·,ω) weakly in Lα (0,T,X)

Then there is an enlarged set of measure zero, still denoted as N such that for ω /∈ N,

f̄ (·,ω) = f (·,ω) in Lα (0,T,X) .

Also f̄ is progressively measurable.

Proof: By the Pettis theorem, f̄ is progressively measurable. Letting

φ ∈ Lα ′ ([0,T ]×Ω,X ′,B ([0,T ])×FT
)
,

it is known that for a.e. ω,∫ T

0
⟨φ (t,ω) , fn (t,ω)⟩dt→

∫ T

0
⟨φ (t,ω) , f (t,ω)⟩dt

Therefore, the function of ω on the right is at least FT measurable. Now let

g ∈ L∞
(
Ω,X ′,FT

)
and let ψ ∈C ([0,T ]). Then for 1 < p≤ α,∫

Ω

∣∣∣∣∫ T

0
⟨g(ω)ψ (t) , fn (t,ω)⟩dt

∣∣∣∣p dP

≤ C (T )
∫

Ω

∥g∥p
L∞(Ω,X ′)

∫ T

0
|ψ (t)|p ∥ fn (t,ω)∥p

X dtdP

≤ C (T,g,ψ)
∫

Ω

∫ T

0
∥ fn (t,ω)∥p

X dtdP≤C < ∞

for some C. Since
∫ T

0 ⟨g(ω)ψ (t) , fn (t,ω)⟩dt is bounded in Lp (Ω) independent of n
because

∫
Ω

∫ T
0 ∥ fn (t,ω)∥p

X dtdP is given to be bounded, it follows that the functions

ω →
∫ T

0
⟨g(ω)ψ (t) , fn (t,ω)⟩dt

are uniformly integrable and so it follows from the Vitali convergence theorem that∫
Ω

∫ T

0
⟨g(ω)ψ (t) , fn (t,ω)⟩dtdP→

∫
Ω

∫ T

0
⟨g(ω)ψ (t) , f (t,ω)⟩dtdP

But also from the assumed weak convergence to f̄∫
Ω

∫ T

0
⟨g(ω)ψ (t) , fn (t,ω)⟩dtdP→

∫
Ω

∫ T

0

〈
g(ω)ψ (t) , f̄ (t,ω)

〉
dtdP
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It follows that ∫
Ω

〈
g(ω) ,

∫ T

0

(
f − f̄

)
ψ (t)dt

〉
dP = 0

This is true for every such g ∈ L∞ (Ω,X ′) , and so for a fixed ψ ∈C ([0,T ]) and the Riesz
representation theorem, ∫

Ω

∥∥∥∥∫ T

0

(
f − f̄

)
ψ (t)dt

∥∥∥∥
X

dP = 0

Therefore, there exists Nψ such that if ω /∈ Nψ , then

∫ T

0

(
f − f̄

)
ψ (t)dt = 0

Enlarge N, the exceptional set to also include ∪ψ∈DNψ where D is a countable dense subset
of C ([0,T ]). Therefore, if ω /∈N, then the above holds for all ψ ∈C ([0,T ]). It follows that
for such ω, f (t,ω) = f̄ (t,ω) for a.e. t. Therefore, f (·,ω) = f̄ (·,ω) in Lα (0,T,X) for all
ω /∈ N. ■

Then one can obtain the following existence theorem using a technique of Bardos and
Brezis [14].

Lemma 76.3.5 Let q ∈ V and let the conditions 76.3.14 - 76.3.17 be valid. Let f ∈ V ′

be given. Then for each ω off a set of measure zero, there exists u(·,ω) ∈ Vω such that
(Bu)′ (·,ω) ∈ V ′ω and

Bu(0,ω) = 0

and also the following equation holds in V ′ω for a.e. ω

(Bu)′ (·,ω)+ Ā(ω)(·,u(·,ω)) = f (·,ω)

In addition to this, it can be assumed that (t,ω)→ u(t,ω) is progressively measurable into
V . That is, for each ω off a set of measure zero, t → u(t,ω) can be modified on a set of
measure zero in [0,T ] such that the resulting u is progressively measurable.

Proof: Consider the equation

LhBu+ Āu =
1
h
(I− τh)(Bu)+ Āu = f in V ′ (76.3.18)

By Proposition 76.2.4 and Theorem 76.2.6, there exists a solution to the above equation if
the left side is coercive. However, it was shown above in the computations leading to 76.2.5
that Lh ◦B is monotone. Hence the coercivity follows right away from Lemma 76.3.2.

Thus 76.3.18 holds in V ′. It follows that, indexing the solution by h,

∫
Ω

∫ T

0

∥∥∥∥1
h
(I− τh)(Buh)+ Āuh− f

∥∥∥∥p′

V ′
dtdP = 0



2546 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

and so there exists a set of measure zero Nh such that for ω /∈ Nh, the following equation
holds in V ′ω

1
h
(I− τh)(Buh (·,ω))+ Ā(ω)(uh (·,ω)) = f (·,ω)

Let h denote a sequence converging to 0 and let N be a set of measure zero which includes
∪hNh.

Letting uh ∈ V be the above solution to 76.3.18, it also follows from the above esti-
mates 76.3.14 - 76.3.15 that for ω off N, ∥uh (·,ω)∥Vω

is bounded independent of h. Thus,
for such ω off this set, there exists a subsequence still called uh such that the following
convergences hold.

uh ⇀ u in Vω

Ā(ω)uh ⇀ ξ in V ′ω

1
h
(I− τh)(Buh)⇀ ζ in V ′ω

First we need to identify ζ . Let φ ∈C∞ ([0,T ]) where φ = 0 near T and let w ∈V . Then〈∫ T

0
ζ φ ,w

〉
= lim

h→0

〈∫ T

0

1
h
(I− τh)(Buh) ,wφ

〉

= lim
h→0

〈∫ T

0

Buh (t)
h

φ (t)−
∫ T

h

Buh (t−h)
h

φ (t) ,w
〉

= lim
h→0

〈∫ T

0

Buh (t)
h

φ (t)−
∫ T−h

0

Buh (t)
h

φ (t +h) ,w
〉

= lim
h→0

(〈∫ T−h

0
Buh

φ (t)−φ (t +h)
h

,w
〉
+
∫ T

T−h

Buh (t)
h

φ (t)
)

=

〈
−
∫ T

0
Bu(t)φ

′ (t) ,w
〉

Since this holds for all φ ∈ C∞
c (0,T ) , it follows that ζ = (Bu)′. Hence letting φ be an

arbitrary function in C∞ ([0,T ]) which equals zero near T, this implies from the above that〈
−
∫ T

0
ζ φ ,w

〉
=

〈∫ T

0
Bu(t)φ

′ (t) ,w
〉

=

〈∫ T

0

(
Bu(0)+

∫ t

0
(Bu)′ (s)ds

)
φ
′ (t) ,w

〉

=
∫ T

0
⟨Bu(0) ,w⟩φ ′ (t)dt +

〈∫ T

0

∫ t

0
(Bu)′ (s)dsφ

′ (t) ,w
〉

=−⟨Bu(0) ,w⟩φ (0)+
〈∫ T

0
(Bu)′ (s)

∫ T

s
φ
′ (t)dtds,w

〉
=−⟨Bu(0) ,w⟩φ (0)−

〈∫ T

0
(Bu)′ (s)φ (s)ds,w

〉
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Hence, since ζ = (Bu)′ ,
0 =−⟨Bu(0) ,w⟩φ (0)

Then it follows that,⟨Bu(0) ,w⟩= 0. Since w was arbitrary, Bu(0) = 0 and ζ = (Bu)′.
Thus, passing to a limit in 76.3.18,

(Bu)′+ξ = f in V ′ω , Bu(0) = 0

It is desired to identify ξ with Ā(ω)u. First let

Lh ≡
I− τh

h

Then

Lh (Bu)(t) =
{ 1

h
∫ t

t−h (Bu)′ ds if t ≥ h
1
h
∫ t

0 (Bu)′ ds if t < h

Then from standard considerations involving approximate identities,

lim
h→0

Lh (Bu) = (Bu)′ strongly in V ′ω (76.3.19)

Thus 〈
Lh (Buh)− (Bu)′ ,uh−u

〉
=

⟨Lh (Buh)−Lh (Bu) ,uh−u⟩+
〈
Lh (Bu)− (Bu)′ ,uh−u

〉
≥

〈
Lh (Bu)− (Bu)′ ,uh−u

〉
and the above strong convergence implies that this converges to 0. Therefore, from 76.3.18,

LhBuh + Āuh = f in V ′ω

and so
⟨LhBuh,uh−u⟩+

〈
Āuh,uh−u

〉
= ⟨ f ,uh−u⟩

From the above,〈
(Bu)′ ,uh−u

〉
+
〈
Lh (Bu)− (Bu)′ ,uh−u

〉
+
〈
Āuh,uh−u

〉
≤ ⟨ f ,uh−u⟩

and so, taking limsuph→0 of both sides, it follows from 76.3.19 that

lim sup
h→0

〈
Āuh,uh−u

〉
≤ 0, lim sup

h→0

〈
Āuh,uh

〉
≤ ⟨ξ ,u⟩

Since A is monotone and hemicontinuous, the same is true of Ā and so

Āu = ξ

Thus (
(Bu)′ (·,ω)

)
+ Ā(ω)u(·,ω) = f (·,ω) in V ′ω , Bu(0,ω) = 0 (76.3.20)
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It follows from the uniqueness assumption 76.3.17 that for each ω off a set of measure
zero, there exists a unique solution to

(Bu)′ (·,ω)+ Ā(·,u(·,ω) ,ω) = f (·,ω) in V ′ω ,

B(u(·,ω))(0) = 0

You can consider the function of two variables u(t,ω) . Is this function progressively mea-
surable? Right now, this is not clear because we have done nothing more than solve a
problem for each ω .

However, we can at least say that uh is progressively measurable because uh ∈V . Recall
also that

1
h
(I− τh)Buh + Ā(ω)uh = f , uh ∈ V

Next we show that because of uniqueness, one can assume that u is progressively measur-
able. To do this, we show that the sequence for which convergence holds in the above can
be chosen independent of ω .

Claim: A single sequence h→ 0 works for all ω off a set of measure zero.
Proof: Since there is only one solution to the above initial value problem for ω /∈ N,

then letting h→ 0 be a single sequence, one can conclude that uh (·,ω)⇀ u(·,ω) in Vω =
Lp (0,T,V ). Otherwise, from the above argument, one could obtain another subsequence
which converges to a solution different than u(·,ω) which would violate uniqueness.

From the coercivity condition, it follows that there exists a constant C ( f ) depending on
f such that for all h,

∥uh∥V ≤C ( f )

Therefore, there is a further subsequence still denoted by h such that

uh ⇀ ū in Lp ([0,T ]×Ω;V ) (76.3.21)

where the measurable sets are just the product measurable sets B ([0,T ])×FT . Then it
follows from Lemma 76.3.4 that u(·,ω) = ū(·,ω) in Vω for all ω off a set of measure zero.
It follows that in all of the above, we could substitute ū for u at least for ω off a single set
of measure zero. Thus u can be assumed progressively measurable. ■

Note the importance of path uniqueness in obtaining the result on progressive measur-
ability of the solutions.

We will write u rather than ū to save notation. Now with this lemma, it is easy to obtain
the following proposition.

Proposition 76.3.6 Let q ∈ V such that t → q(t,ω) is continuous and q(0,ω) = 0, and
let the conditions 76.3.14 - 76.3.17 be valid. Also let u0 ∈ L2 (Ω,V ) such that u0 is F0
measurable. Let f ∈ V ′ be given. Then for each ω off a set of measure zero, there exists
u(·,ω) ∈ Vω such that (Bu)′ (·,ω) ∈ V ′ω and

Bu(0,ω) = Bu0

and also the following equation holds in V ′ω for a.e. ω

(Bu−Bq)′ (·,ω)+A(·,u(·,ω) ,ω) = f (·,ω)
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In addition to this, it can be assumed that (t,ω)→ u(t,ω) is progressively measurable into
V . That is, for each ω off a set of measure zero, t → u(t,ω) can be modified on a set of
measure zero in [0,T ] such that the resulting u is progressively measurable. Then one also
obtains that u is the unique solution to the integral equation which holds for a.e. ω

Bu(t,ω)−Bu0 +
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f (s,ω)ds+Bq(t,ω) (76.3.22)

Proof: Recall
Ā(ω)(t,u)≡ A(t,u+q(t,ω) ,ω)

where q was in V . Therefore, replace this definition of Ā with

Ā(ω)(t,u)≡ A(t,u+q(t,ω)+u0,ω)

Then from Lemma 76.3.5, there exists w ∈ V such that

(Bw)′ (·,ω)+A(·,w(·,ω)+q(·,ω)+u0 (ω) ,ω) = f (·,ω) , Bw(0) = 0

Let u(t,ω) = w(t,ω)+q(t,ω)+u0 (ω) . Then for fixed ω, Bu(0) = Bw(0)+Bu0 = Bu0.
Also

(B(u−q))′+A(·,u,ω) = f (·,ω) , Bu(0) = Bu0

Then an integration yields 76.3.22. Uniqueness follows from the above uniqueness as-
sumption 76.3.17. ■

One can easily generalize this using an exponential shift argument.

Corollary 76.3.7 Suppose the situation of the above proposition but that all that is known
is that λB+A is monotone and hemicontinuous on Vω and V for all λ sufficiently large.
Then defining

⟨Aλ (t,w,ω) ,v⟩V ′,V ≡
〈

e−λ tA
(

t,eλ tw,ω
)
,v
〉

V ′,V

for such λ , it follows that λB+ Aλ is also monotone and hemicontinuous. Then replace the
coercivity, and boundedness conditions above with the following weaker conditions

λ ⟨Bu,u⟩+ ⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.3.23)

for all λ large enough.

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.3.24)

where c ∈ L1 ([0,T ]×Ω) , c ≥ 0. Then the conclusion of Proposition 76.3.6 is still valid.
There exists a unique u ∈ V such that for a.e. ω,

(Bu−Bq)′ (·,ω)+A(ω)(u(·,ω)) = f (·,ω) , B(u−q)(0) = Bu0 (76.3.25)

Proof: That λB+Aλ is monotone and hemicontinuous follows from the definition.
Also, from the above estimates,

λ ⟨Bu,u⟩+ ⟨Aλ (t,u,ω) ,u⟩V ≥ e−2λ t
(

λ

〈
B
(

eλ tu
)
,eλ tu

〉
+
〈

A
(

t,eλ tu,ω
)
,eλ tu

〉)
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≥ e−2λ t
(

δ

∥∥∥eλ tu
∥∥∥p

V
− c(t,ω)

)
≥ e−2λ t

(
δ

∥∥∥eλ tu
∥∥∥p

V
− eλ pte−λ ptc(t,ω)

)
≥ e−2λ tepλ t

(
δ ∥u∥p

V − e−λ ptc(t,ω)
)
≥ δ ∥u∥p

V − e−λ ptc(t,ω)

which is of the right form.
Similarly

∥λBw+Aλ (t,w,ω)∥V ′ ≤ ∥λBw∥V ′ +
∥∥∥e−λ tA

(
t,eλ tw,ω

)∥∥∥
V ′

≤ λ ∥B∥∥w∥V + e−λ t
∥∥∥A
(

t,eλ tw,ω
)∥∥∥

V ′

≤ λ ∥B∥∥w∥V + e−λ tk
∥∥∥eλ tw

∥∥∥p−1
+ e−λ tc1/p′ (t,ω)

Since p≥ 2, this is no larger than

≤ (λ ∥B∥)p/(p−p′) +∥w∥p−1
V + e(p−1)λ te−λ tk∥w∥p−1

V + e−λ tc1/p′ (t,ω)

≤
(

e(p−2)λT k+1
)
∥w∥p−1

V + e−λ tc1/p′ (t,ω)+(λ ∥B∥)p/(p−p′)

≡ k̄∥w∥p−1
V + c̄(t,ω)1/p′

Now note that w is a solution to

B
(

w− e−λ (·)q
)′
+λBw+ e−λ (·)A

(
t,eλ (·)w,ω

)
= e−λ (·) f (·,ω)+λBe−λ (·)q(·,ω) in Vω

B
(

w− e−λ (·)q
)
(0) = Bu0

if and only if u(t)≡ eλ tw(t) is a solution to

(B(u−q))′+A(t,u,ω) = f (·,ω) , B(u−q)(0) = Bu0

Thus the necessary uniqueness condition holds for the initial value problem for w and
hence it follows from Proposition 76.3.6 that there exists a unique progressively measurable
solution to the initial value problem for w and hence a unique progressively measurable
solution to the above one for u. ■

Now suppose the situation of the above corollary and let E be a separable Hilbert space
which is dense in V and let

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,E

))
, Φ being progressively measurable,

so that one can consider the stochastic integral
∫ t

0 ΦdW. Let

τn ≡ inf
{

t :
∥∥∥∥∫ t

0
ΦdW

∥∥∥∥
E
> 2n

}
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Thus ∥∥∥∥∫ t∧τn

0
ΦdW

∥∥∥∥
E
≤ 2n

Then you could pick u0 ∈ Lp (Ω,V ) ,u0 being F0 measurable, and let

q(t,ω) =
∫ t∧τn

0
ΦdW.

The result is clearly in V and is continuous in t. Therefore, from Corollary 76.3.7, there
exists a unique solution u ∈ V to the initial value problem(

Bu−B
∫ t∧τn

0
ΦdW

)′
(·,ω)+A(ω)(u(·,ω)) = f (·,ω) , Bu(0) = Bu0

Integrating, one obtains a unique solution un ∈ V to the integral equation

Bun (t,ω)−Bu0 (ω)+
∫ t

0
A(s,un,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t∧τn

0
ΦdW

This holds in V ′ω and is so for all ω off a set of measure zero Nn. Let N = ∪nNn. For
ω /∈ N, t →

∫ t
0 ΦdW is continuous and so for all n large enough, τn = ∞. Thus for a fixed

ω, it follows that for all n large enough τn = ∞ and so one obtains

Bun (t,ω)−Bu0 (ω)+
∫ t

0
A(s,un,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW

Then for k some other index sufficiently large, the same holds for uk. By the uniqueness
assumption 76.3.17, uk (t,ω) = un (t,ω) and so it follows that limn→∞ un (t,ω) exists be-
cause for each ω off a set of measure zero, there is eventually no change in un. Defining
u(t,ω) ≡ limn→∞ un (t,ω) ≡ un (t,ω) for all n large enough, it follows that u is progres-
sively measurable since it is the pointwise limit of progressively measurable functions and

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW

This has shown the following lemma.

Lemma 76.3.8 Let (t,u,ω)→ A(t,u,ω) be progressively measurable into V ′ and suppose
for some λ ,

λB+A(ω) : Vω → V ′ω ,

λB+A : V → V ′

are both monotone bounded and hemicontinuous. Also suppose the two estimates giving
boundedness and coercivity 76.3.23 - 76.3.24 of Corollary 76.3.7 above. Here V,W are
as described above V ⊆W,W ′ ⊆V ′, W is a separable Hilbert space and V is a separable
reflexive Banach space. B : W →W ′ is nonnegative and self adjoint. Let f ∈ V ′ and let
u0 ∈ Lp (Ω,V ) where u0 is F0 measurable. Then if Φ ∈ L2

(
[0,T ]×Ω,L2

(
Q1/2U,E

))
, Φ
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being progressively measurable, into E, where E is a Hilbert space dense in V with ∥u∥E ≥
∥u∥V , then there exists a unique solution to the integral equation

Bu(t)−Bu0 +
∫ t

0
A(s,u,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW

in the sense that u is in V and there exists a set of measure zero N such that if ω /∈ N, then
the above integral equation holds for all t.

76.4 The General Case
Suppose λB+A(ω) ,λB+A are both monotone bounded and hemicontinuous on Vω and
V respectively for λ sufficiently large. Also suppose the two estimates giving boundedness
and coercivity 76.3.23 - 76.3.24 of Corollary 76.3.7 above. We strengthen the assumption
that λB+A(ω) is monotone as follows. In the usual case where B is the identity, this
conclusion is obvious, but here we need to assume it.

⟨(λB+A(ω))(u)− (λB+A(ω))(v) ,u− v⟩ ≥ δ ∥u− v∥α

U , α ≥ 1 (76.4.26)

where here U is a reflexive Banach space such that V ⊆U and the inclusion map is con-
tinuous, V being dense in U . In regards to this monotonicity condition, here is a simple
lemma which will be used later.

Lemma 76.4.1 Suppose un→ w weakly in Vω and that for a.e.t,un (t)→ u(t) in U. Then
w(t) = u(t) a.e.

Proof: You know that ∥un∥Lp([0,T ],V ) is bounded. Now consider φ ∈ U ′ and ψ ∈
C ([0,T ]) . Then the weak convergence implies

lim
n→∞

∫ T

0
⟨φ ,un⟩U ′,U ψdt =

∫ T

0
⟨φ ,w⟩U ′,U ψdt

because it is also the case that un → w weakly in Lp ([0,T ] ,U) . However, the fact that
∥un∥Lp([0,T ],V ) is bounded means that, by the assumed pointwise convergence,

lim
n→∞

∫ T

0
⟨φ ,un⟩U ′,U ψdt =

∫ T

0
⟨φ ,u⟩U ′,U ψdt

It follows that ∫ T

0
⟨φ ,u−w⟩ψdt = 0

Since this is true for all ψ ∈C ([0,T ]) , there exists a set of measure zero Qφ such that for
t /∈ Qφ ,

⟨φ ,u(t)−w(t)⟩= 0

Letting Q = ∪φ∈DQφ , where D is a countable dense subset of U ′, it follows that for t /∈ Q,
the above holds for all φ ∈U ′. Hence u(t) = w(t) for t /∈ Q and m(Q) = 0. ■

Typically α = 2 and U = W .
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Recall that
V ⊆W, W ′ ⊆V ′

each space dense in the one to its right and the inclusion maps are continuous.
Assume only

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,W

))
.

By density of E into W, there exists a sequence

Φn ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,E

))
such that

∥Φn−Φ∥L2([0,T ]×Ω,L2(Q1/2U,W))→ 0,

∥Φn∥L2(Q1/2U,W) ≤ ∥Φ∥L2(Q1/2U,W) .

Also let u0n ∈ Lp (Ω,V ) where u0n is F0 measurable and such that u0n ∈ Lp (Ω,V ) and

∥u0n (ω)−u0 (ω)∥W → 0, ⟨Bu0n,u0n⟩ ≤ 2⟨Bu0,u0⟩

for each ω . The existence of such an approximating sequence follows from density con-
siderations of E into V and of V into W .

By Lemma 76.3.8 there is a solution un to the integral equation

Bun (t)−Bu0n +
∫ t

0
A(s,un,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦndW (76.4.27)

Then by the Implicit Ito formula there is a set of measure zero such that for all n,m

1
2
⟨B(un−um) ,un−um⟩(t)−

1
2
⟨Bu0n−Bu0m,u0n−u0m⟩

+δ

∫ t

0
∥un−um∥α

U ds

≤ λ

∫ t

0
⟨B(un−um) ,un−um⟩(s)ds

+
1
2

∫ t

0
⟨B(Φn−Φm) ,Φn−Φm⟩L2

ds+Mmn (t)

Also the last term is a martingale whose quadratic variation satisfies

[Mmn] (t)≤C
∫ t

0
∥Φn−Φm∥2

L2(Q1/2U,W) ∥B(un−um)∥2
W ′ ds

≤C
∫ t

0
∥Φn−Φm∥2

L2(Q1/2U,W) ⟨Bun−Bum,un−um⟩ds
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Then from Gronwall’s inequality, and adjusting the constants,

⟨B(un−um) ,un−um⟩(t)+
∫ t

0
∥un−um∥α

U ds

≤ C (u0n−u0m,Φn−Φm)+C (T )M∗mn (t)

where the expectation of the first constant on the right converges to 0 as m,n→ ∞. Here

M∗nm (t) = sup
s∈[0,t]

|Mnm (t)|

Since M∗ is increasing, this implies that after adjusting constants,

sup
s∈[0,t]

(
⟨B(un−um) ,un−um⟩(s)+

∫ t

0
∥un−um∥α

U ds
)

≤ C (u0n−u0m,Φn−Φm)+C (T )M∗mn (t)

Then taking expectations and using the Burkholder Davis Gundy inequality,

E

(
sup

s∈[0,t]

(
⟨B(un−um) ,un−um⟩(s)+

∫ t

0
∥un−um∥α

U ds
))

≤ C (u0n−u0m,Φn−Φm)+

C (T )
∫

Ω

(∫ t

0
∥Φn−Φm∥2

L2(Q1/2U,W) ⟨B(un−um) ,un−um⟩ds
)1/2

dP

≤ Cn,m +2C
∫

Ω

sup
s∈[0,t]

⟨B(un−um) ,un−um⟩1/2 (s) ·

(∫ t

0
∥Φn−Φm∥2

L2(Q1/2U,W)

)1/2

dP

Then adjusting the constants,

E

(
sup

s∈[0,t]

(
⟨B(un−um) ,un−um⟩(s)+

∫ t

0
∥un−um∥α

U ds
))

≤Cn,m +C
∫

Ω

∫ T

0
∥Φn−Φm∥2

L2(Q1/2U,W) dtdP≡Cn,m

where Cn,m→ 0 as n,m→ ∞. In particular, it is true for t = T

E

(
sup

s∈[0,T ]
⟨B(un−um) ,un−um⟩(s)+

∫ T

0
∥un−um∥α

U ds

)
≤Cn,m

Then

P

(
sup

s∈[0,T ]
⟨B(un−um) ,un−um⟩(s)+

∫ T

0
∥un−um∥α

U ds≥ λ

)
≤

Cn,m

λ
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Now take a subsequence such that if m> nk,Cnk,m < 4−k. Then the above inequality implies
that

P
(

sups∈[0,T ] ⟨B(un−um) ,un−um⟩(s)
+
∫ T

0

∥∥unk −unk+1

∥∥α

U ds≥ 2−k

)
≤ 4−k

2−k = 2−k

and so, by the Borel Cantelli lemma, there is a set of measure zero N including all earlier
exceptional sets of measure zero such that for ω /∈ N,

sup
s∈[0,T ]

⟨B(un−um) ,un−um⟩(s)+
∫ T

0

∥∥unk −unk+1

∥∥α

U ds < 2−k

for all k large enough. We will denote this new subsequence by {un} . Thus for such
ω, it follows that {Bun} is a Cauchy sequence in C

(
NC

ω ,W
′) for Nω an exceptional set of

measure zero where B(un−um)(t) ̸=B(un (t)−um (t)) and also {un} is a Cauchy sequence
in Lα (0,T,U). It follows

Bun→ z strongly in C
(
NC

ω ,W
′) with uniform norm (76.4.28)

lim
m,n→∞

sup
s∈[0,T ]

⟨B(un−um) ,un−um⟩(s) = 0 (76.4.29)

There exists u ∈ Lα (0,T,U) such that for ω /∈ N,

∥un−u∥Lα (0,T,U)→ 0, un (t,ω)→ u(t,ω) for a.e.t in U (76.4.30)

Of course a technical issue is the fact that B is a degenerate operator which might not
be invertible. In the above limit, we do not know that z = Bu for some u. We resolve this
issue by obtaining pointwise estimates for a given ω and then pass to a limit. After this,
a time integration will give the desired result. There are easier ways to do this if B is not
degenerate.

From now on, this or a subsequence of this one will be the sequence of interest. Return
to 76.4.27 and use the Ito formula again. Thus using the estimates,

1
2
⟨Bun,un⟩(t)−

1
2
⟨Bu0n,u0n⟩+δ

∫ t

0
∥un∥p

V ds−λ

∫ t

0
⟨Bun,un⟩ds

=
1
2

∫ t

0
⟨BΦn,Φn⟩ds+

∫ t

0
c(s,ω)ds+

∫ t

0
⟨ f ,un⟩ds+Mn (t)

where Mn (t) is a local martingale whose quadratic variation satisfies

[Mn] (t)≤C
∫ t

0
∥Φn∥2

L2
∥Bun∥2

W ds

Then adjusting the constants,

⟨Bun,un⟩(t)+
∫ t

0
∥un∥p

V ds≤C (u0n,Φn, f ,c)+CM∗n (t)

where the expectation of the first constant on the right is no larger than a constant C which
is independent of n. Since the right term is increasing in t,

sup
s∈[0,t]

⟨Bun,un⟩(s)+
∫ t

0
∥un∥p

V ds≤C (u0n,Φn, f ,c)+CM∗n (t) (76.4.31)
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Now using the Burkholder Davis Gundy inequality as before and taking the expectation,

E

(
sup

s∈[0,t]
⟨Bun,un⟩(s)

)
+E

∫ t

0
∥un∥p

V ds

≤ C+C
∫

Ω

(∫ t

0
∥Φn∥2

L2
∥Bun∥2

W ds
)1/2

dP

≤ C+C
∫

Ω

(∫ t

0
∥Φn∥2

L2
⟨Bun,un⟩ds

)1/2

dP

≤ C+C
∫

Ω

sup
s∈[0,t]

⟨Bun,un⟩1/2 (s)
(∫ t

0
∥Φn∥2

L2
ds
)1/2

dP

Then adjusting the constants and using the approximation properties of Φn given above,
there is a constant C independent of n, t ≤ T such that

E

(
sup

s∈[0,t]
⟨Bun,un⟩(s)

)
+E

∫ t

0
∥un∥p

V ds≤C

In particular

E

(
sup

s∈[0,T ]
⟨Bun,un⟩(s)

)
+E

∫ T

0
∥un∥p

V ds≤C (76.4.32)

Next use monotonicity to obtain

1
2
〈
Bur−Buq,ur−uq

〉
(t) ≤ 1

2

∫ t

0

(
(Φr−Φq)◦ J−1)∗B(ur−uq)◦ JdW

+Cλ

∫ t

0

〈
Bur−Buq,ur−uq

〉
ds+

∫ t

0

∥∥Φr−Φq
∥∥2 ds

and so, from Gronwall’s inequality, there is a constant C which is independent of r,q such
that 〈

Bur−Buq,ur−uq
〉
(t)≤CMrq (t)≤CM∗rq (T )+C

∫ t

0

∥∥Φr−Φq
∥∥2 ds

where Mrq refers to that local martingale on the right. Thus also

sup
t∈[0,T ]

〈
Bur−Buq,ur−uq

〉
(t)≤CMrq (t)≤CM∗rq (T )+C

∫ T

0

∥∥Φr−Φq
∥∥2 ds (76.4.33)

Taking the expectation and using the Burkholder Davis Gundy inequality again, and similar
estimates to the above, using appropriate stopping times as needed, we obtain

E

(
sup

t∈[0,T ]

〈
Bur−Buq,ur−uq

〉
(t)

)
≤C

∫
Ω

∫ T

0

∥∥Φr−Φq
∥∥2 dtdP
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Now the right side converges to 0 as r,q→ ∞ and so there is a subsequence, denoted with
the index k such that if p > k,

E

(
sup

t∈[0,T ]

〈
Buk−Bup,uk−up

〉
(t)

)
≤ 1

2k (76.4.34)

Then consider the earlier local martingales. One of these is of the form

Mk =
∫ t

0

(
Φk ◦ J−1)∗Buk ◦ JdW

Then by the Burkholder Davis Gundy inequality and modifying constants as appropriate,

E
(
(Mk−Mk+1)

∗)
≤ C

∫
Ω

(∫ T

0

∥∥∥(Φk ◦ J−1)∗Buk−
(
Φk+1 ◦ J−1)∗Buk+1

∥∥∥2
dt
)1/2

dP

≤C
∫

Ω

( ∫ T
0 ∥Φk−Φk+1∥2 ⟨Buk,uk⟩

+∥Φk+1∥2 ⟨Buk−Buk+1,uk−uk+1⟩dt

)1/2

dP

≤ C
∫

Ω

(∫ T

0
∥Φk−Φk+1∥2 ⟨Buk,uk⟩dt

)1/2

+C
∫

Ω

(∫ T

0
∥Φk+1∥2 ⟨Buk−Buk+1,uk−uk+1⟩dt

)1/2

dP

≤C
∫

Ω

sup
t
⟨Buk,uk⟩1/2

(∫ T

0
∥Φk−Φk+1∥2 dt

)1/2

dP

+C
∫

Ω

sup
t
⟨Buk−Buk+1,uk−uk+1⟩1/2

(∫ T

0
∥Φk+1∥2 dt

)1/2

dP

≤C
(∫

Ω

sup
t
⟨Buk,uk⟩dP

)1/2(∫
Ω

∫ T

0
∥Φk−Φk+1∥2 dtdP

)1/2

+C
(∫

Ω

sup
t
⟨Buk−Buk+1,uk−uk+1⟩dP

)1/2(∫
Ω

∫ T

0
∥Φk+1∥2 dtdP

)1/2

From the above inequalities, after adjusting the constants, the above is no larger than an
expression of the form C

( 1
2

)k/2
which is a summable sequence. Then

∑
k

∫
Ω

sup
t∈[0,T ]

|Mk (t)−Mk+1 (t)|dP < ∞

Then {Mk} is a Cauchy sequence in M1
T and so there is a continuous martingale M such

that

lim
k→∞

E
(

sup
t
|Mk (t)−M (t)|

)
= 0 (76.4.35)
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Taking a further subsequence if needed, one can also have

P
(

sup
t
|Mk (t)−M (t)|> 1

k

)
≤ 1

2k

and so by the Borel Cantelli lemma, there is a set of measure zero such that off this set,
supt |Mk (t)−M (t)| converges to 0. Hence for such ω,M∗k (T ) is bounded independent of
k. Thus for ω off a set of measure zero, 76.4.31 implies that for such ω,

sup
s∈[0,T ]

⟨Bur,ur⟩(s)+
∫ T

0
∥ur (s)∥p

V ds≤C (ω)

where C (ω) does not depend on the index r, this for the subsequence just described which
will be the sequence of interest in what follows. Using the boundedness assumption for A,
one also obtains an estimate of the form

sup
s∈[0,T ]

⟨Bur,ur⟩(s)+
∫ T

0
∥ur (s)∥p

V ds+
∫ T

0
∥zr∥p′

V ′ ≤C (ω) (76.4.36)

Lemma 76.4.2 There is a subsequence, still indexed by n and a set of measure zero N,
containing all the preceding sets of measure zero such that for ω /∈ N,

sup
s∈[0,T ]

⟨Bun,un⟩(s)+
∫ T

0
∥un∥p

V ds≤C (ω)< ∞

From the theory of the stochastic integral, there is a further subsequence of the above
such that ∫ t

0
ΦndW →

∫ t

0
ΦdW strongly in C ([0,T ] ,W )

for all ω off a set of measure zero. Enlarge the exceptional set N and only use subsequences
of this one so that both the above estimate in the lemma and the above convergence hold
for ω /∈ N. Recall the integral equation solved.

Bun (t)−Bu0n +
∫ t

0
A(s,un,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦndW (76.4.37)

Thus (
Bun−B

∫ (·)

0
ΦndW −Bu0n

)′
+Aun = f

Then for ω /∈ N, a subsequence of the one for which the above lemma holds, still
denoted as {un} yields the following convergences,

un→ u weakly in Vω (76.4.38)

Aun ⇀ ξ weakly in V ′ω (76.4.39)(
Bun−B

∫ (·)

0
ΦndW −Bu0n

)′
⇀ ζ weakly in V ′ω (76.4.40)
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By the earlier convergence 76.4.30, this u is the same as the one in 76.4.30.
Consider ζ . Let ψ be infinitely differentiable and equal to 0 near T and let g ∈V . Then

since Bun (0) = Bu0n,

∫ T

0
⟨ζ ,ψg⟩dt = lim

n→∞

∫ T

0

〈(
Bun−B

∫ (·)

0
ΦndW −Bu0n

)′
,ψg

〉
dt

= − lim
n→∞

∫ T

0

〈(
Bun−B

∫ (·)

0
ΦndW −Bu0n

)
,ψ ′g

〉
dt

= −
∫ T

0

〈
ψ
′Bg,

(
u−

∫ (·)

0
ΦdW −u0

)〉
dt

= −
∫ T

0

〈
B
(

u−
∫ (·)

0
ΦdW −u0

)
,ψ ′g

〉
dt

which shows that

ζ =

(
B
(

u−
∫ (·)

0
ΦdW −u0

))′
in the sense of V ′ valued distributions. Also from the above,∫ T

0
⟨ζ ,ψg⟩dt = ⟨Bu(0)−Bu0,ψ (0)g⟩

+
∫ T

0

〈(
Bu−B

∫ (·)

0
ΦdW −Bu0

)
,ψ ′g

〉
dt

= ⟨Bu(0)−Bu0,ψ (0)g⟩+
∫ T

0
⟨ζ ,ψg⟩dt

Hence B(u(0,ω)) = Bu0. Thus this has shown that(
B
(

u−
∫ (·)

0
ΦdW −u0

))′
+ξ (·,ω) = f (·,ω) in V ′ω , Bu(0) = Bu0.

Thus integrating this, we get

Bu(t,ω)−Bu0 (ω)+
∫ t

0
ξ (s,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW (76.4.41)

Lemma 76.4.3 The above sequence does not depend on ω /∈ N. In fact, it is not necessary
to take a further subsequence.

Proof: In fact, it is not necessary to take a subsequence to get the convergences 76.4.38
- 76.4.40. This is because of the pointwise convergence of 76.4.30 and Lemma 76.4.1. If
the original sequence did not converge, then there would be two subsequences converging
weakly to two different functions in Vω v,w which is impossible because of 76.4.30 and
this lemma since it would require v(t) = w(t) a.e. ■
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The question at this point is whether u is progressively measurable. From the assumed
estimates, the Ito formula, and 76.4.27, the same kind of estimates used earlier show that
there exists an estimate of the form

∥un∥V ≤C

Therefore, there exists a further subsequence such that

un→ ū weakly in V

It follows from Lemma 76.3.4 that off an enlarged exceptional set of measure zero, still
denoted as N,

ū(·,ω) = u(·,ω) in Vω

Hence we can assume that u is progressively measurable into V . It follows that Bu is
progressively measurable into W ′.

Thus also
(t,ω)→

∫ t

0
ξ (s,ω)ds

is progressively measurable into V ′.
Of course the next task is to identify ξ . This is always a problem even in the non

stochastic case. Here it is especially difficult because in order to identify ξ we need to use
the implicit Ito formula which only holds if ξ is sufficiently measurable. However, we have
obtained ξ as a weak limit for fixed ω . Therefore, this is a significant issue. In stochastic
evolution problems where B = I this is not as difficult because one gets ξ as a weak limit
in V and then ξ is progressively measurable. We cannot do it this way and still get the best
results in which there is a solution to the integral equation which holds for all t off a set of
measure zero because of the degenerate nature of the operator B. However, ξ is only an
equivalence class of functions. We show in the next lemma that there exists a representative
of this equivalence class for each ω off an exceptional set of measure zero such that the
resulting ξ is progressively measurable. This will enable us to use the implicit Ito formula
and indentify ξ .

The following lemma will allow the use of the Ito formula and eventually identify ξ .

Lemma 76.4.4 Enlarging the exceptional set, one can assume that ξ is also progressively
measurable. In fact, if

ξ n ≡
∫ t

t−(1/n)
ξ ds

is known to be progressively measurable, ξ (t,ω) ≡ 0 for t < 0, then there exists a set of
measure zero N such that for ω /∈ N,ξ (t,ω) = ξ̄ (t,ω) for all t off a set of measure zero
and ξ̄ is progressively measurable.

Proof: Define
ξ n ≡ n

∫ t

t−(1/n)
ξ ds

where ξ is defined to be zero for t ≤ 0. Then by what was just shown, this is progressively
measurable. Also, standard approximate identity arguments verify that for each ω,ξ n →
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ξ in Vω . Next note that the set where ξ n is not a Cauchy sequence is a progressively
measurable set. It equals

∪n∩m∪k,l≥m

[
(t,ω) : ∥ξ l (t,ω)−ξ k (t,ω)∥> 1

n

]
≡ S

Now for p > 0

lim
m→∞

P

(
sup
p>0

∥∥ξ m+p−ξ m

∥∥
Vω

> ε

)
= 0

This is because of the convergence of ξ n to ξ in Vω . Therefore, there is a subsequence still
called ξ n such that

P

(
sup
p>0

∥∥ξ n+p−ξ n

∥∥
Vω

> 2−n

)
< 2−n

and so there is an enlarged set of measure zero, still denoted as N such that all of the above
considerations hold for ω /∈ N and also for ω /∈ N,

sup
p>0

∥∥ξ n+p−ξ n

∥∥
Vω

≤ 2−n

for all n large enough. Now let S defined above, correspond to this particular subsequence.
Let S (ω) be those t such that (t,ω)∈ S. Then S (ω) is a set of measure zero for each ω /∈N
because the above inequality implies that t → ξ n (t,ω) is a Cauchy sequence off a set of
measure zero which by definition is S (ω). Then consider {ξ n (t,ω)XSC (t,ω)}. For each
ω off N, this converges for all t. Thus it converges pointwise to a function ξ̄ which must
be progressively measurable. However, t→ ξ̄ (t,ω) must also equal t→ ξ (t,ω) in Vω by
the above construction. Therefore, we can assume without loss of generality that ξ is itself
progressively measurable. ■

From the weak convergence of un to u in Vω ,

Bun→ Bu weakly in V ′ω

and so
(λB+A(ω))un→ λBu+ξ weakly in V ′ω

Now the above convergences and the integral equation imply that off the exceptional
set N, for each t

Bun (t)→ Bu(t) weakly in V ′

From a generalization of standard theorems in Hilbert space, stated in Lemma 76.2.1 there
exist vectors {ei} ⊆V such that

⟨Bun (t) ,un (t)⟩=
∞

∑
i=1
|⟨Bun (t) ,ei⟩|2

Hence

lim inf
n→∞
⟨Bun (t) ,un (t)⟩ ≥

∞

∑
i=1

lim inf
n→∞
|⟨Bun (t) ,ei⟩|2
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=
∞

∑
i=1
|⟨Bu(t) ,ei⟩|2 = ⟨Bu(t) ,u(t)⟩ (76.4.42)

Thus the above inequalities and formulas hold for a.e. t.
Return to the equation 76.4.41. Define the stopping time

τ p ≡ inf
{

t ∈ [0,T ] : ⟨Bu,u⟩(t)+
∫ t

0
∥ξ∥p′

V ′ ds > p
}

From 76.4.28 and the fact that ξ ∈ V ′ω , it follows that τ p = ∞ for all p large enough. Then
stop the equation using this stopping time.

Buτ p (t,ω)−Bu0 (ω)+
∫ t

0
X[0,τ p]ξ

τ p (s,ω)ds

=
∫ t

0
X[0,τ p] f (s,ω)ds+B

∫ t

0
X[0,τ p]ΦdW

From the implicit Ito formula Theorem 76.2.3, for a.e. t,

1
2
⟨Buτ p (t) ,uτ p (t)⟩− 1

2
⟨Bu0,u0⟩+

∫ t

0
X[0,τ p]

〈
ξ

τ p ,uτ p
〉

ds

=
1
2

∫ t

0
X[0,τ p] ⟨BΦ,Φ⟩ds

+
∫ t

0
X[0,τ p] ⟨ f ,u

τ p⟩ds+
∫ t

0
X[0,τ p]

(
Φ◦ J−1)∗Buτ p ◦ JdW

Then letting p→ ∞ this yields the following formula for a.e. t

1
2
⟨Bu(t) ,u(t)⟩− 1

2
⟨Bu0,u0⟩+

∫ t

0
⟨λBu+ξ ,u⟩ds =

1
2

∫ t

0
⟨BΦ,Φ⟩ds

+
∫ t

0
⟨ f ,u⟩ds+

∫ t

0

(
Φ◦ J−1)∗Bu◦ JdW +

∫ t

0
⟨λBu,u⟩ds (76.4.43)

Lemma 76.4.5 It is true that

lim
n→∞

∫ T

0
⟨Bun,un⟩dt =

∫ T

0
⟨Bu,u⟩dt

Proof: From 76.4.28 Bun → z strongly in C
(
NC

ω ,W
′) . But also, for each t,Bun (t)→

Bu(t) weakly in V ′ and so z(t) = Bu(t) . This strong convergence in C
(
NC

ω ,W
′) along with

the uniform norm with the weak convergence of un to u in Vω is sufficient to obtain the
above limit. ■

You might think that∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW →

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

but this is not entirely clear. It will be true in the case that in 76.4.26, α = 2 and U = W
and this is shown later. However, it is not clearly true here unless it is also the case that
Φ ∈ L2

(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
.
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Lemma 76.4.6 If Φ ∈ L2
(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
then∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW →

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

Proof:

E
(∣∣∣∣∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤ E
(∣∣∣∣∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bun ◦ JdW

∣∣∣∣)
+E
(∣∣∣∣∫ T

0

(
Φ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤
∫

Ω

((∫ T

0
∥Φn−Φ∥2

L2
⟨Bun,un⟩

)1/2
)

dP

+
∫

Ω

(∫ T

0
∥Φ∥2

L2
⟨Bun−Bu,un−u⟩dt

)1/2

dP (76.4.44)

Consider that second term. It is no larger than∫
Ω

∥Φ∥L∞([0,T ],L2)

(∫ T

0
⟨Bun−Bu,un−u⟩dt

)1/2

dP

≤
(∫

Ω

∥Φ∥2
L∞([0,T ],L2)

)1/2(∫
Ω

∫ T

0
⟨Bun−Bu,un−u⟩dtdP

)1/2

Now consider the following. Letting the ei be the special vectors of Lemma 34.4.2, it
follows, ∫

Ω

∫ T

0
⟨Bun−Bu,un−u⟩dtdP =

∫
Ω

∫ T

0

∞

∑
i=1
⟨Bun−Bu,ei⟩2 dtdP

=
∫

Ω

∫ T

0

∞

∑
i=1

lim inf
p→∞

〈
Bun−Bup,ei

〉2 dtdP

≤ lim inf
p→∞

∫
Ω

∫ T

0

∞

∑
i=1

〈
Bun−Bup,ei

〉2 dtdP

= lim inf
p→∞

∫
Ω

∫ T

0

〈
Bun−Bup,un−up

〉
dtdP≤ T

2n

The last inequality follows from 76.4.34. Therefore, the second term in 76.4.44 is no larger
than (C (T,Φ)/2n)1/2 which converges to 0 as n→ ∞. Now consider the first term in
76.4.44. ∫

Ω

((∫ T

0
∥Φn−Φ∥2

L2
⟨Bun,un⟩

)1/2
)

dP
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≤
∫

Ω

sup
t∈[0,T ]

⟨Bun,un⟩1/2 (t)

((∫ T

0
∥Φn−Φ∥2

L2
dt
)1/2

)
dP

≤

(∫
Ω

sup
t∈[0,T ]

⟨Bun,un⟩(t)

)1/2(∫
Ω

∫ T

0
∥Φn−Φ∥2

L2
dt
)1/2

From 76.4.32

≤C
(∫

Ω

∫ T

0
∥Φn−Φ∥2

L2
dt
)1/2

which converges to 0. ■
Return now to the equation solved by un in 76.4.37. Apply the Ito formula to this one.

This yields for a.e. t,

1
2
⟨Bun (t) ,un (t)⟩−

1
2
⟨Bu0n,u0n⟩+

∫ t

0
⟨A(ω)un,un⟩ds =

1
2

∫ t

0
⟨BΦn,Φn⟩ds

+
∫ t

0
⟨ f ,un⟩ds+

∫ t

0

(
Φn ◦ J−1)∗Bun ◦ JdW (76.4.45)

Assume without loss of generality that T is not in the exceptional set. If not, consider all
T ′ close to T such that T ′ is not in the exceptional set.∫ T

0
⟨(λB+A(ω))un,un⟩ds

=
1
2
⟨Bu0n,u0n⟩−

1
2
⟨Bun (T ) ,un (T )⟩+

∫ T

0
⟨ f ,un⟩ds

+
∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW +

1
2

∫ T

0
⟨BΦn,Φn⟩ds+

∫ T

0
⟨λBun,un⟩ds

Now it follows from 76.4.42 applied to t = T and the above lemma that

lim sup
n→∞

∫ T

0
⟨(λB+A(ω))un,un⟩ds

≤ 1
2
⟨Bu0,u0⟩−

1
2
⟨Bu(T ) ,u(T )⟩+

∫ T

0
⟨ f ,u⟩ds

+
∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW +

1
2

∫ T

0
⟨BΦ,Φ⟩ds+

∫ T

0
⟨λBu,u⟩ds

and from 76.4.43, the expression on the right equals
∫ T

0 ⟨λBu+ξ ,u⟩ds. Hence

lim sup
n→∞

∫ T

0
⟨(λB+A(ω))un,un⟩ds≤

∫ T

0
⟨λBu+ξ ,u⟩ds

Then since λB+A(ω) is monotone and hemicontinuous, it is type M and so this requires
A(ω)u = ξ .



76.4. THE GENERAL CASE 2565

Hence we obtain

Bu(t)−Bu0 (ω)+
∫ t

0
A(ω)(u)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW

This is a solution for a given ω /∈ N. Also, a stopping time argument like the above and the
coercivity estimates for A along with the implicit Ito formula show that u ∈ V . This yields
the existence part of the following existence and uniqueness theorem.

Theorem 76.4.7 Suppose V ≡ Lp ([0,T ]×Ω,V ) where p ≥ 2,with the σ algebra of pro-
gressively measurable sets and Vω = Lp ([0,T ] ,V ).

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,W

))
∩L2

(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
,

f ∈ V ′ ≡ Lp′ ([0,T ]×Ω,V ′
)

and both are progressively measurable. Suppose that

λB+A(ω) : Vω → V ′ω , λB+A : V → V ′

are monotone hemicontinuous and bounded where

A(ω)u(t)≡ A(t,u(t) ,ω)

and (t,u,ω)→ A(t,u,ω) is progressively measurable. Also suppose for p ≥ 2, the coer-
civity, and the boundedness conditions

λ ⟨Bu,u⟩+ ⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.4.46)

where c ∈ L1 ([0,T ]×Ω) for all λ large enough. Also,

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.4.47)

also suppose the monotonicity condition for all λ large enough.

⟨(λB+A(ω))(u)− (λB+A(ω))(v) ,u− v⟩ ≥ δ ∥u− v∥α

U (76.4.48)

Then if u0 ∈ L2 (Ω,W ) with u0 F0 measurable, there exists a unique solution u(·,ω) ∈ Vω

with u ∈ V (Lp ([0,T ]×Ω,V ) and progressively measurable) such that for ω off a set of
measure zero,

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f ds+B

∫ t

0
ΦdW.

It is also assumed that V is a reflexive separable real Banach space.

Proof: The uniqueness assertion follows easily from the monotonicity condition. ■
Now we remove the assumption that Φ ∈ L2

(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
. Every-

thing is the same except for the need for a different argument to show that∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW →

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW



2566 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

In this case we assume

⟨(λB+A(ω))(u)− (λB+A(ω))(v) ,u− v⟩ ≥ δ ∥u− v∥2
W

Then repeating the above argument with this change yields set of measure zero, still de-
noted as N such that for ω /∈ N ∫ T

0
∥un−un+1∥2

W ds≤ 2−n (76.4.49)

for all n large enough. Hence for such ω, un (·,ω) is Cauchy in L2 ([0,T ] ,W ) and in
fact un (t,ω) is a Cauchy sequence in W . Thus {un (·,ω)} converges in L2 ([0,T ] ,W ) to
u(·,ω) ∈ L2 ([0,T ] ,W ) and by the above considerations involving continuous dependence
of V into W, it follows that u(·,ω) will be the same as the u from the above convergences.
Now this convergence implies that in addition, for a.e. t,

lim
n→∞
⟨Bun (t,ω)−Bu(t,ω) ,un (t,ω)−u(t,ω)⟩= 0 (76.4.50)

lim
n→∞

∫ T

0
⟨Bun (t,ω)−Bu(t,ω) ,un (t,ω)−u(t,ω)⟩dt = 0

What is known from 76.4.35 is that for

Mn (t) =
∫ t

0

(
Φn ◦ J−1)∗Bun ◦ JdW

there is a continuous martingale M ∈M1
T such that

lim
n→∞

E

(
sup

t∈[0,T ]
|Mn (t)−M (t)|

)
= 0 (76.4.51)

Define a stopping time

τ p ≡ inf
{

t : ⟨Bu,u⟩(t)+ sup
n
⟨Bun,un⟩(t)> p

}
This is a good enough stopping time because the function used to define it as a hitting time
is lower semicontinuous.

Lemma 76.4.8
∫ T

0
(
Φn ◦ J−1

)∗Bun ◦ JdW →
∫ T

0
(
Φ◦ J−1

)∗Bu◦ JdW in probability. Also
there is a futher subsequence and set of measure zero such that off this set,

lim
n→∞

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Φ◦ J−1)∗Bu◦ JdW −

∫ t

0

(
Φn ◦ J−1)∗Bun ◦ JdW

∣∣∣∣
)

= 0.

In particular, what is needed here is valid,

lim
n→∞

∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW =

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW
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Proof: Let ε > 0. Then define

An =

{
ω :
∣∣∣∣∫ T

0

(
Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣> ε

}
Then

An = ∪∞
p=1An∩ ([τ p = ∞]\ [τ p−1 < ∞]) , [τ0 < ∞]≡ /0

the sets in the union being disjoint. Then A∩ ([τ p = ∞])⊆{
ω :

∣∣∣∣∣
∫ T

0 X[0,τ p]
(
Φn ◦ J−1

)∗Bun ◦ JdW

−
∫ T

0 X[0,τ p]
(
Φ◦ J−1

)∗Bu◦ JdW

∣∣∣∣∣> ε

}

Then as before,

E
(∣∣∣∣∫ T

0
X[0,τ p]

(
Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0
X[0,τ p]

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤
∫

Ω

((∫ T

0
∥Φn−Φ∥2

L2
X[0,τ p] ⟨Bun,un⟩

)1/2
)

dP

+
∫

Ω

(∫ T

0
X[0,τ p] ∥Φ∥

2
L2
⟨Bun−Bu,un−u⟩dt

)1/2

dP (76.4.52)

Consider the second term. It is no larger than(∫
Ω

∫ T

0
X[0,τ p] ∥Φ∥

2
L2
⟨Bun−Bu,un−u⟩dtdP

)1/2

Now t → ⟨Bun,un⟩ is continuous and so X[0,τ p] ⟨Bun,un⟩(t) ≤ p. If not, then you would
have ⟨Bun,un⟩(t)> p for some t ≤ τ p and so, by continuity, there would be s < t ≤ τ p for
which ⟨Bun,un⟩(s)> p contrary to the definition of τ p. Then X[0,τ p] ⟨Bun−Bu,un−u⟩ is
bounded a.e. and also converges to 0 for a.e. t ≤ τ p as n→ ∞. Therefore, off a set of mea-
sure zero, including the set where t→∥Φ∥2

L2
is not in L1, the double integral converges to

0 by the dominated convergence theorem. As to the first integral in 76.4.52, it is dominated
by ∫

Ω

X[0,τ p] sup
t∈[0,τ p]

⟨Bun,un⟩1/2 (t)
(∫ T

0
∥Φn−Φ∥2

L2

)1/2

dP

≤

(∫
Ω

sup
t∈[0,T ]

⟨Bun,un⟩dP

)1/2(∫
Ω

∫ T

0
∥Φn−Φ∥2

L2
dtdP

)1/2

From the estimate 76.4.32,

≤C
(∫

Ω

∫ T

0
∥Φn−Φ∥2

L2
dtdP

)1/2



2568 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

for a constant C independent of n. Therefore,

lim
n→∞

E

(∣∣∣∣∣
∫ T

0 X[0,τ p]
(
Φn ◦ J−1

)∗Bun ◦ JdW

−
∫ T

0 X[0,τ p]
(
Φ◦ J−1

)∗Bu◦ JdW

∣∣∣∣∣
)

= 0

Hence

P(An∩ [τ p = ∞])≤ 1
ε

E

(∣∣∣∣∣
∫ T

0 X[0,τ p]
(
Φn ◦ J−1

)∗Bun ◦ JdW

−
∫ T

0 X[0,τ p]
(
Φ◦ J−1

)∗Bu◦ JdW

∣∣∣∣∣
)

and so
lim
n→∞

P(An∩ [τ p = ∞]) = 0

Then

P(An) =
∞

∑
p=1

P(An∩ ([τ p = ∞]\ [τ p−1 < ∞]))

and so from the dominated convergence theorem,

lim
n→∞

P(An) =
∞

∑
p=1

lim
n→∞

P(An∩ ([τ p = ∞]\ [τ p−1 < ∞])) = ∑
p

0 = 0.

There was nothing special about T. The same argument holds for all t and so M (t) men-
tioned above has been identified as

∫ t
0
(
Φ◦ J−1

)∗Bu◦ JdW. Then from 76.4.51

lim
n→∞

E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Φ◦ J−1)∗Bu◦ JdW −

∫ t

0

(
Φn ◦ J−1)∗Bun ◦ JdW

∣∣∣∣
)

= 0

It follows from the usual Borel Cantelli argument that there is a set of measure zero and a
further subsequence such that off this set, all the above convergences happen and also∫ t

0

(
Φn ◦ J−1)∗Bun ◦ JdW →

∫ t

0

(
Φ◦ J−1)∗Bu◦ JdW

uniformly on [0,T ]. ■
The rest of the argument is identical. This yields the following theorem.

Theorem 76.4.9 Suppose V ≡ Lp ([0,T ]×Ω,V ) where p ≥ 2,with the σ algebra of pro-
gressively measurable sets and Vω = Lp ([0,T ] ,V ).

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,W

))
,

f ∈ V ′ ≡ Lp′ ([0,T ]×Ω,V ′
)

and both are progressively measurable. Suppose that

λB+A(ω) : Vω → V ′ω , λB+A : V → V ′
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are monotone hemicontinuous and bounded where

A(ω)u(t)≡ A(t,u(t) ,ω)

and (t,u,ω)→ A(t,u,ω) is progressively measurable. Also suppose for p ≥ 2, the coer-
civity, and the boundedness conditions

λ ⟨Bu,u⟩+ ⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.4.53)

where c ∈ L1 ([0,T ]×Ω) for all λ large enough. Also,

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.4.54)

also suppose the monotonicity condition for all λ large enough.

