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Preface
This is a book on linear algebra and matrix theory. While it is self contained, it will work
best for those who have already had some exposure to linear algebra. It is also assumed that
the reader has had calculus. Some optional topics require more analysis than this, however.

I think that the subject of linear algebra is likely the most significant topic discussed in
undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying
so many different topics. Linear algebra is essential in analysis, applied math, and even in
theoretical mathematics. This is the point of view of this book, more than a presentation
of linear algebra for its own sake. This is why there are numerous applications, some fairly
unusual.

This book features an ugly, elementary, and complete treatment of determinants early
in the book. Thus it might be considered as Linear algebra done wrong. I have done this
because of the usefulness of determinants. However, all major topics are also presented in
an alternative manner which is independent of determinants.

The book has an introduction to various numerical methods used in linear algebra.
This is done because of the interesting nature of these methods. The presentation here
emphasizes the reasons why they work. It does not discuss many important numerical
considerations necessary to use the methods effectively. These considerations are found in
numerical analysis texts.

In the exercises, you may occasionally see ↑ at the beginning. This means you ought to
have a look at the exercise above it. Some exercises develop a topic sequentially. There are
also a few exercises which appear more than once in the book. I have done this deliberately
because I think that these illustrate exceptionally important topics and because some people
don’t read the whole book from start to finish but instead jump in to the middle somewhere.
There is one on a theorem of Sylvester which appears no fewer than 3 times. Then it is also
proved in the text. There are multiple proofs of the Cayley Hamilton theorem, some in the
exercises. Some exercises also are included for the sake of emphasizing something which has
been done in the preceding chapter.
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Chapter 1

Preliminaries

1.1 Sets and Set Notation

A set is just a collection of things called elements. For example {1, 2, 3, 8} would be a set
consisting of the elements 1,2,3, and 8. To indicate that 3 is an element of {1, 2, 3, 8} , it is
customary to write 3 ∈ {1, 2, 3, 8} . 9 /∈ {1, 2, 3, 8} means 9 is not an element of {1, 2, 3, 8} .
Sometimes a rule specifies a set. For example you could specify a set as all integers larger
than 2. This would be written as S = {x ∈ Z : x > 2} . This notation says: the set of all
integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then A is
a subset of B. For example, {1, 2, 3, 8} is a subset of {1, 2, 3, 4, 5, 8} , in symbols, {1, 2, 3, 8} ⊆
{1, 2, 3, 4, 5, 8} . It is sometimes said that “A is contained in B” or even “B contains A”.
The same statement about the two sets may also be written as {1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8}.

The union of two sets is the set consisting of everything which is an element of at least
one of the sets, A or B. As an example of the union of two sets {1, 2, 3, 8} ∪ {3, 4, 7, 8} =
{1, 2, 3, 4, 7, 8} because these numbers are those which are in at least one of the two sets. In
general

A ∪B ≡ {x : x ∈ A or x ∈ B} .
Be sure you understand that something which is in both A and B is in the union. It is not
an exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1, 2, 3, 8} ∩ {3, 4, 7, 8} = {3, 8} because 3 and 8 are those elements the two sets have
in common. In general,

A ∩B ≡ {x : x ∈ A and x ∈ B} .
The symbol [a, b] where a and b are real numbers, denotes the set of real numbers x,

such that a ≤ x ≤ b and [a, b) denotes the set of real numbers such that a ≤ x < b. (a, b)
consists of the set of real numbers x such that a < x < b and (a, b] indicates the set of
numbers x such that a < x ≤ b. [a,∞) means the set of all numbers x such that x ≥ a and
(−∞, a] means the set of all real numbers which are less than or equal to a. These sorts of
sets of real numbers are called intervals. The two points a and b are called endpoints of the
interval. Other intervals such as (−∞, b) are defined by analogy to what was just explained.
In general, the curved parenthesis indicates the end point it sits next to is not included
while the square parenthesis indicates this end point is included. The reason that there
will always be a curved parenthesis next to ∞ or −∞ is that these are not real numbers.
Therefore, they cannot be included in any set of real numbers.

A special set which needs to be given a name is the empty set also called the null set,
denoted by ∅. Thus ∅ is defined as the set which has no elements in it. Mathematicians like
to say the empty set is a subset of every set. The reason they say this is that if it were not
so, there would have to exist a set A, such that ∅ has something in it which is not in A.
However, ∅ has nothing in it and so the least intellectual discomfort is achieved by saying
∅ ⊆ A.

If A and B are two sets, A \ B denotes the set of things which are in A but not in B.
Thus

A \B ≡ {x ∈ A : x /∈ B} .
Set notation is used whenever convenient.

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

9
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Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. Given x ∈ D, f (x) is the name of the thing in R which results from doing
f to x. Then D is called the domain of f. In order to specify that D pertains to f , the
notation D (f) may be used. The set R is sometimes called the range of f. These days it
is referred to as the codomain. The set of all elements of R which are of the form f (x)
for some x ∈ D is therefore, a subset of R. This is sometimes referred to as the image of
f . When this set equals R, the function f is said to be onto, also surjective. If whenever
x ̸= y it follows f (x) ̸= f (y), the function is called one to one. , also injective It is
common notation to write f : D 7→ R to denote the situation just described in this definition
where f is a function defined on a domain D which has values in a codomain R. Sometimes

you may also see something like D
f7→ R to denote the same thing.

1.3 The Number Line and Algebra of the Real Num-
bers

Next, consider the real numbers, denoted by R, as a line extending infinitely far in both
directions. In this book, the notation, ≡ indicates something is being defined. Thus the
integers are defined as

Z ≡{· · · − 1, 0, 1, · · · } ,

the natural numbers,
N ≡ {1, 2, · · · }

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q ≡
{m
n

such that m,n ∈ Z, n ̸= 0
}

are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 1.3.1 x+ y = y + x, (commutative law for addition)

Axiom 1.3.2 x+ 0 = x, (additive identity).

Axiom 1.3.3 For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of
additive inverse).

Axiom 1.3.4 (x+ y) + z = x+ (y + z) , (associative law for addition).
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Axiom 1.3.5 xy = yx, (commutative law for multiplication).

Axiom 1.3.6 (xy) z = x (yz) , (associative law for multiplication).

Axiom 1.3.7 1x = x, (multiplicative identity).

Axiom 1.3.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.3.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by x−y ≡ x+(−y) and x/y ≡ x

(
y−1

)
.We assume

0 ̸= 1 so that the axioms will describe someting useful.
Here is a little proposition which derives some familiar facts.

Proposition 1.3.10 0 and 1 are unique. Also −x is unique and x−1 is unique. Further-
more, 0x = x0 = 0 and −x = (−1)x.

Proof: Suppose 0′ is another additive identity. Then

0′ = 0′ + 0 = 0.

Thus 0 is unique. Say 1′ is another multiplicative identity. Then

1 = 1′1 = 1′.

Now suppose y acts like the additive inverse of x. Then

−x = (−x) + 0 = (−x) + (x+ y) = (−x+ x) + y = y

Finally,
0x = (0 + 0)x = 0x+ 0x

and so
0 = − (0x) + 0x = − (0x) + (0x+ 0x) = (− (0x) + 0x) + 0x = 0x

Finally
x+ (−1)x = (1 + (−1))x = 0x = 0

and so by uniqueness of the additive inverse, (−1)x = −x. ■

1.4 Ordered Fields

The real numbers R are an example of an ordered field. More generally, here is a definition.

Definition 1.4.1 Let F be a field. It is an ordered field if there exists an order, < which
satisfies

1. For any x, y, exactly one of the following holds: x = y, x < y, or y < x.

2. If x < y and either z < w or z = w, then, x+ z < y + w.

3. If 0 < x, 0 < y, then xy > 0.
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With this definition, the familiar properties of order can be proved. The following
proposition lists many of these familiar properties. The relation ‘a > b’ has the same
meaning as ‘b < a’.

Proposition 1.4.2 The following are obtained. Recall −x is the symbol for the additive
inverse of x.

1. If x < y and y < z, then x < z.

2. If x > 0 and y > 0, then x+ y > 0.

3. If x > 0, then −x < 0.

4. If x ̸= 0, either x or −x is > 0.

5. If x < y, then −x > −y.

6. If x ̸= 0, then x2 > 0.

7. If 0 < x < y then x−1 > y−1.

Proof: First consider 1, called the transitive law. Suppose that x < y and y < z. Then
from the axioms, x+ y < y + z and so, adding −y to both sides, it follows

x < z

Next consider 2. Suppose x > 0 and y > 0. Then from 2,

0 = 0 + 0 < x+ y.

Next consider 3. It is assumed x > 0 so

0 = −x+ x > 0 + (−x) = −x

Now consider 4. If x < 0, then

0 = x+ (−x) < 0 + (−x) = −x.

Consider the 5. Since x < y, it follows from 2

0 = x+ (−x) < y + (−x)

and so by 4 and Proposition 1.3.10,

(−1) (y + (−x)) < 0

Also from Proposition 1.3.10 (−1) (−x) = − (−x) = x and so

−y + x < 0.

Hence
−y < −x.

Consider 6. If x > 0, there is nothing to show. It follows from the definition. If x < 0,
then by 4, −x > 0 and so by Proposition 1.3.10 and the definition of the order,

(−x)2 = (−1) (−1)x2 > 0
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By this proposition again, (−1) (−1) = − (−1) = 1 and so x2 > 0 as claimed.
Note this shows that 1 > 0 because 1 equals 12.
Finally, consider 7. First, if x > 0 then if x−1 < 0, it would follow (−1)x−1 > 0 and so

x (−1)x−1 = (−1) 1 = −1 > 0. However, this would require

0 > 1 = 12 > 0

from what was just shown. Therefore, x−1 > 0. Now the assumption implies y+(−1)x > 0
and so multiplying by x−1,

yx−1 + (−1)xx−1 = yx−1 + (−1) > 0

Now multiply by y−1, which by the above satisfies y−1 > 0, to obtain

x−1 + (−1) y−1 > 0

and so
x−1 > y−1. ■

In an ordered field the symbols ≤ and ≥ have the usual meanings. Thus a ≤ b means
a < b or else a = b, etc.

1.5 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a, b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ib and
multiplication and addition are defined in the most obvious way subject to the convention
that i2 = −1. Thus,

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

and
(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i (bc+ ad) .

Every non zero complex number, a+ib, with a2+b2 ̸= 0, has a unique multiplicative inverse.

1

a+ ib
=

a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

You should prove the following theorem.

Theorem 1.5.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms listed on Page 10.

Note that if x+ iy is a complex number, it can be written as

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

Now

(
x√

x2+y2
, y√

x2+y2

)
is a point on the unit circle and so there exists a unique θ ∈ [0, 2π)

such that this ordered pair equals (cos θ, sin θ) . Letting r =
√
x2 + y2, it follows that the

complex number can be written in the form

x+ iy = r (cos θ + i sin θ)
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This is called the polar form of the complex number.
The field of complex numbers is denoted as C. An important construction regarding

complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the following
formula is easy to obtain. (

a+ ib
)
(a+ ib) = a2 + b2.

Definition 1.5.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√
a2 + b2.

Thus, denoting by z the complex number, z = a+ ib,

|z| = (zz)
1/2

.

With this definition, it is important to note the following. Be sure to verify this. It is
not too hard but you need to do it.

Remark 1.5.3 : Let z = a+ ib and w = c+ id. Then |z − w| =
√
(a− c)

2
+ (b− d)

2
. Thus

the distance between the point in the plane determined by the ordered pair, (a, b) and the
ordered pair (c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance formula

this distance equals

√
(2− 1)

2
+ (5− 8)

2
=

√
10. On the other hand, letting z = 2+ i5 and

w = 1+ i8, z−w = 1− i3 and so (z − w) (z − w) = (1− i3) (1 + i3) = 10 so |z − w| =
√
10,

the same thing obtained with the distance formula.
Complex numbers, are often written in the so called polar form which is described next.

Suppose x+ iy is a complex number. Then

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so (
x√

x2 + y2
,

y√
x2 + y2

)
is a point on the unit circle. Therefore, there exists a unique angle, θ ∈ [0, 2π) such that

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√
x2 + y2.

A fundamental identity is the formula of De Moivre which follows.
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Theorem 1.5.4 Let r ≥ 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t+ i sin t)]
n+1

= [r (cos t+ i sin t)]
n
[r (cos t+ i sin t)]

which by induction equals

= rn+1 (cosnt+ i sinnt) (cos t+ i sin t)

= rn+1 ((cosnt cos t− sinnt sin t) + i (sinnt cos t+ cosnt sin t))

= rn+1 (cos (n+ 1) t+ i sin (n+ 1) t)

by the formulas for the cosine and sine of the sum of two angles. ■

Corollary 1.5.5 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x + iy and let z = |z| (cos t+ i sin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r (cosα+ i sinα) ,

is a kth root of z if and only if

rk (cos kα+ i sin kα) = |z| (cos t+ i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t.
This can only happen if

kα = t+ 2lπ

for l an integer. Thus

α =
t+ 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(
cos

(
t+ 2lπ

k

)
+ i sin

(
t+ 2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula. ■

Example 1.5.6 Find the three cube roots of i.

First note that i = 1
(
cos
(
π
2

)
+ i sin

(
π
2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1

(
cos

(
(π/2) + 2lπ

3

)
+ i sin

(
(π/2) + 2lπ

3

))
where l = 0, 1, 2. Therefore, the roots are

cos
(π
6

)
+ i sin

(π
6

)
, cos

(
5

6
π

)
+ i sin

(
5

6
π

)
,

and

cos

(
3

2
π

)
+ i sin

(
3

2
π

)
.

Thus the cube roots of i are
√
3
2 + i

(
1
2

)
, −

√
3

2 + i
(
1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.
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Example 1.5.7 Factor the polynomial x3 − 27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3, 3
(

−1
2 + i

√
3
2

)
, and 3

(
−1
2 − i

√
3
2

)
. Therefore, x3 + 27 =

(x− 3)

(
x− 3

(
−1

2
+ i

√
3

2

))(
x− 3

(
−1

2
− i

√
3

2

))
.

Note also
(
x− 3

(
−1
2 + i

√
3
2

))(
x− 3

(
−1
2 − i

√
3
2

))
= x2 + 3x+ 9 and so

x3 − 27 = (x− 3)
(
x2 + 3x+ 9

)
where the quadratic polynomial, x2 + 3x + 9 cannot be factored without using complex
numbers.

The real and complex numbers both are fields satisfying the axioms on Page 10 and it is
usually one of these two fields which is used in linear algebra. The numbers are often called
scalars. However, it turns out that all algebraic notions work for any field and there are
many others. For this reason, I will often refer to the field of scalars as F although F will
usually be either the real or complex numbers. If there is any doubt, assume it is the field
of complex numbers which is meant.

1.6 The Fundamental Theorem of Algebra

The reason the complex numbers are so significant in linear algebra is that they are alge-
braically complete. This means that every polynomial

∑n
k=0 akz

k, n ≥ 1, an ̸= 0, having
coefficients ak in C has a root in in C. I will give next a simple explanation of why it is
reasonable to believe in this theorem followed by a legitimate proof. The first completely
correct proof of this theorem was given in 1806 by Argand although Gauss is often credited
with proving it earlier and many others worked on it in the 1700’s.

Theorem 1.6.1 Let p (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 where each ak is a complex
number and an ̸= 0, n ≥ 1. Then there exists w ∈ C such that p (w) = 0.

To begin with, here is the informal explanation. Dividing by the leading coefficient an,
there is no loss of generality in assuming that the polynomial is of the form

p (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

If a0 = 0, there is nothing to prove because p (0) = 0. Therefore, assume a0 ̸= 0. From
the polar form of a complex number z, it can be written as |z| (cos θ + i sin θ). Thus, by
DeMoivre’s theorem,

zn = |z|n (cos (nθ) + i sin (nθ))

It follows that zn is some point on the circle of radius |z|n
Denote by Cr the circle of radius r in the complex plane which is centered at 0. Then

if r is sufficiently large and |z| = r, the term zn is far larger than the rest of the polyno-
mial. It is on the circle of radius |z|n while the other terms are on circles of fixed mul-

tiples of |z|k for k ≤ n − 1. Thus, for r large enough, Ar = {p (z) : z ∈ Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. It won’t
be as simple as suggested in the following picture, but it will be a closed curve thanks
to De Moivre’s theorem and the observation that the cosine and sine are periodic. Now
shrink r. Eventually, for r small enough, the non constant terms are negligible and so Ar

is a curve which is contained in some circle centered at a0 which has 0 on the outside.
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•0

Ar r large• a0
Ar

r small

Thus it is reasonable to believe that for some r dur-
ing this shrinking process, the set Ar must hit 0. It
follows that p (z) = 0 for some z.

For example, consider the polynomial x3+x+1+i.
It has no real zeros. However, you could let z = r (cos t+ i sin t) and insert this into the
polynomial. Thus you would want to find a point where

(r (cos t+ i sin t))
3
+ r (cos t+ i sin t) + 1 + i = 0 + 0i

Expanding this expression on the left to write it in terms of real and imaginary parts, you
get on the left

r3 cos3 t− 3r3 cos t sin2 t+ r cos t+ 1 + i
(
3r3 cos2 t sin t− r3 sin3 t+ r sin t+ 1

)
Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have (0, 0) =(

r3 cos3 t− 3r3 cos t sin2 t+ r cos t+ 1, 3r3 cos2 t sin t− r3 sin3 t+ r sin t+ 1
)

for some value of r and t. First here is a graph of this parametric function of t for t ∈ [0, 2π]
on the left, when r = 4. Note how the graph misses the origin 0 + i0. In fact, the closed
curve is in the exterior of a circle which has the point 0 + i0 on its inside.

-50 0 50

x

-50

0

50

y

-2 0 2

x

-2

0

2

y

-4 -2 0 2 4 6

x

-2

0

2

4

y

r too big r too small r just right

Next is the graph when r = .5. Note how the closed curve is included in a circle which
has 0+ i0 on its outside. As you shrink r you get closed curves. At first, these closed curves
enclose 0 + i0 and later, they exclude 0 + i0. Thus one of them should pass through this
point. In fact, consider the curve which results when r = 1. 386 which is the graph on the
right. Note how for this value of r the curve passes through the point 0+ i0. Thus for some
t, 1.386 (cos t+ i sin t) is a solution of the equation p (z) = 0 or very close to one.

Now here is a rigorous proof for those who have studied analysis. It depends on the ex-
treme value theorem from calculus applied to the continuous function f (x, y) ≡ |p (x+ iy)|.

Proof: Suppose the nonconstant polynomial p (z) = a0 + a1z + · · ·+ anz
n, an ̸= 0, has

no zero in C. Since lim|z|→∞ |p (z)| = ∞, there is a z0 with

|p (z0)| = min
z∈C

|p (z)| > 0

Then let q (z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum of

|q (z)| is 1 and occurs at z = 0. Since q (0) = 1, it follows q (z) = 1 + akz
k + r (z) where

r (z) is of the form

r (z) = amz
m + am+1z

m+1 + ...+ anz
n for m > k.

Choose a sequence, zn → 0, such that akz
k
n < 0. For example, let −akzkn = (1/n) so

zn = (−ak)1/k
(
1
n

)1/k
and Then

|q (zn)| =
∣∣1 + akz

k + r (z)
∣∣ ≤ 1− 1/n+ |r (zn)|

≤ 1− 1

n
+

1

n

n∑
j=m

|aj | |ak|1/k
(
1

n

)(j−k)/k

< 1
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for all n large enough because the sum is smaller than 1 whenever n is large enough, showing
|q (zn)| < 1 whenever n is large enough. This is a contradiction to |q (z)| ≥ 1. ■

1.7 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of −8 in the complex plane. Do the same for the four
fourth roots of −16.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) for n a positive

integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (5x). Hint: Use the binomial theorem.

8. If z and w are two complex numbers and the polar form of z involves the angle θ while
the polar form of w involves the angle ϕ, show that in the polar form for zw the angle
involved is θ + ϕ. Also, show that in the polar form of a complex number, z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3 + 27 in the form (x+ 3)
(
x2 + ax+ b

)
where x2 + ax+ b cannot be factored

any more using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.

13. If z, w are complex numbers prove zw = zw and then show by induction that

z1 · · · zm = z1 · · · zm

Also verify that
∑m

k=1 zk =
∑m

k=1 zk. In words this says the conjugate of a product
equals the product of the conjugates and the conjugate of a sum equals the sum of
the conjugates.

14. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 where all the ak are real numbers.
Suppose also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

15. I claim that 1 = −1. Here is why: −1 = i2 =
√
−1

√
−1 =

√
(−1)

2
=

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong?



1.8. COMPLETENESS OF R 19

16. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents,
not just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?

17. Show that C cannot be considered an ordered field. Hint: Consider i2 = −1. Recall
that 1 > 0 by Proposition 1.4.2.

18. Say a + ib < x + iy if a < x or if a = x, then b < y. This is called the lexicographic
order. Show that any two different complex numbers can be compared with this order.
What goes wrong in terms of the other requirements for an ordered field.

19. With the order of Problem 18, consider for n ∈ N the complex number 1 − 1
n . Show

that with the lexicographic order just described, each of 1− in is an upper bound to
all these numbers. Therefore, this is a set which is “bounded above” but has no least
upper bound with respect to the lexicographic order on C.

1.8 Completeness of R
Recall the following important definition from calculus, completeness of R.

Definition 1.8.1 A non empty set, S ⊆ R is bounded above (below) if there exists x ∈ R
such that x ≥ (≤) s for all s ∈ S. If S is a nonempty set in R which is bounded above,
then a number, l which has the property that l is an upper bound and that every other upper
bound is no smaller than l is called a least upper bound, l.u.b. (S) or often sup (S) . If S is a
nonempty set bounded below, define the greatest lower bound, g.l.b. (S) or inf (S) similarly.
Thus g is the g.l.b. (S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup (S) = +∞ and if S is not bounded below, inf (S) = −∞.

Every existence theorem in calculus depends on some form of the completeness axiom.

Axiom 1.8.2 (completeness) Every nonempty set of real numbers which is bounded above
has a least upper bound and every nonempty set of real numbers which is bounded below has
a greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 1.8.3 Let S be a nonempty set and suppose sup (S) exists. Then for every
δ > 0,

S ∩ (sup (S)− δ, sup (S)] ̸= ∅.

If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) ̸= ∅.

Proof: Consider the first claim. If the indicated set equals ∅, then sup (S) − δ is an
upper bound for S which is smaller than sup (S) , contrary to the definition of sup (S) as
the least upper bound. In the second claim, if the indicated set equals ∅, then inf (S) + δ
would be a lower bound which is larger than inf (S) contrary to the definition of inf (S). ■
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1.9 Well Ordering and Archimedean Property

Definition 1.9.1 A set is well ordered if every nonempty subset S, contains a smallest
element z having the property that z ≤ x for all x ∈ S.

Axiom 1.9.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as

N ≡{1, 2, · · · }

is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 1.9.3 (Mathematical induction) A set S ⊆ Z, having the property that a ∈ S
and n+ 1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x ≥ a.

Proof: Let T ≡ ([a,∞) ∩ Z) \ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = ∅. If T ̸= ∅ then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a /∈ T. Then the integer, b− 1 ≥ a and b− 1 /∈ S
because if b − 1 ∈ S, then b − 1 + 1 = b ∈ S by the assumed property of S. Therefore,
b− 1 ∈ ([a,∞) ∩ Z) \ S = T which contradicts the choice of b as the smallest element of T.
(b− 1 is smaller.) Since a contradiction is obtained by assuming T ̸= ∅, it must be the case
that T = ∅ and this says that everything in [a,∞) ∩ Z is also in S. ■

Example 1.9.4 Show that for all n ∈ N, 1
2 · 3

4 · · ·
2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 <

1√
3
which is obviously true. Suppose

then that the inequality holds for n. Then

1

2
· 3
4
· · · 2n− 1

2n
· 2n+ 1

2n+ 2
<

1√
2n+ 1

2n+ 1

2n+ 2
=

√
2n+ 1

2n+ 2
.

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if and

only if (
1√

2n+ 3

)2

=
1

2n+ 3
>

2n+ 1

(2n+ 2)
2

which occurs if and only if (2n+ 2)
2
> (2n+ 3) (2n+ 1) and this is clearly true which may

be seen from expanding both sides. This proves the inequality.

Definition 1.9.5 The Archimedean property states that whenever x ∈ R, and a > 0, there
exists n ∈ N such that na > x.

Proposition 1.9.6 R has the Archimedean property.

Proof: Suppose it is not true. Then there exists x ∈ R and a > 0 such that na ≤ x
for all n ∈ N. Let S = {na : n ∈ N} . By assumption, this is bounded above by x. By
completeness, it has a least upper bound y. By Proposition 1.8.3 there exists n ∈ N such
that

y − a < na ≤ y.

Then y = y − a+ a < na+ a = (n+ 1) a ≤ y, a contradiction. ■
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Theorem 1.9.7 Suppose x < y and y − x > 1. Then there exists an integer l ∈ Z, such
that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+ 1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x < 1 then x2 < x contradicting the assertion that x is the smallest natural
number. Therefore, 1 is the smallest natural number. This shows there is no integer, y,
satisfying x < y < x+ 1 since otherwise, you could subtract x and conclude 0 < y − x < 1
for some integer y − x.

Now suppose y − x > 1 and let

S ≡ {w ∈ N : w ≥ y} .

The set S is nonempty by the Archimedean property. Let k be the smallest element of S.
Therefore, k − 1 < y. Either k − 1 ≤ x or k − 1 > x. If k − 1 ≤ x, then

y − x ≤ y − (k − 1) =

≤0︷ ︸︸ ︷
y − k + 1 ≤ 1

contrary to the assumption that y − x > 1. Therefore, x < k − 1 < y. Let l = k − 1. ■
It is the next theorem which gives the density of the rational numbers. This means that

for any real number, there exists a rational number arbitrarily close to it.

Theorem 1.9.8 If x < y then there exists a rational number r such that x < r < y.

Proof: Let n ∈ N be large enough that

n (y − x) > 1.

Thus (y − x) added to itself n times is larger than 1. Therefore,

n (y − x) = ny + n (−x) = ny − nx > 1.

It follows from Theorem 1.9.7 there exists m ∈ Z such that

nx < m < ny

and so take r = m/n. ■

Definition 1.9.9 A set S ⊆ R is dense in R if whenever a < b, S ∩ (a, b) ̸= ∅.

Thus the above theorem says Q is “dense” in R.

Theorem 1.9.10 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
real number r such that 0 ≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p + 1 be the smallest element of S. Then pa ≤ b because p + 1 is the smallest in S.
Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b − pa ≥ a and so b ≥ (p+ 1) a contradicting p + 1 ∈ S. Therefore, r < a as
desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1, 2, both work and r2 > r1. Then
a little algebra shows

p1 − p2 =
r2 − r1
a

∈ (0, 1) .

Thus p1 − p2 is an integer between 0 and 1, contradicting Theorem 1.9.7. The case that
r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows that p1 = p2.
■

This theorem is called the Euclidean algorithm when a and b are integers.
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1.10 Division

First recall Theorem 1.9.10, the Euclidean algorithm.

Theorem 1.10.1 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
unique real number r such that 0 ≤ r < a and b = pa+ r.

The following definition describes what is meant by a prime number and also what is
meant by the word “divides”.

Definition 1.10.2 The number, a divides the number, b if in Theorem 1.9.10, r = 0. That
is there is zero remainder. The notation for this is a|b, read a divides b and a is called a
factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1. The greatest common divisor of two positive integers, m,n is that
number, p which has the property that p divides both m and n and also if q divides both m
and n, then q divides p. Two integers are relatively prime if their greatest common divisor
is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x, y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m + 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 1.10.3 Let m,n be two positive integers and define

S ≡ {xm+ yn ∈ N : x, y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .

Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.9.10,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.

Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) . ■
There is a relatively simple algorithm for finding (m,n) which will be discussed now.

Suppose 0 < m < n where m,n are integers. Also suppose the greatest common divisor is
(m,n) = d. Then by the Euclidean algorithm, there exist integers q, r such that

n = qm+ r, r < m (1.1)
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Now d divides n and m so there are numbers k, l such that dk = m, dl = n. From the above
equation,

r = n− qm = dl − qdk = d (l − qk)

Thus d divides both m and r. If k divides both m and r, then from the equation of 1.1 it
follows k also divides n. Therefore, k divides d by the definition of the greatest common
divisor. Thus d is the greatest common divisor of m and r but m+ r < m+ n. This yields
another pair of positive integers for which d is still the greatest common divisor but the
sum of these integers is strictly smaller than the sum of the first two. Now you can do the
same thing to these integers. Eventually the process must end because the sum gets strictly
smaller each time it is done. It ends when there are not two positive integers produced.
That is, one is a multiple of the other. At this point, the greatest common divisor is the
smaller of the two numbers.

Procedure 1.10.4 To find the greatest common divisor of m,n where 0 < m < n, replace
the pair {m,n} with {m, r} where n = qm + r for r < m. This new pair of numbers has
the same greatest common divisor. Do the process to this pair and continue doing this till
you obtain a pair of numbers where one is a multiple of the other. Then the smaller is the
sought for greatest common divisor.

Example 1.10.5 Find the greatest common divisor of 165 and 385.

Use the Euclidean algorithm to write

385 = 2 (165) + 55

Thus the next two numbers are 55 and 165. Then

165 = 3× 55

and so the greatest common divisor of the first two numbers is 55.

Example 1.10.6 Find the greatest common divisor of 1237 and 4322.

Use the Euclidean algorithm

4322 = 3 (1237) + 611

Now the two new numbers are 1237,611. Then

1237 = 2 (611) + 15

The two new numbers are 15,611. Then

611 = 40 (15) + 11

The two new numbers are 15,11. Then

15 = 1 (11) + 4

The two new numbers are 11,4
2 (4) + 3

The two new numbers are 4, 3. Then

4 = 1 (3) + 1
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The two new numbers are 3, 1. Then

3 = 3× 1

and so 1 is the greatest common divisor. Of course you could see this right away when the
two new numbers were 15 and 11. Recall the process delivers numbers which have the same
greatest common divisor.

This amazing theorem will now be used to prove a fundamental property of prime num-
bers which leads to the fundamental theorem of arithmetic, the major theorem which says
every integer can be factored as a product of primes.

Theorem 1.10.7 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p, a) = 1 and therefore, there exists integers, x and y such that

1 = ax+ yp.

Multiplying this equation by b yields

b = abx+ ybp.

Since p|ab, ab = pz for some integer z. Therefore,

b = abx+ ybp = pzx+ ybp = p (xz + yb)

and this shows p divides b. ■

Theorem 1.10.8 (Fundamental theorem of arithmetic) Let a ∈ N\ {1}. Then a =
∏n

i=1 pi
where pi are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a ≤ n− 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m
are less than n. Therefore, each of these is no larger than n− 1 and consequently, each has
a prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose
n∏

i=1

pi =

m∏
j=1

qj

where the pi and qj are all prime, there is no way to reorder the qk such that m = n and
pi = qi for all i, and n +m is the smallest positive integer such that this happens. Then
by Theorem 1.10.7, p1|qj for some j. Since these are prime numbers this requires p1 = qj .
Reordering if necessary it can be assumed that qj = q1. Then dividing both sides by p1 = q1,

n−1∏
i=1

pi+1 =

m−1∏
j=1

qj+1.

Since n+m was as small as possible for the theorem to fail, it follows that n− 1 = m− 1
and the prime numbers, q2, · · · , qm can be reordered in such a way that pk = qk for all
k = 2, · · · , n. Hence pi = qi for all i because it was already argued that p1 = q1, and this
results in a contradiction. ■

There is a similar division result for polynomials. This will be discussed more intensively
later. For now, here is a definition and the division theorem.
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Definition 1.10.9 A polynomial is an expression of the form anλ
n+an−1λ

n−1+· · ·+a1λ+
a0, an ̸= 0 where the ai come from a field of scalars. Two polynomials are equal means that
the coefficients match for each power of λ. The degree of a polynomial is the largest
power of λ. Thus the degree of the above polynomial is n. Addition of polynomials is defined
in the usual way as is multiplication of two polynomials. The leading term in the above
polynomial is anλ

n. The coefficient of the leading term is called the leading coefficient. It
is called a monic polynomial if an = 1.

Lemma 1.10.10 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exist polynomials,
q (λ) and r (λ) such that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0. These polynomials
q (λ) and r (λ) are unique.

Proof: Suppose that f (λ)− q (λ) g (λ) is never equal to 0 for any q (λ). If it is, then the
conclusion follows. Now suppose

r (λ) = f (λ)− q (λ) g (λ)

and the degree of r (λ) is m ≥ n where n is the degree of g (λ). Say the leading term of

r (λ) is bλm while the leading term of g (λ) is b̂λn. Then letting a = b/b̂ , aλm−ng (λ) has
the same leading term as r (λ). Thus the degree of r1 (λ) ≡ r (λ)− aλm−ng (λ) is no more
than m− 1. Then

r1 (λ) = f (λ)−
(
q (λ) g (λ) + aλm−ng (λ)

)
= f (λ)−


q1(λ)︷ ︸︸ ︷

q (λ) + aλm−n

 g (λ)

Denote by S the set of polynomials f (λ)−g (λ) l (λ) . Out of all these polynomials, there
exists one which has smallest degree r (λ). Let this take place when l (λ) = q (λ). Then by
the above argument, the degree of r (λ) is less than the degree of g (λ). Otherwise, there is
one which has smaller degree. Thus f (λ) = g (λ) q (λ) + r (λ).

As to uniqueness, if you have r (λ) , r̂ (λ) , q (λ) , q̂ (λ) which work, then you would have

(q̂ (λ)− q (λ)) g (λ) = r (λ)− r̂ (λ)

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence this
would involve two polynomials which are equal although their degrees are different. This is
impossible. Hence r (λ) = r̂ (λ) and so, matching coefficients implies that q̂ (λ) = q (λ). ■

1.11 Systems of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that

x+ y = 7 and 2x− y = 8. (1.2)

The set of ordered pairs, (x, y) which solve both equations is called the solution set. For
example, you can see that (5, 2) = (x, y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if x and y
solve the system

x+ y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x+ y) = 8 + (−2) (7). (1.3)
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The second equation was replaced by −2 times the first equation added to the second. Thus
the solution is y = 2, from −3y = −6 and now, knowing y = 2, it follows from the other
equation that x+ 2 = 7 and so x = 5.

Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of 1.2 are of the form

E1 = f1, E2 = f2 (1.4)

where E1 and E2 are expressions involving the variables. The claim is that if a is a number,
then 1.4 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (1.5)

Why is this?
If (x, y) solves 1.4 then it solves the first equation in 1.5. Also, it satisfies aE1 = af1

and so, since it also solves E2 = f2 it must solve the second equation in 1.5. If (x, y) solves
1.5 then it solves the first equation of 1.4. Also aE1 = af1 and it is given that the second
equation of 1.5 is verified. Therefore, E2 = f2 and it follows (x, y) is a solution of the second
equation in 1.4. This shows the solutions to 1.4 and 1.5 are exactly the same which means
they have the same solution set. Of course the same reasoning applies with no change if
there are many more variables than two and many more equations than two. It is still the
case that when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.

Example 1.11.1 Find the solutions to the system,

x+ 3y + 6z = 25

2x+ 7y + 14z = 58

2y + 5z = 19

(1.6)

To solve this system replace the second equation by (−2) times the first equation added
to the second. This yields. the system

x+ 3y + 6z = 25

y + 2z = 8

2y + 5z = 19

(1.7)

Now take (−2) times the second and add to the third. More precisely, replace the third
equation with (−2) times the second added to the third. This yields the system

x+ 3y + 6z = 25

y + 2z = 8

z = 3

(1.8)

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
x = 1.

This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2x + 5 = 3x − 6. You did the
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same thing to both sides of the equation thus preserving the solution set until you obtained
an equation which was simple enough to give the answer. In this case, you would add −2x
to both sides and then add 6 to both sides. This yields x = 11.

In 1.8 you could have continued as follows. Add (−2) times the bottom equation to the
middle and then add (−6) times the bottom to the top. This yields

x+ 3y = 19

y = 6

z = 3

Now add (−3) times the second to the top. This yields the equations

x = 1, y = 6, z = 3,

a system which has the same solution set as the original system.
It is foolish to write the variables every time you do these operations. It is easier to

write the system 1.6 as the following “augmented matrix” 1 3 6 25

2 7 14 58

0 2 5 19

 .

It has exactly the same information as the original system but here it is understood there is

an x column,

 1

2

0

 , a y column,

 3

7

2

 and a z column,

 6

14

5

 . The rows correspond

to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,

x+ 3y + 6z = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving 1.6 would be to take (−2) times the first row
of the augmented matrix above and add it to the second row, 1 3 6 25

0 1 2 8

0 2 5 19

 .

Note how this corresponds to 1.7. Next take (−2) times the second row and add to the
third,  1 3 6 25

0 1 2 8

0 0 1 3


which is the same as 1.8. You get the idea I hope. Write the system as an augmented matrix
and follow the procedure of either switching rows, multiplying a row by a non zero number,
or replacing a row by a multiple of another row added to it. Each of these operations leaves
the solution set unchanged. These operations are called row operations.

Definition 1.11.2 The row operations consist of the following
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1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

It is important to observe that any row operation can be “undone” by another inverse
row operation. For example, if r1, r2 are two rows, and r2 is replaced with r′2 = αr1 + r2
using row operation 3, then you could get back to where you started by replacing the row r′2
with −α times r1 and adding to r′2. In the case of operation 2, you would simply multiply
the row that was changed by the inverse of the scalar which multiplied it in the first place,
and in the case of row operation 1, you would just make the same switch again and you
would be back to where you started. In each case, the row operation which undoes what
was done is called the inverse row operation.

Example 1.11.3 Give the complete solution to the system of equations, 5x+10y−7z = −2,
2x+ 4y − 3z = −1, and 3x+ 6y + 5z = 9.

The augmented matrix for this system is 2 4 −3 −1

5 10 −7 −2

3 6 5 9


Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields 2 4 −3 −1

0 0 1 1

3 6 5 9


Now, combining some row operations, take (−3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields. 2 4 −3 −1

0 0 1 1

0 0 1 21

 .

Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
the last system of equations determined by the above augmented matrix has no solution.
However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = x+1. There is clearly no solution
to this.

Example 1.11.4 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x+ y = −6.

The augmented matrix of this system is 3 −1 −5 9

0 1 −10 0

−2 1 0 −6
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Replace the last row with 2 times the top row added to 3 times the bottom row. This gives 3 −1 −5 9

0 1 −10 0

0 1 −10 0


Next take −1 times the middle row and add to the bottom. 3 −1 −5 9

0 1 −10 0

0 0 0 0


Take the middle row and add to the top and then divide the top row which results by 3. 1 0 −5 3

0 1 −10 0

0 0 0 0

 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore, the
solution set of this system is x = 3 + 5t, y = 10t, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
This is what it is all about, finding the solutions to the system.

Definition 1.11.5 Since z = t where t is arbitrary, the variable z is called a free variable.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation x = x. It doesn’t matter what x equals.

Definition 1.11.6 A system of linear equations is a list of equations,

n∑
j=1

aijxj = fj , i = 1, 2, 3, · · · ,m

where aij are numbers, fj is a number, and it is desired to find (x1, · · · , xn) solving each of
the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. It turns out these are the only three cases which can
occur for linear systems. Furthermore, you do exactly the same things to solve any linear
system. You write the augmented matrix and do row operations until you get a simpler
system in which it is possible to see the solution. All is based on the observation that the
row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented
matrix and go to work on it. These things are all the same.

Example 1.11.7 Give the complete solution to the system of equations, −41x+15y = 168,
109x− 40y = −447, −3x+ y = 12, and 2x+ z = −1.

The augmented matrix is 
−41 15 0 168

109 −40 0 −447

−3 1 0 12

2 0 1 −1

 .
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To solve this multiply the top row by 109, the second row by 41, add the top row to the
second row, and multiply the top row by 1/109. Note how this process combined several
row operations. This yields 

−41 15 0 168

0 −5 0 −15

−3 1 0 12

2 0 1 −1

 .

Next take 2 times the third row and replace the fourth row by this added to 3 times the
fourth row. Then take (−41) times the third row and replace the first row by this added to
3 times the first row. Then switch the third and the first rows. This yields

123 −41 0 −492

0 −5 0 −15

0 4 0 12

0 2 3 21

 .

Take −1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields 

492 0 0 −1476

0 0 0 0

0 4 0 12

0 0 3 15


It follows x = −1476

492 = −3, y = 3 and z = 5.
You should practice solving systems of equations. Here are some exercises.

1.12 Exercises

1. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0,
and −2x+ y = −4.

2. Give the complete solution to the system of equations, x+3y+3z = 3, 3x+2y+z = 9,
and −4x+ z = −9.

3. Consider the system −5x + 2y − z = 0 and −5x − 2y − z = 0. Both equations equal
zero and so −5x + 2y − z = −5x − 2y − z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

4. Give the complete solution to the system of equations, x+2y+6z = 5, 3x+2y+6z = 7
,−4x+ 5y + 15z = −7.

5. Give the complete solution to the system of equations

x+ 2y + 3z = 5, 3x+ 2y + z = 7,

−4x+ 5y + z = −7, x+ 3z = 5.

6. Give the complete solution of the system of equations,

x+ 2y + 3z = 5, 3x+ 2y + 2z = 7

−4x+ 5y + 5z = −7, x = 5
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7. Give the complete solution of the system of equations

x+ y + 3z = 2, 3x− y + 5z = 6

−4x+ 9y + z = −8, x+ 5y + 7z = 2

8. Determine a such that there are infinitely many solutions and then find them. Next
determine a such that there are no solutions. Finally determine which values of a
correspond to a unique solution. The system of equations for the unknown variables
x, y, z is

3za2 − 3a+ x+ y + 1 = 0

3x− a− y + z
(
a2 + 4

)
− 5 = 0

za2 − a− 4x+ 9y + 9 = 0

9. Find the solutions to the following system of equations for x, y, z, w.

y + z = 2, z + w = 0, y − 4z − 5w = 2, 2y + z − w = 4

10. Find all solutions to the following equations.

x+ y + z = 2, z + w = 0,

2x+ 2y + z − w = 4, x+ y − 4z − 5z = 2

1.13 Fn
The notation, Cn refers to the collection of ordered lists of n complex numbers. Since every
real number is also a complex number, this simply generalizes the usual notion of Rn, the
collection of all ordered lists of n real numbers. In order to avoid worrying about whether
it is real or complex numbers which are being referred to, the symbol F will be used. If it is
not clear, always pick C. More generally, Fn refers to the ordered lists of n elements of Fn.

Definition 1.13.1 Define Fn ≡ {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n} . (x1, · · · , xn) =
(y1, · · · , yn) if and only if for all j = 1, · · · , n, xj = yj . When (x1, · · · , xn) ∈ Fn, it is
conventional to denote (x1, · · · , xn) by the single bold face letter x. The numbers xj are
called the coordinates. The set

{(0, · · · , 0, t, 0, · · · , 0) : t ∈ F}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · · , 0) is called the
origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) ̸= (2, 1, 4i) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

1.14 Algebra in Fn
There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the scalars
always come from F in either case.
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Definition 1.14.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · · , xn) ≡ (ax1, · · · , axn) . (1.9)

This is known as scalar multiplication. If x,y ∈ Fn then x+ y ∈ Fn and is defined by

x+ y = (x1, · · · , xn) + (y1, · · · , yn)
≡ (x1 + y1, · · · , xn + yn) (1.10)

With this definition, the algebraic properties satisfy the conclusions of the following
theorem.

Theorem 1.14.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v +w = w + v, (1.11)

the commutative law of addition,

(v +w) + z = v+(w + z) , (1.12)

the associative law for addition,
v + 0 = v, (1.13)

the existence of an additive identity,

v+(−v) = 0, (1.14)

the existence of an additive inverse, Also

α (v +w) = αv+αw, (1.15)

(α+ β)v =αv+βv, (1.16)

α (βv) = αβ (v) , (1.17)

1v = v. (1.18)

In the above 0 = (0, · · · , 0).

You should verify that these properties all hold. As usual subtraction is defined as
x− y ≡ x+(−y) . The conclusions of the above theorem are called the vector space axioms.

1.15 Exercises

1. Verify all the properties 1.11-1.18.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)

(d) (2,−5)
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4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered
triples. If you have trouble drawing this, describe it in words.

(a) (1, 2, 0)

(b) (−2,−2, 1)

(c) (−2, 3,−2)

1.16 The Inner Product in Fn
When F = R or C, there is something called an inner product. In case of R it is also called
the dot product. This is also often referred to as the scalar product.

Definition 1.16.1 Let a,b ∈ Fn define a · b as

a · b ≡
n∑

k=1

akbk.

This will also be denoted as (a,b). Often it is also denoted as ⟨a,b⟩. The notation with the
dot is more usually used when the field is R.

With this definition, there are several important properties satisfied by the inner product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
vectors or in other words, points in Fn.

Proposition 1.16.2 The inner product satisfies the following properties.

a · b =b · a (1.19)

a · a ≥ 0 and equals zero if and only if a = 0 (1.20)

(αa+ βb) · c =α (a · c) + β (b · c) (1.21)

c · (αa+ βb) = α (c · a) + β (c · b) (1.22)

|a|2 = a · a (1.23)

You should verify these properties. Also be sure you understand that 1.22 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 1.16.3 Find (1, 2, 0,−1) · (0, i, 2, 3) .

This equals 0 + 2 (−i) + 0 +−3 = −3− 2i
The Cauchy Schwarz inequality takes the following form in terms of the inner product.

I will prove it using only the above axioms for the inner product.

Theorem 1.16.4 The inner product satisfies the inequality

|a · b| ≤ |a| |b| . (1.24)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.
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Proof: First define θ ∈ C such that

θ (a · b) = |a · b| , |θ| = 1,

and define a function of t ∈ R

f (t) = (a+ tθb) · (a+ tθb) .

Then by 1.20, f (t) ≥ 0 for all t ∈ R. Also from 1.21,1.22,1.19, and 1.23

f (t) = a · (a+ tθb) + tθb · (a+ tθb)

= a · a+ tθ (a · b) + tθ (b · a) + t2 |θ|2 b · b

= |a|2 + 2tRe θ (a · b) + |b|2 t2 = |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| ̸= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, its graph is like that illustrated in the following picture

t t

Then the quadratic formula requires that

The discriminant︷ ︸︸ ︷
4 |a · b|2 − 4 |a|2 |b|2 ≤ 0

since otherwise the function, f (t) would have two
real zeros and would necessarily have a graph which

dips below the t axis. This proves 1.24.
It is clear from the axioms of the inner product that equality holds in 1.24 whenever one

of the vectors is a scalar multiple of the other. It only remains to verify this is the only way
equality can occur. If either vector equals zero, then equality is obtained in 1.24 so it can be
assumed both vectors are non zero. Then if equality is achieved, it follows f (t) has exactly
one real zero because the discriminant vanishes. Therefore, for some value of t,a+ tθb = 0
showing that a is a multiple of b. ■

You should note that the entire argument was based only on the properties of the inner
product listed in 1.19 - 1.23. This means that whenever something satisfies these properties,
the Cauchy Schwarz inequality holds. There are many other instances of these properties
besides vectors in Fn. Also note that 1.24 holds if 1.20 is simplified to a · a ≥ 0.

The Cauchy Schwarz inequality allows a proof of the triangle inequality for distances in
Fn in much the same way as the triangle inequality for the absolute value.

Theorem 1.16.5 (Triangle inequality) For a,b ∈ Fn

|a+ b| ≤ |a|+ |b| (1.25)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a| − |b|| ≤ |a− b| (1.26)

Proof : By properties of the inner product and the Cauchy Schwarz inequality,

|a+ b|2 = (a+ b) · (a+ b) = (a · a) + (a · b) + (b · a) + (b · b)

= |a|2 + 2Re (a · b) + |b|2 ≤ |a|2 + 2 |a · b|+ |b|2
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≤ |a|2 + 2 |a| |b|+ |b|2 = (|a|+ |b|)2 .

Taking square roots of both sides you obtain 1.25.
It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
verified. Therefore, it can be assumed both vectors are nonzero. To get equality in the
second inequality above, Theorem 1.16.4 implies one of the vectors must be a multiple of
the other. Say b = αa. Also, to get equality in the first inequality, (a · b) must be a
nonnegative real number. Thus

0 ≤ (a · b) = (a·αa) = α |a|2 .

Therefore, α must be a real number which is nonnegative.
To get the other form of the triangle inequality,

a = a− b+ b

so
|a| = |a− b+ b| ≤ |a− b|+ |b| .

Therefore,
|a| − |b| ≤ |a− b| (1.27)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (1.28)

It follows from 1.27 and 1.28 that 1.26 holds. This is because ||a| − |b|| equals the left side
of either 1.27 or 1.28 and either way, ||a| − |b|| ≤ |a− b| . ■

1.17 What is Linear Algebra?

The above preliminary considerations form the necessary scaffolding upon which linear al-
gebra is built. Linear algebra is the study of a certain algebraic structure called a vector
space described in a special case in Theorem 1.14.2 and in more generality below along with
special functions known as linear transformations. These linear transformations preserve
certain algebraic properties.

A good argument could be made that linear algebra is the most useful subject in all
of mathematics and that it exceeds even courses like calculus in its significance. It is used
extensively in applied mathematics and engineering. Continuum mechanics, for example,
makes use of topics from linear algebra in defining things like the strain and in determining
appropriate constitutive laws. It is fundamental in the study of statistics. For example,
principal component analysis is really based on the singular value decomposition discussed
in this book. It is also fundamental in pure mathematics areas like number theory, functional
analysis, geometric measure theory, and differential geometry. Even calculus cannot be
correctly understood without it. For example, the derivative of a function of many variables
is an example of a linear transformation, and this is the way it must be understood as soon
as you consider functions of more than one variable.

1.18 Exercises

1. Show that (a · b) = 1
4

[
|a+ b|2 − |a− b|2

]
.

2. Prove from the axioms of the inner product the parallelogram identity, |a+ b|2 +

|a− b|2 = 2 |a|2 + 2 |b|2 .
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3. For a,b ∈ Rn, define a · b ≡
∑n

k=1 βkakbk where βk > 0 for each k. Show this satisfies
the axioms of the inner product. What does the Cauchy Schwarz inequality say in
this case.

4. In Problem 3 above, suppose you only know βk ≥ 0. Does the Cauchy Schwarz in-
equality still hold? If so, prove it.

5. Let f, g be continuous functions and define f · g ≡
∫ 1

0
f (t) g (t)dt. Show this satisfies

the axioms of a inner product if you think of continuous functions in the place of a
vector in Fn. What does the Cauchy Schwarz inequality say in this case?

6. Show that if f is a real valued continuous function,
(∫ b

a
f (t) dt

)2
≤ (b− a)

∫ b

a
f (t)

2
dt.



Chapter 2

Linear Transformations

2.1 Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out that such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In general, scalars are just elements of some field. However, in the first
part of this book, the field will typically be either the real numbers or the complex numbers.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices.
For example, here is a matrix.  1 2 3 4

5 2 8 7

6 −9 1 2


This matrix is a 3 × 4 matrix because there are three rows and four columns. The first

row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The first column is

 1

5

6

 . The

convention in dealing with matrices is to always list the rows first and then the columns.
Also, you can remember the columns are like columns in a Greek temple. They stand up
right while the rows just lie there like rows made by a tractor in a plowed field. Elements of
the matrix are identified according to position in the matrix. For example, 8 is in position
2, 3 because it is in the second row and the third column. You might remember that you
always list the rows before the columns by using the phrase Rowman Catholic. The symbol,
(aij) refers to a matrix in which the i denotes the row and the j denotes the column. Using
this notation on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be added,
multiplied by a scalar and sometimes multiplied. To illustrate scalar multiplication, consider
the following example.

3

 1 2 3 4

5 2 8 7

6 −9 1 2

 =

 3 6 9 12

15 6 24 21

18 −27 3 6

 .

The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix −A is defined to equal (−1)A.

Two matrices which are the same size can be added. When this is done, the result is the
matrix which is obtained by adding corresponding entries. Thus 1 2

3 4

5 2

+

 −1 4

2 8

6 −4

 =

 0 6

5 12

11 −2

 .

Two matrices are equal exactly when they are the same size and the corresponding entries
are identical. Thus  0 0

0 0

0 0

 ̸=

(
0 0

0 0

)

37
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because they are different sizes. As noted above, you write (cij) for the matrix C whose
ijth entry is cij . In doing arithmetic with matrices you must define what happens in terms
of the cij sometimes called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 2.1.1 Let A = (aij) and B = (bij) be two m × n matrices. Then A + B = C
where

C = (cij)

for cij = aij + bij . Also if x is a scalar,

xA = (cij)

where cij = xaij . The number Aij will typically refer to the ijth entry of the matrix A. The
zero matrix, denoted by 0 will be the matrix consisting of all zeros.

Do not be upset by the use of the subscripts, ij. The expression cij = aij + bij is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note that there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact for every size
there is a zero matrix.

With this definition, the following properties are all obvious but you should verify all of
these properties are valid for A, B, and C, m× n matrices and 0 an m× n zero matrix,

A+B = B +A, (2.1)

the commutative law of addition,

(A+B) + C = A+ (B + C) , (2.2)

the associative law for addition,
A+ 0 = A, (2.3)

the existence of an additive identity,

A+ (−A) = 0, (2.4)

the existence of an additive inverse. Also, for α, β scalars, the following also hold.

α (A+B) = αA+ αB, (2.5)

(α+ β)A = αA+ βA, (2.6)

α (βA) = αβ (A) , (2.7)

1A = A. (2.8)

The above properties, 2.1 - 2.8 are known as the vector space axioms and the fact that
the m×n matrices satisfy these axioms is what is meant by saying this set of matrices with
addition and scalar multiplication as defined above forms a vector space.

Definition 2.1.2 Matrices which are n × 1 or 1 × n are especially called vectors and are
often denoted by a bold letter. Thus

x =


x1
...

xn


is an n × 1 matrix also called a column vector while a 1 × n matrix of the form (x1 · · ·xn)
is referred to as a row vector.



2.1. MATRICES 39

All the above is fine, but the real reason for considering matrices is that they can be
multiplied. This is where things quit being banal.

First consider the problem of multiplying an m × n matrix by an n × 1 column vector.
Consider the following example

(
1 2 3

4 5 6

) 7

8

9

 =?

It equals

7

(
1

4

)
+ 8

(
2

5

)
+ 9

(
3

6

)
Thus it is what is called a linear combination of the columns. These will be discussed
more later. Motivated by this example, here is the definition of how to multiply an m × n
matrix by an n× 1 matrix (vector).

Definition 2.1.3 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =


v1
...

vn

 , A = (a1, · · · ,an)

where ai is an m× 1 vector. Then Av, written as

(
a1 · · · an

)
v1
...

vn

 ,

is the m× 1 column vector which equals the following linear combination of the columns.

v1a1 + v2a2 + · · ·+ vnan ≡
n∑

j=1

vjaj (2.9)

If the jth column of A is 
A1j

A2j

...

Amj


then 2.9 takes the form

v1


A11

A21

...

Am1

+ v2


A12

A22

...

Am2

+ · · ·+ vn


A1n

A2n

...

Amn


Thus the ith entry of Av is

∑n
j=1Aijvj . Note that multiplication by an m× n matrix takes

an n× 1 matrix, and produces an m× 1 matrix (vector).



40 CHAPTER 2. LINEAR TRANSFORMATIONS

Here is another example.

Example 2.1.4 Compute  1 2 1 3

0 2 1 −2

2 1 4 1




1

2

0

1

 .

First of all, this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) .
Note how the inside numbers cancel. To get the entry in the second row and first and only
column, compute

4∑
k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify

 1 2 1 3

0 2 1 −2

2 1 4 1




1

2

0

1

 =

 8

2

5

 .

With this done, the next task is to multiply an m × n matrix times an n × p matrix.
Before doing so, the following may be helpful.

(m× n) (n× p) = m× p

If the two middle numbers don’t match, you can’t multiply the matrices!

The number of columns on the left equals the number of rows on the right.

Definition 2.1.5 Let A be an m × n matrix and let B be an n × p matrix. Then B is of
the form

B = (b1, · · · ,bp)

where bk is an n× 1 matrix. Then an m× p matrix AB is defined as follows:

AB ≡ (Ab1, · · · , Abp) (2.10)

where Abk is an m× 1 matrix. Hence AB as just defined is an m× p matrix. For example,

Example 2.1.6 Multiply the following.

(
1 2 1

0 2 1

) 1 2 0

0 3 1

−2 1 1


The first thing you need to check before doing anything else is whether it is possible to

do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
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is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form

First column︷ ︸︸ ︷(
1 2 1

0 2 1

) 1

0

−2

,
Second column︷ ︸︸ ︷(

1 2 1

0 2 1

) 2

3

1

,
Third column︷ ︸︸ ︷(

1 2 1

0 2 1

) 0

1

1




You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus(

1 2 1

0 2 1

) 1 2 0

0 3 1

−2 1 1

 =

(
−1 9 3

−2 7 3

)
.

Here is another example.

Example 2.1.7 Multiply the following. 1 2 0

0 3 1

−2 1 1

( 1 2 1

0 2 1

)

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix multiplication is not commutative. This is very different than multiplication of
numbers!

2.1.1 The ijth Entry of a Product

It is important to describe matrix multiplication in terms of entries of the matrices. What
is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would
be the ith entry of Abj . Now

bj =


B1j

...

Bnj


and from the above definition, the ith entry is

n∑
k=1

AikBkj . (2.11)
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In terms of pictures of the matrix, you are doing
A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn




B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...

Bn1 Bn2 · · · Bnp


Then as explained above, the jth column is of the form

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn




B1j

B2j

...

Bnj


which is a m× 1 matrix or column vector which equals

A11

A21

...

Am1

B1j +


A12

A22

...

Am2

B2j + · · ·+


A1n

A2n

...

Amn

Bnj .

The ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑
k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product harmonizes with Definition 2.1.3.

This motivates the definition for matrix multiplication which identifies the ijth entries
of the product.

Definition 2.1.8 Let A = (Aij) be an m×n matrix and let B = (Bij) be an n× p matrix.
Then AB is an m× p matrix and

(AB)ij =

n∑
k=1

AikBkj . (2.12)

Two matrices, A and B are said to be conformable in a particular order if they can be
multiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B are
conformable in the order AB. The above formula for (AB)ij says that it equals the ith row

of A times the jth column of B.

Example 2.1.9 Multiply if possible

 1 2

3 1

2 6

( 2 3 1

7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, it must be possible to do this and the result should be a 3× 3 matrix. The
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answer is of the form
 1 2

3 1

2 6

( 2

7

)
,

 1 2

3 1

2 6

( 3

6

)
,

 1 2

3 1

2 6

( 1

2

)
where the commas separate the columns in the resulting product. Thus the above product
equals  16 15 5

13 15 5

46 42 14

 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal∑

j

a3kbk2 = a31b12 + a32b22 = 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 2.1.10 Multiply if possible

 1 2

3 1

2 6


 2 3 1

7 6 2

0 0 0

 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match.

Example 2.1.11 Multiply if possible

 2 3 1

7 6 2

0 0 0


 1 2

3 1

2 6

 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match. When the multiplication is done it equals 13 13

29 32

0 0

 .

Check this and be sure you come up with the same answer.

Example 2.1.12 Multiply if possible

 1

2

1

( 1 2 1 0
)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify  1

2

1

( 1 2 1 0
)
=

 1 2 1 0

2 4 2 0

1 2 1 0
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2.1.2 Digraphs

Consider the following graph illustrated in the picture.

1 2

3

There are three locations in this graph, labelled 1,2, and 3. The directed lines represent
a way of going from one location to another. Thus there is one way to go from location 1
to location 1. There is one way to go from location 1 to location 3. It is not possible to go
from location 2 to location 3 although it is possible to go from location 3 to location 2. Lets
refer to moving along one of these directed lines as a step. The following 3 × 3 matrix is
a numerical way of writing the above graph. This is sometimes called a digraph, short for
directed graph.  1 1 1

1 0 0

1 1 0


Thus aij , the entry in the ith row and jth column represents the number of ways to go from
location i to location j in one step.

Problem: Find the number of ways to go from i to j using exactly k steps.
Denote the answer to the above problem by akij . We don’t know what it is right now

unless k = 1 when it equals aij described above. However, if we did know what it was, we
could find ak+1

ij as follows.

ak+1
ij =

∑
r

akirarj

This is because if you go from i to j in k + 1 steps, you first go from i to r in k steps and
then for each of these ways there are arj ways to go from there to j. Thus akirarj gives
the number of ways to go from i to j in k + 1 steps such that the kth step leaves you at
location r. Adding these gives the above sum. Now you recognize this as the ijth entry of
the product of two matrices. Thus

a2ij =
∑
r

airarj , a3ij =
∑
r

a2irarj

and so forth. From the above definition of matrix multiplication, this shows that if A is the
matrix associated with the directed graph as above, then akij is just the ijth entry of Ak

where Ak is just what you would think it should be, A multiplied by itself k times.
Thus in the above example, to find the number of ways of going from 1 to 3 in two steps

you would take that matrix and multiply it by itself and then take the entry in the first row
and third column. Thus  1 1 1

1 0 0

1 1 0


2

=

 3 2 1

1 1 1

2 1 1


and you see there is exactly one way to go from 1 to 3 in two steps. You can easily see this
is true from looking at the graph also. Note there are three ways to go from 1 to 1 in 2
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steps. Can you find them from the graph? What would you do if you wanted to consider 5
steps?  1 1 1

1 0 0

1 1 0


5

=

 28 19 13

13 9 6

19 13 9


There are 19 ways to go from 1 to 2 in five steps. Do you think you could list them all by
looking at the graph? I don’t think you could do it without wasting a lot of time.

Of course there is nothing sacred about having only three locations. Everything works
just as well with any number of locations. In general if you have n locations, you would
need to use a n× n matrix.

Example 2.1.13 Consider the following directed graph.

1 2

3 4

Write the matrix which is associated with this directed graph and find the number of ways
to go from 2 to 4 in three steps.

Here you need to use a 4×4 matrix. The one you need is
0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1


Then to find the answer, you just need to multiply this matrix by itself three times and look
at the entry in the second row and fourth column.

0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1


3

=


1 3 2 1

2 1 0 1

3 3 1 2

1 2 1 1


There is exactly one way to go from 2 to 4 in three steps.

How many ways would there be of going from 2 to 4 in five steps?
0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1


5

=


5 9 5 4

5 4 1 3

9 10 4 6

4 6 3 3


There are three ways. Note there are 10 ways to go from 3 to 2 in five steps.

This is an interesting application of the concept of the ijth entry of the product matrices.
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2.1.3 Properties of Matrix Multiplication

As pointed out above, sometimes it is possible to multiply matrices in one order but not
in the other order. What if it makes sense to multiply them in either order? Will they be
equal then?

Example 2.1.14 Compare

(
1 2

3 4

)(
0 1

1 0

)
and

(
0 1

1 0

)(
1 2

3 4

)
.

The first product is (
1 2

3 4

)(
0 1

1 0

)
=

(
2 1

4 3

)
,

the second product is (
0 1

1 0

)(
1 2

3 4

)
=

(
3 4

1 2

)
,

and you see these are not equal. Therefore, you cannot conclude that AB = BA for matrix
multiplication. However, there are some properties which do hold.

Proposition 2.1.15 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (2.13)

(B + C)A = BA+ CA (2.14)

A (BC) = (AB)C (2.15)

Proof: Using the above definition of matrix multiplication,

(A (aB + bC))ij =
∑
k

Aik (aB + bC)kj

=
∑
k

Aik (aBkj + bCkj)

= a
∑
k

AikBkj + b
∑
k

AikCkj

= a (AB)ij + b (AC)ij
= (a (AB) + b (AC))ij

showing that A (B + C) = AB +AC as claimed. Formula 2.14 is entirely similar.
Consider 2.15, the associative law of multiplication. Before reading this, review the

definition of matrix multiplication in terms of entries of the matrices.

(A (BC))ij =
∑
k

Aik (BC)kj

=
∑
k

Aik

∑
l

BklClj

=
∑
l

(AB)il Clj

= ((AB)C)ij .■
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Another important operation on matrices is that of taking the transpose. The following
example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix.  1 1 + 2i

3 1

2 6


T

=

(
1 3 2

1 + 2i 1 6

)

What happened? The first column became the first row and the second column became
the second row. Thus the 3 × 2 matrix became a 2 × 3 matrix. The number 3 was in the
second row and the first column and it ended up in the first row and second column. This
motivates the following definition of the transpose of a matrix.

Definition 2.1.16 Let A be an m × n matrix. Then AT denotes the n ×m matrix which
is defined as follows. (

AT
)
ij
= Aji

The transpose of a matrix has the following important property.

Lemma 2.1.17 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)
T
= BTAT (2.16)

and if α and β are scalars,
(αA+ βB)

T
= αAT + βBT (2.17)

Proof: From the definition,(
(AB)

T
)
ij

= (AB)ji

=
∑
k

AjkBki

=
∑
k

(
BT
)
ik

(
AT
)
kj

=
(
BTAT

)
ij

2.17 is left as an exercise. ■

Definition 2.1.18 An n × n matrix A is said to be symmetric if A = AT . It is said to be
skew symmetric if AT = −A.

Example 2.1.19 Let

A =

 2 1 3

1 5 −3

3 −3 7

 .

Then A is symmetric.

Example 2.1.20 Let

A =

 0 1 3

−1 0 2

−3 −2 0


Then A is skew symmetric.
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There is a special matrix called I and defined by

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j

0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.1.21 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑
k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡

{
1 if i = j

0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. ■

2.1.4 Finding The Inverse of a Matrix

A little later a formula is given for the inverse of a matrix. However, it is not a good way
to find the inverse for a matrix. There is a much easier way and it is this which is presented
here. It is also important to note that not all matrices have inverses.

Example 2.1.24 Let A =

(
1 1

1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,(
1 1

1 1

)(
−1

1

)
=

(
0

0

)
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and if A−1 existed, this could not happen because you could multiply on the left by the
inverse A and conclude the vector (−1, 1)

T
= (0, 0)

T
. Thus the answer is that A does not

have an inverse.
Suppose you want to find B such that AB = I. Let

B =
(

b1 · · · bn

)
Also the ith column of I is

ei =
(

0 · · · 0 1 0 · · · 0
)T

Thus, if AB = I, bi, the i
th column of B must satisfy the equation Abi = ei. The augmented

matrix for finding bi is (A|ei) . Thus, by doing row operations till A becomes I, you end up
with (I|bi) where bi is the solution to Abi = ei. Now the same sequence of row operations
works regardless of the right side of the agumented matrix (A|ei) and so you can save trouble
by simply doing the following.

(A|I) row operations→ (I|B)

and the ith column of B is bi, the solution to Abi = ei. Thus AB = I.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss Jordan procedure. It produces the inverse if the matrix
has one. Actually, it produces the right inverse.

Procedure 2.1.25 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then do row operations until you obtain an n× 2n matrix of the form

(I|B) (2.18)

if possible. When this has been done, B = A−1. The matrix A has an inverse exactly when
it is possible to do row operations and end up with one like 2.18.

As described above, the following is a description of what you have just done.

A
RqRq−1···R1→ I

I
RqRq−1···R1→ B

where those Ri sympolize row operations. It follows that you could undo what you did by
doing the inverse of these row operations in the opposite order. Thus

I
R−1

1 ···R−1
q−1R

−1
q→ A

B
R−1

1 ···R−1
q−1R

−1
q→ I

Here R−1 is the row operation which undoes the row operation R. Therefore, if you form
(B|I) and do the inverse of the row operations which produced I from A in the reverse
order, you would obtain (I|A) . By the same reasoning above, it follows that A is a right
inverse of B and so BA = I also. It follows from Proposition 2.1.23 that B = A−1. Thus
the procedure produces the inverse whenever it works.
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If it is possible to do row operations and end up with A
row operations→ I, then the above

argument shows that A has an inverse. Conversely, if A has an inverse, can it be found by
the above procedure? In this case there exists a unique solution x to the equation Ax = y.
In fact it is just x = Ix = A−1y. Thus in terms of augmented matrices, you would expect
to obtain

(A|y) →
(
I|A−1y

)
That is, you would expect to be able to do row operations to A and end up with I.

The details will be explained fully when a more careful discussion is given which is based
on more fundamental considerations. For now, it suffices to observe that whenever the above
procedure works, it finds the inverse.

Example 2.1.26 Let A =

 1 0 1

1 −1 1

1 1 −1

. Find A−1.

Form the augmented matrix 1 0 1 1 0 0

1 −1 1 0 1 0

1 1 −1 0 0 1

 .

Now do row operations until the n×n matrix on the left becomes the identity matrix. This
yields after some computations, 1 0 0 0 1

2
1
2

0 1 0 1 −1 0

0 0 1 1 − 1
2 − 1

2


and so the inverse of A is the matrix on the right, 0 1

2
1
2

1 −1 0

1 − 1
2 − 1

2

 .

Checking the answer is easy. Just multiply the matrices and see if it works. 1 0 1

1 −1 1

1 1 −1


 0 1

2
1
2

1 −1 0

1 − 1
2 − 1

2

 =

 1 0 0

0 1 0

0 0 1

 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.

Example 2.1.27 Let A =

 1 2 2

1 0 2

3 1 −1

. Find A−1.

Set up the augmented matrix (A|I) 1 2 2 1 0 0

1 0 2 0 1 0

3 1 −1 0 0 1





2.1. MATRICES 51

Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields 1 2 2 1 0 0

0 −2 0 −1 1 0

0 −5 −7 −3 0 1

 .

Then take 5 times the second row and add to −2 times the last row. 1 2 2 1 0 0

0 −10 0 −5 5 0

0 0 14 1 5 −2


Next take the last row and add to (−7) times the top row. This yields −7 −14 0 −6 5 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2

 .

Now take (−7/5) times the second row and add to the top. −7 0 0 1 −2 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2

 .

Finally divide the top row by −7, the second row by -10 and the bottom row by 14 which
yields  1 0 0 − 1

7
2
7

2
7

0 1 0 1
2 − 1

2 0

0 0 1 1
14

5
14 − 1

7

 .

Therefore, the inverse is  − 1
7

2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7



Example 2.1.28 Let A =

 1 2 2

1 0 2

2 2 4

. Find A−1.

Write the augmented matrix (A|I) 1 2 2 1 0 0

1 0 2 0 1 0

2 2 4 0 0 1


and proceed to do row operations attempting to obtain

(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom. 1 2 2 1 0 0

0 −2 0 −1 1 0

0 −2 0 −2 0 1
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Next add (−1) times the second row to the bottom row. 1 2 2 1 0 0

0 −2 0 −1 1 0

0 0 0 −1 −1 1


At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix (A|I) . Thus there will be no way to obtain I on
the left. In other words, the three systems of equations you must solve to find the inverse
have no solution. In particular, there is no solution for the first column of A−1 which must
solve

A

 x

y

z

 =

 1

0

0


because a sequence of row operations leads to the impossible equation, 0x+ 0y + 0z = −1.

2.2 Exercises

1. In 2.1 - 2.8 describe −A and 0.

2. Let A be an n×nmatrix. Show A equals the sum of a symmetric and a skew symmetric
matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

4. Using only the properties 2.1 - 2.8 show −A is unique.

5. Using only the properties 2.1 - 2.8 show 0 is unique.

6. Using only the properties 2.1 - 2.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

7. Using only the properties 2.1 - 2.8 and previous problems show (−1)A = −A.

8. Prove 2.17.

9. Prove that ImA = A where A is an m× n matrix.

10. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk.

11. Use the result of Problem 10 to verify directly that (AB)
T
= BTAT without making

any reference to subscripts.

12. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xTy and xyT if possible.

13. Give an example of matrices, A,B,C such that B ̸= C, A ̸= 0, and yet AB = AC.

14. Let A =

 1 1

−2 −1

1 2

, B =

(
1 −1 −2

2 1 −2

)
, and C =

 1 1 −3

−1 2 0

−3 −1 0

 . Find

if possible the following products. AB,BA,AC,CA,CB,BC.
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15. Consider the following digraph.

1 2

3 4

Write the matrix associated with this digraph and find the number of ways to go from
3 to 4 in three steps.

16. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

17. Show (AB)
−1

= B−1A−1.

18. Show that if A is an invertible n× n matrix, then so is AT and
(
AT
)−1

=
(
A−1

)T
.

19. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

20. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸= −I.

21. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

22. Write


x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1

 in the form A


x1

x2

x3

x4

 where A is an appropriate matrix.

23. Give another example other than the one given in this section of two square matrices,
A and B such that AB ̸= BA.

24. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)
2
= A2 − 2AB +B2

(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

(e) A2B2 = A (AB)B

(f) (A+B)
3
= A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A−B) = A2 −B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

25. Let A =

(
−1 −1

3 3

)
. Find all 2× 2 matrices, B such that AB = 0.
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26. Prove that if A−1 exists and Ax = 0 then x = 0.

27. Let

A =

 1 2 3

2 1 4

1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =

 1 0 3

2 3 4

1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =

 1 2 3

2 1 4

4 5 10

 .

Find A−1 if possible. If A−1 does not exist, determine why.

30. Let

A =


1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2


Find A−1 if possible. If A−1 does not exist, determine why.

2.3 Linear Transformations

By 2.13, if A is an m× n matrix, then for v,u vectors in Fn and a, b scalars,

A

 ∈Fn︷ ︸︸ ︷
au+ bv

 = aAu+ bAv ∈ Fm (2.19)

Definition 2.3.1 A function, A : Fn → Fm is called a linear transformation if for all
u,v ∈ Fn and a, b scalars, 2.19 holds.

From 2.19, matrix multiplication defines a linear transformation as just defined. It
turns out this is the only type of linear transformation available. Thus if A is a linear
transformation from Fn to Fm, there is always a matrix which produces A. Before showing
this, here is a simple definition.

Definition 2.3.2 A vector, ei ∈ Fn is defined as follows:

ei ≡



0
...

1
...

0


,
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where the 1 is in the ith position and there are zeros everywhere else. Thus

ei = (0, · · · , 0, 1, 0, · · · , 0)T .

Of course the ei for a particular value of i in Fn would be different than the ei for that
same value of i in Fm for m ̸= n. One of them is longer than the other. However, which one
is meant will be determined by the context in which they occur.

These vectors have a significant property.

Lemma 2.3.3 Let v ∈ Fn. Thus v is a list of numbers arranged vertically, v1, · · · , vn. Then

eTi v = vi. (2.20)

Also, if A is an m× n matrix, then letting ei ∈ Fm and ej ∈ Fn,

eTi Aej = Aij (2.21)

Proof: First note that eTi is a 1 × n matrix and v is an n × 1 matrix so the above
multiplication in 2.20 makes perfect sense. It equals

(0, · · · , 1, · · · 0)



v1
...

vi
...

vn


= vi

as claimed.
Consider 2.21. From the definition of matrix multiplication, and noting that (ej)k = δkj

eTi Aej = eTi



∑
k A1k (ej)k

...∑
k Aik (ej)k

...∑
k Amk (ej)k


= eTi



A1j

...

Aij

...

Amj


= Aij

by the first part of the lemma. ■

Theorem 2.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eTi Lek (2.22)

Stated in another way, the kth column of A equals Lek.

Proof: By the lemma,

(Lx)i = eTi Lx = eTi
∑
k

xkLek =
∑
k

(
eTi Lek

)
xk.
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Let Aik = eTi Lek, to prove the existence part of the theorem.
To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is

true for x = ej and then multiply on the left by eTi to obtain

Bij = eTi Bej = eTi Aej = Aij

showing A = B. ■

Corollary 2.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · · , Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 2.22 depends only on these vectors. ■

For a different proof of this theorem and corollary, see the following section.
This theorem shows that any linear transformation defined on Fn can always be consid-

ered as matrix multiplication. Therefore, the terms “linear transformation” and “matrix”
are often used interchangeably. For example, to say that a matrix is one to one, means the
linear transformation determined by the matrix is one to one.

Example 2.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =

(
2

1

)
and Le2 =

(
1

3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix(
2 1

1 3

)
.

2.4 Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m × n matrix
A ≡ [T ] with the property that

Ax = Tx (2.23)

for all x ∈ Fn. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 2.23.
Then if x ∈ Fn it follows

x =

n∑
i=1

xiei

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =

n∑
i=1

xiT (ei)

=

 | |
T (e1) · · · T (en)

| |




x1
...

xn

 ≡ A


x1
...

xn


and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the existence part of the following theorem.
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Theorem 2.4.1 Let T be a linear transformation from Fn to Fm. Then the matrix A sat-
isfying 2.23 is given by  | |

T (e1) · · · T (en)

| |


where Tei is the ith column of A.

Proof: It remains to verify uniqueness. However, if A is a matrix which works, A =(
a1 · · · an

)
, then Tei ≡ Aei = ai and so the matrix is of the form claimed above. ■

Example 2.4.2 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡

(
1

0

)
and e2 ≡

(
0

1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

e1

e2

From Theorem 2.4.1, you only need to find Te1 and Te2, the first being the first column
of the desired matrix A and the second being the second column. From drawing a picture
and doing a little geometry, you see that

Te1 =

(
cos θ

sin θ

)
, Te2 =

(
− sin θ

cos θ

)
.

Therefore, from Theorem 2.4.1,

A =

(
cos θ − sin θ

sin θ cos θ

)
Example 2.4.3 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of ϕ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + ϕ.

Let Tθ+ϕ denote the linear transformation which rotates every vector through an angle
of θ + ϕ. Then to get Tθ+ϕ, you could first do Tϕ and then do Tθ where Tϕ is the linear
transformation which rotates through an angle of ϕ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+ϕ, Aϕ,
and Aθ, you must have for every x

Aθ+ϕx = Tθ+ϕx = TθTϕx = AθAϕx.

Consequently, you must have

Aθ+ϕ =

(
cos (θ + ϕ) − sin (θ + ϕ)

sin (θ + ϕ) cos (θ + ϕ)

)
= AθAϕ

=

(
cos θ − sin θ

sin θ cos θ

)(
cosϕ − sinϕ

sinϕ cosϕ

)
.
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Therefore,(
cos (θ + ϕ) − sin (θ + ϕ)

sin (θ + ϕ) cos (θ + ϕ)

)
=

(
cos θ cosϕ− sin θ sinϕ − cos θ sinϕ− sin θ cosϕ

sin θ cosϕ+ cos θ sinϕ cos θ cosϕ− sin θ sinϕ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

Example 2.4.4 Find the matrix of the linear transformation which rotates vectors in R3

counter-clockwise about the positive z axis.

Let T be the name of this linear transformation. In this case, Te3 = e3, Te1 =
(cos θ, sin θ, 0)

T
, and Te2 = (− sin θ, cos θ, 0)

T
. Therefore, the matrix of this transformation

is just  cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.24)

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v →proju (v) is linear,

proju (αv+βw) =

(
αv+βw · u

u · u

)
u = α

(v · u
u · u

)
u+ β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 2.4.5 Let the projection map be defined above and let u = (1, 2, 3)
T
. Find the

matrix of this linear transformation with respect to the usual basis.

You can find this matrix in the same way as in earlier examples. proju (ei) gives the i
th

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1

14

 1

2

3

 ,
2

14

 1

2

3

 ,
3

14

 1

2

3

 .

Hence the matrix is

1

14

 1 2 3

2 4 6

3 6 9

 .

Example 2.4.6 Find the matrix of the linear transformation which reflects all vectors in
R3 through the xz plane.
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As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is 1 0 0

0 −1 0

0 0 1

 .

Example 2.4.7 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.

This linear transformation is just the composition of two linear transformations having
matrices  cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ,

 1 0 0

0 −1 0

0 0 1


respectively. Thus the matrix desired is 1 0 0

0 −1 0

0 0 1


 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 =

 cos θ − sin θ 0

− sin θ − cos θ 0

0 0 1

 .

2.5 The Null Space of a Linear Transformation

The null space or kernel of a matrix or linear transformation is given in the following
definition. Essentially, it is just the set of all vectors which are sent to the zero vector by
the linear transformation.

Definition 2.5.1 Let L : Fn → Fm be a linear transformation and let its matrix be the
m × n matrix A. Then ker (L) ≡ {x ∈ Fn : Lx = 0} . Sometimes people also write this as
N (A) , the null space of A.

Then there is a fundamental result in the case where m < n. In this case, the matrix A
of the linear transformation looks like the following.

Theorem 2.5.2 Let A be an m × n matrix where m < n. Then N (A) contains nonzero
vectors.

Proof: First consider the case where A is a 1× n matrix for n > 1. Say

A =
(
a1 · · · an

)
If a1 = 0, consider the vector x = e1. If a1 ̸= 0, let

x =


b

1
...

1
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where b is chosen to satisfy the equation

a1b+

n∑
k=2

ak = 0

Suppose now that the theorem is true for any m × n matrix with n > m and consider an
(m× 1) × n matrix A where n > m + 1. If the first column of A is 0, then you could let
x = e1 as above. If the first column is not the zero vector, then by doing row operations,
the equation Ax = 0 can be reduced to the equivalent system

A1x = 0

where A1 is of the form

A1 =

(
1 aT

0 B

)
where B is an m × (n− 1) matrix. Since n > m + 1, it follows that (n− 1) > m and so
by induction, there exists a nonzero vector y ∈ Fn−1 such that By = 0. Then consider the
vector

x =

(
b

y

)

A1x has for its top entry the expression b + aTy. Letting B =


bT
1

...

bT
m

 , the ith entry of

A1x for i > 1 is of the form bT
i y = 0. Thus if b is chosen to satisfy the equation b+aTy = 0,

then A1x = 0.■

2.6 Subspaces and Spans

Definition 2.6.1 Let {x1, · · · ,xp} be vectors in Fn. A linear combination is any expression
of the form

p∑
i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span (x1, · · · ,xn) . A nonempty V ⊆ Fn, is is called a subspace if whenever α, β are scalars
and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is “closed under the
algebraic operations of vector addition and scalar multiplication”. The empty set is never a
subspace by definition. A linear combination of vectors is said to be trivial if all the scalars
in the linear combination equal zero. A set of vectors is said to be linearly independent if
the only linear combination of these vectors which equals the zero vector is the trivial linear
combination. Thus {x1, · · · ,xn} is called linearly independent if whenever

p∑
k=1

ckxk = 0

it follows that all the scalars ck equal zero. A set of vectors, {x1, · · · ,xp} , is called linearly
dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars ci, i = 1, · · · , n, not all zero such that

∑p
k=1 ckxk = 0.
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Proposition 2.6.2 Let V ⊆ Fn. Then V is a subspace if and only if it is a vector space
itself with respect to the same operations of scalar multiplication and vector addition.

Proof: Suppose first that V is a subspace. All algebraic properties involving scalar
multiplication and vector addition hold for V because these things hold for Fn. Is 0 ∈ V ? Yes
it is. This is because 0v ∈ V and 0v = 0. By assumption, for α a scalar and v ∈ V, αv ∈ V.
Therefore, −v = (−1)v ∈ V . Thus V has the additive identity and additive inverse. By
assumption, V is closed with respect to the two operations. Thus V is a vector space. If
V ⊆ Fn is a vector space, then by definition, if α, β are scalars and u,v vectors in V, it
follows that αv + βu ∈ V . ■

Thus, from the above, subspaces of Fn are just subsets of Fn which are themselves vector
spaces.

Lemma 2.6.3 A set of vectors {x1, · · · ,xp} is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that {x1, · · · ,xp} is linearly independent. If xk =
∑

j ̸=k cjxj , then

0 = 1xk +
∑
j ̸=k

(−cj)xj ,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · · ,xp} linearly
independent? If it is not, there exist scalars ci, not all zero such that

p∑
i=1

cixi = 0.

Say ck ̸= 0. Then you can solve for xk as

xk =
∑
j ̸=k

(−cj) /ckxj

contrary to assumption. ■
The following is called the exchange theorem.

Theorem 2.6.4 (Exchange Theorem) Let {x1, · · · ,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · · ,ys) . Then r ≤ s.

Proof 1: Suppose not. Then r > s. By assumption, there exist scalars aji such that

xi =

s∑
j=1

ajiyj

The matrix whose jith entry is aji has more columns than rows. Therefore, by Theorem
2.5.2 there exists a nonzero vector b ∈ Fr such that Ab = 0. Thus

0 =

r∑
i=1

ajibi, each j.

Then
r∑

i=1

bixi =

r∑
i=1

bi

s∑
j=1

ajiyj =

s∑
j=1

(
r∑

i=1

ajibi

)
yj = 0



62 CHAPTER 2. LINEAR TRANSFORMATIONS

contradicting the assumption that {x1, · · · ,xr} is linearly independent.
Proof 2: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such

that

x1 =

s∑
i=1

ciyi. (2.25)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 2.25 for yk and obtain

yk ∈ span

x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · · ,yk−1,yk+1, · · · ,ys

 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =

s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V, there
exist scalars ci and dj such that

xl+1 =
l∑

i=1

cixi +

p∑
j=1

djzj . (2.26)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, 2.26 can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span

x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · · zk−1, zk+1, · · · , zp

 = V.

Continue this way, eventually obtaining

span {x1, · · · ,xs} = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.
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Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as
small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m + j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. ■

Definition 2.6.5 The set of vectors, {x1, · · · ,xr} is a basis for Fn if span (x1, · · · ,xr) =
Fn and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.6 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.

Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · · , 0, 1, 0 · · · , 0)

for i = 1, 2, · · · , n are a basis for Fn. ■

Lemma 2.6.7 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span (v1, · · · ,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α

r∑
k=1

ckvk + β

r∑
k=1

dkvk?

Is it also in V ?

α

r∑
k=1

ckvk + β

r∑
k=1

dkvk =

r∑
k=1

(αck + βdk)vk ∈ V

so the answer is yes. ■

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of
hissing as in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Definition 2.6.8 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace V of Fn if
span (x1, · · · ,xr) = V and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.9 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. ■

Definition 2.6.10 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V
is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 2.6.11 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. ■

Theorem 2.6.12 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 2.6.11 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ≠ V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. ■

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 2.6.13 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.

Proof: This follows immediately from the proof of Theorem 2.6.12. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. ■

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 2.6.14 Let V be a subspace of Fn and suppose span (u1 · · · ,up) = V where
the ui are nonzero vectors. Then there exist vectors {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆
{u1 · · · ,up} and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set
{v1 · · · ,vr} ⊆ {u1 · · · ,up} ,

span (v1 · · · ,vr) = V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r − 1 vectors
would still span V contrary to the definition of r. ■
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2.7 An Application to Matrices

The following is a theorem of major significance.

Theorem 2.7.1 Suppose A is an n × n matrix. Then A is one to one (injective) if and
only if A is onto (surjective). Also, if B is an n × n matrix and AB = I, then it follows
BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek
is the column vector which is all zeros except for a 1 in the kth position. This set of vectors
is linearly independent because if

n∑
k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑
k=1

ckek = 0

which implies each ck = 0 because the ek are clearly linearly independent.
Therefore, {Ae1, · · · , Aen} must be a basis for Fn because if not there would exist a

vector, y /∈ span (Ae1, · · · , Aen) and then by Lemma 2.6.11, {Ae1, · · · , Aen,y} would be
an independent set of vectors having n+ 1 vectors in it, contrary to the exchange theorem.
It follows that for y ∈ Fn there exist constants, ci such that

y =

n∑
k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 2.6.3 on Page 61, one of the columns
is a linear combination of the others and so the span of the columns of A equals the span of
the n− 1 other columns. This violates the exchange theorem because {e1, · · · en} would be
a linearly independent set of vectors contained in the span of only n− 1 vectors. Therefore,
the columns of A must be independent and this is equivalent to saying that Ax = 0 if and
only if x = 0. This implies A is one to one because if Ax = Ay, then A (x− y) = 0 and so
x− y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since
otherwise, there would exist, x ̸= 0 such that Bx = 0 and then ABx = A0 = 0 ̸= Ix.
Therefore, from what was just shown, B is also onto. In addition to this, A must be one
to one because if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing
y = 0. Now from what is given to be so, it follows (AB)A = A and so using the associative
law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. ■
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This theorem shows that if an n × n matrix B acts like an inverse when multiplied on
one side of A, it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =

 1 0

0 1

1 0

 , B =

(
1 0 0

1 1 −1

)
(2.27)

Then

BA =

(
1 0

0 1

)
but

AB =

 1 0 0

1 1 −1

1 0 0

 .

2.8 Matrices and Calculus

The study of moving coordinate systems gives a non trivial example of the usefulness of the
ideas involving linear transformations and matrices. To begin with, here is the concept of
the product rule extended to matrix multiplication.

Definition 2.8.1 Let A (t) be an m × n matrix. Say A (t) = (Aij (t)) . Suppose also that
Aij (t) is a differentiable function for all i, j. Then define A′ (t) ≡

(
A′

ij (t)
)
. That is, A′ (t)

is the matrix which consists of replacing each entry by its derivative. Such an m×n matrix
in which the entries are differentiable functions is called a differentiable matrix.

The next lemma is just a version of the product rule.

Lemma 2.8.2 Let A (t) be an m × n matrix and let B (t) be an n × p matrix with the
property that all the entries of these matrices are differentiable functions. Then

(A (t)B (t))
′
= A′ (t)B (t) +A (t)B′ (t) .

