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Preface
Is Linear Algebra part of Modern Algebra or is it baby Functional Analysis? It depends
somewhat on your interests. I tend to lean toward the baby functional analysis, but algebraic
ideas are certainly important and some would give strong arguments that these ideas are of
most significance. Certainly it is all about linear transformations however you look at it,
and the canonical forms are completely algebraic in nature. I have therefore, chosen to
present the subject in two parts, the first being Linear Algebra as a part of Algebra with
very little if any reference to Analysis. It involves general fields of scalars and makes no
reference or minimal reference to completeness. This is all about polynomials as formal
objects and the division algorithm. After this, the more analytical aspects of this subject are
considered, inner products, numerical methods, applications to differential equations and
so forth. The field of scalars will be the real or complex numbers. Some analysis ideas do
in fact creep in to the first part, but they are generally fairly rudimentary, occur as examples,
and will have been seen in calculus. This book is not meant to be read before a calculus
course.

It may be that increased understanding is obtained by this kind of presentation in which
that which is purely algebraic is presented first. This also involves emphasizing the mini-
mum polynomial more than the characteristic polynomial and postponing the determinant.
In each part, I have included a few related topics which are similar to ideas found in linear
algebra or which have linear algebra as a fundamental part.

The book is a re written version of an earlier book. It also includes several topics not in
this other book. I have tried to introduce rings and modules in the context of a presentation
of the canonical forms.
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Chapter 1

Some Prerequisite Topics
The reader should be familiar with most of the topics in this chapter. However, it is often
the case that set notation is not familiar and so a short discussion of this is included first.
Complex numbers are then considered in somewhat more detail. Many of the applications
of linear algebra require the use of complex numbers, so this is the reason for this intro-
duction. Then polynomials and finite fields are discussed briefly to emphasize that linear
algebra works for any field of scalars, not just the field of real and complex numbers.

1.1 Sets and Set Notation
A set is just a collection of things called elements. Often these are also referred to as points
in calculus. For example {1,2,3,8} would be a set consisting of the elements 1,2,3, and
8. To indicate that 3 is an element of {1,2,3,8} , it is customary to write 3 ∈ {1,2,3,8} .
9 /∈ {1,2,3,8} means 9 is not an element of {1,2,3,8} . Sometimes a rule specifies a set.
For example you could specify a set as all integers larger than 2. This would be written as
S = {x ∈ Z : x > 2} . This notation says: the set of all integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then
A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8} , in symbols,
{1,2,3,8} ⊆ {1,2,3,4,5,8} . It is sometimes said that “A is contained in B” or even “B
contains A”. The same statement about the two sets may also be written as {1,2,3,4,5,8}⊇
{1,2,3,8}.

The union of two sets is the set consisting of everything which is an element of at least
one of the sets, A or B. As an example of the union of two sets {1,2,3,8}∪{3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets.
In general

A∪B≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8}∩{3,4,7,8}= {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

A∩B≡ {x : x ∈ A and x ∈ B} .

The symbol [a,b] where a and b are real numbers, denotes the set of real numbers x,
such that a ≤ x ≤ b and [a,b) denotes the set of real numbers such that a ≤ x < b. (a,b)
consists of the set of real numbers x such that a < x < b and (a,b] indicates the set of
numbers x such that a < x ≤ b. [a,∞) means the set of all numbers x such that x ≥ a and
(−∞,a] means the set of all real numbers which are less than or equal to a. These sorts
of sets of real numbers are called intervals. The two points a and b are called endpoints
of the interval. Other intervals such as (−∞,b) are defined by analogy to what was just
explained. In general, the curved parenthesis indicates the end point it sits next to is not
included while the square parenthesis indicates this end point is included. The reason that
there will always be a curved parenthesis next to ∞ or−∞ is that these are not real numbers.
Therefore, they cannot be included in any set of real numbers.

A special set which needs to be given a name is the empty set also called the null set,
denoted by /0. Thus /0 is defined as the set which has no elements in it. Mathematicians
like to say the empty set is a subset of every set. The reason they say this is that if it were

1
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not so, there would have to exist a set A, such that /0 has something in it which is not in A.
However, /0 has nothing in it and so the least intellectual discomfort is achieved by saying
/0⊆ A.

If A and B are two sets, A\B denotes the set of things which are in A but not in B. Thus

A\B≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.
To illustrate the use of this notation relative to intervals consider three examples of

inequalities. Their solutions will be written in the notation just described.

Example 1.1.1 Solve the inequality 2x+4≤ x−8

x≤−12 is the answer. This is written in terms of an interval as (−∞,−12].

Example 1.1.2 Solve the inequality (x+1)(2x−3)≥ 0.

The solution is x≤−1 or x≥ 3
2

. In terms of set notation this is denoted by (−∞,−1]∪

[
3
2
,∞).

Example 1.1.3 Solve the inequality x(x+2)≥−4.

This is true for any value of x. It is written as R or (−∞,∞) .
Something is in the Cartesian product of a set whose elements are sets if it consists

of a single thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×
{4,3,7,9} because it consists of exactly one element from each of the sets which are sepa-
rated by ×. Also, this is the notation for the Cartesian product of finitely many sets. If S
is a set whose elements are sets, ∏A∈S A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of S . You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

1.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 1.2.1 Let X and Y be sets.

X×Y ≡ {(x,y) : x ∈ X and y ∈ Y}

A relation is defined to be a subset of X ×Y . A function f , also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f , then
y = y1. The domain of f is defined as

D( f )≡ {x : (x,y) ∈ f} ,
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written as f : D( f )→ Y . Another notation which is used is the following

f−1 (y)≡ {x ∈ D( f ) : f (x) = y}

This is called the inverse image.

It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y,denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem, proved by Dedekind in 1887. The proof given here is like the
version in Hewitt and Stromberg [21].

Theorem 1.2.2 Let f : X → Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof: Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.
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It only remains to verify that g(D) = B. It was just shown that g(D)⊆ B.
Suppose x ∈ B = X \ A. Then A∪ {x} does not satisfy P and so there exists y ∈

Y \ f (A∪{x}) ⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A satisfies P , it
follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D). Hence g(D) = B. ■

Theorem 1.2.3 (Schroder Bernstein) If f : X→Y and g : Y → X are one to one, then there
exists h : X → Y which is one to one and onto.

Proof:Let A,B,C,D be the sets of Theorem 1.2.2 and define

h(x)≡

{
f (x) if x ∈ A

g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping. ■
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 1.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice function
written as f ∈∏i∈I Xi if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set, then ∏i∈I Xi ̸= /0.
Sometimes the two functions, f and g are onto but not one to one. It turns out that with

the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 1.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2. Similarly

g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists h : X → Y

which is one to one and onto. ■

Definition 1.2.6 A set S, is finite if there exists a natural number n and a map θ which
maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, this will be written as θ : A→ B in the future.) Here N≡ {1,2, · · ·}, the natural
numbers. S is at most countable if there exists a map θ : N→S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 1.2.7 If X and Y are both at most countable, then X×Y is also at most countable.
If either X or Y is countable, then X×Y is also countable.
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Proof:It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)

↓ ↗
(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 1.2.5, there exists a one to one and onto mapping
from X×Y to N. ■

Theorem 1.2.8 If X and Y are at most countable, then X ∪Y is at most countable. If either
X or Y are countable, then X ∪Y is countable.

Proof:As in the preceding theorem,

X = {x1,x2,x3, · · ·} , Y = {y1,y2,y3, · · ·} .

Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 1.2.5 yields the conclusion. ■

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable.
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1.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weigh
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 1.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the following
axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 1.3.2 [x] denotes the set of all elements of S which are equivalent to x and [x] is
called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 1.3.3 Let ∼ be an equivalence relation defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x∼ y and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

Proof: If x ∼ y, then if z ∈ [y] , you have x ∼ y and y ∼ z so x ∼ z which shows that
[y]⊆ [x]. Similarly, [x]⊆ [y]. If it is not the case that x∼ y, then there can be no intersection
of [x] and [y] because if z were in this intersection, then x∼ z,z∼ y so x∼ y. ■

1.4 Well Ordering and Induction
Mathematical induction and well ordering are two extremely important principles in math.
They are often used to prove significant things which would be hard to prove otherwise.

Definition 1.4.1 A set is well ordered if every nonempty subset S, contains a smallest ele-
ment z having the property that z≤ x for all x ∈ S.

Axiom 1.4.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as N≡{1,2, · · ·} is well ordered.
The above axiom implies the principle of mathematical induction. The symbol Z de-

notes the set of all integers. Note that if a is an integer, then there are no integers between
a and a+1.

Theorem 1.4.3 (Mathematical induction) A set S ⊆ Z, having the property that a ∈ S and
n+1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x≥ a.
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Proof: Let T consist of all integers larger than or equal to a which are not in S. The
theorem will be proved if T = /0. If T ̸= /0 then by the well ordering principle, there would
have to exist a smallest element of T, denoted as b. It must be the case that b > a since by
definition, a /∈ T. Thus b≥ a+1, and so b−1≥ a and b−1 /∈ S because if b−1 ∈ S, then
b− 1+ 1 = b ∈ S by the assumed property of S. Therefore, b− 1 ∈ T which contradicts
the choice of b as the smallest element of T. (b− 1 is smaller.) Since a contradiction is
obtained by assuming T ̸= /0, it must be the case that T = /0 and this says that every integer
at least as large as a is also in S. ■

Mathematical induction is a very useful device for proving theorems about the integers.

Example 1.4.4 Prove by induction that ∑
n
k=1 k2 =

n(n+1)(2n+1)
6

.

▶
By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the

formula on the right. Suppose this formula is valid for some n ≥ 1 where n is an integer.
Then

n+1

∑
k=1

k2 =
n

∑
k=1

k2 +(n+1)2 =
n(n+1)(2n+1)

6
+(n+1)2 .

The step going from the first to the second line is based on the assumption that the formula
is true for n. This is called the induction hypothesis. Now simplify the expression in the
second line,

n(n+1)(2n+1)
6

+(n+1)2 .

This equals

(n+1)
(

n(2n+1)
6

+(n+1)
)

and
n(2n+1)

6
+(n+1) =

6(n+1)+2n2 +n
6

=
(n+2)(2n+3)

6
Therefore,

n+1

∑
k=1

k2 =
(n+1)(n+2)(2n+3)

6
=

(n+1)((n+1)+1)(2(n+1)+1)
6

,

showing the formula holds for n+ 1 whenever it holds for n. This proves the formula by
mathematical induction.

Example 1.4.5 Show that for all n ∈ N,
1
2
· 3

4
· · · 2n−1

2n
<

1√
2n+1

.

If n = 1 this reduces to the statement that
1
2
<

1√
3

which is obviously true. Suppose

then that the inequality holds for n. Then

1
2
· 3

4
· · · 2n−1

2n
· 2n+1

2n+2
<

1√
2n+1

2n+1
2n+2

=

√
2n+1

2n+2
.

http://www.youtube.com/watch?v=GuSI_Znvckk
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The theorem will be proved if this last expression is less than
1√

2n+3
. This happens if

and only if (
1√

2n+3

)2

=
1

2n+3
>

2n+1

(2n+2)2

which occurs if and only if (2n+2)2 > (2n+3)(2n+1) and this is clearly true which may
be seen from expanding both sides. This proves the inequality.

Lets review the process just used. If S is the set of integers at least as large as 1 for which
the formula holds, the first step was to show 1 ∈ S and then that whenever n ∈ S, it follows
n+ 1 ∈ S. Therefore, by the principle of mathematical induction, S contains [1,∞)∩Z,
all positive integers. In doing an inductive proof of this sort, the set S is normally not
mentioned. One just verifies the steps above. First show the thing is true for some a ∈ Z
and then verify that whenever it is true for m it follows it is also true for m+1. When this
has been done, the theorem has been proved for all m≥ a.

1.5 The Complex Numbers and Fields
Recall that a real number is a point on the real number line. Just as a real number should
be considered as a point on the line, a complex number is considered a point in the plane
which can be identified in the usual way using the Cartesian coordinates of the point. Thus
(a,b) identifies a point whose x coordinate is a and whose y coordinate is b. In dealing with
complex numbers, such a point is written as a+ ib. For example, in the following picture,
I have graphed the point 3+ 2i. You see it corresponds to the point in the plane whose
coordinates are (3,2) .

3+2i

and addition are defined in the most obvious way subject to the convention that i2 =
−1. Thus,

(a+ ib)+(c+ id) = (a+ c)+ i(b+d)

and

(a+ ib)(c+ id) = ac+ iad + ibc+ i2bd

= (ac−bd)+ i(bc+ad) .

Every non zero complex number a + ib, with a2 + b2 ̸= 0, has a unique multiplicative
inverse.

1
a+ ib

=
a− ib

a2 +b2 =
a

a2 +b2 − i
b

a2 +b2 .

You should prove the following theorem, assuming R is a field.

Theorem 1.5.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms. These are the following list of properties. In this
list, F is the symbol for a field.

1. x+ y = y+ x, (commutative law for addition)
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2. There exists 0 such that x+0 = x for all x, (additive identity).

3. For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. There exists 1 such that 1x = x for all x,(multiplicative identity).

8. For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplicative in-
verse).

9. x(y+ z) = xy+ xz.(distributive law).

The symbol x− y means x+(−y). We call this subtraction of y from x. The symbol
x/y for y ̸= 0 means x

(
y−1
)
. This is called division. When you have a field F some things

follow right away from the above axioms.

Theorem 1.5.2 Let F be a field. This means it satisfies the axioms of the above theorem.
Then the following hold.

1. 0 is unique 2. − x is unique 3. 0x = 0
4. (−1)x =−x 3. x−1 is unique

Proof: Consider the first claim. Suppose 0̂ is another additive identity. Then

0̂ = 0̂+0 = 0

and so sure enough, there is only one such additive identity. Consider uniqueness of −x
next. Suppose y is also an additive inverse. Then

−x =−x+0 =−x+(x+ y) = (−x+ x)+ y = 0+ y = y

so the additive inverse is unique also.

0x = (0+0)x = 0x+0x

Now add −0x to both sides to conclude that 0 = 0x. Next

0 = (1+−1)x = x+(−1)x

and by uniqueness of −x, this implies (−1)x =−x as claimed. Finally, if x ̸= 0 and y is a
multiplicative inverse,

x−1 = 1x−1 = (yx)x−1 = y
(
xx−1)= y1 = y

so y = x−1. ■
Note that if 0 = 1, you would have from the above that all the elements of the field are

0. This is of no interest at all so we typically assume 0 ̸= 1. Something which satisfies
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these axioms is called a field. Linear algebra is all about fields, although in this book, the
field of most interest will be the field of complex numbers or the field of real numbers.
You have seen in earlier courses that the real numbers also satisfy the above axioms. For
a proof of this well accepted fact and construction of the real numbers, see Hobson [22]
or my single variable advanced calculus book. Other books which do this are Hewitt and
Stromberg [21] or Rudin [36]. There are two ways to show this, one due to Cantor and the
other by Dedikind. Both are in Hobson, my book follows Cantor and so does the one by
Hewitt and Stromberg. Rudin presents the other method.

An important construction regarding complex numbers is the complex conjugate de-
noted by a horizontal line above the number. It is defined as follows.

a+ ib≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the follow-
ing formula is easy to obtain.(

a+ ib
)
(a+ ib) = (a− ib)(a+ ib)

= a2 +b2− i(ab−ab) = a2 +b2.

Definition 1.5.3 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√

a2 +b2.

Thus, denoting by z the complex number z = a+ ib,

|z|= (zz)1/2 .

Also from the definition, if z = x+ iy and w = u+ iv are two complex numbers, then
|zw|= |z| |w| . You should verify this. ▶

Notation 1.5.4 Recall the following notation. ∑
n
j=1 a j ≡ a1 + · · ·+ an. There is also a

notation which is used to denote a product.∏n
j=1 a j ≡ a1a2 · · ·an .

The triangle inequality holds for the absolute value for complex numbers just as it does
for the ordinary absolute value.

Proposition 1.5.5 Let z,w be complex numbers. Then the triangle inequality holds.

|z+w| ≤ |z|+ |w| , ||z|− |w|| ≤ |z−w| .

Proof: Let z = x+ iy and w = u+ iv. First note that

zw = (x+ iy)(u− iv) = xu+ yv+ i(yu− xv)

and so |xu+ yv| ≤ |zw|= |z| |w| .

|z+w|2 = (x+u+ i(y+ v))(x+u− i(y+ v))

= (x+u)2 +(y+ v)2 = x2 +u2 +2xu+2yv+ y2 + v2

≤ |z|2 + |w|2 +2 |z| |w|= (|z|+ |w|)2 ,

http://www.math.byu.edu/klkuttle/precalculus/jz62.mp4
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so this shows the first version of the triangle inequality. To get the second,

z = z−w+w, w = w− z+ z

and so by the first form of the inequality

|z| ≤ |z−w|+ |w| , |w| ≤ |z−w|+ |z|

and so both |z| − |w| and |w| − |z| are no larger than |z−w| and this proves the second
version because ||z|− |w|| is one of |z|− |w| or |w|− |z|. ■

With this definition, it is important to note the following. Be sure to verify this. It is not
too hard but you need to do it.

Remark 1.5.6 : Let z = a+ ib and w = c+ id. Then |z−w|=
√
(a− c)2 +(b−d)2. Thus

the distance between the point in the plane determined by the ordered pair (a,b) and the
ordered pair (c,d) equals |z−w| where z and w are as just described.

For example, consider the distance between (2,5) and (1,8) . From the distance formula

this distance equals
√
(2−1)2 +(5−8)2 =

√
10. On the other hand, letting z = 2+ i5 and

w = 1+ i8, z−w = 1− i3 and so (z−w)(z−w) = (1− i3)(1+ i3) = 10 so |z−w|=
√

10,
the same thing obtained with the distance formula.

1.6 Polar Form of Complex Numbers
Complex numbers, are often written in the so called polar form which is described next.
Suppose z = x+ iy is a complex number. Then

x+ iy =
√

x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so
(

x√
x2+y2

, y√
x2+y2

)
is a point on the unit circle. Therefore, there exists a unique

angle θ ∈ [0,2π) such that

cosθ =
x√

x2 + y2
, sinθ =

y√
x2 + y2

.

The polar form of the complex number is then r (cosθ + isinθ) where θ is this angle just
described and r =

√
x2 + y2 ≡ |z|.

θ

x+ iy = r(cos(θ)+ isin(θ))r =
√

x2 + y2
r
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1.7 Roots of Complex Numbers
A fundamental identity is the formula of De Moivre which follows.

Theorem 1.7.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + isin t)]n = rn (cosnt + isinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t + isin t)]n+1 = [r (cos t + isin t)]n [r (cos t + isin t)]

which by induction equals

= rn+1 (cosnt + isinnt)(cos t + isin t)

= rn+1 ((cosnt cos t− sinnt sin t)+ i(sinnt cos t + cosnt sin t))

= rn+1 (cos(n+1) t + isin(n+1) t)

by the formulas for the cosine and sine of the sum of two angles. ■

Corollary 1.7.2 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x+ iy and let z = |z|(cos t + isin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number r (cosα + isinα) ,is a kth root of z
if and only if rk (coskα + isinkα) = |z|(cos t + isin t) . This requires rk = |z| and so r =
|z|1/k and also both cos(kα) = cos t and sin(kα) = sin t. This can only happen if kα =
t + 2lπ for l an integer. Thus α = t+2lπ

k , l ∈ Z and so the kth roots of z are of the form
|z|1/k (cos

( t+2lπ
k

)
+ isin

( t+2lπ
k

))
, l ∈ Z. Since the cosine and sine are periodic of period

2π, there are exactly k distinct numbers which result from this formula. ■

Example 1.7.3 Find the three cube roots of i.

First note that i = 1
(
cos
(

π

2

)
+ isin

(
π

2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1
(

cos
(
(π/2)+2lπ

3

)
+ isin

(
(π/2)+2lπ

3

))
where l = 0,1,2. Therefore, the roots are

cos
(

π

6

)
+ isin

(
π

6

)
,cos

(
5
6

π

)
+ isin

(
5
6

π

)
,cos

(
3
2

π

)
+ isin

(
3
2

π

)
.

Thus the cube roots of i are

√
3

2
+ i
(

1
2

)
,
−
√

3
2

+ i
(

1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.7.4 Factor the polynomial x3−27.
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First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3,3

(
−1
2

+ i

√
3

2

)
, and 3

(
−1
2
− i

√
3

2

)
. Therefore, x3−27 =

(x−3)

(
x−3

(
−1
2

+ i

√
3

2

))(
x−3

(
−1
2
− i

√
3

2

))
.

Note also
(

x−3
(
−1
2 + i

√
3

2

))(
x−3

(
−1
2 − i

√
3

2

))
= x2 +3x+9 and so

x3−27 = (x−3)
(
x2 +3x+9

)
where the quadratic polynomial x2+3x+9 cannot be factored without using complex num-
bers.

Note that even though the polynomial x3 − 27 has all real coefficients, it has some

complex zeros,
−1
2

+ i

√
3

2
and
−1
2
− i

√
3

2
. These zeros are complex conjugates of each

other. It is always this way. You should show this is the case. To see how to do this, see
Problems 17 and 18 below.

Another fact for your information is the fundamental theorem of algebra. This theorem
says that any polynomial of degree at least 1 having any complex coefficients always has
a root in C. This is sometimes referred to by saying C is algebraically complete. Gauss is
usually credited with giving a proof of this theorem in 1797 but many others worked on it
and the first completely correct proof was due to Argand in 1806. For more on this theo-
rem, you can google fundamental theorem of algebra and look at the interesting Wikipedia
article on it. Proofs of this theorem usually involve the use of techniques from calculus
even though it is really a result in algebra. A proof and plausibility explanation is given
later.

1.8 The Quadratic Formula

The quadratic formula x = −b±
√

b2−4ac
2a gives the solutions x to ax2 + bx+ c = 0 where

a,b,c are real numbers. It holds even if b2−4ac < 0. This is easy to show from the above.
There are exactly two square roots to this number b2−4ac from the above methods using
De Moivre’s theorem. These roots are of the form√

4ac−b2
(

cos
(

π

2

)
+ isin

(
π

2

))
= i
√

4ac−b2

and √
4ac−b2

(
cos
(

3π

2

)
+ isin

(
3π

2

))
=−i

√
4ac−b2

Thus the solutions, according to the quadratic formula are still given correctly by the above
formula.

Do these solutions predicted by the quadratic formula continue to solve the quadratic
equation? Yes, they do. You only need to observe that when you square a square root of a
complex number z, you recover z. Thus

a

(
−b+

√
b2−4ac

2a

)2

+b

(
−b+

√
b2−4ac

2a

)
+ c
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= a
(

1
2a2 b2− 1

a
c− 1

2a2 b
√

b2−4ac
)
+b

(
−b+

√
b2−4ac

2a

)
+ c

=

(
− 1

2a

(
b
√

b2−4ac+2ac−b2
))

+
1

2a

(
b
√

b2−4ac−b2
)
+ c = 0

Similar reasoning shows directly that −b−
√

b2−4ac
2a also solves the quadratic equation.

What if the coefficients of the quadratic equation are actually complex numbers? Does
the formula hold even in this case? The answer is yes. This is a hint on how to do Problem
28 below, a special case of the fundamental theorem of algebra, and an ingredient in the
proof of some versions of this theorem.

Example 1.8.1 Find the solutions to x2−2ix−5 = 0.

Formally, from the quadratic formula, these solutions are

x =
2i±
√
−4+20
2

=
2i±4

2
= i±2.

Now you can check that these really do solve the equation. In general, this will be the case.
See Problem 28 below.

1.9 The Complex Exponential
It was shown above that every complex number is of the form r (cosθ + isinθ) where
r ≥ 0. Laying aside the zero complex number, this shows that every non zero complex
number is of the form eα (cosβ + isinβ ) . We write this in the form eα+iβ . Having done
so, does it follow that the expression preserves the most important property of the function
t→ e(α+iβ )t for t real, that (

e(α+iβ )t
)′

= (α + iβ )e(α+iβ )t?

By the definition just given which does not contradict the usual definition in case β = 0 and
the usual rules of differentiation in calculus,(

e(α+iβ )t
)′

=
(
eαt (cos(β t)+ isin(β t))

)′
= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

Now consider the other side. From the definition it equals

(α + iβ )
(
eαt (cos(β t)+ isin(β t))

)
= eαt [(α + iβ )(cos(β t)+ isin(β t))]

= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

which is the same thing. This is of fundamental importance in differential equations. It
shows that there is no change in going from real to complex numbers for ω in the consid-
eration of the problem y′ = ωy, y(0) = 1. The solution is always eωt . The formula just
discussed, that

eα (cosβ + isinβ ) = eα+iβ

is Euler’s formula.
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1.10 The Fundamental Theorem of Algebra
The fundamental theorem of algebra states that every non constant polynomial having co-
efficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, x2 + 1 = 0. This theorem is a very remarkable result and notwithstanding its ti-
tle, all the most straightforward proofs depend on either analysis or topology. It was first
mostly proved by Gauss in 1797. The first complete proof was given by Argand in 1806.
The proof given here follows Rudin [36]. See also Hardy [19] for a similar proof, more
discussion and references. The shortest proof is found in the theory of complex analysis.
First I will give an informal explanation of this theorem which shows why it is reasonable
to believe in the fundamental theorem of algebra.

Theorem 1.10.1 Let p(z) = anzn + an−1zn−1 + · · ·+ a1z+ a0 where each ak is a complex
number and an ̸= 0,n≥ 1. Then there exists w ∈ C such that p(w) = 0.

To begin with, here is the informal explanation. Dividing by the leading coefficient an,
there is no loss of generality in assuming that the polynomial is of the form

p(z) = zn +an−1zn−1 + · · ·+a1z+a0

If a0 = 0, there is nothing to prove because p(0) = 0. Therefore, assume a0 ̸= 0. From
the polar form of a complex number z, it can be written as |z|(cosθ + isinθ). Thus, by
DeMoivre’s theorem,

zn = |z|n (cos(nθ)+ isin(nθ))

It follows that zn is some point on the circle of radius |z|n
Denote by Cr the circle of radius r in the complex plane which is centered at 0. Then

if r is sufficiently large and |z| = r, the term zn is far larger than the rest of the poly-
nomial. It is on the circle of radius |z|n while the other terms are on circles of fixed
multiples of |z|k for k ≤ n− 1. Thus, for r large enough, Ar = {p(z) : z ∈Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. It won’t
be as simple as suggested in the following picture, but it will be a closed curve thanks
to De Moivre’s theorem and the observation that the cosine and sine are periodic. Now
shrink r. Eventually, for r small enough, the non constant terms are negligible and so Ar
is a curve which is contained in some circle centered at a0 which has 0 on the outside.

•0

Ar r large• a0

Ar

r small

Thus it is reasonable to believe that for some r dur-
ing this shrinking process, the set Ar must hit 0. It
follows that p(z) = 0 for some z.

For example, consider the polynomial x3 + x+
1+ i. It has no real zeros. However, you could let

z= r (cos t + isin t) and insert this into the polynomial. Thus you would want to find a point
where

(r (cos t + isin t))3 + r (cos t + isin t)+1+ i = 0+0i

Expanding this expression on the left to write it in terms of real and imaginary parts, you
get on the left

r3 cos3 t−3r3 cos t sin2 t + r cos t +1+ i
(
3r3 cos2 t sin t− r3 sin3 t + r sin t +1

)
Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have (0,0) =(

r3 cos3 t−3r3 cos t sin2 t + r cos t +1,3r3 cos2 t sin t− r3 sin3 t + r sin t +1
)
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for some value of r and t. First here is a graph of this parametric function of t for t ∈ [0,2π]
on the left, when r = 4. Note how the graph misses the origin 0+ i0. In fact, the closed
curve is in the exterior of a circle which has the point 0+ i0 on its inside.

-50 0 50

x

-50

0

50

y

-2 0 2

x

-2

0

2

y

-4 -2 0 2 4 6

x

-2

0

2

4

y

r too big r too small r just right

Next is the graph when r = .5. Note how the closed curve is included in a circle which
has 0+ i0 on its outside. As you shrink r you get closed curves. At first, these closed
curves enclose 0+ i0 and later, they exclude 0+ i0. Thus one of them should pass through
this point. In fact, consider the curve which results when r = 1.386 which is the graph on
the right. Note how for this value of r the curve passes through the point 0+ i0. Thus for
some t, 1.386(cos t + isin t) is a solution of the equation p(z) = 0 or very close to one.

Now here is a short rigorous proof for those who have studied analysis. The needed
analysis will be presented later in the book. You need the extreme value theorem for exam-
ple.

Proof: Suppose the nonconstant polynomial p(z) = a0 + a1z+ · · ·+ anzn,an ̸= 0, has
no zero in C. Since lim|z|→∞ |p(z)|= ∞, there is a z0 with

|p(z0)|= min
z∈C
|p(z)|> 0

Then let q(z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum of

|q(z)| is 1 and occurs at z = 0. Since q(0) = 1, it follows q(z) = 1+akzk +r (z) where r (z)
is of the form

r (z) = amzm +am+1zm+1 + ...+anzn for m > k.

Choose a sequence, zn → 0, such that akzk
n < 0. For example, let −akzk

n = (1/n) so zn =

(−ak)
1/k ( 1

n

)1/k
and Then

|q(zn)| =
∣∣∣1+akzk + r (z)

∣∣∣≤ 1−1/n+ |r (zn)|

≤ 1− 1
n
+

1
n

n

∑
j=m

∣∣a j
∣∣ |ak|1/k

(
1
n

)( j−k)/k

< 1

for all n large enough because the sum is smaller than 1 whenever n is large enough, show-
ing |q(zn)|< 1 whenever n is large enough. This is a contradiction to |q(z)| ≥ 1. ■

1.11 Ordered Fields
To do linear algebra, you need a field which is something satisfying the axioms listed in
Theorem 1.5.1. This is generally all that is needed to do linear algebra but for the sake of
completeness, the concept of an ordered field is considered here. The real numbers also
have an order defined on them. This order may be defined by reference to the positive real
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numbers, those to the right of 0 on the number line, denoted by R+. More generally, for
a field, one could consider an order if there is such a “positive cone” called the positive
numbers such that the following axioms hold.

Axiom 1.11.1 The sum of two positive real numbers is positive.

Axiom 1.11.2 The product of two positive real numbers is positive.

Axiom 1.11.3 For a given real number x one and only one of the following alternatives
holds. Either x is positive, x = 0, or −x is positive.

An example of this is the field of rational numbers.

Definition 1.11.4 x < y exactly when y+(−x)≡ y−x ∈R+. In the usual way, x < y is the
same as y > x and x≤ y means either x < y or x = y. The symbol ≥ is defined similarly.

Theorem 1.11.5 The following hold for the order defined as above.

1. If x < y and y < z then x < z (Transitive law).

2. If x < y then x+ z < y+ z (addition to an inequality).

3. If x≤ 0 and y≤ 0, then xy≥ 0.

4. If x > 0 then x−1 > 0.

5. If x < 0 then x−1 < 0.

6. If x < y then xz < yz if z > 0, (multiplication of an inequality).

7. If x < y and z < 0, then xz > zy (multiplication of an inequality).

8. Each of the above holds with > and < replaced by ≥ and ≤ respectively except for
4 and 5 in which we must also stipulate that x ̸= 0.

9. For any x and y, exactly one of the following must hold. Either x = y, x < y, or x > y
(trichotomy).

Proof: First consider 1, the transitive law. Suppose x < y and y < z. Why is x < z? In
other words, why is z−x∈R+? It is because z−x = (z− y)+(y− x) and both z−y,y−x∈
R+. Thus by 1.11.1 above, z− x ∈ R+ and so z > x.

Next consider 2, addition to an inequality. If x < y why is x+ z < y+ z? it is because

(y+ z)+−(x+ z) = (y+ z)+(−1)(x+ z)

= y+(−1)x+ z+(−1)z

= y− x ∈ R+.

Next consider 3. If x ≤ 0 and y ≤ 0, why is xy ≥ 0? First note there is nothing to
show if either x or y equal 0 so assume this is not the case. By 1.11.3 −x > 0 and −y > 0.
Therefore, by 1.11.2 and what was proved about−x = (−1)x, (−x)(−y) = (−1)2 xy∈R+.

Is (−1)2 = 1? If so the claim is proved. But −(−1) = (−1)2 and −(−1) = 1 because
−1+1 = 0.
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Next consider 4. If x > 0 why is x−1 > 0? By 1.11.3 either x−1 = 0 or −x−1 ∈ R+. It
can’t happen that x−1 = 0 because then you would have to have 1 = 0x and as was shown
earlier, 0x = 0. Therefore, consider the possibility that −x−1 ∈ R+. This can’t work either
because then you would have

(−1)x−1x = (−1)(1) =−1

and it would follow from 1.11.2 that −1 ∈ R+. But this is impossible because if x ∈ R+,
then (−1)x =−x ∈R+ and contradicts 1.11.3 which states that either −x or x is in R+ but
not both.

Next consider 5. If x < 0, why is x−1 < 0? As before, x−1 ̸= 0. If x−1 > 0, then as
before, −x

(
x−1
)
=−1 ∈ R+ which was just shown not to occur.

Next consider 6. If x < y why is xz < yz if z > 0? This follows because yz− xz =
z(y− x) ∈ R+ since both z and y− x ∈ R+.

Next consider 7. If x < y and z < 0, why is xz > zy? This follows because zx− zy =
z(x− y) ∈ R+ by what was proved in 3.

The last two claims are obvious and left for you. ■

1.12 Division of Numbers
First of all, recall the Archimedean property of the real numbers which says that if x is any
real number, and if a > 0 then there exists a positive integer n such that na > x. Geomet-
rically, it is essentially the following: For any a > 0, the succession of disjoint intervals
[0,a), [a,2a), [2a,3a), · · · includes all nonnegative real numbers. Here is a picture of some
of these intervals.

0a 1a 2a 3a 4a

Then the version of the Euclidean algorithm presented here says that, for an arbitrary
nonnegative real number b, it is in exactly one interval [pa,(p+1)a) where p is some
nonnegative integer. This seems obvious from the picture, but here is a proof.

Theorem 1.12.1 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
real number r such that 0≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p+ 1 be the smallest element of S. Then pa ≤ b because p+ 1 is the smallest in S.
Therefore, r ≡ b− pa ≥ 0. If r ≥ a then b− pa ≥ a and so b ≥ (p+1)a contradicting
p+1 ∈ S. Therefore, r < a as desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1,2, both work and r2 > r1.
Then a little algebra shows p1− p2 =

r2−r1
a ∈ (0,1) .Thus p1− p2 is an integer between 0

and 1, and there are no such integers. The case that r1 > r2 cannot occur either by similar
reasoning. Thus r1 = r2 and it follows that p1 = p2. ■

Note that if a,b are integers, then so is r.

Corollary 1.12.2 The same conclusion is reached if b < 0.

Proof: In this case, S ≡ {n ∈ N : an >−b} . Let p+ 1 be the smallest element of S.
Then pa ≤ −b < (p+1)a and so (−p)a ≥ b > −(p+1)a. Let r ≡ b+(p+1). Then
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b = −(p+1)a+ r and a > r ≥ 0. As to uniqueness, say ri works and r1 > r2. Then you
would have

b = p1a+ r1, b = p2a+ r2

and p2− p1 = r1−r2
a ∈ (0,1) which is impossible because p2− p1 is an integer. Hence

r1 = r2 and so also p1 = p2. ■

Corollary 1.12.3 Suppose a,b ̸= 0, then there exists r such that |r| < |a| and for some p
an integer,b = ap+ r.

Proof: This is done in the above except for the case where a < 0. So suppose this is the
case. Then b = p(−a)+ r where r is positive and 0≤ r <−a = |a|. Thus b = (−p)a+ r
such that 0≤ |r|< |a|. ■

This theorem is called the Euclidean algorithm when a and b are integers and this is the
case of most interest here. Note that if a,b are integers, then so is r. Note that

7 = 2×3+1, 7 = 3×3−2, |1|< 3, |−2|< 3

so in this last corollary, the p and r are not unique.
The following definition describes what is meant by a prime number and also what is

meant by the word “divides”.

Definition 1.12.4 The number, a divides the number, b if in Theorem 1.12.1, r = 0. That is
there is zero remainder. The notation for this is a|b, read a divides b and a is called a factor
of b. A prime number is a number at least 2 which has the property that the only numbers
which divide it are itself and 1. The greatest common divisor of two positive integers, m,n
is that number, p which has the property that p divides both m and n and also if q divides
both m and n, then q divides p. Two integers are relatively prime if their greatest common
divisor is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x,y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m+ 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 1.12.5 Let m,n be two positive integers and define

S≡ {xm+ yn ∈ N : x,y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .

Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.12.1, m = pq+r where 0 < r < p.
Thus m = (x0m+ y0n)q+ r and so, solving for r,

r = m(1− x0)+(−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Simi-
larly p|n.
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Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 +ny0 = x0qx+ y0qy = q(x0x+ y0y)

showing q|p. Therefore, p = (m,n) . ■
This amazing theorem will now be used to prove a fundamental property of prime

numbers which leads to the fundamental theorem of arithmetic, the major theorem which
says every integer can be factored as a product of primes.

Theorem 1.12.6 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p,a)= 1 and therefore, there exists integers, x and y such that 1= ax+yp.
Multiplying this equation by b yields b = abx+ ybp.Since p|ab, ab = pz for some integer
z. Therefore,

b = abx+ ybp = pzx+ ybp = p(xz+ yb)

and this shows p divides b. ■
The following is the fundamental theorem of arithmetic.

Theorem 1.12.7 (Fundamental theorem of arithmetic) Let a ∈ N\{1}. Then a = ∏
n
i=1 pi

where pi are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a ≤ n− 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m are
less than n. Therefore, each of these is no larger than n− 1 and consequently, each has a
prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose ∏
n
i=1 pi = ∏

m
j=1 q j where the pi and q j are all prime, there is no way to reorder

the qk such that m = n and pi = qi for all i, and n +m is the smallest positive integer
such that this happens. Then by Theorem 1.12.6, p1|q j for some j. Since these are prime
numbers this requires p1 = q j. Reordering if necessary it can be assumed that q j = q1.

Then dividing both sides by p1 = q1,∏
n−1
i=1 pi+1 = ∏

m−1
j=1 q j+1. Since n+m was as small

as possible for the theorem to fail, it follows that n− 1 = m− 1 and the prime numbers,
q2, · · · ,qm can be reordered such that pk = qk for all k = 2, · · · ,n. Hence pi = qi for all i
because it was already argued that p1 = q1, and this results in a contradiction. ■

1.13 Polynomials
It will be very important to be able to work with polynomials in certain parts of linear
algebra to be presented later. Polynomials are a lot like integers. The notion of division is
important for polynomials in the same way that it is for integers.

Definition 1.13.1 A polynomial is an expression of the form anλ
n+an−1λ

n−1+· · ·+a1λ +
a0, an ̸= 0 where the ai come from a field of scalars. Two polynomials are equal means that
the coefficients match for each power of λ . The degree of a polynomial is the largest power
of λ . Thus the degree of the above polynomial is n. Addition of polynomials is defined in
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the usual way as is multiplication of two polynomials. The leading term in the above
polynomial is anλ

n. The coefficient of the leading term is called the leading coefficient. It
is called a monic polynomial if an = 1.

Note that the degree of the zero polynomial is not defined in the above. Multiplication
of polynomials has an important property.

Lemma 1.13.2 If f (λ )g(λ ) = 0, then either f (λ ) = 0 or g(λ ) = 0. That is, there are no
nonzero divisors of 0. If f (λ ) is a monic polynomial and f (λ )g(λ ) = 0, then g(λ ) = 0
and if f (λ )g1 (λ ) = f (λ )g2 (λ ), then g1 (λ ) = g2 (λ ).

Proof: Let f (λ ) have degree n and g(λ ) degree m. If m+n= 0, it is easy to see that the
conclusion holds. Suppose the conclusion holds for m+n≤M and suppose m+n = M+1.
Then f (λ )g(λ ) =(

a0 +a1λ + · · ·+an−1λ
n−1 +anλ

n
)(

b0 +b1λ + · · ·+bm−1λ
m−1 +bmλ

m
)

=


f (λ )︷ ︸︸ ︷

a(λ )+anλ
n




g(λ )︷ ︸︸ ︷
b(λ )+bmλ

m

 (1.1)

= a(λ )b(λ )+bmλ
ma(λ )+anλ

nb(λ )+anbmλ
n+m

Either an = 0 or bm = 0. Suppose bm = 0. It is similar if an = 0. Then from 1.1,

(a(λ )+anλ
n)b(λ ) = 0.

By induction, one of these polynomials in the product is 0. If b(λ ) ̸= 0, then a(λ )+anλ
n =

0 so an = 0 and a(λ ) = 0 so f (λ ) ≡ a(λ )+ anλ
n = 0. If b(λ ) = 0, then, since bm = 0,

g(λ ) ≡ b(λ )+bmλ
m = 0. The remaining claims are clear from this because f (λ ) ̸= 0 if

f (λ ) is monic. ■

Lemma 1.13.3 Let f (λ ) and g(λ ) ̸= 0 be polynomials. Then there exist polynomials,
q(λ ) and r (λ ) such that

f (λ ) = q(λ )g(λ )+ r (λ )

where the degree of r (λ ) is less than the degree of g(λ ) or r (λ ) = 0. These polynomials
q(λ ) and r (λ ) are unique.

Proof: Suppose that f (λ )− q(λ )g(λ ) is never equal to 0 for any q(λ ). If it is, then
the conclusion follows. Now suppose

r (λ ) = f (λ )−q(λ )g(λ ) (∗)

where the degree of r (λ ) is as small as possible. Let it be m. Suppose m≥ n where n is the
degree of g(λ ). Say r (λ ) = bλ

m +a(λ ) where a(λ ) is 0 or has degree less than m while
g(λ ) = b̂λ

n + â(λ ) where â(λ ) is 0 or has degree less than n. Then

r (λ )− b
b̂

λ
m−ng(λ ) =

r(λ )
bλ

m +a(λ )−
(

bλ
m +

b
b̂

λ
m−nâ(λ )

)
= a(λ )− ã(λ ) ,



22 CHAPTER 1. SOME PREREQUISITE TOPICS

a polynomial having degree less than m. Therefore from the above,

a(λ )− ã(λ ) =

=r(λ )︷ ︸︸ ︷
( f (λ )−q(λ )g(λ ))− b

b̂
λ

m−ng(λ ) = f (λ )− q̂(λ )g(λ )

which is of the same form as ∗ having smaller degree. However, m was as small as possible.
Hence m < n after all.

As to uniqueness, if you have r (λ ) , r̂ (λ ) ,q(λ ) , q̂(λ ) which work, then you would
have

(q̂(λ )−q(λ ))g(λ ) = r (λ )− r̂ (λ )

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence
this would involve two polynomials which are equal although their degrees are different.
This is impossible. Hence r (λ ) = r̂ (λ ) and so, the above lemma shows q̂(λ ) = q(λ ). ■

Definition 1.13.4 A polynomial f is said to divide a polynomial g if g(λ ) = f (λ )r (λ ) for
some polynomial r (λ ). Let {φ i (λ )} be a finite set of polynomials. The greatest common
divisor will be the monic polynomial q(λ ) such that q(λ ) divides each φ i (λ ) and if p(λ )
divides each φ i (λ ) , then p(λ ) divides q(λ ) . The finite set of polynomials {φ i} is said to be
relatively prime if their greatest common divisor is 1. A polynomial f (λ ) is irreducible if
there is no polynomial with coefficients in Fwhich divides it except nonzero scalar multiples
of f (λ ) and constants. In other words, it is not possible to write f (λ ) = a(λ )b(λ ) where
each of a(λ ) ,b(λ ) have degree less than the degree of f (λ ) unless one of a(λ ) ,b(λ ) is a
constant.

Proposition 1.13.5 The greatest common divisor is unique.

Proof: Suppose both q(λ ) and q′ (λ ) work. Then q(λ ) divides q′ (λ ) and the other
way around and so

q′ (λ ) = q(λ ) l (λ ) , q(λ ) = l′ (λ )q′ (λ )

Therefore, the two must have the same degree. Hence l′ (λ ) , l (λ ) are both constants.
However, this constant must be 1 because both q(λ ) and q′ (λ ) are monic. ■

Theorem 1.13.6 Let {φ i (λ )} be polynomials, not all of which are zero polynomials. Then
there exists a greatest common divisor and it equals the monic polynomial ψ (λ ) of smallest
degree such that there exist polynomials ri (λ ) satisfying

ψ (λ ) =
p

∑
i=1

ri (λ )φ i (λ ) .

Proof: Let S denote the set of monic polynomials of the form ∑
p
i=1 ri (λ )φ i (λ ). where

ri (λ ) is a polynomial. Then S ̸= /0 because some φ i (λ ) ̸= 0. Then let the ri be chosen such
that the degree of the expression ∑

p
i=1 ri (λ )φ i (λ ) is as small as possible. Letting ψ (λ )

equal this sum, it remains to verify it is the greatest common divisor. First, does it divide
each φ i (λ )? Suppose it fails to divide φ 1 (λ ) . Then by Lemma 1.13.3

φ 1 (λ ) = ψ (λ ) l (λ )+ r (λ )
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where degree of r (λ ) is less than that of ψ (λ ). Then dividing r (λ ) by the leading coeffi-
cient if necessary and denoting the result by ψ1 (λ ) , it follows the degree of ψ1 (λ ) is less
than the degree of ψ (λ ) and ψ1 (λ ) equals for some a ∈ F

ψ1 (λ ) = (φ 1 (λ )−ψ (λ ) l (λ ))a

=

(
φ 1 (λ )−

p

∑
i=1

ri (λ )φ i (λ ) l (λ )

)
a

=

(
(1− r1 (λ ))φ 1 (λ )+

p

∑
i=2

(−ri (λ ) l (λ ))φ i (λ )

)
a

This is one of the polynomials in S. Therefore, ψ (λ ) does not have the smallest degree
after all because the degree of ψ1 (λ ) is smaller. This is a contradiction. Therefore, ψ (λ )
divides φ 1 (λ ) . Similarly it divides all the other φ i (λ ).

If p(λ ) divides all the φ i (λ ) , then it divides ψ (λ ) because of the formula for ψ (λ )
which equals ∑

p
i=1 ri (λ )φ i (λ ) . Thus ψ (λ ) satisfies the condition to be the greatest com-

mon divisor. This shows the greatest common divisor exists and equals the above descrip-
tion of it. ■

Lemma 1.13.7 Suppose φ (λ ) and ψ (λ ) are monic polynomials which are irreducible and
not equal. Then they are relatively prime.

Proof: Suppose η (λ ) is a nonconstant polynomial. If η (λ ) divides φ (λ ) , then since
φ (λ ) is irreducible, φ (λ ) = η (λ ) ã for some constant ã. Thus η (λ ) equals aφ (λ ) for
some a ∈ F. If η (λ ) divides ψ (λ ) then it must be of the form bψ (λ ) for some b ∈ F and
so it follows

η (λ ) = aφ (λ ) = bψ (λ ) ,

ψ (λ ) =
a
b

φ (λ )

but both ψ (λ ) and φ (λ ) are monic polynomials which implies a= b and so ψ (λ ) = φ (λ ).
This is assumed not to happen. It follows the only polynomials which divide both ψ (λ )
and φ (λ ) are constants and so the two polynomials are relatively prime. Thus a polynomial
which divides them both must be a constant, and if it is monic, then it must be 1. Thus 1 is
the greatest common divisor. ■

Lemma 1.13.8 Let ψ (λ ) be an irreducible monic polynomial not equal to 1 which divides

p

∏
i=1

φ i (λ )
ki , ki a positive integer,

where each φ i (λ ) is an irreducible monic polynomial not equal to 1. Then ψ (λ ) equals
some φ i (λ ) .

Proof : Say ψ (λ ) l (λ ) = ∏
p
i=1 φ i (λ )

ki . Suppose ψ (λ ) ̸= φ i (λ ) for all i. Then by
Lemma 1.13.7, there exist polynomials mi (λ ) ,ni (λ ) such that

1 = ψ (λ )mi (λ )+φ i (λ )ni (λ )

φ i (λ )ni (λ ) = 1−ψ (λ )mi (λ )
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Hence, (φ i (λ )ni (λ ))
ki = (1−ψ (λ )mi (λ ))

ki and so letting n(λ ) = ∏i ni (λ )
ki ,

n(λ ) l (λ )ψ (λ ) =
p

∏
i=1

(ni (λ )φ i (λ ))
ki =

p

∏
i=1

(1−ψ (λ )mi (λ ))
ki

= 1+g(λ )ψ (λ )

for a suitable polynomial g(λ ) . You just separate out the term 1ki = 1 in that product and
then all terms that are left have a ψ (λ ) as a factor. Hence

(n(λ ) l (λ )−g(λ ))ψ (λ ) = 1

which is impossible because ψ (λ ) is not equal to 1. ■
Of course, since coefficients are in a field, you can drop the stipulation that the polyno-

mials are monic and replace the conclusion with: ψ (λ ) is a multiple of some φ i (λ ) .
The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 1.13.9 Let f (λ ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ ) = a∏

n
i=1 φ i (λ ) where φ i (λ ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a. Every subset of {φ i (λ ) , i = 1, ...,n}
having at least two elements is relatively prime.

Proof: That such a factorization exists is obvious. If f (λ ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ )= aφ 1 (λ )φ 2 (λ ) where these are monic
polynomials. Continue doing this with the φ i and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a
n

∏
i=1

φ i (λ ) = b
m

∏
i=1

ψ i (λ )

where the φ i (λ ) and the ψ i (λ ) are all irreducible monic nonconstant polynomials and
a,b ∈ F. If n > m, then by Lemma 1.13.8, each ψ i (λ ) equals one of the φ j (λ ) . By the
above cancellation lemma, Lemma 1.13.2, you can cancel all these ψ i (λ ) with appropriate
φ j (λ ) and obtain a contradiction because the resulting polynomials on either side would
have different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. If you have such a subset
of the φ i (λ ) , the monic polynomial of smallest degree which divides them all must be 1
because none of the φ i (λ ) divide any other since they are all irreducible. ■

The following corollary will be well used. This corollary seems rather believable but
does require a proof.

Corollary 1.13.10 Let q(λ ) = ∏
p
i=1 φ i (λ )

ki where the ki are positive integers and the
φ i (λ ) are irreducible distinct monic polynomials. Suppose also that p(λ ) is a monic
polynomial which divides q(λ ) . Then

p(λ ) =
p

∏
i=1

φ i (λ )
ri

where ri is a nonnegative integer no larger than ki.
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Proof: Using Theorem 1.13.9, let p(λ ) = b∏
s
i=1 ψ i (λ )

ri where the ψ i (λ ) are each ir-
reducible and monic and b∈ F. Since p(λ ) is monic, b = 1. Then there exists a polynomial
g(λ ) such that

p(λ )g(λ ) = g(λ )
s

∏
i=1

ψ i (λ )
ri =

p

∏
i=1

φ i (λ )
ki

Hence g(λ ) must be monic. Therefore,

p(λ )g(λ ) =

p(λ )︷ ︸︸ ︷
s

∏
i=1

ψ i (λ )
ri

l

∏
j=1

η j (λ ) =
p

∏
i=1

φ i (λ )
ki

for η j monic and irreducible. By uniqueness, each ψ i equals one of the φ j (λ ) and the
same holding true of the η i (λ ). Therefore, p(λ ) is of the desired form because you can
cancel the η j (λ ) from both sides. ■

1.14 The Method of Partial Fractions
A very useful method is the method of partial fractions having to do with rational functions,
quotients of polynomials. In applications known to me, these are usually thought of as
functions of λ and this is what we like to call such quotients, but everything is based only
on the usual algebraic manipulations for polynomials.

Proposition 1.14.1 Suppose r (λ ) = a(λ )
p(λ )m where a(λ ) is a polynomial and p(λ ) is a poly-

nomial of degree at least 1. Then

r (λ ) = q(λ )+
m

∑
k=1

bk (λ )

p(λ )k , where degree of bk (λ )< degree of p(λ ) or bk (λ ) = 0

Proof: Suppose first that m = 1. If the degree of a(λ ) is larger than the degree of p(λ ),
then do the division algorithm to write a(λ ) = p(λ )q(λ )+ â(λ ) where the degree of â(λ )
is less than the degree of p(λ ) or else â(λ ) = 0. Thus the expression reduces to

p(λ )q(λ )+m(λ )

p(λ )
= q(λ )+

â(λ )
p(λ )

and now it is in the desired form. Thus the Proposition is true if m = 1. Suppose it is true
for m− 1 ≥ 1. Then there is nothing to show if the degree of a(λ ) is less than the degree
of p(λ ), so assume the degree of a(λ ) is larger than the degree of p(λ ). Then use the
division algorithm as above and write

a(λ )
p(λ )m =

p(λ )q(λ )+ â(λ )
p(λ )m

where the degree of â(λ ) is less than the degree of p(λ ) or else is 0. Then the above equals

a(λ )
p(λ )m =

q(λ )

p(λ )m−1 +
â(λ )

p(λ )m

and by induction on the first term on the right, this proves the proposition. ■
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With this, the general partial fractions theorem is next. From Theorem 1.13.9, every
polynomial q(λ ) has a factorization of the form ∏

M
i=1 pi (λ )

mi where the pi (λ ) are irre-
ducible, meaning they cannot be factored further. Thus the polynomials pi (λ ) are distinct
and relatively prime as is every subset having at least two of these pi (λ ).

Proposition 1.14.2 Let a(λ )
b(λ ) be any rational function. Then it is of the form

a(λ )

∏
M
i=1 pi (λ )

mi

where the pi (λ ) are distinct irreducible polynomials, meaning they can’t be factored any
further as described in the chapter and each mi is a nonnegative integer.

Then there are polynomials q(λ ) and nki (λ ) with the degree of nki (λ ) less than the
degree of pi (λ ) or nki (λ ) = 0, such that

a(λ )
b(λ )

= q(λ )+
M

∑
i=1

mi

∑
k=1

nki (λ )

pi (λ )
k (1.2)

Proof: Suppose first that ∑
M
i=1 mi = 1. Then the rational function is of the form a(λ )

p(λ ) and
this can be placed in the desired form by an application of the division algorithm as above.
Suppose now that this proposition is true if ∑

M
i=1 mi ≤ n for some n ≥ 1 and suppose you

have
a(λ )
b(λ )

=
a(λ )

∏
M
j=1 p j (λ )

m j
,

M

∑
j=1

m j = n+1, each m j ≥ 0

If some m j = n+ 1, then one obtains the situation of Proposition 1.14.1. Therefore, it
suffices to assume that no m j = n+1 so there are at least two m j which are nonzero.

Every subset of the {p1 (λ ) , p2 (λ ) , ..., pM (λ )} having at least two pi (λ ) is relatively
prime because these polynomials are all irreducible. Therefore, there are polynomials
bi (λ ) such that bi (λ ) = 0 if mi = 0 and ∑

M
i=1 bi (λ ) pi (λ ) = 1. Then multiply by this

to obtain

a(λ )
b(λ )

=
a(λ )

∏
M
j=1 p j (λ )

m j
=

a(λ )∑
M
i=1 bi (λ ) pi (λ )

∏
M
j=1 p j (λ )

m j
=

M

∑
i=1

a(λ )bi (λ ) pi (λ )

∏
M
j=1 p j (λ )

m j

Now in the ith term of the sum, the pi (λ ) in the top cancels with exactly one of the fac-
tors in the bottom or else the term is 0. It follows that the original a(λ )

b(λ ) is of the form

∑
N
i=1

âi(λ )

∏
M
j=1 p j(λ )

mi j where ∑
M
j=1 mi j ≤ n. By induction applied to each of the terms in this

sum, one obtains a(λ )
b(λ ) equal to an expression of the form in 1.2. ■

Proposition 1.14.3 The partial fractions expansion is unique.

Proof: Subtracting, you get

q(λ )− q̂(λ ) =
M

∑
i=1

mi

∑
k=1

n̂ki (λ )−nki (λ )

pi (λ )
k
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and so, the left side is 0 since otherwise, you could multiply by the product of the pi (λ )
k

and get equality of two polynomials of different degree. Hence you have

M

∑
i=1

mi

∑
k=1

nki (λ )

pi (λ )
k =

M

∑
i=1

mi

∑
k=1

n̂ki (λ )

pi (λ )
k (∗)

Now multiply both sides by ∏i̸= j pi (λ )
mi p j (λ )

m j−1. Then

P(λ )+
nm j j (λ )

p j (λ )
= P̂(λ )+

n̂m j j (λ )

p j (λ )

then by the same argument, P(λ ) = P̂(λ ) and now
nm j j(λ )

p j(λ )
=

n̂m j j(λ )

p j(λ )
and so

p j (λ )
(
nm j j (λ )− n̂m j j (λ )

)
= 0

and from Lemma 1.13.2, since p j (λ ) ̸= 0, it follows that nm j j (λ )− n̂m j j (λ ) = 0. Thus in
∗ the m j can be replaced with m j−1.

Continue this way, to show that nk j (λ )− n̂k j (λ ) = 0 for each k. Since j is arbitrary,
this shows uniqueness. ■

1.15 Finite Fields
The emphasis of the first part of this book will be on what can be done on the basis of alge-
bra alone. Linear algebra only needs a field of scalars along with some axioms involving an
Abelian group of vectors and there are infinitely many examples of fields, including some
which are finite. Since it is good to have examples in mind, I will present the finite fields
of residue classes modulo a prime number in this little section. Then, when linear algebra
is developed in the first part of the book and reference is made to a field of scalars, you
should think that it is possible that the field might be this field of residue classes.

Here is the construction of the finite fields Zp for p a prime.

Definition 1.15.1 LetZ+ denote the set of nonnegative integers, Z+ = {0,1,2,3, · · ·}. Also
let p be a prime number. We will say that two integers, a,b are equivalent and write a∼ b
if a−b is divisible by p. Thus they are equivalent if a−b = px for some integer x.

Proposition 1.15.2 The relation ∼ is an equivalence relation. Denoting by n̄ the equiva-
lence class determined by n ∈ N, the following are well defined operations.

n̄+ m̄≡ n+m

n̄m̄≡ nm

which makes the set Zp consisting of
{

0̄, 1̄, · · · , p−1
}

into a field.

Proof: First note that for n ∈ Z+ there always exists r ∈ {0,1, · · · , p−1} such that
n̄ = r̄. This is clearly true because if n ∈ Z+, then n = mp + r for r < p, this by the
Euclidean algorithm. Thus r̄ = n̄. Now suppose that n̄1 = n̄ and m̄1 = m̄. Is it true that
n1 +m1 = n+m? Is it true that (n+m)− (n1 +m1) is a multiple of p? Of course since
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n1 − n and m1 −m are both multiples of p. Similarly, is n1m1 = nm? Is nm− n1m1 a
multiple of p? Of course this is so because

nm−n1m1 = nm−n1m+n1m−n1m1

= m(n−n1)+n1 (m−m1)

which is a multiple of p. Thus the operations are well defined. It follows that all of the
field axioms hold except possibly the existence of a multiplicative inverse and an additive
inverse. First consider the question of an additive inverse. A typical thing in Zp is of the
form r̄ where 0 ≤ r ≤ p− 1. Then consider (p− r) . By definition, r̄+ p− r = p̄ = 0̄ and
so the additive inverse exists.

Now consider the existence of a multiplicative inverse. This is where p is prime is
used. Say n̄ ̸= 0̄. That is, n is not a multiple of p, 0 ≤ n < p. Then since p is prime, n, p
are relatively prime and so there are integers x,y such that 1 = xn+yp. Choose m≥ 0 such
that pm+ x > 0, pm+ y > 0. Then

1+ pmn+ pmp = (pm+ x)n+(pm+ y) p

It follows that 1+ pmn+ p2m = 1̄, 1̄ = (pm+ x)n̄ and so (pm+ x) is the multiplicative
inverse of n̄. ■

Thus Zp is a finite field, known as the field of residue classes modulo p.
Something else which is often considered is a commutative ring with unity.

Definition 1.15.3 A commutative ring with unity is just a field except it lacks the property
that nonzero elements have a multiplicative inverse. It has all other properties. In this
book, this will be referred to simply as a commutative ring. I will assume that commutative
rings always have 1. Thus the axioms of a commutative ring with unity are as follows:

Axiom 1.15.4 Here are the axioms for a commutative ring with unity.

1. x+ y = y+ x, (commutative law for addition)

2. There exists 0 such that x+0 = x for all x, (additive identity).

3. For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. There exists 1 such that 1x = x for all x,(multiplicative identity).

8. x(y+ z) = xy+ xz.(distributive law).

An example of such a thing is Zm where m is not prime, also the ordinary integers.
However, the integers are also an integral domain.

Definition 1.15.5 A commutative ring with unity is called an integral domain if, in addition
to the above, whenever ab = 0, it follows that either a = 0 or b = 0.
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1.16 Some Topics From Analysis
Recall from calculus that if A is a nonempty set, supa∈A f (a) denotes the least upper bound
of f (A) or if this set is not bounded above, it equals ∞. Also infa∈A f (a) denotes the
greatest lower bound of f (A) if this set is bounded below and it equals −∞ if f (A) is not
bounded below. Thus to say supa∈A f (a) = ∞ is just a way to say that A is not bounded
above.

Definition 1.16.1 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets which
means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is interpreted as a point
out at the end of the number line which is larger than every real number. Of course there is
no such number. That is why it is called ∞. The symbol, −∞ is interpreted similarly. Then
supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} .

Note that if {an} is an increasing sequence of real numbers,

sup
n
{an}= lim

n→∞
an

if supn {an}< ∞ and also if we define limn→∞ an ≡ ∞ if supn {an}= ∞.
Unlike limits, you can take the sup in different orders.

Lemma 1.16.2 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Proof: Note that for all a,b,

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b)

and therefore, for all a, supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,

sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. ■

1.17 lim sup and lim inf
The nice thing about limsup and liminf is that they always exist, unlike the limit of a
sequence. Recall how in calculus, there is no limit of (−1)n. First here is a simple lemma
and definition.

Definition 1.17.1 Denote by [−∞,∞] the real line along with symbols ∞ and −∞. It is
understood that ∞ is larger than every real number and −∞ is smaller than every real
number. Then if {An} is an increasing sequence of points of [−∞,∞] , limn→∞ An is defined
to equal ∞ if the only upper bound of the set {An} is ∞. If {An} is bounded above by a real
number, then limn→∞ An is defined in the usual way and equals the least upper bound of
{An}. If {An} is a decreasing sequence of points of [−∞,∞] , limn→∞ An equals −∞ if the
only lower bound of the sequence {An} is −∞. If {An} is bounded below by a real number,
then limn→∞ An is defined in the usual way and equals the greatest lower bound of {An}.
More simply, if {An} is increasing, limn→∞ An ≡ sup{An} and if {An} is decreasing then
limn→∞ An ≡ inf{An} .
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Before discussing limsup and liminf, here is a very useful observation about double
sums.

Theorem 1.17.2 Let ai j ≥ 0. Then

∞

∑
i=1

∞

∑
j=1

ai j =
∞

∑
j=1

∞

∑
i=1

ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j

because ∑
∞
j=r ∑

∞
i=r ai j ≥ ∑

∞
j=r ∑

n
i=r ai j for each n. Therefore,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j

= sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j = sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j

= sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■

Lemma 1.17.3 Let {an} be a sequence of real numbers and Un ≡ sup{ak : k ≥ n} . Then
{Un} is a decreasing sequence. Also if Ln ≡ inf{ak : k ≥ n} , then {Ln} is an increasing
sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: Let Wn be an upper bound for {ak : k ≥ n} . Then since these sets are getting
smaller, it follows that for m < n, Wm is an upper bound for {ak : k ≥ n} . In particular if
Wm =Um, then Um is an upper bound for {ak : k ≥ n} and so Um is at least as large as Un,
the least upper bound for {ak : k ≥ n} . The claim that {Ln} is decreasing is similar. ■

From the lemma, the following definition makes sense.

Definition 1.17.4 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n} .

Now the following shows the relation of liminf and limsup to the limit.

Theorem 1.17.5 Suppose {an} is a sequence of real numbers and that limsupn→∞ an and
liminfn→∞ an are both real numbers. Then limn→∞ an exists if and only if liminfn→∞ an =
limsupn→∞ an and in this case,

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.
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Proof: First note that

sup{ak : k ≥ n} ≥ inf{ak : k ≥ n}

and so,

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n} ≥ lim
n→∞

inf{ak : k ≥ n} ≡ lim inf
n→∞

an.

Suppose first that limn→∞ an exists and is a real number a. Then from the definition of a
limit, there exists N corresponding to ε/6 in the definition. Hence, if m,n≥ N, then

|an−am| ≤ |an−a|+ |a−an|<
ε

6
+

ε

6
=

ε

3
.

From the definition of sup{ak : k ≥ N} , there exists n1 ≥ N such that

sup{ak : k ≥ N} ≤ an1 + ε/3.

Similarly, there exists n2 ≥ N such that

inf{ak : k ≥ N} ≥ an2 − ε/3.

It follows that

sup{ak : k ≥ N}− inf{ak : k ≥ N} ≤ |an1 −an2 |+
2ε

3
< ε.

Since the sequence, {sup{ak : k ≥ N}}∞

N=1 is decreasing and {inf{ak : k ≥ N}}∞

N=1 is in-
creasing, it follows that

0≤ lim
N→∞

sup{ak : k ≥ N}− lim
N→∞

inf{ak : k ≥ N} ≤ ε

Since ε is arbitrary, this shows

lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N} (1.3)

Next suppose 1.3 and both equal a ∈ R. Then

lim
N→∞

(sup{ak : k ≥ N}− inf{ak : k ≥ N}) = 0

Since sup{ak : k ≥ N}≥ inf{ak : k ≥ N} it follows that for every ε > 0, there exists N such
that

sup{ak : k ≥ N}− inf{ak : k ≥ N}< ε,

and for every N,
inf{ak : k ≥ N} ≤ a≤ sup{ak : k ≥ N}

Thus if n≥ N, |a−an|< ε which implies that limn→∞ an = a. In case

a = ∞ = lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N}

then if r ∈ R is given, there exists N such that inf{ak : k ≥ N} > r which is to say that
limn→∞ an = ∞. The case where a =−∞ is similar except you use sup{ak : k ≥ N}. ■

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.
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Theorem 1.17.6 Suppose {an} is a sequence of points of [−∞,∞] . Let

λ = lim sup
n→∞

an.

Then if b > λ , it follows there exists N such that whenever n ≥ N, an ≤ b. If c < λ , then
an > c for infinitely many values of n. Let γ = liminfn→∞ an. Then if d < γ, it follows there
exists N such that whenever n ≥ N, an ≥ d. If e > γ, it follows an < e for infinitely many
values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 1.17.7 Let limn→∞ an = a > 0. Then

lim sup
n→∞

anbn = a lim sup
n→∞

bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)

for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λ n ≡ lim sup
n→∞

anbn

≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε))

= (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Since ε > 0 is arbitrary,
the conclusion follows. ■

1.18 Exercises

1. Prove by induction that ∑
n
k=1 k3 =

1
4

n4 +
1
2

n3 +
1
4

n2.

2. Prove by induction that whenever n≥ 2,∑n
k=1

1√
k
>
√

n.

3. Prove by induction that 1+∑
n
i=1 i(i!) = (n+1)!.

4. The binomial theorem states (x+ y)n = ∑
n
k=0
(n

k

)
xn−kyk where(

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
if k ∈ [1,n] ,

(
n
0

)
≡ 1≡

(
n
n

)
Prove the binomial theorem by induction. Next show that(

n
k

)
=

n!
(n− k)!k!

, 0!≡ 1

▶

http://www.youtube.com/watch?v=Cc5TzL9ZLyU
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5. Let z = 5+ i9. Find z−1.

6. Let z = 2+ i7 and let w = 3− i8. Find zw,z+w,z2, and w/z.

7. Give the complete solution to x4 +16 = 0.

8. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16. ▶

9. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

10. De Moivre’s theorem says [r (cos t + isin t)]n = rn (cosnt + isinnt) for n a positive
integer. Does this formula continue to hold for all integers n, even negative integers?
Explain. ▶

11. You already know formulas for cos(x+ y) and sin(x+ y) and these were used to
prove De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for
sin(5x) and one for cos(5x). ▶

12. If z and w are two complex numbers and the polar form of z involves the angle θ

while the polar form of w involves the angle φ , show that in the polar form for zw
the angle involved is θ +φ . Also, show that in the polar form of a complex number
z, r = |z| .

13. Factor x3 +8 as a product of linear factors.

14. Write x3 +27 in the form (x+3)
(
x2 +ax+b

)
where x2 +ax+b cannot be factored

any more using only real numbers.

15. Completely factor x4 +16 as a product of linear factors.

16. Factor x4 +16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.

17. If z,w are complex numbers prove zw = zw and then show by induction that

n

∏
j=1

z j =
n

∏
j=1

z j

Also verify that ∑
m
k=1 zk = ∑

m
k=1 zk. In words this says the conjugate of a product

equals the product of the conjugates and the conjugate of a sum equals the sum of
the conjugates.

18. Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 where all the ak are real numbers.
Suppose also that p(z) = 0 for some z ∈ C. Show it follows that p(z) = 0 also.

19. Show that 1+ i,2+ i are the only two zeros to

p(x) = x2− (3+2i)x+(1+3i)

so the zeros do not necessarily come in conjugate pairs if the coefficients are not real.

http://www.math.byu.edu/klkuttle/precalculus/jz63.mp4
http://www.math.byu.edu/klkuttle/precalculus/jz64.mp4
http://www.math.byu.edu/klkuttle/precalculus/jz65.mp4
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20. I claim that 1 =−1. Here is why. −1 = i2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong?

21. De Moivre’s theorem is really a grand thing. I plan to use it now for rational expo-
nents, not just integers. 1= 1(1/4) =(cos2π + isin2π)1/4 = cos(π/2)+ isin(π/2)=
i. Therefore, squaring both sides it follows 1 =−1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?

22. Review Problem 10 at this point. Now here is another question: If n is an integer, is
it always true that (cosθ − isinθ)n = cos(nθ)− isin(nθ)? Explain.

23. Suppose you have any polynomial in cosθ and sinθ . By this I mean an expression
of the form ∑

m
α=0 ∑

n
β=0 aαβ cosα θ sinβ

θ where aαβ ∈C. Can this always be written
in the form ∑

m+n
γ=−(n+m)

bγ cosγθ +∑
n+m
τ=−(n+m)

cτ sinτθ? Explain.

24. Show that C cannot be considered an ordered field. Hint: Consider i2 =−1.

25. Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 is a polynomial and it has n zeros,

z1,z2, · · · ,zn

listed according to multiplicity. (z is a root of multiplicity m if the polynomial f (x) =
(x− z)m divides p(x) but (x− z) f (x) does not.) Show that

p(x) = an (x− z1)(x− z2) · · ·(x− zn) .

26. Give the solutions to the following quadratic equations having real coefficients.

(a) x2−2x+2 = 0
(b) 3x2 + x+3 = 0
(c) x2−6x+13 = 0

(d) x2 +4x+9 = 0

(e) 4x2 +4x+5 = 0

27. Give the solutions to the following quadratic equations having complex coefficients.
Note how the solutions do not come in conjugate pairs as they do when the equation
has real coefficients.

(a) x2 +2x+1+ i = 0
(b) 4x2 +4ix−5 = 0
(c) 4x2 +(4+4i)x+1+2i = 0

(d) x2−4ix−5 = 0

(e) 3x2 +(1− i)x+3i = 0

28. Prove the fundamental theorem of algebra for quadratic polynomials having coef-
ficients in C. That is, show that an equation of the form ax2 + bx+ c = 0 where
a,b,c are complex numbers, a ̸= 0 has a complex solution. Hint: Consider the fact,
noted earlier that the expressions given from the quadratic formula do in fact serve
as solutions.
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29. Prove the Euclidean algorithm: If m,n are positive integers, then there exist integers
q,r ≥ 0 such that r < m and n = qm+ r Hint: You might try considering

S≡ {n− km : k ∈ N and n− km < 0}

and picking the smallest integer in S or something like this. It was done in the chapter,
but go through it yourself.

30. Recall that two polynomials are equal means that the coefficients of corresponding
powers of λ are equal. Thus a polynomial equals 0 if and only if all coefficients
equal 0. In calculus we usually think of a polynomial as 0 if it sends every value of
x to 0. Suppose you have the following polynomial 1̄x2 + 1̄x where it is understood
to be a polynomial in Z2. Thus it is not the zero polynomial. Show, however, that
this equals zero for all x ∈ Z2 so we would be tempted to say it is zero if we use the
conventions of calculus.

31. Prove Wilson’s theorem. This theorem states that if p is a prime, then (p−1)!+1 is
divisible by p. Wilson’s theorem was first proved by Lagrange in the 1770’s. Hint:
Check directly for p= 2,3. Show that p−1=−1 and that if a∈ {2, · · · , p−2} , then
(a)−1 ̸= a. Thus a residue class a and its multiplicative inverse for a∈ {2, · · · , p−2}
occur in pairs. Show that this implies that the residue class of (p−1)! must be −1.
From this, draw the conclusion.

32. Show that in the arithmetic of Zp, (x+ y)p = (x)p + (y)p, a well known formula
among students.

33. Consider (a) ∈ Zp for p a prime, and suppose (a) ̸= 1,0. Fermat’s little theorem
says that (a)p−1 = 1. In other words (a)p−1−1 is divisible by p. Prove this. Hint:
Show that there must exist r ≥ 1,r ≤ p− 1 such that (a)r = 1. To do so, consider
1,(a) ,(a)2 , · · · . Then these all have values in

{
1,2, · · · , p−1

}
, and so there must

be a repeat in
{

1,(a) , · · · ,(a)p−1
}
, say p− 1 ≥ l > k and (a)l = (a)k . Then tell

why (a)l−k− 1 = 0. Let r be the first positive integer such that (a)r = 1. Let G ={
1,(a) , · · · ,(a)r−1

}
. Show that every residue class in G has its multiplicative inverse

in G. In fact, (a)k (a)r−k = 1. Also verify that the entries in G must be distinct. Now
consider the sets bG≡

{
b(a)k : k = 0, · · · ,r−1

}
where b∈

{
1,2, · · · , p−1

}
. Show

that two of these sets are either the same or disjoint and that they all consist of r
elements. Explain why it follows that p−1 = lr for some positive integer l equal to
the number of these distinct sets. Then explain why (a)p−1 = (a)lr = 1.

34. Let p(x) and q(x) be polynomials. Then by the division algorithm, there exist poly-
nomials l (x) , r (x) equal to 0 or having degree smaller than p(x) such that

q(x) = p(x) l (x)+ r (x)

If k (x) is the greatest common divisor of p(x) and q(x) , explain why k (x) must
divide r (x). Then argue that k (x) is also the greatest common divisor of p(x) and
r (x). Now repeat the process for the polynomials p(x) and r (x). This time, the
remainder term will have degree smaller than r (x). Keep doing this and eventually
the remainder must be 0. Describe an algorithm based on this which will determine
the greatest common divisor of two polynomials.
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35. Consider Zm where m is not a prime. Show that although this will not be a field, it is
a commutative ring with unity.

36. This and the next few problems are to illustrate the utility of the limsup. A sequence
of numbers {xn} in C is called a Cauchy sequence if for every ε > 0 there exists m
such that if k, l ≥m, then |xk− xl |< ε . The complex numbers are said to be complete
because any Cauchy sequence converges. This is one form of the completeness ax-
iom. Using this axiom, show that ∑

∞
k=0 rk ≡ limn→∞ ∑

n
k=0 rk = 1

1−r whenever r ∈ C
and |r| < 1. Hint: You need to do a computation with the sum and show that the
partial sums form a Cauchy sequence.

37. Show that if ∑
∞
j=1
∣∣c j
∣∣ converges, meaning that limn→∞ ∑

n
j=1

∣∣c j
∣∣ exists, then ∑

∞
j=1 c j

also converges, meaning limn→∞ ∑
n
j=1 c j exists, this for c j ∈C. Recall from calculus,

this says that absolute convergence implies convergence.

38. Show that if ∑
∞
j=1 c j converges, meaning limn→∞ ∑

n
j=1 c j exists, then it must be the

case that limn→∞ cn = 0.

39. If limsupk→∞ |ak|1/k < 1, then ∑
∞
k=1 |ak| converges, while if limsupn→∞ |an|1/n >

1, then the series diverges spectacularly because limn→∞ |cn| fails to equal 0 and
in fact has a subsequence which converges to ∞. Show this. Also show that if
limsupn→∞ |an|1/n = 1, the test fails because there are examples where the series
can converge and examples where the series diverges. This is an improved version of
the root test from calculus. It is improved because limsup always exists. Hint: For
the last part, consider ∑n

1
n and ∑n

1
n2 . Review calculus to see why the first diverges

and the second converges.

40. Consider a power series ∑
∞
n=0 anxn. Derive a condition for the radius of convergence

using limsupn→∞ |an|1/n. Recall that the radius of convergence R is such that if |x|<
R, then the series converges and if |x|> R, the series diverges and if |x|= R is it not
known whether the series converges. In this problem, assume only that x ∈ C.

41. Show that if an is a sequence of real numbers, then

lim inf
n→∞

(−an) =− lim sup
n→∞

an
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Chapter 2

Systems of Linear Equations
This part of the book is about linear algebra itself, as a part of algebra. Some geometric and
analytic concepts do creep in, but it is primarily about algebra. It involves general fields
and has very little to do with limits and completeness although some geometry is included,
but not much. Numbers are elements of a field.

2.1 Elementary Operations
In this chapter, the main interest is in fields of scalars consisting of R or C, but everything
is applied to arbitrary fields. Consider the following example.

Example 2.1.1 Find x and y such that

x+ y = 7 and 2x− y = 8. (2.1)

The set of ordered pairs, (x,y) which solve both equations is called the solution set.

You can verify that (x,y) = (5,2) is a solution to the above system. The interesting
question is this: If you were not given this information to verify, how could you determine
the solution? You can do this by using the following basic operations on the equations,
none of which change the set of solutions of the system of equations.

Definition 2.1.2 Elementary operations are those operations consisting of the following.

1. Interchange the order in which the equations are listed.

2. Multiply any equation by a nonzero number.

3. Replace any equation with itself added to a multiple of another equation.

Example 2.1.3 To illustrate the third of these operations on this particular system, con-
sider the following.

x+ y = 7
2x− y = 8

The system has the same solution set as the system

x+ y = 7
−3y =−6

.

To obtain the second system, take the second equation of the first system and add −2 times
the first equation to obtain −3y =−6. Now, this clearly shows that y = 2 and so it follows
from the other equation that x+2 = 7 and so x = 5.

Of course a linear system may involve many equations and many variables. The so-
lution set is still the collection of solutions to the equations. In every case, the above
operations of Definition 2.1.2 do not change the set of solutions to the system of linear
equations.

39



40 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Theorem 2.1.4 Given two equations involving the variables, (x1, · · · ,xn).

E1 = f1,E2 = f2 (2.2)

where E1 and E2 are expressions

E1 = a1x1 + · · ·+anxn

E2 = b1x1 + · · ·+bnxn

involving the variables and f1 and f2 are constants where the ai,bi, f1, f2 are in a field
F. (In the above example there are only two variables, x and y and E1 = x + y while
E2 = 2x− y.) Then the system E1 = f1,E2 = f2 has the same solution set as

E1 = f1, E2 +aE1 = f2 +a f1. (2.3)

Also the system E1 = f1,E2 = f2 has the same solutions as the system, E2 = f2,E1 = f1. The
system E1 = f1,E2 = f2 has the same solution as the system E1 = f1,aE2 = a f2 provided
a ̸= 0.

Proof: If (x1, · · · ,xn) solves E1 = f1,E2 = f2 then it solves the first equation in E1 =
f1, E2 +aE1 = f2 +a f1. Also, it satisfies aE1 = a f1 and so, since it also solves E2 = f2 it
must solve E2 +aE1 = f2 +a f1. Therefore, if (x1, · · · ,xn) solves E1 = f1,E2 = f2 it must
also solve E2 + aE1 = f2 + a f1. On the other hand, if it solves the system E1 = f1 and
E2 + aE1 = f2 + a f1, then aE1 = a f1 and so you can subtract these equal quantities from
both sides of E2+aE1 = f2+a f1 to obtain E2 = f2 showing that it satisfies E1 = f1,E2 = f2.

The second assertion of the theorem which says that the system E1 = f1,E2 = f2 has the
same solution as the system, E2 = f2,E1 = f1 is seen to be true because it involves nothing
more than listing the two equations in a different order. They are the same equations.

The third assertion of the theorem which says E1 = f1,E2 = f2 has the same solution
as the system E1 = f1,aE2 = a f2 provided a ̸= 0 is verified as follows: If (x1, · · · ,xn) is a
solution of E1 = f1,E2 = f2, then it is a solution to E1 = f1,aE2 = a f2 because the second
system only involves multiplying the equation, E2 = f2 by a. If (x1, · · · ,xn) is a solution
of E1 = f1,aE2 = a f2, then upon multiplying aE2 = a f2 by the number 1/a, you find that
E2 = f2. ■

Stated simply, the above theorem shows that the elementary operations do not change
the solution set of a system of equations.

2.2 Gauss Elimination
A less cumbersome way to represent a linear system is to write it as an augmented matrix.
For example the suppose you want to find the solution for x,y,z in Z5 to the system

x+ 3̄y+ z = 0̄, 2̄x+ y+ 3̄z = 3̄,
2̄y+ z = 4̄

To simplify, write the coefficients without the bar but do the arithmetic in Z5. 1 3 1 0
2 1 3 3
0 2 1 4

 .
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It has exactly the same information as the original system but here the columns correspond
to the variables and the rows correspond to the equations in the system.

To solve the system, we can use Gauss elimination in the usual way. The solution set is
not changed by using the row operations. Take 3 = −2 times the top equation and add to
the second.  1 3 1 0

0 0 1 3
0 2 1 4


Now switch the bottom two rows.  1 3 1 0

0 2 1 4
0 0 1 3


Then take 4 times the bottom row and add to the top two. 1 3 0 2

0 2 0 1
0 0 1 3


Next multiply the second row by 3 1 3 0 2

0 1 0 3
0 0 1 3


Now take 2 times the second row and add to the top. 1 0 0 3

0 1 0 3
0 0 1 3


Therefore, the solution is x = y = z = 3. How do you know when to stop? You certainly
should stop doing row operations if you have gotten a matrix in row reduced echelon form
described next. The leading entry of a row is the first nonzero row encountered when
starting at the left entry and moving from left to right along the row.

Definition 2.2.1 An augmented matrix is in row reduced echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any
rows above it.

3. All entries in a column above and below a leading entry are zero.

4. Each leading entry is a 1, the only nonzero entry in its column.

Echelon form means that the leading entries of successive rows fall from upper left to
lower right.
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Example 2.2.2 Here are some matrices which are in row reduced echelon form.


1 0 0 5 8 0
0 0 1 2 7 0
0 0 0 0 0 1
0 0 0 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Example 2.2.3 Here are matrices in echelon form which are not in row reduced echelon
form but which are in echelon form.


1 0 6 5 8 2
0 0 2 2 7 3
0 0 0 0 0 1
0 0 0 0 0 0

 ,


1 3 5 4
0 2 0 7
0 0 3 0
0 0 0 1
0 0 0 0


Example 2.2.4 Here are some matrices which are not in echelon form.

0 0 0 0
1 2 3 3
0 1 0 2
0 0 0 1
0 0 0 0

 ,

 1 2 3
2 4 −6
4 0 7

 ,


0 2 3 3
1 5 0 2
7 5 0 1
0 0 1 0

 .

The following is the algorithm for obtaining a matrix which is in row reduced echelon
form.

Algorithm 2.2.5

This algorithm tells how to start with a matrix and do row operations on it in such a
way as to end up with a matrix in row reduced echelon form.

1. Find the first nonzero column from the left. This is the first pivot column. The
position at the top of the first pivot column is the first pivot position. Switch rows if
necessary to place a nonzero number in the first pivot position.

2. Use row operations to zero out the entries below the first pivot position.

3. Ignore the row containing the most recent pivot position identified and the rows above
it. Repeat steps 1 and 2 to the remaining sub-matrix, the rectangular array of numbers
obtained from the original matrix by deleting the rows you just ignored. Repeat the
process until there are no more rows to modify. The matrix will then be in echelon
form.

4. Moving from right to left, use the nonzero elements in the pivot positions to zero out
the elements in the pivot columns which are above the pivots.
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5. Divide each nonzero row by the value of the leading entry. The result will be a matrix
in row reduced echelon form.

Sometimes there is no solution to a system of equations. When this happens, the system
is said to be inconsistent.

Here is another example based on the use of row operations.

Example 2.2.6 Give the complete solution to the system of equations, 3x− y− 5z = 9,
y−10z = 0, and −2x+ y =−6.

The augmented matrix of this system is 3 −1 −5 9
0 1 −10 0
−2 1 0 −6


After doing row operations, to obtain row reduced echelon form, 1 0 −5 3

0 1 −10 0
0 0 0 0

 .

The equations corresponding to this reduced echelon form are y = 10z and x = 3+ 5z.
Apparently z can equal any number. Lets call this number t. 1Therefore, the solution set of
this system is x = 3+5t,y = 10t, and z = t where t is completely arbitrary. The system has
an infinite set of solutions which are given in the above simple way. This is what it is all
about, finding the solutions to the system.

In summary,

Definition 2.2.7 A system of linear equations is a list of equations,

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2
...

am1x1 +am2x2 + · · ·+amnxn = bm

where ai j are numbers, and b j is a number. The above is a system of m equations in the
n variables, x1,x2 · · · ,xn. Nothing is said about the relative size of m and n. Written more
simply in terms of summation notation, the above can be written in the form

n

∑
j=1

ai jx j = fi, i = 1,2,3, · · · ,m

It is desired to find (x1, · · · ,xn) solving each of the equations listed.

1In this context t is called a parameter.
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As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions and these are the only three cases which can occur for
any linear system. Furthermore, you do exactly the same things to solve any linear system.
You write the augmented matrix and do row operations until you get a simpler system in
which it is possible to see the solution, usually obtaining a matrix in echelon or reduced
echelon form. All is based on the observation that the row operations do not change the
solution set. You can have more equations than variables, fewer equations than variables,
etc. It doesn’t matter. You always set up the augmented matrix and go to work on it.

Definition 2.2.8 A system of linear equations is called consistent if there exists a solution.
It is called inconsistent if there is no solution.

These are reasonable words to describe the situations of having or not having a solution.
If you think of each equation as a condition which must be satisfied by the variables, con-
sistent would mean there is some choice of variables which can satisfy all the conditions.
Inconsistent would mean there is no choice of the variables which can satisfy each of the
conditions.

2.3 When are Two Polynomials Relatively Prime?
Suppose you have two polynomials having coefficients in a field of scalars F. How can
you tell if they are relatively prime? One way is outlined in an earlier excercise. Here is
another. By the method of partial fractions if p(x) ,q(x) are relatively prime polynomials
of degree at least 1, then it follows from the partial fractions theorem, Proposition 1.14.2
that there is a partial fractions expansion of the following form.

1
p(x)q(x)

=
a(x)
p(x)

+
b(x)
q(x)

where the degree of a(x) is smaller than the degree of p(x) and the degree of b(x) is
smaller than the degree of q(x). Conversely, if there is such a partial fractions expansion,
then 1 = a(x)q(x)+b(x) p(x) and these two polynomials are relatively prime. Checking
the existence of such a partial fractions expansion is a simple example of finding a solution
to a linear system of equations. Thus this is a question which can be resolved without
having to factor the polynomials and instead uses the method of row operations to resolve
the question.

Example 2.3.1 Consider x2− 3x+ 2 and x4− 4x2 + 4. Then these are relatively prime if
and only if there is such a partial fractions expansion just described. We would need

1
(x2−3x+2)(x4−4x2 +4)

=
ax+b

x2−3x+2
+

c+dx+ ex2 + f x3

x4−4x2 +4

Now multiply and write

1 = (ax+b)
(
x4−4x2 +4

)
+
(
c+dx+ ex2 + f x3)(x2−3x+2

)

= (a+ f )x5 +(b−3 f + e)x4 +(d−4a+2 f −3e)x3

+(c−4b−3d +2e)x2 +(4a−3c+2d)x+(4b+2c)
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and so you would need to solve the following system of equations

a+ f = 0,b−3 f + e = 0,d−4a+2 f −3e = 0
c−4b−3d +2e = 0,4a−3c+2d = 0,4b+2c = 1

Solving the system of equations, a =− 3
4 ,b = 7

4 ,c =−3,d =−3, f = 3
4 ,e =

1
2 . It follows

that these two polynomials are relatively prime. Note how it was not necessary to factor
them to find out this information.

Example 2.3.2 Consider x−1 and x2−1. These are clearly not relatively prime. Consider
the above technique.

If they were relatively prime, then there would be a partial fractions expansion of the
form 1

(x−1)(x2−1)
= a

x−1 +
bx+c
x2−1 and so, multiplying gives

1 = a
(
x2−1

)
+(bx+ c)(x−1)

= (a+b)x2 +(c−b)x− (a+ c)

Thus you would need to solve a+ b = 0,c− b = 0,−(a+ c) = 1. However, there is no
solution so we know these two are not relatively prime. Now again, I didn’t need to factor
these to draw this conclusion. Thus this gives another way to tell whether two polynomials
are relatively prime. It turns out that being able to do this is useful, as is shown later.

2.4 Exercises
1. Here is an augmented matrix in which ∗ denotes an arbitrary number and ■ denotes

a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?

■ ∗ ∗ ∗ ∗ | ∗
0 ■ ∗ ∗ 0 | ∗
0 0 ■ ∗ ∗ | ∗
0 0 0 0 ■ | ∗


2. Here is an augmented matrix in which ∗ denotes an arbitrary number and ■ denotes

a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?

■ ∗ ∗ ∗ ∗ | ∗
0 ■ 0 ∗ 0 | ∗
0 0 0 ■ ∗ | ∗
0 0 0 0 ■ | ∗


3. Here is an augmented matrix in which ∗ denotes an arbitrary number and ■ denotes

a nonzero number. Determine whether the given augmented matrix is consistent. If
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consistent, is the solution unique?
■ ∗ ∗ ∗ ∗ | ∗
0 ■ ∗ ∗ 0 | ∗
0 0 0 0 ■ | 0
0 0 0 0 ∗ | ■


4. Suppose a system of equations has fewer equations than variables. Must such a

system be consistent? If so, explain why and if not, give an example which is not
consistent.

5. If a system of equations has more equations than variables, can it have a solution? If
so, give an example and if not, tell why not.

6. Find h such that

(
2 h | 4
3 6 | 7

)
is the augmented matrix of an inconsistent matrix.

7. Find h such that

(
1 h | 3
2 4 | 6

)
is the augmented matrix of a consistent matrix.

8. Find h such that

(
1 1 | 4
3 h | 12

)
is the augmented matrix of a consistent matrix.

9. Choose h and k such that the augmented matrix shown has one solution. Then choose
h and k such that the system has no solutions. Finally, choose h and k such that the

system has infinitely many solutions.

(
1 h | 2
2 4 | k

)
.

10. Choose h and k such that the augmented matrix shown has one solution. Then choose
h and k such that the system has no solutions. Finally, choose h and k such that the

system has infinitely many solutions.

(
1 2 | 2
2 h | k

)
.

11. Find the solution in Z5 to the following system of equations.

x+2y+ z−w = 2
x− y+ z+w = 1

2x+ y− z = 1
4x+2y+ z = 0

12. Find the solution to the following system in Z5

x+2y+ z−w = 2
x− y+ z+w = 0

2x+ y− z = 1
4x+2y+ z = 3
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13. Find the general solution of the system whose augmented matrix is 1 2 0 2
1 3 4 2
1 0 2 1

 .

Find solutions in Z7.

14. Find the general solution of the system whose augmented matrix is 1 2 0 2
2 0 1 1
3 2 1 3

 .

in Z7.

15. Find the general solution in Z3 of the system whose augmented matrix is(
2 1 0 1
1 0 1 2

)
.

16. Solve the system whose augmented matrix is
1 0 2 1 1 2
0 1 0 1 2 1
1 2 0 0 1 0
1 0 1 0 2 2


in Z3

17. Find the general solution of the system whose augmented matrix is
1 0 2 1 1 2
0 1 0 1 2 1
0 2 0 0 1 3
1 −1 2 2 2 0

 .

Find the solutions to this one in Z5.

18. Give the complete solution to the system of equations, 7x+ 14y+ 15z = 22, 2x+
4y+3z = 5, and 3x+6y+10z = 13.

19. Give the complete solution to the system of equations, 3x− y+ 4z = 6, y+ 8z = 0,
and −2x+ y =−4.

20. Give the complete solution to the system of equations, 9x− 2y+ 4z = −17, 13x−
3y+6z =−25, and −2x− z = 3.

21. Give the complete solution to the system of equations, 65x+84y+16z = 546, 81x+
105y+20z = 682, and 84x+110y+21z = 713.
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22. Give the complete solution to the system of equations, 8x+2y+3z =−3,8x+3y+
3z =−1, and 4x+ y+3z =−9.

23. Give the complete solution to the system of equations, −8x+ 2y+ 5z = 18,−8x+
3y+5z = 13, and −4x+ y+5z = 19.

24. Give the complete solution to the system of equations, 3x− y− 2z = 3, y− 4z = 0,
and −2x+ y =−2.

25. Give the complete solution to the system of equations,−9x+15y= 66,−11x+18y=
79 ,−x+ y = 4, and z = 3.

26. Give the complete solution to the system of equations, −19x+8y = −108, −71x+
30y =−404, −2x+ y =−12, 4x+ z = 14.

27. Consider the system −5x+ 2y− z = 0 and −5x− 2y− z = 0. Both equations equal
zero and so −5x+ 2y− z = −5x− 2y− z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

28. Four times the weight of Gaston is 150 pounds more than the weight of Ichabod.
Four times the weight of Ichabod is 660 pounds less than seventeen times the weight
of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 290
pounds. Brunhilde would balance all three of the others. Find the weights of the four
sisters.

29. The steady state temperature, u in a plate solves Laplace’s equation, ∆u= 0. One way
to approximate the solution which is often used is to divide the plate into a square
mesh and require the temperature at each node to equal the average of the temperature
at the four adjacent nodes. This procedure is justified by the mean value property of
harmonic functions. In the following picture, the numbers represent the observed
temperature at the indicated nodes. Your task is to find the temperature at the interior
nodes, indicated by x,y,z, and w. One of the equations is z = 1

4 (10+0+w+ x).

1010

20

20 x

y

z

w

3030

0

0

30. Consider the following diagram of four circuits.
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10 volts

5 volts

20 volts3 Ω

2 Ω

4 Ω

1 Ω

6 Ω

2 Ω

5 Ω 1 Ω

3 Ω1 Ω

I1

I2 I3

I4

Those jagged places denote resistors and the numbers next to them give their resis-
tance in ohms, written as Ω. The breaks in the lines having one short line and one
long line denote a voltage source which causes the current to flow in the direction
which goes from the longer of the two lines toward the shorter along the unbroken
part of the circuit. The current in amps in the four circuits is denoted by I1, I2, I3, I4
and it is understood that the motion is in the counter clockwise direction. If Ik ends
up being negative, then it just means the current flows in the clockwise direction.
Then Kirchhoff’s law states that

The sum of the resistance times the amps in the counter clockwise direction around
a loop equals the sum of the voltage sources in the same direction around the loop.

In the above diagram, the top left circuit should give the equation

2I2−2I1 +5I2−5I3 +3I2 = 5

For the circuit on the lower left, you should have

4I1 + I1− I4 +2I1−2I2 =−10

Write equations for each of the other two circuits and then give a solution to the
resulting system of equations. You might use a computer algebra system to find the
solution. It might be more convenient than doing it by hand.

31. Consider the following diagram of three circuits.

10 volts

12 volts3 Ω

2 Ω

7 Ω

1 Ω

4 Ω

5 Ω 3 Ω

4 Ω2 Ω

I1 I2

I3
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Those jagged places denote resistors and the numbers next to them give their resis-
tance in ohms, written as Ω. The breaks in the lines having one short line and one
long line denote a voltage source which causes the current to flow in the direction
which goes from the longer of the two lines toward the shorter along the unbroken
part of the circuit. The current in amps in the four circuits is denoted by I1, I2, I3 and
it is understood that the motion is in the counter clockwise direction. If Ik ends up
being negative, then it just means the current flows in the clockwise direction. Then
Kirchhoff’s law states that

The sum of the resistance times the amps in the counter clockwise direction around
a loop equals the sum of the voltage sources in the same direction around the loop.
Find I1, I2, I3.

32. Determine whether x3− x2− x+1 and x3− x2 + x−1 are relatively prime. They are
obviously not. However, use the technique of partial fractions to verify this or use
the earlier method in an earlier problem for finding the greatest common divisor.



Chapter 3

Vector Spaces
It is time to consider the idea of an abstract vector space which is something which has two
operations satisfying the following vector space axioms.

Definition 3.0.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v+w = w+ v,

the commutative law of addition,

(v+w)+ z = v+(w+ z) ,

the associative law for addition,
v+0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars” F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v+w) = αv+αv, (3.1)

(α +β )v = αv+βv, (3.2)

α (βv) = αβ (v) , (3.3)

1v = v. (3.4)

For example, any field is a vector space having field of scalars equal to the field itself.
The field of scalars is often R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod
p for p a prime. A vector space is also called a linear space. These axioms do not tell us
anything about what is being considered. Nevertheless, one can prove some fundamental
properties just based on these vector space axioms.

Proposition 3.0.2 In any vector space, 0 is unique,−x is unique, 0x = 0, and (−1)x =−x.

Proof: Suppose 0′ is also an additive identity. Then for 0 the additive identity in the
axioms,

0′ = 0′+0 = 0

Next suppose x+ y = 0. Then add −x to both sides.

−x =−x+(x+ y) = (−x+ x)+ y = 0+ y = y

Thus if y acts like the additive inverse, it is the additive inverse.

0x = (0+0)x = 0x+0x

51
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Now add −0x to both sides. This gives 0 = 0x. Finally,

(−1)x+ x = (−1)x+1x = (−1+1)x = 0x = 0

By the uniqueness of the additive inverse shown earlier, (−1)x =−x. ■
If you are interested in considering other fields, you should have some examples other

than C, R, Q. Some of these are discussed in the following exercises. If you are happy
with only considering R and C, skip these exercises. Here is an important example which
gives the typical vector space.

Example 3.0.3 Let Ω be a nonempty set and define V to be the set of functions defined
on Ω. Letting a,b,c be scalars coming from a field F and f ,g,h functions, the vector
operations are defined as

( f +g)(x) ≡ f (x)+g(x)

(a f )(x) ≡ a( f (x))

Then this is an example of a vector space. Note that the set where the functions have their
values can be any vector space having field of scalars F.

To verify this, check the axioms.

( f +g)(x) = f (x)+g(x) = g(x)+ f (x) = (g+ f )(x)

Since x is arbitrary, f +g = g+ f .

(( f +g)+h)(x)≡ ( f +g)(x)+h(x) = ( f (x)+g(x))+h(x)

= f (x)+(g(x)+h(x)) = ( f (x)+(g+h)(x)) = ( f +(g+h))(x)

and so ( f +g)+ h = f +(g+h) . Let 0 denote the function which is given by 0(x) = 0.
Then this is an additive identity because

( f +0)(x) = f (x)+0(x) = f (x)

and so f +0 = f . Let − f be the function which satisfies (− f )(x)≡− f (x) . Then

( f +(− f ))(x)≡ f (x)+(− f )(x)≡ f (x)+− f (x) = 0

Hence f +(− f ) = 0.

((a+b) f )(x)≡ (a+b) f (x) = a f (x)+b f (x)≡ (a f +b f )(x)

and so (a+b) f = a f +b f .

(a( f +g))(x)≡ a( f +g)(x)≡ a( f (x)+g(x))

= a f (x)+bg(x)≡ (a f +bg)(x)

and so a( f +g) = a f +bg.

((ab) f )(x)≡ (ab) f (x) = a(b f (x))≡ (a(b f ))(x)

so (ab f ) = a(b f ). Finally (1 f )(x)≡ 1 f (x) = f (x) so 1 f = f .
As above, F will be a field. It illustrates the important example of Fn, a vector space

with field of scalars F. It is a case of the above general consideration involving functions.
Indeed, you simply let Ω = {1,2, · · · ,n}. We write such a function f : {1,2, · · · ,n} → F
in as an ordered list of numbers ( f (1) , · · · , f (n)). The definition, incorporating the usual
notation is as follows.
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Definition 3.0.4 Define Fn ≡
{
(x1, · · · ,xn) : x j ∈ F for j = 1, · · · ,n

}
.

(x1, · · · ,xn) = (y1, · · · ,yn)

if and only if for all j = 1, · · · ,n, x j = y j. When (x1, · · · ,xn)∈Fn, it is conventional to denote
(x1, · · · ,xn) by the single bold face letter x. The numbers, x j are called the coordinates.
Elements in Fn are called vectors. The set

{(0, · · · ,0, t,0, · · · ,0) : t ∈ R}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · · ,0) is called
the origin. Note that this can be considered as the set of F valued functions defined on
(1,2, · · · ,n) . When the ordered list (x1, · · · ,xn) is considered, it is just a way to say that
f (1) = x1, f (2) = x2 and so forth. Thus it is a case of the typical example of a vector
space mentioned above.

3.1 Linear Combinations of Vectors, Independence
The fundamental idea in linear algebra is the following notion of a linear combination.

Definition 3.1.1 Let x1, · · · ,xn be vectors in a vector space. A finite linear combination of
these vectors is a vector which is of the form ∑

n
j=1 a jx j where the a j are scalars. In short, it

is a sum of scalars times vectors. span(x1, · · · ,xn) denotes the set of all linear combinations
of the vectors x1, · · · ,xn. More generally, if S is any set of vectors, span(S) consists of all
finite linear combinations of vectors from S.

Definition 3.1.2 Let (V,F) be a vector space and its field of scalars. Then S⊆V is said to
be linearly independent if whenever {v1, · · · ,vm} ⊆V with the vi distinct, then there is only
one way to have a linear combination ∑

n
i=1 civi = 0 and this is to have each ci = 0. More

succinctly, if ∑
n
i=1 civi = 0 then each ci = 0. A set S ⊆ V is linearly dependent if it is not

linearly independent. That is, there is some subset of S {v1, · · · ,vn} and scalars ci not all
zero such that ∑

n
i=1 civi = 0.

The following is a useful equivalent description of what it means to be independent.

Proposition 3.1.3 A set of vectors S is independent if and only if no vector is a linear
combination of the others.

Proof:⇒ Suppose S is linearly independent. Could you have for some

{u1, · · · ,ur} ⊆ S

ui = ∑ j ̸=i c ju j? No. This is not possible because if the above holds, then you would have
0 = (−1)ui +∑ j ̸=i c ju j in contradiction to the assumption that {u1, · · · ,ur} is linearly in-
dependent.
⇐ Suppose now that no vector in S is a linear combination of the others. Suppose

∑
n
i=1 ciui = 0 where each ui ∈ S. It is desired to show that whenever this happens, each

ci = 0. Could any of the ci be non zero? No. If ck ̸= 0, then you would have ∑
n
i=1

ci
ck

ui = 0
and so uk = ∑i ̸=k− ci

ck
ui showing that one can obtain uk as a linear combination of the other

vectors after all. It follows that all ci = 0 and so {u1, · · · ,ur} is linearly independent. ■
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Example 3.1.4 Determine whether the real valued functions defined on R given by the
polynomials

x2 +2x+1,x2 +2x,x2 + x+1

are independent with field of scalars R.

Suppose a
(
x2 +2x+1

)
+b
(
x2 +2x

)
+ c
(
x2 + x+1

)
= 0 then differentiate both sides

to obtain a(2x+2)+b(2x+2)+c(2x+1) = 0. Now differentiate again. This yields 2a+
2b+2c = 0. In the second equation, let x =−1. Then −c = 0 so c = 0. Thus

a
(
x2 +2x+1

)
+b
(
x2 +2x

)
= 0

a+b = 0

Now let x = 0 in the top equation to find that a = 0. Then from the bottom equation, it
follows that b = 0 also. Thus the three functions are linearly independent.

The main theorem is the following, called the replacement or exchange theorem. It uses
the argument of the second half of the above proposition repeatedly.

Theorem 3.1.5 Let {u1, · · · ,ur} ,{v1, · · · ,vs} be subsets of a vector space V with field of
scalars F and suppose {u1, · · · ,ur} is linearly independent and each ui ∈ span(v1, · · · ,vs) .
Then r ≤ s. In words, linearly independent sets are no longer than spanning sets.

Proof: Say r > s. By assumption, u1 = ∑i bivi. Not all of the bi can equal 0 because if
this were so, you would have u1 = 0 which would violate the assumption that {u1, · · · ,ur}
is linearly independent. You could write

1u1 +0u2 + · · ·+0ur = 0

since u1 = 0. Thus some vi say vi1 is a linear combination of the vector u1 along with the v j
for j ̸= i. It follows that the span of {u1,v1, · · · , v̂i1 , · · · ,vn} includes each of the ui where
the hat indicates that vi1 has been omitted from the list of vectors. Now suppose each ui is
in

span
(
u1 · · · ,uk,v1, · · · , v̂i1 , · · · , v̂ik · · · ,vs

)
where the vectors v̂i1 , · · · , v̂ik have been omitted for k ≤ s. Then there are scalars ci and di
such that

uk+1 =
k

∑
i=1

ciui + ∑
j/∈{i1,··· ,ik}

d jv j

By the assumption that {u1, · · · ,ur} is linearly independent, not all of the d j can equal 0.
Why? Therefore, there exists ik+1 /∈ {i1, · · · , ik} such that dik ̸= 0. Hence one can solve for
vik+1 as a linear combination of {u1, · · · ,ur} and the v j for j /∈ {i1, · · · , ik, ik+1}. Thus we
can replace this vik+1 by a linear combination of these vectors, and so the u j are in

span
(
u1, · · · ,uk,uk+1,v1, · · · , v̂i1 , · · · , v̂ik , v̂ik+1 , · · · ,vs

)
Continuing this replacement process, it follows that since r > s, one can eliminate all of the
vectors {v1, · · · ,vs} and obtain that the ui are contained in span(u1, · · · ,us) . But then you
would have us+1 ∈ span(u1, · · · ,us) which is impossible since these vectors {u1, · · · ,ur}
are linearly independent. It follows that r ≤ s. ■

Next is the definition of dimension and basis of a vector space.
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Definition 3.1.6 Let V be a vector space with field of scalars F. A subset S of V is a basis
for V means that

1. span(S) =V

2. S is linearly independent.

The plural of basis is bases. It is this way to avoid hissing when referring to it.
The dimension of a vector space is the number of vectors in a basis. A vector space is

finite dimensional if it equals the span of some finite set of vectors.

Lemma 3.1.7 Let S be a linearly independent set of vectors in a vector space V . Suppose
v /∈ span(S) . Then {S,v} is also a linearly independent set of vectors.

Proof: Suppose {u1, · · · ,un,v} is a finite subset of S and av + ∑
n
i=1 biui = 0 where

a,b1, · · · ,bn are scalars. Does it follow that each of the bi equals zero and that a = 0? If so,
then this shows that {S,v} is indeed linearly independent. First note that a = 0 since if not,
you could write v = ∑

n
i=1−

bi
a ui contrary to the assumption that v /∈ span(S). Hence you

have a = 0 and also ∑i biui = 0. But S is linearly independent and so by assumption each
bi = 0. ■

Proposition 3.1.8 Let V be a finite dimensional nonzero vector space with field of scalars
F. Then it has a basis and also any two bases have the same number of vectors so the above
definition of a basis is well defined.

Proof: Pick u1 ̸= 0. If span(u1) = V, then this is a basis. If not, there exists u2 /∈
span(u1). Then by Lemma 3.1.7, {u1,u2} is linearly independent. If span(u1,u2) = V,
stop. You have a basis. Otherwise, there exists u3 /∈ span(u1,u2) . Then by Lemma
3.1.7, {u1,u2,u3} is linearly independent. Continue this way. Eventually the process
yields {u1, · · · ,un} which is linearly independent and span(u1, · · · ,un) = V. Otherwise
there would exist a linearly independent set of k vectors for all k. However, by assump-
tion, there is a finite set of vectors {v1, · · · ,vs} such that span(v1, · · · ,vs) = V . Therefore,
k ≤ s. Thus there is a basis for V .

If {v1, · · · ,vs} ,{u1, · · · ,ur} are two bases, then since they both span V and are both
linearly independent, it follows from Theorem 3.1.5 that r ≤ s and s≤ r. ■

As a specific example, consider Fn as the vector space. As mentioned above, these
are the mappings from (1, · · · ,n) to the field F. It was shown in Example 3.0.3 that this
is indeed a vector space with field of scalars F. We usually think of this Fn as the set of
ordered n tuples

{(x1, · · · ,xn) : xi ∈ F}
with addition and scalar mutiplication defined as

(x1, · · · ,xn)+(x̂1, · · · , x̂n) = (x1 + x̂1, · · · ,xn + x̂n)

α (x1, · · · ,xn) = (αx1, · · · ,αxn)

Also, when referring to vectors in Fn, it is customary to denote them as bold faced letters.
It is more convenient to write these vectors in Fn as columns of numbers rather than as
rows as done earlier. Thus

x=


x1
...

xn

≡ ( x1 · · · xn

)T
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Observation 3.1.9 Fn has dimension n. To see this, note that a basis is e1, · · · ,en where

ei ≡
(

0 · · · 1 · · · 0
)T

the vector in Fn which has a 1 in the ith position and a zero everywhere else.

To see this, note that 
x1

x2
...

xn

=
n

∑
i=1

xiei

and that if 0 = ∑
n
i=1 xiei then 

x1

x2
...

xn

=


0
0
...
0


so each xi is zero. Thus this set of vectors is a spanning set and is linearly independent so
it is a basis. There are n of these vectors and so the dimension of Fn is indeed n.

There is a fundamental observation about linear combinations of vectors in Fn which is
stated next.

Theorem 3.1.10 Let a1, · · · ,an be vectors in Fm where m < n. Then there exist scalars
x1, · · · ,xn not all equal to zero such that x1a1 + · · ·+ xnan = 0.

Proof: If the conclusion were not so, then by definition, {a1, · · · ,an} would be in-
dependent. However, there is a spanning set with only m vectors, namely {e1, · · · ,em}
contrary to Theorem 3.1.5. Since these vectors cannot be independent, they must be de-
pendent which is the conclusion of the theorem. ■

3.2 Subspaces
The notion of a subspace is of great importance in applications. Here is what is meant by a
subspace.

Definition 3.2.1 Let V be a vector space with field of scalars F. Then let W ⊆ V,W ̸= /0.
That is, W is a non-empty subset of V . Then W is a subspace of V if whenever α,β are
scalars and u,v are vectors in W, it follows that αu+βv ∈W. In words, W is closed with
respect to linear combinations.

The fundamental result about subspaces is that they are themselves vector spaces.

Theorem 3.2.2 Let W be a non-zero subset of V a vector space with field of scalars F.
Then it is a subspace if and only if it is itself a vector space with field of scalars F.
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Proof: Suppose W is a subspace. Why is it a vector space? To be a vector space, the
operations of addition and scalar multiplication must satisfy the axioms for a vector space.
However, all of these are obvious because it is a subset of V . The only thing which is
not obvious is whether 0 is in W and whether −u ∈W whenever u is. But these follow
right away from Proposition 3.0.2 because if u ∈W,(−1)u = −u ∈W by the fact that W
is closed with respect to linear combinations, in particular multiplication by the scalar −1.
Similarly, take u∈W. Then 0 = 0u∈W. As to + being an operation on W, this also follows
because for u,v ∈W,u+ v ∈W . Thus if it is a subspace, it is indeed a vector space.

Conversely, suppose it is a vector space. Then by definition, it is closed with respect to
linear combinations and so it is a subspace. ■

This leads to the following simple result.

Proposition 3.2.3 Let W be a nonzero subspace of a finite dimensional vector space V
with field of scalars F. Then W is also a finite dimensional vector space.

Proof: Suppose span(v1, · · · ,vn) = V . Using the same construction of Proposition
3.1.8, the same process must stop after k ≤ n steps since otherwise one could obtain a
linearly independent set of vectors with more vectors in it than a spanning set. Thus it has
a basis with no more than n vectors. ■

Example 3.2.4 Show that W =
{
(x,y,z) ∈ R3 : x−2y− z = 0

}
is a subspace of R3. Find

a basis for it.

You have from the equation that x = 2y+ z and so any vector in this set is of the form 2y+ z
y
z

 : y,z ∈ R

Conversely, any vector which is of the above form satisfies the condition to be in W . There-
fore, W is of the form

y

 2
1
0

+ z

 1
0
1


where y,z are scalars. Hence it equals the span of the two vectors in R3 in the above. Are
the two vectors linearly independent? If so, they will be a basis. Suppose then that

y

 2
1
0

+ z

 1
0
1

=

 0
0
0


Then from the second position, y = 0. It follows then that z = 0 also and so the two vectors
form a linearly independent set. Hence a basis for W is

 2
1
0

 ,

 1
0
1




The dimension of this subspace is also 2.
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Example 3.2.5 Show that  1
1
1

 ,

 1
3
3

 ,

 0
1
4


is a basis for R3.

There are two things to show, that the set of vectors is independent and that it spans R3.
Thus we need to verify that there is exactly one solution to the system of equations

x

 1
1
1

+ y

 1
3
3

+ z

 0
1
4

=

 a
b
c


for any choice of the right side. Recall how to do this. You set up the augmented matrix
and then row reduce it.  1 1 0 a

1 3 1 b
1 3 4 c


After some row operations, this yields 1 0 0 3

2 a− 2
3 b+ 1

6 c
0 1 0 2

3 b− 1
2 a− 1

6 c
0 0 1 1

3 c− 1
3 b


Thus there is a unique solution to the system of equations. This shows that the set of vectors
is a basis because one solution when the right side of the system equals the zero vector is
x = y = z = 0. Therefore, from what was just done, it is the only solution and so the vectors
are linearly independent. As to the span of the vectors equalling R3, this was just shown
also.

Example 3.2.6 Show that  1
1
1

 ,

 1
1
3

 ,

 1
1
−4


is not a basis for R3.

You can do it the same way. It is really a question about whether there exists a unique
solution to the system

x

 1
1
1

+ y

 1
3
3

+ z

 1
1
−4

=

 a
b
c
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for any choice of the right side. The augmented matrix is 1 1 1 a
1 1 1 b
1 3 −4 c


After row reduction, this yields  1 1 1 a

0 2 −5 c−a
0 0 0 b−a


Thus there is no solution to the equation unless b = a. It follows the span of the given
vectors is not all of R3 and so this cannot be a basis.

Example 3.2.7 Show that  1
1
1

 ,

 1
1
3


is not a basis for R3.

If the span of these vectors were all ofR3, this would contradict Theorem 3.1.5 because
it would be a spanning set which is shorter than a linearly independent set {e1,e2,e3}.

Example 3.2.8 Show that 1
1
1

 ,

 1
1
3

 ,

 1
0
0

 ,

 1
1
1


is not a basis for R3.

If it were a basis, then it would need to be linearly independent but this cannot happen
because it would contradict Theorem 3.1.5 by being an independent set of vectors which is
longer than a spanning set.

Theorem 3.2.9 If V is an n dimensional vector space and if {u1, · · · ,un} is a linearly
independent set, then it is a basis. If m > n then {v1, · · · ,vm} is a dependent set. If
V = span(w1, · · · ,wm) , then m ≥ n and there is a subset {u1, · · · ,un} ⊆ {w1, · · · ,wm}
such that {u1, · · · ,un} is a basis. If {u1, · · · ,uk} is linearly independent, then there exists
{u1, · · · ,uk, · · · ,un} which is a basis.

Proof: Say {u1, · · · ,un} is linearly independent. Is span(u1, · · · ,un) =V ? If not, there
would be w /∈ span(u1, · · · ,un) and then by Lemma 3.1.7 {u1, · · · ,un,w} would be linearly
independent which contradicts Theorem 3.1.5. As to the second claim, {v1, · · · ,vm} cannot
be linearly independent because this would contradict Theorem 3.1.5 and so it is dependent.

Now say V = span(w1, · · · ,wm). By Theorem 3.1.5 again, you must have m ≥ n since
spanning sets are at least as long as linearly independent sets, one of which is a basis having
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n vectors. If w1 is in the span of the other vectors, delete it. Then consider w2. If it is in
the span of the other vectors, delete it. Continue this way till a shorter list is obtained with
the property that no vector is a linear combination of the others, but its span is still V . By
Proposition 3.1.3, the resulting list of vectors is linearly independent and is therefore, a
basis since it spans V .

Now suppose for k < n, {u1, · · · ,uk} is linearly independent. Follow the process of
Proposition 3.1.8, adding in vectors not in the span and obtaining successively larger lin-
early independent sets till the process ends. The resulting list must be a basis. ■

3.3 Exercises
1. Show that the following are subspaces of the set of all functions defined on [a,b] .

(a) polynomials of degree ≤ n

(b) polynomials

(c) continuous functions

(d) differentiable functions

2. Show that every subspace of a finite dimensional vector space V is the span of some
vectors. It was done above but go over it in your own words.

3. In R2 define a funny addition by (x,y)+ (x̂, ŷ) ≡ (3x+3x̂,y+ ŷ) and let scalar mul-
tiplication be the usual thing. Would this be a vector space with these operations?

4. Determine which of the following are subspaces ofRm for some m. a,b are just given
numbers in what follows.

(a)
{
(x,y) ∈ R2 : ax+by = 0

}
(b)

{
(x,y) ∈ R2 : ax+by≥ y

}
(c)

{
(x,y) ∈ R2 : ax+by = 1

}
(d)

{
(x,y) ∈ R2 : xy = 0

}
(e)

{
(x,y) ∈ R2 : y≥ 0

}
(f)
{
(x,y) ∈ R2 : x > 0 or y > 0

}
(g) For those who recall the cross product,

{
x ∈ R3 : a×x= 0

}
.

(h) For those who recall the dot product, {x ∈ Rm : x ·a= 0}
(i) {x ∈ Rn : x ·a≥ 0}
(j) {x ∈ Rm : x ·s= 0 for all s ∈ S,S ̸= /0,S⊆ Rm} . This is known as S⊥.

5. Show that
{
(x,y,z) ∈ R3 : x+ y− z = 0

}
is a subspace and find a basis for it.

6. In the subspace of polynomials on [0,1] , show that the vectors
{

1,x,x2,x3
}

are lin-
early independent. Show these vectors are a basis for the vector space of polynomials
of degree no more than 3.
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7. Determine whether the real valued functions defined on R{
x2 +1,x3 +2x2 + x,x3 +2x2−1,x3 + x2 + x

}
are linearly independent. Is this a basis for the subspace of polynomials of degree no
more than 3? Explain why or why not.

8. Determine whether the real valued functions defined on R{
x2 +1,x3 +2x2 + x,x3 +2x2 + x,x3 + x2 + x

}
are linearly independent. Is this a basis for the subspace of polynomials of degree no
more than 3? Explain why or why not.

9. Show that the following are each a basis for R3.

(a)

 3
2
−1

 ,

 2
2
−1

 ,

 −1
−1
1



(b)

 −2
0
2

 ,

 3
1
−2

 ,

 4
1
−2



(c)

 −3
0
1

 ,

 5
1
−1

 ,

 6
1
−1



(d)

 1
2
−1

 ,

 2
2
−1

 ,

 −1
−1
1


10. Show that each of the following is not a basis for R3. Explain why they fail to be a

basis.

(a)

 1
1
1

 ,

 0
1
1

 ,

 3
5
5


(b)

 1
−1
1

 ,

 0
1
1

 ,

 3
−1
5


(c)

 3
2
5

 ,

 0
1
1

 ,

 1
0
1



(d)

 1
0
1

 ,

 1
1
0



(e)

 1
2
−1

 ,

 2
2
−1

 ,

 −1
−1
1

 ,

 1
0
0


11. Suppose B is a subset of the set of complex valued functions, none equal to 0 and

defined on Ω and it has the property that if f ,g are different, then f g = 0. Show that
B must be linearly independent.

12. Suppose { f1, f2, · · · , fn} are real valued (continuous) functions defined on [0,1] , and
these satisfy ∫ 1

0
fi (x) f j (x)dx = δ i j ≡

{
1 if i = j
0 if i ̸= j

Show that these functions must be linearly independent.
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13. Show that the real valued functions cos(2x) ,1,cos2 (x) are linearly dependent.

14. Show that the real valued functions ex sin(2x) ,ex cos(2x) are linearly independent.

15. Let the field of scalars be Q and let the vector space be all vectors (real numbers) of
the form a+b

√
2 for a,b ∈Q. Show that this really is a vector space and find a basis

for it.

16. Consider the two vectors

(
2
1

)
,

(
1
2

)
in R2. Show that these are linearly in-

dependent. Now consider

(
2
1

)
,

(
1
2

)
in Z2

3 where the numbers are interpreted

as residue classes. Are these vectors linearly independent? If not, give a nontrivial
linear combination which is 0.

17. Is C a vector space with field of scalars R? If so, what is the dimension of this vector
space? Give a basis.

18. Is C a vector space with field of scalars C? If so, what is the dimension? Give a basis.

19. The space of real valued continuous functions on [0,1] usually denoted as C ([0,1])
is a vector space with field of scalars R. Explain why it is not a finite dimensional
vector space.

20. Suppose two vector spaces V,W have the same field of scalars F. Show that V ∩W is
a subspace of both V and W .

21. If V,W are two sub spaces of a vector space U , define

V +W ≡ {v+w : v ∈V,w ∈W} .

Show that this is a subspace of U .

22. If V,W are two sub spaces of a vector space U , consider V ∪W, the vectors which are
in either V or W. Will this be a subspace of U? If so, prove it is the case and if not,
give an example which shows that it is not necessarily true.

23. Let V,W be vector spaces. A function T : V →W is called a linear transformation if
whenever α,β are scalars and u,v are vectors in V , it follows that

T (αu+βv) = αTu+βT v.

Then ker(T ) ≡ {u ∈V : Tu = 0} , Im(T ) ≡ {Tu : u ∈V} . Show the first of these is
a subspace of V and the second is a subspace of W .

24. ↑In the situation of the above problem, where T is a linear transformation, suppose
S is a linearly independent subset of W . Define T−1 (S) ≡ {u ∈V : Tu ∈ S} . Show
that T−1 (S) is linearly independent.

25. ↑In the situation of the above problems, rank(T ) is defined as the dimension of
Im(T ). Also the nullity of T , denoted as null(T ) is defined as the dimension of
ker(T ). In this problem, you will show that if the dimension of V is n, then rank(T )+
null(T ) = n.
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(a) Let a basis for ker(T ) be {z1, · · · ,zr} . Let a basis for Im(T ) be

{T v1, · · · ,T vs} .

You need to show that r + s = n. Begin with u ∈ V and consider Tu. It is a
linear combination of {T v1, · · · ,T vs} say ∑

s
i=1 aiT vi. Why?

(b) Next explain why T (u−∑
s
i=1 aivi) = 0. Then explain why there are scalars b j

such that u−∑
s
i=1 aivi = ∑

r
j=1 b jz j.

(c) Observe that V = span(z1, · · · ,zr,v1, · · · ,vs) . Why?

(d) Finally show that {z1, · · · ,zr,v1, · · · ,vs} is linearly independent. Thus n= r+s.

3.4 Polynomials and Fields
As an application of the theory of vector spaces, this section considers the problem of field
extensions. When you have a polynomial like x2− 3 which has no rational roots, it turns
out you can enlarge the field of rational numbers to obtain a larger field such that this
polynomial does have roots in this larger field. I am going to discuss a systematic way to
do this. It will turn out that for any polynomial with coefficients in any field, there always
exists a possibly larger field such that the polynomial has roots in this larger field. This
book mainly features the field of real or complex numbers but this procedure will show
how to obtain many other fields. The ideas used in this development are the same as those
used later in the material on linear transformations but slightly easier.

Here is an important idea concerning equivalence relations which I hope is familiar. If
not, see Section 1.3 on page 6.

Definition 3.4.1 Let S be a set. The symbol, ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 3.4.2 [x] denotes the set of all elements of S which are equivalent to x and [x] is
called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 3.4.3 Let∼ be an equivalence class defined on a set, S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x∼ y
and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

Definition 3.4.4 Let F be a field, for example the rational numbers, and denote by F [x] the
polynomials having coefficients in F. Suppose p(x) is a polynomial. Let a(x)∼ b(x) (a(x)
is similar to b(x)) when

a(x)−b(x) = k (x) p(x)

for some polynomial k (x) . Denote by (p(x)) all polynomials of the form p(x)k (x) where
k (x) is some polynomial.
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Proposition 3.4.5 In the above definition, ∼ is an equivalence relation.

Proof: First of all, note that a(x) ∼ a(x) because their difference equals 0p(x) . If
a(x)∼ b(x) , then a(x)−b(x) = k (x) p(x) for some k (x) . But then

b(x)−a(x) =−k (x) p(x)

and so b(x) ∼ a(x). Next suppose a(x) ∼ b(x) and b(x) ∼ c(x) . Then a(x)− b(x) =
k (x) p(x) for some polynomial k (x) and also b(x)−c(x) = l (x) p(x) for some polynomial
l (x) . Then

a(x)− c(x) = a(x)−b(x)+b(x)− c(x)

= k (x) p(x)+ l (x) p(x) = (l (x)+ k (x)) p(x)

and so a(x)∼ c(x) and this shows the transitive law. ■

Definition 3.4.6 Let F be a field and let p(x) ∈ F [x] be a nonzero monic polynomial. This
means that the coefficient of the highest power is 1. Also let p(x) have degree at least
1. For the similarity relation of Definition 3.4.4, define the following operations on the
equivalence classes. [a(x)] is an equivalence class means that it is the set of all polynomials
which are similar to a(x).

[a(x)]+ [b(x)]≡ [a(x)+b(x)]

[a(x)] [b(x)]≡ [a(x)b(x)]

This collection of equivalence classes is sometimes denoted by F [x]/(p(x)). This is called
a quotient space.

The set of equivalence classes just described is a commutative ring. This is like a
field except it may fail to have multiplicative inverses. The reason for considering only
polynomials of degree at least 1 is that F [x]/(1) isn’t very interesting because f (x)∼ g(x)
if and only if their difference is a multiple of 1. Thus every two polynomials are similar so
there is only one similarity class. In particular, [1]∼ [0] . It is shown below that this is well
defined.

Axiom 3.4.7 Here are the axioms for a commutative ring.

1. x+ y = y+ x, (commutative law for addition)

2. There exists 0 such that x+0 = x for all x, (additive identity).

3. For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. There exists 1 such that 1x = x for all x,(multiplicative identity).

8. x(y+ z) = xy+ xz.(distributive law).
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Recall that p(x) is irreducible, means the only monic polynomials which divide it are
1 and itself.

Lemma 3.4.8 With the equivalence classes defined in Definition 3.4.6 where p(x) is a
monic polynomial of degree at least 1,

1. The operations are well defined.

2. F [x]/(p(x)) is a commutative ring

3. If a,b ∈ F and [a] = [b] , then a = b. Thus F is a subset of F [x]/(p(x)) .

4. Also [q(x)] = 0 if and only if q(x) = p(x) l (x) for some polynomial l (x).

5. F [x]/(p(x)) is a field if and only if p(x) is also irreducible.

Proof: 1.) To show the operations are well defined, suppose

[a(x)] =
[
a′ (x)

]
, [b(x)] =

[
b′ (x)

]
It is necessary to show

[a(x)+b(x)] =
[
a′ (x)+b′ (x)

]
[a(x)b(x)] =

[
a′ (x)b′ (x)

]
Consider the second of the two.

a′ (x)b′ (x)−a(x)b(x)

= a′ (x)b′ (x)−a(x)b′ (x)+a(x)b′ (x)−a(x)b(x)

= b′ (x)
(
a′ (x)−a(x)

)
+a(x)

(
b′ (x)−b(x)

)
Now by assumption (a′ (x)−a(x)) is a multiple of p(x) as is (b′ (x)−b(x)) , so the above
is a multiple of p(x) and by definition this shows [a(x)b(x)] = [a′ (x)b′ (x)]. The case for
addition is similar.

2.) The various algebraic properties related to these operations are obvious and come
directly from the definitions.

3.) Now suppose [a] = [b] . This means that a− b = k (x) p(x) for some polynomial
k (x) . Then k (x) must equal 0 since otherwise the two polynomials a− b and k (x) p(x)
could not be equal because they would have different degree. This is where it is important
to have the degree of p(x) at least 1.

4.) [q(x)] = [0] means q(x)∼ 0 which means q(x) = p(x) l (x) for some l (x).
5.) Suppose p(x) is irreducible. Let [q(x)] ∈ F [x]/(p(x)) where [q(x)] ̸= [0] . Then

q(x) is not a multiple of p(x) and so q(x) , p(x) are relatively prime. This is because if ψ (x)
is a monic polynomial which divides both q(x) and p(x) , then since p(x) is irreducible,
ψ (x) equals either a multiple of p(x) which is given not to happen since [q(x)] ̸= 0 or
ψ (x) = 1. Thus there exist n(x) ,m(x) such that

1 = n(x)q(x)+m(x) p(x)

Hence
[1] = [n(x)q(x)] = [n(x)] [q(x)]
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which shows that [q(x)]−1 = [n(x)] .
Now suppose p(x) is not irreducible. Then p(x) = l (x)k (x) where l (x) ,k (x) have

smaller degree than p(x). Then [0] = [l (x)] [k (x)] . Neither [l (x)] nor [k (x)] equals 0 be-
cause neither is a multiple of p(x) and this cannot happen in a field. Thus if p(x) is not
irreducible, then F [x]/(p(x)) is not a field. ■

The following proposition is mostly a summary of the above lemma. Recall irreducible
means the only monic polynomials which divide p(x) are itself and nonzero scalars.

Proposition 3.4.9 In the situation of Definition 3.4.6 where p(x) is a nonzero monic, irre-
ducible polynomial of degree at least 1, the following are valid.

1. The definitions of addition and multiplication are well defined.

2. If a,b ∈ F and [a] = [b] , then a = b. Thus F is a subset of F [x]/(p(x)) .

3. F [x]/(p(x)) is a field in which the polynomial p(x) has a root.

4. F [x]/(p(x)) is a vector space with field of scalars F and its dimension is m where m
is the degree of the irreducible polynomial p(x).

Proof: 1.) This is shown in Lemma 3.4.8 as is 2.) and 3.) except for the part of 3.)
which says p(x) has a root.

The polynomial p(x) has a root in this field because if

p(x) = xm +am−1xm−1 + · · ·+a1x+a0,

[0] = [p(x)] = [x]m +[am−1] [x]
m−1 + · · ·+[a1] [x]+ [a0]

Thus [x] is a root of this polynomial in the field F [x]/(p(x)).
Consider the last claim. It is clear that F [x]/(p(x)) is a vector space with field of

scalars F. Indeed, the operations are defined such that for α,β ∈ F,

α [r (x)]+β [b(x)]≡ [αr (x)+βb(x)]

It remains to consider the dimension of this vector space. Let f (x) ∈ F [x]/(p(x)) . Thus
[ f (x)] is a typical thing in F [x]/(p(x)). Then from the division algorithm,

f (x) = p(x)q(x)+ r (x)

where r (x) is either 0 or has degree less than the degree of p(x) . Thus

[r (x)] = [ f (x)− p(x)q(x)] = [ f (x)]

but clearly [r (x)] ∈ span
(
[1] , [x] , · · · , [x]m−1

)
and also it is clear that

span
(
[1] , · · · , [x]m−1

)
= F [x]/(p(x))

Then
{
[1] , [x] , · · · , [x]m−1

}
is a basis if these vectors are linearly independent. Suppose

then that
m−1

∑
i=0

ci [x]
i =

[
m−1

∑
i=0

cixi

]
= 0
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Then you would need to have p(x)/∑
m−1
i=0 cixi which is impossible unless each ci = 0 be-

cause p(x) has degree m. ■
This shows how to enlarge a field to get a new one in which the polynomial has a root.

By using a succession of such enlargements, called field extensions, there will exist a field
in which the given polynomial can be factored into a product of polynomials having degree
one. The field you obtain in this process of enlarging in which the given polynomial factors
in terms of linear factors is called a splitting field.

Definition 3.4.10 A commutative ring is just a field in which the assumption that multi-
plicative inverses for nonzero elements may not exist. An ideal I in a commutative ring
R is a subset of R closed with respect to addition and additive inverses such that rI ⊆ I
meaning that something in I multiplied by r ∈ R will yield something in I. Then F [x] is a
commutative ring and (p(x)) is an example of an ideal. A maximal ideal is an ideal for
which the only ideal containing it is itself or the entire ring.

Example 3.4.11 The polynomial x2 − 2 is irreducible in Q(x) . This is because if x2 −
2 = p(x)q(x) where p(x) ,q(x) both have degree less than 2, then they both have degree
1. Hence you would have x2− 2 = (x+a)(x+b) which requires that a+ b = 0 so this
factorization is of the form (x−a)(x+a) and now you need to have a =

√
2 /∈ Q. Now

Q(x)/
(
x2−2

)
is of the form a+b [x] where a,b∈Q and [x]2−2 = 0. Thus one can regard

[x] as
√

2. Q(x)/
(
x2−2

)
is of the form a+b

√
2.

In the above example,
[
x2 + x

]
is not zero because it is not a multiple of x2− 2. What

is
[
x2 + x

]−1? You know that the two polynomials are relatively prime and so there exists
n(x) ,m(x) such that

1 = n(x)
(
x2−2

)
+m(x)

(
x2 + x

)
Thus [m(x)] =

[
x2 + x

]−1. How could you find these polynomials? First of all, it suffices
to consider only n(x) and m(x) having degree less than 2. Otherwise, reiterating the above,
m(x) = p(x) l (x)+ r (x) where r (x) has degree smaller than the degree of p(x) and you
could simply use r (x) in place of m(x).

1 = (ax+b)
(
x2−2

)
+(cx+d)

(
x2 + x

)
1 = ax3−2b+bx2 + cx2 + cx3 +dx2−2ax+dx

Now you solve the resulting system of equations.

a =
1
2
,b =−1

2
,c =−1

2
,d = 1

Then the desired inverse is
[
− 1

2 x+1
]
. To check,(

−1
2

x+1
)(

x2 + x
)
−1 =−1

2
(x−1)

(
x2−2

)
Thus

[
− 1

2 x+1
][

x2 + x
]
− [1] = [0].

The above is an example of something general described in the following definition.

Definition 3.4.12 Let F ⊆ K be two fields. Then clearly K is also a vector space over F.
Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.
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There are some easy things to observe about this.

Proposition 3.4.13 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}n
i=1 be a basis for L over K and let

{
k j
}m

j=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that l = ∑

n
i=1 xili. Now xi ∈ K so there exist

f ji such that xi =∑
m
j=1 f jik j. Then it follows that l =∑

n
i=1 ∑

m
j=1 f jik jli. It follows that

{
k jli
}

is a spanning set. If ∑
n
i=1 ∑

m
j=1 f jik jli = 0. Then, since the li are independent, it follows that

∑
m
j=1 f jik j = 0 and since

{
k j
}

is independent, each f ji = 0 for each j for a given arbitrary
i. Therefore,

{
k jli
}

is a basis. ■
You will see almost exactly the same argument in exhibiting a basis for L (V,W ) the

linear transformations mapping V to W .
Note that if p(x) were of degree n and not irreducible, then there still exists an extension

G containing a root of p(x) such that [G : F] ≤ n. You could do this by working with an
irreducible factor of p(x).

Theorem 3.4.14 Let p(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial with coeffi-
cients in a field of scalars F. There exists a larger field G and {z1, · · · ,zn} contained in G,
listed according to multiplicity, such that

p(x) =
n

∏
i=1

(x− zi)

This larger field is called a splitting field. Furthermore,

[G : F]≤ n!

Proof: From Proposition 3.4.9, there exists a field F1 such that p(x) has a root, z1 (= [x])
Then by the Euclidean algorithm p(x) = (x− z1)q1 (x)+ r where r ∈ F1. Since p(z1) = 0,
this requires r = 0. Now do the same for q1 (x) that was done for p(x) , enlarging the
field to F2 if necessary, such that in this new field q1 (x) = (x− z2)q2 (x) and so p(x) =
(x− z1)(x− z2)q2 (x) . After no more than n such extensions, you will have obtained the
necessary field G.

Finally consider the claim about dimension. By Proposition 3.4.9, there is a larger field
G1 such that p(x) has a root a1 in G1 and [G1 : F] ≤ n. Then p(x) = (x−a1)q(x) . Con-
tinue this way until the polynomial equals the product of linear factors. Then by Proposition
3.4.13 applied multiple times, [G : F]≤ n!. ■

Example 3.4.15 The polynomial x2 + 1 is irreducible in R(x) , polynomials having real
coefficients. To see this is the case, suppose ψ (x) divides x2 +1. Then x2 +1 = ψ (x)q(x) .
If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax+b.
In the latter case, −b/a must be a zero of the right side, hence of the left but x2 +1 has no
real zeros. Therefore, the degree of ψ (x) must be two and q(x) must be a constant. Thus
the only polynomial which divides x2 +1 are constants and multiples of x2 +1. Therefore,
this shows x2+1 is irreducible. Find the inverse of

[
x2 + x+1

]
in the space of equivalence

classes, R(x)/
(
x2 +1

)
.

You can solve this with partial fractions.

1
(x2 +1)(x2 + x+1)

=− x
x2 +1

+
x+1

x2 + x+1
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and so 1 = (−x)
(
x2 + x+1

)
+(x+1)

(
x2 +1

)
which implies 1∼ (−x)

(
x2 + x+1

)
and so

the inverse is [−x] .
The following proposition is interesting. It was essentially proved above but to empha-

size it, here it is again.

Proposition 3.4.16 Suppose p(x) ∈ F [x] is irreducible and has degree n. Then every ele-
ment of G = F [x]/(p(x)) is of the form [0] or [r (x)] where the degree of r (x) is less than
n.

Proof: This follows right away from the Euclidean algorithm for polynomials. If k (x)
has degree larger than n− 1, then k (x) = q(x) p(x)+ r (x) where r (x) is either equal to 0
or has degree less than n. Hence [k (x)] = [r (x)] . ■

Example 3.4.17 In the situation of the above example where the polynomial is x2 + 1 ir-
reducible in R(x), find [ax+b]−1 assuming a2 + b2 ̸= 0. Note this includes all cases of
interest thanks to the above proposition.

You can do it with partial fractions as above.

1
(x2 +1)(ax+b)

=
b−ax

(a2 +b2)(x2 +1)
+

a2

(a2 +b2)(ax+b)

and so

1 =
1

a2 +b2 (b−ax)(ax+b)+
a2

(a2 +b2)

(
x2 +1

)
Thus 1

a2+b2 (b−ax)(ax+b)∼ 1and so

[ax+b]−1 =
[(b−ax)]
a2 +b2 =

b−a [x]
a2 +b2

You might find it interesting to recall that (ai+b)−1 = b−ai
a2+b2 . Didn’t this just produce

the complex numbers algebraically? If, instead of R you used Q this would have just
produced a field Q+ iQ.

3.4.1 The Algebraic Numbers and Minimum Polynomial
Each polynomial having coefficients in a field F has a splitting field. Consider the case
of all polynomials p(x) having coefficients in a field F⊆G and consider all roots which
are also in G. The theory of vector spaces is very useful in the study of these algebraic
numbers. Here is a definition.

Definition 3.4.18 Let F and G be two fields, F ⊆ G. The algebraic numbers A are those
numbers which are in G and also roots of some polynomial p(x) having coefficients in F.
The minimum polynomial1 of a ∈ A is defined to be the monic polynomial p(x) having
smallest degree such that p(a) = 0. It is also often called the minimum polynomial.

The next theorem is on the uniqueness of the minimum polynomial.

1I grew up calling this and similar things the minimal polynomial, but I think it is better to call it the minimum
polynomial because it is unique. If you see minimal polynomial, this is what it is.
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Theorem 3.4.19 Let a ∈A. Then there exists a unique monic irreducible polynomial p(x)
having coefficients in F such that p(a) = 0. This polynomial is the minimum polynomial.

Proof: Let p(x) be a monic polynomial having smallest degree such that p(a) = 0.
Then p(x) is irreducible because if not, there would exist a polynomial having smaller
degree which has a as a root. Now suppose q(x) is monic with smallest degree such that
q(a) = 0. Then q(x) = p(x) l (x)+ r (x) where if r (x) ̸= 0, then it has smaller degree than
p(x). But in this case, the equation implies r (a) = 0 which contradicts the choice of p(x).
Hence r (x) = 0 and so, since q(x) has smallest degree, l (x) = 1 showing that p(x) = q(x).
■

Definition 3.4.20 For a an algebraic number, let deg(a) denote the degree of the minimum
polynomial of a.

Also, here is another definition.

Definition 3.4.21 Let a1, · · · ,am be in A. A polynomial in {a1, · · · ,am} will be an expres-
sion of the form

∑
k1···kn

ak1···knak1
1 · · ·a

kn
n

where the ak1···kn are in F, each k j is a nonnegative integer, and all but finitely many of the
ak1···kn equal zero. The collection of such polynomials will be denoted by

F(a1, · · · ,am) .

The splitting field of g(x) ∈ F [x] is F(a1, · · · ,am) where the {a1, · · · ,am} are the roots of
g(x) in A.

Now notice that for a an algebraic number, F(a) is a finite dimensional vector space
with field of scalars F. Similarly, for {a1, · · · ,am} algebraic numbers, F(a1, · · · ,am) is a
finite dimensional vector space with field of scalars F. The following fundamental propo-
sition demonstrates this observation. This is a remarkable result.