⟨(λB+A(ω))(u)− (λB+A(ω))(v) ,u− v⟩ ≥ δ ∥u− v∥2
W (76.4.55)

Then if u0 ∈ L2 (Ω,W ) with u0 F0 measurable, there exists a unique solution u(·,ω) ∈ Vω

with u ∈ V (Lp ([0,T ]×Ω,V ) and progressively measurable) such that for ω off a set of
measure zero,

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f ds+B

∫ t

0
ΦdW.

It is also assumed that V is a reflexive separable real Banach space.

76.5 Replacing Φ With σ (u)
It is not hard to include the case where Φ is replaced with a function σ (u) . We make the
following assumptions. For each r > 0 there exists λ large enough that

⟨λB(u)+A(u)− (λB(û)+A(û)) ,u− û⟩ ≥ r∥u− û∥2
W

Note that in the case where B = I and there is a conventional Gelfand triple, V,H,V ′,
this kind of condition is obvious if λ I +A is monotone for some λ . Thus this is not an
unreasonable assumption to make although it is stronger than some of the assumptions
used above with the integral given by

∫ t
0 ΦdW .

As to σ we make the following assumptions.

(t,u,ω) ∈ [0,T ]×W ×Ω→ σ (t,u,ω) is progressively measurable into W

∥σ (t,u,ω)∥W ≤C+C∥u∥W
∥σ (t,u,ω)−σ (t, û,ω)∥L2(Q1/2U,W) ≤ K ∥u− û∥W

That is, it has linear growth and is Lipschitz.
Let λ correspond to r where r−∥B∥K2 > 4. Also let T be such that

ĈeλT K2 < 3



2570 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

where Ĉ is a constant used in the Burkholder Davis Gundy inequality. This is a restriction
on the size of K. Thus we only give a solution if K is small enough. Later, this will be
removed in the most interesting case. This will give a local solution valid for a fixed T > 0
and then the global solution can be obtained by applying this result on the succession of
intervals [0,T ] , [T,2T ] , [3T,4T ] , and so forth.

From Theorem 76.4.9, if w ∈W , there exists a unique solution u to

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f ds+B

∫ t

0
σ (w)dW.

holding in the sense described there. Let ui result from wi. Then from the implicit Ito
formula and the above monotonicity estimate,

1
2
⟨B(u1−u2) ,u1−u2⟩(t)+ r

∫ t

0
∥u1−u2∥2

W ds

−λ

∫ t

0
⟨B(u1−u2) ,u1−u2⟩ds

−
∫ t

0
⟨Bσ (u1)−Bσ (u2) ,σ (u1)−σ (u2)⟩L2

ds≤M∗ (t)

where the right side is of the form sups∈[0,t] |M (s)| where M (t) is a local martingale having
quadratic variation dominated by

C
∫ t

0
∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩ds (76.5.56)

Therefore, since M∗ is increasing in t, it follows from the Lipschitz condition on σ that

1
2
⟨B(u1−u2) ,u1−u2⟩(t)+ r

∫ t

0
∥u1−u2∥2

W ds

−λ

∫ t

0
⟨B(u1−u2) ,u1−u2⟩ds−∥B∥K2

∫ t

0
∥u1−u2∥2

W ds≤M∗ (t)

Thus, from the assumption about r,

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)+4
∫ t

0
∥u1−u2∥2

W ds

≤ λ

∫ t

0
⟨B(u1−u2) ,u1−u2⟩ds+2M∗ (t)

Then applying Gronwall’s inequality,

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)+4
∫ t

0
∥u1−u2∥2

W ds≤ 2eλT M∗ (t)

Now take expectations and use the Burkholder Davis Gundy inequality. The expectation of
the right side is then dominated by

2ĈeλT
∫

Ω

(∫ t

0
∥σ (w1)−σ (w2)∥2

L2
⟨B(u1−u2) ,u1−u2⟩ds

)1/2

dP
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≤

 ∫
Ω

sups∈[0,t] ⟨B(u1−u2) ,u1−u2⟩1/2 ·

2ĈeλT
(∫ t

0 K2 ∥w1−w2∥2
W dt

)1/2
dP



≤ E

(
1
2

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)

)

+ĈeλT E
(∫ t

0
K2 ∥w1−w2∥2

W dt
)

It follows that, after adjusting constants as needed, one gets an inequality of the following
form.

1
2

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)
+4

∫
Ω

∫ t

0
∥u1−u2∥2

W dsdP

≤ ĈeλT E
(∫ t

0
K2 ∥w1−w2∥2

W dt
)

This holds for every t ≤ T and so, from the estimate on the size of T, it follows that∫ T

0

∫
Ω

∥u1−u2∥2
W dsdP≤ 3

4

∫ T

0

∫
Ω

∥w1−w2∥2
W dtdP

Therefore, there is a unique fixed point to this mapping which takes w∈W to u the solution
to the integral equation. We denote it as u. Thus u is progressively measurable and for ω

off a set of measure zero, we have a solution to the integral equation

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds

=
∫ t

0
f ds+B

∫ t

0
σ (u)dW, t ∈ [0,T ]

Now the same argument can be repeated for the succession of intervals mentioned above.
However, you need to be careful that at T, you have Bu(T,ω) = B(u(T,ω)) for ω off a
set of measure zero. If this is not so, you locate T ′ close to T for which it is so as in
Lemma 73.3.1 and use this T ′ instead, but these are mainly technical issues. This proves
the following existence and uniqueness theorem.

Theorem 76.5.1 Suppose f ∈ V ′ is progressively measurable and that

(t,ω)→ σ (t,ω,u(t,ω))

is progressively measurable whenever u is. Suppose that

λB+A(ω) : Vω → V ′ω , λB+A : V → V ′

are monotone hemicontinuous and bounded where

A(ω)u(t)≡ A(t,u(t) ,ω)
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and (t,u,ω)→ A(t,u,ω) is progressively measurable. Also suppose for p ≥ 2, the coer-
civity, and the boundedness conditions

λ ⟨Bu,u⟩+ ⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.5.57)

for all λ large enough.

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.5.58)

where c ∈ L1 ([0,T ]×Ω). Also suppose the monotonicity condition that for all r > 0 there
exists λ such that

⟨(λB+A(ω))(u)− (λB+A(ω))(v) ,u− v⟩ ≥ r∥u− v∥2
W

Also suppose that

(t,u,ω) ∈ [0,T ]×W ×Ω→ σ (t,u,ω) is progressively measurable into W

∥σ (t,u,ω)∥W ≤C+C∥u∥W
∥σ (t,u,ω)−σ (t, û,ω)∥L2(Q1/2U,W) ≤ K ∥u− û∥W

Then if u0 ∈ L2 (Ω,W ) with u0 F0 measurable, there exists a unique solution u(·,ω) ∈ Vω

with u ∈ V (Lp ([0,T ]×Ω,V ) and progressively measurable) such that for ω off a set of
measure zero,

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f ds+B

∫ t

0
σ (u)dW.

In case B is the Riesz map, you do not have to make any assumption on the size of K.
Thus

⟨Bu,u⟩= ∥u∥2
W

The case of most interest is the usual one where V ⊆W =W ′ ⊆ V ′, the case of a Gelfand
triple in which B is the identity. As to σ , the assumption is made that

∥σ (t,ω,u)∥W ≤C+C∥u∥W

∥σ (t,ω,u1)−σ (t,ω,u2)∥L2(Q1/2U,W) ≤ K ∥u1−u2∥W
Of course it is also assumed that whenever u has values in W and is progressively measur-
able, (t,ω)→ σ (t,ω,u(t,ω)) is also progressively measurable into L2

(
Q1/2U,W

)
.

Letting wi ∈ L2 ([0,T ]×Ω,W ) each wi being progressively measurable, the above as-
sumptions imply that there exists a solution ui to the integral equation

Bui (t,ω)−Bu0 (ω)+
∫ t

0
A(ui)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
σ (wi)dW

here we write σ (wi) for short instead of σ (t,ω,wi). First, consider

w ∈ L2 ([0,T ]×Ω,W )∩L∞
(
[0,T ] ,L2 (Ω,W )

)
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and let u be the solution which results from placing w in σ . Then from the estimates,

⟨Bu,u⟩(t)−⟨Bu0,u0⟩+δ

∫ t

0
∥u∥p

V ds = 2
∫ t

0
⟨ f ,u⟩ds+C (b3,b4,b5)

+λ

∫ t

0
⟨Bu,u⟩ds+

∫ t

0
⟨Bσ (w) ,σ (w)⟩L2

ds+2M∗ (t)

≤ 2
∫ t

0
⟨ f ,u⟩ds+C (b3,b4,b5)+λ

∫ t

0
⟨Bu,u⟩ds+

∫ t

0

(
C+C∥w∥2

W

)
ds+2M∗ (t)

where M∗ (t) = sups∈[0,t] |M (s)| and the quadratic variation of M is no larger than∫ t

0
∥σ (w)∥2 ⟨B(u) ,u⟩ds

Then using Gronwall’s inequality, one obtains an inequality of the form

sup
s∈[0,T ]

⟨Bu,u⟩(s)≤C+C
(

M∗ (t)+
∫ t

0
∥w∥2

W ds
)

where C = C (u0, f ,δ ,λ ,b3,b4,b5,T ) and is integrable. Then take expectation. By Burk-
holder Davis Gundy inequality and adjusting constants as needed,

E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)

≤ C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+C
∫

Ω

(∫ T

0
∥σ (w)∥2 ⟨B(u) ,u⟩ds

)1/2

dP

≤ C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+C
∫

Ω

sup
s∈[0,T ]

⟨Bu,u⟩1/2 (s)
(∫ T

0
∥σ (w)∥2 ds

)1/2

dP

≤C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+
1
2

E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)
+C

∫
Ω

∫ T

0

(
C+C∥w∥2

W

)
Thus

E (⟨Bu,u⟩(t))≤ E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)
≤C+C

∫
Ω

∫ T

0
∥w∥2

W dsdP

and so

∥u∥2
L∞([0,T ],L2(Ω,W )) ≤C+C

∫
Ω

∫ T

0
∥w∥2

W dsdP

which implies u ∈ L∞
(
[0,T ] ,L2 (Ω,W )

)
and is progressively measurable.

Using the monotonicity assumption, there is a suitable λ such that

1
2
⟨B(u1−u2) ,u1−u2⟩(t)+ r

∫ t

0
∥u1−u2∥2

W ds

−λ

∫ t

0
⟨B(u1−u2) ,u1−u2⟩ds
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−
∫ t

0
⟨Bσ (u1)−Bσ (u2) ,σ (u1)−σ (u2)⟩L2

ds≤M∗ (t)

where the right side is of the form sups∈[0,t] |M (s)| where M (t) is a local martingale having
quadratic variation dominated by

C
∫ t

0
∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩ds (76.5.59)

Then by assumption and using Gronwall’s inequality, there is a constant C = C (λ ,K,T )
such that

⟨B(u1−u2) ,u1−u2⟩(t)≤CM∗ (t)

Then also, since M∗ is increasing,

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)≤CM∗ (t)

Taking expectations and from the Burkholder Davis Gundy inequality,

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)

≤ C
∫

Ω

(∫ t

0
∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩

)1/2

dP

≤C
∫

Ω

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩1/2 (s)
(∫ t

0
∥σ (w1)−σ (w2)∥2

)1/2

dP

Then it follows after adjusting constants that there exists an inequality of the form

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)
≤CE

(∫ t

0
∥σ (w1)−σ (w2)∥2

L2
ds
)

Hence

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(t)

)
≤CK2E

(∫ t

0
∥w1−w2∥2

W ds
)

Thus, for each t ≤ T∫
Ω

⟨B(u1−u2) ,u1−u2⟩(t)dP≤CK2E
(∫ t

0
∥w1−w2∥2

W ds
)

one can consider the map ψ (w)≡ u as described above. Then the above inequality implies

E (⟨B(ψnw1−ψ
nw2) ,ψ

nw1−ψ
nw2⟩(t))

≤ CK2E
(∫ t

0

∥∥ψ
n−1w1−ψ

n−1w2
∥∥2

W dt1

)
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=CK2E
(∫ t

0

〈
B
(
ψ

n−1w1−ψ
n−1w2

)
,ψn−1w1−ψ

n−1w2
〉
(t1)dt1

)
≤
(
CK2)2

E
(∫ t

0

∫ t1

0

〈
B
(
ψ

n−2w1−ψ
n−2w2

)
,ψn−2w1−ψ

n−2w2
〉
(t2)dt2dt1

)
· · · ≤

(
CK2)n

E
(∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
⟨B(w1−w2) ,w1−w2⟩(tn)dtn · · ·dt2dt1

)
=
(
CK2)n

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
E (⟨B(w1−w2) ,w1−w2⟩(tn))dtn · · ·dt2dt1

≤
(
CK2)n

sup
t

E (⟨B(w1−w2) ,w1−w2⟩(t))
T n

n!
<

1
2
∥w1−w2∥2

L∞([0,T ],L2(Ω,W ))

provided n is sufficiently large. It follows that

∥ψnw1−ψ
nw2∥2

L∞([0,T ],L2(Ω,W )) ≤
1
2
∥w1−w2∥2

L∞([0,T ],L2(Ω,W ))

for all n sufficiently large. Hence, if one begins with

w ∈ L∞
(
[0,T ] ,L2 (Ω,W )

)
∩L2 ([0,T ]×Ω,W ) ,

the sequence of iterates {ψnw}∞

n=1 converges to a fixed point u in L∞
(
[0,T ] ,L2 (Ω,W )

)
.

This u is automatically in L2 ([0,T ]×Ω,W ) and is progressively measurable since each of
the iterates is progressively measurable. This proves the following theorem.

Theorem 76.5.2 Suppose f ∈ V ′ is progressively measurable and that (t,ω)→ σ (t,u,ω)
is progressively measurable whenever u is. Suppose that B : W →W ′ is a Riesz map.

λB+A(ω) : Vω → V ′ω , λB+A : V → V ′

are monotone hemicontinuous and bounded where

A(ω)u(t)≡ A(t,u(t) ,ω)

and (t,u,ω)→ A(t,u,ω) is progressively measurable. Also suppose for p ≥ 2, the coer-
civity, and the boundedness conditions

λ ⟨Bu,u⟩+ ⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥p
V − c(t,ω) (76.5.60)

for all λ large enough.

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1
V + c1/p′ (t,ω) (76.5.61)

where c ∈ L1 ([0,T ]×Ω). Also suppose that

∥σ (t,u,ω)∥W ≤C+C∥u∥W
∥σ (t,u,ω)−σ (t, û,ω)∥L2(Q1/2U,W) ≤ K ∥u− û∥W

Then if u0 ∈ L2 (Ω,W ) with u0 F0 measurable, there exists a unique solution u(·,ω) ∈ Vω

with u ∈ V (Lp ([0,T ]×Ω,V ) and progressively measurable) such that for ω off a set of
measure zero,

Bu(t,ω)−Bu0 (ω)+
∫ t

0
A(s,u(s,ω) ,ω)ds =

∫ t

0
f ds+B

∫ t

0
σ (u)dW.
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76.6 Examples
Here we give some examples. The first is a standard example, the porous media equation,
which is discussed well in [116]. For stochastic versions of this example, see [108]. The
generalization to stochastic equations does not require the theory developed here. We will
show, however, that it can be considered in terms of the theory of this paper without much
difficulty using an approach proposed in [23]. These examples involve operators which are
not monotone, in the usual way but they can be transformed into equations which do fit the
above theory.

Example 76.6.1 The stochastic porous media equation is

ut −∆

(
u |u|p−2

)
= f , u(0) = u0, u = 0 on ∂U

where here U is a bounded open set in Rn,n ≤ 3 having Lipschitz boundary. One can
consider a stochastic version of this as a solution to the following integral equation

u(t)−u0 +
∫ t

0
(−∆)

(
u |u|p−2

)
ds =

∫ t

0
ΦdW +

∫ t

0
f ds (76.6.62)

where here

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
∩L2

(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,H

)))
,

H = L2 (U) and the equation holds in the manner described above in H−1 (U) . Assume
p≥ 2 and f ∈ L2 ((0,T )×Ω,H).

One can consider this as an implicit integral equation of the form

(−∆)−1 u(t)−(−∆)−1 u0+
∫ t

0
u |u|p−2 ds=(−∆)−1

∫ t

0
ΦdW +(−∆)−1

∫ t

0
f ds (76.6.63)

where −∆ is the Riesz map of H1
0 (U) to H−1 (U). Then we can also consider (−∆)−1 as a

map from L2 (U) to L2 (U) as follows.

(−∆)−1 f = u where −∆u = f , u = 0 on ∂U.

Thus we let W = L2 (U) = H and V = Lp (U) . Let B≡ (−∆)−1 on L2 (U) as just described.
Let A(u) = u |u|p−2. It is obvious that the necessary coercivity condition holds. In addition,
there is a strong monotonicity condition which holds. Therefore, if u0 ∈ L2

(
Ω,L2 (U)

)
and

F0 measurable, Theorem 76.4.7 applies and we can conclude that there exists a unique
solution to the integral equation 76.6.63 in the sense described in this theorem. Here u ∈
Lp ([0,T ]×Ω,Lp (U)) and is progressively measurable, the integral equation holding for
all t for ω off a set of measure zero. Since A satisfies for some δ > 0 an inequality of the
form

⟨Au−Av,u− v⟩ ≥ δ ∥u− v∥p
Lp(U)

it follows easily from the above methods that the solution is also unique. In fact, this
follows right away from Theorem 76.4.7 because

〈
−∆−1u,u

〉
= ∥u∥2

H−1 .
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Also note that from the integral equation,

(−∆)−1
(

u(t)−u0−
∫ t

0
ΦdW

)
+
∫ t

0
u |u|p−2 ds = (−∆)−1

∫ t

0
f ds

and so, since (−∆) is the Riesz map on H1
0 (U) , the integral equation above shows that off

a set of measure zero,∫ t

0
u |u|p−2 ds=(−∆)−1

(∫ t

0
f ds−

(
u(t)−u0−

∫ t

0
ΦdW

))
∈L2 (0,T,H1

0 (U)∩H2 (U)
)

by elliptic regularity results. Without that stochastic integral, one could assert that |u|
p−2

2 u∈
L2
(
0,T,H1

0 (U)
)
. This is shown in [23]. However, it appears that no such condition can

be obtained here because of the nowhere differentiability of the stochastic integral, even if
more is assumed on u0 and Φ.

Also in this reference is a treatment of the Stefan problem. The Stefan problem involves
a partial differential equation

ut −∑
i

∂

∂xi

(
k (u)

∂u
∂xi

)
= f , on U× [0,T ]≡ Q

for (x, t) /∈ S where u is the temperature and k (u) has a jump at σ and S is given by u(x, t) =
σ . It is assumed that 0 < k1 ≤ k (r)≤ k2 < ∞ for all r ∈R. For example, its graph could be
of the form

σ u

k(u)

On S there is a jump condition which is assumed to hold. Namely

bnt − (k (u+)u,i (+)− k (u−)u,i (−))ni = 0

where the sum is taken over repeated indices and b > 0. u(+) is the “limit” as (x′, t ′)→
(x, t) ∈ S where (x′, t ′) ∈ S+,u(−) defined similarly. Also n will denote the unit normal
which goes from S+ ≡ {(x, t) : u(x, t)> σ} toward S− ≡ {(x, t) : u(x, t)< σ}.

n =(nt ,nx1 , · · · ,nxn)

In addition, there is an initial condition and boundary conditions

u(x,0) = u0 (x) /∈ S, u(x, t) = 0 on ∂U.

The idea is to obtain a variational formulation of this thing. To do this, let K (r)≡
∫ r

0 k (s)ds.
Thus in the case of the above picture, the graph of K (r) would look like

σ

K(u)

u
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Now let β (t) be a function which satisfies

β
′ (t) =

1
k (K−1 (t))

for t ̸= τ ≡ K (σ)

and it has a jump equal to b at τ .

τ

β (v)

v

Let v = K (u) . Then for u ̸= σ , equivalently v ̸= τ,

vt = K′ (u)ut = k
(
K−1 (v)

)
ut

and so
ut =

1
k (K−1 (v))

vt =
d
dt

(β (v))

Also,
v,i = K′ (u)u,i = k (u)u,i

and so
u,i =

1
k (u)

v,i

Hence

(k (u)u,i),i =
(

k (u)
1

k (u)
v,i

)
,i
= ∆v

Thus, off the set S,
β (v)t −∆v = f

Now let φ ∈ L2
(
0,T,H1

0 (U)
)

with φ (x,T ) = 0. Then assume S is sufficiently smooth that
things like divergence theorem apply. Also note that u = σ is the same as v = τ .∫

Q
(β (v)t −∆v)φ =

∫
S+

(β (v)t −∆v)φ +
∫

S−
(β (v)t −∆v)φ

=
∫

S+
(β (v)φ)t −β (v)φ t − (v,iφ),i + v,iφ ,i

+
∫

S−
(β (v)φ)t −β (v)φ t − (v,iφ),i + v,iφ ,i

Now using the divergence theorem, and continuing these formal manipulations, the above
reduces to∫

S
β (v(+))φnt − (v,i (+)φ)ni +

∫
S+
−β (v)φ t + v,iφ ,i−

∫
U∩S+

β (v(x,0))φ (x,0)

+
∫

S
−β (v(−))φnt +(v,i (−)φ)ni +

∫
S−
−β (v)φ t + v,iφ ,i−

∫
U∩S−

β (v(x,0))φ (x,0)
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Combining the two integrals over S yields∫
S
(bnt − (v,i (+)− v,i (−))ni)φ =

∫
S
(bnt − (k (u)u,i (+)− k (u)u,i (−))ni)φ = 0

by assumption. Therefore, including f , we obtain∫
Q
−β (v)φ t + v,iφ ,i−

∫
U

β (v(x,0))φ (x,0) =
∫

Q
f φ

which implies, using the initial condition∫
U

β (v0)φ (x,0)+
∫

Q

(
(β (v))′ φ + v,iφ ,i

)
−
∫

U
β (v(x,0))φ (x,0) =

∫
Q

f φ

Regard β as a maximal monotone graph and let α (t) ≡ β
−1 (t) . Thus α is single valued.

It just has a horizontal place corresponding to the jump in β . Then let w = β (v) so that
v = α (w) .

α(w)

w

Then in terms of w, the above equals∫
U

w0φ (x,0)+
∫

Q

(
w′φ +α (w),i φ ,i

)
−
∫

U
w(x,0)φ (x,0) =

∫
Q

f φ

and so this simplifies to
w′−∆(α (w)) = f , w(0) = w0

where α maps onto R and is monotone and satisfies

(α (r1)−α (r2))(r1− r2) ≥ 0, |α (r)| ≤ m |r| ,
|α (r1)−α (r2)| ≤ m |r1− r2| ,α (r)r ≥ δ |r|2

for some δ ,m > 0. Then K−1 (α (w)) = u where u is the original dependent variable.
Obviously, the original function k could have had more than one jump and you would
handle it the same way by defining β to be like K−1 except for having appropriate jumps at
the values of K (u) corresponding to the jumps in k. This explains the following example.

Example 76.6.2 It can be shown that the Stefan problem can be reduced to the considera-
tion of an equation of the form

wt −∆(α (w)) = f , w(0) = w0

where α : L2
(
0,T,L2 (U)

)
→ L2

(
0,T,L2 (U)

)
is monotone hemicontinuous and coercive,

α being a single valued function. Here f is the same which occurred in the original partial
differential equation

ut −∑
i

∂

∂xi

(
k (u)

∂u
∂xi

)
= f
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Thus a stochastic Stefan problem could be considered in the form(
−∆
−1)w(t)− (−∆)−1 w0 +

∫ t

0
α (w)ds =

(
−∆
−1)∫ t

0
f ds+

(
−∆
−1)∫ t

0
ΦdW

This example can be included in the above general theory because((
−∆
−1)u−

(
−∆
−1)v,u− v

)
≥ ∥u− v∥2

V ′ , V ′ ≡ H−1,V = H1
0 (U)

This is seen as follows. V,L2 (U) ,V ′ is a Gelfand triple. Then −∆ is the Riesz map R from
H1

0 (U) to H−1 (U). then you have(
y,R−1y

)
L2(U)

=
〈
RR−1y,R−1y

〉
V ′,V =

∥∥R−1y
∥∥2

V = ∥y∥2
V ′

Next we give a simple example which is a singular and degenerate equation. This is
a model problem which illustrates how the theory can be used. This problem is mixed
parabolic and stochastic and nonlinear elliptic. It is a singular equation because the coef-
ficient b can be unbounded. The existence of a solution is easy to obtain from the above
theory but it does not follow readily from other methods. If p = 2 it is an abstract version
of stochastic heat equation which could model a material in which the density becomes
vanishingly small in some regions and very large in other regions.

Example 76.6.3 Suppose U is a bounded open set in R3 and b(x)≥ 0, b ∈ Lp (U) , p≥ 4
for simplicity. Consider the degenerate stochastic initial boundary value problem

b(·)u(t, ·)−b(·)u0 (·)−
∫ t

0
∇ ·
(
|∇u|p−2

∇u
)

= b
∫ t

0
ΦdW

u = 0 on ∂U

where Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2U,W

))
for W = H1

0 (U) .

To consider this equation and initial condition, it suffices to let W = H1
0 (U) ,V =

W 1,p
0 (U) ,

A : V →V ′, ⟨Au,v⟩=
∫

U
|∇u|p−2

∇u ·∇vdx,

B : W →W ′,⟨Bu,v⟩=
∫

U
b(x)u(x)v(x)dx

Then by the Sobolev embedding theorem, B is obviously self adjoint, bounded and non-
negative. This follows from a short computation:∣∣∣∣∫U

b(x)u(x)v(x)dx
∣∣∣∣≤ ∥v∥L4(U)

(∫
U
|b(x)|4/3 |u(x)|4/3 dx

)3/4

≤ ∥v∥H1
0 (U)

((∫
|b(x)|4 dx

)1/3(∫ (
|u(x)|4/3

)3/2
)2/3

)3/4

= ∥v∥H1
0 (U) ∥b∥L4(U) ∥u∥L2(U) ≤ ∥b∥L4 ∥u∥H1

0
∥v∥H1

0
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Also for some δ > 0
⟨Au−Av,u− v⟩ ≥ δ ∥u− v∥p

V

The nonlinear operator is obviously monotone and hemicontinuous. As for u0, it is only
necessary to assume u0 ∈ L2 (Ω,W ) and F0 measurable. Then Theorem 76.4.7 gives the
existence of a solution in the sense that for a.e. ω the integral equation holds for all t. Note
that b can be unbounded and may also vanish. Thus the equation can degenerate to the case
of a non stochastic nonlinear elliptic equation.

The existence theorems can easily be extended to include the situation where Φ is
replaced with a function of the unknown function u. This is done by splitting the time
interval into small sub intervals of length h and retarding the function in the stochastic
integral, like a standard proof of the Peano existence theorem. Then the Ito formula is
applied to obtain estimates and a limit is taken.

Other examples of the usefulness of this theory will result when one considers stochas-
tic versions of systems of partial differential equations in which there is a nonlinear cou-
pling between a parabolic equation and a nonlinear elliptic equation. These kinds of prob-
lems occur, for example as quasistatic damage problems in which the damage parameter
satisfies a parabolic equation and the balance of momentum is a nonlinear elliptic equation
and the two equations are coupled in a nonlinear way.

76.7 Other Examples, Inclusions
The above general result can also be used as a starting point for evolution inclusions or
other situations where one does not have hemicontinuous operators. Assume here that

Φ ∈ L∞

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
.

We will use the following simple observation. Let α > 2. Let ∥Φ∥
∞

denote the norm in
L∞
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
. By the Burkholder Davis Gundy inequality,∫

Ω

(∣∣∣∣∫ t

s
ΦdW

∣∣∣∣)α

dP≤

∫
Ω

(
sup

r∈[s,t]

∣∣∣∣∫ r

s
ΦdW

∣∣∣∣
)α

dP≤C
∫

Ω

(∫ t

s
∥Φ∥2 dτ

)α/2

dP

≤C∥Φ∥α

∞

∫
Ω

(∫ t

s
dτ

)α/2

dP =C∥Φ∥α

∞
|t− s|α/2

By the Kolmogorov Čentsov theorem, this shows that t →
∫ t

0 ΦdW is Holder continuous
with exponent

γ <
(α/2)−1

α
=

1
2
− 1

α

Since α > 2 is arbitrary, this shows that for any γ < 1/2, the stochastic integral is Holder
continuous with exponent γ . This is exactly the same kind of continuity possessed by the
Wiener process. We state this as the following lemma.
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Lemma 76.7.1 Let Φ∈ L∞
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
then for any γ < 1/2, the stochas-

tic integral
∫ t

0 ΦdW is Holder continuous with exponent γ .

To begin with, we consider a stochastic inclusion. Suppose, in the context of Theorem
76.4.7, that V is a closed subspace of W σ ,p (U) ,σ > 1 which contains C∞

c (U) where U is
an open bounded set in Rn, different than the Hilbert space U . (In case the matrix A which
follows equals 0, it suffices to take σ ≥ 1.) Let

∑
i, j

ai, j (x)ξ iξ j ≥ 0, ai j = a ji

where the ai, j ∈C1 (Ū). Denoting by A the matrix whose i jth entry is ai j, let

W ≡
{

u ∈ L2 (U) :
(

u, A1/2∇u
)
∈ L2 (U)n+1

}
with a norm given by

∥u∥W ≡

(∫
U

(
uv+∑

i, j
ai j (x)∂iu∂ jv

)
dx

)1/2

B : W →W ′ be given by

⟨Bu,v⟩ ≡
∫

U

(
uv+∑

i, j
ai j (x)∂iu∂ jv

)
dx

so that B is the Riesz map for this space. The case where the ai j could vanish is allowed.
Thus B is a positive self adjoint operator and is therefore, included in the above discussion.
In this example, it will be significant that B is one to one and does not vanish.

This operator maps onto L2 (U) because of basic considerations concerning maximal
monotone operators. This is because

⟨Du,v⟩ ≡
∫

U
∑
i, j

ai j (x)∂iu∂ jvdx

can be obtained as a subgradient of a convex lower semicontinuous and proper functional
defined on L2 (U). Therefore, the operator is maximal monotone on L2 (U) which means
that I +D is onto. The domain of D consists of all u ∈ L2 (U) such that

Du =−∑
i, j

∂ j (ai j (x)∂iu) ∈ L2 (U)

along with suitable boundary conditions determined by the choice of V . It follows that if
u+Du = Bu = f ∈ H = L2 (U) , then

u−∑
i, j

∂ j (ai j∂iu) = f



76.7. OTHER EXAMPLES, INCLUSIONS 2583

Therefore,
∥u∥2

L2(U)+
∫

U
∑
i, j

ai j (x)∂iu∂ ju = ∥u∥2
W =

= ( f ,u)≤ ∥ f∥L2(U) ∥u∥L2(U) ≤ ∥ f∥L2(U) ∥u∥W
which shows that the map B−1 : H = L2 (U)→W is continuous.

Next suppose that Φ∈ L∞
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
. Then by continuity of the map-

ping B−1, it follows that Ψ ≡ B−1Φ satisfies Ψ ∈ L∞
(
[0,T ]×Ω;L2

(
Q1/2U,W

))
. Thus

Φ = BΨ. In addition to this, to simplify the presentation, assume in addition that

⟨A(t,u,ω)−A(t,v,ω) ,u− v⟩ ≥ δ
2 ∥u− v∥p

V

⟨A(t,u,ω) ,u⟩ ≥ δ
2 ∥u∥p

V

Also assume the uniqueness condition of Lemma 76.3.16 is satisfied. Consider the follow-
ing graph.

−1/n

1/n

There is a monotone Lipschitz function Jnwhich is approximating a function with the
indicated jump. For a convex function φ , we denote by ∂φ its subgradient. Thus for
y ∈ ∂φ (x)

(y,u)≤ φ (x+u)−φ (x) .

Denote the Lipschitz function as Jn and the maximal monotone graph which it is approxi-
mating as J. Thus J denotes the ordered pairs (x,y) which are of the form (0,y) for |y| ≤ 1
along with ordered pairs (x,1) ,x > 0 and ordered pairs (x,−1) for x < 0. The graph of J
is illustrated in the above picture and is a maximal monotone graph. Thus J = ∂φ where
φ (r) = |r|. As illustrated in the graph, Jn is piecewise linear.

Let φ n (r)≡
∫ r

0 Jn (s)ds. It follows easily that φ n (r)→ φ (r) uniformly on R. Also let
h≥ 0 be progressively measurable and uniformly bounded by M and let u0 ∈ L2 (Ω,W ) ,u0
F0 measurable. Then from the above theorems, there exists a unique solution to the integral
equation

Bun (t)−Bu0 +
∫ t

0
A(s,un,ω)ds+

∫ t

0
h(s,ω)Jn (un)ds = B

∫ t

0
ΨdW,

the last term equaling
∫ t

0 ΦdW. The integral equation holds off a set of measure zero and is
progressively measurable.

Then from the Ito formula, one obtains, using the monotonicity of Jn an estimate in
which C does not depend on n

1
2

E ⟨Bun (t) ,un (t)⟩−
1
2

E ⟨Bu0,u0⟩+E
∫ t

0
⟨Aun,un⟩V ds≤C
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In particular, this holds for n = 1. Therefore, adjusting the constant, it follows that∫
Ω

⟨Bu1 (t) ,u1 (t)⟩+
∫

Ω

∫ T

0
∥u1∥p

V dtds≤C

Consequently, there exists a set of measure zero N such that for ω /∈ N,

⟨Bu1 (t) ,u1 (t)⟩+
∫ T

0
∥u1∥p

V dt ≤C (ω) (76.7.64)

From the integral equation, it follows that, enlarging N by including countably many sets
of measure zero, for ω /∈ N

Bun (t)−Bu1 (t)+
∫ t

0
A(s,un,ω)−A(s,u1,ω)ds

+
∫ t

0
h(s,ω)Jn (un)−h(s,ω)J1 (u1)ds = 0

Now it is certainly true that |Jn (un)− J1 (un)| ≤ 2. Thus∫ t

0
⟨h(s,ω)Jn (un)−h(s,ω)J1 (u1) ,un−u1⟩ds

=
∫ t

0
⟨h(s,ω)Jn (un)−h(s,ω)J1 (un) ,un−u1⟩ds

+
∫ t

0
⟨h(s,ω)(J1 (un)− J1 (u1)) ,un−u1⟩ds

≥−2M
∫ t

0
|un−u1|ds

Therefore, from the Ito formula and for ω /∈ N,

1
2
⟨Bun (t)−Bu1 (t) ,un (t)−u1 (t)⟩+δ

2
∫ t

0
∥un−u1∥p

V ds

≤
∫ t

0
2M |un−u1|ds≤

(
2+

1
2

∫ t

0
|un−u1|2 ds

)
M

≤
(

2+
1
2

∫ t

0
⟨Bun−Bu1,un−u1⟩ds

)
M

where M is an upper bound to h. Then by Gronwall’s inequality

1
2
⟨Bun (t)−Bu1 (t) ,un (t)−u1 (t)⟩ ≤ 2MeMT

Hence

1
2
⟨Bun (t)−Bu1 (t) ,un (t)−u1 (t)⟩+δ

2
∫ t

0
∥un−u1∥p

V ds≤ 2M+T M2eT M
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It follows from 76.7.64 that for all ω /∈ N and adjusting the constant,

⟨Bun (t) ,un (t)⟩+
∫ T

0
∥un∥p

V ds≤C (ω) (76.7.65)

for all n, where C (ω) depends only on ω .
For ω /∈ N, the above estimate implies there exists a further subsequence, still called n

such that
Bun→ Bu weak ∗ in L∞

(
0,T,W ′

)
un→ u weak ∗ in L∞ (0,T,H)

un→ u weakly in Vω

From the integral equation solved and the assumption that A is bounded, it can also be
assumed that(

B
(

un−
∫ (·)

0
ΨdW

))′
→
(

B
(

u−
∫ (·)

0
ΨdW

))′
weakly in V ′ω (76.7.66)

Bu(0) = Bu0

Aun→ ξ weakly in V ′ω

It is known that un is bounded in Vω . Also it is known that
(

B
(

un−
∫ (·)

0 ΨdW
))′

is

bounded in V ′ω . Therefore, B
(

un−
∫ (·)

0 ΨdW
)

satisfies a Holder condition into V ′. Since Ψ

is in L∞,
∫ (·)

0 ΨdW satisfies a Holder condition, and so Bun satisfies a Holder condition into
V ′ while Bun is bounded in W ′

ω . By compactness of the embedding of V into W, it follows
that W ′ embeds compactly into V ′. This is sufficient to conclude that {Bun} is precompact
in W ′

ω . The proof is similar to one given by Lions. [91] page 57. See Theorem 69.5.6.
Since B is the Riesz map, this implies that {un} is precompact in Wω and hence in Hω .

Therefore, one can take a further subsequence and conclude that

un→ u strongly in Hω ≡ L2 ([0,T ] ,L2 (U)
)

Therefore, a further subsequence, still denoted by n satisfies

un (t)→ u(t) in L2 (U) for a.e. t

We can also assume that

Jn (un)→ ζ weak ∗ in L∞ (0,T,L∞ (U))

From the integral equation solved,〈(
B
(

un−
∫ (·)

0
ΨdW

))′
,un−u

〉
Vω

+⟨A(t,un)+h(t,ω)Jn (un) ,un−u⟩= 0 (76.7.67)



2586 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

We claim that∫ t

0

〈(
B
(

un−
∫ (·)

0
ΨdW

))′
−
(

B
(

u−
∫ (·)

0
ΨdW

))′
,un−u

〉
ds≥ 0

The difficulty is that
∫ (·)

0 ΨdW is only in W . To see that the conclusion is so, note that it is
clear from a computation that

∫ t

0

〈 1−τ(h)
h

(
Bun−B

∫ (·)
0 ΨdW

)
− 1−τ(h)

h

(
Bu−B

∫ (·)
0 ΨdW

)
,un−u

〉
ds≥ 0 (76.7.68)

Claim: The above is indeed nonnegative.
Proof: Denote by q(t) the stochastic integral, un as u and u as v to save notation. Then

the left side of the above equals

1
h

∫ t

0
⟨B(u−q)−B(v−q) ,u− v⟩ds

−1
h

∫ t

h
⟨B(u(s−h)−q(s−h))−B(v(s−h)−q(s−h)) ,u(s)− v(s)⟩ds

≥ 1
h

∫ t

0
⟨B(u−q)−B(v−q) ,u− v⟩ds

− 1
2h

∫ t

h

〈
B(u(s−h)−q(s−h))−B(v(s−h)−q(s−h)) ,

(u(s−h)− v(s−h))

〉
ds

− 1
2h

∫ t

h
⟨B(u−q)−B(v−q) ,u− v⟩ds

≥ 1
h

∫ t

0
⟨B(u−q)−B(v−q) ,u− v⟩ds

− 1
2h

∫ t−h

0
⟨B(u(s)−q(s))−B(v(s)−q(s)) ,(u(s)− v(s))⟩ds

− 1
2h

∫ t

h
⟨B(u−q)−B(v−q) ,u− v⟩ds

=
1
h

∫ t

t−h
⟨B(u−q)−B(v−q) ,u− v⟩ds

+
1
h

∫ t−h

0
⟨B(u−q)−B(v−q) ,u− v⟩ds

− 1
2h

∫ t−h

0
⟨B(u−q)−B(v−q) ,(u− v)⟩ds

− 1
2h

∫ t

h
⟨B(u−q)−B(v−q) ,u− v⟩ds
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=
1
h

∫ t

t−h
⟨B(u−q)−B(v−q) ,u− v⟩ds

+
1

2h

∫ t−h

0
⟨B(u−q)−B(v−q) ,(u− v)⟩ds

− 1
2h

∫ t−h

h
⟨B(u−q)−B(v−q) ,u− v⟩ds

− 1
2h

∫ t

t−h
⟨B(u−q)−B(v−q) ,u− v⟩ds

=
1
2h

∫ t

t−h
⟨B(u−q)−B(v−q) ,u− v⟩ds

+
1

2h

∫ h

0
⟨B(u−q)−B(v−q) ,(u− v)⟩ds

which is nonnegative as can be seen by replacing u− v with (u−q)− (v−q) and using
monotonicity of B.

Now pass to a limit in 76.7.68 as h→ 0 to get the desired inequality. Therefore, from
76.7.67,

lim sup
n→∞

∫ T

0
⟨A(t,un)+h(t,ω)Jn (un) ,un−u⟩dt ≤ 0

From the above strong convergence, the left side equals

lim sup
n→∞

∫ T

0
⟨A(t,un) ,un−u⟩dt ≤ 0

It follows that for all v ∈ Vω ,∫ T

0
⟨A(t,u) ,u− v⟩dt

≤ lim inf
n→∞

∫ T

0
⟨A(t,un) ,un− v⟩dt

= lim sup
n→∞

[∫ T

0
⟨A(t,un) ,un−u⟩dt +

∫ T

0
⟨A(t,un) ,u− v⟩dt

]
≤

∫ T

0
⟨ξ ,u− v⟩dt

Since v is arbitrary, A(·,u) = ξ ∈ V ′ω . Passing to the limit in the integral equation yields

Bu(t)−Bu0 +
∫ t

0
A(s,u)ds+

∫ t

0
h(s,ω)ζ (s,ω)ds =

∫ t

0
ΦdW

What is h(s,ω)ζ (s,ω)?∫ T

0
⟨h(s,ω)Jn (un (s)) ,v(s)−un (s)⟩ds≤

∫ T

0
h(s,ω)(φ n (v)−φ n (un))ds
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Passing to the limit and using the strong convergence described above along with the uni-
form convergence of φ n to φ ,∫ T

0
(h(s,ω)ζ (s) ,v(s)−u(s))H ds≤

∫ T

0
h(s,ω)(φ (v(s))−φ (u(s)))ds

Hence,∫ T

0
(h(s,ω)φ (v(s))−h(s,ω)φ (u(s)))− (h(s,ω)ζ (s) ,v(s)−u(s))H ds≥ 0

for any choice of v ∈Hω . It follows that for a.e. s,h(s,ω)ζ (s) ∈ ∂v (h(s,ω)φ (u(s))).
This has shown that for each ω /∈ N, there exists a solution to the integral equation

Bu(t)−Bu0 +
∫ t

0
A(s,u)ds+

∫ t

0
h(s,ω)ζ (s,ω)ds =

∫ t

0
ΦdW (76.7.69)

where for a.e. s, h(s,ω)ζ (s,ω) ∈ ∂v (h(s,ω)φ (u(s))). Suppose you have two such solu-
tions (u1,ζ 1) and (u2,ζ 2). Then

Bu1 (t)−Bu2 (t)+
∫ t

0
A(s,u1)−A(s,u2)ds+

∫ t

0
h(s,ω)(ζ 1 (s,ω)−ζ 2 (s,ω))ds = 0

Then from monotonicity of the subgradient it follows that u1 = u2. Then the two integral
equations yield that for a.e. t(

B
(

u1−
∫ (·)

0
ΨdW

))′
(t)+A(s,u1 (t))+h(t,ω)ζ 1 (t,ω) =

=

(
B
(

u2−
∫ (·)

0
ΨdW

))′
(t)+A(s,u2 (t))+h(t,ω)ζ 2 (t,ω) = 0

Therefore, for a.e. t, h(t,ω)ζ 1 (t,ω) = h(t,ω)ζ 2 (t,ω). Thus the solution to the integral
equation for each ω off a set of measure zero is unique.

At this point it is not clear that (t,ω)→ u(t,ω) is progressively measurable. We claim
that for ω /∈ N it is not necessary to take a subsequence in the above. This is because
the above argument shows that if un fails to converge weakly, then there would exist two
subsequences converging weakly to two different solutions to the integral equation which
would contradict uniqueness.

Therefore, for ω /∈ N, un (·,ω)→ u(·,ω) weakly in Vω for a single sequence. Using
the estimate 76.3.24 it also follows that for a further subsequence still denoted as un,

un ⇀ ū in Lp ([0,T ]×Ω;V )

where the measurable sets are just the product measurable sets B ([0,T ])×FT . By Lemma
76.3.4 for ω off a set of measure zero, u(·,ω) = ū(·,ω) in Vω where ū is progressively
measurable. It follows that in all of the above, we could substitute ū for u at least for ω off
a single set of measure zero. Thus u can be assumed progressively measurable. The above
argument along with technical details related to exponential shift considerations proves the
following theorem.
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Theorem 76.7.2 In the situation of Corollary 76.4.9 where V is a closed subspace of
W σ ,p (U) ,σ > 1 and W is as described above for U a bounded open set, u0 ∈ L2 (Ω,W ) , u0
F0 measurable. Suppose λ I +A(t,u,ω) satisfies

⟨λ I +A(t,u,ω)− (λ I +A(t,v,ω)) ,u− v⟩ ≥ δ
2 ∥u− v∥p

V

for all λ large enough. Also assume Φ ∈ L∞
(
[0,T ]×Ω,L2

(
Q1/2U,H

))
with Φ = BΨ

where
Ψ ∈ L∞

(
[0,T ]×Ω,L2

(
Q1/2U,W

))
and progressively measurable. Then there exists a unique solution to the integral equation

Bu(t)−Bu0 +
∫ t

0
A(s,u)ds+

∫ t

0
h(s,ω)ζ (s,ω)ds =

∫ t

0
ΦdW (76.7.70)

where for a.e. s, h(s,ω)ζ (s,ω) ∈ ∂u (h(s,ω)φ (u(s))) where φ (r)≡ |r|. The symbol ∂u is
the subgradient of φ (u). Written in terms of inclusions, there exists a set of measure zero
such that off this set,(

B
(

u−
∫ (·)

0
ΦdW

))′
+A(t,u) ∈ ∂u (h(t,ω)φ (u(s))) a.e. t

u(0) = u0

Note that one can replace

Φ ∈ L∞

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
with Φ ∈ L2

(
[0,T ]×Ω,L2

(
Q1/2U,H

))
along with an assumption that t → Φ(t,ω) is

continuous. This can be done by defining a stopping time

τn ≡ inf{t : ∥Φ(t)∥> n}

Then from the above example, there exists a solution to the integral equation off a set of
measure zero

Bun (t)−Bu0 +
∫ t

0
A(s,un)ds+

∫ t

0
h(s,ω)ζ n (s,ω)ds =

∫ t∧τn

0
ΦdW

Since Φ is a continuous process, τn = ∞ for all n large enough. Hence, one can replace the
above with the desired integral equation. Of course the size of n depends on ω, but we can
define

u(t,ω) = lim
n→∞

un (t,ω)

because by uniqueness which comes from monotonicity, if for a particular ω, both n,k
are sufficiently large, then un = uk. Thus u is progressively measurable and is the desired
solution.

Next we show that the above theory can also be used as a starting point for some second
order in time problems. Consider a beam which has a point mass of mass m attached to
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one end. Suppose for sake of illustration that the left end is clamped, u(0, t) = ux (0, t) = 0,
while the right end which has the attached mass is free to move, ux (1, t) = 0, and the beam
occupies the interval [0,1] in material coordinates. Then the stress is σ =−uxxx and balance
of momentum is

utt = σ x + f

where f is a body force. Thus, letting

w ∈V ≡
{

w ∈ H2 (0,1) : w(0) = wx (0) = 0,wx (1) = 0
}

be a test function,∫ 1

0
uttwdx = σw|10 +

∫ 1

0
(−σ)wxdx+

∫ 1

0
f wdx

= −mutt (1, t)w(1, t)+
∫ 1

0
uxxxwxdx+

∫ 1

0
f wdx

Doing another integration by parts and using the boundary conditions, it follows that an
appropriate variational formulation for this problem is∫ 1

0
uttwdx+mγ1uttγ1w+

∫ 1

0
uxxwxxdx =

∫ 1

0
f wdx

where here γ1 is the trace map on the right end.
Letting

u(t) = u0 +
∫ t

0
v(s)ds,

where u(0, t) = u0, we can write the above variational equation in the form

(Bv)′+Au = f , Bv(0) = Bv0

where we assume that v0 ∈W where W is the closure of V in H1 (0,1) and the operators
are given by

B : W →W ′, ⟨Bu,w⟩ ≡
∫ 1

0
uwdx+mγ1uγ1w

A : V →V ′, ⟨Au,w⟩ ≡
∫ 1

0
uxxwxxdx

Thus in terms of an integral equation, this would be of the form

Bv(t)−Bv0 +
∫ t

0
A(u)ds =

∫ t

0
f ds

This suggests a stochastic version of the form

Bv(t)−Bv0 +
∫ t

0
A(u)ds =

∫ t

0
f ds+

∫ t

0
ΦdW
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where Φ ∈ L∞
(
(0,T )×Ω,L2

(
Q1/2U,H

))
for H = L2 (0,1). As in the previous example,

simple considerations involving maximal monotone operators imply that there exists Ψ ∈
L∞
(
(0,T )×Ω,L2

(
Q1/2U,W

))
such that Φ = BΨ. We also assume that f ∈ V ′ and u0,v0

are in L2 (Ω,V ) and L2 (Ω,W ) respectively, both being F0 measurable. The above equation
does not fit the general theory developed earlier because it is second order in time and is
a stochastic version of a hyperbolic equation rather than a parabolic one. We consider it
using a parabolic regularization which can be studied with the above general theory along
with a simple fixed point argument.

Consider the approximate problem which is to find a solution to

Bv(t)−Bv0 + ε

∫ t

0
Avds+

∫ t

0
A(u)ds =

∫ t

0
f ds+

∫ t

0
ΦdW (76.7.71)

where u is given above as an integral of v. First we argue that there exists a unique solution
to the above integral equation and then we pass to a limit as ε → 0. Let u ∈ V be given.

From Corollary 76.4.9 there exists a unique solution v to 76.7.71. Now suppose u1,u2
are two given in V and denote by vi the corresponding v which solves the above. Then
from the Ito formula or standard considerations,

1
2

E ⟨B(v1 (t)− v2 (t)) ,v1 (t)− v2 (t)⟩+ εE
∫ t

0
∥v1− v2∥2

V ds

≤ ε

2
E
∫ t

0
∥v1− v2∥2

V ds+Cε E
∫ t

0
∥u1−u2∥2

V ds

Now define a mapping θ from V to V as follows. Begin with v then obtain

u(t)≡ u0 +
∫ t

0
v(s)ds (76.7.72)

Use this u in 76.7.71. Then θv is the solution to 76.7.71 which corresponds to u. Then the
above inequality shows that∫ t

0

∫
Ω

∥θv1 (s)−θv2 (s)∥2 dPds≤ Cε

ε

∫ t

0

∫
Ω

∥u1−u2∥2
V dPds

≤ Cε

ε
CT

∫ t

0

∫ s

0

∫
Ω

∥v1 (r)− v2 (r)∥2
V dPdrds

It follows that a high enough power of θ is a contraction map on L2
(
0,T,L2 (Ω,V )

)
and

so there exists a unique fixed point. This yields a unique solution to the above approximate
problem 76.7.71 in which u,v are related by 76.7.72.

Next we let ε → 0. Index the above solution with ε . By the Ito formula again,

1
2

E ⟨Bvε (t) ,vε (t)⟩−
1
2

E ⟨Bv0,v0⟩+ ε

∫ t

0
E ∥vε∥2

V ds

+
1
2

E ∥uε (t)∥2
V −

1
2

E ∥u0∥2
V =

∫ t

0
E ⟨ f ,vε⟩ds
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Then one can obtain an estimate and pass to a limit as ε → 0 obtaining the following
convergences.

εvε → 0 strongly in V

Bvε → Bv weak ∗ in L∞
(
0,T,L2 (

Ω,W ′
))

uε (t)→ u(t) weak ∗ in L∞
(
0,T,L2 (Ω,V )

)
Then one can simply pass to a limit in the approximate integral equation and obtain, thanks
to linearity considerations, that

Bv(t)−Bv0 +
∫ t

0
A(u)ds =

∫ t

0
f ds+

∫ t

0
ΦdW, u(t) = u0 +

∫ t

0
v(s)ds (76.7.73)

the equation holding in V ′. Thus for a.e. ω, the above holds for a.e. t. It is possible to
work harder and have the equation holding for all t. This involves using the other form of
the Ito formula, estimating for a fixed ω as done above and then arguing that by uniqueness
one can use a single subsequence which works independent of ω .

Example 76.7.3 Let u0 ∈ L2 (Ω,V ) where V is described above and let v0 ∈ L2 (Ω,W ) for
W described above. Let both of these initial conditions be progressively measurable. Also
let f ∈ V ′ and Φ ∈ L∞

(
(0,T )×Ω,L2

(
Q1/2U,H

))
. Then there exists a unique solution to

the the integral equation 76.7.73 which can be written in the form

But (t)−Bv0 +
∫ t

0
A
(

u0 +
∫ t

0
ut (r)dr

)
ds =

∫ t

0
f ds+

∫ t

0
ΦdW

Note that a more standard model involves no point mass at the tip of the beam. This
would be done the same way but it would not require the generalized Ito formula presented
earlier. A more standard version would work.

One can find many other examples where this generalized Ito formula is a useful tool
to study various kinds of stochastic partial differential equations. We have presented five
examples above in which it was helpful to have the extra generality.



Chapter 77

Stochastic Inclusions
77.1 The General Context

The situation is as follows. There are spaces V ⊆W where V,W are reflexive separable
Banach spaces. It is assumed that V is dense in W. Define the space for p > 1

V ≡ Lp ([0,T ] ;V )

where in each case, the σ algebra of measurable sets will be B ([0,T ]) the Borel measurable
sets. Thus, from the Riesz representation theorem,

V ′ = Lp′ ([0,T ] ;V ′) ,
We also assume (Ω,F ,P) is a complete probability space. That is, if P(E) = 0 and F ⊆ E,
then F ∈F . Also

V ⊆W, W ′ ⊆V ′

B(ω) will be a linear operator, B(ω) : W →W ′ which satisfies

1. ⟨B(ω)x,y⟩= ⟨B(ω)y,x⟩

2. ⟨B(ω)x,x⟩ ≥ 0 and equals 0 if and only if x = 0.

3. ω → B(ω) is a measurable L (W,W ′) valued function.

In the above formulae, ⟨·, ·⟩ denotes the duality pairing of the Banach space W, with its
dual space. We will use this notation in the present paper, the exact specification of which
Banach space being determined by the context in which this notation occurs.

For example, you could simply take W = H = H ′ and B the identity and consider a
standard Gelfand triple where H is a Hilbert space and B equal to the identity. An interest-
ing feature is the requirement that B(ω) be one to one. It would be interesting to include
the case of degenerate B, but B one to one includes the case of most interest just mentioned.
Also a more general set of assumptions will allow the inclusion of this case of degenerate
B(ω) also.

We assume always that the norm on the various reflexive Banach spaces is strictly
convex.

77.2 Some Fundamental Theorems
The following fundamental result will be very useful. It says essentially that if (Bu)′ ∈
Lp′ (0,T ;V ′) and u ∈ Lp (0,T ;V ) then the map u→ Bu(t) is continuous as a map from

X ≡
{

u ∈ Lp ([0,T ] ;V ) : (Bu)′ ∈ Lp′ ([0,T ] ;V ′)}
having norm equal to

∥u∥X ≡ ∥u∥Lp(0,T,V )+
∥∥(Bu)′

∥∥
Lp′ (0,T ;V ′)

2593
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to W ′. There is also a convenient integration by parts formula, Theorem 34.4.3. For con-
venience, the dependence of B on ω is often suppressed. This is not a problem because the
entire approach will be to consider the situation for fixed ω .

Theorem 77.2.1 Let V ⊆W,W ′⊆V ′ be separable Banach spaces, and let Y ∈Lp′ (0,T ;V ′)
and

Bu(t) = Bu0 +
∫ t

0
Y (s)ds in V ′, u0 ∈W,Bu(t) = B(u(t)) for a.e. t (77.2.1)

Thus Y = (Bu)′ as a weak derivative in the sense of V ′ valued distributions. It is known
that u ∈ Lp (0,T,V ) for p > 1. Then t → Bu(t) is continuous into W ′ for t off a set of
measure zero N and also there exists a continuous function t→ ⟨Bu,u⟩(t) such that for all
t /∈ N,⟨Bu,u⟩(t) = ⟨B(u(t)) ,u(t)⟩ ,Bu(t) = B(u(t)) , and for all t,

1
2
⟨Bu,u⟩(t) = 1

2
⟨Bu0,u0⟩+

∫ t

0
⟨Y (s) ,u(s)⟩ds

Note that the formula 77.2.1 shows that Bu0 = Bu(0) . Also it shows that t→⟨Bu,u⟩(t)
is continuous. To emphasize this a little more, Bu is the name of a function. Bu(t) =
B(u(t)) for a.e. t and t → Bu(t) is continuous into V ′ on [0,T ] because of the integral
equation.

Theorem 77.2.2 In the above corollary, the map u→ Bu(t) is continuous as a map from
X to V ′. Also if Y denotes those f ∈ Lp ([0,T ] ;V ) for which f ′ ∈ Lp ([0,T ] ;V ) , so that f
has a representative such that f (t) = f (0)+

∫ t
0 f ′ (s)ds, then if ∥ f∥Y ≡ ∥ f∥Lp([0,T ];V ) +

∥ f ′∥Lp([0,T ];V ) the map f → f (t) is continuous.

Proof: First, why is u→ Bu(0) continuous? Say u,v ∈ X and say p≥ 2 first.

Bu(t)−Bv(t) = Bu(0)−Bv(0)+
∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

and so, (∫ T

0
∥Bu(0)−Bv(0)∥p′

V ′ dt
)1/p′

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p′

V ′ dt
)1/p′

+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p′

dt

)1/p′

and so
∥Bu(0)−Bv(0)∥V ′ T

1/p′ ≤(
∥B∥∥u− v∥Lp′ ([0,T ];V )

+T 1/p′ ∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

)
≤C (∥B∥ ,T )∥u− v∥X
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Thus u→ Bu(0) is continuous into V ′. If p < 2, then you do something similar.(∫ T

0
∥Bu(0)−Bv(0)∥p

V ′ dt
)1/p

≤
(∫ T

0
∥Bu(t)−Bv(t)∥p

V ′ dt
)1/p

+

(∫ T

0

∥∥∥∥∫ t

0
(Bu)′ (s)− (Bv)′ (s)ds

∥∥∥∥p

dt
)1/p

∥Bu(0)−Bv(0)∥V ′ T
1/p ≤ ∥B∥∥u− v∥Lp +C (T )

∥∥(Bu)′− (Bv)′
∥∥

Lp′ ([0,T ];V ′)

≤ C (∥B∥ ,T )∥u− v∥X .