Proof: This is like the usual proof one sees in a calculus course.

1

h
(A (t+ h)B (t+ h)−A (t)B (t)) =

1

h
(A (t+ h)B (t+ h)−A (t+ h)B (t)) +

1

h
(A (t+ h)B (t)−A (t)B (t))

= A (t+ h)
B (t+ h)−B (t)

h
+
A (t+ h)−A (t)

h
B (t)

and now, using the fact that the entries of the matrices are all differentiable, one can pass
to a limit in both sides as h→ 0 and conclude that

(A (t)B (t))
′
= A′ (t)B (t) +A (t)B′ (t)■
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2.8.1 The Coriolis Acceleration

Imagine a point on the surface of the earth. Now consider unit vectors, one pointing South,
one pointing East and one pointing directly away from the center of the earth.

i

k
j

Denote the first as i, the second as j, and the third as k. If you are standing on the earth
you will consider these vectors as fixed, but of course they are not. As the earth turns, they
change direction and so each is in reality a function of t. Nevertheless, it is with respect
to these apparently fixed vectors that you wish to understand acceleration, velocities, and
displacements.

In general, let i∗, j∗,k∗ be the usual fixed vectors in space and let i (t) , j (t) ,k (t) be an
orthonormal basis of vectors for each t, like the vectors described in the first paragraph.
It is assumed these vectors are C1 functions of t. Letting the positive x axis extend in the
direction of i (t) , the positive y axis extend in the direction of j (t), and the positive z axis
extend in the direction of k (t) , yields a moving coordinate system. Now let u be a vector
and let t0 be some reference time. For example you could let t0 = 0. Then define the
components of u with respect to these vectors, i, j,k at time t0 as

u ≡ u1i (t0) + u2j (t0) + u3k (t0) .

Let u (t) be defined as the vector which has the same components with respect to i, j,k but
at time t. Thus

u (t) ≡ u1i (t) + u2j (t) + u3k (t) .

and the vector has changed although the components have not.
This is exactly the situation in the case of the apparently fixed basis vectors on the earth

if u is a position vector from the given spot on the earth’s surface to a point regarded as
fixed with the earth due to its keeping the same coordinates relative to the coordinate axes
which are fixed with the earth. Now define a linear transformation Q (t) mapping R3 to R3

by
Q (t)u ≡ u1i (t) + u2j (t) + u3k (t)

where
u ≡ u1i (t0) + u2j (t0) + u3k (t0)

Thus letting v be a vector defined in the same manner as u and α, β, scalars,

Q (t) (αu+ βv) ≡
(
αu1 + βv1

)
i (t) +

(
αu2 + βv2

)
j (t) +

(
αu3 + βv3

)
k (t)

=
(
αu1i (t) + αu2j (t) + αu3k (t)

)
+
(
βv1i (t) + βv2j (t) + βv3k (t)

)
= α

(
u1i (t) + u2j (t) + u3k (t)

)
+ β

(
v1i (t) + v2j (t) + v3k (t)

)
≡ αQ (t)u+ βQ (t)v
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showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,
since the vectors, i (t) , j (t) ,k (t) form an orthonormal set,

|Q (t)u| =

(
3∑

i=1

(
ui
)2)1/2

= |u| .

Lemma 2.8.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.

Then Q (t)Q (t)
T
= Q (t)

T
Q (t) = I. Also, if u (t) ≡ Q (t)u, then there exists a vector, Ω (t)

such that
u′ (t) = Ω (t)× u (t) .

The symbol × refers to the cross product.

Proof: Recall that (z ·w) = 1
4

(
|z+w|2 − |z−w|2

)
. Therefore,

(Q (t)u·Q (t)w) =
1

4

(
|Q (t) (u+w)|2 − |Q (t) (u−w)|2

)
=

1

4

(
|u+w|2 − |u−w|2

)
= (u ·w) .

This implies (
Q (t)

T
Q (t)u ·w

)
= (u ·w)

for all u,w. Therefore, Q (t)
T
Q (t)u = u and so Q (t)

T
Q (t) = Q (t)Q (t)

T
= I. This proves

the first part of the lemma.
It follows from the product rule, Lemma 2.8.2 that

Q′ (t)Q (t)
T
+Q (t)Q′ (t)

T
= 0

and so

Q′ (t)Q (t)
T
= −

(
Q′ (t)Q (t)

T
)T

. (2.28)

From the definition, Q (t)u = u (t) ,

u′ (t) = Q′ (t)u =Q′ (t)

=u︷ ︸︸ ︷
Q (t)

T
u (t).

Then writing the matrix of Q′ (t)Q (t)
T

with respect to fixed in space orthonormal basis
vectors, i∗, j∗,k∗, where these are the usual basis vectors for R3, it follows from 2.28 that
the matrix of Q′ (t)Q (t)

T
is of the form 0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0


for some time dependent scalars ωi. Therefore, u1

u2

u3


′

(t)=

 0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0


 u1

u2

u3

 (t)
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where the ui are the components of the vector u (t) in terms of the fixed vectors i∗, j∗,k∗.
Therefore,

u′ (t) = Ω (t)× u (t) = Q′ (t)Q (t)
T
u (t) (2.29)

where
Ω (t) = ω1 (t) i

∗+ω2 (t) j
∗+ω3 (t)k

∗.

because

Ω (t)× u (t) ≡

∣∣∣∣∣∣∣
i∗ j∗ k∗

w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣∣ ≡
i∗
(
w2u

3 − w3u
2
)
+ j∗

(
w3u

1 − w3
1

)
+ k∗ (w1u

2 − w2u
1
)
.

This proves the lemma and yields the existence part of the following theorem. ■

Theorem 2.8.4 Let i (t) , j (t) ,k (t) be as described. Then there exists a unique vector Ω (t)
such that if u (t) is a vector whose components are constant with respect to i (t) , j (t) ,k (t) ,
then

u′ (t) = Ω (t)× u (t) .

Proof: It only remains to prove uniqueness. SupposeΩ1 also works. Then u (t) = Q (t)u
and so u′ (t) = Q′ (t)u and

Q′ (t)u = Ω×Q (t)u = Ω1 ×Q (t)u

for all u. Therefore,
(Ω−Ω1)×Q (t)u = 0

for all u and since Q (t) is one to one and onto, this implies (Ω−Ω1)×w = 0 for all w and
thus Ω−Ω1 = 0. ■

Now let R (t) be a position vector and let

r (t) = R (t) + rB (t)

where
rB (t) ≡ x (t) i (t)+y (t) j (t)+z (t)k (t) .

R(t)

rB(t)

r(t)

In the example of the earth, R (t) is the position vector of a point p (t) on the earth’s
surface and rB (t) is the position vector of another point from p (t) , thus regarding p (t)
as the origin. rB (t) is the position vector of a point as perceived by the observer on the
earth with respect to the vectors he thinks of as fixed. Similarly, vB (t) and aB (t) will be
the velocity and acceleration relative to i (t) , j (t) ,k (t), and so vB = x′i + y′j + z′k and
aB = x′′i + y′′j + z′′k. Then

v ≡ r′ = R′ + x′i+ y′j+ z′k+xi′ + yj′ + zk′.

By , 2.29, if e ∈{i, j,k} , e′ = Ω× e because the components of these vectors with respect
to i, j,k are constant. Therefore,

xi′ + yj′ + zk′ = xΩ× i+ yΩ× j+ zΩ× k

= Ω× (xi+ yj+ zk)
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and consequently,

v = R′ + x′i+ y′j+ z′k+Ω× rB = R′ + x′i+ y′j+ z′k+Ω× (xi+ yj+ zk) .

Now consider the acceleration. Quantities which are relative to the moving coordinate
system and quantities which are relative to a fixed coordinate system are distinguished by
using the subscript B on those relative to the moving coordinate system.

a = v′ = R′′ + x′′i+ y′′j+ z′′k+

Ω×vB︷ ︸︸ ︷
x′i′ + y′j′ + z′k′ + Ω′ × rB

+Ω×

 vB︷ ︸︸ ︷
x′i+ y′j+ z′k+

Ω×rB(t)︷ ︸︸ ︷
xi′ + yj′ + zk′


= R′′ + aB +Ω′ × rB + 2Ω× vB +Ω× (Ω× rB) .

The acceleration aB is that perceived by an observer who is moving with the moving coor-
dinate system and for whom the moving coordinate system is fixed. The term Ω× (Ω× rB)
is called the centripetal acceleration. Solving for aB ,

aB = a−R′′ −Ω′ × rB − 2Ω× vB −Ω× (Ω× rB) . (2.30)

Here the term − (Ω× (Ω× rB)) is called the centrifugal acceleration, it being an acceleration
felt by the observer relative to the moving coordinate system which he regards as fixed, and
the term −2Ω× vB is called the Coriolis acceleration, an acceleration experienced by the
observer as he moves relative to the moving coordinate system. The mass multiplied by the
Coriolis acceleration defines the Coriolis force.

There is a ride found in some amusement parks in which the victims stand next to
a circular wall covered with a carpet or some rough material. Then the whole circular
room begins to revolve faster and faster. At some point, the bottom drops out and the
victims are held in place by friction. The force they feel is called centrifugal force and it
causes centrifugal acceleration. It is not necessary to move relative to coordinates fixed with
the revolving wall in order to feel this force and it is pretty predictable. However, if the
nauseated victim moves relative to the rotating wall, he will feel the effects of the Coriolis
force and this force is really strange. The difference between these forces is that the Coriolis
force is caused by movement relative to the moving coordinate system and the centrifugal
force is not.

2.8.2 The Coriolis Acceleration on the Rotating Earth

Now consider the earth. Let i∗, j∗,k∗, be the usual basis vectors fixed in space with k∗

pointing in the direction of the north pole from the center of the earth and let i, j,k be the
unit vectors described earlier with i pointing South, j pointing East, and k pointing away
from the center of the earth at some point of the rotating earth’s surface p. Letting R (t) be
the position vector of the point p, from the center of the earth, observe the coordinates of
R (t) are constant with respect to i (t) , j (t) ,k (t). Also, since the earth rotates from West
to East and the speed of a point on the surface of the earth relative to an observer fixed in
space is ω |R| sinϕ where ω is the angular speed of the earth about an axis through the poles
and ϕ is the polar angle measured from the positive z axis down as in spherical coordinates.
It follows from the geometric definition of the cross product that

R′ = ωk∗ ×R
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Therefore, the vector of Theorem 2.8.4 is Ω = ωk∗ and so

R′′ =

=0︷ ︸︸ ︷
Ω′ ×R+ Ω×R′ = Ω× (Ω×R)

since Ω does not depend on t. Formula 2.30 implies

aB = a−Ω× (Ω×R)− 2Ω× vB −Ω× (Ω× rB) . (2.31)

In this formula, you can totally ignore the term Ω× (Ω× rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note

ω

seconds in a day︷ ︸︸ ︷
(24) (3600) = 2π, and so ω = 7.2722 × 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than(
7.2722× 10−5

)2 |rB | .
Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a is due to gravity, then

aB = a−Ω× (Ω×R)− 2Ω× vB =

≡g︷ ︸︸ ︷
−GM (R+ rB)

|R+ rB |3
−Ω× (Ω×R)− 2Ω× vB ≡ g − 2Ω× vB.

Note that
Ω× (Ω×R) = (Ω ·R)Ω− |Ω|2 R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the poles and at the equator,
although the components of acceleration which are in other directions are very small when
compared with the acceleration due to the force of gravity and are often neglected. There-
fore, if the only force acting on an object is due to gravity, the following formula describes
the acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2 (Ω× vB)

While the vectorΩ is quite small, if the relative velocity, vB is large, the Coriolis acceleration
could be significant. This is described in terms of the vectors i (t) , j (t) ,k (t) next.

Letting (ρ, θ, ϕ) be the usual spherical coordinates of the point p (t) on the surface
taken with respect to i∗, j∗,k∗ the usual way with ϕ the polar angle, it follows the i∗, j∗,k∗

coordinates of this point are  ρ sin (ϕ) cos (θ)

ρ sin (ϕ) sin (θ)

ρ cos (ϕ)

 .

It follows,
i =cos (ϕ) cos (θ) i∗ + cos (ϕ) sin (θ) j∗ − sin (ϕ)k∗

j = − sin (θ) i∗ + cos (θ) j∗ + 0k∗

and
k =sin (ϕ) cos (θ) i∗ + sin (ϕ) sin (θ) j∗ + cos (ϕ)k∗.
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It is necessary to obtain k∗ in terms of the vectors, i, j,k. Thus the following equation
needs to be solved for a, b, c to find k∗ = ai+bj+ck

k∗︷ ︸︸ ︷ 0

0

1

 =

 cos (ϕ) cos (θ) − sin (θ) sin (ϕ) cos (θ)

cos (ϕ) sin (θ) cos (θ) sin (ϕ) sin (θ)

− sin (ϕ) 0 cos (ϕ)


 a

b

c

 (2.32)

The first column is i, the second is j and the third is k in the above matrix. The solution
is a = − sin (ϕ) , b = 0, and c = cos (ϕ) .

Now the Coriolis acceleration on the earth equals

2 (Ω× vB) = 2ω

 k∗︷ ︸︸ ︷
− sin (ϕ) i+0j+cos (ϕ)k

× (x′i+y′j+z′k) .

This equals
2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] . (2.33)

Remember ϕ is fixed and pertains to the fixed point, p (t) on the earth’s surface. Therefore,
if the acceleration a is due to gravity,

aB = g−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where g = −GM(R+rB)

|R+rB |3 −Ω× (Ω×R) as explained above. The term Ω× (Ω×R) is pretty

small and so it will be neglected. However, the Coriolis force will not be neglected.

Example 2.8.5 Suppose a rock is dropped from a tall building. Where will it strike?

Assume a = −gk and the j component of aB is approximately

−2ω (x′ cosϕ+ z′ sinϕ) .

The dominant term in this expression is clearly the second one because x′ will be small.
Also, the i and k contributions will be very small. Therefore, the following equation is
descriptive of the situation.

aB = −gk−2z′ω sinϕj.

z′ = −gt approximately. Therefore, considering the j component, this is

2gtω sinϕ.

Two integrations give
(
ωgt3/3

)
sinϕ for the j component of the relative displacement at

time t.
This shows the rock does not fall directly towards the center of the earth as expected

but slightly to the east.

Example 2.8.6 In 1851 Foucault set a pendulum vibrating and observed the earth rotate
out from under it. It was a very long pendulum with a heavy weight at the end so that it
would vibrate for a long time without stopping2. This is what allowed him to observe the
earth rotate out from under it. Clearly such a pendulum will take 24 hours for the plane of
vibration to appear to make one complete revolution at the north pole. It is also reasonable
to expect that no such observed rotation would take place on the equator. Is it possible to
predict what will take place at various latitudes?

2There is such a pendulum in the Eyring building at BYU and to keep people from touching it, there is
a little sign which says Warning! 1000 ohms.
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Using 2.33, in 2.31,
aB = a−Ω× (Ω×R)

−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] .

Neglecting the small term, Ω× (Ω×R) , this becomes

= −gk+T/m−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where T, the tension in the string of the pendulum, is directed towards the point at which
the pendulum is supported, and m is the mass of the pendulum bob. The pendulum can be
thought of as the position vector from (0, 0, l) to the surface of the sphere x2+y2+(z − l)

2
=

l2. Therefore,

T = −T x
l
i−T y

l
j+T

l − z

l
k

and consequently, the differential equations of relative motion are

x′′ = −T x

ml
+ 2ωy′ cosϕ

y′′ = −T y

ml
− 2ω (x′ cosϕ+ z′ sinϕ)

and

z′′ = T
l − z

ml
− g + 2ωy′ sinϕ.

If the vibrations of the pendulum are small so that for practical purposes, z′′ = z = 0, the
last equation may be solved for T to get

gm− 2ωy′ sin (ϕ)m = T.

Therefore, the first two equations become

x′′ = − (gm− 2ωmy′ sinϕ)
x

ml
+ 2ωy′ cosϕ

and
y′′ = − (gm− 2ωmy′ sinϕ)

y

ml
− 2ω (x′ cosϕ+ z′ sinϕ) .

All terms of the form xy′ or y′y can be neglected because it is assumed x and y remain
small. Also, the pendulum is assumed to be long with a heavy weight so that x′ and y′ are
also small. With these simplifying assumptions, the equations of motion become

x′′ + g
x

l
= 2ωy′ cosϕ

and
y′′ + g

y

l
= −2ωx′ cosϕ.

These equations are of the form

x′′ + a2x = by′, y′′ + a2y = −bx′ (2.34)

where a2 = g
l and b = 2ω cosϕ. Then it is fairly tedious but routine to verify that for each

constant, c,

x = c sin

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
, y = c cos

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
(2.35)
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yields a solution to 2.34 along with the initial conditions,

x (0) = 0, y (0) = 0, x′ (0) = 0, y′ (0) =
c
√
b2 + 4a2

2
. (2.36)

It is clear from experiments with the pendulum that the earth does indeed rotate out from
under it causing the plane of vibration of the pendulum to appear to rotate. The purpose
of this discussion is not to establish these self evident facts but to predict how long it takes
for the plane of vibration to make one revolution. Therefore, there will be some instant in
time at which the pendulum will be vibrating in a plane determined by k and j. (Recall
k points away from the center of the earth and j points East. ) At this instant in time,
defined as t = 0, the conditions of 2.36 will hold for some value of c and so the solution to
2.34 having these initial conditions will be those of 2.35 by uniqueness of the initial value
problem. Writing these solutions differently,(

x (t)

y (t)

)
= c

(
sin
(
bt
2

)
cos
(
bt
2

) ) sin

(√
b2 + 4a2

2
t

)

This is very interesting! The vector, c

(
sin
(
bt
2

)
cos
(
bt
2

) ) always has magnitude equal to |c|

but its direction changes very slowly because b is very small. The plane of vibration is

determined by this vector and the vector k. The term sin
(√

b2+4a2

2 t
)
changes relatively fast

and takes values between −1 and 1. This is what describes the actual observed vibrations
of the pendulum. Thus the plane of vibration will have made one complete revolution when
t = T for

bT

2
≡ 2π.

Therefore, the time it takes for the earth to turn out from under the pendulum is

T =
4π

2ω cosϕ
=

2π

ω
secϕ.

Since ω is the angular speed of the rotating earth, it follows ω = 2π
24 = π

12 in radians per
hour. Therefore, the above formula implies

T = 24 secϕ.

I think this is really amazing. You could actually determine latitude, not by taking readings
with instruments using the North Star but by doing an experiment with a big pendulum.
You would set it vibrating, observe T in hours, and then solve the above equation for ϕ.
Also note the pendulum would not appear to change its plane of vibration at the equator
because limϕ→π/2 secϕ = ∞.

The Coriolis acceleration is also responsible for the phenomenon of the next example.

Example 2.8.7 It is known that low pressure areas rotate counterclockwise as seen from
above in the Northern hemisphere but clockwise in the Southern hemisphere. Why?

Neglect accelerations other than the Coriolis acceleration and the following acceleration
which comes from an assumption that the point p (t) is the location of the lowest pressure.

a = −a (rB) rB

where rB = r will denote the distance from the fixed point p (t) on the earth’s surface which
is also the lowest pressure point. Of course the situation could be more complicated but
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this will suffice to explain the above question. Then the acceleration observed by a person
on the earth relative to the apparently fixed vectors, i,k, j, is

aB = −a (rB) (xi+yj+zk)− 2ω [−y′ cos (ϕ) i+(x′ cos (ϕ) + z′ sin (ϕ)) j− (y′ sin (ϕ)k)]

Therefore, one obtains some differential equations from aB = x′′i+ y′′j+ z′′k by matching
the components. These are

x′′ + a (rB)x = 2ωy′ cosϕ

y′′ + a (rB) y = −2ωx′ cosϕ− 2ωz′ sin (ϕ)

z′′ + a (rB) z = 2ωy′ sinϕ

Now remember, the vectors, i, j,k are fixed relative to the earth and so are constant vectors.
Therefore, from the properties of the determinant and the above differential equations,

(r′B × rB)
′
=

∣∣∣∣∣∣∣
i j k

x′ y′ z′

x y z

∣∣∣∣∣∣∣
′

=

∣∣∣∣∣∣∣
i j k

x′′ y′′ z′′

x y z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
i j k

−a (rB)x+ 2ωy′ cosϕ −a (rB) y − 2ωx′ cosϕ− 2ωz′ sin (ϕ) −a (rB) z + 2ωy′ sinϕ

x y z

∣∣∣∣∣∣∣
Then the kth component of this cross product equals

ω cos (ϕ)
(
y2 + x2

)′
+ 2ωxz′ sin (ϕ) .

The first term will be negative because it is assumed p (t) is the location of low pressure
causing y2+x2 to be a decreasing function. If it is assumed there is not a substantial motion
in the k direction, so that z is fairly constant and the last term can be neglected, then the
kth component of (r′B × rB)

′
is negative provided ϕ ∈

(
0, π2

)
and positive if ϕ ∈

(
π
2 , π

)
.

Beginning with a point at rest, this implies r′B ×rB = 0 initially and then the above implies
its kth component is negative in the upper hemisphere when ϕ < π/2 and positive in the
lower hemisphere when ϕ > π/2. Using the right hand and the geometric definition of the
cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
rotation in the upper hemisphere.

Note also that as ϕ gets close to π/2 near the equator, the above reasoning tends to
break down because cos (ϕ) becomes close to zero. Therefore, the motion towards the low
pressure has to be more pronounced in comparison with the motion in the k direction in
order to draw this conclusion.

2.9 Exercises

1. Show the map T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix and
x is an m× 1 column vector is a linear transformation.

2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.
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4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.

6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

10. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

11. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and next reflects every vector across the x axis. Compare with the
above problem.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

15. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

16. Find the matrix for proju (v) where u = (1,−2, 3)
T
.

17. Find the matrix for proju (v) where u = (1, 5, 3)
T
.

18. Find the matrix for proju (v) where u = (1, 0, 3)
T
.

19. Give an example of a 2 × 2 matrix A which has all its entries nonzero and satisfies
A2 = A. A matrix which satisfies A2 = A is called idempotent.

20. Let A be an m × n matrix and let B be an n ×m matrix where n < m. Show that
AB cannot have an inverse.

21. Find ker (A) for

A =


1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2

 .

Recall ker (A) is just the set of solutions to Ax = 0.
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22. If A is a linear transformation, and Axp= b, show that the general solution to the
equation Ax = b is of the form xp+y where y ∈ ker (A). By this I mean to show that
whenever Az = b there exists y ∈ ker (A) such that xp + y = z. For the definition of
ker (A) see Problem 21.

23. Using Problem 21, find the general solution to the following linear system.


1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2




x1

x2

x3

x4

x5

 =


11

7

18

7


24. Using Problem 21, find the general solution to the following linear system.


1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2




x1

x2

x3

x4

x5

 =


6

7

13

7


25. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-

mation.

26. If u = (1, 2, 3)
T
, as in Example 2.4.5 and Tu is given in the above problem, find the

matrix Au which satisfies Aux = Tu (x).

27. Let a be a fixed vector. The function Ta defined by Tav = a+ v has the effect of
translating all vectors by adding a. Show this is not a linear transformation. Explain
why it is not possible to realize Ta in R3 by multiplying by a 3× 3 matrix.

28. In spite of Problem 27 we can represent both translations and linear transformations
by matrix multiplication at the expense of using higher dimensions. This is done by
the homogeneous coordinates. I will illustrate in R3 where most interest in this is
found. For each vector v = (v1, v2, v3)

T
, consider the vector in R4 (v1, v2, v3, 1)

T
.

What happens when you do
1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1




v1

v2

v3

1

?

Describe how to consider both linear transformations and translations all at once by
forming appropriate 4× 4 matrices.

29. You want to add
(

1 2 3
)
to every point in R3 and then rotate about the x axis

clockwise through the angle of 30◦. Find what happens to the point
(

1 1 1
)
.
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30. You are given a linear transformation T : Fn → Fm and you know that

Tai = bi

where
(

a1 · · · an

)−1

exists. Show that the matrix A of T with respect to the

usual basis vectors (Ax = Tx) must be of the form(
b1 · · · bm

)(
a1 · · · an

)−1

31. You have a linear transformation T and

T

 1

2

−6

 =

 5

1

3

 , T

 −1

−1

5

 =

 1

1

5


T

 0

−1

2

 =

 5

3

−2


Find the matrix of T . That is find A such that Tx = Ax.

32. You have a linear transformation T and

T

 1

1

−8

 =

 1

3

1

 , T

 −1

0

6

 =

 2

4

1


T

 0

−1

3

 =

 6

1

−1


Find the matrix of T . That is find A such that Tx = Ax.

33. You have a linear transformation T and

T

 1

3

−7

 =

 −3

1

3

 , T

 −1

−2

6

 =

 1

3

−3


T

 0

−1

2

 =

 5

3

−3


Find the matrix of T . That is find A such that Tx = Ax.

34. You have a linear transformation T and

T

 1

1

−7

 =

 3

3

3

 , T

 −1

0

6

 =

 1

2

3


T

 0

−1

2

 =

 1

3

−1


Find the matrix of T . That is find A such that Tx = Ax.
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35. You have a linear transformation T and

T

 1

2

−18

 =

 5

2

5

 , T

 −1

−1

15

 =

 3

3

5


T

 0

−1

4

 =

 2

5

−2


Find the matrix of T . That is find A such that Tx = Ax.

36. Suppose V is a subspace of Fn and T : V → Fp is a nonzero linear transformation.
Show that there exists a basis for Im (T ) ≡ T (V )

{Tv1, · · · , Tvm}

and that in this situation,
{v1, · · · ,vm}

is linearly independent.

37. ↑In the situation of Problem 36 where V is a subspace of Fn, show that there exists
{z1, · · · , zr} a basis for ker (T ) . (Recall Theorem 2.6.12. Since ker (T ) is a subspace,
it has a basis.) Now for an arbitrary Tv ∈ T (V ) , explain why

Tv = a1Tv1 + · · ·+ amTvm

and why this implies

v − (a1v1 + · · ·+ amvm) ∈ ker (T ) .

Then explain why V = span (v1, · · · ,vm, z1, · · · , zr) .

38. ↑In the situation of the above problem, show {v1, · · · ,vm, z1, · · · , zr} is a basis for V
and therefore, dim (V ) = dim (ker (T )) + dim (T (V )) .

39. ↑Let A be a linear transformation from V to W and let B be a linear transformation
from W to U where V,W,U are all subspaces of some Fp. Explain why

A (ker (BA)) ⊆ ker (B) , ker (A) ⊆ ker (BA) .

ker(B)

A(ker(BA))

ker(BA)

ker(A)
A

40. ↑Let {x1, · · · ,xn} be a basis of ker (A) and let

{Ay1, · · · , Aym}

be a basis of A (ker (BA)). Let z ∈ ker (BA) . Explain why

Az ∈ span {Ay1, · · · , Aym}
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and why there exist scalars ai such that

A (z − (a1y1 + · · ·+ amym)) = 0

and why it follows z − (a1y1 + · · ·+ amym) ∈ span {x1, · · · ,xn}. Now explain why

ker (BA) ⊆ span {x1, · · · ,xn,y1, · · · ,ym}

and so
dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

This important inequality is due to Sylvester. Show that equality holds if and only if
A(kerBA) = ker(B).

41. Generalize the result of the previous problem to any finite product of linear mappings.

42. If W ⊆ V for W,V two subspaces of Fn and if dim (W ) = dim (V ) , show W = V .

43. Let V be a subspace of Fnand let V1, · · · , Vm be subspaces, each contained in V . Then

V = V1 ⊕ · · · ⊕ Vm (2.37)

if every v ∈ V can be written in a unique way in the form

v = v1 + · · ·+ vm

where each vi ∈ Vi. This is called a direct sum. If this uniqueness condition does not
hold, then one writes

V = V1 + · · ·+ Vm

and this symbol means all vectors of the form

v1 + · · ·+ vm, vj ∈ Vj for each j.

Show 2.37 is equivalent to saying that if

0 = v1 + · · ·+ vm, vj ∈ Vj for each j,

then each vj = 0. Next show that in the situation of 2.37, if βi =
{
ui1, · · · , uimi

}
is a

basis for Vi, then {β1, · · · , βm} is a basis for V .

44. ↑Suppose you have finitely many linear mappings L1, L2, · · · , Lm which map V to V
where V is a subspace of Fn and suppose they commute. That is, LiLj = LjLi for all
i, j. Also suppose Lk is one to one on ker (Lj) whenever j ̸= k. Letting P denote the
product of these linear transformations, P = L1L2 · · ·Lm, first show

ker (L1) + · · ·+ ker (Lm) ⊆ ker (P )

Next show Lj : ker (Li) → ker (Li) . Then show

ker (L1) + · · ·+ ker (Lm) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Using Sylvester’s theorem, and the result of Problem 42, show

ker (P ) = ker (L1)⊕ · · · ⊕ ker (Lm)

Hint: By Sylvester’s theorem and the above problem,

dim (ker (P )) ≤
∑
i

dim (ker (Li))

= dim (ker (L1)⊕ · · · ⊕ ker (Lm)) ≤ dim (ker (P ))

Now consider Problem 42.
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45. Let M (Fn,Fn) denote the set of all n×n matrices having entries in F. With the usual
operations of matrix addition and scalar multiplications, explain why M (Fn,Fn) can

be considered as Fn2

. Give a basis for M (Fn,Fn) . If A ∈ M (Fn,Fn) , explain why
there exists a monic (leading coefficient equals 1) polynomial of the form

λk + ak−1λ
k−1 + · · ·+ a1λ+ a0

such that
Ak + ak−1A

k−1 + · · ·+ a1A+ a0I = 0

The minimal polynomial of A is the polynomial like the above, for which p (A) = 0
which has smallest degree. I will discuss the uniqueness of this polynomial later. Hint:
Consider the matrices I, A,A2, · · · , An2

. There are n2+1 of these matrices. Can they
be linearly independent? Now consider all polynomials and pick one of smallest degree
and then divide by the leading coefficient.

46. ↑Suppose the field of scalars is C and A is an n × n matrix. From the preceding
problem, and the fundamental theorem of algebra, this minimal polynomial factors

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk

where rj is the algebraic multiplicity of λj , and the λj are distinct. Thus

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk = 0

and so, letting P = (A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk and Lj = (A− λjI)

rj

apply the result of Problem 44 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the generalized
eigenspace for λj . You need to verify the conditions of the result of this problem hold.

47. In the context of Problem 46, show there exists a nonzero vector x such that

(A− λjI)x = 0.

This is called an eigenvector and the λj is called an eigenvalue. Hint:There must exist
a vector y such that

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λjI)
rj−1 · · · (A− λkI)

rk y = z ̸= 0

Why? Now what happens if you do (A− λjI) to z?

48. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which
satisfies

Q (t)Q (t)
T
= I

Suppose also the entries of Q (t) are differentiable. Show
(
QT
)′

= −QTQ′QT .

49. Remember the Coriolis force was 2Ω× vB where Ω was a particular vector which
came from the matrix Q (t) as described above. Show that

Q (t) =

 i (t) · i (t0) j (t) · i (t0) k (t) · i (t0)
i (t) · j (t0) j (t) · j (t0) k (t) · j (t0)
i (t) · k (t0) j (t) · k (t0) k (t) · k (t0)

 .

There will be no Coriolis force exactly when Ω = 0 which corresponds to Q′ (t) = 0.
When will Q′ (t) = 0?
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50. An illustration used in many beginning physics books is that of firing a rifle hori-
zontally and dropping an identical bullet from the same height above the perfectly
flat ground followed by an assertion that the two bullets will hit the ground at ex-
actly the same time. Is this true on the rotating earth assuming the experiment
takes place over a large perfectly flat field so the curvature of the earth is not an
issue? Explain. What other irregularities will occur? Recall the Coriolis acceleration
is 2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] where k points away from the
center of the earth, j points East, and i points South.



Chapter 3

Determinants

3.1 Basic Techniques and Properties

Let A be an n × n matrix. The determinant of A, denoted as det (A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 3.1.1 Let A =

(
a b

c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

(
a b

c d

)
=

∣∣∣∣∣ a b

c d

∣∣∣∣∣ .
Example 3.1.2 Find det

(
2 4

−1 6

)
.

From the definition this is just (2) (6)− (−1) (4) = 16.
Assuming the determinant has been defined for k × k matrices for k ≤ n − 1, it is now

time to define it for n× n matrices.

Definition 3.1.3 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

Now here is the definition of the determinant given recursively.

Theorem 3.1.4 Let A be an n× n matrix where n ≥ 2. Then

det (A) =

n∑
j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.1)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Note that for a n× n matrix, you will need n! terms to evaluate the determinant in this
way. If n = 10, this is 10! = 3, 628 , 800 terms. This is a lot of terms.

In addition to the difficulties just discussed, why is the determinant well defined? Why
should you get the same thing when you expand along any row or column? I think you
should regard this claim that you always get the same answer by picking any row or column
with considerable skepticism. It is incredible and not at all obvious. However, it requires
a little effort to establish it. This is done in the section on the theory of the determinant
which follows.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

83
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Definition 3.1.5 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.

∗ · · · ∗
. . .

...

0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 3.1.6 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Proof: The corollary is true if the matrix is one to one. Suppose it is n× n. Then the
matrix is of the form (

m11 a

0 M1

)
whereM1 is (n− 1)×(n− 1) . Then expanding along the first row, you get m11 det (M1)+0.
Then use the induction hypothesis to obtain that det (M1) =

∏n
i=2mii. ■

Example 3.1.7 Let

A =


1 2 3 77

0 2 6 7

0 0 3 33.7

0 0 0 −1


Find det (A) .

From the above corollary, this is −6.
There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT
)
.
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This theorem implies the following corollary which gives a way to find determinants. As
I pointed out above, the method of Laplace expansion will not be practical for any matrix
of large size.

Corollary 3.1.9 Let A be an n×n matrix and let B be the matrix obtained by replacing the
ith row (column) of A with the sum of the ith row (column) added to a multiple of another
row (column). Then det (A) = det (B) . If B is the matrix obtained from A be replacing the
ith row (column) of A by a times the ith row (column) then a det (A) = det (B) .

Here is an example which shows how to use this corollary to find a determinant.

Example 3.1.10 Find the determinant of the matrix 1 2 1

1 2 2

1 1 3


First take −1 times the first row and add to the second and the third. The resulting

matrix is  1 2 1

0 0 1

0 −1 2


It has the same determinant as the original matrix. Next switch the bottom two rows to
get  1 2 1

0 −1 2

0 0 1


It has determinant which is −1 times the determinant of the original matrix. Hence the
original matrix has determinant equal to 1.

The theorem about expanding a matrix along any row or column also provides a way to
give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix
in Definition 2.1.22 on Page 48. The following theorem gives a formula for the inverse of a
matrix. It is proved in the next section.

Theorem 3.1.11 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Theorem 3.1.11 says that to find the inverse, take the transpose of the cofactor matrix
and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

Example 3.1.12 Find the inverse of the matrix

A =

 1 2 3

3 0 1

1 2 1
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First find the determinant of this matrix. This is seen to be 12. The cofactor matrix of
A is  −2 −2 6

4 −2 0

2 8 −6

 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse
of A should equal

1

12

 −2 −2 6

4 −2 0

2 8 −6


T

=

 − 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2

 .

This way of finding inverses is especially useful in the case where it is desired to find the
inverse of a matrix whose entries are functions.

Example 3.1.13 Suppose

A (t) =

 et 0 0

0 cos t sin t

0 − sin t cos t


Find A (t)

−1
.

First note det (A (t)) = et. A routine computation using the above theorem shows that
this inverse is

1

et

 1 0 0

0 et cos t et sin t

0 −et sin t et cos t


T

=

 e−t 0 0

0 cos t − sin t

0 sin t cos t

 .

This formula for the inverse also implies a famous procedure known as Cramer’s rule.
Cramer’s rule gives a formula for the solutions, x, to a system of equations, Ax = y.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det


∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.
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Procedure 3.1.14 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)T . Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · · , yn)T .

The following theorem is of fundamental importance and ties together many of the ideas
presented above. It is proved in the next section.

Theorem 3.1.15 Let A be an n× n matrix. Then the following are equivalent.

1. A is one to one.

2. A is onto.

3. det (A) ̸= 0.

3.2 Exercises

1. Find the determinants of the following matrices.

(a)

 1 2 3

3 2 2

0 9 8

 (The answer is 31.)

(b)

 4 3 2

1 7 8

3 −9 3

(The answer is 375.)

(c)


1 2 3 2

1 3 2 3

4 1 5 0

1 2 1 2

, (The answer is −2.)

2. If A−1 exists, what is the relationship between det (A) and det
(
A−1

)
. Explain your

answer.

3. Let A be an n × n matrix where n is odd. Suppose also that A is skew symmetric.
This means AT = −A. Show that det(A) = 0.

4. Is it true that det (A+B) = det (A) + det (B)? If this is so, explain why it is so and
if it is not so, give a counter example.

5. Let A be an r×r matrix and suppose there are r−1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

6. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

7. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all
elements of the main diagonal are non zero. Is it true that A−1 will also be upper
triangular? Explain. Is everything the same for lower triangular matrices?
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8. Let A and B be two n× n matrices. A ∼ B (A is similar to B) means there exists an
invertible matrix S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show
also that A ∼ A and that if A ∼ B and B ∼ C, then A ∼ C.

9. In the context of Problem 8 show that if A ∼ B, then det (A) = det (B) .

10. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (λI −A)x = 0. Explain
why this shows that (λI −A) is not one to one and not onto. Now use Theorem 3.1.15
to argue det (λI −A) = 0. What sort of equation is this? How many solutions does it
have?

11. Suppose det (λI −A) = 0. Show using Theorem 3.1.15 there exists x ̸= 0 such that
(λI −A)x = 0.

12. Let F (t) = det

(
a (t) b (t)

c (t) d (t)

)
. Verify

F ′ (t) = det

(
a′ (t) b′ (t)

c (t) d (t)

)
+ det

(
a (t) b (t)

c′ (t) d′ (t)

)
.

Now suppose

F (t) = det

 a (t) b (t) c (t)

d (t) e (t) f (t)

g (t) h (t) i (t)

 .

Use Laplace expansion and the first part to verify F ′ (t) =

det

 a′ (t) b′ (t) c′ (t)

d (t) e (t) f (t)

g (t) h (t) i (t)

+ det

 a (t) b (t) c (t)

d′ (t) e′ (t) f ′ (t)

g (t) h (t) i (t)


+det

 a (t) b (t) c (t)

d (t) e (t) f (t)

g′ (t) h′ (t) i′ (t)

 .

Conjecture a general result valid for n × n matrices and explain why it will be true.
Can a similar thing be done with the columns?

13. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of
the matrix

A =

 et 0 0

0 et cos t et sin t

0 et cos t− et sin t et cos t+ et sin t

 .

14. Let A be an r×r matrix and let B be an m×m matrix such that r+m = n. Consider
the following n× n block matrix

C =

(
A 0

D B

)
.
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where the D is an m× r matrix, and the 0 is a r ×m matrix. Letting Ik denote the
k × k identity matrix, tell why

C =

(
A 0

D Im

)(
Ir 0

0 B

)
.

Now explain why det (C) = det (A) det (B) . Hint: Part of this will require an expla-
nation of why

det

(
A 0

D Im

)
= det (A) .

See Corollary 3.1.9.

15. Suppose Q is an orthogonal matrix. This means Q is a real n×n matrix which satisfies
QQT = I. Find the possible values for det (Q).

16. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which

satisfies Q (t)Q (t)
T
= I Suppose Q (t) is continuous for t ∈ [a, b] , some interval. Also

suppose det (Q (t)) = 1. Show that det (Q (t)) = 1 for all t ∈ [a, b].

3.3 The Mathematical Theory of Determinants

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the one which involves Laplace expansion. Let (i1, · · · , in) be an ordered
list of numbers from {1, · · · , n} . This means the order is important so (1, 2, 3) and (2, 1, 3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [23]. A recent book which
also has a good introduction is Baker [3]

3.3.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 3.3.1 There exists a function, sgnn which maps each ordered list of numbers from
{1, · · · , n} to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · · , n) = 1 (3.2)

sgnn (i1, · · · , p, · · · , q, · · · , in) = − sgnn (i1, · · · , q, · · · , p, · · · , in) (3.3)

In words, the second property states that if two of the numbers are switched, the value of the
function is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in} = {1, · · · , n} so
that every number from {1, · · · , n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) ≡

(−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (3.4)

where n = iθ in the ordered list, (i1, · · · , in) .
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Proof: Define sign (x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1) ≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in) ≡ sign

(∏
r<s

(is − ir)

)

This delivers either −1, 1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as (j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p, q} , jr = ir. See the following illustration.

i1

1

i2

2
· · · ip

p
· · · iq

q
· · · in

n

i1

1

i2

2
· · · iq

p
· · · ip

q
· · · in

n

j1

1

j2

2
· · · jp

p
· · · jq

q
· · · jn

n

Then

sgnn (j1, · · · , jn) ≡ sign

(∏
r<s

(js − jr)

)

= sign

 both p,q

(ip − iq)

one of p,q∏
p<j<q

(ij − iq)
∏

p<j<q

(ip − ij)

neither p nor q∏
r<s,r,s/∈{p,q}

(is − ir)


The last product consists of the product of terms which were in

∏
r<s (is − ir) while the

two products in the middle both introduce q − p − 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn (j1, · · · , jn) = − sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) there will
be the product of n− θ negative terms

(iθ+1 − n) · · · (in − n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) are
those which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms
of the form (n− ij) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) = (−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■

Lemma 3.3.2 Every ordered list of distinct numbers from {1, 2, · · · , n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgnn
is unique.
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Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n − 1
elements. Take two ordered lists of numbers, P1, P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches

in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 3.2 and 3.3,
you could start with f (1, · · · , n) = g (1, · · · , n) = 1 and applying the same sequence of
switches, eventually arrive at f (i1, · · · , in) = g (i1, · · · , in) . If any numbers are repeated,
then 3.3 gives both functions are equal to zero for that ordered list. ■

Definition 3.3.3 When you have an ordered list of distinct numbers from {1, 2, · · · , n} ,
say

(i1, · · · , in) ,

this ordered list is called a permutation. The symbol for all such permutations is Sn. The
number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1, 2, · · · , n} to {1, 2, · · · , n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

3.3.2 The Definition of the Determinant

Definition 3.3.4 Let f be a real valued function which has the set of ordered lists of numbers
from {1, · · · , n} as its domain. Define∑

(k1,··· ,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · · , kn) of
numbers of {1, · · · , n} . For example,∑

(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

Definition 3.3.5 Let (aij) = A denote an n × n matrix. The determinant of A, denoted
by det (A) is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · · , kn) = 0 and so that term contributes 0 to the sum.



92 CHAPTER 3. DETERMINANTS

Let A be an n × n matrix A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.5)

and A (1, · · · , n) = A.

Proposition 3.3.6 Let (r1, · · · , rn) be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1
· · · arnkn

(3.6)

= det (A (r1, · · · , rn)) . (3.7)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (3.8)

∑
(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1
· · · arkr

· · · asks
· · · ankn

,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1
· · · arks

· · · askr
· · · ankn

=
∑

(k1,··· ,kn)

− sgn

k1, · · · ,These got switched︷ ︸︸ ︷
kr, · · · , ks , · · · , kn

 a1k1 · · · askr · · · arks · · · ankn

= −det (A (1, · · · , s, · · · , r, · · · , n)) . (3.9)

Consequently,

det (A (1, · · · , s, · · · , r, · · · , n)) = −det (A (1, · · · , r, · · · , s, · · · , n)) = −det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 3.3.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered list,
(r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the same
reasoning of 3.8 -3.9 shows that det(A (r1, · · · , rn)) = 0 but in this case, sgn (r1, · · · , rn) = 0
so the formula also holds even in case a number is repeated in the list of numbers from
1, 2, ..., n. ■

Observation 3.3.7 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.
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3.3.3 A Symmetric Definition

With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det (A) = det

(
AT
)
.

Corollary 3.3.8 The following formula for det (A) is valid.

det (A) =
1

n!
·
∑

(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

. (3.10)

And also det
(
AT
)
= det (A) where AT is the transpose of A. (Recall that

(
AT
)
ij
= Aji.)

Proof: From Proposition 3.3.6, if the ri are distinct,

det (A) =
∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

Summing over all ordered lists, (r1, · · · , rn) where the ri are distinct, (If the ri are not
distinct, sgn (r1, · · · , rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

Corollary 3.3.9 If two rows or two columns in an n × n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 3.3.6 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 3.3.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det (A) = det
(
AT
)
= −det

(
AT

1

)
= −det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det (A) = −det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · (xarki + ybrki) · · · ankn

= x
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · arki

· · · ankn

+y
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · brki · · · ankn ≡ xdet (A1) + y det (A2) .

The same is true of columns because det
(
AT
)
= det (A) and the rows of AT are the columns

of A. ■
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3.3.4 Basic Properties of the Determinant

Definition 3.3.10 A vector, w, is a linear combination of the vectors {v1, · · · ,vr} if
there exist scalars c1, · · · cr such that w =

∑r
k=1 ckvk. This is the same as saying w ∈

span (v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 3.3.11 Suppose A is an n × n matrix and some column (row) is a linear com-
bination of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Say ai =
∑

j ̸=i cjaj . Then
by Corollary 3.3.9, det(A) =

det
(

a1 · · ·
∑

j ̸=i cjaj · · · an

)
=
∑
j ̸=i

cj det
(

a1 · · · aj · · · an

)
= 0

because each of these determinants in the sum has two equal rows. ■
Recall the following definition of matrix multiplication.

Definition 3.3.12 If A and B are n × n matrices, A = (aij) and B = (bij), AB = (cij)
where cij ≡

∑n
k=1 aikbkj .

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 3.3.13 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 3.3.6, and the way we
multiply matrices,

det (AB) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) c1k1
· · · cnkn

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrnbrnkn

)

=
∑

(r1··· ,rn)

∑
(k1,··· ,kn)

sgn (k1, · · · , kn) br1k1
· · · brnkn

(a1r1 · · · anrn)

=
∑

(r1··· ,rn)

sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) .■

The Binet Cauchy formula is a generalization of the theorem which says the determinant
of a product is the product of the determinants. The situation is illustrated in the following
picture where A,B are matrices.

B A
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Theorem 3.3.14 Let A be an n×m matrix with n ≥ m and let B be a m×n matrix. Also
let Ai

i = 1, · · · , C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be the
m×m submatrices of B which are obtained by deleting corresponding n−m columns. Then

det (BA) =

C(n,m)∑
k=1

det (Bk) det (Ak)

Proof: This follows from a computation. By Corollary 3.3.8 on Page 93, det (BA) =

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) (BA)i1j1 (BA)i2j2 · · · (BA)imjm

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

n∑
r1=1

Bi1r1Ar1j1

n∑
r2=1

Bi2r2Ar2j2 · · ·
n∑

rm=1

BimrmArmjm

Now denote by Ik one of the subsets of {1, · · · , n} which has m elements. Thus there are
C (n,m) of these.

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

Bi1r1Ar1j1Bi2r2Ar2j2 · · ·BimrmArmjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

sgn (i1 · · · im)Bi1r1Bi2r2 · · ·Bimrm ·

∑
(j1···jm)

sgn (j1 · · · jm)Ar1j1Ar2j2 · · ·Armjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!
sgn (r1 · · · rm)

2
det (Bk) det (Ak) =

C(n,m)∑
k=1

det (Bk) det (Ak)

since there are m! ways of arranging the indices {r1, · · · , rm}. ■

3.3.5 Expansion Using Cofactors

Lemma 3.3.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or

(
A 0

∗ a

)
(3.11)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then det (M) = adet (A) .
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Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while
in the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det (M) ≡
∑

(k1,··· ,kn)

sgnn (k1, · · · , kn)m1k1
· · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · , kn) then using the earlier
conventions used to prove Lemma 3.3.1, det (M) equals

∑
(k1,··· ,kn)

(−1)
n−θ

sgnn−1

(
k1, · · · , kθ−1,

θ

kθ+1, · · · ,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose the second case. Then if kn ̸= n, the term involving mnkn
in the above

expression equals zero. Therefore, the only terms which survive are those for which θ = n
or in other words, those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,··· ,kn−1)

sgnn−1 (k1, · · · kn−1)m1k1 · · ·m(n−1)kn−1
= a det (A) .

To get the assertion in the first case, use Corollary 3.3.8 to write

det (M) = det
(
MT

)
= det

((
AT 0

∗ a

))
= adet

(
AT
)
= adet (A) .■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 3.3.16 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.

Theorem 3.3.17 Let A be an n× n matrix where n ≥ 2. Then

det (A) =

n∑
j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.12)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by
leaving every row the same except the ith row which in Bj equals (0, · · · , 0, aij , 0, · · · , 0) .
Then by Corollary 3.3.9,

det (A) =

n∑
j=1

det (Bj)
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For example if

A =

 a b c

d e f

h i j


and i = 2, then

B1 =

 a b c

d 0 0

h i j

 , B2 =

 a b c

0 e 0

h i j

 , B3 =

 a b c

0 0 f

h i j


Denote by Aij the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof (A)ij ≡ (−1)
i+j

det
(
Aij
)
. At this point, recall that from Proposition

3.3.6, when two rows or two columns in a matrixM, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 3.3.15,

det (Bj) = (−1)
n−j

(−1)
n−i

det

((
Aij ∗
0 aij

))

= (−1)
i+j

det

((
Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =

n∑
j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT
)
=

n∑
j=1

aTij cof
(
AT
)
ij
=

n∑
j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. ■

3.3.6 A Formula for the Inverse

Note that this gives an easy way to write a formula for the inverse of an n×n matrix. Recall
the definition of the inverse of a matrix in Definition 2.1.22 on Page 48.

Theorem 3.3.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 3.3.17 and letting (air) = A, if det (A) ̸= 0,

n∑
i=1

air cof (A)ir det(A)
−1 = det(A) det(A)−1 = 1.
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Now in the matrix A, replace the kth column with the rth column. This results in two equal
columns if r ̸= k and no change if r = k. Then expand along the kth column. This yields
for k ̸= r,

n∑
i=1

air cof (A)ik det(A)
−1 = 0

because there are two equal columns by Corollary 3.3.9. Summarizing,

n∑
i=1

air cof (A)ik det (A)
−1

= δrk.

Using the other formula in Theorem 3.3.17, and similar reasoning,

n∑
j=1

arj cof (A)kj det (A)
−1

= δrk

This proves that if det (A) ̸= 0, then A−1 exists with A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

Now suppose A−1 exists. Then by Theorem 3.3.13,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)
so det (A) ̸= 0. ■

The next corollary points out that if an n×n matrix A has a right or a left inverse, then
it has an inverse.

Corollary 3.3.19 Let A be an n × n matrix and suppose there exists an n × n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 3.3.13 implies detB detA = 1 and so detA ̸= 0.
Therefore from Theorem 3.3.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 3.3.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .
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By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det


∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 3.3.20 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii as shown.

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 3.3.17.

Corollary 3.3.21 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

3.3.7 Rank of a Matrix

Definition 3.3.22 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 3.3.23 If A, an m×n matrix has determinant rank r, then there exist r rows of
the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A having ijth entry aij equals r. Thus some
r × r submatrix has non zero determinant and there is no larger square submatrix which
has non zero determinant. Suppose such a submatrix is determined by the r columns whose
indices are

j1 < · · · < jr

and the r rows whose indices are
i1 < · · · < ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix

ai1j1 · · · ai1jr ai1p
...

...
...

airj1 · · · airjr airp

alj1 · · · aljr alp
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Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth

row is one of the chosen ones. The above matrix has determinant 0. This is because if
p /∈ {j1, · · · , jr} then the above would be a submatrix of A which is too large to have non
zero determinant. On the other hand, if p ∈ {j1, · · · , jr} then the above matrix has two
columns which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aikp. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with alp. This is given to be nonzero, it being the determinant of the matrix r × r matrix
in the upper left corner. Thus

0 = alpC +

r∑
k=1

Ckaikp

which implies

alp =

r∑
k=1

−Ck

C
aikp ≡

r∑
k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. ■

Corollary 3.3.24 The determinant rank equals the row rank.

Proof: From Theorem 3.3.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so,
it follows from Theorem 3.3.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r × r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
2.6.4, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 3.3.11 the determinant
would be 0, a contradiction. ■

Corollary 3.3.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 3.3.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.
■

The following theorem is of fundamental importance and ties together many of the ideas
presented above.

Theorem 3.3.26 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.
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Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 3.3.23. In particular, it follows that for some m, the mth column is a linear

combination of all the others. Thus letting A =
(

a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars αi such that

am =
∑
k ̸=m

αkak.

Now consider the column vector, x ≡
(
α1 · · · −1 · · · αn

)T
. Then

Ax = −am +
∑
k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such that

ATx = 0.

Taking the transpose of both sides yields

xTA = 0T

where the 0T is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xTA

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) ̸= 0 but then from Theorem 3.3.18
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). ■

Corollary 3.3.27 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

3.3.8 Summary of Determinants

In all the following A,B are n× n matrices

1. det (A) is a number.

2. det (A) is linear in each row and in each column.
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3. If you switch two rows or two columns, the determinant of the resulting matrix is −1
times the determinant of the unswitched matrix. (This and the previous one say

(a1 · · ·an) → det (a1 · · ·an)

is an alternating multilinear function or alternating tensor.

4. det (e1, · · · , en) = 1.

5. det (AB) = det (A) det (B)

6. det (A) can be expanded along any row or any column and the same result is obtained.

7. det (A) = det
(
AT
)

8. A−1 exists if and only if det (A) ̸= 0 and in this case(
A−1

)
ij
=

1

det (A)
cof (A)ji (3.13)

9. Determinant rank, row rank and column rank are all the same number for any m× n
matrix.

3.4 The Cayley Hamilton Theorem

Definition 3.4.1 Let A be an n× n matrix. The characteristic polynomial is defined as

qA (t) ≡ det (tI −A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t+ a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A+ a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 3.4.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλ
m = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ→ ∞. Thus Ap = 0 after all. Hence each Ai = 0. ■
With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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Corollary 3.4.3 Let Ai and Bi be n× n matrices and suppose

A0 +A1λ+ · · ·+Amλ
m = B0 +B1λ+ · · ·+Bmλ

m

for all |λ| large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai, Bi then one can
substitute an n× n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 3.4.4 Let A be an n×n matrix and let q (λ) ≡ det (λI −A) be the characteristic
polynomial. Then q (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large.
(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such

λ, (λI −A)
−1

exists.) Therefore, by Theorem 3.3.18

C (λ) = q (λ) (λI −A)
−1
.

Say
q (λ) = a0 + a1λ+ · · ·+ λn

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1. For
example, you might have something like

C (λ) =

 λ2 − 6λ+ 9 3− λ 0

2λ− 6 λ2 − 3λ 0

λ− 1 λ− 1 λ2 − 3λ+ 2



=

 9 3 0

−6 0 0

−1 −1 2

+ λ

 −6 −1 0

2 −3 0

1 1 −3

+ λ2

 1 0 0

0 1 0

0 0 1


Therefore, collecting the terms in the general case,

C (λ) = C0 + C1λ+ · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. Then

C (λ) (λI −A) =
(
C0 + C1λ+ · · ·+ Cn−1λ

n−1
)
(λI −A) = q (λ) I

Then multiplying out the middle term, it follows that for all |λ| sufficiently large,

a0I + a1Iλ+ · · ·+ Iλn = C0λ+ C1λ
2 + · · ·+ Cn−1λ

n

−
[
C0A+ C1Aλ+ · · ·+ Cn−1Aλ

n−1
]

= −C0A+ (C0 − C1A)λ+ (C1 − C2A)λ
2 + · · ·+ (Cn−2 − Cn−1A)λ

n−1 + Cn−1λ
n

Then, using Corollary 3.4.3, one can replace λ on both sides with A. Then the right side is
seen to equal 0. Hence the left side, q (A) I is also equal to 0. ■
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3.5 Block Multiplication of Matrices

Consider the following problem (
A B

C D

)(
E F

G H

)
You know how to do this. You get(

AE +BG AF +BH

CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =


A11 · · · A1m

...
. . .

...

Ar1 · · · Arm

 (3.14)

where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · , r.
Such a matrix is called a block matrix, also a partitioned matrix. How do you get the
block Aij? Here is how for A an m× n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×pj︷ ︸︸ ︷ 0

Ipj×pj

0

. (3.15)

In the block column matrix on the right, you need to have cj − 1 rows of zeros above the
small pj × pj identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj − 1
and in the block row matrix on the left, you need to have ri − 1 columns of zeros to the left
of the si × si identity matrix where the rows of A involved in Aij are ri, · · · , ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. Thus the block Aij in this case
is a matrix of size si × pj . There is no overlap between the blocks of A. Thus the identity
n× n identity matrix corresponding to multiplication on the right of A is of the form

Ip1×p1
0

. . .

0 Ipm×pm


where these little identity matrices don’t overlap. A similar conclusion follows from consid-
eration of the matrices Isi×si . Note that in 3.15 the matrix on the right is a block column
matrix for the above block diagonal matrix and the matrix on the left in 3.15 is a block row
matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B,A be block
matrices of the form 

B11 · · · B1p

...
. . .

...

Br1 · · · Brp

 ,


A11 · · · A1m

...
. . .

...

Ap1 · · · Apm

 (3.16)
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and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the
two matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the
same size for each s so that it makes sense to write

∑
sBisAsj .

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way
is to partition both matrices, formally multiply the blocks to get another block matrix and
this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 3.5.1 Consider the following product. 0

I

0

( 0 I 0
)

where the first is n×r and the second is r×n. The small identity matrix I is an r×r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form 0 0 0

0 I 0

0 0 0


Proof: From the definition of the way you multiply matrices, the product is
 0

I

0

0 · · ·

 0

I

0

0

 0

I

0

 e1 · · ·

 0

I

0

 er

 0

I

0

0 · · ·

 0

I

0

0


which yields the claimed result. In the formula ej refers to the column vector of length r
which has a 1 in the jth position. ■

Theorem 3.5.2 Let B be a q× p block matrix as in 3.16 and let A be a p× n block matrix
as in 3.16 such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the ijth block is of the form ∑

s

BisAsj . (3.17)

Proof: From 3.15

BisAsj =
(

0 Iri×ri 0
)
B

 0

Ips×ps

0

( 0 Ips×ps 0
)
A

 0

Iqj×qj

0


where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth

block in the ith row of blocks for B and the sth block in the jth column of A. Thus there
are the same number of rows above the Ips×ps

as there are columns to the left of Ips×ps
in

those two inside matrices. Then from Lemma 3.5.1 0

Ips×ps

0

( 0 Ips×ps
0
)
=

 0 0 0

0 Ips×ps
0

0 0 0
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Since the blocks of small identity matrices do not overlap,

∑
s

 0 0 0

0 Ips×ps
0

0 0 0

 =


Ip1×p1

0
. . .

0 Ipp×pp

 = I

and so

∑
s

BisAsj =
∑
s

(
0 Iri×ri 0

)
B

 0

Ips×ps

0

( 0 Ips×ps
0
)
A

 0

Iqj×qj

0



=
(

0 Iri×ri 0
)
B
∑
s

 0

Ips×ps

0

( 0 Ips×ps
0
)
A

 0

Iqj×qj

0



=
(

0 Iri×ri 0
)
BIA

 0

Iqj×qj

0

 =
(

0 Iri×ri 0
)
BA

 0

Iqj×qj

0


which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
sBisAsj . ■

Example 3.5.3 Let an n×n matrix have the form A =

(
a b

c P

)
where P is n−1×n−1.

Multiply it by B =

(
p q

r Q

)
where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication(
a b

c P

)(
p q

r Q

)
=

(
ap+ br aq+ bQ

pc+ Pr cq+ PQ

)
Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
qM (t) denotes the characteristic polynomial, det (tI −M) . The zeros of this polynomial will
be shown later to be eigenvalues of the matrixM . First note that from block multiplication,
for the following block matrices consisting of square blocks of an appropriate size,(

A 0

B C

)
=

(
A 0

B I

)(
I 0

0 C

)
so

det

(
A 0

B C

)
= det

(
A 0

B I

)
det

(
I 0

0 C

)
= det (A) det (C)

Theorem 3.5.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

qBA (t) = tn−mqAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues. Here qA (t) denotes the characteristic polynomial of the matrix
A.
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Proof: Use block multiplication to write(
AB 0

B 0

)(
I A

0 I

)
=

(
AB ABA

B BA

)
(
I A

0 I

)(
0 0

B BA

)
=

(
AB ABA

B BA

)
.

(
I A

0 I

)(
0 0

B BA

)
=

(
AB 0

B 0

)(
I A

0 I

)
Therefore, (

I A

0 I

)−1(
AB 0

B 0

)(
I A

0 I

)
=

(
0 0

B BA

)
Since the two matrices above are similar, it follows that(

0m×m 0

B BA

)
,

(
AB 0

B 0n×n

)
have the same characteristic polynomials. See Problem 8 on Page 88. Thus

det

(
tIm×m 0

−B tI −BA

)
= det

(
tI −AB 0

−B tIn×n

)
(3.18)

Therefore,
tm det (tI −BA) = tn det (tI −AB) (3.19)

and so det (tI −BA) = qBA (t) = tn−m det (tI −AB) = tn−mqAB (t) . ■

3.6 Exercises

1. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix A1 which is of the form

A1 ≡

(
A

0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =

(
Ax

0

)
which equals zero if and only if Ax = 0.

2. Let v1, · · · ,vn be vectors in Fn and let M (v1, · · · ,vn) denote the matrix whose ith

column equals vi. Define

d (v1, · · · ,vn) ≡ det (M (v1, · · · ,vn)) .

Prove that d is linear in each variable, (multilinear), that

d (v1, · · · ,vi, · · · ,vj , · · · ,vn) = −d (v1, · · · ,vj , · · · ,vi, · · · ,vn) , (3.20)
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and
d (e1, · · · , en) = 1 (3.21)

where here ej is the vector in Fn which has a zero in every position except the jth

position in which it has a one.

3. Suppose f : Fn × · · · × Fn → F satisfies 3.20 and 3.21 and is linear in each variable.
Show that f = d.

4. Show that if you replace a row (column) of an n × n matrix A with itself added to
some multiple of another row (column) then the new matrix has the same determinant
as the original one.

5. Use the result of Problem 4 to evaluate by hand the determinant

det


1 2 3 2

−6 3 2 3

5 2 2 3

3 4 6 4

 .

6. Find the inverse if it exists of the matrix et cos t sin t

et − sin t cos t

et − cos t − sin t

 .

7. Let Ly = y(n) + an−1 (x) y
(n−1) + · · · + a1 (x) y

′ + a0 (x) y where the ai are given
continuous functions defined on an interval, (a, b) and y is some function which has n
derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n. The
Wronskian of these functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det


y1 (x) · · · yn (x)

y′1 (x) · · · y′n (x)
...

...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)


Show that for W (x) =W (y1, · · · , yn) (x) to save space,

W ′ (x) = det


y1 (x) · · · yn (x)

... · · ·
...

y
(n−2)
1 (x) y

(n−2)
n (x)

y
(n)
1 (x) · · · y

(n)
n (x)

 .

Now use the differential equation, Ly = 0 which is satisfied by each of these functions,
yi and properties of determinants presented above to verify thatW ′+an−1 (x)W = 0.
Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a, b) or never.

8. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix S. Show that if two matrices are similar, they have the same characteristic
polynomials. The characteristic polynomial of A is det (λI −A) .
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9. Suppose the characteristic polynomial of an n× n matrix A is of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix A. Show that
A−1 exists if and only if a0 ̸= 0. In fact, show that a0 = (−1)

n
det (A) .

10. ↑Letting p (t) denote the characteristic polynomial of A, show that pε (t) ≡ p (t− ε)
is the characteristic polynomial of A + εI. Then show that if det (A) = 0, it follows
that det (A+ εI) ̸= 0 whenever |ε| is sufficiently small.

11. In constitutive modeling of the stress and strain tensors, one sometimes considers sums
of the form

∑∞
k=0 akA

k where A is a 3×3 matrix. Show using the Cayley Hamilton
theorem that if such a thing makes any sense, you can always obtain it as a finite sum
having no more than 3 terms.

12. Recall you can find the determinant from expanding along the jth column.

det (A) =
∑
i

Aij (cof (A))ij

Think of det (A) as a function of the entries, Aij . Explain why the ijth cofactor is
really just

∂ det (A)

∂Aij
.

13. Let U be an open set in Rn and let g :U → Rn be such that all the first partial
derivatives of all components of g exist and are continuous. Under these conditions
form the matrix Dg (x) given by

Dg (x)ij ≡
∂gi (x)

∂xj
≡ gi,j (x)

The best kept secret in calculus courses is that the linear transformation determined
by this matrix Dg (x) is called the derivative of g and is the correct generalization
of the concept of derivative of a function of one variable. Suppose the second partial
derivatives also exist and are continuous. Then show that

∑
j (cof (Dg))ij,j = 0.Hint:

First explain why
∑

i gi,k cof (Dg)ij = δjk det (Dg) . Next differentiate with respect to
xj and sum on j using the equality of mixed partial derivatives. Assume det (Dg) ̸= 0
to prove the identity in this special case. Then explain using Problem 10 why there
exists a sequence εk → 0 such that for gεk (x) ≡ g (x) + εkx, det (Dgεk) ̸= 0 and so
the identity holds for gεk . Then take a limit to get the desired result in general. This
is an extremely important identity which has surprising implications. One can build
degree theory on it for example. It also leads to simple proofs of the Brouwer fixed
point theorem from topology. See Evans [9] for example.

14. A determinant of the form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

a0 a1 · · · an

a20 a21 · · · a2n
...

...
...

an−1
0 an−1

1 · · · an−1
n

an0 an1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



110 CHAPTER 3. DETERMINANTS

is called a Vandermonde determinant. Show it equals
∏

0≤i<j≤n (aj − ai). By this is
meant to take the product of all terms of the form (aj − ai) such that j > i. Hint:

Show it works if n = 1 so you are looking at

∣∣∣∣∣ 1 1

a0 a1

∣∣∣∣∣ . Then suppose it holds for

n − 1 and consider the case n. Consider the polynomial in t, p (t) which is obtained

from the above by replacing the last column with the column
(

1 t · · · tn
)T

.

Explain why p (aj) = 0 for i = 0, · · · , n − 1. Explain why p (t) = c
∏n−1

i=0 (t− ai) . Of
course c is the coefficient of tn. Find this coefficient from the above description of p (t)
and the induction hypothesis. Then plug in t = an and observe you have the formula
valid for n.

15. The example in this exercise was shown to me by Marc van Leeuwen and it helped to
correct a misleading proof of the Cayley Hamilton theorem presented in this chapter.
If p (λ) = q (λ) for all λ or for all λ large enough where p (λ) , q (λ) are polynomials
having matrix coefficients, then it is not necessarily the case that p (A) = q (A) for A
a matrix of an appropriate size. The proof in question read as though it was using
this incorrect argument. Let

E1 =

(
1 0

0 0

)
, E2 =

(
0 0

0 1

)
, N =

(
0 1

0 0

)

Show that for all λ, (λI + E1) (λI + E2) =
(
λ2 + λ

)
I = (λI + E2) (λI + E1) . How-

ever, (NI + E1) (NI + E2) ̸= (NI + E2) (NI + E1) . Explain why this can happen. In
the proof of the Cayley-Hamilton theorem given in the chapter, show that the matrix
A does commute with the matrices Ci in that argument. Hint: Multiply both sides
out with N in place of λ. Does N commute with Ei?

16. Explain how 3.19 follows from 3.18. Hint: If you have two real or complex polynomials
p (t) , q (t) of degree p and they are equal, for all t ̸= 0, then by continuity, they are
equal for all t. Also(

tI 0

0 tI −BA

)
=

(
tI 0

0 I

)(
I 0

0 tI −BA

)

thus the determinant of the one on the left equals tm det (tI −BA) .

17. Explain why the proof of the Cayley-Hamilton theorem given in this chapter cannot
possibly hold for arbitrary fields of scalars.

18. Suppose A is m× n and B is n×m. Letting I be the identity of the appropriate size,
is it the case that det (I +AB) = det (I +BA)? Explain why or why not.



Chapter 4

Row Operations

4.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 4.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 4.1.2 The elementary matrices consist of those matrices which result by apply-
ing a row operation to an identity matrix. Those which involve switching rows of the identity
are called permutation matrices. More generally, if (i1, i2, · · · , in) is a permutation, a ma-
trix which has a 1 in the ik position in row k and zero in every other position of that row is
called a permutation matrix. Thus each permutation corresponds to a unique permutation
matrix.

As an example of why these elementary matrices are interesting, consider the following. 0 1 0

1 0 0

0 0 1


 a b c d

x y z w

f g h i

 =

 x y z w

a b c d

f g h i


A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to the identity matrix. This resulted in applying the operation 1
to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. First consider the one which
involves switching row i and row j where i < j. This matrix is of the form

1 0
. . .

0 · · · 1
...

...

1 · · · 0
. . .

0 1


The two exceptional rows are shown. The ith row was the jth and the jth row was the ith
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in the identity matrix. Now consider what this does to a column vector.

1 0
. . .

0 · · · 1
...

...

1 · · · 0
. . .

0 1





v1
...

vi
...

vj
...

vn


=



v1
...

vj
...

vi
...

vn


Now denote by P ij the elementary matrix which comes from the identity from switching
rows i and j. From what was just explained consider multiplication on the left by this
elementary matrix.

P ij



a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj1 aj2 · · · ajp
...

...
...

an1 an2 · · · anp


From the way you multiply matrices this is a matrix which has the indicated columns.

P ij



a11
...

ai1
...

aj1
...

an1


, P ij



a12
...

ai2
...

aj2
...

an2


, · · · , P ij



a1p
...

aip
...

ajp
...

anp





=





a11
...

aj1
...

ai1
...

an1


,



a12
...

aj2
...

ai2
...

an2


, · · · ,



a1p
...

ajp
...

aip
...

anp
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=



a11 a12 · · · a1p
...

...
...

aj1 aj2 · · · ajp
...

...
...

ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp


This has established the following lemma.

Lemma 4.1.3 Let P ij denote the elementary matrix which involves switching the ith and
the jth rows. Then

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

As a consequence of the above lemma, if you have any permutation (i1, · · · , in), it
follows from Lemma 3.3.2 that the corresponding permutation matrix can be obtained by
multiplying finitely many permutation matrices, each of which switch only two rows. Now
every such permutation matrix in which only two rows are switched has determinant −1.
Therefore, the determinant of the permutation matrix for (i1, · · · , in) equals (−1)

p
where

the given permutation can be obtained by making p switches. Now p is not unique. There
are many ways to make switches and end up with a given permutation, but what this shows
is that the total number of switches is either always odd or always even. That is, you could
not obtain a given permutation by making 2m switches and 2k+1 switches. A permutation
is said to be even if p is even and odd if p is odd. This is an interesting result in abstract
algebra which is obtained very easily from a consideration of elementary matrices and of
course the theory of the determinant. Also, this shows that the composition of permutations
corresponds to the product of the corresponding permutation matrices.

To see permutations considered more directly in the context of group theory, you should
see a good abstract algebra book such as [18] or [14].

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith

row of the identity matrix is of the form

1 0
. . .

c
. . .

0 1


Now consider what this does to a column vector.

1 0
. . .

c
. . .

0 1





v1
...

vi
...

vn


=



v1
...

cvi
...

vn
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Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity
by the nonzero constant, c. Then from what was just discussed and the way matrices are
multiplied,

E (c, i)



a11 a12 · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · aip
...

...
...

an1 an2 · · · · · · anp


equals a matrix having the columns indicated below.

=


E (c, i)



a11
...

ai1
...

an1


, E (c, i)



a12
...

ai2
...

an2


, · · · , E (c, i)



a1p
...

aip
...

anp





=



a11 a12 · · · · · · a1p
...

...
...

cai1 cai2 · · · · · · caip
...

...
...

an1 an2 · · · · · · anp


This proves the following lemma.

Lemma 4.1.4 Let E (c, i) denote the elementary matrix corresponding to the row opera-
tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Denote by E (c× i+ j) the elementary
matrix which replaces the jth row with itself added to c times the ith row added to it. In
case i < j this will be of the form

1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1
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Now consider what this does to a column vector.

1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1





v1
...

vi
...

vj
...

vn


=



v1
...

vi
...

cvi + vj
...

vn


Now from this and the way matrices are multiplied,

E (c× i+ j)



a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp


equals a matrix of the following form having the indicated columns.

E (c× i+ j)



a11
...

ai1
...

aj2
...

an1


, E (c× i+ j)



a12
...

ai2
...

aj2
...

an2


, · · ·E (c× i+ j)



a1p
...

aip
...

ajp
...

anp





=



a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · ajp + caip
...

...
...

an1 an2 · · · anp


The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B
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where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.

The next theorem is the main result.

Theorem 4.1.6 To perform any of the three row operations on a matrix A it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take
the product, EA. Furthermore, each elementary matrix is invertible and its inverse is an
elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 4.1.3 - 4.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the
left, undoes the row operation which resulted in E (c× i+ j). The same argument applied
to the product

E (c× i+ j)E (−c× i+ j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i+ j)

−1
= E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches

these rows again and restores the identity matrix. Thus
(
P ij
)−1

= P ij . ■

4.2 The Rank of a Matrix

Recall the following definition of rank of a matrix.

Definition 4.2.1 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.
The rank of A is denoted as rank (A).

The following theorem is proved in the section on the theory of the determinant and is
restated here for convenience.
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Theorem 4.2.2 Let A be an m× n matrix. Then the row rank, column rank and determi-
nant rank are all the same.

So how do you find the rank? It turns out that row operations are the key to the practical
computation of the rank of a matrix.

In rough terms, the following lemma states that linear relationships between columns
in a matrix are preserved by row operations.

Lemma 4.2.3 Let B and A be two m × n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · · , ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns(
a1 a2 · · · an

)
and let B equal the following matrix in which the columns are given by the bk(

b1 b2 · · · bn

)
Then by Theorem 4.1.6 on Page 116 bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑
r∈S

crar.

Then multiplying by E,

bk = Eak =
∑
r∈S

crEar =
∑
r∈S

crbr.■

Corollary 4.2.4 Let A and B be two m× n matrices such that B is obtained by applying
a row operation to A. Then the two matrices have the same rank.

Proof: Lemma 4.2.3 says the linear relationships are the same between the columns of
A and those of B. Therefore, the column rank of the two matrices is the same. ■

This suggests that to find the rank of a matrix, one should do row operations until a
matrix is obtained in which its rank is obvious.

Example 4.2.5 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns. 1 2 1 3 2

1 3 6 0 2

3 7 8 6 6

 (4.1)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the third. This yields 1 2 1 3 2

0 1 5 −3 0

0 1 5 −3 0
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By the above corollary, this matrix has the same rank as the first matrix. Now take (−1)
times the second row and add to the third row and then −2 times the second added to the
first yielding  1 0 −9 9 2

0 1 5 −3 0

0 0 0 0 0


At this point it is clear the rank is 2. This is because every column is in the span of the
first two and these first two columns are linearly independent.

Example 4.2.6 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns. 1 2 1 3 2

1 2 6 0 2

3 6 8 6 6

 (4.2)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the last row. This yields 1 2 1 3 2

0 0 5 −3 0

0 0 5 −3 0


Now multiply the second row by 1/5 and add 5 times it to the last row. 1 2 1 3 2

0 0 1 −3/5 0

0 0 0 0 0


Add (−1) times the second row to the first. 1 2 0 18/5 2

0 0 1 −3/5 0

0 0 0 0 0

 (4.3)

It is now clear the rank of this matrix is 2 because the first and third columns form a
basis for the column space.

The matrix 4.3 is the row reduced echelon form for the matrix 4.2.

4.3 The Row Reduced Echelon Form

The following definition is for the row reduced echelon form of a matrix.

Definition 4.3.1 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing
successive columns from left to right, the first nonzero column encountered is e1 and if you
have encountered e1, e2, · · · , ek, the next column is either ek+1 or is a linear combination
of the vectors, e1, e2, · · · , ek.
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For example, here are some matrices which are in row reduced echelon form. 0 1 3 0 3

0 0 0 1 5

0 0 0 0 0

 ,

 1 0 3 −11 0

0 1 4 4 0

0 0 0 0 1

 .

Theorem 4.3.2 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this entry equal to zero. Thus the
first nonzero column is now e1. Denote the resulting matrix by A1. Consider the submatrix
of A1 to the right of this column and below the first row. Do exactly the same thing for it
that was done for A. This time the e1 will refer to Fm−1. Use this 1 and row operations
to zero out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered. Continue
this way till every column has been dealt with and the result must be in row reduced echelon
form. ■

Definition 4.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which is not a linear combination of the columns to
its left. The third pivot column is the next column after this which is not a linear combination
of those columns to its left, and so forth. Thus by Lemma 4.2.3 if a pivot column occurs
as the jth column from the left, it follows that in the row reduced echelon form there will be
one of the ek as the jth column.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 4.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.

Since every row operation can be obtained by multiplication on the left by an elementary
matrix and since each of these elementary matrices has an inverse which is also an elementary
matrix, it follows that row equivalence is a similarity relation. Thus one can classify matrices
according to which similarity class they are in. Later in the book, another more profound
way of classifying matrices will be presented.

It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form. Note 

x1
...

xn

 = x1e1 + · · ·+ xnen

so to say two column vectors are equal is to say they are the same linear combination of the
special vectors ej .

Thus the row reduced echelon form is completely determined by the positions of columns
which are not linear combinations of preceding columns (These become the ei vectors in
the row reduced echelon form.) and the scalars which are used in the linear combinations of
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these special pivot columns to obtain the other columns. All of these considerations pertain
only to linear relations between the columns of the matrix, which by Lemma 4.2.3 are all
preserved. Therefore, there is only one row reduced echelon form for any given matrix. The
proof of the following corollary is just a more careful exposition of this simple idea.

Corollary 4.3.5 The row reduced echelon form is unique. That is if B,C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir,
the description of the row reduced echelon form means that each of these columns is not a
linear combination of the preceding columns. Therefore, by Lemma 4.2.3, the same is true of
the columns in positions i1, i2, · · · , ir for C. It follows from the description of the row reduced
echelon form, that e1, · · · , er occur respectively for the first time in columns i1, i2, · · · , ir
for C. Thus B,C have the same columns in these positions. By Lemma 4.2.3, the other
columns in the two matrices are linear combinations, involving the same scalars, of the
columns in the i1, · · · , ik position. Thus each column of B is identical to the corresponding
column in C. ■

The above corollary shows that you can determine whether two matrices are row equiv-
alent by simply checking their row reduced echelon forms. The matrices are row equivalent
if and only if they have the same row reduced echelon form.

The following corollary follows.

Corollary 4.3.6 Let A be an m× n matrix and let R denote the row reduced echelon form
obtained from A by row operations. Then there exists a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = R.

Proof: This follows from the fact that row operations are equivalent to multiplication
on the left by an elementary matrix. ■

Corollary 4.3.7 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, it follows A must have rank n because by Theorem
3.3.18 det(A) ̸= 0 which says the determinant rank and hence the column rank of A is n
and so the row reduced echelon form of A is I because the columns of A form a linearly
independent set. Therefore, by Corollary 4.3.6 there is a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = I.

But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 4.1.6 each of these in this product is an elementary matrix. ■

Corollary 4.3.8 The rank of a matrix equals the number of nonzero pivot columns. Fur-
thermore, every column is contained in the span of the pivot columns.

Proof: Write the row reduced echelon form for the matrix. From Corollary 4.2.4 this
row reduced matrix has the same rank as the original matrix. Deleting all the zero rows
and all the columns in the row reduced echelon form which do not correspond to a pivot
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column, yields an r× r identity submatrix in which r is the number of pivot columns. Thus
the rank is at least r.

From Lemma 4.2.3 every column of A is a linear combination of the pivot columns since
this is true by definition for the row reduced echelon form. Therefore, the rank is no more
than r. ■

Here is a fundamental observation related to the above.

Corollary 4.3.9 Suppose A is an m×n matrix and that m < n. That is, the number of rows
is less than the number of columns. Then one of the columns of A is a linear combination
of the preceding columns of A.

Proof: Since m < n, not all the columns of A can be pivot columns. That is, in the
row reduced echelon form say ei occurs for the first time at ri where r1 < r2 < · · · < rp
where p ≤ m. It follows since m < n, there exists some column in the row reduced echelon
form which is a linear combination of the preceding columns. By Lemma 4.2.3 the same is
true of the columns of A. ■

Definition 4.3.10 Let A be an m×n matrix having rank, r. Then the nullity of A is defined
to be n− r. Also define ker (A) ≡ {x ∈ Fn : Ax = 0} . This is also denoted as N (A) .

Observation 4.3.11 Note that ker (A) is a subspace because if a, b are scalars and x,y are
vectors in ker (A), then

A (ax+ by) = aAx+ bAy = 0+ 0 = 0

Recall that the dimension of the column space of a matrix equals its rank and since the
column space is just A (Fn) , the rank is just the dimension of A (Fn). The next theorem
shows that the nullity equals the dimension of ker (A).

Theorem 4.3.12 Let A be an m× n matrix. Then rank (A) + dim (ker (A)) = n.

Proof: Since ker (A) is a subspace, there exists a basis for ker (A) , {x1, · · · ,xk} . Also
let {Ay1, · · · , Ayl} be a basis for A (Fn). Let u ∈ Fn. Then there exist unique scalars ci
such that

Au =

l∑
i=1

ciAyi

It follows that

A

(
u−

l∑
i=1

ciyi

)
= 0

and so the vector in parenthesis is in ker (A). Thus there exist unique bj such that

u =

l∑
i=1

ciyi +

k∑
j=1

bjxj

Since u was arbitrary, this shows {x1, · · · ,xk,y1, · · · ,yl} spans Fn. If these vectors are
independent, then they will form a basis and the claimed equation will be obtained. Suppose
then that

l∑
i=1

ciyi +

k∑
j=1

bjxj = 0

Apply A to both sides. This yields

l∑
i=1

ciAyi = 0

and so each ci = 0. Then the independence of the xj imply each bj = 0. ■
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4.4 Existence of Solutions to Linear Systems

Consider the linear system of equations,

Ax = b (4.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.
Suppose

A =
(

a1 · · · an

)
where the ak denote the columns of A. Then x = (x1, · · · , xn)T is a solution of the system
4.4, if and only if

x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution
to the system, 4.4 if and only if b is contained in span (a1, · · · ,an) . In words, there is a
solution to 4.4 if and only if b is in the column space of A. In terms of rank, the following
proposition describes the situation.

Proposition 4.4.1 Let A be an m× n matrix and let b be an m× 1 column vector. Then
there exists a solution to 4.4 if and only if

rank
(
A | b

)
= rank (A) . (4.5)

Proof: Place
(
A | b

)
and A in row reduced echelon form, respectively B and C. If

the above condition on rank is true, then both B and C have the same number of nonzero
rows. In particular, you cannot have a row of the form(

0 · · · 0 ⋆
)

where ⋆ ̸= 0 in B. Therefore, there will exist a solution to the system 4.4.
Conversely, suppose there exists a solution. This means there cannot be such a row in

B described above. Therefore, B and C must have the same number of zero rows and so
they have the same number of nonzero rows. Therefore, the rank of the two matrices in 4.5
is the same. ■

4.5 Fredholm Alternative

There is a very useful version of Proposition 4.4.1 known as the Fredholm alternative.
I will only present this for the case of real matrices here. Later a much more elegant and
general approach is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 4.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny
exponent, ⊥ is called “perp”.

Now note

ker
(
AT
)
≡
{
z : AT z = 0

}
=

{
z :

m∑
k=1

zkak = 0

}

Lemma 4.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·ATy

)
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Proof: This follows right away from the definition of the inner product and matrix
multiplication.

(Ax · y) =
∑
k,l

Aklxlyk =
∑
k,l

(
AT
)
lk
xlyk =

(
x ·ATy

)
. ■

Now it is time to state the Fredholm alternative. The first version of this is the following
theorem.

Theorem 4.5.3 Let A be a real m× n matrix and let b ∈ Rm. There exists a solution, x

to the equation Ax = b if and only if b ∈ ker
(
AT
)⊥

.

Proof: First suppose b ∈ ker
(
AT
)⊥
. Then this says that if ATx = 0, it follows that

b · x = xTb = 0. In other words, taking the transpose, if

xTA = 0, then xTb = 0.

Thus, if P is a product of elementary matrices such that PA is in row reduced echelon form,
then if PA has a row of zeros, in the kth position, obtained from the kth row of P times A,
then there is also a zero in the kth position of Pb. This is because the kth position in Pb is

just the kth row of P times b. Thus the row reduced echelon forms of A and
(
A | b

)
have the same number of zero rows. Thus rank

(
A | b

)
= rank (A). By Proposition

4.4.1, there exists a solution x to the system Ax = b. It remains to prove the converse.
Let z ∈ ker

(
AT
)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 4.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0 ■

This implies the following corollary which is also called the Fredholm alternative. The
“alternative” becomes more clear in this corollary.

Corollary 4.5.4 Let A be an m× n matrix. Then A maps Rn onto Rm if and only if the
only solution to ATx = 0 is x = 0.

Proof: If the only solution to ATx = 0 is x = 0, then ker
(
AT
)
= {0} and so

ker
(
AT
)⊥

= Rm

because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solution for

any b ∈ Rm because the b for which there is a solution are those in ker
(
AT
)⊥

by Theorem
4.5.3. In other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 4.5.3 every b ∈ Rm is in ker
(
AT
)⊥

and so if
ATx = 0, then b · x = 0 for every b. In particular, this holds for b = x. Hence if ATx = 0,
then x = 0. ■

Here is an amusing example.

Example 4.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix(
AT |0

)
there must be some free variables. Thus there exists a nonzero vector x such that ATx = 0.
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4.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors
P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡

{
n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors
for R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(
1 1

0 1

)
where E is the elementary matrix which takes the third row and adds to the first.
Draw

{Ex : x ∈ P (e1, e2)} .
In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the
results of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary
matrices to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 4.3.7.

4. Consider a permutation of {1, 2, · · · , n}. This is an ordered list of numbers taken from
this list with no repeats, {i1, i2, · · · , in}. Define the permutation matrix

P (i1, i2, · · · , in)

as the matrix which is obtained from the identity matrix by placing the jth column of I
as the ithj column of P (i1, i2, · · · , in) . Thus the 1 in the ithj column of this permutation

matrix occurs in the jth slot. What does this permutation matrix do to the column
vector (1, 2, · · · , n)T ?

5. ↑Consider the 3 × 3 permutation matrices. List all of them and then determine the
dimension of their span. Recall that you can consider an m× n matrix as something
in Fnm.

6. Determine which matrices are in row reduced echelon form.

(a)

(
1 2 0

0 1 7

)

(b)

 1 0 0 0

0 0 1 2

0 0 0 0


(c)

 1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3
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7. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)

 1 2 0 3

2 1 2 2

1 1 0 3



(b)


1 2 3

2 1 −2

3 0 0

3 2 1



(c)

 1 2 1 3

−3 2 1 0

3 2 1 1


8. Find the rank and nullity of the following matrices. If the rank is r, identify r columns

in the original matrix which have the property that every other column may be
written as a linear combination of these.

(a)


0 1 0 2 1 2 2

0 3 2 12 1 6 8

0 1 1 5 0 2 3

0 2 1 7 0 3 4



(b)


0 1 0 2 0 1 0

0 3 2 6 0 5 4

0 1 1 2 0 2 2

0 2 1 4 0 3 2



(c)


0 1 0 2 1 1 2

0 3 2 6 1 5 1

0 1 1 2 0 2 1

0 2 1 4 0 3 1


9. Find the rank of the following matrices. If the rank is r, identify r columns in the

original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.

(a)


1 2 0

3 2 1

2 1 0

0 2 1



(b)


1 0 0

4 1 1

2 1 0

0 2 0
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(c)


0 1 0 2 1 2 2

0 3 2 12 1 6 8

0 1 1 5 0 2 3

0 2 1 7 0 3 4



(d)


0 1 0 2 0 1 0

0 3 2 6 0 5 4

0 1 1 2 0 2 2

0 2 1 4 0 3 2



(e)


0 1 0 2 1 1 2

0 3 2 6 1 5 1

0 1 1 2 0 2 1

0 2 1 4 0 3 1


10. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than

min (m,n) .

11. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

12. Suppose A is an m × n matrix and that m > n. Show there exists b ∈ Fm such that
there is no solution to the equation

Ax = b.

13. Suppose A is an m × n matrix in which m ≥ n. Suppose also that the rank of A
equals n. Show that A is one to one. Hint: If not, there exists a vector, x ̸= 0 such
that Ax = 0, and this implies at least one column of A is a linear combination of the
others. Show this would require the column rank to be less than n.

14. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

15. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of
vectors in A (Fn) ⊆ Fm. Suppose also that Azi = wi. Show that {z1, · · · , zk} is also
linearly independent.

16. Show rank (A+B) ≤ rank (A) + rank (B).

17. Suppose A is an m × n matrix, m ≥ n and the columns of A are independent. Sup-
pose also that {z1, · · · , zk} is a linearly independent set of vectors in Fn. Show that
{Az1, · · · , Azk} is linearly independent.