Proposition 3.4.22 Let {a1, · · · ,am} be algebraic numbers. Then

dimF(a1, · · · ,am)≤
m

∏
j=1

deg(a j)

and for an algebraic number a,

dimF(a) = deg(a)

Every element of F(a1, · · · ,am) is in A and F(a1, · · · ,am) is a field.

Proof: Let the minimum polynomial of a be

p(x) = xn +an−1xn−1 + · · ·+a1x+a0.

If q(a) ∈ F(a) , then
q(x) = p(x) l (x)+ r (x)
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where r (x) has degree less than the degree of p(x) if it is not zero. Hence q(a) = r (a).
Thus F(a) is spanned by {

1,a,a2, · · · ,an−1}
Since p(x) has smallest degree of all polynomials which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F(a1, · · · ,am) is obtained from all linear
combinations of products of

{
ak1

1 ,ak2
2 , · · · ,akn

n

}
where the ki are nonnegative integers. From

the first part, it suffices to consider only k j ≤ deg(a j). This is because am
1 can be written

as a linear combination of ak
1 for k ≤ deg(a1). Therefore, there exists a spanning set for

F(a1, · · · ,am) which has ∏
m
i=1 deg(ai) entries. By Theorem 3.2.9 a basis has no more

vectors than ∏
m
i=1 deg(ai) . This proves the first claim.

Consider the last claim. Let g(a1, · · · ,am) be a polynomial in F(a1, · · · ,am). Since

dimF(a1, · · · ,am)≡ p≤
m

∏
j=1

deg(a j)< ∞,

it follows
1,g(a1, · · · ,am) ,g(a1, · · · ,am)

2 , · · · ,g(a1, · · · ,am)
p

are dependent. It follows g(a1, · · · ,am) is the root of some polynomial having coefficients
in F. Thus everything in F(a1, · · · ,am) is algebraic.

Why is F(a1, · · · ,am) a field? Let g(a1, · · · ,am) ̸= 0 be in F(a1, · · · ,am). Then it has a
minimum polynomial,

p(x) = xq +aq−1xq−1 + · · ·+a1x+a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimum. You would
have

g(a1, · · · ,am)
(

g(a1, · · · ,am)
q−1 +aq−1g(a1, · · · ,am)

q−2 + · · ·+a1

)
= 0

and so g(a1, · · · ,am)
q−1 +aq−1g(a1, · · · ,am)

q−2 + · · ·+a1 = 0. Therefore, since a0 ̸= 0,

g(a1, · · · ,am)
(

g(a1, · · · ,am)
q−1 +aq−1g(a1, · · · ,am)

q−2 + · · ·+a1

)
=−a0

and so the multiplicative inverse for g(a1, · · · ,am) is

g(a1, · · · ,am)
q−1 +aq−1g(a1, · · · ,am)

q−2 + · · ·+a1

−a0
∈ F(a1, · · · ,am) .

The other axioms of a field are obvious. ■
Now from this proposition, it is easy to obtain the following interesting result about the

algebraic numbers. Like the above result, it is amazing.

Theorem 3.4.23 The algebraic numbers A, those roots of polynomials in F [x] which are
in G, are a field.
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Proof: By definition, each a∈A has a minimum polynomial. Let a ̸= 0 be an algebraic
number and let p(x) be its minimum polynomial. Then p(x) is of the form

xn +an−1xn−1 + · · ·+a1x+a0

where a0 ̸= 0. Otherwise p(x) would not have minimum degree. Then plugging in a yields

a

(
an−1 +an−1an−2 + · · ·+a1

)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1an−2+···+a1)(−1)

a0
∈ F(a). By Proposition 3.4.22, every element of

F(a) is in A and this shows that for every nonzero element of A, its inverse is also in A.
What about products and sums of things in A? Are they still in A? Yes. If a,b ∈ A, then
both a+b and ab ∈ F(a,b) and from the proposition, each element of F(a,b) is in A. ■

A typical example of what is of interest here is when the field F of scalars is Q, the
rational numbers and the field G is R. However, you can certainly conceive of many other
examples by considering the integers mod a prime, for example (See Propositon 1.15.2 on
Page 27 for example.) or any of the fields which occur as field extensions in the above.

There is a very interesting thing about F(a1, · · · ,an) in the case where F is infinite
which says that there exists a single algebraic γ such that F(a1, · · · ,an) = F(γ). In other
words, every field extension of this sort is a simple field extension. I found this fact in an
early version of [12].

Proposition 3.4.24 Let F be infinite. Then F(a1, · · · ,an) = F(γ) for some γ . Here each ai
is algebraic. The γ will be of the form

γ = a1 +λ 1a2 + · · ·+λ n−1an

where the λ k are in a splitting field. If the field F includes Q so that all polynomials have
roots in C, you can conclude that each λ i is a positive integer.

Proof: To begin with, consider F(α,β ). Let γ = α +λβ . Then by Proposition 3.4.22
γ is an algebraic number and it is also clear

F(γ)⊆ F(α,β )

I need to show the other inclusion. This will be done for a suitable choice of λ . To do this,
it suffices to verify that both α and β are in F(γ).

Let the minimum polynomials of α and β be f (x) and g(x) respectively. Let the distinct
roots of f (x) and g(x) be {α1,α2, · · · ,αn} and {β 1,β 2, · · · ,β m} respectively. These roots
are in a field which contains splitting fields of both f (x) and g(x). Let α = α1 and β = β 1.
Now define

h(x)≡ f (α +λβ −λx)≡ f (γ−λx)

so that h(β ) = f (α) = 0. It follows (x−β ) divides both h(x) and g(x) since it is given
that g(β ) = 0. If (x−η) is a different linear factor of both g(x) and h(x) then it must be(

x−β j

)
for some β j for some j > 1 because these are the only factors of g(x) . Therefore,

this would require
0 = h

(
β j

)
= f

(
α1 +λβ 1−λβ j

)
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and so it would be the case that α1 +λβ 1−λβ j = αk for some k. Hence

λ =
αk−α1

β 1−β j

Now there are finitely many quotients of the above form and if λ is chosen to not be any of
them, then the above cannot happen and so in this case, the only linear factor of both g(x)
and h(x) will be (x−β ). Choose such a λ . If all roots are in C and F contains Q, then you
could pick λ a positive integer.

Let φ (x) be the minimum polynomial of β with respect to the field F(γ). Then this
minimum polynomial must divide both h(x) and g(x) because h(β ) = g(β ) = 0. However,
the only factor these two have in common is x− β and so φ (x) = x− β which requires
β ∈ F(γ) . Now also α = γ−λβ and so α ∈ F(γ) also. Therefore, both α,β ∈ F(γ) which
forces F(α,β ) ⊆ F(γ) . This proves the proposition in the case that n = 2. The general
result follows right away by observing that

F(a1, · · · ,an) = F(a1, · · · ,an−1)(an)

and using induction. F(a1, · · · ,an−1)(an) = F(γ1)(an) = F (γ1,an) = F(γ). Note that
γ = α +λβ for two of these. Then

F(a1,a2,a3) = F(a1,a2)(a3) = F(a1 +λ 1a2)(a3)

= F(a1 +λ 1a2,a3) = F(a1 +λ 1a2 +λ 2a3)

continuing this way shows that there are λ i in a suitable splitting field such that for γ =
a1 +λ 1a2 + · · ·+λ n−1an,F(a1, · · · ,an) = F(γ). If all the numbers are in C, and your field
F includes Q, you could choose all the λ i to be positive integers. ■

3.4.2 Lindermannn Weierstrass Theorem
As another application of the abstract concept of vector spaces, there is an amazing theorem
due to Weierstrass and Lindemann.

Theorem 3.4.25 Suppose a1, · · · ,an are distinct algebraic numbers, roots of a polyno-
mial with rational coefficients. Then it follows that ∑

n
i=1 aieα i ̸= 0. In other words, the

{eα1 , · · · ,eαn} are independent as vectors with field of scalars equal to the algebraic num-
bers.

There is a proof of this later. It is long and hard but only depends on elementary
considerations other than some algebra involving symmetric polynomials. See Theorem
9.2.8. It is presented here to illustrate how the language of linear algebra is useful in
describing something which is very exotic, apparently very far removed from something
like Rp.

A number is transcendental, as opposed to algebraic, if it is not a root of a polynomial
which has integer (rational) coefficients. Most numbers are this way but it is hard to verify
that specific numbers are transcendental. That π is transcendental follows from e0+eiπ = 0.
By the above theorem, this could not happen if π were algebraic because then iπ would also
be algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being a
root of x2+1. This fact about π was first proved by Lindemann in 1882 and then the general
theorem above was proved by Weierstrass in 1885. This fact that π is transcendental solved
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an old problem called squaring the circle which was to construct a square with the same
area as a circle using a straight edge and compass. Such numbers are all algebraic. Thus
the fact π is transcendental implies this problem is impossible.2

3.5 Exercises
1. Let p(x) ∈ F [x] and suppose that p(x) is the minimum polynomial for a ∈ F. Con-

sider a field extension of F called G. Thus a ∈ G also. Show that the minimum
polynomial of a with coefficients in G must divide p(x).

2. Here is a polynomial inQ [x] : x2+x+3. Show it is irreducible inQ [x]. Now consider
x2− x+1. Show that in Q [x]/

(
x2 + x+3

)
it follows that

[
x2− x+1

]
̸= 0. Find its

inverse in Q [x]/
(
x2 + x+3

)
3. Here is a polynomial inQ [x] : x2−x+2. Show it is irreducible inQ [x]. Now consider

x+2. Show that in Q [x]/
(
x2− x+2

)
it follows that [x+2] ̸= 0. Find its inverse in

Q [x]/
(
x2− x+2

)
.

4. Here is a polynomial in Z3 [x] : x2 + x+ 2̄. Show it is irreducible in Z3 [x]. Show[
x+ 2̄

]
is not zero in Z3 [x]/

(
x2 + x+ 2̄

)
. Now find its inverse in Z3 [x]/

(
x2 + x+ 2̄

)
.

5. Suppose the degree of p(x) is r where p(x) is an irreducible monic polynomial
with coefficients in a field F. It was shown that the dimension of F [x]/(p(x)) is
r and that a basis is

{
1, [x] ,

[
x2
]
, · · · ,

[
xr−1

]}
. Now let A be an r× r matrix and let

qi (x) = ∑
r
k=1 Ai jx j−1. Show that {[q1 (x)] , · · · , [qr (x)]} is a basis for F [x]/(p(x)) if

and only if the matrix A is invertible.

6. Suppose you have W a subspace of a finite dimensional vector space V . Suppose
also that dim(W ) = dim(V ) . Tell why W =V.

7. Suppose V is a vector space with field of scalars F. Let T ∈ L (V,W ) , the space
of linear transformations mapping V onto W where W is another vector space (See
Problem 23 on Page 62.). Define an equivalence relation on V as follows. v ∼w
means v−w ∈ ker(T ) . Recall that ker(T )≡ {v : Tv = 0}. Show this is an equiv-
alence relation. Now for [v] an equivalence class define T ′ [v] ≡ Tv. Show this is
well defined. Also show that with the operations

[v]+ [w]≡ [v+w] , α [v]≡ [αv]

this set of equivalence classes, denoted by V/ker(T ) is a vector space. Show next
that T ′ : V/ker(T )→W is one to one. This new vector space, V/ker(T ) is called a
quotient space. Show its dimension equals the difference between the dimension of
V and the dimension of ker(T ).

8. ↑Suppose now that W = T (V ) . Then show that T ′ in the above is one to one and
onto. Explain why dim(V/ker(T )) = dim(T (V )) . Now see Problem 25 on Page
62. Show that rank(T )+null(T ) = dim(V ) .

2Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess Ida which
opened in 1884 he has the following lines. “As for fashion they forswear it, so they say - so they say; and the circle
- they will square it some fine day some fine day.” Of course it had been proved impossible to do this a couple of
years before.
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9. Let V be an n dimensional vector space and let W be a subspace. Generalize the
Problem 7 to define and give properties of V/W . What is its dimension? What is a
basis?

10. A number is transcendental if it is not the root of any nonzero polynomial with ra-
tional coefficients. As mentioned, there are many known transcendental numbers.
Suppose α is a real transcendental number. Show that

{
1,α,α2, · · ·

}
is a linearly

independent set of real numbers if the field of scalars is the rational numbers.

11. Suppose F is a countable field and let A be the algebraic numbers, those numbers in
G which are roots of a polynomial in F [x]. Show A is also countable.

12. It was shown in the chapter that A is a field. Here A are the numbers in R which are
roots of a rational polynomial. Then it was shown in Problem 11 that it was actually
countable. Show that A+ iA is also an example of a countable field.
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Chapter 4

Matrices
You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out that such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In general, scalars are just elements of some field.

A matrix is a rectangular array of numbers from a field F. For example, here is a matrix. 1 2 3 4
5 2 8 7
6 −9 1 2


This matrix is a 3×4 matrix because there are three rows and four columns. The columns
stand upright and are listed in order from left to right. The columns are horizontal and
listed in order from top to bottom. The convention in dealing with matrices is to always
list the rows first and then the columns. Also, you can remember the columns are like
columns in a Greek temple. They stand up right while the rows just lie there like rows
made by a tractor in a plowed field. Elements of the matrix are identified according to
position in the matrix. For example, 8 is in position 2,3 because it is in the second row and
the third column. You might remember that you always list the rows before the columns
by using the phrase Rowman Catholic. The symbol, (ai j) refers to a matrix in which the
i denotes the row and the j denotes the column. Using this notation on the above matrix,
a23 = 8,a32 =−9,a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be
added, multiplied by a scalar and sometimes multiplied.

Definition 4.0.1 Let A = (ai j) and B = (bi j) be two m×n matrices. Then A+B =C where
C = (ci j) for ci j = ai j+bi j. Also if x is a scalar, xA=C where the i jth entry of C is ci j = xai j
where the i jth entry of A is ai j. In short, ci j = xai j. The number Ai j will also typically refer
to the i jth entry of the matrix A. The zero matrix, denoted by 0 will be the matrix consisting
of all zeros.

Do not be upset by the use of the subscripts, i j. The expression ci j = ai j + bi j is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note that there are 2× 3 zero matrices, 3× 4 zero matrices, etc. In fact for every size
there is a zero matrix.

With this definition, the following properties are all obvious but you should verify all
of these properties are valid for A, B, and C, m×n matrices and 0 an m×n zero matrix.

A+B = B+A, (4.1)

the commutative law of addition,

(A+B)+C = A+(B+C) , (4.2)

the associative law for addition,
A+0 = A, (4.3)

77
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the existence of an additive identity,

A+(−A) = 0, (4.4)

the existence of an additive inverse. Also, for α,β scalars, the following also hold.

α (A+B) = αA+αB, (4.5)

(α +β )A = αA+βA, (4.6)

α (βA) = αβ (A) , (4.7)

1A = A. (4.8)

These properties are just the vector space axioms discussed earlier and the fact that the
m× n matrices satisfy these axioms is what is meant by saying this set of matrices with
addition and scalar multiplication as defined above forms a vector space.

Definition 4.0.2 Matrices which are n× 1 or 1× n are especially called vectors and are
often denoted by a bold letter. Thus

x=


x1
...

xn


is an n×1 matrix also called a column vector while a 1×n matrix of the form(

x1 · · · xn

)
is referred to as a row vector.

All the above is fine, but the real reason for considering matrices is that they can be
multiplied. This is where things quit being banal. The following is the definition of multi-
plying an m×n matrix times a n×1 vector. Then after this, the product of two matrices is
considered.

Definition 4.0.3 First of all, define the product of a 1×n matrix and a n×1 matrix.

(
x1 · · · xn

)
y1
...

yn

= ∑
i

xiyi

If you have A an m× n matrix and B is an n× p matrix, then AB will be an m× p matrix
whose i jth entry is the product of the ith row of A on the left with the jth column of B on the
right. Thus

(AB)i j ≡
n

∑
k=1

AikBk j.

and if B =
(

b1 · · · bn

)
,AB =

(
Ab1 · · · Abn

)
. You can do (m×n)× (n× p)

but in order to multiply, you must have the number of columns of the matrix on the left
equal to the number of rows of the matrix on the right or else the rule just given makes no
sense.
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To see the last claim, note that the jth column of AB involves b j and is of the form
A11 · · · A1n

...
...

Am1 · · · Amn




B1 j
...

Bn j

=


∑

n
k=1 A1kBk j

...

∑
n
k=1 AmkBk j

= Ab j

Here is an example.

Example 4.0.4 Compute the following product in Z5. That is, all the numbers are inter-
preted as residue classes.

 1 2 1 3
0 2 1 3
2 1 4 1




1 2
2 3
4 1
1 1

 .

Doing the arithmetic in Z5, you get

 1 2 1 3
0 2 1 3
2 1 4 1




1 2
2 3
4 1
1 1

=

 2 2
1 0
1 2



4.1 Properties of Matrix Multiplication
It is sometimes possible to multiply matrices in one order but not in the other order. For
example, (

1 2 1
2 1 2

)(
1 2
2 1

)
and

(
1 2
2 1

)(
1 2 1
2 1 2

)
What if it makes sense to multiply them in either order? Will they be equal then?

Example 4.1.1 Compare

(
1 2
3 4

)(
0 1
1 0

)
and

(
0 1
1 0

)(
1 2
3 4

)
.

The first product is (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
,

the second product is (
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
,

and you see these are not equal. Therefore, you cannot conclude that AB = BA for matrix
multiplication. However, there are some properties which do hold.
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Proposition 4.1.2 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a,b scalars.

A(aB+bC) = a(AB)+b(AC) (4.9)

(B+C)A = BA+CA (4.10)

A(BC) = (AB)C (4.11)

Proof: Using the above definition of matrix multiplication,

(A(aB+bC))i j = ∑
k

Aik (aB+bC)k j = ∑
k

Aik
(
aBk j +bCk j

)
= a∑

k
AikBk j +b∑

k
AikCk j = a(AB)i j +b(AC)i j

= (a(AB)+b(AC))i j

showing that A(B+C) = AB+AC as claimed. Formula 4.10 is entirely similar.
Consider 4.11, the associative law of multiplication. Before reading this, review the

definition of matrix multiplication in terms of entries of the matrices.

(A(BC))i j = ∑
k

Aik (BC)k j = ∑
k

Aik ∑
l

BklCl j

= ∑
l
(AB)il Cl j = ((AB)C)i j .■

Another important operation on matrices is that of taking the transpose. The following
example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix.  1 1+2i

3 1
2 6


T

=

(
1 3 2

1+2i 1 6

)

What happened? The first column became the first row and the second column became the
second row. Thus the 3×2 matrix became a 2×3 matrix. The number 3 was in the second
row and the first column and it ended up in the first row and second column. This motivates
the following definition of the transpose of a matrix.

Definition 4.1.3 Let A be an m× n matrix. Then AT denotes the n×m matrix which is
defined as follows. (

AT )
i j = A ji

The transpose of a matrix has the following important property.

Lemma 4.1.4 Let A be an m×n matrix and let B be a n× p matrix. Then

(AB)T = BT AT (4.12)

and if α and β are scalars,

(αA+βB)T = αAT +βBT (4.13)
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Proof: From the definition,(
(AB)T

)
i j
= (AB) ji = ∑

k
A jkBki = ∑

k

(
BT )

ik

(
AT )

k j =
(
BT AT )

i j

4.13 is left as an exercise. ■

Definition 4.1.5 An n×n matrix A is said to be symmetric if A = AT . It is said to be skew
symmetric if AT =−A.

Example 4.1.6 Let

A =

 2 1 3
1 5 −3
3 −3 7

 .

Then A is symmetric.

Example 4.1.7 Let

A =

 0 1 3
−1 0 2
−3 −2 0


Then A is skew symmetric.

There is a special matrix called I and defined by Ii j = δ i j where δ i j is the Kronecker
symbol defined by

δ i j =

{
1 if i = j
0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 4.1.8 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof: (AIn)i j = ∑k Aikδ k j = Ai j and so AIn = A. The other case is left as an exercise
for you.

Definition 4.1.9 An n×n matrix A has an inverse A−1 if and only if there exists a matrix,
denoted as A−1 such that AA−1 = A−1A = I where I = (δ i j) for

δ i j ≡

{
1 if i = j
0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 4.1.10 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition, B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) =
(
B′A
)

B = IB = B.

Thus, the inverse, if it exists, is unique. ■
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4.2 Finding the Inverse of a Matrix
Later a formula is given for the inverse of a matirx. However, it is not a good way to find
the inverse for a matrix. There is a much easier way and it is this which is presented here.
It is also important to note that not all matrices have inverses.

Example 4.2.1 Let A =

(
1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,(
1 1
1 1

)(
−1
1

)
=

(
0
0

)

and if A−1 existed, this could not happen because you could multiply on the left by the
inverse A and conclude the vector (−1,1)T = (0,0)T . Thus the answer is that A does not
have an inverse.

Suppose you want to find B such that AB = I. Let

B =
(

b1 · · · bn

)
Also the ith column of I is

ei =
(

0 · · · 0 1 0 · · · 0
)T

Thus, if AB = I, bi, the ith column of B must satisfy the equation Abi = ei. The augmented
matrix for finding bi is (A|ei) . Thus, by doing row operations till A becomes I, you end up
with (I|bi) where bi is the solution to Abi = ei. Now the same sequence of row operations
works regardless of the right side of the agumented matrix (A|ei) and so you can save
trouble by simply doing the following.

(A|I) row operations→ (I|B)

and the ith column of B is bi, the solution to Abi = ei. Thus AB = I.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss Jordan procedure. It produces the inverse if the matrix
has one. Actually, it produces the right inverse.

Procedure 4.2.2 Suppose A is an n×n matrix. To find A−1 if it exists, form the augmented
n× 2n matrix, (A|I) and then do row operations until you obtain an n× 2n matrix of the
form

(I|B) (4.14)

if possible. When this has been done, B = A−1. The matrix A has an inverse exactly when
it is possible to do row operations and end up with one like 4.14.

Here is a fundamental theorem which describes when a matrix has an inverse.

Theorem 4.2.3 Let A be an n× n matrix. Then A−1 exists if and only if the columns of A
are a linearly independent set. Also, if A has a right inverse, then it has an inverse which
equals the right inverse.
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Proof: ⇒ If A−1 exists, then A−1A = I and so Ax= 0 if and only if x= 0. Why? But
this says that the columns of A are linearly independent.
⇐ Say the columns are linearly independent. Then they form a basis for Fn. Thus

there exists bi ∈ Fn such that
Abi = ei

where ei is the column vector with 1 in the ith position and zeros elsewhere. Then from the
way we multiply matrices,

A
(

b1 · · · bn

)
=
(

e1 · · · en

)
= I

Thus A has a right inverse. Now letting B ≡
(

b1 · · · bn

)
, it follows that Bx= 0

if and only if x= 0. However, this is nothing but a statement that the columns of B are
linearly independent. Hence, by what was just shown, B has a right inverse C,BC = I. Then
from AB = I, it follows that

A = A(BC) = (AB)C = IC =C

and so AB = BC = BA = I. Thus the inverse exists.
Finally, if AB = I, then Bx= 0 if and only if x= 0 and so the columns of B are a

linearly independent set in Fn. Therefore, it has a right inverse C which by a repeat of the
above argument is A. Thus AB = BA = I. ■

Similarly, if A has a left inverse then it has an inverse which is the same as the left
inverse.

The theorem gives a condition for the existence of the inverse and the above procedure
gives a method for finding it.

Example 4.2.4 Let A =

 1 0 1
1 2 1
1 1 2

. Find A−1 in arithmetic of Z3.

Form the augmented matrix 1 0 1 1 0 0
1 2 1 0 1 0
1 1 2 0 0 1

 .

Now do row operations in Z3 until the n×n matrix on the left becomes the identity matrix.
This yields after some computations, 1 0 0 0 2 2

0 1 0 1 2 0
0 0 1 1 1 1


and so the inverse of A is the matrix on the right, 0 2 2

1 2 0
1 1 1

 .
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Checking the answer is easy. Just multiply the matrices and see if it works. 1 0 1
1 2 1
1 1 2


 0 2 2

1 2 0
1 1 1

=

 1 0 0
0 1 0
0 0 1


All arithmetic is done in Z3. Always check your answer because if you are like some of us,
you will usually have made a mistake.

Example 4.2.5 Let A =

 6 −1 2
−1 2 −1
2 −1 1

. Find A−1 in Q.

Set up the augmented matrix (A|I) 6 −1 2 1 0 0
−1 2 −1 0 1 0
2 −1 1 0 0 1


Now find row reduced echelon form 1 0 0 1 −1 −3

0 1 0 −1 2 4
0 0 1 −3 4 11


Thus the inverse is  1 −1 −3

−1 2 4
−3 4 11



Example 4.2.6 Let A =

 1 2 2
1 0 2
2 2 4

. Find A−1 in Q.

This time there is no inverse because the columns are not linearly independent. This
can be seen by solving the equation 1 2 2

1 0 2
2 2 4


 x

y
z

=

 0
0
0


and finding that there is a nonzero solution which is equivalent to the columns being a
dependent set. Thus, by Theorem 4.2.3, there is no inverse.

Example 4.2.7 Consider the matrix  1 1 0
0 1 0
0 0 5


Find its inverse in arithmetic of Q and then find its inverse in Z5.
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It has an inverse in Q. 1 1 0
0 1 0
0 0 5


−1

=

 1 −1 0
0 1 0
0 0 1

5


However, in Z5 it has no inverse because 5 = 0 in Z5 and so in Z3

5, the columns are depen-
dent.

Example 4.2.8 Here is a matrix.

(
2 1
1 2

)
. Find its inverse in the arithmetic of Q and

then in Z3.

It has an inverse in the arithmetic of Q.

(
2 1
1 2

)−1

=

(
2
3 − 1

3
− 1

3
2
3

)
However,

there is no inverse in the arithmetic of Z3. Indeed, the row reduced echelon form of(
2 1 0
1 2 0

)

computed in Z3 is

(
1 2 0
0 0 0

)
and so

(
1
1

)
∈ ker

(
2 1
1 2

)
which shows that the

columns are not independent so there is no inverse in Z2
3.

The field of residue classes is not of major importance in this book, but it is included to
emphasize that these considerations are completely algebraic in nature, depending only on
field axioms. There is no geometry or analysis involved here.

4.3 Linear Relations and Row Operations
Suppose you have the following system of equations.

x−5w−3z = 1
2w+ x+ y+ z = 2
2w+ x+ y+ z = 3

You could write it in terms of matrix multiplication as follows.

 1 0 −3 −5
1 1 1 2
1 1 1 2




x
y
z
w

=

 1
2
3


You could also write it in terms of vector addition as follows.

x

 1
1
1

+ y

 0
1
1

+ z

 −3
1
1

+w

 −5
2
2

=

 1
2
3
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When you find a solution to the system of equations, you are really finding the scalars
x,y,z,w such that the vector on the right is the above linear combination of the columns.

We considered writing this system as an augmented matrix 1 0 −3 −5 1
1 1 1 2 2
1 1 1 2 3


and then row reducing it to get a matrix in row reduced echelon form from which it was
easy to see the solution, finding the last column as a linear combination of the preceding
columns. However, this process of row reduction also shows the fourth column as a linear
combination of the first three and the third as a linear combination of the first two, so when
you reduce to row reduced echelon form, you are really solving many systems of equations
at the same time. The important thing was the observation that the row operations did not
change the solution set of the system.

However, this could be said differently. The row operations did not change the set of
scalars which yield the last column as a linear combination of the first four. Similarly, the
row operations did not change the scalars to obtain the fourth column as a linear combina-
tion of the first three, and so forth. In other words, if a column is a linear combination of
the preceding columns, then after doing row operations, that column will still be the same
linear combination of the preceding columns. By permuting the columns, placing a cho-
sen column on the right, the same argument shows that any column after the row operation
is the same linear combination of the other columns as it was before the row operation.

Such a relation between a column and other columns will be called a linear relation.
Thus we have the following significant observation which is stated here as a theorem.

Theorem 4.3.1 Row operations preserve all linear relations between columns.

Now here is a slightly different description of the row reduced echelon form.

Definition 4.3.2 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m× n matrix is said to be in row reduced echelon form if, in
viewing successive columns from left to right, the first nonzero column encountered is e1
and if you have encountered e1,e2, · · · ,ek, the next column is either ek+1 or is a linear
combination of the vectors, e1,e2, · · · ,ek.

Earlier an algorithm was presented which will produce a matrix in row reduced echelon
form. A natural question is whether there is only one row reduced echelon form. In fact,
there is only one and this follows easily from the above definition.

Suppose you had two B,C in row reduced echelon form and these came from the same
matrix A through row operations. Then they have zero columns in the same positions
because row operations preserve all zero columns. Also B,C have e1 in the same position
because its position is that of the first column of A which is not zero. Similarly e2,e3
and so forth must be in the same positions because of the above definition where these
positions are defined in terms of a column being the first in A when viewed from the left
to the right which is not a linear combination of the columns before it. As to a column
after ek and before ek+1 if there is such, these columns are an ordered list top to bottom of
the scalars which give this column in A as a linear combination of the columns to its left
because all linear relations between columns are preserved by doing row operations. Thus
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B,C must be exactly the same. This is why there is only one row reduced echelon form
for a given matrix and it justifies the use of the definite article when referring to the row
reduced echelon form.

This proves the following theorem.

Theorem 4.3.3 The row reduced echelon form is unique.

Now from this theorem, we can obtain the following.

Theorem 4.3.4 Let A be an n× n matrix. Then it is invertible if and only if there is a
sequence of row operations which produces I.

Proof: ⇒ Since A is invertible, it follows from Theorem 4.2.3 that the columns of A
must be independent. Hence, in the row reduced echelon form for A, the columns must
be e1,e2, · · · ,en in order from left to right. In other words, there is a sequence of row
operations which produces I.
⇐ Now suppose such a sequence of row operations produces I. Then since row oper-

ations preserve linear combinations between columns, it follows that no column is a linear
combination of the others and consequently the columns are linearly independent. By The-
orem 4.2.3 again, A is invertible. ■

It would be possible to define things like rank in terms of the row reduced echelon
form and this is often done. However, in this book, these things will be defined in terms of
vector space language and the row reduced echelon form will be a useful tool to determine
the rank.

Definition 4.3.5 Let A be an m×n matrix, the entries being in F a field. Then rank(A) is
defined as the dimension of Im(A)≡ A(Fn). Note that, from the way we multiply matrices
times a vector, this is just the same as the dimension of span(columns of A), sometimes
called the column space.

Now here is a very useful result.

Proposition 4.3.6 Let A be an m× n matrix. Then rank(A) equals the number of pivot
columns in the row reduced echelon form of A. These are the columns of A which are not a
linear combination of those columns on the left.

Proof: This is obvious if the matrix is already in row reduced echelon form. In this
case, the pivot columns consist of e1,e2, · · · ,er and every other column is a linear com-
bination of these. Thus the rank of this matrix is r because these vectors are obviously
linearly independent. However, the linear relations between a column and its preceeding
columns are preserved by row operations and so the columns in A corresponding to the first
occurance of e1, first occurance of e2 and so forth, in the row reduced echelon form, the
pivot columns, are also a basis for the span of the columns of A and so there are r of these.
■

Note that from the description of the row reduced echelon form, the rank is also equal
to the number of nonzero rows in the row reduced echelon form.
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4.4 Block Multiplication of Matrices
Consider the following problem(

A B
C D

)(
E F
G H

)

You know how to do this. You get(
AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E,F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =


A11 · · · A1m

...
. . .

...
Ar1 · · · Arm

 (4.15)

where Ai j is a si× p j matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · ,r. Such
a matrix is called a block matrix, also a partitioned matrix. How do you get the block
Ai j? Here is how for A an m×n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×p j︷ ︸︸ ︷ 0

Ip j×p j

0

. (4.16)

In the block column matrix on the right, you need to have c j− 1 rows of zeros above the
small p j× p j identity matrix where the columns of A involved in Ai j are c j, · · · ,c j + p j−1
and in the block row matrix on the left, you need to have ri− 1 columns of zeros to the
left of the si× si identity matrix where the rows of A involved in Ai j are ri, · · · ,ri + si. An
important observation to make is that the matrix on the right specifies columns to use in the
block and the one on the left specifies the rows used. Thus the block Ai j in this case is a
matrix of size si× p j. There is no overlap between the blocks of A. Thus the identity n×n
identity matrix corresponding to multiplication on the right of A is of the form

Ip1×p1 0
. . .

0 Ipm×pm


these little identity matrices don’t overlap. A similar conclusion follows from consideration
of the matrices Isi×si .
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Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form 

B11 · · · B1p
...

. . .
...

Br1 · · · Brp

 (4.17)

and A is a block matrix of the form
A11 · · · A1m

...
. . .

...
Ap1 · · · Apm

 (4.18)

and that for all i, j, it makes sense to multiply BisAs j for all s ∈ {1, · · · , p}. (That is the two
matrices, Bis and As j are conformable.) and that for fixed i j, it follows BisAs j is the same
size for each s so that it makes sense to write ∑s BisAs j.

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way is
to partition both matrices, formally multiply the blocks to get another block matrix and this
one will be BA partitioned. Before presenting this theorem, here is a simple lemma which
is really a special case of the theorem.

Lemma 4.4.1 Consider the following product. 0

I
0

( 0 I 0
)

where the first is n× r and the second is r×n. The small identity matrix I is an r× r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form 0 0 0

0 I 0

0 0 0


Proof: From the definition of the way you multiply matrices, the product is

 0

I
0

0 · · ·

 0

I
0

0

 0

I
0

e1 · · ·

 0

I
0

er

 0

I
0

0 · · ·

 0

I
0

0


which yields the claimed result. In the formula e j refers to the column vector of length r
which has a 1 in the jth position. ■

Theorem 4.4.2 Let B be a q× p block matrix as in 4.17 and let A be a p×n block matrix
as in 4.18 such that Bis is conformable with As j and each product, BisAs j for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the i jth block is of the form

∑
s

BisAs j. (4.19)
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Proof: From 4.16

BisAs j =
(

0 Iri×ri 0
)

B

 0

Ips×ps

0

( 0 Ips×ps 0
)

A

 0

Iq j×q j

0


where here it is assumed Bis is ri× ps and As j is ps×q j. The product involves the sth block
in the ith row of blocks for B and the sth block in the jth column of A. Thus there are the
same number of rows above the Ips×ps as there are columns to the left of Ips×ps in those two
inside matrices. Then from Lemma 4.4.1 0

Ips×ps

0

( 0 Ips×ps 0
)
=

 0 0 0

0 Ips×ps 0

0 0 0


Since the blocks of small identity matrices do not overlap,

∑
s

 0 0 0

0 Ips×ps 0

0 0 0

=


Ip1×p1 0

. . .

0 Ipp×pp

= I

and so ∑s BisAs j =

∑
s

(
0 Iri×ri 0

)
B

 0

Ips×ps

0

( 0 Ips×ps 0
)

A

 0

Iq j×q j

0



=
(

0 Iri×ri 0
)

B∑
s

 0

Ips×ps

0

( 0 Ips×ps 0
)

A

 0

Iq j×q j

0



=
(

0 Iri×ri 0
)

BIA

 0

Iq j×q j

0

=
(

0 Iri×ri 0
)

BA

 0

Iq j×q j

0


which equals the i jth block of BA. Hence the i jth block of BA equals the formal multipli-
cation according to matrix multiplication, ∑s BisAs j. ■

Example 4.4.3 Let an n×n matrix have the form

A =

(
a b

c P

)
where P is n−1×n−1. Multiply it by

B =

(
p q

r Q

)
where B is also an n×n matrix and Q is n−1×n−1.
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You use block multiplication(
a b

c P

)(
p q

r Q

)
=

(
ap+br aq+bQ
pc+Pr cq+PQ

)

Note that this all makes sense. For example, b = 1× n− 1 and r = n− 1× 1 so br is a
1×1. Similar considerations apply to the other blocks.

Here is a very significant application. A matrix is called block diagonal if it has all
zeros except for square blocks down the diagonal. That is, it is of the form

A =


A1 0

A2
. . .

0 Am


where A j is a r j× r j matrix whose main diagonal lies on the main diagonal of A. Then by
block multiplication, if p ∈ N the positive integers,

Ap =


Ap

1 0
Ap

2
. . .

0 Ap
m

 (4.20)

Also, A−1 exists if and only if each block is invertible and in fact, A−1 is given by the above
when p =−1.

4.5 Elementary Matrices
The elementary matrices result from doing a row operation to the identity matrix. Recall
the following definition.

Definition 4.5.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 4.5.2 The elementary matrices consist of those matrices which result by ap-
plying a row operation to an identity matrix. Those which involve switching rows of the
identity are called permutation matrices1.

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the identity matrix,
which means possibly more than two rows are switched.
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The importance of elementary matrices is that when you multiply on the left by one, it
does the row operation which was used to produce the elementary matrix.

Now consider what these elementary matrices look like. First consider the one which
involves switching row i and row j where i < j. This matrix is of the form

. . .

0 1
. . .

1 0
. . .


Note how the ith and jth rows are switched in the identity matrix and there are thus all ones
on the main diagonal except for those two positions indicated. The two exceptional rows
are shown. The ith row was the jth and the jth row was the ith in the identity matrix. Now
consider what this does to a column vector.

. . .

0 1
. . .

1 0
. . .





...
xi
...

x j
...


=



...
x j
...
xi
...


Now denote by Pi j the elementary matrix which comes from the identity from switching

rows i and j. From what was just explained,

Pi j



...
...

...
ai1 ai2 · · · aip
...

...
...

a j1 a j2 · · · a jp
...

...
...


=



...
...

...
a j1 a j2 · · · a jp

...
...

...
ai1 ai2 · · · aip
...

...
...


This has established the following lemma.

Lemma 4.5.3 Let Pi j denote the elementary matrix which involves switching the ith and
the jth rows. Then

Pi jA = B

where B is obtained from A by switching the ith and the jth rows.

Example 4.5.4 Consider the following. 0 1 0
1 0 0
0 0 1


 a b

g d
e f

=

 g d
a b
e f
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Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith row
of the identity matrix is of the form

. . . 0
1

c
1

0
. . .


Now consider what this does to a column vector.

. . . 0
1

c
1

0
. . .





...
vi−1

vi

vi+1
...


=



...
vi−1

cvi

vi+1
...


Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed,

E (c, i)



...
...

...
a(i−1)1 a(i−1)2 · · · a(i−1)p

ai1 ai2 · · · aip

a(i+1)1 a(i+1)2 · · · a(i+1)p
...

...
...


=



...
...

...
a(i−1)1 a(i−1)2 · · · a(i−1)p

cai1 cai2 · · · caip

a(i+1)1 a(i+1)2 · · · a(i+1)p
...

...
...


This proves the following lemma.

Lemma 4.5.5 Let E (c, i) denote the elementary matrix corresponding to the row opera-
tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Example 4.5.6 Consider this. 1 0 0
0 5 0
0 0 1


 a b

c d
e f

=

 a b
5c 5d
e f


Finally consider the third of these row operations. Denote by E (c× i+ j) the elemen-

tary matrix which replaces the jth row with the jth row added to c times the ith row. In case
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i < j this will be of the form 

. . . 0
1

. . .

c 1

0
. . .


Now consider what this does to a column vector.

. . . 0
1

. . .

c 1

0
. . .





...
vi
...

v j
...


=



...
vi
...

cvi + v j
...


Now from this,

E (c× i+ j)



...
...

...
ai1 ai2 · · · aip
...

...
...

a j1 a j2 · · · a jp
...

...
...



=



...
...

...
ai1 ai2 · · · aip
...

...
...

cai1 +a j1 cai2 +a j2 · · · caip +a jp
...

...
...


The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.5.7 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the ith

row of A.

Example 4.5.8 Consider the third row operation. 1 0 0
0 1 0
2 0 1


 a b

c d
e f

=

 a b
c d

2a+ e 2b+ f
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The next theorem is the main result.

Theorem 4.5.9 To perform any of the three row operations on a matrix A, it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take the
product, EA. Furthermore, if E is an elementary matrix, then there is another elementary
matrix Ê such that EÊ = ÊE = I.

Proof: The first part of this theorem has been proved in Lemmas 4.5.3 - 4.5.7. It only
remains to verify the claim about the matrix Ê. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I.

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that row
was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was the
jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the left,
undoes the row operation which resulted in E (c× i+ j). The same argument applied to
the product E (c× i+ j)E (−c× i+ j) replacing c with −c in the argument yields that this
product is also equal to I. Therefore, there is an elementary matrix of the same sort which
when multiplied by E on either side gives the identity.

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant c, you can take Ê = E ((1/c) , i).

Finally, consider Pi j which involves switching the ith and the jth rows Pi jPi j = I be-
cause by the first part of this theorem, multiplying on the left by Pi j switches the ith and jth

rows of Pi j which was obtained from switching the ith and jth rows of the identity. First
you switch them to get Pi j and then you multiply on the left by Pi j which switches these
rows again and restores the identity matrix. ■

Using Theorem 4.3.4, this shows the following result.

Theorem 4.5.10 Let A be an n×n matrix. Then if R is its row reduced echelon form, there
is a sequence of elementary matrices Ei such that

E1E2 · · ·EmA = R

In particular, A is invertible if and only if there is a sequence of elementary matrices as
above such that E1E2 · · ·EmA = I. Inverting these,A = E−1

m · · ·E−1
2 E−1

1 a product of ele-
mentary matrices.

4.6 Exercises
1. In 4.1 - 4.8 describe −A and 0.

2. Let A be an n× n matrix. Show A equals the sum of a symmetric and a skew sym-
metric matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.
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4. We used the fact that the columns of a matrix A are independent if and only if Ax= 0
has only the zero solution for x. Why is this so?

5. If A is m× n where n > m, explain why there exists x ∈ Fn such that Ax= 0 but
x ̸= 0.

6. Using only the properties 4.1 - 4.8 show −A is unique.

7. Using only the properties 4.1 - 4.8 show 0 is unique.

8. Using only the properties 4.1 - 4.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m×n matrices.

9. Using only the properties 4.1 - 4.8 and previous problems show (−1)A =−A.

10. Prove that ImA = A where A is an m×n matrix.

11. Let A and be a real m× n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk. You need to know about the

dot product. It will be discussed later but hopefully it has been seen in physics or
calculus.

12. Use the result of Problem 11 to verify directly that (AB)T = BT AT without making
any reference to subscripts. However, note that the treatment in the chapter did not
depend on a dot product.

13. Let x= (−1,−1,1) and y = (0,1,2) . Find xTy and xyT if possible.

14. Give an example of matrices, A,B,C such that B ̸=C, A ̸= 0, and yet AB = AC.

15. Let A =

 1 1
−2 −1
1 2

, B =

(
1 −1 −2
2 1 −2

)
, C =

 1 1 −3
−1 2 0
−3 −1 0

 . Find

if possible the following products. AB,BA,AC,CA,CB,BC.

16. Show (AB)−1 = B−1A−1.

17. Show that if A is an invertible n×n matrix, then so is AT and
(
AT
)−1

=
(
A−1

)T
.

18. Show that if A is an n×n invertible matrix and x is a n×1 matrix such that Ax= b
for b an n×1 matrix, then x= A−1b.

19. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸=−I.

20. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

21. Give another example other than the one given in this section of two square matrices,
A and B such that AB ̸= BA.

22. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)2 = A2−2AB+B2
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(b) (AB)2 = A2B2

(c) (A+B)2 = A2 +2AB+B2

(d) (A+B)2 = A2 +AB+BA+B2

(e) A2B2 = A(AB)B

(f) (A+B)3 = A3 +3A2B+3AB2 +B3

(g) (A+B)(A−B) = A2−B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

23. Let A =

(
−1 −1
3 3

)
. Find all 2×2 matrices, B such that AB = 0.

24. Prove that if A−1 exists and Ax= 0 then x= 0.

25. Let

A =

 1 2 3
2 1 4
1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.

26. Let

A =

 1 0 3
2 3 4
1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.

27. Let

A =

 1 2 3
2 1 4
4 5 10

 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =


1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2


Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =

(
2 1
1 3

)
Find A−1 if possible. If A−1 does not exist, determine why. Do this in Q2 and in Z2

5.
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30. Let

A =

(
2 1
1 2

)
Find A−1 if possible. If A−1 does not exist, determine why. Do this in Q2 and in Z2

3.

31. If you have any system of equations Ax= b, let ker(A)≡ {x : Ax= 0} . Show that
all solutions of the system Ax= b are in ker(A)+yp where Ayp = b. This means
that every solution of this last equation is of the form yp +z where Az = 0.

32. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system. 1 −1 2

1 −2 1
3 −4 5


 x

y
z

=

 0
0
0

 .

33. Using Problem 32 find the general solution to the following linear system. 1 −1 2
1 −2 1
3 −4 5


 x

y
z

=

 1
2
4

 .

34. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system. 0 −1 2

1 −2 1
1 −4 5


 x

y
z

=

 0
0
0

 .

35. Using Problem 34 find the general solution to the following linear system. 0 −1 2
1 −2 1
1 −4 5


 x

y
z

=

 1
−1
1

 .

36. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system. 1 −1 2

1 −2 0
3 −4 4


 x

y
z

=

 0
0
0

 .

37. Using Problem 36 find the general solution to the following linear system. 1 −1 2
1 −2 0
3 −4 4


 x

y
z

=

 1
2
4

 .
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38. Show that 4.20 is valid for p = −1 if and only if each block has an inverse and that
this condition holds if and only if A is invertible.

39. Let A be an n×n matrix and let Pi j be the permutation matrix which switches the ith

and jth rows of the identity. Show that Pi jAPi j produces a matrix which is similar to
A which switches the ith and jth entries on the main diagonal.

40. You could define column operations by analogy to row operations. That is, you
switch two columns, multiply a column by a nonzero scalar, or add a scalar multiple
of a column to another column. Let E be one of these column operations applied to
the identity matrix. Show that AE produces the column operation on A which was
used to define E.

41. Consider the symmetric 3× 3 matrices, those for which A = AT . Show that with
respect to the usual notions of addition and scalar multiplication this is a vector space
of dimension 6. What is the dimension of the set of skew symmetric matrices?

42. You have an m×n matrix of rank r. Explain why if you delete a column, the resulting
matrix has rank r or rank r−1.

43. Using the fact that multiplication on the left by an elementary matrix accomplishes a
row operation, show easily that row operations produce no change in linear relations
between columns.



100 CHAPTER 4. MATRICES



Chapter 5

Linear Transformations
This chapter is on functions which map a vector space to another one which are also lin-
ear. The description of these is in the following definition. Linear algebra is all about
understanding these kinds of mappings.

Definition 5.0.1 Let V and W be two finite dimensional vector spaces. A function, L which
maps V to W is called a linear transformation and written L ∈L (V,W ) if for all scalars
α and β , and vectors v,w, L(αv+βw) = αL(v)+βL(w) .

Example 5.0.2 Let V =R3,W =R, and let a∈R3 be given vector in V. Define T : V →W
by Tv ≡ ∑

3
i=1 aivi

It is left as an exercise to verify that this is indeed linear. Here is an interesting obser-
vation.

Proposition 5.0.3 Let L : Fn → Fm be linear. Then there exists a unique m× n matrix A
such that Lx= Ax for all x. Also, matrix multiplication yields a linear transformation.

Proof: Note that x= ∑
n
i=1 xiei and so

Lx = L

(
n

∑
i=1

xiei

)
=

n

∑
i=1

xiLei =
(

Le1 · · · Len

)
x1
...

xn


=

(
Le1 · · · Len

)
x

The matrix is A. The last claim follows from the properties of matrix multiplication. ■
I will abuse terminology slightly and say that a m×n matrix is one to one if the linear

transformation it determines is one to one, similarly for the term onto.

5.1 L (V,W ) as a Vector Space
The linear transformations can be considered as a vector space as described next.

Definition 5.1.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by
L+M according to the rule1

(L+M)v≡ Lv+Mv.

For α a scalar and L ∈L (V,W ) , define αL ∈L (V,W ) by

αL(v)≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the above
definitions of vector addition and scalar multiplication. In fact, is just a subspace of the set
of functions mapping V to W which is a vector space thanks to Example 3.0.3. What about
the dimension of L (V,W )? What about a basis for L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

1Note that this is the standard way of defining the sum of two functions.

101
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Lemma 5.1.2 Let V and W be vector spaces and suppose {v1, · · · ,vn} is a basis for V.
Then if L : V →W is given by Lvk = wk ∈W and

L

(
n

∑
k=1

akvk

)
≡

n

∑
k=1

akLvk =
n

∑
k=1

akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · ,vn} is a basis, there is exactly one
way to write a given vector of V as a linear combination. Next, observe that L is obviously
linear from the definition. If L,M are equal on the basis, then if ∑

n
k=1 akvk is an arbitrary

vector of V,

L

(
n

∑
k=1

akvk

)
=

n

∑
k=1

akLvk =
n

∑
k=1

akMvk = M

(
n

∑
k=1

akvk

)
and so L = M because they give the same result for every vector in V . ■

The message is that when you define a linear transformation, it suffices to tell what it
does to a basis.

Example 5.1.3 A basis for R2 is (
1
1

)
,

(
1
0

)
Suppose T is a linear transformation which satisfies

T

(
1
1

)
=

(
2
1

)
, T

(
1
0

)
=

(
−1
1

)

Find T

(
3
2

)
.

T

(
3
2

)
= T

(
2

(
1
1

)
+

(
1
0

))

= 2T

(
1
1

)
+T

(
1
0

)

= 2

(
2
1

)
+

(
−1
1

)
=

(
3
3

)
Theorem 5.1.4 Let V and W be finite dimensional linear spaces of dimension n and m
respectively. Then dim(L (V,W )) = mn.

Proof: Let two sets of bases be {v1, · · · ,vn} and {w1, · · · ,wm} for V and W respectively.
Using Lemma 5.1.2, let wiv j ∈L (V,W ) be the linear transformation defined on the basis,
{v1, · · · ,vn}, by

wivk (v j)≡ wiδ jk



5.2. THE MATRIX OF A LINEAR TRANSFORMATION 103

where δ ik = 1 if i = k and 0 if i ̸= k. I will show that L ∈L (V,W ) is a linear combination
of these special linear transformations called dyadics, also rank one transformations.

Then let L ∈L (V,W ). Since {w1, · · · ,wm} is a basis, there exist constants, d jk such
that

Lvr =
m

∑
j=1

d jrw j

Now consider the following sum of dyadics. ∑
m
j=1 ∑

n
i=1 d jiw jvi. Apply this to vr. This yields

m

∑
j=1

n

∑
i=1

d jiw jvi (vr) =
m

∑
j=1

n

∑
i=1

d jiw jδ ir =
m

∑
j=1

d jrw j = Lvr (5.1)

Therefore, L = ∑
m
j=1 ∑

n
i=1 d jiw jvi showing the span of the dyadics is all of L (V,W ) .

Now consider whether these special linear transformations are a linearly independent
set. Suppose

∑
i,k

dikwivk = 0.

Are all the scalars dik equal to 0?

0 = ∑
i,k

dikwivk (vl) =
m

∑
i=1

dilwi

and so, since {w1, · · · ,wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary, this
shows dil = 0 for all i and l. Thus these linear transformations form a basis and this shows
that the dimension of L (V,W ) is mn as claimed because there are m choices for the wi and
n choices for the v j. ■

Note that from 5.1, these coefficients which obtain L as a linear combination of the
diadics are given by the equation

m

∑
j=1

d jrw j = Lvr (5.2)

Thus Lvr is in the span of the w j.

5.2 The Matrix of a Linear Transformation
In order to do computations based on a linear transformation, we usually work with its
matrix. This is what is described here.

Theorem 5.1.4 says that the rank one transformations defined there in terms of two
bases, one for V and the other for W are a basis for L (V,W ) . Thus if A ∈L (V,W ) , there
are scalars Ai j such that

A =
n

∑
i=1

m

∑
j=1

Ai jwiv j

Here we have 1≤ i≤ n and 1≤ j≤m. We can arrange these scalars in a rectangular shape
as follows. 

A11 A12 · · · A1(n−1) A1n

A21 A22 · · · A2(n−1) A2n
...

...
...

...
Am1 Am2 · · · Am(n−1) Amn





104 CHAPTER 5. LINEAR TRANSFORMATIONS

Here this is an m× n matrix because it has m rows and n columns. It is called the ma-
trix of the linear transformation A with respect to the two bases {v1, · · · ,vn} for V and
{w1, · · · ,wm} for W . Now, as noted earlier, if v = ∑

n
r=1 xrvr,

Av =
m

∑
i=1

n

∑
j=1

Ai jwiv j

(
n

∑
r=1

xrvr

)

=
n

∑
r=1

xr

m

∑
i=1

n

∑
j=1

Ai jwiv j (vr) =
n

∑
r=1

xr

m

∑
i=1

n

∑
j=1

Ai jwiδ jr

=
n

∑
r=1

xr

m

∑
i=1

Airwi =
m

∑
i=1

(
n

∑
r=1

Airxr

)
wi

What does this show? It shows that if the component vector of v is

x=


x1
...

xn


meaning that v = ∑i xivi, then the component vector of w has ith component equal to

n

∑
r=1

Airxr = (Ax)i

The idea is that acting on a vector v with a linear transformation T yields a new vector
w whose component vector is obtained as the matrix of the linear transformation times the
component vector of v. It is helpful for some of us to think of this in terms of diagrams. On
the other hand, some people hate such diagrams. Use them if it helps. Otherwise ignore
them and go right to the algebraic definition 5.2.

Let β = {v1, · · · ,vn} be a basis for V and let {w1, · · · ,wm}= γ be a basis for W . Then
let qβ : Fn→V,qγ : Fm→W be defined as

qβx≡
n

∑
i=1

xivi, qγ y ≡
m

∑
j=1

y jw j

Thus these mappings are linear and take the component vector to the vector determined by
the component vector.

Then the diagram which describes the matrix of the linear transformation L is in the
following picture.

L
β = {v1, · · · ,vn} V → W {w1, · · · ,wm}= γ

qβ ↑ ◦ ↑ qγ

Fn → Fm

[L]
γβ

(5.3)

In terms of this diagram, the matrix [L]
γβ

is the matrix chosen to make the diagram
“commute”. It is the matrix of the linear transformation because it takes the component
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vector of v to the component vector for Lv. As implied by the diagram and as shown above,
for A = [L]

γβ
,

Lvi =
m

∑
j=1

A jiw j

Gimmick for finding matrix of a linear transformation

It may be useful to write this in the form(
Lv1 · · · Lvn

)
=
(

w1 · · · wm

)
A, A is m×n (5.4)

and multiply formally as if the Lvi,w j were numbers.

Example 5.2.1 Let L ∈L (Fn,Fm) and let the two bases be{
e1 · · · en

}
,
{

e1 · · · em

}
,

ei denoting the column vector of zeros except for a 1 in the ith position. Then from the
above, you need to have

Lei =
m

∑
j=1

A jie j

which says that (
Le1 · · · Len

)
m×n

=
(

e1 · · · em

)
m×m

Am×n

and so Lei equals the ith column of A. In other words,

A =
(

Le1 · · · Len

)
.

Then for x=
(

x1 · · · xn

)T

Ax = A

(
n

∑
i=1

xiei

)
=

n

∑
i=1

xiAei

=
n

∑
i=1

xiLei = L

(
n

∑
i=1

xiei

)
= Lx

Thus, doing L to a vector x is the same as multiplying on the left by the matrix A.

Example 5.2.2 Let
V ≡ { polynomials of degree 3 or less},

W ≡ { polynomials of degree 2 or less},

and L≡ D where D is the differentiation operator. A basis for V is β =
{

1,x,x2,x3
}

and a
basis for W is γ = {1,x, x2}.
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What is the matrix of this linear transformation with respect to this basis? Using 5.4,(
0 1 2x 3x2

)
=
(

1 x x2
)
[D]

γβ
.

It follows from this that the first column of [D]
γβ

is 0
0
0


The next three columns of [D]

γβ
are 1

0
0

 ,

 0
2
0

 ,

 0
0
3


and so

[D]
γβ

=

 0 1 0 0
0 0 2 0
0 0 0 3

 .

Say you have a+bx+cx2 +dx3. Then doing D to it gives b+2cx+3dx2. The compo-
nent vector of the function is (

a b c d
)T

and after doing D to the function, you get for the component vector(
b 2c 3d

)T

This is the same result you get when you multiply by [D] .

 0 1 0 0
0 0 2 0
0 0 0 3




a
b
c
d

=

 b
2c
3d


Of course, this is what it means to be the matrix of the transformation.

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above.

β = {e1, · · · ,en} , γ = {e1, · · · ,em}

Let L be a linear transformation from Fn to Fm and let A be the matrix of the transforma-
tion with respect to these bases. In this case the coordinate maps qβ and qγ are simply
the identity maps on Fn and Fm respectively, and can be accomplished by simply multiply-
ing by the appropriate sized identity matrix. The requirement that A is the matrix of the
transformation amounts to

Lb= Ab
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What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
which illustrates the situation.

Fn A2−→ Fm

qβ 2
↓ ◦ qγ2 ↓
V L−→ W

qβ 1
↑ ◦ qγ1 ↑
Fn A1−→ Fm

In this diagram qβ i
and qγ i are coordinate maps as described above. From the diagram,

q−1
γ1

qγ2A2q−1
β 2

qβ 1
= A1,

where q−1
β 2

qβ 1
and q−1

γ1
qγ2 are one to one, onto, and linear maps which may be accom-

plished by multiplication by a square matrix. Thus there exist matrices P,Q such that
P : Fn→ Fn and Q : Fm→ Fm are invertible and

PA2Q = A1.

Example 5.2.3 Let β ≡ {v1, · · · ,vn} and γ ≡ {w1, · · · ,wn} be two bases for V . Let L be
the linear transformation which maps vi to wi. Find [L]

γβ
.

Letting δ i j be the symbol which equals 1 if i = j and 0 if i ̸= j, it follows that L =

∑i, j δ i jwiv j and so [L]
γβ

= I the identity matrix.

Definition 5.2.4 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
β 1

qβ 2
A2q−1

β 2
qβ 1

= A1.

Letting S be the matrix of the linear transformation q−1
β 2

qβ 1
with respect to the standard

basis vectors in Fn,
S−1A2S = A1. (5.5)

When this occurs, A1 is said to be similar to A2 and A→ S−1AS is called a similarity
transformation.

Recall the following.

Definition 5.2.5 Let S be a set. The symbol ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 5.2.6 [x] denotes the set of all elements of S which are equivalent to x and [x] is
called the equivalence class determined by x or just the equivalence class of x.



108 CHAPTER 5. LINEAR TRANSFORMATIONS

Also recall the notion of equivalence classes.

Theorem 5.2.7 Let ∼ be an equivalence class defined on a set S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x∼ y
and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

Theorem 5.2.8 In the vector space of n×n matrices, define

A∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈L (V,V ) and bases {v1, · · · ,vn} and {w1, · · · ,wn} such that
A is the matrix of L with respect to {v1, · · · ,vn} and B is the matrix of L with respect to
{w1, · · · ,wn}.

Proof: A∼ A because S = I works in the definition. If A∼ B , then B∼ A, because

A = S−1BS

implies B = SAS−1. If A∼ B and B∼C, then A = S−1BS, B = T−1CT and so

A = S−1T−1CT S = (T S)−1 CT S

which implies A∼C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A∼ B so A = S−1BS and pick a basis for

V,
β ≡ {v1, · · · ,vn}.

Define L ∈L (V,V ) by Lvi ≡ ∑ j a jiv j where A = (ai j) . Thus A is the matrix of the linear
transformation L. Consider the diagram

Fn B−→ Fn

qγ ↓ ◦ qγ ↓
V L−→ V

qβ ↑ ◦ qβ ↑
Fn A−→ Fn

where qγ is chosen to make the diagram commute. Thus we need S = q−1
γ qβ which requires

qγ = qβ S−1. Then it follows that B is the matrix of L with respect to the basis{
qγe1, · · · ,qγen

}
≡ {w1, · · · ,wn}.

That is, A and B are matrices of the same linear transformation L. Conversely, sup-
pose whenever V is an n dimensional vector space, there exists L ∈ L (V,V ) and bases
{v1, · · · ,vn} and {w1, · · · ,wn} such that A is the matrix of L with respect to {v1, · · · ,vn}
and B is the matrix of L with respect to {w1, · · · ,wn}. Then it was shown above that A∼ B.
■

What if the linear transformation consists of multiplication by a matrix A and you want
to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The next proposition considers this.
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Proposition 5.2.9 Let A be an m×n matrix and consider it as a linear transformation by
multiplication on the left by A. Then the matrix M of this linear transformation with respect
to the bases β = {u1, · · · ,un} for Fn and γ = {w1, · · · ,wm} for Fm is given by

M =
(

w1 · · · wm

)−1
A
(

u1 · · · un

)
where

(
w1 · · · wm

)
is the m×m matrix which has w j as its jth column. Note that

also (
w1 · · · wm

)
M
(

u1 · · · un

)−1
= A

Proof: Consider the following diagram.

A
Fn → Fm

qβ ↑ ◦ ↑ qγ

Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qβ (x)≡
n

∑
i=1

xiui =
(

u1 · · · un

)
x

Therefore, qβ can be considered the same as multiplication of a vector in Fn on the left

by the matrix
(

u1 · · · un

)
. Similar considerations apply to qγ . Thus it is desired to

have the following for an arbitrary x ∈ Fn.

A
(

u1 · · · un

)
x=

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. ■
The second formula in the above is pretty useful. You might know the matrix M of a

linear transformation with respect to a funny basis and this formula gives the matrix of the
linear transformation in terms of the usual basis which is really what you want.

Definition 5.2.10 Let A ∈L (X ,Y ) where X and Y are finite dimensional vector spaces.
Define rank(A) to equal the dimension of A(X) .

Lemma 5.2.11 Let M be an m×n matrix. Then M can be considered as a linear transfor-
mation as follows.

M (x)≡Mx

That is, you multiply on the left by M.

Proof: This follows from the properties of matrix multiplication. In particular,

M (ax+by) = aMx+bMy ■

Note also that, as explained earlier, the image of this transformation is just the span of the
columns, known as the column space.

The following theorem explains how the rank of A is related to the rank of the matrix
of A.
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Theorem 5.2.12 Let A ∈L (X ,Y ). Then rank(A) = rank(M) where M is the matrix of A
taken with respect to a pair of bases for the vector spaces X , and Y. Here M is considered
as a linear transformation by matrix multiplication.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

β = {v1, · · · ,vn} X A−→ Y {w1, · · · ,wm}= γ

qβ ↑ ◦ ↑ qγ

Fn M−→ Fm

Let {Ax1, · · · ,Axr} be a basis for AX . Thus{
qγ Mq−1

β
x1, · · · ,qγ Mq−1

β
xr

}
is a basis for AX . It follows that {

Mq−1
X x1, · · · ,Mq−1

X xr
}

is linearly independent and so rank(A) ≤ rank(M) . However, one could interchange the
roles of M and A in the above argument and thereby turn the inequality around. ■

The following result is a summary of many concepts.

Theorem 5.2.13 Let L ∈L (V,V ) where V is a finite dimensional vector space. Then the
following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.

4. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let β = {vi}n
i=1 be a basis. Then if ∑

n
i=1 ciLvi =

0 it follows L(∑n
i=1 civi) = 0 which means that since L(0) = 0, and L is one to one, it must

be the case that ∑
n
i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a

linearly independent set. Since there are n of these, it must be that this is a basis.
Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that

there are constants, {ci} such that y = ∑
n
i=1 ciLvi = L(∑n

i=1 civi) . Thus L is onto. It has
been shown that 2.) implies 3.).

Now suppose 3.). Then L(V ) =V . If {v1, · · · ,vn} is a basis of V, then

V = span(Lv1, · · · ,Lvn) .

It follows that {Lv1, · · · ,Lvn} must be linearly independent because if not, one of the vec-
tors could be deleted and you would then have a spanning set with fewer vectors than
dim(V ). If Lv = 0,

v = ∑
i

xivi
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then doing L to both sides, 0 = ∑i xiLvi which imiplies each xi = 0 and consequently v = 0.
Thus 4. follows.

Now suppose 4.) and suppose Lv = Lw. Then L(v−w) = 0 and so by 4.), v−w = 0
showing that L is one to one. ■

Also it is important to note that composition of linear transformations corresponds to
multiplication of the matrices. Consider the following diagram in which [A]

γβ
denotes the

matrix of A relative to the bases γ on Y and β on X , [B]
δγ

defined similarly.

X A−→ Y B−→ Z

qβ ↑ ◦ ↑ qγ ◦ ↑ qδ

Fn [A]
γβ−−→

Fm [B]
δγ−−→

Fp

where A and B are two linear transformations, A∈L (X ,Y ) and B∈L (Y,Z) . Then B◦A∈
L (X ,Z) and so it has a matrix with respect to bases given on X and Z, the coordinate maps
for these bases being qβ and qδ respectively. Then

B◦A = qδ [B]δγ
q−1

γ qγ [A]γβ
q−1

β
= qδ [B]δγ

[A]
γβ

q−1
β
.

But this shows that [B]
δγ
[A]

γβ
plays the role of [B◦A]

δβ
, the matrix of B ◦A. Hence the

matrix of B ◦ A equals the product of the two matrices [A]
γβ

and [B]
δγ
. Of course it is

interesting to note that although [B◦A]
δβ

must be unique, the matrices, [A]
γβ

and [B]
δγ

are
not unique because they depend on γ, the basis chosen for Y .

Theorem 5.2.14 The matrix of the composition of linear transformations equals the prod-
uct of the matrices of these linear transformations.

5.3 Rotations About a Given Vector∗

As an application, consider the problem of rotating counter clockwise about a given unit
vector which is possibly not one of the unit vectors in coordinate directions. First consider
a pair of perpendicular unit vectors, u1 and u2 and the problem of rotating in the counter-
clockwise direction about u3 where u3 = u1×u2 so that u1,u2,u3 forms a right handed
orthogonal coordinate system. See the appendix on the cross product if this is not familiar.
Thus the vector u3 is coming out of the page.

θ

θ

u1
u2

Let T denote the desired rotation. Then

T (au1 +bu2 + cu3) = aTu1 +bTu2 + cTu3

= (acosθ −bsinθ)u1 +(asinθ +bcosθ)u2 + cu3.
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Thus in terms of the basis γ ≡ {u1,u2,u3} , the matrix of this transformation is

[T ]
γ
≡

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 .

This is not desirable because it involves a funny basis. I want to obtain the matrix of the
transformation in terms of the usual basis β ≡ {e1,e2,e3} because it is in terms of this
basis that we usually deal with vectors in R3. From Proposition 5.2.9, if [T ]

β
is this matrix, cosθ −sinθ 0

sinθ cosθ 0
0 0 1


=

(
u1 u2 u3

)−1
[T ]

β

(
u1 u2 u3

)
and so you can solve for [T ]

β
if you know the ui.

Recall why this is so.
R3 [T ]

γ−−→
R3

qγ ↓ ◦ qγ ↓
R3 T−→ R3

I ↑ ◦ I ↑
R3 [T ]

β−−→
R3

The map qγ is accomplished by a multiplication on the left by
(

u1 u2 u3

)
. Thus

[T ]
β
= qγ [T ]γ q−1

γ =
(

u1 u2 u3

)
[T ]

γ

(
u1 u2 u3

)−1
.

Suppose the unit vector u3 about which the counterclockwise rotation takes place is
(a,b,c). Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed or-
thonormal system with u3 = (a,b,c) and then use the above result. It is of course somewhat
arbitrary how this is accomplished. I will assume however, that |c| ̸= 1 since otherwise you
are looking at either clockwise or counter clockwise rotation about the positive z axis and
this is a problem which is fairly easy. Indeed, the matrix of such a rotation in terms of the
usual basis is just  cosθ −sinθ 0

sinθ cosθ 0
0 0 1

 (5.6)

Then let u3 = (a,b,c) and u2 ≡ 1√
a2+b2

(b,−a,0) . This one is perpendicular to u3. If

{u1,u2,u3} is to be a right hand system it is necessary to have

u1 = u2×u3 =
1√

(a2 +b2)(a2 +b2 + c2)

(
−ac,−bc,a2 +b2)
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Now recall that u3 is a unit vector and so the above equals

1√
(a2 +b2)

(
−ac,−bc,a2 +b2)

Then from the above, A is given by
−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√

a2 +b2 0 c


 cosθ −sinθ 0

sinθ cosθ 0
0 0 1




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√

a2 +b2 0 c


−1

It is easy to take the inverse of this matrix on the left. You can check right away that its in-
verse is nothing but its transpose. Then doing the computation and then some simplification
yields

=

 a2 +
(
1−a2

)
cosθ ab(1− cosθ)− csinθ ac(1− cosθ)+bsinθ

ab(1− cosθ)+ csinθ b2 +
(
1−b2

)
cosθ bc(1− cosθ)−asinθ

ac(1− cosθ)−bsinθ bc(1− cosθ)+asinθ c2 +
(
1− c2

)
cosθ

 .

(5.7)
With this, it is clear how to rotate clockwise about the unit vector, (a,b,c) . Just rotate

counter clockwise through an angle of −θ . Thus the matrix for this clockwise rotation is
just

=

 a2 +
(
1−a2

)
cosθ ab(1− cosθ)+ csinθ ac(1− cosθ)−bsinθ

ab(1− cosθ)− csinθ b2 +
(
1−b2

)
cosθ bc(1− cosθ)+asinθ

ac(1− cosθ)+bsinθ bc(1− cosθ)−asinθ c2 +
(
1− c2

)
cosθ

 .

In deriving 5.7 it was assumed that c ̸=±1 but even in this case, it gives the correct an-
swer. Suppose for example that c = 1 so you are rotating in the counter clockwise direction
about the positive z axis. Then a,b are both equal to zero and 5.7 reduces to 5.6.

5.4 Exercises
1. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,

and C invertible?

2. Give an example of a 3× 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

3. Explain why Ax= 0 always has a solution whenever A is a linear transformation.

4. Recall that a line inRn is of the form x+tv where t ∈R. Recall that v is a “direction
vector”. Show that if T : Rn→ Rm is linear, then the image of T is either a line or a
point.

5. In the following examples, a linear transformation, T is given by specifying its action
on a basis β . Find its matrix with respect to this basis.
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(a) T

(
1
2

)
= 2

(
1
2

)
+1

(
−1
1

)
,T

(
−1
1

)
=

(
−1
1

)

(b) T

(
0
1

)
= 2

(
0
1

)
+1

(
−1
1

)
,T

(
−1
1

)
=

(
0
1

)

(c) T

(
1
0

)
= 2

(
1
2

)
+1

(
1
0

)
,T

(
1
2

)
= 1

(
1
0

)
−

(
1
2

)

6. ↑In each example above, find a matrix A such that for every x ∈ R2,Tx= Ax.

7. Consider the linear transformation Tθ which rotates every vector in R2 through the
angle of θ . Find the matrix Aθ such that Tθx = Aθx. Hint: You need to have the
columns of Aθ be Te1 and Te2. Review why this is before using this. Then simply
find these vectors from trigonometry.

8. ↑If you did the above problem right, you got

Aθ =

(
cosθ −sinθ

sinθ cosθ

)
Derive the famous trig. identities for the sum of two angles by using the fact that
Aθ+φ = Aθ Aφ and the above description.

9. Let β = {u1, · · · ,un} be a basis for Fn and let T : Fn→ Fn be defined as follows.

T

(
n

∑
k=1

akuk

)
=

n

∑
k=1

akbkuk

First show that T is a linear transformation. Next show that the matrix of T with
respect to this basis is [T ]

β
= 

b1
. . .

bn


Show that the above definition is equivalent to simply specifying T on the basis
vectors of β by

T (uk) = bkuk.

10. Let T be given by specifying its action on the vectors of a basis

β = {u1, · · · ,un}

as follows.

Tuk =
n

∑
j=1

a jku j.

Letting A = (ai j) , verify that [T ]
β
= A. It is done in the chapter, but go over it

yourself. Show that [T ]
γ
=(

u1 · · · un

)
[T ]

β

(
u1 · · · un

)−1
(5.8)
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11. Let a be a fixed vector. The function Ta defined by Tav = a+v has the effect of
translating all vectors by adding a. Show this is not a linear transformation. Explain
why it is not possible to realize Ta in R3 by multiplying by a 3×3 matrix.

12. ↑In spite of Problem 11 we can represent both translations and linear transformations
by matrix multiplication at the expense of using higher dimensions. This is done by
the homogeneous coordinates. I will illustrate in R3 where most interest in this is
found. For each vector v = (v1,v2,v3)

T , consider the vector in R4 (v1,v2,v3,1)
T .

What happens when you do
1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1




v1

v2

v3

1

?

Describe how to consider both linear transformations and translations all at once by
forming appropriate 4×4 matrices.

13. You want to add
(

1, 2, 3
)

to every point in R3 and then rotate about the z
axis counter clockwise through an angle of 30◦. Find what happens to the point(

1, 1, 1
)
.

14. Let P3 denote the set of real polynomials of degree no more than 3, defined on an
interval [a,b]. Show that P3 is a subspace of the vector space of all functions defined
on this interval. Show that a basis for P3 is

{
1,x,x2,x3

}
. Now let D denote the

differentiation operator which sends a function to its derivative. Show D is a linear
transformation which sends P3 to P3. Find the matrix of this linear transformation
with respect to the given basis.

15. Generalize the above problem to Pn, the space of polynomials of degree no more than
n with basis {1,x, · · · ,xn} .

16. If A is an n× n invertible matrix, show that AT is also and that in fact,
(
AT
)−1

=(
A−1

)T .

17. Suppose you have an invertible n×n matrix A. Consider the polynomials
p1 (x)

...
pn (x)

= A


1
...

xn−1


Show that these polynomials p1 (x) , · · · , pn (x) are a linearly independent set of func-
tions.

18. Let the linear transformation be T = D2+1, defined as T f = f ′′+ f . Find the matrix
of this linear transformation with respect to the given basis

{
1,x,x2,x3

}
.
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19. Let L be the linear transformation taking polynomials of degree at most three to
polynomials of degree at most three given by

D2 +2D+1

where D is the differentiation operator. Find the matrix of this linear transformation
relative to the basis

{
1,x,x2,x3

}
. Find the matrix directly and then find the matrix

with respect to the differential operator D+1 and multiply this matrix by itself. You
should get the same thing. Why?

20. Let L be the linear transformation taking polynomials of degree at most three to
polynomials of degree at most three given by D2 + 5D+ 4 where D is the differen-
tiation operator. Find the matrix of this linear transformation relative to the bases{

1,x,x2,x3
}
. Find the matrix directly and then find the matrices with respect to the

differential operators D+ 1,D+ 4 and multiply these two matrices. You should get
the same thing. Why?

21. Suppose A ∈ L (V,W ) where dim(V ) > dim(W ) . Show ker(A) ̸= {0}. That is,
show there exist nonzero vectors v ∈V such that Av = 0.

22. A vector v is in the convex hull of a nonempty set if there are finitely many vectors
of S,{v1, · · · ,vm} and nonnegative scalars {t1, · · · , tm} such that

v =
m

∑
k=1

tkvk,
m

∑
k=1

tk = 1.

Such a linear combination is called a convex combination. Suppose now that S ⊆V,
a vector space of dimension n. Show that if v = ∑

m
k=1 tkvk is a vector in the convex

hull for m > n+1, then there exist other scalars
{

t ′k
}

such that

v =
m−1

∑
k=1

t ′kvk.

Thus every vector in the convex hull of S can be obtained as a convex combination
of at most n+1 points of S. This incredible result is in Rudin [37]. Hint: Consider
L : Rm→V ×R defined by

L(a)≡

(
m

∑
k=1

akvk,
m

∑
k=1

ak

)

Explain why ker(L) ̸= {0} . Next, letting a ∈ ker(L) \ {0} and λ ∈ R, note that
λ a ∈ ker(L) . Thus for all λ ∈ R,

v =
m

∑
k=1

(tk +λak)vk.

Now vary λ till some tk +λak = 0 for some ak ̸= 0.

23. For those who know about compactness, use Problem 22 to show that if S ⊆ Rn and
S is compact, then so is its convex hull.
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24. Show that if L ∈L (V,W ) (linear transformation) where V and W are vector spaces,
then if Lyp = f for some yp ∈V, then the general solution of Ly = f is of the form
ker(L)+yp.

25. Suppose Ax= b has a solution. Explain why the solution is unique precisely when
Ax= 0 has only the trivial (zero) solution.

26. Let L :Rn→R be linear. Show that there exists a vector a∈Rn such that Ly = aTy.

27. Let the linear transformation T be determined by

T x=

 1 0 −5 −7
0 1 −3 −9
1 1 −8 −16

x

Find the rank of this transformation.

28. Let T f =
(
D2 +5D+4

)
f for f in the vector space of polynomials of degree no

more than 3 where we consider T to map into the same vector space. Find the rank
of T . You might want to use Proposition 4.3.6.

29. (Extra important) Let A be an n× n matrix. The trace of A, trace(A) is defined as
∑i Aii. It is just the sum of the entries on the main diagonal. Show trace(A) =
trace

(
AT
)
. Suppose A is m×n and B is n×m. Show that trace(AB) = trace(BA) .

Now show that if A and B are similar n×n matrices, then trace(A) = trace(B). Recall
that A is similar to B means A = S−1BS for some matrix S.

30. Suppose you have a monic polynomial φ (λ ) which is irreducible over F the field
of scalars. Remember that this means that no polynomial divides it except scalar
multiples of φ (λ ) and scalars. Say

φ (λ ) = a0 +a1λ + · · ·+ad−1λ
d−1 +λ

d

Now consider A ∈ L (V,V ) where V is a vector space. Consider ker(φ (A)) and
suppose this is not 0. For x ∈ ker(φ (A)) ,x ̸= 0, let β x =

{
x,Ax, · · · ,Ad−1x

}
. Show

that β x is an independent set of vectors if x ̸= 0.

31. ↑Let V be a finite dimensional vector space and let A ∈L (V,V ) . Also let W be a
subspace of V such that A(W )⊆W. We call such a subspace an A invariant subspace.
Say {w1, · · · ,ws} is a basis for W . Also let x ∈U⧹W where U is an A invariant sub-
space which is contained in ker(φ (A)). Then you know that {w1, · · · ,ws,x} is lin-
early independent. Show that in fact {w1, · · · ,ws,β x} is linearly independent where
β x is given in the above problem. Hint: Suppose you have

s

∑
k=1

akwk +
d

∑
j=1

b jA j−1x = 0. (*)

You need to verify that the second sum is 0. From this it will follow that each b j is
0 and then each ak = 0. Let S = ∑

d
j=1 b jA j−1x. Observe that β S ⊆ β x and if S ̸= 0,

then β S is independent from the above problem and both β x and β S have the same
dimension. You will argue that span(β S)⊆W ∩ span(β x)⊆ span(β x) and then use
Problem 6 on Page 74..
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32. ↑In the situation of the above problem, show that there exist finitely many vectors in
U, {x1, · · · ,xm} such that

{
w1, · · · ,ws,β x1

, · · · ,β xm

}
is a basis for U +W . This last

vector space is defined as the set of all y+w where y ∈U and w ∈W .

33. ↑ In the situation of the above where φ (λ ) is irreducible. Let U be defined as

U = φ (A)(ker(φ (A)m))

Explain why U ⊆ ker
(

φ (A)m−1
)

. Suppose you have a linearly independent set in U

which is
{

β x1
, · · · ,β xr

}
. Here the notation means

β x ≡
{

x,Ax, · · · ,Am−1x
}

where these vectors are independent but Amx is in the span of these. Such exists any
time you have x ∈ ker(g(A)) for g(λ ) a polynomial. Letting φ (A)yi = xi, explain
why

{
β y1

, · · · ,β yr

}
is also linearly independent. This is like the theorem presented

earlier that the inverse image of a linearly independent set is linearly independent but
it is more complicated here because instead of single vectors, we are considering sets
β x.



Chapter 6

Direct Sums and Block Diagonal Matri-
ces

This is a convenient place to put a very interesting result about direct sums and block
diagonal matrices. First is the notion of a direct sum. In all of this, V will be a finite
dimensional vector space of dimension n and field of scalars F.

Definition 6.0.1 Let {Vi}r
i=1 be subspaces of V. Then ∑

r
i=1 Vi ≡ V1 + · · ·+Vr denotes all

sums of the form ∑
r
i=1 vi where vi ∈Vi. If whenever ∑

r
i=1 vi = 0,vi ∈Vi, it follows that vi = 0

for each i, then a special notation is used to denote ∑
r
i=1 Vi. This notation is V1⊕·· ·⊕Vr,

or sometimes to save space
⊕r

i=1
Vi and it is called a direct sum of subspaces. A subspace

W of V is called A invariant for A ∈L (V,V ) if AW ⊆W.

The next lemma tells how to recognize a direct sum.

Lemma 6.0.2 For the Vi subspaces as above, V1 + · · ·+Vr =V1⊕·· ·⊕Vr if and only if

0 = (V1 + · · ·+Vi−1 +Vi+1 + · · ·+Vr)∩Vi = 0

for each i.

Proof: Suppose the sum is a direct sum. Then if m ∈ Mi ∩∑ j ̸=i M j it follows that
m = mi = ∑ j ̸=i m j where m j ∈M j for all j and so 0 =−mi +∑ j ̸=i m j so all the m j = 0 and
mi = 0. Next suppose the condition about the intersection.

Then if ∑i mi = 0 it follows that −mi = ∑ j ̸=i m j and so m = −mi = ∑ j ̸=i m j ∈ Mi ∩
∑ j ̸=i M j and so m = 0. Since i was arbitrary, each mi = 0. ■

The important idea is that you seek to understand A by looking at what it does on each
Vi. It is a lot like knowing A by knowing what it does to a basis, an idea used earlier.

Lemma 6.0.3 If V = V1⊕·· ·⊕Vr and if β i =
{

vi
1, · · · ,vi

mi

}
is a basis for Vi, then a basis

for V is {β 1, · · · ,β r}. Thus

dim(V ) =
r

∑
i=1

dim(Vi) =
r

∑
i=1
|β i|

where |β i| denotes the number of vectors in β i. Conversely, if β i linearly independent and
if a basis for V is {β 1, · · · ,β r} , then V = span(β 1)⊕·· ·⊕ span(β r)

Proof: Suppose ∑
r
i=1 ∑

mi
j=1 ci jvi

j = 0. Since a direct sum, for each i,∑mi
j=1 ci jvi

j = 0 and
now, since

{
vi

1, · · · ,vi
mi

}
is a basis, each ci j = 0 for each j, this for each i.

Suppose now that each β i is independent and a basis is {β 1, · · · ,β r} . Then clearly

V = span(β 1)+ · · ·+ span(β r)

Suppose then that 0 = ∑
r
i=1 ∑

mi
j=1 ci jvi

j, the inside sum being something in span(β i). Since
{β 1, · · · ,β r} is a basis, each ci j = 0. Thus each ∑

mi
j=1 ci jvi

j = 0 and so V = span(β 1)⊕
·· ·⊕ span(β r). ■

Thus, from this lemma, we can produce a basis for V of the form {β 1, · · · ,β r} , so what
is the matrix of a linear transformation A such that each Vi is A invariant?

119
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Theorem 6.0.4 Suppose V is a vector space with field of scalars F and A ∈ L (V,V ).
Suppose also V = V1⊕ ·· · ⊕Vq where each Vk is A invariant. (AVk ⊆ Vk) Also let β k be
an ordered basis for Vk and let Ak denote the restriction of A to Vk. Letting Mk denote the
matrix of Ak with respect to this basis, it follows the matrix of A with respect to the basis{

β 1, · · · ,β q

}
is 

M1 0
. . .

0 Mq


Proof: Let β denote the ordered basis

{
β 1, · · · ,β q

}
, |β k| being the number of vectors

in β k. Let qk : F|β k|→Vk be the usual map such that the following diagram commutes.

Ak

Vk → Vk

qk ↑ ◦ ↑ qk

F|β k| → F|β k|

Mk

Thus Akqk = qkMk. Then if q is the map from Fn to V corresponding to the ordered basis
β just described,

q
(

0 · · · x · · · 0
)T

= qkx,

where x occupies the positions between ∑
k−1
i=1 |β i|+ 1 and ∑

k
i=1 |β i|. Then M will be the

matrix of A with respect to β if and only if a similar diagram to the above commutes.
Thus it is required that Aq = qM. However, from the description of q just made, and the
invariance of each Vk,

Aq



0
...
x
...
0


= Akqkx= qkMkx= q



M1 0
. . .

Mk

. . .

0 Mq





0
...
x
...
0


It follows that the above block diagonal matrix is the matrix of A with respect to the given
ordered basis. ■

The matrix of A with respect to the ordered basis β which is described above is called
a block diagonal matrix. Sometimes the blocks consist of a single number.

Example 6.0.5 Consider the following matrix.

A≡

 1 0 0
1 0 −1
−2 2 3
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Let V1 ≡ span


 1

1
0

 ,

 1
0
1


 ,V2 ≡ span


 0
−1
2


 . Show thatR3 =V1⊕V2 and

and that Vi is A invariant. Find the matrix of A with respect to the ordered basis
 1

1
0

 ,

 1
0
1

 ,

 0
−1
2


 (*)

First note that 1 0 0
1 0 −1
−2 2 3


 1

1
0

=

 1
1
0

 ,

 1 0 0
1 0 −1
−2 2 3


 1

0
1

=

 1
0
1


Therefore, A(V1)⊆V1. Similarly, 1 0 0

1 0 −1
−2 2 3


 0
−1
2

=

 0
−2
4

= 2

 0
−1
2


and so A(V2) ⊆ V2. The vectors in ∗ clearly are a basis for R3. You can verify this by
observing that there is a unique solution x,y,z to the system of equations

x

 1
1
0

+ y

 1
0
1

+ z

 0
−1
2

=

 a
b
c


for any choice of the right side. Therefore, by Lemma 6.0.3, R3 =V1⊕V2.

If you look at the restriction of A to V1, what is the matrix of this restriction? It satisfiesA

 1
1
0

 ,A

 1
0
1


=


 1

1
0

 ,

 1
0
1


( a b

c d

)

Thus, from what was observed above, you need the matrix on the right to satisfy
 1

1
0

 ,

 1
0
1


=


 1

1
0

 ,

 1
0
1


( a b

c d

)

and so the matix on the right is just

(
1 0
0 1

)
. As to the matrix of A restricted to V2, we

need

A

 0
−1
2

= 2

 0
−1
2

= a

 0
−1
2





122 CHAPTER 6. DIRECT SUMS AND BLOCK DIAGONAL MATRICES

where a is a 1× 1 matrix. Thus a = 2 and so the matrix of A with respect to the ordered
basis given above is  1 0 0

0 1 0
0 0 2


What if you changed the order of the vectors in the basis? Suppose you had them ordered
as 

 1
1
0

 ,

 0
−1
2

 ,

 1
0
1




Then you would have three invariant subspaces whose direct sum is R3,

span


 1

1
0


 ,span


 0
−1
2


 , and span


 1

0
1




Then the matrix of A with respect to this ordered basis is 1 0 0
0 2 0
0 0 1


Example 6.0.6 Consider the following matrix.

A =

 3 1 0
−1 1 0
−1 −1 1


Let

V1 ≡ span


 0

0
1


 ,V2 ≡ span


 1

0
−1

 ,

 1
−1
0




Show that these are A invariant subspaces and find the matrix of A with respect to the
ordered basis 

 0
0
1

 ,

 1
−1
0

 ,

 1
0
−1




First note that
 3 1 0
−1 1 0
−1 −1 1

−2

 1 0 0
0 1 0
0 0 1



 1

0
−1

=

 1
−1
0
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and so A

 1
0
−1

 is in the span of


 1
−1
0

 ,

 1
0
−1


 . Also

 3 1 0
−1 1 0
−1 −1 1


 1
−1
0

=

 2
−2
0

 ∈ span


 1
−1
0

 ,

 1
0
−1




Thus V2 is A invariant. What is the matrix of A restricted to V2? We needA

 1
−1
0

 ,A

 1
0
−1


=


 1
−1
0

 ,

 1
0
−1


( a b

c d

)

Now it was shown above that

A

 1
0
−1

= 2

 1
0
−1

+

 1
−1
0



and so the matrix is of the form

(
a 1
c 2

)
. Then it was also shown that A

 1
−1
0

 =

2

 1
−1
0

 and so the matrix is of the form

(
2 1
0 2

)
. As to V1,A

 0
0
1

=

 0
0
1

and

the matrix of A restricted to V1 is just the 1×1 matrix consisting of the number 1. Thus the
matrix of A with respect to this basis is 1 0 0

0 2 1
0 0 2


How can you find V as a direct sum of invariant subspaces? In the next section, I will

give a systematic way based on a profound theorem of Sylvester. However, there is also a
very easy way to come up with an invariant subspace. Let v ∈ V an n dimensional vector
space and let A ∈L (V,V ) . Let W ≡ span

(
v,Av,A2v, · · ·

)
. It is left as an exercise to verify

that W is a finite dimensional subspace of V . Recall that the span is the set of all finite
linear combinations. Of course W might be all of V or it might be a proper subset of V .
The method of Sylvester will end up typically giving proper invariant subspaces whose
direct sum is the whole space. An outline of the following presentation is as follows.

1. Sylvester’s theorem dim(ker(∏m
i=1 Li))≤ ∑

m
i=1 dim(ker(Li))

2. If LiL j = L jLi, Li one to one on ker(Li) then ker(∏m
i=1 Li) =

m⊕
i=1

ker(Li)
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3. L ∈L (V,V ) having minimum polyinomial ∏
m
i=1 φ i (λ )

ri . Then

V ≡ ker

(
m

∏
i=1

φ i (L)
ri

)
=

m⊕
i=1

ker(φ i (L))

6.1 A Theorem of Sylvester, Direct Sums
The notation is defined as follows. First recall the definition of ker in Problem 23 on Page
62.

Definition 6.1.1 Let L ∈L (V,W ) . Then ker(L)≡ {v ∈V : Lv = 0} .

Lemma 6.1.2 Whenever L ∈ L (V,W ) , ker(L) is a subspace. Also, if V is an n dimen-
sional vector space and W is a subspace of V , then W =V if and only if dim(W ) = n.

Proof: If a,b are scalars and v,w are in ker(L) , then

L(av+bw) = aL(v)+bL(w) = 0+0 = 0

As to the last claim, it is clear that dim(W )≤ n. If dim(W ) = n, then, letting {w1, · · · ,wn}
be a basis for W, there can be no v ∈ V \W because then v /∈ span(w1, · · · ,wn) and so by
Lemma 3.1.7 {w1, · · · ,wn,v} would be independent which is impossible by Theorem 3.1.5.
You have an independent set which is longer than a spanning set. ■

Suppose now that A ∈L (V,W ) and B ∈L (W,U) where V,W,U are all finite dimen-
sional vector spaces. Then it is interesting to consider ker(BA). The following theorem of
Sylvester is a very useful and important result.

Theorem 6.1.3 Let A ∈L (V,W ) and B ∈L (W,U) where V,W,U are all vector spaces
over a field F. Suppose also that ker(A) and A(ker(BA)) are finite dimensional subspaces.
Then

dim(ker(BA))≤ dim(ker(B))+dim(ker(A)) .

Equality holds if and only if A(ker(BA)) = ker(B).

Proof: If x ∈ ker(BA) , then Ax ∈ ker(B) and so A(ker(BA))⊆ ker(B) . The following
picture may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A)
A

Basis
A(ker(BA)) {Ay1, · · · ,Aym}

ker(A) {x1, · · · ,xn}
ker(B) {Ay1, · · · ,Aym,w1, · · · ,ws}
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Now let {x1, · · · ,xn} be a basis of ker(A) and let {Ay1, · · · ,Aym} one for A(ker(BA)) ,
each yi ∈ ker(BA) . Take any z ∈ ker(BA) . Then Az = ∑

m
i=1 aiAyi and so

A

(
z−

m

∑
i=1

aiyi

)
= 0

which means z−∑
m
i=1 aiyi ∈ ker(A) and so there are scalars bi such that

z−
m

∑
i=1

aiyi =
n

∑
j=1

bixi.

It follows span(x1, · · · ,xn,y1, · · · ,ym) = ker(BA) and so by the first part, (See the picture.)

dim(ker(BA)) ≤ n+m≤ dim(ker(A))+dim(A(ker(BA)))

≤ dim(ker(A))+dim(ker(B))

Now {x1, · · · ,xn,y1, · · · ,ym} is linearly independent because if

∑
i

aixi +∑
j

b jy j = 0

then you could do A to both sides and conclude that ∑ j b jAy j = 0 which requires that
each b j = 0. Then it follows that each ai = 0 also because it implies ∑i aixi = 0. Thus
the first inequality in the above list is an equal sign and {x1, · · · ,xn,y1, · · · ,ym} is a basis
for ker(BA). Each vector is in ker(BA), they are linearly independent, and their span is
ker(BA) . Then by Lemma 6.1.2, A(ker(BA)) = ker(B) if and only if m = dim(ker(B)) if
and only if

dim(ker(BA)) = m+n = dim(ker(B))+dim(ker(A)) . ■

Of course this result holds for any finite product of linear transformations by induc-
tion. One way this is quite useful is in the case where you have a finite product of linear
transformations ∏

l
i=1 Li all in L (V,V ) . Then dim

(
ker∏

l
i=1 Li

)
≤ ∑

l
i=1 dim(kerLi) .

Now here is a useful lemma which is likely already understood.

Lemma 6.1.4 Let L ∈L (V,W ) where V,W are n dimensional vector spaces. Then L is
one to one, if and only if L is also onto. In fact, if {v1, · · · ,vn} is a basis, then so is
{Lv1, · · · ,Lvn}.

Proof: Let {v1, · · · ,vn} be a basis for V . Then I claim that {Lv1, · · · ,Lvn} is a basis for
W . First of all, I show {Lv1, · · · ,Lvn} is linearly independent. Suppose ∑

n
k=1 ckLvk = 0.

Then L(∑n
k=1 ckvk) = 0 and since L is one to one, it follows ∑

n
k=1 ckvk = 0 which implies

each ck = 0. Therefore, {Lv1, · · · ,Lvn} is linearly independent. If there exists w not in
the span of these vectors, then by Lemma 3.1.7, {Lv1, · · · ,Lvn,w} would be independent
and this contradicts the exchange theorem, Theorem 3.1.5 because it would be a linearly
independent set having more vectors than the spanning set {v1, · · · ,vn} .

Conversely, suppose L is onto. Then there exists a basis for W which is of the form
{Lv1, · · · ,Lvn} . It follows that {v1, · · · ,vn} is linearly independent. Hence it is a basis for
V by similar reasoning to the above. Then if Lx = 0, it follows that there are scalars ci such
that x = ∑i civi and consequently 0 = Lx = ∑i ciLvi. Therefore, each ci = 0 and so x = 0
also. Thus L is one to one. ■

Here is a fundamental lemma which gives a typical situation where a vector space is
the direct sum of subspaces.
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Lemma 6.1.5 Let Li be in L (V,V ) and suppose for i ̸= j,LiL j = L jLi and also Li is one
to one on ker(L j) whenever i ̸= j. Then

ker

(
p

∏
i=1

Li

)
= ker(L1)⊕+ · · ·+⊕ker(Lp)

Here ∏
p
i=1 Li is the product of all the linear transformations. It signifies

Lp ◦Lp−1 ◦ · · · ◦L1

or the product in any other order since the transformations commute.

Proof : Note that since the operators commute, L j : ker(Li)→ ker(Li). Here is why.
If Liy = 0 so that y ∈ ker(Li) , then LiL jy = L jLiy = L j0 = 0 and so L j : ker(Li) 7→
ker(Li). Next observe that it is obvious that, since the operators commute, ∑

p
i=1 ker(Lp)⊆

ker
(
∏

p
i=1 Li

)
.

Next, why is ∑i ker(Lp) = ker(L1)⊕·· ·⊕ker(Lp)? Suppose ∑
p
i=1 vi = 0, vi ∈ ker(Li) ,

but some vi ̸= 0. Then do ∏ j ̸=i L j to both sides. Since the linear transformations commute,
this results in (

∏
j ̸=i

L j

)
(vi) = 0

which contradicts the assumption that these L j are one to one on ker(Li) and the observation
that they map ker(Li) to ker(Li). Thus if ∑i vi = 0, vi ∈ ker(Li) then each vi = 0. It follows
that

ker(L1)⊕+ · · ·+⊕ker(Lp)⊆ ker

(
p

∏
i=1

Li

)
(*)

From Sylvester’s theorem and the observation about direct sums in Lemma 6.0.3,

p

∑
i=1

dim(ker(Li)) = dim(ker(L1)⊕+ · · ·+⊕ker(Lp))

≤ dim

(
ker

(
p

∏
i=1

Li

))
≤

p

∑
i=1

dim(ker(Li))

which implies all these are equal. Now in general, if W is a subspace of V, a finite dimen-
sional vector space and the two have the same dimension, then W = V, Lemma 6.1.2. It
follows from * that

ker(L1)⊕+ · · ·+⊕ker(Lp) = ker

(
p

∏
i=1

Li

)
■

So how does the above situation occur? First recall the following theorem and corollary
about polynomials. It was Theorem 6.1.6 and Corollary 6.1.7 proved earlier.

Theorem 6.1.6 Let f (λ ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ ) = a∏

n
i=1 φ i (λ ) where φ i (λ ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a.
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Corollary 6.1.7 Let q(λ ) = ∏
p
i=1 φ i (λ )

ki where the ki are positive integers and the φ i (λ )
are irreducible monic polynomials. Suppose also that p(λ ) is a monic polynomial which
divides q(λ ) . Then p(λ ) = ∏

p
i=1 φ i (λ )

ri where ri is a nonnegative integer no larger than
ki.

Now I will show how to use these basic theorems about polynomials to produce Li such
that the above major result follows. This is going to have a striking similarity to the notion
of a minimum polynomial in the context of algebraic numbers.

Definition 6.1.8 Let V be an n dimensional vector space, n ≥ 1, and let L ∈ L (V,V )
which is a vector space of dimension n2 by Theorem 5.1.4. Then p(λ ) will be the non
constant monic polynomial such that p(L) = 0 and out of all polynomials q(λ ) such that
q(L) = 0, the degree of p(λ ) is the smallest. This is called the minimum polynomial. It is
always understood that L ̸= 0. It is not interesting to fuss with this case of the zero linear
transformation.

In the following, we always define L0 ≡ I.

Theorem 6.1.9 The above definition is well defined. Also, if q(L) = 0, then p(λ ) divides
q(λ ).

Proof: The dimension of L (V,V ) is n2. Therefore, I,L, · · · ,Ln2
are linearly dependent

and so there is some polynomial q(λ ) such that q(L) = 0. Let m be the smallest degree of
any polynomial with this property. Such a smallest number exists by well ordering of N.
To obtain a monic polynomial p(λ ) with degree m, divide such a polynomial with degree
m, having the property that p(L) = 0 by the leading coefficient. Now suppose q(λ ) is any
polynomial such that q(L) = 0. Then by the Euclidean algorithm, there is r (λ ) either zero
or having degree less than the degree of p(λ ) such that q(λ ) = p(λ )k (λ )+r (λ ) for some
polynomial k (λ ). But then

0 = q(L) = k (L) p(L)+ r (L) = r (L)

If r (λ ) ̸= 0, then this is a contradiction to p(λ ) having the smallest degree. Therefore,
p(λ ) divides q(λ ). Now suppose p̂(λ ) and p(λ ) are two monic polynomials of degree m.
Then from what was just shown p̂(λ ) divides p(λ ) and p(λ ) divides p̂(λ ) . Since they are
both monic polynomials, they must be equal. Thus the minimum polynomial is unique and
this shows the above definition is well defined. ■

Now here is the major result which comes from Sylvester’s theorem given above.

Theorem 6.1.10 Let L ∈L (V,V ) where V is an n dimensional vector space with field of
scalars F. Letting p(λ ) be the minimum polynomial for L,

p(λ ) =
p

∏
i=1

φ i (λ )
ki

where the ki are positive integers and the φ i (λ ) are distinct irreducible monic polynomials.

Also the linear maps φ i (L)
ki commute and φ i (L)

ki is one to one on ker
(

φ j (L)
k j
)

for all

j ̸= i as is φ i (L). Also

V = ker
(

φ 1 (L)
k1
)
⊕·· ·⊕ker

(
φ p (L)

kp
)
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and each ker
(

φ i (L)
ki
)

is invariant with respect to L. Letting L j be the restriction of L to

ker
(

φ j (L)
k j
)
,

it follows that the minimum polynomial of L j equals φ j (λ )
k j . Also p≤ n.

Proof: By Theorem 6.1.6, the minimum polynomial p(λ ) is of the form a∏
p
i=1 φ i (λ )

ki

where φ i (λ ) is monic and irreducible with φ i (λ ) ̸= φ j (λ ) if i ̸= j. Since p(λ ) is monic,
it follows that a = 1. Since L commutes with itself, all of these φ i (L)

ki commute. Also

φ i (L) : ker
(

φ j (L)
k j
)
→ ker

(
φ j (L)

k j
)

because all of these operators commute.
Now consider φ i (L) . Is it one to one on ker

(
φ j (L)

k j
)

? Suppose not. Suppose that for

some j ̸= i,φ i (L) is not one to one on ker
(

φ j (L)
k j
)
. We know that φ i (λ ) ,φ j (λ )

k j are
relatively prime meaning the monic polynomial of greatest degree which divides them both
is 1. Why is this? If some polynomial divided both, then it would need to be φ i (λ ) or 1
because φ i (λ ) is irreducible. But φ i (λ ) cannot divide φ j (λ )

k j unless it equals φ j (λ ) , this
by Corollary 6.1.7 and they are assumed unequal. Hence there are polynomials l (λ ) ,m(λ )

such that 1 = l (λ )φ i (λ )+m(λ )φ j (λ )
k j . By what we mean by equality of polynomials,

that coefficients of equal powers of λ are equal, it follows that for I the identity transfor-
mation,

I = l (L)φ i (L)+m(L)φ j (L)
k j

Say v ∈ ker
(

φ j (L)
k j
)

and v ̸= 0 while φ i (L)v = 0. Then from the above equation,

v = l (L)φ i (L)v+m(L)φ j (L)
k j v = 0+0 = 0

a contradiction. Thus φ i (L) and hence φ i (L)
ki is one to one on ker

(
φ j (L)

k j
)
. (Re-

call that, since these commute, φ i (L) maps ker
(

φ i (L)
ki
)

to ker
(

φ i (L)
ki
)

.) On Vj ≡

ker
(

φ j (L)
k j
)
,φ i (L) actually has an inverse. In fact, the above equation says that for

v ∈Vj,v = l (L)φ i (L)v. hence an inverse for φ i (L)
m is l (L)m.

Thus, from Lemma 6.1.5,

V = ker

(
p

∏
i=1

φ i (L)
ki

)
= ker

(
φ 1 (L)

k1
)
⊕·· ·⊕ker

(
φ p (L)

kp
)

Next consider the claim about the minimum polynomial of L j. Denote this minimum

polynomial as p j (λ ). Then since φ j (L)
k j = φ j (L j)

k j = 0 on ker
(

φ j (L)
k j
)
, it must be the

case that p j (λ ) must divide φ j (λ )
k j and so by Corollary 6.1.7 this means p j (λ ) = φ j (λ )

r j

where r j ≤ k j. If r j < k j, consider the polynomial

p

∏
i=1,i̸= j

φ i (λ )
ki φ j (λ )

r j ≡ r (λ )
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Then since these operators φ i (L)
ki commute with each other, r (L) = 0 because r (L)v =

0 for every v ∈ ker
(

φ i (L)
ki
)

and also r (L)v = 0 for v ∈ ker
(

φ j (L)
r j
)

. However, this
violates the definition of the minimum polynomial for L, p(λ ) because here is a polynomial
r (λ ) such that r (L) = 0 but r (λ ) has smaller degree than p(λ ). Thus r j = k j.

Consider the claim that p≤ n the dimension of V . Let vi ∈ ker
(

φ i (L)
ki
)
,vi ̸= 0. Then

it must be the case that
{

v1, · · · ,vp
}

is a linearly independent set because ker
(

φ 1 (L)
k1
)
⊕

·· · ⊕ ker
(

φ p (L)
kp
)

is a direct sum. Hence p ≤ n because a linearly independent set is
never longer than a spanning set one of which has n elements. ■

Letting β i be an ordered basis for ker
(

φ i (L)
ki
)

and letting β ≡
(
β 1,β 2, · · · ,β p

)
,

it follows from Theorem 6.0.4, that if M j is the matrix for L j, the restriction of L to

ker
(

φ j (L)
k j
)
, then the matrix of L with respect to the basis β is a block diagonal ma-

trix of the form 
M1 0

. . .

0 Mp


The study of cannonical forms has to do with choosing the bases β i in an auspicious man-
ner. This topic will be discussed more later.

6.2 Finding the Minimum Polynomial
All of this depends on the minimum polynomial. It was shown above that this polynomial
exists, but how can you find it? In fact, it is not all that hard to find. Recall that if L ∈
L (V,V ) where the dimension of V is n, then I,L2, · · · ,Ln2

is linearly independent. Thus
some linear combination equals zero. The minimum polynomial was the polynomial p(λ )
of smallest degree which is monic and which has p(L) = 0. At this point, we only know that
this degree is no more than n2. However, it will be shown later in the proof of the Cayley
Hamilton theorem that there exists a polynomial q(λ ) of degree n such that q(L) = 0.
Then from Theorem 6.1.9 it follows that p(λ ) divides q(λ ) and so the degree of p(λ ) will
always be no more than n.

Another observation to make is that it suffices to find the minimum polynomial for the
matrix of the linear transformation taken with respect to any basis. Recall the relation of
this matrix and L.

L
V → V

q ↑ ◦ ↑ q
Fn → Fn

A

where q is a one to one and onto linear map from Fn to V . Thus if p(L) is a polynomial in
L,

p(L) = p
(
q−1Aq

)
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A typical term on the right is of the form

ck


k times︷ ︸︸ ︷(

q−1Aq
)(

q−1Aq
)(

q−1Aq
)
· · ·q−1Aq

= q−1
(

ckAk
)

q

Thus, applying this to each term and factoring out q−1 and q, p(L) = q−1 p(A)q. Recall
the convention that A0 = I the identity matrix and L0 = I, the identity linear transformation.
Thus p(L) = 0 if and only if p(A) = 0 and so the minimum polynomial for A is exactly the
same as the minimum polynomial for L. However, in case of A, the multiplication is just
matrix multiplication so we can compute with it easily.

This shows that it suffices to learn how to find the minimum polynomial for an n× n
matrix. I will show how to do this with some examples. The process can be made much
more systematic, but I will try to keep it pretty short because it is often the case that it is
easy to find it without going through a long computation.

Example 6.2.1 Find the minimum polynomial of −1 0 6
1 1 −3
−1 0 4


Go right to the definition and use the fact that you only need to have three powers of

this matrix in order to get things to work, which will be shown later. Thus the minimum
polynomial involves finding a,b,c,d scalars such that

a

 1 0 0
0 1 0
0 0 1

+b

 −1 0 6
1 1 −3
−1 0 4

+

c

 −1 0 6
1 1 −3
−1 0 4


2

+d

 −1 0 6
1 1 −3
−1 0 4


3

= 0

You could include all nine powers if you want, but there is no point in doing so from what
will be presented later. You will be able to find a polynomial of degree no larger than 3
which will work.

There is such a solution from the above theory and it is only a matter of finding it. Thus
you need to find scalars such that

a

 1 0 0
0 1 0
0 0 1

+b

 −1 0 6
1 1 −3
−1 0 4



+c

 −5 0 18
3 1 −9
−3 0 10

+d

 −13 0 42
7 1 −21
−7 0 22

= 0
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Lets try the diagonal entries first and then lets pick the bottom left corner.

a−b−5c−13d = 0
a+b+ c+d = 0

a+4b+10c+22d = 0
−b+−3c+−7d = 0

Thus we row reduce the matrix
1 −1 −5 −13 0
1 1 1 1 0
1 4 10 22 0
0 −1 −3 −7 0


which yields after some computations

1 0 −2 −6 0
0 1 3 7 0
0 0 0 0 0
0 0 0 0 0


We can take d = 0 and c = 1 and find that a = 2,b = −3. A candidate for minimum
polynomial is

λ
2−3λ +2.

Could you have a smaller degree polynomial? No you could not because if you took both
c and d equal to 0, then you would be forced to have a,b both be zero as well. Hence this
must be the minimum polynomial provided the matrix satisfies this equation. You verify
this by plugging the matrix in to the polynomial and checking to see if you get 0. If it didn’t
work, you would simply include another equation in the above computation for a,b,c,d. −1 0 6

1 1 −3
−1 0 4


2

−3

 −1 0 6
1 1 −3
−1 0 4

+2

 1 0 0
0 1 0
0 0 1



=

 0 0 0
0 0 0
0 0 0


It is a little tedious, but completely routine to find this minimum polynomial. To be

more systematic, you would take the powers of the matrix and string each of them out into
a long n2× 1 vector and make these the columns of a matrix which would then be row
reduced. However, as shown above, you can get away with less as in the above example,
but you need to be sure to check that the matrix satisfies the equation you come up with.

Now here is an example where F= Z5 and the arithmetic is in F so A is the matrix of a
linear transformation which maps F3 to F3.



132 CHAPTER 6. DIRECT SUMS AND BLOCK DIAGONAL MATRICES

Example 6.2.2 The matrix is

A =

 1 2 3
0 3 1
4 1 1


Find the minimum polynomial.

Powers of the matrix are 1 0 0
0 1 0
0 0 1

 ,

 1 2 3
0 3 1
4 1 1

 ,

 3 1 3
4 0 4
3 2 4

 ,

 0 2 3
0 2 1
4 1 0


If we pick the top left corners, the middle entry, the bottom right corner and the entries in
the middle of the bottom row, an appropriate augmented matrix is

1 1 3 0 0
1 3 0 2 0
1 1 4 0 0
0 1 2 1 0


Then row reduced echelon form in Z5 is

1 0 0 4 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0


so it would seem a possible minimum polynomial is obtained by a = 1,b = −1 = 4,c =
0,d = 1. Thus it has degree 3. There cannot be any polynomial of smaller degree because
of the first three columns so it would seem that this should be the minimum polynomial,

1+4λ +λ
3

Does it send the matrix to 0? This just involves checking whether it does and in fact, this is
the case using the arithmetic in the residue class.

In summary, it is not all that hard to find the minimum polynomial.

6.3 Eigenvalues, Eigenvectors
We begin with the following fundamental definition.

Definition 6.3.1 Let L ∈L (V,V ) where V is a vector space of dimension n with field of
scalars F. An eigen-pair consists of a scalar λ ∈F called an eigenvalue and a NON-ZERO
v ∈V such that

(λ I−L)v = 0

Do eigen-pairs exist? Recall that from Theorem 6.1.10 the minimum polynomial can
be factored in a unique way as p(λ ) = ∏

p
i=1 φ i (λ )

ki where each φ i (λ ) is irreducible and
monic. Then the following theorem is obtained.
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Theorem 6.3.2 Let L ∈L (V,V ) and let its minimum polynomial p(λ ) have a root µ in
the field of scalars. Then µ is an eigenvalue of L.

Proof: Since p(λ ) has a root, we know p(λ ) = (λ −µ)q(λ ) where the degree of q(λ )
is less than the degree of p(λ ). Therefore, there is a vector u such that q(L)u ≡ v ̸= 0.
Otherwise, p(λ ) is not really the minimum polynomial because q(λ ) would work better.
Then (L−µI)q(L)u = (L−µI)v = 0 and so µ is indeed an eigenvalue. ■

Theorem 6.3.3 Suppose the minimum polynomial p(λ ) of L∈L (V,V ) factors completely
into linear factors (splits) so that

p(λ ) =
p

∏
i=1

(λ −µ i)
ki

Then the µ i are distinct eigenvalues and corresponding to each of these eigenvalues, there
is an eigenvector wi ̸= 0 such that Lwi = µ iwi. Also, there are no other eigenvalues than
these µ i. Also

V = ker(L−µ1I)k1 ⊕·· ·⊕ker
(
L−µ pI

)kp

and if Li is the restriction of L to ker(A−µ iI)
ki , then Li has exactly one eigenvalue and it

is µ i.

Proof: By Theorem 6.3.2, each µ i is an eigenvalue and we can let wi be a corresponding
eigenvector. By Theorem 6.1.10,

V = ker(L−µ1I)k1 ⊕·· ·⊕ker
(
L−µ pI

)kp

Also by this theorem, the minimum polynomial of Li is (λ −µ i)
ki and so it has an eigen-

value µ i. Could Li have any other eigenvalue ν ̸= µ i? To save notation, denote by m the
exponent ki and by µ the eigenvalue µ i. Also let w denote an eigenvector of Li with respect
to ν . Then since the minimum polynomial for Li is (λ −µ)m ,

0 = (L−µI)m w = (L−νI +(ν−µ) I)m w

=
m

∑
k=0

(
m
k

)
(L−νI)m−k (ν−µ)k w = (ν−µ)m w

which is impossible because w ̸= 0. Thus there can be no other eigenvalue for Li.
Consider the claim about L having no other eigenvalues than the µ i. Say µ is another

eigenvalue with eigenvector w. Then let w=∑i zi,zi ∈ ker(L−µ iI)
ki . Then not every zi = 0

and
0 = (L−µI)∑

i
zi = ∑

i
(Lzi−µzi) = ∑

i
Lizi−µzi

Since this is a direct sum and each ker(L−µ iI)
ki is invariant with respect to L, we must

have each Lizi−µzi = 0. This is impossible unless µ equals some µ i because not every zi
is 0. ■

Example 6.3.4 The minimum polynomial for the matrix

A =

 4 0 −6
−1 2 3
1 0 −1
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is λ
2− 3λ + 2. This factors as (λ −2)(λ −1) and so the eigenvalues are 1,2. Find the

eigen-pairs. Then determine the matrix with respect to a basis of these eigenvectors if
possible.

First consider the eigenvalue 2. There exists a nonzero vector v such that (A−2I)v = 0.
This follows from the above theory. However, it is best to just find it directly rather than
try to get it by using the proof of the above theorem. The augmented matrix to consider is
then  4−2 0 −6 0

−1 2−2 3 0
1 0 −1−2 0


Row reducing this yields  1 0 −3 0

0 0 0 0
0 0 0 0


Thus the solution is any vector of the form 3z

y
z

= z

 3
0
1

+ y

 0
1
0

 ,z,y not both 0

Now consider the eigenvalue 1. This time you row reduce 4−1 0 −6 0
−1 2−1 3 0
1 0 −1−1 0


which yields for the row reduced echelon form 1 0 −2 0

0 1 1 0
0 0 0 0


Thus an eigenvector is of the form  2z

−z
z

 ,z ̸= 0

Consider a basis for Rn of the form
 3

0
1

 ,

 0
1
0

 ,

 2
−1
1




You might want to consider Problem 9 on Page 114 at this point. This problem shows that
the matrix with respect to this basis is diagonal.
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When the matrix of a linear transformation can be chosen to be a diagonal matrix, the
transformation is said to be nondefective. Also, note that the term applies to the matrix
of a linear transformation and so I will specialize to the consideration of matrices in what
follows. As shown above, this is equivalent to saying that any matrix of the linear transfor-
mation is similar to one which is diagonal. That is, the matrix of a linear transformation,
or more generally just a square matrix A has the property that there exists S such that
S−1AS = D where D is a diagonal matrix.

Here is a definition which also introduces one of the most horrible adjectives in all of
mathematics.

6.4 Diagonalizability
Diagonalizability is a term intended to be descriptive of whether a given matrix is similar
to a diagonal matrix. More precisely one has the following definition.

Definition 6.4.1 Let A be an n× n matrix. Then A is diagonalizable if there exists an
invertible matrix S such that S−1AS = D where D is a diagonal matrix. This means D has
a zero as every entry except for the main diagonal. More precisely, Di j = 0 unless i = j.
Such matrices look like the following.

∗ 0
. . .

0 ∗


where ∗ might not be zero.

The most important theorem about diagonalizability1 is the following major result. First
here is a simple observation.

Observation 6.4.2 Let S =
(

s1 · · · sn

)
where S is n× n. Then here is the result of

multiplying on the right by a diagonal matrix.

(
s1 · · · sn

)
λ 1

. . .

λ n

=
(

λ 1s1 · · · λ nsn

)

This follows from the way we multiply matrices. The diagonal matrix has i jth entry equal
to δ i jλ j and the i jth entry of the matrix on the far left is s ji where

si =
(

s1i s2i · · · sni
)T

.

Thus the i jth entry of the product on the left is ∑k sikδ k jλ j = si jλ j. It follows that the jth

column is (
s1 jλ j s2 jλ j · · · sn jλ j

)T
= λ js j

1This word has 9 syllables! Such words belong in Iceland. Eyjafjallajökull actually only has seven syllables.
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Theorem 6.4.3 An n×n matrix is diagonalizable if and only if Fn has a basis of eigenvec-
tors of A. Furthermore, you can take the matrix S described above, to be given as

S =
(

s1 s2 · · · sn

)
where here the sk are the eigenvectors in the basis for Fn. If A is diagonalizable, the
eigenvalues of A are the diagonal entries of the diagonal matrix.

Proof: To say that A is diagonalizable, is to say that for some S,

S−1AS =


λ 1

. . .

λ n


the λ i being elements of F. This is to say that for S =

(
s1 · · · sn

)
, sk being the kth

column,

A
(

s1 · · · sn

)
=
(

s1 · · · sn

)
λ 1

. . .

λ n


which is equivalent, from the way we multiply matrices and the above observation, that(

As1 · · · Asn

)
=
(

λ 1s1 · · · λ nsn

)
which is equivalent to saying that the columns of S are eigenvectors and the diagonal matrix
has the eigenvectors down the main diagonal. Since S−1 is invertible, these eigenvectors
are a basis. Similarly, if there is a basis of eigenvectors, one can take them as the columns
of S and reverse the above steps, finally concluding that A is diagonalizable. ■

Corollary 6.4.4 Let A be an n×n matrix with minimum polynomial

p(λ ) =
p

∏
i=1

(λ −µ i)
ki , the µ i being distinct.

Then A is diagonalizable if and only if each ki = 1.

Proof: Suppose first that it A is diagonalizable with a basis of eigenvectors {v1, · · · ,vn}
with Avi = µ ivi. Since n≥ p, there may be some repeats here, a µ i going with more than

one vi. Say ki > 1. Now consider p̂(λ ) ≡ ∏
p
j=1, j ̸=i

(
λ −µ j

)k j
(λ −µ i) . Thus this is a

monic polynomial which has smaller degree than p(λ ) . If you have v ∈ Fn, since this is a
basis, there are scalars ci such that v = ∑ j c jv j. Then p̂(A)v = 0. Since v is arbitrary, this
shows that p̂(A) = 0 contrary to the definition of the minimum polynomial being p(λ ).
Thus each ki must be 1.

Conversely, if each ki = 1, then

Fn = ker(A−µ1I)⊕·· ·⊕ker
(
A−µ pI

)
and you simply let β i be a basis for ker(A−µ iI) which consists entirely of eigenvectors
by definition of what you mean by ker(A−µ iI) . Then a basis of eigenvectors consists of{

β 1,β 2, · · · ,β p
}

and so the matrix A is diagonalizable. ■
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Example 6.4.5 The minimum polynomial for the matrix

A =

 10 12 −6
−4 −4 3
3 4 −1


is λ

3−5λ
2+8λ −4. This factors as (λ −2)2 (λ −1) and so the eigenvalues are 1,2. Find

the eigen-pairs. Then determine the matrix with respect to a basis of these eigenvectors if
possible. If it is not possible to find a basis of eigenvectors, find a block diagonal matrix
similar to the matrix. Note that from the above theorem, it is not possible to diagonalize
this matrix.

First find the eigenvectors for 2. You need to row reduce 10−2 12 −6 0
−4 −4−2 3 0
3 4 −1−2 0


This yields  1 0 −3 0

0 1 3
2 0

0 0 0 0


Thus the eigenvectors which go with 2 are(

6z −3z 2z
)T

, z ∈ R, z ̸= 0

The eigenvectors which go with 1 are

z
(

2 −1 1
)T

, z ∈ R, z ̸= 0

By Theorem 6.3.3, there are no other eigenvectors than those which correspond to eigen-
values 1,2. Thus there is no basis of eigenvectors because the span of the eigenvectors has
dimension two.

However, we can consider

R3 = ker
(
(A−2I)2

)
⊕ker(A− I)

The second of these is just span
((

2 −1 1
)T
)
. What is the first? We find it by row

reducing the following matrix which is the square of A− 2I augmented with a column of
zeros.  −2 0 6 0

1 0 −3 0
−1 0 3 0


Row reducing this yields  1 0 −3 0

0 0 0 0
0 0 0 0
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which says that solutions are of the form 3z
y
z

 ,y,z ∈ R not both 0

This is the nonzero vectors of.

span


 3

0
1

 ,

 0
1
0




Note these are not eigenvectors. They are called generalized eigenvectors because they
pertain to ker

(
(A−2I)2

)
rather than ker((A−2I)) . What is the matrix of the restriction

of A to this subspace having ordered basis
 3

0
1

 ,

 0
1
0

 ,

 2
−1
1




A

 3
0
1

 =

 10 12 −6
−4 −4 3
3 4 −1


 3

0
1

=

 24
−9
8


A

 0
1
0

 =

 10 12 −6
−4 −4 3
3 4 −1


 0

1
0

=

 12
−4
4


Then  24 12

−9 −4
8 4

=

 3 0
0 1
1 0

M (6.1)

and so some computations yield

M =

(
8 4
−9 −4

)
Indeed this works  3 0

0 1
1 0

( 8 4
−9 −4

)
=

 24 12
−9 −4
8 4


Then the matrix associated with the other eigenvector is just 1. Hence the matrix with
respect to the above ordered basis is 8 4 0

−9 −4 0
0 0 1





6.4. DIAGONALIZABILITY 139

So what are some convenient computations which will allow you to find M easily? Take
the transpose of both sides of 6.1. Then you would have(

24 −9 8
12 −4 4

)
= MT

(
3 0 1
0 1 0

)

Thus

MT

(
0
1

)
=

(
−9
−4

)
,MT

(
1
0

)
=

(
8
4

)

and so MT =

(
8 −9
4 −4

)
so M =

(
8 4
−9 −4

)
.

The eigenvalue problem is one of the hardest problems in algebra because of our inabil-
ity to exactly solve polynomial equations. Therefore, estimating the eigenvalues becomes
very significant. In the case of the complex field of scalars, there is a very elementary result
due to Gerschgorin. It can at least give an upper bound for the size of the eigenvalues.

Theorem 6.4.6 Let A be an n×n matrix. Consider the n Gerschgorin discs defined as

Di ≡

{
λ ∈ C : |λ −aii| ≤∑

j ̸=i

∣∣ai j
∣∣} .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (ai j) , let |xk| ≥
∣∣x j
∣∣ for all x j.

Thus |xk| ̸= 0.
∑
j ̸=k

ak jx j = (λ −akk)xk.

Then

|xk|∑
j ̸=k

∣∣ak j
∣∣≥ ∑

j ̸=k

∣∣ak j
∣∣ ∣∣x j

∣∣≥ ∣∣∣∣∣∑j ̸=k
ak jx j

∣∣∣∣∣= |λ −aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. ■
In these examples given above, it was possible to factor the minimum polynomial and

explicitly determine eigenvalues and eigenvectors and obtain information about whether
the matrix was diagonalizable by explicit computations. Well, what if you can’t factor the
minimum polynomial? What then? This is the typical situation, not what was presented in
the above examples. Just write down a 3×3 matrix and see if you can find the eigenvalues
explicitly using algebra. Is there a way to determine whether a given matrix is diagonal-
izable in the case that the minimum polynomial factors although you might have trouble
finding the factors? Amazingly, the answer is yes. One can answer this question completely
using only methods from algebra.
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6.5 A Formal Derivative and Diagonalizability
For p(λ ) = anλ

n +an−1λ
n−1 + · · ·+a1λ +a0 where n is a positive integer, define

p′ (λ )≡ nanλ
n−1 +(n−1)an−1λ

n−2 + · · ·+a1

In other words, you use the usual rules of differentiation in calculus to write down this
formal derivative. It has absolutely no physical significance in this context because the co-
efficients are just elements of some field, possibly Zp. It is a purely algebraic manipulation.
A term like ka where k ∈ N and a ∈ F means to add a to itself k times. There are no limits
or anything else. However, this has certain properties. In particular, the “derivative” of a
sum equals the sum of the derivatives. This is fairly clear from the above definition. You
just need to always be considering polynomials. Also(

bλ
m
(

anλ
n +an−1λ

n−1 + · · ·+a1λ +a0

))′
=

(
anbλ

n+m +ban−1λ
m+(n−1)+ · · ·+ba1λ

1+m +a0bλ
m
)′

≡ anb(n+m)λ
n+m−1 +ban−1 (m+n−1)λ

m+n−2 +

· · ·+ba1 (m+1)λ
m +a0bmλ

m−1

Will the product rule give the same thing? Is it true that the above equals

(bλ
m)′
(

anλ
n +an−1λ

n−1 + · · ·+a1λ +a0

)
+bλ

m
(

anλ
n +an−1λ

n−1 + · · ·+a1λ +a0

)′
?

A short computation shows that this is indeed the case. Then by induction one can conclude
that (

p

∏
i=1

pi (λ )

)
=

p

∑
j=1

p′j (λ )∏
i̸= j

pi (λ )

In particular, if

p(λ ) =
p

∏
i=1

(λ −µ i)
ki

then

p′ (λ ) =
p

∑
j=1

k j

(
λ −µ j

)k j−1
∏
i̸= j

(λ −µ i)
ki

I want to emphasize that this is an arbitrary field of scalars, but if one is only interested in
the real or complex numbers, then all of this follows from standard calculus theorems.

Proposition 6.5.1 Suppose the minimum polynomial p(λ ) of an n×n matrix A completely
factors into linear factors. Then A is diagonalizable if and only if p(λ ) , p′ (λ ) are relatively
prime.

Proof: Suppose p(λ ) , p′ (λ ) are relatively prime. Say

p(λ ) =
n

∏
i=1

(λ −µ i)
ki , µ i are distinct
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From the above discussion,

p′ (λ ) =
p

∑
j=1

k j

(
λ −µ j

)k j−1
∏
i̸= j

(λ −µ i)
ki

and p′ (λ ) , p(λ ) are relatively prime if and only if each ki = 1. Then by Corollary 6.4.4
this is true if and only if A is diagonalizable. ■

Example 6.5.2 Find whether the matrix

A =

 1 −1 2
0 1 2
1 −1 1


is diagonalizable. Assume the field of scalars is C because in this field, the minimum
polynomial will factor thanks to the fundamental theorem of algebra.

Successive powers of the matrix are 1 0 0
0 1 0
0 0 1

 ,

 1 −1 2
0 1 2
1 −1 1

 ,

 3 −4 2
2 −1 4
2 −3 1

 ,

 5 −9 0
6 −7 6
3 −6 −1


Then we need to have for a linear combination involving a,b,c,d as scalars

a+b+3c+5d = 0
2c+6d = 0

b+2c+3d = 0
−b−3c−6d = 0

Then letting d = 1, this gives only one solution, a = 1,b = 3,c =−3 and so the candidate
for the minimum polynomial is λ

3 − 3λ
2 + 3λ + 1. In fact, this does work as is seen

by substituting A for λ . So is this polynomial and its derivative relatively prime? The
derivative is 3λ

2−6λ +3. Dividing, one obtains

λ
3−3λ

2 +3λ +1 =
1
3
(λ −1)

(
3λ

2−6λ +3
)
+2

and clearly
(

3λ
2−6λ +3

)
and 2 are relatively prime. Hence this matrix is diagonalizable.

Of course, finding its diagonalization is another matter. For an algorithm for determining
whether two polynomials are relatively prime, see Problem 34 on Page 35 or the process
described in Section 2.3 on Page 44.

Of course this was an easy example thanks to Problem 12 on Page 146. because there
are three distinct eigenvalues, one real and two complex which must be complex conju-
gates. This problem says that eigenvectors corresponding to distinct eigenvalues are an
independent set. Be sure to do this problem.

Consider the following example in which the eigenvalues are not distinct, consisting of
a,a.
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Example 6.5.3 Find whether the matrix

A =

(
a+1 1
−1 a−1

)
is diagonalizable.

Listing the powers of the matrix,(
1 0
0 1

)
,

(
a+1 1
−1 a−1

)
,

(
a2 +2a 2a
−2a a2−2a

)
Then we need to have for a linear combination involving scalars x,y,z

x+(a+1)y+
(
a2 +2a

)
z = 0

y+2az = 0
x+(a−1)y+

(
a2−2a

)
z = 0

Then some routine row operations yield x = a2z, y =−2az and z is arbitrary. For the min-
imum polynomial, we take z = 1 because this is a monic polynomial. Thus the minimum
polynomial is a2−2aλ +λ

2 = (λ −a)2 and clearly this and its derivative are not relatively
prime. Thus this matrix is not diagonalizable for any choice of a.

6.6 Exercises
1. For the linear transformation determined by multiplication by the following matrices,

find the minimum polynomial.

(a)

(
3 1
−4 −1

)

(b)

(
0 −2
1 3

)

(c)

 2 1 0
−1 0 0
2 5 2


(d)

 2 1 0
−1 0 0
0 9 4



(e)

 1 0 0
−2 −1 0
3 6 2



(f)

 2 1 0
−2 2 1
5 −1 −1



(g)

 5 0 12
−2 1 −6
−2 0 −5


2. Here is a matrix:  −1 −4 −2

2 4 2
−1 −1 0


Its minimum polynomial is λ

3−3λ
2 +4λ −2 = (λ −1)

(
−2λ +λ

2 +2
)
. Obtain a

block diagonal matrix similar to this one.
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3. Suppose A∈L (V,V ) where V is a finite dimensional vector space and suppose p(λ )
is the minimum polynomial. Say p(λ ) = λ

m + am−1λ
m−1 + · · ·+ a1λ + a0. If A is

one to one, show that it is onto and also that A−1 ∈L (V,V ). In this case, explain
why a0 ̸= 0. In this case, give a formula for A−1 as a polynomial in A.

4. Let A =

(
0 −2
1 3

)
. Its minimum polynomial is λ

2− 3λ + 2. Find A10 exactly.

Hint: You can do long division and get λ
10 = l (λ )

(
λ

2−3λ +2
)
+1023λ −1022.

5. Suppose A ∈L (V,V ) and it has minimum polynomial p(λ ) which has degree m. It
is desired to compute An for n large. Show that it is possible to obtain An in terms of
a polynomial in A of degree less than m.

6. Determine whether the following matrices are diagonalizable. Assume the field of
scalars is C.

(a)

 1 1 1
−1 2 1
0 1 1


(b)

( √
2+1 1
−1

√
2−1

)

(c)

(
a+1 1
−1 a−1

)
where a ∈ R

(d)

 1 1 −1
2 1 −1
0 1 2



(e)

 2 1 0
−1 0 0
2 2 1



7. The situation for diagonalizability was presented for the situation in which the min-
imum polynomial factors completely as a product of linear factors since this is cer-
tainly the case of most interest, including C. What if the minimum polynomial does
not split? Is there a theorem available that will allow one to conclude that the matrix
is diagonalizable in a splitting field, possibly larger than the given field? It is a rea-
sonable question because the assumption that p(λ ) , p′ (λ ) are relatively prime may
be determined without factoring the polynomials and involves only computations in-
volving the given field F. If you enlarge the field, what happens to the minimum
polynomial? Does it stay the same or does it change? Remember, the matrix has
entries all in the smaller field F while a splitting field is G larger than F, but you can
determine the minimum polynomial using row operations on vectors in Fn2

.

8. Suppose V is a finite dimensional vector space and suppose N ∈L (V,V ) satisfies
Nm = 0 for some m≥ 1. Show that the only eigenvalue is 0.

9. Suppose V is an n dimensional vector space and suppose β is a basis for V. Consider
the map µI : V →V given by µIv = µv. What is the matrix of this map with respect
to the basis β? Hint: You should find that it is µ times the identity matrix whose i jth

entry is δ i j which is 1 if i = j and 0 if i ̸= j. Thus the i jth entry of this matrix will be
µδ i j.

10. In the case that the minimum polynomial factors, which was discussed above, we
had

V = ker(L−µ1I)k1 ⊕·· ·⊕ker
(
L−µ pI

)kp
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If Vi = ker(L−µ iI)
ki , then by definition, (Li−µ iI)

ki = 0 where here Li is the restric-
tion of L to Vi. If N = Li−µ iI, then N : Vi→Vi and Nki = 0. This is the definition of
a nilpotent transformation, one which has a high enough power equal to 0. Suppose
then that N : V → V where V is an m dimensional vector space. We will show that
there is a basis for V such that with respect to this basis, the matrix of N is block
diagonal and of the form 

N1 0
. . .

0 Ns


where Ni is an ri× ri matrix of the form

0 1 0

0
. . .
. . . 1

0 0


That is, there are ones down the superdiagonal and zeros everywhere else. Now
consider the case where Ni = Li− µ iI on one of the Vi as just described. Use the
preceding problem and the special basis β i just described for Ni to show that the
matrix of Li with respect to this basis is of the form

J (µ i)≡


J1 (µ i) 0

. . .

0 Js (µ i)


where Jr (µ i) is of the form 

µ i 1 0

µ i
. . .
. . . 1

0 µ i


This is called a Jordan block. Now let β =

(
β 1, · · · ,β p

)
. Explain why the matrix of

L with respect to this basis is of the form
J (µ1) 0

. . .

0 J
(
µ p
)


This special matrix is called the Jordan canonical form. This problem shows that it
reduces to the study of the matrix of a nilpotent matrix. You see that it is a block
diagonal matrix such that each block is a block diagonal matrix which is also an
upper triangular matrix having the eigenvalues down the main diagonal and strings
of ones on the super diagonal.
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11. Now in this problem, the method for finding the special basis for a nilpotent trans-
formation is given. Let V be a vector space and let N ∈L (V,V ) be nilpotent. First
note the only eigenvalue of N is 0. Why? (See Problem 8.) Let v1 be an eigenvector.
Then {v1,v2, · · · ,vr} is called a chain based on v1 if Nvk+1 = vk for all k = 1,2, · · · ,r
and v1 is an eigenvector so Nv1 = 0. It will be called a maximal chain if there is no
solution v, to the equation, Nv = vr. Now there will be a sequence of steps leading
to the desired basis.

(a) Show the vectors in any chain are linearly independent and for {v1,v2, · · · ,vr}
a chain based on v1,

N : span(v1,v2, · · · ,vr) 7→ span(v1,v2, · · · ,vr) . (6.2)

Also if {v1,v2, · · · ,vr} is a chain, then r≤ n. Hint: If 0 = ∑
r
i=1 civi, and the last

nonzero scalar occurs at l, do Nl−1 to the sum and see what happens to cl .

(b) Consider the set of all chains based on eigenvectors. Since all have total length
no larger than n it follows there exists one of maximal length,

{
v1

1, · · · ,v1
r1

}
≡

B1. If span(B1) contains all eigenvectors of N, then stop. Otherwise, con-
sider all chains based on eigenvectors not in span(B1) and pick one, B2 ≡{

v2
1, · · · ,v2

r2

}
which is as long as possible. Thus r2 ≤ r1. If span(B1,B2) con-

tains all eigenvectors of N, stop. Otherwise, consider all chains based on eigen-
vectors not in span(B1,B2) and pick one, B3 ≡

{
v3

1, · · · ,v3
r3

}
such that r3 is as

large as possible. Continue this way. Thus rk ≥ rk+1. Then show that the
above process terminates with a finite list of chains {B1, · · · ,Bs} because for
any k,{B1, · · · ,Bk} is linearly independent. Hint: From part a. you know this
is true if k = 1. Suppose true for k−1 and letting L(Bi) denote a linear combina-
tion of vectors of Bi, suppose ∑

k
i=1 L(Bi) = 0. Then we can assume L(Bk) ̸= 0

by induction. Let vk
i be the last term in L(Bk) which has nonzero scalar. Now

act on the whole thing with Ni−1 to find vk
1 as a linear combination of vectors

in {B1, · · · ,Bk−1} , a contradiction to the construction. You fill in the details.

(c) Suppose Nw = 0. (w is an eigenvector). Show that there exist scalars, ci such
that w = ∑

s
i=1 civi

1. Recall that vi
1 is the eigenvector in the ith chain on which

this chain is based. You know that w is a linear combination of the vectors
in {B1, · · · ,Bs} . This says that in fact it is a linear combination of the bottom
vectors in the Bi. Hint: You know that w = ∑

s
i=1 L(Bi) . Let vs

i be the last in
L(Bs) which has nonzero scalar. Suppose that i > 1. Now do Ni−1 to both sides
and obtain that vs

1 is in the span of {B1, · · · ,Bs−1} which is a contradiction.
Hence i = 1 and so the only term of L(Bs) is one involving an eigenvector.
Now do something similar to L(Bs−1) ,L(Bs−2) etc. You fill in details.

(d) If Nw = 0, then w ∈ span(B1, · · · ,Bs) . This was what was just shown. In fact,
it was a particular linear combination involving the bases of the chains. What if
Nkw= 0? Does it follow that w∈ span(B1, · · · ,Bs)? Show that if Nkw= 0, then
w ∈ span(B1, · · · ,Bs) . Hint: Say k is as small as possible such that Nkw = 0.
Then you have Nk−1w is an eigenvector and so Nk−1w = ∑

s
i=1 civi

1 If Nk−1w is
the base of some chain Bi, then there is nothing to show. Otherwise, consider
the chain Nk−1w,Nk−2w, · · · ,w. It cannot be any longer than any of the chains
B1,B2, · · · ,Bs why? Therefore, vi

1 = Nk−1vi
k. Why is vi

k ∈ Bi? This is where you
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use that this is no longer than any of the Bi. Thus

Nk−1

(
w−

s

∑
i=1

civi
k

)
= 0

By induction, (details) w−∑
s
i=1 civi

k ∈ span(B1, · · · ,Bs) .

(e) Since N is nilpotent, ker(Nm) =V for some m so V = span(B1, · · · ,Bs).

(f) Explain why the matrix with respect to the ordered basis (B1, · · · ,Bs) is the kind
of thing desired and described in the above problem. Also explain why the size
of the blocks decreases from upper left to lower right. To see why the matrix is
like the above, consider(

0 vi
1 · · · vi

ri−1

)
=
(

vi
1 vi

2 · · · vi
ri

)
Mi

where Mi is the ith block and ri is the length of the ith chain.
If you have gotten through this, then along with the previous problem, you have
proved the existence of the Jordan canonical form, one of the greatest results in
linear algebra. It will be considered a different way later. Specifically, you have
shown that if the minimum polynomial splits, then the linear transformation has
a matrix of the following form:

J (µ1) 0
. . .

0 J
(
µ p
)


where without loss of generality, you can arrange these blocks to be decreasing
in size from the upper left to the lower right and J (µ i) is of the form

Jr1 (µ i) 0
. . .

0 Jrs (µ i)


Where Jr (µ i) is the r× r matrix which is of the following form

Jr (µ i) =


µ i 1 0

µ i
. . .
. . . 1

0 µ i


and the blocks Jr (µ i) can also be arranged to have their size decreasing from
the upper left to lower right.

12. (Extra important) The following theorem gives an easy condition for which the Jor-
dan canonical form will be a diagonal matrix.
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Theorem 6.6.1 Let A ∈ L (V,V ) and suppose (ui,λ i) , i = 1,2, · · · ,m are eigen-
pairs such that if i ̸= j, then λ i ̸= λ j. Then {u1, · · · ,um} is linearly independent.
In words, eigenvectors from distinct eigenvalues are linearly independent.

Hint: Suppose ∑
k
i=1 ciui = 0 where k is as small as possible such that not all of the

ci = 0. Then ck ̸= 0. Explain why k > 1 and

k

∑
i=1

ciλ kui =
k

∑
i=1

ciλ iui

Now
k

∑
i=1

ci (λ k−λ i)ui = 0

Obtain a contradiction of some sort at this point. Thus if the n× n matrix has n
distinct eigenvalues, then the corresponding eigenvectors will be a linearly indepen-
dent set and so the matrix will be diagonal and all the Jordan blocks will be single
numbers.

13. This and the next few problems will give another presentation of the Jordan canon-
ical form. Let A ∈L (V,V ) be a nonzero linear transformation where V has finite
dimensions. Consider {

x,Ax,A2x, · · · ,Am−1x
}

where for k ≤ m−1,Akx is not in,

Akx /∈ span
(

x,Ax,A2x, · · · ,Ak−1x
)

show that then
{

x,Ax,A2x, · · · ,Am−1x
}

must be linearly independent. Hint: Let
η (λ ) be the minimum polynomial for A. Then let φ (λ ) be the monic polynomial of
smallest degree such that φ (A)x = 0. Explain why φ (λ ) divides η (λ ). Then show
that if the degree of φ (λ ) is d, then

{
x,Ax,A2x, · · · ,Ad−1x

}
is linearly independent

and if k is as described above, then k ≤ d. Note: linear dependence implies the
existence of a polynomial ψ (λ ) such that ψ (A)x = 0. An ordered set of vectors of
the form x,Ax,A2x, · · · ,Am−1x where Amx ∈ span

(
x,Ax,A2x, · · · ,Am−1x

)
with m as

small as possible is called a cyclic set.

14. ↑Suppose now that N ∈L (V,V ) for V a finite dimensional vector space and the min-
imum polynomial for N is λ

p. In other words, N is nilpotent, N p = 0 and p as small
as possible. For x ̸= 0, let β x =

{
x,Nx,N2x, · · · ,Nm−1x

}
where we keep the order of

these vectors in β x and here m is such that Nmx ∈ span
(
x,Nx,N2x, · · · ,Nm−1x

)
with

m as small as possible.

