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Preface
This book is on multi-variable real analysis with an introduction to complex analysis. It
is for advanced undergraduate students and beginning graduate students. It is NOT SUIT-
ABLE as a first course in calculus. I assume the reader has had a course in calculus which
does an honest job of presenting the Riemann integral of a function of one variable and
knows the usual things about completeness of R and its algebraic properties although these
things are reviewed. This usually implies having had a reasonably good course in analy-
sis for functions of one variable, but my book Calculus of one and many variables would
suffice. Also, it is expected that the reader knows what a field is and that Q, R, C are
fields along with the usual elementary things found in an undergraduate linear algebra
course, such as row operations and linear transformations, linear independence and vector
spaces. I also assume the reader has knowledge of math induction and well ordering and
the topics in a typical pre-calculus course. If not, read the first part of my calculus book.
I also assume the reader is familiar with the pre-calculus topics involving C, the complex
numbers. If not, see my single variable advanced calculus book or my pre-calculus book
http://www.centerofmath.org/textbooks/pre calc/index.html (2012).

This book has a modern approach to real analysis and an introduction to complex analy-
sis which includes those things which are of most interest to me. It also has an introduction
to functional analysis if there is time, but I have tried to write it in a manner which would
allow the omission of these topics if it were desired to only include real and complex anal-
ysis.

The main direction in the complex analysis part is toward classical nineteenth century
analysis although it does include an introduction to methods of complex analysis in spectral
theory of operators on a Banach space.

I am presenting some very interesting theorems more than once. I think it is good to
see different ways of proving them. Often these theorems appear for the first time in the
exercises. Sometimes it seems like complex analysis is unrelated to real analysis because
of the lack of pathology. I am trying to merge the two and point out similarities as well as
differences. I hope that by doing so, better understanding of both subjects will be acquired.
For example, the introduction to the zeta function is heavily dependent on real Lebesgue
theory of integration.

I am only assuming that the contours have finite total variation. I realize that one
can get all of the main theorems in this subject by considering only piecewise C1 curves
which lie in an open set on which the function is analytic, but I think the extra effort is
justified because it is less fussy and other books on this subject which contain far more
complex analysis than the introduction discussed in this book also do it this way. A more
elementary introduction which does feature piecewise C1 curves is in my single variable
advanced calculus book.

I have also tried to include all of the hard topology which is usually omitted but never-
theless used in analysis books. This includes things like the Brouwer fixed point theorem
and the Jordan curve theorem. I think that the presentation of introductory mathematics
should be opposite to what is encountered in religion. To me, the significance of mathe-
matics is the extent to which one is not required to accept that which is not obvious on faith
in the decrees of authority figures. It is hazardous to make such an attempt, especially in
topics outside of one’s expertise, but I think it is worth the effort to at least give it a try. This
book is not a research monograph written for experts. I will use ≡ to mean that something
is being defined. Some problems have ↑ which means to do the above problem first.
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Preliminary Topics
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Chapter 1

Basic Notions
The reader should be familiar with most of the topics in this chapter. However, it is often
the case that set notation is not familiar and so a short discussion of this is included first.
Complex numbers are then considered in somewhat more detail. This book is on analysis of
functions of real variables or a complex variable. The basic arithmetic of complex numbers
needs to be well understood at the outset.

1.1 Sets and Set Notation
A set is just a collection of things called elements. Often these are also referred to as points
in calculus. For example {1,2,3,8} would be a set consisting of the elements 1,2,3, and
8. To indicate that 3 is an element of {1,2,3,8} , it is customary to write 3 ∈ {1,2,3,8} .
9 /∈ {1,2,3,8} means 9 is not an element of {1,2,3,8} . Sometimes a rule specifies a set.
For example you could specify a set as all integers larger than 2. This would be written as
S = {x ∈ Z : x > 2} . This notation says: the set of all integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then
A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8} , in symbols,
{1,2,3,8} ⊆ {1,2,3,4,5,8} . It is sometimes said that “A is contained in B” or even “B
contains A”. The same statement about the two sets may also be written as {1,2,3,4,5,8}⊇
{1,2,3,8}.

The union of two sets is the set consisting of everything which is an element of at least
one of the sets, A or B. As an example of the union of two sets {1,2,3,8}∪{3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets.
In general

A∪B≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8}∩{3,4,7,8}= {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

A∩B≡ {x : x ∈ A and x ∈ B} .

The symbol [a,b] where a and b are real numbers, denotes the set of real numbers x,
such that a ≤ x ≤ b and [a,b) denotes the set of real numbers such that a ≤ x < b. (a,b)
consists of the set of real numbers x such that a < x < b and (a,b] indicates the set of
numbers x such that a < x ≤ b. [a,∞) means the set of all numbers x such that x ≥ a and
(−∞,a] means the set of all real numbers which are less than or equal to a. These sorts
of sets of real numbers are called intervals. The two points a and b are called endpoints
of the interval. Other intervals such as (−∞,b) are defined by analogy to what was just
explained. In general, the curved parenthesis indicates the end point it sits next to is not
included while the square parenthesis indicates this end point is included. The reason that
there will always be a curved parenthesis next to ∞ or−∞ is that these are not real numbers.
Therefore, they cannot be included in any set of real numbers.

A special set which needs to be given a name is the empty set also called the null set,
denoted by /0. Thus /0 is defined as the set which has no elements in it. Mathematicians
like to say the empty set is a subset of every set. The reason they say this is that if it were
not so, there would have to exist a set A, such that /0 has something in it which is not in A.

3
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However, /0 has nothing in it and so the least intellectual discomfort is achieved by saying
/0⊆ A.

If A and B are two sets, A\B denotes the set of things which are in A but not in B. Thus

A\B≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.
To illustrate the use of this notation relative to intervals consider three examples of

inequalities. Their solutions will be written in the notation just described.

Example 1.1.1 Solve the inequality 2x+4≤ x−8

x≤−12 is the answer. This is written in terms of an interval as (−∞,−12].

Example 1.1.2 Solve the inequality (x+1)(2x−3)≥ 0.

The solution is x≤−1 or x≥ 3
2

. In terms of set notation this is denoted by (−∞,−1]∪

[
3
2
,∞).

Example 1.1.3 Solve the inequality x(x+2)≥−4.

This is true for any value of x. It is written as R or (−∞,∞) .
Something is in the Cartesian product of a set whose elements are sets if it consists

of a single thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×
{4,3,7,9} because it consists of exactly one element from each of the sets which are sepa-
rated by ×. Also, this is the notation for the Cartesian product of finitely many sets. If S
is a set whose elements are sets, ∏A∈S A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of S . You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

1.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 1.2.1 Let X and Y be sets.

X×Y ≡ {(x,y) : x ∈ X and y ∈ Y}

A relation is defined to be a subset of X ×Y . A function f , also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f , then
y = y1. The domain of f is defined as

D( f )≡ {x : (x,y) ∈ f} ,
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written as f : D( f )→ Y . Another notation which is used is the following

f−1 (y)≡ {x ∈ D( f ) : f (x) = y}

This is called the inverse image.

It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y,denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem, proved by Dedekind in 1887. The proof given here is like the
version in Hewitt and Stromberg [22].

Theorem 1.2.2 Let f : X →Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof:Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.
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It only remains to verify that g(D) = B. It was just shown that g(D)⊆ B.
Suppose x ∈ B = X \ A. Then A∪ {x} does not satisfy P and so there exists y ∈

Y \ f (A∪{x}) ⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A satisfies P , it
follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D). Hence g(D) = B. ■

Theorem 1.2.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to one,
then there exists h : X → Y which is one to one and onto.

Proof:Let A,B,C,D be the sets of Theorem1.2.2 and define

h(x)≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping. ■
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 1.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice
function written as

f ∈∏
i∈I

Xi

if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set, then

∏
i∈I

Xi ̸= /0.

Sometimes the two functions, f and g are onto but not one to one. It turns out that with
the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 1.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then

y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists

h : X → Y which is one to one and onto. ■

Definition 1.2.6 A set S, is finite if there exists a natural number n and a map θ

which maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, this will be written as θ : A→ B in the future.) Here N≡ {1,2, · · ·}, the natural
numbers. S is at most countable if there exists a map θ : N→S which is onto.
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The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 1.2.7 If X and Y are both at most countable, then X ×Y is also at most
countable. If either X or Y is countable, then X×Y is also countable.

Proof:It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)
↓ ↗

(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 1.2.5, there exists a one to one and onto mapping
from X×Y to N. ■

Note that by induction, ∏
n
i=1 Xi is at most countable if each Xi is.

Theorem 1.2.8 If X and Y are at most countable, then X ∪Y is at most countable.
If either X or Y are countable, then X ∪Y is countable.

Proof:As in the preceding theorem,

X = {x1,x2,x3, · · ·}

and
Y = {y1,y2,y3, · · ·} .

Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2
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Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 1.2.5 yields the conclusion. ■

In fact, the countable union of countable sets is also at most countable.

Theorem 1.2.9 Let Ai be a countable set. Thus Ai =
{

ri
j

}∞

j=1
. Then ∪∞

i=1Ai is also

at most a countable set. If it is an infinite set, then it is countable.

Proof: This is proved like Theorem 1.2.7 arrange ∪∞
i=1Ai as follows.

r1
1 r1

2 r1
3 · · ·

r2
1 r2

2 r2
3 · · ·

r3
1 r3

2 r3
3 · · ·

...
...

...

Now take a route through this rectangular array as in Theorem 1.2.7, identifying an enumer-
ation in the order in which the displayed elements are encountered as done in that theorem.
Thus there is an onto mapping from N to ∪∞

i=1Ai and so ∪∞
i=1Ai is at most countable, mean-

ing its elements can be enumerated. However, if any of the Ai is infinite or if the union is,
then there is an onto map from ∪∞

i=1Ai onto N and so from Corollary 1.2.5, there would be
a one to one and onto map between N and ∪∞

i=1Ai. ■
Note that by induction this shows that if you have any finite set whose elements are

countable sets, then the union of these is countable.

1.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 1.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the
following axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 1.3.2 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.
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Theorem 1.3.3 Let ∼ be an equivalence relation defined on a set, S and let H
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x∼ y and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

Proof: If x ∼ y, then if z ∈ [y] , you have x ∼ y and y ∼ z so x ∼ z which shows that
[y]⊆ [x]. Similarly, [x]⊆ [y]. If it is not the case that x∼ y, then there can be no intersection
of [x] and [y] because if z were in this intersection, then x∼ z,z∼ y so x∼ y. ■

1.4 The Hausdorff Maximal Theorem
The Hausdorff maximal theorem or something like it is often very useful. I will use it
whenever convenient because its use typically makes a much longer and involved argument
shorter. However, sometimes its use is absolutely essential. First is the definition of what
is meant by a partial order.

Definition 1.4.1 A nonempty set F is called a partially ordered set if it has a partial
order denoted by ≺. This means it satisfies the following. If x ≺ y and y ≺ z, then x ≺ z.
Also x≺ x. It is like⊆ on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x≺ y
or y ≺ x. A chain, denoted by C ⊆F has the property that it is totally ordered meaning
that if x,y ∈ C , either x≺ y or y≺ x. A maximal chain is a chain C which has the property
that there is no strictly larger chain. In other words, if x ∈ F\∪C , then C∪{x} is no
longer a chain.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the xC right at the beginning of the argument.

Theorem 1.4.2 Let F be a nonempty partially ordered set with order≺. Then there
exists a maximal chain.

Proof: Suppose not. Then for C a chain, let θC denote C ∪{xC } . Thus for C a chain,
θC is a larger chain which has exactly one more element of F . Since F ̸= /0, pick x0 ∈
F . Note that {x0} is a chain. Let X be the set of all chains C such that x0 ∈ ∪C . Thus
X contains {x0}. Call two chains comparable if one is a subset of the other. Also, if S
is a nonempty subset of F in which all chains are comparable, then ∪S is also a chain.
From now on S will always refer to a nonempty set of chains in which any pair are
comparable. Then summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X

3. If C ∈X then θC ∈X .

4. If S ⊆X then ∪S ∈X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.
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Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ ∪C . The symbol ⊊ indicates proper subset.

This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1? If S ⊆ Y , is ∪S ∈ Y1? Is {x0} ∈B?
{x0} cannot properly contain C0 since x0 ∈ ∪C0. Therefore, C0 ⊇ {x0} so {x0} ∈B.
If S ⊆ Y1, and D ≡ ∪S , is D ∈ Y1? Since Y0 is a tower, D is comparable to C0.

If D ⊆ C0, then D is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why is
xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. 4.) holds. Two cases remain, to
show that Y1 satisfies 3.).

case 1: D ⊋ C0. Then by definition of B, xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. θD ∈ Y0 so θD is comparable to C0. First suppose θD ⊋ C0. Thus

D ⊆ C0 ⊊ D ∪{xD} . If x ∈ C0 and x is not in D then D ∪{x} ⊆ C0 ⊊ D ∪{xD}. This
is impossible. Consider x. Thus in this case that θD ⊋ C0, D = C0. It follows that
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. The other case is that θD ⊆ C0 so θD ∈B
by definition. This shows 3.) so Y1 is a tower and must equal Y0.

Claim 2: Any two chains in Y0 are comparable.
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. {x0} is in Y1 by definition. All chains of Y0 have x0 in their union. If
S ⊆Y1, is ∪S ∈Y1? Given D ∈Y0 either every chain of S is contained in D or at least
one contains D . Either way D is comparable to ∪S so ∪S ∈ Y1. It remains to show 3.).
Let C ∈ Y1 and D ∈ Y0. Since C is comparable to all chains in Y0, it follows from Claim
1 either C ⊊ D when xC ∈ ∪D and θC ⊆ D or C ⊇ D when θC ⊇ D . Hence Y1 = Y0
because Y0 is as small as possible.

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■

If X is a nonempty set, ≤ is an order on X if

x≤ x,

and if x, y ∈ X , then
either x≤ y or y≤ x

and
if x≤ y and y≤ z then x≤ z.

≤ is a well order and say that (X ,≤) is a well-ordered set if every nonempty subset of X
has a smallest element. More precisely, if S ̸= /0 and S ⊆ X then there exists an x ∈ S such
that x≤ y for all y ∈ S. A familiar example of a well-ordered set is the natural numbers.

Lemma 1.4.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.
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Proof: Let X be a nonempty set and let a ∈ X . Then {a} is a well-ordered subset of X .
Let

F = {S⊆ X : there exists a well order for S}.

Thus F ̸= /0. For S1, S2 ∈F , define S1 ≺ S2 if S1 ⊆ S2 and there exists a well order for S2,
≤2 such that

(S2,≤2) is well-ordered

and if
y ∈ S2 \S1 then x≤2 y for all x ∈ S1,

and if ≤1is the well order of S1 then the two orders are consistent on S1. Then observe that
≺ is a partial order on F . By the Hausdorff maximal principle, let C be a maximal chain
in F and let

X∞ ≡ ∪C .

Define an order, ≤, on X∞ as follows. If x, y are elements of X∞, pick S ∈ C such that x, y
are both in S. Then if ≤S is the order on S, let x≤ y if and only if x≤S y. This definition is
well defined because of the definition of the order,≺. Now let U be any nonempty subset of
X∞. Then S∩U ̸= /0 for some S ∈ C . Because of the definition of ≤, if y ∈ S2 \S1, Si ∈ C ,
then x ≤ y for all x ∈ S1. Thus, if y ∈ X∞ \ S then x ≤ y for all x ∈ S and so the smallest
element of S∩U exists and is the smallest element in U . Therefore X∞ is well-ordered.
Now suppose there exists z ∈ X \X∞. Define the following order, ≤1, on X∞∪{z}.

x≤1 y if and only if x≤ y whenever x,y ∈ X∞

x≤1 z whenever x ∈ X∞.

Then let
C̃ = {S ∈ C or X∞∪{z}}.

Then C̃ is a strictly larger chain than C contradicting maximality of C . Thus X \X∞ = /0
and this shows X is well-ordered by ≤. This proves the lemma.

With these two lemmas the main result follows.

Theorem 1.4.4 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It only remains to prove that the well-ordering principle implies the axiom of
choice. Let I be a nonempty set and let Xi be a nonempty set for each i ∈ I. Let X = ∪{Xi :
i ∈ I} and well order X . Let f (i) be the smallest element of Xi. Then f ∈∏i∈I Xi. ■

There are some other equivalences to the axiom of choice proved in the book by Hewitt
and Stromberg [22].



12 CHAPTER 1. BASIC NOTIONS

1.4.1 The Hamel Basis

A Hamel basis is nothing more than the correct generalization of the notion of a basis for a
finite dimensional vector space to vector spaces which are possibly not of finite dimension.

Definition 1.4.5 Let X be a vector space. A Hamel basis is a subset of X ,Λ such
that every vector of X can be written as a finite linear combination of vectors of Λ and the
vectors of Λ are linearly independent in the sense that if {x1, · · · ,xn} ⊆ Λ and ∑

n
k=1 ckxk =

0. Then each ck = 0.

The main result is the following theorem.

Theorem 1.4.6 Let X be a nonzero vector space. Then it has a Hamel basis.

Proof: Let x1 ∈ X and x1 ̸= 0. Let F denote the collection of subsets of X , Λ containing
x1 with the property that the vectors of Λ are linearly independent as described in Definition
1.4.5 partially ordered by set inclusion. By the Hausdorff maximal theorem, there exists
a maximal chain, C Let Λ = ∪C . Since C is a chain, it follows that if {x1, · · · ,xn} ⊆ C
then there exists a single Λ′ ∈ C containing all these vectors. Therefore, if ∑

n
k=1 ckxk = 0 it

follows each ck = 0. Thus the vectors of Λ are linearly independent. Is every vector of X a
finite linear combination of vectors of Λ?

Suppose not. Then there exists z which is not equal to a finite linear combination of
vectors of Λ. Consider Λ∪{z} . If cz+∑

m
k=1 ckxk = 0 where the xk are vectors of Λ, then

if c ̸= 0 this contradicts the condition that z is not a finite linear combination of vectors
of Λ. Therefore, c = 0 and now all the ck must equal zero because it was just shown Λ is
linearly independent. It follows C∪{Λ∪{z}} is a strictly larger chain than C and this is a
contradiction. Therefore, Λ is a Hamel basis as claimed. ■

1.5 Real and Complex Numbers
I am assuming the reader is familiar with the field of complex numbers which can be
considered as points in the plane, the complex number x+ iy being the point obtained by
graphing the ordered pair (x,y) . I assume the reader knows about the complex conjugate
x+ iy ≡ x− iy and all its properties such as, for z,w ∈ C, (z+w) = z̄+ w̄ and zw = z̄ w̄.
Also recall that for z ∈C, |z| ≡

√
x2 + y2 where z = x+ iy and that the triangle inequalities

hold: |z+w| ≤ |z|+ |w| and |z−w| ≥ ||z|− |w|| and |z|= (z z̄)1/2. This is the time to review
these things. If you have not seen them, read my single variable advanced calculus book or
the first part of my calculus book. Any good pre-calculus book has these topics.

Also recall that complex numbers, are often written in the so called polar form which
is described next. Suppose z = x+ iy is a complex number. Then

x+ iy =
√

x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1
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and so (
x√

x2 + y2
,

y√
x2 + y2

)
is a point on the unit circle. Therefore, there exists a unique angle θ ∈ [0,2π) such that

cosθ =
x√

x2 + y2
, sinθ =

y√
x2 + y2

.

The polar form of the complex number is then r (cosθ + isinθ) where θ is this angle just
described and r =

√
x2 + y2 ≡ |z|.

θ

x+ iy = r(cos(θ)+ isin(θ))r =
√

x2 + y2
r

1.5.1 Roots Of Complex Numbers
A fundamental identity is the formula of De Moivre which follows.

Theorem 1.5.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + isin t)]n = rn (cosnt + isinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t + isin t)]n+1 = [r (cos t + isin t)]n [r (cos t + isin t)]

which by induction equals

= rn+1 (cosnt + isinnt)(cos t + isin t)

= rn+1 ((cosnt cos t− sinnt sin t)+ i(sinnt cos t + cosnt sin t))

= rn+1 (cos(n+1) t + isin(n+1) t)

by the formulas for the cosine and sine of the sum of two angles. ■

Corollary 1.5.2 Let z be a non zero complex number. Then for k ∈ N, there are always
exactly k kth roots of z in C.

Proof: Let z = x+ iy and let z = |z|(cos t + isin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number r (cosα + isinα) , is a kth root of z
if and only if

rk (coskα + isinkα) = |z|(cos t + isin t) .

This requires rk = |z| and so r = |z|1/k and also both cos(kα) = cos t and sin(kα) = sin t.
This can only happen if kα = t +2lπ for l an integer. Thus

α =
t +2lπ

k
, l ∈ Z
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and so the kth roots of z are of the form

|z|1/k
(

cos
(

t +2lπ
k

)
+ isin

(
t +2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula. ■

Example 1.5.3 Find the three cube roots of i.

First note that i = 1
(
cos
(

π

2

)
+ isin

(
π

2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1
(

cos
(
(π/2)+2lπ

3

)
+ isin

(
(π/2)+2lπ

3

))
where l = 0,1,2. Therefore, the roots are

cos
(

π

6

)
+ isin

(
π

6

)
,cos

(
5
6

π

)
+ isin

(
5
6

π

)
,cos

(
3
2

π

)
+ isin

(
3
2

π

)
.

Thus the cube roots of i are

√
3

2
+ i
(

1
2

)
,
−
√

3
2

+ i
(

1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.5.4 Factor the polynomial x3−27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3,3

(
−1
2

+ i

√
3

2

)
, and 3

(
−1
2
− i

√
3

2

)
. Therefore, x3−27 =

(x−3)

(
x−3

(
−1
2

+ i

√
3

2

))(
x−3

(
−1
2
− i

√
3

2

))
.

Note also
(

x−3
(
−1
2 + i

√
3

2

))(
x−3

(
−1
2 − i

√
3

2

))
= x2 +3x+9 and so

x3−27 = (x−3)
(
x2 +3x+9

)
where the quadratic polynomial x2+3x+9 cannot be factored without using complex num-
bers.

Note that even though the polynomial x3 − 27 has all real coefficients, it has some

complex zeros,
−1
2

+ i

√
3

2
and
−1
2
− i

√
3

2
. These zeros are complex conjugates of each

other. It is always this way. You should show this is the case. To see how to do this, see
Problems 17 and 18 below.

Another fact for your information is the fundamental theorem of algebra. This theorem
says that any polynomial of degree at least 1 having any complex coefficients always has
a root in C. This is sometimes referred to by saying C is algebraically complete. Gauss is
usually credited with giving a proof of this theorem in 1797 but many others worked on it
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and the first completely correct proof was due to Argand in 1806. For more on this theo-
rem, you can google fundamental theorem of algebra and look at the interesting Wikipedia
article on it. Proofs of this theorem usually involve the use of techniques from calculus
even though it is really a result in algebra. A proof and plausibility explanation is given
later.

Recall the quadratic formula which gives solutions to ax2 +bx+ c = 0 which holds for
any a,b,c ∈ C with a ̸= 0. This is also good to review from any good pre-calculus book.
My book published with
http://www.centerofmath.org/textbooks/pre calc/index.html(2012) has all of these elemen-
tary considerations. Most are in my on line calculus text or Volume 1 of the one published
by World Scientific.

1.5.2 The Complex Exponential
Here is a short review of the complex exponential.

It was shown above that every complex number is of the form r (cosθ + isinθ) where
r ≥ 0. Laying aside the zero complex number, this shows that every non zero complex
number is of the form eα (cosβ + isinβ ) . We write this in the form eα+iβ . Having done
so, does it follow that the expression preserves the most important property of the function
t→ e(α+iβ )t for t real, that (

e(α+iβ )t
)′

= (α + iβ )e(α+iβ )t?

By the definition just given which does not contradict the usual definition in case β = 0 and
the usual rules of differentiation in calculus,(

e(α+iβ )t
)′

=
(
eαt (cos(β t)+ isin(β t))

)′
= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

Now consider the other side. From the definition it equals

(α + iβ )
(
eαt (cos(β t)+ isin(β t))

)
= eαt [(α + iβ )(cos(β t)+ isin(β t))]

= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

which is the same thing. This is of fundamental importance in differential equations. It
shows that there is no change in going from real to complex numbers for ω in the consid-
eration of the problem y′ = ωy, y(0) = 1. The solution is always eωt . The formula just
discussed, that

eα (cosβ + isinβ ) = eα+iβ

is Euler’s formula. He originally conceived of this formula by considering power series of
cos and sin and re arranging the order of the infinite sums.

1.6 A Normed Vector Space Fp

In this book F will denote either the complex numbers C or the real numbers R. For p a
positive integer,

Fp ≡
{
(a1, · · · ,ap) : ak ∈ F

}
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That is, it consists of ordered lists of p numbers from F. These will be denoted as x, bold
faced. For now, ∥x∥

∞
≡ max{|xk| : k = 1,2, ..., p}. Thus, to say that xk → x will mean

that limk→∞ ∥xk−x∥
∞
= 0 which happens if and only if the entries of xk converge to the

corresponding entries of x. This is called a norm and more will be said about these later.
The following is important.

Axioms of a Norm

∥x∥ ≥ 0 and ∥x∥= 0 if and only if x = 0, (each xk = 0) (1.1)

If α ∈ F, then ∥αx∥= |α|∥x∥ (1.2)

∥x+y∥ ≤ ∥x∥+∥y∥ (1.3)

Only the last property is not obvious. However,

∥x+y∥ ≡ max{|xk + yk| : k ≤ p} ≤max{|xk|+ |yk| : k ≤ p}
≤ max{|xk| : k ≤ p}+max{|yk| : k ≤ p} ≡ ∥x∥+∥y∥ (1.4)

Recall that F is complete. See my book Analysis of Functions of One Variable, for example.
It follows easily that Fp is also complete because any Cauchy Sequence in Fp has each entry
a Cauchy sequence in F and so it converges. This is in the following proposition.

Definition 1.6.1 {xn} is a Cauchy sequence in Fp means that for all ε > 0 there
exists nε such that if m,n≥ nε , then ∥xn−xm∥< ε . A sequence {xn} is said to converge if
there exists x such that limn→∞ xn = x.

Proposition 1.6.2 If {xn}∞

n=1 is a Cauchy sequence in Fp, then there exists x∈ Fp such
that limn→∞ ∥xn−x∥= 0.

Proof: For each k,
{

xn
k

}
is a Cauchy sequence. Thus, there exists xk ∈ F such that

limn→∞ xn
k = xk. Therefore, letting x≡ (x1, · · · ,xp) , limn→∞ ∥xn−x∥= 0. ■

Definition 1.6.3 Letting {xn} be a sequence of vectors in Fp, ∑
∞
k=1 xk is said to

converge if there exists s such that limn→∞ ∑
n
j=1 x j = s.

The Weierstrass M test is a convenient way to consider convergence of series in Fp.

Proposition 1.6.4 If there exists Mk such that Mk ≥
∥∥xk
∥∥ , and if ∑k Mk converges, then

so does ∑k xk.

Proof: For m < n, ∥∥∥∥∥ n

∑
k=1

xk−
m−1

∑
k=1

xk

∥∥∥∥∥≤ n

∑
k=m

∥∥∥xk
∥∥∥≤ ∞

∑
k=m

Mk

and if m is large enough, the term on the right is no more than ε by the standard material in
Calculus. Therefore, the partial sums are a Cauchy sequence and must converge thanks to
Proposition 1.6.2. ■

This is not the best norm for Fp however. That will be described next.
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1.7 Inner Product Spaces
Definition 1.7.1 A vector space V with field of scalars C or R is called an inner
product space if it has an inner product (·, ·) : V ×V → C which satisfies the following
axioms.

(x,y) = (y,x) (1.5)

For a,b ∈ F,
(ax+by,z) = a(x,z)+b(y,z) (1.6)

(x,x)≥ 0 and equals 0 if and only if x = 0 (1.7)

Note that

(z,ax+by) = (ax+by,z) = a(x,z)+b(y,z) = a(z,x)+b(z,y)

The Cauchy Schwarz inequality is a fundamental result which always holds in such a
context.

Proposition 1.7.2 Let V be an inner product space. Then for |x| ≡ (x,x)1/2 , it follows
that |(x,y)| ≤ |x| |y| and equality holds if and only if one vector is a scalar multiple of the
other. |·| satsifies the axioms of a norm 1.1 - 1.3. Also, |x−y|2 + |x+y|2 = 2 |x|2 +2 |y|2.

Proof: There is θ ∈ C such that |θ | = 1 and θ̄ (x,y) = |(x,y)|. Then consider p(t) ≡
(x+ tθy,x+ tθy) . Thus p(t)≥ 0 for all t ∈ R. From the axioms,

p(t) = (x,x)+2Re tθ̄ (x,y)+ t2 (y,y)
= (x,x)+2t |(x,y)|+ t2 (y,y)≥ 0

Assume (y,y) > 0. Thus, the polynomial p(t) has no real roots or only one. By the
quadratic formula, 4 |(x,y)|2 − 4(x,x)(y,y) ≤ 0 which is a restatement of the Cauchy
Schwarz inequality. If (y,y) = 0, then p(t) cannot be nonnegative for all t ∈ R unless
(x,y) = 0 and so the inequality holds.

For the last claim, note that if one vector is a real multiple of the other equality holds
from application of the axioms and definitions of |·|. To go the other direction, equality
holds if and only if the 4 |(x,y)|2 − 4(x,x)(y,y) = 0 if and only if the polynomial has
exactly one real root if and only if for some t real, p(t) = 0 which implies for that t,
x+ tθy = 0 and so one vector is a multiple of the other.

As to |·| satisfying the axioms of a norm, these are all obvious except the triangle
inequality which is shown next.

|x+y|2 = (x+y,x+y) = (x,x)+(x,y)+(y,x)+(y,y)
= |x|2 +2Re(x,y)+ |y|2 ≤ |x|2 +2 |(x,y)|+ |y|2

≤ |x|2 +2 |x| |y|+ |y|2 = (|x|+ |y|)2 (1.8)

As to the last assertion, the parallelogram identity, it follows from a computation.

|x−y|2 + |x+y|2 = (x−y,x−y)+(x+y,x+y)
= |x|2 + |y|2−2Re(x,y)+ |x|2 + |y|2 +2Re(x,y)
= 2 |x|2 +2 |y|2 ■
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Note that the axiom which says (x,x) = 0 only if x = 0 can be removed in the first part
of this proposition and still obtain the Cauchy Schwarz inequality. The only thing used was
that (x,x) ≥ 0. Thus the Cauchy Schwarz inequality |(x,y)| ≤ |x| |y| even if you remove
the second part of 1.7.

As a special case, let x,y ∈ Fp and let (x,y) ≡ ∑
p
k=1 xkyk. You can verify easily that

1.5 - 1.7 are satisfied. Therefore, in this case we have the Cauchy Schwarz inequality of
Cauchy.

Corollary 1.7.3 Let z j,w j be complex numbers. Then∣∣∣∣∣ p

∑
j=1

z jw j

∣∣∣∣∣≤
(

p

∑
j=1

∣∣z j
∣∣2)1/2( p

∑
j=1

∣∣w j
∣∣2)1/2

The norm in an inner product space is |x| ≡ (x,x)1/2 .

Proposition 1.7.4 Each of ∥·∥
∞

and |·| satisfy the axioms of a norm on Fp, 1.1 - 1.3.

Note that the above two norms are equivalent in the sense that

∥x∥
∞
≤ |x| ≤ √p∥x∥

∞
(*)

Thus in all analytical considerations, it doesn’t matter which norm is used. The two norms
have the same Cauchy sequences for example. Actually, any two norms are equivalent,
which will be shown later. The significance of the Euclidean norm |·| is geometrical. See
the Problem 21 on Page 76 for example.

The triangle inequality holds for |u| ≡ (u,u)1/2 for any inner product space by the same
proof given in 1.8.

The fundamental result pertaining to the inner product just discussed is the Gram
Schmidt process presented next.

Definition 1.7.5 A set of vectors {v1, · · · ,vk} is called orthonormal if

(vi,v j) = δ i j ≡
{

1 if i = j
0 if i ̸= j

Then there is a very easy proposition which follows this.

Proposition 1.7.6 Suppose {v1, · · · ,vk} is an orthonormal set. Then it is linearly inde-
pendent.

Proof: Suppose ∑
k
i=1 civi = 0. Then taking inner products with v j,

0 = (0,v j) = ∑
i

ci (vi,v j) = ∑
i

ciδ i j = c j.

Since j is arbitrary, this shows the set is linearly independent as claimed. ■
It turns out that if X is any subspace of Fm, then there exists an orthonormal basis for

X . This follows from the use of the next lemma applied to a basis for X . Recall first that
from linear algebra, every subspace of Fm has a basis.
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Lemma 1.7.7 Let {x1, · · · ,xn} be a linearly independent subset of Fp, p ≥ n. Then
there exist orthonormal vectors {u1, · · · ,un} which have the property that for each k ≤ n,
span(x1, · · · ,xk) = span(u1, · · · ,uk) .

Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) = span(x1) and {u1} is an or-
thonormal set. Now suppose for some k < n, u1, · · · , uk have been chosen such that
(u j,ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1,u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1,u j)u j

∣∣∣ , (1.9)

where the denominator is not equal to zero because the x j form a basis, and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 1.9 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1,ul) =C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)(u j,ul)

)
=

C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)δ l j

)
=C ((xk+1,ul)− (xk+1,ul)) = 0.

The vectors,
{

u j
}n

j=1 , generated in this way are therefore orthonormal because each vector
has unit length. ■

The following lemma is a fairly simple observation about the Gram Schmidt process
which says that if you start with orthonormal vectors, the process will not undo what you
already have.

Lemma 1.7.8 Suppose
{

w1, · · · ,wr,vr+1, · · · ,vp
}

is a linearly independent set of vec-
tors such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let
{

u1, · · · ,up
}

be the orthonormal set delivered by the Gram Schmidt process.
Then u1 = w1 because by definition, u1 ≡ w1/ |w1| = w1. Now suppose u j = w j for all
j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1−∑

k+1
j=1 (wk+1,u j)u j∣∣∣wk+1−∑
k+1
j=1 (wk+1,u j)u j

∣∣∣
By induction, u j = w j and so this reduces to wk+1/ |wk+1|= wk+1. ■
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Lemma 1.7.9 Suppose V,W are two inner product spaces which have orthonormal
bases,

{v1, · · · ,vr} ,{w1, · · · ,wr}
respectively. Let A map V to W be defined by

A

(
r

∑
k=1

ckvk

)
≡

r

∑
k=1

ckwk

Then |Av|= |v| . That is, A preserves Euclidean norms.

Proof: This follows right away from a computation. If {u1, · · · ,ur} is orthonormal,
then ∣∣∣∣∣ r

∑
k=1

ckuk

∣∣∣∣∣
2

=

(
r

∑
k=1

ckuk,
r

∑
k=1

ckuk

)
= ∑

j,k
ckc j (uk,u j) = ∑

k
ckck = ∑

k
|ck|2

Therefore,|A(∑r
k=1 ckvk)|2 = |∑r

k=1 ckwk|2 = ∑k |ck|2 = |∑r
k=1 ckvk|2 . ■

1.8 Polynomials
Polynomials are a lot like integers. The notion of division is important for polynomials in
the same way that it is for integers.

Definition 1.8.1 A polynomial is an expression of the form

anλ
n +an−1λ

n−1 + · · ·+a1λ +a0,

an ̸= 0 where the ai come from a field of scalars. In this book, the field will beR orC, but the
field of scalars could be any field. Two polynomials are equal means that the coefficients
match for each power of λ . The degree of a polynomial is the largest power of λ . Thus the
degree of the above polynomial is n. Addition of polynomials is defined in the usual way
as is multiplication of two polynomials.The leading term in the above polynomial is anλ

n.
The coefficient of the leading term is called the leading coefficient. It is called a monic
polynomial when an = 1.

Note that the degree of the zero polynomial is not defined in the above. Multiplication
of polynomials has an important property.

Lemma 1.8.2 If f (λ )g(λ ) = 0, then either f (λ ) = 0 or g(λ ) = 0. That is, there are
no nonzero divisors of 0.

Proof: Let f (λ ) have degree n and g(λ ) degree m. If m+n= 0, it is easy to see that the
conclusion holds. Suppose the conclusion holds for m+n≤M and suppose m+n = M+1.
Then

f (λ )g(λ ) =
(

a0 +a1λ + · · ·+an−1λ
n−1 +anλ

n
)
·(

b0 +b1λ + · · ·+bm−1λ
m−1 +bmλ

m
)

= (a(λ )+anλ
n)(b(λ )+bmλ

m)

= a(λ )b(λ )+bmλ
ma(λ )+anλ

nb(λ )+anbmλ
n+m
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Either an = 0 or bm = 0. Suppose bm = 0. Then (a(λ )+anλ
n)b(λ ) = 0. By induction, one

of these polynomials in the product is 0. If b(λ ) ̸= 0, then this shows an = 0 and a(λ ) = 0
so f (λ ) = 0. If b(λ ) = 0, then, since bm = 0, g(λ ) = 0. The argument is similar if an = 0.
■

Lemma 1.8.3 Let f (λ ) and g(λ ) ̸= 0 be polynomials.Then there exist polynomials,
q(λ ) and r (λ ) such that

f (λ ) = q(λ )g(λ )+ r (λ )

where the degree of r (λ ) is less than the degree of g(λ ) or r (λ ) = 0. These polynomials
q(λ ) and r (λ ) are unique.

Proof: Suppose that f (λ )− q(λ )g(λ ) is never equal to 0 for any q(λ ). If it is, then
the conclusion follows. Now suppose

r (λ ) = f (λ )−q(λ )g(λ ) (∗)

where the degree of r (λ ) is as small as possible. Let it be m. Suppose m≥ n where n is the
degree of g(λ ). Say r (λ ) = bλ

m +a(λ ) where a(λ ) is 0 or has degree less than m while
g(λ ) = b̂λ

n + â(λ ) where â(λ ) is 0 or has degree less than n. Then

r (λ )− b
b̂

λ
m−ng(λ ) = bλ

m +a(λ )−
(

bλ
m +

b
b̂

λ
m−nâ(λ )

)
= a(λ )− ã(λ ) ,

a polynomial having degree less than m. Therefore,

a(λ )− ã(λ ) =

=r(λ )︷ ︸︸ ︷
( f (λ )−q(λ )g(λ ))− b

b̂
λ

m−ng(λ ) = f (λ )− q̂(λ )g(λ )

which is of the same form as ∗ having smaller degree. However, m was as small as possible.
Hence m < n after all.

As to uniqueness, if you have r (λ ) , r̂ (λ ) ,q(λ ) , q̂(λ ) which work, then you would
have

(q̂(λ )−q(λ ))g(λ ) = r (λ )− r̂ (λ )

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence
this would involve two polynomials which are equal although their degrees are different.
This is impossible. Hence r (λ ) = r̂ (λ ) and so, the above lemma shows q̂(λ ) = q(λ ). ■

Definition 1.8.4 Let p(λ ) = anλ
n + · · ·+ a1λ + a0 be a polynomial. Then for α

a scalar p(α) ≡ anαn + · · ·+ a1α + a0. A scalar α is a root of the polynomial means
p(α) = 0.

Proposition 1.8.5 α is a root of p(λ ) if and only if p(λ ) = (λ −α)q(λ ) for some
polynomial q(λ ).

Proof: By the division algorithm, p(λ ) = (λ −α)q(λ )+ r where r has degree 0 so is
a scalar. Then α is a root if and only if r = 0 from this formula. ■
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Definition 1.8.6 A polynomial f is divides a polynomial g if g(λ ) = f (λ )r (λ ) for
some polynomial r (λ ). Let {φ i (λ )} be a finite set of polynomials. The greatest common
divisor will be the monic polynomial q(λ ) such that q(λ ) divides each φ i (λ ) and if p(λ )
divides each φ i (λ ) , then p(λ ) divides q(λ ) . The finite set of polynomials {φ i} is said to be
relatively prime if their greatest common divisor is 1. A polynomial f (λ ) is irreducible if
there is no polynomial with coefficients in Fwhich divides it except nonzero scalar multiples
of f (λ ) and constants. In other words, it is not possible to write f (λ ) = a(λ )b(λ ) where
each of a(λ ) ,b(λ ) have degree less than the degree of f (λ ) unless one of a(λ ) ,b(λ ) is a
constant.

Proposition 1.8.7 The greatest common divisor is unique.

Proof: Suppose both q(λ ) and q′ (λ ) work. Then q(λ ) divides q′ (λ ) and the other
way around and so q′ (λ ) = q(λ ) l (λ ) , q(λ ) = l′ (λ )q′ (λ ). Therefore, the two must have
the same degree. Hence l′ (λ ) , l (λ ) are both constants. However, this constant must be 1
because both q(λ ) and q′ (λ ) are monic. ■

Theorem 1.8.8 Let {φ i (λ )} be polynomials, not all of which are zero polynomi-
als. Then it follows that there exists a greatest common divisor and it equals the monic
polynomial ψ (λ ) of smallest degree such that there exist polynomials ri (λ ) satisfying
ψ (λ ) = ∑

p
i=1 ri (λ )φ i (λ ) .

Proof: Let S denote the set of monic polynomials of the form ∑
p
i=1 ri (λ )φ i (λ ). where

ri (λ ) is a polynomial. Then S ̸= /0 because some φ i (λ ) ̸= 0. Then let the ri be chosen
such that the degree of the expression ∑

p
i=1 ri (λ )φ i (λ ) is as small as possible. Letting

ψ (λ ) equal this sum, it remains to verify it is the greatest common divisor. First, does
it divide each φ i (λ )? Suppose it fails to divide φ 1 (λ ) . Then by Lemma 1.8.3, φ 1 (λ ) =
ψ (λ ) l (λ )+ r (λ ) where degree of r (λ ) is less than that of ψ (λ ). Then dividing r (λ ) by
the leading coefficient if necessary and denoting the result by ψ1 (λ ) , it follows the degree
of ψ1 (λ ) is less than the degree of ψ (λ ) and ψ1 (λ ) equals for some a ∈ F

ψ1 (λ ) = (φ 1 (λ )−ψ (λ ) l (λ ))a =

(
φ 1 (λ )−

p

∑
i=1

ri (λ )φ i (λ ) l (λ )

)
a

=

(
(1− r1 (λ ))φ 1 (λ )+

p

∑
i=2

(−ri (λ ) l (λ ))φ i (λ )

)
a

This is one of the polynomials in S. Therefore, ψ (λ ) does not have the smallest degree
after all because the degree of ψ1 (λ ) is smaller. This is a contradiction. Therefore, ψ (λ )
divides φ 1 (λ ) . Similarly it divides all the other φ i (λ ).

If p(λ ) divides all the φ i (λ ) , then it divides ψ (λ ) because of the formula for ψ (λ )
which equals ∑

p
i=1 ri (λ )φ i (λ ) . Thus ψ (λ ) satisfies the condition to be the greatest com-

mon divisor. This shows the greatest common divisor exists and equals the above descrip-
tion of it. ■

Lemma 1.8.9 Suppose φ (λ ) and ψ (λ ) are monic polynomials which are irreducible
and not equal. Then they are relatively prime.
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Proof: Suppose η (λ ) is a nonconstant polynomial. If η (λ ) divides φ (λ ) , then since
φ (λ ) is irreducible, φ (λ ) = η (λ ) ã for some constant ã. Thus η (λ ) equals aφ (λ ) for
some a ∈ F. If η (λ ) divides ψ (λ ) then it must be of the form bψ (λ ) for some b ∈ F and
so it follows η (λ ) = aφ (λ ) = bψ (λ ) ,ψ (λ ) = a

b φ (λ ) but both ψ (λ ) and φ (λ ) are monic
polynomials which implies a = b and so ψ (λ ) = φ (λ ). This is assumed not to happen. It
follows the only polynomials which divide both ψ (λ ) and φ (λ ) are constants and so the
two polynomials are relatively prime. Thus a polynomial which divides them both must be
a constant, and if it is monic, then it must be 1. Thus 1 is the greatest common divisor. ■

Lemma 1.8.10 Let ψ (λ ) be an irreducible monic polynomial not equal to 1 which
divides

p

∏
i=1

φ i (λ )
ki , ki a positive integer,

where each φ i (λ ) is an irreducible monic polynomial not equal to 1. Then ψ (λ ) equals
some φ i (λ ) .

Proof : Say ψ (λ ) l (λ ) = ∏
p
i=1 φ i (λ )

ki . Suppose ψ (λ ) ̸= φ i (λ ) for all i. Then these
two ψ (λ ) and φ i (λ ) are relatively prime and by Lemma 1.8.9, there exist polynomials
mi (λ ) ,ni (λ ) such that

1 = ψ (λ )mi (λ )+φ i (λ )ni (λ )

φ i (λ )ni (λ ) = 1−ψ (λ )mi (λ )

It follows that

p

∏
i=1

(φ i (λ )ni (λ ))
ki =

p

∏
i=1

(1−ψ (λ )mi (λ ))
ki = 1+ψ (λ )g(λ )

where g(λ ) is the polynomial which multiplies ψ (λ ) in that product. Hence, for n(λ ) =
∏i ni (λ )

ki ,

n(λ )
p

∏
i=1

φ i (λ )
ki = n(λ ) l (λ )ψ (λ ) = 1+ψ (λ )g(λ )

ψ (λ )(n(λ ) l (λ )−g(λ )) = 1

which is impossible because ψ (λ ) ̸= 1. ■
Of course, since coefficients are in a field, you can drop the stipulation that the polyno-

mials are monic and replace the conclusion with: ψ (λ ) is a multiple of some φ i (λ ) .
Now here is a simple lemma about canceling monic polynomials. It follows easily

from Lemma 1.8.2. That Lemma could also be obtained from a simple modification of the
argument given here.

Lemma 1.8.11 Suppose p(λ ) is a monic polynomial and q(λ ) is a polynomial such
that p(λ )q(λ ) = 0. Then q(λ ) = 0. Also if p(λ )q1 (λ ) = p(λ )q2 (λ ) then q1 (λ ) =
q2 (λ ) .

Proof: Let p(λ ) = ∑
k
j=1 p jλ

j, q(λ ) = ∑
n
i=1 qiλ

i, pk = 1.Then the product equals

∑
k
j=1 ∑

n
i=1 p jqiλ

i+ j. If not all qi = 0, let qm be the last coefficient which is nonzero. Then
the above is of the form ∑

k
j=1 ∑

m
i=1 p jqiλ

i+ j = 0. Consider the λ
m+k term. There is only
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one and it is pkqmλ
m+k. Since pk = 1,qm = 0 after all. The second part follows from

p(λ )(q1 (λ )−q2 (λ )) = 0. ■
The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 1.8.12 Let f (λ ) be a nonconstant polynomial with coefficients in F. Then
there is some a ∈ F such that f (λ ) = a∏

n
i=1 φ i (λ ) where φ i (λ ) is an irreducible non-

constant monic polynomial and repeats are allowed. Furthermore, this factorization is
unique in the sense that any two of these factorizations have the same nonconstant fac-
tors in the product, possibly in different order and the same constant a. Every subset of
{φ i (λ ) , i = 1, ...,n} having at least two elements is relatively prime.

Proof: That such a factorization exists is obvious. If f (λ ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ )= aφ 1 (λ )φ 2 (λ ) where these are monic
polynomials. Continue doing this with the φ i and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a
n

∏
i=1

φ i (λ ) = b
m

∏
i=1

ψ i (λ )

where the φ i (λ ) and the ψ i (λ ) are all irreducible monic nonconstant polynomials and
a,b ∈ F. If n > m, then by Lemma 1.8.10, each ψ i (λ ) equals one of the φ j (λ ) . By the
above cancellation lemma, Lemma 1.8.11, you can cancel all these ψ i (λ ) with appropriate
φ j (λ ) and obtain a contradiction because the resulting polynomials on either side would
have different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. If you have such a subset
of the φ i (λ ) , the monic polynomial of smallest degree which divides them all must be 1
because none of the φ i (λ ) divide any other since they are all irreducible. ■

The following corollary will be well used. This corollary seems rather believable but
does require a proof.

Corollary 1.8.13 Let q(λ ) = ∏
p
i=1 φ i (λ )

ki where the ki are positive integers and the
φ i (λ ) are irreducible distinct monic polynomials. Suppose also that p(λ ) is a monic poly-
nomial which divides q(λ ). Then p(λ ) = ∏

p
i=1 φ i (λ )

ri where ri is a nonnegative integer
no larger than ki.

Proof: Using Theorem 1.8.12, let p(λ ) = b∏
s
i=1 ψ i (λ )

ri where the ψ i (λ ) are each
irreducible and monic and b ∈ F. Since p(λ ) is monic, b = 1. Then there exists a polyno-
mial g(λ ) such that p(λ )g(λ ) = g(λ )∏

s
i=1 ψ i (λ )

ri = ∏
p
i=1 φ i (λ )

ki . Hence g(λ ) must be
monic. Therefore,

p(λ )g(λ ) =

p(λ )︷ ︸︸ ︷
s

∏
i=1

ψ i (λ )
ri

l

∏
j=1

η j (λ ) =
p

∏
i=1

φ i (λ )
ki

for η j monic and irreducible. By uniqueness, each ψ i (λ ) equals one of the φ j (λ ) and the
same holding true of the η i (λ ). Therefore, p(λ ) is of the desired form because you can
cancel the η j (λ ) from both sides. ■
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1.9 The Method of Partial Fractions
A very useful method is the method of partial fractions having to do with rational functions,
quotients of polynomials. In applications known to me, these are usually thought of as
functions of λ and this is what we like to call such quotients, but everything is based only
on the usual algebraic manipulations for polynomials. Algebra of quotients of polynomials
will involve the usual algebraic processes just as with polynomials. That is p(λ )

q(λ ) =
p̂(λ )
q̂(λ )

will mean p(λ ) q̂(λ ) = p̂(λ )q(λ ), and we know what it means for two polynomials to be
equal.

Proposition 1.9.1 Suppose r (λ ) = a(λ )
p(λ )m where a(λ ) is a polynomial and p(λ ) is a

polynomial of degree at least 1. Then

r (λ ) = q(λ )+
m

∑
k=1

bk (λ )

p(λ )k , where degree of bk (λ )< degree of p(λ ) or bk (λ ) = 0

Proof: Suppose first that m = 1. If the degree of a(λ ) is larger than the degree of p(λ ),
then do the division algorithm to write a(λ ) = p(λ )q(λ )+ â(λ ) where the degree of â(λ )
is less than the degree of p(λ ) or else â(λ ) = 0. Thus the expression reduces to

p(λ )q(λ )+m(λ )

p(λ )
= q(λ )+

â(λ )
p(λ )

and now it is in the desired form. Thus the Proposition is true if m = 1. Suppose it is true
for m− 1 ≥ 1. Then there is nothing to show if the degree of a(λ ) is less than the degree
of p(λ ), so assume the degree of a(λ ) is larger than the degree of p(λ ). Then use the
division algorithm as above and write

a(λ )
p(λ )m =

p(λ )q(λ )+ â(λ )
p(λ )m

where the degree of â(λ ) is less than the degree of p(λ ) or else is 0. Then the above equals

a(λ )
p(λ )m =

q(λ )

p(λ )m−1 +
â(λ )

p(λ )m

and by induction on the first term on the right, this proves the proposition. ■
With this, the general partial fractions theorem is next. From Theorem 1.8.12, every

polynomial q(λ ) has a factorization of the form ∏
M
i=1 pi (λ )

mi where the pi (λ ) are irre-
ducible, meaning they cannot be factored further. Thus the polynomials pi (λ ) are distinct
and relatively prime as is every subset having at least two of these pi (λ ).

Proposition 1.9.2 Let a(λ )
b(λ ) =

a(λ )
∏

M
i=1 pi(λ )

mi be any rational function where the pi (λ ) are

distinct irreducible polynomials, meaning they can’t be factored any further as described
in the chapter and each mi is a nonnegative integer.

Then there are polynomials q(λ ) and nki (λ ) with the degree of nki (λ ) less than the
degree of pi (λ ) or nki (λ ) = 0, such that

a(λ )
b(λ )

= q(λ )+
M

∑
i=1

mi

∑
k=1

nki (λ )

pi (λ )
k (1.10)
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Proof: Suppose first that ∑
M
i=1 mi = 1. Then the rational function is of the form a(λ )

p(λ ) and
this can be placed in the desired form by an application of the division algorithm as above.
Suppose now that this proposition is true if ∑

M
i=1 mi ≤ n for some n ≥ 1 and suppose you

have
a(λ )
b(λ )

=
a(λ )

∏
M
j=1 p j (λ )

m j
,

M

∑
j=1

m j = n+1, each m j ≥ 0

If some m j = n+1, then one obtains the situation of Proposition 1.9.1. Therefore, it suffices
to assume that no m j = n+1 so there are at least two m j which are nonzero.

Every subset of the {p1 (λ ) , p2 (λ ) , ..., pM (λ )} having at least two pi (λ ) is relatively
prime because these polynomials are all irreducible. Therefore, there are polynomials
bi (λ ) such that bi (λ ) = 0 if mi = 0 and ∑

M
i=1 bi (λ ) pi (λ ) = 1. Then multiply by this

to obtain

a(λ )
b(λ )

=
a(λ )

∏
M
j=1 p j (λ )

m j
=

a(λ )∑
M
i=1 bi (λ ) pi (λ )

∏
M
j=1 p j (λ )

m j
=

M

∑
i=1

a(λ )bi (λ ) pi (λ )

∏
M
j=1 p j (λ )

m j

Now in the ith term of the sum, the pi (λ ) in the top cancels with exactly one of the fac-
tors in the bottom or else the term is 0. It follows that the original a(λ )

b(λ ) is of the form

∑
N
i=1

âi(λ )

∏
M
j=1 p j(λ )

mi j where ∑
M
j=1 mi j ≤ n. By induction applied to each of the terms in this

sum, one obtains a(λ )
b(λ ) equal to an expression of the form in 1.10. ■

Proposition 1.9.3 The partial fractions expansion is unique.

Proof: Suppose q(λ ) + ∑
M
i=1 ∑

mi
k=1

nki(λ )

pi(λ )
k = 0. Multiply both sides by the following

product. ∏ j ̸=i p j (λ )
mi pi (λ )

mi−1 . Then you get an expression of the form q̂(λ )+
nmii(λ )

pi(λ )
=

0 where q̂(λ ) is a nonzero polynomial. Thus q̂(λ ) pi (λ ) = −nmii (λ ) which is impos-
sible because the two polynomials have different degrees. Next multiply both sides by
∏ j ̸=i p j (λ )

mi pi (λ )
mi−2 and by the same reasoning conclude that nmi−1i (λ ) = 0. Contin-

uing this way, you see that each nmii (λ ) = 0. Next do the same to show the nki (λ ) = 0
for a different i. Thus all of the nki (λ ) = 0 and so q(λ ) = 0 also. If you have two partial
fractions expansions, subtract one from the other and apply what was just shown. ■

Once you know the correct form for the partial fractions, it is just a matter of multiply-
ing out and doing linear algebra to find it.

1.10 The Fundamental Theorem of Algebra
The fundamental theorem of algebra states that every non constant polynomial having co-
efficients inC has a zero inC. IfC is replaced byR, this is not true because of the example,
x2 + 1 = 0. This theorem is a very remarkable result and notwithstanding its title, all the
proofs depend on either analysis or topology in some way. It was first mostly proved by
Gauss in 1797. The first complete proof was given by Argand in 1806. The proof given
later in the book follows Rudin [39]. See also Hardy [20] for a similar proof, more dis-
cussion and references. The shortest proofs are in the theory of complex analysis and are
also presented later. Here is an informal explanation of this theorem which shows why it is
reasonable to believe in the fundamental theorem of algebra.
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Theorem 1.10.1 Let p(z) = anzn + an−1zn−1 + · · ·+ a1z+ a0 where each ak is a
complex number and an ̸= 0,n≥ 1. Then there exists w ∈ C such that p(w) = 0.

To begin with, here is the informal explanation. Dividing by the leading coefficient an,
there is no loss of generality in assuming that the polynomial is of the form

p(z) = zn +an−1zn−1 + · · ·+a1z+a0

If a0 = 0, there is nothing to prove because p(0) = 0. Therefore, assume a0 ̸= 0. From
the polar form of a complex number z, it can be written as |z|(cosθ + isinθ). Thus, by
DeMoivre’s theorem, zn = |z|n (cos(nθ)+ isin(nθ)) It follows that zn is some point on the
circle of radius |z|n

Denote by Cr the circle of radius r in the complex plane which is centered at 0. Then
if r is sufficiently large and |z| = r, the term zn is far larger than the rest of the poly-
nomial. It is on the circle of radius |z|n while the other terms are on circles of fixed
multiples of |z|k for k ≤ n− 1. Thus, for r large enough, Ar = {p(z) : z ∈Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. It won’t
be as simple as suggested in the following picture, but it will be a closed curve thanks
to De Moivre’s theorem and the observation that the cosine and sine are periodic. Now
shrink r. Eventually, for r small enough, the non constant terms are negligible and so Ar
is a curve which is contained in some circle centered at a0 which has 0 on the outside.

•0

Ar r large• a0

Ar

r small

Thus it is reasonable to believe that for some r dur-
ing this shrinking process, the set Ar must hit 0. It
follows that p(z) = 0 for some z.

For example, consider the polynomial x3 + x+
1+ i. It has no real zeros. However, you could let
z = r (cos t + isin t) and insert this into the polyno-

mial. Thus you would want to find a point where

(r (cos t + isin t))3 + r (cos t + isin t)+1+ i = 0+0i

Expanding this expression on the left to write it in terms of real and imaginary parts, you
get on the left

r3 cos3 t−3r3 cos t sin2 t + r cos t +1+ i
(
3r3 cos2 t sin t− r3 sin3 t + r sin t +1

)
Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have (0,0) =(

r3 cos3 t−3r3 cos t sin2 t + r cos t +1,3r3 cos2 t sin t− r3 sin3 t + r sin t +1
)

for some value of r and t. First here is a graph of this parametric function of t for t ∈ [0,2π]
on the left, when r = 4. Note how the graph misses the origin 0+ i0. In fact, the closed
curve is in the exterior of a circle which has the point 0+ i0 on its inside.
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Next is the graph when r = .5. Note how the closed curve is included in a circle which
has 0+ i0 on its outside. As you shrink r you get closed curves. At first, these closed
curves enclose 0+ i0 and later, they exclude 0+ i0. Thus one of them should pass through
this point. In fact, consider the curve which results when r = 1.386 which is the graph on
the right. Note how for this value of r the curve passes through the point 0+ i0. Thus for
some t, 1.386(cos t + isin t) is a solution of the equation p(z) = 0 or very close to one.

1.11 Some Topics from Analysis
Recall from calculus that if A is a nonempty set, supa∈A f (a) denotes the least upper bound
of f (A) or if this set is not bounded above, it equals ∞. Also infa∈A f (a) denotes the
greatest lower bound of f (A) if this set is bounded below and it equals −∞ if f (A) is not
bounded below. Thus to say supa∈A f (a) = ∞ is just a way to say that A is not bounded
above. The existence of these quantities is what we mean when we say that R is complete.

Definition 1.11.1 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets
which means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is interpreted as
a point out at the end of the number line which is larger than every real number. Of course
there is no such number. That is why it is called ∞. The symbol,−∞ is interpreted similarly.
Then supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} .

Unlike limits, you can take the sup in different orders.

Lemma 1.11.2 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,
supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,

sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. ■

Theorem 1.11.3 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that ∑

∞
j=r ∑

∞
i=r ai j ≥ supn ∑

∞
j=r ∑

n
i=r ai j because for all j,∑∞

i=r ai j ≥∑
n
i=r ai j. Therefore,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j

= sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j = sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j

= sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■
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Corollary 1.11.4 If ai j ≥ 0, then ∑
∞
j=r ∑

∞
i=r ai j = ∑i, j ai j the last symbol meaning for

Nr the integers larger than or equal to r,

sup

{
∑

(i, j)∈S
ai j where S is a finite subset of Nr×Nr

}

Proof: ∑(i, j)∈S ai j ≤∑
∞
j=r ∑

∞
i=r ai j and so ∑i, j ai j ≤∑

∞
j=r ∑

∞
i=r ai j. Let λ <∑

∞
j=r ∑

∞
i=r ai j.

Then there exists M such that ∑
M
j=r ∑

∞
i=r ai j = ∑

∞
i=r ∑

M
j=r ai j > λ . Now there is N such that

λ < ∑
N
i=r ∑

M
j=r ai j < ∑i, j ai j. Since λ is arbitrary, it follows that ∑

∞
j=r ∑

∞
i=r ai j ≤ ∑i, j ai j ■

These theorems are special cases of Fubini’s theorem in Lebesgue integration as is
shown later.

Corollary 1.11.5 If ∑i, j
∣∣ai j
∣∣ < ∞, then ∑

∞
i=r ∑

∞
j=r ai j = ∑

∞
j=r ∑

∞
i=r ai j. Here ai j are

complex numbers.

Proof: First note that ∑
∞
j=r ai j,∑

∞
j=1 Reai j,∑

∞
j=1 Imai j exist. This is because, for bi j =

ai j,Reai j, Imai j,
∣∣∣∑q

j=p bi j

∣∣∣ ≤ ∑
∞
j=p
∣∣ai j
∣∣ which is small if p and q > p are large enough

because ∑ j
∣∣ai j
∣∣ exists. Thus the partial sums form a Cauchy sequence and therefore, these

converge. This follows from the assumption that R and C are complete which means that
Cauchy sequences converge. Now also, for the same bi j, if q > p, then∣∣∣∣∣ q

∑
i=p

∞

∑
j=r

bi j

∣∣∣∣∣≤ ∞

∑
i=p

∣∣∣∣∣ ∞

∑
j=r

bi j

∣∣∣∣∣≤ ∞

∑
i=p

∞

∑
j=r

∣∣ai j
∣∣

which is small if p is large enough because ∑
∞
i=r ∑

∞
j=r
∣∣ai j
∣∣ < ∞. Thus the partial sums

form a Cauchy sequence and so ∑
∞
i=r ∑

∞
j=r bi j exists. Similarly ∑

∞
i=r ∑

∞
j=r bi j exists. Now∣∣ai j

∣∣+Reai j ≥ 0. Thus

∞

∑
i=r

∞

∑
j=r

∣∣ai j
∣∣+Reai j =

∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+Reai j

Thus, from the definition of the infinite sums,

∞

∑
i=r

∞

∑
j=r

∣∣ai j
∣∣+ ∞

∑
i=r

∞

∑
j=r

Reai j =
∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+ ∞

∑
j=r

∞

∑
i=r

Reai j

Subtracting that which is known to be equal from both sides leads to the following equation:
∑

∞
i=r ∑

∞
j=r Reai j = ∑

∞
j=r ∑

∞
i=r Reai j. A similar equation holds by the same reasoning for

Imai j in place of Reai j. Then this implies that ∑
∞
i=r ∑

∞
j=r ai j = ∑

∞
j=r ∑

∞
i=r ai j. ■

1.11.1 lim sup and lim inf

Sometimes the limit of a sequence does not exist. For example, if an = (−1)n , then
limn→∞ an does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition.
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Definition 1.11.6 Denote by [−∞,∞] the real line along with symbols ∞ and −∞.
It is understood that ∞ is larger than every real number and −∞ is smaller than every real
number. Then if {An} is an increasing sequence of points of [−∞,∞] , limn→∞ An equals ∞ if
the only upper bound of the set {An} is ∞. If {An} is bounded above by a real number, then
limn→∞ An is defined in the usual way and equals the least upper bound of {An}. If {An} is
a decreasing sequence of points of [−∞,∞] , limn→∞ An equals −∞ if the only lower bound
of the sequence {An} is −∞. If {An} is bounded below by a real number, then limn→∞ An is
defined in the usual way and equals the greatest lower bound of {An}. More simply, if {An}
is increasing, limn→∞ An ≡ sup{An} and if {An} is decreasing then limn→∞ An ≡ inf{An} .

Lemma 1.11.7 Let {an} be a sequence of real numbers and let

Un ≡ sup{ak : k ≥ n} .

Then {Un} is a decreasing sequence. Also if Ln ≡ inf{ak : k ≥ n} , then {Ln} is an increas-
ing sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: Let Wn be an upper bound for {ak : k ≥ n} . Then since these sets are getting
smaller, it follows that for m < n, Wm is an upper bound for {ak : k ≥ n} . In particular if
Wm =Um, then Um is an upper bound for {ak : k ≥ n} and so Um is at least as large as Un,
the least upper bound for {ak : k ≥ n} . The claim that {Ln} is decreasing is similar. ■

From the lemma, the following definition makes sense.

Definition 1.11.8 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n} .

Theorem 1.11.9 Suppose {an} is a sequence of real numbers and that both

lim sup
n→∞

an and lim inf
n→∞

an

are real numbers. Then limn→∞ an exists if and only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case,
lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

Proof: First note that sup{ak : k ≥ n} ≥ inf{ak : k ≥ n} and so,

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n} ≥ lim
n→∞

inf{ak : k ≥ n} ≡ lim inf
n→∞

an.

Suppose first that limn→∞ an exists and is a real number a. Then from the definition of a
limit, there exists N corresponding to ε/6 in the definition. Hence, if m,n≥ N, then

|an−am| ≤ |an−a|+ |a−an|<
ε

6
+

ε

6
=

ε

3
.
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From the definition of sup{ak : k ≥ N} , there exists n1 ≥ N such that

sup{ak : k ≥ N} ≤ an1 + ε/3.

Similarly, there exists n2 ≥ N such that

inf{ak : k ≥ N} ≥ an2 − ε/3.

It follows that sup{ak : k ≥ N} − inf{ak : k ≥ N} ≤ |an1 −an2 |+
2ε

3 < ε. Since the se-
quence, {sup{ak : k ≥ N}}∞

N=1 is decreasing and {inf{ak : k ≥ N}}∞

N=1 is increasing, it
follows that

0≤ lim
N→∞

sup{ak : k ≥ N}− lim
N→∞

inf{ak : k ≥ N} ≤ ε

Since ε is arbitrary, this shows

lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N} (1.11)

Next suppose 1.11 and both equal a ∈ R. Then

lim
N→∞

(sup{ak : k ≥ N}− inf{ak : k ≥ N}) = 0

Since sup{ak : k ≥ N} ≥ inf{ak : k ≥ N} it follows that for every ε > 0, there exists N
such that sup{ak : k ≥ N}− inf{ak : k ≥ N} < ε, and for every N, inf{ak : k ≥ N} ≤ a ≤
sup{ak : k ≥ N}. Thus if n≥ N, |a−an|< ε which implies that limn→∞ an = a. In case

a = ∞ = lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N}

then if r ∈ R is given, there exists N such that inf{ak : k ≥ N} > r which is to say that
limn→∞ an = ∞. The case where a =−∞ is similar except you use sup{ak : k ≥ N}. ■

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 1.11.10 Suppose {an} is a sequence of points of [−∞,∞] . Define λ by
λ = limsupn→∞ an. Then if b> λ , it follows there exists N such that whenever n≥N,an≤ b.
If c < λ , then an > c for infinitely many values of n. Let γ = liminfn→∞ an. Then if d < γ,
it follows there exists N such that whenever n ≥ N,an ≥ d. If e > γ, it follows an < e for
infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 1.11.11 Let limn→∞ an = a > 0. Then limsupn→∞ anbn = a limsupn→∞ bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)

for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λ n ≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε)) = (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Now since ε > 0 is
arbitrary, the conclusion follows. ■

A fundamental existence theorem is the nested interval lemma.
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1.11.2 Nested Interval Lemma
A fundamental existence theorem is the nested interval lemma.

Lemma 1.11.12 Let Ik = [ak,bk] and suppose Ik ⊇ Ik+1 for all k. Then there is a point
x ∈ ∩∞

k=1Ik.

Proof: Suppose k≤ l. Then ak ≤ al ≤ bl . On the other hand, suppose k > l. Then ak ≤
bk ≤ bl . Let a ≡ supk ak. Then from what was just observed, a ≤ bl for each l. Therefore,
also a≤ infl bl , so al ≤ a≤ bl for every l showing that a is a point in all these intervals. ■

1.11.3 Multiplication of Series
Here the main interest is in series of real or complex numbers although this could certainly
be generalized. The following is a major result about multiplying series. It is Mertens
theorem.

Theorem 1.11.13 Suppose ∑
∞
i=r ai and ∑

∞
j=r b j are two series which both converge

absolutely1. Then (∑∞
i=r ai)

(
∑

∞
j=r b j

)
= ∑

∞
n=r cn where cn = ∑

n
k=r akbn−k+r.

Proof: Let pnk = 1 if r≤ k≤ n and pnk = 0 if k > n. Then cn = ∑
∞
k=r pnkakbn−k+r. Also,

∞

∑
k=r

∞

∑
n=r

pnk |ak| |bn−k+r|=
∞

∑
k=r
|ak|

∞

∑
n=r

pnk |bn−k+r|

=
∞

∑
k=r
|ak|

∞

∑
n=k
|bn−k+r|=

∞

∑
k=r
|ak|

∞

∑
n=k

∣∣bn−(k−r)
∣∣= ∞

∑
k=r
|ak|

∞

∑
m=r
|bm|< ∞.

Therefore, from Corollary 1.11.5,

∞

∑
n=r

cn =
∞

∑
n=r

n

∑
k=r

akbn−k+r =
∞

∑
n=r

∞

∑
k=r

pnkakbn−k+r

=
∞

∑
k=r

ak

∞

∑
n=r

pnkbn−k+r =
∞

∑
k=r

ak

∞

∑
n=k

bn−k+r =
∞

∑
k=r

ak

∞

∑
m=r

bm ■

It follows that ∑
∞
n=r cn converges absolutely. Also, you can see by induction that you

can multiply any number of absolutely convergent series together and obtain a series which
is absolutely convergent. Next, here are some similar results related to Merten’s theorem.
In this theorem, z is a variable in some set called K.

Lemma 1.11.14 Let ∑
∞
n=0 an (z) and ∑

∞
n=0 bn (z) be two convergent series for z ∈ K

which satisfy the conditions of the Weierstrass M test. Thus there exist positive constants,
An and Bn such that |an (z)| ≤ An, |bn (z)| ≤ Bn for all z∈K and ∑

∞
n=0 An < ∞,∑∞

n=0 Bn < ∞.
Then defining the Cauchy product, cn (z) ≡ ∑

n
k−0 an−k (z)bk (z) , it follows ∑

∞
n=0 cn (z) also

converges absolutely and uniformly on K because cn (z) satisfies the conditions of the
Weierstrass M test. Therefore,

∞

∑
n=0

cn (z) =

(
∞

∑
k=0

ak (z)

)(
∞

∑
n=0

bn (z)

)
. (1.12)

1Actually, it is only necessary to assume one of the series converges and the other converges absolutely. This
is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the bibliography.
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Proof: |cn (z)| ≤ ∑
n
k=0 |an−k (z)| |bk (z)| ≤ ∑

n
k=0 An−kBk. Also, from Theorem 1.11.3,

∞

∑
n=0

n

∑
k=0

An−kBk =
∞

∑
k=0

∞

∑
n=k

An−kBk =
∞

∑
k=0

Bk

∞

∑
n=0

An < ∞.

The claim of 1.12 follows from Merten’s theorem, Theorem 1.11.13. ■

Corollary 1.11.15 Let P be a polynomial and let ∑
∞
n=0 an (z) converge uniformly and

absolutely on K such that the |an (z)| ≤ An,∑n An < ∞. Then there exists a series for
P(∑∞

n=0 an (z)) denoted as ∑
∞
n=0 cn (z) , which also converges absolutely and uniformly for

z ∈ K because cn (z) also satisfies the conditions of the Weierstrass M test.

1.12 Root Test
The root test has to do with when a series of complex numbers converges. I am assuming
the reader has been exposed to infinite series. However, this that I am about to explain is a
little more general than what is usually seen in calculus.

Theorem 1.12.1 Let ak ∈Fpand consider ∑
∞
k=1 ak. Then this series converges abso-

lutely if limsupk→∞ |ak|1/k = r < 1. The series diverges spectacularly if limsupk→∞ |ak|1/k >

1 and if limsupk→∞ |ak|1/k = 1, the test fails.

Proof: Suppose first that limsupk→∞ |ak|1/k = r < 1. Then letting R ∈ (r,1) , it follows
from the definition of limsup that for all k large enough, |ak|1/k ≤ R. Hence there exists N
such that if k≥ N, then |ak| ≤ Rk. Let Mk = |ak| for k < N and let Mk = Rk for k≥ N. Then

∞

∑
k=1

Mk ≤
N−1

∑
k=1
|ak|+

RN

1−R
< ∞

and so, by the Weierstrass M test applied to the series of constants, the series converges and
also converges absolutely. If limsupk→∞ |ak|1/k = r > 1, then letting r > R > 1, it follows
that for infinitely many k, |ak| > Rk and so there is a subsequence which is unbounded.
In particular, the series cannot converge and in fact diverges spectacularly. In case that
the limsup = 1, you can consider ∑

∞
n=1

1
n which diverges by calculus and ∑

∞
n=1

1
n2 which

converges, also from calculus. However, the limsup equals 1 for both of these. ■
There is no change in the proof if ak is in a complete normed vector space which will

be mentioned later.
This is a major theorem because the limsup always exists. As an important application,

here is a corollary which emphasizes one aspect of the above theorem.

Corollary 1.12.2 If ∑k ak converges, then limsupk→∞ |ak|1/k ≤ 1.

If the sequence has values in X a complete normed linear space discussed below, there
is no change in the conclusion or proof of the above theorem. You just replace |·| with ∥·∥
the symbol for the norm. Here ∥·∥ is a norm if it satisfies 1.1 - 1.3.
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1.13 Exercises

1. Prove by induction that ∑
n
k=1 k3 =

1
4

n4 +
1
2

n3 +
1
4

n2.

2. Prove by induction that whenever n≥ 2,∑n
k=1

1√
k
>
√

n.

3. Prove by induction that 1+∑
n
i=1 i(i!) = (n+1)!.

4. The binomial theorem states (x+ y)n = ∑
n
k=0
(n

k

)
xn−kyk where(

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
if k ∈ [1,n] ,

(
n
0

)
≡ 1≡

(
n
n

)
Prove the binomial theorem by induction. Next show

(n
k

)
= n!

(n−k)!k! , 0!≡ 1

5. Let z = 5+ i9. Find z−1.

6. Let z = 2+ i7 and let w = 3− i8. Find zw,z+w,z2, and w/z.

7. Give the complete solution to x4 +16 = 0.

8. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16.

9. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

10. De Moivre’s theorem says [r (cos t + isin t)]n = rn (cosnt + isinnt) for n a positive
integer. Does this formula continue to hold for all integers n, even negative integers?
Explain.

11. You already know formulas for cos(x+ y) and sin(x+ y) and these were used to
prove De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for
sin(5x) and one for cos(5x).

12. If z and w are two complex numbers and the polar form of z involves the angle θ

while the polar form of w involves the angle φ , show that in the polar form for zw
the angle involved is θ +φ . Also, show that in the polar form of a complex number
z, r = |z| .

13. Factor x3 +8 as a product of linear factors.

14. Write x3 +27 in the form (x+3)
(
x2 +ax+b

)
where x2 +ax+b cannot be factored

any more using only real numbers.

15. Completely factor x4 +16 as a product of linear factors.

16. Factor x4 +16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.
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17. If z,w are complex numbers prove zw = zw. Then show by induction ∏
n
j=1 z j =

∏
n
j=1 z j. Also verify that ∑

m
k=1 zk = ∑

m
k=1 zk. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

18. Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 where all the ak are real numbers.
Suppose also that p(z) = 0 for some z ∈ C. Show it follows that p(z) = 0 also.

19. Show that 1+ i,2+ i are the only two zeros to p(x) = x2−(3+2i)x+(1+3i) so the
zeros do not necessarily come in conjugate pairs if the coefficients are not real.

20. I claim that 1 =−1. Here is why. −1 = i2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong?

21. De Moivre’s theorem is really a grand thing. I plan to use it now for rational expo-
nents, not just integers.

1 = 1(1/4) = (cos2π + isin2π)1/4 = cos(π/2)+ isin(π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?

22. Review Problem 10 at this point. Now here is another question: If n is an integer, is
it always true that (cosθ − isinθ)n = cos(nθ)− isin(nθ)? Explain.

23. Suppose you have any polynomial in cosθ and sinθ . By this I mean an expression
of the form ∑

m
α=0 ∑

n
β=0 aαβ cosα θ sinβ

θ where aαβ ∈C. Can this always be written
in the form ∑

m+n
γ=−(n+m)

bγ cosγθ +∑
n+m
τ=−(n+m)

cτ sinτθ? Explain.

24. Show that C cannot be considered an ordered field. Hint: Consider i2 =−1.

25. Suppose p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 is a polynomial and it has n ze-
ros, z1,z2, · · · ,zn listed according to multiplicity. (z is a root of multiplicity m if
the polynomial f (x) = (x− z)m divides p(x) but (x− z) f (x) does not.) Show that
p(x) = an (x− z1)(x− z2) · · ·(x− zn) .

26. Give the solutions to the following quadratic equations having real coefficients.

(a) x2−2x+2 = 0
(b) 3x2 + x+3 = 0
(c) x2−6x+13 = 0

(d) x2 +4x+9 = 0

(e) 4x2 +4x+5 = 0

27. Give the solutions to the following quadratic equations having complex coefficients.
Note how the solutions do not come in conjugate pairs as they do when the equation
has real coefficients.
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(a) x2 +2x+1+ i = 0
(b) 4x2 +4ix−5 = 0
(c) 4x2 +(4+4i)x+1+2i = 0

(d) x2−4ix−5 = 0

(e) 3x2 +(1− i)x+3i = 0

28. Prove the fundamental theorem of algebra for quadratic polynomials having coef-
ficients in C. That is, show that an equation of the form ax2 + bx+ c = 0 where
a,b,c are complex numbers, a ̸= 0 has a complex solution. Hint: Consider the fact,
noted earlier that the expressions given from the quadratic formula do in fact serve
as solutions.

29. Verify DeMorgan’s laws,

(∪{A : A ∈ C })C = ∩
{

AC : A ∈ C
}

(∩{A : A ∈ C })C = ∪
{

AC : A ∈ C
}

where C consists of a set whose elements are subsets of a given set S. Hint: This
says the complement of a union is the intersection of the complements and the com-
plement of an intersection is the union of the complements. You need to show each
set on either side of the equation is a subset of the other side.

30. Find the partial fractions expansion of x6+3x4−x3−4x2−2x−4
x(x4−4)

with field of scalars equal

toQ the rational numbers. Then find it for field of scalars equal toR. Note
(
x4−4

)
=(

x2 +2
)(

x2−2
)

and both of these are irreducible with field of scalarsQ but the sec-

ond is not irreducible with field of scalars R because x2−2 =
(

x−
√

2
)(

x+
√

2
)

.
You will need to first do a division because the degree of the top is larger than the
degree of the bottom.

31. If you have any polynomial p(λ ) with coefficients from a field of scalars, show
p(λ )=∏

m
k=1 qk (λ )

rk where the rk are positive integers and the polynomials {qk (λ )}
are irreducible, meaning they cannot be factored further. ( qk (λ ) = φ (λ )ψ (λ ) then
one of φ (λ ) or ψ (λ ) is a scalar.) Explain why any subset of {qk (λ )} having two or
more entries is relatively prime.



Chapter 2

Basic Topology and Algebra
Next are metric spaces which have no algebra involved.

2.1 Metric Spaces
It was shown above that ∥x+y∥ ≤ ∥x∥+∥y∥ where ∥·∥= |·| or ∥·∥

∞
. This was called the

triangle inequality. Thus, in particular,

∥x−y∥+∥y− z∥ ≥ ∥x− z∥

A metric space is a nonempty set X along with a distance function d : X×X→ [0,∞) which
satisfies the following axioms.

1. d (x,y) = d (y,x)

2. d (x,y)+d (y,z)≥ d (x,z)

3. d (x,x) = 0 and d (x,y) = 0 if and only if x = y

Definition 2.1.1 In a metric space we say limn→∞ xn = x, xn → x, if and only if
limn→∞ d (xn,x) = 0.

Proposition 2.1.2 The limit is well defined. That is, if x,x′ are both limits of a sequence,
then x = x′.

Proof: From the definition, there exist N,N′ such that if n≥N, then d (x,xn)< ε/2 and
if n ≥ N′, then d (x,xn) < ε/2. Then let M ≥ max(N,N′). Let n > M. Then d (x,x′) ≤
d (x,xn) + d (xn,x′) < ε

2 + ε

2 = ε . Since ε is arbitrary, this shows that x = x′ because
d (x,x′) = 0. ■

Thus Fp with either of the norms discussed is an example of a metric space if we define
d (x,y)≡ ∥x−y∥. A metric space is significantly more general than a normed vector space
like Rn because it does not have any algebraic vector space properties associated with it.
The only thing of importance is the distance function. There are many things which are
metric spaces which are of interest and are not vector spaces. For example, you could
consider the surface of the earth. It is not a subspace of R3 but it is very meaningful to ask
for the distance between points on the earth. Because of this, I am going to use the language
of metric spaces when referring to things which only involve topological considerations. It
is customary to not bother to make the symbol for something in the space bold face so I will
follow this simplified notation when referring to metric space which does not necessarily
have any vector space attributes.

A useful result is in the following lemma.

Lemma 2.1.3 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).

Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y). Similarly

d (xn,yn)−d (x,y)≤ d (x,xn)+d (yn,y)

37
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and so
|d (xn,yn)−d (x,y)| ≤ d (x,xn)+d (yn,y)

and the right side converges to 0 as n→ ∞. ■

2.2 Closed and Open Sets
The definition of open and closed sets is next. This is in an arbitrary metric space.

Definition 2.2.1 An open ball, denoted as B(x,r) is defined as follows.

B(x,r)≡ {y : d (x,y)< r}

A set U is said to be open if whenever x ∈ U, it follows that there is r > 0 such that
B(x,r) ⊆U. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x− y|.
Then the first thing to show is the following.

Proposition 2.2.2 An open ball is an open set.

Proof: Suppose y ∈ B(x,r) . We need to verify that y is an interior point of B(x,r). Let
δ = r−d (x,y) . Then if z ∈ B(y,δ ) , it follows that

d (z,x)≤ d (z,y)+d (y,x)< δ +d (y,x) = r−d (x,y)+d (y,x) = r

Thus y ∈ B(y,δ )⊆ B(x,r). ■

Definition 2.2.3 Let S be a nonempty subset of a metric space. Then p is a limit
point (accumulation point) of S if for every r > 0 there exists a point different than p in
B(p,r)∩S. Sometimes people denote the set of limit points as S′.

A

p

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 2.2.4 A point x is a limit point of the nonempty set A if and only if every
B(x,r) contains infinitely many points of A.

Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{d (ai,x) , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn) . Thus

every B(x,r) contains B(x,rn) for all n large enough and hence it contains ak for k ≥ n
where the ak are distinct, none equal to x. ■

Next there is an important theorem about limit points and convergent sequences.

Theorem 2.2.5 Let S ̸= /0. Then p is a limit point of S if and only if there exists a
sequence of distinct points of S,{xn} none of which equal p such that limn→∞ xn = p.
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Proof: =⇒ Suppose p is a limit point. Why does there exist the promised convergent
sequence? Let x1 ∈B(p,1)∩S such that x1 ̸= p. If x1, · · · ,xn have been chosen, let xn+1 ̸= p
be in B(p,δ n+1)∩S where

δ n+1 = min
{

1
n+1

,d (xi, p) , i = 1,2, · · · ,n
}
.

Then this constructs the necessary convergent sequence.
⇐= Conversely, if such a sequence {xn} exists, then for every r > 0, B(p,r) contains

xn ∈ S for all n large enough. Hence, p is a limit point because none of these xn are equal
to p. ■

Definition 2.2.6 A set H is closed means HC is open.

Note that this says that the complement of an open set is closed. If V is open, then the
complement of its complement is itself. Thus

(
VC
)C

=V an open set. Hence VC is closed.
Thus, open sets are complements of closed sets and closed sets are complements of open
sets.

Then the following theorem gives the relationship between closed sets and limit points.

Theorem 2.2.7 A set H is closed if and only if it contains all of its limit points.

Proof: =⇒ Let H be closed and let p be a limit point. We need to verify that p ∈ H. If
it is not, then since H is closed, its complement is open and so there exists δ > 0 such that
B(p,δ )∩H = /0. However, this prevents p from being a limit point.
⇐= Next suppose H has all of its limit points. Why is HC open? If p ∈ HC then it is

not a limit point and so there exists δ > 0 such that B(p,δ ) has no points of H. In other
words, HC is open. Hence H is closed. ■

Corollary 2.2.8 A set H is closed if and only if whenever {hn} is a sequence of points
of H which converges to a point x, it follows that x ∈ H.

Proof: =⇒ Suppose H is closed and hn→ x. If x ∈ H there is nothing left to show. If
x /∈ H, then from the definition of limit, it is a limit point of H because none of the hn are
equal to x. Hence x ∈ H after all.
⇐= Suppose the limit condition holds, why is H closed? Let x ∈ H ′ the set of limit

points of H. By Theorem 2.2.5 there exists a sequence of points of H, {hn} such that
hn → x. Then by assumption, x ∈ H. Thus H contains all of its limit points and so it is
closed by Theorem 2.2.7. ■

Next is the important concept of a subsequence.

Definition 2.2.9 Let {xn}∞

n=1 be a sequence. Then if n1 < n2 < · · · is a strictly
increasing sequence of indices, we say

{
xnk

}∞

k=1 is a subsequence of {xn}∞

n=1.

The really important thing about subsequences is that they preserve convergence.

Theorem 2.2.10 Let
{

xnk

}
be a subsequence of a convergent sequence {xn} where

xn→ x. Then limk→∞ xnk = x also.
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Proof: Let ε > 0 be given. Then there exists N such that d (xn,x) < ε if n ≥ N. It
follows that if k ≥ N, then nk ≥ N and so d

(
xnk ,x

)
< ε if k ≥ N. This is what it means to

say limk→∞ xnk = x. ■
In the case of Fp, if you have two norms which are equivalent in the sense that

δ ∥x∥ ≤ ∥x∥1 ≤ ∆∥x∥

then a set U is open with respect to one norm if and only if it is open with respect to the
other. Indeed, if x ∈U which is open with respect to ∥·∥ , then there is B∥·∥ (x,δ )⊆U but
from the above inequality,

B∥·∥1

(
x,

1
∆

δ

)
⊆ B∥·∥ (x,δ )⊆U

because if ∥x−y∥1 <
δ

∆
, then ∥x−y∥ ≤ ∆∥x−y∥1 < ∆

δ

∆
= δ . Now observe that

1
∆
∥x∥1 ≤ ∥x∥ ≤

1
δ
∥x∥1

You should write down the reasoning to this carefully.
Notice that B∞ (p,r) = ∏

n
i=1 (pi− r, pi + r) a product of open intervals. This is espe-

cially convenient. You should carefully write down the reasoning for this from the defini-
tion of ∥·∥

∞
.

Now go back to the notion of a general metric space.

Theorem 2.2.11 The intersection of any finite collection of open sets is open. The
union of any collection of open sets is open. The intersection of any collection of closed
sets is closed and the union of any finite collection of closed sets is closed.

Proof: To see that any union of open sets is open, note that every point p of the union
is in at least one of the open sets U . Therefore, it is an interior point of U and hence an
interior point of the entire union.

Now let {U1, · · · ,Um} be some open sets and suppose p ∈ ∩m
k=1Uk. Then there exists

rk > 0 such that B(p,rk) ⊆ Uk. Let 0 < r ≤ min(r1,r2, · · · ,rm) . Then B(p,r) ⊆ ∩m
k=1Uk

and so the finite intersection is open. Note that if the finite intersection is empty, there is
nothing to prove because it is certainly true in this case that every point in the intersection
is an interior point because there aren’t any such points.

Suppose {H1, · · · ,Hm} is a finite set of closed sets. Then ∪m
k=1Hk is closed if its com-

plement is open. However, from DeMorgan’s laws, Problem 29 on Page 36,

(∪m
k=1Hk)

C = ∩m
k=1HC

k ,

a finite intersection of open sets which is open by what was just shown.
Next let C be a set consisting of closed sets. Then

(∩C )C = ∪
{

HC : H ∈ C
}
,

a union of open sets which is therefore open by the first part of the proof. Thus ∩C is
closed. This proves the theorem. ■

Now back to Fp we can conclude that every point in an open set is a limit point of the
open set.
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Example 2.2.12 Consider A = B(x,δ ) , an open ball in Fp. Then every point of B(x,δ ) is
a limit point of A.

If z ∈ B(x,δ ) , consider z+ 1
k (x− z)≡ wk for k ∈ N. Then

∥wk−x∥=
∥∥∥∥z+

1
k
(x− z)−x

∥∥∥∥
=

∥∥∥∥(1− 1
k

)
z−
(

1− 1
k

)
x
∥∥∥∥= k−1

k
∥z−x∥< δ

and also ∥wk− z∥ ≤ 1
k ∥x− z∥< δ/k so wk→ z. Furthermore, the wk are distinct. Thus z

is a limit point of A as claimed. This is because every ball containing z contains infinitely
many of the wk and since they are all distinct, they can’t all be equal to z.

In a general metric space, peculiar things can occur. In particular, you can have a
nonempty open set which has no limit points at all.

Example 2.2.13 Let Ω ̸= /0 and define for x,y ∈ Ω, d (x,y) = 0 if x = y and d (x,y) = 1
if x ̸= y. Then you can show that this is a perfectly good metric space on Ω. However,
every set is both open and closed. There are also no limit points for any nonempty set since
B(x,1/2) = {x}. You should consider why every set is both open and closed.

Next is the definition of what is meant by the closure of a set.

Definition 2.2.14 Let A be a nonempty subset of X for X a metric space. Then A is
defined to be the intersection of all closed sets which contain A. This is called the closure
of A. Note X is one such closed set which contains A.

Lemma 2.2.15 Let A be a nonempty set in X . Then A is a closed set and

A = A∪A′

where A′ denotes the set of limit points of A.

Proof: First of all, denote by C the set of closed sets which contain A. Then define
A≡ ∩C . This is a closed set from Theorem 2.2.11.

The interesting part is the next claim. First note that from the definition, A ⊆ A so if
x ∈ A, then x ∈ A. Now consider y ∈ A′ but y /∈ A. If y /∈ A, a closed set, then there exists
B(y,r)⊆ AC

. Thus y cannot be a limit point of A, a contradiction. Therefore, A∪A′ ⊆ A
Next suppose x ∈ A and suppose x /∈ A. Is x ∈ A′? If not, then there is r > 0 such that

B(x,r)∩A = /0. But then B(x,r)C is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x ∈ A. Hence if x /∈ A, then x ∈ A′ and so
A∪A′ ⊇ A ■

2.3 Sequences and Cauchy Sequences
It was discussed above what is meant by convergence of a sequence in a metric space. It
was shown that if a sequence converges, then so does every subsequence. The context in
this section will be a metric space (X ,d).

Of course the converse does not hold. Consider ak = (−1)k it has a subsequence con-
verging to 1 but the sequence does not converge. However, if you have a Cauchy sequence,
defined next, then convergence of a subsequence does imply convergence of the Cauchy
sequence. This is a very important observation.
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Definition 2.3.1 {xk} is a Cauchy sequence if and only if the following holds. For
every ε > 0, there exists nε such that if k, l ≥ nε , then d (xk,xl)< ε

All Cauchy sequences are bounded.

Theorem 2.3.2 The set of terms in a Cauchy sequence {xn} in X is bounded in the
sense that there exists M such that for all n, d (xn,x1)<M. Also, if any sequence converges,
then it is Cauchy.

Proof: Let ε = 1 in the definition of a Cauchy sequence and let n > n1. Then from the
definition, d (xn,xn1)< 1. It follows that if n≥ n1,

d (xn,x1)< d (xn,xn1)+d (xn1 ,x1)< 1+d (xn1 ,x1)

and if n < n1,d (xn,x1)≤max{d (xk,x1) : k ≤ n1} and so for any n,

d (xn,x1)< 1+d (xn1 ,x1)+max{d (xk,x1) : k ≤ n1}

If limn→∞ xn = x, then if ε > 0 is given, there is N such that if n > N, then d (xn,x)< ε/2.
Thus, if n,m > N, then d (xn,xm)≤ d (xn,x)+d (x,xm)<

ε

2 +
ε

2 = ε and so the sequence is
Cauchy whenever it converges. ■

Here is the theorem which says that if a subsequence of a Cauchy sequence converges,
then so does the Cauchy sequence.

Theorem 2.3.3 Let {xn} be a Cauchy sequence. Then it converges to x if and only
if some subsequence converges to x.

Proof: =⇒ This was just done above. Indeed, if the sequence converges, then every
subsequence converges to the same thing.
⇐= Suppose now that {xn} is a Cauchy sequence and limk→∞ xnk = x. Then there exists

N1 such that if k > N1, then d
(
xnk ,x

)
< ε/2. From the definition of what it means to be

Cauchy, there exists N2 such that if m,n≥N2, then d (xm,xn)< ε/2. Let N ≥max(N1,N2).
Then if k≥N, then nk ≥N and so d (x,xk)≤ d

(
x,xnk

)
+d
(
xnk ,xk

)
< ε

2 +
ε

2 = ε . It follows
from the definition that limk→∞ xk = x. ■

Definition 2.3.4 A metric space is said to be complete if every Cauchy sequence
converges.

Note that if you have equivalent norms on Fp, then the Cauchy sequences are the same.
The following lemma says that R is complete.

Lemma 2.3.5 Let {xk} be a Cauchy sequence in R. Then it converges.

Proof: From Theorem 2.3.2, the entire sequence is contained in some closed interval
I ≡ I0 = [a,b]. Divide this interval into two equal intervals by splitting it at its midpoint.
Then one of these contains xk for infinitely many k. Call this interval I1. Now split it in
half and let I2 be a half which contains xk for infinitely many k. Continue this way. Then
{Ik} is sequence of nested closed intervals each of which contains xk for infinitely many k,
the length of Ik being 2−k times the length of I0. Pick n1 < n2 < · · · , where xnk ∈ Ik. Thus
this is a Cauchy sequence. By the nested interval lemma, there is x a point of I0 which is in
each of these nested intervals. Then

∣∣x− xnk

∣∣≤ 2−k (length of I0) and so this subsequence
converges to x ∈ I0. Now by Theorem 2.3.3, the original Cauchy sequence converges to x.
■

Next is a corollary which says that C is also complete.
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Corollary 2.3.6 Let {zk} be a Cauchy sequence in C. Then it converges.

Proof: Say zk = xk + iyk. Then from the way we define distance in C, {zk} is Cauchy
if and only if {xk} and {yk} are both Cauchy. Indeed, |zk− zm|2 ≡ |xk− xm|2 + |yk− ym|2 .
Therefore, there exists x,y such that xk→ x,yk→ y. It follows zk→ x+ iy. ■

Now consider the case that the metric space is Fp.

Theorem 2.3.7 A sequence
{

xk
}

converges in Fp if and only if it is a Cauchy se-
quence.

Proof:⇐Let xk =
(
xk

1, · · · ,xk
p
)
. Then since this is a Cauchy sequence, the components

are Cauchy, and so, from what was just shown, limk→∞ xk
i = xi which, from the way we

define the norm implies xk→ x≡
(

x1 · · · xp
)

⇒ If limk→∞ xk = x, then for k large enough,
∣∣xk−x

∣∣ < ε/2. Hence if k,m are large
enough, ∣∣∣xk−xm

∣∣∣≤ ∣∣∣xk−x
∣∣∣+ |x−xm|< ε

2
+

ε

2
= ε ■

2.4 Separability and Complete Separability
Definition 2.4.1 A metric space is called separable if there exists a countable dense
subset D. This means two things. First, D is countable, and second, that if x is any point
and r > 0, then B(x,r)∩D ̸= /0. A metric space is called completely separable if there
exists a countable collection of nonempty open sets B such that every open set is the union
of some subset of B. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of B namely the empty subset.

Theorem 2.4.2 A metric space is separable if and only if it is completely separable.
In fact a separable metric space has a countable basis of balls. Also Fp is separable.

Proof: ⇐= Let B be the special countable collection of open sets and for each B ∈B,
let pB be a point of B. Then let P ≡ {pB : B ∈B}. To be specific, let pB be the center of
B. If B(x,r) is any ball, then it is the union of sets of B and so there is a point of P in it.
Since B is countable, so is P .

=⇒ Let D be the countable dense set and let

B ≡{B(d,r) : d ∈ D,r ∈Q∩ [0,∞)}

Then B is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y ∈ B(y,δ ) ⊆ B(x,R) . Then there exists d ∈ B

(
y, δ

10

)
. Let ε ∈ Q and δ

10 < ε < δ

5 . Then
y ∈ B(d,ε) ∈B. Is B(d,ε) ⊆ B(x,R)? If so, then the desired result follows because this
would show that every y∈ B(x,R) is contained in one of these sets of B which is contained
in B(x,R) showing that B(x,R) is the union of sets of B. Let z∈ B(d,ε)⊆ B

(
d, δ

5

)
. Then

d (y,z) ≤ d (y,d) + d (d,z) < δ

10 + ε < δ

10 + δ

5 < δ . Hence B(d,ε) ⊆ B(y,δ ) ⊆ B(x,r).
Therefore, every ball is the union of sets of B and, since every open set is the union of
balls, it follows that every open set is the union of sets of B.
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As for the last claim, let Q be the rational numbers. Then obviously Qp is dense in Rp

and (Q+ iQ)p is dense in Cp. There are countably many points in (Q+ iQ)p by induction
applied to Theorem 1.2.7. ■

Definition 2.4.3 Let S be a nonempty set. Then a set of open sets C is called an
open cover of S if ∪C ⊇S . (It covers up the set S. Think lilly pads covering the surface
of a pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 2.4.4 A metric space has the Lindeloff property if whenever C is an open
cover of a set S, there exists a countable subset of C denoted here by B such that B is also
an open cover of S.

Theorem 2.4.5 Every separable metric space has the Lindeloff property.

Proof: Let C be an open cover of a set S. Let B be a countable basis. Such exists by
Theorem 2.4.2. Let B̂ denote those sets of B which are contained in some set of C . Thus
B̂ is a countable open cover of S. Now for B ∈ B̂, let UB be a set of C which contains B.
Letting Ĉ denote these sets UB it follows that Ĉ is countable and is an open cover of S. ■

Note how the axiom of choice was used in the above where we let UB be a set of C
which contains B.

Definition 2.4.6 A Polish space is a complete separable metric space. These things
turn out to be very useful in probability theory and in other areas.

Now it is convenient to consider the distance function in a metric space (X ,d).

Definition 2.4.7 Let S be a nonempty set in X and let x ∈ X . Then the distance of x
to the set S is defined as

dist(x,S)≡ inf{d (x,y) : y ∈ S}

The main result concerning this function is that it is Lipschitz continuous as described
in the following theorem.