18. Suppose that A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .
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19. Let m < n and let A be an m× n matrix. Show that A is not one to one.

20. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
ATA

)T
= ATA. Next show if x ∈ ker

(
ATA

)
, then Ax = 0. Finally apply the Fred-

holm alternative. Show ATb ∈ ker(ATA)⊥. This will give existence of a solution.

21. Show that in the context of Problem 20 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn). This is a solution to the least squares problem.

22. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point in span




1

0

2

3

 ,


0

1

3

2


 which

is closest to the given point.

23. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point on the plane described by x+2y−

4z + 4w = 0 which is closest to the given point.

24. Suppose A,B are two invertible n× n matrices. Show there exists a sequence of row
operations which when done to A yield B. Hint: Recall that every invertible matrix
is a product of elementary matrices.

25. If A is invertible and n× n and B is n× p, show that AB has the same null space as
B and also the same rank as B.

26. Here are two matrices in row reduced echelon form

A =

 1 0 1

0 1 1

0 0 0

 , B =

 1 0 0

0 1 1

0 0 0


Does there exist a sequence of row operations which when done to A will yield B?
Explain.

27. Is it true that an upper triagular matrix has rank equal to the number of nonzero
entries down the main diagonal?

28. Let {v1, · · · ,vn−1} be vectors in Fn. Describe a systematic way to obtain a vector vn

which is perpendicular to each of these vectors. Hint: You might consider something
like this

det


e1 e2 · · · en

v11 v12 · · · v1n
...

...
...

v(n−1)1 v(n−1)2 · · · v(n−1)n


where vij is the jth entry of the vector vi. This is a lot like the cross product.

29. Let A be an m × n matrix. Then ker (A) is a subspace of Fn. Is it true that every
subspace of Fn is the kernel or null space of some matrix? Prove or disprove.
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30. Let A be an n×n matrix and let P ij be the permutation matrix which switches the ith

and jth rows of the identity. Show that P ijAP ij produces a matrix which is similar
to A which switches the ith and jth entries on the main diagonal.

31. Recall the procedure for finding the inverse of a matrix on Page 49. It was shown that
the procedure, when it works, finds the inverse of the matrix. Show that whenever
the matrix has an inverse, the procedure works.

32. If EA = B where E is invertible, show that A and B have the same linear relationships
among their columns.

33. You could define column operations by analogy to row operations. That is, you
switch two columns, multiply a column by a nonzero scalar, or add a scalar multiple
of a column to another column. Let E be one of these column operations applied to
the identity matrix. Show that AE produces the column operation on A which was
used to define E.



Chapter 5

Some Factorizations

5.1 LU Factorization

An LU factorization of a matrix involves writing the given matrix as the product of a
lower triangular matrix which has the main diagonal consisting entirely of ones, L, and an
upper triangular matrix U in the indicated order. The L goes with “lower” and the U with
“upper”. It turns out many matrices can be written in this way and when this is possible,
people get excited about slick ways of solving the system of equations, Ax = y. The method
lacks generality but is of interest just the same.

Example 5.1.1 Can you write

(
0 1

1 0

)
in the form LU as just described?

To do so you would need(
1 0

x 1

)(
a b

0 c

)
=

(
a b

xa xb+ c

)
=

(
0 1

1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and
have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU factorization.
This is what I mean above by saying the method lacks generality.

Which matrices have an LU factorization? It turns out it is those whose row reduced
echelon form can be achieved without switching rows and which only involve row operations
of type 3 in which row j is replaced with a multiple of row i added to row j for i < j.

5.2 Finding an LU Factorization

There is a convenient procedure for finding an LU factorization. It turns out that it is
only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples and is called the
multiplier method. It is due to Dolittle.

Example 5.2.1 Find an LU factorization for A =

 1 2 3

2 1 −4

1 5 2


Write the matrix next to the identity matrix as shown. 1 0 0

0 1 0

0 0 1


 1 2 3

2 1 −4

1 5 2

 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right. 1 0 0

2 1 0

0 0 1


 1 2 3

0 −3 −10

1 5 2


129
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Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is 1 0 0

2 1 0

1 0 1


 1 2 3

0 −3 −10

0 3 −1


Finally, add the second row to the bottom row and make the following changes 1 0 0

2 1 0

1 −1 1


 1 2 3

0 −3 −10

0 0 −11

 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =


1 2 1 2 1

2 0 2 1 1

2 3 1 3 2

1 0 1 1 2

 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.

1 0 0 0

2 1 0 0

2 0 1 0

1 0 0 1




1 2 1 2 1

0 −4 0 −3 −1

0 −1 −1 −1 0

0 −2 0 −1 1

 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
second added to the last.

1 0 0 0

2 1 0 0

2 1/4 1 0

1 1/2 0 1




1 2 1 2 1

0 −4 0 −3 −1

0 0 −1 −1/4 1/4

0 0 0 1/2 3/2


This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method. ▶▶

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU factorization is of interest in solving systems of equations.

http://www.math.byu.edu/~klkuttle/precalculus/lz5.mp4
http://www.math.byu.edu/~klkuttle/precalculus/lz6.mp4
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5.3 Solving Linear Systems Using an LU Factorization

The reason people care about the LU factorization is it allows the quick solution of systems
of equations. Here is an example.

Example 5.3.1 Suppose you want to find the solutions to

 1 2 3 2

4 3 1 1

1 2 3 0




x

y

z

w

 =

 1

2

3

 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of an LU factorization and it turns out
that an LU factorization can give the solution quickly. Here is how. The following is an LU
factorization for the matrix. 1 2 3 2

4 3 1 1

1 2 3 0

 =

 1 0 0

4 1 0

1 0 1


 1 2 3 2

0 −5 −11 −7

0 0 0 −2

 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)
T
. Thus 1 0 0

4 1 0

1 0 1


 y1

y2

y3

 =

 1

2

3



which yields very quickly that y =

 1

−2

2

 . Now you can find x by solving Ux = y. Thus

in this case,  1 2 3 2

0 −5 −11 −7

0 0 0 −2




x

y

z

w

 =

 1

−2

2


which yields

x =


− 3

5 + 7
5 t

9
5 − 11

5 t

t

−1

 , t ∈ R.

Work this out by hand and you will see the advantage of working only with triangular
matrices.

It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a
difference for large systems.
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5.4 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =

 1 2 3 2

1 2 3 0

4 3 1 1

 (5.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 5.4.1 Find a PLU factorization for the above matrix in 5.1.

Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields 1 0 0

1 1 0

4 0 1


 1 2 3 2

0 0 0 −2

0 −5 −11 −7


There is no way to do only row operations involving replacing a row with itself added to a
multiple of another row to the second matrix in such a way as to obtain an upper triangular
matrix. Therefore, consider M with the bottom two rows switched.

M ′ =

 1 2 3 2

4 3 1 1

1 2 3 0

 .

Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields 1 0 0

4 1 0

1 0 1


 1 2 3 2

0 −5 −11 −7

0 0 0 −2


The second matrix is upper triangular and so the LU factorization of the matrix M ′ is 1 0 0

4 1 0

1 0 1


 1 2 3 2

0 −5 −11 −7

0 0 0 −2

 .

Thus M ′ = PM = LU where L and U are given above. Therefore, M = P 2M = PLU and
so  1 2 3 2

1 2 3 0

4 3 1 1

 =

 1 0 0

0 0 1

0 1 0


 1 0 0

4 1 0

1 0 1


 1 2 3 2

0 −5 −11 −7

0 0 0 −2


This process can always be followed and so there always exists a PLU factorization of a

given matrix even though there isn’t always an LU factorization.

Example 5.4.2 Use a PLU factorization of M ≡

 1 2 3 2

1 2 3 0

4 3 1 1

 to solve the system

Mx = b where b =(1, 2, 3)
T
.
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Let Ux = y and consider PLy = b. In other words, solve, 1 0 0

0 0 1

0 1 0


 1 0 0

4 1 0

1 0 1


 y1

y2

y3

 =

 1

2

3

 .

Then multiplying both sides by P gives 1 0 0

4 1 0

1 0 1


 y1

y2

y3

 =

 1

3

2


and so

y =

 y1

y2

y3

 =

 1

−1

1

 .

Now Ux = y and so it only remains to solve

 1 2 3 2

0 −5 −11 −7

0 0 0 −2




x1

x2

x3

x4

 =

 1

−1

1


which yields 

x1

x2

x3

x4

 =


1
5 + 7

5 t
9
10 − 11

5 t

t

− 1
2

 : t ∈ R.

5.5 Justification for the Multiplier Method

Why does the multiplier method work for finding an LU factorization? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU factorization,
we zero out the elements below the pivot entry in first column and then the next and so on
when scanning from the left. In terms of elementary matrices, this means the row operations
used to reduce A to upper triangular form correspond to multiplication on the left by lower
triangular matrices having all ones down the main diagonal and the sequence of elementary
matrices which row reduces A has the property that in scanning the list of elementary
matrices from the right to the left, this list consists of several matrices which involve only
changes from the identity in the first column, then several which involve only changes from
the identity in the second column and so forth. More precisely, Ep · · ·E1A = U where U is
upper triangular, Ek having all zeros below the main diagonal except for a single column.

Therefore, A =

Will be L︷ ︸︸ ︷
E−1

1 · · ·E−1
p−1E

−1
p U. You multiply the inverses in the reverse order. Now each

of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore their product
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has this property. Recall also that if Ei equals the identity matrix except for having an a
in a single column somewhere below the main diagonal, E−1

i is obtained by replacing the a
in Ei with −a, thus explaining why we replace with −1 times the multiplier in computing
L. In the case where A is a 3×m matrix, E−1

1 · · ·E−1
p−1E

−1
p is of the form 1 0 0

a 1 0

0 0 1


 1 0 0

0 1 0

b 0 1


 1 0 0

0 1 0

0 c 1

 =

 1 0 0

a 1 0

b c 1

 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If the entries in the first column had been zeroed out in a different order, the following
would have resulted. 1 0 0

0 1 0

b 0 1


 1 0 0

a 1 0

0 0 1


 1 0 0

0 1 0

0 c 1

 =

 1 0 0

a 1 0

b c 1


However, it is important to be working from the left to the right, one column at a time.

A similar observation holds in any dimension. Multiplying the elementary matrices which
involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix U which is multiplied by a sequence of lower triangular matrices on its left which is
of the following form, in which the aij are negatives of multipliers used in row reducing to
an upper triangular matrix.

1 0 · · · 0

a11 1
...

...
. . . 0

a1,n−1 0 · · · 1




1 0 · · · 0

0 1
...

...
...

. . . 0

0 a2,n−2 · · · 1

 · · ·


1 0 · · · 0

0 1
...

...
. . . 0

0 · · · an,n−1 1


From the matrix multiplication, this product equals

1

a11 1
...

. . .

a1,n−1 · · · an,n−1 1


Notice how the end result of the matrix multiplication made no change in the aij . It just

filled in the empty spaces with the aij which occurred in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

5.6 Existence for the PLU Factorization

Here I will consider an invertible n × n matrix and show that such a matrix always has
a PLU factorization. More general matrices could also be considered but this is all I will
present.
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Let A be such an invertible matrix and consider the first column of A. If A11 ̸= 0, use
this to zero out everything below it. The entry A11 is called the pivot. Thus in this case
there is a lower triangular matrix L1 which has all ones on the diagonal such that

L1P1A =

(
∗ ∗
0 A1

)
(5.2)

Here P1 = I. In case A11 = 0, let r be such that Ar1 ̸= 0 and r is the first entry for which
this happens. In this case, let P1 be the permutation matrix which switches the first row
and the rth row. Then as before, there exists a lower triangular matrix L1 which has all
ones on the diagonal such that 5.2 holds in this case also. In the first column, this L1 has
zeros between the first row and the rth row.

Go to A1. Following the same procedure as above, there exists a lower triangular matrix
and permutation matrix L′

2, P
′
2 such that

L′
2P

′
2A1 =

(
∗ ∗
0 A2

)

Let

L2 =

(
1 0

0 L′
2

)
, P2 =

(
1 0

0 P ′
2

)
Then using block multiplication, Theorem 3.5.2,(

1 0

0 L′
2

)(
1 0

0 P ′
2

)(
∗ ∗
0 A1

)
=

=

(
1 0

0 L′
2

)(
∗ ∗
0 P ′

2A1

)
=

(
∗ ∗
0 L′

2P
′
2A1

)
 ∗ · · · ∗

0 ∗ ∗
0 0 A2

 = L2P2L1P1A

and L2 has all the subdiagonal entries equal to 0 except possibly some nonzero entries in
the second column starting with position r2 where P2 switches rows r2 and 2. Continuing
this way, it follows there are lower triangular matrices Lj having all ones down the diagonal
and permutation matrices Pi which switch only two rows such that

Ln−1Pn−1Ln−2Pn−2Ln−3 · · ·L2P2L1P1A = U (5.3)

where U is upper triangular. The matrix Lj has all zeros below the main diagonal except
for the jth column and even in this column it has zeros between position j and rj where Pj

switches rows j and rj . Of course in the case where no switching is necessary, you could get
all nonzero entries below the main diagonal in the jth column for Lj .

The fact that Lj is the identity except for the jth column means that each Pk for k > j
almost commutes with Lj . Say Pk switches the kth and the qth rows for q ≥ k > j. When
you place Pk on the right of Lj it just switches the kth and the qth columns and leaves the
jth column unchanged. Therefore, the same result as placing Pk on the left of Lj can be
obtained by placing Pk on the right of Lj and modifying Lj by switching the kth and the qth

entries in the jth column. (Note this could possibly interchange a 0 for something nonzero.)
It follows from 5.3 there exists P, the product of permutation matrices, P = Pn−1 · · ·P1
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each of which switches two rows, and L a lower triangular matrix having all ones on the
main diagonal, L = L′

n−1 · · ·L′
2L

′
1, where the L

′
j are obtained as just described by moving a

succession of Pk from the left to the right of Lj and modifying the jth column as indicated,
such that LPA = U. Then A = PTL−1U .

It is customary to write this more simply as

A = PLU

where L is an upper triangular matrix having all ones on the diagonal and P is a permutation
matrix consisting of P1 · · ·Pn−1 as described above. This proves the following theorem.

Theorem 5.6.1 Let A be any invertible n × n matrix. Then there exists a permutation
matrix P and a lower triangular matrix L having all ones on the main diagonal and an
upper triangular matrix U such that A = PLU .

5.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing be-
cause it does not always exist. There is another factorization which does always exist. Much
more can be said about it than I will say here. At this time, I will only deal with real ma-
trices and so the inner product will be the usual real dot product. Letting A be an m × n
real matrix and letting (·, ·) denote the usual real inner product,

(Ax,y) =
∑
i

(Ax)i yi =
∑
i

∑
j

Aijxjyi =
∑
j

∑
i

(
AT
)
ji
yixj

=
∑
j

(
ATy

)
j
xj =

(
x,ATy

)
Thus, when you take the matrix across the comma, you replace with a transpose.

Definition 5.7.1 An n× n real matrix Q is called an orthogonal matrix if

QQT = QTQ = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

From the above observation,

|Qx|2 = (Qx, Qx) =
(
x,QTQx

)
= (x,Ix) = (x,x) = |x|2

This shows that orthogonal transformations preserve distances. Conversely you can also
show that if you have a matrix which does preserve distances, then it must be orthogonal.

Example 5.7.2 One of the most important examples of an orthogonal matrix is the so
called Householder matrix. You have v a unit vector and you form the matrix

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of
matrix operations. (

I − 2vvT
)T

= IT −
(
2vvT

)T
= I − 2vvT
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so it is symmetric. Now to show it is orthogonal,(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvTvvT

= I − 4vvT + 4vvT = I

because vTv = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 5.7.3 Given two vectors x,y such that |x| = |y| ≠ 0 but x ̸= y and you want an
orthogonal matrix Q such that Qx = y and Qy = x. The thing which works is the House-
holder matrix

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2
(x− y)

T
(x− y)

= (x− y)− 2
x− y

|x− y|2
|x− y|2 = y − x

Q (x+ y) = (x+ y)− 2
x− y

|x− y|2
(x− y)

T
(x+ y)

= (x+ y)− 2
x− y

|x− y|2
((x− y) · (x+ y))

= (x+ y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x+ y

Hence

Qx+Qy = x+ y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.

A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 5.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular (right triangular) having all the entries on
the main diagonal nonnegative such that A = QR.
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With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1,a2, · · · ,an)
where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡


|a1|
0
...

0


and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T

As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)
where A2 is am−1×n−1 matrix. Now find in the same way as was just done am−1×m−1
matrix Q̂2 such that

Q̂2A2 =

(
∗ ∗
0 A3

)
Let

Q2 ≡

(
1 0

0 Q̂2

)
.

Then

Q2Q1A =

(
1 0

0 Q̂2

)(
|a1| ∗
0 A2

)

=


|a1| ∗ ∗
... ∗ ∗
0 0 A3


Continuing this way until the result is upper triangular, you get a sequence of orthogonal
matrices QpQp−1 · · ·Q1 such that

QpQp−1 · · ·Q1A = R (5.4)

where R is upper triangular.
Now if Q1 and Q2 are orthogonal, then from properties of matrix multiplication,

Q1Q2 (Q1Q2)
T
= Q1Q2Q

T
2Q

T
1 = Q1IQ

T
1 = I

and similarly
(Q1Q2)

T
Q1Q2 = I.

Thus the product of orthogonal matrices is orthogonal. Also the transpose of an orthogonal
matrix is orthogonal directly from the definition. Therefore, from 5.4

A = (QpQp−1 · · ·Q1)
T
R ≡ QR.

This proves the following theorem.
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Theorem 5.7.5 Let A be any real m × n matrix. Then there exists an orthogonal matrix
Q and an upper triangular matrix R having nonnegative entries on the main diagonal such
that

A = QR

and this factorization can be accomplished in a systematic manner.

▶ ▶

5.8 Exercises

1. Find a LU factorization of

 1 2 0

2 1 3

1 2 3

 .

2. Find a LU factorization of

 1 2 3 2

1 3 2 1

5 0 1 3

 .

3. Find a PLU factorization of

 1 2 1

1 2 2

2 1 1

 .

4. Find a PLU factorization of

 1 2 1 2 1

2 4 2 4 1

1 2 1 3 2

 .

5. Find a PLU factorization of


1 2 1

1 2 2

2 4 1

3 2 1

 .

6. Is there only one LU factorization for a given matrix? Hint: Consider the equation(
0 1

0 1

)
=

(
1 0

1 1

)(
0 1

0 0

)
.

7. Here is a matrix and an LU factorization of it.

A =

 1 2 5 0

1 1 4 9

0 1 2 5

 =

 1 0 0

1 1 0

0 −1 1


 1 2 5 0

0 −1 −1 9

0 0 1 14


Use this factorization to solve the system of equations

Ax =

 1

2

3



http://www.math.byu.edu/~klkuttle/precalculus/lz7.mp4
http://www.math.byu.edu/~klkuttle/precalculus/lz8.mp4
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8. Find a QR factorization for the matrix 1 2 1

3 −2 1

1 0 2


9. Find a QR factorization for the matrix 1 2 1 0

3 0 1 1

1 0 2 1


10. If you had a QR factorization, A = QR, describe how you could use it to solve the

equation Ax = b.

11. If Q is an orthogonal matrix, show the columns are an orthonormal set. That is show
that for

Q =
(

q1 · · · qn

)
it follows that qi · qj = δij . Also show that any orthonormal set of vectors is linearly
independent.

12. Show you can’t expect uniqueness for QR factorizations. Consider 0 0 0

0 0 1

0 0 1


and verify this equals  0 1 0

1
2

√
2 0 1

2

√
2

1
2

√
2 0 − 1

2

√
2


 0 0

√
2

0 0 0

0 0 0


and also  1 0 0

0 1 0

0 0 1


 0 0 0

0 0 1

0 0 1

 .

Using Definition 5.7.4, can it be concluded that if A is an invertible matrix it will
follow there is only one QR factorization?

13. Suppose {a1, · · · ,an} are linearly independent vectors in Rn and let

A =
(

a1 · · · an

)
Form a QR factorization for A.

(
a1 · · · an

)
=
(

q1 · · · qn

)


r11 r12 · · · r1n

0 r22 · · · r2n
...

. . .

0 0 · · · rnn
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Show that for each k ≤ n,

span (a1, · · · ,ak) = span (q1, · · · ,qk)

Prove that every subspace of Rn has an orthonormal basis. The procedure just de-
scribed is similar to the Gram Schmidt procedure which will be presented later.

14. Suppose QnRn converges to an orthogonal matrix Q where Qn is orthogonal and Rn

is upper triangular having all positive entries on the diagonal. Show that then Qn

converges to Q and Rn converges to the identity.
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Chapter 6

Spectral Theory
Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

6.1 Eigenvalues and Eigenvectors of a Matrix

The field of scalars in spectral theory is best taken to equal C although I will sometimes
refer to it as F when it could be either C or R.

Definition 6.1.1 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (6.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (charac-
teristic value) of the matrix M.

Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix M, is denoted by σ (M) and is referred to as
the spectrum of M.

Eigenvectors are vectors which are shrunk, stretched or reflected upon multiplication by
a matrix. How can they be identified? Suppose x satisfies 6.1. Then

(λI −M)x = 0

for some x ̸= 0. Therefore, the matrix M − λI cannot have an inverse and so by Theorem
3.3.18

det (λI −M) = 0. (6.2)

In other words, λmust be a zero of the characteristic polynomial. SinceM is an n×nmatrix,
it follows from the theorem on expanding a matrix by its cofactor that this is a polynomial
equation of degree n. As such, it has a solution, λ ∈ C. Is it actually an eigenvalue? The
answer is yes and this follows from Theorem 3.3.26 on Page 100. Since det (λI −M) = 0
the matrix λI −M cannot be one to one and so there exists a nonzero vector, x such that
(λI −M)x = 0. This proves the following corollary.

Corollary 6.1.2 LetM be an n×n matrix and det (M − λI) = 0. Then there exists x ∈ Cn

such that (M − λI)x = 0.

As an example, consider the following.

Example 6.1.3 Find the eigenvalues and eigenvectors for the matrix

A =

 5 −10 −5

2 14 2

−4 −8 6

 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det

λ
 1 0 0

0 1 0

0 0 1

−

 5 −10 −5

2 14 2

−4 −8 6


 = 0

143
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When you expand this determinant, you find the equation is

(λ− 5)
(
λ2 − 20λ+ 100

)
= 0

and so the eigenvalues are
5, 10, 10.

I have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ+ 100 = (λ− 10)
2
.

Having found the eigenvalues, it only remains to find the eigenvectors. First find the
eigenvectors for λ = 5. As explained above, this requires you to solve the equation,5

 1 0 0

0 1 0

0 0 1

−

 5 −10 −5

2 14 2

−4 −8 6



 x

y

z

 =

 0

0

0

 .

That is you need to find the solution to 0 10 5

−2 −9 −2

4 8 −1


 x

y

z

 =

 0

0

0


By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is 0 10 5 0

−2 −9 −2 0

4 8 −1 0

 . (6.3)

The reduced row echelon form is  1 0 − 5
4 0

0 1 1
2 0

0 0 0 0


and so the solution is any vector of the form

5
4z
−1
2 z

z

 = z


5
4
−1
2

1


where z ∈ F. You would obtain the same collection of vectors if you replaced z with 4z.
Thus a simpler description for the solutions to this system of equations whose augmented
matrix is in 6.3 is

z

 5

−2

4

 (6.4)

where z ∈ F. Now you need to remember that you can’t take z = 0 because this would
result in the zero vector and

Eigenvectors are never equal to zero!
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Other than this value, every other choice of z in 6.4 results in an eigenvector. It is a good
idea to check your work! To do so, I will take the original matrix and multiply by this vector
and see if I get 5 times this vector. 5 −10 −5

2 14 2

−4 −8 6


 5

−2

4

 =

 25

−10

20

 = 5

 5

−2

4


so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The variable, z is called a free variable or sometimes a parameter. The set of vectors in
6.4 is called the eigenspace and it equals ker (λI −A) . You should observe that in this case
the eigenspace has dimension 1 because there is one vector which spans the eigenspace. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,10

 1 0 0

0 1 0

0 0 1

−

 5 −10 −5

2 14 2

−4 −8 6



 x

y

z

 =

 0

0

0


That is you must find the solutions to 5 10 5

−2 −4 −2

4 8 4


 x

y

z

 =

 0

0

0


which reduces to consideration of the augmented matrix 5 10 5 0

−2 −4 −2 0

4 8 4 0


The row reduced echelon form for this matrix is 1 2 1 0

0 0 0 0

0 0 0 0


and so the eigenvectors are of the form −2y − z

y

z

 = y

 −2

1

0

+ z

 −1

0

1

 .

You can’t pick z and y both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!
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However, every other choice of z and y does result in an eigenvector for the eigenvalue
λ = 10. As in the case for λ = 5 you should check your work if you care about getting it
right.  5 −10 −5

2 14 2

−4 −8 6


 −1

0

1

 =

 −10

0

10

 = 10

 −1

0

1


so it worked. The other vector will also work. Check it.

The above example shows how to find eigenvectors and eigenvalues algebraically. You
may have noticed it is a bit long. Sometimes students try to first row reduce the matrix
before looking for eigenvalues. This is a terrible idea because row operations destroy the
value of the eigenvalues. The eigenvalue problem is really not about row operations. A
general rule to remember about the eigenvalue problem is this.

If it is not long and hard it is usually wrong!

The eigenvalue problem is the hardest problem in algebra and people still do research on
ways to find eigenvalues. Now if you are so fortunate as to find the eigenvalues as in the
above example, then finding the eigenvectors does reduce to row operations and this part
of the problem is easy. However, finding the eigenvalues is anything but easy because for
an n × n matrix, it involves solving a polynomial equation of degree n and none of us are
very good at doing this. If you only find a good approximation to the eigenvalue, it won’t
work. It either is or is not an eigenvalue and if it is not, the only solution to the equation,
(λI −M)x = 0 will be the zero solution as explained above and

Eigenvectors are never equal to zero!

Here is another example.

Example 6.1.4 Let

A =

 2 2 −2

1 3 −1

−1 1 1


First find the eigenvalues.

det

λ
 1 0 0

0 1 0

0 0 1

−

 2 2 −2

1 3 −1

−1 1 1


 = 0

This is λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!

Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is 2 2 −2 0

1 3 −1 0

−1 1 1 0
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and the row reduced echelon form is 1 0 −1 0

0 1 0 0

0 0 0 0


Therefore, the eigenvectors are of the form

z

 1

0

1


where z ̸= 0.

Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations
needed to find these eigenvectors is 0 −2 2 0

−1 −1 1 0

1 −1 1 0


and the row reduced echelon form is 1 0 0 0

0 1 −1 0

0 0 0 0


and so the eigenvectors are of the form

z

 0

1

1


where z ̸= 0.

Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations
needed to find these eigenvectors is 2 −2 2 0

−1 1 1 0

1 −1 3 0


and the row reduced echelon form is 1 −1 0 0

0 0 1 0

0 0 0 0

 .

Therefore, the eigenvectors are of the form

y

 1

1

0


where y ̸= 0.
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Example 6.1.5 Let

A =

 2 −2 −1

−2 −1 −2

14 25 14

 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)
2
= 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve3

 1 0 0

0 1 0

0 0 1

−

 2 −2 −1

−2 −1 −2

14 25 14



 x

y

z

 =

 0

0

0

 .

Using routine row operations, the eigenvectors are nonzero vectors of the form z

−z
z

 = z

 1

−1

1


Next consider the eigenvectors for λ = 6. This requires you to solve6

 1 0 0

0 1 0

0 0 1

−

 2 −2 −1

−2 −1 −2

14 25 14



 x

y

z

 =

 0

0

0


and using the usual procedures yields the eigenvectors for λ = 6 are of the form

z

 − 1
8

− 1
4

1


or written more simply,

z

 −1

−2

8


where z ∈ F.

Note that in this example the eigenspace for the eigenvalue λ = 6 is of dimension 1
because there is only one parameter which can be chosen. However, this eigenvalue is of
multiplicity two as a root to the characteristic equation.

Definition 6.1.6 If A is an n× n matrix with the property that some eigenvalue has alge-
braic multiplicity as a root of the characteristic equation which is greater than the dimension
of the eigenspace associated with this eigenvalue, then the matrix is called defective.

There may be repeated roots to the characteristic equation, 6.2 and it is not known
whether the dimension of the eigenspace equals the multiplicity of the eigenvalue. However,
the following theorem is available.
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Theorem 6.1.7 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof. Suppose the claim of the lemma is not true. Then there exists a subset of this
set of vectors

{w1, · · · ,wr} ⊆ {v1, · · · ,vk}

such that
r∑

j=1

cjwj = 0 (6.5)

where each cj ̸= 0. Say Mwj = µjwj where

{µ1, · · · , µr} ⊆ {λ1, · · · , λk} ,

the µj being distinct eigenvalues of M . Out of all such subsets, let this one be such that r
is as small as possible. Then necessarily, r > 1 because otherwise, c1w1 = 0 which would
imply w1 = 0, which is not allowed for eigenvectors.

Now apply M to both sides of 6.5.

r∑
j=1

cjµjwj = 0. (6.6)

Next pick µk ̸= 0 and multiply both sides of 6.5 by µk. Such a µk exists because r > 1.
Thus

r∑
j=1

cjµkwj = 0 (6.7)

Subtract the sum in 6.7 from the sum in 6.6 to obtain

r∑
j=1

cj
(
µk − µj

)
wj = 0

Now one of the constants cj
(
µk − µj

)
equals 0, when j = k. Therefore, r was not as small

as possible after all. ■
In words, this theorem says that eigenvectors associated with distinct eigenvalues are

linearly independent.
Sometimes you have to consider eigenvalues which are complex numbers. This occurs in

differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.

Example 6.1.8 Find the eigenvalues and eigenvectors of the matrix

A =

 1 0 0

0 2 −1

0 1 2

 .

You need to find the eigenvalues. Solve

det

λ
 1 0 0

0 1 0

0 0 1

−

 1 0 0

0 2 −1

0 1 2


 = 0.
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This reduces to (λ− 1)
(
λ2 − 4λ+ 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve(2 + i)

 1 0 0

0 1 0

0 0 1

−

 1 0 0

0 2 −1

0 1 2



 x

y

z

 =

 0

0

0


In other words, you must consider the augmented matrix 1 + i 0 0 0

0 i 1 0

0 −1 i 0


for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields  1 0 0 0

0 i 1 0

0 0 0 0


Now multiply the second row by −i to obtain 1 0 0 0

0 1 −i 0

0 0 0 0


Therefore, the eigenvectors are of the form

z

 0

i

1

 .

You should find the eigenvectors for λ = 2− i. These are

z

 0

−i
1

 .

As usual, if you want to get it right you had better check it. 1 0 0

0 2 −1

0 1 2


 0

−i
1

 =

 0

−1− 2i

2− i

 = (2− i)

 0

−i
1


so it worked.

6.2 Some Applications of Eigenvalues and Eigenvec-
tors

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
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matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar decomposition, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.

The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix U which is responsible for stretching and compressing. This
is why in continuum mechanics, the stress is often taken to depend on U which is known in
this context as the right Cauchy Green strain tensor. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts
is also important in applications to geometric measure theory an interesting field of study
in mathematics and to the study of quadratic forms which occur in many applications such
as statistics. Here I am emphasizing the application to mechanics in which the eigenvectors
of U determine the principle directions, those directions in which the material is stretched
or compressed to the maximum extent.

Example 6.2.1 Find the principle directions determined by the matrix
29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44


The eigenvalues are 3, 1, and 1

2 .

It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is compressed, becoming locally half as long. It remains to find these
directions. First consider the eigenvector for 3. It is necessary to solve3

 1 0 0

0 1 0

0 0 1

−


29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44



 x

y

z

 =

 0

0

0


Thus the augmented matrix for this system of equations is

4
11 − 6

11 − 6
11 0

− 6
11

91
44 − 19

44 0

− 6
11 − 19

44
91
44 0


The row reduced echelon form is  1 0 −3 0

0 1 −1 0

0 0 0 0


and so the principle direction for the eigenvalue 3 in which the material is stretched to the
maximum extent is  3

1

1

 .
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A direction vector in this direction is  3/
√
11

1/
√
11

1/
√
11

 .

You should show that the direction in which the material is compressed the most is in the
direction  0

−1/
√
2

1/
√
2


Note this is meaningful information which you would have a hard time finding without

the theory of eigenvectors and eigenvalues.
Another application is to the problem of finding solutions to systems of differential

equations. It turns out that vibrating systems involving masses and springs can be studied
in the form

x′′ = Ax (6.8)

where A is a real symmetric n × n matrix which has nonpositive eigenvalues. This is
analogous to the case of the scalar equation for undamped oscillation, x′′ + ω2x = 0. The
main difference is that here the scalar ω2 is replaced with the matrix −A. Consider the
problem of finding solutions to 6.8. You look for a solution which is in the form

x (t) = veλt (6.9)

and substitute this into 6.8. Thus

x′′ = vλ2eλt = eλtAv

and so
λ2v = Av.

Therefore, λ2 needs to be an eigenvalue of A and v needs to be an eigenvector. Since A
has nonpositive eigenvalues, λ2 = −a2 and so λ = ±ia where −a2 is an eigenvalue of A.
Corresponding to this you obtain solutions of the form

x (t) = v cos (at) ,v sin (at) .

Note these solutions oscillate because of the cos (at) and sin (at) in the solutions. Here is
an example.

Example 6.2.2 Find oscillatory solutions to the system of differential equations, x′′ = Ax
where

A =

 − 5
3 − 1

3 − 1
3

− 1
3 − 13

6
5
6

− 1
3

5
6 − 13

6

 .

The eigenvalues are −1,−2, and −3.

According to the above, you can find solutions by looking for the eigenvectors. Consider
the eigenvectors for −3. The augmented matrix for finding the eigenvectors is − 4

3
1
3

1
3 0

1
3 − 5

6 − 5
6 0

1
3 − 5

6 − 5
6 0
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and its row echelon form is  1 0 0 0

0 1 1 0

0 0 0 0

 .

Therefore, the eigenvectors are of the form

v = z

 0

−1

1

 .

It follows  0

−1

1

 cos
(√

3t
)
,

 0

−1

1

 sin
(√

3t
)

are both solutions to the system of differential equations. You can find other oscillatory
solutions in the same way by considering the other eigenvalues. You might try checking
these answers to verify they work.

This is just a special case of a procedure used in differential equations to obtain closed
form solutions to systems of differential equations using linear algebra. The overall philos-
ophy is to take one of the easiest problems in analysis and change it into the eigenvalue
problem which is the most difficult problem in algebra. However, when it works, it gives
precise solutions in terms of known functions.

6.3 Exercises

1. If A is the matrix of a linear transformation which rotates all vectors in R2 through
30◦, explain why A cannot have any real eigenvalues.

2. If A is an n×n matrix and c is a nonzero constant, compare the eigenvalues of A and
cA.

3. If A is an invertible n × n matrix, compare the eigenvalues of A and A−1. More
generally, for m an arbitrary integer, compare the eigenvalues of A and Am.

4. Let A,B be invertible n × n matrices which commute. That is, AB = BA. Suppose
x is an eigenvector of B. Show that then Ax must also be an eigenvector for B.

5. Suppose A is an n × n matrix and it satisfies Am = A for some m a positive integer
larger than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.

6. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax+ by) = λ (ax+ by) .

Does this imply that ax+ by is an eigenvector? Explain.

7. Find the eigenvalues and eigenvectors of the matrix

 −1 −1 7

−1 0 4

−1 −1 5

 . Determine

whether the matrix is defective.
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8. Find the eigenvalues and eigenvectors of the matrix

 −3 −7 19

−2 −1 8

−2 −3 10

 .Determine

whether the matrix is defective.

9. Find the eigenvalues and eigenvectors of the matrix

 −7 −12 30

−3 −7 15

−3 −6 14

 .

10. Find the eigenvalues and eigenvectors of the matrix

 7 −2 0

8 −1 0

−2 4 6

 . Determine

whether the matrix is defective.

11. Find the eigenvalues and eigenvectors of the matrix

 3 −2 −1

0 5 1

0 2 4

 .

12. Find the eigenvalues and eigenvectors of the matrix

 6 8 −23

4 5 −16

3 4 −12

. Determine

whether the matrix is defective.

13. Find the eigenvalues and eigenvectors of the matrix

 5 2 −5

12 3 −10

12 4 −11

 . Determine

whether the matrix is defective.

14. Find the eigenvalues and eigenvectors of the matrix

 20 9 −18

6 5 −6

30 14 −27

 . Determine

whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix

 1 26 −17

4 −4 4

−9 −18 9

 . Determine

whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix

 3 −1 −2

11 3 −9

8 0 −6

 . Determine

whether the matrix is defective.

17. Find the eigenvalues and eigenvectors of the matrix

 −2 1 2

−11 −2 9

−8 0 7

 . Determine

whether the matrix is defective.
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18. Find the eigenvalues and eigenvectors of the matrix

 2 1 −1

2 3 −2

2 2 −1

 . Determine

whether the matrix is defective.

19. Find the complex eigenvalues and eigenvectors of the matrix

 4 −2 −2

0 2 −2

2 0 2

 .

20. Find the eigenvalues and eigenvectors of the matrix

 9 6 −3

0 6 0

−3 −6 9

 . Determine

whether the matrix is defective.

21. Find the complex eigenvalues and eigenvectors of the matrix

 4 −2 −2

0 2 −2

2 0 2

 . De-

termine whether the matrix is defective.

22. Find the complex eigenvalues and eigenvectors of the matrix

 −4 2 0

2 −4 0

−2 2 −2

 .

Determine whether the matrix is defective.

23. Find the complex eigenvalues and eigenvectors of the matrix

 1 1 −6

7 −5 −6

−1 7 2

 .

Determine whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix

 4 2 0

−2 4 0

−2 2 6

 . Deter-

mine whether the matrix is defective.

25. Here is a matrix. 
1 a 0 0

0 1 b 0

0 0 2 c

0 0 0 2


Find values of a, b, c for which the matrix is defective and values of a, b, c for which it
is nondefective.

26. Here is a matrix.  a 1 0

0 b 1

0 0 c


where a, b, c are numbers. Show this is sometimes defective depending on the choice
of a, b, c. What is an easy case which will ensure it is not defective?
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27. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a+ ib is a complex number whose conjugate equals a− ib.

28. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvalues of a real symmetric matrix are real and for each eigenvalue, it
has a real eigenvector.

29. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1.
In words, the eigenvalues are either 0 or pure imaginary.

30. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

31. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

32. Suppose A is an n × n matrix having all real eigenvalues which are distinct. Show
there exists S such that S−1AS = D, a diagonal matrix. If

D =


λ1 0

. . .

0 λn


define eD by

eD ≡


eλ1 0

. . .

0 eλn


and define

eA ≡ SeDS−1.

Next show that if A is as just described, so is tA where t is a real number and the
eigenvalues of At are tλk. If you differentiate a matrix of functions entry by entry so
that for the ijth entry of A′ (t) you get a′ij (t) where aij (t) is the ij

th entry of A (t) ,
show

d

dt

(
eAt
)
= AeAt

Next show det
(
eAt
)
̸= 0. This is called the matrix exponential. Note I have only

defined it for the case where the eigenvalues of A are real, but the same procedure will
work even for complex eigenvalues. All you have to do is to define what is meant by

ea+ib.

33. Find the principle directions determined by the matrix


7
12 − 1

4
1
6

− 1
4

7
12 − 1

6
1
6 − 1

6
2
3

 . The

eigenvalues are 1
3 , 1, and

1
2 listed according to multiplicity.

34. Find the principle directions determined by the matrix
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5
3 − 1

3 − 1
3

− 1
3

7
6

1
6

− 1
3

1
6

7
6

 The eigenvalues are 1, 2, and 1. What is the physical interpreta-

tion of the repeated eigenvalue?

35. Find oscillatory solutions to the system of differential equations, x′′ = Ax where A = −3 −1 −1

−1 −2 0

−1 0 −2

 The eigenvalues are −1,−4, and −2.

36. Let A and B be n× n matrices and let the columns of B be

b1, · · · ,bn

and the rows of A are
aT1 , · · · ,aTn .

Show the columns of AB are
Ab1 · · ·Abn

and the rows of AB are
aT1 B · · ·aTnB.

37. Let M be an n × n matrix. Then define the adjoint of M , denoted by M∗ to be the
transpose of the conjugate of M. For example,(

2 i

1 + i 3

)∗

=

(
2 1− i

−i 3

)
.

A matrix M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real.

38. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros every-
where except on the main diagonal) having the eigenvalues ofM on the main diagonal.
When this can be done the matrix is said to be diagonalizable.

39. Show that a n×n matrix M is diagonalizable if and only if Fn has a basis of eigenvec-
tors. Hint: The first part is done in Problem 38. It only remains to show that if the
matrix can be diagonalized by some matrix S giving D = S−1MS for D a diagonal
matrix, then it has a basis of eigenvectors. Try using the columns of the matrix S.

40. Let

A =


1 2

3 4

2

0

0 1 3


and let

B =


0 1

1 1

2 1





158 CHAPTER 6. SPECTRAL THEORY

MultiplyAB verifying the block multiplication formula. HereA11 =

(
1 2

3 4

)
, A12 =(

2

0

)
, A21 =

(
0 1

)
and A22 = (3) .

41. Suppose A,B are n×n matrices and λ is a nonzero eigenvalue of AB. Show that then
it is also an eigenvalue of BA. Hint: Use the definition of what it means for λ to be
an eigenvalue. That is,

ABx = λx

where x ̸= 0. Maybe you should multiply both sides by B.

42. Using the above problem show that if A,B are n× n matrices, it is not possible that
AB − BA = aI for any a ̸= 0. Hint: First show that if A is a matrix, then the
eigenvalues of A− aI are λ− a where λ is an eigenvalue of A.

43. Consider the following matrix.

C =


0 · · · 0 −a0
1 0 −a1

. . .
. . .

...

0 1 −an−1


Show det (λI − C) = a0+λa1+ · · · an−1λ

n−1+λn. This matrix is called a companion
matrix for the given polynomial.

44. A discreet dynamical system is a relation of the following form in which x(k) is a n×1
vector and A is a n× n square matrix.

x (k + 1) = Ax (k) , x (0) = x0

Show first that
x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn}
where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these
eigenvectors. Thus

x0 =

n∑
j=1

ajvj

Now explain why

x (k) =

n∑
j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

45. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also
suppose the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0
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Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on
this. Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

46. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

47. Suppose the characteristic polynomial of an n×n matrix A is 1−λn. Find Amn where
m is an integer. Hint: Note first that A is nondefective. Why?

48. Sometimes sequences come in terms of a recursion formula. An example is the Fi-
bonacci sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.(
xn+1

xn

)
=

(
1 1

1 0

)(
xn

xn−1

)
,

(
x1

x0

)
=

(
1

1

)

Now use the technique of Problem 44 to find a formula for xn.

49. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).

6.4 Schur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Schur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 6.4.1 Let {x1, · · · ,xn} be a basis for Fn. Then there exists an orthonormal ba-
sis for Fn, {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span (u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1,
span (u1) = span (x1) and {u1} is an orthonormal set. Now suppose for some k < n,
u1, · · · , uk have been chosen with (uj · ul) = δjl and span (x1, · · · ,xk) = span (u1, · · · ,uk).
Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣ , (6.10)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .
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Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving 6.10 for xk+1 and it
follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k, then for c = 1/
∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣ ,
(uk+1 · ul) = C

(xk+1 · ul)−
k∑

j=1

(xk+1 · uj) (uj · ul)

 =

C

(xk+1 · ul)−
k∑

j=1

(xk+1 · uj) δlj

 = C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.
Here is a fundamental definition.

Definition 6.4.2 An n×n matrix U, is unitary if UU∗ = I = U∗U where U∗ is defined to
be the transpose of the conjugate of U.

Proposition 6.4.3 An n × n matrix is unitary if and only if the columns (rows) are an
orthonormal set.

Proof: This follows right away from the way we multiply matrices. If U is an n × n
complex matrix, then

(U∗U)ij = u∗
iuj = (ui,uj)

and the matrix is unitary if and only if this equals δij if and only if the columns are
orthonormal.

Note that if U is unitary, then so is UT . This is because(
UT
)∗
UT ≡ (UT )

T
UT =

(
U
(
UT
))T

= (UU∗)
T
= IT = I

Thus an n× n matrix is unitary if and only if the rows are an orthonormal set. ■

Theorem 6.4.4 Let A be an n×n matrix. Then there exists a unitary matrix U such that

U∗AU = T, (6.11)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation.

Proof: The theorem is clearly true if A is a 1 × 1 matrix. Just let U = 1 the 1 × 1
matrix which has 1 down the main diagonal and zeros elsewhere. Suppose it is true for
(n− 1)× (n− 1) matrices and let A be an n× n matrix. Then let v1 be a unit eigenvector
for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use Lemma 6.4.1 to obtain {v1, · · · ,vn}, an orthonormal
basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the above, it follows U0

is unitary. Then U∗
0AU0 is of the form

B ≡

(
λ1 ∗
0 A1

)
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where A1 is an n − 1 × n − 1 matrix. The above matrix B has the same eigenvalues as A.
Also note in case of an eigenvalue µ for B,

µ

(
a

x

)
= B

(
a

x

)
=

(
∗

A1x

)
so x is an eigenvector for A1 with the same eigenvalue µ. Now by induction there exists an
(n− 1)× (n− 1) unitary matrix Ũ1 such that

Ũ∗
1A1Ũ1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡

(
1 0

0 Ũ1

)
This is a unitary matrix and

U∗
1U

∗
0AU0U1 =

(
1 0

0 Ũ∗
1

)(
λ1 ∗
0 A1

)(
1 0

0 Ũ1

)
=

(
λ1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗
= U∗

1U
∗
0 , it follows A

is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
polynomials and since the eigenvalues of T are the diagonal entries listed according to
algebraic multiplicity, these are also the eigenvalues of A listed according to multiplicity. ■

Corollary 6.4.5 Let A be a real n × n matrix having only real eigenvalues. Then there
exists a real orthogonal matrix Q and an upper triangular matrix T such that

QTAQ = T

and furthermore, if the eigenvalues of A are listed in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn

Q can be chosen such that T is of the form
λ1 ∗ · · · ∗

0 λ2
. . .

...
...

. . .
. . . ∗

0 · · · 0 λn


Proof: Repeat the above argument but pick a real eigenvector for the first step which

corresponds to λ1 as just described. Then use induction as above. Simply replace the word
“unitary” with the word “orthogonal”. ■

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 6.4.6 Let A be of the form

A =


P1 · · · ∗
...

. . .
...

0 · · · Ps
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where Pk is an mk ×mk matrix. Then

det (A) =
∏
k

det (Pk) .

Also, the eigenvalues of A consist of the union of the eigenvalues of the Pj.

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
kPkUk = Tk

where Tk is upper triangular. Then it follows that for

U ≡


U1 · · · 0
...

. . .
...

0 · · · Us

 , U∗ =


U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s


and also

U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s




P1 · · · ∗
...

. . .
...

0 · · · Ps




U1 · · · 0
...

. . .
...

0 · · · Us

 =


T1 · · · ∗
...

. . .
...

0 · · · Ts

 .

Therefore, since the determinant of an upper triangular matrix is the product of the diagonal
entries,

det (A) =
∏
k

det (Tk) =
∏
k

det (Pk) .

From the above formula, the eigenvalues of A consist of the eigenvalues of the upper trian-
gular matrices Tk, and each Tk has the same eigenvalues as Pk. ■

What if A is a real matrix and you only want to consider real unitary matrices?

Theorem 6.4.7 Let A be a real n×n matrix. Then there exists a real unitary (orthogonal)
matrix Q and a matrix T of the form

T =


P1 · · · ∗

. . .
...

0 Pr

 (6.12)

where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A such that QTAQ = T. The matrix T is
called the real Schur form of the matrix A. Recall that a real unitary matrix is also called
an orthogonal matrix.

Proof: Suppose
Av1 = λ1v1, |v1| = 1

where λ1 is real. Then let {v1, · · · ,vn} be an orthonormal basis of vectors in Rn. Let Q0

be a matrix whose ith column is vi. Then Q
∗
0AQ0 is of the form

λ1 ∗ · · · ∗
0
... A1

0
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where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 6.4.4 up to
this point.

Now consider the case where λ1 = α + iβ where β ̸= 0. It follows since A is real that
v1 = z1 + iw1 and that v1 = z1 − iw1 is an eigenvector for the eigenvalue α − iβ. Here
z1 and w1 are real vectors. Since v1 and v1 are eigenvectors corresponding to distinct
eigenvalues, they form a linearly independent set. From this it follows that {z1,w1} is an
independent set of vectors in Cn, hence in Rn. Indeed,{v1,v1} is an independent set and
also span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there exists
{u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1). For
example,

u1 = z1/ |z1| , u2 =
|z1|2 w1 − (w1 · z1) z1∣∣∣|z1|2 w1 − (w1 · z1) z1

∣∣∣
Let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix whose
ith column is ui so Q0 is a real orthogonal matrix. Then Auj are both in span (u1,u2) for
j = 1, 2 and so uT

kAuj = 0 whenever k ≥ 3. It follows that Q∗
0AQ0 is of the form

Q∗
0AQ0 =



∗ ∗ · · · ∗
∗ ∗
0
... A1

0

 =

(
P1 ∗
0 A1

)

where A1 is now an n− 2× n− 2 matrix and P1 is a 2× 2 matrix. Now this is similar to A
and so two of its eigenvalues are α+ iβ and α− iβ.

Now find Q̃1 an n − 2 × n − 2 matrix to put A1 in an appropriate form as above and
come up with A2 either an n− 4× n− 4 matrix or an n− 3× n− 3 matrix. Then the only
other difference is to let

Q1 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0
...

... Q̃1

0 0


thus putting a 2×2 identity matrix in the upper left corner rather than a one. Repeating this
process with the above modification for the case of a complex eigenvalue leads eventually
to 6.12 where Q is the product of real unitary matrices Qi above. When the block Pi is
2 × 2, its eigenvalues are a conjugate pair of eigenvalues of A and if it is 1 × 1 it is a real
eigenvalue of A.

Here is why this last claim is true

λI − T =


λI1 − P1 · · · ∗

. . .
...

0 λIr − Pr


where Ik is the 2× 2 identity matrix in the case that Pk is 2× 2 and is the number 1 in the
case where Pk is a 1× 1 matrix. Now by Lemma 6.4.6,

det (λI − T ) =

r∏
k=1

det (λIk − Pk) .
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Therefore, λ is an eigenvalue of T if and only if it is an eigenvalue of some Pk. This proves
the theorem since the eigenvalues of T are the same as those of A including multiplicity
because they have the same characteristic polynomial due to the similarity of A and T. ■

Of course there is a similar conclusion which says that the blocks can be ordered according
to order of the size of the eigenvalues.

Corollary 6.4.8 Let A be a real n× n matrix. Then there exists a real orthogonal matrix
Q and an upper triangular matrix T such that

QTAQ = T =


P1 · · · ∗

. . .
...

0 Pr


where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A. If Pk corresponds to the two eigenvalues
αk ± iβk ≡ σ (Pk) , Q can be chosen such that

|σ (P1)| ≥ |σ (P2)| ≥ · · ·

where

|σ (Pk)| ≡
√
α2
k + β2

k

The blocks, Pk can be arranged in any other order also.

Definition 6.4.9 When a linear transformation A, mapping a linear space V to V has a
basis of eigenvectors, the linear transformation is called non defective. Otherwise it is called
defective. An n×n matrix A, is called normal if AA∗ = A∗A. An important class of normal
matrices is that of the Hermitian or self adjoint matrices. An n×n matrix A is self adjoint
or Hermitian if A = A∗.

You can check that an example of a normal matrix which is neither symmetric nor

Hermitian is

(
6i − (1 + i)

√
2

(1− i)
√
2 6i

)
.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 6.4.10 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: This is obviously true if T is 1 × 1. In fact, it can’t help being diagonal in this
case. Suppose then that the lemma is true for (n− 1) × (n− 1) matrices and let T be an
upper triangular normal n× n matrix. Thus T is of the form

T =

(
t11 a∗

0 T1

)
, T ∗ =

(
t11 0T

a T ∗
1

)

Then

TT ∗ =

(
t11 a∗

0 T1

)(
t11 0T

a T ∗
1

)
=

(
|t11|2 + a∗a a∗T ∗

1

T1a T1T
∗
1

)

T ∗T =

(
t11 0T

a T ∗
1

)(
t11 a∗

0 T1

)
=

(
|t11|2 t11a

∗

at11 aa∗ + T ∗
1 T1

)
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Since these two matrices are equal, it follows a = 0. But now it follows that T ∗
1 T1 = T1T

∗
1

and so by induction T1 is a diagonal matrix D1. Therefore,

T =

(
t11 0T

0 D1

)

a diagonal matrix.
Now here is a proof which doesn’t involve block multiplication. Since T is normal,

T ∗T = TT ∗. Writing this in terms of components and using the description of the adjoint
as the transpose of the conjugate, yields the following for the ikth entry of T ∗T = TT ∗.

TT∗︷ ︸︸ ︷∑
j

tijt
∗
jk =

∑
j

tijtkj =

T∗T︷ ︸︸ ︷∑
j

t∗ijtjk =
∑
j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above. ∑

j

|t1j |2 =
∑
j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 

∗ 0 · · · 0

0 ∗ · · · ∗
...

. . .
. . .

...

0 · · · 0 ∗

 .

Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above, ∑

j

|t2j |2 =
∑
j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form

∗ 0 0 · · · 0

0 ∗ 0 · · · 0

0 0 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 0 0 ∗

 .

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3
rows and columns are concerned. Continuing in this way, it follows T is a diagonal matrix.
■

Theorem 6.4.11 Let A be a normal matrix. Then there exists a unitary matrix U such
that U∗AU is a diagonal matrix. Also if A is normal and U is unitary, then U∗AU is also
normal.

Proof: From Theorem 6.4.4 there exists a unitary matrix U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
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being normal is preserved under unitary similarity transformations. That is, verify that if
A is normal and if B = U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 6.4.10 it must be
a diagonal matrix. ■

The converse is also true. See Problem 9 below.

Corollary 6.4.12 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors. Also there exists a unitary U such that U∗AU = D, a
diagonal matrix whose diagonal is comprised of the eigenvalues of A. The columns of U are
the corresponding eigenvectors. By permuting the columns of U one can cause the diagonal
entries of D to occur in any desired order.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Finally, let

U =
(

u1 u2 · · · un

)
where the ui denote the columns of U and

D =


λ1 0

. . .

0 λn


The equation, U∗AU = D implies

AU =
(
Au1 Au2 · · · Aun

)
= UD =

(
λ1u1 λ2u2 · · · λnun

)
(6.13)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = u∗
iuj ≡ uj · ui.

This proves the corollary because it shows the vectors {ui} are orthonormal. Therefore, they
form a basis because every orthonormal set of vectors is linearly independent. It follows
from 6.13 that one can achieve any order for the λi by permuting the columns of U . ■

Corollary 6.4.13 If A is a real symmetric matrix, then A is Hermitian and there exists
a real unitary (orthogonal) matrix U such that UTAU = D where D is a diagonal matrix
whose diagonal entries are the eigenvalues of A. By arranging the columns of U the diagonal
entries of D can be made to appear in any order.

Proof: It is clear that A = A∗ = AT . Thus A is real and all eigenvalues are real and it is
Hermitian. Now by Corollary 6.4.5, there is an orthogonal matrix U such that UTAU = T.
Since A is normal, so is T by Theorem 6.4.11. Hence by Lemma 6.4.10 T is a diagonal
matrix. Then it follows the diagonal entries are the eigenvalues of A and the columns of U
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are the corresponding eigenvectors. Permuting these columns, one can cause the eigenvalues
to appear in any order on the diagonal. ■

The converse for the above theorems about normal and Hermitian matrices is also true.
That is, the Hermitian matrices, (A = A∗) are exactly those for which there is a unitary U
such that U∗AU is a real diagonal matrix. The normal matrices are exactly those for which
there is a unitary U such that U∗AU is a diagonal matrix, maybe not real.

To summarize these types of matrices which have just been discussed, here is a little
diagram.

real symmetric

Hermitian

unitarily diagonalizable
real diagonal matrix

normal

unitarily diagonalizable

diagonalizable, non-defective

not diagonalizable with unitary matrix

6.5 Trace and Determinant

The determinant has already been discussed. It is also clear that if A = S−1BS so that
A,B are similar, then

det (A) = det
(
S−1

)
det (S) det (B) = det

(
S−1S

)
det (B)

= det (I) det (B) = det (B)

The trace is defined in the following definition.

Definition 6.5.1 Let A be an n× n matrix whose ijth entry is denoted as aij. Then

trace (A) ≡
∑
i

aii

In other words it is the sum of the entries down the main diagonal.

Theorem 6.5.2 Let A be an m× n matrix and let B be an n×m matrix. Then

trace (AB) = trace (BA) .

Also if B = S−1AS so that A,B are similar, then

trace (A) = trace (B) .

Proof:

trace (AB) ≡
∑
i

(∑
k

AikBki

)
=
∑
k

∑
i

BkiAik = trace (BA)

Therefore,

trace (B) = trace
(
S−1AS

)
= trace

(
ASS−1

)
= trace (A) . ■
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Theorem 6.5.3 Let A be an n×n matrix. Then trace (A) equals the sum of the eigenvalues
of A and det (A) equals the product of the eigenvalues of A.

This is proved using Schur’s theorem and is in Problem 17 below. Another important
property of the trace is in the following theorem.

6.6 Quadratic Forms

Definition 6.6.1 A quadratic form in three dimensions is an expression of the form

(
x y z

)
A

 x

y

z

 (6.14)

where A is a 3× 3 symmetric matrix. In higher dimensions the idea is the same except you
use a larger symmetric matrix in place of A. In two dimensions A is a 2× 2 matrix.

For example, consider

(
x y z

) 3 −4 1

−4 0 −4

1 −4 3


 x

y

z

 (6.15)

which equals 3x2−8xy+2xz−8yz+3z2. This is very awkward because of the mixed terms
such as −8xy. The idea is to pick different axes such that if x, y, z are taken with respect
to these axes, the quadratic form is much simpler. In other words, look for new variables,
x′, y′, and z′ and a unitary matrix U such that

U

 x′

y′

z′

 =

 x

y

z

 (6.16)

and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
6.4.13, it follows there exists a real unitary matrix U, (an orthogonal matrix) such that
UTAU = D a diagonal matrix. Thus in the quadratic form, 6.14

(
x y z

)
A

 x

y

z

 =
(
x′ y′ z′

)
UTAU

 x′

y′

z′


=

(
x′ y′ z′

)
D

 x′

y′

z′


and in terms of these new variables, the quadratic form becomes

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where D = diag (λ1, λ2, λ3) . Similar considerations apply equally well in any other dimen-
sion. For the given example,



6.7. SECOND DERIVATIVE TEST 169

 − 1
2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3


 3 −4 1

−4 0 −4

1 −4 3

 ·

 − 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3

 =

 2 0 0

0 −4 0

0 0 8


and so if the new variables are given by − 1√

2
1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3


 x′

y′

z′

 =

 x

y

z

 ,

it follows that in terms of the new variables the quadratic form is 2 (x′)
2 − 4 (y′)

2
+ 8 (z′)

2
.

You can work other examples the same way.

6.7 Second Derivative Test

Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact was first observed by Euler around 1734. It is also called Clairaut’s theorem.

Theorem 6.7.1 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it follows

fxy (x, y) = fyx (x, y) .

Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let |t| , |s| <
r/2, t, s real numbers and consider

∆ (s, t) ≡ 1

st
{

h(t)︷ ︸︸ ︷
f (x+ t, y + s)− f (x+ t, y)−

h(0)︷ ︸︸ ︷
(f (x, y + s)− f (x, y))}. (6.17)

Note that (x+ t, y + s) ∈ U because

|(x+ t, y + s)− (x, y)| = |(t, s)| =
(
t2 + s2

)1/2
≤

(
r2

4
+
r2

4

)1/2

=
r√
2
< r.

As implied above, h (t) ≡ f (x+ t, y + s)−f (x+ t, y). Therefore, by the mean value theorem
from calculus and the (one variable) chain rule,

∆ (s, t) =
1

st
(h (t)− h (0)) =

1

st
h′ (αt) t

=
1

s
(fx (x+ αt, y + s)− fx (x+ αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x+ αt, y + βs)
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where α, β ∈ (0, 1).
If the terms f (x+ t, y) and f (x, y + s) are interchanged in 6.17, ∆ (s, t) is unchanged

and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x+ γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) . ■

The following is obtained from the above by simply fixing all the variables except for the
two of interest.

Corollary 6.7.2 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk
are both

continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

Thus the theorem asserts that the mixed partial derivatives are equal at x if they are
defined near x and continuous at x.

Now recall the Taylor formula with the Lagrange form of the remainder. What follows
is a proof of this important result based on the mean value theorem or Rolle’s theorem.

Theorem 6.7.3 Suppose f has n + 1 derivatives on an interval, (a, b) and let c ∈ (a, b) .
Then if x ∈ (a, b) , there exists ξ between c and x such that

f (x) = f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)

k
+
f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
.

(In this formula, the symbol
∑0

k=1 ak will denote the number 0.)

Proof: It can be assumed x ̸= c because if x = c there is nothing to show. Then there
exists K such that

f (x)−

(
f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)

k
+K (x− c)

n+1

)
= 0 (6.18)

In fact,

K =
−f (x) +

(
f (c) +

∑n
k=1

f(k)(c)
k! (x− c)

k
)

(x− c)
n+1 .

Now define F (t) for t in the closed interval determined by x and c by

F (t) ≡ f (x)−

(
f (t) +

n∑
k=1

f (k) (t)

k!
(x− t)

k
+K (x− t)

n+1

)
.

The c in 6.18 got replaced by t.
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Therefore, F (c) = 0 by the way K was chosen and also F (x) = 0. By the mean value
theorem or Rolle’s theorem, there exists ξ between x and c such that F ′ (ξ) = 0. Therefore,

0 = f ′ (ξ) +

n∑
k=1

f (k+1) (ξ)

k!
(x− ξ)

k −
n∑

k=1

f (k) (ξ)

(k − 1)!
(x− ξ)

k−1 −K (n+ 1) (x− ξ)
n

= f ′ (ξ) +

n∑
k=1

f (k+1) (ξ)

k!
(x− ξ)

k −
n−1∑
k=0

f (k+1) (ξ)

k!
(x− ξ)

k −K (n+ 1) (x− ξ)
n

= f ′ (ξ) +
f (n+1) (ξ)

n!
(x− ξ)

n − f ′ (ξ)−K (n+ 1) (x− ξ)
n

=
f (n+1) (ξ)

n!
(x− ξ)

n −K (n+ 1) (x− ξ)
n

Then therefore,

K =
f (n+1) (ξ)

(n+ 1)!
■

The following is a special case and is what will be used.

Theorem 6.7.4 Let h : (−δ, 1 + δ) → R have m+1 derivatives. Then there exists t ∈ [0, 1]
such that

h (1) = h (0) +

m∑
k=1

h(k) (0)

k!
+
h(m+1) (t)

(m+ 1)!
.

Now let f : U → R where U ⊆ Rn and suppose f ∈ Cm (U) . Let x ∈ U and let r > 0 be
such that

B (x,r) ⊆ U.

Then for ||v|| < r, consider
f (x+tv)− f (x) ≡ h (t)

for t ∈ [0, 1] . Then by the chain rule,

h′ (t) =

n∑
k=1

∂f

∂xk
(x+ tv) vk, h

′′ (t) =

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj ■

Then from the Taylor formula stopping at the second derivative, the following theorem can
be obtained.

Theorem 6.7.5 Let f : U → R and let f ∈ C2 (U) . Then if

B (x,r) ⊆ U,

and ||v|| < r, there exists t ∈ (0, 1) such that.

f (x+ v) = f (x) +

n∑
k=1

∂f

∂xk
(x) vk +

1

2

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj (6.19)

Definition 6.7.6 Define the following matrix.

Hij (x+tv) ≡
∂2f (x+tv)

∂xj∂xi
.

It is called the Hessian matrix. From Corollary 6.7.2, this is a symmetric matrix. Then in
terms of this matrix, 6.19 can be written as

f (x+ v) = f (x) +

n∑
j=1

∂f

∂xj
(x) vk+

1

2
vTH (x+tv)v
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Then this implies f (x+ v) =

f (x) +

n∑
j=1

∂f

∂xj
(x) vk+

1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)
. (6.20)

Using the above formula, here is the second derivative test.

Theorem 6.7.7 In the above situation, suppose fxj
(x) = 0 for each xj . Then if H (x) has

all positive eigenvalues, x is a local minimum for f . If H (x) has all negative eigenvalues,
then x is a local maximum. If H (x) has a positive eigenvalue, then there exists a direction
in which f has a local minimum at x, while if H (x) has a negative eigenvalue, there exists
a direction in which H (x) has a local maximum at x.

Proof: Since fxj (x) = 0 for each xj , formula 6.20 implies

f (x+ v) = f (x)+
1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)
where H (x) is a symmetric matrix. Thus, by Corollary 6.4.12 H (x) has all real eigenvalues.
Suppose first that H (x) has all positive eigenvalues and that all are larger than δ2 > 0.
Then H (x) has an orthonormal basis of eigenvectors, {vi}ni=1 and if u is an arbitrary vector,
u =

∑n
j=1 ujvj where uj = u · vj . Thus

uTH (x)u =

(
n∑

k=1

ukv
T
k

)
H (x)

 n∑
j=1

ujvj

 =

n∑
j=1

u2jλj ≥ δ2
n∑

j=1

u2j = δ2 |u|2 .

From 6.20 and the continuity of H, if v is small enough,

f (x+ v) ≥ f (x) +
1

2
δ2 |v|2 − 1

4
δ2 |v|2 = f (x) +

δ2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reasoning.
Suppose H (x) has a positive eigenvalue λ2. Then let v be an eigenvector for this eigenvalue.
From 6.20,

f (x+tv) = f (x)+
1

2
t2vTH (x)v+

1

2
t2
(
vT (H (x+tv)−H (x))v

)
which implies

f (x+tv) = f (x)+
1

2
t2λ2 |v|2 +1

2
t2
(
vT (H (x+tv)−H (x))v

)
≥ f (x)+

1

4
t2λ2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. ■

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals(
0 0

0 2

)
but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.
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6.8 The Estimation of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
looking at the matrix.

Theorem 6.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡

λ ∈ C : |λ− aii| ≤
∑
j ̸=i

|aij |

 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij) , let |xk| ≥ |xj | for all xj .
Thus |xk| ≠ 0. ∑

j ̸=k

akjxj = (λ− akk)xk.

Then

|xk|
∑
j ̸=k

|akj | ≥
∑
j ̸=k

|akj | |xj | ≥

∣∣∣∣∣∣
∑
j ̸=k

akjxj

∣∣∣∣∣∣ = |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. ■

Example 6.8.2 Here is a matrix. Estimate its eigenvalues. 2 1 1

3 5 0

0 1 9


According to Gerschgorin’s theorem the eigenvalues are contained in the disks

D1 = {λ ∈ C : |λ− 2| ≤ 2} , D2 = {λ ∈ C : |λ− 5| ≤ 3} ,

D3 = {λ ∈ C : |λ− 9| ≤ 1}

It is important to observe that these disks are in the complex plane. In general this is the
case. If you want to find eigenvalues they will be complex numbers.

x

iy

•
2

•
5

•
9

So what are the values of the eigenvalues? In this case they are real. You can compute
them by graphing the characteristic polynomial, λ3 − 16λ2 + 70λ − 66 and then zoom-
ing in on the zeros. If you do this you find the solution is {λ = 1. 295 3} , {λ = 5. 590 5} ,
{λ = 9. 114 2} . Of course these are only approximations and so this information is useless
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for finding eigenvectors. However, in many applications, it is the size of the eigenvalues
which is important and so these numerical values would be helpful for such applications. In
this case, you might think there is no real reason for Gerschgorin’s theorem. Why not just
compute the characteristic equation and graph and zoom? This is fine up to a point, but
what if the matrix was huge? Then it might be hard to find the characteristic polynomial.
Remember the difficulties in expanding a big matrix along a row or column. Also, what if
the eigenvalues were complex? You don’t see these by following this procedure. However,
Gerschgorin’s theorem will at least estimate them.

6.9 Advanced Theorems

More can be said but this requires some theory from complex variables1. The following is a
fundamental theorem about counting zeros.

Theorem 6.9.1 Let U be a region and let γ : [a, b] → U be closed, continuous, bounded
variation, and the winding number, n (γ, z) = 0 for all z /∈ U. Suppose also that f is
analytic on U having zeros a1, · · · , am where the zeros are repeated according to multiplicity,
and suppose that none of these zeros are on γ ([a, b]) . Then

1

2πi

∫
γ

f ′ (z)

f (z)
dz =

m∑
k=1

n (γ, ak) .

Proof: It is given that f (z) =
∏m

j=1 (z − aj) g (z) where g (z) ̸= 0 on U. Hence using
the product rule,

f ′ (z)

f (z)
=

m∑
j=1

1

z − aj
+
g′ (z)

g (z)

where g′(z)
g(z) is analytic on U and so

1

2πi

∫
γ

f ′ (z)

f (z)
dz =

m∑
j=1

n (γ, aj) +
1

2πi

∫
γ

g′ (z)

g (z)
dz =

m∑
j=1

n (γ, aj) . ■

Now let A be an n × n matrix. Recall that the eigenvalues of A are given by the zeros
of the polynomial, pA (z) = det (zI −A) where I is the n × n identity. You can argue
that small changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a
very small closed circle which winds around zk, one of the eigenvalues of A, in the counter
clockwise direction so that n (γk, zk) = 1. This circle is to enclose only zk and is to have no
other eigenvalue on it. Then apply Theorem 6.9.1. According to this theorem

1

2πi

∫
γ

p′A (z)

pA (z)
dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever B is close
enough to A, the two matrices have the same number of zeros inside γk, the zeros being
counted according to multiplicity. By making the radius of the small circle equal to ε where
ε is less than the minimum distance between any two distinct eigenvalues of A, this shows
that if B is close enough to A, every eigenvalue of B is closer than ε to some eigenvalue of
A. ■

1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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Theorem 6.9.2 If λ is an eigenvalue of A, then if all the entries of B are close enough to
the corresponding entries of A, some eigenvalue of B will be within ε of λ.

Consider the situation that A (t) is an n×n matrix and that t→ A (t) is continuous for
t ∈ [0, 1] .

Lemma 6.9.3 Let λ (t) ∈ σ (A (t)) for t < 1 and let Σt = ∪s≥tσ (A (s)) . Also let Kt be the
connected component of λ (t) in Σt. Then there exists η > 0 such that Kt ∩σ (A (s)) ̸= ∅ for
all s ∈ [t, t+ η] .

Proof: Denote by D (λ (t) , δ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D (λ (t) , δ) ≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A (t)) contained in
D (λ (t) , δ) and that pA(t) has no zeroes on the boundary of this disc. Then by continuity, and
the above discussion and theorem, there exists η > 0, t+ η < 1, such that for s ∈ [t, t+ η] ,
pA(s) also has no zeroes on the boundary of this disc and A (s) has the same number
of eigenvalues, counted according to multiplicity, in the disc as A (t) . Thus σ (A (s)) ∩
D (λ (t) , δ) ̸= ∅ for all s ∈ [t, t+ η] . Now let

H =
⋃

s∈[t,t+η]

σ (A (s)) ∩D (λ (t) , δ) .

It will be shown that H is connected. Suppose not. Then H = P ∪ Q where P,Q are
separated and λ (t) ∈ P. Let s0 ≡ inf {s : λ (s) ∈ Q for some λ (s) ∈ σ (A (s))} . There exists
λ (s0) ∈ σ (A (s0)) ∩ D (λ (t) , δ) . If λ (s0) /∈ Q, then from the above discussion there are
λ (s) ∈ σ (A (s))∩Q for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows
that s0 > t because λ (t) is the only element of σ (A (t)) in D (λ (t) , δ) and λ (t) ∈ P. Now
let sn ↑ s0. Then λ (sn) ∈ P for any λ (sn) ∈ σ (A (sn))∩D (λ (t) , δ) and also it follows from
the above discussion that for some choice of sn → s0, λ (sn) → λ (s0) which contradicts P
and Q separated and nonempty. Since P is nonempty, this shows Q = ∅. Therefore, H is
connected as claimed. But Kt ⊇ H and so Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η] . ■

Theorem 6.9.4 Suppose A (t) is an n × n matrix and that t → A (t) is continuous for
t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0 denote the
connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) ̸= ∅ for all t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) ̸= ∅ for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup (S) . Say σ (A (t0)) = λ1 (t0) , · · · , λr (t0) .

Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S.
Now let the discs, D (λi (t0) , δ) , i = 1, · · · , r be disjoint with pA(t0) having no zeroes on γi
the boundary of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 6.9.1 and
the discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). It follows that
K0 ∩ (σ (A (t0)) +D (0, δ)) ̸= ∅ for all δ small enough. This requires at least one of the
λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 6.9.3, if t0 < 1, then K0 ∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩ σ (A (s)) = ∅ for
some s ∈ (t, t+ η) while Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η].) Therefore, t0 = 1. ■

Corollary 6.9.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.
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Proof: Denote by A (t) the matrix
(
atij
)
where if i ̸= j, atij = taij and atii = aii. Thus to

get A (t) multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then A (0) = diag (a11, · · · , ann)
and A (1) = A. Furthermore, the map, t → A (t) is continuous. Denote by Dt

j the Ger-

schgorin disc obtained from the jth row for the matrix A (t). Then it is clear that Dt
j ⊆ Dj

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A (0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 6.9.4 which is determined by aii, Ger-
schgorin’s theorem implies that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j ̸=iDj) and
also, since K is connected, there are not points of K in both Di and (∪j ̸=iDj) . Since at least
one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by Theorem
6.9.4 this shows there are points of K ∩ σ (A) in Di. The last assertion follows immediately.
■

This can be improved even more. This involves the following lemma.

Lemma 6.9.6 In the situation of Theorem 6.9.4 suppose λ (0) = K0 ∩ σ (A (0)) and that
λ (0) is a simple root of the characteristic equation of A (0). Then for all t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let

S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .

Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 ̸= λ2 are two elements of
σ (A (t0))∩K0. Then choosing η > 0 small enough, and lettingDi be disjoint discs containing
λi respectively, similar arguments to those of Lemma 6.9.3 can be used to conclude

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0. But
then there would be two different eigenvalues of A (s) contained in K0, contrary to the
definition of t0. Therefore, there is at most one eigenvalue λ (t0) ∈ K0 ∩ σ (A (t0)) . Could
it be a repeated root of the characteristic equation? Suppose λ (t0) is a repeated root of
the characteristic equation. As before, choose a small disc, D centered at λ (t0) and η small
enough that

H ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩D
is a nonempty connected set containing either multiple eigenvalues of A (s) or else a single
repeated root to the characteristic equation of A (s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0 − η, t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 + η] , A (s) has only simple eigenvalues in
D and the only eigenvalues of A (s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A (t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A (s) are either
close to these eigenvalues of A (t0) at a positive distance from K0 or they are close to the
eigenvalue λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved. ■

With this lemma, the conclusion of the above corollary can be sharpened.

Corollary 6.9.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.
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Proof: In the proof of Corollary 6.9.5, note that aii is a simple root of A (0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩ σ (A (t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A (0) , the ajj , are outside Di, it follows
that K ∩ σ (A (0)) = aii. Therefore, by Lemma 6.9.6, K ∩ σ (A (1)) = K ∩ σ (A) consists of
a single simple eigenvalue. ■

Example 6.9.8 Consider the matrix  5 1 0

1 1 1

0 1 0


The Gerschgorin discs are D (5, 1) , D (1, 2) , and D (0, 1) . Observe D (5, 1) is disjoint

from the other discs. Therefore, there should be an eigenvalue in D (5, 1) . The actual
eigenvalues are not easy to find. They are the roots of the characteristic equation, t3−6t2+
3t+ 5 = 0. The numerical values of these are −. 669 66, 1. 423 1, and 5. 246 55, verifying the
predictions of Gerschgorin’s theorem.

6.10 Exercises

1. Explain why it is typically impossible to compute the upper triangular matrix whose
existence is guaranteed by Schur’s theorem.

2. Now recall the QR factorization of Theorem 5.7.5 on Page 139. The QR algorithm
is a technique which does compute the upper triangular matrix in Schur’s theorem.
There is much more to the QR algorithm than will be presented here. In fact, what
I am about to show you is not the way it is done in practice. One first obtains what
is called a Hessenburg matrix for which the algorithm will work better. However,
the idea is as follows. Start with A an n × n matrix having real eigenvalues. Form
A = QR where Q is orthogonal and R is upper triangular. (Right triangular.) This
can be done using the technique of Theorem 5.7.5 using Householder matrices. Next
take A1 ≡ RQ. Show that A = QA1Q

T . In other words these two matrices, A,A1 are
similar. Explain why they have the same eigenvalues. Continue by letting A1 play the
role of A. Thus the algorithm is of the form An = QRn and An+1 = Rn+1Q. Explain
why A = QnAnQ

T
n for some Qn orthogonal. Thus An is a sequence of matrices each

similar to A. The remarkable thing is that often these matrices converge to an upper
triangular matrix T and A = QTQT for some orthogonal matrix, the limit of the Qn

where the limit means the entries converge. Then the process computes the upper
triangular Schur form of the matrix A. Thus the eigenvalues of A appear on the
diagonal of T. You will see approximately what these are as the process continues.

3. ↑Try the QR algorithm on (
−1 −2

6 6

)
which has eigenvalues 3 and 2. I suggest you use a computer algebra system to do the
computations.

4. ↑Now try the QR algorithm on (
0 −1

2 0

)
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Show that the algorithm cannot converge for this example. Hint: Try a few iterations
of the algorithm. Use a computer algebra system if you like.

5. ↑Show the two matrices A ≡

(
0 −1

4 0

)
and B ≡

(
0 −2

2 0

)
are similar; that

is there exists a matrix S such that A = S−1BS but there is no orthogonal matrix
Q such that QTBQ = A. Show the QR algorithm does converge for the matrix B
although it fails to do so for A.

6. Let F be an m× n matrix. Show that F ∗F has all real eigenvalues and furthermore,
they are all nonnegative.

7. If A is a real n×n matrix and λ is a complex eigenvalue λ = a+ ib, b ̸= 0, of A having
eigenvector z+ iw, show that w ̸= 0.

8. Suppose A = QTDQ where Q is an orthogonal matrix and all the matrices are real.
Also D is a diagonal matrix. Show that A must be symmetric.

9. Suppose A is an n× n matrix and there exists a unitary matrix U such that

A = U∗DU

where D is a diagonal matrix. Explain why A must be normal.

10. If A is Hermitian, show that det (A) must be real.

11. Show that every unitary matrix preserves distance. That is, if U is unitary,

|Ux| = |x| .

12. Show that if a matrix does preserve distances, then it must be unitary.

13. ↑Show that a complex normal matrix A is unitary if and only if its eigenvalues have
magnitude equal to 1.

14. Suppose A is an n× n matrix which is diagonally dominant. Recall this means∑
j ̸=i

|aij | < |aii|

show A−1 must exist.

15. Give some disks in the complex plane whose union contains all the eigenvalues of the
matrix  1 + 2i 4 2

0 i 3

5 6 7


16. Show a square matrix is invertible if and only if it has no zero eigenvalues.

17. Using Schur’s theorem, show the trace of an n × n matrix equals the sum of the
eigenvalues and the determinant of an n×n matrix is the product of the eigenvalues.

18. Using Schur’s theorem, show that if A is any complex n×n matrix having eigenvalues
{λi} listed according to multiplicity, then

∑
i,j |Aij |2 ≥

∑n
i=1 |λi|

2
. Show that equality

holds if and only if A is normal. This inequality is called Schur’s inequality. [20]
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19. Here is a matrix. 
1234 6 5 3

0 −654 9 123

98 123 10, 000 11

56 78 98 400


I know this matrix has an inverse before doing any computations. How do I know?

20. Show the critical points of the following function are

(0,−3, 0) , (2,−3, 0) , and

(
1,−3,−1

3

)
and classify them as local minima, local maxima or saddle points.

f (x, y, z) = − 3
2x

4 + 6x3 − 6x2 + zx2 − 2zx− 2y2 − 12y − 18− 3
2z

2.

21. Here is a function of three variables.

f (x, y, z) = 13x2 + 2xy + 8xz + 13y2 + 8yz + 10z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. Two eigenvalues are 12 and 18.

22. Here is a function of three variables.

f (x, y, z) = 2x2 − 4x+ 2 + 9yx− 9y − 3zx+ 3z + 5y2 − 9zy − 7z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. The eigenvalues of the matrix which you will work with are
− 17

2 ,
19
2 ,−1.

23. Here is a function of three variables.

f (x, y, z) = −x2 + 2xy + 2xz − y2 + 2yz − z2 + x

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc.

24. Show the critical points of the function,

f (x, y, z) = −2yx2 − 6yx− 4zx2 − 12zx+ y2 + 2yz.

are points of the form,

(x, y, z) =
(
t, 2t2 + 6t,−t2 − 3t

)
for t ∈ R and classify them as local minima, local maxima or saddle points.

25. Show the critical points of the function

f (x, y, z) =
1

2
x4 − 4x3 + 8x2 − 3zx2 + 12zx+ 2y2 + 4y + 2 +

1

2
z2.

are (0,−1, 0) , (4,−1, 0) , and (2,−1,−12) and classify them as local minima, local
maxima or saddle points.
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26. Let f (x, y) = 3x4 − 24x2 + 48 − yx2 + 4y. Find and classify the critical points using
the second derivative test.

27. Let f (x, y) = 3x4− 5x2+2− y2x2+ y2. Find and classify the critical points using the
second derivative test.

28. Let f (x, y) = 5x4 − 7x2 − 2− 3y2x2 +11y2 − 4y4. Find and classify the critical points
using the second derivative test.

29. Let f (x, y, z) = −2x4 − 3yx2 + 3x2 + 5x2z + 3y2 − 6y + 3− 3zy + 3z + z2. Find and
classify the critical points using the second derivative test.

30. Let f (x, y, z) = 3yx2 − 3x2 − x2z − y2 + 2y − 1 + 3zy − 3z − 3z2. Find and classify
the critical points using the second derivative test.

31. Let Q be orthogonal. Find the possible values of det (Q) .

32. Let U be unitary. Find the possible values of det (U) .

33. If a matrix is nonzero can it have only zero for eigenvalues?

34. A matrix A is called nilpotent if Ak = 0 for some positive integer k. Suppose A is a
nilpotent matrix. Show it has only 0 for an eigenvalue.

35. If A is a nonzero nilpotent matrix, show it must be defective.

36. Suppose A is a nondefective n × n matrix and its eigenvalues are all either 0 or 1.
Show A2 = A. Could you say anything interesting if the eigenvalues were all either
0,1,or −1? By DeMoivre’s theorem, an nth root of unity is of the form(

cos

(
2kπ

n

)
+ i sin

(
2kπ

n

))
Could you generalize the sort of thing just described to get An = A? Hint: Since A
is nondefective, there exists S such that S−1AS = D where D is a diagonal matrix.

37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a+ ib) y, y (t0) = y0 (6.21)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is given by
y (t) =

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) ≡ e(a+ib)(t−t0)y0. (6.22)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.
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Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
explain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (t0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (t0) = 0

and that |y|2 (t0) = 0 and

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t) = 2a |y (t)|2 .
Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 6.21 is solved by 6.22. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.

38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax,x (t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty,y (t0) = Q−1x0 (6.23)

Now letting y =(y1, · · · , yn)T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n
.

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 6.23.

39. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(

x1 (t) · · · xn (t)
)

(6.24)

where
x′
k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ (t)

if and only if Φ (t) is given in the form of 6.24. Also explain why if c ∈ Fn,y (t) ≡ Φ (t) c
solves the equation y′ (t) = Ay (t) .
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40. In the above problem, consider the question whether all solutions to

x′ = Ax (6.25)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using
linear algebra.

Theorem 6.10.1 Suppose Φ (t) is an n × n matrix which satisfies Φ′ (t) = AΦ (t) .

Then the general solution to 6.25 is Φ (t) c if and only if Φ (t)
−1

exists for some t.

Furthermore, if Φ′ (t) = AΦ (t) , then either Φ (t)
−1

exists for all t or Φ (t)
−1

never
exists for any t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian
alternative.)

Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary

constant vector in Fn. You need to verify Φ (t)
−1

exists for some t. In fact, show

Φ (t)
−1

exists for every t. Suppose then that Φ (t0)
−1

does not exist. Explain why
there exists c ∈ Fn such that there is no solution x to the equation c = Φ(t0)x. By
the existence part of Problem 38 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)
−1

exists. Next suppose

for some t0,Φ (t0)
−1

exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) c

Then both z (t) ,Φ (t) c solve

x′ = Ax, x (t0) = z (t0)

Apply uniqueness to conclude z = Φ(t) c. Finally, consider that Φ (t) c for c ∈ Fn

either is the general solution or it is not the general solution. If it is, then Φ (t)
−1

exists for all t. If it is not, then Φ (t)
−1

cannot exist for any t from what was just
shown.

41. Let Φ′ (t) = AΦ (t) . Then Φ (t) is called a fundamental matrix if Φ (t)
−1

exists for all
t. Show there exists a unique solution to the equation

x′ = Ax+ f , x (t0) = x0 (6.26)

and it is given by the formula

x (t) = Φ (t) Φ (t0)
−1

x0 +Φ(t)

∫ t

t0

Φ (s)
−1

f (s) ds

Now these few problems have done virtually everything of significance in an entire un-
dergraduate differential equations course, illustrating the superiority of linear algebra.
The above formula is called the variation of constants formula.

Hint: Uniquenss is easy. If x1,x2 are two solutions then let u (t) = x1 (t)−x2 (t) and
argue u′ = Au, u (t0) = 0. Then use Problem 38. To verify there exists a solution, you
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could just differentiate the above formula using the fundamental theorem of calculus
and verify it works. Another way is to assume the solution in the form

x (t) = Φ (t) c (t)

and find c (t) to make it all work out. This is called the method of variation of
parameters.

42. Show there exists a special Φ such that Φ′ (t) = AΦ (t) , Φ (0) = I, and suppose

Φ (t)
−1

exists for all t. Show using uniqueness that

Φ (−t) = Φ (t)
−1

and that for all t, s ∈ R
Φ (t+ s) = Φ (t) Φ (s)

Explain why with this special Φ, the solution to 6.26 can be written as

x (t) = Φ (t− t0)x0 +

∫ t

t0

Φ (t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x′
j = Axj , xj (0) = ej .

Use uniqueness as required.

43. You can see more on this problem and the next one in the latest version of Horn
and Johnson, [17]. Two n × n matrices A,B are said to be congruent if there is an
invertible P such that

B = PAP ∗

Let A be a Hermitian matrix. Thus it has all real eigenvalues. Let n+ be the number
of positive eigenvalues, n−, the number of negative eigenvalues and n0 the number of
zero eigenvalues. For k a positive integer, let Ik denote the k × k identity matrix and
Ok the k×k zero matrix. Then the inertia matrix of A is the following block diagonal
n× n matrix.  In+

In−

On0


Show that A is congruent to its inertia matrix. Next show that congruence is an equiv-
alence relation on the set of Hermitian matrices. Finally, show that if two Hermitian
matrices have the same inertia matrix, then they must be congruent. Hint: First
recall that there is a unitary matrix, U such that

U∗AU =

 Dn+

Dn−

On0


where the Dn+ is a diagonal matrix having the positive eigenvalues of A, Dn− being
defined similarly. Now let

∣∣Dn−

∣∣ denote the diagonal matrix which replaces each entry
of Dn− with its absolute value. Consider the two diagonal matrices

D = D∗ =

 D
−1/2
n+ ∣∣Dn−

∣∣−1/2

In0
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Now consider D∗U∗AUD.

44. Show that if A,B are two congruent Hermitian matrices, then they have the same
inertia matrix. Hint: Let A = SBS∗ where S is invertible. Show that A,B have the
same rank and this implies that they are each unitarily similar to a diagonal matrix
which has the same number of zero entries on the main diagonal. Therefore, letting
VA be the span of the eigenvectors associated with positive eigenvalues of A and VB
being defined similarly, it suffices to show that these have the same dimensions. Show
that (Ax,x) > 0 for all x ∈ VA. Next consider S∗VA. For x ∈ VA, explain why

(BS∗x,S∗x) =
(
S−1A (S∗)

−1
S∗x,S∗x

)
=

(
S−1Ax,S∗x

)
=
(
Ax,

(
S−1

)∗
S∗x

)
= (Ax,x) > 0

Next explain why this shows that S∗VA is a subspace of VB and so the dimension of VB
is at least as large as the dimension of VA. Hence there are at least as many positive
eigenvalues for B as there are for A. Switching A,B you can turn the inequality
around. Thus the two have the same inertia matrix.