(a) Show that Nmx = 0. Hint: You know from the assumption that

Nmx ∈ span
(
x,Nx,N2x, · · · ,Nm−1x

)
that there is a monic polynomial η (λ ) of degree m such that η (N)x = 0. Ex-
plain why η (λ ) divides the minimum polynomial λ

p. Then η (λ ) = λ
m. Thus

Nmx = 0.



148 CHAPTER 6. DIRECT SUMS AND BLOCK DIAGONAL MATRICES

(b) For each x ̸= 0, there is such a β x and let V1 ≡ span
(
β x1

)
. Explain why N :

V1→V1.

(c) Let N1 be the restriction of N to V1. Find the matrix of N1 with respect to the
ordered basis

{
Nm−1x1, · · · ,Nx1,x1

}
. Note that we reverse the order of these

vectors. This is just the traditional way of doing it. Show this matrix is of the
form

B≡


0 1 0

0
. . .
. . . 1

0 0

 (6.3)

15. ↑In the context of the above problems where

N p = 0,N ∈L (V,V )

and β x is defined as above, show that for each k ≤ p, if W is a subspace of ker
(
Nk
)

which is invariant with respect to N meaning N (W )⊆W, then there are finitely many
yi ∈W such that

W = span
(
β y1

,β y2
, · · · ,β ys

)
, some s

and
{

β y1
,β y2

, · · · ,β ys

}
is linearly independent. This is called a cyclic basis. Hint:

If W ⊆ ker(N) , this is obviously true because in this case, β x = x for x ∈ ker(N).
Now suppose the assertion is true for k < p and consider invariant W ⊆ ker

(
Nk+1

)
.

Argue as follows:

(a) Explain why N (W ) is an invariant subspace of ker
(
Nk
)
. Thus, by induction,

N (W ) = span
(
β x1

,β x2
, · · · ,β xs

)
where that in (·) is a basis.

(b) Let z ∈W so Nz = ∑
s
i=1 ∑

ri−1
j=0 ai jN jx j. Let y j ∈W such that Ny j = x j. Explain

why

N

(
z−

s

∑
i=1

ri−1

∑
j=0

ai jN jyi

)
= 0

where the length of β xi
is ri. Explain why there is an eigenvector y0 such that

z =
s

∑
i=1

ri−1

∑
j=0

ai jN jyi + y0

(c) Note that β y0
= y0. Explain why

span
(

β y0
,β y1

, · · · ,β ys

)
⊇W

Then explain why
{

β y0
,β y1

, · · · ,β ys

}
is linearly independent. Hint: If

s

∑
i=1

ri−1

∑
j=0

ai jN jyi +by0 = 0,

Do N to both sides and use induction to conclude all ai j = 0.
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16. ↑Now in the above situation show that there is a basis for V = ker(N p) such that with
respect to this basis, the matrix of N is block diagonal of the form

B1

B2
. . .

Br

 (6.4)

where the size of the blocks is decreasing from upper left to lower right and each
block is of the form given in 6.3. Hint: Repeat the argument leading to this equation
for each β yi

where the ordered basis for ker(N p) is of the form{
β y1

,β y2
, · · · ,β yr

}
arranged so that the length of β yi

is at least as long as the length of β yi+1
.

17. ↑Now suppose the minimum polynomial for A ∈L (V,V ) is

p(λ ) =
r

∏
i=1

(λ −µ i)
mi

Thus from what was shown above,

V =
r⊕

i=1

ker((A−µ iI)
mi)≡

r⊕
i=1

ker
(
Nmi

i

)
where Ni is the restriction of (A−µ iI) to Vi ≡ ker((A−µ iI)

mi). Explain why there
are ordered bases β 1, · · · ,β r, β j being a basis for Vj such that with respect to this
basis, the matrix of Ni has the form

B1

B2
. . .

Bsi


each Bk having ones down the super diagonal and zeros elsewhere. Now explain why
each Vi is A invariant and the basis just described yields a matrix for A which is of
the form 

J1
. . .

Jr


where

Jk =


J1 (µk)

. . .

Jsk (µk)
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with the size of the diagonal blocks decreasing and Jm (µk) having ones down the
super diagonal and µk down the diagonal. Hint: Explain why, for I the identity on
Vk the matrix of µkI with respect to any basis is just the diagonal matrix having µk
down the diagonal. Thus the matrix of A restricted to Vk relative to the basis β k
will be of the desired form. Note that on Vk,A = Nk + µkI. This yields the Jordan
canonical form. Another argument based on rings and modules will be introduced in
the following chapter to obtain both the rational and Jordan form.



Chapter 7

Canonical Forms
Linear algebra is really all about linear transformations and the fundamental question is
whether a matrix comes from some linear transformation with respect to some basis. In
other words, are two matrices really from the same linear transformation? As proved above,
this happens if and only if the two are similar. Canonical forms allow one to answer this
question. There are two main kinds of canonical form, the Jordan canonical form for the
case where the minimum polynomial splits and the rational canonical form in the other
case. Of the two, the Jordan canonical form is the one which is used the most in applied
math. However, the other one is also pretty interesting. In what follows V,W will denote
vector spaces over the field of scalars F.

7.1 Reduction to Diagonal Matrix
This is a really interesting result on diagonalization. It is an approach used in Jacobsen
[26]. It concerns matrices whose entries are polynomials having coefficients in F and is an
application of row operations and division of polynomials.

Recall the elementary matrices which involved doing a row operation to the identity
matrix. The elementary matrices which involve switching two rows or adding a multiple
of one row to another result in elementary matrices which are invertible. Similarly, these
two column operations may be accomplished by multiplying on the right by an elementary
matrix which involves adding a multiple of a column to another column or switching two
columns. See Problem 40 on Page 99. It all works just as well if the multiple is an element
of a commutative ring. In the theorem which follows, the entries will be polynomials δ (q)
will denote the degree of the nonzero polynomial q(x) which is undefined if q = 0. Also
Ai j will be a polynomial. When we write AB we mean the matrix whose i jth entry is just
∑k AikBk j which may be a polynomial. The identity matrix is the same as usual. An inverse
is also the same as before, PP−1 = I. Recall that if α,β ∈ F [x], the polynomials with
coefficients in F, there exists κ such that

α = κβ +ρ, δ (ρ)< δ (β ) or else ρ = 0

Theorem 7.1.1 Let A be an m× n matrix whose entries are polynomials. Then there are
invertible matrices P,Q of the right size such that PAQ = B where B is a diagonal matrix.

Proof: If A = 0 there is nothing to show. Just let P,Q be appropriate identity matrices.
Assume then that A ̸= 0. Begin with P and Q appropriate sized identity matrices. Let
δ (Ai j) be the smallest of the degrees of all entries of A which are not zero. Now choosing
a switch of columns and rows, we can modify P,Q such that B11 = Ai j. Consider Bi1, the
first entry in the ith row. By the Euclidean algorithm,

Bi1 = B11q+ ri1, δ (ri1)< δ (B11)

or else ri1 = 0. Take −q times the first row of B and add to the ith row to place a ri1 in
the i1 position in place of Bi1. This involves adjusting P to get this new B. It is desired to
get a 0 in the i1 position which might have occurred if the ri1 had been 0. Otherwise, out
of all entries of the new matrix B the Brs which has δ (Brs) the smallest is in the ith row
and δ (Bis) ≤ δ (ri1) . Switch rows and columns till Bis is in the 11 position. Now repeat
the argument just given, replacing the first entry of the ith row with a remainder r′ where it

151
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is either zero or δ (r′) < δ (Bis). Continuing in this way, eventually the remainder r must
be zero because the process yields a strictly decreasing sequence of nonnegative integers,
yielding a 0 in the first column, ith row. Now do a similar process to the other rows of
the resulting matrix. When this is done, do the same thing using column operations to
eventually obtain

PAQ =

(
B11 0T

0 B̂

)
(*)

If B̂ = 0 we are done. If not, do the same thing working with the rows of B̂ and then the
columns of B̂ adjusting P and Q as the process continues, to obtain

PAQ =

 B11 0
B22

0 B̂


where B̂ is now (m−2)× (n−2) . Eventually, the result is a diagonal matrix. ■

Since adustments are constantly made to make the degree smaller, this matrix B will
consist of numbers from F.

Definition 7.1.2 For L ∈L (V,V ) , if p(x) ∈ F [x] , p(L) will simply be the linear transfor-
mation which involves replacing x with L and the constant term a with aI. Denote by D the
polynomials F [x] . For p ∈ D, pv ≡ p(L)v. For v ∈ V,Dv will consist of all vectors of the
form pv. Thus V is an Abelian group and if p,q ∈ D and v,w ∈V it follows that

pv ∈V, (p+q)v = pv+qv

1v = v, p(v+w) = pv+ pw

Since the “scalars” are coming from D = F [x] rather than a field, V is called a module.
As in the case of vector spaces, W is called a submodule if it satisfies the above conditions
and is a subset of V.

Definition 7.1.3 Suppose you have two modules, V,W over D = F [x] . A mapping h : V →
W is called a morphism if it does the following. For α,β ∈D and v,w in V,W respectively,

h(αv+βw) = αh(v)+βh(w)

When a morphism h is one to one, it is called a monomorphism and if the morphism h is
onto in addition to this then it is called an isomorphism.

We say that W is a submodule of V if it is a subset of V and is a module over D. Thus,
just as in the case of a subspace, W is a submodule if and only if 0 ∈W and whenever
α,β ∈ D and w,v ∈W,αw+βv ∈W.

We would say h is linear if the coefficients were from the field F.

Example 7.1.4 Let h : V →W be a morphism. Then ker(h) is a submodule of V.

This is clear because if v,w ∈ ker(h) ,h(αv+βw) = αh(v)+βh(w) = α0+β0 = 0.
Thus αv+βw ∈ ker(h).
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7.2 Quotients
One can consider quotients of modules. This involves a set of equivalence classes as de-
scribed below.

Definition 7.2.1 Let A be a module over D = F [x] and let B be a submodule. Then A/B
denotes sets of the form a+B defined by {a+b : b ∈ B} , with the operations defined by

a+B+(â+B) ≡ a+ â+B

λ (a+B) ≡ λa+B

To make the notation shorter, we can write [a] instead of a+B. Thus the above definition
says that [a]+[â] = [a+ â] and λ [a]≡ [λa] . We also have [a] = [â] if and only if a− â ∈ B.

Lemma 7.2.2 [a] = [â] if and only if a− â ∈ B.

Proof: From the definition, [a] = [â] if and only if whenever b ∈ B, it follows that there
exists b̂ such that a+b = â+ b̂ if and only if a− â = b− b̂ ∈ B. ■

The main result about quotients is in the following. It will be reminiscent of what was
done with the field Zp for a p a prime.

Proposition 7.2.3 A/B is a module over D.

Proof: I need to verify that the operations are well defined. If [a] = [â] , and if [b] =
[
b̂
]
,

is [a+ â] =
[
b+ b̂

]
? Yes because

(
b+ b̂

)
− (a+ â) = (b−a)+

(
b̂− â

)
∈ B. Similarly if

[a] = [â] then λa−λ â = λ (a− â) ∈ B. Thus λ [a] = λ [â] and so the operations are well
defined. As to their algebraic properties, these follow directly from the fact that A is a
module. ■

Definition 7.2.4 Let h be a morphism, h :V →W for V ,W modules. Let ĥ :V/ker(h)→W
be defined by ĥ([v])≡ hv. Then ĥ is one to one and a morphism.

Lemma 7.2.5 In Definition 7.2.4 ĥ is well defined, a morphism and maps onto h(V ) which
is a submodule of W.

Proof: It is clear that ĥ is a morphism if it is well defined. It suffices to show that if
[v] = [v̂] so v− v̂ = 0, then hv = hv̂. But h(v)− h(v̂) = h(v− v̂) = 0, so these are equal.
Thus ĥ is well defined. ĥ is one to one because ĥ [v] = 0 means h(v) = 0 and so v ∈ ker(h)
so [v] = 0. ĥ is obviously onto h(V ). ■

Example 7.2.6 Let v ∈V a module. Then Dv defined as {αv : α ∈ D} is a module. This is
called a cyclical module. It is a submodule of V .

Definition 7.2.7 A module V is said to have the ascending chain condition and is called a
Noetherian module if whenever there is a chain of submodules V1 ⊆V2 ⊆V3 · · · , these are
eventually constant. That is, for large enough n, Vn =Vm whenever m≥ n.

Lemma 7.2.8 Suppose A,B are modules and τ : A→ B is a morphism. Then if C is a sub
module of B, it follows that τ−1 (C) is a submodule of A which contains ker(τ).
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Proof: Let a,b ∈ τ−1 (C) and let α,β ∈ D. Then τ (αa+βb) = ατ (a)+βτ (b) ∈ C
and so τ−1 (C) is indeed a submodule of A. If v∈ ker(τ) , then τ (v) = 0∈C so v∈ τ−1 (C).
■

When is a module Noetherian?

Lemma 7.2.9 Suppose A,C are Noetherian modules and A θ→ B
η→C where θ ,η are mor-

phisms. Suppose also that θ is one to one, and ker(η) = θ (A). Then if A,C are Noetherian,
so is B.

Proof: Suppose Bn is an ascending chain of sub modules in B. Then η (Bn) is even-
tually constant because these are submodules of C. Also θ

−1 (Bn) is eventually con-
stant for the same reason. Let these be constant for all n ≥ m. If n > m, let b ∈ Bn.
Then there is b̂ ∈ Bm such that η

(
b̂
)
= η (b) and so b− b̂ ∈ ker(η) = Im(θ) so there is

a ∈ θ
−1 (Bn) = θ

−1 (Bm) with b− b̂ = θa ∈ Bm showing that b ∈ Bm also. ■
This sequence in which ker(η) = Im(θ) is called a short exact sequence.

Proposition 7.2.10 For n ∈ N, Dn is a Noetherian module over D. Here the usual conven-
tions are being followed. γ (α1, ...,αn) = (γα1, ...,γαn). If K is a submodule of Dn then
there are vectors zk such that K = Dz1 +Dz2 + · · ·+Dzn.

Proof: First note that D is a Noetherian module for D. The submodules of D are just the
ideals. If you have an increasing chain I1⊆ I2⊆ ·· · of submodules, then you could consider
I ≡ ∪kIk and this would also be a submodule because if α1,β 1 ∈ I and α,β ∈ D, then for
large enough k, both α1,β 1 ∈ Ik and so αα1 + ββ 1 ∈ Ik ⊆ I. Let σ ∈ I have smallest
degree. Then for α ∈ I, it follows that for all k large enough, α,σ ∈ Ik and α = βσ +ρ

where either ρ has smaller degree than σ which is impossible because ρ = α−βσ ∈ Ik or
else ρ = 0. Thus for all k large enough, every α ∈ Ik is a multiple of σ and so Ik equals Dσ

for all k large enough.
Consider Dn−1 θ→ Dn η→ D where θ (b)≡ (b,0) ,η (c)≡ cn where

c= (c1, · · · ,cn) .

It is clear that θ is one to one. Also ker(η) =
{
(b,0) : b ∈ Dn−1

}
= θ

(
Dn−1

)
. Now use

Lemma 7.2.9 for n = 2 to find D2 is Noetherian and then for n = 3 to find that D3 is
Noetherian and so forth. Thus Dn is Noetherian.

Now let K be a submodule of Dn. I need to show K = Dz1 +Dz2 + · · ·+Dzn for
suitable zk. Pick z1 ∈ Dn. If K = Dz1 stop. Otherwise consider z2 /∈ Dz1. If Dz1 +
Dz2 = K, stop otherwise continue. Now these Dz1 +Dz2 + · · ·+Dzk, k = 1,2, ... form an
increasing chain of submodules of K and so it must eventually be constant at which point
you have what is desired. ■

Definition 7.2.11 Also recall the concept of direct sums of subspaces. V =
⊕n

k=1 Vk means
V = ∑

n
k=1 Vk and if 0 = ∑

n
k=1 vk, then each vk = 0. The direct sum of modules has the same

definition. Also, if K = Dz1 +Dz2 + · · ·+Dzn we say that K = span(z1, ...,zn).

Let ek ∈ Dn denote the usual thing, a column of entries of D with a 1 in the kth slot
down from the top. Then {e1, ...,en} is linearly independent in the usual way meaning that
if ∑

n
k=1 αkek = 0, then each αk = 0 ∈ D. Also, if(

e′1 · · · e′n

)
=
(

e1 · · · en

)
P, meaning e′k = ∑

j
e jPk j,
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where P is an invertible n×n matrix of entries of D, then {e′1, ...,e′n} is linearly independent
in the same way. Indeed, if 0= ∑k σ ke

′
k then

0= ∑
k

σ ke
′
k = ∑

k
σ k ∑

j
e jPk j = ∑

j

(
∑
k

σ kPk j

)
e j

and so ∑k σ kPk j = 0 for each j. Since P is invertible, this gives each σ k = 0. This observa-
tion is useful in the following proof.

7.3 Cyclic Decomposition
Theorem 7.3.1 Let V be a finite dimensional vector space and let L ∈ L (V,V ). Then
there are vectors m1, ...,mp such that V = Dm1⊕·· ·⊕Dmp where D = F [x] and for p ∈
D,v ∈V, pv≡ p(L)(v).

Proof: Let V = Db1 + · · ·+Dbn for bk ∈V . This is possible because V is finite dimen-
sional. In fact, we could pick a basis and let this be a direct sum of Fbk. However, the point
here is that there are more vectors in Dbk than in Fbk. Thus p will likely be smaller than n
if the dimension of V is n. Now define η : Dn→V by

η

(
n

∑
i=1

σ iei

)
≡ η (σ)≡

n

∑
i=1

σ ibi, σ ibi ≡ σ i (L)bi

Here ei has 1 in the ith position and 0 elsewhere and σ i will denote a polynomial. Then it
follows that η is a morphism. For v, v̂ ∈ Dn and σ ∈ D,

η (v+ v̂) = η (v)+η (v̂) , η (σv) = ση (v) (7.1)

Let K ≡ ker(η) .
Now use Lemma 7.2.5 to define the one to one and onto morphism η̂ : Dn/K → V as

η̂ ([v])≡ η (v).
It was shown above in Proposition 7.2.10 that Dn is Noetherian and so the submodule

K = ker(η) is span(z1, · · · ,zm) for some m. Out of all such spans, let m be as small as
possible. Let the matrix A be defined by zk = ∑ j A jke j written as(

z1 · · · zm

)
=
(

e1 · · · en

)
An×m

By Theorem 7.1.1, there are invertible P,Q such that PAQ = B for Bn×m a matrix 0 off
the main diagonal, and so A = P−1BQ−1 where B is n×m. Therefore,(

z′1 · · · z′m

)
≡
(

z1 · · · zm

)
Q =

(
e1 · · · en

)
P−1B (7.2)

Thus span(z′1, ...,z
′
m) is the same as the span of the zk which is K. Then if m≤ n the above

gives
≡
(

e′1 · · · e′n

)
B =

(
δ 1e

′
1 · · · δ me

′
m

)
(7.3)

where δ k = B̂kk,k ≤ m. If m > n then some of the z′k equals 0 and so m would not be as
small as possible.
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It follows that z′k = δ ke
′
k,k ≤ m and no δ ke

′
k is 0 because you could then delete some

z′k which are 0 and still have a spanning set for K, but m was as small as possible. Thus
δ ke

′
k ̸= 0.
If e′k = ∑

m
i=1 α iz

′
i ∈ K, then e′k = ∑

m
i=1 α iδ ie

′
i. This cannot happen if k > m (see 7.2).

Thanks to linear independence of the e′k, if k ≤ m, then, each α iδ i = 0 for i ̸= k and
αkδ k = 1 so δ k and αk are in F, are nonzero and De′k = Dz′k since δ ke

′
k = z′k and δ k is

invertible. The e′i are divided into two classes, those which are an invertible multiple of
some z′i and those which are not. Those e′k in the latter class are not in K. Let S be those i
for which e′i is NOT in K so SC are those i for which e′i are in K.

Thus Dn/K = ∑k∈S
(
D
(
e′k +K

))
. In fact this is a direct sum. If ∑k∈S

(
αke

′
k +ck

)
∈ K,

then ∑k∈S αke
′
k =w= ∑k/∈S β ke

′
k ∈ K so αk,β k are all 0 by linear independence of the e′k.

Write the direct sum in the form
⊕

k∈S
(
De′k +K

)
. Since η̂ is an isomorphism, it follows

M =
⊕

k∈S Dη
(
e′k
)
. Let mk = η

(
e′k
)
. ■

Now note that Dm is a submodule of V which implies that αDm ⊆ Dm. In terms of
linear transformations, this says that p(L)m ∈ Dm for every p(x) ∈ F [x]. Also Dm is a
subspace of V . Thus it is an “invariant subspace”. p(L) : Dm→ Dm for any p(x) ∈ F [x].
In particular, this holds for p(x) = x and Dm is an invariant subspace with respect to L.
This has exhibited V as a direct sum of invariant subspaces, one for each mk.

Corollary 7.3.2 In the context of Theorem 7.3.1 where V = Dm1⊕·· ·⊕Dmp, there exists
an integer, lk such that

Dmk = span
(

mk,Lmk,L2mk, · · · ,Llk−1mk

)
.

Also
{

mk,Lmk,L2mk, · · · ,Llk−1mk
}

is a linearly independent set. Recall that p ∈ D,v ∈
V, pv≡ p(L)(v) for L given in L (V,V ).

Proof: As just noted, Dmk is a subspace of a finite dimensional vector space V and
L : Dmk → Dmk so there is a minimum polynomial for this restricted L to Dmk, σ k (x)
for which σ k (L) : Dmk → 0. Say the degree of this minimum polynomial is lk. Then
from the division algorithm for polynomials, a generic element of Dmk is of the form
α (L)mk where α (x) has degree less than lk. However, such examples are all elements of
span

(
mk,Lmk,L2mk, · · · ,Llk−1mk

)
. Why is

{
mk,Lmk,L2mk, · · · ,Llk−1mk

}
independent? If

not, there exist a j ∈ F such that

lk−1

∑
j=0

a jL jmk = α (L)mk = 0

where the degree of α (x) is smaller than lk. However, if β ∈ F [x] , then α (βmk) =
β (αmk) = β0 = 0 and so σ was not the minimum polynomial after all. A scalar mul-
tiple of α (x) having smaller degree would be the minimum polynomial. ■{

mk,Lmk,L2mk, · · · ,Llk−1mk
}

is called a cyclic set.

7.4 A Direct Sum Decomposition
This approach is in [26]. The end result is essentially Theorem 6.1.10 presented more
quickly. For p an irreducible polynomial and L ∈ L (V,V ) for V a finite dimensional
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vector space over F. As usual, for α ∈ F [x]≡ D,αm≡ α (L)m. For p a monic irreducible
polynomial,

Vp ≡
{

m ∈V : pkm = 0 for some k ∈ N
}

That is, eventually pkm = 0. It might be possible that k could change for different m ∈ V .
Note that if p is invertible, then Vp = 0 because xpm = 0 if and only if m =

(
x−1
)p 0 = 0, so

nothing is lost from considering only irreducible non constant polynomials. It is obvious
that Vp is a subgroup of the module V and is itself a module. Indeed, if m∈Vp so that pkm=
0 for some k, then 0 = α pkm = pkαm = 0 also and so αm ∈ V . If m, m̂ ∈ Vp, then letting
km,km̂ be the exponents for m, m̂, let k ≥max(km,km̂) and pk (m+ m̂) = pkm+ pkm̂ = 0 so
the sum m+ m̂ is in Vp if m, m̂ are.

Proposition 7.4.1 Let p1, · · · , pn be monic irreducible nonconstant polynomials. Let V be
a finite dimensional vector space. Then(

Vp1 + · · ·+Vp j−1 +Vp j+1 + · · ·+Vpn

)
∩Vp j = 0

and so ∑i Vpi =
⊕

i Vpi .

Proof: This follows from the observation that ∏i̸= j pki
i and p

k j
j are relatively prime. If

q is monic and divides the second, then it is of the form p
m j
j ,m j ≤ k j. If q divides the

first, then q is ∏i̸= j pmi
i ,mi ≤ ki. Thus ∏i ̸= j pmi

i = p
m j
j contradicting Theorem 1.13.9 about

uniqueness of factorization. Since the irreducible polynomials are distinct, we must have all
m j,mi equal to 0 and q = 1 so these two, ∏i̸= j pki

i and p
k j
j are relatively prime as claimed. If

m ∈
(

Vp1 + · · ·+Vp j−1 +Vp j+1 + · · ·+Vpn

)
∩Vp j , then m = ∑i ̸= j mi and so there exist ki,k j

such that pki
i mi = 0 and p

k j
j m = 0. Since ∏i̸= j pki

i and p
k j
j are relatively prime, there exist

σ ,τ such that
1 = σ ∏

i ̸= j
pki

i + τ p
k j
j (*)

Then do both sides of ∗ to m.

m =

(
σ ∏

i ̸= j
pki

i

)(
=m

∑
i ̸= j

mi

)
+ τ p

k j
j m = 0

This yields m = 0 and verifies the conclusion of the proposition.
It follows from Lemma 6.0.2 that if mi ∈ Vpi , and if ∑i mi = 0, then each mi = 0 so

∑i Vpi =
⊕

i Vpi . ■

Lemma 7.4.2 Let V be a vector space over a field F and let L ∈L (V,V ) have minimum
polynomial α (x) = ∏

n
i=1 pki

i (x) in which the pi are distinct irreducible monic polynomials.
Let D≡ F [x] and for α ∈ D,α (m)≡ α (L)(m). Let

V̂pi ≡
{

m ∈V : pki
i m = 0

}
⊆Vpi , (7.4)

(Note that here ki is fixed. ) Then

Dm⊆ V̂p1 ⊕·· ·⊕V̂pn ⊆Vp1 ⊕·· ·⊕Vpn (7.5)
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Proof: First note that from Proposition 7.4.1 Vp1 + · · ·+Vpn =Vp1⊕·· ·⊕Vpn . It follows
from 7.4 that V̂p1 + · · ·+V̂pn = V̂p1 ⊕·· ·⊕V̂pn and that the second subset in 7.5 holds.

Consider the first inclusion. This will be shown by establishing the following claim by
induction.

Claim: For m ∈V, if ∏
s
i=1 pki

i m = 0 then Dm⊆ V̂p1 ⊕·· ·⊕V̂ps .
Proof: First suppose s = 1. Then for β ∈ D,βm ⊆ V̂p1 because pk1βm = β pk1m =

β (0) = 0.
Suppose the claim is true for some s−1≥ 1 and let ∏

s
i=1 pki

i (m) = 0. Since pks
n (x) and

∏
s−1
i=1 pki

i are relatively prime, there exist polynomials σ ,τ such that 1 = σ pks
s + τ ∏

s−1
i=1 pki

i .

m = σ pks
s m+

∈V̂ps︷ ︸︸ ︷
τ

s−1

∏
i=1

pki
i m (7.6)

Then by assumption, ∏
s−1
i=1 pki

i

(
σ pks

s m
)
= σ ∏

s
i=1 pki

i (m) = 0 and so, by induction,

Dσ pks
s m ∈ V̂p1 ⊕·· ·⊕V̂ps−1 (7.7)

and since ∏
s−1
i=1 pki

i m ∈ V̂ps a repeat of the first part of the argument in which there is only
on space in the direct sum shows that D ∏

s−1
i=1 pki

i m ∈ V̂ps so from 7.6,

Dm⊆ Dσ pks
s m+D

s−1

∏
i=1

pki
i m⊆ V̂p1 ⊕·· ·⊕V̂ps−1 +V̂ps =

s⊕
i=1

V̂pi (7.8)

Now the result follows from letting s = n and the observation that ∏
n
i=1 pki

i (x) is the mini-
mum polynomial and so one can apply the above claim to any m ∈V . ■

The following is the main result.

Theorem 7.4.3 Let V be a finite dimensional vector space over the field F and let α (x) =
∏

n
i=1 pki

i (x) be the minimum polynomial of L ∈L (V,V ) where each pi is irreducible and
monic. Let D≡ F [x] and αm≡ α (L)(m) . Then

V̂pi ≡
{

m ∈V : pki
i m = 0

}
=
{

m ∈V : pk
i m = 0 for some k

}
≡Vpi

and V =Vp1 ⊕·· ·⊕Vpn .

Proof: Let a basis be (m1, ...,mp) . Then from Lemma 7.4.2,

V = Fm1⊕·· ·⊕Fmp ⊆ Dm1 + · · ·+Dmp ⊆Vp1 ⊕·· ·⊕Vpn ⊆V ■ (7.9)

7.5 Uniqueness
The following discussion follows [26]. From Theorem 7.3.1 if V is a finite dimensional
vector space there exist vectors mk such that V = Dm1⊕·· ·⊕Dmp. From Theorem 6.1.10

V = ker
(

φ 1 (L)
k1
)
⊕·· ·⊕ker

(
φ p (L)

kp
)
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where the minimum polynomial for L ∈ L (V,V ) is ∏
p
j=1 φ j (x)

k j where each φ j (x) is
monic and irreducible. I want to understand the cyclic decomposition for ker(φ (L)q) where
φ (x) is monic and irreducible. First note that L : ker(φ (L)q)→ ker(φ (L)q) so ker(φ (L)q)
is a finite dimensional vector space with respect to the restriction of L to ker(φ (L)q). Also,
there is a minimum polynomial σ for the restriction of L to ker(φ (L)q). Since σ divides
φ (L)q , σ must be of the form φ (L)l , l ≤ q.

Letting M = ker(φ (L)q) , where φ (x)q is the minimum polynomial for L restricted to
M, Theorem 7.3.1 implies

M = Dv1⊕·· ·⊕Dvs, no v j = 0 (7.10)

First consider whether L : Dvk→Dvk. If p ∈D,L(pvk)≡ Lp(L)vk ∈Dvk so this is clearly
true. Let the minimum polynomial for L restricted to Dvk be φ

lk . Then it follows lk ≤ q.
Note that if φ

lvk = 0, then so does φ
l+1vk = 0.

I want to show that these lk are unique where φ
lk vk = 0 and φ

lk (x) is the minimum
polynomial of L restricted to Dvk. Let these Dvk be numbered such that l1 ≤ l2 ≤ ·· · ≤ ls ≤
q. Then ls = q since if not, the minimum polynomial would equal to φ

ls instead of φ
q. By

Lemma 3.4.8 on Page 65, D/Dφ ≡ D̂ is a field. In that lemma, (p(x)) was written instead
of Dp.

In addition, we have M ⊇ φM ⊇ φ
2M ⊇ ·· · . These are each submodules of M.

Lemma 7.5.1 φ
kM/φ

k+1M is a vector space over D̂ if [α]
(
m+φ

k+1M
)
≡ αm+φ

k+1M.

Proof: This is clear if it is shown that the scalar multiplication by the elements of the
field is well defined so let [α] = [α̂] . I need to verify that αm+ φ

k+1M = α̂m̂+ φ
k+1M

This is so exactly when αm− α̂m̂ ∈ φ
k+1M. However, α− α̂ ∈ Dφ

αm− α̂m̂ = αm−αm̂+αm̂− α̂m̂

= α (m− m̂)+(α− α̂) m̂ ∈ φ
k+1M+Dφ m̂

Now m̂ ∈ φ
kM and so the last term is also in φ

k+1M. The rest follows from the description
of quotient spaces given earlier. ■

If k ≥ ls = q, then φ
kM = 0 and so for such k,φ kM/φ

k+1M = 0. The other case is that
k < ls = q. Say k ∈ [l j, l j+1). Then

φ
kM = Dφ

kv j+1 +Dφ
kv j+2 + · · ·+Dφ

kvs.

This is because if k ≥ l j, then for i ≤ j,φ kvi = 0 and so all that survives on multiplication
by φ

k is the above sum. Is{
φ

kv j+1 +φ
k+1M,φ kv j+2 +φ

k+1M, · · · ,φ kvs +φ
k+1M

}
linearly independent over D̂? Suppose

s

∑
r= j+1

[αr]
(

φ
kvr +φ

k+1M
)
= 0

Then ∑
s
r= j+1 αrφ

kvr+φ
k+1M = 0. This requires ∑

s
r= j+1 αrφ

kvr = φ
k+1m for some m∈M.

However, since M is a sum, as in 7.10, there is β r such that
s

∑
r= j+1

αrφ
kvr = φ

k+1m =
s

∑
r= j+1

φ
k+1

β rvr
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Thus, since M is a direct sum, for each r, φ
k
αr = φ

k+1
β r and so αr is a multiple of φ .

Hence [αr] = 0 for each r and this is indeed a basis for φ
kM/φ

k+1M over D̂. It follows that
the dimension of φ

kM/φ
k+1M over D̂ is s− j where k ∈ [l j, l j+1), the number of v j+1 for

l j+1 > k.
Suppose that M = Dw1⊕·· ·⊕Dwt such that the minimum polynomial of L restricted

to Dw j is φ
m j (x). The question is whether s = t and m j = l j. It was just shown that for k

a positive integer, the dimension of φ
kM/φ

k+1M is the number of v j for l j > k. Similarly
it is the number of w j for m j > k and this must be the same number because φ

kM/φ
k+1M

does not depend on the v j or the wr. Any two bases have the same number of vectors. In
other words, for each k there are the same number of m j larger than k as there are l j larger
than k. Hence s = t. Also the l j coincide with the m j in addition to having the same number
of them. To see the last claim, suppose not. Then consider the first i such that li ̸= mi. Let
k be the smaller of the two to contradict that there are the same number of l j and m j larger
than k. Say k = li. There are r+ 1 of the l j larger than k− 1 and r of the m j larger than
k−1.

Theorem 7.5.2 Suppose V is a finite dimensional vector space and L∈L (V,V ) with min-
imum polynomial φ (x)q where φ is irreducible. Then

V = Dv1⊕·· ·⊕Dvs, no v j = 0

It follows that the restriction of L to Dv j is φ
l j for some l j ≤ q. If the direct summands are

listed in the order that the li are increasing (or decreasing), then s is independent of the
choice of the v j and any other such cyclic direct sum for V will have the same sequence of
l j.

7.6 Canonical Forms
Let L ∈L (V,V ) where V is a finite dimensional vector space over F. By Theorem 6.1.10,

V = ker
(

φ 1 (L)
k1
)
⊕·· ·⊕ker

(
φ n (L)

kn
)

where the minimum polynomial is ∏
n
j=1 φ j (x)

k j with each φ j (x) irreducible. For L re-

stricted to the invariant subspace ker
(

φ j (L)
k j
)
, the minimum polynomial is just φ j (L)

k j

because if not, then the minimum polynomial would be φ j (x)
l j for l j < k j and then the

claimed minimum polynomial ∏
n
j=1 φ j (x)

k j would not be the minimum polynomial after
all. This is, a direct sum and so none of the φ i (x)

ki for i ̸= j can send to 0 any nonzero

vector of ker
(

φ j (L)
k j
)

. Thus, the exponent k j could be replaced with l j.
Then we have the following theorem.

Theorem 7.6.1 Let V be a finite dimensional vector space over a field of scalars F. Also
suppose the minimum polynomial is ∏

n
i=1 (φ i (x))

ki where ki is a positive integer and the
degree of φ i (x) is di, these φ i (x) being monic and irreducible (prime in F [x]). Then

V = ker
(

φ 1 (L)
k1
)
⊕·· ·⊕ker

(
φ n (L)

kn
)
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Furthermore, for each i, in ker
(

φ i (L)
ki
)
, there are vectors v1, · · · ,vsi and positive integers

l1, · · · , lsi each no larger than ki such that a basis for ker
(

φ i (L)
ki
)

is given by{
β

l1di−1
v1

, · · · ,β lsi di−1
vsi

}
where the symbol β

l jdi−1
v j signifies the ordered basis(

v j,Lv j,L2v j, · · · ,Ll jdi−2v j,Ll jdi−1v j

)
Its length is the degree of φ j (x)

k j and is therefore, determined completely by the l j. Thus

the lengths of the β
l jdi−1
v j are uniquely determined if they are listed in order of increasing

or decreasing length.

The last claim of this theorem will mean that the various canonical forms are uniquely
determined.

It is clear that the span of β
l jdi−1
v j is invariant with respect to L because, as discussed

above, this span is Dv j where D = F [x] and φ i (L)
l j is the minimum polynomial of L re-

stricted to span
(

β
l jdi−1
v j

)
Let

φ i (x)
l j = xl jdi +al jdi−1xl jdi−1 + · · ·+a1x+a0

Recall that the minimum polynomial has leading coefficient equal to 1. Of course this
makes no difference in the above presentation because an is invertible but it is convenient
to let this happen since otherwise, the blocks for the rational canonical form will not be
standard. Then what is the matrix of L restricted to Dv j?(

Lv j · · · Ll jdi−1v j Ll jdiv j

)
=
(

v j · · · Ll jdi−2v j Ll jdi−1v j

)
M

where M is the desired matrix. Now ann(Dv j) =
(

φ i (x)
l j
)

and so

Ll jdiv j = (−1)
(

an−1Ll jdi−1v j + · · ·+a1Lv j +a0v j

)
Thus the matrix M must be of the form

0 −a0

1 −a1
. . .

...
0 1 −an−1

 (7.11)

It follows that the matrix of L with respect to the basis obtained as above will be a block
diagonal with blocks like the above. This is the rational canonical form.

Of course, those blocks corresponding to ker
(

φ i (L)
ki
)

can be arranged in any order

by just listing the β
l1di−1
v1

, · · · ,β lsi di−1
vsi

in various orders. If we want the blocks to be larger



162 CHAPTER 7. CANONICAL FORMS

in the top left and get smaller towards the lower right, we just re-number it to have li be a
decreasing sequence.

What about uniqueness of the rational canonical form given an order of the spaces
ker
(

φ i (L)
ki
)

and under the convention the blocks associated with ker
(

φ i (L)
ki
)

should
be increasing or degreasing in size from upper left toward lower right? In other words,
suppose you have

ker
(

φ i (L)
ki
)
= Dv1⊕·· ·⊕Dvs = Dw1⊕·· ·⊕Dwt

and φ i (L)
li is the minimum polynomial for Dvi and we choose the order such that the li are

increasing (decreasing). Then from Theorem 7.5.2 the canonical form will be unique.
In the case that the minimum polynomial splits the following is also obtained.

Corollary 7.6.2 Let V be a finite dimensional vector space over a field of scalars F. Also
let the minimum polynomial be ∏

n
i=1 (x−µ i)

ki where ki is a positive integer. Then

V = ker
(
(L−µ1I)k1

)
⊕·· ·⊕ker

(
(L−µnI)kn

)
Furthermore, for each i, in ker

(
(L−µ iI)

ki
)
, there are vectors v1, · · · ,vsi and positive

integers l1, · · · , lsi each no larger than ki such that a basis for ker
(
(L−µ iI)

ki
)

is given by{
β

l1−1
v1

, · · · ,β lsi−1
vsi

}
where the symbol β

l j−1
v j signifies the ordered basis(

(L−µ iI)
l j−1 v j,(L−µ iI)

l j−2 v j, · · · ,(L−µ iI)
2 v j,(L−µ i)v j,v j

)
(Note how this is the reverse order to the above. This is to follow the usual convention in
the Jordan form in which the string of ones is on the super diagonal.)

Proof: The proof is essentially the same.

ker
(
(L−µ i)

ki
)
= Dv1⊕·· ·⊕Dvsi

ann(Dv j) for v j ∈ ker
(
(L−µ i)

ki
)

is Dσ where σ (x)/(x−µ i)
ki and so σ (x) is of the

form (x−µ i)
l j where 0≤ l j ≤ ki. Then as before,

v j,(L−µ iI)v j,(L−µ iI)
2 v j, · · · ,(L−µ iI)

l j−1 v j

is a basis for Dv j. ■

This gives the Jordan form right away. In this case, (L−µ iI)
l j v j = 0 and so the matrix

of the transformation L−µ iI with respect to this basis on Dv j obtained in the usual way.(
0 (L−µ iI)

l j−1 v j · · · (L−µ iI)v j

)
=
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(
(L−µ iI)

l j−1 v j (L−µ iI)
l j−2 v j · · · v j

)


0 1 0

0
. . .
. . . 1

0 0


a Jordan block for the nilpotent matrix (L−µ iI) (a power of the matrix equals 0). Thus,
with respect to this basis, the block associated with L = µ iI +(L−µ iI) is

µ i 1 0

µ i
. . .
. . . 1

0 µ i


This has proved the existence of the Jordan form. It is a block diagonal matrix consisting
of strings of blocks of the above form for each eigenvalue µ i. Of course, these can be
arranged so that the size of the blocks is decreasing from upper left to lower right. As with
the rational canonical form, once it is decided to have the blocks be decreasing (increasing)
in size from upper left to lower right, the Jordan form is unique.

The main item of interest concerning the Jordan canonical form is that it exists. How-
ever, it can always be found if you know the eigenvalues.

Example 7.6.3 Find the Jordan form for A =


1 2 1 −1
1 2 1 0
−1 −3 −1 1
1 −2 −1 3

 .

The minimum polynomial is (λ −2)(λ −1)3 . Now find a eigenvector for λ = 1. There

is only one eigenvector and it is v0 =
(
−1 0 1 1

)T
. Therefore, you look for “gen-

eralized” eigenvectors. One of these is of the form v1 such that (A−λ I)v1 = v0. A

solution to this is v1 =
(

0 −1 1 0
)T

. This is still not enough because the alge-
braic multiplicity of λ = 1 is 3 so you need to find a solution v2 to v1 = (A−λ I)v2.

Then a solution to this is
(

0 1 −2 0
)T

. Finally, an eigenvector for λ = 2 is v3 =(
−1 0 1 2

)T
. Lets consider what has just been obtained. v0 = Av0, v0 +v1 =

Av1, v1 + v2 = Av2, 2v3 = Av3. To find the matrix with respect to the ordered basis
(v0,v1,v2,v3) recall that formally we find J such that(

Av0 Av1 Av2 Av3

)
=
(

v0 v1 v2 v3

)
J

and so
(

v0 v0 +v1 v1 +v2 2v3

)
=
(

v0 v1 v2 v3

)
J

so J =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 2

 . We know there is a unique Jordan form from the above theory
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and so this must be it. This is the process used in beginning differential equations to find
solutions to a system when there is a repeated eigenvalue and the matrix is defective. I
think it is a fairly easy way to remember things. Other cases are similar.

Example 7.6.4 Find the Jordan form for A =


3 3 0 0 −1
−1 1 −3 −4 −3
2 2 7 7 5
0 −2 4 7 5
−2 0 −10 −13 −9

 .

The eigenvalues are 2,1. This was of course cooked up. You can’t find eigenvalues
in general. The minimum polynomial is λ

3− 5λ
2 + 8λ − 4. This can be found through

the methods described earlier. It equals (λ −1)(λ −2)2. The eigenvectors for λ = 2 are(
− 3

2 t4− 1
2 t5 1

2 t4 + 1
2 t5 −t4− t5 t4 t5

)T
. I can get two independent eigenvectors,

(
−3 1 −2 2 0

)T
,
(
−1 1 −2 0 2

)T
.

However, this will not be enough so I look for generalized eigenvectors which yield these
eigenvectors. Two of these are respectively(

−3 0 −2 2 0
)T

,
(
−1 0 0 0 0

)T
.

An eigenvector for λ = 1 is
(

1 2 −3 −4 8
)T

. Then using this ordered basis
ordered as eigenvector followed by generalized eigenvector, we obtain the matrix of A with
respect to this basis as follows

−3 −3 −1 −1 1
1 0 1 0 2
−2 −2 −2 0 −3
2 2 0 0 −4
0 0 2 0 8



−1
3 3 0 0 −1
−1 1 −3 −4 −3
2 2 7 7 5
0 −2 4 7 5
−2 0 −10 −13 −9

 ·

−3 −3 −1 −1 1
1 0 1 0 2
−2 −2 −2 0 −3
2 2 0 0 −4
0 0 2 0 8

=


2 1 0 0 0
0 2 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 1


which is the Jordan form.

7.7 Exercises
1. In the discussion of Nilpotent transformations, it was asserted that if two n× n ma-

trices A,B are similar, then Ak is also similar to Bk. Why is this so? If two matrices
are similar, why must they have the same rank?
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2. If A,B are both invertible, then they are both row equivalent to the identity matrix.
Are they necessarily similar? Explain.

3. Suppose you have two nilpotent matrices A,B and Ak and Bk both have the same rank
for all k ≥ 1. Does it follow that A,B are similar? What if it is not known that A,B
are nilpotent? Does it follow then?

4. (Review problem.) When we say a polynomial equals zero, we mean that all the
coefficients equal 0. If we assign a different meaning to it which says that a poly-
nomial p(λ ) equals zero when it is the zero function, (p(λ ) = 0 for every λ ∈ F.)
does this amount to the same thing? Is there any difference in the two definitions for
ordinary fields like Q? Hint: Consider for the field of scalars Z2, the integers mod 2
and consider p(λ ) = λ

2 +λ .

5. Let A ∈L (V,V ) where V is a finite dimensional vector space with field of scalars F.
Let p(λ ) be the minimum polynomial and suppose φ (λ ) is any nonzero polynomial
such that φ (A) is not one to one and φ (λ ) has smallest possible degree such that
φ (A) is nonzero and not one to one. Show φ (λ ) must divide p(λ ).

6. Let A ∈L (V,V ) where V is a finite dimensional vector space with field of scalars F.
Let p(λ ) be the minimum polynomial and suppose φ (λ ) is an irreducible polyno-
mial with the property that φ (A)x = 0 for some specific x ̸= 0. Show that φ (λ ) must
divide p(λ ) . Hint: First write p(λ ) = φ (λ )g(λ )+ r (λ ) where r (λ ) is either 0 or
has degree smaller than the degree of φ (λ ). If r (λ ) = 0 you are done. Suppose it is
not 0. Let η (λ ) be the monic polynomial of smallest degree with the property that
η (A)x = 0. Now use the Euclidean algorithm to divide φ (λ ) by η (λ ) . Contradict
the irreducibility of φ (λ ) .

7. Let A =

 1 0 0
0 0 −1
0 1 0

 Find the minimum polynomial for A.

8. Suppose A is an n× n matrix and let v be a vector. Consider the A cyclic set of
vectors

{
v,Av, · · · ,Am−1v

}
where this is an independent set of vectors but Amv

is a linear combination of the preceding vectors in the list. Show how to obtain a
monic polynomial of smallest degree, m, φv (λ ) such that φv (A)v = 0. Now let
{w1, · · · ,wn} be a basis and let φ (λ ) be the least common multiple of the φwk

(λ ) .
Explain why this must be the minimum polynomial of A. Give a reasonably easy
algorithm for computing φv (λ ).

9. Here is a matrix.  −7 −1 −1
−21 −3 −3
70 10 10


Using the process of Problem 8 find the minimum polynomial of this matrix. Deter-
mine whether it can be diagonalized from its minimum polynomial.

10. Let A be an n× n matrix with field of scalars C or more generally, the minimum
polynomial splits. Letting λ be an eigenvalue, show the dimension of the eigenspace
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equals the number of Jordan blocks in the Jordan canonical form which are associated
with λ . Recall the eigenspace is ker(λ I−A) .

11. For any n× n matrix, why is the dimension of the eigenspace always less than or
equal to the algebraic multiplicity of the eigenvalue as a root of the characteristic
equation? Hint: Note the algebraic multiplicity is the size of the appropriate block
in the Jordan form.

12. Give an example of two nilpotent matrices which are not similar but have the same
minimum polynomial if possible.

13. Here is a matrix. Find its Jordan canonical form by directly finding the eigenvec-
tors and generalized eigenvectors based on these to find a basis which will yield the
Jordan form. The eigenvalues are 1 and 2.

−3 −2 5 3
−1 0 1 2
−4 −3 6 4
−1 −1 1 3


Why is it typically impossible to find the Jordan canonical form?

14. Let A be an n× n matrix and let J be its Jordan canonical form. Here F= R or C.
Recall J is a block diagonal matrix having blocks Jk (λ ) down the diagonal. Each of
these blocks is of the form

Jk (λ ) =


λ 1 0

λ
. . .
. . . 1

0 λ


Now for ε > 0 given, let the diagonal matrix Dε be given by

Dε =


1 0

ε

. . .

0 εk−1


Show that D−1

ε Jk (λ )Dε has the same form as Jk (λ ) but instead of ones down the
super diagonal, there is ε down the super diagonal. That is Jk (λ ) is replaced with

λ ε 0

λ
. . .
. . . ε

0 λ


Now show that for A an n×n matrix, it is similar to one which is just like the Jordan
canonical form except instead of the blocks having 1 down the super diagonal, it has
ε .
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15. Let A be in L (V,V ) and suppose that Apx ̸= 0 for some x ̸= 0. Show that Apek ̸= 0
for some ek ∈ {e1, · · · ,en} , a basis for V . If you have a matrix which is nilpotent,
(Am = 0 for some m) will it always be possible to find its Jordan form? Describe how
to do it if this is the case. Hint: First explain why all the eigenvalues are 0. Then
consider the way the Jordan form for nilpotent transformations was constructed in
the above.

16. Show that if two n× n matrices A,B are similar, then they have the same mini-
mum polynomial and also that if this minimum polynomial is of the form p(λ ) =
∏

s
i=1 φ i (λ )

ri where the φ i (λ ) are irreducible and monic, then ker(φ i (A)
ri) and

ker(φ i (B)
ri) have the same dimension. Why is this so? This was what was re-

sponsible for the blocks corresponding to an eigenvalue being of the same size.

17. Show that each cyclic set β x is associated with a monic polynomial ηx (λ ) such
that ηx (A)(x) = 0 and this polynomial has smallest possible degree such that this
happens. Show that the cyclic sets β xi

can be arranged such that ηxi+1
(λ )/ηxi

(λ ).

18. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that 0 0 1

0 1 0
1 0 0


 λ 1 0

0 λ 1
0 0 λ


 0 0 1

0 1 0
1 0 0

=

 λ 0 0
1 λ 0
0 1 λ


19. (Extra important) Let A be an n× n matrix. The trace of A, trace(A) is defined as

∑i Aii. It is just the sum of the entries on the main diagonal. Show trace(A) =
trace

(
AT
)
. Suppose A is m×n and B is n×m. Show that trace(AB) = trace(BA) .

Now show that if A and B are similar n×n matrices, then trace(A) = trace(B). Recall
that A is similar to B means A = S−1BS for some matrix S.

20. (Extra important) If A is an n×n matrix and the minimum polynomial splits in F the
field of scalars, show that trace(A) equals the sum of the eigenvalues listed according
to multiplicity according to number of times they occur in the Jordan form.

21. Let A be a linear transformation defined on a finite dimensional vector space V . Let
the minimum polynomial be ∏

q
i=1 φ i (λ )

mi and let
(

β
i
vi

1
, · · · ,β i

vi
ri

)
be the cyclic sets

such that
{

β
i
vi

1
, · · · ,β i

vi
ri

}
is a basis for ker(φ i (A)

mi). Let v = ∑i ∑ j vi
j. Now let q(λ )

be any polynomial and suppose that q(A)v = 0. Show that it follows q(A) = 0.
Hint: First consider the special case where a basis for V is

{
x,Ax, · · · ,An−1x

}
and

q(A)x = 0.

22. Find the minimum polynomial for A=

 1 2 3
2 1 4
−3 2 1

assuming the field of scalars

is the rational numbers.

23. Show, using the rational root theorem, the minimum polynomial for A in the above
problem is irreducible with respect to Q. Letting the field of scalars be Q find the
rational canonical form and a similarity transformation which will produce it.
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24. Letting the field of scalars be Q, find the rational canonical form for the matrix
1 2 1 −1
2 3 0 2
1 3 2 4
1 2 1 2


25. Let A :Q3→Q3 be linear. Suppose the minimum polynomial is

(λ −2)
(

λ
2 +2λ +7

)
.

Find the rational canonical form. Can you give generalizations of this rather simple
problem to other situations?

26. Find the rational canonical form with respect to the field of scalars equal toQ for the
matrix

A =

 0 0 1
1 0 −1
0 1 1


Observe that this particular matrix is already a companion matrix of λ

3−λ
2+λ−1.

Then find the rational canonical form if the field of scalars equals C or Q+ iQ.

27. Consider


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . They are not similar because they

are different Jordan forms. However, show that they have the same minimum poly-
nomial. If two matrices are similar, show that then they do have the same minimum
polynomial.

28. Let L ∈L (V,V ) where V is a finite dimensional vector space with field of scalars F
and consider for v ∈ V,v ̸= 0 the cycle {v,Lv, · · · ,Lmv}. Show that if Lmv ̸= 0 then
the resulting set of vectors is linearly independent.

29. Suppose you have two n×n matrices A,B whose entries are in a field F and suppose
G is an extension of F. For example, you could have F=Q and G= C. Suppose A
and B are similar with respect to the fieldG. Can it be concluded that they are similar
with respect to the field F? Hint: Let the minimum polynomial of A with respect to
F be ∏

q
i=1 φ i (λ )

pi . Say β v j
is the cyclical set associated with the polynomial φ (λ )l

as described in the proof for the rational canonical form. Here φ (λ ) is one of the
φ i (λ ) having degree d. Thus, as described above the length of

∣∣∣β v j

∣∣∣ equals ld and

the term in the cyclical decomposition of ker(φ (A)p) satisfies φ (A)l v j = 0 and l is
as small as possible for that v j. Here v j ∈ Fn. A basis for a block in the rational form
corresponding to the field F would be.{

v j,Av j, · · · ,Ad−1v j, · · · ,Ald−1v j

}
,v j ∈ Fn (7.12)
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This corresponds to

0 = φ (A)l v j =
(

a0 +a1A+ ...+ad−1Ad−1 +Ad
)l

v j

= φ (A)l−1
(

a0 +a1A+ ...+ad−1Ad−1 +Ad
)

v j.

Could you have φ (A)l−1 Arv j = 0? No because the minimum polynomial for Dφ
l is

φ
l . Thus the columns of the following table give bases for blocks for the Jordan form

for φ (A) corresponding to Dv j provided the vectors in the columns taken together are
linearly independent. From the above problem, each column is linearly independent.
So assume this for now.

α
j
0 α

j
1 α

j
2 · · · α

j
d−1

v j Av j A2v j · · · Ad−1v j

φ (A)v j φ (A)Av j φ (A)A2v j · · · φ (A)Ad−1v j
...

...
...

...
φ (A)l−1 v j φ (A)l−1 Av j φ (A)l−1 A2v j · · · φ (A)l−1 Ad−1v j

These columns would yield d− 1 blocks in the Jordan form for φ (A) in Cn2
. If all

such cyclical bases like 7.12 fail to include 7.12 with v j replaced with some w j ∈ Fn

and A with B, then the Jordan form for φ (B) in Cn2
will be different than the Jordan

form for φ (A) contradicting the similarity of φ (A) ,φ (B). Thus it remains to verify
linear independence as indicated above.

30. This entire presentation is based on modules over the commutative ring F [x]. This
ring is an integral domain because if α (x)β (x) = 0 then one of α (x) or β (x) is 0.
This is shown in Lemma 1.13.2 on Page 21. For a commutative ring R, an ideal I
is a subset of R with the property that αI ⊆ I for all α and whenever α,β ∈ I, so
is α + β and if α ∈ I, so is −α . See Definition 3.4.10. A principle ideal domain
D called a p.i.d. is an integral domain in which the only ideals are of the form Dα

for some α ∈ D. These are called principle ideals. Earlier these were written as (α)
indicating all multiples of α . Show F [x] is a principle ideal domain. A commutative
ring R is called a Noetherian ring if every increasing sequence of ideals is eventually
constant. Show that a principle ideal domain must be Noetherian.

31. You can define R/I similar to what was done above for modules. Here I is an ideal
in the commutative ring R. That is, let r ∼ r̂ if r− r̂ ∈ I and let [r] be the equivalence
class determined by r. Show this is the same as considering [r] = r + I. Define
[r] [r̂] ≡ [rr̂] and [r]+ [r̂] ≡ [r+ r̂] . Verify these operations make R/I into a ring and
are well defined. Next show that if I is a maximal ideal (Definition 3.4.10) then R/I is
also a field. For R = F [x] , show that (p(x)) is a maximal ideal if p(x) is irreducible
over F.

32. Say you have a commutative ring R and a ∈ R \ {1} ,a ̸= 0 which is not invertible.
Explain why (a) is an ideal which does not contain 1. Show there exists a maximal
ideal. A maximal ideal I is one which is strictly smaller than R and that there is
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no ideal J other than R which contains I. Hint: You could let F denote all ideals
which do not contain 1. It is nonempty by assumption. Now partially order this by
set inclusion. Consider a maximal chain. This uses the Hausdorff maximal theorem
in the appendix.

33. It is always assumed that the rings used here are commutative rings and that they
have a multiplicative identity 1. However, sometimes people have considered things
which they have called rings R which have all the same axioms except that there is no
multiplicative identity 1. However, all such things can be considered to be in a sense
embedded in a real ring which has a multiplicative identity. You consider Z×R and
define addition in the obvious way (k,r)+

(
k̂, r̂
)
≡
(
k+ k̂,r+ r̂

)
and multiplication

as follows. (k,r)
(
k̂, r̂
)
≡
(
kk̂,kr̂+ k̂r+ rr̂

)
Then the multiplicative identity is just

(1,0) . You have (1,0)(k,r) ≡ (k,r). You just have to verify the other axioms like
the distributive laws and that multiplication is associative.

34. Let R be a p.i.d. Then p ∈ R is prime if it is divisible only by invertible elements of
R and xp where x is invertible. Show that the ideal Rp for p a noninvertible prime is
a maximal ideal. Thus R/Rp is a field from the above problems.

35. Let R be the ring of continuous functions defined on [0,1] . Here it is understood
that f = g means the usual thing, that f (x) = g(x). Multiplication and addition are
defined in the usual way. Pick x0 ∈ [0,1] and let Ix0 ≡{ f ∈ R : f (x0) = 0} . Show that
this is a maximal ideal of R. Then show that there are no other maximal ideals. Hint:
For the second part, let I be a maximal ideal. Show using a compactness argument
and continuity of the functions that unless there exists some x0 for which all f ∈ I
are zero, then there exists a function in I which is never 0. Then since this is an ideal,
you can show that it contains 1. Explain why this ring cannot be an integral domain.



Chapter 8

Determinants
The determinant is a number which comes from an n× n matrix of elements of a field F.
It is easiest to give a definition of the determinant which is clearly well defined and then
prove the one which involves Laplace expansion which the reader might have seen already.
Let (i1, · · · , in) be an ordered list of numbers from {1, · · · ,n} . This means the order is
important so (1,2,3) and (2,1,3) are different. Two books which give a good introduction
to determinants are Apostol [1] and Rudin [36]. Some recent books which also have a good
introduction are Baker [4], and Baker and Kuttler [6]. The approach here is less elegant
than in these other books but it amounts to the same thing. I have just tried to avoid the
language of permutations in the presentation. The function sgn presented in what follows
is really the sign of a permutation however.

The determinant is an alternating multilinear form d (v1, · · · ,vn), meaning that it is
linear in each entry and when two are switched, it changes sign. It is normalized by re-
quiring d (e1, · · · ,en) = 1. These two conditions are sufficient to define the determinant
algebraically as will be seen. Geometrically, it gives the signed volume of a n dimensional
parallelepiped, the sign giving a precise meaning for orientation. This will become clear
in what follows. I do not wish this presentation to depend on geometric intuition which
some pretend to have more of than others, so I am presenting this algebraically. Yes, I
have much more confidence in algebra than my geometric intuition, even if I agree that
the main interest in the determinant has to do with understanding geometry. It is the same
thing which often happens in math. The most transparent explanations are in one place
and the applications and most significant meaning are somewhere else. I take the point of
view that algebra should be a tool for understanding geometry, not the other way around,
because for me, this approach involves less pretense that I understand something which
I really don’t understand, although it may seem plausible based on smaller dimensional
situations. However, plausibility is not proof. What exactly is the “volume” of an n dimen-
sional parallelepiped anyway? I know about the volume of a Cartesian product of intervals,
but slanty things are not so clear to me. What is the orientation? In the case of general
fields of scalars, what do such geometric concepts even mean? Even in my favorite case
of the real field of scalars, my right hand is not sufficient to consider orientation all that
well in R8. However, this will be discussed later, including the manner in which the signed
volume delivered by the determinant is the only geometrically reasonable way to generalize
to higher dimensions the Euclidean length of a line segment, but the proofs of such things
depend on algebraic considerations. This also leads to proofs of some very interesting ap-
proximation results like the Muntz theorem, an amazing generalization of the Weierstrass
approximation theorem, which has very little obvious connection to most people’s favorite
applications of determinants. Another thing to note is that historically, determinants came
before the elegant material presented earlier and they were an algebraic entity right from
the beginning. This is why we have Cramer’s rule, Laplace expansion, and the amazing
Cauchy theorem presented in this chapter. Each of these men lived before the lovely vector
space material presented earlier, and also before modern ideas of geometry.

8.1 The Function sgn
The following Lemma will be essential in the definition of the determinant.

Lemma 8.1.1 There exists a function, sgnn which maps each ordered list of numbers from

171
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{1, · · · ,n} to one of the three numbers, 0,1, or −1 which also has the following properties.

sgnn (1, · · · ,n) = 1 (8.1)

sgnn (i1, · · · , p, · · · ,q, · · · , in) =−sgnn (i1, · · · ,q, · · · , p, · · · , in) (8.2)

In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by−1. Also, in the case where n > 1 and {i1, · · · , in}= {1, · · · ,n}
so that every number from {1, · · · ,n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in)≡

(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (8.3)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: Define sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1)≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in)≡ sign

(
∏
r<s

(is− ir)

)

This delivers either −1,1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as ( j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p,q} , jr = ir. See the following illustration

i1
1

i2
2

· · · ip

p
· · · iq

q
· · · in

n
i1
1

i2
2

· · · iq
p

· · · ip

q
· · · in

n
j1
1

j2
2

· · · jp

p
· · · jq

q
· · · jn

n

Then

sgnn ( j1, · · · , jn)≡ sign

(
∏
r<s

( js− jr)

)

= sign

(
both p,q
(ip− iq)

one of p,q

∏
p< j<q

(i j− iq) ∏
p< j<q

(ip− i j)
neither p nor q

∏
r<s,r,s/∈{p,q}

(is− ir)

)
The last product consists of the product of terms which were in ∏r<s (is− ir) while the
two products in the middle both introduce q− p− 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn ( j1, · · · , jn) =−sgnn (i1, · · · , in)
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Now consider the last claim. In computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) there will
be the product of n−θ negative terms

(iθ+1−n) · · ·(in−n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) are those
which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms of the
form (n− i j) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) = (−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■

Lemma 8.1.2 Every ordered list of distinct numbers from {1,2, · · · ,n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgnn
is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1
elements. Take two ordered lists of numbers, P1,P2. Make one switch in both if necessary
to place n at the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely

many switches in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to
where it was in P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 8.1 and
8.2, you could start with f (1, · · · ,n) = g(1, · · · ,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g(i1, · · · , in) . If any numbers are repeated,
then 8.2 gives both functions are equal to zero for that ordered list. ■

Definition 8.1.3 An ordered list of distinct numbers from {1,2, · · · ,n} , say (i1, · · · , in) , is
called a permutation. The symbol for all such permutations is Sn. The number defined
above sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1,2, · · · ,n} to {1,2, · · · ,n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

8.2 The Definition of the Determinant
Definition 8.2.1 Let f be a real valued function which has the set of ordered lists of num-
bers from {1, · · · ,n} as its domain. Define ∑(k1,··· ,kn) f (k1 · · ·kn) to be the sum of all the
f (k1 · · ·kn) for all possible choices of ordered lists (k1, · · · ,kn) of numbers of {1, · · · ,n} .
For example,

∑
(k1,k2)

f (k1,k2) = f (1,2)+ f (2,1)+ f (1,1)+ f (2,2) .
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Definition 8.2.2 Let (ai j) = A denote an n× n matrix. The determinant of A, denoted by
det(A) is defined by det(A)≡ ∑(k1,··· ,kn) sgn(k1, · · · ,kn)a1k1 · · ·ankn where the sum is taken
over all ordered lists of numbers from {1, · · · ,n}. Note it suffices to take the sum over only
those ordered lists in which there are no repeats because if there are, sgn(k1, · · · ,kn) = 0
and so that term contributes 0 to the sum.

Let A be an n×n matrix A=(ai j) and let (r1, · · · ,rn) denote an ordered list of n numbers
from {1, · · · ,n}. Let A(r1, · · · ,rn) denote the matrix whose kth row is the rk row of the
matrix A. Thus

det(A(r1, · · · ,rn)) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (8.4)

and A(1, · · · ,n) = A.

Proposition 8.2.3 Let (r1, · · · ,rn) be an ordered list of numbers from {1, · · · ,n}. Then

sgn(r1, · · · ,rn)det(A) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (8.5)

= det(A(r1, · · · ,rn)) . (8.6)

Proof: Let (1, · · · ,n) = (1, · · · ,r, · · ·s, · · · ,n) so r < s.

det(A(1, · · · ,r, · · · ,s, · · · ,n)) = (8.7)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kr, · · · ,ks, · · · ,kn)a1k1 · · ·arkr · · ·asks · · ·ankn ,

and renaming the variables, calling ks,kr and kr, ks, this equals

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,ks, · · · ,kr, · · · ,kn)a1k1 · · ·arks · · ·askr · · ·ankn

= ∑
(k1,··· ,kn)

−sgn

k1, · · · ,
These got switched︷ ︸︸ ︷

kr, · · · ,ks , · · · ,kn

a1k1 · · ·askr · · ·arks · · ·ankn

=−det(A(1, · · · ,s, · · · ,r, · · · ,n)) . (8.8)

Consequently,

det(A(1, · · · ,s, · · · ,r, · · · ,n)) =−det(A(1, · · · ,r, · · · ,s, · · · ,n)) =−det(A)

Now letting A(1, · · · ,s, · · · ,r, · · · ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det(A(r1, · · · ,rn)) = (−1)p det(A)

where it took p switches to obtain(r1, · · · ,rn) from (1, · · · ,n). By Lemma 8.1.1, this implies

det(A(r1, · · · ,rn)) = (−1)p det(A) = sgn(r1, · · · ,rn)det(A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · ,rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 8.7 -8.8 shows that det(A(r1, · · · ,rn)) = 0 and also sgn(r1, · · · ,rn) = 0 so the
formula holds in this case also. ■
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Observation 8.2.4 There are n! ordered lists of distinct numbers from {1, · · · ,n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n−1 choices for the second. Thus there are n(n−1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · ,n} as
stated in the observation.

8.3 A Symmetric Definition
With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det(A) = det

(
AT
)
.

Corollary 8.3.1 The following formula for det(A) is valid.

det(A) =
1
n!
· ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn . (8.9)

And also det
(
AT
)
= det(A) where AT is the transpose of A. (Recall that for AT =

(
aT

i j

)
,

aT
i j = a ji.)

Proof: From Proposition 8.2.3, if the ri are distinct,

det(A) = ∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

Summing over all ordered lists, (r1, · · · ,rn) where the ri are distinct, (If the ri are not
distinct, sgn(r1, · · · ,rn) = 0 and so there is no contribution to the sum.)

n!det(A) = ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

Corollary 8.3.2 If two rows or two columns in an n×n matrix A, are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det(A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · ,xan + ybn). Then

det(A) = xdet(A1)+ ydet(A2)

where the ith row of A1 is (a1, · · · ,an) and the ith row of A2 is (b1, · · · ,bn) , all other rows of
A1 and A2 coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 8.2.3 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 8.3.1 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det(A) = det
(
AT )=−det

(
AT

1
)
=−det(A1) .
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If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) =−det(A) and so det(A) = 0.

It remains to verify the last assertion.

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·
(
xarki + ybrki

)
· · ·ankn

= x ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·arki · · ·ankn

+y ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·brki · · ·ankn ≡ xdet(A1)+ ydet(A2) .

The same is true of columns because det
(
AT
)
= det(A) and the rows of AT are the columns

of A. ■

8.4 Basic Properties of the Determinant
Definition 8.4.1 A vector, w, is a linear combination of the vectors {v1, · · · ,vr} if there
exist scalars c1, · · ·cr such that w = ∑

r
k=1 ckvk. That is, w ∈ span(v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 8.4.2 Suppose A is an n×n matrix and some column (row) is a linear combina-
tion of r other columns (rows). Then det(A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Say ai = ∑ j ̸=i c ja j. Then
by Corollary 8.3.2, det(A) =

det
(

a1 · · · ∑ j ̸=i c ja j · · · an

)
= ∑

j ̸=i
c j det

(
a1 · · · a j · · · an

)
= 0

because each of these determinants in the sum has two equal rows. ■
Recall the following definition of matrix multiplication.

Definition 8.4.3 If A and B are n×n matrices, A = (ai j) and B = (bi j), AB = (ci j) where
ci j ≡ ∑

n
k=1 aikbk j.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 8.4.4 Let A and B be n×n matrices. Then

det(AB) = det(A)det(B) .

Proof: Let ci j be the i jth entry of AB. Then by Proposition 8.2.3,

det(AB) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)c1k1 · · ·cnkn

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)

(
∑
r1

a1r1br1k1

)
· · ·

(
∑
rn

anrnbrnkn

)
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= ∑
(r1··· ,rn)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)br1k1 · · ·brnkn (a1r1 · · ·anrn)

= ∑
(r1··· ,rn)

sgn(r1 · · ·rn)a1r1 · · ·anrn det(B) = det(A)det(B) .■

Note that this shows that if two matrices are similar, then they have the same determi-
nant and also the same characteristic polynomial, det(λ I−A).

8.4.1 Binet Cauchy Formula
The Binet Cauchy formula is a generalization of the theorem which says the determinant
of a product is the product of the determinants. The situation is illustrated in the following
picture where A,B are matrices.

B A

Theorem 8.4.5 Let A be an n×m matrix with n≥ m and let B be a m×n matrix. Also let
Ai, i = 1, · · · ,C (n,m) be the m×m submatrices of A which are obtained by deleting n−m
rows and let Bi be the m×m submatrices of B which are obtained by deleting corresponding
n−m columns. Then

det(BA) =
C(n,m)

∑
k=1

det(Bk)det(Ak)

Proof: This follows from a computation. By Corollary 8.3.1 on Page 175, det(BA) =

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm)(BA)i1 j1 (BA)i2 j2 · · ·(BA)im jm

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

n

∑
r1=1

Bi1r1Ar1 j1

n

∑
r2=1

Bi2r2 Ar2 j2 · · ·
n

∑
rm=1

BimrmArm jm

Now denote by Ik one of the subsets of {1, · · · ,n} which has m elements. Thus there are
C (n,m) of these.

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

Bi1r1 Ar1 j1Bi2r2Ar2 j2 · · ·BimrmArm jm

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
sgn(i1 · · · im)Bi1r1 Bi2r2 · · ·Bimrm ·

∑
( j1··· jm)

sgn( j1 · · · jm)Ar1 j1Ar2 j2 · · ·Arm jm
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=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m!

sgn(r1 · · ·rm)
2 det(Bk)det(Ak) =

C(n,m)

∑
k=1

det(Bk)det(Ak)

since there are m! ways of arranging the indices {r1, · · · ,rm}. ■

8.5 Expansion Using Cofactors
Lemma 8.5.1 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or

(
A 0

∗ a

)
(8.10)

where a is a number and A is an (n−1)× (n−1) matrix and ∗ denotes either a column
or a row having length n− 1 and the 0 denotes either a column or a row of length n− 1
consisting entirely of zeros. Then det(M) = adet(A) .

Proof: Denote M by (mi j) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in
the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det(M)≡ ∑
(k1,··· ,kn)

sgnn (k1, · · · ,kn)m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · ,kn) then using the earlier
conventions used to prove Lemma 8.1.1, det(M) equals

∑
(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · ,kθ−1,

θ

kθ+1, · · · ,
n−1
kn

)
m1k1 · · ·mnkn

Now suppose the second case. Then if kn ̸= n, the term involving mnkn in the above expres-
sion equals zero. Therefore, the only terms which survive are those for which θ = n or in
other words, those for which kn = n. Therefore, the above expression reduces to

a ∑
(k1,··· ,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet(A) .

To get the assertion in the first case, use Corollary 8.3.1 to write

det(M) = det
(
MT )= det

((
AT 0

∗ a

))
= adet

(
AT )= adet(A)■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.

Definition 8.5.2 Let A = (ai j) be an n× n matrix. Then a new matrix called the cofactor
matrix cof(A) is defined by cof(A) = (ci j) where to obtain ci j delete the ith row and the
jth column of A, take the determinant of the (n−1)× (n−1) matrix which results, (This
is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. To make the
formulas easier to remember, cof(A)i j will denote the i jth entry of the cofactor matrix.

The following is the main result.
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Theorem 8.5.3 Let A be an n×n matrix where n≥ 2. Then

det(A) =
n

∑
j=1

ai j cof(A)i j =
n

∑
i=1

ai j cof(A)i j . (8.11)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · ,ain) be the ith row of A. Let B j be the matrix obtained from A by
leaving every row the same except the ith row which in B j equals (0, · · · ,0,ai j,0, · · · ,0) .
Then by Corollary 8.3.2, det(A) = ∑

n
j=1 det(B j) . For example if

A =

 a b c
d e f
h i j


and i = 2, then

B1 =

 a b c
d 0 0
h i j

 ,B2 =

 a b c
0 e 0
h i j

 ,B3 =

 a b c
0 0 f
h i j


Denote by Ai j the (n−1)× (n−1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof(A)i j ≡ (−1)i+ j det
(
Ai j
)
. At this point, recall that from Proposition

8.2.3, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 8.5.1,

det(B j) = (−1)n− j (−1)n−i det

((
Ai j ∗
0 ai j

))

= (−1)i+ j det

((
Ai j ∗
0 ai j

))
= ai j cof(A)i j .

Therefore, det(A) = ∑
n
j=1 ai j cof(A)i j which is the formula for expanding det(A) along the

ith row. Also,

det(A) = det
(
AT )= n

∑
j=1

aT
i j cof

(
AT )

i j =
n

∑
j=1

a ji cof(A) ji

which is the formula for expanding det(A) along the ith column. ■

8.6 A Formula for the Inverse
Note that this gives an easy way to write a formula for the inverse of an n×n matrix.

Theorem 8.6.1 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then the i jth entry of
A−1 is given by a−1

i j where a−1
i j = det(A)−1 cof(A) ji for cof(A)i j the i jth cofactor of A.
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Proof: By Theorem 8.5.3 and letting (air) = A, if det(A) ̸= 0,

n

∑
i=1

air cof(A)ir det(A)−1 = det(A)det(A)−1 = 1.

Now in the matrix A, replace the kth column with the rth column and then expand along
the kth column. This yields for k ̸= r,∑n

i=1 air cof(A)ik det(A)−1 = 0 by Corollary 8.3.2 be-
cause there are two equal columns. Summarizing, ∑

n
i=1 air cof(A)ik det(A)−1 = δ rk.Using

the other formula in Theorem 8.5.3, and similar reasoning, ∑
n
j=1 ar j cof(A)k j det(A)−1 =

δ rk. This proves that if det(A) ̸= 0, then A−1 exists with A−1 =
(

a−1
i j

)
, where a−1

i j =

cof(A) ji det(A)−1 .

Now suppose A−1 exists. Then by Theorem 8.4.4,

1 = det(I) = det
(
AA−1)= det(A)det

(
A−1)

so det(A) ̸= 0. ■
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.

Corollary 8.6.2 Let A be an n×n matrix and suppose there exists an n×n matrix B such
that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n×n matrix such that
AC = I, then A−1 exists and A−1 =C.

Proof: Since BA = I, Theorem 8.4.4 implies detBdetA = 1 and so detA ̸= 0. Therefore
from Theorem 8.6.1, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1)= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n×n matrices.
Theorem 8.6.1 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

8.6.1 Cramer’s Rule

In case you are solving a system of equations, Ax= y for x, it follows that if A−1 exists,

x=
(
A−1A

)
x= A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n

∑
j=1

a−1
i j y j =

n

∑
j=1

1
det(A)

cof(A) ji y j.
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By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det


∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·,yn)
T , and the

determinant of this modified matrix is taken and divided by det(A). This formula is known
as Cramer’s rule.

Definition 8.6.3 A matrix M, is upper triangular if Mi j = 0 whenever i > j. Thus such a
matrix equals zero below the main diagonal, the entries of the form Mii as shown.

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 8.5.3.

Corollary 8.6.4 Let M be an upper (lower) triangular matrix. Then det(M) is obtained by
taking the product of the entries on the main diagonal.

8.6.2 An Identity of Cauchy
Theorem 8.6.5 Both the left and the right sides in the following yield the same polynomial
in the variables ai,bi for i≤ n.

∏
i, j

(ai +b j)

∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

...
1

an+b1
· · · 1

an+bn

∣∣∣∣∣∣∣∣= ∏
j<i

(ai−a j)(bi−b j) . (8.12)

Proof: The theorem is true if n = 2. This follows from some computations. Suppose it
is true for n−1, n≥ 3.∣∣∣∣∣∣∣∣∣∣

1
a1+b1

1
a1+b2

· · · 1
a1+bn

...
... · · ·

...
1

an−1+b1
1

an−1+b2
1

an−1+bn
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

an−a1
(a1+b1)(b1+an)

an−a1
(a1+b2)(b2+an)

· · · an−a1
(a1+bn)(an+bn)

...
... · · ·

...
an−an−1

(an−1+b1)(an+b1)
an−an−1

(b2+an)(b2+an−1)
an−an−1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣∣
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Continuing to use the multilinear properties of determinants, this equals∣∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)(b1+an)

1
(a1+b2)(b2+an)

· · · 1
(a1+bn)(an+bn)

...
... · · ·

...
1

(an−1+b1)(an+b1)
1

(b2+an)(b2+an−1)
1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣∣
n−1

∏
k=1

(an−ak)

and this equals ∣∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
(a1+bn)

...
... · · ·

...
1

(an−1+b1)
1

(b2+an−1)
1

(bn+an−1)

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now take −1 times the last column and add to each previous column. Thus it equals∣∣∣∣∣∣∣∣∣∣∣

bn−b1
(a1+b1)(a1+bn)

bn−b2
(a1+b2)(a1+bn)

· · · 1
(a1+bn)

...
... · · ·

...
bn−b1

(b1+an−1)(bn+an−1)
bn−b2

(b2+an−1)(bn+an−1)
1

(an−1+bn)

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now continue simplifying using the multilinear property of the determinant.∣∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
...

... · · ·
...

1
(b1+an−1)

1
(b2+an−1)

1

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

Now, expanding along the bottom row, what has just resulted is∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1
... · · ·

...
1

an−1+b1
· · · 1

an−1+bn−1

∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

By induction this equals

∏
n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

∏ j<i≤n−1 (ai−a j)(bi−b j)

∏i, j≤n−1 (ai +b j)

=
∏ j<i≤n (ai−a j)(bi−b j)

∏i, j≤n (ai +b j)
■
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8.7 Rank of a Matrix
Definition 8.7.1 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m×n matrix. The determinant rank
of the matrix equals r where r is the largest number such that some r× r submatrix of A
has a non zero determinant. The row rank is defined to be the dimension of the span of the
rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 8.7.2 If A, an m×n matrix has determinant rank r, then there exist r rows of the
matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (ai j) equals r. Thus some r× r subma-
trix has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are
j1 < · · ·< jr and the r rows whose indices are i1 < · · ·< ir. I want to show that every row
is a linear combination of these rows. Consider the lth row and let p be an index between 1
and n. Form the following (r+1)× (r+1) matrix

ai1 j1 · · · ai1 jr ai1 p
...

...
...

air j1 · · · air jr air p

al j1 · · · al jr al p


Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth row
is one of the chosen ones. The above matrix has determinant 0. This is because if p /∈
{ j1, · · · , jr} then the above would be a submatrix of A which is too large to have non zero
determinant. On the other hand, if p ∈ { j1, · · · , jr} then the above matrix has two columns
which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aik p. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with al p. This is given to be nonzero, it being the determinant of the matrix r× r matrix in
the upper left corner. Thus

0 = al pC+
r

∑
k=1

Ckaik p

which implies

al p =
r

∑
k=1

−Ck

C
aik p ≡

r

∑
k=1

mkaik p

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. ■

Corollary 8.7.3 The determinant rank equals the row rank.

Proof: From Theorem 8.7.2, every row is in the span of r rows where r is the determi-
nant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so, it
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follows from Theorem 8.7.2 that there exist p rows for p < r≡ determinant rank, such that
the span of these p rows equals the row space. But then you could consider the r× r sub
matrix which determines the determinant rank and it would follow that each of these rows
would be in the span of the restrictions of the p rows just mentioned. By Theorem 3.1.5,
the exchange theorem, the rows of this sub matrix would not be linearly independent and so
some row is a linear combination of the others. By Corollary 8.4.2 the determinant would
be 0, a contradiction. ■

Corollary 8.7.4 If A has determinant rank r, then there exist r columns of the matrix such
that every other column is a linear combination of these r columns. Also the column rank
equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 8.7.3,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A. ■

The following theorem is of fundamental importance and ties together many of the
ideas presented above.

Theorem 8.7.5 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det(A) = 0. Then the determinant rank of A = r < n. Therefore, there
exist r columns such that every other column is a linear combination of these columns
by Theorem 8.7.2. In particular, it follows that for some m, the mth column is a linear
combination of all the others. Thus letting A =

(
a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars α i such that

am = ∑
k ̸=m

αkak.

Now consider the column vector, x≡
(

α1 · · · −1 · · · αn

)T
. Then

Ax=−am + ∑
k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such
that ATx= 0. Taking the transpose of both sides yields xT A = 0T where the 0T is a 1×n
matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xT A

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det(A) ̸= 0 but then from Theorem 8.6.1
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax= y. In fact
x= A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). ■
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Corollary 8.7.6 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

8.8 Summary of Determinants
In all the following A,B are n×n matrices

1. det(A) is a number.

2. det(A) is linear in each row and in each column.

3. If you switch two rows or two columns, the determinant of the resulting matrix is−1
times the determinant of the unswitched matrix. (This and the previous one say

(a1 · · ·an)→ det(a1 · · ·an)

is an alternating multilinear function or alternating tensor.

4. det(e1, · · · ,en) = 1.

5. det(AB) = det(A)det(B)

6. det(A) can be expanded along any row or any column and the same result is obtained.

7. det(A) = det
(
AT
)

8. A−1 exists if and only if det(A) ̸= 0 and in this case

(
A−1)

i j =
1

det(A)
cof(A) ji (8.13)

9. Determinant rank, row rank and column rank are all the same number for any m×n
matrix.

8.9 The Cayley Hamilton Theorem
Here is a simple proof of the Cayley Hamilton theorem in the special case that the field of
scalars is R,Q, or C. This proof does not work for arbitrary fields. A proof of this theorem
valid for every field will be outlined in exercises. See Problem 21 on Page 191. The cases
considered here comprise most major applications of the Cayley Hamilton theorem.

Definition 8.9.1 Let A be an n×n matrix. The characteristic polynomial is defined as

qA (t)≡ det(tI−A)
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and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p(t) = tn +
an−1tn−1 + · · ·+a1t +a0, denote by p(A) the matrix defined by

p(A)≡ An +an−1An−1 + · · ·+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix. This
is always the characteristic polynomial, but in this section, the field will be one of those
mentioned above.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 8.9.2 Suppose for all |λ | large enough,

A0 +A1λ + · · ·+Amλ
m = 0,

where the Ai are n×n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ

−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. ■
With the lemma, here is a simple corollary.

Corollary 8.9.3 Let Ai and Bi be n×n matrices and suppose

A0 +A1λ + · · ·+Amλ
m = B0 +B1λ + · · ·+Bmλ

m

for all |λ | large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai,Bi then one can
substitute an n×n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 8.9.4 Let A be an n×n matrix and let q(λ )≡ det(λ I−A) be the characteristic
polynomial. Then q(A) = 0.

Proof: Let C (λ ) equal the transpose of the cofactor matrix of (λ I−A) for |λ | large.
(If |λ | is large enough, then λ cannot be in the finite list of eigenvalues of A and so for
such λ , (λ I−A)−1 exists.) Therefore, by Theorem 8.6.1, C (λ ) = q(λ )(λ I−A)−1. Say
q(λ ) = a0 + a1λ + · · ·+ λ

n. Note that each entry in C (λ ) is a polynomial in λ having
degree no more than n−1. For example, you might have something like

C (λ ) =

 λ
2−6λ +9 3−λ 0
2λ −6 λ

2−3λ 0
λ −1 λ −1 λ

2−3λ +2


1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time

later and a proof was given by Frobenius in 1878.



8.9. THE CAYLEY HAMILTON THEOREM 187

=

 9 3 0
−6 0 0
−1 −1 2

+λ

 −6 −1 0
2 −3 0
1 1 −3

+λ
2

 1 0 0
0 1 0
0 0 1


Therefore, collecting the terms in the general case, C (λ ) =C0 +C1λ + · · ·+Cn−1λ

n−1 for
C j some n× n matrix. Then C (λ )(λ I−A) =

(
C0 +C1λ + · · ·+Cn−1λ

n−1
)
(λ I−A) =

q(λ ) I. Then multiplying out the middle term, it follows that for all |λ | sufficiently large,

a0I +a1Iλ + · · ·+ Iλ
n =C0λ +C1λ

2 + · · ·+Cn−1λ
n

−
[
C0A+C1Aλ + · · ·+Cn−1Aλ

n−1
]

=−C0A+(C0−C1A)λ +(C1−C2A)λ
2 + · · ·+(Cn−2−Cn−1A)λ

n−1 +Cn−1λ
n

Then, using Corollary 8.9.3, one can replace λ on both sides with A. Then the right side is
seen to equal 0. Hence the left side, q(A) I is also equal to 0. ■

Here is an interesting and significant application of block multiplication. In this the-
orem, qM (t) denotes the characteristic polynomial, det(tI−M) . The zeros of this poly-
nomial will be shown later to be eigenvalues of the matrix M. First note that from block
multiplication, for the following block matrices consisting of square blocks of an appropri-
ate size, (

A 0
B C

)
=

(
A 0
B I

)(
I 0
0 C

)
so

det

(
A 0
B C

)
= det

(
A 0
B I

)
det

(
I 0
0 C

)
= det(A)det(C)

Theorem 8.9.5 Let A be an m× n matrix and let B be an n×m matrix for m ≤ n. Then
qBA (t) = tn−mqAB (t) , so the eigenvalues of BA and AB are the same including multiplicities
except that BA has n−m extra zero eigenvalues. Here qA (t) denotes the characteristic
polynomial of the matrix A.

Proof: Use block multiplication to write(
AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)
(

I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

(
I A
0 I

)(
0 0
B BA

)
=

(
AB 0
B 0

)(
I A
0 I

)
Therefore, (

I A
0 I

)−1(
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)
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Since the two matrices above are similar, it follows that(
0m×m 0

B BA

)
,

(
AB 0
B 0n×n

)

have the same characteristic polynomials.Thus

det

(
tIm×m 0
−B tI−BA

)
= det

(
tI−AB 0
−B tIn×n

)
(8.14)

Therefore, tm det(tI−BA) = tn det(tI−AB) and so

det(tI−BA) = qBA (t) = tn−m det(tI−AB) = tn−mqAB (t) .■

8.10 Exercises
1. Let m < n and let A be an m× n matrix. Show that A is not one to one. Hint:

Consider the n×n matrix A1 which is of the form A1 ≡

(
A
0

)
where the 0 denotes

an (n−m)× n matrix of zeros. Thus detA1 = 0 and so A1 is not one to one. Now

observe that A1x is the vector, A1x =

(
Ax
0

)
which equals zero if and only if

Ax= 0.

2. Let v1, · · · ,vn be vectors in Fn and let M (v1, · · · ,vn) denote the matrix whose ith

column equals vi. Define d (v1, · · · ,vn)≡ det(M (v1, · · · ,vn)) . Prove that d is linear
in each variable, (multilinear), that

d (v1, · · · ,vi, · · · ,v j, · · · ,vn) =−d (v1, · · · ,v j, · · · ,vi, · · · ,vn) , (8.15)

and
d (e1, · · · ,en) = 1 (8.16)

where here e j is the vector in Fn which has a zero in every position except the jth

position in which it has a one.

3. If A,B are similar matrices, show that they have the same determinant. Also show
that they have the same characteristic polynomial.

4. Suppose f : Fn×·· ·×Fn→ F satisfies 8.15 and 8.16 and is linear in each variable.
Show that f = d.

5. Use row operations to evaluate by hand the determinant

det


1 2 3 2
−6 3 2 3
5 2 2 3
3 4 6 4

 .
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6. Find the inverse if it exists of the matrix et cos t sin t
et −sin t cos t
et −cos t −sin t

 .

7. Let Ly = y(n)+ an−1 (x)y(n−1)+ · · ·+ a1 (x)y′+ a0 (x)y where the ai are given con-
tinuous functions defined on an interval, (a,b) and y is some function which has n
derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1,2, · · · ,n. The
Wronskian of these functions, yi is defined as

W (y1, · · · ,yn)(x)≡ det


y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y(n−1)
1 (x) · · · y(n−1)

n (x)


Show that for W (x) =W (y1, · · · ,yn)(x) to save space,

W ′ (x) = det


y1 (x) · · · yn (x)

... · · ·
...

y(n−2)
1 (x) y(n−2)

n (x)

y(n)1 (x) · · · y(n)n (x)

 .

Now use the differential equation, Ly = 0 which is satisfied by each of these func-
tions, yi to verify that W ′+ an−1 (x)W = 0. Give an explicit solution of this linear
differential equation, Abel’s formula, and use your answer to verify that the Wron-
skian of these solutions to the equation, Ly = 0 either vanishes identically on (a,b)
or never.

8. Show that the identity matrix is not similar to any other matrix.

9. Two n× n matrices, A and B, are similar if B = S−1AS for some invertible n× n
matrix S. Prove a theorem which is illustrated by the following picture.

similar
same trace,characteristic polynomial, determinant

Give an example of two matrices which are not similar but they have the same trace,
characteristic polynomial and determinant.

10. Suppose the characteristic polynomial of an n×n matrix A is of the form

tn +an−1tn−1 + · · ·+a1t +a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix A. Show that
A−1 exists if and only if a0 ̸= 0. In fact, show that a0 = (−1)n det(A) . Note how
similar this is to what we did with algebraic numbers earlier on.
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11. ↑Letting p(t) denote the characteristic polynomial of A, show that pε (t)≡ p(t− ε)
is the characteristic polynomial of A+ εI. Then show that if det(A) = 0, it follows
that det(A+ εI) ̸= 0 whenever |ε| is sufficiently small but nonzero.

12. In constitutive modeling of the stress and strain tensors, one sometimes considers
sums of the form ∑

∞
k=0 akAk where A is a 3×3 matrix. Show using the Cayley Hamil-

ton theorem that if such a thing makes any sense, you can always obtain it as a finite
sum having no more than 3 terms.

13. Recall you can find the determinant from expanding along the jth column. det(A) =
∑i Ai j (cof(A))i j Think of det(A) as a function of the entries, Ai j. Explain why the

i jth cofactor is really just ∂ det(A)
∂Ai j

.

14. Let U be an open set in Rn and let g :U→Rn be such that all the first partial deriva-
tives of all components of g exist and are continuous. Under these conditions form
the matrix Dg (x) given by Dg (x)i j ≡

∂gi(x)
∂x j
≡ gi, j (x) The best kept secret in cal-

culus courses is that the linear transformation determined by this matrix Dg (x) is
called the derivative of g and is the correct generalization of the concept of deriva-
tive of a function of one variable. Suppose the second partial derivatives also exist
and are continuous. Then show that ∑ j (cof(Dg))i j, j = 0. Hint: First explain why
∑i gi,k cof(Dg)i j = δ jk det(Dg) . Next differentiate with respect to x j and sum on j
using the equality of mixed partial derivatives. Assume det(Dg) ̸= 0 to prove the
identity in this special case. Then explain using Problem 11 why there exists a se-
quence εk→ 0 such that for gεk

(x)≡ g (x)+εkx, det
(
Dgεk

)
̸= 0 and so the identity

holds for gεk
. Then take a limit to get the desired result in general. This is an ex-

tremely important identity which has surprising implications. One can build degree
theory on it for example. It also leads to simple proofs of the Brouwer fixed point
theorem from topology.

15. A determinant of the form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a0 a1 · · · an

a2
0 a2

1 · · · a2
n

...
...

...
an−1

0 an−1
1 · · · an−1

n

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is called a Vandermonde determinant. Show it equals ∏0≤i< j≤n (a j−ai). By this is
meant to take the product of all terms of the form (a j−ai) such that j > i. Hint:

Show it works if n = 1 so you are looking at

∣∣∣∣∣ 1 1
a0 a1

∣∣∣∣∣ . Then suppose it holds for

n− 1 and consider the case n. Consider the polynomial in t, p(t) which is obtained

from the above by replacing the last column with the column
(

1 t · · · tn
)T

.

Explain why p(a j) = 0 for i = 0, · · · ,n−1. Explain why p(t) = c∏
n−1
i=0 (t−ai) . Of

course c is the coefficient of tn. Find this coefficient from the above description of
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p(t) and the induction hypothesis. Then plug in t = an and observe the formula is
valid for n.

16. The example in this exercise was shown to me by Marc van Leeuwen and it helped to
correct a misleading proof of the Cayley Hamilton theorem presented in this chapter.
If p(λ ) = q(λ ) for all λ or for all λ large enough where p(λ ) ,q(λ ) are polynomials
having matrix coefficients, then it is not necessarily the case that p(A) = q(A) for A
a matrix of an appropriate size. The proof in question read as though it was using
this incorrect argument. Let

E1 =

(
1 0
0 0

)
,E2 =

(
0 0
0 1

)
,N =

(
0 1
0 0

)

Show that for all λ ,(λ I +E1)(λ I +E2) =
(

λ
2 +λ

)
I = (λ I +E2)(λ I +E1) . How-

ever,
(NI +E1)(NI +E2) ̸= (NI +E2)(NI +E1) .

Explain why this can happen. In the proof of the Cayley-Hamilton theorem given
in the chapter, show that the matrix A does commute with the matrices Ci in that
argument. Hint: Multiply both sides out with N in place of λ . Does N commute
with Ei?

17. Explain why the proof of the Cayley-Hamilton theorem given in this chapter cannot
possibly hold for arbitrary fields of scalars.

18. Suppose A is m×n and B is n×m. Letting I be the identity of the appropriate size,
is it the case that det(I +AB) = det(I +BA)? Explain why or why not.

19. Suppose A is a linear transformation and let the characteristic polynomial be

det(λ I−A) =
q

∏
j=1

φ j (λ )
n j

where the φ j (λ ) are irreducible. Explain using Corollary 1.13.10 why the irreducible
factors of the minimum polynomial are φ j (λ ) and why the minimum polynomial is
of the form ∏

q
j=1 φ j (λ )

r j where r j ≤ n j. You can use the Cayley Hamilton theorem
if you like.

20. M =


B1

. . .

Br

 is a block diagonal matrix. Show det(M) = ∏
r
k=1 det(Bk).

21. Use the existence of the Jordan canonical form for a linear transformation whose
minimum polynomial factors completely to give a proof of the Cayley Hamilton the-
orem which is valid for any field of scalars. Hint: First assume the minimum poly-
nomial factors completely into linear factors. In this case, note that the characteristic
polynomial is of degree n and is the product of (λ −µ) where µ is an eigenvalue
and listed according to algebraic multiplicity. However, if there are multiple blocks
corresponding to some µ, then the minimum polynomial will have such terms but
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fewer of them. If the minimum polynomial does not split, consider a splitting field
of the minimum polynomial. Then consider the minimum polynomial with respect
to this larger field. How will the two minimum polynomials be related? The two
characteristic polynomials will be exactly the same, being defined in terms of the
determinant of λ I−A. Show the minimum polynomial always divides the character-
istic polynomial for any field F.

22. Let q(λ ) = λ
n + an−1λ

n−1 + · · ·+ a1λ + a0 be a polynomial and C its companion
matrix.

C =


0 −a0

1 −a1
. . .

...
0 1 −an−1


Show that det(λ I−C) = q(λ ) and that the minimum polynomial has degree n. It
fill follow from the next problem or the preceding one that characteristic polynomial
will coincide with the minimal polynomial for this.

23. ↑Use the existence of the rational canonical form M to give a proof of the Cayley
Hamilton theorem valid for any field, even fields like the integers mod p for p a
prime. The proof in this chapter on determinants was fine for fields like Q or R
where you could let λ → ∞ but it is not clear the same result holds in general. Show
the minimum polynomial ∏

p
k=1 φ k (λ )

mk divides det(λ I−M). Hint: Recall that for
a linear transformation, it has a rational canonical form M which is block diagonal

M =


C1 0

. . .

0 Cr

 and one of the blocks has det
(
λ I−Csk

)
= φ k (λ )

mk since

one of the companion matrices comes from φ k (λ )
mk , this for each k. There may be

other blocks for which det
(
λ I−Ĉ j

)
= φ k (λ )

l , l < mk. However, det(λ I−M) =

∏
r
k=1 det(λ I−Ck) which is a polynomial divisible by the minimum polynomial.

24. Show that to find the eigenvalues of a matrix, it suffices to consider the roots of the
characteristic polynomial. Hint: Use Cayley Hamilton theorem. This gives another
way to find eigenvalues.

25. Recall that a matrix was diagonalizable if it was similar to a diagonal matrix. Sup-
pose you have a matrix A whose entries are in F and the characteristic polynomial is
the same as the minimum polynomial but the characteristic polynomial of the matrix
has a repeated root. Can you show that the matrix cannot be diagonalizable in any
field containing F?

26. For W a subspace of V, W is said to have a complementary subspace [24] W ′ if
W ⊕W ′ = V. Suppose that both W,W ′ are invariant with respect to A ∈ L (V,V ).
Show that for any polynomial f (λ ) , if f (A)x∈W, then there exists w∈W such that
f (A)x = f (A)w. A subspace W is called A admissible if it is A invariant and the
condition of this problem holds.
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27. When you have an Abelian group V and a commutative ring with unity K such that
the usual vector space operations hold

k (v1 + v2) = kv1 + kv2, (k1 + k2)v = k1v+ k2v

k1 (k2v) = (k1k2)v, 1v = v

then you call this V a K module. Thus, it is just a vector space except you have a ring
of scalars rather than a field of scalars. Now suppose K = Z the integers and V = Zm
where m is some positive integer. Then if k ∈ K and ā ∈ Zm, you define kā in the
usual way. Just add ā to itself k times or if k is negative, you just add (−ā) = m−a
to itself |k| times. Explain why this is a Z module. More generally, explain why an
arbitrary Abelian group is a Z module. However, show that in general, there is no
linearly independent set of elements of Zm which spans Zm, although it is certainly
true that 1̄ spans Zm. Thus, when you replace a field with a ring, you loose the
theorem that gives you a linearly independent subset of a spanning set. Hint: If 1̄ is
in the span of your supposed basis, you have problems. If not in the span of your
supposed basis, then you don’t have a spanning set.

28. Now suppose you have K a commutative ring with unity and consider Kn. Show
{e1, · · · ,en} spans Kn and if you have {a1, · · · ,am} for m < n, then {a1, · · · ,am}
does not span Kn. Hint: If it does span, then explain why you could get the following

An×mPm×n =
(

a1 · · · am

)
P = In×n.

Then consider this:
(

An×m 0
)( Pm×n

0

)
= In×n Consider Theorem 8.4.4 which

still works if the entries of the matrix are from a commutative ring with unity. Is
{e1, · · · ,en} also linearly independent? By this is meant one of the definitions given
earlier that if you have a linear combination of these vectors equal to 0, then all of
the scalars are zero. Since the scalars only come from a ring, you can’t conclude that
this is the same thing as saying that no vector is a linear combination of the others.

29. If A(t) is an n×n matrix and A(t) =
(

a1 (t) · · · an (t)
)

show that

d
dt

det(A(t)) =
n

∑
i=1

det(Ai (t))

where Ai (t) has the same columns except for the ith column which is a′i (t) .

30. You have vectors x′i (t) = Jxi (t) where J is a Jordan canonical form and is n× n.

Form the matrix Φ(t)≡
(

x1 (t) · · · xn (t)
)

. Explain why Φ′ (t)= JΦ(t) . Now

consider yi (t)
T to be the ith row of this matrix Φ(t) . Explain why

y′i (t)
T = λ iyi (t)

T +aiyi+1 (t)
T (*)
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Now, using the result of Problem 29 explain why

det(Φ(t))′ =
n

∑
i=1

det



y1 (t)
T

...
λ iyi (t)

T +aiyi+1 (t)
T

...
yn (t)

T


(**)

where ai = 0 or 1 and an = 0. Next explain, using elementary ODE why det(Φ(t)) =
Cetrace(J)t for some constant C, showing that det(Φ(t)) either vanishes for all t or for
no t.

31. Obtain exactly the same result as the above Problem 30 for an arbitrary A an n×n ma-
trix. Use the result on the existence of Jordan canonical form along with properties
of determinants to make this easy. Recall also the earlier problem that the trace is an
invariant meaning that it does not change under similarity transformations. The for-
mula you get is Abel’s formula for first order systems. A few other simple problems
using Jordan form will wipe out almost the entire typical undergraduate differential
equations course. There is actually an easier, but trickier way to get this result of this
problem.



Chapter 9

Some Items Which Resemble Linear Al-
gebra

This chapter is on some topics which don’t usually appear in linear algebra texts but which
seem to be related to linear algebra in the sense that the ideas are similar.

9.1 The Symmetric Polynomial Theorem
First here is a definition of polynomials in many variables which have coefficients in a
commutative ring. A commutative ring would be a field except you don’t know that every
nonzero element has a multiplicative inverse. A good example of a commutative ring is the
integers. In particular, every field is a commutative ring. Thus, a commutative ring satisfies
the following axioms. They are just the field axioms with one omission mentioned above.
You don’t have x−1 if x ̸= 0. We will assume that the ring has 1, the multiplicative identity.

Axiom 9.1.1 Here are the axioms for a commutative ring.

1. x+ y = y+ x, (commutative law for addition)

2. There exists 0 such that x+0 = x for all x, (additive identity).

3. For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. There exists 1 such that 1x = x for all x,(multiplicative identity).

8. x(y+ z) = xy+ xz.(distributive law).

Definition 9.1.2 Let k ≡ (k1,k2, · · · ,kn) where each ki is a nonnegative integer. Let

|k| ≡∑
i

ki

Polynomials of degree p in the variables x1,x2, · · · ,xn are expressions of the form

g(x1,x2, · · · ,xn) = ∑
|k|≤p

akxk1
1 · · ·x

kn
n

where each ak is in a commutative ring. If all ak = 0, the polynomial has no degree. Such
a polynomial is said to be symmetric if whenever σ is a permutation of {1,2, · · · ,n},

g
(
xσ(1),xσ(2), · · · ,xσ(n)

)
= g(x1,x2, · · · ,xn)

195
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An example of a symmetric polynomial is

s1 (x1,x2, · · · ,xn)≡
n

∑
i=1

xi

Another one is
sn (x1,x2, · · · ,xn)≡ x1x2 · · ·xn

Definition 9.1.3 The elementary symmetric polynomial

sk (x1,x2, · · · ,xn) ,k = 1, · · · ,n

is the coefficient of (−1)k xn−k in the following polynomial.

(x− x1)(x− x2) · · ·(x− xn)

= xn− s1xn−1 + s2xn−2−·· ·± sn

Thus
s1 = x1 + x2 + · · ·+ xn

s2 = ∑
i< j

xix j, s3 = ∑
i< j<k

xix jxk, . . . , sn = x1x2 · · ·xn

Note that it follows from the above definition that

α
ksk (x1,x2, · · · ,xn) = sk (αx1, · · · ,αxn)

Then the following result is the fundamental theorem in the subject. It is the symmetric
polynomial theorem. This is a very remarkable theorem. It says that if you know a poly-
nomial in some variables is symmetric, then it is the sum of polynomials in the elementary
symmetric polynomials which are the coefficients of p(x) = ∏k (x− xk) .

What is an example of a polynomial which is NOT symmetric? These are not hard to
find. Consider g(x,y) = x+2y for example. So when do we encounter them? It is often in
coefficients which result from expanding something like ∏

n
k=1 (x− xk).

Theorem 9.1.4 Every symmetric polynomial g(x1,x2, · · · ,xn) equals a polynomial in the
elementary symmetric polynomials.

g(x1,x2, · · · ,xn) = ∑
k

aksk1
1 · · ·s

kn
n

and the ak in the commutative ring are unique with all but finitely many of the coefficients
ak being 0.

Proof: The proof is by induction on the number of variables. If n = 1, it is obviously
true because s1 = x1 and g(x1) can only be a polynomial in x1. Suppose the theorem is true
for n−1 variables and g(x1,x2, · · · ,xn) has degree d. Thus in the sum for the polynomial,
|k| ≤ d. By induction, there is a polynomial

Q(s̃1, · · · , s̃n−1) = ∑
|k|≤p

aks̃k1
1 · · · s̃

kn−1
n−1 = g(x1,x2, · · · ,xn−1,0) (9.1)
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where s̃k is a symmetric polynomial for the variables {x1,x2, · · · ,xn−1} . Now let

p(x1,x2, · · · ,xn)≡ g(x1,x2, · · · ,xn)−Q(s1, · · · ,sn−1) (9.2)

Thus p(x1,x2, · · · ,xn) is a symmetric polynomial because each s j is symmetric and g is
given to be symmetric. Notice how s̃k was replaced with sk.

If xn is set equal to 0, the right side of 9.2 reduces to 0 because for k ≤ n−1,

sk (x1,x2, · · · ,xn−1,0) = s̃k (x1,x2, · · · ,xn−1)

This follows from the definition of these symmetric polynomials or their description in
Definition 9.1.3. Indeed, the coefficient of xn−k in

(x− x1)(x− x2) · · ·(x− xn−1)(x−0)

is the same as the coefficient of x(n−1)−k in (x− x1)(x− x2) · · ·(x− xn−1) . Thus, the right
side of 9.2 reduces to g(x1,x2, · · · ,xn−1,0)−Q(s̃1, · · · , s̃n−1) = 0 from 9.1 when xn = 0.

Thus xn divides p(x1,x2, · · · ,xn) . In other words, each term in p(x1,x2, · · · ,xn) has a
factor of xn. The same must be true with x j since otherwise, the symmetric polynomial
p(x1,x2, · · · ,xn) would change if you switched x j and xn. Hence there exists a symmetric
polynomial g1 (x1,x2, · · · ,xn) such that

sng1 (x1,x2, · · · ,xn) = g(x1,x2, · · · ,xn)−Q(s1, · · · ,sn−1)

Recall sn = x1x2 · · ·xn. Thus

g(x1,x2, · · · ,xn) = sng1 (x1,x2, · · · ,xn)+Q(s1, · · · ,sn−1) .

Now if g1 is not constant, do for g1 what was just done for g. Obtain

g(x1,x2, · · · ,xn) = sn (sng2 (x1,x2, · · · ,xn)+Q2 (s1, · · · ,sn−1))

+Q(s1, · · · ,sn−1)

Continue this way, obtaining a sequence of gk till the process stops with some gm being
a constant. This must happen because the degree of gk becomes strictly smaller with
each iteration. This yields a polynomial in the elementary symmetric polynomials for
{x1,x2, · · · ,xn}. ■

Example 9.1.5 Let g(x,y) = x3 + y3. It is clear that g(x,y) = g(y,x) so g is a symmetric
polynomial. Write as a polynomial in the elementary functions.

The above proof tells how to do this. First note that x3 = s̃3
1 where s1 is the symmetric

polynomial associated with the single variable x. Thus p(x,y)= x3+y3−s3
1 where this s1 is

x+y. Then p(x,y) = x3 +y3− (x+ y)3 = −3x2y−3xy2 and this equals (−xy)(3x+3y) =
−3s2s1. Thus −3s1s2 = x3 + y3− s3

1 and so g(x,y) = s3
1−3s1s2.

You can see that if you have a symmetric polynomial in more variables, you could use
a process of reducing one variable at a time in g(x1, ...,xn−1,0) to eventually obtain this
function as a polynomial in the symmetric polynomials in variables {x1, ...,xn−1}.

Note that if you have ∏
m
i=1 (x− xi) then by definition, it is the sum of terms like

g(x1, · · · ,xm)xm−k.
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If you replace x with xi and sum over all i, you would get ∑
m
i=1 g(x1, · · · ,xm)xm−k

i which
would also be a symmetric polynomial. It is of the form

g(x1, · · · ,xm)xm−k
1 +g(x1, · · · ,xm)xm−k

2 + · · ·+g(x1, · · · ,xm)xm−k
m

so when you switch some variable in this, you get the same thing.
Here is a very interesting result which I saw claimed in a paper by Steinberg and Red-

heffer on Lindermannn’s theorem which follows from the above theorem. It is a very
surprising property of symmetric polynomials (surprising for me anyway) and is the main
tool for proving the Lindermann Weierstrass theorem.

Theorem 9.1.6 Let α1, · · · ,αn be roots of the polynomial equation

p(x)≡ anxn +an−1xn−1 + · · ·+a1x+a0 = 0 (∗)

where each ai is an integer. Then any symmetric polynomial in the quantities

anα1, · · · ,anαn

having integer coefficients is also an integer. Also any symmetric polynomial with rational
coefficients in the quantities α1, · · · ,αn is a rational number.

Proof: Let f (x1, · · · ,xn) be the symmetric polynomial having integer coefficients.
From Theorem 9.1.4 it follows there are integers ak1···kn such that

f (x1, · · · ,xn) = ∑
k1+···+kn≤m

ak1···kn pk1
1 · · · p

kn
n (9.3)

where the pi are elementary symmetric polynomials defined as the coefficients of p̂(x) =
∏

n
j=1 (x− x j) with pk (x1, ...,xn) of degree k since it is the coefficient of xn−k. Earlier we

had them ± these coefficients. Thus

f (anα1, · · · ,anαn)

= ∑
k1+···+kn=d

ak1···kn pk1
1 (anα1, · · · ,anαn) · · · pkn

n (anα1, · · · ,anαn)

Now the given polynomial in ∗, p(x) is of the form

an

n

∏
j=1

(x−α j)≡ an

(
n

∑
k=0

pk (α1, · · · ,αn)xn−k

)

= anxn +an−1xn−1 + · · ·+a1x+a0

Thus, equating coefficients, an pk (α1, · · · ,αn) = an−k. Multiply both sides by ak−1
n . Thus

pk (anα1, · · · ,anαn) = ak−1
n an−k an integer. Therefore,

f (anα1, · · · ,anαn)

= ∑
k1+···+kn=d

ak1···kn pk1
1 (anα1, · · · ,anαn) · · · pkn

n (anα1, · · · ,anαn)
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and each pk (anα1, · · · ,anαn) is an integer. Thus f (anα1, · · · ,anαn) is an integer. From
this, it is obvious that f (α1, · · · ,αn) is rational. Indeed, from 9.3,

f (α1, · · · ,αn) = ∑
k1+···+kn=d

ak1···kn pk1
1 (α1, · · · ,αn) · · · pkn

n (α1, · · · ,αn)

Now multiply both sides by aM
n , an integer where M is chosen large enough that

aM
n f (α1, · · · ,αn) =

∑
k1+···+kn=d

ah(k1,...,kn)
n ak1···kn pk1

1 (anα1, · · · ,anαn) · · · pkn
n (anα1, · · · ,anαn) an integer.

where h(k1, ...,kn) is some nonnegative integer. Thus f (α1, · · · ,αn) is rational. If the f
had rational coefficients, then m f would have integer coefficients for a suitable m and so
m f (α1, · · · ,αn) would be rational which yields f (α1, · · · ,αn) is rational. ■

Nothing would change in the last claim of this theorem if Q were a general field. You
would get f (α1, · · · ,αn) is in the general field.

Corollary 9.1.7 Let α1, · · · ,αn be roots of the polynomial equation

p(x)≡ xn +an−1xn−1 + · · ·+a1x+a0 = 0

where each ai is in a field F. Then any symmetric polynomial in α1, · · · ,αn which has
coefficients in F is in F.

Proof: Let f (x1, ...,xn) be a symmetric polynomial. Then by the symmetric polynomial
theorem,

f (α1, · · · ,αn) = ∑
k

bksk1
1 sk2

2 · · ·s
kn
n

where the sk (α1, · · · ,αn) is ± the coefficient of xk in ∏
n
i=1 (x−α i) . Thus ak =±sk and so

the above sum is in F. ■

9.2 Transcendental Numbers
Most numbers are like this, transcendental. Here the algebraic numbers are those which
are roots of a polynomial equation having rational numbers as coefficients, equivalently
integer coefficients. By the fundamental theorem of algebra, all these numbers are in C
and they constitute a countable collection of numbers in C. Therefore, most numbers in C
are transcendental. Nevertheless, it is very hard to prove that a particular number is tran-
scendental. Probably the most famous theorem about this is the Lindermannn Weierstrass
theorem, 1884.

Theorem 9.2.1 Let the α i be distinct nonzero algebraic numbers and let the ai be nonzero
algebraic numbers. Then ∑

n
i=1 aieα i ̸= 0.

I am following the interesting Wikepedia article on this subject. You can also look at the
book by Baker [5], Transcendental Number Theory, Cambridge University Press. There are
also many other treatments which you can find on the web including an interesting article
by Steinberg and Redheffer, already mentioned, which appeared in about 1950.
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The proof makes use of the following identity. For f (x) a polynomial,

I (s)≡
∫ s

0
es−x f (x)dx = es

deg( f )

∑
j=0

f ( j) (0)−
deg( f )

∑
j=0

f ( j) (s) . (9.4)

where f ( j) denotes the jth derivative. It is like the convolution integral discussed earlier
with Laplace transforms. In this formula, s ∈ C and the integral is defined in the natural
way as ∫ 1

0
s f (ts)es−tsdt (9.5)

The identity follows from integration by parts.∫ 1

0
s f (ts)es−tsdt = ses

∫ 1

0
f (ts)e−tsdt

= ses
[
−e−ts

s
f (ts) |10 +

∫ 1

0

e−ts

s
s f ′ (st)dt

]
= ses

[
−e−s

s
f (s)+

1
s

f (0)+
∫ 1

0
e−ts f ′ (st)dt

]
= es f (0)− f (s)+

∫ 1

0
ses−ts f ′ (st)dt

≡ es f (0)− f (s)+
∫ s

0
es−x f ′ (x)dx

Continuing this way establishes the identity since the right end looks just like what we
started with except with a derivative on the f .

Lemma 9.2.2 Let (x1, ...,xn)→ g(x,x1, ...,xn) be symmetric and let

x→ g(x,x1, ...,xn)

be a polynomial. Then
dm

dxm g(x,x1, ...,xn)

is symmetric in the variables {x1, ...,xn}. If (x1, ...,xn)→ h(x,x1, ...,xn) is symmetric, then
for r some nonnegative integer,

n

∑
k=1

h(xk,x1, ...,xn)xr
k

is symmetric. In particular,
n

∑
k=1

dl

dxl g(·,x1, ...,xn)(xk)xr
k

is symmetric in {x1, ...,xn}.

Proof: The coefficients of the polynomial x→ g(x,x1, ...,xn) are symmetric functions
of {x1, ...,xn} . Differentiating with respect to x multiple times just gives another polyno-
mial in x having coefficients which are symmetric functions. Thus the first part is proved.
For the second part, the sum is of the form

h(x1,x1, ...,xn)xr
1 +h(x2,x1, ...,xn)xr

2 + · · ·+h(xn,x1, ...,xn)xr
n
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You see that this is unchanged from switching two variables. For example, switch x1 and
x2. By assumption, nothing changes in the terms after the first two. The first term then
becomes

h(x2,x2,x1...,xn)xr
2 = h(x2,x1,x2, ...,xn)xr

2

and the second term becomes

h(x1,x2,x1, ...,xn)xr
1 = h(x1,x1,x2, ...,xn)xr

1

which are the same two terms, just added in a different order. The situation works the same
way with any other pair of variables. ■

Recall that every algebraic number is a root of a polynomial having integer coefficients.

Lemma 9.2.3 Let Q(x) = vxm+ · · ·+u have roots β 1, ...,β m listed according to multiplic-
ity and let the coefficients be integers. Let

f (x)≡ v(m+1)pQp (x)xp−1

(p−1)!
(9.6)

a polynomial of degree n = pm+ p−1. Then

n

∑
j=0

f ( j) (0) = vp(m+1)up +m1 (p) p (9.7)

m

∑
i=1

n

∑
j=0

f ( j) (β i) = m2 (p) p (9.8)

where m1 (p) ,m2 (p) are integers and p will be a large prime.

Proof: First consider 9.7. f (x) = v(m+1)p(vxm+···+u)pxp−1

(p−1)! . Then f j (0) = 0 unless j ≥
p−1 because otherwise, that xp−1 term will result in some xr,r > 0 and everything is zero
when you plug in x = 0. Now say j = p−1. Then it is clear that you get a (p−1)! which
cancels the denominator and letting x = 0, you get the integer f (p−1) (0) = upv(m+1)p. So
what if j > p−1?

d j

dx j

(
(vxm + · · ·+u)p xp−1)

=
j

∑
r=0

(
j
i

)
di

dxi ((vxm + · · ·+u)p)
d j−i

dx j−i xp−1

and, since eventually x = 0, only j− i = p−1 is of interest, so i = j− p+1 where j ≥ p
as just mentioned. Since i ≥ 1, there will be a factor of p and a factor of (p−1)! from
d j−i

dx j−i xp−1. Thus when x = 0, this reduces to m1 (p) p(p−1)! and so this yields 9.7.
Next consider 9.8 which says that ∑

m
i=1 ∑

n
j=0 f ( j) (β i) = m2 (p) p. The factorization of

Q(x) is v(x−β 1) · · ·(x−β m) . Replace Q(x) with its factorization in 9.6 to get

f (x)(p−1)! = vpv(m+1)p ((x−β 1)(x−β 2) · · ·(x−β m))
p xp−1 (9.9)

First notice that (p−1)! f ( j) (β i) = 0 unless j ≥ p. Thus all terms in computing

f ( j) (β i)(p−1)!
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for j ≥ p have a factor of p!. If you have

g(x,β 1, · · · ,β m)≡ vpv(m+1)p ((x−β 1)(x−β 2) · · ·(x−β m))
p xp−1,

it is symmetric in the β i so all derivatives with respect to x are also symmetric in these β i
by Lemma 9.2.2. By the same lemma, for j ≥ p

m

∑
i=1

d j

dx j

(
g(·,β 1, · · · ,β m)(β i)

1
(p−1)!

)
=

m

∑
i=1

f ( j) (β i)

is symmetric in the β 1, · · · ,β m. Thanks to the factor vpv(m+1)p and the factor p! coming
from j ≥ p, it is a symmetric polynomial in the vβ i with integer coefficients, each multi-
plied by p with the β i roots of Q(x) = vxm + · · ·+ u. By Theorem 9.1.6 this is an integer.
As noted earlier, it equals 0 unless j ≥ p when it contains a factor of p. Thus the sum of
these integers is also an integer times p. It follows that

m

∑
i=1

n

∑
j=0

f ( j) (β i) = m2 (p) p, m2 (p) an integer. ■

Note that no use was made of p being a large prime number. This will come next.

Lemma 9.2.4 If K and c are nonzero integers, and

β 1, · · · ,β m

are the roots of a single polynomial with integer coefficients,

Q(x) = vxm + · · ·+u

where v,u ̸= 0, then,
K + c

(
eβ 1 + · · ·+ eβ m

)
̸= 0.

Letting

f (x)≡ v(m+1)pQp (x)xp−1

(p−1)!

and I (s) be defined in terms of f (x) as above,

I (s)≡
∫ s

0
es−x f (x)dx = es

deg( f )

∑
j=0

f ( j) (0)−
deg( f )

∑
j=0

f ( j) (s) ,

it follows,

lim
p→∞

m

∑
i=1

I (β i) = 0 (9.10)

and for n the degree of f (x) ,n = pm+ p− 1, where mi (p) is some integer for p a large
prime number.
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Proof: The first step is to verify 9.10 for f (x) as given in 9.6 for p large prime numbers.
Let p be a large prime number. Then 9.10 follows right away from the definition of I

(
β j

)
and the definition of f (x) .

∣∣∣I(β j

)∣∣∣≤ ∫ 1

0

∣∣∣β j f
(

tβ j

)
eβ j−tβ j

∣∣∣dt ≤
∫ 1

0

∣∣∣∣∣∣∣
|v|(m−1)p

∣∣∣Q(tβ j

)∣∣∣p t p−1
∣∣∣β j

∣∣∣p−1

(p−1)!

∣∣∣∣∣∣∣dt

which clearly converges to 0 using considerations involving convergent series which show
the integrand converges uniformly to 0. The degree of f (x) is n≡ pm+ p−1 where p will
be a sufficiently large prime number from now on.

From 9.4,

c
m

∑
i=1

I (β i) = c
m

∑
i=1

(
eβ i

n

∑
j=0

f ( j) (0)−
n

∑
j=0

f ( j) (β i)

)

=

(
K + c

m

∑
i=1

eβ i

)
n

∑
j=0

f ( j) (0)−

(
K

n

∑
j=0

f ( j) (0)+ c
m

∑
i=1

n

∑
j=0

f ( j) (β i)

)
(9.11)

Here K ∑
n
j=0 f ( j) (0) is added and subtracted. From Lemma 9.2.3,

vp(m+1)up +m1 (p) p+m2 (p) p = K
n

∑
j=0

f ( j) (0)+ c
m

∑
i=1

n

∑
j=0

f ( j) (β i)

Thus, if p is very large,

c
m

∑
i=1

I (β i) = small = Kvp(m+1)up +M (p) p+

(
K + c

m

∑
i=1

eβ i

)
n

∑
j=0

f ( j) (0)

Let p be prime and larger than max(K,v,u). If K + c∑
m
i=1 eβ i = 0, the above is impossible

because it would require
small = Kvp(m+1)up +M (p) p

Now the right side is a nonzero integer because p cannot divide Kvp(m+1)up so the right
side cannot equal something small. ■

Note that this shows π is irrational. If π = k/m where k,m are integers, then both iπ
and −iπ are roots of the polynomial with integer coefficients, m2x2 + k2 which would
require, from what was just shown that

0 ̸= 2+ eiπ + e−iπ

which is not the case since the sum on the right equals 0.
The following corollary follows from this. It is like the above lemma except it involves

several polynomials. First is a lemma.

Lemma 9.2.5 Let vk,uk,mk be integers for k = 1,2...,m,uk,vk nonzero. Then for each k
there exists αk an integer such that α

mk+2
k vmk+1

k uk is U for some non zero integer.

Proof: Let U ≡
(

∏
m
j=1 v

m j+1
j u j

)
∏

m
j=1(m j+2)

2

≡ α
mk+2
k vmk+1

k uk where αk is an integer
chosen to make this so.■
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Corollary 9.2.6 Let K and ci for i = 1, · · · ,n be nonzero integers. For each k between 1
and n let {β (k)i}

mk
i=1 be the roots of a polynomial with integer coefficients,

Qk (x)≡ vkxmk + · · ·+uk

where vk,uk ̸= 0. Then

K + c1

(
m1

∑
j=1

eβ (1) j

)
+ c2

(
m2

∑
j=1

eβ (2) j

)
+ · · ·+ cn

(
mn

∑
j=1

eβ (n) j

)
̸= 0. (∗)

Proof: Let Kk be nonzero integers which add to K. It is certainly possible to obtain this
since the Kk are allowed to change sign. They only need to be nonzero. Also let αk be as in
the above lemma such that α

mk+2
k vmk+1

k uk = U some integer. Thus, replacing each Qk (x)
with αkvkxmk + · · ·+αkuk, it follows that for each large prime p,(αkv)p(mk+1) (αku)p =(

α
mk+2
k vmk+1

)p
=U p. From now on, use the new Qk (x).

Defining fk (x) and Ik (s) as in Lemma 9.2.4,

fk (x)≡
v(m+1)pQp

k (x)xp−1

(p−1)!

and as before, let p be a very large prime number. It follows from Lemma 9.2.4 that for
each k = 1, · · · ,n,

ck

mk

∑
i=1

Ik (β (k)i) =

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
deg( fk)

∑
j=0

f ( j)
k (0)

−

(
Kk

deg( fk)

∑
j=0

f ( j)
k (0)+ ck

mk

∑
i=1

deg( fk)

∑
j=0

f ( j)
k (β (k)i)

)
This is exactly the same computation as in the beginning of that lemma except one adds
and subtracts Kk ∑

deg( fk)
j=0 f ( j)

k (0) rather than K ∑
deg( fk)
j=0 f ( j)

k (0) where the Kk are chosen such
that their sum equals K and the term on the left converges to 0 as p→∞. By Lemma 9.2.4,

ck

mk

∑
i=1

Ik (β (k)i) =

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
(U p +Nk p)

−Kk (U p +Nk p)− ckN′k p

=

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
U p−KU p +Mk p

where Mk is some integer. Now add.

m

∑
k=1

ck

mk

∑
i=1

Ik (β (k)i) =U p

(
K +

m

∑
k=1

ck

mk

∑
i=1

eβ (k)i

)
−KmU p +Mp

If K +∑
m
k=1 ck ∑

mk
i=1 eβ (k)i = 0, then if p > max(K,m,U) you would have −KmU p +Mp

an integer so it cannot equal the left side which will be small if p is large. Therefore, ∗
follows. ■

Next is an even more interesting Lemma which follows from the above corollary.
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Lemma 9.2.7 If b0,b1, · · · ,bn are non zero integers, and γ1, · · · ,γn are distinct algebraic
numbers, then

b0eγ0 +b1eγ1 + · · ·+bneγn ̸= 0

Proof: Assume
b0eγ0 +b1eγ1 + · · ·+bneγn = 0 (9.12)

Divide by eγ0 and letting K = b0,

K +b1eα(1)+ · · ·+bneα(n) = 0 (9.13)

where α (k) = γk− γ0. These are still distinct algebraic numbers. Therefore, α (k) is a root
of a polynomial

Qk (x) = vkxmk + · · ·+uk (9.14)

having integer coefficients, vk,uk ̸= 0. Recall algebraic numbers were defined as roots of
polynomial equations having rational coefficients. Just multiply by the denominators to get
one with integer coefficients. Let the roots of this polynomial equation be{

α (k)1 , · · · ,α (k)mk

}
and suppose they are listed in such a way that α (k)1 = α (k). Thus, by Theorem 9.1.6
every symmetric polynomial in these roots is rational.

Letting ik be an integer in {1, · · · ,mk} it follows from the assumption 9.12 that

∏
(i1,··· ,in)

ik∈{1,··· ,mk}

(
K +b1eα(1)i1 +b2eα(2)i2 + · · ·+bneα(n)in

)
= 0 (9.15)

This is because one of the factors is the one occurring in 9.13 when ik = 1 for every k. The
product is taken over all distinct ordered lists (i1, · · · , in) where ik is as indicated. Expand
this possibly huge product. This will yield something like the following.

K′+ c1

(
eβ (1)1 + · · ·+ eβ (1)µ(1)

)
+ c2

(
eβ (2)1 + · · ·+ eβ (2)µ(2)

)
+ · · ·+

cN

(
eβ (N)1 + · · ·+ eβ (N)µ(N)

)
= 0 (9.16)

These integers c j come from products of the bi and K. You group these exponentials ac-
cording to which ci they multiply. The β (i) j are the distinct exponents which result, each
being a sum of some of the α (r)ir . Since the product included all roots for each Qk (x),
interchanging their order does not change the distinct exponents β (i) j which result. They
might occur in a different order however, but you would still have the same distinct ex-
ponents associated with each cs as shown in the sum. Thus any symmetric polynomial
in the β (s)1 ,β (s)2 , · · · ,β (s)

µ(s) is also a symmetric polynomial in the roots of Qk (x) ,
α (k)1 ,α (k)2 , · · · ,α (k)mk

for each k.
Doesn’t this contradict Corollary 9.2.6? This is not yet clear because we don’t know

that the β (i)1 , ...,β (i)
µ(i) are roots of a polynomial having rational coefficients. For a

given r,β (r)1 , · · · ,β (r)
µ(r) are roots of the polynomial

(x−β (r)1)(x−β (r)2) · · ·
(

x−β (r)
µ(r)

)
(9.17)
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the coefficients of which are elementary symmetric polynomials in the

β (r)i , i≤ µ (r)

Thus the coefficients are symmetric polynomials in the α (k)1 ,α (k)2 , · · · ,α (k)mk
for each

k. Say the polynomial is of the form

µ(r)

∑
l=0

xn−lBl (A(1) , · · · ,A(n))

where A(k) signifies the roots of Qk (x) ,
{

α (k)1 , · · · ,α (k)mk

}
. Thus, by the symmetric

polynomial theorem applied to the commutative ring Q [A(1) , · · · ,A(n−1)], the above
polynomial is of the form

µ(r)

∑
l=0

xµ(r)−l
∑
kl

Bkl (A(1) , · · · ,A(n−1))s
kl

1
1 · · ·s

kl
n

µ(r)

where the sk is one of the elementary symmetric polynomials in
{

α (n)1 , · · · ,α (n)mn

}
and

Bkl is symmetric in α (k)1 ,α (k)2 , · · · ,α (k)mk
for each k ≤ n−1 and

Bkl ∈Q [A(1) , · · · ,A(n−1)] .

Now do to Bkl what was just done to Bl featuring A(n−1) this time, and continue till
eventually you obtain for the coefficient of xµ(r)−l a large sum of rational numbers times a
product of symmetric polynomials in A(1) ,A(2) , etc. By Theorem 9.1.6 applied repeat-
edly, beginning with A(1) and then to A(2) and so forth, one finds that the coefficient of
xµ(r)−l is a rational number and so the β (r) j for j ≤ µ (r) are algebraic numbers and roots
of a polynomial which has rational coefficients, namely the one in 9.17, hence roots of a
polynomial with integer coefficients. Now 9.16 contradicts Corollary 9.2.6. ■

Note this lemma is sufficient to prove Lindermann’s theorem that π is transcendental.
Here is why. If π is algebraic, then so is iπ and so from this lemma, e0 +eiπ ̸= 0 but this is
not the case because eiπ =−1.

The next theorem is the main result, the Lindermann Weierstrass theorem. It replaces
the integers bi in the above lemma with algebraic numbers.

Theorem 9.2.8 Suppose a(1) , · · · ,a(n) are nonzero algebraic numbers and suppose

α (1) , · · · ,α (n)

are distinct algebraic numbers. Then

a(1)eα(1)+a(2)eα(2)+ · · ·+a(n)eα(n) ̸= 0

Proof: Suppose a( j)≡ a( j)1 is a root of the polynomial

v jxm j + · · ·+u j

where v j,u j ̸= 0. Let the roots of this polynomial be a( j)1 , · · · ,a( j)m j
. Suppose to the

contrary that
a(1)1 eα(1)+a(2)1 eα(2)+ · · ·+a(n)1 eα(n) = 0
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Then consider the big product

∏
(i1,··· ,in)

ik∈{1,··· ,mk}

(
a(1)i1 eα(1)+a(2)i2 eα(2)+ · · ·+a(n)in eα(n)

)
(9.18)

the product taken over all ordered lists (i1, · · · , in) . Since one of the factors in this product
equals 0, this product equals

0 = b1eβ (1)+b2eβ (2)+ · · ·+bNeβ (N) (9.19)

where the β ( j) are the distinct exponents which result and the bk result from combining
terms corresponding to a single β (k). The β (i) are clearly algebraic because they are the
sum of the α (i). I want to show that the bk are actually rational numbers. Since the
product in 9.18 is taken for all ordered lists as described above, it follows that for a given
k,if a(k)i is switched with a(k) j , that is, two of the roots of vkxmk + · · ·+uk are switched,
then the product is unchanged and so 9.19 is also unchanged. Thus each bl is a symmetric
polynomial in the a(k) j , j = 1, · · · ,mk for each k. Consider then a particular bk.It follows

bk = ∑
( j1,··· , jmn )

A j1,··· , jmn a(n) j1
1 · · ·a(n)

jmn
mn

and this is symmetric in the
{

a(n)1 , · · · ,a(n)mn

}
(note n is distinguished) the coefficients

A j1,··· , jmn being in the commutative ring Q [A(1) , · · · ,A(n−1)] where A(p) denotes

a(k)1 , · · · ,a(k)mp

and so from Theorem 9.1.4,

bk = ∑
( j1,··· , jmn )

B j1,··· , jmn p j1
1

(
a(n)1 · · ·a(n)mn

)
· · · p jmn

mn

(
a(n)1 · · ·a(n)mn

)
where the B j1,··· , jmn are symmetric in

{
a(k) j

}mk

j=1
for each k ≤ n− 1. and the pl

k are el-

ementary symmetric polynomials. Now doing to B j1,··· , jmn what was just done to bk and
continuing this way, it follows bk is a finite sum of rational numbers times powers of el-
ementary polynomials in the various

{
a(k) j

}mk

j=1
for k ≤ n. By Theorem 9.1.6 this is a

rational number. Thus bk is a rational number as desired. Multiplying by the product of all
the denominators, it follows there exist integers ci such that

0 = c1eβ (1)+ c2eβ (2)+ · · ·+ cNeβ (N)

which contradicts Lemma 9.2.7. ■
This theorem is sufficient to show e is transcendental. If it were algebraic, then

ee−1 +(−1)e0 ̸= 0

but this is not the case. If a ̸= 1 is algebraic, then ln(a) is transcendental. To see this, note
that

1eln(a)+(−1)ae0 = 0
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which cannot happen if ln(a) is algebraic according to the above theorem. If a is algebraic
and sin(a) ̸= 0, then sin(a) is transcendental because

1
2i

eia− 1
2i

e−ia +(−1)sin(a)e0 = 0

which cannot occur if sin(a) is algebraic. There are doubtless other examples of numbers
which are transcendental by this amazing theorem. For example, π is also transcendental.
This is because 1+eiπ = 0. This couldn’t happen if π were algebraic because then so would
be iπ .

9.3 The Fundamental Theorem of Algebra
This is devoted to a mostly algebraic proof of the fundamental theorem of algebra. It
depends on the interesting results about symmetric polynomials which are presented above.
I found it on the Wikipedia article about the fundamental theorem of algebra. You google
“fundamental theorem of algebra” and go to the Wikipedia article. It gives several other
proofs in addition to this one. According to this article, the first completely correct proof
of this major theorem is due to Argand in 1806. Gauss and others did it earlier but their
arguments had gaps in them.

You can’t completely escape analysis when you prove this theorem. The necessary
analysis due to Bolzano in about 1817 is in the following lemma.

Lemma 9.3.1 Suppose p(x) = xn +an−1xn−1 + · · ·+a1x+a0 where n is odd and the coef-
ficients are real. Then p(x) has a real root.

Proof: This follows from the intermediate value theorem from calculus.
Next is an algebraic consideration. First recall some notation.

m

∏
i=1

ai ≡ a1a2 · · ·am

Recall a polynomial in {z1, · · · ,zn} is symmetric only if it can be written as a sum of
elementary symmetric polynomials raised to various powers multiplied by constants.

The following is the main part of the theorem. In fact this is one version of the funda-
mental theorem of algebra which people studied earlier in the 1700’s.

Lemma 9.3.2 Let p(x) = xn +an−1xn−1 + · · ·+a1x+a0 be a polynomial with real coeffi-
cients. Then it has a complex root.

Proof: It is possible to write n = 2km. where m is odd. If n is odd, k = 0. If n is even,
keep dividing by 2 until you are left with an odd number. If k = 0 so that n is odd, it follows
from Lemma 9.3.1 that p(x) has a real, hence complex root. The proof will be by induction
on k, the case k = 0 being done. Suppose then that it works for n = 2lm where m is odd and
l ≤ k−1 and let n = 2km where m is odd. Let {z1, · · · ,zn} be the roots of the polynomial
p(x) in a splitting field, the existence of this field being given by the above proposition. I
need to show that at least one of these z j is complex. Then

p(x) =
n

∏
j=1

(x− z j) =
n

∑
k=0

(−1)k pk (z1, · · · ,zn)xk (9.20)
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where pk (z1, · · · ,zn) is the kth elementary symmetric polynomial. Note this shows

an−k = pk (z1, · · · ,zn)(−1)k , a real number. (9.21)

There is another polynomial which has coefficients which are sums of real numbers
times the pk raised to various powers and it is

qt (x)≡ ∏
1≤i< j≤n

(x− (zi + z j + tziz j)) , t ∈ R

I need to verify this is really the case for qt (x). When you switch any two of the zi in
qt (x) the polynomial does not change. Thus the coefficients of qt (x) must be symmetric
polynomials in the zi with real coefficients. Hence by Proposition 9.1.4 these coefficients
are real polynomials in terms of the elementary symmetric polynomials pk. Thus by 9.21
the coefficients of qt (x) are real polynomials in terms of the ak of the original polynomial.
Recall these were all real. It follows, and this is what was wanted, that qt (x) has all real
coefficients.

Note that the degree of qt (x) is

(
n
2

)
because there are this number of ways to pick

i < j out of {1, · · · ,n}. Now for some m,(
n
2

)
=

n(n−1)
2

= 2k−1m
(

2km−1
)
= 2k−1 (odd)

and so by induction, for each t ∈ R,qt (x) has a complex root.
There must exist s ̸= t such that for a single pair of indices i, j, with i < j,

(zi + z j + tziz j) ,(zi + z j + sziz j)

are both complex. Here is an explanation why. Let A(i, j) denote those t ∈ R such that
(zi + z j + tziz j) is complex. It was just shown that every t ∈ R must be in some A(i, j).
There are infinitely many t ∈ R and so some A(i, j) contains two of them.

Now for that t,s,

zi + z j + tziz j = a ∈ C
zi + z j + sziz j = b ∈ C

where t ̸= s and so by Cramer’s rule,

zi + z j =

∣∣∣∣∣ a t
b s

∣∣∣∣∣∣∣∣∣∣ 1 t
1 s

∣∣∣∣∣
∈ C

and also

ziz j =

∣∣∣∣∣ 1 a
1 b

∣∣∣∣∣∣∣∣∣∣ 1 t
1 s

∣∣∣∣∣
∈ C
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At this point, note that the roots of p(x) in the splitting field, zi,z j are both solutions to the
equation

x2− (z1 + z2)x+ z1z2 = 0,

which from the above has complex coefficients. By the quadratic formula the zi,z j are both
complex. Thus the original polynomial has a complex root. ■

With this lemma, it is easy to prove the fundamental theorem of algebra. The differ-
ence between the lemma and this theorem is that in the theorem, the coefficients are only
assumed to be complex. What this means is that if you have any polynomial with complex
coefficients it has a complex root and so it is not irreducible. Hence the field extension is
the same field. Another way to say this is that for every complex polynomial there exists a
factorization into linear factors or in other words a splitting field for a complex polynomial
is the field of complex numbers.

Theorem 9.3.3 Let p(x) ≡ anxn + an−1xn−1 + · · ·+ a1x+ a0 be any complex polynomial,
n ≥ 1,an ̸= 0. Then it has a complex root. Furthermore, there exist complex numbers
z1, · · · ,zn such that

p(x) = an

n

∏
k=1

(x− zk)

Proof: First suppose an = 1. Consider the polynomial q(x)≡ p(x) p(x̄)(
xn +an−1xn−1 + · · ·+a1x+a0

)
·(

xn +an−1xn−1 + · · ·+a1x+a0
)

This polynomial has real coefficients because the coefficient of xm is of the form

m

∑
k=0

am−kak

and the sum involves adding terms of the form

aka j +aka j = aka j +aka j = aka j +aka j

so it is of the form of a complex number added to its conjugate. Hence q(x) has real
coefficients as claimed. Therefore, by by Lemma 9.3.2 it has a complex root z. Hence
either p(z) = 0 or p(z) = 0. Thus p(x) has a complex root.

Next suppose an ̸= 1. Then simply divide by it and get a polynomial in which an = 1.
Denote this modified polynomial as q(x). Then by what was just shown and the Euclidean
algorithm, there exists z1 ∈ C such that

q(x) = (x− z1)q1 (x)

where q1 (x) has complex coefficients. Now do the same thing for q1 (x) to obtain

q(x) = (x− z1)(x− z2)q2 (x)

and continue this way. Thus
p(x)
an

=
n

∏
j=1

(x− z j) ■
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Why use this more elaborate proof? I think it is because you can give other examples
of algebraically complete fields. For example, begin with Q and let the algebraic numbers
be denoted by A. These are those numbers which are roots of a polynomial having rational
coefficients. Then consider A2 to be those complex numbers which are roots of a polyno-
mial having coefficients in A. In general, let An be roots of polynomials with coefficients
in An−1. In general, if An−1 is countable, then so is An. This is routine to show using the
fact that there are countably many polynomials of degree m for each m ∈ N. Each has at
most m roots. Thus A∞ ≡ ∪∞

n=1Anis countable because Q is. Now recall also that it was
shown that the algebraic numbers over a field are a field. Therefore, A∞is also a field be-
cause any finite number of elements of A∞ must be in a single one of the fields An for large
enough n. Now consider Lemma 9.3.1 applied to a polynomial having real coefficients in
A∞. These coefficients are in some An and so the root from C having these coefficients
is in An+1 ⊆ A∞. Now the rest of the argument goes similarly. You show using the same
considerations that every polynomial having real coefficients in A∞ has a root in A∞. Then
you do the easy extension to the case where the coefficients in A∞ are complex. This field
is clearly much smaller than C because it is countable, and yet it is algebraically complete.
The standard analysis proof given earlier will obviously not work because it is based on
compactness considerations.

9.4 More on Algebraic Field Extensions
This is on field extensions. There are many linear algebra techniques which are used in this
discussion and it seems to me to be very interesting. I am following various algebra books
in assembling this material. I hope it is useful and that I have not diminished it too much
by my attempts to write it down, because it is clear to me that, even though it has nothing to
do with my own interests, it is some of the most wonderful mathematics I have ever seen.