Theorem 2.4.8 Let S ̸= /0 and consider f (x)≡ dist(x,S) , then

| f (x)− f (x̂)| ≤ d (x, x̂) .

Proof: Say dist(x,S) ≤ dist(x̂,S). Otherwise, reverse the argument which follows.
Then for a suitable choice of y ∈ S,

|dist(x,S)−dist(x̂,S)|= dist(x̂,S)−dist(x,S)≤ dist(x̂,S)− (d (x,y)− ε)

Then
|dist(x,S)−dist(x̂,S)| ≤ d (x̂,y)− (d (x,y)− ε)

≤ d (x̂,x)+d (x,y)−d (x,y)+ ε = d (x̂,x)+ ε

Since ε is arbitrary, this shows the claimed result. ■
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2.5 Compactness and Continuous Functions
As usual, we are not worrying about empty sets. Fussing over these is usually a waste of
time. Thus if a set is mentioned, the default is that it is nonempty.

Definition 2.5.1 A metric space K is compact if whenever C is an open cover of K,
there exists a finite subset of C {U1, · · · ,Un} such that K ⊆ ∪n

k=1Uk. In words, every open
cover admits a finite sub-cover.

Directly from this definition is the following proposition.

Proposition 2.5.2 If K is a closed, nonempty subset of a nonempty compact set H, then
K is compact.

Proof: Let C be an open cover for K. Then C ∪
{

KC
}

is an open cover for H. Thus
there are finitely many sets from this last collection of open sets, U1, · · · ,Um which covers
H. Include only those which are in C . These cover K because KC covers no points of K. ■

This is the real definition given above. However, in metric spaces, it is equivalent to
another definition called sequentially compact.

Definition 2.5.3 A metric space K is sequentially compact means that whenever
{xn} ⊆ K, there exists a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ K for some point x.

In words, every sequence has a subsequence which converges to a point in the set.

There is a fundamental property possessed by a sequentially compact set in a metric
space which is described in the following proposition. The special number described is
called a Lebesgue number.

Proposition 2.5.4 Let K be a sequentially compact set in a metric space and let C be
an open cover of K. Then there exists a number δ > 0 such that whenever x ∈ K, it follows
that B(x,δ ) is contained in some set of C .

Proof: If C is an open cover of K and has no Lebesgue number, then for each n∈N, 1
n is

not a Lebesgue number. Hence there exists xn ∈K such that B
(
xn,

1
n

)
is not contained in any

set of C . By sequential compactness, there is a subsequence
{

xnk

}
such that xnk → x ∈ K.

Now there is r > 0 such that B(x,r)⊆U ∈ C . Let k be large enough that 1
nk

< r
2 and also

large enough that xnk ∈ B
(
x, r

2

)
. Then B

(
xnk ,

1
nk

)
⊆ B

(
xnk ,

r
2

)
⊆ B(x,r) contrary to the

requirement that B
(

xnk ,
1
nk

)
is not contained in any set of C . ■

In any metric space, these two definitions of compactness are equivalent.

Theorem 2.5.5 Let K be a nonempty subset of a metric space (X ,d). Then it is
compact if and only if it is sequentially compact.

Proof: ⇐ Suppose K is sequentially compact. Let C be an open cover of K. By
Proposition 2.5.4 there is a Lebesgue number δ > 0. Let x1 ∈ K. If B(x1,δ ) covers K, then
pick a set of C containing this ball and this set will be a finite subset of C which covers K.
If B(x1,δ ) does not cover K, let x2 /∈ B(x1,δ ). Continue this way obtaining xk such that
d (xk,x j)≥ δ whenever k ̸= j. Thus eventually {B(xi,δ )}n

i=1 must cover K because if not,
you could get a sequence {xk}which has every pair of points further apart than δ and hence
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it has no Cauchy subsequence. Therefore, by Lemma 2.3.2, it would have no convergent
subsequence. This would contradict K is sequentially compact. Now for B(xi,δ ) , pick
Ui ∈ C and {U1, ...,Um} covers K.
⇒ Now suppose K is compact. If it is not sequentially compact, then there exists a

sequence {xn} which has no convergent subsequence to a point of K. In particular, no
point of this sequence is repeated infinitely often. The set of points ∪n {xn} has no limit
point in K. If it did, you would have a subsequence converging to this point since every
ball containing this point would contain infinitely many points of ∪n {xn}. Now consider
the sets Hn ≡ ∪k≥n {xk}∪H ′ where H ′ denotes all limit points of ∪n {xn} in X which is
the same as the limit points of ∪k≥n {xk}. Therefore, each Hn is closed thanks to Theorem
2.2.7. Now let Un ≡HC

n . This is an increasing sequence of open sets whose union contains
K thanks to the fact that there is no constant subsequence. However, none of these open
sets covers K because Un is missing xn, violating the definition of compactness.
⇒Another proof of the second part of the above is as follows. Suppose K is not se-

quentially compact. Then there is {xn} such that no x ∈ K is the limit of a convergent
subsequence. Hence if x ∈ K, there is rx > 0 such that B(x,rx) contains xn for only finitely
many n. Otherwise, B

(
x, 1

k

)
would contain xn for infinitely many n and there would exist{

xnk

}∞

k=1 with nk < nk+1 for all k and xnk ∈ B
(
x, 1

k

)
so this subsequence would converge to

x. By compactness, there are finitely many of these balls B(x,rx) which cover K. Now this
is a contradiction because one of these balls must now contain xn for infinitely many n. ■

Definition 2.5.6 Let X be a metric space. Then a finite set of points {x1, · · · ,xn} is
called an ε net if X ⊆ ∪n

k=1B(xk,ε) . If, for every ε > 0 a metric space has an ε net, then
we say that the metric space is totally bounded.

Lemma 2.5.7 If a metric space (K,d) is sequentially compact, then it is separable and
totally bounded.

Proof: Pick x1 ∈K. If B(x1,ε)⊇K, then stop. Otherwise, pick x2 /∈B(x1,ε) . Continue
this way. If {x1, · · · ,xn} have been chosen, either

K ⊆ ∪n
k=1B(xk,ε)

in which case, you have found an ε net or this does not happen in which case, you can pick
xn+1 /∈ ∪n

k=1B(xk,ε). The process must terminate since otherwise, the sequence would
need to have a convergent subsequence which is not possible because every pair of terms
is farther apart than ε . See Lemma 2.3.2. Thus for every ε > 0, there is an ε net. Thus the
metric space is totally bounded. Let Nε denote an ε net. Let D = ∪∞

k=1N1/2k . Then this is a
countable dense set. It is countable because it is the countable union of finite sets and it is
dense because given a point, there is a point of D within 1/2k of it. ■

Also recall that a complete metric space is one for which every Cauchy sequence con-
verges to a point in the metric space.

The following is the main theorem which relates these concepts. Note that if (X ,d) is a
metric space, then so is (S,d) whenever S⊆ X . You simply use the metric on S.

Theorem 2.5.8 For (X ,d) a metric space, the following are equivalent.

1. (X ,d) is compact.

2. (X ,d) is sequentially compact.
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3. (X ,d) is complete and totally bounded.

Proof: By Theorem 2.5.5, the first two conditions are equivalent.
2.⇒ 3. If (X ,d) is sequentially compact, then by Lemma 2.5.7, it is totally bounded.

If {xn} is a Cauchy sequence, then there is a subsequence which converges to x ∈ X by
assumption. However, from Theorem 2.3.3 this requires the original Cauchy sequence to
converge. Thus (X ,d) is complete and totally bounded.

3.⇒ 2. Suppose {xk} is a sequence in X . It suffices to show it has a Cauchy subse-
quence. By assumption there are finitely many open balls of radius 1/n covering X . This
for each n ∈ N. Therefore, for n = 1, there is one of the balls, having radius 1 which con-
tains xk for infinitely many k. Therefore, there is a subsequence with every term contained
in this ball of radius 1. Now do for this subsequence what was just done for {xk} . There is
a further subsequence contained in a ball of radius 1/2. Continue this way. Denote the ith

subsequence as {xki}∞

k=1. Arrange them as shown

x11,x21,x31,x41 · · ·
x12,x22,x32,x42 · · ·
x13,x23,x33,x43 · · ·

...

Thus all terms of {xki}∞

k=1 are contained in a ball of radius 1/i. Consider now the diagonal
sequence defined as yk ≡ xkk. Given n, each yk is contained in a ball of radius 1/n whenever
k≥ n. Thus {yk} is a subsequence of the original sequence and {yk} is a Cauchy sequence.
By completeness of X , this converges to some x ∈ X which shows that every sequence in X
has a convergent subsequence. This shows 3.)⇒ 2.). ■

Lemma 2.5.9 The closed interval [a,b] in R is compact and every Cauchy sequence in
R converges.

Proof: To show this, suppose it is not. Then there is an open cover C which admits
no finite subcover for [a,b] ≡ I0. Consider the two intervals

[
a, a+b

2

]
,
[ a+b

2 ,b
]
. One of

these, maybe both cannot be covered with finitely many sets of C since otherwise, there
would be a finite collection of sets from C covering [a,b] . Let I1 be the interval which
has no finite subcover. Now do for it what was done for I0. Split it in half and pick the
half which has no finite covering of sets of C . Thus there is a “nested” sequence of closed
intervals I0 ⊇ I1 ⊇ I2 · · · , each being half of the preceding interval. Say In = [an,bn] . By
the nested interval Lemma, Lemma 1.11.12, there is a point x in all these intervals. The
point is unique because the lengths of the intervals converge to 0. This point is in some
O ∈ C . Thus for some δ > 0, [x−δ ,x+δ ] , having length 2δ , is contained in O. For k
large enough, the interval [ak,bk] has length less than δ but contains x. Therefore, it is
contained in [x−δ ,x+δ ] and so must be contained in a single set of C contrary to the
construction. This contradiction shows that in fact [a,b] is compact.

The second claim was proved earlier, but here it is again. If {xn} is a Cauchy sequence,
then it is contained in some interval [a,b] which is compact. Hence there is a subsequence
which converges to some x ∈ [a,b]. By Theorem 2.3.3 the original Cauchy sequence con-
verges to x. ■

Now the next corollary pertains more specifically to Rp.

Corollary 2.5.10 For each r > 0,Q≡ [−r,r]p ≡∏
p
i=1 [−r,r] is compact in Rp.
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Proof: Let
{

xk
}∞

k=1 be a sequence in Q. Then for each i,
{

xk
i
}∞

k=1 is contained in [−r,r] .
Therefore, taking a succession of p subsequences, one obtains a subsequence of

{
xk
}

de-
noted as {xnk} such that for each i≤ p,

{
xnk

i

}
converges to some xi ∈ [−r,r]. It follows that

limk→∞ xnk = x where the ith component of x is xi. ■
Since Rp is a metric space, Theorem 2.5.8 implies the following theorem.

Theorem 2.5.11 A nonempty set K contained in Rp is compact if and only if it is
sequentially compact.

Now the general result called the Heine Borel theorem comes right away.

Theorem 2.5.12 For K ⊆ Rp a nonempty set, the following are equivalent.

1. K is compact.

2. K is sequentially compact.

3. K is closed and bounded.

Proof: The first two are equivalent from Theorem 2.5.5. It remains to show that these
are equivalent to closed and bounded.
⇒Suppose the first two hold. Why is K bounded? If not, there is kn ∈ K \B(0,n) .

Then {kn} cannot have a Cauchy subsequence and so no subsequence can converge thanks
to Theorem 2.3.3. Why is K closed? Using Corollary 2.2.8, it suffices to show that if
kn→ k, then k ∈ K. We know that {kn} is a Cauchy sequence by Theorem 2.3.2. Since K
is sequentially compact, a subsequence converges to some l ∈ K. However, from Theorem
2.3.3, the original sequence also converges to l and so l = k. Thus k ∈ K. The following is
another proof that K is closed given K is compact.
⇐Suppose now that K is closed and bounded. Then it is a closed subset of [−r,r]p for

large r. Thus, it is a closed subset of a compact set by Corollary 2.5.10. Therefore, it is
compact by Proposition 2.5.2. ■

As shown above, every closed interval [a,b] is compact and sequentially compact. Next
is an easy observation about the product of compact sets. The proof was essentially used
above.

Corollary 2.5.13 Suppose Ki is a compact subset of R. Then K ≡∏
p
i=1 Ki is a compact

subset of Rp.

Proof: This is easiest to see in terms of sequential compactness. Let {xn}∞

n=1 be a
sequence in K. Say xn =

(
x1

n x2
n · · · xp

n
)
. By sequential compactness of each Ki, it

follows that taking p subsequences, one can obtain a subsequence, still denoted by {xn}
such that for each i≤ p, limn→∞ xi

n = xi ∈ Ki. Then xn→ x ∈ K. ■
Since Cp is just R2p, closed and bounded sets are compact in Cp also as a special case

of the above.
A useful corollary of this theorem is the following, sometimes called the Weierstrass

Bolzano theorem.

Corollary 2.5.14 Let {xk}∞

k=1 be a bounded sequence in Rp or Cp. Then it has a
convergent subsequence.
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Proof: The given sequence is contained in some set of the form ∏
p
i=1 [−r,r] which is

a compact set as shown in Corollary 2.5.13. Hence the given sequence has a convergent
subsequence. Here we regard Cp as R2p. ■

It is always the case that a compact set in a metric space is a closed set. In fact, this is
true for any Hausdorff space. What is done in general is to axiomatize the idea of a metric
space to define a general topological space as follows. Here X is a nonempty set.

1. Let τ be the collection of open sets called the topology, τ ⊆P (X). Then if C ⊆ τ ,
∩C ∈ τ.

2. If Ui ∈ τ for i = 1,2, · · · ,n, then ∩n
i=1Ui ∈ τ

Definition 2.5.15 Hausdorff space is a general topological space which has the
property that if x ̸= y, then there exist open sets Ux and Uy containing x,y respectively such
that Ux∩Uy = /0.

Proposition 2.5.16 If K is a compact subset of a Hausdorff space, then it is closed. In
particular, this holds for any metric space.

Proof: Let K be a nonempty compact set and suppose p /∈K. Then for each x∈K, there
are open sets Ux,Vx such that x ∈Vx and p ∈Ux and Ux∩Vx = /0. Then since V is compact,
there are finitely many Vx which cover K say Vx1 , · · · ,Vxn . Then let U = ∩n

i=1Uxi . It follows
p ∈U and U has empty intersection with K. In fact U has empty intersection with ∪n

i=1Vxi

because it is contained in each Uxi . Since U is an open set and p∈KC is arbitrary, it follows
KC is an open set. ■

The following is a very important property pertaining to compact sets. It is a surprising
result. However, it follows from the definition of compactness.

Proposition 2.5.17 Suppose F is a nonempty collection of nonempty compact sets
with the finite intersection property. This means that the intersection of any finite subset of
F is nonempty. Then ∩F ̸= /0.

Proof: If the conclusion were not so, ∪
{

FC : F ∈F
}
= X and so, in particular, pick-

ing some F0 ∈F ,
{

FC : F ∈F
}

would be an open cover of F0. A point in F0 is not in FC
0

so it must be in one of the above sets F ̸= F0. Since F0 is compact, some finite subcover,
FC

1 , · · · ,FC
m exists, F0 ⊆ ∪m

k=1FC
k . Therefore, the finite intersection property is violated be-

cause

F0∩ (∩m
k=1Fk)⊆

(
∪m

k=1FC
k
)
∩ (∩m

k=1Fk) = (∩m
k=1Fk)

C ∩ (∩m
k=1Fk) = /0 ■

Note that absolutely no mention was made of context. This is because this finite in-
tersection property is always true whenever you have a set of compact sets. Of course, in
this book, we typically have in mind a metric space. I am just pointing out that all of it
generalizes.

2.5.1 Continuous Functions
The following is a fairly general definition of what it means for a function to be continuous.
It includes everything seen in typical calculus classes as a special case.
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Definition 2.5.18 Let f : X → Y be a function where (X ,d) and (Y,ρ) are metric
spaces. Then f is continuous at x ∈ X if and only if the following condition holds. For
every ε > 0, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε . If f is
continuous at every x ∈ X we say that f is continuous on X. The notation f−1 (S) means
{x ∈ X : f (x) ∈ S} . It is called the inverse image of S.

For example, you could have a real valued function f (x) defined on an interval [0,1] . In
this case you would have X = [0,1] and Y =R with the distance given by d (x,y) = |x− y|.
Then the following theorem is the main result. Recall that if (X ,d) is a metric space and
S⊆ X is a nonempty subset, then (S,d) is also a metric space so this latter case is included
in what follows.

Theorem 2.5.19 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then
the following two are equivalent.

a f is continuous at x ∈ D( f ) .

b Whenever xn→ x ∈ D( f ) , each xn ∈ D( f ) , it follows that f (xn)→ f (x) .

Also, the following are equivalent.

c f is continuous on X .

d Whenever V is open in Y, it follows that f−1 (V )≡ {x ∈ X : f (x) ∈V} is open in X .

e Whenever H is closed in Y, it follows that f−1 (H) is closed in X.

Proof: a⇒ b: Let f be continuous at x and suppose xn→ x. Then let ε > 0 be given.
By continuity, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε. Since
xn→ x, it follows that there exists N such that if n≥ N, then d (xn,x)< δ and so, if n≥ N,
it follows that ρ ( f (xn) , f (x))< ε. Since ε > 0 is arbitrary, it follows that f (xn)→ f (x).

b ⇒ a: Suppose b holds but f fails to be continuous at x. Then there exists ε > 0
such that for all δ > 0, there exists x̂ such that d (x̂,x)< δ but ρ ( f (x̂) , f (x))≥ ε . Letting
δ = 1/n, there exists xn such that d (xn,x) < 1/n but ρ ( f (xn) , f (x)) ≥ ε . Now this is a
contradiction because by assumption, the fact that xn → x implies that f (xn)→ f (x). In
particular, for large enough n, ρ ( f (xn) , f (x))< ε contrary to the construction.

c⇒d: Let V be open in Y . Let x∈ f−1 (V ) so that f (x)∈V. Since V is open, there exists
ε > 0 such that B( f (x) ,ε)⊆V . Since f is continuous at x, it follows that there exists δ > 0
such that if x̂ ∈ B(x,δ ) , then f (x̂) ∈ B( f (x) ,ε) ⊆ V.( f (B(x,δ ))⊆ B( f (x) ,ε)) In other
words, B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) ⊆ f−1 (V ) which shows that, since x was an arbitrary
point of f−1 (V ) , every point of f−1 (V ) is an interior point which implies f−1 (V ) is open.

d⇒ e: Let H be closed in Y . Then f−1 (H)C = f−1
(
HC
)

which is open by assumption.
Hence f−1 (H) is closed because its complement is open.

e⇒ d: Let V be open in Y. Then f−1 (V )C = f−1
(
VC
)

which is assumed to be closed.
This is because the complement of an open set is a closed set. Thus f−1 (V ) is open because
its complement is closed.

d ⇒ c: Let x ∈ X be arbitrary. Is it the case that f is continuous at x? Let ε > 0
be given. Then B( f (x) ,ε) is an open set in V (Recall that open balls are open.) and so
x ∈ f−1 (B( f (x) ,ε)) which is given to be open. Hence there exists δ > 0 such that x ∈
B(x,δ )⊆ f−1 (B( f (x) ,ε)) . Thus, f (B(x,δ ))⊆ B( f (x) ,ε) so if d (x, x̂)< δ meaning that
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x̂∈B(x,δ ) , then ρ ( f (x̂) , f (x))< ε meaning that f (x̂)∈B( f (x) ,ε). Thus f is continuous
at x for every x. ■

In the case where f : D(f) ⊆ Rp → Rq, the above definition takes the following more
familiar form.

Definition 2.5.20 A function f : D(f) ⊆ Rp → Rq is continuous at x ∈ D(f) if for
each ε > 0 there exists δ > 0 such that whenever y ∈ D(f) and

|y−x|< δ

it follows that
|f(x)− f(y)|< ε.

f is continuous if it is continuous at every point of D(f).

This is equivalent to the same statement with ∥·∥
∞

in place of |·| because

∥x∥
∞
≤ |x| ≡

(
p

∑
k=1
|xk|2

)1/2

≤√p∥x∥
∞

and it will be shown a little later that any two norms satisfy an inequality of the above sort
so the choice of norm does not affect whether a function is continuous in the sense that if
it is continuous with respect to one norm, then it is continuous for the other.

Corollary 2.5.21 f : Rp→ Rq is continuous if and only if f−1 (V ) is open in Rp when-
ever V is open in Rq and f−1 (C) is closed in Rp whenever C is closed in Rq.

Recall how the function x→ dist(x,S) was continuous. Theorem 2.5.19 implies{
x : dist(x,S)>

1
k

}
is open,

{
x : dist(x,S)≥ 1

k

}
is closed

and so forth.
Now here are some basic properties of continuous functions which have values in Rp

or R so that it makes sense to add and multiply by scalars. However, no context is specified
for property 3. which holds for f,g having values and domains in metric space.

Theorem 2.5.22 The following assertions are valid.

1. The function af+bg is continuous at x when f, g are continuous at x ∈ D(f)∩D(g)
and a,b ∈ R.

2. If and f and g are each real valued functions continuous at x, then f g is continuous
at x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f(x) ∈ D(g), and g is continuous at f(x) , then g◦ f is contin-
uous at x.

4. If f = ( f1, · · · , fq) : D(f)→Rq, then f is continuous if and only if each fk is a contin-
uous real valued function.

5. The function f : Rp→ R, given by f (x) = |x| is continuous.
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Proof: Begin with (1). Let ε > 0 be given. Let xn→ x. Then by assumption, f(xn)→
f(x) and g(xn)→ g(x) whenever xn→ x with xn ∈ D(f)∩D(g). Thus

|(af+bg)(xn)− (af+bg)(x)| → 0.

Now begin on (2). This also follows from properties of convergence of sequences
of real numbers from beginning calculus. For example, letting xn → x as above where
g(x) ̸= 0, |g(xn)−g(x)| < |g(x)|/2 for all n large enough and so, for all large enough n,
from the triangle inequality, 3|g(x)|

2 ≥ |g(xn)| ≥ 1
2 |g(x)|∣∣∣∣ f (xn)

g(xn)
− f (x)

g(x)

∣∣∣∣ =

∣∣∣∣ f (xn)g(x)− f (x)g(xn)

g(x)g(xn)

∣∣∣∣
≤ 2

1

|g(x)|2
| f (xn)g(x)− f (x)g(xn)|

≤ 2
1

|g(x)|2

(
| f (xn)g(x)− f (x)g(x)|
+ | f (x)g(x)− f (x)g(xn)|

)
= 2

1

|g(x)|2

(
|g(x)| | f (xn)− f (x)|
+ | f (x)| |g(x)−g(xn)|

)
which converges to 0 by assumption.

Now begin on (3). In terms of sequences, if xn→ x, then f(xn)→ f(x) and so

lim
n→∞

g(f(xn)) = g(f(x)) .

Thus g◦ f is continuous at x.
Part (4) says: If f = ( f1, · · · , fq) : D(f)→Rq, then f is continuous if and only if each fk

is a continuous real valued function at x. Then letting xn→ x

max(| fi (xn)− fi (x)| , i = 1, ...,q)≤ |f(xn)− f(x)| ≡

(
q

∑
i=1
| fi (xn)− fi (x)|2

)1/2

≤ √
qmax(| fi (xn)− fi (x)| , i = 1, ...,q)

Thus f(xn)→ f(x) if and only if each fk (xn)→ f (x) and this shows (4).
To verify part (5), the triangle inequality implies ||xn|− |x|| ≤ |xn−x| so if xn → x,

then |xn| → |x|. ■

2.5.2 Limits of Functions
I will feature limits of functions which have values in some Rp. First of all, you can only
consider limits at limit points of the domain as explained below. It isn’t any harder to
formulate this in terms of metric spaces, so this is what I will do. You can let the metric
space be Rp if you like.

Definition 2.5.23 Let f : D( f )⊆X→Y where (X ,d) and (Y,ρ) are metric spaces.
For x a limit point of D( f ) , meaning that B(x,r) contains points of D( f ) other than x for
each r > 0, limy→x f (y) = z ∈ Y means the following.

For every ε > 0, there exists δ > 0 such that if 0 < d (x,y) < δ and y ∈ D( f ) , then
ρ ( f (y) ,z)< ε .
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Note that x must be a limit point of D( f ) in order to take the limit at x. This will be
clear from the next proposition which says that the limit, if it exists, is well defined.

Proposition 2.5.24 Let x be a limit point of D( f ) where f : D( f ) ⊆ X → Y as in the
above definition. If limy→x f (x) = z and limy→x f (y) = ẑ, then z = ẑ.

Proof: Let δ be small enough to go with ε/3 in the case of both z, ẑ. Then, since x is a
limit point, there exists y ∈ B(x,δ )∩D( f ) ,y ̸= x. Then

ρ (z, ẑ)≤ ρ (z, f (y))+ρ ( f (y) , ẑ)<
2ε

3
< ε

Since ε is arbitrary, this shows that z = ẑ. ■

2.5.3 The Extreme Value Theorem and Uniform Continuity
These topics work in any metric space or even more general settings. First is a theorem
which says that the continuous image of a compact set is compact.

Theorem 2.5.25 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces and f is
continuous on X. Then if K ⊆ X is compact, it follows that f (K) is compact in (Y,ρ).

Proof: Let C be an open cover of f (K) . Denote by f−1 (C ) the sets{
f−1 (U) : U ∈ C

}
.

Each of these is an open set by Theorem 2.5.19. Then f−1 (C ) is an open cover of K. It
follows there are finitely many, {

f−1 (U1) , · · · , f−1 (Un)
}

which covers K. It follows that {U1, · · · ,Un} is an open cover for f (K). ■
The following is the important extreme values theorem for a real valued function de-

fined on a compact set.

Theorem 2.5.26 Let K be a compact metric space and suppose f : K → R is a
continuous function. That is, R is the metric space where the metric is given by d (x,y) =
|x− y|. Then f achieves its maximum and minimum values on K.

Proof: Let λ = sup{ f (x) : x ∈ K} . Then from the definition of sup, you have the ex-
istence of a sequence {xn} ⊆ K such that limn→∞ f (xn) = λ . There is a subsequence still
called {xn} which converges to some x ∈ K. From continuity, λ = limn→∞ f (xn) = f (x)
and so f achieves its maximum value at x. Similar reasoning shows that it achieves its
minimum value on K. ■

Definition 2.5.27 Let f : (X ,d)→ (Y,ρ) be a function. Then it is said to be uni-
formly continuous on X if for every ε > 0 there exists a δ > 0 such that whenever x, x̂ are
two points of X with d (x, x̂)< δ , it follows that ρ ( f (x) , f (x̂))< ε.

Note the difference between this and continuity. With continuity, the δ could depend
on x but here it works for any pair of points in X .

There is a remarkable result concerning compactness and uniform continuity.
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Theorem 2.5.28 Let f : (K,d) → (Y,ρ) be a continuous function where K is a
compact metric space. Then f is uniformly continuous.

Proof: Suppose f fails to be uniformly continuous. Then there exists ε > 0 and pairs
of points xn, x̂n such that d (xn, x̂n) < 1/n but ρ ( f (xn) , f (x̂n)) ≥ ε . Since K is compact,
it is sequentially compact and so there exists a subsequence, still denoted as {xn} such
that xn → x ∈ K. Then also x̂n → x also and so by Lemma 2.1.3, 0 = ρ ( f (x) , f (x)) =
limn→∞ ρ ( f (xn) , f (x̂n))≥ ε which is a contradiction. ■

Later in the book, I will consider the fundamental theorem of algebra. However, here
is a fairly short proof based on the extreme value theorem. You may have to fill in a few
details however. In particular, note that (C, |·|) is the same as

(
R2, |·|

)
where |·| is the

standard norm on R2. Thus closed and bounded sets are compact in (C, |·|). Also, the
above theorems apply for Rp and so they also apply for Cp because it is the same as R2p.

Proposition 2.5.29 Let p(z) = a0 + a1z+ · · ·+ an−1zn−1 + zn be a nonconstant poly-
nomial where each ai ∈ C. Then there is a root to this polynomial.

Proof: Suppose the nonconstant polynomial p(z) = a0 +a1z+ · · ·+ zn, has no zero in
C. Since lim|z|→∞ |p(z)| = ∞, there is a z0 with |p(z0)| = minz∈C |p(z)| > 0 Why? (The
growth condition shows that you can restrict attention to a closed and bounded set and
then apply the extreme value theorem.) Then let q(z) = p(z+z0)

p(z0)
. This is also a polynomial

which has no zeros and the minimum of |q(z)| is 1 and occurs at z = 0. Since q(0) = 1, it
follows q(z) = 1+akzk+r (z) where r (z) consists of higher order terms. Here ak is the first
coefficient which is nonzero. Choose a sequence, zn→ 0, such that akzk

n < 0. For example,
let −akzk

n = (1/n). Then

|q(zn)|=
∣∣∣1+akzk + r (z)

∣∣∣≤ 1−1/n+ |r (zn)|= 1+akzk
n + |r (zn)|< 1

for all n large enough because |r (zn)| is small compared with
∣∣akzk

n
∣∣ since it involves higher

order terms. This is a contradiction. ■
The idea is that if k < m, then for z sufficiently small, zm is very small relative to zk.
Here is another very interesting theorem about continuity and compactness. It says that

if you have a continuous function defined on a compact set K then f (K) is also compact.
If f is one to one, then its inverse is also continuous.

Theorem 2.5.30 Let K be a compact set in some metric space and let f : K→ f (K)
be continuous. Then f (K) is compact. If f is one to one, then f−1 is also continuous.

Proof: The first part is in Theorem 2.5.25. However, I will give a different proof. As
explained above, compactness and sequential compactness are the same in the setting of
metric space. Suppose then that { f (xk)}∞

k=1 is a sequence in f (K). Since K is compact,
there is a subsequence, still denoted as {xk}∞

k=1 such that xk→ x ∈ K. Then by continuity,
f (xk)→ f (x) and so f (K) is compact as claimed.

Next suppose f is one to one. If you have f (xk)→ f (x) , does it follow that xk→ x? If
not, then by compactness, there is a subsequence, still denoted as {xk}∞

k=1 such that xk →
x̂ ∈ K,x ̸= x̂. Then by continuity, it also happens that f (xk)→ f (x̂) and so f (x) = f (x̂)
which is a contradiction. Therefore, xk→ x as desired, showing that f−1 is continuous. ■
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2.5.4 Convergence of Functions
First is the definition of a Banach space. It is really just a generalization of the familiar Rp.
For many things of interest in this book, the Banach space will be Rp or Cp.

Definition 2.5.31 A Banach space is a complete normed linear space. It can be
either real or complex, depending on the field of scalars. That is, it is a normed vector
space in which every Cauchy sequence converges. In particular, it is a metric space in
which d (x,y)≡ ∥x−y∥ so all the theory of metric space applies. In particular open balls
really are open.

Here the discussion is specialized to vector valued functions having values in some
Banach space X . Most if not all of it will work for general metric spaces.

There are two kinds of convergence for a sequence of functions described in the next
definition, pointwise convergence and uniform convergence. Of the two, uniform conver-
gence is far better and tends to be the kind of convergence most encountered in complex
analysis. Pointwise convergence is more often encounted in real analysis and necessitates
much more difficult theorems.

Definition 2.5.32 Let X ,Y be Banach spaces where ∥·∥ will denote the norm in
either one. S⊆X and let fn : S→Y for n= 1,2, · · · . Then {fn} is said to converge pointwise
to f on S if for all x ∈ S,

fn (x)→ f(x) , that is lim
n→∞
∥fn (x)− f(x)∥= 0

for each x. The sequence is said to converge uniformly to f on S if

lim
n→∞

(
sup
x∈S
∥fn (x)− f(x)∥

)
= 0

supx∈S ∥fn (x)− f(x)∥ is denoted as∥fn− f∥
∞

or just ∥fn− f∥ for short.∥·∥ is called the uni-
form norm. More generally, it suffices in the above to let S just be a metric space.

The following picture illustrates the above definition.

The wriggly function is uniformly close to the not so wriggly one.
To illustrate the difference in the two types of convergence, here is a standard example.

Example 2.5.33 Let

f (x)≡
{

0 if x ∈ [0,1)
1 if x = 1

Also let fn (x) ≡ xn for x ∈ [0,1] . Then fn converges pointwise to f on [0,1] but does not
converge uniformly to f on [0,1].
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x

y

Note how the target function is not continuous although each function in the sequence
is. The next theorem shows that this kind of loss of continuity never occurs when you have
uniform convergence. The theorem holds generally when S ⊆ X a metric space and f, fn
have values in Y another metric space. Note that you could simply refer to S as the metric
space if you want.

Theorem 2.5.34 Let S be a subset of a Banach space or just a metric space and let
fn : S→ Y be continuous where Y is a Banach space and let fn converge uniformly to f on
S. Then if each fn is continuous at x ∈ S, it follows that f is also continuous at x.

Proof: Let ε > 0 be given. Let N be such that if n≥ N, then

sup
y∈S
∥fn (y)− f(y)∥ ≡ ∥fn− f∥

∞
<

ε

3

Pick such an n. Then by continuity of fn at x, there exists δ > 0 such that if ∥y−x∥< δ or
d (x,y)< δ , then ∥fn (y)− fn (x)∥< ε

3 . Then if ∥y−x∥< δ or d (x,y)< δ ,y ∈ S, then

∥f(x)− f(y)∥ ≤ ∥f(x)− fn (x)∥+∥fn (x)− fn (y)∥+∥fn (y)− f(y)∥

<
ε

3
+

ε

3
+

ε

3
= ε

Thus f is continuous at x as claimed. ■

Definition 2.5.35 Let fn : S→ Y . Then fn is said to be uniformly Cauchy if for
every ε > 0, there exists N such that if m,n > ε, then if m,n ≥ N, then ∥fn− fm∥ ≡
supx∈S |fn (x)− fm (x)|< ε

Observation 2.5.36 ∥·∥ satisfies the axioms of a norm.

Consider the triangle inequality.

∥f(x)+g(x)∥ ≤ ∥f(x)∥+∥g(x)∥ ≤ ∥f∥+∥g∥

and so

∥f+g∥ ≡ sup
x∈S
∥f(x)+g(x)∥ ≤ sup

x∈S
∥f(x)∥+ sup

x∈S
∥g(x)∥= ∥f∥+∥g∥

As to the axiom about scalars,

∥αf∥ ≡ sup
x∈S
∥αf(x)∥= sup

x∈S
|α|∥f(x)∥= |α|sup

x∈S
∥f(x)∥ ≡ |α|∥f∥

It is clear that ∥f∥ ≥ 0. If ∥f∥= 0, then clearly f(x) = 0 for each x and so f = 0.

Theorem 2.5.37 Let Y be a Banach space and S a metric space. fn : S→ Y be
bounded functions: supx∈S ∥fn (x)∥ = Cn < ∞. Then there exists bounded f : S→ Y such
that limn→∞ ∥f− fn∥= 0 if and only if {fn} is uniformly Cauchy.
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Proof:⇐First suppose {fn} is uniformly Cauchy. Then for each x,

∥fn (x)− fm (x)∥ ≤ ∥fn− fm∥ (2.1)

and it follows that for each x,{fn (x)} is a Cauchy sequence. By completeness of Y, this
converges. Let f(x) be that to which it converges. Now pick N such that for m,n ≥
N,∥fn− fm∥< ε/2. Then in 2.1,

∥fn (x)∥ ≤ ∥fN (x)∥+ ε/2≤CN +1

so, since x is arbitrary, it follows each fn is bounded since ∥fn (x)∥ is bounded above by

max{CN + ε/2,Ck,k ≤ N} .

Also, for n≥ N,

∥fn (x)− f(x)∥ ≤ ∥fn (x)− fm (x)∥+∥fm (x)− f(x)∥< ε/2+∥fm (x)− f(x)∥

Now, take the limit as m→ ∞ on the right to obtain that for all x, ∥fn (x)− f(x)∥ ≤ ε/2.
Therefore, ∥fn− f∥< ε if n≥N so, since ε is arbitrary, this shows that limn→∞ ∥f− fn∥= 0.
⇒Conversely, if there exists bounded f : S→Y to which {fn} converges uniformly, why

is {fn} uniformly Cauchy?

∥fn (x)− fm (x)∥ ≤ ∥fn (x)− f(x)∥+∥f(x)− fm (x)∥
≤ ∥fn− f∥+∥f− fm∥

By assumption, there is N such that if n ≥ N, then ∥fn− f∥ < ε/3. Then if m,n ≥ N, it
follows that for any x ∈ S,

∥fn (x)− fm (x)∥< ε/3+ ε/3 = 2ε/3

Then supx∈S ∥fn (x)− fm (x)∥ ≡ ∥fn− fm∥ ≤ 2ε/3 < ε. Hence {fn} is uniformly Cauchy. ■
Now here is an example of an infinite dimensional space which is also complete.

Example 2.5.38 Denote by BC (S;Y ) the bounded continuous functions defined on S with
values in Y for Y a real or complex Banach space. Then this is a complex vector space with
norm ∥·∥ defined above. It is also complete. Here S is some metric space.

It is obvious that this is a vector space. Indeed, it is a subspace of the set of functions
having values in Y and it is clear that the given set of functions is closed with respect
to the vector space operations. It was explained above in Observation 2.5.36 that this
uniform norm really is a norm. It remains to verify completeness. Suppose then that {fn}
is a Cauchy sequence. By Theorem 2.5.37, there exists a bounded function f such that
fn converges to f uniformly. Then by Theorem 2.5.34 it follows that f is also continuous.
Since every Cauchy sequence converges, this says that BC (S;Y ) is complete.

I will be a little vague about K other than to say it is compact. You can assume it is a
compact metric space if desired.

Proposition 2.5.39 Let K be a compact set and consider the continuous functions de-
fined on K with values in X , C (K;X) with the uniform norm

∥f∥ ≡max{∥f(x)∥X : x ∈ K}

Then this is a complete normed linear space, a Banach space.
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Proof: It is a repeat of the proof of Theorem 2.5.37. ■
One can consider convergence of infinite series the same way as done in calculus.

Definition 2.5.40 The symbol ∑
∞
k=1 fk (x) is defined as the limit of the sequence of

partial sums limn→∞ ∑
n
k=1 fk (x) provided this limit exists. This is called pointwise conver-

gence of the infinite sum. The infinite sum is said to converge uniformly on a set S if the
sequence of paritial sums converges uniformly, that is

lim
n→∞

∥∥∥∥∥ ∞

∑
k=1

fk−
n

∑
k=1

fk

∥∥∥∥∥≡ lim
n→∞

(
sup
x∈S

∥∥∥∥∥ ∞

∑
k=1

fk (x)−
n

∑
k=1

fk (x)

∥∥∥∥∥
)

= 0.

Note how this theorem includes the case of ∑
∞
k=1 ak as a special case. Here the ak don’t

depend on x.
The following theorem is very useful. It tells how to recognize that an infinite sum is

converging or converging uniformly. First is a little lemma which reviews standard calcu-
lus.

Lemma 2.5.41 Suppose Mk ≥ 0 and ∑
∞
k=1 Mk converges. It follows that

lim
m→∞

∞

∑
k=m

Mk = 0.

Proof: By assumption, there is N such that if m≥ N, then if n > m,∣∣∣∣∣ n

∑
k=1

Mk−
m

∑
k=1

Mk

∣∣∣∣∣= n

∑
k=m+1

Mk < ε/2

Then letting n→ ∞, one can pass to a limit and conclude that ∑
∞
k=m+1 Mk < ε . It follows

that for m > N,∑∞
k=m Mk < ε . The part about passing to a limit follows from the fact that

n→∑
n
k=m+1 Mk is an increasing sequence which is bounded above by ∑

∞
k=1 Mk. Therefore,

it converges by completeness of R. ■

Theorem 2.5.42 Let Y be a Banach space, Cp for example, fk : S→ Y . For x ∈ S,
if ∑

∞
k=1 ∥fk (x)∥ < ∞, then ∑

∞
k=1 fk (x) converges pointwise. If there exists Mk such that

Mk ≥ ∥fk (x)∥ for all x ∈ S, then ∑
∞
k=1 fk (x) converges uniformly.

Proof: ∥·∥ will denote either the uniform norm or the norm in X depending on context.
Let m < n. Then ∥∑n

k=1 fk (x)−∑
m
k=1 fk (x)∥ ≤ ∑

∞
k=m ∥fk (x)∥ < ε/2 whenever m is large

enough due to the assumption that ∑
∞
k=1 ∥fk (x)∥ < ∞. Thus the partial sums are a Cauchy

sequence and so the series converges pointwise.
If Mk ≥ ∥fk (x)∥ for all x ∈ S, then for M large enough,∥∥∥∥∥ n

∑
k=1

fk (x)−
m

∑
k=1

fk (x)

∥∥∥∥∥≤ ∞

∑
k=m
∥fk (x)∥ ≤

∞

∑
k=m

Mk < ε/2

Thus, taking sup, ∥∑n
k=1 fk (·)−∑

m
k=1 fk (·)∥≤ ε/2< ε and so the partial sums are uniformly

Cauchy sequence. Hence they converge uniformly to what is defined as ∑
∞
k=1 fk (x) for

x ∈ S. ■
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The latter part of this theorem is called the Weierstrass M test. As a very interesting
application, consider the question of nowhere differentiable functions. This considers the
simple case of functions having values in the Banach space R.

Consider the following description of a function. The following is the graph of the
function on [0,1] .

1
The height of the function is 1/2 and the slope of the rising line is 1 while the slope of

the falling line is−1. Now extend this function to the whole real line to make it periodic of
period 1. This means f (x+n) = f (x) for all x ∈ R and n ∈ Z, the integers. In other words
to find the graph of f on [1,2] you simply slide the graph of f on [0,1] a distance of 1 to get
the same tent shaped thing on [1,2] . Continue this way. The following picture illustrates
what a piece of the graph of this function looks like. Some might call it an infinite sawtooth.

Now define g(x) ≡ ∑
∞
k=0
( 3

4

)k
f
(
4kx
)
. Letting Mk = (3/4)k , an application of the

Weierstrass M test, Theorem 2.5.42 shows g is everywhere continuous. This is because
each function in the sum is continuous and the series converges uniformly on R. However,
this function is nowhere differentiable. This is shown next.

Let δ m =± 1
4 (4

−m) where we assume m > 2. That of interest will be m→ ∞.

g(x+δ m)−g(x)
δ m

=
∑

∞
k=0
( 3

4

)k (
f
(
4k (x+δ m)

)
− f

(
4kx
))

δ m

If you take k > m,

f
(

4k (x+δ m)
)
− f

(
4kx
)

= f
(

4k
(

x± 1
4
(
4−m)))− f

(
4kx
)

= f

4kx±

integer︷ ︸︸ ︷
1
4

4k−m

− f
(

4kx
)
= 0

Therefore,

g(x+δ m)−g(x)
δ m

=
1

δ m

m

∑
k=0

(
3
4

)k(
f
(

4k (x+δ m)
)
− f

(
4kx
))

The absolute value of the last term in the sum is
∣∣∣( 3

4

)m
( f (4m (x+δ m))− f (4mx))

∣∣∣ and we
choose the sign of δ m such that both 4m (x+δ m) and 4mx are in some interval which is of
the form [k/2,(k+1)/2) which is certainly possible because the distance between these
two points is 1/4 and such half open intervals include all of R. Thus, since f has slope ±1
on the interval just mentioned,∣∣∣∣(3

4

)m

( f (4m (x+δ m))− f (4mx))
∣∣∣∣= (3

4

)m

4m |δ m|= 3m |δ m|
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As to the other terms, 0≤ f (x)≤ 1/2 and so∣∣∣∣∣m−1

∑
k=0

(
3
4

)k(
f
(

4k (x+δ m)
)
− f

(
4kx
))∣∣∣∣∣≤ m−1

∑
k=0

(
3
4

)k

=
1− (3/4)m

1/4
= 4−4

(
3
4

)m

Thus
∣∣∣ g(x+δ m)−g(x)

δ m

∣∣∣ ≥ 3m−
(

4−4
( 3

4

)m
)
≥ 3m− 4. Since δ m→ 0 as m→ ∞, g′ (x) does

not exist because the difference quotients are not bounded. ■
This proves the following theorem.

Theorem 2.5.43 There exists a function defined on R which is continuous and
bounded but fails to have a derivative at any point.

Proof: It only remains to verify that the function just constructed is bounded. However,
0≤ g(x)≤ 1

2 ∑
∞
k=0
( 3

4

)k
= 2. ■

Note that you could consider (ε/2)g(x) to get a function which is continuous, has
values between 0 and ε which has no derivative.

2.6 Tietze Extension Theorem
This is an interesting theorem which holds in arbitrary normal topological spaces. However,
I am specializing to a metric space X to keep the emphasis on that which is most familiar.
The presentation depends on Lemma 2.4.8.

Lemma 2.6.1 Let H,K be two nonempty disjoint closed subsets of a metric space X .
Then there exists a continuous function, g : X → [−1/3,1/3] such that g(H) = −1/3,
g(K) = 1/3,g(X)⊆ [−1/3,1/3] .

Proof: Let f (x)≡ dist(x,H)
dist(x,H)+dist(x,K) . The denominator is never equal to zero because if

dist(x,H) = 0, then x∈H because H is closed. (To see this, pick hk ∈ B(x,1/k)∩H. Then
hk → x and since H is closed, x ∈ H.) Similarly, if dist(x,K) = 0, then x ∈ K and so the
denominator is never zero as claimed because it is not possible for a point to be in both H
and K. Hence f is continuous and from its definition, f = 0 on H and f = 1 on K. Now let
g(x)≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired properties. ■

Definition 2.6.2 For f : M ⊆ X → R, define ∥ f∥M as

sup{| f (x)| : x ∈M} .

Lemma 2.6.3 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of Rp such that ∥ f −g∥M < 2

3 , g(X)⊆ [−1/3,1/3] .

Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 2.6.1 there exists g
such that g is a continuous function defined on all of X and g(H) = −1/3, g(K) = 1/3,
and g(Rp)⊆ [−1/3,1/3] . It follows ∥ f −g∥M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
If both H,K = /0, there isn’t much to show. Just let g(x) = 0 for all x. ■
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Lemma 2.6.4 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of X such that g = f on M and g has its values in [−1,1] .

Proof: Using Lemma 2.6.3, let g1 be such that g1 (X)⊆ [−1/3,1/3] and

∥ f −g1∥M ≤
2
3
.

Suppose g1, · · · ,gm have been chosen such that g j (X)⊆ [−1/3,1/3] and∥∥∥∥∥ f −
m

∑
i=1

(
2
3

)i−1

gi

∥∥∥∥∥
M

<

(
2
3

)m

. (2.2)

This has been done for m = 1. Then
∥∥∥( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)∥∥∥
M
≤ 1 and so(

3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
can play the role of f in the first step of the proof. Therefore, there exists gm+1 defined and
continuous on all of X such that its values are in [−1/3,1/3] and∥∥∥∥∥

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∥∥∥∥∥
M

≤ 2
3
.

Hence
∥∥∥( f −∑

m
i=1
( 2

3

)i−1
gi

)
−
( 2

3

)m
gm+1

∥∥∥
M
≤
( 2

3

)m+1
. It follows that there exists a se-

quence, {gi} such that each has its values in [−1/3,1/3] and for every m 2.2 holds. Then
let

g(x)≡
∞

∑
i=1

(
2
3

)i−1

gi (x) .

It follows |g(x)| ≤
∣∣∣∑∞

i=1
( 2

3

)i−1
gi (x)

∣∣∣≤ ∑
m
i=1
( 2

3

)i−1 1
3 ≤ 1 and

∣∣∣( 2
3

)i−1
gi (x)

∣∣∣≤ ( 2
3

)i−1 1
3

so the Weierstrass M test applies and shows convergence is uniform. Therefore g must be
continuous by Theorem 2.5.34. The estimate 2.2 implies f = g on M. ■

The following is the Tietze extension theorem.

Theorem 2.6.5 Let M be a closed nonempty subset of X a metric space and let
f : M→ [a,b] be continuous at every point of M. Then there exists a function, g continuous
on all of X which coincides with f on M such that g(X)⊆ [a,b] .

Proof: Let f1 (x) = 1+ 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

2.6.4 and so there exists g1 : X → [−1,1] such that g1 is continuous on X and equals f1 on
M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+b. This works.

For x ∈M,

g(x) =
((

1+
2

b−a
( f (x)−b)

)
−1
)(

b−a
2

)
+b

=

((
2

b−a
( f (x)−b)

))(
b−a

2

)
+b = ( f (x)−b)+b = f (x)

Also 1+ 2
b−a ( f (x)−b) ∈ [−1,1] so 2

b−a ( f (x)−b) ∈ [−2,0] and

( f (x)−b) ∈ [−b+a,0] , f (x) ∈ [a,b] ■
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2.7 Equivalence of Norms
As mentioned above, it makes absolutely no difference which norm you decide to use on
Rp. This holds in general finite dimensional normed spaces and is shown here. Of course
the main interest here is where the normed linear space is (Rp,∥·∥) but it is no harder to
present the more general result where you have a finite dimensional vector space V which
has a norm. If you have not seen such things, just let V be Rp in what follows or consider
the problems at end of the chapter.

Definition 2.7.1 Let (V,∥·∥) be a normed linear space and let a basis for V consist
of the vectors {v1, · · · ,vn}. For x ∈ V, let its component vector in Fp be (α1, · · · ,αn) so
that x = ∑i α ivi. Then define

θx≡ α =
(

α1 · · · αn
)T

Thus θ is well defined, one to one and onto from V to Fp. It is also linear and its inverse θ
−1

satisfies all the same algebraic properties as θ . In particular, (V,∥·∥) could be (Rp,∥·∥)
where ∥·∥ is some norm on Rp.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let

f (α)≡

∥∥∥∥∥∑i
α ivi

∥∥∥∥∥≡ ∥∥θ
−1

α
∥∥

Then it is clear that f is a continuous function. This is because α→∑i α ivi is a continuous
map into V and from the triangle inequality x→∥x∥ is continuous as a map from V to R.

Lemma 2.7.2 There exists δ > 0 and ∆≥ δ such that

δ = min{ f (α) : |α|= 1} , ∆ = max{ f (α) : |α|= 1}

Also,

δ |α| ≤
∥∥θ
−1

α
∥∥≤ ∆ |α| (2.3)

δ |θv| ≤ ∥v∥ ≤ ∆ |θv| (2.4)

Proof: These numbers exist thanks to the extreme value theorem, Theorem 2.5.26. It
cannot be that δ = 0 because if it were, you would have |α|= 1 but ∑

n
j=1 αkv j = 0 which

is impossible since {v1, · · · ,vn} is linearly independent. The first of the above inequalities
follows from

δ ≤
∥∥∥∥θ
−1 α

|α|

∥∥∥∥= f
(

α

|α|

)
≤ ∆

the second follows from observing that θ
−1

α is a generic vector v in V . ■
Now we can draw several conclusions about (V,∥·∥) for V finite dimensional.

Theorem 2.7.3 Let (V,∥·∥) be a finite dimensional normed linear space. Then the
compact sets are exactly those which are closed and bounded. Also (V,∥·∥) is complete. If
K is a closed and bounded set in (V,∥·∥) and f : K→R, then f achieves its maximum and
minimum on K.
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Proof: First note that the inequalities 2.3 and 2.4 show that both θ
−1 and θ are contin-

uous. Thus these take convergent sequences to convergent sequences.
Let {wk}∞

k=1 be a Cauchy sequence. Then from 2.4, {θwk}∞

k=1 is a Cauchy sequence.
Thanks to Theorem 2.5.26, it converges to some β ∈ Fp. It follows that limk→∞ θ

−1
θwk =

limk→∞ wk = θ
−1

β ∈V . This shows completeness.
Next let K be a closed and bounded set. Let {wk}⊆K. Then {θwk}⊆ θK which is also

a closed and bounded set thanks to the inequalities 2.3 and 2.4. Thus there is a subsequence
still denoted with k such that θwk → β ∈ Fp. Then as just done, wk → θ

−1
β . Since K is

closed, it follows that θ
−1

β ∈ K.
Finally, why are the only compact sets those which are closed and bounded? Let K be

compact. If it is not bounded, then there is a sequence of points of K,{km}∞

m=1 such that
∥km∥ ≥ m. It follows that it cannot have a convergent subsequence because the points are
further apart from each other than 1/2. Hence K is not sequentially compact and conse-
quently it is not compact. It follows that K is bounded. It follows from Proposition 2.5.16
that K is closed.

The last part is identical to the proof in Theorem 2.5.26. You just take a convergent
subsequence of a minimizing (maximizing) sequence and exploit continuity. ■

Next is the theorem which states that any two norms on a finite dimensional vector
space are equivalent. In particular, any two norms on Rp are equivalent.

Theorem 2.7.4 Let ∥·∥ ,∥|·∥| be two norms on V a finite dimensional vector space.
Then they are equivalent, which means there are constants 0 < a < b such that for all v,

a∥v∥ ≤ ∥|v∥| ≤ b∥v∥

Proof: In Lemma 2.7.2, let δ ,∆ go with ∥·∥ and δ̂ , ∆̂ go with ∥|·∥|. Then using the
inequalities of this lemma,

∥v∥ ≤ ∆ |θv| ≤ ∆

δ̂
∥|v∥| ≤ ∆∆̂

δ̂
|θv| ≤ ∆

δ

∆̂

δ̂
∥v∥

and so δ̂

∆
∥v∥ ≤ ∥|v∥| ≤ ∆̂

δ
∥v∥ . Thus the norms are equivalent. ■

2.8 Norms on Linear Maps
To begin with, the notion of a linear map is just a function which is linear. Such a function,
denoted by L, and mapping Rn to Rm is linear means

L

(
m

∑
i=1

xivi

)
=

m

∑
i=1

xiLvi

In other words, it distributes across additions and allows one to factor out scalars. Hopefully
this is familiar from linear algebra. If not, have a look at a Linear Algebra book. Any of
my on line books has this material.

Definition 2.8.1 We use the symbol L (Rn,Rm) to denote the space of linear trans-
formations, also called linear operators, which map Rn to Rm. For L ∈L (Rn,Rm) one
can always consider it as an m×n matrix A as follows. Let

A =
(

Le1 Le2 · · · Len
)
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where in the above Lei is the ith column. Define the sum and scalar multiple of linear
transformations in the natural manner. That is, for L,M linear transformations and α,β
scalars,

(αL+βM)(x)≡ αL(x)+βM (x)

Observation 2.8.2 With the above definition of sums and scalar multiples of linear
transformations, the result of such a linear combination of linear transformations is itself
linear. Indeed, for x,y vectors and a,b scalars,

(αL+βM)(ax+by)≡ αL(ax+by)+βM (ax+by)

= αaL(x)+αbL(y)+βaM (x)+βbM (y)

= a(αL(x)+βM (x))+b(αL(y)+βM (y))
= a(αL+βM)(x)+b(αL+βM)(y)

Also, a linear combination of linear transformations corresponds to the linear combination
of the corresponding matrices in which addition is defined in the usual manner as addition
of corresponding entries. To see this, note that if A is the matrix of L and B the matrix of
M,

(αL+βM)ei ≡ (αA+βB)ei = αAei +βBei

by the usual rules of matrix multiplication. Thus the ith column of (αA+βB) is the linear
combination of the ith columns of A and B according to usual rules of matrix multiplication.

Proposition 2.8.3 For L ∈L (Rn,Rm) , the matrix defined above satisfies

Ax = Lx, x ∈ Rn

and if any m×n matrix A does satisfy Ax = Lx, then A is given in the above definition.

Proof: Ax = Lx for all x if and only if for x =∑
n
i=1 xiei

Ax = L

(
n

∑
i=1

xiei

)
=

n

∑
i=1

xiL(ei)≡
(

Le1 Le2 · · · Len
)


x1
x2
...

xn


if and only if for every x ∈ Rn,

Ax =
(

Le1 Le2 · · · Len
)

x

which happens if and only if A =
(

Le1 Le2 · · · Len
)
. ■

Definition 2.8.4 The norm of a linear transformation of A ∈L (Rn,Rm) is defined
as

∥A∥ ≡ sup{∥Ax∥Rm : ∥x∥Rn ≤ 1}< ∞.

Then ∥A∥ is referred to as the operator norm of the linear transformation A.
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It is an easy exercise to verify that ∥·∥ is a norm on L (Rn,Rm) and it is always the
case that ∥Ax∥Rm ≤ ∥A∥∥x∥Rn . This is shown next. Furthermore, you should verify that
you can replace ≤ 1 with = 1 in the definition. Thus ∥A∥ ≡ sup{∥Ax∥Rm : ∥x∥Rn = 1} .

It is necessary to verify that this norm is actually well defined.

Lemma 2.8.5 The operator norm is well defined. Let A ∈L (Rn,Rm).

Proof: We can use the matrix of the linear transformation with matrix multiplication
interchangeably with the linear transformation. This follows from the above considerations.
Suppose limk→∞ vk = v in Rn. Does it follow that Avk→ Av? This is indeed the case with
the usual Euclidean norm and therefore, it is also true with respect to any other norm by
the equivalence of norms (Theorem 2.7.4). To see this,

∣∣∣Avk−Av
∣∣∣≡( m

∑
i=1

∣∣∣(Avk
)

i
− (Av)i

∣∣∣2)1/2

≤

 m

∑
i=1

∣∣∣∣∣ n

∑
j=1

Ai j

(
vk

j− v j

)∣∣∣∣∣
2
1/2

≤

 m

∑
i=1

(
n

∑
j=1

∣∣Ai j
∣∣ ∣∣∣vk

j− v j

∣∣∣)2
1/2

≤
∣∣∣vk−v

∣∣∣
 m

∑
i=1

(
n

∑
j=1

∣∣Ai j
∣∣)2
1/2

Thus A is continuous. Then also v→∥Av∥Rm is a continuous function by the triangle
inequality. Indeed,

|∥Av∥−∥Au∥| ≤ ∥Av−Au∥Rm

Now let D be the closed ball of radius 1 in V . By Theorem 2.7.3, this set D is compact and
so

max{∥Av∥Rm : ∥v∥Rn ≤ 1} ≡ ∥A∥< ∞.■

Then we have the following theorem.

Theorem 2.8.6 Let Rn and Rm be finite dimensional normed linear spaces of di-
mension n and m respectively and denote by ∥·∥ the norm on either Rn or Rm. Then if A
is any linear function mapping Rn to Rm, then A ∈L (Rn,Rm) and (L (Rn,Rm) ,∥·∥) is a
complete normed linear space of dimension nm with

∥Ax∥ ≤ ∥A∥∥x∥ .

Also if A ∈L (Rn,Rm) and B ∈L (Rm,Rp) where Rn,Rm,Rp are normed linear spaces,

∥BA∥ ≤ ∥B∥∥A∥

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the triangle inequality is the only property which is not obvious. It remains
to show this and verify ∥A∥< ∞. This last follows from the above Lemma 2.8.5. Thus the
norm is at least well defined. It remains to verify its properties.

∥A+B∥ ≡ sup{∥(A+B)(x)∥ : ∥x∥ ≤ 1}

≤ sup{∥Ax∥ : ∥x∥ ≤ 1}+ sup{∥Bx∥ : ∥x∥ ≤ 1} ≡ ∥A∥+∥B∥ .
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Next consider the assertion about the dimension of L (Rn,Rm) . This is fairly obvious
because a basis for the space of m×n matrices is clearly the matrices Ei j which has a 1 in
the i jth position and a 0 everywhere else. By Theorem 2.7.4 (L (Rn,Rm) ,∥·∥) is complete.
If x ̸=0,

∥Ax∥ 1
∥x∥

=

∥∥∥∥A
x
∥x∥

∥∥∥∥≤ ∥A∥
Thus ∥Ax∥ ≤ ∥A∥∥x∥.

Consider the last claim.

∥BA∥ ≡ sup
∥x∥≤1

∥B(A(x))∥ ≤ ∥B∥ sup
∥x∥≤1

∥Ax∥= ∥B∥∥A∥ ■

What does it mean to say that Ak → A in terms of this operator norm? In words, this
happens if and only if the i jth entry of Ak converges to the i jth entry of A for each i j.

Proposition 2.8.7 limk→∞

∥∥Ak−A
∥∥= 0 if and only if for every i, j

lim
k→∞

∣∣∣Ak
i j−Ai j

∣∣∣= 0

Proof: If A is an m×n matrix, then Ai j = eT
i Ae j. Suppose now that∥∥∥Ak−A
∥∥∥→ 0

Then in terms of the usual Euclidean norm and using the Cauchy Schwarz inequality,∣∣∣Ak
i j−Ai j

∣∣∣= ∣∣∣eT
i

(
Ak−A

)
e j

∣∣∣=∣∣∣(ei,
(

Ak−A
)

e j

)∣∣∣≤ |ei|
∣∣∣(Ak−A

)
e j

∣∣∣≤ ∥∥∥Ak−A
∥∥∥ (2.5)

If the operator norm is taken with respect to ∥·∥ , some other norm than the Euclidean norm,
then the right side of the above after ≤∣∣∣(Ak−A

)
e j

∣∣∣≤ ∆

∥∥∥(Ak−A
)

e j

∥∥∥≤ ∆

∥∥∥Ak−A
∥∥∥∥∥e j

∥∥
Thus convergence in operator norm implies pointwise convergence of the entries of Ak to
the corresponding entries of A.

Next suppose the entries of Ak converge to the corresponding entries of A. If ∥v∥ ≤ 1,
and to save notation, let Bk = Ak−A. Then∣∣∣(Ak−A

)
v
∣∣∣= ∣∣∣( ∑ j Bk

1 jv j ∑ j Bk
2 jv j · · · ∑ j Bm jv j

)T
∣∣∣

=

∑
i

(
∑

j

∣∣∣Bk
i j

∣∣∣ ∣∣v j
∣∣)2
1/2

≤ |v|

∑
i

(
∑

j

∣∣∣Bk
i j

∣∣∣)2
1/2

By equivalence of norms,

δ

∥∥∥Bkv
∥∥∥≤ ∆∥v∥

∑
i

(
∑

j

∣∣∣Bk
i j

∣∣∣)2
1/2
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and so if ∥v∥ ≤ 1,

δ

∥∥∥Bkv
∥∥∥≤ ∆

∑
i

(
∑

j

∣∣∣Bk
i j

∣∣∣)2
1/2

and so ∥∥∥Bk
∥∥∥≤ ∆

δ

∑
i

(
∑

j

∣∣∣Bk
i j

∣∣∣)2
1/2

the quantity on the right converging to 0. ■
More generally, you might want to consider linear transformations L (V,W ) where

V,W are finite dimensional normed linear spaces. In this case, the operator norm defined
above is the same and it is well defined.

Proposition 2.8.8 Let L ∈L (V,W ) where V,W are normed linear spaces with V finite
dimensional. Then the operator norm defined above as

∥L∥ ≡ sup
∥v∥≤1

∥Lv∥W

is finite and satisfies all the axioms of a norm. Also ∥Lv∥ ≤ ∥L∥∥v∥.

Proof: I won’t bother with the subscript on the norms and allow this to be determined
by context in what follows. Let (v1, ...,vn) be a basis for V . For v ∈V, let v = ∑

n
j=1 a jv j so

the a j are the coordinates of v in F. Let h(v)≡ a where a = (a1, ...,an) with v = ∑
n
j=1 a jv j.

Thus h(v)i = ai. Obviously h is linear, one to one, and onto. Define ∥|v∥| ≡ |h(v)| where
the last is the usual Euclidean norm on Fn. Then this is obviously a norm because ∥|v∥|= 0
if and only if h(v) = 0 if and only if v= 0. It is also clear that ∥|αv∥| ≡ |h(αv)|= |α| |h(v)|
whenever α is a scalar. It only remains to show the triangle inequality. However, this is
also easy because we know it for |·| .

∥|v+w∥| ≡ |h(v+w)| ≤ |h(v)|+ |h(w)| ≡ ∥|v∥|+∥|w∥| .

It follows the two norms are equivalent. Thus ∥|v∥| ≤ ∆∥v∥ for some ∆. Hence

sup
∥v∥≤1

∥Lv∥W ≤ sup
∥|v∥|≤∆

∥Lv∥W = sup
|h(v)|≤∆

∥∥∥∥∥L∑
i

h(v)i vi

∥∥∥∥∥
≤ sup

|h(v)|≤∆

∑
i
|h(vi)|∥Lvi∥W

≤ sup
|h(v)|≤∆

(
∑

i
|h(v)i|

2

)1/2(
∑

i
∥Lvi∥2

)1/2

≤ ∆

(
∑

i
∥Lvi∥2

)1/2

< ∞

Thus the operator norm is well defined. That it satisfies the axioms of a norm on L (V,W )
follows in the same way as above for the case where V = Rn and W = Rm.
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In particular, consider the triangle inequality.∥∥L+ L̂
∥∥ ≡ sup

∥v∥≤1

∥∥L(v)+ L̂(v)
∥∥≤ sup

∥v∥≤1

(
∥L(v)∥+

∥∥L̂(v)
∥∥)

≤ sup
∥v∥≤1

∥Lv∥+ sup
∥v∥≤1

∥∥L̂v
∥∥≡ ∥L∥+∥∥L̂

∥∥
As to the last claim, if v ̸= 0,

∥∥∥L
(

v
∥v∥

)∥∥∥≤ ∥L∥ and so ∥L(v)∥ ≤ ∥L∥∥v∥. ■

2.9 General Banach Spaces
The above is about linear maps defined on finite dimensional spaces. What if instead, you
have Banach spaces which are just complete normed linear spaces? What then? I will quit
writing functions and vectors in bold face here. It turns out that in this case, you assume
the linear maps are continuous, not just linear.

Theorem 2.9.1 Let X and Y be two normed linear spaces and let L : X→Y be linear
(L(ax+by) = aL(x)+bL(y) for a,b scalars and x,y ∈ X). The following are equivalent

a.) L is continuous at 0
b.) L is continuous
c.) There exists K > 0 such that ∥Lx∥Y ≤ K ∥x∥X for all x ∈ X (L is bounded).

Proof: a.)⇒b.) Let xn → x. It is necessary to show that Lxn → Lx. But (xn− x)→ 0
and so from continuity at 0, it follows

L(xn− x) = Lxn−Lx→ 0

so Lxn→ Lx. This shows a.) implies b.).
b.)⇒c.) Since L is continuous, L is continuous at 0. Hence ∥Lx∥Y < 1 whenever ∥x∥X ≤

δ for some δ . Therefore, suppressing the subscript on the ∥·∥, it follows that
∥∥∥L
(

δx
∥x∥

)∥∥∥≤
1. Hence ∥Lx∥ ≤ 1

δ
∥x∥.

c.)⇒a.) follows from the inequality given in c.). ■

Definition 2.9.2 Let L : X→Y be linear and continuous where X and Y are normed
linear spaces. Denote the set of all such continuous linear maps by L (X ,Y ) and define

∥L∥= sup{∥Lx∥ : ∥x∥ ≤ 1}. (2.6)

This is called the operator norm.

Note that from Theorem 2.9.1, ∥L∥ is well defined because of part c.) of that Theorem.
The next lemma follows immediately from the definition of the norm and the assump-

tion that L is linear.

Lemma 2.9.3 With ∥L∥ defined in 2.6, L (X ,Y ) is a normed linear space. Also ∥Lx∥ ≤
∥L∥∥x∥.

Proof: Let x ̸= 0 then x/∥x∥ has norm equal to 1 and so
∥∥∥L
(

x
∥x∥

)∥∥∥≤ ∥L∥ . Therefore,
multiplying both sides by ∥x∥, ∥Lx∥ ≤ ∥L∥∥x∥. This is obviously a linear space. It remains
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to verify the operator norm really is a norm. First of all, if ∥L∥ = 0, then Lx = 0 for all
∥x∥ ≤ 1. It follows that for any x ̸= 0,0 = L

(
x
∥x∥

)
and so Lx = 0. Therefore, L = 0. Also,

if c is a scalar,
∥cL∥= sup

∥x∥≤1
∥cL(x)∥= |c| sup

∥x∥≤1
∥Lx∥= |c|∥L∥ .

It remains to verify the triangle inequality. Let L,M ∈L (X ,Y ) .

∥L+M∥ ≡ sup
∥x∥≤1

∥(L+M)(x)∥ ≤ sup
∥x∥≤1

(∥Lx∥+∥Mx∥)

≤ sup
∥x∥≤1

∥Lx∥+ sup
∥x∥≤1

∥Mx∥= ∥L∥+∥M∥ .

This shows the operator norm is really a norm as hoped. ■
As a review, consider the space of linear transformations defined on Rn having values

in Rm. The fact the transformation is linear automatically imparts continuity to it. To
show this, you might recall that every such linear transformation can be realized in terms
of matrix multiplication.

Thus, in finite dimensions the algebraic condition that an operator is linear is sufficient
to imply the topological condition that the operator is continuous. The situation is not so
simple in infinite dimensional spaces such as C (X ;Rn). This explains the imposition of the
topological condition of continuity as a criterion for membership in L (X ,Y ) in addition
to the algebraic condition of linearity.

Theorem 2.9.4 If Y is a Banach space, then L (X ,Y ) is also a Banach space.

Proof: Let {Ln} be a Cauchy sequence in L (X ,Y ) and let x ∈ X .

∥Lnx−Lmx∥ ≤ ∥x∥ ∥Ln−Lm∥.

Thus {Lnx} is a Cauchy sequence. Let

Lx = lim
n→∞

Lnx.

Then, clearly, L is linear because if x1,x2 are in X , and a,b are scalars, then

L(ax1 +bx2) = lim
n→∞

Ln (ax1 +bx2)

= lim
n→∞

(aLnx1 +bLnx2)

= aLx1 +bLx2.

Also L is continuous. To see this, note that {∥Ln∥} is a Cauchy sequence of real numbers
because |∥Ln∥−∥Lm∥| ≤ ∥Ln−Lm∥. Hence there exists K > sup{∥Ln∥ : n ∈ N}. Thus, if
x ∈ X ,

∥Lx∥= lim
n→∞
∥Lnx∥ ≤ K∥x∥.■

Definition 2.9.5 More generally, given Banach spaces X ,Y,L (X ,Y ) is the space
of continuous linear maps from which map X to Y .
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2.10 Connected Sets
Stated informally, connected sets are those which are in one piece. In order to define what
is meant by this, I will first consider what it means for a set to not be in one piece. This
is called separated. Connected sets are defined in terms of not being separated. This is
why theorems about connected sets sometimes seem a little tricky. It is defined in terms of
what it is not, rather than what it is. Much of this works fine in more general settings, but
I will only consider the context of Rp because this is what is of interest in this book and I
don’t want to keep changing the context in order to get the most general versions. Now is
a definition about what it means to not be connected. This is called separated.

Definition 2.10.1 A set, S in Rp, is separated if there exist sets A,B such that

S = A∪B, A,B ̸= /0, and A∩B = B∩A = /0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.
Remember A denotes the closure of the set A.

One of the most important theorems about connected sets is the following.

Theorem 2.10.2 Suppose U is a set of connected sets and that there exists a point
p which is in all of these connected sets. Then K ≡ ∪U is connected.

Proof: The argument is dependent on Lemma 2.2.15. Suppose

K = A∪B

where Ā∩B = B̄∩A = /0,A ̸= /0,B ̸= /0. Then p is in one of these sets. Say p ∈ A. Then if
U ∈U , it must be the case that U ⊆ A since if not, you would have

U = (A∩U)∪ (B∩U)

and the limit points of A∩U cannot be in B hence not in B∩U while the limit points of
B∩U cannot be in A hence not in A∩U . Thus B = /0. It follows that K cannot be separated
and so it is connected. ■

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

V

Theorem 2.10.3 Let f : X→Rm be continuous where X is connected. Then f(X) is
also connected.
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Proof: To do this you show f(X) is not separated. Suppose to the contrary that f(X) =
A∪B where A and B separate f(X) . Then consider the sets f−1 (A) and f−1 (B) . If z ∈
f−1 (B) , then f(z) ∈ B and so f(z) is not a limit point of A. Therefore, there exists an open
set, U containing f(z) such that U ∩A = /0. But then, the continuity of f implies that f−1 (U)
is an open set containing z such that f−1 (U)∩ f−1 (A) = /0. Therefore, f−1 (B) contains no
limit points of f−1 (A) . Similar reasoning implies f−1 (A) contains no limit points of f−1 (B).
It follows that X is separated by f−1 (A) and f−1 (B) , contradicting the assumption that X
was connected. ■

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 2.10.4 Let S be a set and let p ∈ S. Denote by Cp the union of all con-
nected subsets of S which contain p. This is called the connected component determined by
p.

Theorem 2.10.5 Let Cp be a connected component of a set S . Then Cp is a con-
nected set and if Cp∩Cq ̸= /0, then Cp =Cq.

Proof: Let C denote the connected subsets of S which contain p. By Theorem 2.10.2,
∪C = Cp is connected. If x ∈ Cp ∩Cq, then from Theorem 2.10.2, Cp ⊇ Cp ∪Cq and so
Cp ⊇Cq. The inclusion goes the other way by the same reason. ■

This shows the connected components of a set are equivalence classes and partition the
set.

A set I is an interval in R if and only if whenever x,y ∈ I then [x,y]⊆ I. The following
theorem is about the connected sets in R.

Theorem 2.10.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈C. You need to show (p,q)⊆C. If

x ∈ (p,q)\C

let C∩ (−∞,x) ≡ A, and C∩ (x,∞) ≡ B. Then C = A∪B and the sets A and B separate C
contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A and
y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S≡ {t ∈ [x,y] : [x, t]⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if l /∈ B,
then for some δ > 0, (l, l +δ )∩B = /0. contradicting the definition of l as an upper bound
for S. Therefore, l ∈ B which implies l /∈ A after all, a contradiction. It follows I must be
connected. ■

This yields a generalization of the intermediate value theorem from one variable calcu-
lus.

Corollary 2.10.7 Let E be a connected set in Rp and suppose f : E → R and that
y ∈ ( f (e1) , f (e2)) where ei ∈ E. Then there exists e ∈ E such that f (e) = y.
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Proof: From Theorem 2.10.3, f (E) is a connected subset of R. By Theorem 2.10.6
f (E) must be an interval. In particular, it must contain y. This proves the corollary. ■

The following theorem is a very useful description of the open sets in R.

Theorem 2.10.8 Let U be an open set in R. Then there exist countably many dis-
joint open sets {(ai,bi)}∞

i=1 such that U = ∪∞
i=1 (ai,bi) .

Proof: Let p ∈U and let z ∈Cp, the connected component determined by p. Since U
is open, there exists, δ > 0 such that (z−δ ,z+δ ) ⊆U. It follows from Theorem 2.10.2
that (z−δ ,z+δ ) ⊆Cp. This shows Cp is open. By Theorem 2.10.6, this shows Cp is an
open interval, (a,b) where a,b ∈ [−∞,∞] . There are therefore at most countably many of
these connected components because each must contain a rational number and the rational
numbers are countable. Denote by {(ai,bi)}∞

i=1 the set of these connected components. ■

Definition 2.10.9 A set E in Rp is arcwise connected if for any two points, p,q ∈
E, there exists a closed interval, [a,b] and a continuous function, γ : [a,b]→ E such that
γ (a) = p and γ (b) = q. The set of points γ ([a,b]) is called an arc, Jordan arc, or a simple
curve.

An example of an arcwise connected space would be any subset of Rp which is the
continuous image of an interval. Arcwise connected is not the same as connected. A well
known example is the following.{(

x,sin
1
x

)
: x ∈ (0,1]

}
∪{(0,y) : y ∈ [−1,1]} (2.7)

You can verify that this set of points in R2 is not arcwise connected but is connected.

Lemma 2.10.10 In Rp, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If x,y ∈ B(z,r) , then let γ (t) =
x+ t (y−x) for t ∈ [0,1] .

∥x+ t (y−x)− z∥ = ∥(1− t)(x− z)+ t (y− z)∥
≤ (1− t)∥x− z∥+ t ∥y− z∥
< (1− t)r+ tr = r

showing γ (t) stays in B(z,r).■

Proposition 2.10.11 If X ̸= /0 is arcwise connected, then it is connected.

Proof: Let p ∈ X . Then by assumption, for any x ∈ X , there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence Cp = X
and so X is connected. ■

Theorem 2.10.12 Let U be an open subset of Rp. Then U is arcwise connected if
and only if U is connected. Also the connected components of an open set are open sets.
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Proof: By Proposition 2.10.11 it is only necessary to verify that if U is connected and
open, then U is arcwise connected. Pick p ∈U . Say x ∈U satisfies P if there exists a
continuous function, γ : [a,b]→U such that γ (a) = p and γ (b) = x.

A≡ {x ∈U such that x satisfies P .}

If x ∈ A, then Lemma 2.10.10 implies B(x,r) ⊆ U is arcwise connected for small
enough r. Thus letting y ∈ B(x,r) , there exist intervals, [a,b] and [c,d] and continuous
functions having values in U , γ,η such that γ (a) = p,γ (b) = x,η (c) = x, and η (d) = y.
Then let γ1 : [a,b+d− c]→U be defined as

γ1 (t)≡
{

γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that B(x,r)⊆
A. Therefore, A is open. A ̸= /0 because since U is open there is an open set, B(p,δ )
containing p which is contained in U and is arcwise connected.

Now consider B ≡ U \ A. I claim this is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore, letting
B(z,δ ) be such that z∈ B(z,δ )⊆U, there exist points of A contained in B(z,δ ) . But then,
a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0, then
U = B∪A and so U is separated by the two sets B and A contradicting the assumption that
U is connected. Note that, since B is open, it contains no limit points of A and since A is
open, it contains no limit points of B.

It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking B(z,δ ) ⊆ U, Cp ∪B(z,δ ) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior point
of Cp. ■

As an application, consider the following corollary.

Corollary 2.10.13 Let f : Ω→ Z be continuous where Ω is a connected nonempty
open set in Rp. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set while f−1 (l) = f−1

((
l− 1

6 , l +
1
6

))
also an open

set. ■

2.11 Completion of Metric Spaces
Let (X ,d) be a metric space X ̸= /0. Perhaps this is not a complete metric space. In other
words, it may be that Cauchy Sequences do not converge. Of course if x ∈ X and if xn = x
for all n then {xn} is a Cauchy sequence and it converges to x.

Lemma 2.11.1 Denote by x a Cauchy sequence x being short for {xn}∞

n=1. Then if x,y
are two Cauchy sequences, limn→∞ d (xn,yn) exists.
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Proof: Let ε > 0 be given and let N be so large that whenever n,m≥ N, it follows that
d (xn,xm) ,d (yn,ym)< ε/2. Then for such n,m

|d (xn,yn)−d (xm,ym)| ≤ |d (xn,yn)−d (xn,ym)|+ |d (xn,ym)−d (xm,ym)|
≤ d (yn,ym)+d (xn,xm)< ε

by Theorem 2.4.8. Therefore, {d (xn,yn)}n is a Cauchy sequence in R and so it converges.
■

Definition 2.11.2 Let x∼ y when limn→∞ d (xn,yn) = 0.

Lemma 2.11.3 ∼ is an equivalence relation.

Proof: Clearly x∼ x and if x∼ y then y∼ x. Suppose then that x∼ y and y∼ z. Is
x∼ z?

d (xn,zn)≤ d (xn,yn)+d (yn,zn)

and both of those terms on the right converge to 0. ■

Definition 2.11.4 Denote by [x] the equivalence class determined by the Cauchy
sequence x. Let d ([x] , [y])≡ limn→∞ d (xn,yn) .

Theorem 2.11.5 Denote by X̂ the set of equivalence classes. Then d defined above
is a metric, X̂ with this is a complete metric space, and X can be considered a dense subset
of X̂ .

Proof: That d just defined is a metric is obvious from the fact that the original metric
d satisfies the triangle inequality. It is also clear that d ([x] , [y]) ≥ 0 and that if [x] = [y] if
and only if d ([x] , [y]) = 0.

It remains to show that
(
X̂ ,d

)
is complete. Let {[x]n}nbe a Cauchy sequence. From

Theorem 2.3.3 it suffices to show the convergence of a subsequence. There is a subse-
quence, denoted as {[xn]} where xn is a representative of [x]n such that d

(
[xn] ,

[
xn+1

])
<

4−n. Thus there is an increasing sequence {kn} such that d
(
xn

k ,x
n+1
l

)
< 2−n if k, l ≥ kn

where kn is increasing in n. Let y =
{

xn
kn

}∞

n=1
. For m≥ kn and the triangle inequality,

d (xn
m,ym) = d

(
xn

m,x
m
km

)
≤ d

(
xn

m,x
n
kn

)
+d
(
xn

kn
,xm

km

)
≤ 2−n +

m−1

∑
j=n

d
(

x j
k j
,x j+1

km

)
< 2−n +

m−1

∑
j=n

2− j < 2−n +2−(n−1) < 2−(n−2)

Then y is a Cauchy sequence since it is a subsequence of one and also d ([xn] , [y])→ 0.
To show that X is dense in X̂ , let [x] be given. Then for m large enough, d (xk,xm)< ε

whenever k≥m. It suffices to let y be the constant Cauchy sequence always equal to xm. ■

2.12 Exercises
1. Explain carefully why in Rn, B∞ (p,r) = ∏

n
i=1 (pi− r, pi + r)
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2. Say ∥·∥ ,∥·∥1 are two equivalent norms. Explain carefully why if x is a limit point of
a set A with respect to ∥·∥ then it is also a limit point with respect to ∥·∥1. Also show
that if xn→ x with respect to ∥·∥ , then the same is true with respect to ∥·∥1.

3. If you have X a normed linear space and Y is a Banach space,(complete normed linear
space) show that L (X ,Y ) is a Banach space with respect to the operator norm.

4. If X ,Y are normed linear spaces, verify that A : X → Y is in L (X ,Y ) if and only if
A is continuous at each x ∈ X if and only if A is continuous at 0.

5. Generalize the root test, Theorem 1.12.1 to the situation where the ak are in a com-
plete normed linear space.

6. Suppose X is a Banach space and {Bn} is a sequence of closed sets in X such that
Bn ⊇ Bn+1 for all n and no Bn is empty. Also suppose that the diameter of Bn con-
verges to 0. Recall the diameter is given by diam(B)≡ sup{∥x− y∥ : x,y ∈ B} . Thus
these sets Bn are nested and diam(Bn)→ 0. Verify that there is a unique point in the
intersection of all these sets.

7. If X is a Banach space, and Y is the span of finitely many vectors in X , show that Y
is closed.

8. If X is an infinite dimensional Banach space, show that there exists a sequence
{xn}∞

n=1 such that ∥xn∥ ≤ 1 but for any m ̸= n,∥xn− xm∥ ≥ 1/4. Thus in infinite
dimensional Banach spaces, closed and bounded sets are no longer compact as they
are in Fn.

9. In the proof of the fundamental theorem of algebra, explain why there exists z0 such
that for p(z) a polynomial with complex coefficients, |p(z0)|= minz∈C |p(z)|> 0

10. Explain why a compact set in R has a largest point and a smallest point. Now if
f : K→ R for K compact and f continuous, give another proof of the extreme value
theorem from using that f (K) is compact.

11. Generalize Theorem 2.5.34 to the case where fn : S→ T where S,T are metric spaces.
Give an appropriate definition for uniform convergence which will imply uniform
convergence transfers continuity from fn to the target function f .

12. A function f : X → R for X a normed linear space is lower semicontinuous if,
whenever xn → x, f (x) ≤ liminfn→∞ f (xn) It is upper semicontinuous if, whenever
xn→ x, f (x)≥ limsupn→∞ f (xn) Explain why, if K is compact and f is upper semi-
continuous then f achieves its maximum and if K is compact and f is lower semi-
continuous, then f achieves its minimum on K.

13. Suppose fn : S→Y where S is a nonempty subset of X a normed linear space and sup-
pose that Y is a Banach space (complete normed linear space). Generalize the theo-
rem in the chapter to this case: Let fn : S→Y be bounded functions: supx∈S | fn (x)|=
Cn < ∞. Then there exists bounded f : S→ Y such that limn→∞ ∥ f − fn∥ = 0 if and
only if { fn} is uniformly Cauchy. Also show that BC (S;Y ) is a Banach space.

14. Show that no interval [a,b] ⊆ R can be countable. Hint: First show [0,1] is not
countable. You might do this by noting that every point in this interval can be written
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as ∑
∞
k=1 2−kak where ak is either 0 or 1. Let F be ∪nP ({1,2, · · · ,n}) . Explain why

F is countable. Then let S ≡P (N) \F . Explain why S is uncountable. Let C
be all points of the form ∑

m
k=1 2−kak where ak is 0 or 1. Explain why C is countable.

Let J = [0,1]\C. Now let θ : S → J be given by θ (S) = ∑k∈S 2−k. Explain why θ

is one to one onto J. If [0,1] is countable, show there are onto mappings as indicated
N→ [0,1]→ J→S showing that S is countable after all.

15. Using the above problem as needed, let B be a countable set of real numbers. Say
B = {bn}∞

n=1. Let

fn (t)≡
{

1 if t ∈ {b1, · · · ,bn}
0 otherwise

Let g(t) ≡ ∑
∞
k=1 2−k fk (t) . Explain why g is continuous on R\B and discontinuous

on B. Note that B could be the rational numbers.

16. Consider R\{0} . Show this is not connected.

17. Show S ≡
{(

x,sin
( 1

x

))
if x > 0

}
∪ {(0,y) : |y| ≤ 1} is connected but not arcwise

connected.

18. Let A be an m×n matrix. Then A∗, called the adjoint matrix, is obtained from A by
taking the transpose and then the conjugate. For example, i 1

1+ i 2
3 1− i

∗ = ( −i 1− i 3
1 2 1+ i

)

Formally, (A∗)i j = A ji. Show (Ax,y) = (x,A∗y) and (x,By) = (B∗x,y). The inner
product is described in the chapter. Recall (x,y)≡ ∑ j x jy j.

19. Let X be a subspace of Fm having dimension d and let y ∈ Fm. Show that x ∈
X is closest to y in the Euclidean norm |·| out of all vectors in X if and only if
(y−x,u) = 0 for all u ∈ X . Next show there exists such a closest point and it equals
∑

d
j=1
(
y,u j

)
u j for

{
u j
}d

j=1 an orthonormal basis for X .

20. Let A : Fn → Fm be an m× n matrix. (Note how it is being considered as a linear
transformation.) Show Im(A) ≡ {Ax : x ∈ Fn} is a subspace of Fm. If y ∈ Fm is
given, show that there exists x such that y−Ax is as small as possible (Ax is the point
of Im(A) closest to y) and it is a solution to the least squares equation A∗Ax = A∗y.
Hint: You might want to use Problem 18.

21. Show that the usual norm in Fn given by |x|= (x,x)1/2 satisfies the following iden-
tities, the first of them being the parallelogram identity and the second being the
polarization identity.

|x+y|2 + |x−y|2 = 2 |x|2 +2 |y|2

Re(x,y) =
1
4

(
|x+y|2−|x−y|2

)
Show that these identities hold in any inner product space, not just Fn. By definition,
an inner product space is just a vector space which has an inner product.
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22. Let K be a nonempty closed and convex set in an inner product space (X , |·|) which
is complete. For example, Fn or any other finite dimensional inner product space.
Let y /∈ K and let λ = inf{|y− x| : x ∈ K} . Let {xn} be a minimizing sequence. That
is λ = limn→∞ |y− xn| Explain why such a minimizing sequence exists. Next explain
the following using the parallelogram identity in the above problem as follows.∣∣∣∣y− xn + xm

2

∣∣∣∣2 = ∣∣∣ y2 − xn

2
+

y
2
− xm

2

∣∣∣2
=−

∣∣∣ y
2
− xn

2
−
( y

2
− xm

2

)∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

Hence ∣∣∣∣xm− xn

2

∣∣∣∣2 = −
∣∣∣∣y− xn + xm

2

∣∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

≤ −λ
2 +

1
2
|y− xn|2 +

1
2
|y− xm|2

Next explain why the right hand side converges to 0 as m,n→ ∞. Thus {xn} is a
Cauchy sequence and converges to some x ∈ X . Explain why x ∈ K and |x− y|= λ .
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two x1,x2 and consider x1+x2

2 using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

23. Let K be a closed convex nonempty set in a complete inner product space (H, |·|)
(Hilbert space) and let y ∈ H. Denote the closest point to y by Px. Show that Px is
characterized as being the solution to the following variational inequality

Re(z−Px,y−Px)≤ 0

for all z ∈ K. Hint: Let x ∈ K. Then, due to convexity, a generic thing in K is of the
form x+ t (z− x) , t ∈ [0,1] for every z ∈ K. Then

|x+ t (z− x)− y|2 = |x− y|2 + t2 |z− x|2− t2Re(z− x,y− x)

If x = Py, then the minimum value of this on the left occurs when t = 0. Function
defined on [0,1] has its minimum at t = 0. What does it say about the derivative
of this function at t = 0? Next consider the case that for some x the inequality
Re(z− x,y− x)≤ 0. Explain why this shows x = Py.

24. Using Problem 23 and Problem 22 show the projection map, P onto a closed con-
vex subset of a complete inner product space is Lipschitz continuous with Lipschitz
constant 1. That is |Px−Py| ≤ |x− y| .

25. Suppose S is an uncountable set and suppose f (s) is a positive number for each s∈ S.
Also let Ŝ denote a finite subset of S. Show that

sup

{
∑
s∈Ŝ

f (s) : Ŝ⊆ S

}
= ∞
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26. Let Y be a normed vector space and suppose h : [a,b]→ Y is differentiable on (a,b)
meaning

lim
h→0

f (t +h)− f (t)
h

= f ′ (t) ,

continuous on [a,b] and h′ (t) = 0. Then ∥h(b)−h(a)∥= 0. Show this. Hint: Let

S≡ {t ∈ [a,b] : for all s ∈ [a, t] ,∥h(s)−h(a)∥ ≤ ε (s−a)}

Then let t ≡ supS. By continuity, ∥h(t)−h(a)∥ ≤ ε (t−a) . Suppose t < b. If strict
inequality holds, then this will persist for s near t and violate the definition of t.
Therefore, ∥h(t)−h(a)∥ = ε (t−a). Then, still assuming t < b, there exists hk ↓ 0
and

ε (t−a+hk)< ∥h(t +hk)−h(a)∥ ≤ ∥h(t +hk)−h(t)∥+
=ε(t−a)

∥h(t)−h(a)∥

Now we have ε < 1
hk
∥h(t +hk)−h(t)∥ and passing to a limit, ε < ∥h′ (t)∥ a contra-

diction.

27. Let Y be a normed vector space and suppose h : [a,b]→ Y is differentiable on (a,b)
meaning

lim
h→0

f (t +h)− f (t)
h

= f ′ (t) ,

continuous on [a,b] and ∥h′ (t)∥ ≤M for all t ∈ (a,b) . Then

∥h(b)−h(a)∥ ≤M |b−a| .

This is called the mean value inequality. Show this. Hint: Let

S≡ {t ∈ [a,b] : for all s ∈ [a, t] ,∥h(s)−h(a)∥ ≤ (M+ ε)(s−a)}



Chapter 3

Stone Weierstrass Approximation The-
orem
3.1 The Bernstein Polynomials

These polynomials give an explicit description of a sequence of polynomials which con-
verge uniformly to a continuous function. Recall that if you have a bounded function
defined on some set S with values in Y.

∥ f∥
∞
≡ sup{∥ f (x)∥ : x ∈ S}

This is one way to measure distance between functions.

Lemma 3.1.1 The following estimate holds for x ∈ [0,1] and m≥ 2.

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m

Proof: First of all, from the binomial theorem

m

∑
k=0

(
m
k

)(
et(k−mx)

)
xk (1− x)m−k = e−tmx

m

∑
k=0

(
m
k

)(
etk
)

xk (1− x)m−k

= e−tmx (1− x+ xet)m ≡ e−tmxg(t)m , g(0) = 1,g′ (0) = g′′ (0) = x

Take a derivative with respect to t twice.

m

∑
k=0

(
m
k

)
(k−mx)2 et(k−mx)xk (1− x)m−k

= (mx)2 e−tmxg(t)m +2(−mx)e−tmxmg(t)m−1 g′ (t)

+e−tmx
[
m(m−1)g(t)m−2 g′ (t)2 +mg(t)m−1 g′′ (t)

]
Now let t = 0 and note that the right side is m(x− x2)≤ m/4 for x ∈ [0,1] . Thus

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k = mx−mx2 ≤ m/4 ■

With this preparation, here is the first version of the Weierstrass approximation theorem.
I will allow f to have values in a complete normed linear space. Thus, f ∈ C ([0,1] ;X)
where X is a Banach space, Definition 2.5.31. Thus this is a function which is continuous
with values in X as discussed earlier with metric spaces.

Theorem 3.1.2 Let f ∈C ([0,1] ;X) and let the norm be denoted by ∥·∥ .

pm (x)≡
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
k
m

)
.

Then these polynomials converge uniformly to f on [0,1].

79
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Proof: Let ∥ f∥
∞

denote the largest value of ∥ f (x)∥. By uniform continuity of f ,
there exists a δ > 0 such that if |x− x′| < δ , then ∥ f (x)− f (x′)∥ < ε/2. By the binomial
theorem,

∥pm (x)− f (x)∥ ≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥
≤ ∑
| k

m−x|<δ

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥+
2∥ f∥

∞ ∑
| k

m−x|≥δ

(
m
k

)
xk (1− x)m−k

Therefore,

≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k ε

2
+2∥ f∥

∞ ∑
(k−mx)2≥m2δ

2

(
m
k

)
xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1

m2δ
2

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1
4

m
1

δ
2m2

< ε

provided m is large enough. Thus ∥pm− f∥
∞
< ε when m is large enough. ■

Note that we do not need to have X be complete in order for this to hold. It would have
sufficed to have simply let X be a normed linear space.

Corollary 3.1.3 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The coefficients of these
polynomials are in X.

Proof: Let l : [0,1] → [a,b] be one to one, linear and onto. Then f ◦ l is contin-
uous on [0,1] and so if ε > 0 is given, there exists a polynomial p such that for all
x∈ [0,1] ,∥p(x)− f ◦ l (x)∥< ε . Therefore, letting y= l (x) , it follows that for all y∈ [a,b] ,∥∥p

(
l−1 (y)

)
− f (y)

∥∥< ε. ■

The exact form of the polynomial is as follows.

p(x) =
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
l
(

k
m

))

p
(
l−1 (y)

)
=

m

∑
k=0

(
m
k

)(
l−1 (y)

)k (
1− l−1 (y)

)m−k
f
(

l
(

k
m

))
(3.1)
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3.2 The Case of Compact Sets
There is a profound generalization of the Weierstrass approximation theorem due to Stone.
It has to be one of the most elegant and insightful theorems in mathematics.

Definition 3.2.1 A is an algebra of real valued functions if A is a real vector space
and if whenever f ,g ∈A then f g ∈A .

There is a generalization of the Weierstrass theorem due to Stone in which an interval
will be replaced by a compact or locally compact set and polynomials will be replaced with
elements of an algebra satisfying certain axioms.

Corollary 3.2.2 On the interval [−M,M], there exist polynomials pn such that

pn (0) = 0

and
lim
n→∞
∥pn−|·∥|∞ = 0.

recall that ∥ f∥
∞
≡ supt∈[−M,M] | f (t)|.

Proof: By Corollary 3.1.3 there exists a sequence of polynomials, {p̃n} such that p̃n→
|·| uniformly. Then let pn (t)≡ p̃n (t)− p̃n (0) . ■

In what follows, x will be a point in Rp. However, this could be generalized. Note that
Cp can be considered as R2p.

Definition 3.2.3 An algebra of functions A defined on A, annihilates no point of
A if for all x ∈ A, there exists g ∈ A such that g(x) ̸= 0. The algebra separates points if
whenever x1 ̸= x2, then there exists g ∈A such that g(x1) ̸= g(x2).

The following generalization is known as the Stone Weierstrass approximation theorem.

Theorem 3.2.4 Let A be a compact set in Rp and let A ⊆C (A;R) be an algebra of
functions which separates points and annihilates no point. Then A is dense in C (A;R).

Proof: First here is a lemma.

Lemma 3.2.5 Let c1 and c2 be two real numbers and let x1 ̸= x2 be two points of A.
Then there exists a function fx1x2 such that

fx1x2 (x1) = c1, fx1x2 (x2) = c2.

Proof of the lemma: Let g ∈ A satisfy g(x1) ̸= g(x2). Such a g exists because the
algebra separates points. Since the algebra annihilates no point, there exist functions h and
k such that h(x1) ̸= 0, k (x2) ̸= 0. Then let

u≡ gh−g(x2)h, v≡ gk−g(x1)k.

It follows that u(x1) ̸= 0 and u(x2) = 0 while v(x2) ̸= 0 and v(x1) = 0. Let

fx1x2 ≡
c1u

u(x1)
+

c2v
v(x2)

.
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This proves the lemma. Now continue the proof of Theorem 3.2.4.
First note that A satisfies the same axioms as A but in addition to these axioms, A

is closed. The closure of A is taken with respect to the usual norm on C (A), ∥ f∥
∞
≡

max{| f (x)| : x ∈ A} . Thus A consists, by definition, of all functions in A along with
all uniform limits of these functions. Suppose f ∈ A and suppose M is large enough
that ∥ f∥

∞
< M. Using Corollary 3.2.2, let pn be a sequence of polynomials such that

∥pn−|·∥|∞→ 0, pn (0) = 0. It follows that pn ◦ f ∈A and so | f | ∈A whenever f ∈A .
Also note that

max( f ,g) =
| f −g|+( f +g)

2
,min( f ,g) =

( f +g)−| f −g|
2

.

Therefore, this shows that if f ,g ∈ A then max( f ,g) , min( f ,g) ∈ A . By induction, if
fi, i = 1,2, · · · ,m are in A then

max( fi, i = 1,2, · · · ,m) , min( fi, i = 1,2, · · · ,m) ∈A .

Now let h ∈ C (A;R) and let x ∈ A. Use Lemma 3.2.5 to obtain fxy, a function of A
which agrees with h at x and y. Letting ε > 0, there exists an open set U (y) containing y
such that

fxy (z)> h(z)− ε if z ∈U(y).

Since A is compact, let U (y1) , · · · ,U (yl) cover A. Let

fx ≡max
(

fxy1 , fxy2 , · · · , fxyl

)
.

Then fx ∈A and fx (z)> h(z)−ε for all z∈ A and fx (x) = h(x). This implies that for each
x ∈ A there exists an open set V (x) containing x such that for z ∈ V (x), fx (z) < h(z)+ ε.
Let V (x1) , · · · ,V (xm) cover A and let f ≡ min( fx1 , · · · , fxm).Therefore, f (z) < h(z)+ ε

for all z ∈ A and since fx (z)> h(z)−ε for all z ∈ A, it follows f (z)> h(z)−ε also and so
| f (z)−h(z)|< ε for all z. Since ε is arbitrary, this shows h ∈A and proves A =C (A;R).
■

3.3 The Case of a Closed Set in Rp

You can extend this theory to the case where A = X a closed set. More generally, this is
done with a locally compact Hausdorff space but this kind of space has not been considered
here.