However, one could just as easily have done this for an arbitrary s < T by repeating the
argument for

Bu(t) = Bu(s)+
∫ t

s
(Bu)′ (r)dr

Thus this mapping is certainly continuous into V ′. The last assertion is similar. ■
Also of use will be the following generalization of the Ascoli Arzela theorem. [117],

Theorem 69.5.4.

Theorem 77.2.3 Let q > 1 and let E ⊆W ⊆ X where the injection map is continuous from
W to X and compact from E to W. Let S be defined by{

u such that ||u(t)||E ≤ R for all t ∈ [a,b] , and ∥u(s)−u(t)∥X ≤ R |t− s|1/q
}
.

Thus S is bounded in L∞ (0,T,E) and in addition, the functions are uniformly Holder con-
tinuous into X . Then S ⊆ C ([a,b] ;W ) and if {un} ⊆ S, there exists a subsequence,

{
unk

}
which converges to a function u ∈C ([a,b] ;W ) in the following way.

lim
k→∞

∣∣∣∣unk −u
∣∣∣∣

∞,W = 0.

Next is a major measurable selection theorem which forms an essential part of showing
the existence of measurable solutions. See Theorem 70.2.1. The following is not dependent
on there being a measure but in the applications there is typically a probability measure and
often a set of measure zero which occurs in a natural way so an exceptional set of measure
zero is included in the statement of the theorem but it has absolutely nothing to do with a
set of measure zero as will be seen by just letting the exceptional set be /0.

Theorem 77.2.4 Let V be a reflexive separable Banach space with dual V ′, and let p, p′

be such that p > 1 and 1
p + 1

p′ = 1. Let the functions t → un (t,ω), for n ∈ N, be in

Lp′ ([0,T ] ;V ′) and (t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into V ′. Sup-
pose there is a set of measure zero N ⊆Ω such that if ω /∈ N, then

sup
t∈[0,T ]

∥un (t,ω)∥V ′ ≤C (ω) ,
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for all n. Also, suppose for each ω /∈ N, each subsequence of {un} has a further subse-
quence that converges weakly in Lp′ ([0,T ] ;V ′) to v(·,ω) ∈ Lp′ ([0,T ] ;V ′) such that the
function t→ v(t,ω) is weakly continuous into V ′.

Then, there exists a product measurable function u such that t→ u(t,ω)is weakly con-
tinuous into V ′ and for each ω /∈ N, a subsequence un(ω) such that un(ω) (·,ω)→ u(·,ω)

weakly in Lp′ ([0,T ] ;V ′).

We prove the theorem in steps given below. Let X = ∏
∞
k=1 C ([0,T ]) and note that when

it is equipped with the product topology, then one can consider X as a metric space using
the metric

d (f,g)≡
∞

∑
k=1

2−k ∥ fk−gk∥
1+∥ fk−gk∥

,

where f=( f1, f2, . . .),g=(g1,g2, . . .)∈X , and the norm is the maximum norm in C ([0,T ]).
With this metric, X is complete and separable.

Lemma 77.2.5 Let {fn} be a sequence in X and suppose that each one of the components
fnk is bounded by C = C(k) in C0,1 ([0,T ]). Then, there exists a subsequence

{
fn j

}
that

converges to some f ∈ X as n j→ ∞. Thus, {fn} is pre-compact in X.

Proof: By the Ascoli−Arzelà theorem, there exists a subsequence {fn1} such that the
sequence of the first components fn11 converges in C ([0,T ]). Then, taking a subsequence,
one can obtain {n2} a subsequence of {n1} such that both the first and second components
of fn2 converge. Continuing in this way one obtains a sequence of subsequences, each
a subsequence of the previous one such that fn j has the first j components converging
to functions in C ([0,T ]). Therefore, the diagonal subsequence has the property that it
has every component converging to a function in C ([0,T ]) . The resulting function is f ∈
∏k C ([0,T ]). ■

Now, for m ∈ N and φ ∈V, define lm(t)≡max(0, t− (1/m)) and

ψm,φ : Lp′ ([0,T ] ;V ′)→C ([0,T ])

by

ψm,φ u(t)≡
∫ T

0

〈
mφX[lm(t),t] (s) ,u(s)

〉
V ds = m

∫ t

lm(t)
⟨φ ,u(s)⟩V ds.

Here, X[lm(t),t] (·) is the indicator function of the interval [lm(t), t] and ⟨·, ·⟩V = ⟨·, ·⟩V is the
duality pairing between V and V ′.

Let D = {φ r}
∞

r=1 denote a countable dense subset of V . Then the pairs (φ ,m) for

φ ∈ D and m ∈ N form a countable set. Let
(

mk,φ rk

)
denote an enumeration of the pairs

(m,φ) ∈ N×D . To simplify the notation, we set

fk (u)(t)≡ ψmk,φ rk
(u)(t) = mk

∫ t

lmk (t)

〈
φ rk

,u(s)
〉

V
ds.
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For fixed ω /∈ N and k, the functions
{

t→ fk (u j (·,ω))(t)
}

j are uniformly bounded
and equicontinuous because they are in C0,1 ([0,T ]). Indeed, we have for ω /∈ N,

∣∣ fk (u j (·,ω))(t)
∣∣= ∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V
ds

∣∣∣∣∣≤C (ω)
∥∥∥φ rk

∥∥∥
V

and for t ≤ t ′ ∣∣ fk (u j (·,ω))(t)− fk (u j (·,ω))
(
t ′
)∣∣

≤

∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V
ds−mk

∫ t ′

lmk (t
′)

〈
φ rk

,u j (s,ω)
〉

V
ds

∣∣∣∣∣
≤ 2mk

∣∣t ′− t
∣∣C (ω)

∥∥∥φ rk

∥∥∥
V ′
.

By Lemma 77.2.5, the set of functions
{
XNC (ω) f(u j (·,ω))

}∞

j=n is pre-compact in X =

∏k C ([0,T ]) . We now define a set valued map Γn : Ω→ X by

Γ
n (ω)≡ ∪ j≥n

{
XNC (ω) f(u j (·,ω))

}
,

where the closure is taken in X . Then Γn (ω) is the closure of a pre-compact set in X and
so Γn (ω) is compact in X . From the definition, a function f is in Γn (ω) if and only if
d (f,XNC (ω) f(wl))→ 0 as l→ ∞, where each wl is one of the u j (·,ω) for j ≥ n. In the
topology on X , this happens iff for every k,

fk (t) = lim
l→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)wl (s,ω)
〉

V
ds,

where the limit is the uniform limit in t.

Lemma 77.2.6 The mapping ω→ Γn (ω) is an F measurable set-valued map with values
in X. If σ is a measurable selection, then for each t, ω → σ (t,ω) is F measurable and
(t,ω)→ σ (t,ω) is B ([0,T ])×F measurable.

We note that if σ is a measurable selection then σ (ω) ∈ Γn (ω), so σ = σ (·,ω) is a
continuous function. To have σ measurable would mean that σ

−1
k (open) ∈F , where the

open set is in C ([0,T ]).
Proof: Let O be a basic open set in X . Then O = ∏

∞
k=1 Ok, where Ok is a proper open

set of C ([0,T ]) only for k ∈ {k1, · · · ,kr}. Thus there is a proper open set in these positions
and in every other position the open set is the whole space C ([0,T ]) .We need to show that

Γ
n− (O)≡ {ω : Γ

n (ω)∩O ̸= /0} ∈F .

Now, Γn− (O) = ∩r
i=1

{
ω : Γn (ω)ki

∩Oki ̸= /0
}

, so we consider whether{
ω : Γ

n (ω)ki
∩Oki ̸= /0

}
∈F . (77.2.2)
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From the definition of Γn (ω) , this is equivalent to the condition that

fki (XNC (ω)u j (·,ω)) = (f(XNC (ω)u j (·,ω)))ki
∈ Oki

for some j ≥ n, and so the set in 77.2.2 is of the form

∪∞
j=n

{
ω : (f(XNC (ω)u j (·,ω)))ki

∈ Oki

}
.

Now ω → (f(XNC (ω)u j (·,ω)))ki
is F measurable into C ([0,T ]) and so the above set is

in F . To see this, let g ∈C ([0,T ]) and consider the inverse image of the ball with radius r
and center g,

B(g,r) =
{

ω :
∥∥∥(XNC (ω) f(u j (·,ω)))ki

−g
∥∥∥

C([0,T ])
< r
}
.

By continuity considerations,∥∥∥(XNC (ω) f(u j (·,ω)))ki
−g
∥∥∥

C([0,T ])

= sup
t∈Q∩[0,T ]

∣∣∣(XNC (ω) f(u j (t,ω)))ki
−g(t)

∣∣∣ ,
which is the sup over countably many F measurable functions. Thus, it is F measurable.
Since every open set is the countable union of such balls, it follows that the claim about F
measurability is valid. Hence, Γn− (O) is F measurable whenever O is a basic open set.

Now, X is a separable metric space and so every open set is a countable union of these
basic sets. Let U ⊆ X be open with U = ∪∞

l=1Ol where Ol is a basic open set as above.
Then,

Γ
n− (U) = ∪∞

l=1Γ
n− (Ol) ∈F .

The existence of a measurable selection follows from the standard theory of measurable
multi-functions [10, 70] see [70] starting on Page 141 for all the necessay stuff on measur-
able multifunctions or Section 48. If σ is one of these measurable selections, the evalua-
tion at t is F measurable. Thus, ω → σ (t,ω) is F measurable with values in R∞. Also,
t→ σ (t,ω) is continuous, and so it follows that in fact σ is product measurable as claimed.
■

Definition 77.2.7 Let Γ(ω)≡ ∩∞
n=1Γn (ω).

Lemma 77.2.8 Γ is a nonempty F measurable set-valued function with values in com-
pact subsets of X. There exists a measurable selection γ such that (t,ω)→ γ (t,ω) is P
measurable. Also, for each ω, there exists a subsequence, un(ω) (·,ω) such that for each k,

γk (t,ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (t,ω)

)
k

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds.
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Proof: From the definition of Γ(ω) = ∩∞
n=1Γn (ω) it follows that ω → Γ(ω) is a com-

pact set-valued map in X and is nonempty because each Γn (ω) is nonempty and compact,
and the Γn (ω) are nested. We next show that ω → Γ(ω) is F measurable. Indeed, each
Γn is compact valued and F measurable so, if F is closed,

Γ(ω)∩F = ∩∞
n=1Γ

n (ω)∩F,

and the left-hand side is not empty if and only if each Γn (ω)∩F ̸= /0. Thus, for F closed,

{ω : Γ(ω)∩F ̸= /0}= ∩n {ω : Γ
n (ω)∩F ̸= /0} ,

and so
Γ
− (F) = ∩nΓ

n− (F) ∈F .

The last claim follows from the theory of multi-functions, see, e.g., [10, 70] or Section 48.
See Proposition 48.1.4. The fact that Γn (ω) is compact, Γn is measurable and Γn− (U) ∈
F , for U open, imply the strong measurability of Γn [10, 70] see also Section 48, and
also that Γn− (F) ∈ F . Thus, ω → Γ(ω) is a nonempty compact valued in X and F
measurable. We are using the theorem which says that when Γ has compact values, then
one can conclude that strong measurability and measurability coincide. This is why we can
say that Γn− (F) ∈F .

The standard theory [10, 70], Section 48, also guarantees the existence of an F mea-
surable selection ω → γ (ω) with γ (ω) ∈ Γ(ω), for each ω , and also that t → γk (t,ω)
(the kth component of γ) is continuous. Next, we consider the product measurability of γk.
We know that ω → γk (ω) is F measurable into C ([0,T ]) and since pointwise evaluation
is continuous, ω → γk (t,ω) is F measurable. (This is nothing more than a case of the
general result that a continuous function of a measurable function is measurable.) Then,
since t→ γk (t,ω) is continuous, it follows that γk is a P measurable real valued function
and that γ is a P measurable R∞ valued function. Since γ (ω) ∈ Γ(ω) , it follows that for
each n,γ (ω) ∈ Γn (ω) . Therefore, there exists jn ≥ n such that for each ω ,

d (f(XNC (ω)u jn (·,ω)) ,γ (ω))< 2−n.

Therefore, for a suitable subsequence
{

un(ω) (·,ω)
}

, we have

γ (ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (·,ω)

)
,

for each ω . In particular, for each k

γk (t,ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (t,ω)

)
k

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds, (77.2.3)

for each t. ■
Note that it is not clear that (t,ω)→ f

(
XNC (ω)un(ω) (t,ω)

)
is P measurable, al-

though (t,ω)→ γ (t,ω) is P measurable.
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Now here is the proof of the theorem.
Proof of Theorem 77.2.4 By assumption, there exists a further subsequence, still denoted
by n(ω), such that, in addition to 77.2.3, the weak limit

lim
n(ω)→∞

XNC (ω)un(ω) (·,ω) = u(·,ω)

exists in Lp′ ([0,T ] ;V ′) such that t → u(t,ω) is weakly continuous into V ′. Then, 77.2.3
also holds for this further subsequence and in addition,

mk

∫ t

lmk (t)

〈
φ rk

,u(s,ω)
〉

V
ds

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds

= γk (t,ω) .

Letting φ ∈ D be given, there exists a subsequence, denoted by k, such that mk → ∞ and
φ rk

= φ . Recall
(

mk,φ rk

)
denoted an enumeration of the pairs (m,φ) ∈ N×D . Then,

passing to the limit and using the assumed continuity of s→ u(s,ω) , the left-hand side
of this equality converges to ⟨φ ,u(s,ω)⟩V and so the right-hand side, γk (t,ω), must also
converge and for each ω . Since the right-hand side is a product measurable function of
(t,ω) , it follows that the pointwise limit is also product measurable. Hence, (t,ω)→
⟨φ ,u(t,ω)⟩V is product measurable for each φ ∈D . Since D is a dense set, it follows that
(t,ω)→ ⟨φ ,u(t,ω)⟩V is P measurable for all φ ∈ V and so by the Pettis theorem, [127],
(t,ω)→ u(t,ω) is P measurable into V ′. ■

Actually, one can say more about the measurability of the approximating sequence and
in fact, we can obtain one for which ω → un(ω) (t,ω) is also F measurable.

Lemma 77.2.9 Suppose that un(ω)→ u weakly in Lp′ ([0,T ] ;V ′), where u is product mea-
surable, and

{
un(ω)

}
is a subsequence of {un}, such that there exists a set of measure zero

N ⊆Ω and
sup

t∈[0,T ]
∥un (t,ω)∥V ′ <C (ω) , for ω /∈ N.

Then, there exists a subsequence of {un}, denoted as
{

uk(ω)

}
, such that uk(ω)→ u weakly

in Lp′ ([0,T ] ;V ′), ω→ k (ω) is F measurable, and ω→ uk(ω) (t,ω) is also F measurable,
for each ω /∈ N.

Proof: Assume that f ,g ∈ Lp′ ([0,T ] ;V ′) and let {φ k} be a countable dense subset
of Lp ([0,T ] ;V ). Then, a bounded set in Lp′ ([0,T ] ;V ′) with the weak topology can be
considered a complete metric space using the metric

d ( f ,g)≡
∞

∑
j=1

2− j |⟨φ k, f −g⟩|
1+ |⟨φ k, f −g⟩|

.

Now, let k (ω) be the first index of {un} that is at least as large as k and such that

d
(
XNC (ω)uk(ω),u

)
≤ 2−k.
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Such an index exists because there exists a convergent sequence XNC (ω)un(ω) that con-
verge weakly to u. In fact,

{ω : k (ω) = l}=
{

ω : d (ul ,u)≤ 2−k
}
∩∩l−1

j=1

{
ω : d (u j,u)> 2−k

}
.

Since u is product measurable and each ul is also product measurable, these are all mea-
surable sets with respect to F and so ω → k (ω) is F measurable. Now, we have that
XNC (ω)uk(ω)→ u weakly in Lp′ ([0,T ] ;V ′), for each ω , and each function is F measur-
able because

uk(ω) (t,ω) =
∞

∑
j=1

X[k(ω)= j]u j (t,ω) ,

and every term in the sum is F measurable. ■
Theorem 77.2.4 can be generalized in a very nice way. It is a better result because

you don’t need to assume anything so strong as to have the functions bounded. One does
not need any assumption that the limit is weakly continuous into V ′. You can also have
the functions take values in either V or V ′. The following is not dependent on there being
a measure but in the applications there is typically a probability measure and often a set
of measure zero which occurs in a natural way so an exceptional set of measure zero is
included in the statement of the theorem.

Theorem 77.2.10 Let V be a reflexive separable Banach space with dual V ′, and let p, p′

be such that p > 1 and 1
p + 1

p′ = 1. Let the functions t → un (t,ω), for n ∈ N, be in
Lp ([0,T ] ;V )≡ V and (t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into V . Sup-
pose there is a set of measure zero N ⊆Ω such that if ω /∈ N, then

∥un (·,ω)∥V ≤C (ω) ,

for all n. (Thus, by weak compactness, for each ω, each subsequence of {un} has a further
subsequence that converges weakly in V to v(·,ω) ∈ V . (v not known to be P measur-
able))

Then, there exists a product measurable function u such that t→ u(t,ω)is in V and for
each ω /∈ N, a subsequence un(ω) such that un(ω) (·,ω)→ u(·,ω) weakly in V .

We prove the theorem in steps given below. Let X = ∏
∞
k=1 C ([0,T ]) and note that when

it is equipped with the product topology, then one can consider X as a metric space using
the metric

d (f,g)≡
∞

∑
k=1

2−k ∥ fk−gk∥
1+∥ fk−gk∥

,

where f=( f1, f2, . . .),g=(g1,g2, . . .)∈X , and the norm is the maximum norm in C ([0,T ]).
With this metric, X is complete and separable.

Lemma 77.2.11 Let {fn} be a sequence in X and suppose that each one of the components
fnk is bounded by C =C(k) in C0,(1/p′) ([0,T ]). Then, there exists a subsequence

{
fn j

}
that

converges to some f ∈ X as n j→ ∞. Thus, {fn} is pre-compact in X.
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Proof: This follows right away from Tychonoff’s theorem and the compactness of the
embedding of the Holder space into C ([0,1]). ■

Now, for m∈N and φ ∈V ′, define lm(t)≡max(0, t− (1/m)) and ψm,φ : V →C ([0,T ])
by

ψm,φ u(t)≡
∫ T

0

〈
mφX[lm(t),t] (s) ,u(s)

〉
V ds = m

∫ t

lm(t)
⟨φ ,u(s)⟩V ds.

Here, X[lm(t),t] (·) is the characteristic function of the interval [lm(t), t] and ⟨·, ·⟩V = ⟨·, ·⟩V
is the duality pairing between V and V ′.

Let D = {φ r}
∞

r=1 denote a countable subset of V ′. Then the pairs (φ ,m) for φ ∈D and

m ∈ N form a countable set. Let
(

mk,φ rk

)
denote an enumeration of the pairs (m,φ) ∈

N×D . To simplify the notation, we set

fk (u)(t)≡ ψmk,φ rk
(u)(t) = mk

∫ t

lmk (t)

〈
φ rk

,u(s)
〉

V
ds.

For fixed ω /∈ N and k, the functions
{

t→ fk (u j (·,ω))(t)
}

j are uniformly bounded

and equicontinuous because they are in C0,1/p′ ([0,T ]). Indeed, we have for ω /∈ N,

∣∣ fk (u j (·,ω))(t)
∣∣ =

∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V
ds

∣∣∣∣∣
≤ m

∥∥∥φ rk

∥∥∥T 1/p′
∣∣∣∣∫ T

0

∥∥u j (s,ω)
∥∥p

V ds
∣∣∣∣1/p

≤C (ω)m
∥∥∥φ rk

∥∥∥
V ′

T 1/p′

and for t ≤ t ′ ∣∣ fk (u j (·,ω))(t)− fk (u j (·,ω))
(
t ′
)∣∣

≤

∣∣∣∣∣mk

∫ t

lmk (t)

〈
φ rk

,u j (s,ω)
〉

V
ds−mk

∫ t ′

lmk (t
′)

〈
φ rk

,u j (s,ω)
〉

V
ds

∣∣∣∣∣
≤ 2mk

∣∣t ′− t
∣∣1/p′C (ω)

∥∥∥φ rk

∥∥∥
V ′
.

By Lemma 77.2.11, the set of functions
{
XNC (ω) f(u j (·,ω))

}∞

j=n is pre-compact in X =

∏k C ([0,T ]) . We now define a set valued map Γn : Ω→ X by

Γ
n (ω)≡ ∪ j≥n

{
XNC (ω) f(u j (·,ω))

}
,

where the closure is taken in X . Then Γn (ω) is the closure of a pre-compact set in X and
so Γn (ω) is compact in X . From the definition, a function f is in Γn (ω) if and only if
d (f,XNC (ω) f(wl))→ 0 as l→ ∞, where each wl is one of the u j (·,ω) for j ≥ n. In the
topology on X , this happens iff for every k,

fk (t) = lim
l→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)wl (s,ω)
〉

V
ds,

where the limit is the uniform limit in t.
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Lemma 77.2.12 The mapping ω → Γn (ω) is an F measurable set-valued map with val-
ues in X. If σ is a measurable selection, then for each t, ω → σ (t,ω) is F measurable
and (t,ω)→ σ (t,ω) is B ([0,T ])×F measurable.

We note that if σ is a measurable selection then σ (ω) ∈ Γn (ω), so σ = σ (·,ω) is a
continuous function. To have σ measurable would mean that σ

−1
k (open) ∈F , where the

open set is in C ([0,T ]).
Proof: Let O be a basic open set in X . Then O = ∏

∞
k=1 Ok, where Ok is a proper open

set of C ([0,T ]) only for k ∈ {k1, · · · ,kr}. Thus there is a proper open set in these positions
and in every other position the open set is the whole space C ([0,T ]) .We need to show that

Γ
n− (O)≡ {ω : Γ

n (ω)∩O ̸= /0} ∈F .

Now, Γn− (O) = ∩r
i=1

{
ω : Γn (ω)ki

∩Oki ̸= /0
}

, so we consider whether{
ω : Γ

n (ω)ki
∩Oki ̸= /0

}
∈F . (77.2.4)

From the definition of Γn (ω) , this is equivalent to the condition that

fki (XNC (ω)u j (·,ω)) = (f(XNC (ω)u j (·,ω)))ki
∈ Oki

for some j ≥ n, and so the set in 77.2.4 is of the form

∪∞
j=n

{
ω : (f(XNC (ω)u j (·,ω)))ki

∈ Oki

}
.

Now ω → (f(XNC (ω)u j (·,ω)))ki
is F measurable into C ([0,T ]) and so the above set is

in F . To see this, let g ∈C ([0,T ]) and consider the inverse image of the ball with radius r
and center g,

B(g,r) =
{

ω :
∥∥∥(XNC (ω) f(u j (·,ω)))ki

−g
∥∥∥

C([0,T ])
< r
}
.

By continuity considerations,∥∥∥(XNC (ω) f(u j (·,ω)))ki
−g
∥∥∥

C([0,T ])

= sup
t∈Q∩[0,T ]

∣∣∣(XNC (ω) f(u j (t,ω)))ki
−g(t)

∣∣∣ ,
which is the sup over countably many F measurable functions. Thus, it is F measurable.
Since every open set is the countable union of such balls, it follows that the claim about F
measurability is valid. Hence, Γn− (O) is F measurable whenever O is a basic open set.

Now, X is a separable metric space and so every open set is a countable union of these
basic sets. Let U ⊆ X be open with U = ∪∞

l=1Ol where Ol is a basic open set as above.
Then,

Γ
n− (U) = ∪∞

l=1Γ
n− (Ol) ∈F .
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The existence of a measurable selection follows from the standard theory of measurable
multi-functions [10, 70] see [70] starting on Page 141 for all the necessary stuff on mea-
surable multifunctions or Section 48. If σ is one of these measurable selections, the evalu-
ation at t is F measurable. Thus, ω → σ (t,ω) is F measurable with values in R∞. Also,
t→ σ (t,ω) is continuous, and so it follows that in fact σ is product measurable as claimed.
■

Definition 77.2.13 Let Γ(ω)≡ ∩∞
n=1Γn (ω).

Lemma 77.2.14 Γ is a nonempty F measurable set-valued function with values in com-
pact subsets of X. There exists a measurable selection γ such that (t,ω)→ γ (t,ω) is P
measurable. Also, for each ω, there exists a subsequence, un(ω) (·,ω) such that for each k,

γk (t,ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (t,ω)

)
k

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds.

Proof: From the definition of Γ(ω) = ∩∞
n=1Γn (ω) it follows that ω → Γ(ω) is a com-

pact set-valued map in X and is nonempty because each Γn (ω) is nonempty and compact,
and the Γn (ω) are nested. We next show that ω → Γ(ω) is F measurable. Indeed, each
Γn is compact valued and F measurable so, if F is closed,

Γ(ω)∩F = ∩∞
n=1Γ

n (ω)∩F,

and the left-hand side is not empty if and only if each Γn (ω)∩F ̸= /0. Thus, for F closed,

{ω : Γ(ω)∩F ̸= /0}= ∩n {ω : Γ
n (ω)∩F ̸= /0} ,

and so
Γ
− (F) = ∩nΓ

n− (F) ∈F .

The last claim follows from the theory of multi-functions, see, e.g., [10, 70] or Section 48.
The fact that Γn (ω) is compact, Γn is measurable and Γn− (U) ∈F , for U open, imply
the strong measurability of Γn [10, 70] see also Section 48, and also that Γn− (F) ∈ F .
Thus, ω → Γ(ω) is nonempty compact valued in X and F measurable. We are using the
theorem which says that when Γ has compact values, then one can conclude that strong
measurability and measurability coincide. See Proposition 48.1.4. This is why we can say
that Γn− (F) ∈F .

The standard theory [10, 70], Section 48, also guarantees the existence of an F mea-
surable selection ω → γ (ω) with γ (ω) ∈ Γ(ω), for each ω , and also that t → γk (t,ω)
(the kth component of γ) is continuous. Next, we consider the product measurability of γk.
We know that ω → γk (ω) is F measurable into C ([0,T ]) and since pointwise evaluation
is continuous, ω → γk (t,ω) is F measurable. (This is nothing more than a case of the
general result that a continuous function of a measurable function is measurable.) Then,
since t→ γk (t,ω) is continuous, it follows that γk is a P measurable real valued function
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and that γ is a P measurable R∞ valued function. Since γ (ω) ∈ Γ(ω) , it follows that for
each n,γ (ω) ∈ Γn (ω) . Therefore, there exists jn ≥ n such that for each ω ,

d (f(XNC (ω)u jn (·,ω)) ,γ (ω))< 2−n.

Therefore, for a suitable subsequence
{

un(ω) (·,ω)
}

, we have

γ (ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (·,ω)

)
,

for each ω . In particular, for each k

γk (t,ω) = lim
n(ω)→∞

f
(
XNC (ω)un(ω) (t,ω)

)
k

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds, (77.2.5)

for each t. ■
Note that it is not clear that (t,ω)→ f

(
XNC (ω)un(ω) (t,ω)

)
is P measurable, al-

though (t,ω)→ γ (t,ω) is P measurable.
Now here is the proof of the theorem.

Proof of Theorem 77.2.10 By assumption, there exists a further subsequence, still denoted
by n(ω), such that, the weak limit

lim
n(ω)→∞

XNC (ω)un(ω) (·,ω) = v(·,ω)

exists in V . Then,

mk

∫ t

lmk (t)

〈
φ rk

,v(s,ω)
〉

V
ds

= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈
φ rk

,XNC (ω)un(ω) (s,ω)
〉

V
ds

= γk (t,ω) , product measurable.

Letting φ ∈ D be given, there exists a subsequence, denoted by k, such that mk → ∞ and
φ rk

= φ . Recall
(

mk,φ rk

)
denoted an enumeration of the pairs (m,φ)∈N×D . For a given

φ ∈D denote this sequence by mφ . Thus we have measurability of

(t,ω)→ mφ

∫ t

lmφ
(t)
⟨φ ,v(s,ω)⟩V ds

for each φ ∈D .
Now we will be a little more careful about the countable set D . Iterate the following.

Let φ 1 ̸= 0. Let F denote linearly independent subsets of V ′ which contain φ 1 such that the
elements are further apart than 1/5. Let C denote a maximal chain. Thus ∪C is also in F .
If W := span∪C fails to be all of V ′, then there would exist ψ /∈W such that the distance of
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ψ to the closed subspace W is at least 1/5. Now C ,∪{C ∪{ψ}} would violate maximality
of C . Hence W =V ′. Now it follows that C must be countable since otherwise, V ′ would
fail to be separable. Let M be the rational linear combinations of D . It must be dense in V ′.
Note that linear combinations of the φ i are uniquely determined because none is a linear
combination of the others. Now define a linear mapping on M which makes sense for (t,ω)
on a certain set.

Definition 77.2.15 Let E be those points (t,ω) such that the following limit exists for each
φ ∈D

Λ(t,ω)φ ≡ lim
mφ→∞

mφ

∫ t

lmφ
(t)
⟨φ ,v(s,ω)⟩ds

The set of points where the limit of measurable functions exists is always measurable so E
is a measurable set. Extend this mapping linearly. That is, for ψ ∈M,ψ ≡ ∑i aiφ i,

Λ(t,ω)ψ ≡∑
i

aiΛ(t,ω)φ i = ∑
i

ai

(
lim

mφ i→∞
mφ i

∫ t

lmφ i
(t)
⟨φ i,v(s,ω)⟩ds

)
Thus (t,ω)→ Λ(t,ω)ψ is product measurable, being the sum of limits of product measur-
able functions. Let G denote those (t,ω) in E such that there exists a constant C (t,ω) such
that for all ψ ∈M,

|Λ(t,ω)ψ| ≤C (t,ω)∥ψ∥

Lemma 77.2.16 G is product measurable.

Proof: This follows from the formula

E ∩GC = ∩n∪ψ∈M {(t,ω) ∈ E : |Λ(t,ω)ψ|> n∥ψ∥}

which is clearly product measurable because (t,ω)→ Λ(t,ω)ψ is. Thus, since E is mea-
surable, it follows that E ∩G = G is also. ■

For (t,ω) ∈ G,Λ(t,ω) has a unique extension to all of V , the dual space of V ′, still
denoted as Λ(t,ω). By the Riesz representation theorem, for (t,ω) ∈ G, there exists
u(t,ω) ∈V,

Λ(t,ω)ψ = ⟨ψ,u(t,ω)⟩V ′,V
Thus (t,ω)→XG (t,ω)u(t,ω) is product measurable by the Pettis theorem. Let u = 0 off
G. We know G is product measurable. For each ω,{t : (t,ω) ∈ G} has full measure. This
involves the fundamental theorem of calclulus.

Fix ω . By the fundamental theorem of calculus,

lim
m→∞

m
∫ t

lm(t)
v(s,ω)ds = v(t,ω) in V

for a.e. t say for all t /∈ N (ω) ⊆ [0,T ]. Of course we do not know that ω → v(t,ω)
is measurable. However, the existence of this limit for t /∈ N (ω) implies that for every
φ ∈V ′,

lim
m→∞

∣∣∣∣m∫ t

lm(t)
⟨φ ,v(s,ω)⟩ds

∣∣∣∣≤C (t,ω)∥φ∥



77.2. SOME FUNDAMENTAL THEOREMS 2607

for some C (t,ω) . Here m does not depend on φ . Thus, in particular, this holds for a
subsequence and so for each t /∈ N (ω) ,(t,ω) ∈ G because for each φ ∈D ,

lim
mφ→∞

mφ

∫ t

lmφ
(t)
⟨φ ,v(s,ω)⟩ds exists and satisfies the above inequality.

Hence, for all ψ ∈M,

Λ(t,ω)ψ = ⟨ψ,u(t,ω)⟩V ′,V ,

where u is product measurable.
Also, for t /∈ N (ω) and φ ∈D ,

⟨φ ,u(t,ω)⟩V ′,V = Λ(t,ω)φ ≡ lim
mφ→∞

mφ

∫ t

lmφ
(t)
⟨φ ,v(s,ω)⟩ds = ⟨φ ,v(t,ω)⟩V ′,V

therefore, for all φ ∈M
⟨φ ,u(t,ω)⟩V ′,V = ⟨φ ,v(t,ω)⟩V ′,V

and hence u(t,ω) = v(t,ω). Thus, for each ω, the product measurable function u satisfies
u(t,ω) = v(t,ω) for a.e. t. Hence u(·,ω) = v(·,ω) in V . ■

Of course a similar theorem will hold with essentially the identical proof if the functions
take values in V ′.

One can also combine the two theorems to obtain a useful result for limits of functions
in V ′ and V . You just let

X =
∞

∏
k=1

C ([0,T ])×C ([0,T ])

and let {φ k} be a dense subset of V ′ while {ηk} is a dense subset of V . Then the mappings
are given by

ψm,φ u(t) = m
∫ t

lm(t)
⟨φ ,u(s)⟩V ′,V ds, ψm,η y(t) = m

∫ t

lm(t)
⟨η ,y(s)⟩V,V ′ ds

and one considers for each φ k,ηk,(
mk

∫ t

lmk (t)
⟨φ k,u(s)⟩V ′,V ds, mk

∫ t

lmk (t)
⟨ηk,y(s)⟩V,V ′ ds

)

This time you need to use an enumeration of N×V ′×V and in the last step, you must use
a subsequence still denoted with k such that mk → ∞ but φ k = φ and ηk = η for φ ,η two
given elements of V ′ and V respectively. Then repeating the above argument, one obtains
the following generalization.

Theorem 77.2.17 Let V be a reflexive separable Banach space with dual V ′, and let p, p′

be such that p > 1 and 1
p + 1

p′ = 1. Let the functions t → un (t,ω), for n ∈ N, be in
Lp ([0,T ] ;V )≡ V and (t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into V . Also
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let the functions t → yn (t,ω) be in V ′ and (t,ω)→ yn (t,ω) is P measurable into V ′.
Suppose there is a set of measure zero N ⊆Ω such that if ω /∈ N, then

sup
t∈[0,T ]

∥yn (t,ω)∥V ′ +∥un (·,ω)∥V ≤C (ω) ,

for all n. (Thus, by weak compactness, for each ω, each subsequence of {un} has a further
subsequence that converges weakly in V to v(·,ω) ∈ V . (v not known to be P measur-
able)) Suppose that each subsequence of {yn (·,ω)} has a subsequence which converges
weakly in V ′ to z(·,ω) ∈ V ′ such that the function t → z(t,ω) is weakly continuous into
V ′.

Then, there exist product measurable functions u,y such that t → u(t,ω)is in V , t →
y(t,ω) is weakly continuous into V ′ and for each ω /∈ N, a subsequence of N denoted by
{n(ω)} such that un(ω) (·,ω)→ u(·,ω) weakly in V and yn(ω) (·,ω) converges weakly to
y(·,ω) in V ′.

Note that the conclusion of the proposition holds if p = 1 and V = L1 ([0,T ] ,V ).
Here is something else about being measurable into V or V ′. Such functions have

representatives which are product measurable.

Lemma 77.2.18 Let f (·,ω) ∈ V ′. Then if ω → f (·,ω) is measurable into V ′, it follows
that for each ω, there exists a representative f̂ (·,ω)∈V ′, f̂ (·,ω) = f (·,ω) in V ′ such that
(t,ω)→ f̂ (t,ω) is product measurable. If f (·,ω) ∈ V ′ and (t,ω)→ f (t,ω) is product
measurable, then ω → f (·,ω) is measurable into V ′. The same holds replacing V ′ with
V .

Proof: If a function f is measurable into V ′, then there exist simple functions fn

lim
n→∞
∥ fn (ω)− f (ω)∥V ′ = 0, ∥ fn (ω)∥ ≤ 2∥ f (ω)∥V ′ ≡C (ω)

Now one of these simple functions is of the form ∑
M
i=1 ciXEi (ω) where ci ∈ V ′. There-

fore, there is no loss of generality in assuming that ci (t) = ∑
N
j=1 di

jXFj (t) where di
j ∈ V ′.

Hence we can assume each fn is product measurable into B (V ′)×F . Then by Theorem
77.2.10, there exists f̂ (·,ω) ∈ V ′ such that f̂ is product measurable and a subsequence
fn(ω) converging weakly in V ′ to f̂ (·,ω) for each ω . Thus fn(ω) (ω)→ f (ω) strongly in
V ′ and fn(ω) (ω)→ f̂ (ω) weakly in V ′. Therefore, f̂ (ω) = f (ω) in V ′ and so it can be
assumed that if f is measurable into V ′ then for each ω, it has a representative f̂ (ω) such
that (t,ω)→ f̂ (t,ω) is product measurable.

If f is product measurable into V ′ and each f (·,ω) ∈ V ′, does it follow that f is mea-
surable into V ′? By measurability, f (t,ω) = limn→∞ ∑

mn
i=1 cn

i XEn
i
(t,ω) = limn→∞ fn (t,ω)

where En
i is product measurable and we can assume ∥ fn (t,ω)∥V ′ ≤ 2∥ f (t,ω)∥. Then by

product measurability, ω → fn (·,ω) is measurable into V ′ because if g ∈ V then

ω → ⟨ fn (·,ω) ,g⟩

is of the form

ω →
mn

∑
i=1

∫ T

0

〈
cn

i XEn
i
(t,ω) ,g(t)

〉
dt which is ω →

mn

∑
i=1

∫ T

0
⟨cn

i ,g(t)⟩XEn
i
(t,ω)dt
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and this is F measurable since En
i is product measurable. Thus, it is measurable into V ′

as desired and

⟨ f (·,ω) ,g⟩= lim
n→∞
⟨ fn (·,ω) ,g⟩ , ω → ⟨ fn (·,ω) ,g⟩ is F measurable.

By the Pettis theorem, ω → ⟨ f (·,ω) ,g⟩ is measurable into V ′. Obviously, the conclusion
is the same for these two conditions if V ′ is replaced with V . ■

The following theorem is also useful. It is really a generalization of the familiar Gram
Schmidt process. It is Lemma 34.4.2.

Theorem 77.2.19 Suppose V,W are separable Banach spaces, such that V is dense in W
and B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′. In case B = B(ω) where ω → B(ω) is measurable into
L (W,W ′) , these vectors ei will also depend on ω and will be measurable functions of
ω .

77.3 Preliminary Results
We use the following well known theorem [91]. It is Theorem 34.7.6.

Theorem 77.3.1 Let E ⊆ F ⊆ G where the injection map is continuous from F to G and
compact from E to F. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ,E) : for some C, ∥u(t)−u(s)∥G ≤C |t− s|1/q

and ||u||Lp([a,b],E) ≤ R}.

Thus S is bounded in Lp ([a,b] ,E) and Holder continuous into G. Then S is precompact in
Lp ([a,b] ,F). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ,F) .

We recall the following theorem which is proved in [99] and earlier, Theorem 25.5.2
for what will suffice here.
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Theorem 77.3.2 If A and B are pseudo monotone and bounded then A+B is also pseudo
monotone and bounded.

Also the following result, found in [91] is well known.

Theorem 77.3.3 If a single valued map, A : X → X ′ is monotone, hemicontinuous, and
bounded, then A is pseudo monotone. Furthermore, the duality map, J−1 : X → X ′ which
satisfies ⟨J−1 f , f ⟩ = || f ||2 , ||J−1 f ||X = || f ||X is strictly monotone hemicontinuous and
bounded. So is the duality map F : X → X ′ which satisfies ∥F f∥X ′ = ∥ f∥p−1

X , ⟨F f , f ⟩ =
∥ f∥p

X for p > 1.

The following fundamental result will be of use in what follows. There is somewhat
more in this than will be needed. In this paper, B is a possibly degenerate operator satisfying
only the following:

B ∈L
(
W,W ′

)
, ⟨Bu,u⟩ ≥ 0,⟨Bu,v⟩= ⟨Bv,u⟩ (77.3.6)

where here V ⊆W and V is dense in W . In the case where B = B(ω) , we will assume for
the sake of simplicity that

B(ω) = k (ω)B, k (ω)≥ 0,k being F measurable

Allowing B to depend on ω introduces some technical considerations so if there is no
interest in this, simply assume B is independent of ω . This includes all cases of most
interest.

Lemma 77.3.4 Suppose V,W are separable Banach spaces such that V is dense in W and
B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′. If B = B(ω) and B is F measurable into L (W,W ′) and if
the ei = ei (ω) are as described above, then these ei are measurable into V . If t→ B(t,ω)
is C1 ([0,T ] ,L (W,W ′)) and if for each w ∈W,〈

B′ (t,ω)w,w
〉
≤ kw,ω (t)⟨B(t,ω)w,w⟩

Where kw,ω ∈ L1 ([0,T ]) , then the vectors ei (t) can be chosen to also be right continuous
functions of t.
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The following has to do with the values of Bu and gives an integration by parts formula.

Corollary 77.3.5 Let V ⊆W,W ′ ⊆ V ′ be separable Banach spaces, and B ∈ L (W,W ′)
is nonnegative and self adjoint. Also suppose t → B(u(t)) has a weak derivative (Bu)′ ∈
Lp′ (0,T,V ′) for u ∈ Lp (0,T,V ). Then there is a continuous function denoted as t→ Bu(t)
which equals B(u(t)) a.e. t. Say for t /∈ N. Suppose Bu(0) = Bu0, u0 ∈W. Then

Bu(t) = Bu0 +
∫ t

0
(Bu)′ (s)ds in V ′ (77.3.7)

Then t→ Bu(t) is in C
(
NC,W ′

)
and also for such t,

1
2
⟨Bu(t) ,u(t)⟩= 1

2
⟨Bu0,u0⟩+

∫ t

0

〈
(Bu)′ (s) ,u(s)

〉
ds

There exists a continuous function t → ⟨Bu,u⟩(t) which equals the right side of the above
for all t and equals ⟨B(u(t)) ,u(t)⟩ off N. This also satisfies

sup
t∈[0,T ]

⟨Bu,u⟩(t)≤C
(∥∥(Bu)′

∥∥
Lp′ (0,T,V ′) ,∥u∥Lp(0,T,V )

)
This also makes it easy to verify continuity of pointwise evaluation of Bu. Let Lu =

(Bu)′ .

u ∈ D(L)≡ X ≡
{

u ∈ Lp (0,T,V ) : Lu≡ (Bu)′ ∈ Lp′ (0,T,V ′)}
∥u∥X ≡max

(
∥u∥Lp(0,T,V ) ,∥Lu∥Lp′ (0,T,V ′)

)
(77.3.8)

Since L is closed, this X is a Banach space.
Then the following theorem is obtained.

Theorem 77.3.6 Say (Bu)′ ∈ Lp′ (0,T,V ′) so

Bu(t) = Bu(0)+
∫ t

0
(Bu)′ (s)ds in V ′

the map u→ Bu(t) is continuous as a map from X to V ′. Also, if Y denotes those f ∈
Lp ([0,T ] ,V ) for which f ′ ∈ Lp ([0,T ] ,V ) , so that f has a representative such that f (t) =
f (0)+

∫ t
0 f ′ (s)ds, then if ∥ f∥Y ≡ ∥ f∥Lp([0,T ],V )+∥ f ′∥Lp([0,T ],V ) , the map f → f (t) is con-

tinuous.

Also one can obtain the following for p > 1.

Proposition 77.3.7 Let

X =
{

u ∈ Lp (0,T,V )≡ V : Lu≡ (Bu)′ ∈ Lp′ (0,T,V ′)}
where V is a reflexive Banach space. Let a norm on X be given by

∥u∥X ≡max(∥u∥V ,∥Lu∥V ′)
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Then there is a continuous function t→ ⟨Bu,v⟩(t) such that

⟨Bu,v⟩(t) = ⟨B(u(t)) ,v(t)⟩

a.e. t such that
sup

t∈[0,T ]
|⟨Bu,v⟩(t)| ≤C∥u∥X ∥v∥X

and if K : X → X ′

⟨Ku,v⟩ ≡
∫ T

0
⟨Lu,v⟩ds+ ⟨Bu,v⟩(0)

Then K is continuous and linear and

⟨Ku,u⟩= 1
2
[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

If u ∈ X and Bu(0) = 0 then there exists a sequence {un} such that ∥un−u∥X → 0 but
un (t) = 0 for all t close to 0.

77.4 Measurable Approximate Solutions
The main result in this section is the following theorem. Its proof follows a method due to
Brezis and Lions [91] adapted to the case considered here where the operator is set valued.
In this theorem, we let F : V →V ′ be the duality map ⟨Fu,u⟩= ∥u∥p ,∥Fu∥= ∥u∥p−1 for
p > 1.

As above, Lu = (Bu)′ . In addition to this, define Λ to be the restriction of L to those
u ∈ X which have Bu(0) = 0. Thus

D(Λ) = {u ∈ X : Bu(0) = 0}

Then one can show that Λ∗ is monotone. It is not hard to see that this should be the case.
Let v ∈ D(Λ∗) and suppose it is smooth. Then∫ T

0
⟨Λu,v⟩dt = ⟨Bu(T ) ,v(T )⟩−

∫ T

0

〈
Bu,v′

〉
dt

and so, if
∣∣∣∫ T

0 ⟨Λu,v⟩dt
∣∣∣≤C∥u∥V , then we need to have v(T ) = 0 and Λ∗v =−Bv′. Now

it is just a matter of doing the computations to verify that

⟨Λ∗v,v⟩ ≥ 0.

Lemma 77.4.1 Let K and L be as in Proposition 77.3.7. Then for each f ∈ V ′ and u0 ∈W,
there exists a unique u ∈ X such that

⟨Ku,v⟩+Fu = ⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩ (77.4.9)

for all v ∈ X . Also, the mapping which takes ( f ,u0) to this solution is demicontinuous in
the sense that if fn→ f strongly in V ′ and u0n→ u0 in W, then un→ u weakly in V .
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Proof: Let J−1 be the duality map mentioned above and define Hε : X → X ′ by

⟨Hε (u) ,v⟩= ε⟨Lv,J−1Lu⟩+ ⟨Fu,v⟩+ ⟨Ku,v⟩

for all v ∈ X . Then Hε is pseudo monotone because it is monotone, bounded, and hemi-
continuous. This follows from Theorem 77.3.2, and 77.3.3. It is also easy to see that Hε is
coercive.

⟨Hε (u) ,u⟩
∥u∥X

= ε
∥Lu∥2

V ′

∥u∥X
+
∥u∥p

V

∥u∥X
+

1
2
[⟨Bu(T ) ,u(T )⟩+ ⟨Bu,u⟩(0)] 1

∥u∥X

If not, then there is ∥un∥X → ∞ but for some M,

ε
∥Lun∥2

V ′

∥un∥X
+
∥un∥p

V

∥un∥X
+

1
2
[⟨Bun (T ) ,un (T )⟩+ ⟨Bun,un⟩(0)]

1
∥un∥X

≤M

Then one of ∥un∥V or ∥Lun∥V ′ is unbounded. Either way, a contradiction is obtained. Thus
Hε is coercive bounded, and pseudomonotone. It follows that it maps onto X ′.

There exists uε ∈ X such that for all v ∈ X ,

ε⟨Lv,J−1Luε⟩+ ⟨Fuε ,v⟩+ ⟨Kuε ,v⟩= ⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩. (77.4.10)

In 77.4.10, let v = uε . Using the inequality,

|⟨Bv(0) ,u0⟩| ≤ ⟨Bv,v⟩1/2 (0)⟨Bu0,u0⟩1/2

≤ 1
2
⟨Bv,v⟩(0)+ 1

2
⟨Bu0,u0⟩,

it follows that

⟨Fuε ,uε⟩+
1
2
[⟨Buε ,uε⟩(T )+ ⟨Buε ,uε⟩(0)]

≤ ∥ f∥V ′ ∥uε∥V +
1
2
⟨Buε ,uε⟩(0)+

1
2
⟨Bu0,u0⟩

Thus
∥uε∥p

V +
1
2
⟨Buε ,uε⟩(T )≤

1
2
⟨Bu0,u0⟩+ || f ||V ′ ||uε ||V ,

which implies that there exists a constant C independent of ε such that

||uε ||V ≤C. (77.4.11)

Now let v ∈D(Λ) . Thus v ∈ X and Bv(0) = 0 so the last term of 77.4.10 equals 0. The
term, ⟨Buε ,v⟩(0) found in the definition of ⟨Kuε ,v⟩ also equals 0. This follows from

⟨Buε ,v⟩(0) = lim
n→∞
⟨Buε ,vn⟩(0) = 0.

where vn = 0 near 0 and converges to v in X by Proposition 77.3.7. Therefore, for v∈D(Λ) ,
a dense subset of V ,

ε⟨Λv,J−1Luε⟩+ ⟨Fuε ,v⟩+ ⟨Luε ,v⟩= ⟨ f ,v⟩.
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It follows that J−1Luε ∈ D(Λ∗) and so for all v ∈ D(Λ) ,

ε⟨Λ∗J−1Luε ,v⟩+ ⟨Fuε ,v⟩+ ⟨Luε ,v⟩= ⟨ f ,v⟩. (77.4.12)

Since D(Λ) is dense in V , this equation holds for all v ∈ V and so in particular, it holds
for v = J−1Luε . Therefore,

−||Fuε ||V ′ ||Luε ||V ′ + ||Luε ||2V ′ ≤ || f ||V ′ ||Luε ||V ′ . (77.4.13)

It follows from 77.4.13, 77.4.11 that ||Luε ||V ′ is bounded independent of ε . Therefore,
there exists a sequence ε → 0 such that

uε ⇀ u in V , (77.4.14)

Kuε ⇀ Ku in X ′, (77.4.15)

Fuε ⇀ u∗ in V ′, (77.4.16)

Buε (0)⇀ Bu(0) in W ′. (77.4.17)

In 77.4.10 replace v with uε −u. Using J−1 is monotone,

ε⟨Luε −Lu,J−1Lu⟩+ ⟨Fuε +Kuε ,uε −u⟩

≤ ⟨ f ,uε −u⟩+ ⟨B(uε −u)(0) ,u0⟩ (77.4.18)

Formula 77.4.17 applied to the last term of 77.4.18 implies

lim sup
ε→0
⟨Fuε +Kuε ,uε −u⟩ ≤ 0. (77.4.19)

By pseudomonotonicity,

lim inf
ε→0
⟨Fuε +Kuε ,uε −u⟩ ≥ ⟨Fu+Ku,u−u⟩= 0

so limε→0⟨Fuε +Kuε ,uε −u⟩= 0 and so

⟨u∗+Ku,u− v⟩

lim inf
ε→0

(⟨Fuε +Kuε ,uε −u⟩+ ⟨Fuε +Kuε ,u− v⟩) =

lim inf
ε→0
⟨Fuε +Kuε ,uε − v⟩ ≥ ⟨Fu+Ku,u− v⟩

and so u∗ = Fu and from 77.4.10,

⟨Ku,v⟩+ ⟨Fu,v⟩= ⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩ (77.4.20)

Thus for every v ∈ X ,∫ T

0

〈
(Bu)′ ,v

〉
ds+ ⟨Bu,v⟩(0)+

∫ T

0
⟨Fu,v⟩ds =

∫ T

0
⟨ f ,v⟩ds+ ⟨Bv(0) ,u0⟩
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So let v be smooth and equal to 0 except for t ∈ [0,δ ] and equals v0 at 0. Then as δ → 0,
the integrals become increasingly small and so

⟨Bu(0) ,v0⟩= ⟨Bv0,u0⟩= ⟨Bu0,v0⟩

and since v0 is arbitrary in V , then it follows that Bu(0) = Bu0. Thus this has provided a
solution u to the system

(Bu)′+Fu = f , Bu(0) = Bu0, u ∈ X

It remains to consider the assertion about continuity. First note that the solution to the
above initial value problem is unique due to the strict monotonicity of F. In fact, if there
are two solutions, u,w, then

1
2
∥Bu(t)−Bw(t)∥2

W +
∫ t

0
⟨Fu−Fw,u−w⟩ds = 0

and so, in particular, ⟨Fu−Fw,u−w⟩V ′,V = 0 which implies u = w in V .
Let u be the solution which goes with ( f ,u0) and let un denote the solution which goes

with ( fn,u0n) where it is assumed that fn → f in V ′ and u0n → u0 in W . It is desired to
show that un→ u weakly in V . First note that the un are bounded in V because

1
2
⟨Bun,un⟩(T )−

1
2
⟨Bu0n,u0n⟩+

∫ T

0
∥un∥p

V ds =
∫ T

0
⟨ fn,un⟩ds≤ ∥ fn∥V ′ ∥un∥V

and this clearly implies that ∥un∥V is indeed bounded. Thus if this sequence fails to con-
verge weakly to u, it must be the case that there is a subsequence, still denoted as un which
converges weakly to w ̸= u in V . Then by the fact that F is bounded, there is an estimate
of the form

∥un∥V +∥Lun∥V ′ ≤C

Thus, a further subsequence satisfies

un→ w weakly in V

Lun→ Lw weakly in V ′

Fun→ ξ weakly in V ′

then ∫ T

0

〈
(B(un−w))′ ,un−w

〉
dt

=
1
2
⟨B(un−w) ,(un−w)⟩(T )− 1

2
⟨B(un−w) ,(un−w)⟩(0)

≥ −1
2
⟨B(un−w) ,(un−w)⟩(0) =−1

2
⟨B(un0−u0) ,un0−u0⟩

It follows

⟨Lw,un−w⟩V + ⟨Fun,un−w⟩V −
1
2
⟨B(un0−u0) ,un0−u0⟩ ≤ ⟨ fn,un−w⟩
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and so limsupn→∞ ⟨Fun,un−w⟩ ≤ 0. Then as before, ξ = Fw and one obtains

(Bw)′+Fw = f , Bw(0) = Bu0, w ∈ X

contradicting uniqueness. Hence un→ u weakly as claimed. ■
Now suppose (Ω,F ) is a measurable space and B = B(ω) and is measurable into

L (W,W ′) and f : [0,T ]×Ω→V ′ is product measurable, B ([0,T ])×F measurable where
B ([0,T ]) denotes the Borel sets. Also, it is assumed that for each ω, f (·,ω) ∈ V ′. The
following lemma ties together these ideas. It is Lemma 77.2.18 proved above. It is stated
here for convenience.

Lemma 77.4.2 Let f (·,ω) ∈ V ′. Then if ω → f (·,ω) is measurable into V ′, it follows
that for each ω, there exists a representative f̂ (·,ω)∈V ′, f̂ (·,ω) = f (·,ω) in V ′ such that
(t,ω)→ f̂ (t,ω) is product measurable. If f (·,ω) ∈ V ′ and (t,ω)→ f (t,ω) is product
measurable, then ω → f (·,ω) is measurable into V ′. The same holds replacing V ′ with
V .

Now consider the initial value problem

(B(ω)u(·,ω))′+Fu(·,ω) = f (·,ω) ,

B(ω)u(0,ω) = B(ω)u0 (ω) , u(·,ω) ∈ X (77.4.21)

where we also assume u0 is F measurable into W . From Lemma 77.4.2,

ω → ( f (·,ω) ,u0 (ω))

is measurable into V ′×W . That is,

( f ,u0)
−1 (U) = {ω : ( f (·,ω) ,u0 (ω)) ∈U} ∈F

for U an open set in V ′×W . From Lemma 77.4.1, the map Φω which takes ( f ,u0) to the
solution u is demicontinuous. We desire to argue that u is measurable into V . In doing so,
it is easiest to assume that B does not depend on ω . However, the dependence on ω can be
included using the approximation assumption for B(ω) mentioned earlier.

Letting fn (·,ω)→ f (·,ω) where fn is a simple function and u0n (ω)→ u0 (ω) where
u0n is also a simple function, it follows that

Φω ( fn (·,ω) ,u0n (ω))→Φω ( f (·,ω) ,u0 (ω)) = u

weakly. Here Φω would be a continuous function of V ′×W .