Consider the notion of splitting fields. It is desired to show that any two are isomor-
phic, meaning that there exists a one to one and onto mapping from one to the other which
preserves all the algebraic structure. To begin with, is a theorem about extending homo-
morphisms. [26]

Definition 9.4.1 Suppose F, F̄ are two fields and that f : F→ F̄ is a homomorphism. This
means that

f (xy) = f (x) f (y) , f (x+ y) = f (x)+ f (y)

An isomorphism is a homomorphism which is one to one and onto. A monomorphism is
a homomorphism which is one to one. An automorphism is an isomorphism of a single
field. Sometimes people use the symbol ≃ to indicate something is an isomorphism. Then
if p(x) ∈ F [x] , say

p(x) =
n

∑
k=0

akxk,

p̄(x) will be the polynomial in F̄ [x] defined as

p̄(x)≡
n

∑
k=0

f (ak)xk.

Also consider f as a homomorphism of F [x] and F̄ [x] in the obvious way.

f (p(x)) = p̄(x)
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If f defined on F [x] is as just described, then is indeed a homomorphism of F [x] and
F̄ [x] as claimed. This follows from an elementary computation.

The following is a nice theorem which will be useful.

Theorem 9.4.2 Let F be a field and let r be algebraic over F. Let p(x) be the minimum
polynomial of r. Thus p(r) = 0 and p(x) is monic and no nonzero polynomial having
coefficients in F of smaller degree has r as a root. In particular, p(x) is irreducible over F.
Then define f : F [x]→ F(r) , the polynomials in r by

f

(
m

∑
i=0

aixi

)
≡

m

∑
i=0

airi

Then f is a homomorphism. Also, defining g : F [x]/(p(x)) by

g([q(x)])≡ f (q(x))≡ q(r)

it follows that g is an isomorphism from the field F [x]/(p(x)) to F(r) .

Proof: First of all, consider why f is a homomorphism. The preservation of sums is
obvious. Consider products.

f

(
∑

i
aixi

∑
j

b jx j

)
= f

(
∑
i, j

aib jxi+ j

)
= ∑

i j
aib jri+ j

= ∑
i

airi
∑

j
b jr j = f

(
∑

i
aixi

)
f

(
∑

j
b jx j

)
Thus it is clear that f is a homomorphism.

First consider why g is even well defined. If [q(x)] = [q1 (x)] , this means that

q1 (x)−q(x) = p(x) l (x)

for some l (x) ∈ F [x]. Therefore,

f (q1 (x)) = f (q(x))+ f (p(x) l (x))

= f (q(x))+ f (p(x)) f (l (x))

≡ q(r)+ p(r) l (r) = q(r) = f (q(x))

Now from this, it is obvious that g is a homomorphism.

g([q(x)] [q1 (x)]) = g([q(x)q1 (x)]) = f (q(x)q1 (x)) = q(r)q1 (r)

g([q(x)])g([q1 (x)]) ≡ q(r)q1 (r)

Similarly, g preserves sums. Now why is g one to one? It suffices to show that if g([q(x)])=
0, then [q(x)] = 0. Suppose then that g([q(x)]) ≡ q(r) = 0 Then q(x) = p(x) l (x)+ρ (x)
where the degree of ρ (x) is less than the degree of p(x) or else ρ (x) = 0. If ρ (x) ̸= 0, then
it follows that ρ (r) = 0 and ρ (x) has smaller degree than that of p(x) which contradicts
the definition of p(x) as the minimum polynomial of r. Hence, [q(x)] = 0 and g is one to
one. Since p(x) is irreducible, F [x]/(p(x)) is a field. It is clear that g is onto. Therefore,
F(r) is a field also. (This was shown earlier by different reasoning.) ■

Here is a diagram of what the following theorem says.
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Extending f to g

F f→
≃

F̄

p(x) ∈ F [x] f→ p̄(x) ∈ F̄ [x]
p(x) = ∑

n
k=0 akxk → ∑

n
k=0 f (ak)xk = p̄(x)

p(r) = 0 p̄(r̄) = 0
F(r) g→

≃
F̄(r̄)

r
g→ r̄

One such g for each r̄

Definition 9.4.3 Let f : F→ F̄ be an isomorphism. For the sake of convenience, if q(x) is a
polynomial bmxm+bn−1xm−1+ · · ·+b1x+b0 in F [x] , then q̄(x) will denote the polynomial

f (bm)xm + f (bn−1)xm−1 + · · ·+ f (b1)x+ f (b0)≡ f (q(x))

Then f defined in this way on F [x] is a homomorphism.

Recall that if p(x) is a monic polynomial of degree at least 1, then F [x]/(p(x)) is a
commutative ring. This is from Lemma 3.4.8. I will assume p(x) has degree at least 1
because otherwise there isn’t anything new being shown in what follows. Here is a simple
lemma.

Lemma 9.4.4 Let F be a field and let G be a commutative ring. Then the multiplicative
identity and additive identities are unique in both and if there is an isomorphism h : F→G,
then G is also a field.

Proof: If 1, 1̄ are multiplicative identities in a commutative ring, then 1 = 11̄ = 1̄ so it is
unique. Also the additive identity is unique. This is because if you have 0,0′ both additive
identities, then 0 = 0+0′ = 0′. h(0)+h(x) = h(0+ x) = h(x) and so h(0) is the additive
identity in G since a typical thing in G is h(x). Also h(1)h(x) = h(1x) = h(x) so h(1) = 1
in G by what was just shown. Now suppose h(x) ̸= 0. Then x ̸= 0 because h(0) = 0 in G.
Hence h

(
x−1
)

h(x) = h
(
x−1x

)
= h(1), the multiplicative identity in G. Hence if something

in G is not 0, then it has a multiplicative inverse and so G is a field. ■
If K is a finite field extension of F, this means that [K : F]< ∞. Recall [K : F] is the di-

mension of the vector spaceK having field of scalars F. Then if a basis forK is {k1, ...,kn} ,
each of these ki is algebraic and soK= F(k1, · · · ,kn) . The next theorem considers the case
where you have a simple extension so the basis is of the form

{
1,r, ...,rn−1

}
.

Theorem 9.4.5 Let f : F→ F̄ be an isomorphism of the two fields. Let r be algebraic over
F with minimum polynomial p(x)≡ xn+an−1xn−1+ · · ·+a1x+a0 and suppose there exists
r̄ a root of p̄(x)≡ f (p(x)), p̄(r̄) = 0. Then

1. If h : F [x]/(p(x))→ F̄ [x]/(p̄(x)) is defined by

h([q(x)])≡ [q̄(x)]≡ [ f (q(x))] ,

then h is an isomorphism.
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2. p̄(x) is the minimum polynomial for r̄

3. There exists a unique isomorphism g : F(r)→ F(r̄) which agrees with f on F and
g(r) = g(r̄).

Proof: Define h : F [x]/(p(x))→ F̄ [x]/(p̄(x)) by h([q(x)]) ≡ [q̄(x)] ≡ [ f (q(x))] . I
claim this is an isomorphism.

First, why is h well defined? If [q(x)] = [q1 (x)] is [q̄(x)] = [q̄1 (x)]? This is equivalent
to verifying that if [q(x)] = 0, then [q̄(x)] = 0. Does this happen? If q(x) = p(x) l (x) , is
q̄(x) = p̄(x) l̄ (x)? This is true since f is a homomorphism. Thus this h is well defined.

Also, h is a homomorphism because

h([q(x)] [q1 (x)]) = h([q(x)q1 (x)])≡ [ f (q(x)q1 (x))] = [ f (q(x))] [ f (q1 (x))]

h is clearly onto because f is onto F̄.
Is h one to one? If h([q(x)])≡ [q̄(x)]≡ [ f (q(x))] = 0, does it follow that [q(x)] = 0?

To say that [q̄(x)] = 0 is to say that f (g(x)) = q̄(x) = l̄ (x) p̄(x) = f (l (x) p(x)) . Thus
f (l (x) p(x)) = f (q(x)) . However, since f is one to one on F, this requires l (x) p(x) =
q(x) and so [q(x)] = 0 showing that h is one to one. Hence h is an isomorphism.

Thus F̄ [x]/(p̄(x)) is a field by Lemma 9.4.4 because F [x]/(p(x)) is a field due to p(x)
being the minimum polynomial for r which forces p(x) to be irreducible. Indeed, if p(x) =
k (x) l (x) where each of these two have smaller degree than p(x) , then 0 = p(r) = k (r) l (r)
and since k (r) , l (r) are in the field F(r) , it follows that one of these is 0 which contradicts
p(x) being the minimum polynomial for r. It follows from Lemma 3.4.8 that p̄(x) must
also be irreducible. Hence p̄(x) is the minimum polynomial for r̄.

Then from Theorem 9.4.2, the following diagram holds

F(r) α−1
→ F [x]/(p(x)) h→ F̄ [x]/(p̄(x)) ᾱ→ F̄(r̄)

where ᾱ is the isomorphism described by ᾱ ([q̄(x)]) ≡ q̄(r̄) . Thus all mappings are iso-
morphisms and so you can let g = ᾱ ◦h◦α−1 and this shows the existence of an extension
of f as an isomorphism from F(r) to F̄(r̄) which satisfies

g(q(r))≡ ᾱ ◦h◦α
−1 (q(r))≡ ᾱ ◦h([q(x)])≡ ᾱ ([q̄(x)])≡ q̄(r̄) .

In particular, if q(r) = r, then since f (1) is the multiplicative identity in F̄,

g(r) = g(q(r))≡ ᾱ ◦h([q(x)])≡ ᾱ ◦h([x])≡ ᾱ ([ f (1)x]) = ᾱ ([x]) = r̄

If q(r) ∈ F, then q(r) = q0 ∈ F and so g(q(r)) = g(q0) =

ᾱ ◦h◦α
−1 (q0)≡ ᾱ ◦h([q0])≡ ᾱ ([q̄0])≡ q̄0 ≡ f (q0) .

so g agrees with f on F.
Now suppose g : F(r)→ F̄(r̄) is an isomorphism which agrees with f on F where

p̄(r̄) = 0 and g(r) = r̄. How many can there be? There is one by the above. I need to show
it must have the above form. To do this, note that

g◦α = ᾱ ◦h on F [x]/(p(x))



9.4. MORE ON ALGEBRAIC FIELD EXTENSIONS 215

This follows from the definition and the fact that g agrees with f on F. Indeed, if q(x) =
amxm + · · ·+ a1x1 + a0, then, since g is an isomorphism which agrees with f on F, and
g(r) = r̄,

g(q(r)) = f (am) r̄m + · · ·+ f (a1) r̄1 + f (a0)≡ q̄(r̄)

Therefore,

g◦α ([q(x)])≡ g(q(r)) = q̄(r̄) , ᾱ ◦h([q(x)]) = ᾱ ([ f (q(x))])≡ ᾱ ([q̄]) = q̄(r̄)

It follows that g = ᾱ ◦h◦α−1. Thus, there is only one such homomorphism and it is what
was just obtained. ■

The following corollary emphasizes the main content of the above theorem.

Corollary 9.4.6 Let f : F→ F̄ be an isomorphism and let p̄(x) ≡ f (p(x)) where p(x)
is the minimum polynomial for algebraic r. Then for each root r̄ of p̄(x) there is an
isomorphism from F(r) to F̄(r̄) which extends f and satisfies g(r) = r̄. Also, if g is a
monomophism extending f from F(r) to K̄ where K̄ is a field which contains all roots of
p̄(x) , then there is a root r̄ of p̄(x) such that g(r) = r̄.

Proof: It only remains to verify the last claim. Let g be a monomorphism. I need to
find a root r̄ of p̄(x). Let r̄ ≡ g(r) . Then if

p(x) = xm +am−1xm−1 + · · ·+a1x1 +a0,

it follows that

p̄(x) = xm + f (am−1)xm−1 + · · ·+ f (a1)x1 + f (a0)

= xm +g(am−1)xm−1 + · · ·+g(a1)x1 +g(a0)

and so,

p̄(g(r)) = g(r)m +g(am−1)g(r)m−1 + · · ·+g(a1)g(r)1 +g(a0)

= g(p(r)) = g(0) = 0 ■

Lemma 9.4.7 If p(x) is a monic irreducible polynomial, then it is the minimum polynomial
for each of its roots.

Proof: If r is a root of p(x) , then let q(x) be the minimum polynomial for r. Then

p(x) = q(x)k (x)+R(x)

where R(x) is 0 or else has smaller degree than q(x). However, R(r) = 0 and this contra-
dicts q(x) being the minimum polynomial of r. Hence q(x) divides p(x) or else k (x) = 1.
The latter possibility must be the case because p(x) is irreducible. ■

This lemma is about to be used in the proof of the following theorem. It involves the
splitting fieldsK= F [r1, ...,rm] ,K̄= F̄ [r̄1, ..., r̄m] of p(x) , p̄(x) where η is an isomorphism
of F and F̄ as described above. See [26]. Here is a little diagram which describes what this
theorem says. It is about isomorphisms of K and K̄ which extend a given isomorphism η :
F→ F̄.
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Definition 9.4.8 Recall that the symbol [K : F] whereK is a field extension of F means the
dimension of the vector space K with field of scalars F.

F η→
≃

F̄

p(x) η p(x) = p̄(x) p̄(x)

F(r1, · · · ,rn)
ζ i→
≃

F̄(r̄1, · · · , r̄n)

i = 1, · · · ,m,

{
m≤ [K : F]
m = [K : F] , r̄i ̸= r̄ j

In the next theorem, the polynomials p(x) , p̄(x) are not necessarily irreducible.

Theorem 9.4.9 Let η be an isomorphism from F to F̄ and let K,K̄ be splitting fields of
p(x) and p̄(x) . If the roots of p(x) are {r1, · · · ,rm} , recall that F(r1, · · · ,rm)≡K is a field
since each root of the polynomials is algebraic. Thus, this must be the splitting field of
p(x), the smallest field which contains each of the roots of p(x). The case is similar for K̄.
Then

1. There exist at most [K : F] isomorphisms ζ i :K→ K̄ which extend η .

2. If {r̄1, · · · , r̄n} are distinct, then there exist exactly [K : F] isomorphisms of the above
sort.

3. In either case, the two splitting fields K,K̄ are isomorphic with any of these ζ i serv-
ing as an isomorphism.

Proof: Suppose [K : F] = 1. Say a basis for K is {r} . Then {1,r} is dependent and so
there exist a,b ∈ F, not both zero such that a+br = 0. Then it follows that r ∈ F and so in
this case F=K. Then the isomorphism which extends η is just η itself and there is exactly
1 isomorphism.

Next suppose [K : F] > 1. Then p(x) has a factor q(x) irreducible over F which has
degree larger than 1. If not, you could factor p(x) as linear factors and so all the roots
would be in F so the dimension [K : F]would equal 1. Without loss of generality, let the
roots of q(x) in K be {r1, · · · ,rm}. Thus

q(x) =
m

∏
i=1

(x− ri) , p(x) =
n

∏
i=1

(x− ri)

Now q̄(x)≡ η (q(x)) defined analogously to p̄(x) , also has degree at least 2. Furthermore,
it divides p̄(x) all of whose roots are in K̄. This is obvious because η is an isomorphism.
You have

l (x)q(x) = p(x) so l̄ (x) q̄(x) = p̄(x) .

Denote the roots of q̄(x) in K̄ as {r̄1, · · · , r̄m} where they are counted according to multi-
plicity.

Recall why [F(r1) : F] = m. It is because q(x) is irreducible and monic so by Lemma
9.4.7, it is the minimum polynomial for each of the ri. Since q(x) is irreducible, it follows
that 1,r1,r2

1, ...,r
m−1
1 must be independent so the dimension is at least m. However, it is not

more than m because q(x) is of degree m. Thus, using the division algorithm, everything
in F(r1) is expressible as a polynomial in r1 of degree less than m.
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Then from Corollary 9.4.6, using q(x) and q̄(x) in place of the p(x) and p̄(x) in this
corollary, there exist k ≤ m one to one homomorphisms (monomorphisms) ζ i mapping
F(r1) to K̄≡ F̄(r̄1, · · · , r̄n), one for each distinct root of q̄(x) in K̄. These are {ξ 1, ...,ξ k}
where k≤m. If the roots of p̄(x) are distinct, then this is sufficient to imply that the roots of
q̄(x) are also distinct, and k = m = [F(r1) : F] . Otherwise, maybe k < m. (It is conceivable
that q̄(x) might have repeated roots in K̄.) Then by Proposition 3.4.13,

[K : F] = [K : F(r1)]

>1︷ ︸︸ ︷
[F(r1) : F]

and so [K : F(r1)]< [K : F] .
Therefore, by induction, two things happen:
1.) Each of these one to one homomorphisms mapping F(r1) to K̄ called ξ i for i ≤

k ≤ m = [F(r1) : F] extends to an isomorphism from K to K̄.
2.) For each of these ζ i, there are no more than [K : F(r1)] extensions of these isomor-

phisms, exactly [K : F(r1)] in case the roots of p̄(x) are distinct.
Therefore, if the roots of p̄(x) are distinct, this has shown that there are

[K : F(r1)]m = [K : F(r1)] [F(r1) : F] = [K : F]

isomorphisms ofK to K̄ which agree with η on F. If the roots of p̄(x) are not distinct, then
maybe there are fewer than [K : F] extensions of η .

Is this all of the isomorphisms? Suppose ζ is such an isomorphism of K and K̄. Then
consider its restriction to F(r1) . By Corollary 9.4.6, this restriction must coincide with
one of the ζ i chosen earlier. Then by induction, ζ is one of the extensions of the ζ i just
mentioned. Thus, in particular, K and K̄ are isomorphic. ■

9.4.1 The Galois Group
First, here is the definition of a Group.

Definition 9.4.10 A group G is a nonempty set with an operation, denoted here as · such
that the following axioms hold. (Often the operation is composition.)

1. For α,β ,γ ∈ G,(α ·β ) · γ = α · (β · γ) . We usually don’t bother to write the ·.

2. There exists ι ∈ G such that αι = ια = α

3. For every α ∈ G, there exists α−1 ∈ G such that αα−1 = α−1α = ι .

In Theorem 9.4.9, consider the case where F= F̄ and the isomorphism of F with itself
is just the identity.

Definition 9.4.11 WhenK is a finite extension of L, denote by G(K,L) the automorphisms
of K which leave L fixed. For a finite set S, denote by |S| as the number of elements of S.

Most of the following theorem was shown earlier in Theorem 9.4.9.

Theorem 9.4.12 Let K be the splitting field of p(x) over the field F. Thus K consists of
F [a1, ...,an] where {a1, ...,an} are the roots of p(x). Then

|G(K,F)| ≤ [K : F] (9.22)
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When the roots of p̄(x) = p(x) are distinct, equality holds in the above. If the roots are
listed according to multiplicity, the automorphisms are determined by the permutations of
the roots. When the roots are distinct, |G(K,F)| = n!. Also, G(K,F) is a group for the
operation being composition.

Proof: So how large is |G(K,F)| in case p(x) is a polynomial of degree n which has n
distinct roots? Let p(x) be a monic polynomial with roots in K, {r1, · · · ,rn} and suppose
that none of the ri is in F. Thus

p(x) = xn +a1xn−1 +a2xn−2 + · · ·+an =
n

∏
k=1

(x− rk) , ai ∈ F

ThusK= F [r1, · · · ,rn]. Let σ be a mapping from {r1, · · · ,rn} to {r1, · · · ,rn} , say r j→ ri j .
In other words σ produces a permutation of these roots. Consider the following way of
obtaining something in G(K,F) from σ . If you have a typical thing in K, you can obtain
another thing inK by replacing each r j with ri j in an element of F [r1, · · · ,rn], a polynomial
which has coefficients in F. Furthermore, if you do this, then the resulting map fromK toK
is an automorphism, preserving the operations of multiplication and addition. Does it keep
F fixed? Of course it does because you don’t change the coefficients of the polynomials
which are always in F. Thus every permutation of the roots determines an automorphism
of K.

Now suppose σ is an automorphism of K and the roots of p(x) are distinct. Does σ

determine a permutation of the roots? If ri is a root, what of σ (ri)? Is it also a root simply
due to σ being an automorphism? Note that σ (0) = 0 and so σ (0) = 0 = σ (p(ri)) =
p(σ (ri)), the last from the assumption that σ is an automorphism. Thus σ maps roots to
roots. Since it is one to one and the roots are distinct, it must be a permutation. It follows
that |G(K,F)| equals the number of permutations of {r1, · · · ,rn} which is n! and that there
is a one to one correspondence between the permutations of the roots and G(K,F) . It is
always the case that an automorphism takes roots to roots, but if the roots are repeated, then
there may be fewer than n! of these automorphisms.

Now consider the claim about G(K,F) being a group.
The associative law (α ·β ) · γ = α · (β · γ) is obvious. This is just the way composition

acts.
The identity ι is just the identity map, clearly an automorphism which fixes F.
Each automorphism is, by definition one to one and onto. Therefore, the inverse must

also be an automorphism. Indeed, if σ (x) ,σ (y) are two generic things in K, then

σ
−1 (σ (x)σ (y)) = σ

−1 (σ (xy)) = xy = σ
−1 (σ (x))σ

−1 (σ (y))

That σ−1 is an automorphism with respect to addition goes the same way. The estimate on
the size is from 9.22. Does the inverse fix F? Consider α,α2, · · · . Because of the estimate
on the size of G(K,F) , you must have αm = αn for some m < n. Hence multiply on the
left by

(
α−1

)m to get ι = αn−m. Thus α−1 = α(n−1)−m which is α raised to a nonnegative
power. The right leaves F fixed and so the left does also. ■

In the above, there is a field which is a finite extension of a smaller field and the group
of automorphisms which leave the given smaller field fixed was discussed. Next is a more
general notion in which there is given a group of automorphisms. This group will determine
a smaller field called a fixed field.
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Definition 9.4.13 Let G be a group of automorphisms of a field K. Then denote by KG the
fixed field of G. Thus

KG ≡ {x ∈K : σ (x) = x for all σ ∈ G}

Lemma 9.4.14 Let G be a group of automorphisms of a field K. Then KG is a field.

Proof: It suffices to show that KG is closed with respect to the operations of the field
K. Suppose then x,y ∈ KG. Is x+ y ∈ KG? Is xy ∈ KG? This is obviously so because the
things in G are automorphisms. Thus if θ ∈ G,θ (x+ y) = θx+ θy = x+ y. It is similar
with multiplication. ■

There is another fundamental estimate due to Artin and is certainly not obvious. I
also found this in [26]. There is more there about some of these things than what I am
including. Above it was shown that |G(K,F)| ≤ [K : F] . This fundamental estimate goes
the other direction when F is a fixed field.

Theorem 9.4.15 Let K be a field and let G be a finite group of automorphisms of K. Then

[K :KG]≤ |G| (9.23)

Proof: Let G = {σ1, · · · ,σn} ,σ1 = ι the identity map and suppose {u1, · · · ,um} is a
linearly independent set inK with respect to the fieldKG. These σ i are the automorphisms
of K. Suppose m > n. Then consider the system of equations

σ1 (u1)x1 +σ1 (u2)x2 + · · ·+σ1 (um)xm = 0
σ2 (u1)x1 +σ2 (u2)x2 + · · ·+σ2 (um)xm = 0

...
σn (u1)x1 +σn (u2)x2 + · · ·+σn (um)xm = 0

(9.24)

which is of the form Mx= 0 for x ∈ Km. Since M has more columns than rows, there
exists a nonzero solution x ∈Km to the above system. Let the solution x be one which has
the least possible number of nonzero entries. Without loss of generality, some xk = 1 for
some k.

If σ r (xk) = xk for all xk and for each r, then the xk are each in KG and so the first
equation would say

u1x1 +u2x2 + · · ·+umxm = 0

with not all xi = 0 and this contradicts the linear independence of the ui. Therefore, there
exists l ̸= k and σ r such that σ r (xl) ̸= xl . For purposes of illustration, say l > k. Now
do σ r to both sides of all the above equations. This yields, after re ordering the resulting
equations a list of equations of the form

σ1 (u1)σ r (x1)+ · · ·+σ1 (uk)1+ · · ·+σ1 (ul)σ r (xl)+ · · ·+σ1 (um)σ r (xm) = 0
σ2 (u1)σ r (x1)+ · · ·+σ2 (uk)1+ · · ·+σ2 (ul)σ r (xl)+ · · ·+σ2 (um)σ r (xm) = 0

...
σn (u1)σ r (x1)+ · · ·+σn (uk)1+ · · ·+σn (ul)σ r (xl)+ · · ·+σn (um)σ r (xm) = 0
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This is because σ (1) = 1 if σ is an automorphism. It is of the form Mσ r (x) = 0. The
original system in 9.24 is of the form

σ1 (u1)x1 + · · ·+σ1 (uk)1+ · · ·+σ1 (ul)xl + · · ·+σ1 (um)xm = 0
σ2 (u1)x1 + · · ·+σ2 (uk)1+ · · ·+σ2 (ul)xl + · · ·+σ2 (um)xm = 0

...
σn (u1)x1 + · · ·+σn (uk)1+ · · ·+σn (ul)xl + · · ·+σn (um)xm = 0

which will be denoted as Mx= 0. Thus M (σ r (x)−x) = 0 where y ≡ σ r (x)−x ̸= 0.
If any xk is 0, then σ r (xk) = 0. Thus all zero entries of x remain 0 in y and yk = 0 whereas
xk ̸= 0 so y has fewer nonzero entries than x contradicting the choice of x as the one with
fewest nonzero entries such that Mx= 0. ■

With the above estimate, here is another relation between the fixed fields and subgroups
of automorphisms.

Proposition 9.4.16 Let H be a finite group of automorphisms defined on a field K. Then
for KH the fixed field,

G(K,KH) = H

Proof: If σ ∈H, then by definition of KH , σ ∈G(K,KH) so H ⊆G(K,KH) . Then by
Theorem 9.4.15 and Theorem 9.4.12,

|H| ≥ [K :KH ]≥ |G(K,KH)| ≥ |H|

and so H = G(K,KH). ■
For H a group of automorphisms of G(K,F) , let Hx be all hx for h ∈ H. Thus Hx = x

means hx = x for all h ∈ H. KH = {x ∈K : Hx = x}.
Note how this proposition shows G(K,F) = G

(
K,KG(K,F)

)
. Thus

|G(K,F)|=
∣∣G(K,KG(K,F)

)∣∣= [K :KG(K,F)
]
.

Is KG(K,F) = F? If x ∈ F,G(K,F)x = x so by definition, x ∈KG(K,F) and so F⊆KG(K,F).
However, if x ∈KG(K,F) so G(K,F) fixes x, it is not at all clear that x ∈ F. Maybe G(K,F)
fixes more things than F. Later a situation is given in which KG(K,F) = F.

Summary 9.4.17 The following are now available.

1. LetK be the splitting field of p(x). Then |G(K,F)| ≤ [K : F] . If the roots of p(x) are
unique, then these are equal.

2. |G(K,F)| ≤ n! and when the roots of p(x) are distinct, |G(K,F)|= n!.

3. If H is a finite group of automorphisms on an arbitrary field K, then it follows that
G(K,KH) = H where KH is the fixed field of H.

4. F⊆KG(K,F) but it is not clear that these are equal.
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9.4.2 Normal Field Extensions
The following is the definition of a normal field extension.

Definition 9.4.18 Let K be a finite dimensional extension of a field F such that every el-
ement of K is algebraic over F, that is, each element of K is a root of some polynomial
in F [x]. Then K is called a normal extension if for every k ∈ K all roots of the minimum
polynomial of k are contained in K.

So what are some ways to tell that a field is a normal extension? It turns out that if K is
a splitting field of f (x) ∈ F [x] , then K is a normal extension. I found this in [26]. This is
an amazing result.

Proposition 9.4.19 The following are valid

1. Let K be a splitting field of f (x) ∈ F [x]. Then K is a normal extension.

2. If L is an intermediate field between F and K where K is a normal field extension of
F, then L is also a normal extension of F.

Proof: 1.) Let r ∈ K ≡ F(a1, ...,aq) where
{

a1, ...,aq
}

are the roots of f (x) and let
g(x) be the minimum polynomial of r with coefficients in F. Thus, g(x) is an irreducible
monic polynomial in F [x] having r as a root. It is required to show that every other root of
g(x) is in K. Let the roots of g(x) in a splitting field be {r1 = r,r2, · · · ,rm}. Now g(x) is
the minimum polynomial of r j over F because g(x) is irreducible by Lemma 9.4.7.

By Theorem 9.4.5, there exists an isomorphism η of F(r1) and F(r j) which fixes F
and maps r1 to r j. Thus η is an extension of the identity on F. Now K(r1) and K(r j) are
splitting fields of f (x) over F(r1) and F(r j) respectively. By Theorem 9.4.9, the two fields
K(r1) and K(r j) are isomorphic, the isomorphism, ζ extending η . Hence

[K(r1) :K] = [K(r j) :K]

But r1 ∈ K and so K(r1) = K. Therefore, [K(r j) :K] = 1 and so K = K(r j) and so r j is
also in K. Thus all the roots of g(x) are in K.

2.) Consider the last assertion. Suppose r = r1 ∈ L where the minimum polynomial
for r is denoted by q(x). Then since K is a normal extension, all the roots of q(x) are in K.
Let them be {r1, · · · ,rm}. By Theorem 9.4.5 applied to the identity map on L, there exists
an isomorphism θ : L(r1)→ L(r j) which fixes L and takes r1 to r j. But this implies that

1 = [L(r1) : L] = [L(r j) : L]

Hence r j ∈ L also. If r j /∈ L, then
{

1,r j
}

is independent and so the dimension would be at
least 2. Since r was an arbitrary element of L, this shows that L is normal. ■

9.4.3 Normal Subgroups and Quotient Groups
When you look at groups, one of the first things to consider is the notion of a normal
subgroup. The word “normal” is greatly over used in math. Its meaning in this context is
given next.
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Definition 9.4.20 Let G be a group. A subset N of a group G is called a subgroup if it
contains ι the identity and is closed with respect to the operation on G. That is, if α,β ∈N,
then αβ ∈ N. Then a subgroup N is said to be a normal subgroup if whenever α ∈ G,

α
−1Nα ⊆ N

The important thing about normal subgroups is that you can define the quotient group
G/N.

Definition 9.4.21 Let N be a subgroup of G. Define an equivalence relation ∼ as follows.

α ∼ β means α
−1

β ∈ N

Why is this an equivalence relation? It is clear that α ∼ α because α−1α = ι ∈ N since
N is a subgroup. If α ∼ β , then α−1β ∈ N and so, since N is a subgroup,(

α
−1

β
)−1

= β
−1

α ∈ N

which shows that β ∼ α . Now suppose α ∼ β and β ∼ γ. Then α−1β ∈ N and β
−1

γ ∈ N.
Then since N is a subgroup

α
−1

ββ
−1

γ = α
−1

γ ∈ N

and so α ∼ γ which shows that it is an equivalence relation as claimed. Denote by [α] the
equivalence class determined by α .

Now in the case of N a normal subgroup, you can consider the quotient group.

Definition 9.4.22 Let N be a normal subgroup of a group G and define G/N as the set of
all equivalence classes with respect to the above equivalence relation. Also define

[α] [β ]≡ [αβ ]

Proposition 9.4.23 The above definition is well defined and it also makes G/N into a
group.

Proof: First consider the claim that the definition is well defined. Suppose then that
α ∼ ᾱ and β ∼ β̄ . It is required to show that

[αβ ] =
[
ᾱβ̄
]

Is (αβ )−1
ᾱβ̄ ∈ N? Is β

−1
α−1ᾱβ̄ ∈ N?

(αβ )−1
ᾱβ̄ = β

−1
α
−1

ᾱβ̄ = β
−1

∈N︷ ︸︸ ︷
α
−1

ᾱβ̄

=

∈N︷ ︸︸ ︷
β
−1 (

α
−1

ᾱ
)

β

∈N︷ ︸︸ ︷
β
−1

β̄ = n1n2 ∈ N

Thus the operation is well defined. Clearly the identity is [ι ] where ι is the identity in G
and the inverse is

[
α−1

]
where α−1 is the inverse for α in G. The associative law is also

obvious. ■
Note that it was important to have the subgroup be normal in order to have the operation

defined on the quotient group consisting of the set of equivalence classes.
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9.4.4 Separable Polynomials
This is a good time to make a very important observation about irreducible polynomials.

Lemma 9.4.24 Suppose q(x) ̸= p(x) are both irreducible polynomials over a field F. Then
there is no root common to both p(x) and q(x).

Proof: If l (x) is a monic polynomial which divides them both, then l (x) must equal
1. Otherwise, it would equal p(x) and q(x) which would require these two to be equal.
Thus p(x) and q(x) are relatively prime and there exist polynomials a(x) ,b(x) having
coefficients in F such that

a(x) p(x)+b(x)q(x) = 1

Now if p(x) and q(x) share a root r, then (x− r) divides both sides of the above in K [x]
where K is a field which contains all roots of both polynomials. But this is impossible. ■

Now here is an important definition of a class of polynomials which yield equality in
the inequality of Theorem 9.4.12. We know that if p(x) of this theorem has distinct roots,
then equality holds. However, there is a more general kind of polynomial which also gives
equality.

Definition 9.4.25 Let p(x) be a polynomial having coefficients in a field F. Also let K be
a splitting field. Then p(x) is separable if it is of the form

p(x) =
m

∏
i=1

qi (x)
ki

where each qi (x) is irreducible over F and each qi (x) has distinct roots in K. From the
above lemma, no two qi (x) share a root. Thus

p1 (x)≡
m

∏
i=1

qi (x)

has distinct roots in K.

Example 9.4.26 For example, consider the case where F=Q and the polynomial is of the
form (

x2 +1
)2 (

x2−2
)2

= x8−2x6−3x4 +4x2 +4

Then let K be the splitting field over Q, Q
[
i,
√

2
]
.The polynomials x2 + 1 and x2− 2 are

irreducible over Q and each has distinct roots in K.

Then the following corollary is the reason why separable polynomials are so important.
Also, one can show that if F contains a field which is isomorphic to Q then every poly-
nomial with coefficients in F is separable. This will be done later after presenting the big
results. This is equivalent to saying that the field has characteristic zero. In addition, the
property of being separable holds in other situations.

Corollary 9.4.27 Let K be a splitting field of p(x) over the field F. Assume p(x) is
separable. Then

|G(K,F)|= [K : F]
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Proof: Just note thatK is also the splitting field of p1 (x), the product of the distinct irre-
ducible factors and that from Lemma 9.4.24, p1 (x) has distinct roots. Thus the conclusion
follows from Theorem 9.4.9 or 9.4.12. ■

What if L is an intermediate field between F and K? Then p1 (x) still has coefficients
in L and distinct roots in K and so it also follows that

|G(K,L)|= [K : L]

Now the following says that you can start with L, go to the group G(K,L) and then to
the fixed field of this group and end up back where you started. More precisely,

Proposition 9.4.28 IfK is a splitting field of p(x) over the field F for separable p(x) , and
if L is a field between K and F, then K is also a splitting field of p(x) over L and also

L=KG(K,L)

In every case, even if p(x) is not separable, L⊆KG(K,L).

Proof: First of all, I claim that L ⊆ KG(K,L) in any case. This is because of the defi-
nition. If l ∈ L, then it is in the fixed field of G(K,L) since by definition, G(K,L) fixes
everything in L.

Now suppose p(x) is separable. By the above Lemma 9.4.14 and Corollary 9.4.27,

|G(K,L)| = [K : L] =
[
K :KG(K,L)

][
KG(K,L) : L

]
=

∣∣G(K,KG(K,L)
)∣∣[KG(K,L) : L

]
= |G(K,L)|

[
KG(K,L) : L

]
which shows that

[
KG(K,L) : L

]
= 1 and so, it follows that L=KG(K,L).

It is obvious that K is a splitting field of p(x) over L because L⊇ F so the coefficients
of p(x) are in L. ■

This has shown that in the context ofK being a splitting field of a separable polynomial
over F and L being an intermediate field, L is a fixed field of a subgroup of G(K,F) ,
namely G(K,L).

F ⊆ L=KG(K,L) ⊆ K

In the above context, it is clear that G(K,L)⊆G(K,F) because if it fixes everything in
L then it fixes everything in the smaller field F. Then an obvious question is whether every
subgroup of G(K,F) is obtained in the form G(K,L) for some intermediate field L?

This leads to the following interesting correspondence in the case whereK is a splitting
field of a separable polynomial over a field F.

Fixed fields L β→ G(K,L)
KH

α← H
Subgroups of G(K,F)

Then αβL= L and βαH = H. Thus there exists a one to one correspondence between the
fixed fields and the subgroups of G(K,F). The following theorem summarizes the above
result.

Theorem 9.4.29 Let K be a splitting field of a separable polynomial p(x) over a field F.
Then there exists a one to one correspondence between the fixed fieldsKH for H a subgroup
of G(K,F) and the intermediate fields as described in the above. H1 ⊆ H2 if and only if
KH1 ⊇KH2 . Also |H|= [K :KH ].
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Proof: The one to one correspondence is established above in Proposition 9.4.16 be-
cause G(K,KH) = H whenever H is a subgroup of G(K,F). Thus each subgroup H deter-
mines an intermediate field KH . Going the other direction, if L is an intermediate field, it
comes from a sub-group because G

(
K,KG(K,L)

)
= G(K,L) so L=KG(K,L) as mentioned

earlier. The claim about the fixed fields is obvious because if the group is larger, then the
fixed field must get harder because it is more difficult to fix everything using more auto-
morphisms than with fewer automorphisms. Consider the estimate. From Theorem 9.4.15,
|H| ≥ [K :KH ]. But also, H = G(K,KH) from Proposition 9.4.16 G(K,KH) = H and
from Theorem 9.4.12, and what was just shown, |H|= |G(K,KH)| ≤ [K :KH ]≤ |H| .■

Note that from the above discussion, when K is a splitting field of p(x) ∈ F [x] , this
implies that if L is an intermediate field, then it is also a fixed field of a subgroup of
G(K,F). In fact, from the above, L=KG(K,L). If H is a subgroup, then it is also the
Galois group H = G(K,KH) . By Proposition 9.4.19, each of these intermediate fields L
is also a normal extension of F. Here is a summary of the principal items obtained up till
now.

Summary 9.4.30 When K is the splitting field of a separable polynomial with coefficients
in F, the following are obtained.

1. There is a one to one correspondence between the fixed fields KH and the subgroups
H of G(K,F). This is given by θ (H) ≡ KH . θ

−1 (L) = G(K,L). that is H =
G(K,KH) whenever H is a subgroup of G(K,F).

2. All the intermediate fields are normal field extensions of F and are fixed fields

L=KG(K,L)

3. For H a subgroup of G(K,F), |H|= [K :KH ] , H = G(K,KH) .

Are the Galois groups G(L,F) for L an intermediate field between F and K for K the
splitting field of a separable polynomial normal subgroups of G(K,F)? It might seem like
a normal expectation to have. One would hope this is the case.

9.4.5 Intermediate Fields and Normal Subgroups
When K is a splitting field of a separable polynomial having coefficients in F, the interme-
diate fields are each normal extensions from the above Proposition 9.4.19 which says that
splitting fields are normal extensions. If L is one of these intermediate fields, what about
G(L,F)? is this a normal subgroup of G(K,F)? More generally, consider the following
diagram which has now been established in the case thatK is a splitting field of a separable
polynomial in F [x].

F≡ L0 ⊆ L1 ⊆ L2 · · · ⊆ Lk−1 ⊆ Lk ≡K
G(F,F) = {ι} ⊆ G(L1,F) ⊆ G(L2,F) · · · ⊆ G(Lk−1,F) ⊆ G(K,F)

(9.25)

The intermediate fields Li are each normal extensions of F each element of Li being al-
gebraic. As implied in the diagram, there is a one to one correspondence between the
intermediate fields and the Galois groups displayed. Is G

(
L j−1,F

)
a normal subgroup of

G(L j,F)?
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Lemma 9.4.31 G(K,L j) is a normal subgroup of G(K,F). Here K is a splitting field for
some polynomial having coefficients in F or more generally a normal extension of F.

Proof: Let η ∈ G(K,F) and let σ ∈ G(K,L j) . Is η−1ση ∈ G(K,L j)? First I need
to verify it is a automorphism on K. After this, I need to show that it fixes L j. η−1ση

is obviously an automorphism on K because each in the product is. Does η−1ση fix L j?
Let r ∈ L j with minimum polynomial f (x) having roots ri and coefficients in F. Then 0 =
η f (r) = f (η (r)) and so η (r) is one of the roots of f (x) . It follows that η (r)∈L j because
K is a normal extension and L j is an intermediate field so is also a normal extension. See
Proposition 9.4.19. Therefore, σ fixes η (r) and so η−1ση (r) = η−1η (r) = r. ■

Because of this lemma, it makes sense to consider the quotient group

G(K,F)/G(K,L j)

This leads to the following fundamental theorem of Galois theory.

Theorem 9.4.32 Let K be a splitting field of a separable polynomial p(x) having coeffi-
cients in a field F. Let {Li}k

i=0 be the increasing sequence of intermediate fields between F
and K as shown above in 9.25. Then each of these is a normal extension of F (Proposition
9.4.19) and the Galois group G(K,L j) is a normal subgroup of G(K,F) and

G(L j,F)≃ G(K,F)/G(K,L j)

where the symbol ≃ indicates the two groups are isomorphic.

Proof: All that remains is to check that the above isomorphism is valid. Let

θ : G(K,F)/G(K,L j)→ G(L j,F) , θ [σ ]≡ σ |L j

In other words, this is just the restriction of σ to L j. Thus the quotient group is well defined
by Proposition 9.4.23. Is θ well defined? First of all, does it have values in G(L j,F)? In
other words, if σ ∈ G(K,F) , does its restriction to L j send L j to L j? If r ∈ L j it has a
minimum polynomial q(x) with coefficients in F. σ (r) is one of the other roots of q(x)
(Theorem 9.4.12) so, since K is a normal extension, being a splitting field of a separable
polynomial, σ (r) ∈K. But these subfields are all normal extensions so σ (r) ∈ L j.

Thus θ has values in G(L j,F) . Is θ well defined? If [σ1] = [σ2] , then by definition,
σ
−1
1 σ2 ∈ G(K,L j) so σ

−1
1 σ2 fixes everything in L1. Thus if r ∈ L1,σ

−1
1 σ2r = r and so

σ2r = σ1r. It follows that the restrictions of σ1 and σ2 to L j are equal. Therefore, θ is
well defined. It is obvious that θ is a homomorphism. Why is θ onto? This follows right
away from Theorem 9.4.9. Note that K is the splitting field of p(x) over L j since L j ⊇ F.
Also if σ ∈ G(L j,F) so it is an automorphism of L j, then, since it fixes F, p(x) = p̄(x) in
that theorem. Thus σ extends to ζ , an automorphism of K. Thus θζ = σ . Why is θ one to
one? If θ [σ ] = θ [α] , this means σ = α on L j. Thus σα−1 is the identity on L j. Hence
σα−1 ∈ G(K,L j) which is what it means for [σ ] = [α]. ■
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The following picture is a summary of what has just been shown.

Lk ≡K=KG(K,F) G(K,F) ≃ G(K,F)/G(K,K)
...

...
...

L j =KG(L j ,F) G(L j,F) ≃ G(K,F)/G(K,L j)

...
...

...
L1 =KG(L1,F) G(L1,F) ≃ G(K,F)/G(K,L1)

F≡ L0 G(L0,F) = {ι} ≃ G(K,F)/G(K,F)

9.4.6 Permutations
As explained above, the automorphisms of a splitting fieldK of p(x)∈ F [x] are determined
by the permutations of the roots of p(x) . Thus it makes sense to consider permutations.

Let {a1, · · · ,an} be a set of distinct elements. Then a permutation of these elements is
usually thought of as a list in a particular order. Thus there are exactly n! permutations of
a set having n distinct elements. With this definition, here is a simple lemma.

Lemma 9.4.33 Every permutation can be obtained from every other permutation by a fi-
nite number of switches.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1 ele-
ments. Take two permutations of {a1, · · · ,an} ,P1,P2. To get from P1 to P2 using switches,
first make a switch to obtain the last element in the list coinciding with the last element of
P2. By induction, there are switches which will arrange the first n−1 to the right order. ■

It is customary to consider permutations in terms of the set In ≡ {1, · · · ,n} to be more
specific. Then one can think of a given permutation as a mapping σ from this set In to itself
which is one to one and onto. In fact, σ (i)≡ j where j is in the ith position. Often people
write such a σ in the following form(

1 2 · · · n
i1 i2 · · · in

)
(9.26)

meaning 1→ i1,2→ i2, ... where {i1, i2, ..., in} = {1,2, ...,n}. An easy way to understand
the above permutation is through the use of matrix multiplication by permutation matrices.
The above vector (i1, · · · , in)T is obtained by

(
ei1 ei2 · · · ein

)


1
2
...
n

 (9.27)

This can be seen right away from looking at a simple example or by using the definition of
matrix multiplication directly.

Definition 9.4.34 The sign of the permutation 9.26 is defined as the determinant of the
above matrix in 9.27.
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In other words, the sign of the permutation(
1 2 · · · n
i1 i2 · · · in

)

equals sgn(i1, · · · , in) defined earlier in Lemma 8.1.1.
Note that from the fact that the determinant is well defined and its properties, the sign of

a permutation is 1 if and only if the permutation is produced by an even number of switches
and that the number of switches used to produce a given permutation must be either even
or odd. Of course a switch is a permutation itself and this is called a transposition. Note
also that all these matrices are orthogonal matrices so to take the inverse, it suffices to take
a transpose, the inverse also being a permutation matrix.

The resulting group consisting of the permutations of In is called Sn. An important idea
is the notion of a cycle. Let σ be a permutation, a one to one and onto function defined on
In. A cycle is of the form(

k,σ (k) ,σ2 (k) ,σ3 (k) , · · · ,σm−1 (k)
)
, σ

m (k) = k.

The last condition must hold for some m because In is finite. Then a cycle can be considered
as a permutation as follows. Let (i1, i2, · · · , im) be a cycle. Then define σ by σ (i1) =
i2,σ (i2) = i3, · · · ,σ (im) = i1, and if k /∈ {i1, i2, · · · , im} , then σ (k) = k.

Note that if you have two cycles, (i1, i2, · · · , im) ,( j1, j2, · · · , jm) which are disjoint in
the sense that

{i1, i2, · · · , im}∩{ j1, j2, · · · , jm}= /0,

then they commute. It is then clear that every permutation can be represented in a unique
way by disjoint cycles. Start with 1 and form the cycle determined by 1. Then start with the
smallest k ∈ In which was not included and begin a cycle starting with this. Continue this
way. Use the convention that (k) is just the identity sending k to k and all other indices to
themselves. This representation is unique up to order of the cycles which does not matter
because they commute. Note that a transposition can be written as (a,b), a→ b and b→ a.

A cycle can be written as a product of non disjoint transpositions.

(i1, i2, · · · , im) = (im−1, im) · · ·(i3, im)(i2, im)(i1, im)

Thus if m is odd, the permutation has sign 1 and if m is even, the permutation has sign −1.
Also, it is clear the inverse of the above permutation is (i1, i2, · · · , im)−1 = (im, · · · , i2, i1) .
For example, (1,2,3) = (2,3)(1,3).

Definition 9.4.35 An is the subgroup of Sn such that for σ ∈ An, σ is the product of an
even number of transpositions. It is called the alternating group.

Since each transposition switches a pair of columns in the above permutation matrix,
the sign of the determinant which is the sign of the permutation is always 1 for permutations
in An. This is another way to describe An, those permutations with sign 1. If n = 1, there
is only one permutation and it is the identity so A1 = identity. If n = 2, you would have
two permutations, the identity and the transposition (1,2). Thus A2 = identity. It might be
useful to think of the identity map as having zero transpositions.

The following important result is useful in describing An.
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Proposition 9.4.36 Let n≥ 3. Then every permutation in An is the product of 3 cycles and
the identity.

Proof: In case n = 3, you can list all of the permutations in An.(
1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
In terms of cycles, these are

identity, (1,2,3) ,(1,3,2)

You can easily check that the the last two are inverses of each other.
Now suppose n ≥ 4. The permutations in An are defined as the product of an even

number of transpositions. There are two cases. The first case is where you have two
transpositions which share a number,

(a,c)(c,b) = (a,c,b)

Thus when they share a number, the product is just a 3 cycle. Next suppose you have the
product of two transpositions which are disjoint. This can happen because n≥ 4. First note
that

(a,b) = (c,b)(b,a,c) = (c,b,a)(c,a)

Therefore,

(a,b)(c,d) = (c,b,a)(c,a)(a,d)(d,c,a)

= (c,b,a)(c,a,d)(d,c,a)

and so every product of disjoint transpositions is the product of 3 cycles. ■

Lemma 9.4.37 If n ≥ 5, then if B is a normal subgroup of An, and B is not the identity,
then B must contain a 3 cycle.

Proof: Let α be the permutation in B which is “closest” to the identity without being
the identity. That is, out of all permutations which are not the identity, this is one which
has the most fixed points or equivalently moves the fewest numbers. Then α is the product
of disjoint cycles. Suppose that the longest cycle is the first one and it has at least four
numbers. Thus

α = (i1, i2, i3, i4, · · · ,m)γ1 · · ·γ p

Since B is normal,

α1 ≡ (i3, i2, i1)(i1, i2, i3, i4, · · · ,m)(i1, i2, i3)γ1 · · ·γ p ∈ Am

Then since the various cycles are disjoint, α1α−1 =

(i3, i2, i1)(i1, i2, i3, i4, · · · ,m)(i1, i2, i3)γ1

· · ·γ p (m, · · · , i4, i3, i2, i1)γ
−1
p · · ·γ−1

1

= (i3, i2, i1)(i1, i2, i3, i4, · · · ,m)(i1, i2, i3)(m, · · · , i4, i3, i2, i1)γ1

· · ·γ pγ
−1
p · · ·γ−1

1

= (i3, i2, i1)(i1, i2, i3, i4, · · · ,m)(i1, i2, i3)(m, · · · , i4, i3, i2, i1)



230 CHAPTER 9. SOME ITEMS WHICH RESEMBLE LINEAR ALGEBRA

Then for this permutation, i1 → i3, i2 → i2, i3 → i4, i4 → i1. The other numbers not in
{i1, i2, i3, i4} are fixed, and in addition i2 is fixed which did not happen with α . Therefore,
this new permutation moves only 3 numbers. Since it is assumed that m ≥ 4, this is a
contradiction to α fixing the most points. It follows that

α = (i1, i2, i3)γ1 · · ·γ p (9.28)

or else
α = (i1, i2)γ1 · · ·γ p (9.29)

In the first case 9.28, say γ1 = (i4, i5, · · ·) . Multiply as follows α1 =

(i4, i2, i1)(i1, i2, i3)(i4, i5, · · ·)γ2 · · ·γ p (i1, i2, i4) ∈ B

Then form α1α−1 ∈ B given by

(i4, i2, i1)(i1, i2, i3)(i4, i5, · · ·)γ2 · · ·γ p (i1, i2, i4)γ
−1
p · · ·γ−1

1 (i3, i2, i1)

= (i4, i2, i1)(i1, i2, i3)(i4, i5, · · ·)(i1, i2, i4)(· · · , i5, i4)(i3, i2, i1)

Then i1 → i4, i2 → i3, i3 → i5, i4 → i2, i5 → i1 and other numbers are fixed. Thus α1α−1

moves 5 points. However, α moves more than 5 if γ i is not the identity for any i ≥ 2. It
follows that

α = (i1, i2, i3)γ1

and γ1 can only be a transposition. However, this cannot happen because then the above α

would not even be in An. Therefore, γ1 = ι and so

α = (i1, i2, i3)

Thus in this case, B contains a 3 cycle.
Now consider case 9.29. None of the γ i can be a cycle of length more than 4 since

the above argument would eliminate this possibility. If any has length 3 then the above
argument implies that α equals this 3 cycle. It follows that each γ i must be a 2 cycle. Say

α = (i1, i2)(i3, i4)γ2 · · ·γ p

Thus it moves at least four numbers, greater than four if any of γ i for i≥ 2 is not the identity.
As before, α1 ≡

(i4, i2, i1)(i1, i2)(i3, i4)γ2 · · ·γ p (i1, i2, i4)

= (i4, i2, i1)(i1, i2)(i3, i4)(i1, i2, i4)γ2 · · ·γ p ∈ B

Then α1α−1 =

(i4, i2, i1)(i1, i2)(i3, i4)(i1, i2, i4)γ2 · · ·γ pγ
−1
p · · ·γ−1

2 γ
−1
1 (i3, i4)(i1, i2)

= (i4, i2, i1)(i1, i2)(i3, i4)(i1, i2, i4)(i3, i4)(i1, i2) ∈ B

Then i1→ i3, i2→ i4, i3→ i1, i4→ i3 so this moves exactly four numbers. Therefore, none
of the γ i is different than the identity for i≥ 2. It follows that

α = (i1, i2)(i3, i4) (9.30)
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and α moves exactly four numbers. Then since B is normal, α1 ≡

(i5, i4, i3)(i1, i2)(i3, i4)(i3, i4, i5) ∈ B

Then α1α−1 =
(i5, i4, i3)(i1, i2)(i3, i4)(i3, i4, i5)(i3, i4)(i1, i2) ∈ B

Then i1 → i1, i2 → i2, i3 → i4, i4 → i5, i5 → i3. Thus this permutation moves only three
numbers and so α cannot be of the form given in 9.30. It follows that case 9.29 does not
occur. ■

Definition 9.4.38 A group G is said to be simple if its only normal subgroups are itself and
the identity.

The following major result is due to Galois [26].

Proposition 9.4.39 Let n≥ 5. Then An is simple.

Proof: From Lemma 9.4.37, if B is a normal subgroup of An, B ̸= {ι} , then it contains
a 3 cycle α = (i1, i2, i3), (

i1 i2 i3
i2 i3 i1

)
Now let ( j1, j2, j3) be another 3 cycle.(

j1 j2 j3
j2 j3 j1

)
Let σ be a permutation which satisfies

σ (ik) = jk

Then

σασ
−1 ( j1) = σα (i1) = σ (i2) = j2

σασ
−1 ( j2) = σα (i2) = σ (i3) = j3

σασ
−1 ( j3) = σα (i3) = σ (i1) = j1

while σασ−1 leaves all other numbers fixed. Thus σασ−1 is the given 3 cycle. It follows
that B contains every 3 cycle not just a particular one. By Proposition 9.4.36, this implies
B = An. The only problem is that it is not known whether σ is in An a product of an even
number of transpositions. This is where n ≥ 5 is used. If necessary, you can modify σ on
two numbers not equal to any of the {i1, i2, i3} by multiplying by a transposition so that the
possibly modified σ is expressed as an even number of transpositions. ■

9.4.7 Solvable Groups
Recall the fundamental theorem of Galois theory which established a correspondence be-
tween the normal subgroups of G(K,F) and normal field extensions whenever K is the
splitting field of a separable polynomial p(x). Also recall that if H is one of these nor-
mal subgroups, then there was an isomorphism between G(KH ,F) and the quotient group
G(K,F)/H. The general idea of a solvable group is given next.
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Definition 9.4.40 A group G is solvable if there exists a decreasing sequence of subgroups
{Hi}m

i=0 such that Hi is a normal subgroup of H(i−1),

G = H0 ⊇ H1 ⊇ ·· · ⊇ Hm = {ι} ,

and each quotient group Hi−1/Hi is Abelian. That is, for [a] , [b] ∈ Hi−1/Hi,

[ab] = [a] [b] = [b] [a] = [ba]

Note that if G is an Abelian group, then it is automatically solvable. In fact you can just
consider H0 = G,H1 = {ι}. In this case H0/H1 is just the group G which is Abelian. Also,
the definition requires Hm−1 to be Abelian.

There is another idea which helps in understanding whether a group is solvable. It
involves the commutator subgroup. This is a very good idea.

Definition 9.4.41 Let a,b ∈ G a group. Then the commutator is

aba−1b−1

The commutator subgroup, denoted by G′, is the smallest subgroup which contains all the
commutators.

The nice thing about the commutator subgroup is that it is a normal subgroup. There
are also many other amazing properties.

Theorem 9.4.42 Let G be a group and let G′ be the commutator subgroup. Then G′ is a
normal subgroup. Also the quotient group G/G′ is Abelian. If H is any normal subgroup
of G such that G/H is Abelian, then H ⊇ G′. If G′ = {ι} , then G must be Abelian.

Proof: The elements of G′ are just finite products of things like aba−1b−1. Note that
the inverse of something like this is also one of these.(

aba−1b−1)−1
= bab−1a−1.

Thus the collection of finite products is indeed a subgroup. Now consider h ∈ G. Then

haba−1b−1h−1 = hah−1hbh−1ha−1h−1hb−1h−1

= hah−1hbh−1 (hah−1)−1 (
hbh−1)−1

which is another one of those commutators. Thus for c a commutator and h ∈ G,

hch−1 = c1

another commutator. If you have a product of commutators c1c2 · · ·cm, then

hc1c2 · · ·cmh−1 =
m

∏
i=1

hcih−1 =
m

∏
i=1

di ∈ G′

where the di are each commutators. Hence G′ is a normal subgroup.
Consider now the quotient group. Is [g] [h] = [h] [g]? In other words, is [gh] = [hg]?

In other words, is gh(hg)−1 = ghg−1h−1 ∈ G′? Of course. This is a commutator and Ǵ′

consists of products of these things. Thus the quotient group is Abelian.
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Now let H be a normal subgroup of G such that G/H is Abelian. Then if g,h ∈ G,

[gh] = [hg] , gh(hg)−1 = ghg−1h−1 ∈ H

Thus every commutator is in H and so H ⊇ G.
The last assertion is obvious because G/{ι} is isomorphic to G. Also, to say that

G′ = {ι} is to say that
aba−1b−1 = ι

which implies that ab = ba. ■
Let G be a group and let G′ be its commutator subgroup. Then the commutator sub-

group of G′ is G′′ and so forth. To save on notation, denote by G(k) the kth commutator
subgroup. Thus you have the sequence

G≡ G(0) ⊇ G(1) ⊇ G(2) ⊇ G(3) · · ·

each G(i) being a normal subgroup of G(i−1) although this does not say that G(i) is a normal
subgroup of G. Then there is a useful criterion for a group to be solvable.

Theorem 9.4.43 If G is a solvable group and Ĝ is a subgroup of G then Ĝ is also solvable.

Proof: Suppose G = H0 ⊇H1 ⊇ ·· · ⊇Hm = {ι} where the quotient groups are Abelian
and the Hi are normal. Consider Hk∩ Ĝ. Would this be a normal subgroup of Ĝ? Let a ∈ Ĝ
and x ∈Hk∩ Ĝ. Is axa−1 ∈Hk∩ Ĝ? We know this product is in Ĝ because Ĝ is a subgroup.
We know it is in Hk because Hk is normal. Thus the Hk∩Ĝ are normal. What of the quotient
groups

(
Hk ∩ Ĝ

)
/
(
Hk+1∩ Ĝ

)
? Are these Abelian? If [x] , [y] are in

(
Hk ∩ Ĝ

)
/
(
Hk+1∩ Ĝ

)
is [xy] = [yx]? Is (xy)−1 yx∈Hk+1∩Ĝ? This equals y−1x−1yx. However, xy,yx are both in Hk

and the quotient groups Hk/Hk+1 are Abelian, so (xy)−1 yx ∈Hk+1. But also (xy)−1 yx ∈ Ĝ
because Ĝ is a subgroup. Hence [x] [y] = [xy] = [yx] = [y] [x] and so the quotient groups are
Abelian. Hence Ĝ = H0∩ Ĝ⊇ Ĝ∩H1 ⊇ ·· · ⊇ Ĝ∩Hm = {ι} and so Ĝ is solvable. ■

Theorem 9.4.44 Let G be a group. It is solvable if and only if G′ is solvable so G(k) = {ι}
for some k.

Proof: If G(k) = {ι} then G is clearly solvable because G(k−1)/G(k) is Abelian by
Theorem 9.4.42. The sequence of commutator subgroups provides the necessary sequence
of subgroups.

Next suppose that you have

G = H0 ⊇ H1 ⊇ ·· · ⊇ Hm = {ι}

where each is normal in the preceding and the quotient groups are Abelian. Then from
Theorem 9.4.42, G(1) ⊆H1. Thus H ′1 ⊇ G(2). But also, from Theorem 9.4.42, since H1/H2
is Abelian,

H2 ⊇ H ′1 ⊇ G(2).

Continuing this way G(k) = {ι} for some k ≤ m.
Alternatively, you could let Ĝ = G′. This is solvable by Theorem 9.4.43 since it is a

subgroup of G. ■

Theorem 9.4.45 If G is a solvable group and if H is a homomorphic image of G, then H
is also solvable.
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Proof: By the above theorem, it suffices to show that H(k) = {ι} for some k. Let
f be the homomorphism. Then H ′ = f (G′). To see this, consider a commutator of
H, f (a) f (b) f (a)−1 f (b)−1 = f

(
aba−1b−1

)
. It follows that H(1) = f

(
G(1)

)
. Now con-

tinue this way, letting G(1) play the role of G and H(1) the role of H. Thus, since G is
solvable, some G(k) = {ι} and so H(k) = {ι} also. ■

Now as an important example, of a group which is not solvable, here is a theorem.

Theorem 9.4.46 For n≥ 5,Sn is not solvable.

Proof: It is clear that An is a normal subgroup of Sn because if σ is a permutation,
then it has the same sign as σ−1. Thus σασ−1 ∈ An if α ∈ An because both α and σασ−1

are a product of an even number of transpositions. If H is a normal subgroup of Sn, for
which Sn/H is Abelian, then H contains the commutator S′n. However, ασα−1σ−1 ∈ An
obviously so An ⊇ S′n. By Proposition 9.4.39 (An is simple), this forces S′n = An. So what is
S′′n? If it is Sn, then S(k)n ̸= {ι} for any k and it follows that Sn is not solvable. If S′′n = {ι} ,
the only other possibility, then An/{ι} is Abelian and so An is Abelian, but this is obviously
false because the cycles (1,2,3) ,(2,1,4) are both in An. However, (1,2,3)(2,1,4) is(

1 2 3 4
4 2 1 3

)

while (2,1,4)(1,2,3) is (
1 2 3 4
1 3 4 2

)
Alternatively, by Theorem 9.4.43, if Sn is solvable, then so is An. However, An is simple

so there is no normal subgroup other than An and ι . Now An/{ι}= An is not commutative
for n≥ 4. ■

Note that the above shows that An is not Abelian for n = 4 also.

9.4.8 Solvability by Radicals
The idea here is to begin with a big field F and show that there is no way to solve the
polynomial in terms of radicals of things in the big field. It will then follow that there is
no way to get a solution in terms of radicals of things in a smaller field like the rational
numbers. The most interesting conclusion is what will be presented here, that you can’t do
it. This amazing conclusion is due to Abel and Galois and dates from the 1820’s. It put a
stop to the search for formulas which would solve polynomial equations.

First of all, in the case where all fields are contained in C, there exists a field which has
all the nth roots of 1. You could simply define it to be the smallest sub field of C such that
it contains these roots. You could also enlarge it by including some other numbers. For
example, you could include Q. Observe that if ξ ≡ ei2π/n, then ξ

n = 1 but ξ
k ̸= 1 if k < n

and that if k < l < n, ξ
k ̸= ξ

l . The following is from Herstein [20]. This is the kind of field
considered here.

Lemma 9.4.47 Suppose a field F has all the nth roots of 1 for a particular n and suppose
there exists ξ such that the nth roots of 1 are of the form ξ

k for k = 1, · · · ,n, the ξ
k being

distinct, as is the case when all fields are in C. Let a ∈ F be nonzero. Let K denote the
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splitting field of xn−a over F, thus K is a normal extension of F. Then K= F(u) where u
is any root of xn−a. The Galois group G(K,F) is Abelian.

Proof: Let u be a root of xn− a and let K equal F(u) . Then let ξ be the nth root of
unity mentioned. Then (

ξ
ku
)n

= (ξ n)
k un = a

and so each ξ
ku is a root of xn−a and these are distinct. It follows that{

u,ξ u, · · · ,ξ n−1u
}

are the roots of xn−a and all are in F(u) . Thus F(u) = K. Let σ ∈ G(K,F) and observe
that since σ fixes F,

0 = σ

((
ξ

ku
)n
−a
)
=
(

σ

(
ξ

ku
))n
−a

It follows that σ maps roots of xn−a to roots of xn−a. Therefore, if σ ,α are two elements
of G(K,F) , there exist i, j each no larger than n−1 such that

σ (u) = ξ
iu, α (u) = ξ

ju

A typical thing in F(u) is p(u) where p(x) ∈ F [x]. Then

σα (p(u)) = p
(

ξ
j
ξ

iu
)
= p

(
ξ

i+ ju
)

ασ (p(u)) = p
(

ξ
i
ξ

ju
)
= p

(
ξ

i+ ju
)

Therefore, G(K,F) is Abelian. ■
Thus this one is clearly solvable as noted above. To say a polynomial is solvable by

radicals is expressed precisely in the following definition.

Definition 9.4.48 For F a field, a polynomial p(x) ∈ F [x] is solvable by radicals over
F≡ F0 if there are algebraic numbers ai, i = 1,2, ...,k, and a sequence of fields F1 =

F(a1) ,F2 =F1 (a2) , · · · ,Fk =Fk−1 (ak) such that for each i≥ 1,aki
i ∈Fi−1 and Fk contains

a splitting field K for p(x) over F.

Actually, the only case of interest here is included in the following lemma.

Lemma 9.4.49 In Definition 9.4.48 when the roots of unity are of the form ξ
k as described

in Lemma 9.4.47, Fk is a splitting field provided you assume F contains all the nth roots of
1 for all n≤max{ki}k

i=1.

Proof: by Lemma 9.4.47,

Fk = F(a1,a2, · · · ,ak) = F
({

a j
1

}k1−1

j=1
, ...,

{
a j

1

}kk−1

j=1

)
and so Fk is the splitting field of ∏

k
i=1

(
xki −aki

i

)
. Each ai is a single root of xki−aki

i where

aki
i ∈ F. ■
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At this point, it is a good idea to recall the big fundamental theorem mentioned above
which gives the correspondence between normal subgroups and normal field extensions
since it is about to be used again.

F≡ F0 ⊆ F1 ⊆ F2 · · · ⊆ Fk−1 ⊆ Fk ≡K
G(F,F) = {ι} ⊆ G(F1,F) ⊆ G(F2,F) · · · ⊆ G(Fk−1,F) ⊆ G(Fk,F)

Theorem 9.4.50 Let K be a splitting field for a separable polynomial p(x) ∈ F [x]. Let
{Fi}k

i=0 be the increasing sequence of intermediate fields between F and K. Then each of
these is a normal extension of F and the Galois group G

(
F j−1,F

)
is a normal subgroup of

G(F j,F). In addition to this,

G(F j,F)≃ G(K,F)/G(K,F j)

where the symbol ≃ indicates the two spaces are isomorphic.

Theorem 9.4.51 Let f (x) be a separable polynomial in F [x] where F contains all nth roots
of unity for each n∈N or for all n≤m and the roots of unity are of the form ξ

k as described
in Lemma 9.4.47. Let K be a splitting field of f (x) . If f (x) is solvable by radicals over F,
or solvable by radicals over F with the ki ≤ m in Definition 9.4.48, then the Galois group
G(K,F) is a solvable group.

Proof: Using the definition given above for f (x) to be solvable by radicals, there is a
sequence of fields

F0 = F⊆ F1 ⊆ ·· · ⊆ Fk, K⊆ Fk,

where Fi = Fi−1 (ai), aki
i ∈ Fi−1, and each field extension is a normal extension of the pre-

ceding one. By Lemma 9.4.49, Fk is the splitting field of a polynomial having coefficients
in F j−1. This follows from the Lemma 9.4.49 above. Then it follows from Theorem 9.4.50,
letting F j−1 play the role of F, that

G
(
F j,F j−1

)
≃ G

(
Fk,F j−1

)
/G(Fk,F j)

By Lemma 9.4.47, the Galois group G
(
F j,F j−1

)
is Abelian and so this and the above iso-

morphism requires that G(Fk,F) is a solvable group since the quotient groups are Abelian.
By Theorem 9.4.43, it follows that, since G(K,F) is a subgroup of G(Fk,F) , it must

also be solvable. ■
Now consider the equation

p(x) = xn−a1xn−1 +a2xn−2 + · · ·±an, p(x) ∈ F [x] , n≥ 5

and suppose that p(x) has distinct roots, none of them in F. Let K be a splitting field for
p(x) over F so that p(x) = ∏

n
k=1 (x− ri) . Then it follows that ai = si (r1, · · · ,rn) where the

si are the elementary symmetric functions defined in Definition 9.1.3. For σ ∈G(K,F) you
can define σ̄ ∈ Sn by the rule σ̄ (k) ≡ j where σ (rk) = r j. Recall that the automorphisms
of G(K,F) take roots of p(x) to roots of p(x). This mapping σ → σ̄ is onto, a homomor-
phism, and one to one and onto because the symmetric functions si are unchanged when
the roots are permuted. Thus a rational function in s1,s2, · · · ,sn is unaffected when the
roots rk are permuted. It follows that G(K,F) cannot be solvable if n≥ 5 because Sn is not
solvable.
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For example, consider 3x5−25x3+45x+1 or equivalently x5− 25
3 x3+15x+ 1

3 ∈Q(x) .
It clearly has no rational roots and a graph will show it has 5 real roots. Let F=Q(ω) where
ω denotes all kth roots of unity for k≤ 5. Then some computations show that none of these
roots of the polynomial are in F and they are all distinct. Thus the polynomial cannot be
solved by radicals involving kth roots for k ≤ 5 of numbers in Q. In fact, it can’t be solved
by radicals involving kth roots for k ≤ 5 of numbers in Q(ω) .

Recall that Q
(√

2
)

can be written as a+b
√

2 where a,b are rational. However, alge-
braic numbers are roots of polynomials having rational coefficients. Can each of these be
written in this way in terms of radicals. It was just shown that, surprisingly, this is not the
case. It is a little like the fact from real analysis that it is extremely difficult to give an ex-
plicit description of a generic Borel set, except that the present situation seems even worse
because in the case of Borel sets, you can sort of do it provided you use enough hard set
theory. Thus you must use the definition of algebraic numbers described above. It is also
pointless to search for the equivalent of the quadratic formula for polynomials of degree 5
or more.

9.5 A Few Generalizations
Sometimes people consider things which are more general. Also, it is worthwhile identify-
ing situations when all polynomials are separable to generalize Theorem 9.4.51.

9.5.1 The Normal Closure of a Field Extension
An algebraic extension F(a1,a2, · · · ,am) is contained in a field which is a normal extension
of F. To begin with, recall the following definition.

Definition 9.5.1 When you have F(a1, · · · ,am) with each ai algebraic so F(a1, · · · ,am) is
a field, you could consider f (x) ≡∏

m
i=1 fi (x). where fi (x) is the minimum polynomial of

ai. Then if K is a splitting field for f (x) , this K is called the normal closure. It is at least
as large as F(a1, · · · ,am) and it has the advantage of being a normal extension.

Let G(K,F) =
{

η1,η2, · · · ,ηq
}
. The conjugate fields are defined as the fields

η j (F(a1, · · · ,am)) .

Thus each of these fields is isomorphic to any other and they are all contained in K. Let K′
denote the smallest field contained in K which contains all of these conjugate fields. Note
that if k ∈ F(a1, · · · ,am) so that η i (k) is in one of these conjugate fields, then η jη i (k) is
also in a conjugate field because η jη i is one of the automorphisms of G(K,F). Let

S =
{

k ∈K′ : η j (k) ∈K′ each j
}
.

Then from what was just shown, each conjugate field is in S. Suppose k ∈ S. What about
k−1?

η j (k)η j
(
k−1)= η j

(
kk−1)= η j (1) = 1

and so
(
η j (k)

)−1
= η j

(
k−1
)
. Now

(
η j (k)

)−1 ∈ K′ because K′ is a field. Therefore,
η j
(
k−1
)
∈K′. Thus S is closed with respect to taking inverses. It is also closed with respect

to products. Thus it is clear that S is a field which contains each conjugate field. However,
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K′ was defined as the smallest field which contains the conjugate fields. Therefore, S =K′
and so this shows that each η j maps K′ to itself while fixing F. Thus G(K,F)⊆ G(K′,F)
because each of the η i is in G(K′,F). This is what was just shown. However, sinceK′ ⊆K,
it follows that also G(K′,F) ⊆ G(K,F) . Therefore, G(K′,F) = G(K,F) and by the one
to one correspondence between the intermediate fields and the Galois groups, it follows
that K′ =K. If K′ is a proper subset of K then you would need to have G(K′,F) a proper
subgroup of G(K,F) but these are equal. This proves the following lemma.

Lemma 9.5.2 Let K denote the normal extension of F(a1, · · · ,am) with each ai algebraic
so that F(a1, · · · ,am) is a field. Thus K is the splitting field of the product of the minimum
polynomials of the ai. Then K is also the smallest field containing the conjugate fields
η j (F(a1, · · · ,am)) for

{
η1,η2, · · · ,ηq

}
= G(K,F).

Lemma 9.5.3 In Definition 9.4.48, you can assume that Fk is a normal extension of F.

Proof: First note that Fk = F [a1,a2, · · · ,ak]. Let G be the normal extension of Fk. By
Lemma 9.5.2, G is the smallest field which contains the conjugate fields

η j (F(a1,a2, · · · ,ak)) = F
(
η ja1,η ja2, · · · ,η jak

)
for {η1,η2, · · · ,ηm}= G(Fk,F). Also,

(
η jai

)ki = η j

(
aki

i

)
∈ η jFi−1,η jF= F. Then

G= F(η1 (a1) ,η1 (a2) , · · · ,η1 (ak) ,η2 (a1) ,η2 (a2) , · · · ,η2 (ak) · · ·)

and this is a splitting field so is a normal extension. Thus G could be the new Fk with
respect to a longer sequence of ai but would now be a splitting field. ■

9.5.2 Conditions for Separability
So when is it that a polynomial having coefficients in a field F is separable? It turns out that
this is always the case for fields which are enough like the rational numbers. It involves
considering the derivative of a polynomial. In doing this, there will be no analysis used, just
the rule for differentiation which we all learned in calculus. Thus the derivative is defined
as follows. (

anxn +an−1xn−1 + · · ·+a1x+a0
)′

≡ nanxn−1 +an−1 (n−1)xn−2 + · · ·+a1

This kind of formal manipulation is what most students do anyway, never thinking about
where it comes from. Here nan means to add an to itself n times. With this definition, it is
clear that the usual rules such as the product rule hold. This discussion follows [26].

Definition 9.5.4 A field has characteristic 0 if na ̸= 0 for all n ∈N and a ̸= 0. Otherwise a
field F has characteristic p if p ·1 = 0 for p ·1 defined as 1 added to itself p times and p is
the smallest positive integer for which this takes place.

Note that with this definition, some of the terms of the derivative of a polynomial could
vanish in the case that the field has characteristic p. I will go ahead and write them anyway.
For example, if the field has characteristic p, then (xp−a)′ = 0. because formally it equals
p ·1xp−1 = 0xp−1, the 1 being the 1 in the field.
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Note that the field Zp does not have characteristic 0 because p · 1 = 0. Thus not all
fields have characteristic 0.

How can you tell if a polynomial has no repeated roots? This is the content of the next
theorem.

Theorem 9.5.5 Let p(x) be a monic polynomial having coefficients in a field F, and let K
be a field in which p(x) factors

p(x) =
n

∏
i=1

(x− ri) , ri ∈K.

Then the ri are distinct if and only if p(x) and p′ (x) are relatively prime over F.

Proof: Suppose first that p′ (x) and p(x) are relatively prime over F. Since they are not
both zero, there exists polynomials a(x) ,b(x) having coefficients in F such that

a(x) p(x)+b(x) p′ (x) = 1

Now suppose p(x) has a repeated root r. Then inK [x], p(x) = (x− r)2 g(x) and so p′ (x) =
2(x− r)g(x)+(x− r)2 g′ (x). Then in K [x] ,

a(x)(x− r)2 g(x)+b(x)
(

2(x− r)g(x)+(x− r)2 g′ (x)
)
= 1

Then letting x = r, it follows that 0 = 1. Hence p(x) has no repeated roots.
Next suppose there are no repeated roots of p(x). Then p′ (x) = ∑

n
i=1 ∏ j ̸=i (x− r j).

p′ (x) cannot be zero in this case because p′ (rn) = ∏
n−1
j=1 (rn− r j) ̸= 0 because it is the

product of nonzero elements of K. Similarly no term in the sum for p′ (x) can equal zero
because ∏ j ̸=i (ri− r j) ̸= 0. Then if q(x) is a monic polynomial of degree larger than 1
which divides p(x), then the roots of q(x) inK are a subset of {r1, · · · ,rn}. Without loss of
generality, suppose these roots of q(x) are {r1, · · · ,rk} , k≤ n−1, since q(x) divides p′ (x)
which has degree at most n− 1. Then q(x) = ∏

k
i=1 (x− ri) but this fails to divide p′ (x)

as polynomials in K [x] and so q(x) fails to divide p′ (x) as polynomials in F [x] either.
Therefore, q(x) = 1 and so the two are relatively prime. ■

The following lemma says that the usual calculus result holds in case you are looking
at polynomials with coefficients in a field of characteristic 0.

Lemma 9.5.6 Suppose that F has characteristic 0. Then if f ′ (x) = 0, it follows that f (x)
is a constant.

Proof: Suppose
f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

Then
0xn +0xn−1 + · · ·+0x+0 = nanxn−1 +an−1 (n−1)xn−2 + · · ·+a1

Therefore, each coefficient on the right is 0. Since the field has characteristic 0 it follows
that each ak = 0 for k ≥ 1. Thus f (x) = a0 ∈ F. ■

If F has characteristic p as in Zp for p prime, this is not true. Indeed, xp− 1 is not
constant but has derivative equal to 0.

Now here is a major result which applies to fields of characteristic 0.
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Theorem 9.5.7 If F is a field of characteristic 0, then every polynomial p(x) , having co-
efficients in F is separable.

Proof: It is required to show that the irreducible factors of p(x) have distinct roots in
K a splitting field for p(x). So let q(x) be an irreducible, non constant, monic polynomial.
Thus q′ (x) ̸= 0 because the field has characteristic 0. If l (x) is a monic polynomial of
positive degree which divides both q(x) and q′ (x) , then since q(x) is irreducible, it must
be the case that l (x) = q(x) or l (x) = 1. If l (x) = q(x) , then this forces q(x) to divide
q′ (x) , a nonzero polynomial having smaller degree than q(x) . This is impossible. Hence
l (x) = 1 and so q′ (x) and q(x) are relatively prime which implies that q(x) has distinct
roots. ■

It follows that the above theory all holds for any field of characteristic 0. For example,
if the field is Q then everything holds.

Proposition 9.5.8 If a field F has characteristic p, then p is a prime.

Proof: First note that if n · 1 = 0, if and only if for all a ̸= 0,n · a = 0 also. This just
follows from the distributive law and the definition of what is meant by n ·1, meaning that
you add 1 to itself n times. Suppose then that there are positive integers, each larger than
1 n,m such that nm · 1 = 0. Then grouping the terms in the sum associated with nm · 1,
it follows that n(m ·1) = 0. If the characteristic of the field is nm, this is a contradiction
because then m ·1 ̸= 0 but n times it is, implying that n < nm but n ·a = 0 for a nonzero a.
Hence n ·1 = 0 showing that mn is not the characteristic of the field after all. ■

Definition 9.5.9 A field F is called perfect if every polynomial p(x) having coefficients in
F is separable.

The above shows that fields of characteristic 0 are perfect. The above theory about Ga-
lois groups and fixed fields all works for perfect fields. What about fields of characteristic
p where p is a prime? The following interesting lemma has to do with a nonzero a ∈ F
having a pth root in F.

Lemma 9.5.10 Let F be a field of characteristic p. Let a ̸= 0 where a ∈ F. Then either
xp−a is irreducible or there exists b ∈ F such that xp−a = (x−b)p.

Proof: Suppose that xp−a is not irreducible. Then xp−a= g(x) f (x) where the degree
of g(x) ,k is less than p and at least as large as 1. Then let b be a root of g(x). Then
bp−a = 0. Therefore,

xp−a = xp−bp = (x−b)p .

That is right. xp− bp = (x−b)p just like many beginning calculus students believe. It
happens because of the binomial theorem and the fact that the other terms have a factor of
p. Hence

xp−a = (x−b)p = g(x) f (x)

and so g(x) divides (x−b)p which requires that g(x) = (x−b)k since g(x) has degree k. It
follows, since g(x) is given to have coefficients in F, that bk ∈ F. Also bp ∈ F. Since k, p
are relatively prime, due to the fact that k < p with p prime, there are integers m,n such
that 1 = mk+np. Then from what you mean by raising b to an integer power and the usual
rules of exponents for integer powers, b =

(
bk
)m

(bp)n ∈ F. ■
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So when is a field of characteristic p perfect? As observed above, for a field of char-
acteristic p,(a+b)p = ap +bp. Also, (ab)p = apbp. It follows that a→ ap is a homomor-
phism. This is also one to one because, as mentioned above (a−b)p = ap−bp. Therefore,
if ap = bp, it follows that a = b. Therefore, this homomorphism is also one to one.

Let Fp be the collection of ap where a ∈ F. Then clearly Fp is a subfield of F because
it is the image of a one to one homomorphism. What follows is the condition for a field of
characteristic p to be perfect.

Theorem 9.5.11 Let F be a field of characteristic p. Then F is perfect if and only if F= Fp.

Proof: Suppose F= Fp first. Let f (x) be an irreducible polynomial over F. By The-
orem 9.5.5, if f ′ (x) and f (x) are relatively prime over F then f (x) has no repeated roots.
Suppose then that the two polynomials are not relatively prime. If d (x) divides both f (x)
and f ′ (x) with degree of d (x) ≥ 1. Then, since f (x) is irreducible, it follows that d (x) is
a multiple of f (x) and so f (x) divides f ′ (x) which is impossible unless f ′ (x) = 0. But if
f ′ (x) = 0, then f (x) must be of the form

a0 +a1xp +a2x2p + · · ·+anxnp

since if it had some other nonzero term with exponent not a multiple of p then f ′ (x) could
not equal zero since you would have something surviving in the expression for the deriva-
tive after taking out multiples of p which is like kaxk−1 where a ̸= 0 and k < p. Thus ka ̸= 0.
Hence the form of f (x) is as indicated above.

If ak = bp
k for some bk ∈ F, then the expression for f (x) is

bp
0 +bp

1xp +bp
2x2p + · · ·+bp

nxnp =
(
b0 +b1x+bxx2 + · · ·+bnxn)p

because of the fact noted earlier that a→ ap is a homomorphism. However, this says that
f (x) is not irreducible after all. It follows that there exists ak such that ak /∈ Fp contrary to
the assumption that F= Fp. Hence the greatest common divisor of f ′ (x) and f (x) must be
1.

Next consider the other direction. Suppose F ̸= Fp. Then there exists a ∈ F\Fp.
Consider the polynomial xp−a. As noted, its derivative equals 0. Therefore, xp−a and its
derivative cannot be relatively prime. In fact, xp−a would divide both. ■

Now suppose F is a finite field. If n ·1 is never equal to 0 then, since the field is finite,
k ·1 = m ·1, for some k < m. m > k, and (m− k) ·1 = 0 which is a contradiction. Hence F
is a field of characteristic p for some prime p, by Proposition 9.5.8. The mapping a→ ap

was shown to be a homomorphism which is also one to one. Therefore, Fp is a subfield of
F. It follows that it has characteristic q for some q a prime. However, this requires q = p
and so Fp = F. Then the following corollary is obtained from the above theorem.

With this information, here is a convenient version of the fundamental theorem of Ga-
lois theory.

Theorem 9.5.12 Let K be a splitting field of any polynomial p(x) ∈ F [x] where F is
either of characteristic 0 or of characteristic p with Fp = F. Let {Li}k

i=0 be the increasing
sequence of intermediate fields between F and K. Then each of these is a normal extension
of F and the Galois group G

(
L j−1,F

)
is a normal subgroup of G(L j,F). In addition to

this,
G(L j,F)≃ G(K,F)/G(K,L j)

where the symbol ≃ indicates the two spaces are isomorphic.
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Chapter 10

Normed Linear Spaces
In addition to the algebraic aspects of linear algebra presented earlier, there are many an-
alytical and geometrical concepts which are usually included. This material involves the
special fields R and C instead of general fields. It is these things which are typically gener-
alized in functional analysis. The main new idea is that the notion of distance is included.
This allows one to consider continuity, compactness, and many other topics from calculus.
First is a general treatment of the notion of distance which has nothing to do with linear
algebra but is a useful part of the vocabulary leading most efficiently to the inclusion of
analytical topics.

10.1 Metric Spaces
This section is here to provide definitions and main theorems about fundamental analytical
ideas and terminology. The first part is on metric spaces which really have absolutely
nothing to do with linear algebra but they provide a convenient framework for discussion
of the analytical aspects of linear algebra.

10.1.1 Limits
It is most efficient to discus things in terms of abstract metric spaces to begin with.

Definition 10.1.1 A non empty set X is called a metric space if there is a function d :
X×X → [0,∞) which satisfies the following axioms.

1. d (x,y) = d (y,x)

2. d (x,y)≥ 0 and equals 0 if and only if x = y

3. d (x,y)+d (y,z)≥ d (x,z)

This function d is called the metric. We often refer to it as the distance.

Definition 10.1.2 An open ball, denoted as B(x,r) is defined as follows.

B(x,r)≡ {y : d (x,y)< r}

A set U is said to be open if whenever x ∈ U, it follows that there is r > 0 such that
B(x,r) ⊆U. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x− y|.
Then the first thing to show is the following.

Proposition 10.1.3 An open ball is an open set.

Proof: Suppose y ∈ B(x,r) . We need to verify that y is an interior point of B(x,r). Let
δ = r−d (x,y) . Then if z ∈ B(y,δ ) , it follows that

d (z,x)≤ d (z,y)+d (y,x)< δ +d (y,x) = r−d (x,y)+d (y,x) = r

Thus y ∈ B(y,δ )⊆ B(x,r). ■
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Definition 10.1.4 Let S be a nonempty subset of a metric space. Then p is a limit point
(accumulation point) of S if for every r > 0 there exists a point different than p in B(p,r)∩S.
Sometimes people denote the set of limit points as S′.

A related idea is the notion of the limit of a sequence. Recall that a sequence is really
just a mapping from N to X . We write them as {xn} or {xn}∞

n=1 if we want to emphasize
the values of n. Then the following definition is what it means for a sequence to converge.

Definition 10.1.5 We say that x = limn→∞ xn when for every ε > 0 there exists N such that
if n≥ N, then

d (x,xn)< ε

Often we write xn→ x for short. This is equivalent to saying

lim
n→∞

d (x,xn) = 0.

Proposition 10.1.6 The limit is well defined. That is, if x,x′ are both limits of a sequence,
then x = x′.

Proof: From the definition, there exist N,N′ such that if n≥N, then d (x,xn)< ε/2 and
if n≥ N′, then d (x,xn)< ε/2. Then let M ≥max(N,N′) . Let n > M. Then

d
(
x,x′
)
≤ d (x,xn)+d

(
xn,x′

)
<

ε

2
+

ε

2
= ε

Since ε is arbitrary, this shows that x = x′ because d (x,x′) = 0. ■
Next there is an important theorem about limit points and convergent sequences.

Theorem 10.1.7 Let S ̸= /0. Then p is a limit point of S if and only if there exists a sequence
of distinct points of S,{xn} none of which equal p such that limn→∞ xn = p.

Proof: =⇒ Suppose p is a limit point. Why does there exist the promised convergent
sequence? Let x1 ∈B(p,1)∩S such that x1 ̸= p. If x1, · · · ,xn have been chosen, let xn+1 ̸= p
be in

B(p,δ n+1)∩S

where δ n+1 = min
{ 1

n+1 ,d (xi, p) , i = 1,2, · · · ,n
}
. Then this constructs the necessary con-

vergent sequence.
⇐= Conversely, if such a sequence {xn} exists, then for every r > 0, B(p,r) contains

xn ∈ S for all n large enough. Hence, p is a limit point because none of these xn are equal
to p. ■

Definition 10.1.8 A set H is closed means HC is open.

Note that this says that the complement of an open set is closed. If V is open, then the
complement of its complement is itself. Thus

(
VC
)C

=V an open set. Hence VC is closed.
Then the following theorem gives the relation between closed sets and limit points.

Theorem 10.1.9 A set H is closed if and only if it contains all of its limit points.
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Proof: =⇒ Let H be closed and let p be a limit point. We need to verify that p ∈ H. If
it is not, then since H is closed, its complement is open and so there exists δ > 0 such that
B(p,δ )∩H = /0. However, this prevents p from being a limit point.
⇐= Next suppose H has all of its limit points. Why is HC open? If p ∈ HC then it is

not a limit point and so there exists δ > 0 such that B(p,δ ) has no points of H. In other
words, HC is open. Hence H is closed. ■

Corollary 10.1.10 A set H is closed if and only if whenever {hn} is a sequence of points
of H which converges to a point x, it follows that x ∈ H.

Proof: =⇒ Suppose H is closed and hn→ x. If x ∈ H there is nothing left to show. If
x /∈ H, then from the definition of limit, it is a limit point of H. Hence x ∈ H after all.
⇐= Suppose the limit condition holds, why is H closed? Let x ∈ H ′ the set of limit

points of H. By Theorem 10.1.7 there exists a sequence of points of H, {hn} such that
hn → x. Then by assumption, x ∈ H. Thus H contains all of its limit points and so it is
closed by Theorem 10.1.9. ■

Next is the important concept of a subsequence.

Definition 10.1.11 Let {xn}∞

n=1 be a sequence. Then if n1 < n2 < · · · is a strictly increasing
sequence of indices, we say

{
xnk

}∞

k=1 is a subsequence of {xn}∞

n=1.

The really important thing about subsequences is that they preserve convergence.

Theorem 10.1.12 Let
{

xnk

}
be a subsequence of a convergent sequence {xn} where xn→

x. Then limk→∞ xnk = x also.

Proof: Let ε > 0 be given. Then there exists N such that d (xn,x) < ε if n ≥ N. It
follows that if k ≥ N, then nk ≥ N and so d

(
xnk ,x

)
< ε if k ≥ N. This is what it means to

say limk→∞ xnk = x. ■
Another useful idea is the distance to a set.

Definition 10.1.13 Let (X ,d) be a metric space and let S be a nonempty set in X. Then

dist(x,S)≡ inf{d (x,y) : y ∈ S} .

The following lemma is the fundamental result.

Lemma 10.1.14 The function, x→ dist(x,S) is continuous and in fact satisfies

|dist(x,S)−dist(y,S)| ≤ d (x,y) .

Proof: Suppose dist(x,S) is as least as large as dist(y,S). Then pick z ∈ S such that
d (y,z)≤ dist(y,S)+ ε. Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ d (x,z)− (d (y,z)− ε)

= d (x,z)−d (y,z)+ ε ≤ d (x,y)+d (y,z)−d (y,z)+ ε = d (x,y)+ ε.

Since ε > 0 is arbitrary, this proves the lemma. It is similar if dist(x,S) ≤ dist(y,S). Just
switch the roles of x and y. ■
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10.1.2 Cauchy Sequences, Completeness

Of course it does not go the other way. For example, you could let xn = (−1)n and it has a
convergent subsequence but fails to converge. Here d (x,y) = |x− y| and the metric space
is just R.

However, there is a kind of sequence for which it does go the other way. This is called
a Cauchy sequence.

Definition 10.1.15 {xn} is called a Cauchy sequence if for every ε > 0 there exists N such
that if m,n≥ N, then d (xn,xm)< ε .

Now the major theorem about this is the following.

Theorem 10.1.16 Let {xn} be a Cauchy sequence. Then it converges if and only if any
subsequence converges.

Proof: =⇒ This was just done above.
⇐= Suppose now that {xn} is a Cauchy sequence and limk→∞ xnk = x. Then there exists

N1 such that if k > N1, then d
(
xnk ,x

)
< ε/2. From the definition of what it means to be

Cauchy, there exists N2 such that if m,n≥N2, then d (xm,xn)< ε/2. Let N ≥max(N1,N2).
Then if k ≥ N, then nk ≥ N and so

d (x,xk)≤ d
(
x,xnk

)
+d
(
xnk ,xk

)
<

ε

2
+

ε

2
= ε (10.1)

It follows from the definition that limk→∞ xk = x. ■

Definition 10.1.17 A metric space is said to be complete if every Cauchy sequence con-
verges.

Another nice thing to note is this.

Proposition 10.1.18 If {xn} is a sequence and if p is a limit point of the set S = ∪∞
n=1 {xn}

then there is a subsequence
{

xnk

}
such that limk→∞ xnk = x.

Proof: By Theorem 10.1.7, there exists a sequence of distinct points of S denoted as
{yk} such that none of them equal p and limk→∞ yk = p. Thus B(p,r) contains infinitely
many different points of the set D, this for every r. Let xn1 ∈ B(p,1) where n1 is the first
index such that xn1 ∈ B(p,1). Suppose xn1 , · · · ,xnk have been chosen, the ni increasing and
let 1 > δ 1 > δ 2 > · · ·> δ k where xni ∈ B(p,δ i) . Then let

δ k+1 ≤min
{

1
2k+1 ,d

(
p,xn j

)
,δ j, j = 1,2 · · · ,k

}
Let xnk+1 ∈ B(p,δ k+1) where nk+1 is the first index such that xnk+1 is contained B(p,δ k+1).
Then limk→∞ xnk = p. ■

Another useful result is the following.

Lemma 10.1.19 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).
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Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y) . Similarly

d (xn,yn)−d (x,y)≤ d (x,xn)+d (yn,y)

and so
|d (xn,yn)−d (x,y)| ≤ d (x,xn)+d (yn,y)

and the right side converges to 0 as n→ ∞. ■
First are some simple lemmas featuring one dimensional considerations. In these, the

metric space is R and the distance is given by d (x,y) ≡ |x− y| .First recall the nested in-
terval lemma. You should have seen something like it in calculus, but this is often not the
case because there is much more interest in trivialities like integration techniques.

Lemma 10.1.20 Let [ak,bk]⊇ [ak+1,bk+1] for all k = 1,2,3, · · · . Then there exists a point
p in ∩∞

k=1 [ak,bk].

Proof: We note that for any k, l,ak ≤ bl . Here is why. If k ≤ l, then ak ≤ al ≤ bl .
If k > l, then bl ≥ bk ≥ ak. It follows that for each l, supk ak ≤ bl . Hence supk ak is
a lower bound to the set of all bl and so it is no larger than the greatest lower bound. It
follows that supk ak ≤ infl bl . Pick x∈ [supk ak, infl bl ]. Then for every k,ak ≤ x≤ bk. Hence
x ∈ ∩∞

k=1 [ak,bk] . ■

Lemma 10.1.21 The closed interval [a,b] is compact. This means that if there is a collec-
tion of open intervals of the form (a,b) whose union includes all of [a,b] , then in fact [a,b]
is contained in the union of finitely many of these open intervals.

Proof: Let C be a set of open intervals the union of which includes all of [a,b] and
suppose [a,b] fails to admit a finite subcover. That is, no finite subset of C has union
which contains [a,b]. Then this must be the case for one of the two intervals

[
a, a+b

2

]
and[ a+b

2 ,b
]
. Let I1 be the one for which this is so. Then split it into two equal pieces like

what was just done and let I2 be a half for which there is no finite subcover of sets of
C . Continue this way. This yields a nested sequence of closed intervals I1 ⊇ I2 ⊇ ·· · and
by the above lemma, there exists a point x in all of these intervals. There exists U ∈ C
such that x ∈U. Thus x ∈ (a,b) ∈ C . However, for all n large enough, the length of In is
less than min(|x−a| , |x−b|). Hence In is actually contained in (a,b) ∈ C contrary to the
construction. Hence [a,b] is compact after all. ■

As a useful corollary, this shows that R is complete.

Corollary 10.1.22 The real line R is complete.

Proof: Suppose {xk} is a Cauchy sequence in R. Then there exists M such that

{xk}∞

k=1 ⊆ [−M,M] .

Why? If there is no convergent subsequence, then for each x ∈ [−M,M] , there is an open
set (x−δ x,x+δ x) which contains xk for only finitely many values of k. Since [−M,M] is
compact, there are finitely many of these open sets whose union includes [−M,M]. This is
a contradiction because [−M,M] contains xk for all k ∈ N so at least one of the open sets
must contain xk for infinitely many k. Thus there is a convergent subsequence. Therefore,
using Theorem 10.1.16, the original Cauchy sequence converges to some x ∈ [−M,M]. ■
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Example 10.1.23 Let n∈N. Cn with distance given by d (x,y)≡max j∈{1,··· ,n}
{∣∣x j− y j

∣∣}
is a complete space. Recall that |a+ jb| ≡

√
a2 +b2. Then Cn is complete. Similarly Rn is

complete.

To see that this is complete, let
{
xk
}∞

k=1 be a Cauchy sequence. Observe that for each

j,
{

xk
j

}∞

k=1
. That is, each component is a Cauchy sequence in C. Next,∣∣∣Rexk

j−Rexk+p
j

∣∣∣≤ ∣∣∣xk
j− xk+p

j

∣∣∣
Therefore,

{
Rexk

j

}∞

k=1
is a Cauchy sequence. Similarly

{
Imxk

j

}∞

k=1
is a Cauchy sequence.

It follows from completeness of R shown above, that these converge. Thus there exists
a j,b j such that

lim
k→∞

Rexk
j + i Imxk

j = a j + ib j ≡ x

and so xk→x showing thatCn is complete. The same argument shows thatRn is complete.
It is easier because you don’t need to fuss with real and imaginary parts.

10.1.3 Closure of a Set
Next is the topic of the closure of a set.

Definition 10.1.24 Let A be a nonempty subset of (X ,d) a metric space. Then A is defined
to be the intersection of all closed sets which contain A. Note the whole space, X is one
such closed set which contains A. The whole space X is closed because its complement is
open, its complement being /0. It is certainly true that every point of the empty set is an
interior point because there are no points of /0.

Lemma 10.1.25 Let A be a nonempty set in (X ,d) . Then A is a closed set and A = A∪A′

where A′ denotes the set of limit points of A.

Proof: First of all, denote by C the set of closed sets which contain A. Then A = ∩C
and this will be closed if its complement is open. However,

(
A
)C

= ∪
{

HC : H ∈ C
}
.Each

HC is open and so the union of all these open sets must also be open. This is because if x is
in this union, then it is in at least one of them. Hence it is an interior point of that one. But
this implies it is an interior point of the union of them all which is an even larger set. Thus
A is closed.

The interesting part is the next claim. First note that from the definition, A ⊆ A so if
x ∈ A, then x ∈ A. Now consider y ∈ A′ but y /∈ A. If y /∈ A, a closed set, then there exists
B(y,r)⊆ AC

. Thus y cannot be a limit point of A, a contradiction. Therefore, A∪A′ ⊆ A
Next suppose x ∈ A and suppose x /∈ A. Then if B(x,r) contains no points of A different

than x, since x itself is not in A, it would follow that B(x,r)∩A = /0 and so recalling that
open balls are open, B(x,r)C is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x ∈ A. Hence if x /∈ A, then x ∈ A′ and so
A∪A′ ⊇ A ■
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10.1.4 Continuous Functions
The following is a fairly general definition of what it means for a function to be continuous.
It includes everything seen in typical calculus classes as a special case.

Definition 10.1.26 Let f : X →Y be a function where (X ,d) and (Y,ρ) are metric spaces.
Then f is continuous at x ∈ X if and only if the following condition holds. For every ε > 0,
there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε . If f is continuous at
every x ∈ X we say that f is continuous on X.

For example, you could have a real valued function f (x) defined on an interval [0,1] . In
this case you would have X = [0,1] and Y =R with the distance given by d (x,y) = |x− y|.
Then the following theorem is the main result.

Theorem 10.1.27 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then the
following are equivalent.

a f is continuous at x.

b Whenever xn→ x, it follows that f (xn)→ f (x) .

Also, the following are equivalent.

c f is continuous on X .

d Whenever V is open in Y, it follows that f−1 (V )≡ {x : f (x) ∈V} is open in X .

e Whenever H is closed in Y, it follows that f−1 (H) is closed in X.

Proof: a =⇒ b: Let f be continuous at x and suppose xn→ x. Then let ε > 0 be given.
By continuity, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε. Since
xn→ x, it follows that there exists N such that if n≥ N, then d (xn,x)< δ and so, if n≥ N,
it follows that ρ ( f (xn) , f (x))< ε. Since ε > 0 is arbitrary, it follows that f (xn)→ f (x).

b =⇒ a: Suppose b holds but f fails to be continuous at x. Then there exists ε > 0
such that for all δ > 0, there exists x̂ such that d (x̂,x)< δ but ρ ( f (x̂) , f (x))≥ ε . Letting
δ = 1/n, there exists xn such that d (xn,x) < 1/n but ρ ( f (xn) , f (x)) ≥ ε . Now this is a
contradiction because by assumption, the fact that xn → x implies that f (xn)→ f (x). In
particular, for large enough n, ρ ( f (xn) , f (x))< ε contrary to the construction.

c =⇒ d: Let V be open in Y . Let x ∈ f−1 (V ) so that f (x) ∈ V. Since V is open, there
exists ε > 0 such that B( f (x) ,ε)⊆V . Since f is continuous at x, it follows that there exists
δ > 0 such that if x̂ ∈ B(x,δ ) , then f (x̂) ∈ B( f (x) ,ε) ⊆ V.( f (B(x,δ ))⊆ B( f (x) ,ε))
In other words, B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) ⊆ f−1 (V ) which shows that, since x was an
arbitrary point of f−1 (V ) , every point of f−1 (V ) is an interior point which implies f−1 (V )
is open.

d =⇒ e: Let H be closed in Y . Then f−1 (H)C = f−1
(
HC
)

which is open by assump-
tion. Hence f−1 (H) is closed because its complement is open.

e =⇒ d: Let V be open in Y. Then f−1 (V )C = f−1
(
VC
)

which is assumed to be closed.
This is because the complement of an open set is a closed set.

d =⇒ c: Let x ∈ X be arbitrary. Is it the case that f is continuous at x? Let ε > 0 be
given. Then B( f (x) ,ε) is an open set in V and so x ∈ f−1 (B( f (x) ,ε)) which is given
to be open. Hence there exists δ > 0 such that x ∈ B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) . Thus,
f (B(x,δ ))⊆ B( f (x) ,ε) so ρ ( f (x̂) , f (x))< ε . Thus f is continuous at x for every x. ■
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10.1.5 Separable Metric Spaces
Definition 10.1.28 A metric space is called separable if there exists a countable dense
subset D. This means two things. First, D is countable, and second that if x is any point
and r > 0, then B(x,r)∩D ̸= /0. A metric space is called completely separable if there
exists a countable collection of nonempty open sets B such that every open set is the union
of some subset of B. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of B namely the empty subset.

Theorem 10.1.29 A metric space is separable if and only if it is completely separable.

Proof: ⇐= Let B be the special countable collection of open sets and for each B ∈B,
let pB be a point of B. Then let P ≡ {pB : B ∈B}. If B(x,r) is any ball, then it is the
union of sets of B and so there is a point of P in it. Since B is countable, so is P .

=⇒ Let D be the countable dense set and let

B ≡{B(d,r) : d ∈ D,r ∈Q∩ [0,∞)}

Then B is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y ∈ B(y,δ ) ⊆ B(x,R) . Then there exists d ∈ B

(
y, δ

10

)
. Let ε ∈ Q and δ

10 < ε < δ

5 . Then
y ∈ B(d,ε) ∈B. Is B(d,ε) ⊆ B(x,R)? If so, then the desired result follows because this
would show that every y∈ B(x,R) is contained in one of these sets of B which is contained
in B(x,R) showing that B(x,R) is the union of sets of B. Let z∈ B(d,ε)⊆ B

(
d, δ

5

)
. Then

d (y,z)≤ d (y,d)+d (d,z)<
δ

10
+ ε <

δ

10
+

δ

5
< δ

Hence B(d,ε) ⊆ B(y,δ ) ⊆ B(x,r). Therefore, every ball is the union of sets of B and,
since every open set is the union of balls, it follows that every open set is the union of sets
of B. ■

Definition 10.1.30 Let S be a nonempty set. Then a set of open sets C is called an open
cover of S if ∪C ⊇S . (It covers up the set S. Think lilly pads covering the surface of a
pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 10.1.31 A metric space has the Lindeloff property if whenever C is an open
cover of a set S, there exists a countable subset of C denoted here by B such that B is also
an open cover of S.

Theorem 10.1.32 Every separable metric space has the Lindeloff property.

Proof: Let C be an open cover of a set S. Let B be a countable basis. Such exists
by Theorem 10.1.29. Let B̂ denote those sets of B which are contained in some set of C .
Thus B̂ is a countable open cover of S. Now for B∈B, let UB be a set of C which contains
B. Letting Ĉ denote these sets UB it follows that Ĉ is countable and is an open cover of S.
■

Definition 10.1.33 A Polish space is a complete separable metric space. These things turn
out to be very useful in probability theory and in other areas.
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10.1.6 Compact Sets in Metric Space
As usual, we are not worrying about empty sets.

Definition 10.1.34 A metric space K is compact if whenever C is an open cover of

K,(∪C ⊇ K, each set of C is open)

there exists a finite subset of C {U1, · · · ,Un} such that K ⊆ ∪n
k=1Uk. In words, every open

cover admits a finite sub-cover.

The above definition is equivalent to the same statement with the provision that each
open set in C is an open ball. See Problem 15 on Page 283.

This is the real definition given above. However, in metric spaces, it is equivalent to
another definition called sequentially compact.

Definition 10.1.35 A metric space K is sequentially compact means that whenever {xn} ⊆
K, there exists a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ K for some point x. In

words, every sequence has a subsequence which converges to a point in the set.

Definition 10.1.36 Let X be a metric space. Then a finite set of points {x1, · · · ,xn} is called
an ε net if

X ⊆ ∪n
k=1B(xk,ε)

If, for every ε > 0 a metric space has an ε net, then we say that the metric space is totally
bounded.

Lemma 10.1.37 If a metric space (K,d) is sequentially compact, then it is separable and
totally bounded.

Proof: Pick x1 ∈K. If B(x1,ε)⊇K, then stop. Otherwise, pick x2 /∈B(x1,ε) . Continue
this way. If {x1, · · · ,xn} have been chosen, either K⊆∪n

k=1B(xk,ε) in which case, you have
found an ε net or this does not happen in which case, you can pick xn+1 /∈ ∪n

k=1B(xk,ε).
The process must terminate since otherwise, the sequence would need to have a convergent
subsequence which is not possible because every pair of terms is farther apart than ε . Thus
for every ε > 0, there is an ε net. Thus the metric space is totally bounded. Let Nε denote
an ε net. Let D = ∪∞

k=1N1/2k . Then this is a countable dense set. It is countable because it
is the countable union of finite sets and it is dense because given a point, there is a point of
D within 1/2k of it. ■

Also recall that a complete metric space is one for which every Cauchy sequence con-
verges to a point in the metric space.

The following is the main theorem which relates these concepts.

Theorem 10.1.38 For (X ,d) a metric space, the following are equivalent.

1. (X ,d) is compact.

2. (X ,d) is sequentially compact.

3. (X ,d) is complete and totally bounded.
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Proof: 1.=⇒ 2. Let {xn} be a sequence. Suppose it fails to have a convergent subse-
quence. Then it follows right away that no value of the sequence is repeated infinitely often.
If ∪∞

n=1 {xn} has a limit point in X , then it follows from Proposition 10.1.18 there would be
a convergent subsequence converging to this limit point. Therefore, assume ∪∞

k=1 {xn} has
no limit point. This is equivalent to saying that ∪∞

k=m {xk} has no limit point for each m.
Thus these are closed sets by Theorem 10.1.9 because they contain all of their limit points
due to the fact that they have none. Hence the open sets

(∪∞
k=m {xn})C

yield an open cover. This is an increasing sequence of open sets and none of them contain
all the values of the sequence because no value is repeated for infinitely many indices. Thus
this is an open cover which has no finite subcover contrary to 1.

2.=⇒ 3. If (X ,d) is sequentially compact, then by Lemma 10.1.37, it is totally bounded.
If {xn} is a Cauchy sequence, then there is a subsequence which converges to x ∈ X by
assumption. However, from Theorem 10.1.16 this requires the original Cauchy sequence
to converge.

3.=⇒ 1. Since (X ,d) is totally bounded, there must be a countable dense subset of
X . Just take the union of 1/2k nets for each k ∈ N. Thus (X ,d) is completely separable
by Theorem 10.1.32 has the Lindeloff property. Hence, if X is not compact, there is a
countable set of open sets {Ui}∞

i=1 which covers X but no finite subset does. Consider the
nonempty closed sets Fn and pick xn ∈ Fn where

X \∪n
i=1Ui ≡ X ∩ (∪n

i=1Ui)
C ≡ Fn

Let
{

xk
m
}Mk

m=1 be a 1/2k net for X . We have for some m,B
(
xk

mk
,1/2k

)
contains xn for in-

finitely many values of n because there are only finitely many balls and infinitely many
indices. Then of the finitely many

{
xk+1

m
}

for which B
(
xk+1

m ,1/2k+1
)

has nonempty in-

tersection with B
(
xk

mk
,1/2k

)
, pick one xk+1

mk+1
such that B

(
xk+1

mk+1
,1/2k+1

)
contains xn for

infinitely many n. Then obviously
{

xk
mk

}∞

k=1
is a Cauchy sequence because

d
(

xk
mk
,xk+1

mk+1

)
≤ 1

2k +
1

2k+1 ≤
1

2k−1

Hence for p < q,

d
(

xp
mp ,x

q
mq

)
≤

q−1

∑
k=p

d
(

xk
mk
,xk+1

mk+1

)
<

∞

∑
k=p

1
2k−1 =

1
2p−2

Now take a subsequence xnk ∈ B
(
xk

mk
,2−k

)
and it follows that limk→∞ xnk = limk→∞ xk

mk
=

x ∈ X . However, x ∈ Fn for each n since each Fn is closed and these sets are nested. Thus it
follows that x ∈ ∩nFn contrary to the claim that {Ui}∞

i=1 covers X . ■
One of the important theorems about compactness is the extreme value theorem.

Theorem 10.1.39 Let (K,d) be a compact metric space. Let f : K → R be continuous.
Then f achieves a maximum value and a minimum value on K.

Proof: Let λ ≡ sup{ f (x) : x ∈ X} . Let xn ∈ K such that limn→∞ f (xn) = λ . This is
called a maximalizing sequence. By compactness, there is a subsequence

{
xnk

}
such that

limk→∞ xnk = x ∈ K. Then by continuity, f (x) = limk→∞ f
(
xnk

)
= λ . Similarly f achieves

its minimum on K. Do the same argument with a minimizing sequence. ■
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10.1.7 Lipschitz Continuity and Contraction Maps
The following is of more interest in the case of normed vector spaces, but there is no harm
in stating it in this more general setting. You should verify that the functions described in
the following definition are all continuous.

Definition 10.1.40 Let f : X→Y where (X ,d) and (Y,ρ) are metric spaces. Then f is said
to be Lipschitz continuous if for every x, x̂ ∈ X , ρ ( f (x) , f (x̂)) ≤ rd (x, x̂). The function is
called a contraction map if r < 1.

The big theorem about contraction maps is the following.

Theorem 10.1.41 Let f : (X ,d)→ (X ,d) be a contraction map and let (X ,d) be a complete
metric space. Thus Cauchy sequences converge and also d ( f (x) , f (x̂)) ≤ rd (x, x̂) where
r < 1. Then f has a unique fixed point. This is a point x ∈ X such that f (x) = x. Also, if x0
is any point of X , then

d (x,x0)≤
d (x0, f (x0))

1− r
Also, for each n,

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
,

and x = limn→∞ f n (x0).

Proof: Pick x0 ∈ X and consider the sequence of iterates of the map,

x0, f (x0) , f 2 (x0) , · · · .

We argue that this is a Cauchy sequence. For m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0))≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)
≤

∞

∑
k=m

rkd ( f (x0) ,x0)

The reason for this last is as follows.

d
(

f 2 (x0) , f (x0)
)
≤ rd ( f (x0) ,x0)

d
(

f 3 (x0) , f 2 (x0)
)
≤ rd

(
f 2 (x0) , f (x0)

)
≤ r2d ( f (x0) ,x0)

and so forth. Therefore,

d ( f m (x0) , f n (x0))≤ d ( f (x0) ,x0)
rm

1− r

which shows that this is indeed a Cauchy sequence. Therefore, there exists x such that

lim
n→∞

f n (x0) = x

By continuity,
f (x) = f

(
lim
n→∞

f n (x0)
)
= lim

n→∞
f n+1 (x0) = x.
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Also note that this estimate yields

d (x0, f n (x0))≤
d (x0, f (x0))

1− r

Now d (x0,x)≤ d (x0, f n (x0))+d ( f n (x0) ,x) and so

d (x0,x)−d ( f n (x0) ,x)≤
d (x0, f (x0))

1− r

Letting n→ ∞, it follows that

d (x0,x)≤
d (x0, f (x0))

1− r

It only remains to verify that there is only one fixed point. Suppose then that x,x′ are
two. Then

d
(
x,x′
)
= d

(
f (x) , f

(
x′
))
≤ rd

(
x′,x
)

and so d (x,x′) = 0 because r < 1. ■
The above is the usual formulation of this important theorem, but we actually proved a

better result.

Corollary 10.1.42 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
and so it will remain in B if

d (x0, f (x0))

1− r
< δ .

Proof: By assumption, the sequence of iterates stays in B. Then, as in the proof of the
preceding theorem, for m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0) =
rm

1− r
d ( f (x0) ,x0)

Hence the sequence of iterates is Cauchy and must converge to a point x in X . However, B
is closed and so it must be the case that x ∈ B. Then as before,

x = lim
n→∞

f n (x0) = lim
n→∞

f n+1 (x0) = f
(

lim
n→∞

f n (x0)
)
= f (x)
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As to the sequence of iterates remaining in B where B is a ball as described, the inequality
above in the case where m = 0 yields

d (x0, f n (x0))≤
1

1− r
d ( f (x0) ,x0)

and so, if the right side is less than δ , then the iterates remain in B. As to the fixed point be-
ing unique, it is as before. If x,x′ are both fixed points in B, then d (x,x′)= d ( f (x) , f (x′))≤
rd (x,x′) and so x = x′. ■

The contraction mapping theorem has an extremely useful generalization. In order to
get a unique fixed point, it suffices to have some power of f a contraction map.

Theorem 10.1.43 Let f : (X ,d)→ (X ,d) have the property that for some n ∈ N, f n is a
contraction map and let (X ,d) be a complete metric space. Then there is a unique fixed
point for f . As in the earlier theorem the sequence of iterates { f n (x0)}∞

n=1 also converges
to the fixed point.

Proof: From Theorem 10.1.41 there is a unique fixed point for f n. Thus

f n (x) = x

Then
f n ( f (x)) = f n+1 (x) = f (x)

By uniqueness, f (x) = x.
Now consider the sequence of iterates. Suppose it fails to converge to x. Then there is

ε > 0 and a subsequence nk such that

d ( f nk (x0) ,x)≥ ε

Now nk = pkn+ rk where rk is one of the numbers {0,1,2, · · · ,n−1}. It follows that there
exists one of these numbers which is repeated infinitely often. Call it r and let the further
subsequence continue to be denoted as nk. Thus

d
(

f pkn+r (x0) ,x
)
≥ ε

In other words,
d ( f pkn ( f r (x0)) ,x)≥ ε

However, from Theorem 10.1.41, as k→∞, f pkn ( f r (x0))→ x which contradicts the above
inequality. Hence the sequence of iterates converges to x, as it did for f a contraction map.
■

Now with the above material on analysis, it is time to begin using the ideas from linear
algebra in this special case where the field of scalars is R or C.

10.1.8 Convergence Of Functions
Next is to consider the meaning of convergence of sequences of functions. There are two
main ways of convergence of interest here, pointwise and uniform convergence.
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Definition 10.1.44 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces. Then { fn}
is said to converge pointwise to a function f : X → Y if for every x ∈ X ,

lim
n→∞

fn (x) = f (x)

{ fn} is said to converge uniformly if for all ε > 0, there exists N such that if n≥ N, then

sup
x∈X

ρ ( fn (x) , f (x))< ε

Here is a well known example illustrating the difference between pointwise and uniform
convergence.

Example 10.1.45 Let fn (x) = xn on the metric space [0,1] . Then this function converges
pointwise to

f (x) =

{
0 on [0,1)
1 at 1

but it does not converge uniformly on this interval to f .

Note how the target function f in the above example is not continuous even though
each function in the sequence is. The nice thing about uniform convergence is that it takes
continuity of the functions in the sequence and imparts it to the target function. It does this
for both continuity at a single point and uniform continuity. Thus uniform convergence is
a very superior thing.

Theorem 10.1.46 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces and suppose
each fn is continuous at x ∈ X and also that fn converges uniformly to f on X. Then f is
also continuous at x. In addition to this, if each fn is uniformly continuous on X , then the
same is true for f .

Proof: Let ε > 0 be given. Then

ρ ( f (x) , f (x̂))≤ ρ ( f (x) , fn (x))+ρ ( fn (x) , fn (x̂))+ρ ( fn (x̂) , f (x̂))

By uniform convergence, there exists N such that ρ ( f (x) , fn (x)), ρ ( fn (x̂) , f (x̂)) are each
less than ε/3 provided n≥ N. Thus picking such an n,

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

Now from the continuity of fn, there exists δ > 0 such that if d (x, x̂)< δ , then

ρ ( fn (x) , fn (x̂))< ε/3.

Hence, if d (x, x̂)< δ , then

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))<

2ε

3
+

ε

3
= ε

Hence, f is continuous at x.
Next consider uniform continuity. It follows from the uniform convergence that if x, x̂

are any two points of X , then if n≥ N, then, picking such an n,

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

By uniform continuity of fn there exists δ such that if d (x, x̂) < δ , then the term on the
right in the above is less than ε/3. Hence if d (x, x̂)< δ , then ρ ( f (x) , f (x̂))< ε and so f
is uniformly continuous as claimed. ■
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10.2 Connected Sets
This has absolutely nothing to do with linear algebra but is here to provide convenient
results to be used later when linear algebra will occur as part of some topics in analysis.

Stated informally, connected sets are those which are in one piece. In order to define
what is meant by this, I will first consider what it means for a set to not be in one piece.
This is called separated. Connected sets are defined in terms of not being separated. This
is why theorems about connected sets sometimes seem a little tricky.

Definition 10.2.1 A set, S in a metric space, is separated if there exist sets A,B such that

S = A∪B, A,B ̸= /0, and A∩B = B∩A = /0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.
Remember A denotes the closure of the set A.

Note that the concept of connected sets is defined in terms of what it is not. This makes
it somewhat difficult to understand. One of the most important theorems about connected
sets is the following.

Theorem 10.2.2 Suppose U is a set of connected sets and that there exists a point p which
is in all of these connected sets. Then K ≡ ∪U is connected.

Proof: Suppose K = A∪B where Ā∩B = B̄∩A = /0,A ̸= /0,B ̸= /0. Let U ∈U . Then
U = (U ∩A)∪ (U ∩B) and this would separate U if both sets in the union are nonempty
since the limit points of U ∩B are contained in the limit points of B. It follows that every
set of U is contained in one of A or B. Suppose then that some U ⊆ A. Then all U ∈ U
must be contained in A because if one is contained in B, this would violate the assumption
that they all have a point p in common. Thus K is connected after all because this requires
B = /0. Alternatively, p is in one of these sets. Say p ∈ A. Then by the above argument
every U must be in A because if not, the above would be a separation of U . Thus B = /0. ■

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

V

Theorem 10.2.3 Let f : X → Y be continuous where Y is a metric space and X is con-
nected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that f (X)=
A∪B where A and B separate f (X) . Then consider the sets f−1 (A) and f−1 (B) . If z
∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A. Therefore, there exists an
open set, U containing f (z) such that U∩A= /0. But then, the continuity of f and Theorem
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10.1.27 implies that f−1 (U) is an open set containing z such that f−1 (U)∩f−1 (A) = /0.
Therefore, f−1 (B) contains no limit points of f−1 (A) . Similar reasoning implies f−1 (A)
contains no limit points of f−1 (B). It follows that X is separated by f−1 (A) and f−1 (B) ,
contradicting the assumption that X was connected. ■

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 10.2.4 Let S be a set and let p ∈ S. Denote by Cp the union of all connected
subsets of S which contain p. This is called the connected component determined by p.

Theorem 10.2.5 Let Cp be a connected component of a set S in a metric space. Then Cp

is a connected set and if Cp∩Cq ̸= /0, then Cp =Cq.

Proof: Let C denote the connected subsets of S which contain p. By Theorem 10.2.2,
∪C = Cp is connected. If x ∈Cp ∩Cq, then from Theorem 10.2.2, Cp ⊇Cp ∪Cq and so
Cp ⊇Cq . The inclusion goes the other way by the same reason. ■

This shows the connected components of a set are equivalence classes and partition the
set.

A set, I is an interval in R if and only if whenever x,y ∈ I then (x,y)⊆ I. The following
theorem is about the connected sets in R.

Theorem 10.2.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈C. You need to show (p,q)⊆C. If

x ∈ (p,q)\C

let C∩ (−∞,x) ≡ A, and C∩ (x,∞) ≡ B. Then C = A∪B and the sets A and B separate C
contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A and
y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S≡ {t ∈ [x,y] : [x, t]⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if l /∈ B,
then for some δ > 0,(l, l +δ )∩B = /0 contradicting the definition of l as an upper bound
for S. Therefore, l ∈ B which implies l /∈ A after all, a contradiction. It follows I must be
connected. ■

This yields a generalization of the intermediate value theorem from one variable calcu-
lus.

Corollary 10.2.7 Let E be a connected set in a metric space and suppose f : E → R and
that y ∈ ( f (e1) , f (e2)) where ei ∈ E. Then there exists e ∈ E such that f (e) = y.

Proof: From Theorem 10.2.3, f (E) is a connected subset of R. By Theorem 10.2.6
f (E) must be an interval. In particular, it must contain y. This proves the corollary. ■

The following theorem is a very useful description of the open sets in R.

Theorem 10.2.8 Let U be an open set in R. Then there exist countably many disjoint open
sets {(ai,bi)}∞

i=1 such that U = ∪∞
i=1 (ai,bi) .
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Proof: Let p ∈U and let z ∈Cp, the connected component determined by p. Since U is
open, there exists, δ > 0 such that (z−δ ,z+δ )⊆U. It follows from Theorem 10.2.2 that

(z−δ ,z+δ )⊆Cp.

This shows Cp is open. By Theorem 10.2.6, this shows Cp is an open interval, (a,b) where
a,b ∈ [−∞,∞] . There are therefore at most countably many of these connected compo-
nents because each must contain a rational number and the rational numbers are countable.
Denote by {(ai,bi)}∞

i=1 the set of these connected components. ■

Definition 10.2.9 A set E in a metric space is arcwise connected if for any two points,
p,q ∈ E, there exists a closed interval, [a,b] and a continuous function, γ : [a,b]→ E such
that γ (a) = p and γ (b) = q.

An example of an arcwise connected metric space would be any subset of Rn which is
the continuous image of an interval. Arcwise connected is not the same as connected. A
well known example is the following.{(

x,sin
1
x

)
: x ∈ (0,1]

}
∪{(0,y) : y ∈ [−1,1]} (10.2)

You can verify that this set of points in the normed vector spaceR2 is not arcwise connected
but is connected.

10.3 Subspaces Spans And Bases
As shown earlier, Fn is an example of a vector space with field of scalars F. Here is a
short review of the major exchange theorem. Here and elsewhere, when it is desired to
emphasize that certain things are vectors, bold face will be used. However, sometimes the
context makes this sufficiently clear and bold face is not used.

Theorem 10.3.1 If span(u1, · · · ,ur) ⊆ span(v1, · · · ,vs) ≡ V and {u1, · · · ,ur} are lin-
early independent, then r ≤ s.

Proof: Suppose r > s. Let Ep denote a finite list of vectors of {v1, · · · ,vs} and let
∣∣Ep
∣∣

denote the number of vectors in the list. Let Fp denote the first p vectors in {u1, · · · ,ur}.
In case p = 0,Fp will denote the empty set. For 0≤ p≤ s, let Ep have the property

span(Fp,Ep) =V

and
∣∣Ep
∣∣ is as small as possible for this to happen. I claim

∣∣Ep
∣∣≤ s− p if Ep is nonempty.

Here is why. For p = 0, it is obvious. Suppose true for some p < s. Then

up+1 ∈ span(Fp,Ep)

and so there are constants, c1, · · · ,cp and d1, · · · ,dm where m≤ s− p such that

up+1 =
p

∑
i=1

ciui +
m

∑
j=1

diz j

for {z1, · · · ,zm} ⊆ {v1, · · · ,vs} .Then not all the di can equal zero because this would
violate the linear independence of the {u1, · · · ,ur} . Therefore, you can solve for one of
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the zk as a linear combination of
{
u1, · · · ,up+1

}
and the other z j. Thus you can change Fp

to Fp+1 and include one fewer vector in Ep. Thus
∣∣Ep+1

∣∣≤ m−1≤ s− p−1. This proves
the claim.

Therefore, Es is empty and span(u1, · · · ,us) = V. However, this gives a contradiction
because it would require us+1 ∈ span(u1, · · · ,us) which violates the linear independence
of these vectors. ■

Also recall the following.

Definition 10.3.2 A finite set of vectors, {x1, · · · ,xr} is a basis for a vector space V if

span(x1, · · · ,xr) =V

and {x1, · · · ,xr} is linearly independent. Thus if v ∈V there exist unique scalars, v1, · · · ,vr
such that v = ∑

r
i=1 vixi. These scalars are called the components of v with respect to the

basis {x1, · · · ,xr}.

Corollary 10.3.3 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.

Lemma 10.3.4 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span(v1, · · · ,vr) is a sub-
space.

Definition 10.3.5 Let V be a vector space. Then dim(V ) read as the dimension of V is the
number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace of a finite di-
mensional vector space even has a basis. In fact it does and this is in the next theorem.
First, here is an interesting lemma which was also presented earlier.

Lemma 10.3.6 Suppose v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Recall that this implies the following theorems also presented earlier.

Theorem 10.3.7 Let V be a nonzero subspace of Y a finite dimensional vector space hav-
ing dimension n. Then V has a basis.

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 10.3.8 Let V be a subspace of Y, a finite dimensional vector space of dimension
n and let {v1, · · · ,vr} be a linearly independent set of vectors in V . Then either it is a basis
for V or there exist vectors, vr+1, · · · ,vs such that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for
V.

Theorem 10.3.9 Let V be a subspace of Y, a finite dimensional vector space of dimension
n and suppose span(u1 · · · ,up) = V where the ui are nonzero vectors. Then there exist
vectors, {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆

{
u1 · · · ,up

}
and {v1 · · · ,vr} is a basis for

V .
1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as

in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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10.4 Inner Product and Normed Linear Spaces
10.4.1 The Inner Product in Fn

To do calculus, you must understand what you mean by distance. For functions of one
variable, the distance was provided by the absolute value of the difference of two numbers.
This must be generalized to Fn and to more general situations. This is the most familiar
setting for elementary courses. We call it the dot product in calculus and physics but it is a
case of something which also works in Cn.

Definition 10.4.1 Let x,y ∈ Fn. Thus x = (x1, · · · ,xn) where each xk ∈ F and a similar
formula holding for y. Then the inner product of these two vectors is defined to be

x ·y ≡ (x,y)≡∑
j

x jy j ≡ x1y1 + · · ·+ xnyn.

This is also often denoted by (x,y) or as ⟨x,y⟩ and is called an inner product. I will use
either notation.

Notice how you put the conjugate on the entries of the vector, y. It makes no difference
if the vectors happen to be real vectors but with complex vectors you must do it this way2.
The reason for this is that when you take the inner product of a vector with itself, you want
to get the square of the length of the vector, a positive number. Placing the conjugate on
the components of y in the above definition assures this will take place. Thus

(x,x) = ∑
j

x jx j = ∑
j

∣∣x j
∣∣2 ≥ 0.

If you didn’t place a conjugate as in the above definition, things wouldn’t work out cor-
rectly. For example,

(1+ i)2 +22 = 4+2i

and this is not a positive number.
The following properties of the inner product follow immediately from the definition

and you should verify each of them.
Properties of the inner product:

1. (u,v) = (v,u)

2. If a,b are numbers and u,v,z are vectors then ((au+bv) ,z) = a(u,z)+b(v,z) .

3. (u,u)≥ 0 and it equals 0 if and only if u= 0.

Note this implies (x,αy) = α (x,y) because

(x,αy) = (αy,x) = α (y,x) = α (x,y)

The norm is defined as follows.

Definition 10.4.2 For x ∈ Fn, |x| ≡
(

∑
n
k=1 |xk|2

)1/2
= (x,x)1/2

2Sometimes people put the conjugate on the components of the first entry. It doesn’t matter a lot, but it is good
to be consistent. I have chosen to place the conjugate on the components of the second entry.
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10.4.2 General Inner Product Spaces
Any time you have a vector space which possesses an inner product, something satisfying
the properties 1 - 3 above, it is called an inner product space. As usual, F will mean the
field of scalars, either C or R.

Here is a fundamental inequality called the Cauchy Schwarz inequality which holds
in any inner product space. First here is a simple lemma.

Lemma 10.4.3 If z ∈ F there exists θ ∈ F such that θz = |z| and |θ |= 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z
|z|

. Recall that for z = x+ iy,z = x− iy

and zz = |z|2. In case z is real, there is no change in the above. ■

Theorem 10.4.4 (Cauchy Schwarz)Let H be an inner product space. The following in-
equality holds for x and y ∈ H.

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 (10.3)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ F such that |θ |= 1 and θ (x,y) = |(x,y)| . Consider

p(t)≡
(
x+θ ty,x+ tθy

)
where t ∈ R. Then from the above list of properties of the inner product,

0 ≤ p(t) = (x,x)+ tθ (x,y)+ tθ (y,x)+ t2 (y,y)

= (x,x)+ tθ (x,y)+ tθ(x,y)+ t2 (y,y)

= (x,x)+2t Re(θ (x,y))+ t2 (y,y)

= (x,x)+2t |(x,y)|+ t2 (y,y) (10.4)

and this must hold for all t ∈R. Therefore, if (y,y) = 0 it must be the case that |(x,y)|= 0
also since otherwise the above inequality would be violated. Therefore, in this case,

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 .

On the other hand, if (y,y) ̸= 0, then p(t) ≥ 0 for all t means the graph of y = p(t) is a
parabola which opens up and it either has exactly one real zero in the case its vertex touches
the t axis or it has no real zeros. From the quadratic formula this happens exactly when

4 |(x,y)|2−4(x,x)(y,y)≤ 0

which is equivalent to 10.3.
It is clear from a computation that if one vector is a scalar multiple of the other that

equality holds in 10.3. Conversely, suppose equality does hold. Then this is equivalent to
saying 4 |(x,y)|2−4(x,x)(y,y) = 0 and so from the quadratic formula, there exists one
real zero to p(t) = 0. Call it t0. Then p(t0)≡

(
x+θ t0y,x+ t0θy

)
=
∣∣x+θ ty

∣∣2 = 0 and
so x=−θ t0y. This proves the theorem. ■

Note that in establishing the inequality, I only used part of the above properties of the
inner product. It was not necessary to use the one which says that if (x,x) = 0 then x= 0.

Now the length of a vector can be defined.
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Definition 10.4.5 Let z ∈ H. Then |z| ≡ (z,z)1/2.

Theorem 10.4.6 For length defined in Definition 10.4.5, the following hold.

|z| ≥ 0 and |z|= 0 if and only if z = 0 (10.5)

If α is a scalar, |αz|= |α| |z| (10.6)

|z+w| ≤ |z|+ |w| . (10.7)

Proof: The first two claims are left as exercises. To establish the third,

|z+w|2 ≡ (z+w,z+w) = (z,z)+(w,w)+(w,z)+(z,w)

= |z|2 + |w|2 +2Re(w,z)≤ |z|2 + |w|2 +2 |(w,z)|
≤ |z|2 + |w|2 +2 |w| |z|= (|z|+ |w|)2 . ■

One defines the distance between two vectors x,y in an inner product space as |x−y| .
This produces a metric in the obvious way: d (x,y)≡ |x−y|.

Not surprisingly we have the following theorem in which F will be either R or C.

Theorem 10.4.7 Fn is complete. Also, if K is a nonempty closed and bounded subset of
Fn, then K is compact. Also, if f : K→ R, it achieves its maximum and minimum on K.

Proof: Recall Example 10.1.23 which established completeness of Fn with the funny
norm ||x||

∞
≡max{|xi| , i = 1,2, · · · ,n} . However, 1√

n |x| ≤ ||x||∞≤ |x| and so the Cauchy
sequences and limits are exactly the same for the two norms. Thus Fn is complete where
the norm is the one just discussed.

Now suppose K is closed and bounded. By the estimate on the norms just given, it is
closed and bounded with respect to ||·||

∞
also because a point is a limit point with respect

to one norm if and only if it is a limit point with respect to the other. Now if B(0,r)⊇ K,
then B∞ (0,r)⊇K also where this symbol denotes the ball taken with respect to ||·||

∞
rather

than |·|. Hence K ⊆ ∏
n
j=1 ([−r,r]+ [−ir, ir]) . It suffices to verify sequential compactness

thanks to Theorem 10.1.38. Letting {xn} ⊆ K, it follows that Rexn
i is in [−r,r] and Imxn

i
is in [−r,r] and so, taking 2n subsequences, there exists a subsequence still denoted with n
such that limn→∞ Rexn

i = ai ∈ [−r,r] , limn→∞ Imxn
i = bi for each i. Hence xn→a+ ib≡ x.

Now, since K is closed, it follows that x ∈ K and this shows sequential compactness which
is equivalent to compactness.

The last claim is as follows. Let M ≡ sup{ f (x) : x ∈ K} and let xn be a maximizing
sequence so that M = limn→∞ f (xn) . By compactness, there is a subsequence xnk→x∈K.
Then by continuity, M = limk→∞ f

(
xnk

)
= f (x) . The existence of the minimum is similar.

■

10.4.3 Normed Vector Spaces
The best sort of a norm is one which comes from an inner product, because these norms
preserve familiar geometrical ideas. However, any vector space V which has a function ||·||
which maps V to [0,∞) is called a normed vector space if ||·|| satisfies 10.8 - 10.10. That is

||z|| ≥ 0 and ||z||= 0 if and only if z = 0 (10.8)
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If α is a scalar, ||αz||= |α| ||z|| (10.9)

||z+w|| ≤ ||z||+ ||w|| . (10.10)

The last inequality above is called the triangle inequality. Another version of this is

|||z||− ||w||| ≤ ||z−w|| (10.11)

Note that this shows that x→∥x∥ is a continuous function. Thus

B(z,r)≡ {x : ∥x−z∥< r}

is an open set and
D(z,r)≡ {x : ∥x−z∥ ≤ r}

is a closed set.
To see that 10.11 holds, note

||z||= ||z−w+w|| ≤ ||z−w||+ ||w||

which implies
||z||− ||w|| ≤ ||z−w||

and now switching z and w, yields

||w||− ||z|| ≤ ||z−w||

which implies 10.11.
The distance between x,y is given by

∥x−y∥

This distance satisfies
∥x−y∥= ∥y−x∥

∥x−y∥ ≥ 0 and is 0 if and only if x= y

∥x−y∥ ≤ ∥x−z∥+∥z−y∥

Thus this yields a metric space, but it has more because it also involves interaction with the
algebra of the vector space.

10.5 Tietze Extension Theorem
This is an interesting theorem which holds in arbitrary normal topological spaces. In par-
ticular it holds in metric space and this is the context in which it will be discussed. First,
review Lemma 10.1.14.

Lemma 10.5.1 Let H,K be two nonempty disjoint closed subsets of X . Then there exists
a continuous function, g : X → [−1/3,1/3] such that g(H) =−1/3, g(K) = 1/3,g(X)⊆
[−1/3,1/3] .
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Proof: Let f (x) ≡ dist(x,H)
dist(x,H)+dist(x,K) . The denominator is never equal to zero because

if dist(x,H) = 0, then x ∈ H because H is closed. (To see this, pick hk ∈ B(x,1/k)∩H.
Then hk → x and since H is closed, x ∈ H.) Similarly, if dist(x,K) = 0, then x ∈ K and
so the denominator is never zero as claimed. Hence f is continuous and from its definition,
f = 0 on H and f = 1 on K. Now let g(x) ≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired

properties. ■

Definition 10.5.2 For f : M ⊆ X → R, let ∥ f∥M ≡ sup{| f (x)| : x ∈M} . This is just no-
tation. I am not claiming this is a norm.

Lemma 10.5.3 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function, g which is defined and continuous on all
of X such that ∥ f −g∥M ≤ 2

3 , g(X)⊆ [−1/3,1/3] . If X is a normed vector space,and f is
odd, meaning that M is symmetric (x ∈M if and only if −x ∈M) and f (−x) = − f (x) .
Then we can assume g is also odd.

Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 10.5.1 there exists
g such that g is a continuous function defined on all of X and g(H) =−1/3, g(K) = 1/3,
and g(X)⊆ [−1/3,1/3] . It follows ∥ f −g∥M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
If both H,K = /0, let g = 0.

When M is symmetric and f is odd, g(x)≡ 1
3

dist(x,H)−dist(x,K)
dist(x,H)+dist(x,K) . When x ∈H this gives

1
3
−dist(x,K)
dist(x,K) = − 1

3 . Then x ∈ K, this gives 1
3

dist(x,H)
dist(x,H) =

1
3 . Also g(H) = −1/3, f (H) ⊆

[−1,−1/3] so for x ∈ H, |g(x)− f (x)| ≤ 2
3 . It is similar for x ∈ K. If x is in neither H

nor K, then g(x) ∈ [−1/3,1/3] and so is f (x) . Thus ∥ f −g∥M ≤ 2
3 . Now by assumption,

since f is odd, H =−K. It is clear that g is odd because

g(−x) =
1
3

dist(−x,H)−dist(−x,K)

dist(−x,H)+dist(−x,K)
=

1
3

dist(−x,−K)−dist(−x,−H)

dist(−x,−K)+dist(−x,−H)

=
1
3

dist(x,K)−dist(x,H)

dist(x,K)+dist(x,H)
=−g(x) . ■

Lemma 10.5.4 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of X such that g = f on M and g has its values in [−1,1] . If X is a normed linear space
and f is odd, then we can also assume g is odd.

Proof: Using Lemma 10.5.3, let g1 be such that g1 (X)⊆ [−1/3,1/3] and ∥ f −g1∥M ≤
2
3 . Suppose g1, · · · ,gm have been chosen such that g j (X)⊆ [−1/3,1/3] and∥∥∥∥∥ f −

m

∑
i=1

(
2
3

)i−1

gi

∥∥∥∥∥
M

<

(
2
3

)m

. (10.12)

This has been done for m = 1. Then
∥∥∥( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)∥∥∥
M
≤ 1 and so

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
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can play the role of f in the first step of the proof. Therefore, there exists gm+1 defined and
continuous on all of X such that its values are in [−1/3,1/3] and∥∥∥∥∥

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∥∥∥∥∥
M

≤ 2
3
.

Hence ∥∥∥∥∥
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−
(

2
3

)m

gm+1

∥∥∥∥∥
M

≤
(

2
3

)m+1

.

It follows there exists a sequence, {gi} such that each has its values in [−1/3,1/3] and for
every m 10.12 holds. Then let g(x)≡ ∑

∞
i=1
( 2

3

)i−1
gi (x) . It follows

|g(x)| ≤

∣∣∣∣∣ ∞

∑
i=1

(
2
3

)i−1

gi (x)

∣∣∣∣∣≤ m

∑
i=1

(
2
3

)i−1 1
3
≤ 1

and
∣∣∣( 2

3

)i−1
gi (x)

∣∣∣≤ ( 2
3

)i−1 1
3 so the Weierstrass M test applies and shows convergence is

uniform. Therefore g must be continuous by Theorem 10.1.46. The estimate 10.12 implies
f = g on M. The last claim follows because we can take each gi odd. ■

The following is the Tietze extension theorem.

Theorem 10.5.5 Let M be a closed nonempty subset of a metric space X and let f : M→
[a,b] be continuous at every point of M. Then there exists a function g continuous on all of
X which coincides with f on M such that g(X) ⊆ [a,b] . If [a,b] is centered on 0, and if X
is a normed linear space and f is odd, then we can obtain that g is also odd.

Proof: Let f1 (x) = 1+ 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

10.5.4 and so there exists g1 : X → [−1,1] such that g is continuous on X and equals f1 on
M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+ b. This works. The last claim follows from the same

arguments which gave Lemma 10.5.4 or the change of variables just given. ■

Corollary 10.5.6 Let M be a closed nonempty subset of a metric space X and let f : M→
[a,b] be continuous at every point of M. Also let ∥ f −g∥ ≤ ε. Then there exists continuous
f̂ extending f with f̂ (X) ⊆ [a,b] and ĝ extending g such that ĝ(X) ⊆ [a− ε,b+ ε]. Also∥∥ f̂ − ĝ

∥∥≤ ε.

Proof: Let f̂ be the extension of f from the above theorem. Now let F be the extension
of f −g with ∥F∥ ≤ ε . Then let ĝ = f̂ −F. Then for x ∈M, ĝ(x) = f (x)− ( f (x)−g(x)) =
g(x). Thus it extends g and clearly ĝ(X)⊆ [a− ε,b+ ε]. ■

10.5.1 The p Norms
Examples of norms are the p norms on Cn. These do not come from an inner product but
they are norms just the same.

Definition 10.5.7 Let x ∈ Cn. Then define for p≥ 1, ||x||p ≡ (∑n
i=1 |xi|p)1/p .