45. Let A be an m×n matrix. Then if you unraveled it, you could consider it as a vector
in Cnm. The Frobenius inner product on the vector space of m×n matrices is defined
as

(A,B) ≡ trace (AB∗)

Show that this really does satisfy the axioms of an inner product space and that it
also amounts to nothing more than considering m× n matrices as vectors in Cnm.

46. ↑Consider the n × n unitary matrices. Show that whenever U is such a matrix, it
follows that

|U |Cnn =
√
n

Next explain why if {Uk} is any sequence of unitary matrices, there exists a subse-
quence {Ukm

}∞m=1 such that limm→∞ Ukm
= U where U is unitary. Here the limit

takes place in the sense that the entries of Ukm
converge to the corresponding entries

of U .

47. ↑Let A,B be two n× n matrices. Denote by σ (A) the set of eigenvalues of A. Define

dist (σ (A) , σ (B)) = max
λ∈σ(A)

min {|λ− µ| : µ ∈ σ (B)}

Explain why dist (σ (A) , σ (B)) is small if and only if every eigenvalue of A is close
to some eigenvalue of B. Now prove the following theorem using the above problem
and Schur’s theorem. This theorem says roughly that if A is close to B then the
eigenvalues of A are close to those of B in the sense that every eigenvalue of A is close
to an eigenvalue of B.

Theorem 6.10.2 Suppose limk→∞Ak = A. Then

lim
k→∞

dist (σ (Ak) , σ (A)) = 0

48. Let A =

(
a b

c d

)
be a 2 × 2 matrix which is not a multiple of the identity. Show

that A is similar to a 2 × 2 matrix which has at least one diagonal entry equal to 0.
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Hint: First note that there exists a vector a such that Aa is not a multiple of a. Then
consider

B =
(

a Aa
)−1

A
(

a Aa
)

Show B has a zero on the main diagonal.

49. ↑ Let A be a complex n×n matrix which has trace equal to 0. Show that A is similar
to a matrix which has all zeros on the main diagonal. Hint: Use Problem 30 on
Page 128 to argue that you can say that a given matrix is similar to one which has
the diagonal entries permuted in any order desired. Then use the above problem and
block multiplication to show that if the A has k nonzero entries, then it is similar to
a matrix which has k− 1 nonzero entries. Finally, when A is similar to one which has
at most one nonzero entry, this one must also be zero because of the condition on the
trace.

50. ↑An n × n matrix X is a comutator if there are n × n matrices A,B such that X =
AB − BA. Show that the trace of any comutator is 0. Next show that if a complex
matrix X has trace equal to 0, then it is in fact a comutator. Hint: Use the above
problem to show that it suffices to consider X having all zero entries on the main
diagonal. Then define

A =


1 0

2
. . .

0 n

 , Bij =

{
Xij

i−j if i ̸= j

0 if i = j

6.11 Cauchy’s Interlacing Theorem for Eigenvalues

Recall that every Hermitian matrix has all real eigenvalues. The Cauchy interlacing theorem
compares the location of the eigenvalues of a Hermitian matrix with the eigenvalues of a
principal submatrix. It is an extremely interesting theorem.

Theorem 6.11.1 Let A be a Hermitian n× n matrix and let

A =

(
a y∗

y B

)
where B is (n− 1) × (n− 1) . Let the eigenvalues of B be µ1 ≤ µ2 ≤ · · · ≤ µn−1. Then if
the eigenvalues of A are λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn.

Proof: First note that B is Hermitian because

A∗ =

(
a y∗

y B∗

)
= A =

(
a y∗

y B

)
It is easiest to consider the case where strict inequality holds for the eigenvalues for B so
first is an outline of reducing to this case.

There exists U unitary, depending on B such that U∗BU = D where

D =


µ1 0

. . .

0 µn−1
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Now let {εk} be a decreasing sequence of very small positive numbers converging to 0 and
let Bk be defined by

U∗BkU = Dk, Dk ≡


µ1 + εk 0

µ2 + 2εk
. . .

0 µn−1 + (n− 1) εk


where U is the above unitary matrix. Thus the eigenvalues of Bk, µ̂1 < · · · < µ̂n−1 are
strictly increasing and µ̂j ≡ µj + jεk. Let Ak be given by

Ak =

(
a y∗

y Bk

)

Then(
1 0∗

0 U∗

)
Ak

(
1 0∗

0 U

)
=

(
1 0∗

0 U∗

)(
a y∗

y Bk

)(
1 0∗

0 U

)

=

(
a y∗

U∗y U∗Bk

)(
1 0∗

0 U

)
=

(
a y∗U

U∗y Dk

)

We can replace y in the statement of the theorem with yk such that limk→∞ yk = y but
zk ≡ U∗yk has the property that each component of zk is nonzero. This will probably
take place automatically but if not, make the change. This makes a change in Ak but still
limk→∞Ak = A. The main part of this argument which follows has to do with fixed k.

Expanding det (λI −Ak) along the top row, the characteristic polynomial for Ak is then

q (λ) = (λ− a)

n−1∏
i=1

(λ− µ̂i)−
n−1∑
i=2

|zi|2 (λ− µ̂1) · · · ̂(λ− µ̂i) · · ·
(
λ− µ̂n−1

)
(6.27)

where ̂(λ− µ̂i) indicates that this factor is omitted from the product
∏n−1

i=1 (λ− µ̂i) . To see
why this is so, consider the case where Bk is 3× 3. In this case, you would have

(
1 0T

0 U∗

)
(λI −Ak)

(
1 0T

0 U

)
=


λ− a z1 z2 z3

z1 λ− µ̂1 0 0

z2 0 λ− µ̂2 0

z3 0 0 λ− µ̂3


In general, you would have an n× n matrix on the right with the same appearance. Then
expanding as indicated, the determinant is

(λ− a)

3∏
i=1

(λ− µ̂i)− z1 det

 z1 0 0

z2 λ− µ̂2 0

z3 0 λ− µ̂3


+z2 det

 z1 λ− µ̂1 0

z2 0 0

z3 0 λ− µ̂3

− z3 det

 z1 λ− µ̂1 0

z2 0 λ− µ̂2

z3 0 0
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= (λ− a)

3∏
i=1

(λ− µ̂i)−

(
|z1|2 (λ− µ̂2) (λ− µ̂3) + |z2|2 (λ− µ̂1) (λ− µ̂3)

+ |z3|2 (λ− µ̂1) (λ− µ̂2)

)
Notice how, when you expand the 3× 3 determinants along the first column, you have only
one non-zero term and the sign is adjusted to give the above claim. Clearly, it works the
same for any size matrix. Since the µ̂i are strictly increasing in i, it follows from 6.27 that
q (µ̂i) q

(
µ̂i+1

)
≤ 0. However, since each |zi| ̸= 0, none of the q (µ̂i) can equal 0 and so

q (µ̂i) q
(
µ̂i+1

)
< 0. Hence, from the intermediate value theorem of calculus, there is a root

of q (λ) in each of the disjoint open intervals
(
µ̂i, µ̂i+1

)
. There are n − 2 of these intervals

and so this accounts for n− 2 roots of q (λ).

q (λ) = (λ− a)

n−1∏
i=1

(λ− µ̂i)−
n−1∑
i=2

|zi|2 (λ− µ̂1) · · · ̂(λ− µ̂i) · · ·
(
λ− µ̂n−1

)
What of q (µ̂1)? Its sign is the same as (−1)

n−3
and also q

(
µ̂n−1

)
< 0 . Therefore, there

is a root to q (λ) which is larger than µ̂n−1. Indeed, limλ→∞ q (λ) = ∞ so there exists a
root of q (λ) strictly larger than µ̂n−1. This accounts for n− 1 roots of q (λ) . Now consider
q (µ̂1) . Suppose first that n is odd. Then you have q (µ̂1) > 0. Hence, there is a root of
q (λ) which is no larger than µ̂1 because in this case, limλ→−∞ q (λ) = −∞. If n is even,
then q (µ̂1) < 0 and so there is a root of q (λ) which is smaller than µ̂1 because in this case,
limλ→−∞ q (λ) = ∞. This accounts for all roots of q (λ). Hence, if the roots of q (λ) are
λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that

λ1 < µ̂1 < λ2 < µ̂2 < · · · < µ̂n−1 < λn

To get the complete result, simply take the limit as k → ∞. Then limk→∞ µ̂k = µk and
Ak → A and so the eigenvalues of Ak converge to the corresponding eigenvalues of A (See
Problem 47 on Page 184), and so, passing to the limit, gives the desired result in which it
may be necessary to replace < with ≤. ■

Definition 6.11.2 Let A be an n × n matrix. An (n− r) × (n− r) matrix is called a
principal submatrix of A if it is obtained by deleting from A the rows i1, i2, · · · , ir and the
columns i1, i2, · · · , ir.

Now the Cauchy interlacing theorem is really the following corollary.

Corollary 6.11.3 Let A be an n × n Hermitian matrix and let B be an (n− 1) × (n− 1)
principal submatrix. Then the interlacing inequality holds λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn where the µi are the eigenvalues of B listed in increasing order and the λi are
the eigenvalues of A listed in increasing order.

Proof: Suppose B is obtained from A by deleting the ith row and the ith column. Then
let P be the permutation matrix which switches the ith row with the first row. It is an
orthogonal matrix and so its inverse is its transpose. The transpose switches the ith column

with the first column. See Problem 33 on Page 128. Thus PAPT =

(
a y∗

y B

)
and it

follows that the result of the multiplication is indeed as shown, a Hermitian matrix because
P, PT are orthogonal matrices. Now the conclusion of the corollary follows from Theorem
6.11.1. ■
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Chapter 7

Vector Spaces and Fields

7.1 Vector Space Axioms

It is time to consider the idea of a vector space.

Definition 7.1.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v +w = w + v,

the commutative law of addition,

(v +w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v +w) = αv+αw, (7.1)

(α+ β)v =αv+βv, (7.2)

α (βv) = αβ (v) , (7.3)

1v = v. (7.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.
There are many examples of vector spaces.

Example 7.1.2 Let Ω be a nonempty set and let V consist of all functions defined on Ω
which have values in some field F. The vector operations are defined as follows.

(f + g) (x) = f (x) + g (x)

(αf) (x) = αf (x)

Then it is routine to verify that V with these operations is a vector space.

Note that Fn actually fits in to this framework. You consider the set Ω to be {1, 2, · · · , n}
and then the mappings from Ω to F give the elements of Fn. Thus a typical vector can be
considered as a function.

Example 7.1.3 Generalize the above example by letting V denote all functions defined on
Ω which have values in a vector space W which has field of scalars F. The definitions of
scalar multiplication and vector addition are identical to those of the above example.

189
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7.2 Subspaces and Bases

7.2.1 Basic Definitions

Definition 7.2.1 If {v1, · · · ,vn} ⊆ V, a vector space, then

span (v1, · · · ,vn) ≡

{
n∑

i=1

αivi : αi ∈ F

}
.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of
scalars. Thus W ⊆ V for W nonempty is a subspace if ax+ by ∈W whenever a, b ∈ F and
x, y ∈W. The span of a set of vectors as just described is an example of a subspace.

Example 7.2.2 Consider the real valued functions defined on an interval [a, b]. A subspace
is the set of continuous real valued functions defined on the interval. Another subspace is
the set of polynomials of degree no more than 4.

Definition 7.2.3 If {v1, · · · ,vn} ⊆ V, the set of vectors is linearly independent if

n∑
i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · · ,vn} is called a basis for V if

span (v1, · · · ,vn) = V

and {v1, · · · ,vn} is linearly independent. The set of vectors is linearly dependent if it is not
linearly independent.

7.2.2 A Fundamental Theorem

The next theorem is called the exchange theorem. It is very important that you understand
this theorem. It is so important that I have given several proofs of it. Some amount to the
same thing, just worded differently.

Theorem 7.2.4 Let {x1, · · · ,xr} be a linearly independent set of vectors such that each xi

is in the span{y1, · · · ,ys} . Then r ≤ s.

Proof 1: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such
that

x1 =

s∑
i=1

ciyi. (7.5)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 7.5 for yk and obtain

yk ∈ span

x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · · ,yk−1,yk+1, · · · ,ys

 .
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Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =

s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V there
exist scalars ci and dj such that

xl+1 =

l∑
i=1

cixi +

p∑
j=1

djzj . (7.6)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (7.6) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span

x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · · zk−1, zk+1, · · · , zp

 = V.

Continue this way, eventually obtaining

span (x1, · · · ,xs) = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 2: Let

xk =

s∑
j=1

ajkyj

If r > s, then the matrix A = (ajk) has more columns than rows. By Corollary 4.3.9
one of these columns is a linear combination of the others. This implies there exist scalars
c1, · · · , cr, not all zero such that

r∑
k=1

ajkck = 0, j = 1, · · · , r

Then
r∑

k=1

ckxk =

r∑
k=1

ck

s∑
j=1

ajkyj =

s∑
j=1

(
r∑

k=1

ckajk

)
yj = 0

which contradicts the assumption that {x1, · · · ,xr} is linearly independent. Hence r ≤ s.
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Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as
small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m + j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. ■

Corollary 7.2.5 If {u1, · · · ,um} and {v1, · · · ,vn} are two bases for V, then m = n.

Proof: By Theorem 7.2.4, m ≤ n and n ≤ m. ■

Definition 7.2.6 A vector space V is of dimension n if it has a basis consisting of n vectors.
This is well defined thanks to Corollary 7.2.5. It is always assumed here that n <∞ and in
this case, such a vector space is said to be finite dimensional.

Example 7.2.7 Consider the polynomials defined on R of degree no more than 3, denoted
here as P3. Then show that a basis for P3 is

{
1, x, x2, x3

}
. Here xk symbolizes the function

x 7→ xk.

It is obvious that the span of the given vectors yields P3. Why is this set of vectors
linearly independent? Suppose

c0 + c1x+ c2x
2 + c3x

3 = 0

where 0 is the zero function which maps everything to 0. Then you could differentiate three
times and obtain the following equations

c1 + 2c2x+ 3c3x
2 = 0

2c2 + 6c3x = 0

6c3 = 0

Now this implies c3 = 0. Then from the equations above the bottom one, you find in
succession that c2 = 0, c1 = 0, c0 = 0.

There is a somewhat interesting theorem about linear independence of smooth functions
(those having plenty of derivatives) which I will show now. It is often used in differential
equations.
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Definition 7.2.8 Let f1, · · · , fn be smooth functions defined on an interval [a, b] . The
Wronskian of these functions is defined as follows.

W (f1, · · · , fn) (x) ≡

∣∣∣∣∣∣∣∣∣∣
f1 (x) f2 (x) · · · fn (x)

f ′1 (x) f ′2 (x) · · · f ′n (x)
...

...
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
Note that to get from one row to the next, you just differentiate everything in that row. The
notation f (k) (x) denotes the kth derivative.

With this definition, the following is the theorem. The interesting theorem involving the
Wronskian has to do with the situation where the functions are solutions of a differential
equation. Then much more can be said and it is much more interesting than the following
theorem.

Theorem 7.2.9 Let {f1, · · · , fn} be smooth functions defined on [a, b] . Then they are lin-
early independent if there exists some point t ∈ [a, b] where W (f1, · · · , fn) (t) ̸= 0.

Proof: Form the linear combination of these vectors (functions) and suppose it equals
0. Thus

a1f1 + a2f2 + · · ·+ anfn = 0

The question you must answer is whether this requires each aj to equal zero. If they all
must equal 0, then this means these vectors (functions) are independent. This is what it
means to be linearly independent.

Differentiate the above equation n− 1 times yielding the equations
a1f1 + a2f2 + · · ·+ anfn = 0

a1f
′
1 + a2f

′
2 + · · ·+ anf

′
n = 0

...

a1f
(n−1)
1 + a2f

(n−1)
2 + · · ·+ anf

(n−1)
n = 0


Now plug in t. Then the above yields

f1 (t) f2 (t) · · · fn (t)

f ′1 (t) f ′2 (t) · · · f ′n (t)
...

...
...

f
(n−1)
1 (t) f

(n−1)
2 (t) · · · f

(n−1)
n (t)




a1

a2
...

an

 =


0

0
...

0


Since the determinant of the matrix on the left is assumed to be nonzero, it follows this
matrix has an inverse and so the only solution to the above system of equations is to have
each ak = 0. ■

Here is a useful lemma.

Lemma 7.2.10 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that
d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui
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contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. ■

Given a spanning set, you can delete vectors till you end up with a basis. Given a linearly
independent set, you can add vectors till you get a basis. This is what the following theorem
is about, weeding and planting.

Theorem 7.2.11 If V = span (u1, · · · ,un) then some subset of {u1, · · · ,un} is a basis for
V. Also, if {u1, · · · ,uk} ⊆ V is linearly independent and the vector space is finite dimen-
sional, then the set, {u1, · · · ,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · · ,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.

Thus there exist vectors
{v1, · · · ,vm} ⊆ {u1, · · · ,un}

such that
span (v1, · · · ,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows
it is a basis for V and the theorem is proved. On the other hand, if the set is not linearly
independent, then there exist scalars

c1, · · · , cm

such that

0 =

m∑
i=1

civi

and not all the ci are equal to zero. Suppose ck ̸= 0. Then the vector, vk may be solved for
in terms of the other vectors. Consequently,

V = span (v1, · · · ,vk−1,vk+1, · · · ,vm)

contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · · ,uk} and suppose a basis for V is

{v1, · · · ,vn} .

If
span (u1, · · · ,uk) = V,

then k = n. If not, there exists a vector,

uk+1 /∈ span (u1, · · · ,uk) .

Then by Lemma 7.2.10, {u1, · · · ,uk,uk+1} is also linearly independent. Continue adding
vectors in this way until n linearly independent vectors have been obtained. Then

span (u1, · · · ,un) = V

because if it did not do so, there would exist un+1 as just described and {u1, · · · ,un+1}
would be a linearly independent set of vectors having n+1 elements even though {v1, · · · ,vn}
is a basis. This would contradict Theorem 7.2.4. Therefore, this list is a basis. ■
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7.2.3 The Basis of a Subspace

Every subspace of a finite dimensional vector space is a span of some vectors and in fact it
has a basis. This is the content of the next theorem.

Theorem 7.2.12 Let V be a nonzero subspace of a finite dimensional vector space W of
dimension n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 7.2.10 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ≠ V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 7.2.4. ■

7.3 Lots of Fields

7.3.1 Irreducible Polynomials

I mentioned earlier that most things hold for arbitrary fields. However, I have not bothered
to give any examples of other fields. This is the point of this section. It also turns out that
showing the algebraic numbers are a field can be understood using vector space concepts
and it gives a very convincing application of the abstract theory presented earlier in this
chapter.

Here I will give some basic algebra relating to polynomials. This is interesting for its
own sake but also provides the basis for constructing many different kinds of fields. The
first is the Euclidean algorithm for polynomials.

Definition 7.3.1 A polynomial is an expression of the form p (λ) =
∑n

k=0 akλ
k where as

usual λ0 is defined to equal 1. Two polynomials are said to be equal if their corresponding
coefficients are the same. Thus, in particular, p (λ) = 0 means each of the ak = 0. An
element of the field λ is said to be a root of the polynomial if p (λ) = 0 in the sense that
when you plug in λ into the formula and do the indicated operations, you get 0. The degree
of a nonzero polynomial is the highest exponent appearing on λ. The degree of the zero
polynomial p (λ) = 0 is not defined. A polynomial of degree n is monic if the coefficient of
λn is 1. In any case, this coefficient is called the leading coefficient.

Example 7.3.2 Consider the polynomial p (λ) = λ2+λ where the coefficients are in Z2. Is
this polynomial equal to 0? Not according to the above definition, because its coefficients are
not all equal to 0. However, p (1) = p (0) = 0 so it sends every element of Z2 to 0. Note the
distinction between saying it sends everything in the field to 0 with having the polynomial be
the zero polynomial.

The fundamental result is the division theorem for polynomials. It is Lemma 1.10.10 on
Page 25. We state it here for convenience.

Lemma 7.3.3 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exists a polynomial, q (λ)
such that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0. These polynomials
q (λ) and r (λ) are unique.
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In what follows, the coefficients of polynomials are in F, a field of scalars which is
completely arbitrary. Think R if you need an example.

Definition 7.3.4 A polynomial f is said to divide a polynomial g if g (λ) = f (λ) r (λ) for
some polynomial r (λ). Let {ϕi (λ)} be a finite set of polynomials. The greatest common
divisor will be the monic polynomial q (λ) such that q (λ) divides each ϕi (λ) and if p (λ)
divides each ϕi (λ) , then p (λ) divides q (λ) . The finite set of polynomials {ϕi} is said to be
relatively prime if their greatest common divisor is 1. A polynomial f (λ) is irreducible if
there is no polynomial with coefficients in F which divides it except nonzero scalar multiples
of f (λ) and constants. In other words, it is not possible to write f (λ) = a (λ) b (λ) where
each of a (λ) , b (λ) have degree less than the degree of f (λ).

Proposition 7.3.5 The greatest common divisor is unique.

Proof: Suppose both q (λ) and q′ (λ) work. Then q (λ) divides q′ (λ) and the other way
around and so

q′ (λ) = q (λ) l (λ) , q (λ) = l′ (λ) q′ (λ)

Therefore, the two must have the same degree. Hence l′ (λ) , l (λ) are both constants. How-
ever, this constant must be 1 because both q (λ) and q′ (λ) are monic. ■

Theorem 7.3.6 Let ψ (λ) be the greatest common divisor of {ϕi (λ)} , not all of which are
zero polynomials. Then there exist polynomials ri (λ) such that

ψ (λ) =

p∑
i=1

ri (λ)ϕi (λ) .

Furthermore, ψ (λ) is the monic polynomial of smallest degree which can be written in the
above form.

Proof: Let S denote the set of monic polynomials which are of the form

p∑
i=1

ri (λ)ϕi (λ)

where ri (λ) is a polynomial. Then S ̸= ∅ because some ϕi (λ) ̸= 0. Then let the ri be chosen
such that the degree of the expression

∑p
i=1 ri (λ)ϕi (λ) is as small as possible. Letting ψ (λ)

equal this sum, it remains to verify it is the greatest common divisor. First, does it divide
each ϕi (λ)? Suppose it fails to divide ϕ1 (λ) . Then by Lemma 7.3.3

ϕ1 (λ) = ψ (λ) l (λ) + r (λ)

where degree of r (λ) is less than that of ψ (λ). Then dividing r (λ) by the leading coefficient
if necessary and denoting the result by ψ1 (λ) , it follows the degree of ψ1 (λ) is less than
the degree of ψ (λ) and ψ1 (λ) equals

ψ1 (λ) = (ϕ1 (λ)− ψ (λ) l (λ)) a

=

(
ϕ1 (λ)−

p∑
i=1

ri (λ)ϕi (λ) l (λ)

)
a

=

(
(1− r1 (λ))ϕ1 (λ) +

p∑
i=2

(−ri (λ) l (λ))ϕi (λ)

)
a
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for a suitable a ∈ F. This is one of the polynomials in S. Therefore, ψ (λ) does not have
the smallest degree after all because the degree of ψ1 (λ) is smaller. This is a contradiction.
Therefore, ψ (λ) divides ϕ1 (λ) . Similarly it divides all the other ϕi (λ).

If p (λ) divides all the ϕi (λ) , then it divides ψ (λ) because of the formula for ψ (λ) which
equals

∑p
i=1 ri (λ)ϕi (λ) . ■

Lemma 7.3.7 Suppose ϕ (λ) and ψ (λ) are monic polynomials which are irreducible and
not equal. Then they are relatively prime.

Proof: Suppose η (λ) is a nonconstant polynomial. If η (λ) divides ϕ (λ) , then since
ϕ (λ) is irreducible, η (λ) equals aϕ (λ) for some a ∈ F. If η (λ) divides ψ (λ) then it must
be of the form bψ (λ) for some b ∈ F and so it follows

ψ (λ) =
a

b
ϕ (λ)

but both ψ (λ) and ϕ (λ) are monic polynomials which implies a = b and so ψ (λ) = ϕ (λ).
This is assumed not to happen. It follows the only polynomials which divide both ψ (λ)
and ϕ (λ) are constants and so the two polynomials are relatively prime. Thus a polynomial
which divides them both must be a constant, and if it is monic, then it must be 1. Thus 1
is the greatest common divisor. ■

Lemma 7.3.8 Let ψ (λ) be an irreducible monic polynomial not equal to 1 which divides

p∏
i=1

ϕi (λ)
ki , ki a positive integer,

where each ϕi (λ) is an irreducible monic polynomial not equal to 1. Then ψ (λ) equals some
ϕi (λ) .

Proof : Say ψ (λ) l (λ) =
∏p

i=1 ϕi (λ)
ki . Suppose ψ (λ) ̸= ϕi (λ) for all i. Then by Lemma

7.3.7, there exist polynomials mi (λ) , ni (λ) such that

1 = ψ (λ)mi (λ) + ϕi (λ)ni (λ)

ϕi (λ)ni (λ) = 1− ψ (λ)mi (λ)

Hence,

ψ (λ)n (λ) ≡ ψ (λ) l (λ)

p∏
i=1

ni (λ)
ki =

p∏
i=1

(ni (λ)ϕi (λ))
ki

=

p∏
i=1

(1− ψ (λ)mi (λ))
ki = 1 + g (λ)ψ (λ)

for a polynomial g (λ). Thus
1 = ψ (λ) (n (λ)− g (λ))

which is impossible because ψ (λ) is not equal to 1. ■
Now here is a simple lemma about canceling monic polynomials.

Lemma 7.3.9 Suppose p (λ) is a monic polynomial and q (λ) is a polynomial such that

p (λ) q (λ) = 0.

Then q (λ) = 0. Also if
p (λ) q1 (λ) = p (λ) q2 (λ)

then q1 (λ) = q2 (λ) .
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Proof: Let

p (λ) =

k∑
j=1

pjλ
j , q (λ) =

n∑
i=1

qiλ
i, pk = 1.

Then the product equals
k∑

j=1

n∑
i=1

pjqiλ
i+j .

Then look at those terms involving λk+n. This is pkqnλ
k+n and is given to be 0. Since

pk = 1, it follows qn = 0. Thus
k∑

j=1

n−1∑
i=1

pjqiλ
i+j = 0.

Then consider the term involving λn−1+k and conclude that since pk = 1, it follows qn−1 = 0.
Continuing this way, each qi = 0. This proves the first part. The second follows from

p (λ) (q1 (λ)− q2 (λ)) = 0. ■

The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 7.3.10 Let f (λ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ) = a

∏n
i=1 ϕi (λ) where ϕi (λ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a.

Proof: That such a factorization exists is obvious. If f (λ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ) = aϕ1 (λ)ϕ2 (λ) where these are monic
polynomials. Continue doing this with the ϕi and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a

n∏
i=1

ϕi (λ) = b

m∏
i=1

ψi (λ)

where the ϕi (λ) and the ψi (λ) are all irreducible monic nonconstant polynomials and a, b ∈
F. If n > m, then by Lemma 7.3.8, each ψi (λ) equals one of the ϕj (λ) . By the above
cancellation lemma, Lemma 7.3.9, you can cancel all these ψi (λ) with appropriate ϕj (λ)
and obtain a contradiction because the resulting polynomials on either side would have
different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. ■

The following corollary will be well used. This corollary seems rather believable but does
require a proof.

Corollary 7.3.11 Let q (λ) =
∏p

i=1 ϕi (λ)
ki where the ki are positive integers and the ϕi (λ)

are irreducible monic polynomials. Suppose also that p (λ) is a monic polynomial which
divides q (λ) . Then

p (λ) =

p∏
i=1

ϕi (λ)
ri

where ri is a nonnegative integer no larger than ki.
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Proof: Using Theorem 7.3.10, let p (λ) = b
∏s

i=1 ψi (λ)
ri where the ψi (λ) are each

irreducible and monic and b ∈ F. Since p (λ) is monic, b = 1. Then there exists a polynomial
g (λ) such that

p (λ) g (λ) = g (λ)

s∏
i=1

ψi (λ)
ri =

p∏
i=1

ϕi (λ)
ki

Hence g (λ) must be monic. Therefore,

p (λ) g (λ) =

p(λ)︷ ︸︸ ︷
s∏

i=1

ψi (λ)
ri

l∏
j=1

ηj (λ) =

p∏
i=1

ϕi (λ)
ki

for ηj monic and irreducible. By uniqueness, each ψi equals one of the ϕj (λ) and the same
holding true of the ηi (λ). Therefore, p (λ) is of the desired form. ■

7.3.2 Polynomials and Fields

When you have a polynomial like x2 − 3 which has no rational roots, it turns out you can
enlarge the field of rational numbers to obtain a larger field such that this polynomial does
have roots in this larger field. I am going to discuss a systematic way to do this. It will
turn out that for any polynomial with coefficients in any field, there always exists a possibly
larger field such that the polynomial has roots in this larger field. This book has mainly
featured the field of real or complex numbers but this procedure will show how to obtain
many other fields which could be used in most of what was presented earlier in the book.
Here is an important idea concerning equivalence relations which I hope is familiar.

Definition 7.3.12 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 7.3.13 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 7.3.14 Let ∼ be an equivalence relation defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Definition 7.3.15 Let F be a field, for example the rational numbers, and denote by F [x]
the polynomials having coefficients in F. Suppose p (x) is a polynomial. Let a (x) ∼ b (x)
(a (x) is similar to b (x)) when

a (x)− b (x) = k (x) p (x)

for some polynomial k (x) .

Proposition 7.3.16 In the above definition, ∼ is an equivalence relation.
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Proof: First of all, note that a (x) ∼ a (x) because their difference equals 0p (x) . If
a (x) ∼ b (x) , then a (x) − b (x) = k (x) p (x) for some k (x) . But then b (x) − a (x) =
−k (x) p (x) and so b (x) ∼ a (x). Next suppose a (x) ∼ b (x) and b (x) ∼ c (x) . Then
a (x) − b (x) = k (x) p (x) for some polynomial k (x) and also b (x) − c (x) = l (x) p (x) for
some polynomial l (x) . Then

a (x)− c (x) = a (x)− b (x) + b (x)− c (x)

= k (x) p (x) + l (x) p (x) = (l (x) + k (x)) p (x)

and so a (x) ∼ c (x) and this shows the transitive law. ■
With this proposition, here is another definition which essentially describes the elements

of the new field. It will eventually be necessary to assume the polynomial p (x) in the above
definition is irreducible so I will begin assuming this.

Definition 7.3.17 Let F be a field and let p (x) ∈ F [x] be a monic irreducible polynomial of
degree greater than 0. Thus there is no polynomial having coefficients in F which divides p (x)
except for itself and constants, and its leading coefficient is 1. For the similarity relation
defined in Definition 7.3.15, define the following operations on the equivalence classes. [a (x)]
is an equivalence class means that it is the set of all polynomials which are similar to a (x).

[a (x)] + [b (x)] ≡ [a (x) + b (x)]

[a (x)] [b (x)] ≡ [a (x) b (x)]

This collection of equivalence classes is sometimes denoted by F [x] / (p (x)).

Proposition 7.3.18 In the situation of Definition 7.3.17 where p (x) is a monic irreducible
polynomial, the following are valid.

1. p (x) and q (x) are relatively prime for any q (x) ∈ F [x] which is not a multiple of
p (x).

2. The definitions of addition and multiplication are well defined.

3. If a, b ∈ F and [a] = [b] , then a = b. Thus F can be considered a subset of F [x] / (p (x)) .

4. F [x] / (p (x)) is a field in which the polynomial p (x) has a root.

5. F [x] / (p (x)) is a vector space with field of scalars F and its dimension is m where m
is the degree of the irreducible polynomial p (x).

Proof: First consider the claim about p (x) , q (x) being relatively prime. If ψ (x) is the
greatest common divisor, it follows ψ (x) is either equal to p (x) or 1. If it is p (x) , then
q (x) is a multiple of p (x) which does not happen. If it is 1, then by definition, the two
polynomials are relatively prime.

To show the operations are well defined, suppose

[a (x)] = [a′ (x)] , [b (x)] = [b′ (x)]

It is necessary to show
[a (x) + b (x)] = [a′ (x) + b′ (x)]

[a (x) b (x)] = [a′ (x) b′ (x)]



7.3. LOTS OF FIELDS 201

Consider the second of the two.

a′ (x) b′ (x)− a (x) b (x)

= a′ (x) b′ (x)− a (x) b′ (x) + a (x) b′ (x)− a (x) b (x)

= b′ (x) (a′ (x)− a (x)) + a (x) (b′ (x)− b (x))

Now by assumption (a′ (x)− a (x)) is a multiple of p (x) as is (b′ (x)− b (x)) , so the above
is a multiple of p (x) and by definition this shows [a (x) b (x)] = [a′ (x) b′ (x)]. The case for
addition is similar.

Now suppose [a] = [b] . This means a− b = k (x) p (x) for some polynomial k (x) . Then
k (x) must equal 0 since otherwise the two polynomials a − b and k (x) p (x) could not be
equal because they would have different degree.

It is clear that the axioms of a field are satisfied except for the one which says that non
zero elements of the field have a multiplicative inverse. Let [q (x)] ∈ F [x] / (p (x)) where
[q (x)] ̸= [0] . Then q (x) is not a multiple of p (x) and so by the first part, q (x) , p (x) are
relatively prime. Thus there exist n (x) ,m (x) such that

1 = n (x) q (x) +m (x) p (x)

Hence
[1] = [1− n (x) p (x)] = [n (x) q (x)] = [n (x)] [q (x)]

which shows that [q (x)]
−1

= [n (x)] . Thus this is a field. The polynomial has a root in this
field because if

p (x) = xm + am−1x
m−1 + · · ·+ a1x+ a0,

[0] = [p (x)] = [x]
m
+ [am−1] [x]

m−1
+ · · ·+ [a1] [x] + [a0]

Thus [x] is a root of this polynomial in the field F [x] / (p (x)).
Consider the last claim. Let f (x) ∈ F [x] / (p (x)) . Thus [f (x)] is a typical thing in

F [x] / (p (x)). Then from the division algorithm,

f (x) = p (x) q (x) + r (x)

where r (x) is either 0 or has degree less than the degree of p (x) . Thus

[r (x)] = [f (x)− p (x) q (x)] = [f (x)]

but clearly [r (x)] ∈ span
(
[1] , · · · , [x]m−1

)
. Thus span

(
[1] , · · · , [x]m−1

)
= F [x] / (p (x)).

Then
{
[1] , · · · , [x]m−1

}
is a basis if these vectors are linearly independent. Suppose then

that
m−1∑
i=0

ci [x]
i
=

[
m−1∑
i=0

cix
i

]
= 0

Then you would need to have p (x) /
∑m−1

i=0 cix
i which is impossible unless each ci = 0

because p (x) has degree m. ■
From the above theorem, it makes perfect sense to write b rather than [b] if b ∈ F. Then

with this convention,
[bϕ (x)] = [b] [ϕ (x)] = b [ϕ (x)] .

This shows how to enlarge a field to get a new one in which the polynomial has a root.
By using a succession of such enlargements, called field extensions, there will exist a field
in which the given polynomial can be factored into a product of polynomials having degree
one. The field you obtain in this process of enlarging in which the given polynomial factors
in terms of linear factors is called a splitting field.
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Remark 7.3.19 The polynomials consisting of all polynomial multiples of p (x) , denoted
by (p (x)) is called an ideal. An ideal I is a subset of the commutative ring (Here the ring
is F [x] .) with unity consisting of all polynomials which is itself a ring and which has the
property that whenever f (x) ∈ F [x] , and g (x) ∈ I, f (x) g (x) ∈ I. In this case, you could
argue that (p (x)) is an ideal and that the only ideal containing it is itself or the entire ring
F [x]. This is called a maximal ideal.

Example 7.3.20 The polynomial x2 − 2 is irreducible in Q [x] . This is because if x2 − 2 =
p (x) q (x) where p (x) , q (x) both have degree less than 2, then they both have degree 1. Hence
you would have x2 − 2 = (x+ a) (x+ b) which requires that a + b = 0 so this factorization
is of the form (x− a) (x+ a) and now you need to have a =

√
2 /∈ Q. Now Q [x] /

(
x2 − 2

)
is of the form a + b [x] where a, b ∈ Q and [x]

2 − 2 = 0. Thus one can regard [x] as
√
2.

Q [x] /
(
x2 − 2

)
is of the form a+ b

√
2.

In the above example,
[
x2 + x

]
is not zero because it is not a multiple of x2 − 2. What

is
[
x2 + x

]−1
? You know that the two polynomials are relatively prime and so there exists

n (x) ,m (x) such that
1 = n (x)

(
x2 − 2

)
+m (x)

(
x2 + x

)
Thus [m (x)] =

[
x2 + x

]−1
. How could you find these polynomials? First of all, it suffices

to consider only n (x) and m (x) having degree less than 2.

1 = (ax+ b)
(
x2 − 2

)
+ (cx+ d)

(
x2 + x

)
1 = ax3 − 2b+ bx2 + cx2 + cx3 + dx2 − 2ax+ dx

Now you solve the resulting system of equations.

a =
1

2
, b = −1

2
, c = −1

2
, d = 1

Then the desired inverse is
[
− 1

2x+ 1
]
. To check,(

−1

2
x+ 1

)(
x2 + x

)
− 1 = −1

2
(x− 1)

(
x2 − 2

)
Thus

[
− 1

2x+ 1
] [
x2 + x

]
− [1] = [0].

The above is an example of something general described in the following definition.

Definition 7.3.21 Let F ⊆ K be two fields. Then clearly K is also a vector space over
F. Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.

There are some easy things to observe about this.

Proposition 7.3.22 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that

l =

n∑
i=1

xili
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Now xi ∈ K so there exist fji such that

xi =

m∑
j=1

fjikj

Then it follows that

l =

n∑
i=1

m∑
j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑
i=1

m∑
j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑
j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore,
{kj li} is a basis. ■

Note that if p (x) were not irreducible, then you could find a field extension G containing
a root of p (x) such that [G : F] ≤ n. You could do this by working with an irreducible factor
of p (x).

Theorem 7.3.23 Let p (x) = xn+an−1x
n−1+· · ·+a1x+a0 be a polynomial with coefficients

in a field of scalars F. There exists a larger field G and {z1, · · · , zn} contained in G, listed
according to multiplicity, such that

p (x) =

n∏
i=1

(x− zi)

This larger field is called a splitting field. Furthermore,

[G : F] ≤ n!

Proof: From Proposition 7.3.18, there exists a field F1 such that p (x) has a root, z1
(= [x] if p is irreducible.) Then by the Euclidean algorithm

p (x) = (x− z1) q1 (x) + r

where r ∈ F1. Since p (z1) = 0, this requires r = 0. Now do the same for q1 (x) that was
done for p (x) , enlarging the field to F2 if necessary, such that in this new field

q1 (x) = (x− z2) q2 (x) .

and so
p (x) = (x− z1) (x− z2) q2 (x)

After n such extensions, you will have obtained the necessary field G.
Finally consider the claim about dimension. By Proposition 7.3.18, there is a larger field

G1 such that p (x) has a root a1 in G1 and [G1 : F] ≤ n. Then

p (x) = (x− a1) q (x)

Continue this way until the polynomial equals the product of linear factors. Then by
Proposition 7.3.22 applied multiple times, [G : F] ≤ n!. ■



204 CHAPTER 7. VECTOR SPACES AND FIELDS

Example 7.3.24 The polynomial x2 + 1 is irreducible in R [x] , polynomials having real
coefficients. To see this is the case, suppose ψ (x) divides x2 + 1. Then

x2 + 1 = ψ (x) q (x)

If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax+ b.
In the latter case, −b/a must be a zero of the right side, hence of the left but x2 + 1 has no
real zeros. Therefore, the degree of ψ (x) must be two and q (x) must be a constant. Thus
the only polynomial which divides x2 + 1 are constants and multiples of x2 + 1. Therefore,
this shows x2 +1 is irreducible. Find the inverse of

[
x2 + x+ 1

]
in the space of equivalence

classes, R/
(
x2 + 1

)
.

You can solve this with partial fractions.

1

(x2 + 1) (x2 + x+ 1)
= − x

x2 + 1
+

x+ 1

x2 + x+ 1

and so
1 = (−x)

(
x2 + x+ 1

)
+ (x+ 1)

(
x2 + 1

)
which implies

1 ∼ (−x)
(
x2 + x+ 1

)
and so the inverse is [−x] .

The following proposition is interesting. It was essentially proved above but to emphasize
it, here it is again.

Proposition 7.3.25 Suppose p (x) ∈ F [x] is irreducible and has degree n. Then every
element of G = F [x] / (p (x)) is of the form [0] or [r (x)] where the degree of r (x) is less
than n.

Proof: This follows right away from the Euclidean algorithm for polynomials. If k (x)
has degree larger than n− 1, then

k (x) = q (x) p (x) + r (x)

where r (x) is either equal to 0 or has degree less than n. Hence

[k (x)] = [r (x)] . ■

Example 7.3.26 In the situation of the above example, find [ax+ b]
−1

assuming a2+ b2 ̸=
0. Note this includes all cases of interest thanks to the above proposition.

You can do it with partial fractions as above.

1

(x2 + 1) (ax+ b)
=

b− ax

(a2 + b2) (x2 + 1)
+

a2

(a2 + b2) (ax+ b)

and so

1 =
1

a2 + b2
(b− ax) (ax+ b) +

a2

(a2 + b2)

(
x2 + 1

)
Thus

1

a2 + b2
(b− ax) (ax+ b) ∼ 1

and so

[ax+ b]
−1

=
[(b− ax)]

a2 + b2
=
b− a [x]

a2 + b2

You might find it interesting to recall that (ai+ b)
−1

= b−ai
a2+b2 .
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7.3.3 The Algebraic Numbers

Each polynomial having coefficients in a field F has a splitting field. Consider the case of all
polynomials p (x) having coefficients in a field F ⊆ G and consider all roots which are also
in G. The theory of vector spaces is very useful in the study of these algebraic numbers.
Here is a definition.

Definition 7.3.27 The algebraic numbers A are those numbers which are in G and also
roots of some polynomial p (x) having coefficients in F. The minimal polynomial of a ∈ A
is defined to be the monic polynomial p (x) having smallest degree such that p (a) = 0.

The next theorem is on the uniqueness of the minimal polynomial.

Theorem 7.3.28 Let a ∈ A. Then there exists a unique monic irreducible polynomial p (x)
having coefficients in F such that p (a) = 0. This polynomial is the minimal polynomial.

Proof: Let p (x) be a monic polynomial having smallest degree such that p (a) = 0.
Then p (x) is irreducible because if not, there would exist a polynomial having smaller
degree which has a as a root. Now suppose q (x) is monic with smallest degree such that
q (a) = 0. Then

q (x) = p (x) l (x) + r (x)

where if r (x) ̸= 0, then it has smaller degree than p (x). But in this case, the equation
implies r (a) = 0 which contradicts the choice of p (x). Hence r (x) = 0 and so, since q (x)
has smallest degree, l (x) = 1 showing that p (x) = q (x). ■

Definition 7.3.29 For a an algebraic number, let deg (a) denote the degree of the minimal
polynomial of a.

Also, here is another definition.

Definition 7.3.30 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an ex-
pression of the form ∑

k1···kn

ak1···kn
ak1
1 · · · akn

n

where the ak1···kn
are in F, each kj is a nonnegative integer, and all but finitely many of the

ak1···kn
equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .

Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F.
Similarly, for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of
scalars F. The following fundamental proposition is important.

Proposition 7.3.31 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏
j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.
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Proof: Let the minimal polynomial of a be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

If q (a) ∈ F [a] , then
q (x) = p (x) l (x) + r (x)

where r (x) has degree less than the degree of p (x) if it is not zero. Hence q (a) = r (a).
Thus F [a] is spanned by {

1, a, a2, · · · , an−1
}

Since p (x) has smallest degree of all polynomials which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear

combinations of products of
{
ak1
1 , a

k2
2 , · · · , akn

n

}
where the ki are nonnegative integers. From

the first part, it suffices to consider only kj ≤ deg (aj). Therefore, there exists a spanning
set for F [a1, · · · , am] which has

m∏
i=1

deg (ai)

entries. By Theorem 7.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in

F [a1, · · · , am]. Since

dimF [a1, · · · , am] ≡ p ≤
m∏
j=1

deg (aj) <∞,

it follows
1, g (a1, · · · , am) , g (a1, · · · , am)

2
, · · · , g (a1, · · · , am)

p

are dependent. It follows g (a1, · · · , am) is the root of some polynomial having coefficients
in F. Thus everything in F [a1, · · · , am] is algebraic. Why is F [a1, · · · , am] a field? Let
g (a1, · · · , am) be as just mentioned. Then it has a minimal polynomial,

p (x) = xq + aq−1x
q−1 + · · ·+ a1x+ a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimal. Therefore,

g (a1, · · · , am)
(
g (a1, · · · , am)

q−1
+ aq−1g (a1, · · · , am)

q−2
+ · · ·+ a1

)
= −a0

and so the multiplicative inverse for g (a1, · · · , am) is

g (a1, · · · , am)
q−1

+ aq−1g (a1, · · · , am)
q−2

+ · · ·+ a1
−a0

∈ F [a1, · · · , am] .

The other axioms of a field are obvious. ■
Now from this proposition, it is easy to obtain the following interesting result about the

algebraic numbers.

Theorem 7.3.32 The algebraic numbers A, those roots of polynomials in F [x] which are
in G, are a field.
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Proof: By definition, each a ∈ A has a minimal polynomial. Let a ̸= 0 be an algebraic
number and let p (x) be its minimal polynomial. Then p (x) is of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0

where a0 ̸= 0. Otherwise p(x) would not have minimal degree. Then plugging in a yields

a

(
an−1 + an−1a

n−2 + · · ·+ a1
)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1a

n−2+···+a1)(−1)

a0
∈ F [a]. By the proposition, every element of F [a]

is in A and this shows that for every nonzero element of A, its inverse is also in A. What
about products and sums of things in A? Are they still in A? Yes. If a, b ∈ A, then both
a+ b and ab ∈ F [a, b] and from the proposition, each element of F [a, b] is in A. ■

A typical example of what is of interest here is when the field F of scalars is Q, the
rational numbers and the field G is R. However, you can certainly conceive of many other
examples by considering the integers mod a prime, for example (See Problem 34 on Page
211 for example.) or any of the fields which occur as field extensions in the above.

There is a very interesting thing about F [a1 · · · an] in the case where F is infinite which
says that there exists a single algebraic γ such that F [a1 · · · an] = F [γ]. In other words,
every field extension of this sort is a simple field extension. I found this fact in an early
version of [5].

Proposition 7.3.33 There exists γ such that F [a1 · · · an] = F [γ].

Proof: To begin with, consider F [α, β]. Let γ = α+ λβ. Then by Proposition 7.3.31 γ
is an algebraic number and it is also clear

F [γ] ⊆ F [α, β]

I need to show the other inclusion. This will be done for a suitable choice of λ. To do this,
it suffices to verify that both α and β are in F [γ].

Let the minimal polynomials of α and β be f (x) and g (x) respectively. Let the distinct
roots of f (x) and g (x) be {α1, α2, · · · , αn} and {β1, β2, · · · , βm} respectively. These roots
are in a field which contains splitting fields of both f (x) and g (x). Let α = α1 and β = β1.
Now define

h (x) ≡ f (α+ λβ − λx) ≡ f (γ − λx)

so that h (β) = f (α) = 0. It follows (x− β) divides both h (x) and g (x). If (x− η) is a
different linear factor of both g (x) and h (x) then it must be

(
x− βj

)
for some βj for some

j > 1 because these are the only factors of g (x) . Therefore, this would require

0 = h
(
βj

)
= f

(
α1 + λβ1 − λβj

)
and so it would be the case that α1 + λβ1 − λβj = αk for some k. Hence

λ =
αk − α1

β1 − βj

Now there are finitely many quotients of the above form and if λ is chosen to not be any of
them, then the above cannot happen and so in this case, the only linear factor of both g (x)
and h (x) will be (x− β). Choose such a λ.

Let ϕ (x) be the minimal polynomial of β with respect to the field F [γ]. Then this
minimal polynomial must divide both h (x) and g (x) because h (β) = g (β) = 0. However,
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the only factor these two have in common is x − β and so ϕ (x) = x − β which requires
β ∈ F [γ] . Now also α = γ − λβ and so α ∈ F [γ] also. Therefore, both α, β ∈ F [γ] which
forces F [α, β] ⊆ F [γ] . This proves the proposition in the case that n = 2. The general result
follows right away by observing that

F [a1 · · · an] = F [a1 · · · an−1] [an]

and using induction. ■
When you have a field F, F (a) denotes the smallest field which contains both F and a.

When a is algebraic over F, it follows that F (a) = F [a] . The latter is easier to think about
because it just involves polynomials.

7.3.4 The Lindemannn Weierstrass Theorem and Vector Spaces

As another application of the abstract concept of vector spaces, there is an amazing theorem
due to Weierstrass and Lindemannn.

Theorem 7.3.34 Suppose a1, · · · , an are algebraic numbers, roots of a polynomial with
rational coefficients, and suppose α1, · · · , αn are distinct algebraic numbers. Then

n∑
i=1

aie
αi ̸= 0

In other words, the {eα1 , · · · , eαn} are independent as vectors with field of scalars equal to
the algebraic numbers.

For a proof, you can see my book ”Linear Algebra and Analysis”.
A number is transcendental, as opposed to algebraic, if it is not a root of a polynomial

which has integer (rational) coefficients. Most numbers are this way but it is hard to verify
that specific numbers are transcendental. That π is transcendental follows from

e0 + eiπ = 0.

By the above theorem, this could not happen if π were algebraic because then iπ would also
be algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being
a root of x2 + 1. This fact about π was first proved by Lindemannn in 1882 and then the
general theorem above was proved by Weierstrass in 1885. This fact that π is transcendental
solved an old problem called squaring the circle which was to construct a square with the
same area as a circle using a straight edge and compass. It can be shown that the fact π is
transcendental implies this problem is impossible.1

7.4 Exercises

1. Let H denote span


 1

2

0

 ,

 1

4

0

 ,

 1

3

1

 ,

 0

1

1


 . Find the dimension of H

and determine a basis.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

1Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess
Ida which opened in 1884 he has the following lines. “As for fashion they forswear it, so the say - so they
say; and the circle - they will square it some fine day some fine day.” Of course it had been proved impossible
to do this a couple of years before.



7.4. EXERCISES 209

3. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

4. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

5. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.

6. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

7. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

9. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .

10. Consider the vectors of the form
 2t+ 3s

s− t

t+ s

 : s, t ∈ R

 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

11. Consider the vectors of the form


2t+ 3s+ u

s− t

t+ s

u

 : s, t, u ∈ R

 .

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

12. Consider the vectors of the form


2t+ u+ 1

t+ 3u

t+ s+ v

u

 : s, t, u, v ∈ R

 .

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

13. Let V denote the set of functions defined on [0, 1]. Vector addition is defined as
(f + g) (x) ≡ f (x) + g (x) and scalar multiplication is defined as (αf) (x) ≡ α (f (x)).
Verify V is a vector space. What is its dimension, finite or infinite? Justify your
answer.
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14. Let V denote the set of polynomial functions defined on [0, 1]. Vector addition is
defined as (f + g) (x) ≡ f (x)+g (x) and scalar multiplication is defined as (αf) (x) ≡
α (f (x)). Verify V is a vector space. What is its dimension, finite or infinite? Justify
your answer.

15. Let V be the set of polynomials defined on R having degree no more than 4. Give a
basis for this vector space.

16. Let the vectors be of the form a + b
√
2 where a, b are rational numbers and let the

field of scalars be F = Q, the rational numbers. Show directly this is a vector space.
What is its dimension? What is a basis for this vector space?

17. Let V be a vector space with field of scalars F and suppose {v1, · · · ,vn} is a basis for
V . Now let W also be a vector space with field of scalars F. Let L : {v1, · · · ,vn} →
W be a function such that Lvj = wj . Explain how L can be extended to a linear
transformation mapping V to W in a unique way.

18. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

19. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

20. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

21. Suppose V and W both have dimension equal to 7 and they are subspaces of a vector
space of dimension 10. What are the possibilities for the dimension of V ∩W? Hint:
Remember that a linear independent set can be extended to form a basis.

22. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max (p, q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.

23. If b ̸= 0, can the solution set of Ax = b be a plane through the origin? Explain.

24. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

25. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
is a pivot column. Could the system of linear equations be consistent? Explain.

26. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

27. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

28. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.
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(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

29. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

30. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
that this would require the column rank to be less than n.

31. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

32. If you have not done this already, here it is again. It is a very important result of
Sylvester. Even if you have done it, a review is a good idea. Suppose A is an m × n
matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so

Bx =
∑k

i=1Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

33. Recall that every positive integer can be factored into a product of primes in a unique
way. Show there must be infinitely many primes. Hint: Show that if you have any
finite set of primes and you multiply them and then add 1, the result cannot be
divisible by any of the primes in your finite set. This idea in the hint is due to Euclid
who lived about 300 B.C.

34. There are lots of fields. This will give an example of a finite field. Let Z denote the set
of integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }. Also let p be a prime number.
We will say that two integers, a, b are equivalent and write a ∼ b if a − b is divisible
by p. Thus they are equivalent if a − b = px for some integer x. First show that
a ∼ a. Next show that if a ∼ b then b ∼ a. Finally show that if a ∼ b and b ∼ c
then a ∼ c. For a an integer, denote by [a] the set of all integers which is equivalent
to a, the equivalence class of a. Show first that is suffices to consider only [a] for
a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] ̸= [b]. That is, [a] = [r] where
r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes. Hint:
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Recall the Euclidean algorithm. For a > 0, a = mp+ r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then
[a] + [b] = [a′] + [b′] with a similar conclusion holding for multiplication. Thus for
addition you need to verify [a+ b] = [a′ + b′] and for multiplication you need to verify
[ab] = [a′b′]. For example, if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]?
Is [2 + 3] = [8 + 7]? Clearly so in this example because when you subtract, the result
is divisible by 5. So why is this so in general? Now verify that {[0] , [1] , · · · , [p− 1]}
with these operations is a Field. This is called the integers modulo a prime and is
written Zp. Since there are infinitely many primes p, it follows there are infinitely
many of these finite fields. Hint: Most of the axioms are easy once you have shown
the operations are well defined. The only two which are tricky are the ones which
give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that
1 = px+ky and so 1−ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the
argument. What is the multiplicative identity in this collection of equivalence classes?
Of course you could now consider field extensions based on these fields.

35. Suppose the field of scalars is Z2 described above. Show that(
0 1

0 0

)(
0 0

1 0

)
−

(
0 0

1 0

)(
0 1

0 0

)
=

(
1 0

0 1

)

Thus the identity is a comutator. Compare this with Problem 50 on Page 185.

36. Suppose V is a vector space with field of scalars F. Let T ∈ L (V,W ) , the space of
linear transformations mapping V onto W where W is another vector space. Define
an equivalence relation on V as follows. v ∼ w means v −w ∈ ker (T ) . Recall that
ker (T ) ≡ {v : Tv = 0}. Show this is an equivalence relation. Now for [v] an equiv-
alence class define T ′ [v] ≡ Tv. Show this is well defined. Also show that with the
operations

[v] + [w] ≡ [v +w]

α [v] ≡ [αv]

this set of equivalence classes, denoted by V/ ker (T ) is a vector space. Show next that
T ′ : V/ ker (T ) →W is one to one, linear, and onto. This new vector space, V/ ker (T )
is called a quotient space. Show its dimension equals the difference between the
dimension of V and the dimension of ker (T ).

37. Let V be an n dimensional vector space and let W be a subspace. Generalize the
above problem to define and give properties of V/W . What is its dimension? What
is a basis?

38. If F and G are two fields and F ⊆ G, can you consider G as a vector space with field
of scalars F? Explain.

39. Let A denote the real roots of polynomials in Q [x] . Show A can be considered a
vector space with field of scalars Q. What is the dimension of this vector space, finite
or infinite?



7.4. EXERCISES 213

40. As mentioned, for distinct algebraic numbers αi, the complex numbers {eαi}ni=1 are
linearly independent over the field of scalars A where A denotes the algebraic numbers,
those which are roots of a polynomial having integer (rational) coefficients. What is
the dimension of the vector space C with field of scalars A, finite or infinite? If the
field of scalars were C instead of A, would this change? What if the field of scalars
were R?

41. Suppose F is a countable field and let A be the algebraic numbers, those numbers in
G which are roots of a polynomial in F [x]. Show A is also countable.

42. This problem is on partial fractions. Suppose you have

R (x) =
p (x)

q1 (x) · · · qm (x)
, degree of p (x) < degree of denominator.

where the polynomials qi (x) are relatively prime and all the polynomials p (x) and
qi (x) have coefficients in a field of scalars F. Thus there exist polynomials ai (x)
having coefficients in F such that

1 =

m∑
i=1

ai (x) qi (x)

Explain why

R (x) =
p (x)

∑m
i=1 ai (x) qi (x)

q1 (x) · · · qm (x)
=

m∑
i=1

ai (x) p (x)∏
j ̸=i qj (x)

Now continue doing this on each term in the above sum till finally you obtain an
expression of the form

m∑
i=1

bi (x)

qi (x)

Using the Euclidean algorithm for polynomials, explain why the above is of the form

M (x) +

m∑
i=1

ri (x)

qi (x)

where the degree of each ri (x) is less than the degree of qi (x) and M (x) is a poly-
nomial. Now argue that M (x) = 0. From this explain why the usual partial fractions
expansion of calculus must be true. You can use the fact that every polynomial having
real coefficients factors into a product of irreducible quadratic polynomials and linear
polynomials having real coefficients. This follows from the fundamental theorem of
algebra in the appendix.

43. Suppose {f1, · · · , fn} is an independent set of smooth functions defined on some inter-
val (a, b). Now let A be an invertible n×n matrix. Define new functions {g1, · · · , gn}
as follows. 

g1
...

gn

 = A


f1
...

fn


Is it the case that {g1, · · · , gn} is also independent? Explain why.

44. A number is transcendental if it is not the root of any nonzero polynomial with rational
coefficients. As mentioned, there are many known transcendental numbers. Suppose
α is a real transcendental number. Show that

{
1, α, α2, · · ·

}
is a linearly independent

set of real numbers if the field of scalars is the rational numbers.
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Chapter 8

Linear Transformations

8.1 Matrix Multiplication as a Linear Transformation

Definition 8.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and written L ∈ L (V,W ) if for all
scalars α and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡


v1
...

vn

 ∈ Fn.

8.2 L (V,W ) as a Vector Space

Definition 8.2.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by
L+M according to the rule1

(L+M) v ≡ Lv +Mv.

For α a scalar and L ∈ L (V,W ) , define αL ∈ L (V,W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

Lemma 8.2.2 Let V and W be vector spaces and suppose {v1, · · · , vn} is a basis for V.
Then if L : V →W is given by Lvk = wk ∈W and

L

(
n∑

k=1

akvk

)
≡

n∑
k=1

akLvk =

n∑
k=1

akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk =Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · , vn} is a basis, there is exactly one
way to write a given vector of V as a linear combination. Next, observe that L is obviously
linear from the definition. If L,M are equal on the basis, then if

∑n
k=1 akvk is an arbitrary

vector of V,

L

(
n∑

k=1

akvk

)
=

n∑
k=1

akLvk =

n∑
k=1

akMvk =M

(
n∑

k=1

akvk

)
1Note that this is the standard way of defining the sum of two functions.

215
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and so L =M because they give the same result for every vector in V . ■
The message is that when you define a linear transformation, it suffices to tell what it

does to a basis.

Theorem 8.2.3 Let V and W be finite dimensional linear spaces of dimension n and m
respectively Then dim (L (V,W )) = mn.

Proof: Let two sets of bases be

{v1, · · · , vn} and {w1, · · · , wm}

for V and W respectively. Using Lemma 8.2.2, let wivj ∈ L (V,W ) be the linear transfor-
mation defined on the basis, {v1, · · · , vn}, by

wivk (vj) ≡ wiδjk

where δik = 1 if i = k and 0 if i ̸= k. I will show that L ∈ L (V,W ) is a linear combination
of these special linear transformations called dyadics.

Then let L ∈ L (V,W ). Since {w1, · · · , wm} is a basis, there exist constants, djk such
that

Lvr =

m∑
j=1

djrwj

Now consider the following sum of dyadics.

m∑
j=1

n∑
i=1

djiwjvi

Apply this to vr. This yields

m∑
j=1

n∑
i=1

djiwjvi (vr) =

m∑
j=1

n∑
i=1

djiwjδir =

m∑
j=1

djrwi = Lvr

Therefore, L =
∑m

j=1

∑n
i=1 djiwjvi showing the span of the dyadics is all of L (V,W ) .

Now consider whether these dyadics form a linearly independent set. Suppose∑
i,k

dikwivk = 0.

Are all the scalars dik equal to 0?

0 =
∑
i,k

dikwivk (vl) =

m∑
i=1

dilwi

and so, since {w1, · · · , wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary,
this shows dil = 0 for all i and l. Thus these linear transformations form a basis and this
shows that the dimension of L (V,W ) is mn as claimed because there are m choices for the
wi and n choices for the vj . ■
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8.3 The Matrix of a Linear Transformation

Definition 8.3.1 In Theorem 8.2.3, the matrix of the linear transformation L ∈ L (V,W )
with respect to the ordered bases β ≡ {v1, · · · , vn} for V and γ ≡ {w1, · · · , wm} for W is
defined to be [L] where [L]ij = dij . Thus this matrix is defined by L =

∑
i,j [L]ij wivi. When

it is desired to feature the bases β, γ, this matrix will be denoted as [L]γβ . When there is
only one basis β, this is denoted as [L]β.

If V is an n dimensional vector space and β = {v1, · · · , vn} is a basis for V, there exists
a linear map

qβ : Fn → V

defined as

qβ (a) ≡
n∑

i=1

aivi

where

a =


a1
...

an

 =

n∑
i=1

aiei,

for ei the standard basis vectors for Fn consisting of
(

0 · · · 1 · · · 0
)T

. Thus the 1

is in the ith position and the other entries are 0. Conversely, if q : Fn → V is one to one,
onto, and linear, it must be of the form just described. Just let vi ≡ q (ei).

It is clear that q defined in this way, is one to one, onto, and linear. For v ∈ V, q−1
β (v)

is a vector in Fn called the component vector of v with respect to the basis {v1, · · · , vn}.

Proposition 8.3.2 The matrix of a linear transformation with respect to ordered bases β, γ
as described above is characterized by the requirement that multiplication of the components
of v by [L]γβ gives the components of Lv.

Proof: This happens because by definition, if v =
∑

i xivi, then

Lv =
∑
i

xiLvi ≡
∑
i

∑
j

[L]ji xiwj =
∑
j

∑
i

[L]ji xiwj

and so the jth component of Lv is
∑

i [L]ji xi, the j
th component of the matrix times the

component vector of v. Could there be some other matrix which will do this? No, because if
such a matrix is M, then for any x , it follows from what was just shown that [L]x =Mx.
Hence [L] =M . ■

The above proposition shows that the following diagram determines the matrix of a
linear transformation. Here qβ and qγ are the maps defined above with reference to the
ordered bases, {v1, · · · , vn} and {w1, · · · , wm} respectively.

L

β = {v1, · · · , vn} V → W {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ
Fn → Fm

[L]γβ

(8.1)
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In terms of this diagram, the matrix [L]γβ is the matrix chosen to make the diagram
“commute”. It may help to write the description of [L]γβ in the form(

Lv1 · · · Lvn

)
=
(
w1 · · · wm

)
[L]γβ (8.2)

with the understanding that you do the multiplications in a formal manner just as you
would if everything were numbers. If this helps, use it. If it does not help, ignore it.

Example 8.3.3 Let
V ≡ { polynomials of degree 3 or less},

W ≡ { polynomials of degree 2 or less},

and L ≡ D where D is the differentiation operator. A basis for V is β =
{
1, x, x2, x3

}
and

a basis for W is γ = {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using 8.2,(
0 1 2x 3x2

)
=
(

1 x x2
)
[D]γβ .

It follows from this that the first column of [D]γβ is 0

0

0


The next three columns of [D]γβ are 1

0

0

 ,

 0

2

0

 ,

 0

0

3


and so

[D]γβ =

 0 1 0 0

0 0 2 0

0 0 0 3

 .

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above.

β = {e1, · · · , en} , γ = {e1, · · · , em}

Let L be a linear transformation from Fn to Fm and let A be the matrix of the transformation
with respect to these bases. In this case the coordinate maps qβ and qγ are simply the
identity maps on Fn and Fm respectively, and can be accomplished by simply multiplying
by the appropriate sized identity matrix. The requirement that A is the matrix of the
transformation amounts to

Lb = Ab

What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
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which illustrates the situation.
Fn A2−→ Fm

qβ2
↓ ◦ qγ2

↓
V L−→ W

qβ1
↑ ◦ qγ1

↑
Fn A1−→ Fm

In this diagram qβi
and qγi

are coordinate maps as described above. From the diagram,

q−1
γ1
qγ2

A2q
−1
β2
qβ1

= A1,

where q−1
β2
qβ1

and q−1
γ1
qγ2

are one to one, onto, and linear maps which may be accomplished
by multiplication by a square matrix. Thus there exist matrices P,Q such that P : Fn → Fn

and Q : Fm → Fm are invertible and

PA2Q = A1.

Example 8.3.4 Let β ≡ {v1, · · · ,vn} and γ ≡ {w1, · · · ,wn} be two bases for V . Let L
be the linear transformation which maps vi to wi. Find [L]γβ . In case V = Fn and letting
δ = {e1, · · · , en} , the usual basis for Fn, find [L]δ.

Letting δij be the symbol which equals 1 if i = j and 0 if i ̸= j, it follows that L =∑
i,j δijwivj and so [L]γβ = I the identity matrix. For the second part, you must have(

w1 · · · wn

)
=
(

v1 · · · vn

)
[L]δ

and so

[L]δ =
(

v1 · · · vn

)−1 (
w1 · · · wn

)
where

(
w1 · · · wn

)
is the n× n matrix having ith column equal to wi.

Definition 8.3.5 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
β1
qβ2

A2q
−1
β2
qβ1

= A1.

Letting S be the matrix of the linear transformation q−1
β2
qβ1

with respect to the standard basis
vectors in Fn,

S−1A2S = A1. (8.3)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.

Recall the following.

Definition 8.3.6 Let S be a set. The symbol ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)
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Definition 8.3.7 [x] denotes the set of all elements of S which are equivalent to x and [x]
is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 8.3.8 Let ∼ be an equivalence class defined on a set S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x ∼ y
and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Theorem 8.3.9 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈ L (V, V ) and bases {v1, · · · , vn} and {w1, · · · , wn} such that
A is the matrix of L with respect to {v1, · · · , vn} and B is the matrix of L with respect to
{w1, · · · , wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies B = SAS−1. If A ∼ B and B ∼ C, then

A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)

−1
CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B so A = S−1BS and pick a basis for

V,
β ≡ {v1, · · · , vn}.

Define L ∈ L (V, V ) by

Lvi ≡
∑
j

ajivj

where A = (aij) . Thus A is the matrix of the linear transformation L. Consider the diagram

Fn B−→ Fn

qγ ↓ ◦ qγ ↓
V L−→ V

qβ ↑ ◦ qβ ↑
Fn A−→ Fn

where qγ is chosen to make the diagram commute. Thus we need S = q−1
γ qβ which requires

qγ = qβS
−1
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Then it follows that B is the matrix of L with respect to the basis

{qγe1, · · · , qγen} ≡ {w1, · · · , wn}.

That is, A and B are matrices of the same linear transformation L. Conversely, sup-
pose whenever V is an n dimensional vector space, there exists L ∈ L (V, V ) and bases
{v1, · · · , vn} and {w1, · · · , wn} such that A is the matrix of L with respect to {v1, · · · , vn}
and B is the matrix of L with respect to {w1, · · · , wn}. Then it was shown above that
A ∼ B. ■

What if the linear transformation consists of multiplication by a matrix A and you want
to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The next proposition considers this.

Proposition 8.3.10 Let A be an m×n matrix and let L be the linear transformation which
is defined by

L

(
n∑

k=1

xkek

)
≡

n∑
k=1

(Aek)xk ≡
m∑
i=1

n∑
k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. (A is the matrix of L
with respect to the standard basis.) Then the matrix M of this linear transformation with
respect to the bases β = {u1, · · · ,un} for Fn and γ = {w1, · · · ,wm} for Fm is given by

M =
(

w1 · · · wm

)−1

A
(

u1 · · · un

)
where

(
w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L

Fn → Fm

qβ ↑ ◦ ↑ qγ
Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qβ

(
x1 · · · xn

)T
≡

n∑
i=1

xiui.

Therefore, qβ can be considered the same as multiplication of a vector in Fn on the left by

the matrix
(

u1 · · · un

)
. Similar considerations apply to qγ . Thus it is desired to have

the following for an arbitrary x ∈ Fn.

A
(

u1 · · · un

)
x =

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. ■
In the special case where m = n and F = C or R and {u1, · · · ,un} is an orthonormal

basis and you wantM , the matrix of L with respect to this new orthonormal basis, it follows
from the above that

M =
(

u1 · · · um

)∗
A
(

u1 · · · un

)
= U∗AU

where U is a unitary matrix. Thus matrices with respect to two orthonormal bases are
unitarily similar.
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Definition 8.3.11 An n× n matrix A, is diagonalizable if there exists an invertible n× n
matrix S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries
everywhere except on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal
matrix having the λi down the main diagonal.

The following theorem is of great significance.

Theorem 8.3.12 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has
a basis of eigenvectors of A. In this case, S of Definition 8.3.11 consists of the n×n matrix
whose columns are the eigenvectors of A and D = diag (λ1, · · · , λn) .

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · · ,vn} where Avi = λivi.

Then let S denote the matrix
(

v1 · · · vn

)
and let S−1 ≡


uT
1

...

uT
n

 where

uT
i vj = δij ≡

{
1 if i = j

0 if i ̸= j
.

S−1 exists because S has rank n. Then from block multiplication,

S−1AS =


uT
1

...

uT
n

 (Av1 · · ·Avn) =


uT
1

...

uT
n

 (λ1v1 · · ·λnvn)

=


λ1 0 · · · 0

0 λ2 0 · · ·
...

. . .
. . .

. . .

0 · · · 0 λn

 = D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · · , λn) . Then the columns
of S form a basis because S−1 is given to exist. It only remains to verify that these

columns of S are eigenvectors. But letting S =
(

v1 · · · vn

)
, AS = SD and so(

Av1 · · · Avn

)
=
(
λ1v1 · · · λnvn

)
which shows that Avi = λivi. ■

It makes sense to speak of the determinant of a linear transformation as described in the
following corollary.

Corollary 8.3.13 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A be
the matrix of this linear transformation with respect to a basis on V. Then it is possible to
define

det (L) ≡ det (A) .

Proof: Each choice of basis for V determines a matrix for L with respect to the basis.
If A and B are two such matrices, it follows from Theorem 8.3.9 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .
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But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)
and so

det (A) = det (B) ■

Definition 8.3.14 Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces.
Define rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix
of A.

Theorem 8.3.15 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix of
A taken with respect to a pair of bases for the vector spaces X, and Y.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

β = {v1, · · · , vn} X A−→ Y {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ
Fn M−→ Fm

Let {Ax1, · · · , Axr} be a basis for AX. Thus{
qγMq−1

β x1, · · · , qγMq−1
β xr

}
is a basis for AX. It follows that {

Mq−1
X x1, · · · ,Mq−1

X xr
}

is linearly independent and so rank (A) ≤ rank (M) . However, one could interchange the
roles of M and A in the above argument and thereby turn the inequality around. ■

The following result is a summary of many concepts.

Theorem 8.3.16 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then the
following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.

4. det (L) ̸= 0

5. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let β = {vi}ni=1 be a basis. Then if
∑n

i=1 ciLvi =
0 it follows L (

∑n
i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must

be the case that
∑n

i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a
linearly independent set. Since there are n of these, it must be that this is a basis.

Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that
there are constants, {ci} such that y =

∑n
i=1 ciLvi = L (

∑n
i=1 civi) . Thus L is onto. It has

been shown that 2.) implies 3.).
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Now suppose 3.). Then the operation consisting of multiplication by the matrix of L, [L],
must be onto. However, the vectors in Fn so obtained, consist of linear combinations of the
columns of [L] . Therefore, the column rank of [L] is n. By Theorem 3.3.23 this equals the
determinant rank and so det ([L]) ≡ det (L) ̸= 0.

Now assume 4.) If Lv = 0 for some v ̸= 0, it follows that [L]x = 0 for some x ̸= 0.
Therefore, the columns of [L] are linearly dependent and so by Theorem 3.3.23, det ([L]) =
det (L) = 0 contrary to 4.). Therefore, 4.) implies 5.).

Now suppose 5.) and suppose Lv = Lw. Then L (v − w) = 0 and so by 5.), v − w = 0
showing that L is one to one. ■

Also it is important to note that composition of linear transformations corresponds to
multiplication of the matrices. Consider the following diagram in which [A]γβ denotes the
matrix of A relative to the bases γ on Y and β on X, [B]δγ defined similarly.

X A−→ Y B−→ Z

qβ ↑ ◦ ↑ qγ ◦ ↑ qδ
Fn [A]γβ−−−→

Fm [B]δγ−−−→
Fp

where A and B are two linear transformations, A ∈ L (X,Y ) and B ∈ L (Y,Z) . Then
B ◦ A ∈ L (X,Z) and so it has a matrix with respect to bases given on X and Z, the
coordinate maps for these bases being qβ and qδ respectively. Then

B ◦A = qδ [B]δγ q
−1
γ qγ [A]γβ q

−1
β = qδ [B]δγ [A]γβ q

−1
β .

But this shows that [B]δγ [A]γβ plays the role of [B ◦A]δβ , the matrix of B ◦A. Hence the
matrix of B ◦ A equals the product of the two matrices [A]γβ and [B]δγ . Of course it is
interesting to note that although [B ◦A]δβ must be unique, the matrices, [A]γβ and [B]δγ
are not unique because they depend on γ, the basis chosen for Y .

Theorem 8.3.17 The matrix of the composition of linear transformations equals the prod-
uct of the matrices of these linear transformations.

8.3.1 Rotations About a Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given
unit vector which is possibly not one of the unit vectors in coordinate directions. First
consider a pair of perpendicular unit vectors, u1 and u2 and the problem of rotating in the
counterclockwise direction about u3 where u3 = u1 × u2 so that u1,u2,u3 forms a right
handed orthogonal coordinate system. Thus the vector u3 is coming out of the page.

θ
θ

u1

u2

Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.
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Thus in terms of the basis γ ≡ {u1,u2,u3} , the matrix of this transformation is

[T ]γ ≡

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

I want to obtain the matrix of the transformation in terms of the usual basis β ≡ {e1, e2, e3}
because it is in terms of this basis that we usually deal with vectors. From Proposition 8.3.10,
if [T ]β is this matrix,  cos θ − sin θ 0

sin θ cos θ 0

0 0 1


=

(
u1 u2 u3

)−1

[T ]β

(
u1 u2 u3

)
and so you can solve for [T ]β if you know the ui.

Recall why this is so.

R3 [T ]γ−−→
R3

qγ ↓ ◦ qγ ↓
R3 T−−→ R3

I ↑ ◦ I ↑
R3 [T ]β−−→

R3

The map qγ is accomplished by a multiplication on the left by
(

u1 u2 u3

)
. Thus

[T ]β = qγ [T ]γ q
−1
γ =

(
u1 u2 u3

)
[T ]γ

(
u1 u2 u3

)−1

.

Suppose the unit vector u3 about which the counterclockwise rotation takes place is
(a, b, c). Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthonor-
mal system with u3 = (a, b, c) and then use the above result. It is of course somewhat
arbitrary how this is accomplished. I will assume however, that |c| ≠ 1 since otherwise you
are looking at either clockwise or counter clockwise rotation about the positive z axis and
this is a problem which has been dealt with earlier. (If c = −1, it amounts to clockwise
rotation about the positive z axis while if c = 1, it is counter clockwise rotation about the
positive z axis.)

Then let u3 = (a, b, c) and u2 ≡ 1√
a2+b2

(b,−a, 0) . This one is perpendicular to u3. If

{u1,u2,u3} is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

(
−ac,−bc, a2 + b2

)
Now recall that u3 is a unit vector and so the above equals

1√
(a2 + b2)

(
−ac,−bc, a2 + b2

)
Then from the above, A is given by

−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c


 cos θ − sin θ 0

sin θ cos θ 0

0 0 1




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c


−1
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Of course the matrix is an orthogonal matrix so it is easy to take the inverse by simply
taking the transpose. Then doing the computation and then some simplification yields

=

 a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ

 . (8.4)

With this, it is clear how to rotate clockwise about the unit vector, (a, b, c) . Just rotate
counter clockwise through an angle of −θ. Thus the matrix for this clockwise rotation is just

=

 a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ

 .

In deriving 8.4 it was assumed that c ̸= ±1 but even in this case, it gives the correct
answer. Suppose for example that c = 1 so you are rotating in the counter clockwise
direction about the positive z axis. Then a, b are both equal to zero and 8.4 reduces to 2.24.

8.3.2 The Euler Angles

An important application of the above theory is to the Euler angles, important in the
mechanics of rotating bodies. Lagrange studied these things back in the 1700’s. To describe
the Euler angles consider the following picture in which x1, x2 and x3 are the usual coordinate
axes fixed in space and the axes labeled with a superscript denote other coordinate axes.
Here is the picture.

ϕ

ϕ

x3 = x13

x1
x11

x2

x12

θ

θ

x13
x23

x11 = x21

x12

x22

ψ

ψ

x23 = x33

x21
x31

x22

x32

We obtain ϕ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix  cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 ≡M1 (ϕ)

Next rotate counter clockwise about the x11 axis which results from the first rotation through
an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
unit vector  cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 1

0

0

 =

 cosϕ

sinϕ

0

 .
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Therefore, in 8.4, a = cosϕ, b = sinϕ, and c = 0. It follows the matrix of this transformation
with respect to the usual basis is cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ

cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ

 ≡M2 (ϕ, θ)

Finally, we rotate counter clockwise about the positive x23 axis by ψ. The vector in the
positive x13 axis is the same as the vector in the fixed x3 axis. Thus the unit vector in the
positive direction of the x23 axis is cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ

cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ


 1

0

0


=

 cos2 ϕ+ sin2 ϕ cos θ

cosϕ sinϕ (1− cos θ)

− sinϕ sin θ

 =

 cos2 ϕ+ sin2 ϕ cos θ

cosϕ sinϕ (1− cos θ)

− sinϕ sin θ


and it is desired to rotate counter clockwise through an angle of ψ about this vector. Thus,
in this case,

a = cos2 ϕ+ sin2 ϕ cos θ, b = cosϕ sinϕ (1− cos θ) , c = − sinϕ sin θ.

and you could substitute in to the formula of Theorem 8.4 and obtain a matrix which rep-
resents the linear transformation obtained by rotating counter clockwise about the positive
x23 axis, M3 (ϕ, θ, ψ) . Then what would be the matrix with respect to the usual basis for the
linear transformation which is obtained as a composition of the three just described? By
Theorem 8.3.17, this matrix equals the product of these three,

M3 (ϕ, θ, ψ)M2 (ϕ, θ)M1 (ϕ) .

I leave the details to you. There are procedures due to Lagrange which will allow you to
write differential equations for the Euler angles in a rotating body. To give an idea how
these angles apply, consider the following picture.
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x1

x2

x3

ψ

x3(t)

ϕ

line of nodes

θ

This is as far as I will go on this topic. The point is, it is possible to give a systematic
description in terms of matrix multiplication of a very elaborate geometrical description of
a composition of linear transformations. You see from the picture it is possible to describe
the motion of the spinning top shown in terms of these Euler angles.

8.4 Eigenvalues and Eigenvectors of Linear Transfor-
mations

Let V be a finite dimensional vector space. For example, it could be a subspace of Cnor Rn.
Also suppose A ∈ L (V, V ) .

Definition 8.4.1 The characteristic polynomial of A is defined as q (λ) ≡ det (λI −A) .
The zeros of q (λ) in F are called the eigenvalues of A.

Lemma 8.4.2 When λ is an eigenvalue of A which is also in F, the field of scalars, then
there exists v ̸= 0 such that Av = λv.

Proof: This follows from Theorem 8.3.16. Since λ ∈ F,

λI −A ∈ L (V, V )

and since it has zero determinant, it is not one to one. ■
The following lemma gives the existence of something called the minimal polynomial.

Lemma 8.4.3 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with arbitrary field of scalars. Then there exists a unique polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0
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such that p (A) = 0 and m is as small as possible for this to occur.

Proof: Consider the linear transformations, I, A,A2, · · · , An2

. There are n2+1 of these
transformations and so by Theorem 8.2.3 the set is linearly dependent. Thus there exist
constants, ci ∈ F such that

c0I +

n2∑
k=1

ckA
k = 0.

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,

one example is q (λ) ≡ c0 +
∑n2

k=1 ckλ
k. Dividing by the leading term, it can be assumed

this polynomial is of the form λm + cm−1λ
m−1 + · · ·+ c1λ+ c0, a monic polynomial. Now

consider all such monic polynomials, q such that q (A) = 0 and pick the one which has the
smallest degree m. This is called the minimal polynomial and will be denoted here by p (λ) .
If there were two minimal polynomials, the one just found and another,

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0.

Then subtracting these would give the following polynomial,

q̃ (λ) = (dm−1 − cm−1)λ
m−1 + · · ·+ (d1 − c1)λ+ d0 − c0

Since q̃ (A) = 0, this requires each dk = ck since otherwise you could divide by dk−ck where
k is the largest one which is nonzero. Thus the choice of m would be contradicted. ■

Theorem 8.4.4 Let V be a nonzero finite dimensional vector space of dimension n with
the field of scalars equal to F. Suppose A ∈ L (V, V ) and for p (λ) the minimal polynomial
defined above, let µ ∈ F be a zero of this polynomial. Then there exists v ̸= 0,v ∈ V such
that

Av = µv.

If F = C, then A always has an eigenvector and eigenvalue. Furthermore, if {λ1, · · · , λm}
are the zeros of p (λ) in F, these are exactly the eigenvalues of A for which there exists an
eigenvector in V.

Proof: Suppose first µ is a zero of p (λ) . Since p (µ) = 0, it follows

p (λ) = (λ− µ) k (λ)

where k (λ) is a polynomial having coefficients in F. Since p has minimal degree, k (A) ̸= 0
and so there exists a vector, u ̸= 0 such that k (A)u ≡ v ̸= 0. But then

(A− µI) v = (A− µI) k (A) (u) = 0.

The next claim about the existence of an eigenvalue follows from the fundamental theo-
rem of algebra and what was just shown.

It has been shown that every zero of p (λ) is an eigenvalue which has an eigenvector in
V . Now suppose µ is an eigenvalue which has an eigenvector in V so that Av = µv for some
v ∈ V, v ̸= 0. Does it follow µ is a zero of p (λ)?

0 = p (A) v = p (µ) v

and so µ is indeed a zero of p (λ). ■
In summary, the theorem says that the eigenvalues which have eigenvectors in V are

exactly the zeros of the minimal polynomial which are in the field of scalars F.
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8.5 Exercises

1. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible?

2. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

3. Explain why Ax = 0 always has a solution whenever A is a linear transformation.

4. Review problem: Suppose det (A− λI) = 0. Show using Theorem 3.1.15 there exists
x ̸= 0 such that (A− λI)x = 0.

5. How does the minimal polynomial of an algebraic number relate to the minimal poly-
nomial of a linear transformation? Can an algebraic number be thought of as a linear
transformation? How?

6. Recall the fact from algebra that if p (λ) and q (λ) are polynomials, then there exists
l (λ) , a polynomial such that

q (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of p (λ) or else r (λ) = 0. With this in
mind, why must the minimal polynomial always divide the characteristic polynomial?
That is, why does there always exist a polynomial l (λ) such that p (λ) l (λ) = q (λ)?
Can you give conditions which imply the minimal polynomial equals the characteristic
polynomial? Go ahead and use the Cayley Hamilton theorem.

7. In the following examples, a linear transformation, T is given by specifying its action
on a basis β. Find its matrix with respect to this basis.

(a) T

(
1

2

)
= 2

(
1

2

)
+ 1

(
−1

1

)
, T

(
−1

1

)
=

(
−1

1

)

(b) T

(
0

1

)
= 2

(
0

1

)
+ 1

(
−1

1

)
, T

(
−1

1

)
=

(
0

1

)

(c) T

(
1

0

)
= 2

(
1

2

)
+ 1

(
1

0

)
, T

(
1

2

)
= 1

(
1

0

)
−

(
1

2

)

8. Let β = {u1, · · · ,un} be a basis for Fn and let T : Fn → Fn be defined as follows.

T

(
n∑

k=1

akuk

)
=

n∑
k=1

akbkuk

First show that T is a linear transformation. Next show that the matrix of T with
respect to this basis, [T ]β is 

b1
. . .

bn


Show that the above definition is equivalent to simply specifying T on the basis vectors
of β by

T (uk) = bkuk.
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9. ↑In the situation of the above problem, let γ = {e1, · · · , en} be the standard basis for
Fn where ek is the vector which has 1 in the kth entry and zeros elsewhere. Show that
[T ]γ = (

u1 · · · un

)
[T ]β

(
u1 · · · un

)−1

(8.5)

10. ↑Generalize the above problem to the situation where T is given by specifying its
action on the vectors of a basis β = {u1, · · · ,un} as follows.

Tuk =

n∑
j=1

ajkuj .

Letting A = (aij) , verify that for γ = {e1, · · · , en} , 8.5 still holds and that [T ]β = A.

11. Let P3 denote the set of real polynomials of degree no more than 3, defined on an
interval [a, b]. Show that P3 is a subspace of the vector space of all functions defined
on this interval. Show that a basis for P3 is

{
1, x, x2, x3

}
. Now let D denote the

differentiation operator which sends a function to its derivative. Show D is a linear
transformation which sends P3 to P3. Find the matrix of this linear transformation
with respect to the given basis.

12. Generalize the above problem to Pn, the space of polynomials of degree no more than
n with basis {1, x, · · · , xn} .

13. In the situation of the above problem, let the linear transformation be T = D2 + 1,
defined as Tf = f ′′ + f. Find the matrix of this linear transformation with respect to
the given basis {1, x, · · · , xn}. Write it down for n = 4.

14. In calculus, the following situation is encountered. There exists a vector valued func-
tion f :U → Rm where U is an open subset of Rn. Such a function is said to have
a derivative or to be differentiable at x ∈ U if there exists a linear transformation
T : Rn → Rm such that

lim
v→0

|f (x+ v)− f (x)− Tv|
|v|

= 0.

First show that this linear transformation, if it exists, must be unique. Next show
that for β = {e1, · · · , en} , , the standard basis, the kth column of [T ]β is

∂f

∂xk
(x) .

Actually, the result of this problem is a well kept secret. People typically don’t see
this in calculus. It is seen for the first time in advanced calculus if then.

15. Recall that A is similar to B if there exists a matrix P such that A = P−1BP. Show
that if A and B are similar, then they have the same determinant. Give an example
of two matrices which are not similar but have the same determinant.

16. Suppose A ∈ L (V,W ) where dim (V ) > dim (W ) . Show ker (A) ̸= {0}. That is, show
there exist nonzero vectors v ∈ V such that Av = 0.

17. A vector v is in the convex hull of a nonempty set S if there are finitely many vectors
of S, {v1, · · · ,vm} and nonnegative scalars {t1, · · · , tm} such that

v =

m∑
k=1

tkvk,

m∑
k=1

tk = 1.
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Such a linear combination is called a convex combination. Suppose now that S ⊆ V,
a vector space of dimension n. Show that if v =

∑m
k=1 tkvk is a vector in the convex

hull for m > n+ 1, then there exist other scalars {t′k} such that

v =

m−1∑
k=1

t′kvk.

Thus every vector in the convex hull of S can be obtained as a convex combination
of at most n + 1 points of S. This incredible result is in Rudin [24]. Hint: Consider
L : Rm → V × R defined by

L (a) ≡

(
m∑

k=1

akvk,

m∑
k=1

ak

)

Explain why ker (L) ̸= {0} . Next, letting a ∈ ker (L) \ {0} and λ ∈ R, note that
λa ∈ ker (L) . Thus for all λ ∈ R,

v =

m∑
k=1

(tk + λak)vk.

Now vary λ till some tk + λak = 0 for some ak ̸= 0.

18. For those who know about compactness, use Problem 17 to show that if S ⊆ Rn and
S is compact, then so is its convex hull.

19. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.

20. Let A be an n × n matrix of elements of F. There are two cases. In the first case,
F contains a splitting field of pA (λ) so that p (λ) factors into a product of linear
polynomials having coefficients in F. It is the second case which is of interest here
where pA (λ) does not factor into linear factors having coefficients in F. Let G be a
splitting field of pA (λ) and let qA (λ) be the minimal polynomial of A with respect
to the field G. Explain why qA (λ) must divide pA (λ). Now why must qA (λ) factor
completely into linear factors?

21. In Lemma 8.2.2 verify that L is linear.



Chapter 9

Canonical Forms

9.1 A Theorem of Sylvester, Direct Sums

The notation is defined as follows.

Definition 9.1.1 Let L ∈ L (V,W ) . Then ker (L) ≡ {v ∈ V : Lv = 0} .