Lemma 77.4.3 Suppose f (·,ω) ∈ V ′ for each ω and that (t,ω) → f (t,ω) is product
measurable into V ′. Also u0 is F measurable into W and

B(ω) = k (ω)B, k (ω)≥ 0, k measurable

Then for each ω ∈Ω, there exists a unique solution u(·,ω) in V satisfying

(B(ω)u(·,ω))′+Fu(·,ω) = f (·,ω) ,

B(ω)u(0,ω) = B(ω)u0 (ω) , u(·,ω) ∈ X

This solution has a representative which satisfies (t,ω)→ u(t,ω) is product measurable
into V .
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Proof: Let Bn (ω)≡ kn (ω)B where {kn (ω)} is an increasing sequence of simple func-
tions converging pointwise to k (ω). Replace B(ω) with Bn (ω) . Then define

⟨Knu,v⟩ ≡
∫ T

0
⟨Lnu,v⟩ds+ ⟨Bu,v⟩(0)

where Ln is defined as
Lnu = (Bn (ω)u)′

for Bn having values in L (W,W ′) such that Bn (ω)→B(ω) and each of these is self adjoint
and nonnegative. Let un be the solution to the above initial value problem

⟨Knun,v⟩+Fun = ⟨ fn,v⟩+ ⟨Bv(0) ,u0n⟩

in which u0n and fn are simple functions converging to u0 and f in W and V ′ respectively
for each ω . Thus these have constant values in V ′ or W on finitely many measurable subsets
of Ω. Since Bn is constant on measurable sets, it follows that un (·,ω) is also a constant
element of V on each of finitely many measurable sets. Hence un (·,ω) is measurable into
V . Then fixing ω, and letting v = un,

1
2
[⟨Bun,un⟩(T )+ ⟨Bun,un⟩(0)]+

∫ T

0
∥un∥p

V ds =
∫ T

0
⟨ fn,un⟩ds+ ⟨Bv(0) ,u0n⟩

Thus, since F is bounded, one obtains an inequality of the form

∥un∥V +
∥∥(Bn (ω)un)

′∥∥
V ′ ≤C

Then there is a subsequence such that

un→ u weakly in V

Bn (ω)un→ B(ω)u weak ∗ in L∞
(
[0,T ] ;V ′

)
Bn (ω)un→ B(ω)u weakly in V ′

Fun→ ξ weakly in V ′

(Bn (ω)un)
′→ (B(ω)u)′ weakly in V ′

Also, suppressing the dependence on ω,

(Bnun)(t) = Bnu0n +
∫ t

0
(Bnu)′ (s)ds

and so in fact,
(Bnun)(t)→ (Bu)(t) in V ′ for each t

Also, 〈
(Bnun)

′ ,un−u
〉
V ′,V + ⟨Fun,un−u⟩V ′,V = ⟨ fn,un−u⟩V ′,V〈

kn (ω)(Bun)
′ ,un−u

〉
V ′,V + ⟨Fun,un−u⟩V ′,V = ⟨ fn,un−u⟩V ′,V
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Thus, by monotonicity,〈
kn (ω)(Bun)

′ ,un−u
〉
V ′,V =

〈
k (ω)(Bun)

′ ,un−u
〉
V ′,V

+
〈
(kn (ω)− k (ω))(Bun)

′ ,un−u
〉
V ′,V

≥
〈
k (ω)(Bu)′ ,un−u

〉
V ′,V +

〈
(kn (ω)− k (ω))(Bun)

′ ,un−u
〉
V ′,V

The last term in the above expression converges to 0 due to the convergence of kn (ω) to
k (ω). Thus 〈

(B(ω)u)′ ,un−u
〉
V ′,V + ⟨Fun,un−u⟩V ′,V ≤ ⟨ fn,un−u⟩V ′,V

and so
lim sup

n→∞

⟨Fun,un−u⟩V ′,V ≤ 0

Then as before, one can conclude that Fu = ξ . Then passing to the limit gives the desired
solution to the equation, this for each ω . However, by uniqueness, it follows that if ū is
the solution to the evolution equation of Lemma 77.4.1, then for each ω,u = ū in V . Also
this u just obtained is measurable into V thanks to the Pettis theorem. Therefore, ū can
be modified on a set of measure zero for each fixed ω to equal u a function measurable
into V . Hence there exists a solution to the evolution equation of this lemma u which is
measurable into V . By the Lemma 77.4.2, it follows that there is a representative for u
which is product measurable into V . ■

77.5 The Main Result
The main result is an existence theorem for product measurable solutions to the system

(B(ω)u(·,ω))′+u∗ (·,ω) = f (·,ω) in V ′

B(ω)u(0,ω) = B(ω)u0 (ω) (77.5.22)

where u∗ (·,ω) ∈ A(u(·,ω) ,ω). It is Theorem 77.5.6 below. First are some assumptions.
Here I will denote a subinterval of [0,T ] , of the form I =

[
0, T̂
]
, T̂ ≤ T , andVI ≡

Lp (I,V ) with similar things defined analogously. We assume only that p > 1.

Definition 77.5.1 For X a reflexive Banach space, we say A : X→P (X ′) is pseudomono-
tone and bounded if the following hold.

1. The set Au is nonempty, closed and convex for all u ∈ X . A takes bounded sets to
bounded sets.

2. If ui→ u weakly in X and u∗i ∈ Aui is such that

lim sup
i→∞

⟨u∗i ,ui−u⟩ ≤ 0, (77.5.23)

then, for each v ∈ X , there exists u∗ (v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩ ≥ ⟨u∗(v),u− v⟩. (77.5.24)
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Now suppose the following for the operator A(·,ω) . A(·,ω) : VI → V ′I for each I a
subinterval of [0,T ] and

A(·,ω) : VI →P(V ′I) is bounded, (77.5.25)

If, for u ∈ V ,
u∗X[0,T̂ ] ∈ A

(
uX[0,T̂ ],ω

)
for each T̂ in an increasing sequence converging to T, then

u∗ ∈ A(u,ω) (77.5.26)

For some p̂≥ p, assume the specific estimate

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p̂−1

VI
(77.5.27)

where a(ω) ,b(ω) are nonnegative. Note that the growth could be quadratic in case p = 2.
Also assume the coercivity condition:

lim
||u||V→∞

u∈Xr

inf{2⟨u∗,u⟩V ′,V + ⟨Bu,u⟩(T ) : u∗ ∈ A(u,ω)}
||u||V

= ∞, (77.5.28)

or alternatively the following specific estimate valid for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩dt : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (77.5.29)

where m(ω) is some nonnegative constant, δ (ω)> 0. Note that the estimate is a coercivity
condition on λB+A rather than on A but is more specific than 77.5.28.

Let U be a Banach space dense in V and that if ui ⇀ u in VI and u∗i ∈A(ui) with u∗i ⇀ u∗

in V ′I and (Bui)
′⇀ (Bu)′ in U ′

rI , ⇀ denoting weak convergence, then if

lim sup
i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(77.5.30)

where r > max(p̂,2) , and we replace p with r and I an arbitrary subinterval of the form[
0, T̂
]
, T̂ < T, for [0,T ], and U for V where indicated. Here

UrI ≡ Lr (I;U)

Note that we are not assuming A is pseudomonotone, just that it satisfies a similar limit
condition. Typically, this limit condition holds because of a use of the compact embedding
of theorem 77.3.1 or similar result and it does not matter whether U is a small subset of V
as long as it is dense in V .
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Here is an alternate limit condition. Let U be a Banach space dense in V and that if
ui ⇀ u in VI and u∗i ∈ A(ui) with u∗i ⇀ u∗ in V ′I and t→ Bui (t) is continuous and

sup
i

sup
t ̸=s

∥Bui (t)−Bui (s)∥U ′
|t− s|α

≤C (77.5.31)

then if
lim sup

i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0 (77.5.32)

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(77.5.33)

This alternate condition is implied by 77.5.30 but the conditions under which either con-
dition holds are likely to depend on some sort of compactness which will be useable for
either limit condition. Technically if you assume this alternate condition, you are assuming
more, but I don’t have any examples to show that it would be actually assuming more.

For ω → u(·,ω) measurable into V ,

ω → A(u(·,ω) ,ω) has a measurable selection into V ′. (77.5.34)

This last condition means there is a function ω → u∗ (ω) which is measurable into V ′

such that u∗ (ω) ∈ A(u(·,ω) ,ω) . This is assured to take place if the following standard
measurability condition is satisfied for all O open in V ′:

{ω : A(u(·,ω) ,ω)∩O ̸= /0} ∈F (77.5.35)

See for example [70], [10]. Our assumption is implied by this one but they are not equiv-
alent. Thus what is considered here generalizes an assumption that ω → A(u(·,ω) ,ω) is
set valued measurable.

Note that this condition would hold if u→ A(t,u,ω) is bounded and pseudomono-
tone as a single valued map from V to V ′ and (t,ω)→ A(t,u,ω) is product measurable
into V ′. One would use the demicontinuity of u → A(·,u,ω) which comes from the
pseudo monotone and bounded assumption and consider a sequence of simple functions
un (t,ω)→ u(t,ω) in V for u measurable, each u(·,ω) being in V , Then the measurabil-
ity of A(t,un,ω) would attach to A(t,u,ω) in the limit. More generally, here is a useful
lemma. It is about preserving the existence of a measurable representative under the as-
sumption that the values are closed and convex.

Lemma 77.5.2 Suppose ω → A(u,ω) has a measurable selection in V ′ for u a given
element of V not dependent on ω and for each ω,A(u,ω) is a closed bounded, convex set
in V ′. Also suppose u→ A(u,ω) is upper semicontinuous from the strong topology of V
to the weak topology of V ′. That is, if un→ u in V strongly, then if O is a weakly open set
containing A(u,ω) , it follows that A(un,ω) ∈ O for all n large enough. Then whenever u
is measurable into V , it follows that there is a measurable selection for ω → A(u(ω) ,ω)
into V ′.
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Proof: Let ω→ u(ω) be measurable into V and let un (ω)→ u(ω) in V where un is a
simple function

un (ω) =
mn

∑
k=1

cn
kXEn

k
(ω) , the En

k disjoint, Ω = ∪kEn
k ,

each cn
k being in V . Then by assumption, there is a measurable selection for ω→ A

(
cn

k ,ω
)

denoted as ω→ yn
k (ω) . Thus ω→ yn

k (ω) is measurable into V ′ and yn
k (ω) ∈ A

(
cn

k ,ω
)

for
all ω ∈Ω. Then consider

yn (ω) =
mn

∑
k=1

yn
k (ω)XEn

k
(ω)

It is measurable and for ω ∈ En
k it equals yn

k (ω) ∈ A
(
cn

k ,ω
)
= A(un (ω) ,ω) . Thus yn is

a measurable selection of ω → A(un (ω) ,ω) . By the estimates, for each ω these yn (ω)
lie in a bounded subset of V ′. The bound might depend on ω of course. By Theorem
77.2.10 and Lemma 77.4.2 there is a measurable into V ′ function ω → y(ω) and a sub-
sequence for each ω,yn(ω) (ω) such that yn(ω) (ω)→ y(ω) weakly in V ′. By the Pettis
theorem, y is measurable into V ′. Where is y(ω)? If y(ω) /∈ A(u(ω) ,ω) , then there
would exist z(ω) ∈ V such that ⟨y(ω) ,z⟩ > r > ⟨w,z⟩ for all w ∈ A(u(ω) ,ω). Let O =
{w ∈ V ′ such that r > ⟨w,z⟩} . Then O contains A(u(ω) ,ω) and is a weakly open set. It
follows from the upper semicontinuity assumption that yn(ω) (ω) ∈ O for all n(ω) large
enough. Thus r >

〈
yn(ω) (ω) ,z

〉
. But by weak convergence,

⟨y(ω) ,z⟩> r ≥ lim
n(ω)→∞

〈
yn(ω) (ω) ,z

〉
= ⟨y(ω) ,z⟩

contradicting y(ω) /∈ A(u(ω) ,ω). Hence y(ω)∈ A(u(ω) ,ω) and ω→ y(ω) is a measur-
able selection. ■

In fact, this is just a special case of a general result in the next theorem. It says essen-
tially that having a measurable selection is preserved when going from constant to measur-
able functions. In this theorem, V is a reflexive separable Banach space. This is difficult to
show for measurable multifunctions. It is Theorem 48.3.1 and was proved earlier. A proof
is given here also.

Theorem 77.5.3 Suppose ω → A(u,ω) has a measurable selection in V ′ for u a given el-
ement of V not dependent on ω and for each ω,A(u,ω) is a closed, convex set in V ′ and
A(·,ω) is bounded. Also suppose u→ A(u,ω) is upper semicontinuous from the strong
topology of V to the weak topology of V ′. That is, if un → u in V strongly, then if O is a
weakly open set containing A(u,ω) , it follows that A(un,ω) ∈ O for all n large enough.
Conclusion: whenever ω → u(ω) is measurable into V , it follows that there is a measur-
able selection for ω → A(u(ω) ,ω) into V ′.

Proof: Let ω → u(ω) be measurable into V and let un (ω)→ u(ω) in V where un is a
simple function

un (ω) =
mn

∑
k=1

cn
kXEn

k
(ω) , the En

k disjoint, Ω = ∪kEn
k ,
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each cn
k being in V . We can assume that ∥un (ω)∥ ≤ 2∥u(ω)∥ for all ω . Then by as-

sumption, there is a measurable selection for ω → A
(
cn

k ,ω
)

denoted as ω → yn
k (ω) . Thus

ω → yn
k (ω) is measurable into V ′ and yn

k (ω) ∈ A
(
cn

k ,ω
)

for all ω ∈Ω. Then consider

yn (ω) =
mn

∑
k=1

yn
k (ω)XEn

k
(ω)

It is measurable and for ω ∈ En
k it equals yn

k (ω) ∈ A
(
cn

k ,ω
)
= A(un (ω) ,ω) . Thus yn is a

measurable selection of ω → A(un (ω) ,ω) . By the estimates, for each ω these yn (ω) lie
in a bounded subset of V ′. The bound might depend on ω of course.

Now let {zi} be a countable dense subset of V. Then let X ≡∏
∞
i=1R. It is a Polish space.

Let

f
(
y j)(ω)≡

∞

∏
i=1

〈
y j (ω) ,zi

〉
Γn (ω)≡ ∪k≥nf(yk)(ω),

the closure taken in X . Now yk (ω)∈ A(uk (ω) ,ω) and so by assumption, since ∥uk (ω)∥≤
2∥u(ω)∥ it is bounded in V ′, this for each ω .

Thus the components of f
(
y j
)
(ω) lie in a compact subset of R, this for each ω . It

follows from Tychanoff’s theorem that Γn (ω) is a compact subset of the Polish space X .
Claim: Γn is measurable into X .
Proof of claim: It is necessary to show that Γ−n (U)≡ {ω : Γn (U)∩U ̸= /0} is measur-

able whenever U is open. It suffices to verify this for U a basic open set in the topology of
X . Thus let U = ∏

∞
i=1 Oi where Oi is a proper open subset of R only for i ∈ { j1, · · · , jn} .

Then
Γ
−
n (U) = ∪ j≥n∩n

r=1
{

ω :
〈
y j (ω) ,z jr

〉
∈ O jr

}
which is a measurable set thanks to y j being measurable.

In addition to this, Γn (ω) is compact, as explained above. Therefore, Γn is also strongly
measurable meaning Γ−n (F) is measurable for all F closed. Now let Γ(ω)≡ ∩∞

n=1Γn (ω) .
It is a nonempty closed subset of X and if F is closed in X ,

Γ
− (F) = ∩∞

n=1Γ
−
n (F)

a measurable set since each Γ−n (F) is measurable. Thus Γ is a measurable multifunction
and so it has a measurable selection ω → z(ω) . Thus by definition, for each i, zi (ω) =

limn(ω)→∞

〈
yn(ω) (ω) ,zi

〉
for some subsequence indexed by n(ω). The sequence given

as
{

yn(ω) (ω)
}

is bounded in V ′ and so there is a subsequence still denoted as
{

yn(ω)
}

which converges weakly to y(ω) . Thus zi (ω) = ⟨y(ω) ,zi⟩ for each i. Since ω → zi (ω) is
measurable, it follows from density of the {zi} that y is weakly, hence strongly measurable,
this by the Pettis theorem. Now y(ω) = limn(ω)→∞ yn(ω) (ω) . But

yn(ω) (ω) ∈ A
(
un(ω) (ω) ,ω

)
which is a convex closed set for which u→ A(u,ω) is upper semicontinuous and un(ω)→ u
so in fact, y(ω) ∈ A(u(ω) ,ω). This is the claimed measurable selection. ■
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Note that we are not assuming that ω → A(u,ω) is measurable, only that it has a mea-
surable selection and of course the upper semicontinuity and that the values are closed and
convex. Also note that ω → Γ(ω) is measurable so there is a dense subset of measurable
functions {zk (ω)} each being measurable into X . However, we don’t know much about
Γ(ω) other than it is measurable into X .

Also V could be replaced with Lp (I,V ) where I is any interval and nothing changes.
The condition leading to 77.5.26 will typically be satisfied. For example, suppose u∗ ∈

A(u,ω) means that

u∗ (t) ∈ A
(

t,u(t) ,
∫ t

0
u(s)ds,ω

)
for a.e. t. where A has values in P (V ′). Then to say that u∗X[0,T̂ ] ∈ A

(
uX[0,T̂ ],ω

)
for

each T̂ in an increasing sequence converging to T would imply the above holding for a.e. t.
While the above is the typical situation one would expect to see, the following proposition
is also interesting.

Proposition 77.5.4 Suppose A(·,ω) : V →P (V ′) is upper semicontinuous as a map from
the strong topology of V to the weak topology of V ′ and has closed convex values. Then if

u∗X[0,T̂ ] ∈ A
(

uX[0,T̂ ],ω
)

for each T̂ in an increasing sequence converging to T, then

u∗ ∈ A(u,ω) (77.5.36)

Proof: Let T̂n ↑ T such that u∗X[0,T̂n] ∈ A
(

uX[0,T̂n],ω
)
. Then if u∗ /∈ A(u,ω) , there

exists z ∈ V such that
⟨u∗,z⟩> r > ⟨w∗,z⟩

for all w∗ ∈ A(u,ω). Now u∗X[0,T̂n]→ u∗ in V ′ and uX[0,T̂n]→ u in V . Letting O be the
weakly open set, {z∗ : ⟨z∗,z⟩< r} , it follows that this O is a weakly open set which contains
A(u,ω). Hence, by upper semicontinuity,

〈
u∗X[0,T̂n],z

〉
< r for all n large enough. Hence,

passing to a limit, one obtains ⟨u∗,z⟩> r ≥ ⟨u∗,z⟩ , a contradiction. Thus u∗ ∈ A(u,ω). ■
Let r > max(p̂,2). Recall that p̂ ≥ p and the growth had to do with p̂. Let U and UI

be defined by analogy with V and VI where U ≡ Lr ([0,T ] ,U). Here U is a Hilbert space
which is dense in V and embedds compactly into V,∥u∥U ≥ ∥u∥V . Also let F : U →U ′ be
the duality map for r. Thus

∥Fu∥U ′ = ∥u∥
r−1
U , ⟨Fu,u⟩= ∥u∥r

U

Also define the following notation for small positive h.

τhg(t)≡
{

g(t−h) if t > h
0 if t ≤ h
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Let ω→ u0 (ω) be F measurable into W . Also let ω→ f (·,ω) be F measurable into
V ′, ω → B(ω) measurable into L (W,W ′). Now let uh for h > 0 and small, be the unique
solution to the initial value problem

(B(ω)uh (·,ω))′+ εFuh (·,ω) = f (·,ω)−u∗h (·,ω) in U ′, (77.5.37)
Buh (0,ω) = Bu0 (ω)

where u∗h ∈ A(τhu,ω) is a F measurable selection into V ′. Since F is monotone bounded
and hemicontinuous, there is no problem with it being pseudomonotone from XrI to X ′rI .
Such a solution exists on [0,h] by the above reasoning. Let this solution be denoted by
u1. Then use it to define a solution to the evolution equation on [0,2h] called u2. By
uniqueness, these coincide on [0,h]. Then use u2 to extend to a solution on [0,3h] called u3.
Then u3 = u2 on [0,2h]. Continue this way to obtain a solution valid on [0,T ]. By Lemma
77.4.3, this solution may be assumed to be measurable into U ′. One gets this by using the
lemma on a succession of intervals [0,h] , [0,2h] , and so forth.

Now acting on uh and suppressing the dependence on ω in most places, it follows from
the assumed estimates (Note how the assumption on growth was used here.) that

1
2
⟨Buh,uh⟩(T )−

1
2
⟨Bu0,u0⟩+ ε

∫ T

0
∥uh∥r

U ds

≤
(∫ T

0
∥ f∥p′

V ′ ds
)1/p′(∫ T

0
∥uh∥p

V

)1/p

+
∫ T

0

(
a+b∥τhuh∥p̂−1

V

)
∥uh∥V ds

≤ ∥ f∥p̂′

V ′ +∥uh∥p̂
V +∥uh∥p̂

V +aT 1/ p̂′ +b∥uh∥ p̂
V (77.5.38)

which is of the form
≤C

(
∥ f∥p̂′

V ′ ,a(ω)T
)
+(2+b)∥uh∥p̂

V

Now here is where it is good that p̂ < r.

∥uh∥p̂
V ≤

∫ T

0

1
δ

δ ∥uh∥p̂
U ds

≤
(∫ T

0
δ

r/p̂ ∥uh∥r
U ds

)p̂/r(∫ T

0

1

δ
r/(r−p̂)

1r/r−p̂
)(r−p̂)/r

≤ 1

δ
r/(r−p̂)

T (r−p̂)/r

r
(r− p̂)+

p̂δ
r/p̂ ∥uh∥r

U

r

Thus this has shown

1
2
⟨Buh,uh⟩(T )−

1
2
⟨Bu0,u0⟩+ ε ∥uh∥r

U

≤ C
(
∥ f∥p̂′

V ′ ,a(ω)T
)
+

1

δ
r/(r−p̂)

T (r−p̂)/r

r
(r− p̂)+

p̂δ
r/p̂ ∥uh∥r

U

r
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Then for δ small enough, depending on ε,

p̂
r

δ
r/p̂ <

ε

2

And so the inequality ending at 77.5.38 yields

⟨Buh,uh⟩(T )+ ε ∥uh∥r
U ≤C

(
∥ f∥p̂′

V ′ ,(a(ω)+1)T,ε
)
+ ⟨Bu0,u0⟩

From 77.5.37 and the boundedness of the various operators, (B(ω)uh (·,ω))′ is bounded
in U ′. Thus, summarizing these estimates yields the following for fixed ε∥∥(B(ω)uh (·,ω))′

∥∥
U ′ +∥uh∥U +∥u∗h∥V ′ ≤C (77.5.39)

where C does not depend on h although it does depend on ε and of course on ω . Then one
can get a subsequence, still denoted with h such that as h→ 0,

uh→ u weakly in U (77.5.40)

τhuh→ u weakly in U (77.5.41)

(B(ω)uh (·,ω))′→ (B(ω)u)′ weakly in U ′ (77.5.42)

uh→ u strongly in V (77.5.43)

u∗h→ u∗ weakly in V ′ (77.5.44)

Fuh→ ξ ∈U ′ (77.5.45)

Bu(0,ω) = Bu0 (ω) (77.5.46)

The fourth of these comes from a use of Theorem 77.3.1. We need to argue that u∗ ∈
A(u,ω). From the equation and initial conditions of 77.5.37, it follows from monotonicity
conditions and the observation that V ′ is contained in U ′ that〈

(B(ω)uh (·,ω))′ ,uh−u
〉
+ ⟨εFuh (·,ω) ,uh−u⟩

+⟨u∗h (·,ω) ,uh−u⟩= ⟨ f (·,ω) ,uh−u⟩

and so 〈
(B(ω)u(·,ω))′ ,uh−u

〉
+ ⟨εFuh (·,ω) ,uh−u⟩U ′,U

+⟨u∗h (·,ω) ,uh−u⟩V ′,V ≤ ⟨ f (·,ω) ,uh−u⟩

by the strong convergence of 77.5.43, it follows that the third term converges to 0 as h→ 0.
This is because the estimate 77.5.27 implies that the u∗h are bounded, and then the strong
convergence gives the desired result. Hence

lim sup
h→0
⟨εFuh (·,ω) ,uh−u⟩U ′,U ≤ 0

and since F is monotone and hemicontinuous, it follows that in fact,

lim
h→0
⟨εFuh (·,ω) ,uh−u⟩U ′,U = 0
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so for v ∈U arbitrary,

⟨εξ ,u− v⟩= lim inf
h→0

(
⟨εFuh (·,ω) ,u−uh⟩U ′,U + ⟨εFuh (·,ω) ,uh− v⟩U ′,U

)
= lim inf

h→0
⟨εFuh (·,ω) ,uh− v⟩U ′,U ≥ ⟨εFu,u− v⟩

and so, since v is an arbitrary element of U , it follows that ξ = F (u).
Now consider the other term involving u∗h. Recall that u∗h ∈ A(τhuh,ω).

∥τhuh−uh∥V ≤ ∥τhuh− τhu∥V +∥τhu−u∥V
≤ ∥uh−u∥V +∥τhu−u∥V

and both of these on the right converge to 0 thanks to continuity of translation and 77.5.43.
Therefore,

lim
h→0
⟨u∗h (·,ω) ,τhuh−u⟩V ′,V = 0.

It follows that

⟨u∗,u− v⟩V ′,V = lim inf
h→0

(
⟨u∗h (·,ω) ,u− τhuh⟩V ′,V + ⟨u∗h (·,ω) ,τhuh− v⟩

)
≥ lim inf

h→0
⟨u∗h (·,ω) ,τhuh− v⟩ ≥ ⟨u∗ (v) ,u− v⟩

where u∗ (v)∈ A(u,ω). Then it follows that u∗ ∈ A(u,ω) because if not, then by separation
theorems, there would exist v such that

⟨u∗,u− v⟩V ′,V < ⟨w∗,u− v⟩V ′,V
for all w∗ ∈ A(u,ω) which contradicts the above inequality. Thus, passing to the limit in
77.5.37,

(B(ω)u(·,ω))′+ εFu(·,ω)+u∗ = f (·,ω) in U ′, (77.5.47)
Bu(0,ω) = Bu0 (ω)

Here u∗ ∈A(u,ω) . Of course nothing is known about the measurability of u∗,u. All that has
been obtained in the above is a solution for each fixed ω . However, each of the functions
uh,u∗h is measurable. Also we have the estimate 77.5.39. By Theorem 77.2.10, there are
functions û(·,ω) , û∗ (·,ω) and a subsequence with subscript h(ω) such that the following
weak convergences in V and V ′ take place

uh(ω) (·,ω)⇀ û(·,ω) , u∗h(ω) (·,ω)⇀ û∗ (·,ω)

such that the functions (t,ω)→ û(t,ω) ,(t,ω)→ û∗ (t,ω) are product measurable into V
and V ′ respectively. The above argument shows that for each ω , there is a further sub-
sequence, still denoted with subscript h(ω) such that uh(ω) (·,ω)→ u(·,ω) weakly in V
and u∗h(ω) (·,ω)→ u∗ (·,ω) weakly in V ′ such that (u(·,ω) ,u∗ (·,ω)) is a solution to the
evolution equation for each ω . By uniqueness of limits, u(·,ω) = û(·,ω) , similar for û∗.
Thus this solution which is defined for each ω has a representative for each ω such that the
resulting functions of t,ω are product measurable into V,V ′ respectively. This proves the
following lemma.
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Lemma 77.5.5 For each ε > 0 there exists a solution to

(B(ω)u(·,ω))′+ εFu(·,ω)+u∗ (·,ω) = f (·,ω) in U ′, (77.5.48)
Bu(0,ω) = Bu0 (ω)

u∗ (·,ω) ∈ A(u(·,ω) ,ω) (77.5.49)

this solution satisfies (t,ω)→ u(t,ω) is product measurable into V . Also (t,ω)→ u∗ (t,ω),
and (t,ω)→ B(ω)u(t,ω) are product measurable into V ′ and W ′ respectively.

Next it is desired to remove the regularizing term εFu. This will involve another use of
Theorem 77.2.10. Denote by uε the solution to the above lemma. Then act on uε on both
sides. This yields

1
2
⟨Buε ,uε⟩(T )−

1
2
⟨Bu0,u0⟩+ ε

∫ T

0
⟨Fuε ,uε⟩ds

+
∫ T

0
⟨u∗ε ,uε⟩ds =

∫ T

0
⟨ f ,uε⟩ds (77.5.50)

Then by the coercivity assumption,

lim
||u||V→∞

u∈Xr

inf{2⟨u∗,u⟩+ ⟨Bu,u⟩(T ) : u∗ ∈ A(u,ω)}
||u||V

= ∞

it follows that
ε ⟨Fuε ,uε⟩U ′,U +∥uε∥V ≤C (u0, f ) (77.5.51)

where the constant on the right does not depend on ε . Then

εFuε → 0 strongly in U ′

this follows because from properties of the duality map,

⟨εFuε ,v⟩ ≤ ε ⟨Fuε ,uε⟩1/r′ ⟨Fv,v⟩1/r

= ε
1/r′ ⟨Fuε ,uε⟩1/r′

ε
1/r ∥v∥U ≤Cε

1/r ∥v∥U

Then since A is bounded, there is a constant C independent of ε such that

∥u∗ε∥V ′ +
∥∥(Buε)

′∥∥
U ′ +∥uε∥V ≤C (77.5.52)

It follows there is a subsequence, still denoted with ε such that

u∗ε → u∗ weakly in V ′, (77.5.53)

(Buε)
′→ (Bu)′ weakly in U ′, (77.5.54)

uε → u weakly in V . (77.5.55)
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Also
1
2
⟨Buε ,uε⟩(T )−

1
2
⟨Bu0,u0⟩+ ⟨u∗ε ,uε⟩+ ε ⟨Fuε ,uε⟩= ⟨ f ,uε⟩

Assume T is such that

⟨Buε ,uε⟩(T ) = ⟨B(uε (T )) ,uε (T )⟩ , Buε (T ) = B(uε (T ))

for all ε in the sequence converging to 0 and also

Bu(T ) = B(u(T )) ,⟨Bu,u⟩(T ) = ⟨B(u(T )) ,u(T )⟩

If not, carry out the argument for T̂ close to T for which this condition does hold. We have
the integral equation

Buε (t)−Bu0 +
∫ t

0
u∗ε ds+

∫ t

0
εFuε ds =

∫ t

0
f ds

and so Buε (t) converges to Bu(t) in U ′ weakly. This follows right away from the conver-
gence of (Buε)

′ in the above. Also from the above equation,

Bu(t)−Bu0 +
∫ t

0
u∗ds =

∫ t

0
f ds

Thus

Bu(0) = Bu0

(Bu)′+u∗ = f in U ′

Since V ′ ⊆U ′,

1
2
⟨Bu,u⟩(t)− 1

2
⟨Bu0,u0⟩+

∫ t

0
⟨u∗,u⟩V ′,V ds =

∫ t

0
⟨ f ,u⟩ds

Also
1
2
⟨Buε ,uε⟩(t)−

1
2
⟨Bu0,u0⟩+

∫ t

0
⟨u∗ε ,uε⟩V ′,V ds

+
∫ t

0
⟨εFuε ,uε⟩ds =

∫ t

0
⟨ f ,uε⟩ds (77.5.56)

Now let {ei} be the vectors of Lemma 77.3.4 where these are in U . Thus

⟨Buε ,uε⟩(T ) =
∞

∑
i=1
⟨B(uε (T )) ,ei⟩2
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Hence, by Fatou’s lemma,

lim inf
ε→0
⟨Buε ,uε⟩(T ) = lim inf

ε→0

∞

∑
i=1
⟨B(uε (T )) ,ei⟩2

≥
∞

∑
i=1

lim inf
ε→0
⟨B(uε (T )) ,ei⟩2

=
∞

∑
i=1

lim inf
ε→0
⟨Buε (T ) ,ei⟩2

=
∞

∑
i=1
⟨Bu(T ) ,ei⟩2

= ⟨B(u(T )) ,u(T )⟩= ⟨Bu,u⟩(T )

From 77.5.56, letting t = T,

lim sup
ε→0
⟨u∗ε ,uε⟩V ′,V ≤ lim sup

ε→0

(
⟨ f ,uε⟩+

1
2
⟨Bu0,u0⟩−

1
2
⟨Buε ,uε⟩(T )

)
≤ ⟨ f ,u⟩V ′,V +

1
2
⟨Bu0,u0⟩−

1
2
⟨Bu,u⟩(T ) = ⟨u∗,u⟩V ′,V

It follows that
lim sup

ε→0
⟨u∗ε ,uε −u⟩ ≤ ⟨u∗,u⟩V ′,V −⟨u

∗,u⟩V ′,V = 0

and so
lim inf

ε→0
⟨u∗ε ,uε − v⟩ ≥ ⟨u∗ (v) ,u− v⟩

for any v ∈ V where u∗ (v) ∈ A(u,ω). In particular for v = u. Hence

lim inf
ε→0
⟨u∗ε ,uε −u⟩ ≥ ⟨u∗ (v) ,u−u⟩= 0≥ lim sup

ε→0
⟨u∗ε ,uε −u⟩

showing that limε→0 ⟨u∗ε ,uε −u⟩= 0. Thus

⟨u∗,u− v⟩ ≥ lim inf
ε→0

(⟨u∗ε ,u−uε⟩+ ⟨u∗ε ,uε − v⟩)

= lim inf
ε→0
⟨u∗ε ,uε − v⟩ ≥ ⟨u∗ (v) ,u− v⟩

This implies u∗ ∈ A(u,ω) because if not, then by separation theorems, there exists v ∈ V
such that for all w∗ ∈ A(u,ω) ,

⟨u∗,u− v⟩< ⟨w∗,u− v⟩

contrary to what was shown above. Thus this obtains

Bu(t)−Bu0 +
∫ t

0
u∗ds =

∫ t

0
f ds

where u∗ ∈ A(u,ω) . In case Buε (T ) ̸= B(uε (T )) , you do the same argument for T̂ < T
where Buε

(
T̂
)
= B

(
uε

(
T̂
))

for all ε and for u. Then the above argument shows that

u∗X[0,T̂ ] ∈ A
(
X[0,T̂ ]u,ω

)
. This being true for every such T̂ < T implies that it holds on

[0,T ] and shows part of the following theorem which is the main result.



2630 CHAPTER 77. STOCHASTIC INCLUSIONS

Theorem 77.5.6 Let the conditions on A hold 77.5.25 - 77.5.28, 77.5.30 - 77.5.34. Also let
B satisfy 77.3.6 and assume, if it depends on ω, it is of the form

B(ω) = k (ω)B, k (ω)≥ 0, k measurable

Let u0 be F measurable into W, and let f be product measurable into V ′, f (·,ω) ∈ V ′.
Then there exists a solution to the following evolution inclusion

(B(ω)u(·,ω))′+u∗ (·,ω) = f (·,ω) in V ′

B(ω)u(0,ω) = B(ω)u0 (ω) (77.5.57)

where u∗ (·,ω)∈ A(u(·,ω) ,ω). In addition to this, (t,ω)→ u(t,ω) is product measurable
into V and (t,ω)→ u∗ (t,ω) is product measurable into V ′.

In place of the coercivity condition 77.5.28 assume the coercivity condition involving
both B and A given in 77.5.29. Then

(B(ω)u(·,ω))′+u∗ (·,ω) = f (·,ω) in U ′ (77.5.58)
B(ω)u(0,ω) = B(ω)u0 (ω) (77.5.59)

Thus the following holds in V ′

(B(ω)u(·,ω))(t)−B(ω)u0 (ω)+
∫ t

0
u∗ (·,ω)ds =

∫ t

0
f (s,ω)ds

(Bu)′ ∈ V ′

Proof of Theorem 77.5.6: First consider the claim about replacing the coercivity con-
dition. Returning to 77.5.50, one obtains by integrating up to t and adding λ

∫ t
0 ⟨Buε ,uε⟩ds

to both sides,
1
2
⟨Buε ,uε⟩(t)−

1
2
⟨Bu0,u0⟩+ ε

∫ t

0
⟨Fuε ,uε⟩ds

+
∫ t

0
⟨u∗ε ,uε⟩ds+λ

∫ t

0
⟨Buε ,uε⟩ds =

∫ t

0
⟨ f ,uε⟩ds+λ

∫ t

0
⟨Buε ,uε⟩ds (77.5.60)

Then from the estimate 77.5.29,

1
2
⟨Buε ,uε⟩(t)−

1
2
⟨Bu0,u0⟩+ ε

∫ t

0
⟨Fuε ,uε⟩ds

+δ (ω)
∫ t

0
∥uε∥p

V ds−m(ω) =
∫ t

0
⟨ f ,uε⟩ds+λ

∫ t

0
⟨Buε ,uε⟩ds (77.5.61)

From this, it is a routine use of Gronwall’s inequality to obtain the estimate

ε ⟨Fuε ,uε⟩U ′,U +∥uε∥V ≤C (u0, f ,λ ,ω) (77.5.62)

Then the rest of the argument is the same. You obtain the following in U ′.

B(ω)u(t,ω)−B(ω)u0 (ω)+
∫ t

0
u∗ (·,ω)ds =

∫ t

0
f (s,ω)ds
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Since all terms but the first are in V ′, the equation holds in V ′. Also, the equation in 77.5.58
shows that (B(ω)u(·,ω))′ ∈ V ′.

It only remains to show that there is a product measurable solution. The above argument
has shown that there exists a solution for each ω . This is another application of Theorem
77.2.10. For the sequence defined in the convergences 77.5.53 - 77.5.55, there is an estimate
77.5.52. Therefore, the conditions of this theorem hold and there exists a subsequence
denoted with ε (ω) such that

uε(ω) (·,ω) → û(·,ω) weakly in V ,

u∗
ε(ω) (·,ω) → û∗ (·,ω) weakly in V ′

where the û and û∗ are product measurable. Now the above argument shows that for each
ω there exists a further subsequence, still denoted with ε (ω) such that convergence to a
solution to the evolution inclusion is obtained (u(·,ω) ,u∗ (·,ω)). Then by uniqueness of
limits, û(·,ω) = u(·,ω) in V , similar for u∗ and û∗. Hence there is a solution to the above
evolution problem which satisfies the claimed product measurability. ■

One can give a very interesting generalization of the above theorem.

Theorem 77.5.7 In the context of Theorem 77.5.6,let q(t,ω) be a product measurable
function into V such that t→ q(t,ω) is continuous, q(0,ω) = 0.

Then, there exists a solution u of the integral equation

Bu(t,ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) ,

where (t,ω)→ u(t,ω) is product measurable. Moreover, for each ω , Bu(t,ω)=B(u(t,ω))
for a.e. t and z(·,ω) ∈ A(u(·,ω) ,ω) for a.e. t, z is product measurable into V ′. Also, for
each a ∈ [0,T ] ,

Bu(t,ω)+
∫ t

a
z(s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(a,ω)+Bq(t,ω)−Bq(a,ω)

Proof: Define a stopping time

τr ≡ inf{t : |q(t,ω)|> r}

Then this is the first hitting time of an open set by a continuous random variable and so it
is a valid stopping time. Then for each r, let

Ar (ω,w)≡ A(ω,w+qτr (·,ω)) ,

where the notation means qτr (t) ≡ q(t ∧ τr). Then, since qτr is uniformly bounded, all of
the necessary estimates and measurability for the solution to the above corollary hold for
Ar replacing A. Therefore, there exists a solution wr to the inclusion

(Bwr)
′ (·,ω)+Ar (wr (·,ω) ,ω) ∋ f (·,ω) , Bwr (0,ω) = Bu0 (ω)
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Now for fixed ω,qτr (t,ω) does not change for all r large enough. This is because it is a
continuous function of t and so is bounded on the interval [0,T ]. Thus, for r large enough
and fixed ω , qτr (t,ω) = q(t,ω) . Thus, we obtain

⟨Bwr (t,ω) ,wr (t,ω)⟩+
∫ t

0
∥wr (s,ω)∥p

V ds≤C (ω) (77.5.63)

Now, as before one can pass to a limit involving a subsequence, as r→ ∞ and obtain a
solution to the integral equation

Bw(t,ω)−Bu0 (ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds

where z(s,ω) ∈ A(s,ω,w(s,ω)+q(s,ω)) for a.e. s and z is product measurable. Then
an application of Theorem 77.2.10 shows that there exists a solution w to this integral
equation for each ω which also has (t,ω)→ w(t,ω) product measurable and (t,ω)→
z(t,ω) product measurable. Now just let u(t,ω) = w(t,ω)+q(t,ω) .

The last claim follows from letting t = a in the top equation and then subtracting this
from the top equation with t > a. ■

77.6 Variational Inequalities
We have some good theorems above in the context of 77.5.25 - 77.5.28, 77.5.30 - 77.5.34
and B satisfies 77.3.6 and assume, if it depends on ω, it is of the form

B(ω) = k (ω)B, k (ω)≥ 0, k measurable

Now this will be used to consider variational inequalities.
Let K be a closed convex subset of V containing 0. Let P : V → V ′ be an operator of

penalization. Thus P = 0 on K and is monotone and demicontinuous and nonzero off K .

Pu = F (u−projK (u))

where F is the duality map such that ⟨Fu,u⟩ = ∥u∥2 ,∥Fu∥ = ∥u∥. Then A(·,ω) + nP
satisfies the conditions for Theorem 77.5.6 assuming A(·,ω) satisfies the conditions of
this theorem. Then by Theorem 77.5.6, there exists a solution un such that (t,ω) →
un (t,ω) ,(t,ω)→ u∗n (t,ω) are product measurable, and for each ω,

(Bun)
′+u∗n (·,ω)+nP(un (·,ω)) = f (·,ω) in V ′

Bun (0,ω) = 0 (77.6.64)

Here B is as described in that theorem. Using 0 ∈K and monotonicity of P, the estimates
for A lead to an estimate of the form

∥un (·,ω)∥V +∥u∗n (·,ω)∥V ′ ≤C (ω)

Then there is a subsequence
un→ u weakly in V
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u∗n→ u∗ weakly in V ′

Pun→ ξ weakly in V ′

Let Λ denote those v ∈ V such that (Bv)′ ∈ V ′ and Bv(0) = 0. Then for v ∈ Λ,〈
(Bun)

′ ,un− v
〉
+ ⟨u∗n (·,ω) ,un− v⟩+n⟨P(un (·,ω)) ,un− v⟩= ⟨ f (·,ω) ,un− v⟩

Thus by monotonicity considerations,〈
(Bv)′ ,un− v

〉
+ ⟨u∗n (·,ω) ,un− v⟩+n⟨P(un (·,ω)) ,un− v⟩ ≤ ⟨ f (·,ω) ,un− v⟩ (*)

It follows that

lim sup
n→∞

⟨P(un (·,ω)) ,un− v⟩ ≤ 0

lim sup
n→∞

⟨P(un (·,ω)) ,un−u⟩ ≤ ⟨−ξ ,u− v⟩

Now, since Λ is dense, v can be chosen as close as desired to u and hence

lim sup
n→∞

⟨P(un (·,ω)) ,un−u⟩ ≤ 0

Since P is monotone, in fact the limit exists in the above. Therefore, for any v ∈ Λ and ∗,

lim inf
n→∞

(⟨P(un (·,ω)) ,un− v⟩)≥ ⟨Pu,u− v⟩

and so
⟨Pu,u− v⟩ ≤ 0

for all v ∈ Λ. It follows that Pu = 0 and so u ∈K .
Now for v ∈ Λ∩K , monotonicity considerations imply〈

(Bv)′ ,un− v
〉
+ ⟨u∗n (·,ω) ,un−u⟩+ ⟨u∗n (·,ω) ,u− v⟩ ≤ ⟨ f (·,ω) ,un− v⟩

Then

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,un− v⟩−
〈
(Bv)′ ,un− v

〉
−⟨u∗n (·,ω) ,u− v⟩ (77.6.65)

Then

lim sup
n→∞

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,u− v⟩+
〈
(Bv)′ ,v−u

〉
+ ⟨u∗ (·,ω) ,v−u⟩

We assume the existence of a regularizing sequence. If u ∈K there exists ui→ u weakly
in V such that

lim sup
i→∞

〈
(Bui)

′ ,ui−u
〉
V
≤ 0

In the above inequality, let v = ui

lim sup
n→∞

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,u−ui⟩+
〈
(Bui)

′ ,ui−u
〉
+ ⟨u∗ (·,ω) ,ui−u⟩
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Then take limsupi→0 of both sides to obtain

lim sup
n→∞

⟨u∗n (·,ω) ,un−u⟩ ≤ 0.

Now assume the usual limit condition holds for A(·,ω). In practice, this typically
means A(·,ω) will be single valued, monotone and hemicontinuous because there is no
control on the time derivative. However, we will go ahead and assume just that the limit
condition holds. This would also take place if A(·,ω) were defined on V and maximal
monotone, for example. Then for every v ∈ V ,

lim inf
n→∞
⟨u∗n (·,ω) ,un− v⟩ ≥ ⟨u∗ (v) ,u− v⟩

where u∗ (v) ∈ A(u,ω). In particular, this holds for v = u and so

lim inf
n→∞
⟨u∗n (·,ω) ,un−u⟩ ≥ 0≥ lim sup

n→∞

⟨u∗n (·,ω) ,un−u⟩

showing the the limit exists. Then

⟨u∗ (v) ,u− v⟩ ≤ lim inf
n→∞

(⟨u∗n (·,ω) ,un− v⟩)

= lim inf
n→∞

(⟨u∗n (·,ω) ,un−u⟩+ ⟨u∗n (·,ω) ,u− v⟩)

= ⟨u∗,u− v⟩

and since this is true for all v ∈ V it follows that u∗ ∈ A(u(·,ω) ,ω) since otherwise,
separation theorems would give a contradiction. If u∗ were not in A(u(·,ω) ,ω) there
would exist v such that for all z∗ ∈ A(u,ω) ,

⟨z∗,u− v⟩> ⟨u∗,u− v⟩

contrary to the above. Therefore, in 77.6.65 we can take the limit of both sides and conclude
that for every v ∈K such that (Bv)′ ∈ V ′,Bv(0) = 0,〈

(Bv)′ ,u− v
〉
+ ⟨u∗,u− v⟩ ≤ ⟨ f (·,ω) ,u− v⟩

where u∗ ∈ A(u,ω)
This has proved the first part of the following theorem which gives measurable solutions

to a variational inequality.

Theorem 77.6.1 Suppose A(·,ω) is monotone hemicontinuous bounded and single valued
and coercive as a map from V to V ′. Suppose also that for ω→ u(ω) measurable into V ,
it follows that ω→ A(u(ω) ,ω) is measurable into V ′. Let K be a closed convex subset of
V containing 0 and let B ∈L (W,W ′) be self adjoint and nonnegative as above. Let there
be a regularizing sequence {ui} for each u∈K satisfying Bui (0) = 0,(Bui)

′ ∈V ′,ui ∈K ,

lim sup
i→∞

〈
(Bui)

′ ,ui−u
〉
≤ 0

Then for each ω, there exists a solution to〈
(Bv)′ ,u− v

〉
+ ⟨A(u(·,ω) ,ω) ,u(·,ω)− v⟩ ≤ ⟨ f (·,ω) ,u− v⟩

valid for all v∈K such that (Bv)′ ∈V ′,Bv(0)= 0, and (t,ω)→ u(t,ω) , is B ([0,T ])×F
measurable.
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Proof: This follows from Theorem 77.2.10. This is because there is an estimate of the
right sort for the measurable functions un (·,ω) and u∗n (·,ω) and the above argument which
shows that a subsequence has a convergent subsequence which converges appropriately to
a solution. ■

You can have K = K (ω) . There would be absolutely no change in the above the-
orem. You just need to have the operator of penalization satisfy ω → P(u(ω) ,ω) =

F
(

u(ω)−projK (ω) u(ω)
)

is measurable into V ′ provided ω → u(ω) is measurable into
V . What are the conditions on the set valued ω →K (ω) which will cause this to take
place?

Lemma 77.6.2 Let ω →K (ω) be measurable into V . Then ω → projK (ω) u(ω) is also
measurable into V if ω → u(ω) is measurable.

Proof: It follows from standard results on measurable multi-functions [70] that there
is a countable collection {wn (ω)} , ω → wn (ω) being measurable and wn (ω) ∈K (ω)
for each ω such that for each ω, K (ω) = ∪nwn (ω). Let

dn (ω)≡min{∥u(ω)−wk (ω)∥ ,k ≤ n}

Let u1 (ω)≡ w1 (ω) . Let
u2 (ω) = w1 (ω)

on the set
{ω : ∥u(ω)−w1 (ω)∥< {∥u(ω)−w2 (ω)∥}}

and
u2 (ω)≡ w2 (ω) off the above set.

Thus ∥u2 (ω)−u(ω)∥= d2. Let

u3 (ω) = w1 (ω) on
{

ω : ∥u(ω)−w1 (ω)∥
<
∥∥u(ω)−w j (ω)

∥∥ , j = 2,3

}
≡ S1

u3 (ω) = w2 (ω) on S1∩
{

ω : ∥u(ω)−w1 (ω)∥
<
∥∥u(ω)−w j (ω)

∥∥ , j = 3

}
u3 (ω) = w3 (ω) on the remainder of Ω

Thus ∥u3 (ω)−u(ω)∥= d3. Continue this way, obtaining un (ω) such that

∥un (ω)−u(ω)∥= dn (ω)

and un (ω) ∈K (ω) with un measurable. Thus, in effect one picks the closest of all the
wk (ω) for k ≤ n as the value of un (ω) and un is measurable and by density in K (ω) of
{wn (ω)} for each ω,{un (ω)} must be a minimizing sequence for

λ (ω)≡ inf{∥u(ω)− z∥ : z ∈K (ω)}

Then it follows that un (ω)→ projK (ω) u(ω) weakly in V . Here is why: Suppose it fails
to converge to projK (ω) u(ω). Since it is minimizing, it is a bounded sequence. Thus
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there would be a subsequence, still denoted as un (ω) which converges to some q(ω) ̸=
projK (ω) u(ω). Then

λ (ω) = lim
n→∞
∥u(ω)−un (ω)∥ ≥ ∥u(ω)−q(ω)∥

because convex and lower semicontinuous is weakly lower semicontinuous. But this im-
plies q(ω) = projK (ω) (u(ω)) because the projection map is well defined thanks to strict
convexity of the norm used. This is a contradiction. Hence projK (ω) u(ω) = limn→∞ un (ω)
and so is a measurable function. It follows that ω → P(u(ω) ,ω) is measurable into V . ■

The following corollary is now immediate.

Corollary 77.6.3 Suppose A(·,ω) is monotone hemicontinuous bounded, single valued,
and coercive as a map from V to V ′. Suppose also that for ω → u(ω) measurable into
V , it follows that ω → A(u(ω) ,ω) is measurable into V ′. Let K (ω) be a closed convex
subset of V containing 0 and ω→K (ω) is a set valued measurable multifunction. Let B∈
L (W,W ′) be self adjoint and nonnegative as above. Let there be a regularizing sequence
{ui} for each u ∈K satisfying Bui (0) = 0,(Bui)

′ ∈ V ′,ui ∈K ,

lim sup
i→∞

〈
(Bui)

′ ,ui−u
〉
≤ 0

Then for each ω, there exists a solution to〈
(Bv)′ ,u− v

〉
+ ⟨A(u(·,ω) ,ω) ,u(·,ω)− v⟩ ≤ ⟨ f (·,ω) ,u(·,ω)− v⟩

valid for all v∈K (ω) with (Bv)′ ∈V ′,Bv(0) = 0, and (t,ω)→ u(t,ω) , is B ([0,T ])×F
measurable.

Proof: The proof is identical to the above. One obtains a measurable solution to 77.6.64
in which P is replaced with P(·,ω) . Then one proceeds in exactly the same steps as before
and finally uses Theorem 77.2.10 to obtain the measurability of a solution to the variational
inequality. ■

What does it mean for u(ω) ∈K (ω) for each ω? It means that there is a sequence of
the wn

{
wn(ω)

}
such that each wn is measurable into V implying that for each ω there is a

representative t→wn (t,ω) such that the resulting (t,ω)→wn (t,ω) is product measurable
and

∥∥u(·,ω)−wn(ω) (·,ω)
∥∥

V
→ 0. Thus there is no reason to think that (t,ω)→ u(t,ω)

is product measurable. The message of the above corollary says that nevertheless, there is
a measurable solution to the variational inequality.

77.7 Progressively Measurable Solutions
In the context of uniqueness of the evolution initial value problem for fixed ω, one can
prove theorems about progressively measurable solutions fairly easily. First is a definition
of the term progressively measurable.

Definition 77.7.1 Let Ft be an increasing in t set of σ algebras of sets of F . Thus each
Ft is a σ algebra and if s≤ t, then Fs ≤Ft . This set of σ algebras is called a filtration.
A set S⊆ [0,T ]×Ω is called progressively measurable if for every t ∈ [0,T ] ,

S∩ [0, t]×Ω ∈B ([0, t])×Ft
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Denote by P the progressively measurable sets. This is a σ algebra of subsets of [0,T ]×Ω.
A function g is progressively measurable if X[0,t]g is B ([0, t])×Ft measurable for each t.

Let A satisfy the bounded condition 77.5.25, the condition on subintervals 77.5.26, the
specific boundedness estimate 77.5.27, the specific coercivity estimate involving B and A
in 77.5.29, and the limit condition 77.5.30. In place of the condition on the existence of a
measurable selection 77.5.34, we will assume the following condition.

Condition 77.7.2 For each t ≤ T, if ω → u(·,ω) is Ft measurable into V[0,t], then there
exists a Ft measurable selection of A(u(·,ω) ,ω) into V ′[0,t].

Note that u(·,ω) is in V[0,t] so u(t,ω) ∈V .
In this section, we assume that ω → B(ω) is F0 measurable into L (W,W ′). For

convenience, here are the conditions used on A.
For the operator A(·,ω) . A(·,ω) : VI→ V ′I for each I a subinterval of [0,T ] , I =

[
0, T̂
]

and
A(·,ω) : VI →P(V ′I) is bounded, (77.7.66)

If, for u ∈ V ,
u∗X[0,T̂ ] ∈ A

(
uX[0,T̂ ],ω

)
for each T̂ in an increasing sequence converging to T, then

u∗ ∈ A(u,ω) (77.7.67)

For some p̂≥ p, assume the specific estimate

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p̂−1

VI
(77.7.68)

where a(ω) ,b(ω) are nonnegative. Note that the growth could be quadratic in case p = 2.
This really just says there is polynomial growth. Also assume the coercivity condition:

lim
||u||V→∞

u∈Xr

inf{2⟨u∗,u⟩V ′,V + ⟨Bu,u⟩(T ) : u∗ ∈ A(u,ω)}
||u||V

= ∞, (77.7.69)

or alternatively the following specific estimate valid for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩dt : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (77.7.70)

where m(ω) is some nonnegative constant, δ (ω)> 0. Note that the estimate is a coercivity
condition on λB+A rather than on A but is more specific than 77.5.28.

Let U be a Banach space dense in V and that if ui ⇀ u in VI and u∗i ∈A(ui) with u∗i ⇀ u∗

in V ′I and (Bui)
′⇀ (Bu)′ in U ′

rI , ⇀ denoting weak convergence, then if

lim sup
i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0
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it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(77.7.71)

where r > max(p̂,2) , and we replace p with r and I an arbitrary subinterval of the form[
0, T̂
]
, T̂ < T, for [0,T ], and U for V where indicated. Here

UrI ≡ Lr (I;U)

The theorem to be shown is the following.

Theorem 77.7.3 Assume the above conditions, 77.7.66, 77.7.67, 77.7.68, 77.7.70, 77.7.71,
and the Condition 77.7.2. Let u0 be F0 measurable and ω → B(ω) also F0 measurable
and (t,ω)→X[0,t] (t) f (t,ω) is B ([0, t])×Ft product measurable into V ′ for each t. Also
assume that for each ω, there is at most one solution to the evolution equation

(B(ω)u(·,ω))(t)−B(ω)u0 (ω)+
∫ t

0
u∗ (·,ω)ds =

∫ t

0
f (s,ω)ds,

u∗ (·,ω) ∈ A(u(·,ω) ,ω)

for t ∈
[
0, T̂
]

for each T̂ ≤ T . Then there exists a unique solution (u(·,ω) ,u∗ (·,ω))
in V ×V ′ to the above integral equation for each ω. This solution satisfies (t,ω) →
(u(t,ω) ,u∗ (t,ω)) is progressively measurable into V ×V ′.

Proof: Let T denote subsets of (0,T ] which contain T such that for S ∈ T , there
exists a solution uS for each ω to the above integral equation on [0,T ] such that (t,ω)→
X[0,s] (t)uS (t,ω) is B ([0,s])×Fs measurable for each s ∈ S. Then {T} ∈ T . If S,S′ are
in T , then S ≤ S′ will mean that S ⊆ S′ and also uS (t,ω) = uS′ (t,ω) in V for all t ∈ S,
similar for u∗S and u∗S′ . Note that equality must hold in V by uniqueness. Now let C denote
a maximal chain. Is ∪C ≡ S∞ all of (0,T ]? What is uS∞

? Define uS∞
(t,ω) the common

value of uS (t,ω) for all S in C , which contain t ∈ S∞. If s ∈ S∞, then it is in some S ∈ C
and so the product measurability condition holds for this s. Thus S∞ is a maximal element
of the partially ordered set. Is S∞ all of (0,T ]? Suppose ŝ /∈ S∞,T > ŝ > 0.

From Theorem 77.5.6 there exists a solution to the integral equation on [0, ŝ] called
u1 such that (t,ω)→ u1 (t,ω) is B ([0, ŝ])×Fŝ measurable, similar for u∗1. By the same
theorem, there is a solution on [0,T ], u2 which is B ([0,T ])×FT measurable. Now by
uniqueness, u2 (·,ω) = u1 (·,ω) in V[0,ŝ], similar for u∗i . Therefore, no harm is done in re-
defining u2 on [0, ŝ] so that u2 (t,ω) = u1 (t,ω) for all t ∈ [0, ŝ] , similar for u∗. Denote these
functions as û, û∗. By uniqueness, uS∞

(·,ω) = û(·,ω) in Lp ([0, ŝ] ,V ). Thus no harm is
done by re-defining û(s,ω) to equal uS∞

(s,ω) for s < ŝ and û(ŝ,ω) at ŝ. As to s > ŝ also
re define û(s,ω)≡ uS∞

(s,ω) for such s. By uniqueness, the two are equal in V[ŝ,T ] and so
no change occurs in the solution of the integral equation. Now S∞ was not maximal after
all. S∞∪{ŝ} is larger. This contradiction shows that in fact, S∞ = (0,T ]. ■

Theorem 77.7.4 Assume the above conditions, 77.7.66, 77.7.67, 77.7.68, 77.7.70, 77.7.71,
and the Condition 77.7.2. Let u0 be F0 measurable and ω → B(ω) also F0 measurable
and (t,ω)→X[0,t] (t) f (t,ω) is B ([0, t])×Ft product measurable into V ′ for each t.