The following inequality is called Holder’s inequality.
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Proposition 10.5.8 For x,y ∈ Cn,∑n
i=1 |xi| |yi| ≤ (∑n

i=1 |xi|p)1/p
(

∑
n
i=1 |yi|p

′)1/p′

.

The proof will depend on the following lemma.

Lemma 10.5.9 If a,b≥ 0 and p′ is defined by 1
p +

1
p′ = 1, then ab≤ ap

p + bp′

p′ .

Proof of the Proposition: If x or y equals the zero vector there is nothing to prove.

Therefore, assume they are both nonzero. Let A= (∑n
i=1 |xi|p)1/p and B=

(
∑

n
i=1 |yi|p

′)1/p′

.
Then using Lemma 10.5.9,

n

∑
i=1

|xi|
A
|yi|
B
≤

n

∑
i=1

[
1
p

(
|xi|
A

)p

+
1
p′

(
|yi|
B

)p′
]

=
1
p

1
Ap

n

∑
i=1
|xi|p +

1
p′

1
Bp

n

∑
i=1
|yi|p

′
=

1
p
+

1
p′

= 1

and so ∑
n
i=1 |xi| |yi| ≤ AB = (∑n

i=1 |xi|p)1/p
(

∑
n
i=1 |yi|p

′)1/p′

■

Theorem 10.5.10 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that ||·||p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||·|| in place of ||·||p in
what follows. Note also that p

p′ = p−1. Then using the Holder inequality,

||x+y||p =
n

∑
i=1
|xi + yi|p ≤

n

∑
i=1
|xi + yi|p−1 |xi|+

n

∑
i=1
|xi + yi|p−1 |yi|

=
n

∑
i=1
|xi + yi|

p
p′ |xi|+

n

∑
i=1
|xi + yi|

p
p′ |yi|

≤

(
n

∑
i=1
|xi + yi|p

)1/p′
( n

∑
i=1
|xi|p

)1/p

+

(
n

∑
i=1
|yi|p

)1/p


= ||x+y||p/p′
(
||x||p + ||y||p

)
so dividing by ||x+y||p/p′ , it follows ||x+y||p ||x+y||−p/p′ = ||x+y|| ≤ ||x||p +
||y||p

(
p− p

p′ = p
(

1− 1
p′

)
= p 1

p = 1
)
. ■

It only remains to prove Lemma 10.5.9.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = t p−1

t = xq−1
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ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

Note equality occurs when ap = bq. ■
Alternate proof of the lemma: First note that if either a or b are zero, then there is

nothing to show so we can assume b,a > 0. Let b > 0 and let

f (a) =
ap

p
+

bq

q
−ab

Then the second derivative of f is positive on (0,∞) so its graph is convex. Also f (0)> 0
and lima→∞ f (a) = ∞. Then a short computation shows that there is only one critical point,
where f is minimized and this happens when a is such that ap = bq. At this point,

f (a) = bq−bq/pb = bq−bq−1b = 0

Therefore, f (a)≥ 0 for all a and this proves the lemma. ■
Another example of a very useful norm on Fn is the norm ∥·∥

∞
defined by

∥x∥
∞
≡max{|xk| : k = 1,2, · · · ,n}

You should verify that this satisfies all the axioms of a norm. Here is the triangle inequality.

∥x+y∥
∞

= max
k
{|xk + yk|} ≤max

k
{|xk|+ |yk|}

≤ max
k
{|xk|}+max

k
{|yk|}= ∥x∥∞

+∥y∥
∞

It turns out that in terms of analysis (limits of sequences, completeness and so forth), it
makes absolutely no difference which norm you use. There are however, significant ge-
ometric differences. This will be explained later. First is the notion of an orthonormal
basis.

10.5.2 Orthonormal Bases
Not all bases for an inner product space H are created equal. The best bases are orthonor-
mal.

Definition 10.5.11 Suppose {v1, · · · ,vk} is a set of vectors in an inner product space H.
It is an orthonormal set if

(vi,v j) = δ i j =

{
1 if i = j
0 if i ̸= j

Every orthonormal set of vectors is automatically linearly independent. Indeed, if

n

∑
k=1

akvk = 0,

then taking the inner product with v j, yields 0 = ∑
n
k=1 ak (vk,v j) = a j. Thus each a j = 0.

We will use this simple observation whenever convenient.
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Proposition 10.5.12 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is
linearly independent.

Proof: Suppose ∑
k
i=1 civi = 0. Then taking inner products with v j,

0 = (0,v j) = ∑
i

ci (vi,v j) = ∑
i

ciδ i j = c j.

Since j is arbitrary, this shows the set is linearly independent as claimed. ■
It turns out that if X is any subspace of H, then there exists an orthonormal basis for X .

Lemma 10.5.13 Let X be a subspace of dimension n whose basis is {x1, · · · ,xn} . Then
there exists an orthonormal basis for X , {u1, · · · ,un} which has the property that for each
k ≤ n, span(x1, · · · ,xk) = span(u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for X . Let u1 ≡ x1/ |x1| . Therefore, it follows
that for k = 1, span(u1) = span(x1) and {u1} is an orthonormal set. Now suppose for
some k < n, u1, · · · , uk have been chosen such that (u j,ul) = δ jl and span(x1, · · · ,xk) =
span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1,u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1,u j)u j

∣∣∣ , (10.13)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 10.13 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k, then denoting by C the scalar
∣∣∣xk+1−∑

k
j=1 (xk+1,u j)u j

∣∣∣−1
,

(uk+1,ul) =C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)(u j,ul)

)

=C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)δ l j

)
=C ((xk+1,ul)− (xk+1,ul)) = 0.

The vectors,
{
u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.
The following corollary is obtained from the above process.

Corollary 10.5.14 Let X be a finite dimensional inner product space of dimension n whose
basis is {u1, · · · ,uk,xk+1, · · · ,xn} . Then if {u1, · · · ,uk} is orthonormal, then the Gram
Schmidt process applied to the given list of vectors in order leaves {u1, · · · ,uk} unchanged.
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10.6 Equivalence Of Norms
As mentioned above, it makes absolutely no difference which norm you decide to use. This
holds in general finite dimensional normed spaces and is shown here.

Definition 10.6.1 Let (V,∥·∥) be a normed linear space with basis {v1, · · · ,vn}. For x∈V,
let its component vector in Fn be (α1, · · · ,αn) so that x= ∑i α ivi. Then define

θx≡α=
(

α1 · · · αn

)T

Thus θ is well defined, one to one and onto from V to Fn. It is also linear and its inverse
θ
−1 satisfies all the same algebraic properties.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let

f (α)≡

∥∥∥∥∥∑i
α ivi

∥∥∥∥∥≡ ∣∣∣∣θ−1α
∣∣∣∣

Then it is clear that f is a continuous function. This is because α→∑i α ivi is a continuous
map into V and from the triangle inequality x→∥x∥ is continuous as a map from V to R.

Lemma 10.6.2 There exists δ > 0 and ∆≥ δ such that

δ = min{ f (α) : |α|= 1} , ∆ = max{ f (α) : |α|= 1}

Also,

δ |α| ≤
∣∣∣∣θ−1α

∣∣∣∣≤ ∆ |α| (10.14)
δ |θv| ≤ ||v|| ≤ ∆ |θv| (10.15)

Proof: These numbers exist thanks to Theorem 10.4.7. It cannot be that δ = 0 be-
cause if it were, you would have |α| = 1 but ∑

n
j=1 αkv j = 0 which is impossible since

{v1, · · · ,vn} is linearly independent. The first of the above inequalities follows from

δ ≤
∥∥∥∥θ
−1 α

|α|

∥∥∥∥= f
(

α

|α|

)
≤ ∆

the second follows from observing that θ
−1α is a generic vector v in V . ■

Now we can draw several conclusions about (V,∥·∥) for V finite dimensional.

Theorem 10.6.3 Let (V, ||·||) be a finite dimensional normed linear space. Then the com-
pact sets are exactly those which are closed and bounded. Also (V, ||·||) is complete. If K
is a closed and bounded set in (V, ||·||) and f : K → R, then f achieves its maximum and
minimum on K.

Proof: First note that the inequalities 10.14 and 10.15 show that both θ
−1 and θ are

continuous. Thus these take convergent sequences to convergent sequences.
Let {wk}∞

k=1 be a Cauchy sequence. Then from 10.15, {θwk}∞

k=1 is a Cauchy se-
quence. Thanks to Theorem 10.4.7, it converges to some β ∈ Fn. It follows that

lim
k→∞

θ
−1

θwk = lim
k→∞

wk = θ
−1β ∈V
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This shows completeness.
Next let K be a closed and bounded set. Let {wk} ⊆ K. Then {θwk} ⊆ θK which is

also a closed and bounded set thanks to the inequalities 10.14 and 10.15. Thus there is a
subsequence still denoted with k such that θwk→ β ∈ Fn. Then as just done, wk→ θ

−1β.
Since K is closed, it follows that θ

−1
β ∈ K.

Finally, why are the only compact sets those which are closed and bounded? Let K be
compact. If it is not bounded, then there is a sequence of points of K,{km}∞

m=1 such that
∥km∥ ≥ m. It follows that it cannot have a convergent subsequence because the points are
further apart from each other than 1/2. Hence K is not sequentially compact and conse-
quently it is not compact. It follows that K is bounded. If K is not closed, then there exists
a limit point k which is not in K. (Recall that closed means it has all its limit points.) By
Theorem 10.1.7, there is a sequence of distinct points having no repeats and none equal to
k denoted as {km}∞

m=1 such that km→ k. Then this sequence {km} fails to have a subse-
quence which converges to a point of K. Hence K is not sequentially compact. Thus, if K
is compact then it is closed and bounded.

The last part is identical to the proof in Theorem 10.4.7. You just take a convergent
subsequence of a minimizing (maximizing) sequence and exploit continuity. ■

Next is the theorem which states that any two norms on a finite dimensional vector
space are equivalent.

Theorem 10.6.4 Let ||·|| , |||·||| be two norms on V a finite dimensional vector space. Then
they are equivalent, which means there are constants 0 < a < b such that for all v,

a ||v|| ≤ |||v||| ≤ b ||v||

Proof: In Lemma 10.6.2, let δ ,∆ go with ||·|| and δ̂ , ∆̂ go with |||·|||. Then using the
inequalities of this lemma,

||v|| ≤ ∆ |θv| ≤ ∆

δ̂
|||v||| ≤ ∆∆̂

δ̂
|θv| ≤ ∆

δ

∆̂

δ̂
||v||

and so
δ̂

∆
||v|| ≤ |||v||| ≤ ∆̂

δ
||v||

Thus the norms are equivalent. ■
It follows right away that the closed and open sets are the same with two different

norms. Also, all considerations involving limits are unchanged from one norm to another.

Corollary 10.6.5 Consider the metric spaces (V,∥·∥1) ,(V,∥·∥2) where V has dimension
n. Then a set is closed or open in one of these if and only if it is respectively closed or open
in the other. In other words, the two metric spaces have exactly the same open and closed
sets. Also, a set is bounded in one metric space if and only if it is bounded in the other.

Proof: This follows from Theorem 10.1.27, the theorem about the equivalent formu-
lations of continuity. Using this theorem, it follows from Theorem 10.6.4 that the identity
map I (x)≡ x is continuous. The reason for this is that the inequality of this theorem im-
plies that if ∥vm−v∥1→ 0 then ∥Ivm− Iv∥2 = ∥I (vm−v)∥2→ 0 and the same holds on
switching 1 and 2 in what was just written.

Therefore, the identity map takes open sets to open sets and closed sets to closed sets.
In other words, the two metric spaces have the same open sets and the same closed sets.
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Suppose S is bounded in (V,∥·∥1). This means it is contained in B(0,r)1 where the
subscript of 1 indicates the norm is ∥·∥1 . Let δ ∥·∥1 ≤ ∥·∥2 ≤ ∆∥·∥1 as described above.
Then

S⊆ B(0,r)1 ⊆ B(0,∆r)2

so S is also bounded in (V,∥·∥2). Similarly, if S is bounded in ∥·∥2 then it is bounded in
∥·∥1. ■

10.7 Norms On L (X ,Y )
First here is a definition which applies in all cases, even if X ,Y are infinite dimensional.

Definition 10.7.1 Let X and Y be normed linear spaces with norms ||·||X and ||·||Y respec-
tively. Then L (X ,Y ) denotes the space of linear transformations, called bounded linear
transformations, mapping X to Y which have the property that

||A|| ≡ sup{||Ax||Y : ||x||X ≤ 1}< ∞.

Then ||A|| is referred to as the operator norm of the bounded linear transformation A. We
will always assume that if a norm is present the mappings are bounded. However, we show
that this boundedness will be automatic in the case of finite dimensions.

It is an easy exercise to verify that ||·|| is a norm on L (X ,Y ) and it is always the case
that

||Ax||Y ≤ ||A|| ||x||X .

Furthermore, you should verify that you can replace ≤ 1 with = 1 in the definition. Thus

||A|| ≡ sup{||Ax||Y : ||x||X = 1} .

In the case that the vector spaces are finite dimensional, the situation becomes very simple.

Lemma 10.7.2 Let V be a finite dimensional vector space with norm ||·||V and let W be a
vector space with norm ||·||W . Then if A is a linear map from V to W, then A is continuous
and bounded.

Proof: Suppose limk→∞vk = v in V. Let {v1, · · · ,vn} be a basis and let θ be the
coordinate map of Definition 10.6.1. Then by 10.15, limk→∞ θ

(
vk−v

)
= 0 ∈ Fn. Letting

αk and α be θvk and θv respectively, it follows that αk→α and so

Avk = A
n

∑
j=1

α
k
jv j =

n

∑
j=1

α
k
jAv j

which converges to ∑
n
k=1 α jAv j = Av as k→ ∞. Thus A is continuous. Then also v→

||Av||W is a continuous function. Now let D be the closed ball of radius 1 in V . By
Theorem 10.6.3, this set D is compact and so

max{||Av||W : ||v||V ≤ 1} ≡ ||A||< ∞.■

Then we have the following theorem.
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Theorem 10.7.3 Let X and Y be finite dimensional normed linear spaces of dimension n
and m respectively and denote by ||·|| the norm on either X or Y . Then if A is any linear
function mapping X to Y, then A ∈ L (X ,Y ) and (L (X ,Y ) , ||·||) is a complete normed
linear space of dimension nm with

||Ax|| ≤ ||A|| ||x|| .

Also if A ∈L (X ,Y ) and B ∈L (Y,Z) where X ,Y,Z are normed linear spaces,

∥BA∥ ≤ ∥B∥∥A∥

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the triangle inequality is the only property which is not obvious. It remains to
show this and verify ||A|| < ∞. This last follows from the above Lemma 10.7.2. Thus the
norm is at least well defined. It remains to verify its properties.

||A+B|| ≡ sup{||(A+B)(x)|| : ||x|| ≤ 1}

≤ sup{||Ax|| : ||x|| ≤ 1}+ sup{||Bx|| : ||x|| ≤ 1} ≡ ||A||+ ||B|| .

Next consider the assertion about the dimension of L (X ,Y ) . It follows from Theorem
5.1.4. By Theorem 10.6.4 (L (X ,Y ) , ||·||) is complete. If x ̸= 0,

||Ax|| 1
||x||

=

∣∣∣∣∣∣∣∣A x

||x||

∣∣∣∣∣∣∣∣≤ ||A||
Thus ||Ax|| ≤ ||A|| ||x||.

Consider the last claim.

∥BA∥ ≡ sup
∥x∥≤1

∥B(A(x))∥ ≤ ∥B∥ sup
∥x∥≤1

∥Ax∥= ∥B∥∥A∥ ■

Note by Theorem 10.6.4 you can define a norm any way desired on any finite dimen-
sional linear space which has the field of scalars R or C and any other way of defining a
norm on this space yields an equivalent norm. Thus, it doesn’t much matter as far as no-
tions of convergence are concerned which norm is used for a finite dimensional space. In
particular in the space of m×n matrices, you can use the operator norm defined above, or
some other way of giving this space a norm. A popular choice for a norm is the Frobenius
norm.

Definition 10.7.4 Define A∗ as the transpose of the conjugate of A. This is called the
adjoint of A. Make the space of m×n matrices into a inner product space by defining

(A,B)≡ trace(AB∗)≡∑
i
(AB∗)ii = ∑

i
∑

j
Ai jB∗ji ≡∑

i, j
Ai jBi j

∥A∥ ≡ (A,A)1/2.

This is clearly a norm because, as implied by the notation, A,B→ (A,B) is an inner
product on the space of m×n matrices. You should verify that this is the case.
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10.8 Limits Of A Function
As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points x, which are limit points of D(f) and this concept is defined next. In all that follows
(V,∥·∥) and (W,∥·∥) are two normed linear spaces. Recall the definition of limit point first.

Definition 10.8.1 Let A ⊆W be a set. A point x, is a limit point of A if B(x,r) contains
infinitely many points of A for every r > 0.

Definition 10.8.2 Let f : D(f)⊆V →W be a function and let x be a limit point of D(f).
Then

lim
y→x

f (y) =L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < ∥y−x∥< δ , and y ∈ D(f)

then,
∥L−f (y)∥< ε.

Theorem 10.8.3 If limy→xf (y) =L and limy→xf (y) =L1, then L=L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x| < δ and y ∈
D(f), then

∥f (y)−L∥< ε, ∥f (y)−L1∥< ε.

Pick such a y. There exists one because x is a limit point of D(f). Then

∥L−L1∥ ≤ ∥L−f (y)∥+∥f (y)−L1∥< ε + ε = 2ε.

Since ε > 0 was arbitrary, this shows L=L1. ■
As in the case of functions of one variable, one can define limy→x f (x) =±∞.

Definition 10.8.4 If f (x) ∈ R, limy→x f (x) = ∞ if for every number l, there exists δ > 0
such that whenever ∥y−x∥< δ and y ∈ D(f), then f (x)> l. limy→x f (x) =−∞ if for
every number l, there exists δ > 0 such that whenever ∥y−x∥ < δ and y ∈ D(f), then
f (x)< l.

The following theorem is just like the one variable version of calculus.

Theorem 10.8.5 Suppose f : D(f)⊆V → Fm. Then for x a limit point of D(f),

lim
y→x

f (y) =L (10.16)

if and only if
lim
y→x

fk (y) = Lk (10.17)

where f (y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp).
Suppose here that f has values in W, a normed linear space and

lim
y→x

f (y) = L, lim
y→x

g(y) = K
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where K,L ∈W. Then if a, b ∈ F,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (10.18)

If W is an inner product space,

lim
y→x

( f ,g)(y) = (L,K) (10.19)

If g is scalar valued with limy→x g(y) = K,

lim
y→x

f (y)g(y) = LK. (10.20)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦ f (y) = h(L) . (10.21)

Suppose limy→x f (y) = L. If ∥ f (y)−b∥≤ r for all y sufficiently close to x, then |L−b| ≤ r
also.

Proof: Suppose 10.16. Then letting ε > 0 be given there exists δ > 0 such that if
0 < ∥y− x∥< δ , it follows

| fk (y)−Lk| ≤ ∥f (y)−L∥< ε

which verifies 10.17.
Now suppose 10.17 holds. Then letting ε > 0 be given, there exists δ k such that if

0 < ∥y− x∥< δ k, then
| fk (y)−Lk|< ε.

Let 0 < δ < min(δ 1, · · · ,δ p). Then if 0 < ∥y− x∥< δ , it follows

∥f (y)−L∥
∞
< ε

Any other norm on Fm would work out the same way because the norms are all equivalent.
Each of the remaining assertions follows immediately from the coordinate descriptions

of the various expressions and the first part. However, I will give a different argument for
these.

The proof of 10.18 is left for you. Now 10.19 is to be verified. Let ε > 0 be given.
Then by the triangle inequality,

|( f ,g)(y)− (L,K)| ≤ |( f ,g)(y)− ( f (y) ,K)|+ |( f (y) ,K)− (L,K)|
≤ ∥ f (y)∥∥g(y)−K∥+∥K∥∥ f (y)−L∥ .

There exists δ 1 such that if 0 < ∥y− x∥< δ 1 and y ∈ D( f ), then

∥ f (y)−L∥< 1,

and so for such y, the triangle inequality implies, ∥ f (y)∥ < 1+ ∥L∥. Therefore, for 0 <
∥y− x∥< δ 1,

|( f ,g)(y)− (L,K)| ≤ (1+∥K∥+∥L∥) [∥g(y)−K∥+∥ f (y)−L∥] . (10.22)
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Now let 0 < δ 2 be such that if y ∈ D( f ) and 0 < ∥x− y∥< δ 2,

∥ f (y)−L∥< ε

2(1+∥K∥+∥L∥)
, ∥g(y)−K∥< ε

2(1+∥K∥+∥L∥)
.

Then letting 0 < δ ≤min(δ 1,δ 2), it follows from 10.22 that

|( f ,g)(y)− (L,K)|< ε

and this proves 10.19.
The proof of 10.20 is left to you.
Consider 10.21. Since h is continuous near L, it follows that for ε > 0 given, there

exists η > 0 such that if ∥y−L∥< η , then

∥h(y)−h(L)∥< ε

Now since limy→x f (y) = L, there exists δ > 0 such that if 0 < ∥y− x∥< δ , then

∥ f (y)−L∥< η .

Therefore, if 0 < ∥y− x∥< δ ,

∥h( f (y))−h(L)∥< ε.

It only remains to verify the last assertion. Assume ∥ f (y)−b∥ ≤ r. It is required to
show that ∥L−b∥ ≤ r. If this is not true, then ∥L−b∥ > r. Consider B(L,∥L−b∥− r).
Since L is the limit of f , it follows f (y) ∈ B(L,∥L−b∥− r) whenever y ∈ D( f ) is close
enough to x. Thus, by the triangle inequality,

∥ f (y)−L∥< ∥L−b∥− r

and so

r < ∥L−b∥−∥ f (y)−L∥ ≤ |∥b−L∥−∥ f (y)−L∥|
≤ ∥b− f (y)∥ ,

a contradiction to the assumption that ∥b− f (y)∥ ≤ r. ■
The relation between continuity and limits is as follows.

Theorem 10.8.6 For f : D( f )→W and x ∈ D( f ) a limit point of D( f ), f is continuous
at x if and only if

lim
y→x

f (y) = f (x) .

Proof: First suppose f is continuous at x a limit point of D( f ). Then for every ε > 0
there exists δ > 0 such that if ∥x− y∥ < δ and y ∈ D( f ), then | f (x)− f (y)| < ε . In
particular, this holds if 0 < ∥x− y∥ < δ and this is just the definition of the limit. Hence
f (x) = limy→x f (y).

Next suppose x is a limit point of D( f ) and limy→x f (y) = f (x). This means that if ε >
0 there exists δ > 0 such that for 0 < ∥x− y∥< δ and y ∈D( f ), it follows | f (y)− f (x)|<
ε . However, if y = x, then | f (y)− f (x)| = | f (x)− f (x)| = 0 and so whenever y ∈ D( f )
and ∥x− y∥< δ , it follows | f (x)− f (y)|< ε , showing f is continuous at x. ■
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Example 10.8.7 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.

It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1).

Example 10.8.8 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all, observe the domain of the function is R2 \{(0,0)}, every point in R2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.

10.9 Exercises
1. Consider C ([0,T ] ,Rn) with the norm ∥f∥ ≡ maxx∈[0,T ] ∥f (x)∥

∞
. Explain why the

maximum exists. Show this is a complete metric space. Hint: If you have {fm}
a Cauchy sequence in C ([0,T ] ,Rn) , then for each x, you have {fm (x)} a Cauchy
sequence in Rn so it converges by completeness of Rn. See Example 10.1.23. Thus
there exists f (x)≡ limm→∞fm (x). You must show that f is continuous. Consider

∥fm (x)−fm (y)∥ ≤ ∥fm (x)−fn (x)∥+∥fn (x)−fn (y)∥
+∥fn (y)−fm (y)∥

≤ 2ε/3+∥fn (x)−fn (y)∥

for n large enough. Now let m→ ∞ to get the same inequality with f on the left.
Next use continuity of fn. Finally,

∥f (x)−fn (x)∥= lim
m→∞
∥fm (x)−fn (x)∥

and since a Cauchy sequence, ∥fm−fn∥ < ε whenever m > n for n large enough.
Use to show that ∥f −fn∥∞

→ 0.

2. For f ∈C ([0,T ] ,Rn) , you define the Riemann integral in the usual way using Rie-
mann sums. Alternatively, you can define it as∫ t

0
f (s)ds =

(∫ t

0
f1 (s)ds,

∫ t

0
f2 (s)ds, · · · ,

∫ t

0
fn (s)ds

)
Then show that the following limit exists in Rn for each t ∈ (0,T ) .

lim
h→0

∫ t+h
0 f (s)ds−

∫ t
0 f (s)ds

h
= f (t)
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You should use the fundamental theorem of calculus from one variable calculus and
the definition of the norm to verify this. Recall that limt→sf (t) = l means that for
all ε > 0, there exists δ > 0 such that if 0 < |t− s| < δ , then ∥f (t)− l∥

∞
< ε . You

have to use the definition of a limit in order to establish that something is a limit.

3. A collection of functions F of C ([0,T ] ,Rn) is said to be uniformly equicontinu-
ous if for every ε > 0 there exists δ > 0 such that if f ∈ F and |t− s| < δ , then
∥f (t)−f (s)∥

∞
< ε . Thus the functions are uniformly continuous all at once. The

single δ works for every pair t,s closer together than δ and for all functions f ∈F .
As an easy case, suppose there exists K such that for all f ∈F ,

∥f (t)−f (s)∥
∞
≤ K |t− s|

show that F is uniformly equicontinuous. Now suppose G is a collection of func-
tions of C ([0,T ] ,Rn) which is bounded. That is,

∥f∥= max
t∈[0,T ]

∥f (t)∥
∞
< M < ∞

for all f ∈ G . Then let F denote the functions which are of the form

F (t)≡ y0 +
∫ t

0
f (s)ds

where f ∈ G . Show that F is uniformly equicontinuous. Hint: This is a really
easy problem if you do the right things. Here is the way you should proceed. Re-
member the triangle inequality from one variable calculus which said that for a < b∣∣∣∫ b

a f (s)ds
∣∣∣≤ ∫ b

a | f (s)|ds. Then∥∥∥∥∫ b

a
f (s)ds

∥∥∥∥
∞

= max
i

∣∣∣∣∫ b

a
fi (s)ds

∣∣∣∣≤max
i

∫ b

a
| fi (s)|ds≤

∫ b

a
∥f (s)∥

∞
ds

Reduce to the case just considered using the assumption that these f are bounded.

4. Let V be a vector space with basis {v1, · · · ,vn}. For v ∈ V, denote its coordinate
vector as v = (α1, · · · ,αn) where v = ∑

n
k=1 αkvk. Now define ∥v∥ ≡ ∥v∥

∞
. Show

that this is a norm on V .

5. Let (X ,∥·∥) be a normed linear space. A set A is said to be convex if whenever x,y ∈
A the line segment determined by these points given by tx+(1− t)y for t ∈ [0,1] is
also in A. Show that every open or closed ball is convex. Remember a closed ball
is D(x,r)≡ {x̂ : ∥x̂−x∥ ≤ r} while the open ball is B(x,r)≡ {x̂ : ∥x̂−x∥< r}.
This should work just as easily in any normed linear space.

6. A vector v is in the convex hull of a nonempty set S if there are finitely many vectors
of S,{v1, · · · ,vm} and nonnegative scalars {t1, · · · , tm} such that

v =
m

∑
k=1

tkvk,
m

∑
k=1

tk = 1.

Such a linear combination is called a convex combination. Suppose now that S ⊆V,
a vector space of dimension n. Show that if v = ∑

m
k=1 tkvk is a vector in the convex
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hull for m > n+1, then there exist other nonnegative scalars
{

t ′k
}

summing to 1 such
that v = ∑

m−1
k=1 t ′kvk.Thus every vector in the convex hull of S can be obtained as a

convex combination of at most n+ 1 points of S. This incredible result is in Rudin
[37]. Convexity is more a geometric property than a topological property. Hint:
Consider L : Rm→V ×R defined by

L(a)≡

(
m

∑
k=1

akvk,
m

∑
k=1

ak

)

Explain why ker(L) ̸= {0} . This will involve observing that Rm has higher dimen-
sion that V ×R. Thus L cannot be one to one because one to one functions take
linearly independent sets to linearly independent sets and you can’t have a linearly
independent set with more than n+1 vectors in V×R. Next, letting a∈ ker(L)\{0}
and λ ∈ R, note that λ a ∈ ker(L) . Thus for all λ ∈ R,

v =
m

∑
k=1

(tk +λak)vk.

Now vary λ till some tk+λak = 0 for some ak ̸= 0. You can assume each tk > 0 since
otherwise, there is nothing to show. This is a really nice result because it can be used
to show that the convex hull of a compact set is also compact. Show this next. This
is also Problem 22 but here it is again. This is because it is a really nice result.

7. Show that the usual norm in Fn given by

|x|= (x,x)1/2

satisfies the following identities, the first of them being the parallelogram identity
and the second being the polarization identity.

|x+y|2 + |x−y|2 = 2 |x|2 +2 |y|2

Re(x,y) =
1
4

(
|x+y|2−|x−y|2

)
Show that these identities hold in any inner product space, not just Fn.

8. Let K be a nonempty closed and convex set in an inner product space (X , |·|) which
is complete. For example, Fn or any other finite dimensional inner product space.
Let y /∈ K and let

λ = inf{|y− x| : x ∈ K}

Let {xn} be a minimizing sequence. That is

λ = lim
n→∞
|y− xn|

Explain why such a minimizing sequence exists. Next explain the following using
the parallelogram identity in the above problem as follows.∣∣∣∣y− xn + xm

2

∣∣∣∣2 = ∣∣∣ y2 − xn

2
+

y
2
− xm

2

∣∣∣2
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=−
∣∣∣ y
2
− xn

2
−
( y

2
− xm

2

)∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

Hence ∣∣∣∣xm− xn

2

∣∣∣∣2 = −
∣∣∣∣y− xn + xm

2

∣∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

≤ −λ
2 +

1
2
|y− xn|2 +

1
2
|y− xm|2

Next explain why the right hand side converges to 0 as m,n→ ∞. Thus {xn} is a
Cauchy sequence and converges to some x ∈ X . Explain why x ∈ K and |x− y|= λ .
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two x1,x2 and consider x1+x2

2 using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

9. Let K be a closed convex nonempty set in a complete inner product space (H, |·|)
(Hilbert space) and let y ∈ H. Denote the closest point to y by Px. Show that Px is
characterized as being the solution to the following variational inequality

Re(z−Px,y−Px)≤ 0

for all z ∈ K. Hint: Let x ∈ K. Then, due to convexity, a generic thing in K is of the
form x+ t (z− x) , t ∈ [0,1] for every z ∈ K. Then

|x+ t (z− x)− y|2 = |x− y|2 + t2 |z− x|2− t2Re(z− x,y− x)

If x = Py, then the minimum value of this on the left occurs when t = 0. Function
defined on [0,1] has its minimum at t = 0. What does it say about the derivative
of this function at t = 0? Next consider the case that for some x the inequality
Re(z− x,y− x)≤ 0. Explain why this shows x = Py.

10. Using Problem 9 and Problem 8 show the projection map, P onto a closed convex
subset is Lipschitz continuous with Lipschitz constant 1. That is

|Px−Py| ≤ |x− y|

11. Suppose, in an inner product space, you know Re(x,y) . Show that you also know
Im(x,y). That is, give a formula for Im(x,y) in terms of Re(x,y). Hint:

(x, iy) = −i(x,y) =−i(Re(x,y)+ iIm(x,y))

= −iRe(x,y)+ Im(x,y)

while, by definition,
(x, iy) = Re(x, iy)+ iIm(x, iy)

Now consider matching real and imaginary parts.
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12. Suppose K is a compact subset (If C is a set of open sets whose union contains
K,(open cover) then there are finitely many sets of C whose union contains K.) of
(X ,d) a metric space. Also let C be an open cover of K. Show that there exists δ > 0
such that for all x ∈ K, B(x,δ ) is contained in a single set of C . This number is
called a Lebesgue number. Hint: For each x ∈ K, there exists B(x,δ x) such that this
ball is contained in a set of C . Now consider the balls

{
B
(

x, δ x
2

)}
x∈K

. Finitely

many of these cover K.
{

B
(

xi,
δ xi
2

)}n

i=1
Now consider what happens if you let δ ≤

min
{

δ xi
2 , i = 1,2, · · · ,n

}
. Explain why this works. You might draw a picture to help

get the idea.

13. Suppose C is a set of compact sets (A set is compact if every open cover admits
a finite subcover.) in a metric space (X ,d) and suppose that the intersection of ev-
ery finite subset of C is nonempty. This is called the finite intersection property.
Show that ∩C , the intersection of all sets of C is nonempty. This particular result is
enormously important. Hint: You could let U denote the set

{
KC : K ∈ C

}
. If ∩C

is empty, then its complement is ∪U = X . Picking K ∈ C , it follows that U is an
open cover of K. Therefore, you would need to have

{
KC

1 , · · · ,KC
m
}

is a cover of K.
In other words,

K ⊆ ∪m
i=1KC

i = (∩m
i=1Ki)

C

Now what does this say about the intersection of K with these Ki?

14. Show that if f is continuous and defined on a compact set K in a metric space, then
it is uniformly continuous. Continuous means continuous at every point. Uniformly
continuous means: For every ε > 0 there exists δ > 0 such that if d (x,y) < δ , then
d ( f (x) , f (y)) < ε . The difference is that δ does not depend on x. Hint: Use the
existence of the Lebesgue number in Problem 12 to prove continuity on a compact
set K implies uniform continuity on this set. Hint: Consider

C ≡
{

f−1 (B( f (x) ,ε/2)) : x ∈ X
}
.

This is an open cover of X . Let δ be a Lebesgue number for this open cover. Sup-
pose d (x, x̂)< δ . Then both x, x̂ are in B(x,δ ) and so both are in f−1

(
B
(

f (x̄) , ε

2

))
.

Hence ρ ( f (x) , f (x̄)) < ε

2 and ρ ( f (x̂) , f (x̄)) < ε

2 . Now consider the triangle in-
equality. Recall the usual definition of continuity. In metric space it is as follows:
For (D,d) ,(Y,ρ) metric spaces, f : D→ Y is continuous at x ∈ D means that for all
ε > 0 there exists δ > 0 such that if d (y,x)< δ , then ρ ( f (x) , f (y))< ε . Continuity
on D means continuity at every point of D.

15. The definition of compactness is that a set K is compact if and only if every open
cover (collection of open sets whose union contains K) has a finite subset which is
also an open cover. Show that this is equivalent to saying that every open cover
consisting of balls has a finite subset which is also an open cover.

16. A set K in a metric space is said to be sequentially compact if whenever {xn} is a
sequence in K, there exists a subsequence which converges to a point of K. Show that
if K is compact, then it is sequentially compact. Hint: Explain why if x ∈ K, then
there exist an open set Bx containing x which has xk for only finitely many values of
k. Then use compactness. This was shown in the chapter, but do your own proof of
this part of it.
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17. Show that f : D→ Y is continuous at x ∈ D where (D,d) ,(Y,ρ) are metric spaces
if and only if whenever xn→ x in D, it follows that f (xn)→ f (x). Recall the usual
definition of continuity. f is continuous at x means that for all ε > 0 there exists
δ > 0 such that if d (y,x) < δ , then ρ ( f (x) , f (y)) < ε . Continuity on D means
continuity at every point of D. This is in the chapter, but go through the proof and
write it down in your own words.

18. Give an easier proof of the result of Problem 14. Hint: If f is not uniformly contin-
uous, then there exists ε > 0 and xn,yn,d (xn,yn)<

1
n but d ( f (xn) , f (yn))≥ ε. Now

use sequential compactness of K to get a contradiction.

19. This problem will reveal the best kept secret in undergraduate mathematics, the defi-
nition of the derivative of a function of n variables. Let ∥·∥V be a norm on V and also
denote by ∥·∥W a norm on W . Write ∥·∥ for both to save notation. Let U ⊆V be an
open set. Let f : U 7→W be a function having values in W . Then f is differentiable
at x ∈U means that there exists A ∈L (V,W ) such that for every ε > 0, there exists
a δ > 0 such that whenever 0 < ∥v∥< δ , it follows that

∥f (x+v)−f (x)−Av∥
∥v∥

< ε

Stated more simply,

lim
∥v∥→0

∥f (x+v)−f (x)−Av∥
∥v∥

= 0

Show that A is unique. It is written as Df (x) = A. This is what is meant by the
derivative of f . If V = Rn, and W = Rm, show that with respect to the usual bases,
the matrix of Df (x) is an m×n matrix whose kth column is ∂f

∂xk
.

20. Let V,W be finite dimensional normed linear spaces and let {An}∞

n=1 be a sequence of
linear transformations in L (V,W ) such that supn ∥An∥< ∞. Show that there exists a
subsequence

{
Ank

}
and A ∈L (V,W ) such that limn→∞ ∥An−A∥= 0.

21. Given an example of a sequence {Ak}⊆L (V,V ) such that the minimum polynomial
of each Ak has degree n = dim(V ) but ∥Ak−A∥ → 0 and the minimum polynomial
of A has degree less than n. Hint: You might want to think in terms of the Jordan
form.

22. Let Un,n = 1,2, ... be an open set in a complete metric space (X ,d). Suppose that
Un is also dense so that Ūn = X . Show that ∩∞

n=1Un is dense. Hint: Start with
p ∈ X and form Bp a ball containing p. There exists a point x1 of U1 in Bp. Now
let B̄x1 ⊆ Bp∩U1 and let Bx1 have diameter no more than 1/21. Iterate this. This is
called Bair’s theorem.



Chapter 11

Limits of Vectors and Matrices
11.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 11.1.1 An n×n matrix A = (ai j) , is a Markov matrix if ai j ≥ 0 for all i, j and

∑
i

ai j = 1.

It may also be called a stochastic matrix or a transition matrix. A Markov or stochastic
matrix is called regular if some power of A has all entries strictly positive. A vector v ∈Rn,
is a steady state if Av = v.

Lemma 11.1.2 The property of being a stochastic matrix is preserved by taking products.
It is also true if the sum is of the form ∑ j ai j = 1.

Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
denoted by (ai j) and (bi j) respectively and the entries of AB by (ci j),

∑
i

ci j = ∑
i

∑
k

aikbk j = ∑
k

∑
i

aikbk j = ∑
k

bk j = 1

It is obvious that when the product is taken, if each ai j,bi j ≥ 0, then the same will be true
of sums of products of these numbers. Similar reasoning works for the assumption that
∑ j ai j = 1. ■

The following theorem is convenient for showing the existence of limits.

Theorem 11.1.3 Let A be a real p× p matrix having the properties

1. ai j ≥ 0

2. Either ∑
p
i=1 ai j = 1 or ∑

p
j=1 ai j = 1.

3. The distinct eigenvalues of A are {1,λ 2, . . . ,λ m} where each
∣∣λ j
∣∣< 1.

Then limn→∞ An = A∞ exists in the sense that limn→∞ an
i j = a∞

i j, the i jth entry A∞. Here
an

i j denotes the i jth entry of An. Also, if λ = 1 has algebraic multiplicity r, then the Jordan
block corresponding to λ = 1 is just the r× r identity.

Proof. By the existence of the Jordan form for A, it follows that there exists an invertible
matrix P such that

P−1AP =


I +N

Jr2 (λ 2)
. . .

Jrm (λ m)

= J

285
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where I is r× r for r the multiplicity of the eigenvalue 1 and N is a nilpotent matrix for
which Nr = 0. I will show that because of Condition 2, N = 0.

First of all,
Jri (λ i) = λ iI +Ni

where Ni satisfies Nri
i = 0 for some ri > 0. It is clear that Ni (λ iI) = (λ iI)N and so

(Jri (λ i))
n =

n

∑
k=0

(
n
k

)
Nk

λ
n−k
i =

ri

∑
k=0

(
n
k

)
Nk

λ
n−k
i

which converges to 0 due to the assumption that |λ i| < 1. There are finitely many terms
and a typical one is a matrix whose entries are no larger than an expression of the form

|λ i|n−k Ckn(n−1) · · ·(n− k+1)≤Ck |λ i|n−k nk

which converges to 0 because, by the root test, the series ∑
∞
n=1 |λ i|n−k nk converges. Thus

for each i = 2, . . . , p,
lim
n→∞

(Jri (λ i))
n = 0.

By Condition 2, if an
i j denotes the i jth entry of An, then either

p

∑
i=1

an
i j = 1 or

p

∑
j=1

an
i j = 1, an

i j ≥ 0.

This follows from Lemma 11.1.2. It is obvious each an
i j ≥ 0, and so the entries of An must

be bounded independent of n.
It follows easily from

n times︷ ︸︸ ︷
P−1APP−1APP−1AP · · ·P−1AP = P−1AnP

that
P−1AnP = Jn (11.1)

Hence Jn must also have bounded entries as n→ ∞. However, this requirement is incom-
patible with an assumption that N ̸= 0.

If N ̸= 0, then Ns ̸= 0 but Ns+1 = 0 for some 1≤ s≤ r. Then

(I +N)n = I +
s

∑
k=1

(
n
k

)
Nk

One of the entries of Ns is nonzero by the definition of s. Let this entry be ns
i j. Then this

implies that one of the entries of (I +N)n is of the form
(n

s

)
ns

i j. This entry dominates the
i jth entries of

(n
k

)
Nk for all k < s because

lim
n→∞

(
n
s

)
/

(
n
k

)
= ∞
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Therefore, the entries of (I +N)n cannot all be bounded. From block multiplication,

P−1AnP =


(I +N)n

(Jr2 (λ 2))
n

. . .

(Jrm (λ m))
n


and this is a contradiction because entries are bounded on the left and unbounded on the
right.

Since N = 0, the above equation implies limn→∞ An exists and equals

P


I

0
. . .

0

P−1 ■

Are there examples which will cause the eigenvalue condition of this theorem to hold?
The following lemma gives such a condition. It turns out that if ai j > 0, not just ≥ 0, then
the eigenvalue condition of the above theorem is valid.

Lemma 11.1.4 Suppose A = (ai j) is a stochastic matrix. Then λ = 1 is an eigenvalue. If
ai j > 0 for all i, j, then if µ is an eigenvalue of A, either |µ|< 1 or µ = 1.

Proof: First consider the claim that 1 is an eigenvalue. By definition,

∑
i

1ai j = 1

and so ATv = v where v =
(

1 · · · 1
)T

. Since A,AT have the same eigenvalues, this
shows 1 is an eigenvalue of A. Suppose then that µ is an eigenvalue. Is |µ|< 1 or µ = 1?
Let v be an eigenvector for AT and let |vi| be the largest of the

∣∣v j
∣∣ .

µvi = ∑
j

a jiv j

and now multiply both sides by µvi to obtain

|µ|2 |vi|2 = ∑
j

a jiv jµvi = ∑
j

a ji Re(v jµvi)

≤ ∑
j

a ji |vi|2 |µ|= |µ| |vi|2

Therefore, |µ| ≤ 1. If |µ|= 1, then equality must hold in the above, and so v jviµ must
be real and nonnegative for each j. In particular, this holds for j = i which shows µ is real
and nonnegative. Thus, in this case, µ = 1 because µ̄ = µ is nonnegative and equal to 1.
The only other case is where |µ|< 1. ■

The next lemma is sort of a conservation result. It says the sign and sum of entries of a
vector are preserved when multiplying by a Markov matrix.
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Lemma 11.1.5 Let A be any Markov matrix and let v be a vector having all its components
non negative with ∑i vi = c. Then if w = Av, it follows that wi ≥ 0 for all i and ∑i wi = c.

Proof: From the definition of w,

wi ≡∑
j

ai jv j ≥ 0.

Also
∑

i
wi = ∑

i
∑

j
ai jv j = ∑

j
∑

i
ai jv j = ∑

j
v j = c. ■

The following theorem about limits is now easy to obtain.

Theorem 11.1.6 Suppose A is a Markov matrix in which ai j > 0 for all i, j and suppose w
is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and ∑i wi = c, then the vector v will also satisfy the
conditions, vi ≥ 0, ∑i vi = c.

Proof: By Lemma 11.1.4, since each ai j > 0, the eigenvalues are either 1 or have ab-
solute value less than 1. Therefore, the claimed limit exists by Theorem 11.1.3. The asser-
tion that the components are nonnegative and sum to c follows from Lemma 11.1.5. That
Av = v follows from

v = lim
n→∞

Anw = lim
n→∞

An+1w = A lim
n→∞

Anw = Av. ■

It is not hard to generalize the conclusion of this theorem to regular Markov processes
which are those having some power with all positive entries.

Corollary 11.1.7 Suppose A is a regular Markov matrix, one for which the entries of Ak

are all positive for some k, and suppose w is a vector. Then for each i,

lim
n→∞

(Anw)i = vi

where Av = v. In words, Anw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and ∑i wi = c, Then the vector v will also satisfy the
conditions vi ≥ 0, ∑i vi = c.

Proof: Let the entries of Ak be all positive for some k. Now suppose that ai j ≥ 0 for all
i, j and A = (ai j) is a Markov matrix. Then if B = (bi j) is a Markov matrix with bi j > 0
for all i j, it follows that BA is a Markov matrix which has strictly positive entries. This is
because the i jth entry of BA is

∑
k

bikak j > 0,

Thus, from Lemma 11.1.4, Ak has eigenvalues {1,λ 1, · · · ,λ r} , |λ r|< 1. The same must be
true of A. If Ax= µx for x ̸= 0 and µ ̸= 1, Then Akx= µkx and so either µk = 1 or |µ|<
1. If µk = 1, then |µ| = 1 and the eigenvalues of Ak+1 are either 1 or have absolute value
less than 1 because Ak+1 has all postive entries thanks to Lemma 11.1.4. Thus µk+1 = 1
and so

1 = µ
k+1 = µµ

k = µ

By Theorem 11.1.3, limn→∞ Anw exists. The rest follows as in Theorem 11.1.6. ■
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11.2 Migration Matrices
Definition 11.2.1 Let n locations be denoted by the numbers 1,2, · · · ,n. Also suppose it
is the case that each year ai j denotes the proportion of residents in location j which move
to location i. Also suppose no one escapes or emigrates from without these n locations.
This last assumption requires ∑i ai j = 1. Thus (ai j) is a Markov matrix referred to as a
migration matrix.

If v = (x1, · · · ,xn)
T where xi is the population of location i at a given instant, you obtain

the population of location i one year later by computing ∑ j ai jx j = (Av)i . Therefore, the
population of location i after k years is

(
Akv

)
i . Furthermore, Corollary 11.1.7 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.

As an example of the above, consider the case where n = 3 and the migration matrix is
of the form  .6 0 .1

.2 .8 0

.2 .2 .9

 .

Now  .6 0 .1
.2 .8 0
.2 .2 .9


2

=

 .38 .02 .15
.28 .64 .02
.34 .34 .83


and so the Markov matrix is regular. Therefore,

(
Akv

)
i will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

.6x+ .1z = x

.2x+ .8y = y
.2x+ .2y+ .9z = z

along with the stipulation that the sum of x,y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x,z = 4x,x = x} .

If the total population at the beginning is 150,000, then you solve the following system

y = x, z = 4x, x+ y+ z = 150000

whose solution is easily seen to be {x = 25000,z = 100000,y = 25000} . Thus, after a
long time there would be about four times as many people in the third location as in either
of the other two.

11.3 Absorbing States
There is a different kind of Markov process containing so called absorbing states which
result in transition matrices which are not regular. However, Theorem 11.1.3 may still
apply. One such example is the Gambler’s ruin problem. There is a total amount of money
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denoted by b. The Gambler starts with an amount j > 0 and gambles till he either loses
everything or gains everything. He does this by playing a game in which he wins with
probability p and loses with probability q. When he wins, the amount of money he has
increases by 1 and when he loses, the amount of money he has decreases by 1. Thus the
states are the integers from 0 to b. Let pi j denote the probability that the gambler has i at
the end of a game given that he had j at the beginning. Let pn

i j denote the probability that
the gambler has i after n games given that he had j initially. Thus

pn+1
i j = ∑

k
pik pn

k j,

and so pn
i j is the i jth entry of Pn where P is the transition matrix. The above description

indicates that this transition probability matrix is of the form

P =



1 q 0 0 · · · 0
0 0 q 0

0 p 0
. . .

...
...

. . . . . . q 0
0 p 0 0
0 0 · · · 0 p 1


(11.2)

The absorbing states are 0 and b. In the first, the gambler has lost everything and hence
has nothing else to gamble, so the process stops. In the second, he has won everything and
there is nothing else to gain, so again the process stops.

Consider the eigenvalues of this matrix which is a piece of the above transition matrix.

Lemma 11.3.1 Let p,q > 0 and p+q = 1. Then the eigenvalues of

A≡


0 q 0

p 0
. . .

. . .
. . . q

0 p 0


have absolute value less than 1.

Proof: By Gerschgorin’s theorem, (See Page 139.) if λ is an eigenvalue, then |λ | ≤ 1.
Alternatively, you note that ∑i Ai j ≤ 1. If λ is an eigenvalue of A then it is also one for AT

and if ATx= λx where |xi| is the largest of the
∣∣x j
∣∣ ,

∑
j

A jix j = λxi, |λ | |xi| ≤∑
j

A ji
∣∣x j
∣∣≤ |xi| so |λ | ≤ 1.

Now suppose v is an eigenvector for λ . Then

A v =



qv2

pv1 +qv3
...

pvn−2 +qvn

pvn−1

= λ



v1

v2
...

vn−1

vn

 .
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Suppose |λ |= 1. Let vk be the first nonzero entry. Then vk−1 = 0 and so

qvk+1 = λvk

which implies |vk+1| > |vk|. Thus |vk+1| ≥ |vk|. Then consider the next term. From the
above equations and what was just shown,

|vk+1|= |pvk +qvk+1| ≤ p |vk|+q |vk+2| ≤ p |vk+1|+q |vk+2|

and so
q |vk+1| ≤ q |vk+2|

Continuing this way, it follows that the sequence
{∣∣v j

∣∣}n
j=k must be increasing. Specifi-

cally, if
{∣∣v j

∣∣}m
j=k is increasing for some m > k, then

p |vm−1|+q |vm| ≥ |pvm−2 +qvm|= |λvm−1|= |vm−1|

and so q |vm| ≥ q |vm−1| . Hence |vn| ≥ |vn−1|> 0. However, this is contradicted by the the
last line which states that p |vn−1|= |vn| which requires that |vn−1|> |vn| , a contradiction.
Therefore, it must be that |λ |< 1. ■

Now consider the eigenvalues of 11.2. For P given there,

P−λ I =



1−λ q 0 · · · 0

0 −λ
. . . 0

0 p
. . . q

...
...

. . . −λ 0
0 · · · 0 p 1−λ


and so, expanding the determinant of the matrix along the first column and then along the
last column yields

(1−λ )2 det


−λ q

p
. . . . . .
. . . −λ q

p −λ

 .

The roots of the polynomial after (1−λ )2 have absolute value less than 1 because they are
just the eigenvalues of a matrix of the sort in Lemma 11.3.1. It follows that the conditions
of Theorem 11.1.3 apply and therefore, limn→∞ Pn exists. ■

Of course, the above transition matrix, models many other kinds of problems. It is
called a Markov process with two absorbing states, sometimes a random walk with two
aborbing states.

It is interesting to find the probability that the gambler loses all his money. This is given
by limn→∞ pn

0 j.From the transition matrix for the gambler’s ruin problem, it follows that

pn
0 j = ∑

k
pn−1

0k pk j = qpn−1
0( j−1)+ ppn−1

0( j+1)for j ∈ [1,b−1] ,

pn
00 = 1, and pn

0b = 0.
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Assume here that p ̸= q. Now it was shown above that limn→∞ pn
0 j exists. Denote by Pj this

limit. Then the above becomes much simpler if written as

Pj = qPj−1 + pPj+1 for j ∈ [1,b−1] , (11.3)
P0 = 1 and Pb = 0. (11.4)

It is only required to find a solution to the above difference equation with boundary con-
ditions. To do this, look for a solution in the form Pj = r jand use the difference equation
with boundary conditions to find the correct values of r. Thus you need

r j = qr j−1 + pr j+1

and so to find r you need to have pr2− r+q = 0, and so the solutions for r are r =

1
2p

(
1+
√

1−4pq
)
,

1
2p

(
1−
√

1−4pq
)

Now √
1−4pq =

√
1−4p(1− p) =

√
1−4p+4p2 = 1−2p.

Thus the two values of r simplify to

1
2p

(1+1−2p) =
q
p
,

1
2p

(1− (1−2p)) = 1

Therefore, for any choice of Ci, i = 1,2,

C1 +C2

(
q
p

) j

will solve the difference equation. Now choose C1,C2 to satisfy the boundary conditions
11.4. Thus you need to have

C1 +C2 = 1, C1 +C2

(
q
p

)b

= 0

It follows that

C2 =
pb

pb−qb , C1 =
qb

qb− pb

Thus Pj =

qb

qb− pb +
pb

pb−qb

(
q
p

) j

=
qb

qb− pb −
pb− jq j

qb− pb =
q j
(
qb− j− pb− j

)
qb− pb

To find the solution in the case of a fair game, one could take the limp→1/2 of the above
solution. Taking this limit, you get

Pj =
b− j

b
.

You could also verify directly in the case where p = q = 1/2 in 11.3 and 11.4 that Pj = 1
and Pj = j are two solutions to the difference equation and proceeding as before.
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11.4 Positive Matrices
Earlier theorems about Markov matrices were presented. These were matrices in which all
the entries were nonnegative and either the columns or the rows added to 1. It turns out that
many of the theorems presented can be generalized to positive matrices. When this is done,
the resulting theory is mainly due to Perron and Frobenius. I will give an introduction to
this theory here following Karlin and Taylor [27].

Definition 11.4.1 For A a matrix or vector, the notation, A >> 0 will mean every entry of
A is positive. By A > 0 is meant that every entry is nonnegative and at least one is positive.
By A≥ 0 is meant that every entry is nonnegative. Thus the matrix or vector consisting only
of zeros is≥ 0. An expression like A>> B will mean A−B>> 0 with similar modifications
for > and ≥.

For the sake of this section only, define the following for x= (x1, · · · ,xn)
T , a vector.

|x| ≡ (|x1| , · · · , |xn|)T .

Thus |x| is the vector which results by replacing each entry of x with its absolute value1.
Also define for x ∈ Cn,

||x||1 ≡∑
k
|xk| .

Lemma 11.4.2 Let A >> 0 and let x> 0. Then Ax>> 0.

Proof: (Ax)i = ∑ j Ai jx j > 0 because all the Ai j > 0 and at least one x j > 0.

Lemma 11.4.3 Let A >> 0. Define

S≡ {λ : Ax> λx for some x>> 0} ,

and let
K ≡ {x≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax≥ λx for some x ∈ K} .

Then
sup(S) = sup(S1) .

Proof: Let λ ∈ S. Then there exists x>> 0 such that Ax > λx. Consider the unit
vector y ≡ x/ ||x||1 . Then ||y||1 = 1 and Ay > λy. Therefore, λ ∈ S1 and so S ⊆ S1.
Therefore, sup(S)≤ sup(S1) .

Now let λ ∈ S1. Then there exists x ≥ 0 such that ||x||1 = 1 so x> 0 and Ax > λx.
Letting y ≡ Ax, it follows from Lemma 11.4.2 that Ay >> λy and y >> 0. Thus λ ∈ S
and so S1 ⊆ S which shows that sup(S1)≤ sup(S) . ■

This lemma is significant because the set, {x≥ 0 such that ||x||1 = 1} ≡ K is a com-
pact set in Rn. Define

λ 0 ≡ sup(S) = sup(S1) . (11.5)

The following theorem is due to Perron.
1This notation is just about the most abominable thing imaginable because it is the same notation but entirely

different meaning than the norm. However, it saves space in the presentation of this theory of positive matrices
and avoids the use of new symbols. Please forget about it when you leave this section.
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Theorem 11.4.4 Let A >> 0 be an n×n matrix and let λ 0 be given in 11.5. Then

1. λ 0 > 0 and there exists x0 >> 0 such that Ax0 = λ 0x0 so λ 0 is an eigenvalue for
A.

2. If Ax= µx where x ̸= 0, and µ ̸= λ 0. Then |µ|< λ 0.

3. The eigenspace for λ 0 has dimension 1.

Proof: To see λ 0 > 0, consider the vector, e≡ (1, · · · ,1)T . Then

(Ae)i = ∑
j

Ai j > 0

and so λ 0 is at least as large as
min

i ∑
j

Ai j.

Let {λ k} be an increasing sequence of numbers from S1 converging to λ 0. Letting xk be
the vector from K which occurs in the definition of S1, these vectors are in a compact
set. Therefore, there exists a subsequence, still denoted by xk such that xk→ x0 ∈ K and
λ k→ λ 0. Then passing to the limit,

Ax0 ≥ λ 0x0, x0 > 0.

If Ax0 > λ 0x0, then letting y ≡ Ax0, it follows from Lemma 11.4.2 that Ay >> λ 0y and
y >> 0. But this contradicts the definition of λ 0 as the supremum of the elements of S
because since Ay >> λ 0y, it follows Ay >> (λ 0 + ε)y for ε a small positive number.
Therefore, Ax0 = λ 0x0. It remains to verify that x0 >> 0. But this follows immediately
from

0 < ∑
j

Ai jx0 j = (Ax0)i = λ 0x0i.

This proves 1.
Next suppose Ax= µx and x ̸= 0 and µ ̸= λ 0. Then |Ax|= |µ| |x| . But this implies

A |x| ≥ |µ| |x| . (See the above abominable definition of |x|.)
Case 1: |x| ̸= x and |x| ̸=−x.
In this case, A |x| > |Ax| = |µ| |x| and letting y = A |x| , it follows y >> 0 and

A y >> |µ|y which shows Ay >> (|µ|+ ε)y for sufficiently small positive ε and ver-
ifies |µ|< λ 0.

Case 2: |x|= x or |x|=−x
In this case, the entries of x are all real and have the same sign. Therefore, A |x| =

|Ax| = |µ| |x| . Now let y ≡ |x|/ ||x||1 . Then Ay = |µ|y and so |µ| ∈ S1 showing that
|µ| ≤ λ 0. But also, the fact the entries of x all have the same sign shows µ = |µ| and so
µ ∈ S1. Since µ ̸= λ 0, it must be that µ = |µ|< λ 0. This proves 2.

It remains to verify 3. Suppose then that Ay = λ 0y and for all scalars α,αx0 ̸= y.
Then

ARey = λ 0 Rey, A Imy = λ 0 Imy.

If Rey = α1x0 and Imy = α2x0 for real numbers, α i,then y = (α1 + iα2)x0 and it is
assumed this does not happen. Therefore, either

t Rey ̸= x0 for all t ∈ R
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or
t Imy ̸= x0 for all t ∈ R.

Assume the first holds. Then varying t ∈R, there exists a value of t such that x0+t Rey>0
but it is not the case that x0 + t Rey >> 0. Then A(x0 + t Rey) >> 0 by Lemma 11.4.2.
But this implies λ 0 (x0 + t Rey)>> 0 which is a contradiction. Hence there exist real num-
bers, α1 and α2 such that Rey = α1x0 and Imy = α2x0 showing that y = (α1 + iα2)x0.
This proves 3.

It is possible to obtain a simple corollary to the above theorem.

Corollary 11.4.5 If A > 0 and Am >> 0 for some m ∈ N, then all the conclusions of the
above theorem hold.

Proof: There exists µ0 > 0 such that Amy0 = µ0y0 for y0 >> 0 by Theorem 11.4.4
and

µ0 = sup{µ : Amx≥ µx for some x ∈ K} .

Let λ
m
0 = µ0. Then

(A−λ 0I)
(

Am−1 +λ 0Am−2 + · · ·+λ
m−1
0 I

)
y0 = (Am−λ

m
0 I)y0 = 0

and so letting x0 ≡
(

Am−1 +λ 0Am−2 + · · ·+λ
m−1
0 I

)
y0, it follows x0 >> 0 and Ax0 =

λ 0x0.
Suppose now that Ax = µx for x ̸= 0 and µ ̸= λ 0. Suppose |µ| ≥ λ 0. Multiplying

both sides by A, it follows Amx= µmx and |µm|= |µ|m ≥ λ
m
0 = µ0 and so from Theorem

11.4.4, since |µm| ≥ µ0, and µm is an eigenvalue of Am, it follows that µm = µ0. But by
Theorem 11.4.4 again, this implies x= cy0 for some scalar, c and hence Ay0 = µy0. Since
y0 >> 0, it follows µ ≥ 0 and so µ = λ 0, a contradiction. Therefore, |µ|< λ 0.

Finally, if Ax = λ 0x, then Amx = λ
m
0 x and so x = cy0 for some scalar, c. Conse-

quently,(
Am−1 +λ 0Am−2 + · · ·+λ

m−1
0 I

)
x = c

(
Am−1 +λ 0Am−2 + · · ·+λ

m−1
0 I

)
y0

= cx0.

Hence
mλ

m−1
0 x= cx0

which shows the dimension of the eigenspace for λ 0 is one. ■
The following corollary is an extremely interesting convergence result involving the

powers of positive matrices.

Corollary 11.4.6 Let A > 0 and Am >> 0 for some m∈N. Then for λ 0 given in 11.5, there
exists a rank one matrix P such that limm→∞

∣∣∣∣∣∣( A
λ 0

)m
−P
∣∣∣∣∣∣= 0.

Proof: Considering AT , and the fact that A and AT have the same eigenvalues, Corollary
11.4.5 implies the existence of a vector, v >> 0 such that

ATv = λ 0v.
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Also let x0 denote the vector such that Ax0 = λ 0x0 with x0 >> 0. First note that xT
0 v > 0

because both these vectors have all entries positive. Therefore, v may be scaled such that

vTx0 = xT
0 v = 1. (11.6)

Define
P≡ x0v

T .

Thanks to 11.6,

A
λ 0

P = x0v
T = P, P

(
A
λ 0

)
= x0v

T
(

A
λ 0

)
= x0v

T = P, (11.7)

and
P2 = x0v

Tx0v
T = vTx0 = P. (11.8)

Therefore, (
A
λ 0
−P
)2

=

(
A
λ 0

)2

−2
(

A
λ 0

)
P+P2

=

(
A
λ 0

)2

−P.

Continuing this way, using 11.7 repeatedly, it follows((
A
λ 0

)
−P
)m

=

(
A
λ 0

)m

−P. (11.9)

The eigenvalues of
(

A
λ 0

)
−P are of interest because it is powers of this matrix which

determine the convergence of
(

A
λ 0

)m
to P. Therefore, let µ be a nonzero eigenvalue of this

matrix. Thus ((
A
λ 0

)
−P
)
x= µx (11.10)

for x ̸= 0, and µ ̸= 0. Applying P to both sides and using the second formula of 11.7 yields

0= (P−P) x=

(
P
(

A
λ 0

)
−P2

)
x= µPx.

But since Px= 0, it follows from 11.10 that

Ax= λ 0µx

which implies λ 0µ is an eigenvalue of A. Therefore, by Corollary 11.4.5 it follows that
either λ 0µ = λ 0 in which case µ = 1, or λ 0 |µ|< λ 0 which implies |µ|< 1. But if µ = 1,
then x is a multiple of x0 and 11.10 would yield((

A
λ 0

)
−P
)
x0 = x0
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which says x0−x0v
Tx0 = x0 and so by 11.6, x0 = 0 contrary to the property that x0 >>

0. Therefore, |µ| < 1 and so this has shown that the absolute values of all eigenvalues of(
A

λ 0

)
−P are less than 1. By Gelfand’s theorem, Theorem 14.2.4, it follows∣∣∣∣∣∣∣∣(( A

λ 0

)
−P
)m∣∣∣∣∣∣∣∣1/m

< r < 1

whenever m is large enough. Now by 11.9 this yields∣∣∣∣∣∣∣∣( A
λ 0

)m

−P
∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣(( A

λ 0

)
−P
)m∣∣∣∣∣∣∣∣≤ rm

whenever m is large enough. It follows

lim
m→∞

∣∣∣∣∣∣∣∣( A
λ 0

)m

−P
∣∣∣∣∣∣∣∣= 0

as claimed.
What about the case when A > 0 but maybe it is not the case that A >> 0? As before,

K ≡ {x≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax≥ λx for some x ∈ K}

and
λ 0 ≡ sup(S1) (11.11)

Theorem 11.4.7 Let A > 0 and let λ 0 be defined in 11.11. Then there exists x0 > 0 such
that Ax0 = λ 0x0.

Proof: Let E consist of the matrix which has a one in every entry. Then from Theorem
11.4.4 it follows there exists xδ >> 0 , ||xδ ||1 = 1, such that (A+δE)xδ = λ 0δxδ where

λ 0δ ≡ sup{λ : (A+δE)x≥ λx for some x ∈ K} .

Now if α < δ

{λ : (A+αE)x≥ λx for some x ∈ K} ⊆
{λ : (A+δE)x≥ λx for some x ∈ K}

and so λ 0δ ≥ λ 0α because λ 0δ is the sup of the second set and λ 0α is the sup of the
first. It follows the limit, λ 1 ≡ limδ→0+ λ 0δ exists. Taking a subsequence and using the
compactness of K, there exists a subsequence, still denoted by δ such that as δ → 0, xδ →
x ∈ K. Therefore,

Ax= λ 1x

and so, in particular, Ax≥ λ 1x and so λ 1 ≤ λ 0. But also, if λ ≤ λ 0,

λx≤ Ax< (A+δE)x

showing that λ 0δ ≥ λ for all such λ . But then λ 0δ ≥ λ 0 also. Hence λ 1 ≥ λ 0, showing
these two numbers are the same. Hence Ax= λ 0x. ■

If Am >> 0 for some m and A > 0, it follows that the dimension of the eigenspace for
λ 0 is one and that the absolute value of every other eigenvalue of A is less than λ 0. If it is
only assumed that A > 0, not necessarily >> 0, this is no longer true. However, there is
something which is very interesting which can be said. First here is an interesting lemma.
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Lemma 11.4.8 Let M be a matrix of the form

M =

(
A 0
B C

)
or

M =

(
A B
0 C

)
where A is an r× r matrix and C is an (n− r)× (n− r) matrix. Then it follows that
det(M) = det(A)det(B) and σ (M) = σ (A)∪σ (C) .

Proof: To verify the claim about the determinants, note(
A 0
B C

)
=

(
A 0
0 I

)(
I 0
B C

)
Therefore,

det

(
A 0
B C

)
= det

(
A 0
0 I

)
det

(
I 0
B C

)
.

But it is clear from the method of Laplace expansion that

det

(
A 0
0 I

)
= detA

and from the multilinear properties of the determinant and row operations that

det

(
I 0
B C

)
= det

(
I 0
0 C

)
= detC.

The case where M is upper block triangular is similar.
This immediately implies σ (M) = σ (A)∪σ (C) .

Theorem 11.4.9 Let A > 0 and let λ 0 be given in 11.11. If λ is an eigenvalue for A such
that |λ |= λ 0, then λ/λ 0 is a root of unity. Thus (λ/λ 0)

m = 1 for some m ∈ N.

Proof: Applying Theorem 11.4.7 to AT , there exists v > 0 such that ATv = λ 0v. In
the first part of the argument it is assumed v >> 0. Now suppose Ax = λx,x ̸= 0 and
that |λ |= λ 0. Then

A |x| ≥ |λ | |x|= λ 0 |x|

and it follows that if A |x|> |λ | |x| , then since v >> 0,

λ 0 (v, |x|)< (v,A |x|) =
(
ATv, |x|

)
= λ 0 (v, |x|) ,

a contradiction. Therefore,
A |x|= λ 0 |x| . (11.12)

It follows that ∣∣∣∣∣∑j
Ai jx j

∣∣∣∣∣= λ 0 |xi|= ∑
j

Ai j
∣∣x j
∣∣
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and so the complex numbers,
Ai jx j, Aikxk

must have the same argument for every k, j because equality holds in the triangle in-
equality. Therefore, there exists a complex number, µ i such that

Ai jx j = µ iAi j
∣∣x j
∣∣ (11.13)

and so, letting r ∈ N,
Ai jx jµ

r
j = µ iAi j

∣∣x j
∣∣µr

j.

Summing on j yields
∑

j
Ai jx jµ

r
j = µ i ∑

j
Ai j
∣∣x j
∣∣µr

j. (11.14)

Also, summing 11.13 on j and using that λ is an eigenvalue for x, it follows from 11.12
that

λxi = ∑
j

Ai jx j = µ i ∑
j

Ai j
∣∣x j
∣∣= µ iλ 0 |xi| . (11.15)

From 11.14 and 11.15,

∑
j

Ai jx jµ
r
j = µ i ∑

j
Ai j
∣∣x j
∣∣µr

j = µ i ∑
j

Ai j

see 11.15︷ ︸︸ ︷
µ j

∣∣x j
∣∣µr−1

j

= µ i ∑
j

Ai j

(
λ

λ 0

)
x jµ

r−1
j = µ i

(
λ

λ 0

)
∑

j
Ai jx jµ

r−1
j

Now from 11.14 with r replaced by r−1, this equals

µ
2
i

(
λ

λ 0

)
∑

j
Ai j
∣∣x j
∣∣µr−1

j = µ
2
i

(
λ

λ 0

)
∑

j
Ai jµ j

∣∣x j
∣∣µr−2

j = µ
2
i

(
λ

λ 0

)2

∑
j

Ai jx jµ
r−2
j .

Continuing this way,

∑
j

Ai jx jµ
r
j = µ

k
i

(
λ

λ 0

)k

∑
j

Ai jx jµ
r−k
j

and eventually, this shows

∑
j

Ai jx jµ
r
j = µ

r
i

(
λ

λ 0

)r

∑
j

Ai jx j =

(
λ

λ 0

)r

λ (xiµ
r
i )

and this says
(

λ

λ 0

)r+1
is an eigenvalue for

(
A

λ 0

)
with the eigenvector being

(x1µ
r
1, · · · ,xnµ

r
n)

T .

Now recall that r ∈ N was arbitrary and so this has shown that(
λ

λ 0

)2

,

(
λ

λ 0

)3

,

(
λ

λ 0

)4

, · · ·
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are each eigenvalues of
(

A
λ 0

)
which has only finitely many and hence this sequence must

repeat. Therefore,
(

λ

λ 0

)
is a root of unity as claimed. This proves the theorem in the case

that v >> 0.
Now it is necessary to consider the case where v > 0 but it is not the case that v >> 0.

Then in this case, there exists a permutation matrix P such that

Pv =



v1
...

vr

0
...
0


≡

(
u

0

)
≡ v1

Then λ 0v = ATv = AT Pv1. Therefore, λ 0v1 = PAT Pv1 = Gv1. Now P2 = I because it is
a permutation matrix. Therefore, the matrix G ≡ PAT P and A are similar. Consequently,
they have the same eigenvalues and it suffices from now on to consider the matrix G rather
than A. Then

λ 0

(
u

0

)
=

(
M1 M2

M3 M4

)(
u

0

)
where M1 is r× r and M4 is (n− r)× (n− r) . It follows from block multiplication and the
assumption that A and hence G are > 0 that

G =

(
A′ B
0 C

)
.

Now let λ be an eigenvalue of G such that |λ | = λ 0. Then from Lemma 11.4.8, either
λ ∈ σ (A′) or λ ∈ σ (C) . Suppose without loss of generality that λ ∈ σ (A′) . Since A′ > 0
it has a largest positive eigenvalue λ

′
0 which is obtained from 11.11. Thus λ

′
0 ≤ λ 0 but λ

being an eigenvalue of A′, has its absolute value bounded by λ
′
0 and so λ 0 = |λ | ≤ λ

′
0 ≤ λ 0

showing that λ 0 ∈ σ (A′) . Now if there exists v >> 0 such that A′Tv = λ 0v, then the first
part of this proof applies to the matrix A and so (λ/λ 0) is a root of unity. If such a vector,
v does not exist, then let A′ play the role of A in the above argument and reduce to the
consideration of

G′ ≡

(
A′′ B′

0 C′

)
where G′ is similar to A′ and λ ,λ 0 ∈ σ (A′′) . Stop if A′′Tv = λ 0v for some v >> 0.
Otherwise, decompose A′′ similar to the above and add another prime. Continuing this way
you must eventually obtain the situation where (A′···′)T v = λ 0v for some v >> 0. Indeed,
this happens no later than when A′···′ is a 1×1 matrix. ■

11.5 Functions Of Matrices
The existence of the Jordan form also makes it possible to define various functions of
matrices. Suppose

f (λ ) =
∞

∑
n=0

anλ
n (11.16)
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for all |λ | < R. There is a formula for f (A) ≡ ∑
∞
n=0 anAn which makes sense whenever

ρ (A)< R. Thus you can speak of sin(A) or eA for A an n×n matrix. To begin with, define

fP (λ )≡
P

∑
n=0

anλ
n

so for k < P

f (k)P (λ ) =
P

∑
n=k

ann · · ·(n− k+1)λ
n−k =

P

∑
n=k

an

(
n
k

)
k!λ n−k. (11.17)

Thus
f (k)P (λ )

k!
=

P

∑
n=k

an

(
n
k

)
λ

n−k (11.18)

To begin with consider f (Jm (λ )) where Jm (λ ) is an m×m Jordan block. Thus Jm (λ ) =
D+N where Nm = 0 and N commutes with D. Therefore, letting P > m

P

∑
n=0

anJm (λ )n =
P

∑
n=0

an

n

∑
k=0

(
n
k

)
Dn−kNk =

P

∑
k=0

P

∑
n=k

an

(
n
k

)
Dn−kNk

=
m−1

∑
k=0

Nk
P

∑
n=k

an

(
n
k

)
Dn−k. (11.19)

From 11.18 this equals

m−1

∑
k=0

Nk diag

(
f (k)P (λ )

k!
, · · · ,

f (k)P (λ )

k!

)
(11.20)

where for k = 0, · · · ,m−1, define diagk (a1, · · · ,am−k) the m×m matrix which equals zero
everywhere except on the kth super diagonal where this diagonal is filled with the numbers,
{a1, · · · ,am−k} from the upper left to the lower right. With no subscript, it is just the
diagonal matrices having the indicated entries. Thus in 4× 4 matrices, diag2 (1,2) would
be the matrix 

0 0 1 0
0 0 0 2
0 0 0 0
0 0 0 0

 .

Then from 11.20 and 11.17,
P

∑
n=0

anJm (λ )n =
m−1

∑
k=0

diag k

(
f (k)P (λ )

k!
, · · · ,

f (k)P (λ )

k!

)
.

Therefore, ∑
P
n=0 anJm (λ )n =

fP (λ )
f ′P(λ )

1!
f (2)P (λ )

2! · · · f (m−1)
P (λ )

(m−1)!

fP (λ )
f ′P(λ )

1!
. . .

...

fP (λ )
. . . f (2)P (λ )

2!
. . . f ′P(λ )

1!
0 fP (λ )


(11.21)
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Now let A be an n×n matrix with ρ (A)< R where R is given above. Then the Jordan form
of A is of the form

J =


J1 0

J2
. . .

0 Jr

 (11.22)

where Jk = Jmk (λ k) is an mk×mk Jordan block and A = S−1JS. Then, letting P > mk for
all k,

P

∑
n=0

anAn = S−1
P

∑
n=0

anJnS,

and because of block multiplication of matrices,

P

∑
n=0

anJn =


∑

P
n=0 anJn

1 0
. . .

. . .

0 ∑
P
n=0 anJn

r


and from 11.21 ∑

P
n=0 anJn

k converges as P→ ∞ to the mk×mk matrix

f (λ k)
f ′(λ k)

1!
f (2)(λ k)

2! · · · f (m−1)(λ k)
(mk−1)!

0 f (λ k)
f ′(λ k)

1!
. . .

...

0 0 f (λ k)
. . . f (2)(λ k)

2!
...

. . . . . . f ′(λ k)
1!

0 0 · · · 0 f (λ k)


(11.23)

There is no convergence problem because |λ | < R for all λ ∈ σ (A) . This has proved the
following theorem.

Theorem 11.5.1 Let f be given by 11.16 and suppose ρ (A) < R where R is the radius of
convergence of the power series in 11.16. Then the series,

∞

∑
k=0

anAn (11.24)

converges in the space L (Fn,Fn) with respect to any of the norms on this space and
furthermore,

∞

∑
k=0

anAn = S−1


∑

∞
n=0 anJn

1 0
. . .

. . .

0 ∑
∞
n=0 anJn

r

S
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where ∑
∞
n=0 anJn

k is an mk×mk matrix of the form given in 11.23 where A = S−1JS and
the Jordan form of A, J is given by 11.22. Therefore, you can define f (A) by the series in
11.24.

Here is a simple example.

Example 11.5.2 Find sin(A) where A =


4 1 −1 1
1 1 0 −1
0 −1 1 −1
−1 2 1 4

 .

In this case, the Jordan canonical form of the matrix is not too hard to find.
4 1 −1 1
1 1 0 −1
0 −1 1 −1
−1 2 1 4

=


2 0 −2 −1
1 −4 −2 −1
0 0 −2 1
−1 4 4 2

 ·


4 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2




1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2

 .

Then from the above theorem sin(J) is given by

sin


4 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

=


sin4 0 0 0

0 sin2 cos2 −sin2
2

0 0 sin2 cos2
0 0 0 sin2

 .

Therefore, sin(A) =
2 0 −2 −1
1 −4 −2 −1
0 0 −2 1
−1 4 4 2




sin4 0 0 0
0 sin2 cos2 −sin2

2
0 0 sin2 cos2
0 0 0 sin2




1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2


=M where the columns of M are as follows from left to right,

sin4
1
2 sin4− 1

2 sin2
0

− 1
2 sin4+ 1

2 sin2

 ,


sin4− sin2− cos2

1
2 sin4+ 3

2 sin2−2cos2
−cos2

− 1
2 sin4− 1

2 sin2+3cos2

 ,


−cos2

sin2
sin2− cos2
cos2− sin2




sin4− sin2− cos2
1
2 sin4+ 1

2 sin2−2cos2
−cos2

− 1
2 sin4+ 1

2 sin2+3cos2

 .
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Perhaps this isn’t the first thing you would think of. Of course the ability to get this nice
closed form description of sin(A) was dependent on being able to find the Jordan form
along with a similarity transformation which will yield the Jordan form.

The following corollary is known as the spectral mapping theorem.

Corollary 11.5.3 Let A be an n× n matrix and let ρ (A) < R where for |λ | < R, f (λ ) =
∑

∞
n=0 anλ

n.Then f (A) is also an n×n matrix and furthermore, σ ( f (A)) = f (σ (A)) . Thus
the eigenvalues of f (A) are exactly the numbers f (λ ) where λ is an eigenvalue of A.
Furthermore, the algebraic multiplicity of f (λ ) coincides with the algebraic multiplicity
of λ .

All of these things can be generalized to linear transformations defined on infinite di-
mensional spaces and when this is done the main tool is the Dunford integral along with
the methods of complex analysis. It is good to see it done for finite dimensional situations
first because it gives an idea of what is possible.

11.6 Exercises
1. Suppose the migration matrix for three locations is .5 0 .3

.3 .8 0

.2 .2 .7

 .

Find a comparison for the populations in the three locations after a long time.

2. Show that if ∑i ai j = 1, then if A = (ai j) , then the sum of the entries of Av equals the
sum of the entries of v. Thus it does not matter whether ai j ≥ 0 for this to be so.

3. If A satisfies the conditions of the above problem, can it be concluded that limn→∞ An

exists?

4. Give an example of a non regular Markov matrix which has an eigenvalue equal to
−1.

5. Show that when a Markov matrix is non defective, all of the above theory can be
proved very easily. In particular, prove the theorem about the existence of limn→∞ An

if the eigenvalues are either 1 or have absolute value less than 1.

6. Find a formula for An where

A =


5
2 − 1

2 0 −1
5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2


Does limn→∞ An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 1

2 ,
1
2 .
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7. Find a formula for An where

A =


2 − 1

2
1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2
3 − 1

2
1
2 −2


Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar to a
diagonal matrix but you can find the Jordan form and consider this in order to obtain
a formula for this product. The eigenvalues are 1,−1, 1

2 ,
1
2 .

8. Find limn→∞ An if it exists for the matrix

A =


1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1


The eigenvalues are 1

2 ,1,1,1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞ An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞ An = 0.

11. Find an example of a 3×3 matrix A such that limn→∞ An does not exist but limr→∞ A5r

does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 11.1.3 suppose everything is unchanged except that you assume either
∑ j ai j ≤ 1 or ∑i ai j ≤ 1. Would the same conclusion be valid? What if you don’t
insist that each ai j ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈V and x ̸= 0. Consider

βx ≡ x, Ax, · · · ,Am−1x

where
Amx ∈ span

(
x,Ax, · · · ,Am−1x

)
and m is the smallest such that the above inclusion in the span takes place. Show
that

{
x,Ax, · · · ,Am−1x

}
must be linearly independent. Next suppose {v1, · · · ,vn}

is a basis for V . Consider βvi
as just discussed, having length mi. Thus Amivi is a

linearly combination of vi,Avi, · · · ,Am−1vi for m as small as possible. Let pvi (λ ) be
the monic polynomial which expresses this linear combination. Thus pvi (A)vi = 0
and the degree of pvi (λ ) is as small as possible for this to take place. Show that
the minimum polynomial for A must be the monic polynomial which is the least
common multiple of these polynomials pvi (λ ).
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Chapter 12

Inner Product Spaces, Least Squares
In this chapter is a more complete discussion of important theorems for inner product
spaces. These results are presented for inner product spaces, the typical example being
Cn or Rn. The extra generality is used because most of the ideas have a straight forward
generalization to something called a Hilbert space which is just a complete inner product
space. First is a major result about projections.

12.1 Orthogonal Projections
Recall that any finite dimensional normed linear space is complete. The following defini-
tion includes the case where the norm comes from an inner product.

Definition 12.1.1 Let (H,(·, ·)) be a complete inner product space. This means the norm
comes from an inner product as described on Page 263, |v| ≡ (v,v)1/2. Such a space is
called a Hilbert space

As shown earlier, if H is finite dimensional, then it is a Hilbert space automatically.
The following is the definition of a convex set. This is a set with the property that the line
segment between any two points in the set is in the set.

Definition 12.1.2 A nonempty subset K of a vector space is said to be convex if whenever
x,y ∈ K and t ∈ [0,1] , it follows that tx+(1− t)y ∈ K.

Theorem 12.1.3 Let K be a closed and convex nonempty subset of a Hilbert space and let
y ∈ H. Also let

λ ≡ inf{|x− y| : x ∈ K}
Then if {xn} ⊆ K is a sequence such that limn→∞ |xn− y| = λ , then it follows that {xn} is
a Cauchy sequence and limn→∞ xn = x ∈ K with |x− y| = λ . Also if |x− y| = λ = |x̂− y| ,
then x̂ = x.

Proof: Recall the parallelogram identity valid in any innner product space:

|x+ y|2 + |x− y|2 = 2 |x|2 +2 |y|2

First consider the claim about uniqueness. Letting x, x̂ be as given,∣∣∣∣x+ x̂
2
− y
∣∣∣∣2 + ∣∣∣∣x− x̂

2

∣∣∣∣2 =

∣∣∣∣x− y
2

+
x̂− y

2

∣∣∣∣2 + ∣∣∣∣x− x̂
2

∣∣∣∣2
= 2

∣∣∣∣x− y
2

∣∣∣∣2 +2
∣∣∣∣ x̂− y

2

∣∣∣∣2 = λ
2

Since x+x̂
2 ∈ K due to convexity, this is a contradiction unless x = x̂ since it shows that x+x̂

2
is closer to y than λ .

Now consider the minimizing sequence. From the same computation just given,∣∣∣∣xn + xm

2
− y
∣∣∣∣2 + ∣∣∣∣xn− xm

2

∣∣∣∣2 = 2
∣∣∣∣xn− y

2

∣∣∣∣2 +2
∣∣∣∣xm− y

2

∣∣∣∣2
=

1
2
|xn− y|2 + 1

2
|xm− y|2

307
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since xn+xm
2 ∈ K, ∣∣∣∣xn− xm

2

∣∣∣∣2 ≤ 1
2
|xn− y|2 + 1

2
|xm− y|2−λ

2

and as n,m→ ∞, the right side converges to 0 by definition. Hence {xn} is a Cauchy
sequence as claimed. By completeness, it converges to some x ∈ H. Since K is closed, it
follows that x ∈ K. Then from the triangle inequality,

lim
n→∞
|y− xn|= |y− x|= λ .■

In the above theorem, denote by Py the vector x ∈ K closest to y. It turns out there
is an easy way to characterize Py. For a given z ∈ K, one can consider the function t →
|x+ t (z− x)− y|2 for x ∈ K. By properties of the inner product, this is

t→ |x− y|2 +2t Re(z− x,x− y)+ t2 |z− x|2

according to whether Re(z− x,x− y) ≥ 0. Thus elementary considerations yield the two
possibilities shown in the graph. Either this function is increasing on [0,1] or it is not. In
the case Re(z− x,x− y)< 0 the graph shows that x ̸= Py because there is a positive value
of t such that the function is less than |x− y|2 and in case Re(z− x,x− y) ≥ 0, we obtain
x = Py if this is always true for any z ∈ K. Note that by convexity, x+ t (z− x) ∈ K for all
t ∈ [0,1] since it equals (1− t)x+ tz.

0 1
t

|x−y|2

Re(z−x,x−y)< 0 0 1
t

Re(z−x,x−y)≥ 0

Theorem 12.1.4 Let x ∈ K and y ∈ H. Then there exists a closest point of K to y denoted
by Py. Then x = Py if and only if

Re(z− x,y− x)≤ 0 (12.1)

for all z ∈ K.

K
z θ

y
x

Proof: First suppose 12.1 so Re(z− x,x− y)≥ 0. Then for arbitrary z ∈ K,

|x+ t (z− x)− y|2 = |x− y|2 +2t Re(z− x,x− y)+ t2 |z− x|2

and is an increasing function on [0,1]. Thus it has its minimum at t = 0. In particular
|x− y|2 ≤ |z− y|2 . Since z is arbitrary, this shows x = Py.
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Next suppose x = Py. Then for arbitrary z ∈ K, the minimum of

t→ |x+ t (z− x)− y|2

occurs when t = 0 since x+ t (z− x) ∈ K. This will not happen unless

Re(z− x,x− y)≥ 0

because if this is less than 0, the minimum of that function will take place for some positive
t. Thus 12.1 holds. ■

Every subspace is a closed and convex set. Note that Re and Im are real linear maps
from C to R.

Re(x+ iy)≡ x, Im(x+ iy)≡ y

That is, for a,b real scalars and z,w complex numbers,

Re(az+bw) = aRe(z)+bRe(w)
Im(az+bw) = a Im(z)+b Im(w)

This assertions follow directly from the definitions of complex arithmetic and will be used
without any mention whenever convenient. The next proposition will be very useful in
what follows.

Proposition 12.1.5 If W is a subspace. Then Re(z,w) ≤ 0 for all w ∈W, if and only if
(z,w) = 0 for all w ∈W.

Proof:⇒First of all, Re(z,−w) =−Re(z,w) so if Re(z,w)≤ 0 for all w ∈W, then for
each w ∈W,

0≥ Re(z,−w) =−Re(z,w)≥ 0.

Thus
Re(z,w) =−Re(z,−w) = 0.

Now also

(z, iw) = Re(z, iw)+ i Im(z,w) =−i(z,w)

= −i [Re(z,w)+ i Im(z,w)]

= −iRe(z,w)+ Im(z,w)

and so Im(z,w) = (z, iw) . Therefore, if Re(z,w) ≤ 0 for all w ∈W, then Re(z,w) = 0 for
all w and hence Im(z,w) = 0 for all w ∈W and so (z,w) = 0 for all w ∈W .
⇐ Conversely, if (z,w) = 0 for all w ∈W, then obviously Re(z,w) = 0 for all w ∈W .

■
Next is a fundamental result used in inner product spaces. It is called the Gram Schmidt

process.

Lemma 12.1.6 Let {v1, · · · ,vn} be a linearly independent subset of an inner product space
H. Then there exists orthonormal vectors {u1, · · · ,un}which have the property that for each
k ≤ n, span(v1, · · · ,vk) = span(u1, · · · ,uk) .
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Proof: Let u1≡ v1/ |v1| . Thus for k = 1, span(u1) = span(v1) and {u1} is an orthonor-
mal set. Now suppose for some k < n, u1, · · · , uk have been chosen such that (u j,ul) = δ jl
and span(v1, · · · ,vk) = span(u1, · · · ,uk). Then define

uk+1 ≡
vk+1−∑

k
j=1 (vk+1,u j)u j∣∣∣vk+1−∑
k
j=1 (vk+1,u j)u j

∣∣∣ , (12.2)

where the denominator is not equal to zero because the v j form a basis, and so

vk+1 /∈ span(v1, · · · ,vk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,vk+1) = span(v1, · · · ,vk,vk+1) .

Also, vk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 10.13 for vk+1, and it
follows

span(v1, · · · ,vk,vk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1,ul) =C

(
(vk+1,ul)−

k

∑
j=1

(vk+1,u j)(u j,ul)

)
=

C

(
(vk+1,ul)−

k

∑
j=1

(vk+1,u j)δ l j

)
=C ((vk+1,ul)− (vk+1,ul)) = 0.

The vectors,
{

u j
}n

j=1 , generated in this way are therefore orthonormal because each vector
has unit length. ■

Theorem 12.1.7 Let K be a nonempty closed subspace of H a Hilbert space. Let y ∈ H.
Then x = Py, the closest point in K to y if and only if

(y− x,w) = 0

for all w ∈ K. If K is a finite dimensional subspace of H then by Lemma 12.1.6 it has an
orthonormal basis {u1, · · · ,un} . Then Py = ∑

n
k=1 (y,uk)uk. In particular, if y ∈ K, then

y = Py = ∑
n
k=1 (y,uk)uk

Proof: From Theorem 12.1.4, x = Py,x ∈ K if and only if for all z ∈ K,

Re(y− x,z− x)≤ 0

However, if w ∈ K, let z = x+w and this shows that x = Py if and only if for all w ∈ K,

Re(y− x,w)≤ 0

From Proposition 12.1.5 above, this happens if and only if (y− x,w) = 0.
It only remains to verify the orthogonality condition for the vector claimed to be the

closest point.(
y−

n

∑
k=1

(y,uk)uk,u j

)
= (y,u j)−

n

∑
k=1

(y,uk)(uk,u j) = (y,u j)− (y,u j) = 0
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and so, from the first part, Py is indeed given by the claimed formula. ■
Because of this theorem, Py is called the orthogonal projection.
What if H is not complete but K is a finite dimensional subspace? Is it still the case that

you can obtain a projection?

Proposition 12.1.8 Let H be an inner product space, not necessarily complete and let K
be a finite dimensional subspace. Then if u ∈ H, a point z ∈ K is the closest point to u if
and only if (u− z,w) = 0 for all w ∈ K. Furthermore, there exists a closest point and it is
given by ∑

n
i=1 (u,ei)ei where {e1, ...,en} is an orthonormal basis for K.

Proof: Suppose z is the closest point to u in K. Then if w ∈ K, |u− (z+ tw)|2 has
a minimum at t = 0. However, the function of t has a derivative. The function of t
equals |u− z|2− 2t Re(u− z,w) + t2 |w|2 and so its derivative is −2Re(u− z,w) + t |w|2
and when t = 0 this is to be zero so Re(u− z,w) = 0 for all w ∈ K. Now (u− z,w) =
Re(u− z,w)+ i Im(u− z,w) and so (u− z, iw) = Re(u− z, iw)+ i Im(u− z, iw) which im-
plies that −i(u− z,w) = −iRe(u− z,w) + Im(u− z,w) = Re(u− z, iw) + i Im(u− z, iw)
so Im(u− z,w) = Re(u− z, iw) and this shows that Im(u− z,w) = 0 = Re(u− z,w) so
(u− z,w) = 0.

Next suppose (u− z,w) = 0 for all w ∈K. Then |u−w|2 = |u− z+ z−w|2 = |u− z|2+
|z−w|2 because 2Re(u− z,z−w) = 0 and so it follows that |u− z|2 ≤ |u−w|2 for all
w ∈ K.

It remains to verify that ∑
n
i=1 (ei,u)ei is as close as possible. From what was just shown,

it suffices to verify that (u−∑
n
i=1 (u,ei)ei,ek) = 0 for all ek. However, this is just (u,ek)−

∑i (u,ei)(ei,ek) = (u,ek)− (u,ek) = 0. ■

Example 12.1.9 Consider X equal to the continuous functions defined on [−π,π] and let
the inner product be given by ∫

π

−π

f (x)g(x)dx

It is left to the reader to verify that this is an inner product. Letting ek be the function
x→ 1√

2π
eikx, define M ≡ span

(
{ek}n

k=−n
)
. Then you can verify that

(ek,em) =
∫

π

−π

(
1√
2π

e−ikx
)(

1√
2π

emix

)
dx =

1
2π

∫
π

−π

ei(m−k)x = δ km

then for a given function f ∈ X , the function from M which is closest to f in this inner
product norm is g = ∑

n
k=−n ( f ,ek)ek In this case ( f ,ek) =

1√
2π

∫
π

−π
f (x)eikxdx. These are

the Fourier coefficients. The above is the nth partial sum of the Fourier series.

To show how this kind of thing approximates a given function, let f (x) = x2. Let

M = span
({

1√
2π

e−ikx
}3

k=−3

)
. Then, doing the computations, you find the closest point

is of the form

1
3

√
2π

5
2

(
1√
2π

)
+

3

∑
k=1

(
(−1)k 2

k2

)
√

2
√

π
1√
2π

e−ikx

+
3

∑
k=1

(
(−1)k 2

k2

)
√

2
√

π
1√
2π

eikx
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and now simplify to get
1
3

π
2 +

3

∑
k=1

(−1)k
(

4
k2

)
coskx

Then a graph of this along with the graph of y = x2 is given below. In this graph, the dashed
graph is of y = x2 and the solid line is the graph of the above Fourier series approximation.

If we had taken the partial sum up to n much bigger, it would have
been very hard to distinguish between the graph of the partial sum
of the Fourier series and the graph of the function it is approximating.
This is in contrast to approximation by Taylor series in which you only
get approximation at a point of a function and its derivatives. These are
very close near the point of interest but typically fail to approximate

the function on the entire interval.

12.2 Formula for Distance to a Subspace
Let V be a finite dimensional subspace of a real inner product space H, for the sake of
convenience, and suppose a basis for V is {v1, ...,vn} . Thus this is a closed subspace. Then
each point of H has a closest point in V thanks to Proposition 12.1.8. I want a convenient
formula for the distance to V .

Definition 12.2.1 If Gi j ≡ (vi,v j) where {v1, ...,vn} are vectors, then G is called the Gram-
mian matrix, also the metric tensor. This matrix will also be denoted as G(v1, ...,vn) to
indicate the vectors used in defining G. Thus, it is an n×n matrix.

Proposition 12.2.2 {v1, ...,vn} is linearly independent, if and only if G(v1, ...,vn) is invert-
ible.

Proof: If G is invertible, then if ∑
n
i=1 xivi = 0,∑i (v j,vi)xi = 0 and so Gx= 0 which

can only hapen if x= 0 because G is invertible.
If G is not invertible, then for some x ̸= 0, ∑ j Gi jx j = ∑ j (vi,v j)x j = 0 for each i.

However, this requires that
(
∑ j v jx j,vi

)
= 0 for each vi and so ∑ j v jx j = 0 where x ̸= 0

so {v1, ...,vn} is not linearly independent.Thus, G is invertible if and only if {v1, ...,vn} is
independent. ■

Let V ≡ span(v1, ...,vn) where these spanning vectors constitute a linearly independent
set. Suppose u ∈ H. I want to find a convenient formula for the distance between u and V .
From Theorem 12.1.7, Pu≡ z, the projection of u onto V which is the closest point of V to
u, is defined by (u− z,vi) = 0 for all vi or equivalently (u− z,v) = 0 for all v ∈ V . Thus,
for d the distance from u to V,

|u|2 = |u− z|2 + |z|2 = d2 + |z|2 , (u,vi) = (z,vi) for each i (12.3)

Let z = ∑
n
i=1 zivi. Then in the above,

(u,vi) = (z,vi) =

(
n

∑
j=1

z jv j,vi

)
=

n

∑
j=1

Gi jz j

Letting z ≡
(
z1, ...,zn

)T and y ≡ ((u,v1) ,(u,v2) , ...,(u,v3)) ,

G(v1, ...,vn)z = y, zT G(v1, ...,vn) = yT (12.4)
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From 12.3 and 12.4,

|u|2 = d2 +∑
i, j

Gi jziz j = d2 +zT G(v1, ...,vn)z = d2 +yTz

Then from 12.3 and 12.4,(
G(v1, ...,vn) 0

yT 1

)(
z

d2

)
=

(
y

|u|2

)

By Cramer’s rule,

d2 =

det

(
G(v1, ...,vn) y

yT |u|2

)
det(G(v1, ...,vn))

≡ det(G(v1, ...,vn,u))
det(G(v1, ...,vn))

This proves the interesting approximation theorem.

Theorem 12.2.3 Suppose {v1, ...,vn} is a linearly independent set of vectors in H an inner
product space. Then if u ∈ H, and d is the distance to V ≡ span(v1, ...,vn) , then d2 =
det(G(v1,...,vn,u))
det(G(v1,...,vn))

.

12.3 Riesz Representation Theorem, Adjoint Map
The next theorem is one of the most important results in the theory of inner product spaces.
It is called the Riesz representation theorem.

Theorem 12.3.1 Let f ∈L (H,F) where H is a Hilbert space and f is continuous. Recall
that in finite dimensions, this is automatic. Then there exists a unique z ∈ H such that for
all x ∈ H, f (x) = (x,z) .

Proof: First I will verify uniqueness. Suppose z j works for j = 1,2. Then for all x ∈H,

0 = f (x)− f (x) = (x,z1− z2)

and so z1 = z2.
If f (H) = 0, let z = 0 and this works. Otherwise, let u /∈ f−1 (0) which is a closed

subspace of H. Let w = u−Pu ̸= 0. Then

f ( f (w)x− f (x)w) = f (w) f (x)− f (x) f (w) = 0

and so from Theorem 12.1.7,

0 = ( f (w)x− f (x)w,w) = f (w)(x,w)− f (x)(w,w)

It follows that for all x, f (x) =
(

x, f (w)w
|w|2

)
. ■

This leads to the following important definition.
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Corollary 12.3.2 Let A ∈L (X ,Y ) where X and Y are two inner product spaces of finite
dimension or else Hilbert spaces. Then there exists a unique A∗ ∈L (Y,X) , the bounded
linear transformations, such that

(Ax,y)Y = (x,A∗y)X (12.5)

for all x ∈ X and y ∈ Y. The following formula holds

(αA+βB)∗ = αA∗+βB∗

Also, (A∗)∗ = A.

Proof: Let fy ∈L (X ,F) be defined as

fy (x)≡ (Ax,y)Y .

This is linear and ∣∣ fy (x)
∣∣= |(Ax,y)Y | ≤ |Ax| |y| ≤ (||A|| |y|) |x|

Then by the Riesz representation theorem, there exists a unique element of X , A∗ (y) such
that

(Ax,y)Y = (x,A∗ (y))X .

It only remains to verify that A∗ is linear. Let a and b be scalars. Then for all x ∈ X ,

(x,A∗ (ay1 +by2))X ≡ (Ax,(ay1 +by2))Y

≡ a(Ax,y1)+b(Ax,y2)≡
a(x,A∗ (y1))+b(x,A∗ (y2)) = (x,aA∗ (y1)+bA∗ (y2)) .

Since this holds for every x, it follows

A∗ (ay1 +by2) = aA∗ (y1)+bA∗ (y2)

which shows A∗ is linear as claimed.
Consider the last assertion that ∗ is conjugate linear.(

x,(αA+βB)∗ y
)
≡ ((αA+βB)x,y)

= α (Ax,y)+β (Bx,y) = α (x,A∗y)+β (x,B∗y)

= (x,αA∗y)+
(

x,βA∗y
)
=
(

x,
(

αA∗+βA∗
)

y
)
.

Since x is arbitrary,
(αA+βB)∗ y =

(
αA∗+βA∗

)
y

and since this is true for all y,

(αA+βB)∗ = αA∗+βA∗.

Finally, (A∗x,y) = (y,A∗x) = (Ay,x) = (x,Ay) while (A∗x,y) =
(
x,(A∗)∗ y

)
and so for

all x, (
x,(A∗)∗ y−Ay

)
= 0

and so (A∗)∗ = A. ■
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Definition 12.3.3 The linear map, A∗ is called the adjoint of A. In the case when A : X→ X
and A = A∗, A is called a self adjoint map. Such a map is also called Hermitian.

Theorem 12.3.4 Let M be an m× n matrix. Then M∗ =
(
M
)T in words, the transpose of

the conjugate of M is equal to the adjoint.

Proof: Using the definition of the inner product in Cn,

(Mx,y) = (x,M∗y)≡∑
i

xi∑
j
(M∗)i j y j = ∑

i, j
(M∗)i jy jxi.

Also (Mx,y) = ∑ j ∑i M jiy jxi. Since x,y are arbitrary vectors, it follows that M ji = (M∗)i j
and so, taking conjugates of both sides, M∗i j = M ji ■

Some linear transformations preserve distance. Something special can be asserted about
these which is in the next lemma.

Lemma 12.3.5 Suppose R ∈ L (X ,Y ) where X ,Y are inner product spaces and R pre-
serves distances. Then R∗R = I.

Proof: Since R preserves distances, |Ru|= |u| for every u. Let u,v be arbitrary vectors
in X

|u+ v|2 = |u|2 + |v|2 +2Re(u,v)

|Ru+Rv|2 = |Ru|2 + |Rv|2 +2Re(Ru,Rv)

= |u|2 + |v|2 +2Re(R∗Ru,v)

Thus Re(R∗Ru−u,v) = 0 for all v and so by Proposition 12.1.5, (R∗Ru−u,v) = 0 for all
v and so R∗Ru = u for all u which implies R∗R = I. ■

The next theorem is interesting. You have a p dimensional subspace of Fn where F= R
or C. Of course this might be “slanted”. However, there is a linear transformation Q which
preserves distances which maps this subspace to Fp.

Theorem 12.3.6 Suppose V is a subspace of Fn having dimension p≤ n. Then there exists
a Q ∈L (Fn,Fn) such that

QV ⊆ span(e1, · · · ,ep)

and |Qx|= |x| for all x. Also
Q∗Q = QQ∗ = I.

Proof: By Lemma 12.1.6 there exists an orthonormal basis for V,{vi}p
i=1 . By using the

Gram Schmidt process this may be extended to an orthonormal basis of the whole space
Fn, {

v1, · · · ,vp,vp+1, · · · ,vn
}
.

Now define Q ∈L (Fn,Fn) by Q(vi)≡ ei and extend linearly. If ∑
n
i=1 xivi is an arbitrary

element of Fn, ∣∣∣∣∣Q
(

n

∑
i=1

xivi

)∣∣∣∣∣
2

=

∣∣∣∣∣ n

∑
i=1

xiei

∣∣∣∣∣
2

=
n

∑
i=1
|xi|2 =

∣∣∣∣∣ n

∑
i=1

xivi

∣∣∣∣∣
2

.
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Thus Q preserves lengths and so, by Lemma 12.3.5, it follows that Q∗Q = I. Also, this
shows that Q maps V onto V and so a generic element of V is of the form Qx. Now

|Q∗Qx|2 = (Q∗Qx,Q∗Qx) =

Qx,Q

=I︷︸︸︷
Q∗Qx

= (Qx,Qx) = |Qx|2

showing that Q∗ also preserves lengths. Hence it is also the case that QQ∗ = I because from
the definition of the adjoint, (Q∗)∗ = Q. ■

Definition 12.3.7 If U ∈L (X ,X) for X an inner product space, then U is called unitary
if U∗U =UU∗ = I.

Note that it is actually shown that QV = span(e1, · · · ,ep) and that in case p= n one ob-
tains that a linear transformation which maps an orthonormal basis to an orthonormal basis
is unitary. Unitary matrices are also characterized by preserving length. More generally

Corollary 12.3.8 Suppose U ∈ L (X ,X) where X is an inner product space. Then U is
unitary if and only if |Ux|= |x| for all x so it preserves distance.

Proof:⇒ If U is unitary, then |Ux|2 = (Ux,Ux) = (U∗Ux,x) = (x,x) = |x|2.
⇐ If |Ux| = |x| for all x then by Lemma 12.3.5, U∗U = I. Thus U is onto since it

is one to one and so a generic element of X is Ux. Note how this would fail if you had
U ∈L (X ,Y ) where the dimension of Y is larger than the dimension of X . Then as above,

|U∗Ux|2 = (U∗Ux,U∗Ux) = (Ux,UU∗Ux) = (Ux,Ux) = |Ux|2

Thus also UU∗ = I because U∗ preserves distances and (U∗)∗ =U from the definition. ■
Now here is an important result on factorization of an m× n matrix. It is called a QR

factorization.

Theorem 12.3.9 Let A be an m×n complex matrix. Then there exists a unitary Q and R,
all zero below the main diagonal (Ri j = 0if i > j) such that A = QR.

Proof: This is obvious if m = 1.(
a1 · · · an

)
= (1)

(
a1 · · · an

)
Suppose true for m−1 and let

A =
(

a1 · · · an

)
, A is m×n

Using Theorem 12.3.6, there exists Q1 a unitary matrix such that Q1 (a1/ |a1|) = e1 in case
a1 ̸= 0. Thus Q1a1 = |a1|e1. If a1 = 0, let Q1 = I. Thus

Q1A =

(
a bT

0 A1

)
where A1 is (m−1)× (n−1). If n = 1, this obtains

Q1A =

(
a
0

)
, A = Q∗1

(
a
0

)
, let Q = Q∗1.
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That which is desired is obtained. So assume n > 1. By induction, there exists Q′2 an
(m−1)× (n−1) unitary matrix such that Q′2A1 = R′, R′i j = 0 if i > j. Then(

1 0

0 Q′2

)
Q1A =

(
a bT

0 R′

)
= R

Since the product of unitary matrices is unitary, there exists Q unitary such that Q∗A = R
and so A = QR. ■

12.4 Least Squares
A common problem in experimental work is to find a straight line which approximates as
well as possible a collection of points in the plane {(xi,yi)}p

i=1. The usual way of dealing
with these problems is by the method of least squares and it turns out that all these sorts of
approximation problems can be reduced to Ax= b where the problem is to find the best x
for solving this equation even when there is no solution.

Lemma 12.4.1 Let V and W be finite dimensional inner product spaces and let A : V →W
be linear. For each y ∈W there exists x ∈V such that

|Ax− y| ≤ |Ax1− y|

for all x1 ∈ V. Also, x ∈ V is a solution to this minimization problem if and only if x is a
solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 12.1.7 on Page 310 there exists a point, Ax0, in the finite dimen-
sional subspace, A(V ) , of W such that for all x ∈V, |Ax− y|2 ≥ |Ax0− y|2 . Also, from this
theorem, this happens if and only if Ax0− y is perpendicular to every Ax ∈ A(V ) . There-
fore, the solution is characterized by (Ax0− y,Ax) = 0 for all x ∈ V which is the same as
saying (A∗Ax0−A∗y,x) = 0 for all x ∈V. In other words the solution is obtained by solving
A∗Ax0 = A∗y for x0. ■

Consider the problem of finding the least squares regression line in statistics. Suppose
you have given points in the plane, {(xi,yi)}n

i=1 and you would like to find constants m
and b such that the line y = mx+ b goes through all these points. Of course this will be
impossible in general. Therefore, try to find m,b such that you do the best you can to solve
the system 

y1
...

yn

=


x1 1
...

...
xn 1


(

m
b

)

which is of the form y = Ax. In other words try to make

∣∣∣∣∣∣∣∣A
(

m
b

)
−


y1
...

yn


∣∣∣∣∣∣∣∣
2

as small

as possible. According to what was just shown, it is desired to solve the following for m
and b.

A∗A

(
m
b

)
= A∗


y1
...

yn

 .
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Since A∗ = AT in this case,(
∑

n
i=1 x2

i ∑
n
i=1 xi

∑
n
i=1 xi n

)(
m
b

)
=

(
∑

n
i=1 xiyi

∑
n
i=1 yi

)
Solving this system of equations for m and b,

m =
−(∑n

i=1 xi)(∑
n
i=1 yi)+(∑n

i=1 xiyi)n(
∑

n
i=1 x2

i

)
n− (∑n

i=1 xi)
2

and

b =
−(∑n

i=1 xi)∑
n
i=1 xiyi +(∑n

i=1 yi)∑
n
i=1 x2

i(
∑

n
i=1 x2

i

)
n− (∑n

i=1 xi)
2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx+ c in the
same way. In this case you solve as well as possible for a,b, and c the system

x2
1 x1 1
...

...
...

x2
n xn 1


 a

b
c

=


y1
...

yn


using the same techniques.

12.5 Fredholm Alternative
The best context in which to study the Fredholm alternative is in inner product spaces. This
is done here.

Definition 12.5.1 Let S be a subset of an inner product space, X . Define

S⊥ ≡ {x ∈ X : (x,s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 12.5.2 Let A : V →W where A is linear and V and W are inner product spaces.
Then A(V ) = ker(A∗)⊥ .

Proof: Let y = Ax so y ∈ A(V ) . Then if A∗z = 0,

(y,z) = (Ax,z) = (x,A∗z) = 0

showing that y ∈ ker(A∗)⊥ . Thus A(V )⊆ ker(A∗)⊥ .
Now suppose y ∈ ker(A∗)⊥ . Does there exists x such that Ax = y? Since this might not

be immediately clear, take the least squares solution to the problem. Thus let x be a solution
to A∗Ax = A∗y. It follows A∗ (y−Ax) = 0 and so y−Ax ∈ ker(A∗) which implies from the
assumption about y that (y−Ax,y) = 0. Also, since Ax is the closest point to y in A(V ) ,
Theorem 12.1.7 on Page 310 implies that (y−Ax,Ax1) = 0 for all x1 ∈V. In particular this

is true for x1 = x and so 0 = (y−Ax,y)−
=0︷ ︸︸ ︷

(y−Ax,Ax) = |y−Ax|2 , showing that y = Ax.
Thus A(V )⊇ ker(A∗)⊥. ■
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Corollary 12.5.3 Let A,V, and W be as described above. If the only solution to A∗y = 0 is
y = 0, then A is onto W.

Proof: If the only solution to A∗y = 0 is y = 0, then ker(A∗) = {0} and so every vector
from W is contained in ker(A∗)⊥ and by the above theorem, this shows A(V ) =W . ■

12.6 The Determinant and Volume
The determinant is the essential algebraic tool which provides a way to give a unified
treatment of the concept of p dimensional volume. Here is the definition of what is meant
by such a thing. In what follows, X will be typically some Rm.

Definition 12.6.1 Let u1, · · · ,up be vectors in some inner product space X. The paral-
lelepiped determined by these vectors will be denoted by P(u1, · · · ,up) and it is defined
as

P(u1, · · · ,up)≡

{
p

∑
j=1

s ju j : s j ∈ [0,1]

}
=UQ, Q = [0,1]p

The volume of this parallelepiped is defined as

volume of P(u1, · · · ,up)≡ v(P(u1, · · · ,up))≡ (det(G))1/2 .

where Gi j = ui · u j. This G is called the metric tensor, sometimes the Grammian matrix.
Let G(u1, · · · ,up) denote the metric tensor determined by u1, · · · ,up. The vectors ui are
dependent, if and only if the p dimensional volume just defined gives 0. That is, if and only
if det(G(u1, · · · ,up)) = 0.

The last assertion follows from Proposition 12.2.2.

I am going to show that this is the only reasonable definition of volume for such a
parallelepiped if you desire to preserve Euclidean ideas of distance and volume. Here is a

picture which shows

P

u

w

θ

P = P(u1, · · · ,up−1)

the relation between P(u1, · · · ,up−1) and P(u1, · · · ,up).
In particular, if you have a parallelepiped P(u1, · · · ,up−1) , then by adding another vec-

tor u not in the span of the
{

u1, · · · ,up−1
}

you would want the p dimensional volume of
P(u1, · · · ,up−1,u) to equal the distance from u to the subspace spanned by u1, · · · ,up−1
multiplied by the p−1 dimensional volume of P(u1, · · · ,up−1) ,v(P(u1, · · · ,up−1)). Thus,
from Theorem 12.2.3, assuming P(u1, · · · ,up−1) ̸= 0 so that detG(u1, · · · ,up−1) ̸= 0 you
would want the p dimensional volume to satisfy

v(P(u1, · · · ,up−1,u))
2 =

det(G(u1, · · · ,up−1,u))
det(G(u1, · · · ,up−1))

v(P(u1, · · · ,up−1))
2

= det(G(u1, · · · ,up−1,u))
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and so it follows that this is the only geometrically reasonable definition of the volume
of a parallelepiped if the one dimensional volume is det(G(v))1/2, the Euclidean length.
Clearly if v = 0, this gives what the volume should be, 0. If v ̸= 0, then P(v) is just a line
of the form 0+ tv : t ∈ [0,1] and the endpoints would be 0 and v. We would want the one
dimensional volume of this line to be its length. But if length is to be defined in terms of
the Pythagorean theorem, this length is just (v,v)1/2 = det(G(v))1/2. Therefore, the above
is the only reasonable definition of Euclidean volume.

12.7 Finding an Orthogonal Basis
The Gram Schmidt process described above gives a way to generate an orthogonal set of
vectors from a linearly independent set. Is there a convenient way to do this? Probably
not. However, if you have access to a computer algebra system there might be a way which
could help. In the following lemma, vi will be a vector and it is assumed that vi, i = 1, ...,n
are linearly independent.

Lemma 12.7.1 Let {v1, ...,vn} be linearly independent and consider the following formal
determinant:

det



(v1,v1) (v1,v2) · · · (v1,vn−1) v1

(v2,v1) (v2,v2) · · · (v2,vn−1) v2
...

...
...

...
(vn−1,v1) (vn−1,v2) · · · (vn−1,vn−1) vn−1

(vn,v1) (vn,v2) · · · (vn,vn−1) vn


Then the vector which results from expanding this determinant formally is perpendicular
to each of v1, ...,vn−1.

Proof: It is of the form ∑
n
i=1 viCi where Ci is a suitable (n−1)× (n−1) determinant.

Thus the inner product of this with vk for k ≤ n− 1 is the expansion of a determinant
which has two equal columns. However, the inner product with vn will be the Grammian
of {v1, ...,vn} which is not zero since these vectors vi are independent, this by Proposition
12.2.2 ■

Example 12.7.2 The vectors 1,x,x2,x3 are linearly independent on [0,1], the vector space
being the continuous functions defined on [0,1]. You might show this. An inner product is
given by

∫ 1
0 f (x)g(x)dx. Find an orthogonal basis for span

(
1,x,x2,x3

)
.

You could use the above lemma. u1 (x) = 1. Now I will assemble the formal determi-
nants as given above.

det

(
1 1
1
2 x

)
,det

 1 1
2 1

1
2

1
3 x

1
3

1
4 x2

 , det


1 1

2
1
3 1

1
2

1
3

1
4 x

1
3

1
4

1
5 x2

1
4

1
5

1
6 x3


Now the orthogonal basis is obtained from evaluating these determinants and adding 1

to the list. Thus an orthonormal basis is{
1,x− 1

2 ,
1

12 x2− 1
12 x+ 1

72 ,
1

2160 x3− 1
1440 x2 + 1

3600 x− 1
43200

}
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Is this horrible? Yes it is. However, if you have a computer algebra system do it for
you, it isn’t so bad. For example, to get the last term, you just do

1
x
x2

x3

( 1 x x2
)
=


1 x x2

x x2 x3

x2 x3 x4

x3 x4 x5


Then you do the following.

∫ 1

0


1 x x2

x x2 x3

x2 x3 x4

x3 x4 x5

dx =


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6


You could get Matlab to do it for you. Then you add in the last column which consists of
the original vectors. If you wanted an orthonormal basis, you could divide each vector by
its magnitude. This was only painless because I let the computer do all the tedious busy
work. However, I think it has independent interest because it gives a formula for a vector
which will be orthogonal to a given set of linearly independent vectors.

12.8 Exercises
1. Find the best solution to the system

x+2y = 6
2x− y = 5
3x+2y = 0

2. Find an orthonormal basis for R3, {w1,w2,w3} given that w1 is a multiple of the
vector (1,1,2).

3. Suppose A = AT is a symmetric real n×n matrix which has all positive eigenvalues.
Define

(x,y)≡ (Ax,y) .

Show this is an inner product on Rn. What does the Cauchy Schwarz inequality say
in this case?

4. Let ||x||
∞
≡max

{∣∣x j
∣∣ : j = 1,2, · · · ,n

}
. Show this is a norm on Cn. Here

x=
(

x1 · · · xn

)T
.

Show ||x||
∞
≤ |x| ≡ (x,x)1/2 where the above is the usual inner product on Cn.

5. Let ||x||1 ≡ ∑
n
j=1

∣∣x j
∣∣ .Show this is a norm on Cn. Here x=

(
x1 · · · xn

)T
.

Show ||x||1 ≥ |x| ≡ (x,x)1/2. where the above is the usual inner product on Cn.
Show there cannot exist an inner product such that this norm comes from the inner
product as described above for inner product spaces.



322 CHAPTER 12. INNER PRODUCT SPACES, LEAST SQUARES

6. Show that if ||·|| is any norm on any vector space, then |||x||− ||y||| ≤ ||x− y|| .

7. Relax the assumptions in the axioms for the inner product. Change the axiom about
(x,x)≥ 0 and equals 0 if and only if x = 0 to simply read (x,x)≥ 0. Show the Cauchy
Schwarz inequality still holds in the following form. |(x,y)| ≤ (x,x)1/2 (y,y)1/2 .

8. Let H be an inner product space and let {uk}n
k=1 be an orthonormal basis for H. Show

(x,y) =
n

∑
k=1

(x,uk)(y,uk).

9. Let the vector space V consist of real polynomials of degree no larger than 3. Thus
a typical vector is a polynomial of the form a+ bx+ cx2 + dx3. For p,q ∈ V define
the inner product, (p,q) ≡

∫ 1
0 p(x)q(x)dx. Show this is indeed an inner product.

Then state the Cauchy Schwarz inequality in terms of this inner product. Show{
1,x,x2,x3

}
is a basis for V . Finally, find an orthonormal basis for V. This is an

example of some orthonormal polynomials.

10. Let Pn denote the polynomials of degree no larger than n−1 which are defined on an
interval [a,b] . Let {x1, · · · ,xn} be n distinct points in [a,b] . Now define for p,q ∈ Pn,

(p,q)≡
n

∑
j=1

p(x j)q(x j)

Show this yields an inner product on Pn. Hint: Most of the axioms are obvious. The
one which says (p, p) = 0 if and only if p = 0 is the only interesting one. To verify
this one, note that a nonzero polynomial of degree no more than n− 1 has at most
n−1 zeros.

11. Let C ([0,1]) denote the vector space of continuous real valued functions defined on
[0,1]. Let the inner product be given as

( f ,g)≡
∫ 1

0
f (x)g(x)dx

Show this is an inner product. Also let V be the subspace described in Problem 9.
Using the result of this problem, find the vector in V which is closest to x4.

12. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,(

p(x)y′
)′
+(λq(x)+ r (x))y = 0, x ∈ [a,b]

and it is assumed that p(t) ,q(t) > 0 for any t ∈ [a,b] and also there are boundary
conditions,

C1y(a)+C2y′ (a) = 0
C3y(b)+C4y′ (b) = 0

where
C2

1 +C2
2 > 0, and C2

3 +C2
4 > 0.
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There is an immense theory connected to these important problems. The constant, λ

is called an eigenvalue. Show that if y is a solution to the above problem correspond-
ing to λ = λ 1 and if z is a solution corresponding to λ = λ 2 ̸= λ 1, then∫ b

a
q(x)y(x)z(x)dx = 0. (12.6)

and this defines an inner product. Hint: Do something like this:(
p(x)y′

)′ z+(λ 1q(x)+ r (x))yz = 0,(
p(x)z′

)′ y+(λ 2q(x)+ r (x))zy = 0.

Now subtract and either use integration by parts or show(
p(x)y′

)′ z− (p(x)z′
)′ y = ((p(x)y′

)
z−
(

p(x)z′
)

y
)′

and then integrate. Use the boundary conditions to show that

y′ (a)z(a)− z′ (a)y(a) = 0

and y′ (b)z(b)−z′ (b)y(b) = 0. The formula, 12.6 is called an orthogonality relation.
It turns out there are typically infinitely many eigenvalues and it is interesting to write
given functions as an infinite series of these “eigenfunctions”.

13. Consider the continuous functions defined on [0,π] , C ([0,π]) . Show that the expres-
sion ( f ,g)≡

∫
π

0 f gdx is an inner product on this vector space. Show the functions{√
2
π

sin(nx)

}∞

n=1

are an orthonormal set. What does this mean about the dimension of the vector space
C ([0,π])? Now let

VN = span

(√
2
π

sin(x) , · · · ,
√

2
π

sin(Nx)

)
.

For f ∈C ([0,π]) find a formula for the vector in VN which is closest to f with respect
to the norm determined from the above inner product. This is called the Nth partial
sum of the Fourier series of f . An important problem is to determine whether and
in what way this Fourier series converges to the function f . The norm which comes
from this inner product is sometimes called the mean square norm.

14. Consider the subspace V ≡ ker(A) where

A =


1 4 −1 −1
2 1 2 3
4 9 0 1
5 6 3 4


Find an orthonormal basis for V. Hint: You might first find a basis and then use the
Gram Schmidt procedure.
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15. The Gram Schmidt process starts with a basis for a subspace {v1, · · · ,vn} and pro-
duces an orthonormal basis for the same subspace {u1, · · · ,un} such that

span(v1, · · · ,vk) = span(u1, · · · ,uk)

for each k. Show that in the case of Rm the QR factorization does the same thing.
Specifically, if A =

(
v1 · · · vn

)
and if A = QR≡

(
q1 · · · qn

)
R then the

vectors {q1, · · · ,qn} is an orthonormal set of vectors and for each k,

span(q1, · · · ,qk) = span(v1, · · · ,vk)

16. Verify the parallelogram identify for any inner product space,

|x+ y|2 + |x− y|2 = 2 |x|2 +2 |y|2 .

Why is it called the parallelogram identity?

17. Let H be an inner product space and let K ⊆ H be a nonempty convex subset. This
means that if k1,k2 ∈ K, then the line segment consisting of points of the form

tk1 +(1− t)k2 for t ∈ [0,1]

is also contained in K. Suppose for each x ∈ H, there exists Px defined to be a point
of K closest to x. Show that Px is unique so that P actually is a map. Hint: Suppose
z1 and z2 both work as closest points. Consider the midpoint, (z1 + z2)/2 and use the
parallelogram identity of Problem 16 in an auspicious manner.

18. In the situation of Problem 17 suppose K is a closed convex subset and that H is
complete. This means every Cauchy sequence converges. Recall a sequence {kn} is
a Cauchy sequence if for every ε > 0 there exists Nε such that whenever m,n > Nε ,
it follows |km− kn|< ε. Let {kn} be a sequence of points of K such that

lim
n→∞
|x− kn|= inf{|x− k| : k ∈ K}

This is called a minimizing sequence. Show there exists a unique k ∈ K such that
limn→∞ |kn− k| and that k = Px. That is, there exists a well defined projection map
onto the convex subset of H. Hint: Use the parallelogram identity in an auspicious
manner to show {kn} is a Cauchy sequence which must therefore converge. Since K
is closed it follows this will converge to something in K which is the desired vector.

19. Let H be an inner product space which is also complete and let P denote the projec-
tion map onto a convex closed subset, K. Show this projection map is characterized
by the inequality Re(k−Px,x−Px)≤ 0 for all k ∈ K. That is, a point z ∈ K equals
Px if and only if the above variational inequality holds. This is what that inequality
is called. This is because k is allowed to vary and the inequality continues to hold for
all k ∈ K.

20. Using Problem 19 and Problems 17 - 18 show the projection map, P onto a closed
convex subset is Lipschitz continuous with Lipschitz constant 1. That is |Px−Py| ≤
|x− y|
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21. Give an example of two vectors inR4 orR3 x,y and a subspace V such that x ·y= 0
but Px·Py ̸= 0 where P denotes the projection map which sends x to its closest point
on V .

22. Suppose you are given the data, (1,2) ,(2,4) ,(3,8) ,(0,0) . Find the linear regression
line using the formulas derived above. Then graph the given data along with your
regression line.

23. Generalize the least squares procedure to the situation in which data is given and
you desire to fit it with an expression of the form y = a f (x)+ bg(x)+ c where the
problem would be to find a,b and c in order to minimize the error. Could this be
generalized to higher dimensions? How about more functions?

24. Let A∈L (X ,Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank(A) ≡ dim(A(X)) and nullity(A) ≡ dim(ker(A)) .
Show that nullity(A)+ rank(A) = dim(X) . Hint: Let {xi}r

i=1 be a basis for ker(A)
and let {xi}r

i=1∪{yi}n−r
i=1 be a basis for X . Then show that {Ayi}n−r

i=1 is linearly inde-
pendent and spans AX .

25. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A)≤ rank (A∗)≤

= rank (AA∗)≤ rank (A) .

Hint: Start with an orthonormal basis,
{

Ax j
}r

j=1 of A(Fn) and verify
{

A∗Ax j
}r

j=1
is a basis for A∗A(Fn) .

26. Let A be a real m×n matrix and let A=QR be the QR factorization with Q orthogonal
and R upper triangular. Show that there exists a solution x to the equation

RT Rx= RT QTb

and that this solution is also a least squares solution defined above such that AT Ax=
ATb.

27. Here are three vectors in R4 : (1,2,0,3)T ,(2,1,−3,2)T ,(0,0,1,2)T . Find the three
dimensional volume of the parallelepiped determined by these three vectors.

28. Here are two vectors in R4 : (1,2,0,3)T ,(2,1,−3,2)T . Find the volume of the par-
allelepiped determined by these two vectors.

29. Here are three vectors in R2 : (1,2)T ,(2,1)T ,(0,1)T . Find the three dimensional
volume of the parallelepiped determined by these three vectors. Recall that from the
above theorem, this should equal 0.

30. Find the equation of the plane through the three points

(1,2,3) ,(2,−3,1) ,(1,1,7) .
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31. Let T map a vector space V to itself. Explain why T is one to one if and only if T is
onto. It is in the text, but do it again in your own words.

32. ↑Let all matrices be complex with complex field of scalars and let A be an n× n
matrix and B a m×m matrix while X will be an n×m matrix. The problem is to
consider solutions to Sylvester’s equation. Solve the following equation for X

AX−XB =C

where C is an arbitrary n×m matrix. Show there exists a unique solution if and only
if σ (A)∩σ (B) = /0. Hint: If q(λ ) is a polynomial, show first that if AX−XB = 0,
then q(A)X − Xq(B) = 0. Next define the linear map T which maps the n×m
matrices to the n×m matrices as follows. T X ≡ AX − XB. Show that the only
solution to T X = 0 is X = 0 so that T is one to one if and only if σ (A)∩σ (B) = /0.
Do this by using the first part for q(λ ) the characteristic polynomial for B and then
use the Cayley Hamilton theorem. Explain why q(A)−1 exists if and only if the
condition σ (A)∩σ (B) = /0.

33. What is the geometric significance of the Binet Cauchy theorem, Theorem 8.4.5?

34. Let U,H be finite dimensional inner product spaces. (More generally, complete inner
product spaces.) Let A be a linear map from U to H. Thus AU is a subspace of H.
For g ∈ AU, define A−1g to be the unique element of {x : Ax= g} which is closest
to 0. Then define (h,g)AU ≡

(
A−1g,A−1h

)
U . Show that this is a well defined

inner product. Let U,H be finite dimensional inner product spaces. (More generally,
complete inner product spaces.) Let A be a linear map from U to H. Thus AU is a
subspace of H. For g ∈ AU, define A−1g to be the unique element of {x : Ax= g}
which is closest to 0. Then define (h,g)AU ≡

(
A−1g,A−1h

)
U . Show that this is a

well defined inner product and that if A is one to one, then ∥h∥AU =
∥∥A−1h

∥∥
U and

∥Ax∥AU = ∥x∥U .

35. For f a piecewise continuous function,

Sn f (x) =
1

2π

n

∑
k=−n

eikx
(∫

π

−π

f (y)e−ikydy
)
.

where Sn f (x) denotes the nth partial sum of the Fourier series. Recall that this Fourier
series was of the form

n

∑
k=−n

an
1√
2π

eikx, an ≡
1√
2π

∫
π

−π

f (y)e−ikydy

Show this can be written in the form

Sn f (x) =
∫

π

−π

f (y)Dn (x− y)dy

where

Dn (t) =
1

2π

n

∑
k=−n

eikt
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This is called the Dirichlet kernel. Show that

Dn (t) =
1

2π

sin(n+(1/2)) t
sin(t/2)

For V the vector space of piecewise continuous functions, define Sn : V 7→V by

Sn f (x) =
∫

π

−π

f (y)Dn (x− y)dy.

Show that Sn is a linear transformation. (In fact, Sn f is not just piecewise continuous
but infinitely differentiable. Why?) Explain why

∫
π

−π
Dn (t)dt = 1. Hint: To obtain

the formula, do the following.

ei(t/2)Dn (t) =
1

2π

n

∑
k=−n

ei(k+(1/2))t

ei(−t/2)Dn (t) =
1

2π

n

∑
k=−n

ei(k−(1/2))t

Change the variable of summation in the bottom sum and then subtract and solve for
Dn (t).

36. ↑Let V be an inner product space and let U be a finite dimensional subspace with an
orthonormal basis {ui}n

i=1. If y ∈V, show

|y|2 ≥
n

∑
k=1
|⟨y,uk⟩|2

Let {uk}∞

k=1 be an orthonormal set of vectors of V . Explain why limk→∞ ⟨y,uk⟩= 0.
When applied to functions, this is a special case of the Riemann Lebesgue lemma.

37. ↑Let f be any piecewise continuous real function which is bounded on [−π,π] .
Show, using the above problem, that

lim
n→∞

∫
π

−π

f (t)sin(nt)dt = lim
n→∞

∫
π

−π

f (t)cos(nt)dt = 0

38. ↑∗Let f be a function which is defined on (−π,π]. The 2π periodic extension is given
by the formula f (x+2π) = f (x) . In the rest of this problem, f will refer to this 2π

periodic extension. Assume that f is piecewise continuous, bounded, and also that
the following limits exist for this 2π extension.

lim
y→0+

f (x+ y)− f (x+)

y
, lim

y→0+

f (x− y)− f (x+)

y

Here it is assumed that f (x+) ≡ limh→0+ f (x+h) , f (x−) ≡ limh→0+ f (x−h).
both exist at every point. The above conditions rule out functions where the slope
taken from either side becomes infinite. Actually, you don’t need anything about
these quotients being bounded. It is enough to have what is called a Dini condition
which is a bound involving a Holder condition and it gives the quotients in L1 but this
kind of thing involves more analysis. The above result is still very interesting. Justify
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the following assertions and eventually conclude that under these very reasonable
conditions (more general ones are possible.)

lim
n→∞

Sn f (x) = ( f (x+)+ f (x−))/2

the mid point of the jump. In words, the Fourier series converges to the midpoint of
the jump of the function.

Sn f (x) =
∫

π

−π

f (y)Dn (x− y)dy =
∫

π

−π

f (x− y)Dn (y)dy

You just change variables and then use 2π periodicity to get this.∣∣∣∣Sn f (x)− f (x+)+ f (x−)
2

∣∣∣∣
=

∣∣∣∣∫ π

−π

(
f (x− y)− f (x+)+ f (x−)

2

)
Dn (y)dy

∣∣∣∣
=

∣∣∣∣∫ π

0
f (x− y)Dn (y)dy+

∫
π

0
f (x+ y)Dn (y)dy

−
∫

π

0
( f (x+)+ f (x−))Dn (y)dy

∣∣∣∣
≤
∣∣∣∣∫ π

0
( f (x− y)− f (x−))Dn (y)dy

∣∣∣∣+ ∣∣∣∣∫ π

0
( f (x+ y)− f (x+))Dn (y)dy

∣∣∣∣
Now apply some trig. identities and use the result of Problem 37 to conclude that
both of these terms must converge to 0.



Chapter 13

Matrices and the Inner Product
13.1 Schur’s Theorem, Hermitian Matrices

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Schur’s theorem and it is the most important theorem in the spectral theory of matrices.
The important result which makes this theorem possible is the Gram Schmidt procedure of
Lemma 10.5.13.

Definition 13.1.1 An n×n matrix U, is unitary if UU∗ = I =U∗U where U∗ is defined to
be the transpose of the conjugate of U. Thus Ui j = U∗ji. Note that every real orthogonal,
meaning QT Q = I, matrix is unitary. For A any matrix, A∗, just defined as the conjugate of
the transpose, is called the adjoint. As shown above, this is also defined by

(Ax,y) = (x,A∗y)

Note that if U =
(

v1 · · · vn

)
where the vk are orthonormal vectors in Cn, then

U is unitary. This follows because the i jth entry of U∗U is vT
i v j = δ i j since the vi are

assumed orthonormal.

Lemma 13.1.2 The following holds. (AB)∗ = B∗A∗.

Proof: Using the definition in terms of inner products,

(x,(AB)∗y) = (ABx,y) = (Bx,A∗y) = (x,B∗A∗y)

and so, since x is arbitrary, (AB)∗y = B∗A∗y which shows the result since y is arbitrary.
■

Theorem 13.1.3 Let A be an n×n matrix. Then there exists a unitary matrix U such that

U∗AU = T, (13.1)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation. If A is a real matrix
having all real eigenvalues, then U can be chosen to be an orthogonal real matrix.

Proof: The theorem is clearly true if A is a 1×1 matrix. Just let U = 1, the 1×1 matrix
which has entry 1. Suppose it is true for (n−1)× (n−1) matrices, n ≥ 2 and let A be an
n×n matrix. Then let v1 be a unit eigenvector for A. Then there exists λ 1 such that

Av1 = λ 1v1, |v1|= 1.

Extend {v1} to a basis and then use the Gram - Schmidt process or Theorem 12.3.6 to
obtain {v1, · · · ,vn}, an orthonormal basis of Cn. Let U0 be a matrix whose ith column is
vi so that U0 is unitary. Consider U∗0 AU0

U∗0 AU0 =


v∗1
...
v∗n

( Av1 · · · Avn

)
=


v∗1
...
v∗n

( λ 1v1 · · · Avn

)

329
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Thus U∗0 AU0 is of the form (
λ 1 a

0 A1

)
where A1 is an n− 1× n− 1 matrix. Now by induction, there exists an (n−1)× (n−1)
unitary matrix Ũ1 such that Ũ∗1 A1Ũ1 = Tn−1, an upper triangular matrix. Consider

U1 ≡

(
1 0

0 Ũ1

)
.

Then

U∗1 U1 =

(
1 0

0 Ũ∗1

)(
1 0

0 Ũ1

)
=

(
1 0

0 In−1

)
Also

U∗1 U∗0 AU0U1 =

(
1 0

0 Ũ∗1

)(
λ 1 ∗
0 A1

)(
1 0

0 Ũ1

)

=

(
λ 1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U =U0U1. It is clear that this is unitary because both
matrices preserve distance. Therefore, so does the product and hence U . Alternatively,

I =U0U1U∗1 U∗0 = (U0U1)(U0U1)
∗

and so, it follows that A is similar to T and that U0U1 is unitary. Hence A and T have
the same characteristic polynomials, and therefore the same eigenvalues listed according
to multiplicity as roots of the characteristic equation. These are the diagonal entries of T
listed with multiplicity and so this proves the main conclusion of the theorem. In case A
is real with all real eigenvalues, the above argument can be repeated word for word using
only the real dot product to show that U can be taken to be real and orthogonal. ■

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 13.1.4 Let A be of the form

A =


P1 · · · ∗
...

. . .
...

0 · · · Ps


where Pk is an mk×mk matrix. Then

det(A) = ∏
k

det(Pk) .

Proof: Let Uk be an mk×mk unitary matrix such that

U∗k PkUk = Tk
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where Tk is upper triangular. Then letting U denote the block diagonal matrix, having the
Ui as the blocks on the diagonal,

U =


U1 · · · 0
...

. . .
...

0 · · · Us

 , U∗ =


U∗1 · · · 0

...
. . .

...
0 · · · U∗s


and

U∗1 · · · 0
...

. . .
...

0 · · · U∗s




P1 · · · ∗
...

. . .
...

0 · · · Ps




U1 · · · 0
...

. . .
...

0 · · · Us

=


T1 · · · ∗
...

. . .
...

0 · · · Ts


and so

det(A) = ∏
k

det(Tk) = ∏
k

det(Pk) . ■

Definition 13.1.5 An n×n matrix A is called Hermitian if A = A∗. Thus a real symmetric
(A = AT ) matrix is Hermitian.

The following is the major result about Hermitian matrices. It says that any Hermitian
matrix is similar to a diagonal matrix. We say it is unitarily similar because the matrix U
in the following theorem which gives the similarity transformation is a unitary matrix.

Theorem 13.1.6 If A is an n× n Hermitian matrix, there exists a unitary matrix U such
that

U∗AU = D (13.2)

where D is a real diagonal matrix. That is, D has nonzero entries only on the main diagonal
and these are real. Furthermore, the columns of U are an orthonormal basis of eigenvectors
for Cn. If A is real and symmetric, then U can be assumed to be a real orthogonal matrix
and the columns of U form an orthonormal basis for Rn.

Proof: From Schur’s theorem above, there exists U unitary (real and orthogonal if A is
real) such that

U∗AU = T

where T is an upper triangular matrix. Then from Lemma 13.1.2

T ∗ = (U∗AU)∗ =U∗A∗U =U∗AU = T.

Thus T = T ∗ and T is upper triangular. This can only happen if T is really a diagonal
matrix having real entries on the main diagonal. (If i ̸= j, one of Ti j or Tji equals zero. But
Ti j = Tji and so they are both zero. Also Tii = Tii.)

Finally, let
U =

(
u1 u2 · · · un

)
where the ui denote the columns of U and

D =


λ 1 0

. . .

0 λ n
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The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)
= UD =

(
λ 1u1 λ 2u2 · · · λ nun

)
where the entries denote the columns of AU and UD respectively. Therefore, Aui = λ iui
and since the matrix is unitary, the i jth entry of U∗U equals δ i j and so

δ i j = uT
i u j = uT

i u j = ui ·u j.

This proves the corollary because it shows the vectors {ui} form an orthonormal basis.
In case A is real and symmetric, simply ignore all complex conjugations in the above
argument. ■

This theorem is particularly nice because the diagonal entries are all real. What of a
matrix which is unitarily similar to a diagonal matrix without assuming the diagonal entries
are real? That is, A is an n×n matrix with

U∗AU = D

Then this requires
U∗A∗U = D∗

and so since the two diagonal matrices commute,

AA∗ = UDU∗UD∗U∗ =UDD∗U∗ =UD∗DU∗

= UD∗U∗UDU∗ = A∗A

The following definition describes these matrices.

Definition 13.1.7 An n×n matrix is normal means: A∗A = AA∗.

We just showed that if A is unitarily similar to a diagonal matrix, then it is normal. The
converse is also true. This involves the following lemma.

Lemma 13.1.8 If T is upper triangular and normal, then T is a diagonal matrix. If A is
normal and U is unitary, then U∗AU is also normal.

Proof: This is obviously true if T is 1× 1. In fact, it can’t help being diagonal in this
case. Suppose then that the lemma is true for (n−1)× (n−1) matrices and let T be an
upper triangular normal n×n matrix. Thus T is of the form

T =

(
t11 a∗

0 T1

)
, T ∗ =

(
t11 0T

a T ∗1

)
Then

T T ∗ =

(
t11 a∗

0 T1

)(
t11 0T

a T ∗1

)
=

(
|t11|2 +a∗a a∗T ∗1

T1a T1T ∗1

)

T ∗T =

(
t11 0T

a T ∗1

)(
t11 a∗

0 T1

)
=

(
|t11|2 t11a

∗

at11 aa∗+T ∗1 T1

)
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Since these two matrices are equal, it follows a= 0. But now it follows that T ∗1 T1 = T1T ∗1
and so by induction T1 is a diagonal matrix D1. Therefore,

T =

(
t11 0T

0 D1

)

a diagonal matrix.
As to the last claim, let A be normal. Then

(U∗AU)∗ (U∗AU) = U∗A∗UU∗AU =U∗A∗AU

= U∗AA∗U =U∗AUU∗A∗U

= (U∗AU)(U∗AU)∗ ■

Theorem 13.1.9 An n×n matrix is unitarily similar to a diagonal matrix if and only if it
is normal.

Proof: It was already shown above that if A is similar to a diagonal matrix then it is
normal. Suppose now that A is normal. By Schur’s theorem, there is a unitary matrix U
such that

U∗AU = T

where T is upper triangular. By Lemma 13.1.8, T is normal and, since it is upper triangular,
it is a diagonal matrix. ■

13.2 Quadratic Forms
Definition 13.2.1 A quadratic form in three dimensions is an expression of the form

(
x y z

)
A

 x
y
z

 (13.3)

where A is a 3×3 symmetric matrix. In higher dimensions the idea is the same except you
use a larger symmetric matrix in place of A. In two dimensions A is a 2×2 matrix.