Definition 3.3.1 Let X be a closed set in Rp. C0 (X) denotes the space of real or
complex valued continuous functions defined on X with the property that if f ∈C0 (X) , then
for each ε > 0 there exists a compact set K such that | f (x)|< ε for all x ∈ X \K. Define

∥ f∥
∞
= sup{| f (x)| : x ∈ X}.

These functions are said to vanish at infinity.

Lemma 3.3.2 For X a closed set inRp with the above norm, C0 (X) is a complete space,
meaning that every Cauchy sequence converges.
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Proof: Let { fn} be a Cauchy sequence of functions in C0 (X). Then in particular,
{ fn (x)}∞

n=1 is a Cauchy sequence in F. Let f (x)≡ limn→∞ fn (x) .Let ε > 0 be given. Then
there exists N such that for any x ∈ X ,

| fm (x)− fn (x)| ≤ ∥ fm− fn∥∞
< ε/3

for m,n≥ N. Thus, picking n≥ N and taking a limit as m→∞, | f (x)− fn (x)| ≤ ε/3 since
x was arbitrary,

sup
x∈X
| f (x)− fn (x)| ≤ ε/3 (3.2)

By assumption, there exists a compact set K such that if x /∈ K then ∥ fN∥∞
< ε/3. Thus,

from 3.2,

sup
x/∈K
| f (x)| ≤ 2ε/3 < ε

It remains to verify that f is continuous. Letting N be as the above, let x,y ∈ X . Then

| f (x)− f (y)| ≤ | f (x)− fN (x)|+ | fN (x)− fN (y)|+ | fN (y)− f (y)|

By continuity of fN at x, there exists δ > 0 such that if |x− y|< δ for y ∈ X , it follows that
| fN (x)− fN (y)|< ε/3. Then for |y− x|< δ ,

| f (x)− f (y)| ≤ sup
x∈X
| f (x)− fN (x)|+ ε

3
+ sup

y∈X
| f (y)− fN (y)|

<
ε

3
+

ε

3
+

ε

3
= ε

showing that f is continuous. Thus the sequence of functions converges uniformly to a
function f ∈C0 (X) which is what it means to be complete. Every Cauchy sequence con-
verges. Indeed 3.2 says that ∥ f − fn∥∞

< ε for f ∈C0 (X). ■
The above refers to functions which have values in C but the same proof works for

functions which have values in any complete normed linear space.
In the case where the functions in C0 (X) all have real values, I will denote the resulting

space by C0 (X ;R) with similar meanings in other cases.
The following has to do with a trick which will enable a result valid on sets which are

only closed rather than compact. In general, you consider a locally compact Hausdorff
space instead of a closed subset of Rp. Consider the unit sphere in Rp+1, centered at the
point (0, · · · ,0,1)≡

(⃗
0,1
)

.

Sp ≡

{⃗
x ∈ Rp+1 : (xn+1−1)2 +

n

∑
k=1

x2
k = 1

}

Define a map from Rp which is identified with Rp×{0} to the surface of this sphere as
follows. Extend a line from the point, p⃗ in Rp to the point

(⃗
0,2
)

on the top of this sphere
and let θ (p) denote the point of this sphere which the line intersects.
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•

•

•(⃗0,2)

(⃗0,1)
•

p

θ(p)

Rn

This map θ is one to one onto Sp \
{(⃗

0,2
)}

. More precisely, if you have (⃗a,an+1)

on Sp \
(⃗

0,2
)

to get θ
−1 (⃗a,an+1) , you form the line from

(⃗
0,2
)

through this point and

see where it hits Rp. The line is
(⃗

0,2
)
+ t
(
(⃗a,an+1)−

(⃗
0,2
))

and it hits Rp when 2+

t (an+1−2) = 0 which is when t = 2
2−an+1

. Thus θ
−1 (⃗a,an+1) =

(
2⃗a

2−an+1
,0
)
. From this

formula, it is clear that θ
−1 is continuous and one to one. It is also onto because if x⃗ ∈ Rp

you can take the line from
(⃗

0,2
)

to (⃗x,0) and where it intersects Sp is the point which is
wanted. It is also easy to see from this that θ is continuous. Indeed, suppose x⃗k → x⃗ in
Rp. Does it follow that θ (⃗xk)→ θ (⃗x)? We know that {⃗xk} is bounded since it converges.
Therefore, there is an open ball, B

((⃗
0,2
)
,r
)

such that θ (⃗xk) ∈ Sp \B
((⃗

0,2
)
,r
)
≡ K a

compact set. If θ (⃗xk) fails to converge to θ (⃗x) , then there is a subsequence, still denoted
as θ (⃗xk) such that θ (⃗xk)→ y ∈ K where y ̸= θ (⃗x) . But then, the continuity of θ

−1 implies
xk→ θ

−1 (y) and so θ
−1 (y) = x which implies y = θ (x) , a contradiction. Thus both θ and

θ
−1 are continuous, one to one and onto mappings between Rp and Sp \

{(⃗
0,2
)}

.

Theorem 3.3.3 Let A be an algebra of functions of C0 (X ,R) which separates the
points of the closed set X ⊆Rp and annihilates no point of X. Then A is dense in C0 (X ;R).

Proof: Ã denote all finite linear combinations of the form{
n

∑
i=1

ci f̃i + c0 : f ∈A , ci ∈ R

}

where for f ∈C0 (X ;R) ,

f̃ (x)≡

{
f
(
θ
−1 (x)

)
if x ∈ θ (X)

0 if x =
(⃗

0,2
) .

Then Ã is obviously an algebra of functions in C (Sp;R). It separates points because this
is true of A . Similarly, it annihilates no point because of the inclusion of c0 an arbitrary
element of R in the definition of Ã above. Therefore from Theorem 3.2.4, Ã is dense in
C (Sp;R) . Letting f ∈C0 (X ;R) , it follows f̃ ∈C (Sp;R) . It is clearly continuous on θ (X) .

What about at
(⃗

0,2
)

? If you have xn→
(⃗

0,2
)
, then

∣∣θ−1 (xn)
∣∣→ ∞ and therefore, since

f ∈C0, f
(
θ
−1 (xn)

)
≡ f̃ (xn)→ 0≡ f̃

((⃗
0,2
))

and so indeed f̃ is in C (Sp;R) as claimed.

Thus there exists a sequence {hn} ⊆ Ã such that hn converges uniformly to f̃ . Now hn is
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of the form ∑
mn
i=1 cn

i f̃ n
i + cn

0 and since f̃
((⃗

0,2
))

= 0, you can take each cn
0 = 0 and so this

has shown that in particular, specializing to Sp \
{(⃗

0,2
)}

,

lim
n→∞

sup
z∈X

∣∣∣∣∣mn

∑
i=1

cn
i f n

i
(
θ
−1 (θ (z))

)
− f

(
θ
−1 (θ (z))

)∣∣∣∣∣= 0

where f n
i ∈A . Thus

lim
n→∞

sup
z∈X

∣∣∣∣∣mn

∑
i=1

cn
i f n

i (z)− f (z)

∣∣∣∣∣= 0

However, the sum gives a sequence of elements of A which are converging uniformly to f
on X . ■

3.4 The Case of Complex Valued Functions
What about the general case where C0 (X) consists of complex valued functions and the
field of scalars is C rather than R? The following is the version of the Stone Weierstrass
theorem which applies to this case. You have to assume that for f ∈A it follows f̄ ∈A .

Lemma 3.4.1 Let z be a complex number. Then

Re(z) = Im(i z̄) , Im(z) = Re(i z̄)

Proof: The following computation comes from the definition of real and imaginary
parts.

Re(z) =
z+ z̄

2
=

iz+ i z̄
2i

=
i z̄− (i z̄)

2i
= Im(i z̄)

Im(z) =
z− z̄

2i
=

i z̄− iz
2

=
i z̄+(i z̄)

2
= Re(i z̄) ■

Theorem 3.4.2 Suppose A is an algebra of functions in C0 (X) ,which separates the
points of X and annihilates no point of X , a closed subset of Rp and has the property that
if f ∈A , then f̄ ∈A . Then A is dense in C0 (X).

Proof: Let ReA ≡ {Re f : f ∈A }, ImA ≡{Im f : f ∈A }.
Claim 1: ReA = ImA
Proof of claim: A typical element of ReA is Re f where f ∈ A , then from Lemma

3.4.1, Re( f ) = Im
(
i f̄
)
∈ ImA . Thus ReA ⊆ ImA . By assumption, i f̄ ∈A . The other

direction works the same. Just use the other formula in Lemma 3.4.1.
Claim 2: Both ReA and ImA are real algebras.
Proof of claim: It is obvious these are both real vector spaces. Since these are equal, it

suffices to consider ReA . It remains to show that ReA is closed with respect to products.

f + f̄
2

g+ ḡ
2

=
1
4
[

f g+ f ḡ+ f̄ g+ f g
]
=

1
4
[
2Re( f g)+2Re

(
f̄ g
)]

Now by assumption, f g ∈A and so Re( f g) ∈ ReA . Also Re
(

f̄ g
)
∈ ReA because both

f̄ ,g are in A and it is an algebra. Thus, the above is in ReA because, as noted, this is a
real vector space.
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Claim 3: A = ReA + i ImA
Proof of claim: If f ∈A , then

f =
f + f̄

2
+ i

f − f̄
2i
∈ ReA + i ImA

so A ⊆ReA + i ImA . Now for f ,g ∈A

Re( f )+ i Im(g)≡ f + f̄
2

+ i
(

g− ḡ
2i

)
=

f +g
2

+
f̄ − ḡ

2
∈A

because A is closed with respect to conjugates. Thus ReA + i ImA ⊆A .
Both ReA and ImA must separate the points. Here is why: If x1 ̸= x2, then there exists

f ∈A such that f (x1) ̸= f (x2) . If Im f (x1) ̸= Im f (x2) , this shows there is a function in
ImA , Im f which separates these two points. If Im f fails to separate the two points, then
Re f must separate the points and so, by Lemma 3.4.1,

Re f (x1) = Im
(
i f̄ (x1)

)
̸= Re f (x2) = Im

(
i f̄ (x2)

)
Thus ImA separages the points. Similarly ReA separates the points using a similar argu-
ment or because it is equal to ImA .

Neither ReA nor ImA annihilate any point. This is easy to see because if x is a
point, there exists f ∈ A such that f (x) ̸= 0. Thus either Re f (x) ̸= 0 or Im f (x) ̸= 0. If
Im f (x) ̸= 0, this shows this point is not annihilated by ImA . Since they are equal, ReA
does not annihilate this point either.

It follows from Theorem 3.3.3 that ReA and ImA are dense in the real valued func-
tions of C0 (X). Let f ∈C0 (X) . Then there exists {hn} ⊆ReA and {gn} ⊆ ImA such that
hn→ Re f uniformly and gn→ Im f uniformly. Therefore, hn + ign ∈A and it converges
to f uniformly. ■

3.5 Exercises
1. Let φ n (x) =

(
1− x2

)n for |x| ≤ 1. For f a continuous function defined on [−1,1] ,
extend it to have f (x) = f (1) for x > 1 and f (x) = f (−1) for x < −1. Consider
pn (x) ≡

∫ x+1
x−1 φ n (x− y) f (y)dy =

∫ 1
−1 φ n (y) f (x− y)dy. This involves elementary

calculus and change of variables. Show that pn (x) is a polynomial and that pn con-
verges uniformly to f on [−1,1]. This is the way Weierstrass originally proved the
famous approximation theorem.

2. In fact the Bernstein polynomials apply for f having values in a normed linear space
and a similar result will hold. Give such a generalization.

3. Consider a continuous function f defined on the box ∏
p
k=1 [0,1]≡ [0,1]p . Then con-

sider f (t1)≡ f (t1, · · ·) as a continuous function having values in C
(
[0,1]p−1

)
. Then

the Bernstein polynomials are of the form ∑
m
k=0
(m

k

)
f
( k

m , · · ·
)

tk
1 (1− t1)

m−k . Now re-
peat the process on these coefficients f

( k
m , · · ·

)
which can be considered functions

in C
(
[0,1]p−2

)
, t2→ f

( k
m , t2, · · ·

)
. Continuing this way, show there is a polynomial

∑
k1,··· ,km

ak1,··· ,kntk1
1 · · · t

km
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which is uniformly close to f on [0,1]. Extend to the case of a box ∏
p
k=1 [ak,bk]. The

continuous function f is only required to have values in some normed linear space.

4. Consider the following pm (x)≡

m1

∑
k1=0
· · ·

mn

∑
kn=0

(
m1

k1

)(
m2

k2

)
· · ·
(

mn

kn

)
xk1

1 (1− x1)
m1−k1 xk2

2 (1− x2)
m2−k2

· · ·xkn
n (1− xn)

mn−kn f
(

k1

m1
, · · · , kn

mn

)
. (3.3)

where f : [0,1]n→ X a normed linear space. Show that for all ε , there exists n such
that ∥pm− f∥ < ε if min(m1, · · · ,mn) > 0. Hint: Consider Lemma 3.1.1 first and
you may see how to do this.

5. Theorem 2.5.43 gave an example of a function which is everywhere continuous and
nowhere differentiable. The first examples of this sort were given by Weierstrass in
1872 who gave an example involving an infinite series in which each term had all
derivatives everywere and yet the uniform limit had no derivative anywhere. Using
the example of Theorem 2.5.43, give an example of an infinite series of functions,
each term being a polynomial defined on [0,1], ∑

∞
k=1 pk (x)= f (x) for which it makes

absolutely no sense to write f ′ (x) = ∑
∞
k=1 p′k (x) because f ′ fails to exist at any point.

In other words, you cannot differentiate an infinite series term by term. The deriva-
tive of a sum is not the sum of the derivatives when dealing with an infinite “sum”.
Also show that if you have any differentiable function g and ε > 0, there exists a
nowhere differentiable function h such that ∥g−h∥ < ε . This is in stark contrast
with what will be presented in complex analysis in which, thanks to the Cauchy
integral formula, uniform convergence of differentiable functions does lead to a dif-
ferentiable function. Hint: Use Weierstrass approximation theorem and telescoping
series to get the example of a series which can’t be differentiated term by term.

6. If f , f ′ are both continuous, suppose pn→ f uniformly where the pn are the Bernstein
polynomials. Show that then p′n→ f ′ uniformly also.

7. Use the above problem to show that if f is continuous and defined on ∏
p
k=1 [0,1]

and if also all the partial derivatives of f are continuous, then if pn → f uniformly
with the pn being the Bernstein polynomials discussed in Problem 3, then the partial
derivatives of these pn converge uniformly to the corresponding partial derivatives of
f . Extend to the case where f is defined on ∏

p
k=1 [ak,bk].

8. In contrast to Problem 6, consider the sequence of functions

{ fn (x)}∞

n=1 =

{
x

1+nx2

}∞

n=1
.

Show it converges uniformly to f (x) ≡ 0. However, f ′n (0) converges to 1, not
f ′ (0). Hint: To show the first part, find the value of x which maximizes the func-
tion

∣∣∣ x
1+nx2

∣∣∣ . You know how to do this. Then plug it in and you will have an estimate
sufficient to verify uniform convergence. This shows how special the Bernstein poly-
nomials are.
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9. Show using the Weierstrass approximation theorem that if f is a continuous, real
valued function on [a,b] , then it has an antiderivative. Hint: Let pn→ f uniformly
and let P′n = pn,Pn (a) = 0. It is obvious that a polynomial has an antiderivative.
Now use the uniform convergence of the pn and the mean value theorem from single
variable calculus to show that {Pn} also converges uniformly to some function F and
that F is the desired antiderivative.

F (x+h)−F (x)
h

=
F (x+h)−Pn (x+h)

h
+

Pn (x+h)−Pn (x)
h

+
Pn (x)−F (x)

h

= εn(h) (h)+
Pn (x+h)−Pn (x)

h
= εn(h) (h)+ pn (x+θ hh)

= εn(h) (h)+(pn (x+θ hh)− f (x+θ hh))+( f (x+θ hh)− f (x))

Here n(h) is so large that limh→0 εn(h) (h) = 0. Now pass to a limit.

10. In the above problem, explain, using the mean value theorem from calculus, how
you could define

∫ b
a f (x)dx≡ F (b)−F (a) where F is an antiderivative, and thereby

obtain the integral of elementary calculus.
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Chapter 4

The Derivative
The derivative is a linear transformation. In this chapter are the principal results about the
derivative.

4.1 Basic Definitions
The derivative is a linear transformation. This may not be entirely clear from a beginning
calculus course because they like to say it is a slope which is a number. As observed by
Deudonne,

“...In the classical teaching of Calculus, this idea (that the derivative is a linear
transformation) is immediately obscured by the accidental fact that, on a one-
dimensional vector space, there is a one-to-one correspondence between linear
forms and numbers, and therefore the derivative at a point is defined as a num-
ber instead of a linear form. This slavish subservience to the shibboleth1 of
numerical interpretation at any cost becomes much worse when dealing with
functions of several variables...”

The concept of derivative generalizes right away to functions of many variables but only
if you regard a number which is identified as the derivative in single variable calculus as a
linear transformation on R. However for functions of many variables, no attempt will be
made to consider derivatives from one side or another. This is because when you consider
functions of many variables, there isn’t a well defined side. However, it is certainly the case
that there are more general notions which include such things. I will present a fairly general
notion of the derivative of a function which is defined on an open subset of a normed vector
space which has values in a normed vector space. The case of most interest is that of a
function which maps an open set in Fn to Fm but it is no more trouble to consider the extra
generality and it is sometimes useful to have this extra generality because sometimes you
want to consider functions defined, for example on subspaces of Fnand it is nice to not
have to trouble with ad hoc considerations. Also, you might want to consider Fn with some
norm other than the usual one.

For most of what follows, it is not important for the vector spaces to be finite dimen-
sional provided you make the following definition of what is meant by L (X ,Y ) which is
automatic if X is finite dimensional. See Proposition 2.8.8.

Definition 4.1.1 Let (X ,∥·∥X ) and (Y,∥·∥Y ) be two normed linear spaces. Then
L (X ,Y ) denotes the set of linear maps from X to Y which also satisfy the following con-
dition. For L ∈L (X ,Y ) ,

lim
∥x∥X≤1

∥Lx∥Y ≡ ∥L∥< ∞

To save notation, I will use ∥·∥ as a norm on either X , Y or L (X ,Y ) and allow the
context to determine which it is.

Let U be an open set in X , and let f : U → Y be a function.
1In the Bible, there was a battle between Ephraimites and Gilleadites during the time of Jepthah, the judge

who sacrificed his daughter to Jehovah, one of several instances of human sacrifice in the Bible. The cause of
this battle was very strange. However, the Ephramites lost and when they tried to cross a river to get back home,
they had to say shibboleth. If they said “sibboleth” they were killed because their inability to pronounce the “sh”
sound identified them as Ephramites. They usually don’t tell this story in Sunday school. The word has come to
denote something which is arbitrary and no longer important.
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Definition 4.1.2 A function g is o(v) if

lim
∥v∥→0

g(v)
∥v∥

= 0 (4.1)

A function f : U → Y is differentiable at x ∈U if there exists a linear transformation L ∈
L (X ,Y ) such that

f(x+v) = f(x)+Lv+o(v)

This linear transformation L is the definition of Df(x). This derivative is often called the
Frechet derivative.

Note that from Theorem 2.7.4 the question whether a given function is differentiable is
independent of the norm used on the finite dimensional vector space. That is, a function is
differentiable with one norm if and only if it is differentiable with another norm. In infinite
dimensions, this is not clearly so and in this case, simply regard the norm as part of the
definition of the normed linear space which incidentally will also typically be assumed to
be a complete normed linear space.

The definition 4.1 means the error, f(x+v)− f(x)−Lv converges to 0 faster than ∥v∥.
Thus the above definition is equivalent to saying

lim
∥v∥→0

∥f(x+v)− (f(x)+Lv)∥
∥v∥

= 0 (4.2)

or equivalently,

lim
y→x

∥f(y)− (f(x)+Df(x)(y−x))∥
∥y−x∥

= 0. (4.3)

The symbol, o(v) should be thought of as an adjective. Thus, if t and k are constants,

o(v) = o(v)+o(v) , o(tv) = o(v) , ko(v) = o(v)

and other similar observations hold.

Theorem 4.1.3 The derivative is well defined.

Proof: First note that for a fixed nonzero vector v, o(tv) = o(t). This is because

lim
t→0

o(tv)
|t|

= lim
t→0
∥v∥ o(tv)
∥tv∥

= 0

Now suppose both L1 and L2 work in the above definition. Then let v be any vector and let
t be a real scalar which is chosen small enough that tv+x ∈U . Then

f(x+ tv) = f(x)+L1tv+o(tv) , f(x+ tv) = f(x)+L2tv+o(tv) .

Therefore, subtracting these two yields (L2−L1)(tv) = o(tv) = o(t). Therefore, dividing
by t yields (L2−L1)(v) = o(t)

t . Now let t → 0 to conclude that (L2−L1)(v) = 0. Since
this is true for all v, it follows L2 = L1. ■

Lemma 4.1.4 Let f be differentiable at x. Then f is continuous at x and in fact, there
exists K > 0 such that whenever ∥v∥ is small enough,∥f(x+v)− f(x)∥ ≤ K ∥v∥ . Also if f
is differentiable at x, then

o(∥f(x+v)− f(x)∥) = o(v)
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Proof: From the definition of the derivative, f(x+v)− f(x) = Df(x)v+ o(v) . Let
∥v∥ be small enough that o(∥v∥)

∥v∥ < 1 so that ∥o(v)∥ ≤ ∥v∥. Then for such v,

∥f(x+v)− f(x)∥ ≤ ∥Df(x)v∥+∥v∥ ≤ (∥Df(x)∥+1)∥v∥

This proves the lemma with K = ∥Df(x)∥+ 1. Recall the operator norm discussed in
Definitions 2.8.4, 4.1.1.

The last assertion is implied by the first as follows. Define

h(v)≡

{
o(∥f(x+v)−f(x)∥)
∥f(x+v)−f(x)∥ if ∥f(x+v)− f(x)∥ ̸= 0

0 if ∥f(x+v)− f(x)∥= 0

Then lim∥v∥→0 h(v) = 0 from continuity of f at x which is implied by the first part. Also
from the above estimate,∥∥∥∥o(∥f(x+v)− f(x)∥)

∥v∥

∥∥∥∥= ∥h(v)∥ ∥f(x+v)− f(x)∥
∥v∥

≤ ∥h(v)∥(∥Df(x)∥+1)

This establishes the second claim. ■
Here ∥Df(x)∥ is the operator norm of the linear transformation, Df(x). This will always

be the case unless specified to be otherwise.

4.2 The Chain Rule
With the above lemma, it is easy to prove the chain rule.

Theorem 4.2.1 (The chain rule) Let U and V be open sets U ⊆ X and V ⊆ Y . Sup-
pose f : U→V is differentiable at x∈U and suppose g : V → Z is differentiable at f(x)∈V
where Z is a normed linear space. Then g◦ f is differentiable at x and

D(g◦ f)(x) = Dg(f(x))Df(x) .

Proof: This follows from a computation. Let B(x,r)⊆U and let r also be small enough
that for ∥v∥ ≤ r, it follows that f(x+v) ∈V . Such an r exists because f is continuous at x.
For ∥v∥< r, the definition of differentiability of g and f implies

g(f(x+v))−g(f(x)) =

Dg(f(x))(f(x+v)− f(x))+o(f(x+v)− f(x))
= Dg(f(x)) [Df(x)v+o(v)]+o(f(x+v)− f(x))
= D(g(f(x)))D(f(x))v+o(v)+o(f(x+v)− f(x)) (4.4)
= D(g(f(x)))D(f(x))v+o(v)

By Lemma 4.1.4. From the definition of the derivative, D(g◦ f)(x) exists and equals
D(g(f(x)))D(f(x)). ■
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4.3 The Matrix of the Derivative
The case of interest here is where X = Rn and Y = Rm, the function being defined on
an open subset of Rn. Of course this all generalizes to arbitrary vector spaces and one
considers the matrix taken with respect to various bases. As above, f will be defined and
differentiable on an open set U ⊆ Rn.

The matrix of Df(x) is the matrix having the ith column equal to Df(x)ei and so it is
only necessary to compute this. Recall that for Jf(x) this matrix,

Jf(x)v = Df(x)v

for any v where on the left the meaning is matrix multiplication. Jf(x) is an m×n matrix
and it is multiplying v, a vector of Rn on the left. This is the matrix taken with respect to
the standard basis vectors. Let t be a small real number. Then

f(x+ tei)− f(x)−Df(x)(tei)

t
=

o(t)
t

Therefore,
f(x+ tei)− f(x)

t
= Df(x)(ei)+

o(t)
t

The limit exists on the right and so it exists on the left also. Thus

∂ f(x)
∂xi

≡ lim
t→0

f(x+ tei)− f(x)
t

= Df(x)(ei)

and so the matrix of the derivative is just the matrix which has the ith column equal to the
ith partial derivative of f. Note that this shows that whenever f is differentiable, it follows
that the partial derivatives all exist. It does not go the other way however as discussed later.

Theorem 4.3.1 Let f : U ⊆ Fn→ Fm and suppose f is differentiable at x. Then all
the partial derivatives ∂ fi(x)

∂x j
exist and if Jf(x) is the matrix of the linear transformation,

Df(x) with respect to the standard basis vectors, then the i jth entry is given by ∂ fi
∂x j

(x) also

denoted as fi, j or fi,x j . It is the matrix whose ith column is

∂ f(x)
∂xi

≡ lim
t→0

f(x+ tei)− f(x)
t

.

In particular, this says the same as saying that the i jth entry of this matrix is ∂ fi(x)
∂x j

.

I will generally not distinguish between the linear transformation Df(x) and its matrix
with respect to the standard basis vectors Jf(x) when the setting is Rn and Rm.

If you take another partial derivative, it can be written as fxix j ≡ ∂

∂x j

∂ f
∂xi

. This might be
written as f,i j also. I assume the reader has seen partial derivatives in calculus.

What if all the partial derivatives of f exist? Does it follow that f is differentiable?
Consider the following function, f : R2→ R,

f (x,y) =
{ xy

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.
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Then from the definition of partial derivatives,

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0

and

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 4.1.4 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.

4.4 The Usual Form of the Chain Rule
Let z≡ g(y) and let y = f(x). Assuming Dg(f(x)) exists and Df(x) both exist and then we
have x ∈U ⊆Rn and y ∈V ⊆Rm where U,V are open sets and f(V )⊆V with g : V →Rp.
What is the matrix of g◦ f(x) = g(y)? Say g has values in Rp. From the chain rule above,
and the description of the matrix of the derivative in Theorem 4.3.1,(

∂z
∂x1

∂z
∂x2

· · · ∂z
∂xn

)
= (4.5)

(
∂z
∂y1

∂z
∂y2

· · · ∂z
∂ym

)(
∂y
∂x1

∂y
∂x2

· · · ∂y
∂xn

)
Now from the way we multiply matrices, to find the i jth entry of the matrix on the right,
one multiplies the ith row of the left matrix with the jth column of the matrix on the right.
Thus the i jth entry of the matrix on the right is

∑
k

∂ zi

∂yk

∂yk

∂x j

and by the chain rule, Theorem 4.2.1, this equals the i jth entry of the matrix of 4.5. That is,

∂ zi

∂x j
= ∑

k

∂ zi

∂yk

∂yk

∂x j

This is stated as the following proposition.

Proposition 4.4.1 Let z≡ g◦ f(x) and let y≡ f(x) , then assuming Df(x) exists and
Dg(f(x)) exists, then ∂ zi

∂x j
= ∑k

∂ zi(y)
∂yk

∂yk
∂x j

assuming that all functions make sense. That is
f : U→ f(U)⊆V and g : V →Rp for U,V open sets in Rn and Rm respectively. Also, since
this holds for each i, ∂z

∂x j
= ∑k

∂z
∂yk

∂yk
∂x j

.

Some people like to dispense with the summation sign and write instead ∂z
∂x j

= ∂z
∂yk

∂yk
∂x j

where it is understood that summation takes place on the repeated index.
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4.5 Differentiability and C1 Functions
There is a way to get the differentiability of a function from the existence and continuity
of the partial derivatives. This is very convenient because these partial derivatives are taken
with respect to a one dimensional variable. Of course, the determination of continuity is
again a multivariable consideration. The following theorem is the main result.

Definition 4.5.1 When f : U→Rp for U an open subset ofRn and the vector valued
functions, ∂ f

∂xi
are all continuous, (equivalently each ∂ fi

∂x j
is continuous), the function is said

to be C1 (U) . If all the partial derivatives up to order k exist and are continuous, then the
function is said to be Ck.

It turns out that for a C1 function, all you have to do is write the matrix described in
Theorem 4.3.1 and this will be the derivative. There is no question of existence for the
derivative for such functions. This is the importance of the next theorem.

Theorem 4.5.2 Suppose f : U → Rp where U is an open set in Rn. Suppose also
that all partial derivatives of f exist on U and are continuous. Then f is differentiable at
every point of U.

Proof: If you fix all the variables but one, you can apply the fundamental theorem of
calculus as follows.

f(x+vkek)− f(x) =
∫ 1

0

∂ f
∂xk

(x+ tvkek)vkdt. (4.6)

Here is why. Let h(t) = f(x+ tvkek) = f(x1, · · · ,xk + tvk,xk+1, · · · ,xn) . Then from the
chain rule, h′ (t) = ∂ f

∂xk
(x+ tvkek)vk. Therefore, since h′ is continuous, one can apply the

fundamental theorem of calculus to each component and write

f(x+vkek)− f(x) = h(1)−h(0) =
∫ 1

0
h′ (t)dt =

∫ 1

0

∂ f
∂xk

(x+ tvkek)vkdt.

Now I will use this observation to prove the theorem. Let v = (v1, · · · ,vn) with |v| suffi-
ciently small. Thus v = ∑

n
k=1 vkek. For the purposes of this argument, define ∑

n
k=n+1 vkek ≡

0. Then with this convention, f(x+v)− f(x) =

n

∑
i=1

(
f

(
x+

n

∑
k=i

vkek

)
− f

(
x+

n

∑
k=i+1

vkek

))
=

n

∑
i=1

∫ 1

0

∂ f
∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
vidt

=
n

∑
i=1

∫ 1

0

(
∂ f
∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
vi−

∂ f
∂xi

(x)vi

)
dt (4.7)

+
n

∑
i=1

∫ 1

0

∂ f
∂xi

(x)vidt =
n

∑
i=1

∂ f
∂xi

(x)vi +o(v)

and this shows f is differentiable at x. The reason for this is that each term in the sum in
4.7 is o(v) . Indeed, letting |·| be the usual Euclidean norm,∣∣∣∣∣

∫ 1

0

(
∂ f
∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
− ∂ f

∂xi
(x)

)
dtvi

∣∣∣∣∣
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≤

∣∣∣∣∣
∫ 1

0

(
∂ f
∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
− ∂ f

∂xi
(x)

)∣∣∣∣∣ |v|
and by continuity, the integral converges to 0 as |v| → 0. This follows from uniform conti-
nuity of ∂ f

∂xi
on a sufficiently small closed ball containing x. ■

4.6 Mixed Partial Derivatives
Under certain conditions the mixed partial derivatives will always be equal. The simple
condition is that if they exist and are continuous, then they are equal. This astonishing
fact is due to Euler in 1734 and was proved by Clairaut although not very well. The first
satisfactory proof was by Hermann Schwarz in 1873. For reasons I cannot understand,
calculus books seldom include a proof of this important result. It is not all that hard. It is
based on the mean value theorem for derivatives. Here it is.

Theorem 4.6.1 Suppose f : U ⊆ R2→ R where U is an open set on which fx, fy,
fxy and fyx exist. Then if fxy and fyx are continuous at the point (x,y) ∈ U, it follows
fxy (x,y) = fyx (x,y) .

Proof: Since U is open, there exists r > 0 such that B((x,y) ,r)⊆U. Now let |t| , |s|<
r/2 and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ t,y+ s)− f (x+ t,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ s)− f (x,y))}. (4.8)

Note that (x+ t,y+ s) ∈U because

|(x+ t,y+ s)− (x,y)|= |(t,s)|=
(
t2 + s2)1/2 ≤

(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h(t) ≡ f (x+ t,y+ s)− f (x+ t,y). Then, by the mean value theorem
from calculus and the (one variable) chain rule,

∆(s, t) =
1
st
(h(t)−h(0)) =

1
st

h′ (αt) t =
1
s
( fx (x+αt,y+ s)− fx (x+αt,y))

for some α ∈ (0,1) . Applying the mean value theorem again,

∆(s, t) = fxy (x+αt,y+β s)

where α,β ∈ (0,1).
If the terms f (x+ t,y) and f (x,y+ s) are interchanged in 4.8, ∆(s, t) is also unchanged

and the above argument shows there exist γ,δ ∈ (0,1) such that

∆(s, t) = fyx (x+ γt,y+δ s) .

Letting (s, t)→ (0,0) and using the continuity of fxy and fyx at (x,y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x,y) = fyx (x,y) .■

The following is obtained from the above by simply fixing all the variables except for
the two of interest.
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Corollary 4.6.2 Suppose U is an open subset of Rn and f : U → R has the property
that for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x) .

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [4].

Example 4.6.3 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

From the definition of partial derivatives it follows immediately from the definition that
fx (0,0) = fy (0,0) = 0. Using the standard rules of differentiation, for (x,y) ̸= (0,0) ,

fx = y
x4− y4 +4x2y2

(x2 + y2)2 , fy = x
x4− y4−4x2y2

(x2 + y2)2

Now

fxy (0,0)≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0)≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that although the mixed partial derivatives do exist at (0,0) , they are not equal
there.

Here is a picture of the graph of this function. It looks innocuous but isn’t.

4.7 A Cofactor Identity
Lemma 4.7.1 Suppose det(A) = 0. Then for all sufficiently small nonzero ε, it follows
that det(A+ εI) ̸= 0.

Proof: Let det(λ I−A) = λ
p +a1λ

p−1 + · · ·+ap−1λ +ap. First suppose A is a p× p
matrix. If det(A) ̸= 0, this will still be true for all ε small enough. Now suppose that
det(A) = 0. Thus, the constant term of det(λ I−A) is 0. Consider εI +A ≡ Aε for small
real ε . The characteristic polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +a1 (λ − ε)p−1 + · · ·+(λ − ε)m am
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where the a j are the coefficients in the characteristic polynomial for A and ak = 0 for
k > m,am ̸= 0. The constant term of this polynomial in λ must be nonzero for all ε small
enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε) = ε
m [am (−1)m + εC (ε)]

which is nonzero for all positive but very small ε. Thus εI +A is invertible for all ε small
enough but nonzero. ■

Recall that for A an p× p matrix, cof(A)i j is the determinant of the matrix which results
from deleting the ith row and the jth column and multiplying by (−1)i+ j. In the proof and
in what follows, I am using Dg to equal the matrix of the linear transformation Dg taken
with respect to the usual basis on Rp. Thus (Dg)i j = ∂gi/∂x j where g = ∑i giei for the ei
the standard basis vectors.

Lemma 4.7.2 Let g : U → Rp be C2 where U is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Proof: From the cofactor expansion theorem,

δ k j det(Dg) =
p

∑
i=1

gi,k cof(Dg)i j (4.9)

This is because if k ̸= j, that on the right is the cofactor expansion of a determinant with
two equal columns while if k = j, it is just the cofactor expansion of the determinant. In
particular,

∂ det(Dg)
∂gi, j

= cof(Dg)i j (4.10)

which shows the last claim of the lemma. Assume that Dg(x) is invertible to begin with.
Differentiate 4.9 with respect to x j and sum on j using the chain rule in Proposition 4.4.1.
Note detDg is a function of the gr,s which are functions of the xk. This yields

∑
r,s, j

δ k j
∂ (detDg)

∂gr,s
gr,s j = ∑

i j
gi,k j (cof(Dg))i j +∑

i j
gi,k cof(Dg)i j, j .

Hence, using δ k j = 0 if j ̸= k and 4.10,

∑
rs
(cof(Dg))rs gr,sk = ∑

rs
gr,ks (cof(Dg))rs +∑

i j
gi,kcof(Dg)i j, j .

Subtracting the first sum on the right from both sides and using the equality of mixed
partials,

∑
i

gi,k

(
∑

j
(cof(Dg))i j, j

)
= 0.

Since it is assumed Dg is invertible, this shows ∑ j (cof(Dg))i j, j = 0. If det(Dg) = 0, use
Lemma 4.7.1 to let

gk (x) = g(x)+ εkx
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where εk→ 0 and det(Dg+ εkI)≡ det(Dgk) ̸= 0. Then

∑
j
(cof(Dg))i j, j = lim

k→∞
∑

j
(cof(Dgk))i j, j = 0 ■

4.8 Implicit Function Theorem
The implicit function theorem is one of the greatest theorems in mathematics. There are
many versions of this theorem which are of far greater generality than the one given here.
The proof given here is like one found in one of Caratheodory’s books on the calculus
of variations. It is not as elegant as some of the others which are based on a contraction
mapping principle but it may be shorter and is based on more elementary ideas. For a more
elegant proof which generalizes better see my book Real and Abstract Analysis. The proof
given here is based on a mean value theorem in the following lemma.

Lemma 4.8.1 Let U be an open set in Rp which contains the line segment t → y+
t (z−y) for t ∈ [0,1] and let f : U → R be differentiable at y+ t (z−y) for t ∈ (0,1) and
continuous for t ∈ [0,1]. Then there exists x on this line segment such that f (z)− f (y) =
D f (x)(z−y) .

Proof: Let h(t)≡ f (y+ t (z−y)) for t ∈ [0,1] . Then h is continuous on [0,1] and has a
derivative, h′ (t) = D f (y+ t (z−y))(z−y), this by the chain rule. Then by the mean value
theorem of one variable calculus, there exists t ∈ (0,1) such that

f (z)− f (y) = h(1)−h(0) = h′ (t) = D f (y+ t (z−y))(z−y)

and we let x = y+ t (z−y) for this t. ■
Also of use is the following lemma.

Lemma 4.8.2 Let A be an m×n matrix and suppose that for all i, j,
∣∣Ai j
∣∣≤C. Then the

operator norm satisfies ∥A∥ ≤Cmn.

Proof: Note that if z is a vector, |z|= sup|y|≤1 (z,y) . Indeed, for |y| ≤ 1, the right side
is no more than |z| thanks to the Cauchy Schwarz inequality and this can be achieved by
letting y = z/ |z|.

∥A∥ ≡ sup
|x|≤1
|Ax|= sup

|x|≤1
sup
|y|≤1
|(Ax,y)|= sup

|x|≤1
sup
|y|≤1

∣∣∣∣∣∑i
∑

j
Ai jx jyi

∣∣∣∣∣
≤ sup

|x|≤1
sup
|y|≤1

∑
i

∑
j

C
∣∣x j
∣∣ |yi| ≤C∑

i
∑

j
|x| |y|=Cmn. ■

Definition 4.8.3 Suppose U is an open set in Rn ×Rm and (x,y) will denote a
typical point of Rn×Rm with x ∈ Rn and y ∈ Rm. Let f : U → Rp be in C1 (U) meaning
that all partial derivatives exist and are continuous. Then define

D1f(x,y) ≡

 f1,x1 (x,y) · · · f1,xn (x,y)
...

...
fp,x1 (x,y) · · · fp,xn (x,y)

 ,

D2f(x,y) ≡

 f1,y1 (x,y) · · · f1,ym (x,y)
...

...
fp,y1 (x,y) · · · fp,ym (x,y)

 .
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Definition 4.8.4 Let δ ,η > 0 satisfy: B(x0,δ )×B(y0,η)⊆U where f : U ⊆ Rn×
Rm→ Rp is given as

f(x,y) =


f1 (x,y)
f2 (x,y)

...
fp (x,y)


and for

(
x1 · · · xn

)
∈ B(x0,δ )

p
and y ∈ B(y0, η̂) define

J
(
x1, · · · ,xp,y

)
≡

 f1,x1

(
x1,y

)
· · · f1,xn

(
x1,y

)
...

...
fp,x1 (x

p,y) · · · fp,xn (xp,y)

 . (*)

Thus, its ith row is D1 fi
(
xi,y

)
. Let K,r be constants.

By Lemma 4.8.1, and (x,y) ∈ B(x0,δ )× B(y0,η) ⊆ U, and h,k sufficiently small,
there are xi on the line segment between x and x+h such that

f(x+h,y+k)− f(x,y) = f(x+h,y+k)− f(x,y+k)+ f(x,y +k)− f(x,y)

= J
(
x1, · · · ,xp,y+k

)
h+D2f(x,y)k+o(k) (4.11)

= D1f(x,y)h+D2f(x,y)k+o(k)+
(
J
(
x1, · · · ,xp,y+k

)
−D1f(x,y)

)
h (4.12)

Now by continuity of the partial derivatives, if
√
|h|2 + |k|2 is sufficiently small,∥∥J

(
x1, · · · ,xp,y+k

)
−D1f(x,y)

∥∥< ε

and so ∣∣(J (x1, · · · ,xp,y+k
)
−D1f(x,y)

)
h
∣∣√

|h|2 + |k|2
≤ ε |h|√

|h|2 + |k|2
≤ ε

and so the last term in 4.12 is o((h,k)) . Thus f(x+h,y+k)− f(x,y) is of the form

D1f(x,y)h+D2f(x,y)k+o(h,k)

which shows that f is differentiable and its derivative is the p× (n+m) matrix,(
D1f(x,y) D2f(x,y)

)
.

Proposition 4.8.5 Suppose g : B(x0,δ )×B(y0,η0)→ [0,∞) is continuous and

g(x0,y0) = 0

and if x ̸= x0,g(x,y0) > 0. Then there exists η < η0 such that if y ∈ B(y0,η) , then the
function x→ g(x,y) achieves its minimum on the open set B(x0,δ ).
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Proof: If not, then there is a sequence yk → y0 but the minimum of x→ g(x,yk) for
x ∈ B(x0,δ ) happens on ∂B(x0,δ )≡ ∂B≡ {x : |x−x0|= δ} at xk. Now ∂B is closed and
bounded and so compact. Hence there is a subsequence, still denoted with subscript k such
that xk→ x ∈ ∂B and yk→ y0. Let

0 < 2ε < min{g(x̂,y0) : x̂ ∈ ∂B}

Then for k large,

|g(xk,yk)−g(x,y0)|< ε, |g(xk,yk)−g(xk,y0)|< ε

the second inequality from uniform continuity. Then from these inequalities, for k large,

g(x0,yk) ≥ g(xk,yk)> g(xk,y0)− ε

> min{g(x̂,y0) : x̂ ∈ ∂B}− ε > 2ε− ε = ε

Now let k→ ∞ to conclude that g(x0,y0)≥ ε , a contradiction. ■
Here is the implicit function theorem. It is based on the mean value theorem from one

variable calculus, the extreme value theorem from calculus, and the formula for the inverse
of a matrix in terms of the transpose of the cofactor matrix divided by the determinant.

Theorem 4.8.6 (implicit function theorem) Suppose U is an open set in Rn×Rm.
Let f : U → Rn be in C1 (U) and suppose

f(x0,y0) = 0, D1f(x0,y0)
−1 exists. (4.13)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f(x(y) ,y) = 0. (4.14)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).

Proof: Let
f(x,y) =

(
f1 (x,y) f2 (x,y) · · · fn (x,y)

)T
.

Define for
(
x1, · · · ,xn

)
∈ B(x0,δ )

n
and y ∈ B(y0,η) the following matrix.

J
(
x1, · · · ,xn,y

)
≡

 f1,x1

(
x1,y

)
· · · f1,xn

(
x1,y

)
...

...
fn,x1 (x

n,y) · · · fn,xn (xn,y)

 . (*)

Then by the assumption of continuity of all the partial derivatives, there exists r > 0 and
δ 0,η0 > 0 such that if δ ≤ δ 0 and η ≤ η0, it follows that for all

(
x1, · · · ,xn

)
∈ B(x0,δ )

n ≡
B(x0,δ )×B(x0,δ )×·· ·×B(x0,δ ), and y ∈ B(y0,η),

detJ
(
x1, · · · ,xn,y

)
/∈ (−r,r). (4.15)

and B(x0,δ 0)× B(y0,η0) ⊆U . Therefore, from the formula for the inverse of a matrix
and continuity of all entries of the various matrices, there exists a constant K such that all
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entries of J
(
x1, · · · ,xn,y

)
,J
(
x1, · · · ,xn,y

)−1
, and D2f(x,y) have absolute value smaller

than K on the convex set B(x0,δ )
n×B(y0,η) whenever δ ,η are sufficiently small. It is

always tacitly assumed that these radii are this small.
Next it is shown that for a given y∈B(y0,η) ,η ≤η0, there is at most one x∈B(x0,δ 0)

such that f(x,y) = 0.
Pick y ∈ B(y0,η) and suppose there exist x,z ∈ B(x0,δ ) such that

f(x,y) = f(z,y) = 0

Consider fi and let
h(t)≡ fi (x+ t (z−x) ,y) .

Then h(1) = h(0) and so by the mean value theorem, h′ (ti) = 0 for some ti ∈ (0,1) . There-
fore, from the chain rule and for this value of ti,

h′ (ti) =
n

∑
j=1

∂

∂x j
fi (x+ ti (z−x) ,y)(z j− x j) = 0. (4.16)

Then denote by xi the vector, x+ ti (z−x) . It follows from 4.16 that

J
(
x1, · · · ,xn,y

)
(z−x) = 0

and so from 4.15 z−x = 0. (The matrix, in the above is invertible since its determinant
is nonzero.) Now it will be shown that if η is chosen sufficiently small, then for all y ∈
B(y0,η) , there exists a unique x(y) ∈ B(x0,δ ) such that f(x(y) ,y) = 0.

Claim: If η is small enough, then the function, x→ hy (x) ≡ |f(x,y)|2 achieves its
minimum value on B(x0,δ ) at a point of B(x0,δ ) . This is Proposition 4.8.5.

Choose η < η0 and also small enough that the above claim holds and let x(y) denote
a point of B(x0,δ ) at which the minimum of hy on B(x0,δ ) is achieved. Since x(y) is an
interior point, you can consider hy (x(y)+ tv) for |t| small and conclude this function of t
has a zero derivative at t = 0. Now

hy (x(y)+ tv) =
n

∑
i=1

f 2
i (x(y)+ tv,y)

and so from the chain rule,

d
dt

hy (x(y)+ tv) =
n

∑
i=1

n

∑
j=1

2 fi (x(y)+ tv,y)
∂ fi (x(y)+ tv,y)

∂x j
v j.

Therefore, letting t = 0, it is required that for every v,

n

∑
i=1

n

∑
j=1

2 fi (x(y) ,y)
∂ fi (x(y) ,y)

∂x j
v j = 0.

In terms of matrices this reduces to 0 = 2f(x(y) ,y)T D1f(x(y) ,y)v for every vector v.
Therefore, 0 = f(x(y) ,y)T D1f(x(y) ,y) . From 4.15, it follows f(x(y) ,y) = 0. Multiply
by D1f(x(y) ,y)−1 on the right. This proves the existence of the function y→ x(y) such
that f(x(y) ,y) = 0 for all y ∈ B(y0,η) .
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It remains to verify this function is a C1 function. To do this, let y1 and y2 be points of
B(y0,η) . Then as before, consider the ith component of f and consider the same argument
using the mean value theorem to write

0 = fi (x(y1) ,y1)− fi (x(y2) ,y2)

= fi (x(y1) ,y1)− fi (x(y2) ,y1)+ fi (x(y2) ,y1)− fi (x(y2) ,y2)

= D1 fi
(
xi,y1

)
(x(y1)−x(y2))+D2 fi

(
x(y2) ,yi)(y1−y2) (4.17)

where yi is a point on the line segment joining y1 and y2 and xi is a point on the line segment
joining x(y1) and x(y2) . Thus

(x(y1)−x(y2)) =−J
(
x1, · · · ,xn,y1

)−1
M (y1−y2)

where M denotes the matrix having the ith row equal to D2 fi
(
x(y2) ,yi

)
all entries being

bounded by K. It follows that

|x(y1)−x(y2)| ≤ Kn |M (y1−y2)| ≤ K2nm |y1−y2|

Thus y→ x(y) is continuous near y0.
Now let y2 = y,y1 = y+hek for small h. Then M described above depends on h and

lim
h→0

M (h) = D2f(x(y) ,y)

thanks to the continuity of y→ x(y) just shown. Also,

x(y+hek)−x(y)
h

=−J
(
x1 (h) , · · · ,xn (h) ,y+hek

)−1
M (h)ek

Passing to a limit and using the formula for the inverse of a matrix in terms of the cofactor
matrix, and the continuity of y→ x(y) shown above, this yields

∂x
∂yk

=−D1f(x(y) ,y)−1 D2 fi (x(y) ,y)ek

Then continuity of y→ x(y) and the assumed continuity of the partial derivatives of f
shows that each partial derivative of y→ x(y) exists and is continuous. ■

This theorem implies the inverse function theorem stated next.

Theorem 4.8.7 (inverse function theorem) Let x0 ∈U, an open set in Rn , and let
f : U → Rn. Suppose

f is C1 (U) , and Df(x0)
−1 exists. (4.18)

Then there exist open sets W, and V such that x0 ∈W ⊆U, f : W → V is one to one and
onto, f−1 is C1.

Proof: Apply the implicit function theorem to the function F(x,y) ≡ f(x)− y where
y0 ≡ f(x0). Thus the function y→ x(y) defined in that theorem is f−1 and there is B(y0,η)
where this function is defined. Now let W ≡ f−1 (B(y0,η)) and V ≡ B(y0,η) . ■
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4.9 More Continuous Partial Derivatives
The implicit function theorem will now be improved slightly. If f is Ck, it follows that
the function which is implicitly defined is also Ck, not just C1, meaning all mixed partial
derivatives of f up to order k are continuous. Since the inverse function theorem comes as a
case of the implicit function theorem, this shows that the inverse function also inherits the
property of being Ck. First some notation is convenient. Let α = (α1, · · · ,αn) where each
α i is a nonnegative integer. Then letting |α|= ∑i α i,

Dα f(x)≡ ∂ |α|f
∂ α1∂ α2 · · ·∂ αn

(x) , D0f(x)≡ f(x)

The symbol on the right means to take the αn partial derivative with respect to xn, then the
αn−1 partial derivative with respect to xn−1 of what you just got and so on till you take the
α1 partial derivative with respect to x1. The idea is to show that all mixed partial derivatives
such that |α| ≤ k exist and are continuous.

Theorem 4.9.1 (implicit function theorem) Suppose U is an open set in Fn×Fm.
Let f : U → Fn be in Ck (U) and suppose

f(x0,y0) = 0, D1f(x0,y0)
−1 ∈L (Fn,Fn) . (4.19)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f(x(y) ,y) = 0. (4.20)

Furthermore, the mapping y→ x(y) is in Ck (B(y0,η)).

Proof: From the implicit function theorem y→ x(y) is C1. It remains to show that it is
Ck for k > 1 assuming that f is Ck. From 4.20

∂x
∂yl =−D1f(x,y)−1 ∂ f

∂yl .

By the formula for the inverse in terms of cofactors, if f is C2, one can use the chain rule
to take another continuous derivative. Thus, the following formula holds for q = 1 and
|α|= q.

Dα x(y) = ∑
|β |≤q

Mβ (x,y)Dβ f(x,y) (4.21)

where Mβ is a matrix whose entries are differentiable functions of Dγ x for |γ| < q and
Dτ f(x,y) for |τ| ≤ q. This follows easily from the description of D1f(x,y)−1 in terms of
the cofactor matrix and the determinant of D1f(x,y). Suppose 4.21 holds for |α|= q < k.
Then by induction, this yields x is Cq. Then

∂Dα x(y)
∂yp = ∑

|β |≤|α|

∂Mβ (x,y)
∂yp Dβ f(x,y)+Mβ (x,y)

∂Dβ f(x,y)
∂yp .

By the chain rule
∂Mβ (x,y)

∂yp is a matrix whose entries are differentiable functions of Dτ f(x,y)
for |τ| ≤ q+ 1 and Dγ x for |γ| < q+ 1. It follows, since yp was arbitrary, that for any
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|α|= q+1, a formula like 4.21 holds with q being replaced by q+1. Continuing this way,
x is Ck. ■

As a simple corollary, this yields the inverse function theorem. You just let F(x,y) =
y− f(x) and apply the implicit function theorem.

Theorem 4.9.2 (inverse function theorem) Let x0 ∈ U ⊆ Fn and let f : U → Fn.
Suppose for k a positive integer, f is Ck (U) , and Df(x0)

−1 ∈L (Fn,Fn). Then there exist
open sets W, and V such that x0 ∈W ⊆U, f : W →V is one to one and onto, f−1 is Ck.

4.10 Normed Linear Space
The implicit function theorem and inverse function theorem continue to hold if Rn and Rm

are replaced by finite dimensional normed linear spaces X ,Y respectively of dimension n
and m.

Theorem 4.10.1 (implicit function theorem) Suppose U is an open set in X ×Y
where X ,Y are normed linear space of dimension n,m and suppose f : U → Z be in Ck (U)
where Z is an n dimensional normed linear space. Suppose also

f (x0,y0) = 0, D1 f (x0,y0)
−1 exists. (4.22)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (4.23)

Furthermore, the mapping, y→ x(y) is in Ck (B(y0,η)).

Proof: Denote the coordinate maps for X ,Y,Z in terms of bases for these spaces by
θ X ,θY ,θ Z . These are all linear maps and so, since we are in finite dimensions, they are
each Ck for every positive integer k with respect to any norm on Rn,Rm thanks to Theorem
2.7.4 on equivalence of norms and the same is true of their inverses. Denote by x,y,z the
coordinate vectors for x,y,z ∈ X ,Y,Z respectively. Let f = θ Z f and note that the conditions
for the implicit function theorem, Theorem 4.9.1 for f(x0,y0)= 0 all hold and so this proves
the theorem. Since we are in finite dimensions, D1 f (x0,y0)

−1 exists if D1 f (x0,y0) is one
to one which implies D1f(x0,y0)

−1 exists. ■
Of course the inverse function theorem follows from this in the case of normed linear

spaces. This also illustrates how you can always reduce to Rp by doing everything in terms
of coordinates.

4.11 Taylor Approximations
First recall the following one variable calculus theorem. It is in my on line book ”Calculus
of One and Many Variables” or in any elementary Calculus book. See Problem 16 below
on Page 110.

Theorem 4.11.1 Let h : (−δ ,1+δ )→R have m+1 derivatives. Then there exists
t ∈ (0,1) such that

h(1) = h(0)+
m

∑
k=1

h(k) (0)
k!

+
h(m+1) (t)
(m+1)!

.



4.12. EXERCISES 107

Now suppose U is an open set in Rp and f : U → R is Cm+1 with x0 ∈ U . For x ∈
B(x0,r)⊆U , let h(t) = f (x0 + t (x−x0)) , t ∈ (0,1) . Then

h′ (t) = ∑
i

∂ f (x0 + t (x−x0))

∂xi
(xi− x0i)

h′′ (t) = ∑
i1,i2

∂ 2 f
∂xi1∂xi2

(xi1 − x0i1)(xi2 − x0i2)

and continuing this way,

h(k) (t) = ∑
i1,··· ,ik

∂ k f
∂xi1∂xi2 · · ·∂xik

k

∏
j=1

(
xi j − x0i j

)
(4.24)

Then the Taylor approximation is of the form h(1) = f (x) =

f (x0)+
m

∑
k=1

1
k! ∑

i1,··· ,ik

∂ k f (x0)

∂xi1∂xi2 · · ·∂xik

k

∏
j=1

(
xi j − x0i j

)
+

1
(m+1)! ∑

i1,··· ,im+1

∂ m+1 f (x0 + t (x−x0))

∂xi1∂xi2 · · ·∂xim+1

m+1

∏
j=1

(
xi j − x0i j

)
(4.25)

The last term being the remainder with t ∈ (0,1). Thus, if the (m+1)st partial derivatives
are all bounded, this shows that if ∥x−x0∥ is sufficiently small, then the difference between
f (x) and that series on the right in 4.25 other than the remainder term will also be very
small.

4.12 Exercises
1. For (x,y) ̸= (0,0) , let f (x,y) = xy4

x2+y8 . Show that this function has a limit as (x,y)→
(0,0) for (x,y) on an arbitrary straight line through (0,0). Next show that this func-
tion fails to have a limit at (0,0).

2. Here are some scalar valued functions of several variables. Determine which of these
functions are o(v). Here v is a vector in Rn, v = (v1, · · · ,vn).

(a) v1v2

(b) v2 sin(v1)

(c) v2
1 + v2

(d) v2 sin(v1 + v2)

(e) v1 (v1 + v2 + xv3)

(f) (ev1 −1− v1)

(g) (x ·v) |v|

3. Here is a function of two variables. f (x,y) = x2y+ x2. Find D f (x,y) directly from
the definition. Recall this should be a linear transformation which results from mul-
tiplication by a 1×2 matrix. Find this matrix.

4. Let f(x,y) =
(

x2 + y
y2

)
. Compute the derivative directly from the definition. This

should be the linear transformation which results from multiplying by a 2×2 matrix.
Find this matrix.
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5. Find fx, fy, fz, fxy, fyx, fzy for the following. Verify the mixed partial derivatives are
equal.

(a) x2y3z4 + sin(xyz)

(b) sin(xyz)+ x2yz

6. Suppose f is a continuous function and f : U → R where U is an open set and
suppose that x ∈U has the property that for all y near x, f (x)≤ f (y). Prove that if
f has all of its partial derivatives at x, then fxi (x) = 0 for each xi. Hint: Consider
f (x+ tv) = h(t). Argue that h′ (0) = 0 and then see what this implies about D f (x).

7. As an important application of Problem 6 consider the following. Experiments are
done at n times, t1, t2, · · · , tn and at each time there results a collection of numerical
outcomes. Denote by {(ti,xi)}p

i=1 the set of all such pairs and try to find numbers a
and b such that the line x = at + b approximates these ordered pairs as well as pos-
sible in the sense that out of all choices of a and b, ∑

p
i=1 (ati +b− xi)

2 is as small
as possible. In other words, you want to minimize the function of two variables
f (a,b) ≡ ∑

p
i=1 (ati +b− xi)

2. Find a formula for a and b in terms of the given or-
dered pairs. You will be finding the formula for the least squares regression line.

8. Let f be a function which has continuous derivatives. Show that u(t,x) = f (x− ct)
solves the wave equation utt−c2∆u = 0. What about u(x, t) = f (x+ ct)? Here ∆u =
uxx.

9. Show that if ∆u = λu where u is a function of only x, then eλ tu solves the heat
equation ut −∆u = 0. Here ∆u = uxx.

10. Show that if f (x) = o(x), then f ′ (0) = 0.

11. Let f (x,y) be defined on R2 as follows. f
(
x,x2

)
= 1 if x ̸= 0. Define f (0,0) = 0,

and f (x,y) = 0 if y ̸= x2. Show that f is not continuous at (0,0) but that

lim
h→0

f (ha,hb)− f (0,0)
h

= 0

for (a,b) an arbitrary vector. This is called a Gateaux derivative. Thus the Gateaux
derivative exists at (0,0) in every direction but f is not even continuous there.

12. Let

f (x,y)≡

{
xy4

x2+y8 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

Show that this function is not continuous at (0,0) but that the Gateaux derivative

lim
h→0

f (ha,hb)− f (0,0)
h

exists and equals 0 for every vector (a,b).



4.12. EXERCISES 109

13. One of the big applications of the implicit function theorem is to the method of
Lagrange multipliers. The heuristic explanations usually given in beginning calculus
courses are specious. At least this is certainly true of the explanation I use all the
time based on pictures and geometric reasoning. They break down as soon as you
ask the obvious question whether there is a smooth curve through a point in the level
surface. In other words, why does the level surface even look the way we draw it in
these courses? To do the method of Lagrange multipliers correctly, you need to use
some sort of big theorem and the version involving the implicit function theorem is
likely the easiest. Using the implicit function theorem, prove the following theorem
which is the general method of Lagrange multipliers.

Theorem 4.12.1 Let U be an open subset of Rn and let f : U → R be a C1

function. Then if x0 ∈U, has the property that

gi (x0) = 0, i = 1, · · · ,m, gi a C1function, and x0 is either a local maximum or local
minimum of f on the intersection of the level sets {x : gi (x) = 0} i = 1, · · · ,m, and if
some m×m submatrix of

Dg(x0)≡

 g1x1 (x0) g1x2 (x0) · · · g1xn (x0)
...

...
...

gmx1 (x0) gmx2 (x0) · · · gmxn (x0)


has nonzero determinant, then there exist scalars, λ 1, · · · ,λ m such that fx1 (x0)

...
fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (4.26)

holds.

Hint: Let F : U×R→ Rm+1 be defined by

F(x,a)≡


f (x)−a
g1 (x)

...
gm (x)

 . (4.27)

and if the condition holds on rank, and 4.26 fails to hold, then from linear algebra
you can use the implicit function theorem to solve for m+ 1 of the x variables in
terms of the others, a being one of them, these other variables being in an open set.
In particular a cannot be a local extremum unless 4.26 holds.

14. Now consider the queston about level surfaces. Suppose you have

S =
{

x ∈ Rn+1 : f (x) = c
}
.

We usually refer to this as a level surface in Rn+1 and we give examples of things
like ellipsoids and spheres. Then everyone is deceived into thinking they know what
is going on because of the examples. After this deception, and this is indeed what it
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is, we give specious arguments to justify the method of Lagrange multipliers (I have
spent my career giving such specious arguments.) by showing that the gradient of
the objective function is perpendicular to the direction vector of every smooth curve
lying in S at a point where the maximum or minimum exists using the chain rule.
One thing which is missing in this kind of stupidity is a consideration whether there
even exist such smooth curves. Use the implicit function theorem to give conditions
which imply the existence of such smooth curves near a point on S.

15. State and give a short proof of the inverse function theorem for normed linear spaces
using Theorem 4.10.1.

16. Prove Theorem 4.11.1. Hint: Let K be such that

h(1) = h(0)+
m

∑
k=1

1
k!

h(k) (0)+K.

Now define

g(u)≡ h(1)−

(
h(u)+

m

∑
k=1

1
k!

h(k) (u)(1−u)k +K (1−u)m+1

)

Then g(0) = 0 and g(1) = 0 so by the mean value theorem, there is t ∈ (0,1) where
g′ (t) = 0. Compute g′ (u) and simplify then choose the t just mentioned and solve
for K.

17. Let f : R2×R→ R2

f(x,y,λ ) =
(

x+ xy+ y2 + sin(λ )
x+ y2− x2 +λ

)

Then f(0,0,λ ) = 0, D1f(x,y,λ ) =
(

1+ y x+2y
1−2x 2y

)
so

D1f((0,0) ,0) =
(

1 0
1 0

)
.

Thus you can’t say f(x,y,λ ) = 0 defines (x,y) as a function of λ near (0,0,0). How-
ever, let

Q

(
α

β

)
≡

(
1/2 1/2
1/2 1/2

)(
α

β

)
=

(
α+β

2
α+β

2

)

(I−Q)

(
α

β

)
=

(
α

β

)
−

(
α+β

2
α+β

2

)
=

(
1
2 α− 1

2 β

1
2 β − 1

2 α

)

The equation f(x,y,λ ) = 0 can be written in the form

Qf(x,y,λ ) =

(
− 1

2 x2 + 1
2 xy+ x+ y2 + 1

2 λ + 1
2 sinλ

− 1
2 x2 + 1

2 xy+ x+ y2 + 1
2 λ + 1

2 sinλ

)
= 0 (4.28)
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(I−Q) f(x,y,λ ) =
( 1

2 x2 + 1
2 yx− 1

2 λ + 1
2 sinλ

− 1
2 x2− 1

2 yx+ 1
2 λ − 1

2 sinλ

)
= 0

DxQf(0,0,0) =
(

1
1

)
which is one to one on R. Indeed, if

(
1
1

)
u =

(
0
0

)
,

then u = 0. By Theorem 4.10.1, the first equation in 4.28 defines x = x(y,λ ) for
small y,λ . Also, you know it is a Ck function for every k so you can use Taylor
approximation for functions of many variables to approximate x(y,λ ). In the top
equation, xy = 0. Also xλ = −1 so x(y,λ ) ≈ −λ other than higher order terms for
small y,λ . Now plug in to the bottom equation

1
2

x2 (y,λ )+
1
2

yx(y,λ )− 1
2

λ +
1
2

sinλ

=
1
2
(−λ )2 +

1
2

y(−λ )− 1
2

λ +
1
2

sinλ = 0

Solve this for y to find y(λ ) = −1+ sin(λ )
λ

+λ at least approximately. This kind of
procedure is called the Lyapunov Schmidt procedure. It deals with the case where
the partial derivative used in the statement of the implicit function theorem is not
invertible. Note how it was possible to solve for a solution f(x,y,λ ) = 0 in this
example.

18. Let f((x,y) ,λ ) =
(

x+ xy+ y2 + xsin(λ )
x+ y2− x2 + xλ

)
. One solution to f((x,y) ,λ ) = 0 is

x(λ ) = y(λ ) = 0. Use the above procedure to show there is a nonzero solution to
this non-linear system of equations for small λ .

19. Let X ,Y be finite dimensional vector spaces and let L ∈L (X ,Y ). Let {Lx1, ...,Lxm}
be a basis for L(X). Show that if {z1, ...,zr} is a basis for ker(L) , then a basis
for X is {x1, ...,xm,z1, ...,zr} is a basis for X . Show that L is one to one on X1 ≡
span(x1, ...,xm) .

20. Go through the details of the following argument. Let f : U ⊆ Rn×Rm→ Rn where
U is open in Rn×Rm,(0,0) ∈ U . Let f be Ck for k ≥ 1. Also suppose f(0,0) =
0. If L = D1f(0,0) and if L−1 exists, then by the implicit function theorem, the
equation f(x,λ ) = 0 defines x = x(λ ) for small λ and x is Ck. Let {y1, ...,ym}
be a basis for L(Rn) and enlarge to get {y1, ...,ym,wm+1, ...,wn} as a basis for Rn.
Letting Lxk = yk use the above problem to have a basis for X which is of the form
{x1, ...,xm,zm+1, ...,zn} with {zm+1, ...,zn} a basis for ker(L) . Thus, from the above
problem L is one to one on X1 ≡ span(x1, ...,xm) . For x̂ ∈ X1, show Dx̂f(0,0) is the
restriction of L to X1 and so Dx̂f(0,0) is one to one on X1. Now define the linear map
Q : Rn→ Rn by Q

(
∑

m
k=1 akyk +∑

n
k=m+1 bkwk

)
≡ ∑

m
k=1 akyk. Thus Q2 = Q. We can

write the original equations f(x,λ ) = 0 as

Qf(x̂, x̃,λ ) = Qf(x,λ ) = 0, x̃ ∈ ker(L)
(I−Q) f(x̂, x̃,λ ) = 0

Thus Qf(x,λ )∈ span(y1, ...,ym)≡Y1. Now show that for x̂ the variable in X1, and if
v∈ X1, and Dx̂Qf(0,0,0)v = 0, then v = 0 and so we can apply the implicit function
theorem to obtain x̂ = x̂(x̃,λ ) as the solution to Qf(x,λ ) = 0 for x̃,λ small where
here x̃ is in ker(L). Since everything in sight is Ck, one can use Taylor series for
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functions of many variables to approximate the solution in these two equations. See
the Taylor formula 4.25. This is the general idea in the above two problems.



Chapter 5

Line Integrals and Curves
This chapter is on integrals involving one real variable of integration. I will present this in
terms of line integrals and point out that the usual Riemann integral which I assume has
been seen by the reader comes as a special case. As above, the usual Euclidean norm is
indicated by |·|.

5.1 Existence and Definition
Definition 5.1.1 Let γ : [a,b]→Rp be a function. Then γ is of bounded variation if

sup

{
n

∑
i=1
|γ (ti)− γ (ti−1)| : a = t0 < · · ·< tn = b

}
≡V (γ, [a,b])< ∞

where the sums are taken over all possible lists, {a = t0 < · · ·< tn = b} . The set of points
γ ([a,b]) will also be denoted by γ∗. When γ is one to one on [a,b) and continuous on [a,b]
we call γ∗ a simple curve. You might have γ (a) = γ (b) when it is called a simple closed
curve.

The idea is that it makes sense to talk of the length of the curve γ ([a,b]) , defined as
V (γ, [a,b]) . For this reason, in the case that γ is continuous, such an image of a bounded
variation function is called a rectifiable curve.

Definition 5.1.2 Let γ : [a,b]→ Rp be of bounded variation and let f : γ∗ → Rp.
Letting P≡ {t0, · · · , tn} where a = t0 < t1 < · · ·< tn = b, define

∥P∥ ≡max
{∣∣t j− t j−1

∣∣ : j = 1, · · · ,n
}

and the Riemann sum by

S (P)≡
n

∑
j=1

f(γ (τ j)) ·
(
γ (t j)− γ

(
t j−1

))
where τ j ∈

[
t j−1, t j

]
. (Note this notation is a little sloppy because it does not identify the

specific point τ j ∈
[
t j−1, t j

]
used. It is understood that this point is arbitrary.) Define∫

γ
f · dγ as the unique number which satisfies the following condition. For all ε > 0 there

exists a δ > 0 such that if ∥P∥ ≤ δ , then∣∣∣∣∫
γ

f ·dγ−S (P)
∣∣∣∣< ε.

Sometimes this is written as
∫

γ
f · dγ ≡ lim∥P∥→0 S (P) . The set of points in the curve,

γ ([a,b]) will be denoted sometimes by γ∗. Also, when convenient, I will write ∑P to denote
a Riemann sum.

Then γ∗ is a set of points in Rp and as t moves from a to b, γ (t) moves from γ (a) to
γ (b) . Thus γ∗ has a first point and a last point.

113
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Note that from the above definition, it is obvious that the line integral is linear. Simply
let Pn refer to a uniform parition of [a,b] and let τn

j be the midpoint of
[
tn

j−1, t
n
j

]
. Then for

a,b scalars and f,g vector valued functions which have integrals,

a
∫

γ

f ·dγ +b
∫

γ

g ·dγ

=

 limn→∞ a∑Pn f
(

γ

(
τn

j

))
·
(

γ

(
tn

j

)
− γ

(
tn

j−1

))
+ limn→∞ b∑Pn g

(
γ

(
τn

j

))
·
(

γ

(
tn

j

)
− γ

(
tn

j−1

)) 
= lim

n→∞
∑
Pn

(
af
(
γ
(
τ

n
j
))

+bg
(
γ
(
τ

n
j
)))
·
(
γ
(
tn

j
)
− γ
(
tn

j−1
))

≡
∫

γ

(af+bg) ·dγ

Another issue is whether the integral depends on the parametrization associated with γ∗

or only on γ∗ and the direction of motion over γ∗. If φ : [c,d]→ [a,b] is a continuous
nondecreasing function, then γ ◦φ : [c,d]→ Rp is also of bounded variation and yields the
same set of points in Rp with the same first and last points. The next theorem explains that
one can use either γ or γ ◦φ and get the same integral.

5.1.1 Change of Parameter

Theorem 5.1.3 Let φ be continuous and non-decreasing and γ is continuous and
bounded variation. Then assuming that

∫
γ

f ·dγ exists, so does
∫

γ◦φ fd (γ ◦φ) and∫
γ

f ·dγ =
∫

γ◦φ
fd (γ ◦φ) . (5.1)

Proof: There exists δ > 0 such that if P is a partition of [a,b] such that ∥P∥ < δ ,

then
∣∣∣∫γ

f ·dγ−S (P)
∣∣∣ < ε. By Theorem 2.5.28, φ is uniformly continuous so there ex-

ists σ > 0 such that if Q is a partition of [c,d] with ∥Q∥ < σ ,Q = {s0, · · · ,sn} , then∣∣φ (s j)−φ
(
s j−1

)∣∣< δ . Thus letting P denote the points in [a,b] given by φ (s j) for s j ∈Q,
it follows that ∥P∥< δ and so∣∣∣∣∣

∫
γ

f ·dγ−
n

∑
j=1

f(γ (φ (τ j))) ·
(
γ (φ (s j))− γ

(
φ
(
s j−1

)))∣∣∣∣∣< ε

where τ j ∈
[
s j−1,s j

]
. Therefore, from the definition 5.1 holds and

∫
γ◦φ f · d (γ ◦φ) exists

and equals
∫

γ
f ·dγ . ■

This theorem shows that
∫

γ
f ·dγ is independent of the particular parametrization γ used

in its computation in the sense that if φ is any nondecreasing continuous function from
another interval, [c,d] , mapping onto [a,b] , then the same value is obtained by replacing γ

with γ ◦φ .

Lemma 5.1.4 Let φ : I → R be a function and I is an interval and suppose φ is 1−
1 and continuous on I. Then φ is either strictly increasing or strictly decreasing on I.
Furthermore, if φ is one to one and continuous on [a,b] then φ

−1 is continuous.
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Proof: First it is shown that φ is either strictly increasing or strictly decreasing on if I
is an open interval.

If φ is not strictly decreasing on I, then there exists x1 < y1, x1,y1 ∈ (a,b) such that
(φ (y1)−φ (x1))(y1− x1)> 0. If for some other pair of points, x2 < y2 with x2,y2 ∈ (a,b) ,
the above inequality does not hold, then since φ is 1− 1, (φ (y2)−φ (x2))(y2− x2) < 0.
Let xt ≡ tx1 +(1− t)x2 and yt ≡ ty1 +(1− t)y2. Then xt < yt for all t ∈ [0,1] because

tx1 ≤ ty1 and (1− t)x2 ≤ (1− t)y2

with strict inequality holding for at least one of these inequalities since not both t and
(1− t) can equal zero. Now define

h(t)≡ (φ (yt)−φ (xt))(yt − xt) .

Since h is a continuous function of t and h(0) < 0, while h(1) > 0, there exists t ∈ (0,1)
such that h(t) = 0. Therefore, both xt and yt are points of I and φ (yt)− φ (xt) = 0 con-
tradicting the assumption that φ is one to one. It follows φ is either strictly increasing or
strictly decreasing on I.

This property of being either strictly increasing or strictly decreasing on the interior
(a,b) of an interval carries over to [a,b] by the continuity of φ in the case that φ is defined
and continuous on [a,b]. Suppose φ is strictly increasing on (a,b). If y ∈ (a,b) , is it true
that φ (b)> φ (y)? If not, you would have φ (b)≤ φ (y) . Since φ is one to one, these can’t
be equal and so φ (b)< φ (y) . But now, by the intermediate value theorem, there would be
z ∈ (y,b) with φ (z) = φ(b)+φ(y)

2 < φ (y) violating the fact that φ is increasing on (a,b) . It
is similar with the other end point.

It only remains to verify φ
−1 is continuous if φ is one to one on [a,b]. Suppose then that

sn→ s where sn and s are points of φ ([a,b]) . It is desired to verify that φ
−1 (sn)→ φ

−1 (s) .
If this does not happen, there exists ε > 0 and a subsequence, still denoted by sn such that∣∣φ−1 (sn)−φ

−1 (s)
∣∣ ≥ ε. Using the sequential compactness of [a,b] there exists a further

subsequence, still denoted by n, such that φ
−1 (sn)→ t1 ∈ [a,b] , t1 ̸= φ

−1 (s) . Then by
continuity of φ , it follows sn→ φ (t1) and so s = φ (t1) . Therefore, t1 = φ

−1 (s) after all. ■
If γ,η are two continuous one to one parametrizations of a curve C, then it follows that

η = γ◦
(
γ−1 ◦η

)
where γ−1 ◦η is either increasing or decreasing by Lemma 5.1.4.

Given a parametrization γ of a curve and an interval [a,b] on which γ is defined, there
is a natural orientation corresponding to increasing t ∈ [a,b]. Sometimes people write −γ

to denote the opposite orientation. To obtain this, you could write a parametrization for
it as −γ (t) ≡ γ (b− t) for t ∈ [0,b−a]. Of course this encounters the points of γ∗ in the
opposite order. Therefore, in the above definition, −

∫
γ

f·dγ =
∫

γ
f·d (−γ) .The Riemann

sums for
∫

γ
f·d (−γ) are −1 times the Riemann sums for

∫
γ

f·dγ .

5.1.2 Existence
The fundamental result in this subject is the following theorem.

Theorem 5.1.5 Let f : γ∗→ Rp be continuous and let γ : [a,b]→ Rp be continuous
and of bounded variation. Then

∫
γ

f ·dγ exists. Also letting δ m > 0 be such that |t− s|< δ m

implies ∥f(γ (t))− f(γ (s))∥< 1
m ,∣∣∣∣∫
γ

f ·dγ−S (P)
∣∣∣∣≤ 2V (γ, [a,b])

m
(5.2)
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whenever ∥P∥< δ m, the δ m decreasing in m.

Proof: The function, f ◦ γ , is uniformly continuous because it is defined on a com-
pact set. Therefore, there exists a decreasing sequence of positive numbers {δ m} such that
if |s− t| < δ m, then |f(γ (t))− f(γ (s))| < 1

m . Let Fm ≡ {S (P) : ∥P∥< δ m}.Thus Fm is a
closed set. (The symbol, S (P) in the above definition, means to include all sums corre-
sponding to P for any choice of τ j.) It is shown that

diam(Fm)≤
2V (γ, [a,b])

m
(5.3)

and then it will follow there exists a unique point, I ∈ ∩∞
m=1Fm. This is because R is

complete. It will then follow I =
∫

γ
f(t) · dγ (t) . To verify 5.3, it suffices to verify that

whenever P and Q are partitions satisfying ∥P∥< δ m and ∥Q∥< δ m,

|S (P)−S (Q)| ≤ 2
m

V (γ, [a,b]) . (5.4)

Suppose ∥P∥ < δ m and Q ⊇ P. Then also ∥Q∥ < δ m. To begin with, suppose that
P≡

{
t0, · · · , tp, · · · , tn

}
and Q≡

{
t0, · · · , tp−1, t∗, tp, · · · , tn

}
. Thus Q contains only one more

point than P. Letting S (Q) and S (P) be Riemann Steiltjes sums,

S (Q)≡
p−1

∑
j=1

f(γ (σ j)) ·
(
γ (t j)− γ

(
t j−1

))
+ f(γ (σ∗)) · (γ (t∗)− γ (tp−1))

+f(γ (σ∗)) · (γ (tp)− γ (t∗))+
n

∑
j=p+1

f(γ (σ j)) ·
(
γ (t j)− γ

(
t j−1

))
,

S (P)≡
p−1

∑
j=1

f(γ (τ j)) ·
(
γ (t j)− γ

(
t j−1

))
+

=f(γ(τ p))·(γ(tp)−γ(tp−1))︷ ︸︸ ︷
f(γ (τ p)) · (γ (t∗)− γ (tp−1))+ f(γ (τ p)) · (γ (tp)− γ (t∗))

+
n

∑
j=p+1

f(γ (τ j)) ·
(
γ (t j)− γ

(
t j−1

))
.

Therefore, since
∣∣(f(γ (σ j))− f(γ (τ j))) ·

(
γ (t j)− γ

(
t j−1

))∣∣≤ 1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣ ,
|S (P)−S (Q)| ≤

p−1

∑
j=1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣+ 1
m

∣∣γ (t∗)− γ (tp−1)
∣∣+

1
m

∣∣γ (tp)− γ (t∗)
∣∣+ n

∑
j=p+1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣≤ 1
m

V (γ, [a,b]) . (5.5)

Clearly the extreme inequalities would be valid in 5.5 if Q had more than one extra point.
You simply do the above trick more than one time. Let S (P) and S (Q) be Riemann Steiltjes
sums for which ∥P∥ and ∥Q∥ are less than δ m and let R≡ P∪Q. Then from what was just
observed,

|S (P)−S (Q)| ≤ |S (P)−S (R)|+ |S (R)−S (Q)| ≤ 2
m

V (γ, [a,b]) .
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and this shows 5.4 which proves 5.3. Therefore, there exists a unique number, I ∈ ∩∞
m=1Fm

which satisfies the definition of
∫

γ
f ·dγ. ■

In case the existence and uniqueness of I is not clear, note that each Fm is closed and if
you pick a point from each, you get a Cauchy sequence. Thus it converges to a point of Fm
for each m. Hence there is a point in all these Fm and since their diameters converge to 0,
there can be no more than one point. This argument would work just as well if γ had values
in some Banach space.

5.1.3 The Riemann Integral
The reader is assumed to be familiar with the Riemann integral but if not, the above is more
general and gives the principal results for the Riemann integral of continuous functions very
easily. Therefore, here is a slight digression to show this. It is sometimes useful to consider
Riemann integrals for functions which have values in a Banach space X . The following
includes this case also. First is the definition.

Definition 5.1.6 Let f : [a,b]→X where X is a Banach space and define a Riemann
sum by

S (P)≡
n

∑
j=1

f (τ j)
(
t j− t j−1

)
∈ X

where τ j ∈
[
t j−1, t j

]
. (Note this notation is a little sloppy because it does not identify the

specific point τ j ∈
[
t j−1, t j

]
used. It is understood that this point is arbitrary.) Define∫ b

a f (t)dt as the unique element of X which satisfies the following condition. For all ε > 0
there exists a δ > 0 such that if ∥P∥ ≤ δ , then∣∣∣∣∫ b

a
f (t)dt−S (P)

∣∣∣∣< ε.

Sometimes this is written as
∫ b

a f (t)dt ≡ lim∥P∥→0 S (P) .

The following is the corresponding theorem for continuous functions being Riemann
integrable. I am mainly featuring continuous functions in what follows to avoid technical
considerations. However, everything holds for Riemann integrable functions also.

Theorem 5.1.7 Let f : [a,b]→ X be continuous where X is a Banach space. Then∫ b
a f (t)dt exists. Also letting δ m > 0 be such that |t− s|< δ m implies ∥ f (t)− f (s)∥< 1

m ,∣∣∣∣∫ b

a
f (t)dt−S (P)

∣∣∣∣≤ 2(b−a)
m

(5.6)

whenever ∥P∥< δ m. Also one obtains the triangle inequality for a < b∥∥∥∥∫ b

a
f (t)dt

∥∥∥∥≤ ∫ b

a
∥ f (t)∥dt

The latter holds whenever f ,∥ f∥ are each Riemann integrable. (Actually, if f is Riemann
integrable then ∥ f∥ will be also.) Also the integral is linear. If f ,g are Riemann integrable,
then for α,β scalars,∫ b

a
α f (t)+βg(t)dt = α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt
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Also if a < b < c and f is Riemann integrable, on [a,c] , then
∫ c

a f (t)dt =
∫ b

a f (t)dt +∫ c
b f (t)dt.

Proof: The first part is just a slightly simpler version of the proof of Theorem 5.1.5.
It remains to consider the triangle inequality and other claims. Let S (P, f ) be a Riemann
sum for f . Then if f is continuous with values in X , it follows from the triangle inequality
that t → ∥ f (t)∥ is also continuous, into R. Then there is a sequence of partitions Pm with
∥Pm∥→ 0 such that∥∥∥∥∫ b

a
f (t)dt

∥∥∥∥= lim
m→∞
∥S (Pm, f )∥ ≤ lim

m→∞
S (Pm,∥ f∥) =

∫ b

a
∥ f (t)∥dt

The claim about linearity follows right away from taking a limit of sums which are linear.
Letting S (Pm, f )→

∫ b
a f (t)dt,S (Pm,g)→

∫ b
a g(t)dt where these Riemann sums involve

the same intermediate points,

α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt = lim

m→∞
(αS (Pm, f )+βS (Pm,g))

= lim
m→∞

S (Pm,α f +βg) =
∫ b

a
α f (t)+βg(t)dt

As for the last part, let S (Pm, f )→
∫ b

a f (t)dt and S
(
P̂m, f

)
→
∫ c

b f (t)dt. Then, letting
Qm = Pm∪ P̂m, we can assume b ∈ Qm and S (Qm, f )→

∫ c
a f (t)dt. Then∫ c

a
f (t)dt = lim

m→∞
S (Qm, f ) = lim

m→∞

(
S (Pm, f )+S

(
P̂m, f

))
=

∫ b

a
f (t)dt +

∫ c

b
f (t)dt.■

Working a little harder, one can show it suffices to have f ,g both be only Riemann
integrable, not necessarily continuous in all of the above. It is convenient to be able to say
that the function is integrable because it is continuous.

Also one obtains easily the fundamental theorem of calculus.

Theorem 5.1.8 Let f : [a,b]→ X be continuous and let F (t) ≡
∫ t

a f (s)ds. Then
F ′ (t) = f (t) for all t ∈ [a,b], where at the endpoints, the derivative means the appropriate
one sided derivative.

Proof: Let t ∈ [a,b) and let h be small and positive in [a,b).∥∥∥∥F (t +h)−F (t)
h

− f (t)
∥∥∥∥= ∥∥∥∥1

h

∫ t+h

t
f (s)ds− 1

h

∫ t+h

t
f (t)ds

∥∥∥∥
≤ 1

h

∫ t+h

t
∥ f (s)− f (t)∥ds≤ 1

h

∫ t+h

t
εds = ε

provided that h is small enough due to continuity of f at t. Next suppose t ∈ (a,b]. Then
consider

∥∥∥F(t+h)−F(t)
h − f (t)

∥∥∥ where h < 0. Letting k =−h,

F (t +h)−F (t)
h

=
F (t)−F (t− k)

k
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and if k is sufficiently small, the same argument holds and you obtain for small negative h∣∣∣∣F (t +h)−F (t)
h

− f (t)
∣∣∣∣= ∣∣∣∣F (t)−F (t− k)

k
− f (t)

∣∣∣∣≤ 1
k

∫ t

t−k
| f (s)− f (t)|ds≤ ε

provided |h|= |k| is small enough. Hence F ′ (t) = f (t) for all t ∈ (a,b) and this is also true
for one sided derivatives at the end points. ■

The next lemma is called the mean value inequality.

Lemma 5.1.9 Let Y be a normed vector space and suppose h : [a,b]→ Y is differen-
tiable and satisfies ∥h′ (t)∥ ≤M, M ≥ 0. Then ∥h(b)−h(a)∥ ≤M (b−a) .

Proof: Let ε > 0 be given and let

S≡ {t ∈ [a,b] : for all s ∈ [a, t] ,∥h(s)−h(a)∥ ≤ (M+ ε)(s−a)}

Then a ∈ S. Let t = supS. Then by continuity of h it follows

∥h(t)−h(a)∥= (M+ ε)(t−a) (5.7)

Suppose t < b. Then there exist positive numbers, hk decreasing to 0 such that

∥h(t +hk)−h(a)∥> (M+ ε)(t +hk−a)

and now it follows from 5.7 and the triangle inequality that

∥h(t +hk)−h(t)∥+∥h(t)−h(a)∥
= ∥h(t +hk)−h(t)∥+(M+ ε)(t−a)> (M+ ε)(t +hk−a)

and so
∥h(t +hk)−h(t)∥> (M+ ε)hk

Now dividing by hk and letting k→∞, ∥h′ (t)∥ ≥M+ε , a contradiction. Thus t = 1. Since
ε is arbitrary, the conclusion of the lemma follows. ■

Corollary 5.1.10 Let f : [a,b]→ X be continuous. Suppose F ′ (x) = f (x) for all x ∈
(a,b) where F is a continuous function on [a,b]. Then

∫ b
a f (x)dx = F (b)−F (a) . Also if

f is real valued, there exists y ∈ (a,b) with
∫ b

a f (x)dx = f (y)(b−a).

Proof: Let G(t)≡
∫ t

a f (s)ds. Then

G(b)−G(a)− (F (b)−F (a)) = (G(b)−F (b))− (G(a)−F (a)) .

(G−F)′ (x) = 0 so by Lemma 5.1.9,

∥(G(b)−F (b))− (G(a)−F (a))∥= 0.

Thus, since G(a) = 0, G(b) =
∫ b

a f (s)ds = F (b)−F (a). The last assertion is from the
mean value theorem. ■

Although the main interest is in continuous functions, here is an important case.

Theorem 5.1.11 Let f be decreasing and real valued on [a,b] then f is Riemann
integrable.
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Proof: Let Sn be the closure of all Riemann sums for f corresponding to a partition
P which has ∥P∥ ≤ 1/n. Let P={t0, ..., tm} be a partition and let ∑

m
i=1 f (τ i)(ti− ti−1)

and ∑
m
i=1 f (τ̂ i)(ti− ti−1) be two Riemann sums for such a partition P. Then, since f is

decreasing,∣∣∣∣∣ m

∑
i=1

f (τ i)(ti− ti−1)−
m

∑
i=1

f (τ̂ i)(ti− ti−1)

∣∣∣∣∣ ≤ m

∑
i=1

( f (ti−1)− f (ti))(ti− ti−1)

≤ ∥P∥( f (a)− f (b))

It follows that the diameter of Sn is no more than 1
n ( f (a)− f (b)). Therefore, there is a

unique point in ∩∞
n=1Sn and from the definition, lim∥P∥→0 S (P) exists and is the integral. ■

The same proof shows that increasing functions are Riemann integrable, and then this
generalizes to any function which is either increasing or decreasing on each of finitely many
non-overlapping intervals whose union is [a,b] will also be Riemann integrable. Thus all
reasonable real valued functions are Riemann integrable.

5.2 Estimates and Approximations
The following theorem follows easily from the above definitions and theorem.

Theorem 5.2.1 Let f ∈ C (γ∗) and let γ : [a,b]→ Rp be of bounded variation and
continuous. Let M be at least as large as the maximum of |f| on γ∗. That is,

M ≥max{|f◦ γ (t)| : t ∈ [a,b]} . (5.8)

Then ∣∣∣∣∫
γ

f ·dγ

∣∣∣∣≤MV (γ, [a,b]) . (5.9)

Also if {fn} is a sequence of functions continuous on γ∗ which is converging uniformly to
the function f on γ∗, then

lim
n→∞

∫
γ

fn ·dγ =
∫

γ

f ·dγ. (5.10)

Proof: Let 5.8 hold. From the proof of Theorem 5.1.5 on existence, when ∥P∥ <
δ m,

∣∣∣∫γ
f ·dγ−S (P)

∣∣∣≤ 2
mV (γ, [a,b]) and so

∣∣∣∫γ
f ·dγ

∣∣∣≤ |S (P)|+ 2
mV (γ, [a,b]) Then by the

triangle inequality and Cauchy Schwarz inequality,

≤
n

∑
j=1

M
∣∣γ (t j)− γ

(
t j−1

)∣∣+ 2
m

V (γ, [a,b])

≤ MV (γ, [a,b])+
2
m

V (γ, [a,b]) .

This proves 5.9 since m is arbitrary. To verify 5.10 use the above inequality to write∣∣∣∣∫
γ

f ·dγ−
∫

γ

fn ·dγ

∣∣∣∣= ∣∣∣∣∫
γ

(f− fn) ·dγ (t)
∣∣∣∣

≤max{|f◦ γ (t)− fn ◦ γ (t)| : t ∈ [a,b]}V (γ, [a,b]) .

Since the convergence is assumed to be uniform, this proves 5.10. ■
As an easy example of a curve of bounded variation, here is an easy lemma.
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Lemma 5.2.2 Let γ : [a,b] → Rp be in C1 ([a,b]) . Then V (γ, [a,b]) < ∞ so γ is of
bounded variation.

Proof: You can use Proposition 5.1.7 in the first inequality.
n

∑
j=1

∣∣γ (t j)− γ
(
t j−1

)∣∣ =
n

∑
j=1

∣∣∣∣∫ t j

t j−1

γ
′ (s)ds

∣∣∣∣≤ n

∑
j=1

∫ t j

t j−1

∣∣γ ′ (s)∣∣ds

≤
n

∑
j=1

∫ t j

t j−1

∥∥γ
′∥∥

∞
ds =

∥∥γ
′∥∥

∞
(b−a) .

Therefore it follows V (γ, [a,b])≤ ∥γ ′∥
∞
(b−a) . Here

∥γ∥
∞
= max{|γ (t)| : t ∈ [a,b]}

which exists by Theorem 2.5.26. ■

Theorem 5.2.3 Let γ : [a,b]→ Rp be continuous and of bounded variation. Let Ω

be an open set containing γ∗ and let f : Ω→ Rp be continuous, and let ε > 0 be given.
Then there exists η : [a,b]→Rp such that η (a) = γ (a) , γ (b) = η (b) , η ∈C1 ([a,b]) , and

∥γ−η∥ ≤ ε, ∥γ−η∥ ≡max{|γ (t)−η (t)| : t ∈ [a,b]} . (5.11)∣∣∣∣∫
γ

f ·dγ−
∫

η

fdη

∣∣∣∣< ε, all z ∈ K (5.12)

V (η , [a,b])≤V (γ, [a,b]) , (5.13)

Proof: Extend γ to be defined on allR according to γ (t)= γ (a) if t < a and γ (t)= γ (b)
if t > b. Now define for 0≤ h≤ 1.

γh (t)≡
1
2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

γ (s)ds, γ0 (t)≡ γ (t) ,

where the integral is defined in the obvious way. That is, the jth component of γh (t)

will be 1
2h
∫ t+ 2h

(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

γ j (s)ds. Note that (t,h)→ γh (t) is clearly continuous on the

compact set [a,b]× [0,1] if γ0 (0)≡ γ (t). This is from the fundamental theorem of calculus,
Theorem 5.1.8, and the observation that

t +
2h

(b−a)
(t−a)−

(
−2h+ t +

2h
(b−a)

(t−a)
)
= 2h

Thus (t,h) → γh (t) is uniformly continuous on this set by Theorem 2.5.28. Also, the
definition implies

γh (b) =
1
2h

∫ b+2h

b
γ (s)ds = γ (b) , γh (a) =

1
2h

∫ a

a−2h
γ (s)ds = γ (a) .

By continuity of γ, the chain rule from beginning calculus, and the fundamental theorem
of calculus, Theorem 5.1.8,γ ′h (t) =

1
2h

{
γ

(
t +

2h
b−a

(t−a)
)(

1+
2h

b−a

)
−

γ

(
−2h+ t +

2h
b−a

(t−a)
)(

1+
2h

b−a

)}
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and so γh ∈C1 ([a,b]) . Next is a fundamental estimate.

Lemma 5.2.4 V (γh, [a,b])≤V (γ, [a,b]) .

Proof: Let a = t0 < t1 < · · ·< tn = b. Then using the definition of γh and changing the
variables to make all integrals over [0,2h] ,

n

∑
j=1

∣∣γh (t j)− γh
(
t j−1

)∣∣= n

∑
j=1

∣∣∣∣∣
[

1
2h
∫ 2h

0 γ
(
s−2h+ t j +

2h
b−a (t j−a)

)
−γ
(
s−2h+ t j−1 +

2h
b−a

(
t j−1−a

)) ]∣∣∣∣∣
≤ 1

2h

∫ 2h

0

n

∑
j=1

∣∣∣∣ γ
(
s−2h+ t j +

2h
b−a (t j−a)

)
−γ
(
s−2h+ t j−1 +

2h
b−a

(
t j−1−a

)) ∣∣∣∣ds

For a given s∈ [0,2h] , the points, s−2h+ t j +
2h

b−a (t j−a) for j = 1, · · · ,n form an increas-
ing list of points in the interval [a−2h,b+2h] and so the integrand is bounded above by
V (γ, [a−2h,b+2h]) =V (γ, [a,b]) . It follows

n

∑
j=1

∣∣γh (t j)− γh
(
t j−1

)∣∣≤V (γ, [a,b]) so V (γh, [a,b])≤V (γ, [a,b]) ■

With this lemma the proof of Theorem 5.2.3 can be completed without too much trou-
ble. By uniform continuity of γ, if h is small enough, say h < δ 1, then for all t ∈ [a,b] ,

|γ (t)− γh (t)| ≤
1

2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

|γ (s)− γ (t)|ds

<
1

2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

εds = ε (5.14)

This proves 5.11. It remains to verify the approximation of the integrals.
Let P = {t0, ..., tn}

Sh (P) ≡
n

∑
k=1

f(γh (τk)) · (γh (tk)− γh (tk−1)) (5.15)

S (P) ≡
n

∑
k=1

f(γ (τk)) · (γ (tk)− γ (tk−1)) (5.16)

From estimates of Theorem 5.1.5 and the fact that the total variation of γh is no more
than that of γ , there exists δ 2 such that if ∥P∥< δ 2, then∣∣∣∣∫

γ

f ·dγ (t)−S (P)
∣∣∣∣< ε

3
,

∣∣∣∣∫
γh

f ·dγh (t)−Sh (P)
∣∣∣∣< ε

3
(5.17)

Then consider |S (P)−Sh (P)| where 0 < h < min(δ 1,δ 2). For such a fixed P, choose h
small enough in 5.15, 5.16 that |S (P)−Sh (P)|< ε

3 . Then for this h and P,∣∣∣∣∫
γ

f ·dγ (t)−
∫

γh

f ·dγh (t)
∣∣∣∣

≤
∣∣∣∣∫

γ

f ·dγ (t)−S (P)
∣∣∣∣+ |S (P)−Sh (P)|+

∣∣∣∣∫
γh

f ·dγh (t)−Sh (P)
∣∣∣∣

< ε/3+ ε/3+ ε/3 = ε
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Let η ≡ γh. ■
This is a very useful theorem because if γ is C1 ([a,b]) , it is easy to calculate

∫
γ

f · dγ

and the above theorem allows a reduction to the case where γ is C1. The next theorem
shows how easy it is to compute these integrals in the case where γ is C1.

Theorem 5.2.5 If f : γ∗→Rp is continuous and γ : [a,b]→Rp is in C1 ([a,b]) , then∫
γ

f ·dγ =
∫ b

a
f(γ (t)) · γ ′ (t)dt. (5.18)

Proof: Let P = {t0, · · · , tn} . Then

S (P) =
n

∑
k=1

f(γ (σ k)) · (γ (tk)− γ (tk−1)) =
n

∑
k=1

p

∑
i=1

fi (γ (σ k))(γ i (tk)− γ i (tk−1))

By the mean value theorem, this is ∑
n
k=1 ∑

p
i=1 fi (γ (σ k))γ ′i

(
τ i

k

)
(tk− tk−1) ,τ

i
k ∈ (tk−1, tk) .

This is
n

∑
k=1

p

∑
i=1

fi (γ (σ k))γ
′
i (σ k)(tk− tk−1)+ e(∥P∥)

where lim∥P∥→0 e(∥P∥) = 0. This follows from the uniform continuity of γ ′i. Then

∫
γ

f ·dγ = lim
∥P∥→0

S (P) = lim
∥P∥→0

(
n

∑
k=1

p

∑
i=1

fi (γ (σ k))γ
′
i (σ k)(tk− tk−1)+ e(∥P∥)

)

=
∫ b

a
f(γ (t)) · γ ′ (t)dt ■

5.2.1 Finding the Length of a C1 Curve

It is very easy to find the length of a C1 curve.