Lemma 9.1.2 Whenever L ∈ L (V,W ) , ker (L) is a subspace.

Proof: If a, b are scalars and v,w are in ker (L) , then

L (av + bw) = aL (v) + bL (w) = 0 + 0 = 0 ■

Suppose now that A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all finite dimen-
sional vector spaces. Then it is interesting to consider ker (BA). The following theorem of
Sylvester is a very useful and important result.

Theorem 9.1.3 Let A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all vector spaces
over a field F. Suppose also that ker (A) and A (ker (BA)) are finite dimensional subspaces.
Then

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

Equality holds if and only if A (ker (BA)) = ker (B).

Proof: If x ∈ ker (BA) , then Ax ∈ ker (B) and so A (ker (BA)) ⊆ ker (B) . The following
picture may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A)
A

Now let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis for
A (ker (BA)) . Take any z ∈ ker (BA) . Then Az =

∑m
i=1 aiAyi and so

A

(
z −

m∑
i=1

aiyi

)
= 0

which means z −
∑m

i=1 aiyi ∈ ker (A) and so there are scalars bi such that

z −
m∑
i=1

aiyi =

n∑
j=1

bixi.

It follows span (x1, · · · , xn, y1, · · · , ym) ⊇ ker (BA) and so by the first part, (See the picture.)

dim (ker (BA)) ≤ n+m ≤ dim (ker (A)) + dim (ker (B))

Now {x1, · · · , xn, y1, · · · , ym} is linearly independent because if∑
i

aixi +
∑
j

bjyj = 0

233
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then you could do A to both sides and conclude that
∑

j bjAyj = 0 which requires that each
bj = 0. Then it follows that each ai = 0 also because it implies

∑
i aixi = 0. Thus

{x1, · · · , xn, y1, · · · , ym}

is a basis for ker (BA). Then A (ker (BA)) = ker (B) if and only if m = dim (ker (B)) if and
only if

dim (ker (BA)) = m+ n = dim (ker (B)) + dim (ker (A)) . ■

Of course this result holds for any finite product of linear transformations by induc-
tion. One way this is quite useful is in the case where you have a finite product of linear
transformations

∏l
i=1 Li all in L (V, V ) . Then

dim

(
ker

l∏
i=1

Li

)
≤

l∑
i=1

dim (kerLi) .

Definition 9.1.4 Let {Vi}ri=1 be subspaces of V. Then

r∑
i=1

Vi ≡ V1 + · · ·+ Vr

denotes all sums of the form
∑r

i=1 vi where vi ∈ Vi. If whenever

r∑
i=1

vi = 0, vi ∈ Vi, (9.1)

it follows that vi = 0 for each i, then a special notation is used to denote
∑r

i=1 Vi. This
notation is

V1 ⊕ · · · ⊕ Vr,

and it is called a direct sum of subspaces.

Now here is a useful lemma which is likely already understood.

Lemma 9.1.5 Let L ∈ L (V,W ) where V,W are n dimensional vector spaces. Then L is
one to one, if and only if L is also onto. In fact, if {v1, · · · , vn} is a basis, then so is
{Lv1, · · · , Lvn}.

Proof: Let {v1, · · · , vn} be a basis for V . Then I claim that {Lv1, · · · , Lvn} is a basis
for W . First of all, I show {Lv1, · · · , Lvn} is linearly independent. Suppose

n∑
k=1

ckLvk = 0.

Then

L

(
n∑

k=1

ckvk

)
= 0

and since L is one to one, it follows

n∑
k=1

ckvk = 0
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which implies each ck = 0. Therefore, {Lv1, · · · , Lvn} is linearly independent. If there
exists w not in the span of these vectors, then by Lemma 7.2.10, {Lv1, · · · , Lvn, w} would
be independent and this contradicts the exchange theorem, Theorem 7.2.4 because it would
be a linearly independent set having more vectors than the spanning set {v1, · · · , vn} .

Conversely, suppose L is onto. Then there exists a basis for W which is of the form
{Lv1, · · · , Lvn} . It follows that {v1, · · · , vn} is linearly independent. Hence it is a basis for
V by similar reasoning to the above. Then if Lx = 0, it follows that there are scalars ci
such that x =

∑
i civi and consequently 0 = Lx =

∑
i ciLvi. Therefore, each ci = 0 and so

x = 0 also. Thus L is one to one. ■

Lemma 9.1.6 If V = V1⊕· · ·⊕Vr and if βi =
{
vi1, · · · , vimi

}
is a basis for Vi, then a basis

for V is {β1, · · · , βr}. Thus

dim (V ) =

r∑
i=1

dim (Vi) .

Proof: Suppose
∑r

i=1

∑mi

j=1 cijv
i
j = 0. then since it is a direct sum, it follows for each i,

mi∑
j=1

cijv
i
j = 0

and now since
{
vi1, · · · , vimi

}
is a basis, each cij = 0. ■

Here is a fundamental lemma.

Lemma 9.1.7 Let Li be in L (V, V ) and suppose for i ̸= j, LiLj = LjLi and also Li is one
to one on ker (Lj) whenever i ̸= j. Then

ker

(
p∏

i=1

Li

)
= ker (L1)⊕+ · · ·+⊕ ker (Lp)

Here
∏p

i=1 Li is the product of all the linear transformations.

Proof : Note that since the operators commute, Lj : ker (Li) → ker (Li). Here is why.
If Liy = 0 so that y ∈ ker (Li) , then

LiLjy = LjLiy = Lj0 = 0

and so Lj : ker (Li) 7→ ker (Li). Next observe that it is obvious that, since the operators
commute,

p∑
i=1

ker (Lp) ⊆ ker

(
p∏

i=1

Li

)
Next, why is

∑
i ker (Lp) = ker (L1)⊕ · · · ⊕ ker (Lp)? Suppose

p∑
i=1

vi = 0, vi ∈ ker (Li) ,

but some vi ̸= 0. Then do
∏

j ̸=i Lj to both sides. Since the linear transformations commute,
this results in ∏

j ̸=i

Lj (vi) = 0
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which contradicts the assumption that these Lj are one to one on ker (Li) and the observation
that they map ker (Li) to ker (Li). Thus if∑

i

vi = 0, vi ∈ ker (Li)

then each vi = 0. It follows that

ker (L1)⊕+ · · ·+⊕ ker (Lp) ⊆ ker

(
p∏

i=1

Li

)
(*)

From Sylvester’s theorem and the observation about direct sums in Lemma 9.1.6,

p∑
i=1

dim (ker (Li)) = dim (ker (L1)⊕+ · · ·+⊕ ker (Lp))

≤ dim

(
ker

(
p∏

i=1

Li

))
≤

p∑
i=1

dim (ker (Li))

which implies all these are equal. Now in general, ifW is a subspace of V, a finite dimensional
vector space and the two have the same dimension, then W = V . This is because W has
a basis and if v is not in the span of this basis, then v adjoined to the basis of W would
be a linearly independent set so the dimension of V would then be strictly larger than the
dimension of W . It follows from * that

ker (L1)⊕+ · · ·+⊕ ker (Lp) = ker

(
p∏

i=1

Li

)
■

9.2 Direct Sums, Block Diagonal Matrices

Let V be a finite dimensional vector space with field of scalars F. Here I will make no
assumption on F. Also suppose A ∈ L (V, V ) .

Recall Lemma 8.4.3 which gives the existence of the minimal polynomial for a linear
transformation A. This is the monic polynomial p which has smallest possible degree such
that p(A) = 0. It is stated again for convenience.

Lemma 9.2.1 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with field of scalars F. Then there exists a unique monic polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0

such that p (A) = 0 and m is as small as possible for this to occur.

Now it is time to consider the notion of a direct sum of subspaces. Recall you can
always assert the existence of a factorization of the minimal polynomial into a product of
irreducible polynomials. This fact will now be used to show how to obtain such a direct
sum of subspaces.

Definition 9.2.2 For A ∈ L (V, V ) where dim (V ) = n, suppose the minimal polynomial is

p (λ) =

q∏
k=1

(ϕk(λ))
rk
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where the polynomials ϕk have coefficients in F and are irreducible. Now define the gener-
alized eigenspaces

Vk ≡ ker ((ϕk (A))
rk)

Note that if one of these polynomials (ϕk(λ))
rk is a monic linear polynomial, then the gen-

eralized eigenspace would be an eigenspace.

Theorem 9.2.3 In the context of Definition 9.2.2,

V = V1 ⊕ · · · ⊕ Vq (9.2)

and each Vk is A invariant, meaning A (Vk) ⊆ Vk. ϕl (A) is one to one on each Vk for k ̸= l.
If βi =

{
vi1, · · · , vimi

}
is a basis for Vi, then

{
β1, β2, · · · , βq

}
is a basis for V.

Proof: It is clear Vk is a subspace which is A invariant because A commutes with
ϕk (A)

mk . It is clear the operators ϕk (A)
rk commute. Thus if v ∈ Vk,

ϕk (A)
rk ϕl (A)

rl v = ϕl (A)
rl ϕk (A)

rk v = ϕl (A)
rl 0 = 0

and so ϕl (A)
rl : Vk → Vk.

I claim ϕl (A) is one to one on Vk whenever k ̸= l. The two polynomials ϕl (λ) and
ϕk (λ)

rk are relatively prime so there exist polynomials m (λ) , n (λ) such that

m (λ)ϕl (λ) + n (λ)ϕk (λ)
rk = 1

It follows that the sum of all coefficients of λ raised to a positive power are zero and the
constant term on the left is 1. Therefore, using the convention A0 = I it follows

m (A)ϕl (A) + n (A)ϕk (A)
rk = I

If v ∈ Vk, then from the above,

m (A)ϕl (A) v + n (A)ϕk (A)
rk v = v

Since v is in Vk, it follows by definition,

m (A)ϕl (A) v = v

and so ϕl (A) v ̸= 0 unless v = 0. Thus ϕl (A) and hence ϕl (A)
rl is one to one on Vk for

every k ̸= l. By Lemma 9.1.7 and the fact that ker (
∏q

k=1 ϕk (λ)
rk) = V, 9.2 is obtained.

The claim about the bases follows from Lemma 9.1.6. ■
You could consider the restriction of A to Vk. It turns out that this restriction has

minimal polynomial equal to ϕk (λ)
mk .

Corollary 9.2.4 Let the minimal polynomial of A be p (λ) =
∏q

k=1 ϕk (λ)
mk where each ϕk

is irreducible. Let Vk = ker (ϕ (A)
mk) . Then

V1 ⊕ · · · ⊕ Vq = V

and letting Ak denote the restriction of A to Vk, it follows the minimal polynomial of Ak is
ϕk (λ)

mk .

Proof: Recall the direct sum, V1 ⊕ · · · ⊕ Vq = V where Vk = ker (ϕk (A)
mk) for p (λ) =∏q

k=1 ϕk (λ)
mk the minimal polynomial for A where the ϕk (λ) are all irreducible. Thus each

Vk is invariant with respect to A. What is the minimal polynomial of Ak, the restriction of
A to Vk? First note that ϕk (Ak)

mk (Vk) = {0} by definition. Thus if η (λ) is the minimal
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polynomial for Ak then it must divide ϕk (λ)
mk and so by Corollary 7.3.11 η (λ) = ϕk (λ)

rk

where rk ≤ mk. Could rk < mk? No, this is not possible because then p (λ) would fail
to be the minimal polynomial for A. You could substitute for the term ϕk (λ)

mk in the
factorization of p (λ) with ϕk (λ)

rk and the resulting polynomial p′ would satisfy p′ (A) = 0.
Here is why. From Theorem 9.2.3, a typical x ∈ V is of the form

q∑
i=1

vi, vi ∈ Vi

Then since all the factors commute,

p′ (A)

(
q∑

i=1

vi

)
=

q∏
i ̸=k

ϕi (A)
mi ϕk (A)

rk

(
q∑

i=1

vi

)

For j ̸= k

q∏
i ̸=k

ϕi (A)
mi ϕk (A)

rk vj =

q∏
i ̸=k,j

ϕi (A)
mi ϕk (A)

rk ϕj (A)
mj vj = 0

If j = k,
q∏

i ̸=k

ϕi (A)
mi ϕk (A)

rk vk = 0

which shows p′ (λ) is a monic polynomial having smaller degree than p (λ) such that p′ (A) =
0. Thus the minimal polynomial for Ak is ϕk (λ)

mk as claimed. ■
How does Theorem 9.2.3 relate to matrices?

Theorem 9.2.5 Suppose V is a vector space with field of scalars F and A ∈ L (V, V ).
Suppose also

V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. (AVk ⊆ Vk) Also let βk be an ordered basis for Vk and let Ak

denote the restriction of A to Vk. Letting Mk denote the matrix of Ak with respect to this
basis, it follows the matrix of A with respect to the basis

{
β1, · · · , βq

}
is

M1 0
. . .

0 Mq


Proof: Let β denote the ordered basis

{
β1, · · · , βq

}
, |βk| being the number of vectors

in βk. Let qk : F|βk| → Vk be the usual map such that the following diagram commutes.

Ak

Vk → Vk

qk ↑ ◦ ↑ qk
F|βk| → F|βk|

Mk

Thus Akqk = qkM
k. Then if q is the map from Fn to V corresponding to the ordered basis

β just described,

q
(

0 · · · x · · · 0
)T

= qkx,
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where x occupies the positions between
∑k−1

i=1 |βi| + 1 and
∑k

i=1 |βi|. Then M will be the
matrix of A with respect to β if and only if a similar diagram to the above commutes.
Thus it is required that Aq = qM . However, from the description of q just made, and the
invariance of each Vk,

Aq



0
...

x
...

0


= Akqkx = qkM

kx = q



M1 0
. . .

Mk

. . .

0 Mq





0
...

x
...

0


It follows that the above block diagonal matrix is the matrix of A with respect to the given
ordered basis. ■

An examination of the proof of the above theorem yields the following corollary.

Corollary 9.2.6 If any βk in the above consists of eigenvectors, then Mk is a diagonal
matrix having the corresponding eigenvalues down the diagonal.

It follows that it would be interesting to consider special bases for the vector spaces in
the direct sum. This leads to the Jordan form or more generally other canonical forms such
as the rational canonical form.

9.3 Cyclic Sets

It was shown above that for A ∈ L (V, V ) for V a finite dimensional vector space over the
field of scalars F, there exists a direct sum decomposition

V = V1 ⊕ · · · ⊕ Vq

where
Vk = ker (ϕk (A)

mk)

and ϕk (λ) is an irreducible polynomial. Here the minimal polynomial of A was

q∏
k=1

ϕk (λ)
mk

Next I will consider the problem of finding a basis for Vk such that the matrix of A
restricted to Vk assumes various forms.

Definition 9.3.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
. This is called an A cyclic set.

The vectors which result are also called a Krylov sequence. For such a sequence of vectors,
|βx| ≡ m.

The first thing to notice is that such a Krylov sequence is always linearly independent.

Lemma 9.3.2 Let βx =
{
x,Ax,A2x, · · · , Am−1x

}
, x ̸= 0 where m is the smallest such

that Amx ∈ span
(
x, · · · , Am−1x

)
. Then

{
x,Ax,A2x, · · · , Am−1x

}
is linearly independent.
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Proof: Suppose that there are scalars ak, not all zero such that

m−1∑
k=0

akA
kx = 0

Then letting ar be the last nonzero scalar in the sum, you can divide by ar and solve for
Arx as a linear combination of the Ajx for j < r ≤ m − 1 contrary to the definition of m.
■

Now here is a nice lemma which has been pretty much discussed earlier.

Lemma 9.3.3 Suppose W is a subspace of V where V is a finite dimensional vector space
and L ∈ L (V, V ) and suppose LW = LV. Then V =W + ker (L).

Proof: Let a basis for LV = LW be {Lw1, · · · , Lwm} , wi ∈ W . Then let y ∈ V. Thus
Ly =

∑m
i=1 ciLwi and so

L


=z︷ ︸︸ ︷

y −
m∑
i=1

ciwi

 ≡ Lz = 0

It follows that z ∈ ker (L) and so y =
∑m

i=1 ciwi + z ∈W + ker (L). ■
For more on the next lemma and the following theorem, see Hofman and Kunze [15]. I

am following the presentation in Friedberg Insel and Spence [10]. See also Herstein [14] for
a different approach to canonical forms. To help organize the ideas in the lemma, here is a
diagram.

ker(ϕ(A)m)

W
v1, ..., vs

U ⊆ ker(ϕ(A))

βx1
, βx2

, ..., βxp

Lemma 9.3.4 Let W be an A invariant (AW ⊆W ) subspace of ker (ϕ (A)
m
) for m a pos-

itive integer where ϕ (λ) is an irreducible monic polynomial of degree d. Let U be an A
invariant subspace of ker (ϕ (A)) .

If {v1, · · · , vs} is a basis for W then if x ∈ U \W,

{v1, · · · , vs, βx}

is linearly independent.
There exist vectors x1, · · · , xp each in U such that{

v1, · · · , vs, βx1
, · · · , βxp

}
is a basis for

U +W.

Also, if x ∈ ker (ϕ (A)
m
) , |βx| = kd where k ≤ m. Here |βx| is the length of βx, the degree of

the monic polynomial η (λ) satisfying η (A)x = 0 with η (λ) having smallest possible degree.
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Proof: Claim: If x ∈ kerϕ (A) , and |βx| denotes the length of βx, then |βx| = d the
degree of the irreducible polynomial ϕ(λ) and so

βx =
{
x,Ax,A2x, · · · , Ad−1x

}
also span (βx) is A invariant, A (span (βx)) ⊆ span (βx).

Proof of the claim: Let m = |βx| . That is, there exists monic η (λ) of degree m and
η (A)x = 0 with m is as small as possible for this to happen. Then from the usual process of
division of polynomials, there exist l (λ) , r (λ) such that r (λ) = 0 or else has smaller degree
than that of η (λ) such that

ϕ (λ) = η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then the equation implies 0 = ϕ (A)x = r (A)x and so m was
incorrectly chosen. Hence r (λ) = 0 and so if l (λ) ̸= 1, then η (λ) divides ϕ (λ) contrary
to the assumption that ϕ (λ) is irreducible. Hence l (λ) = 1 and η (λ) = ϕ (λ) . The claim
about span (βx) is obvious because A

dx ∈ span (βx). This shows the claim.
Suppose now x ∈ U \W where U ⊆ ker (ϕ (A)). Consider

{v1, · · · , vs, βx} .

Is this set of vectors independent? Suppose

s∑
i=1

aivi +

d∑
j=1

djA
j−1x = 0.

If z ≡
∑d

j=1 djA
j−1x, then z ∈W ∩ span

(
x,Ax, · · · , Ad−1x

)
. Then also for each m ≤ d−1,

Amz ∈W ∩ span
(
x,Ax, · · · , Ad−1x

)
because W, span

(
x,Ax, · · · , Ad−1x

)
are A invariant. Therefore,

span
(
z,Az, · · · , Ad−1z

)
⊆ W ∩ span

(
x,Ax, · · · , Ad−1x

)
⊆ span

(
x,Ax, · · · , Ad−1x

)
(9.3)

Suppose z ̸= 0. Then from the Lemma 9.3.2 above,
{
z,Az, · · · , Ad−1z

}
must be linearly

independent. Therefore,

d = dim
(
span

(
z,Az, · · · , Ad−1z

))
≤ dim

(
W ∩ span

(
x,Ax, · · · , Ad−1x

))
≤ dim

(
span

(
x,Ax, · · · , Ad−1x

))
= d

Thus
W ∩ span

(
x,Ax, · · · , Ad−1x

)
= span

(
x,Ax, · · · , Ad−1x

)
which would require x ∈ W but this is assumed not to take place. Hence z = 0 and so
the linear independence of the {v1, · · · , vs} implies each ai = 0. Then the linear indepen-
dence of

{
x,Ax, · · · , Ad−1x

}
, which follows from Lemma 9.3.2, shows each dj = 0. Thus{

v1, · · · , vs, x, Ax, · · · , Ad−1x
}
is linearly independent as claimed.

Let x ∈ U \W ⊆ ker (ϕ (A)) . Then it was just shown that {v1, · · · , vs, βx} is linearly
independent. Let W1 be given by

y ∈ span (v1, · · · , vs, βx) ≡W1
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Then W1 is A invariant. If W1 equals U +W, then you are done. If not, let W1 play the
role of W and pick x1 ∈ U \W1 and repeat the argument. Continue till

span
(
v1, · · · , vs, βx1

, · · · , βxn

)
= U +W

The process stops because ker (ϕ (A)
m
) is finite dimensional.

Finally, letting x ∈ ker (ϕ (A)
m
) , there is a monic polynomial η (λ) such that η (A)x = 0

and η (λ) is of smallest possible degree, which degree equals |βx| . Then

ϕ (λ)
m

= η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then r (A)x = 0 and η (λ) was incorrectly chosen. Hence

r (λ) = 0 and so η (λ) must divide ϕ (λ)
m
. Hence by Corollary 7.3.11 η (λ) = ϕ (λ)

k
where

k ≤ m. Thus |βx| = kd = deg (η (λ)). ■
With this preparation, here is the main result about a basis V where A ∈ L (V, V ) and the

minimal polynomial for A is ϕ (A)
m

for ϕ (λ) irreducible an irreducible monic polynomial.
There is a very interesting generalization of this theorem in [15] which pertains to the
existence of complementary subspaces. For an outline of this generalization, see Problem 9
on Page 292.

Theorem 9.3.5 Suppose A ∈ L (V, V ) for V some finite dimensional vector space. Then

for each k ∈ N, there exists a cyclic basis for ker
(
ϕ (A)

k
)

which is one of the form β ={
βx1

, · · · , βxp

}
or ker

(
ϕ (A)

k
)

= {0}. Note that if ker (ϕ (A)) ̸= {0} , then the same is

true for all ker
(
ϕ (A)

k
)
, k ∈ N.

Proof: If k = 1, you can use Lemma 9.3.4 and let W = {0} and U = ker (ϕ (A))
to obtain the cyclic basis. Suppose then that the theorem is true for m − 1,m − 1 ≥ 1

meaning that for any finite dimensional vector space V and A ∈ L (V, V ) , ker
(
ϕ (A)

k
)
has

a cyclic basis for all k ≤ m − 1. Consider a new vector space ϕ (A) ker (ϕ (A)
m
) ≡ V̂ in

place of V and the restriction of A to V̂ which we will call Â. Then Â ∈ L
(
V̂ , V̂

)
. It

follows ϕ (A)
m−1

(ϕ (A) ker (ϕ (A)
m
)) = ϕ (A)

m−1
V̂ = 0 and since ϕ (λ) is irreducible, the

minimum polynomial of Â on V̂ is ϕ
(
Â
)k

for some k ≤ m − 1. Thus ker

(
ϕ
(
Â
)k)

≡{
v ∈ V̂ : ϕ

(
Â
)k
v = 0

}
. Since k ≤ m − 1 the cyclic basis in V̂ exists by induction. If

k = 0, then you would have V̂ = {0} and {0} = ϕ (A) ker (ϕ (A)
m
) ⊇ ker (ϕ (A)) so nothing

is of any interest because all of these spaces are {0}.
Let the cyclic basis for V̂ ≡ ϕ (A) ker (ϕ (A)

m
) be{

βx1
, · · · , βxp

}
,

xi ∈ ϕ (A) ker (ϕ (A)
m
) . Let xi = ϕ (A) yi, yi ∈ ker (ϕ (A)

m
). Consider

{
βy1

, · · · , βyp

}
,

yi ∈ ker (ϕ (A)
m
) . Are these vectors independent? Suppose

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1yi ≡

p∑
i=1

fi (A) yi (9.4)

If the sum involved xi in place of yi, then something could be said because
{
βx1

, · · · , βxp

}
is a basis.
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Do ϕ (A) to both sides to obtain

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1xi ≡

p∑
i=1

fi

(
Â
)
xi

Now fi

(
Â
)
xi = 0 for each i since fi

(
Â
)
xi ∈ span

(
βxi

)
and as just mentioned,{

βx1
, · · · , βxp

}
is a basis. Let ηi (λ) be the monic polynomial of smallest degree such that ηi

(
Â
)
xi = 0.

Then
fi (λ) = ηi (λ) l (λ) + r (λ)

where r (λ) = 0 or else it has smaller degree than ηi (λ) . However, the equation then

shows that r
(
Â
)
xi = 0 which would contradict the choice of ηi (λ). Thus r (λ) = 0 and

ηi (λ) divides fi (λ). Also, ϕ
(
Â
)m−1

xi = ϕ
(
Â
)m−1

ϕ (A) yi = 0 and so ηi (λ) must divide

ϕ (λ)
m−1

. From Corollary 7.3.11, it follows that, since ϕ (λ) is irreducible, ηi (λ) = ϕ (λ)
r
for

some r ≤ m− 1. Thus ϕ (λ) divides ηi (λ) which divides fi (λ). Hence fi (λ) = ϕ (λ) gi (λ)!
Now

0 =

p∑
i=1

fi (A) yi =

p∑
i=1

gi (A)ϕ (A) yi =

p∑
i=1

gi

(
Â
)
xi.

By the same reasoning just given, since gi

(
Â
)
xi ∈ span

(
βxi

)
, it follows that each

gi

(
Â
)
xi = 0.

Therefore,

fi (A) yi = gi

(
Â
)
ϕ (A) yi = gi

(
Â
)
xi = 0.

Therefore,

fi (A) yi =

∣∣∣βyj

∣∣∣∑
j=1

aijA
j−1yi = 0

and by independence of the βyi
, this implies aij = 0 for each j for each i.

Next, it follows from the definition that

ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
.

Now
W ≡ span

(
βy1

, · · · , βyp

)
⊆ ker (ϕ (A)

m
)

because each yi ∈ ker (ϕ (A)
m
). Then from the above description of

{
βx1

, · · · , βxp

}
as a

cyclic basis for ϕ (A) (ker (ϕ (A)
m
)) ,

ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)
≡ ϕ (A) (W ) ⊆ ϕ (A) ker (ϕ (A)

m
)
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To see the first inclusion,

Arxq = Arϕ (A) yq = ϕ (A)Aryq ∈ ϕ (A) span
(
βyq

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)
It follows from Lemma 9.3.3 that ker (ϕ (A)

m
) =W + ker (ϕ (A)) . From Lemma 9.3.4 W +

ker (ϕ (A)) has a basis of the form
{
βy1

, · · · , βyp
, βz1 , · · · , βzs

}
. ■

9.4 Nilpotent Transformations

Definition 9.4.1 Let V be a vector space over the field of scalars F. Then N ∈ L (V, V ) is
called nilpotent if for some m, it follows that Nm = 0.

The following lemma contains some significant observations about nilpotent transforma-
tions.

Lemma 9.4.2 Suppose Nkx ̸= 0. Then
{
x,Nx, · · · , Nkx

}
is linearly independent. Also,

the minimal polynomial of N is λm where m is the first such that Nm = 0.

Proof: Suppose
∑k

i=0 ciN
ix = 0 where not all ci = 0. There exists l such that

k ≤ l < m and N l+1x = 0 but N lx ̸= 0. Then multiply both sides by N l to conclude that
c0 = 0. Next multiply both sides by N l−1 to conclude that c1 = 0 and continue this way to
obtain that all the ci = 0.

Next consider the claim that λm is the minimal polynomial. If p (λ) is the minimal
polynomial, then by the division algorithm,

λm = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than that of p (λ) or else r (λ) = 0. The above implies
0 = 0 + r (N) contrary to p (λ) being minimal. Hence r (λ) = 0 and so p (λ) divides λm.
Hence p (λ) = λk for k ≤ m. But if k < m, this would contradict the definition of m as
being the smallest such that Nm = 0. ■

For such a nilpotent transformation, let
{
βx1

, · · · , βxq

}
be a basis for ker (Nm) = V

where these βxi
are cyclic. This basis exists thanks to Theorem 9.3.5. Note that you can

have |βx| < m because it is possible for Nkx = 0 without Nk = 0. Thus

V = span
(
βx1

)
⊕ · · · ⊕ span

(
βxq

)
,

each of these subspaces in the above direct sum being N invariant. For x one of the xk,
consider βx given by

x,Nx,N2x, · · · , Nr−1x

where Nrx is in the span of the above vectors. Then by the above lemma, Nrx = 0.
By Theorem 9.2.5, the matrix of N with respect to the above basis is the block diagonal

matrix 
M1 0

. . .

0 Mq


where Mk denotes the matrix of N restricted to span

(
βxk

)
. In computing this matrix, I

will order βxk
as follows: (

Nrk−1xk, · · · , xk
)
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Also the cyclic sets βx1
, βx2

, · · · , βxq
will be ordered according to length, the length of βxi

being at least as large as the length of βxi+1
,
∣∣βxk

∣∣ ≡ rk. Then since Nrkxk = 0, it is now

easy to find Mk. Using the procedure mentioned above for determining the matrix of a
linear transformation, (

0 Nrk−1xk · · · Nxk

)
=

(
Nrk−1xk Nrk−2xk · · · xk

)


0 1 0

0 0
. . .

...
...

. . . 1

0 0 · · · 0


Thus the matrixMk is the rk×rk matrix which has ones down the super diagonal and zeros
elsewhere. The following convenient notation will be used.

Definition 9.4.3 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =


α 1 0

0
. . .

. . .
...

. . .
. . . 1

0 · · · 0 α


In words, there is an unbroken string of ones down the super diagonal and the number α
filling every space on the main diagonal with zeros everywhere else.

Then with this definition and the above discussion, the following proposition has been
proved.

Proposition 9.4.4 Let N ∈ L (W,W ) be nilpotent,

Nm = 0

for some m ∈ N. Here W is a p dimensional vector space with field of scalars F. Then there
exists a basis for W such that the matrix of N with respect to this basis is of the form

J =


Jr1 (0) 0

Jr2 (0)
. . .

0 Jrs (0)

 (9.5)

where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = p. In the above, the Jrj (0) is called a Jordan
block of size rj × rj with 0 down the main diagonal.

Observation 9.4.5 Observe that Jr (0)
r
= 0 but Jr (0)

r−1 ̸= 0.

In fact, the matrix of the above proposition is unique.

Corollary 9.4.6 Let J, J ′ both be matrices of the nilpotent linear transformation N ∈
L (W,W ) which are of the form described in Proposition 9.4.4. Then J = J ′. In fact,
if the rank of Jk equals the rank of J ′k for all nonnegative integers k, then J = J ′.
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Proof: Since J and J ′ are similar, it follows that for each k an integer, Jk and J ′k are
similar. Hence, for each k, these matrices have the same rank. Now suppose J ̸= J ′. Note
first that

Jr (0)
r
= 0, Jr (0)

r−1 ̸= 0.

Denote the blocks of J as Jrk (0) and the blocks of J ′ as Jr′k (0). Let k be the first such that
Jrk (0) ̸= Jr′k (0). Suppose that rk > r′k. By block multiplication and the above observation,

it follows that the two matrices Jrk−1 and J ′rk−1 are respectively of the forms

Mr1 0
. . .

Mrk

∗
. . .

0 ∗


,



Mr′1
0

. . .

Mr′k

0
. . .

0 0


whereMrj =Mr′j

for j ≤ k−1 butMr′k
is a zero r′k×r′k matrix whileMrk is a larger matrix

which is not equal to 0. For example, Mrk could look like

Mrk =


0 · · · 1

. . .
...

0 0


Thus there are more pivot columns in Jrk−1 than in (J ′)

rk−1
, contradicting the requirement

that Jk and J ′k have the same rank. ■

9.5 The Jordan Canonical Form

The Jordan canonical form has to do with the case where the minimal polynomial of A ∈
L (V, V ) splits. Thus there exist λk in the field of scalars such that the minimal polynomial
of A is of the form

p (λ) =

r∏
k=1

(λ− λk)
mk

Recall the following which follows from Theorem 8.4.4.

Proposition 9.5.1 Let the minimal polynomial of A ∈ L (V, V ) be given by

p (λ) =

r∏
k=1

(λ− λk)
mk

Then the eigenvalues of A are {λ1, · · · , λr}.

It follows from Corollary 9.2.3 that

V = ker (A− λ1I)
m1 ⊕ · · · ⊕ ker (A− λrI)

mr

≡ V1 ⊕ · · · ⊕ Vr

where I denotes the identity linear transformation. Without loss of generality, let the
dimensions of the Vk be decreasing from left to right. These Vk are called the generalized
eigenspaces.
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It follows from the definition of Vk that (A− λkI) is nilpotent on Vk and clearly each
Vk is A invariant. Therefore from Proposition 9.4.4, and letting Ak denote the restriction
of A to Vk, there exists an ordered basis for Vk, βk such that with respect to this basis, the
matrix of (Ak − λkI) is of the form given in that proposition, denoted here by Jk. What is
the matrix of Ak with respect to βk? Letting {b1, · · · , br} = βk,

Akbj = (Ak − λkI) bj + λkIbj ≡
∑
s

Jk
sjbs +

∑
s

λkδsjbs =
∑
s

(
Jk
sj + λkδsj

)
bs

and so the matrix of Ak with respect to this basis is Jk+λkI where I is the identity matrix.
Therefore, with respect to the ordered basis {β1, · · · , βr} the matrix of A is in Jordan

canonical form. This means the matrix is of the form
J (λ1) 0

. . .

0 J (λr)

 (9.6)

where J (λk) is an mk ×mk matrix of the form
Jk1 (λk) 0

Jk2
(λk)

. . .

0 Jkr
(λk)

 (9.7)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk. Here Jk (λ) is a k× k Jordan block of the
form 

λ 1 0

0 λ
. . .

. . .
. . . 1

0 0 λ

 (9.8)

This proves the existence part of the following fundamental theorem.
Note that if any of the βk consists of eigenvectors, then the corresponding Jordan block

will consist of a diagonal matrix having λk down the main diagonal. This corresponds to
mk = 1. The vectors which are in ker (A− λkI)

mk which are not in ker (A− λkI) are called
generalized eigenvectors.

The following is the main result on the Jordan canonical form.

Theorem 9.5.2 Let V be an n dimensional vector space with field of scalars C or some
other field such that the minimal polynomial of A ∈ L (V, V ) completely factors into powers
of linear factors. Then there exists a unique Jordan canonical form for A as described in
9.6 - 9.8, where uniqueness is in the sense that any two have the same number and size of
Jordan blocks.

Proof: It only remains to verify uniqueness. Suppose there are two, J and J ′. Then these
are matrices of A with respect to possibly different bases and so they are similar. Therefore,
they have the same minimal polynomials and the generalized eigenspaces have the same
dimension. Thus the size of the matrices J (λk) and J ′ (λk) defined by the dimension of
these generalized eigenspaces, also corresponding to the algebraic multiplicity of λk, must
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be the same. Therefore, they comprise the same set of positive integers. Thus listing the
eigenvalues in the same order, corresponding blocks J (λk) , J

′ (λk) are the same size.
It remains to show that J (λk) and J ′ (λk) are not just the same size but also are the

same up to order of the Jordan blocks running down their respective diagonals. It is only
necessary to worry about the number and size of the Jordan blocks making up J (λk) and
J ′ (λk) . Since J, J

′ are similar, so are J − λkI and J ′ − λkI.
Thus the following two matrices are similar

A ≡



J (λ1)− λkI 0
. . .

J (λk)− λkI
. . .

0 J (λr)− λkI



B ≡



J ′ (λ1)− λkI 0
. . .

J ′ (λk)− λkI
. . .

0 J ′ (λr)− λkI


and consequently, rank

(
Ak
)
= rank

(
Bk
)
for all k ∈ N. Also, both J (λj) − λkI and

J ′ (λj)−λkI are one to one for every λj ̸= λk. Since all the blocks in both of these matrices
are one to one except the blocks J ′ (λk)−λkI, J (λk)−λkI, it follows that this requires the
two sequences of numbers {rank ((J (λk)− λkI)

m
)}∞m=1 and

{
rank

(
(J ′ (λk)− λkI)

m)}∞
m=1

must be the same.
Then

J (λk)− λkI ≡


Jk1 (0) 0

Jk2 (0)
. . .

0 Jkr
(0)


and a similar formula holds for J ′ (λk)

J ′ (λk)− λkI ≡


Jl1 (0) 0

Jl2 (0)
. . .

0 Jlp (0)


and it is required to verify that p = r and that the same blocks occur in both. Without
loss of generality, let the blocks be arranged according to size with the largest on upper left
corner falling to smallest in lower right. Now the desired conclusion follows from Corollary
9.4.6. ■

Note that if any of the generalized eigenspaces ker (A− λkI)
mk has a basis of eigen-

vectors, then it would be possible to use this basis and obtain a diagonal matrix in the
block corresponding to λk. By uniqueness, this is the block corresponding to the eigenvalue
λk. Thus when this happens, the block in the Jordan canonical form corresponding to λk
is just the diagonal matrix having λk down the diagonal and there are no generalized
eigenvectors.
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The Jordan canonical form is very significant when you try to understand powers of a
matrix. There exists an n× n matrix S1 such that

A = S−1JS.

Therefore, A2 = S−1JSS−1JS = S−1J2S and continuing this way, it follows

Ak = S−1JkS.

where J is given in the above corollary. Consider Jk. By block multiplication,

Jk =


Jk
1 0

. . .

0 Jk
r

 .

The matrix Js is an ms ×ms matrix which is of the form

Js = D +N

for D a multiple of the identity and N an upper triangular matrix with zeros down the
main diagonal. Thus Nms = 0. Now since D is just a multiple of the identity, it follows
that DN = ND. Therefore, the usual binomial theorem may be applied and this yields the
following equations for k ≥ ms.

Jk
s = (D +N)

k
=

k∑
j=0

(
k

j

)
Dk−jN j

=

ms∑
j=0

(
k

j

)
Dk−jN j , (9.9)

the third equation holding because Nms = 0. Thus Jk
s is of the form

Jk
s =


αk · · · ∗
...

. . .
...

0 · · · αk

 .

Lemma 9.5.3 Suppose J is of the form Js, a Jordan block where the constant α, on the
main diagonal is less than one in absolute value. Then

lim
k→∞

(
Jk
)
ij
= 0.

Proof: From 9.9, it follows that for large k, and j ≤ ms,(
k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
∣∣∣(N j

)
pq

∣∣∣ for 0 ≤ j ≤ ms,∣∣∣(Jk
)
pq

∣∣∣ ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

1The S here is written as S−1 in the corollary.
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which converges to zero as k → ∞. This is most easily seen by applying the ratio test to
the series

∞∑
k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero. ■

9.6 Exercises

1. In the discussion of Nilpotent transformations, it was asserted that if two n×nmatrices
A,B are similar, then Ak is also similar to Bk. Why is this so? If two matrices are
similar, why must they have the same rank?

2. If A,B are both invertible, then they are both row equivalent to the identity matrix.
Are they necessarily similar? Explain.

3. Suppose you have two nilpotent matrices A,B and Ak and Bk both have the same
rank for all k ≥ 1. Does it follow that A,B are similar? What if it is not known that
A,B are nilpotent? Does it follow then?

4. When we say a polynomial equals zero, we mean that all the coefficients equal 0. If we
assign a different meaning to it which says that a polynomial p (λ) equals zero when
it is the zero function, (p (λ) = 0 for every λ ∈ F.) does this amount to the same
thing? Is there any difference in the two definitions for ordinary fields like Q? Hint:
Consider for the field of scalars Z2, the integers mod 2 and consider p (λ) = λ2 + λ.

5. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is any nonzero polynomial such
that ϕ (A) is not one to one and ϕ (λ) has smallest possible degree such that ϕ (A) is
nonzero and not one to one. Show ϕ (λ) must divide p (λ).

6. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is an irreducible polynomial
with the property that ϕ (A)x = 0 for some specific x ̸= 0. Show that ϕ (λ) must
divide p (λ) . Hint: First write p (λ) = ϕ (λ) g (λ) + r (λ) where r (λ) is either 0 or
has degree smaller than the degree of ϕ (λ). If r (λ) = 0 you are done. Suppose it is
not 0. Let η (λ) be the monic polynomial of smallest degree with the property that
η (A)x = 0. Now use the Euclidean algorithm to divide ϕ (λ) by η (λ) . Contradict the
irreducibility of ϕ (λ) .

7. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 7.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

8. Let

A =

 1 0 0

0 0 −1

0 1 0





9.6. EXERCISES 251

Find the minimal polynomial for A.

9. Suppose A is an n × n matrix and let v be a vector. Consider the A cyclic set of
vectors

{
v, Av, · · · , Am−1v

}
where this is an independent set of vectors but Amv is

a linear combination of the preceding vectors in the list. Show how to obtain a monic
polynomial of smallest degree, m, ϕv (λ) such that

ϕv (A)v = 0

Now let {w1, · · · ,wn} be a basis and let ϕ (λ) be the least common multiple of the
ϕwk

(λ) . Explain why this must be the minimal polynomial of A. Give a reasonably
easy algorithm for computing ϕv (λ).

10. Here is a matrix.  −7 −1 −1

−21 −3 −3

70 10 10


Using the process of Problem 9 find the minimal polynomial of this matrix. It turns
out the characteristic polynomial is λ3.

11. Find the minimal polynomial for

A =

 1 2 3

2 1 4

−3 2 1


by the above technique. Is what you found also the characteristic polynomial?

12. Let A be an n × n matrix with field of scalars C. Letting λ be an eigenvalue, show
the dimension of the eigenspace equals the number of Jordan blocks in the Jordan
canonical form which are associated with λ. Recall the eigenspace is ker (λI −A) .

13. For any n × n matrix, why is the dimension of the eigenspace always less than or
equal to the algebraic multiplicity of the eigenvalue as a root of the characteristic
equation? Hint: Note the algebraic multiplicity is the size of the appropriate block
in the Jordan form.

14. Give an example of two nilpotent matrices which are not similar but have the same
minimal polynomial if possible.

15. Use the existence of the Jordan canonical form for a linear transformation whose
minimal polynomial factors completely to give a proof of the Cayley Hamilton theorem
which is valid for any field of scalars. Hint: First assume the minimal polynomial
factors completely into linear factors. If this does not happen, consider a splitting field
of the minimal polynomial. Then consider the minimal polynomial with respect to
this larger field. How will the two minimal polynomials be related? Show the minimal
polynomial always divides the characteristic polynomial.

16. Here is a matrix. Find its Jordan canonical form by directly finding the eigenvectors
and generalized eigenvectors based on these to find a basis which will yield the Jordan
form. The eigenvalues are 1 and 2.

−3 −2 5 3

−1 0 1 2

−4 −3 6 4

−1 −1 1 3
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Why is it typically impossible to find the Jordan canonical form?

17. People like to consider the solutions of first order linear systems of equations which
are of the form

x′ (t) = Ax (t)

where here A is an n × n matrix. From the theorem on the Jordan canonical form,
there exist S and S−1 such that A = SJS−1 where J is a Jordan form. Define
y (t) ≡ S−1x (t) . Show y′ = Jy. Now suppose Ψ (t) is an n×n matrix whose columns
are solutions of the above differential equation. Thus

Ψ′ = AΨ

Now let Φ be defined by SΦS−1 = Ψ. Show

Φ′ = JΦ.

18. In the above Problem show that

det (Ψ)
′
= trace (A) det (Ψ)

and so
det (Ψ (t)) = Cetrace(A)t

This is called Abel’s formula and det (Ψ (t)) is called the Wronskian. Hint: Show it
suffices to consider

Φ′ = JΦ

and establish the formula for Φ. Next let

Φ =


ϕ1
...

ϕn


where the ϕj are the rows of Φ. Then explain why

det (Φ)
′
=

n∑
i=1

det (Φi) (9.10)

where Φi is the same as Φ except the ith row is replaced with ϕ′i instead of the row
ϕi. Now from the form of J,

Φ′ = DΦ+NΦ

where N has all nonzero entries above the main diagonal. Explain why

ϕ′i (t) = λiϕi (t) + aiϕi+1 (t)

Now use this in the formula for the derivative of the Wronskian given in 9.10 and use
properties of determinants to obtain

det (Φ)
′
=

n∑
i=1

λi det (Φ) .

Obtain Abel’s formula
det (Φ) = Cetrace(A)t

and so the Wronskian detΦ either vanishes identically or never.
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19. Let A be an n× n matrix and let J be its Jordan canonical form. Recall J is a block
diagonal matrix having blocks Jk (λ) down the diagonal. Each of these blocks is of
the form

Jk (λ) =


λ 1 0

λ
. . .

. . . 1

0 λ


Now for ε > 0 given, let the diagonal matrix Dε be given by

Dε =


1 0

ε
. . .

0 εk−1


Show that D−1

ε Jk (λ)Dε has the same form as Jk (λ) but instead of ones down the
super diagonal, there is ε down the super diagonal. That is Jk (λ) is replaced with

λ ε 0

λ
. . .

. . . ε

0 λ


Now show that for A an n×n matrix, it is similar to one which is just like the Jordan
canonical form except instead of the blocks having 1 down the super diagonal, it has
ε.

20. Let A be in L (V, V ) and suppose that Apx ̸= 0 for some x ̸= 0. Show that Apek ̸= 0
for some ek ∈ {e1, · · · , en} , a basis for V . If you have a matrix which is nilpotent,
(Am = 0 for some m) will it always be possible to find its Jordan form? Describe how
to do it if this is the case. Hint: First explain why all the eigenvalues are 0. Then
consider the way the Jordan form for nilpotent transformations was constructed in the
above.

21. Suppose A is an n×n matrix and that it has n distinct eigenvalues. How do the mini-
mal polynomial and characteristic polynomials compare? Determine other conditions
based on the Jordan Canonical form which will cause the minimal and characteristic
polynomials to be different.

22. Suppose A is a 3× 3 matrix and it has at least two distinct eigenvalues. Is it possible
that the minimal polynomial is different than the characteristic polynomial?

23. If A is an n×n matrix of entries from a field of scalars and if the minimal polynomial
of A splits over this field of scalars, does it follow that the characteristic polynomial
of A also splits? Explain why or why not.

24. Show that if two n × n matrices A,B are similar, then they have the same minimal
polynomial and also that if this minimal polynomial is of the form p (λ) =

∏s
i=1 ϕi (λ)

ri

where the ϕi (λ) are irreducible and monic, then ker (ϕi (A)
ri) and ker (ϕi (B)

ri) have
the same dimension. Why is this so? This was what was responsible for the blocks
corresponding to an eigenvalue being of the same size.
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25. Show that a given complex n× n matrix is non defective (diagonalizable) if and only
if the minimal polynomial has no repeated roots.

26. Describe a straight forward way to determine the minimal polynomial of an n × n
matrix using row operations. Next show that if p (λ) and p′ (λ) are relatively prime,
then p (λ) has no repeated roots. With the above problem, explain how this gives a
way to determine whether a matrix is non defective.

27. In Theorem 9.3.5 show that each cyclic set βx is associated with a monic polyno-
mial ηx (λ) such that ηx (A) (x) = 0 and this polynomial has smallest possible degree
such that this happens. Show that the cyclic sets βxi

can be arranged such that
ηxi+1

(λ) /ηxi
(λ).

28. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that 0 0 1

0 1 0

1 0 0


 λ 1 0

0 λ 1

0 0 λ


 0 0 1

0 1 0

1 0 0

 =

 λ 0 0

1 λ 0

0 1 λ


29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
∏q

i=1 ϕi (λ)
mi and let

(
βi
vi
1
, · · · , βi

vi
ri

)
be the cyclic sets

such that
{
βi
vi
1
, · · · , βi

vi
ri

}
is a basis for ker (ϕi (A)

mi). Let v =
∑

i

∑
j v

i
j . Now let

q (λ) be any polynomial and suppose that

q (A) v = 0

Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is

{
x,Ax, · · · , An−1x

}
and q (A)x = 0.

9.7 The Rational Canonical Form∗

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case
is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [10]
and there are more details given in this reference. Another good source which has additional
results is [15].

Here is a definition of the concept of a companion matrix.

Definition 9.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix
0 · · · 0 −a0
1 0 −a1

. . .
. . .

...

0 1 −an−1
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Proposition 9.7.2 Let q (λ) be a polynomial and let C (q (λ)) be its companion matrix.
Then q (C (q (λ))) = 0.

Proof: Write C instead of C (q (λ)) for short. Note that

Ce1 = e2, Ce2 = e3, · · · , Cen−1 = en

Thus
ek = Ck−1e1, k = 1, · · · , n (9.11)

and so it follows {
e1, Ce1, C

2e1, · · · , Cn−1e1
}

(9.12)

are linearly independent. Hence these form a basis for Fn. Now note that Cen is given by

Cen = −a0e1 − a1e2 − · · · − an−1en

and from 9.11 this implies

Cne1 = −a0e1 − a1Ce1 − · · · − an−1C
n−1e1

and so q (C) e1 = 0. Now since 9.12 is a basis, every vector of Fn is of the form k (C) e1 for
some polynomial k (λ). Therefore, if v ∈ Fn,

q (C)v = q (C) k (C) e1 = k (C) q (C) e1 = 0

which shows q (C) = 0. ■
The following theorem is on the existence of the rational canonical form.

Theorem 9.7.3 Let A ∈ L (V, V ) where V is a vector space with field of scalars F and
minimal polynomial

∏q
i=1 ϕi (λ)

mi where each ϕi (λ) is irreducible and monic. Letting Vk ≡
ker (ϕk (λ)

mk) , it follows
V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. Letting Bk denote a basis for Vk and Mk the matrix of the
restriction of A to Vk, it follows that the matrix of A with respect to the basis {B1, · · · , Bq}
is the block diagonal matrix of the form

M1 0
. . .

0 Mq

 (9.13)

If Bk is given as
{
βv1 , · · · , βvs

}
as described in Theorem 9.3.5 where each βvj is an A cyclic

set of vectors, then the matrix Mk is of the form

Mk =


C (ϕk (λ)

r1) 0
. . .

0 C (ϕk (λ)
rs)

 (9.14)

where the A cyclic sets of vectors may be arranged in order such that the positive integers rj
satisfy r1 ≥ · · · ≥ rs and C (ϕk (λ)

rj ) is the companion matrix of the polynomial ϕk (λ)
rj .
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Proof: By Theorem 9.2.5 the matrix of A with respect to {B1, · · · , Bq} is of the form
given in 9.13. Now by Theorem 9.3.5 the basis Bk may be chosen in the form

{
βv1 , · · · , βvs

}
where each βvk

is an A cyclic set of vectors and also it can be assumed the lengths of these
βvk

are decreasing. Thus

Vk = span
(
βv1

)
⊕ · · · ⊕ span

(
βvs

)
and it only remains to consider the matrix of A restricted to span

(
βvk

)
. Then you can

apply Theorem 9.2.5 to get the result in 9.14. Say

βvk
= vk, Avk, · · · , Ad−1vk

where η (A) vk = 0 and the degree of η (λ) is d, the smallest degree such that this is so, η being
a monic polynomial. Then η (λ) must divide ϕk (λ)

mk . By Corollary 7.3.11, η (λ) = ϕk (λ)
rk

where rk ≤ mk. It remains to consider the matrix of A restricted to span
(
βvk

)
. Say

η (λ) = ϕk (λ)
rk = a0 + a1λ+ · · ·+ ad−1λ

d−1 + λd

Thus, since η (A) vk = 0,

Advk = −a0vk − a1Avk − · · · − ad−1A
d−1vk

Recall the formalism for finding the matrix of A restricted to this invariant subspace.(
Avk A2vk A3vk · · · −a0vk − a1Avk − · · · − ad−1A

d−1vk

)
=

(
vk Avk A2vk · · · Ad−1vk

)


0 0 0 · · · −a0
1 0 −a1

0 1
. . .

...
. . .

. . . 0 −ad−2

0 0 1 −ad−1


Thus the matrix of the transformation is the above. This is the companion matrix of
ϕk (λ)

rk = η (λ). In other words, C = C (ϕk (λ)
rk) and so Mk has the form claimed in the

theorem. ■

9.8 Uniqueness

Given A ∈ L (V, V ) where V is a vector space having field of scalars F, the above shows
there exists a rational canonical form for A. Could A have more than one rational canonical
form? Recall the definition of an A cyclic set. For convenience, here it is again.

Definition 9.8.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
.

The following proposition ties these A cyclic sets to polynomials. It is just a review of
ideas used above to prove existence.

Proposition 9.8.2 Let x ̸= 0 and consider
{
x,Ax,A2x, · · · , Am−1x

}
. Then this is an A

cyclic set if and only if there exists a monic polynomial η (λ) such that η (A)x = 0 and
among all such polynomials ψ (λ) satisfying ψ (A)x = 0, η (λ) has the smallest degree.
If V = ker (ϕ (λ)

m
) where ϕ (λ) is monic and irreducible, then for some positive integer

p ≤ m, η (λ) = ϕ (λ)
p
.
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The following is the main consideration for proving uniqueness. It will depend on what
was already shown for the Jordan canonical form. This will apply to the nilpotent matrix
ϕ (A).

Lemma 9.8.3 Let V be a vector space and A ∈ L (V, V ) has minimal polynomial ϕ (λ)
m

where ϕ (λ) is irreducible and has degree d. Let the basis for V consist of
{
βv1 , · · · , βvs

}
where βvk

is A cyclic as described above and the rational canonical form for A is the matrix

taken with respect to this basis. Then letting
∣∣βvk

∣∣ denote the number of vectors in βvk
, it

follows there is only one possible set of numbers
∣∣βvk

∣∣.
Proof: Say βvj is associated with the polynomial ϕ (λ)

pj . Thus, as described above∣∣∣βvj

∣∣∣ equals pjd. Consider the following table which comes from the A cyclic set{
vj , Avj , · · · , Ad−1vj , · · · , Apjd−1vj

}
αj
0 αj

1 αj
2 · · · αj

d−1

vj Avj A2vj · · · Ad−1vj

ϕ (A) vj ϕ (A)Avj ϕ (A)A2vj · · · ϕ (A)Ad−1vj
...

...
...

...

ϕ (A)
pj−1

vj ϕ (A)
pj−1

Avj ϕ (A)
pj−1

A2vj · · · ϕ (A)
pj−1

Ad−1vj

In the above, αj
k signifies the vectors below it in the kth column. None of these vectors

below the top row are equal to 0 because the degree of ϕ (λ)
pj−1

λd−1 is dpj − 1, which is
less than pjd and the smallest degree of a nonzero polynomial sending vj to 0 is pjd. Also,
each of these vectors is in the span of βvj and there are dpj of them, just as there are dpj
vectors in βvj .

Claim: The vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent.

Proof of claim: Suppose

d−1∑
i=0

pj−1∑
k=0

cikϕ (A)
k
Aivj = 0

Then multiplying both sides by ϕ (A)
pj−1

this yields

d−1∑
i=0

ci0ϕ (A)
pj−1

Aivj = 0

this is because if k ≥ 1, you have a typical term of the form

cikϕ (A)
pj−1

ϕ (A)
k
Aivj = Aiϕ (A)

k−1
cikϕ (A)

pj vj = 0

Now if any of the ci0 is nonzero this would imply there exists a polynomial having degree
smaller than pjd which sends vj to 0. In fact, the polynomial would have degree d−1+pj−1.
Since this does not happen, it follows each ci0 = 0. Thus

d−1∑
i=0

pj−1∑
k=1

cikϕ (A)
k
Aivj = 0
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Now multiply both sides by ϕ (A)
pj−2

and do a similar argument to assert that ci1 = 0 for
each i. Continuing this way, all the cik = 0 and this proves the claim.

Thus the vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent and there are pjd =

∣∣∣βvj

∣∣∣
of them. Therefore, they form a basis for span

(
βvj

)
. Also note that if you list the

columns in reverse order starting from the bottom and going toward the top, the vectors{
αj
0, · · · , α

j
d−1

}
yield Jordan blocks in the matrix of ϕ (A). Hence, considering all these vec-

tors
{
αj
0, · · · , α

j
d−1

}s

j=1
, each listed in the reverse order, the matrix of ϕ (A) with respect

to this basis of V is in Jordan canonical form. See Proposition 9.4.4 and Theorem 9.5.2 on
existence and uniqueness for the Jordan form. This Jordan form is unique up to order of

the blocks. For a given j
{
αj
0, · · · , α

j
d−1

}
yields d Jordan blocks of size pj for ϕ (A). The

size and number of Jordan blocks of ϕ (A) depends only on ϕ (A) , hence only on A. Once
A is determined, ϕ (A) is determined and hence the number and size of Jordan blocks is
determined, so the exponents pj are determined and this shows the lengths of the βvj , pjd
are also determined. ■

Note that if the pj are known, then so is the rational canonical form because it comes
from blocks which are companion matrices of the polynomials ϕ (λ)

pj . Now here is the main
result.

Theorem 9.8.4 Let V be a vector space having field of scalars F and let A ∈ L (V, V ).
Then the rational canonical form of A is unique up to order of the blocks.

Proof: Let the minimal polynomial of A be
∏q

k=1 ϕk (λ)
mk . Then recall from Corollary

9.2.3
V = V1 ⊕ · · · ⊕ Vq

where Vk = ker (ϕk (A)
mk) . Also recall from Corollary 9.2.4 that the minimal polynomial

of the restriction of A to Vk is ϕk (λ)
mk . Now apply Lemma 9.8.3 to A restricted to Vk. ■

In the case where two n × n matrices M,N are similar, recall this is equivalent to the
two being matrices of the same linear transformation taken with respect to two different
bases. Hence each are similar to the same rational canonical form.

Example 9.8.5 Here is a matrix.

A =

 5 −2 1

2 10 −2

9 0 9


Find a similarity transformation which will produce the rational canonical form for A.

The minimal polynomial is λ3 − 24λ2 + 180λ− 432. Why? This factors as

(λ− 6)
2
(λ− 12)

Thus Q3 is the direct sum of ker
(
(A− 6I)

2
)
and ker (A− 12I) . Consider the first of these.

You see easily that this is

y

 1

1

0

+ z

 −1

0

1

 , y, z ∈ Q.
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What about the length of A cyclic sets? It turns out it doesn’t matter much. You can start
with either of these and get a cycle of length 2. Lets pick the second one. This leads to the
cycle  −1

0

1

 ,

 −4

−4

0

 = A

 −1

0

1

 ,

 −12

−48

−36

 = A2

 −1

0

1


where the last of the three is a linear combination of the first two. Take the first two as
the first two columns of S. To get the third, you need a cycle of length 1 corresponding to

ker (A− 12I) . This yields the eigenvector
(

1 −2 3
)T

. Thus

S =

 −1 −4 1

0 −4 −2

1 0 3


Now using Proposition 8.3.10, the Rational canonical form for A should be −1 −4 1

0 −4 −2

1 0 3


−1 5 −2 1

2 10 −2

9 0 9


 −1 −4 1

0 −4 −2

1 0 3

 =

 0 −36 0

1 12 0

0 0 12


Example 9.8.6 Here is a matrix.

A =


12 −3 −19 −14 8

−4 1 1 6 −4

4 5 5 −2 4

0 −5 −5 2 0

−4 3 11 6 0


Find a basis such that if S is the matrix which has these vectors as columns S−1AS is in
rational canonical form assuming the field of scalars is Q.

First it is necessary to find the minimal polynomial. Of course you can find the character-
istic polynomial and then take away factors till you find the minimal polynomial. However,
there is a much better way which is described in the exercises. Leaving out this detail, the
minimal polynomial is

λ3 − 12λ2 + 64λ− 128

This polynomial factors as

(λ− 4)
(
λ2 − 8λ+ 32

)
≡ ϕ1 (λ)ϕ2 (λ)

where the second factor is irreducible over Q. Consider ϕ2 (λ) first. Messy computations
yield

ker (ϕ2 (A)) = a


−1

1

0

0

0

+ b


−1

0

1

0

0

+ c


−1

0

0

1

0

+ d


−2

0

0

0

1

 .
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Now start with one of these basis vectors and look for an A cycle. Picking the first one, you
obtain the cycle 

−1

1

0

0

0

 ,


−15

5

1

−5

7


because the next vector involving A2 yields a vector which is in the span of the above two.
You check this by making the vectors the columns of a matrix and finding the row reduced
echelon form. Clearly this cycle does not span ker (ϕ2 (A)) , so look for another cycle. Begin
with a vector which is not in the span of these two. The last one works well. Thus another
A cycle is 

−2

0

0

0

1

 ,


−16

4

−4

0

8


It follows a basis for ker (ϕ2 (A)) is


−2

0

0

0

1

 ,


−16

4

−4

0

8

 ,


−1

1

0

0

0

 ,


−15

5

1

−5

7




Finally consider a cycle coming from ker (ϕ1 (A)). This amounts to nothing more than
finding an eigenvector for A corresponding to the eigenvalue 4. An eigenvector is(

−1 0 0 0 1
)T

Now the desired matrix for the similarity transformation is

S ≡


−2 −16 −1 −15 −1

0 4 1 5 0

0 −4 0 1 0

0 0 0 −5 0

1 8 0 7 1


Then doing the computations, you get

S−1AS =


0 −32 0 0 0

1 8 0 0 0

0 0 0 −32 0

0 0 1 8 0

0 0 0 0 4


and you see this is in rational canonical form, the two 2×2 blocks being companion matrices
for the polynomial λ2−8λ+32 and the 1×1 block being a companion matrix for λ−4. Note
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that you could have written this without finding a similarity transformation to produce it.
This follows from the above theory which gave the existence of the rational canonical form.

Obviously there is a lot more which could be considered about rational canonical forms.
Just begin with a strange field and start investigating what can be said. One can also derive
more systematic methods for finding the rational canonical form. The advantage of this is
you don’t need to find the eigenvalues in order to compute the rational canonical form and
it can often be computed for this reason, unlike the Jordan form. The uniqueness of this
rational canonical form can be used to determine whether two matrices consisting of entries
in some field are similar.

9.9 Exercises

1. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 7.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

2. Find the minimal polynomial for

A =

 1 2 3

2 1 4

−3 2 1


by the above technique assuming the field of scalars is the rational numbers. Is what
you found also the characteristic polynomial?

3. Show, using the rational root theorem, the minimal polynomial for A in the above
problem is irreducible with respect to Q. Letting the field of scalars be Q find the
rational canonical form and a similarity transformation which will produce it.

4. Letting the field of scalars be Q, find the rational canonical form for the matrix
1 2 1 −1

2 3 0 2

1 3 2 4

1 2 1 2


5. Let A : Q3 → Q3 be linear. Suppose the minimal polynomial is (λ− 2)

(
λ2 + 2λ+ 7

)
.

Find the rational canonical form. Can you give generalizations of this rather simple
problem to other situations?

6. Find the rational canonical form with respect to the field of scalars equal to Q for the
matrix

A =

 0 0 1

1 0 −1

0 1 1


Observe that this particular matrix is already a companion matrix of λ3 − λ2 + λ− 1.
Then find the rational canonical form if the field of scalars equals C or Q+ iQ.
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7. Let q (λ) be a polynomial and C its companion matrix. Show the characteristic and
minimal polynomial of C are the same and both equal q (λ).

8. ↑Use the existence of the rational canonical form to give a proof of the Cayley Hamilton
theorem valid for any field, even fields like the integers mod p for p a prime. The earlier
proof based on determinants was fine for fields like Q or R where you could let λ→ ∞
but it is not clear the same result holds in general.

9. Suppose you have two n×n matrices A,B whose entries are in a field F and suppose G
is an extension of F. For example, you could have F = Q and G = C. Suppose A and
B are similar with respect to the field G. Can it be concluded that they are similar
with respect to the field F? Hint: First show that the two have the same minimal
polynomial over F. Next consider the proof of Lemma 9.8.3 and show that they have
the same rational canonical form with respect to F.



Chapter 10

Markov Processes

10.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 10.1.1 An n × n matrix A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

It may also be called a stochastic matrix or a transition matrix. A Markov or stochastic
matrix is called regular if some power of A has all entries strictly positive. A vector v ∈ Rn,
is a steady state if Av = v.

Lemma 10.1.2 The property of being a stochastic matrix is preserved by taking products.
It is also true if the sum is of the form

∑
j aij = 1.

Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
denoted by (aij) and (bij) respectively and the entries of AB by (cij),∑

i

cij =
∑
i

∑
k

aikbkj =
∑
k

∑
i

aikbkj =
∑
k

bkj = 1

It is obvious that when the product is taken, if each aij , bij ≥ 0, then the same will be
true of sums of products of these numbers. Similar reasoning works for the assumption that∑

j aij = 1. ■
The following theorem is convenient for showing the existence of limits.

Theorem 10.1.3 Let A be a real p× p matrix having the properties

1. aij ≥ 0

2. Either
∑p

i=1 aij = 1 or
∑p

j=1 aij = 1.

3. The distinct eigenvalues of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞An = A∞ exists in the sense that limn→∞ anij = a∞ij , the ij
th entry A∞.

Here anij denotes the ijth entry of An. Also, if λ = 1 has algebraic multiplicity r, then
the Jordan block corresponding to λ = 1 is just the r × r identity.

Proof. By the existence of the Jordan form for A, it follows that there exists an invertible
matrix P such that

P−1AP =


I +N

Jr2 (λ2)
. . .

Jrm (λm)

 = J

where I is r × r for r the multiplicity of the eigenvalue 1 and N is a nilpotent matrix for
which Nr = 0. I will show that because of Condition 2, N = 0.

First of all,
Jri (λi) = λiI +Ni

263
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where Ni satisfies N
ri
i = 0 for some ri > 0. It is clear that Ni (λiI) = (λiI)N and so

(Jri (λi))
n
=

n∑
k=0

(
n

k

)
Nkλn−k

i =

r∑
k=0

(
n

k

)
Nkλn−k

i

which converges to 0 due to the assumption that |λi| < 1. There are finitely many terms
and a typical one is a matrix whose entries are no larger than an expression of the form

|λi|n−k
Ckn (n− 1) · · · (n− k + 1) ≤ Ck |λi|n−k

nk

which converges to 0 because, by the root test, the series
∑∞

n=1 |λi|
n−k

nk converges. Thus
for each i = 2, . . . , p,

lim
n→∞

(Jri (λi))
n
= 0.

By Condition 2, if anij denotes the ijth entry of An, then either

p∑
i=1

anij = 1 or

p∑
j=1

anij = 1, anij ≥ 0.

This follows from Lemma 10.1.2. It is obvious each anij ≥ 0, and so the entries of An must
be bounded independent of n.

It follows easily from

n times︷ ︸︸ ︷
P−1APP−1APP−1AP · · ·P−1AP = P−1AnP

that
P−1AnP = Jn (10.1)

Hence Jn must also have bounded entries as n → ∞. However, this requirement is incom-
patible with an assumption that N ̸= 0.

If N ̸= 0, then Ns ̸= 0 but Ns+1 = 0 for some 1 ≤ s ≤ r. Then

(I +N)
n
= I +

s∑
k=1

(
n

k

)
Nk

One of the entries of Ns is nonzero by the definition of s. Let this entry be nsij . Then this

implies that one of the entries of (I +N)
n
is of the form

(
n
s

)
nsij . This entry dominates the

ijth entries of
(
n
k

)
Nk for all k < s because

lim
n→∞

(
n

s

)
/

(
n

k

)
= ∞

Therefore, the entries of (I +N)
n
cannot all be bounded. From block multiplication,

P−1AnP =


(I +N)

n

(Jr2 (λ2))
n

. . .

(Jrm (λm))
n


and this is a contradiction because entries are bounded on the left and unbounded on the
right.
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Since N = 0, the above equation implies limn→∞An exists and equals

P


I

0
. . .

0

P−1 ■

Are there examples which will cause the eigenvalue condition of this theorem to hold?
The following lemma gives such a condition. It turns out that if aij > 0, not just ≥ 0, then
the eigenvalue condition of the above theorem is valid.

Lemma 10.1.4 Suppose A = (aij) is a stochastic matrix. Then λ = 1 is an eigenvalue. If
aij > 0 for all i, j, then if µ is an eigenvalue of A, either |µ| < 1 or µ = 1.

Proof: First consider the claim that 1 is an eigenvalue. By definition,∑
i

1aij = 1

and so ATv = v where v =
(

1 · · · 1
)T

. Since A,AT have the same eigenvalues, this

shows 1 is an eigenvalue. Suppose then that µ is an eigenvalue. Is |µ| < 1 or µ = 1? Let v
be an eigenvector for AT and let |vi| be the largest of the |vj | .

µvi =
∑
j

ajivj

and now multiply both sides by µvi to obtain

|µ|2 |vi|2 =
∑
j

ajivjµvi =
∑
j

aji Re (vjµvi)

≤
∑
j

aji |vi|2 |µ| = |µ| |vi|2

Therefore, |µ| ≤ 1. If |µ| = 1, then equality must hold in the above, and so vjviµ must
be real and nonnegative for each j. In particular, this holds for j = i which shows µ is real
and nonnegative. Thus, in this case, µ = 1 because µ̄ = µ is nonnegative and equal to 1.
The only other case is where |µ| < 1. ■

Lemma 10.1.5 Let A be any Markov matrix and let v be a vector having all its components
non negative with

∑
i vi = c. Then if w = Av, it follows that wi ≥ 0 for all i and

∑
i wi = c.

Proof: From the definition of w,

wi ≡
∑
j

aijvj ≥ 0.

Also ∑
i

wi =
∑
i

∑
j

aijvj =
∑
j

∑
i

aijvj =
∑
j

vj = c. ■

The following theorem about limits is now easy to obtain.



266 CHAPTER 10. MARKOV PROCESSES

Theorem 10.1.6 Suppose A is a Markov matrix in which aij > 0 for all i, j and suppose
w is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and

∑
i wi = c, then the vector v will also satisfy the

conditions, vi ≥ 0,
∑

i vi = c.

Proof: By Lemma 10.1.4, since each aij > 0, the eigenvalues are either 1 or have absolute
value less than 1. Therefore, the claimed limit exists by Theorem 10.1.3. The assertion that
the components are nonnegative and sum to c follows from Lemma 10.1.5. That Av = v
follows from

v = lim
n→∞

Anw = lim
n→∞

An+1w = A lim
n→∞

Anw = Av. ■

It is not hard to generalize the conclusion of this theorem to regular Markov processes.

Corollary 10.1.7 Suppose A is a regular Markov matrix, one for which the entries of Ak

are all positive for some k, and suppose w is a vector. Then for each i,

lim
n→∞

(Anw)i = vi

where Av = v. In words, Anw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and

∑
i wi = c, Then the vector v will also satisfy the

conditions vi ≥ 0,
∑

i vi = c.

Proof: Let the entries of Ak be all positive for some k. Now suppose that aij ≥ 0 for
all i, j and A = (aij) is a Markov matrix. Then if B = (bij) is a Markov matrix with bij > 0
for all ij, it follows that BA is a Markov matrix which has strictly positive entries. This is
because the ijth entry of BA is ∑

k

bikakj > 0,

Thus, from Lemma 10.1.4, Ak has an eigenvalue equal to 1 for all k sufficiently large, and
all the other eigenvalues have absolute value strictly less than 1. The same must be true of
A. If v ̸= 0 and Av = λv and |λ| = 1, then Akv = λkv and so, by Lemma 10.1.4, λm = 1
if m ≥ k. Thus

1 = λk+1 = λkλ = λ

By Theorem 10.1.3, limn→∞Anw exists. The rest follows as in Theorem 10.1.6. ■

10.2 Migration Matrices

Definition 10.2.1 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
assumption requires

∑
i aij = 1. Thus (aij) is a Markov matrix referred to as a migration

matrix.

If v =(x1, · · · , xn)T where xi is the population of location i at a given instant, you obtain
the population of location i one year later by computing

∑
j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. Furthermore, Corollary 10.1.7 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.



10.3. ABSORBING STATES 267

As an example of the above, consider the case where n = 3 and the migration matrix is
of the form  .6 0 .1

.2 .8 0

.2 .2 .9

 .

Now  .6 0 .1

.2 .8 0

.2 .2 .9


2

=

 . 38 .0 2 . 15

. 28 . 64 .0 2

. 34 . 34 . 83


and so the Markov matrix is regular. Therefore,

(
Akv

)
i
will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

. 6x+ . 1z = x

. 2x+ . 8y = y

. 2x+ . 2y + . 9z = z

along with the stipulation that the sum of x, y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x, z = 4x, x = x} .

If the total population at the beginning is 150,000, then you solve the following system

y = x, z = 4x, x+ y + z = 150000

whose solution is easily seen to be {x = 25 000, z = 100 000, y = 25 000} . Thus, after a long
time there would be about four times as many people in the third location as in either of
the other two.

10.3 Absorbing States

There is a different kind of Markov process containing so called absorbing states which result
in transition matrices which are not regular. However, Theorem 10.1.3 may still apply. One
such example is the Gambler’s ruin problem. There is a total amount of money denoted by
b. The Gambler starts with an amount j > 0 and gambles till he either loses everything or
gains everything. He does this by playing a game in which he wins with probability p and
loses with probability q. When he wins, the amount of money he has increases by 1 and
when he loses, the amount of money he has decreases by 1. Thus the states are the integers
from 0 to b. Let pij denote the probability that the gambler has i at the end of a game
given that he had j at the beginning. Let pnij denote the probability that the gambler has i
after n games given that he had j initially. Thus

pn+1
ij =

∑
k

pikp
n
kj ,
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and so pnij is the ijth entry of Pn where P is the transition matrix. The above description
indicates that this transition probability matrix is of the form

P =



1 q 0 · · · 0

0 0
. . . 0

0 p
. . . q

...
...

. . . 0 0

0 · · · 0 p 1


(10.2)

The absorbing states are 0 and b. In the first, the gambler has lost everything and hence
has nothing else to gamble, so the process stops. In the second, he has won everything and
there is nothing else to gain, so again the process stops.

Consider the eigenvalues of this matrix.

Lemma 10.3.1 Let p, q > 0 and p+ q = 1. Then the eigenvalues of

0 q 0 · · · 0

p 0 q · · · 0

0 p 0
. . .

...
... 0

. . .
. . . q

0
... 0 p 0


have absolute value less than 1.

Proof: By Gerschgorin’s theorem, (See Page 173) if λ is an eigenvalue, then |λ| ≤ 1.
Now suppose v is an eigenvector for λ. Then

Av =



qv2

pv1 + qv3
...

pvn−2 + qvn

pvn−1

 = λ



v1

v2
...

vn−1

vn

 .

Suppose |λ| = 1. Let vk be the first nonzero entry. Then

qvk+1 = λvk

and so |vk+1| > |vk|. If {|vj |}mj=k is increasing for some m > k, then

p |vm−1|+ q |vm| ≥ |pvm−2 + qvm| = |λvm−1| = |vm−1|

and so q |vm| ≥ q |vm−1| . Thus by induction, the sequence is increasing. Hence |vn| ≥
|vn−1| > 0. However, the last line states that p |vn−1| = |vn| which requires that |vn−1| >
|vn| , a contradiction. ■

Now consider the eigenvalues of 10.2. For P given there,

P − λI =



1− λ q 0 · · · 0

0 −λ
. . . 0

0 p
. . . q

...
...

. . . −λ 0

0 · · · 0 p 1− λ
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and so, expanding the determinant of the matrix along the first column and then along the
last column yields

(1− λ)
2
det


−λ q

p
. . .

. . .

. . . −λ q

p −λ

 .

The roots of the polynomial after (1− λ)
2
have absolute value less than 1 because they are

just the eigenvalues of a matrix of the sort in Lemma 10.3.1. It follows that the conditions
of Theorem 10.1.3 apply and therefore, limn→∞ Pn exists. ■

Of course, the above transition matrix, models many other kinds of problems. It is called
a Markov process with two absorbing states, sometimes a random walk with two absorbing
states.

It is interesting to find the probability that the gambler loses all his money. This is given
by limn→∞ pn0j .From the transition matrix for the gambler’s ruin problem, it follows that

pn0j =
∑
k

pn−1
0k pkj = qpn−1

0(j−1) + ppn−1
0(j+1)for j ∈ [1, b− 1] ,

pn00 = 1, and pn0b = 0.

Assume here that p ̸= q. Now it was shown above that limn→∞ pn0j exists. Denote by Pj

this limit. Then the above becomes much simpler if written as

Pj = qPj−1 + pPj+1 for j ∈ [1, b− 1] , (10.3)

P0 = 1 and Pb = 0. (10.4)

It is only required to find a solution to the above difference equation with boundary con-
ditions. To do this, look for a solution in the form Pj = rjand use the difference equation
with boundary conditions to find the correct values of r. Thus you need

rj = qrj−1 + prj+1

and so to find r you need to have pr2 − r + q = 0, and so the solutions for r are r =

1

2p

(
1 +

√
1− 4pq

)
,

1

2p

(
1−

√
1− 4pq

)
Now √

1− 4pq =
√
1− 4p (1− p) =

√
1− 4p+ 4p2 = 1− 2p.

Thus the two values of r simplify to

1

2p
(1 + 1− 2p) =

q

p
,

1

2p
(1− (1− 2p)) = 1

Therefore, for any choice of Ci, i = 1, 2,

C1 + C2

(
q

p

)j

will solve the difference equation. Now choose C1, C2 to satisfy the boundary conditions
10.4. Thus you need to have

C1 + C2 = 1, C1 + C2

(
q

p

)b

= 0
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It follows that

C2 =
pb

pb − qb
, C1 =

qb

qb − pb

Thus Pj =

qb

qb − pb
+

pb

pb − qb

(
q

p

)j

=
qb

qb − pb
− pb−jqj

qb − pb
=
qj
(
qb−j − pb−j

)
qb − pb

To find the solution in the case of a fair game, one could take the limp→1/2 of the above
solution. Taking this limit, you get

Pj =
b− j

b
.

You could also verify directly in the case where p = q = 1/2 in 10.3 and 10.4 that Pj = 1
and Pj = j are two solutions to the difference equation and proceeding as before.

10.4 Exercises

1. Suppose the migration matrix for three locations is .5 0 .3

.3 .8 0

.2 .2 .7

 .

Find a comparison for the populations in the three locations after a long time.

2. Show that if
∑

i aij = 1, then if A = (aij) , then the sum of the entries of Av equals
the sum of the entries of v. Thus it does not matter whether aij ≥ 0 for this to be so.

3. If A satisfies the conditions of the above problem, can it be concluded that limn→∞An

exists?

4. Give an example of a non regular Markov matrix which has an eigenvalue equal to
−1.

5. Show that when a Markov matrix is non defective, all of the above theory can be proved
very easily. In particular, prove the theorem about the existence of limn→∞An if the
eigenvalues are either 1 or have absolute value less than 1.

6. Find a formula for An where

A =


5
2 − 1

2 0 −1

5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2


Does limn→∞An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 12 ,

1
2 .

7. Find a formula for An where

A =


2 − 1

2
1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2

3 − 1
2

1
2 −2
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Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar
to a diagonal matrix but you can find the Jordan form and consider this in order to
obtain a formula for this product. The eigenvalues are 1,−1, 12 ,

1
2 .

8. Find limn→∞An if it exists for the matrix

A =


1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1


The eigenvalues are 1

2 , 1, 1, 1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞An = 0.

11. Find an example of a 3 × 3 matrix A such that limn→∞An does not exist but
limr→∞A5r does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 10.1.3 suppose everything is unchanged except that you assume either∑
j aij ≤ 1 or

∑
i aij ≤ 1. Would the same conclusion be valid? What if you don’t

insist that each aij ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈ V and x ̸= 0. Consider βx ≡
x, Ax, · · · , Am−1x where

Amx ∈ span
(
x, Ax, · · · , Am−1x

)
and m is the smallest such that the above inclusion in the span takes place. Show
that

{
x, Ax, · · · , Am−1x

}
must be linearly independent. Next suppose {v1, · · · ,vn}

is a basis for V . Consider βvi
as just discussed, having length mi. Thus Amivi is a

linearly combination of vi,Avi, · · · , Am−1vi for m as small as possible. Let pvi
(λ) be

the monic polynomial which expresses this linear combination. Thus pvi (A)vi = 0
and the degree of pvi (λ) is as small as possible for this to take place. Show that the
minimal polynomial for A must be the monic polynomial which is the least common
multiple of these polynomials pvi

(λ).

15. If A is a complex Hermitian n×n matrix which has all eigenvalues nonnegative, show
that there exists a complex Hermitian matrix B such that BB = A.

16. ↑Suppose A,B are n× n real Hermitian matrices and they both have all nonnegative
eigenvalues. Show that det (A+B) ≥ det (A)+det (B). Hint: Use the above problem
and the Cauchy Binet theorem. Let P 2 = A,Q2 = B where P,Q are Hermitian and
nonnegative. Then

A+B =
(
P Q

)( P

Q

)
.
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17. Suppose B =

(
α c∗

b A

)
is an (n+ 1)× (n+ 1) Hermitian nonnegative matrix where

α is a scalar and A is n × n. Show that α must be real, c = b, and A = A∗, A is
nonnegative, and that if α = 0, then b = 0. Otherwise, α > 0.

18. ↑If A is an n× n complex Hermitian and nonnegative matrix, show that there exists
an upper triangular matrix B such that B∗B = A. Hint: Prove this by induction. It
is obviously true if n = 1. Now if you have an (n+ 1)× (n+ 1) Hermitian nonnegative

matrix, then from the above problem, it is of the form

(
α2 αb∗

αb A

)
, α real.

19. ↑ Suppose A is a nonnegative Hermitian matrix (all eigenvalues are nonnegative) which
is partitioned as

A =

(
A11 A12

A21 A22

)
where A11, A22 are square matrices. Show that det (A) ≤ det (A11) det (A22). Hint:
Use the above problem to factor A getting

A =

(
B∗

11 0∗

B∗
12 B∗

22

)(
B11 B12

0 B22

)

Next argue that A11 = B∗
11B11, A22 = B∗

12B12 +B∗
22B22. Use the Cauchy Binet theo-

rem to argue that det (A22) = det (B∗
12B12 +B∗

22B22) ≥ det (B∗
22B22) . Then explain

why

det (A) = det (B∗
11) det (B

∗
22) det (B11) det (B22)

= det (B∗
11B11) det (B

∗
22B22)

20. ↑ Prove the inequality of Hadamard. If A is a Hermitian matrix which is nonnegative
(all eigenvalues are nonnegative), then det (A) ≤

∏
iAii.



Chapter 11

Inner Product Spaces

11.1 General Theory

It is assumed here that the field of scalars is either R or C. The usual example of an inner
product space is Cn or Rn as described earlier. However, there are many other inner product
spaces and the topic is of such importance that it seems appropriate to discuss the general
theory of these spaces.

Definition 11.1.1 A vector space X is said to be a normed linear space if there exists a
function, denoted by |·| : X → [0,∞) which satisfies the following axioms.

1. |x| ≥ 0 for all x ∈ X, and |x| = 0 if and only if x = 0.

2. |ax| = |a| |x| for all a ∈ F.

3. |x+ y| ≤ |x|+ |y| .

This function |·| is called a norm.

The notation ||x|| is also often used. Not all norms are created equal. There are many
geometric properties which they may or may not possess. There is also a concept called an
inner product which is discussed next. It turns out that the best norms come from an inner
product.

Definition 11.1.2 A mapping (·, ·) : V × V → F is called an inner product if it satisfies
the following axioms.

1. (x, y) = (y, x).

2. (x, x) ≥ 0 for all x ∈ V and equals zero if and only if x = 0.

3. (ax+ by, z) = a (x, z) + b (y, z) whenever a, b ∈ F.

Note that 2 and 3 imply (x, ay + bz) = a(x, y) + b(x, z).
Then a norm is given by

(x, x)
1/2 ≡ |x| .

It remains to verify this really is a norm.

Definition 11.1.3 A normed linear space in which the norm comes from an inner product
as just described is called an inner product space.

Example 11.1.4 Let V = Cn with the inner product given by (x,y) ≡
∑n

k=1 xkyk. This is
an example of a complex inner product space already discussed.

Example 11.1.5 Let V = Rn,, (x,y) = x · y ≡
∑n

j=1 xjyj . This is an example of a real
inner product space.

Example 11.1.6 Let V be any finite dimensional vector space and let {v1, · · · , vn} be a
basis. Decree that

(vi, vj) ≡ δij ≡

{
1 if i = j

0 if i ̸= j

273
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and define the inner product by

(x, y) ≡
n∑

i=1

xiyi

where

x =

n∑
i=1

xivi, y =

n∑
i=1

yivi.

The above is well defined because {v1, · · · , vn} is a basis. Thus the components xi
associated with any given x ∈ V are uniquely determined.

This example shows there is no loss of generality when studying finite dimensional vector
spaces with field of scalars R or C in assuming the vector space is actually an inner product
space. The following theorem was presented earlier with slightly different notation.

Theorem 11.1.7 (Cauchy Schwarz) In any inner product space

|(x, y)| ≤ |x||y|.

where |x| ≡ (x, x)
1/2

.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x+ tyω, x+ tωy).

Then from the axioms of the inner product,

F (t) = |x|2 + 2tRe(x, ωy) + t2|y|2 ≥ 0.

This yields
|x|2 + 2t|(x, y)|+ t2|y|2 ≥ 0.

If |y| = 0, then the inequality requires that |(x, y)| = 0 since otherwise, you could pick large
negative t and contradict the inequality. If |y| > 0, it follows from the quadratic formula
that

4|(x, y)|2 − 4|x|2|y|2 ≤ 0. ■

Earlier it was claimed that the inner product defines a norm. In this next proposition
this claim is proved.

Proposition 11.1.8 For an inner product space, |x| ≡ (x, x)
1/2

does specify a norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

|x+ y|2 ≡ (x+ y, x+ y) ≡ |x|2 + |y|2 + 2Re (x, y)

≤ |x|2 + |y|2 + 2 |(x, y)|
≤ |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2. ■

The best norms of all are those which come from an inner product because of the following
identity which is known as the parallelogram identity.

Proposition 11.1.9 If (V, (·, ·)) is an inner product space then for |x| ≡ (x, x)
1/2
, the

following identity holds.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .
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It turns out that the validity of this identity is equivalent to the existence of an inner
product which determines the norm as described above. These sorts of considerations are
topics for more advanced courses on functional analysis.

Definition 11.1.10 A basis for an inner product space, {u1, · · · , un} is an orthonormal
basis if

(uk, uj) = δkj ≡

{
1 if k = j

0 if k ̸= j
.

Note that if a list of vectors satisfies the above condition for being an orthonormal set,
then the list of vectors is automatically linearly independent. To see this, suppose

n∑
j=1

cjuj = 0

Then taking the inner product of both sides with uk,

0 =

n∑
j=1

cj (uj , uk) =

n∑
j=1

cjδjk = ck.

11.2 The Gram Schmidt Process

Lemma 11.2.1 Let X be an inner product space and let {x1, · · · , xn} be linearly indepen-
dent. Then there exists an orthonormal basis for X, {u1, · · · , un} which has the property
that for each k ≤ n, span(x1, · · · , xk) = span (u1, · · · , uk) .

Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) = span (x1) and {u1} is an
orthonormal set. Now suppose for some k < n, u1, · · · , uk have been chosen such that
(uj , ul) = δjl and span (x1, · · · , xk) = span (u1, · · · , uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1, uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1, uj)uj

∣∣∣ , (11.1)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · , xk) = span (u1, · · · , uk)

Thus by induction,

uk+1 ∈ span (u1, · · · , uk, xk+1) = span (x1, · · · , xk, xk+1) .

Also, xk+1 ∈ span (u1, · · · , uk, uk+1) which is seen easily by solving 11.1 for xk+1 and it
follows

span (x1, · · · , xk, xk+1) = span (u1, · · · , uk, uk+1) .

If l ≤ k,

(uk+1, ul) = C

(xk+1, ul)−
k∑

j=1

(xk+1, uj) (uj , ul)


= C

(xk+1, ul)−
k∑

j=1

(xk+1, uj) δlj


= C ((xk+1, ul)− (xk+1, ul)) = 0.
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The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.
The following corollary is obtained from the above process.

Corollary 11.2.2 Let X be a finite dimensional inner product space of dimension n whose
basis is {u1, · · · , uk, xk+1, · · · , xn} . Then if {u1, · · · , uk} is orthonormal, then the Gram
Schmidt process applied to the given list of vectors in order leaves {u1, · · · , uk} unchanged.

Lemma 11.2.3 Suppose {uj}nj=1 is an orthonormal basis for an inner product space X.
Then for all x ∈ X,

x =

n∑
j=1

(x, uj)uj .

Proof: Since {uj}nj=1 is a basis, there exist unique scalars {αi} such that

x =

n∑
j=1

αjuj

It only remains to identify αk. From the properties of the inner product,

(x, uk) =

n∑
j=1

αj (uj , uk) =

n∑
j=1

αjδjk = αk ■

The following theorem is of fundamental importance. First note that a subspace of an
inner product space is also an inner product space because you can use the same inner
product.

Theorem 11.2.4 Let M be a finite dimensional subspace of X, an inner product space and
let {ei}mi=1 be an orthonormal basis for M . Then if y ∈ X and w ∈M,

|y − w|2 = inf
{
|y − z|2 : z ∈M

}
(11.2)

if and only if
(y − w, z) = 0 (11.3)

for all z ∈M. Furthermore,

w =

m∑
i=1

(y, xi)xi (11.4)

is the unique element of M which has this property. It is called the orthogonal projection.