For example, consider

(
x y z

) 3 −4 1
−4 0 −4
1 −4 3


 x

y
z

 (13.4)

which equals 3x2−8xy+2xz−8yz+3z2. This is very awkward because of the mixed terms
such as −8xy. The idea is to pick different axes such that if x,y,z are taken with respect to
these axes, the quadratic form is much simpler. In other words, look for new variables,
x′,y′, and z′ and a unitary matrix U such that

U

 x′

y′

z′

=

 x
y
z

 (13.5)
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and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
13.1.6, it follows there exists a real unitary matrix U, (an orthogonal matrix) such that
UT AU = D a diagonal matrix. Thus in the quadratic form, 13.3

(
x y z

)
A

 x
y
z

 =
(

x′ y′ z′
)

UT AU

 x′

y′

z′


=

(
x′ y′ z′

)
D

 x′

y′

z′


and in terms of these new variables, the quadratic form becomes

λ 1
(
x′
)2

+λ 2
(
y′
)2

+λ 3
(
z′
)2

where D= diag(λ 1,λ 2,λ 3) . Similar considerations apply equally well in any other dimen-
sion. For the given example, −

1
2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3


 3 −4 1
−4 0 −4
1 −4 3

 ·

− 1√

2
1√
6

1√
3

0 2√
6
− 1√

3
1√
2

1√
6

1√
3

=

 2 0 0
0 −4 0
0 0 8


and so if the new variables are given by

− 1√
2

1√
6

1√
3

0 2√
6
− 1√

3
1√
2

1√
6

1√
3


 x′

y′

z′

=

 x
y
z

 ,

it follows that in terms of the new variables the quadratic form is 2(x′)2−4(y′)2 +8(z′)2 .
You can work other examples the same way.

13.3 The Estimation Of Eigenvalues
There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just
from looking at the matrix.

Theorem 13.3.1 Let A be an n×n matrix. Consider the n Gerschgorin discs defined as

Di ≡

{
λ ∈ C : |λ −aii| ≤∑

j ̸=i

∣∣ai j
∣∣} .

Then every eigenvalue is contained in some Gerschgorin disc.
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This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (ai j) , let |xk| ≥
∣∣x j
∣∣ for all x j.

Thus |xk| ̸= 0.
∑
j ̸=k

ak jx j = (λ −akk)xk.

Then

|xk|∑
j ̸=k

∣∣ak j
∣∣≥ ∑

j ̸=k

∣∣ak j
∣∣ ∣∣x j

∣∣≥ ∣∣∣∣∣∑j ̸=k
ak jx j

∣∣∣∣∣= |λ −aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. ■

Example 13.3.2 Here is a matrix. Estimate its eigenvalues. 2 1 1
3 5 0
0 1 9


According to Gerschgorin’s theorem the eigenvalues are contained in the disks

D1 = {λ ∈ C : |λ −2| ≤ 2} ,D2 = {λ ∈ C : |λ −5| ≤ 3} ,

D3 = {λ ∈ C : |λ −9| ≤ 1}

It is important to observe that these disks are in the complex plane. In general this is the
case. If you want to find eigenvalues they will be complex numbers.

x

iy

2 5 9

So what are the values of the eigenvalues? In this case they are real. You can compute
them by graphing the characteristic polynomial, λ

3−16λ
2 +70λ −66 and then zooming

in on the zeros. If you do this you find the solution is {λ = 1.2953} ,{λ = 5.5905} ,
{λ = 9.1142} . Of course these are only approximations and so this information is useless
for finding eigenvectors. However, in many applications, it is the size of the eigenvalues
which is important and so these numerical values would be helpful for such applications.
In this case, you might think there is no real reason for Gerschgorin’s theorem. Why not
just compute the characteristic equation and graph and zoom? This is fine up to a point, but
what if the matrix was huge? Then it might be hard to find the characteristic polynomial.
Remember the difficulties in expanding a big matrix along a row or column. Also, what if
the eigenvalues were complex? You don’t see these by following this procedure. However,
Gerschgorin’s theorem will at least estimate them.
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13.4 Advanced Theorems
More can be said but this requires some theory from complex variables1. The following is
a fundamental theorem about counting zeros.

Theorem 13.4.1 Let U be a region and let γ : [a,b]→U be closed, continuous, bounded
variation, and the winding number, n(γ,z) = 0 for all z /∈U. Suppose also that f is analytic
on U having zeros a1, · · · ,am where the zeros are repeated according to multiplicity, and
suppose that none of these zeros are on γ ([a,b]) . Then

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
m

∑
k=1

n(γ,ak) .

Proof: It is given that f (z) = ∏
m
j=1 (z−a j)g(z) where g(z) ̸= 0 on U. Hence using the

product rule,
f ′ (z)
f (z)

=
m

∑
j=1

1
z−a j

+
g′ (z)
g(z)

where g′(z)
g(z) is analytic on U and so

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
m

∑
j=1

n(γ,a j)+
1

2πi

∫
γ

g′ (z)
g(z)

dz =
m

∑
j=1

n(γ,a j) . ■

Now let A be an n×n matrix. Recall that the eigenvalues of A are given by the zeros of
the polynomial, pA (z) = det(zI−A) where I is the n×n identity. You can argue that small
changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a very small
closed circle which winds around zk, one of the eigenvalues of A, in the counter clockwise
direction so that n(γk,zk) = 1. This circle is to enclose only zk and is to have no other
eigenvalue on it. Then apply Theorem 13.4.1. According to this theorem

1
2πi

∫
γ

p′A (z)
pA (z)

dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever B is
close enough to A, the two matrices have the same number of zeros inside γk, the zeros
being counted according to multiplicity. By making the radius of the small circle equal to
ε where ε is less than the minimum distance between any two distinct eigenvalues of A,
this shows that if B is close enough to A, every eigenvalue of B is closer than ε to some
eigenvalue of A. ■

Theorem 13.4.2 If λ is an eigenvalue of A, then if all the entries of B are close enough to
the corresponding entries of A, some eigenvalue of B will be within ε of λ .

Consider the situation that A(t) is an n× n matrix and that t → A(t) is continuous for
t ∈ [0,1] .

1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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Lemma 13.4.3 Let λ (t) ∈ σ (A(t)) for t < 1 and let Σt = ∪s≥tσ (A(s)) . Also let Kt be the
connected component of λ (t) in Σt . Then there exists η > 0 such that Kt ∩σ (A(s)) ̸= /0 for
all s ∈ [t, t +η ] .

Proof: Denote by D(λ (t) ,δ ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D(λ (t) ,δ )≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A(t)) contained in
D(λ (t) ,δ ) and that pA(t) has no zeroes on the boundary of this disc. Then by con-
tinuity, and the above discussion and theorem, there exists η > 0, t + η < 1, such that
for s ∈ [t, t +η ] , pA(s) also has no zeroes on the boundary of this disc and A(s) has the
same number of eigenvalues, counted according to multiplicity, in the disc as A(t) . Thus
σ (A(s))∩D(λ (t) ,δ ) ̸= /0 for all s ∈ [t, t +η ] . Now let

H =
⋃

s∈[t,t+η ]

σ (A(s))∩D(λ (t) ,δ ) .

It will be shown that H is connected. Suppose not. Then H =P∪Q where P,Q are separated
and λ (t) ∈ P. Let s0 ≡ inf{s : λ (s) ∈ Q for some λ (s) ∈ σ (A(s))} . There exists λ (s0) ∈
σ (A(s0))∩D(λ (t) ,δ ) . If λ (s0) /∈ Q, then from the above discussion there are λ (s) ∈
σ (A(s))∩Q for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows that
s0 > t because λ (t) is the only element of σ (A(t)) in D(λ (t) ,δ ) and λ (t) ∈ P. Now let
sn ↑ s0. Then λ (sn) ∈ P for any λ (sn) ∈ σ (A(sn))∩D(λ (t) ,δ ) and also it follows from
the above discussion that for some choice of sn→ s0, λ (sn)→ λ (s0) which contradicts P
and Q separated and nonempty. Since P is nonempty, this shows Q = /0. Therefore, H is
connected as claimed. But Kt ⊇ H and so Kt ∩σ (A(s)) ̸= /0 for all s ∈ [t, t +η ] . ■

Theorem 13.4.4 Suppose A(t) is an n× n matrix and that t → A(t) is continuous for
t ∈ [0,1] . Let λ (0) ∈ σ (A(0)) and define Σ≡ ∪t∈[0,1]σ (A(t)) . Let Kλ (0) = K0 denote the
connected component of λ (0) in Σ. Then K0∩σ (A(t)) ̸= /0 for all t ∈ [0,1] .

Proof: Let

S≡ {t ∈ [0,1] : K0∩σ (A(s)) ̸= /0 for all s ∈ [0, t]} .

Then 0 ∈ S. Let t0 = sup(S) . Say σ (A(t0)) = λ 1 (t0) , · · · ,λ r (t0) .
Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S. Now
let the discs, D(λ i (t0) ,δ ) , i = 1, · · · ,r be disjoint with pA(t0) having no zeroes on γ i the
boundary of D(λ i (t0) ,δ ) . Then for n large enough it follows from Theorem 13.4.1 and
the discussion following it that σ (A(sn)) is contained in ∪r

i=1D(λ i (t0) ,δ ). It follows that
K0 ∩ (σ (A(t0))+D(0,δ )) ̸= /0 for all δ small enough. This requires at least one of the
λ i (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 13.4.3, if t0 < 1, then K0∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩σ (A(s)) = /0 for
some s ∈ (t, t +η) while Kt ∩σ (A(s)) ̸= /0 for all s ∈ [t, t +η ].) Therefore, t0 = 1. ■

Corollary 13.4.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.
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Proof: Denote by A(t) the matrix
(

at
i j

)
where if i ̸= j, at

i j = tai j and at
ii = aii. Thus to

get A(t) multiply all non diagonal terms by t. Let t ∈ [0,1] . Then A(0) = diag(a11, · · · ,ann)
and A(1) = A. Furthermore, the map, t → A(t) is continuous. Denote by Dt

j the Ger-
schgorin disc obtained from the jth row for the matrix A(t). Then it is clear that Dt

j ⊆ D j

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A(0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 13.4.4 which is determined by aii,
Gerschgorin’s theorem implies that K ∩ σ (A(t)) ⊆ ∪n

j=1Dt
j ⊆ ∪n

j=1D j = Di ∪
(
∪ j ̸=iD j

)
and also, since K is connected, there are not points of K in both Di and

(
∪ j ̸=iD j

)
. Since

at least one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by
Theorem 13.4.4 this shows there are points of K ∩σ (A) in Di. The last assertion follows
immediately. ■

This can be improved even more. This involves the following lemma.

Lemma 13.4.6 In the situation of Theorem 13.4.4 suppose λ (0) = K0∩σ (A(0)) and that
λ (0) is a simple root of the characteristic equation of A(0). Then for all t ∈ [0,1] ,

σ (A(t))∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A(t) .

Proof: Let

S≡ {t ∈ [0,1] : K0∩σ (A(s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .

Then 0 ∈ S so it is nonempty. Let t0 = sup(S) and suppose λ 1 ̸= λ 2 are two elements
of σ (A(t0))∩K0. Then choosing η > 0 small enough, and letting Di be disjoint discs
containing λ i respectively, similar arguments to those of Lemma 13.4.3 can be used to
conclude

Hi ≡ ∪s∈[t0−η ,t0]σ (A(s))∩Di

is a connected and nonempty set for i = 1,2 which would require that Hi ⊆ K0. But then
there would be two different eigenvalues of A(s) contained in K0, contrary to the defini-
tion of t0. Therefore, there is at most one eigenvalue λ (t0) ∈ K0∩σ (A(t0)) . Could it be a
repeated root of the characteristic equation? Suppose λ (t0) is a repeated root of the charac-
teristic equation. As before, choose a small disc, D centered at λ (t0) and η small enough
that

H ≡ ∪s∈[t0−η ,t0]σ (A(s))∩D

is a nonempty connected set containing either multiple eigenvalues of A(s) or else a single
repeated root to the characteristic equation of A(s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0−η , t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 +η ] , A(s) has only simple eigenvalues in
D and the only eigenvalues of A(s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A(t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A(s) are either
close to these eigenvalues of A(t0) at a positive distance from K0 or they are close to the
eigenvalue λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved. ■

With this lemma, the conclusion of the above corollary can be sharpened.
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Corollary 13.4.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.

Proof: In the proof of Corollary 13.4.5, note that aii is a simple root of A(0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩σ (A(t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A(0) , the a j j, are outside Di, it
follows that K ∩σ (A(0)) = aii. Therefore, by Lemma 13.4.6, K ∩σ (A(1)) = K ∩σ (A)
consists of a single simple eigenvalue. ■

Example 13.4.8 Consider the matrix 5 1 0
1 1 1
0 1 0


The Gerschgorin discs are D(5,1) ,D(1,2) , and D(0,1) . Observe D(5,1) is disjoint

from the other discs. Therefore, there should be an eigenvalue in D(5,1) . The actual
eigenvalues are not easy to find. They are the roots of the characteristic equation, t3−6t2+
3t + 5 = 0. The numerical values of these are −.66966,1.4231, and 5.24655, verifying
the predictions of Gerschgorin’s theorem.

13.5 Exercises
1. Explain why it is typically impossible to compute the upper triangular matrix whose

existence is guaranteed by Schur’s theorem.

2. Now recall the QR factorization of Theorem 12.3.9 on Page 316. The QR algorithm
is a technique which does compute the upper triangular matrix in Schur’s theorem
sometimes. There is much more to the QR algorithm than will be presented here.
In fact, what I am about to show you is not the way it is done in practice. One first
obtains what is called a Hessenburg matrix for which the algorithm will work better.
However, the idea is as follows. Start with A an n×n matrix having real eigenvalues.
Form A = QR where Q is orthogonal and R is upper triangular. (Right triangular.)
This can be done using the technique of Theorem 12.3.9 using Householder matrices.
Next take A1 ≡ RQ. Show that A = QA1QT . In other words these two matrices, A,A1
are similar. Explain why they have the same eigenvalues. Continue by letting A1
play the role of A. Thus the algorithm is of the form An = QRn and An+1 = Rn+1Q.
Explain why A=QnAnQT

n for some Qn orthogonal. Thus An is a sequence of matrices
each similar to A. The remarkable thing is that often these matrices converge to an
upper triangular matrix T and A = QT QT for some orthogonal matrix, the limit of
the Qn where the limit means the entries converge. Then the process computes the
upper triangular Schur form of the matrix A. Thus the eigenvalues of A appear on the
diagonal of T. You will see approximately what these are as the process continues.

3. ↑Try the QR algorithm on (
−1 −2
6 6

)
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which has eigenvalues 3 and 2. I suggest you use a computer algebra system to do
the computations.

4. ↑ Now try the QR algorithm on (
0 −1
2 0

)

Show that the algorithm cannot converge for this example. Hint: Try a few iterations
of the algorithm. Use a computer algebra system if you like.

5. ↑Show the two matrices A≡

(
0 −1
4 0

)
and B≡

(
0 −2
2 0

)
are similar; that is

there exists a matrix S such that A = S−1BS but there is no orthogonal matrix Q such
that QT BQ = A. Show the QR algorithm does converge for the matrix B although it
fails to do so for A.

6. Let F be an m×n matrix. Show that F∗F has all real eigenvalues and furthermore,
they are all nonnegative.

7. If A is a real n× n matrix and λ is a complex eigenvalue λ = a+ ib,b ̸= 0, of A
having eigenvector z+ iw, show that w ̸= 0.

8. Suppose A = QT DQ where Q is an orthogonal matrix and all the matrices are real.
Also D is a diagonal matrix. Show that A must be symmetric.

9. Suppose A is an n×n matrix and there exists a unitary matrix U such that

A =U∗DU

where D is a diagonal matrix. Explain why A must be normal.

10. If A is Hermitian, show that det(A) must be real.

11. Show that every unitary matrix preserves distance. That is, if U is unitary,

|Ux|= |x| .

12. Show that if a matrix does preserve distances, then it must be unitary.

13. ↑Show that a complex normal matrix A is unitary if and only if its eigenvalues have
magnitude equal to 1.

14. Suppose A is an n×n matrix which is diagonally dominant. Recall this means

∑
j ̸=i

∣∣ai j
∣∣< |aii|

show A−1 must exist.
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15. Give some disks in the complex plane whose union contains all the eigenvalues of
the matrix  1+2i 4 2

0 i 3
5 6 7


16. Show a square matrix is invertible if and only if it has no zero eigenvalues.

17. Using Schur’s theorem, show the trace of an n× n matrix equals the sum of the
eigenvalues and the determinant of an n×n matrix is the product of the eigenvalues.

18. Using Schur’s theorem, show that if A is any complex n× n matrix having eigen-
values {λ i} listed according to multiplicity, then ∑i, j

∣∣Ai j
∣∣2 ≥ ∑

n
i=1 |λ i|2. Show that

equality holds if and only if A is normal. This inequality is called Schur’s inequality.
[33]

19. Here is a matrix. 
1234 6 5 3

0 −654 9 123
98 123 10,000 11
56 78 98 400


I know this matrix has an inverse before doing any computations. How do I know?

20. Show the critical points of the following function are

(0,−3,0) ,(2,−3,0) ,and
(

1,−3,−1
3

)
and classify them as local minima, local maxima or saddle points.

f (x,y,z) =− 3
2 x4 +6x3−6x2 + zx2−2zx−2y2−12y−18− 3

2 z2.

21. Here is a function of three variables.

f (x,y,z) = 13x2 +2xy+8xz+13y2 +8yz+10z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy,yz etc. Two eigenvalues are 12 and 18.

22. Here is a function of three variables.

f (x,y,z) = 2x2−4x+2+9yx−9y−3zx+3z+5y2−9zy−7z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy,yz etc. The eigenvalues of the matrix which you will work with are
− 17

2 , 19
2 ,−1.

23. Here is a function of three variables.

f (x,y,z) =−x2 +2xy+2xz− y2 +2yz− z2 + x

change the variables so that in the new variables there are no mixed terms, terms
involving xy,yz etc.
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24. Show the critical points of the function,

f (x,y,z) =−2yx2−6yx−4zx2−12zx+ y2 +2yz.

are points of the form,

(x,y,z) =
(
t,2t2 +6t,−t2−3t

)
for t ∈ R and classify them as local minima, local maxima or saddle points.

25. Show the critical points of the function

f (x,y,z) =
1
2

x4−4x3 +8x2−3zx2 +12zx+2y2 +4y+2+
1
2

z2.

are (0,−1,0) ,(4,−1,0) , and (2,−1,−12) and classify them as local minima, local
maxima or saddle points.

26. Let f (x,y) = 3x4− 24x2 + 48− yx2 + 4y. Find and classify the critical points using
the second derivative test.

27. Let f (x,y) = 3x4−5x2+2−y2x2+y2. Find and classify the critical points using the
second derivative test.

28. Let f (x,y) = 5x4−7x2−2−3y2x2+11y2−4y4. Find and classify the critical points
using the second derivative test.

29. Let f (x,y,z) = −2x4− 3yx2 + 3x2 + 5x2z+ 3y2− 6y+ 3− 3zy+ 3z+ z2. Find and
classify the critical points using the second derivative test.

30. Let f (x,y,z) = 3yx2−3x2−x2z−y2 +2y−1+3zy−3z−3z2. Find and classify the
critical points using the second derivative test.

31. Let Q be orthogonal. Find the possible values of det(Q) .

32. Let U be unitary. Find the possible values of det(U) .

33. If a matrix is nonzero can it have only zero for eigenvalues?

34. A matrix A is called nilpotent if Ak = 0 for some positive integer k. Suppose A is a
nilpotent matrix. Show it has only 0 for an eigenvalue.

35. If A is a nonzero nilpotent matrix, show it must be defective.

36. Suppose A is a nondefective n× n matrix and its eigenvalues are all either 0 or 1.
Show A2 = A. Could you say anything interesting if the eigenvalues were all either
0,1,or −1? By DeMoivre’s theorem, an nth root of unity is of the form(

cos
(

2kπ

n

)
+ isin

(
2kπ

n

))
Could you generalize the sort of thing just described to get An = A? Hint: Since A is
nondefective, there exists S such that S−1AS = D where D is a diagonal matrix.
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37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y(t0) = y0

When a is real, show the unique solution to this problem is y = y0ea(t−t0). Next
suppose

y′ = (a+ ib)y, y(t0) = y0 (13.6)

where y(t) = u(t) + iv(t) . Show there exists a unique solution and it is given by
y(t) =

y0ea(t−t0) (cosb(t− t0)+ isinb(t− t0))≡ e(a+ib)(t−t0)y0. (13.7)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay+ f , y(t0) = y0

and it is given by

y(t) = ea(t−t0)y0 + eat
∫ t

t0
e−as f (s)ds.

Hint: For the first part write as y′− ay = 0 and multiply both sides by e−at . Then
explain why you get

d
dt

(
e−aty(t)

)
= 0, y(t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib)y, y(t0) = 0

and verify this requires y(t) = 0. To do this, note

y′ = (a− ib)y, y(t0) = 0

and that |y|2 (t0) = 0 and

d
dt
|y(t)|2 = y′ (t)y(t)+ y′ (t)y(t)

= (a+ ib)y(t)y(t)+(a− ib)y(t)y(t) = 2a |y(t)|2 .

Thus from the first part |y(t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 13.6 is solved by 13.7. For the last part, write the equation as

y′−ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial con-
dition.

38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T



344 CHAPTER 13. MATRICES AND THE INNER PRODUCT

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x(t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty, y (t0) = Q−1x0 (13.8)

Now letting y = (y1, · · · ,yn)
T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n .

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 13.8.

39. Now suppose Φ(t) is an n×n matrix of the form

Φ(t) =
(

x1 (t) · · · xn (t)
)

(13.9)

where
x′k (t) = Axk (t) .

Explain why
Φ
′ (t) = AΦ(t)

if and only if Φ(t) is given in the form of 13.9. Also explain why if c ∈ Fn,y (t) ≡
Φ(t)c solves the equation y′ (t) = Ay (t) .

40. In the above problem, consider the question whether all solutions to

x′ = Ax (13.10)

are obtained in the form Φ(t)c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ(t)c for c ∈ Fn? Prove the following theorem
using linear algebra.

Theorem 13.5.1 Suppose Φ(t) is an n× n matrix which satisfies Φ′ (t) = AΦ(t) .
Then the general solution to 13.10 is Φ(t)c if and only if Φ(t)−1 exists for some t.
Furthermore, if Φ′ (t) = AΦ(t) , then either Φ(t)−1 exists for all t or Φ(t)−1 never
exists for any t.

(det(Φ(t)) is called the Wronskian and this theorem is sometimes called the Wron-
skian alternative.)

Hint: Suppose first the general solution is of the form Φ(t)c where c is an arbitrary
constant vector in Fn. You need to verify Φ(t)−1 exists for some t. In fact, show
Φ(t)−1 exists for every t. Suppose then that Φ(t0)

−1 does not exist. Explain why
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there exists c ∈ Fn such that there is no solution x to the equation c = Φ(t0)x. By
the existence part of Problem 38 there exists a solution to

x′ = Ax, x(t0) = c

but this cannot be in the form Φ(t)c. Thus for every t, Φ(t)−1 exists. Next suppose
for some t0,Φ(t0)

−1 exists. Let z′ = Az and choose c such that

z (t0) = Φ(t0)c

Then both z (t) ,Φ(t)c solve

x′ = Ax, x(t0) = z (t0)

Apply uniqueness to conclude z = Φ(t)c. Finally, consider that Φ(t)c for c ∈ Fn

either is the general solution or it is not the general solution. If it is, then Φ(t)−1

exists for all t. If it is not, then Φ(t)−1 cannot exist for any t from what was just
shown.

41. Let Φ′ (t) = AΦ(t) . Then Φ(t) is called a fundamental matrix if Φ(t)−1 exists for
all t. Show there exists a unique solution to the equation

x′ = Ax+f , x(t0) = x0 (13.11)

and it is given by the formula

x(t) = Φ(t)Φ(t0)
−1x0 +Φ(t)

∫ t

t0
Φ(s)−1f (s)ds

Now these few problems have done virtually everything of significance in an en-
tire undergraduate differential equations course, illustrating the superiority of linear
algebra. The above formula is called the variation of constants formula.

Hint: Uniquenss is easy. If x1,x2 are two solutions then let u(t) = x1 (t)−x2 (t)
and argue u′ = Au, u(t0) = 0. Then use Problem 38. To verify there exists a solu-
tion, you could just differentiate the above formula using the fundamental theorem
of calculus and verify it works. Another way is to assume the solution in the form

x(t) = Φ(t)c(t)

and find c(t) to make it all work out. This is called the method of variation of
parameters.

42. Show there exists a special Φ such that Φ′ (t) = AΦ(t) , Φ(0) = I, and suppose
Φ(t)−1 exists for all t. Show using uniqueness that

Φ(−t) = Φ(t)−1

and that for all t,s ∈ R
Φ(t + s) = Φ(t)Φ(s)

Explain why with this special Φ, the solution to 13.11 can be written as

x(t) = Φ(t− t0)x0 +
∫ t

t0
Φ(t− s)f (s)ds.
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Hint: Let Φ(t) be such that the jth column is x j (t) where

x′j = Ax j, x j (0) = e j.

Use uniqueness as required.

43. You can see more on this problem and the next one in the latest version of Horn
and Johnson, [25]. Two n× n matrices A,B are said to be congruent if there is an
invertible P such that

B = PAP∗

Let A be a Hermitian matrix. Thus it has all real eigenvalues. Let n+ be the number
of positive eigenvalues, n−, the number of negative eigenvalues and n0 the number of
zero eigenvalues. For k a positive integer, let Ik denote the k× k identity matrix and
Ok the k×k zero matrix. Then the inertia matrix of A is the following block diagonal
n×n matrix.  In+

In−

On0


Show that A is congruent to its inertia matrix. Next show that congruence is an equiv-
alence relation on the set of Hermitian matrices. Finally, show that if two Hermitian
matrices have the same inertia matrix, then they must be congruent. Hint: First recall
that there is a unitary matrix, U such that

U∗AU =

 Dn+

Dn−

On0


where the Dn+ is a diagonal matrix having the positive eigenvalues of A, Dn− being
defined similarly. Now let

∣∣Dn−

∣∣ denote the diagonal matrix which replaces each
entry of Dn− with its absolute value. Consider the two diagonal matrices

D = D∗ =

 D−1/2
n+ ∣∣Dn−

∣∣−1/2

In0


Now consider D∗U∗AUD.

44. Show that if A,B are two congruent Hermitian matrices, then they have the same
inertia matrix. Hint: Let A = SBS∗ where S is invertible. Show that A,B have the
same rank and this implies that they are each unitarily similar to a diagonal matrix
which has the same number of zero entries on the main diagonal. Therefore, letting
VA be the span of the eigenvectors associated with positive eigenvalues of A and
VB being defined similarly, it suffices to show that these have the same dimensions.
Show that (Ax,x)> 0 for all x ∈VA. Next consider S∗VA. For x ∈VA, explain why

(BS∗x,S∗x) =
(

S−1A(S∗)−1 S∗x,S∗x
)

=
(
S−1Ax,S∗x

)
=
(

Ax,
(
S−1)∗ S∗x

)
= (Ax,x)> 0
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Next explain why this shows that S∗VA is a subspace of VB and so the dimension of VB
is at least as large as the dimension of VA. Hence there are at least as many positive
eigenvalues for B as there are for A. Switching A,B you can turn the inequality
around. Thus the two have the same inertia matrix.

45. Let A be an m×n matrix. Then if you unraveled it, you could consider it as a vector
in Cnm. The Frobenius inner product on the vector space of m×n matrices is defined
as

(A,B)≡ trace(AB∗)

Show that this really does satisfy the axioms of an inner product space and that it
also amounts to nothing more than considering m×n matrices as vectors in Cnm.

46. ↑Consider the n× n unitary matrices. Show that whenever U is such a matrix, it
follows that

|U |Cnn =
√

n

Next explain why if {Uk} is any sequence of unitary matrices, there exists a subse-
quence {Ukm}

∞

m=1 such that limm→∞ Ukm =U where U is unitary. Here the limit takes
place in the sense that the entries of Ukm converge to the corresponding entries of U .

47. ↑Let A,B be two n×n matrices. Denote by σ (A) the set of eigenvalues of A. Define

dist(σ (A) ,σ (B)) = max
λ∈σ(A)

min{|λ −µ| : µ ∈ σ (B)}

Explain why dist(σ (A) ,σ (B)) is small if and only if every eigenvalue of A is close
to some eigenvalue of B. Now prove the following theorem using the above problem
and Schur’s theorem. This theorem says roughly that if A is close to B then the
eigenvalues of A are close to those of B in the sense that every eigenvalue of A is
close to an eigenvalue of B. This is a very important observation when you try to
approximate eigenvalues using the QR algorithm.

Theorem 13.5.2 Suppose limk→∞ Ak = A. Then

lim
k→∞

dist(σ (Ak) ,σ (A)) = 0

48. Let A =

(
a b
c d

)
be a 2×2 matrix which is not a multiple of the identity. Show

that A is similar to a 2× 2 matrix which has at least one diagonal entry equal to 0.
Hint: First note that there exists a vector a such that Aa is not a multiple of a. Then
consider

B =
(

a Aa
)−1

A
(

a Aa
)

Show B has a zero on the main diagonal.

49. ↑ Let A be a complex n×n matrix which has trace equal to 0. Show that A is similar
to a matrix which has all zeros on the main diagonal. Hint: Use Problem 39 on
Page 99 to argue that you can say that a given matrix is similar to one which has
the diagonal entries permuted in any order desired. Then use the above problem and
block multiplication to show that if the A has k nonzero entries, then it is similar to a
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matrix which has k−1 nonzero entries. Finally, when A is similar to one which has
at most one nonzero entry, this one must also be zero because of the condition on the
trace.

50. ↑An n× n matrix X is a commutator if there are n× n matrices A,B such that X =
AB−BA. Show that the trace of any commutator is 0. Next show that if a complex
matrix X has trace equal to 0, then it is in fact a commutator. Hint: Use the above
problem to show that it suffices to consider X having all zero entries on the main
diagonal. Then define

A =


1 0

2
. . .

0 n

 , Bi j =

{
Xi j
i− j if i ̸= j

0 if i = j

13.6 Cauchy’s Interlacing Theorem, Eigenvalues
Recall that every Hermitian matrix has all real eigenvalues. The Cauchy interlacing theo-
rem compares the location of the eigenvalues of a Hermitian matrix with the eigenvalues of
a principal submatrix. It is an extremely interesting theorem.

Theorem 13.6.1 Let A be a Hermitian n×n matrix and let

A =

(
a y∗

y B

)
where B is (n−1)× (n−1) . Let the eigenvalues of B be µ1 ≤ µ2 ≤ ·· · ≤ µn−1. Then if
the eigenvalues of A are λ 1 ≤ λ 2 ≤ ·· · ≤ λ n, it follows that λ 1 ≤ µ1 ≤ λ 2 ≤ µ2 ≤ ·· · ≤
µn−1 ≤ λ n.

Proof: First note that B is Hermitian because

A∗ =

(
a y∗

y B∗

)
= A =

(
a y∗

y B

)
It is easiest to consider the case where strict inequality holds for the eigenvalues for B so
first is an outline of reducing to this case.

There exists U unitary, depending on B such that U∗BU = D where

D =


µ1 0

. . .

0 µn−1


Now let {εk} be a decreasing sequence of very small positive numbers converging to 0 and
let Bk be defined by

U∗BkU = Dk, Dk ≡


µ1 + εk 0

µ2 +2εk
. . .

0 µn−1 +(n−1)εk
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where U is the above unitary matrix. Thus the eigenvalues of Bk, µ̂1 < · · · < µ̂n−1 are
strictly increasing and µ̂ j ≡ µ j + jεk. Let Ak be given by

Ak =

(
a y∗

y Bk

)

Then (
1 0∗

0 U∗

)
Ak

(
1 0∗

0 U

)

=

(
1 0∗

0 U∗

)(
a y∗

y Bk

)(
1 0∗

0 U

)

=

(
a y∗

U∗y U∗Bk

)(
1 0∗

0 U

)
=

(
a y∗U

U∗y Dk

)

We can replace y in the statement of the theorem with yk such that limk→∞yk = y but
zk ≡ U∗yk has the property that each component of zk is nonzero. This will probably
take place automatically but if not, make the change. This makes a change in Ak but still
limk→∞ Ak = A. The main part of this argument which follows has to do with fixed k.

Expanding det(λ I−Ak) along the top row, the characteristic polynomial for Ak is then

q(λ ) = (λ −a)
n−1

∏
i=1

(λ − µ̂ i)−
n−1

∑
i=2
|zi|2 (λ − µ̂1) · · · ̂(λ − µ̂ i) · · ·

(
λ − µ̂n−1

)
(13.12)

where ̂(λ − µ̂ i) indicates that this factor is omitted from the product ∏
n−1
i=1 (λ − µ̂ i) . To see

why this is so, consider the case where Bk is 3×3. In this case, you would have

(
1 0T

0 U∗

)
(λ I−Ak)

(
1 0T

0 U

)
=


λ −a z1 z2 z3

z1 λ − µ̂1 0 0
z2 0 λ − µ̂2 0
z3 0 0 λ − µ̂3


In general, you would have an n× n matrix on the right with the same appearance. Then
expanding as indicated, the determinant is

(λ −a)
3

∏
i=1

(λ − µ̂ i)− z1 det

 z1 0 0
z2 λ − µ̂2 0
z3 0 λ − µ̂3


+z2 det

 z1 λ − µ̂1 0
z2 0 0
z3 0 λ − µ̂3

− z3 det

 z1 λ − µ̂1 0
z2 0 λ − µ̂2

z3 0 0



= (λ −a)
3

∏
i=1

(λ − µ̂ i)−

(
|z1|2 (λ − µ̂2)(λ − µ̂3)+ |z2|2 (λ − µ̂1)(λ − µ̂3)

+ |z3|2 (λ − µ̂1)(λ − µ̂2)

)
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Notice how, when you expand the 3×3 determinants along the first column, you have only
one non-zero term and the sign is adjusted to give the above claim. Clearly, it works the
same for any size matrix. Since the µ̂ i are strictly increasing in i, it follows from 13.12 that
q(µ̂ i)q

(
µ̂ i+1

)
≤ 0. However, since each |zi| ̸= 0, none of the q(µ̂ i) can equal 0 and so

q(µ̂ i)q
(
µ̂ i+1

)
< 0. Hence, from the intermediate value theorem of calculus, there is a root

of q(λ ) in each of the disjoint open intervals
(
µ̂ i, µ̂ i+1

)
. There are n−2 of these intervals

and so this accounts for n−2 roots of q(λ ).

q(λ ) = (λ −a)
n−1

∏
i=1

(λ − µ̂ i)−
n−1

∑
i=2
|zi|2 (λ − µ̂1) · · · ̂(λ − µ̂ i) · · ·

(
λ − µ̂n−1

)
What of q(µ̂1)? Its sign is the same as (−1)n−3 and also q

(
µ̂n−1

)
< 0 . Therefore, there

is a root to q(λ ) which is larger than µ̂n−1. Indeed, limλ→∞ q(λ ) = ∞ so there exists a
root of q(λ ) strictly larger than µ̂n−1. This accounts for n−1 roots of q(λ ) . Now consider
q(µ̂1) . Suppose first that n is odd. Then you have q(µ̂1) > 0. Hence, there is a root of
q(λ ) which is no larger than µ̂1 because in this case, limλ→−∞ q(λ ) = −∞. If n is even,
then q(µ̂1)< 0 and so there is a root of q(λ ) which is smaller than µ̂1 because in this case,
limλ→−∞ q(λ ) = ∞. This accounts for all roots of q(λ ). Hence, if the roots of q(λ ) are
λ 1 ≤ λ 2 ≤ ·· · ≤ λ n, it follows that

λ 1 < µ̂1 < λ 2 < µ̂2 < · · ·< µ̂n−1 < λ n

To get the complete result, simply take the limit as k → ∞. Then limk→∞ µ̂k = µk and
Ak → A and so the eigenvalues of Ak converge to the corresponding eigenvalues of A (See
Problem 47 on Page 347), and so, passing to the limit, gives the desired result in which it
may be necessary to replace < with ≤. ■

Definition 13.6.2 Let A be an n×n matrix. An (n− r)×(n− r) matrix is called a principal
submatrix of A if it is obtained by deleting from A the rows i1, i2, · · · , ir and the columns
i1, i2, · · · , ir.

Now the Cauchy interlacing theorem is really the following corollary.

Corollary 13.6.3 Let A be an n× n Hermitian matrix and let B be an (n−1)× (n−1)
principal submatrix. Then the interlacing inequality holds λ 1 ≤ µ1 ≤ λ 2 ≤ µ2 ≤ ·· · ≤
µn−1 ≤ λ n where the µ i are the eigenvalues of B listed in increasing order and the λ i are
the eigenvalues of A listed in increasing order.

Proof: Suppose B is obtained from A by deleting the ith row and the ith column. Then
let P be the permutation matrix which switches the ith row with the first row. It is an
orthogonal matrix and so its inverse is its transpose. The transpose switches the ith column

with the first column. See Problem 40 on Page 99. Thus PAPT =

(
a y∗

y B

)
and it

follows that the result of the multiplication is indeed as shown, a Hermitian matrix because
P,PT are orthogonal matrices. Now the conclusion of the corollary follows from Theorem
13.6.1. ■
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13.7 The Right Polar Factorization
The right polar factorization involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. This is of fun-
damental significance in geometric measure theory and also in continuum mechanics. Not
surprisingly the stress should depend on the part which stretches and distorts. See [18].

First here are some lemmas which review and add to many of the topics discussed so
far about adjoints and orthonormal sets and such things.

Lemma 13.7.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix A1/2 such that A1/2 has all nonnegative eigenvalues
and

(
A1/2

)2
= A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real non-
negative entries and a unitary matrix U such that A = U∗DU. Then denote by D1/2 the
matrix which is obtained by replacing each diagonal entry of D with its square root. Thus
D1/2D1/2 = D. Then define

A1/2 ≡U∗D1/2U.

Then (
A1/2

)2
=U∗D1/2UU∗D1/2U =U∗DU = A.

Since D1/2 is real, (
U∗D1/2U

)∗
=U∗

(
D1/2

)∗
(U∗)∗ =U∗D1/2U

so A1/2 is Hermitian. ■
In fact this square root is unique. This is shown a little later after the main result of this

section.
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property

stated in the next lemma.

Lemma 13.7.2 Suppose
{
w1, · · · ,wr,vr+1, · · · ,vp

}
is a linearly independent set of vec-

tors such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let
{
u1, · · · ,up

}
be the orthonormal set delivered by the Gram Schmidt pro-

cess. Then u1 =w1 because by definition, u1 ≡w1/ |w1| =w1. Now suppose u j =w j
for all j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1−∑

k+1
j=1 (wk+1,u j)u j∣∣∣wk+1−∑
k+1
j=1 (wk+1,u j)u j

∣∣∣
By induction, u j =w j and so this reduces to wk+1/ |wk+1|=wk+1 since |wk+1|= 1. ■

This lemma immediately implies the following lemma.

Lemma 13.7.3 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an orthonor-
mal set of vectors in V . Then this orthonormal set of vectors may be extended to an or-
thonormal basis for V, {

w1, · · · ,wr,yr+1, · · · ,yp
}
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Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is
orthonormal it follows from Lemma 13.7.2 the result is of the desired form, an orthonormal
basis extending {w1, · · · ,wr}. ■

Recall Lemma 12.3.5 which is about preserving distances. It is restated here in the case
of an m×n matrix.

Lemma 13.7.4 Suppose R is an m×n matrix with m≥ n and R preserves distances. Then
R∗R = I.

With this preparation, here is the big theorem about the right polar factorization.

Theorem 13.7.5 Let F be an m×n matrix where m≥ n. Then there exists a Hermitian n×
n matrix U which has all nonnegative eigenvalues and an m×n matrix R which preserves
distances and satisfies R∗R = I such that F = RU.

Proof: Consider F∗F. This is a Hermitian matrix because

(F∗F)∗ = F∗ (F∗)∗ = F∗F

Also the eigenvalues of the n×n matrix F∗F are all nonnegative. This is because if x is an
eigenvalue,

λ (x,x) = (F∗Fx,x) = (Fx,Fx)≥ 0.

Therefore, by Lemma 13.7.1, there exists an n×n Hermitian matrix U having all nonneg-
ative eigenvalues such that

U2 = F∗F.

Consider the subspace U (Fn). Let {Ux1, · · · ,Uxr} be an orthonormal basis for

U (Fn)⊆ Fn.

Note that U (Fn) might not be all of Fn. Using Lemma 13.7.3, extend to an orthonormal
basis for all of Fn,

{Ux1, · · · ,Uxr,yr+1, · · · ,yn} .

Next observe that {Fx1, · · · ,Fxr} is also an orthonormal set of vectors in Fm. This is
because

(Fxk,Fx j) = (F∗Fxk,x j) =
(
U2xk,x j

)
= (Uxk,U∗x j) = (Uxk,Ux j) = δ jk

Therefore, from Lemma 13.7.3 again, this orthonormal set of vectors can be extended to an
orthonormal basis for Fm,

{Fx1, · · · ,Fxr,zr+1, · · · ,zm}

Thus there are at least as many zk as there are y j because m≥ n. Now for x ∈ Fn, since

{Ux1, · · · ,Uxr,yr+1, · · · ,yn}

is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · ,cr,dr+1, · · · ,dn
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such that

x=
r

∑
k=1

ckUxk +
n

∑
k=r+1

dkyk

Define

Rx≡
r

∑
k=1

ckFxk +
n

∑
k=r+1

dkzk (13.13)

Thus, since {Fx1, · · · ,Fxr,zr+1, · · · ,zn} is orthonormal,

|Rx|2 =
r

∑
k=1
|ck|2 +

n

∑
k=r+1

|dk|2 = |x|2

and so it follows from Corollary 12.3.8 or Lemma 13.7.4 that R∗R = I. Then also there
exist scalars bk such that

U x=
r

∑
k=1

bkUxk (13.14)

and so from 13.13,

RU x=
r

∑
k=1

bkFxk = F

(
r

∑
k=1

bkxk

)
Is F (∑r

k=1 bkxk) = F (x)? Using 13.14,(
F

(
r

∑
k=1

bkxk

)
−F (x) ,F

(
r

∑
k=1

bkxk

)
−F (x)

)

=

(
(F∗F)

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U2

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U

(
r

∑
k=1

bkxk−x

)
,U

(
r

∑
k=1

bkxk−x

))

=

(
r

∑
k=1

bkUxk−Ux,
r

∑
k=1

bkUxk−Ux

)
= 0

Therefore, F (∑r
k=1 bkxk) = F (x) and this shows RUx= Fx. ■

Note that U2 is completely determined by F because F∗F =UR∗RU =U2. In fact, U
is also uniquely determined. This will be shown later in Theorem 13.8.1. First is an easy
corollary of this theorem.

Corollary 13.7.6 Let F be m×n and suppose n≥m. Then there exists a Hermitian U and
and R, such that

F =UR, RR∗ = I.

Proof: Recall that L∗∗ = L and (ML)∗ = L∗M∗. Now apply Theorem 13.7.5 to F∗.
Thus, F∗ = R∗U where R∗ and U satisfy the conditions of that theorem. In particular R∗

preserves distances. Then F =UR and RR∗ = R∗∗R∗ = I. ■
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13.8 The Square Root
Now here is a uniqueness and existence theorem for the square root. It follows from this
theorem that U in the above right polar decomposition of Theorem 13.7.5 is unique.

Theorem 13.8.1 Let A be a self adjoint and nonnegative n× n matrix (all eigenvalues
are nonnegative). Then there exists a unique self adjoint nonnegative matrix B such that
B2 = A.

Proof: Suppose B2 = A where B is such a Hermitian square root for A with nonnegative
eigenvalues. Then by Theorem 13.1.6, B has an orthonormal basis for Fn of eigenvectors
{u1, · · · ,un} .

Bui = µ iui

Thus
B = ∑

i
µ iuiu

∗
i

because both linear transformations agree on the orthonormal basis. But this implies that

Aui = B2ui = µ
2
i ui

Thus these are also an orthonormal basis of eigenvectors for A. Hence, letting λ i = µ2
i

A = ∑
i

λ iuiu
∗
i , B = ∑

i
λ

1/2
i uiu

∗
i

Let p(λ ) be a polynomial such that p(λ i) = λ
1/2
i . Say p(λ ) = a0 +a1λ · · ·+apλ

p. Then

Am =

(
∑

i
λ iuiu

∗
i

)m

= ∑
i1,··· ,im

λ i1ui1u
∗
i1λ i2ui2u

∗
i2 · · ·λ imuimu

∗
im (13.15)

= ∑
i1,··· ,im

λ i1λ i2 · · ·λ imui1u
∗
i1ui2u

∗
i2 · · ·uimu

∗
im

= ∑
i1,··· ,im

λ i1λ i2 · · ·λ imui1u
∗
imδ i1i2δ i2i3 · · ·δ im−1im

= ∑
i1,··· ,im−1

λ i1λ i2 · · ·λ
2
im−1

ui1u
∗
im−1

δ i1i2δ i2i3 · · ·δ im−2im−1

...
= ∑

i1

λ
m
i1ui1u

∗
i1 = ∑

i
λ

m
i uiu

∗
i (13.16)

Therefore,
p(A) = a0I +a1A · · ·+apAp

= a0 ∑
i
uiu

∗
i +a1 ∑

i
λ iuiu

∗
i + · · ·+ap ∑

i
λ

p
i uiu

∗
i

= ∑
i

p(λ i)uiu
∗
i = ∑

i
λ

1/2
i uiu

∗
i = B (13.17)
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and so B commutes with every matrix which commutes with A. To see this, suppose CA =
AC, then

BC = p(A)C =Cp(A) = B

This shows that if B is such a square root, then it commutes with every matrix C which
commutes with A. It also shows, by a repeat of the argument 13.15 - 13.16 that B2 = A.

Could there be another such Hermitian square root which has all nonnegative eigen-
values? It was just shown that any such square root commutes with every matrix which
commutes with A. Suppose B1 is another square root which is self adjoint, and has nonneg-
ative eignevalues. Since both B,B1 are nonnegative,

(B(B−B1)x,(B−B1)x)≥ 0,

(B1 (B−B1)x,(B−B1)x)≥ 0 (13.18)

Now, adding these together, and using the fact that the two commute because they both
commute with every matrix which commutes with A,

((B+B1)(B−B1)x,(B−B1)x)≥ 0((
B2−B2

1
)
x,(B−B1)x

)
= ((A−A)x,(B−B1)x) = 0.

It follows that both inner products in 13.18 equal 0. Next use the existence part shown
above to take the square root of B and B1 which is denoted by

√
B,
√

B1 respectively. Then

0 =
(√

B(B−B1)x,
√

B(B−B1)x
)

0 =
(√

B1 (B−B1)x,
√

B1 (B−B1)x
)

which implies
√

B(B−B1)x=
√

B1 (B−B1)x= 0. Thus also,

B(B−B1)x= B1 (B−B1)x= 0

Hence
0 = (B(B−B1)x−B1 (B−B1)x,x) = ((B−B1)x,(B−B1)x)

and so, since x is arbitrary, B1 = B. ■

Corollary 13.8.2 The U in Theorem 13.7.5 is unique.

13.9 An Application To Statistics
A random vector is a function X : Ω→Rp where Ω is a probability space. This means that
there exists a σ algebra of measurable sets F and a probability measure P : F → [0,1].
In practice, people often don’t worry too much about the underlying probability space and
instead pay more attention to the distribution measure of the random variable. For E a
suitable subset of Rp, this measure gives the probability that X has values in E. There
are often excellent reasons for believing that a random vector is normally distributed. This
means that the probability that X has values in a set E is given by∫

E

1

(2π)p/2 det(Σ)1/2 exp
(
−1

2
(x−m)∗Σ

−1 (x−m)

)
dx
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The expression in the integral is called the normal probability density function. There are
two parameters, m and Σ where m is called the mean and Σ is called the covariance matrix.
It is a symmetric matrix which has all real eigenvalues which are all positive. While it may
be reasonable to assume this is the distribution, in general, you won’t know m and Σ and
in order to use this formula to predict anything, you would need to know these quantities.
I am following a nice discussion given in Wikipedia which makes use of the existence of
square roots.

What people do to estimate m, and Σ is to take n independent observations x1, · · · ,xn
and try to predict what m and Σ should be based on these observations. One criterion used
for making this determination is the method of maximum likelihood. In this method, you
seek to choose the two parameters in such a way as to maximize the likelihood which is
given as

n

∏
i=1

1

det(Σ)1/2 exp
(
−1

2
(xi−m)∗Σ

−1 (xi−m)

)
.

For convenience the term (2π)p/2 was ignored. Maximizing the above is equivalent to
maximizing the ln of the above. So taking ln,

n
2

ln
(
det
(
Σ
−1))− 1

2

n

∑
i=1

(xi−m)∗Σ
−1 (xi−m)

Note that the above is a function of the entries of m. Take the partial derivative with
respect to ml . Since the matrix Σ−1 is symmetric this implies

n

∑
i=1

∑
r
(xir−mr)Σ

−1
rl = 0 each l.

Written in terms of vectors,
n

∑
i=1

(xi−m)∗Σ
−1 = 0

and so, multiplying by Σ on the right and then taking adjoints, this yields
n

∑
i=1

(xi−m) = 0, n m=
n

∑
i=1

xi, m=
1
n

n

∑
i=1

xi ≡ x̄.

Now that m is determined, it remains to find the best estimate for Σ.

(xi−m)∗Σ
−1 (xi−m)

is a scalar, so since trace(AB) = trace(BA) ,

(xi−m)∗Σ
−1 (xi−m) = trace

(
(xi−m)∗Σ

−1 (xi−m)
)

= trace
(
(xi−m)(xi−m)∗Σ

−1)
Therefore, the thing to maximize is

n ln
(
det
(
Σ
−1))− n

∑
i=1

trace
(
(xi−m)(xi−m)∗Σ

−1)

= n ln
(
det
(
Σ
−1))− trace


S︷ ︸︸ ︷(

n

∑
i=1

(xi−m)(xi−m)∗
)

Σ
−1
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We assume that S has rank p. Thus it is a self adjoint matrix which has all positive eigen-
values. Therefore, from the property of the trace, trace(AB) = trace(BA) , the thing to
maximize is

n ln
(
det
(
Σ
−1))− trace

(
S1/2

Σ
−1S1/2

)
Now let B = S1/2Σ−1S1/2. Then B is positive and self adjoint also and so there exists U
unitary such that B = U∗DU where D is the diagonal matrix having the positive scalars
λ 1, · · · ,λ p down the main diagonal. Solving for Σ−1 in terms of B, this yields

S−1/2BS−1/2 = Σ
−1

and so

ln
(
det
(
Σ
−1)) = ln

(
det
(

S−1/2
)

det(B)det
(

S−1/2
))

= ln
(
det
(
S−1))+ ln(det(B))

which yields
C (S)+n ln(det(B))− trace(B)

as the thing to maximize. Of course this yields

C (S)+n ln

(
p

∏
i=1

λ i

)
−

p

∑
i=1

λ i

= C (S)+n
p

∑
i=1

ln(λ i)−
p

∑
i=1

λ i

as the quantity to be maximized. To do this, take ∂/∂λ k and set equal to 0. This yields
λ k = n. Therefore, from the above, B =U∗nIU = nI. Also from the above,

B−1 =
1
n

I = S−1/2
ΣS−1/2

and so

Σ =
1
n

S =
1
n

n

∑
i=1

(xi−m)(xi−m)∗

This has shown that the maximum likelihood estimates are

m= x̄≡ 1
n

n

∑
i=1

xi, Σ =
1
n

n

∑
i=1

(xi−m)(xi−m)∗ .

13.10 Simultaneous Diagonalization
Recall the following definition of what it means for a matrix to be diagonalizable.

Definition 13.10.1 Let A be an n×n matrix. It is said to be diagonalizable if there exists
an invertible matrix S such that

S−1AS = D

where D is a diagonal matrix.
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Also, here is a useful observation.

Observation 13.10.2 If A is an n× n matrix and AS = SD for D a diagonal matrix, then
each column of S is an eigenvector or else it is the zero vector. This follows from observing
that for sk the kth column of S and from the way we multiply matrices,

Ask = λ ksk

It is sometimes interesting to consider the problem of finding a single similarity trans-
formation which will diagonalize all the matrices in some set.

Lemma 13.10.3 Let A be an n×n matrix and let B be an m×m matrix. Denote by C the
matrix

C ≡

(
A 0
0 B

)
.

Then C is diagonalizable if and only if both A and B are diagonalizable.

Proof: Suppose S−1
A ASA = DA and S−1

B BSB = DB where DA and DB are diagonal ma-

trices. You should use block multiplication to verify that S ≡

(
SA 0
0 SB

)
is such that

S−1CS = DC, a diagonal matrix.
Consider the converse that C is diagonalizable. It is necessary to show that A has a basis

of eigenvectors for Fn and that B has a basis of eigenvectors in Fm. Thus S has columns si.

Suppose C is diagonalized by S =
(

s1 · · · sn+m

)
. For each of these columns, write

in the form

si =

(
xi

yi

)
where xi ∈ Fn and where yi ∈ Fm. The result is

S =

(
S11 S12

S21 S22

)

where S11 is an n×n matrix and S22 is an m×m matrix. Then there is a diagonal matrix,
D1 being n×n and D2 m×m such that

D = diag(λ 1, · · · ,λ n+m) =

(
D1 0
0 D2

)

such that (
A 0
0 B

)(
S11 S12

S21 S22

)

=

(
S11 S12

S21 S22

)(
D1 0
0 D2

)
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Hence by block multiplication,(
AS11 AS12

BS21 BS22

)
=

(
S11D1 S12D2

S21D1 S22D2

)

Thus,
AS11 = S11D1, BS22 = S22D2

BS21 = S21D1, AS12 = S12D2

It follows each of the xi is an eigenvector of A or else is the zero vector and that each of the
yi is an eigenvector of B or is the zero vector. If there are n linearly independent xi, then A
is diagonalizable by Theorem 6.4.3 on Page 6.4.3.

The row rank of the top half of S, the matrix
(

x1 · · · xn+m

)
must be n because if

this is not so, the row rank of S would be less than n+m which would mean S−1 does not
exist. Therefore, since the column rank equals the row rank, this top half of S has column
rank equal to n and this means there are n linearly independent eigenvectors of A implying
that A is diagonalizable. Similar reasoning applies to B by considering the bottom half of
S. ■

Note that once you know that each of A,B are diagonalizable, you can then use the
specific method used in the first part to accomplish the diagonalization.

The following corollary follows from the same type of argument as the above.

Corollary 13.10.4 Let Ak be an nk×nk matrix and let C denote the block diagonal(
r

∑
k=1

nk

)
×

(
r

∑
k=1

nk

)

matrix given below.

C ≡


A1 0

. . .

0 Ar

 .

Then C is diagonalizable if and only if each Ak is diagonalizable.

Definition 13.10.5 A set, F of n×n matrices is said to be simultaneously diagonalizable if
and only if there exists a single invertible matrix S such that for every A ∈F , S−1AS = DA
where DA is a diagonal matrix. F is a commuting family of matrices if whenever A,B∈F ,
AB = BA.

Lemma 13.10.6 If F is a set of n× n matrices which is simultaneously diagonalizable,
then F is a commuting family of matrices.

Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈F . Then S−1AS = DA and S−1BS = DB where DA and DB are
diagonal matrices. Since diagonal matrices commute,

AB = SDAS−1SDBS−1 = SDADBS−1

= SDBDAS−1 = SDBS−1SDAS−1 = BA. ■
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Lemma 13.10.7 Let D be a diagonal matrix of the form

D≡


λ 1In1 0 · · · 0

0 λ 2In2

. . .
...

...
. . .

. . . 0
0 · · · 0 λ rInr

 , (13.19)

where Ini denotes the ni×ni identity matrix and λ i ̸= λ j for i ̸= j and suppose B is a matrix
which commutes with D. Then B is a block diagonal matrix of the form

B =


B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Br

 (13.20)

where Bi is an ni×ni matrix.

Proof: Let B=(Bi j) where Bii =Bi a block matrix as above in 13.20. Since it commutes
with D, 

B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . . . . .

...
Br1 Br2 · · · Brr




λ 1In1 0 · · · 0

0 λ 2In2

. . .
...

...
. . . . . . 0

0 · · · 0 λ rInr



=


λ 1In1 0 · · · 0

0 λ 2In2

. . .
...

...
. . . . . . 0

0 · · · 0 λ rInr




B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . . . . .

...
Br1 Br2 · · · Brr


Thus

λ jBi j = λ iBi j

Therefore, if i ̸= j,Bi j = 0. Hence B as the form which is claimed. ■

Lemma 13.10.8 Let F denote a commuting family of n×n matrices such that each A∈F
is diagonalizable. Then F is simultaneously diagonalizable.

commuting + diagonalizable ⇒ simultaneously diagonalizable

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

S−1AS = λ I

and so
A = λ I
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Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than
one eigenvalue.

The significant part of the lemma is proved by induction on n. If n = 1, there is nothing
to prove because all the 1× 1 matrices are already diagonal matrices. Suppose then that
the theorem is true for all k ≤ n− 1 where n ≥ 2 and let F be a commuting family of
diagonalizable n× n matrices. Pick A ∈F which has more than one eigenvalue and let S
be an invertible matrix such that S−1AS = D where D is of the form given in 13.19. By
permuting the columns of S there is no loss of generality in assuming D has this form. Now
denote by F̃ the collection of matrices,

{
S−1CS : C ∈F

}
. Note F̃ features the single

matrix S.
It follows easily that F̃ is also a commuting family of diagonalizable matrices. Indeed,(

S−1CS
)(

S−1ĈS
)
= S−1CĈS = S−1ĈCS =

(
S−1ĈS

)(
S−1CS

)
so the matrices commute. Now if M is a matrix in F̃ , then S−1CS = M where C ∈F and
so

C = SMS−1

By assumption, there exists T such that T−1CT = D and so

D = T−1CT = T−1SMS−1T =
(
S−1T

)−1
MS−1T

showing that M is also diagonalizable.
By Lemma 13.10.7 every B ∈ F̃ is a block diagonal matrix of the form given in 13.20

because each of these commutes with D described above as S−1AS and so by block multi-
plication, the diagonal blocks Bi, B̂i corresponding respectively to B, B̂ ∈ F̃ commute.

By Corollary 13.10.4 each of these blocks is diagonalizable. This is because B is known
to be so. Therefore, by induction, since all the blocks are no larger than n− 1× n− 1,
thanks to the assumption that A has more than one eigenvalue, there exist invertible ni×ni
matrices, Ti such that T−1

i BiTi is a diagonal matrix whenever Bi is one of the matrices
making up the block diagonal of any B ∈ F̃ . It follows that for T defined by

T ≡


T1 0 · · · 0

0 T2
. . .

...
...

. . . . . . 0
0 · · · 0 Tr

 ,

then T−1BT = a diagonal matrix for every B∈ F̃ including D. Consider ST. It follows that
for all C ∈F ,

T−1

something in F̃︷ ︸︸ ︷
S−1CS T = (ST )−1 C (ST ) = a diagonal matrix. ■

Theorem 13.10.9 Let F denote a family of matrices which are diagonalizable. Then F
is simultaneously diagonalizable if and only if F is a commuting family.
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Proof: If F is a commuting family, it follows from Lemma 13.10.8 that it is simulta-
neously diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma
13.10.6 that it is a commuting family. ■

This is really a remarkable theorem. Recall that if S−1AS = D a diagonal matrix, then
the columns of S are a basis of eigenvectors. Hence this says that when you have a com-
muting family of non defective matrices, then they have the same eigenvectors. This shows
how remarkable it is when a set of matrices commutes.

13.11 Fractional Powers
The main result is the following theorem.

Theorem 13.11.1 Let A be a self adjoint and nonnegative n× n matrix (all eigenvalues
are nonnegative) and let k be a positive integer. Then there exists a unique self adjoint
nonnegative matrix B such that Bk = A.

Proof: By Theorem 13.1.6, there exists an orthonormal basis of eigenvectors of A, say
{vi}n

i=1 such that Avi = λ ivi with each λ i real. In particular, there exists a unitary matrix U
such that

U∗AU = D, A =UDU∗

where D has nonnegative diagonal entries. Define B in the obvious way.

B≡UD1/kU∗

Then it is clear that B is self adjoint and nonnegative. Also it is clear that Bk = A. What of
uniqueness? Let p(t) be a polynomial whose graph contains the ordered pairs

(
λ i,λ

1/k
i

)
where the λ i are the diagonal entries of D, the eigenvalues of A. Then

p(A) =UP(D)U∗ =UD1/kU∗ ≡ B

Suppose then that Ck = A and C is also self adjoint and nonnegative.

CB =Cp(A) =Cp
(

Ck
)
= p

(
Ck
)

C = p(A)C = BC

and so {B,C} is a commuting family of non defective matrices. By Theorem 13.10.9 this
family of matrices is simultaneously diagonalizable. Hence there exists a single S such that

S−1BS = DB, S−1CS = DC

Where DC,DB denote diagonal matrices. Hence, raising to the power k, it follows that

A = Bk = SDk
BS−1, A =Ck = SDk

CS−1

Hence
SDk

BS−1 = SDk
CS−1

and so Dk
B =Dk

C. Since the entries of the two diagonal matrices are nonnegative, this implies
DB = DC and so S−1BS = S−1CS which shows B =C. ■

A similar result holds for a general finite dimensional inner product space. See Problem
21 in the exercises.



13.12. ROOTS OF POSITIVE LINEAR MAPS 363

13.12 Roots of Positive Linear Maps
In this section, H will be a Hilbert space, real or complex, and T will denote an operator
which satisfies the following definition. This will be a more general result than the above
because it will hold for infinite dimensional spaces.

Definition 13.12.1 Let T satisfy T = T ∗ (Hermitian) and for all x ∈ H,

(T x,x)≥ 0 (13.21)

Such an operator is referred to as positive and self adjoint. It is probably better to refer to
such an operator as “nonnegative” since the possibility that T x = 0 for some x ̸= 0 is not
being excluded. Instead of “self adjoint” you can also use the term, Hermitian. To save
on notation, write T ≥ 0 to mean T is positive, satisfying 13.21. When we say A ≤ B this
means B−A≥ 0.

A useful theorem about the existence of roots of positive self adjoint operators is pre-
sented. This proof is very elementary. I found it in [28] for square roots.

13.12.1 The Product of Positive Self Adjoint Operators
With the above definition here is a fundamental result about positive self adjoint operators.

Proposition 13.12.2 Let S,T be positive and self adjoint such that ST = T S. Then ST is
also positive and self adjoint.

Proof: It is obvious that ST is self adjoint.

(ST x,y) = (T Sx,y) = (Sx,Ty) = (x,STy)

The only problem is to show that ST is positive. The idea is to write S = Sn+1 +∑
n
k=0 S2

k
where S0 = S and the operators Sk are self adjoint. This is because if you have

(
T S2x,x

)
,

where everything commutes, this equals (ST Sx,x) = (T Sx,Sx)≥ 0. Thus it will be possible
to deal with the terms of the sum which are squared. First assume (Sx,x)≤ (x,x) so S≤ I.

Define a sequence recursively as follows.

Sn+1 = Sn−S2
n, S≡ S0 (13.22)

Then ∑
n
k=0 S2

k = ∑
n
k=0 (Sk−Sk+1) = S−Sn+1, S = Sn+1+∑

n
k=0 S2

k . Now S0 ≥ 0 by assump-
tion. Assume Sn ≥ 0. Then

Sn+1 = Sn−S2
n = (I−Sn)Sn (Sn +(I−Sn)) = S2

n (I−Sn)+(I−Sn)
2 Sn

It follows that Sn+1 ≥ 0 because clearly those two terms on the end are positive. Therefore,

(Sx,x) = (Sn+1x,x)+
n

∑
k=0

(
S2

kx,x
)
≥

n

∑
k=0
∥Skx∥2 , (Sx,x)≥

∞

∑
k=0
∥Skx∥2

also and so limk→∞ ∥Skx∥= 0.

T Sx = T Sn+1x+
n

∑
k=0

T S2
kx
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(T Sx,x) = (Sn+1x,T x)+
n

∑
k=0

(
T S2

kx,x
)
= (Sn+1x,T x)+

n

∑
k=0

(T Skx,Skx)

so passing to a limit as n→ ∞,(T Sx,x) = 0+ limsupn→∞ ∑
n
k=0 (T Skx,Skx)≥ 0.

Thus if S≤ I, the theorem is proved. If S is general, S
∥S∥ ≤ I and in this case, it follows

that
(

T S
∥S∥x,x

)
=
(

S
∥S∥T x,x

)
≥ 0 and so (ST x,x)≥ 0. ■

The proposition is like the familiar statement about real numbers which says that when
you multiply two nonnegative real numbers the result is a nonnegative real number.

13.12.2 Roots of Positive Self Adjoint Operators
With this preparation, it is time to give the theorem about roots.

Theorem 13.12.3 Let T ∈ L (H,H) be a positive self adjoint linear operator. Then for
m ∈N, there exists a unique mth root A with the following properties. Am = T,A is positive
and self adjoint, A commutes with every operator which commutes with T .

Proof: Define the following sequence of operators:

A0 ≡ 0, An+1 ≡ An +
1
m
(T −Am

n )

Say T ≤ I.
Claim 1: An ≤ I.
Proof of Claim 1: True if n = 0. Assume true for n. Then

I−An+1 = I−An +
1
m
(Am

n −T )≥ I−An +
1
m
(Am

n − I)

= I−An−
1
m
(I−Am

n )

= (I−Am)−
1
m
(I−Am)

(
I + · · ·+Am−1

n
)

Now, since An ≤ I, I + · · ·+Am−1
n ≤ mI, it follows that

= (I−Am)

(
I− 1

m

(
I + · · ·+Am−1

n
))
≥ (I−Am)(I− I) = 0

so by induction, An ≤ I.
Claim 2: An ≤ An+1.
Proof of Claim 2: From the definition of An, this is true if n = 0 because

A1 = T ≥ 0 = A0.

Suppose true for n. Then from Claim 1,

An+2−An+1 = An+1 +
1
m

(
T −Am

n+1
)
−
[

An +
1
m
(T −Am

n )

]
= An+1−An +

1
m

(
Am

n −Am
n+1
)
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= (An+1−An)− (An+1−An)
1
m

(
Am−1

n+1 +Am−2
n+1 An + · · ·+Am−1

n
)

≥ (An+1−An)− (An+1−An) I = 0

since each An,An+1 ≤ I, so this proves the claim.
Claim 3: An ≥ 0
Proof of Claim 3: This is true if n = 0. Suppose it is true for n.

(An+1x,x) = (Anx,x)+
1
m
(T x,x)− 1

m
(Am

n x,x)

≥ (Anx,x)+
1
m
(T x,x)− 1

m
(Anx,x)≥ 0

because by Proposition 13.12.2, An−Am
n = An

(
I−Am−1

n
)
≥ 0 because An ≤ I.

Thus (Anx,x) is increasing and bounded above so it converges. Now let n > k. Using
Proposition 13.12.2 AnAk ≥ A2

k and also

(An−Ak)(An +Ak)≤ 2(An−Ak) .

Thus the following holds.

∥Anx−Akx∥2 =
(
(An−Ak)

2 x,x
)
=
(
A2

nx,x
)
−2(AnAkx,x)+

(
A2

kx,x
)

≤
(
A2

nx,x
)
−2
(
A2

kx,x
)
+
(
A2

kx,x
)
= ((An−Ak)(An +Ak)x,x)

≤ 2 [(Anx,x)− (Akx,x)]

which converges to 0 as k,n→ ∞. Therefore, limn→∞ Anx exists since {Anx} is a Cauchy
sequence. Let this limit be Ax. Then clearly A is linear. Also, since each An ≥ 0 and self
adjoint, the Cauchy Schwarz inequality implies

|(Ax,y)|= lim
n→∞
|(Anx,y)| ≤ lim sup

n→∞

∣∣∣(Anx,x)1/2 (Any,y)1/2
∣∣∣≤ ∥x∥∥y∥

so A is also continuous. Now (Ax,x) = limn→∞ (Anx,x)≥ 0 so A is positive and it is clearly
also self adjoint since each An is. From passing to the limit in the definition of An,

Ax = Ax+
1
m
(T x−Amx)

and so T x = Amx. This proves the theorem in the case that T ≤ I. Then if T > I, consider
T/∥T∥. T/∥T∥ ≤ I and so there is B such that Bm = T/∥T∥ . Let A = ∥T∥1/m B. This
proves the existence of the mth root. It is clear that A commutes with every continuous
linear operator that commutes with T because this is true of each of the iterates. In fact,
each of these is just a polynomial in T . It remains to verify uniqueness.

Next suppose both A and B are mth roots of T having all the properties stated in the the-
orem. Then AB = BA because both A and B commute with every operator which commutes
with T . Then from Proposition 13.12.2,((

Am−1 +Am−2B+ ...+Bm−1)(A−B)x,(A−B)x
)
≥ 0 (13.23)

Therefore, ((Am−Bm)x,(A−B)x) = (0,(A−B)x) = 0.
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Now this means
(
AkBl (A−B)x,(A−B)x

)
= 0 for all k+ l = m− 1 since the sum of

such terms is 0 and each of them is nonnegative. Now this implies(√
AkBl (A−B)x,

√
AkBl (A−B)x

)
= 0

and so
√

AkBl (A−B)x = 0⇒ AkBl (A−B)x = 0,k+ l = m−1. Then, using the binomial
theorem,

0 =

=(A−B)m−1

m−1

∑
j=0

(
m−1

j

)
Am−1− jB j (−1) j (A−B)x = (A−B)m x

This clearly implies A = B. To see this, consider m = 7.
If m = 7,(A−B)7 x = 0 so (A−B)8 x = 0 so

(
(A−B)4 x,(A−B)4 x

)
= 0 so it follows

that (A−B)4 x = 0 so (
(A−B)2 x,(A−B)2 x

)
= 0

so
(
(A−B)2 x,x

)
= 0 so ((A−B)x,(A−B)x) = 0 so (A−B) = 0. ■

13.13 Spectral Theory of Self Adjoint Operators
First is some notation which may be useful since it will be used in the following presenta-
tion.

Definition 13.13.1 Let X ,Y be inner product space and let u∈Y,v∈X . Then define u⊗v∈
L (X ,Y ) as follows.

u⊗ v(w)≡ (w,v)u

where (w,v) is the inner product in X. Then this is clearly linear. That it is continuous
follows right away from

|(w,v)u| ≤ |u|Y |w|X |v|X
and so

sup
|w|X≤1

|u⊗ v(w)|Y ≤ |u|Y |v|X

Sometimes this is called the tensor product, although much more can be said about the
tensor product.

Note how this is similar to the rank one transformations used to consider the dimension
of the space L (V,W ) in Theorem 5.1.4. This is also a rank one transformation but here
there is no restriction on the dimension of the vector spaces although, as usual, the interest
is in finite dimensional spaces. In case you have {v1, · · · ,vn} an orthonormal basis for V and
{u1, · · · ,um} an orthonormal basis for Y, (or even just a basis.) the linear transformations
ui⊗ v j are the same as those rank one transformations used before in the above theorem
and are a basis for L (V,W ). Thus for A = ∑i, j ai jui⊗ v j, the matrix of A with respect to
the two bases has its i jth entry equal to ai j. This is stated as the following proposition.

Proposition 13.13.2 Suppose {v1, · · · ,vn} is an orthonormal basis for V and {u1, · · · ,um}
is a basis for W. Then if A ∈L (V,W ) is given by A = ∑i, j ai jui⊗ v j, then the matrix of A
with respect to these two bases is an m×n matrix whose i jth entry is ai j.
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In case A is a Hermitian matrix, and you have an orthonormal basis of eigenvectors and
U is the unitary matrix having these eigenvectors as columns, recall that the matrix of A
with respect to this basis is diagonal. Recall why this is.(

Au1 · · · Aun

)
=
(

u1 · · · un

)
D

where D is the diagonal matrix having the eigenvalues down the diagonal. Thus D =U∗AU
and Aui = λ iui. It follows that as a linear transformation,

A = ∑
i

λ iui⊗ui

because both give the same answer when acting on elements of the orthonormal basis. This
also says that the matrix of A with respect to the given orthonormal basis is just the diagonal
matrix having the eigenvalues down the main diagonal.

The following theorem is about the eigenvectors and eigenvalues of a self adjoint op-
erator. Such operators may also be called Hermitian as in the case of matrices. The proof
given generalizes to the situation of a compact self adjoint operator on a Hilbert space and
leads to many very useful results. It is also a very elementary proof because it does not use
the fundamental theorem of algebra and it contains a way, very important in applications,
of finding the eigenvalues. This proof depends more directly on the methods of analysis
than the preceding material. Recall the following notation.

Definition 13.13.3 Let X be an inner product space and let S⊆ X . Then

S⊥ ≡ {x ∈ X : (x,s) = 0 for all s ∈ S} .

Note that even if S is not a subspace, S⊥ is.

Theorem 13.13.4 Let A ∈L (X ,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space of dimension n. Thus A = A∗. Then there exists an orthonormal
basis of eigenvectors,

{
v j
}n

j=1 .

Proof: Consider (Ax,x) . This quantity is always a real number because

(Ax,x) = (x,Ax) = (x,A∗x) = (Ax,x)

thanks to the assumption that A is self adjoint. Now define

λ 1 ≡ inf{(Ax,x) : |x|= 1,x ∈ X1 ≡ X} .

Claim: λ 1 is finite and there exists v1 ∈ X with |v1|= 1 such that (Av1,v1) = λ 1.
Proof of claim: The set of vectors {x : |x|= 1} is a closed and bounded subset of the

finite dimensional space X . Therefore, it is compact and so the vector v1 exists by Theorem
10.6.3.

I claim that λ 1 is an eigenvalue and v1 is an eigenvector. Letting w ∈ X1 ≡ X , the
function of the real variable, t, given by

f (t)≡ (A(v1 + tw) ,v1 + tw)

|v1 + tw|2
=

(Av1,v1)+2t Re(Av1,w)+ t2 (Aw,w)

|v1|2 +2t Re(v1,w)+ t2 |w|2
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achieves its minimum when t = 0. Therefore, the derivative of this function evaluated at
t = 0 must equal zero. Using the quotient rule, this implies, since |v1|= 1 that

2Re(Av1,w) |v1|2−2Re(v1,w)(Av1,v1) = 2(Re(Av1,w)−Re(v1,w)λ 1) = 0.

Thus Re(Av1−λ 1v1,w) = 0 for all w ∈ X . This implies Av1 = λ 1v1 by Proposition 12.1.5.
Continuing with the proof of the theorem, let X2 ≡ {v1}⊥ . This is a closed subspace of

X and A : X2→ X2 because for x ∈ X2,

(Ax,v1) = (x,Av1) = λ 1 (x,v1) = 0.

Let
λ 2 ≡ inf{(Ax,x) : |x|= 1,x ∈ X2}

As before, there exists v2 ∈ X2 such that Av2 = λ 2v2, λ 1 ≤ λ 2. Now let X3 ≡ {v1,v2}⊥

and continue in this way. As long as k < n, it will be the case that {v1, · · · ,vk}⊥ ̸= {0}.
This is because for k < n these vectors cannot be a spanning set and so there exists some
w /∈ span(v1, · · · ,vk) . Then letting z be the closest point to w from span(v1, · · · ,vk) , it
follows that w− z ∈ {v1, · · · ,vk}⊥. Thus there is an decreasing sequence of eigenvalues
{λ k}n

k=1 and a corresponding sequence of eigenvectors, {v1, · · · ,vn} with this being an
orthonormal set. ■

Contained in the proof of this theorem is the following important corollary.

Corollary 13.13.5 Let A ∈L (X ,X) be self adjoint where X is a finite dimensional inner
product space. Then all the eigenvalues are real and for λ 1≤ λ 2≤ ·· · ≤ λ n the eigenvalues
of A, there exists an orthonormal set of vectors {u1, · · · ,un} for which

Auk = λ kuk.

Furthermore,
λ k ≡ inf{(Ax,x) : |x|= 1,x ∈ Xk}

where
Xk ≡ {u1, · · · ,uk−1}⊥ ,X1 ≡ X .

Corollary 13.13.6 Let A ∈L (X ,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space. Then the largest eigenvalue of A is given by

max{(Ax,x) : |x|= 1} (13.24)

and the minimum eigenvalue of A is given by

min{(Ax,x) : |x|= 1} . (13.25)

Proof: The proof of this is just like the proof of Theorem 13.13.4. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 13.24. The claim
13.25 follows from Theorem 13.13.4. ■

Another important observation is found in the following corollary.

Corollary 13.13.7 Let A ∈L (X ,X) where A is self adjoint. Then A = ∑i λ ivi⊗ vi where
Avi = λ ivi and {vi}n

i=1 is an orthonormal basis.
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Proof : If vk is one of the orthonormal basis vectors, Avk = λ kvk. Also,

∑
i

λ ivi⊗ vi (vk) = ∑
i

λ ivi (vk,vi) = ∑
i

λ iδ ikvi = λ kvk.

Since the two linear transformations agree on a basis, it follows they must coincide. ■
By Proposition 13.13.2 this says the matrix of A with respect to this basis {vi}n

i=1 is the
diagonal matrix having the eigenvalues λ 1, · · · ,λ n down the main diagonal.

The result of Courant and Fischer which follows resembles Corollary 13.13.5 but is
more useful because it does not depend on a knowledge of the eigenvectors.

Theorem 13.13.8 Let A ∈L (X ,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ 1 ≤ λ 2 ≤ ·· · ≤ λ n the eigenvalues of A, there exist orthonormal
vectors {u1, · · · ,un} for which

Auk = λ kuk.

Furthermore,

λ k ≡ max
w1,··· ,wk−1

{
min

{
(Ax,x) : |x|= 1,x ∈ {w1, · · · ,wk−1}⊥

}}
(13.26)

where if k = 1,{w1, · · · ,wk−1}⊥ ≡ X .

Proof: From Theorem 13.13.4, there exist eigenvalues and eigenvectors {u1, · · · ,un}
which are orthonormal and λ i ≤ λ i+1.

(Ax,x) =
n

∑
j=1

(Ax,u j)(x,u j) =
n

∑
j=1

λ j (x,u j)(u j,x) =
n

∑
j=1

λ j
∣∣(x,u j)

∣∣2
Recall that (z,w) = ∑ j (z,u j)(w,ui). Then let Y = {w1, · · · ,wk−1}⊥

inf{(Ax,x) : |x|= 1,x ∈ Y}= inf

{
n

∑
j=1

λ j
∣∣(x,u j)

∣∣2 : |x|= 1,x ∈ Y

}

≤ inf

{
k

∑
j=1

λ j
∣∣(x,u j)

∣∣2 : |x|= 1,(x,u j) = 0 for j > k, and x ∈ Y

}
. (13.27)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 13.27 is no larger than

inf

{
λ k

n

∑
j=1

∣∣(x,u j)
∣∣2 : |x|= 1,(x,u j) = 0 for j > k, and x ∈ Y

}
≤ λ k

because since {u1, · · · ,un} is an orthonormal basis, |x|2 = ∑
n
j=1

∣∣(x,u j)
∣∣2 . It follows, since

{w1, · · · ,wk−1}

is arbitrary,

sup
w1,··· ,wk−1

{
inf
{
(Ax,x) : |x|= 1,x ∈ {w1, · · · ,wk−1}⊥

}}
≤ λ k. (13.28)
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Then from Corollary 13.13.5,

λ k = inf
{
(Ax,x) : |x|= 1,x ∈ {u1, · · · ,uk−1}⊥

}
≤

sup
w1,··· ,wk−1

{
inf
{
(Ax,x) : |x|= 1,x ∈ {w1, · · · ,wk−1}⊥

}}
≤ λ k

Hence these are all equal and this proves the theorem. ■
The following corollary is immediate.

Corollary 13.13.9 Let A ∈L (X ,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ 1 ≤ λ 2 ≤ ·· · ≤ λ n the eigenvalues of A, there exist orthonormal
vectors {u1, · · · ,un} for which

Auk = λ kuk.

Furthermore,

λ k ≡ max
w1,··· ,wk−1

{
min

{
(Ax,x)

|x|2
: x ̸= 0,x ∈ {w1, · · · ,wk−1}⊥

}}
(13.29)

where if k = 1,{w1, · · · ,wk−1}⊥ ≡ X .

Here is a version of this for which the roles of max and min are reversed.

Corollary 13.13.10 Let A ∈L (X ,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ 1 ≤ λ 2 ≤ ·· · ≤ λ n the eigenvalues of A, there exist orthonormal
vectors {u1, · · · ,un} for which

Auk = λ kuk.

Furthermore,

λ k ≡ min
w1,··· ,wn−k

{
max

{
(Ax,x)

|x|2
: x ̸= 0,x ∈ {w1, · · · ,wn−k}⊥

}}
(13.30)

where if k = n,{w1, · · · ,wn−k}⊥ ≡ X .

13.14 Positive and Negative Linear Transformations
The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n× n matrix but the theorem is stated and proved using a more general nota-
tion because all these issues discussed here have interesting generalizations to functional
analysis.

Definition 13.14.1 A self adjoint A ∈ L (X ,X) , is positive definite if whenever x ̸= 0,
(Ax,x)> 0 and A is negative definite if for all x ̸= 0, (Ax,x)< 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) ≥ 0. A is negative semidefinite or
nonpositive for short if for all x, (Ax,x)≤ 0.
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The following lemma is of fundamental importance in determining which linear trans-
formations are positive or negative definite.

Lemma 13.14.2 Let X be a finite dimensional inner product space. A self adjoint A ∈
L (X ,X) is positive definite if and only if all its eigenvalues are positive and negative
definite if and only if all its eigenvalues are negative. It is positive semidefinite if all the
eigenvalues are nonnegative and it is negative semidefinite if all the eigenvalues are non-
positive.

Proof: Suppose first that A is positive definite and let λ be an eigenvalue. Then for x
an eigenvector corresponding to λ , λ (x,x) = (λx,x) = (Ax,x)> 0. Therefore, λ > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 13.13.4 and Corol-
lary 13.13.7, A = ∑

n
i=1 λ iui⊗ui where the λ i are the positive eigenvalues and {ui} are an

orthonormal set of eigenvectors. Therefore, letting x ̸= 0,

(Ax,x) =

((
n

∑
i=1

λ iui⊗ui

)
x,x

)
=

(
n

∑
i=1

λ iui (x,ui) ,x

)

=

(
n

∑
i=1

λ i (x,ui)(ui,x)

)
=

n

∑
i=1

λ i |(ui,x)|2 > 0

because, since {ui} is an orthonormal basis, |x|2 = ∑
n
i=1 |(ui,x)|2 .

To establish the claim about negative definite, it suffices to note that A is negative def-
inite if and only if −A is positive definite and the eigenvalues of A are (−1) times the
eigenvalues of −A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. ■

The next theorem is about a way to recognize whether a self adjoint n× n complex
matrix A is positive or negative definite without having to find the eigenvalues. In order to
state this theorem, here is some notation.

Definition 13.14.3 Let A be an n× n matrix. Denote by Ak the k× k matrix obtained by
deleting the k+1, · · · ,n columns and the k+1, · · · ,n rows from A. Thus An = A and Ak is
the k× k submatrix of A which occupies the upper left corner of A. The determinants of
these submatrices are called the principle minors.

The following theorem is proved in [10]. For the sake of simplicity, we state this for
real matrices since this is also where the main interest lies.

Theorem 13.14.4 Let A be a self adjoint n× n matrix. Then A is positive definite if and
only if det(Ak)> 0 for every k = 1, · · · ,n.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose
then that it is true for n−1 where n≥ 2. Since det(A)> 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det(A). Pick two, λ 1 and λ 2 and let Aui = λ iui where ui ̸= 0 for i = 1,2 and
(u1,u2) = 0. Now if y≡ α1u1+α2u2 is an element of span(u1,u2) , then since these are
eigenvalues and (u1,u2)Rn = 0, a short computation shows

(A(α1u1 +α2u2) ,α1u1 +α2u2) = |α1|2 λ 1 |u1|2 + |α2|2 λ 2 |u2|2 < 0.
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Now letting x ∈ Rn−1, x ̸= 0, the induction hypothesis implies

(
xT ,0

)
A

(
x

0

)
= xT An−1x= (An−1x,x)> 0.

The dimension of {z ∈ Rn : zn = 0} is n−1 and the dimension of span(u1,u2) = 2 and so
there must be some nonzero x ∈ Rn which is in both of these subspaces of Rn. However,
the first computation would require that (Ax,x) < 0 while the second would require that
(Ax,x)> 0. This contradiction shows that all the eigenvalues must be positive. This proves
the if part of the theorem.

To show the converse, note that, as above, (Ax,x) = xT Ax. Suppose that A is positive
definite. Then this is equivalent to having

xT Ax≥ δ ∥x∥2

Note that for x ∈ Rk,

(
xT 0

)
A

(
x

0

)
= xT Akx≥ δ ∥x∥2

From Lemma 13.14.2, this implies that all the eigenvalues of Ak are positive. Hence from
Lemma 13.14.2, it follows that det(Ak)> 0, being the product of its eigenvalues. ■

Corollary 13.14.5 Let A be a self adjoint n× n matrix. Then A is negative definite if and
only if det(Ak)(−1)k > 0 for every k = 1, · · · ,n.

Proof: This is immediate from the above theorem by noting that, as in the proof of
Lemma 13.14.2, A is negative definite if and only if −A is positive definite. Therefore,
det(−Ak) > 0 for all k = 1, · · · ,n, is equivalent to having A negative definite. However,
det(−Ak) = (−1)k det(Ak) . ■

13.15 The Singular Value Decomposition
In this section, A will be an m×n matrix. To begin with, here is a simple lemma observed
earlier.

Lemma 13.15.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 =
(λx,x) = (A∗Ax,x) = (Ax,Ax)≥ 0. ■

Definition 13.15.2 Let A be an m×n matrix. The singular values of A are the square roots
of the positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decom-
position. In all that follows, I will write the following partitioned matrix(

σ 0
0 0

)
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where σ denotes an r× r diagonal matrix of the form
σ1 0

. . .

0 σ k


and the bottom row of zero matrices in the partitioned matrix, as well as the right columns
of zero matrices are each of the right size so that the resulting matrix is m× n. Either
could vanish completely. However, I will write it in the above form. It is easy to make the
necessary adjustments in the other two cases.

Theorem 13.15.3 Let A be an m×n matrix. Then there exist unitary matrices, U and V of
the appropriate size such that

U∗AV =

(
σ 0
0 0

)
where σ is of the form

σ =


σ1 0

. . .

0 σ k


for the σ i the singular values of A, arranged in order of decreasing size.

Proof: By the above lemma and Theorem 13.13.4 there exists an orthonormal basis,
{vi}n

i=1 for Fn such that A∗Avi = σ2
i vi where σ2

i > 0 for i = 1, · · · ,k,σ i > 0, and equals
zero if i > k. Let the eigenvalues σ2

i be arranged in decreasing order. It is desired to have

AV =U

(
σ 0
0 0

)

and so if U =
(

u1 · · · um

)
, one needs to have for j ≤ k, σ ju j = Av j. Thus let

u j ≡ σ
−1
j Av j, j ≤ k

Then for i, j ≤ k,

(ui,u j) = σ
−1
j σ

−1
i (Avi,Av j) = σ

−1
j σ

−1
i (A∗Avi,v j)

= σ
−1
j σ

−1
i σ

2
i (vi,v j) = δ i j

Now extend to an orthonormal basis of Fm,{u1, · · · ,uk,uk+1, · · · ,um} . If i > k,

(Avi,Avi) = (A∗Avi,vi) = 0(vi,vi) = 0

so Avi = 0. Then for σ given as above in the statement of the theorem, it follows that

AV =U

(
σ 0
0 0

)
, U∗AV =

(
σ 0
0 0

)
■

The singular value decomposition has as an immediate corollary the following interest-
ing result.
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Corollary 13.15.4 Let A be an m× n matrix. Then the rank of both A and A∗equals the
number of singular values.

Proof: Since V and U are unitary, they are each one to one and onto and so it follows
that

rank(A) = rank(U∗AV ) = rank

(
σ 0
0 0

)
= number of singular values.

Also since U,V are unitary,

rank(A∗) = rank(V ∗A∗U) = rank
(
(U∗AV )∗

)
= rank

((
σ 0
0 0

)∗)
= number of singular values. ■

13.16 Approximation In The Frobenius Norm
The Frobenius norm is one of many norms for a matrix. It is arguably the most obvious of
all norms. Here is its definition.

Definition 13.16.1 Let A be a complex m×n matrix. Then

||A||F ≡ (trace(AA∗))1/2

Also this norm comes from the inner product

(A,B)F ≡ trace(AB∗)

Thus ||A||2F is easily seen to equal ∑i j
∣∣ai j
∣∣2 so essentially, it treats the matrix as a vector in

Fm×n.

Lemma 13.16.2 Let A be an m×n complex matrix with singular matrix

Σ =

(
σ 0
0 0

)

with σ as defined above, U∗AV = Σ. Then

||Σ||2F = ||A||2F (13.31)

and the following hold for the Frobenius norm. If U,V are unitary and of the right size,

||UA||F = ||A||F , ||UAV ||F = ||A||F . (13.32)

Proof: From the definition and letting U,V be unitary and of the right size,

||UA||2F ≡ trace(UAA∗U∗) = trace(U∗UAA∗) = trace(AA∗) = ||A||2F

Also,
||AV ||2F ≡ trace(AVV ∗A∗) = trace(AA∗) = ||A||2F .
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It follows
∥Σ∥2

F = ||U∗AV ||2F = ||AV ||2F = ||A||2F . ■

Of course, this shows that
||A||2F = ∑

i
σ

2
i ,

the sum of the squares of the singular values of A.
Why is the singular value decomposition important? It implies

A =U

(
σ 0
0 0

)
V ∗

where σ is the diagonal matrix having the singular values down the diagonal. Now some-
times A is a huge matrix, 1000×2000 or something like that. This happens in applications
to situations where the entries of A describe a picture. What also happens is that most of
the singular values are very small. What if you deleted those which were very small, say
for all i≥ l and got a new matrix

A′ ≡U

(
σ ′ 0
0 0

)
V ∗?

Then the entries of A′ would end up being close to the entries of A but there is much less
information to keep track of. This turns out to be very useful. More precisely, letting

σ =


σ1 0

. . .

0 σ r

 , U∗AV =

(
σ 0
0 0

)
,

∣∣∣∣A−A′
∣∣∣∣2

F =

∣∣∣∣∣
∣∣∣∣∣U
(

σ −σ ′ 0
0 0

)
V ∗
∣∣∣∣∣
∣∣∣∣∣
2

F

=
r

∑
k=l+1

σ
2
k

Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out of
all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm. Here

is roughly why this is so. Suppose B̃ approximates A =

(
σ r×r 0

0 0

)
as well as possible

out of all matrices B̃ having rank no more than l < r the size of the matrix σ r×r.
Suppose the rank of B̃ is l. Then obviously no column x j of B̃ in a basis for the column

space can have j > r since if so, the approximation of A could be improved by simply

making this column into a zero column. Therefore there are

(
r
l

)
choices for columns

for a basis for the column space of B̃.
Let x be a column in the basis for the column space of B̃ and let it be column j in

the matrix B̃. Denote the diagonal entry by x j = σ j + h. Then the error incurred due to
approximating with this column is

h2 +∑
i ̸= j

x2
i
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One obviously minimizes this error by letting h = 0 = xi for all i ̸= j. That is, the column
should have all zeroes with σ j in the diagonal position. As to any columns of B̃ which
are not pivot columns, such a column is a linear combination of these basis columns which
have exactly one entry, in the diagonal position. These non pivot columns must have a 0
in the diagonal position since if not, the rank of the matrix would be more than l. Then
the off diagonal entries should equal zero to make the approximation as good as possible.
Thus the non basis columns are columns consisting of zeros and B̃ is a diagonal matrix
with l nonzero diagonal entries selected from the first r columns of A. It only remains to
observe that, since the singular values decrease in size from upper left to lower right in A,
to minimize the error, one should pick the first l columns for the basis for B̃ in order to use
the sum of the squares of the smallest possible singular values in the error. That is, you
would replace σ r×r with the upper left l× l corner of σ r×r.

A =

(
σ r×r 0

0 0

)
,⇒ B̃ =

(
σ l×l 0

0 0

)

For example, consider  3 0 0 0
0 2 0 0
0 0 1 0


The best rank 2 approximation is  3 0 0 0

0 2 0 0
0 0 0 0


Now suppose A is an m×n matrix. Let U,V be unitary and of the right size such that

U∗AV =

(
σ r×r 0

0 0

)

Then suppose B approximates A as well as possible in the Frobenius norm, B having rank
l < r. Then you would want

∥A−B∥= ∥U∗AV −U∗BV∥=

∥∥∥∥∥
(

σ r×r 0
0 0

)
−U∗BV

∥∥∥∥∥
to be as small as possible. Therefore, from the above discussion, you should have

B̃≡U∗BV =

(
σ l×l 0

0 0

)
,B =U

(
σ l×l 0

0 0

)
V ∗

whereas

A =U

(
σ r×r 0

0 0

)
V ∗
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13.17 Least Squares And Singular Value Decomposition
The singular value decomposition also has a very interesting connection to the problem of
least squares solutions. Recall that it was desired to find x such that |Ax−y| is as small as
possible. Lemma 12.4.1 shows that there is a solution to this problem which can be found
by solving the system A∗Ax= A∗y. Each x which solves this system solves the minimiza-
tion problem as was shown in the lemma just mentioned. Now consider this equation for
the solutions of the minimization problem in terms of the singular value decomposition.

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗

A︷ ︸︸ ︷
U

(
σ 0
0 0

)
V ∗x=

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗y.

Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0
0 0

)
V ∗ x=

(
σ 0
0 0

)
U∗y. (13.33)

One solution to this equation which is very easy to spot is

x=V

(
σ−1 0

0 0

)
U∗y. (13.34)

13.18 The Moore Penrose Inverse
The particular solution of the least squares problem given in 13.34 is important enough that
it motivates the following definition.

Definition 13.18.1 Let A be an m×n matrix. Then the Moore Penrose inverse of A, denoted
by A+ is defined as

A+ ≡V

(
σ−1 0

0 0

)
U∗.

Here

U∗AV =

(
σ 0
0 0

)
as above.

Thus A+y is a solution to find x which minimizes |Ax−y| . In fact, one can say more
about this. In the following picture My denotes the set of least squares solutions x such
that A∗Ax= A∗y.
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My
x

A+(y)

ker(A∗A)

Then A+ (y) is as given in the picture.

Proposition 13.18.2 A+y is the solution to the problem of minimizing |Ax−y| for all x
which has smallest norm. Thus∣∣AA+y−y

∣∣≤ |Ax−y| for all x

and if x1 satisfies |Ax1−y| ≤ |Ax−y| for all x, then |A+y| ≤ |x1| .

Proof: Consider x satisfying 13.33, equivalently A∗A x= A∗y,(
σ2 0
0 0

)
V ∗ x=

(
σ 0
0 0

)
U∗y

which has smallest norm. This is equivalent to making |V ∗x| as small as possible because
V ∗ is unitary and so it preserves norms. For z a vector, denote by (z)k the vector in Fk

which consists of the first k entries of z. Then if x is a solution to 13.33(
σ2 (V ∗x)k

0

)
=

(
σ (U∗y)k

0

)

and so (V ∗x)k = σ−1 (U∗y)k . Thus the first k entries of V ∗x are determined. In order to
make |V ∗x| as small as possible, the remaining n− k entries should equal zero. Therefore,

V ∗ x=

(
(V ∗x)k

0

)
=

(
σ−1 (U∗y)k

0

)
=

(
σ−1 0

0 0

)
U∗y

and so

x=V

(
σ−1 0

0 0

)
U∗y ≡ A+y ■

Lemma 13.18.3 The matrix A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian. (13.35)
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Proof: This is routine. Recall

A =U

(
σ 0
0 0

)
V ∗

and

A+ =V

(
σ−1 0

0 0

)
U∗

so you just plug in and verify it works. ■
A much more interesting observation is that A+ is characterized as being the unique

matrix which satisfies 13.35. This is the content of the following Theorem. The conditions
are sometimes called the Penrose conditions.

Theorem 13.18.4 Let A be an m× n matrix. Then a matrix A0, is the Moore Penrose
inverse of A if and only if A0 satisfies

AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian. (13.36)

Proof: From the above lemma, the Moore Penrose inverse satisfies 13.36. Suppose
then that A0 satisfies 13.36. It is necessary to verify that A0 = A+. Recall that from the
singular value decomposition, there exist unitary matrices, U and V such that

U∗AV = Σ≡

(
σ 0
0 0

)
, A =UΣV ∗.

Recall that

A+ =V

(
σ−1 0

0 0

)
U∗

Let

A0 =V

(
P Q
R S

)
U∗ (13.37)

where P is r× r, the same size as the diagonal matrix composed of the singular values on
the main diagonal.

Next use the first equation of 13.36 to write

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ =

A︷ ︸︸ ︷
UΣV ∗.

Then multiplying both sides on the left by U∗ and on the right by V,(
σ 0
0 0

)(
P Q
R S

)(
σ 0
0 0

)
=

(
σPσ 0

0 0

)
=

(
σ 0
0 0

)
(13.38)

Therefore, P = σ−1. From the requirement that AA0 is Hermitian,

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ =U

(
σ 0
0 0

)(
P Q
R S

)
U∗
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must be Hermitian. Therefore, it is necessary that(
σ 0
0 0

)(
P Q
R S

)
=

(
σP σQ
0 0

)
=

(
I σQ
0 0

)
is Hermitian. Then (

I σQ
0 0

)
=

(
I 0

Q∗σ 0

)
and so Q = 0.

Next,

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ =V

(
Pσ 0
Rσ 0

)
V ∗ =V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)
is Hermitian. Thus R = 0 because(

I 0
Rσ 0

)∗
=

(
I σ∗R∗

0 0

)

which requires Rσ = 0. Now multiply on right by σ−1 to find that R = 0.
Use 13.37 and the second equation of 13.36 to write

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ =

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗.

which implies (
P Q
R S

)(
σ 0
0 0

)(
P Q
R S

)
=

(
P Q
R S

)
.

This yields from the above in which is was shown that R,Q are both 0(
σ−1 0

0 S

)(
σ 0
0 0

)(
σ−1 0

0 S

)
=

(
σ−1 0

0 0

)
(13.39)

=

(
σ−1 0

0 S

)
. (13.40)

Therefore, S = 0 also and so

V ∗A0U ≡

(
P Q
R S

)
=

(
σ−1 0

0 0

)
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which says

A0 =V

(
σ−1 0

0 0

)
U∗ ≡ A+. ■

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 13.36. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.

13.19 The Spectral Norm And The Operator Norm
Another way of describing a norm for an n×n matrix is as follows.

Definition 13.19.1 Let A be an m× n matrix. Define the spectral norm of A, written as
||A||2 to be

max
{

λ
1/2 : λ is an eigenvalue of A∗A

}
.

That is, the largest singular value of A. (Note the eigenvalues of A∗A are all positive
because if A∗Ax= λx, then

λ |x|2 = λ (x,x) = (A∗Ax,x) = (Ax,Ax)≥ 0.)

Actually, this is nothing new. It turns out that ||·||2 is nothing more than the operator
norm for A taken with respect to the usual Euclidean norm,

|x|=

(
n

∑
k=1
|xk|2

)1/2

.

Proposition 13.19.2 The following holds.

||A||2 = sup{|Ax| : |x|= 1} ≡ ||A|| .

Proof: Note that A∗A is Hermitian and so by Corollary 13.13.6,

||A||2 = max
{
(A∗Ax,x)1/2 : |x|= 1

}
= max

{
(Ax,Ax)1/2 : |x|= 1

}
= max{|Ax| : |x|= 1}= ||A|| . ■

Here is another proof of this proposition. Recall there are unitary matrices of the right

size U,V such that A = U

(
σ 0
0 0

)
V ∗ where the matrix on the inside is as described

in the section on the singular value decomposition. Then since unitary matrices preserve
norms,

||A|| = sup
|x|≤1

∣∣∣∣∣U
(

σ 0
0 0

)
V ∗x

∣∣∣∣∣= sup
|V ∗x|≤1

∣∣∣∣∣U
(

σ 0
0 0

)
V ∗x

∣∣∣∣∣
= sup

|y|≤1

∣∣∣∣∣U
(

σ 0
0 0

)
y

∣∣∣∣∣= sup
|y|≤1

∣∣∣∣∣
(

σ 0
0 0

)
y

∣∣∣∣∣= σ1 ≡ ||A||2

This completes the alternate proof.
From now on, ||A||2 will mean either the operator norm of A taken with respect to the

usual Euclidean norm or the largest singular value of A, whichever is most convenient.
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13.20 The Positive Part Of A Hermitian Matrix
Actually, some of the most interesting functions of matrices do not come as a power series
expanded about 0 which was presented earlier. One example of this situation has already
been encountered in the proof of the right polar decomposition with the square root of
an Hermitian transformation which had all nonnegative eigenvalues. Another example is
that of taking the positive part of an Hermitian matrix. This is important in some physical
models where something may depend on the positive part of the strain which is a symmetric
real matrix. Obviously there is no way to consider this as a power series expanded about 0
because the function f (r) = r+ ≡ |r|+r

2 is not even differentiable at 0. Therefore, a totally
different approach must be considered. Actually, the only use of this I know of involves real
symmetric matrices but the general case is considered here. First the notion of a positive
part is defined.

Definition 13.20.1 Let A be an Hermitian matrix. Thus it suffices to consider A as an
element of L (Fn,Fn) according to the usual notion of matrix multiplication. Then there is
a unitary matrix U such that

A =UDU∗

where D is a diagonal matrix. Then

A+ ≡UD+U∗

where D+ is obtained from D by replacing each diagonal entry with its positive part.

This gives us a nice definition of what is meant but it turns out to be very important in
the applications to determine how this function depends on the choice of symmetric matrix
A. The following addresses this question. Then

Ax= ∑
i

λ iuiu
∗
i x

You can see this is the case by checking on the u j. A agrees with ∑i λ iuiu
∗
i on a basis and

so they give the same result for all vectors. Thus similarly

A+ = ∑
i

λ
+
i uiu

∗
i

Theorem 13.20.2 If A,B be Hermitian matrices, then for |·| the Frobenius norm,

|A+−B+| ≤ |A−B| .

Proof: Let A = ∑i λ iviv
∗
i and let B = ∑ j µ jw jw

∗
j where {vi} and

{
w j
}

are orthonor-
mal bases of eigenvectors. Now A+,B+ are Hermitian and so their difference is also. It
follows that

|A+−B+|2 = trace

(
∑

i
λ
+
i viv

∗
i −∑

j
µ
+
j w jw

∗
j

)2

=

trace

[
∑

i

(
λ
+
i
)2
viv
∗
i +∑

j

(
µ
+
j

)2
w jw

∗
j
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−∑
i, j

λ
+
i µ

+
j (w j,vi)viw

∗
j −∑

i, j
λ
+
i µ

+
j (vi,w j)w jv

∗
i

]
The trace satisfies trace(AB) = trace(BA) when both products make sense. Therefore,

trace
(
viw

∗
j
)
= trace

(
w∗jvi

)
=w∗jvi ≡ (vi,w j) ,

a similar formula for w jv
∗
i . Therefore, this equals

= ∑
i

(
λ
+
i
)2

+∑
j

(
µ
+
j

)2
−2∑

i, j
λ
+
i µ

+
j

∣∣(vi,w j)
∣∣2 . (13.41)

Since these are orthonormal bases,

∑
i

∣∣(vi,w j)
∣∣2 = 1 = ∑

j

∣∣(vi,w j)
∣∣2

and so 13.41 equals

= ∑
i

∑
j

((
λ
+
i
)2

+
(

µ
+
j

)2
−2λ

+
i µ

+
j

)∣∣(vi,w j)
∣∣2 .

Similarly,

|A−B|2 = ∑
i

∑
j

(
(λ i)

2 +
(

µ j

)2
−2λ iµ j

)∣∣(vi,w j)
∣∣2 .

Now it is easy to check that (λ i)
2 +
(

µ j

)2
−2λ iµ j ≥

(
λ
+
i
)2

+
(

µ
+
j

)2
−2λ

+
i µ

+
j . ■

13.21 Exercises
1. Show (A∗)∗ = A and (AB)∗ = B∗A∗.

2. Prove Corollary 13.13.10.

3. Show that if A is an n×n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that for any square matrix A, it follows
that A∗A is unitarily similar to AA∗.

5. Let A,B be a m×n matrices. Define an inner product on the set of m×n matrices by

(A,B)F ≡ trace(AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace(M)≡ ∑

n
i=1 Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

6. It was shown that a matrix A is normal if and only if it is unitarily similar to a diagonal
matrix. It was also shown that if a matrix is Hermitian, then it is unitarily similar to a
real diagonal matrix. Show the converse of this last statement is also true. If a matrix
is unitarily similar to a real diagonal matrix, then it is Hermitian.
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7. Let A be an m× n matrix. Show ||A||2F ≡ (A,A)F = ∑ j σ2
j where the σ j are the

singular values of A.

8. If A is a general n× n matrix having possibly repeated eigenvalues, show there is a
sequence {Ak} of n×n matrices having distinct eigenvalues which has the property
that the i jth entry of Ak converges to the i jth entry of A for all i j. Hint: Use Schur’s
theorem.

9. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigen-
vectors {vk}n

k=1 ,Avk = λ kvk. Let p(λ ) be the characteristic polynomial. Show
p(A)vk = p(λ k)vk = 0. Then since {vk} is a basis, it follows p(A)x= 0 for
all x and so p(A) = 0. Next in the general case, use Problem 8 to obtain a se-
quence {Ak} of matrices whose entries converge to the entries of A such that Ak
has n distinct eigenvalues and therefore by Theorem 6.6.1 on Page 147 Ak has a ba-
sis of eigenvectors. Therefore, from the first part and for pk (λ ) the characteristic
polynomial for Ak, it follows pk (Ak) = 0. Now explain why and the sense in which
limk→∞ pk (Ak) = p(A) .

10. Show directly that if A is an n× n matrix and A = A∗ (A is Hermitian) then all the
eigenvalues are real and eigenvectors can be assumed to be real and that eigenvectors
associated with distinct eigenvalues are orthogonal, (their inner product is zero).

11. Let v1, · · · ,vn be an orthonormal basis for Fn. Let Q be a matrix whose ith column
is vi. Show

Q∗Q = QQ∗ = I.

12. Show that an n× n matrix Q is unitary if and only if it preserves distances. This
means |Qv|= |v| . This was done in the text but you should try to do it for yourself.

13. Suppose {v1, · · · ,vn} and {w1, · · · ,wn} are two orthonormal bases for Fn and sup-
pose Q is an n× n matrix satisfying Qvi =wi. Then show Q is unitary. If |v| = 1,
show there is a unitary transformation which maps v to e1. This is done in the text
but do it yourself with all details.

14. Let A be a Hermitian matrix so A = A∗ and suppose all eigenvalues of A are larger
than δ

2. Show
(Av,v)≥ δ

2 |v|2

Where here, the inner product is (v,u)≡ ∑
n
j=1 v ju j.

15. The discrete Fourier transform maps Cn→ Cn as follows.

F (x) = z where zk =
1√
n

n−1

∑
j=0

e−i 2π
n jkx j.

Show that F−1 exists and is given by the formula

F−1 (z) = x where x j =
1√
n

n−1

∑
j=0

ei 2π
n jkzk
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Here is one way to approach this problem. Note z =Ux where U =

1√
n



e−i 2π
n 0·0 e−i 2π

n 1·0 e−i 2π
n 2·0 · · · e−i 2π

n (n−1)·0

e−i 2π
n 0·1 e−i 2π

n 1·1 e−i 2π
n 2·1 · · · e−i 2π

n (n−1)·1

e−i 2π
n 0·2 e−i 2π

n 1·2 e−i 2π
n 2·2 · · · e−i 2π

n (n−1)·2

...
...

...
...

e−i 2π
n 0·(n−1) e−i 2π

n 1·(n−1) e−i 2π
n 2·(n−1) · · · e−i 2π

n (n−1)·(n−1)


Now argue U is unitary and use this to establish the result. To show this verify
each row has length 1 and the inner product of two different rows gives 0. Now
Uk j = e−i 2π

n jk and so (U∗)k j = ei 2π
n jk.

16. Let f be a periodic function having period 2π . The Fourier series of f is an expres-
sion of the form

∞

∑
k=−∞

ckeikx ≡ lim
n→∞

n

∑
k=−n

ckeikx

and the idea is to find ck such that the above sequence converges in some way to f .
If

f (x) =
∞

∑
k=−∞

ckeikx

and you formally multiply both sides by e−imx and then integrate from 0 to 2π, in-
terchanging the integral with the sum without any concern for whether this makes
sense, show it is reasonable from this to expect

cm =
1

2π

∫ 2π

0
f (x)e−imxdx.

Now suppose you only know f (x) at equally spaced points 2π j/n for j = 0,1, · · · ,n.
Consider the Riemann sum for this integral obtained from using the left endpoint of
the subintervals determined from the partition

{ 2π

n j
}n

j=0. How does this compare
with the discrete Fourier transform? What happens as n→ ∞ to this approximation?

17. Suppose A is a real 3× 3 orthogonal matrix (Recall this means AAT = AT A = I. )
having determinant 1. Show it must have an eigenvalue equal to 1. Note this shows
there exists a vector x ̸= 0 such that Ax= x. Hint: Show first or recall that any
orthogonal matrix must preserve lengths. That is, |Ax|= |x| .

18. Let A be a complex m×n matrix. Using the description of the Moore Penrose inverse
in terms of the singular value decomposition, show that

lim
δ→0+

(A∗A+δ I)−1 A∗ = A+

where the convergence happens in the Frobenius norm. Also verify, using the singu-
lar value decomposition, that the inverse exists in the above formula. Observe that
this shows that the Moore Penrose inverse is unique.

19. Show that A+ = (A∗A)+ A∗. Hint: You might use the description of A+ in terms of
the singular value decomposition.
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20. In Theorem 13.11.1. Show that every matrix which commutes with A also commutes
with A1/k the unique nonnegative self adjoint kth root.

21. Let X be a finite dimensional inner product space and let β = {u1, · · · ,un} be an
orthonormal basis for X . Let A ∈L (X ,X) be self adjoint and nonnegative and let M
be its matrix with respect to the given orthonormal basis. Show that M is nonnegative,
self adjoint also. Use this to show that A has a unique nonnegative self adjoint kth

root.

22. Let A be a complex m× n matrix having singular value decomposition U∗AV =(
σ 0
0 0

)
as explained above, where σ is k× k. Show that

ker(A) = span(Vek+1, · · · ,Ven) ,

the last n− k columns of V .

23. The principal submatrices of an n×n matrix A are Ak where Ak consists those entries
which are in the first k rows and first k columns of A. Suppose A is a real symmetric
matrix and that x→ ⟨Ax,x⟩ is positive definite. This means that if x ̸= 0, then
⟨Ax,x⟩> 0. Show that each of the principal submatrices are positive definite. Hint:

Consider
(

xT 0
)

A

(
x

0

)
where x consists of k entries.

24. ↑A matrix A has an LU factorization if it there exists a lower triangular matrix L
having all ones on the diagonal and an upper triangular matrix U such that A = LU .
Show that if A is a symmetric positive definite n× n real matrix, then A has an LU
factorization with the property that each entry on the main diagonal in U is positive.
Hint: This is pretty clear if A is 1×1. Assume true for (n−1)× (n−1). Then

A =

(
Â a

aT ann

)

Then as above, Â is positive definite. Thus it has an LU factorization with all positive
entries on the diagonal of U . Notice that, using block multiplication,

A =

(
LU a

aT ann

)
=

(
L 0
0 1

)(
U L−1a

aT ann

)

Now consider that matrix on the right. Argue that it is of the form L̃Ũ where Ũ
has all positive diagonal entries except possibly for the one in the nth row and nth

column. Now explain why det(A) > 0 and argue that in fact all diagonal entries of
Ũ are positive.

25. ↑Let A be a real symmetric n×n matrix and A = LU where L has all ones down the
diagonal and U has all positive entries down the main diagonal. Show that A = LDH
where L is lower triangular and H is upper triangular, each having all ones down the
diagonal and D a diagonal matrix having all positive entries down the main diagonal.
In fact, these are the diagonal entries of U .
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26. ↑Show that if L,L1 are lower triangular with ones down the main diagonal and
H,H1 are upper triangular with all ones down the main diagonal and D, D1 are di-
agonal matrices having all positive diagonal entries, and if LDH = L1D1H1, then
L = L1,H = H1,D = D1. Hint: Explain why D−1

1 L−1
1 LD = H1H−1. Then explain

why the right side is upper triangular and the left side is lower triangular. Conclude
these are both diagonal matrices. However, there are all ones down the diagonal in
the expression on the right. Hence H = H1. Do something similar to conclude that
L = L1 and then that D = D1.

27. ↑Show that if A is a symmetric real matrix such that x→ ⟨Ax,x⟩ is positive def-
inite, then there exists a lower triangular matrix L having all positive entries down
the diagonal such that A = LLT . Hint: From the above, A = LDH where L,H are
respectively lower and upper triangular having all ones down the diagonal and D is a
diagonal matrix having all positive entries. Then argue from the above problem and
symmetry of A that H = LT . Now modify L by making it equal to LD1/2. This is
called the Cholesky factorization.

28. Given F ∈ L (X ,Y ) where X ,Y are inner product spaces and dim(X) = n ≤ m =
dim(Y ) , there exists R,U such that U is nonnegative and Hermitian (U = U∗) and
R∗R = I such that F = RU. Show that U is actually unique and that R is determined
on U (X) . This was done in the book, but try to remember why this is so.

29. If A is a complex Hermitian n× n matrix which has all eigenvalues nonnegative,
show that there exists a complex Hermitian matrix B such that BB = A.

30. ↑Suppose A,B are n×n real Hermitian matrices and they both have all nonnegative
eigenvalues. Show that det(A+B)≥ det(A)+det(B). Hint: Use the above problem
and the Cauchy Binet theorem. Let P2 = A,Q2 = B where P,Q are Hermitian and
nonnegative. Then

A+B =
(

P Q
)( P

Q

)
.

31. Suppose B =

(
α c∗

b A

)
is an (n+1)× (n+1) Hermitian nonnegative matrix

where α is a scalar and A is n×n. Show that α must be real, c= b, and A = A∗,A
is nonnegative, and that if α = 0, then b= 0. Otherwise, α > 0.

32. ↑If A is an n× n complex Hermitian and nonnegative matrix, show that there exists
an upper triangular matrix B such that B∗B = A. Hint: Prove this by induction. It is
obviously true if n = 1. Now if you have an (n+1)× (n+1) Hermitian nonnegative

matrix, then from the above problem, it is of the form

(
α2 αb∗

αb A

)
,α real.

33. ↑ Suppose A is a nonnegative Hermitian matrix (all eigenvalues are nonnegative)
which is partitioned as

A =

(
A11 A12

A21 A22

)
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where A11,A22 are square matrices. Show that det(A) ≤ det(A11)det(A22). Hint:
Use the above problem to factor A getting

A =

(
B∗11 0∗

B∗12 B∗22

)(
B11 B12

0 B22

)

Next argue that A11 =B∗11B11,A22 =B∗12B12+B∗22B22. Use the Cauchy Binet theorem
to argue that det(A22) = det(B∗12B12 +B∗22B22)≥ det(B∗22B22) . Then explain why

det(A) = det(B∗11)det(B∗22)det(B11)det(B22)

= det(B∗11B11)det(B∗22B22)

34. ↑ Prove the inequality of Hadamard. If A is a Hermitian matrix which is nonnegative
(all eigenvalues are nonnegative), then det(A)≤∏i Aii.



Chapter 14

Analysis Of Linear Transformations
14.1 The Condition Number

Let A ∈L (X ,X) be a linear transformation where X is a finite dimensional vector space
and consider the problem Ax = b where it is assumed there is a unique solution to this
problem. How does the solution change if A is changed a little bit and if b is changed a
little bit? This is clearly an interesting question because you often do not know A and b
exactly. If a small change in these quantities results in a large change in the solution, x,
then it seems clear this would be undesirable. In what follows ||·|| when applied to a linear
transformation will always refer to the operator norm. Recall the following property of the
operator norm in Theorem 10.7.3.

Lemma 14.1.1 Let A,B ∈L (X ,X) where X is a normed vector space as above. Then for
||·|| denoting the operator norm, ||AB|| ≤ ||A|| ||B|| .

Lemma 14.1.2 Let A,B ∈L (X ,X) ,A−1 ∈L (X ,X) , and suppose

||B||< 1/
∣∣∣∣A−1∣∣∣∣ .

Then (A+B)−1 ,
(
I +A−1B

)−1 exists and∥∥∥(I +A−1B
)−1
∥∥∥≤ (1− ∣∣∣∣A−1B

∣∣∣∣)−1
(14.1)

∥∥∥(A+B)−1
∥∥∥≤ ∣∣∣∣A−1∣∣∣∣ ∣∣∣∣ 1

1−||A−1B||

∣∣∣∣ . (14.2)

The above formula makes sense because
∣∣∣∣A−1B

∣∣∣∣< 1.

Proof: By Lemma 10.7.3,∥∥A−1B
∥∥≤ ∣∣∣∣A−1∣∣∣∣ ||B||< ∣∣∣∣A−1∣∣∣∣ 1

||A−1|| = 1 (14.3)

Then from the triangle inequality,∥∥(I +A−1B
)

x
∥∥ ≥ ||x||−

∣∣∣∣A−1Bx
∣∣∣∣

≥ ||x||−
∥∥A−1B

∥∥ ||x||= (1−∥∥A−1B
∥∥) ||x||

It follows that I + A−1B is one to one because from 14.3, 1−
∣∣∣∣A−1B

∣∣∣∣ > 0. Thus if(
I +A−1B

)
x = 0, then x = 0. Thus I +A−1B is also onto, taking a basis to a basis. Then a

generic y ∈ X is of the form y =
(
I +A−1B

)
x and the above shows that∥∥∥(I +A−1B

)−1
y
∥∥∥≤ (1− ∣∣∣∣A−1B

∣∣∣∣)−1 ∥y∥

which verifies 14.1. Thus (A+B) =A
(
I +A−1B

)
is one to one and this with Lemma 10.7.3

implies 14.2. ■

389
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Proposition 14.1.3 Suppose A is invertible, b ̸= 0, Ax = b, and (A+B)x1 = b1 where
||B||< 1/

∣∣∣∣A−1
∣∣∣∣. Then

||x1− x||
||x||

≤
∥∥A−1

∥∥∥A∥
1−∥A−1B∥

(
∥b1−b∥
∥b∥

+
∥B∥
∥A∥

)
Proof: This follows from the above lemma.

∥x1− x∥
∥x∥

=

∥∥∥(I +A−1B
)−1 A−1b1−A−1b

∥∥∥
∥A−1b∥

≤ 1
1−∥A−1B∥

∥∥A−1b1−
(
I +A−1B

)
A−1b

∥∥
∥A−1b∥

≤ 1
1−∥A−1B∥

∥∥A−1 (b1−b)
∥∥+∥∥A−1BA−1b

∥∥
∥A−1b∥

≤
∥∥A−1

∥∥
1−∥A−1B∥

(
∥b1−b∥
∥A−1b∥

+∥B∥
)

because A−1b/
∥∥A−1b

∥∥ is a unit vector. Now multiply and divide by ∥A∥ . Then

≤
∥∥A−1

∥∥∥A∥
1−∥A−1B∥

(
∥b1−b∥
∥A∥∥A−1b∥

+
∥B∥
∥A∥

)
≤

∥∥A−1
∥∥∥A∥

1−∥A−1B∥

(
∥b1−b∥
∥b∥

+
∥B∥
∥A∥

)
. ■

This shows that the number,
∣∣∣∣A−1

∣∣∣∣ ||A|| , controls how sensitive the relative change in
the solution of Ax = b is to small changes in A and b. This number is called the condition
number. It is bad when this number is large because a small relative change in b, for
example could yield a large relative change in x.

Recall that for A an n× n matrix, ||A||2 = σ1 where σ1 is the largest singular value.
The largest singular value of A−1 is therefore, 1/σn where σn is the smallest singular value
of A. Therefore, the condition number is controlled by σ1/σn, the ratio of the largest to the
smallest singular value of A provided the norm is the usual Euclidean norm.

14.2 The Spectral Radius
Even though it is in general impractical to compute the Jordan form, its existence is all that
is needed in order to prove an important theorem about something which is relatively easy
to compute. This is the spectral radius of a matrix.

Definition 14.2.1 Define σ (A) to be the eigenvalues of A. Also,

ρ (A)≡max(|λ | : λ ∈ σ (A))

The number, ρ (A) is known as the spectral radius of A.
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Recall the following symbols and their meaning. limsupn→∞ an, liminfn→∞ an. They
are respectively the largest and smallest limit points of the sequence {an} where ±∞ is
allowed in the case where the sequence is unbounded. They are also defined as

lim sup
n→∞

an ≡ lim
n→∞

(sup{ak : k ≥ n}) ,

lim inf
n→∞

an ≡ lim
n→∞

(inf{ak : k ≥ n}) .

Thus, the limit of the sequence exists if and only if these are both equal to the same real
number.

Lemma 14.2.2 Let J be a p× p Jordan block

J =


λ 1 0

λ
. . .
. . . 1

0 λ


Then limn→∞ ||Jn||1/n = |λ |

Proof: The norm on matrices can be any norm. It could be operator norm for example.
If λ = 0, there is nothing to show because Jp = 0 and so the limit is obviously 0. Therefore,
assume λ ̸= 0.

Jn =
p

∑
i=0

(
n
i

)
Ni

λ
n−i

Then

∥Jn∥ ≤
p

∑
i=0

(
n
i

)∥∥Ni∥∥ |λ |n−i = |λ |n +C |λ |n
p

∑
i=1

(
n
i

)
|λ |−i (14.4)

≤ |λ |n (1+Cnp)≤ |λ |n C̃np (14.5)

where the C depends on ∑
p
i=1 |λ |

−i and the
∥∥Ni
∥∥. Therefore,

lim sup
n→∞

∥Jn∥1/n ≤ |λ | lim sup
n→∞

(
C̃np)1/n

= |λ |

Next let x be an eigenvector for λ such that ∥x∥ = 1, the norm being whatever norm is
desired. Then Jx= λx. It follows that Jnx= λ

nx. Thus ∥Jn∥≥ ∥Jnx∥= |λ |n ∥x∥= |λ |n .
It follows that liminfn→∞ ∥Jn∥1/n ≥ |λ | . Therefore,

|λ | ≤ lim inf
n→∞
∥Jn∥1/n ≤ lim sup

n→∞

∥Jn∥1/n ≤ |λ |

which shows that limn→∞ ∥Jn∥1/n = |λ |. The same conclusion holds for any other norm.
Indeed, if |||·||| were another norm, there are constants δ ,∆ such that

δ
1/n ∥Jn∥1/n ≤ |||Jn|||1/n ≤ ∆

1/n ∥Jn∥1/n

Then since limn→∞ δ
1/n = limn→∞ ∆1/n = 1, the squeezing theorem from calculus implies

that limn→∞ |||Jn|||1/n = ρ . ■
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Corollary 14.2.3 Let J be in Jordan canonical form

J =


J1

. . .

Js


where each Jk is a block diagonal having λ k on the main diagonal and strings of ones on
the super diagonal, as described earlier. Also let ρ ≡max{|λ i| : λ i ∈ σ (J)} . Then for any
norm ∥·∥

lim
n→∞
∥Jn∥1/n = ρ

Proof: For convenience, take the norm to be given as ∥A∥ ≡ max
{∣∣Ai j

∣∣ , i, j
}

. Then
with this norm,

∥Jn∥1/n = max
{
∥Jn

k ∥
1/n ,k = 1, · · · ,s

}
From Lemma 14.2.2,

lim
n→∞
∥Jn

k ∥
1/n = |λ k|

Therefore,

lim
n→∞
∥Jn∥1/n = lim

n→∞

(
max

{
∥Jn

k ∥
1/n ,k = 1, · · · ,s

})
= max

k

(
lim
n→∞
∥Jn

k ∥
1/n
)
= max

k
|λ k|= ρ.

Now let the norm on the matrices be any other norm say |||·||| . By equivalence of norms,
there are δ ,∆ such that

δ ∥A∥ ≤ |||A||| ≤ ∆∥A∥

for all matrices A. Therefore,

δ
1/n ∥Jn∥1/n ≤ |||Jn|||1/n ≤ ∆

1/n ∥Jn∥1/n

and so, passing to a limit, it follows that, since limn→∞ δ
1/n = limn→∞ ∆1/n = 1,

ρ = lim
n→∞
|||Jn|||1/n ■

Theorem 14.2.4 (Gelfand) Let A be a complex p× p matrix. Then if ρ is the absolute
value of its largest eigenvalue,

lim
n→∞
||An||1/n = ρ.

Here ||·|| is any norm on L (Cn,Cn).

Proof: Let ||·|| be the operator norm on L (Cn,Cn). Then letting J denote the Jordan
form of A,S−1AS = J and these two J,A have the same eigenvalues. Thus it follows from
Corollary 14.2.3

lim sup
n→∞

||An||1/n = lim sup
n→∞

∣∣∣∣SJnS−1∣∣∣∣1/n ≤ lim sup
n→∞

(
∥S∥

∥∥S−1∥∥∥Jn∥
)1/n

= lim
n→∞

(
∥S∥

∥∥S−1∥∥)1/n ∥Jn∥1/n = ρ
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Letting λ be the largest eigenvalue of A, |λ |= ρ, and Ax= λx where ∥x∥= 1,

∥An∥ ≥ ∥Anx∥= ρ
n

and so
lim inf

n→∞
∥An∥1/n ≥ ρ ≥ lim sup

n→∞

∥An∥1/n

If follows that liminfn→∞ ||An||1/n = limsupn→∞ ||An||1/n = limn→∞ ||An||1/n = ρ . As in
Corollary 14.2.3, there is no difference if any other norm is used because they are all equiv-
alent. ■

I would argue that a better way to prove this theorem is to use the theory of complex
analysis and tie it in with a Laurent series. However, there is a non trivial issue related
to the set of convergence of the Laurent series which involves the theory of functions of a
complex variable and this knowledge is not being assumed here. Thus the above gives an
algebraic proof which does not involve so much hard analysis.

Example 14.2.5 Consider

 9 −1 2
−2 8 4
1 1 8

 . Estimate the absolute value of the largest

eigenvalue.

A laborious computation reveals the eigenvalues are 5 and 10. Therefore, the right
answer in this case is 10. Consider

∣∣∣∣A9
∣∣∣∣1/9 where the norm is obtained by taking the

maximum of all the absolute values of the entries. Thus

 9 −1 2
−2 8 4
1 1 8


9

=

 800390625 −199609375 399218750
−399218750 600781250 798437500
199609375 199609375 600781250


and taking the seventh root of the largest entry gives

ρ (A)≊ 8003906251/9 = 9.7556.

Of course the interest lies primarily in matrices for which the exact roots to the character-
istic equation are not known and in the theoretical significance.

14.3 Series And Sequences Of Linear Operators
Before beginning this discussion, it is necessary to define what is meant by convergence in
L (X ,Y ) .

Definition 14.3.1 Let {Ak}∞

k=1 be a sequence in L (X ,Y ) where X ,Y are finite dimensional
normed linear spaces. Then limn→∞ Ak = A if for every ε > 0 there exists N such that if
n > N, then

||A−An||< ε.

Here the norm refers to any of the norms defined on L (X ,Y ) . By Corollary 10.6.4 and
Theorem 5.1.4 it doesn’t matter which one is used. Define the symbol for an infinite sum in
the usual way. Thus

∞

∑
k=1

Ak ≡ lim
n→∞

n

∑
k=1

Ak
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Lemma 14.3.2 Suppose {Ak}∞

k=1 is a sequence in L (X ,Y ) where X ,Y are finite dimen-
sional normed linear spaces. Then if ∑

∞
k=1 ||Ak||< ∞, It follows that

∞

∑
k=1

Ak (14.6)

exists (converges). In words, absolute convergence implies convergence. Also,∥∥∥∥∥ ∞

∑
k=1

Ak

∥∥∥∥∥≤ ∞

∑
k=1
∥Ak∥

Proof: For p≤ m≤ n, ∥∥∥∥∥ n

∑
k=1

Ak−
m

∑
k=1

Ak

∥∥∥∥∥≤ ∞

∑
k=p
∥Ak∥

and so for p large enough, this term on the right in the above inequality is less than ε. Since
ε is arbitrary, this shows the partial sums of 14.6 are a Cauchy sequence. Therefore by
Corollary 10.6.4 it follows that these partial sums converge. As to the last claim,∥∥∥∥∥ n

∑
k=1

Ak

∥∥∥∥∥≤ n

∑
k=1
∥Ak∥ ≤

∞

∑
k=1
∥Ak∥

Therefore, passing to the limit, ∥∥∥∥∥ ∞

∑
k=1

Ak

∥∥∥∥∥≤ ∞

∑
k=1
∥Ak∥ . ■

Why is this last step justified? (Recall the triangle inequality |∥A∥−∥B∥| ≤ ∥A−B∥. )
Now here is a useful result for differential equations.

Theorem 14.3.3 Let X be a finite dimensional inner product space and let A ∈L (X ,X) .
Define

Φ(t)≡
∞

∑
k=0

tkAk

k!

Then the series converges for each t ∈ R. Also

Φ
′ (t)≡ lim

h→0

Φ(t +h)−Φ(t)
h

=
∞

∑
k=1

tk−1Ak

(k−1)!
= A

∞

∑
k=0

tkAk

k!
= AΦ(t)

Also AΦ(t) = Φ(t)A and for all t,Φ(t)Φ(−t) = I so Φ(t)−1 = Φ(−t), Φ(0) = I. (It is
understood that A0 = I in the above formula.)

Proof: First consider the claim about convergence.

∞

∑
k=0

∥∥∥∥ tkAk

k!

∥∥∥∥≤ ∞

∑
k=0

|t|k ∥A∥k

k!
= e|t|∥A∥ < ∞
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so it converges by Lemma 14.3.2.

Φ(t +h)−Φ(t)
h

=
1
h

∞

∑
k=0

(
(t +h)k− tk

)
Ak

k!

=
1
h

∞

∑
k=0

(
k (t +θ kh)k−1 h

)
Ak

k!
=

∞

∑
k=1

(t +θ kh)k−1 Ak

(k−1)!

this by the mean value theorem. Note that the series converges thanks to Lemma 14.3.2.
Here θ k ∈ (0,1). Thus∥∥∥∥∥Φ(t +h)−Φ(t)

h
−

∞

∑
k=1

tk−1Ak

(k−1)!

∥∥∥∥∥=
∥∥∥∥∥∥

∞

∑
k=1

(
(t +θ kh)k−1− tk−1

)
Ak

(k−1)!

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞

∑
k=1

(
(k−1)(t + τkθ kh)k−2

θ kh
)

Ak

(k−1)!

∥∥∥∥∥∥= |h|
∥∥∥∥∥∥

∞

∑
k=2

(
(t + τkθ kh)k−2

θ k

)
Ak

(k−2)!

∥∥∥∥∥∥
≤ |h|

∞

∑
k=2

(|t|+ |h|)k−2 ∥A∥k−2

(k−2)!
∥A∥2 = |h|e(|t|+|h|)∥A∥ ∥A∥2

so letting |h|< 1, this is no larger than |h|e(|t|+1)∥A∥ ∥A∥2. Hence the desired limit is valid.
It is obvious that AΦ(t) = Φ(t)A. Also the formula shows that

Φ
′ (t) = AΦ(t) = Φ(t)A, Φ(0) = I.

Now consider the claim about Φ(−t) . The above computation shows that

Φ
′ (−t) = AΦ(−t)

and so d
dt (Φ(−t)) =−Φ′ (−t) =−AΦ(−t). Now let x,y be two vectors in X . Consider

(Φ(−t)Φ(t)x,y)X

Then this equals (x,y) when t = 0. Take its derivative.((
−Φ

′ (−t)Φ(t)+Φ(−t)Φ
′ (t)
)

x,y
)

X

= ((−AΦ(−t)Φ(t)+Φ(−t)AΦ(t))x,y)X

= (0,y)X = 0

Hence this scalar valued function equals a constant and so the constant must be (x,y)X .
Hence for all x,y,(Φ(−t)Φ(t)x− x,y)X = 0 for all x,y and this is so in particular for
y = Φ(−t)Φ(t)x− x which shows that Φ(−t)Φ(t) = I. ■

In fact, one can prove a group identity of the form Φ(t + s) = Φ(t)Φ(t) for all t,s ∈R.

Corollary 14.3.4 Let Φ(t) be given as above. Then Φ(t + s) = Φ(t)Φ(s) for any s, t ∈R.
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Proof: Let y (t)≡ (Φ(t)Φ(s)−Φ(t + s))x. Thus y (0) = 0. Now pick z ∈ X .

y′ (t) = Ay (t) ,
(
y′ (t) ,z

)
= (Ay (t) ,z)

Now, as above, d
dt (Φ(−t)) =−AΦ(−t) and so

d
dt

(Φ(−t)y (t) ,z) =
(
−AΦ(−t)y (t)+Φ(−t)y′ (t) ,z

)
=

(
−AΦ(−t)y (t)+Φ(−t)y′ (t) ,z

)
= (−AΦ(−t)y (t)+Φ(−t)Ay (t) ,z)

= (−AΦ(−t)y (t)+AΦ(−t)y (t) ,z) = 0

It follows from beginning calculus that

(Φ(−t)y (t) ,z) =C

However, y (0) = 0 and so C = 0. Since z is arbitrary, it follows that Φ(−t)y (t) = 0. By
Theorem 14.3.3, y (t) = 0. Now x was arbitrary so also Φ(t)Φ(s)−Φ(t + s) = 0 which
proves the corollary. ■

Note how this also shows that Φ(t) commutes with Φ(s) for any t,s. Also note that
all of this works with no change if A ∈L (X ,X) where X is a Hilbert space, possibly not
finite dimensional. In fact you don’t even need a Hilbert space. It would work fine with a
Banach space, and you would replace the inner product with the pairing with the dual space
but this requires more functional analysis than what is considered here.

As a special case, suppose λ ∈ C and consider ∑
∞
k=0

tkλ
k

k! where t ∈ R. In this case,

Ak =
tkλ

k

k! and you can think of it as being in L (C,C). Then the following corollary is of
great interest.

Corollary 14.3.5 Let

f (t)≡
∞

∑
k=0

tkλ
k

k!
≡ 1+

∞

∑
k=1

tkλ
k

k!

Then this function is a well defined complex valued function and furthermore, it satisfies
the initial value problem,

y′ = λy, y(0) = 1

Furthermore, if λ = a+ ib,
| f |(t) = eat .

Proof: The first part is a special case of the above theorem. Then

ȳ′ = λ̄ ȳ, ȳ(0) = 1

It follows

d
dy
|y(t)|2 = y′ (t) ȳ(t)+ y(t) ȳ′ (t)

= (a+ ib) |y(t)|2 +(a− ib) |y(t)|2

= 2a |y(t)|2 , |y(0)|2 = 1
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It follows |y(t)|2 = e2at , |y(t)|= eatas claimed.
This follows because in general, if

z′ = cz, z(0) = 1,

with c real it follows z(t) = ect . To see this, z′− cz = 0 and so, multiplying both sides by
e−ct you get

d
dt

(
ze−ct)= 0

and so ze−ct equals a constant which must be 1 because of the initial condition z(0) = 1. ■

Definition 14.3.6 The function in Corollary 14.3.5 given by that power series is denoted
as

exp(λ t) or eλ t .

The next lemma is normally discussed in advanced calculus courses but is proved here
for the convenience of the reader. It is known as the root test.

Definition 14.3.7 For {an} any sequence of real numbers

lim sup
n→∞

an ≡ lim
n→∞

(sup{ak : k ≥ n})

Similarly
lim inf

n→∞
an ≡ lim

n→∞
(inf{ak : k ≥ n})

In case Anis an increasing (decreasing) sequence which is unbounded above (below) then
it is understood that limn→∞ An = ∞ (−∞) respectively. Thus either of limsup or liminf
can equal +∞ or −∞. However, the important thing about these is that unlike the limit,
these always exist.

It is convenient to think of these as the largest point which is the limit of some sub-
sequence of {an} and the smallest point which is the limit of some subsequence of {an}
respectively. Thus limn→∞ an exists and equals some point of [−∞,∞] if and only if the two
are equal.

Lemma 14.3.8 Let
{

ap
}

be a sequence of nonnegative terms and let

r = lim sup
p→∞

a1/p
p .

Then if r < 1, it follows the series, ∑
∞
k=1 ak converges and if r > 1, then ap fails to converge

to 0 so the series diverges. If A is an n×n matrix and

r = lim sup
p→∞

||Ap||1/p , (14.7)

then if r > 1, then ∑
∞
k=0 Ak fails to converge and if r < 1 then the series converges. Note that

the series converges when the spectral radius is less than one and diverges if the spectral
radius is larger than one. In fact, limsupp→∞ ||Ap||1/p = limp→∞ ||Ap||1/p from Theorem
14.2.4.
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Proof: Suppose r < 1. Then there exists N such that if p > N,

a1/p
p < R

where r < R < 1. Therefore, for all such p, ap < Rp and so by comparison with the
geometric series, ∑Rp, it follows ∑

∞
p=1 ap converges.

Next suppose r > 1. Then letting 1 < R < r, it follows there are infinitely many values
of p at which

R < a1/p
p

which implies Rp < ap, showing that ap cannot converge to 0 and so the series cannot
converge either.

To see the last claim, if r > 1, then ||Ap|| fails to converge to 0 so
{

∑
m
k=0 Ak

}∞

m=0 is not
a Cauchy sequence. Hence ∑

∞
k=0 Ak ≡ limm→∞ ∑

m
k=0 Ak cannot exist. If r < 1, then for all n

large enough, ∥An∥1/n ≤ r < 1 for some r so ∥An∥ ≤ rn. Hence ∑n ∥An∥ converges and so
by Lemma 14.3.2, it follows that ∑

∞
k=1 Ak also converges. ■

Now denote by σ (A)p the collection of all numbers of the form λ
p where λ ∈ σ (A) .

Lemma 14.3.9 σ (Ap) = σ (A)p ≡ {λ p : λ ∈ σ (A)}.

Proof: In dealing with σ (Ap) , it suffices to deal with σ (Jp) where J is the Jordan
form of A because Jp and Ap are similar. Thus if λ ∈ σ (Ap) , then λ ∈ σ (Jp) and so λ = α

where α is one of the entries on the main diagonal of Jp. These entries are of the form λ
p

where λ ∈ σ (A). Thus λ ∈ σ (A)p and this shows σ (Ap)⊆ σ (A)p .
Now take α ∈ σ (A) and consider α p.

α
pI−Ap =

(
α

p−1I + · · ·+αAp−2 +Ap−1)(αI−A)

and so α pI−Ap fails to be one to one which shows that α p ∈ σ (Ap) which shows that
σ (A)p ⊆ σ (Ap) . ■

14.4 Iterative Methods For Linear Systems
Consider the problem of solving the equation

Ax= b (14.8)

where A is an n× n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
The method is to write

A = B−C

where B−1 exists. Then the system is of the form

Bx=Cx+b

and so the solution is solves

x= B−1Cx+B−1b≡ Tx

In other words, you look for a fixed point of T . There are standard methods for finding
such fixed points which hold in general Banach spaces which is the term for a complete
normed linear space.
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Definition 14.4.1 A normed vector space, E with norm ||·|| is called a Banach space if it is
also complete. This means that every Cauchy sequence converges. Recall that a sequence
{xn}∞

n=1 is a Cauchy sequence if for every ε > 0 there exists N such that whenever m,n>N,

||xn− xm||< ε.

Thus whenever {xn} is a Cauchy sequence, there exists x such that

lim
n→∞
||x− xn||= 0.

The following is an example of an infinite dimensional Banach space. We have already
observed that finite dimensional normed linear spaces are Banach spaces.

Example 14.4.2 Let E be a Banach space and let Ω be a nonempty subset of a normed
linear space F. Let B(Ω;E) denote those functions f for which

|| f || ≡ sup{|| f (x)||E : x ∈Ω}< ∞

Denote by BC (Ω;E) the set of functions in B(Ω;E) which are also continuous.

Lemma 14.4.3 The above ∥·∥ is a norm on B(Ω;E). The subspace BC (Ω;E) with the
given norm is a Banach space.

Proof: It is obvious ||·|| is a norm. It only remains to verify BC (Ω;E) is complete. Let
{ fn} be a Cauchy sequence. Since ∥ fn− fm∥→ 0 as m,n→ ∞, it follows that { fn (x)} is a
Cauchy sequence in E for each x. Let f (x)≡ limn→∞ fn (x). Then for any x ∈Ω.

|| fn (x)− fm (x)||E ≤ || fn− fm||< ε

whenever m,n are large enough, say as large as N. For n≥ N, let m→ ∞. Then passing to
the limit, it follows that for all x,

|| fn (x)− f (x)||E ≤ ε

and so for all x,
∥ f (x)∥E ≤ ε +∥ fn (x)∥E ≤ ε +∥ fn∥ .

It follows that ∥ f∥ ≤ ∥ fn∥+ ε and ∥ f − fn∥ ≤ ε .
It remains to verify that f is continuous.

∥ f (x)− f (y)∥E ≤ ∥ f (x)− fn (x)∥E +∥ fn (x)− fn (y)∥E +∥ fn (y)− f (y)∥E

≤ 2∥ f − fn∥+∥ fn (x)− fn (y)∥E <
2ε

3
+∥ fn (x)− fn (y)∥E

for all n large enough. Now pick such an n. By continuity, the last term is less than ε

3 if
∥x− y∥ is small enough. Hence f is continuous as well. ■

The most familiar example of a Banach space is Fn. The following lemma is of great
importance so it is stated in general.