Proposition 5.2.6 Let γ : [a,b]→ Rp be C1. Then V (γ) =
∫ b

a |γ ′ (t)|dt

Proof: Let P̂ = {t0, · · · , tm} be such that

V (γ)− ε ≤
m

∑
j=1

∣∣γ (t j)− γ
(
t j−1

)∣∣≤V (γ)

Now using the same notation, let P = {t0, · · · , tn} be a partition containing P̂ so that the
above inequality will hold for all such P.

n

∑
j=1

∣∣γ (t j)− γ
(
t j−1

)∣∣= n

∑
j=1

∣∣∣∣∫ t j

t j−1

γ
′ (s)ds

∣∣∣∣= n

∑
j=1

(
p

∑
k=1

(∫ t j

t j−1

γ
′
k (s)ds

)2
)1/2

=
n

∑
j=1

(
p

∑
k=1

(
γ
′
k
(
sk j
)(

t j− t j−1
))2

)1/2

=
n

∑
j=1

(
p

∑
k=1

γ
′
k
(
sk j
)2

)1/2 (
t j− t j−1

)
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where sk j ∈
(
t j−1, t j

)
. By uniform continuity of γ ′, if ∥P∥ is small enough, the expression

on the right equals

n

∑
j=1

( p

∑
k=1

γ
′
k
(
t j−1

)2

)1/2

+ ê(∥P∥)

(t j− t j−1
)

=
n

∑
j=1

(
p

∑
k=1

γ
′
k
(
t j−1

)2

)1/2 (
t j− t j−1

)
+ e(∥P∥)

=
n

∑
j=1

∣∣γ ′ (t j−1
)∣∣(t j− t j−1

)
+ e(∥P∥)

where lim∥P∥→0 e(∥P∥) = 0. Then letting ∥P∥→ 0, the above converges to
∫ b

a |γ ′ (t)|dt and
so

V (γ)− ε ≤
∫ b

a

∣∣γ ′ (t)∣∣dt ≤V (γ)

since ε is arbitrary, this shows V (γ) =
∫ b

a |γ ′ (t)|dt. ■

Example 5.2.7 Let γ (t) ≡
(
t, t2, t

)
for t ∈ [0,1]. Find the length of the curve determined

by this parametrization.

|γ ′ (t)| =
√

2+4t2 and so the length of the curve is
∫ 1

0

√
2+4t2dt. You can use the

standard calculus gimmicks to find this integral or you could find it numerically. It equals
1
2 ln
(√

2+
√

3
)
+ 1

2

√
2
√

3.

5.2.2 Curves Defined in Pieces

Definition 5.2.8 If γk : [ak,bk]→ Rp is continuous, one to one on [ak,bk), and of
bounded variation, for k = 1, · · · ,m and γk (bk) = γk+1 (ak) , define∫

∑
m
k=1 γk

f ·dγ ≡
m

∑
k=1

∫
γk

f ·dγk. (5.19)

In addition to this, for γ : [a,b]→ Rp, define −γ : [a,b]→ Rp by −γ (t) ≡ γ (b+a− t) .
Thus γ simply traces out the points of γ∗ in the opposite order.

The following lemma is useful and follows quickly from Theorem 5.1.3. It shows that
when you string these finite variation curves together end to end, you could just as well
save trouble on the details and consider a single finite variation vector valued function.

Lemma 5.2.9 In the above definition where γk (bk) = γk+1 (ak), there exists a contin-
uous bounded variation function, γ one to one on γ−1 (γk[ak,bk)) which is defined on
some closed interval, [c,d] , such that γ ([c,d]) = ∪m

k=1γk ([ak,bk]) and γ (c) = γ1 (a1) while
γ (d) = γm (bm) . Furthermore, ∫

γ

f ·dγ =
m

∑
k=1

∫
γk

f ·dγk. (5.20)

If γ : [a,b]→ Rp is of bounded variation and continuous, then∫
γ

f ·dγ =−
∫
−γ

f ·dγ. (5.21)
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Proof: Consider the first claim about the intervals. It is obvious if m = 1. Suppose
then that it holds for m−1 and you have m intervals and curves. By induction, there exists[
ĉ, d̂
]

and γ̂ such that γ̂
([

ĉ, d̂
])

= ∪m−1
k=1 γk ([ak,bk]) with γ̂ (ĉ) = γ1 (a1) , γ̂

(
d̂
)
= γ (bm−1) ,

and by assumption, γk (bk) = γk+1 (ak) for k ≤ m− 1. I will describe an extension of γ̂ to[
ĉ, d̂ +bm−am

]
which will be defined as [c,d]. Thus the new interval coming after

[
ĉ, d̂
]

will be
[
d̂, d̂ +bm−am

]
γ (t)≡

{
γ̂ (t) if t ∈

[
ĉ, d̂
]

γm
(
t− d̂ +am

)
if t ∈

[
d̂, d̂ +bm−am

]
Now consider the claim in 5.20. In writing the Riemann sums, it can always be assumed

that the end points of the intervals γ−1 (γk ([ak,bk])) are in the partition since including
these points makes ∥P∥ no larger and the integral is defined in terms of smallness of ∥P∥.
Therefore, 5.20 follows from Theorem 5.1.3 applied to two different parametrizations of
γ∗k , the one coming from γ and the one coming from γk.

Finally consider the last claim. Say γ : [a,b]→ Rn. Then −γ (t) ≡ γ (a+b− t) and so
a typical Riemann sum for −γ would be

n

∑
i=1

f(γ (a+b− τ i)) · (γ (a+b− ti)− γ (a+b− ti−1)) , τ i ∈ [ti−1, ti]

=−
n

∑
i=1

f(γ (a+b− τ i)) · (γ (a+b− ti−1)− γ (a+b− ti))

Now a + b− τ i ∈ [a+b− ti,a+b− ti−1] and so the above is just a Riemann sum for
−
∫

γ
f·dγ . Thus, in the limit as ∥P∥→ 0, one obtains −

∫
γ

f·dγ . ■

5.3 Conservative Vector Fields
Recall the gradient of a scalar function x→ F (x) ,

(
Fx1 · · · Fxp

)T ≡ DFT the trans-
pose of the matrix of the derivative of F . (It is best not to worry too much about this
distinction between the gradient and the derivative at this point.)

Theorem 5.3.1 Let γ : [a,b]→ Rp be continuous and of bounded variation. Also
suppose ∇F = f on Ω, an open set containing γ∗ and f is continuous on Ω. Then

∫
γ

f ·dγ =

F (γ (b))−F (γ (a)) .

Proof: By Theorem 5.2.3 there exists η ∈C1 ([a,b]) such that γ (a)=η (a) , and γ (b)=

η (b) such that
∣∣∣∫γ

f ·dγ−
∫

η
f ·dη

∣∣∣< ε . Then from Theorem 5.2.5, since η is in C1 ([a,b]) ,
it follows from the chain rule and the fundamental theorem of calculus that∫

η

f ·dη =
∫ b

a
f(η (t))η

′ (t)dt =
∫ b

a

d
dt

F (η (t))dt

= F (η (b))−F (η (a)) = F (γ (b))−F (γ (a)) .

Therefore,
∣∣∣(F (γ (b))−F (γ (a)))−

∫
γ

f ·dγ

∣∣∣ < ε and since ε > 0 is arbitrary, this proves
the theorem. ■
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Corollary 5.3.2 If γ : [a,b]→ Rp is continuous, has bounded variation, is a closed
curve, γ (a) = γ (b) , and γ∗ ⊆Ω where Ω is an open set on which ∇F = f, then

∫
γ

f ·dγ = 0.

Theorem 5.3.3 Let Ω be a connected open set and let f : Ω→ Rp be continuous.
Then f has a potential F if and only if

∫
γ

f · dγ is path independent for all γ a bounded
variation curve such that γ∗ is contained in Ω. This means the above line integral depends
only on γ (a) and γ (b).

Proof: The first part was proved in Theorem 5.3.1. It remains to verify the existence of
a potential in the situation of path independence.

Let x0 ∈ Ω be fixed. Let S be the points x of Ω which have the property there is a
bounded variation curve joining x0 to x. Let γx0x denote such a curve. Note first that S is
nonempty. To see this, B(x0,r)⊆Ω for r small enough. Every x ∈ B(x0,r) is in S. Then S
is open because if x ∈ S, then B(x,r)⊆Ω for small enough r and if y ∈ B(x,r) , you could
go take γx0x and from x follow the straight line segment joining x to y. In addition to this,
Ω\S must also be open because if x∈Ω\S, then choosing B(x,r)⊆Ω, no point of B(x,r)
can be in S because then you could take the straight line segment from that point to x and
conclude that x ∈ S after all. Therefore, since Ω is connected, it follows Ω \ S = /0. Thus
for every x ∈ S, there exists γx0x, a bounded variation curve from x0 to x.

Define F (x) ≡
∫

γx0x
f · dγx0x. Then F is well defined by assumption. Now let lx(x+tek)

denote the linear segment from x to x+ tek. Thus to get to x+ tek you could first follow
γx0x to x and from there follow lx(x+tek) to x + tek. Hence F(x+tek)−F(x)

t = 1
t
∫

lx(x+tek)
f ·

dlx(x+tek) =
1
t
∫ t

0 f(x+ sek) · ekds→ fk (x) by continuity of f. Thus ∇F = f. ■

Corollary 5.3.4 Let Ω be a connected open set and f : Ω→ Rp. Then f has a potential
if and only if every closed, γ (a) = γ (b) , bounded variation curve contained in Ω has the
property that

∫
γ

f ·dγ = 0.

Proof: Using Lemma 5.2.9, this condition about closed curves is equivalent to the
condition that the line integrals of the above theorem are path independent. This proves the
corollary. ■

Such a vector valued function is called conservative. Summarizing the above we have
the following major theorem which is called the fundamental theorem of line integrals.

Theorem 5.3.5 Let f : Ω→Rp be a C1 vector field, meaning the partial derivatives
exist and are continuous. Also let Ω be open and connected. Then for γ a continuous
bounded variation curve, the following are equivalent.

1. f is conservative meaning f = ∇F.

2.
∫

γ
f·dγ is path independent whenever γ∗ ⊆Ω.

3.
∫

γ
f·dγ = 0 whenever γ is a closed curve, meaning that γ : [a,b]→ Rp,γ (a) = γ (b).

5.4 Orientation Of Curves
A curve C is a set of points of the form γ ([a,b]) where γ is one to one on [a,b). The curve
is a simple curve if γ is one to one on [a,b] and it is a simple closed curve if γ (a) = γ (b) .
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Definition 5.4.1 A set of points C ⊆ Rp is a simple curve if C = γ ([a,b]) for some
interval [a,b] where γ is continuous on [a,b] and one to one on [a,b). It is a simple curve if
γ is one to one on [a,b] and it is a simple closed curve if γ (a) = γ (b).

Lemma 5.4.2 C is a simple closed curve if and only if it is a one to one image of S1.
Here S1 is the unit circle in the plane x2 + y2 = 1.

Proof: Say C = γ
(
S1
)
. Then let η :[0,2π)→ S1 be defined by η (t) ≡ (cos t,sin t) .

Then it is clear from geometrical reasoning that η is one to one and continuous and also that
its inverse is continuous. To see the latter fairly easily, note that η−1 is continuous on S1\Aε

where Aε is the circular arc on S1 corresponding to the angle being in (2π−ε,2π) for each
ε > 0. This will account for all points of S1 for ε small enough. Then C = γ ◦η ([0,2π))
and if we use the same formula for η when t = 2π this shows C is a simple closed curve.

Conversely, if C is a simple closed curve, then changing the parameter domain to be
[0,2π), we can get γ : [0,2π) → C where γ (0) = γ (2π) , γ one to one on [0,2π) and
continuous on [0,2π] . Then consider γ ◦η−1 : S1 → C is one to one and continuous.
Note that (x1n,x2n)→ (1,0) if and only if (x1n,−x2n)→ (1,0) and η−1 (xn)→ 2π then
γ ◦η−1 (xn)→ γ (2π) by continuity of γ. ■

Definition 5.4.3 Let η ,γ be continuous one to one parametrizations for a simple
curve. That is, γ ([a,b]) = η ([c,d]) and γ,η are one to one on [a,b) and [c,d) respectively.
If η−1 ◦ γ is increasing, then γ and η are said to be equivalent parametrizations and this is
written as γ ∼ η . It is also said that the two parametrizations give the same orientation for
the curve when γ ∼ η .

First is a discussion of orientation of simple curves and after that, orientation of a simple
closed curve is considered. In simple language, the message is that there are exactly two
directions of motion along a simple curve.

p

q

p

q

Lemma 5.4.4 The following hold for ∼.

γ ∼ γ, (5.22)

If γ ∼ η then η ∼ γ, (5.23)

If γ ∼ η and η ∼ θ , then γ ∼ θ . (5.24)

Proof: Formula 5.22 is obvious because γ−1 ◦ γ (t) = t so it is clearly an increasing
function. If γ ∼ η then γ−1 ◦η is increasing. Now η−1 ◦ γ must also be increasing because
it is the inverse of γ−1 ◦η . This verifies 5.23. To see 5.24, γ−1 ◦θ =

(
γ−1 ◦η

)
◦
(
η−1 ◦θ

)
and so since both of these functions are increasing, it follows γ−1 ◦θ is also increasing. ■

Definition 5.4.5 Let Γ be a simple curve and let γ be a parametrization for Γ. De-
noting by [γ] the equivalence class of parameterizations determined by the above equiva-
lence relation, the pair (Γ, [γ]) will be called an oriented curve.
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In simple language, an oriented curve is one which has a direction of motion specified.
If γ ∼ η then γ = η◦

(
η−1 ◦ γ

)
and η−1 ◦ γ is increasing so γ,η both trace out the curve in

the same direction. This shows the following simple lemma which makes clear the meaning
of orientation.

Lemma 5.4.6 Suppose γ∗ = η∗. γ ∼ η if and only if γ = η ◦φ where φ is an increasing
function mapping one half open interval to the other. More generally it is always the case
that γ = η ◦φ for φ a one to one mapping from one parameter domain to the other. The two
parametrizations are equivalent if and only if φ is increasing. φ must be either increasing
or decreasing.

Note that this shows that when γ∗,η∗ are simple curves having endpoints, then γ ∼ η

if and only if the first endpoints coincide and the last endpoints coincide.
When the parametrizations are equivalent, this says they preserve the direction of mo-

tion along the curve. Recall Theorem 5.1.3. Thus Lemma 5.4.6 shows that the line integral
depends only on the set of points in the curve and the orientation or direction of motion
along the curve.

The orientation of a simple curve is determined by two points on the curve. This is the
idea of the following proposition.

Proposition 5.4.7 Let (Γ, [γ]) be an oriented simple curve, γ ([a,b]) = γ∗,γ one to one
on [a,b] and let p,q be any two distinct points of Γ. Then [γ] is determined by the order of
γ−1 (p) and γ−1 (q). This means that η ∈ [γ] if and only if η−1 (p) and η−1 (q) occur in
the same order as γ−1 (p) and γ−1 (q). In other words, if and only if p,q are encountered
in the same order with both parametrizations as the parameter increases.

Proof: This follows from Lemma 5.4.6. γ = η ◦φ and if the orders of two points are
the same, then φ can’t be decreasing and so it is increasing and γ ∼ η . ■

This shows that the direction of motion on the simple curve is determined by any two
points and the determination of which is encountered first by any parametrization in the
equivalence class of parameterizations which determines the orientation. Sometimes peo-
ple indicate this direction of motion by drawing an arrow.

Definition 5.4.8 Let Γ be a simple closed curve. This means there is γ : S1 → Γ

which is one to one and onto. As shown in Lemma 5.4.2 this is equivalent to a parametriza-
tion γ : [a,b]→ Γ such that γ is continuous and one to one on [a,b) but γ (a) = γ (b).

Simple closed curves are the continuous one to one image of the unit circle. However,
one can take any point on the simple closed curve and regard that point as the beginning and
ending point. This differs from a simple curve in which you have only two points which
can be considered the beginning or the end.

Proposition 5.4.9 Let Γ be a simple closed curve. Then for any point p on Γ, there is
a closed interval [a,b] and a continuous map γ : [a,b]→ Γ and γ one to one on [a,b) such
that γ (a) = γ (b) = p. That is, p will be the beginning and ending point.

Proof: Let ξ : S1→Γ be one to one, onto and continuous. Then ξ
−1 (p)≡ (cosα,sinα)

for some α ∈ [0,2π). Then let θ : [α,α+2π]→ S1 be defined by θ (t)≡ (cos t,sin t) . Then
θ is one to one on [α,α + 2π) and continuous on [α,α +2π] and θ : [α,α +2π]→ S1
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is onto and θ (α) = θ (α +2π). Consider ξ ◦θ ≡ γ . Also, γ (α) ≡ ξ

(
ξ
−1 (p)

)
= p,

γ (α +2π) = ξ (θ (α +2π)) = p. Clearly γ is also continuous on [α,α +2π] and is one to
one on [α,α +2π) and maps onto Γ. ■

Note that another parametrization could have been θ (t) ≡ (cos(−t) ,sin(−t)) where
one would define ξ

−1 (p) ≡ (cos(−α) ,sin(−α)) which would result in a different direc-
tion over Γ.

If Γ = γ ([a,b]) where γ is one to one on [a,b), continuous on [a,b] and γ (a) = γ (b) ,
then if c ∈ (a,b) , you cannot have γ ([a,c]) = Γ or γ ([c,b]) = Γ because this would violate
γ being one to one on [a,b). Thus γ (c) is neither a beginning nor an ending point for this
particular parametrization.

Recall that for simple curves two parametrizations γ,η are equivalent if γ−1 ◦ η pre-
serves the direction of motion over an interval. Here two parametrizations will be equiva-
lent if such a composition preserves motion over a circle according to whether it is clock-
wise or counterclockwise. There is no mystery about clockwise or counter clockwise mo-
tion around the unit circle and we can use this much as there being no mystery about the
positive or negative motion on an interval to describe orientation of a simple closed curve.

Definition 5.4.10 Let Γ be a simple closed curve. Two parametrizations γ : S1→ Γ

and η : S1→Γ are equivalent if and only if η−1◦γ preserves the direction of motion around
S1. That is, if for increasing t ∈ R, x(t) is a point on S1, then if x(t) moves clockwise for
increasing t, so does η−1 ◦ γ (x(t)) and if x(t) moves counter clockwise for increasing t,
then so does η−1 ◦ γ (x(t)) .

Lemma 5.4.11 The above definition of orientation of a simple closed curve yields an
equivalence relation.

Proof: The proof is just like it was earlier in case of simple curves. It is obvious that
γ ∼ γ . If γ ∼ η so η−1 ◦ γ preserves direction of motion. How about γ−1 ◦ η? If x(t)
is moving counter clockwise then x(t) =

(
η−1 ◦ γ

)(
γ−1 ◦η (x(t))

)
. This cannot be true

unless t→ γ−1 ◦η (x(t)) moves counter clockwise as well since you cannot have equality
in t of two points on S1 which move in opposite directions. Similarly, clockwise motion
must also be preserved. The transitive law is fairly obvious also. Say γ ∼ η and η ∼ ζ .
Then ζ

−1◦γ =
(

ζ
−1◦η

)(
η−1◦γ

)
and the two mappings on the right preserve motion on

S1. ■
Note that if you pick any three distinct points on a circle, you can list them in any order

and determine a unique direction of motion along the circle by moving over it to encounter
the points in the order you chose. This is stated in the following proposition. Note how the
order of two points will orient a simple curve and three will orient a simple closed curve.

Proposition 5.4.12 If p,q,r are three distinct points on S1, then a single direction of
motion around S1 is determined by listing these in any particular order. For example, if they
are listed in order pqr, meaning one goes from p then to q then to r, then this describes
a simple curve on S1 having p at one end and r at the other such that q is a point of this
simple curve. The remainder of S1 is a simple curve having end points r and p which is
oriented so that r is the first and p is the last.

With the above obvious proposition, we have the following simple way of orienting a
simple closed curve and showing that every simple closed curve is the union of two oriented
simple curves joined at their ends.
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Proposition 5.4.13 Let Γ be a simple closed curve. γ
(
S1
)
= Γ where γ is one to one

and onto and continuous. Then the orientation of Γ determined by γ can be determined by
either moving clockwise or counter clockwise over S1. This orientation is uniquely defined
by the order of any three distinct points of Γ. This also presents Γ as two oriented simple
curves joined at their ends. If you have two simple curves joined at their end points p,q
and at no other points where the first simple curve goes from p to q and the second from q
to p, this results in a simple closed curve.

Proof: If the points are a,b,c listed in that order, one would apply Proposition 5.4.12
to p = γ−1 (a) ,q = γ−1 (b) ,r = γ−1 (c).

Now consider the last claim about joining two simple curves. By assumption there are
γ i : [ai,bi]→ Γi with end points γ i (a) ,γ i (b) consisting of the points p,q. Without loss of
generality, one can change the parameter if necessary to have

γ1 (a1) = p,γ1 (b1) = q,γ2 (a2) = q,γ2 (b2) = p

Now change the parameter again to have [a1,b1] = [0,1] and [a2,b2] = [1,2]. Let

γ (t)≡
{

γ1 (t) if t ∈ [0,1] , γ1 (1) = q
γ2 (t) if t ∈ [1,2] , γ2 (2) = p

Then γ is one to one on [0,2) and has γ (0) = γ (2). Thus if Γ≡ γ ([0,2]) , then Γ is a simple
closed curve. ■

We will mainly use orientations on simple curves to specify the direction of motion on
a simple closed curve as in the following Proposition. The situation is illustrated by the
following picture in which there are two simple closed curves which share a simple curve
denoted by l. The case we have in mind is in the plane but it would work as well if it were
only the case that the two simple closed curves have only the two points p,q in common.

p

q
Γ1Γ2

l

Proposition 5.4.14 Let Γ1 and Γ2 be two simple closed, oriented curves and let their
intersection be l. Suppose also that l is itself a simple curve not a point. Also suppose the
orientation of l when considered a part of Γ1 is opposite its orientation when considered a
part of Γ2. Then if the open segment (l except for its endpoints) of l is removed, the result
is a simple closed oriented curve Γ. This Γ has the same orientation as each of Γ j.

Γ1Γ2

Proof: Say the orientation for Γ1 comes from p then q written as pq. Then if r ∈ Γ1
not in l, the ordered list pqr must deliver the orientation of Γ1. Then the orientation of Γ2
must come from qps for s ∈ Γ2 not in l by assumption the orientation of Γ2 involves first
q then p. Thus the part of Γ1 other than the open segment of l would have the orientation
qp. This determines an orientation for Γ and does not contradict what is given exactly
because the orientation of l is opposite when considered as part of Γ1 and Γ2. Thus, if γ

is a parametrization for Γ and γ j, j = 1,2 are corresponding parametrizations for Γ j, these
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have the same orientation if and only if the orientations of l are opposite as part of Γ1 and
Γ2. Note how this would not work if the segment l were oriented the same way as part of
each Γi because you could not get a single orientation for Γ. You would be describing two
different orientations on S1. ■

γ−1(q)

γ−1(s) γ−1(r)

γ−1(p)
I will restate the above proposition to emphasize the role of the segment l in determining

orientation.

Corollary 5.4.15 Let the intersection of simple closed curves, Γ1 and Γ2 consist of
the simple curve l. Then place opposite orientations on l, and use these two different
orientations to specify orientations of Γ1 and Γ2. Then letting Γ denote the simple closed
curve which is obtained from deleting the open segment of l, there exists an orientation for Γ

which is consistent with the orientations of Γ1 and Γ2 obtained from the given specification
of opposite orientations on l.

5.5 Piecewise Smooth Curves
Virtually everything can be done just as well for piecewise smooth curves. Here is the
definition.

Definition 5.5.1 Let [a,b) be a half open interval and let γ : [a,b)→ Rq be one to

one and continuous such that γ ∈C
(
[a,b);Rq

)
and γ−1 : γ ([a,b))→ [a,b) is continuous. If

γ is the restriction of a C1 function to [a,b) then it is called a C1 curve. It is called a simple
closed curve if limt→b γ (t) = γ (a) and we can define γ (b) ≡ γ (a) . If γ̂ : [c,d) is defined
similarly mapping to C such that γ̂

−1 ◦ γ is increasing this means from the above that these
two are equivalent orientations of the curve C. Since γ̂

−1 ◦ γ is one to one, this function is
either increasing or decreasing. C is piecewise smooth if there is a parametrization γ such
that γ ′ ̸= 0 on a succession of non-overlapping intervals whose union is [a,b) but possibly
at the ends of these intervals the derivative from left and right are different.

Suppose you have a < b < c and γ ′1 (t) ̸= 0 on [a,b] ,γ ′2 (t) ̸= 0 on [b,c] but γ ′1 (b) ̸=

γ ′2 (b) although γ1 = γ2 at b. Then consider γ̂ (t) =

 γ1

(
b+(t−b)3 1

(b−a)2

)
, t ∈ [a,b]

γ2

(
b+(t−b)3 1

(c−b)2

)
, t ∈ [b,c]

.

Then γ̂ (t) moves from γ1 (a) to γ̂ (b) in the same direction as γ1 and γ2 and is differentiable
on all of [a,c] although γ̂

′ (b) = 0. Thus this piecewise smooth curve can be expressed as a
C1 curve not smooth because of the vanishing of the derivative at b.

Lemma 5.5.2 If γ : [a,b)→ Rq is a piecewise smooth curve smooth on successive non-
overlapping intervals. Then there exists a C1 space curve which has the same orientation,
parametrizing the curve.

Therefore a C1 curve, as defined above, includes the case of curves which are piecewise
smooth because modifying the parameter we can have finitely many t with γ ′ (t) = 0 to
account for pointed places which have a discontinuity in the derivative from either side,
allowing the inclusion of piecewise smooth curves as a special case. By Theorem 5.2.5
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it is easy to compute the line integral of such a C1 curve. In virtually everything done
in this book, one could simply use piecewise smooth oriented curves in place of bounded
variation curves and not loose anything of interest in the applications of line integrals used
here.Thanks to Theorem 5.2.5 these C1 curves are easy to work with.

5.6 Exercises
1. Let r(t) =

(
ln(t) , t2

2 ,
√

2t
)

for t ∈ [1,2]. Find the length of this curve.

2. Let r(t) =
( 2

3 t3/2, t, t
)

for t ∈ [0,1]. Find the length of this curve.

3. Let r(t) = (t,cos(3t) ,sin(3t)) for t ∈ [0,1]. Find the length of this curve.

4. Suppose for t ∈ [0,π] the position of an object is given by

r(t) =
(

t cos2t sin2t
)
.

Let F(x,y,z) =
(

2xy x2 +2zy y2
)

Find
∫

r F·dr.

5. Show the mean value theorem for integrals. Suppose f ∈C ([a,b]) . Then there exists
x ∈ [a,b] , in fact x can be taken in (a,b) , such that f (x)(b−a) =

∫ b
a f (t)dt. Hint:

Use fundamental theorem of calculus.

6. In this problem is a short argument showing a version of what has become known as
Fubini’s theorem. Suppose f ∈C ([a,b]× [c,d]) . Then∫ b

a

∫ d

c
f (x,y)dydx =

∫ d

c

∫ b

a
f (x,y)dxdy

First explain why the two iterated integrals make sense. Hint: To prove the two
iterated integrals are equal, let a = x0 < x1 < · · · < xn = b and c = y0 < y1 < · · · <
ym = d be two partitions of [a,b] and [c,d] respectively. Then explain why∫ b

a

∫ d

c
f (x,y)dydx =

n

∑
i=1

m

∑
j=1

∫ xi

xi−1

∫ y j

y j−1

f (s, t)dtds

∫ d

c

∫ b

a
f (x,y)dxdy =

m

∑
j=1

n

∑
i=1

∫ y j

y j−1

∫ xi

xi−1

f (s, t)dsdt

Now use the mean value theorem for integrals to write∫ xi

xi−1

∫ y j

y j−1

f (s, t)dtds = f (ŝi, t̂ j)(xi− xi−1)(yi− yi−1)

do something similar for
∫ y j

y j−1

∫ xi
xi−1

f (s, t)dsdt and then observe that the difference
between the sums can be made as small as desired by simply taking suitable parti-
tions. A complete treatment of Fubini’s theorem is later.

7. This chapter is on line integrals. It was almost exclusively oriented toward having
γ continuous. There is a similar thing called a Riemann Stieltjes integral, written as∫ b

a f (t)dg(t). A function f (assume here it is scalar valued for simplicity although
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this is not necessary) is said to be Riemann Stieltjes integrable if there is a number, I
such that for all ε > 0 there exists δ such that if ∥P∥< δ , then∣∣∣∣∣ n

∑
i=1

f (τ i)(g(ti)−g(ti−1))− I

∣∣∣∣∣< ε

for any Riemann Stieltjes sum defined as the above in which τ i ∈ [ti−1, ti]. This I is
denoted as

∫ b
a f (t)dg(t) and we will say that f ∈ R([a,b] ,g). Show that if g is of

bounded variation and f is continuous, then
∫ b

a f (t)dg(t) exists. Note the difference
between this and

∫ b
a f (g(t))dg(t) which is a case of line integrals considered in this

chapter and how either includes the ordinary Riemann integral
∫ b

a f (t)dt.

8. Suppose
∫ b

a f dg exists. Explain the following: Let P ≡ {x0, · · · ,xn} and let ti ∈
[xi−1,xi].

f g(b)− f g(a)−
n

∑
i=1

g(ti)( f (xi)− f (xi−1))

=
n

∑
i=1

f (xi)g(xi)− f (xi−1)g(xi−1)−
n

∑
i=1

g(ti)( f (xi)− f (xi−1))

=
n

∑
i=1

f (xi)(g(xi)−g(ti))+
n

∑
i=1

f (xi−1)(g(ti)−g(xi−1))

and if ∥P∥ is small enough, this is a Riemann sum for
∫ b

a f dg which is closer to∫ b
a f dg than ε . Use to explain why if

∫ b
a f dg exists, then so does

∫ b
a gd f and

∫ b
a f dg+∫ b

a gd f = f g(b)− f g(a). Note how this says roughly that d ( f g) = f dg+gd f . As an
example, suppose g(t) = t and t→ f (t) is decreasing. In particular, it is of bounded
variation. Thus

∫ b
a gd f exists. It follows then that

∫ b
a f dg =

∫ b
a f (t)dt exists.

9. Let f be increasing and g continuous on [a,b]. Then there exists c ∈ [a,b] such that

∫ b

a
gd f = g(c)( f (b)− f (c)) .

Hint: First note g Riemann Stieltjes integrable because it is continuous. Since g is
continuous, you can let m = min{g(x) : x ∈ [a,b]} and M = max{g(x) : x ∈ [a,b]}
Then m

∫ b
a d f ≤

∫ b
a gd f ≤M

∫ b
a d f Now if f (b)− f (a) ̸= 0, you could divide by it

and conclude m ≤
∫ b

a gd f
f (b)− f (a) ≤ M. You need to explain why

∫ b
a d f = f (b)− f (a).

Next use the intermediate value theorem to get the term in the middle equal to g(c)
for some c. What happens if f (b)− f (a) = 0? Modify the argument and fill in the
details to show the conclusion still follows.

10. Suppose g is increasing and f is continuous and of bounded variation. Then it follows
that g ∈ R([a,b] , f ) . Show there exists c ∈ [a,b] such that

∫ b

a
gd f = g(a)

∫ c

a
d f +g(b)

∫ b

c
d f



134 CHAPTER 5. LINE INTEGRALS AND CURVES

This is called the second mean value theorem for integrals. Hint: Use integration by
parts. ∫ b

a
gd f =−

∫ b

a
f dg+ f (b)g(b)− f (a)g(a)

Now use the first mean value theorem, the result of Problem 9 to substitute something
for
∫ b

a f dg and then simplify.

11. Let U be an open subset of Rn and suppose that f : [a,b]×U → R satisfies

(x,y)→ ∂ f
∂yi

(x,y) ,(x,y)→ f (x,y)

are all continuous. Show that
∫ b

a f (x,y)dx,
∫ b

a
∂ f
∂yi

(x,y)dx all make sense and that

in fact ∂

∂yi

(∫ b
a f (x,y)dx

)
=
∫ b

a
∂ f
∂yi

(x,y)dx Also explain why y→
∫ b

a
∂ f
∂yi

(x,y)dx is
continuous. Hint: You will need to use the theorems from one variable calculus
about the existence of the integral for a continuous function. You may also want to
use theorems about uniform continuity of continuous functions defined on compact
sets.

12. Show
∫

∞

0 e−t2
dt =

√
π

2 . Hint: For x≥ 0, f (x) =
(∫ x

0 e−t2
dt
)2

. Then

f ′ (x) = 2e−x2
(∫ x

0
e−t2

dt
)
= 2e−x2

(∫ 1

0
e−x2u2

du
)
.

Now integrate by parts to get

f (x) =−e−t2
(∫ 1

0
e−u2t2

du
)
|x0−

∫ x

0
e−t2

∫ 1

0
2u2te−u2t2

dudt

Now interchange the order of integration using Problem 6. Then do the integrations
and let x→ ∞.

13. For x > 0,Γ(x)≡
∫

∞

0 e−ttx−1dt ≡ limR→∞

∫ R
1/R e−ttx−1dt. Show this limit exists. x→

Γ(x) is the gamma function. Also show that Γ(x+1) = xΓ(x) , Γ(1) = 1. How does
Γ(n) for n a positive integer compare with (n−1)!?

14. Suppose Γ is a simple curve and Γ̂ is a simple closed curve. Does there exist a one
to one continuous function g which maps Γ onto Γ̂? Explain why or why not.

15. Suppose Γ is a simple closed curve. Show there exists a continuous function f : Γ→
Γ such that for all x ∈ Γ, f(x) ̸= x. However, if Γ is a simple curve, show that if
f : Γ→ Γ is continuous, then there is some x ∈ Γ such that f(x) = x. Hint: For this
last part, show first that if h : [0,1]→ [0,1] is continuous, then h(x) = x for some
x ∈ [0,1].

16. These two problems are on elementary calculus. Recall ln(n) ≡
∫ n

1 (1/t)dt. Show
that for n ∈ N,

1
2
(ln(n+1)+ ln(n))≤

∫ n+1

n
ln(t)dt ≤ ln(n+1/2)
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This follows easily from consideration of the following graph. The larger trapezoid
is obtained from the tangent line through (n+ 1

2 , ln(n+
1
2 )).

n n+1n+ 1
2

(a) Now ∑
n−1
k=1

(∫ k+1
k ln(t)dt− 1

2 (ln(k+1)+ ln(k))
)

is an increasing sequence of
partial sums.

(b) Next consider the following computations coming from the above inequalities

∫ n

1
ln(t)dt−

n−1

∑
k=1

1
2
(ln(k+1)+ ln(k))

=
n−1

∑
k=1

(∫ k+1

k
ln(t)dt− 1

2
(ln(k+1)+ ln(k))

)

≤
n−1

∑
k=1

ln(k+1/2)− 1
2
(ln(k+1)+ ln(k))

=
n−1

∑
k=1

1
2
(ln(k+1/2)− ln(k))−

n

∑
k=2

1
2
(ln(k)− ln(k−1/2))

=
1
2

ln
(

3
2

)
− 1

2
(ln(n)− ln(n−1/2)) ≤ 1

2
ln
(

3
2

)
Therefore, the series in part a.) converges to some c.

(c) Note that the series in a.) equals

Sn ≡
∫ n

1
ln(t)dt−

n−1

∑
k=1

1
2
(ln(k+1)+ ln(k)) .

Hence limn→∞ exp(Sn) = ec. Thus

lim
n→∞

exp(n lnn−n+1)

∏
n−1
k=1 exp

(√
(k+1)k

)
=

nne−ne

∏
n−1
k=1

√
k+1∏

n−1
k=1

√
k

=
nne−nen1/2

∏
n−1
k=1

√
k+1∏

n
k=1

√
k
=

nn+(1/2)e
n!en = ec

Thus there is a constant k = 1/e1−c such that limn→∞
n!en

n(n+(1/2)) = k. It is possible

to show that k =
√

2π but in most applications, it suffices to know the existence
of the limit. This is Stirling’s formula.
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17. Show k =
√

2π as follows. Verify the following:∫
π/2

0
sin2m (x) =

(2m−1)(2m−3) · · ·1
2mm!

π

2∫ π/2
0 sin2m+1 (x) = 2mm!

(2m+1)(2m−1)···3 ,
∫ π/2

0 sinn (x) = n−1
n
∫ π/2

0 sinn−2 (x) . Show the fol-
lowing using the above.

(
2m+1

2m

)
1≥

∫ π/2
0 sin2m (x)

2m
2m+1

∫ π/2
0 sin2m−1 (x)

=

≥1∫ π/2
0 sin2m (x)∫ π/2

0 sin2m+1 (x)

=
(2m−1)(2m−3)···1

2mm!
π

2
2mm!

(2m+1)(2m−1)···3
=

(2m+1)(2m−1)2 (2m−3)2 · · ·12

4m (m!)2
π

2
≥ 1

Then multiply on the top and bottom by (2m)2 (2(m−1))2 · · ·22. Obtain

lim
m→∞

2mm!2m (m!)√
(2m+1)(2m)!

√
2
π
= 1

Now limm→∞
(m!)2e2m

k2m2m+1 = 1 = limm→∞
(2m)!e2m

k(2m)2m+(1/2) where k is the constant of the above

problem. Thus

lim
m→∞

k2m2m+1 (2m)!e2m

(m!)2 e2mk (2m)2m+(1/2) = 1

Now

lim
m→∞

2mm!2m (m!)√
(2m+1)(2m)!

√
2
π

k2m2m+1 (2m)!e2m

(m!)2 e2mk (2m)2m+(1/2)

= lim
m→∞

1√
(m+(1/2))

√
1

2π
km1/2 =

√
1

2π
k = 1



Chapter 6

Measures and Measurable Functions
The Lebesgue integral is much better than the Rieman integral. This has been known
for over 100 years. It is much easier to generalize to many dimensions and it is much
easier to use in applications. It is also this integral which is most important in probability.
However, this integral is more abstract. This chapter will develop the notion of measures
which are used for this integral. Complex analysis does not usually require the use of
this superior integral however, but the approach we take here will involve integration of a
function of more than one variable and when you do this, the Riemann integral becomes
totally insufferable, forcing one to consider things like the Jordan content of the boundary
and so forth.

Definition 6.0.1 Let Ω be a nonempty set. F ⊆ P(Ω) , the set of all subsets of Ω,
is called a σ algebra if it contains /0,Ω, and is closed with respect to countable unions and
complements. That is, if {An}∞

n=1 is countable and each An ∈F , then ∪∞
n=1Am ∈F also

and if A ∈F , then Ω\A ≡ AC ∈F . It is clear that any intersection of σ algebras is a σ

algebra. If K ⊆ P(Ω) , σ (K ) is the smallest σ algebra which contains K .

Observation 6.0.2 For Ai ∈F a σ algebra, then ∩∞
i=1Ai =

(
∪∞

i=1AC
i
)C ∈F .

Thus countable unions, countable intersections, and complements of sets of F stay in
F .

6.1 Measurable Functions
Then for functions which have values in (−∞,∞] we have the following Lemma.

Notation 6.1.1 In whatever context, f−1 (S)≡{ω ∈Ω : f (ω) ∈ S}. It is called the inverse
image of S and everything in the theory of the Lebesgue integral is formulated in terms of
this. Sometimes I will write f−1 (S) as [ f (ω) ∈ S] or even [ f ∈ S].

Lemma 6.1.2 Let f : Ω→ (−∞,∞] where F is a σ algebra of subsets of Ω. The fol-
lowing are equivalent.

f−1((d,∞]) ∈F for all finite d,

f−1((−∞,d)) ∈F for all finite d,

f−1([d,∞]) ∈F for all finite d,

f−1((−∞,d]) ∈F for all finite d,

f−1 ((a,b)) ∈F for all a < b,−∞ < a < b < ∞.

Proof: First note that the first and the third are equivalent. To see this, observe

f−1([d,∞]) = ∩∞
n=1 f−1((d−1/n,∞]),

and so if the first condition holds, then so does the third.

f−1((d,∞]) = ∪∞
n=1 f−1([d +1/n,∞]),

and so if the third condition holds, so does the first.

137
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Similarly, the second and fourth conditions are equivalent. Now

f−1((−∞,d]) = ( f−1((d,∞]))C

so the first and fourth conditions are equivalent. Thus the first four conditions are equivalent
and if any of them hold, then for −∞ < a < b < ∞,

f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈F .

Finally, if the last condition holds,

f−1 ([d,∞]) =
(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈F

and so the third condition holds. Therefore, all five conditions are equivalent. ■

Definition 6.1.3 When a function satisfies any of these equivalent conditions, we
say the function is measuragle .

From this, it is easy to verify that pointwise limits of a sequence of measurable functions
are measurable.

Corollary 6.1.4 If fn (ω)→ f (ω) where all functions have values in (−∞,∞], then if
each fn is measurable, so is f .

Proof: Note the following which holds for any c ∈ R:

f−1 ((c,∞]) = ∪∞
k=1∩n≥k f−1

n ((c,∞])⊆ f−1 ([c,∞])

This follows from the definition of the limit. Therefore,

f−1 ((b,∞]) = ∪∞
l=1 f−1

(
(b+

1
l
,∞]

)
= ∪∞

l=1∪∞
k=1∩n≥k f−1

n

(
(b+

1
l
,∞]

)
⊆ ∪∞

l=1 f−1
([

b+
1
l
,∞

])
= f−1 ((b,∞])

The messy term on the middle is measurable because it consists of countable unions and
intersections of measurable sets. It equals f−1 ((b,∞]) and so this is also measurable. By
Lemma 6.1.2, f is measurable. ■

Observation 6.1.5 If f : Ω→ R then the above definition of measurability holds with
no change. In this case, f never achieves the value ∞. This is actually the case of most
interest.

The following theorem is of major significance. I will use this whenever it is conve-
nient. Let (Ω,F ) be a measurable space.

Theorem 6.1.6 Suppose f : Ω→ R is measurable and g : R→ R is continuous.
Then g◦ f is measurable. Also, if f ,g are measurable real valued functions, then their sum
is also measurable and real valued as are all linear combinations of these functions.
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Proof: (g◦ f )−1 ((a,∞)) = f−1
(
g−1 ((a,∞))

)
and by continuity of g, it follows that

g−1 ((a,∞)) is an open set. Thus it is the disjoint union of countably many open intervals
by Theorem 2.10.8. It follows that f−1

(
g−1 ((a,∞))

)
is the countable union of measurable

sets and is therefore measurable.
Why is f + g measurable when f ,g are real valued measurable functions? This is a

little trickier. Let the rational numbers be {rn}∞

n=1.

( f +g)−1 ((a,∞)) = ∪∞
n=1g−1 (rn,∞)∩ f−1 (a− rn,∞)

It is clear that the expression on the right is contained in ( f +g)−1 (a,∞) . Why are they
actually equal? Suppose ω ∈ ( f +g)−1 (a,∞) . Then f (ω)+g(ω)> a and there exists rn
a rational number smaller than g(ω) such that f (ω)+ rn > a. Therefore, ω ∈ g−1 (rn,∞)∩
f−1 (a− rn) and so the two sets are actually equal as claimed. Now by the first part, if f is
measurable and a is a real number, then a f is measurable also. Thus linear combinations
of measurable functions are measurable. ■

The above is now generalized to give a theorem about measurability of a continuous
combination of measurable functions. First note the following.

Lemma 6.1.7 Let (Ω,F ) be a measurable space. Then f : Ω→R is measurable if and
only if f−1 (U) ∈F whenever U is an open set.

Proof: First suppose f is measurable. From Theorem 2.4.2, U = ∪∞
k=1 (ak,bk) for suit-

able open intervals. Hence f−1 (U) = ∪∞
k=1 f−1 (ak,bk) and each term in the union is mea-

surable. Conversely, if f−1 (U) ∈F for every U open, then this is true for U = (a,b) and
so by Lemma 6.1.2, f is measurable. ■

Proposition 6.1.8 Let fi : Ω→ R be measurable, (Ω,F ) a measurable space, and let
g : Rn→ R be continuous. If f(ω) =

(
f1 (ω) · · · fn (ω)

)T
, then g◦ f is measurable.

Proof: From the above lemma, it suffices to verify that (g◦ f)−1 (U) is measurable
whenever U is open. However,

(g◦ f)−1 (U) = f−1 (g−1 (U)
)

Since g is continuous, it follows from Proposition 2.5.19 that g−1 (U) is an open set in
Rn. By Proposition 2.4.5 there are countably many open sets Bi = B(xi,ri) whose union
is g−1 (U). We will use the norm ∥·∥

∞
so that these Bi are of the form Bi = ∏

n
k=1
(
ai

k,b
i
k

)
.

Thus

f−1 (g−1 (U)
)
= f−1 (∪∞

i=1Bi) = ∪∞
i=1f−1 (Bi) = ∪∞

i=1∩n
k=1 f−1

k

((
ai

k,b
i
k
))
∈F ■

Note that this includes all of Theorem 6.1.6 as a special case.
There is a fundamental theorem about the relationship of simple functions to measur-

able functions given in the next theorem.

Definition 6.1.9 Let E ∈F for F a σ algebra. Then

XE (ω)≡
{

1 if ω ∈ E
0 if ω /∈ E
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This is called the indicator function of the set E. Let s : (Ω,F )→ R. Then s is a simple
function if it is of the form

s(ω) =
n

∑
i=1

ciXEi (ω)

where Ei ∈F and ci ∈ R, the Ei being disjoint. Thus simple functions have finitely many
values and are measurable. In the next theorem, it will also be assumed that each ci ≥ 0.

Each simple function is measurable. This is easily seen as follows. First of all, you can
assume the ci are distinct because if not, you could just replace those Ei which correspond
to a single value with their union. Then if you have any open interval (a,b) ,

s−1 ((a,b)) = ∪{Ei : ci ∈ (a,b)}

and this is measurable because it is the finite union of measurable sets.

Theorem 6.1.10 Let f ≥ 0 be measurable. Then there exists a sequence of nonneg-
ative simple functions {sn} satisfying

0≤ sn(ω) (6.1)

· · · sn(ω)≤ sn+1(ω) · · ·
f (ω) = lim

n→∞
sn(ω) for all ω ∈Ω. (6.2)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.

Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X f−1([ k

n ,
k+1

n ))(ω)+2nXI(ω).

Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) =
2n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0≤ f (ω)− tn (ω)≤ 1
n
. (6.3)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 6.1-6.2. Also each sn has finitely many values and is
measurable. To see this, note that

s−1
n ((a,∞]) = ∪n

k=1t−1
k ((a,∞]) ∈F

To verify the last claim, note that in this case the term 2nXI(ω) is not present and for
n large enough, 2n/n is larger than all values of f . Therefore, for all n large enough, 6.3
holds for all ω . Thus the convergence is uniform.

Now consider the converse assertion. Why is f measurable if it is the pointwise limit
of an increasing sequence simple functions?

f−1 ((a,∞]) = ∪∞
n=1s−1

n ((a,∞])

because ω ∈ f−1 ((a,∞]) if and only if ω ∈ s−1
n ((a,∞]) for all n sufficiently large. ■
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6.2 Measures and Their Properties
First, what is meant by a measure? These are defined on measurable spaces (Ω,F ) as
follows.

Definition 6.2.1 Let (Ω,F ) be a measurable space. Here F is a σ algebra of sets
of Ω. Then µ : F → [0,∞] is called a measure if whenever {Fi}∞

i=1 is a sequence of disjoint
sets of F , it follows that

µ (∪∞
i=1Fi) =

∞

∑
i=1

µ (Ei)

Note that the series could equal ∞. If µ (Ω) < ∞, then µ is called a finite measure. An
important case is when µ (Ω) = 1 when µ is called a probability measure.

Note that µ ( /0) = µ ( /0∪ /0) = µ ( /0)+µ ( /0) and so µ ( /0) = 0.

Example 6.2.2 You could have P (N) = F and you could define µ (S) to be the number
of elements of S. This is called counting measure. It is left as an exercise to show that this
is a measure.

Example 6.2.3 Here is a well known pathological example. Let Ω be uncountable and F
will be those sets which have the property that either the set is countable or its complement
is countable. Let µ (E) = 0 if E is countable and µ (E) = 1 if E is uncountable. It is left as
an exercise to show that this is a measure.

Of course the most important measure in this book will be Lebesgue measure which
gives the “volume” of a subset of Rn. However, this requires a lot more work. First is a
fundamental result about general measures.

Lemma 6.2.4 If µ is a measure and Fi ∈F , then

1. µ (∪∞
i=1Fi)≤ ∑

∞
i=1 µ (Fi).

2. If Fn ∈F and Fn ⊆ Fn+1 for all n, then if F = ∪nFn,µ (F) = limn→∞ µ (Fn). Sym-
bolically, if Fn ↑ F, then µ (Fn) ↑ µ (F).

3. If Fn ⊇ Fn+1 for all n, then if µ (F1)< ∞ and F = ∩nFn, then µ (F) = limn→∞ µ (Fn) .
Symbolically, if µ (F1)< ∞ and Fn ↓ F, then µ (Fn) ↓ µ (F).

Proof: 1.) Let G1 = F1 and if G1, · · · ,Gn have been chosen disjoint, let

Gn+1 ≡ Fn+1 \∪n
i=1Gi

Thus the Gi are disjoint. In addition, these are all measurable sets. Now

µ (Gn+1)+µ (Fn+1∩ (∪n
i=1Gi)) = µ (Fn+1)

and so µ (Gn)≤ µ (Fn). Therefore, µ (∪∞
i=1Gi) = ∑i µ (Gi)≤ ∑i µ (Fi) .

2.) Now consider the increasing sequence of Fn ∈F . If F ⊆ G and these are sets of
F ,µ (G) = µ (F)+µ (G\F) so µ (G)≥ µ (F). Also

F = ∪∞
i=1 (Fi+1 \Fi)+F1
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Then µ (F) = ∑
∞
i=1 µ (Fi+1 \Fi) + µ (F1). Now µ (Fi+1 \Fi) + µ (Fi) = µ (Fi+1). If any

µ (Fi) = ∞, there is nothing to prove. Assume then that these are all finite. Then

µ (Fi+1 \Fi) = µ (Fi+1)−µ (Fi) since
µ (Fi+1 \Fi)+µ (Fi) = µ (Fi+1)

and so

µ (F) =
∞

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1)

= lim
n→∞

n

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

µ (Fn+1)

3.) Next suppose µ (F1) < ∞ and {Fn} is a decreasing sequence. Then F1 \Fn is in-
creasing to F1 \F and so by the first part,

µ (F1)−µ (F) = µ (F1 \F) = lim
n→∞

µ (F1 \Fn)

= lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1)− lim
n→∞

µ (Fn)

so limn→∞ µ (Fn) = µ (F) . ■

6.3 Dynkin’s Lemma
Dynkin’s lemma is a very useful result. It is used quite a bit in books on probability. First
note that if K is any collection of subsets of Ω which contains /0 and Ω, one can take the
intersection of all σ algebras which contain K , one such being P (Ω). This intersection
is also a σ algebra and is denoted as σ (K ) and is the smallest σ algebra containing K .

Definition 6.3.1 Let Ω be a set and let K be a collection of subsets of Ω. Then K
is called a π system if /0,Ω ∈K and whenever A,B ∈K , it follows A∩B ∈K . σ (K )
will denote the smallest σ algebra which contains K . More precisely, the intersection of
all σ algebras which contain K .

The following is the fundamental lemma which shows these π systems are useful. This
is due to Dynkin.

Lemma 6.3.2 Let K be a π system of subsets of Ω, a non empty set. Also let G be a
collection of subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if H ≡ {G : 1 - 3 all hold} then ∩H yields a collection of sets
which also satisfies 1 - 3. Therefore, I will assume in the argument that G is the smallest
collection satisfying 1 - 3. Let A ∈K and define

GA ≡ {B ∈ G : A∩B ∈ G } .
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I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system, K ⊆ GA. Property 3 is obvious because if {Bi} is
a sequence of disjoint sets in GA, then

A∩∪∞
i=1Bi = ∪∞

i=1A∩Bi ∈ G

because A∩Bi ∈ G and the property 3 of G .
It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other

words, I need to show that A∩BC ∈ G . However,
(
AC ∪ (A∩B)

)C
= A∩

(
AC ∪B

)
= A∩BC

and so

A∩BC =

∈GAC ∪

 ∈G︷ ︸︸ ︷
A∩B

C

∈ G

Here is why. Since B ∈ GA, A∩B ∈ G and since A ∈K ⊆ G it follows AC ∈ G by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, AC and (A∩B) is
in G and then from 2 the complement of their union is in G . Thus GA satisfies 1 - 3 and
this implies since G is the smallest such, that GA ⊇ G . However, GA is constructed as a
subset of G . This proves that for every B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G
and consider GB ≡ {A ∈ G : A∩B ∈ G } . I just proved K ⊆ GB. The other arguments are
identical to show GB satisfies 1 - 3 and is therefore equal to G . This shows that whenever
A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′1 = A1
and

A′n+1 ≡ An+1 \ (∪n
i=1Ai) = An+1∩

(
∩n

i=1AC
i
)
= ∩n

i=1
(
An+1∩AC

i
)
∈ G

because finite intersections of sets of G are in G . Since the A′i are disjoint, it follows

∪∞
i=1Ai = ∪∞

i=1A′i ∈ G

Therefore, G ⊇ σ (K ). ■

Example 6.3.3 Suppose you have (U,F ) and (V,S ) , two measurable spaces. Let K ⊆
U×V consist of all sets of the form A×B where A ∈F and B ∈S . This is easily seen to
be a π system. When this is done, σ (K ) is denoted as F ×S .

An important example of a σ algebra is the Borel sets.

Definition 6.3.4 The Borel sets on Rp, denoted by B (Rp) consists of the smallest
σ algebra containing the open sets.

Don’t ever try to describe a generic Borel set. Always work with the definition that it is
the smallest σ algebra containing the open sets. Attempts to give an explicit description of
a “typical” Borel set tend to lead nowhere because there are so many things which can be
done.You can take countable unions and complements and then countable intersections of
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what you get and then another countable union followed by complements and on and on.
You just can’t get a good useable description in this way. However, it is easy to see that

something like
(
∩∞

i=1∪∞
j=i E j

)C
is a Borel set if the E j are. This is useful. This said, you

might consider the book by Hewitt and Stromberg [22] who do essentially describe them in
their argument that there are more Lebesgue measurable sets than Borel measurable ones
but it isn’t easy.

An important example of the above is the case of a random vector and its distribution
measure.

Definition 6.3.5 A measurable function X : (Ω,F ,µ)→ Rp is called a random
variable when µ (Ω) = 1. For such a random variable, one can define a distribution mea-
sure λ X on the Borel sets of Rp as follows. λ X (G) ≡ µ

(
X−1 (G)

)
. This is a well de-

fined measure on the Borel sets of Z because it makes sense for every G open and G ≡{
G⊆ Rp : X−1 (G) ∈F

}
is a σ algebra which contains the open sets, hence the Borel

sets. Such a random variable is also called a random vector.

6.4 Measures and Outer Measures
There is also something called an outer measure which is defined on the set of all subsets.

Definition 6.4.1 Let Ω be a nonempty set and let λ : P (Ω)→ [0,∞) satisfy the
following:

1. λ ( /0) = 0

2. If A⊆ B, then λ (A)≤ λ (B)

3. λ (∪∞
i=1Ei)≤ ∑

∞
i=1 λ (Ei)

Then λ is called an outer measure.

Every measure determines an outer measure. For example, suppose that µ is a measure
on F a σ algebra of subsets of Ω. Then define

µ̂ (S)≡ inf{µ (E) : E ⊇ S, E ∈F}

This is easily seen to be an outer measure. Also, we have the following Proposition.

Proposition 6.4.2 Let µ be a measure as just described. Then µ̂ as defined above, is
an outer measure and also, if E ∈F , then µ̂ (E) = µ (E).

Proof: The first two properties of an outer measure are obvious. What of the third? If
any µ̂ (Ei) = ∞, then there is nothing to show so suppose each of these is finite. Let Fi ⊇ Ei
such that Fi ∈F and µ̂ (Ei)+

ε

2i > µ (Fi) . Then

µ̂ (∪∞
i=1Ei) ≤ µ (∪∞

i=1Fi)≤
∞

∑
i=1

µ (Fi)

<
∞

∑
i=1

(
µ̂ (Ei)+

ε

2i

)
=

∞

∑
i=1

µ̂ (Ei)+ ε

Since ε is arbitrary, this establishes the third condition. Finally, if E ∈F , then by defini-
tion, µ̂ (E)≤ µ (E) because E ⊇ E. Also, µ (E)≤ µ (F) for all F ∈F such that F ⊇ E. It
follows that µ (E) is a lower bound of all such µ (F) and so µ̂ (E)≥ µ (E) .■
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6.5 An Outer Measure on P (R)
Next is an outer measure which includes the usual concept of length. Recall P (S) denotes
the set of all subsets of S.

Theorem 6.5.1 There exists a function m : P (R)→ [0,∞] which satisfies the fol-
lowing properties.

1. If A⊆ B, then 0≤ m(A)≤ m(B) ,m( /0) = 0.

2. m
(
∪∞

k=1Ai
)
≤ ∑

∞
i=1 m(Ai)

3. m([a,b]) = b−a = m((a,b)).

Proof: First it is necessary to define the function m. This is contained in the following
definition.

Definition 6.5.2 For A⊆ R, m(A) = inf{∑∞
i=1 (bi−ai) : A⊆ ∪∞

i=1 (ai,bi)}

In words, you look at all coverings of A with open intervals. For each of these open
coverings, you add the lengths of the individual open intervals and you take the infimum of
all such numbers obtained.

Then 1.) is obvious because if a countable collection of open intervals covers B, then it
also covers A. Thus the set of numbers obtained for B is smaller than the set of numbers for
A. Why is m( /0) = 0? Then /0 ⊆ (a−δ ,a+δ ) and so m( /0) ≤ 2δ for every δ > 0. Letting
δ → 0, it follows that m( /0) = 0.

Consider 2.). If any m(Ai) = ∞, there is nothing to prove. The assertion simply is
∞≤∞. Assume then that m(Ai)< ∞ for all i. Then for each m ∈N there exists a countable
set of open intervals, {(am

i ,b
m
i )}

∞

i=1 such that

m(Am)+
ε

2m >
∞

∑
i=1

(bm
i −am

i ) .

Then using Theorem 1.11.3 on Page 28,

m(∪∞
m=1Am) ≤ ∑

i,m
(bm

i −am
i ) =

∞

∑
m=1

∞

∑
i=1

(bm
i −am

i )

≤
∞

∑
m=1

m(Am)+
ε

2m =
∞

∑
m=1

m(Am)+ ε,

and since ε is arbitrary, this establishes 2.).
Next consider 3.). By definition, there exists a sequence of open intervals, {(ai,bi)}∞

i=1
whose union contains [a,b] such that

m([a,b])+ ε ≥
∞

∑
i=1

(bi−ai)

Since [a,b] is compact, finitely many of these intervals also cover [a,b]. It follows there
exist finitely many of these intervals, denoted as {(ai,bi)}n

i=1 , which overlap, such that
a∈ (a1,b1) ,b1 ∈ (a2,b2) , · · · ,b∈ (an,bn) . Therefore, m([a,b])≤∑

n
i=1 (bi−ai) . It follows

n

∑
i=1

(bi−ai)≥ m([a,b])≥
n

∑
i=1

(bi−ai)− ε ≥ (b−a)− ε
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Therefore, since
(
a− ε

2 ,b+
ε

2

)
⊇ [a,b] ,(b−a)+ ε ≥ m([a,b]) ≥ (b−a)− ε . Since ε is

arbitrary, (b−a) = m([a,b]). From what was just shown,

(b−a)−2δ = m([a+δ ,b−δ ])≤ m((a,b))≤ b−a

and so, since this holds for every δ ,(b−a)≤ m((a,b))≤ m([a,b])≤ (b−a). This shows
3.) ■

6.6 Measures from Outer Measures
Theorem 6.5.1, exibits an outer measure on P (R). This can be used to obtain a measure
defined on R. However, the procedure for doing so is a special case of a general approach
due to Caratheodory in about 1918.

Definition 6.6.1 Let Ω be a nonempty set and let µ : P(Ω)→ [0,∞] be an outer
measure. For E ⊆Ω, E is µ measurable if for all S⊆Ω,

µ(S) = µ(S\E)+µ(S∩E). (6.4)

To help in remembering 6.4, think of a measurable set E, as a process which divides a
given set into two pieces, the part in E and the part not in E as in 6.4. In the Bible, there
are several incidents recorded in which a process of division resulted in more stuff than
was originally present.1 Measurable sets are exactly those which are incapable of such a
miracle. You might think of the measurable sets as the non-miraculous sets. The idea is to
show that they form a σ algebra on which the outer measure µ is a measure.

First here is a definition and a lemma.

Definition 6.6.2 (µ⌊S)(A) ≡ µ(S∩A) for all A ⊆ Ω. Thus µ⌊S is the name of a
new outer measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 6.6.3 If A is µ measurable, then A is µ⌊S measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆Ω,

(µ⌊S)(T ) = (µ⌊S)(T ∩A)+(µ⌊S)(T \A).

Thus it is desired to show

µ(S∩T ) = µ(T ∩A∩S)+µ(T ∩S∩AC). (6.5)

But 6.5 holds because A is µ measurable. Apply Definition 6.6.1 to S∩T instead of S. ■
If A is µ⌊S measurable, it does not follow that A is µ measurable. Indeed, if you believe

in the existence of non measurable sets, you could let A = S for such a µ non measurable
set and verify that S is µ⌊S measurable.

The next theorem is the main result on outer measures which shows that starting with
an outer measure you can obtain a measure.

11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was
either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R3 into five disjoint pieces and assemble the pieces to form two disjoint balls of the same size as
the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985.
It is known that all such examples must involve the axiom of choice.
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Theorem 6.6.4 Let Ω be a set and let µ be an outer measure on P (Ω). The col-
lection of µ measurable sets S , forms a σ algebra and

If Fi ∈S, Fi∩Fj = /0, then µ(∪∞
i=1Fi) =

∞

∑
i=1

µ(Fi). (6.6)

If · · ·Fn ⊆ Fn+1 ⊆ ·· · , then if F = ∪∞
n=1Fn and Fn ∈S , it follows that

µ(F) = lim
n→∞

µ(Fn). (6.7)

If · · ·Fn ⊇ Fn+1 ⊇ ·· · , and if F = ∩∞
n=1Fn for Fn ∈S then if µ(F1)< ∞,

µ(F) = lim
n→∞

µ(Fn). (6.8)

This measure space is also complete which means that if µ (F) = 0 for some F ∈S then
if G⊆ F, it follows G ∈S also.

Proof: First note that /0 and Ω are obviously in S . Now suppose A,B∈S . I will show
A\B≡ A∩BC is in S . To do so, consider the following picture.

S
⋂

AC⋂BC

S
⋂

AC⋂B

S
⋂

A
⋂

B
S
⋂

A
⋂

BC

A

B

S

It is required to show that

µ (S) = µ (S\ (A\B))+µ (S∩ (A\B))

First consider S\ (A\B) . From the picture, it equals(
S∩AC ∩BC)∪ (S∩A∩B)∪

(
S∩AC ∩B

)
Therefore,

µ (S)≤ µ (S\ (A\B))+µ (S∩ (A\B))

≤ µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ (S∩ (A\B))

= µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ

(
S∩A∩BC)

= µ
(
S∩AC ∩BC)+µ

(
S∩A∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
= µ

(
S∩BC)+µ (S∩B) = µ (S)
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and so this shows that A\B ∈S whenever A,B ∈S .
Since Ω ∈S , this shows that A ∈S if and only if AC ∈S . Now if A,B ∈S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪n
i=1Ai. If

A,B ∈S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai∩A j = /0 and Ai ∈S ,

µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai). (6.9)

Now let A = ∪∞
i=1Ai where Ai∩A j = /0 for i ̸= j.

∞

∑
i=1

µ(Ai)≥ µ(A)≥ µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai).

Since this holds for all n, you can take the limit as n→ ∞ and conclude that ∑
∞
i=1 µ(Ai) =

µ(A). which establishes 6.6.
Consider part 6.7. Without loss of generality µ (Fk)< ∞ for all k since otherwise there

is nothing to show. Suppose {Fk} is an increasing sequence of sets of S . Then letting
F0 ≡ /0, {Fk+1 \Fk}∞

k=0 is a sequence of disjoint sets of S since it was shown above that
the difference of two sets of S is in S . Also note that from 6.9

µ (Fk+1 \Fk)+µ (Fk) = µ (Fk+1)

and so if µ (Fk)< ∞, then

µ (Fk+1 \Fk) = µ (Fk+1)−µ (Fk) .

Therefore, letting F ≡ ∪∞
k=1Fk which also equals ∪∞

k=1 (Fk+1 \Fk) ,it follows from part 6.6
just shown that

µ (F) =
∞

∑
k=0

µ (Fk+1 \Fk) = lim
n→∞

n

∑
k=0

µ (Fk+1 \Fk)

= lim
n→∞

n

∑
k=0

µ (Fk+1)−µ (Fk) = lim
n→∞

µ (Fn+1) .

In order to establish 6.8, let the Fn be as given there. Then, since (F1 \Fn) increases to
(F1 \F), 6.7 implies

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F) .

The problem is, I don’t know F ∈S and so it is not clear that µ (F1 \F) = µ (F1)−µ (F).
However, µ (F1 \F)+µ (F)≥ µ (F1) and so µ (F1 \F)≥ µ (F1)−µ (F). Hence

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F)≥ µ (F1)−µ (F)

which implies limn→∞ µ (Fn) ≤ µ (F) . But since F ⊆ Fn, µ (F) ≤ limn→∞ µ (Fn) and this
establishes 6.8. Note that it was assumed µ (F1) < ∞ because µ (F1) was subtracted from
both sides.



6.6. MEASURES FROM OUTER MEASURES 149

It remains to show S is closed under countable unions. Recall that if A ∈ S , then
AC ∈S and S is closed under finite unions. Let Ai ∈S , A = ∪∞

i=1Ai, Bn = ∪n
i=1Ai. Then

µ(S) = µ(S∩Bn)+µ(S\Bn) (6.10)
= (µ⌊S)(Bn)+(µ⌊S)(BC

n ).

By Lemma 6.6.3 Bn is (µ⌊S) measurable and so is BC
n . I want to show µ(S) ≥ µ(S \A)+

µ(S∩A). If µ(S) = ∞, there is nothing to prove. Assume µ(S)< ∞. Then apply Parts 6.8
and 6.7 to the outer measure µ⌊S in 6.10 and let n→ ∞. Thus Bn ↑ A, BC

n ↓ AC and this
yields µ(S) = (µ⌊S)(A)+(µ⌊S)(AC) = µ(S∩A)+µ(S\A).

Therefore A ∈S and this proves Parts 6.6, 6.7, and 6.8.
It only remains to verify the assertion about completeness. Letting G and F be as

described above, let S⊆Ω. I need to verify µ (S)≥ µ (S∩G)+µ (S\G). However,

µ (S∩G)+µ (S\G) ≤ µ (S∩F)+µ (S\F)+µ (F \G)

= µ (S∩F)+µ (S\F) = µ (S)

because by assumption, µ (F \G)≤ µ (F) = 0. ■
The measure m which results from the outer measure of Theorem 6.5.1 is called Leb-

esgue measure. The following is a general result about completion of a measure space.

Proposition 6.6.5 Let (Ω,F ,µ) be a measure space. Also let µ̂ be the outer measure
defined by

µ̂ (F)≡ inf{µ (E) : E ⊇ F and E ∈F}

Then µ̂ is an outer measure which is a measure on F̂ , the set of µ̂ measurable sets. Also
µ̂ (E) = µ (E) for E ∈F and F ⊆ F̂ . If (Ω,F ,µ) is already complete, then no new sets
are obtained from this process and F = F̂ .

Proof: The first part of this follows from Proposition 6.4.2. It only remains to verify
that F ⊆ F̂ . Let S be a set and let E ∈F , ES ⊇ S,ES ∈F . Then

µ (ES) = µ (ES \E)+µ (ES∩E)

due to the fact that µ is a measure. As usual, if µ̂ (S) = ∞, it is obvious that µ̂ (S) ≥
µ̂ (S\E)+ µ̂ (S∩E) . Therefore, assume this is not ∞. Then let µ̂ (S) > µ (ES)− ε. Then
from the above,

ε + µ̂ (S)≥ µ (ES \E)+µ (ES∩E)≥ µ (S\E)+µ (S∩E)

Since ε is arbitrary, this shows that E ∈ F̂ . Thus F ⊆ F̂ .
Why are these two σ algebras equal if (Ω,F ,µ) is complete? Suppose now that

(Ω,F ,µ) is complete. Let F ∈ F̂ . Then there exists E ⊇ F such that µ (E) = µ̂ (F) . This
is obvious if µ̂ (F) = ∞. Otherwise, let En ⊇ F, µ̂ (F)+ 1

n > µ (En) . Just let E = ∩nEn.
Now µ̂ (E \F) = 0. Now also, there exists a set of F called W such that µ (W ) = 0 and
W ⊇ E \F. Thus E \F ⊆W, a set of measure zero. Hence by completeness of (Ω,F ,µ) ,
it must be the case that E \F = E ∩FC = G ∈F . Then taking complements of both sides,
EC ∪F = GC ∈F . Now take intersections with E. F ∈ E ∩GC ∈F . ■
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6.7 When is a Measure a Borel Measure?
You have an outer measure defined on the set of all subsets of Rp. How can you tell that
the σ algebra of measurable sets includes the Borel sets? This is what is discussed here.

Definition 6.7.1 For two sets, A,B we define

dist(A,B)≡ inf{d (x,y) : x ∈ A,y ∈ B} .

Theorem 6.7.2 Let µ be an outer measure on the subsets of (X ,d), a metric space.
If

µ(A∪B) = µ(A)+µ(B)

whenever dist(A,B)> 0, then the σ algebra of measurable sets S contains the Borel sets.

Proof: It suffices to show that closed sets are in S , the σ -algebra of measurable sets,
because then the open sets are also in S and consequently S contains the Borel sets. Let
K be closed and let S be a subset of Ω. Is µ(S)≥ µ(S∩K)+µ(S\K)? It suffices to assume
µ(S)< ∞. Let

Kn ≡ {x : dist(x,K)≤ 1
n
}

By Lemma 2.4.8 on Page 44, x→ dist(x,K) is continuous and so Kn is closed. By the
assumption of the theorem,

µ(S)≥ µ((S∩K)∪ (S\Kn)) = µ(S∩K)+µ(S\Kn) (6.11)

since S∩K and S\Kn are a positive distance apart. Now

µ(S\Kn)≤ µ(S\K)≤ µ(S\Kn)+µ((Kn \K)∩S). (6.12)

If limn→∞ µ((Kn \K)∩ S) = 0 then the theorem will be proved because this limit along
with 6.12 implies limn→∞ µ (S\Kn) = µ (S\K) and then taking a limit in 6.11, µ(S) ≥
µ(S∩K)+µ(S\K) as desired. Therefore, it suffices to establish this limit.

Since K is closed, a point, x /∈ K must be at a positive distance from K and so

Kn \K = ∪∞
k=nKk \Kk+1.

Therefore

µ(S∩ (Kn \K))≤
∞

∑
k=n

µ(S∩ (Kk \Kk+1)). (6.13)

If
∞

∑
k=1

µ(S∩ (Kk \Kk+1))< ∞, (6.14)

then µ(S∩ (Kn \K))→ 0 because it is dominated by the tail of a convergent series so it
suffices to show 6.14.

M

∑
k=1

µ(S∩ (Kk \Kk+1)) =

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1)). (6.15)
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By the construction, the distance between any pair of sets, S∩(Kk \Kk+1) for different even
values of k is positive and the distance between any pair of sets, S∩(Kk \Kk+1) for different
odd values of k is positive. Therefore,

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1))≤

µ

( ⋃
k even, k≤M

(S∩ (Kk \Kk+1))

)
+µ

( ⋃
k odd, k≤M

(S∩ (Kk \Kk+1))

)

≤ µ (S)+µ (S) = 2µ (S)

and so for all M, ∑
M
k=1 µ(S∩ (Kk \Kk+1))≤ 2µ (S) showing 6.14. ■

6.8 One Dimensional Lebesgue Measure
Now with these major results about measures, it is time to specialize to the outer measure
of Theorem 6.5.1. The next theorem describes some fundamental properties of Lebesgue
measure on R. The conditions 6.16 and 6.17 given below are known respectively as inner
and outer regularity.

Lemma 6.8.1 Let F denote the σ algebra of Theorem 6.6.4, associated with the outer
measure µ in Theorem 6.5.1, on which µ is a measure. Then F ⊇B (R).

Proof: Suppose dist(A,B) = δ > 0. Is it the case that µ (A∪B) = µ (A)+ µ (B)? If
either on the right are ∞ then there is nothing to show so assume both µ (A) ,µ (B) <
∞. Let

{
J j
}∞

j=1 be open intervals such that µ (A∪B)+ ε > ∑
∞
j=1 µ (J j) . Without loss of

generality we assume that every J j intersects either A or B otherwise, the interval could be
discarded. Suppose some J j intersects both A and B. Say a ∈ A∩ J j. There are at most two
open intervals comprising J j \

[
a− 2

3 δ ,a+ 2
3 δ
]

and this closed interval has no points of B.
Neither can intersect both A and B because they are spaced apart by 4

3 δ . Let the new J j be
the one which intersects B. In this way, we can assume none of the J j intersects both A and
B. Let A be those i for which Ji intersects A and let B be those i for which Ji intersects B.
Then

µ (A∪B)+ ε >
∞

∑
j=1

µ (J j) = ∑
j∈A

µ (J j)+ ∑
j∈B

µ (J j)≥ µ (A)+µ (B)

and since ε is arbitrary and µ (A∪B) ≤ µ (A) + µ (B) , it follows that µ (A) + µ (B) =
µ (A∪B). By Theorem 6.7.2, F ⊇B (R). ■

Theorem 6.8.2 Let F denote the σ algebra of Theorem 6.6.4, associated with the
outer measure µ in Theorem 6.5.1, on which µ is a measure. Then every open interval is
in F . So are all open and closed sets. Furthermore, if E is any set in F

µ (E) = sup{µ (K) : K compact, K ⊆ E} (6.16)

µ (E) = inf{µ (V ) : V is an open set V ⊇ E} (6.17)

Proof: By Lemma 6.8.1, F ⊇B (R).
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Now consider the assertion of outer regularity. The assertion of outer regularity is not
hard to get. Letting E be any set µ (E)< ∞, there exist open intervals covering E denoted
by {(ai,bi)}∞

i=1 such that

µ (E)+ ε >
∞

∑
i=1

bi−ai =
∞

∑
i=1

µ (ai,bi)≥ µ (V )

where V is the union of the open intervals just mentioned. Thus

µ (E)≤ µ (V )≤ µ (E)+ ε.

This shows outer regularity. If µ (E) = ∞, there is nothing to show.
Now consider the assertion of inner regularity 6.16. Suppose I is a closed and bounded

interval and E ⊆ I with E ∈F . By outer regularity, there exists open V containing I∩EC

such that
µ
(
I∩EC)+ ε > µ (V )

Then since µ is additive on F , it follows that µ
(
V \
(
I∩EC

))
< ε. Then K ≡ VC ∩ I is a

compact subset of E. This is because V ⊇ I∩EC so VC ⊆ IC ∪E and so

VC ∩ I ⊆
(
IC ∪E

)
∩ I = E ∩ I = E.

Also,
E \
(
VC ∩ I

)
= E ∩V =V \EC ⊆V \

(
I∩EC) ,

a set of measure less than ε . Therefore,

µ
(
VC ∩ I

)
+ ε ≥ µ

(
VC ∩ I

)
+µ

(
E \
(
VC ∩ I

))
= µ (E) ,

so the desired conclusion holds in the case where E is contained in a compact interval.
Now suppose E is arbitrary and let l < µ (E) . Then choosing ε small enough, l + ε <

µ (E) also. Letting En ≡ E ∩ [−n,n] , it follows from Lemma 6.2.4 that for n large enough,
µ (En)> l + ε. Now from what was just shown, there exists K ⊆ En such that µ (K)+ ε >
µ (En). Hence µ (K)> l. This shows 6.16. ■

Definition 6.8.3 The countable union of closed sets is called an Fσ set and the
countable union of open sets is called a Gδ set. These are Borel sets.

Proposition 6.8.4 For m Lebesgue measure, m([a,b]) = m((a,b)) = b− a. Also m is
translation invariant in the sense that if E is any Lebesgue measurable set, then m(x+E)=
m(E).

Proof: Let K consist of the open intervals including R and /0. Then K is a π system.
Also m(x+ I) = m(I) is obvious for any I ∈K . Let G denote those Borel sets E such that
for all x,m(x+E ∩ (−n,n)) = m(E ∩ (−n,n)). Thus K ⊆ G . If Ei are disjoint sets in G ,
x+∪i (Ei∩ (−n,n)) = ∪(x+Ei∩ (−n,n)) and so

m(x+∪iEi∩ (−n,n)) = m(∪(x+Ei∩ (−n,n))) = ∑
i

m(x+Ei∩ (−n,n))

= ∑
i

m(Ei∩ (−n,n)) = m(∪iEi∩ (−n,n))
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so G is closed with respect to countable disjoint unions. If E ∈ G , then

m(x+E ∩ (−n,n))+m
(
x+EC ∩ (−n,n)

)
= m(x+(−n,n)) = m(−n,n) = m(E ∩ (−n,n))+m

(
EC ∩ (−n,n)

)
and m(x+E ∩ (−n,n)) = m(E ∩ (−n,n)) so subtracting this from both sides shows that G
is closed with respect to complements also. Therefore, G = σ (K ) = B (R) by Dynkin’s
lemma. Thus the measure is translation invariant on all Borel sets because you can let
n→ ∞. Now let E be an arbitrary measurable set. By Theorem 6.8.2 there is an increasing
sequence of compact sets {Kn} and a decreasing sequence of open sets {Vn} such that for
F ≡ ∪nFn and G≡ ∩nVn, m(F) = m(E) = m(G) and F ⊆ E ⊆ G. Then

m(F) = m(x+F)≤ m(x+E )≤ m(x+G) = m(G) = m(E ) = m(F) .

To see x+E is measurable, assume first that E is bounded. Then x+E is between x+F
and x+G and m(x+G\ (x+F)) = m(x+(G\F)) = m(G\F) = 0 so since x+G,x+F
are both Borel sets, completeness shows that x+E is also measurable. For an arbitrary
measurable set E, x+E equals ∪n (x+E ∩ (−n,n)). ■

Definition 6.8.5 There is an important idea which is often seen in the context of
measures. Something happens a.e. (almost everywhere) means that it happens off a set of
measure zero.

6.9 Exercises
1. Show carefully that if S is a set whose elements are σ algebras which are subsets of

P (Ω) , then ∩S is also a σ algebra. Now let G ⊆P (Ω) satisfy property P if G
is closed with respect to complements and countable disjoint unions as in Dynkin’s
lemma, and contains /0 and Ω. If H ⊆ G is any set whose elements are subsets of
P (Ω) which satisfies property P, then ∩H also satisfies property P. Thus there is a
smallest subset of G satisfying P.

2. Show B (Rp) = σ (P) where P consists of the half open rectangles which are of
the form ∏

p
i=1[ai,bi).

3. Recall that f : (Ω,F )→ R is measurable means f−1 (open) ∈F . Show that if E
is any set in B (R) , then f−1 (E) ∈F . Thus, inverse images of Borel sets are mea-
surable. Next consider f : (Ω,F )→ R being measurable and g : R→ R is Borel
measurable, meaning that g−1 (open) ∈ B (R). Explain why g ◦ f is measurable.
Hint: You know that (g◦ f )−1 (U) = f−1

(
g−1 (U)

)
. For your information, it does

not work the other way around. That is, measurable composed with Borel measur-
able is not necessarily measurable. In fact examples exist which show that if g is
measurable and f is continuous, then g◦ f may fail to be measurable.

4. Let Xi ≡ Rni and let X = ∏
n
i=1 Xi and let the distance between two points in X be

given by
∥x−y∥ ≡max{∥xi−yi∥ , i = 1,2, · · · ,n}

Show that any set of the form

n

∏
i=1

Ei, Ei ∈B (Xi)
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is a Borel set. That is, the product of Borel sets is Borel. Hint: You might consider
the continuous functions π i : ∏

n
j=1 X j → Xi which are the projection maps. Thus

π i (x)≡ xi. Then π
−1
i (Ei) would have to be Borel measurable whenever Ei ∈B (Xi).

Explain why. You know π i is continuous. Why would π
−1
i (Borel) be a Borel set?

Then you might argue that ∏
n
i=1 Ei = ∩n

i=1π
−1
i (Ei) .

5. You have two finite measures defined on B (X) µ,ν . Suppose these are equal on
every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

6. Show that (N,P (N) ,µ) is a measure space where µ (S) equals the number of el-
ements of S. You need to verify that if the sets Ei are disjoint, then µ (∪∞

i=1Ei) =

∑
∞
i=1 µ (Ei) .

7. Let Ω be an uncountable set and let F denote those subsets of Ω, F such that either
F or FC is countable. Show that this is a σ algebra. Next define the following
measure. µ (A) = 1 if A is uncountable and µ (A) = 0 if A is countable. Show that µ

is a measure.

8. Let µ (E) = 1 if 0 ∈ E and µ (E) = 0 if 0 /∈ E. Show this is a measure on P (R).

9. Give an example of a measure µ and a measure space and a decreasing sequence of
measurable sets {Ei} such that limn→∞ µ (En) ̸= µ (∩∞

i=1Ei).

10. If you have a finite measure µ on B (Rp), and if F ∈B (Rp) , show that there exist
sets E,G such that G is a countable intersection of open sets and E is a countable
union of closed sets such that E ⊆ F ⊆ G and µ (G\E) = 0.

11. You have a measure space (Ω,F ,P) where P is a probability measure on F . Then
you also have a measurable function X : Ω→ Rn. Thus X−1 (U) ∈F whenever U
is open. Now define a measure on B (Rn) denoted by λ X and defined by λ X (E) =
P({ω : X (ω) ∈ E}) . Explain why this yields a well defined probability measure on
B (Rn). This is called the distribution measure.

12. Let K ⊆V where K is closed and V is open. Consider the following function.

f (x) =
dist
(
x,VC

)
dist(x,K)+dist(x,VC)

Explain why this function is continuous, equals 0 off V and equals 1 on K.

13. Let (Ω,F ) be a measurable space and let f : Ω→Rn be a measurable function. Then
σ ( f ) denotes the smallest σ algebra such that f is measurable with respect to this
σ algebra. Show that σ ( f ) =

{
f−1 (E) : E ∈B (Rn)

}
. More generally, you have

a whole set of measurable functions S and σ (S ) denotes the smallest σ algebra
such that each function in S is measurable. If you have an increasing list St for
t ∈ [0,∞), then σ (St) will be what is called a filtration. You have a σ algebra for
each t ∈ [0,∞) and as t increases, these σ algebras get larger. This is an essential part
of the construction which is used to show that Wiener process is a martingale. In fact
the whole subject of martingales has to do with filtrations.
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14. There is a monumentally important theorem called the Borel Cantelli lemma. It says
the following. If you have a measure space (Ω,F ,µ) and if {Ei} ⊆ F is such
that ∑

∞
i=1 µ (Ei) < ∞, then there exists a set N of measure 0 (µ (N) = 0) such that if

ω /∈ N, then ω is in only finitely many of the Ei. Hint: You might look at the set of
all ω which are in infinitely many of the Ei. First explain why this set is of the form
∩∞

n=1∪k≥n Ek.

15. Let (Ω,F ,µ) be a measure space. A sequence of functions { fn} is said to converge
in measure to a measurable function f if and only if for each ε > 0,

lim
n→∞

µ ({ω : | fn (ω)− f (ω)|> ε}) = 0

Show that if this happens, then there exists a subsequence
{

fnk

}
and a set of measure

N such that if ω /∈ N, then
lim
k→∞

fnk (ω) = f (ω) .

Also show that if µ is finite and limn→∞ fn (ω)= f (ω) , then fn converges in measure
to f .

16. Let N be the positive integers and let F denote the set of all subsets of N. Explain
why N is a σ algebra. You could let µ (S) be the number of elements of S. This is
called counting measure. Explain why µ is a measure.

17. Show f : Ω→ R is measurable if and only if f−1 (U) is measurable whenever U is
an open set. Hint: This is pretty easy if you recall that every open set is the disjoint
union of countably many connected components.

18. The smallest σ algebra on R which contains the open intervals, denoted by B is
called the Borel sets. Show that B contains all open sets and is also the smallest σ

algebra which contains all open sets. Show that all continuous functions g : R→ R
are B measurable. A word of advice pertaining to Borel sets: Don’t try to describe
a typical Borel set. Instead, use the definition that it is a set in the smallest σ algebra
containing the open sets.

19. Show that f : Ω→ R is measurable if and only if f−1 (B) is measurable for every
Borel B. Recall B is the smallest σ algebra which contains the open sets. Hint: Let
G be those sets B such that f−1 (B) is measurable. Argue it is a σ algebra.

20. Now suppose f : Ω→ R where (Ω,F ) is a measureable space. Suppose g : R→ R
is B measurable. Explain why g◦ f is F measurable.

21. The open sets in Rn are defined to be all sets U which are unions of open rectangles
of the form R = ∏

n
i=1 (ai,bi) Show that all open sets in Rn are a countable union of

such open rectangles. If a pi system K consists of products of open intervals like the
above, show that σ (K ) is B the Borel sets. Hint: There are countably many open
rectangles of the form ∏

n
i=1 (p,q) ,q, p ∈Q Show that an arbitrary open rectangle is

the union of open rectangles of this sort having rational end points.

22. ↑Show that a set of the form ∏
n
i=1 Bi is a Borel set in Rn if each Bi is a Borel set in R.

The Borel sets in Rn are the smallest σ algebra which contains the open sets. Hint:
You might let fi :Rn→R be the projection map. Explain why f−1

i (B) is a Borel set
when B is a Borel set in R. You know fi is continuous and that it follows that it is
Borel measurable. Now consider intersections of sets like this.
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23. Lebesgue measure was discussed. Recall that m((a,b)) = b−a and it is defined on a
σ algebra which contains the Borel sets. It comes from an outer measure defined on
P (R). Also recall that m is translation invariant. Let x∼ y if and only if x− y ∈Q.
Show this is an equivalence relation. Now let W be a set of positive measure which
is contained in (0,1). For x ∈W, let [x] denote those y ∈W such that x ∼ y. Thus
the equivalence classes partition W . Use axiom of choice to obtain a set S⊆W such
that S consists of exactly one element from each equivalence class. Let T denote
the rational numbers in [−1,1]. Consider T+ S ⊆ [−1,2]. Explain why T+ S ⊇
W . For T ≡

{
r j
}
, explain why the sets

{
r j +S

}
j are disjoint. Now suppose S is

measurable. Then show that you have a contradiction if m(S) = 0 since m(W ) > 0
and you also have a contradiction if m(S) > 0 because T+ S consists of countably
many disjoint sets. Explain why S cannot be measurable. Thus there exists T ⊆ R
such that m(T ) < m(T ∩S)+m

(
T ∩SC

)
. Is there an open interval (a,b) such that

if T = (a,b) , then the above inequality holds?

24. Consider the following nested sequence of compact sets, {Pn}.Let P1 = [0,1], P2 =[
0, 1

3

]
∪
[ 2

3 ,1
]
, etc. To go from Pn to Pn+1, delete the open interval which is the

middle third of each closed interval in Pn. Let P = ∩∞
n=1Pn. By the finite intersection

property of compact sets, P ̸= /0. Show m(P) = 0. If you feel ambitious also show
there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus, although P has measure zero, it has the same number of points in it as
[0,1] in the sense that there is a one to one and onto mapping from one to the other.
Hint: There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the topological properties of the Cantor set rather than some
silly representation in terms of sums of powers of two and three. All you need to
do is use the Schroder Bernstein theorem and show there is an onto map from the
Cantor set to [0,1].

25. Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of
these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor set
of Problem 24. This function is called the Cantor function.It is a very important
example to remember. Note it has derivative equal to zero a.e. and yet it succeeds
in climbing from 0 to 1. Explain why this interesting function is not absolutely
continuous although it is continuous. Hint: This isn’t too hard if you focus on
getting a careful estimate on the difference between two successive functions in the
list considering only a typical small interval in which the change takes place. The
above picture should be helpful.

26. ↑ This problem gives a very interesting example found in the book by McShane [34].
Let g(x) = x+ f (x) where f is the strange function of Problem 25. Let P be the
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Cantor set of Problem 24. Let [0,1] \P = ∪∞
j=1I j where I j is open and I j ∩ Ik = /0

if j ̸= k. These intervals are the connected components of the complement of the
Cantor set. Show m(g(I j)) = m(I j) so

m(g(∪∞
j=1I j)) =

∞

∑
j=1

m(g(I j)) =
∞

∑
j=1

m(I j) = 1.

Thus m(g(P)) = 1 because g([0,1]) = [0,2]. By Problem 23 there exists a set,
A⊆ g(P) which is non measurable. Define φ(x) = XA(g(x)). Thus φ(x) = 0 unless
x ∈ P. Tell why φ is measurable. (Recall m(P) = 0 and Lebesgue measure is com-
plete.) Now show that XA(y) = φ(g−1(y)) for y ∈ [0,2]. Tell why g−1 is continuous
but φ ◦ g−1 is not measurable. (This is an example of measurable ◦ continuous ̸=
measurable.) Show there exist Lebesgue measurable sets which are not Borel mea-
surable. Hint: The function, φ is Lebesgue measurable. Now recall that Borel ◦
measurable = measurable.

27. For x ∈ Rp to be in ∏
p
i=1 Ai, it means that the ith component of x, xi is in Ai for each

i. Now for ∏
p
i=1 (ai,bi)≡ R, let V (R) = ∏

p
i=1 (bi−ai) . Next, for A ∈P (Rp) let

µ (A)≡ inf

{
∑
k

V
(

Rk
)

: A⊆ ∪kRk

}
This is just like one dimensional Lebesgue measure except that instead of open in-
tervals, we are using open boxes Rk. Show the following.

(a) µ is an outer measure.
(b) µ

(
∏

p
i=1 [ai,bi]

)
= ∏

p
i=1 (bi−ai) = µ

(
∏

p
i=1 (ai,bi)

)
.

(c) If dist(A,B)> 0, then µ (A)+µ (B) = µ (A∪B) so B (Rp)⊆F the set of sets
measurable with respect to this outer measure µ .

This is Lebesgue measure on Rp. Hint: Suppose for some j,b j−a j < ε. Show that
µ
(
∏

p
i=1 (ai,bi)

)
≤ ε ∏i ̸= j (bi−ai). Now use this to show that if you have a covering

by finitely many open boxes, such that the sum of their volumes is less than some
number, you can replace with a covering of open boxes which also has the sum of
their volumes less than that number but which has each box with sides less than δ .
To do this, you might consider replacing each box in the covering with 2mp open
boxes obtained by bisecting each side m times where m is small enough that each
little box has sides smaller than δ/2 in each of the finitely many boxes in the cover
and then fatten each of these just a little to cover up what got left out and retain the
sum of the volumes of the little boxes to still be less than the number you had.

28. ↑Show that Lebesgue measure defined in the above problem is both inner and outer
regular and is translation invariant.

29. Let (Ω,F ,µ) be a measure space and let s(ω) = ∑
n
i=0 ciXEi (ω) where the Ei are

distinct measurable sets but the ci might not be. Thus the ci are the finitely many
values of s. Say each ci ≥ 0 and c0 = 0. Define

∫
sdµ as ∑i ciµ (Ei). Show that this is

well defined and that if you have s(ω) = ∑
n
i=1 ciXEi (ω) , t (ω) = ∑

m
j=1 d jXFj (ω) ,

then for a,b nonnegative numbers, as(ω)+ bt (ω) can be written also in this form
and that

∫
(as+bt)dµ = a

∫
sdµ + b

∫
tdµ . Hint: s(ω) = ∑i ∑ j ciXEi∩Fj (ω) =

∑ j ∑i ciXEi∩Fj (ω) and (as+bt)(ω) = ∑ j ∑i (aci +bd j)XEi∩Fj (ω).
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30. ↑Having defined the integral of nonnegative simple functions in the above problem,
letting f be nonnegative and measurable. Define∫

f dµ ≡ sup
{∫

sdµ : 0≤ s≤ f ,s simple
}
.

Show that if fn is nonnegative and measurable and n→ fn (ω) is increasing, show
that for f (ω) = limn→∞ fn (ω) , it follows that

∫
f dµ = limn→∞

∫
fndµ . Hint: Show∫

fndµ is increasing to something α ≤ ∞. Explain why
∫

f dµ ≥ α. Now pick a
nonnegative simple function s ≤ f . For r ∈ (0,1) , [ fn > rs] ≡ En is increasing in n
and ∪nEn = Ω. Tell why

∫
fndµ ≥

∫
XEn fndµ ≥ r

∫
sdµ . Let n→ ∞ and show that

α ≥ r
∫

sdµ . Now explain why α ≥ r
∫

f dµ . Since r is arbitrary, α ≥
∫

f dµ ≥ α .

31. ↑Show that if f ,g are nonnegative and measurable and a,b≥ 0, then∫
(a f +bg)dµ = a

∫
f dµ +b

∫
gdµ



Chapter 7

The Abstract Lebesgue Integral
The general Lebesgue integral requires a measure space, (Ω,F ,µ) and, to begin with, a
nonnegative measurable function. I will use Lemma 1.11.2 about interchanging two supre-
mums frequently. Also, I will use the observation that if {an} is an increasing sequence
of points of [0,∞] , then supn an = limn→∞ an which is obvious from the definition of sup.
Lebesgue integration is a theory which depends on absolute convergence. Thus we under-
stand things in terms of nonnegative functions. For complex valued functions, we consider
positive and negative parts of real and imaginary parts. Thus one typically discusses non-
negative functions in statements of the main theorems.

7.1 Nonnegative Measurable Functions
7.1.1 Riemann Integrals For Decreasing Functions
First of all, the notation [g < f ] means {ω ∈Ω : g(ω)< f (ω)} with other variants of this
notation being similar. Also, the convention, 0 ·∞ = 0 will be used to simplify the presen-
tation whenever it is convenient to do so. The notation a∧b means the minimum of a and
b.

Definition 7.1.1 Let f : [a,b]→ [0,∞] be decreasing. Note that ∞ is a possible
value. Define ∫ b

a
f (λ )dλ ≡ lim

M→∞

∫ b

a
M∧ f (λ )dλ = sup

M

∫ b

a
M∧ f (λ )dλ

where a∧b means the minimum of a and b. Note that for f bounded,

sup
M

∫ b

a
M∧ f (λ )dλ =

∫ b

a
f (λ )dλ

where the integral on the right is the usual Riemann integral because eventually M > f .
For f a nonnegative decreasing function defined on [0,∞),∫

∞

0
f dλ ≡ lim

R→∞

∫ R

0
f dλ = sup

R>1

∫ R

0
f dλ = sup

R
sup
M>0

∫ R

0
f ∧Mdλ

Since decreasing bounded functions are Riemann integrable, the above definition is
well defined. See Theorem 5.1.11. Now here is an obvious property.

Lemma 7.1.2 Let f be a decreasing nonnegative function defined on an interval [a,b] .
Then if [a,b] =∪m

k=1Ik where Ik ≡ [ak,bk] and the intervals Ik are non overlapping, it follows∫ b

a
f dλ =

m

∑
k=1

∫ bk

ak

f dλ .

Proof: This follows from Theorems 5.1.7 and 5.1.11 along with the computation,∫ b

a
f dλ ≡ lim

M→∞

∫ b

a
f ∧Mdλ = lim

M→∞

m

∑
k=1

∫ bk

ak

f ∧Mdλ =
m

∑
k=1

∫ bk

ak

f dλ

Note both sides could equal +∞. ■
In all considerations below, we assume h is fairly small, certainly much smaller than R.

Thus R−h > 0.

159
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Lemma 7.1.3 Let g be a decreasing nonnegative function defined on an interval [0,R] .
Then ∫ R

0
g∧Mdλ = sup

h>0

m(R,h)

∑
i=1

(g(ih)∧M)h

where m(h,R) ∈ N satisfies R−h < hm(h,R)≤ R.

Proof: Since g∧M is a decreasing bounded function the lower sums converge to the
integral as h→ 0. Thus

∫ R

0
g∧Mdλ = lim

h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h+(g(R)∧M)(R−hm(h,R))

)

Now the last term in the above is no more than Mh and so the above is

lim
h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
= sup

h>0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
.■

7.1.2 The Lebesgue Integral for Nonnegative Functions
Here is the definition of the Lebesgue integral of a function which is measurable and has
values in [0,∞].

Definition 7.1.4 Let (Ω,F , µ) be a measure space and suppose f : Ω→ [0,∞] is
measurable. Then define ∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ

which makes sense because λ → µ ([ f > λ ]) is nonnegative and decreasing.

Note that if f ≤ g, then
∫

f dµ ≤
∫

gdµ because µ ([ f > λ ])≤ µ ([g > λ ]) .
For convenience ∑

0
i=1 ai ≡ 0.

Lemma 7.1.5 In the situation of the above definition,∫
f dµ = sup

h>0

∞

∑
i=1

µ ([ f > hi])h

Proof: Let m(h,R) ∈ N satisfy R−h < hm(h,R)≤ R. Then

lim
R→∞

m(h,R) = ∞

and so from Lemma 7.1.3,∫
f dµ ≡

∫
∞

0
µ ([ f > λ ])dλ = sup

M
sup

R

∫ R

0
µ ([ f > λ ])∧Mdλ

= sup
M

sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h
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Hence, switching the order of the sups, this equals

sup
R>0

sup
h>0

sup
M

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h = sup
R>0

sup
h>0

lim
M→∞

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

= sup
h>0

sup
R

m(R,h)

∑
k=1

(µ ([ f > kh]))h = sup
h>0

∞

∑
k=1

(µ ([ f > kh]))h. ■

7.2 Integration of Nonnegative Simple Functions
To begin with, here is a useful lemma.

Lemma 7.2.1 If f (λ ) = 0 for all λ > a, where f is a decreasing nonnegative function,
then ∫

∞

0
f (λ )dλ =

∫ a

0
f (λ )dλ .

Proof: From the definition,∫
∞

0
f (λ )dλ = lim

R→∞

∫ R

0
f (λ )dλ = sup

R>1

∫ R

0
f (λ )dλ

= sup
R>1

sup
M

∫ R

0
f (λ )∧Mdλ = sup

M
sup
R>1

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ a

0
f (λ )∧Mdλ = sup

M

∫ a

0
f (λ )∧Mdλ ≡

∫ a

0
f (λ )dλ . ■

Now the Lebesgue integral for a nonnegative function has been defined, what does it do
to a nonnegative simple function? Recall a nonnegative simple function is one which has
finitely many nonnegative real values which it assumes on measurable sets. Thus a simple
function can be written in the form

s(ω) =
n

∑
i=1

ciXEi (ω)

where the ci are each nonnegative, the distinct values of s.