Proof: First we show that if 11.3, then 11.2. Let z ∈M be arbitrary. Then

|y − z|2 = |y − w + (w − z)|2

= (y − w + (w − z) , y − w + (w − z))

= |y − w|2 + |z − w|2 + 2Re (y − w,w − z)

The last term is given to be 0 and so

|y − z|2 = |y − w|2 + |z − w|2
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which verifies 11.2.
Next suppose 11.2. Is it true that 11.3 follows? Let z ∈ M be arbitrary and let |θ| =

1, θ̄ (x− w,w − z) = |(x− w,w − z)|. Then let

p (t) ≡ |x− w + tθ (w − z)|2 = |x− w|2 + 2Re (x− w, tθ (w − z)) + t2 |w − z|2

= |x− w|2 + 2Re tθ̄ (x− w, (w − z)) + t2 |w − z|2

= |x− w|2 + 2t |(x− w, (w − z))|+ t2 |w − z|2

Then p has a minimum when t = 0 and so p′ (0) = 2 |(x− w, (w − z))| = 0 which shows
11.3. This proves the first part of the theorem since z is arbitrary.

It only remains to verify that w given in 11.4 satisfies 11.3 and is the only point of M
which does so.

First, could there be two minimizers? Say w1, w2 both work. Then by the above char-
acterization of minimizers,

(x− w1, w1 − w2) = 0

(x− w2, w1 − w2) = 0

Subtracting gives (w1 − w2, w1 − w2) = 0. Hence the minimizer is unique.
Finally, it remains to show that the given formula works. Letting {e1, · · · , em} be an

orthonormal basis for M, such a thing existing by the Gramm Schmidt process,(
x−

m∑
i=1

(x, ei) ei, ek

)
= (x, ek)−

m∑
i=1

(x, ei) (ei, ek)

= (x, ek)−
m∑
i=1

(x, ei) δik

= (x, ek)− (x, ek) = 0

Since this inner product equals 0 for arbitrary ek, it follows that(
x−

m∑
i=1

(x, ei) ei, z

)
= 0

for every z ∈M because each such z is a linear combination of the ei. Hence
∑m

i=1 (x, ei) ei
is the unique minimizer. ■

Example 11.2.5 Consider X equal to the continuous functions defined on [−π, π] and let
the inner product be given by ∫ π

−π

f (x) g (x)dx

It is left to the reader to verify that this is an inner product. Letting ek be the function
x→ 1√

2π
eikx, define

M ≡ span
(
{ek}nk=−n

)
.

Then you can verify that

(ek, em) =

∫ π

−π

(
1√
2π
e−ikx

)(
1√
2π
emix

)
dx =

1

2π

∫ π

−π

ei(m−k)x = δkm
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then for a given function f ∈ X, the function from M which is closest to f in this inner
product norm is

g =

n∑
k=−n

(f, ek) ek

In this case (f, ek) =
1√
2π

∫ π

−π
f (x) eikxdx. These are the Fourier coefficients. The above is

the nth partial sum of the Fourier series.

To show how this kind of thing approximates a given function, let f (x) = x2. Let

M = span

({
1√
2π
e−ikx

}3

k=−3

)
. Then, doing the computations, you find the closest point

is of the form

1

3

√
2π

5
2

(
1√
2π

)
+

3∑
k=1

(
(−1)

k
2

k2

)
√
2
√
π

1√
2π
e−ikx +

3∑
k=1

(
(−1)

k
2

k2

)
√
2
√
π

1√
2π
eikx

and now simplify to get

1

3
π2 +

3∑
k=1

(−1)
k

(
4

k2

)
cos kx

Then a graph of this along with the graph of y = x2 is given below. In this graph, the dashed
graph is of y = x2 and the solid line is the graph of the above Fourier series approximation.

If we had taken the partial sum up to n much bigger, it would have been
very hard to distinguish between the graph of the partial sum of the
Fourier series and the graph of the function it is approximating. This
is in contrast to approximation by Taylor series in which you only get
approximation at a point of a function and its derivatives. These are
very close near the point of interest but typically fail to approximate
the function on the entire interval.

11.3 Riesz Representation Theorem

The next theorem is one of the most important results in the theory of inner product spaces.
It is called the Riesz representation theorem.

Theorem 11.3.1 Let f ∈ L (X,F) where X is an inner product space of dimension n.
Then there exists a unique z ∈ X such that for all x ∈ X,

f (x) = (x, z) .

Proof: First I will verify uniqueness. Suppose zj works for j = 1, 2. Then for all x ∈ X,

0 = f (x)− f (x) = (x, z1 − z2)

and so z1 = z2.
It remains to verify existence. By Lemma 11.2.1, there exists an orthonormal basis,

{uj}nj=1 . If there is such a z, then you would need f (uj) = (uj , z) and so you would need

f (uj) = (z, uj) . Also you must have z =
∑

i (z, uj)uj . Therefore, define

z ≡
n∑

j=1

f (uj)uj .
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Then using Lemma 11.2.3,

(x, z) =

x, n∑
j=1

f (uj)uj

 =

n∑
j=1

f (uj) (x, uj)

= f

 n∑
j=1

(x, uj)uj

 = f (x) . ■

Corollary 11.3.2 Let A ∈ L (X,Y ) where X and Y are two inner product spaces of finite
dimension. Then there exists a unique A∗ ∈ L (Y,X) such that

(Ax, y)Y = (x,A∗y)X (11.5)

for all x ∈ X and y ∈ Y. The following formula holds

(αA+ βB)
∗
= αA∗ + βB∗

Proof: Let fy ∈ L (X,F) be defined as

fy (x) ≡ (Ax, y)Y .

Then by the Riesz representation theorem, there exists a unique element of X, A∗ (y) such
that

(Ax, y)Y = (x,A∗ (y))X .

It only remains to verify that A∗ is linear. Let a and b be scalars. Then for all x ∈ X,

(x,A∗ (ay1 + by2))X ≡ (Ax, (ay1 + by2))Y

≡ a (Ax, y1) + b (Ax, y2) ≡

a (x,A∗ (y1)) + b (x,A∗ (y2)) = (x, aA∗ (y1) + bA∗ (y2)) .

Since this holds for every x, it follows

A∗ (ay1 + by2) = aA∗ (y1) + bA∗ (y2)

which shows A∗ is linear as claimed.
Consider the last assertion that ∗ is conjugate linear.(

x, (αA+ βB)
∗
y
)
≡ ((αA+ βB)x, y)

= α (Ax, y) + β (Bx, y) = α (x,A∗y) + β (x,B∗y)

= (x, αA∗y) +
(
x, βA∗y

)
=
(
x,
(
αA∗ + βA∗) y) .

Since x is arbitrary,
(αA+ βB)

∗
y =

(
αA∗ + βA∗) y

and since this is true for all y,

(αA+ βB)
∗
= αA∗ + βA∗. ■

Definition 11.3.3 The linear map, A∗ is called the adjoint of A. In the case when A : X →
X and A = A∗, A is called a self adjoint map. Such a map is also called Hermitian.
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Theorem 11.3.4 Let M be an m × n matrix. Then M∗ =
(
M
)T

in words, the transpose
of the conjugate of M is equal to the adjoint.

Proof: Using the definition of the inner product in Cn,

(Mx,y) = (x,M∗y) ≡
∑
i

xi
∑
j

(M∗)ij yj =
∑
i,j

(M∗)ijyjxi.

Also
(Mx,y) =

∑
j

∑
i

Mjiyjxi.

Since x,y are arbitrary vectors, it follows that Mji = (M∗)ij and so, taking conjugates of
both sides,

M∗
ij =Mji ■

The next theorem is interesting. You have a p dimensional subspace of Fn where F = R
or C. Of course this might be “slanted”. However, there is a linear transformation Q which
preserves distances which maps this subspace to Fp.

Theorem 11.3.5 Suppose V is a subspace of Fn having dimension p ≤ n. Then there exists
a Q ∈ L (Fn,Fn) such that

QV ⊆ span (e1, · · · , ep)
and |Qx| = |x| for all x. Also

Q∗Q = QQ∗ = I.

Proof: By Lemma 11.2.1 there exists an orthonormal basis for V, {vi}pi=1 . By using the
Gram Schmidt process this may be extended to an orthonormal basis of the whole space
Fn,

{v1, · · · ,vp,vp+1, · · · ,vn} .
Now define Q ∈ L (Fn,Fn) by Q (vi) ≡ ei and extend linearly. If

∑n
i=1 xivi is an arbitrary

element of Fn, ∣∣∣∣∣Q
(

n∑
i=1

xivi

)∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

xiei

∣∣∣∣∣
2

=

n∑
i=1

|xi|2 =

∣∣∣∣∣
n∑

i=1

xivi

∣∣∣∣∣
2

.

It remains to verify that Q∗Q = QQ∗ = I. To do so, let x,y ∈ Fn. Then let ω be a complex
number such that |ω| = 1, ω (x,Q∗Qy − y) = |(x,Q∗Qy − y)|.

(Q (ωx+ y) , Q (ωx+ y)) = (ωx+ y, ωx+ y) .

Thus
|Qx|2 + |Qy|2 + 2Reω (Qx,Qy) = |x|2 + |y|2 + 2Reω (x,y)

and since Q preserves norms, it follows that for all x,y ∈ Fn,

Reω (Qx,Qy) = Reω (x,Q∗Qy) = ωRe (x,y) .

Thus
0 = Reω ((x,Q∗Qy)− (x,y)) = Reω (x, Q∗Qy − y) = |(x,Q∗Qy − y)|

Re (x,Q∗Qy − y) = 0 (11.6)

for all x,y. Letting x = Q∗Qy − y, it follows Q∗Qy = y. Similarly QQ∗ = I. ■
Note that is is actually shown that QV = span (e1, · · · , ep) and that in case p = n one

obtains that a linear transformation which maps an orthonormal basis to an orthonormal
basis is unitary.
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11.4 The Tensor Product of Two Vectors

Definition 11.4.1 Let X and Y be inner product spaces and let x ∈ X and y ∈ Y. Define
the tensor product of these two vectors, y ⊗ x, an element of L (X,Y ) by

y ⊗ x (u) ≡ y (u, x)X .

This is also called a rank one transformation because the image of this transformation is
contained in the span of the vector, y.

The verification that this is a linear map is left to you. Be sure to verify this! The
following lemma has some of the most important properties of this linear transformation.

Lemma 11.4.2 Let X,Y, Z be inner product spaces. Then for α a scalar,

(α (y ⊗ x))
∗
= αx⊗ y (11.7)

(z ⊗ y1) (y2 ⊗ x) = (y2, y1) z ⊗ x (11.8)

Proof: Let u ∈ X and v ∈ Y. Then

(α (y ⊗ x)u, v) = (α (u, x) y, v) = α (u, x) (y, v)

and
(u, αx⊗ y (v)) = (u, α (v, y)x) = α (y, v) (u, x) .

Therefore, this verifies 11.7.
To verify 11.8, let u ∈ X.

(z ⊗ y1) (y2 ⊗ x) (u) = (u, x) (z ⊗ y1) (y2) = (u, x) (y2, y1) z

and
(y2, y1) z ⊗ x (u) = (y2, y1) (u, x) z.

Since the two linear transformations on both sides of 11.8 give the same answer for every
u ∈ X, it follows the two transformations are the same. ■

Definition 11.4.3 Let X,Y be two vector spaces. Then define for A,B ∈ L (X,Y ) and
α ∈ F, new elements of L (X,Y ) denoted by A+B and αA as follows.

(A+B) (x) ≡ Ax+Bx, (αA)x ≡ α (Ax) .

Theorem 11.4.4 Let X and Y be finite dimensional inner product spaces. Then L (X,Y )
is a vector space with the above definition of what it means to multiply by a scalar and add.
Let {v1, · · · , vn} be an orthonormal basis for X and {w1, · · · , wm} be an orthonormal basis
for Y. Then a basis for L (X,Y ) is

{wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} .

Proof: It is obvious that L (X,Y ) is a vector space. It remains to verify the given set
is a basis. Consider the following:A−

∑
k,l

(Avk, wl)wl ⊗ vk

 vp, wr

 = (Avp, wr)−
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∑
k,l

(Avk, wl) (vp, vk) (wl, wr)

= (Avp, wr)−
∑
k,l

(Avk, wl) δpkδrl = (Avp, wr)− (Avp, wr) = 0.

Letting A−
∑

k,l (Avk, wl)wl⊗vk = B, this shows that Bvp = 0 since wr is an arbitrary
element of the basis for Y. Since vp is an arbitrary element of the basis for X, it follows
B = 0 as hoped. This has shown {wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} spans L (X,Y ) .

It only remains to verify the wj ⊗ vi are linearly independent. Suppose then that∑
i,j

cijwj ⊗ vi = 0

Then do both sides to vs. By definition this gives

0 =
∑
i,j

cijwj (vs, vi) =
∑
i,j

cijwjδsi =
∑
j

csjwj

Now the vectors {w1, · · · , wm} are independent because it is an orthonormal set and so the
above requires csj = 0 for each j. Since s was arbitrary, this shows the linear transformations,
{wj ⊗ vi} form a linearly independent set. ■

Note this shows the dimension of L (X,Y ) = nm. The theorem is also of enormous
importance because it shows you can always consider an arbitrary linear transformation as
a sum of rank one transformations whose properties are easily understood. The following
theorem is also of great interest.

Theorem 11.4.5 Let A =
∑

i,j cijwi⊗vj ∈ L (X,Y ) where as before, the vectors, {wi} are
an orthonormal basis for Y and the vectors, {vj} are an orthonormal basis for X. Then if
the matrix of A has entries Mij , it follows that Mij = cij .

Proof: Recall
Avi ≡

∑
k

Mkiwk

Also

Avi =
∑
k,j

ckjwk ⊗ vj (vi) =
∑
k,j

ckjwk (vi, vj)

=
∑
k,j

ckjwkδij =
∑
k

ckiwk

Therefore, ∑
k

Mkiwk =
∑
k

ckiwk

and so Mki = cki for all k. This happens for each i. ■

11.5 Least Squares

A common problem in experimental work is to find a straight line which approximates as
well as possible a collection of points in the plane {(xi, yi)}pi=1. The usual way of dealing
with these problems is by the method of least squares and it turns out that all these sorts
of approximation problems can be reduced to Ax = b where the problem is to find the best
x for solving this equation even when there is no solution.



11.5. LEAST SQUARES 283

Lemma 11.5.1 Let V andW be finite dimensional inner product spaces and let A : V →W
be linear. For each y ∈W there exists x ∈ V such that

|Ax− y| ≤ |Ax1 − y|

for all x1 ∈ V. Also, x ∈ V is a solution to this minimization problem if and only if x is a
solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 11.2.4 on Page 276 there exists a point, Ax0, in the finite dimen-
sional subspace, A (V ) , of W such that for all x ∈ V, |Ax− y|2 ≥ |Ax0 − y|2 . Also, from
this theorem, this happens if and only if Ax0 − y is perpendicular to every Ax ∈ A (V ) .
Therefore, the solution is characterized by (Ax0 − y,Ax) = 0 for all x ∈ V which is the
same as saying (A∗Ax0 −A∗y, x) = 0 for all x ∈ V. In other words the solution is obtained
by solving A∗Ax0 = A∗y for x0. ■

Consider the problem of finding the least squares regression line in statistics. Suppose
you have given points in the plane, {(xi, yi)}ni=1 and you would like to find constants m
and b such that the line y = mx + b goes through all these points. Of course this will be
impossible in general. Therefore, try to find m, b such that you do the best you can to solve
the system 

y1
...

yn

 =


x1 1
...

...

xn 1


(
m

b

)

which is of the form y = Ax. In other words try to make

∣∣∣∣∣∣∣∣A
(
m

b

)
−


y1
...

yn


∣∣∣∣∣∣∣∣
2

as small

as possible. According to what was just shown, it is desired to solve the following for m and
b.

A∗A

(
m

b

)
= A∗


y1
...

yn

 .

Since A∗ = AT in this case,( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m

b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)
Solving this system of equations for m and b,

m =
− (
∑n

i=1 xi) (
∑n

i=1 yi) + (
∑n

i=1 xiyi)n

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2

and

b =
− (
∑n

i=1 xi)
∑n

i=1 xiyi + (
∑n

i=1 yi)
∑n

i=1 x
2
i

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you solve as well as possible for a, b, and c the system

x21 x1 1
...

...
...

x2n xn 1


 a

b

c

 =


y1
...

yn


using the same techniques.
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11.6 Fredholm Alternative Again

The best context in which to study the Fredholm alternative is in inner product spaces.
This is done here.

Definition 11.6.1 Let S be a subset of an inner product space, X. Define

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 11.6.2 Let A : V →W where A is linear and V and W are inner product spaces.
Then A (V ) = ker (A∗)

⊥
.

Proof: Let y = Ax so y ∈ A (V ) . Then if A∗z = 0,

(y, z) = (Ax, z) = (x,A∗z) = 0

showing that y ∈ ker (A∗)
⊥
. Thus A (V ) ⊆ ker (A∗)

⊥
.

Now suppose y ∈ ker (A∗)
⊥
. Does there exists x such that Ax = y? Since this might

not be immediately clear, take the least squares solution to the problem. Thus let x be a
solution to A∗Ax = A∗y. It follows A∗ (y −Ax) = 0 and so y−Ax ∈ ker (A∗) which implies
from the assumption about y that (y −Ax, y) = 0. Also, since Ax is the closest point to
y in A (V ) , Theorem 11.2.4 on Page 276 implies that (y −Ax,Ax1) = 0 for all x1 ∈ V.

In particular this is true for x1 = x and so 0 = (y −Ax, y) −
=0︷ ︸︸ ︷

(y −Ax,Ax) = |y −Ax|2 ,
showing that y = Ax. Thus A (V ) ⊇ ker (A∗)

⊥
. ■

Corollary 11.6.3 Let A, V, and W be as described above. If the only solution to A∗y = 0
is y = 0, then A is onto W.

Proof: If the only solution to A∗y = 0 is y = 0, then ker (A∗) = {0} and so every vector

from W is contained in ker (A∗)
⊥

and by the above theorem, this shows A (V ) =W . ■

11.7 Exercises

1. Find the best solution to the system

x+ 2y = 6

2x− y = 5

3x+ 2y = 0

2. Find an orthonormal basis for R3, {w1,w2,w3} given that w1 is a multiple of the
vector (1, 1, 2).

3. Suppose A = AT is a symmetric real n× n matrix which has all positive eigenvalues.
Define

(x,y) ≡ (Ax,y) .

Show this is an inner product on Rn. What does the Cauchy Schwarz inequality say
in this case?
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4. Let ||x||∞ ≡ max {|xj | : j = 1, 2, · · · , n} . Show this is a norm on Cn. Here

x =
(
x1 · · · xn

)T
.

Show
||x||∞ ≤ |x| ≡ (x,x)

1/2

where the above is the usual inner product on Cn.

5. Let ||x||1 ≡
∑n

j=1 |xj | .Show this is a norm on Cn. Here x =
(
x1 · · · xn

)T
. Show

||x||1 ≥ |x| ≡ (x,x)
1/2

where the above is the usual inner product on Cn. Show there cannot exist an inner
product such that this norm comes from the inner product as described above for
inner product spaces.

6. Show that if ||·|| is any norm on any vector space, then |||x|| − ||y||| ≤ ||x− y|| .

7. Relax the assumptions in the axioms for the inner product. Change the axiom about
(x, x) ≥ 0 and equals 0 if and only if x = 0 to simply read (x, x) ≥ 0. Show the Cauchy

Schwarz inequality still holds in the following form. |(x, y)| ≤ (x, x)
1/2

(y, y)
1/2

.

8. Let H be an inner product space and let {uk}nk=1 be an orthonormal basis for H.
Show

(x, y) =

n∑
k=1

(x, uk) (y, uk).

9. Let the vector space V consist of real polynomials of degree no larger than 3. Thus a
typical vector is a polynomial of the form a+ bx+ cx2 + dx3. For p, q ∈ V define the

inner product, (p, q) ≡
∫ 1

0
p (x) q (x) dx. Show this is indeed an inner product. Then

state the Cauchy Schwarz inequality in terms of this inner product. Show
{
1, x, x2, x3

}
is a basis for V . Finally, find an orthonormal basis for V. This is an example of some
orthonormal polynomials.

10. Let Pn denote the polynomials of degree no larger than n− 1 which are defined on an
interval [a, b] . Let {x1, · · · , xn} be n distinct points in [a, b] . Now define for p, q ∈ Pn,

(p, q) ≡
n∑

j=1

p (xj) q (xj)

Show this yields an inner product on Pn. Hint: Most of the axioms are obvious. The
one which says (p, p) = 0 if and only if p = 0 is the only interesting one. To verify this
one, note that a nonzero polynomial of degree no more than n− 1 has at most n− 1
zeros.

11. Let C ([0, 1]) denote the vector space of continuous real valued functions defined on
[0, 1]. Let the inner product be given as

(f, g) ≡
∫ 1

0

f (x) g (x) dx

Show this is an inner product. Also let V be the subspace described in Problem 9.
Using the result of this problem, find the vector in V which is closest to x4.
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12. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,

(p (x) y′)
′
+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t ∈ [a, b] and also there are boundary
conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.

There is an immense theory connected to these important problems. The constant, λ
is called an eigenvalue. Show that if y is a solution to the above problem corresponding
to λ = λ1 and if z is a solution corresponding to λ = λ2 ̸= λ1, then∫ b

a

q (x) y (x) z (x) dx = 0. (11.9)

and this defines an inner product. Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a)−z′ (a) y (a) =
0 and y′ (b) z (b)−z′ (b) y (b) = 0. The formula, 11.9 is called an orthogonality relation.
It turns out there are typically infinitely many eigenvalues and it is interesting to write
given functions as an infinite series of these “eigenfunctions”.

13. Consider the continuous functions defined on [0, π] , C ([0, π]) . Show (f, g) ≡
∫ π

0
fgdx

is an inner product on this vector space. Show the functions
{√

2
π sin (nx)

}∞

n=1
are

an orthonormal set. What does this mean about the dimension of the vector space

C ([0, π])? Now let VN = span
(√

2
π sin (x) , · · · ,

√
2
π sin (Nx)

)
. For f ∈ C ([0, π]) find

a formula for the vector in VN which is closest to f with respect to the norm determined
from the above inner product. This is called the N th partial sum of the Fourier series
of f . An important problem is to determine whether and in what way this Fourier
series converges to the function f . The norm which comes from this inner product is
sometimes called the mean square norm.

14. Consider the subspace V ≡ ker (A) where

A =


1 4 −1 −1

2 1 2 3

4 9 0 1

5 6 3 4


Find an orthonormal basis for V. Hint: You might first find a basis and then use the
Gram Schmidt procedure.
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15. The Gram Schmidt process starts with a basis for a subspace {v1, · · · , vn} and pro-
duces an orthonormal basis for the same subspace {u1, · · · , un} such that

span (v1, · · · , vk) = span (u1, · · · , uk)

for each k. Show that in the case of Rm the QR factorization does the same thing.
More specifically, if

A =
(

v1 · · · vn

)
and if

A = QR ≡
(

q1 · · · qn

)
R

then the vectors {q1, · · · ,qn} is an orthonormal set of vectors and for each k,

span (q1, · · · ,qk) = span (v1, · · · ,vk)

16. Verify the parallelogram identify for any inner product space,

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

Why is it called the parallelogram identity?

17. Let H be an inner product space and let K ⊆ H be a nonempty convex subset. This
means that if k1, k2 ∈ K, then the line segment consisting of points of the form

tk1 + (1− t) k2 for t ∈ [0, 1]

is also contained in K. Suppose for each x ∈ H, there exists Px defined to be a point
of K closest to x. Show that Px is unique so that P actually is a map. Hint: Suppose
z1 and z2 both work as closest points. Consider the midpoint, (z1 + z2) /2 and use the
parallelogram identity of Problem 16 in an auspicious manner.

18. In the situation of Problem 17 suppose K is a closed convex subset and that H
is complete. This means every Cauchy sequence converges. Recall from calculus a
sequence {kn} is a Cauchy sequence if for every ε > 0 there exists Nε such that
whenever m,n > Nε, it follows |km − kn| < ε. Let {kn} be a sequence of points of K
such that

lim
n→∞

|x− kn| = inf {|x− k| : k ∈ K}

This is called a minimizing sequence. Show there exists a unique k ∈ K such that
limn→∞ |kn − k| and that k = Px. That is, there exists a well defined projection map
onto the convex subset of H. Hint: Use the parallelogram identity in an auspicious
manner to show {kn} is a Cauchy sequence which must therefore converge. Since K
is closed it follows this will converge to something in K which is the desired vector.

19. LetH be an inner product space which is also complete and let P denote the projection
map onto a convex closed subset, K. Show this projection map is characterized by
the inequality

Re (k − Px, x− Px) ≤ 0

for all k ∈ K. That is, a point z ∈ K equals Px if and only if the above variational
inequality holds. This is what that inequality is called. This is because k is allowed
to vary and the inequality continues to hold for all k ∈ K.
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20. Using Problem 19 and Problems 17 - 18 show the projection map, P onto a closed
convex subset is Lipschitz continuous with Lipschitz constant 1. That is

|Px− Py| ≤ |x− y|

21. Give an example of two vectors in R4 or R3 x,y and a subspace V such that x · y = 0
but Px·Py ̸= 0 where P denotes the projection map which sends x to its closest point
on V .

22. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear regression
line using the formulas derived above. Then graph the given data along with your
regression line.

23. Generalize the least squares procedure to the situation in which data is given and you
desire to fit it with an expression of the form y = af (x)+bg (x)+c where the problem
would be to find a, b and c in order to minimize the error. Could this be generalized
to higher dimensions? How about more functions?

24. Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank (A) ≡ dim (A (X)) and nullity(A) ≡ dim (ker (A)) .
Show that nullity(A) + rank (A) = dim (X) . Hint: Let {xi}ri=1 be a basis for ker (A)

and let {xi}ri=1 ∪ {yi}n−r
i=1 be a basis for X. Then show that {Ayi}n−r

i=1 is linearly
independent and spans AX.

25. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗) ≤

= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}rj=1 of A (Fn) and verify {A∗Axj}rj=1

is a basis for A∗A (Fn) .

26. Let A be a real m × n matrix and let A = QR be the QR factorization with Q
orthogonal and R upper triangular. Show that there exists a solution x to the equation

RTRx = RTQTb

and that this solution is also a least squares solution defined above such that ATAx =
ATb.

11.8 The Determinant and Volume

The determinant is the essential algebraic tool which provides a way to give a unified treat-
ment of the concept of p dimensional volume of a parallelepiped in RM . Here is the definition
of what is meant by such a thing.

Definition 11.8.1 Let u1, · · · ,up be vectors in RM ,M ≥ p. The parallelepiped determined
by these vectors will be denoted by P (u1, · · · ,up) and it is defined as

P (u1, · · · ,up) ≡


p∑

j=1

sjuj : sj ∈ [0, 1]

 = UQ, Q = [0, 1]
p
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where U =
(

u1 · · · up

)
.The volume of this parallelepiped is defined as

volume of P (u1, · · · ,up) ≡ v (P (u1, · · · ,up)) ≡ (det (G))
1/2

.

where Gij = ui · uj. This G = UTU is called the metric tensor. If the vectors ui are
dependent, this definition will give the volume to be 0.

First lets observe the last assertion is true. Say ui =
∑

j ̸=i αjuj . Then the ith row of
G is a linear combination of the other rows using the scalars αj and so from the properties
of the determinant, the determinant of this matrix is indeed zero as it should be. Indeed,
ui · uk =

∑
j ̸=i αjuj · uk .

A parallelepiped is a sort of a squashed box. Here is a picture which shows

P

up

w

θ

P = P (u1, · · · ,up−1)

the relationship between P (u1, · · · ,up−1) and
P (u1, · · · ,up). In a sense, we can define the volume
any way desired, but if it is to be reasonable, the
following relationship must hold. The appropriate
definition of the volume of P (u1, · · · ,up) in terms of
P (u1, · · · ,up−1) is v (P (u1, · · · ,up)) =

|up ·w| v (P (u1, · · · ,up−1)) (11.10)

where w is any unit vector perpendicular to each of
u1, · · · ,up−1. Note |up ·w| = |up| |cos θ| from the

geometric meaning of the dot product. In the case where p = 1, the parallelepiped P (v)

consists of the single vector and the one dimensional volume should be |v| =
(
vTv

)1/2
=

(v · v)1/2. Now having made this definition, I will show that det (G)
1/2

is the appropriate
definition of v (P (u1, · · · ,up)) for every p.

As just pointed out, this is the only reasonable definition of volume in the case of one
vector. The next theorem shows that it is the only reasonable definition of volume of a
parallelepiped in the case of p vectors because 11.10 holds.

Theorem 11.8.2 If we desire 11.10 to hold for any w perpendicular to each ui, then we
obtain the definition of 11.8.1 for v (P (u1, · · · ,up)) in terms of determinants.

Proof: So assume we want 11.10 to hold. Suppose the determinant formula holds
for P (u1, · · · ,up−1). It is necessary to show that if w is a unit vector perpendicular to

each u1, · · · ,up−1 then |up ·w| v (P (u1, · · · ,up−1)) reduces to det (G)
1/2

. By the Gram
Schmidt procedure there is (w1, · · · ,wp) an orthonormal basis for span (u1, · · · ,up) such
that span (w1, · · · ,wk) = span (u1, · · · ,uk) for each k ≤ p. We can pick wp = w the given
unit vector perpendicular to each ui. First note that since {wk}pk=1 is an orthonormal basis
for span (u1, · · · ,up) ,

uj =

p∑
k=1

(uj ·wk)wk, uj · ui =

p∑
k=1

(uj ·wk) (ui ·wk)

Therefore, the ijth entry of the p× p matrix UTU is just

(
UTU

)
ij
=

p∑
r=1

(ui ·wr) (wr · uj)

which is the product of a p×p matrixM whose rjth entry is wr ·uj with its transpose. The
vector wp is a unit vector perpendicular to each uj for j ≤ p− 1 so wp · uj = 0 if j < p.
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Now consider the vector

N ≡ det


w1 · · · wp−1 wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp


which results from formally expanding along the top row. Note you would get the same
thing expanding along the last column because as just noted, the last column on the right
is 0 except for the top entry, so every cofactor A1k for the 1kth position is ± a determinant
which has a column of zeros. Thus N is a multiple of wp. Hence, for j < p,N · uj = 0.
From what was just discussed and induction, v (P (u1, · · · ,up−1)) = ±A1p = N ·wp. Also
N · up equals

det


up ·w1 · · · up ·wp−1 up ·wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp

 = ±det (M)

Thus from induction and expanding along the last column,

|up ·wp| v (P (u1, · · · ,up−1)) = |N · up| = det
(
MTM

)1/2
= det

(
UTU

)1/2
= det (G)

1/2
.

Now wp = w the unit vector perpendicular to each uj for j ≤ p − 1. Thus if 11.10, then
the claimed determinant identity holds. ■

The theorem shows that the only reasonable definition of p dimensional volume of a
parallelepiped is the one given in the above definition. Recall that these vectors are in RM .
What is the role of RM? It is just to provide an inner product. That is its only function. If

p =M, then det
(
UTU

)
= det

(
UT
)
det (U) = det (U)

2
and so det (G)

1/2
= |det (U)|.

11.9 Finding an Orthogonal Basis

The Gram Schmidt process described above gives a way to generate an orthogonal set of
vectors from a linearly independent set. Is there a convenient way to do this? Probably
not. However, if you have access to a computer algebra system there might be a way which
could help. In the following lemma, vi will be a vector and it is assumed that vi, i = 1, ..., n
are linearly independent.

Lemma 11.9.1 Let {v1, ..., vn} be linearly independent and consider the following formal
derivative:

det



(v1, v1) (v1, v2) · · · (v1, vn−1) v1

(v2, v1) (v2, v2) · · · (v2, vn−1) v2
...

...
...

...

(vn−1, v1) (vn−1, v2) · · · (vn−1, vn−1) vn−1

(vn, v1) (vn, v2) · · · (vn, vn−1) vn


Then the vector which results from expanding this determinant formally is perpendicular to
each of v1, ..., vn−1.
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Proof: It is of the form
∑n

i=1 viCi where Ci is a suitable (n− 1)× (n− 1) determinant.
Thus the inner product of this with vk for k ≤ n − 1 is the expansion of a determinant
which has two equal columns. However, the inner product with vn will be the Grammian
of {v1, ..., vn} which is not zero since these vectors vi are independent. See Problem 11 on
Page 293. ■

Example 11.9.2 The vectors 1, x, x2, x3 are linearly independent on [0, 1], the vector space
being the continuous functions defined on [0, 1]. You might show this. An inner product is

given by
∫ 1

0
f (x) g (x) dx. Find an orthogonal basis for span

(
1, x, x2, x3

)
.

You could use the above lemma. u1 (x) = 1. Now I will assemble the formal determinants
as given above.

det

(
1 1
1
2 x

)
,det

 1 1
2 1

1
2

1
3 x

1
3

1
4 x2

 , det


1 1

2
1
3 1

1
2

1
3

1
4 x

1
3

1
4

1
5 x2

1
4

1
5

1
6 x3


Now the orthogonal basis is obtained from evaluating these determinants and adding 1

to the list. Thus an orthonormal basis is{
1, x− 1

2 ,
1
12x

2 − 1
12x+ 1

72 ,
1

2160x
3 − 1

1440x
2 + 1

3600x− 1
43 200

}
Is this horrible? Yes it is. However, if you have a computer algebra system do it for you,

it isn’t so bad. For example, to get the last term, you just do
1

x

x2

x3

( 1 x x2
)
=


1 x x2

x x2 x3

x2 x3 x4

x3 x4 x5


Then you do the following.

∫ 1

0


1 x x2

x x2 x3

x2 x3 x4

x3 x4 x5

 dx =


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6


You could get Matlab to do it for you. Then you add in the last column which consists of
the original vectors. If you wanted an orthonormal basis, you could divide each vector by
its magnitude. This was only painless because I let the computer do all the tedious busy
work. However, I think it has independent interest because it gives a formula for a vector
which will be orthogonal to a given set of linearly independent vectors.

11.10 Exercises

1. Here are three vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
, (0, 0, 1, 2)

T
. Find the three

dimensional volume of the parallelepiped determined by these three vectors.

2. Here are two vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
. Find the volume of the paral-

lelepiped determined by these two vectors.

3. Here are three vectors in R2 : (1, 2)
T
, (2, 1)

T
, (0, 1)

T
. Find the three dimensional

volume of the parallelepiped determined by these three vectors. Recall that from the
above theorem, this should equal 0.
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4. Find the equation of the plane through the three points (1, 2, 3) , (2,−3, 1) , (1, 1, 7) .

5. Let T map a vector space V to itself. Explain why T is one to one if and only if T is
onto. It is in the text, but do it again in your own words.

6. ↑Let all matrices be complex with complex field of scalars and let A be an n×n matrix
and B a m×m matrix while X will be an n×m matrix. The problem is to consider
solutions to Sylvester’s equation. Solve the following equation for X

AX −XB = C

where C is an arbitrary n×m matrix. Show there exists a unique solution if and only
if σ (A)∩ σ (B) = ∅. Hint: If q (λ) is a polynomial, show first that if AX −XB = 0,
then q (A)X − Xq (B) = 0. Next define the linear map T which maps the n × m
matrices to the n×m matrices as follows.

TX ≡ AX −XB

Show that the only solution to TX = 0 is X = 0 so that T is one to one if and only if
σ (A)∩σ (B) = ∅. Do this by using the first part for q (λ) the characteristic polynomial

for B and then use the Cayley Hamilton theorem. Explain why q (A)
−1

exists if and
only if the condition σ (A) ∩ σ (B) = ∅.

7. Recall the Binet Cauchy theorem, Theorem 3.3.14. What is the geometric meaning of
the Binet Cauchy theorem?

8. For W a subspace of V, W is said to have a complementary subspace [15] W ′ if
W ⊕W ′ = V. Suppose that both W,W ′ are invariant with respect to A ∈ L (V, V ).
Show that for any polynomial f (λ) , if f (A)x ∈ W, then there exists w ∈ W such
that f (A)x = f (A)w. A subspace W is called A admissible if it is A invariant and
the condition of this problem holds.

9. ↑ Return to Theorem 9.3.5 about the existence of a basis β =
{
βx1

, · · · , βxp

}
for V

where A ∈ L (V, V ) . Adapt the statement and proof to show that ifW is A admissible,
then it has a complementary subspace which is also A invariant. Hint:

The modified version of the theorem is: Suppose A ∈ L (V, V ) and the minimal poly-
nomial of A is ϕ (λ)

m
where ϕ (λ) is a monic irreducible polynomial. Also suppose

that W is an A admissible subspace. Then there exists a basis for V which is of

the form β =
{
βx1

, · · · , βxp
, v1, · · · , vm

}
where {v1, · · · , vm} is a basis of W . Thus

span
(
βx1

, · · · , βxp

)
is the A invariant complementary subspace forW . You may want

to use the fact that ϕ (A) (V ) ∩W = ϕ (A) (W ) which follows easily because W is A
admissible. Then use this fact to show that ϕ (A) (W ) is also A admissible.

10. Let U,H be finite dimensional inner product spaces. (More generally, complete inner
product spaces.) Let A be a linear map from U to H. Thus AU is a subspace of
H. For g ∈ AU, define A−1g to be the unique element of {x : Ax = g} which is
closest to 0. Then define (h,g)AU ≡

(
A−1g, A−1h

)
U
. Show that this is a well defined

inner product. Let U,H be finite dimensional inner product spaces. (More generally,
complete inner product spaces.) Let A be a linear map from U to H. Thus AU is a
subspace of H. For g ∈ AU, define A−1g to be the unique element of {x : Ax = g}
which is closest to 0. Then define (h,g)AU ≡

(
A−1g, A−1h

)
U
. Show that this is a

well defined inner product and that if A is one to one, then ∥h∥AU =
∥∥A−1h

∥∥
U

and
∥Ax∥AU = ∥x∥U .
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11. Suppose {v1, ..., vn} is a linearly independent set of vectors in an inner product space.
The Grammian determinant is

det


(v1, v1) (v1, v2) · · · (v1, vn)

(v2, v1) (v2, v2) · · · (v2, vn)
...

...
...

(vn, v1) (vn, v2) · · · (vn, vn)


Show this is not zero.
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Chapter 12

Self Adjoint Operators

12.1 Simultaneous Diagonalization

Recall the following definition of what it means for a matrix to be diagonalizable.

Definition 12.1.1 Let A be an n× n matrix. It is said to be diagonalizable if there exists
an invertible matrix S such that

S−1AS = D

where D is a diagonal matrix.

Also, here is a useful observation.

Observation 12.1.2 If A is an n×n matrix and AS = SD for D a diagonal matrix, then
each column of S is an eigenvector or else it is the zero vector. This follows from observing
that for sk the kth column of S and from the way we multiply matrices,

Ask = λksk

It is sometimes interesting to consider the problem of finding a single similarity trans-
formation which will diagonalize all the matrices in some set.

Lemma 12.1.3 Let A be an n×n matrix and let B be an m×m matrix. Denote by C the
matrix

C ≡

(
A 0

0 B

)
.

Then C is diagonalizable if and only if both A and B are diagonalizable.

Proof: Suppose S−1
A ASA = DA and S−1

B BSB = DB where DA and DB are diagonal

matrices. You should use block multiplication to verify that S ≡

(
SA 0

0 SB

)
is such that

S−1CS = DC , a diagonal matrix.
Conversely, suppose C is diagonalized by S = (s1, · · · , sn+m) . Thus S has columns si.

For each of these columns, write in the form

si =

(
xi

yi

)

where xi ∈ Fn and where yi ∈ Fm. The result is

S =

(
S11 S12

S21 S22

)

where S11 is an n×n matrix and S22 is an m×m matrix. Then there is a diagonal matrix,
D1 being n× n and D2 m×m such that

D = diag (λ1, · · · , λn+m) =

(
D1 0

0 D2

)

295
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such that (
A 0

0 B

)(
S11 S12

S21 S22

)

=

(
S11 S12

S21 S22

)(
D1 0

0 D2

)

Hence by block multiplication

AS11 = S11D1, BS22 = S22D2

BS21 = S21D1, AS12 = S12D2

It follows each of the xi is an eigenvector of A or else is the zero vector and that each of the
yi is an eigenvector of B or is the zero vector. If there are n linearly independent xi, then
A is diagonalizable by Theorem 8.3.12 on Page 8.3.12.

The row rank of the matrix (x1, · · · ,xn+m) must be n because if this is not so, the rank
of S would be less than n+m which would mean S−1 does not exist. Therefore, since the
column rank equals the row rank, this matrix has column rank equal to n and this means
there are n linearly independent eigenvectors of A implying that A is diagonalizable. Similar
reasoning applies to B. ■

The following corollary follows from the same type of argument as the above.

Corollary 12.1.4 Let Ak be an nk × nk matrix and let C denote the block diagonal(
r∑

k=1

nk

)
×

(
r∑

k=1

nk

)

matrix given below.

C ≡


A1 0

. . .

0 Ar

 .

Then C is diagonalizable if and only if each Ak is diagonalizable.

Definition 12.1.5 A set, F of n×n matrices is said to be simultaneously diagonalizable if
and only if there exists a single invertible matrix S such that for every A ∈ F , S−1AS = DA

where DA is a diagonal matrix. F is a commuting family of matrices if whenever A,B ∈ F ,
AB = BA.

Lemma 12.1.6 If F is a set of n×n matrices which is simultaneously diagonalizable, then
F is a commuting family of matrices.

Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈ F . Then S−1AS = DA and S−1BS = DB where DA and DB

are diagonal matrices. Since diagonal matrices commute,

AB = SDAS
−1SDBS

−1 = SDADBS
−1

= SDBDAS
−1 = SDBS

−1SDAS
−1 = BA.
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Lemma 12.1.7 Let D be a diagonal matrix of the form

D ≡


λ1In1

0 · · · 0

0 λ2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 λrInr

 , (12.1)

where Ini denotes the ni × ni identity matrix and λi ̸= λj for i ̸= j and suppose B is a
matrix which commutes with D. Then B is a block diagonal matrix of the form

B =


B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Br

 (12.2)

where Bi is an ni × ni matrix.

Proof: Let B = (Bij) where Bii = Bi a block matrix as above in 12.2.
B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . .

. . .
...

Br1 Br2 · · · Brr


Then by block multiplication, since B is given to commute with D,

λjBij = λiBij

Therefore, if i ̸= j, Bij = 0. ■

Lemma 12.1.8 Let F denote a commuting family of n× n matrices such that each A ∈ F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

S−1AS = λI

and so
A = λI

Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than one
eigenvalue.

The significant part of the lemma is proved by induction on n. If n = 1, there is nothing
to prove because all the 1 × 1 matrices are already diagonal matrices. Suppose then that
the theorem is true for all k ≤ n − 1 where n ≥ 2 and let F be a commuting family of
diagonalizable n × n matrices. Pick A ∈ F which has more than one eigenvalue and let
S be an invertible matrix such that S−1AS = D where D is of the form given in 12.1.
By permuting the columns of S there is no loss of generality in assuming D has this form.
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Now denote by F̃ the collection of matrices,
{
S−1CS : C ∈ F

}
. Note F̃ features the single

matrix S.
It follows easily that F̃ is also a commuting family of diagonalizable matrices. By Lemma

12.1.7 every B ∈ F̃ is a block diagonal matrix of the form given in 12.2 because each of these
commutes with D described above as S−1AS and so by block multiplication, the diagonal
blocks Bi corresponding to different B ∈ F̃ commute.

By Corollary 12.1.4 each of these blocks is diagonalizable. This is because B is known to
be so. Therefore, by induction, since all the blocks are no larger than n−1×n−1 thanks to
the assumption that A has more than one eigenvalue, there exist invertible ni×ni matrices,
Ti such that T−1

i BiTi is a diagonal matrix whenever Bi is one of the matrices making up

the block diagonal of any B ∈ F̃ . It follows that for T defined by

T ≡


T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 Tr

 ,

then T−1BT = a diagonal matrix for every B ∈ F̃ including D. Consider ST. It follows
that for all C ∈ F ,

T−1

something in F̃︷ ︸︸ ︷
S−1CS T = (ST )

−1
C (ST ) = a diagonal matrix. ■

Theorem 12.1.9 Let F denote a family of matrices which are diagonalizable. Then F is
simultaneously diagonalizable if and only if F is a commuting family.

Proof: If F is a commuting family, it follows from Lemma 12.1.8 that it is simultaneously
diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma 12.1.6 that
it is a commuting family. ■

12.2 Schur’s Theorem

Recall that for a linear transformation, L ∈ L (V, V ) for V a finite dimensional inner product
space, it could be represented in the form

L =
∑
ij

lijvi ⊗ vj

where {v1, · · · ,vn} is an orthonormal basis. Of course different bases will yield different
matrices, (lij) . Schur’s theorem gives the existence of a basis in an inner product space such
that (lij) is particularly simple.

Definition 12.2.1 Let L ∈ L (V, V ) where V is a vector space. Then a subspace U of V is
L invariant if L (U) ⊆ U.

In what follows, F will be the field of scalars, usually C but maybe R.

Theorem 12.2.2 Let L ∈ L (H,H) for H a finite dimensional inner product space such
that the restriction of L∗to every L invariant subspace has its eigenvalues in F. Then there
exist constants, cij for i ≤ j and an orthonormal basis, {wi}ni=1 such that

L =

n∑
j=1

j∑
i=1

cijwi ⊗wj
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The constants, cii are the eigenvalues of L. Thus the matrix whose ijth entry is cij is upper
triangular.

Proof: If dim (H) = 1, let H = span (w) where |w| = 1. Then Lw = kw for some k.
Then

L = kw ⊗w

because by definition, w ⊗w (w) = w. Therefore, the theorem holds if H is 1 dimensional.
Now suppose the theorem holds for n− 1 = dim (H) . Let wn be an eigenvector for L∗.

Dividing by its length, it can be assumed |wn| = 1. Say L∗wn = µwn. Using the Gram
Schmidt process, there exists an orthonormal basis for H of the form {v1, · · · ,vn−1,wn} .
Then

(Lvk,wn) = (vk, L
∗wn) = (vk, µwn) = 0,

which shows
L : H1 ≡ span (v1, · · · ,vn−1) → span (v1, · · · ,vn−1) .

Denote by L1 the restriction of L to H1. Since H1 has dimension n − 1, the induction
hypothesis yields an orthonormal basis, {w1, · · · ,wn−1} for H1 such that

L1 =

n−1∑
j=1

j∑
i=1

cijwi⊗wj . (12.3)

Then {w1, · · · ,wn} is an orthonormal basis for H because every vector in

span (v1, · · · ,vn−1)

has the property that its inner product with wn is 0 so in particular, this is true for the
vectors {w1, · · · ,wn−1}. Now define cin to be the scalars satisfying

Lwn ≡
n∑

i=1

cinwi (12.4)

and let

B ≡
n∑

j=1

j∑
i=1

cijwi⊗wj .

Then by 12.4,

Bwn =

n∑
j=1

j∑
i=1

cijwiδnj =

n∑
j=1

cinwi = Lwn.

If 1 ≤ k ≤ n− 1,

Bwk =

n∑
j=1

j∑
i=1

cijwiδkj =

k∑
i=1

cikwi

while from 12.3,

Lwk = L1wk =

n−1∑
j=1

j∑
i=1

cijwiδjk =

k∑
i=1

cikwi.

Since L = B on the basis {w1, · · · ,wn} , it follows L = B.
It remains to verify the constants, ckk are the eigenvalues of L, solutions of the equation,

det (λI − L) = 0. However, the definition of det (λI − L) is the same as

det (λI − C)
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where C is the upper triangular matrix which has cij for i ≤ j and zeros elsewhere. This
equals 0 if and only if λ is one of the diagonal entries, one of the ckk. ■

Now with the above Schur’s theorem, the following diagonalization theorem comes very
easily. Recall the following definition.

Definition 12.2.3 Let L ∈ L (H,H) where H is a finite dimensional inner product space.
Then L is Hermitian if L∗ = L.

Theorem 12.2.4 Let L ∈ L (H,H) where H is an n dimensional inner product space. If
L is Hermitian, then all of its eigenvalues λk are real and there exists an orthonormal basis
of eigenvectors {wk} such that

L =
∑
k

λkwk⊗wk.

Proof: By Schur’s theorem, Theorem 12.2.2, there exist lij ∈ F such that

L =

n∑
j=1

j∑
i=1

lijwi⊗wj

Then by Lemma 11.4.2,

n∑
j=1

j∑
i=1

lijwi⊗wj = L = L∗ =

n∑
j=1

j∑
i=1

(lijwi⊗wj)
∗

=

n∑
j=1

j∑
i=1

lijwj⊗wi =

n∑
i=1

i∑
j=1

ljiwi⊗wj

By independence, if i = j, lii = lii and so these are all real. If i < j, it follows from
independence again that lij = 0 because the coefficients corresponding to i < j are all 0 on
the right side. Similarly if i > j, it follows lij = 0. Letting λk = lkk, this shows

L =
∑
k

λkwk ⊗wk

That each of these wk is an eigenvector corresponding to λk is obvious from the definition
of the tensor product. ■

12.3 Spectral Theory of Self Adjoint Operators

The following theorem is about the eigenvectors and eigenvalues of a self adjoint operator.
Such operators are also called Hermitian as in the case of matrices. The proof given gen-
eralizes to the situation of a compact self adjoint operator on a Hilbert space and leads to
many very useful results. It is also a very elementary proof because it does not use the
fundamental theorem of algebra and it contains a way, very important in applications, of
finding the eigenvalues. This proof depends more directly on the methods of analysis than
the preceding material. Recall the following notation.

Definition 12.3.1 Let X be an inner product space and let S ⊆ X. Then

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

Note that even if S is not a subspace, S⊥ is.
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Theorem 12.3.2 Let A ∈ L (X,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space of dimension n. Thus A = A∗. Then there exists an orthonormal
basis of eigenvectors, {vj}nj=1 .

Proof: Consider (Ax, x) . This quantity is always a real number because

(Ax, x) = (x,Ax) = (x,A∗x) = (Ax, x)

thanks to the assumption that A is self adjoint. Now define

λ1 ≡ inf {(Ax, x) : |x| = 1, x ∈ X1 ≡ X} .

Claim: λ1 is finite and there exists v1 ∈ X with |v1| = 1 such that (Av1, v1) = λ1.
Proof of claim: Let {uj}nj=1 be an orthonormal basis for X and for x ∈ X, let (x1, · · · ,

xn) be defined as the components of the vector x. Thus,

x =

n∑
j=1

xjuj .

Since this is an orthonormal basis, it follows from the axioms of the inner product that

|x|2 =

n∑
j=1

|xj |2 .

Thus

(Ax, x) =

 n∑
k=1

xkAuk,
∑
j=1

xjuj

 =
∑
k,j

xkxj (Auk, uj) ,

a real valued continuous function of (x1, · · · , xn) which is defined on the compact set

K ≡ {(x1, · · · , xn) ∈ Fn :

n∑
j=1

|xj |2 = 1}.

Therefore, it achieves its minimum from the extreme value theorem. Then define

v1 ≡
n∑

j=1

xjuj

where (x1, · · · , xn) is the point of K at which the above function achieves its minimum.
This proves the claim.

I claim that λ1 is an eigenvalue and v1 is an eigenvector. Letting w ∈ X1 ≡ X, the
function of the real variable, t, given by

f (t) ≡ (A (v1 + tw) , v1 + tw)

|v1 + tw|2
=

(Av1, v1) + 2tRe (Av1, w) + t2 (Aw,w)

|v1|2 + 2tRe (v1, w) + t2 |w|2

achieves its minimum when t = 0. Therefore, the derivative of this function evaluated at
t = 0 must equal zero. Using the quotient rule, this implies, since |v1| = 1 that

2Re (Av1, w) |v1|2 − 2Re (v1, w) (Av1, v1) = 2 (Re (Av1, w)− Re (v1, w)λ1) = 0.
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Thus Re (Av1 − λ1v1, w) = 0 for all w ∈ X. This implies Av1 = λ1v1. To see this, let w ∈ X
be arbitrary and let θ be a complex number with |θ| = 1 and

|(Av1 − λ1v1, w)| = θ (Av1 − λ1v1, w) .

Then
|(Av1 − λ1v1, w)| = Re

(
Av1 − λ1v1, θw

)
= 0.

Since this holds for all w, Av1 = λ1v1.
Continuing with the proof of the theorem, let X2 ≡ {v1}⊥ . This is a closed subspace of

X and A : X2 → X2 because for x ∈ X2,

(Ax, v1) = (x,Av1) = λ1 (x, v1) = 0.

Let
λ2 ≡ inf {(Ax, x) : |x| = 1, x ∈ X2}

As before, there exists v2 ∈ X2 such that Av2 = λ2v2, λ1 ≤ λ2. Now let X3 ≡ {v1, v2}⊥

and continue in this way. As long as k < n, it will be the case that {v1, · · · , vk}⊥ ̸= {0}.
This is because for k < n these vectors cannot be a spanning set and so there exists some
w /∈ span (v1, · · · , vk) . Then letting z be the closest point to w from span (v1, · · · , vk) , it
follows that w − z ∈ {v1, · · · , vk}⊥. Thus there is an decreasing sequence of eigenvalues
{λk}nk=1 and a corresponding sequence of eigenvectors, {v1, · · · , vn} with this being an
orthonormal set. ■

Contained in the proof of this theorem is the following important corollary.

Corollary 12.3.3 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then all the eigenvalues are real and for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues
of A, there exists an orthonormal set of vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,
λk ≡ inf {(Ax, x) : |x| = 1, x ∈ Xk}

where
Xk ≡ {u1, · · · , uk−1}⊥ , X1 ≡ X.

Corollary 12.3.4 Let A ∈ L (X,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space. Then the largest eigenvalue of A is given by

max {(Ax,x) : |x| = 1} (12.5)

and the minimum eigenvalue of A is given by

min {(Ax,x) : |x| = 1} . (12.6)

Proof: The proof of this is just like the proof of Theorem 12.3.2. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 12.5. The claim 12.6
follows from Theorem 12.3.2. ■

Another important observation is found in the following corollary.

Corollary 12.3.5 Let A ∈ L (X,X) where A is self adjoint. Then A =
∑

i λivi⊗vi where
Avi = λivi and {vi}ni=1 is an orthonormal basis.
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Proof : If vk is one of the orthonormal basis vectors, Avk = λkvk. Also,∑
i

λivi ⊗ vi (vk) =
∑
i

λivi (vk, vi) =
∑
i

λiδikvi = λkvk.

Since the two linear transformations agree on a basis, it follows they must coincide. ■
By Theorem 11.4.5 this says the matrix of A with respect to this basis {vi}ni=1 is the

diagonal matrix having the eigenvalues λ1, · · · , λn down the main diagonal.
The result of Courant and Fischer which follows resembles Corollary 12.3.3 but is more

useful because it does not depend on a knowledge of the eigenvectors.

Theorem 12.3.6 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,··· ,wk−1

{
min

{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
(12.7)

where if k = 1, {w1, · · · , wk−1}⊥ ≡ X.

Proof: From Theorem 12.3.2, there exist eigenvalues and eigenvectors with {u1, · · · , un}
orthonormal and λi ≤ λi+1.

(Ax, x) =

n∑
j=1

(Ax, uj) (x, uj) =

n∑
j=1

λj (x, uj) (uj , x) =

n∑
j=1

λj |(x, uj)|2

Recall that (z, w) =
∑

j (z, uj) (w, ui). Then let Y = {w1, · · · , wk−1}⊥

inf {(Ax, x) : |x| = 1, x ∈ Y } = inf


n∑

j=1

λj |(x, uj)|2 : |x| = 1, x ∈ Y


≤ inf


k∑

j=1

λj |(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y

 . (12.8)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 12.8 is no larger than

inf

λk
n∑

j=1

|(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y

 ≤ λk

because since {u1, · · · , un} is an orthonormal basis, |x|2 =
∑n

j=1 |(x, uj)|
2
. It follows, since

{w1, · · · , wk−1} is arbitrary,

sup
w1,··· ,wk−1

{
inf
{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
≤ λk. (12.9)

Then from Corollary 12.3.3,

λk = inf
{
(Ax, x) : |x| = 1, x ∈ {u1, · · · , uk−1}⊥

}
≤



304 CHAPTER 12. SELF ADJOINT OPERATORS

sup
w1,··· ,wk−1

{
inf
{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
≤ λk

Hence these are all equal and this proves the theorem. ■
The following corollary is immediate.

Corollary 12.3.7 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,··· ,wk−1

{
min

{
(Ax, x)

|x|2
: x ̸= 0, x ∈ {w1, · · · , wk−1}⊥

}}
(12.10)

where if k = 1, {w1, · · · , wk−1}⊥ ≡ X.

Here is a version of this for which the roles of max and min are reversed.

Corollary 12.3.8 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ min
w1,··· ,wn−k

{
max

{
(Ax, x)

|x|2
: x ̸= 0, x ∈ {w1, · · · , wn−k}⊥

}}
(12.11)

where if k = n, {w1, · · · , wn−k}⊥ ≡ X.

12.4 Positive and Negative Linear Transformations

The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n×n matrix but the theorem is stated and proved using a more general notation
because all these issues discussed here have interesting generalizations to functional analysis.

Definition 12.4.1 A self adjoint A ∈ L (X,X) , is positive definite if whenever x ̸= 0,
(Ax,x) > 0 and A is negative definite if for all x ̸= 0, (Ax,x) < 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) ≥ 0. A is negative semidefinite or
nonpositive for short if for all x, (Ax,x) ≤ 0.

The following lemma is of fundamental importance in determining which linear trans-
formations are positive or negative definite.

Lemma 12.4.2 Let X be a finite dimensional inner product space. A self adjoint A ∈
L (X,X) is positive definite if and only if all its eigenvalues are positive and negative definite
if and only if all its eigenvalues are negative. It is positive semidefinite if all the eigenvalues
are nonnegative and it is negative semidefinite if all the eigenvalues are nonpositive.
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Proof: Suppose first that A is positive definite and let λ be an eigenvalue. Then for x
an eigenvector corresponding to λ, λ (x,x) = (λx,x) = (Ax,x) > 0. Therefore, λ > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 12.3.2 and Corollary
12.3.5, A =

∑n
i=1 λiui ⊗ ui where the λi are the positive eigenvalues and {ui} are an

orthonormal set of eigenvectors. Therefore, letting x ̸= 0,

(Ax,x) =

((
n∑

i=1

λiui ⊗ ui

)
x,x

)
=

(
n∑

i=1

λiui (x,ui) ,x

)

=

(
n∑

i=1

λi (x,ui) (ui,x)

)
=

n∑
i=1

λi |(ui,x)|2 > 0

because, since {ui} is an orthonormal basis, |x|2 =
∑n

i=1 |(ui,x)|2 .
To establish the claim about negative definite, it suffices to note that A is negative

definite if and only if −A is positive definite and the eigenvalues of A are (−1) times the
eigenvalues of −A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. ■

The next theorem is about a way to recognize whether a self adjoint n × n complex
matrix A is positive or negative definite without having to find the eigenvalues. In order
to state this theorem, here is some notation.

Definition 12.4.3 Let A be an n× n matrix. Denote by Ak the k × k matrix obtained by
deleting the k + 1, · · · , n columns and the k + 1, · · · , n rows from A. Thus An = A and Ak

is the k × k submatrix of A which occupies the upper left corner of A. The determinants of
these submatrices are called the principle minors.

The following theorem is proved in [8]. For the sake of simplicity, we state this for real
matrices since this is also where the main interest lies.

Theorem 12.4.4 Let A be a self adjoint n× n matrix. Then A is positive definite if and
only if det (Ak) > 0 for every k = 1, · · · , n.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose
then that it is true for n−1 where n ≥ 2. Since det (A) > 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det (A). Pick two, λ1 and λ2 and let Aui = λiui where ui ̸= 0 for i = 1, 2 and
(u1,u2) = 0. Now if y ≡ α1u1 + α2u2 is an element of span (u1,u2) , then since these are
eigenvalues and (u1,u2)Rn = 0, a short computation shows

(A (α1u1 + α2u2) , α1u1 + α2u2) = |α1|2 λ1 |u1|2 + |α2|2 λ2 |u2|2 < 0.

Now letting x ∈ Rn−1, x ̸= 0, the induction hypothesis implies

(
xT , 0

)
A

(
x

0

)
= xTAn−1x = (An−1x,x) > 0.

The dimension of {z ∈ Rn : zn = 0} is n− 1 and the dimension of span (u1,u2) = 2 and so
there must be some nonzero x ∈ Rn which is in both of these subspaces of Rn. However,
the first computation would require that (Ax,x) < 0 while the second would require that
(Ax,x) > 0. This contradiction shows that all the eigenvalues must be positive. This proves
the if part of the theorem.
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To show the converse, note that, as above, (Ax,x) = xTAx. Suppose that A is positive
definite. Then this is equivalent to having

xTAx ≥ δ ∥x∥2

Note that for x ∈ Rk,

(
xT 0

)
A

(
x

0

)
= xTAkx ≥ δ ∥x∥2

From Lemma 12.4.2, this implies that all the eigenvalues of Ak are positive. Hence from
Lemma 12.4.2, it follows that det (Ak) > 0, being the product of its eigenvalues. ■

Corollary 12.4.5 Let A be a self adjoint n× n matrix. Then A is negative definite if and
only if det (Ak) (−1)

k
> 0 for every k = 1, · · · , n.

Proof: This is immediate from the above theorem by noting that, as in the proof of
Lemma 12.4.2, A is negative definite if and only if −A is positive definite. Therefore,
det (−Ak) > 0 for all k = 1, · · · , n, is equivalent to having A negative definite. However,

det (−Ak) = (−1)
k
det (Ak) . ■

12.5 The Square Root

With the above theory, it is possible to take fractional powers of certain elements of L (X,X)
where X is a finite dimensional inner product space. I will give two treatments of this, the
first pertaining to the square root only and the second more generally pertaining to the kth

root of a self adjoint nonnegative matrix.

Theorem 12.5.1 Let A ∈ L (X,X) be self adjoint and nonnegative. Then there exists a
unique self adjoint nonnegative B ∈ L (X,X) such that B2 = A and B commutes with every
element of L (X,X) which commutes with A.

Proof: By Theorem 12.3.2, there exists an orthonormal basis of eigenvectors of A, say
{vi}ni=1 such that Avi = λivi. Therefore, by Theorem 12.2.4, A =

∑
i λivi ⊗ vi where each

λi ≥ 0.
Now by Lemma 12.4.2, each λi ≥ 0. Therefore, it makes sense to define

B ≡
∑
i

λ
1/2
i vi ⊗ vi.

It is easy to verify that

(vi ⊗ vi) (vj ⊗ vj) =

{
0 if i ̸= j

vi ⊗ vi if i = j
.

Therefore, a short computation verifies that B2 =
∑

i λivi ⊗ vi = A. If C commutes with
A, then for some cij ,

C =
∑
ij

cijvi ⊗ vj

and so since they commute,∑
i,j,k

cijvi ⊗ vjλkvk ⊗ vk =
∑
i,j,k

cijλkδjkvi ⊗ vk =
∑
i,k

cikλkvi ⊗ vk
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=
∑
i,j,k

cijλkvk ⊗ vkvi ⊗ vj =
∑
i,j,k

cijλkδkivk ⊗ vj =
∑
j,k

ckjλkvk ⊗ vj

=
∑
k,i

cikλivi ⊗ vk

Then by independence,
cikλi = cikλk

Therefore, cikλ
1/2
i = cikλ

1/2
k which amounts to saying that B also commutes with C. It is

clear that this operator is self adjoint. This proves existence.
Suppose B1 is another square root which is self adjoint, nonnegative and commutes with

every linear transformation which commutes with A. Since both B,B1 are nonnegative,

(B (B −B1)x, (B −B1)x) ≥ 0,

(B1 (B −B1)x, (B −B1)x) ≥ 0 (12.12)

Now, adding these together, and using the fact that the two commute,((
B2 −B2

1

)
x, (B −B1)x

)
= ((A−A)x, (B −B1)x) = 0.

It follows that both inner products in 12.12 equal 0. Next use the existence part of this to
take the square root of B and B1 which is denoted by

√
B,

√
B1 respectively. Then

0 =
(√

B (B −B1)x,
√
B (B −B1)x

)
0 =

(√
B1 (B −B1)x,

√
B1 (B −B1)x

)
which implies

√
B (B −B1)x =

√
B1 (B −B1)x = 0. Thus also,

B (B −B1)x = B1 (B −B1)x = 0

Hence
0 = (B (B −B1)x−B1 (B −B1)x, x) = ((B −B1)x, (B −B1)x)

and so, since x is arbitrary, B1 = B. ■

12.6 Fractional Powers

The main result is the following theorem.

Theorem 12.6.1 Let A be a self adjoint and nonnegative n × n matrix (all eigenvalues
are nonnegative) and let k be a positive integer. Then there exists a unique self adjoint
nonnegative matrix B such that Bk = A.

Proof: By Theorem 12.3.2 or Corollary 6.4.12, there exists an orthonormal basis of
eigenvectors of A, say {vi}ni=1 such that Avi = λivi with each λi real. In particular, there
exists a unitary matrix U such that

U∗AU = D, A = UDU∗

where D has nonnegative diagonal entries. Define B in the obvious way.

B ≡ UD1/kU∗
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Then it is clear that B is self adjoint and nonnegative. Also it is clear that Bk = A. What

of uniqueness? Let p (t) be a polynomial whose graph contains the ordered pairs
(
λi, λ

1/k
i

)
where the λi are the diagonal entries of D, the eigenvalues of A. Then

p (A) = UP (D)U∗ = UD1/kU∗ ≡ B

Suppose then that Ck = A and C is also self adjoint and nonnegative.

CB = Cp (A) = Cp
(
Ck
)
= p

(
Ck
)
C = p (A)C = BC

and so {B,C} is a commuting family of non defective matrices. By Theorem 12.1.9 this
family of matrices is simultaneously diagonalizable. Hence there exists a single S such that

S−1BS = DB , S−1CS = DC

Where DC , DB denote diagonal matrices. Hence, raising to the power k, it follows that

A = Bk = SDk
BS

−1, A = Ck = SDk
CS

−1

Hence
SDk

BS
−1 = SDk

CS
−1

and soDk
B = Dk

C . Since the entries of the two diagonal matrices are nonnegative, this implies
DB = DC and so S−1BS = S−1CS which shows B = C. ■

A similar result holds for a general finite dimensional inner product space. See Problem
22 in the exercises.

12.7 Square Roots and Polar Decompositions

An application of Theorem 12.3.2, is the following fundamental result, important in geo-
metric measure theory and continuum mechanics. It is sometimes called the right polar
decomposition. The notation used is that which is seen in continuum mechanics, see for
example Gurtin [12]. Don’t confuse the U in this theorem with a unitary transformation.
It is not so. When the following theorem is applied in continuum mechanics, F is normally
the deformation gradient, the derivative of a nonlinear map from some subset of three di-
mensional space to three dimensional space. In this context, U is called the right Cauchy
Green strain tensor. It is a measure of how a body is stretched independent of rigid motions.
First, here is a simple lemma.

Lemma 12.7.1 Suppose R ∈ L (X,Y ) where X,Y are inner product spaces and R preserves
distances. Then R∗R = I.

Proof: Since R preserves distances, |Ru| = |u| for every u. Let u,v be arbitrary vectors
in X and let θ ∈ C, |θ| = 1, and θ (R∗Ru− u,v) = |(R∗Ru− u,v)|. Therefore from the
axioms of the inner product,

|u|2 + |v|2 + 2Re θ (u,v) = |θu|2 + |v|2 + θ (u,v) + θ̄ (v,u)

= |θu+ v|2 = (R (θu+ v) , R (θu+ v))

= (Rθu,Rθu) + (Rv,Rv) + (Rθu, Rv) + (Rv, Rθu)

= |θu|2 + |v|2 + θ (R∗Ru,v) + θ̄ (v, R∗Ru)

= |u|2 + |v|2 + 2Re θ (R∗Ru,v)
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and so for all u,v,

2Re θ (R∗Ru− u,v) = 2 |(R∗Ru− u,v)| = 0

Now let v = R∗Ru− u. It follows that R∗Ru− u = 0. ■
The decomposition in the following is called the right polar decomposition.

Theorem 12.7.2 Let X be a inner product space of dimension n and let Y be a inner
product space of dimension m ≥ n and let F ∈ L (X,Y ). Then there exists R ∈ L (X,Y )
and U ∈ L (X,X) such that

F = RU, U = U∗, (U is Hermitian),

all eigenvalues of U are non negative,

U2 = F ∗F,R∗R = I,

and |Rx| = |x| .

Proof: (F ∗F )
∗
= F ∗F and so by Theorem 12.3.2, there is an orthonormal basis of

eigenvectors, {v1, · · · ,vn} such that

F ∗Fvi = λivi, F
∗F =

n∑
i=1

λivi ⊗ vi.

It is also clear that λi ≥ 0 because

λi (vi,vi) = (F ∗Fvi,vi) = (Fvi, Fvi) ≥ 0.

Let

U ≡
n∑

i=1

λ
1/2
i vi ⊗ vi.

Then U2 = F ∗F, U = U∗, and the eigenvalues of U,
{
λ
1/2
i

}n

i=1
are all non negative.

Let {Ux1, · · · , Uxr} be an orthonormal basis for U (X) . By the Gram Schmidt procedure
there exists an extension to an orthonormal basis for X,

{Ux1, · · · , Uxr,yr+1, · · · ,yn} .

Next note that {Fx1, · · · , Fxr} is also an orthonormal set of vectors in Y because

(Fxk, Fxj) = (F ∗Fxk,xj) =
(
U2xk,xj

)
= (Uxk, Uxj) = δjk.

By the Gram Schmidt procedure, there exists an extension of {Fx1, · · · , Fxr} to an or-
thonormal basis for Y,

{Fx1, · · · , Fxr, zr+1, · · · , zm} .

Since m ≥ n, there are at least as many zk as there are yk. Now for x ∈ X, since

{Ux1, · · · , Uxr,yr+1, · · · ,yn}

is an orthonormal basis for X, there exist unique scalars

c1, · · · , cr, dr+1, · · · , dn
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such that

x =

r∑
k=1

ckUxk +

n∑
k=r+1

dkyk

Define

Rx ≡
r∑

k=1

ckFxk +

n∑
k=r+1

dkzk (12.13)

Thus

|Rx|2 =

r∑
k=1

|ck|2 +
n∑

k=r+1

|dk|2 = |x|2 .

Therefore, by Lemma 12.7.1 R∗R = I.
Then also there exist unique scalars bk such that for a given x ∈ X,

Ux =
r∑

k=1

bkUxk (12.14)

and so from 12.13,

RUx =

r∑
k=1

bkFxk = F

(
r∑

k=1

bkxk

)
Is F (

∑r
k=1 bkxk) = F (x)?(

F

(
r∑

k=1

bkxk

)
− F (x) , F

(
r∑

k=1

bkxk

)
− F (x)

)

=

(
(F ∗F )

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U2

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U

(
r∑

k=1

bkxk − x

)
, U

(
r∑

k=1

bkxk − x

))

=

(
r∑

k=1

bkUxk − Ux,

r∑
k=1

bkUxk − Ux

)
= 0

Because from 12.14, Ux =
∑r

k=1 bkUxk. Therefore, RUx = F (
∑r

k=1 bkxk) = F (x). ■
The following corollary follows as a simple consequence of this theorem. It is called the

left polar decomposition.

Corollary 12.7.3 Let F ∈ L (X,Y ) and suppose n ≥ m where X is a inner product space of
dimension n and Y is a inner product space of dimension m. Then there exists a Hermitian
U ∈ L (X,X) , and an element of L (X,Y ) , R, such that

F = UR, RR∗ = I.

Proof: Recall that L∗∗ = L and (ML)
∗

= L∗M∗. Now apply Theorem 12.7.2 to
F ∗ ∈ L (Y,X). Thus, F ∗ = R∗U where R∗ and U satisfy the conditions of that theorem.
Then F = UR and RR∗ = R∗∗R∗ = I. ■

The following existence theorem for the polar decomposition of an element of L (X,X)
is a corollary.
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Corollary 12.7.4 Let F ∈ L (X,X). Then there exists a Hermitian W ∈ L (X,X) , and
a unitary matrix Q such that F = WQ, and there exists a Hermitian U ∈ L (X,X) and a
unitary R, such that F = RU.

This corollary has a fascinating relation to the question whether a given linear transfor-
mation is normal. Recall that an n×n matrix A, is normal if AA∗ = A∗A. Retain the same
definition for an element of L (X,X) .

Theorem 12.7.5 Let F ∈ L (X,X) . Then F is normal if and only if in Corollary 12.7.4
RU = UR and QW =WQ.

Proof: I will prove the statement about RU = UR and leave the other part as an
exercise. First suppose that RU = UR and show F is normal. To begin with,

UR∗ = (RU)
∗
= (UR)

∗
= R∗U.

Therefore,

F ∗F = UR∗RU = U2

FF ∗ = RUUR∗ = URR∗U = U2

which shows F is normal.
Now suppose F is normal. Is RU = UR? Since F is normal,

FF ∗ = RUUR∗ = RU2R∗

and
F ∗F = UR∗RU = U2.

Therefore, RU2R∗ = U2, and both are nonnegative and self adjoint. Therefore, the square
roots of both sides must be equal by the uniqueness part of the theorem on fractional powers.
It follows that the square root of the first, RUR∗ must equal the square root of the second,
U. Therefore, RUR∗ = U and so RU = UR. This proves the theorem in one case. The other
case in which W and Q commute is left as an exercise. ■

12.8 An Application to Statistics

A random vector is a function X : Ω → Rp where Ω is a probability space. This means
that there exists a σ algebra of measurable sets F and a probability measure P : F → [0, 1].
In practice, people often don’t worry too much about the underlying probability space and
instead pay more attention to the distribution measure of the random variable. For E a
suitable subset of Rp, this measure gives the probability that X has values in E. There
are often excellent reasons for believing that a random vector is normally distributed. This
means that the probability that X has values in a set E is given by∫

E

1

(2π)
p/2

det (Σ)
1/2

exp

(
−1

2
(x−m)

∗
Σ−1 (x−m)

)
dx

The expression in the integral is called the normal probability density function. There are
two parameters, m and Σ where m is called the mean and Σ is called the covariance matrix.
It is a symmetric matrix which has all real eigenvalues which are all positive. While it may
be reasonable to assume this is the distribution, in general, you won’t know m and Σ and
in order to use this formula to predict anything, you would need to know these quantities. I
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am following a nice discussion given in Wikipedia which makes use of the existence of square
roots.

What people do to estimate these is to take n independent observations x1, · · · ,xn and
try to predict what m and Σ should be based on these observations. One criterion used for
making this determination is the method of maximum likelihood. In this method, you seek
to choose the two parameters in such a way as to maximize the likelihood which is given as

n∏
i=1

1

det (Σ)
1/2

exp

(
−1

2
(xi−m)

∗
Σ−1 (xi−m)

)
.

For convenience the term (2π)
p/2

was ignored. Maximizing the above is equivalent to max-
imizing the ln of the above. So taking ln,

n

2
ln
(
det
(
Σ−1

))
− 1

2

n∑
i=1

(xi−m)
∗
Σ−1 (xi−m)

Note that the above is a function of the entries of m. Take the partial derivative with
respect to ml. Since the matrix Σ−1 is symmetric this implies

n∑
i=1

∑
r

(xir −mr) Σ
−1
rl = 0 each l.

Written in terms of vectors,
n∑

i=1

(xi −m)
∗
Σ−1 = 0

and so, multiplying by Σ on the right and then taking adjoints, this yields

n∑
i=1

(xi −m) = 0, nm =

n∑
i=1

xi, m =
1

n

n∑
i=1

xi ≡ x̄.

Now that m is determined, it remains to find the best estimate for Σ. (xi−m)
∗
Σ−1 (xi−m)

is a scalar, so since trace (AB) = trace (BA) ,

(xi−m)
∗
Σ−1 (xi−m) = trace

(
(xi−m)

∗
Σ−1 (xi−m)

)
= trace

(
(xi−m) (xi−m)

∗
Σ−1

)
Therefore, the thing to maximize is

n ln
(
det
(
Σ−1

))
−

n∑
i=1

trace
(
(xi−m) (xi−m)

∗
Σ−1

)

= n ln
(
det
(
Σ−1

))
− trace


S︷ ︸︸ ︷(

n∑
i=1

(xi−m) (xi−m)
∗

)
Σ−1


We assume that S has rank p. Thus it is a self adjoint matrix which has all positive eigen-
values. Therefore, from the property of the trace, the thing to maximize is

n ln
(
det
(
Σ−1

))
− trace

(
S1/2Σ−1S1/2

)
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Now let B = S1/2Σ−1S1/2. Then B is positive and self adjoint also and so there ex-
ists U unitary such that B = U∗DU where D is the diagonal matrix having the positive
scalars λ1, · · · , λp down the main diagonal. Solving for Σ−1 in terms of B, this yields
S−1/2BS−1/2 = Σ−1 and so

ln
(
det
(
Σ−1

))
= ln

(
det
(
S−1/2

)
det (B) det

(
S−1/2

))
= ln

(
det
(
S−1

))
+ ln (det (B))

which yields
C (S) + n ln (det (B))− trace (B)

as the thing to maximize. Of course this yields

C (S) + n ln

(
p∏

i=1

λi

)
−

p∑
i=1

λi

= C (S) + n

p∑
i=1

ln (λi)−
p∑

i=1

λi

as the quantity to be maximized. To do this, take ∂/∂λk and set equal to 0. This yields
λk = n. Therefore, from the above, B = U∗nIU = nI. Also from the above,

B−1 =
1

n
I = S−1/2ΣS−1/2

and so

Σ =
1

n
S =

1

n

n∑
i=1

(xi −m) (xi −m)
∗

This has shown that the maximum likelihood estimates are

m = x̄ ≡ 1

n

n∑
i=1

xi, Σ =
1

n

n∑
i=1

(xi −m) (xi −m)
∗
.

12.9 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 12.9.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 =
(λx,x) = (A∗Ax,x) = (Ax,Ax) ≥ 0. ■

Definition 12.9.2 Let A be an m×n matrix. The singular values of A are the square roots
of the positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decom-
position. In all that follows, I will write the following partitioned matrix(

σ 0

0 0

)
where σ denotes an r × r diagonal matrix of the form

σ1 0
. . .

0 σk
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and the bottom row of zero matrices in the partitioned matrix, as well as the right columns
of zero matrices are each of the right size so that the resulting matrix is m × n. Either
could vanish completely. However, I will write it in the above form. It is easy to make the
necessary adjustments in the other two cases.

Theorem 12.9.3 Let A be an m× n matrix. Then there exist unitary matrices, U and V
of the appropriate size such that

U∗AV =

(
σ 0

0 0

)

where σ is of the form

σ =


σ1 0

. . .

0 σk


for the σi the singular values of A, arranged in order of decreasing size.

Proof: By the above lemma and Theorem 12.3.2 there exists an orthonormal basis,
{vi}ni=1 for Fn such that A∗Avi = σ2

ivi where σ
2
i > 0 for i = 1, · · · , k, (σi > 0) , and equals

zero if i > k. Let the eigenvalues σ2
i be arranged in decreasing order. It is desired to have

AV = U

(
σ 0

0 0

)

and so if U =
(

u1 · · · um

)
, one needs to have for j ≤ k, σjuj = Avj . Thus let

uj ≡ σ−1
j Avj , j ≤ k

Then for i, j ≤ k,

(ui,uj) = σ−1
j σ−1

i (Avi, Avj) = σ−1
j σ−1

i (A∗Avi,vj)

= σ−1
j σ−1

i σ2
i (vi,vj) = δij

Now extend to an orthonormal basis of Fm, {u1, · · · ,uk,uk+1, · · · ,um} . If i > k,

(Avi, Avi) = (A∗Avi,vi) = 0 (vi,vi) = 0

so Avi = 0. Then for σ given as above in the statement of the theorem, it follows that

AV = U

(
σ 0

0 0

)
, U∗AV =

(
σ 0

0 0

)
■

The singular value decomposition has as an immediate corollary the following interesting
result.

Corollary 12.9.4 Let A be an m×n matrix. Then the rank of A and A∗equals the number
of singular values.
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Proof: Since V and U are unitary, they are each one to one and onto and so it follows
that

rank (A) = rank (U∗AV ) = rank

(
σ 0

0 0

)
= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U) = rank
(
(U∗AV )

∗)
= rank

((
σ 0

0 0

)∗)
= number of singular values. ■

12.10 Approximation in the Frobenius Norm

The Frobenius norm is one of many norms for a matrix. It is arguably the most obvious of
all norms. Here is its definition.

Definition 12.10.1 Let A be a complex m× n matrix. Then

||A||F ≡ (trace (AA∗))
1/2

Also this norm comes from the inner product

(A,B)F ≡ trace (AB∗)

Thus ||A||2F is easily seen to equal
∑

ij |aij |
2
so essentially, it treats the matrix as a vector

in Fm×n.

Lemma 12.10.2 Let A be an m× n complex matrix with singular matrix

Σ =

(
σ 0

0 0

)

with σ as defined above, U∗AV = Σ. Then

||Σ||2F = ||A||2F (12.15)

and the following hold for the Frobenius norm. If U, V are unitary and of the right size,

||UA||F = ||A||F , ||UAV ||F = ||A||F . (12.16)

Proof: From the definition and letting U, V be unitary and of the right size,

||UA||2F ≡ trace (UAA∗U∗) = trace (U∗UAA∗) = trace (AA∗) = ||A||2F

Also,
||AV ||2F ≡ trace (AV V ∗A∗) = trace (AA∗) = ||A||2F .

It follows
∥Σ∥2F = ||U∗AV ||2F = ||AV ||2F = ||A||2F . ■

Of course, this shows that

||A||2F =
∑
i

σ2
i ,

the sum of the squares of the singular values of A.
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Why is the singular value decomposition important? It implies

A = U

(
σ 0

0 0

)
V ∗

where σ is the diagonal matrix having the singular values down the diagonal. Now sometimes
A is a huge matrix, 1000×2000 or something like that. This happens in applications to
situations where the entries of A describe a picture. What also happens is that most of the
singular values are very small. What if you deleted those which were very small, say for all
i ≥ l and got a new matrix

A′ ≡ U

(
σ′ 0

0 0

)
V ∗?

Then the entries of A′ would end up being close to the entries of A but there is much less
information to keep track of. This turns out to be very useful. More precisely, letting

σ =


σ1 0

. . .

0 σr

 , U∗AV =

(
σ 0

0 0

)
,

||A−A′||2F =

∣∣∣∣∣
∣∣∣∣∣U
(
σ − σ′ 0

0 0

)
V ∗

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
k=l+1

σ2
k

Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out
of all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.
Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out of
all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.

Here is roughly why this is so. Suppose B̃ approximates A =

(
σr×r 0

0 0

)
as well as

possible out of all matrices B̃ having rank no more than l < r the size of the matrix σr×r.
Suppose the rank of B̃ is l. Then obviously no column xj of B̃ in a basis for the column
space can have j > r since if so, the approximation of A could be improved by simply

making this column into a zero column. Therefore there are

(
r

l

)
choices for columns

for a basis for the column space of B̃. Suppose you pick the first l for instance. Thus the
first column of B̃ should be σ1e1 to make the approximation up to the first column as good
as possible. Now consider approximating as well as possible up to the first two columns.
Clearly the second column should be σ2e2 and in this way, the approximation up to the
first two columns is exact. Continue this way till the lth column. Then since B̃ has rank
l, all other columns should be zero columns since you cannot have a nonzero entry in any
diagonal position and keep the rank of B̃ only l. Then since it is desired to get the best
approximation of A you wouldn’t want any off diagonal nonzero terms either. The square
of the error in doing this, picking the first l columns as a basis would be

∑r
j=l+1 σ

2
j . On the

other hand, if you picked other columns than the first l in the basis for the column space
of B̃, you would have a larger error because you would include sums involving the larger
singular values. Thus letting σ′ denote the l × l upper left corner of σ, B̃ should be of the
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form

(
σ′ 0

0 0

)
. For example,  3 0 0 0

0 2 0 0

0 0 1 0


is best approximated by the rank 2 matrix 3 0 0 0

0 2 0 0

0 0 0 0


Now suppose A is an m× n matrix. Let U, V be unitary and of the right size such that

U∗AV =

(
σr×r 0

0 0

)
Then suppose B approximates A as well as possible in the Frobenius norm. Then you would
want

∥A−B∥ = ∥U∗AV − U∗BV ∥ =

∥∥∥∥∥
(
σr×r 0

0 0

)
− U∗BV

∥∥∥∥∥
to be as small as possible. Therefore, from the above discussion, you should have

U∗BV =

(
σ′ 0

0 0

)
, B = U

(
σ′ 0

0 0

)
V ∗

whereas

A = U

(
σr×r 0

0 0

)
V ∗

12.11 Least Squares and Singular Value Decomposi-
tion

The singular value decomposition also has a very interesting connection to the problem of
least squares solutions. Recall that it was desired to find x such that |Ax− y| is as small as
possible. Lemma 11.5.1 shows that there is a solution to this problem which can be found by
solving the system A∗Ax = A∗y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.

A∗︷ ︸︸ ︷
V

(
σ 0

0 0

)
U∗

A︷ ︸︸ ︷
U

(
σ 0

0 0

)
V ∗x =

A∗︷ ︸︸ ︷
V

(
σ 0

0 0

)
U∗y.

Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y. (12.17)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0

0 0

)
U∗y. (12.18)
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12.12 The Moore Penrose Inverse

The particular solution of the least squares problem given in 12.18 is important enough that
it motivates the following definition.

Definition 12.12.1 Let A be an m × n matrix. Then the Moore Penrose inverse of A,
denoted by A+ is defined as

A+ ≡ V

(
σ−1 0

0 0

)
U∗.

Here

U∗AV =

(
σ 0

0 0

)
as above.

Thus A+y is a solution to the minimization problem to find x which minimizes |Ax− y| .
In fact, one can say more about this. In the following picture My denotes the set of least
squares solutions x such that A∗Ax = A∗y.

My
x

A+(y)

ker(A∗A)

Then A+ (y) is as given in the picture.

Proposition 12.12.2 A+y is the solution to the problem of minimizing |Ax− y| for all x
which has smallest norm. Thus∣∣AA+y − y

∣∣ ≤ |Ax− y| for all x

and if x1 satisfies |Ax1 − y| ≤ |Ax− y| for all x, then |A+y| ≤ |x1| .

Proof: Consider x satisfying 12.17, equivalently A∗Ax =A∗y,(
σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y

which has smallest norm. This is equivalent to making |V ∗x| as small as possible because
V ∗ is unitary and so it preserves norms. For z a vector, denote by (z)k the vector in Fk

which consists of the first k entries of z. Then if x is a solution to 12.17(
σ2 (V ∗x)k

0

)
=

(
σ (U∗y)k

0

)
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and so (V ∗x)k = σ−1 (U∗y)k . Thus the first k entries of V ∗x are determined. In order to
make |V ∗x| as small as possible, the remaining n− k entries should equal zero. Therefore,

V ∗x =

(
(V ∗x)k

0

)
=

(
σ−1 (U∗y)k

0

)
=

(
σ−1 0

0 0

)
U∗y

and so

x = V

(
σ−1 0

0 0

)
U∗y ≡ A+y ■

Lemma 12.12.3 The matrix A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian. (12.19)

Proof: This is routine. Recall

A = U

(
σ 0

0 0

)
V ∗

and

A+ = V

(
σ−1 0

0 0

)
U∗

so you just plug in and verify it works. ■
A much more interesting observation is that A+ is characterized as being the unique

matrix which satisfies 12.19. This is the content of the following Theorem. The conditions
are sometimes called the Penrose conditions.

Theorem 12.12.4 Let A be an m × n matrix. Then a matrix A0, is the Moore Penrose
inverse of A if and only if A0 satisfies

AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian. (12.20)

Proof: From the above lemma, the Moore Penrose inverse satisfies 12.20. Suppose then
that A0 satisfies 12.20. It is necessary to verify that A0 = A+. Recall that from the singular
value decomposition, there exist unitary matrices, U and V such that

U∗AV = Σ ≡

(
σ 0

0 0

)
, A = UΣV ∗.

Recall that

A+ = V

(
σ−1 0

0 0

)
U∗

Let

A0 = V

(
P Q

R S

)
U∗ (12.21)

where P is r × r, the same size as the diagonal matrix composed of the singular values on
the main diagonal.

Next use the first equation of 12.20 to write

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ =

A︷ ︸︸ ︷
UΣV ∗.
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Then multiplying both sides on the left by U∗ and on the right by V,(
σ 0

0 0

)(
P Q

R S

)(
σ 0

0 0

)
=

(
σPσ 0

0 0

)
=

(
σ 0

0 0

)
(12.22)

Therefore, P = σ−1. From the requirement that AA0 is Hermitian,

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗ = U

(
σ 0

0 0

)(
P Q

R S

)
U∗

must be Hermitian. Therefore, it is necessary that(
σ 0

0 0

)(
P Q

R S

)
=

(
σP σQ

0 0

)
=

(
I σQ

0 0

)
is Hermitian. Then (

I σQ

0 0

)
=

(
I 0

Q∗σ 0

)
and so Q = 0.

Next,

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ = V

(
Pσ 0

Rσ 0

)
V ∗ = V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)
is Hermitian. Thus R = 0 because(

I 0

Rσ 0

)∗

=

(
I σ∗R∗

0 0

)
which requires Rσ = 0. Now multiply on right by σ−1 to find that R = 0.