Lemma 14.4.4 Suppose T : E→ E where E is a Banach space with norm |·|. Also suppose

|Tx−Ty| ≤ r |x−y| (14.9)
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for some r ∈ (0,1). Then there exists a unique fixed point, x ∈ E such that

Tx= x. (14.10)

Letting x1 ∈ E, this fixed point x, is the limit of the sequence of iterates,

x1,Tx1,T 2x1, · · · . (14.11)

In addition to this, there is a nice estimate which tells how close x1 is to x in terms of
things which can be computed.∣∣x1−x

∣∣≤ 1
1− r

∣∣x1−Tx1∣∣ . (14.12)

Proof: This follows easily when it is shown that the above sequence,
{

T kx1
}∞

k=1 is a
Cauchy sequence. Note that ∣∣T 2x1−Tx1∣∣≤ r

∣∣Tx1−x1∣∣ .
Suppose ∣∣∣T kx1−T k−1x1

∣∣∣≤ rk−1 ∣∣Tx1−x1∣∣ . (14.13)

Then ∣∣∣T k+1x1−T kx1
∣∣∣ ≤ r

∣∣∣T kx1−T k−1x1
∣∣∣

≤ rrk−1 ∣∣Tx1−x1∣∣= rk ∣∣Tx1−x1∣∣ .
By induction, this shows that for all k ≥ 2, 14.13 is valid. Now let k > l ≥ N.∣∣∣T kx1−T lx1

∣∣∣ =

∣∣∣∣∣k−1

∑
j=l

(
T j+1x1−T jx1)∣∣∣∣∣≤ k−1

∑
j=l

∣∣T j+1x1−T jx1∣∣
≤

k−1

∑
j=N

r j ∣∣Tx1−x1∣∣≤ ∣∣Tx1−x1∣∣ rN

1− r

which converges to 0 as N→ ∞. Therefore, this is a Cauchy sequence so it must converge
to x ∈ E. Then

x= lim
k→∞

T kx1 = lim
k→∞

T k+1x1 = T lim
k→∞

T kx1 = Tx.

This shows the existence of the fixed point. To show it is unique, suppose there were
another one, y. Then

|x−y|= |Tx−Ty| ≤ r |x−y|
and so x= y.

It remains to verify the estimate.∣∣x1−x
∣∣ ≤ ∣∣x1−Tx1∣∣+ ∣∣Tx1−x

∣∣= ∣∣x1−Tx1∣∣+ ∣∣Tx1−Tx
∣∣

≤
∣∣x1−Tx1∣∣+ r

∣∣x1−x
∣∣

and solving the inequality for
∣∣x1−x

∣∣ gives the estimate desired. ■
The following corollary is what will be used to prove the convergence condition for the

various iterative procedures.
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Corollary 14.4.5 Suppose T : E→ E, for some constant C

|Tx−Ty| ≤C |x−y| ,

for all x,y ∈ E, and for some N ∈ N,∣∣T Nx−T Ny
∣∣≤ r |x−y| ,

for all x,y ∈ E where r ∈ (0,1). Then there exists a unique fixed point for T and it is still
the limit of the sequence,

{
T kx1

}
for any choice of x1.

Proof: From Lemma 14.4.4 there exists a unique fixed point for T N denoted here as x.
Therefore, T Nx= x. Now doing T to both sides,

T NTx= Tx.

By uniqueness, Tx= x because the above equation shows Tx is a fixed point of T N and
there is only one fixed point of T N . In fact, there is only one fixed point of T because a
fixed point of T is automatically a fixed point of T N .

It remains to show T kx1 → x, the unique fixed point of T N . If this does not happen,
there exists ε > 0 and a subsequence, still denoted by T k such that∣∣∣T kx1−x

∣∣∣≥ ε

Now k = jkN+rk where rk ∈{0, · · · ,N−1} and jk is a positive integer with limk→∞ jk =∞.
Then there exists a single r ∈ {0, · · · ,N−1} such that for infinitely many k,rk = r. Taking
a further subsequence, still denoted by T k it follows∣∣T jkN+rx1−x

∣∣≥ ε (14.14)

However,
T jkN+rx1 = T rT jkNx1→ T rx= x

and this contradicts 14.14. ■
Now return to our system Ax= b. Recall it was a fixed point of T where

x= B−1Cx+B−1b≡ Tx

Then the fundamental theorem on convergence is the following. First note the following.

T 2x = B−1C
(
B−1Cx+b

)
+B−1b

=
(
B−1C

)2
+ e2 (b)

where e2 (b) does not depend on x. Similarly,

T nx=
(
B−1C

)n
+ en (b) (14.15)

where en (b) does not depend on x. Thus

|T nx−T ny| ≤
∣∣∣∣∣∣(B−1C

)n
∣∣∣∣∣∣ |x−y| .
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Theorem 14.4.6 Suppose ρ
(
B−1C

)
< 1. Then the iterates described above converge to

the unique solution of Ax= b.

Proof: Consider the above iterates. Let Tx= B−1Cx+B−1b. Then∣∣∣T kx−T ky
∣∣∣= ∣∣∣(B−1C

)k
x−

(
B−1C

)k
y
∣∣∣≤ ∥∥∥(B−1C

)k
∥∥∥ |x−y| .

Here ||·|| refers to any of the operator norms. It doesn’t matter which one you pick because
they are all equivalent. I am writing the proof to indicate the operator norm taken with
respect to the usual norm on E. Since ρ

(
B−1C

)
< 1, it follows from Gelfand’s theorem,

Theorem 14.2.4 on Page 392, there exists N such that if k ≥ N, then
∣∣∣∣∣∣(B−1C

)k
∣∣∣∣∣∣≤ r < 1.

Consequently, ∣∣T Nx−T Ny
∣∣≤ r |x−y| .

Also |Tx−Ty| ≤
∣∣∣∣B−1C

∣∣∣∣ |x−y| and so Corollary 14.4.5 applies and gives the conclu-
sion of this theorem. ■

In the Jacobi method, you have

A =


∗ ∗

. . .

∗ ∗


and you let B be the diagonal matrix whose diagonal entries are those of A and you let C be
(−1) times the matrix obtained from A by making the diagonal entries 0 and retaining all
the other entries of A. Thus

B =


∗ 0

. . .

0 ∗

 , C =−


0 ∗

. . .

∗ 0


In the Gauss Seidel method, you let

B =


∗ 0

. . .

∗ ∗

 , C =−


0 ∗

. . .

0 0


Thus you keep the entries of A which are on or below the main diagonal in order to get B.
To get C you take −1 times the matrix obtained from A by replacing all entries below and
on the main diagonal with zeros.

Observation 14.4.7 Note that if A is diagonally dominant, meaning

|aii|> ∑
j ̸=i

∣∣ai j
∣∣

then in both cases above, ρ
(
B−1C

)
< 1 so the two iterative procedures will converge.

To see this, suppose B−1Cx = λx, |λ | ≥ 1. Then you get (λB−C)x= 0 However,
in either the case of Jacobi iteration or Gauss Seidel iteration, the matrix λB−C will be
diagonally dominant and so by Gerschgorin’s theorem will have no zero eigenvalues which
requires that this matrix be one to one. Thus there are no eigenvectors for such λ and hence
ρ
(
B−1C

)
< 1.
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14.5 Exercises
1. Solve the system  4 1 1

1 5 2
0 2 6


 x

y
z

=

 1
2
3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

2. Solve the system  4 1 1
1 7 2
0 2 4


 x

y
z

=

 1
2
3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

3. Solve the system  5 1 1
1 7 2
0 2 4


 x

y
z

=

 1
2
3


using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

4. If you are considering a system of the form Ax= b and A−1 does not exist, will
either the Gauss Seidel or Jacobi methods work? Explain. What does this indicate
about finding eigenvectors for a given eigenvalue?

5. For ||x||
∞
≡ max

{∣∣x j
∣∣ : j = 1,2, · · · ,n

}
, the parallelogram identity does not hold.

Explain.

6. A norm ||·|| is said to be strictly convex if whenever ||x||= ||y|| ,x ̸= y, it follows∣∣∣∣∣∣∣∣x+ y
2

∣∣∣∣∣∣∣∣< ||x||= ||y|| .
Show the norm |·| which comes from an inner product is strictly convex.

7. A norm ||·|| is said to be uniformly convex if whenever ||xn|| , ||yn|| are equal to 1
for all n ∈ N and limn→∞ ||xn + yn|| = 2, it follows limn→∞ ||xn− yn|| = 0. Show the
norm |·| coming from an inner product is always uniformly convex. Also show that
uniform convexity implies strict convexity which is defined in Problem 6.

8. Suppose A : Cn→ Cn is a one to one and onto matrix. Define

||x|| ≡ |Ax| .

Show this is a norm.
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9. If X is a finite dimensional normed vector space and A,B∈L (X ,X) such that ||B||<
||A|| and A−1 exists, can it be concluded that

∣∣∣∣A−1B
∣∣∣∣ < 1? Either give a counter

example or a proof.

10. Let X be a vector space with a norm ||·|| and let V = span(v1, · · · ,vm) be a finite
dimensional subspace of X such that {v1, · · · ,vm} is a basis for V. Show V is a closed
subspace of X . This means that if wn→ w and each wn ∈V, then so is w. Next show
that if w /∈V,

dist(w,V )≡ inf{||w− v|| : v ∈V}> 0

is a continuous function of w and

|dist(w,V )−dist(w1,V )| ≤ ∥w1−w∥

Next show that if w /∈ V, there exists z such that ||z|| = 1 and dist(z,V ) > 1/2. For
those who know some advanced calculus, show that if X is an infinite dimensional
vector space having norm ||·|| , then the closed unit ball in X cannot be compact.
Thus closed and bounded is never compact in an infinite dimensional normed vector
space.

11. Suppose ρ (A)< 1 for A ∈L (V,V ) where V is a p dimensional vector space having
a norm ||·||. You can use Rp or Cp if you like. Show there exists a new norm |||·|||
such that with respect to this new norm, |||A|||< 1 where |||A||| denotes the operator
norm of A taken with respect to this new norm on V ,

|||A||| ≡ sup{|||Ax||| : |||x||| ≤ 1}

Hint: You know from Gelfand’s theorem that

||An||1/n < r < 1

provided n is large enough, this operator norm taken with respect to ||·||. Show there
exists 0 < λ < 1 such that

ρ

(
A
λ

)
< 1.

You can do this by arguing the eigenvalues of A/λ are the scalars µ/λ where µ ∈
σ (A). Now let Z+ denote the nonnegative integers.

|||x||| ≡ sup
n∈Z+

∣∣∣∣∣∣∣∣An

λ
nx

∣∣∣∣∣∣∣∣
First show this is actually a norm. Next explain why

|||Ax||| ≡ λ sup
n∈Z+

∣∣∣∣∣∣∣∣An+1

λ
n+1x

∣∣∣∣∣∣∣∣≤ λ |||x||| .

12. Establish a similar result to Problem 11 without using Gelfand’s theorem. Use an
argument which depends directly on the Jordan form or a modification of it.

13. Using Problem 11 give an easier proof of Theorem 14.4.6 without having to use
Corollary 14.4.5. It would suffice to use a different norm of this problem and the
contraction mapping principle of Lemma 14.4.4.
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14. A matrix A is diagonally dominant if |aii| > ∑ j ̸=i
∣∣ai j
∣∣ . Show that the Gauss Seidel

method converges if A is diagonally dominant.

15. Suppose f (λ ) = ∑
∞
n=0 anλ

n converges if |λ |< R. Show that if ρ (A)< R where A is
an n×n matrix, then

f (A)≡
∞

∑
n=0

anAn

converges in L (Fn,Fn) . Hint: Use Gelfand’s theorem and the root test.

16. Referring to Corollary 14.3.5, for λ = a+ ib show

exp(λ t) = eat (cos(bt)+ isin(bt)) .

Hint: Let y(t) = exp(λ t) and let z(t) = e−aty(t) . Show

z′′+b2z = 0, z(0) = 1,z′ (0) = ib.

Now letting z = u+ iv where u,v are real valued, show

u′′+b2u = 0, u(0) = 1,u′ (0) = 0
v′′+b2v = 0, v(0) = 0,v′ (0) = b.

Next show u(t) = cos(bt) and v(t) = sin(bt) work in the above and that there is at
most one solution to

w′′+b2w = 0 w(0) = α,w′ (0) = β .

Thus z(t) = cos(bt)+ isin(bt) and so y(t) = eat (cos(bt)+ isin(bt)). To show there
is at most one solution to the above problem, suppose you have two, w1,w2. Subtract
them. Let f = w1−w2. Thus

f ′′+b2 f = 0

and f is real valued. Multiply both sides by f ′ and conclude

d
dt

(
( f ′)2

2
+b2 f 2

2

)
= 0

Thus the expression in parenthesis is constant. Explain why this constant must equal
0.

17. Let A ∈L (Rn,Rn) . Show the following power series converges in L (Rn,Rn).

Ψ(t)≡
∞

∑
k=0

tkAk

k!

This was done in the chapter. Go over it and be sure you understand it. This is
how you can define exp(tA). Next show that Ψ′ (t) = AΨ(t) ,Ψ(0) = I. Next let

Φ(t) = ∑
∞
k=0

tk(−A)k

k! . Show each Φ(t) ,Ψ(t) each commute with A. Next show that
Φ(t)Ψ(t) = I for all t. Finally, solve the initial value problem

x′ = Ax+f, x(0) = x0

in terms of Φ and Ψ. This yields most of the substance of a typical differential
equations course.
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18. In Problem 17 Ψ(t) is defined by the given series. Denote by exp(tσ (A)) the num-
bers exp(tλ ) where λ ∈ σ (A) . Show exp(tσ (A)) = σ (Ψ(t)) . This is like Lemma
14.3.9. Letting J be the Jordan canonical form for A, explain why

Ψ(t)≡
∞

∑
k=0

tkAk

k!
= S

∞

∑
k=0

tkJk

k!
S−1

and you note that in Jk, the diagonal entries are of the form λ
k for λ an eigenvalue

of A. Also J = D+N where N is nilpotent and commutes with D. Argue then that

∞

∑
k=0

tkJk

k!

is an upper triangular matrix which has on the diagonal the expressions eλ t where
λ ∈ σ (A) . Thus conclude

σ (Ψ(t))⊆ exp(tσ (A))

Next take etλ ∈ exp(tσ (A)) and argue it must be in σ (Ψ(t)) . You can do this as
follows:

Ψ(t)− etλ I =
∞

∑
k=0

tkAk

k!
−

∞

∑
k=0

tkλ
k

k!
I =

∞

∑
k=0

tk

k!

(
Ak−λ

kI
)

=

(
∞

∑
k=0

tk

k!

k−1

∑
j=1

Ak− j
λ

j

)
(A−λ I)

Now you need to argue
∞

∑
k=0

tk

k!

k−1

∑
j=1

Ak− j
λ

j

converges to something in L (Rn,Rn). To do this, use the ratio test and Lemma
14.3.2 after first using the triangle inequality. Since λ ∈ σ (A) , Ψ(t)−etλ I is not one
to one and so this establishes the other inclusion. You fill in the details. This theorem
is a special case of theorems which go by the name “spectral mapping theorem”
which was discussed in the text. However, go through it yourself.

19. Suppose Ψ(t) ∈ L (V,W ) where V,W are finite dimensional inner product spaces
and t→Ψ(t) is continuous for t ∈ [a,b]: For every ε > 0 there there exists δ > 0 such
that if |s− t|< δ then ||Ψ(t)−Ψ(s)||< ε. Show t→ (Ψ(t)v,w) is continuous. Here
it is the inner product in W. Also define what it means for t→Ψ(t)v to be continuous
and show this is continuous. Do it all for differentiable in place of continuous. Next
show t→ ||Ψ(t)|| is continuous.

20. If z(t) ∈W, a finite dimensional inner product space, what does it mean for t→ z(t)
to be continuous or differentiable? If z is continuous, define∫ b

a
z(t)dt ∈W
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as follows. (
w,
∫ b

a
z(t)dt

)
≡
∫ b

a
(w,z(t))dt.

Show that this definition is well defined and furthermore the triangle inequality,∣∣∣∣∫ b

a
z(t)dt

∣∣∣∣≤ ∫ b

a
|z(t)|dt,

and fundamental theorem of calculus,

d
dt

(∫ t

a
z(s)ds

)
= z(t)

hold along with any other interesting properties of integrals which are true.

21. For V,W two inner product spaces, define∫ b

a
Ψ(t)dt ∈L (V,W )

as follows. (
w,
∫ b

a
Ψ(t)dt (v)

)
≡
∫ b

a
(w,Ψ(t)v)dt.

Show this is well defined and does indeed give
∫ b

a Ψ(t)dt ∈L (V,W ) . Also show
the triangle inequality ∣∣∣∣∣∣∣∣∫ b

a
Ψ(t)dt

∣∣∣∣∣∣∣∣≤ ∫ b

a
||Ψ(t)||dt

where ||·|| is the operator norm and verify the fundamental theorem of calculus holds.(∫ t

a
Ψ(s)ds

)′
= Ψ(t) .

Also verify the usual properties of integrals continue to hold such as the fact the
integral is linear and ∫ b

a
Ψ(t)dt +

∫ c

b
Ψ(t)dt =

∫ c

a
Ψ(t)dt

and similar things. Hint: On showing the triangle inequality, it will help if you use
the fact that

|w|W = sup
|v|≤1
|(w,v)| .

You should show this also.

22. Prove Gronwall’s inequality. Suppose u(t)≥ 0 and for all t ∈ [0,T ] ,

u(t)≤ u0 +
∫ t

0
Ku(s)ds.
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where K is some nonnegative constant. Then

u(t)≤ u0eKt .

Hint: w(t) =
∫ t

0 u(s)ds. Then using the fundamental theorem of calculus, w(t) sat-
isfies the following.

u(t)−Kw(t) = w′ (t)−Kw(t)≤ u0, w(0) = 0.

Now use the usual techniques you saw in an introductory differential equations class.
Multiply both sides of the above inequality by e−Kt and note the resulting left side is
now a total derivative. Integrate both sides from 0 to t and see what you have got.

23. With Gronwall’s inequality and the integral defined in Problem 21 with its properties
listed there, prove there is at most one solution to the initial value problem

y′ = Ay, y (0) = y0.

Hint: If there are two solutions, subtract them and call the result z. Then

z′ = Az, z (0) = 0.

It follows
z (t) = 0+

∫ t

0
Az (s)ds

and so
||z (t)|| ≤

∫ t

0
∥A∥||z (s)||ds

Now consider Gronwall’s inequality of Problem 22.

24. Suppose A is a matrix which has the property that whenever µ ∈ σ (A) , Re µ < 0.
Consider the initial value problem

y′ = Ay,y (0) = y0.

The existence and uniqueness of a solution to this equation has been established
above in preceding problems, Problem 17 to 23. Show that in this case where the
real parts of the eigenvalues are all negative, the solution to the initial value problem
satisfies

lim
t→∞

y (t) = 0.

Hint: A nice way to approach this problem is to show you can reduce it to the con-
sideration of the initial value problem

z′ = Jεz, z (0) = z0

where Jε is the modified Jordan canonical form where instead of ones down the main
diagonal, there are ε down the main diagonal (Problem 14). Then

z′ = Dz+Nεz
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where D is the diagonal matrix obtained from the eigenvalues of A and Nε is a nilpo-
tent matrix commuting with D which is very small provided ε is chosen very small.
Now let Ψ(t) be the solution of

Ψ
′ =−DΨ, Ψ(0) = I

described earlier as
∞

∑
k=0

(−1)k tkDk

k!
.

Thus Ψ(t) commutes with D and Nε . Tell why. Next argue

(Ψ(t)z)′ = Ψ(t)Nεz (t)

and integrate from 0 to t. Then

Ψ(t)z (t)−z0 =
∫ t

0
Ψ(s)Nεz (s)ds.

It follows
||Ψ(t)z (t)|| ≤ ||z0||+

∫ t

0
||Nε || ||Ψ(s)z (s)||ds.

It follows from Gronwall’s inequality

||Ψ(t)z (t)|| ≤ ||z0||e||Nε ||t

Now look closely at the form of Ψ(t) to get an estimate which is interesting. Explain
why

Ψ(t) =


eµ1t 0

. . .

0 eµnt


and now observe that if ε is chosen small enough, ||Nε || is so small that each com-
ponent of z (t) converges to 0.

25. Using Problem 24 show that if A is a matrix having the real parts of all eigenvalues
less than 0 then if

Ψ
′ (t) = AΨ(t) , Ψ(0) = I

it follows
lim
t→∞

Ψ(t) = 0.

Hint: Consider the columns of Ψ(t)?

26. Let Ψ(t) be a fundamental matrix satisfying

Ψ
′ (t) = AΨ(t) , Ψ(0) = I.

Show Ψ(t)n = Ψ(nt) . Hint: Subtract and show the difference satisfies Φ′ = AΦ,
and Φ(0) = 0. Use uniqueness.
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27. If the real parts of the eigenvalues of A are all negative, show that for every positive
t,

lim
n→∞

Ψ(nt) = 0.

Hint: Pick Re(σ (A)) < −λ < 0 and use Problem 18 about the spectrum of Ψ(t)
and Gelfand’s theorem for the spectral radius along with Problem 26 to argue that∣∣∣∣Ψ(nt)/e−λnt

∣∣∣∣< 1 for all n large enough.

28. Let H be a Hermitian matrix. (H = H∗) . Show that eiH ≡ ∑
∞
n=0

(iH)n

n! is unitary.

29. Show the converse of the above exercise. If V is unitary, then V = eiH for some H
Hermitian.

Hint: First verify that V is normal. Thus U∗VU = D. Now verify that D∗D = I.
What does this mean for the diagonal entries of D? If you have a complex number
which has magnitude 1, what form does it take?

30. If U is unitary and does not have −1 as an eigenvalue so that (I +U)−1 exists, show
that

H = i(I−U)(I +U)−1

is Hermitian. Then, verify that

U = (I + iH)(I− iH)−1 .

31. Suppose that A ∈ L (V,V ) where V is a normed linear space. Also suppose that
∥A∥< 1 where this refers to the operator norm on A. Verify that

(I−A)−1 =
∞

∑
i=0

Ai

This is called the Neumann series. Suppose now that you only know the alge-
braic condition ρ (A) < 1. Is it still the case that the Neumann series converges to
(I−A)−1?



Chapter 15

Numerical Methods, Eigenvalues
15.1 The Power Method For Eigenvalues

This chapter discusses numerical methods for finding eigenvalues. However, to do this
correctly, you must include numerical analysis considerations which are distinct from linear
algebra. The purpose of this chapter is to give an introduction to some numerical methods
without leaving the context of linear algebra. In addition, some examples are given which
make use of computer algebra systems. For a more thorough discussion, you should see
books on numerical methods in linear algebra like some listed in the references.

Let A be a complex p× p matrix and suppose that it has distinct eigenvalues

{λ 1, · · · ,λ m}

and that |λ 1|> |λ k| for all k. Also let the Jordan form of A be

J =


J1

. . .

Jm


with J1 an m1×m1 matrix. Jk = λ kIk +Nk where Nrk

k ̸= 0 but Nrk+1
k = 0. Also let P−1AP =

J, A = PJP−1. Now fix x ∈ Fp. Take Ax and let s1 be the entry of the vector Ax which
has largest absolute value. Thus Ax/s1 is a vector y1 which has a component of 1 and
every other entry of this vector has magnitude no larger than 1. If the scalars {s1, · · · ,sn−1}
and vectors {y1, · · · ,yn−1} have been obtained, let yn ≡ Ayn−1/sn where sn is the entry of
Ayn−1 which has largest absolute value. Thus

yn =
AAyn−2

snsn−1
· · ·= Anx

snsn−1 · · ·s1
= (15.1)

1
snsn−1 · · ·s1

P


Jn

1
. . .

Jn
m

P−1 x=

λ
n
1

snsn−1 · · ·s1
P


λ
−n
1 Jn

1
. . .

λ
−n
1 Jn

m

P−1x (15.2)

Consider one of the blocks in the Jordan form. First consider the kth of these blocks,
k > 1. It equals

λ
−n
1 Jn

k =
rk

∑
i=0

(
n
i

)
λ
−n
1 λ

n−i
k Ni

k

which clearly converges to 0 as n→ ∞ since |λ 1|> |λ k|. An application of the ratio test or
root test for each term in the sum will show this. When k = 1, this block is

λ
−n
1 Jn

1 = λ
−n
1 Jn

k =
r1

∑
i=0

(
n
i

)
λ
−n
1 λ

n−i
1 Ni

1 =

(
n
r1

)[
λ
−r1
1 Nr1

1 + en

]
411
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where limn→∞ en = 0 because it is a sum of bounded matrices which are multiplied by(n
i

)
/
( n

r1

)
. This quotient converges to 0 as n→ ∞ because i < r1. It follows that 15.2 is of

the form

yn =
λ

n
1

snsn−1 · · ·s1

(
n
r1

)
P

(
λ
−r1
1 Nr1

1 + en 0
0 En

)
P−1 x≡ λ

n
1

snsn−1 · · ·s1

(
n
r1

)
wn

where En→ 0,en→ 0. Let
(
P−1x

)
m1

denote the first m1 entries of the vector P−1x. Unless
a very unlucky choice for x was picked, it will follow that

(
P−1x

)
m1

/∈ ker
(
Nr1

1

)
. Then for

large n, yn is close to the vector

λ
n
1

snsn−1 · · ·s1

(
n
r1

)
P

(
λ
−r1
1 Nr1

1 0
0 0

)
P−1 x≡ λ

n
1

snsn−1 · · ·s1

(
n
r1

)
w ≡ z ̸= 0

However, this is an eigenvector because

(A−λ 1I)w =

A−λ 1I︷ ︸︸ ︷
P(J−λ 1I)P−1P

(
λ
−r1
1 Nr1

1 0
0 0

)
P−1x=

P


N1

. . .

Jm−λ 1I

P−1P


λ
−r1
1 Nr1

1
. . .

0

P−1x

= P

(
N1λ

−r1
1 Nr1

1 0
0 0

)
P−1x= 0

Recall Nr1+1
1 = 0. Now you could recover an approximation to the eigenvalue as follows.

(Ayn,yn)

(yn,yn)
≊

(Az,z)
(z,z)

= λ 1

Here≊means “approximately equal”. However, there is a more convenient way to identify
the eigenvalue in terms of the scaling factors sk.∥∥∥∥ λ

n
1

sn · · ·s1

(
n
r1

)
(wn−w)

∥∥∥∥
∞

≊ 0

Pick the largest nonzero entry of w, wl . Then for large n, it is also likely the case that
the largest entry of wn will be in the lth position because wm is close to w. From the
construction,

λ
n
1

sn · · ·s1

(
n
r1

)
wnl = 1≊

λ
n
1

sn · · ·s1

(
n
r1

)
wl

In other words, for large n, λ
n
1

sn···s1

( n
r1

)
≊ 1/wl . Therefore, for large n,

λ
n
1

sn · · ·s1

(
n
r1

)
≊

λ
n+1
1

sn+1sn · · ·s1

(
n+1

r1

)



15.1. THE POWER METHOD FOR EIGENVALUES 413

and so
( n

r1

)
/
(n+1

r1

)
≊ λ 1

sn+1
. But limn→∞

( n
r1

)
/
(n+1

r1

)
= 1 and so, for large n it must be the case

that λ 1 ≊ sn+1.
This has proved the following theorem which justifies the power method.

Theorem 15.1.1 Let A be a complex p× p matrix such that the eigenvalues are

{λ 1,λ 2, · · · ,λ r}

with |λ 1|>
∣∣λ j
∣∣ for all j ̸= 1. Then for x a given vector, let

y1 =
Ax
s1

where s1 is an entry of Ax which has the largest absolute value. If the scalars {s1, · · · ,sn−1}
and vectors {y1, · · · ,yn−1} have been obtained, let

yn ≡
Ayn−1

sn

where sn is the entry of Ayn−1 which has largest absolute value. Then it is probably the
case that {sn} will converge to λ 1 and {yn} will converge to an eigenvector associated
with λ 1. If it doesn’t, you picked an incredibly inauspicious initial vector x.

In summary, here is the procedure.

Finding the largest eigenvalue with its eigenvector.

1. Start with a vector, u1 which you hope is not unlucky.

2. If uk is known, uk+1 =
Auk
sk+1

where sk+1 is the entry of Auk which has largest absolute
value.

3. When the scaling factors sk are not changing much, sk+1 will be close to the eigen-
value and uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well. If things don’t work well, try another
u1. You were miraculously unlucky in your choice.

Example 15.1.2 Find the largest eigenvalue of A =

 5 −14 11
−4 4 −4
3 6 −3

 .

You can begin with u1 = (1, · · · ,1)T and apply the above procedure. However, you can
accelerate the process if you begin with Anu1 and then divide by the largest entry to get the
first approximate eigenvector. Thus 5 −14 11

−4 4 −4
3 6 −3


20 1

1
1

=

 2.5558×1021

−1.2779×1021

−3.6562×1015
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Divide by the largest entry to obtain a good aproximation. 2.5558×1021

−1.2779×1021

−3.6562×1015

 1
2.5558×1021 =

 1.0
−0.5

−1.4306×10−6


Now begin with this one. 5 −14 11

−4 4 −4
3 6 −3


 1.0

−0.5
−1.4306×10−6

=

 12.000
−6.0000

4.2918×10−6


Divide by 12 to get the next iterate. 12.000

−6.0000
4.2918×10−6

 1
12

=

 1.0
−0.5

3.5765×10−7


Another iteration will reveal that the scaling factor is still 12. Thus this is an approxi-
mate eigenvalue. In fact, it is the largest eigenvalue and the corresponding eigenvector
is
(

1.0 −0.5 0
)
. The process has worked very well.

15.1.1 The Shifted Inverse Power Method
This method can find various eigenvalues and eigenvectors. It is a significant generaliza-
tion of the above simple procedure and yields very good results. One can find complex
eigenvalues using this method. The situation is this: You have a number α which is close
to λ , some eigenvalue of an n× n matrix A. You don’t know λ but you know that α is
closer to λ than to any other eigenvalue. Your problem is to find both λ and an eigenvector
which goes with λ . Another way to look at this is to start with α and seek the eigenvalue
λ , which is closest to α along with an eigenvector associated with λ . If α is an eigenvalue
of A, then you have what you want. Therefore, I will always assume α is not an eigenvalue
of A and so (A−αI)−1 exists. The method is based on the following lemma.

Lemma 15.1.3 Let {λ k}n
k=1 be the eigenvalues of A. If xk is an eigenvector of A for the

eigenvalue λ k, then xk is an eigenvector for (A−αI)−1 corresponding to the eigenvalue
1

λ k−α
. Conversely, if

(A−αI)−1y =
1

λ −α
y (15.3)

and y ̸= 0, then Ay = λy.

Proof: Let λ k and xk be as described in the statement of the lemma. Then

(A−αI)xk = (λ k−α)xk

and so 1
λ k−α

xk = (A−αI)−1xk.Suppose 15.3. Then y = 1
λ−α

[Ay−αy] . Solving for Ay
leads to Ay = λy. ■

Now assume α is closer to λ than to any other eigenvalue. Then the magnitude of 1
λ−α

is greater than the magnitude of all the other eigenvalues of (A−αI)−1. Therefore, the
power method applied to (A−αI)−1 will yield 1

λ−α
. You end up with sn+1 ≊ 1

λ−α
and

solve for λ .
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15.1.2 The Explicit Description Of The Method
Here is how you use this method to find the eigenvalue closest to α and the corre-
sponding eigenvector.

1. Find (A−αI)−1 .

2. Pick u1. If you are not phenomenally unlucky, the iterations will converge.

3. If uk has been obtained, uk+1 =
(A−αI)−1uk

sk+1
where sk+1 is the entry of (A−αI)−1uk

which has largest absolute value.

4. When the scaling factors, sk are not changing much and the uk are not changing
much, find the approximation to the eigenvalue by solving sk+1 = 1

λ−α
for λ . The

eigenvector is approximated by uk+1.

5. Check your work by multiplying by the original matrix to see how well what you
have found works.

Thus this amounts to the power method for the matrix (A−αI)−1 but you are free to
pick α .

15.2 Automation With Matlab
You can do the above example and other examples using Matlab. Here are some commands
which will do this. It is done here for a 3×3 matrix but you adapt for any size.

a=[5 -8 6;1 0 0;0 1 0]; b=i; F=inv(a-b*eye(3));
S=1; u=[1;1;1]; d=1; k=1;
while d >.00001 & k<1000
w=F*u; [M,I]=max(abs(w)); T=w(I); u=w/T;
d=abs(T-S); S=T; k=k+1;
end
u
b+1/T
k
a*u-(b+1/T)*u

eye(3) signifies the 3×3 identity. It is less trouble to write this.
Note how the “while loop” is limited to 1000 iterations. That way it won’t go on forever

if there is something wrong. This asks for the eigenvalue closest to b = i. When Matlab
stalls, to get it to quit, you type control c. The last line checks the answer and the line
with k tells the number of iterations used. Also, the funny notation [M,I]=max(abs(w));
T=w(I); gets it to pick out the entry which has largest absolute value w(I) and keep that
entry unchanged. The above iteration finds the eigenvalue closest to i along with the cor-
responding eigenvector. When the procedure does not work well for b real, you might
imagine that there are complex eigenvalues and so, since the above procedure is going to
give you real approximations, it can’t find the complex eigenvalues. Thus you should take
b to be complex as done above.
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If you have Matlab work the above iteration, you get the following for the eigenvector
eigenvalue and number of iterations, and error . 1

.5− .5i
−.5i

 , 1+ i, k = 18, 10−5

 0
−0.1321+0.1862i
−0.1325+0.1863i


In fact, this eigenvector is exactly right as is the eigenvalue 1+ i.

Thus this method will find eigenvalues real or complex along with an eigenvector asso-
ciated with the eigenvalue. Note that the characteristic polynomial of the above matrix is
λ

3−5λ
2 +8λ −6 and the above finds a complex root to this polynomial. More generally,

if you have a polynomial λ
n + an−1λ

n−1 + · · ·+ a1λ + a0, a matrix which has this as its
characteristic polynomial is called a companion matrix and you can show a matrix which
works for this polynomial is of the form

−an−1 −an−2 · · · a0

1 0
. . . . . .

1 0


You could use this or the earlier companion matrix described in the material on the rational
canonical form. Thus this method is capable of finding roots to a polynomial equation
which are close to a given complex number. Of course there is a problem with determining
which number you should pick. A way to determine this will be discussed later. It involves
something called the QR algorithm.

Example 15.2.1 Find the eigenvalue of A =

 5 −14 11
−4 4 −4
3 6 −3

 which is closest to−7.

Also find an eigenvector which goes with this eigenvalue.

We use the algorithm described above.

a=[5 -14 11;-4 4 -4;3 6 -3]; b=-7; F=inv(a-b*eye(3));
S=1; u=[1;1;1]; d=1; k=1;
while d >.0001 & k<1000
w=F*u; [M,I]=max(abs(w)); T=w(I); u=w/T;
d=abs(T-S); S=T; k=k+1;
end
u
k
b+1/T
a*u-(b+1/T)*u

This yields the following after 8 iterations. 1
0
−1

 , −6
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for the eigenvector and eigenvalue. In fact, this is exactly correct.

Example 15.2.2 Consider the symmetric matrix A =

 1 2 3
2 1 4
3 4 2

 . Find the middle

eigenvalue and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p(λ ) = det

λ

 1 0 0
0 1 0
0 0 1

−
 1 2 3

2 1 4
3 4 2




= λ
3−4λ

2−24λ −17 = 0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between −.9 and −.8 and that this is the middle eigenvalue. Using −.8 as the
number close to the eigenvalue desired, after 7 iterations, you get

u=

 1
−.5878
−.2271

 , λ =−.8569

Note that 
 1 2 3

2 1 4
3 4 2

− (−.8569)

 1 0 0
0 1 0
0 0 1



 1
−.5878
−.2271


=

 2.5244×10−29

1.1418×10−4

−1.99×10−6


There is an easy to use trick which will eliminate some of the fuss and bother in using

the shifted inverse power method. If you have

(A−αI)−1x= µx

then multiplying through by (A−αI) , one finds that x will be an eigenvector for A with
eigenvalue α+µ−1. Hence you could simply take (A−αI)−1 to a high power and multiply
by a vector to get a vector which points in the direction of an eigenvalue of A. Then divide
by the largest entry and identify the eigenvalue directly by multiplying the eigenvector by
A. This is illustrated in the next example.

Example 15.2.3 Find the eigenvalue near −1.2 along with an eigenvector.

A =

 2 1 3
2 1 1
3 2 1

 .
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This is only a 3×3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near −1.2, one near −.4, and one near 5.5.
(The characteristic equation is 2+ 8λ + 4λ

2−λ
3 = 0.) Of course we have no idea what

the eigenvectors are.
Lets first try to find the eigenvector and an approximation for the eigenvalue near−1.2.

In this case, let α =−1.2. Then

(A−αI)−1 =

 −25.357143 −33.928571 50.0
12.5 17.5 −25.0

23.214286 30.357143 −45.0

 .

Then  −25.357143 −33.928571 50.0
12.5 17.5 −25.0

23.214286 30.357143 −45.0


17 1

1
1


=

 −4.9432×1028

2.4312×1028

4.4928×1028


The initial approximation for an eigenvector will then be the above divided by its largest
entry.  −4.9432×1028

2.4312×1028

4.4928×1028

 1
−4.9432×1028 =

 1.0
−0.49183
−0.90888


How close is this to being an eigenvector? 2 1 3

2 1 1
3 2 1


 1.0
−0.49183
−0.90888

=

 −1.2185
0.59929
1.1075



−1.2185

 1.0
−0.49183
−0.90888

=

 −1.2185
0.59929
1.1075


For all practical purposes, this has found the eigenvector and eigenvalue of −1.2185.

15.2.1 Complex Eigenvalues
What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick α to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies
you will get convergence to a complex number. Also, the process of iteration will yield
only real vectors and scalars.
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Example 15.2.4 Find the complex eigenvalues and corresponding eigenvectors for the ma-
trix  5 −8 6

1 0 0
0 1 0

 .

Here the characteristic equation is λ
3−5λ

2 +8λ −6 = 0. One solution is λ = 3. The
other two are 1+ i and 1− i. I will apply the process to α = i to find the eigenvalue closest
to i. The above algorithm yields the following after 15 iterations.

u=

 1
.5− .5i
−.5i

 , λ = 1+ i

This illustrates an interesting topic which leads to many related topics. If you have a
polynomial, x4 +ax3 +bx2 +cx+d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,

−a −b −c −d
1 0 0 0
0 1 0 0
0 0 1 0

 .

The above example was just a companion matrix for λ
3− 5λ

2 + 8λ − 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
λ

n + a1λ
n−1 + · · ·+ an−1λ + an. This illustrates that one way to find the complex zeros

of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?

Note that the shifted inverse power method is a way you can begin with something close
but not equal to an eigenvalue and end up with something close to an eigenvector.

15.2.2 Rayleigh Quotients and Estimates for Eigenvalues
There are many specialized results concerning the eigenvalues and eigenvectors for Hermi-
tian matrices. Recall a matrix A is Hermitian if A=A∗ where A∗ means to take the transpose
of the conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall
also that for x ∈ Fn,

|x|2 = x∗ x=
n

∑
j=1

∣∣x j
∣∣2 .

Recall the following corollary found on Page 331 which is stated here for convenience.

Corollary 15.2.5 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {xk}n
k=1 this orthonormal basis,

x∗i x j = δ i j ≡

{
1 if i = j
0 if i ̸= j
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For x ∈ Fn, x ̸= 0, the Rayleigh quotient is defined by x∗Ax
|x|2

. Now let the eigenvalues

of A be λ 1 ≤ λ 2 ≤ ·· · ≤ λ n and Axk = λ kxk where {xk}n
k=1 is the above orthonormal

basis of eigenvectors mentioned in the corollary. Then if x is an arbitrary vector, there
exist constants, ai such that x= ∑

n
i=1 aixi. Also,

|x|2 =
n

∑
i=1

aix
∗
i

n

∑
j=1

a jx j = ∑
i j

aia jx
∗
i x j = ∑

i j
aia jδ i j =

n

∑
i=1
|ai|2 .

Therefore,

x∗Ax

|x|2
=

(∑n
i=1 aix

∗
i )
(

∑
n
j=1 a jλ jx j

)
∑

n
i=1 |ai|2

=
∑i j aia jλ jx

∗
i x j

∑
n
i=1 |ai|2

=
∑i j aia jλ jδ i j

∑
n
i=1 |ai|2

=
∑

n
i=1 |ai|2 λ i

∑
n
i=1 |ai|2

∈ [λ 1,λ n] .

In other words, the Rayleigh quotient is always between the largest and the smallest eigen-
values of A. When x= xn, the Rayleigh quotient equals the largest eigenvalue and when
x= x1 the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a
Rayleigh quotient. How close is it to some eigenvalue?

Theorem 15.2.6 Let x ̸= 0 and form the Rayleigh quotient,

x∗Ax

|x|2
≡ q.

Then there exists an eigenvalue of A, denoted here by λ q such that

∣∣λ q−q
∣∣≤ |Ax−qx|

|x|
. (15.4)

Proof: Let x= ∑
n
k=1 akxk where {xk}n

k=1 is the orthonormal basis of eigenvectors.

|Ax−qx|2 = (Ax−qx)∗ (Ax−qx)

=

(
n

∑
k=1

akλ kxk−qakxk

)∗( n

∑
k=1

akλ kxk−qakxk

)

=

(
n

∑
j=1

(λ j−q)a jx
∗
j

)(
n

∑
k=1

(λ k−q)akxk

)

= ∑
j,k
(λ j−q)a j (λ k−q)akx

∗
jxk =

n

∑
k=1
|ak|2 (λ k−q)2

Now pick the eigenvalue λ q which is closest to q. Then

|Ax−qx|2 =
n

∑
k=1
|ak|2 (λ k−q)2 ≥ (λ q−q)2

n

∑
k=1
|ak|2 = (λ q−q)2 |x|2

which implies 15.4. ■
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Example 15.2.7 Consider the symmetric matrix

A =

 1 2 3
2 2 1
3 1 4

 .

Let x= (1,1,1)T . How close is the Rayleigh quotient to some eigenvalue of A? Find the
eigenvector and eigenvalue to several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

(
1 1 1

) 1 2 3
2 2 1
3 1 4


 1

1
1


3

=
19
3

According to the above theorem, there is some eigenvalue of this matrix λ q such that

∣∣∣∣λ q−
19
3

∣∣∣∣ ≤
∣∣∣∣∣∣∣
 1 2 3

2 2 1
3 1 4


 1

1
1

− 19
3

 1
1
1


∣∣∣∣∣∣∣

√
3

=
1√
3

 −
1
3
− 4

3
5
3


=

√
1
9 +
( 4

3

)2
+
( 5

3

)2

√
3

= 1.2472

Could you find this eigenvalue and associated eigenvector? Of course you could. This
is what the shifted inverse power method is all about.

Solve 
 1 2 3

2 2 1
3 1 4

− 19
3

 1 0 0
0 1 0
0 0 1



 x

y
z

=

 1
1
1


In other words solve  −

16
3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y
z

=

 1
1
1


and divide by the entry which is largest, 3.8707, to get

u2 =

 .69925
.49389

1.0
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Now solve  −
16
3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y
z

=

 .69925
.49389

1.0


and divide by the largest entry, 2.9979 to get

u3 =

 .71473
.52263

1.0


Now solve  −

16
3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y
z

=

 .71473
.52263

1.0


and divide by the largest entry, 3.0454, to get

u4 =

 .7137
.52056

1.0


Solve  −

16
3 2 3

2 − 13
3 1

3 1 − 7
3


 x

y
z

=

 .7137
.52056

1.0


and divide by the largest entry, 3.0421 to get

u5 =

 .71378
.52073

1.0


You can see these scaling factors are not changing much. The predicted eigenvalue is then
about

1
3.0421

+
19
3

= 6.6621.

How close is this?  1 2 3
2 2 1
3 1 4


 .71378

.52073
1.0

=

 4.7552
3.469

6.6621


while

6.6621

 .71378
.52073

1.0

=

 4.7553
3.4692
6.6621

 .

You see that for practical purposes, this has found the eigenvalue and an eigenvector.
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15.3 The QR Algorithm
15.3.1 Basic Properties And Definition
Recall the theorem about the QR factorization in Theorem 12.3.9. It says that given an n×n
real matrix A, there exists a real orthogonal matrix Q and an upper triangular matrix R such
that A = QR and that this factorization can be accomplished by a systematic procedure.
One such procedure was given in proving this theorem.

Theorem 15.3.1 Let A be an n× n complex matrix. Then there exists a unitary Q and
upper triangular R such that A = QR.

Proof: This is obvious if n = 1. Suppose true for n and let

A =
(

a1 · · · an an+1

)
Let Q1 be a unitary matrix such that Q1a1 = |a1|e1 in case a1 ̸= 0. If a1 = 0, let Q1 = I.
Thus

Q1A =

(
a b

0 A1

)
where A1 is (n−1)× (n−1). By induction, there exists Q′2 an (n−1)× (n−1) unitary
matrix such that Q′2A1 = R′, an upper triangular matrix. Then(

1 0

0 Q′2

)
Q1A =

(
a b

0 R′

)
= R

Since the product of unitary matrices is unitary, there exists Q unitary such that Q∗A = R
and so A = QR. ■ ▶ ▶

The QR algorithm is described in the following definition.

Definition 15.3.2 The QR algorithm is the following. In the description of this algorithm,
Q is unitary and R is upper triangular having nonnegative entries on the main diagonal.
Starting with A an n×n matrix, form

A0 ≡ A = Q1R1 (15.5)

Then
A1 ≡ R1Q1. (15.6)

In general given
Ak = RkQk, (15.7)

obtain Ak+1 by
Ak = Qk+1Rk+1, Ak+1 = Rk+1Qk+1 (15.8)

This algorithm was proposed by Francis in 1961. The sequence {Ak} is the desired
sequence of iterates. Now with the above definition of the algorithm, here are its properties.
The next lemma shows each of the Ak is unitarily similar to A and the amazing thing about
this algorithm is that often it becomes increasingly easy to find the eigenvalues of the Ak.

http://www.math.byu.edu/~klkuttle/precalculus/lz7.mp4
http://www.math.byu.edu/~klkuttle/precalculus/lz8.mp4
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Lemma 15.3.3 Let A be an n×n matrix and let the Qk and Rk be as described in the algo-
rithm. Then each Ak is unitarily similar to A and denoting by Q(k) the product Q1Q2 · · ·Qk
and R(k) the product RkRk−1 · · ·R1, it follows that Ak = Q(k)R(k) (The matrix on the left is A
raised to the kth power.)

A = Q(k)AkQ(k)∗, Ak = Q(k)∗AQ(k).

Proof: From the algorithm, Rk+1 = Ak+1Q∗k+1 and so

Ak = Qk+1Rk+1 = Qk+1Ak+1Q∗k+1

Now iterating this, it follows

Ak−1 = QkAkQ∗k = QkQk+1Ak+1Q∗k+1Q∗k

Ak−2 = Qk−1Ak−1Q∗k−1 = Qk−1QkQk+1Ak+1Q∗k+1Q∗kQ∗k−1

etc. Thus, after k−2 more iterations,

A = Q(k+1)Ak+1Q(k+1)∗

The product of unitary matrices is unitary and so this proves the first claim of the lemma.
Now consider the part about Ak. From the algorithm, this is clearly true for k = 1.

(A1 = QR) Suppose then that

Ak = Q1Q2 · · ·QkRkRk−1 · · ·R1

What was just shown indicated

A = Q1Q2 · · ·Qk+1Ak+1Q∗k+1Q∗k · · ·Q∗1

and now from the algorithm, Ak+1 = Rk+1Qk+1 and so

A = Q1Q2 · · ·Qk+1Rk+1Qk+1Q∗k+1Q∗k · · ·Q∗1

Then
Ak+1 = AAk =

A︷ ︸︸ ︷
Q1Q2 · · ·Qk+1Rk+1Qk+1Q∗k+1Q∗k · · ·Q∗1Q1 · · ·QkRkRk−1 · · ·R1

= Q1Q2 · · ·Qk+1Rk+1RkRk−1 · · ·R1 ≡ Q(k+1)R(k+1) ■

Here is another very interesting lemma.

Lemma 15.3.4 Suppose Q(k),Q are unitary and Rk is upper triangular such that the diag-
onal entries on Rk are all positive and

Q = lim
k→∞

Q(k)Rk

Then
lim
k→∞

Q(k) = Q, lim
k→∞

Rk = I.

Also the QR factorization of A is unique.
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Proof: Let
Q = (q1, · · · ,qn) , Q(k) =

(
qk

1, · · · ,qk
n

)
where the q are the columns. Also denote by rk

i j the i jth entry of Rk. Thus

Q(k)Rk =
(
qk

1, · · · ,qk
n

)
rk

11 ∗
. . .

0 rk
nn


It follows rk

11q
k
1 → q1 and so rk

11 =
∣∣rk

11q
k
1

∣∣→ 1. Therefore, qk
1 → q1. Next consider the

second column.
rk

12q
k
1 + rk

22q
k
2→ q2

Taking the inner product of both sides with qk
1 it follows

lim
k→∞

rk
12 = lim

k→∞

(
q2 ·qk

1

)
= (q2 ·q1) = 0.

Therefore, limk→∞ rk
22q

k
2 = q2 and since rk

22 > 0, it follows as in the first part that rk
22→ 1.

Hence limk→∞qk
2 = q2. Continuing this way, it follows limk→∞ rk

i j = 0 for all i ̸= j and

lim
k→∞

rk
j j = 1, lim

k→∞
qk

j = q j.

Thus Rk→ I and Q(k)→ Q. This proves the first part of the lemma.
The second part follows immediately. If QR = Q′R′ = A where A−1 exists, then Q∗Q′ =

R(R′)−1 and I need to show both sides of the above are equal to I. The left side of the above
is unitary and the right side is upper triangular having positive entries on the diagonal. This
is because the inverse of such an upper triangular matrix having positive entries on the
main diagonal is still upper triangular having positive entries on the main diagonal and
the product of two such upper triangular matrices gives another of the same form having
positive entries on the main diagonal. Suppose then that Q = R where Q is unitary and R
is upper triangular having positive entries on the main diagonal. Let Qk = Q and Rk = R.
It follows IRk → R = Q and so from the first part, Rk → I but Rk = R and so R = I. Thus
applying this to Q∗Q′ = R(R′)−1 yields both sides equal I. ■

A case of all this is of great interest. Suppose A has a largest eigenvalue λ which is
real. Then An is of the form

(
An−1a1, · · · ,An−1an

)
and so likely each of these columns

will be pointing roughly in the direction of an eigenvector of A which corresponds to this
eigenvalue. Then when you do the QR factorization of this, it follows from the fact that R is
upper triangular, that the first column of Q will be a multiple of An−1a1 and so will end up
being roughly parallel to the eigenvector desired. Also this will require the entries below
the top in the first column of An = QT AQ will all be small because they will be of the form
qT

i Aq1 ≊ λqT
i q1 = 0. Therefore, An will be of the form(

λ
′ a

e B

)
where e is small. It follows that λ

′ will be close to λ and q1 will be close to an eigenvector
for λ . Then if you like, you could do the same thing with the matrix B to obtain approxi-
mations for the other eigenvalues. Finally, you could use the shifted inverse power method
to get more exact solutions.
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15.3.2 The Case Of Real Eigenvalues
With these lemmas, it is possible to prove that for the QR algorithm and certain conditions,
the sequence Ak converges pointwise to an upper triangular matrix having the eigenvalues
of A down the diagonal. I will assume all the matrices are real here.

This convergence won’t always happen. Consider for example the matrix(
0 1
1 0

)
.

You can verify quickly that the algorithm will return this matrix for each k. The problem
here is that, although the matrix has the two eigenvalues−1,1, they have the same absolute
value. The QR algorithm works in somewhat the same way as the power method, exploiting
differences in the size of the eigenvalues.

If A has all real eigenvalues and you are interested in finding these eigenvalues along
with the corresponding eigenvectors, you could always consider A+ λ I instead where λ

is sufficiently large and positive that A + λ I has all positive eigenvalues. (Recall Ger-
schgorin’s theorem.) Then if µ is an eigenvalue of A+λ I with

(A+λ I)x= µx

then Ax=(µ−λ )x so to find the eigenvalues of A you just subtract λ from the eigenvalues
of A+λ I. Thus there is no loss of generality in assuming at the outset that the eigenvalues
of A are all positive. Here is the theorem. It involves a technical condition which will often
hold. The proof presented here follows [42] and is a special case of that presented in this
reference.

Before giving the proof, note that the product of upper triangular matrices is upper
triangular. If they both have positive entries on the main diagonal so will the product.
Furthermore, the inverse of an upper triangular matrix is upper triangular. I will use these
simple facts without much comment whenever convenient.

Theorem 15.3.5 Let A be a real matrix having eigenvalues

λ 1 > λ 2 > · · ·> λ n > 0

and let A = SDS−1 where

D =


λ 1 0

. . .

0 λ n


and suppose S−1 has an LU factorization. Then the matrices Ak in the QR algorithm
described above converge to an upper triangular matrix T ′ having the eigenvalues of A,
λ 1, · · · ,λ n descending on the main diagonal. The matrices Q(k) converge to Q′, an orthog-
onal matrix which equals Q except for possibly having some columns multiplied by −1 for
Q the unitary part of the QR factorization of S, S = QR,and

lim
k→∞

Ak = T ′ = Q′T AQ′

Proof: From Lemma 15.3.3

Ak = Q(k)R(k) = SDkS−1 (15.9)
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Let S = QR where this is just a QR factorization which is known to exist and let S−1 = LU
which is assumed to exist. Thus

Q(k)R(k) = QRDkLU (15.10)

and so Q(k)R(k) = QRDkLU = QRDkLD−kDkU . That matrix in the middle, DkLD−k satis-
fies (

DkLD−k
)

i j
= λ

k
i Li jλ

−k
j for j ≤ i, 0 if j > i.

Thus for j < i the expression converges to 0 because λ j > λ i when this happens. When
i = j it reduces to 1. Thus the matrix in the middle is of the form I +Ek where Ek → 0.
Then it follows

Ak = Q(k)R(k) = QR(I +Ek)DkU

= Q
(
I +REkR−1)RDkU ≡ Q(I +Fk)RDkU

where Fk → 0. Then let I +Fk = QkRk where this is another QR factorization. Then it
reduces to

Q(k)R(k) = QQkRkRDkU

This looks really interesting because by Lemma 15.3.4 Qk → I and Rk → I because
QkRk = (I +Fk)→ I. So it follows QQk is an orthogonal matrix converging to Q while

RkRDkU
(

R(k)
)−1

is upper triangular, being the product of upper triangular matrices. Un-
fortunately, it is not known that the diagonal entries of this matrix are nonnegative because
of the U . Let Λ be just like the identity matrix but having some of the ones replaced with
−1 in such a way that ΛU is an upper triangular matrix having positive diagonal entries.
Note Λ2 = I and also Λ commutes with a diagonal matrix. Thus

Q(k)R(k) = QQkRkRDk
Λ

2U = QQkRkRΛDk (ΛU)

At this point, one does some inspired massaging to write the above in the form

QQk

(
ΛDk

)[(
ΛDk

)−1
RkRΛDk

]
(ΛU)

= Q(QkΛ)Dk
[(

ΛDk
)−1

RkRΛDk
]
(ΛU)

= Q(QkΛ)

≡Gk︷ ︸︸ ︷
Dk
[(

ΛDk
)−1

RkRΛDk
]
(ΛU)

Now I claim the middle matrix in [·] is upper triangular and has all positive entries on
the diagonal. This is because it is an upper triangular matrix which is similar to the upper
triangular matrix RkR and so it has the same eigenvalues (diagonal entries) as RkR. Thus the
matrix Gk ≡Dk

[(
ΛDk

)−1 RkRΛDk
]
(ΛU) is upper triangular and has all positive entries on

the diagonal. Multiply on the right by G−1
k to get

Q(k)R(k)G−1
k = QQkΛ→ Q′
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where Q′ is essentially equal to Q but might have some of the columns multiplied by −1.
This is because Qk→ I and so QkΛ→ Λ. Now by Lemma 15.3.4, it follows

Q(k)→ Q′, R(k)G−1
k → I.

It remains to verify Ak converges to an upper triangular matrix. Recall that from 15.9
and the definition below this (S = QR)

A = SDS−1 = (QR)D(QR)−1 = QRDR−1QT = QT QT

Where T is an upper triangular matrix. This is because it is the product of upper triangular
matrices R,D,R−1. Thus QT AQ = T. If you replace Q with Q′ in the above, it still results
in an upper triangular matrix T ′ having the same diagonal entries as T. This is because

T = QT AQ =
(
Q′Λ

)T A
(
Q′Λ

)
= ΛQ′T AQ′Λ

and considering the iith entry yields(
QT AQ

)
ii ≡∑

j,k
Λi j
(
Q′T AQ′

)
jk Λki = ΛiiΛii

(
Q′T AQ′

)
ii =

(
Q′T AQ′

)
ii

Recall from Lemma 15.3.3, Ak = Q(k)T AQ(k). Thus taking a limit and using the first
part,

Ak = Q(k)T AQ(k)→ Q′T AQ′ = T ′. ■

An easy case is for A symmetric. Recall Corollary 13.1.6. By this corollary, there exists
an orthogonal (real unitary) matrix Q such that

QT AQ = D

where D is diagonal having the eigenvalues on the main diagonal decreasing in size from
the upper left corner to the lower right.

Corollary 15.3.6 Let A be a real symmetric n×n matrix having eigenvalues

λ 1 > λ 2 > · · ·> λ n > 0

and let Q be defined by
QDQT = A, D = QT AQ, (15.11)

where Q is orthogonal and D is a diagonal matrix having the eigenvalues on the main
diagonal decreasing in size from the upper left corner to the lower right. Let QT have an
LU factorization. Then in the QR algorithm, the matrices Q(k) converge to Q′ where Q′ is
the same as Q except having some columns multiplied by (−1) . Thus the columns of Q′ are
eigenvectors of A. The matrices Ak converge to D.

Proof: This follows from Theorem 15.3.5. Here S = Q,S−1 = QT . Thus

Q = S = QR

and R = I. By Theorem 15.3.5 and Lemma 15.3.3,

Ak = Q(k)T AQ(k)→ Q′T AQ′ = QT AQ = D.
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because formula 15.11 is unaffected by replacing Q with Q′. ■
When using the QR algorithm, it is not necessary to check technical condition about

S−1 having an LU factorization. The algorithm delivers a sequence of matrices which are
similar to the original one. If that sequence converges to an upper triangular matrix, then
the algorithm worked. Furthermore, the technical condition is sufficient but not necessary.
The algorithm will work even without the technical condition.

Example 15.3.7 Find the eigenvalues and eigenvectors of the matrix

A =

 5 1 1
1 3 2
1 2 1


It is a symmetric matrix but other than that, I just pulled it out of the air. By Lemma

15.3.3 it follows Ak = Q(k)T AQ(k). And so to get to the answer quickly I could have the
computer raise A to a power and then take the QR factorization of what results to get the
kth iteration using the above formula. Lets pick k = 10.

 5 1 1
1 3 2
1 2 1


10

=

 4.2273×107 2.5959×107 1.8611×107

2.5959×107 1.6072×107 1.1506×107

1.8611×107 1.1506×107 8.2396×106


Now take QR factorization of this. The computer will do that also.
This yields  .79785 −.59912 −6.6943×10−2

.48995 .70912 −.50706

.35126 .37176 .85931

 ·
 5.2983×107 3.2627×107 2.338×107

0 1.2172×105 71946.
0 0 277.03


Next it follows

A10 =

 .79785 −.59912 −6.6943×10−2

.48995 .70912 −.50706

.35126 .37176 .85931


T

·

 5 1 1
1 3 2
1 2 1


 .79785 −.59912 −6.6943×10−2

.48995 .70912 −.50706

.35126 .37176 .85931


and this equals 6.0571 3.698×10−3 3.4346×10−5

3.698×10−3 3.2008 −4.0643×10−4

3.4346×10−5 −4.0643×10−4 −.2579
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By Gerschgorin’s theorem, the eigenvalues are pretty close to the diagonal entries of
the above matrix. Note I didn’t use the theorem, just Lemma 15.3.3 and Gerschgorin’s
theorem to verify the eigenvalues are close to the above numbers. The eigenvectors are
close to  .79785

.48995

.35126

 ,

 −.59912
.70912
.37176

 ,

 −6.6943×10−2

−.50706
.85931


Lets check one of these.

 5 1 1
1 3 2
1 2 1

−6.0571

 1 0 0
0 1 0
0 0 1



 .79785

.48995

.35126


=

 −2.1972×10−3

2.5439×10−3

1.3931×10−3

≊
 0

0
0


Now lets see how well the smallest approximate eigenvalue and eigenvector works.

 5 1 1
1 3 2
1 2 1

− (−.2579)

 1 0 0
0 1 0
0 0 1



 −6.6943×10−2

−.50706
.85931



=

 2.704×10−4

−2.7377×10−4

−1.3695×10−4

≊
 0

0
0


For practical purposes, this has found the eigenvalues and eigenvectors.

15.3.3 The QR Algorithm In The General Case
In the case where A has distinct positive eigenvalues it was shown above that under rea-
sonable conditions related to a certain matrix having an LU factorization the QR algorithm
produces a sequence of matrices {Ak}which converges to an upper triangular matrix. What
if A is just an n×n matrix having possibly complex eigenvalues but A is nondefective? What
happens with the QR algorithm in this case? The short answer to this question is that the
Ak of the algorithm typically cannot converge. However, this does not mean the algorithm
is not useful in finding eigenvalues. It turns out the sequence of matrices {Ak} have the
appearance of a block upper triangular matrix for large k in the sense that the entries below
the blocks on the main diagonal are small. Then looking at these blocks gives a way to
approximate the eigenvalues.

First it is important to note a simple fact about unitary diagonal matrices. In what
follows Λ will denote a unitary matrix which is also a diagonal matrix. These matrices
are just the identity matrix with some of the ones replaced with a number of the form eiθ

for some θ . The important property of multiplication of any matrix by Λ on either side
is that it leaves all the zero entries the same and also preserves the absolute values of the
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other entries. Thus a block triangular matrix multiplied by Λ on either side is still block
triangular. If the matrix is close to being block triangular this property of being close to a
block triangular matrix is also preserved by multiplying on either side by Λ. Other patterns
depending only on the size of the absolute value occurring in the matrix are also preserved
by multiplying on either side by Λ. In other words, in looking for a pattern in a matrix,
multiplication by Λ is irrelevant.

Now let A be an n×n matrix having real or complex entries. By Lemma 15.3.3 and the
assumption that A is nondefective, there exists an invertible S,

Ak = Q(k)R(k) = SDkS−1 (15.12)

where

D =


λ 1 0

. . .

0 λ n


and by rearranging the columns of S, D can be made such that |λ 1| ≥ |λ 2| ≥ · · · ≥ |λ n| .
Assume S−1 has an LU factorization. Then

Ak = SDkLU = SDkLD−kDkU.

Consider the matrix in the middle, DkLD−k. The i jth entry is of the form

(
DkLD−k

)
i j
=


λ

k
i Li jλ

−k
j if j < i

1 if i = j
0 if j > i

and these all converge to 0 whenever |λ i|<
∣∣λ j
∣∣ . Thus DkLD−k = (Lk +Ek) where Lk is a

lower triangular matrix which has all ones down the diagonal and some subdiagonal terms
of the form

λ
k
i Li jλ

−k
j (15.13)

for which |λ i|=
∣∣λ j
∣∣ while Ek→ 0. (Note the entries of Lk are all bounded independent of

k but some may fail to converge.) Then

Q(k)R(k) = S (Lk +Ek)DkU

Let
SLk = QkRk (15.14)

where this is the QR factorization of SLk. Then

Q(k)R(k) = (QkRk +SEk)DkU

= Qk
(
I +Q∗kSEkR−1

k

)
RkDkU

= Qk (I +Fk)RkDkU

where Fk→ 0. Let I +Fk = Q′kR′k. Then Q(k)R(k) = QkQ′kR′kRkDkU. By Lemma 15.3.4

Q′k→ I and R′k→ I. (15.15)
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Now let Λk be a diagonal unitary matrix which has the property that Λ∗kDkU is an upper
triangular matrix which has all the diagonal entries positive. Then

Q(k)R(k) = QkQ′kΛk
(
Λ
∗
kR′kRkΛk

)
Λ
∗
kDkU

That matrix in the middle has all positive diagonal entries because it is itself an upper
triangular matrix, being the product of such, and is similar to the matrix R′kRk which is
upper triangular with positive diagonal entries. By Lemma 15.3.4 again, this time using the
uniqueness assertion,

Q(k) = QkQ′kΛk, R(k) =
(
Λ
∗
kR′kRkΛk

)
Λ
∗
kDkU

Note the term QkQ′kΛk must be real because the algorithm gives all Q(k) as real matrices.
By 15.15 it follows that for k large enough Q(k) ≊ QkΛk where ≊ means the two matrices
are close. Recall Ak = Q(k)T AQ(k) and so for large k,

Ak ≊ (QkΛk)
∗A(QkΛk) = Λ

∗
kQ∗kAQkΛk

As noted above, the form of Λ∗kQ∗kAQkΛk in terms of which entries are large and small is
not affected by the presence of Λk and Λ∗k . Thus, in considering what form this is in, it
suffices to consider Q∗kAQk.

This could get pretty complicated but I will consider the case where

if |λ i|= |λ i+1| , then |λ i+2|< |λ i+1| . (15.16)

This is typical of the situation where the eigenvalues are all distinct and the matrix A is
real so the eigenvalues occur as conjugate pairs. Then in this case, Lk above is lower
triangular with some nonzero terms on the diagonal right below the main diagonal but
zeros everywhere else. Thus maybe (Lk)s+1,s ̸= 0 Recall 15.14 which implies

Qk = SLkR−1
k (15.17)

where R−1
k is upper triangular. Also recall from the definition of S in 15.12, it follows that

S−1AS = D. Thus the columns of S are eigenvectors of A, the ith being an eigenvector for
λ i. Now from the form of Lk, it follows LkR−1

k is a block upper triangular matrix denoted
by TB and so Qk = STB. It follows from the above construction in 15.13 and the given
assumption on the sizes of the eigenvalues, there are finitely many 2× 2 blocks centered
on the main diagonal along with possibly some diagonal entries. Therefore, for large k the
matrix Ak = Q(k)T AQ(k) is approximately of the same form as that of

Q∗kAQk = T−1
B S−1ASTB = T−1

B DTB

which is a block upper triangular matrix. As explained above, multiplication by the various
diagonal unitary matrices does not affect this form. Therefore, for large k, Ak is approxi-
mately a block upper triangular matrix.

How would this change if the above assumption on the size of the eigenvalues were
relaxed but the matrix was still nondefective with appropriate matrices having an LU fac-
torization as above? It would mean the blocks on the diagonal would be larger. This
immediately makes the problem more cumbersome to deal with. However, in the case that
the eigenvalues of A are distinct, the above situation really is typical of what occurs and in
any case can be quickly reduced to this case.
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To see this, suppose condition 15.16 is violated and λ j, · · · ,λ j+p are complex eigen-
values having nonzero imaginary parts such that each has the same absolute value but
they are all distinct. Then let µ > 0 and consider the matrix A + µI. Thus the corre-
sponding eigenvalues of A+ µI are λ j + µ, · · · ,λ j+p + µ . A short computation shows∣∣λ j +µ

∣∣ , · · · , ∣∣λ j+p +µ
∣∣ are all distinct and so the above situation of 15.16 is obtained. Of

course, if there are repeated eigenvalues, it may not be possible to reduce to the case above
and you would end up with large blocks on the main diagonal which could be difficult to
deal with.

So how do you identify the eigenvalues? You know Ak and behold that it is close to
a block upper triangular matrix T ′B. You know Ak is also similar to A. Therefore, T ′B has
eigenvalues which are close to the eigenvalues of Ak and hence those of A provided k is
sufficiently large. See Theorem 13.4.2 which depends on complex analysis or the exercise
on Page 347 which gives another way to see this. Thus you find the eigenvalues of this
block triangular matrix T ′B and assert that these are good approximations of the eigenvalues
of Ak and hence to those of A. How do you find the eigenvalues of a block triangular
matrix? This is easy from Lemma 13.1.4. Say

T ′B =


B1 · · · ∗

. . .
...

0 Bm


Then forming λ I−T ′B and taking the determinant, it follows from Lemma 13.1.4 this equals

m

∏
j=1

det(λ I j−B j)

and so all you have to do is take the union of the eigenvalues for each B j. In the case
emphasized here this is very easy because these blocks are just 2×2 matrices.

How do you identify approximate eigenvectors from this? First try to find the approx-
imate eigenvectors for Ak. Pick an approximate eigenvalue λ , an exact eigenvalue for T ′B.
Then find v solving T ′Bv = λv. It follows since T ′B is close to Ak that Akv ≊ λv and so

Q(k)AQ(k)Tv = Akv ≊ λv

Hence
AQ(k)Tv ≊ λQ(k)Tv

and so Q(k)Tv is an approximation to the eigenvector which goes with the eigenvalue of A
which is close to λ .

Example 15.3.8 Here is a matrix. 3 2 1
−2 0 −1
−2 −2 0


It happens that the eigenvalues of this matrix are 1,1+ i,1− i. Lets apply the QR algorithm
as if the eigenvalues were not known.
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Applying the QR algorithm to this matrix yields the following sequence of matrices.

A1 =

 1.2353 1.9412 4.3657
−.39215 1.5425 5.3886×10−2

−.16169 −.18864 .22222


...

A12 =

 9.1772×10−2 .63089 −2.0398
−2.8556 1.9082 −3.1043

1.0786×10−2 3.4614×10−4 1.0


At this point the bottom two terms on the left part of the bottom row are both very small

so it appears the real eigenvalue is near 1.0. The complex eigenvalues are obtained from
solving

det

(
λ

(
1 0
0 1

)
−

(
9.1772×10−2 .63089
−2.8556 1.9082

))
= 0

This yields
λ = 1.0− .98828i, 1.0+ .98828i

Example 15.3.9 The equation x4+x3+4x2+x−2 = 0 has exactly two real solutions. You
can see this by graphing it. However, the rational root theorem from algebra shows neither
of these solutions are rational. Also, graphing it does not yield any information about the
complex solutions. Lets use the QR algorithm to approximate all the solutions, real and
complex.

A matrix whose characteristic polynomial is the given polynomial is
−1 −4 −1 2
1 0 0 0
0 1 0 0
0 0 1 0


Using the QR algorithm yields the following sequence of iterates for Ak

A1 =


.99999 −2.5927 −1.7588 −1.2978
2.1213 −1.7778 −1.6042 −.99415

0 .34246 −.32749 −.91799
0 0 −.44659 .10526


...

A9 =


−.83412 −4.1682 −1.939 −.7783

1.05 .14514 .2171 2.5474×10−2

0 4.0264×10−4 −.85029 −.61608
0 0 −1.8263×10−2 .53939
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Now this is similar to A and the eigenvalues are close to the eigenvalues obtained from
the two blocks on the diagonal,(

−.83412 −4.1682
1.05 .14514

)
,

(
−.85029 −.61608

−1.8263×10−2 .53939

)

since 4.0264×10−4 is small. After routine computations involving the quadratic formula,
these are seen to be

−.85834, .54744, −.34449−2.0339i, −.34449+2.0339i

When these are plugged in to the polynomial equation, you see that each is close to being
a solution of the equation.

15.3.4 Upper Hessenberg Matrices
It seems like most of the attention to the QR algorithm has to do with finding ways to get it
to “converge” faster. Great and marvelous are the clever tricks which have been proposed to
do this but my intent is to present the basic ideas, not to go in to the numerous refinements
of this algorithm. However, there is one thing which should be done. It involves reducing
to the case of an upper Hessenberg matrix which is one which is zero below the main sub
diagonal. The following shows that any square matrix is unitarily similar to such an upper
Hessenberg matrix.

Let A be an invertible n×n matrix. Let Q′1 be a unitary matrix

Q′1


a21

...
an1

=



√
∑

n
j=2

∣∣a j1
∣∣2

0
...
0

≡


a
0
...
0


The vector Q′1 is multiplying is just the bottom n−1 entries of the first column of A. Then
let Q1 be (

1 0

0 Q′1

)
It follows

Q1AQ∗1 =

(
1 0

0 Q′1

)
AQ∗1 =


a11 a12 · · · a1n

a
... A′1
0


(

1 0

0 Q′∗1

)

=


∗ ∗ · · · ∗
a
... A1

0
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Now let Q′2 be the n− 2× n− 2 matrix which does to the first column of A1 the same
sort of thing that the n−1×n−1 matrix Q′1 did to the first column of A. Let

Q2 ≡

(
I 0
0 Q′2

)
where I is the 2×2 identity. Then applying block multiplication,

Q2Q1AQ∗1Q∗2 =



∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0 ∗
...

... A2

0 0


where A2 is now an n−2×n−2 matrix. Continuing this way you eventually get a unitary
matrix Q which is a product of those discussed above such that

QAQT =



∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

0 ∗ ∗
...

...
...

. . . . . . ∗
0 0 ∗ ∗


This matrix equals zero below the subdiagonal. It is called an upper Hessenberg matrix.

It happens that in the QR algorithm, if Ak is upper Hessenberg, so is Ak+1. To see this,
note that the matrix is upper Hessenberg means that Ai j = 0 whenever i− j ≥ 2.

Ak+1 = RkQk

where Ak = QkRk. Therefore as shown before,

Ak+1 = RkAkR−1
k

Let the i jth entry of Ak be ak
i j. Then if i− j ≥ 2

ak+1
i j =

n

∑
p=i

j

∑
q=1

ripak
pqr−1

q j

It is given that ak
pq = 0 whenever p−q≥ 2. However, from the above sum,

p−q≥ i− j ≥ 2

and so the sum equals 0.
Since upper Hessenberg matrices stay that way in the algorithm and it is closer to being

upper triangular, it is reasonable to suppose the QR algorithm will yield good results more
quickly for this upper Hessenberg matrix than for the original matrix. This would be espe-
cially true if the matrix is good sized. The other important thing to observe is that, starting
with an upper Hessenberg matrix, the algorithm will restrict the size of the blocks which
occur to being 2×2 blocks which are easy to deal with. These blocks allow you to identify
the eigenvalues.
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Example 15.3.10 Let A =


1 2 3 4
2 −2 −3 3
3 −3 5 1
4 3 1 −3

 a symmetric matrix. Thus it has real

eigenvalues and can be diagonalized. Find its eigenvalues.

As explained above, there is an upper Hessenberg matrix. Matlab can find it using the
techniques given above pretty quickly. The syntax is as follows.

A=[2 1 3;-5,3,-2;1,2,3];
[P,H]=hess(A)

Then the Hessenberg matrix similar to A is

H =


−1.4476 −4.9048 0 0
−4.9048 3.2553 −2.0479 0

0 −2.0479 2.1923 −5.0990
0 0 −5.0990 −3


Note how it is symmetric also. This will always happen when you begin with a symmetric
matrix. Now use the QR algorithm on this matrix. The syntax is as follows in Matlab.

H=[enter H here]
hold on
for k=1:100
[Q,R]=qr(H);
H=R*Q;
end
Q
R
H

You already have H and matlab knows about it so you don’t need to enter H again. This
yields the following matrix similar to the original one.

7.4618 0 0 0
0 −6.3804 0 0
0 0 −4.419 −.3679
0 0 −.3679 4.3376


The eigenvalues of this matrix are

7.4618,−6.3804,4.353,−4.4344

You might want to check that the product of these equals the determinant of the matrix
and that the sum equals the trace of the matrix. In fact, this works out very well. To find
eigenvectors, you could use the shifted inverse power method. They will be different for
the Hessenberg matrix than for the original matrix A.
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15.4 Exercises
In these exercises which call for a computation, don’t waste time on them unless you use a
computer or calculator which can raise matrices to powers and take QR factorizations.

1. In Example 15.2.7 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.

2. Find the eigenvalues and eigenvectors of the matrix A=

 3 2 1
2 1 3
1 3 2

 numerically.

In this case the exact eigenvalues are ±
√

3,6. Compare with the exact answers.

3. Find the eigenvalues and eigenvectors of the matrix A=

 3 2 1
2 5 3
1 3 2

 numerically.

The exact eigenvalues are 2,4+
√

15,4−
√

15. Compare your numerical results with
the exact values. Is it much fun to compute the exact eigenvectors?

4. Find the eigenvalues and eigenvectors of the matrix A=

 0 2 1
2 5 3
1 3 2

 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

5. Find the eigenvalues and eigenvectors of the matrix A=

 0 2 1
2 0 3
1 3 2

 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

6. Consider the matrix A =

 3 2 3
2 1 4
3 4 0

 and the vector (1,1,1)T . Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigen-
value of A.

7. Consider the matrix A =

 1 2 1
2 1 4
1 4 5

 and the vector (1,1,1)T . Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigen-
value of A.

8. Consider the matrix A=

 3 2 3
2 6 4
3 4 −3

 and the vector (1,1,1)T . Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigen-
value of A.
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9. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of

A =

 3 2 3
2 6 4
3 4 −3

 .

10. Tell how to find a matrix whose characteristic polynomial is a given monic polyno-
mial. This is called a companion matrix. Find the roots of the polynomial x3 +7x2 +
3x+7.

11. Find the roots to x4 +3x3 +4x2 + x+1. It has two complex roots.

12. Suppose A is a real symmetric matrix and the technique of reducing to an upper Hes-
senberg matrix is followed. Show the resulting upper Hessenberg matrix is actually
equal to 0 on the top as well as the bottom.
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Chapter 16

Approximation of Functions and the In-
tegral

These topics are not about linear algebra, but linear algebra is used in a very essential
manner so these topics are applications of Linear algebra to analysis. Many more examples
could be included but this book is long enough.

This chapter is just what the title indicates. It will involve approximating functions and
a simple definition of the integral. This definition is sufficient to consider all piecewise
continuous functions and it does not depend on Riemann sums. Thus it is closer to what
was done in the 1700’s than in the 1800’s. However, it is based on the Weierstrass approx-
imation theorem so it is definitely dependent on material which originated in the 1800’s.
After this, is a very interesting application of ideas from linear algebra to prove Müntz’s
theorems.

The notation C ([0,b] ;X) will denote the functions which are continuous with values in
[0,b] with values in X which will always be a normed vector space. It could be C or R for
example.

16.1 Weierstrass Approximation Theorem
An arbitrary continuous function defined on an interval can be approximated uniformly by
a polynomial, there exists a similar theorem which is just a generalization of this which will
hold for continuous functions defined on a box or more generally a closed and bounded set.
However, we will settle for the case of a box first. The proof is based on the following
lemma.

Lemma 16.1.1 The following estimate holds for x ∈ [0,1] and m≥ 2.

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m

Proof: First of all, from the binomial theorem

m

∑
k=0

(
m
k

)
(tx)k (1− x)m−k = (1− x+ tx)m

Take a derivative and then let t = 1.

m

∑
k=0

(
m
k

)
k (tx)k−1 x(1− x)m−k = mx(tx− x+1)m−1

m

∑
k=0

(
m
k

)
k (x)k (1− x)m−k = mx

Then also,
m

∑
k=0

(
m
k

)
k (tx)k (1− x)m−k = mxt (tx− x+1)m−1

441
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Take another time derivative of both sides.

m

∑
k=0

(
m
k

)
k2 (tx)k−1 x(1− x)m−k

= mx
(
(tx− x+1)m−1− tx(tx− x+1)m−2 +mtx(tx− x+1)m−2

)
Plug in t = 1.

m

∑
k=0

(
m
k

)
k2xk (1− x)m−k = mx(mx− x+1)

Then it follows
m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k

=
m

∑
k=0

(
m
k

)(
k2−2kmx+ x2m2)xk (1− x)m−k

and from what was just shown, this equals

x2m2− x2m+mx−2mx(mx)+ x2m2 =−x2m+mx =
m
4
−m

(
x− 1

2

)2

.

Thus the expression is maximized when x = 1/2 and yields m/4 in this case. This proves
the lemma. ■

With this preparation, here is the first version of the Weierstrass approximation theorem.
I will allow f to have values in a complete, real or complex normed linear space. Thus,
f ∈C ([0,1] ;X) where X is a Banach space, Definition 14.4.1. Thus this is a function which
is continuous with values in X as discussed earlier with metric spaces.

Theorem 16.1.2 Let f ∈C ([0,1] ;X) and let the norm on X be denoted by ∥·∥ .

pm (x)≡
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
k
m

)
.

Then these polynomials having coefficients in X converge uniformly to f on [0,1].

Proof: Let ∥ f∥
∞

denote the largest value of ∥ f (x)∥. By uniform continuity of f ,
there exists a δ > 0 such that if |x− x′| < δ , then ∥ f (x)− f (x′)∥ < ε/2. By the binomial
theorem,

∥pm (x)− f (x)∥ ≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥
≤ ∑
| k

m−x|<δ

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥+
2∥ f∥

∞ ∑
| k

m−x|≥δ

(
m
k

)
xk (1− x)m−k
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Therefore,

≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k ε

2
+2∥ f∥

∞ ∑
(k−mx)2≥m2δ

2

(
m
k

)
xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1

m2δ
2

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1
4

m
1

δ
2m2

< ε

provided m is large enough. Thus ∥pm− f∥
∞
< ε when m is large enough. ■

Note that we do not need to have X be complete in order for this to hold. It would have
sufficed to have simply let X be a normed linear space.

Corollary 16.1.3 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists a
sequence of polynomials which converge uniformly to f on [a,b].

Proof: Let l : [0,1] → [a,b] be one to one, linear and onto. Then f ◦ l is contin-
uous on [0,1] and so if ε > 0 is given, there exists a polynomial p such that for all
x∈ [0,1] ,∥p(x)− f ◦ l (x)∥< ε . Therefore, letting y= l (x) , it follows that for all y∈ [a,b] ,∥∥p

(
l−1 (y)

)
− f (y)

∥∥< ε. ■

The exact form of the polynomial is as follows.

p(x) =
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
l
(

k
m

))

p
(
l−1 (y)

)
=

m

∑
k=0

(
m
k

)(
l−1 (y)

)k (
1− l−1 (y)

)m−k
f
(

l
(

k
m

))
(16.1)

Here is a corollary.

Corollary 16.1.4 Let f be a continuous function defined on [−M,M] with f (0) = 0. Then
there exists a sequence of polynomials {pm}, pm (0) = 0 and

lim
m→∞
∥pm− f∥

∞
= 0

Proof: From Corollary 16.1.3 there exists a sequence of polynomials { p̂m} such that
∥ p̂m− f∥

∞
→ 0. Simply consider pm = p̂m− p̂m (0). ■

16.2 Functions of Many Variables
First note that if h : K×H→R is a real valued continuous function where K,H are compact
sets in metric spaces,

max
x∈K

h(x,y)≥ h(x,y) , so max
y∈H

max
x∈K

h(x,y)≥ h(x,y)
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which implies maxy∈H maxx∈K h(x,y)≥max(x,y)∈K×H h(x,y) . The other inequality is also
obtained.

Let f ∈C (Rp;X) where Rp = [0,1]p . Then let x̂p ≡ (x1, ...,xp−1) . By Theorem 16.1.2,
if n is large enough,

max
xp∈[0,1]

∥∥∥∥∥ n

∑
k=0

f

(
·, k

n

)(
n
k

)
xk

p (1− xp)
n−k−f (·,xp)

∥∥∥∥∥
C([0,1]p−1;X)

<
ε

2

Now f
(
·, k

n

)
∈C (Rp−1;X) and so by induction, there is a polynomial pk (x̂p) such that

max
x̂p∈Rp−1

∥∥∥∥pk (x̂p)−
(

n
k

)
f

(
x̂p,

k
n

)∥∥∥∥
X
<

ε

(n+1)2

Thus, letting p(x)≡ ∑
n
k=0pk (x̂p)xk

p (1− xp)
n−k ,

∥p−f∥C(Rp;X) ≤ max
xp∈[0,1]

max
x̂p∈Rp−1

∥∥p(x̂p,xp)−f (x̂p,xp)
∥∥

X < ε

where p is a polynomial with coefficients in X .
In general, if Rp ≡∏

p
k=1 [ak,bk] , note that there is a linear function lk : [0,1]→ [ak,bk]

which is one to one and onto. Thus l (x)≡ (l1 (x1) , ..., lp (xp)) is a one to one and onto map
from [0,1]p to Rp and the above result can be applied to f ◦ l to obtain a polynomial p with
∥p−f ◦ l∥C([0,1]p;X) < ε. Thus

∥∥p◦ l−1−f
∥∥

C(Rp;X) < ε and p◦ l−1 is a polynomial. This
proves the following theorem.

Theorem 16.2.1 Let f be a function in C (R;X) for X a normed linear space where R ≡
∏

p
k=1 [ak,bk] . Then for any ε > 0 there exists a polynomial p having coefficients in X such

that ∥p−f∥C(R;X) < ε .

These Bernstein polynomials are very remarkable approximations. It turns out that if f
is C1 ([0,1] ;X) , then limn→∞ p′n (x)→ f ′ (x) uniformly on [0,1] . This all works for func-
tions of many variables as well, but here I will only show it for functions of one variable. I
assume the reader knows about the derivative of a function of one variable.

Lemma 16.2.2 Let f ∈C1 ([0,1]) and let

pm (x)≡
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
k
m

)
be the mth Bernstein polynomial. Then in addition to ∥pm− f∥[0,1]→ 0, it also follows that∥∥p′m− f ′

∥∥
[0,1]→ 0

Proof: From simple computations,

p′m (x) =
m

∑
k=1

(
m
k

)
kxk−1 (1− x)m−k f

(
k
m

)

−
m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)
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=
m

∑
k=1

m(m−1)!
(m− k)!(k−1)!

xk−1 (1− x)m−k f
(

k
m

)

−
m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k+1
m

)
−

m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k
(

f
(

k+1
m

)
− f

(
k
m

))

=
m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k

(
f
( k+1

m

)
− f

( k
m

)
1/m

)
By the mean value theorem,

f
( k+1

m

)
− f

( k
m

)
1/m

= f ′
(
xk,m
)
, xk,m ∈

(
k
m
,

k+1
m

)
Now the desired result follows as before from the uniform continuity of f ′ on [0,1]. Let
δ > 0 be such that if

|x− y|< δ , then
∣∣ f ′ (x)− f ′ (y)

∣∣< ε

and let m be so large that 1/m < δ/2. Then if
∣∣x− k

m

∣∣< δ/2, it follows that
∣∣x− xk,m

∣∣< δ

and so ∣∣ f ′ (x)− f ′
(
xk,m
)∣∣= ∣∣∣∣∣ f ′ (x)− f

( k+1
m

)
− f

( k
m

)
1/m

∣∣∣∣∣< ε.

Now as before, letting M ≥ | f ′ (x)| for all x,

∣∣p′m (x)− f ′ (x)
∣∣≤ m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k ∣∣ f ′ (xk,m

)
− f ′ (x)

∣∣

≤ ∑{
x:|x− k

m |< δ
2

}
(

m−1
k

)
xk (1− x)m−1−k

ε

+M
m−1

∑
k=0

(
m−1

k

)
4(k−mx)2

m2δ
2 xk (1− x)m−1−k

≤ ε +4M
1
4

m
1

m2δ
2 = ε +M

1

mδ
2 < 2ε

whenever m is large enough. Thus this proves uniform convergence. ■
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16.3 A Generalization with Tietze Extension Theorem
The following is the Tietze extension theorem, Theorem 10.5.5 presented earlier.

Theorem 16.3.1 Let M be a closed nonempty subset of X and let f : M→ [a,b] be con-
tinuous at every point of M. Then there exists a function, g continuous on all of X which
coincides with f on M such that g(X)⊆ [a,b] .

With the Tietze extension theorem, here is a better version of the Weierstrass approxi-
mation theorem.

Theorem 16.3.2 Let K be a closed and bounded subset of Rp and let f : K → R be con-
tinuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

Proof: By the Tietze extension theorem, there exists an extension of f to a continuous
function g defined on all Rp such that g = f on K. Now since K is bounded, there exist
intervals, [ak,bk] such that K ⊆∏

p
k=1 [ak,bk] = R. Then by the Weierstrass approximation

theorem, Theorem 16.2.1 there exists a sequence of polynomials {pm} converging uni-
formly to g on R. Therefore, this sequence of polynomials converges uniformly to g = f
on K as well. This proves the theorem. ■

By considering the real and imaginary parts of a function which has values in C one
can generalize the above theorem.

Corollary 16.3.3 Let K be a closed and bounded subset of Rp and let f : K→ F be con-
tinuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

More generally, the function f could have values in Rp. There is no change in the
proof. You just use norm symbols rather than absolute values and nothing at all changes
in the theorem where the function is defined on a rectangle. Then you apply the Tietze
extension theorem to each component in the case the function has values in Rp. Using a
better extension theorem than what is presented in this book, one could generalize this to a
function having values in a Banach space.

16.4 An Approach to the Integral
First is a short review of the derivative of a function of one variable.

Definition 16.4.1 Let f : [a,b]→ R. Then f ′ (x) ≡ limx→0
f (x+h)− f (x)

h where h is always
such that x,x+ h are both in the interval [a,b] so we include derivatives at the right and
left end points in this definition.

The most important theorem about derivatives of functions of one variable is the mean
value theorem.



16.4. AN APPROACH TO THE INTEGRAL 447

Theorem 16.4.2 Let f : [a,b]→ R be continuous. Then if the maximum value of f occurs
at a point x∈ (a,b) , it follows that if f ′ (x) = 0. If f achieves a minimum at x∈ (a,b) where
f ′ (x) exists, it also follows that f ′ (x) = 0.

Proof: By Theorem 10.1.39, f achieves a maximum at some point x. If f ′ (x) exists,
then

f ′ (x) = lim
h→0+

f (x+h)− f (x)
h

= lim
h→0−

f (x+h)− f (x)
h

However, the first limit is non-positive while the second is non-negative and so f ′ (x) = 0.
The situation is similar if the minimum occurs at x ∈ (a,b). ■

The Cauchy mean value theorem follows. The usual one is obtained by letting g(x) = x.

Theorem 16.4.3 Let f ,g be continuous on [a,b] and differentiable on (a,b) . Then there
exists x∈ (a,b) such that f ′ (x)(g(b)−g(a))= g′ (x)( f (b)− f (a)). If g(x)= x, this yields
f (b)− f (a) = f ′ (x)(b−a) , also f (a)− f (b) = f ′ (x)(a−b).

Proof: Let h(x)≡ f (x)(g(b)−g(a))−g(x)( f (b)− f (a)) . Then

h(a) = h(b) = f (a)g(b)−g(a) f (b) .

If h is constant, then pick any x ∈ (a,b) and h′ (x) = 0. If h is not constant, then it has
either a maximum or a minimum on (a,b) and so if x is the point where either occurs, then
h′ (x) = 0 which proves the theorem. ■

Recall that an antiderivative of a function f is just a function F such that F ′ = f .

You know how to find an antiderivative for a polynomial.
(

xn+1

n+1

)′
= xn so

∫
∑

n
k=1 akxk =

∑
n
k=1 ak

xk+1

k+1 +C. With this information and the Weierstrass theorem, it is easy to define
integrals of continuous functions with all the properties presented in elementary calculus
courses. It is an approach which does not depend on Riemann sums yet still gives the
fundamental theorem of calculus. Note that if F ′ (x) = 0 for x in an interval, then for x,y
in that interval, F (y)−F (x) = 0(y− x) so F is a constant. Thus, if F ′ = G′ on an open
interval, F,G continuous on the closed interval, it follows that F −G is a constant and so
F (b)−F (a) = G(b)−G(a).

Definition 16.4.4 For p(x) a polynomial on [a,b] , let P′ (x) = p(x) . Thus, by the mean
value theorem if P′, P̂′ both equal p, it follows that P(b)− P(a) = P̂(b)− P̂(a) . Then
define

∫ b
a p(x)dx≡ P(b)−P(a). If f ∈C ([a,b]) , define

∫ b
a f (x)dx≡ limn→∞

∫ b
a pn (x)dx

where limn→∞ ∥pn− f∥ ≡ limn→∞ maxx∈[a,b] | f (x)− pn (x)|= 0.

Proposition 16.4.5 The above integral is well defined and satisfies the following proper-
ties.

1.
∫ b

a f dx = f (x̂)(b−a) for some x̂ between a and b. Thus
∣∣∣∫ b

a f dx
∣∣∣≤ ∥ f∥|b−a| .

2. If f is continuous on an interval which contains all necessary intervals,∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx, so

∫ b

a
f dx+

∫ a

b
f dx =

∫ b

b
f dx = 0
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3. If F (x)≡
∫ x

a f dt, Then F ′ (x) = f (x) so any continuous function has an antideriva-
tive, and for any a ̸= b,

∫ b
a f dx = G(b)−G(a) whenever G′ = f on the open interval

determined by a,b and G continuous on the closed interval determined by a,b. Also,∫ b

a
(α f (x)+βg(x))dx = α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If a < b, and f (x)≥ 0, then
∫ b

a f dx≥ 0. Also
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

4.
∫ b

a 1dx = b−a.

Proof: First, why is the integral well defined? With notation as in the above definition,
the mean value theorem implies∫ b

a
p(x)dx≡ P(b)−P(a) = p(x̂)(b−a) (16.2)

where x̂ is between a and b and so
∣∣∣∫ b

a p(x)dx
∣∣∣≤ ∥p∥|b−a| . If ∥pn− f∥→ 0, then

lim
m,n→∞

∥pn− pm∥= 0

and so ∣∣∣∣∫ b

a
pn (x)dx−

∫ b

a
pm (x)dx

∣∣∣∣ = |(Pn (b)−Pn (a))− (Pm (b)−Pm (a))|

= |(Pn (b)−Pm (b))− (Pn (a)−Pm (a))|

=

∣∣∣∣∫ b

a
(pn− pm)dx

∣∣∣∣≤ ∥pn− pm∥|b−a|

Thus the limit exists because
{∫ b

a pndx
}

n
is a Cauchy sequence and R is complete.

From 16.2, 1. holds for a polynomial p(x). Let ∥pn− f∥→ 0. Then by definition,∫ b

a
f dx≡ lim

n→∞

∫ b

a
pndx = pn (xn)(b−a) (16.3)

for some xn in the open interval determined by (a,b) . By compactness, there is a fur-
ther subsequence, still denoted with n such that xn → x ∈ [a,b] . Then fixing m such that
∥ f − pn∥< ε whenever n≥ m, assume n > m. Then ∥pm− pn∥ ≤ ∥pm− f∥+∥ f − pn∥<
2ε and so

| f (x)− pn (xn)| ≤ | f (x)− f (xn)|+ | f (xn)− pm (xn)|+ |pm (xn)− pn (xn)|

≤ | f (x)− f (xn)|+∥ f − pm∥+∥pm− pn∥< | f (x)− f (xn)|+3ε

Now if n is still larger, continuity of f shows that | f (x)− pn (xn)|< 4ε. Since ε is arbitrary,
pn (xn)→ f (x) and so, passing to the limit with this subsequence in 16.3 yields 1.

Now consider 2. It holds for polynomials p(x) obviously. So let ∥pn− f∥→ 0. Then∫ c

a
pndx+

∫ b

c
pndx =

∫ b

a
pndx
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Pass to a limit as n→ ∞ and use the definition to get 2. Also note that
∫ b

b f (x)dx = 0
follows from the definition.

Next consider 3. Let h ̸= 0 and let x be in the open interval determined by a and b. Then
for small h,

F (x+h)−F (x)
h

=
1
h

∫ x+h

x
f (t)dt = f (xh)

where xh is between x and x+h. Let h→ 0. By continuity of f , it follows that the limit of
the right side exists and so

lim
h→0

F (x+h)−F (x)
h

= lim
h→0

f (xh) = f (x)

If x is either end point, the argument is the same except you have to pay attention to the
sign of h so that both x and x+h are in [a,b]. Thus F is continuous on [a,b] and F ′ exists
on (a,b) so if G is an antiderivative,∫ b

a
f (t)dt ≡ F (b) = F (b)−F (a) = G(b)−G(a)

The claim that the integral is linear is obvious from this. Indeed, if F ′ = f ,G′ = g,∫ b

a
(α f (t)+βg(t))dt = αF (b)+βG(b)− (αF (a)+βG(a))

= α (F (b)−F (a))+β (G(b)−G(a))

= α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt

If f ≥ 0, then the mean value theorem implies that for some

t ∈ (a,b) ,F (b)−F (a) =
∫ b

a
f dx = f (t)(b−a)≥ 0.

Thus
∫ b

a (| f |− f )dx≥ 0,
∫ b

a (| f |+ f )dx≥ 0 and so∫ b

a
| f |dx≥

∫ b

a
f dx,

∫ b

a
| f |dx≥−

∫ b

a
f dx

so this proves
∣∣∣∫ b

a f dx
∣∣∣ ≤ ∫ b

a | f |dx. This, along with part 2 implies the other claim that∣∣∣∫ b
a f dx

∣∣∣≤ ∣∣∣∫ b
a | f |dx

∣∣∣.
The last claim is obvious because an antiderivative of 1 is F (x) = x. ■
Note also that the usual change of variables theorem is available because if F ′ = f , then

f (g(x))g′ (x) = d
dx F (g(x)) so that, from the above proposition,

F (g(b))−F (g(a)) =
∫ g(b)

g(a)
f (y)dy =

∫ b

a
f (g(x))g′ (x)dx.

We usually let y = g(x) and dy = g′ (x)dx and then change the limits as indicated above,
equivalently we massage the expression to look like the above. Integration by parts also
follows from differentiation rules.
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Consider the iterated integral
∫ b1

a1
· · ·
∫ bp

ap
αxα1

1 · · ·x
α p
p dxp · · ·dx1. It means just what it

meant in calculus. You do the integral with respect to xp first, keeping the other variables
constant, obtaining a polynomial function of the other variables. Then you do this one with
respect to xp−1 and so forth. Thus, doing the computation, it reduces to

α

p

∏
k=1

(∫ bk

ak

xαk
k dxk

)
= α

p

∏
k=1

(
bαk+1

αk +1
− aαk+1

αk +1

)
and the same thing would be obtained for any other order of the iterated integrals. Since
each of these integrals is linear, it follows that if (i1, · · · , ip) is any permutation of (1, · · · , p) ,
then for any polynomial q,∫ b1

a1

· · ·
∫ bp

ap

q(x1, ...,xp)dxp · · ·dx1 =
∫ bi1

aip

· · ·
∫ bip

aip

q(x1, ...,xp)dxip · · ·dxi1

Now let f : ∏
p
k=1 [ak,bk]→ R be continuous. Then each iterated integral results in a con-

tinuous function of the remaining variables and so the iterated integral makes sense. For
example, by Proposition 16.4.5,

∣∣∣∫ d
c f (x,y)dy−

∫ d
c f (x̂,y)dy

∣∣∣=∣∣∣∣∫ d

c
( f (x,y)− f (x̂,y))dy

∣∣∣∣≤ max
y∈[c,d]

| f (x,y)− f (x̂,y)|< ε

if |x− x̂| is sufficiently small, thanks to uniform continuity of f on the compact set [a,b]×
[c,d]. Thus it makes perfect sense to consider the iterated integral

∫ b
a
∫ d

c f (x,y)dydx. Then
using Proposition 16.4.5 on the iterated integrals along with Theorem 16.2.1, there exists a
sequence of polynomials which converges to f uniformly {pn} . Then applying Proposition
16.4.5 repeatedly,∣∣∣∣∣

∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxp · · ·dx1−
∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxp · · ·dx1

∣∣∣∣∣
≤ ∥ f − pn∥

p

∏
k=1
|bk−ak| (16.4)

With this, it is easy to prove a rudimentary Fubini theorem valid for continuous functions.

Theorem 16.4.6 f : ∏
p
k=1 [ak,bk]→ R be continuous. Then for (i1, · · · , ip) any permuta-

tion of (1, · · · , p) ,∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1

If f ≥ 0, then the iterated integrals are nonnegative if each ak ≤ bk.

Proof: Let ∥pn− f∥→ 0 where pn is a polynomial. Then from 16.4,∫ bi1

ai1

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 = lim
n→∞

∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxip · · ·dxi1
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= lim
n→∞

∫ b1

a1

· · ·
∫ bp

ap

pn (x)dxp · · ·dx1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1 ■

You could replace f with f XG where XG (x) = 1 if x ∈ G and 0 otherwise provided each
section of G consisting of holding all variables constant but 1, consists of finitely many
intervals. Thus you can integrate over all the usual sets encountered in beginning calculus.

Definition 16.4.7 A function f : [a,b]→ R is piecewise continuous if there are zi with
a = z0 < z1 < · · · < zn = b, called a partition of [a,b] , and functions fi continuous on
[zi−1,zi] such that f = fi on (zi−1,zi). For f piecewise continuous, define∫ b

a
f (t)dt ≡

n

∑
i=1

∫ zi

zi−1

fi (s)ds

Of course this gives what appears to be a new definition because if f is continuous on
[a,b] , then it is piecewise continuous for any such partition. However, it gives the same
answer because, from this new definition,∫ b

a
f (t)dt =

n

∑
i=1

(F (zi)−F (zi−1)) = F (b)−F (a)

Does this give the main properties of the integral? In particular, is the integral still linear?
Suppose f ,g are piecewise continuous. Then let {zi}n

i=1 include all the partition points of
both of these functions. Then, since it was just shown that no harm is done by including
more partition points,∫ b

a
α f (t)+βg(t)dt ≡

n

∑
i=1

∫ zi

zi−1

(α fi (s)+βgi (s))ds

=
n

∑
i=1

α

∫ zi

zi−1

fi (s)ds+
n

∑
i=1

β

∫ zi

zi−1

gi (s)ds

= α

n

∑
i=1

∫ zi

zi−1

fi (s)ds+β

n

∑
i=1

∫ zi

zi−1

gi (s)ds

= α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt

Also, the claim that
∫ b

a f dt =
∫ c

a f dt +
∫ b

c f dt is obtained exactly as before by considering
all partition points on each integral preserving the order of the limits in the small intervals
determined by the partition points. That is, if a > c, you would have zi−1 > zi. Notice how
this automatically takes care of orientation.

Is this as general as a complete treatment of Riemann integration? No it is not. In
particular, it does not include the well known example where f (x) = sin

( 1
x

)
for x ∈ (0,1]

and f (0)≡ 0. However, it is sufficiently general to include all cases which are typically of
interest. It would be enough to build a theory of ordinary differential equations. It would
also be enough to provide the theory of convergence of Fourier series to the midpoint of
the jump and so forth. Also, the Riemann integral is woefully inadequate when it comes to
a need to handle limits. You need the Lebesgue integral and to obtain this, it is enough to
consider knowledge of integrals of continuous functions.
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16.5 The Müntz Theorems
All this about to be presented would work on any interval, but it would involve fussy con-
siderations involved with extra constants. Therefore, I will only present what happens on
[0,1]. These theorems have to do with considering linear combinations of the functions
fp (x) ≡ xp for p = p1, p2, ... and whether one can approximate an arbitrary continuous
function with such a linear combination. Linear algebra techniques are what make this
possible, at least in this book. I am following Cheney [13]. In what follows m will be a
nonnegative integer. I will consider the real inner product space X consisting of functions
in C ([0,1]) with the inner product

∫ 1
0 f gdx = ( f ,g) . Thus, as shown earlier, the Cauchy

Schwarz inequality holds

∫ 1

0
| f | |g|dx≤

(∫ 1

0
| f |2 dx

)1/2(∫ 1

0
|g|2 dx

)1/2

I will write | f | ≡
(∫ 1

0 | f |
2 dx
)1/2

. The above treatment of the integral of continuous func-
tions is sufficient for the needs here. Also let Vn ≡ span( fp1 , ..., fpn) .

The main idea is to estimate the distance between fm and Vm in X . The Grammian
matrix of

{
fp1 , ..., fpn

}
is easily seen to be

G( fp1 , ..., fpn) =


1

p1+p1+1 · · · 1
p1+pn+1

...
...

1
p1+pn+1 · · · 1

pn+pn+1


I will assume p j >− 1

2 to avoid any possibility of terms which make no sense in the Gram-
mian matrix given above. I will also assume none of these p j are integers so that Vn never
contains fm, fm (x) = xm,m a positive integer. If such is in your list, it simply makes the
approximation easier to obtain. By Theorem 8.6.5, the Cauchy identity for determinants,

detG( fp1 , ..., fpn) =
∏ j<i≤n (pi− p j)(pi− p j)

∏i, j≤n (pi + p j +1)

You let ai = pi,bi = pi+1. Thus from Proposition 12.2.2
{

fp1 , ..., fpn

}
is linearly indepen-

dent if and only if the exponents p j are distinct. Assume this happens. Then from Theorem
12.2.3 about the distance to a subspace, if dn is this distance between fm and Vn,

d2
n =

det(G( fp1 , ..., fpn , fm))

det(G( fp1 , ..., fpn))

By the Cauchy identity Theorem 8.6.5 again, letting pn+1 ≡ m,

d2
n =

(
∏ j<i≤n+1(pi−p j)(pi−p j)

∏i, j≤n+1(pi+p j+1)

)
(

∏ j<i≤n(pi−p j)(pi−p j)
∏i, j≤n(pi+p j+1)

)
=

(
∏ j<n+1 (pn+1− p j)(pn+1− p j)

∏i<n+1 (pi + pn+1 +1)∏ j<n+1 (pn+1 + p j +1)(2pn+1 +1)

)
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It follows that, since pn+1 = m

dn =
∏ j<n+1

∣∣m− p j
∣∣

∏ j<n+1 (m+ p j +1)
√
(2m+1)

=
1√

(2m+1)
∏

j<n+1

∣∣m− p j
∣∣

(m+ p j +1)

The idea is to let n→ ∞ and see whether the distance between the best approximation and
x→ xm converges to 0. That is, to determine whether dn → 0. I want m an integer to be
arbitrary and for the sake of convenience, I want

∣∣m− p j
∣∣= p j−m for all j large enough.

Therefore, one needs to have limk→∞ pk = ∞. From now on, this is assumed. It is desired
to have

−∞ = lim
n→∞

ln
(

dn
√

2m+1
)
= lim

n→∞
∑

j<n+1
ln

(
1−

(
1−

∣∣m− p j
∣∣

(m+ p j +1)

))

Note that 0 <
|m−p j|

(m+p j+1)
= r j < 1 and so it is easily shown that

ln(1− (1− r j)) ∈ (−2(1− r j) ,−(1− r j)) .

It follows that dn→ 0 if and only if

∑
j

1−
p j−m

m+ p j +1
= ∑

j

2m+1
m+ p j +1

diverges. But by the limit comparison test from calculus, this happens if and only if ∑ j
1
p j
=

∞. This proves most of the following theorem.

Theorem 16.5.1 Let g ∈C ([0,1]) . Then there exists a sequence hk consisting of a linear
combination of functions fp j such that |g−hn| → 0. Here we define Vn ≡ span( fp1 , ..., fpn)

where no pk is an integer, all are larger than −1/2, and limn→∞ pn = ∞ and ∑k
1
pk

= ∞.

Proof: Let ε > 0 be given. By the Weierstrass approximation theorem, there is a
polynomial p(x) such that |g− p| ≤ ∥g− pn∥ < ε where the second norm is the supre-
mum norm of the Weierstrass theorem. Thus p is a linear combination of functions fm
for m an integer. p = ∑

L
k=1 ck fk. Let hnk ∈ Vnk such that

∣∣hnk − fk
∣∣ |ck| < ε

L . Let n >

max{nk : k ≤ L} . Consider h ∈ Vn defined by h ≡ ∑
L
k=1 ckhnk . Then |h−g| ≤ |h− p|+

|p−g| ≤ ∑
L
k=1

∣∣ckhnk − ck fk
∣∣+ ε < L ε

L + ε = 2ε . It follows that letting εk → 0, there
exists hk consisting of a finite linear combination of functions of the form fp j such that
|hk−g| → 0. ■

This is the first Müntz theorem. The second one involves approximation in the usual
norm for continuous function ∥ f∥ ≡ max{| f (x)| : x ∈ [0,1]}. It also depends on linear
algebra techniques.

Theorem 16.5.2 Let 1
2 < pk, none of the pk are zero, and limk→∞ pk = ∞ and ∑k

1
pk

= ∞.

Let Vn ≡ span(1, fp1 , ..., fpn) . Then if g ∈C ([0,1]) and ε > 0, there exists h ∈Vn for some
n such that ∥g−h∥ ≤ ε .

Proof: This follows in the same way as above if I can show that for all m a nonnegative
integer, there is a function h∈Vn with ∥h− fm∥< ε . Since 1 is included, there is nothing to
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show if m = 0. Thus, assume m > 0. From the above theorem, consider n large enough that
|m fm−1−h| < ε for some h ∈ span( fp1−1, ..., fpn−1) ,h(x) = ∑

n
k=1 ck fpk−1 (x) . Then note

that xm =
∫ x

0 m fm−1 (t)dt and also H (x) ≡
∫ x

0 h(t)dt ∈ Vn. Therefore, from the Cauchy
Schwarz inequality,

|xm−H (x)| =

∣∣∣∣∫ x

0
(m fm−1 (t)−h(t))dt

∣∣∣∣≤ ∫ 1

0
1 |m fm−1 (t)−h(t)|dt

≤ 1
(∫ 1

0
|m fm−1 (t)−h(t)|2 dt

)1/2

= |m fm−1−h|< ε

Since this is true for each x, it follows that ∥ fm−H∥ ≤ ε . Then the same argument used
above, depending on the triangle inequality proves the theorem. ■

Note that, as before, this shows that if g is continuous, there is a sequence of hn con-
sisting of linear combinations of the fpk which converges uniformly to g.

Example 16.5.3 Let pk ≡ ln(1+ k) . Then if g is continuous on [0,1] , there is a function
of the form c0 +∑

L
k=1 ckxln(1+k) ≡ h(x) such that ∥h−g∥< ε . You could replace ln(1+ k)

with k ln(1+ k) or 5k and draw the same conclusion.

16.6 Exercises
1. Show the above argument used to obtain Theorems 16.5.1, 16.5.2 works to give both

of these theorems if your interest is in [−1,1] rather than [0,1] provided you replace
x with |x| whenever xp occurs for p not an integer. You must do something like this
because if x < 0, maybe xp is not well defined in the context of real analysis.

2. Generalize Theorems 16.5.1, 16.5.2 to any interval [a,b].

3. Show that the same arguments will work for proving Theorems 16.5.1, 16.5.2 in
approximating functions in C ([0,1] ;X) where X is an inner product space if you de-
fine a new inner product ( f ,g) ≡

∫ 1
0 ( f ,g)dx. Show how to use this to generalize

Theorems 16.5.1, 16.5.2 to the case of many variables as was done for the Weier-
strass theorem. Then, using the ideas of the above problem, show how to consider
approximation of functions C (R;X) where R is some n dimensional box of the form
∏

n
i=1 [ai,bi]. How would you generalize to the case of C (R,R) where R is just some

closed and bounded set?



Appendix A

Homological Methods∗
There is a lot more on homology in [40], [39]. That worthwhile topological theorems
can be obtained through using free Abelian groups and abstract algebra arguments is very
counter-intuitive to me, but this is in fact the case, enough that I concluded to give an
introduction. This is certainly only an introduction to this subject which amounts to my
attempts to understand it myself. These methods make possible an approach to the hard
topology theorems like the Brouwer fixed point theorem or Jordan curve theorem. They
are algebraic in nature and so I think this fits in with this book. All that I present will be
basic homology and the homology of spheres with applications. The approach is to reduce
questions about homeomorphisms to algebraic questions about homology groups which are
a type of quotient group. To be specific, let the topological spaces be metric spaces. I have
not discussed general topological spaces in this book but many of the theorems apply to this
more general situation. A homeomorphism is a one to one and onto mapping f between
two metric spaces such that f and f−1 are both continuous. When two metric spaces are
homeomorphic, it means all considerations relative to open sets, such as convergence of
sequences will coincide. That is, a sequence converges in one space if and only if its image
in the other space also converges. More generally, in the case of topological space, the
functions f , f−1 map the topology of one space to the topology of another.

To begin with here is a definition of a free Abelian group.

Definition A.0.1 Let G be a nonempty set. A free Abelian group featuring G consists of
all formal sums of this form ∑φ nφ φ where the nφ are integers and only finitely many are
non-zero and the φ are elements of G. Then we add two of these in the obvious way

∑
φ

nφ φ +∑
φ

mφ φ = ∑
φ

(
nφ +mφ

)
φ

The inverse of ∑φ nφ φ is ∑φ

(
−nφ

)
φ and the zero is the one where all the nφ equal 0. Each

∑φ nφ φ is determined uniquely by the integers nφ . If we know f (φ) for each φ ∈G, we can
define a homomorphism on the whole Abelian group as follows.

f#

(
∑
φ

nφ φ

)
≡∑

φ

nφ f# (φ)

If the entire group is obtained as the form kg for k ∈ Z and g is an element of the group,
then g is said to generate the group.

Lemma A.0.2 Let A,B be two Abelian groups generated by a,b respectively. Also let
γ : A→ B be an isomorphism meaning that γ is a homomorphism, γ (x+ y) = γ (x)+ γ (y) ,
and γ is one to one and onto. Then γ (a) =±b.

Proof: It follows easily that γ−1 is also a homomorphism. b = γ (x) for a unique
x ∈ A. Then there is l ∈ Z such that x = la and so b = γ (la) and so γ−1 (b) = la. Similarly
γ (a) = kb. Therefore, a = kγ−1 (b) = kla showing that kl = 1. Therefore, both k, l = 1 or
both are −1 showing what was claimed. ■

In particular, if a is a generator of one of these Abelian free groups and so is b, then,
letting γ = id, a =±b.

This free Abelian group is a kind of module.

455
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A.1 Singular Simplices and Boundaries
Definition A.1.1 Let X be a topological space. Whenever convenient let it be a metric
space. Let

σ p ≡

{
t ∈ Rp+1 :

p+1

∑
i=0

ti = 1, ti ≥ 0 for each i

}
Then Sp (X) will denote expressions of the form ∑φ nφ φ where φ : σ p→ X is a continuous
mapping, called a singular simplex, and only finitely many of the integers nφ are nonzero.
It is the free Abelian group featuring the singular simplices with values in X which have
domain σ p just described. It follows that if you have a function defined on each φ , a con-
tinuous mapping from σ p to X, then this extends uniquely to a homomorphism on Sp (X).
These distribute across + signs. The first of these to consider is the boundary operator.
Define a homomorphism ∂i : Sp (X)→ Sp−1 (X) as

∂iφ (t0, ..., tp−1)≡ φ (t0, ...,0, ti, ..., tp−1)

where 0 replaces ti and then the ti is in the following slot followed by t j in order for j≤ p−
1. Note that the subscripts end with p−1 rather than p. Then ∂ will be a homomorphism
given by the following on a singular simplex φ

∂φ (t0, ..., tp−1)≡
p

∑
i=0

(−1)i
∂iφ (t0, ..., tp−1)

In case p = 1, you would only have the end points left and so for φ ∈ S1 (X) ,

∂φ (t0) = φ (1,0)−φ (0,1)

As to S0 (X), these are of the form φ (1) and we define ∂φ ≡ 0 in S0 (X). This means the
zero homomorphism. In this case S0 (X) =

{
∑φ nφ φ

}
.We make ∂ a homomorphism on

Sp (X) by defining ∂
(
∑φ nφ φ

)
≡ ∑φ nφ ∂φ . I will sometimes refer to something in Sp (X)

as a chain.

Note how this means that the 0 simplices are essentially points of X . The order of the ti
is very important so that orientation will be preserved.

In all of this σ p will be the simplex having vertices

(1,0, ...) ,(0,1, ...) , ...(0,0, ...,1,0, ...)

the 1 in the pth position. I may write these points as (1,0, ...0) ,(0,1, ...0) , ...(0,0, ...,1) .
Can we tie these formal sums to something more familiar? They are functions defined

on a single simplex σ p, but I don’t know that one can even do addition in X and so this free
group is pretty formal at this point. As to −φ for φ a simplex, it doesn’t have any intrinsic
meaning either unless maybe φ has values in a vector space. Thus, we understand this to
mean (−1)φ which will amount to the same thing in the vector space setting. What is the
0 in this Abelian group? It would be 0φ or there is simply nothing there to add to another
element of the Abelian group.

Here is a picture of σ2 in R3.
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(0,1,0)(1,0,0)

(1,0,0)

σ2

t0

t2

t1

The big news about ∂ is in the following lemma.

Lemma A.1.2 For p≥ 2, ∂ 2 : Sp (X)→ Sp−2 (X) is 0.

Proof: Consider some cases. Now consider p = 2 so φ (t0, t1, t2)

∂φ (t0, t1)≡ φ (0, t0, t1)−φ (t0,0, t1)+φ (t0, t1,0)

and
∂

2
φ (t0)≡ (φ (0,0, t0)−φ (0, t0,0))− (φ (0,0, t0)−φ (t0,0,0))

+(φ (0, t0,0)−φ (t0,0,0)) = 0
Thus it produces the zero map from S1 (X) to X . Next let p = 3. We have φ (t0, t1, t2, t3)

∂φ (t0, t1, t2)≡ φ (0, t0, t1, t2)−φ (t0,0, t1, t2)+φ (t0, t1,0, t2)−φ (t0, t1, t2,0)

Then ∂ 2φ (t0, t1) =

φ (0,0, t0, t1)−φ (0, t0,0, t1)+φ (0, t0, t1,0)
−(φ (0,0, t0, t1)−φ (t0,0,0, t1)+φ (t0,0, t1,0))
+(φ (0, t0,0, t1)−φ (t0,0,0, t1)+φ (t0, t1,0,0))
−(φ (0, t0, t1,0)−φ (t0,0, t1,0)+φ (t0, t1,0,0))

which equals 0.
Now suppose φ ∈ Sp+1 (X) , p+1 > 2. I will indicate the position of various entries in

the following by an index written above it.

∂φ (t0, ..., tp)≡
p+1

∑
i=0

(−1)i
φ

(
0
t0, ...,

i
0,

i+1
ti , ...,

p+1
tp

)

= φ (0, t0, ..., tp)+(−1)1
φ (t0,0, t1, ..., tp)+

p−1

∑
i=2

(−1)i
φ

(
0
t0, ...,

i
0,

i+1
ti , ...,

p+1
tp

)
+(−1)p+1

φ (t0, ..., tp,0)+(−1)p
φ (t0, ...,0, tp) (1.1)

Then doing another ∂ , the first two terms and the last two will cancel. These give

(−1)0
φ (0,0, t0, ..., tp−1)+(−1)1

φ (0,0, t0, ..., tp−1)

and
(−1)p+1 (−1)p

φ (t0, ...,0,0)+(−1)p (−1)p
φ (t0, ...,0,0)

while the middle term in 1.1 will consist of sums of the form φ (t0, ...,0, ...,0, ...tp−1) multi-
plied by −1 raised to a power where the first 0 is in position r and the second is in position
s. There will be a pair of these. One is of the form φ (t0, ...,0, ...,0, ...tp−1)(−1)r+s and the
other is of the form φ (t0, ...,0, ...,0, ...tp−1)(−1)r+s−1 so these cancel and the result is that
there is nothing left. The functions just cancelled out. This is what we mean by 0. ■
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A.2 The Homology Groups
Definition A.2.1 A cycle in Sn (X) will be c such that ∂c = 0. The set of all cycles will be
denoted by Zn (X). Also c will be a boundary if there exists ψ ∈ Sn+1 (X) ,ψ = ∑η nη η

such that c = ∂ψ. Boundaries are denoted as Bn (X). It follows from the above lemma that
Bn (X)⊆ Zn (X) . Note that S0 (X) = Z0 (X) because for any φ ∈ S0 (X) ,∂φ = 0.

So what is this referring to? Can we consider a picture which would depict or give some
meaning to the ideas of these definitions? Let X =R2. The following would be a picture of
the image of a cycle. In this picture the φ i are such that as (t0, t1) goes from (1,0) to (0,1)
the motion of φ i (t0, t1) is counter clockwise around the solid curve. It depicts some arcs
strung together to go around something, ending where it started.

φ 1(t0, t1)

φ 2(t0, t1)

φ 3(t0, t1)
φ 4(t0, t1)

ψ1(t0, t1, t2)

ψ2(t0, t1, t2)

φ 2(1,0)

φ 2(0,1)
φ 3(0,1)

In this picture (t0, t1)→ φ i(t0, t1) gives the curved lines shown and this is a cycle be-
cause

∂ (φ 1 +φ 2 +φ 3 +φ 4)≡ φ 1 (1,0)−
=φ2(1,0)
φ 1 (0,1)+φ 2 (1,0)−

=φ3(1,0)
φ 2 (0,1)

+φ 3 (1,0)−
=φ4(1,0)
φ 3 (0,1)+φ 4 (1,0)−

=φ1(1,0)
φ 4 (0,1) = 0

Notice how this being a cycle in this special case includes orientation in this observation.
Assuming motion around the two curvy triangles having the dotted line as one side is
counter clockwise, ∂ (ψ1 +ψ2) would be a boundary which we could regard as essentially
the same as the original cycle. Think of motion along the shared side canceling. More
generally, if you have two cycles whose difference is a boundary, we will regard these as
equivalent. This leads to the definition of homology groups.

Definition A.2.2 Hn (X) = Zn (X)/Bn (X) . Thus Hn (X) will be the equivalence classes
where two things are equivalent means their difference is a boundary. Hn (X) is called the
homology group. I will denote as [c] the element of Hn (X) which is determined by the cycle
c. As in linear algebra, we define addition by [c]+ [d]≡ [c+d].

The addition is well defined because if [c] = [ĉ] , [d] =
[
d̂
]

this means c− ĉ,d− d̂ are
both boundaries and so clearly c+d−

(
ĉ+ d̂

)
is also a boundary since ∂ is linear.

Lemma A.2.3 Suppose f : X → Y is continuous. Define

f# (φ)(t0, ..., tn)≡ f ◦φ (t0, ..., tn) .

Then f# : Sn (X)→ Sn (Y ) is the resulting homomorphism. Also, the following diagram
commutes.

Sn (X)
f#→ Sn (Y )

↓ ∂ ↓ ∂

Sn−1 (X)
f#→ Sn−1 (Y )
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We can define f∗ as a homomorphism of homology groups as follows: f∗ : Hn (X)→Hn (Y ).
f∗ [c]≡ [ f# (c)].

Proof: The first claim is obvious that f# (φ) ∈ Sn (Y ) . Thus, defining f# on the singular
simplices, it extends uniquely to a homomorphism on Sn (X).

f#

(
∑
φ

nφ φ

)
≡∑

φ

nφ f# (φ)

As to the diagram,

∂i f# (φ)(t0, ...tn−1)≡ ∂i ( f ◦φ)(t0, ..., tn−1)≡ ( f ◦φ)(t0, ...,0, ti, ..., tn−1)

and

f# (∂iφ)(t0, ..., tn−1)≡ f#φ (t0, ...,0, ti, ..., tn−1)≡ ( f ◦φ)(t0, ...,0, ti, ..., tn−1)

Consider the claim about f∗ as a homomorphism of homology groups. If [c] = [ĉ] , is
it true that [ f#c] = [ f#ĉ]? Since [c] = [ĉ] , this means c− ĉ is a boundary. Say c− ĉ = ∂d.
Then

f#c− f#ĉ = f# (c− ĉ) = f# (∂d) = ∂ f# (d)

and so it is indeed the case that [ f#c] = [ f#ĉ] because the above difference is a boundary.
Then with this being well defined, it is clear that f∗ is a homomorphism. ■

It appears that one could simply let f# have the same meaning as f∗ but it looks to me
like this new notation is preferred.

Then what if f : X → Y is a homeomorphism? In this case, f is one to one and onto
and it and its inverse are continuous. Thus we have the following corollary which says
that homeomorphisms lead to isomorphisms of homology groups.This is fairly interesting
because it connects a topological concept to one which is purely algebraic. Thus if you
knew that two homology groups are not isomorphic, then you would also know that the
two topological spaces are not homeomorphic.

Corollary A.2.4 Let f : X → Y be a homeomorphism. Then f∗ : Hn (X)→ Hn (Y ) is an
isomorphism, a homomorphism which is one to one and onto and its inverse is also a
homomorphism which is one to one and onto.

Theorem A.2.5 Let X ̸= /0 be pathwise connected meaning that if x,y are two points of
X , there is a continuous map from σ1 denoted as φ such that φ ((1,0)) = x,φ ((0,1)) = y.
Then H0 (X) is isomorphic to Z the additive group of the integers.

Proof: S0 (X) consists of mappings φ which take 1 = σ0 to points of X so we could
essentially identify S0 (X) with the points of X . Also Z0 (X) = S0 (X) by definition since
∂ maps all things in S0 (X) to 0. Pick x ∈ X . Let ψφ be the 1 simplex which “goes from”

φ (1) to x a point of X so ∂

(
ψφ

)
= φ (1)− x = φ − x. Then

∑
φ

nφ φ = ∑
φ

nφ (φ − x)+

(
∑
φ

nφ

)
x = ∂

(
∑
φ

nφ ψφ

)
+

(
∑
φ

nφ

)
x
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Let α : S0 (X)→ Z be defined as α
(
∑φ nφ φ

)
≡ ∑φ nφ . Thus ∑φ nφ φ is a boundary if

ker(α) = 0 so ker(α)⊆ B0 (X). Next consider α acting on a boundary.

α

(
∂

(
∑
ψ

nψ ψ

))
= α

(
∑
ψ

nψ

(
a 0 simplex
ψ (1,0) −

a 0 simplex
ψ (0,1)

))
= 0

since nψ −nψ = 0 so B0 (X) ⊆ ker(α). Thus α is onto Z obviously, is a homomorphism,
and ker(α) = B0 (X) so Z0 (X)/B0 (X)≈ Z. The isomorphism is α̂ ([c])≡ α (c). ■

Here and elsewhere, the notation ≈ means isomorphic. That is there is a one to one
onto homomorphism with inverse also a homomorphism.

The tendency is to simply state that Z0 (X)/B0 (X) = Z because they are isomorphic
and it seems to be all about algebraic considerations.

Definition A.2.6 Let X be a topological space. We can say x∼ y means there is a continu-
ous curve in X from x to y. This is clearly an equivalence relation. The equivalence classes
are called path components.

Definition A.2.7 When we have subgroups Gα ,α ∈ A of a free Abelian group G, ∑α∈A Gα

signifies all finite sums gα1 +gα2 + · · ·+gαm where gα j ∈Gα j and if two of these sums are
equal, then the corresponding gαk are equal. ∑α∈A Gα is a new group. If you have

gα1 +gα2 + · · ·+gαm , gα1 +gβ 2
+ · · ·+gβ n

and you wanted to add them, you would get

2gα1 +gα2 + · · ·+gαm +gβ 2
+ · · ·+gβ n

One could define a group ∏α∈A Gα with the understanding that addition is componentwise,
and then this direct sum ∑α∈A Gα is the subgroup of this product which involves only finitely
many components being nonzero.

Proposition A.2.8 Let Xα ,α ∈ A be the path components of X. Then

Hn (X) = ∑
α∈A

Hn (Xα) .

Proof: Let φ be an n simplex. Then since σn is path connected, φ (σn) is contained
in some Xα and has empty intersection with Xβ for any β ̸= α . Thus if you have any c
in Sn (X) which is a cycle, so c = ∑φ nφ φ , you can split this sum into finitely many pieces
according to which Xα contains the image of φ . Thus c = ∑

m
i=1 ci where the simplices in ci

have values in Xα i . Then each ci must also be a cycle. To see this note that ∂iφ (σn−1) is
contained in one of these Xα , the same one which contains φ (σn). Also note that ∂c = 0
amounts to having |∂c| = /0 where |∂φ | denotes the points of φ (σn−1) a path connected
set. When this happens, I will say that c is supported in Xα . How do we obtain that c is
a cycle? ∂c must involve integer multiples of φ (t0, ...,0, ti, ..., tn−1) and these will cancel.
However, all of t0, ti, ..., tn−1→ φ (t0, ...,0, ti, ..., tn−1) describe path connected sets so each
of these sets φ (σn−1) is contained in a single Xα . Hence, if ∂c = 0, then each ∂ci = 0 also.

Now suppose d = ∂b. Then b = ∑ψ nψ ψ where each ψ (σn) is contained in a single Xα

and in particular, |∂ψ| ⊆ Xα . Thus ∂b = d = ∑ψ nψ ∂ψ where |∂ψ| , |ψ| are contained in
one of those Xα . Thus the boundaries are of the same form d = ∑ψ nψ ∂ψ where ψ has all
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values in a single Xα . If c, c̃ differ by a boundary, so c− c̃= ∂b, then b= b1+ · · ·+bm where
each

∣∣b j
∣∣ is contained in a single Xα j , j = 1,2, ...,m. It follows that the ci, c̃i just described,

those supported in Xα i satisfy c j− c̃ j = ∂b j and so we can define Hn (X) = ∑α∈A Hn (Xα).
In other words, if ci is a boundary supported on Xα i then it is the boundary of some bi
supported on Xα i since the boundaries of the other b j will not intersect Xα i . ■

Next is something pretty interesting in the case of a convex topological space mean-
ing that if x,y ∈ X , then it makes sense to form xt + y(1− t) ∈ X for t ∈ [0,1] and + is
continuous from X×X to X . Here is a picture which suggests the construction used.

x θ(t0, ..., tn+1) φ(t0, ..., tn)

Theorem A.2.9 Let X be convex. For all n > 0,Hn (X) = 0. Also, there exists a map
T : φ → θ where φ is a singular n simplex and θ is a singular n+1 simplex. This map can
be obtained from a simple formula for n≥ 0. For X convex cycles and boundaries are the
same for n > 0. Also for φ a simplex, φ = ∂T φ +T ∂φ where T denotes the homomorphism
from extending T to all of Sn (X).

Proof: For n > 0 and φ ∈ Sn (X). Then define θ in Sn+1 (X) as follows.

θ (t0, ..., tn, tn+1)≡

{
(1− t0)φ

(
t1

(1−t0)
, t2
(1−t0)

, ...,
tn+1
(1−t0)

)
+ t0x if t0 < 1

x if t0 = 1

Note that we assume ∑
n+1
j=0 t j = 1 each t j ≥ 0. Therefore, this makes perfect sense because

∑
n+1
j=1 t j = 1− t0 and so ∑

n+1
j=1

t j
(1−t0)

= 1. The thing which might not be clear is that this
θ is continuous. There is clearly no problem at any point of σn+1 where t0 < 1 so let(
tn
0 , ..., t

n
n , t

n
n+1
)
→ (1, t1, ..., tn+1) . Then, since the sum is always 1, it follows that tn

0 → 1
and ∑

n+1
j=1 tn

j → ∑
n+1
j=1 t j = 0. Also each t j ≥ 0 so they each converge to 0. The set φ (σn) is

bounded and so

(1− t0)φ

(
t1

(1− t0)
,

t2
(1− t0)

, ...,
tn+1

(1− t0)

)
→ 0

and tn
0 x→ x. Thus this is indeed continuous.

Let T φ ≡ θ and T a homomorphism. Thus ∂0T φ = φ . Also ∂1θ (t0, ..., tn) =

θ (t0,0, t1, ..., tn) ≡

{
(1− t0)φ

(
0, t1

(1−t0)
, ..., tn

(1−t0)

)
+ t0x, t0 < 1

x for t0 = 1

and ∂2T φ (t0, ..., tn)≡ θ (t0, t1,0, t2, ..., tn)

=

{
(1− t0)φ

(
t1

(1−t0)
,0, t2

(1−t0)
, ..., tn

(1−t0)

)
+ t0x, t0 < 1

x for t0 = 1
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One sees the pattern from this. Now

∂0φ (t0, ..., tn−1) ≡ φ (0, t0, ..., tn−1) ,

∂1φ (t0, ..., tn−1) ≡ φ (t0,0, t1, ..., tn−)

Thus

T ∂0φ (t0, ..., tn)≡

{
(1− t0)φ

(
0, t1

1−t0
, ..., tn

1−t0

)
+ t0x if t0 < 1

x if t0 = 1

T ∂1φ (t0, ..., tn) =

{
(1− t0)φ

(
t1

1−t0
,0, t2

(1−t0)
, ..., tn

1−t0

)
+ t0x if t0 < 1

x if t0 = 1

etc. That is, T ∂0φ = ∂1T φ and in general, T ∂i−1φ = ∂iT φ until T ∂nφ = ∂n+1T φ .
Then ∂T φ +T ∂φ = φ +∑

n+1
i=1 (−1)i

∂iT φ +∑
n
i=0 (−1)i T ∂iφ

= φ +
n+1

∑
i=1

(−1)i
∂iT φ +

n+1

∑
i=1

(−1)i−1 T ∂i−1φ

= φ +
n+1

∑
i=1

(−1)i
∂iT φ +

n+1

∑
i=1

(−1)i−1
∂iT φ = φ

Thus ∂T +T ∂ is the identity. It follows that if φ ∈ Zn (X) , then φ = ∂T φ +T ∂φ = ∂T φ

and so φ is a boundary. Therefore, Zn (X)/Bn (X) = 0 because [φ ] = 0 for all φ ∈ Zn (X).
Boundaries and cycles are the same thing for n > 0 and X convex. ■

Definition A.2.10 A set is star shaped if there is a special point x called the star center
such that segments from x to other points are contained in the set.

An examination of the proof of the above shows the following corollary.

Corollary A.2.11 Let X ⊆Rp be star shaped with star center x. Then if n > 0,Hn (X) = 0.

x

The above picture is of a star shaped set which is definitely not convex.

A.3 Homotopy
This is about homology groups of homotopic maps.

Lemma A.3.1 Let X ,Y be convex and let g0,g1 : X → Y be given continuous functions.
Then for each n > 0 there exists T̂ : Sn (X)→ Sn+1 (Y ) such that

g0#−g1# = T̂ ∂ +∂ T̂
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Proof: From Theorem A.2.9, if φ ∈ Sn (Y ) there exists a homomorphism on Sn (Y )
called T̃ such that φ = ∂ T̃ φ + T̃ ∂φ . Here T̃ : Sn (Y )→ Sn+1 (Y ). Now if φ ∈ Sn (X) , it
follows that g0#φ −g1#φ ∈ Sn (Y ) and so

g0#φ −g1#φ = T̃ ∂ (g0#φ −g1#φ)+∂ T̃ (g0#φ −g1#φ)

= T̃ ∂ (g0#−g1#)φ +∂ T̃ (g0#−g1#)φ

= T̃ (g0#−g1#)∂φ +∂ T̃ (g0#−g1#)φ

Let T̂ ≡ T̃ (g0#−g1#) . ■

Definition A.3.2 Two functions f ,g : X→Y are homotopic if there is a continuous function
F : X× I→ Y for I = [0,1] such that f (x) = F (x,0) ,g(x) = F (x,1).

To begin with, consider something simpler than general homotopic maps. Let g0,g1 :
σn → σn× I,g0 (x) ≡ (x,0) and let g1 (x) ≡ (x,1). These are obviously homotopic maps
because you could just let F (x, t) = gt (x) ≡ (x, t) so this is essentially the simplest case.
First is some notation of a technical nature. Now here is a useful lemma.

Lemma A.3.3 Let τn : σn→ σn be a singular simplex defined by

τn (t0, ..., tn) = (t0, ..., tn)

Then if φ is a singular simplex in X , then φ # (τn) = φ .

Proof: φ # (τn)≡ φ ◦ τn = φ . ■
We have in mind the specific examples of g0 and g1 mentioned above. Using X = σn

and Y = σn× I we have obtained the following.

Lemma A.3.4 Let gn
0 (x) = (x,0) ,gn

1 (x) = (x,1) for x ∈ σn,n≥ 0. Then there exist homo-
morphisms T̂ mapping Sn (σn) to Sn (σn× I) such that on Sn (σn) ,

∂ T̂ (d)+ T̂ (∂d) = gn
0# (d)−gn

1# (d) (1.2)

Note how I put an n on the gi. This is because I am about to consider the case of
g0 (x) = (x,0) ,g1 (x) = (x,1) for X an arbitrary topological space maybe not convex.

Lemma A.3.5 Let gn
0 (x) = (x,0) ,gn

1 (x) = (x,1) ,x ∈ σn, and let gn
0 (x) = (x,0) ,gn

1 (x) =
(x,1). Then for φ a simplex in Sn (X) ,

(φ × id)#
(
gn

j#
)
(τn) = g j# (φ) (1.3)

Proof: By definition, gn
j# (φ)≡ gn

j ◦φ . Thus

gn
j# (φ)(t) =

{
gn

j (φ (t)) = (φ (t) ,0) if j = 0
gn

j (φ (t)) = (φ (t) ,1) if j = 1
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Now consider the left side of 1.3.

(φ × id)#
(
gn

j#
)
(τn)(t) ≡ (φ × id)

(
gn

j (τn (t))
)

≡ (φ × id)
(
gn

j (t)
)

=

{
(φ × id)(t,0) if j = 0
(φ × id)(t,1) if j = 1

=

{
(φ (t) ,0) if j = 0
(φ (t) ,1) if j = 1

= g j# (φ)(t)

These are the same so this proves the lemma. ■
I need to define T according to having the following diagram commute where φ is a

singular simplex. Then I can extend to make T a homomorphism on all of Sn (X) where T̂
is the homomorphism of 1.2.

Sn (X)
T→ Sn+1 (X× I)

↑ φ # ↑ (φ × id)#

Sn (σn)
T̂→ Sn+1 (σn× I)

(1.4)

I just showed that the following diagram commutes.

Sn (X)
g j#→ Sn (X× I)

↑ φ # ↑ (φ × id)#

Sn (σn)
gn

j#→ Sn (σn× I)

Theorem A.3.6 Let T be defined as follows for φ a simplex.

T (φ)≡ T (φ # (τn))≡ (φ × id)# T̂ (τn)

where T̂ is the homomorphism of 1.2. Then

g0# (φ)−g1# (φ) = ∂T (φ)+T ∂ (φ)

Proof: From 1.4,

∂T (φ)+T ∂φ = ∂
(
(φ × id)# T̂ (τn)

)
+T ∂φ # (τn)

= (φ × id)# ∂ T̂ (τn)+T φ #∂ (τn)

= (φ × id)# ∂ T̂ (τn)+(φ × id)# T̂ ∂τn

= (φ × id)#
(
∂ T̂ (τn)+ T̂ ∂ (τn)

)
= (φ × id)# (g

n
0# (τn)−gn

1# (τn))

From 1.3, this equals g0# (φ)−g1# (φ). ■
Why is this significant? Suppose ∂φ = 0. Then from this theorem, g0# (φ)− g1# (φ)

equals a boundary and so [g0# (φ)−g1# (φ)] , the equivalence class in Hn (X× I) is 0. This
is called g0# and g1# are homologous and here X is just a topological space.

With this preparation, it is time to consider the theorem about homotopic maps. So let
F : X× I→ Y be continuous. Consider the following diagram which will help to complete
the argument.
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X× I Y

F ◦g0

F ◦g1

g0

g1

F

From Theorem A.3.6 we know there is a homomorphism T for each Sn (X) which maps
Sn (X) to Sn+1 (X× I) such that

∂T (φ)+T ∂ (φ) = g0# (φ)−g1# (φ)

Thus we can do the homomorphism F# to both sides. Then

F#∂T (φ)+F#T (∂φ) = F#g0# (φ)−F#g1# (φ)

But F#g0# = (F ◦g0)# similar with F#g1#. Therefore, if F ◦g0 = f0 and F ◦g1 = f1 so these
are the two homotopic maps, it follows that

∂F#T (φ)+F#T (∂φ) = f0# (φ)− f1# (φ)

and this shows that for S the homomorphism F#T,

∂Sφ +S∂φ = f0# (φ)− f1# (φ)

This shows the main result which is the following.

Theorem A.3.7 Let f0 and f1 be continuous maps from X to Y which are homotopic. Then
there exists a homomorphism S mapping Sn (X) to Sn+1 (Y ) such that for all φ an n simplex,

∂Sφ +S∂φ = f0# (φ)− f1# (φ) .

Since it doesn’t matter which n is used in this relation between f0#, f1# in the above
theorem, we say that this is a “chain homotopy”. Note that if these conditions hold, then
if c is a cycle, then it is a boundary and so [ f0# (c)− f1# (c)] = 0. f0#− f1# maps cycles in
Sn (X) to boundaries in Sn (Y ).

Definition A.3.8 If f : X → Y and g : Y → X and f ◦ g and g ◦ f are both homotopic to
the identity map on Y and X respectively, then these two are called homotopy inverses and
X ,Y are said to have the same homotopy type.

Recall Corollary A.2.4 which said that if X ,Y are homeomorphic with homeomorphism
f , then f∗ is an isomorphism of homology groups. In fact it is enough to assume less. This
leads to the following theorem.

Theorem A.3.9 Let f ,g be homotopy inverses as just described. Then f∗ and g∗ are iso-
morphisms of the homology groups Hn (X) and Hn (Y ). Recall f∗ [c]≡ [ f#c] .

Proof: From Theorem A.3.7 there is a chain homotopy between (g◦ f )# and id#. Also,
from the definition of # we see that (g◦ f )# = g# f# and so there is a homomorphism S with
∂S (φ)+S∂φ = g# f# (φ)− id# (φ) for any n simplex φ . Thus if ∂c = 0 so c is a cycle, then
g# f# (c)− id# (c) is a boundary. Hence, when considered as maps on homology groups,
g∗ f∗ = id∗ on Hn (X) . Similarly f∗g∗ = id∗ on Hn (Y ) which shows that f∗ and g∗ are
inverses as maps between homology groups and so these maps are both isomorphisms. ■

Here is an interesting case of the above. First is a definition. Following Vick,
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Definition A.3.10 Suppose A⊆ X where X is a topological space. Then A is a retract of X
if there exists g : X → A such that g is continuous and g(x) = x for all x ∈ A. This function
g is called a retraction. Thus this can be written as g◦ i is the identity map on A, where i is
the inclusion map of A into X. If you can turn it around and have i◦g : X → X homotopic
to the identity, then A is called a deformation retract of X.