Lemma 7.2.2 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function where the

Ei are distinct but the ai might not be. Thus the values of s are the ai. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (7.1)

Proof: Without loss of generality, assume 0≡ a0 < a1≤ a2≤ ·· · ≤ ap and that µ (Ei)<
∞, i > 0. Here is why. If µ (Ei) = ∞, then letting a ∈ (ai−1,ai) , by Lemma 7.2.1, the left
side is ∫ ap

0
µ ([s > λ ])dλ ≥

∫ ai

a0

µ ([s > λ ])dλ

≡ sup
M

∫ ai

0
µ ([s > λ ])∧Mdλ ≥ sup

M
Mai = ∞
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and so both sides of 7.1 are equal to ∞. Thus assume for each i > 0,µ (Ei) < ∞. Then it
follows from Lemma 7.2.1 and Lemma 7.1.2,∫

∞

0
µ ([s > λ ])dλ =

∫ ap

0
µ ([s > λ ])dλ =

p

∑
k=1

∫ ak

ak−1

µ ([s > λ ])dλ

=
p

∑
k=1

(ak−ak−1)
p

∑
i=k

µ (Ei) =
p

∑
i=1

µ (Ei)
i

∑
k=1

(ak−ak−1) =
p

∑
i=1

aiµ (Ei) ■

Note that this is the same result as in Problem 29 on Page 157 but here there is no question
about the definition of the integral of a simple function being well defined.

Lemma 7.2.3 If a,b≥ 0 and if s and t are nonnegative simple functions, then∫
as+btdµ = a

∫
sdµ +b

∫
tdµ .

Proof: Let s(ω) = ∑
n
i=1 α iXAi(ω), t(ω) = ∑

m
i=1 β jXB j(ω) where α i are the distinct

values of s and the β j are the distinct values of t. Clearly as+ bt is a nonnegative simple
function because it has finitely many values on measurable sets. In fact,

(as+bt)(ω) =
m

∑
j=1

n

∑
i=1

(aα i +bβ j)XAi∩B j(ω)

where the sets Ai∩B j are disjoint and measurable. By Lemma 7.2.2,∫
as+btdµ =

m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai∩B j)

=
n

∑
i=1

a
m

∑
j=1

α iµ(Ai∩B j)+b
m

∑
j=1

n

∑
i=1

β jµ(Ai∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j) = a
∫

sdµ +b
∫

tdµ . ■

7.3 The Monotone Convergence Theorem
The following is called the monotone convergence theorem. This theorem and related
convergence theorems are the reason for using the Lebesgue integral. If limn→∞ fn (ω) =
f (ω) and fn is increasing in n, then clearly f is also measurable because of Corollary 6.1.4.
Also

f−1 ((a,∞]) = ∪∞
k=1 f−1

k ((a,∞]) ∈F

For a different approach to this, see Problem 29 on Page 157.

Theorem 7.3.1 (Monotone Convergence theorem) Suppose that the function f has
all values in [0,∞] and suppose { fn} is a sequence of nonnegative measurable functions
having values in [0,∞] and satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·
Then f is measurable and ∫

f dµ = lim
n→∞

∫
fndµ.
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Proof: By Lemma 7.1.5

lim
n→∞

∫
fndµ = sup

n

∫
fndµ

= sup
n

sup
h>0

∞

∑
k=1

µ ([ fn > kh])h = sup
h>0

sup
N

sup
n

N

∑
k=1

µ ([ fn > kh])h

= sup
h>0

sup
N

N

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h =
∫

f dµ. ■

Note how it was important to have
∫

∞

0 [ f > λ ]dλ in the definition of the integral and
not [ f ≥ λ ]. You need to have [ fn > kh] ↑ [ f > kh] so µ ([ fn > kh])→ µ ([ f > kh]) . To
illustrate what goes wrong without the Lebesgue integral, consider the following example.

Example 7.3.2 Let {rn} denote the rational numbers in [0,1] and let

fn (t)≡
{

1 if t /∈ {r1, · · · ,rn}
0 otherwise

Then fn (t) ↑ f (t) where f is the function which is one on the rationals and zero on the
irrationals. Each fn is Riemann integrable (why?) but f is not Riemann integrable because
it is everywhere discontinuous. Also, there is a gap between all upper sums and lower
sums. Therefore, you can’t write

∫
f dx = limn→∞

∫
fndx.

An observation which is typically true related to this type of example is this. If you
can choose your functions, you don’t need the Lebesgue integral. The Riemann Darboux
integral is just fine. It is when you can’t choose your functions and they come to you as
pointwise limits that you really need the superior Lebesgue integral or at least something
more general than the Riemann integral. The Riemann integral is entirely adequate for
evaluating the seemingly endless lists of boring problems found in calculus books. It is
shown later that the two integrals coincide when the Lebesgue integral is taken with respect
to Lebesgue measure and the function being integrated is continuous.

7.4 Other Definitions
To review and summarize the above, if a nonnegative function f is measurable,∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ (7.2)

another way to get the same thing for
∫

f dµ is to take an increasing sequence of non-
negative simple functions, {sn} with sn (ω)→ f (ω) and then by monotone convergence
theorem, ∫

f dµ = lim
n→∞

∫
sn

where if sn (ω) = ∑
m
j=1 ciXEi (ω) ,

∫
sndµ = ∑

m
i=1 ciµ (Ei) . Similarly this also shows that

for such a nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
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This is in Problem 29 on Page 157. Here is an equivalent definition of the integral of a
nonnegative measurable function. The fact it is well defined has been discussed above.
I think that the following definition is more standard than the above one involving the
distribution function. One can begin with this one instead. An outline of a different proof
of the monotone convergence theorem is in Problem 30 on Page 158.

Definition 7.4.1 For s a nonnegative simple function,

s(ω) =
n

∑
k=1

ckXEk (ω) ,
∫

s≡
n

∑
k=1

ckµ (Ek) .

For f a nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.

7.5 Fatou’s Lemma
The next theorem, known as Fatou’s lemma is another important theorem which justifies
the use of the Lebesgue integral.

Theorem 7.5.1 (Fatou’s lemma) Let fn be a nonnegative measurable function. Let
g(ω) = liminfn→∞ fn(ω). Then g is measurable and∫

gdµ ≤ lim inf
n→∞

∫
fndµ .

In other words, ∫ (
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
fndµ

Proof: Let
gn(ω) = inf{ fk(ω) : k ≥ n}

Then g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) ∈F . Thus gn is measurable by Lemma 6.1.2. Now

the functions gn form an increasing sequence of nonnegative measurable functions. Thus
g−1 ((a,∞)) = ∪∞

n=1g−1
n ((a,∞)) ∈F so g is measurable also. By monotone convergence

theorem, ∫
gdµ = lim

n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The last inequality holding because
∫

gndµ ≤
∫

fndµ. (Note that it is not known whether
limn→∞

∫
fndµ exists.) ■

7.6 The Integral’s Righteous Algebraic Desires
The monotone convergence theorem shows that the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 7.6.1 Let f ,g be nonnegative measurable functions and let a,b be non-
negative numbers. Then a f +bg is measurable and∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (7.3)
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Proof: By Theorem 6.1.10 on Page 140 there exist increasing sequences of nonnegative
simple functions, sn→ f and tn→ g. Then a f +bg, being the pointwise limit of the simple
functions asn+btn, is measurable. Now by the monotone convergence theorem and Lemma
7.2.3, ∫

(a f +bg)dµ = lim
n→∞

∫
asn +btndµ

= lim
n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ. ■

As long as you are allowing functions to take the value +∞, you cannot consider some-
thing like f +(−g) and so you can’t expect a satisfactory statement about the integral being
linear until you restrict yourself to functions which have values in a vector space. To be
linear, a function must be defined on a vector space. This is discussed next.

7.7 The Lebesgue Integral, L1

The functions considered here have values in C, which is a vector space. A function f with
values in C is of the form f = Re f + i Im f where Re f and Im f are real valued functions.
In fact

Re f =
f + f

2
, Im f =

f − f
2i

.

We first define the integral of real valued functions and then the integral of a complex
valued function will be of the form∫

f dµ =
∫

Re( f )dµ + i
∫

Im( f )dµ

Definition 7.7.1 Let (Ω,S ,µ) be a measure space and suppose f : Ω→ C. Then
f is said to be measurable if both Re f and Im f are measurable real valued functions.

As is always the case for complex numbers, |z|2 = (Rez)2 +(Imz)2. Also, for g a real
valued function, one can consider its positive and negative parts defined respectively as

g+ (x)≡ g(x)+ |g(x)|
2

, g− (x) =
|g(x)|−g(x)

2
.

Thus |g| = g+ + g− and g = g+ − g− and both g+ and g− are measurable nonnegative
functions if g is measurable. This follows because of Theorem 6.1.6. The mappings x→
x+,x→ x− are clearly continuous. Thus g+ is the composition of a continuous function
with a measurable function.

Then the following is the definition of what it means for a complex valued function f
to be in L1 (Ω).

Definition 7.7.2 Let (Ω,F ,µ) be a measure space. Then a complex valued mea-
surable function f is in L1 (Ω) if ∫

| f |dµ < ∞.
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For a function in L1 (Ω) , the integral is defined as follows.∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
I will show that with this definition, the integral is linear and well defined. First note

that it is clearly well defined because all the above integrals are of nonnegative functions
and are each equal to a nonnegative real number because for h equal to any of the functions,
|h| ≤ | f | and

∫
| f |dµ < ∞.

Here is a lemma which will make it possible to show the integral is linear.

Lemma 7.7.3 Let g,h,g′,h′ be nonnegative measurable functions in L1 (Ω) and suppose
that

g−h = g′−h′.

Then ∫
gdµ−

∫
hdµ =

∫
g′dµ−

∫
h′dµ.

Proof: By assumption, g+ h′ = g′+ h. Then from the Lebesgue integral’s righteous
algebraic desires, Theorem 7.6.1,∫

gdµ +
∫

h′dµ =
∫

g′dµ +
∫

hdµ

which implies the claimed result. ■

Lemma 7.7.4 Let Re
(
L1 (Ω)

)
denote the vector space of real valued functions in L1 (Ω)

where the field of scalars is the real numbers. Then
∫

dµ is linear on Re
(
L1 (Ω)

)
, the

scalars being real numbers.

Proof: First observe that from the definition of the positive and negative parts of a
function,

( f +g)+− ( f +g)− = f++g+−
(

f−+g−
)

because both sides equal f +g. Therefore from Lemma 7.7.3 and the definition, it follows
from Theorem 7.6.1 that∫

f +gdµ ≡
∫

( f +g)+− ( f +g)− dµ =
∫

f++g+dµ−
∫

f−+g−dµ

=
∫

f+dµ +
∫

g+dµ−
(∫

f−dµ +
∫

g−dµ

)
=
∫

f dµ +
∫

gdµ.

what about taking out scalars? First note that if a is real and nonnegative, then (a f )+ = a f+

and (a f )− = a f− while if a < 0, then (a f )+ = −a f− and (a f )− = −a f+. These claims
follow immediately from the above definitions of positive and negative parts of a function.
Thus if a < 0 and f ∈ L1 (Ω) , it follows from Theorem 7.6.1 that∫

a f dµ ≡
∫

(a f )+ dµ−
∫

(a f )− dµ =
∫

(−a) f−dµ−
∫

(−a) f+dµ

= −a
∫

f−dµ +a
∫

f+dµ = a
(∫

f+dµ−
∫

f−dµ

)
≡ a

∫
f dµ.

The case where a≥ 0 works out similarly but easier. ■
Now here is the main result.
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Theorem 7.7.5 ∫
dµ is linear on L1 (Ω) and L1 (Ω) is a complex vector space. If

f ∈ L1 (Ω) , then Re f , Im f , and | f | are all in L1 (Ω) . Also, for f ∈ L1 (Ω) ,∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
≡

∫
Re f dµ + i

∫
Im f dµ

and the triangle inequality holds, ∣∣∣∣∫ f dµ

∣∣∣∣≤ ∫ | f |dµ. (7.4)

Also, for every f ∈ L1 (Ω) it follows that for every ε > 0 there exists a simple function s
such that |s| ≤ | f | and ∫

| f − s|dµ < ε.

Proof: First consider the claim that the integral is linear. It was shown above that the
integral is linear on Re

(
L1 (Ω)

)
. Then letting a+ ib,c+ id be scalars and f ,g functions in

L1 (Ω) ,

(a+ ib) f +(c+ id)g = (a+ ib)(Re f + i Im f )+(c+ id)(Reg+ i Img)

= cRe(g)−b Im( f )−d Im(g)+aRe( f )+ i(bRe( f )+ c Im(g)+a Im( f )+d Re(g))

It follows from the definition that∫
(a+ ib) f +(c+ id)gdµ =

∫
(cRe(g)−b Im( f )−d Im(g)+aRe( f ))dµ

+i
∫

(bRe( f )+ c Im(g)+a Im( f )+d Re(g)) (7.5)

Also, from the definition,

(a+ ib)
∫

f dµ +(c+ id)
∫

gdµ = (a+ ib)
(∫

Re f dµ + i
∫

Im f dµ

)
+(c+ id)

(∫
Regdµ + i

∫
Imgdµ

)
which equals

= a
∫

Re f dµ−b
∫

Im f dµ + ib
∫

Re f dµ + ia
∫

Im f dµ

+c
∫

Regdµ−d
∫

Imgdµ + id
∫

Regdµ−d
∫

Imgdµ.

Using Lemma 7.7.4 and collecting terms, it follows that this reduces to 7.5. Thus the
integral is linear as claimed.

Consider the claim about approximation with a simple function. Letting h equal any
of

(Re f )+ ,(Re f )− ,(Im f )+ ,(Im f )− , (7.6)
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It follows from the monotone convergence theorem and Theorem 6.1.10 on Page 140 there
exists a nonnegative simple function s≤ h such that∫

|h− s|dµ <
ε

4
.

Therefore, letting s1,s2,s3,s4 be such simple functions, approximating respectively the
functions listed in 7.6, and s≡ s1− s2 + i(s3− s4) ,∫

| f − s|dµ ≤
∫ ∣∣(Re f )+− s1

∣∣dµ +
∫ ∣∣(Re f )−− s2

∣∣dµ

+
∫ ∣∣(Im f )+− s3

∣∣dµ +
∫ ∣∣(Im f )−− s4

∣∣dµ < ε

It is clear from the construction that |s| ≤ | f |.
What about 7.4? Let θ ∈ C be such that |θ | = 1 and θ

∫
f dµ = |

∫
f dµ| . Then from

what was shown above about the integral being linear,∣∣∣∣∫ f dµ

∣∣∣∣= θ

∫
f dµ =

∫
θ f dµ =

∫
Re(θ f )dµ ≤

∫
| f |dµ.

It is routine to verify that for f ,g measurable, meaning real and imaginary parts are
measurable, then any complex linear combination is also measurable. This follows right
away from Theorem 6.1.6 and looking at the real and imaginary parts of this complex linear
combination. Also ∫

|a f +bg|dµ ≤
∫
|a| | f |+ |b| |g|dµ < ∞. ■

The following corollary follows from this. The conditions of this corollary are some-
times taken as a definition of what it means for a function f to be in L1 (Ω).

Corollary 7.7.6 f ∈ L1(Ω) if and only if there exists a sequence of complex simple
functions, {sn} such that

sn (ω)→ f (ω) for all ω ∈Ω

limm,n→∞

∫
(|sn− sm|) = 0 (7.7)

When f ∈ L1 (Ω) , ∫
f dµ ≡ lim

n→∞

∫
sn. (7.8)

Proof:⇒ From the above theorem, if f ∈ L1 there exists a sequence of simple functions
{sn} such that ∫

| f − sn|dµ < 1/n, sn (ω)→ f (ω) for all ω

Then ∫
|sn− sm|dµ ≤

∫
|sn− f |dµ +

∫
| f − sm|dµ ≤ 1

n
+

1
m
.

⇐Next suppose the existence of the approximating sequence of simple functions. Then
f is measurable because its real and imaginary parts are the limit of measurable functions.
By Fatou’s lemma, ∫

| f |dµ ≤ lim inf
n→∞

∫
|sn|dµ < ∞
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because ∣∣∣∣∫ |sn|dµ−
∫
|sm|dµ

∣∣∣∣≤ ∫ |sn− sm|dµ

which is given to converge to 0. Hence {
∫
|sn|dµ} is a Cauchy sequence and is therefore,

bounded.
In case f ∈ L1 (Ω) , letting {sn} be the approximating sequence, Fatou’s lemma implies∣∣∣∣∫ f dµ−

∫
sndµ

∣∣∣∣≤ ∫ | f − sn|dµ ≤ lim inf
m→∞

∫
|sm− sn|dµ < ε

provided n is large enough. Hence 7.8 follows. ■
This is a good time to observe the following fundamental observation which follows

from a repeat of the above arguments.

Theorem 7.7.7 Suppose Λ( f ) ∈ [0,∞] for all nonnegative measurable functions
and suppose that for a,b≥ 0 and f ,g nonnegative measurable functions,

Λ(a f +bg) = aΛ( f )+bΛ(g) .

In other words, Λ wants to be linear. Then Λ has a unique linear extension to the set of
measurable functions

{ f measurable : Λ(| f |)< ∞} ,

this set being a vector space.

If you want, you could say the same thing replacing measurable with continuous.

Notation 7.7.8 If E is a measurable set and f is a measurable nonnegative function or one
in L1, the integral

∫
XE f dµ is often denoted as

∫
E f dµ.

7.8 The Dominated Convergence Theorem
One of the major theorems in this theory is the dominated convergence theorem. Before
presenting it, here is a technical lemma about limsup and liminf which is really pretty
obvious from the definition.

Lemma 7.8.1 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case, the limit equals the common value of these two numbers.

Proof: Suppose first limn→∞ an = a ∈ R. Then, let ε > 0 be given, an ∈ (a− ε,a+ ε)
for all n large enough, say n ≥ N. Therefore, both inf{ak : k ≥ n} and sup{ak : k ≥ n} are
contained in [a− ε,a+ ε] whenever n ≥ N. It follows limsupn→∞ an and liminfn→∞ an are
both in [a− ε,a+ ε] , showing∣∣∣∣lim inf

n→∞
an− lim sup

n→∞

an

∣∣∣∣< 2ε.
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Since ε is arbitrary, the two must be equal and they both must equal a. Next suppose
limn→∞ an = ∞. Then if l ∈ R, there exists N such that for n≥ N, l ≤ an and therefore, for
such n,

l ≤ inf{ak : k ≥ n} ≤ sup{ak : k ≥ n}
and this shows, since l is arbitrary that liminfn→∞ an = limsupn→∞ an = ∞. The case for
−∞ is similar.

Conversely, suppose liminfn→∞ an = limsupn→∞ an = a. Suppose first that a∈R. Then,
letting ε > 0 be given, there exists N such that if n≥ N,

sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

therefore, if k,m > N, and ak > am,

|ak−am|= ak−am ≤ sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

showing that {an} is a Cauchy sequence. Therefore, it converges to a ∈ R, and as in the
first part, the liminf and limsup both equal a. If liminfn→∞ an = limsupn→∞ an = ∞, then
given l ∈ R, there exists N such that for n ≥ N, infn>N an > l. Therefore, limn→∞ an = ∞.
The case for −∞ is similar. ■

Here is the dominated convergence theorem.

Theorem 7.8.2 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose

f (ω) = lim
n→∞

fn(ω),

and there exists a measurable function g, with values in [0,∞],1 such that

| fn(ω)| ≤ g(ω) and
∫

g(ω)dµ < ∞.

Then f ∈ L1 (Ω) and

0 = lim
n→∞

∫
| fn− f |dµ = lim

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣
Proof: f is measurable by Corollary 6.1.4 applied to real and imaginary parts. Since

| f | ≤ g, it follows that
f ∈ L1(Ω) and | f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 7.5.1),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ

=
∫

2gdµ− lim sup
n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ , 0≤− limsupn→∞

∫
| f − fn|dµ. Hence

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Lemma 7.8.1 because the limsup and liminf are equal. ■

1Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Corollary 7.8.3 Suppose fn ∈ L1 (Ω) and f (ω) = limn→∞ fn (ω) . Suppose also there
exist measurable functions, gn, g with values in [0,∞] such that

lim
n→∞

∫
gndµ =

∫
gdµ,gn (ω)→ g(ω) µ a.e.

and both
∫

gndµ and
∫

gdµ are finite. Also suppose | fn (ω)| ≤ gn (ω) . Then

lim
n→∞

∫
| f − fn|dµ = 0.

Proof: It is just like the above. This time g+gn−| f − fn| ≥ 0 and so by Fatou’s lemma,∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ = lim

n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
((gn +g)−| f − fn|)dµ ≥

∫
2gdµ

and so − limsupn→∞

∫
| f − fn|dµ ≥ 0. Thus

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥
∣∣∣∣∫ f dµ−

∫
fndµ

∣∣∣∣≥ 0. ■

Definition 7.8.4 Let E be a measurable subset of Ω.∫
E

f dµ ≡
∫

f XEdµ.

If L1(E) is written, the σ algebra is defined as {E ∩A : A ∈ F} and the measure is
µ restricted to this smaller σ algebra. Clearly, if f ∈ L1(Ω), then f XE ∈ L1(E) and if
f ∈ L1(E), then letting f̃ be the 0 extension of f off of E, it follows f̃ ∈ L1(Ω).

What about something ordinary, the integral of a continuous function?

Theorem 7.8.5 Let f be continuous on [a,b]. Then∫ b

a
f (x)dx =

∫
[a,b]

f dm

where the integral on the left is the usual Riemann integral and the integral on the right is
the Lebesgue integral.

Proof: From Theorems 6.5.1 and 6.8.2 f X[a,b] is Lebesgue measurable. Assume for
the sake of simplicity that f (x)≥ 0. If not, apply what is about to be shown to f+ and f−.
Let sn (x) be a step function and let this converge uniformly to f (x) on [a,b] with sn (x) = 0
for x /∈ [a,b]. For example, let

sn (x)≡
n

∑
j=1

f
(
x j−1

)
X[x j−1,x j) (x)
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Then
∫ b

a sn (x)dx =
∫
[a,b] sndm thanks to Theorem 6.5.1 which gives the measure of inter-

vals. Then one can apply the definition of the Riemann integral to obtain the left side
converging to

∫ b
a f (x)dx because f is continuous and

∫ b
a sn (x)dx is nothing more than a

left sum. Then apply the dominated convergence theorem on the right to obtain the claim
of the theorem. Indeed f is bounded and so there exists M ≥ f (x)≥ 0 for all x ∈ [a,b]. ■

This shows that for reasonable functions, there is nothing new in the Lebesgue integral.
The big difference is that now you have limit theorems which may be applied and you
can integrate more functions. In fact, every Riemann integrable function on an interval is
Lebesgue integrable. See Problem 13 on Page 183.

7.9 Product Measures
First of all is a definition.

Definition 7.9.1 Let (X ,F ,µ) be a measure space. Then it is called σ finite if
there exists an increasing sequence of sets Rn ∈F such that µ (Rn)< ∞ for all n and also
X = ∪∞

n=1Rn.

Now I will show how to define a measure on ∏
p
i=1 Xi given that (Xi,Fi,µ i) is a σ finite

measure space.
Let K denote all subsets of X ≡ ∏

p
i=1 Xi which are the form ∏

p
i=1 Ei where Ei ∈Fi.

These are called measurable rectangles. Let {Rn
i }

∞

n=1 be the sequence of sets in Fi whose
union is all of Xi, Rn

i ⊆ Rn+1
i , and µ i (R

n
i ) < ∞. Thus if Rn ≡ ∏

p
i=1 Rn

i , and E≡∏
p
i=1 Ei,

then

Rn∩E =
p

∏
i=1

Rn
i ∩Ei

Let I≡ (i1, · · · , ip) where (i1, · · · , ip) is a permutation of {1, · · · , p}. Also, to save on space,
denote the iterated integral∫

X11

· · ·
∫

Xip

XF (x1, · · · ,xp)dµ i1 · · ·dµ ip

as
∫

I XF (x1, · · · ,xp)dµI. Then define G as follows. G will consist of all F⊆ X satisfying
the following condition.{

For all n,
∫

I
XF∩Rn (x1, · · · ,xp)dµI makes sense independent of I

}
The iterated integral means what the symbols indicate. Integrate XF (x1, · · · ,xp) with re-
spect to dµ i1 and then you have a function of the other variables other than xi1 . Then
integrate what is left with respect to xi2 and so forth. This is just like what was done with
iterated integrals in calculus. In order for this to make sense, every function encountered
must be measurable with respect to the appropriate σ algebra. Now obviously K ⊆ G . In
fact, if F ∈K , then

∫
I XF∩Rn (x1, · · · ,xp)dµI = ∏

p
i=1 µ i (Fi∩Rn

i ) for any choice of n.

Proposition 7.9.2 Let K and G be as just defined, then G ⊇ σ (K ) . We define σ (K )
as F p, better denoted as F1×·· ·×Fp. Then if

µ⃗ (F)≡ lim
n→∞

∫
I
XF∩Rn (x1, · · · ,xp)dµI,
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then µ⃗ is a measure which does not depend on I the particular permutation chosen for
the order of integration. µ⃗ often denoted as µ1 × ·· · × µ p is called product measure.
f : X→ [0,∞) is measurable with respect to F p then for any permutation (i1, · · · , ip) of
{1, · · · , p} it follows ∫

f dµ⃗ =
∫
· · ·
∫

f (x1, · · · ,xp)dµ i1 · · ·dµ ip
(7.9)

Proof: I will show that G is closed with respect to complements and countable disjoint
unions. Then the result will follow. Now suppose

{
Fk
}∞

k=1 are disjoint, each in G . Then if
F≡ ∪∞

k=1Fk,

F∩Rn = ∪∞
k=1Fk ∩Rn

and since these sets are disjoint, XF∩Rn =∑
∞
k=1 XFk∩Rn . Therefore, applying the monotone

convergence theorem repeatedly for the iterated integrals and using the fact that measura-
bility is not lost on taking limits, then for two permutations (i1, · · · , ip) ,( j1, · · · , jp),∫

· · ·
∫

XF∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

=
∫
· · ·
∫

lim
N→∞

N

∑
k=1

XFk∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

∫
· · ·
∫ N

∑
k=1

XFk∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

N

∑
k=1

∫
· · ·
∫

XFk∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

N

∑
k=1

∫
· · ·
∫

XFk∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

= lim
N→∞

∫
· · ·
∫ N

∑
k=1

XFk∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

=
∫
· · ·
∫

lim
N→∞

N

∑
k=1

XFk∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

=
∫
· · ·
∫

XF∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

Thus G is closed with respect to countable disjoint unions. So suppose F ∈ G . Then
XFC∩Rn = XRn −XF∩Rn . Everything works for both terms on the right and in addition,∫

I XRndµI is finite and independent of I. Therefore, everything works as it should for the
function on the left using similar arguments to the above. You simply verify that all makes
sense for each integral at a time and apply monotone convergence theorem as needed.
Therefore, G is indeed closed with respect to complements. It follows that G ⊇ σ (K ) by
Dynkin’s lemma, Lemma 6.3.2. Now define for F ∈ σ (K ) ,

µ⃗ (F)≡ lim
n→∞

∫
I
XF∩Rn (x1, · · · ,xp)dµI
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By definition of G this definition of µ⃗ does not depend on I. If you have
{

Fk
}∞

k=1 is a
sequence of disjoint sets in G , then if F is their union,

µ⃗ (F)≡ lim
n→∞

∫
I

∞

∑
k=1

XFk∩Rn (x1, · · · ,xp)dµI

and one can apply the monotone convergence theorem one integral at a time and obtain that
this is

lim
n→∞

∞

∑
k=1

∫
I
XFk∩Rn (x1, · · · ,xp)dµI

Now applying the monotone convergence theorem again, this time for the Lebesgue integral
given by a sum with counting measure, the above is

∞

∑
k=1

lim
n→∞

∫
I
XFk∩Rn (x1, · · · ,xp)dµI ≡

∞

∑
k=1

µ⃗

(
Fk
)

which shows that µ⃗ is indeed a measure. Also from the construction, it follows that this
measure does not depend on the particular permutation of the iterated integrals used to
compute it.

The claim about the integral 7.9 follows right away from the monotone convergence
theorem applied in the right side one iterated integral at a time and approximation with
simple functions as in Theorem 6.1.10. The result holds for each of an increasing sequence
of simple functions from linearity of integrals and the definition of µ⃗ . Then you apply the
monotone convergence theorem to obtain the claim of the theorem. ■

7.10 Some Important General Theorems
7.10.1 Eggoroff’s Theorem
Eggoroff’s theorem says that if a sequence converges pointwise, then it almost converges
uniformly in a certain sense.

Theorem 7.10.1 (Egoroff) Let (Ω,F ,µ) be a finite measure space,

(µ(Ω)< ∞)

and let fn, f be complex valued functions such that Re fn, Im fn are all measurable and

lim
n→∞

fn(ω) = f (ω)

for all ω /∈ E where µ(E) = 0. Then for every ε > 0, there exists a set,

F ⊇ E, µ(F)< ε,

such that fn converges uniformly to f on FC.

Proof: First suppose E = /0 so that convergence is pointwise everywhere. It follows
then that Re f and Im f are pointwise limits of measurable functions and are therefore
measurable. Let Ekm = {ω ∈Ω : | fn(ω)− f (ω)| ≥ 1/m for some n > k}. Note that

| fn (ω)− f (ω)|=
√

(Re fn (ω)−Re f (ω))2 +(Im fn (ω)− Im f (ω))2



7.10. SOME IMPORTANT GENERAL THEOREMS 175

and so, [
| fn− f | ≥ 1

m

]
is measurable. Hence Ekm is measurable because

Ekm = ∪∞
n=k+1

[
| fn− f | ≥ 1

m

]
.

For fixed m,∩∞
k=1Ekm = /0 because fn converges to f . Therefore, if ω ∈ Ω there exists k

such that if n > k, | fn (ω)− f (ω)|< 1
m which means ω /∈ Ekm. Note also that

Ekm ⊇ E(k+1)m.

Since µ(E1m)< ∞, Theorem 6.2.4 on Page 141 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m)< ε2−m and let

F =
∞⋃

m=1

Ek(m)m.

Then µ(F)< ε because

µ (F)≤
∞

∑
m=1

µ
(
Ek(m)m

)
<

∞

∑
m=1

ε2−m = ε

Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈ FC, then

ω ∈
∞⋂

m=1

EC
k(m)m.

Hence ω ∈ EC
k(m0)m0

so
| fn(ω)− f (ω)|< 1/m0 < η

for all n > k(m0). This holds for all ω ∈ FCand so fn converges uniformly to f on FC.
Now if E ̸= /0, consider {XEC fn}∞

n=1 . Each XEC fn has real and imaginary parts mea-
surable and the sequence converges pointwise to XE f everywhere. Therefore, from the
first part, there exists a set of measure less than ε,F such that on FC,{XEC fn} converges
uniformly to XEC f . Therefore, on (E ∪F)C , { fn} converges uniformly to f . ■

7.10.2 The Vitali Convergence Theorem
The Vitali convergence theorem is a convergence theorem which in the case of a finite
measure space is superior to the dominated convergence theorem.

Definition 7.10.2 Let (Ω,F ,µ) be a measure space and let S ⊆ L1(Ω). S is
uniformly integrable if for every ε > 0 there exists δ > 0 such that for all f ∈S

|
∫

E
f dµ|< ε whenever µ(E)< δ .
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Lemma 7.10.3 If S is uniformly integrable, then |S| ≡ {| f | : f ∈S} is uniformly inte-
grable. Also S is uniformly integrable if S is finite.

Proof: Let ε > 0 be given and suppose S is uniformly integrable. First suppose the
functions are real valued. Let δ be such that if µ (E)< δ , then∣∣∣∣∫E

f dµ

∣∣∣∣< ε

2

for all f ∈S. Let µ (E)< δ . Then if f ∈S,∫
E
| f |dµ ≤

∫
E∩[ f≤0]

(− f )dµ +
∫

E∩[ f>0]
f dµ

=

∣∣∣∣∫E∩[ f≤0]
f dµ

∣∣∣∣+ ∣∣∣∣∫E∩[ f>0]
f dµ

∣∣∣∣< ε

2
+

ε

2
= ε.

In general, if S is a uniformly integrable set of complex valued functions, the inequalities,∣∣∣∣∫E
Re f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ , ∣∣∣∣∫E
Im f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ ,
imply ReS ≡ {Re f : f ∈S} and ImS ≡ {Im f : f ∈S} are also uniformly integrable.
Therefore, applying the above result for real valued functions to these sets of functions, it
follows |S| is uniformly integrable also.

For the last part, is suffices to verify a single function in L1 (Ω) is uniformly integrable.
To do so, note that from the dominated convergence theorem,

lim
R→∞

∫
[| f |>R]

| f |dµ = 0.

Let ε > 0 be given and choose R large enough that
∫
[| f |>R] | f |dµ < ε

2 . Now let µ (E)< ε

2R .
Then ∫

E
| f |dµ =

∫
E∩[| f |≤R]

| f |dµ +
∫

E∩[| f |>R]
| f |dµ

< Rµ (E)+
ε

2
<

ε

2
+

ε

2
= ε.

This proves the lemma. ■
The following gives a nice way to identify a uniformly integrable set of functions.

Lemma 7.10.4 Let S be a subset of L1 (Ω,µ) where µ (Ω) < ∞. Let t → h(t) be a
continuous function which satisfies

lim
t→∞

h(t)
t

= ∞

Then S is uniformly integrable and bounded in L1 (Ω) if

sup
{∫

Ω

h(| f |)dµ : f ∈S

}
= N < ∞.
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Proof: First I show S is bounded in L1 (Ω; µ) which means there exists a constant M
such that for all f ∈S, ∫

Ω

| f |dµ ≤M.

From the properties of h, there exists Rn such that if t ≥ Rn, then h(t)≥ nt. Therefore,∫
Ω

| f |dµ =
∫
[| f |≥Rn]

| f |dµ +
∫
[| f |<Rn]

| f |dµ

Letting n = 1, ∫
Ω

| f |dµ ≤
∫
[| f |≥R1]

h(| f |)dµ +R1µ ([| f |< R1])

≤ N +R1µ (Ω)≡M.

Next let E be a measurable set. Then for every f ∈S,∫
E
| f |dµ =

∫
[| f |≥Rn]∩E

| f |dµ +
∫
[| f |<Rn]∩E

| f |dµ

≤ 1
n

∫
Ω

| f |dµ +Rnµ (E)≤ N
n
+Rnµ (E)

and letting n be large enough, this is less than ε/2+Rnµ (E). Now if µ (E) < ε/2Rn, it
follows that for all f ∈S,

∫
E | f |dµ < ε . This proves the lemma. ■

Letting h(t)= t2, it follows that if all the functions in S are bounded, then the collection
of functions is uniformly integrable.

The following theorem is Vitali’s convergence theorem.

Theorem 7.10.5 Let { fn} be a uniformly integrable set of complex valued func-
tions, µ(Ω)< ∞, and fn(x)→ f (x) a.e. where f is a measurable complex valued function.
Then f ∈ L1 (Ω) and

lim
n→∞

∫
Ω

| fn− f |dµ = 0. (7.10)

Proof: First it will be shown that f ∈ L1 (Ω). By uniform integrability, there exists
δ > 0 such that if µ (E) < δ , then

∫
E | fn|dµ < 1 for all n. By Egoroff’s theorem, there

exists a set, E of measure less than δ such that on EC, { fn} converges uniformly. Therefore,
for p large enough, and n > p,

∫
EC

∣∣ fp− fn
∣∣dµ < 1 which implies∫

EC
| fn|dµ < 1+

∫
Ω

∣∣ fp
∣∣dµ.

Then since there are only finitely many functions, fn with n ≤ p, there exists a constant,
M1 such that for all n,

∫
EC | fn|dµ < M1. But also,∫

Ω

| fm|dµ =
∫

EC
| fm|dµ +

∫
E
| fm| ≤M1 +1≡M.

Therefore, by Fatou’s lemma,
∫

Ω
| f |dµ ≤ liminfn→∞

∫
| fn|dµ ≤ M, showing that f ∈ L1

as hoped.
Now S∪{ f} is uniformly integrable so there exists δ 1 > 0 such that if µ (E) < δ 1,

then
∫

E |g|dµ < ε/3 for all g ∈ S∪{ f}.
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By Egoroff’s theorem, there exists a set, F with µ (F) < δ 1 such that fn converges
uniformly to f on FC. Therefore, there exists N such that if n > N, then∫

FC
| f − fn|dµ <

ε

3
.

It follows that for n > N,∫
Ω

| f − fn|dµ ≤
∫

FC
| f − fn|dµ +

∫
F
| f |dµ +

∫
F
| fn|dµ

<
ε

3
+

ε

3
+

ε

3
= ε,

which verifies 7.10. ■

7.11 Radon Nikodym Theorem
Let µ,ν be two finite measures on the measurable space (Ω,F ) and let α ≥ 0. Let λ ≡
ν−αµ . Then it is clear that if {Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) = ∑
∞
i=1 λ (Ei)

and that the series converges. The next proposition is fairly obvious.

Proposition 7.11.1 Let (Ω,F ,λ ) be a measure space and let λ : F → [0,∞) be a
measure. Then λ is a finite measure.

Proof: Since λ (Ω)< ∞ this is a finite measure. ■

Definition 7.11.2 Let (Ω,F ) be a measurable space and let λ : F →R satisfy: If
{Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) = ∑
∞
i=1 λ (Ei) and the series converges. Such

a real valued function is called a signed measure. In this context, a set E ∈F is called
positive if whenever F is a measurable subset of E, it follows λ (F) ≥ 0. A negative set is
defined similarly. Note that this requires λ (Ω) ∈ R.

Lemma 7.11.3 The countable union of disjoint positive sets is positive.

Proof: Let Ei be positive and consider E ≡ ∪∞
i=1Ei. If A ⊆ E with A measurable, then

A∩Ei ⊆ Ei and so λ (A∩Ei)≥ 0. Hence λ (A) = ∑i λ (A∩Ei)≥ 0. ■

Lemma 7.11.4 Let λ be a signed measure on (Ω,F ). If E ∈F with 0 < λ (E), then E
has a measurable subset which is positive.

Proof: If every measurable subset F of E has λ (F) ≥ 0, then E is positive and we
are done. Otherwise there exists measurable F ⊆ E with λ (F)< 0. Let the elements of F
consist of sets of disjoint sets of measurable subsets of E each of which has measure less
than 0. Partially order F by set inclusion. By the Hausdorff maximal theorem, there is a
maximal chain C . Then ∪C is a set consisting of disjoint measurable sets F ∈F such
that λ (F)< 0. Since each set in ∪C has measure strictly less than 0, it follows that ∪C is
a countable set, {Fi}∞

i=1 . Otherwise, there would exist an infinite subset of ∪C with each
set having measure less than − 1

n for some n ∈ N so λ would not be real valued. Letting
F = ∪iFi, then E \F has no measurable subsets S for which λ (S) < 0 since, if it did, C
would not have been maximal. Thus E \F is positive. ■

A major result is the following, called a Hahn decomposition.
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Theorem 7.11.5 Let λ be a signed measure on a measurable space (Ω,F ) . Then
there are disjoint measurable sets P,N such that P is a positive set, N is a negative set, and
P∪N = Ω.

Proof: If Ω is either positive or negative, there is nothing to show, so suppose Ω is
neither positive nor negative. F will consist of collections of disjoint measurable sets F
such that λ (F)> 0. Thus each element of F is necessarily countable. Partially order F by
set inclusion and use the Hausdorff maximal theorem to get C a maximal chain. Then, as
in the above lemma, ∪C is countable, say {Pi}∞

i=1 because λ (F)> 0 for each F ∈ ∪C and
λ has values in R. The sets in ∪C are disjoint because if A,B are two of them, then they
are both in a single element of C . Letting P ≡ ∪iPi, and N = PC, it follows from Lemma
7.11.3 that P is positive. It is also the case that N must be negative because otherwise, C
would not be maximal. ■

Clearly a Hahn decomposition is not unique. For example, you could have obtained
a different Hahn decomposition if you had considered disjoint negative sets F for which
λ (F)< 0 in the above argument .

Let k ∈ N,
{

αk
n
}∞

n=0 be equally spaced points αk
n = 2−kn. Then αk

2n = 2−k (2n) =
2−(k−1)n≡ αk−1

n and α
k+1
2n ≡ 2−(k+1)2n = αk

n. Similarly Nk+1
2n = Nk

n because these depend
on the αk

n. Also let
(
Pk

n ,N
k
n
)

be a Hahn decomposition for the signed measure ν −αk
nµ

where ν ,µ are two finite measures. Now from the definition, Nk
n+1 \Nk

n = Nk
n+1∩Pk

n . Also,
Nn ⊆ Nn+1 for each n and we can take N0 = /0. then

{
Nk

n+1 \Nk
n
}∞

n=0 covers all of Ω except
possibly for a set of µ measure 0.

Lemma 7.11.6 Let S≡Ω\
(
∪nNk

n
)
= Ω\

(
∪nNl

n
)

for any l. Then µ (S) = 0.

Proof: S = ∩nPk
n so for all n,ν (S)−αk

nµ (S) ≥ 0. But letting n→ ∞, it must be that
µ (S) = 0. ■

As just noted, if E ⊆ Nk
n+1 \Nk

n , then

ν (E)−α
k
nµ (E)≥ 0≥ ν (E)−α

k
n+1µ (E) , so α

k
n+1µ (E)≥ ν (E)≥ α

k
nµ (E) (7.11)

Nk
n

Nk
n+1

αk
n+1µ(E)≥ ν(E)≥ αk

nµ(E)

Then define f k (ω)≡ ∑
∞
n=0 αk

nX∆k
n
(ω) where ∆k

m ≡ Nk
m+1 \Nk

m. Thus,

f k =
∞

∑
n=0

α
k+1
2n X(Nk+1

2n+2\N
k+1
2n ) =

∞

∑
n=0

α
k+1
2n X

∆
k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

≤
∞

∑
n=0

α
k+1
2n+1X∆

k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

= f k+1 (7.12)

Thus k→ f k (ω) is increasing. Let f (ω)≡ limk→∞ f (ω). Also, from the above and 7.11,
for E ⊆ SC so E ⊆ ∪n

(
Nk

n+1 \Nk
n
)
,∫

XE f kdµ ≤
∞

∑
n=0

α
k
n+1µ

(
E ∩∆

k
n

)
≤

∞

∑
n=0

α
k
nµ

(
E ∩∆

k
n

)
+

∞

∑
n=0

2−k
µ

(
E ∩∆

k
n

)
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≤
∞

∑
n=0

ν

(
E ∩∆

k
n

)
+2−k

µ (E) = ν (E)+2−k
µ (E)≤

∫
XE f kdµ +2−k

µ (E) (7.13)

From the monotone convergence theorem it follows ν (E)=
∫

XE f dµ . This is summarized
as follows.

Lemma 7.11.7 There exists f nonnegative and measurable such that if E ⊆ SC, then∫
XE f dµ = ν (E).

This proves most of the following theorem which is the Radon Nikodym theorem. First
is a definition.

Definition 7.11.8 Let µ,ν be finite measures on (Ω,F ). Then ν ≪ µ means that
whenever µ (E) = 0, it follows that ν (E) = 0.

Theorem 7.11.9 Let ν and µ be finite measures defined on a measurable space
(Ω,F ). Then there exists a set of µ measure zero S and a real valued, measurable function
ω → f (ω) such that if E ⊆ SC, E ∈F , then ν (E) =

∫
E f dµ. If ν ≪ µ,ν (E) =

∫
E f dµ

for any measurable E. In any case, ν (E)≥
∫

E f dµ . This function f ∈ L1 (Ω). If f , f̂ both
work, then f = f̂ µ a.e.

Proof: Let S be defined in Lemma 7.11.6 so S≡Ω\
(
∪nNk

n
)

and µ (S) = 0. If E ∈F ,
and f as described above,

ν (E) = ν
(
E ∩SC)+ν (E ∩S) =

∫
E∩SC

f dµ +ν (E ∩S) =
∫

E
f dµ +ν (E ∩S)

Thus if E ⊆ SC, we have ν (E) =
∫

E f dµ . If ν ≪ µ, then in the above, ν (E ∩S) = 0 so∫
E∩SC f dµ =

∫
E f dµ = ν (E). In any case, ν (E) ≥

∫
E f dµ , strict inequality holding if

ν (E ∩S)> 0. ■
Sometimes people write f = dλ

dµ
, in the case ν ≪ µ and this is called the Radon

Nikodym derivative.

Definition 7.11.10 Let S be in the above theorem. Then

ν || (E)≡ ν
(
E ∩SC)= ∫

E∩SC
f dµ =

∫
E

f dµ

while ν⊥ (E)≡ ν (E ∩S) . Thus ν ||≪ µ and ν⊥ is nonzero only on sets which are contained
in S which has µ measure 0.

This decomposition of a measure ν into the sum of two measures, one absolutely con-
tinuous with respect to µ and the other supported on a set of µ measure zero is called the
Lebesgue decomposition.

Definition 7.11.11 A measure space (Ω,F ,µ) is σ finite if there are countably
many measurable sets {Ωn} such that µ is finite on measurable subsets of Ωn.

There is a routine corollary of the above theorem.
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Corollary 7.11.12 Suppose µ,ν are both σ finite measures defined on (Ω,F ). Then
the same conclusion in the above theorem can be obtained.

ν (E) = ν
(
E ∩SC)+ν (E ∩S) =

∫
E

f dµ +ν (E ∩S) , µ (S) = 0 (7.14)

In particular, if ν ≪ µ then there is a real valued function f such that ν (E) =
∫

E f dµ for
all E ∈F . Also, if ν

(
Ω̂
)
,µ
(
Ω̂
)
< ∞, then f ∈ L1

(
Ω̂
)
. This f is unique up to a set of µ

measure zero.

Proof: Since both µ,ν are σ finite, there are
{

Ω̃k
}∞

k=1 such that ν
(
Ω̃k
)
,µ
(
Ω̃k
)

are

finite. Letting Ω0 = /0 and Ωk ≡ Ω̃k \
(
∪k−1

j=0Ω̃ j

)
so that µ,ν are finite on Ωk and the Ωk

are disjoint. Let Fk be the measurable subsets of Ωk, equivalently the intersections with
Ωk with sets of F . Now let νk (E)≡ ν (E ∩Ωk) , similar for µk. By Theorem 7.11.9, there
exists Sk ⊆Ωk, and fk as described there. Thus µk (Sk) = 0 and

νk (E) = νk
(
E ∩SC

k
)
+νk (E ∩Sk) =

∫
E∩Ωk

fkdµk +νk (E ∩Sk)

Now let f (ω)≡ fk (ω) for ω ∈Ωk. Thus

ν (E ∩Ωk) = ν (E ∩ (Ωk \Sk))+ν (E ∩Sk) =
∫

E∩Ωk

f dµ +ν (E ∩Sk) (7.15)

Summing over all k, and letting S ≡ ∪kSk, it follows µ (S) = 0 and that for Sk as above,
a subset of Ωk where the Ωk are disjoint, Ω \ S = ∪k (Ωk \Sk) . Thus, summing on k in
7.15, ν (E) = ν

(
E ∩SC

)
+ ν (E ∩S) =

∫
E f dµ + ν (E ∩S) . In particular, if ν ≪ µ, then

ν (E ∩S) = 0 and so ν (E) =
∫

E f dµ. The last claim is obvious from 7.14. ■

Corollary 7.11.13 In the above situation, let λ be a signed measure and let λ ≪ µ

meaning that if µ (E) = 0⇒ λ (E) = 0. Here assume that µ is a finite measure. Then there
exists h ∈ L1 such that λ (E) =

∫
E hdµ .

Proof: Let P∪N be a Hahn decomposition of λ . Let

λ+ (E)≡ λ (E ∩P) , λ− (E)≡−λ (E ∩N) .

Then both λ+ and λ− are absolutely continuous measures and so there are nonnegative h+
and h− with λ− (E) =

∫
E h−dµ and a similar equation for λ+. Then 0 ≤ −λ (Ω∩N) ≤

λ− (Ω) < ∞, similar for λ+ so both of these measures are necessarily finite. Hence
both h− and h+ are in L1 so h ≡ h+− h− is also in L1 and λ (E) = λ+ (E)− λ− (E) =∫

E (h+−h−)dµ . ■

7.12 Exercises
1. Let Ω = N={1,2, · · ·}. Let F = P(N), the set of all subsets of N, and let µ(S) =

number of elements in S. Thus µ({1}) = 1 = µ({2}), µ({1,2}) = 2, etc. In this
case, all functions are measurable. For a nonnegative function, f defined on N, show∫
N f dµ = ∑

∞
k=1 f (k) . What do the monotone convergence and dominated conver-

gence theorems say about this example?
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2. For the measure space of Problem 1, give an example of a sequence of nonnegative
measurable functions { fn} converging pointwise to a function f , such that inequality
is obtained in Fatou’s lemma.

3. If (Ω,F ,µ) is a measure space and f ,g≥ 0 is measurable, show that if g(ω)= f (ω)
a.e. ω, then

∫
gdµ =

∫
f dµ. Show that if f ,g ∈ L1 (Ω) and g(ω) = f (ω) a.e. then∫

gdµ =
∫

f dµ .

4. Let { fn} , f be measurable functions with values in C. { fn} converges in measure if

lim
n→∞

µ(x ∈Ω : | f (x)− fn(x)| ≥ ε) = 0

for each fixed ε > 0. Prove the theorem of F. Riesz. If fn converges to f in measure,
then there exists a subsequence { fnk} which converges to f a.e. In case µ is a proba-
bility measure, this is called convergence in probability. It does not imply pointwise
convergence but does imply that there is a subsequence which converges pointwise
off a set of measure zero. Hint: Choose n1 such that µ(x : | f (x)− fn1(x)| ≥ 1)< 1/2.
Choose n2 > n1 such that µ(x : | f (x)− fn2(x)| ≥ 1/2) < 1/22, n3 > n2 such that
µ(x : | f (x)− fn3(x)| ≥ 1/3) < 1/23, etc. Now consider what it means for fnk(x) to
fail to converge to f (x). Use the Borel Cantelli lemma of Problem 14 on Page 155.

5. Suppose (Ω,µ) is a finite measure space (µ (Ω) < ∞) and S ⊆ L1 (Ω). Then S is
said to be uniformly integrable if for every ε > 0 there exists δ > 0 such that if E is
a measurable set satisfying µ (E) < δ , then

∫
E | f |dµ < ε for all f ∈S. Show S is

uniformly integrable and bounded in L1 (Ω) if there exists an increasing function h
which satisfies

lim
t→∞

h(t)
t

= ∞, sup
{∫

Ω

h(| f |)dµ : f ∈S

}
< ∞.

S is bounded if there is some number, M such that
∫
| f |dµ ≤M for all f ∈S. This

is in the chapter but write it down in your own words.

6. A collection S ⊆ L1 (Ω) ,(Ω,F ,µ) a finite measure space, is called equiintegrable
if for every ε > 0 there exists λ > 0 such that

∫
[| f |≥λ ] | f |dµ < ε for all f ∈S. Show

that S is equiintegrable, if and only if it is uniformly integrable and bounded. The
equiintegrable condition is pretty popular in probability.

7. Product measure is described in the chapter. Go through the construction in detail
for two measure spaces as follows.

(X ,F ,µ) ,(Y,G ,ν)

Let K be the π system of measurable rectangles A×B where A ∈F and B ∈ G .
Explain why this is really a π system. Now let F ×G denote the smallest σ algebra
which contains K . Let

P≡
{

A ∈F ×G :
∫

X

∫
Y

XAdνdµ =
∫

Y

∫
X

XAdµdν

}
where both integrals make sense and are equal. Then show that P is closed with
respect to complements and countable disjoint unions. By Dynkin’s lemma, P =



7.12. EXERCISES 183

F ×G . Then define a measure µ × ν as follows. For A ∈ F ×G , µ × ν (A) ≡∫
X
∫

Y XAdνdµ . Explain why this is a measure and why if f is F ×G measurable
and nonnegative, then∫

X×Y
f d (µ×ν) =

∫
X

∫
Y

XAdνdµ =
∫

Y

∫
X

XAdµdν

Hint: Pay special attention to the way the monotone convergence theorem is used.

8. Let (Ω,F ,µ) be a measure space and suppose f ,g : Ω→ (−∞,∞] are measurable.
Prove the sets {ω : f (ω) < g(ω)} and {ω : f (ω) = g(ω)} are measurable. Hint:
The easy way to do this is to write {ω : f (ω)< g(ω)}=∪r∈Q [ f < r]∩ [g > r] . Note
that l (x,y) = x− y is not continuous on (−∞,∞] so the obvious idea doesn’t work.
Here [g > r] signifies {ω : g(ω)> r}.

9. Let { fn} be a sequence of real or complex valued measurable functions. Let S =
{ω : { fn(ω)} converges}. Show S is measurable. Hint: You might try to exhibit
the set where fn converges in terms of countable unions and intersections using the
definition of a Cauchy sequence.

10. Suppose un(t) is a differentiable function for t ∈ (a,b) and suppose that for t ∈ (a,b),
|un(t)|, |u′n(t)|< Kn where ∑

∞
n=1 Kn < ∞. Show (∑∞

n=1 un(t))′ = ∑
∞
n=1 u′n(t).

Hint: This is an exercise in the use of the dominated convergence theorem and the
mean value theorem.

11. Suppose { fn} is a sequence of nonnegative measurable functions defined on a mea-
sure space, (Ω,S ,µ). Show that

∫
∑

∞
k=1 fkdµ = ∑

∞
k=1

∫
fkdµ. Hint: Use the mono-

tone convergence theorem along with the fact the integral is linear.

12. Show limn→∞
n
2n ∑

n
k=1

2k

k = 2. This problem was shown to me by Shane Tang, a for-
mer student. It is a nice exercise in dominated convergence theorem if you massage
it a little. Hint:

n
2n

n

∑
k=1

2k

k
=

n

∑
k=1

2k−n n
k
=

n−1

∑
l=0

2−l n
n− l

=
n−1

∑
l=0

2−l
(

1+
l

n− l

)
≤

n−1

∑
l

2−l (1+ l)

13. If f is nonnegative and Riemann integrable on [a,b], show that there is an increasing
sequence of lower sums and a decreasing sequence of upper sums which converge to∫ b

a f dx. These come from step functions. Show we can assume these step functions
corresponding to the lower sums are increasing and those from the upper sums are
decreasing. Now the Riemann integral and Lebesgue integral are the same for a step
function. Tell why. Now let g be the limit of the step functions corresponding to the
lower sums and let h be the limit of the step functions corresponding to the upper
sums. Show these are both Borel measurable and∫

[a,b]
hdm =

∫ b

a
f dx =

∫ b

a
gdm
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and so f = g off a set of measure zero with g a Borel measurable function. Explain
why by completeness of the measure that f is Lebesgue measurable and

∫
[a,b] f dµ =∫ b

a f dx. Explain why this shows that Riemann integrable implies Lebesgue integrable
for functions having values in C.

14. Show the Vitali Convergence theorem implies the Dominated Convergence theorem
for finite measure spaces but there exist examples where the Vitali convergence the-
orem works and the dominated convergence theorem does not.

15. Suppose ν≪ µ where these are finite measures so there exists h≥ 0 and measurable
such that ν (E) =

∫
E hdµ by the Radon Nikodym theorem. Show that if f is mea-

surable and non-negative, then
∫

f dν =
∫

f hdµ . Hint: It holds if f is χE and so it
holds for a simple function. Now consider a sequence of simple functions increasing
to f and use the monotone convergence theorem.

16. Consider the p dimensional Lebesgue measure of Problem 27 on Page 157 denoted
as mp. Explain why mp = m×m×·· ·×m≡ mp the product measure of this chapter
on all the Borel sets of Rp. Hint: The two are equal on open boxes and half open
boxes of the form ∏

p
i=1[ai,bi). Recall how m was defined in Theorem 6.5.1.



Chapter 8

Positive Linear Functionals
In this chapter is a standard way to obtain many examples of measures from extending
positive linear functionals. I will consider positive linear functionals defined on Cc (X)
where (X ,d) is a metric space. This can all be generalized to X a locally compact Hausdorff
space, but I don’t have many examples which need this level of generality. Also, we will
always assume that the closure of balls in (X ,d) are compact. Thus you see that the main
example is Rp or some closed subset of Rp like a m dimensional surface in Rp where
m < p. This approach will not work for finding measures on infinite dimensional Banach
spaces for example, which appears to limit its applications to probability but it is a very
general approach which gives outstanding results very quickly. To see more generality
including the locally compact Hausdorff spaces, see Rudin [39] which is where I first saw
this, actually in an earlier version of this book. Another source is in Hewitt and Stromberg
[22].

Lemma 8.0.1 Let f ∈C ([a,b]) . Then
∫ b

a f dx =
∫
[a,b] f dm1. The Riemann integral from

calculus equals the Lebesgue integral.

Proof: One can reduce to the case where f (x) ≥ 0 by looking at positive and nega-
tive parts of real and imaginary parts. Let a = x0 < · · · < xn = b and consider the step
functions fn (x) ≡ ∑

n
k=1 f (xk−1)X[xk−1,xk) (x). This converges uniformly to f and each is

a simple function. By the fact that m1 (I) is just the length of I for I an interval, we have∫ b
a fn (s)dx =

∫
[a,b] fndm1. Now let n→ ∞ and use the uniform convergence to conclude∫ b

a f dx =
∫
[a,b] f dm1. ■

This is based on extending functionals. The most obvious functional is as follows:

L f ≡
∫

∞

−∞

· · ·
∫

∞

−∞

f (x1, · · · ,xp)dxpdxp−1 · · ·dx1 (8.1)

the iterated integral in which f ∈ Cc (Rp). You do exactly what the notation says. First
integrate with respect to xp then with respect to xp−1 and so forth. This makes perfect
sense whenever f ∈Cc (Rp) and we can consider each iterated integral as either a Riemann
integral from Calculus or a Lebesgue integral with respect to dm1 since the above lemma
shows these are the same.

Lemma 8.0.2 The functional L makes sense for f ∈Cc (Rp) .

Proof: Let f be zero off [−R,R]p a compact set. Then by uniform continuity of f on
this compact set, if

∣∣x̂p−1− xp−1
∣∣ is small enough,∣∣ f (x1, · · · , x̂p−1,xp)− f (x1, · · · ,xp−1,xp)

∣∣< ε/2R

Therefore, for
∣∣x̂p−1− xp−1

∣∣ this small,∣∣∣∣∫ ∞

−∞

f (x1, · · · ,xp−1,xp)dxp−
∫

∞

−∞

f (x1, · · · , x̂p−1,xp)dxp

∣∣∣∣
=

∣∣∣∣∫ R

−R
f (x1, · · · ,xp−1,xp)dxp−

∫ R

−R
f (x1, · · · , x̂p−1,xp)dxp

∣∣∣∣
185
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∫ R

−R

∣∣ f (x1, · · · ,xp−1,xp)− f (x1, · · · , x̂p−1,xp)
∣∣dxp <

ε

2R
2R = ε

and so xp−1→
∫

∞

−∞
f (x1, · · · ,xp−1,xp)dxp is continuous and zero off some interval and so

it is integrable. Continuing this way shows that the functional defined above makes perfect
sense. You can keep doing the iterated integrals. ■

The idea of the following Lemma is in Problem 6. You could use the result of that
problem for transpositions obtain the conclusion of the following lemma by considering
the product of transpositions.

Lemma 8.0.3 If L f is given in 8.1 and if (i1, · · · , ip) is any permutation of (1, · · · , p)
with σ being the name of this permutation, then defining

Lσ f ≡
∫

∞

−∞

· · ·
∫

∞

−∞

f (x1, · · · ,xp)dxipdxip−1 · · ·dxi1

it follows that Lσ = Lα on Cc (Rp) where α is any other permutation.

Proof: Let Tn denote a tiling of Rp into disjoint half open rectangles, each of diameter
1/2n. Let ∏

p
i=1[0,2

−n) be in Tn to be specific, thus forcing each Q in Tn to be the union
of the Q in Tn+1. Also denote by Qr = ∏

p
i=1[ri,ri + 2−n) one of the half open rectangles

so described and letting V be the set of such vertices r ≡ (r1, · · · ,rp). Then using the
mean value theorem for one dimensional integrals in the successive iterated integrals, (See
Problem 5 on Page 132) it follows that

Lσ f ≡ ∑
r∈V

∫ ri1+2−n

ri1

· · ·
∫ rip+2−n

rip

f (x1, · · · ,xp)dxipdxip−1 · · ·dxi1 = ∑
r∈V

(
2−n)p f (xrσ )

there being only finitely many terms in the above sum and xrσ is a point of Qr. Since f
has compact support, there is a positive integer m such that the support of f is contained
in ∏

p
i=1[−m,m). Thus the only r in the above sum are those for which ri = k2−n for k an

integer in [−m2n,m2n).
By uniform continuity of f there is δ such that if |x−y| < δ , then | f (x)− f (y)| <

ε/(2mp)p. Then by choosing n large enough so that each Qr has diameter less than δ , if
follows that

|Lσ f −Lα f |<
m2n

∑
k1=−m2n

· · ·
m2n

∑
kp=−m2n

(
2−n)p

ε = (2mp2n)p (2−n)p ε

(2mp)p = ε

Therefore, since ε is arbitrary, Lσ = Lα for any two permutations σ ,α . ■

8.1 Partitions of Unity
The support of a function f , denoted as spt( f ), is the closure of the set on which the
function is nonzeo.

Definition 8.1.1 Define Cc (X) to be the functions which have complex values and
compact support. This means spt( f ) ≡ {x ∈ X : f (x) ̸= 0} is a compact set. Then L :
Cc (X)→ C is called a positive linear functional if it is linear and if, whenever f ≥ 0,
then L( f ) ≥ 0 also. When f is a continuous function and spt( f ) ⊆ V an open set, we say
f ∈Cc (V ). Here X is some metric space.
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The following definition gives some notation.

Definition 8.1.2 If K is a compact subset of an open set, V , then K ≺ φ ≺V if

φ ∈Cc(V ), φ(K) = {1}, φ(X)⊆ [0,1],

where X denotes the whole metric space. Also for φ ∈Cc(X), K ≺ φ if

φ(X)⊆ [0,1] and φ(K) = 1.

and φ ≺V if
φ(X)⊆ [0,1] and spt(φ)⊆V.

Next is a useful theorem. Recall from Theorem 2.4.8, x→ dist(x,S) is continuous.

Theorem 8.1.3 Let H be a compact subset of an open set U in X where (X ,d) is a
metric space in which the closures of balls are compact. Then there exists an open set V
such that

H ⊆V ⊆ V̄ ⊆U

with V̄ compact. There also exists ψ such that H ≺ ψ ≺ V , meaning that ψ = 1 on H
and spt(ψ) ⊆ V̄ . If U is an open subset of Rp, then there is an increasing sequence of
continuous functions ψn ∈Cc (U) such that limn→∞ ψn (x) = XU (x) .

Proof: Consider h→ dist
(
h,UC

)
. This continuous function achieves its minimum at

some h0 ∈ H because H is compact. Let δ ≡ 1
2 dist

(
h0,UC

)
. The distance is positive

because UC is closed. Now H ⊆∪h∈HB(h,δ ) . Since H is compact, there are finitely many
of these balls which cover H. Say H ⊆ ∪k

i=1B(hi,δ ) ≡ V. Then, since there are finitely
many of these balls, let

V ≡ ∪k
i=1B(hi,δ ),V ≡ ∪k

i=1B(hi,δ )

V is a compact set since it is a finite union of compact sets.
To obtain ψ, let

ψ (x)≡
dist
(
x,VC

)
dist(x,VC)+dist(x,H)

Then ψ (x)≤ 1 and if x ∈ H, its distance to VC is positive and dist(x,H) = 0 so ψ (x) = 1.
If x ∈ VC, then its distance to H is positive and so ψ (x) = 0. It is obviously continuous
because the denominator is a continuous function and never vanishes since both VC and H
are closed so if either dist

(
x,VC

)
or dist(x,H) is 0, then x is in either VC or H. Thus, if

one of dist
(
x,VC

)
,dist(x,H) is 0, the other isn’t. Thus H ≺ ψ ≺V .

For the last claim, Let Cn ≡
{

x ∈U : dist
(
x,UC

)
≥ 1/n

}
and let Hn ≡Cn∩B(0,n) for

n ∈ N. Then Hn is compact, the Hn are increasing in n, and ∪nHn = U . Now for some m,
Hm ̸= /0, let Hm ≺ φ m ≺U from the first part Let ψ1 ≡ φ m. If ψ1, ...,ψn have been chosen,
let ψn+1 = max

(
ψ1, ...,ψn,φ n+1+m

)
. Then eventually, if x ∈ U, for all n large enough,

ψn (x) = 1 = XU (x) and if x /∈U, then all ψn (x) = 0. ■

Theorem 8.1.4 (Partition of unity) Let K be a compact subset of X and suppose

K ⊆V = ∪n
i=1Vi, Vi open.

Then there exist ψ i ≺ Vi with ∑
n
i=1 ψ i(x) = 1 for all x ∈ K. If H is a compact subset of Vi

for some Vi, there exists a partition of unity such that ψ i (x) = 1 for all x ∈ H
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Proof: Let K1 = K \∪n
i=2Vi. Thus K1 is compact and K1 ⊆ V1. Let K1 ⊆W1 ⊆W 1 ⊆

V1 with W 1compact. To obtain W1, use Theorem 8.1.3 to get f such that K1≺ f ≺V1 and let
W1≡{x : f (x) ̸= 0} .Thus W1,V2, · · ·Vn covers K and W 1⊆V1. Let K2 =K \(∪n

i=3Vi∪W1).
Then K2 is compact and K2 ⊆ V2. Let K2 ⊆W2 ⊆W 2 ⊆ V2 W 2 compact. Continue this
way finally obtaining W1, · · · ,Wn, K ⊆W1 ∪ ·· · ∪Wn, and W i ⊆ Vi W i compact. Now let
W i ⊆Ui ⊆U i ⊆Vi ,U i compact.

Wi Ui Vi

By Theorem 8.1.3, let U i ≺ φ i ≺Vi, ∪n
i=1W i ≺ γ ≺ ∪n

i=1Ui. Define

ψ i(x) =
{

γ(x)φ i(x)/∑
n
j=1 φ j(x) if ∑

n
j=1 φ j(x) ̸= 0,

0 if ∑
n
j=1 φ j(x) = 0.

If x is such that ∑
n
j=1 φ j(x) = 0, then x /∈ ∪n

i=1U i. Consequently γ(y) = 0 for all y near x
and so ψ i(y) = 0 for all y near x. Hence ψ i is continuous at such x. If ∑

n
j=1 φ j(x) ̸= 0, this

situation persists near x and so ψ i is continuous at such points from the top description of
ψ i. Therefore ψ i is continuous. If x ∈ K, then γ(x) = 1 and so ∑

n
j=1 ψ j(x) = 1. Clearly

0≤ψ i (x)≤ 1 and spt(ψ j)⊆Vj. As to the last claim, keep Vi the same but replace Vj, j ̸= i
with Ṽj ≡Vj \H. Now in the proof above, applied to this modified collection of open sets,
if j ̸= i,φ j (x) = 0 whenever x ∈ H. Therefore, ψ i (x) = 1 on H. ■

8.2 Positive Linear Functionals and Measures
Now with this preparation, here is the main result called the Riesz representation theorem
for positive linear functionals. I am presenting this for a metric space, but in this book, we
will typically have X = Rp.

Theorem 8.2.1 (Riesz representation theorem) Let L be a positive linear functional
on Cc(X) where (X ,d) is a metric space having closed balls compact. Thus L f ∈ C if f ∈
Cc (X). Then there exists a σ algebra F containing the Borel sets and a unique measure
µ , defined on F, such that

µ is complete, (8.2)
µ(K) < ∞ for all K compact, (8.3)

µ(F) = sup{µ(K) : K ⊆ F, K compact}, (8.4)

for all F ∈F ,
µ(F) = inf{µ(V ) : V ⊇ F, V open} (8.5)

for all F ∈F, and ∫
f dµ = L f for all f ∈Cc(X). (8.6)

This extends the functional L because the integral will be defined for all f ∈ L1 (X) in
general, a much larger set than Cc (X). The two assertions 8.4 and 8.5 are called respectively
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inner and outer regularity. A measure µ satisfying the above conditions is called a Radon
measure.

The plan is to define an outer measure and then to show that it, together with the σ

algebra of sets measurable in the sense of Caratheodory, satisfies the conclusions of the
theorem. Always, K will be a compact set and V will be an open set.

Definition 8.2.2 µ(V )≡ sup{L f : f ≺V} for V open, µ( /0) = 0. µ(E)≡ inf{µ(V ) :
V ⊇ E} for arbitrary sets E.

Lemma 8.2.3 µ is a well-defined outer measure.

Proof: First it is necessary to verify µ is well defined because there are two descriptions
of it on open sets. Suppose then that µ1 (V ) ≡ inf{µ(U) : U ⊇ V and U is open}. It is
required to verify that µ1 (V ) = µ (V ) where µ is given as sup{L f : f ≺ V}. If U ⊇ V,
then µ (U)≥ µ (V ) directly from the definition. Hence from the definition of µ1, it follows
µ1 (V ) ≥ µ (V ) . On the other hand, V ⊇ V and so µ1 (V ) ≤ µ (V ) . This verifies µ is well
defined.

It remains to show that µ is an outer measure. First I show that it acts like and outer
measure on open sets. Let V =∪∞

i=1Vi and let f ≺V . Then spt( f )⊆∪n
i=1Vi for some n. Let

ψ i ≺Vi, ∑
n
i=1 ψ i = 1 on spt( f ).

L f =
n

∑
i=1

L( f ψ i)≤
n

∑
i=1

µ(Vi)≤
∞

∑
i=1

µ(Vi).

Hence µ(V )≤ ∑
∞
i=1 µ(Vi) since f ≺V is arbitrary.

Now let E = ∪∞
i=1Ei. Is µ(E) ≤ ∑

∞
i=1 µ(Ei)? Without loss of generality, it can be as-

sumed µ(Ei) < ∞ for each i since if not so, there is nothing to prove. Let Vi ⊇ Ei with
µ(Ei)+ ε2−i > µ(Vi).

µ(E)≤ µ(∪∞
i=1Vi)≤

∞

∑
i=1

µ(Vi)≤ ε +
∞

∑
i=1

µ(Ei).

Since ε was arbitrary, µ(E)≤ ∑
∞
i=1 µ(Ei) which proves the lemma. ■

Lemma 8.2.4 Let K be compact, g≥ 0, g ∈Cc(X), and g = 1 on K. Then µ(K)≤ Lg.
Also µ(K)< ∞ whenever K is compact.

Proof: Let Vα ≡ {x : g(x) > 1−α} where α is small. I want to compare µ (Vα) with
µ (K). Thus let h≺Vα .

g > 1−α

VαK

Then h ≤ 1 on Vα while g(1−α)−1 ≥ 1 on Vα and so g(1−α)−1 ≥ h which implies
L(g(1−α)−1)≥ Lh and that therefore, since L is linear,

Lg≥ (1−α)Lh.
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Taking sup for all such h, it follows that Lg ≥ (1−α)µ (Vα) ≥ (1−α)µ (K). Letting
α → 0 yields Lg ≥ µ(K). This proves the first part of the lemma. The second assertion
follows from this and Theorem 8.1.3. If K is given, let K ≺ g ≺ X and so from what was
just shown, µ (K)≤ Lg < ∞. ■

For two sets A,B, recall dist(A,B)≡ inf{|a−b| : a ∈ A,b ∈ B} .

Lemma 8.2.5 If A and B are disjoint subsets of X, with dist(A,B)> 0 then µ(A∪B) =
µ(A)+µ(B).

Proof: There is nothing to show if µ (A∪B) = ∞ so assume µ (A∪B) < ∞. Let δ ≡
dist(A,B)> 0. Then let U1 ≡ ∪a∈AB

(
a, δ

3

)
,V1 ≡ ∪b∈BB

(
b, δ

3

)
. It follows that these two

open sets have empty intersection. Also, there exists W ⊇ A∪B such that µ (W )− ε <
µ (A∪B). let U ≡U1∩W,V ≡V1∩W. Then

µ (A∪B)+ ε > µ (W )≥ µ (U ∪V )

Now let f ≺U,g≺V such that L f + ε > µ (U) ,Lg+ ε > µ (V ) . Then

µ (U ∪V ) ≥ L( f +g) = L( f )+L(g)

> µ (U)− ε +(µ (V )− ε)

≥ µ (A)+µ (B)−2ε

It follows that
µ (A∪B)+ ε > µ (A)+µ (B)−2ε

and since ε is arbitrary, µ (A∪B)≥ µ (A)+µ (B)≥ µ (A∪B). ■
It follows from Theorem 6.7.2 that the σ algebra of measurable sets F determined

by this outer measure µ contains the Borel σ algebra B (X). Since closures of balls are
compact, it follows from Lemma 8.2.4 that µ is finite on every ball.

From the definition, for any E ∈F ,

µ (E) = inf{µ (V ) : V ⊇ E,V open}

Lemma 8.2.6 If µ is outer regular and F is measurable and contained in a closed ball
B, then

µ (F) = sup{µ (K) : K ⊆ F,K compact}

Proof: By outer regularity, there exists V open with V ⊇ B∩FC and

µ (V \ (B\F))< ε.

Thus VC ⊆ BC ∪F and VC ∩B⊆
(
BC ∪F

)
∩B = B∩F.

VC∩B

B\F

F
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In the picture B \F is pink between the solid circle and the solid ellipse and F is in
green. The open set V is between the two dashed lines.

Then B∩VC is a compact subset of F and

µ
(
F \
(
B∩VC))≤ µ (V \ (B\F))< ε

and this shows that µ (F)− ε ≤ µ
(
B∩VC

)
≤ µ (F) and so µ is inner regular for F . ■

If F is not necessarily contained in a closed ball, let Bn be a sequence of closed balls
having increasing radii and let Fn = Bn ∩F . Then if l < µ (F) , it follows that µ (Fn) > l
for all large enough n. Then picking one of these, it follows from what was just shown that
there is a compact set K ⊆ Fn such that also µ (K)> l.

Thus F contains the Borel sets and µ is inner regular on all sets of F , outer regular by
definition.

It remains to show µ satisfies 8.6.

Lemma 8.2.7 ∫
f dµ = L f for all f ∈Cc(X).

Proof: Let f ∈Cc(X), f real-valued, and suppose f (X)⊆ [a,b]. Choose t0 < a and let
t0 < t1 < · · ·< tn = b, ti− ti−1 < ε . Let

Ei = f−1((ti−1, ti])∩ spt( f ). (8.7)

Note that ∪n
i=1Ei is a closed set equal to spt( f ).

∪n
i=1Ei = spt( f ) (8.8)

Since X = ∪n
i=1 f−1((ti−1, ti]). Let Vi ⊇ Ei,Vi is open and let Vi satisfy

f (x)< ti + ε for all x ∈Vi, µ(Vi \Ei)< ε/n. (8.9)

By Theorem 8.1.4, there exists hi ∈Cc(X) such that

hi ≺Vi,
n

∑
i=1

hi(x) = 1 on spt( f ).

Now note that for each i,
f (x)hi(x)≤ hi(x)(ti + ε).

If x /∈Vi both sides equal 0.) Therefore,

L f = L(
n

∑
i=1

f hi)≤ L(
n

∑
i=1

hi(ti + ε)) =
n

∑
i=1

(ti + ε)L(hi)

=
n

∑
i=1

(|t0|+ ti + ε)L(hi)−|t0|L

(
n

∑
i=1

hi

)
.

Now note that |t0|+ ti + ε ≥ 0 and so from the definition of µ and Lemma 8.2.4, this is no
larger than

n

∑
i=1

(|t0|+ ti + ε)µ(Vi)−|t0|µ(spt( f ))
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≤
n

∑
i=1

(|t0|+ ti + ε)(µ(Ei)+ ε/n)−|t0|µ(spt( f ))

≤ |t0|

µ(spt( f ))︷ ︸︸ ︷
n

∑
i=1

µ(Ei)+
ε

n
n |t0|+∑

i
tiµ (Ei)

+∑
i

ti
ε

n
+∑

i
εµ (Ei)+

ε2

n
−|t0|µ(spt( f ))

≤ ε |t0|+ ε (|t0|+ |b|)+ εµ(spt( f ))+ ε
2 +∑

i
tiµ (Ei)

≤ ε |t0|+ ε (|t0|+ |b|)+2εµ(spt( f ))+ ε
2 +

n

∑
i=1

ti−1µ(Ei)

≤ ε (2 |t0|+ |b|+2µ(spt( f ))+ ε)+
∫

f dµ

Since ε > 0 is arbitrary, L f ≤
∫

f dµ for all f ∈Cc(X), f real. Hence equality holds because

−L( f ) = L(− f )≤
∫

(− f )dµ =−
∫

f dµ

so L( f ) ≥
∫

f dµ . Thus L f =
∫

f dµ for all f ∈Cc(X). Just apply the result for real func-
tions to the real and imaginary parts of f . ■

In fact the two outer measures are equal on all sets. Thus the measurable sets are exactly
the same and so they have the same σ algebra of measurable sets and are equal on this σ

algebra. Of course, if you were willing to consider σ algebras for which the measures
are not complete, then you might have different σ algebras, but note that if you define the
measurable sets in terms of Caratheodory as done above, the σ algebras are also unique.

As a special case of the above,

Corollary 8.2.8 Let µ be a Borel measure. Also let µ (B) < ∞ for every ball B con-
tained in a metric space X which has closed balls compact. Then µ must be regular.

Proof: This follows right away from using the Riesz representation theorem above on
the functional

L f ≡
∫

f dµ

for all f ∈Cc (X). ■
Here is another interesting result.

Corollary 8.2.9 Let X be a random variable with values in Rp. Then λ X is an inner
and outer regular measure defined on B (Rp).

This is obvious when you recall the definition of the distribution measure for the random
vector X. λ X (E) ≡ P(ω : X(ω) ∈ E) where this means the probability that X is in E a
Borel set of Rp. It is a finite Borel measure and so it is regular.

There is an interesting application of regularity to approximation of a measurable func-
tion with one that is continuous.
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Lemma 8.2.10 Suppose f : Rp → [0,∞) is measurable where µ is a regular measure,
both inner and outer regular, as in the Riesz representation theorem for positive linear func-
tionals, finite on balls. Then there is a set of measure zero N and a sequence of functions
{hn} ,hn : Rp→ [0,∞) each in Cc (Rp) such that for all x ∈ Rp \N, hn (x)→ f (x) . Also,
for x /∈ N,hn (x)≤ f (x) for all n large enough.

Proof: Consider fn (x)≡XBn (x)min( f (x) ,n) where Bn is a ball centered at x0 which
has radius n. Thus fn (x) is an increasing sequence and converges to f (x) for each x. Also
by Corollary 6.1.10, there exists a simple function sn such that

sn (x)≤ fn (x) , sup
x∈Rp
| fn (x)− sn (x)|<

1
2n

Let

sn (x) =
mn

∑
k=1

cn
kXEn

k
(x) , cn

k > 0

Then it must be the case that µ
(
En

k

)
< ∞ because

∫
fndµ < ∞.

By regularity, there exists a compact set Kn
k and an open set V n

k such that

Kn
k ⊆ En

k ⊆V n
k ,

mn

∑
k=1

µ (V n
k \Kn

k )<
1
2n

Now let Kn
k ≺ ψn

k ≺V n
k and let

hn (x)≡
mn

∑
k=1

cn
kψ

n
k (x)

Thus for Nn = ∪mn
k=1V n

k \Kn
k , it follows µ (Nn)< 1/2n and

sup
x/∈Nn

| fn (x)−hn (x)|<
1
2n

If hn (x) fails to converge to f (x) , then x must be in infinitely many of the Nn. That is,

x ∈ ∩∞
n=1∪k≥n Nk ≡ N

However, this set N is contained in

∪∞
k=nNk, µ (∪∞

k=nNk)≤
∞

∑
k=n

µ (Nk)<
1

2n−1

and so µ (N) = 0. If x is not in N, then eventually x fails to be in Nn and also x ∈ Bn so
hn (x) = sn (x) for all n large enough. Now fn (x)→ f (x) and |sn (x)− fn (x)| < 1/2n so
also sn (x) = hn (x)→ f (x) . ■

Note that each Nk is an open set and so, N is a Borel set. Thus the above lemma leads
to the following corollary.

Corollary 8.2.11 Let f be measurable in the context of a regular measure space. Then
there exists a Borel measurable function g and a Borel set of measure zero N such that
f (x) = g(x) for all x /∈ N. In fact, if x /∈ N, f (x) = limn→∞ hn (x) where hn is continuous
and |hn (x)| ≤ | f (x)| for all n large enough.
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Proof: Apply the above lemma to the positive and negative parts of the real and imag-
inary parts of f . Let N be the union of the exceptional Borel sets which result. Thus,
f XNC is the limit of a sequence hnXNC where hn is continuous and for large enough
n, |hn (x)| ≤ | f (x)| for x /∈ N. Thus hnXNC is Borel and it follows that f XNC is Borel
measurable. Let g = f XNC . ■

Here is an interesting lemma which is very easy to prove with the above representation
theorem.

Lemma 8.2.12 Suppose µ is a measure defined on the Borel sets of X which is finite
on compact sets. Assume closed balls in X are compact. Then there exists a unique Radon
measure, µ which equals µ on the Borel sets. In particular µ must be both inner and outer
regular on all Borel sets.

Proof: Define a positive linear functional, Λ( f ) =
∫

f dµ. Let µ be the Radon measure
which comes from the Riesz representation theorem for positive linear functionals. Thus
for all f ∈Cc (X) ,

∫
f dµ =

∫
f dµ. If V is an open set, let { fn} be a sequence of continuous

functions in Cc (X) which is increasing and converges to XV pointwise. Then applying the
monotone convergence theorem,∫

XV dµ = µ (V ) =
∫

XV dµ = µ (V )

and so the two measures coincide on all open sets. Every compact set is a countable inter-
section of open sets and so the two measures coincide on all compact sets. Now let B(a,n)
be a ball of radius n and let E be a Borel set contained in this ball. Then by regularity of µ

there exist sets F,G such that G is a countable intersection of open sets and F is a countable
union of compact sets such that F ⊆ E ⊆ G and µ (G\F) = 0. Now µ (G) = µ (G) and
µ (F) = µ (F) . Thus

µ (G\F)+µ (F) = µ (G) = µ (G) = µ (G\F)+µ (F)

and so µ (G\F) = µ (G\F) = 0. It follows µ (E) = µ (F) = µ (F) = µ (G) = µ (E) . If
E is an arbitrary Borel set, then µ (E ∩B(a,n)) = µ (E ∩B(a,n)) and letting n→ ∞, this
yields µ (E) = µ (E) . ■

8.3 Approximation with Gδ and Fσ

The inner and outer regularity results imply an important Proposition which is partly al-
luded to in the above.

Definition 8.3.1 A countable union of closed sets is called an Fσ set and a count-
able intersection of open sets is called a Gδ set. Obviously these sets are Borel sets.

Proposition 8.3.2 Let µ be the Radon measure from Theorem 8.2.1 coming from a
positive linear functional on Cc (X) for X a metric space in which closed balls are compact,
and let F be the σ algebra obtained there. Then if E ∈F , there exists F an Fσ set and
G a Gδ set such that F ⊆ E ⊆ G and µ (F) = µ (E) = µ (G). It can also be assumed
that µ (G\F) = 0. If f ∈ L1 (X ,F ,µ) , then there exists g ∈ L1 (X ,B (X) ,µ) such that
|g(x)| ≤ | f (x)| and g(x) = f (x) off a Borel set of measure zero.
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Proof: From Corollary 8.2.8, if E ∈F , there exists {Kn} be an increasing sequence of
compact sets such that

µ (E) = lim
n→∞

µ (Kn) .

Then if F ≡∪nKn, it follows that F is an Fσ set and µ (F) = limn→∞ µ (Kn) = µ (E). Thus,
in particular F is a Borel set. Actually, one can say a little more. Note that, by assumption,
µ (B) < ∞ for any ball since µ (K) < ∞ for any compact set and B is compact. Let x be
given in X and let Bn ≡ B(x,n). Let En ≡ E ∩ Bn so µ (En) < ∞. From what was just
shown, there exists an Fσ set Fn ⊆ En such that µ (En) = µ (Fn) . Since the measures are
finite, µ (En \Fn) = 0. Then letting F ≡ ∪∞

n=1Fn, it follows that this new F is an Fσ set and

µ (E \F) = µ (∪nEn \∪nFn)≤ µ (∪n (En \Fn))

≤ ∑
n

µ (En \Fn) = 0.

Let E,En be as above. Using outer regularity, there is an open set Vn containing En such
that µ (Vn \En)< ε2−n. Let Wε ≡∪nVn. Thus µ (Wε \E)≤ µ

(
∪∞

k=1 (Vk \Ek)
)
≤ ε and Wε

is open and
µ (Wε)< ε +µ (E) , µ (Wε \E)< ε

It follows there exists a decreasing sequence of open sets Wn each containing E such that
µ (Wn)< 2−n+µ (E) , and µ (Wn \E)< 2−n. Let G≡∩nWn. Then G is a Gδ set containing
E and for each n,

µ (G\E)≤ µ (Wn \E)< 2−n

and so µ (G\E) = 0 which implies µ (G) = µ (E) . Now µ (G) = µ (E) = µ (F) . Also, the
Fσ set F from the first part with µ (E \F) = 0,

µ (G\F) = µ (G\E)+µ (E \F) = 0

This proves the first part.
For the remaining part, it suffices to consider only f (x)≥ 0 because you can reduce to

positive and negative parts of real and imaginary parts of f . By Theorem 6.1.10, there is an
increasing sequence of simple functions sk such that for all x,sk (x) ↑ f (x). Now for sk (x) =
∑

mk
i=1 ak

i XEk
i
,(ak

i > 0) replace each Ek
i with Fk

i an Fσ set with µ
(
Ek

i \Fk
i
)
= 0,Fk

i ⊆ Ek
i . Let

Nk ≡ ∪mk
i=1

(
Ek

i \Fk
i
)

and let N̂ ≡ ∪kNk a set of measure zero. Thus there exists a Borel set
N ⊇ N̂ which also has measure zero, this by the first part. In fact, we can take N to be a
Gδ set. Let ŝk (x) = sk (x) off N and let ŝ(x) = 0 on N. Thus ŝk (x) is an increasing function
which converges to f (x) off the set of measure zero N and converges to 0 on N. Each ŝk
is Borel measurable and so letting g be the pointwise limit, it follows from Corollary 6.1.4
that g is Borel measurable and 0≤ g≤ f . ■

The above approximation result applies to any of the measures from Theorem 8.2.1.
Next is a specialization to Lebesgue measure on Rp.

8.4 Lebesgue Measure
Now we define Lebesgue measure in terms of a functional from beginning calculus.

Definition 8.4.1 Lebesgue measure, called mp is obtained from using the above
Riesz representation theorem for positive linear functionals on the functional

L f ≡
∫

∞

−∞

· · ·
∫

∞

−∞

f (x1, · · · ,xp)dxpdxp−1 · · ·dx1
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where f ∈ Cc (Rp). Thus for such f , L f =
∫

f dmp but mp is a complete Borel measure
which is also regular. One dimensional Lebesgue measure has already been discussed. I
am writing dxik ≡ dm1

(
xik

)
.

Then from Lemma 8.0.3 this functional L and Lσ give the same Borel measure mp.
Here σ is the permutation which yields (i1, · · · , ip) . Now let U be an open set. Then from
Theorem 8.1.3, and letting ψn be the increasing sequence of functions in Cc (U) converging
pointwise to XU , we obtain the following from the monotone convergence theorem applied
to the indicated succession of iterated integrals,∫

∞

−∞

· · ·
∫

∞

−∞

XU dxpdxp−1 · · ·dx1 = lim
n→∞

∫
∞

−∞

· · ·
∫

∞

−∞

ψndxpdxp−1 · · ·dx1

= lim
n→∞

∫
ψndmp =

∫
XU dmp

= lim
n→∞

∫
∞

−∞

· · ·
∫

∞

−∞

ψndxipdxip−1 · · ·dxi1 =
∫

∞

−∞

· · ·
∫

∞

−∞

XU dxipdxip−1 · · ·dxi1

This has proved part of the following result.

Lemma 8.4.2 For any E Borel and (i1, · · · , ip) a permutation,∫
∞

−∞

· · ·
∫

∞

−∞

XEdxipdxip−1 · · ·dxi1 =
∫

XEdmp ∗

and all iterated integrals make sense. I am writing dxik for dm1
(
xik

)
.

Proof: Let S consist of the Borel sets E such that ∗ holds for E ∩ (−R,R)p. Then S
contains the open sets by what was just argued. The open sets are a π system because they
are closed with respect to finite intersections. Also, S is closed with respect to countable
disjoint unions by an application of the monotone convergence theorem on each iterated
integral. If E ∈ S , does it follow that EC ∈ S ? First note that each iterated integral in
XEC∩(−R,R)p makes sense because the corresponding integrals for XE∩(−R,R)p and X(−R,R)p

make sense and XEC∩(−R,R)p = X(−R,R)p −XE∩(−R,R)p .∫
(−R,R)p

dmp =
∫

∞

−∞

· · ·
∫

∞

−∞

XE∩(−R,R)pdxipdxip−1 · · ·dxi1

+
∫

∞

−∞

· · ·
∫

∞

−∞

XEC∩(−R,R)pdxipdxip−1 · · ·dxi1

=
∫

XE∩(−R,R)pdmp +
∫

∞

−∞

· · ·
∫

∞

−∞

XEC∩(−R,R)pdxipdxip−1 · · ·dxi1

Therefore, ∫
(−R,R)p∩EC

dmp =
∫

∞

−∞

· · ·
∫

∞

−∞

XEC∩(−R,R)pdxipdxip−1 · · ·dxi1

and so by the lemma on π systems, S consists of the Borel sets because S contains the
open sets and the smallest σ algebra containing the open sets. Thus for any E Borel,∫

∞

−∞

· · ·
∫

∞

−∞

X(−R,R)p∩Edxipdxip−1 · · ·dxi1 =
∫

X(−R,R)p∩Edmp

Let R→∞ and use the monotone convergence theorem as needed to obtain that the iterated
integrals all make sense and that the equality is preserved with E in place of (−R,R)p∩E.
■
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Theorem 8.4.3 Let f ≥ 0 and be Borel measurable. Then for any permutation
(i1, · · · , ip) , ∫

f dmp =
∫
· · ·
∫

f (x1, · · · ,xp)dm1 (xi1) · · ·dm1
(
xip

)
(8.10)

Proof: By Theorem 6.1.10 there is an increasing sequence of simple, Borel measurable
functions {sn} which converges pointwise to f . Since each is a finite linear combination
of indicator functions of Borel sets,∫

sndmp =
∫
· · ·
∫

sn (x1, · · · ,xp)dm1 (xi1) · · ·dm1
(
xip

)
Now apply the monotone convergence theorem to the succession of iterated integrals on
the right and to the single integral on the left to obtain 8.10. ■

Corollary 8.4.4 Suppose f ∈ L1 (Rp,mp) and f is Borel measurable. Then 8.10 holds
for f .

Proof: This is obvious from applying Theorem 8.4.3 to the positive and negative parts
of the real and imaginary parts of f . ■

Another thing should probably be noted. You can use Fubini’s theorem even if the func-
tion is not Borel measurable. This depends on Corollary 8.2.11. Say f ∈ L1 (Rp,mp) so it
is Lebesgue measurable but possibly not Borel measurable. Then from this corollary, there
is a set of measure zero N such that for x /∈ N, f (x) = g(x) where g is Borel measurable.
By regularity, we can also assume N is Borel measurable. Then

∫
f dmp =

∫
XNC gdmp +

=0︷ ︸︸ ︷∫
XN f dmp

=
∫
· · ·
∫

XNC g(x1, · · · ,xp)dm1 (xi1) · · ·dm1
(
xip

)
=

∫
· · ·
∫

g(x1, · · · ,xp)dm1 (xi1) · · ·dm1
(
xip

)
Since g = f in L1 (Rp) , you can typically use g as a representative of f when using any
sort of computation involving iterated integrals. The thing you want is

∫
f dmp the iterated

integral is a tool for finding it. Therefore, no harm is done in using g rather than f .

8.5 Translation Invariance Lebesgue Measure
A very important property of Lebesgue measure is that it is translation invariant.

Definition 8.5.1 For E a set, E +x will be {y+x : y ∈ E} .

Theorem 8.5.2 Let E ∈Fp. Then mp (E) = mp (E + z) .

Proof: Let z = (z1, · · · ,zp) . The conclusion is obvious if E is an open rectangle

E =
p

∏
i=1

(ai,bi) .
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So let K be the set of open rectangles along with /0 and Rp and let G consist of all mea-
surable sets such that mp (E ∩Rn) = mp (E ∩Rn + z) with E ∩Rn + z measurable. Here
Rn ≡∏

p
i=1 (−n,n). Then, similar to the proof of Lemma 8.4.2, you show that G is closed

with respect to countable disjoint unions and complements. Then you use Dynkin’s lemma
to conclude that G contains the Borel sets. Next let n→ ∞ to obtain the conclusion for any
E Borel. Now suppose E is just an arbitrary measurable set in Fp. Apply Proposition 8.3.2
to get F,G as described there, an Fσ and Gδ set with F ⊆ E ⊆ G and all three having the
same Lebesgue measure. Thus, from the first part,

mp (E) = mp (G) = mp (G+ z)≥ mp (E + z)≥ mp (F + z) = mp (F) = mp (E)

and so all inequalities are equal signs. ■

8.6 The Vitali Covering Theorems
These theorems are remarkable and fantastically useful. They are covering theorems be-
cause they have to do with covering sets with balls. These balls may be open, closed, or
neither open nor closed.

Lemma 8.6.1 In a normed linear space, B(x,r) = {y : ∥y−x∥ ≤ r}

Proof: y→∥y−x∥is continuous and so {y : ∥y−x∥ ≤ r} is a closed set which contains
B(x,r). Therefore,

B(x,r)⊆ {y : ∥y−x∥ ≤ r} (8.11)

Now let y be in the right side. It suffices to consider y such that ∥y−x∥ = 1. Consider
x+ n−1

n (y−x)≡ xn. Then

∥xn−y∥=
∥∥∥∥x+

n−1
n

(y−x)−y
∥∥∥∥= 1

n
∥x−y∥

and so y is a limit point of B(x, t) and is therefore in B(x,r) so the two sets in 8.11 are
equal. ■

Thus the usual way we think about the closure of a ball is completely correct in a
normed linear space. This lemma is not always true in the context of a metric space. Recall
the discrete metric for example in which the distance between different points is 1 and
distance between a point and itself is 0. In what follows we will use the result of this
lemma without comment. Balls will be either open, closed or neither. I am going to use the
Hausdorff maximality theorem because it yields a very simple argument.

Recall the following definition of a partially ordered set. A nonempty set is partially
ordered if there exists a partial order, ≺, satisfying x≺ x and if x≺ y and y≺ z then x≺ z.
An example of a partially ordered set is the set of all subsets of a given set and≺ is defined
as ⊆. Note that two elements in a partially ordered set may not be related. In other words,
just because x, y are in the partially ordered set, it does not follow that either x≺ y or y≺ x.
A subset of a partially ordered set C , is called a chain if x, y ∈ C implies that either x≺ y
or y≺ x. If either x≺ y or y≺ x then x and y are described as being comparable. A chain is
also called a totally ordered set. C is a maximal chain if whenever C̃ is a chain containing
C , it follows the two chains are equal. In other words C is a maximal chain if there is no
strictly larger chain. It turns out that every nonempty partially ordered set has a maximal
chain. This is the Hausdorff maximal theorem discussed in Section 1.4. I will need to use
this major result a few other times, so this might be a good place to introduce it.
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Lemma 8.6.2 Let F be a collection of balls satisfying

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and let k ∈ (0,∞) . Then there exists G ⊆F such that

If B(p,r) ∈ G then r > k, (8.12)

If B1,B2 ∈ G then B1∩B2 = /0, (8.13)

G is maximal with respect to 8.12 and 8.13. (8.14)

By this is meant that if H is a collection of balls satisfying 8.12 and 8.13, then H cannot
properly contain G .

Proof: Let S denote a subset of F such that 8.12 and 8.13 are satisfied. Then if
S = /0, it means there is no ball having radius larger than k. Otherwise, S ̸= /0. Partially
order S with respect to set inclusion. Thus A ≺B for A ,B in S means that A ⊆B.
By the Hausdorff maximal theorem, there is a maximal chain in S denoted by C . Then let
G be ∪C . If B1,B2 are in C , then since C is a chain, both B1,B2 are in some element of
C and so B1∩B2 = /0. The maximality of C is violated if there is any other element of S
which properly contains G . ■

Proposition 8.6.3 Let F be a collection of balls, and let A≡∪{B : B ∈F}. Suppose

∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of balls whose closures are disjoint and

A⊆ ∪{B̂ : B ∈ G }

where for B = B(x,r) a ball, B̂ denotes the open ball B(x,5r).

Proof: Let G1 satisfy 8.12, 8.13, 8.14 for k = 2M
3 .

Suppose G1, · · · ,Gm−1 have been chosen for m ≥ 2. Let Gi denote the collection of
closures of the balls of Gi. Then let Fm be those balls of F , such that if B is one of these
balls, B has empty intersection with every closed ball of Gi for each i≤ m−1. Then using
Lemma 8.6.2, let Gm be a maximal collection of balls from Fm with the property that each
ball has radius larger than

( 2
3

)m
M and their closures are disjoint. Let G ≡ ∪∞

k=1Gk. Thus
the closures of balls in G are disjoint. Let x ∈ B(p,r) ∈F \G . Choose m such that(

2
3

)m

M < r ≤
(

2
3

)m−1

M

Then B(p,r) must have nonempty intersection with the closure of some ball from G1∪·· ·∪
Gm because if it didn’t, then Gm would fail to be maximal. Denote by B(p0,r0) a ball in
G1∪ ·· ·∪Gm whose closure has nonempty intersection with B(p,r). Thus r0,r >

( 2
3

)m
M.

Consider the picture, in which w ∈ B(p0,r0)∩B(p,r).

w••
r0

p0
•
r
p
•x
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Then for x ∈ B(p,r),

|∥x−p0∥ ≤ ∥x−p∥+∥p−w∥+

≤r0︷ ︸︸ ︷
∥w−p0∥

≤ r+ r+ r0 ≤ 2

< 3
2 r0︷ ︸︸ ︷(

2
3

)m−1

M+ r0 ≤ 2
(

3
2

) <r0︷ ︸︸ ︷(
2
3

)m

M+ r0 ≤ 4r0

Thus B(p,r) is contained in B(p0,4r0). It follows that the closures of the balls of G are
disjoint and the set

{
B̂ : B ∈ G

}
covers A. ■

Next is a version of the Vitali covering theorem which involves covering with disjoint
closed balls. Here is the concept of a Vitali covering.