B(ω) = k (ω)B, k (ω)≥ 0,k measurable.
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Also let t→ q(t,ω) be continuous and q is progressively measurable into V. Suppose there
is at most one solution to

Bu(t,ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) , (77.7.72)

for each ω . Then the solution u to the above integral equation is progressively measur-
able and so is z. Moreover, for each ω , both Bu(t,ω) = B(u(t,ω)) a.e. t and z(·,ω) ∈
A(u(·,ω) ,ω). Also, for each a ∈ [0,T ] ,

Bu(t,ω)+
∫ t

a
z(s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(a,ω)+Bq(t,ω)−Bq(a,ω)

Proof: By Theorem 77.5.7 there exists a solution to 77.7.72 which is B ([0,T ])×FT
measurable. Now, as in the proof of Theorem 77.5.7 one can define a new operator

Ar (w,ω)≡ A(ω,w+qτr (·,ω))

where τr is the stopping time defined there. Then, since q is progressively measurable, the
progressively measurable condition is satisfied for this new operator. Hence by Theorem
77.7.3 there exists a unique solution wr which is progressively measurable to the integral
equation

Bwr (t,ω)+
∫ t

0
zr (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

where zr (·,ω) ∈ Ar (w(·,ω) ,ω). Then as in Theorem 77.7.3 you can let r→ ∞ and even-
tually qτr (·,ω) = q(·,ω). Then, passing to a limit, it follows that for a given ω, there is a
solution to

Bw(t,ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

z(·,ω) ∈ A(w(·,ω)+q(·,ω) ,ω)

which is progressively measurable because w(·,ω) = limr→∞ wr (·,ω) in V each wr being
progressively measurable. Note how uniqueness for fixed ω is important in this argument.
Recall that

τr ≡ inf{t : |q(t,ω)|> r}

By continuity, eventually, for a given ω,τr = ∞ and so no further change takes place in
qτr (·,ω) for that ω. By uniqueness, the same is true of the solution wr (·,ω) and so point-
wise convergence takes place for the wr. Without uniqueness holding, this becomes very
unclear. Thus for each T̂ < T,ω → w(·,ω) is measurable into V[0,T̂ ]. Then by Lemma
77.4.2, w has a representative in V for each ω such that the resulting function satisfies
(t,ω)→X[0,T̂ ] (t)w(t,ω) is B

([
0, T̂
])
×FT̂ measurable into V . Thus one can assume

that w is progressively measurable. Now as in Theorem 77.5.7, Define u = w+q.
The last claim follows from letting t = a in the top equation and then subtracting this

from the top equation with t > a. ■
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77.8 Adding A Quasi-bounded Operator
Recall the following conditions for the various operators.

Bounded and coercive conditions

A(·,ω) . A(·,ω) : VI → V ′I for each I a subinterval of [0,T ] I =
[
0, T̂
]
, T̂ ≤ T

A(·,ω) : VI →P(V ′I) is bounded, (77.8.73)

If, for u ∈ V ,
u∗X[0,T̂ ] ∈ A

(
uX[0,T̂ ],ω

)
for each T̂ in an increasing sequence converging to T, then

u∗ ∈ A(u,ω) (77.8.74)

Assume the specific estimate

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p−1

VI
(77.8.75)

where a(ω) ,b(ω) are nonnegative. Also assume the following coercivity estimate valid
for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩dt : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (77.8.76)

where m(ω) is some nonnegative constant, δ (ω)> 0.

Limit condition

Let U be a Banach space dense in V and that if ui ⇀ u in VI and u∗i ∈A(ui) with u∗i ⇀ u∗

in V ′I and (Bui)
′⇀ (Bu)′ in U ′

rI , ⇀ denoting weak convergence, then if

lim sup
i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(77.8.77)

where r > max(p,2) , and we replace p with r and I an arbitrary subinterval of the form[
0, T̂
]
, T̂ < T, for [0,T ], and U for V where indicated. Here

UrI ≡ Lr (I;U)

Typically, U is compactly embedded in V .

Measurability condition
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For ω → u(·,ω) measurable into V ,

ω → A(u(·,ω) ,ω) has a measurable selection into V ′. (77.8.78)

This last condition means there is a function ω→ u∗ (ω) which is measurable into V ′ such
that u∗ (ω) ∈ A(u(·,ω) ,ω) .

As for the operator B it is either independent of ω and is a nonnegative self adjoint
operator mapping W to W ′ or else it is of the form k (ω)B where k ≥ 0 and is measurable.

We will assume here that p > 1. Then the following main result was obtained above. It
is Theorem 77.5.7.

Theorem 77.8.1 If 77.8.73 - 77.8.78 and B as described above,let q(t,ω) be a product
measurable function into V such that t→ q(t,ω) is continuous, q(0,ω) = 0.

Then, there exists a solution u of the integral equation

Bu(t,ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) ,

where (t,ω)→ u(t,ω) is measurable. Moreover, for each ω , Bu(t,ω) = B(u(t,ω)) for
a.e. t and z(·,ω) ∈ A(ω,u(·,ω)) for a.e. t. Also, for each a ∈ [0,T ] ,

Bu(t,ω)+
∫ t

a
z(s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(a,ω)+Bq(t,ω)−Bq(a,ω)

The idea here is to show that everything works as well if a suitable unbounded maximal
monotone operator is added in. The result is interesting but not as interesting as it might be.
This is because the maximal monotone operator must be quasi bounded. Still it is interest-
ing to note that the above holds for some unbounded operators. This has been pointed out
in the case where there are no stochastic effects in a recent paper [54]. This generalizes this
result by considering the measurability of solutions and allowing for possibly degenerate
leading operator B.

To begin with assume q = 0.
Now let G : D(G)⊆ V →P (V ′) be maximal monotone. Also assume that 0 ∈D(G).

Then you have
⟨u∗,u⟩ ≥ ⟨g∗,u⟩ if u∗ ∈ Gu

for every g∗ ∈ G(0). Hence

⟨u∗,u⟩ ≥ −|G(0)|∥u∥V if u∗ ∈ Gu (77.8.79)

where |G(0)| ≡ inf{∥y∗∥V ′ : y∗ ∈ G(0)}.
There is a standard way of approximating G with bounded demicontinuous operators

which is reviewed next. It is all in Barbu [13]. See Section 25.7.4. Since G is maximal
monotone,

0 ∈ F
(
xµ − x

)
+µ

p−1G
(
xµ

)
where F is a duality map for p, the one used in the above theorem. Barbu uses only p = 2
but it works just as well for arbitrary p > 1 with the minor modifications used here. To see
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this, you consider Ĝ(y)≡ G(x+ y) . Then Ĝ is also maximal monotone and so there exists
a solution to

0 ∈ F (x̂)+µ
p−1Ĝ(x̂) = F (x̂)+µ

p−1G(x+ x̂)

Now let xµ = x+ x̂ so x̂ = xµ − x. Hence

0 ∈ F
(
xµ − x

)
+µ

p−1Gxµ

The symbol limsupn,n→∞ amn means limN→∞

(
supm≥N,n≥N amn

)
.

Lemma 77.8.2 Suppose limsupn,n→∞ amn ≤ 0. Then limsupm→∞ (limsupn→∞ amn)≤ 0.

Proof: Suppose the first inequality. Then for ε > 0, there exists N such that if n,m are
both as large as N, then amn ≤ ε. Thus supn≥N amn ≤ ε provided m ≥ N also. Hence for
such m,

lim
n→∞

(
sup
n≥N

amn

)
≤ ε

for each m ≥ N. It follows limsupm→∞ (limsupn→∞ amn) ≤ ε. Since ε is arbitrary, this
proves the lemma. ■

Then here is a simple observation.

Lemma 77.8.3 Let G : D(G)⊆X→P (X ′) where X is a Banach space be maximal mono-
tone and let vn ∈ Gun and

un→ u, vn→ v weakly.

Also suppose that
lim sup

m,n→∞

⟨vn− vm,un−um⟩ ≤ 0

or
lim sup

n→∞

⟨vn− v,un−u⟩ ≤ 0

Then [u,v] ∈ G (G) and ⟨vn,un⟩ → ⟨v,u⟩.

Proof: By monotonicity,

0 ≥ lim sup
m,n→∞

⟨vn− vm,un−um⟩

≥ lim inf
m,n→∞

⟨vn− vm,un−um⟩ ≥ 0

and so
lim

m,n→∞
⟨vn− vm,un−um⟩= 0

Suppose then that ⟨vn,un⟩ fails to converge to ⟨v,u⟩. Then there is a subsequence, still
denoted with subscript n such that ⟨vn,un⟩ → µ ̸= ⟨v,u⟩. Let ε > 0. Then there exists M
such that if n,m > M, then

|⟨vn,un⟩−µ|< ε, |⟨vn− vm,un−um⟩|< ε



77.8. ADDING A QUASI-BOUNDED OPERATOR 2643

Then if m,n > M,

|⟨vn− vm,un−um⟩|= |⟨vn,un⟩+ ⟨vm,um⟩−⟨vn,um⟩−⟨vm,un⟩|< ε

Hence it is also true that

|⟨vn,un⟩+ ⟨vm,um⟩−⟨vn,um⟩−⟨vm,un⟩| ≤ |2µ− (⟨vn,um⟩+ ⟨vm,un⟩)|< 3ε

Now take a limit first with respect to n and then with respect to m to obtain

|2µ− (⟨v,u⟩+ ⟨v,u⟩)|< 3ε

Since ε is arbitrary, µ = ⟨v,u⟩ after all. Hence the claim that ⟨vn,um⟩ → ⟨v,u⟩ is verified.
Next suppose [x,y] ∈ G (G) and consider

⟨v− y,u− x⟩= ⟨v,u⟩−⟨v,x⟩−⟨y,u⟩+ ⟨y,x⟩

= lim
n→∞

(⟨vn,un⟩−⟨vn,x⟩−⟨y,un⟩+ ⟨y,x⟩)

= lim
n→∞
⟨vn− y,un− x⟩ ≥ 0

and since [x,y] is arbitrary, it follows that v ∈ Gu.
Next suppose limsupn→∞ ⟨vn− v,un−u⟩ ≤ 0. It is not known that [u,v] ∈ G (G).

lim sup
n→∞

[⟨vn,un⟩−⟨v,un⟩−⟨vn,u⟩+ ⟨v,u⟩] ≤ 0

lim sup
n→∞

⟨vn,un⟩−⟨v,u⟩ ≤ 0

Thus limsupn→∞ ⟨vn,un⟩ ≤ ⟨v,u⟩. Now let [x,y] ∈ G (G)

⟨v− y,u− x⟩= ⟨v,u⟩−⟨v,x⟩−⟨y,u⟩+ ⟨y,x⟩

≥ lim sup
n→∞

[⟨vn,un⟩−⟨vn,x⟩−⟨y,un⟩+ ⟨y,x⟩]

≥ lim inf
n→∞

[⟨vn− y,un− x⟩]≥ 0

Hence [u,v] ∈ G (G). Now

lim sup
n→∞

⟨vn− v,un−u⟩ ≤ 0≤ lim inf
n→∞
⟨vn− v,un−u⟩

the second coming from monotonicity and the fact that v ∈ Gu. Therefore,

lim
n→∞
⟨vn− v,un−u⟩= 0

which shows that limn→∞ ⟨vn,un⟩= ⟨v,u⟩. ■
Similar reasoning implies
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Lemma 77.8.4 Suppose A is a set valued operator, A : X →P (X) and u∗n ∈ Aun. Suppose
also that un→ u weakly and u∗n→ u∗ weakly. Suppose also that

lim sup
m,n→∞

⟨u∗n−u∗m,un−um⟩ ≤ 0

Then one can conclude that
lim sup

n→∞

⟨u∗n,un−u⟩ ≤ 0

Proof: It is assumed that

lim sup
m,n→∞

(⟨u∗n,un⟩+ ⟨u∗m,um⟩− (⟨u∗n,um⟩+ ⟨u∗m,un⟩))≤ 0

Then is it the case that limsupn→∞ ⟨u∗n,un⟩ ≤ ⟨u∗,u⟩? Let µ equal limsupn→∞ ⟨u∗n,un⟩. Then
in the above, it implies

(2µ− (⟨u∗n,um⟩+ ⟨u∗m,un⟩))< ε

whenever m,n large enough. Thus taking limsupn→∞ limsupm→∞ of the above, you get

(2µ− (⟨u∗,u⟩+ ⟨u∗,u⟩))< ε

Thus you at least need µ ≤ ⟨u∗,u⟩. That is, limsupn→∞ ⟨u∗n,un⟩ ≤ ⟨u∗,u⟩ . Hence

lim sup
n→∞

⟨u∗n,un−u⟩= lim sup
n→∞

⟨u∗n,un⟩−⟨u∗,u⟩ ≤ ⟨u∗,u⟩−⟨u∗,u⟩= 0 ■

Definition 77.8.5 Let xµ just defined be denoted by Jµ x and define also

Gµ (x)≡−µ
−(p−1)F

(
xµ − x

)
.

This xµ is defined as follows.

0 ∈ F
(
xµ − x

)
+µ

p−1Gxµ

Later, we will write Jµ u for uµ . Thus

0 = F
(
Jµ u−u

)
+µ

p−1zµ , zµ ∈ G
(
Jµ u
)

Also from this definition,

Gµ (u) =−µ
−(p−1)F

(
Jµ u−u

)
= zµ ∈ G

(
Jµ u
)

Then there are some things which can be said about these operators.

Theorem 77.8.6 The following hold. Here V is a reflexive Banach space with strictly
convex norm. G : D(G)→P (V ′) is maximal monotone. Then

1. Jµ and Gµ are bounded single valued operators defined on V. Bounded means they
take bounded sets to bounded sets. Also Gµ is a monotone operator.
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2. Gµ ,Jµ are demicontinuous. That is, strongly convergent sequences are mapped to
weakly convergent sequences.

3. For every
x ∈ D(G) ,

∥∥Gµ (x)
∥∥≤ |Gx| ≡ inf{∥y∗∥ : y∗ ∈ Gx} .

For every x ∈ conv(D(G)), it follows that limµ→0 Jµ (x) = x. The new symbol means
the closure of the convex hull. It is the closure of the set of all convex combinations
of points of D(G).

Then A(·,ω)+Gµ will be bounded and have the same limit properties as A(·,ω). As
to measurability, G and hence Gµ do not depend on ω and so the measurability condition
will hold.

What about the estimates? We need to consider the estimates. Recall what these were:

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p−1

VI
(77.8.80)

where a(ω) ,b(ω) are nonnegative. Also assume the following coercivity estimate valid
for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩dt : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (77.8.81)

where m(ω) is some nonnegative constant, δ (ω)> 0.
The coercivity is not too bad. This is because Gµ is monotone and 0∈D(G) . Therefore,〈

Gµ u,u
〉
=
〈
Gµ u−Gµ (0) ,u

〉
≥ 0

so 〈
Gµ u,u

〉
≥−|G(0)|∥u∥ ≥ δ (ω)

2
∥u∥p− m̂(ω)

so the coercivity condition 77.8.81 will end up holding for A+Gµ . However, more needs
to be considered for the growth condition.

From the definition of uµ , there exists zµ ∈ Guµ

0 = F
(
uµ −u

)
+µ

p−1zµ

Then from the choice of F, it is also the duality map from V to V ′ corresponding to p > 2.

0 =
〈
F
(
uµ −u

)
,uµ

〉
V ′,V +µ

p−1 〈zµ ,uµ

〉
V ′,V

≥
〈
F
(
uµ −u

)
,uµ

〉
V ′,V −µ

p−1 |G(0)|
∥∥uµ

∥∥
V

=
∥∥uµ −u

∥∥p
V
+
〈
F
(
uµ −u

)
,u
〉
−µ |G(0)|

∥∥uµ

∥∥
≥
∥∥uµ −u

∥∥p−
∥∥uµ −u

∥∥p−1 ∥u∥−µ |G(0)|
∥∥uµ

∥∥
≥ 1

p

∥∥uµ −u
∥∥p− 1

p
∥u∥p−µ |G(0)|

∥∥uµ

∥∥
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Thus
0≥

∣∣∥∥uµ

∥∥−∥u∥∣∣p−∥u∥p− pµ |G(0)|
∥∥uµ

∥∥
This requires that there is some constant C such that

∥∥uµ

∥∥≤C∥u∥+C. The details follow.
Let a =

∥∥uµ

∥∥ ,b = ∥u∥ . Then they are both positive and

0≥ |a−b|p−bp−αa

where α = pµ |G(0)|. Want to say a ≤Cb+C for some C. This is the conclusion of the
following lemma.

Lemma 77.8.7 Suppose 0 ≥ |a−b|p− bp−αa for a,b ≥ 0 and α > 0. Then there exists
a constant C such that

a≤Cb+C

Proof: If b ≥ a, then there is nothing to show. Therefore, it suffices to show that the
desired inequality holds for a > b. Thus from now on, a > b.

0≥ (a−b)p−bp−αa

Suppose a > nb+n. Let x = b/a. Then for x ∈ [0,1] ,

0 ≥ (1− x)p− xp−α
1

ap−1

≥ (1− x)p− xp−α
1

(nb+n)p−1

≥ (1− x)p− xp−α
1

(n)p−1

Now for all n large enough, the right side is a decreasing function of x which is positive at
x = 0 and negative at x = 1. Thus x corresponds to the place where this function is negative.
Taking a limit as n→ ∞, it follows that we must have

x≥ δ , δ ∈ (0,1)

It is where (1− x)p− xp = 0. Thus x = b
a ≥ δ . Then, since a > nb+n,

1
δ

b≥ a > nb+n

Now this is a contradiction when n is taken increasingly large. Hence, for large enough
n,a≤ nb+n. ■

It follows that
∥∥uµ

∥∥≤C∥u∥+C for some C. Hence,

∥∥Gµ u
∥∥ ≤ 1

µ p−1

∥∥uµ −u
∥∥p−1 ≤ 1

µ p−1

(∥∥uµ

∥∥+∥u∥)p−1

≤ 2p−2

µ p−1

(∥∥uµ

∥∥p−1
+∥u∥p−1

)
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≤ 2p−2

µ p−1

(
(C∥u∥+C)p−1 +∥u∥p−1

)
≤ 2p−2

µ p−1

(
2p−2

(
Cp−1 ∥u∥p−1 +Cp−1

)
+∥u∥p−1

)
≤ Cµ ∥u∥p−1 +Cµ

This is the case that p≥ 2. The case that p > 1 but p < 2 is easier. In this case,

1
µ p−1

(∥∥uµ

∥∥+∥u∥)p−1 ≤ 1
µ p−1

(∥∥uµ

∥∥p−1
+∥u∥p−1

)
A similar inequality holds. Thus the necessary growth condition is obtained for Gµ and
consequently, the necessary growth condition remains valid for Gµ +A. It was noted earlier
that the coercivity estimate continues to hold.

It follows that there exists a solution to the integral equation

Bu(t,ω)+
∫ t

0
z(s,ω)ds+

∫ t

0
Gµ (u(s,ω))ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

where z(·,ω) ∈ A(u(·,ω) ,ω) which has the measurability described above. That is, both
u and z are product measurable. Then acting on uX[0,t] and using the estimates valid for λ

large enough, one can get an estimate of the form

1
2
⟨Bu,u⟩(t)− 1

2
⟨Bu0,u0⟩+

∫ t

0
∥u(s)∥p

V ds+
∫ t

0

〈
Gµ u,u

〉
ds≤ λ

∫ t

0
⟨Bu,u⟩ds+C ( f )

(77.8.82)
Now Gµ is monotone and so,〈

Gµ u,u
〉
=
〈
Gµ u−Gµ 0,u

〉
+
〈
Gµ (0) ,u

〉
≥
〈
Gµ (0) ,u

〉
≥−|G(0)|∥u∥

It follows easily from standard manipulations and 77.8.82 that ∥u∥V is bounded indepen-
dent of µ . That is, there is a constant C independent of µ such that

∥u∥V ≤C (77.8.83)

The details follow. The above inequality 77.8.82 implies that by acting on uX[0,t],

1
2
⟨Bu,u⟩(t)− 1

2
⟨Bu0,u0⟩+

∫ t

0
∥u(s)∥p

V ds−
∫ t

0
|G(0)|∥u∥V ds≤ λ

∫ t

0
⟨Bu,u⟩ds+C ( f )

Then by Gronwall’s inequality and adjusting constants,

⟨Bu,u⟩(t)+
∫ t

0
∥u(s)∥p

V ds≤C (u0, f ,λ )+C (λ )
∫ t

0
|G(0)|∥u∥V ds (77.8.84)

so it is clear that there is an inequality of the form

sup
t∈[0,T ]

⟨Bu,u⟩(t)+
∫ T

0
∥u(s)∥p

V ds≤C (u0, f ,λ )
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Then returning to 77.8.82, all terms are bounded except
∫ t

0
〈
Gµ u,u

〉
ds, so this term must

also be bounded for t = T also. Thus∣∣∣∣∫ T

0

〈
Gµ u,u

〉
dt
∣∣∣∣≤C

where C is independent of µ . We denote by uµ the solution to the above equation.
Here is the definition of quasi-bounded.

Definition 77.8.8 A set valued operator G is quasi-bounded if whenever x ∈ D(G) and
x∗ ∈ Gx are such that

|⟨x∗,x⟩| , ∥x∥ ≤M,

it follows that ∥x∗∥ ≤ KM . Bounded would mean that if ∥x∥ ≤M, then ∥x∗∥ ≤ KM . Here
you only know this if there is another condition.

Assumption 77.8.9 G : D(G)→P (V ′) is quasi-bounded and maximal monotone.

By Proposition 25.7.23 an example of a quasi-bounded operator is a maximal monotone
operator G for which 0 ∈ int(D(G)).

Now Gµ uµ ∈ GJµ uµ as noted above. Therefore, there exists gµ ∈ G
(
Jµ uµ

)
such that

C≥
〈
Gµ uµ ,uµ

〉
V ′,V =

〈
gµ ,uµ

〉
V ′,V =

〈
gµ ,Jµ uµ

〉
V ′,V +

〈
gµ ,uµ − Jµ uµ

〉
V ′,V (77.8.85)

≥ −|G(0)|
∥∥Jµ uµ

∥∥
V
+

〈
− 1

µ p−1 F
(
Jµ uµ −uµ

)
,uµ − Jµ uµ

〉
V ′,V

= −|G(0)|
∥∥Jµ uµ

∥∥
V
+

1
µ p−1

∥∥Jµ uµ −uµ

∥∥p
V

(77.8.86)

Thus the fact that
∥∥uµ

∥∥ is bounded independent of µ implies that
∥∥Jµ uµ

∥∥ is also bounded
and that in fact

∥∥uµ − Jµ uµ

∥∥
V
→ 0 as µ → 0. This follows from consideration of the last

line of the above formula. Note also that〈
gµ ,uµ − Jµ uµ

〉
V ′,V =

1
µ p−1

∥∥Jµ uµ −uµ

∥∥p
V

is bounded. (77.8.87)

Then from 77.8.85, it follows that
〈
gµ ,Jµ uµ

〉
V ′,V is bounded. By the assumption that G is

quasi-bounded, gµ must also be bounded.
Then we have shown

Buµ (t,ω)+
∫ t

0
zµ (s,ω)ds+

∫ t

0
gµ (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω) (77.8.88)

where∥∥gµ

∥∥
V ′ +

∥∥zµ

∥∥
V ′ + sup

t∈[0,T ]

〈
Buµ ,uµ

〉
(t)+

∥∥Jµ uµ

∥∥
V
+
∥∥uµ

∥∥
V
+
∥∥∥(Buµ

)′∥∥∥
V ′
≤C

(77.8.89)
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The last term in the sum being bounded follows from the integral equation and the funda-
mental theorem of calculus along with the boundedness f ,gµ ,zµ . In addition to this, the
estimate 77.8.86 implies

lim
µ→0

∥∥Jµ uµ −uµ

∥∥
V
= 0. (77.8.90)

There is a subsequence, µ → 0 still denoted as µ such that

gµ → g weakly in V ′ (77.8.91)

zµ → z weakly in V ′ (77.8.92)

uµ → u weakly in V (77.8.93)

Jµ uµ → u weakly in V (77.8.94)(
Buµ

)′→ (Bu)′ weakly in V ′ (77.8.95)

Buµ (t)→ Bu(t) weakly in V ′ (77.8.96)

Now consider two of these for µ and ν . Subtract and act on uµ −uν . Then one obtains

〈
Buµ −Buν ,uµ −uν

〉
(t)+

∫ t

0

〈
zµ − zν ,uµ −uν

〉
+
∫ t

0

〈
gµ −gν ,uµ − vν

〉
= 0 (77.8.97)

Consider that last term for t = T . It equals

∫ T

0

〈
Gµ uµ −Gν uν ,uµ −uν

〉
=

≥0︷ ︸︸ ︷∫ T

0

〈
Gµ uµ −Gν uν ,Jµ uµ − Jν uν

〉
+
∫ T

0

〈
gµ −gν ,uµ − Jµ uµ − (uν − Jν uν)

〉
=
∫ T

0

〈
gµ −gν ,Jµ uµ − Jν uν

〉
+ ε (µ,ν)

where

|ε (µ,ν)| ≤
(∫ T

0

(∥∥gµ

∥∥+∥gν∥
)p′
)1/p′(∫ T

0

(∥∥uµ − Jµ uµ

∥∥+∥uν − Jν uν∥
)p
)1/p

≤ 2C
(∥∥uµ − Jµ uµ

∥∥
V
+∥uν − Jν uν∥V

)
Adjusting constants and using 77.8.87,

≤C
(

µ
(1−(1/p))+ν

(1−(1/p))
)

Thus ∫ T

0

〈
Gµ uµ −Gν uν ,uµ −uν

〉
=
∫ T

0

〈
gµ −gν ,Jµ uµ − Jν uν

〉
+ ε (µ,ν)
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where limµ,ν→0 ε (µ,ν) = 0. It follows from 77.8.97

lim sup
µ,ν→0

(∫ T

0

〈
zµ − zν ,uµ −uν

〉
ds+ ε (µ,ν)

)
= lim sup

µ,ν→0

(∫ T

0

〈
zµ − zν ,uµ −uν

〉
ds
)
≤ 0

From Lemma 77.8.4,
lim sup

µ→0

〈
zµ ,uµ −u

〉
V ′,V ≤ 0

By the limit condition for A(·,ω) , for each v ∈ V , there exists z(v) ∈ Au such that

lim inf
µ→0

〈
zµ ,uµ − v

〉
= lim inf

µ→0

(〈
zµ ,uµ −u

〉
+
〈
zµ ,u− v

〉)
= ⟨z,u− v⟩ ≥ ⟨z(v) ,u− v⟩

Since A(u,ω) is convex and closed, separation theorems imply that z ∈ Au. Return to the
equation solved. (

Buµ

)′
+ zµ +gµ = f

Then act on uµ −u and use monotonicity arguments to write〈
(Bu)′ ,uµ −u

〉
V ′,V +

〈
zµ ,uµ −u

〉
V ′,V +

〈
gµ ,uµ −u

〉
V ′,V ≤

〈
f ,uµ −u

〉
V ′,V (77.8.98)

Then it was shown above that

0≥ lim sup
µ→0

〈
zµ ,uµ −u

〉
V ′,V ≥ lim inf

µ→0

〈
zµ ,uµ −u

〉
V ′,V ≥ ⟨z(u) ,u−u⟩V ′,V = 0

and so, from 77.8.98,

lim
µ→0

〈
gµ ,uµ −u

〉
V ′,V = lim

µ→0

〈
gµ ,Jµ uµ −u

〉
V ′,V = 0

and so
lim
µ→0

〈
gµ ,Jµ uµ

〉
V ′,V = ⟨g,u⟩V ′,V

Now let [a,b] ∈ G (G) . Then

⟨b−g,a−u⟩= lim
µ→0

〈
b−gµ ,a− Jµ uµ

〉
≥ 0

because gµ ∈ G
(
Jµ uµ

)
. Since G is maximal monotone, it follows that [u,g] ∈ G (G).

This has shown that for each ω fixed, and every sequence of solutions to the integral
equation

{
uµ

}
, each function

{
Buµ

}
being product measurable by Theorem 77.5.7, there

exists a subsequence which converges to a solution u to the integral equation. In particular,
t → Bu(t) is weakly continuous into V ′. Then by the fundamental measurable selection
theorem, Theorem 77.2.10, there exists a product measurable function ū(t,ω) with values
in V weakly continuous in t and a sequence depending on ω,

{
uµ(ω)

}
such that for each
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ω, limµ(ω)→0 uµ(ω) (·,ω) = ū(·,ω) weakly in V . However, from the above argument, for
each ω, there is a further subsequence, still denoted with subscript µ (ω) such that in V ′,

lim
µ(ω)→0

uµ(ω) (·,ω) = u(·,ω)

where u is a solution to the integral equation. Since u(·,ω) = ū(·,ω) in V it follows that
these must be equal a.e. and hence (t,ω)→ u(t,ω) is product measurable. This proves the
following theorem.

Theorem 77.8.10 Suppose 77.8.73 - 77.8.78 and B as described above and u0 is F mea-
surable. Also let G : D(G)⊆V →P (V ′) be maximal monotone and quasi-bounded.

Then, there exists a solution u of the integral equation

Bu(t,ω)+
∫ t

0
z(s,ω)ds+

∫ t

0
g(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω) ,

where (t,ω)→ u(t,ω) is product measurable (t,ω)→ z(t,ω) also. Moreover, for each
ω , Bu(t,ω) = B(u(t,ω)) a.e. t and z(·,ω) ∈ A(u(·,ω) ,ω) , and g(·,ω) ∈G(u(·,ω)) for
each ω .

Note that in the case of most interest where you have a Gelfand triple and B is the
identity, the fundamental theorem of calculus implies easily that ω → z(s,ω)+g(s,ω) is
measurable for a.e. s. One can also generalize to the following in which a measurable
q(t,ω) is added.

Corollary 77.8.11 Suppose 77.8.73 - 77.8.78 and B as described above and u0 is F mea-
surable. Also let G : D(G) ⊆ V → P (V ′) be maximal monotone and quasi-bounded.
Let (t,ω) → q(t,ω) be product measurable into V and let t → q(t,ω) be continuous,
q(0,ω) = 0. Then, there exists a solution u of the integral equation

Bu(t,ω)+
∫ t

0
z(s,ω)ds+

∫ t

0
g(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) ,

where (t,ω)→ u(t,ω) ,(t,ω)→ z(t,ω) ,g(t,ω) are product measurable. Moreover, for
each ω , Bu(t,ω) = B(u(t,ω)) a.e. t and z(·,ω) ∈ A(u(·,ω) ,ω) for a.e. t, and g(·,ω) ∈
G(u(·,ω)) for each ω .

Proof: Define a stopping time

τn (ω)≡ inf{t : q(t,ω)> n}

Then let Ã(·,ω) ≡ A(qτn (·,ω)+w,ω) . Then Ã satisfies the same properties as A and so
there exists a solution to the integral equation

Bwn (t,ω)+
∫ t

0
zn (s,ω)ds+

∫ t

0
gn (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

where wn,zn,gn are product measurable, zn (·,ω) ∈ Ã(wn (·,ω) ,ω) a.e. t. By continuity
of t → q(t,ω) ,τn = ∞ for all n sufficiently large and so q(t,ω) = qτn (t,ω). As before,
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for each ω, one obtains the convergences 77.8.91 - 77.8.96 as n → ∞. As before, for
each ω,z(·,ω) ∈ Ã(w(·,ω) ,ω) a.e. where t → w(t,ω) is the function to which wn (·,ω)
converges weakly. Note that the estimates allowing this to happen are dependent on ω .
However, one can apply Theorem 77.2.10 as before and obtain a solution to

Bw(t,ω)+
∫ t

0
z(s,ω)ds+

∫ t

0
g(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

such that w,z,g are product measurable into V or V ′ and ,z(·,ω) ∈ Ã(w(·,ω) ,ω). Now let
u(t,ω) = w(t,ω)+q(t,ω) to obtain the existence of the desired solution in the corollary.
■



Chapter 78

A Different Approach
78.1 Summary Of The Problem

The situation is as follows. There are spaces V ⊆W where V,W are reflexive separable
Banach spaces. It is assumed that V is dense in W. Define the space for p > 1

V ≡ Lp ([0,T ] ;V )

where in each case, the σ algebra of measurable sets will be B ([0,T ]) the Borel measurable
sets. Thus, from the Riesz representation theorem,

V ′ = Lp′ ([0,T ] ;V ′) ,
We also assume (Ω,F ) is a measurable space. No measure is needed. Also

V ⊆W, W ′ ⊆V ′, V dense in W,

B(t) will be a linear operator, B(t) : W →W ′ which satisfies

1. ⟨B(t)x,y⟩= ⟨B(t)y,x⟩

2. ⟨B(t)x,x⟩ ≥ 0

3. B ∈C1 ([0,T ] ;L (W,W ′)) so in particular, the time derivative is bounded.

In the above formulae, ⟨·, ·⟩ denotes the duality pairing of the Banach space W, with its
dual space. We will use this notation in the present paper, the exact specification of which
Banach space being determined, by the context in which this notation occurs.

For example, you could simply take W = H = H ′ and B the identity and consider a
standard Gelfand triple where H is a Hilbert space and B equal to the identity.

The product measurable sets are those in the smallest σ algebra which contains the
measurable rectangles B×A where B∈B ([0,T ]) , A∈F . The paper is about the existence
of product measurable solutions to the system

(Bu(·,ω))′+u∗ (·,ω) = f (·,ω) in V ′

Bu(0,ω) = Bu0 (ω) (78.1.1)
u∗ (·,ω) ∈ A(u(·,ω) ,ω) . (78.1.2)

The evolution inclusion is well understood for fixed ω. However, we will show the ex-
istence of a solution u, u∗ such that (t,ω)→ u(t,ω) and (t,ω)→ u∗ (t,ω) are product
measurable in this solution. Essentially, we show the existence of a measurable selection in
the set of solutions. There are no assumptions made on the measurable space. It is just a set
with a σ algebra of subsets. Essentially this involves showing that the usual limit processes
preserve measurability in some sense. The main theorems in this paper are essentially
measurable selection theorems for the set of solutions to these implicit inclusions.

2653
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To begin with, we will assume p≥ 2. The reason for this is that we want to consider∫ T

0

〈
B′u,u

〉
dt

and this won’t make sense unless p≥ 2. However, this restriction is not necessary if B is a
constant operator, as we show in the succeeding section.

78.1.1 General Assumptions On A

The case A(u,ω) for u∈ V given by A(u,ω)(t) = A(u(t) ,ω) is included as a special case.
In addition to this commonly used situation, we are including the case where A(u,ω)(t)
depends on past values of u(s) for s≤ t. This makes our theory useful in situations where
the problem is second order in t. The following definition is the standard one [99].

Definition 78.1.1 For X a reflexive Banach space, we say A : X→P (X ′) is pseudomono-
tone and bounded if the following hold.

1. The set Au is nonempty, closed and convex for all u ∈ X . A takes bounded sets to
bounded sets.

2. If ui→ u weakly in X and u∗i ∈ Aui is such that

lim sup
i→∞

⟨u∗i ,ui−u⟩ ≤ 0, (78.1.3)

then, for each v ∈ X , there exists u∗ (v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩ ≥ ⟨u∗(v),u− v⟩. (78.1.4)

We will assume in this section in which B is time dependent that p ≥ 2. The specific
assumptions on A(·,ω) are described next.

• growth estimate
Assume the specific estimate

sup{∥u∗∥V ′ : u∗ ∈ A(u,ω)} ≤ a(ω)+b(ω)∥u∥ p̂−1
V (78.1.5)

where a(ω) ,b(ω) are nonnegative and p̂≥ p.

• coercivity estimate
Also assume the coercivity condition: valid for each t ≤ T ,

inf
(∫ t

0
⟨u∗,u⟩ds : u∗ ∈ A(u,ω)

)

+
1
2

∫ t

0

〈
B′u,u

〉
ds≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (78.1.6)
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where m(ω) is some nonnegative constant, δ (ω) > 0. In fact, it is often enough to
assume the left side is given by

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩ds : u∗ ∈ A(u,ω)

)
for some λ (ω) by using a suitable exponential shift argument and changing the
dependent variable. We will sometimes denote weak convergence by ⇀.

• limit condition

If ui ⇀ u in V and (Bui)
′⇀ (Bu)′ in V ′, u∗i ∈ A(ui) , ⇀ denoting weak convergence,

then if
lim sup

i→∞

⟨u∗i ,ui−u⟩V ′,V ≤ 0

it follows that for all v ∈ V , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′,V ≥ ⟨u

∗ (v) ,u− v⟩V ′,V (78.1.7)

• measurability condition

For ω → u(·,ω) measurable into V ,

ω → A(u(·,ω) ,ω) has a measurable selection into V ′. (78.1.8)

This last condition means there is a function ω → u∗ (ω) which is measurable into V ′

such that u∗ (ω) ∈ A(u(·,ω) ,ω) . This is assured to take place if the following standard
measurability condition is satisfied for all O open in V ′:

{ω : A(u(·,ω) ,ω)∩O ̸= /0} ∈F (78.1.9)

See for example [70], [10] or the chapter on measurable multifunctions Chapter 48. Our
assumption is implied by this one but they are not equivalent. Thus what is considered here
is more general than an assumption that ω → A(u(·,ω) ,ω) is set valued measurable.

Note that this condition would hold if u→ A(t,u,ω) is bounded and pseudomonotone
as a single valued map from V to V ′ and (t,ω)→ A(t,u,ω) is product measurable into
V ′ for each u. One would use the demicontinuity of u→ A(t,u,ω) which comes from
a pseudo monotone and bounded assumption and consider a sequence of simple functions
un (t,ω)→ u(t,ω) in V for u measurable, each un (·,ω) being in V , Then the measurability
of A(t,un,ω) would attach to A(t,u,ω) in the limit. In the situation where A(·,ω) satisfies
a suitable upper semicontinuity condition, it is enough to assume only that ω→A(u,ω) has
a measurable selection for each u ∈V . This is a straightforward exercise in approximating
with simple functions and then using upper semicontinuity instead of continuity.

We assume always that the norm on the various reflexive Banach spaces is strictly
convex.
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78.1.2 Preliminary Results
We use the following well known theorem [91]. It is stated here for the situation in which
a Holder condition is given rather than a bound on weak derivatives. See Theorem 34.7.6
on Page 1219.

Theorem 78.1.2 Let E ⊆ F ⊆ G where the injection map is continuous from F to G and
compact from E to F. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ,E) : for some C, ∥u(t)−u(s)∥G ≤C |t− s|1/q

and ||u||Lp([a,b],E) ≤ R}.

Thus S is bounded in Lp ([a,b] ,E) and Holder continuous into G. Then S is precompact in
Lp ([a,b] ,F). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ,F) . The same conclusion can be drawn if it is known instead of the Holder
condition that ∥u′∥L1([a,b];X) is bounded.

Next are some measurable selection theorems which form an essential part of showing
the existence of measurable solutions. They are not dependent on there being a measure
but in the applications of most interest to us, there is typically a probability measure. First
is a basic selection theorem for a set of limits. See Lemma 48.2.2 on Page 1541.

Theorem 78.1.3 Let U be a separable reflexive Banach space. Suppose there is a sequence{
u j (ω)

}∞

j=1 in U, where ω → u j (ω) is measurable and for each ω,

sup
j

∣∣∣∣u j (ω)
∣∣∣∣

U < ∞.

Then there exists a function ω→ u(ω) with values in U such that ω→ u(ω) is measurable,
and a subsequence n(ω) , depending on ω, such that

lim
n(ω)→∞

un(ω) (ω) = u(ω) weakly in U.

Next is a specialization to the situation where the Banach space is a function space.
The proof is in [88]. This gives a result on product measurability. It is Theorem 77.2.10 on
Page 2601.

Theorem 78.1.4 Let V be a reflexive separable Banach space with dual V ′, and let p, p′

be such that p > 1 and 1
p + 1

p′ = 1. Let the functions t → un (t,ω), for n ∈ N, be in
Lp ([0,T ] ;V )≡ V and (t,ω)→ un (t,ω) be B ([0,T ])×F ≡P measurable into V . Sup-
pose

∥un (·,ω)∥V ≤C (ω) ,

for all n. (Thus, by weak compactness, for each ω, each subsequence of {un} has a further
subsequence that converges weakly in V to v(·,ω) ∈ V . (v not known to be P measur-
able))

Then, there exists a product measurable function u such that t→ u(t,ω)is in V and for
each ω a subsequence un(ω) such that un(ω) (·,ω)→ u(·,ω) weakly in V .
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Next is what it means to be measurable into V or V ′. Such functions have representa-
tives which are product measurable.

Lemma 78.1.5 Let f (·,ω)∈V ′. Then if ω→ f (·,ω) is measurable into V ′, it follows that
for each ω, there exists a representative f̂ (·,ω) ∈ V ′, f̂ (·,ω) = f (·,ω) in V ′ such that
(t,ω)→ f̂ (t,ω) is product measurable. If f (·,ω) ∈ V ′ and (t,ω)→ f (t,ω) is product
measurable, then ω → f (·,ω) is measurable into V ′. The same holds replacing V ′ with
V .

Proof: If a function f is measurable into V ′, then there exist simple functions fn

lim
n→∞
∥ fn (ω)− f (ω)∥V ′ = 0, ∥ fn (ω)∥ ≤ 2∥ f (ω)∥V ′ ≡C (ω)

Now one of these simple functions is of the form ∑
M
i=1 ciXEi (ω) where ci ∈ V ′. Therefore,

there is no loss of generality in assuming that

ci (t) =
N

∑
j=1

di
jXFj (t)

where di
j ∈ V ′. Hence we can assume each fn is product measurable into B (V ′)×F .

Then by Theorem 78.1.4, there exists f̂ (·,ω) ∈ V ′ such that f̂ is product measurable and a
subsequence fn(ω) converging weakly in V ′ to f̂ (·,ω) for each ω . Thus fn(ω) (ω)→ f (ω)

strongly in V ′ and fn(ω) (ω)→ f̂ (ω) weakly in V ′. Therefore, f̂ (ω) = f (ω) in V ′ and
so it can be assumed that if f is measurable into V ′ then for each ω, it has a representative
f̂ (ω) such that (t,ω)→ f̂ (t,ω) is product measurable.

If f is product measurable into V ′ and each f (·,ω) ∈ V ′, does it follow that f is mea-
surable into V ′? By measurability, f (t,ω) = limn→∞ ∑

mn
i=1 cn

i XEn
i
(t,ω) = limn→∞ fn (t,ω)

where En
i is product measurable and we can assume ∥ fn (t,ω)∥V ′ ≤ 2∥ f (t,ω)∥. Then by

product measurability, ω → fn (·,ω) is measurable into V ′ because if g ∈ V then

ω → ⟨ fn (·,ω) ,g⟩

is of the form

ω →
mn

∑
i=1

∫ T

0

〈
cn

i XEn
i
(t,ω) ,g(t)

〉
dt which is ω →

mn

∑
i=1

∫ T

0
⟨cn

i ,g(t)⟩XEn
i
(t,ω)dt

and this is F measurable since En
i is product measurable. Thus, it is measurable into V ′

as desired and

⟨ f (·,ω) ,g⟩= lim
n→∞
⟨ fn (·,ω) ,g⟩ , ω → ⟨ fn (·,ω) ,g⟩ is F measurable.

By the Pettis theorem, ω → ⟨ f (·,ω) ,g⟩ is measurable into V ′. Obviously, the conclusion
is the same for these two conditions if V ′ is replaced with V . ■

The following theorem is also useful. It is really a generalization of the familiar Gram
Schmidt process. See Lemma 34.4.2 on Page 1179.
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Theorem 78.1.6 Suppose V,W are separable Banach spaces, such that V is dense in W
and B ∈L (W,W ′) satisfies

⟨Bx,x⟩ ≥ 0, ⟨Bx,y⟩= ⟨By,x⟩ ,B ̸= 0.

Then there exists a countable set {ei} of vectors in V such that〈
Bei,e j

〉
= δ i j

and for each x ∈W,

⟨Bx,x⟩=
∞

∑
i=1
|⟨Bx,ei⟩|2 ,

and also

Bx =
∞

∑
i=1
⟨Bx,ei⟩Bei,

the series converging in W ′. In case B = B(ω) where ω → B(ω) is measurable into
L (W,W ′) , these vectors ei will also depend on ω and will be measurable functions of
ω . In particular, we could let ω = t with the Lebesgue measurable sets.

The following result, found in [91] is well known. See Section 25.2 on Page 832.

Theorem 78.1.7 If a single valued map, A : X → X ′ is monotone, hemicontinuous, and
bounded, then A is pseudo monotone. Furthermore, the duality map, J−1 : X → X ′ which
satisfies ⟨J−1 f , f ⟩ = || f ||2 , ||J−1 f ||X = || f ||X is strictly monotone hemicontinuous and
bounded. So is the duality map F : X → X ′ which satisfies ∥F f∥X ′ = ∥ f∥p−1

X , ⟨F f , f ⟩ =
∥ f∥p

X for p > 1.

The following fundamental result will be of use in what follows. There is somewhat
more in this than will be needed. B is a possibly degenerate operator satisfying only the
following:

B ∈L
(
W,W ′

)
, ⟨Bu,u⟩ ≥ 0,⟨Bu,v⟩= ⟨Bv,u⟩ (78.1.10)

where here V ⊆W and V is dense in W .
Also one can obtain the following for p ≥ 2. It is an integration by parts formula. See

Theorem 34.6.4 on Page 1211.

Proposition 78.1.8 Let p≥ 2 in what follows. For u,v ∈ X , the following hold. If B is time
independent, then it is not necessary to assume p≥ 2. It is enough to assume p > 1.

1. t → ⟨B(t)u(t) ,v(t)⟩W ′,W equals an absolutely continuous function a.e., denoted by
⟨Bu,v⟩(·) .

2. ⟨Lu(t) ,u(t)⟩= 1
2 [⟨Bu,u⟩′ (t)+ ⟨B′ (t)u(t) ,u(t)⟩] a.e. t

3. |⟨Bu,v⟩(t)| ≤C ||u||X ||v||X for some C > 0 and for all t ∈ [0,T ].

4. t→ B(t)u(t) equals a function in C (0,T ;W ′) a.e., denoted by Bu(·) .
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5. sup{||Bu(t)||W ′ , t ∈ [0,T ]} ≤C||u||X for some C > 0.
If K : X → X ′ is given by

⟨Ku,v⟩X ′,X ≡
∫ T

0
⟨Lu(t) ,v(t)⟩dt + ⟨Bu,v⟩(0) ,

then

6. K is linear, continuous and weakly continuous.

7. ⟨Ku,u⟩= 1
2 [⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]+ 1

2
∫ T

0 ⟨B′ (t)u(t) ,u(t)⟩dt.

8. If Bu(0) = 0, for u∈ X , there exists un→ u in X such that un (t) is 0 near 0. A similar
conclusion could be deduced at T if Bu(T ) = 0.

Fussing with p≥ 2 is necessary only because of the consideration of∫ T

0
⟨B′ (t)u(t) ,u(t)⟩dt.

If p < 2, this term might not make sense. The last assertion about approximation makes
possible the following corollary.

Corollary 78.1.9 If Bu(0) = 0 for u ∈ X , then ⟨Bu,u⟩(0) = 0. The converse is also true.
An analogous result will hold with 0 replaced with T .

Proof: Let un → u in X with un (t) = 0 for all t close enough to 0. For t off a set of
measure zero consisting of the union of sets of measure zero corresponding to un and u,

⟨Bun,un⟩(t) = ⟨B(t)un (t) ,un (t)⟩ ,⟨Bu,u⟩(t) = ⟨B(t)u(t) ,u(t)⟩ ,

⟨B(u−un) ,u⟩(t) = ⟨B(t)(u(t)−un (t)) ,u(t)⟩
⟨Bun,u−un⟩(t) = ⟨B(t)un (t) ,u(t)−un (t)⟩

Then, considering such t,

⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩ = ⟨B(t)(u(t)−un (t)) ,u(t)⟩
+⟨B(t)un (t) ,u(t)−un (t)⟩

Hence from Theorem 78.1.8,

|⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩| ≤C ||u−un||X (||u||X + ||un||X )

Thus if n is sufficiently large,

|⟨B(t)u(t) ,u(t)⟩−⟨B(t)un (t) ,un (t)⟩|< ε

So let n be fixed and this large and now let tk→ 0 to obtain

⟨B(tk)un (tk) ,un (tk)⟩= 0
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for k large enough. Hence

⟨Bu,u⟩(0) = lim
k→∞

⟨B(tk)u(tk) ,u(tk)⟩< ε

Since ε is arbitrary, ⟨Bu,u⟩(0) = 0.
Next suppose ⟨Bu,u⟩(0) = 0. Then letting v ∈ X , with v smooth,

⟨Bu(0) ,v(0)⟩= ⟨Bu,v⟩(0) = ⟨Bu,u⟩1/2 (0)⟨Bv,v⟩1/2 (0) = 0

and it follows that Bu(0) = 0.■
Note also that this shows that if (Bv)′ ∈ Lp′ (0,T ;V ′) as well as (Bu)′ , then there is a

continuous function
t→ ⟨B(u+ v) ,u+ v⟩(t)

which equals ⟨B(u(t)+ v(t)) ,u(t)+ v(t)⟩ for a.e.t and so, defining

⟨Bu,v⟩(t)≡ (⟨Bu,u⟩(t)+ ⟨Bv,v⟩(t)−⟨B(u+ v) ,u+ v⟩(t)) 1
2
,

It follows that t→ ⟨Bu,v⟩(t) is continuous and equals ⟨B(u(t)) ,v(t)⟩ a.e. t.
This also makes it easy to verify continuity of pointwise evaluation of Bu.
Let Lu = (Bu)′ .

u ∈ D(L)≡ X ≡
{

u ∈ Lp (0,T,V ) : Lu≡ (Bu)′ ∈ Lp′ (0,T,V ′)}
∥u∥X ≡max

(
∥u∥Lp(0,T,V ) ,∥Lu∥Lp′ (0,T,V ′)

)
(78.1.11)

Since L is closed, this X is a Banach space. To see that L is closed, suppose un→ u in V
and (Bun)

′→ ξ in V ′. Is ξ = (Bu)′? Letting φ ∈C∞
c ([0,T ]) and v ∈V,∫ T

0
⟨ξ ,φv⟩V ′,V = lim

n→∞

∫ T

0

〈
(Bun)

′ ,φv
〉
= lim

n→∞
−
∫ T

0

〈
Bun,φ

′v
〉

(78.1.12)

We can take a subsequence, still denoted with n such that un (t)→ u(t) pointwise a.e. Also∫ T

0

∣∣〈Bun,φ
′v
〉∣∣p ≤ ∫ T

0
||un||pV dtC

(
φ
′,v
)

and these terms on the right are uniformly bounded by the assumption that un is bounded in
V . Therefore, by the Vitali convergence theorem, and using the subsequence just described,
we can pass to the limit in 78.1.12.〈∫ T

0
ξ φdt,v

〉
=

〈
−
∫ T

0
(Bu)φ

′dt,v
〉

Since v is arbitrary, this shows that∫ T

0
ξ φdt =−

∫ T

0
(Bu)φ

′dt in V ′
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and so ξ = (Bu)′ because this is what is meant by (Bu)′. Hence L is indeed closed and X
is a Banach space. It is also a reflexive Banach space because it is isometric to a closed
subspace of the reflexive Banach space V ×V ′. Also, the following is useful. See Theorem
34.4.7 on Page 1193.

Theorem 78.1.10 If Y denotes those f ∈ Lp ([0,T ] ;V ) for which f ′ ∈ Lp ([0,T ] ;V ) , so
that f has a representative such that f (t) = f (0) +

∫ t
0 f ′ (s)ds a.e. t, then if ∥ f∥Y ≡

∥ f∥Lp([0,T ];V )+ ∥ f ′∥Lp([0,T ];V ) the map f → f (t) is continuous in the sense that ∥ f (t)∥ ≤
C (∥ f∥Y ).

We also have the following general theory about existence of measurable solutions to
elliptic problems. First are conditions which a nonlinear set valued map should satisfy.
In what follows, X denotes a reflexive separable Banach space with dual X ′, (Ω,F ) is a
measurable space, and A(·,ω) : X→P (X ′), for ω ∈Ω, denotes a set valued operator. We
make the following assumptions on such an operator:

• H1 Measurability condition. For each u ∈ X , there is a measurable selection z(ω)
such that

z(ω) ∈A (u,ω) .

• H2 Values of A . A (·,ω) : X→P (X ′) has bounded, closed, nonempty, and convex
values. A(·,ω) maps bounded sets to bounded sets.

• H3 Limit conditions, A (·,ω) is pseudomonotone:

If un ⇀ u and lim sup
n→∞

⟨zn,un−u⟩ ≤ 0, for zn ∈A (un,ω) ,

then for each v, there exists z(v) ∈A (u,ω) such that

lim inf
k→∞

⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ .

In our use of the above, the space X will be a space of functions defined on [0,T ] to be
described more later.

We note that for a fixed ω , the operator A(·,ω) described earlier is set-valued, bounded
and pseudomonotone as a map from X to P (X). Moreover, the sum of two of such opera-
tors is set-valued, bounded and pseudomonotone, Theorem 48.5.2 below. The limit condi-
tion H3 implies that A(·,ω) is upper-semicontinuous from the strong topology to the weak
topology. This can be used to show that when ω → u(ω) is measurable, then A(u(ω) ,ω)
has a measurable selection assuming only that ω→ A(u,ω) has a measurable selection for
fixed u ∈ X . Here is a well known result on the sum of pseudomonotone operators. See
Theorem 25.5.1 on Page 855.

Theorem 78.1.11 Assume that A and B are set-valued, bounded and pseudomonotone op-
erators. Then, their sum is also a set-valued, bounded and pseudomonotone operator.
Moreover, if un→ u weakly, zn→ z, zn ∈ A(un), wn→ w weakly with wn ∈ A(un), and

lim sup
n→∞

⟨zn +wn,un−u⟩ ≤ 0,
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then,
lim inf

n→∞
⟨zn +wn,un− v⟩ ≥ ⟨z(v)+w(v) ,u− v⟩ ,

for z(v) ∈ A(u) ,w(v) ∈ B(u) and in fact, z ∈ A(u) and w ∈ B(u).

We now state our result on measurable solutions to general elliptic variational inequal-
ities that may contain sums of set-valued, bounded and pseudomonotone operators. Then
the following is proved in [2]. See Theorem 48.5.3 on Page 1566.

Theorem 78.1.12 Let ω → K (ω) be a measurable set-valued function, where K (ω)⊂V
is convex, closed and bounded. Let the operators A(·, ·) and B(·, ·) satisfy assumptions
H1−H3. Finally, let ω → f (ω) be measurable with values in V ′.

Then, there exists a measurable function ω → u(ω) ∈ K (ω) such that ω → wA (ω),
and ω → wB (ω) with wA (ω) ∈ A(u(ω) ,ω) and wB (ω) ∈ B(u(ω) ,ω), and〈

f (ω)−
(
wA (ω)+wB (ω)

)
,z−u(ω)

〉
≤ 0,

for all z ∈ K (ω).
If it is only known that K (ω) is closed and convex, the same conclusion holds true if it

is also known that for some z(ω) ∈ K (ω), A(·,ω)+B(·,ω) is coercive, that is

lim
∥v∥→∞

inf
{
⟨z∗,v− z⟩
∥v∥

: z∗ ∈ (A(v,ω)+B(v,ω))

}
= ∞.

Instead of two operators, one could have the sum of finitely many with the same conclu-
sions.

78.2 Measurable Solutions To Evolution Inclusions
The main result in this section is Theorem 78.2.2 below. It gives an existence theorem for
many evolution inclusions. We are assuming that A(·,ω) : V →P (V ′) satisfies some
conditions presented earlier: These are 78.1.1-78.1.1. Then we can regard A(·,ω) as a set
valued pseudomonotone map from X to P (X ′). It is clear that A(u,ω) is a closed convex
set in X ′ because if z∗n→ z∗ in X ′,z∗n ∈ A(u,ω) , then z∗ ∈ A(u,ω) because a subsequence,
still denoted as z∗n converges weakly to some w∗ ∈ A(u,ω) in V ′. Since X is dense in V ,
this requires w∗ = z∗. The necessary limit conditions for pseudomonotone are nothing
more than the assumed conditions in 78.1.1. Also, we will assume in this section that
p≥ 2. This restriction is necessary because of the desire to consider time dependent B and
the assumption 78.1.6 which involves a term

∫ T
0 ⟨B′u,u⟩ which might not make sense if

p were only larger than 1. If B were not time dependent, this assumption would not be
necessary and the argument given here would continue to be valid. We essentially show
this is the case in the following section in which we also consider a more general coercivity
condition than 78.1.1, but one can see that there is no change in the argument and it is in
fact simpler if we assume B is constant.

As above, 5, K : X → X ′ can be defined as

⟨Ku,v⟩ ≡
∫ T

0
⟨Lu,v⟩ds+ ⟨Bu,v⟩(0)
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Note that from Proposition 78.1.8, if v ∈ X and Bv(0) = 0, then

⟨Ku,v⟩=
∫ T

0
⟨Lu,v⟩ds (78.2.13)

This is because, from the Cauchy Schwarz inequality and continuity of ⟨Bu,u⟩(·) ,

⟨Bu,v⟩(0)≤ ⟨Bu,u⟩1/2 (0)⟨Bv,v⟩1/2 (0)

and if Bv(0) = 0, then from Corollary 78.1.9, ⟨Bv,v⟩1/2 (0) = 0. From the above Proposi-
tion 78.1.8, this operator K is hemicontinuous and bounded and monotone as a map from
X to X ′. Thus K +A(·,ω) is a set valued pseudomonotone map for which we can apply
Theorem 78.1.12 and obtain existence theorems for measurable solutions to variational in-
equalities right away, but we want to obtain solutions to an evolution equation in which
K (ω) = V and the above theorem does not apply because the sum of these two opera-
tors is not coercive. Therefore, we consider another operator which, when added, will
result in coercivity. Let J : V → V ′ be the duality map for 2. Thus ||Ju||V ′ = ||u||V and
⟨Ju,u⟩= ||u||2V . Then J−1 : V ′→ V also satisfies

〈
f ,J−1 f

〉
= || f ||2V ′ .

The main result in this section is based on methods due to Brezis [22] and Lions [91]
adapted to the case considered here where the operator is set valued, and we consider
measurability. We define the operator M : X → X ′ by

⟨Mu,v⟩ ≡
〈
Lv,J−1Lu

〉
V ′,V where as above, Lu = (Bu)′ .