The next lemma will be used quite a bit in considerations involving spheres.

Lemma A.3.11 Let Sn−1 denote ∑
n
k=1 x2

i = 1. Then Sn−1 is a deformation retract of Rn \
{0} and Hm

(
Sn−1

)
≈ Hm (Rn \{0}). In fact, letting g(x) ≡ x

|x| and i be the identity, both
g◦ i and i◦g are homotopic to the identity.

Proof: Let i be the inclusion map of Sn−1 into Rn \ {0} and define for x ∈ Rn \ {0}
the unit vector g(x) ≡ x

|x| . Then g◦ i is the identity on Sn−1. Consider t (g◦ i)+ (1− t) id,
t ∈ [0,1]. This is a homotopy of g ◦ i and id on Sn−1. In fact their sum equals id so it
maps Sn−1 to Sn−1. Next consider t (i◦g) + (1− t) id, t ∈ [0,1] . This is a homotopy of
id and (i◦g) on Rn \ {0} because (t (i◦g)+(1− t) id)(Rn \{0}) ⊆ Rn \ {0}. It follows
then from Theorem A.3.9 that i∗g∗ and g∗i∗ are both the identity on appropriate homology
groups so Hm

(
Sn−1

)
≈ Hm (Rn \{0}). ■

Then the following Corollary to the above theorem is obtained.

Corollary A.3.12 If i : A→ X is the inclusion of a retract A of X then for each n, i∗ :
Hn (A)→Hn (X) is a one to one homomorphism onto a direct summand. If A is a deforma-
tion retract of X , then i∗ is an isomorphism.

Proof: We are assuming that g◦ i is the identity map on A where g : X→A. In particular,
g◦ i and id are homotopic on A. Also g∗ (γ) ∈ Hn (A) because g : X → A.

Therefore, from Theorem A.3.7 g∗i∗ = id∗ = identity on Hn (A). Therefore, i∗ has a left
inverse, namely g∗, and so it is one to one on Hn (A). So consider i∗ : Hn (A)→ Hn (X) . If
γ ∈ Hn (X) , then

γ =
∈image of i∗
i∗g∗ (γ) +(γ− i∗g∗ (γ))

The first term is in i∗ (Hn (A)). In that second term,

g∗ (γ− i∗g∗ (γ)) = g∗ (γ)−g∗i∗g∗ (γ) = g∗ (γ)−g∗ (γ) = 0

Thus every element of Hn (X) is the sum of one in the image of i∗ and one in the ker(g∗).
Suppose now that α is in the image of i∗ and also in ker(g∗) . Then α = i∗β , g∗ (α) = 0.
Then we have 0 = g∗i∗β , but this means β = 0 since g∗i∗ = id∗ . Now it follows that α = 0
also and so this is a direct sum Hn (X) = i∗ (Hn (A))⊕ker(g∗) .

In the second case, we are given from Theorem A.3.7 that i∗ is an isomorphism. ■

A.4 The Boundary Map on Geometric Simplices
Let [v0, · · · ,vn] be a simplex in Rn+1, consisting of the convex combinations of the vk,
namely, expressions of the form ∑

n
k=0 tkvk where ∑k tk = 1 and each tk ≥ 0. This will be

called a geometric n simplex.
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Definition A.4.1 Then there is a boundary operator defined as follows

∂̂ ([v0, · · · ,vn])≡
n

∑
i=0

(−1)i [v0, · · · , v̂i, · · · ,vn]

Here this means we delete v̂i from the list of vertices and consider convex combinations of
the rest. The i refers to position in the list from the left. Thus if you delete vi the vi+1 which
follows before deleting it is no longer in the (i+1)th position. It is now in the ith. The sum
means to consider these as elements of a free Abelian group. ∂̂ ([v0])≡ 0.

The fundamental result about ∂̂ is that ∂̂ ∂̂ = 0 where 0 will be the zero element in the
free Abelian group just mentioned.

Proposition A.4.2 ∂̂ 2 ([v0, · · · ,vp]) = 0 whenever p≥ 1.

Proof: This is obvious from the definition if p = 1,0. Suppose p ≥ 2. Then from the
definition, ∂̂ 2 ([v0, · · · ,vp]) =

p

∑
i=1

i−1

∑
j=0

(−1)i (−1) j [v0, · · · ,v j−1,v j+1, · · · ,vi−1,vi+1, · · · ,vp
]

+
p−1

∑
i=0

p

∑
j=i+1

(−1)i (−1) j−1 [v0, · · · ,vi−1,vi+1, · · · ,v j−1,v j+1, · · · ,vp
]

There are C (p,2) pairs of deleted vectors and the two terms found in each pair occur with
opposite sign. ■

I will generally use ∂̂ for the boundary map on any n simplex for any n. However, ∂̂

will also be a homomorphism on the free Abelian group of n simplices as follows:

∂̂

(
∑
σ

nσ σ

)
≡∑

σ

nσ ∂̂ (σ)

The free Abelian group will consist of ∑σ nσ σ where σ is some geometric simplex and
this is a finite sum in which there are only finitely many nonzero nσ .

A.5 The Subdivision Operation
Homology groups are of the form Zn (X)/Bn (X), cycles mod boundaries. What this section
is all about is the following problem. Given c ∈ Zn (X), obtain ĉ as ∑i niφ i where each φ i
has φ i (σ p) with diameter less than ε and that also [c] = [ĉ]. First we consider geometric
simplices and after that we extend to the general case.

Next is the definition of a cone which will be a new possibly higher dimensional simplex
made from a single point b and the original simplex. This will lead to a triangulation of
an original simplex [v0, · · · ,vm]. Recall that this symbol means the convex combinations
of {v0, · · · ,vm} that is, ∑

m
i=0 tivi where each ti ≥ 0 and ∑i ti = 1. I will assume that the v j

are in a convex space C. Thus it will make perfect sense to consider things like convex
combinations. Then later I will extend to arbitrary spaces.
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Definition A.5.1 In general, for a simplex [v0, · · · ,vm] , the cone determined by the simplex
and b will just be [b,v0, · · · ,vm] , denoted as Cb [v0, · · · ,vm]. The order is very important.
You place b at the beginning. This is keeping track of orientation. Also make Cb a homo-
morphism on Gn (C), the free Abelian group of these geometric simplices contained in the

convex set C. by defining Cb ∑σ mσ σ ≡ ∑σ mσCbσ . In particular Cb

(
∂̂ ([v0, · · · ,vm])

)
is

∑
m
i=0 (−1)i [b,v0, · · · , v̂i, · · · ,vm] .

The following is a fundamental observation about this cone operation and the boundary
homomorphism. It is illustrated in the following picture. If b is not in σ̂ , regard this picture
as a view from the top

b∂̂ σ̂ bCb∂̂ σ̂ b∂̂Cb∂̂ σ̂

Lemma A.5.2 ∂̂Cb∂̂ [v0, · · · ,vm] = ∂̂ [v0, · · · ,vm] . More generally if c is a formal sum of
these geometric simplices, ∂̂Cb∂̂c = ∂̂c.

Proof: Before proving this, here are a couple of examples. ∂̂Cb∂̂ [v0] = 0= ∂̂ [v0].
Now consider the case of a 1 simplex.

∂̂Cb∂̂ [v0,v1] = ∂̂ ([b,v1]− [b,v0]) = [v1]− [b]− ([v0]− [b])

= [v1]− [v0] = ∂̂ [v0,v1]

Now consider the general case. On the left is ∂̂Cb ∑
m
i=0 (−1)i [v0, · · · , v̂i, · · · ,vm] where the

hat indicates vi is missing. Then this equals

m

∑
i=0

(−1)i
∂̂ [b,v0, · · · , v̂i, · · · ,vm] (1.5)

In this last sum, when ∂̂ is done to the inside, we get a sum of pairs

(−1) j (−1)i [b,v0, · · · , v̂ j, · · · , v̂i, · · · ,vm] ,(−1) j−1 (−1)i [b,v0, · · · , v̂i, · · · , v̂ j, · · · ,vm]

which cancel when summed. What is left of 1.5 in which the terms do not have b consists
of ∂̂ [v0, · · · ,vm] . The last claim follows from letting Cb be a homomorphism defined on
the free group of geometric simplices. ■

Now I will define the subdivision operator. This will also be a homomorphism on the
free Abelian group generated by the geometric simplices.

Definition A.5.3 Ŝ ([v0]) ≡ [v0] . This defines the subdivision map on 0 simplices. We
can now extend Ŝ as a homomorphism on the free group of geometric simplices. Suppose
the homomorphism Ŝ has been obtained up to n− 1. Let [v0, · · · ,vn] be a simplex. The
barycenter is defined as

b≡ 1
n+1

n

∑
k=0

vk
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It is a point of [v0, · · · ,vn] because it is a convex combination of the vk. It is called the
barycenter because it is at the very center. Then for c an n simplex and b its barycenter, say
∂̂c ≡ ∑

m
i=1 aici,ai an integer ±1 and ci is of the form [v0, · · · ,vi−1,vi+1, · · · ,vn] an n− 1

simplex, then Ŝ (c)≡Cb

(
Ŝ
(

∂̂c
))

where b is the barycenter of c. We extend Ŝ to make
it a homomorphism on the free group of geometric simplices.

Here is how the subdivision operator and boundary interact. Here is how the subdivision
operator and boundary interact

Theorem A.5.4 ∂̂Ŝ (c) = Ŝ
(

∂̂c
)
.

Proof: This is clearly true for n = 0. In case n = 1, say c = [v0,v1]. Then the right is
clearly [v1]− [v0] and the left is

∂̂

(
CbŜ

(
∂̂ [v0,v1]

))
= ∂̂

(
CbŜ ([v1]− [v0])

)
= ∂̂ (Cb ([v1]− [v0]))

= ∂̂ ([b,v1]− [b,v0]) = [v1]− [v0]

Assume then that Ŝ is a homomorphism defined up to n− 1 for which the conclusion
holds. Let c be a geometric n simplex. Then ∂̂Ŝ (c)≡ ∂̂CbŜ

(
∂̂c
)
. Say c = [v0, · · · ,vn]

so ∂̂c = ∑
n
i=0 (−1)i [v0, · · · ,vi−1,vi+1, · · · ,vn] , and so

Ŝ ∂̂c =
n

∑
i=0

(−1)i [bi,v0, · · · ,vi−1,vi+1, · · · ,vn]

where bi is the barycenter of some boundary simplex. Then when Cb is done to this last
expression, the individual terms in the resulting sum are of the form

(−1)i [b,bi,v0, · · · ,vi−1,vi+1, · · · ,vn] .

When ∂̂ is done to sum of these, the terms not having b reduce to

n

∑
i=0

(−1)i [bi,v0, · · · ,vi−1,vi+1, · · · ,vn]

which yields Ŝ
(

∂̂c
)

. For those which do have b, it reduces to Cb

(
∂̂Ŝ

(
∂̂c
))

which, by

induction is the same as Cb

(
Ŝ
(

∂̂ ∂̂c
))

= 0. ■

Note that Ŝ
(

∂̂c
)

is composed of n− 1 simplices which are contained in ∂̂c if c is
composed of n simplices. Thus n−1 simplices on the “interior” disappeared.

What is accomplished by this subdivision applied to a simplex S? It yields a chain
whose union is S for which each simplex in the chain is small. If we do this subdivision
operation enough, we can make the resulting simplices as small as desired. Here is why: If
you have an n simplex [x0, · · · ,xn] , its diameter is the maximum of |xk−xl | for all k ̸= l.
Consider

∣∣b−x j
∣∣ . It equals∣∣∣∣∣ n

∑
i=0

1
n+1

(xi−x j)

∣∣∣∣∣=
∣∣∣∣∣∑i ̸= j

1
n+1

(xi−x j)

∣∣∣∣∣≤ n
n+1

diam(S) .
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The subdivision operator involves making a cone with a barycenter and each time you do
it, another factor of no more than n

n+1 is introduced. Therefore, all simplices in S mS
are eventually as small as desired. By induction, S is the sum of simplices which each
have diameter less than ε. However, this delivers an order of the vertices in the geometric
simplices obtained, not just their size. Recall that b always goes in the first slot. This is
really why Theorem A.5.4 holds. Note that this operator chops up all simplices of order k
for each k ≤ n.

The following corollary comes from the above Theorem A.5.4.

Corollary A.5.5 For any c an element of the free group of geometric p simplices,

∂̂Ŝ m (c) = Ŝ m
(

∂̂c
)
.

Let σ p denote [v0, · · · ,vp] where {vk−v0}p
k=1 are linearly independent and these ver-

tices are at least in Rp+1. For example they could be (e1, · · · ,en+1) . I just described Ŝ as
a homomorphism on the free group of oriented geometric simplices. The word “oriented”
is included because the process also specifies the order of the vertices in each simplex.

Lemma A.5.6 Let Gn (C) denote the free Abelian group of these geometric simplices.
There exists a homomorphism T̂ : Gn (C)→ Gn+1 (C) such that ∂̂ T̂ + T̂ ∂̂ = Ŝ − id .

Proof: We prove this by induction. If T̂ = 0, then this T̂ works on G0 (C) because
Ŝ (c) = c for c ∈ G0 (C). Suppose then that you have found a homomorphism which
works for k ≤ n− 1. Then it is desired to have T̂ such that ∂̂ T̂ (c)+ T̂

(
∂̂c
)
= Ŝ (c)− c

for c a geometric n simplex. By induction, and Corollary A.5.5,

∂̂ T̂
(

∂̂c
)
+ T̂

(
∂̂ ∂̂c

)
= Ŝ

(
∂̂c
)
− ∂̂c = ∂̂

(
Ŝ (c)− c

)
and so

0 = ∂̂

((
Ŝ (c)− c

)
− T̂

(
∂̂c
))

(1.6)

Define T̂ (c)≡Cb(c)

((
Ŝ (c)− c

)
− T̂

(
∂̂c
))

. Then

∂ T̂ (c) = ∂̂

(
Cb(c)

((
Ŝ (c)− c

)
− T̂

(
∂̂c
)))

Now in the right side there are terms which have b(c) and terms which don’t. As to the
ones which do, we get Cb(c)∂̂

((
Ŝ (c)− c

)
− T̂

(
∂̂c
))

= 0 from 1.6 and for those which

don’t, we get
(
Ŝ (c)− c

)
− T̂

(
∂̂c
)
. Therefore, with this definition of T̂ (c) ,∂ T̂ (c) =(

Ŝ (c)− c
)
− T̂ (∂c) . Then extend T̂ to a homomorphism on Gn (C). ■

Definition A.5.7 Let f : σ p→C where C is also a convex space. Then f is called affine if
it does the following: f (∑m

k=0 tkuk) = ∑
m
k=0 tk f (uk) whenever each tk ≥ 0 and ∑k tk = 1.

Definition A.5.8 When one knows the ordered vertices of a geometric simplex

[w0, · · · .wp]
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it follows that one knows also a unique affine simplex φ having φ (vi) =wi defined by

φ (t0, · · · , tp)≡
p

∑
k=0

tkφ (vk)≡
p

∑
k=0

tkwk

whenever ∑k tk = 1, tk ≥ 0. As to ∂iφ (t0, · · · , tp−1) , it follows that ∂iφ (σ p−1) equals

[w0, · · · ,0,wi+1, · · · ,wp]

which consists of ordered convex combinations of the vertices of [w0, · · · ,wp] with the wi
replaced with 0.

Lemma A.5.9 Let φ be given in the above definition on σ p with values in a convex set C
which contains

{
w0, · · · ,wp

}
. Then φ is an affine map.

Proof: Let ∑
m
j=1 s j = 1,s j ≥ 0 and consider points of σ p ∑

p
i=0 t j

i vi = u j. I need to
verify that φ

(
∑ j s ju j

)
= ∑ j s jφ (u j) . However,

φ

(
∑

j
s ju j

)
= φ

(
∑

j
s j

p

∑
i=0

t j
i vi

)
= φ

(
p

∑
i=0

(
∑

j
s jt

j
i

)
vi

)

=
p

∑
i=0

(
∑

j
s jt

j
i

)
φ (vi) =

p

∑
i=0

(
∑

j
s jt

j
i

)
wi

because ∑
p
i=0

(
∑ j s jt

j
i

)
= ∑ j s j ∑

p
i=0 t j

i = 1. Also

∑
j

s jφ (u j) = ∑
j

s jφ

(
p

∑
i=0

t j
i vi

)
≡∑

j
s j

p

∑
i=0

t j
i φ (vi) =

p

∑
i=0

(
∑

j
s jt

j
i

)
wi ■

Definition A.5.10 Denote by Ap (C) the affine singular simplices mapping σ p to C.

Observation A.5.11 Because of these observations, we can regard T̂ in Lemma A.5.6 as a
homomorphism mapping An (C) to An+1 (C). We can also regard Ŝ as a homomorphism on
An (C) which subdivides an affine singular simplex φ into affine singular simplices having
smaller image and in terms of An (C) we can replace ∂̂ with the standard boundary operator
∂ in Lemma A.5.6. It amounts to nothing more than replacing each geometric simplex
with a singular affine simplex, a mapping which has as its image the geometric simplex
preserving order of vertices obtained by the subdivision operation.

Definition A.5.12 Define for f affine, f# : An (C)→ An
(
C̃
)

as the extension of what was
just described to all of An (C).

Lemma A.5.13 Let f , C, C̃ be as in Definition A.5.12. Then ∂̂ f# = f#∂̂ . Also if b is the
barycenter of [v0, · · · ,vn] , then f (b) is the barycenter of f ([v0, · · · ,vn]) and f# : An (C)→
An
(
C̃
)
. As usual, f# is the homomorphism which acts on chains in An (C) as before.

Proof: Note that the composition of affine maps is affine. It suffices to verify this
lemma for a geometric simplex.

∂̂ f# ([v0, · · · ,vn])≡ ∂̂ ([ f (v0) , · · · , f (vn)])≡
n

∑
k=0

(−1)k
[

f (v0) , · · · , f̂ (vk), · · · , f (vn)
]
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f#∂̂ ([v0, · · · ,vn]) ≡ f#

(
n

∑
k=0

(−1)k [v0, · · · , v̂k, · · · ,vn]

)

≡
n

∑
k=0

(−1)k
[

f (v0) , · · · , f̂ (vk), · · · , f (vn)
]

and these are the same. As to the claim about the barycenter,

f (b) = f

(
n

∑
k=0

1
n+1

vk

)
=

n

∑
k=0

1
n+1

f (vk)

which is the barycenter of [ f (v0) , · · · , f (vn)] = f ([v0, · · · ,vn]). Then note that, as dis-
cussed earlier, one obtains a result on An (C) with ∂ in place of ∂̂ . ■

I will use Ŝ as the subdivision operator for either C̃ or C. Also I will use T̂ as de-
scribed above for either C or C̃. Now if f is an affine map f : C→ C̃ where C,C̃ are convex
spaces, it is also the case that f# commutes with T̂ and with Ŝ . Consider first Ŝ . Let
c ∈ Gn (C) be a chain in Gn (C). Then the geometric simplices corresponding to Ŝ (c) are
∑

n
i=0 (−1)i [b,u0, · · · ,0, · · ·un] where b is the barycenter. Then the geometric simplices

corresponding to f#

(
Ŝ (c)

)
would be ∑

n
i=0 (−1)i [ f (b) , f (u0) , · · · ,0, · · · , f (un)] Now

consider Ŝ ( f# (c)) = Ŝ ( f ◦ c) . The geometric simplices associated with this would in-
volve the barycenter of f (u0) , ..., f (un) which is 1

n+1 ∑i f (ui) = f
( 1

n+1 ∑iui
)
= f (b) .

Thus the geometric simplices associated will be the same as the above. Hence f#Ŝ = Ŝ f#
if f is affine. That f# commutes with T̂ is similar and follows from the observation that
since f is affine, f of a barycenter of some vectors equals the barycenter of f of these
vectors in the same way as just noted. Now, as noted above, this leads to the same results
for An (C) the chains of affine singular simplices. The following is a summary.

Lemma A.5.14 If f : C→ C̃ convex sets, f affine, the following hold:

f# (An (C)) ⊆ An
(
C̃
)
, f#T̂ = T̂ f#, f#Ŝ = Ŝ f#,

Ŝ ∂̂ = ∂̂Ŝ , ∂̂ T̂ + T̂ ∂̂ = Ŝ − id

Next is a specific example of an affine map from σ p to σ p.

Definition A.5.15 Do the subdivision operator Ŝ on [v0, · · · ,vp] multiple times to obtain
a small simplices {σ k}N

k=1 contained in σ p. Then for one of these σ k =
[
wk

0, · · · ,wk
p
]
,

define a map πk : σ p→ σ k ⊆ σ p by πk
(
∑

p
i=0 tivi

)
≡ ∑

p
i=0 tiwk

i where ti ≥ 0,∑i ti = 1. The
order of the vertices in σ k is determined by the construction in the subdivision operator.
Since πk is affine, we can regard πk as a homomorphism on An (σ p).

The above partition operator allows consideration of singular simplices of the form
φ ◦πk in which φ is a singular simplex, a continuous mapping defined on σ p having values
in some topological space X , not necessarily convex. These compositions will have “small”
image. It is important to use something like these to identify homology groups. One
wonders whether φ ∈ Sn (X) is homologous to φ # ∑k πk. Note that τn, the identity map on
σn is obviously an affine map.
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Definition A.5.16 For X an arbitrary topological space, let ψ be an n simplex. Let
πk be the affine map from σn to αk with the αk those simplices which result from the
subdivision operator. Then we can regard Ŝ (τn) as ∑k πk with the conclusion of Lemma
A.5.14 applying in terms of the An (C) . Then define S a subdivision homomorphism as
follows.

S ψ ≡ ψ#

(
∑
k

πk

)
≡ ψ#Ŝ (τn)≡∑

k
ψ ◦πk (1.7)

Also define a homomorphism T : Sn (X)→ Sn+1 (X) as follows:

T ψ = T ψ# (τn)≡ ψ#T̂ (τn) , so T ψ ≡ ψ#T̂ (1.8)

These are well defined thanks to Lemma A.5.14 which says it holds on An(C) for C convex.
Extend S and T as homomorphisms on Sn (X) .

Then we get the following proposition about T and S .

Proposition A.5.17 ∂T +T ∂ =S − id. Also ∂S =S ∂ and S mψ consists of a chain of
simplices whose image in X is ψ (α) for α as small as desired.

Proof: First,

∂S ψ ≡ ∂

(
ψ# ∑

k
πk

)
= ψ#∂

(
∑
k

πk

)
= ψ#

(
∑
k

∂πk

)

while

S ∂ψ ≡ (∂ψ)#

(
∑
k

πk

)
= ∂ψ#

(
∑
k

πk

)
≡ ψ#

(
∑
k

∂πk

)
For ∂ the boundary operator in Sn (X) , and using the fact that T is defined as a homo-

morphism on Sn (X) , and that ψ#∂ = ∂ψ#,

∂T ψ +T ∂ψ = (∂T ψ +T ∂ψ)(τn)≡
(
∂ψ#T̂ +∂ψ#T̂

)
(τn)

= ψ#
(
∂ T̂ +∂ T̂

)
(τn) = ψ#

(
Ŝ − id

)
(τn) = (S − id)(ψ)

and since T is a homomorphism, this shows what is desired.
The last claim follows from the earlier material applied to the geometric simplices

αk obtained from successive applications of the subdivision map. Let ψ be a singular n
simplex in Sn (X). ■

Doing S to both sides of ∂T +T ∂ = S − id yields ∂S T +S T ∂ = S 2−S which
can now be used to see that [S φ ] =

[
S 2φ

]
. Then continuing this way one sees that

[S mφ ] = [φ ] for φ a cycle.
Now here is a definition which will help to compute homology groups.

Definition A.5.18 Let U be a covering of X and let SU
n (X) consist of the subgroup of

Sn (X) generated by singular simplices φ with the property that φ (σn) is contained in
some set U ∈ U . Then Hn

(
SU

n (X)
)

will denote the homology group obtained as before
except now cycles and boundaries are with respect to SU

n (X) . We can do this because ∂φ ∈
SU

n−1 (X) if φ ∈ SU
n (X). Then Hn

(
SU

n (X)
)

will denote the usual thing. Letting ZU
n (X)
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consist of the free group generated by
{

φ ∈ SU
n (X) : ∂φ = 0

}
and letting BU

n (X) be those
c ∈ ZU

n (X) which are of the form c = ∂d for some d ∈ Sn+1 (X) ,

Hn

(
SU

n (X)
)
≡ ZU

n (X)/Bn (X)

Observation A.5.19 One should also observe the following. If U is a covering of X and
V is a covering of Y and f : X → Y is continuous with the property that for each U ∈U ,
f (U) is contained in some V ∈ V then f# : SU

n (X)→ SV
n (Y ) is a homomorphism.

Proposition A.5.20 Let K be a compact subset in a metric space and let U be an open
covering of K. Then there exists δ > 0 such that B(k,δ ) is contained in some U ∈ U for
every k ∈ K. This δ is called a Lebesgue number.

Proof: If δ does not exist, then for each n ∈ N there exists kn such that B
(
kn,

1
n

)
is

not contained in any single open set from U . However, since K is compact, there is a
subsequence, still denoted as kn which converges to k ∈ K. Now k ∈U for some U ∈ U
and since U is open, B(k,2ε)⊆U for some ε. Now for all n large enough, kn ∈ B(k,ε) and
so B(kn,ε)⊆U which is a contradiction. ■

Now here is the main result.

Theorem A.5.21 Let U be a covering of X such that {int(U) : U ∈U } which is denoted
as int(U ) is also a covering of X. Then for i the identity map, i∗ : Hn

(
SU

n (X)
)
→ Hn (X)

is an isomorphism. In fact, if c ∈ Hn (X) then there exists ĉ ∈ Hn
(
SU

n (X)
)

with [ĉ] = [c].

Proof: Let c be a cycle in Sn (X). From Proposition A.5.17, [c] = [S c] . By induction,
we have [c] = [S mc] . Say c = ∑φ nφ φ and, as observed, all the simplices ψ in the chain
S mc have the property that their images in X are of the form φ (α) where φ is one of
finitely many simplices in the cycle c and α is a set of sufficiently small diameter that
φ (α) must be contained in some int(U) provided m is sufficiently large. To see that m
exists, note that φ (σn) is compact so there exists a Lebesgue number for this compact
set with the covering U . When all the φ (α) are smaller than this number they are each
contained in a single int(U). ■

From this, it appears that we can compute Hn
(
SU

n (X)
)

and obtain Hn (X) because
the inclusion map is onto. Also note that, from the construction, the geometric simplices
in S m+1c are each contained in a simplex of S mc which is itself the union of those in
S m+1c.

A.6 Exact Sequences
This section is completely free of context and is pure algebra. Actually the boundary maps
are on different levels so could be denoted with a subscript to indicate which level. How-
ever, I will continue to use ∂ . It is only the algebraic properties of this map which are
important.

Definition A.6.1 Let C,D,E be Abelian groups. For f ,g the indicated homomorphisms,
we say that this sequence is exact of f (C) = ker(g)

C
f→ D

g→ E
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One can string along more groups than three and it is called exact if every triple is like
the above. When you just have three, and f is one to one and g is onto, the notation is as
follows.

0→C
f→ D

g→ E→ 0

To express this situation that f (C) = ker(g) and you call it a short exact sequence. The
reason for the arrow on the right is that g maps onto E. The arrow on the left indicates that
f is one to one.

Now suppose you have ∂∂ = 0

0→
...
Cn+1

f→
...
Dn+1

g→
...
En+1 → 0

↓ ∂ ↓ ∂ ↓ ∂

0→ Cn
f→ Dn

g→ En → 0
↓ ∂ ↓ ∂ ↓ ∂

0→ Cn−1
...

f→ Dn−1
...

g→ En−1
...

→ 0

(1.9)

In the examples of interest f will be f#,g will be g# where f ,g will be continuous
mappings. I will be assuming that f is one to one, g is onto and ker(g) = Im( f ) so that
each line is a short exact sequence. However, here these maps are just homomorphisms
and we call them chain maps because the rectangles commute.That is ∂ f = f ∂ , etc. Since
∂∂ = 0 it makes sense to consider homology groups obtained from cycles (ker∂ ) mod
boundaries (image ∂ ). f∗ [c] ≡ [ f#c] where f∗ is a map on homology groups. It turns
out there is something called a connecting homomorphism which leads to a long exact
sequence of homology groups. I will simply use f ,g to denote these other mappings to save
on notation. The corresponding homology groups will be HCn ,HDn ,HEn . The following is
from Spanier [39].

Lemma A.6.2 There exists a homomorphism ∆ : HEn+1 → HEn which satisfies

∆ [en+1]≡
[

f−1
∂g−1en+1

]
. (1.10)

This is called the connecting homomorphism. Here [en+1] ∈ HEn+1 so en+1 is a cycle.

Proof: The main problem is showing that this is well defined. Thus we need to show
that the same thing is obtained with en+1 replaced with en+1 + ∂en+2 on the right side
independent of the choice of en+2. Letting the two be en+2, ên+2, denote with a hat as
follows.

Let
g(dn+1) = en+1 +∂en+2, g

(
d̂n+1

)
= en+1 +∂ ên+2

so that dn+1 ∈ g−1 (en+1 +∂en+2) , d̂n+1 ∈ g−1 (en+1 +∂ ên+2). Then

g∂dn+1 = ∂ (g(dn+1)) = ∂ (en+1 +∂en+2) = 0
g∂ d̂n+1 = ∂

(
g
(
d̂n+1

))
= ∂ (en+1 +∂ ên+2) = 0



476 APPENDIX A. HOMOLOGICAL METHODS∗

Thus ∂dn+1 ∈ ker(g) and so ∂dn+1 = f (cn+1) for some unique cn+1 ∈ Cn+1. Same with
ĉn+1. Is cn+1 a cycle?

f (∂cn+1) = ∂ f (cn+1) = ∂∂dn+1 = 0

so ∂cn+1 = 0 since f is one to one and so this is indeed a cycle and the result on the right
in 1.10 is [cn+1] . Same with ĉn+1. Will [cn+1− ĉn+1] = 0? If so, this will prove that the
expression on the right in 1.10 is well defined.

f (cn+1− ĉn+1) =
(
∂dn+1−∂ d̂n+1

)
, (cn+1− ĉn+1) = f−1 (

∂
(
dn+1− d̂n+1

))
(1.11)

Now f
(

f−1 (∂d)
)
= ∂d and f

(
∂ f−1 (d)

)
= ∂ f

(
f−1 (d)

)
= ∂d so f−1 (∂d)= ∂ f−1 (d) . It

follows from this observation and 1.11 that cn+1− ĉn+1 is a boundary and so [cn+1− ĉn+1] =
0. Therefore, ∆ is well defined.

Is ∆ a homomorphism?

∆([en+1]+ [ên+1])≡ ∆ [en+1 + ên+1]≡
[

f−1
∂g−1 (en+1 + ên+1)

]
Letting dn+1 ∈ g−1 (en+1) , d̂n+1 ∈ g−1 (ên+1), it follows that

dn+1 + d̂n+1 ∈ g−1 (en+1 + ên+1) .

Similar considerations will now apply to f−1. We can have

f (cn+1) = ∂dn+1, f (ĉn+1) = ∂ d̂n+1

and the result will be [cn+1]+ [ĉn+1] = ∆ [en+1]+∆ [ên+1] so this is a homomorphism. ■

Theorem A.6.3 Suppose the situation of 1.9 described in Definition A.6.1. Here ∂∂ = 0
and ∂ f = f ∂ , same with g. Let the homology groups be defined as before HCn ≡ ZCn/BCn

where ZCn ≡ {c ∈C : ∂c = 0} and BCn ≡ ∂c for some c ∈Cn+1. Then we can consider f ,g
acting on the homology groups in the natural way

f ([c]) = [ f (c)] ,g([d]) = [g(d)] (1.12)

and also there is a connecting homomorphism ∆ such that

· · · → HCn

f→ HDn
g→ HEn

∆→ HCn−1

f→ HDn−1

g→ ···

is an exact sequence.

Before proving this, consider that just because g is onto En does not mean that g is onto
HEn . This is because the things in HDn are equivalence classes of cycles.

Proof: The definitions in 1.12 are clearly true and this was shown earlier in Lemma
A.2.3. Recall

0→
...
Cn+1

f→
...
Dn+1

g→
...
En+1 → 0

↓ ∂ ↓ ∂ ↓ ∂

0→ Cn
...

f→ Dn
...

g→ En
...

→ 0



A.6. EXACT SEQUENCES 477

Is f (HCn) = ker(g)? Letting c be a cycle, consider f (c) . By definition of exactness,
g( f (c)) = 0. Therefore, [0] = [g( f (c))] = g [ f (c)] showing that f (HCn)⊆ ker(g) .

For the other inclusion let [d]∈ ker(g) . In particular this assumes d is a cycle. I need to
show [d] is in f (HCn). We have [0] = g([d]) = [g(d)] . It follows that g(d) = ∂e for some
e∈En+1. Since g is onto, e= g

(
d̂
)

for some d̂ ∈Dn+1 and so g(d) = ∂e= ∂g
(
d̂
)
= g
(
∂ d̂
)

so g
(
d−∂ d̂

)
= 0. Therefore, d−∂ d̂ ∈ ker(g) and so d−∂ d̂ = f (c) for some c∈Cn. Thus

0 = f (∂c) and since f is one to one, it follows ∂c = 0. Thus [d] = f ([c]) ∈ f (HCn). We
just showed that, as mappings on homology groups, f (HCn) = ker(g) .

So far we have this in terms of homology groups:

HCn

f→ HDn
g→ HEn , Im( f ) = ker(g)

I want to get this:

HCn+1

f→ HDn+1

g→ HEn+1
∆→ HCn

f→ HDn
g→ HEn · · ·

where ∆ is from Lemma A.6.2.
{ker∆ = Img} Let [en+1] ∈ ker∆. I need to show [en+1] is in the image of g. Since

[en+1]∈ ker∆,
[

f−1∂g−1en+1
]
= 0 so f−1∂g−1en+1 = ∂cn+1. Thus ∂g−1en+1 = f (∂cn+1).

Letting g(dn+1) = en+1 using the fact that g is onto, we get ∂dn+1 = f (∂cn+1) . Also
∂g(dn+1) = g( f (∂cn+1)) so

g(∂dn+1− f (∂cn+1)) = 0

which implies there exists x for which

f (x) = ∂dn+1− f (∂cn+1) = ∂ (dn+1− f (cn+1))

Therefore, x = f−1∂ (dn+1− f (cn+1)) = ∂ f−1 (dn+1− f (cn+1)) = ∂y and so from the
above,

∂ f (y) = ∂ (dn+1− f (cn+1))

so 0 = ∂

(
dn+1−

(
∈kerg

f (y)+ f (cn+1)

))
. But then dn+1− ( f (y)+ f (cn+1)) is a cycle and

g(dn+1− ( f (y)+ f (cn+1))) = g(dn+1) = en+1

Therefore, [en+1] is indeed in the image of g as was to be shown. Thus ker∆⊆ Img.
Now consider [g(dn+1)] for dn+1 a cycle. Is this in ker∆? From the definition of ∆,

[
f−1

∂g−1g(dn+1)
]
=

[
f−1

=0
∂dn+1

]
= 0

since f is one to one. Thus Im(g) = ker∆.
Next I need to verify exactness at HCn .
{Im∆ = ker f} First let en+1 be a cycle and consider ∆ [en+1]≡

[
f−1∂g−1en+1

]
. Is it in

ker f ? Is it the case that f
(

f−1∂g−1en+1
)

is a boundary? This expression is just ∂g−1en+1
so this is clearly true. Thus Im∆⊆ ker f .

Next suppose f [cn] = [ f cn] = 0 so [cn] ∈ ker f for cn a cycle. I need to show cn ∈ Im∆.
Since [ f (cn)] = 0, it follows that f (cn) = ∂dn+1. By exactness, ∂dn+1 ∈ ker(g) because
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∂dn+1. is in Im f . Let en+1 ≡ g(dn+1). Then ∂en+1 = g(∂dn+1) = 0. Thus this en+1 is
a cycle. Then f−1∂g−1en+1 = f−1∂g−1g(dn+1) = f−1∂dn+1 = cn. Therefore, ∆ [en+1] ≡[

f−1∂g−1en+1
]
= [cn] . Therefore, ker( f )⊆ Im∆. This completes the proof. ■

I think it may be useful to have a description of this connecting homomorphism in terms
of a sequence of steps.

en+1 = g(dn+1) since g is onto En+1

0 = g(∂dn+1) since en+1 is cycle
f (cn) = ∂dn+1 by Im( f ) = ker(g)
f (∂cn) = ∂∂dn+1 = 0⇒ ∂cn = 0
∆([en+1])≡ [cn] ∈ HCn

(1.13)

Definition A.6.4 One of the columns in 1.9 is called a chain complex. The homomorphisms
f ,g are called chain maps. Recall that the diagram commutes so that f (∂c) = ∂ f (c). In
the above theorem about the connecting homomorphism, what happens to the bottom row?
It is of the form

0→ C0
f→ D0

g→ E0 → 0

and ∂ will map these Abelian groups to 0. Thus the connecting homomorphism ∆ will just
be the zero map so everything just disappears after this. To save on notation, we write 1.9
as

0→ C
f→ D

g→ E → 0

where C,D,E symbolize the entire column. Thus, in words, a short exact sequence of chain
complexes yields a long exact sequence of homology groups. This is completely algebraic.
∂ is just a mapping from the nth to the (n−1)st level in one of these chain complexes such
that ∂ 2 = 0 which enables the definition of the homology groups. Now suppose you have
two of these short exact sequences.

0→ C
f→ D

g→ E → 0
↓ α ↓ β ↓ γ

0→ C′
f ′→ D′

g′→ E ′ → 0

(1.14)

where the mappings α,β ,γ are homomorphisms which act between the groups Cn,Dn,En
and C′n,D

′
n,E

′
n in such a way that the squares in the above diagram commute. That is,

for c ∈ Cn, β f (c) = f ′α (c) with a similar relation holding for the next square involving
Dn,En,D′n,E

′
n. Such mappings α,β ,γ are called “chain homomorphisms”. They are said

to have degree 0 because they act on the same level.
Also we insist that for

c ∈ Cn,∂
′ (α (c)) = α (∂c) ,d ∈ Dn,∂

′ (β (d)) = β (∂ (d)) , (1.15)
e ∈ En,∂

′ (γ (e)) = β (∂ (e))

Thus we can consider the following in terms of homology groups. For c a cycle in C, we
can say the following is well defined.

[αc]′ = α [c] , [βd]′ = β [d] , [γe]′ = γ [e]

This is because of 1.15. Cycles go to cycles and boundaries go to boundaries. Thus this
definition yields a homomorphism of homology groups also.



A.7. COMPUTING HOMOLOGY GROUPS 479

Now consider the corresponding sequence of homology groups. Then all of the rectan-
gles commute.

· · · HCn

f→ HDn
g→ HEn

∆→ HCn−1

f→ HDn−1

g→ ···
↓ α ↓ β ↓ γ ↓ α ↓ β

· · · HC′n
f ′→ HD′n

g′→ HE ′n
∆′→ HC′n−1

f ′→ HD′n−1

g′→ ···
(1.16)

This is the content of the next proposition.

Proposition A.6.5 Let α,β ,γ be chain homomorphisms of the short exact sequences of
1.14 in which the squares commute, and let them also denote the induced homomorphisms
of homology groups of 1.16. Also let f , f ′,g,g′, denote the induced homomorphisms on
homology groups in each level for the chain complexes and let ∆,∆′ be the connecting
homomorphisms of Theorem A.6.3. Then the squares in 1.16 all commute.

Proof: Start with [c]∈HCn+1 . Then as noted above, f ′ (α [c]) = f ′
(
[αc]′

)
= [ f ′ (α (c))]′

and β ( f ([c])) = β ([ f (c)]) = [β ( f (c))]′ . However, by assumption that these are chain
homomorphisms, β ( f (c)) = f ′ (α (c)) and it works the same for g,β ,γ . It remains to
consider the connecting homomorphisms.

Let en be a cycle.

α∆ [en] = α
[

f−1
∂g−1en

]
=
[
α f−1

∂g−1en
]′
=
[

f ′−1
β∂g−1en

]′
=

[
f ′−1

∂
′
βg−1en

]′
=
[

f ′−1
∂
′g′−1

γen
]′ ≡ ∆

′ [γen]
′ = ∆

′
γ [en]

Why is βg−1 (e) ⊆ g′−1γ (e)? Let βd ∈ βg−1 (e) so g(d) = e. Then g′βd = γgd and
so βd ∈ g′−1 (γgd) = g′−1γe so βg−1 (e) ⊆ g′−1γ (e) . This was what was used above. As
to the interchange of α and f−1 also used, if αc = α f−1d, then f ′ (αc) = f ′

(
α f−1d

)
=

β f f−1d = βd and so α f−1d = f ′−1 (βd). ■
Note that if f = f ′,g = g′,∂ = ∂ ′, then from Lemma A.6.2 which gives a description

of ∆, we would have also that ∆′ = ∆.
The term used is that the connecting homomorphism is “natural”. There is also notation

which is used to describe the name of the maps when acting on homology groups. Recall
the following notation which is to use a subscript of ∗ to denote mappings on homology
groups.

Definition A.6.6 In the above situation where f ,g are chain maps we write f∗ and g∗ to
indicate the corresponding map acting on homology groups.

A.7 Computing Homology Groups
This will be about finding homology groups. It is surprisingly hard, but leads to interesting
theorems. Assume here that X ⊆ int(U)∪ int(V ) and consider the following:

0→ Sn (U ∩V )
f#→ Sn (U)⊕Sn (V )

g#→ SU,V
n (X)→ 0

where f#,g# are homomorphisms defined as f# (c) ≡ (c,−c) ,g# (c,d) ≡ c + d. Recall
SU,V

n (X) is the free Abelian group of combinations of singular simplices which are sup-
ported either on U or V . In the applications here, U,V will be open. Addition is defined in
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the usual way. (c,d)+
(
ĉ, d̂
)
= c+ ĉ+d + d̂. Then f# is clearly one to one and g# is onto.

Also, if g# (c,d) = 0 then c+d = 0 and so d =−c so (c,d) = (c,−c) ∈ Im( f#). Thus this
is a short exact sequence. We also assume f#,g# are chain maps so ∂ f# = f# (∂ ⊕∂ ) and
∂g# = g# (∂ ⊕∂ ) where (∂ ⊕∂ ) does the obvious thing (∂ ⊕∂ )(c,d) = (∂c,∂d). Thus this
yields a short exact sequence of chain complexes. It follows from Theorem A.6.3 that there
exists a long exact sequence of homology groups.

· · · → Hn (U ∩V )
f∗→ Hn (U)⊕Hn (V )

g∗→ Hn
(
SU,V

n (X)
) ∆→ Hn−1 (U ∩V )

f∗→ ···

This is called the Mayer Vietoris sequence.
Also notice that if h : X→ X̂ is continuous with h(U)⊆ Û ,h(V )⊆ V̂ and X̂ = int

(
Û
)
∪

int
(
V̂
)

then the squares in the following diagram must commute. This is a consequence
of Proposition A.6.5 and the fact that the corresponding squares in the short exact se-
quences of chains involving h# commute. Note how f ,g make perfect sense independent
of, X ,U,V,Û ,V̂ , X̂ or on h.

→ Hn (U ∩V )
f∗→ Hn (U)⊕Hn (V )

g∗→ Hn

(
SU,V

n (X)
)

∆→ Hn−1 (U ∩V )
f∗→

↓ h∗ ↓ h∗⊕h∗ ↓ h∗ ↓ h∗

→ Hn
(
Û ∩V̂

) f∗→ Hn
(
Û
)
⊕Hn

(
V̂
) g∗→ Hn

(
SÛ ,V̂

n
(
X̂
)) ∆→ Hn−1

(
Û ∩V̂

) f∗→

Lemma A.7.1 For U,V open sets containing X and for h : X → X̂ satisfying h(U) ⊆
Û ,h(V ) ⊆ V̂ where X̂ = int

(
Û
)
∪ int

(
V̂
)

then the above diagram is valid in which the
rectangles commute.

It is time for examples at long last. We do have a couple of good ones already. Recall
that H0 (X) = Z in case X is path connected. This is from Theorem A.2.5. Also recall that
from Proposition A.2.8 Hn (X) is the direct sum of homology groups of the path compo-
nents of X . I will refer to Hn

(
SU,V

n (X)
)

as Hn (X) from now on because that material on
subdivisions says that if c is a cycle, we can obtain that it is homologous to one in which
all the simplices are supported in one of U or V .

A.8 The Homology Groups of Spheres
This is done using the Mayer Vietoris sequence and induction which reduces to S1.

Example A.8.1 S1 is the unit circle x2 + y2 = 1. Letting this be X , what are its homology
groups?

x
V is everything but the top

U is everything but the bottom

It is certainly path connected so H0
(
S1
)
= Z but what of H1

(
S1
)
? Let U be all of S1

other than the bottom point (0,−1) and let V be all of S1 other than the top point(0,1).
Hn (U)⊕Hn (V ) = (0,0) because U,V are both homeomorphic to (−1,1) a convex set
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whenever n≥ 1. Letting n = 1, Im(g∗) = 0 which is the kernel of ∆ and so ∆ is one to one.
Note that H0 (U ∩V )≈ Z⊕Z because U ∩V consists of two path components.

0
H1 (U)⊕

0
H1 (V )

g∗→ H1
(
S1
) ∆,1−1→

≈Z⊕Z
H0 (U ∩V )

f∗→
≈Z

H0 (U)⊕
≈Z

H0 (V )

Then since the sequence is exact, ∆
(
H1
(
S1
))

= ker( f∗) . So what is ker( f∗)? It must be
isomorphic to m(1,−1) ,m ∈ Z which is isomorphic to Z.

More precisely, if U ∩V is L∪R where L,R are the left and right sides of U ∩V in the
above picture, the path components of U ∩V . H0 (U ∩V ) would be of the form (m [c] ,n [d])
because there are two path components. Here [c] , [d] are in H0 (L) ,H0 (R) respectively c,d
being cycles. Say

c = ∑
φ

mφ φ ,d = ∑
ψ

nψ ψ

where the φ have values in L and the ψ have values in R. Now all of the φ are homologous
to each other in L because φ − φ̂ is indeed a boundary, so [c] can be reduced to m [φ ]
and similarly [d] is of the form n [ψ] for φ ,ψ simplices. Thus we can assume c,d are
0 simplices. Both c and d are supported in U and both are supported in V . To be in
ker( f∗) we would need n [d] +m [c] = 0 in H0 (U) and also in H0 (V ). This would mean
that [nd +mc] = 0 in H0 (U) so nd+mc would be a boundary in U . Of course this happens
exactly when n =−m so that you can pair the two to obtain their difference as a boundary,
and so ker( f∗) is of the form m([c]− [d]) , with c,d being 0 simplices in U ∩V , c in L and d
in R. Note that c−d is indeed a boundary in U and also in V but this is not a boundary
in U ∩V . Thus [c]− [d] is nonzero in H0 (U ∩V ) and

ker( f∗) = {m([c]− [d]) : m ∈ Z} ≈ H1
(
S1)≈ Z.

If [c1] generates H1
(
S1
)
, this means that ∆([c1]) = [c]− [d] where c,d are two 0 cycles.

This seems to be a pretty useful observation.

Lemma A.8.2 Let U,V be the open sets given above. Then for any 0 cycle c in L and d in
R, it follows that H1

(
S1
)
≈ Z and a generator for H1

(
S1
)

is ∆−1 ([c]− [d]), this by Lemma
A.0.2.

So what about Hn
(
S1
)

for n > 1? Consider n = 2.

0
H2 (U)⊕

0
H2 (V )

g∗→ H2
(
S1
) ∆,1−1→ H1 (U ∩V )

f∗→
0⊕0

H1 (U)⊕H1 (V )

As just noted, H2 (U)⊕H2 (V )= (0,0) so ∆ is one to one since ker∆= 0. However, ker f∗=
Im(∆) =H1 (U ∩V ) because f∗ maps to 0⊕0= 0. Now H1 (U ∩V ) = 0. It is the direct sum
of homology groups of the two path components of U ∩V each of which is 0. Therefore,
∆
(
H2
(
S1
))

and consequently H2
(
S1
)

is 0. Similarly the other Hn
(
S1
)
= 0 for n≥ 2. Just

replace 2 with n and repeat.
Now it is time to find the homology groups of spheres in any dimension. The case of

S1 was just done. In particular, H1
(
S1
)

is of the form m([c]− [d]) for c,d 0 simplices.
Therefore, it is assumed that n > 1 in what follows.

Rn

Sn
t

b

x
y

U

V
0
y

x
x→ y

x
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Then Sn−1 is the intersection of Rn with Sn. Also U will be all of Sn except for the top
point t while V will be all of Sn except the bottom point b. The line illustrates how Rn is
homeomorphic to U and similarly homeomorphic to V . Thus, from the picture, U ∩V is
homeomorphic to Rn \0. From Lemma A.3.11

Hm (U ∩V )≈ Hm (Rn \0)≈ Hm
(
Sn−1) .

Then from the Mayer Vietoris sequence above and letting X = Sn =U ∪V,

→
0=Hm(U)

Hm (Rn)⊕
0=Hm(V )

Hm (Rn)
g∗→ Hm (Sn)

∆→
Hm−1(U∩V )

Hm−1
(
Sn−1)

f∗→
0

Hm−1 (Rn)⊕
0

Hm−1 (Rn)
g∗→ (1.17)

Proposition A.8.3 For m ≥ 1,Hm (Sm) = Z and if m ̸= n, then Hm (Sn) = 0. Also, for any
n≥ 1,H0 (Sn) = Z.

Proof: The last claim follows because Sn is path connected. The first claim was shown
above in case n = 1. So suppose the claim is true for n− 1. Consider n and the case
where m = n. Then from 1.17, the left side is 0 because Rn is convex, so Im(g∗) =
0 = ker(∆) which shows that ∆ is one to one. Also Hm−1 (Rn)⊕Hm−1 (Rn) = 0 and so
ker f∗ = Im(∆) = Hm−1

(
Sn−1

)
which shows that ∆ is an isomorphism. Hence by induction

Hn (Sn)≈ Hn−1
(
Sn−1

)
≈ Z.

Next consider the case that m < n. By induction, Hm−1
(
Sn−1

)
= 0 but ∆ in 1.17 is still

one to one. Hence Hm (Sn) = 0 since otherwise ∆ would fail to be one to one.
Next consider the case that m > n. In this case Im(g∗) is still 0 and so ∆ is still one to

one. Again, by induction, we have Hm−1
(
Sn−1

)
= 0 so again Hm (Sn) = 0 since otherwise

∆ would fail to be one to one. This proves the proposition. ■

A.9 Brouwer Fixed Points
Corollary A.9.1 Sn and Sm are not homeomorphic if n ̸= m.

Proof: If they were homeomorphic, they would have the same homology groups and
they don’t. ■

Note that if Rn and Rm for n ̸= m were homeomorphic, then, their one point compact-
ifications would be homeomorphic and hence, using steriographic projection Sn and Sm

would also be homeomorphic which they are not. Steriographic projection involves adding
a point at ∞ with the understanding that neighborhoods of this point are complements of
compact sets so {xn} converges to ∞ means that limn→∞ |xn|= ∞ in the usual manner from
calculus. The picture illustrating the idea is as follows. The point at ∞ maps to the top point
of the sphere.

•

•

•(⃗0,2)

(⃗0,1)
•

p

θ(p)

Rn

Corollary A.9.2 If m ̸= n, then Rn is not homeomorphic to Rm.
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Corollary A.9.3 Let Dn be the closed ball of radius 1 centered at 0 in Rn,n ≥ 1. Then
there does not exist a function g : Dn→ Sn−1 which is continuous and leaves all points of
Sn−1 unchanged.

Proof: Suppose there were such a map. Then letting i be the inclusion map of Sn−1 into
Dn it follows that g◦ i = id on Sn−1 and also i◦g = id on Dn. Also for t ∈ [0,1] ,

t (id)(x)+(1− t)(i◦g)(x) ∈ Dn

t (id)(x)+(1− t)(g◦ i)(x) = x ∈ Sn−1

This is by convexity of Dn. Therefore, g ◦ i, i ◦ g are both homotopy inverses on Sn−1 and
Dn respectively, and so by Theorem A.3.9, it follows that Hn−1 (Dn) and Hn−1

(
Sn−1

)
are

isomorphic, but this is certainly not the case because the first is 0 orZ depending on whether
n > 1 or n = 1. The second is Z if n > 1 and if n = 1, it is H0

(
S0
)
= Z⊕Z because in the

last case, S0 has two path components. ■
With this, it is easy to prove the Brouwer fixed point theorem.

Corollary A.9.4 Let Dn be the closed unit ball, n≥ 1 and let h : Dn→ Dn be continuous.
Then h has a fixed point.

Proof: If h has no fixed point, consider the mapping g in the following picture which
would deliver a retraction onto Sn−1 the boundary of Dn. ■

h(x)

x

g(x)

Definition A.9.5 If a set A has the property that whenever f : A→ A is continuous, there
is a fixed point, then we say that A has the fixed point property.

Note that if two sets are homeomorphic and one has the fixed point property, then so
does the other. Letting f : A→ Â be a homeomorphism with A having the fixed point
property and letting g : Â→ Â be continuous, then f−1 ◦g◦ f : A→ A and is continuous so
it has a fixed point x. Then g( f (x)) = f (x) and so g also has a fixed point.

Corollary A.9.6 If C is any compact convex subset of Rn for n ≥ 1, and if f : C→ C is
continuous, then f has a fixed point.

Proof: Let P be the continuous projection map onto C. Then take B a large ball which
contains C. Consider f ◦P : B→ B. It has a fixed point x and so f (P(x)) = x. Since f
maps to C, it follows that x ∈C and so P(x) = x. Hence f (x) = x. ■

An examination of the argument used shows the following.

Corollary A.9.7 Suppose K is a continuous retraction of C where C has the fixed point
property. Then so does K.
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A.10 Topological Degree on Spheres
Degree theory, as presented here is all based on Proposition A.6.5 and Lemma A.7.1. It
might be a good idea to have a quick review of this.

Definition A.10.1 Suppose for n≥ 1 we have f : Sn→ Sn a continuous function. We know
that Hn (Sn) = Z and so there is a generator of Hn (Sn) called [c] . Thus f∗ ([c]) ∈ H∗ (Sn)
and so there is an integer d such that f∗ ([c]) = d [c]. This d is called the degree of f ,
denoted as d ( f ). Obviously d (id) = 1.

It is a good idea to find the degree of some other mappings besides the identity.

Lemma A.10.2 Let f : Sn→ Sn be continuous, n≥ 1 and defined as

f (x0, ...,xn) = (−x0,x2, ...,xn)

Then d ( f ) =−1.

Proof: First let n = 1 and let U be all of S1 except the bottom point and V is all of S1

except the top point. Thus U ∩V has two components and U ∪V = S1. Then we have the
following Mayer Vietoris sequence in which f∗ is an isomorphism because clearly f is a
homeomorphism.

=H1(R)=0
H1 (U) ⊕

=H1(R)=0
H1 (V )

↓ f∗⊕ f∗

g∗→
=Z

H1
(
S1
)

↓ f∗

∆→
=Z⊕Z

H0 (U ∩V )
↓ f∗

h∗→
=Z=H0(R)
H0 (U) ⊕

=Z=H0(R)
H0 (V )

↓ f∗⊕ f∗
=H1(R)=0
H1 (U) ⊕

=H1(R)=0
H1 (V )

g∗→ H1
(
S1
) ∆→ H0 (U ∩V )→

=Z=H0(R)
H0 (U) ⊕

=Z=H0(R)
H0 (V )

From the diagram, ∆ is one to one. What is ker(h∗)? If we know this, we will know the
image of ∆. As earlier when homology of spheres was presented, ker(h∗) = Im∆ will be
{m([c]− [d]) : m ∈ Z} where here [c] , [d] are 0 simplices in the left side of U ∩V and the
right side of U ∩V respectively. Any pair will work. Recall that c−d is a boundary in U .
Thus ([c]− [d]) generates Im(∆). Now

f# (c−d)(t) ≡ f (c1 (t) ,c2 (t))− f (d1 (t) ,d2 (t))

= (−c1 (t) ,c2 (t))− (−d1 (t) ,d2 (t))

= (d1 (t) ,−d2 (t))− (c1 (t) ,−c2 (t))

These points on the left and right sides of U ∩V were arbitrary, so [d] =
[
d̂
]

where d̂ (t) =
(d1 (t) ,−d2 (t)) , a similar thing holding for c. Thus

f∗ ([c]− [d]) = [d]− [c]

Now, since ∆ is an isomorphism onto Im(∆) , a generator for H1
(
S1
)

is ∆−1 ([c]− [d]) and
so

∆ f∗∆−1 ([c]− [d]) = f∗∆
(
∆
−1 ([c]− [d])

)
= [d]− [c] = ∆

(
∆
−1 ([d]− [c])

)
and so f∗∆−1 ([c]− [d]) =−∆−1 ([c]− [d]) showing that d ( f ) =−1.

Now assume this is true for Sn−1 and consider Sn,n > 1. Let U and V be as described
above. Thus U,V are homeomorphic to Rn and U ∩V is homeomorphic to Rn \{0} and by
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Lemma A.3.11 Hm
(
Sn−1

)
is the isomorphic to Hm (Rn \{0}) while U ∪V is Sn. Thus the

Mayer Vietoris sequence is

=Hn(Rn)=0
Hn (U) ⊕

=Hn(Rn)=0
Hn (V )

g∗→ Hn (Sn)
∆→

Hn−1(U∩V )

Hn−1
(
Sn−1) h∗→

Hn−1(Rn−1)=0

Hn−1 (U) ⊕
Hn−1(Rn−1)=0

Hn−1 (V )

Then Im(g∗) = 0 and so ∆ is one to one. However, ker(h∗) = Im(∆) = Hn−1
(
Sn−1

)
be-

cause h∗ sends everything to 0. Thus ∆ is an isomorphism. Then a generator of Hn−1
(
Sn−1

)
is just ∆([ĉ]) where [ĉ] is a generator of Hn (Sn). Thus by induction and Proposition A.6.5,
∆ f∗ ([ĉ]) = f∗ (∆ [ĉ]) =−∆([ĉ]) and so f∗ [ĉ] =− [ĉ]. ■

Now here is another important result about the degree. It will be helpful to consider the
following picture.

[c]

[d]

C1

C2

Lemma A.10.3 Let n≥ 1 and f : Sn→ Sn defined as

f (x1, ...xi, ...,x j, ...,xn) = (x1, ...x j, ...,xi, ...,xn) .

Then d ( f ) =−1.

Proof: First consider the case when n = 1. Let U be everything except the point at
the South West circle and let V be everything except the point at the North East circle in
the above picture. Let C1 and C2 be the connected components of U ∩V as above. Thus
U ∪V = S1 and as before, we have the following Mayer Vietoris sequence.

=H1(R)=0
H1 (U) ⊕

=H1(R)=0
H1 (V )

↓ f∗⊕ f∗

g∗→
=Z

H1
(
S1
)

↓ f∗

∆→
=Z⊕Z

H0 (U ∩V )
↓ f∗

h∗→
=Z=H0(R)
H0 (U) ⊕

=Z=H0(R)
H0 (V )

↓ f∗⊕ f∗
=H1(R)=0
H1 (U) ⊕

=H1(R)=0
H1 (V )

g∗→ H1
(
S1
) ∆→ H0 (U ∩V )→

=Z=H0(R)
H0 (U) ⊕

=Z=H0(R)
H0 (V )

(1.18)

As discussed earlier, ker(h∗) = {m([c]− [d]) : m ∈ Z}= ∆
(
H1
(
S1
))

where c,d are 0 sim-
plices which have values at the indicated points. It didn’t really matter which points we
picked in C1 and C2 since any two in C1 and any two in C2 will have difference a boundary
so they will lead to homologous 0 simplices. The ones I picked in the picture are convenient
because when the components of the two points are switched the two points c,d switch po-
sition. Thus f∗ ([c]− [d]) = ([d]− [c]) = −([c]− [d]) . Also, since ∆ is an isomorphism, a
generator for H1

(
S1
)

will be ∆−1 ([c]− [d]) . Then

∆ f∗∆−1 ([c]− [d]) = f∗∆∆
−1 ([c]− [d]) = f∗ ([c]− [d])

= −([c]− [d]) = ∆
(
−∆
−1 ([c]− [d])

)
and so f∗∆−1 ([c]− [d]) =−∆−1 ([c]− [d]) showing that in this case the degree is−1. Now
in general, let the two circles on North East and South West be the points on Sn which are
on the line 0+ t (ei +e j) . Let U be all but the point on the South West and V be all of Sn

but the North East point. Then the Mayer Vietoris sequence is the following for n > 1

=Hn(Rn)=0
Hn (U) ⊕

=Hn(Rn)=0
Hn (V )

g∗→ Hn (Sn)
∆→

Hn−1(U∩V )

Hn−1
(
Sn−1) h∗→

Hn−1(Rn−1)=0

Hn−1 (U) ⊕
Hn−1(Rn−1)=0

Hn−1 (V )



486 APPENDIX A. HOMOLOGICAL METHODS∗

Then Im(g∗) = 0 and so ∆ is one to one. However, ker(h∗) = Im(∆) = Hn−1
(
Sn−1

)
be-

cause h∗ sends everything to 0. Thus ∆ is an isomorphism. Then a generator of Hn−1
(
Sn−1

)
is just ∆([c]) where [c] is a generator of Hn (Sn). Thus by induction and Proposition A.6.5,
∆ f∗ ([c]) = f∗ (∆ [c]) =−∆([c]) and so f∗ [c] =− [c]. ■

Lemma A.10.4 Let f ,g : Sn→ Sn for any n≥ 1. Then d ( f ◦g) = d ( f )d (g) .

Proof: This follows from the observation that ( f ◦g)∗ = f∗g∗ and so if [c] is a generator
of Hn (Sn) , then

( f ◦g)∗ [c] = f∗g∗ [c] = f∗d (g) [c] = d (g) f∗ [c] = d (g)d ( f ) [c] ■

From these lemmas, we obtain the following theorem about the degree of − id .

Theorem A.10.5 Let − id : Sn → Sn be the antipodal map which takes x to −x. Then
d (− id) = (−1)n.

Proof: Let f (x1, ...,xn) ≡ (−x1, ...,xn) and let g j be the map which switches the first
component and the jth component. Then − id = gn ◦ f ◦gn ◦ f · · ·g3 ◦ f ◦g3 ◦g2 ◦ f ◦g2 ◦ f .
For example,

(x1,x2,x3) → (−x1,x2,x3)→ (x2,−x1,x3)→ (−x2,−x1,x3)

→ (−x1,−x2,x3)→ (x3,−x1,−x2)

→ (−x3,−x1,−x2)→ (−x1,−x2,−x3)

By Lemma A.10.4 d (− id) = (−1)n since the switching maps occur an even number of
times. ■

If you had C homeomorphic to Sn, and a continuous function f mapping Sn to itself,
then you could use the homeomorphism and the degree of f to get a generalization of the
winding number from complex analysis.

A.11 Functions Defined on a Subset of Sn

The approach to defining the degree from using the homology groups of spheres is in
Hocking and Young [23] although they appear to be using a somewhat different approach
to homology. I am trying to include the standard theorems which are usually obtained from
degree theory presented from an analytical point of view. I have tried to avoid mistakes, but
I have made many revisions of this material when I found mistakes. Sometimes I wonder
whether I have caught them all.

An important conclusion about approximation is next.
We think of the Tietze extension theorem as a way to extend a real valued function

keeping its values in a given interval which contains f (C) for C a closed set. However,
using spheres we can consider f̄ the extended function in terms of keeping the values of
this extended function away from a particular point. In the following picture, suppose f (C)

is contained in lower part of Sn. The top point
(−→

0 ,2
)

will be denoted as q for simplicity.
Consider the following picture.



A.11. FUNCTIONS DEFINED ON A SUBSET OF Sn 487

q

C

f

q

b

x

θ(y) = x

V

L

p ∈ Ay

In the picture p is the center of a small ball in Sn and b is the point opposite to p. In
the picture V is a translate of an n dimensional subspace of Rn+1 which is perpendicular
to the vector

−→
bp. Also L ≡ Sn \A and f is a continuous function f : C→ L, C a closed

proper subset of Rn. θ is the map illustrated by y→ x. We let ∞ ≡ θ
−1 (p) and make V

into a metric space by the rule d (y, ŷ)≡ |θ (y)−θ (ŷ)| so θ is a homeomorphism of Sn and
V ∪{∞}. Now θ

−1 (L) is a closed ball in V denoted as B(b,R). Let V = b+Q(Rn) ≡
α (Rn) where Q is an orthogonal transformation preserving distances with determinant
1. Thus α−1 ◦ θ

−1 (L) = B(0,R). Then α−1 ◦ θ
−1 ◦ f : C→ B(0,R) ⊆ [−R,R]n . Using

the Tietze extension theorem on the components of α−1 ◦ θ
−1 ◦ f there is an extension

F̃ : Sn→ [−R,R]n which agrees with α−1 ◦θ
−1 ◦ f on C. Now let P be the projection onto

B(0,R). Then P ◦ F̃ agrees with α−1 ◦ θ
−1 ◦ f on C but is defined on all of Sn and maps

everything into B(0,R). Now α ◦P◦ F̃ maps all of Sn into L and agrees with f on C. This
yields the following proposition.

Proposition A.11.1 Let A be the intersection of a ball in Rn+1 of small radius which is
intersected with Sn having center p ∈ A. Suppose f (C)∩ Ā = /0, f is continuous where C is
a closed proper subset of Sn. Then there is a continuous extension of f called f̄ such that
f̄ : Sn→ Sn which maps all of Sn to L≡ Sn \A.

Next is the topological degree. For a set S ̸= /0,∂S will denote those points x where
every ball containing x contains points of S and points of SC ≡Rn \S. Note that for an open
set Ω in a metric space, ∂Ω = Ω̄\Ω.

Proposition A.11.2 Let Ω̄ ⊆ Sn be a proper subset of Sn with Ω an open set and let p /∈
f (∂Ω) where f : Ω̄→ Sn is continuous. Then there exists an extension of f to all of Sn

called f̂ such that f̂−1
(
Ā
)
⊆Ω for A an open ball containing p.

Proof: Since p /∈ f (∂Ω) , there is a small ball A centered at p such that Ā∩ f (∂Ω) = /0.
Using Proposition A.11.1, there is f̄ : Sn→ Sn \A extending f off of ∂Ω to all of Sn such
that f̄ (Sn) ⊆ L ≡ Sn \A. Then define f̂ : Sn → Sn to equal f on Ω̄ and f̄ on Sn \ Ω̄.Thus
f̂−1
(
Ā
)
⊆Ω. ■

From now on f̂ will refer to such an extension of f . Now here is the definition of the
degree.

Definition A.11.3 Let Ω be a nonempty open set in Sn with Ω̄ a proper subset of Sn and
let p /∈ f (∂Ω) . Then d ( f ,Ω, p) is the integer such that f̂∗ [ĉ] = d ( f ,Ω, p) [ĉ] where [ĉ] is a
generator of Hn (Sn).

I need to show this degree is well defined, but first, assuming this, it is easy to see that
p→ d ( f ,Ω, p) is locally constant. First note that p /∈ f (∂Ω) is equivalent to saying that
there exists an open ball A such that Ā∩ f (∂Ω) = /0.
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Lemma A.11.4 There is an open ball containing p such that d ( f ,Ω, p̂) is the same for all
p̂ in this ball.

Proof: By definition of f̂ , there is an open ball A containing p such that f̂−1
(
Ā
)
⊆Ω.

Then if p̂ ∈ A, there is a smaller open ball Â centered at p̂ with f̂−1
(
Â
)
⊆Ω and so, since

this is the same f̂ , the d ( f ,Ω, p) = d ( f ,Ω, p̂) because d ( f ,Ω, p) is defined in terms of f̂∗
and the generator of Hn (Sn). ■

Say [c] generates Hn (Sn) and let α be the isomorphism of Hn (Sn) andZ. Then [c] would
be either α (1) or else α (−1) = [c] and so either [c] or − [c] will work. But then d still
would be the same because f̂∗ (− [c]) =− f̂∗ ([c]) =−d [c] = d (− [c]) . Thus the definition
of the degree does not change if [c] is switched to − [c] the other generator of Hn (Sn) .
The hard issue is whether two different extensions satisfying the above definition give the
same degree.This is discussed in the following proposition and shows that d ( f ,Ω, p) is
well defined.

The proper open balls A on Sn,n ≥ 1, are just intersections of open balls in Rn+1 with
Sn and so they are connected and open sets. Each is homeomorphic to a convex subset of
Rn. Say α is the name of this homeomorphism so that C = αA where C is convex. Then if
c is a cycle with values in A we have α∗ [c]A = [α#c]C = 0 because C is convex so cycles
and boundaries are the same. Since α∗ is an isomorphism, this implies [c]A = 0.

Proposition A.11.5 Let Ω, f , f̂ be as defined in Definition A.11.3 with respect to some
open ball A for which f̂−1

(
Ā
)
⊆ Ω. If f̂ , f̃ are two extensions of f from Definition A.11.3

and [ĉ] generating Hn (Sn), f̂∗ [ĉ] = f̃∗ [ĉ] and so, for any p ∈ A,d ( f ,Ω, p) is well defined.
If f−1

(
Ā
)
= /0 then for f̂ such an extension, f̂∗ [ĉ] = 0 and so for p ∈ A,d ( f ,Ω, p) = 0.

Proof: Letting L,θ be as in Proposition A.11.1, one can consider the following homo-
topy of f̂ , f̃

θ
(
tθ−1 f̂ +(1− t)θ

−1 f̃
)
, t ∈ [0,1] .

The two functions are homotopic and so by Theorem A.3.7 f̂∗ [ĉ] = f̃ [ĉ]. In particular, the
definition of the degree is well defined.

If f−1
(
Ā
)
= /0 then for each simplex φ in ĉ, f̂#φ has values in Sn \A which is homeo-

morphic to a convex subset of Rn and so
[

f̂#ĉ
]
= f̂∗ [ĉ] = 0. ■

Another claim which is easy to get is the following which deals with homeomophisms
of Sn.

Lemma A.11.6 From the definition, if α is a homeomorphism on Sn, then d ( f ,Ω, p) =
±d (α f ,αΩ,α p).

Proof: Let f̂ and A go with the definition for d ( f ,Ω, p) . Then, since α is a homeo-
morphism, α (A) contains A′ a ball centered at α p and α f̂ will serve for the definition of
d (α f ,αΩ,α p) . Then for [ĉ] a generator of Hn (Sn) ,α∗ is an isomorphism of homology
groups and so α∗ [ĉ] is also a generator of Hn (Sn) .

d (α f ,αΩ,α p) [ĉ]≡
(
α f̂
)
∗ [ĉ] = α∗ f̂∗ [ĉ] = α∗d ( f ,Ω, p) [ĉ] = d ( f ,Ω, p)α∗ [ĉ]

But, since α∗ is an isomorphism, α∗ [ĉ] is also a generator of Hn (Sn)≈ Z so α∗ [ĉ] is either
[ĉ] or − [ĉ]. ■

There is also a generalization of Proposition A.11.5 which replaces f̃ with ĝ where g
is sufficiently close to f using the observation that all that mattered in the above argument
was f̃ (∂Ω)∩ Ā = /0.
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Corollary A.11.7 In the context of the above proposition, let Ω, f , f̂ be as defined in Def-
inition A.11.3 with respect to some open ball A, f (∂Ω)∩ Ā = /0. Then if p ∈ A, and
∥ f −g∥

∂Ω
is small enough, d ( f ,Ω, p) = d (g,Ω, p) .

Proof: Letting ∥ f −g∥
∂Ω

be small enough, we can assume that both ĝ−1
(
Ā
)

and
f̂−1
(
Ā
)

are contained in Ω. Indeed, we choose ∥ f −g∥
∂Ω

so small that g(∂Ω)∩ Ā = /0.
Then extend g to ḡ off ∂Ω to lie in Sn \A and let ĝ = ḡ off Ω̄ and ĝ = g on Ω similar
to f̂ . Then the argument is similar to the above with ĝ in place of f̂ and having ĝ and f̂
homotopic. ĝ∗ [ĉ] = f̂∗ [ĉ] and both these are usable in the definition of the degree. ■

Next I want to consider a variation on what is in the above proposition. First observe
that if Ω is a nonempty open set in a metric space, and for n ∈ N,

Ωn ≡
{

x ∈Ω : dist
(
x,ΩC)> 1

n

}
,

then ∪nΩn = Ω and for all n,Ω̄n ⊆ Ωn+1. I will use this observation in the proof of the
following.

Corollary A.11.8 Suppose in the situation of Proposition A.11.5, Ω = ∪iΩi where the Ωi
are disjoint open sets. Let f̂i be the kind of extension described above where f̂−1

i

(
Ā
)
⊆Ωi,

and f̂i = f on Ωi. Then for [ĉ] generating Hn (Sn) ,n ≥ 1, it follows f̂∗ [ĉ] = ∑i f̂i∗ [ĉ] and
d ( f ,Ω, p) = ∑i d ( fi,Ω, p).

Proof: Let [ĉ] generate Hn (Sn). Then the support of ĉ, K is compact as is f̂−1
(
Ā
)
.

Thus K ∩ f̂−1
(
Ā
)

is assumed contained in the union of the Ωi and so this compact set is
contained in finitely many. The i in what follows will refer to these finitely many. There
exists open Ωi0⊆ Ω̄i0⊆Ωi such that f̂−1

i

(
Ā
)
⊆Ωi0 since f̂−1

i

(
Ā
)

is a compact subset of Ωi.
Similarly we can assume f̂−1

(
Ā
)
⊆∪iΩi0 because the compact set f̂−1

(
Ā
)

is contained in
finitely many of the Ωi. Also, we can let Ωi0 = /0 if f̂−1

(
Ā
)
∩Ωi = /0. Then we can assume

by Theorem A.5.21 that all the simplices in ĉ have support in some Ωi or in Sn \∪iΩ̄i0.
If c has all simplices in Sn \∪iΩ̄i0 then of course

[
f̂i#c
]
= 0 because Hn (Sn \A) = 0 and

similarly
[

f̂#c
]
= 0 because Sn \A is homeomorphic to a convex set. Next suppose one of

the cycles of ĉ called c has all simplices in Ωi. Then, from the construction, f̂ j#c, j ̸= i is
a cycle with support in Sn \A since f̂−1

j

(
Ā
)
⊆ Ω j which has empty intersection with Ωi,

and so f̂ j∗ [c] ∈ Hn (Sn \A) = 0. However, f̂i#c = f̂#c and so f̂∗ [c] = f̂i∗ [c] which shows
f̂∗ [ĉ] = ∑i f̂i∗ [ĉ] and so d ( f ,Ω, p) = ∑i d ( fi,Ω, p) . ■

Summarizing the above, is the following proposition. Always we assume p /∈ f (∂Ω) .

Proposition A.11.9 The definition of the degree is well defined and also p→ d ( f ,Ω, p) is
locally constant. If p /∈ f (Ω) , then d ( f ,Ω, p) = 0. Thus if d ( f ,Ω, p) ̸= 0, then p ∈ f (Ω).
Also if Ω is an open subset of Sn equal to the union of disjoint open sets Ωi, then for
f : Ω̄→ Sn continuous and p /∈ f (∂Ω), d ( f ,Ω, p) = ∑i d ( f ,Ωi, p). The sum will be finite.

Proof: That d ( f ,Ω, p) is well defined follows from Proposition A.11.5. Also from the
proposition is the claim that if p /∈ f (Ω) then d ( f ,Ω, p) = 0. That p→ d ( f ,Ω, p) is locally
constant follows from the observation that we get the same degree for any p ∈ A from this
definition. For the other claim, Corollary A.11.8 says that if we consider the extension f̂i
which goes with Ωi to define d ( fi,Ωi, p) where p ∈ A as described there, then

d ( f ,Ω, p) [ĉ]≡ f̂∗ [ĉ] = ∑
i

f̂i∗ [ĉ] = ∑
i

d ( fi,Ωi, p) [ĉ] ■
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Proposition A.11.5 and Corollary A.11.5 also imply the following corollary because it
says that if ∥ f −g∥

Ω̄
is small enough, then d ( f ,Ω, p) = d (g,Ω, p).

Corollary A.11.10 In the situation of Proposition A.11.9, given p ∈ Sn \ f (∂Ω),

d ( f ,Ω, p) = d (g,Ω,q)

whenever ∥ f −g∥
Ω̄
+ |p−q| is sufficiently small.

A similar result is the following:

Corollary A.11.11 If Ω⊇ Ω̂ where Ω,Ω̂ are open and if p /∈ f
(
Ω\ Ω̂

)
, then

d
(

f ,Ω̂, p
)
= d ( f ,Ω, p) .

Proof: This follows from using the closed set Ω\Ω̂ rather than ∂Ω in Definition A.11.3
to get an extension which works for both Ω and Ω̂. ■

From Corollary A.11.10 there is a convenient result about homotopy.

Lemma A.11.12 Let continuous h : [0,1]×Ω→ Sn and let t → p(t) also be continuous
with p(t) /∈ h(t,∂Ω) for each t ∈ [0,1]. Then t → d (h(t, ·) ,Ω, p(t)) is constant. Also
p→ d ( f ,Ω, p) is constant on each component of f (∂Ω)C .

Proof: If d (h(t, ·) ,Ω, p(t)) were not constant, then by Corollary A.11.10 we could
separate [0,1] by considering t associated to different integer values achieved by the degree,
which is not possible. For the last claim, letting p,q be in a connected component U of
( f (∂Ω))C , there exists r : [0,1]→U such that r (0) = p,r (1) = q. Then from the first part,
d ( f ,Ω,r (t)) is constant for t ∈ [0,1]. ■

Lemma A.11.13 d (id,Ω,x) = 1 if x∈Ω and 0 if x /∈Ω. Also if d ( f ,Ω, p) ̸= 0 then f (x) =
p for some x ∈Ω. If f = g on ∂Ω, p /∈ f (∂Ω) , then d ( f ,Ω, p) = d (g,Ω, p) .

Proof: We can extend id to be id on all of Sn. Then from the definition d = 1.
Next suppose d ( f ,Ω, p) ̸= 0. Then by Proposition A.11.9 there is a point x ∈ Ω such

that f (x) = p.
As to the last claim, one can consider d ( f + t (g− f ) ,Ω, p) which must be constant for

t ∈ [0,1] because g = f on ∂Ω so p /∈ ( f + t (g− f ))(∂Ω). ■
The following simple lemma holds in Sn or in Rn or more generally for a metric space

in which open balls are connected.

Lemma A.11.14 Let {Ki}N
i=1 ,N ≤ ∞ be the connected components of Sn \C where C is a

closed set. Then ∂Ki ⊆C.

Proof: Since Ki is a connected component of an open set, it is itself open. Recall that
this happens because open balls are connected. Thus ∂Ki consists of all limit points of Ki
which are not in Ki. Let y be such a point. If it is not in C then it must be in some other K j
which is impossible because these are disjoint open sets. Thus if x is a point in U it cannot
be a limit point of V for V disjoint from U . ■

I want to consider d (g◦ f ,Ω, p) . Here this assumes that g : Sn→ Sn and also requires
p /∈ g( f (∂Ω)) so g−1 (p) ∈ ( f (∂Ω))C . Let Ki be the components of ( f (∂Ω))C . Pick qi ∈
Ki so d ( f ,Ω,Ki) = d ( f ,Ω,qi). Since g−1 (p) is a compact set, which lies in ( f (∂Ω))C , it
can have empty intersection with only finitely many of the components Ki.
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Lemma A.11.15 g−1 (p) has empty intersection with all but finitely many of the Ki.

The next theorem is a major result called the product formula. Recall that by Propos-
tion A.11.12, d ( f ,Ω, p) is constant for p ∈ Ki and so we denote this common value as
d ( f ,Ω,Ki) .

Theorem A.11.16 Let g : Sn→ Sn and let f : Ω→ Sn. Suppose p /∈ g( f (∂Ω)) . Then for
Ki the components of f (∂Ω)C ,

d (g◦ f ,Ω, p) = ∑
i

d ( f ,Ω,Ki)d (g,Ki, p) (1.19)

and the sum is finite.

Proof: By the above Lemma A.11.15, we will consider only finitely many i for which
g−1 (p) intersects Ki. Otherwise d (g,Ki, p) = 0 and the term in the sum is 0. Consider
f−1 (Ki)∩Ω, disjoint open sets because the Ki are disjoint. Also we are assuming that
g−1 (p)⊆ ∪iKi so

(g◦ f )−1 (p)⊆ ∪i f−1 (Ki)∩Ω⊆Ω.

and p /∈ (g◦ f )
(
Ω̄\∪i f−1 (Ki)

)
. It follows from Corollary A.11.11 and Proposition A.11.9

that
d (g◦ f ,Ω, p) = ∑

i
d
(
g◦ f , f−1 (Ki)∩Ω, p

)
Now letting f̂i be an appropriate extension of f , on f−1 (Ki)∩Ω and [c] a generator of
Hn (Sn), d

(
f , f−1 (Ki)∩Ω,qi

)
[c] = f̂i∗ ([c]). Therefore,

d
(
g◦ f , f−1 (Ki)∩Ω, p

)
[c] = g∗ f̂i∗ ([c]) = g∗d

(
f , f−1 (Ki)∩Ω,qi

)
[c]

= g∗d ( f ,Ω,qi) [c] = d ( f ,Ω,Ki)g∗ [c] = d ( f ,Ω,Ki)d (g,Ki, p) [c]

Note that on the top line, f restricted to f−1 (Ki)∩Ω has the properties that qi is not in
f
(
Ω̄\ f−1 (Ki)∩Ω

)
and so Corollary A.11.11 applies. Thus we obtain the product formula

1.19. ■

A.12 The Degree on Open Subsets of Rn

I am not all that interested in spheres. I am much more interested in what can be said about
open bounded subsets of Rn. However, this is essentially included in the above. It will be
based on the following mapping θ illustrated in this picture.

(⃗0,2) = q

(⃗0,1)
x

θ(x)

Rn

Note that if Ω is an open bounded subset of Rn, then θΩ̄ = θΩ is a proper subset of Sn

which does not contain q. Letting p /∈ f (∂Ω) d ( f ,Ω, p)≡ d
(
θ ◦ f ◦θ

−1,θΩ,θ p
)
.

Definition A.12.1 Let Ω be a bounded open set in Rnand f : Ω̄→ Rn is continuous. Let
p /∈ f (∂Ω). Then for θ the homeomorphism which maps Rn∪{∞} to all of Sn, p = θ (∞) ,
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θΩ is an open set in Sn. Then
(
θ ◦ f ◦θ

−1) : θΩ→ Sn does not include θ p along with
a closed ball Ā and we can define d ( f ,Ω, p) ≡ d

(
θ ◦ f ◦θ

−1,θΩ,θ p
)

as in Definition
A.11.3. This will be d f̂ where f̂ is the extention of θ ◦ f ◦θ

−1 off of θΩ described by letting
f̂ = θ ◦ f̄ ◦θ

−1 off Ω̄ and θ ◦ f ◦θ
−1on θΩ̄.

The earlier material on spheres yield the following proposition.

Proposition A.12.2 The degree has the following properties:

1. Let continuous h : [0,1]×Ω→ Rn and let t → p(t) also be continuous with p(t) /∈
h(t,∂Ω) for each t ∈ [0,1]. Then t → d (h(t, ·) ,Ω, p(t)) is constant. Also p →
d ( f ,Ω, p) is constant on each component of f (∂Ω)C .

2. The identity map id, satisfies d (id,Ω,x) = 1 if x ∈Ω and d (id,Ω,x) = 0 if x /∈Ω. If
Ω is a ball centered at 0, then d (− id,Ω,x) = (−1)n for all x ∈Ω.

3. If p /∈ f
(
Ω̄\ Ω̂

)
for Ω̂ an open subset of Ω, then d

(
f ,Ω̂, p

)
= d ( f ,Ω, p) .

4. Also if Ω is an open bounded subset of Rn equal to the union of disjoint open sets Ωi,
then for f : Ω̄→ Rn continuous, p /∈ f (∂Ω) , d ( f ,Ω, p) = ∑i d ( f ,Ωi, p). The sum
will be finite.

5. If f = g on ∂Ω, p /∈ f (∂Ω) , then d ( f ,Ω, p) = d (g,Ω, p) .

6. If Ω is an open ball centered at 0 in Rn and f : Ω→ Rn is given by f (x1, ...,xn) =
(k1x1, ...,knxn) where none of the ki are 0, then d ( f ,Ω,0) = (−1)m where m is the
number of negative constants ki.

7. If Ω is an open ball centered at 0 in Rn and f : Ω→Rn is given by f (x1, ...,xn) = Ax
where A−1 exists, then d ( f ,Ω,0) = sgn(det(A)) .

Proof: Consider 2. the one about − id. The points on Sn,(x1, ...,xn,xn+1) with the sum
of the squares of the components equal to 1 are obtained by letting f̂ correspond to the
following on the sphere Sn : (x1, ...,xn,xn+1)→ (−x1, ...,−xn,xn+1) and so from Theorem
A.10.5 and those leading to this theorem, this would be (−1)n because we changed sign in
n components.

For part 6., consider first the case where all the ki > 0. From 1., d (λ f +(1−λ ) id,B,0)
is constant in λ ∈ [0,1] since 0 /∈ (λ f +(1−λ ) id)(∂B) . When λ = 0 this is 1 and so when
λ = 1 it is also 1, this by part 2. Now if you compose such an f with a map which changes
the sign of m of the entries, then similar to 2., the result will be (−1)m because of Lemma
A.10.4 about the degree of a composition being the product of the degrees.

For part 7. I will consider other elementary operations. Also regard each of these invert-
ible elementary operations E as taking ∞ to ∞. Thus xn→∞ if and only if Exn→∞, similar
for an invertible A. Let Li j (x)≡ (x1, ...,xi−1,xi + x j,xi+1, ...,xn)

T which comes from an el-
ementary matrix in which the ith row is replaced with the jth row added to the ith row. Then
for x ∈ ∂Ω and t ∈ [0,1] ,0 /∈ (tLi j +(1− t) id)∂Ω. Indeed, the matrix for the mapping
tLi j +(1− t) id is just the identity with t added into the i jth position which is invertible and
so cannot send anything in ∂B to 0. Therefore, from 1., d (Li j,Ω,0)= d (id,Ω,0)= 1. Since
A−1 exists, A is the composition of finitely many elementary operations. For the operation
which switches two components, the degree is −1 as is the determinant of the elementary
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matrix which produces this operation. The case of multiplication of a row by a nonzero
constant is covered in 6. Also, for invertible E,d (E,Ω,0) ≡ d

(
θ ◦E ◦θ

−1,θΩ,θ0
)

and
we can regard Ê as simply θ ◦E ◦θ

−1 on Sn. Thus, from Lemma A.10.4, for A invertible,
θ ◦A◦θ

−1 = ∏i θ ◦Ei ◦θ
−1, Ei an elementary operation and so

d (A,Ω,0) = d
θ◦A◦θ−1 = ∏

i
d

θ◦Ei◦θ−1 = ∏
i

sgn(det(Ei)) = sgn(det(A)) ■

Now here is a very easy proof of the Brouwer fixed point theorem.

Proposition A.12.3 Let f : B→ B where B is a closed ball of radius R and center 0. Then
there exists a fixed point for f .

Proof: This is from Proposition A.12.2. If there is no fixed point for f , then for |x| =
R,0 /∈ x− t f (x) for all t ∈ [0,1] hence d (id−t f ,B,0) is constant for t ∈ [0,1]. This degree
is 1 when t = 0 and so it is also 1 when t = 1 but this means there must exist x such that
x− f (x) = 0 and this is the fixed point. ■

The next is the cow lick theorem.

Theorem A.12.4 Let n be odd and let Ω be an open bounded set inRn with 0∈Ω. Suppose
f : ∂Ω→ Rn \{0} is continuous. Then for some x ∈ ∂Ω and λ ̸= 0, f (x) = λx.

Proof: Using the Tietze extension theorem, extend f to all of Rn. Also denote the
extended function by f . Suppose for all x ∈ ∂Ω, f (x) ̸= λx for all λ ∈ R. Then

0 /∈ t f (x)+(1− t)x, (x, t) ∈ ∂Ω× [0,1] .

0 /∈ t f (x)− (1− t)x, (x, t) ∈ ∂Ω× [0,1] .

Thus there exists a homotopy of f and id and a homotopy of f and − id. Then by the
homotopy invariance of degree, d ( f ,Ω,0) = d (id,Ω,0) , d ( f ,Ω,0) = d (− id,Ω,0) . But
this is impossible because d (id,Ω,0) = 1 but d (− id,Ω,0) = (−1)n =−1. ■

The product formula is from using the homeomophism θ of Rn∪{∞} and Sn.

Theorem A.12.5 Let g : f
(
Ω̄
)
→ Rn be continuous and let f : Ω̄→ Rnbe continuous.

Suppose p /∈ g( f (∂Ω)) , p ∈ Rn. Then for Ki the components of f (∂Ω)C which contain a
point of g−1 (p) ,

d (g◦ f ,Ω, p) = ∑
i

d ( f ,Ω,Ki)d (g,Ki, p) (1.20)

and the sum is finite. None of these components Ki contain ∞ so these are all bounded
components.

Proof: Extend g off f (∂Ω) so that limx→∞ g(x) = 0 and let g(∞) = 0 so g is continuous
on Rn∪{∞} . Then g◦ f is unchanged on ∂Ω. Also g−1 (∞) = /0. If d (g,K, p) ̸= 0 then K
cannot be the unbounded component of f (∂Ω)C because that one has ∞, g fails to equal ∞

and the degree is constant on components. Thus we get 1.20 for Ki the bounded components
of f (∂Ω)C. It only remains to verify the sum is finite. However, this follows because
g−1 (p) is a compact set contained in Rn. ■
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A.13 Jordan Separation Theorem
Recall that if a function f is continuous and one to one on a compact set K, then f is a
homeomorphism of K and f (K). Also recall that if U is a nonempty open set, the boundary
of U , denoted as ∂U and meaning those points x with the property that for all r > 0, B(x,r)
intersects both U and UC, is U \U . Note that it is not possible for a compact set H in R
to have HC posess only one connected component. Thus the next proposition considers the
case n≥ 2.

Proposition A.13.1 Let H be a compact set and let f : H → Rn,n ≥ 2 be one to one and
continuous so that H and f (H) ≡ C are homeomorphic. Suppose HC has only one con-
nected component so HC is connected. Then CC also has only one component.

Proof: Extend f , using the Tietze extension theorem on its components to all of Rn

and let g be an extension of f−1 to all of Rn. Suppose K is a bounded component of
CC. Then by Lemma A.11.14 ∂K ⊆ C. Hence g(∂K) ⊆ g(C) = H. If Q is a bounded
component of g(∂K)C then if Q contains a point of the connected set HC then Q would
need to contain all of HC and Q is not bounded after all. Therefore, there are no bounded
components of g(∂K)C. But by the product formula, Theorem A.12.5, for Q the set of
bounded components of g(∂K)C ,d ( f ◦g,K,z) = ∑Q∈Q d (g,K,Q)d ( f ,Q,z) = 0 because
Q = /0. However, d ( f ◦g,K,z) = d (id,K,z) because f ◦g= id on ∂K ⊆C. See Proposition
A.12.2 which comes from the earlier development of the degree on spheres. Thus there is
no bounded component of CC so CC has only one component just as HC. ■

This says that if a compact set H fails to separate Rn for n ≥ 2 and if f : H → Rn is
continuous and one to one, then also f (H) fails to separate Rn.

It is obvious that the unit sphere Sn−1 divides Rn into two disjoint open sets, the inside
and the outside, this for n≥ 2. The following shows that this also holds for any homeomor-
phic image of Sn−1.

Proposition A.13.2 Let B be the ball B(0,1) with Sp−1 its boundary, p ≥ 2. Suppose
f : Sp−1→C ≡ f

(
Sp−1

)
⊆ Rp is a homeomorphism. Then CC also has exactly two com-

ponents, one bounded and one unbounded.

Proof: Let f denote the extension of f to all of Rp and let g = f−1 on f (∂B) where g
is also extended using the Tietze extension theorem to all of Rp. Let H be the unbounded
component of Rp \Sp−1. Assuming there exists K a bounded component of f (∂B)C , then
from Lemma ??, ∂K ⊆ f (∂B) so g(∂K)⊆ ∂B. Also, f ◦g(∂K)⊆ f ◦g( f (∂B)) = f (∂B) .
Recall that K has no points in f (∂B) so if p ∈ K, then p cannot be in f (∂B) and conse-
quently p cannot be in f ◦g(∂K) either. Summarizing this,

∂K ⊆ f (∂B) , g(∂K)⊆ ∂B, f ◦g(∂K)∩K = /0

Then picking p ∈ K, by the product rule,

1 = d (id,K, p) = d ( f ◦g,K, p) = ∑
i

d (g,K,Qi)d ( f ,Qi, p)

where here the Qi are the bounded components of (g(∂K))C. These are maximal open
connected sets in Rp. Recall g(∂K) ⊆ ∂B. If Qi has a point of H, then H would be
connected and contain no points of g(∂K) and so H would be contained in Qi which does
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not happen because Qi is bounded. Thus Qi ⊆ B̄ but also Qi is open and so it must be
contained in B. Now B is connected and open and contains no points of g(∂K) because it
contains no points of ∂B which is a larger set than g(∂K) and so in fact Qi = B and there
is only one term in the above sum. Thus, from properties of the degree,

1 = d (id,K, p) = d ( f ◦g,K, p) = d (g,K,B)d ( f ,B, p)

= d (g,K,0)d ( f ,B,K) = d (g◦ f ,B,0)

so by the product rule there is no more than one bounded component of f (∂B)C the K just
mentioned. However, there is at least one bounded component and one term in the sum
for the product rule because if there were no bounded components, this would contradict
Proposition ?? since it is clear that

(
Sp−1

)C is not connected. If you had other compo-
nents of f (∂B)C called Ki, i ≤ m ≤ ∞ you could repeat the above argument and obtain
1 = d (g,Ki,0)d ( f ,B,Ki) = d (g◦ f ,B,0) , but then, by the product rule, you would have

for K ≡ K0, 1 = d (g◦ f ,B,0) = ∑
m
k=0

=1
d (g,Ki,0)d ( f ,B,Ki) = m+1. Thus there is exactly

one bounded component of f (∂B)C. ■

Proposition A.13.3 Let B be the ball B(0,1) with Sn−1 its boundary, n ≥ 2. Suppose
f : Sn−1→C≡ f

(
Sn−1

)
⊆Rn is a homeomorphism. Then CC also has exactly two compo-

nents, one bounded and one unbounded.

Proof: Let f denote the extension of f to all ofRn and let g = f−1 on f (∂B) where g is
also extended using the Tietze extension theorem to all of Rn. Thus 0 /∈ g( f (∂B)) because
if x ∈ ∂B, then g( f (x)) = x ̸= 0. By Proposition A.12.2 and the product formula,

1 = d (id ,B,0) = d (g◦ f ,B,0) = ∑
i

d ( f ,B,Ki)d (g,Ki,0) (1.21)

where the Ki are finitely many of the bounded components of f (∂B)C . Thus, from Lemma
A.11.14 ∂Ki ⊆ f (∂B) and so g(∂Ki)⊆ g( f (∂B)) = ∂B. It follows that 0 /∈ g(∂Ki)⊆ ∂B.
Pick a term in the sum which is nonzero. Let it involve Ki. Letting yi ∈ Ki,

d ( f ,B,Ki)d (g,Ki,0) = d ( f ,B,yi)d (g,Ki,B) (1.22)

Indeed, B is connected and contains no points of g(∂Ki)⊆ ∂B so z→ d (g,Ki,z) is constant
on B. I want to argue that B is the only bounded component of g(∂Ki)

C.
Let H be a bounded component of g(∂Ki)

C . Then H cannot have any points of g(∂Ki) .

If H has any points of U , the unbounded component of (∂B)C , then U is a connected set
in g(∂Ki)

C and intersects H so the component determined by a point of intersection must
be H and contain U . Hence H is not bounded after all. Thus the only bounded components
of g(∂Ki)

C are contained in B. Since B is connected and has no points of g(∂Ki)⊆ ∂B, B
must be contained in exactly one bounded component of g(∂Ki)

C . Therefore this bounded
component and B are equal and the only bounded component of g(∂Ki)

C is B. Therefore
in 1.22, the right side is just d ( f ◦g,Ki,yi) = d (id,Ki,yi) = 1. This is because f ◦ g = id
on ∂Ki ⊆ f (∂B) and when the two functions coincide on the boundary, they have the same
degree by Proposition A.12.2. It follows from 1.21 that, since each term in the sum is 1
or 0, there is exactly one term in the sum and hence exactly one bounded component of
f (∂B)C. ■

A repeat of the above proof yields the following corollary. Replace B with Ω.
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Corollary A.13.4 Let Ω ⊆ Rn, n ≥ 2 be a bounded open connected set such that ∂ΩC

has two components, a bounded and an unbounded component. Suppose f : ∂Ω→ C ≡
f (∂Ω)⊆Rn is a homeomorphism. Then CC also has exactly two components, one bounded
and one unbounded.

As an application, here is a very interesting result about orientation and the invariance
of domain theorem which says that a one to one continuous function maps open sets to
open sets.

Proposition A.13.5 Let Ω be an open connected bounded set in Rn,n ≥ 2 such that Rn \
∂Ω consists of two connected components. Let f ∈ C

(
Ω;Rn

)
be continuous and one to

one. Then f (Ω) is the bounded component of Rn \ f (∂Ω) and for y ∈ f (Ω) , d ( f ,Ω,y)
either equals 1 or −1.

Proof: By the Jordan separation theorem, Corollary A.13.4, Rn \ f (∂Ω) consists of
two components, a bounded component B and an unbounded component U . Using the
Tietze extention theorem, there exists g defined on Rn such that g = f−1 on f

(
Ω
)
. Thus

on ∂Ω,g◦ f = id. It follows from this and the product formula that

1 = d (id,Ω,g(y)) = d (g◦ f ,Ω,g(y)) = d (g,B,g(y))d ( f ,Ω,B)

Therefore, d ( f ,Ω,B) ̸= 0 and so for every z ∈ B, it follows z ∈ f (Ω) . Thus B ⊆ f (Ω) .
On the other hand, f (Ω) cannot have points in both U and B because it is a connected set.
Therefore f (Ω)⊆ B and this shows B= f (Ω). Thus d ( f ,Ω,B) = d ( f ,Ω,y) for each y∈ B
and the above formula shows this equals either 1 or−1 because the degree is an integer. ■

This shows how to generalize orientation. It is just the degree. One could use this to
describe an orientable manifold without any direct reference to differentiability.

In the case of f
(
Sn−1

)
for f one to one and continuous, one wants to verify that this is

the boundary of both components, the bounded one and the unbounded one.

Theorem A.13.6 Let Sn−1 be the unit sphere in Rn,n ≥ 2. Suppose γ : Sn−1 → Γ ⊆ Rn

is one to one onto and continuous. Then Rn \Γ consists of two components, a bounded
component (called the inside) Ui and an unbounded component (called the outside), Uo.
Also the boundary of each of these two components of Rn \Γ is Γ and Γ has empty interior.

Proof: γ−1 is continuous since Sn−1 is compact and γ is one to one. By the Jordan
separation theorem, Rn \Γ =Uo∪Ui where these on the right are the connected compo-
nents of the set on the left, both open sets. Only Ui is bounded. Thus Γ∪Ui ∪Uo = Rn.
Since both Ui,Uo are open, ∂U ≡U \U for U either Uo or Ui. If x ∈ Γ, and is not a limit
point of Ui, then there is B(x,r) which contains no points of Ui. Let S be those points x of
Γ for which, B(x,r) contains no points of Ui for some r > 0. This S is open in Γ. Let Γ̂ be
Γ \ S. Then if Ĉ = γ−1

(
Γ̂
)
, it follows that Ĉ is a closed set in Sn−1and is a proper subset

of Sn−1. It is obvious that taking a relatively open set from Sn−1 results in a compact set
whose complement in Rn is an open connected set. By Proposition A.13.1, Rn \ Γ̂ is also
an open connected set. Start with x ∈Ui and consider a continuous curve which goes from
x to y ∈Uo which is contained in Rn \ Γ̂ . Thus the curve contains no points of Γ̂. However,
it must contain points of Γ which can only be in S. The first point of Γ intersected by this
curve is a point in Ui and so this point of intersection is not in S after all because every ball
containing it must contain points of Ui. Thus S = /0 and every point of Γ is in Ui. Similarly,
every point of Γ is in Uo. Thus Γ ⊆Ui \Ui and Γ ⊆Uo \Uo. However, if x ∈Ui \Ui, then
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x /∈Uo because it is a limit point of Ui and so x ∈ Γ. It is similar with Uo. Thus Γ =Ui \Ui
and Γ = Uo \Uo. This could not happen if Γ had an interior point. Such a point would be
in Γ but would fail to be in either ∂Ui or ∂Uo. ■

When n = 2, this theorem is called the Jordan curve theorem.

Corollary A.13.7 Let f : Rn→ Rn be one to one, continuous and let lim|x|→∞ | f (x)|= ∞.
Then f is onto.

Proof: From the invariance of domain, Proposition A.13.5, f (Rn) is open. However, if
f (xn)→ y, then {xn} must be bounded and so there is a convergent subsequence xnk → x.
Therefore, by continuity of f it follows that f

(
xnk

)
→ y= f (x) and so f (Rn) is also closed.

But Rn = (Rn \ f (Rn))∪ f (Rn) , the union of disjoint open sets. Hence one must be empty
since otherwise Rn would not be connected. ■

Corollary A.13.8 If n > m then there is no continuous one to one function f which maps
Rn onto Rm. Thus Rn,Rm are not homeomorphic.

Proof: If there were, then you could let θ : Rm → Rn be given by x→ (x,0) where
0 = (0,0, ...,0) . and we would have θ ◦ f is one to one and continuous mapping Rn to Rn

but does not take open sets to open sets. ■

Theorem A.13.9 Let B be a ball in Rn,n≥ 1 and let continuous f : B̄→Rn be odd mean-
ing that f (x) =− f (−x) . Suppose 0 /∈ f (∂B). Then d ( f ,B,0) ̸= 0.

Proof: From the above construction of f̂ , this reduces to showing that f̂ ([ĉ]) ̸= 0 where
[ĉ] generates Hn (Sn).

First consider the case where n = 1 so the ball is just the interval (−R,R) . Let g
denote the function of the form g(x) = kx where g(R) = f (R) ,g(−R) = f (−R). Then
d (t f +(1− t)g,(−R,R) ,0) is constant by the earlier properties of the degree because for
all t ∈ [0,1] ,0 /∈ (t f +(1− t)g)(∂ (−R,R)). However, d (g,(−R,R) ,0) =±1 by Proposi-
tion A.12.2. Thus the theorem holds in case n = 1. Thus f̂ ([ĉ]) ̸= 0.

This shows what is desired in case n = 1. Assume that d ( f ,B,0) ̸= 0 for f odd for
n− 1, n− 1 ≥ 1 so f̂∗ [ĉ] ̸= 0 for [ĉ] generating the homology group in dimension n− 1.
Recall that for U and V missing the top and bottom of Sn, Hn−1 (U ∩V )≈Hn−1

(
Sn−1

)
and

so we have the following Mayer Vietoris sequence in which ∆ is an isomorphism:
=Hn(Rn)=0

Hn (U) ⊕
=Hn(Rn)=0

Hn (V )
g∗→

Z
Hn (Sn)

∆→ Hn−1
(
Sn−1)

↓ f̂∗⊕ f̂∗ ↓ f̂∗ ↓ f̂∗
Hn
(

f̂ (U)
)
⊕Hn

(
f̂ (V )

) g∗→ Hn
(

f̂ (Sn)
) ∆→ Hn−1

(
f̂
(
Sn−1))

h∗→
0

Hn−1 (U)⊕
0

Hn−1 (V )

↓ f̂∗⊕ f̂∗
h∗→ Hn−1

(
f̂ (U)

)
⊕Hn−1

(
f̂ (V )

)
In the above, g∗,h∗ mapping to 0 in the bottom line comes from the above observation

that f̂ (U) ⊆ U and f̂ (V ) ⊆ V . Then this implies that both connecting homomorphisms
∆ are isomorphisms. Thus, using Lemma A.7.1, the above Mayer Vietoris sequence com-
mutes and the following holds for n > 1.

If [ĉ] generates Hn (Sn) , then ∆ [ĉ] generates Hn−1 (U ∩V )≈Hn−1
(
Sn−1

)
and by induc-

tion and Lemma A.7.1, 0 ̸= f̂∗∆ [ĉ] = ∆ f̂∗ [ĉ] and so f̂∗ [ĉ] ̸= 0, so d ( f ,B,0) ̸= 0. ■
Since we know that d ( f ,B,0) ̸= 0 for f an odd mapping, this leads to the Borsuk Ulam

theorem.

Theorem A.13.10 Let B be a bounded open ball in Rn centered at 0 and let f : ∂B→V be
continuous where V is an m dimensional subspace of Rn,m ≤ n− 1. Then f (−x) = f (x)
for some x ∈ ∂B.



498 APPENDIX A. HOMOLOGICAL METHODS∗

Proof: We can assume V is Rm. Suppose the conclusion of the theorem is not so.
Using the Tietze extension theorem on components of the function, extend f to all of Rn,
f (B̄) ⊆ V . (Here the extended function is also denoted by f .) Let g(x) = f (x)− f (−x).
Thus g is odd, maps into V and assuming the theorem is not true, 0 /∈ g(∂B) and so for
some r > 0, B(0,r) ⊆ Rn \ g(∂B). For z ∈ B(0,r), d (g,B(0,r) ,z) = d (g,B(0,r) ,0) ̸= 0
because B(0,r) is contained in a component ofRn\g(∂B). Hence V ⊇ g(B(0,r))⊇B(0,r)
and this is a contradiction because V is m dimensional. ■

One can also show the invariance of domain theorem with the above theorem about the
degree.

Lemma A.13.11 Let g : B(0,r)→ Rp be one to one and continuous where here B(0,r) is
the ball centered at 0 of radius r in Rp. Then there exists δ > 0 such that

g(0)+B(0,δ )⊆ g(B(0,r)) .

The symbol on the left means: {g(0)+ x : x ∈ B(0,δ )} .

Proof: For t ∈ [0,1] , let h(x, t)≡ g
( x

1+t

)
−g
(−tx

1+t

)
. Then for x ∈ ∂B(0,r) , h(x, t) ̸= 0

because if this were so, the fact g is one to one implies x
1+t =

−tx
1+t and this requires x = 0,

not the case since ∥x∥ = r. Then d (h(·, t) ,B(0,r) ,0) is constant. Hence it is nonzero
for all t thanks to Theorem A.14.6, because h(·,1) is odd. Now let B(0,δ ) be such that
B(0,δ )∩h(∂Ω,0) = /0. Then d (h(·,0) ,B(0,r) ,0) = d (h(·,0) ,B(0,r) ,z) for z ∈ B(0,δ )
because the degree is constant on connected components of Rp \ h(∂Ω,0) . Hence z =
h(x,0) = g(x)−g(0) for some x ∈ B(0,r). Thus g(B(0,r))⊇ g(0)+B(0,δ ) ■

Here is another proof of invariance of domain.

Theorem A.13.12 (invariance of domain)Let Ω be any open subset of Rp and let f : Ω→
Rp be continuous and one to one. Then f maps open subsets of Ω to open sets in Rp.

Proof: Let B(x0,r)⊆Ω where f is one to one on B(x0,r). Let g be defined on B(0,r)
given by g(x) ≡ f (x+ x0) . Then g satisfies the conditions of Lemma A.13.11, being one
to one and continuous. It follows from that lemma there exists δ > 0 such that

f (Ω)⊇ f (B(x0,r)) = f (x0 +B(0,r))

= g(B(0,r))⊇ g(0)+B(0,δ ) = f (x0)+B(0,δ ) = B( f (x0) ,δ )

This shows that for any x0 ∈ Ω, f (x0) is an interior point of f (Ω) which shows f (Ω) is
open. ■

A.14 Analysis and the Degree
The degree can be presented in a different way using more linear algebra and analysis.

Lemma A.14.1 Let y /∈ f (∂Ω) . Then d ( f ,Ω,y) = d ( f − y,Ω,0). Also,

d ( f ,Ω,y) = d ( f ((·)+ z) ,Ω− z,y) .

Proof: Consider d (t f +(1− t)( f − y) ,Ω, ty) . If x ∈ ∂Ω, t ∈ [0,1] ,

(t f +(1− t)( f − y))(x)− ty = t f (x)+(1− t) f (x)− (1− t)y− ty

= f (x)− y ̸= 0
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When t = 0, d (t f +(1− t)( f − y) ,Ω, ty) = d ( f − y,Ω,0) . When t = 1, it is d ( f ,Ω,y) so
by Proposition A.12.2 the two are equal. Now consider the second claim.

Let αz (x) = x+z. Then the claim is that d ( f ,Ω,y) = d ( f ◦αz,α−zΩ,y) . Let f̂ go with
f and f̂ ◦αz go with f ◦αz. Then f̂ ◦αz = f̂ ◦θ ◦αz ◦θ

−1 since the latter does what f̂ ◦αz

is supposed to do:

(
f̂ ◦θ ◦α

z ◦θ
−1)−1

(y) = θ ◦α
−z ◦θ

−1 ◦
∈θΩ

f̂−1 (y) ∈ θ
(
α
−z

Ω
)

Now θ ◦αz ◦θ
−1 is a homeomorphism on Sn and so if [ĉ] generates Hn (Sn) , then(

θ ◦α
z ◦θ

−1)
∗ [ĉ] =± [ĉ] .

However, letting t ∈ [0,1] ,
(
θ ◦α tz ◦θ

−1) is a homotopy of id and
(
θ ◦αz ◦θ

−1) so by
Theorem A.3.7

(
θ ◦αz ◦θ

−1)
∗ [ĉ] = id∗ [ĉ] = [ĉ] and so

d
(

f ◦α
z,α−z

Ω,y
)
[ĉ] ≡

(
f̂ ◦θ ◦α

z ◦θ
−1)
∗ [ĉ]

= f̂∗
(
θ ◦α

z ◦θ
−1)
∗ [ĉ] = f̂∗ [ĉ]≡ d ( f ,Ω,y) [ĉ] ■

Suppose f is one to one on B(w,r) and we want to consider the case where D f (w) is
invertible. From the above lemma,

d ( f ,B(w,r) , f (w)) = d ( f − f (w) ,B(w,r) ,0)
= d ( f ((·)+w)− f (w) ,B(0,r) ,0) (1.23)

Lemma A.14.2 Let f : B(w,R)→Rn be such that f−1 ( f (w)) = {w} and suppose D f (w)
is invertible. Then d ( f ,B(w,R) , f (w)) = sgn(det(D f (w))).

Proof: Referring to 1.23, let g(x)≡ f (x+w)− f (w) . Thus Dg(0) = D f (w) . Denote
by Br the ball with center at 0 and radius r. By Corollary A.11.11 and Lemma 1.23,

d ( f ,B(w,R) , f (w)) = d (g,B(0,R) ,0) = d (g,Br,0)

for all 0 < r < R where Br is centered at 0 with radius r. Thus it suffices to consider
d (g,Br,0). For x ∈ ∂Br, consider tg(x)+(1− t)Dg(0)x for t ∈ [0,1] .

tg(x)+(1− t)Dg(0)x = t (g(x)−Dg(0)x)+Dg(0)x

Thus, if for some xr ∈ ∂Br and t ∈ [0,1], the above is 0, then∣∣∣Dg(0)
xr

r

∣∣∣≤ |g(xr)−Dg(0)xr|
r

.

Now limr→0
|g(xr)−Dg(0)x|

r = 0 by differentiability and so, since xr
r is a unit vector, there

is a subsequence converging to y another unit vector as r→ 0. Therefore, |Dg(0)y| = 0
contrary to the assumption that Dg(0) is invertible. It follows that there exists some r ≤ R
such that 0 /∈ (tg+(1− t)Dg(0))(∂Br) and now it follows from Proposition A.12.2 that
d (g,Br,0) = d (Dg(0) ,Br,0) which is the sign of the determinant of Dg(0), either 1 or −1
because Dg(0) is the product of the elementary matrices described in that proposition. ■



500 APPENDIX A. HOMOLOGICAL METHODS∗

Lemma A.14.3 Let Ω be a bounded open set and let y /∈ f (∂Ω) where f : Ω̄→ Rn is
continuous and f is differentiable on Ω with det(D f (x)) ̸= 0 for each x ∈ Ω. Then there
are finitely many xi ∈ f−1 (y) each the center of a ball Bi where B̄i∩ B̄ j = /0 and f is one to
one on B̄i. Then

d ( f ,Ω,y) = ∑
i

d ( f ,Bi,y) = ∑
i

sgn(det(D f (xi)))

Proof: That a collection of points xi ∈ f−1 (y) exists together with disjoint balls Bi
centered at xi having disjoint closures on which f is one to one follows from the inverse
function theorem. If there were infinitely many of these xi then a subsequence of distinct
points would converge to a point z of Ω̄ which must satisfy f (z) = y and so by assumption,
y /∈ ∂Ω. But now, by the inverse function theorem, there would be a ball Bz containing
z on which f is one to one which is a contradiction since this ball must contain some
xi ̸= z. Thus there are only finitely many. The formula follows from Lemma A.14.2 and
Proposition A.12.2 part 3. ■

From Lemma A.14.2, we know d ( f ,B(w,R) , f (w)) whenever f is one to one on
B(w,R). It is just sgn(det(D f (w))) . See my book “Real and Abstract Analysis” for a
treatment of the degree starting with this.

If f : U ⊆ Rn → Rn is differentiable, and if S is the set of x where det(D f (x)) = 0
then Sard’s lemma says that f (S) has measure zero. I will use this fact in the proof of
the following lemma. This is in both of my books in the chapter on change of variables
theorems “Analysis of Functions of Complex and Many Variables” or “Real and Abstract
Analysis”.

Lemma A.14.4 Let hη be a polynomial meaning each component is a polynomial, with
det(Dhη (0)) ̸= 0, hη (0) = 0, and let η > 0. Then there are vectors yk each with

∣∣yk
∣∣< η

such that h(x)≡ hη (x)−∑
n
k=1 x3

kyk has 0 as a regular value meaning that if h(x) = 0, then
Dh(x) is invertible.

Proof: Let Vk consist of all x ∈ Rn such that xk ̸= 0. Consider f (x) ≡ hη (x)
x3

1
. Then

x3
1D f (x)+3x2

1 f (x)J1 = Dhη (x) where J1 has the first column ones, the others 0. So

D f (x) = x−3
1
(
Dhη (x)−3x2

1 f (x)J1
)

(1.24)

Now the singular set for f in V1where det(D f (x))= 0 called S, has f (S) with measure zero.
In particular there exists y1 ∈ B(0,η) a regular value for f on Vk. Then ĥ(x) ≡ hη (x)−
x3

1y1 = x3
1
(

f (x)− y1
)

sends 0 to 0 and Dĥ(0) is invertible while at the other points x where
ĥ(x) = 0,we have f (x) = y1 and so D f (x) is invertible. Thus Dĥ(x) = 3x2

1
(

f (x)− y1
)

I+
x3

1D f (x) = x3
1D f (x) which is invertible for any x ∈V1 for which ĥ(x) = 0. What if x1 = 0

but Dhη (x) is invertible, does this continue to hold for ĥ? From the above, Dĥ(x) =
Dhη (x)− 3x2

1y1J where all columns of J are zero except the first, so at x1 = 0, Dĥ(x) =
Dhη (x) which is invertible.

Now let ĥ be the new hη and do the same construction with V2. Iterate this process
eventually getting h(x) = hη (x)−∑

n
k=1 x3

kyk such that 0 is a regular value for this function
on {0}∪V1∪V2 · · ·∪Vn = Rn. ■

Lemma A.14.5 Let f : B̄→ Rn where B is a ball of radius R centered at 0 and f is odd
and has each component function a polynomial and 0 /∈ f (∂B). Then d ( f ,B,0) is an odd
integer.
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Proof: Clearly f (0) = 0 because f is odd. First assume that D f (x) is invertible for all
x ∈ f−1 (0) . Then from Lemma A.14.3 there are finitely many open balls, B0 centered at
0 and Bi centered at xi ∈ f−1 (0) such that f−1 (0) is contained in the union of these balls,
their closures are disjoint, and if Bi is one of these balls with center at xi, i= 0,1, ...,2m then
Bi ∩ f−1 (0) = {xi}. These disjoint open balls come in pairs B,−B since f is odd. Now
from Lemma A.14.2 and the fact that f is odd, d ( f ,B(xi,ri) ,0) = d ( f ,−B(xi,ri) ,0) =
sgn(det(D f (xi))) for i > 0. Thus d ( f ,B,0) is an odd integer.

If this is not so that D f (x) is invertible for all x∈ f−1 (0) , pick η ̸= 0 small enough that
hη ≡ f +ηI has Dhη (0) invertible (Problem 11 on Page 190) and also that d (hη ,B,0) =
d ( f ,B,0) . Then if η is still smaller so that h in the above Lemma A.14.4 has d (h,B,0) =
d ( f ,B,0) the first part applies to h and proves the desired result. ■

Actually there is an easier way to prove a simpler version of Lemma A.14.4 since hη

is a polynomial and the iterates in the process are also polynomials which will suffice
in the above. Note that the singular sets S all have measure zero because the set where
det(D f (x)) equals 0 is the set where det(Dg(x)) = 0 for some g a polynomial in each step
of the iteration, and x1→ det(Dg(x)) has only finitely many zeros, being a polynomial. It
is also relatively easy in comparison to proving Sard’s lemma, to verify that if f has one
continuous derivative on an open set V containing S a closed set of measure zero, then f (S)
has measure zero. In particular f (S) does not contain any ball, making the iteration in that
lemma possible.

Next we need to reduce to the case of this lemma for odd continuous functions. Say
f is odd and defined on B̄. Then 1

2 ( f (x)+(− f (−x))) = f (x) . Using the Weierstrass
approximation theorem of Chapter 16, there is a polynomial g which is close enough
to f on B̄ that d ( f ,B,0) = d (g,B,0) . Let f̂ (x) = 1

2 (g(x)+(−g(−x))) . Then f̂ (−x) =
1
2 (g(−x)+(−g(x))) = − 1

2 (g(x)+(−g(−x))) = − f̂ (x) . Thus f̂ is also a polynomial,
is odd, and is just as close to f as is g, so by Lemma A.14.5 d ( f ,B,0) = d (g,B,0) =
d
(

f̂ ,B,0
)

an odd integer. Thus we get the following theorem.

Theorem A.14.6 Let B be an open ball centered at 0 and let f : B̄→ Rn be odd with
0 /∈ f (∂B). Then d ( f ,B,0) is an odd integer. In particular it is not zero.

Note that you could replace the ball with a symmetric open set Ω which means x ∈ Ω

if and only if −x ∈Ω. There would be no change in the argument.



502 APPENDIX A. HOMOLOGICAL METHODS∗



Appendix B

The Hausdorff Maximal Theorem
First is the definition of what is meant by a partial order.

Definition B.0.1 A nonempty set F is called a partially ordered set if it has a partial order
denoted by ≺. This means it satisfies the following. If x ≺ y and y ≺ z, then x ≺ z. Also
x ≺ x. It is like ⊆ on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x≺ y
or y ≺ x. A chain, denoted by C ⊆F has the property that it is totally ordered meaning
that if x,y ∈ C , either x≺ y or y≺ x. A maximal chain is a chain C which has the property
that there is no strictly larger chain. In other words, if x ∈ F\∪C , then C∪{x} is no
longer a chain so x fails to be related to something in C .

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the xC right at the beginning of the argument.

Theorem B.0.2 Let F be a nonempty partially ordered set with order≺. Then there exists
a maximal chain.

Proof: For C a chain, let θC denote C ∪{xC } . Thus for C a chain, θC is a larger
chain which has exactly one more element of F . Since F ̸= /0, pick x0 ∈ F . Note that
{x0} is a chain. Let X be the set of all chains C such that x0 ∈ ∪C . Thus X contains
{x0}. Call two chains comparable if one is a subset of the other. Also, if S is a nonempty
subset of F in which all chains are comparable, then ∪S is also a chain. From now on S
will always refer to a nonempty set of chains in which any pair are comparable. Then
summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X

3. If C ∈X then θC ∈X .

4. If S ⊆X then ∪S ∈X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.

Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ ∪C . The symbol ⊊ indicates proper subset.

This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1? If S ⊆ Y , is ∪S ∈ Y1? Is {x0} ∈B?
{x0} cannot properly contain C0 since x0 ∈ ∪C0. Therefore, C0 ⊇ {x0} so {x0} ∈B.
If S ⊆ Y1, and D ≡ ∪S , is D ∈ Y1? Since Y0 is a tower, D is comparable to C0.

If D ⊆ C0, then D is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why is
xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

503
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and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. 4.) holds. Two cases remain, to
show that Y1 satisfies 3.).

case 1: D ⊋ C0. Then by definition of B, xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. θD ∈ Y0 so θD is comparable to C0. First suppose θD ⊋ C0. Thus

D ⊆ C0 ⊊ D ∪{xD} . If x ∈ C0 and x is not in D then D ∪{x} ⊆ C0 ⊊ D ∪{xD}. This
is impossible. Consider x. Thus in this case that θD ⊋ C0, D = C0. It follows that
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. The other case is that θD ⊆ C0 so θD ∈B
by definition. This shows 3.) so Y1 is a tower and must equal Y0.

Claim 2: Any two chains in Y0 are comparable.
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. {x0} is in Y1 by definition. All chains of Y0 have x0 in their union. If
S ⊆Y1, is ∪S ∈Y1? Given D ∈Y0 either every chain of S is contained in D or at least
one contains D . Either way D is comparable to ∪S so ∪S ∈ Y1. It remains to show 3.).
Let C ∈ Y1 and D ∈ Y0. Since C is comparable to all chains in Y0, it follows from Claim
1 either C ⊊ D when xC ∈ ∪D and θC ⊆ D or C ⊇ D when θC ⊇ D . Hence Y1 = Y0
because Y0 is as small as possible.

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■

If X is a nonempty set,≤ is an order on X if

x≤ x,

and if x, y ∈ X , then
either x≤ y or y≤ x

and
if x≤ y and y≤ z then x≤ z.

≤ is a well order and say that (X ,≤) is a well-ordered set if every nonempty subset of X
has a smallest element. More precisely, if S ̸= /0 and S ⊆ X then there exists an x ∈ S such
that x≤ y for all y ∈ S. A familiar example of a well-ordered set is the natural numbers.

Lemma B.0.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.

Proof: Let X be a nonempty set and let a ∈ X . Then {a} is a well-ordered subset of X .
Let

F = {S⊆ X : there exists a well order for S}.
Thus F ̸= /0. For S1, S2 ∈F , define S1 ≺ S2 if S1 ⊆ S2 and there exists a well order for S2,
≤2 such that

(S2,≤2) is well-ordered

and if
y ∈ S2 \S1 then x≤2 y for all x ∈ S1,

and if ≤1is the well order of S1 then the two orders are consistent on S1. Then observe that
≺ is a partial order on F . By the Hausdorff maximal principle, let C be a maximal chain
in F and let

X∞ ≡ ∪C .
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Define an order, ≤, on X∞ as follows. If x, y are elements of X∞, pick S ∈ C such that x, y
are both in S. Then if ≤S is the order on S, let x≤ y if and only if x≤S y. This definition is
well defined because of the definition of the order,≺. Now let U be any nonempty subset of
X∞. Then S∩U ̸= /0 for some S ∈ C . Because of the definition of ≤, if y ∈ S2 \S1, Si ∈ C ,
then x ≤ y for all x ∈ S1. Thus, if y ∈ X∞ \ S then x ≤ y for all x ∈ S and so the smallest
element of S∩U exists and is the smallest element in U . Therefore X∞ is well-ordered.
Now suppose there exists z ∈ X \X∞. Define the following order, ≤1, on X∞∪{z}.

x≤1 y if and only if x≤ y whenever x,y ∈ X∞

x≤1 z whenever x ∈ X∞.

Then let
C̃ = {S ∈ C or X∞∪{z}}.

Then C̃ is a strictly larger chain than C contradicting maximality of C . Thus X \X∞ = /0
and this shows X is well-ordered by ≤. ■

With these two lemmas the main result follows.

Theorem B.0.4 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It only remains to prove that the well-ordering principle implies the axiom of
choice. Let I be a nonempty set and let Xi be a nonempty set for each i ∈ I. Let X = ∪{Xi :
i ∈ I} and well order X . Let f (i) be the smallest element of Xi. Then f ∈∏i∈I Xi. ■

B.1 The Hamel Basis
A Hamel basis is nothing more than the correct generalization of the notion of a basis for a
finite dimensional vector space to vector spaces which are possibly not of finite dimension.

Definition B.1.1 Let X be a vector space. A Hamel basis is a subset of X ,Λ such that every
vector of X can be written as a finite linear combination of vectors of Λ and the vectors of
Λ are linearly independent in the sense that if {x1, · · · ,xn} ⊆ Λ and

n

∑
k=1

ckxk = 0

then each ck = 0.

The main result is the following theorem.

Theorem B.1.2 Let X be a nonzero vector space. Then it has a Hamel basis.
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Proof: Let x1 ∈ X and x1 ̸= 0. Let F denote the collection of subsets of X , Λ containing
x1 with the property that the vectors of Λ are linearly independent as described in Definition
B.1.1 partially ordered by set inclusion. By the Hausdorff maximal theorem, there exists a
maximal chain, C Let Λ = ∪C . Since C is a chain, it follows that if {x1, · · · ,xn} ⊆ C then
there exists a single Λ′ ∈ C containing all these vectors. Therefore, if

n

∑
k=1

ckxk = 0

it follows each ck = 0. Thus the vectors of Λ are linearly independent. Is every vector of X
a finite linear combination of vectors of Λ?

Suppose not. Then there exists z which is not equal to a finite linear combination of
vectors of Λ. Consider Λ∪{z} . If

cz+
m

∑
k=1

ckxk = 0

where the xk are vectors of Λ, then if c ̸= 0 this contradicts the condition that z is not a finite
linear combination of vectors of Λ. Therefore, c = 0 and now all the ck must equal zero
because it was just shown Λ is linearly independent. It follows C∪{Λ∪{z}} is a strictly
larger chain than C and this is a contradiction. Therefore, Λ is a Hamel basis as claimed.
■

B.2 Exercises
1. Zorn’s lemma states that in a nonempty partially ordered set, if every chain has an

upper bound, there exists a maximal element, x in the partially ordered set. x is
maximal, means that if x ≺ y, it follows y = x. Show Zorn’s lemma is equivalent to
the Hausdorff maximal theorem.

2. Show that if Y, Y1 are two Hamel bases of X , then there exists a one to one and onto
map from Y to Y1. Thus any two Hamel bases are of the same size.
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ε net, 253

A close to B
eigenvalues, 336

Abel’s formula, 189, 194
Abelian group, 51

free, 455
absolute convergence

convergence, 394
absolute value

complex number, 10
accumulation point, 246
adjoint, 329

of matrix, 275
adjugate, 180
affine maps, 470
algebraic number

minimum polynomial, 70
algebraic numbers, 69

field, 71
alternating group, 228

3 cycles, 229
analytic function of matrix, 302
arcwise connected, 261
ascending chains, 153
at most countable, 4
automorphism, 211
axiom of choice, 4

barycenter, 469
basis, 262

existence, 55
basis of eigenvectors

diagonalizable, 136
basis of vector space, 54
Bernstein polynomial

approximation of derivative, 444
Binet Cauchy

volumes, 326
Binet Cauchy formula, 177
binomial theorem, 32
block diagonal matrices

direct sum of subspaces, 120
block diagonal matrix, 120
block matrix, 88
block multiplication, 88, 89
Borsuk Ulam theorem, 497
boundary operator, 457

bounded linear transformations, 274
Brouwer

fixed point theorem, 482, 483, 493

Cauchy interlacing theorem, 348, 350
Cauchy Schwarz inequality, 264
Cauchy sequence, 248, 324
Cayley Hamilton theorem, 186, 191, 192,

384
chain, 503
chain complex, 478
chain homomorphisms, 478
chain homotopy, 465
characteristic polynomial, 185
Cholesky factorization, 387
closed set, 246
closed sets

limit points, 246
closure of a set, 250
cofactor, 178
column rank, 183
commutative ring, 67, 195

Noetherian, 169
commutative ring with unity, 28
commutator, 232, 348
commutator subgroup, 232
compact

sequentially compact, 283
compact set, 253
compactness

closed interval, 249
equivalent conditions, 253

companion matrix, 419
complete, 399
complex conjugate, 10
complex numbers, 8
complex numbers

arithmetic, 8
roots, 12
triangle inequality, 10

components of a vector, 262
composition of linear transformations, 111
condition number, 390
cone, 468
conjugate

of a product, 33
conjugate fields, 237
conjugate linear, 314
connected, 259
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connected component, 260
connected components, 260

equivalence class, 260
equivalence relation, 260
open sets, 260

connected sets
intersection, 259
intervals, 260
real line, 260

connecting sequence, 475
consistent, 44
continuous function, 251
continuous functions, 284

equivalent conditions, 251
contraction map, 255

fixed point theorem, 255
convex combination, 116, 280
convex hull, 116, 280

compactness, 116
convex set

homology, 461
Coordinates, 53
countable, 4
counting zeros, 336
Courant Fischer theorem, 369
cow lick, 493
Cramer’s rule, 181
cyclic basis, 148
cyclic set, 147

De Moivre’s theorem, 12
degree

antipodal map, 486
Euclidean space, 491
odd function, 501
on spheres, 484
orientation, 496
product formula, 491
properties, 492
regular value, 500
switching variables, 485
well defined, 488

derivative, 284
determinant

definition, 174
estimate for Hermitian matrix, 388
expansion along row, column, 179
Hadamard inequality, 388

matrix inverse, 179
partial derivative, cofactor, 190
permutation of rows, 174
product, 176
product of eigenvalues, 341
row, column operations, 175
summary of properties, 185
symmetric definition, 175
transpose, 175

diagonal matrix, 135
diagonalizability, 135
diagonalizable, 135, 357

formal derivative, 140
minimal polynomial and its derivative,

140
differential equations

first order systems, 343
dimension of a vector space, 262
dimension of vector space, 54
direct sum, 119, 158, 460

minimum polynomial splits, 162
notation, 119

discrete Fourier transform, 384
distance, 245

to a subspace, 313
distance to a nonempty set, 247
distinct eigenvalues, 147
distinct roots

polynomial and its derivative, 239
dot product, 263
dyadics, 103

echelon form, 41
eigen-pair, 132
eigenvalue, 132

existence, 133
eigenvalues, 186, 336

AB and BA, 187
eigenvector, 132

existence, 133
eigenvectors

distinct eigenvalues, 147
independent, 147

elementary matrices, 91
product, 95

elementary matrix
inverse, 95
properties, 95
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elementary operations, 39
elementary symmetric polynomials, 196
empty set, 1
equivalence class, 6, 63, 107

of polynomials, 64
equivalence relation, 6, 63, 107
Euclidean algorithm, 19
exchange theorem, 54
existence of a fixed point, 401

factorization of matrix
Euclidean domain, 151

field axioms, 8
field extension

dimension, 67
finite, 67

field extensions, 67
Field of scalars, 51
fields

characteristic, 240
perfect, 241

fields
perfect, 240

finite dimensional vector space, 54
finite fields, 27
fixed field, 219
fixed fields and subgroups, 224
fixed point property, 483
formal derivative, 140
Fourier series, 323
Fredholm alternative, 318
Frobenius

inner product, 347
Frobenius norm, 275, 374

singular value decomposition, 374
Frobinius norm, 383
function, 3
fundamental theorem of algebra, 13, 15, 210
fundamental theorem of algebra

plausibility argument, 15
rigorous proof, 16

fundamental theorem of arithmetic, 20
fundamental theorem of Galois theory, 226

Galois group
size, 217

Gauss Elimination, 44
Gauss elimination, 40

Gauss Jordan method for inverses, 82
Gauss Seidel method, 402
geometric simplices

boundary, 466
Gerschgorin’s theorem, 334
Gram Schmidt process, 271, 309
Grammian matrix, 312, 319

invertible, 312
greatest common divisor, 19, 22

characterization, 19
description, 22

Gronwall’s inequality, 407
group

definition, 217
group

solvable, 232

Hadamard
inequality, 388

Hamel basis, 505
Hausdorff

maximal principle, 503
Hermitian, 331

orthonormal basis eigenvectors, 367
positive definite, 371

Hermitian matrix
factorization, 387
positive part, 382
positive part, Lipschitz continuous, 382

Hermitian operator, 315
largest, smallest, eigenvalues, 368

Hilbert space, 307
Holder’s inequality, 268
homeomorphism, 455
homogeneous coordinates, 115
homology

convex spaces, 461
of spheres, 480
path components, 460
pathconnected, 459
spheres, 480

homology group, 458
homomorphism, 211, 456

boundary, 456
connecting, 476

homotopic, 463
maps, 465

homotopy
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inverses, 465
type, 465

ideal, 67, 169
maximal, 169

inconsistent, 44
initial value problem

uniqueness, 408
inner product, 263
inner product space

adjoint operator, 314
integers modulo a prime, 28
integral

continuous function, 447
operator valued function, 407
vector valued function, 406

integral domain, 28, 169
integrals

iterated, 450
interior point, 245
intermediate value theorem, 260
intersection, 1
intervals

notation, 1
invariance of domain, 498
invariant subspaces

direct sum, block diagonal matrix, 120
inverse image, 3
inverses and determinants, 180
invertible, 81
irreducible, 22

relatively prime, 23
isomorphism, 152, 211, 459

extensions, 213
iterated integrals, 450
iterative methods

alternate proof of convergence, 404
diagonally dominant, 405
proof of convergence, 402

Jacobi method, 402
Jordan

separation theorem, 494
Jordan canonical form, 144, 162
Jordan curve theorem, 496

ker, 62
kernel of a product

direct sum decomposition, 126

Kirchoff’s law, 49, 50

Laplace expansion, 178
leading entry, 41
least squares, 317
lim inf, 29

properties, 32
lim sup, 29

properties, 32
limiit point, 246
limit

continuity, 278
infinite limits, 276

limit of a function, 276
limit of a sequence, 246

well defined, 246
limit point, 276
limits

combinations of functions, 276
existence of limits, 30

limits and continuity, 278
Lindeloff property, 252
Lindemann Weierstrass theorem, 206
Lindemannn Weierstrass theorem, 199
linear combination, 53, 176
linear independence, 262
linear transformation, 62, 101

defined on a basis, 102
dimension of vector space, 102
kernel, 124
matrix, 101

linear transformations
a vector space, 101
commuting, 126
composition, matrices, 111
sum, 101

linearly independent, 53
linearly independent set

enlarging to a basis, 262
Lipschitz continuous, 255

Markov matrix, 285
limit, 288
regular, 288
steady state, 285, 288

math induction, 6
mathematical induction, 6
matrices
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block diagonal, 91
block multiplication, 89
commuting, 360
invertible, 95
notation, 77
rotation, 111
transpose, 80

matrix, 77
differentiation operator, 105
inverse, 81
left inverse, 180
linear transformation, 104
lower triangular, 181
main diagonal, 135
Markov, 285
polynomial, 191
right inverse, 180
right, left inverse, 180
row, column, determinant rank, 183
stochastic, 285
upper triangular, 181

matrix
positive definite, 386

matrix exponential, 405
matrix multiplication, 78

properties, 80
maximal chain, 503
maximal ideal, 67
maximum likelihood estimates

covariance, 356
mean, 356

Mayer Vietoris
sequence, 480

mean value theorem
Cauchy, 447

metric, 245
properties, 245

metric space, 245
compact sets, 253
complete, 248
completely separable, 252
open set, 245
separable, 252

metric tensor, 319
migration matrix, 289
minimal polynomial

finding it, 165
minimum polynomial, 69, 127

algebraic number, 69
direct sum, 160
finding it, 129

minor, 178
module, 152

cyclical, 153
direct sum, 154
Noetherian, 153

monomorphism, 152, 211
Moore Penrose inverse, 377

least squares, 378
uniqueness, 385

morphism, 152
multivariate normal distribution, 355
Muntz theorems, 453

negative definite, 370
Neuman

series, 410
nilpotent, 144
non solvable group, 234
nondefective, 135
norm

p norm, 268
strictly convex, 403
uniformly convex, 403

normal closure, 237
normal extension, 221
normal matrix, 332
normal subgroup, 222, 232
null and rank, 325

open ball, 245
open set, 245

open cover, 252
open set, 245
open sets

countable basis, 252
operator norm, 274
order, 17
ordered

partial, 503
totally ordered, 503

orthonormal, 270
orthonormal basis

existence, 309
orthonormal polynomials, 322

parallelepiped
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volume, 319
partial fractions, 25

decomposition, 26
unique, 26

partial order, 503
partially ordered set, 503
partitioned matrix, 88
path components, 460
Penrose conditions, 379
permutation, 173
permutation matrices, 91, 227
permutations

cycle, 228
Perron’s theorem, 293
piecewise continuous, 451
pointwise convergence, 258
polar form complex number, 11
Polish space, 252
polynomial, 21

addition, 21
degree, 21
divides, 22
division, 21
equality, 21
greatest common divisor, 22
greatest common divisor, uniqueness,

22
irreducible, 22
irreducible factorization, 23
multiplication, 21
relatively prime, 22

polynomial
leading term, 21
matrix coefficients, 191
monic, 21

polynomials
coefficients in a field, 63
factoring, 13
factorization, 24, 126
relatively prime?, 44

polynomials in finitely many algebraic num-
bers, 70

positive, 363
positive definite

postitive eigenvalues, 371
principle minors, 371

positive definite matrix, 386
positive self adjoint

products, 363
roots, 364

postitive definite, 370
power method, 413
powers of a matrix

existence of a limit, 285
Jordan form, 285
stochastic matrix, 285

prime number, 19
principal submatrix, 350
principle ideal domain, 169
principle minors, 371
projection map

convex set, 324

QR algorithm, 339, 423
convergence, 426
convergence theorem, 426
non convergence, 340, 430

QR factorization, 316
quadratic form, 333
quadratic formula, 13
quotient group, 222
quotient module, 153
quotient space, 64, 74
quotient vector space, 75

rank
number of pivot columns, 87

rank of a matrix, 87, 183
rank one transformations, 103
rational canonical form, 161
Rayleigh quotient, 420

how close?, 420
regression line, 317
regular Sturm Liouville problem, 322
relatively prime, 19
residue class

integers, 27
modulo a prime, 28

retract, 466
retraction, 466

deformation, 466
Riesz representation theorem, 313
right polar factorization, 351, 352
ring

including 1, 170
row operations, 41, 91
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row rank, 183
row reduced echelon form, 41

description, 86
unique, 87

scalars, 77
Schroder Bernstein theorem, 4
Schur’s theorem, 329
self adjoint, 315, 363
self adjoint nonnegative

roots, 354, 362
separable

polynomial, 223
separable metric space

Lindeloff property, 252
separated sets, 259
sequence, 246

Cauchy, 248
connecting, 475
exact, 474
subsequence, 247

sequential compactness, 283
sequentially compact, 283
sequentially compact set, 253
set notation, 1
sgn, 171

uniqueness, 173
shifted inverse power method, 415

complex eigenvalues, 418
short and long exact sequences, 479
short exact sequence, 154
sign of a permutation, 173
similar

matrix and its transpose, 167
similar matrices, 107, 189
similarity

characteristic polynomial, 189
determinant, 189
trace, 189

similarity transformation, 107
simple field extension, 72
simple groups, 231
simplex

singular, 456
simultaneously diagonalizable, 359

commuting family, 361
singular simplex

boundary, 456

singular value decomposition, 372
singular values, 372
skew symmetric, 81
solution set, 39
solvable by radicals, 235
solvable group, 232
span, 53, 176
spectral mapping theorem, 304
spectral norm, 381
spectral radius, 390
splitting field, 67, 68

dimension, 68
splitting fields

isomorphic, 216
normal extension, 221

stochastic matrix, 285
subdivision and boundary, 469
subdivision map, 467
submodule, 152
subsequence, 247
subspace, 56

complementary, 192
vector space, 56

subspaces
direct sum, 119
direct sum, basis, 119

substituting matrix into polynomial identity,
191

Sylvester
law of inertia, 346
dimention of kernel of product, 124

Sylvester’s equation, 326
symmetric, 81
symmetric polynomial theorem, 196
symmetric polynomials, 195

the space AU, 326
Tietze extension theorem, 268, 446
totally bounded, 253
totally ordered, 503
trace, 117, 167

eigenvalues, 117, 167
product, 117, 167
similar matrices, 117, 167
sum of eigenvalues, 341

transpose, 80
properties, 80

transposition, 228
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triangle inequality, 266
complex numbers, 10

trichotomy, 17

uniform convergence, 258
uniform convergence and continuity, 258
union, 1
uniqueness of limits, 276
unitary, 316, 329
Unitary matrix

representation, 410
upper Hessenberg matrix, 435

Vandermonde determinant, 190
variation of constants formula, 345
variational inequality, 324
vector space, 51

axioms, 78
dimension, 262

vector space axioms, 51
vector valued function

limit theorems, 276
vectors, 53, 78
volume

parallelepiped, 319

Weierstrass approximation
estimate, 441

well ordered, 6
well ordered sets, 504
well ordering, 6
Wilson’s theorem, 35
Wronskian, 189, 344
Wronskian alternative, 344
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