Definition 8.6.4 Let S be a set and let C be a covering of S meaning that every
point of S is contained in a set of C . This covering is said to be a Vitali covering if for each
ε > 0 and x ∈ S, there exists a set B ∈ C containing x, the diameter of B is less than ε, and
there exists an upper bound to the set of diameters of sets of C .

The following corollary is a consequence of the above Vitali covering theorem.

Corollary 8.6.5 Let F be a bounded set and let C be a Vitali covering of F consisting
of closed balls. Let r (B) denote the radius of one of these balls. Then assume also that
sup{r (B) : B ∈ C }= M < ∞. Then there is a countable subset of C denoted by {Bi} such
that m̄p

(
F \∪N

i=1Bi
)
= 0 for N ≤ ∞, and Bi∩B j = /0 whenever i ̸= j.

Proof: Let U be a bounded open set containing F such that U approximates F so well
that

mp (U)≤ rm̄p (F) ,r > 1 and very close to 1, r−5−p ≡ θ̂ p < 1

Since this is a Vitali covering, for each x∈ F, there is one of these balls B containing x such
that B̂⊆U . Let Ĉ denote those balls of C such that B̂⊆U also. Thus, this is also a cover
of F . By the Vitali covering theorem above, there are disjoint balls from C , {Bi} such that{

B̂i
}

covers F . Thus

m̄p
(
F \∪∞

j=1B j
)
≤ mp

(
U \∪∞

j=1B j
)
= mp (U)−

∞

∑
j=1

mp (B j)

≤ rm̄p (F)−5−p
∞

∑
j=1

mp

(
B̂ j

)
≤ rm̄p (F)−5−pm̄p (F)

≡
(
r−5−p) m̄p (F)≡ θ̂ pm̄p (F)

Now if n1 is large enough and θ p is chosen such that 1 > θ p > θ̂ p, then

m̄p

(
F \∪n1

j=1B j

)
≤ mp

(
U \∪n1

j=1B j

)
≤ θ pm̄p (F) .

If m̄
(

F \∪n1
j=1B j

)
= 0, stop. Otherwise, do for F \∪n1

j=1B j exactly the same thing that

was done for F. Since ∪n1
j=1B j is closed, you can arrange to have the approximating open



8.7. HARD TOPOLOGY THEOREMS 201

set be contained in the open set
(
∪n1

j=1B j

)C
. It follows there exist disjoint closed balls from

C called Bn1+1, · · · ,Bn2 such that

m̄
((

F \∪n1
j=1B j

)
\∪n2

j=n1+1
B j

)
< θ pm̄

(
F \∪n1

j=1B j

)
< θ

2
pm̄(F)

continuing this way and noting that limn→∞ θ
n
p = 0 while m̄(F) < ∞, this shows the de-

sired result. Either the process stops because m̄
(

F \∪nk
j=1B j

)
= 0 or else you obtain

m̄
(

F \∪∞
j=1B j

)
= 0. ■

The conclusion holds for arbitrary balls, open or closed or neither. This follows from
observing that the measure of the boundary of a ball is 0. Indeed, let

S (x,r)≡ {y : |y−x|= r} .

Then for each ε < r,

mp (S (x,r)) ⊆ mp (B(x,r+ ε))−mp (B(x,r− ε))

= mp (B(0,r+ ε))−mp (B(0,r− ε))

=

((
r+ ε

r

)p

−
(

r− ε

r

)p)
(mp (B(0,r)))

Hence mp (S (x,r)) = 0.
Thus you can simply omit the boundaries or part of the boundary of the closed balls

and there is no change in the conclusion. Just first apply the above corollary to the Vitali
cover consisting of closures of the balls before omitting part or all of the boundaries. The
following theorem is also obtained. You don’t need to assume the set is bounded.

Theorem 8.6.6 Let E be a bounded set and let C be a Vitali covering of E consisting
of balls, open, closed, or neither. Let r (B) denote the radius of one of these balls. Then
assume also that sup{r (B) : B ∈ C } = M < ∞. Then there is a countable subset of C
denoted by {Bi} such that m̄p

(
E \∪N

i=1Bi
)
= 0,N ≤ ∞, and Bi ∩B j = /0 whenever i ̸= j.

Here m̄p denotes the outer measure determined by mp. The same conclusion follows if you
omit the assumption that E is bounded.

Proof: It remains to consider the last claim. Consider the balls

B(0,1) ,B(0,2) ,B(0,3) , · · · .

If E is some set, let Er denote that part of E which is between B(0,r−1) and B(0,r) but
not on the boundary of either of these balls, where B(0,−1)≡ /0. Then ∪∞

r=0Er differs from
E by a set of measure zero and so you can apply the first part of the theorem to each Er
keeping all balls between B(0,r−1) and B(0,r) allowing for no intersection with any of
the boundaries. Then the union of the disjoint balls associated with Er gives the desired
cover. ■

8.7 Hard Topology Theorems
8.7.1 The Brouwer Fixed Point Theorem
I found this proof of the Brouwer fixed point theorem in Evans [17] and Dunford and
Schwartz [15]. The main idea which makes proofs like this work is Lemma 4.7.2 which is
stated next for convenience.
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Lemma 8.7.1 Let g : U → Rp be C2 where U is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Definition 8.7.2 Let h be a function defined on an open set, U ⊆ Rp. Then h ∈
Ck
(
U
)

if there exists a function g defined on an open set, W containng U such that g = h
on U and g is Ck (W ) .

Lemma 8.7.3 There does not exist h ∈ C2
(

B(0,R)
)

such that h : B(0,R)→ ∂B(0,R)
which also has the property that h(x) = x for all x ∈ ∂B(0,R) ≡ {x : |x|= R} Such a
function is called a retract.

Proof: If h is such a retract, then for all x ∈ B(0,R) ,det(Dh(x)) = 0. This is because
if det(Dh(x)) ̸= 0 for some such x, then by the inverse function theorem, h(B(x,δ )) is an
open set for small enough δ but this would require that this open set is a subset of ∂B(0,R)
which is impossible because no open ball is contained in ∂B(0,R). Here and below, let BR
denote B(0,R).

Now suppose such an h exists. Let λ ∈ [0,1] and let

pλ (x)≡ x+λ (h(x)−x) .

This function, pλ is a homotopy of the identity map and the retract h. Let

I (λ )≡
∫

B(0,R)
det(Dpλ (x))dx.

Then using the dominated convergence theorem,

I′ (λ ) =
∫

B(0,R)
∑
i. j

∂ det(Dpλ (x))
∂ pλ i, j

∂ pλ i j (x)
∂λ

dx

=
∫

B(0,R)
∑

i
∑

j

∂ det(Dpλ (x))
∂ pλ i, j

(hi (x)− xi), j dx

=
∫

B(0,R)
∑

i
∑

j
cof(Dpλ (x))i j (hi (x)− xi), j dx

Now by assumption, hi (x)= xi on ∂B(0,R) and so one can integrate by parts, in the iterated
integrals used to compute

∫
B(0,R) and write

I′ (λ ) =−∑
i

∫
B(0,R)

∑
j

cof(Dpλ (x))i j, j (hi (x)− xi)dx = 0.

Therefore, I (λ ) equals a constant. However, I (0) = mp (B(0,R)) ̸= 0 and as pointed out
above, I (1) = 0. ■

The following is the Brouwer fixed point theorem for C2 maps.
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Lemma 8.7.4 If h ∈C2
(

B(0,R)
)

and h : B(0,R)→ B(0,R), then h has a fixed point,

x such that h(x) = x.

Proof: Suppose the lemma is not true. Then for all x, |x−h(x)| ̸= 0 for all x ∈B(0,R).
Then define

g(x) = h(x)+(x−h(x)) t (x)

where t (x) is nonnegative and is chosen such that g(x) ∈ ∂B(0,R) .
This mapping is illustrated in the following picture.

h(x)
x

g(x)

If x→ t (x) is C2 near B(0,R), it will follow g is a C2 retract onto ∂B(0,R) contrary to
Lemma 8.7.3. Thus t (x) is the nonnegative solution t to

|h(x)+(x−h(x)) t (x)|2 = |h(x)|2 +2(h(x) ,x−h(x)) t + t2 = R2 (8.15)

then by the quadratic formula,

t (x) =−(h(x) ,x−h(x))+
√
(h(x) ,x−h(x))2 +

(
R2−|h(x)|2

)
Is x→ t (x) a function in C2? If what is under the radical is positive, then this is so because
s→
√

s is smooth for s> 0. In fact, this is the case here. The inside of the radical is positive
if R > |h(x)|. If |h(x)|= R, it is still positive because in this case, the angle between h(x)
and x−h(x) cannot be π/2. This shows that x→ t (x) is the composition of C2 functions
and is therefore C2. Thus this g(x) is a C2 retract and by the above lemma, there isn’t one.
■

Now it is easy to prove the Brouwer fixed point theorem. The following theorem is the
Brouwer fixed point theorem for a ball.

Theorem 8.7.5 Let BR be the above closed ball and let f : BR→ BR be continuous.
Then there exists x ∈ BR such that f(x) = x.

Proof: Let fk (x)≡ f(x)
1+k−1 . Thus

∥fk− f∥ = max
x∈BR

{∣∣∣∣ f(x)
1+(1/k)

− f(x)
∣∣∣∣}= max

x∈BR

{∣∣∣∣ f(x)− f(x)(1+(1/k))
1+(1/k)

∣∣∣∣}
= max

x∈BR

{∣∣∣∣ f(x)(1/k)
1+(1/k)

∣∣∣∣}≤ R
1+ k

Letting ∥h∥ ≡max{|h(x)| : x ∈ BR} , It follows from the Weierstrass approximation theo-
rem, that there exists a function whose components are polynomials gk such that

∥gk− fk∥<
R

k+1
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Then if x ∈ BR, it follows

|gk (x)| ≤ |gk (x)− fk (x)|+ |fk (x)|

<
R

1+ k
+

kR
1+ k

= R

and so gk maps BR to BR. By Lemma 8.7.4 each of these gk has a fixed point xk such that
gk (xk) = xk. The sequence of points {xk} is contained in the compact set BR and so there
exists a convergent subsequence still denoted by {xk} which converges to a point x ∈ BR.
Then from uniform convergence of gk to f,

f(x) = lim
k→∞

f(xk) = lim
k→∞

gk (xk) = lim
k→∞

xk = x ■

It is not surprising that the ball does not need to be centered at 0.

Corollary 8.7.6 Let f : B(a,R)→ B(a,R) be continuous. Then there exists x ∈ B(a,R)
such that f(x) = x.

Proof: Let g : BR→ BR be defined by g(y)≡ f(y+a)−a. Then g is a continuous map
from BR to BR. Therefore, there exists y ∈ BR such that g(y) = y. Therefore, f(y+a)−
a = y and so letting x = y+a, f also has a fixed point as claimed. ■

Definition 8.7.7 A set A is a retract of a set B if A ⊆ B, and there is a continuous
map h : B→ A such that h(x) = x for all x∈ A and h is onto. B has the fixed point property
means that whenever g is continuous and g : B→ B, it follows that g has a fixed point.

Proposition 8.7.8 Let A be a retract of B and suppose B has the fixed point property.
Then so does A.

Proof: Suppose f : A→ A. Let h be the retract of B onto A. Then f◦h : B→ B is
continuous. Thus, it has a fixed point x ∈ B so f(h(x)) = x. However, h(x) ∈ A and
f : A→ A so in fact, x ∈ A. Now h(x) = x and so f(x) = x. ■

Recall that every convex compact subset K of Rp is a retract of all of Rp obtained by
using the projection map. See Problems beginning with 22 on Page 77. In particular, K
is a retract of a large closed ball containing K, which ball has the fixed point property.
Therefore, K also has the fixed point property. This shows the following which is a conve-
nient formulation of the Brouwer fixed point theorem. However, Proposition 8.7.8 is more
general. You can probably imagine lots of sets which are retracts of some larger ball.

Theorem 8.7.9 Every convex closed and bounded subset of Rp has the fixed point
property.

8.7.2 Invariance of Domain
As an application of the inverse function theorem is a simple proof of the important invari-
ance of domain theorem which says that continuous and one to one functions defined on an
open set in Rn with values in Rn take open sets to open sets. You know that this is true for
functions of one variable because a one to one continuous function must be either strictly
increasing or strictly decreasing. This will be used when considering orientations of curves
later. However, the n dimensional version isn’t at all obvious but is just as important if you



8.7. HARD TOPOLOGY THEOREMS 205

want to consider manifolds with boundary for example. The need for this theorem occurs
in many other places as well in addition to being extremely interesting for its own sake. The
inverse function theorem gives conditions under which a differentiable function maps open
sets to open sets. The following lemma, depending on the Brouwer fixed point theorem is
the thing which will allow this to be extended to continuous one to one functions. It says
roughly that if a continuous function does not move points near p very far, then the image
of a ball centered at p contains an open set.

Lemma 8.7.10 Let f be continuous and map B(p,r) ⊆ Rn to Rn. Suppose that for all

x ∈ B(p,r), |f(x)−x|< εr Then it follows that f
(

B(p,r)
)
⊇ B(p,(1− ε)r)

Proof: This is from the Brouwer fixed point theorem, Theorem 8.7.9. Consider for y ∈
B(p,(1− ε)r) the function h(x)≡ x− f(x)+y Then h is continuous and for x ∈ B(p,r),

|h(x)−p|= |x− f(x)+y−p|< εr+ |y−p|< εr+(1− ε)r = r

Hence h : B(p,r)→ B(p,r) and so it has a fixed point x by Theorem 8.7.9. Thus x− f(x)+
y = x so f(x) = y. ■

The notation ∥f∥K will mean supx∈K |f(x)|. If you have a continuous function h defined
on a compact set K, then the Stone Weierstrass theorem implies you can uniformly approx-
imate it with a polynomial g. That is ∥h−g∥K is small. The following lemma says that you
can also have g(z) = h(z) and Dg(z)−1 exists so that near z, the function g will map open
sets to open sets as claimed by the inverse function theorem. First is a little observation
about approximating.

Lemma 8.7.11 Let K be a compact set in Rn and let h : K→ Rn be continuous, z ∈ K
is fixed. Let δ > 0. Then there exists a polynomial g (each component a polynomial) such
that

∥g−h∥K < δ , g(z) = h(z) , Dg(z)−1 exists

Proof: By the Weierstrass approximation theorem, Theorem 3.2.4, there exists a poly-
nomial ĝ such that ∥ĝ−h∥K < δ

3 . Then define for y ∈ K

g(y)≡ ĝ(y)+h(z)− ĝ(z)

Then g(z) = ĝ(z)+h(z)− ĝ(z) = h(z). Also

|g(y)−h(y)| ≤ |(ĝ(y)+h(z)− ĝ(z))−h(y)|

≤ |ĝ(y)−h(y)|+ |h(z)− ĝ(z)|< 2δ

3

and so since y was arbitrary, ∥g−h∥K ≤ 2δ

3 < δ . If Dg(z)−1 exists, then this is what is
wanted. If not, use Lemma 4.7.1 and note that for all η small enough, you could replace
g with y→ g(y) + η (y− z) and it will still be the case that ∥g−h∥K < δ along with
g(z) = h(z) but now Dg(z)−1 exists. Simply use the modified g. ■

The main result is essentially the following lemma which combines the conclusions of
the above.
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Lemma 8.7.12 Let f : B(p,r)→ Rn where the ball is also in Rn. Let f be one to one, f
continuous. Then there exists δ > 0 such that

f
(

B(p,r)
)
⊇ B(f(p) ,δ ) .

In other words, f(p) is an interior point of f
(

B(p,r)
)

.

Proof: Since f
(

B(p,r)
)

is compact, it follows that f−1 : f
(

B(p,r)
)
→ B(p,r) is con-

tinuous. By Lemma 8.7.11, there exists a polynomial g : f
(

B(p,r)
)
→ Rn such that∥∥g− f−1

∥∥
f(B(p,r)) < εr,ε < 1,

Dg(f(p))−1 exists, and g(f(p)) = f−1 (f(p)) = p

From the first inequality in the above,

|g(f(x))−x|=
∣∣g(f(x))− f−1 (f(x))

∣∣≤ ∥∥g− f−1∥∥
f(B(p,r)) < εr

By Lemma 8.7.10,

g◦ f
(

B(p,r)
)
⊇ B(p,(1− ε)r) = B(g(f(p)) ,(1− ε)r)

Since Dg(f(p))−1 exists, it follows from the inverse function theorem that g−1 also exists
and that g,g−1 are open maps on small open sets containing f(p) and p respectively. Thus
there exists η < (1− ε)r such that g−1 is an open map on B(p,η)⊆ B(p,(1− ε)r). Thus

g◦ f
(

B(p,r)
)
⊇ B(p,(1− ε)r)⊇ B(p,η)

So do g−1‘ to both ends. Then you have g−1 (p) = f(p) is in the open set g−1 (B(p,η)) .
Thus

f
(

B(p,r)
)
⊇ g−1 (B(p,η))⊇ B

(
g−1 (p) ,δ

)
= B(f(p) ,δ ) ■

p
q◦ f

(
B(p,r)

)B(p,(1− ε)r))

p = q(f(p))

With this lemma, the invariance of domain theorem comes right away. This remark-
able theorem states that if f : U → Rn for U an open set in Rn and if f is one to one and
continuous, then f(U) is also an open set in Rn.

Theorem 8.7.13 Let U be an open set in Rn and let f : U → Rn be one to one and
continuous. Then f(U) is also an open subset in Rn.

Proof: It suffices to show that if p ∈ U then f(p) is an interior point of f(U). Let
B(p,r) ⊆ U. By Lemma 8.7.12, f(U) ⊇ f

(
B(p,r)

)
⊇ B(f(p) ,δ ) so f(p) is indeed an

interior point of f(U). ■
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8.7.3 Jordan Curve Theorem
This treatment of the Jordan curve theorem based on the Brouwer fixed point theorem is
the shortest and most direct proof I have seen. It is from [33]. Any errors are mine. Here
J ⊆ R2 will denote a Jordan curve, defined as the homeomorphic image of the unit circle
meaning that J is γ(S1) where γ is one to one and continuous.

To begin with, note that there is exactly one unbounded component of the complement
of a Jordan curve or more generally the complement of a compact set. If U,V are both
unbounded components, they both contain the circle ∂B(0,R) for large enough R that J ⊆
B(0,R) , and so there is a continuous curve joining any point in U with a point in V so
that the two must be the same component. Also note that for any nonempty set S it has the
same diameter as its closure. Recall that an arc, also called a simple curve, is the one to
one continuous image of a closed interval.

Lemma 8.7.14 Let U be an open set. Then if ∂U denotes those points p such that for
each r > 0, B(p,r) contains points of U and points of UC, then ∂U =U \U.

Proof: If p ∈ ∂U, then p /∈U because U is open. If p /∈U then there would be a ball
containing p which has no points of U and so p would not be in ∂U . Therefore, p ∈U \U
and so ∂U ⊆U \U. If p ∈U \U, then p is a limit point of U and so B(p,r) contains points
of U for every r > 0. Since p /∈U, every B(p,r) contains points of UC and so p ∈ ∂U . ■

In the following U will be a connected component of JC.

Lemma 8.7.15 Let J = γ∗ where γ : S1→ R2 is one to one and onto and continuous. If
U is a connected component of JC then U \U ⊆ J.

Proof: Suppose x ∈U \U . I want to show that x ∈ J. If x /∈ J, then, since x is not in U,
it must be in a different component V ̸=U . But then x cannot be a limit point of U so x ∈ J
as desired. Thus U \U ⊆ J. ■

Lemma 8.7.16 Let γ : [a,b]→ γ∗ = γ ([a,b]) be one to one and continuous. Then there
exists r :R2→ γ∗ such that r(x) = x for all x∈ γ∗. Also if J is a simple closed curve and K
is a proper compact subset of J, then there exists a simple curve A⊆ J such that K ⊆ A⊆ J.

Proof: By the Tietze extention theorem, there is an extention of γ−1 denoted as r̂ which
mapsR2 onto [a,b]. Consider γ ◦ r̂≡ r. Then r(γ (t))≡ γ (r̂(γ (t)))= γ

(
γ−1 (γ (t))

)
= γ (t)

so r does what it should. It fixes all the points of γ∗.
Now consider the second claim. Since K is a compact proper subset of J, you can start

with a point of J which is not in K and following J in either of the two orientations, there
is a first point of K called a and a last point b. Then the simple curve ab denoting motion
from a to b is a simple curve which contains K.This is A. ■

With the above observation that U \U ⊆ J, it remains to show that in fact U \U = J.
First this is shown under an assumption that JC has at least two components, in particular a
bounded component.

A

w
UorVJ

Lemma 8.7.17 Suppose J is a simple closed curve and suppose there exists a bounded
component of JC (JC has at least two components). Then for any component U of JC,
U \U = J.
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Proof: Suppose U is a bounded component of JC and U \U is a proper subset of J. Let
A⊆ J be the simple curve which contains U \U which is mentioned in Lemma 8.7.16. Let
w ∈U .

Let r : R2→ A be the map of Lemma 8.7.16 which fixes all the points of A. Let

f(x)≡
{

r(x) if x ∈U
x if x ∈UC

Thus this defines continuous f on all of R2. It is continuous at each point of U and at
each point of UC. If x is in U ∩UC, then r(x) = x and so this is indeed continuous on
all of R2. Also, f(x) ̸= w for any x because x ∈U so x /∈ A. Now consider w−R f(x)−w

|f(x)−w|
where R is chosen very large, larger than diam

(
U
)
. In case f(x) = r(x) , it is not possible

that w−R f(x)−w
|f(x)−w| = x because if so, you would have x ∈U and −R f(x)−w

|f(x)−w| = x−w and
the right side is smaller in magnitude than the left. In case f(x) = x, you cannot have
w−R f(x)−w

|f(x)−w| = x either because if so, then −R x−w
|x−w| = x−w and the two vectors point

in different directions. However, x→ w−R f(x)−w
|f(x)−w| is continuous and maps B(w,R) to

B(w,R) and so this would contradict the Brouwer fixed point theorem. Hence U \U = J
as claimed.

Next suppose U is unbounded and let V be a bounded component of JC and let w ∈V .
This time let

f(x)≡
{

r(x) if x ∈UC

x if x ∈U

As before, this defines continuous f on all of R2. Since w∈V, w is not in J and so f(x) ̸= w
for all x. For R large enough, B(w,R)⊇UC because B(w,R)C ⊆U . If w−R f(x)−w

|f(x)−w| = x for

x ∈UC, you would have −R r(x)−w
|r(x)−w| = x−w and this is impossible because |x−w| is less

than R while the left side has magnitude R. If x∈U it is also impossible that w−R f(x)−w
|f(x)−w| =

x because this would require that −R x−w
|x−w| = x−w and the two vectors point in opposite

directions. Thus x→ w−R f(x)−w
|f(x)−w| maps B(w,R) to itself and is continuous but has no

fixed point contradicting the Brouwer fixed point theorem. It follows that U \U = J as
claimed.

Let x(t) ≡ (u(t) ,v(t)) for t ∈ [−1,1] and let y(t) ≡ ( f (t) ,g(t)) , t ∈ [−1,1] and sup-
pose u([−1,1]) = [a,b] and g([−1,1]) = [c,d] where x,y are both one to one. The follow-
ing picture represents these two curves which lie in the rectangle [a,b]× [c,d] as shown
in the picture. Then the conclusion of the following lemma says these two simple curves
intersect.

x(t)

y(t)

Lemma 8.7.18 Let t→ (u(t) ,v(t)) and t→ ( f (t) ,g(t)) for t ∈ [−1,1] be parametriza-
tions of two curves in which lie in [a,b]× [c,d] such that u(−1) = a,u(1) = b, and g(−1) =
c,g(1) = d. Second component of second curve goes from c to d and first component of
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first curve from a to b. Then there exists a point of intersection of these two paths. That is,
there is s ∈ [−1,1] , t ∈ [−1,1] such that (u(s) ,v(s)) = ( f (t) ,g(t)) .

Proof: Suppose this is not true, then G : [−1,1]× [−1,1]→ [−1,1]× [−1,1] is contin-
uous where G(s, t)≡

≡
(

f (t)−u(s)
max{| f (t)−u(s)| , |v(s)−g(t)|}

,
v(s)−g(t)

max{| f (t)−u(s)| , |v(s)−g(t)|}

)
Both components are in [−1,1] and one of them is ±1.Thus G maps [−1,1]× [−1,1] to
∂ ([−1,1]× [−1,1]) , and is continuous. The only fixed points possible are of the form
(±1, t) ,(s,±1). Then letting (≤ 0, t̂) denote an ordered pair in which the first component
is non-positive and other uses of this notation similar,

G(1, t) = (≤ 0, t̂) ̸= (1, t) ,G(−1, t) = (≥ 0, t̂) ̸= (−1, t) ,
G(s,1) = (ŝ, ≤ 0) ̸= (s,1) ,G(s,−1) = (ŝ,≥ 0) ̸= (s,−1) .

Thus G has no fixed point contrary to Brouwer fixed point theorem. It follows that G(s, t)=
0 for some (s, t) and this says there is a point of intersection of these two curves. ■

A Jordan arc will be the continuous one to one image of a closed interval. Then the
conclusion of the above lemma implies the following easier to use proposition.

Corollary 8.7.19 Let J1,J2 be two oriented Jordan arcs which lie in [a,b]× [c,d] and
suppose the first component of J1 includes both a and b and the second component of J2
includes both c and d, then there is a point on the intersection of these Jordan arcs.

Proof: This follows from the above lemma by changing the parametrization γ i to have
γ1

1 (−1) = a,γ1
1 (1) = b,γ2

2 (−1) = c,γ2
2 (1) = d. Then apply the above Lemma to these

functions restricted to [−1,1]. ■

Proposition 8.7.20 Let y→ α (y) ,β (y) be non-negative continuous functions and let
U consist of (x,y) such that a−α (y) ≤ x ≤ b+β (y) and y ∈ [c,d] . Let J1 and J2 be two
oriented Jordan arcs such that some first component of J1 equals a−a(y) for some y and
some first component of J1 equals b+ β (y) for some y and some second component of
points on J2 equals c while some second component of J2 equals d. Then the two Jordan
arcs intersect.

Proof: Let σ be the midpoint of [a,b]. Let f : [a,b]× [c,d]→U be defined as follows.
For x ≥ σ , f (x,y) ≡

(
x+
( x−σ

b−σ

)
β (y) ,y

)
and for x ≤ σ , f (x,y) ≡

(
x−
(

σ−x
σ−a

)
α (y) ,y

)
.

Then f is one to one onto and continuous. Also the left side of [a,b]× [c,d] is mapped to
the left side of U while the right side of [a,b]× [c,d] is mapped to the right side of U. Now
if Ji are as described, then f−1 (Ji) satisfy the conditions of the above corollary and so these
intersect at some point (x0,y0) . Then f (x0,y0) is a point of intersection of J1 and J2. ■

Theorem 8.7.21 Let J be a Jordan curve in the plane, J = γ
(
S1
)

where γ is contin-
uous and one to one. Then JC consists of a bounded component Ui called the inside, and an
unbounded component Uo called the outside and J = ∂Ui = ∂Uo. That is, J is the common
boundary of both Ui and Uo.
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Proof: The following picture is to illustrate the proof of the Jordan curve theorem which
follows.

b
a

ĉ

d̂

c

d

l

p

q

z

Llt

Llb Lrb

LrtJt

Jb

L

c

d

a b

r

Now let J be a Jordan curve. Thus J = γ
(
S1
)

where S1 is the unit circle. Since J is
compact, there exists a≡ inf{x : (x,y) ∈ J} and b≡ sup{x : (x,y) ∈ J}> a. Denote these
points on J by (a, l′) ≡ a,(b,r′) ≡ b. Thus the first is a point on J farthest to the left and
the second a point farthest to the right. There are also top and bottom points d̂ and ĉ
respectively with second components d̂ and ĉ respectively. Let c < ĉ,d > d̂ as shown. Thus
J is contained in [a,b]× [c,d] as shown. Let C be the boundary of this box. Let L denote
the vertical x = a+b

2 from d to c. There are two Jordan arcs whose union is J joined at the
points a,b. By Proposition 8.7.20, the line L intersects each of these Jordan arcs. Let Jt be
the first of these arcs intersected by this line L at r in moving from top to bottom and let Jb
be the other one. Let q be the smallest point of L∩ J. I claim that q is in Jb. If not, then q
is in Jt and is neither a nor b and neither is r since both are on L. Thus the part of Jt which
goes from r to q does not include the endpoints of Jt ,a,b. Then Proposition 8.7.20 applied
to [a,b]× [q,r] where q,r are the second components of q,r respectively, would imply that
this part of Jt between r,q must intersect Jb which is impossible because neither a nor b
are on this part of Jt . Such an intersection would mean J is not a simple closed curve.

Let p be the top point of L∩Jb which must be below r. Let l be the bottom point of Jt∩L
which is above p. This point must exist since otherwise there would be ln ∈ Jt , ln→ p so
p ∈ Jt ∩Jb = {a,b} which is impossible on L. Also let q be the last point of J encountered.
Thus q is on Jb as mentioned earlier. Let z be the midpoint of l and p. Then z /∈ Jt and
z /∈ Jb so z is in some component of JC.

I want to argue that this component which contains z is a bounded component. When
this is done, I will show that it is the only bounded component.

If z is in the unbounded component of JC, then there exists a continuous curve η from
z to a point w on C which does not intersect J. Letting l be the straight line between a and
b, if w is above l you could modify η by placing w on the top line of C and if w is below
l we could modify η to place w on the bottom line of C. This involves going from z to the
first point of the bounding box and then out to one of Lrt ,Lrb,Llb,Llt and along one of those
slanted lines to a point on the top or bottom of C. (The reason for these slanted lines is that
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there could be points of J other than a,b on the vertical sides of C.) In the first case where
w is above l, go from c to q along L and then along Jb to p then to z and along η to the
top line of the box. (Note that neither q nor p can be in {a,b} so this cannot intersect Jt .)
This curve does not intersect Jt in contradiction to Proposition 8.7.20 since Jt has points
with first components a,b on the extreme left and right and this new curve through z has
some second components equal to c,d. If w is below l, use the curve along L from d to l
to z and then along η to the bottom line of C. This fails to intersect Jb and so contradicts
Proposition 8.7.20 because this curve has some second components equal to c,d and the
curve Jb has some first components equal to a,b. Thus the component which contains z is
a bounded component. Hence JC has at least two components.

Suppose V is another bounded component and that U is the bounded component just
described containing z. Thus V is contained in the inside of the box C. Moving up on L let
r be the last point of J encountered. Thus by definition, r ∈ Jt . Moving down on L from r
let q be the last point of J encountered. It is in Jb as explained earlier. Now go from r to l
on Jt . Neither of r, l is an endpoint of Jt . Then go from l to p along the segment in U and
from p to q on Jb avoiding the end points a,b. Including a ray from r pointing up and a
ray from q pointing down, this set of points B contains no points of V because the segment
between l,p is in U . Also a and b are in different components of BC. Now for δ small
enough, B(a,δ ) and B(b,δ ) contain no points of B and by Lemma 8.7.17, there is a point
a1 of V in B(a,δ ) and a point b1 of V in B(b,δ ) and so V fails to be connected after all. ■

8.8 Exercises
1. Let (X ,F ,µ) be a regular measure space. For example, it could be R with Lebesgue

measure. Why do we care about a measure space being regular? This problem will
show why. Suppose that closures of balls are compact as in the case of R.

(a) Let µ (E)<∞. By regularity, there exists K ⊆E ⊆V where K is compact and V
is open such that µ (V \K)< ε . Show there exists W open such that K ⊆ W̄ ⊆V
and W̄ is compact. Now show there exists a function h such that h has values in
[0,1] ,h(x) = 1 for x ∈ K, and h(x) equals 0 off W . Hint: You might consider
Problem 12 on Page 154.

(b) Show that
∫
|XE −h|dµ < ε

(c) Next suppose s = ∑
n
i=1 ciXEi is a nonnegative simple function where each

µ (Ei) < ∞. Show there exists a continuous nonnegative function h which
equals zero off some compact set such that

∫
|s−h|dµ < ε

(d) Now suppose f ≥ 0 and f ∈ L1 (Ω) . Show that there exists h ≥ 0 which is
continuous and equals zero off a compact set such that∫

| f −h|dµ < ε

(e) If f ∈ L1 (Ω) with complex values, show the conclusion in the above part of
this problem is the same. That is, Cc (Rp) is dense in L1 (Rp).

2. Let F be an increasing function defined on R. For f a continuous function having
compact support in R, consider the functional L f ≡

∫
f dF where here the integral

signifies
∫ b

a f dF where spt( f )⊆ [a,b] and the integral is the ordinary Rieman Stielt-
jes integral. For a discussion of these, see my single variable advanced calculus
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book. If µ is the measure which results, show that µ ((α,β )) = F (β−)−F (α+)
and µ ((α,β ]) = F (β+)−F (α+) ,µ ([α,β ]) = F (β+)−F (α−) . Here F (x+)≡
limy→x,y>x F (y) , F (x−)≡ limy→x,y<x F (y) Explain why the measure µ is a regular
complete measure. It is easy from Theorem 8.2.1.

3. Let δ z ( f ) = f (z) for f ∈Cc (R) . Describe the resulting measure for which δ z = L.

4. Let L f ≡∑
∞
k=1 f (k) . Show this is a positive linear functional on Cc (R) and describe

the resulting Radon measure.

5. Consider the two functionals L f ≡
∫

f (x)dx and Lz f ≡
∫

f (x− z)dx both defined
on Cc (R). Explain, using beginning calculus, why these functionals are the same.
Explain why whenever f is measurable and nonnegative,∫

f (x)dm1 (x) =
∫

f (x− y)dm1 (x) .

Obtain continuity of translation of Lebesgue measure right away directly from the
Riesz representation theorem. Generalize to Rp.

6. Show that Lemma 8.2.10 works for metric space, not just Rp.

7. If you have a nonempty open set V in Rp, show that there is an increasing sequence
of open sets {Wn} ,Wn ⊆Wn+1, and ∪nWn =V . Next show that you can also arrange
to have Wn compact. Hint: You might consider using dist

(
x,VC

)
and its properties.

8. Suppose h is continuous on an open set U . Using Problem 7, verify that h(U) is a
Borel set.

9. Let N be a set of measure zero with respect to Lebesgue measure. Also let h be a
Lipschitz continuous function meaning that for some K, ∥h(x)−h(y)∥ ≤ K ∥x−y∥
and h is defined near N. Show that h(N) also has measure zero. Follow the steps
and fill in needed details.

(a) Let ε > 0. There is V open such that mp (V )< ε and V ⊇ N.

(b) For each x∈N, there is a ball Bx centered at x with B̂x contained in V . Go ahead
and let the ball be taken with respect to the norm ∥x∥ ≡max{|xi| , i≤ p}. Thus
these Bx are open cubes.

(c) You know from Problem 8 that h(Bx) is measurable. Obtain countably many
disjoint balls {Bxi}

∞

i=1 such that
{

B̂xi

}
covers N.

(d) Explain why h(N) is covered by
{

h
(
B̂xi

)}
. Now fill in the details of the fol-

lowing estimate. mp (h(N))≤ ∑
∞
i=1 mp

(
h
(
B̂xi

))
≤ ∑

∞
i=1 K pmp

(
B̂xi

)
= ∑

∞
i=1 K p5pmp (Bxi) = (5K)p

ε .

(e) Now explain why this shows that mp (h(N)) = 0. Thus Lipschitz mappings
take sets of measure zero to sets of measure zero.

10. Use this and Proposition 8.3.2 to show that if h is a Lipschitz function, then if E
is Lebesgue measurable, so is h(E). Hint: This will involve completeness of the
measure and Problem 9. You could first show that it suffices to assume that E is
contained in some ball to begin with if this would make it any easier.
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11. Show that the continuous functions with compact support are dense in L1 (Rp) with
respect to Lebesgue measure. Will this work for a general Radon measure? Hint:
You should show that the simple functions are dense in L1 (Rp) using the norm in
L1 (Rp) and then consider regularity of the measure.

12. Suppose A ⊆ Rp is covered by a finite collection of Balls, F . Show that then there
exists a disjoint collection of these balls, {Bi}m

i=1, such that A⊆∪m
i=1B̂i where B̂i has

the same center as Bi but 3 times the radius. Hint: Since the collection of balls is
finite, they can be arranged in order of decreasing radius.

13. This problem will help to understand that a certain kind of function exists. f (x) ={
e−1/x2

if x ̸= 0
0 if x = 0

show that f is infinitely differentiable. Note that you only need

to be concerned with what happens at 0. There is no question elsewhere. This is a
little fussy but is not too hard.

14. ↑Let f (x) be as given above. Now let f̂ (x) ≡
{

f (x) if x≤ 0
0 if x > 0 . Show that f̂ (x)

is also infinitely differentiable. Let r > 0 and define g(x) ≡ f̂ (−(x− r)) f̂ (x+ r).
Show that g is infinitely differentiable and vanishes for |x| ≥ r. Let

ψ (x) =
n

∏
k=1

g(xk)

For U = B(0,2r) with the norm given by ∥x∥ = max{|xk| ,k ≤ n} , show that ψ ∈
C∞

c (U).

15. ↑Using the above problem, let ψ ∈ C∞
c (B(0,1)) . Also let ψ ≥ 0 as in the above

problem. Show there exists ψ ≥ 0 such that ψ ∈C∞
c (B(0,1)) and

∫
ψdmn = 1. Now

define ψk (x)≡ knψ (kx) . Show that ψk equals zero off a compact subset of B
(
0, 1

k

)
and

∫
ψkdmn = 1. We say that spt(ψk) ⊆ B

(
0, 1

k

)
. spt( f ) is defined as the closure

of the set on which f is not equal to 0. Such a sequence of functions as just defined
{ψk} where

∫
ψkdmn = 1 and ψk ≥ 0 and spt(ψk)⊆ B

(
0, 1

k

)
is called a mollifier.

16. ↑It is important to be able to approximate functions with those which are infinitely
differentiable. Suppose f ∈ L1 (Rp) and let {ψk} be a mollifier as above. We define
the convolution as follows.

f ∗ψk (x)≡
∫

f (x−y)ψk (y)dmn (y)

Here the notation means that the variable of integration is y. Show that f ∗ψk (x)
exists and equals

∫
ψk (x−y) f (y)dmn (y) . Now show using the dominated conver-

gence theorem that f ∗ψk is infinitely differentiable. Next show that

lim
k→∞

∫
| f (x)− f ∗ψk (x)|dmn = 0

Thus, in terms of being close in L1 (Rp) , every function in L1 (Rp) is close to one
which is infinitely differentiable.
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17. ↑From Problem 1 above and f ∈ L1 (Rp), there exists h ∈Cc (Rp) , continuous and
spt(h) a compact set, such that

∫
| f −h|dmn < ε . Now consider h ∗ψk. Show that

this function is in C∞
c
(
spt(h)+B

(
0, 2

k

))
. The notation means you start with the com-

pact set spt(h) and fatten it up by adding the set B
(
0, 1

k

)
. It means x+y such that

x ∈ spt(h) and y ∈ B
(
0, 1

k

)
. Show the following. For all k large enough,∫

| f −h∗ψk|dmn < ε

so one can approximate with a function which is infinitely differentiable and also
has compact support. Also show that h ∗ψk converges uniformly to h. If h is a
function in Ck

(
Rk
)

in addition to being continuous with compact support, show that
for each |α| ≤ k,Dα (h∗ψk)→ Dα h uniformly. Hint: If you do this for a single
partial derivative, you will see how it works in general.

18. ↑Let f ∈ L1 (R). Show that limk→∞

∫
f (x)sin(kx)dm = 0 Hint: Use the result of the

above problem to obtain g ∈ C∞
c (R) , continuous and zero off a compact set, such

that
∫
| f −g|dm < ε. Then show that

lim
k→∞

∫
g(x)sin(kx)dm(x) = 0.

You can do this by integration by parts. Then consider this.∣∣∣∣∫ f (x)sin(kx)dm
∣∣∣∣ =

∣∣∣∣∫ f (x)sin(kx)dm−
∫

g(x)sin(kx)dm
∣∣∣∣

+

∣∣∣∣∫ g(x)sin(kx)dm
∣∣∣∣

≤
∫
| f −g|dm+

∣∣∣∣∫ g(x)sin(kx)dm
∣∣∣∣

This is the celebrated Riemann Lebesgue lemma which is the basis for all theorems
about pointwise convergence of Fourier series.

19. As another application, here is a very important result. Suppose f ∈ L1 (Rp) and
for every ψ ∈ C∞

c (Rp) ,
∫

f ψdmn = 0. Show that then it follows that f (x) = 0 for
a.e.x. That is, there is a set of measure zero such that off this set f equals 0. Hint:
What you can do is to let E be a measurable which is bounded and let Kk ⊆ E ⊆ Vk
where mn (Vk \Kk)< 2−k. Here Kk is compact and Vk is open. By an earlier exercise,
Problem 12 on Page 154, there exists a function φ k which is continuous, has values in
[0,1] equals 1 on Kk and spt(φ k)⊆V. To get this last part, show there exists Wk open
such that Wk ⊆Vk and Wk contains Kk. Then you use the problem to get spt(φ k)⊆Wk.
Now you form ηk = φ k ∗ψ l where {ψ l} is a mollifier. Show that for l large enough,
ηk has values in [0,1] ,spt(ηk)⊆Vk and ηk ∈C∞

c (Vk). Now explain why ηk→XE
off a set of measure zero. Then∣∣∣∣∫ f XEdmn

∣∣∣∣ =

∣∣∣∣∫ f (XE −ηk)dmn

∣∣∣∣+ ∣∣∣∣∫ f ηkdmn

∣∣∣∣
=

∣∣∣∣∫ f (XE −ηk)dmn

∣∣∣∣
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Now explain why this converges to 0 on the right. This will involve the dominated
convergence theorem. Conclude that

∫
f XEdmn = 0 for every bounded measurable

set E. Show that this implies that
∫

f XEdmn = 0 for every measurable E. Explain
why this requires f = 0 a.e. The result which gets used over and over in all of this is
the dominated convergence theorem.

20. Let F (x) =
(∫ x

0 e−t2
dt
)2

, so

F ′ (x) = 2e−x2
(∫ x

0
e−t2

)
= 2xe−x2

(∫ 1

0
e−(ux)2

du
)
.

Now integrate by parts to get the following.

F (x) = e(x)+1+
∫ x

0
e−t2

∫ 1

0

(
−2tu2e−t2u2

)
dudt, lim

x→∞
e(x) = 0

Now change the order of integration in this integral to get

F (x) = e(x)+1−
∫ 1

0
u2
∫ x

0
2te−t2(1+u2)dtdu.

Modifying e(x) as needed, obtain

F (x) = e(x)+1−
∫ 1

0

u2

1+u2 = e(x)+
∫ 1

0

1
1+u2 du = e(x)+

π

4

Show
∫

∞

0 e−t2
dt =

√
π

2 . Justify all the steps in the above using whatever theorems are
applicable.

21. The Dini derivates are as follows. In these formulas, f is a real valued function
defined on R and ∆ f (+) will be f (x+h)− f (x)

h for h > 0 and ∆ f (−) will be f (x)− f (x−h)
h

for h > 0.

D+ f (x) ≡ lim sup
h→0+

∆ f (+) ,D+ f (x)≡ lim inf
h→0+

∆ f (+)

D− f (x) ≡ lim sup
h→0+

∆ f (−) ,D− f (x)≡ lim inf
h→0+

∆ f (−)

Thus when these are all equal, the function has a derivative. Now suppose f is an
increasing function. Let

Nab =
{

x : D+ f (x)> b > a > D+ f (x)
}
,a≥ 0

Let V be an open set which contains Nab∩ (−r,r)≡ Nr
ab such that

m(V \ (Nab∩ (−r,r)))< ε

Then explain why there exist disjoint intervals [ai,bi] such that

m(Nr
ab \∪i [ai,bi]) = m(Nr

ab \∪i (ai,bi)) = 0

and
f (bi)− f (ai)≤ am(ai,bi)
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each interval being contained in V ∩ (−r,r). Thus you have

m(Nr
ab) = m(∪iNr

ab∩ (ai,bi)) .

Next show there exist disjoint intervals (a j,b j) such that each of these is contained
in some (ai,bi), the (a j,b j) are disjoint, f (b j)− f (a j)≥ bm(a j,b j) , and

∑
j

m(Nr
ab∩ (a j,b j)) = m(Nr

ab)

. Then you have the following thanks to the fact that f is increasing.

a(m(Nr
ab)+ ε) > am(V )≥ a∑

i
(bi−ai)> ∑

i
f (bi)− f (ai)

≥ ∑
j

f (b j)− f (a j)≥ b∑
j

b j−a j

≥ b∑
j

m(Nr
ab∩ (a j,b j)) = bm(Nr

ab)

and since ε > 0,
am(Nr

ab)≥ bm(Nr
ab)

showing that m
(
Nr

ab

)
= 0. This is for any r and so m(Nab) = 0. Thus the derivative

from the right exists for a.e. x by taking the complement of the union of the Nab for
a,b nonnegative rational numbers. Now do the same thing to show that the derivative
from the left exists a.e. and finally, show that D− f (x) = D+ f (x) for almost a.e. x.
Off the union of these three exceptional sets of measure zero all the derivates are the
same and so the derivative of f exists a.e. In other words, an increasing function has
a derivative a.e.

22. This problem is on Eggoroff’s theorem. This was presented earlier in the book. The
idea is for you to review this by going through a proof. Suppose you have a measure
space (Ω,F ,µ) where µ (Ω) < ∞. Also suppose that { fk} is a sequence of mea-
surable, complex valued functions which converge to f pointwise. Then Eggoroff’s
theorem says that for any ε > 0 there is a set N with µ (N) < ε and convergence is
uniform on NC.

(a) Define Emk ≡ ∪∞
r=m
{

ω : | f (ω)− fr (ω)|> 1
k

}
. Show Emk ⊇ E(m+1)k for all m

and that ∩mEmk = /0

(b) Show that there exists m(k) such that µ
(
Em(k)k

)
< ε2−k.

(c) Let N ≡ ∪∞
k=1Em(k)k. Explain why µ (N) < ε and that for all ω /∈ NC, if r >

m(k) , then | f (ω)− fr (ω)| ≤ 1
k . Thus uniform convergence takes place on NC.

23. Suppose you have a sequence { fn} which converges uniformly on each of finitely
many sets A1, · · · ,An. Why does the sequence converge uniformly on ∪n

i=1Ai?

24. ↑Now suppose you have µ is a finite Radon measure on Rp. For example, you could
have Lebesgue measure. Suppose you have f has nonnegative real values for all x
and is measurable. Then Lusin’s theorem says that for every ε > 0, there exists an
open set V with measure less than ε and a continuous function defined on Rp such
that f (x) = g(x) for all x /∈V. That is, off an open set of small measure, the function
is equal to a continuous function.
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(a) By Lemma 8.2.10, there exists a sequence { fn} ⊆ Cc (Ω) which converges to
f off a set N of measure zero. Use Eggoroff’s theorem to enlarge N to N̂ such
that µ

(
N̂
)
< ε

2 and convergence is uniform off N̂.

(b) Next use outer regularity to obtain open V ⊇ N̂ having measure less than ε .
Thus { fn} converges uniformly on VC. Therefore, that which it converges to is
continuous on VC a closed set. Now use the Tietze extension theorem.

25. Let A :Rn→Rn be continuous and let f∈Rn. Also let (·, ·) denote the standard inner
product in Rn. Letting K be a closed and bounded and convex set, show that there
exists x ∈ K such that for all y ∈ K,(f−Ax,y−x) ≤ 0. Hint: Show that this is the
same as saying P(f−Ax+x) = x for some x∈K where here P is the projection map
discussed above in the problems beginning with Problem 22 on Page 77. Now use
the Brouwer fixed point theorem. This little observation is called Browder’s lemma.
It is a fundamental result in nonlinear analysis.

26. ↑In the above problem, suppose that you have a coercivity result which is

lim
∥x∥→∞

(Ax,x)
∥x∥

= ∞.

Show that if you have this, then you don’t need to assume the convex closed set is
bounded. In case K = Rn, and this coercivity holds, show that A maps onto Rn.

27. Suppose f : Rn→ Rn is one to one and continuous. Suppose

lim
∥x∥→∞

∥f(x)∥= ∞.

Show that f must also be onto. Hint: By invariance of domain, f(Rn) is open. Show
that Rn \ f(Rn) is also open. Since f(Rn) is connected (by theorems on connected
sets), one of these open sets is empty.

28. Explain why, if J is a simple closed curve, it has empty interior. Hint: If J contains
a ball, then would some point of J fail to be a limit point of the components of JC?

29. A simple square curve is one which is a simple curve and consists of finitely many
horizontal and vertical segments arranged end to end. If J is a simple closed curve
and Ui is its inside, then a simple square curve contained in Ui does not separate Ui.
Suppose not. Then let C be a simple square curve which does separate Ui and sup-
pose every curve from x to y must intersect C for x,y not on C. Let δ be a positive
number less than 1/4 the length of any of the horizontal and vertical segments and
also let δ < 1

4 min(dist(x,C) ,dist(y,C) ,dist(C,J)) and also less than 1/4 the dis-
tance between the end points of C. Where for convenience, ∥(x,y)∥ ≡max(|x| , |y|) .
Now consider C+B(0,δ )≡

{
u+v : u ∈C,v ∈ B(0,δ )

}
. The boundary Ĵ is a sim-

ple closed curve which contains C inside its bounded component with x and y in the
unbounded component. For illustration, see the following picture.

Ĵ



218 CHAPTER 8. POSITIVE LINEAR FUNCTIONALS

Then if B is a curve from x to y, it must, by assumption, intersect C and so it must
intersect Ĵ. Let a be the first point of intersection of Ĵ and b its last. Then the curve
xaby where ab goes along Ĵ avoids C and so C does not separate Ui after all. Explain
all this.

30. Let J be a simple closed curve in the plane with the interior component Ui. Let z be
a point on J and let x be some point of Ui. Show there exists a simple curve joining
z and x. Hint: Fill in the details. Let xn → z where xn ∈Ui the xk being distinct
points, k = 0,1,2,3... and x0 = x. Let an denote a strictly increasing sequence of
positive numbers increasing to 1 with a0 = 0. Then let γn : [an−1,an]→Ui such that
γn (an−1) = xn−1,γn (an) = xn and γ∗n∩ γ∗k = /0 if |n− k|> 1 while γ∗n∩ γ∗n−1 = xn−1.
Let γ (t) ≡ γn (t) for t ∈ [an−1,an] and γ (1) ≡ z. You could let these γn be square
curves and use the result of the above problem.



Chapter 9

Basic Function Spaces
In this chapter is an introduction to some of the most important vector spaces of functions.
First of all, recall from linear algebra that if you have any nonempty set S and V is the set
of all functions defined on S having values in F or more generally some vector space, then
defining

( f +g)(x)≡ f (x)+g(x)

(αg)(x)≡ αg(x)

this defines vector addition and scalar multiplication of functions. You should check that
all the axioms of a vector space hold for this situation. Note also that the usual situation in
linear algebra Fn where vectors are ordered lists of numbers is a special case. There you
are considering functions mapping {1, · · · ,n} to F so the set S consists of the first n natural
numbers. This was a finite dimensional vector space, but if S is the unit interval and V
consists of functions defined on S, then this will not be finite dimensional because for each
x ∈ S, you could consider fx (x)≡ 1 and fx (y) = 0 for y ̸= x and you would have infinitely
many vectors such that every finite subset of them is linearly independent.

There are two kinds of function spaces discussed here, the space of bounded contin-
uous functions and the Lp spaces. First I will consider the space of bounded continuous
functions.

9.1 Bounded Continuous Functions
As before, F will denote either R or C.

Definition 9.1.1 Let T be a subset of some Fm, possibly all of Fm. Let BC (T ;Fn)
denote the bounded continuous functions defined on T .1 Then this is a vector space (lin-
ear space) with respect to the usual operations of addition and scalar multiplication of
functions. Also, define a norm as follows:

∥f∥ ≡ sup
t∈T
|f(t)|< ∞.

This is a norm because it satisfies the axioms of a norm which are as follows:

∥f+g∥ ≤ ∥f∥+∥g∥ , ∥αf∥= |α|∥f∥

∥f∥ ≥ 0 and equals 0 if and only if f = 0

A sequence {fn} in BC (T ;Fn) is a Cauchy sequence if for every ε > 0 there exists Mε such
that if m,n≥Mε , then

∥fn− fm∥< ε

Such a normed linear space is called complete if every Cauchy sequence converges. Such
a complete normed linear space is called a Banach space. This norm is often denoted as
∥·∥

∞
.

I am letting T be a subset of Fn just to keep things in familiar territory. T can be an
arbitrary metric space or even a general topological space.

Now consider the general case where T is just some set.
1In fact, they will be automatically bounded if the set T is a closed interval like [0,T], but the considerations

presented here will work even when a compact set is not being considered.

219
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Lemma 9.1.2 The collection of functions BC (T ;Fn) is a normed linear space (vector
space) and it is also complete which means by definition that every Cauchy sequence con-
verges.

Proof: Showing that this is a normed linear space is entirely similar to the argument in
the above for γ = 0 and T = [a,b].

Let {fn} be a Cauchy sequence. Then for each t ∈ T,{fn (t)} is a Cauchy sequence
in Fn. By completeness of Fn this converges to some g(t) ∈ Fn. We need to verify that
∥g− fn∥ → 0 and that g ∈ BC (T ;Fn). Let ε > 0 be given. There exists Mε such that if
m,n≥Mε , then ∥fn− fm∥< ε

4 . Let n > Mε . By Lemma 1.11.2 which says you can switch
supremums,

sup
t∈T
|g(t)− fn (t)| ≤ sup

t∈T
sup

k≥Mε

|fk (t)− fn (t)|

= sup
k≥Mε

sup
t∈T
|fk (t)− fn (t)|= sup

k≥Mε

∥fk− fn∥ ≤
ε

4
(*)

Therefore,
sup
t∈T

(|g(t)|− |fn (t)|)≤ sup
t∈T
|g(t)− fn (t)| ≤

ε

4

Hence
ε

4
≥ sup

t∈T
(|g(t)|− |fn (t)|) = sup

t∈T
|g(t)|− inf

t∈T
|fn (t)| ≥ sup

t∈T
|g(t)|−∥fn∥

sup
t∈T
|g(t)| ≤ ε

4
+∥fn∥< ∞

so in fact g is bounded. Now by the fact that fn is continuous, there exists δ > 0 such that
if |t− s|< δ , then |fn (t)− fn (s)|< ε

3 . It follows that

|g(t)−g(s)| ≤ |g(t)− fn (t)|+ |fn (t)− fn (s)|+ |fn (s)−g(s)| ≤ ε

4
+

ε

3
+

ε

4
< ε

Therefore, g is continuous at t. Since t is arbitrary, this shows that g is continuous on T .
Thus g ∈ BC (T ;Fn). By ∗, ∥fn−g∥ < ε when n is large enough so limn→∞ ∥fn−g∥ = 0.
■

Definition 9.1.3 When limn→∞ ∥fn− f∥ = 0, we say that fn converges uniformly to
f and speak of uniform convergence. This norm is also called the uniform norm.

Note that uniform convergence of continuous functions imparts continuity to the limit
function. This is not true of pointwise convergence, that the sequence converges for each t,
as can be seen by consideration of fn (t) = tn for t ∈ [0,1] . The limit function is discontin-
uous on this interval and is 0 on [0,1) and 1 at 1.

Now here is a major theorem called the Banach fixed point theorem.This theorem lives
on complete normed linear spaces, more generally on complete metric spaces.

Theorem 9.1.4 Let (X ,∥·∥) be a complete (Cauchy sequences converge.) normed
linear space and let F : X → X be a contraction map. That is,

∥Fx−Fy∥ ≤ r∥x− y∥ , 0≤ r < 0
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Then F has a unique fixed point, that is a point x ∈ X such that Fx = x. In addition to
this, if ∥Fx0− x0∥< R(1− r) and F is only defined on B(x0,R) then F has a unique fixed
point in this ball. Here B(x0,R) signifies the set of all x such that ∥x− x0∥ ≤ R. Also, the
sequence {Fnx0} converges.

Proof: Pick any x0 ∈ X . Consider the sequence {Fnx0} . I will argue that this is a
Cauchy sequence. To see this, suppose n,m ≥ M with n > m and consider the following
which comes from the triangle inequality for the norm, ∥x+ y∥ ≤ ∥x∥+∥y∥.

∥Fnx0−Fmx0∥ ≤
n−1

∑
k=m

∥∥∥Fk+1x0−Fkx0

∥∥∥
Now

∥∥Fk+1x0−Fkx0
∥∥≤

r
∥∥∥Fkx0−Fk−1x0

∥∥∥≤ r2
∥∥∥Fk−1x0−Fk−2x0

∥∥∥ · · · ≤ rk ∥Fx0− x0∥ .

Using this in the above, ∥Fnx0−Fmx0∥ ≤

n−1

∑
k=m

∥∥∥Fk+1x0−Fkx0

∥∥∥≤ n−1

∑
k=m

rk ∥Fx0− x0∥ ≤
rm

1− r
∥Fx0− x0∥ (9.1)

since r < 1, this is a Cauchy sequence. Hence it converges to some x. Therefore,

x = lim
n→∞

Fnx0 = lim
n→∞

Fn+1x0 = F lim
n→∞

Fnx0 = Fx.

The third equality is a consequence of the following consideration. If zn→ z, then

∥Fzn−Fz∥ ≤ r∥zn− z∥

so also Fzn→ Fz. In the above, Fnx0 plays the role of zn and its limit plays the role of z.
The fixed point is unique because if you had two of them, x, x̂, then

∥x− x̂∥= ∥Fx−Fx̂∥ ≤ r∥x− x̂∥

and so x = x̂.
In the second case, let m = 0 in 9.1 and you get the estimate

∥Fnx0− x0∥ ≤
1

1− r
∥Fx0− x0∥< R.

It is still the case that the sequence {Fnx0} is a Cauchy sequence and must therefore con-
verge to some x ∈ B(x0,R) which is a fixed point as before. The fixed point is unique
because of the same argument as before. ■

Now there is another norm which works just as well in the case where T ≡ [a,b] , an
interval. This is described in the following definition.

Definition 9.1.5 For f ∈ BC ([a,b] ;Fn) , let c ∈ [a,b] ,γ a real number. Then

∥f∥
γ
≡ sup

t∈[a,b]

∣∣∣f(t)e−|γ(t−c)|
∣∣∣

Then this is a norm. The above Definition 9.1.1 corresponds to γ = 0.
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Lemma 9.1.6 ∥·∥
γ

is a norm for BC ([a,b] ;Fn) and BC ([a,b] ;Fn) is a complete normed
linear space. Also, a sequence is Cauchy in ∥·∥

γ
if and only if it is Cauchy in ∥·∥.

Proof: First consider the claim about ∥·∥
γ

being a norm. That ∥·∥
γ

is a norm follows
directly from the definition. The claim that BC ([a,b] ;Fn) is complete with respect to this
norm follows from the observation that the two norms ∥·∥ ,∥·∥

γ
are equivalent so they have

the same Cauchy sequences. This follows from:

∥f∥ ≡ sup
t∈T
|f(t)|= sup

t∈T

∣∣∣f(t)e−|γ(t−c)|e|γ(t−c)|
∣∣∣≤ e|γ(b−a)| ∥f∥

γ

≡ e|γ(b−a)| sup
t∈T

∣∣∣f(t)e−|γ(t−c)|
∣∣∣≤ e|γ||b−a| sup

t∈T
|f(t)|= e|γ||b−a| ∥f∥ ■

Why do we care about complete normed linear spaces? The following is a fundamen-
tal existence theorem for ordinary differential equations. It is one of those things which,
incredibly, is not presented in ordinary differential equations courses. However, this is the
mathematically interesting thing. The initial value problem is to find t→ x(t) on [a,b] such
that

x′ (t) = f(t,x(t)) , x(c) = x0

Assuming (t,x)→ f(t,x) is continuous, this is obviously equivalent to the single integral
equation

x(t) = x0 +
∫ t

c
f(s,x(s))ds

Indeed, if x(·) is a solution to the initial value problem, then you can integrate and obtain
the above. Conversely, if you find a solution to the above, integral equation, then you can
use the fundamental theorem of calculus to differentiate and find that it is a solution to the
initial value problem.

Theorem 9.1.7 Let f satisfy the Lipschitz condition

|f(t,x)− f(t,y)| ≤ K |x−y| (9.2)

and the continuity condition

(t,x)→ f(t,x) is continuous. (9.3)

Then there exists a unique solution to the initial value problem,

x(t) = x0 +
∫ t

c
f(s,x(s))ds, c ∈ [a,b] (9.4)

on [a,b] .

Proof: It is necessary to find a solution to the integral equation

x(t) = x0 +
∫ t

c
f(s,x(s))ds, t ∈ [a,b]

Let a,b be finite but given and completely arbitrary, c ∈ [a,b]. Let

Fx(t)≡ x0 +
∫ t

c
f(s,x(s))ds
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Thus F : BC ([a,b] ,Fn)→ BC ([a,b] ,Fn) Let ∥·∥
γ

be the new norm on BC ([a,b] ,Fn) .

∥f∥
γ
≡ sup

t∈[a,b]

∣∣∣f(t)e−γ(t−a)
∣∣∣ , γ > 0

Note |x(s)−y(s)|= e|γ(s−a)|e−|γ(s−a)| |x(s)− y(s)| ≤ eγ(s−a) ∥x−y∥
γ
. Then for t ∈ [a,b] ,

|Fx(t)−Fy(t)| ≤
∣∣∣∣∫ t

c
|f(s,x(s))− f(s,y(s))|ds

∣∣∣∣≤ ∣∣∣∣∫ t

c
K |x(s)−y(s)|ds

∣∣∣∣
≤ K

∣∣∣∣∫ t

c
eγ(s−a) ∥x−y∥

γ
ds
∣∣∣∣= K ∥x−y∥

γ

∣∣∣∣∫ t

c
eγ(s−a)ds

∣∣∣∣ (*)

Now the right end is no more than

K ∥x−y∥
γ

eγ(s−a)

γ
|tc ≤ K ∥x−y∥

γ

(
eγ(t−a)

γ

)

and so |Fx(t)−Fy(t)|e−γ(t−a) ≤ K
γ
∥x−y∥

γ
so, ∥Fx−Fy∥

γ
≤ K

γ
∥x−y∥

γ
< 1

2 ∥ x−y∥
γ

if γ > 2K and this shows that F is a contraction map on BC ([a,b] ;Fn) with respect to ∥·∥
γ
.

Thus there is a unique solution to the above integral equation 9.4 on [a,b]. ■

Definition 9.1.8 For the integral equation, x(t) = x0 +
∫ t

c f(s,x(s))ds one consid-
ers the Picard iterates. These are given as follows. x0 (t)≡ x0 and

xn+1 (t)≡ x0 +
∫ t

c
f(s,xn (s))ds

Thus letting Fx(t)≡ x0 +
∫ t

c f(s,x(s))ds, the Picard iterates are of the form Fxn = xn+1.

By Theorem 9.1.4, the Picard iterates converge in BC ([a,b] ,Fn) with respect to ∥·∥
γ

and so they also converge in BC ([a,b] ,Fn) with respect to the usual norm ∥·∥ by Lemma
9.1.6.

9.2 Compactness in C (K,Rn)

Let K be a nonempty compact set in Rm and consider all the continuous functions defined
on this set having values inRn. It is desired to give conditions which will show that a subset
of C (K,Rn) is compact. First is an important observation about compact sets.

Proposition 9.2.1 Let K be a nonempty compact subset of Rm. Then for each ε > 0
there is a finite set of points {xi}r

i=1 such that K ⊆ ∪iB(xi,ε) . This finite set of points is
called an ε net. If D1/k is this finite set of points corresponding to ε = 1/k, then ∪kD1/k is
a dense countable subset of K.

Proof: The last claim is obvious. Indeed, if B(x,r) ≡ {y ∈ K : |y−x|< r} , then con-
sider D1/k where 1

k < 1
3 r. Then the given ball must contain a point of D1/k since its center

is within 1/k of some point of Dk. Now consider the first claim about the ε net. Pick
x1 ∈ K. If B(x1,ε) ⊇ K, stop. You have your ε net. Otherwise pick x2 /∈ B(x1,ε) . If
K ⊆ B(x1,ε)∪B(x2,ε) , stop. You have found your ε net. Continue this way. Eventually,
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the process must stop since otherwise, you would have an infinite sequence of points with
not limit point because they are all ε apart. This contradicts the compactness of K. ■

Recall Lemma 9.1.2. If you consider C (K,Rn) it is automatically equal to BC (K,Rn)
because of the extreme value theorem applied to x→ |f(x)| for x ∈ K. Therefore, the space
C (K,Rn) is complete with respect to the norm defined there.

Definition 9.2.2 Let A be a set of functions in C (K,Rn) . It is called equicontin-
uous if for every ε > 0 there exists δ > 0 such that if |x−y| < δ , then |f(x)− f(y)| < ε

for all f ∈ A . In words, the functions in A are uniformly continuous for all f at once. A
set A ⊆C (K,Rn) is uniformly bounded if there is a large enough positive number M such
that max{|f(x)| : x ∈ K, f ∈A }< M.

The significant property of an equicontinuous set of functions is the following.

Lemma 9.2.3 If {gk}∞

k=1 is equicontinuous and converges pointwise to g on a compact
set K, then the sequence converges uniformly on K.

Proof of claim: Let ε > 0 be given and let δ go with ε/4 in the definition of equicon-
tinuous. By compactness and Proposition 9.2.1, there are finitely many points of K, de-
noted as {x1, · · · ,xs} such that K ⊆∪s

i=1B(xi,δ ). There exists Ni such that if k, l ≥Ni, then
|gl (xi)−gk (xi)|< ε

4 . Thus if N ≥max{Ni, i = 1, · · · ,s} , then for all xi, |gl (xi)−gk (xi)|<
ε

4 if k ≥ N. Then for k, l ≥ N, and x arbitrary, let x ∈ B(xi,δ ) . Then

|gl (x)−gk (x)| ≤ |gl (x)−gl (xi)|+ |gl (xi)−gk (xi)|+ |gk (xi)−gk (x)|

<
ε

4
+

ε

4
+

ε

4

Thus for k, l ≥N, ∥gl−gk∥∞
< 3ε

4 < ε. This shows {gk} is a Cauchy sequence in C (K,Rn)
which is complete. Thus this sequence converges uniformly to some g ∈C (K,Rn). ■

The following is the Arzela Ascoli theorem . Actually, the converse is also true but I
will only give the direction of most use in applications.

Theorem 9.2.4 Let A ⊆C (K,Rn) be both equicontinuous and uniformly bounded.
Then every sequence in A has a convergent subsequence converging to some g∈C (K,Rn),
the convergence taking place with respect to ∥·∥

∞
, the uniform norm.

Proof: Let
{

f j
}∞

j=1 be a sequence of functions in A . Let D be a countable dense
subset of K. Say D≡ {dk}∞

k=1 . Then
{

f j (d1)
}∞

j=1 is a bounded set of points in Rn. By the
Heine Borel theorem, there is a subsequence, denoted by

{
f( j,1) (d1)

}∞

j=1 which converges.

Now apply what was just done with
{

f j
}

to
{

f( j,1)
}

and feature d2 instead of d1. Thus{
f( j,2)

}∞

j=1 is a subsequence of
{

f( j,1)
}

which converges at d2. This new subsequence still
converges at d1 thanks to Theorem 2.2.10. Continue this way. Thus we get the following

f(1,1) f(2,1) f(3,1) · · · converges at d1
f(1,2) f(2,2) f(3,2) · · · converges at d1,d2
f(1,3) f(2,3) f(3,3) · · · converges at d1,d2,d3

...
...

...
...

f(1,l) f(2,l) f(3,l) · · · converges at d j, j ≤ l
...

...
...

...
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Each subsequence
{

f( j,r)
}∞

j=1 is a subsequence of the one above it
{

f( j,r−1)
}∞

j=1 and con-

verges at d j for j ≤ r. Consider the subsequence
{

f(r,r)
}∞

r=1 the diagonal subsequence.
Then

{
f(r,r)

}∞

r= j is a subsequence of
{

f(i, j)
}∞

i=1 and so
{

f(r,r) (di)
}∞

r= j converges for each

i≤ j. Since j is arbitrary, this shows that
{

f(r,r)
}∞

r=1converges at every point of D as r→∞.
From now on, denote this subsequence of the original sequence as {gk}∞

k=1. It has the
property that it converges at every point of D.

Claim: {gk}∞

k=1 converges at every x ∈ K.
Proof of claim: Let ε > 0 be given. Let δ go with ε/4 in the definition of equiconti-

nuity. Then pick d ∈ D such that |d−x|< δ . Then

|gk (x)−gl (x)| ≤ |gk (x)−gk (d)|+ |gk (d)−gl (d)|+ |gl (d)−gl (x)|

<
ε

4
+ |gk (d)−gl (d)|+

ε

4

There exists N such that if k, l ≥ N, then |gk (d)−gl (d)|< ε

3 . Thus, if k, l ≥ N,

|gk (x)−gl (x)|<
ε

4
+

ε

3
+

ε

4
< ε

which shows that, since ε is arbitrary, {gk (x)}∞

k=1 is a Cauchy sequence and so it converges
to some g(x). This shows the claim. Now from the Lemma 9.2.3, this g is in C (K,Rn) and
∥gk−g∥

∞
→ 0. ■

9.3 The Lp Spaces
Let (Ω,F ,µ) be a measure space. Recall that the space L1 (Ω) consists of functions f :
Ω→ F such that f is measurable and

∫
Ω
| f (ω)|dµ < ∞. The Lp spaces are defined as

follows.

Definition 9.3.1 Let (Ω,F,µ) be a measure space. Then Lp (Ω) consists of those
measurable functions f such that

∫
Ω
| f |p dµ < ∞. Here it is assumed that p > 1. Also

define the conjugate exponent q as satisfying 1
p +

1
q = 1 In case p = 1, we let q = ∞ and

give a special meaning to L∞ (Ω) discussed later.

Here we assume p > 1. There is an essential inequality which makes possible the study
of Lp (Ω) .

Proposition 9.3.2 Let 0≤ a,b. Then for p > 1

ap

p
+

bq

q
≥ ab (9.5)

Proof: Let b ≥ 0 be fixed and let f (a) ≡ ap

p + bq

q − ab. Then f (0) = bq

q ≥ 0 and
f ′ (a) = ap−1 − b. If b = 0 the desired inequality is obvious. If b > 0, then f ′ (a) < 0
for a close to 0 and f ′ (a) > 0 if ap−1 > b. Thus f has a minimum at the point where
ap−1 = b. But p− 1 = p/q and so, at this point ap = bq. Therefore, at this point, f (a) =
ap

p + ap

q − aap−1 = ap− ap = 0. Therefore, f (a) ≥ 0 for all a ≥ 0 and it equals 0 exactly
when ap = bq. ■

This implies the following major result, Holder’s inequality.
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Theorem 9.3.3 Let f ,g be measurable and nonnegative functions. Then

∫
Ω

f gdµ ≤
(∫

Ω

f pdµ

)1/p(∫
Ω

gqdµ

)1/q

Proof: If either (
∫

Ω
f pdµ)1/p or (

∫
Ω

gqdµ)1/q is 0, then there is nothing to show be-
cause if (

∫
Ω

f pdµ)1/p = 0, then
∫

Ω
f pdµ = 0 and you could let An ≡ {ω : f p (ω)≥ 1/n} .

Then
0 =

∫
Ω

f pdµ ≥
∫

An

f pdµ ≥ (1/n)µ (An)

and so µ (An) = 0. Therefore, {ω : f (ω) ̸= 0}=∪∞
n=1An and each of these sets in the union

has measure zero. It follows that {ω : f (ω) ̸= 0} has measure zero. Therefore,
∫

Ω
f gdµ =

0 and so indeed, there is nothing left to show. The situation is the same if (
∫

Ω
gqdµ)1/q = 0.

Thus assume both of the factors on the right in the inequality are nonzero. Then let A ≡
(
∫

Ω
f pdµ)1/p ,B≡ (

∫
Ω

gqdµ)1/q. Proposition 9.3.2,∫
Ω

f
A

g
B

dµ ≤
∫

Ω

f p

Ap p
dµ +

∫
Ω

gq

Bqq
dµ

=
1
p

∫
Ω

f pdµ

Ap +
1
q

∫
Ω

gqdµ

Bq =
1
p
+

1
q
= 1

Therefore,
∫

Ω
f gdµ ≤ AB = (

∫
Ω

f pdµ)1/p (
∫

Ω
gqdµ)1/q ■

This makes it easy to prove the Minkowski inequality for the sum of two functions.

Theorem 9.3.4 Let f ,g be two measurable functions with values in F. Then(∫
Ω

| f +g|p dµ

)1/p

≤
(∫

Ω

| f |p dµ

)1/p

+

(∫
Ω

|g|p dµ

)1/p

(9.6)

Proof: First of all,

| f +g|p = | f +g|p−1 | f +g| ≤ | f +g|p−1 (| f |+ |g|)

Recall that p−1 = p/q. Then, using Theorem 9.3.3,∫
Ω

| f +g|p dµ ≤
∫

Ω

| f +g|p/q | f |dµ +
∫

Ω

| f +g|p/q |g|dµ

≤
(∫

Ω

| f +g|p dµ

)1/q(∫
| f |p dµ

)1/p

+

(∫
Ω

| f +g|p dµ

)1/q(∫
Ω

|g|p dµ

)1/p

=

(∫
Ω

| f +g|p dµ

)1/q
((∫

| f |p dµ

)1/p

+

(∫
Ω

|g|p dµ

)1/p
)

If
∫

Ω
| f +g|p dµ = 0, then 9.6 is obvious. If

∫
Ω
| f +g|p dµ = ∞, then

∞≤
∫

Ω

2p−1 (| f |p + |g|p)dµ
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and so one of the terms on the right side in 9.6 is ∞. Therefore again 9.6 is obvious.
Otherwise divide (

∫
Ω
| f +g|p dµ)1/q on both sides to obtain 9.6. ■

By induction, you have(∫
Ω

∣∣∣∣∣ n

∑
k=1

fi

∣∣∣∣∣
p

dµ

)1/p

≤
n

∑
k=1

(∫
Ω

| fi|p dµ

)1/p

Observation 9.3.5 If f ,g are in Lp and α,β are scalars, then α f +βg ∈ Lp also.

To see this, note that α f +βg is measurable thanks to Proposition 6.1.8. Is |α f +βg|p
in L1?(∫

Ω

|α f +βg|p dµ

)1/p

≤
(∫

Ω

|α f |p dµ

)1/p

+

(∫
Ω

|βg|p dµ

)1/p

= |α|
(∫

Ω

| f |p dµ

)1/p

+ |β |
(∫

Ω

|g|p dµ

)1/p

< ∞

and so it follows that Lp (Ω) is a vector space of functions. If ∥ f∥p ≡ (
∫

Ω
| f |p dµ)1/p , then

the above computation shows that ∥·∥p is a norm except for one problem. If ∥ f∥p = 0, it
does not follow that f = 0. What can be concluded if ∥ f∥p = 0? From the first part of the
argument in Theorem 9.3.3, it follows that if ∥ f∥p = 0, then f (ω) = 0 for a.e.ω.

Definition 9.3.6 Lp (Ω) is a normed vector space (normed linear space) if we agree
to identify any two functions in Lp (Ω) which are equal off a set of measure zero and let
∥ f∥p ≡ (

∫
Ω
| f |p)1/p. More precisely, Lp (Ω) consists of a vector space of equivalence

classes of functions, the equivalence relation being that the functions are equal a.e.

The big result about Lp (Ω) is that it is a complete space. Recall that this means that
every Cauchy sequence converges. Recall Theorem 2.3.3 which said that if a subsequence
of a Cauchy sequence in Rp converges then the original Cauchy sequence converges. Have
a look a that theorem and notice that the specific context is completely irrelevant. The same
argument shows that in an arbitrary normed linear space, if a subsequence of a Cauchy
sequence converges, then the original Cauchy sequence converges. Also note that Theorem
2.3.2 which said that Cauchy sequences are bounded also does not depend on the context.
It holds for an arbitrary normed linear space.

To show Lp (Ω) is complete, I will show that a Cauchy sequence has a subsequence
which converges for a.e. ω . Then an appeal to limit theorems will show Lp (Ω) is complete.

Theorem 9.3.7 Let { fn}∞

n=1 be a Cauchy sequence in Lp (Ω) . Then there exists g ∈
Lp (Ω) and

{
fnk

}∞

k=1 such that fnk (ω)→ g(ω) a.e. ω and

lim
n→∞
∥ fn−g∥p = 0.

Proof: First note that there exists M such that
∥∥ fnk

∥∥p
p < M by Theorem 2.3.2 (Cauchy

sequences are bounded.) applied to this normed linear space. (Same argument) Select a
subsequence

{
fnk

}
such that if m≥ nk,

∥∥ fnk − fm
∥∥p

p < 4−k. Let

Bk ≡
{

ω :
∣∣ fnk+1 (ω)− fnk (ω)

∣∣p > 2−k
}
.



228 CHAPTER 9. BASIC FUNCTION SPACES

Then
2−k

µ (Bk)≤
∫

Bk

∣∣ fnk+1 (ω)− fnk (ω)
∣∣p dµ < 4−k

and so µ (Bk) < 2−k. Now if fnk (ω) fails to be a Cauchy sequence, then ω ∈ Bk for in-
finitely many k. In other words, ω ∈ ∩∞

n=1∪k≥n Bk ≡ B. This measurable set B has measure
zero because

µ (B)≤ µ (∪k≥nBk)≤
∞

∑
k=n

µ (Bk)<
1

2n−1 for every n ∈ N

Therefore, for ω /∈ B,
{

fnk

}∞

k=1 is a Cauchy sequence. Let g(ω)≡ 0 on B and let g(ω)≡
limk→∞ fnk (ω) if ω /∈ B. Why is g ∈ Lp and why does fn converge to g in Lp? g is the limit
of the measurable functions fnkXBC and so it is measurable. By Fatou’s lemma,∫

Ω

|g(ω)|p dµ ≤ lim inf
k→∞

∫
Ω

∣∣ fnk (ω)
∣∣p dµ ≤M

and so g ∈ Lp (Ω) . Now by construction,
∥∥ fnk − fnk+1

∥∥
p < 4−k/p therefore,(∫

Ω

∣∣ fnk − fnk+m

∣∣p dµ

)1/p

≡
∥∥ fnk − fnk+m

∥∥
p ≤

m−1

∑
j=0

∥∥∥ fnk+ j − fnk+ j̄+1

∥∥∥
p

≤
∞

∑
j=k

(
4−1/p

) j
=

(
4−1/p

)k−1

1−4−1/p

Now use Fatou’s lemma to obtain, as m→ ∞,(∫
Ω

∣∣ fnk −g
∣∣p dµ

)1/p

≤
(
4−1/p

)k−1

1−4−1/p

The expression on the right converges to 0 as k → ∞ and so limk→∞

∥∥ fnk −g
∥∥

p = 0. It
follows from Theorem 2.3.3 (If the sequence is Cauchy then if a subsequence converges,
so does the original sequence.) applied to this normed linear space that

lim
n→∞
∥ fn−g∥p = 0.■

What about L∞ (Ω) , the case conjugate to p = 1? How is the norm defined for L∞ (Ω)?
What does it mean to be in L∞ (Ω)?

Definition 9.3.8 A function f is in L∞ (Ω) if it is measurable and if there is some
constant M such that off a set of measure zero, | f (ω)| ≤M. Then ∥ f∥

∞
is defined to be the

infimum of all such constants M. Such a function is said to be “essentially bounded”.

Obviously L∞ (Ω) is a vector space. The next task is to verify that ∥·∥
∞

is a norm under
the convention that any two functions which are equal off a set of measure zero are the
same.

Proposition 9.3.9 Let f ∈ L∞ (Ω). Then

µ ({ω : | f (ω)|> ∥ f∥
∞
}) = 0

and if λ < ∥ f∥
∞
, then µ ({ω : | f (ω)|> λ})> 0.
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Proof: The second claim follows right away from the definition of ∥ f∥
∞
. If it is not

so, then µ ({ω : | f (ω)|> λ}) = 0 and so λ would be one of those constants M in the
description of ∥ f∥

∞
and ∥ f∥

∞
would not really be the infimum of these numbers. Consider

the other claim. By definition,

µ

({
ω : | f (ω)|> 1

n
+∥ f∥

∞

})
= 0

This is because there must be some essential upper bound M between ∥ f∥
∞

and ∥ f∥
∞
+ 1

n
since otherwise, ∥ f∥

∞
would not be the infimum. But

µ ({ω : | f (ω)|> ∥ f∥
∞
}) = ∪∞

n=1µ

({
ω : | f (ω)|> 1

n
+∥ f∥

∞

})
and each of the sets in the union has measure zero. ■

Note that this implies that if ∥ f∥
∞
= 0, then f = 0 a.e. so f is regarded as 0. Thus,

to say that ∥ f −g∥
∞
= 0 is to say that the two functions inside the norm are equal except

for a set of measure zero, and the convention is that when this happens, we regard them as
the same function. If α = 0 then ∥α f∥

∞
= 0 = 0∥ f∥

∞
. If α ̸= 0, then M ≥ | f (ω)| implies

|α|M ≥ |α f (ω)| . In particular, |α|
(
∥ f∥

∞
+ 1

n

)
≥ |α f (ω)| for all ω not in the union of the

sets of measure zero corresponding to each ∥ f∥
∞
+ 1

n . Thus there is a set of measure zero
N such that for ω /∈ N,

|α|
(
∥ f∥

∞
+

1
n

)
≥ |α f (ω)| for all n

Therefore, for ω /∈N, |α|∥ f∥
∞
≥∥α f∥

∞
. This implies that ∥ f∥

∞
=
∥∥ 1

α
α f
∥∥

∞
≤ 1
|α| ∥α f∥

∞

and so ∥α f∥
∞
≥ |α|∥ f∥

∞
also. This shows that this acts like a norm relative to multipli-

cation by scalars. What of the triangle inequality? Let Mn ↓ ∥ f∥
∞

and Nn ↓ ∥g∥∞
. Thus for

each n, there is an exceptional set of measure zero such that off this set Mn ≥ | f (ω)| and a
similar condition holding for g and Nn. Let N be the union of all the exceptional sets for f
and g for each n. Then for ω /∈ N, the following holds for all ω /∈ N

Mn +Nn ≥ | f (ω)|+ |g(ω)| ≥ | f (ω)+g(ω)|

So take a limit of both sides and find that ∥ f∥
∞
+∥g∥

∞
≥ | f (ω)+g(ω)| for all ω off a set

of measure zero. Therefore,

∥ f∥
∞
+∥g∥

∞
≥ ∥ f +g∥

∞

Theorem 9.3.10 L∞ (Ω) is complete.

Proof: Let { fn} be a Cauchy sequence. Let N be the union of all sets where it is
not the case that | fn (ω)− fm (ω)| ≤ ∥ fn− fm∥∞

. By Proposition 9.3.9, there is such an
exceptional set Mmn for each choice of m,n. Thus N is the countable union of these sets
of measure zero. Therefore, for ω /∈ N,{ fn (ω)}∞

n=1 is a Cauchy sequence and so we let
g(ω) = 0 if ω /∈ N and g(ω)≡ limn→∞ fn (ω) . Thus g is measurable. Also, for ω /∈ N,

|g(ω)− fn (ω)|= lim
m→∞
| fm (ω)− fn (ω)| ≤ lim sup

m→∞

∥ fm− fn∥∞
< ε

provided n is sufficiently large. This shows |g(ω)| ≤ ∥ fn∥∞
+ ε, ω /∈ N so ∥g∥

∞
< ∞.

Also it shows that there is a set of measure zero N such that for all ω /∈ N, for any ε > 0,
|g(ω)− fn (ω)| < ε which means ∥g− fn∥∞

≤ ε . Since ε is arbitrary, this shows that
limn→∞ ∥g− fn∥∞

= 0.■
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9.4 Approximation Theorems
First is a significant result on approximating with simple functions in Lp.

Theorem 9.4.1 Let f ∈ Lp (Ω) for p ≥ 1. Then for each ε > 0 there is a simple
function s such that ∥ f − s∥p ≤ ε .

Proof: It suffices to consider the case where f ≥ 0 because you can then apply what
is shown to the positive and negative parts of the real and imaginary parts of f to get
the general case. Thus, suppose f ≥ 0 and in Lp (Ω) . By Theorem 6.1.10, there ex-
ists a sequence of simple functions increasing to f . Then | f (ω)− sn (ω)|p ≤ | f (ω)|p.
This is a suitable dominating function. Then by the dominated convergence theorem,
0 = limn→∞

∫
Ω
| f (ω)− sn (ω)|p dµ which establishes the desired conclusion unless p = ∞.

Use Proposition 9.3.9 to get a set of measure zero N such that off this set, | f (ω)| ≤
∥ f∥

∞
. Then consider f XNC . It is a measurable and bounded function so by Theorem

6.1.10, there is an increasing sequence of simple functions {sn} converging uniformly to
this function. Hence, for n large enough, ∥ f − sn∥∞

< ε . ■

Theorem 9.4.2 Let µ be a regular Borel measure on Rn and f ∈ Lp (Rn). Then for
each p≥ 1, p ̸= ∞, there exists g a continuous function which is zero off a compact set such
that ∥ f −g∥p < ε .

Proof: Without loss of generality, assume f ≥ 0. First suppose that f is 0 off some ball
B(0,R). There exists a simple function 0 ≤ s ≤ f such that

∫
| f − s|p dµ < (ε/2)p . Thus

it suffices to show the existence of a continuous function h which is zero off a compact set
which satisfies (

∫
|h− s|p dµ)1/p < ε/2. Let

s(x) =
m

∑
i=1

ciXEi (x) , Ei ⊆ B(0,R)

where Ei is in Fp. Thus each Ei is bounded. By regularity, there exist compact sets Ki and

open sets Vi with Ki ⊆ Ei ⊆Vi ⊆ B(0,R) and ∑
m
i=1
(
cp

i µ (Vi \Ki)
)1/p

< ε/2.

Now define hi (x) ≡
dist(x,VC)

dist(x,K)+dist(x,VC)
. Thus hi equals zero off a compact set and it

equals 1 on Ki and 0 off Vi. Let h≡ ∑
m
i=1 cihi. Thus 0≤ h≤max{ci, i = 1, · · · ,m} . Then∫

|cihi− ciXEi |
p dµ ≤ cp

i XVi−Ki ≤ cp
i µ (Vi \Ki)

It follows that, from the Minkowski inequality,(∫ ∣∣∣∣∣ f −∑
i

cihi

∣∣∣∣∣
p

dµ

)1/p

≤
(∫
| f − s|p dµ

)1/p

+

(∫ ∣∣∣∣∣s−∑
i

cihi

∣∣∣∣∣
p

dµ

)1/p

≤ ε

2
+

(∫ (
∑

i
|ciXEi − cihi|

)p

dµ

)1/p

≤ ε

2
+∑

i

(∫
|ciXEi − cihi|p dµ

)1/p

≤ ε

2
+∑

i

(
cp

i µ (Vi \Ki)
)1/p

<
ε

2
+

ε

2
= ε
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This shows that if f is zero off some ball, then it can be approximated with a continuous
function which is zero off a compact set.

Now consider the general case. Then let fn = f XB(0,n). Then by dominated conver-

gence theorem, for n large enough, (
∫
| f − fn|p dµ)1/p < ε

2 and now from what was just
shown, there exists h continuous, zero off some compact set, such that (

∫
| fn−h|p dµ)1/p <

ε

2 . Thus from the triangle inequality,(∫
| f −h|p dµ

)1/p

<

(∫
| f − fn|p dµ

)1/p

+

(∫
| fn−h|p dµ

)1/p

< ε.■

9.5 Fundamental Theorem of Calculus
In this section the Vitali covering theorem, Proposition 8.6.3 will be used to give a gener-
alization of the fundamental theorem of calculus. Let f be in L1 (Rp) where the measure is
Lebesgue measure as discussed above.

Let M f : Rp→ [0,∞] by

M f (x)≡ sup
r≤1

1
mp (B(x,r))

∫
B(x,r)

| f |dmp if x /∈ Z.

We denote as ∥ f∥1 the integral
∫

Ω
| f |dmp.

The special points described in the following theorem are called Lebesgue points. Also
mp will denote the outer measure determined by Lebesgue measure. See Proposition 6.4.2.
mp (E)≡ inf

{
mp (F) : F is measurable and F ⊇ E

}
.

Theorem 9.5.1 Let mp be p dimensional Lebesgue measure measure and let f ∈
L1 (Rp,mp).(

∫
Ω
| f |dmp < ∞). Then for mp a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) = 0

Proof: First consider the following claim which is called a weak type estimate.
Claim 1: The following inequality holds for Np the constant of the Vitali covering

theorem, Proposition 8.6.3.

mp ([M f > ε])≤ 5p
ε
−1 ∥ f∥1

Proof: For each x ∈ [M f > ε] there exists a ball Bx = B(x,rx) with 0 < rx ≤ 1 and

mp (Bx)
−1
∫

B(x,rx)
| f |dmp > ε. (9.7)

Let F be this collection of balls. By the Vitali covering theorem, there is a collection of
disjoint balls G such that if each ball in G is enlarged making the center the same but the
radius 5 times as large, then the corresponding collection of enlarged balls covers [M f > ε] .
By separability, G is countable, say {Bi}∞

i=1 and the enlarged balls will be denoted as B̂i.
Then from 9.7,

mp ([M f > ε])≤∑
i

mp
(
B̂i
)
≤ 5p

∑
i

mp (Bi)≤
5p

ε
∑

i

∫
Bi

| f |dmp ≤ 5p
ε
−1 ∥ f∥1
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This proves claim 1.
Claim 2: If g ∈Cc (Rp), then

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y) = 0

Proof: Since g is continuous at x, whenever r is small enough,

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y)≤
1

mp (B(x,r))

∫
B(x,r)

ε dmp (y) = ε.

This proves the claim.
Now let g ∈Cc (Rp). Then from the above observations about continuous functions in

Claim 2,

mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> ε

])
(9.8)

≤ mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)−g(y)|dmp (y)>
ε

2

])
+mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y)>
ε

2

])
+mp

([
x : |g(x)− f (x)|> ε

2

])
.

≤ mp

([
M ( f −g)>

ε

2

])
+mp

([
| f −g|> ε

2

])
(9.9)

Now
∥ f −g∥1 ≥

∫
[| f−g|> ε

2 ]
| f −g|dmp ≥

ε

2
mp

([
| f −g|> ε

2

])
and so using Claim 1 and 9.9, 9.8 is dominated by(

2
ε
+

5p

ε

)∫
| f −g|dmp.

But by Theorem 9.4.2, g can be chosen to make the above as small as desired. Hence 9.8
is 0.

mp

([
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> 0
])

≤
∞

∑
k=1

mp

([
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)>
1
k

])
= 0

By completeness of mp this implies[
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> 0
]

is a set of mp measure zero. ■
The following corollary is the main result referred to as the Lebesgue Differentiation

theorem.
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Definition 9.5.2 f ∈ L1
loc (Rp,mp) means f XB is in L1 (Rn,mp) whenever B is a

ball.

Corollary 9.5.3 If f ∈ L1
loc (Rp,mp), then for a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) = 0 . (9.10)

In particular, for a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

f (y)dmp (y) = f (x)

Proof: If f is replaced by f XB(0,k) then the conclusion 9.10 holds for all x /∈ Fk where
Fk is a set of mp measure 0. Letting k = 1,2, · · · , and F ≡ ∪∞

k=1Fk, it follows that F is a
set of measure zero and for any x /∈ F , and k ∈ {1,2, · · ·}, 9.10 holds if f is replaced by
f XB(0,k). Picking any such x, and letting k > |x|+1, this shows

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)

= lim
r→0

1
mp (B(x,r))

∫
B(x,r)

∣∣ f XB(0,k) (y)− f XB(0,k) (x)
∣∣dmp (y) = 0.

The last claim holds because∣∣∣∣ f (x)− 1
mp (B(x,r))

∫
B(x,r)

f (y)dmp (y)
∣∣∣∣≤ 1

mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) ■

Definition 9.5.4 Let E be a measurable set. Then x ∈ E is called a point of density
if

lim
r→0

mp (B(x,r)∩E)
mp (B(x,r))

= 1

Proposition 9.5.5 Let E be a measurable set. Then mp a.e. x ∈ E is a point of density.

Proof: This follows from letting f (x) = XE (x) in Corollary 9.5.3. ■

9.6 A Useful Inequality
There is an extremely useful inequality. To prove this theorem first consider a special case
of it in which technical considerations which shed no light on the proof are excluded.

Lemma 9.6.1 Let (X ,S ,µ) and (Y,F ,λ ) be finite measure spaces and let f be µ×λ

measurable and uniformly bounded. Then the following inequality is valid for p≥ 1.

∫
X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

. (9.11)
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Proof: Since f is bounded and µ (X) ,λ (Y ) < ∞, (
∫

Y (
∫

X | f (x,y)|dµ)pdλ )
1
p < ∞. Let

J(y) =
∫

X | f (x,y)|dµ . Note there is no problem in writing this for a.e. y because f is
product measurable. Then by Fubini’s theorem,∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ =
∫

Y
J(y)p−1

∫
X
| f (x,y)|dµ dλ

=
∫

X

∫
Y

J(y)p−1| f (x,y)|dλ dµ

Now apply Holder’s inequality in the last integral above and recall p−1 = p
q . This yields

∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ ≤
∫

X

(∫
Y

J(y)pdλ

) 1
q
(∫

Y
| f (x,y)|pdλ

) 1
p

dµ

=

(∫
Y

J(y)pdλ

) 1
q ∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ

=

(∫
Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
q ∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ . (9.12)

Therefore, dividing both sides by the first factor in the above expression,(∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ

) 1
p

≤
∫

X

(∫
Y
| f (x,y)|pdλ

) 1
p

dµ . (9.13)

Note that 9.13 holds even if the first factor of 9.12 equals zero. ■
Now consider the case where f is not assumed to be bounded and where the measure

spaces are σ finite.

Theorem 9.6.2 Let (X ,S ,µ) and (Y,F ,λ ) be σ -finite measure spaces and let f
be product measurable. Then the following inequality is valid for p≥ 1.

∫
X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

. (9.14)

Proof: Since the two measure spaces are σ finite, there exist measurable sets, Xm and
Yk such that Xm ⊆ Xm+1 for all m, Yk ⊆ Yk+1 for all k, and also µ (Xm) ,λ (Yk) < ∞. Now
define

fn (x,y)≡
{

f (x,y) if | f (x,y)| ≤ n
n if | f (x,y)|> n.

Thus fn is uniformly bounded and product measurable. By the above lemma,

∫
Xm

(∫
Yk

| fn(x,y)|p dλ

) 1
p

dµ ≥
(∫

Yk

(
∫

Xm

| fn(x,y)|dµ)pdλ

) 1
p

. (9.15)

Now observe that | fn (x,y)| increases in n and the pointwise limit is | f (x,y)|. Therefore,
using the monotone convergence theorem in 9.15 yields the same inequality with f replac-
ing fn. Next let k→∞ and use the monotone convergence theorem again to replace Yk with
Y . Finally let m→ ∞ in what is left to obtain 9.14. ■
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Note that the proof of this theorem depends on two manipulations, the interchange of
the order of integration and Holder’s inequality. Note that there is nothing to check in the
case of double sums. Thus if ai j ≥ 0, it is always the case that(

∑
j

(
∑

i
ai j

)p)1/p

≤∑
i

(
∑

j
ap

i j

)1/p

because the integrals in this case are just sums and (i, j)→ ai j is measurable.

9.7 Exercises
1. Establish the inequality ∥ f g∥r ≤ ∥ f∥p ∥g∥q whenever 1

r = 1
p +

1
q .

2. Let (Ω,S ,µ) be counting measure onN. Thus Ω =N and S =P (N) with µ (S) =
number of things in S. Let 1≤ p≤ q. Show that in this case,

L1 (N)⊆ Lp (N)⊆ Lq (N) .

Hint: This is real easy if you consider what
∫

Ω
f dµ equals. How are the norms

related?

3. Consider the function, f (x,y) = xp−1

py + yq−1

qx for x,y> 0 and 1
p +

1
q = 1. Show directly

that f (x,y)≥ 1 for all such x,y and show this implies xy≤ xp

p + yq

q .

4. Give an example of a sequence of functions in Lp (R) which converges to zero in Lp

but does not converge pointwise to 0. Does this contradict the proof of the theorem
that Lp is complete?

5. Let φ : R→ R be convex. This means φ(λx+ (1− λ )y) ≤ λφ(x) + (1− λ )φ(y)
whenever λ ∈ [0,1]. Verify that if x < y < z, then φ(y)−φ(x)

y−x ≤ φ(z)−φ(y)
z−y and that

φ(z)−φ(x)
z−x ≤ φ(z)−φ(y)

z−y . Show if s ∈ R there exists λ such that φ(s) ≤ φ(t)+λ (s− t)
for all t. Show that if φ is convex, then φ is continuous.

6. ↑ Prove Jensen’s inequality. If φ : R→ R is convex, µ(Ω) = 1, and f : Ω→ R is in
L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ . Hint: Let s =

∫
Ω

f dµ and use Problem 5.

7. B(p,q) =
∫ 1

0 xp−1(1− x)q−1dx,Γ(p) =
∫

∞

0 e−tt p−1dt for p,q > 0. The first of these
is called the beta function, while the second is the gamma function. Show a.) Γ(p+
1) = pΓ(p); b.) Γ(p)Γ(q) = B(p,q)Γ(p+q).

8. Let f ∈Cc(0,∞) and define F(x) = 1
x
∫ x

0 f (t)dt. Show

∥F∥Lp(0,∞) ≤
p

p−1
∥ f∥Lp(0,∞)

whenever p > 1. Hint: Argue there is no loss of generality in assuming f ≥ 0
and then assume this is so. Integrate

∫
∞

0 |F(x)|pdx by parts as follows:
∫

∞

0 F pdx =
show = 0︷ ︸︸ ︷
xF p|∞0 − p

∫
∞

0 xF p−1F ′dx. Now show xF ′ = f −F and use this in the last integral.
Complete the argument by using Holder’s inequality and p−1 = p/q. The measure
is one dimensional Lebesgue measure in this problem.
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9. ↑ Now suppose f ∈ Lp(0,∞), p > 1, and f not necessarily in Cc(0,∞). Show that
F(x) = 1

x
∫ x

0 f (t)dt still makes sense for each x > 0. Show the inequality of Problem
8 is still valid. This inequality is called Hardy’s inequality. Hint: To show this, use
the above inequality along with the density of Cc (0,∞) in Lp (0,∞).