Then let f be measurable into V ′. Thus, in particular, f (ω) ∈ V ′ for each ω . Consider the
approximate problem and a solution uε to

εMuε (ω)+Kuε (ω)+w∗ε (ω) = f (ω)+g(ω) , w∗ε (ω) ∈ A(uε (ω) ,ω) . (78.2.14)

Where g(ω) ∈ X ′ is given by

⟨g(ω) ,v⟩ ≡ ⟨Bv(0) ,u0 (ω)⟩

where u0 (ω) is a given function measurable into W . Now for u ∈ X , we let

A (u,ω) = εMu+Ku+A(u,ω)

Then by the assumptions on A(·,ω) , there is u∗ (ω) for which ω → u∗ (ω) is measurable
into V ′, hence measurable into X ′. Therefore, ω → A (u,ω) has a measurable selection,
namely εMu+Ku+u∗ (ω) and so condition 78.1.2 is verified.

By Theorem 78.1.12, a solution to 78.2.14 will exist with both uε and w∗ε measurable if
we can argue that the sum of the operators εM +K +A(·,ω) is coercive, since this is the
sum of pseudomonotone operators. From 78.1.1

inf
(∫ T

0
⟨u∗,u⟩ds : u∗ ∈ A(u,ω)

)
+

1
2

∫ T

0

〈
B′u,u

〉
≥ δ (ω)

∫ T

0
∥u∥p

V ds−m(ω)

and so routine considerations show that εM +K +A(·,ω) does indeed satisfy a suitable
coercivity estimate for each positive ε . Thus we have the following existence theorem for
approximate solutions.
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Lemma 78.2.1 Let f be measurable into V ′ and let A satisfy the conditions 78.1.1 - 78.1.1.
Then for K and M defined as above, it follows there exist measurable uε and w∗ε satisfying
78.2.14.

Note this implies that, suppressing dependence on ω,

⟨Buε ,v⟩(0) = ⟨Bv(0) ,u0⟩

for all v ∈ X . Thus, letting v be a smooth function with values in V

⟨Buε (0) ,v(0)⟩= ⟨Bu0,v(0)⟩

Since V is dense in W, this requires Buε (0) = Bu0.
Now define Λ to be the restriction of L to those u ∈ X which have Bu(0) = 0. Thus by

Corollary 78.1.9,

D(Λ) = {u ∈ X : Bu(0) = 0}= {u ∈ X : ⟨Bu,u⟩(0) = 0}

and if v ∈ D(Λ) ,u ∈ X , then as noted earlier,

⟨Ku,v⟩=
∫ T

0
⟨Lu,v⟩ds

Also, one can show an estimate for Λ∗.
You can define D(T )≡ {u ∈ V : u′ ∈ V , u(T ) = 0} and let Tu =−Bu′. Then

⟨Tu,u⟩ = −
∫ T

0

〈
Bu′,u

〉
=−⟨Bu,u⟩ |T0 +

∫ T

0

〈
(Bu)′ ,u

〉
= ⟨Bu,u⟩(0)+

∫ T

0

〈
B′u,u

〉
+
∫ T

0

〈
Bu′,u

〉
and so we obtain

2⟨Tu,u⟩ ≥
∫ T

0

〈
B′u,u

〉
(78.2.15)

Then one shows that T ∗ = Λ and that the graph of Λ∗ is the closure of the graph of T thus
showing that Λ∗ also satisfies an inequality like 78.2.15 for u ∈ D(Λ∗).

From 78.2.14,

ε
〈
Lv,J−1Luε

〉
V ′,V + ⟨Kuε (ω) ,v⟩X ′,X + ⟨w∗ε (ω) ,v⟩V ′,V

= ⟨ f (ω) ,v⟩V ′,V + ⟨g(ω) ,v⟩V ′,V

If we restrict to v ∈ D(Λ) so Bv(0) = 0, then it reduces to

ε
〈
Λv,J−1Luε

〉
V ′,V + ⟨Luε (ω) ,v⟩V ′,V + ⟨w∗ε (ω) ,v⟩V ′,V = ⟨ f (ω) ,v⟩V ′,V

and so J−1Luε ∈ D(Λ∗) . Thus, since D(Λ) is dense in V , it follows that

εΛ
∗J−1Luε +Luε +w∗ε = f in V ′
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Then act on J−1Luε on both sides in the above. This yields for some C dependent on B′ an
inequality of the following form.

−εC ||Luε ||2 + ||Luε ||2 +
〈
w∗ε ,J

−1Luε

〉
≤
〈

f ,J−1Luε

〉
(78.2.16)

Also, acting on both sides of 78.2.14 with uε and using the formula for ⟨Ku,u⟩ ,

ε
〈
Luε ,J−1Luε

〉
+

1
2
[⟨Buε ,uε⟩(T )+ ⟨Buε ,uε⟩(0)]

+
1
2

∫ T

0
⟨B′ (t)uε (t) ,uε (t)⟩dt + ⟨w∗ε ,uε⟩V ′,V = ⟨ f ,uε⟩+ ⟨Buε (0) ,u0 (ω)⟩

= ⟨ f ,uε⟩+ ⟨Bu0 (ω) ,u0 (ω)⟩

It follows easily from the coercivity condition 78.1.6 that uε is bounded in V and conse-
quently w∗ε is bounded in V ′, this from the growth estimate 78.1.1. Now from 78.2.16, it
also follows that ||Luε ||V ′ is bounded for small ε . Thus

||Luε (ω)||V ′ + ||uε (ω)||V + ||w∗ε (ω)||V ′ ≤C (ω)< ∞,

C (ω) independent of small ε . By Theorem 78.1.3, there is a subsequence ε (ω)→ 0 such
that (

Luε(ω) (ω) ,uε(ω) (ω) ,w∗
ε(ω) (ω) ,Buε(ω) (ω)(0)

)
→

(Lu(ω) ,u(ω) ,ξ (ω) ,Bu(ω)(0)) (78.2.17)

in V ′×V ×V ′×V ′ weakly and ω→ (Lu(ω) ,u(ω) ,ξ (ω)) is measurable into V ′×V ×
V ′. It follows that Bu(ω)(0) = Bu0 (ω) because each Buε(ω) (ω)(0) = Bu0 (ω). Note that
this also shows that Kuε ⇀ Ku in X ′. Thus, suppressing the dependence on ω, use 78.2.14
to act on uε −u and obtain

ε
〈
Luε −Lu,J−1Luε

〉
+ ⟨Kuε ,uε −u⟩+ ⟨w∗ε ,uε −u⟩= ⟨ f ,uε −u⟩+ ⟨g,uε −u⟩

Using monotonicity of J−1,

ε
〈
Luε −Lu,J−1Lu

〉
+ ⟨Kuε ,uε −u⟩+ ⟨w∗ε ,uε −u⟩ ≤ ⟨ f ,uε −u⟩+ ⟨g,uε −u⟩

Now (Buε −Bu)(0) = 0. Therefore, uε −u ∈ D(Λ) and so

ε
〈
Λ
∗J−1Lu,uε −u

〉
+ ⟨Kuε ,uε −u⟩+ ⟨w∗ε ,uε −u⟩ ≤ ⟨ f ,uε −u⟩+ ⟨g,uε −u⟩

Recall that K is monotone, bounded and hemicontinuous. In fact, it is monotone and linear.
Hence, K +A is pseudomonotone. Then from the above,

lim sup
ε→0
⟨Kuε +w∗ε ,uε −u⟩ ≤ 0

Now these weak convergences in 78.2.17 include the weak convergence of uε to u in X .
Thus, since K +A(·,ω) is pseudomonotone as a map from X to P (X ′) , for every v ∈ X ,
there exists w∗ (v) ∈ K (u)+A(u,ω) such that

lim inf
ε→0
⟨Kuε +w∗ε ,uε − v⟩ ≥ ⟨w∗ (v) ,u− v⟩
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In particular, this holds if v = u which shows that

lim
ε→0
⟨K (uε)+w∗ε ,uε −u⟩= 0.

It follows then that for v ∈ X ,

⟨ξ +Ku,u− v⟩ = lim
ε→0
⟨w∗ε +Kuε ,u− v⟩

= lim
ε→0

[⟨w∗ε +Kuε ,u−uε⟩+ ⟨w∗ε +Kuε ,uε − v⟩]

≥ lim inf
ε→0
⟨w∗ε +Kuε ,uε − v⟩ ≥ ⟨w∗ (v) ,u− v⟩

Since v is arbitrary, separation theorems imply that

ξ (ω)+Ku(ω)≡ w∗ (ω)+Ku(ω) ∈ A(u(ω) ,ω)+Ku(ω) .

Then passing to the limit in 78.2.14, we have

Ku(ω)+w∗ (ω) = f (ω)+g(ω) in X ′,

w∗ (ω) ∈ A(u(ω) ,ω) , Bu(ω)(0) = Bu0 (ω) (78.2.18)

and Lu,w∗,u are all measurable into the appropriate spaces. This implies for each v ∈ X ,∫ T

0
⟨Lu,v⟩+ ⟨Bu,v⟩(0)+

∫ T

0
⟨w∗,v⟩=

∫ T

0
⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩

In particular, letting v = u,∫ T

0
⟨Lu,u⟩+ ⟨Bu,u⟩(0)+

∫ T

0
⟨w∗,u⟩ =

∫ T

0
⟨ f ,v⟩+ ⟨Bu(0) ,u0⟩

=
∫ T

0
⟨ f ,v⟩+ ⟨Bu0,u0⟩

Thanks to 78.2.18, this shows that ⟨Bu,u⟩(0) = ⟨Bu0,u0⟩. Also it follows from Theorem
78.1.8.

This has proved the following theorem.

Theorem 78.2.2 Let p≥ 2 and let A satisfy 78.1.1-78.1.1 and let f be measurable into V ′

and let u0 be measurable into W. Then there exists a solution to 78.2.18 such that Lu,w∗,u
are all measurable. We also have for u this solution that for fixed ω,⟨Bu0,u0⟩= ⟨Bu,u⟩(0).

We also have the following corollary which gives measurable solutions to periodic
problems. Of course there is no uniqueness for such periodic problems so this is another
place where our theory is applicable. In this corollary, we assume for the sake of simplic-
ity that B(t) = B a constant. Thus, it is not necessary to assume p ≥ 2 in the following
corollary.
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Corollary 78.2.3 Let A satisfy 78.1.1-78.1.1, p> 1, and let f be measurable into V ′. Then
there exists a solution to

Lu(ω)+w∗ (ω) = f (ω) ,Bu(0,ω) = Bu(T,ω) ,

w∗ (ω) ∈ A(u(ω) ,ω)

such that Lu,w∗,u are all measurable.

Proof: Define Λ as the restriction of L to the space {u ∈ D(L) : Bu(0) = Bu(T )} . This
enables periodic conditions. Let

D(T )≡
{

v ∈ V : v′ ∈ V and v(T ) = v(0)
}
, T v =−Bv′

Then consider T ∗. If u ∈ D(Λ) ,v ∈ D(T ) ,

−
∫ T

0

〈
Bv′,u

〉
=−⟨Bu,v⟩ |T0 +

∫ T

0

〈
(Bu)′ ,v

〉
and so, since the boundary term vanishes, this shows that D(Λ)⊆ D(T ∗) and that T ∗ = Λ

on D(Λ).
Next let u ∈ D(T ∗) . By definition, this means that

|⟨T v,u⟩| ≤Cu ∥v∥V (*)

So let v ∈C∞
c ([0,T ] ;V ) .

⟨T v,u⟩=−
∫ T

0

〈
Bv′,u

〉
=−

∫ T

0

〈
Bu,v′

〉
From the Riesz representation theorem, there exists a unique (Bu)′ such that the above
equals

∫ T
0
〈
(Bu)′ ,v

〉
and by density of C∞

c ([0,T ] ;V ) this shows T ∗u = (Bu)′ = Lu. Thus
T ∗ = L on D(T ∗) and in particular (Bu)′ ∈ V ′. It remains to consider the boundary condi-
tions. For u ∈ D(T ∗) and v ∈ D(T ) ,

⟨T v,u⟩=−
∫ T

0

〈
Bv′,u

〉
=−⟨Bu,v⟩ |T0 +

∫ T

0

〈
(Bu)′ ,v

〉
The boundary term is of the form

⟨Bu(0)−Bu(T ) ,v(0)⟩

If ∗ is to hold for all v ∈ D(T ) we must have Bu(0) = Bu(T ). If the difference is ξ ̸= 0,
you would need to have

|⟨ξ ,v(0)⟩| ≤Cu ∥v∥V
for all v ∈ D(T ). So pick v ∈ D(T ) such that |⟨ξ ,v(0)⟩|= δ > 0 and consider a piecewise
linear function ψn which is one at 0 and T but zero on [1/n,T − (1/n)] . Then if vn = ψnv,
the left side is δ for all n but the right converges to 0.
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This shows that D(T ∗) = D(Λ) and T ∗ = Λ. Now it follows that T ∗∗ = Λ∗ and so Λ∗

is monotone because T is and the graph of Λ∗ is the closure of the graph of T . Indeed,∫ T

0

〈
−Bv′,v

〉
=
∫ T

0

〈
Bv′,v

〉
so ⟨T v,v⟩= 0. The same is true of Λ∗.

Now in this case we let X be the same as before. Then we consider the approximate
problem for uε given by

ε
〈
Lv,J−1 (Luε)

〉
+ ⟨Luε (ω) ,v⟩V ′,V +

1
2
⟨Bu,v⟩(0)− 1

2
⟨Bu,v⟩(T )+ ⟨w∗ε (ω) ,v⟩

= ⟨ f (ω) ,v⟩ , w∗ε (ω) ∈ A(uε (ω) ,ω)

Then using monotonicity of Λ∗ and Λ as before, one obtains the existence of a measurable
solution. To see that the necessary monotonicity holds, note that

⟨Lu,u⟩V ′,V +
1
2
⟨Bu,u⟩(0)− 1

2
⟨Bu,u⟩(T ) = 0

This follows from 5 and 7. Indeed, these imply that

⟨Lu,u⟩V ′,V + ⟨Bu,u⟩(0) = 1
2
[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

and so the above follows. The rest of the argument is similar to that used to prove Theorem
78.2.2. At the end you will obtain that

1
2
⟨Bu,v⟩(0)− 1

2
⟨Bu,v⟩(T ) = 0

which will require that Bu(T ) = Bu(0) since v is arbitrary. ■

78.3 Relaxed Coercivity Condition
This section is devoted to proving Theorem 78.3.2 below. It includes a more general coer-
civity condition and uses a slightly modified limit condition. Also, it removes the restriction
that p≥ 2, which was made because of the terms involving B′. However, we will specialize
to the case where B does not depend on t. It seems that this will be necessary because if one
is required to consider ⟨B′u,u⟩ then this won’t make sense unless p ≥ 2. In what follows
p > 1.

Let U be dense in V with the embedding compact, U being a separable reflexive Banach
space. It is always possible to get such a space, (In fact, it can be assumed a Hilbert
space.) but in applications of most interest to us, it can be obtained by Sobolev embedding
theorems. We will let r > max(2, p) and Ur = Lr ([0,T ] ;U) . Also, for I =

[
0, T̂
]
, T̂ <

T, we will denote as VI the space Lp (I;V ) with a similar usage of this notation in other
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situations. If u ∈ V , then we will always consider u ∈ VI also by simply considering its
restriction to I. With this convention, it is clear that if u is measurable into V then it is also
measurable into VI .

Then the modified conditions on A : VI →P (V ′I ) are as follows for A(u,ω) a convex
closed set in V ′I whenever u ∈ VI .

• growth estimate
Assume the specific estimate for u ∈ VI .

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p̂−1

VI
(78.3.19)

where a(ω) ,b(ω) are nonnegative, p̂≥ p.

• coercivity estimate
Also assume the coercivity condition: valid for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩ds : u∗ ∈ A(u,ω)

)

≥ δ (ω)
∫ t

0
∥u∥p

V ds−m(ω) (78.3.20)

where m(ω) is some nonnegative constant for fixed ω, and δ (ω)> 0. No uniformity
in ω is necessary.

• Limit conditions
Let U be a Banach space dense and compact in V and that if ui ⇀ u in VI and
u∗i ∈ A(ui,ω) with (Bun)

′→ (Bu)′ weakly in U ′
rI , then if

lim sup
i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0 (78.3.21)

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(78.3.22)

You typically obtain this kind of thing from Theorem 78.1.2 applied to lower order
terms along with some sort of compactness of the embedding of V into W .

• measurability condition
For ω → u(·,ω) measurable into V ,

ω → A(XIu(·,ω) ,ω) has a measurable selection into V ′I . (78.3.23)

This condition means there is a function ω → u∗ (ω) which is measurable into V ′I
such that u∗ (ω) ∈ A(XIu(·,ω) ,ω) . This is assured to take place if the following
standard measurability condition is satisfied for all O open in V ′I :

{ω : A(XIu(·,ω) ,ω)∩O ̸= /0} ∈F (78.3.24)
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A sufficient condition for this condition is that ω → A(u(·,ω) ,ω) has a measurable
selection into V ′ for any ω → u(·,ω) measurable into V and if u∗ ∈ A(u(·,ω) ,ω) ,
then XIu∗ ∈ A(XIu(·,ω) ,ω) , and this is typical of what we will always consider,
in which the values of u∗ are dependent on the earlier values of u only.

Let F be the duality map for r > max(p̂,2). Thus

⟨Fu,u⟩= ||u||r , ||Fu||= ||u||r−1

and is a demicontinuous map. Let X be those u∈Ur such that (Bu)′ ∈U ′
r with a convenient

norm given by max
(
||u||Ur

,
∣∣∣∣(Bu)′

∣∣∣∣
U ′r

)
. Then if we let UrI play the role of VI in Theorem

78.2.2, we obtain the following lemma as a corollary of this theorem.

Lemma 78.3.1 Let A satisfy 78.3-78.3 and let f be measurable into V ′ and let u0 be
measurable into W. Then for ε > 0, there exists a solution to

Lu+ εFu+u∗ = f , Bu(0,ω) = Bu0 (ω) (78.3.25)

such that Lu,u∗,u are all measurable into U ′
r ,U

′
r , and Ur respectively, u∗ (ω) ∈ A(u,ω).

In other terms, for v ∈ X = {u ∈Ur : Lu ∈U ′
r }∫ T

0
⟨Lu,v⟩+ ε

∫ T

0
⟨Fu,v⟩+

∫ T

0
⟨u∗,v⟩+

⟨Bu,v⟩(0) =
∫ T

0
⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩ (78.3.26)

Proof: Using easy estimates and the definition that r > max(p̂,2) , p̂≥ p, (Recall that
p̂ determined the polynomial growth of ∥u∗∥V ′ where u∗ ∈ A(u,ω)) it is routine to show
that the earlier coercivity condition holds for εF +A(·,ω). Indeed, we have the following
from the above assumptions.

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩ds : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω)

Thus,

inf
(∫ t

0
⟨u∗,u⟩ : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds

−CBλ (ω)
∫ t

0
η

(
1
η

)
||u||2V −m(ω)

Then the right side is no smaller than

−CBλ (ω)
∫ t

0

(
1
η

)
η ||u||2V −m(ω)

≥ −CB,λ (ω)η
r/2
∫ t

0
||u||rU −CBλ (ω)T

(
1
η

)r/(r−2)

−m(ω)
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Then picking η small enough, we obtain CBλ (ω)ηr/2 < ε/2.
Both operators εF and A(·,ω) are pseudomonotone as maps from X to P (X ′) where

X is defined in terms of UrI as before. Therefore, the existence of the measurable solution
is obtained. ■

Denoting with uε the above solution, suppose Luε → Lu weakly in U ′
r with Lu =

(Bu)′ ∈ V ′ and uε → u weakly in V and u∗ε → u∗ in V ′,εFuε → 0 strongly in U ′
r . Thus,

passing to the limit in 78.3.25 we obtain Lu ∈ V ′ because it equals something in V ′. We
will show this below by an argument that εFuε → 0 strongly in U ′

r .
Written differently, the uε satisfy the following for all v ∈ X .∫ T

0
⟨Luε ,v⟩+ ⟨Buε ,v⟩(0)+

∫ T

0
⟨u∗ε ,v⟩

+ε

∫ T

0
⟨Fuε ,uε⟩=

∫ T

0
⟨ f ,v⟩+ ⟨Bv(0) ,u0⟩ (78.3.27)

and
Buε (t) = Bu0 +

∫ t

0
Luε (s)ds

The weak convergence of Luε implies that Buε (t)→ Bu(t) in U ′. Thus

Bu(t) = Bu0 +
∫ t

0
Lu(s)ds

and so Bu(0) = Bu0. We will show that there exist suitable subsequences such that the kind
of convergence just described will hold.

Using the equation to act on u in 78.3.25 or in 78.3.27, we obtain from the assumed
coercivity condition the following for fixed ω,

1
2
⟨Bu,u⟩(t)− 1

2
⟨Bu,u⟩(0)+ ε

∫ t

0
||u||rU ds+δ (ω)

∫ t

0
∥u∥p

V ds−m(ω)

≤ λ (ω)
∫ t

0
⟨Bu,u⟩(s)ds+

∫ t

0
⟨ f ,u⟩(s)ds (78.3.28)

From Gronwall’s inequality, one obtains an estimate of the form

⟨Bu,u⟩(t)+ ε

∫ T

0
||u||rU ds+

∫ T

0
||u||pV ds≤C ( f ,ω)

where the constant depends only on the indicated quantities. It follows from this and the
definition of the duality map F that if uε is the solution to Lemma 78.3.1, then εFuε → 0
strongly in U ′

r . Also, the estimates for A and the above estimate implies that Luε is bounded
in U ′

r . Thus we have an inequality of the form

⟨Buε ,uε⟩(t)+ ε

∫ T

0
||uε ||rU ds+ ||uε ||pV + ||Luε ||U ′r + ||u

∗
ε ||V ′ ≤C ( f ,ω)

Of course each of these uε ,u∗ε are measurable into V and U ′ respectively. By density
considerations, u∗ε is also measurable into V ′. It follows from Theorem 78.1.3 that there
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exists (u,u∗) which is measurable into V ×V ′ and a sequence with ε (ω) such that as
ε (ω)→ 0,

(
uε(ω) (ω) ,u∗

ε(ω) (ω)
)
→ (u(ω) ,u∗ (ω)) in V ×V ′. Then, taking a further

subsequence, we can obtain the following convergences for fixed ω .

uε(ω) (ω)→ u(ω) weakly in V

u∗
ε(ω) (ω)→ u∗ (ω) weakly in V ′

Luε(ω)→ Lu weakly in U ′
r

These convergences continue to hold for V and U ′
r replaced with VI and U ′

rI and we simply
consider the restrictions of the functions to I. The problem here is that we do not know that
u is in Ur. This is why it is necessary to take a little different approach.

Letting σ > 0, there exists T̂ (ω)> T −σ such that for each ε (ω) in that sequence,〈
Buε(ω),uε(ω)

〉(
T̂
)
=
〈
B
(
uε(ω)

(
T̂
))

,uε(ω)

(
T̂
)〉

, Buε

(
T̂
)
= B

(
uε

(
T̂
))

for all ε (ω) in the sequence converging to 0 and also

Bu
(
T̂
)
= B

(
u
(
T̂
))

,⟨Bu,u⟩
(
T̂
)
=
〈
B
(
u
(
T̂
))

,u
(
T̂
)〉

.

Now let {ei} be the vectors of Theorem 78.1.6 where these are in U . Thus for T̂ ,

⟨Buε ,uε⟩
(
T̂
)
=
〈
Buε

(
T̂
)
,uε

(
T̂
)〉

=
∞

∑
i=1

〈
B
(
uε

(
T̂
))

,ei
〉2

Hence, by Fatou’s lemma,

lim inf
ε→0
⟨Buε ,uε⟩

(
T̂
)

= lim inf
ε→0

∞

∑
i=1

〈
B
(
uε

(
T̂
))

,ei
〉2

≥
∞

∑
i=1

lim inf
ε→0

〈
B
(
uε

(
T̂
))

,ei
〉2

=
∞

∑
i=1

lim inf
ε→0

〈
Buε

(
T̂
)
,ei
〉2

=
∞

∑
i=1

〈
Bu
(
T̂
)
,ei
〉2

=
〈
B
(
u
(
T̂
))

,u
(
T̂
)〉

= ⟨Bu,u⟩
(
T̂
)

(78.3.29)

Then by 78.3.25, we can obtain

1
2
⟨Buε ,uε⟩

(
T̂
)
− 1

2
⟨Buε ,uε⟩(0)+

∫ T̂

0
ε ⟨Fuε ,uε⟩dt +

∫ T̂

0
⟨u∗ε ,uε⟩=

∫ T̂

0
⟨ f ,uε⟩ (78.3.30)
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From what was shown above, ⟨Buε ,uε⟩(0) = ⟨Bu0,u0⟩. Now passing to the limit as
ε → 0,

Lu+u∗ = f

in U ′
r . But every term is in V ′ except the first and so it is also in V ′. Also, we know that

⟨Buε ,uε⟩(0) = ⟨Bu0,u0⟩ and by Theorem 78.1.8, ⟨Bu,u⟩(0) = ⟨Bu0,u0⟩ also. Then the
integration by parts formula yields

1
2
⟨Bu,u⟩

(
T̂
)
− 1

2
⟨Bu0,u0⟩+

∫ T̂

0
⟨u∗,u⟩dt =

∫ T̂

0
⟨ f ,u⟩dt

which shows ∫ T̂

0
⟨u∗,u⟩dt =

∫ T̂

0
⟨ f ,u⟩dt− 1

2
⟨Bu,u⟩

(
T̂
)
+

1
2
⟨Bu0,u0⟩

Then from 78.3.30 and the lower semicontinuity shown in 78.3.29, it follows that

lim sup
ε→0

∫ T̂

0
⟨u∗ε ,uε⟩ ≤

∫ T̂

0
⟨ f ,u⟩dt +

1
2
⟨Bu0,u0⟩− lim inf

ε→0

1
2
⟨Buε ,uε⟩

(
T̂
)

≤
∫ T̂

0
⟨ f ,u⟩dt +

1
2
⟨Bu0,u0⟩−

1
2
⟨Bu,u⟩

(
T̂
)
=
∫ T̂

0
⟨u∗,u⟩dt

Thus we have uε → u weakly in VI and (Buε)
′→ (Bu)′ weakly in U ′

rI ,

lim sup
ε→0

∫ T̂

0
⟨u∗ε ,uε −u⟩ ≤

∫ T̂

0
⟨u∗,u⟩−

∫ T̂

0
⟨u∗,u⟩= 0

Therefore, by the limit condition 78.3, for any v ∈ V

lim inf
ε→0

∫ T̂

0
⟨u∗ε ,uε − v⟩ ≥

∫ T̂

0
⟨u∗ (v) ,u− v⟩ , some u∗ (v) ∈ A(u,ω)

In particular, this holds for u and so, in fact,
∫ T̂

0 ⟨u∗ε ,uε −u⟩ converges to 0. Therefore,

∫ T̂

0
⟨u∗,u− v⟩ = lim

ε→0

∫ T̂

0
⟨u∗ε ,u− v⟩

≥ lim inf
ε→0

(∫ T̂

0
⟨u∗ε ,u−uε⟩+

∫ T̂

0
⟨u∗ε ,uε − v⟩

)

≥
∫ T̂

0
⟨u∗ (v) ,u− v⟩ , some u∗ (v) ∈ A(u,ω)

since v is arbitrary, this shows from separation theorems that u∗ (ω)∈A(u(ω) ,ω) in V ′
[0,T̂ ]

.

This has proved the following theorem in which a more general coercivity condition is
used.
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Theorem 78.3.2 Suppose the conditions on A,78.3 - 78.3. Also let u0 be measurable
into W and f measurable into V ′. Let B ∈ L (W,W ′) be nonnegative and self adjoint
as described above. Let σ > 0 be small. Then there exist functions u,u∗ measurable into
V[0,T−σ ]×V ′[0,T−σ ] such that u∗ (ω) ∈ A

(
X[0,T−σ ]u(ω) ,ω

)
for each ω and for t ≤ T −σ ,

for each ω,

Bu(t)−Bu0 +
∫ t

0
u∗ (s)ds =

∫ t

0
f (s)ds

Note that if for a given ω there is a unique solution to the evolution equation, then
we can obtain the solution on (0,T ). However, σ was totally arbitrary so it seems like
there is not much difference between the above and the obtimum solution. However, one
could also index the above solutions relative to σ , take an appropriate extension of each
on (T −σ ,T ) and get similar estimates and pass to a limit as above as σ → 0 and thereby
obtain a measurable solution valid on (0,T ). This time, it will be clear that Lu,Luσ are both
in V ′ so a monotonicity condition will hold for L without the delicate argument given above
which caused a smaller interval to be considered. Thus the following corollary will hold if
enough additional details are considered. The issue does not seem sufficiently significant
to justify the consideration of these details.

Corollary 78.3.3 In the situation of Theorem 78.3.2 there exists the same kind of measur-
able solution valid on (0,T ). This time, u∗,u are measurable into V and V ′ respectively.

One can give a very interesting generalization of Theorem 78.3.2.

Theorem 78.3.4 In the context of Theorem 78.3.2,let q(t,ω) be a product measurable
function into V such that t→ q(t,ω) is continuous, q(0,ω) = 0.

Then for each small σ , there exists a solution u of the integral equation

Bu(t,ω)+
∫ t

0
u∗ (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) , t ≤ T −σ

where (t,ω)→ u(t,ω) is product measurable. Moreover, for each ω , Bu(t,ω)=B(u(t,ω))
for a.e. t and u∗ (·,ω) ∈ A(u(·,ω) ,ω) for a.e. t, u∗ is product measurable into V ′. Also,
for each a ∈ [0,T −σ ] ,

Bu(t,ω)+
∫ t

a
u∗ (s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(a,ω)+Bq(t,ω)−Bq(a,ω)

Proof: Define a stopping time

τr (ω)≡ inf{t : |q(t,ω)|> r}

Then this is the first hitting time of an open set by a continuous random variable and so it
is a valid stopping time. Then for each r, let

Ar (ω,w)≡ A(ω,w+qτr (·,ω)) ,
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where the notation means qτr (t) ≡ q(t ∧ τr). Then, since qτr is uniformly bounded, all of
the necessary estimates and measurability for the solution to the above corollary hold for
Ar replacing A. Therefore, there exists a solution wr to the inclusion

(Bwr)
′ (·,ω)+Ar (wr (·,ω) ,ω) ∋ f (·,ω) , Bwr (0,ω) = Bu0 (ω) , t ∈ [0,T −σ/2]

Now for fixed ω,qτr (t,ω) does not change for all r large enough. This is because it is a
continuous function of t and so is bounded on the interval [0,T −σ/2]. Thus, for r large
enough and fixed ω , qτr (t,ω) = q(t,ω) . Thus, we obtain

⟨Bwr (t,ω) ,wr (t,ω)⟩+
∫ t

0
∥wr (s,ω)∥p

V ds≤C (ω) (78.3.31)

Now, as before in the proof of Theorem 78.3.2 one can pass to a limit involving a subse-
quence, as r (ω)→ ∞ and obtain a solution to the integral equation

Bw(t,ω)−Bu0 (ω)+
∫ t

0
u∗ (s,ω)ds =

∫ t

0
f (s,ω)ds, t ∈ [0,T −σ ]

where u∗ (ω) ∈ A(w(s,ω)+q(s,ω) ,ω) and u∗,w are measurable into V ′[0,T−σ ]. Now let
u(t,ω) = w(t,ω)+q(t,ω) .

The last claim follows from letting t = a in the top equation and then subtracting this
from the top equation with t > a. ■

78.4 Progressively Measurable Solutions
In the context of uniqueness of the evolution initial value problem for fixed ω, one can
prove theorems about progressively measurable solutions fairly easily.

First is a definition of the term progressively measurable.

Definition 78.4.1 Let Ft be an increasing in t set of σ algebras of sets of Ω where (Ω,F )
is a measurable space. Thus each Ft is a σ algebra and if s≤ t, then Fs ≤Ft . This set of
σ algebras is called a filtration. A set S ⊆ [0,T ]×Ω is called progressively measurable if
for every t ∈ [0,T ] ,

S∩ [0, t]×Ω ∈B ([0, t])×Ft

Denote by P the progressively measurable sets. This is a σ algebra of subsets of [0,T ]×Ω.
A function g is progressively measurable if X[0,t]g is B ([0, t])×Ft measurable for each t.

Let A satisfy the conditions 78.3 - 78.3 but the last condition will be modified as follows.

Condition 78.4.2 For each t ≤ T, if ω → u(·,ω) is Ft measurable into V[0,t], then there
exists a Ft measurable selection of A

(
X[0,t]u(·,ω) ,ω

)
into V ′[0,t].

Note that u(·,ω) is in V[0,t] so u(t,ω) ∈V .
The theorem to be shown is the following.
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Theorem 78.4.3 Assume the above conditions, 78.3 - 78.3, and 78.4.2. Let u0 be F0
measurable and (t,ω)→X[0,t] (t) f (t,ω) is B ([0, t])×Ft product measurable into V ′ for
each t. Also assume that for each ω, there is at most one solution (u,u∗) to the evolution
equation

Bu(ω)(t)−Bu0 (ω)+
∫ t

0
u∗ (·,ω)ds =

∫ t

0
f (s,ω)ds, (78.4.32)

u∗ (·,ω) ∈ A(u(·,ω) ,ω)

for t ∈ [0,T ]. Then there exists a unique solution (u(·,ω) ,u∗ (·,ω)) in V[0,T ]×V ′[0,T ] to the
above integral equation for each ω, t ∈ (0,T ) . This solution satisfies

(t,ω)→ (u(t,ω) ,u∗ (t,ω))

is progressively measurable into V ×V ′.

Proof: First note that Theorem 78.3.2 there exists a solution on [0,T −σ ] for each small
σ > 0. Then by uniqueness, there exists a solution on (0,T ). Let T denote subsets of
(0,T −σ ] which contain T −σ such that for S ∈T , there exists a solution uS for each ω to
the above integral equation on [0,T −σ ] such that (t,ω)→X[0,s] (t)uS (t,ω) is B ([0,s])×
Fs measurable for each s ∈ S. Then {T −σ} ∈T . If S,S′ are in T , then S≤ S′ will mean
that S ⊆ S′ and also uS (t,ω) = uS′ (t,ω) in V for all t ∈ S, similar for u∗S and u∗S′ . Note
how we are considering a particular representative of a function in V[0,T−σ ] and V ′[0,T−σ ]

because of the pointwise condition. Now let C denote a maximal chain. Is ∪C ≡ S∞

all of (0,T −σ ]? What is uS∞
? Define uS∞

(t,ω) the common value of uS (t,ω) for all S in
C , which contain t ∈ S∞. If s∈ S∞, then it is in some S∈C and so the product measurability
condition holds for this s. Thus S∞ is a maximal element of the partially ordered set. Is S∞

all of (0,T −σ ]? Suppose ŝ /∈ S∞,T −σ > ŝ > 0.
From Theorem 78.3.2 there exists a solution to the integral equation 78.4.32 on [0, ŝ]

called u1 such that (t,ω)→ u1 (t,ω) is B ([0, ŝ])×Fŝ measurable, similar for u∗1. By
the same theorem, there is a solution on [0,T −σ ], u2 which is B ([0,T −σ ])×F[0,T−σ ]

measurable. Now by uniqueness, u2 (·,ω) = u1 (·,ω) in V[0,ŝ], similar for u∗i . Therefore,
no harm is done in re-defining u2,u∗2 on [0, ŝ] so that u2 (t,ω) = u1 (t,ω) , for all t ∈ [0, ŝ] ,
similar for u∗. Denote these functions as û, û∗. By uniqueness, uS∞

(·,ω) = û(·,ω) in
Lp ([0, ŝ] ,V ). Thus no harm is done by re-defining û(s,ω) to equal uS∞

(s,ω) for s < ŝ and
u1 (ŝ,ω) at ŝ. As to s > ŝ also re define û(s,ω)≡ uS∞

(s,ω) for such s. By uniqueness, the
two are equal in V[ŝ,T−σ ] and so no change occurs in the solution of the integral equation.
Now S∞ was not maximal after all. S∞∪{ŝ} is larger. This contradiction shows that in fact,
S∞ = (0,T−σ ]. Thus there exists a unique progressively measurable solution to 78.4.32 on
[0,T −σ ] for each small σ . Thus we can simply use uniqueness to conclude the existence
of a unique progressively measurable solution on [0,T ). ■

Theorem 78.4.4 Assume the above conditions, 78.3 - 78.3, and 78.4.2. Let u0 be F0
measurable and (t,ω)→X[0,t] (t) f (t,ω) is B ([0, t])×Ft product measurable into V ′ for
each t ∈ [0,T −σ ]. Also let t → q(t,ω) be continuous and q is progressively measurable
into V. Suppose there is at most one solution to

Bu(t,ω)+
∫ t

0
u∗ (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) , (78.4.33)
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for each ω . Then the solution u to the above integral equation is progressively measurable
and so is u∗. Moreover, for each ω , u∗ (·,ω) ∈ A(u(·,ω) ,ω). Also, for each a ∈ [0,T ] ,

Bu(ω)(t)+
∫ t

a
u∗ (s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(ω)(a)+Bq(t,ω)−Bq(a,ω)

Proof: By Theorem 78.3.4 there exists a solution to 78.4.33 which is B ([0,T −σ ])×
FT−σ measurable. Since this is true for all σ > 0, there exists a unique B

([
0, T̂
])
×FT̂

measurable solution for each T̂ < T . Now, as in the proof of Theorem 78.3.4 one can define
a new operator

Ar (w,ω)≡ A(ω,w+qτr (·,ω))

where τr is the stopping time defined there. Then, since q is progressively measurable, the
progressively measurable condition is satisfied for this new operator. Hence by Theorem
78.4.3 there exists a unique solution w which is progressively measurable to the integral
equation

Bwr (t,ω)+
∫ t

0
u∗r (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

where u∗r (·,ω) ∈ Ar (w(·,ω) ,ω). Then you can let r → ∞ and eventually qτr (·,ω) =
q(·,ω). Thus there is a solution to

Bw(t,ω)+
∫ t

0
u∗ (s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)

u∗ (·,ω) ∈ A(w(·,ω)+Bq(·,ω) ,ω)

which is progressively measurable because w(·,ω) = limr→∞ wr (·,ω) in V each wr being
progressively measurable. Uniqueness is needed in passing to the limit. Thus for each
T̂ < T,ω→ w(·,ω) is measurable into V[0,T̂ ]. Then by Lemma 78.1.5, w has a representa-
tive in V[0,T̂ ] for each ω such that the resulting function satisfies (t,ω)→X[0,T̂ ] (t)w(t,ω)

is B
([

0, T̂
])
×FT̂ measurable into V . Thus one can assume that w is progressively mea-

surable. Now as in Theorem 78.3.4, Define u = w+q. It follows by uniqueness that there
exists a unique progressively measurable solution to 78.4.33 on (0,T ).

The last claim follows from letting t = a in the top equation and then subtracting this
from the top equation with t > a. ■
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Chapter 79

Including Stochastic Integrals
79.1 The Case of Uniqueness

You can include stochastic integrals in the above formulation. In this section and from now
on, we will assume that W is a Hilbert space because the stochastic integrals featured here
will have values in W and the version of the stochastic integral to be considered here will
be the Ito integral. Here is a brief review of this integral.

Let U be a separable real Hilbert space and let Q : U →U be self adjoint and nonnega-
tive. Also H will be a separable real Hilbert space. L2

(
Q1/2U,H

)
will denote the Hilbert

Schmidt operators which map Q1/2U to H. Here Q1/2U is the Hilbert space which has an
inner product given by

(y,z)≡
(

Q−1/2y,Q−1/2z
)

where Q−1/2y denotes x such that Q1/2x = y and out of all such x, this is the one which
has the smallest norm. It is like the Moore Penrose inverse in linear algebra. Then one can
define a stochastic integral ∫ t

0
ΦdW

where Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,H

))
where here Φ is progressively measurable with

respect to the filtration Ft . This filtration will be

Ft = ∩p>tσ (W (r)−W (s) : 0≤ s≤ r ≤ p)

The horizontal line indicates completion. The symbol

σ (W (r)−W (s) : 0≤ s≤ r ≤ p)

indicates the smallest σ algebra for which all those increments are measurable. Here W (t)
is a Wiener process which has values in U1, some other Hilbert space, maybe H. There is a
Hilbert Schmidt operator J ∈L2

(
Q1/2U,U1

)
such that W (t) = ∑

∞
i=1 ψ i (t)Jei where here

the ψ i are independent real Wiener processes. You could take U,U1 to both be H. This is
following [108]. Then the stochastic integral has the following properties.

1.
∫ t

0 ΦdW is a martingale with respect to Ft with values in H, equal to 0 when t = 0.

2. One has the Ito isometry

E

(∥∥∥∥∫ t

0
ΦdW

∥∥∥∥2

H

)
=
∫ t

0
∥Φ∥2

L2
ds

3. One can localize as follows. For τ a stopping time,∫ t∧τ

0
ΦdW =

∫ t

0
X[0,τ]ΦdW

2679
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4. One can also generalize to the case where Φ is only progressively measurable and
instead of being in L2

(
[0,T ]×Ω;L2

(
Q1/2U,H

))
, you have only that

P
(∫ T

0
∥Φ(t)∥2

L2
dt < ∞

)
= 1

This is done by using an appropriate sequence of stopping times called a localizing
sequence. More generally a local martingale is a stochastic process M (t) adapted to
the filtration for which there is a locallizing sequence of stopping times {τn} such
that limn→∞ τn = ∞ and Mτn is a martingale. Local martingales will occur in the
estimates which are encountered in what follows.

5. Denoting by M (t) the stochastic integral, M (t) =
∫ t

0 ΦdW, the quadratic variation is
given by

[M] (t) =
∫ t

0
∥Φ∥2

L2
ds

6. We will also need a part of the Burkholder Davis Gundy inequality [77], Theorem
63.4.4 which in terms of this stochastic integral is of the form

∫
Ω

M∗dP≤CE

((∫ T

0
∥Φ∥2

L2
ds
)1/2

)
, C some constant

where M (t) is the above stochastic integral and

M∗ ≡ sup{∥M (t)∥H : t ∈ [0,T ]}

Now let Φ ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,W

))
. Let an orthonormal basis for Q1/2U be

{gi} and an orthonormal basis for W be { fi}. Then { fi⊗gi} is an orthonormal basis for
L2
(
Q1/2U,W

)
. Hence,

Φ = ∑
i

∑
j

Φi j fi⊗g j

where fi⊗ g j (y) ≡ (g j,y)Q1/2U fi. Let E be a separable real Hilbert space which is dense
in V. Then without loss of generality, one can assume that the orthonormal basis for W are
all vectors in E. Thus the orthogonal projection of Φ onto the closed subspace

span({ fi⊗gi} , i, j ≤ n)

given by

Φn ≡
n

∑
i=1

n

∑
j=1

Φi j fi⊗g j

Then Φn ∈ L2
(
[0,T ]×Ω;L2

(
Q1/2U,E

))
and also

lim
n→∞
∥Φn−Φ∥L2([0,T ]×Ω;L2(Q1/2U,W)) = 0
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and
∫ t

0 ΦndW is continuous and progressively measurable into E hence into V . We can take
a subsequence such that ∥Φn−Φ∥L2([0,T ]×Ω;L2(Q1/2U,W)) < 2−n and this will be assumed
whenever convenient.

Note that if Pn is the orthogonal projection onto span( f1, · · · , fn) , then

|PnΦ(y)|W =

∣∣∣∣∣Pn ∑
i

∑
j

Φi j fi⊗g j (y)

∣∣∣∣∣
W

=

∣∣∣∣∣Pn ∑
i

∑
j

Φi j fi (y,g j)

∣∣∣∣∣
W

=

∣∣∣∣∣ n

∑
i=1

∑
j

Φi j fi (y,g j)

∣∣∣∣∣
W

≥

∣∣∣∣∣ n

∑
i=1

n

∑
j=1

Φi j fi (y,g j)

∣∣∣∣∣
W

= |Φn (y)|W

Thus ∣∣∣∣∫ t

s
ΦndW

∣∣∣∣
W
≤
∣∣∣∣∫ t

s
PnΦdW

∣∣∣∣
W
=

∣∣∣∣Pn

∫ t

s
ΦdW

∣∣∣∣
W
≤
∣∣∣∣∫ t

s
ΦdW

∣∣∣∣
W
.

The following corollary will be useful.

Corollary 79.1.1 Let Φn be as described above. Then

∥Φn (t,ω)∥L2(Q1/2U,W) ≤ ∥Φ(t,ω)∥L2(Q1/2U,W)

where ∥Φn (t,ω)∥L2(Q1/2U,W) ↑ ∥Φ(t,ω)∥L2(Q1/2U,W)

Φ ∈ Lα

(
Ω;L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
∩L2

(
[0,T ]×Ω,L2

(
Q1/2U,W

))
where α > 2. Then off a set of measure zero, the stochastic integrals

∫ t
0 ΦndW satisfy

sup
n

sup
t ̸=s

∥∥∫ t
s ΦndW

∥∥
|t− s|γ

<C (ω) ,γ < 1/2,γ =
(α/2)−1

α

Proof: Let, α > 2. As explained above, |
∫ r

s ΦndW | ≤ |
∫ r

s ΦdW |. Thus by the Burkholder
Davis Gundy inequality,

sup
n

∣∣∣∣∫ r

s
ΦndW

∣∣∣∣≤ ∣∣∣∣∫ r

s
ΦdW

∣∣∣∣
∫

Ω

(∣∣∣∣∫ t

s
ΦdW

∣∣∣∣)α

dP ≤ C
∫

Ω

(∫ t

s
∥Φ∥2 dτ

)α/2

dP

≤ C
∫

Ω

∥Φ∥α

L∞([0,T ],L2(Q1/2U,H)) |t− s|α/2

≤ C∥Φ∥α

Lα(Ω;L∞([0,T ],L2(Q1/2U,W))) |t− s|α/2

≡ C |t− s|α/2
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Then by the Kolmogorov Čentsov theorem, for γ as given,

E

(
sup

0≤s<t≤T
sup

n

∣∣∫ t
s ΦndW

∣∣
(t− s)γ

)
≤ E

(
sup

0≤s<t≤T

∣∣∫ t
s ΦdW

∣∣
(t− s)γ

)
≤C

where γ < β/α where, β +1 = α/2. Thus for γ < (α/2)−1
α

,

sup
n

sup
0≤s<t≤T

∣∣∫ t
s ΦndW

∣∣
(t− s)γ ≤C (ω)

for all ω off a set of measure zero. ■
Recall the following conditions for the various operators.

Bounded and coercive conditions

A(·,ω) . A(·,ω) : VI → V ′I for each I a subinterval of [0,T ] I =
[
0, T̂
]
, T̂ ≤ T

A(·,ω) : VI →P(V ′I) is bounded, (79.1.1)

If, for u ∈ V ,
u∗X[0,T̂ ] ∈ A

(
uX[0,T̂ ],ω

)
for each T̂ in an increasing sequence converging to T, then

u∗ ∈ A(u,ω) (79.1.2)

Assume the specific estimate

sup
{
∥u∗∥V ′I : u∗ ∈ A(u,ω)

}
≤ a(ω)+b(ω)∥u∥p−1

VI
(79.1.3)

where a(ω) ,b(ω) are nonnegative. Note that here we use p and not p̂≥ p as done earlier.
It is likely that this could be generalized by introduction of a suitable regularizing duality
map multiplied by ε and letting ε → 0. You would do everything here adding in εF where
F is the duality map F : U →U ′ for r where r > p̂ ≥ p and keep it in the definition of A.
Here U is a Hilbert space embedded compactly into V and dense in V . Then you would let
ε → 0 and observe that εFuε → 0 in U ′

r . Also assume the following coercivity estimate
valid for each t ≤ T and for some λ (ω)≥ 0,

inf
(∫ t

0
⟨u∗,u⟩+λ (ω)⟨Bu,u⟩dt : u∗ ∈ A(u,ω)

)
≥ δ (ω)

∫ t

0
∥u∥p

V ds−m(ω) (79.1.4)

where m(ω) is some nonnegative constant, δ (ω)> 0.

Monotonicity

It will also be assumed that λ (ω)B+A is monotone in the sense that∫ t

0
⟨λ (ω)Bu+u∗−λ (ω)Bv+ v∗,u− v⟩ds≥ 0

for a suitable choice of λ (ω) whenever u∗ ∈ A(u,ω) ,v∗ ∈ A(v,ω).
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Limit condition

Let U be a Banach space dense in V and that if ui ⇀ u in VI and u∗i ∈A(ui) with u∗i ⇀ u∗

in V ′I and t→ Bui (t) is continuous and

sup
i

sup
t ̸=s

∥Bui (t)−Bui (s)∥U ′
|t− s|α

≤C (79.1.5)

then if
lim sup

i→∞

⟨u∗i ,ui−u⟩V ′I ,VI
≤ 0 (79.1.6)

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞
⟨u∗i ,ui− v⟩V ′I ,VI

≥ ⟨u∗ (v) ,u− v⟩V ′I ,VI
(79.1.7)

As to B(ω) , it is k (ω)B where B ∈ L (W,W ′) and is self adjoint and nonnegative
where k is F0 measurable.

Progressively measurable condition

Condition 79.1.2 For each t ≤ T, if ω → u(·,ω) is Ft measurable into V[0,t], then there
exists a Ft measurable selection of A(u(·,ω) ,ω) into V ′[0,t].

Then there is a theorem. It was Theorem 77.7.4 which gave existence and uniqueness
of progressively measurable solutions u to the integral equation.

Theorem 79.1.3 Assume the above conditions, 79.1.1 - , 79.1.7 along with the progressive
measurability condition 79.1.2. Let u0 be F0 measurable and ω→ B(ω) also F0 measur-
able and (t,ω)→X[0,t] (t) f (t,ω) is B ([0, t])×Ft product measurable into V ′ for each
t.

B(ω) = k (ω)B, k (ω)≥ 0,k measurable.

Also let t→ q(t,ω) be continuous and q is progressively measurable into V. Suppose there
is at most one solution to

Bu(t,ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+Bu0 (ω)+Bq(t,ω) , (79.1.8)

for each ω . Then the solution to the above integral equation u is progressively measurable.
Moreover, for each ω , both Bu(t,ω) = B(u(t,ω)) for a.e. t and z(t,ω) ∈ A(u(t,ω) ,ω)
for a.e. t. Also, for each a ∈ [0,T ] ,

Bu(t,ω)+
∫ t

a
z(s,ω)ds =

∫ t

a
f (s,ω)ds+Bu(a,ω)+Bq(t,ω)−Bq(a,ω)

Letting q(t) =
∫ t

0 ΦndW defined above with the filtration also being the one obtained
from the Wiener process, this implies the following theorem. The σ algebra of progres-
sively measurable sets will be denoted by P .
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Theorem 79.1.4 Assume the above conditions, 79.1.1 - , 79.1.7 along with the progressive
measurability condition 79.1.2. Also assume there is at most one solution to 79.1.8 where

q(t, ·)≡
∫ t

0
ΦndW

Then there exists a P measurable un such that also zn is progressively measurable

Bun (t,ω)−Bu0 (ω)+
∫ t

0
zn (s,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦndW

where for each ω, zn (·,ω) ∈ A(un (·,ω) ,ω). The function Bun (t,ω) = B(un (t,ω)) for
a.e. t.

This gives an existence theorem for the inclusion of a stochastic integral. However, it is
desired to get a similar result for Φ rather than Φn. Next is the Ito formula which is useable
because of the progressive measurability of un,zn. This formula applies to the following
situation.

Situation 79.1.5 Let X have values in V and satisfy the following

BX (t) = BX0 +
∫ t

0
Y (s)ds+B

∫ t

0
Z (s)dW (s) , (79.1.9)

X0 ∈ L2 (Ω;W ) and is F0 measurable, where Z is L2
(
Q1/2U,W

)
progressively measurable

and
∥Z∥L2([0,T ]×Ω,L2(Q1/2U,W)) < ∞.

This is what is needed to define the stochastic integral in the above formula.
Assume X ,Y satisfy

BX ,Y ∈ K′ ≡ Lp′ ([0,T ]×Ω;V ′
)
,

the σ algebra of measurable sets defining K′ will be the progressively measurable sets.
Here 1/p′+1/p = 1, p > 1.

Also the sense in which the equation holds is as follows. For a.e. ω, the equation
holds in V ′ for all t ∈ [0,T ]. Thus we are considering a particular representative X of K
for which this happens. Also it is only assumed that BX (t) = B(X (t)) for a.e. t. Thus
BX is the name of a function having values in V ′ for which BX (t) = B(X (t)) for a.e.
t, all t /∈ Nω a set of measure zero. Assume that X is progressively measurable also and
X ∈ Lp ([0,T ]×Ω,V ) .

Then in the above situation, we obtain the following integration by parts formula which
is called the Ito formula. This particular version is presented in Theorem 73.7.2 and is a
generalization of work of Krylov. A proof of the case of a Gelfand triple in which B = I is
in [108].
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Theorem 79.1.6 In Situation 79.1.5, for ω off a set of measure zero, for every t ∈ NC
ω , the

measure of Nω equalling 0,

⟨BX (t) ,X (t)⟩= ⟨BX0,X0⟩+
∫ t

0
2⟨Y (s) ,X (s)⟩ds+

∫ t

0
⟨BZ,Z⟩L2

ds+2M (t) (79.1.10)

where M (t) is a stochastic integral and a local martingale equal to 0 when t = 0. Also,
there exists a unique continuous, progressively measurable function denoted as ⟨BX ,X⟩
such that it equals ⟨BX (t) ,X (t)⟩ for a.e. t and ⟨BX ,X⟩(t) equals the right side of the
above for all t. In addition to this,

E (⟨BX ,X⟩(t)) =

E (⟨BX0,X0⟩)+E
(∫ t

0

(
2⟨Y (s) ,X (s)⟩+ ⟨BZ,Z⟩L2

)
ds
)

(79.1.11)

Also the quadratic variation of M (t) in 79.1.10 is dominated by

C
∫ t

0
∥Z∥2

L2
∥BX∥2

W ′ ds (79.1.12)

for a suitable constant C. Also t → BX (t) is continuous with values in W ′ for t ∈ NC
ω . In

fact, this martingale can be written as∫ t

0

(
Z ◦ J−1)∗BX ◦ JdW

That ugly integral displayed above can be written in the form∫ t

0
⟨BX ,dN⟩

where N (t) =
∫ t

0 Z (s)dW .
Now we consider the meaning of the symbol ⟨BZ,Z⟩L2

. You begin with a complete
orthonormal set {gk} in Q1/2U. Then to say that Z has values in L2

(
Q1/2U ;W

)
is to say

that ∑ j ∑i (Z (gi) ,e j)
2 = ∑i ∥Z (gi)∥2

W < ∞ where
{

e j
}

is an orthonormal basis in W. You
can let it be the one used earlier where each is actually in V or even in E. Then the symbol
means (

R−1BZ,Z
)
L2

where R is the Riesz map from the Hilbert space W to its dual space. Thus it equals

∑
i

(
R−1BZ (gi) ,Z (gi)

)
W = ∑

i
⟨BZ (gi) ,Z (gi)⟩

so it is seen to be nonnegative.
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Now apply this Ito formula to Theorem 79.1.4 in which we make the assumptions
there on ∥u0∥ ∈ L2 (Ω) and that f ∈ Lp′ ([0,T ]×Ω;V ′) where the σ algebra is P the
progressively measurable σ algebra, and

Φ ∈ L2
(

Ω,L2
(
[0,T ] ,L2

(
Q1/2U,W

)))
which implies the same is true of Φn. This yields, from the assumed estimates, an expres-
sion of the form where δ > 0 is a suitable constant.