Use 12.21 and the second equation of 12.20 to write

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗ =

A0︷ ︸︸ ︷
V

(
P Q

R S

)
U∗.

which implies (
P Q

R S

)(
σ 0

0 0

)(
P Q

R S

)
=

(
P Q

R S

)
.

This yields from the above in which is was shown that R,Q are both 0(
σ−1 0

0 S

)(
σ 0

0 0

)(
σ−1 0

0 S

)
=

(
σ−1 0

0 0

)
(12.23)

=

(
σ−1 0

0 S

)
. (12.24)
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Therefore, S = 0 also and so

V ∗A0U ≡

(
P Q

R S

)
=

(
σ−1 0

0 0

)

which says

A0 = V

(
σ−1 0

0 0

)
U∗ ≡ A+. ■

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 12.20. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.

12.13 Exercises

1. Show (A∗)
∗
= A and (AB)

∗
= B∗A∗.

2. Prove Corollary 12.3.8.

3. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that for any square matrix A, it follows
that A∗A is unitarily similar to AA∗.

5. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall forM an
n×n matrix, trace (M) ≡

∑n
i=1Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

6. Let A be an m × n matrix. Show ||A||2F ≡ (A,A)F =
∑

j σ
2
j where the σj are the

singular values of A.

7. If A is a general n × n matrix having possibly repeated eigenvalues, show there is a
sequence {Ak} of n × n matrices having distinct eigenvalues which has the property
that the ijth entry of Ak converges to the ijth entry of A for all ij. Hint: Use Schur’s
theorem.

8. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigen-
vectors {vk}nk=1 , Avk = λkvk. Let p (λ) be the characteristic polynomial. Show
p (A)vk = p (λk)vk = 0. Then since {vk} is a basis, it follows p (A)x = 0 for all
x and so p (A) = 0. Next in the general case, use Problem 7 to obtain a sequence {Ak}
of matrices whose entries converge to the entries of A such that Ak has n distinct
eigenvalues and therefore by Theorem 6.1.7 Ak has a basis of eigenvectors. There-
fore, from the first part and for pk (λ) the characteristic polynomial for Ak, it follows
pk (Ak) = 0. Now explain why and the sense in which limk→∞ pk (Ak) = p (A) .

9. Prove that Theorem 12.4.4 and Corollary 12.4.5 can be strengthened so that the
condition on the Ak is necessary as well as sufficient. Hint: Consider vectors of the

form

(
x

0

)
where x ∈ Fk.
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10. Show directly that if A is an n× n matrix and A = A∗ (A is Hermitian) then all the
eigenvalues are real and eigenvectors can be assumed to be real and that eigenvectors
associated with distinct eigenvalues are orthogonal, (their inner product is zero).

11. Let v1, · · · ,vn be an orthonormal basis for Fn. Let Q be a matrix whose ith column
is vi. Show

Q∗Q = QQ∗ = I.

12. Show that an n × n matrix Q is unitary if and only if it preserves distances. This
means |Qv| = |v| . This was done in the text but you should try to do it for yourself.

13. Suppose {v1, · · · ,vn} and {w1, · · · ,wn} are two orthonormal bases for Fn and sup-
pose Q is an n × n matrix satisfying Qvi = wi. Then show Q is unitary. If |v| = 1,
show there is a unitary transformation which maps v to e1.

14. Finish the proof of Theorem 12.7.5.

15. Let A be a Hermitian matrix so A = A∗ and suppose all eigenvalues of A are larger
than δ2. Show

(Av,v) ≥ δ2 |v|2

Where here, the inner product is (v,u) ≡
∑n

j=1 vjuj .

16. The discrete Fourier transform maps Cn → Cn as follows.

F (x) = z where zk =
1√
n

n−1∑
j=0

e−i 2π
n jkxj .

Show that F−1 exists and is given by the formula

F−1 (z) = x where xj =
1√
n

n−1∑
j=0

ei
2π
n jkzk

Here is one way to approach this problem. Note z = Ux where

U =
1√
n



e−i 2π
n 0·0 e−i 2π

n 1·0 e−i 2π
n 2·0 · · · e−i 2π

n (n−1)·0

e−i 2π
n 0·1 e−i 2π

n 1·1 e−i 2π
n 2·1 · · · e−i 2π

n (n−1)·1

e−i 2π
n 0·2 e−i 2π

n 1·2 e−i 2π
n 2·2 · · · e−i 2π

n (n−1)·2

...
...

...
...

e−i 2π
n 0·(n−1) e−i 2π

n 1·(n−1) e−i 2π
n 2·(n−1) · · · e−i 2π

n (n−1)·(n−1)


Now argue U is unitary and use this to establish the result. To show this verify
each row has length 1 and the inner product of two different rows gives 0. Now
Ukj = e−i 2π

n jk and so (U∗)kj = ei
2π
n jk.

17. Let f be a periodic function having period 2π. The Fourier series of f is an expression
of the form

∞∑
k=−∞

cke
ikx ≡ lim

n→∞

n∑
k=−n

cke
ikx

and the idea is to find ck such that the above sequence converges in some way to f . If

f (x) =

∞∑
k=−∞

cke
ikx
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and you formally multiply both sides by e−imx and then integrate from 0 to 2π,
interchanging the integral with the sum without any concern for whether this makes
sense, show it is reasonable from this to expect

cm =
1

2π

∫ 2π

0

f (x) e−imxdx.

Now suppose you only know f (x) at equally spaced points 2πj/n for j = 0, 1, · · · , n.
Consider the Riemann sum for this integral obtained from using the left endpoint of
the subintervals determined from the partition

{
2π
n j
}n
j=0

. How does this compare with

the discrete Fourier transform? What happens as n→ ∞ to this approximation?

18. Suppose A is a real 3 × 3 orthogonal matrix (Recall this means AAT = ATA = I. )
having determinant 1. Show it must have an eigenvalue equal to 1. Note this shows
there exists a vector x ̸= 0 such that Ax = x. Hint: Show first or recall that any
orthogonal matrix must preserve lengths. That is, |Ax| = |x| .

19. Let A be a complex m×n matrix. Using the description of the Moore Penrose inverse
in terms of the singular value decomposition, show that

lim
δ→0+

(A∗A+ δI)
−1
A∗ = A+

where the convergence happens in the Frobenius norm. Also verify, using the singular
value decomposition, that the inverse exists in the above formula. Observe that this
shows that the Moore Penrose inverse is unique.

20. Show that A+ = (A∗A)
+
A∗. Hint: You might use the description of A+ in terms of

the singular value decomposition.

21. In Theorem 12.6.1. Show that every matrix which commutes with A also commutes
with A1/k the unique nonnegative self adjoint kth root.

22. Let X be a finite dimensional inner product space and let β = {u1, · · · , un} be an
orthonormal basis for X. Let A ∈ L (X,X) be self adjoint and nonnegative and
let M be its matrix with respect to the given orthonormal basis. Show that M is
nonnegative, self adjoint also. Use this to show that A has a unique nonnegative self
adjoint kth root.

23. Let A be a complex m × n matrix having singular value decomposition U∗AV =(
σ 0

0 0

)
as explained above, where σ is k × k. Show that

ker (A) = span (V ek+1, · · · , V en) ,

the last n− k columns of V .

24. The principal submatrices of an n × n matrix A are Ak where Ak consists those
entries which are in the first k rows and first k columns of A. Suppose A is a real
symmetric matrix and that x →⟨Ax,x⟩ is positive definite. This means that if x ̸= 0,
then ⟨Ax,x⟩ > 0. Show that each of the principal submatrices are positive definite.

Hint: Consider
(

xT 0
)
A

(
x

0

)
where x consists of k entries.
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25. ↑Show that if A is a symmetric positive definite n× n real matrix, then A has an LU
factorization with the property that each entry on the main diagonal in U is positive.
Hint: This is pretty clear if A is 1×1. Assume true for (n− 1)× (n− 1). Then

A =

(
Â a

aT ann

)

Then as above, Â is positive definite. Thus it has an LU factorization with all positive
entries on the diagonal of U . Notice that, using block multiplication,

A =

(
LU a

aT ann

)
=

(
L 0

0 1

)(
U L−1a

aT ann

)

Now consider that matrix on the right. Argue that it is of the form L̃Ũ where Ũ
has all positive diagonal entries except possibly for the one in the nth row and nth

column. Now explain why det (A) > 0 and argue that in fact all diagonal entries of Ũ
are positive.

26. ↑Let A be a real symmetric n× n matrix and A = LU where L has all ones down the
diagonal and U has all positive entries down the main diagonal. Show that A = LDH
where L is lower triangular and H is upper triangular, each having all ones down the
diagonal and D a diagonal matrix having all positive entries down the main diagonal.
In fact, these are the diagonal entries of U .

27. ↑Show that if L,L1 are lower triangular with ones down the main diagonal and H,H1

are upper triangular with all ones down the main diagonal and D, D1 are diagonal
matrices having all positive diagonal entries, and if LDH = L1D1H1, then L =
L1, H = H1, D = D1. Hint: Explain why D−1

1 L−1
1 LD = H1H

−1. Then explain
why the right side is upper triangular and the left side is lower triangular. Conclude
these are both diagonal matrices. However, there are all ones down the diagonal in
the expression on the right. Hence H = H1. Do something similar to conclude that
L = L1 and then that D = D1.

28. ↑Show that if A is a symmetric real matrix such that x → ⟨Ax,x⟩ is positive definite,
then there exists a lower triangular matrix L having all positive entries down the
diagonal such that A = LLT . Hint: From the above, A = LDH where L,H are
respectively lower and upper triangular having all ones down the diagonal and D is a
diagonal matrix having all positive entries. Then argue from the above problem and
symmetry of A that H = LT . Now modify L by making it equal to LD1/2. This is
called the Cholesky factorization.

29. Given F ∈ L (X,Y ) where X,Y are inner product spaces and dim (X) = n ≤ m =
dim (Y ) , there exists R,U such that U is nonnegative and Hermitian and R∗R = I
such that F = RU. Show that U is actually unique and that R is determined on
U (X) .



Chapter 13

Norms
In this chapter, X and Y are finite dimensional vector spaces which have a norm. The
following is a definition.

Definition 13.0.1 A linear space X is a normed linear space if there is a norm defined on
X, ||·|| satisfying

||x|| ≥ 0, ||x|| = 0 if and only if x = 0,

||x+ y|| ≤ ||x||+ ||y|| ,

||cx|| = |c| ||x||

whenever c is a scalar. A set, U ⊆ X, a normed linear space is open if for every p ∈ U,
there exists δ > 0 such that

B (p, δ) ≡ {x : ||x− p|| < δ} ⊆ U.

Thus, a set is open if every point of the set is an interior point. Also, limn→∞ xn= x means
limn→∞ ∥xn − x∥ = 0. This is written sometimes as xn → x.

Note first that
∥x∥ = ∥x− y + y∥ ≤ ∥x− y∥+ ∥y∥

so
∥x∥ − ∥y∥ ≤ ∥x− y∥ .

Similarly
∥y∥ − ∥x∥ ≤ ∥x− y∥

and so
|∥x∥ − ∥y∥| ≤ ∥x− y∥ . (13.1)

To begin with recall the Cauchy Schwarz inequality which is stated here for convenience
in terms of the inner product space, Cn.

Theorem 13.0.2 The following inequality holds for ai and bi ∈ C.∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|2
)1/2( n∑

i=1

|bi|2
)1/2

. (13.2)

Let X be a finite dimensional normed linear space with norm ||·|| where the field of
scalars is denoted by F and is understood to be either R or C. Let {v1,· · · ,vn} be a basis
for X. If x ∈ X, denote by xi the i

th component of x with respect to this basis. Thus

x =

n∑
i=1

xivi.

Definition 13.0.3 For x ∈ X and {v1, · · · ,vn} a basis, define a new norm by

|x| ≡

(
n∑

i=1

|xi|2
)1/2

.

where

x =

n∑
i=1

xivi.

325
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Similarly, for y ∈ Y with basis {w1, · · · ,wm}, and yi its components with respect to this
basis,

|y| ≡

(
m∑
i=1

|yi|2
)1/2

For A ∈ L (X,Y ) , the space of linear mappings from X to Y,

||A|| ≡ sup{|Ax| : |x| ≤ 1}. (13.3)

The first thing to show is that the two norms, ||·|| and |·| , are equivalent. This means
the conclusion of the following theorem holds.

Theorem 13.0.4 Let (X, ||·||) be a finite dimensional normed linear space and let |·| be
described above relative to a given basis, {v1, · · · ,vn} . Then |·| is a norm and there exist
constants δ,∆ > 0 independent of x such that

δ ||x|| ≤ |x| ≤∆ ||x|| . (13.4)

Proof: All of the above properties of a norm are obvious except the second, the triangle
inequality. To establish this inequality, use the Cauchy Schwarz inequality to write

|x+ y|2 ≡
n∑

i=1

|xi + yi|2 ≤
n∑

i=1

|xi|2 +
n∑

i=1

|yi|2 + 2Re

n∑
i=1

xiyi

≤ |x|2 + |y|2 + 2

(
n∑

i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

= |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2

and this proves the second property above.
It remains to show the equivalence of the two norms. By the Cauchy Schwarz inequality

again,

||x|| ≡

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

xivi

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

|xi| ||vi|| ≤ |x|

(
n∑

i=1

||vi||2
)1/2

≡ δ−1 |x| .

This proves the first half of the inequality.
Suppose the second half of the inequality is not valid. Then there exists a sequence

xk ∈ X such that ∣∣xk
∣∣ > k

∣∣∣∣xk
∣∣∣∣ , k = 1, 2, · · · .

Then define

yk ≡ xk

|xk|
.

It follows ∣∣yk
∣∣ = 1,

∣∣yk
∣∣ > k

∣∣∣∣yk
∣∣∣∣ . (13.5)

Letting yki be the components of yk with respect to the given basis, it follows the vector(
yk1 , · · · , ykn

)
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is a unit vector in Fn. By the Heine Borel theorem, there exists a subsequence, still denoted
by k such that (

yk1 , · · · , ykn
)
→ (y1, · · · , yn) .

It follows from 13.5 and this that for

y =

n∑
i=1

yivi,

0 = lim
k→∞

∣∣∣∣yk
∣∣∣∣ = lim

k→∞

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

yki vi

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

yivi

∣∣∣∣∣
∣∣∣∣∣

but not all the yi equal zero. The last equation follows easily from 13.1 and∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

yki vi

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

yivi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∥∥∥∥∥
n∑

i=1

(
yki − yi

)
vi

∥∥∥∥∥ ≤
n∑

i=1

∣∣yki − yi
∣∣ ∥vi∥

This contradicts the assumption that {v1, · · · ,vn} is a basis and proves the second half of
the inequality. ■

Definition 13.0.5 Let (X, ||·||) be a normed linear space and let {xn}∞n=1 be a sequence of
vectors. Then this is called a Cauchy sequence if for all ε > 0 there exists N such that if
m,n ≥ N, then

||xn − xm|| < ε.

This is written more briefly as

lim
m,n→∞

||xn − xm|| = 0.

Definition 13.0.6 A normed linear space, (X, ||·||) is called a Banach space if it is com-
plete. This means that, whenever, {xn} is a Cauchy sequence there exists a unique x ∈ X
such that limn→∞ ||x− xn|| = 0.

Corollary 13.0.7 If (X, ||·||) is a finite dimensional normed linear space with the field of
scalars F = C or R, then (X, ||·||) is a Banach space.

Proof: Let {xk} be a Cauchy sequence. Then letting the components of xk with respect
to the given basis be

xk1 , · · · , xkn,

it follows from Theorem 13.0.4, that (
xk1 , · · · , xkn

)
is a Cauchy sequence in Fn and so(

xk1 , · · · , xkn
)
→ (x1, · · · , xn) ∈ Fn.

Thus, letting x =
∑n

i=1 xivi, it follows from the equivalence of the two norms shown above
that

lim
k→∞

∣∣xk − x
∣∣ = lim

k→∞

∥∥xk − x
∥∥ = 0. ■
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Corollary 13.0.8 Suppose X is a finite dimensional linear space with the field of scalars
either C or R and ||·|| and |||·||| are two norms on X. Then there exist positive constants, δ
and ∆, independent of x ∈ X such that

δ |||x||| ≤ ||x|| ≤ ∆ |||x||| .

Thus any two norms are equivalent.

This is very important because it shows that all questions of convergence can be consid-
ered relative to any norm with the same outcome.

Proof: Let {v1, · · · ,vn} be a basis for X and let |·| be the norm taken with respect to
this basis which was described earlier. Then by Theorem 13.0.4, there are positive constants
δ1,∆1, δ2,∆2, all independent of x ∈X such that

δ2 |||x||| ≤ |x| ≤ ∆2 |||x||| , δ1 ||x|| ≤ |x| ≤ ∆1 ||x|| .

Then

δ2 |||x||| ≤ |x| ≤ ∆1 ||x|| ≤
∆1

δ1
|x| ≤ ∆1∆2

δ1
|||x|||

and so
δ2
∆1

|||x||| ≤ ||x|| ≤ ∆2

δ1
|||x||| ■

Definition 13.0.9 Let X and Y be normed linear spaces with norms ||·||X and ||·||Y re-
spectively. Then L (X,Y ) denotes the space of linear transformations, called bounded linear
transformations, mapping X to Y which have the property that

||A|| ≡ sup {||Ax||Y : ||x||X ≤ 1} <∞.

Then ||A|| is referred to as the operator norm of the bounded linear transformation A.

It is an easy exercise to verify that ||·|| is a norm on L (X,Y ) and it is always the case
that

||Ax||Y ≤ ||A|| ||x||X .

Furthermore, you should verify that you can replace ≤ 1 with = 1 in the definition. Thus

||A|| ≡ sup {||Ax||Y : ||x||X = 1} .

Theorem 13.0.10 Let X and Y be finite dimensional normed linear spaces of dimension
n and m respectively and denote by ||·|| the norm on either X or Y . Then if A is any linear
function mapping X to Y, then A ∈ L (X,Y ) and (L (X,Y ) , ||·||) is a complete normed
linear space of dimension nm with

||Ax|| ≤ ||A|| ||x|| .

Also if A ∈ L (X,Y ) and B ∈ L (Y, Z) where X,Y, Z are normed linear spaces,

∥BA∥ ≤ ∥B∥ ∥A∥

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the first and third properties listed above for norms are obvious. It remains to
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show the second and verify ||A|| <∞. Letting {v1, · · · ,vn} be a basis and |·| defined with
respect to this basis as above, there exist constants δ,∆ > 0 such that

δ ||x|| ≤ |x| ≤ ∆ ||x|| .

Then,
||A+B|| ≡ sup{||(A+B) (x)|| : ||x|| ≤ 1}

≤ sup{||Ax|| : ||x|| ≤ 1}+ sup{||Bx|| : ||x|| ≤ 1} ≡ ||A||+ ||B|| .

Next consider the claim that ||A|| <∞. This follows from

||A (x)|| =

∣∣∣∣∣
∣∣∣∣∣A
(

n∑
i=1

xivi

)∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

|xi| ||A (vi)||

≤ |x|

(
n∑

i=1

||A (vi)||2
)1/2

≤ ∆ ||x||

(
n∑

i=1

||A (vi)||2
)1/2

<∞.

Thus ||A|| ≤ ∆
(∑n

i=1 ||A (vi)||2
)1/2

.

Next consider the assertion about the dimension of L (X,Y ) . It follows from Theorem
8.2.3. By Corollary 13.0.7 (L (X,Y ) , ||·||) is complete. If x ̸= 0,

||Ax|| 1

||x||
=

∣∣∣∣∣∣∣∣A x

||x||

∣∣∣∣∣∣∣∣ ≤ ||A||

Consider the last claim.

∥BA∥ ≡ sup
∥x∥≤1

∥B (A (x))∥ ≤ ∥B∥ sup
∥x∥≤1

∥Ax∥ = ∥B∥ ∥A∥ ■

Note by Corollary 13.0.8 you can define a norm any way desired on any finite dimensional
linear space which has the field of scalars R or C and any other way of defining a norm on
this space yields an equivalent norm. Thus, it doesn’t much matter as far as notions of
convergence are concerned which norm is used for a finite dimensional space. In particular
in the space of m × n matrices, you can use the operator norm defined above, or some
other way of giving this space a norm. A popular choice for a norm is the Frobenius norm
discussed earlier but reviewed here.

Definition 13.0.11 Make the space of m×n matrices into a inner product space by defining

(A,B) ≡ trace (AB∗) .

Another way of describing a norm for an n× n matrix is as follows.

Definition 13.0.12 Let A be an m× n matrix. Define the spectral norm of A, written as
||A||2 to be

max
{
λ1/2 : λ is an eigenvalue of A∗A

}
.

That is, the largest singular value of A. (Note the eigenvalues of A∗A are all positive because
if A∗Ax = λx, then

λ |x|2 = λ (x,x) = (A∗Ax,x) = (Ax,Ax) ≥ 0.)
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Actually, this is nothing new. It turns out that ||·||2 is nothing more than the operator
norm for A taken with respect to the usual Euclidean norm,

|x| =

(
n∑

k=1

|xk|2
)1/2

.

Proposition 13.0.13 The following holds.

||A||2 = sup {|Ax| : |x| = 1} ≡ ||A|| .

Proof: Note that A∗A is Hermitian and so by Corollary 12.3.4,

||A||2 = max
{
(A∗Ax,x)

1/2
: |x| = 1

}
= max

{
(Ax,Ax)

1/2
: |x| = 1

}
= max {|Ax| : |x| = 1} = ||A|| . ■

Here is another proof of this proposition. Recall there are unitary matrices of the right

size U, V such that A = U

(
σ 0

0 0

)
V ∗ where the matrix on the inside is as described

in the section on the singular value decomposition. Then since unitary matrices preserve
norms,

||A|| = sup
|x|≤1

∣∣∣∣∣U
(
σ 0

0 0

)
V ∗x

∣∣∣∣∣ = sup
|V ∗x|≤1

∣∣∣∣∣U
(
σ 0

0 0

)
V ∗x

∣∣∣∣∣
= sup

|y|≤1

∣∣∣∣∣U
(
σ 0

0 0

)
y

∣∣∣∣∣ = sup
|y|≤1

∣∣∣∣∣
(
σ 0

0 0

)
y

∣∣∣∣∣ = σ1 ≡ ||A||2

This completes the alternate proof.
From now on, ||A||2 will mean either the operator norm of A taken with respect to the

usual Euclidean norm or the largest singular value of A, whichever is most convenient.
An interesting application of the notion of equivalent norms on Rn is the process of

giving a norm on a finite Cartesian product of normed linear spaces.

Definition 13.0.14 Let Xi, i = 1, · · · , n be normed linear spaces with norms, ||·||i . For

x ≡ (x1, · · · , xn) ∈
n∏

i=1

Xi

define θ :
∏n

i=1Xi → Rn by

θ (x) ≡ (||x1||1 , · · · , ||xn||n)

Then if ||·|| is any norm on Rn, define a norm on
∏n

i=1Xi, also denoted by ||·|| by

||x|| ≡ ||θx|| .

The following theorem follows immediately from Corollary 13.0.8.

Theorem 13.0.15 Let Xi and ||·||i be given in the above definition and consider the norms
on
∏n

i=1Xi described there in terms of norms on Rn. Then any two of these norms on∏n
i=1Xi obtained in this way are equivalent.
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For example, define

||x||1 ≡
n∑

i=1

|xi| ,

||x||∞ ≡ max {|xi| , i = 1, · · · , n} ,

or

||x||2 =

(
n∑

i=1

|xi|2
)1/2

and all three are equivalent norms on
∏n

i=1Xi.

13.1 The p Norms

In addition to ||·||1 and ||·||∞ mentioned above, it is common to consider the so called p
norms for x ∈ Cn.

Definition 13.1.1 Let x ∈ Cn. Then define for p ≥ 1,

||x||p ≡

(
n∑

i=1

|xi|p
)1/p

The following inequality is called Holder’s inequality.

Proposition 13.1.2 For x,y ∈ Cn,

n∑
i=1

|xi| |yi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|p
′

)1/p′

The proof will depend on the following lemma.

Lemma 13.1.3 If a, b ≥ 0 and p′ is defined by 1
p + 1

p′ = 1, then

ab ≤ ap

p
+
bp

′

p′
.

Proof of the Proposition: If x or y equals the zero vector there is nothing to

prove. Therefore, assume they are both nonzero. Let A = (
∑n

i=1 |xi|
p
)
1/p

and B =(∑n
i=1 |yi|

p′)1/p′

. Then using Lemma 13.1.3,

n∑
i=1

|xi|
A

|yi|
B

≤
n∑

i=1

[
1

p

(
|xi|
A

)p

+
1

p′

(
|yi|
B

)p′]

=
1

p

1

Ap

n∑
i=1

|xi|p +
1

p′
1

Bp

n∑
i=1

|yi|p
′
=

1

p
+

1

p′
= 1

and so
n∑

i=1

|xi| |yi| ≤ AB =

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|p
′

)1/p′

. ■

Theorem 13.1.4 The p norms do indeed satisfy the axioms of a norm.
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Proof: It is obvious that ||·||p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||·|| in place of ||·||p
in what follows. Note also that p

p′ = p− 1. Then using the Holder inequality,

||x+ y||p =

n∑
i=1

|xi + yi|p

≤
n∑

i=1

|xi + yi|p−1 |xi|+
n∑

i=1

|xi + yi|p−1 |yi|

=

n∑
i=1

|xi + yi|
p
p′ |xi|+

n∑
i=1

|xi + yi|
p
p′ |yi|

≤

(
n∑

i=1

|xi + yi|p
)1/p′ ( n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p


= ||x+ y||p/p

′ (
||x||p + ||y||p

)
so dividing by ||x+ y||p/p

′
, it follows

||x+ y||p ||x+ y||−p/p′
= ||x+ y|| ≤ ||x||p + ||y||p(

p− p
p′ = p

(
1− 1

p′

)
= p 1

p = 1.
)
. ■

It only remains to prove Lemma 13.1.3.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = tp−1

t = xq−1

ab ≤
∫ a

0

tp−1dt+

∫ b

0

xq−1dx =
ap

p
+
bq

q
.

Note equality occurs when ap = bq.
Alternate proof of the lemma: For a, b ≥ 0, let b be fixed and

f (a) ≡ 1

p
ap +

1

q
bq − ab, t > 0

If b = 0, it is clear that f (a) ≥ 0 for all a. Then assume b > 0. It is clear since p > 1 that
lima→∞ f (a) = ∞.

f ′ (a) = ap−1 − b

This is negative for small a and then eventually is positive. Consider the minimum value of
f which must occur at a > 0 thanks to the observation that the function is initially strictly
decreasing. At this point,

0 = f ′ (a) = ap−1 − b = a(p/q) − b
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and so ap = bq at the point where this function has a minimum. Thus at this value of a,

f (a) =
1

p
ap +

1

q
ap − aap−1 = ap − ap = 0

Hence f (a) ≥ 0 for all a ≥ 0 and this proves the inequality. Equality occurs when ap = bq.
■

Now ||A||p may be considered as the operator norm of A taken with respect to ||·||p . In
the case when p = 2, this is just the spectral norm. There is an easy estimate for ||A||p in
terms of the entries of A.

Theorem 13.1.5 The following holds.

||A||p ≤

∑
k

∑
j

|Ajk|p
q/p


1/q

Proof: Let ||x||p ≤ 1 and let A = (a1, · · · ,an) where the ak are the columns of A. Then

Ax =

(∑
k

xkak

)

and so by Holder’s inequality,

||Ax||p ≡

∣∣∣∣∣
∣∣∣∣∣∑

k

xkak

∣∣∣∣∣
∣∣∣∣∣
p

≤
∑
k

|xk| ||ak||p ≤

≤

(∑
k

|xk|p
)1/p(∑

k

||ak||qp

)1/q

≤

∑
k

∑
j

|Ajk|p
q/p


1/q

■

13.2 The Condition Number

Let A ∈ L (X,X) be a linear transformation where X is a finite dimensional vector space
and consider the problem Ax = b where it is assumed there is a unique solution to this
problem. How does the solution change if A is changed a little bit and if b is changed a
little bit? This is clearly an interesting question because you often do not know A and b
exactly. If a small change in these quantities results in a large change in the solution, x,
then it seems clear this would be undesirable. In what follows ||·|| when applied to a linear
transformation will always refer to the operator norm. Recall the following property of the
operator norm in Theorem 13.0.10.

Lemma 13.2.1 Let A,B ∈ L (X,X) where X is a normed vector space as above. Then for
||·|| denoting the operator norm,

∥AB∥ ≤ ∥A∥ ∥B∥ .

Lemma 13.2.2 Let A,B ∈ L (X,X) , A−1 ∈ L (X,X) , and suppose ∥B∥ < 1/
∥∥A−1

∥∥ .
Then (A+B)

−1
,
(
I +A−1B

)−1
exists and∥∥∥(I +A−1B

)−1
∥∥∥ ≤

(
1−

∥∥A−1B
∥∥)−1

(13.6)
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∥∥∥(A+B)
−1
∥∥∥ ≤

∥∥A−1
∥∥ ∣∣∣∣ 1

1− ∥A−1B∥

∣∣∣∣ . (13.7)

The above formula makes sense because
∣∣∣∣A−1B

∣∣∣∣ < 1.

Proof: By Lemma 13.0.10,∥∥A−1B
∥∥ ≤

∥∥A−1
∥∥ ∥B∥ <

∥∥A−1
∥∥ 1

∥A−1∥
= 1 (13.8)

Then from the triangle inequality,∥∥(I +A−1B
)
x
∥∥ ≥ ∥x∥ −

∥∥A−1Bx
∥∥

≥ ∥x∥ −
∥∥A−1B

∥∥ ∥x∥ =
(
1−

∥∥A−1B
∥∥) ∥x∥

It follows that I + A−1B is one to one because from 13.8, 1 −
∣∣∣∣A−1B

∣∣∣∣ > 0. Thus if(
I +A−1B

)
x = 0, then x = 0. Thus I +A−1B is also onto, taking a basis to a basis. Then

a generic y ∈ X is of the form y =
(
I +A−1B

)
x and the above shows that∥∥∥(I +A−1B

)−1
y
∥∥∥ ≤

(
1−

∣∣∣∣A−1B
∣∣∣∣)−1 ∥y∥

which verifies 13.6. Thus (A+B) = A
(
I +A−1B

)
is one to one and this with Lemma

13.0.10 implies 13.7. ■

Proposition 13.2.3 Suppose A is invertible, b ̸= 0, Ax = b, and (A+B)x1 = b1 where
||B|| < 1/

∣∣∣∣A−1
∣∣∣∣. Then

∥x1 − x∥
∥x∥

≤
∥∥A−1

∥∥ ∥A∥
1− ∥A−1B∥

(
∥b1 − b∥

∥b∥
+

∥B∥
∥A∥

)
Proof: This follows from the above lemma.

∥x1 − x∥
∥x∥

=

∥∥∥(I +A−1B
)−1

A−1b1 −A−1b
∥∥∥

∥A−1b∥

≤ 1

1− ∥A−1B∥

∥∥A−1b1 −
(
I +A−1B

)
A−1b

∥∥
∥A−1b∥

≤ 1

1− ∥A−1B∥

∥∥A−1 (b1 − b)
∥∥+ ∥∥A−1BA−1b

∥∥
∥A−1b∥

≤
∥∥A−1

∥∥
1− ∥A−1B∥

(
∥b1 − b∥
∥A−1b∥

+ ∥B∥
)

because A−1b/
∥∥A−1b

∥∥ is a unit vector. Now multiply and divide by ∥A∥ . Then

≤
∥∥A−1

∥∥ ∥A∥
1− ∥A−1B∥

(
∥b1 − b∥

∥A∥ ∥A−1b∥
+

∥B∥
∥A∥

)
≤

∥∥A−1
∥∥ ∥A∥

1− ∥A−1B∥

(
∥b1 − b∥

∥b∥
+

∥B∥
∥A∥

)
. ■

This shows that the number,
∥∥A−1

∥∥ ∥A∥ , controls how sensitive the relative change in
the solution of Ax = b is to small changes in A and b. This number is called the condition
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number. It is bad when this number is large because a small relative change in b, for example
could yield a large relative change in x.

Recall that for A an n×n matrix, ∥A∥2 = σ1 where σ1 is the largest singular value. The
largest singular value of A−1 is therefore, 1/σn where σn is the smallest singular value of A.
Therefore, the condition number reduces to σ1/σn, the ratio of the largest to the smallest
singular value of A provided the norm is the usual Euclidean norm.

13.3 The Spectral Radius

Even though it is in general impractical to compute the Jordan form, its existence is all that
is needed in order to prove an important theorem about something which is relatively easy
to compute. This is the spectral radius of a matrix.

Definition 13.3.1 Define σ (A) to be the eigenvalues of A. Also,

ρ (A) ≡ max (|λ| : λ ∈ σ (A))

The number, ρ (A) is known as the spectral radius of A.

Recall the following symbols and their meaning.

lim sup
n→∞

an, lim inf
n→∞

an

They are respectively the largest and smallest limit points of the sequence {an} where ±∞
is allowed in the case where the sequence is unbounded. They are also defined as

lim sup
n→∞

an ≡ lim
n→∞

(sup {ak : k ≥ n}) ,

lim inf
n→∞

an ≡ lim
n→∞

(inf {ak : k ≥ n}) .

Thus, the limit of the sequence exists if and only if these are both equal to the same real
number. Also note that the

Lemma 13.3.2 Let J be a p× p Jordan matrix

J =


J1

. . .

Js


where each Jk is of the form

Jk = λkI +Nk

in which Nk is a nilpotent matrix having zeros down the main diagonal and ones down the
super diagonal. Then

lim
n→∞

||Jn||1/n = ρ

where ρ = max {|λk| , k = 1, . . . , n}. Here the norm is the operator norm.

Proof: Consider one of the blocks, |λk| < ρ. Here Jk is p× p.

1

ρn
Jn
k =

1

ρn

p∑
i=0

(
n

i

)
N i

kλ
n−i
k



336 CHAPTER 13. NORMS

Then ∥∥∥∥ 1

ρn
Jn
k

∥∥∥∥ ≤
p∑

i=0

(
n

i

)∥∥N i
k

∥∥ ∣∣λn−i
k

∣∣
ρn−i

1

ρi
(13.9)

Now there are p numbers
∥∥N i

k

∥∥ so you could pick the largest, C. Also∣∣λn−i
k

∣∣
ρn−i

≤
∣∣λn−p

k

∣∣
ρn−p

so 13.9 is dominated by

≤ Cnp
∣∣λn−p

k

∣∣
ρn−p

p∑
i=0

1

ρi
≡ Ĉ

∣∣λn−p
k

∣∣
ρn−p

The ratio or root test shows that this converges to 0 as n→ ∞.
What happens when |λk| = ρ?

1

ρn
Jn
k = ωnI +

p∑
i=1

(
n

i

)
N i

kω
n−i 1

ρi

where |ω| = 1.
1

ρn
∥Jn

k ∥ ≤ 1 + npC

where C = max
{∥∥N i

k

∥∥ , i = 1, · · · , p, k = 1..., s
}∑p

i=1
1
ρi . Thus

1

ρn
∥Jn∥ ≤ 1

ρn

s∑
k=1

∥Jn
k ∥ ≤ s (1 + npC) = snpC

(
1

npC
+ 1

)
and so

1

ρ
lim sup

n→∞
∥Jn∥1/n ≤ lim sup

n→∞
s1/n (npC)

1/n

(
1

npC
+ 1

)1/n

= 1

lim sup
n→∞

∥Jn∥1/n ≤ ρ

Next let x be an eigenvector for λ, |λ| = ρ and let ∥x∥ = 1. Then

ρn = ρn ∥x∥ = ∥Jnx∥ ≤ ∥Jn∥

and so
ρ ≤ ∥Jn∥1/n

Hence
ρ ≥ lim sup

n→∞
∥Jn∥1/n ≥ lim inf

n→∞
∥Jn∥1/n ≥ ρ ■

The following theorem is due to Gelfand around 1941.

Theorem 13.3.3 (Gelfand) Let A be a complex p × p matrix. Then if ρ is the absolute
value of its largest eigenvalue,

lim
n→∞

||An||1/n = ρ.

Here ||·|| is any norm on L (Cn,Cn).
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Proof: First assume ||·|| is the operator norm with respect to the usual Euclidean metric
on Cn. Then letting J denote the Jordan form of A,S−1AS = J, it follows from Lemma
13.3.2

lim sup
n→∞

||An||1/n = lim sup
n→∞

∣∣∣∣SJnS−1
∣∣∣∣1/n ≤ lim sup

n→∞

(
∥S∥

∥∥S−1
∥∥ ∥Jn∥

)1/n
≤ lim sup

n→∞

(
||S||

∣∣∣∣S−1
∣∣∣∣ ||Jn||

)1/n
= ρ

Letting λ be the largest eigenvalue of A, |λ| = ρ, and Ax = λx where ∥x∥ = 1,

∥An∥ ≥ ∥Anx∥ = ρn

and so
lim inf

n→∞
∥An∥1/n ≥ ρ ≥ lim sup

n→∞
∥An∥1/n

If follows that lim infn→∞ ||An||1/n = lim supn→∞ ||An||1/n = limn→∞ ||An||1/n = ρ.
Now by equivalence of norms, if |||·||| is any other norm for the set of complex p × p

matrices, there exist constants δ,∆ such that

δ ||An|| ≤ |||An||| ≤ ∆ ||An||

Then
δ1/n ∥An∥1/n ≤ |||An|||1/n ≤ ∆1/n ∥An∥1/n

The limits exist and equal ρ for the ends of the above inequality. Hence, by the squeezing

theorem, ρ = limn→∞ |||An|||1/n. ■

Example 13.3.4 Consider

 9 −1 2

−2 8 4

1 1 8

 . Estimate the absolute value of the largest

eigenvalue.

A laborious computation reveals the eigenvalues are 5, and 10. Therefore, the right

answer in this case is 10. Consider
∣∣∣∣A7

∣∣∣∣1/7 where the norm is obtained by taking the
maximum of all the absolute values of the entries. Thus 9 −1 2

−2 8 4

1 1 8


7

=

 8015 625 −1984 375 3968 750

−3968 750 6031 250 7937 500

1984 375 1984 375 6031 250


and taking the seventh root of the largest entry gives

ρ (A) ≊ 8015 6251/7 = 9. 688 951 236 71.

Of course the interest lies primarily in matrices for which the exact roots to the characteristic
equation are not known and in the theoretical significance.

13.4 Series and Sequences of Linear Operators

Before beginning this discussion, it is necessary to define what is meant by convergence in
L (X,Y ) .
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Definition 13.4.1 Let {Ak}∞k=1 be a sequence in L (X,Y ) where X,Y are finite dimen-
sional normed linear spaces. Then limn→∞Ak = A if for every ε > 0 there exists N such
that if n > N, then

||A−An|| < ε.

Here the norm refers to any of the norms defined on L (X,Y ) . By Corollary 13.0.8 and
Theorem 8.2.3 it doesn’t matter which one is used. Define the symbol for an infinite sum in
the usual way. Thus

∞∑
k=1

Ak ≡ lim
n→∞

n∑
k=1

Ak

Lemma 13.4.2 Suppose {Ak}∞k=1 is a sequence in L (X,Y ) where X,Y are finite dimen-
sional normed linear spaces. Then if

∞∑
k=1

||Ak|| <∞,

It follows that
∞∑
k=1

Ak (13.10)

exists (converges). In words, absolute convergence implies convergence. Also,∥∥∥∥∥
∞∑
k=1

Ak

∥∥∥∥∥ ≤
∞∑
k=1

∥Ak∥

Proof: For p ≤ m ≤ n, ∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

Ak −
m∑

k=1

Ak

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
k=p

||Ak||

and so for p large enough, this term on the right in the above inequality is less than ε. Since
ε is arbitrary, this shows the partial sums of 13.10 are a Cauchy sequence. Therefore by
Corollary 13.0.7 it follows that these partial sums converge. As to the last claim,∥∥∥∥∥

n∑
k=1

Ak

∥∥∥∥∥ ≤
n∑

k=1

∥Ak∥ ≤
∞∑
k=1

∥Ak∥

Therefore, passing to the limit, ∥∥∥∥∥
∞∑
k=1

Ak

∥∥∥∥∥ ≤
∞∑
k=1

∥Ak∥ . ■

Why is this last step justified? (Recall the triangle inequality |∥A∥ − ∥B∥| ≤ ∥A−B∥. )
Now here is a useful result for differential equations.

Theorem 13.4.3 Let X be a finite dimensional inner product space and let A ∈ L (X,X) .
Define

Φ (t) ≡
∞∑
k=0

tkAk

k!
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Then the series converges for each t ∈ R. Also

Φ′ (t) ≡ lim
h→0

Φ (t+ h)− Φ (t)

h
=

∞∑
k=1

tk−1Ak

(k − 1)!
= A

∞∑
k=0

tkAk

k!
= AΦ (t)

Also AΦ (t) = Φ (t)A and for all t,Φ (t) Φ (−t) = I so Φ (t)
−1

= Φ(−t), Φ (0) = I. (It is
understood that A0 = I in the above formula.)

Proof: First consider the claim about convergence.

∞∑
k=0

∥∥∥∥ tkAk

k!

∥∥∥∥ ≤
∞∑
k=0

|t|k ∥A∥k

k!
= e|t|∥A∥ <∞

so it converges by Lemma 13.4.2.

Φ (t+ h)− Φ (t)

h
=

1

h

∞∑
k=0

(
(t+ h)

k − tk
)
Ak

k!

=
1

h

∞∑
k=0

(
k (t+ θkh)

k−1
h
)
Ak

k!
=

∞∑
k=1

(t+ θkh)
k−1

Ak

(k − 1)!

this by the mean value theorem. Note that the series converges thanks to Lemma 13.4.2.
Here θk ∈ (0, 1). Thus∥∥∥∥∥Φ (t+ h)− Φ (t)

h
−

∞∑
k=1

tk−1Ak

(k − 1)!

∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑
k=1

(
(t+ θkh)

k−1 − tk−1
)
Ak

(k − 1)!

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
k=1

(
(k − 1) (t+ τkθkh)

k−2
θkh
)
Ak

(k − 1)!

∥∥∥∥∥∥ = |h|

∥∥∥∥∥∥
∞∑
k=2

(
(t+ τkθkh)

k−2
θk

)
Ak

(k − 2)!

∥∥∥∥∥∥
≤ |h|

∞∑
k=2

(|t|+ |h|)k−2 ∥A∥k−2

(k − 2)!
∥A∥2 = |h| e(|t|+|h|)∥A∥ ∥A∥2

so letting |h| < 1, this is no larger than |h| e(|t|+1)∥A∥ ∥A∥2. Hence the desired limit is valid.
It is obvious that AΦ (t) = Φ (t)A. Also the formula shows that

Φ′ (t) = AΦ (t) = Φ (t)A, Φ (0) = I.

Now consider the claim about Φ (−t) . The above computation shows that Φ′ (−t) =
AΦ (−t) and so d

dt (Φ (−t)) = −Φ′ (−t) = −AΦ (−t). Now let x, y be two vectors in X.
Consider

(Φ (−t) Φ (t)x, y)X

Then this equals (x, y) when t = 0. Take its derivative.

((−Φ′ (−t) Φ (t) + Φ (−t) Φ′ (t))x, y)X
= ((−AΦ (−t) Φ (t) + Φ (−t)AΦ (t))x, y)X
= (0, y)X = 0
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Hence this scalar valued function equals a constant and so the constant must be (x, y)X .
Hence for all x, y, (Φ (−t) Φ (t)x− x, y)X = 0 for all x, y and this is so in particular for
y = Φ(−t) Φ (t)x− x which shows that Φ (−t) Φ (t) = I. ■

As a special case, suppose λ ∈ C and consider

∞∑
k=0

tkλk

k!

where t ∈ R. In this case, Ak = tkλk

k! and you can think of it as being in L (C,C). Then the
following corollary is of great interest.

Corollary 13.4.4 Let

f (t) ≡
∞∑
k=0

tkλk

k!
≡ 1 +

∞∑
k=1

tkλk

k!

Then this function is a well defined complex valued function and furthermore, it satisfies the
initial value problem,

y′ = λy, y (0) = 1

Furthermore, if λ = a+ ib,
|f | (t) = eat.

Proof: The first part is a special case of the above theorem. Note that for f (t) =
u (t) + iv (t) , both u, v are differentiable. This is because

u =
f + f

2
, v =

f − f

2i
.

Then from the differential equation,

(a+ ib) (u+ iv) = u′ + iv′

and equating real and imaginary parts,

u′ = au− bv, v′ = av + bu.

Then a short computation shows(
u2 + v2

)′
= 2uu′ + 2vv′ = 2u (au− bv) + 2v (av + bu) = 2a

(
u2 + v2

)
(
u2 + v2

)
(0) = |f |2 (0) = 1

Now in general, if
y′ = cy, y (0) = 1,

with c real it follows y (t) = ect. To see this,

y′ − cy = 0

and so, multiplying both sides by e−ct you get

d

dt

(
ye−ct

)
= 0

and so ye−ct equals a constant which must be 1 because of the initial condition y (0) = 1.
Thus (

u2 + v2
)
(t) = e2at

and taking square roots yields the desired conclusion. ■
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Definition 13.4.5 The function in Corollary 13.4.4 given by that power series is denoted
as

exp (λt) or eλt.

The next lemma is normally discussed in advanced calculus courses but is proved here
for the convenience of the reader. It is known as the root test.

Definition 13.4.6 For {an} any sequence of real numbers

lim sup
n→∞

an ≡ lim
n→∞

(sup {ak : k ≥ n})

Similarly
lim inf

n→∞
an ≡ lim

n→∞
(inf {ak : k ≥ n})

In case Anis an increasing (decreasing) sequence which is unbounded above (below) then it
is understood that limn→∞An = ∞ (−∞) respectively. Thus either of lim sup or lim inf can
equal +∞ or −∞. However, the important thing about these is that unlike the limit, these
always exist.

It is convenient to think of these as the largest point which is the limit of some sub-
sequence of {an} and the smallest point which is the limit of some subsequence of {an}
respectively. Thus limn→∞ an exists and equals some point of [−∞,∞] if and only if the
two are equal.

Lemma 13.4.7 Let {ap} be a sequence of nonnegative terms and let

r = lim sup
p→∞

a1/pp .

Then if r < 1, it follows the series,
∑∞

k=1 ak converges and if r > 1, then ap fails to converge
to 0 so the series diverges. If A is an n× n matrix and

r = lim sup
p→∞

||Ap||1/p , (13.11)

then if r > 1, then
∑∞

k=0A
k fails to converge and if r < 1 then the series converges. Note

that the series converges when the spectral radius is less than one and diverges if the spectral

radius is larger than one. In fact, lim supp→∞ ||Ap||1/p = limp→∞ ||Ap||1/p from Theorem
13.3.3.

Proof: Suppose r < 1. Then there exists N such that if p > N,

a1/pp < R

where r < R < 1. Therefore, for all such p, ap < Rp and so by comparison with the
geometric series,

∑
Rp, it follows

∑∞
p=1 ap converges.

Next suppose r > 1. Then letting 1 < R < r, it follows there are infinitely many values
of p at which

R < a1/pp

which implies Rp < ap, showing that ap cannot converge to 0 and so the series cannot
converge either.

To see the last claim, if r > 1, then ||Ap|| fails to converge to 0 and so
{∑m

k=0A
k
}∞
m=0

is not a Cauchy sequence. Hence
∑∞

k=0A
k ≡ limm→∞

∑m
k=0A

k cannot exist. If r < 1, then

for all n large enough, ∥An∥1/n ≤ r < 1 for some r so ∥An∥ ≤ rn. Hence
∑

n ∥An∥ converges
and so by Lemma 13.4.2, it follows that

∑∞
k=1A

k also converges. ■
Now denote by σ (A)

p
the collection of all numbers of the form λp where λ ∈ σ (A) .
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Lemma 13.4.8 σ (Ap) = σ (A)
p ≡ {λp : λ ∈ σ (A)}.

Proof: In dealing with σ (Ap) , it suffices to deal with σ (Jp) where J is the Jordan form
of A because Jp and Ap are similar. Thus if λ ∈ σ (Ap) , then λ ∈ σ (Jp) and so λ = α
where α is one of the entries on the main diagonal of Jp. These entries are of the form λp

where λ ∈ σ (A). Thus λ ∈ σ (A)
p
and this shows σ (Ap) ⊆ σ (A)

p
.

Now take α ∈ σ (A) and consider αp.

αpI −Ap =
(
αp−1I + · · ·+ αAp−2 +Ap−1

)
(αI −A)

and so αpI − Ap fails to be one to one which shows that αp ∈ σ (Ap) which shows that
σ (A)

p ⊆ σ (Ap) . ■

13.5 Iterative Methods for Linear Systems

Consider the problem of solving the equation

Ax = b (13.12)

where A is an n × n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
To solve them, it is common to use an iterative technique. I am following the treatment
given to this subject by Nobel and Daniel [21].

Definition 13.5.1 The Jacobi iterative technique, also called the method of simultaneous
corrections is defined as follows. Let x1 be an initial vector, say the zero vector or some
other vector. The method generates a succession of vectors, x2,x3,x4, · · · and hopefully this
sequence of vectors will converge to the solution to 13.12. The vectors in this list are called
iterates and they are obtained according to the following procedure. Letting A = (aij) ,

aiix
r+1
i = −

∑
j ̸=i

aijx
r
j + bi. (13.13)

In terms of matrices, letting

A =


∗ · · · ∗
...

. . .
...

∗ · · · ∗


The iterates are defined as

∗ 0 · · · 0

0 ∗
. . .

...
...

. . .
. . . 0

0 · · · 0 ∗




xr+1
1

xr+1
2
...

xr+1
n

 = −


0 ∗ · · · ∗

∗ 0
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ 0




xr1
xr2
...

xrn

+


b1

b2
...

bn

 (13.14)

The matrix on the left in 13.14 is obtained by retaining the main diagonal of A and
setting every other entry equal to zero. The matrix on the right in 13.14 is obtained from A
by setting every diagonal entry equal to zero and retaining all the other entries unchanged.
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Example 13.5.2 Use the Jacobi method to solve the system
3 1 0 0

1 4 1 0

0 2 5 1

0 0 2 4




x1

x2

x3

x4

 =


1

2

3

4


Of course this is solved most easily using row reductions. The Jacobi method is use-

ful when the matrix is very large. This example is just to illustrate how the method
works. First lets solve it using row operations. The exact solution from row reduction

is
(

6
29

11
29

8
29

25
29

)
, which in terms of decimals is approximately equal to(

0.207 0.379 0.276 0.862
)T

.

In terms of the matrices, the Jacobi iteration is of the form
3 0 0 0

0 4 0 0

0 0 5 0

0 0 0 4




xr+1
1

xr+1
2

xr+1
3

xr+1
4

 = −


0 1 0 0

1 0 1 0

0 2 0 1

0 0 2 0




xr1
xr2
xr3
xr4

+


1

2

3

4

 .

Multiplying by the inverse of the matrix on the left, 1this iteration reduces to
xr+1
1

xr+1
2

xr+1
3

xr+1
4

 = −


0 1

3 0 0
1
4 0 1

4 0

0 2
5 0 1

5

0 0 1
2 0




xr1
xr2
xr3
xr4

+


1
3
1
2
3
5

1

 . (13.15)

Now iterate this starting with x1 ≡
(

0 0 0 0
)T

.

Thus

x2 = −


0 1

3 0 0
1
4 0 1

4 0

0 2
5 0 1

5

0 0 1
2 0




0

0

0

0

+


1
3
1
2
3
5

1

 =


1
3
1
2
3
5

1


Then

x3 = −


0 1

3 0 0
1
4 0 1

4 0

0 2
5 0 1

5

0 0 1
2 0



x2︷ ︸︸ ︷
1
3
1
2
3
5

1

+


1
3
1
2
3
5

1

 =


. 166

. 26

. 2

. 7


Continuing this way one finally gets

x6 = −


0 1

3 0 0
1
4 0 1

4 0

0 2
5 0 1

5

0 0 1
2 0



x5︷ ︸︸ ︷
. 197

. 351

. 256 6

. 822

+


1
3
1
2
3
5

1

 =


. 216

. 386

. 295

. 871

 .

1You certainly would not compute the invese in solving a large system. This is just to show you how the
method works for this simple example. You would use the first description in terms of indices.
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You can keep going like this. Recall the solution is approximately equal to(
0.206 0.379 0.275 0.862

)T
so you see that with no care at all and only 6 iterations, an approximate solution has been
obtained which is not too far off from the actual solution.

Definition 13.5.3 The Gauss Seidel method, also called the method of successive correc-
tions is given as follows. For A = (aij) , the iterates for the problem Ax = b are obtained
according to the formula

i∑
j=1

aijx
r+1
j = −

n∑
j=i+1

aijx
r
j + bi. (13.16)

In terms of matrices, letting

A =


∗ · · · ∗
...

. . .
...

∗ · · · ∗


The iterates are defined as

∗ 0 · · · 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ · · · ∗ ∗




xr+1
1

xr+1
2
...

xr+1
n

 = −


0 ∗ · · · ∗

0 0
. . .

...
...

. . .
. . . ∗

0 · · · 0 0




xr1
xr2
...

xrn

+


b1

b2
...

bn

 (13.17)

In words, you set every entry in the original matrix which is strictly above the main
diagonal equal to zero to obtain the matrix on the left. To get the matrix on the right,
you set every entry of A which is on or below the main diagonal equal to zero. Using the
iteration procedure of 13.16 directly, the Gauss Seidel method makes use of the very latest
information which is available at that stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.

Example 13.5.4 Use the Gauss Seidel method to solve the system
3 1 0 0

1 4 1 0

0 2 5 1

0 0 2 4




x1

x2

x3

x4

 =


1

2

3

4


In terms of matrices, this procedure is

3 0 0 0

1 4 0 0

0 2 5 0

0 0 2 4




xr+1
1

xr+1
2

xr+1
3

xr+1
4

 = −


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




xr1
xr2
xr3
xr4

+


1

2

3

4

 .
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Multiplying by the inverse of the matrix on the left2 this yields
xr+1
1

xr+1
2

xr+1
3

xr+1
4

 = −


0 1

3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




xr1
xr2
xr3
xr4

+


1
3
5
12
13
30
47
60


As before, I will be totally unoriginal in the choice of x1. Let it equal the zero vector.

Therefore, x2 =
(

1
3

5
12

13
30

47
60

)T
. Now

x3 = −


0 1

3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10



x2︷ ︸︸ ︷
1
3
5
12
13
30
47
60

+


1
3
5
12
13
30
47
60

 =


. 194

. 343

. 306

. 846

 .

Continuing this way,

x4 = −


0 1

3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




. 194

. 343

. 306

. 846

+


1
3
5
12
13
30
47
60

 =


. 219

. 368 75

. 283 3

. 858 35


and so

x5 = −


0 1

3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




. 219

. 368 75

. 283 3

. 858 35

+


1
3
5
12
13
30
47
60

 =


. 210 42

. 376 57

. 277 7

. 861 15

 .

This is fairly close to the answer. You could continue doing these iterates and it appears
they converge to the solution. Now consider the following example.

Example 13.5.5 Use the Gauss Seidel method to solve the system
1 4 0 0

1 4 1 0

0 2 5 1

0 0 2 4




x1

x2

x3

x4

 =


1

2

3

4


The exact solution is given by doing row operations on the augmented matrix. When this

is done the solution is seen to be
(

6.0 −1. 25 1.0 0.5
)
.The Gauss Seidel iterations

are of the form
1 0 0 0

1 4 0 0

0 2 5 0

0 0 2 4




xr+1
1

xr+1
2

xr+1
3

xr+1
4

 = −


0 4 0 0

0 0 1 0

0 0 0 1

0 0 0 0




xr1
xr2
xr3
xr4

+


1

2

3

4


2As in the case of the Jacobi iteration, the computer would not do this. It would use the iteration

procedure in terms of the entries of the matrix directly. Otherwise all benefit to using this method is lost.
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and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the
following in terms of matrix multiplication.

xr+1 = −


0 4 0 0

0 −1 1
4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10

xr +


1
1
4
1
2
3
4

 .

This time, I will pick an initial vector close to the answer. Let x1 =
(

6 −1 1 1
2

)T
.

This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

x2 = −


0 4 0 0

0 −1 1
4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10




6

−1

1
1
2

+


1
1
4
1
2
3
4

 =


5.0

−1.0

. 9

. 55


It appears that it moved the initial guess far from the solution even though you started
with one which was initially close to the solution. This is discouraging. However, you can’t
expect the method to work well after only one iteration. Unfortunately, if you do multiple
iterations, the iterates never seem to get close to the actual solution. Why is the process
which worked so well in the other examples not working here? A better question might be:
Why does either process ever work at all?

Both iterative procedures for solving

Ax = b (13.18)

are of the form
Bxr+1 = −Cxr + b

where A = B + C. In the Jacobi procedure, the matrix C was obtained by setting the
diagonal of A equal to zero and leaving all other entries the same while the matrix B was
obtained by making every entry of A equal to zero other than the diagonal entries which are
left unchanged. In the Gauss Seidel procedure, the matrix B was obtained from A by making
every entry strictly above the main diagonal equal to zero and leaving the others unchanged,
and C was obtained from A by making every entry on or below the main diagonal equal to
zero and leaving the others unchanged. Thus in the Jacobi procedure, B is a diagonal matrix
while in the Gauss Seidel procedure, B is lower triangular. Using matrices to explicitly solve
for the iterates, yields

xr+1 = −B−1Cxr +B−1b. (13.19)

This is what you would never have the computer do but this is what will allow the statement
of a theorem which gives the condition for convergence of these and all other similar methods.
Recall the definition of the spectral radius of M,ρ (M) , in Definition 13.3.1 on Page 335.

Theorem 13.5.6 Suppose ρ
(
B−1C

)
< 1. Then the iterates in 13.19 converge to the unique

solution of 13.18.

I will prove this theorem in the next section. The proof depends on analysis which should
not be surprising because it involves a statement about convergence of sequences.

What is an easy to verify sufficient condition which will imply the above holds? It is easy
to give one in the case of the Jacobi method. Suppose the matrix A is diagonally dominant.
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That is |aii| >
∑

j ̸=i |aij | . Then B would be the diagonal matrix consisting of the entries
aii. You need to find the size of λ where

B−1Cx = λx

Thus you need
(λB − C)x = 0

Now if |λ| ≥ 1, then the matrix λB − C is diagonally dominant and so this matrix will be
invertible so λ is not an eigenvalue. Hence the only eigenvalues have absolute value less
than 1.

You might try a similar argument in the case of the Gauss Seidel method.

13.6 Theory of Convergence

Definition 13.6.1 A normed vector space, E with norm ||·|| is called a Banach space if it
is also complete. This means that every Cauchy sequence converges. Recall that a sequence
{xn}∞n=1 is a Cauchy sequence if for every ε > 0 there exists N such that whenever m,n > N,

||xn − xm|| < ε.

Thus whenever {xn} is a Cauchy sequence, there exists x such that

lim
n→∞

||x− xn|| = 0.

Example 13.6.2 Let E be a Banach space and let Ω be a nonempty subset of a normed
linear space F . Let B (Ω;E) denote those functions f for which

||f || ≡ sup {||f (x)||E : x ∈ Ω} <∞

Denote by BC (Ω;E) the set of functions in B (Ω;E) which are also continuous.

Lemma 13.6.3 The above ∥·∥ is a norm on B (Ω;E). The subspace BC (Ω;E) with the
given norm is a Banach space.

Proof: It is obvious ||·|| is a norm. It only remains to verify BC (Ω;E) is complete. Let
{fn} be a Cauchy sequence. Since ∥fn − fm∥ → 0 as m,n → ∞, it follows that {fn (x)} is
a Cauchy sequence in E for each x. Let f (x) ≡ limn→∞ fn (x). Then for any x ∈ Ω.

||fn (x)− fm (x)||E ≤ ||fn − fm|| < ε

whenever m,n are large enough, say as large as N . For n ≥ N, let m → ∞. Then passing
to the limit, it follows that for all x,

||fn (x)− f (x)||E ≤ ε

and so for all x,
∥f (x)∥E ≤ ε+ ∥fn (x)∥E ≤ ε+ ∥fn∥ .

It follows that ∥f∥ ≤ ∥fn∥+ ε and ∥f − fn∥ ≤ ε.
It remains to verify that f is continuous.

∥f (x)− f (y)∥E ≤ ∥f (x)− fn (x)∥E + ∥fn (x)− fn (y)∥E + ∥fn (y)− f (y)∥E

≤ 2 ∥f − fn∥+ ∥fn (x)− fn (y)∥E <
2ε

3
+ ∥fn (x)− fn (y)∥E

for all n large enough. Now pick such an n. By continuity, the last term is less than ε
3 if

∥x− y∥ is small enough. Hence f is continuous as well. ■
The most familiar example of a Banach space is Fn. The following lemma is of great

importance so it is stated in general.



348 CHAPTER 13. NORMS

Lemma 13.6.4 Suppose T : E → E where E is a Banach space with norm |·|. Also suppose

|Tx− Ty| ≤ r |x− y| (13.20)

for some r ∈ (0, 1). Then there exists a unique fixed point, x ∈ E such that

Tx = x. (13.21)

Letting x1 ∈ E, this fixed point x, is the limit of the sequence of iterates,

x1, Tx1, T 2x1, · · · . (13.22)

In addition to this, there is a nice estimate which tells how close x1 is to x in terms of
things which can be computed. ∣∣x1 − x

∣∣ ≤ 1

1− r

∣∣x1 − Tx1
∣∣ . (13.23)

Proof: This follows easily when it is shown that the above sequence,
{
T kx1

}∞
k=1

is a
Cauchy sequence. Note that ∣∣T 2x1 − Tx1

∣∣ ≤ r
∣∣Tx1 − x1

∣∣ .
Suppose ∣∣T kx1 − T k−1x1

∣∣ ≤ rk−1
∣∣Tx1 − x1

∣∣ . (13.24)

Then ∣∣T k+1x1 − T kx1
∣∣ ≤ r

∣∣T kx1 − T k−1x1
∣∣

≤ rrk−1
∣∣Tx1 − x1

∣∣ = rk
∣∣Tx1 − x1

∣∣ .
By induction, this shows that for all k ≥ 2, 13.24 is valid. Now let k > l ≥ N.

∣∣T kx1 − T lx1
∣∣ =

∣∣∣∣∣∣
k−1∑
j=l

(
T j+1x1 − T jx1

)∣∣∣∣∣∣ ≤
k−1∑
j=l

∣∣T j+1x1 − T jx1
∣∣

≤
k−1∑
j=N

rj
∣∣Tx1 − x1

∣∣ ≤ ∣∣Tx1 − x1
∣∣ rN

1− r

which converges to 0 as N → ∞. Therefore, this is a Cauchy sequence so it must converge
to x ∈ E. Then

x = lim
k→∞

T kx1 = lim
k→∞

T k+1x1 = T lim
k→∞

T kx1 = Tx.

This shows the existence of the fixed point. To show it is unique, suppose there were
another one, y. Then

|x− y| = |Tx− Ty| ≤ r |x− y|
and so x = y.

It remains to verify the estimate.∣∣x1 − x
∣∣ ≤

∣∣x1 − Tx1
∣∣+ ∣∣Tx1 − x

∣∣ = ∣∣x1 − Tx1
∣∣+ ∣∣Tx1 − Tx

∣∣
≤

∣∣x1 − Tx1
∣∣+ r

∣∣x1 − x
∣∣

and solving the inequality for
∣∣x1 − x

∣∣ gives the estimate desired. ■
The following corollary is what will be used to prove the convergence condition for the

various iterative procedures.
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Corollary 13.6.5 Suppose T : E → E, for some constant C

|Tx− Ty| ≤ C |x− y| ,

for all x,y ∈ E, and for some N ∈ N,∣∣TNx− TNy
∣∣ ≤ r |x− y| ,

for all x,y ∈ E where r ∈ (0, 1). Then there exists a unique fixed point for T and it is still
the limit of the sequence,

{
T kx1

}
for any choice of x1.

Proof: From Lemma 13.6.4 there exists a unique fixed point for TN denoted here as x.
Therefore, TNx = x. Now doing T to both sides,

TNTx = Tx.

By uniqueness, Tx = x because the above equation shows Tx is a fixed point of TN and
there is only one fixed point of TN . In fact, there is only one fixed point of T because a
fixed point of T is automatically a fixed point of TN .

It remains to show T kx1 → x, the unique fixed point of TN . If this does not happen,
there exists ε > 0 and a subsequence, still denoted by T k such that∣∣T kx1 − x

∣∣ ≥ ε

Now k = jkN + rk where rk ∈ {0, · · · , N − 1} and jk is a positive integer such that
limk→∞ jk = ∞. Then there exists a single r ∈ {0, · · · , N − 1} such that for infinitely
many k, rk = r. Taking a further subsequence, still denoted by T k it follows∣∣T jkN+rx1 − x

∣∣ ≥ ε (13.25)

However,
T jkN+rx1 = T rT jkNx1 → T rx = x

and this contradicts 13.25. ■

Theorem 13.6.6 Suppose ρ
(
B−1C

)
< 1. Then the iterates in 13.19 converge to the unique

solution of 13.18.

Proof: Consider the iterates in 13.19. Let Tx = B−1Cx+B−1b. Then∣∣T kx− T ky
∣∣ = ∣∣∣(B−1C

)k
x−

(
B−1C

)k
y
∣∣∣ ≤ ∣∣∣∣∣∣(B−1C

)k∣∣∣∣∣∣ |x− y| .

Here ||·|| refers to any of the operator norms. It doesn’t matter which one you pick because
they are all equivalent. I am writing the proof to indicate the operator norm taken with
respect to the usual norm on E. Since ρ

(
B−1C

)
< 1, it follows from Gelfand’s theorem,

Theorem 13.3.3 on Page 336, there exists N such that if k ≥ N, then for some r1/k < 1,∣∣∣∣∣∣(B−1C
)k∣∣∣∣∣∣1/k < r1/k < 1.

Consequently, ∣∣TNx− TNy
∣∣ ≤ r |x− y| .

Also |Tx− Ty| ≤
∣∣∣∣B−1C

∣∣∣∣ |x− y| and so Corollary 13.6.5 applies and gives the conclusion
of this theorem. ■
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13.7 Exercises

1. Solve the system  4 1 1

1 5 2

0 2 6


 x

y

z

 =

 1

2

3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

2. Solve the system  4 1 1

1 7 2

0 2 4


 x

y

z

 =

 1

2

3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

3. Solve the system  5 1 1

1 7 2

0 2 4


 x

y

z

 =

 1

2

3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

4. If you are considering a system of the form Ax = b and A−1 does not exist, will either
the Gauss Seidel or Jacobi methods work? Explain. What does this indicate about
finding eigenvectors for a given eigenvalue?

5. For ||x||∞ ≡ max {|xj | : j = 1, 2, · · · , n} , the parallelogram identity does not hold.
Explain.

6. A norm ||·|| is said to be strictly convex if whenever ||x|| = ||y|| , x ̸= y, it follows∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ < ||x|| = ||y|| .

Show the norm |·| which comes from an inner product is strictly convex.

7. A norm ||·|| is said to be uniformly convex if whenever ||xn|| , ||yn|| are equal to 1 for
all n ∈ N and limn→∞ ||xn + yn|| = 2, it follows limn→∞ ||xn − yn|| = 0. Show the
norm |·| coming from an inner product is always uniformly convex. Also show that
uniform convexity implies strict convexity which is defined in Problem 6.

8. Suppose A : Cn → Cn is a one to one and onto matrix. Define

||x|| ≡ |Ax| .

Show this is a norm.

9. If X is a finite dimensional normed vector space and A,B ∈ L (X,X) such that
||B|| < ||A|| , can it be concluded that

∣∣∣∣A−1B
∣∣∣∣ < 1?
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10. Let X be a vector space with a norm ||·|| and let V = span (v1, · · · , vm) be a finite
dimensional subspace of X such that {v1, · · · , vm} is a basis for V. Show V is a closed
subspace of X. This means that if wn → w and each wn ∈ V, then so is w. Next show
that if w /∈ V,

dist (w, V ) ≡ inf {||w − v|| : v ∈ V } > 0

is a continuous function of w and

|dist (w, V )− dist (w1, V )| ≤ ∥w1 − w∥

Next show that if w /∈ V, there exists z such that ||z|| = 1 and dist (z, V ) > 1/2. For
those who know some advanced calculus, show that if X is an infinite dimensional
vector space having norm ||·|| , then the closed unit ball in X cannot be compact.
Thus closed and bounded is never compact in an infinite dimensional normed vector
space.

11. Suppose ρ (A) < 1 for A ∈ L (V, V ) where V is a p dimensional vector space having
a norm ||·||. You can use Rp or Cp if you like. Show there exists a new norm |||·|||
such that with respect to this new norm, |||A||| < 1 where |||A||| denotes the operator
norm of A taken with respect to this new norm on V ,

|||A||| ≡ sup {|||Ax||| : |||x||| ≤ 1}

Hint: You know from Gelfand’s theorem that

||An||1/n < r < 1

provided n is large enough, this operator norm taken with respect to ||·||. Show there
exists 0 < λ < 1 such that

ρ

(
A

λ

)
< 1.

You can do this by arguing the eigenvalues of A/λ are the scalars µ/λ where µ ∈ σ (A).
Now let Z+ denote the nonnegative integers.

|||x||| ≡ sup
n∈Z+

∣∣∣∣∣∣∣∣An

λn
x

∣∣∣∣∣∣∣∣
First show this is actually a norm. Next explain why

|||Ax||| ≡ λ sup
n∈Z+

∣∣∣∣∣∣∣∣An+1

λn+1 x

∣∣∣∣∣∣∣∣ ≤ λ |||x||| .

12. Establish a similar result to Problem 11 without using Gelfand’s theorem. Use an
argument which depends directly on the Jordan form or a modification of it.

13. Using Problem 11 give an easier proof of Theorem 13.6.6 without having to use Corol-
lary 13.6.5. It would suffice to use a different norm of this problem and the contraction
mapping principle of Lemma 13.6.4.

14. A matrix A is diagonally dominant if |aii| >
∑

j ̸=i |aij | . Show that the Gauss Seidel
method converges if A is diagonally dominant.

15. Suppose f (λ) =
∑∞

n=0 anλ
n converges if |λ| < R. Show that if ρ (A) < R where A is

an n× n matrix, then

f (A) ≡
∞∑

n=0

anA
n

converges in L (Fn,Fn) . Hint: Use Gelfand’s theorem and the root test.
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16. Referring to Corollary 13.4.4, for λ = a+ ib show

exp (λt) = eat (cos (bt) + i sin (bt)) .

Hint: Let y (t) = exp (λt) and let z (t) = e−aty (t) . Show

z′′ + b2z = 0, z (0) = 1, z′ (0) = ib.

Now letting z = u+ iv where u, v are real valued, show

u′′ + b2u = 0, u (0) = 1, u′ (0) = 0

v′′ + b2v = 0, v (0) = 0, v′ (0) = b.

Next show u (t) = cos (bt) and v (t) = sin (bt) work in the above and that there is at
most one solution to

w′′ + b2w = 0 w (0) = α,w′ (0) = β.

Thus z (t) = cos (bt) + i sin (bt) and so y (t) = eat (cos (bt) + i sin (bt)). To show there
is at most one solution to the above problem, suppose you have two, w1, w2. Subtract
them. Let f = w1 − w2. Thus

f ′′ + b2f = 0

and f is real valued. Multiply both sides by f ′ and conclude

d

dt

(
(f ′)

2

2
+ b2

f2

2

)
= 0

Thus the expression in parenthesis is constant. Explain why this constant must equal
0.

17. Let A ∈ L (Rn,Rn) . Show the following power series converges in L (Rn,Rn).

Ψ (t) ≡
∞∑
k=0

tkAk

k!

This was done in the chapter. Go over it and be sure you understand it. This is
how you can define exp (tA). Next show that Ψ′ (t) = AΨ(t) ,Ψ(0) = I. Next let

Φ (t) =
∑∞

k=0
tk(−A)k

k! . Show each Φ (t) ,Ψ(t) each commute with A. Next show that
Φ (t)Ψ (t) = I for all t. Finally, solve the initial value problem

x′ = Ax+ f , x (0) = x0

in terms of Φ and Ψ. This yields most of the substance of a typical differential
equations course.

18. In Problem 17 Ψ (t) is defined by the given series. Denote by exp (tσ (A)) the numbers
exp (tλ) where λ ∈ σ (A) . Show exp (tσ (A)) = σ (Ψ (t)) . This is like Lemma 13.4.8.
Letting J be the Jordan canonical form for A, explain why

Ψ (t) ≡
∞∑
k=0

tkAk

k!
= S

∞∑
k=0

tkJk

k!
S−1
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and you note that in Jk, the diagonal entries are of the form λk for λ an eigenvalue
of A. Also J = D +N where N is nilpotent and commutes with D. Argue then that

∞∑
k=0

tkJk

k!

is an upper triangular matrix which has on the diagonal the expressions eλt where
λ ∈ σ (A) . Thus conclude

σ (Ψ (t)) ⊆ exp (tσ (A))

Next take etλ ∈ exp (tσ (A)) and argue it must be in σ (Ψ (t)) . You can do this as
follows:

Ψ (t)− etλI =

∞∑
k=0

tkAk

k!
−

∞∑
k=0

tkλk

k!
I =

∞∑
k=0

tk

k!

(
Ak − λkI

)

=

 ∞∑
k=0

tk

k!

k−1∑
j=1

Ak−jλj

 (A− λI)

Now you need to argue
∞∑
k=0

tk

k!

k−1∑
j=1

Ak−jλj

converges to something in L (Rn,Rn). To do this, use the ratio test and Lemma 13.4.2
after first using the triangle inequality. Since λ ∈ σ (A) , Ψ(t)− etλI is not one to one
and so this establishes the other inclusion. You fill in the details. This theorem is a
special case of theorems which go by the name “spectral mapping theorem”.

19. Suppose Ψ (t) ∈ L (V,W ) where V,W are finite dimensional inner product spaces and
t→ Ψ(t) is continuous for t ∈ [a, b]: For every ε > 0 there there exists δ > 0 such that
if |s− t| < δ then ||Ψ(t)−Ψ(s)|| < ε. Show t → (Ψ (t) v, w) is continuous. Here it is
the inner product in W. Also define what it means for t → Ψ(t) v to be continuous
and show this is continuous. Do it all for differentiable in place of continuous. Next
show t→ ||Ψ(t)|| is continuous.

20. If z (t) ∈W, a finite dimensional inner product space, what does it mean for t→ z (t)
to be continuous or differentiable? If z is continuous, define∫ b

a

z (t) dt ∈W

as follows. (
w,

∫ b

a

z (t) dt

)
≡
∫ b

a

(w, z (t)) dt.

Show that this definition is well defined and furthermore the triangle inequality,∣∣∣∣∣
∫ b

a

z (t) dt

∣∣∣∣∣ ≤
∫ b

a

|z (t)| dt,

and fundamental theorem of calculus,

d

dt

(∫ t

a

z (s) ds

)
= z (t)

hold along with any other interesting properties of integrals which are true.
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21. For V,W two inner product spaces, define∫ b

a

Ψ(t) dt ∈ L (V,W )

as follows. (
w,

∫ b

a

Ψ(t) dt (v)

)
≡
∫ b

a

(w,Ψ(t) v) dt.

Show this is well defined and does indeed give
∫ b

a
Ψ(t) dt ∈ L (V,W ) . Also show the

triangle inequality ∣∣∣∣∣
∣∣∣∣∣
∫ b

a

Ψ(t) dt

∣∣∣∣∣
∣∣∣∣∣ ≤

∫ b

a

||Ψ(t)|| dt

where ||·|| is the operator norm and verify the fundamental theorem of calculus holds.(∫ t

a

Ψ(s) ds

)′

= Ψ(t) .

Also verify the usual properties of integrals continue to hold such as the fact the
integral is linear and ∫ b

a

Ψ(t) dt+

∫ c

b

Ψ(t) dt =

∫ c

a

Ψ(t) dt

and similar things. Hint: On showing the triangle inequality, it will help if you use
the fact that

|w|W = sup
|v|≤1

|(w, v)| .

You should show this also.

22. Prove Gronwall’s inequality. Suppose u (t) ≥ 0 and for all t ∈ [0, T ] ,

u (t) ≤ u0 +

∫ t

0

Ku (s) ds.

where K is some nonnegative constant. Then

u (t) ≤ u0e
Kt.

Hint: w (t) =
∫ t

0
u (s) ds. Then using the fundamental theorem of calculus, w (t)

satisfies the following.

u (t)−Kw (t) = w′ (t)−Kw (t) ≤ u0, w (0) = 0.

Now use the usual techniques you saw in an introductory differential equations class.
Multiply both sides of the above inequality by e−Kt and note the resulting left side is
now a total derivative. Integrate both sides from 0 to t and see what you have got.

23. With Gronwall’s inequality and the integral defined in Problem 21 with its properties
listed there, prove there is at most one solution to the initial value problem

y′ = Ay, y (0) = y0.
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Hint: If there are two solutions, subtract them and call the result z. Then

z′ = Az, z (0) = 0.

It follows

z (t) = 0+

∫ t

0

Az (s) ds

and so

||z (t)|| ≤
∫ t

0

∥A∥ ||z (s)|| ds

Now consider Gronwall’s inequality of Problem 22.

24. Suppose A is a matrix which has the property that whenever µ ∈ σ (A) , Reµ < 0.
Consider the initial value problem

y′ = Ay,y (0) = y0.

The existence and uniqueness of a solution to this equation has been established above
in preceding problems, Problem 17 to 23. Show that in this case where the real parts
of the eigenvalues are all negative, the solution to the initial value problem satisfies

lim
t→∞

y (t) = 0.

Hint: A nice way to approach this problem is to show you can reduce it to the
consideration of the initial value problem

z′ = Jεz, z (0) = z0

where Jε is the modified Jordan canonical form where instead of ones down the main
diagonal, there are ε down the main diagonal (Problem 19). Then

z′ = Dz+Nεz

whereD is the diagonal matrix obtained from the eigenvalues of A andNε is a nilpotent
matrix commuting with D which is very small provided ε is chosen very small. Now
let Ψ (t) be the solution of

Ψ′ = −DΨ, Ψ(0) = I

described earlier as
∞∑
k=0

(−1)
k
tkDk

k!
.

Thus Ψ (t) commutes with D and Nε. Tell why. Next argue

(Ψ (t) z)
′
= Ψ(t)Nεz (t)

and integrate from 0 to t. Then

Ψ (t) z (t)− z0 =

∫ t

0

Ψ(s)Nεz (s) ds.

It follows

||Ψ(t) z (t)|| ≤ ||z0||+
∫ t

0

||Nε|| ||Ψ(s) z (s)|| ds.
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It follows from Gronwall’s inequality

||Ψ(t) z (t)|| ≤ ||z0|| e||Nε||t

Now look closely at the form of Ψ (t) to get an estimate which is interesting. Explain
why

Ψ (t) =


eµ1t 0

. . .

0 eµnt


and now observe that if ε is chosen small enough, ||Nε|| is so small that each component
of z (t) converges to 0.

25. Using Problem 24 show that if A is a matrix having the real parts of all eigenvalues
less than 0 then if

Ψ′ (t) = AΨ(t) , Ψ(0) = I

it follows
lim
t→∞

Ψ(t) = 0.

Hint: Consider the columns of Ψ (t)?

26. Let Ψ (t) be a fundamental matrix satisfying

Ψ′ (t) = AΨ(t) , Ψ(0) = I.

Show Ψ (t)
n
= Ψ(nt) . Hint: Subtract and show the difference satisfies

Φ′ = AΦ, Φ (0) = 0.

Use uniqueness.

27. If the real parts of the eigenvalues of A are all negative, show that for every positive
t,

lim
n→∞

Ψ(nt) = 0.

Hint: Pick Re (σ (A)) < −λ < 0 and use Problem 18 about the spectrum of Ψ (t)
and Gelfand’s theorem for the spectral radius along with Problem 26 to argue that∣∣∣∣Ψ(nt) /e−λnt

∣∣∣∣ < 1 for all n large enough.

28. Let H be a Hermitian matrix. (H = H∗) . Show that eiH ≡
∑∞

n=0
(iH)n

n! is unitary.

29. Show the converse of the above exercise. If V is unitary, then V = eiH for some H
Hermitian.

30. If U is unitary and does not have −1 as an eigenvalue so that (I + U)
−1

exists, show
that

H = i (I − U) (I + U)
−1

is Hermitian. Then, verify that

U = (I + iH) (I − iH)
−1
.

31. Suppose that A ∈ L (V, V ) where V is a normed linear space. Also suppose that
∥A∥ < 1 where this refers to the operator norm on A. Verify that

(I −A)
−1

=

∞∑
i=0

Ai

This is called the Neumann series. Suppose now that you only know the algebraic
condition ρ (A) < 1. Is it still the case that the Neumann series converges to (I −A)

−1
?



Chapter 14

Numerical Methods, Eigenvalues

14.1 The Power Method for Eigenvalues

This chapter discusses numerical methods for finding eigenvalues. However, to do this
correctly, you must include numerical analysis considerations which are distinct from linear
algebra. The purpose of this chapter is to give an introduction to some numerical methods
without leaving the context of linear algebra. In addition, some examples are given which
make use of computer algebra systems. For a more thorough discussion, you should see
books on numerical methods in linear algebra like some listed in the references.

I will use ≊ to signify “approximately equal”.
Let A be a complex p× p matrix and suppose that it has distinct eigenvalues

{λ1, · · · , λm}

and that |λ1| > |λk| for all k. Also let the Jordan form of A be

J =


J1

. . .

Jm


with J1 an m1 ×m1 matrix.

Jk = λkIk +Nk

where Nrk
k ̸= 0 but Nrk+1

k = 0. Also let

P−1AP = J, A = PJP−1.

Now fix x ∈ Fp. Take Ax and let s1 be the entry of the vector Ax which has largest
absolute value. Thus Ax/s1 is a vector y1 which has a component of 1 and every other
entry of this vector has magnitude no larger than 1. If the scalars {s1, · · · , sn−1} and
vectors {y1, · · · ,yn−1} have been obtained, let yn ≡ Ayn−1/sn where sn is the entry of
Ayn−1 which has largest absolute value. Thus

yn =
AAyn−2

snsn−1
· · · = Anx

snsn−1 · · · s1
(14.1)

=
1

snsn−1 · · · s1
P


Jn
1

. . .

Jn
m

P−1x

=
λn1

snsn−1 · · · s1
P


λ−n
1 Jn

1

. . .

λ−n
1 Jn

m

P−1x (14.2)

Consider one of the blocks in the Jordan form. First consider the kth of these blocks,
k > 1. It equals

λ−n
1 Jn

k =

rk∑
i=0

(
n

i

)
λ−n
1 λn−i

k N i
k

357
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which clearly converges to 0 as n→ ∞ since |λ1| > |λk|. An application of the ratio test or
root test for each term in the sum will show this. When k = 1, this block is

λ−n
1 Jn

1 = λ−n
1 Jn

k =

r1∑
i=0

(
n

i

)
λ−n
1 λn−i

1 N i
1 =

(
n

r1

)[
λ−r1
1 Nr1

1 + en
]

where limn→∞ en = 0 because it is a sum of bounded matrices which are multiplied by(
n
i

)
/
(
n
r1

)
. This quotient converges to 0 as n → ∞ because i < r1. It follows that 14.2 is of

the form

yn =
λn1

snsn−1 · · · s1

(
n

r1

)
P

(
λ−r1
1 Nr1

1 + en 0

0 En

)
P−1x ≡ λn1

snsn−1 · · · s1

(
n

r1

)
wn

where En → 0, en → 0. Let
(
P−1x

)
m1

denote the first m1 entries of the vector P−1x.

Unless a very unlucky choice for x was picked, it will follow that
(
P−1x

)
m1

/∈ ker (Nr1
1 ) .

Then for large n, yn is close to the vector

λn1
snsn−1 · · · s1

(
n

r1

)
P

(
λ−r1
1 Nr1

1 0

0 0

)
P−1x ≡ λn1

snsn−1 · · · s1

(
n

r1

)
w ≡ z ̸= 0

However, this is an eigenvector because

(A− λ1I)w =

A−λ1I︷ ︸︸ ︷
P (J − λ1I)P

−1P

(
λ−r1
1 Nr1

1 0

0 0

)
P−1x =

P


N1

. . .

Jm − λ1I

P−1P


λ−r1
1 Nr1

1

. . .

0

P−1x

= P

(
N1λ

−r1
1 Nr1

1 0

0 0

)
P−1x = 0

Recall Nr1+1
1 = 0. Now you could recover an approximation to the eigenvalue as follows.

(Ayn,yn)

(yn,yn)
≊

(Az, z)

(z, z)
= λ1

Here ≊ means “approximately equal”. However, there is a more convenient way to identify
the eigenvalue in terms of the scaling factors sk.∥∥∥∥ λn1

sn · · · s1

(
n

r1

)
(wn −w)

∥∥∥∥
∞

≊ 0

Pick the largest nonzero entry of w, wl. Then for large n, it is also likely the case that
the largest entry of wn will be in the lth position because wm is close to w. From the
construction,

λn1
sn · · · s1

(
n

r1

)
wnl = 1 ≊

λn1
sn · · · s1

(
n

r1

)
wl

In other words, for large n
λn1

sn · · · s1

(
n

r1

)
≊ 1/wl
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Therefore, for large n,

λn1
sn · · · s1

(
n

r1

)
≊

λn+1
1

sn+1sn · · · s1

(
n+ 1

r1

)
and so (

n

r1

)
/

(
n+ 1

r1

)
≊

λ1
sn+1

But limn→∞
(
n
r1

)
/
(
n+1
r1

)
= 1 and so, for large n it must be the case that λ1 ≊ sn+1.

This has proved the following theorem which justifies the power method.

Theorem 14.1.1 Let A be a complex p× p matrix such that the eigenvalues are

{λ1, λ2, · · · , λr}

with |λ1| > |λj | for all j ̸= 1. Then for x a given vector, let

y1 =
Ax

s1

where s1 is an entry of Ax which has the largest absolute value. If the scalars {s1, · · · , sn−1}
and vectors {y1, · · · ,yn−1} have been obtained, let

yn ≡ Ayn−1

sn

where sn is the entry of Ayn−1 which has largest absolute value. Then it is probably the
case that {sn} will converge to λ1 and {yn} will converge to an eigenvector associated with
λ1. If it doesn’t, you picked an incredibly inauspicious initial vector x.

In summary, here is the procedure.

Finding the largest eigenvalue with its eigenvector.

1. Start with a vector, u1 which you hope is not unlucky.

2. If uk is known,

uk+1 =
Auk

sk+1

where sk+1 is the entry of Auk which has largest absolute value.

3. When the scaling factors sk are not changing much, sk+1 will be close to the eigenvalue
and uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well. If things don’t work well, try another u1.
You were miraculously unlucky in your choice.

Example 14.1.2 Find the largest eigenvalue of A =

 5 −14 11

−4 4 −4

3 6 −3

 .
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You can begin with u1=(1, · · · , 1)T and apply the above procedure. However, you can
accelerate the process if you begin with Anu1 and then divide by the largest entry to get
the first approximate eigenvector. Thus 5 −14 11

−4 4 −4

3 6 −3


20 1

1

1

 =

 2. 555 8× 1021

−1. 277 9× 1021

−3. 656 2× 1015


Divide by the largest entry to obtain a good aproximation. 2. 555 8× 1021

−1. 277 9× 1021

−3. 656 2× 1015

 1

2. 555 8× 1021
=

 1.0

−0.5

−1. 430 6× 10−6


Now begin with this one. 5 −14 11

−4 4 −4

3 6 −3


 1.0

−0.5

−1. 430 6× 10−6

 =

 12. 000

−6. 000 0

4. 291 8× 10−6


Divide by 12 to get the next iterate. 12. 000

−6. 000 0

4. 291 8× 10−6

 1

12
=

 1.0

−0.5

3. 576 5× 10−7


Another iteration will reveal that the scaling factor is still 12. Thus this is an approxi-
mate eigenvalue. In fact, it is the largest eigenvalue and the corresponding eigenvector

is
(

1.0 −0.5 0
)
. The process has worked very well.

14.1.1 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization
of the above simple procedure and yields very good results. One can find complex eigenvalues
using this method. The situation is this: You have a number α which is close to λ, some
eigenvalue of an n × n matrix A. You don’t know λ but you know that α is closer to λ
than to any other eigenvalue. Your problem is to find both λ and an eigenvector which goes
with λ. Another way to look at this is to start with α and seek the eigenvalue λ, which is
closest to α along with an eigenvector associated with λ. If α is an eigenvalue of A, then
you have what you want. Therefore, I will always assume α is not an eigenvalue of A and
so (A− αI)

−1
exists. The method is based on the following lemma.