10. Suppose f ,g≥ 0. When does equality hold in Holder’s inequality?

11. Let α ∈ (0,1]. We define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+∥f∥ ≡ ∥f∥
α
< ∞}

where ∥f∥ ≡ sup{|f(x)| : x ∈ X} and

ρα (f)≡ sup{ |f(x)− f(y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) ,∥·∥
α
) is a complete normed linear space. This is called a

Holder space. What would this space consist of if α > 1?

12. Let {fn}∞
n=1 ⊆Cα (X ;Rn) where X is a compact subset ofRp and suppose ∥fn∥α

≤M
for all n. Show there exists a subsequence, nk, such that fnk converges in C (X ;Rn).
We say the given sequence is precompact when this happens. (This also shows the
embedding of Cα (X ;Rn) into C (X ;Rn) is a compact embedding.) Hint: You might
want to use the Ascoli Arzela theorem, Theorem 9.2.4.

13. Let f : R×Rn→ Rn be continuous and bounded and let x0 ∈ Rn. If x : [0,T ]→ Rn

and h > 0, let

τhx(s)≡
{

x0 if s≤ h,
x(s−h) , if s > h.

For t ∈ [0,T ], let xh (t) = x0+
∫ t

0 f(s,τhxh (s))ds. Show using the Ascoli Arzela theo-
rem that there exists a sequence h→ 0 such that xh→ x in C ([0,T ] ;Rn). Next argue
x(t) = x0 +

∫ t
0 f(s,x(s))ds and conclude the following theorem. If f : R×Rn→ Rn

is continuous and bounded, and if x0 ∈ Rn is given, there exists a solution to the
following initial value problem.

x′ = f(t,x) , t ∈ [0,T ] , x(0) = x0.

This is the Peano existence theorem for ordinary differential equations.

14. Suppose f ∈ L∞∩L1. Show limp→∞ ∥ f∥Lp = ∥ f∥∞. Hint:

(∥ f∥
∞
− ε)p

µ ([| f |> ∥ f∥
∞
− ε])≤

∫
[| f |>∥ f∥∞−ε]

| f |p dµ ≤

∫
| f |p dµ =

∫
| f |p−1 | f |dµ ≤ ∥ f∥p−1

∞

∫
| f |dµ.

Now raise both ends to the 1/p power and take liminf and limsup as p→ ∞. You
should get ∥ f∥

∞
− ε ≤ liminf∥ f∥p ≤ limsup∥ f∥p ≤ ∥ f∥

∞

15. Suppose µ(Ω)<∞. Show that if 1≤ p< q, then Lq(Ω)⊆ Lp(Ω). Hint Use Holder’s
inequality.
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16. Show L1(R)⊈ L2(R) and L2(R)⊈ L1(R) if Lebesgue measure is used. Hint: Con-
sider 1/

√
x and 1/x.

17. Suppose that θ ∈ [0,1] and r,s,q > 0 with 1
q = θ

r +
1−θ

s . show that

(
∫
| f |qdµ)1/q ≤ ((

∫
| f |rdµ)1/r)θ ((

∫
| f |sdµ)1/s)1−θ.

If q,r,s≥ 1 this says that ∥ f∥q ≤ ∥ f∥θ
r ∥ f∥1−θ

s . Using this, show that

ln
(
∥ f∥q

)
≤ θ ln(∥ f∥r)+(1−θ) ln(∥ f∥s) .

Hint:
∫
| f |qdµ =

∫
| f |qθ | f |q(1−θ)dµ. Now note that 1 = θq

r + q(1−θ)
s and then use

Holder’s inequality.

18. Suppose f is a function in L1 (R) and f is infinitely differentiable. Is f ′ ∈ L1 (R)?
Hint: What if φ ∈C∞

c (0,1) and f (x) = φ (2n (x−n)) for x ∈ (n,n+1) , f (x) = 0 if
x < 0?

19. Let T be a real number, T < 1. Let A0 = 0, An+1 = An +
1
2

(
T −A2

n
)
. Show that

An ∈
[
0, 1+T

2

]
. Use the mean value theorem to show that f (x)≡ x+ 1

2

(
T − x2

)
maps[

0, 1+T
2

]
to
[
0, 1+T

2

]
and is a contraction map. Obtain a unique square root for T as

a fixed point.



238 CHAPTER 9. BASIC FUNCTION SPACES



Chapter 10

Change of Variables
Lemma 10.0.1 Every open set in Rp is the countable disjoint union of half open boxes
of the form

p

∏
i=1

(ai,ai +2−k]

where ai = l2−k for some integers, l,k where k ≥ m. If Bm denotes this collection of half
open boxes, then every box of Bm+1 is contained in a box of Bm or equals a box of Bm.

Proof: Let m ∈ N be given and let k ≥ m. Let Ck denote all half open boxes of the
form ∏

p
i=1(ai,ai+2−k] where ai = l2−k for some integer l. Thus Ck consists of a countable

disjoint collection of boxes whose union is Rp. This is sometimes called a tiling of Rp.
Think of tiles on the floor of a bathroom and you will get the idea. Note that each box has
Euclidean diameter no larger than 2−k√p. This is because if we have two points, x,y ∈

∏
p
i=1(ai,ai + 2−k], then |xi− yi| ≤ 2−k. Therefore, |x−y| ≤

(
∑

p
i=1

(
2−k
)2
)1/2

= 2−k√p.
Also, a box of Ck+1 is either contained in a box of Ck or it has empty intersection with this
box of Ck.

Let U be open and let B1 ≡ all sets of C1 which are contained in U . If B1, · · · ,Bk
have been chosen, Bk+1 ≡ all sets of Ck+1 contained in

U \∪
(
∪k

i=1Bi

)
.

Let B∞ = ∪∞
i=1Bi. I claim ∪B∞ =U . Clearly ∪B∞ ⊆U because every box of every Bi is

contained in U . If p∈U , let k be the smallest integer such that p is contained in a box from
Ck which is also a subset of U . Thus p ∈ ∪Bk ⊆∪B∞. Hence B∞ is the desired countable
disjoint collection of half open boxes whose union is U . The last claim follows from the
construction. ■

10.1 Linear Transformations
Lemma 10.1.1 Let A : Rp → Rp be linear and invertible. Then A maps open sets to
open sets.

Proof: This follows from the observation that if B is any linear transformation, then
B is continuous. Indeed, it is realized by matrix multiplication and so it is clear that if
xn → x, then Bxn → Bx. Then for U open, A(U) =

(
A−1

)−1
(U) which is open because

A−1 is continuous. ■
First is a general result.

Proposition 10.1.2 Let h : U → Rp is continuous where U is an open subset of Rp.
Also suppose h is differentiable on H ⊆U where H is Lebesgue measurable. Then if E is a
Lebesgue measurable set contained in H, then h(E) is also Lebesgue measurable. Also if
N ⊆ H is a set of measure zero, then h(N) is a set of measure zero. In particular, a linear
function A maps measurable sets to measurable sets.

Proof: Consider the second claim first. Let N be a set of measure zero contained in H
and let

Nk ≡ {x ∈ N : ∥Dh(x)∥ ≤ k}

239
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There is an open set V ⊇ Nk such that mp (V ) < ε . For each x ∈ Nk, there is a ball Bx
centered at x with radius 5rx < 1 such that B̂x ⊆ V, where Bx = B(x,rx) , B̂x = B(x,5rx)
and for y ∈ B̂x,

h(y) ∈ h(x)+Dh(x)B(0,5rx)+B(0,ε5rx)

⊆ h(x)+B(0,∥Dh(x)∥5rx)+B(0,ε5rx)

≤ B(h(x) ,(k+ ε)5rx)

So h(B(x,5rx))≤ B(h(x) ,(k+ ε)5rx) and so

mp
(
h
(
B̂x
))
≤ (k+ ε)p mp (B(x,5rx)) .

Then, the balls B(x,rx) for x ∈ Nk,cover Nk and so by the Vitali covering theorem, there
are disjoint balls Bi = B(xi,rxi) such that for B̂i the ball with same center and 5 times the
radius as Bi,Nk ⊆ ∪kB̂k. Thus

mp (h(Nk)) ⊆ mp
(
∪k
(
h
(
B̂k
)))
≤∑

k
mp
(
h
(
B̂k
))

≤ ∑
k
(k+ ε)p mp

(
B̂k
)
= ∑

k
(k+ ε)p 5pmp (Bk)

≤ 5p (k+ ε)p mp (V )< ε5p (k+ ε)p

Since ε > 0 is arbitrary, it follows that mp (h(Nk)) = 0 and so h(Nk) is measurable and has
measure zero. Now let k→ ∞ to conclude that mp (h(N)) = 0.

Now the other claim is shown as follows. By Proposition 8.3.2, if E is Lebesgue mea-
surable, E ⊆ H, there is an Fσ set F ⊆ E such that mp (E \F) = 0. Then h(F) is clearly
measurable because h is continuous and F is a countable union of compact sets. Thus
h(E) = h(F)∪h(E \F) and the second was just shown measurable while the first is an Fσ

set so it is actually a Borel set. ■
From Linear Algebra,(My Elementary Linear Algebra book has the necessary theorems

carefully proved.) if A is an invertible linear transformation, it is the composition of finitely
many invertible linear transformations which are of the following form.(

x1 · · · xr · · · xs · · · xp
)T →

(
x1 · · · xr · · · xs · · · xp

)T

(
x1 · · · xr · · · xp

)T →
(

x1 · · · cxr · · · xp
)T

,c ̸= 0

(
x1 · · · xr · · · xs · · · xp

)T

→
(

x1 · · · xr · · · xs + xr · · · xp
)T

where these are the actions obtained by multiplication by elementary matrices. Denote
these special linear transformations by E (r↔ s) ,E (cr) ,E (s→ s+ r) .

Let R = ∏
p
i=1 (ai,bi) . Then it is easily seen that

mp (E (r↔ s)(R)) = mp (R) = |det(E (r↔ s))|mp (R)

since this transformation just switches two sides of R.

mp (E (cr)(R)) = |c|mp (R) = |det(E (cr))|mp (R)
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since this transformation just magnifies one side, multiplying it by c.
The other linear transformation which represents a sheer is a little harder. However,

mp (E (s→ s+ r)(R)) =
∫

E(s→s+r)(R)
dmp

=
∫
R
· · ·
∫
R

∫
R

∫
R

XE(s→s+r)(R)dxsdxrdxp1 · · ·dxpp−2

Now recall Theorem 7.8.5 which says you can integrate using the usual Riemann inte-
gral when the function involved is Borel. Thus the above becomes∫ bpp−2

app−2

· · ·
∫ bp1

ap1

∫ br

ar

∫ bs+xr

as+xr

dxsdxrdxp1 · · ·dxpp−2

= mp (R) = |det(E (s→ s+ r))|mp (R)

Recall that when a row (column) is added to another row (column), the determinant of the
resulting matrix is unchanged.

Lemma 10.1.3 Let L be any of the above elementary linear transformations. Then

mp (L(F)) = |det(L)|mp (F)

for any Borel set F. Also L(F) is Lebesgue measurable if F is Lebesgue measurable. If F
is Borel, then so is L(F).

Proof: Let Rk = ∏
p
i=1 (−k,k) . Let G be those Borel sets F such that L(F) is Borel and

mp (L(F ∩Rk)) = |det(L)|mp (F ∩Rk) (10.1)

Letting K be the open rectangles, it follows from the above discussion that the pi system
K is in G . It is also obvious that if Fi ∈ G the Fi being disjoint, then since L is one to one,

mp (L(∪∞
i=1Fi∩Rk)) =

∞

∑
i=1

mp (L(Fi∩Rk)) = |det(L)|
∞

∑
i=1

mp (Fi∩Rk)

= |det(L)|mp (∪∞
i=1Fi∩Rk)

Thus G is closed with respect to countable disjoint unions. If F ∈ G then

mp
(
L
(
FC ∩Rk

))
+mp (L(F ∩Rk)) = mp (L(Rk))

mp
(
L
(
FC ∩Rk

))
+ |det(L)|mp (F ∩Rk) = |det(L)|mp (Rk)

mp
(
L
(
FC ∩Rk

))
= |det(L)|mp (Rk)−|det(L)|mp (F ∩Rk)

= |det(L)|mp
(
FC ∩Rk

)
It follows that G is closed with respect to complements also. Therefore, G = σ (K ) =
B (Rp). Now let k→ ∞ in 10.1 to obtain the desired conclusion. ■
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Theorem 10.1.4 Let L be a linear transformation which is invertible. Then for any
Borel F, L(F) is Borel and

mp (L(F)) = |det(L)|mp (F)

More generally, if L is an arbitrary linear transformation, then for any F ∈Fp,

L(F) ∈Fp

and the above formula holds.

Proof: From linear algebra, there are Li each elementary such that L = L1 ◦L2 ◦· · ·◦Ls.
By Proposition 10.1.2, each Li maps Borel sets to Borel sets. Hence, using Lemma 10.1.3,

mp (L(F)) = |det(L1)|mp (L2 ◦ · · · ◦Ls (F))

= |det(L1)| |det(L2)|mp (L3 ◦ · · · ◦Ls (F))

= · · ·=
s

∏
i=1
|det(Li)|mp (F) = |det(L)|mp (F)

the last claim from properties of the determinant.
Next consider the general case. First I clam that if N has measure 0 then so does L(N)

and if F ∈Fp, then so is L(F)∈Fp for any linear L. This follows from Proposition 10.1.2
since L is differentiable.

By Proposition 8.3.2, if E ∈Fp, then for L invertible, there is an Fσ set F and a Gδ set
G such that mp (G\F) = 0 and F ⊆ E ⊆ G. Then for L invertible,

mp (L(F))≤ mp (L(E))≤ mp (L(G))

and so, since F,G are Borel,

|det(L)|mp (F) ≤ mp (L(E))≤ |det(L)|mp (G)

= |det(L)|mp (F) = |det(L)|mp (E)

and so all the inequalities are equal signs. Hence, mp (L(E)) = |det(L)|mp (E).
If L−1 does not exist and E ∈Fp, then there are elementary matrices Lk such that L1 ◦

L2 ◦ · · · ◦Lm ◦L maps Rp to
{

x ∈ Rp : xp = 0
}
, a set of mp measure zero. By completeness

of Lebesgue measure, L1 ◦L2 ◦ · · · ◦Lm ◦L(E) and L(E) are both measurable and

m

∏
i=1
|det(Li)|mp (L(E)) = mp (L1 ◦L2 ◦ · · · ◦Lm ◦L(E)) = 0

so in this case, mp (L(E)) = 0 = |det(L)|mp (0). Thus the formula holds regardless. ■
For A,B nonempty sets in Rp, A+B denotes all vectors of the form a+b where a ∈ A

and b ∈ B. Thus if Q is a linear transformation,

Q(A+B) = QA+QB

The following proposition uses standard linear algebra to obtain an interesting estimate
on the measure of a set. It is illustrated by the following picture.
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D

QD

In the above picture, the slanted set is of the form B+D where B is a ball and the
un-slanted version is obtained by doing the linear transformation Q to the slanted set. The
reason the two look the same is that the Q used will preserve all distances. It will be an
orthogonal linear transformation.

Proposition 10.1.5 Let the norm be the standard Euclidean norm and let V be a k
dimensional subspace ofRp where k < p. Suppose D is a Fσ subset of V which has diameter
d. Then

mp (D+B(0,r))≤ 2p (d + r)p−1 r

Proof: Let {v1, · · · ,vk} be an orthonormal basis for V . Enlarge to an orthonormal basis
of all of Rp using the Gram Schmidt process to obtain{

v1, · · · ,vk,vk+1, · · · ,vp
}
.

Now define an orthogonal transformation Q by Qvi = ei. Thus QT Q = I and Q preserves
all lengths. Thus also det(Q) = 1. Then

Q(D+B(0,r)) = QD+B(0,r)

where the diameter of QD is the same as the diameter of D and QB(0,r) = B(0,r) because
Q preserves lengths in the Euclidean norm. This is why we use this norm rather than some
other. Therefore, from the definition of the Lebesgue measure and the above result on the
magnification factor,

mp (D+B(0,r)) = det(Q)mp (D+B(0,r)) = mp (QD+B(0,r))

and this last is no larger than (2d +2r)p−1 2r = 2p (d + r)p−1 r. ■

10.2 Change of Variables Nonlinear Maps
The very interesting approach given here follows Rudin [40].

Now recall Lemma 8.7.10 which is stated here for convenience.

Lemma 10.2.1 Let g be continuous and map B(p,r) ⊆ Rn to Rn. Suppose that for all
x ∈ B(p,r),

|g(x)−x|< εr

Then it follows that

g
(

B(p,r)
)
⊇ B(p,(1− ε)r)
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Now suppose U ⊆ Rp is open, h : U → Rp is continuous, and

mp (h(U \H)) = 0

where H ⊆U and H is Borel measurable. Suppose also that h is one to one and differen-
tiable on H. Define for Lebesgue measurable E ⊆U

λ (E)≡ mp (h(E ∩H)) ,

Then it is clear that λ is indeed a measure on the σ algebra of Lebesgue measurable subsets
of U . Note that

mp (h(E))−mp (h(E ∩H))

≤ mp (h(E ∩H))+mp (h(E \H))−mp (h(E ∩H))

≤ mp (h(U \H)) = 0

Thus one could just as well let λ (E)≡ mp (h(E)).
Since h is one to one on H, this along with Proposition 10.1.2 implies that λ ≪ mp

since if mp (E) = 0, then h(E ∩H) also has measure zero. Also λ and mp are finite on
closed balls so both are σ finite.

Therefore, for measurable E ⊆U, it follows from the Radon Nikodym theorem Corol-
lary 7.11.12 that there is a real valued, nonnegative, measurable function f in L1 (K) for
any compact set K such that

λ (E) = mp (h(E ∩H)) =
∫

U
XE f (x)dmp =

∫
XE f (x)dmp (10.2)

So what is f (x)? To begin with, assume Dh(x)−1 exists. By differentiability, and using
Dh(x)−1 exists as needed,

h(B(x,r))−h(x) ⊆ Dh(x)B(0,r)+Dh(x)B(0,εr)

⊆ Dh(x)(B(0,r (1+ ε)))

for all r small enough. Therefore, by translation invariance of Lebesgue measure,

mp (h(B(x,r))) ≤ mp (Dh(x)(B(0,r (1+ ε))))

= |det(Dh(x))|mp (B(0,r (1+ ε)))

Also, for |v|< r small enough,

h(x+v)−h(x) = Dh(x)v+o(v)
Dh(x)−1 (h(x+v)−h(x)) = v+o(v)

and so if g(v) ≡ Dh(x)−1 (h(x+v)−h(x)) , |g(v)−v| < εr provided r is small enough.
Therefore, from Lemma 10.2.1, for small enough r,

Dh(x)−1 (h(x+B(0,r))−h(x))⊇ B(0,(1− ε)r)

Thus
h(B(x,r))⊇ h(x)+Dh(x)B(0,(1− ε)r)
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and so, using Theorem 10.1.4 again,

mp (h(B(x,r)))≥ |det(Dh(x))|mp (B(0,r (1− ε)))

for r small enough. Thus, since

mp (h(B(x,r))) = mp (h(B(x,r)∩H)) = λ (B(x,r)) =
∫

B(x,r)
f (x)dmp,

it follows that

|det(Dh(x))|mp (B(0,r (1− ε))) ≤
∫

B(x,r)
f (x)dmp

≤ |det(Dh(x))|mp (B(0,r (1+ ε)))

for r small enough. Now divide by mp (B(x,r)) and use the fundamental theorem of calcu-
lus Corollary 9.5.3 to find that for ε small ε > 0,

|det(Dh(x))|(1− ε)p ≤ f (x)≤ |det(Dh(x))|(1+ ε)p a.e.

Letting εk → 0 and picking a set of measure zero for each εk, it follows that off a set of
measure zero f (x) = |det(Dh(x))| .

If Dh(x)−1 does not exist, then you have

h(B(x,r))−h(x)⊆ Dh(x)B(0,r)+B(0,εr)

and Dh(x) maps into a bounded subset of a p−1 dimensional subspace. Therefore, using
Proposition 10.1.5, the right side has measure no more than an expression of the form Crpε,
C depending on Dh(x). Therefore, in this case,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

f (x)dmp = lim
r→0

mp (h(B(x,r)))
mp (B(x,r))

≤ ε
Crp

α prp

and since ε is arbitrary, this shows that for a.e. x, such that Dh(x)−1 does not exist, f (x) =
0 = |det(Dh(x))| in this case also. Therefore, whenever E is a Lebesgue measurable set
E ⊆ H,

mp (h(E)) =
∫

h(H)
Xh(E) (y)dmp =

∫
U

XE (x) |det(Dh(x))|dmp

=
∫

H
XE (x) |det(Dh(x))|dmp

The difficulty here is that the inverse image of a Lebesgue measurable set might not be
measurable. However, there is no problem with the inverse image of a Borel set. Let F be
a Borel subset of the measurable set h(H) . Then h−1 (F) is measurable. Indeed, h−1 (F)
is open if F is open. If B consists of the sets h−1 (F) were F is Borel, B is a σ algebra
which contains the open sets. Thus B contains the Borel sets. Then from what was just
shown, ∫

h(H)
Xh(h−1(F)) (y)dmp =

∫
H

Xh−1(F) (x) |det(Dh(x))|dmp

and rewriting this gives∫
h(H)

XF (y)dmp =
∫

H
XF (h(x)) |det(Dh(x))|dmp
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and all needed measurability holds. Now for E an arbitrary measurable subset of H let
F ⊆ E ⊆ G where F is Fσ and G is Gδ and mp (G\F) = 0. Without loss of generality,
assume G⊆U . Then∫

H
(XG (h(x)) |det(Dh(x))|−XF (h(x)) |det(Dh(x))|)dmp = 0

because the integral of each function in the difference equals∫
h(H)

XE (y)dmp =
∫

h(H)
XF (y)dmp =

∫
h(H)

XG (y)dmp

and so the integrands are equal off a set of measure zero. Furthermore,

XE (h(x)) |det(Dh(x))| ∈ [XF (h(x)) |det(Dh(x))| ,XG (h(x)) |det(Dh(x))|]

and so XE (h(x)) |det(Dh(x))| equals a measurable function a.e. By completeness of the
measure mp it follows that x→XE (h(x)) |det(Dh(x))| is also measurable. I am not saying
that x→XE (h(x)) is measurable. In fact this might not be so because it is Xh−1(E) (x) and
the inverse image of a measurable set is not necessarily measurable. For a well known
example, see Problem 26 on Page 156. The thing which is measurable is the product in the
integrand. Therefore, for E a measurable subset of H∫

h(H)
XE (y)dmp =

∫
H

XE (h(x)) |det(Dh(x))|dmp (10.3)

The following theorem gives a change of variables formula.

Theorem 10.2.2 Let U ⊆ Rp be open, h : U → Rp continuous, and

mp (h(U \H)) = 0

where H ⊆U and H is Lebesgue measurable. Suppose also that h is differentiable on H
and is one to one on H. Then h(H) is Lebesgue measurable and if g ≥ 0 is Lebesgue
measurable, then ∫

h(H)
g(y)dmp =

∫
H

g(h(x)) |det(Dh(x))|dmp (10.4)

and all needed measurability holds.

Proof: Formula 10.3 implies that 10.4 holds for any nonnegative simple function s.
Then for g nonnegative and measurable, it is the pointwise increasing limit of such simple
functions. Therefore, 10.4 follows from the monotone convergence theorem. ■

Note that the above theorem holds if H = U . One might wonder why the fuss over
having a separate H on which h is differentiable. One reason for this is Rademacher’s
theorem which states that every Lipshitz continuous function is differentiable a.e. Thus if
you have a Lipshitz function defined on U an open set, then if you let H be the set where
this function is differentiable, it will follow that U \H has measure zero and so, by Problem
9 on Page 212, you also have h(U \H) has measure zero. Thus the above theorem is at
least as good as what is needed to give a change of variables formula for transformations
which are only Lipschitz continuous.

Next is a significant result called Sard’s lemma. In the proof, it does not matter which
norm you use in defining balls but it may be easiest to consider the norm

∥x∥ ≡max{|xi| , i = 1, · · · , p}
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Lemma 10.2.3 (Sard) Let U be an open set in Rp and let h : U → Rp be differentiable.
Let

Z ≡ {x ∈U : detDh(x) = 0} .
Then mp (h(Z)) = 0.

Proof: For convenience, assume the balls in the following argument come from ∥·∥
∞

.
First note that Z is a Borel set because h is continuous and so the component functions
of the Jacobian matrix are each Borel measurable. Hence the determinant is also Borel
measurable.

Suppose that U is a bounded open set. Let ε > 0 be given. Also let V ⊇ Z with V ⊆U
open, and

mp (Z)+ ε > mp (V ) .

Now let x ∈ Z. Then since h is differentiable at x, there exists δ x > 0 such that if r < δ x,
then B(x,r)⊆V and also,

h(B(x,r))⊆ h(x)+Dh(x)(B(0,r))+B(0,rη) , η < 1.

Regard Dh(x) as an n×n matrix, the matrix of the linear transformation Dh(x) with respect
to the usual coordinates. Since x∈ Z, it follows that there exists an invertible matrix A such
that ADh(x) is in row reduced echelon form with a row of zeros on the bottom. Therefore,

mp (A(h(B(x,r))))≤ mp (ADh(x)(B(0,r))+AB(0,rη)) (10.5)

The diameter of ADh(x)(B(0,r)) is no larger than ∥A∥∥Dh(x)∥2r and it lies in Rp−1×
{0} . The diameter of AB(0,rη) is no more than ∥A∥(2rη) .Therefore, the measure of the
right side in 10.5 is no more than

[(∥A∥∥Dh(x)∥2r+∥A∥(2η))r]p−1 (rη)

≤ C (∥A∥ ,∥Dh(x)∥)(2r)p
η

Hence from the change of variables formula for linear maps,

mp (h(B(x,r)))≤ η
C (∥A∥ ,∥Dh(x)∥)

|det(A)|
mp (B(x,r))

Then letting δ x be still smaller if necessary, corresponding to sufficiently small η ,

mp (h(B(x,r)))≤ εmp (B(x,r))

The balls of this form constitute a Vitali cover of Z. Hence, by the Vitali covering theorem
Theorem 8.6.6, there exists {Bi}∞

i=1 ,Bi = Bi (xi,ri) , a collection of disjoint balls, each of
which is contained in V, such that mp (h(Bi)) ≤ εmp (Bi) and mp (Z \∪iBi) = 0. Hence
from Lemma 10.1.2,

mp (h(Z)\∪ih(Bi))≤ mp (h(Z \∪iBi)) = 0

Therefore,

mp (h(Z)) ≤ ∑
i

mp (h(Bi))≤ ε ∑
i

mp (Bi)

≤ ε (mp (V ))≤ ε (mp (Z)+ ε) .

Since ε is arbitrary, this shows mp (h(Z)) = 0. What if U is not bounded? Then consider
Zn = Z ∩B(0,n) . From what was just shown, h(Zn) has measure 0 and so it follows that
h(Z) also does, being the countable union of sets of measure zero. ■
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10.3 Mappings Which are Not One to One
Now suppose h : U → V = h(U) and h is only C1, not necessarily one to one. Note that I
am using C1, not just differentiable. This makes it convenient to use the inverse function
theorem. You can get more generality if you work harder. For

U+ ≡ {x ∈U : |detDh(x)|> 0}

and Z the set where |detDh(x)| = 0, Lemma 10.2.3 implies mp(h(Z)) = 0. For x ∈U+,
the inverse function theorem implies there exists an open set Bx ⊆U+, such that h is one to
one on Bx.

Let {Bi} be a countable subset of {Bx}x∈U+ such that U+ = ∪∞
i=1Bi. Let E1 = B1. If

E1, · · · ,Ek have been chosen, Ek+1 = Bk+1 \∪k
i=1Ei. Thus

∪∞
i=1Ei =U+, h is one to one on Ei, Ei∩E j = /0,

and each Ei is a Borel set contained in the open set Bi. Now define

n(y)≡
∞

∑
i=1

Xh(Ei)(y)+Xh(Z)(y).

The sets h(Ei) ,h(Z) are measurable by Proposition 10.1.2. Thus n(·) is measurable.

Lemma 10.3.1 Let F ⊆ h(U) be measurable. Then∫
h(U)

n(y)XF(y)dmp =
∫

U
XF(h(x))|detDh(x)|dmp.

Proof: Using Lemma 10.2.3 and the Monotone Convergence Theorem

∫
h(U)

n(y)XF(y)dmp =
∫

h(U)

 ∞

∑
i=1

Xh(Ei)(y)+

mp(h(Z))=0︷ ︸︸ ︷
Xh(Z)(y)

XF(y)dmp

=
∞

∑
i=1

∫
h(U)

Xh(Ei)(y)XF(y)dmp

=
∞

∑
i=1

∫
h(Bi)

Xh(Ei)(y)XF(y)dmp =
∞

∑
i=1

∫
Bi

XEi(x)XF(h(x))|detDh(x)|dmp

=
∞

∑
i=1

∫
U

XEi(x)XF(h(x))|detDh(x)|dmp

=
∫

U

∞

∑
i=1

XEi(x)XF(h(x))|detDh(x)|dmp

=
∫

U+

XF(h(x))|detDh(x)|dmp =
∫

U
XF(h(x))|detDh(x)|dmp. ■

Definition 10.3.2 For y ∈ h(U), define a function, #, according to the formula

#(y)≡ number of elements in h−1(y).
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Observe that
#(y) = n(y) a.e. (10.6)

because n(y) = #(y) if y /∈ h(Z), a set of measure 0. Therefore, # is a measurable function
because of completeness of Lebesgue measure.

Theorem 10.3.3 Let g≥ 0, g measurable, and let h be C1(U). Then∫
h(U)

#(y)g(y)dmp =
∫

U
g(h(x))|detDh(x)|dmp. (10.7)

In fact, you can have E some Borel measurable subset of U and conclude that∫
h(E)

#(y)g(y)dmp =
∫

E
g(h(x))|detDh(x)|dmp

Proof: From 10.6 and Lemma 10.3.1, 10.7 holds for all g, a nonnegative simple func-
tion. Approximating an arbitrary measurable nonnegative function g, with an increasing
pointwise convergent sequence of simple functions and using the monotone convergence
theorem, yields 10.7 for an arbitrary nonnegative measurable function g. To get the last
claim, simply replace g with gXh(E) in the first formula. ■

10.4 Spherical Coordinates in p Dimensions
Sometimes there is a need to deal with spherical coordinates in more than three dimen-
sions. In this section, this concept is defined and formulas are derived for these coordinate
systems. Recall polar coordinates are of the form

y1 = ρ cosθ

y2 = ρ sinθ

where ρ > 0 and θ ∈ R. Thus these transformation equations are not one to one but they
are one to one on (0,∞)× [0,2π). Here I am writing ρ in place of r to emphasize a pattern
which is about to emerge. I will consider polar coordinates as spherical coordinates in
two dimensions. I will also simply refer to such coordinate systems as polar coordinates
regardless of the dimension. This is also the reason I am writing y1 and y2 instead of the
more usual x and y. Now consider what happens when you go to three dimensions. The
situation is depicted in the following picture.

φ 1
ρ

•(y1,y2,y3)

R2

R

From this picture, you see that y3 = ρ cosφ 1. Also the distance between (y1,y2) and
(0,0) is ρ sin(φ 1) . Therefore, using polar coordinates to write (y1,y2) in terms of θ and
this distance,

y1 = ρ sinφ 1 cosθ ,
y2 = ρ sinφ 1 sinθ ,
y3 = ρ cosφ 1.
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where φ 1 ∈R and the transformations are one to one if φ 1 is restricted to be in [0,π] . What
was done is to replace ρ with ρ sinφ 1 and then to add in y3 = ρ cosφ 1. Having done this,
there is no reason to stop with three dimensions. Consider the following picture:

φ 2
ρ

•(y1,y2,y3,y4)

R3

R

From this picture, you see that y4 = ρ cosφ 2. Also the distance from (y1,y2,y3) to
(0,0,0) is ρ sin(φ 2) . Therefore, using polar coordinates to write (y1,y2,y3) in terms of
θ ,φ 1, and this distance,

y1 = ρ sinφ 2 sinφ 1 cosθ ,
y2 = ρ sinφ 2 sinφ 1 sinθ ,
y3 = ρ sinφ 2 cosφ 1,
y4 = ρ cosφ 2

where φ 2 ∈ R and the transformations will be one to one if

φ 2,φ 1 ∈ (0,π) ,θ ∈ (0,2π) ,ρ ∈ (0,∞) .

Continuing this way, given spherical coordinates in Rp, to get the spherical coordinates
in Rp+1, you let yp+1 = ρ cosφ p−1 and then replace every occurance of ρ with ρ sinφ p−1
to obtain y1, · · · ,yp in terms of φ 1,φ 2, · · · ,φ p−1,θ , and ρ.

It is always the case that ρ measures the distance from the point in Rp to the origin
in Rp, 0. Each φ i ∈ R and the transformations will be one to one if each φ i ∈ (0,π) , and

θ ∈ (0,2π) . Denote by hp

(
ρ, φ⃗ ,θ

)
the above transformation.

It can be shown using math induction and geometric reasoning that these coordinates
map ∏

p−2
i=1 (0,π)× (0,2π)× (0,∞) one to one onto an open subset of Rp which is ev-

erything except for the set of measure zero Ψp (N) where N results from having some
φ i equal to 0 or π or for ρ = 0 or for θ equal to either 2π or 0. Each of these are sets
of Lebesgue measure zero and so their union is also a set of measure zero. You can see
that hp

(
∏

p−2
i=1 (0,π)× (0,2π)× (0,∞)

)
omits the union of the coordinate axes except for

maybe one of them. This is not important to the integral because it is just a set of measure
zero.

Theorem 10.4.1 Let y = hp

(⃗
φ ,θ ,ρ

)
be the spherical coordinate transformations

in Rp. Then letting A = ∏
p−2
i=1 (0,π)× (0,2π) , it follows h maps A× (0,∞) one to one onto

all of Rp except a set of measure zero given by hp (N) where N is the set of measure zero(
Ā× [0,∞)

)
\ (A× (0,∞))

Also
∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣ will always be of the form∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣= ρ
p−1

Φ

(⃗
φ ,θ

)
. (10.8)
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where Φ is a continuous function of φ⃗ and θ .1 Then if f is nonnegative and Lebesgue
measurable,∫

Rp
f (y)dmp =

∫
hp(A)

f (y)dmp =
∫

A
f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp (10.9)

Furthermore whenever f is Borel measurable and nonnegative, one can apply Fubini’s
theorem and write∫

Rp
f (y)dy =

∫
∞

0
ρ

p−1
∫

A
f
(

h
(⃗

φ ,θ ,ρ
))

Φ

(⃗
φ ,θ

)
dφ⃗dθdρ (10.10)

where here dφ⃗dθ denotes dmp−1 on A. The same formulas hold if f ∈ L1 (Rp) .

Proof: Formula 10.8 is obvious from the definition of the spherical coordinates because
in the matrix of the derivative, there will be a ρ in p− 1 columns. The first claim is also
clear from the definition and math induction or from the geometry of the above description.
It remains to verify 10.9 and 10.10. It is clear hp maps Ā× [0,∞) onto Rp. Since hp is
differentiable, it maps sets of measure zero to sets of measure zero. Then

Rp = hp (N∪A× (0,∞)) = hp (N)∪hp (A× (0,∞)) ,

the union of a set of measure zero with hp (A× (0,∞)) . Therefore, from the change of
variables formula,∫

Rp
f (y)dmp =

∫
hp(A×(0,∞))

f (y)dmp

=
∫

A×(0,∞)
f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

which proves 10.9. This formula continues to hold if f is in L1 (Rp) by consideration of
positive and negative parts of real and imaginary parts.

Finally, if f ≥ 0 or in L1 (Rn) and is Borel measurable, the Borel sets denoted as B (Rp)
then one can write the following. From the definition of mp∫

A×(0,∞)
f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

=
∫
(0,∞)

∫
A

f
(

hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp−1dm

=
∫
(0,∞)

ρ
p−1

∫
A

f
(

hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

Now the claim about f ∈ L1 follows routinely from considering the positive and negative
parts of the real and imaginary parts of f in the usual way. ■

Note that the above equals
∫

Ā×[0,∞) f
(

hp

(⃗
φ ,θ ,ρ

))
ρ p−1Φ

(⃗
φ ,θ

)
dmp and the iter-

ated integral is also equal to∫
[0,∞)

ρ
p−1

∫
Ā

f
(

hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

because the difference is just a set of measure zero.
1Actually it is only a function of the first but this is not important in what follows.
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Notation 10.4.2 Often this is written differently. Note that from the spherical coordinate
formulas, f

(
h
(⃗

φ ,θ ,ρ
))

= f (ρω) where |ω| = 1. Letting Sp−1 denote the unit sphere,
{ω ∈ Rp : |ω|= 1} , the inside integral in the above formula is sometimes written as∫

Sp−1
f (ρω)dσ

where σ is a measure on Sp−1. See [27] for another description of this measure. It isn’t an
important issue here. Either 10.10 or the formula∫

∞

0
ρ

p−1
(∫

Sp−1
f (ρω)dσ

)
dρ

will be referred to as polar coordinates and is very useful in establishing estimates. Here
σ
(
Sp−1

)
≡
∫

A Φ

(⃗
φ ,θ

)
dmp−1.

Example 10.4.3 For what values of s is the integral
∫

B(0,R)

(
1+ |x|2

)s
dy bounded inde-

pendent of R? Here B(0,R) is the ball, {x ∈ Rp : |x| ≤ R} .

I think you can see immediately that s must be negative but exactly how negative? It
turns out it depends on p and using polar coordinates, you can find just exactly what is
needed. From the polar coordinates formula above,∫

B(0,R)

(
1+ |x|2

)s
dy =

∫ R

0

∫
Sp−1

(
1+ρ

2)s
ρ

p−1dσdρ

= Cp

∫ R

0

(
1+ρ

2)s
ρ

p−1dρ

Now the very hard problem has been reduced to considering an easy one variable prob-
lem of finding when

∫ R
0 ρ p−1

(
1+ρ2

)s dρ is bounded independent of R. You need 2s+
(p−1)<−1 so you need s <−p/2.

10.5 Approximation with Smooth Functions
It is very important to be able to approximate measurable and integrable functions with
continuous functions having compact support. Recall Theorem 9.4.2. This implies the
following.

Theorem 10.5.1 Let f ≥ 0 be Fn measurable and let
∫

f dmn < ∞. Then there
exists a sequence of continuous functions {hn} which are zero off a compact set such that
limn→∞

∫
| f −hn|p dmn = 0.

Definition 10.5.2 Let U be an open subset of Rn. C∞
c (U) is the vector space of

all infinitely differentiable functions which equal zero for all x outside of some compact set
contained in U. Similarly, Cm

c (U) is the vector space of all functions which are m times
continuously differentiable and whose support is a compact subset of U.

Corollary 10.5.3 Let U be a nonempty open set in Rn and let f ∈ Lp (U,mn) . Then
there exists g ∈Cc (U) such that ∫

| f −g|p dmn < ε
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Proof: If f ≥ 0 then extend it to be 0 off U . In the above argument, let all functions
involved, the simple functions and the continuous functions be zero off U . Simply intersect
all Vi with U and no harm is done. Now to extend to Lp (U) , simply apply Theorem 10.5.1
to the positive and negative parts of real and imaginary parts of f . ■

Example 10.5.4 Let U = B(z,2r)

ψ (x) =

 exp
[(
|x− z|2− r2

)−1
]

if |x− z|< r,

0 if |x− z| ≥ r.

Then a little work shows ψ ∈C∞
c (U). The following also is easily obtained.

Lemma 10.5.5 Let U be any open set. Then C∞
c (U) ̸= /0.

Proof: Pick z ∈U and let r be small enough that B(z,2r)⊆U . Then let

ψ ∈C∞
c (B(z,2r))⊆C∞

c (U)

be the function of the above example. ■
For a different approach see Problem 13 on Page 213.
This leads to a really remarkable result about approximation with smooth functions.

Definition 10.5.6 Let U = {x∈Rn : |x|< 1}. A sequence {ψm} ⊆C∞
c (U) is called

a mollifier (This is sometimes called an approximate identity if the differentiability is not
included.) if

ψm(x)≥ 0, ψm(x) = 0, if |x| ≥ 1
m
,

and
∫

ψm(x) = 1. Sometimes it may be written as {ψε} where ψε satisfies the above
conditions except ψε (x) = 0 if |x| ≥ ε . In other words, ε takes the place of 1/m. There
certainly exist mollifiers. Let ψ ∈C∞

c (B(0,1)) , ψ (x)≥ 0,
∫

ψ (x)dmn = 1. Then let

ψm (x)≡ cmψ (mx)

where cm is chosen to make
∫

cmψ (mx)dmn = 1. Thus ψm is 0 off B
(
0, 1

m

)
.

The notation
∫

f (x,y)dµ(y) will mean x is fixed and the function y→ f (x,y) is being
integrated. To make the notation more familiar, dx is written instead of dmn(x).

Lemma 10.5.7 Let g ∈Cc (U) then there exists h ∈C∞
c (U) such that∫

|g−h|p dmn < ε.

Proof: Let ψm be a mollifier. Consider

hm (x)≡
∫

g(x−y)ψm (y)dmn (y)

Then since the integral of ψm is 1, it follows that

hm (x)−g(x) =
∫

(g(x−y)−g(x))ψm (y)dmn (y)
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Since g is zero off a compact set, it follows that g is uniformly continuous and so there is
δ > 0 such that if |x− x̂|< δ , then |g(x)−g(x̂)|< ε . Choose m such that 1/m < δ . Then

|hm (x)−g(x)| =

∣∣∣∣∫ (g(x−y)−g(x))ψm (y)dmn

∣∣∣∣
≤

∫
B(0,1/m)

|g(x−y)−g(x)|ψm (y)dmn (y)

<
∫

B(0,1/m)
εψm (y)dmn (y) = ε.

This is true for all x. Now note that hm is only nonzero if x ∈ K +B(0,1/m) where K
is defined as the compact set off which g equals 0. Since K is contained in U, it follows
that K + B(0,1/m) ⊆ U for all m small enough. In fact, K + B(0,1/m) is a compact
set contained in U off which hm is zero for all m large enough because B(0,1/(m+1))
⊆ B(0,1/m) . Thus hm is zero off a compact subset of U. In addition to this, hm is infinitely
differentiable. To see this last claim, note that

hm (x) =
∫

g(x−y)ψm (y)dmn (y) =
∫

g(y)ψm (x−y)dmn (y)

This follows from the change of variables formulas presented above.
To see the function is differentiable,

hm (x+hei)−h(x)
h

=
∫

g(y)
ψm (x+hei−y)−ψm (x−y)

h
dmn (y)

and now, since ψm is zero off a compact set, it and its partial derivatives of all order are
uniformly continuous. Hence, one can pass to a limit and obtain

hxi (x) =
∫

g(y)
∂ψm (x)

∂xi
dmn (y)

Repeat the same argument using the partial derivative of ψm in place of ψm. Continuing
this way, one obtains the existence of all partial derivatives at any x. Thus hm ∈C∞

c (U) for
all m large enough and

∫
|hm−g|p dmn < ε for all m large enough. ■

Note that this would have worked for µ an arbitrary regular measure.
Now it is obvious that the functions in C∞

c (U) are dense in Lp (U) , p ≥ 1. Pick f ∈
Lp (U) . Then there exists g ∈Cc (U) such that(∫

U
| f −g|p dmn

)1/p

< ε/2

and there is h ∈C∞
c (U) such that(∫

U
|h−g|p dmn

)1/p

< ε/2.

Then (∫
U
| f −h|p dmn

)1/p

≤
(∫

U
| f −g|p dmn

)1/p

+

(∫
U
|h−g|p dmn

)1/p

<
ε

2
+

ε

2
= ε ■
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Theorem 10.5.8 Let U be an open set in Rn and let f ∈ Lp (U). Then there exists
h ∈C∞

c (U) such that (∫
U
| f −h|p dmn

)1/p

< ε.

In words, C∞
c (U) is dense in Lp (U).

Functions which vanish off a compact set are said to have “compact support”. Note that
all of this would work for any regular measure µ . Now what follows will be dependent on
the measure being Lebesgue measure or something like it.

10.6 Continuity of Translation
This is a property which directly exploits density of continuous functions with compact
support and the translation invariance of Lebesgue measure.

Definition 10.6.1 Let f be a function defined on U ⊆ Rn and let w ∈ Rn. Then fw
will be the function defined on w+U by

fw(x) = f (x−w).

We will write spt(g) to indicate the closure of the set on which g is nonzero. This is called
the support of the function.

Theorem 10.6.2 (Continuity of translation in Lp) Let f ∈ Lp(Rn) with the measure
being Lebesgue measure. Then

lim
∥w∥→0

∥ fw− f∥p = 0.

Proof: Let ε > 0 be given and let g ∈ Cc(Rn) with ∥g− f∥p < ε

3 . Since Lebesgue
measure is translation invariant (mn(w+E) = mn(E)),

∥gw− fw∥p = ∥g− f∥p <
ε

3
.

You can see this from looking at simple functions and passing to the limit or you could use
the change of variables formula to verify it.

Therefore

∥ f − fw∥p ≤ ∥ f −g∥p +∥g−gw∥p +∥gw− fw∥

<
2ε

3
+∥g−gw∥p. (10.11)

But lim|w|→0 gw(x) = g(x) uniformly in x because g is uniformly continuous. Now let B
be a large ball containing spt(g) and let δ 1 be small enough that B(x,δ ) ⊆ B whenever
x ∈ spt(g). If ε > 0 is given there exists δ < δ 1 such that if |w| < δ , it follows that
|g(x−w)−g(x)|< ε/3

(
1+mn (B)

1/p
)

. Therefore,

∥g−gw∥p =

(∫
B
|g(x)−g(x−w)|p dmn

)1/p

≤ ε
mn (B)

1/p

3
(

1+mn (B)
1/p
) <

ε

3
.

Therefore, whenever |w| < δ , it follows ∥g−gw∥p <
ε

3 and so from 10.11 ∥ f − fw∥p < ε .
■
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10.7 Separability
When dealing with a Radon measure, (complete, Borel, regular, and finite on compact sets)
one can assert that the Lp spaces are separable. Recall this means that they have a countable
dense subset.

Theorem 10.7.1 For p≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall
this means there exists a countable set, D , such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that ∥ f −g∥p < ε .

Proof: Let Q be all functions of the form cX[a,b) where [a,b) ≡ [a1,b1)× [a2,b2)×
·· ·× [an,bn), and both ai, bi are rational, while c has rational real and imaginary parts. Let
D be the set of all finite sums of functions in Q. Thus, D is countable. In fact D is dense in
Lp(Rn,µ). To prove this it is necessary to show that for every f ∈ Lp(Rn,µ), there exists
an element of D , s such that ∥s− f∥p < ε. If it can be shown that for every g ∈ Cc (Rn)
there exists h ∈ D such that ∥g−h∥p < ε , then this will suffice because if f ∈ Lp (Rn) is
arbitrary, Theorem 9.4.2 implies there exists g ∈Cc (Rn) such that ∥ f −g∥p ≤ ε

2 and then
there would exist h ∈Cc (Rn) such that ∥h−g∥p <

ε

2 . By the triangle inequality,

∥ f −h∥p ≤ ∥h−g∥p +∥g− f∥p < ε.

Therefore, assume at the outset that f ∈Cc (Rn).
Let Pm consist of all sets of the form [a,b)≡∏

n
i=1[ai,bi)where ai = j2−mand bi =( j+

1)2−m for j an integer. Thus Pm consists of a tiling of Rn into half open rectangles having
diameters 2−mn

1
2 . There are countably many of these rectangles; so, letPm = {[ai,bi)} for

i≥ 1, and Rn = ∪∞
i=1[ai,bi). Let cm

i be complex numbers with rational real and imaginary
parts satisfying

| f (ai)− cm
i |< 2−m, |cm

i | ≤ | f (ai)|. (10.12)

Let sm(x) = ∑
∞
i=1 cm

i X[ai,bi) (x) . Since f (ai) = 0 except for finitely many values of i, the
above is a finite sum. Then 10.12 implies sm ∈ D . If sm converges uniformly to f then it
follows ∥sm− f∥p→ 0 because |sm| ≤ | f | and so

∥sm− f∥p =

(∫
|sm− f |p dµ

)1/p

=

(∫
spt( f )

|sm− f |p dµ

)1/p

≤ [εmn (spt( f ))]1/p

whenever m is large enough.
Since f ∈ Cc (Rn) it follows that f is uniformly continuous and so given ε > 0 there

exists δ > 0 such that if |x−y|< δ , | f (x)− f (y)|< ε/2. Now let m be large enough that
every box in Pm has diameter less than δ and also that 2−m < ε/2. Then if [ai,bi) is one
of these boxes of Pm, and x ∈ [ai,bi),

| f (x)− f (ai)|< ε/2

and
| f (ai)− cm

i |< 2−m < ε/2.

Therefore, using the triangle inequality, it follows that

| f (x)− cm
i |= |sm (x)− f (x)|< ε
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and since x is arbitrary, this establishes uniform convergence. ■
Here is an easier proof if you know the Weierstrass approximation theorem.

Theorem 10.7.2 For p≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall
this means there exists a countable set, D , such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that ∥ f −g∥p < ε .

Proof: Let P denote the set of all polynomials which have rational coefficients. Then
P is countable. Let τk ∈Cc ((−(k+1) ,(k+1))n) such that

[−k,k]n ≺ τk ≺ (−(k+1) ,(k+1))n .

The notation means that τk is one on [−k,k]n, has values between 0 and 1 and vanishes off a
compact subset of (−(k+1) ,(k+1))n. Let Dk denote the functions which are of the form,
pτk where p∈P . Thus Dk is also countable. Let D ≡∪∞

k=1Dk. It follows each function in
D is in Cc (Rn) and so it in Lp (Rn,µ). Let f ∈ Lp (Rn,µ). By regularity of µ there exists
g ∈Cc (Rn) such that ∥ f −g∥Lp(Rn,µ) <

ε

3 . Let k be such that spt(g) ⊆ (−k,k)n . Now by
the Weierstrass approximation theorem there exists a polynomial q such that

∥g−q∥[−(k+1),k+1]n ≡ sup{|g(x)−q(x)| : x ∈ [−(k+1) ,(k+1)]n}

<
ε

3µ ((−(k+1) ,k+1)n)
.

It follows

∥g− τkq∥[−(k+1),k+1]n = ∥τkg− τkq∥[−(k+1),k+1]n

<
ε

3µ ((−(k+1) ,k+1)n)
.

Without loss of generality, it can be assumed this polynomial has all rational coefficients.
Therefore, τkq ∈D .

∥g− τkq∥p
Lp(Rn)

=
∫
(−(k+1),k+1)n

|g(x)− τk (x)q(x)|p dµ

≤
(

ε

3µ ((−(k+1) ,k+1)n)

)p

µ ((−(k+1) ,k+1)n)<
(

ε

3

)p
.

It follows

∥ f − τkq∥Lp(Rn,µ) ≤ ∥ f −g∥Lp(Rn,µ)+∥g− τkq∥Lp(Rn,µ) <
ε

3
+

ε

3
< ε. ■

Corollary 10.7.3 Let Ω be any µ measurable subset of Rn and let µ be a Radon mea-
sure. Then Lp(Ω,µ) is separable. Here the σ algebra of measurable sets will consist of all
intersections of measurable sets with Ω and the measure will be µ restricted to these sets.

Proof: Let D̃ be the restrictions of D to Ω. If f ∈ Lp(Ω), let F be the zero extension
of f to all of Rn. Let ε > 0 be given. By Theorem 10.7.1 or 10.7.2 there exists s ∈D such
that ∥F− s∥p < ε . Thus

∥s− f∥Lp(Ω,µ) ≤ ∥s−F∥Lp(Rn,µ) < ε

and so the countable set D̃ is dense in Lp(Ω).
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10.8 Green’s Theorem
It will always be assumed in this section that the bounding curves are piecewise C1 mean-
ing that there is a parametrization t → R(t) ≡ (x(t) ,y(t)) for t ∈ [a,b] and a partition of
[a,b] ,{x0, · · · ,xn} such that x,y are C1 ([xi−1,xi]).

Definition 10.8.1 Here and elsewhere, an open connected set will be called a re-
gion unless another use for this term is specified.

Green’s theorem is an important theorem which relates line integrals to integrals over
a surface in the plane. It can be used to establish Stoke’s theorem but is interesting for
it’s own sake. Historically, something like it was important in the development of complex
analysis. I will first establish Green’s theorem for regions of a particular sort and then
show that the theorem holds for many other regions also. Suppose a region is of the form
indicated in the following picture in which

U = {(x,y) : x ∈ (a,b) and y ∈ (b(x) , t (x))}
= {(x,y) : y ∈ (c,d) and x ∈ (l (y) ,r (y))} .

U x = r(y)x = l(y)

y = t(x)

y = b(x)c

d

a b
x

I will refer to such a region as being convex in both the x and y directions. For suffi-
ciently simple regions like those just described, it is easy to see what is meant by counter
clockwise motion over the pieces where R has derivatives which are continuous on each
[xk−1,xk] and R is continuous on [a,b]. Thus these curves are of bounded variation thanks
to Lemma 5.2.2. One can then compute the line integrals by adding together the integrals
over the sub-intervals thanks to Lemma 5.2.9. In particular, one writes for one of these
integrals ∫ xk

xk−1

F(R(t)) ·R′ (t)dt =
∫

R([xk−1,xk])
F·dR

Lemma 10.8.2 Let F(x,y) ≡ (P(x,y) ,Q(x,y)) be a C1 vector field defined near U
where U is a region of the sort indicated in the above picture which is convex in both
the x and y directions. Suppose also that the functions, r, l, t, and b in the above picture are
all C1 functions and denote by ∂U the boundary of U oriented such that the direction of
motion is counter clockwise. (As you walk around U on ∂U, the points of U are on your
left.) Then ∫

∂U
Pdx+Qdy≡

∫
∂U

F·dR =
∫

U

(
∂Q
∂x
− ∂P

∂y

)
dA. (10.13)

Proof: First consider the right side of 10.13.∫
U

(
∂Q
∂x
− ∂P

∂y

)
dA =

∫ d

c

∫ r(y)

l(y)

∂Q
∂x

dxdy−
∫ b

a

∫ t(x)

b(x)

∂P
∂y

dydx
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=
∫ d

c
(Q(r (y) ,y)−Q(l (y) ,y))dy+

∫ b

a
(P(x,b(x)))−P(x, t (x))dx. (10.14)

Now consider the left side of 10.13. Denote by V the vertical parts of ∂U and by H the
horizontal parts. ∫

∂U
F·dR =

∫
∂U

((0,Q)+(P,0)) ·dR

=
∫ d

c
(0,Q(r (s) ,s)) ·

(
r′ (s) ,1

)
ds+

∫
H
(0,Q(r (s) ,s)) · (±1,0)ds

−
∫ d

c
(0,Q(l (s) ,s)) ·

(
l′ (s) ,1

)
ds+

∫ b

a
(P(s,b(s)) ,0) ·

(
1,b′ (s)

)
ds

+
∫

V
(P(s,b(s)) ,0) · (0,±1)ds−

∫ b

a
(P(s, t (s)) ,0) ·

(
1, t ′ (s)

)
ds

=
∫ d

c
Q(r (s) ,s)ds−

∫ d

c
Q(l (s) ,s)ds+

∫ b

a
P(s,b(s))ds−

∫ b

a
P(s, t (s))ds

which coincides with 10.14. ■

Corollary 10.8.3 Let everything be the same as in Lemma 10.8.2 but only assume the
functions r, l, t, and b are continuous and piecewise C1 functions. Then the conclusion this
lemma is still valid.

Proof: The details are left for you. All you have to do is to break up the various line
integrals into the sum of integrals over sub intervals on which the function of interest is C1.
■

From this corollary, it follows 10.13 is valid for any triangle for example.
Now suppose 10.13 holds for U1,U2, · · · ,Um and the open sets, Uk have the property that

no two have nonempty intersection and their boundaries intersect only in a finite number
of piecewise smooth curves. Then 10.13 must hold for U ≡∪m

i=1Ui, the union of these sets.
This is because∫

U

(
∂Q
∂x
− ∂P

∂y

)
dm2 =

m

∑
k=1

∫
Uk

(
∂Q
∂x
− ∂P

∂y

)
dm2 =

m

∑
k=1

∫
∂Uk

F ·dR =
∫

∂U
F ·dR

because if Γ = ∂Uk∩∂U j, then its orientation as a part of ∂Uk is opposite to its orientation
as a part of ∂U j and consequently the line integrals over Γ will cancel, points of Γ also not
being in ∂U. It is obvious from the definition of Lebesgue measure given earlier that the
intersection of two of these in a smooth curve has measure zero. Thus adding an integral
with respect to m2 over such a curve yields 0. I am not trying to be completely general here.
I am just noting that when you paste together simple shapes like triangles and rectangles,
this kind of cancelation will take place. As part of the development of a general Green’s
theorem given in an appendix, it is shown that whenever you have a curve of bounded
variation, it will have two dimensional Lebesgue measure zero.

As an illustration, consider the following picture for two such Uk.
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U1

U2

You can see that you could paste together many such simple regions composed of tri-
angles or rectangles and obtain a region on which Green’s theorem will hold even though
it is not convex in each direction. This approach is developed much more in the book by
Spivak [44] who pastes together boxes as part of his treatment of a general Stokes theorem.

Roughly speaking, you can drill holes in a region for which 10.13, Green’s theorem,
holds and get another region for which this continues to hold provided 10.13 holds for the
holes.

Corollary 10.8.4 If U ⊆ V and if also ∂U ⊆ V and both U and V are open sets for
which 10.13 holds, then the open set, V \ (U ∪∂U) consisting of what is left in V after
deleting U along with its boundary also satisfies 10.13.

Proof: Consider the following picture which typifies the situation just described.

VU

Then
∫

∂V F·dR =

∫
V

(
∂Q
∂x
− ∂P

∂y

)
dA =

∫
U

(
∂Q
∂x
− ∂P

∂y

)
dA+

∫
V\U

(
∂Q
∂x
− ∂P

∂y

)
dA

=
∫

∂U
F·dR+

∫
V\U

(
∂Q
∂x
− ∂P

∂y

)
dA

and so
∫

V\U

(
∂Q
∂x −

∂P
∂y

)
dA =

∫
∂V F·dR−

∫
∂U F·dR which equals

∫
∂ (V\U) F ·dR where ∂V

is oriented as shown in the picture. (If you walk around the region, V \U with the area on
the left, you get the indicated orientation for this curve.) ■

You can see that 10.13 is valid quite generally. Let the u and v axes be in the same
relation as the x and y axes. That is, the following picture holds. The positive x and u axes
both point to the right and the positive y and v axes point up. This will be understood in the
following.

x

y

u

v
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Theorem 10.8.5 Let U be a region in the uv plane2 for which Green’s theorem
holds such that ∂U is oriented counter clockwise around this curve such that Green’s the-
orem holds. Also let r(u,v) = (x,y)T be any C2

(
U
)

map with V = r(U) and suppose
det(Dr(u,v))≥ 0. Then Green’s theorem holds for V also.

Proof: Let (x,y)→ P(x,y) ,Q(x,y) be C1
(
V
)

functions. Then by the change of vari-
ables formula, ∫

V
(Qx (x,y)−Py (x,y))dm2 (x,y) =∫

U
(Qx (x(u,v) ,y(u,v))−Py (x(u,v) ,y(u,v)))

∣∣∣∣ xu xv
yu yv

∣∣∣∣dm2 (u,v) (10.15)

Now consider the integrand. It is

(Qx−Py)(xuyv− xvyu) = Qxxuyv−Qxxvyu−Pyxuyv +Pyxvyu (10.16)

Let F(x,y) = (P(x,y) ,Q(x,y)) .

(xv,yv) · (F◦ r)u− (xu,yu) · (F◦ r)v = xv (Pxxu +Pyyu)+ yv (Qxxu +Qyyu)

− [xu (Pxxv +Pyyv)+ yu (Qxxv +Qyyv)] = Qxxuyv +Pyxvyu− (Pyyvxu +Qxxvyu)

This is the same thing as 10.16. Thus 10.15 reduces to∫
U
(rv ·Fu− ru ·Fv)dm2 (u,v) (10.17)

where F = F◦ r to save notation. This integrand is of the form

(rv ·F)u− rvu ·F−((ru ·F)v− ruv ·F) = (rv ·F)u− (ru ·F)v

by equality of mixed partial derivatives. Thus 10.17 equals∫
U
(rv ·F)u− (ru ·F)v dm2 (u,v) =

∫
∂U

ru ·Fdu+ rv ·Fdv

=
∫

∂U
(F◦ r) ·

(
dr
dt

)
dt =

∫
∂V

F·dr =
∫

∂V
P(x,y)dx+

∫
Q(x,y)dy

By Green’s theorem applied to (ru ·F,rv ·F) = (ru ·F◦ r,rv ·F◦ r) . Recall motion around
∂U is counter clockwise with the u,v axes oriented as shown above. Now the curve ∂U
is piecewise smooth and a typical smooth piece is t → (u(t) ,v(t)) . Then on ∂V we have
t→ r(u(t) ,v(t)) = (x,y) and dr

dt = ruu′+ rvv′ which is the explanation of the last line. ■
The above is a reasonably good theorem and is enough for most applications to complex

analysis but it requires a map which takes U to V and the best version of this theorem only
requires a map from S1 to ∂U . It is in an appendix. This will also include the information
that the Green’s theorem specifies an orientation over ∂V . Anyway, the main message of
the above theorem is that Green’s theorem holds for very general situations. In applications,
one can usually see that the theorem will hold based on the considerations discussed above.

2For a general version see the advanced calculus book by Apostol. This is presented in the appendix also. The
general versions involve the concept of a rectifiable Jordan curve. You need to be able to take the area integral
and to take the line integral around the boundary.
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10.9 Exercises
1. Explain why for each t > 0,x→ e−tx is a function in L1 (R) and

∫
∞

0 e−txdx = 1
t . Thus∫ R

0

sin(t)
t

dt =
∫ R

0

∫
∞

0
sin(t)e−txdxdt

Now explain why you can change the order of integration in the above iterated in-
tegral. Then compute what you get. Next pass to a limit as R → ∞ and show∫

∞

0
sin(t)

t dt = 1
2 π . This is a very important integral. Note that the thing on the left

is an improper integral. sin(t)/t is not Lebesgue integrable because it is not ab-
solutely integrable. That is

∫
∞

0

∣∣ sin t
t

∣∣dm = ∞. It is important to understand that the
Lebesgue theory of integration only applies to nonnegative functions and those which
are absolutely integrable.

2. Polar coordinates are x = r cos(θ) , y = r sin(θ). These transformation equations
map [0,2π)× [0,∞) ontoR2. It is the restriction to this set of the same transformation
defined on the open set (−1,2π)× (−1,∞) and so from Theorem 10.3.3, if g is
Lebesgue measurable and zero off [0,2π)× [0,∞),∫

R2
#(x)g(x)dm2 =

∫ 2π

0

∫
∞

0
g(r cosθ ,r sinθ)rdrdθ

where #(x) is 1 except for a set of measure zero consisting of either θ = 0 or r = 0.
This set, has its image also of measure zero. Hence one can simply write∫

R2
g(x)dm2 =

∫ 2π

0

∫
∞

0
g(r cosθ ,r sinθ)rdrdθ

Similar considerations apply to the general case of spherical coordinates as explained
above. Use this change of variables for polar coordinates to show

∫
∞

−∞
e−x2

dx =
√

π .

Hint: Let I =
∫

∞

−∞
e−x2

dx and explain why I2 =
∫

∞

−∞

∫
∞

−∞
e−(x2+y2)dxdy. Now use

polar coordinates.

3. Let E be a Lebesgue measurable set in R. Suppose m(E)> 0. Consider the set

E−E = {x− y : x ∈ E,y ∈ E}.

Show that E−E contains an interval. Hint: Let f (x) =
∫

XE(t)XE(x+ t)dt. Show
f is continuous at 0 and f (0)> 0 and use continuity of translation in Lp.

4. Let K be a bounded subset of Lp (Rn) and suppose that there exists G such that G is
compact with

∫
Rn\G |u(x)|

p dx < ε p and for all ε > 0, there exist a δ > 0 and such
that if |h| < δ , then

∫
|u(x+h)−u(x)|p dx < ε p for all u ∈ K. Show that K is pre-

compact in Lp (Rn). Hint: Let φ k be a mollifier and consider Kk ≡ {u∗φ k : u ∈ K} .
The notation means the following:

u∗φ k (x)≡
∫

u(x−y)φ k (y)dmn (y) =
∫

u(y)φ k (x−y)dmn (y)

It is called the convolution. Verify the conditions of the Ascoli Arzela theorem Theo-
rem 9.2.4 for these functions defined on G and show there is an ε net for each ε > 0.
Can you modify this to let an arbitrary open set take the place of Rn?
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5. Let φ m ∈C∞
c (Rn),φ m (x)≥ 0, and

∫
Rn φ m(y)dy = 1 with

lim
m→∞

sup{|x| : x ∈ spt(φ m)}= 0.

Show if f ∈ Lp(Rn), limm→∞ f ∗φ m = f in Lp(Rn). Hint: Use Minkowski’s inequal-
ity for integrals to get a short proof of this fact.

6. Let 1
p +

1
p′ = 1, p > 1, let f ∈ Lp(Rn), g ∈ Lp′(Rn). Show f ∗g is uniformly contin-

uous on R and |( f ∗g)(x)| ≤ ∥ f∥Lp∥g∥Lp′ . f ∗g(x) ≡
∫
Rn f (x−y)g(y)dmn. Hint:

You need to consider why f ∗ g exists and then this follows from the definition of
convolution and continuity of translation of Lebesgue measure.

7. Suppose f is a strictly decreasing nonnegative function defined on [0,∞).
Let f−1 (y)≡ {x : such that y ∈ [ f (x+) , f (x−)]}. Show that∫

∞

0
f (t)dt =

∫ f (0)

0
f−1 (y)dy

Hint: Try to show that f−1 (y) = m([ f > y]) .

8. Let f (y) = g(y) = |y|−1/2 if y ∈ (−1,0)∪ (0,1) and f (y) = g(y) = 0 outside of this
set. For which values of x does it make sense to write the integral∫

R
f (x− y)g(y)dy≡ f ∗g(x)

This is asking for you to find where the convolution of f and g makes sense.

9. Let f ∈ L1 (Rp) and let g ∈ L1 (Rp) . Define the convolution of f and g as follows. It
equals

f ∗g(x)≡
∫

f (x−y)g(y)dmp

Show that the above integral makes sense for a.e. x that is, for all x off a set of
measure zero. If f ∗ g is defined to equal 0 at points where the above integral does
not make sense, show that ∥ f ∗g∥1 ≤ ∥ f∥1 ∥g∥1 where ∥h∥1 ≡

∫
|h|dmp.

10. Consider D ≡ {p(e−αt)} where p(t) is some real polynomial having zero constant
term and α is some positive number at least as large as a given α0 > 0. Show
that D is an algebra and is dense in C0 ([0,∞)) with respect to the norm ∥ f∥

∞
≡

max{| f (x)| : x ∈ [0,∞)}.

11. ↑Suppose f ∈ L1 ([0,∞)) and
∫

∞

0 f (t)g(t)dm= 0 for all g∈D in the above problem.
Explain why f (t) = 0 a.e. t. Hint: You can assume f is real since if not, you could
look at the real and imaginary parts. You can also assume that f is nonnegative.
Show density of Cc ([0,∞)) in L1 ([0,∞)). Then show there is a sequence of things in
D which converges in L1 to f . Finally, go over why you can get a further subsequence
which converges to f a.e. Then use Fatou’s lemma.

12. A measurable function f defined on [0,∞) has exponential growth if f (t) ≤ Cert

for some real r. Suppose you have f measurable with exponential growth. Show
L f (s)≡

∫
∞

0 e−st f (t)dt the Laplace transform, is well defined for all s large enough.
Now show that if L f (s)= 0 for all s large enough, then f (t)= 0 for a.e. t. This shows
that if two measurable functions with exponential growth have the same Laplace
transform for large s, then they are a.e. the same function.
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13. Stirling’s formula from elementary calculus says that for n ∈ N,

lim
n→∞

enn!
nn+(1/2) =

√
2π.

Show Γ(x)≡
∫

∞

0 e−ttx−1dt exists whenever x > 0. Also show that Γ(x+1) = xΓ(x).
Then show that for n ∈ N, Γ(n+1) = n!. This function is discussed in the next
chapter.

14. For n ∈N, Stirling’s formula says limn→∞
Γ(n+1)en

nn+(1/2) =
√

2π . Here Γ(n+1) = n!. The
idea here is to show that you get the same result if you replace n with x ∈ (0,∞). To
do this, show

(a) n→ Γ(n+1)en

nn+(1/2) is decreasing on the positive integers. This follows from the prop-
erties of the Gamma function and a little work.

(b) Show that x→ Γ(x+1)ex

xx+(1/2) is decreasing on (m,m+1) for m ∈ N. This is a little
harder.

Hint: For x ∈ (m,m+1) , ln
(

Γ(x+1)ex

xx+(1/2)

)
= x+ lnΓ(x+1)−

(
x+ 1

2

)
lnx

= x+ ln(x(x−1)(x−2) · · ·(x−m+1)Γ(x−m))−
(

x+
1
2

)
lnx

= x+
m−1

∑
k=0

ln(x− k)+ ln(Γ(x−m))−
(

x+
1
2

)
lnx

Now differentiate and try to show that the derivative is negative for x ∈ (m,m+1).
Thus the desired derivative is(

m−1

∑
k=0

1
x− k

− lnx

)
+

1
Γ(x−m)

∫
∞

0
ln(t) tx−(m+1)e−tdt− 1

2x

The first term is negative from the definition of ln(x) . The derivative being negative
will be shown if it is shown that the integral term is negative. Do an integration by
parts and split the integrals to obtain∫

∞

0
ln(t) tx−(m+1)e−tdt = −

∫ 1

0
tσ e−tdt +

∫ 1

0
(t−σ)e−ttσ ln(t)

+
∫

∞

1
tσ e−t (1− (t−σ) ln(t))dt

where σ = (x−m)− 1 ∈ (−1,0) so −σ > 0. The last integral is negative because
(t−σ) = t +(−σ)> 1. The other two are obviously negative.
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Fundamental Transforms
11.1 Gamma Function

With the Lebesgue integral, it becomes easy to consider the Gamma function and the the-
ory of Laplace transforms. I will use the standard notation for the integral used in calculus,
but remember that all integrals will be Lebesgue integrals taken with respect to one di-
mensional Lebesgue measure. First is a very important function defined in terms of an
integral. Problem 13 on Page 183 shows that in the case of a continuous function, the
Riemann integral and the Lebesgue integral are exactly the same. Thus all the standard cal-
culus manipulations are valid for the Lebesgue integral provided the functions integrated
are continuous. This also implies immediately that the two integrals coincide whenever the
function is piecewise continuous on a finite interval. Recall that the value of the Riemann
integral does not depend on the value of the function at single points and the same is true
of the Lebesgue integral because single points have zero measure.

Definition 11.1.1 The gamma function α → Γ(α) is defined as

Γ(α)≡
∫

∞

0
e−ttα−1 dt

whenever α > 0.

Lemma 11.1.2 The integral is finite for each α > 0.

Proof: By the monotone convergence theorem, for n ∈ N

Γ(α) = lim
n→∞

∫ n

1/n
e−ttα−1 ≤ lim sup

n→∞

(∫ 1

1/n
tα−1dt +

∫ n

1
Ce−t/2

)
≤ 1

α
+ lim

n→∞

(
−2Ce−

1
2 n +2Ce−

1
2

)
< ∞

The explanation for the constant is as follows. Letting m be a positive integer larger than
α−1, for t ≥ 1,e−ttα−1 < e−ttm ≤Ce−t/2 for suitable C. ■

Proposition 11.1.3 For n a positive integer, n! = Γ(n+1). In general,the following
fundamental identity holds. Γ(1) = 1,Γ(α +1) = αΓ(α)

Proof: First of all, Γ(1) = limδ→0
∫

δ
−1

δ
e−tdt = limδ→0

(
e−δ − e−(δ

−1)
)
= 1. Next,

for α > 0,

Γ(α +1) = lim
δ→0

∫
δ
−1

δ

e−ttα dt = lim
δ→0

[
−e−ttα |δ

−1

δ
+α

∫
δ
−1

δ

e−ttα−1dt

]

= lim
δ→0

(
e−δ

δ
α − 1

δ
α e1/δ

+α

∫
δ
−1

δ

e−ttα−1dt

)
= αΓ(α)

Note that limδ→0+ ln
(

1
δ

α e1/δ

)
= limδ→0+

(
α lnδ + 1

δ

)
=−∞ so limδ→0+

1
δ

α e1/δ
= 0. Now

it is defined that 0! = 1 and so Γ(1) = 0!. Suppose that Γ(n+1) = n!, what of Γ(n+2)?
Is it (n+1)!? if so, then by induction, the proposition is established. From what was just
shown, Γ(n+2) = Γ(n+1)(n+1) = n!(n+1) = (n+1)! and so this proves the proposi-
tion. ■

265
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11.2 Laplace Transform
Here is the definition of a Laplace transform.

Definition 11.2.1 A function φ has exponential growth on [0,∞) if there are posi-
tive constants λ ,C such that |φ (t)| ≤Ceλ t for all t. Then for s > λ , one defines the Laplace
transform L φ (s)≡

∫
∞

0 φ (t)e−stdt.

In general, a function of a complex variable z has a derivative exactly when

lim
h→0

f (z+h)− f (h)
z

exists and this is defined as f ′ (z) as in the case where z is a real variable.

Theorem 11.2.2 Let f (s) =
∫

∞

0 e−stφ (t)dt where t→ φ (t)e−st is in L1 ([0,∞)) for
all s large enough and φ has exponential growth. Then for s large enough, f (k) (s) exists
and equals

∫
∞

0 (−t)k e−stφ (t)dt. In fact if s is a complex number and Res > λ where
|φ (t)| ≤Ceλ t , then for Res > λ ,

lim
h→0

f (s+h)− f (s)
h

≡ f ′ (s) =
∫

∞

0
(−t)e−st

φ (t)dt

Proof: First consider the real case. Suppose true for some k ≥ 0. By definition it is so
for k = 0. Then always assuming s > λ , |h|< s−λ , where |φ (t)| ≤Ceλ t ,λ ≥ 0,

f (k) (s+h)− f (k) (s)
h

=
∫

∞

0
(−t)k e−(s+h)t − e−st

h
φ (t)dt

Using the mean value theorem, the integrand satisfies∣∣∣∣∣(−t)k e−(s+h)t − e−st

h
φ (t)

∣∣∣∣∣≤ tk |φ (t)|
∣∣−te−ŝt ∣∣

where ŝ ∈ (s,s+h) or (s+h,s) if h < 0. In case h > 0, the integrand is less than

tk+1 |φ (t)|e−st ≤ tk+1Ce(λ−s)t ,

a function in L1 since s > λ . In the other case, for |h| small enough, the integrand is domi-
nated by tk+1Ce(λ−(s+|h|))t . Letting |h|< ε where s−λ < ε, the integrand is dominated by
tk+1Ce(λ−(s+ε))t < Ctk+1e−εt , also a function in L1. By the dominated convergence theo-
rem, one can pass to the limit and obtain

f (k+1) (s) =
∫

∞

0
(−t)k+1 e−st

φ (t)dt

Let Res > λ . However, s will be complex as will h. From the properties of the complex
exponential, Section 1.5.2,

∫
∞

0
e−(s+h)t−e−st

h φ (t)dt =

∫
∞

0
−te−st e−ht −1

−th
φ (t)dt =

∫
∞

0
e−st e−ht −1

h
φ (t)dt (11.1)
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Now it follows from that section that the integrand converges to −te−stφ (t). Therefore, it
only is required to obtain an estimate and use the dominated convergence theorem. Then
e−st e−ht−1

h φ (t) =∣∣∣∣e−(s+h)t 1− eht

h
φ (t)

∣∣∣∣≤Ceλ t
∣∣∣∣1− eht

h

∣∣∣∣e−(s+h) ≤Cte−(s+h−λ )t
∣∣∣∣1− eht

th

∣∣∣∣
Now

∣∣∣e−(s+h−λ )t
∣∣∣ = e−(Re(s+h)−λ )t ≤ e−εt whenever |h| is small enough because of the

assumption that Res > λ . eht −1 =
∫ t

0 hehudu and so the last expression is∣∣∣∣∫ t
0 hehudu

th

∣∣∣∣≤ 1
t

∣∣∣∣∫ t

0
ehudu

∣∣∣∣≤ 1
t

∫ t

0
e|h|udu≤ et|h|,

and so for |h| small enough, say smaller than ε/2, the integrand in 11.1 is no larger than
Cte−εte

ε
2 t =Cte−

ε
2 t which is in L1 and so the dominated convergence theorem applies and it

follows that f ′ (s) =
∫

∞

0 (−t)e−stφ (t)dt whenever Re(s)> λ . Continuing similarly, yields
all the derivatives. However, the existence of all the derivatives will follow from general
results on analytic functions presented later. ■

The whole approach for Laplace transforms in differential equations is based on the
assertion that if L ( f ) = L (g) , then f = g. However, this is not even true because if you
change the function on a set of measure zero, you don’t change the transform. However, if
f ,g are continuous, then it will be true. Actually, it is shown here that if L ( f ) = 0, and
f is continuous, then f = 0. The approach here is based on the Weierstrass approximation
theorem or rather a case of it.

Lemma 11.2.3 Suppose q is a continuous function defined on [0,1] . Also suppose that
for all n = 0,1,2, · · · , that

∫ 1
0 q(x)xndx = 0. Then it follows that q = 0.

Proof: By assumption, for p(x) any polynomial,
∫ 1

0 q(x) p(x)dx = 0. Now let {pn (x)}
be a sequence of polynomials which converge uniformly to q(x) by Corollary 3.1.3. Say
maxx∈[0,1] |q(x)− pn (x)|< 1

n . Then from this uniform convergence, of pn to q,

∫ 1

0
q2 (x)dx = lim

n→∞

∫ 1

0
q(x) pn (x)dx = 0.

By continuity, it must be the case that q(x) = 0 for all x since otherwise, there would be a
small interval on which q2 (x) is positive and so the integral could not have been 0 after all.
■

Lemma 11.2.4 Suppose | f (t)| ≤Ce−δ t for some δ > 0 and all t > 0 and also that f is
continuous. Suppose that

∫
∞

0 e−st f (t)dt = 0 for all s > 0. Then f = 0.

Proof: First note that limt→∞ | f (t)| = 0. Next change the variable letting x = e−t and
so x ∈ [0,1]. Then this reduces to

∫ 1
0 xs−1 f (− ln(x))dx. Now if you let q(x) = f (− ln(x)) ,

it is not defined when x = 0, but x = 0 corresponds to t → ∞. Thus limx→0+ q(x) = 0.
Defining q(0)≡ 0, it follows that it is continuous and letting s−1 be various integers, for
all n = 0,1,2, · · · ,

∫ 1
0 xnq(x)dx = 0 and so q(x) = 0 for all x from Lemma 11.2.3. Thus

f (− ln(x)) = 0 for all x ∈ (0,1] and so f (t) = 0 for all t ≥ 0. ■
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Now suppose only that | f (t)| ≤ Cert so f has exponential growth and that for all s
sufficiently large, L ( f ) = 0. Does it follow that f = 0? Say this holds for all s≥ s0 where
also s0 > r. Then consider f̂ (t)≡ e−s0t f (t) .

∣∣ f̂ (t)∣∣≤ e−s0tCert =Ce−(s0−r)t . Then if s> 0,∫
∞

0
e−st f̂ (t)dt =

∫
∞

0
e−ste−s0t f (t)dt =

∫
∞

0
e−(s+s0)t f (t)dt = 0

because s+ s0 is large enough for this to happen. It follows from Lemma 11.2.4 that f̂ = 0.
But this implies that f = 0 also. This proves the following fundamental theorem.

Theorem 11.2.5 Suppose f has exponential growth and is continuous on [0,∞).
Suppose also that for all s large enough, L ( f )(s) = 0. Then f = 0.

Now this will be extended to more general functions.

Corollary 11.2.6 Suppose | f (t)| , |g(t)| have exponential growth and are functions in
L1 (0,∞). Then if L ( f )(s) = L (g)(s) for all s large enough, it follows that f = g a.e.

Proof: Say | f (t)| , |g(t)| ≤ Ceλ t and L ( f )(s) = L (g)(s) for all s > λ . Then by
definition and Fubini’s theorem, for h = f − g, picking Borel measurable representatives
for f ,g, ∫

∞

0

(∫ t

0
h(u)du

)
e−stdt =

∫
∞

0
h(u)

∫
∞

u
e−stdtdu

=
∫

∞

0
h(u)

1
s

e−us =
1
s
L (h)(s) = 0

Thus from Theorem 11.2.5,
∫ t

0 h(u)du = 0. By fundamental theorem of calculus, h(t) = 0
a.e. ■

11.3 Fourier Transform
Definition 11.3.1 The Fourier transform is defined as follows for f ∈ L1 (R) .

F f (t)≡ 1√
2π

∫
∞

−∞

e−itx f (x)dx

where here I am using the usual notation from calculus to denote the Lebesgue integral in
which, to be more precise, you would put dm1 in place of dx. The inverse Fourier transform
is defined the same way except you delete the minus sign in the complex exponential.

F−1 f (t)≡ 1√
2π

∫
∞

−∞

eitx f (x)dx

Does it deserve to be called the “inverse” Fourier transform? This question will be
explored somewhat below.

In studying the Fourier transform, I will use some improper integrals.

Definition 11.3.2 Define
∫

∞

a f (t)dt ≡ limr→∞

∫ r
a f (t)dt. This coincides with the

Lebesgue integral when f ∈ L1 (a,∞). However, situations will be considered below in
which f is not in L1.
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With this convention, there is a very important improper integral involving sin(x)/x.
You can show with a little estimating that x→ sin(x)/x is not in L1 (0,∞) . Nevertheless, a
lot can be said about improper integrals involving this function.

Theorem 11.3.3 The following hold

1.
∫

∞

0
sinu

u du = π

2

2. limr→∞

∫
∞

δ

sin(ru)
u du = 0 whenever δ > 0.

3. If f ∈ L1 (R) , then limr→∞

∫
R sin(ru) f (u)du = 0. This is called the Riemann Leb-

esgue lemma.

Proof: You know 1
u =

∫
∞

0 e−utdt. Therefore, using Fubini’s theorem,∫ r

0

sinu
u

du =
∫ r

0
sin(u)

∫
∞

0
e−utdtdu =

∫
∞

0

∫ r

0
e−ut sin(u)dudt

Now you integrate that inside integral by parts to obtain∫
∞

0

(
1

t2 +1
− e−tr cos(r)+ t sin(r)

1+ t2

)
dt.

This integrand converges to 1
t2+1 as r→∞ for each t > 0. I would like to use the dominated

convergence theorem. That second term is of the form

e−tr

√
1+ t2 cos(r−φ (t,r))

1+ t2 ≤ 1

(1+ t2)1/2 e−tr.

For r > 1, this is no larger than 1

(1+t2)
1/2 e−t which is obviously in L1 and so one can apply

the dominated convergence theorem and conclude that

lim
r→∞

∫ r

0

sinu
u

du =
∫

∞

0

1
1+ t2 dt =

π

2
.

This shows part 1.
Now consider

∫
∞

δ

sin(ru)
u du. It equals

∫
∞

0
sin(ru)

u du−
∫

δ

0
sin(ru)

u du which can be seen from
the definition of what the improper integral means. Let ru = t so rdu = dt and∫

∞

δ

sin(ru)
u

du =
∫

∞

0

sin(t)
t

r
1
r

dt−
∫ rδ

0

sin(t)
t

dt =
π

2
−
∫ rδ

0

sin(t)
t

dt

so limr→∞

∫
∞

δ

sin(ru)
u du = limr→∞

(
π

2 −
∫ rδ

0
sin(t)

t dt
)
= 0 from the first part.

Now consider the Riemann Lebesgue lemma. Let h∈C∞
c (R) such that

∫
R | f −h|dmp <

ε. Then∣∣∣∣∫R sin(ru) f (u)du
∣∣∣∣ ≤ ∣∣∣∣∫R sin(ru)( f (u)−h(u))du

∣∣∣∣+ ∣∣∣∣∫R sin(ru)h(u)
∣∣∣∣

≤ ε +

∣∣∣∣∫R sin(ru)h(u)
∣∣∣∣
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with this last integral, do an integration by parts. Since h vanishes off some interval,∫
R

sin(ru)h(u)dmp =−
1
r

∫
R

cos(ru)h′ (u)dmp

Thus this last integral is dominated by C
r so it converges to 0. For r large enough, it follows

that |
∫
R sin(ru) f (u)du| ≤ 2ε and since ε is arbitrary, this establishes the claim. ■

Definition 11.3.4 The following notation will be used assuming the limits exist.

lim
r→0+

g(x+ r)≡ g(x+) , lim
r→0+

g(x− r)≡ g(x−)

Theorem 11.3.5 Suppose that g ∈ L1 (R) and that at some x, g is locally Holder
continuous from the right and from the left. This means there exist constants K,δ > 0 and
r ∈ (0,1] such that for |x− y|< δ ,

|g(x+)−g(y)|< K |x− y|r (11.2)

for y > x and
|g(x−)−g(y)|< K |x− y|r (11.3)

for y < x. Then

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du

=
g(x+)+g(x−)

2
.

Proof: As in the proof of Theorem 11.3.3, changing variables shows that for large
positive r,

2
π

∫
∞

0

sin(ru)
u

du = 1.

Therefore,

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du− g(x+)+g(x−)

2

=
2
π

∫
∞

0

sin(ur)
u

(
g(x−u)−g(x−)+g(x+u)−g(x+)

2

)
du

=
2
π

∫
δ

0
sin(ur)

(
g(x−u)−g(x−)

2u
+

g(x+u)−g(x+)

2u

)
du

+
2
π

∫
∞

δ

sin(ur)
u

(
g(x−u)−g(x−)

2
+

g(x+u)−g(x+)

2

)
du (11.4)

Second Integral: It equals

2
π

∫
∞

δ

sin(ur)
u

(
g(x−u)+g(x+u)

2
− g(x−)+g(x+)

2

)
du
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=
2
π

∫
∞

δ

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
− 2

π

∫
∞

δ

sin(ur)
u

(
g(x−)+g(x+)

2

)
(11.5)

From part 2 of Theorem 11.3.3,

lim
r→∞

2
π

∫
∞

δ

sin(ur)
u

g(x−)+g(x+)

2
du = 0

Thus consider the first integral in 11.4.∣∣∣∣g(x−u)+g(x+u)
2u

∣∣∣∣≤ 1
2δ

(|g(x−u)|+ |g(x+u)|)

and so u→
∣∣∣ g(x−u)+g(x+u)

2u

∣∣∣ is in L1 (R). Then by the Riemann Lebesgue theorem of Theo-
rem 11.3.3, this integral also converges to 0 as r→ ∞.

First Integral in 11.4: This converges to 0 as r→∞ because of the Riemann Lebesgue
lemma. Indeed, for 0≤ u≤ δ ,∣∣∣∣g(x−u)−g(x−)

2u

∣∣∣∣≤ K
1

u1−r

which is integrable on [0,δ ]. The other quotient also is integrable by similar reasoning. ■
The next theorem justifies the terminology above which defines F−1 and calls it the

inverse Fourier transform. Roughly it says that the inverse Fourier transform of the Fourier
transform equals the mid point of the jump. Thus if the original function is continuous, it
restores the original value of this function. Surely this is what you would want by calling
something the inverse Fourier transform. However, note that in this theorem, it is defined
in terms of an improper integral. This is because there is no guarantee that the Fourier
transform will end up being in L1. Thus instead of

∫
∞

−∞
we write limR→∞

∫ R
−R. Of course,

IF the Fourier transform ends up being in L1, then this amounts to the same thing. The
interesting thing is that even if this is not the case, the formula still works provided you
consider an improper integral.

Now for certain special kinds of functions, the Fourier transform is indeed in L1 and
one can show that it maps this special kind of function to another function of the same
sort and this will be discussed later. This can be used as the basis for a general theory of
Fourier transforms. However, the following does indeed give adequate justification for the
terminology that F−1 is called the inverse Fourier transform.

Theorem 11.3.6 Let g ∈ L1 (R) and suppose g is locally Holder continuous from
the right and from the left at x as in 11.2 and 11.3. Then

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =
g(x+)+g(x−)

2
.

Proof: Consider the following manipulations. 1
2π

∫ R
−R eixt ∫ ∞

−∞
e−ityg(y)dydt =

1
2π

∫
∞

−∞

∫ R

−R
eixte−ityg(y)dtdy =

1
2π

∫
∞

−∞

∫ R

−R
ei(x−y)tg(y)dtdy



272 CHAPTER 11. FUNDAMENTAL TRANSFORMS

=
1

2π

∫
∞

−∞

g(y)
(∫ R

0
ei(x−y)tdt +

∫ R

0
e−i(x−y)tdt

)
dy

=
1

2π

∫
∞

−∞

g(y)
(∫ R

0
2cos((x− y) t)dt

)
dy

=
1
π

∫
∞

−∞

g(y)
sinR(x− y)

x− y
dy =

1
π

∫
∞

−∞

g(x− y)
sinRy

y
dy

=
1
π

∫
∞

0
(g(x− y)+g(x+ y))

sinRy
y

dy

=
2
π

∫
∞

0

(
g(x− y)+g(x+ y)

2

)
sinRy

y
dy

From Theorem 11.3.5,

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt

= lim
R→∞

2
π

∫
∞

0

(
g(x− y)+g(x+ y)

2

)
sinRy

y
dy

=
g(x+)+g(x−)

2
.■

Observation 11.3.7 If t →
∫

∞

−∞
e−ityg(y)dy is itself in L1 (R) , then you don’t need to

do the inversion in terms of a principal value integral as above in which

lim
R→∞

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt

was considered. Instead, you simply get

1
2π

∫
∞

−∞

eixt
∫

∞

−∞

e−ityg(y)dydt =
g(x+)+g(x−)

2

Does this situation ever occur? Yes, it does. This is discussed a little later.

11.4 Inversion of Laplace Transforms
How does the Fourier transform relate to the Laplace transform? This is considered next.
Recall that from Theorem 11.2.2 if g has exponential growth |g(t)| ≤Ceηt , then if Re(s)>
η , one can define L g(s) as L g(s)≡

∫
∞

0 e−sug(u)du and also s→L g(s) is differentiable
on Re(s)> η in the sense that if h ∈ C and G(s)≡L g(s) , then

lim
h→0

G(s+h)−G(s)
h

= G′ (s) =−
∫

∞

0
ue−sug(u)du

This is an example of an analytic function of the complex variable s. The next theorem
shows how to invert the Laplace transform. One can prove similar theorems about Fourier
series. See my single variable analysis book on the web site for this.
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Theorem 11.4.1 Let g be a measurable function defined on (0,∞) which has expo-
nential growth,|g(t)| ≤Ceηt for some real η and is Holder continuous from the right and
left as in 11.2 and 11.3. For Re(s)> η ,L g(s)≡

∫
∞

0 e−sug(u)du. Then for any γ > η , and
t > 0,

lim
R→∞

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy =

g(t+)+g(t−)
2

(11.6)

In case of t = 0, you would only assume the Holder continuity from the right and the above
result would be g(0+)/2.

Proof: This follows from plugging in the formula for the Laplace transform of g and
then using the above. Thus

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy =

1
2π

∫ R

−R
e(γ+iy)t

∫
∞

0
e−(γ+iy)ug(u)dudy =

1
2π

∫ R

−R
eγteiyt

∫
∞

0
e−(γ+iy)ug(u)dudy

= eγt 1
2π

∫ R

−R
eiyt
∫

∞

0
e−iyue−γug(u)dudy

Let ĝ(u) = 0 for all u ≤ 0 so this equals eγt 1
2π

∫ R
−R eiyt ∫ ∞

−∞
e−iyue−γuĝ(u)dudy. Now apply

Theorem 11.3.6 which said that for g in L1 having the Holder condition at t,

lim
R→∞

1
2π

∫ R

−R
eiyt
∫

∞

−∞

e−iyug(u)dudy =
g(t+)+g(t−)

2

to conclude that if t > 0,

lim
R→∞

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy

= eγt lim
R→∞

1
2π

∫ R

−R
eiyt
∫

∞

−∞

e−iyue−γuĝ(u)dudy

= eγt ĝ(t+)e−γt++ ĝ(t−)e−γt−

2
=

g(t+)+g(t−)
2

.

If t = 0 you would have ĝ(0−) = 0 so you would end up finding 1
2 g(0+). ■

In particular, this shows that if L g(s) =L h(s) for all s large enough, both g,h having
exponential growth, then these must be equal except for jumps and in fact, at any point
where they are both Holder continuous from right and left, the mid point of their jumps
is the same. This gives an alternate proof of Corollary 11.2.6 in the case of points of
continuity.

11.5 Fourier Transforms in Rn

In this section is a general treatment of Fourier transforms. It turns out you can take the
Fourier transform of almost anything you like. First is a definition of a very specialized set
of functions. Here the measure space will be (Rn,mn,Fn) , mn Lebesgue measure on Rn.

First is the definition of a polynomial in many variables.
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Definition 11.5.1 α = (α1, · · · ,αn) for α1 · · ·αn nonnegative integers is called a
multi-index. For α a multi-index, |α| ≡ α1 + · · ·+αn and if x ∈Rn,x = (x1, · · · ,xn) , and f
a function, define xα ≡ xα1

1 xα2
2 · · ·xαn

n . A polynomial in n variables of degree m is a function
of the form

p(x) = ∑
|α|≤m

aα xα .

Here α is a multi-index as just described and aα ∈ C. Also define for α = (α1, · · · ,αn) a
multi-index

Dα f (x)≡ ∂ |α| f
∂xα1

1 ∂xα2
2 · · ·∂xαn

n
.

Definition 11.5.2 Define G1 to be the functions of the form p(x)e−a|x|2 where a> 0
is rational and p(x) is a polynomial having all rational coefficients, aα being “rational”
if it is of the form a+ ib for a,b ∈Q. Let G be all finite sums of functions in G1. Thus G is
an algebra of functions which has the property that if f ∈ G then f ∈ G .

Thus there are countably many functions in G1. This is because, for each m, there are
countably many choices for aα for |α| ≤m since there are finitely many α for |α| ≤m and
for each such α, there are countably many choices for aα sinceQ+iQ is countable. (Why?)
Thus there are countably many polynomials having degree no more than m. This is true for
each m and so the number of different polynomials is a countable union of countable sets
which is countable. Now there are countably many choices of e−α|x|2 and so there are
countably many in G1 because the Cartesian product of countable sets is countable.

Now G consists of finite sums of functions in G1. Therefore, it is countable because for
each m ∈ N, there are countably many such sums which are possible.

I will show now that G is dense in Lp (Rn) but first, here is a lemma which follows from
the Stone Weierstrass theorem.

Lemma 11.5.3 G is dense in C0 (Rn) with respect to the norm,

∥ f∥
∞
≡ sup{| f (x)| : x ∈ Rn}

Proof: By the Weierstrass approximation theorem, it suffices to show G separates the
points and annihilates no point. It was already observed in the above definition that f ∈ G
whenever f ∈ G . If y1 ̸= y2 suppose first that |y1| ̸= |y2| . Then in this case, you can let
f (x)≡ e−|x|

2
. Then f ∈ G and f (y1) ̸= f (y2). If |y1|= |y2| , then suppose y1k ̸= y2k. This

must happen for some k because y1 ̸= y2. Then let f (x) ≡ xke−|x|
2
. Thus G separates

points. Now e−|x|
2

is never equal to zero and so G annihilates no point of Rn. ■
These functions are clearly quite specialized. Therefore, the following theorem is some-

what surprising.

Theorem 11.5.4 For each p ≥ 1, p < ∞,G is dense in Lp (Rn). Since G is count-
able, this shows that Lp (Rn) is separable.

Proof: Let f ∈ Lp (Rn) . Then there exists g ∈ Cc (Rn) such that ∥ f −g∥p < ε . Now

let b > 0 be large enough that
∫
Rn

(
e−b|x|2

)p
dx < ε p. Then x→ g(x)eb|x|2 is in Cc (Rn)⊆

C0 (Rn) . Therefore, from Lemma 11.5.3 there exists ψ ∈ G such that
∥∥∥geb|·|2 −ψ

∥∥∥
∞

< 1.
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Therefore, letting φ (x) ≡ ψ (x) it follows that φ ∈ G and for all x ∈ Rn, |g(x)−φ (x)| <
e−b|x|2 Therefore,(∫

Rn
|g(x)−φ (x)|p dx

)1/p

≤
(∫

Rn

(
e−b|x|2

)p
dx
)1/p

< ε .

It follows ∥ f −φ∥p ≤ ∥ f −g∥p +∥g−φ∥p < 2ε . ■
From now on, drop the restriction that the coefficients of the polynomials in G are

rational. Also drop the restriction that a is rational. Thus G will be finite sums of functions
which are of the form p(x)e−a|x|2 where the coefficients of p are complex and a > 0.

The following lemma is also interesting even if it is obvious.

Lemma 11.5.5 For ψ ∈ G , p a polynomial, and α,β multi-indices, Dα ψ ∈ G and
pψ ∈ G . Also

sup{|xβ Dα
ψ(x)| : x ∈ Rn}< ∞

Thus these special functions are infinitely differentiable (smooth). They also have the
property that they and all their partial derivatives vanish as |x| → ∞. This is because every
mixed partial derivative of one of these will be a finite sum of polynomials multiplied by
e−b|x|2 for some positive b.

The idea is to first understand the Fourier transform on these very specialized functions
in G .

Definition 11.5.6 For ψ ∈ G , define the Fourier transform F and the inverse
Fourier transform F−1 by

Fψ(t)≡ (2π)−n/2
∫
Rn

e−it·x
ψ(x)dx,

F−1
ψ(t)≡ (2π)−n/2

∫
Rn

eit·x
ψ(x)dx.

where t ·x≡∑
n
i=1 tixi. Note there is no problem with this definition because ψ is in L1 (Rn)

and therefore,
∣∣eit·xψ(x)

∣∣≤ |ψ(x)| , an integrable function.

One reason for using the functions G is that it is very easy to compute the Fourier
transform of these functions. The first thing to do is to verify F and F−1 map G to G and
that F−1 ◦F (ψ) = ψ.