1
2
⟨Bun,un⟩(t)−

1
2
⟨Bu0,u0⟩+δ

∫ t

0
∥un (s)∥p

V ds

≤ λ

∫ t

0
⟨Bun,un⟩(s)ds+

∫ t

0
⟨ f ,un⟩V ′,V ds+

∫ t

0
c(s,ω)ds

+
∫ t

0
⟨BΦn,Φn⟩L2

ds+Mn (t) (79.1.13)

where c ∈ L1 ([0,T ]×Ω). Then taking expectations or using that part of the Ito formula,

1
2

E (⟨Bun,un⟩(t))+δE
(∫ T

0
∥un (s)∥p

V ds
)

≤ λ

∫ t

0
E (⟨Bun,un⟩(s))ds+

∫ t

0
E
(
⟨ f ,un⟩V ′,V

)
ds+C (Φ,u0)

Then by Gronwall’s inequality and some simple manipulations,

E (⟨Bun,un⟩(t))+E
(∫ T

0
∥un (s)∥p

V ds
)
≤C (T, f ,u0,Φ)

Then using obvious estimates and Gronwall’s inequality in 79.1.13, this yields an in-
equality of the form

⟨Bun,un⟩(t)−⟨Bu0,u0⟩+
∫ t

0
∥un (s)∥p

V ds≤C ( f ,λ ,c)+∥B∥
∫ t

0
∥Φn∥2

L2
ds+M∗n (t)

where the random variable C ( f ,λ ,c) is nonnegative and is integrable. Now t →M∗n (t) is
increasing as is the integral on the right. Hence it follows that, modifying the constants,

sup
s∈[0,t]

⟨Bun,un⟩(s)+
∫ t

0
∥un (s)∥p

V ds

≤C ( f ,λ ,c,u0)+2∥B∥
∫ t

0
∥Φn∥2

L2
ds+2M∗n (t) (79.1.14)

Next take the expectation of both sides and use the Burkholder Davis Gundy inequality
along with the description of the quadratic variation of the martingale Mn (t). This yields

E

(
sup

s∈[0,t]
⟨Bun,un⟩(s)

)
+E

(∫ t

0
∥un (s)∥p

V ds
)

≤ C+2∥B∥E
(∫ t

0
∥Φn∥2

L2
ds
)
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+C
∫

Ω

(∫ t

0
∥Bun∥2

W ∥Φn∥2
L2

ds
)1/2

dP

Now ∥Bw∥= sup∥v∥≤1 ⟨Bw,v⟩ ≤ ⟨Bw,w⟩1/2. Also
∫ t

0 ∥Φn∥2
L2

ds≤
∫ T

0 ∥Φ∥
2
L2

ds and so the
above inequality implies

E

(
sup

s∈[0,t]
⟨Bun,un⟩(s)

)
+E

(∫ t

0
∥un (s)∥p

V ds
)

≤ C ( f ,λ ,c,Φ)+C
∫

Ω

sup
s∈[0,t]

⟨Bun,un⟩1/2 (s)
(∫ t

0
∥Φ∥2

L2

)1/2

dP

Then adjusting the constants yields

1
2

E

(
sup

s∈[0,T ]
⟨Bun,un⟩(s)

)
+E

(∫ T

0
∥un (s)∥p

V ds
)

≤C+C
∫

Ω

∫ T

0
∥Φ∥2

L2
dtdP≡C (79.1.15)

If needed, you could use a stopping time to be sure that E
(

sups∈[0,T ] ⟨Bun,un⟩(s)
)
< ∞

and then let it converge to ∞.
From the integral equation,

Bun (t)−Bum (t)+
∫ t

0
zn− zmds = B

∫ t

0
(Φn−Φm)dW

Then using the monotonicity assumption and the Ito formula,

1
2
⟨Bun−Bum,un−um⟩(t)≤ λ

∫ t

0
⟨Bun−Bum,un−um⟩dss

+
∫ t

0
⟨B(Φn−Φm) ,Φn−Φm⟩d +

∫ t

0

(
(Φn−Φm)◦ J−1)∗B(un−um)◦ JdW

and so, from Gronwall’s inequality, there is a constant C which is independent of m,n such
that

⟨Bun−Bum,un−um⟩(t)≤CMnm (t)≤CM∗nm (T )+C
∫ t

0
∥Φn−Φm∥2

L2
ds

where Mnm refers to that local martingale on the right. Thus also

sup
t∈[0,T ]

⟨Bun−Bum,un−um⟩(t)≤CMnm (t)≤CM∗nm (T )+C
∫ T

0
∥Φn−Φm∥2

L2
ds

(79.1.16)
Taking the expectation and using the Burkholder Davis Gundy inequality again in a similar
manner to the above,

E

(
sup

t∈[0,T ]
⟨Bun−Bum,un−um⟩(t)

)
≤C

∫
Ω

∫ T

0
∥Φn−Φm∥2

L2
dtdP
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Now the right side converges to 0 as m,n→ ∞ and so there is a subsequence, denoted with
the index k such that whenever m > k,

E

(
sup

t∈[0,T ]
⟨Buk−Bum,uk−um⟩(t)

)
≤ 1

2k

Note how this implies ∫
Ω

∫ T

0
⟨Buk−Bum,uk−um⟩dtdP≤ T

2k (79.1.17)

Then consider the martingales Mk (t) considered earlier. One of these is of the form

Mk =
∫ t

0

(
Φk ◦ J−1)∗Buk ◦ JdW

Then by the Burkholder Davis Gundy inequality and modifying constants as appropriate,

E
(
(Mk−Mk+1)

∗)
≤C

∫
Ω

(∫ T

0

∥∥∥(Φk ◦ J−1)∗Buk−
(
Φk+1 ◦ J−1)∗Buk+1

∥∥∥2
dt
)1/2

dP

≤C
∫

Ω

( ∫ T
0 ∥Φk−Φk+1∥2 ⟨Buk,uk⟩

+∥Φk+1∥2 ⟨Buk−Buk+1,uk−uk+1⟩dt

)1/2

dP

≤ C
∫

Ω

(∫ T

0
∥Φk−Φk+1∥2 ⟨Buk,uk⟩dt

)1/2

+C
∫

Ω

(∫ T

0
∥Φk+1∥2 ⟨Buk−Buk+1,uk−uk+1⟩dt

)1/2

dP

≤C
∫

Ω

sup
t
⟨Buk,uk⟩1/2

(∫ T

0
∥Φk−Φk+1∥2 dt

)1/2

dP

+C
∫

Ω

sup
t
⟨Buk−Buk+1,uk−uk+1⟩1/2

(∫ T

0
∥Φk+1∥2 dt

)1/2

dP

≤C
(∫

Ω

sup
t
⟨Buk,uk⟩dP

)1/2(∫
Ω

∫ T

0
∥Φk−Φk+1∥2 dtdP

)1/2

+C
(∫

Ω

sup
t
⟨Buk−Buk+1,uk−uk+1⟩dP

)1/2(∫
Ω

∫ T

0
∥Φk+1∥2 dtdP

)1/2

From the above inequality, 79.1.15 and after adjusting the constants, the above is no
larger than an expression of the form C

( 1
2

)k/2
which is a summable sequence. Then

∑
k

∫
Ω

sup
t∈[0,T ]

|Mk (t)−Mk+1 (t)|dP < ∞
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Thus {Mk} is a Cauchy sequence in M1
T and so there is a continuous martingale M such

that

lim
k→∞

E
(

sup
t
|Mk (t)−M (t)|

)
= 0

Taking a further subsequence if needed, one can also have

P
(

sup
t
|Mk (t)−M (t)|> 1

k

)
≤ 1

2k

and so by the Borel Cantelli lemma, there is a set of measure zero such that off this set,
supt |Mk (t)−M (t)| converges to 0. Hence for such ω,M∗k (T ) is bounded independent of
k. Thus for ω off a set of measure zero, 79.1.14 implies that for such ω,

sup
s∈[0,T ]

⟨Bur,ur⟩(s)+
∫ T

0
∥ur (s)∥p

V ds≤C (ω)

where C (ω) does not depend on the index r, this for the subsequence just described which
will be the sequence of interest in what follows. Using the boundedness assumption for A,
one also obtains an estimate of the form

sup
s∈[0,T ]

⟨Bur,ur⟩(s)+
∫ T

0
∥ur (s)∥p

V ds+
∫ T

0
∥zr∥p′

V ′ ≤C (ω) (79.1.18)

The idea here is to take weak limits converging to a function u and then identify z(·,ω)
as being in A(u,ω) but this will involve a difficulty. It will require a use of the above
Ito formula and this will need u to be progressively measurable. By uniqueness, it would
seem that this could be concluded by arguing that one does not need to take a subsequence
due to uniqueness but the problem is that we won’t know the limit of the sequence is a
solution unless we use the Ito formula. This is why we make the extra assumption that for
zi (·,ω) ∈ A(ui,ω) and for all λ large enough,

⟨λBu1 (t)+ z1 (t)− (λBu2 (t)+ z2 (t)) ,u1 (t)−u2 (t)⟩ ≥ δ ∥u1 (t)−u2 (t)∥α

V̂ , α ≥ 1
(79.1.19)

where here V̂ will be a Banach space such that V is dense in V̂ and the embedding is
continuous. As mentioned, this is not surprising in the case of most interest where there is
a Gelfand triple and B = I and A is defined pointwise with no memory terms involving time
integrals. Then using the integral equation for r = p,q, p < q along with the conclusion of
the Ito formula above,

E (⟨B(un−um) ,un−um⟩(t))+E
(∫ t

0
∥un−um∥α

V̂ ds
)

≤ E
(∫ t

0
∥B∥∥Φn−Φm∥2

L2
ds
)
≡ e(m,n)

Hence, the right side converges to 0 as m,n→∞ from the dominated convergence theorem.
In particular,

E
(∫ T

0
∥un−um∥α

V̂ ds
)
≤ E

(∫ T

0
∥B∥∥Φn−Φm∥2

L2
ds
)
≡ e(m,n) (79.1.20)
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Then also

P
(∫ T

0
∥un−um∥α

V̂ ds > λ

)
≤ e(m,n)

λ

and so there exists a subsequence, denoted by r such that

P
(∫ T

0
∥ur−ur+1∥α

V̂ ds≤ 2−r
)
< 2−r

Thus, by the Borel Cantelli lemma, there is a further enlarged set of measure zero, still
denoted as N such that for ω /∈ N∫ T

0
∥ur−ur+1∥α

V̂ ds≤ 2−r

for all r large enough. Hence, by the usual proof of completeness, for these ω,

{ur (·,ω)}

is Cauchy in Lα
(
[0,T ] ,V̂

)
and also ur (t,ω) converges to some u(t,ω) pointwise in V̂ for

a.e. t. In addition, from 79.1.20 these functions are a Cauchy sequence in Lα
(
[0,T ]×Ω;V̂

)
with respect to the σ algebra of progressively measurable sets. Thus from Lemma 76.3.4,
it can be assumed that for ω off the set of measure zero, (t,ω)→ u(t,ω) is progressively
measurable. From now on, this will be the sequence or a further subsequence. For ω /∈ N,
a set of measure zero and 79.1.18, there is a further subsequence for which the following
convergences occur as r→ ∞.

ur→ u weakly in V (79.1.21)

B(ur)→ B(u) weakly in V ′ (79.1.22)

zr→ z weakly in V ′ (79.1.23)(
B
(

ur−
∫ (·)

0
ΦrdW

))′
→
(

B
(

u−
∫ (·)

0
ΦdW

))′
weakly in V ′ (79.1.24)

∫ (·)

0
ΦrdW →

∫ (·)

0
ΦdW uniformly in C ([0,T ] ;W ) (79.1.25)

Bur (t)→ Bu(t) weakly in V ′ (79.1.26)

Bu(0) = Bu0, (79.1.27)

Bu(t) = B(u(t)) a.e. t (79.1.28)

In addition to this, we can choose the subsequence such that

sup
r

sup
t ̸=s

∥∥∫ t
s ΦrdW

∥∥
|t− s|γ

<C (ω)< ∞ (79.1.29)

This is thanks to Corollary 79.1.1. The boundedness of the operator A, in particular the
given estimates, imply that zr is bounded in Lp′ ([0,T ]×Ω,V ′) . Thus a subsequence can
be obtained which yields weak convergence of zr in Lp′ ([0,T ]×Ω,V ′) and then Lemma
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76.3.4 may be applied to conclude that off a set of measure zero, z is progressively measur-
able.

The claim 79.1.26 and 79.1.27 follow from the continuity of the evaluation map defined
on X , Theorem 77.2.2. The claim in 79.1.28 follows from 79.1.22 and the convergence
79.1.26. To see this, let ψ ∈C∞

c (0,T ) .∫ T

0
Bu(t)ψ (t)dt = lim

r→∞

∫ T

0
Bur (t)ψ (t)dt

= lim
r→∞

∫ T

0
B(ur (t))ψ (t)dt =

∫ T

0
B(u(t))ψ (t)dt

Since this is true for all such ψ, it follows that Bu(t) = B(u(t)) for a.e. t. Passing to a limit
in the integral equation yields the following for ω off a set of measure zero,

Bu(t,ω)−Bu0 (ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦndW

In the following claim, assume Φ ∈ Lα
(
Ω,L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
,α > 2

Claim: limr→∞

∫ T
0
(
Φr ◦ J−1

)∗Bur ◦ JdW =
∫ T

0
(
Φ◦ J−1

)∗Bu ◦ JdW off a set of mea-
sure zero.

Proof of claim:

E
(∣∣∣∣∫ T

0

(
Φr ◦ J−1)∗Bur ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤ E
(∣∣∣∣∫ T

0

(
Φr ◦ J−1)∗Bur ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bur ◦ JdW

∣∣∣∣)
+E
(∣∣∣∣∫ T

0

(
Φ◦ J−1)∗Bur ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)
Then, by the Burkholder Davis Gundy inequality,

≤
∫

Ω

(∫ T

0
∥Φr−Φ∥2 ⟨Bur,ur⟩

)1/2

dP

+
∫

Ω

(∫ T

0
∥Φ∥2 ⟨Bur−Bu,ur−u⟩

)1/2

dP

≤
∫

Ω

sup
t
⟨Bur (t) ,ur (t)⟩1/2

(∫ T

0
∥Φr−Φ∥2 dt

)1/2

dP

+
∫

Ω

∥Φn∥L∞([0,T ],L2)

(∫ T

0
⟨Bur−Bu,ur−u⟩

)1/2

dP

≤
(∫

Ω

sup
t
⟨Bur (t) ,ur (t)⟩dP

)1/2(∫
Ω

∫ T

0
∥Φr−Φ∥2 dt

)1/2
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+

(∫
Ω

∥Φn∥2
L∞([0,T ],L2)

)1/2(∫
Ω

∫ T

0
⟨Bur−Bu,ur−u⟩dtdP

)1/2

(79.1.30)

Letting the ei be the special vectors of Theorem 77.2.19,∫
Ω

∫ T

0
⟨Bur−Bu,ur−u⟩dtdP =

∫
Ω

∫ T

0
∑

i
⟨Bur−Bu,ei⟩2 dtdP

=
∫

Ω

∫ T

0
∑

i
lim inf

p→∞

〈
Bur−Bup,ei

〉2 dtdP

≤ lim inf
p→∞

∫
Ω

∫ T

0
∑

i

〈
Bur−Bup,ei

〉2 dtdP

= lim inf
p→∞

∫
Ω

∫ T

0
∑

i

〈
Bur−Bup,ei

〉2 dtdP

= lim inf
p→∞

∫
Ω

∫ T

0

〈
Bur−Bup,ur−up

〉
dtdP

Now by 79.1.17, the last expression is no larger than T/2r and so∫
Ω

∫ T

0
⟨Bur−Bu,ur−u⟩dtdP≤ T

2r

Then, from 79.1.30,

E
(∣∣∣∣∫ T

0

(
Φr ◦ J−1)∗Bur ◦ JdW −

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤
(∫

Ω

sup
t
⟨Bur (t) ,ur (t)⟩dP

)1/2(∫
Ω

∫ T

0
∥Φr−Φ∥2 dt

)1/2

+C
(

T
2r

)1/2

≤C
(∫

Ω

∫ T

0
∥Φr−Φ∥2 dt

)1/2

+C
(

T
2r

)1/2

<C2−r +C
(

T
2r

)1/2

which clearly converges to 0 as r→ ∞. Since the right side is summable, one obtains also
pointwise convergence. This proves the claim.

From the above considerations using the space V̂ , it follows that this u is the same as
the one just obtained in the sense that for ω off N, the two are equal for a.e. t. Thus
we take u to be this common function. Hence there is a set of measure zero such that
(t,ω)→XNC u(t,ω) is progressively measurable in the above convergences. Also, this
shows that we are taking u ∈ Lp ([0,T ]×Ω;V ). From the measurability of ur, u, we can
obtain a dense countable subset {tk} and an enlarged set of measure zero N such that for
ω /∈ N,Bu(tk,ω) = B(u(tk,ω)) and Bur (tk,ω) = B(ur (tk,ω)) for all tk and r. This uses
the same argument as in Lemma 73.3.1.

It remains to verify that z(·,ω) ∈ A(u(·,ω) ,ω). It follows from the above consid-
erations that the Ito formula above can be used at will. Assume that for a given ω /∈
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N, Bu(T,ω) = B(u(T,ω)) , similar for Bur. If not, just do the following argument for
all T ′ close to T , letting T ′ be in the dense subset just described. Then from the inte-
gral equation solved, and letting {ei} be the special set described in Theorem 77.2.19 and
suppressing the dependence on ω,

∞

∑
i=1
⟨Bur (T ) ,ei⟩2−

∞

∑
i=1
⟨Bu0,ei⟩+2

∫ T

0
⟨zr,ur⟩ds

= 2
∫ T

0
⟨ f ,ur⟩ds+2

∫ T

0

(
Φr ◦ J−1)∗Bur ◦ JdW

Thus also

2
∫ T

0
⟨zr,ur⟩ds =−

∞

∑
i=1
⟨Bur (T ) ,ei⟩2 +

∞

∑
i=1
⟨Bu0,ei⟩

+2
∫ T

0
⟨ f ,ur⟩ds+2

∫ T

0

(
Φr ◦ J−1)∗Bur ◦ JdW (79.1.31)

A similar formula to 79.1.31 holds for u. Thus

2
∫ T

0
⟨z,u⟩ds =−

∞

∑
i=1
⟨Bu(T ) ,ei⟩2 +

∞

∑
i=1
⟨Bu0,ei⟩

+2
∫ T

0
⟨ f ,u⟩ds+2

∫ T

0

(
Φ◦ J−1)∗Bu◦ JdW

It follows from 79.1.25 and the other convergences that

lim sup
r→∞

∫ T

0
⟨zr,ur⟩ds≤

∫ T

0
⟨z,u⟩ds

Hence
lim sup

r→∞

⟨zr,ur−u⟩V ′,V ≤ 0

Now from the limit condition, for any v ∈ V , there exists a z(v) ∈ A(u(·,ω) ,ω) such that

⟨z,u− v⟩V ′,V ≥ lim inf
r→∞

(⟨zr,ur−u⟩+ ⟨zr,u− v⟩)

≥ lim inf
r→∞
⟨zr,ur− v⟩ ≥ ⟨z(v) ,u− v⟩

The reason the limit condition applies is the estimate 79.1.29 and the convergence 79.1.24
which shows that

B
(

ur−
∫ (·)

0
ΦrdW

)
satisfy a Holder condition into V ′. Then the estimate 79.1.29 implies that the B

∫ (·)
0 ΦrdW

are bounded in a Holder norm and so the same is true of the Bur. Thus the situation of the
limit condition 79.1.7 is obtained. Then it follows from separation theorems and the fact
that A(u(·,ω) ,ω) is closed and convex that z(·,ω) ∈ A(u(·,ω) ,ω). This has proved the
following Theorem.
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Theorem 79.1.7 Assume the above conditions, 79.1.1 - , 79.1.7 along with the progressive
measurability condition 79.1.2. Also assume there is at most one solution to 79.1.8 where

q(t, ·)≡
∫ t

0
ΦdW

Then there exists a P measurable u such that also z is progressively measurable

Bu(t,ω)−Bu0 (ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
ΦdW

where for each ω, z(·,ω) ∈ A(u(·,ω) ,ω). The function Bu(t,ω) = B(u(t,ω)) for a.e. t.
Here

Φ ∈ Lα

(
Ω;L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
∩L2

(
[0,T ]×Ω,L2

(
Q1/2U,W

))
,α > 2

and u0 ∈ L2 (Ω,W ), f ∈ Lp′ ([0,T ]×Ω;V ′).

The following corollary comes right away from the above and uniqueness for fixed ω .

Corollary 79.1.8 In the situation of Theorem 79.1.7, change the conditions on Φ. Instead
of letting

Φ ∈ Lα

(
Ω;L∞

(
[0,T ] ,L2

(
Q1/2U,W

)))
∩L2

(
[0,T ]×Ω,L2

(
Q1/2U,W

))
assume that Φ ∈ L2

(
[0,T ]×Ω;L2

(
Q1/2U,W

))
and that t → Φ(t,ω) is continuous into

L2
(
Q1/2U,W

)
. Then there exists a unique solution to the integral equation of Theorem

79.1.7.

Proof: Let τm = inf
{

t : ∥Φ(t,ω)∥L2(Q1/2U,W) > m
}
. Then Φτm is uniformly bounded

above by m and limm→∞ τm = ∞. Hence Φτm is in the necessary space for the conclusion
of Theorem 79.1.7 to hold. Letting m→ ∞ and using uniqueness, one finds a solution to
the integral equation. ■

79.2 Replacing Φ With σ (u)
One can replace Φ with σ (u) provided B maps W one to one onto W ′. This includes the
most common case of a Gelfand triple in which B = I and V ⊆ H = H ′ ⊆ V ′. We also
need to assume that A is defined pointwise as described below rather than possibly having
memory terms involved.

Theorem 79.2.1 In the situation of Theorem 79.1.7, suppose 1 - 79.4.2 and progressive
measurability condition 79.1.2 but A defined pointwise,

A(u,ω)(t) = A(u(t,ω) , t,ω)

and suppose f is progressively measurable and is in Lp′
(

Ω;Lp′ ([0,T ] ;V ′)
)

. Assume

⟨Bu,u⟩ ≥ δ ∥u∥2
W
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so that an equivalent norm on W is ⟨Bu,u⟩1/2. Assume the monotonicity assumption: for
zi ∈ A(ui,ω) ,

⟨λBu1 + z1− (λBu2 + z2) ,u1−u2⟩ ≥ δ ∥u1−u2∥2
W (79.2.32)

for all λ large enough. Suppose σ (t,ω,u)∈L2
(
Q1/2U,W

)
and has the growth properties

∥σ (t,ω,u)∥W ≤C+C∥u∥W

∥σ (t,ω,u1)−σ (t,ω,u2)∥L2(Q1/2U,W) ≤ K ∥u1−u2∥W (79.2.33)

and (t,ω)→ σ (t,ω,u(t,ω)) is progressively measurable whenever (t,ω)→ u(t,ω) is.
Then there exists a unique solution u to the integral equation

Bu(t)−Bu0 +
∫ t

0
zds =

∫ t

0
f ds+B

∫ t

0
σ (s, ·,u)dW

The case of most interest is the usual one where V ⊆W = W ′ ⊆ V ′, the case of a
Gelfand triple in which B is the identity. We also are assuming that A does not have memory
terms. We obtain (t,ω)→ σ (t,ω,u(t,ω)) progressively measurable if (t,ω)→ σ (t,ω,u)
is progressively measurable for each u ∈W thanks to continuity in u which comes from
79.2.33.

Proof: For given w ∈ L2 (Ω,C ([0,T ] ,W )) each w being progressively measurable, de-
fine u = ψ (w) as the solution to the integral equation

Bu(t,ω)−Bu0 (ω)+
∫ t

0
z(s,ω)ds =

∫ t

0
f (s,ω)ds+B

∫ t

0
σ (w)dW

which exists by above assumptions and Corollary 79.1.8. Here we write σ (w) for short
instead of σ (t,ω,w). From Theorem 73.7.2, ⟨Bu,u⟩ is continuous hence bounded and so
Bu is in L∞ ([0,T ] ,W ′) which implies u∈ L∞ ([0,T ] ,W ) . Since Bu is essentially bounded in
W ′ and equals a continuous function in V ′, it follows from density considerations that Bui
can be re defined on a set of meausure zero to be weakly continuous into W ′ hence weakly
continuous into V ′. This re definition must yield the integral equation because all other
terms than Bu are continuous. However, this implies that if we let u(t) = B−1 (Bu)(t) , then
u is weakly continuous into W. By continuity of ∥u∥2 ≡ ⟨Bu,u⟩ , this shows that in fact,
u is continuous into W thanks to the uniform continuity of the Hilbert space norm. Thus
u(·,ω) ∈C ([0,T ] ,W ) .

Then from the estimates,

⟨Bu,u⟩(t)−⟨Bu0,u0⟩+δ

∫ t

0
∥u∥p

V ds = 2
∫ t

0
⟨ f ,u⟩ds+C (b3,b4,b5)

+λ

∫ t

0
⟨Bu,u⟩ds+

∫ t

0
⟨Bσ (w) ,σ (w)⟩L2

ds+2M∗ (t)

≤ 2
∫ t

0
⟨ f ,u⟩ds+C (b3,b4,b5)+λ

∫ t

0
⟨Bu,u⟩ds+

∫ t

0

(
C+C∥w∥2

W

)
ds+2M∗ (t)
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where M∗ (t) = sups∈[0,t] |M (s)| and the quadratic variation of M is no larger than∫ t

0
∥σ (w)∥2 ⟨Bu,u⟩ds

Then using Gronwall’s inequality, one obtains an inequality of the form

sup
s∈[0,t]

⟨Bu,u⟩(s)≤C+C
(

M∗ (t)+
∫ t

0
∥w∥2

W ds
)

where C = C (u0, f ,δ ,λ ,b3,b4,b5,T ) and is integrable. Then take expectation. By Bur-
kholder Davis Gundy inequality and adjusting constants as needed,

E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)

≤ C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+C
∫

Ω

(∫ T

0
∥σ (w)∥2 ⟨B(u) ,u⟩ds

)1/2

dP

≤ C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+C
∫

Ω

sup
s∈[0,T ]

⟨Bu,u⟩1/2 (s)
(∫ T

0
∥σ (w)∥2 ds

)1/2

dP

≤C+C
∫

Ω

∫ T

0
∥w∥2

W dsdP+
1
2

E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)
+C

∫
Ω

∫ T

0

(
C+C∥w∥2

W

)
Thus

E (⟨Bu,u⟩(t))≤ E

(
sup

s∈[0,T ]
⟨Bu,u⟩(s)

)
≤C+C

∫
Ω

∫ T

0
∥w∥2

W dsdP

and so

∥u∥2
L2(Ω,C([0,T ];W )) ≤C+C

∫
Ω

∫ T

0
∥w∥2

W dsdP

which implies u ∈ L2 (Ω,C ([0,T ] ;W )) and is progressively measurable.
Using the monotonicity assumption, there is a suitable λ such that

1
2
⟨B(u1−u2) ,u1−u2⟩(t)+ r

∫ t

0
∥u1−u2∥2

W ds

−λ

∫ t

0
⟨B(u1−u2) ,u1−u2⟩ds

−
∫ t

0
⟨Bσ (u1)−Bσ (u2) ,σ (u1)−σ (u2)⟩L2

ds≤M∗ (t)

where the right side is of the form sups∈[0,t] |M (s)| where M (t) is a local martingale having
quadratic variation dominated by

C
∫ t

0
∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩ds (79.2.34)
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Then by assumption and using Gronwall’s inequality, there is a constant C = C (λ ,K,T )
such that

⟨B(u1−u2) ,u1−u2⟩(t)≤CM∗ (t)

Then also, since M∗ is increasing,

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)≤CM∗ (t)

Taking expectations and from the Burkholder Davis Gundy inequality,

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)

≤ C
∫

Ω

(∫ t

0
∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩

)1/2

dP

≤C
∫

Ω

sup
s∈[0,t]

⟨B(u1−u2) ,u1−u2⟩1/2 (s)
(∫ t

0
∥σ (w1)−σ (w2)∥2

)1/2

dP

Then it follows after adjusting constants that there exists an inequality of the form

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)
≤CE

(∫ t

0
∥σ (w1)−σ (w2)∥2

L2
ds
)

Hence

E

(
sup

s∈[0,t]
⟨B(u1−u2) ,u1−u2⟩(s)

)
≤CK2E

(∫ t

0
∥w1−w2∥2

W ds
)

E

(
sup

s∈[0,t]
∥u1 (s)−u2 (s)∥2

W

)
≤CK2E

(∫ t

0
sup

τ∈[0,s]
∥w1 (τ)−w2 (τ)∥2

W dτ

)
You can iterate this inequality and obtain for ψ (wi) defined as ui in the above, the following
inequality.

E

(
sup

s∈[0,t]
∥ψnw1−ψ

nw2∥2
W (s)

)

≤
(
CK2)n

E

(∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
sup

tn∈[0,tn−1]

∥w1 (tn)−w2 (tn)∥2
W dtn · · ·dt2dt1

)
Then, letting t = T,

E

(
sup

s∈[0,T ]
∥ψnw1−ψ

nw2∥2
W (s)

)
≤ E

(
sup

t∈[0,T ]
∥w1 (t)−w2 (t)∥2

)
T n

n!

≤ 1
2

E

(
sup

t∈[0,T ]
∥w1−w2∥2

W (t)

)
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provided n is large enough and so ψ has a high enough power a contraction map. Hence,
if one begins with w ∈ L2 (Ω,C ([0,T ] ;W )) , the sequence of iterates {ψnw}∞

n=1 must con-
verge to some fixed point u in L2 (Ω,C ([0,T ] ,W )). This u is progressively measurable
since each of the iterates is progressively measurable. This fixed point is the solution to the
integral equation. ■

79.3 An Example
A model for a nonlinear beam is the Gao beam in which the transverse vibrations satisfy
an equation of the form

wtt +wxxxx +αwtxxxx +(1−w2
x)wxx = f

To this, we can add boundary conditions and initial conditions

w(t,0) = wx (t,0) = w(t,1) = wx (t,1) = 0,
w(0,x) = w0 (x) ,wt (0,x) = v0 (x)

w0 ∈ H2
0 ((0,1)) =V,v0 ∈ L2 ((0,1)) = H

Also let W be the closure of V in H1 ((0,1)) so W = H1
0 ((0,1)). Let H denote L2 ((0,1)).

These conditions correspond to a clamped beam. An equivalent norm on V is ∥u∥V =
|uxx|H . Our theory allows us to include coefficient functions which are progressively mea-
surable but in the interest of simplicity, this technical complication will be omitted. Also,
it will follow that there is a pointwise estimate for wx (t,x) thanks to Sobolev embedding
theorems and routine arguments involving the term wxxxx. Therefore, in the case of a de-
terministic Gao beam, there is no loss of generality in replacing w2

x with q(wx) where q
is a bounded and Lipschitz continuous truncation of r→ r2. To begin with, we make this
approximation. Let Q′ (r) = q(r) and Q(0) = 0. Thus Q will have linear growth for |r|
large and is an odd function. Define operators L,N mapping V to V ′.

⟨Lw,u⟩=
∫ 1

0
wxxuxxdx, ⟨Nw,u⟩=

∫ 1

0
(Q(wx)−wx)uxdx

Then in terms of these operators, and writing in terms of the velocity v, we obtain the
following abstract formulation.

v′+αLv+Lw+Nw = f ∈ V ′, w(t) = w0 +
∫ t

0
vds, v(0) = v0.

In terms of an integral equation, this would be

v(t)− v0 +α

∫ t

0
Lv(s)ds+

∫ t

0
Lwds+

∫ t

0
Nwds =

∫ t

0
f ds

w(t) = w0 +
∫ t

0
vds (79.3.35)

Then the abstract version of a stochastic equation is

v(t)− v0 +α

∫ t

0
Lv(s)ds+

∫ t

0
Lwds+

∫ t

0
Nwds =

∫ t

0
f ds+

∫ t

0
σ (v)dW(79.3.36)

w(t) = w0 +
∫ t

0
vds (79.3.37)
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where σ will be of the form given in Theorem 79.2.1. To show existence of a solution to
the above, note that by Theorem 79.2.1, if w ∈ L2 (Ω,C ([0,T ] ;V )) with w progressively
measurable, then there exists a unique solution v to the above integral equation 79.3.36.
Let ψ (w)(t) = w0 +

∫ t
0 vds. Suppose now you have wi ∈ L2 (Ω,C ([0,T ] ;V )) with vi being

the solution corresponding to the fixed wi. Then

v1 (t)− v2 (t)+α

∫ t

0
L(v1− v2)(s)ds+

∫ t

0
L(w1−w2)ds

+
∫ t

0
(Nw1−Nw2)ds =

∫ t

0
(σ (v1)−σ2 (v2))dW

From the Ito formula,

|v1− v2|2H +2α

∫ t

0
∥v1− v2∥2

V ds+
∫ t

0

〈∫ s

0
L(w1−w2)dτ,v1 (s)− v2 (s)

〉
ds+

∫ t

0

〈∫ s

0
N (w1)−N (w2)dτ,v1 (s)− v2 (s)

〉
ds = 2

∫ t

0
∥σ (v1)−σ2 (v2)∥2

L2
ds+M (t)

where the quadratic variation of M (t) is∫ t

0
∥σ (v1)−σ2 (v2)∥2

L2
|v1− v2|2H ds

Using the estimates and the Lipschitz condition on Q, and letting C be a generic constant
depending on the subscripts, routine manipulations yield an inequality of the form

|v1− v2|2H +2α

∫ t

0
∥v1− v2∥2

V ds≤ ε

∫ t

0
∥v1 (s)− v2 (s)∥2

V ds

+Cε

∫ t

0

∫ s

0
∥w1−w2∥2

V dτds+C
∫ t

0
|v1− v2|2H ds+M∗ (t)

Letting ε ≤ α, and modifying the constants as needed, Gronwall’s inequality yields an
inequality of the form

|v1− v2|2H +α

∫ t

0
∥v1− v2∥2

V ds≤Cα,T

∫ t

0

∫ s

0
∥w1−w2∥2

V dτds+Cα,T M∗ (t)

Modifying the constants again if necessary, one obtains

sup
s∈[0,t]

|v1− v2|2H (s)+α

∫ t

0
∥v1− v2∥2

V ds≤Cα,T

∫ t

0

∫ s

0
∥w1−w2∥2

V dτds+Cα,T M∗ (t)

and now, by the Burkholder Davis Gundy inequality,

E

(
sup

s∈[0,t]
|v1− v2|2H (s)

)
+α

∫ t

0
E
(
∥v1− v2∥2

V

)
ds≤
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Cα,T

∫ t

0

∫ s

0
E
(
∥w1−w2∥2

V

)
dτds

+Cα,T

∫
Ω

(∫ t

0
∥σ (v1)−σ2 (v2)∥2

L2
|v1− v2|2W ds

)1/2

dP

Then the usual manipulations and the Lipschitz condition on σ yields an inequality of the
form

1
2

E

(
sup

s∈[0,t]
|v1− v2|2H (s)

)
+α

∫ t

0
E
(
∥v1− v2∥2

V

)
ds≤

Cα,T

∫ t

0

∫ s

0
E
(
∥w1−w2∥2

V

)
dτds

+Cα,T

∫ t

0
E

(
sup

τ∈[0,s]
|v1− v2|2H (τ)

)
ds

Thus, Gronwall’s inequality yields

E

(
sup

s∈[0,t]
|v1− v2|2H (s)

)
+
∫ t

0
E
(
∥v1− v2∥2

V

)
ds

≤Cα,T

∫ t

0

∫ s

0
E
(
∥w1−w2∥2

V

)
dτds (79.3.38)

Now ψ (wi) is defined as w0 +
∫ t

0 vids and so ψ (wi) is in C ([0,T ] ;V ) and from the above,

∥ψ (w1)(s)−ψ (w2)(s)∥2
V ≤CT

∫ s

0
∥v1 (τ)− v2 (τ)∥2

V dτ

and so

sup
s∈[0,t]

∥ψ (w1)(s)−ψ (w2)(s)∥2
V = ∥ψ (w1)−ψ (w2)∥2

C([0,t];V )

≤ CT

∫ t

0
∥v1 (s)− v2 (s)∥2

V ds

Using 79.3.38,

E
(
∥ψ (w1)−ψ (w2)∥2

C([0,t];V )

)
≤CT

∫ t

0
E
(
∥v1 (s)− v2 (s)∥2

V

)
ds

≤Cα,T

∫ t

0

∫ s

0
E
(
∥w1−w2∥2

V

)
dτds≤Cα,T

∫ t

0
E
(
∥w1−w2∥2

C([0,s];V )

)
ds

Iterating this inequality shows that for all n large enough,

∥ψn (w1)−ψ
n (w2)∥2

C([0,t];V ) ≤
1
2
∥w1−w2∥2

C([0,t];V )
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Letting t = T, it follows that ψ has a unique progressively measurable fixed point in
L2 (Ω;C ([0,T ] ;V )). The fixed point is the limit of the sequence {ψnw} and each func-
tion in the sequence is progressively measurable. This is the unique solution to the integral
equation.

This is interesting because it is an example of a stochastic equation which is second
order in time. If one were to include a point mass on the beam at x0, then this would lead
to an evolution equation of the form

Bv(t)− v0 +α

∫ t

0
Lv(s)ds+

∫ t

0
Lwds+

∫ t

0
Nwds =

∫ t

0
f ds+B

∫ t

0
σ (v)dW

where B = I +P with ⟨Pu,v⟩ = u(x0)v(x0). If this were done, you would need to adjust
W so that B is the Riesz map from W to W ′. You would use the same kind of fixed point
argument that was just given. If you wished to consider quasistatic motion of the nonlinear
beam in which the acceleration term wtt were neglected, this would involve letting W =
V and your operator B in Theorem 79.2.1 would be given by ⟨Bw,u⟩ =

∫ 1
0 wxxuxx. Thus

Theorem 79.2.1 gives a way to study second order in time equations, and implicit equations
in which the leading coefficient involves a self adjoint operator B. Without the assumption
that B is one to one, we can give an even more general theorem in case σ does not depend on
the solution, Corollary 79.1.8. This one allows the time differentiated term to even vanish
so the differential inclusion could be degenerate. Many other examples are available. One
has only to consider set valued problems, for example.

Next we consider the elimination of the truncation function. As mentioned, this is easy
for a deterministic equation but not so much for the situation here. Begin with 79.3.36 -
79.3.37 and use the Ito formula. Then

|v(t)|2H +2α

∫ t

0
∥v∥2

V ds+2
∫ t

0
⟨Lw,v⟩ds

+2
∫ t

0
⟨Nw,v⟩ds−

∫ t

0
∥σ (v)∥2 ds = 2

∫ t

0
⟨ f ,v⟩ds+M (t)

where M (t) is a martingale whose total variation satisfies

[M] (t) =
∫ t

0
∥σ (v)∥2 |v|2H ds

Then, using estimates and simple manipulations, for M∗ (t)≡ sups≤t |M (s)| ,

1
2
|v(t)|2H +2α

∫ t

0
∥v∥2

V ds+∥w(t)∥2
V +2

∫ t

0

∫ 1

0
(Q(wx)−wx)vxdxds

≤
∫ t

0

(
C+C |v|2H

)
ds+C ( f ,w0,ω)+M∗ (t)

Now let Ψ′ = Q so that Ψ(r)≥ 0 and is quadratic for large |r|. Then the above implies

1
2
|v(t)|2H +2α

∫ t

0
∥v∥2

V ds+∥w(t)∥2
V +

∫ 1

0
Ψ(wx)−|wx (t)|2 dx
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≤
∫ t

0

(
C+C |v|2H

)
ds+C ( f ,w0,ω)+M∗ (t)

Using compactness of the embedding of V into W, we can simplify this to an inequality of
the following form where this involves modifying the constants C.

1
2
|v(t)|2H +2α

∫ t

0
∥v∥2

V ds+
1
2
∥w(t)∥2

V

≤
∫ t

0

(
C+C |v|2H

)
ds+C ( f ,w0,ω)+M∗ (t)

Then, since the functions on the right are increasing in t, we can modify the constants again
and obtain an inequality of the form

sup
s≤t
|v(s)|2H + sup

s≤t
∥w(t)∥2

V +α

∫ t

0
∥v∥2

V ds

≤
∫ t

0

(
C+C |v|2H

)
ds+C ( f ,w0,ω)+CM∗ (t)

Take expectations using the Burkholder Davis Gundy inequality and estimates for σ and
obtain

E
(

sup
s≤t
|v(s)|2H

)
+E

(
sup
s≤t
∥w(t)∥2

V

)
+E

(
α

∫ t

0
∥v∥2

V ds
)

≤
∫ t

0
E
(

C+C
(

sup
τ≤s
|v(τ)|2H

))
ds

+C ( f ,w0)+C
∫

Ω

(∫ t

0

(
(C+C |v|H)

2 sup
τ≤s
|v(τ)|2H

))1/2

dP

≤
∫ t

0
E
(

C+C
(

sup
τ≤s
|v(τ)|2H

))
ds+C ( f ,w0)

+C
∫

Ω

sup
τ≤t
|v(τ)|H

(∫ t

0

(
C+C |v|2H

))1/2

dP

Using Cauchy Schwarz inequality one can simplify the above to

E
(

sup
s≤t
|v(s)|2H

)
+E

(
sup
s≤t
∥w(t)∥2

V

)
+E

(
α

∫ t

0
∥v∥2

V ds
)

≤ C ( f ,w0,T )+C
∫ t

0
E
(

sup
τ≤s
|v(τ)|2H

)
ds

Then Gronwall’s inequality implies

E
(

sup
s≤t
|v(s)|2H

)
+E

(
sup
s≤t
∥w(t)∥2

V

)
+E

(
α

∫ t

0
∥v∥2

V ds
)
≤C ( f ,w0,T ) (79.3.39)
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Thus, letting t = T,

E
(
∥v∥2

C([0,T ];H)

)
+E

(
∥w∥2

C([0,T ];V )

)
+E

(
α

∫ T

0
∥v∥2

V ds
)
≤C ( f ,w0,T ) (79.3.40)

Now let wn,vn correspond in the above to qn where qn (r) = r2 for |r| ≤ 2n and qn (r) =
4n for |r| ≥ 2n. Let Nn be the operator resulting from qn and let N be the operator defined
by

⟨Nw,u⟩ ≡
∫ 1

0

(
w3

x

3
−wx

)
uxdx

By embedding theorems, ∥wnx∥C([0,1]) ≤C∥wxx∥V . We define stopping times.

τn (ω)≡ inf
{

t ∈ [0,T ] : C∥wnxx (·,ω)∥C([0,t]) > 2n
}

inf( /0) defined as ∞. Then

vτn
n (t)− v0 +α

∫ t

0
X[0,τn] (s)Lvn (s)ds+

∫ t

0
X[0,τn] (s)Lwnds

+
∫ t

0
X[0,τn] (s)Nnwnds =

∫ t

0
X[0,τn] (s) f ds+

∫ t

0
X[0,τn] (s)σ (v)dW

Does limn→∞ τn = ∞? If not so for some ω, then there is a subsequence still denoted with
n such that for all n, τn (ω)≤ T . This implies

C2 ∥wnxx (·,ω)∥2
C([0,T ]) > 4n

but the set of ω for which the above holds has measure no more than C2C ( f ,w0,T )/4n

thanks to 79.3.40 and so there is a further subsequence and a set of measure zero such that
for ω not in this set, eventually, for all n large enough,

C∥wnxx (·,ω)∥C([0,T ]) ≤ 2n,

which requires τn =∞, contrary to the construction of this subsequence. Thus τn converges
to ∞ off a set of measure zero. Using uniqueness, define v = vn whenever τn = ∞ and w =
wn whenever τn = ∞. Then from the embedding theorem mentioned above, wx (t,ω)2 =
qn (wx (t,ω)) and so

v(t)− v0 +α

∫ t

0
Lv(s)ds+

∫ t

0
Lwds

+
∫ t

0
Nwds =

∫ t

0
f ds+

∫ t

0
σ (v)dW (79.3.41)

where

⟨Nw,u⟩=
∫ 1

0

((
w3

x

3

)
−wx

)
uxdx

Of course it would be very interesting in this example to see if you can pass to a limit as
α→ 0. We do this in the non probabilistic version of this problem quite easily, but whether
it can be done in the stochastic equations considered here is not clear.
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79.4 Stochastic Inclusions Without Uniqueness ??
We will consider strong solutions to the integral equation

u(t)−u0 +
∫ t

0
zds =

∫ t

0
f +

∫ t

0
ΦdW

where z(t,ω)∈ A(u(t,ω) , t,ω) in a situation where there is not necessarily uniqueness for
the integral equation for fixed ω . Uniqueness usually comes from monotonicity consid-
erations. I am trying to eliminate these and replace with a monotonicity condition which
comes from including εF for F a duality map.

79.4.1 Estimates
In what follows [0,T ] will be a finite interval with no restriction on the size of T .

Definition 79.4.1 Recall a filtration is {Ft} , t ∈ [0,T ] where each Ft is a σ algebra of sets
in Ω a probability space and these are increasing in t. Then the progressively measurable
sets P are S⊆Ω such that

S∩ [0, t]×Ω is B ([0, t])×Ft measurable

You can verify that this is indeed a σ algebra of sets in [0,T ]×Ω. Here B ([0, t]) is the σ

algebra of Borel measurable sets on [0, t] . We could have used B ([0,T ])×Ft instead of
B ([0, t])×Ft in the above because a set is in B ([0, t]) if and only if it is the intersection
of a Borel set of [0,T ] with [0, t]. We will always assume that each Ft contains all the sets
of measure zero of FT .

We will assume all Banach spaces are separable in what follows.
We will assume U ⊆ V ⊆ H = H ′ ⊆ V ′ ⊆ U ′ where the inclusion map of V into the

Hilbert space H is compact and V is dense in H and U is a Banach space which is dense
and compact in V . One can always obtain such a space. In fact one can always have U be
a Hilbert space. In practice this is most easily seen from Sobolev embedding theorems but
the existence of this space follows from general abstract considerations.

Then for p > 1, define

V ≡ Lp ([0,T ]×Ω;V ) , U ≡ Lr ([0,T ]×Ω;V ) , r ≥max(2, p) .

It follows that the dual space V ′ can be identified in the usual way as Lp′ ([0,T ]×Ω;V ).
Similarly H will be defined as L2 ([0,T ]×Ω;H). In each instance the relevant σ algebra
will be the progressively measurable sets. A set A⊆Ω× [0,T ] is progressively measurable
if

A∩ [0, t]×Ω ∈Ft ×B ([0, t])

where B ([0, t]) denotes the Borel sets of [0, t] , equivalently the intersections of a Borel set
of [0,T ] with [0, t].

Also define Vω as Lp ([0,T ] ;V ) where the subscript ω indicates that ω is fixed. Let Hω

and Uω be defined similarly. We will assume the following on A : V× [0,T ]×Ω→P (V ′).
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1. A(·, t,ω) : V →P (V ′) is pseudomonotone and bounded: A(u, t,ω) is a closed con-
vex set for each (t,ω), u→ A(u, t,ω) is bounded, and if un→ u weakly and

lim sup
n→∞

⟨zn,un−u⟩ ≤ 0,zn ∈ A(un, t,ω)

then for any v ∈V,

lim inf
n→∞
⟨zn,un− v⟩ ≥ ⟨z(v) ,u− v⟩ some z(v) ∈ A(u, t,ω)

2. A(·, t,ω) satisfies the estimates: There exists b1 ≥ 0 and b2 ≥ 0, such that

||z||V ′ ≤ b1 ||u||p−1
V +b2 (t,ω) , (79.4.42)

for all z ∈ A(u, t,ω) , b2 (·, ·) ∈ Lp′ ([0,T ]×Ω).

3. There exists a positive constant b3 and a nonnegative function b4 that is B ([0,T ])×
FT measurable and also b4 (·, ·) ∈ L1 ([0,T ]×Ω), such that for some λ ≥ 0,

inf
z∈A(u,t,ω)

⟨z,u⟩ ≥ b3 ||u||pV −b4 (t,ω)−λ |u|2H . (79.4.43)

One can often reduce to the case that λ = 0 by using an exponential shift argument.

4. The mapping (t,ω)→ A(u(t,ω) , t,ω) is measurable in the sense that

(t,ω)→ A(u(t,ω) , t,ω)

is a progressively measurable multifunction with respect to P whenever (t,ω)→
u(t,ω) is in V ≡ V p ≡ Lp ([0,T ]×Ω;V,P) .

As mentioned one can often reduce to the case where λ = 0 in 3. Indeed, let A(u, t,ω)
be single valued for the sake of simplicity. Let

w = e−λ tu

where u satisfies

u(t)−u0 +
1
n

∫ t

0
Fuds+

∫ t

0
A(u, t,ω)ds =

∫ t

0
f ds+

∫ t

0
ΦdW,

Then this amounts to(
u−

∫ (·)

0
ΦdW

)′
+

1
n

Fu+A(u, t,ω) = f , u(0) = u0

In terms of w, this is(
eλ (·)w− eλ (·)

∫ (·)

0
e−λ (·)

ΦdW
)′

+
1
n

F
(

eλ (·)w
)
+A

(
eλ (·)w, t,ω

)
= f , u(0) = u0
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and this reduces to

λeλ (·)
(

w−
∫ (·)

0
e−λ (·)

ΦdW
)
+ eλ (·)

(
w−

∫ (·)

0
e−λ (·)

ΦdW
)′

+
1
n

F
(

eλ (·)w
)
+A

(
eλ (·)w, t,ω

)
= f

and this reduces to

λ

(
w−

∫ (·)

0
e−λ (·)

ΦdW
)
+

(
w−

∫ (·)

0
e−λ (·)

ΦdW
)′

+e−λ (·) 1
n

F
(

eλ (·)w
)
+ e−λ (·)A

(
eλ (·)w, t,ω

)
= e−λ (·) f , w(0) = u0

which implies (
w−

∫ (·)

0
e−λ (·)

ΦdW
)′

+λw+ e−λ (·) 1
n

F
(

eλ (·)w
)

+e−λ (·)A
(

eλ (·)w, t,ω
)

= λ

∫ (·)

0
e−λ (·)

ΦdW + e−λ (·) f , w(0) = u0

which is equivalent to

w(t)+
∫ t

0
e−λ (·) 1

n
F
(

eλ (·)w
)

ds+
∫ t

0
λw+ e−λ (·)A

(
eλ sw(s) ,s,ω

)
ds =

∫ t

0
f̂ (s)ds

where f̂ (·)= e−λ (·) f +λ
∫ (·)

0 e−λ (·)ΦdW . You can consider Ã(w, t,ω)≡ e−λ tA
(
eλ tw, t,ω

)
.

This satisfies similar conditions to A. If F were a linear Riesz map, then you would get the
same type of problem but with λ = 0 for λ large enough. It may work in other cases also.

Definition 79.4.2 Let A be given above. Then z ∈ Â(u) means that for u ∈ V , z(t,ω) ∈
A(u(t,ω) , t,ω) for a.e.(t,ω), z ∈ V ′

Thus Â : V →P (V ′). Now let F be the duality map from U to U ′ which satisfies

⟨Fu,u⟩= ||u||rU , ||Fu||= ||u||r−1 , r ≥max(2, p)

Thus r is at least 2. We assume that u0 ∈ L2 (Ω;H) and is F0 measurable and for each
n there exist (un,zn) a progressively measurable solution to the integral equation

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds =

∫ t

0
f ds+

∫ t

0
ΦdW, zn ∈ Â(un) , f ∈ V p′ (79.4.44)

in U ′
ω . This would be the case if λ I + 1

n F +A were monotone for large enough λ . Such
theorems are now well known and versions of them are in [108]. The message here is
about going from the solution to the regularized problem to one which is missing the F
term for which A might not be monotone. Therefore, we assume the existence of such a
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progressively measurable solution (u,z) to 79.4.44. Is it possible that without the 1
n F it

might never happen that λ I+A is monotone and yet still have appropriate estimates for A?
I don’t have any examples right now. Thus it is not clear that this gives anything new.

The other consideration is a usable limit condition on Nemytskii operators, Â described
in the following lemma. Probably the earliest solution to this problem was given in [17].
These ideas were extended to set valued maps in [18] and to implicit evolution inclusions
in [85]. Here the nonlinear operators will depend not just on t but also on ω where ω ∈Ω

for (Ω,F , P) a probability space.

Lemma 79.4.3 Let A be as described above in 1 - 4. Then for u ∈ V , Â(u) is a closed and
convex and bounded subset of V ′.

Proof: It is clear that Â(u) is convex. Indeed, if z,w are in this set, and λ ∈ [0,1] , then
(λ z+(1−λ )w)(t,ω) ∈ A(u(t,ω) , t,ω) for (t,ω) off the union of the two exceptional
sets corresponding to z,w. Now let {zn} be a sequence in Â(u) which converges to z in
V ′. Then pass to a subsequence which converges pointwise a.e. Let an exceptional set
be the union of the exceptional sets for each zn. Thus, off some set of measure zero Σ,
zn (t,ω) ∈ A(u(t,ω) , t,ω) and we have zn (t,ω)→ z(t,ω) for (t,ω) off this exceptional
set of measure zero. Now the fact that A(u, t,ω) is closed for u ∈ V shows that z(t,ω) ∈
A(u(t,ω) , t,ω). ■

Definition 79.4.4 For S a set in [0,T ]×Ω, Sω will denote {t : (t,ω) ∈ S} .

79.4.2 A Limit Theorem
We will make use of the following fundamental measurable selection lemma. It is proved in
[87]. We will use this lemma in the context where the measurable space is (Ω× [0,T ] ,P)
where P is the σ algebra of progressively measurable sets.

Lemma 79.4.5 Let Ω be a set and let F be a σ algebra of subsets of Ω. Let U be a sep-
arable reflexive Banach space. Suppose there is a sequence

{
u j (ω)

}∞

j=1 in U, where each
ω→ u j (ω) is measurable and for each ω, supi ∥ui (ω)∥< ∞. Then, there exists u(ω) ∈U
such that ω → u(ω) is measurable into U, and a subsequence n(ω), that depends on ω ,
such that the weak limit

lim
n(ω)→∞

un(ω) (ω) = u(ω)

holds.

Next we derive some considerations of solutions to 79.4.44. From the Ito formula in
79.4.44,

1
2
|un (t)|2H −

1
2
|u0|2H +

1
n

∫ t

0
⟨Fun,un⟩ds+

∫ t

0
⟨zn,un⟩ds

−1
2

∫ t

0
||Φ||2L2

ds =
∫ t

0
⟨ f ,un⟩ds+Mn (t) (79.4.45)



2708 CHAPTER 79. INCLUDING STOCHASTIC INTEGRALS

where Mn (t) is a local martingale whose quadratic variation is

[Mn] (t)≤C
∫ t

0
||Φ||2L2

|un|2H ds

Then estimates give
∥∥ 1

n ⟨Fun,un⟩
∥∥

U ′ bounded as well as

∥un∥V ,∥zn∥V ′ (79.4.46)

One takes expectation of 79.4.45 using an appropriate localizing sequence of stopping
times if necessary. It follows that there is a subsequence, still denoted with n such that

un → u weakly in V (79.4.47)
zn → z weakly in V ′

1
n

Fun → 0 strongly in U ′

The last convergence follows from the following argument.∫ T

0

∫
Ω

1
n
⟨Fun,w⟩dPdt

≤
∫ T

0

∫
Ω

1
n1/r′

⟨Fun,un⟩1/r′ 1
n1/r
⟨Fw,w⟩1/r dPdt

≤
(∫ T

0

∫
Ω

1
n
⟨Fun,un⟩dPdt

)1/r′(∫ T

0

∫
Ω

1
n
∥w∥r dPdt

)1/r

≤ C
1

n1/r
∥w∥U

and so ∣∣∣∣∣∣∣∣1nFun

∣∣∣∣∣∣∣∣
U ′
≤ C

n1/r

Recall

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds

=
∫ t

0
f ds+

∫ t

0
ΦdW, zn ∈ Â(un)

Then if φ ∈U , 〈
1
n

∫ (·)

0
Funds+

∫ (·)

0
znds,φ

〉
U ′,U

=
∫

Ω

∫ T

0

〈(
1
n

∫ r

0
Funds+

∫ r

0
znds

)
,φ (r,ω)

〉
U ′,U

drdP

Then the above equals∫
Ω

∫ T

0

1
n

∫ r

0
⟨Fun (s,ω) ,φ (r,ω)⟩dsdrdP+

∫ r

0
⟨zn (s,ω) ,φ (r,ω)⟩dsdrdP
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=
∫

Ω

∫ T

0

∫ T

s

〈
1
n

Fun (s,ω) ,φ (r,ω)

〉
drdsdP

+
∫

Ω

∫ T

0

∫ T

s
⟨zn (s,ω) ,φ (r,ω)⟩drdsdP

=
∫

Ω

∫ T

0

〈
1
n

Fun (s,ω) ,
∫ T

s
φ (r,ω)dr

〉
dsdP

+
∫

Ω

∫ T

0

〈
zn (s,ω) ,

∫ T

s
φ (r,ω)dr

〉
dsdP

Now (s,ω)→
∫ T

s φ (r,ω)dr is also in U and so the above weak convergences and esti-
mates yield that in the limit, this becomes∫

Ω

∫ T

0

〈
z(s,ω) ,

∫ T

s
φ (r,ω)dr

〉
U ′,U

dsdP

=
∫

Ω

∫ T

0

〈∫ r

0
zds,φ (r,ω)

〉
U ′,U

drdP

Thus un must converge in U ′ to

u0−
∫ (·)

0
zds+

∫ (·)

0
f ds+

∫ (·)

0
ΦdW

Therefore, when passing to a limit, one obtains from 79.4.44

u(·)−u0 +
∫ (·)

0
zds =

∫ (·)

0
f ds+

∫ (·)

0
ΦdW in U ′

ω for a.e. ω (79.4.48)

All functions are continuous except the first so we define it so that the above holds pointwise
in t. Thus, with 79.4.44, off a set of measure zero,

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds =

∫ t

0
f ds+

∫ t

0
ΦdW

u(t)−u0 +
∫ t

0
zds =

∫ t

0
f ds+

∫ t

0
ΦdW (79.4.49)

Note that these are now equations which hold for each t for ω off a set of measure zero.
Then it follows that for a.e. ω∥∥∥∥un (t)+

∫ t

0
znds−

(
u(t)+

∫ t

0
zds
)∥∥∥∥

U ′

=

∥∥∥∥1
n

∫ t

0
Funds

∥∥∥∥
U ′
≤
∫ T

0

1
n
||Fun||ds (79.4.50)

Let nk > k be the first index such that if l ≥ nk, then∫
Ω

∫ T

0

1
l
||Ful ||dsdP < 4−k
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Then

P

(
ω : sup

t∈[0,T ]

∥∥∥∥unk (t)+
∫ t

0
znk ds−

(
u(t)+

∫ t

0
zds
)∥∥∥∥

U ′
> 2−k

)

≤ 2k
∫

Ω

∫ T

0

1
nk

∣∣∣∣Funk

∣∣∣∣dsdP < 2−k

Therefore there is a subsequence still denoted with n such that

P

(
ω : sup

t∈[0,T ]

∥∥∥∥un (t)+
∫ t

0
znds−

(
u(t)+

∫ t

0
zds
)∥∥∥∥

U ′
> 2−n

)
≤ 2−n

It follows that there is a set of measure zero N such that if ω /∈ N, then ω is in only finitely
many of the above sets. That is, for ω /∈ N,

sup
t∈[0,T ]

∥∥∥∥un (t,ω)+
∫ t

0
zn (s,ω)ds−

(
u(t,ω)+

∫ t

0
z(s,ω)ds

)∥∥∥∥
U ′

< 2−n

for all n large enough.

Lemma 79.4.6 There is a set of measure zero N, an enlargement of the earlier set such
that for ω /∈ N, and a suitable subsequence, still denoted with n, such that

lim
n→∞

(
un (t,ω)+

∫ t

0
zn (s,ω)ds

)
= u(t,ω)+

∫ t

0
z(s,ω)ds in U ′ (79.4.51)

for each t ∈ [0,T ]. In addition to this, for ω /∈ N,∥∥∥∥un (t,ω)−u0 (ω)+
∫ t

0
(zn (s,ω)− f (s,ω))ds−

∫ t

0
ΦdW

∥∥∥∥
U ′
→ 0 (79.4.52)

Proof: The formula 79.4.51 follows from the above discussion. The second claim
follows from the first and the equation satisfied by u 79.4.49. ■

In the situation of 79.4.44, can we conclude that for the subsequence of Lemma 79.4.6,

lim sup
n→∞

⟨zn,un−u⟩U ′,U ≤ 0? (79.4.53)

Let {ek} be a complete orthonormal set in H, dense in H, with each vector in U . Thus

un (t,ω) = ∑
k
(un (t,ω) ,ek)H ek, |un (t,ω)|2 = ∑

k
(un (t,ω) ,ek)

2 . (79.4.54)

The following claim is the key idea which will yield 79.4.53.
Claim: liminfn→∞ (un (t,ω) ,ek)

2 ≥ (u(t,ω) ,ek)
2 for a.e.(t,ω).