Lemma 14.1.3 Let {λk}nk=1 be the eigenvalues of A. If xk is an eigenvector of A for the

eigenvalue λk, then xk is an eigenvector for (A− αI)
−1

corresponding to the eigenvalue
1

λk−α . Conversely, if

(A− αI)
−1

y =
1

λ− α
y (14.3)

and y ̸= 0, then Ay = λy.
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Proof: Let λk and xk be as described in the statement of the lemma. Then

(A− αI)xk = (λk − α)xk

and so
1

λk − α
xk = (A− αI)

−1
xk.

Suppose 14.3. Then y = 1
λ−α [Ay − αy] . Solving for Ay leads to Ay = λy. ■

Now assume α is closer to λ than to any other eigenvalue. Then the magnitude of 1
λ−α

is greater than the magnitude of all the other eigenvalues of (A− αI)
−1

. Therefore, the

power method applied to (A− αI)
−1

will yield 1
λ−α . You end up with sn+1 ≊ 1

λ−α and
solve for λ.

14.1.2 The Explicit Description of the Method

Here is how you use this method to find the eigenvalue closest to α and the
corresponding eigenvector.

1. Find (A− αI)
−1
.

2. Pick u1. If you are not phenomenally unlucky, the iterations will converge.

3. If uk has been obtained,

uk+1 =
(A− αI)

−1
uk

sk+1

where sk+1 is the entry of (A− αI)
−1

uk which has largest absolute value.

4. When the scaling factors, sk are not changing much and the uk are not changing much,
find the approximation to the eigenvalue by solving

sk+1 =
1

λ− α

for λ. The eigenvector is approximated by uk+1.

5. Check your work by multiplying by the original matrix to see how well what you have
found works.

Thus this amounts to the power method for the matrix (A− αI)
−1

but you are free to
pick α.

Example 14.1.4 Find the eigenvalue of A =

 5 −14 11

−4 4 −4

3 6 −3

 which is closest to −7.

Also find an eigenvector which goes with this eigenvalue.

In this case the eigenvalues are −6, 0, and 12 so the correct answer is −6 for the
eigenvalue. Then from the above procedure, I will start with an initial vector, u1 =(

1 1 1
)T

. Then I must solve the following equation.
 5 −14 11

−4 4 −4

3 6 −3

+ 7

 1 0 0

0 1 0

0 0 1



 x

y

z

 =

 1

1

1
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Simplifying the matrix on the left, I must solve 12 −14 11

−4 11 −4

3 6 4


 x

y

z

 =

 1

1

1


and then divide by the entry which has largest absolute value to obtain

u2 =

 1.0

. 184

−. 76


Now solve  12 −14 11

−4 11 −4

3 6 4


 x

y

z

 =

 1.0

. 184

−. 76


and divide by the largest entry, 1. 051 5 to get

u3 =

 1.0

.0 266

−. 970 61


Solve  12 −14 11

−4 11 −4

3 6 4


 x

y

z

 =

 1.0

.0 266

−. 970 61


and divide by the largest entry, 1. 01 to get

u4 =

 1.0

3. 845 4× 10−3

−. 996 04

 .

These scaling factors are pretty close after these few iterations. Therefore, the predicted
eigenvalue is obtained by solving the following for λ.

1

λ+ 7
= 1.01

which gives λ = −6. 01. You see this is pretty close. In this case the eigenvalue closest to
−7 was −6.

How would you know what to start with for an initial guess? You might apply Ger-
schgorin’s theorem. However, sometimes you can begin with a better estimate.

Example 14.1.5 Consider the symmetric matrix A =

 1 2 3

2 1 4

3 4 2

 . Find the middle

eigenvalue and an eigenvector which goes with it.
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Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p (λ) = det

λ
 1 0 0

0 1 0

0 0 1

−

 1 2 3

2 1 4

3 4 2




= λ3 − 4λ2 − 24λ− 17 = 0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between −.9 and −.8 and that this is the middle eigenvalue. Of course you could
zoom in and find it very accurately without much trouble but what about the eigenvector
which goes with it? If you try to solve(−.8)

 1 0 0

0 1 0

0 0 1

−

 1 2 3

2 1 4

3 4 2



 x

y

z

 =

 0

0

0


there will be only the zero solution because the matrix on the left will be invertible and the
same will be true if you replace −.8 with a better approximation like −.86 or −.855. This is
because all these are only approximations to the eigenvalue and so the matrix in the above
is nonsingular for all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!

However, there exists such an eigenvector and you can find it using the shifted inverse power
method. Pick α = −.855. Then you solve

 1 2 3

2 1 4

3 4 2

+ .855

 1 0 0

0 1 0

0 0 1



 x

y

z

 =

 1

1

1


or in other words,  1. 855 2.0 3.0

2.0 1. 855 4.0

3.0 4.0 2. 855


 x

y

z

 =

 1

1

1


and after finding the solution, divide by the largest entry −67. 944, to obtain

u2 =

 1. 0

−. 589 21
−. 230 44


After a couple more iterations, you obtain

u3 =

 1. 0

−. 587 77
−. 227 14

 (14.4)

Then doing it again, the scaling factor is −513. 42 and the next iterate is

u4 =

 1. 0

−. 587 78
−. 227 14
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Clearly the uk are not changing much. This suggests an approximate eigenvector for this
eigenvalue which is close to −.855 is the above u3 and an eigenvalue is obtained by solving

1

λ+ .855
= −513. 42,

which yields λ = −0.856 95 Lets check this. 1 2 3

2 1 4

3 4 2


 1. 0

−. 587 78
−. 227 14

 =

 −0.856 98

0.503 66

0.194 6

 .

−0.856 95

 1. 0

−. 587 77
−. 227 14

 =

 −0.856 95

0.503 69

0.194 65


Thus the vector of 14.4 is very close to the desired eigenvector, just as −. 856 9 is very close
to the desired eigenvalue. For practical purposes, I have found both the eigenvector and the
eigenvalue.

Example 14.1.6 Find the eigenvalues and eigenvectors of the matrix A =

 2 1 3

2 1 1

3 2 1

 .

This is only a 3×3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near −1.2, one near −.4, and one near 5.5.
(The characteristic equation is 2 + 8λ + 4λ2 − λ3 = 0.) Of course I have no idea what the
eigenvectors are.

Lets first try to find the eigenvector and a better approximation for the eigenvalue near
−1.2. In this case, let α = −1.2. Then

(A− αI)
−1

=

 −25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0

 .

As before, it helps to get things started if you raise to a power and then go from the
approximate eigenvector obtained. −25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0


7 1

1

1

 =

 −2. 295 6× 1011

1. 129 1× 1011

2. 086 5× 1011


Then the next iterate will be −2. 295 6× 1011

1. 129 1× 1011

2. 086 5× 1011

 1

−2. 295 6× 1011
=

 1.0

−0.491 85

−0.908 91


Next iterate: −25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0


 1.0

−0.491 85

−0.908 91

 =

 −54. 115

26. 615

49. 184
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Divide by largest entry  −54. 115

26. 615

49. 184

 1

−54. 115
=

 1.0

−0.491 82

−0.908 88


You can see the vector didn’t change much and so the next scaling factor will not be much
different than this one. Hence you need to solve for λ

1

λ+ 1.2
= −54. 115

Then λ = −1. 218 5 is an approximate eigenvalue and 1.0

−0.491 82

−0.908 88


is an approximate eigenvector. How well does it work? 2 1 3

2 1 1

3 2 1


 1.0

−0.491 82

−0.908 88

 =

 −1. 218 5

0.599 3

1. 107 5


(−1. 218 5)

 1.0

−0.491 82

−0.908 88

 =

 −1. 218 5

0.599 28

1. 107 5


You can see that for practical purposes, this has found the eigenvalue closest to −1. 218 5

and the corresponding eigenvector.
The other eigenvectors and eigenvalues can be found similarly. In the case of −.4, you

could let α = −.4 and then

(A− αI)
−1

=

 8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9

−. 403 225 81 11. 370 968 −7. 258 064 5

. 403 225 81 3. 629 032 3 −2. 741 935 5

 .

Following the procedure of the power method, you find that after about 5 iterations, the
scaling factor is 9. 757 313 9, they are not changing much, and

u5 =

 −. 781 224 8
1. 0

. 264 936 88

 .

Thus the approximate eigenvalue is

1

λ+ .4
= 9. 757 313 9

which shows λ = −. 297 512 78 is an approximation to the eigenvalue near .4. How well does
it work?  2 1 3

2 1 1

3 2 1


 −. 781 224 8

1. 0

. 264 936 88

 =

 . 232 361 04

−. 297 512 72
−.0 787 375 2

 .
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−. 297 512 78

 −. 781 224 8
1. 0

. 264 936 88

 =

 . 232 424 36

−. 297 512 78
−7. 882 210 8× 10−2

 .

It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been
found. If you want better accuracy, you could just continue iterating. One can find the
eigenvector corresponding to the eigenvalue nearest 5.5 the same way.

14.1.3 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick α to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies you
will get convergence to a complex number. Also, the process of iteration will yield only real
vectors and scalars.

Example 14.1.7 Find the complex eigenvalues and corresponding eigenvectors for the ma-
trix  5 −8 6

1 0 0

0 1 0

 .

Here the characteristic equation is λ3 − 5λ2 + 8λ − 6 = 0. One solution is λ = 3. The
other two are 1+ i and 1− i. I will apply the process to α = i to find the eigenvalue closest
to i.

(A− αI)
−1

=

 −.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i

−. 14 + .0 2i . 68− . 24i . 12 + . 84i

.0 2 + . 14i −. 24− . 68i . 84 + . 88i


Then let u1 = (1, 1, 1)

T
for lack of any insight into anything better.

 −.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i

−. 14 + .0 2i . 68− . 24i . 12 + . 84i

.0 2 + . 14i −. 24− . 68i . 84 + . 88i


20 1

1

1


=

 −0.400 00 + 0.8i

0.200 00 + 0.6i

0.400 00 + 0.2i


Now divide by the largest entry to get the next iterate. This yields for an approximate
eigenvector approximately −0.400 00 + 0.8i

0.200 00 + 0.6i

0.400 00 + 0.2i

 1

−0.400 00 + 0.8i
=

 1.0

0.5− 0.5i

−0.5i
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Now leaving off extremely small terms, −.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i

−. 14 + .0 2i . 68− . 24i . 12 + . 84i

.0 2 + . 14i −. 24− . 68i . 84 + . 88i


 1.0

0.5− 0.5i

−0.5i

 =

 1.0

0.5− 0.5i

−0.5i


so it appears that an eigenvector is the above and an eigenvalue can be obtained by solving

1

λ− i
= 1, so λ = 1 + i

The method has successfully found the complex eigenvalue closest to i as well as the eigen-
vector. Note that I used essentially 20 iterations of the method.

This illustrates an interesting topic which leads to many related topics. If you have a
polynomial, x4 + ax3 + bx2 + cx+ d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,

−a −b −c −d
1 0 0 0

0 1 0 0

0 0 1 0

 .

The above example was just a companion matrix for λ3 − 5λ2 + 8λ − 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
λn + a1λ

n−1 + · · · + an−1λ + an. This illustrates that one way to find the complex zeros
of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?

Note that the shifted inverse power method is a way you can begin with something close
but not equal to an eigenvalue and end up with something close to an eigenvector.

14.1.4 Rayleigh Quotients and Estimates for Eigenvalues

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian
matrices. Recall a matrix A is Hermitian if A = A∗ where A∗ means to take the transpose
of the conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall
also that for x ∈ Fn,

|x|2 = x∗x =

n∑
j=1

|xj |2 .

Recall the following corollary found on Page 166 which is stated here for convenience.

Corollary 14.1.8 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {xk}nk=1 this orthonormal basis,

x∗
ixj = δij ≡

{
1 if i = j

0 if i ̸= j
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For x ∈ Fn, x ̸= 0, the Rayleigh quotient is defined by

x∗Ax

|x|2
.

Now let the eigenvalues of A be λ1 ≤ λ2 ≤ · · · ≤ λn and Axk = λkxk where {xk}nk=1 is
the above orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an
arbitrary vector, there exist constants, ai such that

x =

n∑
i=1

aixi.

Also,

|x|2 =

n∑
i=1

aix
∗
i

n∑
j=1

ajxj =
∑
ij

aiajx
∗
ixj =

∑
ij

aiajδij =

n∑
i=1

|ai|2 .

Therefore,

x∗Ax

|x|2
=

(
∑n

i=1 aix
∗
i )
(∑n

j=1 ajλjxj

)
∑n

i=1 |ai|
2 =

∑
ij aiajλjx

∗
ixj∑n

i=1 |ai|
2

=

∑
ij aiajλjδij∑n

i=1 |ai|
2 =

∑n
i=1 |ai|

2
λi∑n

i=1 |ai|
2 ∈ [λ1, λn] .

In other words, the Rayleigh quotient is always between the largest and the smallest eigenval-
ues of A.When x = xn, the Rayleigh quotient equals the largest eigenvalue and when x = x1

the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quo-
tient. How close is it to some eigenvalue?

Theorem 14.1.9 Let x ̸= 0 and form the Rayleigh quotient,

x∗Ax

|x|2
≡ q.

Then there exists an eigenvalue of A, denoted here by λq such that

|λq − q| ≤ |Ax− qx|
|x|

. (14.5)

Proof: Let x =
∑n

k=1 akxk where {xk}nk=1 is the orthonormal basis of eigenvectors.

|Ax− qx|2 = (Ax− qx)
∗
(Ax− qx)

=

(
n∑

k=1

akλkxk − qakxk

)∗( n∑
k=1

akλkxk − qakxk

)

=

 n∑
j=1

(λj − q) ajx
∗
j

( n∑
k=1

(λk − q) akxk

)

=
∑
j,k

(λj − q) aj (λk − q) akx
∗
jxk

=

n∑
k=1

|ak|2 (λk − q)
2
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Now pick the eigenvalue λq which is closest to q. Then

|Ax− qx|2 =

n∑
k=1

|ak|2 (λk − q)
2 ≥ (λq − q)

2
n∑

k=1

|ak|2 = (λq − q)
2 |x|2

which implies 14.5. ■

Example 14.1.10 Consider the symmetric matrix A =

 1 2 3

2 2 1

3 1 4

 . Let x =(1, 1, 1)
T
.

How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigen-
value to several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

(
1 1 1

) 1 2 3

2 2 1

3 1 4


 1

1

1


3

=
19

3

According to the above theorem, there is some eigenvalue of this matrix λq such that

∣∣∣∣λq − 19

3

∣∣∣∣ ≤

∣∣∣∣∣∣∣
 1 2 3

2 2 1

3 1 4


 1

1

1

− 19
3

 1

1

1


∣∣∣∣∣∣∣

√
3

=
1√
3

 − 1
3

− 4
3

5
3


=

√
1
9 +

(
4
3

)2
+
(
5
3

)2
√
3

= 1. 247 2

Could you find this eigenvalue and associated eigenvector? Of course you could. This is
what the shifted inverse power method is all about.

Solve 
 1 2 3

2 2 1

3 1 4

− 19

3

 1 0 0

0 1 0

0 0 1



 x

y

z

 =

 1

1

1


In other words solve  − 16

3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y

z

 =

 1

1

1


and divide by the entry which is largest, 3. 870 7, to get

u2 =

 . 699 25

. 493 89

1.0
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Now solve  − 16
3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y

z

 =

 . 699 25

. 493 89

1.0


and divide by the largest entry, 2. 997 9 to get

u3 =

 . 714 73

. 522 63

1. 0


Now solve  − 16

3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y

z

 =

 . 714 73

. 522 63

1. 0


and divide by the largest entry, 3. 045 4, to get

u4 =

 . 713 7

. 520 56

1.0


Solve  − 16

3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y

z

 =

 . 713 7

. 520 56

1.0


and divide by the largest entry, 3. 042 1 to get

u5 =

 . 713 78

. 520 73

1.0


You can see these scaling factors are not changing much. The predicted eigenvalue is then
about

1

3. 042 1
+

19

3
= 6. 662 1.

How close is this?  1 2 3

2 2 1

3 1 4


 . 713 78

. 520 73

1.0

 =

 4. 755 2

3. 469

6. 662 1


while

6. 662 1

 . 713 78

. 520 73

1.0

 =

 4. 755 3

3. 469 2

6. 662 1

 .

You see that for practical purposes, this has found the eigenvalue and an eigenvector.
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14.2 The QR Algorithm

14.2.1 Basic Properties and Definition

Recall the theorem about the QR factorization in Theorem 5.7.5. It says that given an n×n
real matrix A, there exists a real orthogonal matrix Q and an upper triangular matrix R such
that A = QR and that this factorization can be accomplished by a systematic procedure.
One such procedure was given in proving this theorem.

Theorem 14.2.1 Let A be an m × n complex matrix. Then there exists a unitary Q and
R, where R is all zero below the main diagonal (Rij = 0if i > j) such that A = QR.

Proof: This is obvious if m = 1.(
a1 · · · an

)
= (1)

(
a1 · · · an

)
Suppose true for m− 1 and let

A =
(

a1 · · · an

)
, A is m× n

There exists Q1 a unitary matrix such that Q1 (a1/ |a1|) = e1 in case a1 ̸= 0. Thus
Q1a1 = |a1| e1. If a1 = 0, let Q1 = I. Thus

Q1A =

(
a b

0 A1

)
where A1 is (m− 1)× (n− 1). If n = 1, this obtains

Q1A =

(
a

0

)
, A = Q∗

1

(
a

0

)
, let Q = Q∗

1.

That which is desired is obtained. So assume n > 1. By induction, there exists Q′
2 an

(m− 1)× (n− 1) unitary matrix such that Q′
2A1 = R′, R′

ij = 0 if i > j. Then(
1 0

0 Q′
2

)
Q1A =

(
a b

0 R′

)
= R

Since the product of unitary matrices is unitary, there exists Q unitary such that Q∗A = R
and so A = QR. ■ ▶ ▶

The QR algorithm is described in the following definition.

Definition 14.2.2 The QR algorithm is the following. In the description of this algorithm,
Q is unitary and R is upper triangular having nonnegative entries on the main diagonal.
Starting with A an n× n matrix, form

A0 ≡ A = Q1R1 (14.6)

Then
A1 ≡ R1Q1. (14.7)

In general given
Ak = RkQk, (14.8)

obtain Ak+1 by
Ak = Qk+1Rk+1, Ak+1 = Rk+1Qk+1 (14.9)

http://www.math.byu.edu/~klkuttle/precalculus/lz7.mp4
http://www.math.byu.edu/~klkuttle/precalculus/lz8.mp4
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This algorithm was proposed by Francis in 1961. The sequence {Ak} is the desired
sequence of iterates. Now with the above definition of the algorithm, here are its properties.
The next lemma shows each of the Ak is unitarily similar to A and the amazing thing about
this algorithm is that often it becomes increasingly easy to find the eigenvalues of the Ak.

Lemma 14.2.3 Let A be an n×n matrix and let the Qk and Rk be as described in the algo-
rithm. Then each Ak is unitarily similar to A and denoting by Q(k) the product Q1Q2 · · ·Qk

and R(k) the product RkRk−1 · · ·R1, it follows that

Ak = Q(k)R(k)

(The matrix on the left is A raised to the kth power.)

A = Q(k)AkQ
(k)∗, Ak = Q(k)∗AQ(k).

Proof: From the algorithm, Rk+1 = Ak+1Q
∗
k+1 and so

Ak = Qk+1Rk+1 = Qk+1Ak+1Q
∗
k+1

Now iterating this, it follows

Ak−1 = QkAkQ
∗
k = QkQk+1Ak+1Q

∗
k+1Q

∗
k

Ak−2 = Qk−1Ak−1Q
∗
k−1 = Qk−1QkQk+1Ak+1Q

∗
k+1Q

∗
kQ

∗
k−1

etc. Thus, after k − 2 more iterations,

A = Q(k+1)Ak+1Q
(k+1)∗

The product of unitary matrices is unitary and so this proves the first claim of the lemma.
Now consider the part about Ak. From the algorithm, this is clearly true for k = 1.

(A1 = QR) Suppose then that

Ak = Q1Q2 · · ·QkRkRk−1 · · ·R1

What was just shown indicated

A = Q1Q2 · · ·Qk+1Ak+1Q
∗
k+1Q

∗
k · · ·Q∗

1

and now from the algorithm, Ak+1 = Rk+1Qk+1 and so

A = Q1Q2 · · ·Qk+1Rk+1Qk+1Q
∗
k+1Q

∗
k · · ·Q∗

1

Then
Ak+1 = AAk =

A︷ ︸︸ ︷
Q1Q2 · · ·Qk+1Rk+1Qk+1Q

∗
k+1Q

∗
k · · ·Q∗

1Q1 · · ·QkRkRk−1 · · ·R1

= Q1Q2 · · ·Qk+1Rk+1RkRk−1 · · ·R1 ≡ Q(k+1)R(k+1) ■

Here is another very interesting lemma.

Lemma 14.2.4 Suppose Q(k), Q are unitary and Rk is upper triangular such that the di-
agonal entries on Rk are all positive and

Q = lim
k→∞

Q(k)Rk

Then
lim
k→∞

Q(k) = Q, lim
k→∞

Rk = I.

Also the QR factorization of A is unique whenever A−1 exists.
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Proof: Let
Q = (q1, · · · ,qn) , Q

(k) =
(
qk
1 , · · · ,qk

n

)
where the q are the columns. Also denote by rkij the ijth entry of Rk. Thus

Q(k)Rk =
(
qk
1 , · · · ,qk

n

)
rk11 ∗

. . .

0 rknn


It follows

rk11q
k
1 → q1

and so
rk11 =

∣∣rk11qk
1

∣∣→ 1

Therefore,
qk
1 → q1.

Next consider the second column.

rk12q
k
1 + rk22q

k
2 → q2

Taking the inner product of both sides with qk
1 it follows

lim
k→∞

rk12 = lim
k→∞

(
q2 · qk

1

)
= (q2 · q1) = 0.

Therefore,
lim
k→∞

rk22q
k
2 = q2

and since rk22 > 0, it follows as in the first part that rk22 → 1. Hence

lim
k→∞

qk
2 = q2.

Continuing this way, it follows
lim
k→∞

rkij = 0

for all i ̸= j and
lim
k→∞

rkjj = 1, lim
k→∞

qk
j = qj .

Thus Rk → I and Q(k) → Q. This proves the first part of the lemma.
The second part follows immediately. If QR = Q′R′ = A where A−1 exists, then

Q∗Q′ = R (R′)
−1

and I need to show both sides of the above are equal to I. The left side of the above is
unitary and the right side is upper triangular having positive entries on the diagonal. This
is because the inverse of such an upper triangular matrix having positive entries on the
main diagonal is still upper triangular having positive entries on the main diagonal and
the product of two such upper triangular matrices gives another of the same form having
positive entries on the main diagonal. Suppose then that Q = R where Q is unitary and R
is upper triangular having positive entries on the main diagonal. Let Qk = Q and Rk = R.
It follows

IRk → R = Q
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and so from the first part, Rk → I but Rk = R and so R = I. Thus applying this to
Q∗Q′ = R (R′)

−1
yields both sides equal I. ■

A case of all this is of great interest. Suppose A has a largest eigenvalue λ which is
real. Then An is of the form

(
An−1a1, · · · , An−1an

)
and so likely each of these columns

will be pointing roughly in the direction of an eigenvector of A which corresponds to this
eigenvalue. Then when you do the QR factorization of this, it follows from the fact that R
is upper triangular, that the first column of Q will be a multiple of An−1a1 and so will end
up being roughly parallel to the eigenvector desired. Also this will require the entries below
the top in the first column of An = QTAQ will all be small because they will be of the form
qT
i Aq1 ≊ λqT

i q1 = 0. Therefore, An will be of the form(
λ′ a

e B

)

where e is small. It follows that λ′ will be close to λ and q1 will be close to an eigenvector for
λ. Then if you like, you could do the same thing with the matrix B to obtain approximations
for the other eigenvalues. Finally, you could use the shifted inverse power method to get
more exact solutions.

14.2.2 The Case of Real Eigenvalues

With these lemmas, it is possible to prove that for the QR algorithm and certain conditions,
the sequence Ak converges pointwise to an upper triangular matrix having the eigenvalues
of A down the diagonal. I will assume all the matrices are real here.

This convergence won’t always happen. Consider for example the matrix

(
0 1

1 0

)
.

You can verify quickly that the algorithm will return this matrix for each k. The problem
here is that, although the matrix has the two eigenvalues −1, 1, they have the same absolute
value. The QR algorithm works in somewhat the same way as the power method, exploiting
differences in the size of the eigenvalues.

If A has all real eigenvalues and you are interested in finding these eigenvalues along
with the corresponding eigenvectors, you could always consider A + λI instead where λ is
sufficiently large and positive that A+λI has all positive eigenvalues. (Recall Gerschgorin’s
theorem.) Then if µ is an eigenvalue of A+ λI with

(A+ λI)x = µx

then
Ax = (µ− λ)x

so to find the eigenvalues of A you just subtract λ from the eigenvalues of A + λI. Thus
there is no loss of generality in assuming at the outset that the eigenvalues of A are all
positive. Here is the theorem. It involves a technical condition which will often hold. The
proof presented here follows [27] and is a special case of that presented in this reference.

Before giving the proof, note that the product of upper triangular matrices is upper
triangular. If they both have positive entries on the main diagonal so will the product.
Furthermore, the inverse of an upper triangular matrix is upper triangular. I will use these
simple facts without much comment whenever convenient.

Theorem 14.2.5 Let A be a real matrix having eigenvalues

λ1 > λ2 > · · · > λn > 0
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and let
A = SDS−1 (14.10)

where

D =


λ1 0

. . .

0 λn


and suppose S−1 has an LU factorization. Then the matrices Ak in the QR algorithm
described above converge to an upper triangular matrix T ′ having the eigenvalues of A,
λ1, · · · , λn descending on the main diagonal. The matrices Q(k) converge to Q′, an orthog-
onal matrix which equals Q except for possibly having some columns multiplied by −1 for Q
the unitary part of the QR factorization of S,

S = QR,

and
lim
k→∞

Ak = T ′ = Q′TAQ′

Proof: From Lemma 14.2.3

Ak = Q(k)R(k) = SDkS−1 (14.11)

Let S = QR where this is just a QR factorization which is known to exist and let S−1 = LU
which is assumed to exist. Thus

Q(k)R(k) = QRDkLU (14.12)

and so
Q(k)R(k) = QRDkLU = QRDkLD−kDkU

That matrix in the middle, DkLD−k satisfies(
DkLD−k

)
ij
= λki Lijλ

−k
j for j ≤ i, 0 if j > i.

Thus for j < i the expression converges to 0 because λj > λi when this happens. When
i = j it reduces to 1. Thus the matrix in the middle is of the form I + Ek where Ek → 0.
Then it follows

Ak = Q(k)R(k) = QR (I + Ek)D
kU

= Q
(
I +REkR

−1
)
RDkU ≡ Q (I + Fk)RD

kU

where Fk → 0. Then let I + Fk = QkRk where this is another QR factorization. Then it
reduces to

Q(k)R(k) = QQkRkRD
kU

This looks really interesting because by Lemma 14.2.4 Qk → I and Rk → I because
QkRk = (I + Fk) → I. So it follows QQk is an orthogonal matrix converging to Q while

RkRD
kU
(
R(k)

)−1

is upper triangular, being the product of upper triangular matrices. Unfortunately, it is not
known that the diagonal entries of this matrix are nonnegative because of the U . Let Λ be
just like the identity matrix but having some of the ones replaced with −1 in such a way
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that ΛU is an upper triangular matrix having positive diagonal entries. Note Λ2 = I and
also Λ commutes with a diagonal matrix. Thus

Q(k)R(k) = QQkRkRD
kΛ2U = QQkRkRΛD

k (ΛU)

At this point, one does some inspired massaging to write the above in the form

QQk

(
ΛDk

) [(
ΛDk

)−1
RkRΛD

k
]
(ΛU)

= Q (QkΛ)D
k
[(
ΛDk

)−1
RkRΛD

k
]
(ΛU)

= Q (QkΛ)

≡Gk︷ ︸︸ ︷
Dk
[(
ΛDk

)−1
RkRΛD

k
]
(ΛU)

Now I claim the middle matrix in [·] is upper triangular and has all positive entries on the
diagonal. This is because it is an upper triangular matrix which is similar to the upper
triangular matrix RkR and so it has the same eigenvalues (diagonal entries) as RkR. Thus

the matrix Gk ≡ Dk
[(
ΛDk

)−1
RkRΛD

k
]
(ΛU) is upper triangular and has all positive

entries on the diagonal. Multiply on the right by G−1
k to get

Q(k)R(k)G−1
k = QQkΛ → Q′

where Q′ is essentially equal to Q but might have some of the columns multiplied by −1.
This is because Qk → I and so QkΛ → Λ. Now by Lemma 14.2.4, it follows

Q(k) → Q′, R(k)G−1
k → I.

It remains to verify Ak converges to an upper triangular matrix. Recall that from 14.11
and the definition below this (S = QR)

A = SDS−1 = (QR)D (QR)
−1

= QRDR−1QT = QTQT

Where T is an upper triangular matrix. This is because it is the product of upper triangular
matrices R,D,R−1. Thus QTAQ = T. If you replace Q with Q′ in the above, it still results
in an upper triangular matrix T ′ having the same diagonal entries as T. This is because

T = QTAQ = (Q′Λ)
T
A (Q′Λ) = ΛQ′TAQ′Λ

and considering the iith entry yields(
QTAQ

)
ii
≡
∑
j,k

Λij

(
Q′TAQ′)

jk
Λki = ΛiiΛii

(
Q′TAQ′)

ii
=
(
Q′TAQ′)

ii

Recall from Lemma 14.2.3, Ak = Q(k)TAQ(k). Thus taking a limit and using the first
part,

Ak = Q(k)TAQ(k) → Q′TAQ′ = T ′. ■

An easy case is for A symmetric. Recall Corollary 6.4.13. By this corollary, there exists
an orthogonal (real unitary) matrix Q such that

QTAQ = D

where D is diagonal having the eigenvalues on the main diagonal decreasing in size from the
upper left corner to the lower right.
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Corollary 14.2.6 Let A be a real symmetric n× n matrix having eigenvalues

λ1 > λ2 > · · · > λn > 0

and let Q be defined by
QDQT = A, D = QTAQ, (14.13)

where Q is orthogonal and D is a diagonal matrix having the eigenvalues on the main
diagonal decreasing in size from the upper left corner to the lower right. Let QT have an
LU factorization. Then in the QR algorithm, the matrices Q(k) converge to Q′ where Q′ is
the same as Q except having some columns multiplied by (−1) . Thus the columns of Q′ are
eigenvectors of A. The matrices Ak converge to D.

Proof: This follows from Theorem 14.2.5. Here S = Q,S−1 = QT . Thus

Q = S = QR

and R = I. By Theorem 14.2.5 and Lemma 14.2.3,

Ak = Q(k)TAQ(k) → Q′TAQ′ = QTAQ = D.

because formula 14.13 is unaffected by replacing Q with Q′. ■
When using the QR algorithm, it is not necessary to check technical condition about

S−1 having an LU factorization. The algorithm delivers a sequence of matrices which are
similar to the original one. If that sequence converges to an upper triangular matrix, then
the algorithm worked. Furthermore, the technical condition is sufficient but not necessary.
The algorithm will work even without the technical condition.

Example 14.2.7 Find the eigenvalues and eigenvectors of the matrix

A =

 5 1 1

1 3 2

1 2 1


It is a symmetric matrix but other than that, I just pulled it out of the air. By Lemma

14.2.3 it follows Ak = Q(k)TAQ(k). And so to get to the answer quickly I could have the
computer raise A to a power and then take the QR factorization of what results to get the
kth iteration using the above formula. Lets pick k = 10. 5 1 1

1 3 2

1 2 1


10

=

 4. 227 3× 107 2. 595 9× 107 1. 861 1× 107

2. 595 9× 107 1. 607 2× 107 1. 150 6× 107

1. 861 1× 107 1. 150 6× 107 8. 239 6× 106


Now take QR factorization of this. The computer will do that also.
This yields  . 797 85 −. 599 12 −6. 694 3× 10−2

. 489 95 . 709 12 −. 507 06

. 351 26 . 371 76 . 859 31

 ·

 5. 298 3× 107 3. 262 7× 107 2. 338× 107

0 1. 217 2× 105 71946.

0 0 277. 03
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Next it follows

A10 =

 . 797 85 −. 599 12 −6. 694 3× 10−2

. 489 95 . 709 12 −. 507 06

. 351 26 . 371 76 . 859 31


T

·

 5 1 1

1 3 2

1 2 1


 . 797 85 −. 599 12 −6. 694 3× 10−2

. 489 95 . 709 12 −. 507 06

. 351 26 . 371 76 . 859 31


and this equals  6. 057 1 3. 698× 10−3 3. 434 6× 10−5

3. 698× 10−3 3. 200 8 −4. 064 3× 10−4

3. 434 6× 10−5 −4. 064 3× 10−4 −. 257 9


By Gerschgorin’s theorem, the eigenvalues are pretty close to the diagonal entries of the

above matrix. Note I didn’t use the theorem, just Lemma 14.2.3 and Gerschgorin’s theorem
to verify the eigenvalues are close to the above numbers. The eigenvectors are close to . 797 85

. 489 95

. 351 26

 ,

 −. 599 12
. 709 12

. 371 76

 ,

 −6. 694 3× 10−2

−. 507 06
. 859 31


Lets check one of these.

 5 1 1

1 3 2

1 2 1

− 6. 057 1

 1 0 0

0 1 0

0 0 1



 . 797 85

. 489 95

. 351 26


=

 −2. 197 2× 10−3

2. 543 9× 10−3

1. 393 1× 10−3

 ≊

 0

0

0


Now lets see how well the smallest approximate eigenvalue and eigenvector works.

 5 1 1

1 3 2

1 2 1

− (−. 257 9)

 1 0 0

0 1 0

0 0 1



 −6. 694 3× 10−2

−. 507 06
. 859 31



=

 2. 704× 10−4

−2. 737 7× 10−4

−1. 369 5× 10−4

 ≊

 0

0

0


For practical purposes, this has found the eigenvalues and eigenvectors.

14.2.3 The QR Algorithm in the General Case

In the case where A has distinct positive eigenvalues it was shown above that under reason-
able conditions related to a certain matrix having an LU factorization the QR algorithm
produces a sequence of matrices {Ak} which converges to an upper triangular matrix. What
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if A is just an n×n matrix having possibly complex eigenvalues but A is nondefective? What
happens with the QR algorithm in this case? The short answer to this question is that the
Ak of the algorithm typically cannot converge. However, this does not mean the algo-
rithm is not useful in finding eigenvalues. It turns out the sequence of matrices {Ak} have
the appearance of a block upper triangular matrix for large k in the sense that the entries
below the blocks on the main diagonal are small. Then looking at these blocks gives a way
to approximate the eigenvalues. An important example of the concept of a block triangular
matrix is the real Schur form for a matrix discussed in Theorem 6.4.7 but the concept as
described here allows for any size block centered on the diagonal.

First it is important to note a simple fact about unitary diagonal matrices. In what
follows Λ will denote a unitary matrix which is also a diagonal matrix. These matrices
are just the identity matrix with some of the ones replaced with a number of the form eiθ

for some θ. The important property of multiplication of any matrix by Λ on either side
is that it leaves all the zero entries the same and also preserves the absolute values of the
other entries. Thus a block triangular matrix multiplied by Λ on either side is still block
triangular. If the matrix is close to being block triangular this property of being close to a
block triangular matrix is also preserved by multiplying on either side by Λ. Other patterns
depending only on the size of the absolute value occurring in the matrix are also preserved
by multiplying on either side by Λ. In other words, in looking for a pattern in a matrix,
multiplication by Λ is irrelevant.

Now let A be an n×n matrix having real or complex entries. By Lemma 14.2.3 and the
assumption that A is nondefective, there exists an invertible S,

Ak = Q(k)R(k) = SDkS−1 (14.14)

where

D =


λ1 0

. . .

0 λn


and by rearranging the columns of S, D can be made such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| .

Assume S−1 has an LU factorization. Then

Ak = SDkLU = SDkLD−kDkU.

Consider the matrix in the middle, DkLD−k. The ijth entry is of the form

(
DkLD−k

)
ij
=


λki Lijλ

−k
j if j < i

1 if i = j

0 if j > i

and these all converge to 0 whenever |λi| < |λj | . Thus

DkLD−k = (Lk + Ek)

where Lk is a lower triangular matrix which has all ones down the diagonal and some
subdiagonal terms of the form

λki Lijλ
−k
j (14.15)
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for which |λi| = |λj | while Ek → 0. (Note the entries of Lk are all bounded independent of
k but some may fail to converge.) Then

Q(k)R(k) = S (Lk + Ek)D
kU

Let
SLk = QkRk (14.16)

where this is the QR factorization of SLk. Then

Q(k)R(k) = (QkRk + SEk)D
kU

= Qk

(
I +Q∗

kSEkR
−1
k

)
RkD

kU

= Qk (I + Fk)RkD
kU

where Fk → 0. Let I + Fk = Q′
kR

′
k. Then Q

(k)R(k) = QkQ
′
kR

′
kRkD

kU. By Lemma 14.2.4

Q′
k → I and R′

k → I. (14.17)

Now let Λk be a diagonal unitary matrix which has the property that Λ∗
kD

kU is an upper
triangular matrix which has all the diagonal entries positive. Then

Q(k)R(k) = QkQ
′
kΛk (Λ

∗
kR

′
kRkΛk) Λ

∗
kD

kU

That matrix in the middle has all positive diagonal entries because it is itself an upper
triangular matrix, being the product of such, and is similar to the matrix R′

kRk which is
upper triangular with positive diagonal entries. By Lemma 14.2.4 again, this time using the
uniqueness assertion,

Q(k) = QkQ
′
kΛk, R

(k) = (Λ∗
kR

′
kRkΛk) Λ

∗
kD

kU

Note the term QkQ
′
kΛk must be real because the algorithm gives all Q(k) as real matrices.

By 14.17 it follows that for k large enough Q(k) ≊ QkΛk where ≊ means the two matrices
are close. Recall Ak = Q(k)TAQ(k) and so for large k,

Ak ≊ (QkΛk)
∗
A (QkΛk) = Λ∗

kQ
∗
kAQkΛk

As noted above, the form of Λ∗
kQ

∗
kAQkΛk in terms of which entries are large and small is

not affected by the presence of Λk and Λ∗
k. Thus, in considering what form this is in, it

suffices to consider Q∗
kAQk.

This could get pretty complicated but I will consider the case where

if |λi| = |λi+1| , then |λi+2| < |λi+1| . (14.18)

This is typical of the situation where the eigenvalues are all distinct and the matrix A is real
so the eigenvalues occur as conjugate pairs. Then in this case, Lk above is lower triangular
with some nonzero terms on the diagonal right below the main diagonal but zeros everywhere
else. Thus maybe (Lk)s+1,s ̸= 0 Recall 14.16 which implies

Qk = SLkR
−1
k (14.19)

where R−1
k is upper triangular. Also recall from the definition of S in 14.14, it follows that

S−1AS = D. Thus the columns of S are eigenvectors of A, the ith being an eigenvector for
λi. Now from the form of Lk, it follows LkR

−1
k is a block upper triangular matrix denoted

by TB and so Qk = STB . It follows from the above construction in 14.15 and the given
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assumption on the sizes of the eigenvalues, there are finitely many 2 × 2 blocks centered
on the main diagonal along with possibly some diagonal entries. Therefore, for large k the
matrix Ak = Q(k)TAQ(k) is approximately of the same form as that of

Q∗
kAQk = T−1

B S−1ASTB = T−1
B DTB

which is a block upper triangular matrix. As explained above, multiplication by the various
diagonal unitary matrices does not affect this form. Therefore, for large k, Ak is approxi-
mately a block upper triangular matrix.

How would this change if the above assumption on the size of the eigenvalues were relaxed
but the matrix was still nondefective with appropriate matrices having an LU factorization
as above? It would mean the blocks on the diagonal would be larger. This immediately
makes the problem more cumbersome to deal with. However, in the case that the eigenvalues
of A are distinct, the above situation really is typical of what occurs and in any case can be
quickly reduced to this case.

To see this, suppose condition 14.18 is violated and λj , · · · , λj+p are complex eigenvalues
having nonzero imaginary parts such that each has the same absolute value but they are all
distinct. Then let µ > 0 and consider the matrix A+µI. Thus the corresponding eigenvalues
of A+µI are λj +µ, · · · , λj+p+µ. A short computation shows |λj + µ| , · · · , |λj+p + µ| are
all distinct and so the above situation of 14.18 is obtained. Of course, if there are repeated
eigenvalues, it may not be possible to reduce to the case above and you would end up with
large blocks on the main diagonal which could be difficult to deal with.

So how do you identify the eigenvalues? You know Ak and behold that it is close to a
block upper triangular matrix T ′

B . You know Ak is also similar to A. Therefore, T ′
B has

eigenvalues which are close to the eigenvalues of Ak and hence those of A provided k is
sufficiently large. See Theorem 6.9.2 which depends on complex analysis or the exercise on
Page 184 which gives another way to see this. Thus you find the eigenvalues of this block
triangular matrix T ′

B and assert that these are good approximations of the eigenvalues of
Ak and hence to those of A. How do you find the eigenvalues of a block triangular matrix?
This is easy from Lemma 6.4.6. Say

T ′
B =


B1 · · · ∗

. . .
...

0 Bm


Then forming λI −T ′

B and taking the determinant, it follows from Lemma 6.4.6 this equals

m∏
j=1

det (λIj −Bj)

and so all you have to do is take the union of the eigenvalues for each Bj . In the case
emphasized here this is very easy because these blocks are just 2× 2 matrices.

How do you identify approximate eigenvectors from this? First try to find the approx-
imate eigenvectors for Ak. Pick an approximate eigenvalue λ, an exact eigenvalue for T ′

B .
Then find v solving T ′

Bv = λv. It follows since T ′
B is close to Ak that Akv ≊ λv and so

Q(k)AQ(k)Tv = Akv ≊ λv

Hence
AQ(k)Tv ≊ λQ(k)Tv

and so Q(k)Tv is an approximation to the eigenvector which goes with the eigenvalue of A
which is close to λ.
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Example 14.2.8 Here is a matrix. 3 2 1

−2 0 −1

−2 −2 0


It happens that the eigenvalues of this matrix are 1, 1+ i, 1− i. Lets apply the QR algorithm
as if the eigenvalues were not known.

Applying the QR algorithm to this matrix yields the following sequence of matrices.

A1 =

 1. 235 3 1. 941 2 4. 365 7

−. 392 15 1. 542 5 5. 388 6× 10−2

−. 161 69 −. 188 64 . 222 22


...

A12 =

 9. 177 2× 10−2 . 630 89 −2. 039 8

−2. 855 6 1. 908 2 −3. 104 3

1. 078 6× 10−2 3. 461 4× 10−4 1.0


At this point the bottom two terms on the left part of the bottom row are both very

small so it appears the real eigenvalue is near 1.0. The complex eigenvalues are obtained
from solving

det

(
λ

(
1 0

0 1

)
−

(
9. 177 2× 10−2 . 630 89

−2. 855 6 1. 908 2

))
= 0

This yields
λ = 1.0− . 988 28i, 1.0 + . 988 28i

Example 14.2.9 The equation x4+x3+4x2+x−2 = 0 has exactly two real solutions. You
can see this by graphing it. However, the rational root theorem from algebra shows neither
of these solutions are rational. Also, graphing it does not yield any information about the
complex solutions. Lets use the QR algorithm to approximate all the solutions, real and
complex.

A matrix whose characteristic polynomial is the given polynomial is
−1 −4 −1 2

1 0 0 0

0 1 0 0

0 0 1 0


Using the QR algorithm yields the following sequence of iterates for Ak

A1 =


. 999 99 −2. 592 7 −1. 758 8 −1. 297 8

2. 121 3 −1. 777 8 −1. 604 2 −. 994 15
0 . 342 46 −. 327 49 −. 917 99
0 0 −. 446 59 . 105 26
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...

A9 =


−. 834 12 −4. 168 2 −1. 939 −. 778 3
1. 05 . 145 14 . 217 1 2. 547 4× 10−2

0 4. 026 4× 10−4 −. 850 29 −. 616 08
0 0 −1. 826 3× 10−2 . 539 39


Now this is similar to A and the eigenvalues are close to the eigenvalues obtained from

the two blocks on the diagonal,(
−. 834 12 −4. 168 2

1. 05 . 145 14

)
,

(
−. 850 29 −. 616 08

−1. 826 3× 10−2 . 539 39

)
since 4. 026 4× 10−4 is small. After routine computations involving the quadratic formula,
these are seen to be

−. 858 34, . 547 44, −. 344 49− 2. 033 9i, −. 344 49 + 2. 033 9i

When these are plugged in to the polynomial equation, you see that each is close to being
a solution of the equation.

It seems like most of the attention to the QR algorithm has to do with finding ways
to get it to “converge” faster. Great and marvelous are the clever tricks which have been
proposed to do this but my intent is to present the basic ideas, not to go in to the numerous
refinements of this algorithm. However, there is one thing which is usually done. It involves
reducing to the case of an upper Hessenberg matrix which is one which is zero below the
main sub diagonal. Every matrix is unitarily similar to one of these.

Let A be an invertible n× n matrix. Let Q′
1 be a unitary matrix

Q′
1


a21
...

an1

 =



√∑n
j=2 |aj1|

2

0
...

0

 ≡


a

0
...

0


The vector Q′

1 is multiplying is just the bottom n− 1 entries of the first column of A. Then
let Q1 be (

1 0

0 Q′
1

)
It follows

Q1AQ
∗
1 =

(
1 0

0 Q′
1

)
AQ∗

1 =


a11 a12 · · · a1n

a
... A′

1

0


(

1 0

0 Q′∗
1

)

=


∗ ∗ · · · ∗
a
... A1

0
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Now let Q′
2 be the n− 2× n− 2 matrix which does to the first column of A1 the same

sort of thing that the n− 1× n− 1 matrix Q′
1 did to the first column of A. Let

Q2 ≡

(
I 0

0 Q′
2

)

where I is the 2× 2 identity. Then applying block multiplication,

Q2Q1AQ
∗
1Q

∗
2 =



∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0 ∗
...

... A2

0 0


where A2 is now an n− 2× n− 2 matrix. Continuing this way you eventually get a unitary
matrix Q which is a product of those discussed above such that

QAQT =



∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

0 ∗ ∗
...

...
...

. . .
. . . ∗

0 0 ∗ ∗


This matrix equals zero below the subdiagonal. It is called an upper Hessenberg matrix.

It happens that in the QR algorithm, if Ak is upper Hessenberg, so is Ak+1. To see this,
note that the matrix is upper Hessenberg means that Aij = 0 whenever i− j ≥ 2.

Ak+1 = RkQk

where Ak = QkRk. Therefore as shown before,

Ak+1 = RkAkR
−1
k

Let the ijth entry of Ak be akij . Then if i− j ≥ 2

ak+1
ij =

n∑
p=i

j∑
q=1

ripa
k
pqr

−1
qj

It is given that akpq = 0 whenever p− q ≥ 2. However, from the above sum,

p− q ≥ i− j ≥ 2

and so the sum equals 0.
Since upper Hessenberg matrices stay that way in the algorithm and it is closer to

being upper triangular, it is reasonable to suppose the QR algorithm will yield good results
more quickly for this upper Hessenberg matrix than for the original matrix. This would be
especially true if the matrix is good sized. The other important thing to observe is that,
starting with an upper Hessenberg matrix, the algorithm will restrict the size of the blocks
which occur to being 2 × 2 blocks which are easy to deal with. These blocks allow you to
identify the complex roots.
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14.3 Exercises

In these exercises which call for a computation, don’t waste time on them unless you use a
computer or calculator which can raise matrices to powers and take QR factorizations.

1. In Example 14.1.10 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.

2. Find the eigenvalues and eigenvectors of the matrix A =

 3 2 1

2 1 3

1 3 2

 numerically.

In this case the exact eigenvalues are ±
√
3, 6. Compare with the exact answers.

3. Find the eigenvalues and eigenvectors of the matrix A =

 3 2 1

2 5 3

1 3 2

 numerically.

The exact eigenvalues are 2, 4 +
√
15, 4 −

√
15. Compare your numerical results with

the exact values. Is it much fun to compute the exact eigenvectors?

4. Find the eigenvalues and eigenvectors of the matrix A =

 0 2 1

2 5 3

1 3 2

 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

5. Find the eigenvalues and eigenvectors of the matrix A =

 0 2 1

2 0 3

1 3 2

 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

6. Consider the matrix A =

 3 2 3

2 1 4

3 4 0

 and the vector (1, 1, 1)
T
. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

7. Consider the matrix A =

 1 2 1

2 1 4

1 4 5

 and the vector (1, 1, 1)
T
. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

8. Consider the matrix A =

 3 2 3

2 6 4

3 4 −3

 and the vector (1, 1, 1)
T
. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.
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9. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of A = 3 2 3

2 6 4

3 4 −3

 .

10. Tell how to find a matrix whose characteristic polynomial is a given monic polynomial.
This is called a companion matrix. Find the roots of the polynomial x3+7x2+3x+7.

11. Find the roots to x4 + 3x3 + 4x2 + x+ 1. It has two complex roots.

12. Suppose A is a real symmetric matrix and the technique of reducing to an upper
Hessenberg matrix is followed. Show the resulting upper Hessenberg matrix is actually
equal to 0 on the top as well as the bottom.



Appendix A

Matrix Calculator on the Web

A.1 Use of Matrix Calculator on Web

There is a really nice service on the web which will do all of these things very easily. It is
www.bluebit.gr/matrix-calculator/ To get to it, you can use the address or google matrix
calculator.

When you go to this site, you enter a matrix row by row, placing a space between each
number. When you come to the end of a row, you press enter on the keyboard to start the
next row. After entering the matrix, you select what you want it to do. You will see that it
also solves systems of equations.
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Appendix B

Positive Matrices
Earlier theorems about Markov matrices were presented. These were matrices in which all
the entries were nonnegative and either the columns or the rows added to 1. It turns out
that many of the theorems presented can be generalized to positive matrices. When this is
done, the resulting theory is mainly due to Perron and Frobenius. I will give an introduction
to this theory here following Karlin and Taylor [19].

Definition B.0.1 For A a matrix or vector, the notation, A >> 0 will mean every entry
of A is positive. By A > 0 is meant that every entry is nonnegative and at least one is
positive. By A ≥ 0 is meant that every entry is nonnegative. Thus the matrix or vector
consisting only of zeros is ≥ 0. An expression like A >> B will mean A − B >> 0 with
similar modifications for > and ≥.

For the sake of this section only, define the following for x =(x1, · · · , xn)T , a vector.

|x| ≡ (|x1| , · · · , |xn|)T .

Thus |x| is the vector which results by replacing each entry of x with its absolute value1.
Also define for x ∈ Cn,

||x||1 ≡
∑
k

|xk| .

Lemma B.0.2 Let A >> 0 and let x > 0. Then Ax >> 0.

Proof: (Ax)i =
∑

j Aijxj > 0 because all the Aij > 0 and at least one xj > 0.

Lemma B.0.3 Let A >> 0. Define

S ≡ {λ : Ax > λx for some x >> 0} ,

and let
K ≡ {x ≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax ≥ λx for some x ∈ K} .

Then
sup (S) = sup (S1) .

Proof: Let λ ∈ S. Then there exists x >> 0 such that Ax > λx. Consider y ≡ x/ ||x||1 .
Then ||y||1 = 1 and Ay > λy. Therefore, λ ∈ S1 and so S ⊆ S1. Therefore, sup (S) ≤
sup (S1) .

Now let λ ∈ S1. Then there exists x ≥ 0 such that ||x||1 = 1 so x > 0 and Ax > λx.
Letting y ≡ Ax, it follows from Lemma B.0.2 that Ay >> λy and y >> 0. Thus λ ∈ S
and so S1 ⊆ S which shows that sup (S1) ≤ sup (S) . ■

This lemma is significant because the set, {x ≥ 0 such that ||x||1 = 1} ≡ K is a compact
set in Rn. Define

λ0 ≡ sup (S) = sup (S1) . (2.1)

The following theorem is due to Perron.

1This notation is just about the most abominable thing imaginable because it is the same notation but
entirely different meaning than the norm. However, it saves space in the presentation of this theory of
positive matrices and avoids the use of new symbols. Please forget about it when you leave this section.
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Theorem B.0.4 Let A >> 0 be an n× n matrix and let λ0 be given in 2.1. Then

1. λ0 > 0 and there exists x0>> 0 such that Ax0 = λ0x0 so λ0 is an eigenvalue for A.

2. If Ax = µx where x ̸= 0, and µ ̸= λ0. Then |µ| < λ0.

3. The eigenspace for λ0 has dimension 1.

Proof: To see λ0 > 0, consider the vector, e ≡ (1, · · · , 1)T . Then

(Ae)i =
∑
j

Aij > 0

and so λ0 is at least as large as

min
i

∑
j

Aij .

Let {λk} be an increasing sequence of numbers from S1 converging to λ0. Letting xk be
the vector from K which occurs in the definition of S1, these vectors are in a compact set.
Therefore, there exists a subsequence, still denoted by xk such that xk → x0 ∈ K and
λk → λ0. Then passing to the limit,

Ax0 ≥ λ0x0, x0 > 0.

If Ax0 > λ0x0, then letting y ≡ Ax0, it follows from Lemma B.0.2 that Ay >> λ0y and
y >> 0. But this contradicts the definition of λ0 as the supremum of the elements of S
because since Ay >> λ0y, it follows Ay >> (λ0 + ε)y for ε a small positive number.
Therefore, Ax0 = λ0x0. It remains to verify that x0 >> 0. But this follows immediately
from

0 <
∑
j

Aijx0j = (Ax0)i = λ0x0i.

This proves 1.
Next suppose Ax = µx and x ̸= 0 and µ ̸= λ0. Then |Ax| = |µ| |x| . But this implies

A |x| ≥ |µ| |x| . (See the above abominable definition of |x|.)
Case 1: |x| ≠ x and |x| ≠ −x.
In this case, A |x| > |Ax| = |µ| |x| and letting y = A |x| , it follows y >> 0 and

Ay >> |µ|y which shows Ay >> (|µ|+ ε)y for sufficiently small positive ε and verifies
|µ| < λ0.

Case 2: |x| = x or |x| = −x
In this case, the entries of x are all real and have the same sign. Therefore, A |x| =

|Ax| = |µ| |x| . Now let y ≡ |x| / ||x||1 . Then Ay = |µ|y and so |µ| ∈ S1 showing that
|µ| ≤ λ0. But also, the fact the entries of x all have the same sign shows µ = |µ| and so
µ ∈ S1. Since µ ̸= λ0, it must be that µ = |µ| < λ0. This proves 2.

It remains to verify 3. Suppose then that Ay = λ0y and for all scalars α, αx0 ̸= y. Then

ARey = λ0 Rey, A Imy = λ0 Imy.

If Rey = α1x0 and Imy = α2x0 for real numbers, αi,then y = (α1 + iα2)x0 and it is
assumed this does not happen. Therefore, either

tRey ̸= x0 for all t ∈ R

or
t Imy ̸= x0 for all t ∈ R.
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Assume the first holds. Then varying t ∈ R, there exists a value of t such that x0+tRey > 0
but it is not the case that x0+tRey >> 0. Then A (x0 + tRey) >> 0 by Lemma B.0.2. But
this implies λ0 (x0 + tRey) >> 0 which is a contradiction. Hence there exist real numbers,
α1 and α2 such that Rey = α1x0 and Imy = α2x0 showing that y =(α1 + iα2)x0. This
proves 3.

It is possible to obtain a simple corollary to the above theorem.

Corollary B.0.5 If A > 0 and Am >> 0 for some m ∈ N, then all the conclusions of the
above theorem hold.

Proof: There exists µ0 > 0 such that Amy0 = µ0y0 for y0 >> 0 by Theorem B.0.4 and

µ0 = sup {µ : Amx ≥ µx for some x ∈ K} .

Let λm0 = µ0. Then

(A− λ0I)
(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0 = (Am − λm0 I)y0 = 0

and so letting x0 ≡
(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0, it follows x0 >> 0 and Ax0 =

λ0x0.
Suppose now that Ax = µx for x ̸= 0 and µ ̸= λ0. Suppose |µ| ≥ λ0. Multiplying both

sides by A, it follows Amx = µmx and |µm| = |µ|m ≥ λm0 = µ0 and so from Theorem B.0.4,
since |µm| ≥ µ0, and µ

m is an eigenvalue of Am, it follows that µm = µ0. But by Theorem
B.0.4 again, this implies x = cy0 for some scalar, c and hence Ay0 = µy0. Since y0 >> 0,
it follows µ ≥ 0 and so µ = λ0, a contradiction. Therefore, |µ| < λ0.

Finally, if Ax = λ0x, then A
mx = λm0 x and so x = cy0 for some scalar, c. Consequently,(

Am−1 + λ0A
m−2 + · · ·+ λm−1

0 I
)
x = c

(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0

= cx0.

Hence
mλm−1

0 x = cx0

which shows the dimension of the eigenspace for λ0 is one. ■
The following corollary is an extremely interesting convergence result involving the pow-

ers of positive matrices.

Corollary B.0.6 Let A > 0 and Am >> 0 for some m ∈ N. Then for λ0 given in 2.1,

there exists a rank one matrix P such that limm→∞

∣∣∣∣∣∣( A
λ0

)m
− P

∣∣∣∣∣∣ = 0.

Proof: Considering AT , and the fact that A and AT have the same eigenvalues, Corollary
B.0.5 implies the existence of a vector, v >> 0 such that

ATv = λ0v.

Also let x0 denote the vector such that Ax0 = λ0x0 with x0 >> 0. First note that xT
0 v > 0

because both these vectors have all entries positive. Therefore, v may be scaled such that

vTx0 = xT
0 v = 1. (2.2)

Define
P ≡ x0v

T .
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Thanks to 2.2,

A

λ0
P = x0v

T = P, P

(
A

λ0

)
= x0v

T

(
A

λ0

)
= x0v

T = P, (2.3)

and
P 2 = x0v

Tx0v
T = vTx0 = P. (2.4)

Therefore, (
A

λ0
− P

)2

=

(
A

λ0

)2

− 2

(
A

λ0

)
P + P 2

=

(
A

λ0

)2

− P.

Continuing this way, using 2.3 repeatedly, it follows((
A

λ0

)
− P

)m

=

(
A

λ0

)m

− P. (2.5)

The eigenvalues of
(

A
λ0

)
− P are of interest because it is powers of this matrix which

determine the convergence of
(

A
λ0

)m
to P. Therefore, let µ be a nonzero eigenvalue of this

matrix. Thus ((
A

λ0

)
− P

)
x = µx (2.6)

for x ̸= 0, and µ ̸= 0. Applying P to both sides and using the second formula of 2.3 yields

0 = (P − P )x =

(
P

(
A

λ0

)
− P 2

)
x = µPx.

But since Px = 0, it follows from 2.6 that

Ax = λ0µx

which implies λ0µ is an eigenvalue of A. Therefore, by Corollary B.0.5 it follows that either
λ0µ = λ0 in which case µ = 1, or λ0 |µ| < λ0 which implies |µ| < 1. But if µ = 1, then x is
a multiple of x0 and 2.6 would yield((

A

λ0

)
− P

)
x0 = x0

which says x0−x0v
Tx0 = x0 and so by 2.2, x0 = 0 contrary to the property that x0 >> 0.

Therefore, |µ| < 1 and so this has shown that the absolute values of all eigenvalues of(
A
λ0

)
− P are less than 1. By Gelfand’s theorem, Theorem 13.3.3, it follows

∣∣∣∣∣∣∣∣(( Aλ0
)
− P

)m∣∣∣∣∣∣∣∣1/m < r < 1

whenever m is large enough. Now by 2.5 this yields∣∣∣∣∣∣∣∣( Aλ0
)m

− P

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣(( Aλ0
)
− P

)m∣∣∣∣∣∣∣∣ ≤ rm
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whenever m is large enough. It follows

lim
m→∞

∣∣∣∣∣∣∣∣( Aλ0
)m

− P

∣∣∣∣∣∣∣∣ = 0

as claimed.
What about the case when A > 0 but maybe it is not the case that A >> 0? As before,

K ≡ {x ≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax ≥ λx for some x ∈ K}

and
λ0 ≡ sup (S1) (2.7)

Theorem B.0.7 Let A > 0 and let λ0 be defined in 2.7. Then there exists x0 > 0 such
that Ax0 = λ0x0.

Proof: Let E consist of the matrix which has a one in every entry. Then from Theorem
B.0.4 it follows there exists xδ >> 0 , ||xδ||1 = 1, such that (A+ δE)xδ = λ0δxδ where

λ0δ ≡ sup {λ : (A+ δE)x ≥ λx for some x ∈ K} .

Now if α < δ
{λ : (A+ αE)x ≥ λx for some x ∈ K} ⊆

{λ : (A+ δE)x ≥ λx for some x ∈ K}

and so λ0δ ≥ λ0α because λ0δ is the sup of the second set and λ0α is the sup of the first. It
follows the limit, λ1 ≡ limδ→0+ λ0δ exists. Taking a subsequence and using the compactness
of K, there exists a subsequence, still denoted by δ such that as δ → 0, xδ → x ∈ K.
Therefore,

Ax = λ1x

and so, in particular, Ax ≥ λ1x and so λ1 ≤ λ0. But also, if λ ≤ λ0,

λx ≤ Ax < (A+ δE)x

showing that λ0δ ≥ λ for all such λ. But then λ0δ ≥ λ0 also. Hence λ1 ≥ λ0, showing these
two numbers are the same. Hence Ax = λ0x. ■

If Am >> 0 for some m and A > 0, it follows that the dimension of the eigenspace for
λ0 is one and that the absolute value of every other eigenvalue of A is less than λ0. If it is
only assumed that A > 0, not necessarily >> 0, this is no longer true. However, there is
something which is very interesting which can be said. First here is an interesting lemma.

Lemma B.0.8 Let M be a matrix of the form

M =

(
A 0

B C

)
or

M =

(
A B

0 C

)
where A is an r × r matrix and C is an (n− r) × (n− r) matrix. Then det (M) =
det (A) det (B) and σ (M) = σ (A) ∪ σ (C) .
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Proof: To verify the claim about the determinants, note(
A 0

B C

)
=

(
A 0

0 I

)(
I 0

B C

)

Therefore,

det

(
A 0

B C

)
= det

(
A 0

0 I

)
det

(
I 0

B C

)
.

But it is clear from the method of Laplace expansion that

det

(
A 0

0 I

)
= detA

and from the multilinear properties of the determinant and row operations that

det

(
I 0

B C

)
= det

(
I 0

0 C

)
= detC.

The case where M is upper block triangular is similar.
This immediately implies σ (M) = σ (A) ∪ σ (C) .

Theorem B.0.9 Let A > 0 and let λ0 be given in 2.7. If λ is an eigenvalue for A such
that |λ| = λ0, then λ/λ0 is a root of unity. Thus (λ/λ0)

m
= 1 for some m ∈ N.

Proof: Applying Theorem B.0.7 to AT , there exists v > 0 such that ATv = λ0v. In
the first part of the argument it is assumed v >> 0. Now suppose Ax = λx,x ̸= 0 and that
|λ| = λ0. Then

A |x| ≥ |λ| |x| = λ0 |x|

and it follows that if A |x| > |λ| |x| , then since v >> 0,

λ0 (v, |x|) < (v,A |x|) =
(
ATv, |x|

)
= λ0 (v, |x|) ,

a contradiction. Therefore,
A |x| = λ0 |x| . (2.8)

It follows that ∣∣∣∣∣∣
∑
j

Aijxj

∣∣∣∣∣∣ = λ0 |xi| =
∑
j

Aij |xj |

and so the complex numbers,
Aijxj , Aikxk

must have the same argument for every k, j because equality holds in the triangle in-
equality. Therefore, there exists a complex number, µi such that

Aijxj = µiAij |xj | (2.9)

and so, letting r ∈ N,
Aijxjµ

r
j = µiAij |xj |µr

j .

Summing on j yields ∑
j

Aijxjµ
r
j = µi

∑
j

Aij |xj |µr
j . (2.10)
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Also, summing 2.9 on j and using that λ is an eigenvalue for x, it follows from 2.8 that

λxi =
∑
j

Aijxj = µi

∑
j

Aij |xj | = µiλ0 |xi| . (2.11)

From 2.10 and 2.11, ∑
j

Aijxjµ
r
j = µi

∑
j

Aij |xj |µr
j

= µi

∑
j

Aij

see 2.11︷ ︸︸ ︷
µj |xj |µr−1

j

= µi

∑
j

Aij

(
λ

λ0

)
xjµ

r−1
j

= µi

(
λ

λ0

)∑
j

Aijxjµ
r−1
j

Now from 2.10 with r replaced by r − 1, this equals

µ2
i

(
λ

λ0

)∑
j

Aij |xj |µr−1
j = µ2

i

(
λ

λ0

)∑
j

Aijµj |xj |µr−2
j

= µ2
i

(
λ

λ0

)2∑
j

Aijxjµ
r−2
j .

Continuing this way, ∑
j

Aijxjµ
r
j = µk

i

(
λ

λ0

)k∑
j

Aijxjµ
r−k
j

and eventually, this shows∑
j

Aijxjµ
r
j = µr

i

(
λ

λ0

)r∑
j

Aijxj

=

(
λ

λ0

)r

λ (xiµ
r
i )

and this says
(

λ
λ0

)r+1

is an eigenvalue for
(

A
λ0

)
with the eigenvector being

(x1µ
r
1, · · · , xnµr

n)
T
.

Now recall that r ∈ N was arbitrary and so this has shown that
(

λ
λ0

)2
,
(

λ
λ0

)3
,
(

λ
λ0

)4
, · · ·

are each eigenvalues of
(

A
λ0

)
which has only finitely many and hence this sequence must

repeat. Therefore,
(

λ
λ0

)
is a root of unity as claimed. This proves the theorem in the case

that v >> 0.
Now it is necessary to consider the case where v > 0 but it is not the case that v >> 0.
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Then in this case, there exists a permutation matrix P such that

Pv =



v1
...

vr

0
...

0


≡

(
u

0

)
≡ v1

Then
λ0v = ATv = ATPv1.

Therefore,
λ0v1 = PATPv1 = Gv1

Now P 2 = I because it is a permutation matrix. Therefore, the matrix G ≡ PATP and A
are similar. Consequently, they have the same eigenvalues and it suffices from now on to
consider the matrix G rather than A. Then

λ0

(
u

0

)
=

(
M1 M2

M3 M4

)(
u

0

)

where M1 is r× r and M4 is (n− r)× (n− r) . It follows from block multiplication and the
assumption that A and hence G are > 0 that

G =

(
A′ B

0 C

)
.

Now let λ be an eigenvalue of G such that |λ| = λ0. Then from Lemma B.0.8, either
λ ∈ σ (A′) or λ ∈ σ (C) . Suppose without loss of generality that λ ∈ σ (A′) . Since A′ > 0
it has a largest positive eigenvalue λ′0 which is obtained from 2.7. Thus λ′0 ≤ λ0 but λ
being an eigenvalue of A′, has its absolute value bounded by λ′0 and so λ0 = |λ| ≤ λ′0 ≤ λ0
showing that λ0 ∈ σ (A′) . Now if there exists v >> 0 such that A′Tv = λ0v, then the first
part of this proof applies to the matrix A and so (λ/λ0) is a root of unity. If such a vector,
v does not exist, then let A′ play the role of A in the above argument and reduce to the
consideration of

G′ ≡

(
A′′ B′

0 C ′

)
where G′ is similar to A′ and λ, λ0 ∈ σ (A′′) . Stop if A′′Tv = λ0v for some v >> 0.
Otherwise, decompose A′′ similar to the above and add another prime. Continuing this way
you must eventually obtain the situation where (A′···′)

T
v = λ0v for some v >> 0. Indeed,

this happens no later than when A′···′ is a 1× 1 matrix. ■



Appendix C

Functions of Matrices
The existence of the Jordan form also makes it possible to define various functions of ma-
trices. Suppose

f (λ) =

∞∑
n=0

anλ
n (3.1)

for all |λ| < R. There is a formula for f (A) ≡
∑∞

n=0 anA
n which makes sense whenever

ρ (A) < R. Thus you can speak of sin (A) or eA for A an n×n matrix. To begin with, define

fP (λ) ≡
P∑

n=0

anλ
n

so for k < P

f
(k)
P (λ) =

P∑
n=k

ann · · · (n− k + 1)λn−k

=

P∑
n=k

an

(
n

k

)
k!λn−k. (3.2)

Thus
f
(k)
P (λ)

k!
=

P∑
n=k

an

(
n

k

)
λn−k (3.3)

To begin with consider f (Jm (λ)) where Jm (λ) is an m×m Jordan block. Thus Jm (λ) =
D +N where Nm = 0 and N commutes with D. Therefore, letting P > m

P∑
n=0

anJm (λ)
n

=

P∑
n=0

an

n∑
k=0

(
n

k

)
Dn−kNk

=

P∑
k=0

P∑
n=k

an

(
n

k

)
Dn−kNk

=

m−1∑
k=0

Nk
P∑

n=k

an

(
n

k

)
Dn−k. (3.4)

From 3.3 this equals
m−1∑
k=0

Nk diag

(
f
(k)
P (λ)

k!
, · · · ,

f
(k)
P (λ)

k!

)
(3.5)

where for k = 0, · · · ,m−1, define diagk (a1, · · · , am−k) the m×m matrix which equals zero
everywhere except on the kth super diagonal where this diagonal is filled with the numbers,
{a1, · · · , am−k} from the upper left to the lower right. With no subscript, it is just the
diagonal matrices having the indicated entries. Thus in 4 × 4 matrices, diag2 (1, 2) would
be the matrix 

0 0 1 0

0 0 0 2

0 0 0 0

0 0 0 0

 .
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Then from 3.5 and 3.2,

P∑
n=0

anJm (λ)
n
=

m−1∑
k=0

diag k

(
f
(k)
P (λ)

k!
, · · · ,

f
(k)
P (λ)

k!

)
.

Therefore,
∑P

n=0 anJm (λ)
n
=

fP (λ)
f ′
P (λ)
1!

f
(2)
P (λ)

2! · · · f
(m−1)
P (λ)

(m−1)!

fP (λ)
f ′
P (λ)
1!

. . .
...

fP (λ)
. . . f

(2)
P (λ)

2!

. . . f ′
P (λ)
1!

0 fP (λ)


(3.6)

Now let A be an n × n matrix with ρ (A) < R where R is given above. Then the Jordan
form of A is of the form

J =


J1 0

J2
. . .

0 Jr

 (3.7)

where Jk = Jmk
(λk) is an mk ×mk Jordan block and A = S−1JS. Then, letting P > mk

for all k,
P∑

n=0

anA
n = S−1

P∑
n=0

anJ
nS,

and because of block multiplication of matrices,

P∑
n=0

anJ
n =


∑P

n=0 anJ
n
1 0

. . .

. . .

0
∑P

n=0 anJ
n
r


and from 3.6

∑P
n=0 anJ

n
k converges as P → ∞ to the mk ×mk matrix

f (λk)
f ′(λk)

1!
f(2)(λk)

2! · · · f(m−1)(λk)
(mk−1)!

0 f (λk)
f ′(λk)

1!

. . .
...

0 0 f (λk)
. . . f(2)(λk)

2!
...

. . .
. . . f ′(λk)

1!

0 0 · · · 0 f (λk)


(3.8)

There is no convergence problem because |λ| < R for all λ ∈ σ (A) . This has proved the
following theorem.
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Theorem C.0.1 Let f be given by 3.1 and suppose ρ (A) < R where R is the radius of
convergence of the power series in 3.1. Then the series,

∞∑
k=0

anA
n (3.9)

converges in the space L (Fn,Fn) with respect to any of the norms on this space and further-
more,

∞∑
k=0

anA
n = S−1


∑∞

n=0 anJ
n
1 0

. . .

. . .

0
∑∞

n=0 anJ
n
r

S

where
∑∞

n=0 anJ
n
k is an mk ×mk matrix of the form given in 3.8 where A = S−1JS and

the Jordan form of A, J is given by 3.7. Therefore, you can define f (A) by the series in
3.9.

Here is a simple example.

Example C.0.2 Find sin (A) where A =


4 1 −1 1

1 1 0 −1

0 −1 1 −1

−1 2 1 4

 .

In this case, the Jordan canonical form of the matrix is not too hard to find.
4 1 −1 1

1 1 0 −1

0 −1 1 −1

−1 2 1 4

 =


2 0 −2 −1

1 −4 −2 −1

0 0 −2 1

−1 4 4 2

 ·


4 0 0 0

0 2 1 0

0 0 2 1

0 0 0 2




1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2

 .

Then from the above theorem sin (J) is given by

sin


4 0 0 0

0 2 1 0

0 0 2 1

0 0 0 2

 =


sin 4 0 0 0

0 sin 2 cos 2 − sin 2
2

0 0 sin 2 cos 2

0 0 0 sin 2

 .

Therefore, sin (A) =
2 0 −2 −1

1 −4 −2 −1

0 0 −2 1

−1 4 4 2




sin 4 0 0 0

0 sin 2 cos 2 − sin 2
2

0 0 sin 2 cos 2

0 0 0 sin 2




1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2

 =M
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where the columns of M are as follows from left to right,
sin 4

1
2 sin 4−

1
2 sin 2

0

− 1
2 sin 4 +

1
2 sin 2

 ,


sin 4− sin 2− cos 2

1
2 sin 4 +

3
2 sin 2− 2 cos 2

− cos 2

− 1
2 sin 4−

1
2 sin 2 + 3 cos 2

 ,


− cos 2

sin 2

sin 2− cos 2

cos 2− sin 2




sin 4− sin 2− cos 2
1
2 sin 4 +

1
2 sin 2− 2 cos 2

− cos 2

− 1
2 sin 4 +

1
2 sin 2 + 3 cos 2

 .

Perhaps this isn’t the first thing you would think of. Of course the ability to get this nice
closed form description of sin (A) was dependent on being able to find the Jordan form along
with a similarity transformation which will yield the Jordan form.

The following corollary is known as the spectral mapping theorem.

Corollary C.0.3 Let A be an n× n matrix and let ρ (A) < R where for |λ| < R,

f (λ) =

∞∑
n=0

anλ
n.

Then f (A) is also an n×n matrix and furthermore, σ (f (A)) = f (σ (A)) . Thus the eigen-
values of f (A) are exactly the numbers f (λ) where λ is an eigenvalue of A. Furthermore,
the algebraic multiplicity of f (λ) coincides with the algebraic multiplicity of λ.

All of these things can be generalized to linear transformations defined on infinite di-
mensional spaces and when this is done the main tool is the Dunford integral along with
the methods of complex analysis. It is good to see it done for finite dimensional situations
first because it gives an idea of what is possible. Actually, some of the most interesting
functions in applications do not come in the above form as a power series expanded about
0. One example of this situation has already been encountered in the proof of the right
polar decomposition with the square root of an Hermitian transformation which had all
nonnegative eigenvalues. Another example is that of taking the positive part of an Hermi-
tian matrix. This is important in some physical models where something may depend on
the positive part of the strain which is a symmetric real matrix. Obviously there is no way
to consider this as a power series expanded about 0 because the function f (r) = r+ is not
even differentiable at 0. Therefore, a totally different approach must be considered. First
the notion of a positive part is defined.

Definition C.0.4 Let A be an Hermitian matrix. Thus it suffices to consider A as an
element of L (Fn,Fn) according to the usual notion of matrix multiplication. Then there
exists an orthonormal basis of eigenvectors, {u1, · · · ,un} such that

A =

n∑
j=1

λjuj ⊗ uj ,

for λj the eigenvalues of A, all real. Define

A+ ≡
n∑

j=1

λ+j uj ⊗ uj

where λ+ ≡ |λ|+λ
2 .
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This gives us a nice definition of what is meant but it turns out to be very important in
the applications to determine how this function depends on the choice of symmetric matrix
A. The following addresses this question.

Theorem C.0.5 If A,B be Hermitian matrices, then for |·| the Frobenius norm,∣∣A+ −B+
∣∣ ≤ |A−B| .

Proof: Let A =
∑

i λivi ⊗ vi and let B =
∑

j µjwj ⊗ wj where {vi} and {wj} are
orthonormal bases of eigenvectors.

∣∣A+ −B+
∣∣2 = trace

∑
i

λ+i vi ⊗ vi −
∑
j

µ+
j wj ⊗wj

2

=

trace

∑
i

(
λ+i
)2

vi ⊗ vi +
∑
j

(
µ+
j

)2
wj ⊗wj

−
∑
i,j

λ+i µ
+
j (wj ,vi)vi ⊗wj −

∑
i,j

λ+i µ
+
j (vi,wj)wj ⊗ vi


Since the trace of vi ⊗ wj is (vi,wj) , a fact which follows from (vi,wj) being the only
possibly nonzero eigenvalue,

=
∑
i

(
λ+i
)2

+
∑
j

(
µ+
j

)2 − 2
∑
i,j

λ+i µ
+
j |(vi,wj)|2 . (3.10)

Since these are orthonormal bases,∑
i

|(vi,wj)|2 = 1 =
∑
j

|(vi,wj)|2

and so 3.10 equals

=
∑
i

∑
j

((
λ+i
)2

+
(
µ+
j

)2 − 2λ+i µ
+
j

)
|(vi,wj)|2 .

Similarly,

|A−B|2 =
∑
i

∑
j

(
(λi)

2
+
(
µj

)2 − 2λiµj

)
|(vi,wj)|2 .

Now it is easy to check that (λi)
2
+
(
µj

)2 − 2λiµj ≥
(
λ+i
)2

+
(
µ+
j

)2 − 2λ+i µ
+
j . ■
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Index

∩, 9
∪, 9

A close to B
eigenvalues, 175

A invariant, 237
Abel’s formula, 108, 252
absolute convergence

convergence, 338
adjugate, 85, 98
algebraic number

minimal polynomial, 205
algebraic numbers, 205

field, 206
analytic function of matrix, 399
Archimedean property, 20
augmented matrix, 27

Banach space, 327
basis, 63, 190
Binet Cauchy

volumes, 292
Binet Cauchy formula, 94
block matrix, 104

multiplication, 105
block multiplication, 104
bounded linear transformations, 328

Cauchy interlacing theorem, 185, 187
Cauchy Schwarz inequality, 33, 274, 325
Cauchy sequence, 287, 327
Cayley Hamilton theorem, 102, 251, 262
centrifugal acceleration, 70
centripetal acceleration, 70
characteristic and minimal polynomial, 230
characteristic equation, 143
characteristic polynomial, 102, 228
characteristic value, 143
Cholesky factorization, 324
codomain, 10
cofactor, 83, 96
column rank, 99, 116
companion matrix, 254, 367
complete, 347
completeness axiom, 19
complex conjugate, 14
complex numbers

absolute value, 14
field, 13

complex numbers, 13
complex roots, 15
composition of linear transformations, 224
comutator, 185

condition number, 335
conformable, 42
conjugate linear, 279
convex combination, 232
convex hull, 231

compactness, 232
coordinate axis, 31
coordinates, 31
Coriolis acceleration, 70
Coriolis acceleration

earth, 72
Coriolis force, 70
counting zeros, 174
Courant Fischer theorem, 303
Cramer’s rule, 86, 87, 99
cyclic basis, 242
cyclic set, 239

defective, 148
DeMoivre identity, 14
dense, 21
density of rationals, 21
determinant

block upper triangular matrix, 161
definition, 91
estimate for Hermitian matrix, 272
expansion along a column, 83
expansion along a row, 83
expansion along row, column, 96
Hadamard inequality, 272
inverse of matrix, 85
matrix inverse, 97
partial derivative, cofactor, 109
permutation of rows, 92
product, 94
product of eigenvalues, 168, 178
row, column operations, 85, 93
summary of properties, 101
symmetric definition, 93
transpose, 93

diagonalizable, 222, 295
minimal polynomial condition, 254
basis of eigenvectors, 157

diagonalization, 300
differentiable matrix, 66
differential equations

first order systems, 181
digraph, 44
dimension of vector space, 192
direct sum, 80, 234
directed graph, 44
discrete Fourier transform, 322
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division of real numbers, 21
Dolittle’s method, 130
domain, 10
dot product, 33
dyadics, 216
dynamical system, 158

eigenspace, 145, 237
eigenvalue, 81, 143
eigenvalues, 102, 174, 228

AB and BA, 106
eigenvector, 81, 143
eigenvectors

distinct eigenvalues independence, 149
elementary matrices, 111
empty set, 9
equality of mixed partial derivatives, 170
equivalence class, 199, 220
equivalence of norms, 328
equivalence relation, 199, 219
Euclidean algorithm, 21
exchange theorem, 61
existence of a fixed point, 349

field
ordered, 11

field axioms, 11
field extension, 200

dimension, 202
finite, 202

field extensions, 201
finite dimensional normed linear space

completeness, 327
equivalence of norms, 328

Foucalt pendulum, 72
Fourier series, 286
Fredholm alternative, 123, 284
free variable, 29
Frobenius

inner product, 184
Frobenius norm, 315

singular value decomposition, 315
Frobinius norm, 321
functions, 10
fundamental theorem of algebra

plausibility argument, 16
rigorous proof, 17

fundamental theorem of arithmetic, 24

Gauss Jordan method for inverses, 49
Gauss Seidel method, 344
Gelfand, 336

generalized eigenspace, 81
generalized eigenspaces, 237, 246
generalized eigenvectors, 247
Gerschgorin’s theorem, 173
Gram Schmidt procedure, 141, 160, 276
Gram Schmidt process, 276
Gramm Schmidt process, 160
Grammian determinant, 293
greatest common divisor, 22, 196

characterization, 22
greatest lower bound, 19
Gronwall’s inequality, 354

Hermitian, 164
orthonormal basis eigenvectors, 301
positive definite, 304
real eigenvalues, 166

Hermitian matrix
factorization, 272
positive part, 400
positive part, Lipschitz continuous, 400

Hermitian operator, 279
largest, smallest, eigenvalues, 302
spectral representation, 300

Hessian matrix, 171
Holder’s inequality, 331
Householder

reflection, 137
Householder matrix, 136

idempotent, 76
inconsistent, 28
initial value problem

uniqueness, 354
injective, 10
inner product, 33, 273
inner product space, 273

adjoint operator, 279
parallelogram identity, 274
triangle inequality, 274

integers mod a prime, 212
integral

operator valued function, 354
vector valued function, 353

intersection, 9
intervals

notation, 9
invariant, 298

subspace, 237
invariant subspaces

direct sum, block diagonal matrix, 238
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inverses and determinants, 97
invertible, 48
invertible matrix

product of elementary matrices, 120
irreducible, 196

relatively prime, 197
iterative methods

alternate proof of convergence, 351
convergence criterion, 346
diagonally dominant, 351
proof of convergence, 349

Jocobi method, 342
Jordan block, 245, 247
Jordan canonical form

existence and uniqueness, 247
powers of a matrix, 249

ker, 121
kernel, 59
kernel of a product

direct sum decomposition, 235
Krylov sequence, 239

Lagrange form of remainder, 170
Laplace expansion, 96
least squares, 127, 283
least upper bound, 19
linear combination, 39, 60, 94
linear transformation, 54, 215

defined on a basis, 216
dimension of vector space, 216
existence of eigenvector, 229
kernel, 233
matrix, 55
minimal polynomial, 229
rotation, 57

linear transformations
a vector space, 215
commuting, 235
composition, matrices, 224
sum, 215, 281

linearly dependent, 60
linearly independent, 60, 190
linearly independent set

extend to basis, 194
LU factorization

justification for multiplier method, 133
multiplier method, 129
solutions of linear systems, 131

main diagonal, 84

Markov matrix, 263
limit, 266
regular, 266
steady state, 263, 266

mathematical induction, 20
matrices

commuting, 297
notation, 38
transpose, 47

matrix, 37
differentiation operator, 218
injective, 65
inverse, 48
left inverse, 98
lower triangular, 84, 99
Markov, 263
non defective, 164
normal, 164
polynomial, 110
rank and existence of solutions, 122
rank and nullity, 121
right and left inverse, 65
right inverse, 98
right, left inverse, 98
row, column, determinant rank, 99
self adjoint, 157
stochastic, 263
surjective, 65
symmetric, 156
unitary, 160
upper triangular, 84, 99

matrix
positive definite, 323

matrix exponential, 352
matrix multiplication

definition, 40
entries of the product, 42
not commutative, 41
properties, 46
vectors, 39

matrix of linear transformation
orthonormal bases, 221

migration matrix, 266
minimal polynomial, 81, 228, 236

eigenvalues, eigenvectors, 229
finding it, 251
generalized eigenspaces, 237

minimal polynomial
algebraic number, 205

minor, 83, 96
mixed partial derivatives, 169
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Moore Penrose inverse, 318
least squares, 318
uniqueness, 323

moving coordinate system, 67
acceleration , 70

negative definite, 304
Neuman

series, 356
nilpotent

block diagonal matrix, 245
Jordan form, uniqueness, 245
Jordan normal form, 245

non defective, 254
nonnegative self adjoint

square root, 306
norm, 273

strictly convex, 350
uniformly convex, 350

normal, 311
diagonalizable, 165
non defective, 164

normed linear space, 273, 325
normed vector space, 273
norms

equivalent, 326
null and rank, 288
null space, 59
nullity, 121

one to one, 10
onto, 10
operator norm, 328
orthogonal matrix, 81, 89, 136, 162
orthonormal basis, 275
orthonormal polynomials, 285

p norms, 331
axioms of a norm, 331

parallelepiped
volume, 288

partitioned matrix, 104
Penrose conditions, 319
permutation, 91

even, 113
odd, 113

permutation matrices, 111
perp, 122
Perron’s theorem, 389
pivot column, 119
PLU factorization, 132

existence, 136

polar decomposition
left, 310
right, 308

polar form complex number, 14
polynomial, 25, 195

addition, 25
degree, 25, 195
divides, 196
division, 25, 195
equal, 195
equality, 25
greatest common divisor, 196
uniqueness, 196
description, 196

irreducible, 196
irreducible factorization, 197
multiplication, 25
relatively prime, 196
root, 195

polynomial
leading coefficient, 195
leading term, 25
matrix coefficients, 110
monic, 25, 195

polynomials
canceling, 197
factorization, 198

positive definite
postitive eigenvalues, 304
principle minors, 305

positive definite matrix, 323
postitive definite, 304
power method, 359
prime number, 22
prime numbers

infinity of primes, 211
principal submatrix, 187
principle directions, 151
principle minors, 305
product rule

matrices, 66
projection map

convex set, 287

QR algorithm, 177, 371
convergence, 374
convergence theorem, 374
non convergence, 178, 379

QR factorization, 137
existence, 139
Gram Schmidt procedure, 141



408 INDEX

quadratic form, 168
quotient space, 212
quotient vector space, 212

range, 10
rank, 117

number of pivot columns, 120
rank of a matrix, 99, 116
rank one transformation, 281
rational canonical form, 255

uniqueness, 258
Rayleigh quotient, 368

how close?, 368
real numbers, 10
real Schur form, 162
regression line, 283
regular Sturm Liouville problem, 286
relatively prime, 22
Riesz representation theorem, 278
right Cauchy Green strain tensor, 308
right polar decomposition, 309
row equivalelance

determination, 120
row equivalent, 119
row operations, 27, 111

inverse, 28
linear relations between columns, 117

row rank, 99, 116
row reduced echelon form

definition, 118
examples, 119
existence, 119
uniqueness, 120

scalar product, 33
scalars, 16, 32, 37
Schur’s theorem, 160, 298

inner product space, 298
second derivative test, 172
self adjoint, 164, 279
self adjoint nonnegative

roots, 307
set notation, 9
sgn, 89

uniqueness, 91
shifted inverse power method, 361

complex eigenvalues, 366
sign of a permutation, 91
similar

matrix and its transpose, 254
similar matrices, 88, 108, 219

similarity transformation, 219
simple field extension, 207
simultaneous corrections, 342
simultaneously diagonalizable, 296

commuting family, 298
singular value decomposition, 313
singular values, 313
skew symmetric, 47, 156
space of linear transformations

vector space, 281
span, 60, 94
spanning set

restricting to a basis, 194
spectral mapping theorem, 400
spectral norm, 329
spectral radius, 335, 336
spectrum, 143
splitting field, 203
stochastic matrix, 263
subspace, 60, 190

basis, 64, 195
complementary, 292
dimension, 64
invariant, 237

subspaces
direct sum, 234
direct sum, basis, 235

substituting matrix into polynomial identity,
110

surjective, 10
Sylvester, 80

law of inertia, 183
dimention of kernel of product, 233

Sylvester’s equation, 292
symmetric, 47, 156
system of linear equations, 29

tensor product, 281
the space AU, 292
trace, 167

AB and BA, 167
sum of eigenvalues, 178

transpose, 47
properties, 47

triangle inequality, 34
trivial, 60

union, 9
Unitary matrix

representation, 356
upper Hessenberg matrix, 383
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Vandermonde determinant, 110
variation of constants formula, 182
variational inequality, 287
vector

angular velocity, 68
vector space

axioms, 38, 189
basis, 63
dimension, 64
examples, 189

vector space axioms, 32
vectors, 38
volume

parallelepiped, 288

well ordered, 20
Wronskian, 108, 182, 252
Wronskian alternative, 182
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