Proof of claim: Let Bε be those (t,ω) such that

lim inf
n→∞

(un (t,ω) ,ek)
2 ≤ (u(t,ω) ,ek)

2− ε.
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and consider I (w)≡
∫

Bε
(w(t,ω) ,ek)

2 d (P×m) , the measure being product measure. Then
I is clearly convex and strongly lower semicontinuous on

H ≡ L2 (Ω× [0,T ] ;H)

To see that this is strongly lower semicontinuous, suppose wn→ w in H but

lim inf
n→∞

I (wn)< I (w) .

Then take a subsequence, still denoted with n such that the liminf equals lim. Then take a
further subsequence, still denoted with n such that wn (t,ω)→ w(t,ω) for a.e.(t,ω). Then
by Fatou’s lemma,

I (w)≤ lim inf
n→∞

I (wn)< I (ω)

a contradiction. Thus I is strongly lower semicontinuous as claimed. By convexity, it is
also weakly lower semicontinuous. Hence by the weak convergence of un to u 79.4.47,

lim inf
n→∞

∫
Bε

(un (t,ω) ,ek)
2 d (P×m)≥

∫
Bε

(u(t,ω) ,ek)
2 d (P×m)

≥
∫

Bε

lim inf
n→∞

(un (t,ω) ,ek)
2 d (P×m)+ ε (P×m)(Bε)

Thus (P×m)(Bε) = 0. Since this is so for each ε > 0, it must be the case that the claimed
inequality is satisfied off a set of measure zero. Let Σ denote this progressively measurable
set of product measure zero.

Let
Mε ≡ {t : (t,ω) ∈ Σ for ω in a set of measure larger than ε,Nε} .

Mε ≡
{

t :
∫

Ω

XΣ (t,ω)dP > ε

}
If this set has positive measure, then

m(Mε)ε ≤
∫

Mε

∫
Ω

XΣ (t,ω)dPdt ≤ (P×m)(Σ) = 0.

Thus each Mε has measure zero and so, taking the union of Mε for ε a sequence converging
to 0, it follows that for t /∈M, defined as ∪ε Mε ,(t,ω) is in Σ only for ω in a set of measure
≤ ε for each ε . Thus for t /∈M, (t,ω) is in Σ only for ω in a set of measure zero. Letting
t /∈M, it follows from 79.4.54 that for a.e. ω

lim inf
n→∞
|un (t,ω)|2 = lim inf

n→∞
∑
k
(un (t,ω) ,ek)

2

≥ ∑
k

lim inf
n→∞

(un (t,ω) ,ek)
2

≥ ∑
k
(u(t,ω) ,ek)

2 = |u(t,ω)|2H

Therefore, from Fatou’s lemma, for such t,

lim inf
n→∞

∫
Ω

|un (t,ω)|2 dP≥
∫

Ω

lim inf
n→∞
|un (t,ω)|2 dP≥

∫
Ω

|u(t,ω)|2H dP

This has proved the following fundamental result.
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Lemma 79.4.7 There exists a set M ⊆ [0,T ] having measure zero such that for t /∈M,

lim inf
n→∞

∫
Ω

|un (t,ω)|2 dP≥
∫

Ω

|u(t,ω)|2H dP

We will always assume T /∈M because otherwise, we could complete the argument with
T̂ /∈M arbitrarily close to T and then draw the desired conclusions or settle for drawing the
desired conclusions with

[
0, T̂
]

replacing [0,T ] where T̂ is a fixed number as close to T as
desired. Note that the inequality is only strengthened by going to a subsequence.

Then from the Ito formula and 79.4.44,

1
2
|un (T )|2H −

1
2
|u0|2H +

1
n

∫ T

0
⟨Fun,un⟩ds+

∫ T

0
⟨zn,un⟩ds

−1
2

∫ T

0
||Φ||2L2

ds =
∫ T

0
⟨ f ,un⟩ds+Mn (T ) (79.4.55)

where Mn (t) is a local martingale, M (0) = 0. Therefore,∫
Ω

∫ T

0
⟨zn,un⟩dsdP≤

∫
Ω

∫ T

0
⟨ f ,un⟩dsdP− 1

2

∫
Ω

(
|un (T )|2H

)
dP+

1
2

∫
Ω

(
|u0|2

)
dP

+
1
2

∫
Ω

∫ T

0
||Φ||2L2

dsdP+

=0︷ ︸︸ ︷∫
Ω

Mn (T )dP

To make more precise, one would use a localizing sequence of stopping times for the local
martingale, take expectations and then pass to a limit, but the end result will be as above.
Then taking limsupn→∞ of both sides and using Lemma 79.4.7,

lim sup
n→∞

∫
Ω

∫ T

0
⟨zn,un⟩dsdP

≤
∫

Ω

∫ T

0
⟨ f ,u⟩dsdP− 1

2
lim inf

n→∞

∫
Ω

|un (T )|2H dP

+
1
2

∫
Ω

(
|u0|2

)
dP+

1
2

∫
Ω

∫ T

0
||Φ||2L2

dsdP

≤
∫

Ω

∫ T

0
⟨ f ,u⟩dsdP+

1
2

∫
Ω

(
|u0|2

)
dP

+
1
2

∫
Ω

∫ T

0
||Φ||2L2

dsdP− 1
2

∫
Ω

|u(T )|2H dP

On the other hand, from 79.4.48 and the Ito formula,

⟨z,u⟩V ′,V =
∫

Ω

∫ T

0
⟨ f ,u⟩dsdP+

1
2

∫
Ω

(
|u0|2

)
dP

+
1
2

∫
Ω

∫ T

0
||Φ||2L2

dsdP− 1
2

∫
Ω

|u(T )|2H dP
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and so
lim sup

n→∞

⟨zn,un⟩V ′,V ≤ ⟨z,u⟩V ′,V

Now it follows that

lim sup
n→∞

⟨zn,un−u⟩V ′,V ≤ ⟨z,u⟩V ′,V −⟨z,u⟩V ′,V = 0 (79.4.56)

Thus in the situation of 79.4.44, we get 79.4.56. We state this as the following lemma.

Lemma 79.4.8 Suppose un,zn are progressively measurable, zn ∈ Â(un) , and

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds =

∫ t

0
f ds+

∫ t

0
ΦdW

Then there is a subsequence, still denoted with n such that 79.4.56 holds.

Now the following is the main limit lemma which is a statement about this subsequence
satisfying 79.4.56. This lemma gives a useable limit condition for the Nemytskii operators.

Lemma 79.4.9 Suppose conditions 1 - 79.4.2 hold. Also, suppose U is a separable Banach
space dense in V, a reflexive separable Banach space and V is dense in a Hilbert space H
identified with its dual space. Thus

U ⊆V ⊆ H = H ′ ⊆V ′ ⊆U ′,

Hypotheses: For f ∈ V ′

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds =

∫ t

0
f ds+

∫ t

0
ΦdW in U ′ (**)

un and zn are P measurable

un→ u weakly in V , zn→ z weakly in U ′

lim sup
n→∞

⟨zn,un−u⟩V ′,V ≤ 0, (*)

Note that from the above discussion, * follows ** from taking a suitable subsequence.
Assume also that for some set of measure zero N, if ω /∈ N,

sup
t∈[0,T ]

λ |un (t,ω)|2H ≤C (ω) , C (·) ∈ L1 (Ω) (79.4.57)

(Since we are assuming that λ = 0 in 3, this condition is automatic, but if you did have
79.4.57 for λ > 0, then the following argument will show how to use it.)

Conclusion: If the above conditions hold, then there exists a further subsequence, still
denoted with n such that for any v ∈ V , there exists z(v) ∈ Â(u) with

lim inf
n→∞
⟨zn,un− v⟩V ′,V ≥ ⟨z(v) ,u− v⟩V ′,V .

Also z ∈ Â(u) and u,z are progressively measurable and

u(t)−u0 +
∫ t

0
zds =

∫ t

0
f ds+

∫ t

0
ΦdW in V ′

for all ω off a set of measure zero.
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Proof: In the following argument, N will be a set of measure zero containing the one of
Lemma 79.4.6 and the sequence will always be a subsequence of the subsequence of that
lemma. Recall that from Lemma 79.4.6, that for ω /∈ N,∥∥∥∥ un (t,ω)−u0 (ω)

+
∫ t

0 (zn (s,ω)− f (s,ω))ds−
∫ t

0 ΦdW

∥∥∥∥
U ′
→ 0 (79.4.58)

for this sequence which does not depend on ω or t. From now on, this or a further subse-
quence will be meant.

From the hypothesis,

un→ u weakly in V , zn→ z weakly in V ′ (79.4.59)

Thus
u(t)−u0 +

∫ t

0
zds =

∫ t

0
f ds+

∫ t

0
ΦdW for a.e. ω (79.4.60)

and so ∥∥∥∥u(t)−u0 +
∫ t

0
zds−

(∫ t

0
f ds+

∫ t

0
ΦdW

)∥∥∥∥
U ′

= 0 (79.4.61)

Note that in these weak convergences 79.4.59, we can assume the σ algebra is just
B ([0,T ])×FT because the progressive measurability will be preserved in the limit due
to the Pettis theorem and the progressive measurability of each un,zn. However, we could
also let the σ algebra be P the progressively measurable sets just as well.

Claim: There is a set of measure zero N, including the one obtained so far such that for
ω /∈ N

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0

for a.e. t. The exceptional set, denoted as Mω includes those t for which some zn (t,ω) /∈
A(un (t,ω) , t,ω).

Let ω /∈ N and t /∈Mω . First take a subsequence such that liminf = lim . Then suppose
that

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩< 0

Then from the estimates, one can obtain that for a suitable subsequence, un (t,ω)→
ψ (t,ω) weakly in V . Note, n = n(t,ω) . Here is why: From the above inequality, there
exists a subsequence {nk}, which may depend on t,ω , such that

lim
k→∞
⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩ (79.4.62)

= lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩< 0. (79.4.63)

Now, condition 3 implies that for all k large enough,

b3
∣∣∣∣unk (t,ω)

∣∣∣∣p
V −b4 (t,ω)−λ

∣∣unk (t,ω)
∣∣2
H

<
∣∣∣∣znk (t,ω)

∣∣∣∣
V ′ ||u(t,ω)||V

≤
(

b1
∣∣∣∣unk (t,ω)

∣∣∣∣p−1
V +b2 (t,ω)

)
||u(t,ω)||V , (79.4.64)
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it follows from 79.4.57 that
∣∣∣∣unk (t,ω)

∣∣∣∣
V and consequently

∣∣∣∣znk (t,ω)
∣∣∣∣

V ′ are bounded.
Thus, denoting this subsequence with n, there is a further subsequence for which un (t,ω)→
ψ (t,ω) weakly in V which was what was claimed.

But also, it follows from Lemma 79.4.6 that for ω /∈ N,∥∥∥∥un (t,ω)−u0 (ω)+
∫ t

0
(zn (s,ω)− f (s,ω))ds−

∫ t

0
ΦdW

∥∥∥∥
U ′
→ 0

where n doesn’t depend on (t,ω).
By convexity, Lemma 79.4.6, and weak semicontinuity considerations, it must be the

case that ∥∥∥∥ψ (t,ω)−u0 (ω)+
∫ t

0
(z(s,ω)− f (s,ω))ds−

∫ t

0
ΦdW

∥∥∥∥
U ′

≤ lim inf
n→∞

∥∥∥∥ un (t,ω)−u0 (ω)
+
∫ t

0 (zn (s,ω)− f (s,ω))ds−
∫ t

0 ΦdW

∥∥∥∥
U ′

= 0

Here n = n(t,ω) is a subsequence. But of course, this requires ψ (t,ω) = u(t,ω) in U ′

thanks to 79.4.60 and so in fact, un (t,ω)→ u(t,ω) weakly.
Now, 79.4.62 and the limit conditions for pseudomonotone operators imply that the

liminf condition holds. There exists z∞ ∈ A(u(t,ω) , t,ω) such that

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩

≥ ⟨z∞,u(t,ω)−u(t,ω)⟩= 0
> lim

k→∞
⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩

= lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩

which is a contradiction. This completes the proof of the claim.
It follows from this claim that for given ω off a set of measure zero and t /∈Mω ,

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0. (79.4.65)

Also, it is assumed that
lim sup

n→∞

⟨zn,un−u⟩V ′,V ≤ 0.

This continues holding for subsequences. From the estimates,∫
Ω

∫ T

0

(
b3 ||un (t,ω)||pV −b4 (t,ω)−λ |un (t,ω)|2H

)
dtdP

≤
∫

Ω

∫ T

0
∥u(t,ω)∥V

(
∥un (t,ω)∥p−1

V b1 +b2

)
dtdP

so it is routine to get ∥un∥V is bounded. This follows from the assumptions, in particular
79.4.57.
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Now, the coercivity condition 3 shows that if y ∈ V , then

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ b3 ||un (t,ω)||pV −b4 (t,ω)−λ |un (t,ω)|2H
−
(

b1 ||un (t,ω)||p−1 +b2 (t,ω)
)
||y(t,ω)||V .

Using p−1 = p
p′ , where 1

p +
1
p′ = 1, the right-hand side of this inequality equals

b3 ||un (t,ω)||pV −b4 (t,ω)−b1 ||un (t,ω)||p/p′ ||y(t,ω)||V
−b2 (t,ω) ||y(t,ω)||V −λ |un (t,ω)|2H ,

the last term being bounded by a function in L1 ([0,T ]×Ω) by assumption. Thus there
exists cy (·, ·) ∈ L1 ([0,T ]×Ω) and a positive constant C such that

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ −cy (t,ω)−C ||y(t,ω)||pV . (79.4.66)

Letting y = u, we use Fatou’s lemma to write

lim inf
n→∞

∫
Ω

∫ T

0

(
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+ cu (t,ω)+C ||u(t,ω)||pV

)
dtdP≥

∫
Ω

∫ T

0
lim inf

n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+

(
cu (t,ω)+C ||u(t,ω)||pV

)
dtdP

≥
∫

Ω

∫ T

0

(
cu (t,ω)+C ||u(t,ω)||pV

)
dtdP.

Here, we added the term cu (t,ω) +C ||u(t,ω)||pV to make the integrand nonnegative in
order to apply Fatou’s lemma. Thus,

lim inf
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0.

Consequently, using the claim in the last inequality,

0 ≥ lim sup
n→∞

⟨zn,un−u⟩V ′,V

≥ lim inf
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP

≥
∫

Ω

∫ T

0
lim inf

n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0

hence, we find that
lim
n→∞
⟨zn,un−u⟩V ′,V = 0. (79.4.67)

We need to show that if y is given in V then

lim inf
n→∞
⟨zn,un− y⟩V ′,V ≥ ⟨z(y) ,u− y⟩ V ′,V , z(y) ∈ Âu
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Suppose to the contrary that there exists y such that

η = lim inf
n→∞
⟨zn,un− y⟩V ′,V < ⟨z̃,u− y⟩V ′,V , (79.4.68)

for all z̃ ∈ Âu. Take a subsequence, denoted still with subscript n such that

η = lim
n→∞
⟨zn,un− y⟩V ′,V

Note that this subsequence does not depend on (t,ω). Thus

lim
n→∞
⟨zn,un− y⟩V ′,V < ⟨z̃,u− y⟩V ′,V for all z̃ ∈ Âu (79.4.69)

We will obtain a contradiction to this. In what follows, we continue to use the subsequence
just described which satisfies the above inequality 79.4.69.

The estimate 79.4.66 implies,

0≤ ⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩− ≤ c(t,ω)+C ||u(t,ω)||pV , (79.4.70)

where c is a function in L1 ([0,T ]×Ω). Thanks to 79.4.65,

lim inf
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩ ≥ 0, a.e.

and, therefore, the following pointwise limit exists,

lim
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩− = 0, a.e.

and so we may apply the dominated convergence theorem using 79.4.70 and conclude

lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP

=
∫

Ω

∫ T

0
lim
n→∞
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP = 0

Now, it follows from 79.4.67 and the above equation, that

lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+dtdP

= lim
n→∞

∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩

+⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP

= lim
n→∞
⟨zn,un−u⟩V ′,V = 0.

Therefore, both ∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+dtdP

and ∫
Ω

∫ T

0
⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩−dtdP
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converge to 0, thus,

lim
n→∞

∫
Ω

∫ T

0
|⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩|dtdP = 0 (79.4.71)

From the above, it follows that there exists a further subsequence {nk} not depending on
t,ω such that ∣∣⟨znk (t,ω) ,unk (t,ω)−u(t,ω)⟩

∣∣→ 0 a.e. (t,ω) . (79.4.72)

By the pseudomonotone limit condition for A there exists wt,ω ∈ A(u(t,ω) , t,ω) such
that for a.e.(t,ω)

α (t,ω) ≡ lim inf
k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩

= lim inf
k→∞
⟨znk (t,ω) ,u(t,ω)− y(t,ω)⟩ ≥ ⟨wt,ω ,u(t,ω)− y(t,ω)⟩.

Note that u is progressively measurable and if A(·, t,ω) were single valued, this would give
a contradiction at this point. We continue with the case where A is set valued. This case
will make use of the measurable selection in Lemma 79.4.5.

On the exceptional set, let α (t,ω)≡ ∞, and consider the set

F (t,ω)≡ {w ∈ A(u(t,ω) , t,ω) : ⟨w,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)} ,

which then satisfies F (t,ω) ̸= /0. Now F (t,ω) is closed and convex in V ′.
We will let Σ be a progressively measurable set of measure zero which includes

N× [0,T ]∪
{
(t,ω) : ω /∈ NC, t ∈Mω

}
.

Claim ∗: (t,x)→ F (t,ω) has a P measurable selection off a set of measure zero.
Proof of claim: Letting B(0,C (t,ω)) contain A(u(t,ω) , t,ω) , we can assume (t,ω)→

C (t,ω) is P measurable by using the estimates and the measurability of u. For γ ∈ N, let
Sγ ≡ {(t,ω) : C (t,ω)< γ} . If it is shown that F has a measurable selection on Sγ , then it
follows that it has a measurable selection. Thus in what follows, assume that (t,ω) ∈ Sγ .

Define for (t,ω) ∈ Sγ

G(t,ω)≡
{

w : ⟨w,u(t,ω)− y(t,ω)⟩< α (t,ω)+
1
n

, (t,ω) ∈ Σ
C ∩Sγ

}
∩B(0,γ)

Thus, it was shown above that this G(t,ω) ̸= /0 at least for large enough γ that Sγ ̸= /0. For
U open, G− (U) is defined by

G− (U)≡
{

(t,ω) ∈ Sγ : for some w ∈U ∩B(0,γ) ,
⟨w,u(t,ω)− y(t,ω)⟩< α (t,ω)+ 1

n

}
(*)

Let
{

w j
}

be a dense subset of U ∩B(0,γ). This is possible because V ′ is separable. The
expression in ∗ equals

∪∞
k=1

{
(t,ω) ∈ Sγ : ⟨wk,u(t,ω)− y(t,ω)⟩< α (t,ω)+

1
n

}
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which is P measurable. Thus G is a measurable multifunction.
Since (t,ω)→ G(t,ω) is measurable, there is a sequence {wn (t,ω)} of measurable

functions such that ∪∞
n=1wn (t,ω) equals

G(t,ω) =

{
w : ⟨w,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)+

1
n

, (t,ω) /∈ Σ

}
∩B(0,γ)

As shown above, there exists wt,ω in A(u(t,ω) , t,ω) as well as G(t,ω) . Thus there is
a sequence of wr (t,ω) converging to wt,ω . Of course r will need to depend on t,ω . Since
(t,ω)→ A(u(t,ω) , t,ω) is a P measurable multifunction, it has a countable subset of P
measurable functions {zk (t,ω)} which is dense in A(u(t,ω) , t,ω). Let Uk be defined as

Uk (t,ω)≡ ∪mB
(

zm (t,ω) ,
1
k

)
⊆ A(u(t,ω) , t,ω)+B

(
0,

2
k

)
Now define A1k = {(t,ω) : w1 (t,ω) ∈Uk (t,ω)} . Then let

A2k = {(t,ω) /∈ A1k : w2 (t,ω) ∈Uk (t,ω)}

and
A3k =

{
(t,ω) /∈ ∪2

i=1Aik : w3 (t,ω) ∈Uk (t,ω)
}

and so forth. Any (t,ω) ∈ Sγ must be contained in one of these Ark for some r since if not
so, there would not be a sequence wr (t,ω) converging to wt,ω ∈ A(u(t,ω) , t,ω). These
Ark partition Sγ \Σ and each is measurable since the {zk (t,ω)} are measurable. Let

ŵk (t,ω)≡
∞

∑
r=1

XArk (t,ω)wr (t,ω)

Thus ŵk (t,ω) is in Uk (t,ω) for all (t,ω) ∈ Sγ and equals exactly one of the wm (t,ω) ∈
G(t,ω).

Also, by construction, the ŵk (·, ·) are bounded in L∞
(
Sγ ;V ′

)
. Therefore, there is a sub-

sequence of these, still called ŵk which converges weakly to a function w in L2
(
Sγ ;V ′

)
.

Thus w is a weak limit point of co
(
∪∞

j=kŵ j

)
for each k. Therefore, in the open ball

B
(
w, 1

k

)
⊆ L2

(
Sγ ;V ′

)
with respect to the strong topology, there is a convex combination

∑
∞
j=k c jkŵ j (the c jk add to 1 and only finitely many are nonzero) which converges strongly

in L2
(
Sγ ;V ′

)
. Since G(t,ω) is convex and closed, this convex combination is in G(t,ω).

Off a set of P measure zero, we can assume this convergence of ∑
∞
j=k c jkŵ j as k→ ∞

happens pointwise a.e. for a suitable subsequence. However,
∞

∑
j=k

c jkŵ j (t,ω) ∈Uk (t,ω)⊆ A(u(t,ω) , t,ω)+B
(

0,
2
k

)
.

Thus w(t,ω) ∈ A(u(t,ω) , t,ω) a.e. (t,ω) because A(u(t,ω) , t,ω) is a closed set. Since
w is the pointwise limit of measurable functions off a set of measure zero, it can be as-
sumed measurable and for a.e. (t,ω), w(t,ω) ∈ A(u(t,ω) , t,ω)∩G(t,ω). Now denote
this measurable function wn. Then

wn (t,ω) ∈ A(u(t,ω) , t,ω) ,⟨wn (t,ω) ,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω)+
1
n

a.e. (t,ω)
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These wn (t,ω) are bounded for each (t,ω) off a set of measure zero and so by Lemma
79.4.5, there is a P measurable function (t,ω)→ ẑ(t,ω) and a subsequence wn(t,ω) (t,ω)→
ẑ(t,ω) weakly as n(t,ω)→∞. Now A(u(t,ω) , t,ω) is closed and convex, and wn(t,ω) (t,ω)
is in A(u(t,ω) , t,ω) , and so ẑ(t,ω) ∈ A(u(t,ω) , t,ω) and

⟨ẑ(t,ω) ,u(t,ω)− y(t,ω)⟩ ≤ α (t,ω) = lim inf
k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩ (**)

Therefore, t → F (t,ω) has a measurable selection on Sγ excluding a set of measure zero,
namely ẑ(t,ω) which will be called ẑγ (t,ω) in what follows.

Then F (t,ω) has a measurable selection on [0,T ]×Ω other than a set of measure
zero. To see this, enlarge Σ to include the exceptional sets of measure zero in the above
argument for each γ . Then partition [0,T ]×Ω \Σ as follows. For γ = 1,2, · · · , consider
Sγ \ Sγ−1,γ = 1,2, · · · for S0 defined as /0. Then letting ẑγ be the selection for (t,ω) ∈ Sγ ,

let z̃(t,ω) = ∑
∞
γ=1 ẑγ (t,ω)XSγ\Sγ−1 (t,ω). The estimates imply z̃ ∈ V ′ and so z̃ ∈ Â(u) .

From the estimates, there exists h ∈ L1 ([0,T ]×Ω) such that

⟨z̃(t,ω) ,u(t,ω)− y(t,ω)⟩ ≥ −|h(t,ω)|

Thus, from the above inequality,

∥h∥L1 + ⟨z̃,u− y⟩V ′,V

≤
∫

Ω

∫ T

0
lim inf

k→∞
⟨znk (t,ω) ,unk (t,ω)− y(t,ω)⟩+ |h(t,ω)|dtdP

≤ lim inf
k→∞

〈
znk ,unk − y

〉
V ′,V +∥h∥L1

= lim
n→∞
⟨zn,un− y⟩V ′,V +∥h∥L1

which contradicts 79.4.69.
Finally, why is z ∈ Â(u)? We have shown that (t,ω)→ F (t,ω) has a measurable se-

lection. Thus, there exists for any y ∈ V , z̃(y) ∈ Â(u) such that for a.e. (t,ω) ,

⟨z̃(y)(t,ω) ,u(t,ω)− y(t,ω)⟩ ≤ lim inf
k→∞
⟨znk (t,ω) ,u(t,ω)− y(t,ω)⟩

Using the same trick involving the estimates and Fatou’s lemma, there exists z̃ depending
on y such that z̃(y) ∈ Â(u) and

⟨z̃(y) ,u− y⟩V ′,V ≤ lim inf
k→∞

〈
znk ,u− y

〉
V ′,V = ⟨z,u− y⟩

It follows that since y is arbitrary, it must be the case that z ∈ Â(u) thanks to separation
theorems and the fact that Â(u) is convex and closed. ■

An examination of the above proof yields the following corollary.

Corollary 79.4.10 Replace 1
n Fun with en where en is progressively measurable and

∥en∥U ′ → 0, ∥en (·,ω)∥U ′ω → 0

where the second convergence happens for each ω off a set of measure zero and keep the
other assumptions the same. Then the same conclusion is obtained.
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79.4.3 The Main Theorem
We first consider an easier problem and then obtain the result by taking limits. Let U be
a Banach space that is compactly embedded and dense in V . Also, let F : U →U ′ be the
duality map

⟨Fu,u⟩= ∥u∥r
U , ∥Fu∥U ′ = ∥u∥

r−1
U ,

where r > max(2, p). Such a Banach space always exists and is important in probability
theory where (i,U,V ) is an abstract Wiener space but you can also get it in most applica-
tions to partial differential equations from Sobolev embedding theorems. Then the above
has proved the following main theorem.

Theorem 79.4.11 Suppose 1 - 79.4.2 with λ = 0, and suppose f is progressively measur-
able and is in Lp′

(
Ω;Lp′ ([0,T ] ;V ′)

)
. Also let F be the duality map for r ≥ max(2, p)

which maps U to U ′ for U a separable Banach space contained and dense in V. Let

Φ ∈ L2
(
[0,T ]×Ω,L2

(
Q1/2H,H

))
∩L2

(
Ω;L∞

(
[0,T ] ;L2

(
Q1/2H,H

)))
Also suppose that for each n ∈ N, there is a progressively measurable un,zn such that

un (t)−u0 +
1
n

∫ t

0
Funds+

∫ t

0
znds =

∫ t

0
f ds+

∫ t

0
ΦdW, zn ∈ Â(un)

Then there exists a solution u,z to the inclusion

u(t)−u0 +
∫ t

0
zds =

∫ t

0
f ds+

∫ t

0
ΦdW, z ∈ Â(u) in U ′

ω

where both u,z are progressively measurable. If U is compact in V and if for every ε > 0
there exists µε ≥ 0 such that u→ µε u+εFu+Au is strictly monotone as a map from U to
U ′, then the above hypothesis is satisfied.

The reason for assuming λ = 0 is that it is hard to show 79.4.57 otherwise. As noted,
it may be possible to reduce to this case using an exponential shift argument. Other than
that, it appears you almost have to have A + µI monotone for suitable µ which would
end up yielding uniqueness. This is because in order to get the necessary estimates, you
would need to have a Cauchy sequence for certain martingales in M2

T an appropriate space
of continuous martingales. This will end up requiring an assumption of monotonicity. If
Φ = 0 then of course there would be no problem. Right now, I don’t have good examples.

The significant thing about this is that there may be no uniqueness of solutions to the
evolution inclusion for fixed ω but there exists a progressively measurable solution. The
case where Φ is replaced by σ (u) is currently unsolved as far as I know unless one has
uniqueness of the evolution inclusion for fixed ω . It may well be possible to do something
on this in case σ is Lipschitz continuous. I don’t know yet. If σ is only continuous, I am
pretty sure this will not be possible because there are examples where strong solutions do
not exist. It should be possible to consider

Bu(t)−Bu0 +
∫ t

0
zds =

∫ t

0
f ds+B

∫ t

0
ΦdW
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where V ⊆W,W ′ ⊆ V ′ and B ∈ L (W,W ′) being self adjoint and one to one by using a
more technical Ito formula. However, this has not been done. A non probabilitic version
is in [85]. I don’t know how to resolve the problem in which B is only nonnegative. Good
results are certainly available in the non probabilistic setting without the stochastic integral.
Some were presented earlier.



Appendix A

The Hausdorff Maximal Theorem
First is a review of the definition of a partially ordered set.

Definition A.0.1 A nonempty set F is called a partially ordered set if it has a partial order
denoted by ≺. This means it satisfies the following. If x ≺ y and y ≺ z, then x ≺ z. Also
x ≺ x. It is like ⊆ on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x≺ y
or y ≺ x. A chain, denoted by C ⊆F has the property that it is totally ordered meaning
that if x,y ∈ C , either x≺ y or y≺ x. A maximal chain is a chain C which has the property
that there is no strictly larger chain. In other words, if x ∈ F\∪C , then C∪{x} is no
longer a chain so x fails to be related to something in C .

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the xC right at the beginning of the argument.

Theorem A.0.2 Let F be a nonempty partially ordered set with order≺. Then there exists
a maximal chain.

Proof: Suppose no chain is maximal. Then, from the axiom of choice, for each chain
C there exists xC ∈F\∪C such that C ∪{xC } is a chain. For C a chain, let θC denote
C ∪{xC } . Thus for C a chain, θC is a larger chain which has exactly one more element of
F . Since F ̸= /0, pick x0 ∈F . Note that {x0} is a chain. Let X be the set of all chains C
such that x0 ∈ ∪C . Thus X contains {x0}. Call two chains comparable if one is a subset
of the other. Then summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X

3. If C ∈X then θC ∈X .

4. If S ⊆X is nonempty and every pair of chains in S is comparable, then ∪S is
also a chain in X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.

Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ C . The symbol ⊊ indicates proper subset.

This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1?

2723
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If S is a nonempty subset of Y1 is D ≡ ∪S ∈ Y1? D is in Y0 and so it is comparable
to C0. If D ⊆ C0, then it is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why
is xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. Two cases remain to show that Y1
satisfies 3.).

case 1: D ⊋ C0. Then xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. Then θD ∈ Y0 by definition of Y0 and if θD ⊋ C0, it follows that

D ⊆ C0 ⊊D ∪{xD} . If x ∈ C0 \D then x = xD . This is where having θC contain exactly
one more element of F is used. But then

C0 ⊊D ∪{xD} ⊆ C0∪{xD}= C0,

the last equality coming because xD ∈ C0. The above is nonsense, and so C0 = D so
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. If θD ⊆ C0 then right away θD ∈B. Thus
B = Y0 because Y1 cannot be smaller than Y0. In particular, if D ⊋ C0, then xC0 ∈ ∪D or
in other words, θC0 ⊆D .

Claim 2: Any two chains in Y0 are comparable so if C ⊊D , then θC ⊆D .
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. (Like C0 above.) I want to show that Y1 is a tower. Let C ∈ Y1 and D ∈ Y0.
Since C is comparable to all chains in Y0, either C ⊊ D or C ⊇ D . I need to show that
θC is comparable with D . The second case is obvious so consider the first that C ⊊ D .
By Claim 1, θC ⊆D . Since D is arbitrary, this shows that Y1 is a tower. Hence Y1 = Y0
because Y0 is as small as possible. It follows that every two chains in Y0 are comparable
and so if C ⊊D , then θC ⊆D .

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■

If X is a nonempty set,≤ is an order on X if

x≤ x,

and if x, y ∈ X , then
either x≤ y or y≤ x

and
if x≤ y and y≤ z then x≤ z.

≤ is a well order and say that (X ,≤) is a well-ordered set if every nonempty subset of X
has a smallest element. More precisely, if S ̸= /0 and S ⊆ X then there exists an x ∈ S such
that x≤ y for all y ∈ S. A familiar example of a well-ordered set is the natural numbers.

Lemma A.0.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.
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Proof: Let X be a nonempty set and let a ∈ X . Then {a} is a well-ordered subset of X .
Let

F = {S⊆ X : there exists a well order for S}.

Thus F ̸= /0. For S1, S2 ∈F , define S1 ≺ S2 if S1 ⊆ S2 and there exists a well order for S2,
≤2 such that

(S2,≤2) is well-ordered

and if
y ∈ S2 \S1 then x≤2 y for all x ∈ S1,

and if ≤1is the well order of S1 then the two orders are consistent on S1. Then observe that
≺ is a partial order on F . By the Hausdorff maximal principle, let C be a maximal chain
in F and let

X∞ ≡ ∪C .

Define an order, ≤, on X∞ as follows. If x, y are elements of X∞, pick S ∈ C such that x, y
are both in S. Then if ≤S is the order on S, let x≤ y if and only if x≤S y. This definition is
well defined because of the definition of the order,≺. Now let U be any nonempty subset of
X∞. Then S∩U ̸= /0 for some S ∈ C . Because of the definition of ≤, if y ∈ S2 \S1, Si ∈ C ,
then x ≤ y for all x ∈ S1. Thus, if y ∈ X∞ \ S then x ≤ y for all x ∈ S and so the smallest
element of S∩U exists and is the smallest element in U . Therefore X∞ is well-ordered.
Now suppose there exists z ∈ X \X∞. Define the following order, ≤1, on X∞∪{z}.

x≤1 y if and only if x≤ y whenever x,y ∈ X∞

x≤1 z whenever x ∈ X∞.

Then let
C̃ = {S ∈ C or X∞∪{z}}.

Then C̃ is a strictly larger chain than C contradicting maximality of C . Thus X \X∞ = /0
and this shows X is well-ordered by ≤. This proves the lemma.

With these two lemmas the main result follows.

Theorem A.0.4 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It only remains to prove that the well-ordering principle implies the axiom of
choice. Let I be a nonempty set and let Xi be a nonempty set for each i ∈ I. Let X = ∪{Xi :
i ∈ I} and well order X . Let f (i) be the smallest element of Xi. Then

f ∈∏
i∈I

Xi.
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A.1 The Hamel Basis
A Hamel basis is nothing more than the correct generalization of the notion of a basis for a
finite dimensional vector space to vector spaces which are possibly not of finite dimension.

Definition A.1.1 Let X be a vector space. A Hamel basis is a subset of X ,Λ such that every
vector of X can be written as a finite linear combination of vectors of Λ and the vectors of
Λ are linearly independent in the sense that if {x1, · · · ,xn} ⊆ Λ and

n

∑
k=1

ckxk = 0

then each ck = 0.

The main result is the following theorem.

Theorem A.1.2 Let X be a nonzero vector space. Then it has a Hamel basis.

Proof: Let x1 ∈ X and x1 ̸= 0. Let F denote the collection of subsets of X , Λ containing
x1 with the property that the vectors of Λ are linearly independent as described in Definition
A.1.1 partially ordered by set inclusion. By the Hausdorff maximal theorem, there exists a
maximal chain, C Let Λ = ∪C . Since C is a chain, it follows that if {x1, · · · ,xn} ⊆ C then
there exists a single Λ′ ∈ C containing all these vectors. Therefore, if

n

∑
k=1

ckxk = 0

it follows each ck = 0. Thus the vectors of Λ are linearly independent. Is every vector of X
a finite linear combination of vectors of Λ?

Suppose not. Then there exists z which is not equal to a finite linear combination of
vectors of Λ. Consider Λ∪{z} . If

cz+
m

∑
k=1

ckxk = 0

where the xk are vectors of Λ, then if c ̸= 0 this contradicts the condition that z is not a finite
linear combination of vectors of Λ. Therefore, c = 0 and now all the ck must equal zero
because it was just shown Λ is linearly independent. It follows C∪{Λ∪{z}} is a strictly
larger chain than C and this is a contradiction. Therefore, Λ is a Hamel basis as claimed.
This proves the theorem.

A.2 Exercises
1. Zorn’s lemma states that in a nonempty partially ordered set, if every chain has an

upper bound, there exists a maximal element, x in the partially ordered set. x is
maximal, means that if x ≺ y, it follows y = x. Show Zorn’s lemma is equivalent to
the Hausdorff maximal theorem.
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2. Show that if Y, Y1 are two Hamel bases of X , then there exists a one to one and onto
map from Y to Y1. Thus any two Hamel bases are of the same size.

3. ↑ Using the Baire category theorem of the chapter on Banach spaces show that any
Hamel basis of a Banach space is either finite or uncountable.

4. ↑ Consider the vector space of all polynomials defined on [0,1]. Does there exist a
norm, ||·|| defined on these polynomials such that with this norm, the vector space of
polynomials becomes a Banach space (complete normed vector space)?
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strict monotone inequality, 839
strictly monotone, 836, 837

duality mapping, 832, 2529
duality maps, 476

application of duality, 832, 2529
properties, 834, 2530

Eberlein Smulian theorem, 465
Egoroff theorem, 232, 243
eigenvalues, 77, 1666, 1669
Ekeland variational principle, 507
elementary factors, 1787
elementary function, 2135, 2227
elementary function

integral, 2227
elementary functions, 2227
elementary set, 397
elementary sets, 321
elliptic, 1817
entire, 1629
epsilon net, 144, 150
equality of mixed partial derivatives, 127,

727
equi integrable, 639, 2155
equicontinuous, 154, 691
equivalence class, 35
equivalence relation, 35
ergodic, 306

individual ergodic theorem, 302
Erling’s lemma, 1215, 1441, 2382
essential singularity, 1635
essentially more slowly, 986
Euler’s theorem, 1813
events, 1863
evolution equation

continuous semigroup, 585
exchange theorem, 62, 179
exponential growth, 1116
extended complex plane, 1597
extending off closed set, 427
extension theorem, 1336
extention

mapping, 427

Fatou’s lemma, 248
filtration, 2058
filtration

normal, 2058
finite intersection property, 148, 168
finite measure

regularity, 260, 1857
finite measure space, 223
first hitting time, 2079
fixed point property, 368, 372, 433, 801
fixed point theorem

Cariste, 509
Kakutani, 846, 1563

fixed points
measurability, 1551

Fourier series
uniform convergence, 475

Fourier transform L1, 1105
fractional linear transformations, 1736, 1741

mapping three points, 1738
fractional powers

sectorial operator, 1717
fractional spaces

reflexive, 1506
Frechet derivative, 116, 711
Fredholm alternative, 559
Fredholm operator

Banach space, 471
Fresnel integrals, 1692
Fubini’s theorem, 315, 324, 333

Bochner integrable functions, 667
function, 32

uniformly continuous, 37
function element, 1747, 1846
functional equations, 1836
functions of Wiener processes, 2309
fundamental theorem of algebra, 1630
fundamental theorem of calculus, 56, 935,

936
general Radon measures, 1083
Radon measures, 1081

Gamma function, 417, 1005
gamma function, 1807
Gateaux derivative, 714, 716
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gauge function, 444
Gauss’s formula, 1808
Gaussian measure, 2009, 2019
Gelfand triple, 1168, 1417, 2363
general spherical coordinates, 363
generalized gradient

pseudomonotone, 867
generalized gradients, 865
generalized subgradient

upper semicontinuity, 866
Gerschgorin’s theorem, 1665
good lambda inequality, 299, 2128
Gram determinant, 530
Gram matrix, 530
Gram Schmidt process, 190
Gram Schmidt process., 189
Gramm Schmidt process, 87
great Picard theorem, 1761

Hadamard three circles theorem, 1656
Hahn Banach theorem, 445
Hamel basis, 2725
Hardy Littlewood maximal function, 933
Hardy’s inequality, 417
harmonic functions, 1615
Haursdorff measures, 993
Hausdorff

maximal principle, 2723
Hausdorff and Lebesgue measure, 1003, 1005
Hausdorff dimension, 1003
Hausdorff maximal principle, 36, 343, 389,

444
Hausdorff measure

translation invariant, 997
Hausdorff measures, 993
Hausdorff metric, 175
Hausdorff space, 164
Heine Borel, 37
Heine Borel theorem, 147
hemicontinuous, 824, 2523
Hermitian, 90
higher order derivative

multilinear form, 722
higher order derivatives, 721

implicit function theorem, 735

inverse function theorem, 735
Hilbert Schmidt operators, 554, 2226
Hilbert Schmidt theorem, 538, 663
Hilbert space, 517
hitting this before that, 2105
Holder inequality

backwards, 451
Holder space

compact embedding, 206
not separable, 204

Holder spaces, 204
Holder’s inequality, 186, 399
homotopic to a point, 1778
Hormander condition, 1124

implicit function theorem, 127, 130, 131, 732,
734

higher order derivatives, 735
implicit inclusion, 1440
inclusions

quasibounded operator, 2651
increasing function

differentiability, 946
independent events, 1863
independent random vectors, 1863
independent sigma algebras, 1863
indicator function, 232
infinite products, 1783
inner product space, 517
inner regular, 259, 1855, 1986

compact sets, 259
inner regular measure, 279
integration

with respect to a martingale, 2135
integration by parts, 2594
integration with respect to martingales

Ito isometry, 2140
interior point, 97, 137
interpolation inequalities, 1350
interpolation inequality, 1508
invariance of domain, 218, 769, 770

Brouwer fixed point theorem, 376
inverse

left inverse, 76
right inverse, 76
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inverse function theorem, 130, 132, 734, 750
higher order derivatives, 735

inverses and determinants, 75
inversions, 1736
invertible maps, 728

different spaces, 730
isodiametric inequality, 998, 1002
isogonal, 1616, 1735
isolated singularity, 1634
isometric, 682
Ito isometry, 2140, 2229
Ito representation theorem, 2304

James map, 450
Jensen’s formula, 1799
Jensens inequality, 417, 1946
Jordan curve theorem, 776, 781, 804
Jordan separation theorem, 778

Kakutani fixed point theorem, 846, 1563
Kolmogorov Centsov theorem, 2051
Kolmogorov extension theorem, 393, 396

Polish Space, 1860
Kolmogorov zero one law, 1872
Kolmogorov’s inequality, 1874, 1875
Kuratowski theorem, 1546

Lagrange multipliers, 132, 133
Laplace expansion, 74
Laplace transform, 1116
Laurent series, 1681
law, 2004
Lebesgue

set, 937
Lebesgue decomposition, 597, 1095
Lebesgue measurable function

approximation with Borel measurable,
263

Lebesgue measure, 339
approximation with Borel sets, 263
properties, 263

Lebesgue point, 935
Leray Schauder alternative, 500
Leray Schauder degree, 793

properties, 793
Levy’s theorem, 2174, 2223

limiit point, 137
limit

continuity, 710
infinite limits, 707

limit of a function, 101, 707
limit of a sequence, 138

well defined, 138
limit point, 165, 707
limit points, 101
limits

combinations of functions, 708
independent, 1873

limits and continuity, 710
Lindeloff property, 143
linear combination, 61, 72, 178
linear independence, 182
linearly dependent, 61, 179
linearly independent, 61, 179
linearly independent set

enlarging to a basis, 182
Lions, 1443
Liouville theorem, 1629
Lipschitz, 38, 100, 109

functions, 946
Lipschitz boundary, 1024
Lipschitz continuous, 158
Lipschitz function

integral of its derivative, 949
Lipschitz manifold, 1301
Lipschitz maps

extension, 955, 960, 1009, 1295
little o notation, 711
little Picard theorem, 1848
local martingale, 2118
local martingale

stochastic integral, 2254
local submartingale, 2118
localization

stochastically square integrable, 2253
localization

elementary functions, 2249
general case, 2251

localizing sequence, 2118
locally bounded, 884
locally compact, 149
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locally compact , 167
locally convex topological vector space, 479
locally finite, 421, 1023, 1297
logarithm

branch of logarithm, 1651
lower semicontinuous, 487

equivalent conditions, 908
Lusin’s theorem, 416
Lyapunov Schmidt procedure, 735

manifold, 1301
manifolds

boundary, 1061
interior, 1061
orientable, 1063
radon measure, 1303
smooth, 1063
surface measure, 1303

mapping
compact, 790

Marcinkiewicz interpolation, 1121
martingale, 1946

quadratic variation, 2119
martingales

equiintegrable, 2103
matrix

left inverse, 76
lower triangular, 77
non defective, 90
normal, 90
right inverse, 76
upper triangular, 77

maximal chain, 2723
maximal function

Radon measures, 1081
maximal monotone

approximation, 896, 2644
coercive, 893
equivalent conditions, 880
interior of domain, 884
linear map, 927
onto, 892
pseudomonotone, 887
subgradient, 911
sum of two of them, 902, 904

sum with duality map, 881
sum with monotone and hemicontinu-

ous, 902
maximal monotone

Banach space, 868
maximal monotone operator, 1229

sum with a subgradient, 919
maximum modulus theorem, 1653
McShane’s lemma, 623
mean ergodic theorem, 494
mean value inequality, 120, 716, 731
mean value theorem, 716, 731

for integrals, 58
measurable, 269

Borel, 226
multifunctions, 1531, 2389

measurable function, 226
pointwise limits, 226

measurable functions
Borel, 234
combinations, 231

measurable rectangle, 321, 397
measurable representative, 677
measurable selection, 1532, 1534, 2390

from set of limits, 1576
measurable selection theorem, 2595

improved version, 2601
limits of measurable functions, 2601

measurable sets, 223, 269
measure

σ finite, 261
inner regular, 259
outer regular, 259

measure space, 223
isomorphic, 1525
regular, 407
separable, 1525

measures
regularity, 259

Mellin transformations, 1689
meromorphic, 1636
Merten’s theorem, 1766
metric, 137

properties, 137
metric space, 135, 137
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Cauchy sequence, 135
closed set, 135
compact, 143
compactness of product space, 148
complete, 140
completely separable, 142
conditions for compactness, 144
distance to a set, 136
distance to set is continuous, 136
extreme value theorem, 147
limit points, 135
open balls open, 135
open set, 135, 137
separable, 142
sequentially compact, 143
Tietae extension, 156
uniform continuity, 147
uniform continuity on compact set, 147

Meyer Serrin theorem, 1311
Mihlin’s theorem, 1135
min max theorem, 871
Minkowski functional, 475, 483
Minkowski inequality, 401

integrals, 404
Minkowski inequality

backwards, 451
Minkowski’s inequality, 404
minor, 74
Mittag Leffler, 1693, 1793
mixed partial derivatives, 125, 725
modification, 2047
modular function, 1829, 1831
modular group, 1763, 1820
module of periods, 1816
mollifier, 412
monotone, 824, 2523
monotone , 868

Banach space, 868
monotone and hemicontinuous

coercive, 882
monotone class, 320
monotone convergence theorem, 245
monotone graph extended, 877
monotone operators , 868
monotone set valued

variational inequality, 874
Montel’s theorem, 1739, 1759
Moreau’s theorem, 915, 1256
Morrey’s inequality, 956, 1282
mountain pass theorem

Banach space, 821
Hilbert space, 810

multi-index, 100, 125, 195, 1097
multifunctions, 1531, 2389

measurability, 1531, 2389
multipliers, 1124
Muntz’s first theorem, 533
Muntz’s second theorem, 534

natural, 2149, 2152
Nemytskii operator, 1577
Neuman series, 728
Neumann series, 1697
no retract onto boundary of ball, 772
non equal mixed partials

example, 726
norm

p norm, 186
normal, 1908, 1930, 2004
normal family of functions, 1740
normal filtration, 2058
normal topological space, 165
Normed linear space, 186
not pseudomonotone, 825
nowhere differentiable functions, 473
nuclear operator, 551
numerical range, 1710

obstacle problem
non-constant obstacle, 1569

one point compactification, 167, 284
open ball, 137

open set, 137
open cover, 143, 167
open mapping theorem, 439, 1649
open set, 97, 137
open sets, 164

countable basis, 142
operator norm, 114, 437
operator of penalization
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demicontinuous, 842
operators

closed range, 466
optional sampling theorem, 1957
order, 1807
order of a pole, 1635
order of a zero, 1628
order of an elliptic function, 1818
ordered

partial, 2723
totally ordered, 2723

orientable manifold, 1063
orientation, 1066
orthonormal, 189
orthonormal set, 535
outer measure, 234, 269
outer regular, 259, 1855, 1986
outer regular measure, 279

p norms, 187
pap97, 1535
paracompact space, 421
partial derivative, 120
partial derivatives, 714, 724

continuous, 724
partial order, 35, 444, 2723
partially ordered set, 2723
partition, 43
partition of unity, 287, 426, 1298

metric space, 425, 426
penalization operators, 841
period parallelogram, 1818
permutation, 68
Phragmen Lindelof theorem, 1654
pivot space, 1168, 1417, 2363
Plancherel theorem, 1108
point of density, 1288
pointwise compact, 154
pointwise convergence, 163
pointwise limits of measurable functions, 648
polar, 1242
polar decomposition, 609
pole, 1635
Polish Space

Kolmogorov Extention, 1860

Polish space, 143, 258
polish space, 1520
polynomial, 195, 1097
positive, 560
positive and negative parts of a measure, 966
positive definite, 2001
positive definite functions, 1936
positive linear functional, 262, 288
power series

analytic functions, 1623
power set, 29
precompact, 167, 206, 1215, 1441, 2382
predictable, 2064, 2437
primitive, 1606
principal branch of logarithm, 1652
principal ideal, 1797
probability space, 301, 1854
product measure, 324
product rule, 1282
product topology, 166, 391
progressively measurable, 2058, 2248

inclusions, 2638, 2675
progressively measurable

composition, 2248
integral of, 2060

progressively measurable solutions
noise, 2638

progressively measurable version, 2063
projection in Hilbert space, 520
projection map, 841
Prokhorov’s theorem, 1990
proper, 907
properties of integral

properties, 54
pseudo continuous, 2001
pseudogradient, 811
pseudomonotone, 2523

bounded, 850
demicontinuous, 826
generalized gradient, 867
generalized perturbation, 931
L pseudomonotone, 922
modified bounded, 852, 853
monotone and hemicontinuous, 824
perturbation, 923
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set valued, 850
single valued, 823
something which isn’t, 825
sum, 856, 859, 1566
sum of, 855
sum with densely defined max mono-

tone, 923
sum with maximal monotone, 891
type M, 826
variational inequality, 831
variational inequality, sum two opera-

tors, 1566
pseudomonotone

onto, 862
pseudomonotone operator, 852, 853, 886, 1565

set valued, 850, 852, 853, 1565

Q Wiener process, 2225
quadratic variation, 2167

convergence in probability, 2147
fantastic properties, 2139

quasi-bounded, 886, 929
quotient space, 1469

Rademacher’s theorem, 942, 949, 954, 962,
1285, 1287

Radon measure, 259, 407
Radon Nikodym

Radon measures, 1093
Radon Nikodym derivative, 600
Radon Nikodym property, 679
Radon Nikodym Theorem

σ finite measures, 600
finite measures, 597

Radon Nikodym theorem
Radon Measures, 1093

random variable, 971, 1854
distribution measure, 260

random vector, 1854
independent, 1881

real Schur form, 89
recognizing a martingale

stopping times, 2113
refinement of a cover, 421
reflexive Banach Space, 451

reflexive Banach space, 617
region, 1627
regular, 259
regular measure, 279
regular measure space, 407
regular topological space, 165
regular values, 754
relative topology, 1061
removable singularity, 1634
representation of martingales, 2307
residue, 1671
resolvent, 579
resolvent set, 1697, 1710
retract, 368, 372

Banach space, 429
closed and convex set, 429

Reynolds transport formula, 1034
Riemann criterion, 46
Riemann integrable, 46
Riemann integral, 46
Riemann sphere, 1597
Riemann Stieltjes integral, 46
Riesz map, 522
Riesz representation theorem, 683

C0 (X), 632
Hilbert space, 521
locally compact Hausdorff space, 288

Riesz Representation theorem
C (X), 631

Riesz representation theorem Lp

finite measures, 611
Riesz representation theorem Lp

σ finite case, 617, 687
Riesz representation theorem for L1

finite measures, 614
right polar decomposition, 92
Rouche’s theorem, 1676
Runge’s theorem, 1771

Sard’s theorem, 756
generalization, 1020

scalars, 177
scale of Banach spaces, 1732
Schaefer fixed point theorem, 500
Schauder fixed point
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approximate fixed point, 499, 1550
Schauder fixed point theorem, 500, 504

measurability, 1551
degree theory, 796

Schottky’s theorem, 1757
Schroder Bernstein theorem, 33
Schwartz class, 1345
Schwarz formula, 1625
Schwarz reflection principle, 1648
Schwarz’s lemma, 1741
second derivative, 721
sections of open sets, 723
sectorial, 1701
self adjoint, 90, 560
semigroup, 566

adjoint, 590
contraction

bounded, 577
generator, 576
growth estimate, 576
Hille Yosida theorem, 580
strongly continuous, 576

seminorms, 479
separability of C(H), 1990
separable metric space

Lindeloff property, 143
separated, 168
separation theorem, 476
sequence, 138

Cauchy, 140
subsequence, 139

sequential compactness, 37, 636
L1, 635
L1, 635

sequential compactness in L1, 635
sequential weak* compactness, 463
sequentially compact set, 113
set valued functions

measurability, 1531, 2389
set valued map

locally bounded, 884
sets, 29
sgn, 66

uniqueness, 68
Shannon sampling theorem, 1118

sigma finite, 261
sign of a permutation, 68
Simon, 1441
simple function, 238, 643
simple functions, 227
singular values, 754
Skorokhod’s theorem, 1994
Sobolev Space

embedding theorem, 1117
equivalent norms, 1117

Sobolev space, 1309
Sobolev spaces, 1117
space of continuous martingales, 2108

Hilbert space, 2133
span, 61, 72, 178
spectral radius, 1698
spectral theory

Banach space, 468
compact operator, 468

Sperner’s lemma, 212
Steiner symetrization, 1000
step functions

approximation result, 2231
stereographic projection, 1597, 1758
Stirling’s formula, 1809
stochastic integral, 2227

stochastically square integrable, 2253
stochastic integral , 2254

definition, 2241
linear transformation, 2259
main result, 2241
quadratic variation, 2256

stochastic process, 2047
stochastically square integrable, 2253
Stokes theorem, 1072
Stone’s theorem, 423
stong law of large numbers, 1975
stong topology, 487
stopped martingale, 2116, 2118
stopped process, 2105
stopped submartingale, 2096, 2118
stopping time, 1952, 1958, 2070
strict convexity, 477
strictly convex, 832
strong law of large numbers, 1879, 1980
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strongly measurable, 643
subbasis, 389
subgradient

convex lower semicontinuous, 909
maximal monotone, 911
surjective, 910

subgradients
sum, 912

submartingale, 1946
submartingale convergence theorem, 1949

continuous case, 2102
subspace, 61, 178
sum

maximal monotone and pseudomono-
tone, 891

sums
independent, 1873, 1877, 1972

supermartingale, 1946
support of a function, 287
Suslin space, 1520
symmetric derivative

existence, 1091
measurable, 1091
Radon measure, 1090
upper and lower, 1090

symmetric domain
degree, 768

tail event, 1872
Tietze extension theorem, 157
tight, 1917, 1924, 1988

measures, 1924
topological space, 164
topological vector space dual, 481
total variation, 603, 938
totally bounded set, 144
totally ordered, 2723
trace, 553
trajectories, 2047
translation invariant, 341
translations, 1736
triangle inequality, 185, 401
triangulated, 208
triangulation, 208
trivial, 61, 178

Tychanoff fixed point theorem, 503
type M, 826, 2525

demicontinuous, 2527
demicontinuous, 829
sum of linear and type M, 827
surjective, 830

uniform boundedness theorem, 439
uniform continuity, 161
uniform continuity and compactness, 162
uniform contraction principle, 160
uniform convergence, 163, 1596
uniform convergence and continuity, 163
uniform convexity, 477
uniformly bounded, 149, 691, 1759
uniformly continuous, 37
uniformly equicontinuous, 149, 1759
uniformly integrable, 256, 418
unimodular transformations, 1820
uniqueness of limits, 707
upcrossing, 1947, 1969
upper and lower sums, 43
upper semi continuity

set valued map, 844
upper semicontinuity

set valued map, 844
upper semicontinuous

onto, 849
upper semicontinuous composition, 844
Urysohn’s lemma, 282

variational inequalities with respect to set val-
ued map, 2636

variational inequality, 520
non-constant convex set, 1566
sum of set valued pseudomonotone maps,

1566
vector measures, 602, 678
vector space

dimension, 181
vector space axioms, 177
vector valued function

limit theorems, 707
vectors, 177
version, 2047



2748 INDEX

Vitali
convergence theorem, 256

Vitali
convergence theorem, 672

Vitali convergence theorem, 257, 418
Vitali cover, 381
Vitali covering theorem, 344, 347, 348, 350,

1289
Vitali coverings, 348, 350, 1289
Vitali theorem, 1763
volume of unit ball, 1005

weak * convergence, 1275
weak convergence, 477
weak convergence of measures, 1929, 1993
weak derivative, 944, 1277

a function, 944
weak derivatives, 942
weak derivatives in Lp

differentiability, 962
weak topology, 460, 493
weak∗ measurable, 650
weak∗ topology, 493
weak* topology, 460
weakly measurable, 643
Weierstrass

Stone Weierstrass theorem, 199
Weierstrass M test, 1596
Weierstrass P function, 1825
well ordered sets, 2724
Wiener process, 2167, 2177, 2213
Wiener process in Hilbert Space, 2192, 2216
winding number, 1636
Wronskian, 86, 545

Yankov von Neumann Aumann, 1527, 1528
Young’s inequality, 399, 642, 1485

zeta function, 1809
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