Lemma 11.5.7 The following holds. (c > 0)(
1

2π

)n/2 ∫
Rn

e−c|t|2e−is·tdt =
(

1
2π

)n/2 ∫
Rn

e−c|t|2eis·tdt

=

(
1

2π

)n/2

e−
|s|2
4c

(√
π√
c

)n

=

(
1
2c

)n/2

e−
1
4c |s|

2
. (11.7)

Proof: Consider first the case of one dimension. Let H (s) be given by

H (s)≡
∫
R

e−ct2
e−istdt =

∫
R

e−ct2
cos(st)dt



276 CHAPTER 11. FUNDAMENTAL TRANSFORMS

Then using the dominated convergence theorem to differentiate,

H ′ (s) =
∫
R

(
−e−ct2

)
t sin(st)dt

=

(
e−ct2

2c
sin(st) |∞−∞−

s
2c

∫
R

e−ct2
cos(st)dt

)
=− s

2c
H (s) .

Also H (0) =
∫
R e−ct2

dt. Thus H (0) =
∫
R e−cx2

dx≡ I and so

I2 =
∫
R2

e−c(x2+y2)dxdy =
∫

∞

0

∫ 2π

0
e−cr2

rdθdr =
π

c
.

For another proof of this which does not use change of variables and polar coordinates, see
Problems 4, 5 below. Hence

H ′ (s)+
s

2c
H (s) = 0, H (0) =

√
π

c
.

It follows that H (s) = e−
s2
4c

√
π√
c . Hence 1√

2π

∫
R e−ct2

e−istdt =
√

π

c
1√
2π

e−
s2
4c =

( 1
2c

)1/2
e−

s2
4c .

This proves the formula in the case of one dimension. The case of the inverse Fourier
transform is similar. The n dimensional formula follows from Fubini’s theorem. ■

With these formulas, it is easy to verify F,F−1 map G to G and F ◦F−1 = F−1 ◦F = id.

Theorem 11.5.8 Each of F and F−1 map G to G . Also for ψ ∈ G , F−1 ◦F (ψ) =ψ

and F ◦F−1 (ψ) = ψ .

Proof: To make the notation simpler,
∫

will symbolize 1
(2π)n/2

∫
Rn . Also, fb (x) ≡

e−b|x|2 . Then from the above, F fb = (2b)−n/2 f
(4b)−1 The first claim will be shown if it is

shown that Fψ ∈ G for ψ (x)≡ xα e−b|x|2 because an arbitrary function of G is a finite sum
of scalar multiples of functions such as ψ . Using Lemma 11.5.7,

Fψ (t) ≡
∫

e−it·xxα e−b|x|2dx

= (−i)−|α|Dα
t

(∫
e−it·xe−b|x|2dx

)
, (Differentiating under integral)

= (−i)−|α|Dα
t

(
e−
|t|2
4b

(√
π√
b

)n)
by Lemma 11.5.7

and this is clearly in G because it equals a polynomial times e−
|t|2
4b . Similarly, F−1 : G → G .

Now consider F−1 ◦F (ψ)(s) where ψ = xα e−b|x|2 was just used. From the above, and
integrating by parts,

F−1 ◦F (ψ)(s) = (−i)−|α|
∫

eis·tDα
t

(∫
e−it·xe−b|x|2dx

)
dt

= (−i)−|α| (−i)|α| sα

∫
eis·t
(∫

e−it·xe−b|x|2dx
)

dt

= sα F−1 (F ( fb))(s)
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From Lemma 11.5.7,

F−1 (F ( fb))(s) = F−1
(
(2b)−n/2 f

(4b)−1

)
(s) = (2b)−n/2 F−1

(
f
(4b)−1

)
(s)

= (2b)−n/2
(

2(4b)−1
)−n/2

f
(4(4b)−1)

−1 (s) = fb (s)

Hence F−1 ◦F (ψ)(s) = sα fb (s) = ψ (s).
Another way to see this is to use Observation 11.3.7. If n = 1 then F−1 ◦F (ψ)(s) =

ψ (s) from Observation 11.3.7 and Theorem 11.3.6. So suppose F−1 ◦F (ψ)(s) = ψ (s) on
Rn−1. From the definition and the observation and Fubini’s theorem, if ψ ∈ G on Rn, then
from the special form of ψ and neglecting the (1/2π)n/2 to make it simpler to write,

F−1 ◦F (ψ)(s)≡∫
R

eisntn
∫
R

e−itnxn

∫
Rn−1

eiŝn·t̂n

∫
Rn−1

e−it̂n·x̂nψ (x̂n,xn)dx̂ndt̂ndxndtn

Now by induction and Theorem 11.3.6, this is∫
R

eisntn
∫
R

e−itnxnψ (ŝn,xn)dxndtn = ψ (ŝn,sn) = ψ (s) ■

11.6 Fourier Transforms of Just About Anything
11.6.1 Fourier Transforms in G ∗

It turns out you can make sense of the Fourier transform of any linear map defined on G .
This is a very abstract way to look at things but if you want ultimate generality, you must
do something like this. Part of the problem is that it is desired to take Fourier transforms of
functions which are not in L1 (Rn). Thus the integral which defines the Fourier transform
in the above will not make sense. You run into this problem as soon as you try to take the
Fourier transform of a function in L2 because such functions might not be in L1 if they are
defined on R or Rn. However, it was realized long ago that if a function is in L1∩L2, then
the L2 norm of the function is equal to the L2 norm of the Fourier transform of the function.
Thus there is an obvious question about whether you can get a definition which will allow
you to directly deal with the Fourier transform on L2. If you solve this, perhaps by using
density of L1∩L2 in L2, you are still faced with the problem of taking the Fourier transform
of an arbitrary function in Lp. The method developed here removes all these difficulties at
once.

Definition 11.6.1 Let G ∗ denote the vector space of linear functions defined on G
which have values in C. Thus T ∈ G ∗ means T : G → C and T is linear,

T (aψ +bφ) = aT (ψ)+bT (φ) for all a,b ∈ C, ψ,φ ∈ G

Let ψ ∈ G . Then we can regard ψ as an element of G ∗ by defining

ψ (φ)≡
∫
Rn

ψ (x)φ (x)dx.

This implies the following important lemma.
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Lemma 11.6.2 The following is obtained for all φ ,ψ ∈ G .

Fψ (φ) = ψ (Fφ) ,F−1
ψ (φ) = ψ

(
F−1

φ
)

Also if ψ ∈ G and ψ = 0 in G ∗ so that ψ (φ) = 0 for all φ ∈ G , then ψ = 0 as a function.

Proof:

Fψ (φ) ≡
∫
Rn

Fψ (t)φ (t)dt =
∫
Rn

(
1

2π

)n/2 ∫
Rn

e−it·x
ψ(x)dxφ (t)dt

=
∫
Rn

ψ(x)
(

1
2π

)n/2 ∫
Rn

e−it·x
φ (t)dtdx

=
∫
Rn

ψ(x)Fφ (x)dx≡ ψ (Fφ)

The other claim is similar.
Suppose now ψ (φ) = 0 for all φ ∈ G . Then

∫
Rn ψφdx = 0 for all φ ∈ G . Therefore,

this is true for φ = ψ and so ψ = 0. ■
This lemma suggests a way to define the Fourier transform of something in G ∗.

Definition 11.6.3 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 11.6.4 F and F−1 are both one to one, onto, and are inverses of each other.

Proof: First note F and F−1 are both linear. This follows directly from the definition.
Suppose now FT = 0. Then FT (φ) ≡ T (Fφ) = 0 for all φ ∈ G . But F and F−1 map G
onto G because if ψ ∈ G , then as shown above, ψ = F

(
F−1 (ψ)

)
. Therefore, T = 0 and

so F is one to one. Similarly F−1 is one to one. Now F−1 (FT )(φ) ≡ (FT )
(
F−1φ

)
≡

T
(
F
(
F−1 (φ)

))
= T φ . Therefore, F−1 ◦F (T ) = T. Similarly, F ◦F−1 (T ) = T. Thus both

F and F−1 are one to one and onto and are inverses of each other as suggested by the
notation. ■

Probably the most interesting things in G ∗ are functions of various kinds. The following
lemma will be useful in considering this situation.

Definition 11.6.5 A function f defined on Rn is in L1
loc (Rn) if fXB ∈ L1 (Rn) for

every ball B. Such functions are termed locally integrable.

Lemma 11.6.6 If f ∈ L1
loc (Rn) and

∫
Rn f φdx = 0 for all φ ∈Cc (Rn), then f = 0 a.e.

Proof: Let E be bounded and Lebesgue measurable. By regularity, there exists a
compact set Kk ⊆ E and an open set Vk ⊇ E such that mn (Vk \Kk) < 2−k. Let hk equal
1 on Kk, vanish on VC

k , and take values between 0 and 1. Then hk converges to XE off
∩∞

k=1∪∞
l=k (Vl \Kl) , a set of measure zero. Hence, by the dominated convergence theorem,∫

f XEdmn = lim
k→∞

∫
f hkdmn = 0.
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It follows that for E an arbitrary Lebesgue measurable set,
∫

f XB(0,R)XEdmn = 0. Let

sgn f =

{
f
| f | if | f | ̸= 0
0 if | f |= 0

By Corollary 7.7.6, there exists {sk}, a sequence of simple functions converging pointwise
to sgn f XB(0,R) such that |sk| ≤ 1. Then by the dominated convergence theorem again,∫

| f |XB(0,R)dmn = lim
k→∞

∫
f XB(0,R)skdmn = 0.

Since R is arbitrary, | f |= 0 a.e. ■

Corollary 11.6.7 Let f ∈ L1 (Rn) and suppose
∫
Rn f (x)φ (x)dx = 0 for all φ ∈ G .

Then f = 0 a.e.

Proof: Let ψ ∈Cc (Rn) . Then by the Stone Weierstrass approximation theorem, there
exists a sequence of functions, {φ k} ⊆ G such that φ k→ ψ uniformly. Then by the domi-
nated convergence theorem,

∫
f ψdx = limk→∞

∫
f φ kdx = 0. By Lemma 11.6.6 f = 0. ■

The next theorem is the main result of this sort.

Theorem 11.6.8 Let f ∈ Lp (Rn) , p≥ 1, or suppose f is measurable and has poly-

nomial growth, defined as | f (x)| ≤ K
(

1+ |x|2
)m

for some K and m. Then if
∫

f ψdx = 0
for all ψ ∈ G , then it follows f = 0.

Proof: First note that if f ∈ Lp (Rn) or has polynomial growth, then it makes sense
to write the integral

∫
f ψdx described above. This is obvious in the case of polynomial

growth. In the case where f ∈ Lp (Rn) it also makes sense because

∫
| f | |ψ|dx≤

(∫
| f |p dx

)1/p(∫
|ψ|p

′
dx
)1/p′

< ∞

due to the fact mentioned above that all these functions in G are in Lp (Rn) for every p≥ 1.
Suppose now that f ∈ Lp, p ≥ 1. The case where f ∈ L1 (Rn) was dealt with in Corollary
11.6.7. Suppose f ∈ Lp (Rn) for p > 1. Then

| f |p−2 f ∈ Lp′ (Rn) ,

(
p′ = q,

1
p
+

1
q
= 1
)

and by density of G in Lp′ (Rn) (Theorem 11.5.4), there exists a sequence {gk} ⊆ G such
that ∥∥∥gk−| f |p−2 f

∥∥∥
p′
→ 0.

Then ∫
Rn
| f |p dx =

∫
Rn

f
(
| f |p−2 f −gk

)
dx+

∫
Rn

f gkdx

=
∫
Rn

f
(
| f |p−2 f −gk

)
dx≤ ∥ f∥Lp

∥∥∥gk−| f |p−2 f
∥∥∥

p′

which converges to 0. Hence f = 0.
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It remains to consider the case where f has polynomial growth. Thus x→ f (x)e−|x|
2
∈

L1 (Rn) . Therefore, for all ψ ∈ G ,

0 =
∫

f (x)e−|x|
2
ψ (x)dx

because e−|x|
2
ψ (x) ∈ G . Therefore, by the first part, f (x)e−|x|

2
= 0 a.e. ■

Note that “polynomial growth” could be replaced with a condition of the form

| f (x)| ≤ K
(

1+ |x|2
)m

ek|x|α , α < 2

and the same proof would yield that these functions are in G ∗. The main thing to observe
is that almost all functions of interest are in G ∗.

Theorem 11.6.9 Let f be a measurable function with polynomial growth,

| f (x)| ≤C
(

1+ |x|2
)N

for some N,

or let f ∈ Lp (Rn) for some p ∈ [1,∞]. Then f ∈ G ∗ if f (φ)≡
∫

f φdx.

Proof: Let f have polynomial growth first. Then the above integral is clearly well
defined and so in this case, f ∈ G ∗.

Next suppose f ∈ Lp (Rn) with ∞ > p≥ 1. Then it is clear again that the above integral
is well defined because of the fact that φ is a sum of polynomials times exponentials of the
form e−c|x|2 and these are in Lp′ (Rn). Also φ → f (φ) is clearly linear in both cases. ■

This has shown that for nearly any reasonable function, you can define its Fourier trans-
form as described above. You could also define the Fourier transform of a finite Borel mea-
sure µ because for such a measure ψ→

∫
Rn ψdµ is a linear functional on G . This includes

the very important case of probability distribution measures.

11.6.2 Fourier Transforms of Functions In L1 (Rn)

First suppose f ∈ L1 (Rn) . As mentioned, you can think of it as being in G ∗ and so one
can take its Fourier transform as described above. However, since it is in L1 (Rn) , there is
a natural way to define its Fourier transform. Do the two give the same thing?

Theorem 11.6.10 Let f ∈ L1 (Rn) . Then F f (φ) =
∫
Rn gφdt where

g(t) =
(

1
2π

)n/2 ∫
Rn

e−it·x f (x)dx

and F−1 f (φ) =
∫
Rn gφdt where g(t) =

( 1
2π

)n/2 ∫
Rn eit·x f (x)dx. In short,

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx,

F−1 f (t)≡ (2π)−n/2
∫
Rn

eit·x f (x)dx.
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Proof: From the definition and Fubini’s theorem,

F f (φ) ≡
∫
Rn

f (t)Fφ (t)dt =
∫
Rn

f (t)
(

1
2π

)n/2 ∫
Rn

e−it·x
φ (x)dxdt

=
∫
Rn

((
1

2π

)n/2 ∫
Rn

f (t)e−it·xdt

)
φ (x)dx.

Since φ ∈ G is arbitrary, it follows from Theorem 11.6.8 that F f (x) is given by the claimed
formula. The case of F−1 is identical. ■

Here are interesting properties of these Fourier transforms of functions in L1.

Theorem 11.6.11 If f ∈ L1 (Rn) and ∥ fk − f∥1 → 0, then F fk and F−1 fk con-
verge uniformly to F f and F−1 f respectively. If f ∈ L1 (Rn), then F−1 f and F f are both
continuous and bounded. Also,

lim
|x|→∞

F−1 f (x) = lim
|x|→∞

F f (x) = 0. (11.8)

Furthermore, for f ∈ L1 (Rn) both F f and F−1 f are uniformly continuous.

Proof: The first claim follows from the following inequality.

|F fk (t)−F f (t)| ≤ (2π)−n/2
∫
Rn

∣∣e−it·x fk(x)− e−it·x f (x)
∣∣dx

= (2π)−n/2
∫
Rn
| fk (x)− f (x)|dx = (2π)−n/2 ∥ f − fk∥1 .

which a similar argument holding for F−1.
Now consider the second claim of the theorem.∣∣F f (t)−F f

(
t′
)∣∣≤ (2π)−n/2

∫
Rn

∣∣∣e−it·x− e−it′·x
∣∣∣ | f (x)|dx

The integrand is bounded by 2 | f (x)|, a function in L1 (Rn) and converges to 0 as t′ → t
and so the dominated convergence theorem implies F f is continuous. To see F f (t) is
uniformly bounded,

|F f (t)| ≤ (2π)−n/2
∫
Rn
| f (x)|dx < ∞.

A similar argument gives the same conclusions for F−1.

Let ∥tk∥∞
→ ∞. Then for g ∈ G , we see that for some ik where,

∣∣∣t ik
k

∣∣∣= ∥tk∥∞

tk ≡
(
t1
1 , · · · , tn

k
)
, lim

k→∞

∣∣∣t ik
k

∣∣∣= ∞

since otherwise we could not have ∥tk∥∞
→ ∞. Then integrating by parts,

|Fg(tk)|=
∣∣∣∣(2π)−n/2

∫
Rn

e−itk·xg(x)dx
∣∣∣∣≤Cn

∫
Rn

1∣∣∣t ik
k

∣∣∣ |Dtig(x)|dx
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which converges to 0 as k→ ∞. This shows 11.8 in case the function is in G . Now in
the general case, let ∥g− f∥L1(Rn) < ε where g ∈ G and f ∈ L1 (Rn). Then it follows that
|F ( f )(t)−Fg(t)| ≤Cn ∥ f −g∥L1(Rn) and so if ∥tk∥∞

→ ∞,

lim sup
k→∞

|F ( f )(tk)| ≤ lim sup
k→∞

|F ( f )(tk)−Fg(tk)|+
=0

lim
k→∞

|Fg(tk)| ≤ ε

if g is chosen to make Cn ∥ f −g∥L1(Rn) < ε. Since ε is arbitrary, this shows 11.8 in general.
It remains to verify the claim that F f and F−1 f are uniformly continuous. Let ε > 0 be

given. Then there exists R such that if ∥t∥
∞
> R, then |F f (t)|< ε

2 . Since F f is continuous,
it is uniformly continuous on the compact set [−R−1,R+1]n. Therefore, there exists δ 1
such that if ∥t− t′∥

∞
< δ 1 for t′, t ∈ [−R−1,R+1]n, then∣∣F f (t)−F f

(
t′
)∣∣< ε/2. (11.9)

Now let 0 < δ < min(δ 1,1) and suppose ∥t− t′∥
∞
< δ . If both t, t′ are contained in

[−R,R]n, then 11.9 holds. If t ∈ [−R,R]n and t′ /∈ [−R,R]n, then both are contained in
[−R−1,R+1]n and so this verifies 11.9 in this case. The other case is that neither point is
in [−R,R]n and in this case,∣∣F f (t)−F f

(
t′
)∣∣≤ |F f (t)|+

∣∣F f
(
t′
)∣∣< ε

2
+

ε

2
= ε. ■

11.6.3 Convolutions in L1 (Rn)

There is a very interesting relation between the Fourier transform and convolutions. Recall

f ∗g(x)≡
∫
Rn

f (x−y)g(y)dy

and part of the problem is in showing that this even makes sense. This is dealt with in the
following theorem.

Theorem 11.6.12 Suppose that f ,g ∈ L1(Rn). Then also f ∗g ∈ L1 and it follows
that F( f ∗g) = (2π)n/2 F f Fg.

Proof: Assume both f and g are Borel measurable representatives. Consider∫
Rn

∫
Rn
| f (x−y)g(y)|dydx.

By Fubini’s theorem,∫
Rn

∫
Rn
| f (x−y)g(y)|dydx =

∫
Rn

∫
Rn
| f (x−y)g(y)|dxdy = ∥ f∥1 ∥g∥1 < ∞.

It follows that for a.e. x,
∫
Rn | f (x−y)g(y)|dy < ∞ and for each of these values of x, it

follows that
∫
Rn f (x−y)g(y)dy exists and equals a function of x which is in L1 (Rn) , f ∗

g(x). Now

F( f ∗g)(t)≡ (2π)−n/2
∫
Rn

e−it·x f ∗g(x)dx

= (2π)−n/2
∫
Rn

e−it·x
∫
Rn

f (x−y)g(y)dydx

= (2π)−n/2
∫
Rn

e−it·yg(y)
∫
Rn

e−it·(x−y) f (x−y)dxdy

= (2π)n/2 F f (t)Fg(t) . ■
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There are many other considerations involving Fourier transforms of functions which
are in L1 (Rn). Some others are in the exercises.

11.6.4 Fourier Transforms of Functions In L2 (Rn)

Consider F f and F−1 f for f ∈ L2(Rn). First note that the formula given for F f and F−1 f
when f ∈ L1 (Rn) will not work for f ∈ L2(Rn) unless f is also in L1(Rn). However, there
is no problem for functions in G .

Theorem 11.6.13 For φ ∈ G , ∥Fφ∥2 = ∥F−1φ∥2 = ∥φ∥2.

Proof: First note that for ψ ∈ G ,

F(ψ) = F−1(ψ) , F−1(ψ) = F(ψ). (11.10)

This follows from the definition. For example,

Fψ (t) = (2π)−n/2
∫
Rn

e−it·x
ψ (x)dx = (2π)−n/2

∫
Rn

eit·xψ (x)dx = F(ψ)(t)

Let φ ,ψ ∈ G . It was shown above that
∫
Rn(Fφ)ψ(t)dt =

∫
Rn φ(Fψ)dx. Similarly,∫

Rn
φ(F−1

ψ)dx =
∫
Rn
(F−1

φ)ψdt. (11.11)

Now, 11.10 - 11.11 imply∫
Rn
|φ |2dx =

∫
Rn

φφdx =
∫
Rn

φF−1 (Fφ) dx =
∫
Rn

φF(Fφ)dx

=
∫
Rn

Fφ(Fφ)dx =
∫
Rn
|Fφ |2dx.

Similarly ∥φ∥2 = ∥F−1φ∥2. ■

Lemma 11.6.14 Let f ∈ L2 (Rn) and let φ k → f in L2 (Rn) where φ k ∈ G . (Such a
sequence exists because of density of G in L2 (Rn). Theorem 11.5.4) Then F f and F−1 f
are both in L2 (Rn) and the following limits take place in L2.

lim
k→∞

F (φ k) = F ( f ) , lim
k→∞

F−1 (φ k) = F−1 ( f ) .

Proof: Let φ k→ f in L2 (Rn) . Then if ψ ∈ G , by the Cauchy Schwarz inequality,∣∣∣∣∫Rn
φ kFψdx−

∫
Rn

φ mFψdx
∣∣∣∣≤ ∥φ k−φ m∥L2 ∥Fψ∥L2

and so limk→∞

∫
Rn φ k (x)Fψ (x)dx exists. Now

F f (ψ) ≡ f (Fψ)≡
∫
Rn

f (x)Fψ (x)dx

= lim
k→∞

∫
Rn

φ k (x)Fψ (x)dx = lim
k→∞

∫
Rn

Fφ k (x)ψ (x)dx.
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Also by Theorem 11.6.13 {Fφ k}
∞

k=1 is Cauchy in L2 (Rn) and so it converges to some
h ∈ L2 (Rn). Therefore, from the above,

F f (ψ) =
∫
Rn

h(x)ψ (x)

which shows that F ( f ) ∈ L2 (Rn) and h = F ( f ) . The case of F−1 is entirely similar. ■
Since F f and F−1 f are in L2 (Rn) , this also proves the following theorem.

Theorem 11.6.15 If f ∈ L2(Rn), F f and F−1 f are the unique elements of L2 (Rn)
such that for all φ ∈ G , ∫

Rn
F f (x)φ(x)dx =

∫
Rn

f (x)Fφ(x)dx, (11.12)

∫
Rn

F−1 f (x)φ(x)dx =
∫
Rn

f (x)F−1
φ(x)dx. (11.13)

Theorem 11.6.16 (Plancherel)

∥ f∥2 = ∥F f∥2 = ∥F−1 f∥2. (11.14)

Proof: Use the density of G in L2 (Rn) to obtain a sequence, {φ k} converging to f in
L2 (Rn). Then by Lemma 11.6.14

∥F f∥2 = lim
k→∞

∥Fφ k∥2 = lim
k→∞

∥φ k∥2 = ∥ f∥2 .

Similarly, ∥ f∥2 = ∥F−1 f∥2. ■
The following corollary is a simple generalization of this. To prove this corollary,

use the following simple lemma which comes as a consequence of the Cauchy Schwarz
inequality.

Lemma 11.6.17 Suppose fk→ f in L2 (Rn) and gk→ g in L2 (Rn). Then

lim
k→∞

∫
Rn

fkgkdx =
∫
Rn

f gdx.

Proof: ∣∣∣∣∫Rn
fkgkdx−

∫
Rn

f gdx
∣∣∣∣≤ ∣∣∣∣∫Rn

fkgkdx−
∫
Rn

fkgdx
∣∣∣∣+∣∣∣∣∫Rn

fkgdx−
∫
Rn

f gdx
∣∣∣∣

≤ ∥ fk∥2 ∥g−gk∥2 +∥g∥2 ∥ fk− f∥2 .

Now ∥ fk∥2 is a Cauchy sequence and so it is bounded independent of k. Therefore, the
above expression is smaller than ε whenever k is large enough. ■

Corollary 11.6.18 For f ,g ∈ L2(Rn),∫
Rn

f gdx =
∫
Rn

F f Fgdx =
∫
Rn

F−1 f F−1gdx.
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Proof: First note the above formula is obvious if f ,g ∈ G . To see this, use 11.10 to
write ∫

Rn
F f Fgdx =

∫
Rn

F f F−1 (ḡ)dx =
∫
Rn

F−1 (F f )(ḡ)dx =
∫
Rn

f ḡdx

The formula with F−1 is exactly similar.
Now to verify the corollary, let φ k→ f in L2 (Rn) and let ψk→ g in L2 (Rn). Then by

Lemma 11.6.14 Fφ k→ F f and Fψk→ Fg and so∫
Rn

F f Fgdx = lim
k→∞

∫
Rn

Fφ k Fψkdx = lim
k→∞

∫
Rn

φ kψkdx =
∫
Rn

f gdx

A similar argument holds for F−1. ■
How does one compute F f and F−1 f ?

Theorem 11.6.19 For f ∈ L2(Rn), let fr = f XEr where Er is a bounded measur-
able set with Er ↑ Rn. Then the following limits hold in L2 (Rn) .

F f = lim
r→∞

F fr , F−1 f = lim
r→∞

F−1 fr.

Proof: ∥ f − fr∥2 → 0 and so ∥F f −F fr∥2 → 0 and ∥F−1 f −F−1 fr∥2 → 0 by Plan-
cherel’s Theorem. ■

What are F fr and F−1 fr? Let φ ∈ G∫
Rn

F frφdx =
∫
Rn

frFφdx

= (2π)−
n
2

∫
Rn

∫
Rn

fr(x)e−ix·y
φ(y)dydx

=
∫
Rn
[(2π)−

n
2

∫
Rn

fr(x)e−ix·ydx]φ(y)dy.

Since this holds for all φ ∈ G , a dense subset of L2(Rn), it follows that

F fr(y) = (2π)−
n
2

∫
Rn

fr(x)e−ix·ydx.

Similarly

F−1 fr(y) = (2π)−
n
2

∫
Rn

fr(x)eix·ydx.

This shows that to take the Fourier transform of a function in L2 (Rn), it suffices to take the
limit as r→ ∞ in L2 (Rn) of (2π)−

n
2
∫
Rn fr(x)e−ix·ydx. A similar procedure works for the

inverse Fourier transform.
Note this reduces to the earlier definition in case f ∈ L1 (Rn). Now consider the convo-

lution of a function in L2 with one in L1.

Theorem 11.6.20 Let h ∈ L2 (Rn) and let f ∈ L1 (Rn). Then h∗ f ∈ L2 (Rn),

F−1 (h∗ f ) = (2π)n/2 F−1hF−1 f ,

F (h∗ f ) = (2π)n/2 FhF f ,

and
∥h∗ f∥2 ≤ ∥h∥2 ∥ f∥1 . (11.15)
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Proof: An application of Minkowski’s inequality to Borel representatives yields(∫
Rn

(∫
Rn
|h(x−y)| | f (y)|dy

)2

dx

)1/2

≤ ∥ f∥1 ∥h∥2 . (11.16)

Hence
∫
|h(x−y)| | f (y)|dy < ∞ a.e. x and x→

∫
h(x−y) f (y)dy is in L2 (Rn). Let Er ↑

Rn, mn (Er)< ∞. Thus,
hr ≡XEr h ∈ L2 (Rn)∩L1 (Rn),

and letting φ ∈ G ,
∫

F (hr ∗ f )(φ)dx

≡
∫

(hr ∗ f )(Fφ)dx

= (2π)−n/2
∫ ∫ ∫

hr (x−y) f (y)e−ix·t
φ (t)dtdydx

= (2π)−n/2
∫ ∫ (∫

hr (x−y)e−i(x−y)·tdx
)

f (y)e−iy·tdyφ (t)dt

=
∫

(2π)n/2 Fhr (t)F f (t)φ (t)dt.

Since φ is arbitrary and G is dense in L2 (Rn),

F (hr ∗ f ) = (2π)n/2 FhrF f .

Now by Minkowski’s Inequality, hr ∗ f → h ∗ f in L2 (Rn) and also it is clear that hr → h
in L2 (Rn) ; so, by Plancherel’s theorem, you may take the limit in the above and conclude
F (h∗ f )= (2π)n/2 FhF f . The assertion for F−1 is similar and 11.15 follows from 11.16. ■

11.6.5 The Schwartz Class
The problem with G is that it does not contain C∞

c (Rn). I have used it in presenting the
Fourier transform because the functions in G have a very specific form which made some
technical details work out easier than in any other approach I have seen. The Schwartz
class is a larger class of functions which does contain C∞

c (Rn) and also has the same nice
properties as G . The functions in the Schwartz class are infinitely differentiable and they
vanish very rapidly as |x|→∞ along with all their partial derivatives. This is the description
of these functions, not a specific form involving polynomials times e−α|x|2 . To describe this
precisely requires some notation.

Definition 11.6.21 f ∈S, the Schwartz class, if f ∈C∞(Rn) and for all positive
integers N, ρN( f )< ∞ where

ρN( f ) = sup{(1+ |x|2)N |Dα f (x)| : x ∈ Rn , |α| ≤ N}.

Thus f ∈S if and only if f ∈C∞(Rn) and

sup{|xβ Dα f (x)| : x ∈ Rn}< ∞ (11.17)

for all multi indices α and β .
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Also note that if f ∈S, then p◦ f ∈S for any polynomial p with p(0) = 0 and that

S⊆ Lp(Rn)∩L∞(Rn)

for any p ≥ 1. To see this assertion about the p( f ), it suffices to consider the case of the
product of two elements of the Schwartz class. If f ,g ∈S, then Dα ( f g) is a finite sum of
derivatives of f times derivatives of g. Therefore, ρN ( f g)< ∞ for all N. You may wonder
about examples of things in S. Clearly any function in C∞

c (Rn) is in S. However there are
other functions in S. For example e−|x|

2
is in S as you can verify for yourself and so is any

function from G . Note also that the density of Cc (Rn) in Lp (Rn) shows that S is dense in
Lp (Rn) for every p.

Recall the Fourier transform of a function in L1 (Rn) is given by

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx.

Therefore, this gives the Fourier transform for f ∈ S. The nice property which S has in
common with G is that the Fourier transform and its inverse map S one to one onto S.
This means I could have presented the whole of the above theory in terms of S rather than
in terms of G . However, it is more technical.

Theorem 11.6.22 If f ∈S, then F f and F−1 f are also in S.

Proof: To begin with, let α = e j = (0,0, · · · ,1,0, · · · ,0), the 1 in the jth slot.

F−1 f (t+he j)−F−1 f (t)
h

= (2π)−n/2
∫
Rn

eit·x f (x)(
eihx j −1

h
)dx. (11.18)

Consider the integrand in 11.18.∣∣∣∣eit·x f (x)(
eihx j −1

h
)

∣∣∣∣ = | f (x)|

∣∣∣∣∣(ei(h/2)x j − e−i(h/2)x j

h
)

∣∣∣∣∣
= | f (x)|

∣∣∣∣ isin((h/2)x j)

(h/2)

∣∣∣∣≤ | f (x)| ∣∣x j
∣∣

and this is a function in L1(Rn) because f ∈S. Therefore by the Dominated Convergence
Theorem,

∂F−1 f (t)
∂ t j

= (2π)−n/2
∫
Rn

eit·xix j f (x)dx = i(2π)−n/2
∫
Rn

eit·xxe j f (x)dx.

Now xe j f (x) ∈ S and so one can continue in this way and take derivatives indefinitely.
Thus F−1 f ∈C∞(Rn) and from the above argument,

Dα F−1 f (t) =(2π)−n/2
∫
Rn

eit·x(ix)α f (x)dx.

To complete showing F−1 f ∈S,

tβ Dα F−1 f (t) = (2π)−n/2
∫
Rn

eit·xtβ (ix)a f (x)dx

= (2π)−n/2
∫
Rn

i|β |eit·xDβ ((ix)a f (x))dx,
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The second equal sign following from integration by parts on the last integral. Now use the
fact that |eia|= 1 to conclude

|tβ Dα F−1 f (t)| ≤C
∫
Rn
|Dβ ((ix)a f (x))|dx < ∞.

It follows F−1 f ∈S. Similarly F f ∈S whenever f ∈S. ■
Of course S can be considered a subset of G ∗ as follows. For ψ ∈S,

ψ (φ)≡
∫
Rn

ψφdx

Theorem 11.6.23 Let ψ ∈ S. Then (F ◦ F−1)(ψ) = ψ and (F−1 ◦ F)(ψ) = ψ

whenever ψ ∈S. Also F and F−1 map S one to one and onto S.

Proof: The first claim follows from the fact that F and F−1 are inverses of each other
on G ∗ which was established above. For the second, let ψ ∈ S. Then ψ = F

(
F−1ψ

)
.

Thus F maps S onto S. If Fψ = 0, then do F−1 to both sides to conclude ψ = 0. Thus F
is one to one and onto. Similarly, F−1 is one to one and onto. ■

11.6.6 Convolution
To begin with it is necessary to discuss the meaning of φ f where f ∈ G ∗ and φ ∈ G . What
should it mean? First suppose f ∈ Lp (Rn) or measurable with polynomial growth. Then
φ f also has these properties. Hence, it should be the case that φ f (ψ) =

∫
Rn φ f ψdx =∫

Rn f (φψ)dx. This motivates the following definition.

Definition 11.6.24 Let T ∈ G ∗ and let φ ∈ G . Then φT ≡ T φ ∈ G ∗ will be defined
by

φT (ψ)≡ T (φψ) .

The next topic is that of convolution. It was just shown that

F ( f ∗φ) = (2π)n/2 FφF f , F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

whenever f ∈ L2 (Rn) and φ ∈ G so the same definition is retained in the general case
because it makes perfect sense and agrees with the earlier definition.

Definition 11.6.25 Let f ∈ G ∗ and let φ ∈ G . Then define the convolution of f
with an element of G as follows.

f ∗φ ≡ (2π)n/2 F−1 (FφF f ) ∈ G ∗

There is an obvious question. With this definition, is it true that

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

as it was earlier?

Theorem 11.6.26 Let f ∈ G ∗ and let φ ∈ G .

F ( f ∗φ) = (2π)n/2 FφF f , (11.19)

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f . (11.20)
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Proof: Note that 11.19 follows from Definition 11.6.25 and both assertions hold for
f ∈ G . Consider 11.20. Here is a simple formula involving a pair of functions in G .(

ψ ∗F−1F−1
φ
)
(x)

=

(∫ ∫ ∫
ψ (x−y)eiy·y1eiy1·zφ (z)dzdy1dy

)
(2π)n

=

(∫ ∫ ∫
ψ (x−y)e−iy·ỹ1e−iỹ1·zφ (z)dzdỹ1dy

)
(2π)n

= (ψ ∗FFφ)(x) .

Now for ψ ∈ G ,

(2π)n/2 F
(
F−1

φF−1 f
)
(ψ)≡ (2π)n/2 (F−1

φF−1 f
)
(Fψ)≡

(2π)n/2 F−1 f
(
F−1

φFψ
)
≡ (2π)n/2 f

(
F−1 (F−1

φFψ
))

=

f
(
(2π)n/2 F−1 ((FF−1F−1

φ
)
(Fψ)

))
≡

f
(
ψ ∗F−1F−1

φ
)
= f (ψ ∗FFφ) (11.21)

Also

(2π)n/2 F−1 (FφF f )(ψ)≡ (2π)n/2 (FφF f )
(
F−1

ψ
)
≡

(2π)n/2 F f
(
FφF−1

ψ
)
≡ (2π)n/2 f

(
F
(
FφF−1

ψ
))

=

= f
(

F
(
(2π)n/2 (FφF−1

ψ
)))

= f
(

F
(
(2π)n/2 (F−1FFφF−1

ψ
)))

= f
(
F
(
F−1 (FFφ ∗ψ)

))
f (FFφ ∗ψ) = f (ψ ∗FFφ) . (11.22)

The last line follows from the following.∫
FFφ (x−y)ψ (y)dy =

∫
Fφ (x−y)Fψ (y)dy =

∫
Fψ (x−y)Fφ (y)dy

=
∫

ψ (x−y)FFφ (y)dy.

From 11.22 and 11.21 , since ψ was arbitrary,

(2π)n/2 F
(
F−1

φF−1 f
)
= (2π)n/2 F−1 (FφF f )≡ f ∗φ

which shows 11.20. ■
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11.7 Exercises
1. For f ∈ L1 (Rn), show that if F−1 f ∈ L1 or F f ∈ L1, then f equals a continuous

bounded function a.e. This is Theorem 11.6.11 but review it.

2. Suppose f ,g ∈ L1(R) and F f = Fg. Show f = g a.e.

3. ↑ Suppose f ∗ f = f or f ∗ f = 0 and f ∈ L1(R). Show f = 0.

4. Let h(x) =
(∫ x

0 e−t2
dt
)2

+

(∫ 1
0

e−x2(1+t2)
1+t2 dt

)
. Show that h′ (x) = 0 and h(0) = π/4.

Then let x→∞ to conclude that
∫

∞

0 e−t2
dt =

√
π/2. Show that

∫
∞

−∞
e−t2

dt =
√

π and

that
∫

∞

−∞
e−ct2

dt =
√

π√
c .

5. Let h(x) =
(∫ x

0 e−t2
dt
)2

. Then

h′ (x) = 2
(∫ x

0
e−t2

dt
)

e−x2
= 2xe−x2

(∫ 1

0
e−(xu)2

du
)
.

Now h(x) =
∫ x

0 h′ (t)dt. Do integration by parts to obtain

−e−t2
∫ 1

0
e−(tu)

2
du|x0−

∫ x

0
e−t2

∫ 1

0
e−(tu)

2
2tu2dudt

= −e−x2
∫ 1

0
e−(xu)2

du +1−
∫ x

0

∫ 1

0
e−t2(1+u2)2tu2dudt

= −e−x2
∫ 1

0
e−(xu)2

du +1−
∫ 1

0
u2
∫ x

0
e−t2(1+u2)2tdtdu

= e(x)+1−
∫ 1

0
u2

(
−e−x2(1+u2)−1

1+u2

)
du

= e(x)+1−
∫ 1

0

u2

1+u2 du

where limx→∞ e(x) = 0. Now explain why 1−
∫ 1

0
u2

1+u2 du = 1
4 π. Hence

∫
∞

0 e−t2
dt =

√
π

2 .

6. Recall that for f a function, fy (x) = f (x−y) . Find a relationship between F fy (t)
and F f (t) given that f ∈ L1 (Rn).

7. For f ∈ L1 (Rn) , simplify F f (t+y) .

8. For f ∈ L1 (Rn) and c a nonzero real number, show F f (ct) = Fg(t) where g(x) =
f
( x

c

)
.

9. Suppose that f ∈ L1 (R) and that
∫
|x| | f (x)|dx < ∞. Find a way to use the Fourier

transform of f to compute
∫

x f (x)dx.

10. Suppose f ∈ G . Go over why F( fx j)(t) = it jF f (t).
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11. Let f ∈ G and let k be a positive integer.

∥ f∥k,2 ≡ (∥ f∥2
2 + ∑
|α|≤k
∥Dα f∥2

2)
1/2.

One could also define

∥| f∥|k,2 ≡ (
∫

Rn
|F f (x)|2(1+ |x|2)kdx)1/2.

Show both ∥ ∥k,2 and ∥| ∥|k,2 are norms on G and that they are equivalent. These
are Sobolev space norms. For which values of k does the second norm make sense?
How about the first norm? Since they are equivalent norms, we usually just use ∥∥k,2
or ∥∥Hk(Rn).

12. ↑Define Hk(Rn),k ≥ 0 by f ∈ L2(Rn) such that

(
∫
|F f (x)|2(1+ |x|2)kdx)

1
2 < ∞,

∥| f∥|k,2 ≡ (
∫
|F f (x)|2(1+ |x|2)kdx)

1
2.

Show Hk(Rn) is a Banach space, and that if k is a positive integer, Hk(Rn) ={
f ∈ L2(Rn) : there exists {u j} ⊆ G with ∥u j − f∥2 → 0 and {u j} is a Cauchy se-
quence in ∥ ∥k,2 of Problem 11}. This is one way to define Sobolev Spaces. Hint:
One way to do the second part of this is to define a new measure µ by µ (E) ≡∫

E

(
1+ |x|2

)k
dx.Then show µ is a Borel measure which is inner and outer regu-

lar and show there exists {gm} such that gm ∈ G and gm → F f in L2(µ). Thus
gm = F fm, fm ∈ G because F maps G onto G . Then by Problem 11, { fm } is Cauchy
in the norm ∥ ∥k,2. By using the countable version of G in which the polynomials all
have rational coefficients and in e−a|x|2 the a is a positive rational, show that Hk (Rn)
is separable.

13. ↑ If 2k > n, show that if f ∈ Hk(Rn), then f equals a bounded continuous func-
tion a.e. Hint: Show that for k this large, F f ∈ L1(Rn), and then use Problem 1 or
Theorem 11.6.11. To do this, write

|F f (x)|= |F f (x)|(1+ |x|2)
k
2 (1+ |x|2)

−k
2 ,

So ∫
|F f (x)|dx =

∫
|F f (x)|(1+ |x|2)

k
2 (1+ |x|2)

−k
2 dx.

Use the Cauchy Schwarz inequality. This is an example of a Sobolev imbedding
Theorem.

14. For u ∈ G , define γu(x′) ≡ u(x′,0). Show that there is a constant C independent of
u such that ∫

Rn−1

∣∣γu
(
x′
)∣∣2 dx′ ≤C2 ∥u∥2

1,2

where this is the Sobolev norm described in Problem 11. Explain how this implies
that one can give a meaningful description of the value of u on an n−1 dimensional
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subspace even though this n− 1 dimensional subspace has measure zero, whenever
of u ∈ H1 (Rn). Hint: u(x′,0) =

∫
∞

0 Dn

(
−e−s2

u(x′,s)
)

ds =
∫

∞

0 −2se−s2
u(x′,s)−

e−s2
Dnu(x′,s)ds.

Thus ∣∣γu
(
x′
)∣∣2 ≤C

(∫
∞

0
2se−s2 ∣∣u(x′,s)∣∣2 ds+

∫
∞

0
e−s2 ∣∣Dnu

(
x′,s
)∣∣2 ds

)
.

Now do
∫
Rn−1 to both sides.

15. For u ∈ G , let γu(x′) ≡ u(x′,0) . Justify the following arguments. F ′ refers to the
Fourier transform with respect to x′, (x1, ...,xn−1). This and the next problem are on
a more refined version of Problem 14.∫

R
Fu
(
x′,xn

)
dxn = lim

ε→0

∫
R

e−(εxn)
2
Fu
(
x′,xn

)
dxn

= lim
ε→0

(
1

2π

)n/2 ∫
Rn

u
(
y′,yn

)
e−ix′·y′

∫
R

e−(εxn)
2
e−ixnyndxndy′dyn

= lim
ε→0

Kn

∫
Rn

u
(
y′,yn

)
e−ix′·y′e−ε2 y2

n
4

∫
R

e−ε2
(

xn+
iyn
2

)2

dxndy′dyn

= lim
ε→0

Kn

∫
Rn

u
(
y′,yn

)
e−ix′·y′e−ε2 y2

n
4

1
ε

dy′dyn

= K̂n

∫
Rn

u
(
y′,0

)
e−ix′·y′dy′

F ′ (γu)
(
x′
)
=Cn

∫
R

Fu
(
x′,xn

)
dxn.

16. ↑First show that if a > 0 and t > 1/2, then
∫
R
(
a2 + x2

)−t dx <Cta1−2t . Next explain
the following steps where Kn is a constant depending on n∫

Rn−1

(
1+
∣∣y′∣∣2)s ∣∣Fγu

(
y′
)∣∣2 dy′

= Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s

∣∣∣∣∫RFu
(
y′,yn

)
dyn

∣∣∣∣2 dy′

=Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s

∣∣∣∣∫RFu
(
y′,yn

)(
1+ |y|2

)t/2(
1+ |y|2

)−t/2
dyn

∣∣∣∣2 dy′

Now apply the Cauchy Schwarz inequality to get:

≤ Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s ∫

R

∣∣Fu
(
y′,yn

)∣∣2(1+ |y|2
)t

dyn

·
∫
R

(
1+ |y|2

)−t
dyndy′.

Now use the first part with a2 = 1+ |y′|2. Obtain

≤ Cn

∫
Rn−1

(
1+
∣∣y′∣∣2)s(

1+
∣∣y′∣∣2)(1−2t)/2

·
∫
R

∣∣Fu
(
y′,yn

)∣∣2(1+ |y|2
)t

dyndy′.
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Conclude that if s+ 1−2t
2 = s+ 1

2 − t ≤ 0 and t > 1/2, then ∥γ(u)∥2
s,2 ≤Cn ∥u∥2

t,2. In
particular, if t = 1 and s = 1/2, you have ∥γ(u)∥2

(1/2),2 ≤Cn ∥u∥2
1,2 . This exhibits the

phenomenon of the loss of 1/2 derivative when considering γu on an n− 1 dimen-
sional subspace.

17. In dealing with Sobolev spaces, the following interpolation inequality is very useful.
Let 0≤ r < s < t. Then if u ∈ Ht (Rn) ,

∥u∥Hs(Rn) ≤ ∥u∥
θ

Hr(Rn) ∥u∥
1−θ

Ht (Rn)

where θ ∈ (0,1) such that θr+(1−θ) t = s. Hint:

∥u∥Hs(Rn) =

(∫
Rn

(
1+ |x|2

)θr(
1+ |x|2

)(1−θ)t
|Fu(x)|2 dx

)1/2

.

Regard |Fu(x)|2 dx = dµ as a measure and use Holder’s inequality.

(∫
Rn
|Fu(x)|2

(
1+ |x|2

)s
dx
)1/2

=

(∫
Rn

(
1+ |x|2

)θr(
1+ |x|2

)(1−θ)t
|Fu(x)|2 dx

)1/2

≤


(∫
Rn

(
1+ |x|2

)r
|Fu(x)|2 dx

)θ

·(∫
Rn

(
1+ |x|2

)t
|Fu(x)|2 dx

)1−θ


1/2

= ∥u∥θ

Hr(Rn) ∥u∥
1−θ

Ht (Rn)

18. If ε > 0 and if θr+(1−θ) t = s,0≤ r < s < t, show that there exists a constant Cε

such that
∥u∥Hs(Rn) ≤ ε ∥u∥Ht (Rn)+Cε ∥u∥Hr(Rn)

Hint: For r large and positive,

∥u∥Hs(Rn) ≤
(

r∥u∥Hr(Rn)

)θ 1
rθ
∥u∥1−θ

Ht (Rn)

=
(

r∥u∥Hr(Rn)

)θ

((
1
rθ

)1/(1−θ)

∥u∥Ht (Rn)

)1−θ

.

Now recall Proposition 9.3.2 and then pick r sufficiently large. This is very use-
ful for checking conditions needed in non-linear partial differential equations and
inclusions.
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Chapter 12

Banach Spaces
12.1 Theorems Based on Baire Category

Banach spaces are complete normed linear spaces. These have been mentioned throughout
the book so far. In this chapter are the most significant theorems relative to Banach spaces
and more generally normed linear spaces. The main theorems to be presented here are the
uniform boundedness theorem, the open mapping theorem, the closed graph theorem, and
the Hahn Banach Theorem. The first three of these theorems come from the Baire category
theorem which is about to be presented. They are topological in nature. The Hahn Banach
theorem has nothing to do with topology. First some definitions and a review of the notion
of a Banach space. Always we are considering a complete normed linear space of the sort
discussed earlier. As noted earlier, Banach spaces are all examples of metric space so all
the theory of metric space applies. In particular,

Proposition 12.1.1 The open ball B(z,r) is an open set. Also B(z,r) = D(z,r) ≡
{x:∥x− z∥ ≤ r} . In an arbitrary metric space, B(z,r)⊆ D(z,r).

Proof: First note that D(z,r) is closed because x→ ∥x− z∥ is continuous by Theorem
2.4.8 for example, so inverse images of closed sets are closed. Thus D(z,r) is a closed set
containing B(z,r) so B(z,r) ⊆ D(z,r). In normed linear space these are equal because if
∥z− x∥ = r, then for n ∈ N, consider xn = x+ n−1

n (z− x). ∥xn− x∥ = n−1
n r < r so xn ∈

B(z,r) but ∥xn− z∥=
∥∥x+ n−1

n (z− x)− z
∥∥= 1

n ∥x− z∥ so z, being the limit of a sequence
of points of B(z,r) is in B(z,r). ■

Note here that equality does not work in general metric space because you could have
an infinite set with the metric d (x,y) = 0 if x = y and 1 if x ̸= y. Then B(x,1) would consist
of only x while D(x,1) would yield the whole set.

Recall also that |∥z∥−∥w∥| ≤ ∥z−w∥ , note ∥z∥= ∥z−w+w∥≤ ∥z−w∥+∥w∥which
implies ∥z∥−∥w∥≤ ∥z−w∥ and now switching z and w, yields ∥w∥−∥z∥≤ ∥z−w∥which
implies |∥w∥−∥z∥| ≤ ∥w− z∥ . This was done earlier. It is just another version of the
triangle inequality.

Also recall the definition of a Cauchy sequence.

Definition 12.1.2 {xn} is called a Cauchy sequence if for every ε > 0 there exists
N such that if m,n≥ N, then ∥xn− xm∥< ε.

As discussed earlier in Section 2.9,

Definition 12.1.3 L (X ,Y ) is the space of continuous linear maps from X to Y .
Recall also that if L ∈L (X ,Y ) ,∥L∥ ≡ sup{∥Lx∥ : ∥x∥ ≤ 1} and that this is well defined
and ∥L◦M∥ ≤ ∥L∥∥M∥ .

As noted earlier, in Section 2.9, whenever you have L∈L (Rp,Rq) , L is automatically
continuous. However, in infinite dimensional settings, this might not hold. Here is a simple
example.

Example 12.1.4 Let V denote all linear combinations of functions of the form e−αx2
for

α > 0. Thus typical elements of V are of the form ∑
n
k=1 β ke−αkx2

. Let L : V → C be given

297
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by L f ≡
∫
R f (x)dx and for a norm on V,∥ f∥ ≡ max{| f (x)| : x ∈ R} . Of course V is not

complete, but it is a normed linear space. Recall that∫
∞

−∞

e−x2
dx =

∫
∞

−∞

1
n

e−(x2/n2) =
√

π

where here n ∈ N. Consider the sequence of functions fn (x) ≡ 1
n e−(x2/n2). Its maximum

value is 1/n and so ∥ fn∥ → 0 but L fn fails to converge to the 0 function. Thus L is not
continuous although it is linear.

12.1.1 Bair Category Theorem
The following remarkable result is called the Baire category theorem. To get an idea of its
meaning, imagine you draw a line in the plane. The complement of this line is an open set
and is dense because every point, even those on the line, are limit points of this open set.
Now draw another line. The complement of the two lines is still open and dense. Keep
drawing lines and looking at the complements of the union of these lines. You always have
an open set which is dense. Now what if there were countably many lines? The Baire
category theorem implies the complement of the union of these lines is dense. In particular
it is nonempty. Thus you cannot write the plane as a countable union of lines. This is a
rather rough description of this very important theorem. The precise statement and proof
follow. These theorems work more generally for a complete metric space so I am stating
them for this case.

Theorem 12.1.5 Let X be a complete metric space and let {Un}∞
n=1 be a sequence

of open subsets of X satisfying Un = X (Un is dense). Then D ≡ ∩∞
n=1Un is a dense subset

of X.

Proof: Let p ∈ X and let r0 > 0. I need to show D∩B(p,r0) ̸= /0. Since U1 is dense,
there exists p1 ∈U1∩B(p,r0), an open set. Let p1 ∈ B(p1,r1)⊆ B(p1,r1)⊆U1∩B(p,r0)
and r1 < 2−1. This is possible because U1 ∩B(p,r0) is an open set and so there exists r1
such that B(p1,2r1) ⊆U1∩B(p,r0). But B(p1,r1) ⊆ B(p1,r1) ⊆ D(p1,r1) ⊆ B(p1,2r1)
by Proposition 12.1.1.

r0 p

p1

There exists p2 ∈U2∩B(p1,r1) because U2 is dense. Let

p2 ∈ B(p2,r2)⊆ B(p2,r2)⊆U2∩B(p1,r1)⊆U1∩U2∩B(p,r0).

and let r2 < 2−2. Continue in this way. Thus rn < 2−n,

B(pn,rn)⊆U1∩U2∩ ...∩Un∩B(p,r0),

B(pn,rn)⊆ B(pn−1,rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n are
contained in B(pn,rn), a set whose diameter is no larger than 2−n. Since X is complete,
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there exists p∞ such that limn→∞ pn = p∞. Since all but finitely many terms of {pn} are in
B(pm,rm), it follows that p∞ ∈ B(pm,rm) for each m. Therefore, p∞ ∈ ∩∞

m=1B(pm,rm) ⊆
∩∞

i=1Ui∩B(p,r0). ■
The following corollary is also called the Baire category theorem.

Corollary 12.1.6 Let X be a complete metric space and suppose X = ∪∞
i=1Fi where

each Fi is a closed set. Then for some i, interior Fi ̸= /0.

Proof: If all Fi has empty interior, then FC
i would be a dense open set. Therefore, from

Theorem 12.1.5, it would follow that

/0 = (∪∞
i=1Fi)

C = ∩∞
i=1FC

i ̸= /0.■

The set D of Theorem 12.1.5 is called a Gδ set because it is the countable intersection
of open sets. Thus D is a dense Gδ set.

12.1.2 Uniform Boundedness Theorem
The next big result is sometimes called the Uniform Boundedness theorem, or the Banach-
Steinhaus theorem. This is a very surprising theorem which implies that for a collection
of bounded linear operators, if they are bounded pointwise, then they are also bounded
uniformly. As an example of a situation in which pointwise bounded does not imply uni-
formly bounded, consider the functions fα (x)≡X(α,1) (x)x−1 for α ∈ (0,1). Clearly each
function is bounded and the collection of functions is bounded at each point of (0,1), but
there is no bound for all these functions taken together. One problem is that (0,1) is not a
Banach space. Therefore, the functions cannot be linear. Since the theorem is about linear
functions, it only applies to linear spaces.

Theorem 12.1.7 Let X be a Banach space and let Y be a normed linear space. Let
{Lα}α∈Λ be a collection of elements of L (X ,Y ). Then one of the following happens.

a.) sup{∥Lα∥ : α ∈ Λ}< ∞

b.) There exists a dense Gδ set, D, such that for all x ∈ D,

sup{∥Lα x∥ α ∈ Λ}= ∞.

Proof: For each n ∈ N, define Un = {x ∈ X : sup{∥Lα x∥ : α ∈ Λ}> n}. Then Un is an
open set because if x ∈Un, then there exists α ∈ Λ such that ∥Lα x∥> n. But then, since Lα

is continuous, this situation persists for all y sufficiently close to x, say for all y ∈ B(x,δ ).
Then B(x,δ )⊆Un which shows Un is open.

Case b.) is obtained from Theorem 12.1.5 if each Un is dense.
The other case is that for some n, Un is not dense. If this occurs, there exists x0 and

r > 0 such that for all x∈B(x0,r), ∥Lα x∥≤ n for all α . Now if y∈B(0,r), x0+y∈B(x0,r).
Consequently, for all such y, ∥Lα(x0+y)∥ ≤ n. This implies that for all α ∈Λ and ∥y∥< r,

∥Lα y∥ ≤ n+∥Lα(x0)∥ ≤ 2n.

Therefore, if ∥y∥ ≤ 1,
∥∥ r

2 y
∥∥< r and so for all α , ∥Lα

( r
2 y
)
∥ ≤ 2n. Now multiplying by r/2

it follows that whenever ∥y∥ ≤ 1, ∥Lα (y)∥ ≤ 4n/r. Hence case a.) holds. ■
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12.1.3 Open Mapping Theorem
Another remarkable theorem which depends on the Baire category theorem is the open
mapping theorem. Unlike Theorem 12.1.7 it requires both X and Y to be Banach spaces.

Theorem 12.1.8 Let X and Y be Banach spaces, let L ∈L (X ,Y ), and suppose L
is onto. Then L maps open sets onto open sets.

To aid in the proof, here is a lemma.

Lemma 12.1.9 Let a and b be positive constants and suppose

B(0,a)⊆ L(B(0,b)).

Then
L(B(0,b))⊆ L(B(0,2b)).

Proof of Lemma 12.1.9: Let y ∈ L(B(0,b)). There exists x1 ∈ B(0,b) such that

∥y−Lx1∥<
a
2
.

Now this implies
2y−2Lx1 ∈ B(0,a)⊆ L(B(0,b)).

Therefore, there exists x2 ∈ B(0,b) such that ∥2y−2Lx1−Lx2∥< a/2. Hence

∥4y−4Lx1−2Lx2∥< a

and there exists x3 ∈ B(0,b) such that

∥4y−4Lx1−2Lx2−Lx3∥< a/2

Continuing in this way, there exist x1,x2,x3,x4, ... in B(0,b) such that∥∥∥∥∥2ny−
n

∑
i=1

2n−(i−1)L(xi)

∥∥∥∥∥< a

which implies ∥∥∥∥∥y−
n

∑
i=1

2−(i−1)L(xi)

∥∥∥∥∥=
∥∥∥∥∥y−L

(
n

∑
i=1

2−(i−1)(xi)

)∥∥∥∥∥< 2−na (12.1)

Now consider the partial sums of the series, ∑
∞
i=1 2−(i−1)xi.∥∥∥∥∥ n

∑
i=m

2−(i−1)xi

∥∥∥∥∥≤ b
∞

∑
i=m

2−(i−1) = b 2−m+2.

Therefore, these partial sums form a Cauchy sequence and so since X is complete, there
exists x = ∑

∞
i=1 2−(i−1)xi. Letting n→ ∞ in 12.1 yields ∥y−Lx∥= 0. Now

∥x∥= lim
n→∞

∥∥∥∥∥ n

∑
i=1

2−(i−1)xi

∥∥∥∥∥
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≤ lim
n→∞

n

∑
i=1

2−(i−1) ∥xi∥< lim
n→∞

n

∑
i=1

2−(i−1)b = 2b.

This proves the lemma. ■
Proof of Theorem 12.1.8: Y = ∪∞

n=1L(B(0,n)). Thus Y is a countable union of closed
sets. By Corollary 12.1.6, L(B(0,n0)) has nonempty interior for some n0. Thus

B(y,r)⊆ L(B(0,n0))

for some y and some r > 0. Since L is linear B(−y,r) ⊆ L(B(0,n0)) also. Here is why.
If z ∈ B(−y,r), then −z ∈ B(y,r) and so there exists xn ∈ B(0,n0) such that Lxn → −z.
Therefore, L(−xn)→ z and−xn ∈ B(0,n0) also. Therefore z∈ L(B(0,n0)). Then it follows
that

B(0,r) ⊆ B(y,r)+B(−y,r)

≡ {y1 + y2 : y1 ∈ B(y,r) and y2 ∈ B(−y,r)}
⊆ L(B(0,2n0))

The reason for the last inclusion is that from the above, if y1 ∈ B(y,r) and y2 ∈ B(−y,r),
there exists xn,zn ∈ B(0,n0) such that

Lxn→ y1, Lzn→ y2.

Therefore, ∥xn + zn∥ ≤ 2n0 and so (y1 + y2) ∈ L(B(0,2n0)).
By Lemma 12.1.9, L(B(0,2n0))⊆ L(B(0,4n0)) which shows

B(0,r)⊆ L(B(0,4n0)).

Letting a = r(4n0)
−1, it follows, since L is linear, that B(0,a)⊆ L(B(0,1)). It follows since

L is linear,

L(B(0,r))⊇ B(0,ar). (12.2)

Now let U be open in X and let x+B(0,r) = B(x,r)⊆U . Using 12.2,

L(U)⊇ L(x+B(0,r))

= Lx+L(B(0,r))⊇ Lx+B(0,ar) = B(Lx,ar).

Hence Lx ∈ B(Lx,ar)⊆ L(U) which shows that every point, Lx ∈ LU , is an interior point
of LU and so LU is open. ■

This theorem is surprising because it implies that if |·| and ∥·∥ are two norms with
respect to which a vector space X is a Banach space such that |·| ≤ K ∥·∥, then there exists
a constant k, such that ∥·∥ ≤ k |·| . This can be useful because sometimes it is not clear how
to compute k when all that is needed is its existence. To see the open mapping theorem
implies this, consider the identity map idx = x. Then id : (X ,∥·∥)→ (X , |·|) is continuous
and onto. Hence id is an open map which implies id−1 is continuous. Theorem 2.9.1 gives
the existence of the constant k.
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12.1.4 Closed Graph Theorem

Definition 12.1.10 Let f : D→ E. The graph of f consists of the set of all ordered
pairs of the form {(x, f (x)) : x ∈ D}.

Definition 12.1.11 If X and Y are normed linear spaces, make X ×Y into a
normed linear space by using the norm ∥(x,y)∥ = max(∥x∥,∥y∥) along with component-
wise addition and scalar multiplication. Thus a(x,y)+b(z,w)≡ (ax+bz,ay+bw).

There are other ways to give a norm for X×Y . For example, you could define ∥(x,y)∥=
∥x∥+∥y∥

Lemma 12.1.12 The norm defined in Definition 12.1.11 on X ×Y along with the defi-
nition of addition and scalar multiplication given there make X ×Y into a normed linear
space.

Proof: The only axiom for a norm which is not obvious is the triangle inequality.
Therefore, consider

∥(x1,y1)+(x2,y2)∥ = ∥(x1 + x2,y1 + y2)∥
= max(∥x1 + x2∥ ,∥y1 + y2∥)
≤ max(∥x1∥+∥x2∥ ,∥y1∥+∥y2∥)

≤ max(∥x1∥ ,∥y1∥)+max(∥x2∥ ,∥y2∥)
= ∥(x1,y1)∥+∥(x2,y2)∥ .

It is obvious X×Y is a vector space from the above definition. ■

Lemma 12.1.13 If X and Y are Banach spaces, then X ×Y with the norm and vector
space operations defined in Definition 12.1.11 is also a Banach space.

Proof: The only thing left to check is that the space is complete. But this follows from
the simple observation that {(xn,yn)} is a Cauchy sequence in X ×Y if and only if {xn}
and {yn} are Cauchy sequences in X and Y respectively. Thus if {(xn,yn)} is a Cauchy
sequence in X ×Y , it follows there exist x and y such that xn → x and yn → y. But then
from the definition of the norm, (xn,yn)→ (x,y). ■

Lemma 12.1.14 Every closed subspace of a Banach space is a Banach space.

Proof: If F ⊆ X where X is a Banach space and {xn} is a Cauchy sequence in F , then
since X is complete, there exists a unique x ∈ X such that xn → x. However this means
x ∈ F = F since F is closed. ■

Definition 12.1.15 Let X and Y be Banach spaces and let D ⊆ X be a subspace.
A linear map L : D→ Y is said to be closed if its graph is a closed subspace of X ×Y .
Equivalently, L is closed if xn→ x and Lxn→ y implies x ∈ D and y = Lx.
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Note the distinction between closed and continuous. If the operator is closed the as-
sertion that y = Lx only follows if it is known that the sequence {Lxn} converges. In the
case of a continuous operator, the convergence of {Lxn} follows from the assumption that
xn→ x. It is not always the case that a mapping which is closed is necessarily continuous.
Consider the function f (x) = tan(x) if x is not an odd multiple of π

2 and f (x)≡ 0 at every
odd multiple of π

2 . Then the graph is closed and the function is defined on R but it clearly
fails to be continuous. Of course this function is not linear. You could also consider the
map,

d
dx

:
{

y ∈C1 ([0,1]) : y(0) = 0
}
≡ D→C ([0,1]) .

where the norm is the uniform norm on C ([0,1]) ,∥y∥
∞

. If y ∈ D, then y(x) =
∫ x

0 y′ (t)dt.
Therefore, if dyn

dx → f ∈C ([0,1]) and if yn→ y in C ([0,1]) it follows that

yn (x) =
∫ x

0
dyn(t)

dx dt
↓ ↓

y(x) =
∫ x

0 f (t)dt

and so by the fundamental theorem of calculus f (x) = y′ (x) and so the mapping is closed.
It is obviously not continuous because it takes y(x) and y(x)+ 1

n sin(nx) to two functions
which are far from each other even though these two functions are very close in C ([0,1]).
Furthermore, it is not defined on the whole space, C ([0,1]).

The next theorem, the closed graph theorem, gives conditions under which closed im-
plies continuous.

Theorem 12.1.16 Let X and Y be Banach spaces and suppose L : X →Y is closed
and linear. Then L is continuous.

Proof: Let G be the graph of L. G = {(x,Lx) : x ∈ X}. By Lemma 12.1.14 it follows
that G is a Banach space. Define P : G→ X by P(x,Lx) = x. P maps the Banach space G
onto the Banach space X and is continuous and linear. By the open mapping theorem, P
maps open sets onto open sets. Since P is also one to one, this says that P−1 is continuous.
Thus

∥∥P−1x
∥∥≤ K ∥x∥. Hence

∥Lx∥ ≤max(∥x∥,∥Lx∥)≤ K ∥x∥

By Theorem 2.9.1 on Page 68, this shows L is continuous. ■
The following corollary is quite useful. It shows how to obtain a new norm on the

domain of a closed operator such that the domain with this new norm becomes a Banach
space.

Corollary 12.1.17 Let L : D ⊆ X → Y where X ,Y are a Banach spaces, and L is a
closed operator. Then define a new norm on D by ∥x∥D ≡ ∥x∥X +∥Lx∥Y . Then D with this
new norm is a Banach space.

Proof: If {xn} is a Cauchy sequence in D with this new norm, it follows both {xn} and
{Lxn} are Cauchy sequences and therefore, they converge. Since L is closed, xn → x and
Lxn→ Lx for some x ∈ D. Thus ∥xn− x∥D→ 0. ■
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12.2 Basic Theory of Hilbert Spaces
The norm in a Hilbert space acts just like the absolute value in R or C both algebraically
and geometrically so I will often use |·| to denote the norm in a Hilbert space to emphasize
this fact.

Lemma 12.2.1 For x ∈ H, an inner product space,

∥x∥= sup
∥y∥≤1

|(x,y)| (12.3)

Proof: By the Cauchy Schwarz inequality, if x ̸= 0, ∥x∥≥ sup∥y∥≤1 |(x,y)| ≥
(

x, x
∥x∥

)
=

∥x∥ . It is obvious that 12.3 holds in the case that x = 0.
In Hilbert space, one can define a projection map onto closed convex nonempty sets.

Definition 12.2.2 A set, K, is convex if whenever λ ∈ [0,1] and x,y ∈ K, λx+(1−
λ )y ∈ K.

Theorem 12.2.3 Let K be a closed convex nonempty subset of a Hilbert space, H,
and let x ∈H. Then there exists a unique point Px ∈ K such that ∥Px−x∥ ≤ ∥y−x∥ for all
y ∈ K.

Proof: Consider uniqueness. Suppose that z1 and z2 are two elements of K such that
for i = 1,2,

∥zi− x∥ ≤ ∥y− x∥ (12.4)

for all y ∈ K. Also, note that since K is convex, z1+z2
2 ∈ K. Therefore, by the parallelogram

identity, Proposition 1.7.2 on Page 17,

∥z1− x∥2 ≤ ∥ z1 + z2

2
− x∥2 = ∥ z1− x

2
+

z2− x
2
∥2

= 2(∥ z1− x
2
∥2 +∥ z2− x

2
∥2)−∥ z1− z2

2
∥2

=
1
2
∥z1− x∥2 +

1
2
∥z2− x∥2−∥ z1− z2

2
∥2

≤ ∥z1− x∥2−∥ z1− z2

2
∥2,

where the last inequality holds because of 12.4 letting zi = z2 and y = z1. Hence z1 = z2
and this shows uniqueness.

Now let λ = inf{∥x− y∥ : y ∈ K} and let yn be a minimizing sequence. This means
{yn} ⊆ K satisfies limn→∞ ∥x− yn∥= λ . Now the following follows from properties of the
norm.

∥yn− x+ ym− x∥2 = 4(∥yn + ym

2
− x∥2)

Then by the parallelogram identity, and convexity of K, yn+ym
2 ∈ K, and so

∥(yn− x)− (ym− x)∥2 = 2(∥yn− x∥2 +∥ym− x∥2)−

=∥yn−x+ym−x∥2︷ ︸︸ ︷
4(∥yn + ym

2
− x∥2)

≤ 2(∥yn− x∥2 +∥ym− x∥2)−4λ
2.
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Since ∥x−yn∥→ λ , this shows {yn−x} is a Cauchy sequence. Thus also {yn} is a Cauchy
sequence. Since H is complete, yn→ y for some y ∈ H which must be in K because K is
closed. Therefore ∥x− y∥= limn→∞ ∥x− yn∥= λ . Let Px = y. ■

Corollary 12.2.4 Let K be a closed, convex, nonempty subset of a Hilbert space, H,
and let x ∈ H. Then for z ∈ K, z = Px if and only if

Re(x− z,y− z)≤ 0 (12.5)

for all y ∈ K.

Before proving this, consider what it says in the case where the Hilbert space is Rn.

K
y θ

x
z

Condition 12.5 says the angle, θ , shown in the di-
agram is always obtuse. Remember from calculus,
the sign of x ·y is the same as the sign of the co-
sine of the included angle between x and y. Thus,
in finite dimensions, the conclusion of this corollary
says that z = Px exactly when the angle of the in-
dicated angle is obtuse. Surely the picture suggests
this is reasonable.

The inequality 12.5 is an example of a variational inequality and this corollary charac-
terizes the projection of x onto K as the solution of this variational inequality.

Proof of Corollary: Let z ∈ K and let y ∈ K also. Since K is convex, it follows that if
t ∈ [0,1], z+ t(y− z) = (1− t)z+ ty ∈ K. Furthermore, every point of K can be written in
this way. (Let t = 1 and y ∈ K.) Therefore, z = Px if and only if for all y ∈ K and t ∈ [0,1],

∥x− (z+ t(y− z))∥2 = ∥(x− z)− t(y− z)∥2 ≥ ∥x− z∥2

for all t ∈ [0,1] and y ∈ K if and only if for all t ∈ [0,1] and y ∈ K

∥x− z∥2 + t2 ∥y− z∥2−2t Re(x− z,y− z)≥ ∥x− z∥2 (12.6)

If and only if for all t ∈ [0,1], t2 ∥y− z∥2− 2t Re(x− z,y− z) ≥ 0. Now this is equivalent
to 12.6 holding for all t ∈ (0,1). Therefore, dividing by t ∈ (0,1) , 12.6 is equivalent to
t ∥y− z∥2−2Re(x− z,y− z)≥ 0 for all t ∈ (0,1) which is equivalent to 12.5. ■

Corollary 12.2.5 Let K be a nonempty convex closed subset of a Hilbert space, H.
Then the projection map, P is continuous. In fact, |Px−Py| ≤ |x− y| .

Proof: Let x,x′ ∈ H. Then by Corollary 12.2.4,

Re
(
x′−Px′,Px−Px′

)
≤ 0, Re

(
x−Px,Px′−Px

)
≤ 0.

Hence

0 ≤ Re
(
x−Px,Px−Px′

)
−Re

(
x′−Px′,Px−Px′

)
= Re

(
x− x′,Px−Px′

)
−
∣∣Px−Px′

∣∣2
and so |Px−Px′|2 ≤ |x− x′| |Px−Px′| .■

The next corollary is a more general form for the Brouwer fixed point theorem. This
was discussed in exercises and elsewhere earlier. However, here is a complete proof.
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Corollary 12.2.6 Let f : K→ K where K is a convex compact subset of Rn. Then f has
a fixed point.

Proof: Let K ⊆ B(0,R) and let P be the projection map onto K. Then consider the map
f◦P which maps B(0,R) to B(0,R) and is continuous. By the Brouwer fixed point theorem
for balls, this map has a fixed point. Thus there exists x such that f ◦P(x) = x. Now the
equation also requires x ∈ K and so P(x) = x. Hence f(x) = x. ■

Definition 12.2.7 Let H be a vector space and let U and V be subspaces. U⊕V =
H if every element of H can be written as a sum of an element of U and an element of V in
a unique way.

The case where the closed convex set is a closed subspace is of special importance and
in this case the above corollary implies the following.

Corollary 12.2.8 Let K be a closed subspace of a Hilbert space, H, and let x ∈ H.
Then for z ∈ K, z = Px if and only if

(x− z,y) = 0 (12.7)

for all y ∈ K. Furthermore, H = K⊕K⊥ where

K⊥ ≡ {x ∈ H : (x,k) = 0 for all k ∈ K}

and
∥x∥2 = ∥x−Px∥2 +∥Px∥2 . (12.8)

Proof: Since K is a subspace, the condition 12.5 implies Re(x− z,y)≤ 0 for all y ∈ K.
Replacing y with −y, it follows Re(x− z,−y) ≤ 0 which implies Re(x− z,y) ≥ 0 for all
y. Therefore, Re(x− z,y) = 0 for all y ∈ K. Now let |α| = 1 and α (x− z,y) = |(x− z,y)|.
Since K is a subspace, it follows αy ∈ K for all y ∈ K. Therefore,

0 = Re(x− z,αy) = (x− z,αy) = α (x− z,y) = |(x− z,y)|.

This shows that z = Px, if and only if 12.7.
For x ∈ H, x = x−Px+Px and from what was just shown, x−Px ∈ K⊥ and Px ∈ K.

This shows that K⊥+K = H. Is there only one way to write a given element of H as a
sum of a vector in K with a vector in K⊥? Suppose y+ z = y1 + z1 where z,z1 ∈ K⊥ and
y,y1 ∈ K. Then (y− y1) = (z1− z) and so from what was just shown, (y− y1,y− y1) =
(y− y1,z1− z) = 0 which shows y1 = y and consequently z1 = z. Finally, letting z = Px,

∥x∥2 = (x− z+ z,x− z+ z) = ∥x− z∥2 +(x− z,z)+(z,x− z)+∥z∥2

= ∥x− z∥2 +∥z∥2 ■

The following theorem is called the Riesz representation theorem for the dual of a
Hilbert space. If z ∈ H then define an element f ∈ H ′ by the rule (x,z) ≡ f (x). It follows
from the Cauchy Schwarz inequality and the properties of the inner product that f ∈ H ′.
The Riesz representation theorem says that all elements of H ′ are of this form.

Theorem 12.2.9 Let H be a Hilbert space and let f ∈H ′. Then there exists a unique
z ∈ H such that f (x) = (x,z) for all x ∈ H.
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Proof: Letting y,w ∈ H the assumption that f is linear implies

f (y f (w)− f (y)w) = f (w) f (y)− f (y) f (w) = 0

which shows that y f (w)− f (y)w ∈ f−1 (0), which is a closed subspace of H since f is
continuous. If f−1 (0) = H, then f is the zero map and z = 0 is the unique element of H
which satisfies f (x) = (x,z).

If f−1 (0) ̸= H, pick u /∈ f−1 (0) and let w≡ u−Pu ̸= 0. Thus Corollary 12.2.8 implies
(y,w) = 0 for all y ∈ f−1 (0). In particular, let y = x f (w)− f (x)w where x ∈H is arbitrary.
Therefore, 0 = ( f (w)x− f (x)w,w) = f (w)(x,w)− f (x)∥w∥2. Thus, solving for f (x) and

using the properties of the inner product, f (x) = (x, f (w)w
∥w∥2 ). Let z = f (w)w/∥w∥2. This

proves the existence of z. If f (x) = (x,zi) i = 1,2, for all x ∈ H, then for all x ∈ H, then
(x,z1− z2) = 0 which implies, upon taking x = z1− z2 that z1 = z2. ■

If R : H→H ′ is defined by Rx(y)≡ (y,x) , the Riesz representation theorem above states
this map is onto. This map is called the Riesz map. It is routine to show R is conjugate
linear and ∥Rx∥= ∥x∥. In fact,

R(αx+βy)(u) ≡ (u,αx+βy) = ᾱ (u,x)+ β̄ (u,y)

≡ ᾱRx(u)+ β̄Ry(u) =
(
ᾱRx+ β̄Ry

)
(u)

so it is conjugate linear meaning it goes across plus signs and you factor out conjugates.

∥Rx∥ ≡ sup
∥y∥≤1

|Rx(y)| ≡ sup
∥y∥≤1

|(y,x)|= ∥x∥

12.2.1 Partially Ordered Sets
Recall the notion of a partially ordered set.

Definition 12.2.10 Let F be a nonempty set. F is called a partially ordered set
if there is a relation, denoted here by ≤, such that

x≤ x for all x ∈F .

If x≤ y and y≤ z then x≤ z.

C ⊆F is said to be a chain if every two elements of C are related. This means that if
x,y ∈ C , then either x≤ y or y≤ x. Sometimes a chain is called a totally ordered set. C is
said to be a maximal chain if whenever D is a chain containing C , D = C .

For a discussion of the next theorem, see Theorem 1.4.2 on Page 9.

Theorem 12.2.11 (Hausdorff Maximal Principle) Let F be a nonempty partially
ordered set. Then there exists a maximal chain.

12.2.2 Maximal Orthonormal Sets in Hilbert Space

Definition 12.2.12 Let H be a Hilbert space and let D ⊆ H. Then D is called an
orthonormal set if whenever x,y∈D, then (x,y)= 0 if x ̸= y and (x,x)= 1. The orthonormal
set D is called maximal if whenever D̂ is an orthonormal set containing D, it follows that
D̂ = D.
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Then with this definition, the fundamental result about orthonormal sets in Hilbert space
is the following.

Theorem 12.2.13 Let H be a nonempty Hilbert space and let D0 be an orthonor-
mal set. Then

1. There exists a maximal orthonormal set D⊇ D0.

2. span(D) = H.

3. If H is separable, then D is countable.

4. In this case where H is separable and D = {dn}∞

n=1 , it follows that for any x∈H,x =
∑

∞
n=1 (x,dn)dn meaning the series converges in H to x. This is called the Fourier

series of x.

5. Also for x ∈ H, |x|2 = ∑
∞
n=1 |(x,bn)|2 .

Proof: 1.) First note that there exists such an orthonormal set D0. It could be x ∈ H
where |x| = 1. Let F consist of orthonormal sets containing D0 and partially order these
sets by set inclusion. By the Hausdorff maximal theorem, there is a maximal chain C . Let
D = ∪C . Then D is orthonormal because C is a chain and any pair of vectors in D must be
in a single element of C . D contains D0 and if D is not maximal, there must be some z /∈D
such that D∪{z} is also an orthonormal set. But then this contradicts the maximality of C
because C ∪{D∪{z}} would be larger chain.

2.) If there exists y ∈H \ span(D), note that span(D) is a closed subspace of H. There-
fore, y−Py is not 0 and z ≡ (y−Py)/ |y−Py| satisfies (z,x) = 0 for all x ∈ span(D). In
particular, (z,x) = 0 for all x∈D. Therefore, D is not maximal after all. Thus span(D) =H.

3.) Now suppose H is separable. If x ̸= y,x,y ∈D, then |x− y|2 = |x|2 + |y|2 = 2 and so
|x− y|=

√
2. Thus the balls B(x,1) for x ∈ D are disjoint. Since H is separable, there are

only countably many.
4.) Let D = {dn}∞

n=1. Let Vk ≡ span{d1, ...,dk} . Now consider the problem of choosing
αk to minimize

∣∣x−∑
k
n=1 αndn

∣∣2 . This expression to minimize equals∣∣∣∣∣x− k

∑
n=1

(x,dn)dn +
k

∑
n=1

((x,dn)−αn)dn

∣∣∣∣∣
2

and some algebra using the dn are orthonormal shows this equals∣∣∣∣∣x− k

∑
n=1

(x,dn)dn

∣∣∣∣∣
2

+
k

∑
n=1
|(x,dn)−αn|2 +2Re

k

∑
n=1

(
(x,dn)−αn

)
(x,dn)

−2Re
k

∑
n=1

(x,dn)
(
(x,dn)−αn

)
Thus the solution to the minimization problem has αn = (x,dn) . Since span(D) = H, it
follows that x = limk→∞ ∑

k
n=1 (x,dn)dn



12.3. HAHN BANACH THEOREM 309

5.) From 4.) and algebra,

0 = lim
k→∞

∣∣∣∣∣x− k

∑
n=1

(x,dn)dn

∣∣∣∣∣
2

= lim
k→∞

(
|x|2 +

k

∑
n=1
|(x,dn)|2−2

k

∑
n=1
|(x,dn)|2

)

= lim
k→∞

(
|x|2−

k

∑
n=1
|(x,dn)|2

)
■

12.3 Hahn Banach Theorem
The closed graph, open mapping, and uniform boundedness theorems are the three major
topological theorems in functional analysis. The other major theorem is the Hahn-Banach
theorem which has nothing to do with topology.

12.3.1 Gauge Functions and Hahn Banach Theorem

Definition 12.3.1 Let X be a real vector space ρ : X→R is called a gauge function
if

ρ(x+ y)≤ ρ(x)+ρ(y), ρ(ax) = aρ(x) if a≥ 0. (12.9)

Suppose M is a subspace of X and z /∈ M. Suppose also that f is a linear real-valued
function having the property that f (x) ≤ ρ(x) for all x ∈ M. Consider the problem of
extending f to M⊕Rz such that if F is the extended function, F(y) ≤ ρ(y) for all y ∈
M⊕Rz and F is linear. Since F is to be linear, it suffices to determine how to define F(z).
Letting a > 0, it is required to define F (z) such that the following hold for all x,y ∈M.

f (x)︷︸︸︷
F (x)+aF (z) = F(x+az)≤ ρ(x+az),

f (y)︷︸︸︷
F (y)−aF (z) = F(y−az)≤ ρ(y−az). (12.10)

Therefore, multiplying by a−1 12.9 implies that what is needed is to choose F (z) such that
for all x,y ∈M,

f (x)+F(z)≤ ρ(x+ z), f (y)−ρ(y− z)≤ F(z)

and that if F (z) can be chosen in this way, this will satisfy 12.10 for all x,y and the problem
of extending f will be solved. Hence it is necessary to choose F(z) such that for all x,y∈M

f (y)−ρ(y− z)≤ F(z)≤ ρ(x+ z)− f (x). (12.11)

Is there any such number between f (y)−ρ(y− z) and ρ(x+ z)− f (x) for every pair x,y ∈
M? This is where f (x)≤ ρ(x) on M and that f is linear is used. For x,y ∈M,

ρ(x+ z)− f (x)− [ f (y)−ρ(y− z)]

= ρ(x+ z)+ρ(y− z)− ( f (x)+ f (y))≥ ρ(x+ y)− f (x+ y)≥ 0.

Therefore there exists a number between the following two numbers

sup{ f (y)−ρ(y− z) : y ∈M} , inf{ρ(x+ z)− f (x) : x ∈M} .

Choose F(z) to satisfy 12.11. This has proved the following lemma.
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Lemma 12.3.2 Let M be a subspace of X, a real linear space, and let ρ be a gauge
function on X. Suppose f : M→ R is linear, z /∈M, and f (x) ≤ ρ (x) for all x ∈M. Then
f can be extended to M⊕Rz such that, if F is the extended function, then F is linear and
F(x)≤ ρ(x) for all x ∈M⊕Rz.

With this lemma, the Hahn Banach theorem is easy to show.

Theorem 12.3.3 (Hahn Banach theorem) Let X be a real vector space, let M be
a subspace of X, let f : M → R be linear, let ρ be a gauge function on X, and suppose
f (x)≤ ρ(x) for all x ∈M. Then there exists a linear function, F : X → R, such that

a.) F(x) = f (x) for all x ∈M
b.) F(x)≤ ρ(x) for all x ∈ X.

Proof: Let F = {(V,g) : V ⊇M, V is a subspace of X , g : V →R is linear, g(x) = f (x)
for all x ∈M, and g(x) ≤ ρ(x) for x ∈ V}. Then (M, f ) ∈F so F ̸= /0. Define a partial
order by the following rule. (V,g) ≤ (W,h) means V ⊆W and h(x) = g(x) if x ∈ V. By
Theorem 12.2.11, there exists a maximal chain, C ⊆ F . Let Y = ∪{V : (V,g) ∈ C } and
let h : Y → R be defined by h(x) = g(x) where x ∈ V and (V,g) ∈ C . This is well defined
because if x ∈ V1 and V2 where (V1,g1) and (V2,g2) are both in the chain, then since C
is a chain, the two element related. Therefore, g1 (x) = g2 (x). Also h is linear because if
ax+by∈Y , then x∈V1 and y∈V2 where (V1,g1) and (V2,g2) are elements of C . Therefore,
letting V denote the larger of the two Vi, and g be the function that goes with V , it follows
ax+by ∈V where (V,g) ∈ C . Therefore,

h(ax+by) = g(ax+by) = ag(x)+bg(y)

= ah(x)+bh(y) .

Also, h(x) = g(x)≤ ρ(x) for any x ∈ Y because for such x, x ∈V where (V,g) ∈ C .
Is Y = X? If not, there exists z ∈ X \Y and there exists an extension of h to Y ⊕Rz

using Lemma 12.3.2. Letting h denote this extended function, contradicts the maximality
of C . Indeed, C ∪{

(
Y ⊕Rz, h

)
} would be a longer chain. ■

12.3.2 The Complex Hahn Banach Theorem
This is the original version of the theorem. There is also a version of this theorem for
complex vector spaces which is based on a trick. First note that linear f satisfying f (x)≤
∥x∥ means f (−x)≤ K ∥−x∥ means − f (x)≤ K ∥x∥ so f (x)≥−K ∥x∥ so | f (x)| ≤ K ∥x∥ .
To say f (x) ≤ K ∥x∥ is the same as saying | f (x)| ≤ K ∥x∥. Of course x→ K ∥x∥ is an
example a gauge function ρ (x).

Note that if F is linear on V a complex normed linear space, then

ReF (ix)+ i ImF (ix) = F (ix) = iF (x) = i(ReF (x)+ i ImF (x))

= − ImF (x)+ iReF (x)

and so ImF (x) =−ReF (ix) so F (x) =ReF (x)− iReF (ix). Also note that ReF (x+ y) =
ReF (x)+ReF (y) and that if a is real, then aReF (x) = ReF (ax). Conversely, if f is real
linear we can produce a complex linear function from it as explained in the following
Lemma.
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Lemma 12.3.4 Suppose V is a complex normed linear space and f : V → R satisfies
a f (x) = f (ax) for all a real and f (x+ y) = f (x)+ f (y) . Define F (x) ≡ f (x)− i f (ix).
Then F is linear on V with field of scalars equal to C.

Proof: Obviously F (x+ y) = F (x)+F (y). Now

F ((a+ ib)x) ≡ f ((a+ ib)x)− i f (i(a+ ib)x) = f (ax+ ibx)− i f (−bx+ iax)

= a f (x)+b f (ix)+bi f (x)−ai f (iax)

(a+ ib)F (x)≡ (a+ ib)( f (x)− i f (ix) = a f (x)− ia f (ix))+ ib f (x)+b f (ix)

Thus F is linear as claimed. ■

Corollary 12.3.5 (Hahn Banach) Let M be a subspace of a complex normed linear
space X, and suppose f : M→ C is linear and satisfies | f (x)| ≤ K ∥x∥ for all x ∈M. Then
there exists a linear function F, defined on all of X such that F(x) = f (x) for all x ∈M and
|F(x)| ≤ K ∥x∥ for all x.

Proof: Since | f (x)| ≤ K ∥x∥ for all x ∈M, then |Re f (x)| ≤ K ∥x∥ on M and so, since
Re f is real and real linear on M, Re f (x)≤ K ∥x∥ ≡ ρ (x). By the Hahn Banach theorem,
let h be a real valued linear extension of Re f satisfying h(x) ≤ K ∥x∥ on X . Now let
F (x) ≡ h(x)− ih(ix) so F is complex linear on X . For a given x ∈ X , there is α ∈ C,
|α|= 1 such that αF (x) = |F (x)| . Then

|F (x)|= αF (x) = F (αx) = h(αx)−
=0︷ ︸︸ ︷

ih(iαx) = h(αx)≤ K ∥αx∥= K ∥x∥ ■

12.3.3 The Dual Space and Adjoint Operators

Definition 12.3.6 Let X be a Banach space. Denote by X ′ the space of continuous
linear functions which map X to the field of scalars. Thus X ′ = L (X ,F). By Theorem
2.9.4 on Page 69, X ′ is a Banach space. Remember with the norm defined on L (X ,F),
∥ f∥= sup{| f (x)| : ∥x∥ ≤ 1}. X ′ is called the dual space.

Definition 12.3.7 Let X and Y be Banach spaces and L ∈L (X ,Y ). Then define
the adjoint map in L (Y ′,X ′), denoted by L∗, by L∗y∗(x)≡ y∗(Lx) for all y∗ ∈ Y ′.

The following diagram is a good one to help remember this definition.

X ′
L∗

← Y ′

X
→
L

Y

This is a generalization of the adjoint of a linear transformation on an inner product
space, the conjugate transpose. Recall (Ax,y) = (x,A∗y) . What is being done here is to
generalize this algebraic concept to arbitrary Banach spaces. There are some issues which
need to be discussed relative to the above definition. First of all, it must be shown that
L∗y∗ ∈ X ′. Also, it will be useful to have the following lemma which is a useful application
of the Hahn Banach theorem.
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Lemma 12.3.8 Let X be a normed linear space and let x ∈ X \V where V is a closed
subspace of X. Then there exists x∗ ∈ X ′ such that x∗(x) = ∥x∥, x∗ (V ) = {0}, and

∥x∗∥ ≤ 1
dist(x,V )

In the case that V = {0} , ∥x∗∥= 1.

Proof: Let f :Fx+V →F be defined by f (αx+v)=α∥x∥. First it is necessary to show
f is well defined and continuous. If α1x+v1 = α2x+v2 then if α1 ̸= α2, then x ∈V which
is assumed not to happen so f is well defined. It remains to show f is continuous. Suppose
then that αnx+ vn→ 0. It is necessary to show αn→ 0. If this does not happen, then there
exists a subsequence, still denoted by αn such that |αn| ≥ δ > 0. Then 1

|αn| ≤
1
δ

. But then
x+(1/αn)vn→ 0 so x is a limit of points of V which is closed, and this means x∈V which
is not so. Hence f is continuous on Fx+V. Now dist(x,V ) ≡ inf{∥x+ v∥ : v ∈V} . Thus
if it is required that |α|∥x+(v/α)∥ ≤ 1, to make |α| as large as possible one would make
∥x+(v/α)∥ as small as possible. Hence, sup|α|∥x+(v/α)∥≤1 |α|= 1

dist(x,V ) . Therefore,

∥ f∥= sup
∥αx+v∥≤1

| f (αx+ v)|= sup
|α|∥x+(v/α)∥≤1

|α|∥x∥= 1
dist(x,V )

∥x∥

By the Hahn Banach theorem, there exists x∗ ∈ X ′ such that x∗ = f on Fx+V. Thus x∗ (x) =
∥x∥ and also ∥x∗∥ ≤ ∥ f∥= 1

dist(x,V ) .
In case V = {0} , the result follows from the above or alternatively,

∥ f∥ ≡ sup
∥αx∥≤1

| f (αx)|= sup
|α|≤1/∥x∥

|α|∥x∥= 1,

and so, in this case, ∥x∗∥ ≤ ∥ f∥= 1. Since x∗(x) = ∥x∥ it follows

∥x∗∥ ≥
∣∣∣∣x∗( x

∥x∥

)∣∣∣∣= ∥x∥∥x∥ = 1.

Thus ∥x∗∥= 1. ■
Note that this says that if x ̸= y, then there exists x∗ ∈ X ′ with x∗ (x− y) = ∥x− y∥ and

so x∗ (x) ̸= x∗ (y) . This proves

Proposition 12.3.9 If x ̸= y, there exists x∗ ∈ X ′ such that x∗ (x) ̸= x∗ (y).

Theorem 12.3.10 Let L ∈L (X ,Y ) where X and Y are Banach spaces. Then
a.) L∗ ∈L (Y ′,X ′) as claimed and ∥L∗∥= ∥L∥.
b.) If L maps one to one onto a closed subspace of Y , then L∗ is onto.
c.) If L maps onto a dense subset of Y , then L∗ is one to one.

Proof: It is routine to verify L∗y∗ and L∗ are both linear. This follows immediately
from the definition. As usual, the interesting thing concerns continuity.

∥L∗y∗∥= sup
∥x∥≤1

|L∗y∗ (x)|= sup
∥x∥≤1

|y∗ (Lx)| ≤ ∥y∗∥∥L∥ .

Thus L∗ is continuous as claimed and ∥L∗∥ ≤ ∥L∥ .
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By Lemma 12.3.8, there exists y∗x ∈Y ′ such that ∥y∗x∥= 1 and y∗x (Lx)= ∥Lx∥ .Therefore,

∥L∗∥ = sup
∥y∗∥≤1

∥L∗y∗∥= sup
∥y∗∥≤1

sup
∥x∥≤1

|L∗y∗ (x)|

= sup
∥y∗∥≤1

sup
∥x∥≤1

|y∗ (Lx)|= sup
∥x∥≤1

sup
∥y∗∥≤1

|y∗ (Lx)|

≥ sup
∥x∥≤1

|y∗x (Lx)|= sup
∥x∥≤1

∥Lx∥= ∥L∥

showing that ∥L∗∥ ≥ ∥L∥ and this shows part a.).
If L is one to one and onto a closed subset of Y , then L(X) being a closed subspace

of a Banach space, is itself a Banach space and so the open mapping theorem implies
L−1 : L(X)→ X is continuous. Hence ∥x∥ = ∥L−1Lx∥ ≤

∥∥L−1
∥∥∥Lx∥. Now let x∗ ∈ X ′ be

given. Define f ∈L (L(X),C) by f (Lx) = x∗(x). The function, f is well defined because
if Lx1 = Lx2, then since L is one to one, it follows x1 = x2 and so f (L(x1)) = x∗ (x1) =
x∗ (x2) = f (L(x1)). Also, f is linear because

f (aL(x1)+bL(x2)) = f (L(ax1 +bx2))≡ x∗ (ax1 +bx2)

= ax∗ (x1)+bx∗ (x2) = a f (L(x1))+b f (L(x2)) .

In addition to this, | f (Lx)| = |x∗(x)| ≤ ∥x∗∥ and also ∥x∥ ≤ ∥x∗∥
∥∥L−1

∥∥∥Lx∥ and so the
norm of f on L(X) is no larger than ∥x∗∥

∥∥L−1
∥∥. By the Hahn Banach theorem, there

exists an extension of f to an element y∗ ∈Y ′ such that ∥y∗∥≤ ∥x∗∥
∥∥L−1

∥∥. Then L∗y∗(x) =
y∗(Lx) = f (Lx) = x∗(x) so L∗y∗ = x∗ because this holds for all x. Since x∗ was arbitrary,
this shows L∗ is onto and proves b.).

Consider the last assertion. Suppose L∗y∗ = 0. Is y∗ = 0? In other words is y∗ (y) = 0
for all y∈Y ? Pick y∈Y . Since L(X) is dense in Y, there exists a sequence, {Lxn} such that
Lxn → y. But then by continuity of y∗, y∗ (y) = limn→∞ y∗ (Lxn) = limn→∞ L∗y∗ (xn) = 0.
Since y∗ (y) = 0 for all y, this implies y∗ = 0 and so L∗ is one to one. ■

Corollary 12.3.11 Suppose X and Y are Banach spaces, L ∈L (X ,Y ), and L is one to
one and onto. Then L∗ is also one to one and onto.

There exists a natural mapping, called the James map from a normed linear space, X ,
to the dual of the dual space which is described in the following definition.

Definition 12.3.12 Define J : X → X ′′ by J(x)(x∗) = x∗(x).

Theorem 12.3.13 The map, J, has the following properties.
a.) J is one to one and linear.
b.) ∥Jx∥= ∥x∥ and ∥J∥= 1.
c.) J(X) is a closed subspace of X ′′ if X is complete.
Also if x∗ ∈ X ′,

∥x∗∥= sup
{
|x∗∗ (x∗)| : ∥x∗∗∥ ≤ 1, x∗∗ ∈ X ′′

}
.

Proof: First note that from the definition,

J (ax+by)(x∗)≡ x∗ (ax+by) = ax∗ (x)+bx∗ (y) = (aJ (x)+bJ (y))(x∗) .
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Since this holds for all x∗ ∈ X ′, it follows that J (ax+by) = aJ (x)+bJ (y) and so J is linear.
If Jx = 0, then by Lemma 12.3.8 there exists x∗ such that x∗(x) = ∥x∥ and ∥x∗∥= 1. Then
0 = J(x)(x∗) = x∗(x) = ∥x∥. This shows a.).

To show b.), let x ∈ X and use Lemma 12.3.8 to obtain x∗ ∈ X ′ such that x∗(x) = ∥x∥
with ∥x∗∥= 1. Then

∥x∥ ≥ sup{|y∗(x)| : ∥y∗∥ ≤ 1}= sup{|J(x)(y∗)| : ∥y∗∥ ≤ 1}= ∥Jx∥
≥ |J(x)(x∗)|= |x∗(x)|= ∥x∥

Therefore, ∥Jx∥= ∥x∥ as claimed. Therefore,

∥J∥= sup{∥Jx∥ : ∥x∥ ≤ 1}= sup{∥x∥ : ∥x∥ ≤ 1}= 1.

This shows b.).
To verify c.), use b.). If Jxn→ y∗∗ ∈ X ′′ then by b.), xn is a Cauchy sequence converging

to some x ∈ X because ∥xn− xm∥ = ∥Jxn− Jxm∥ and {Jxn} is a Cauchy sequence. Then
Jx = limn→∞ Jxn = y∗∗.

Finally, to show the assertion about the norm of x∗, use what was just shown applied to
the James map from X ′ to X ′′′ still referred to as J.

∥x∗∥= sup{|x∗ (x)| : ∥x∥ ≤ 1}= sup{|J (x)(x∗)| : ∥Jx∥ ≤ 1}

≤ sup{|x∗∗ (x∗)| : ∥x∗∗∥ ≤ 1}= sup{|J (x∗)(x∗∗)| : ∥x∗∗∥ ≤ 1}

≡ ∥Jx∗∥= ∥x∗∥. ■

Definition 12.3.14 When J maps X onto X ′′, X is called reflexive.

12.4 Exercises
1. Is N a Gδ set? What about Q? What about R\Q?

2. ↑ Let f : R→ C be a function. Define the oscillation of a function in B(x,r) by
ωr f (x) = sup{| f (z)− f (y)| : y,z ∈ B(x,r)}. Define the oscillation of the function
at the point, x by ω f (x) = limr→0 ωr f (x). Show f is continuous at x if and only
if ω f (x) = 0. Then show the set of points where f is continuous is a Gδ set (try
Un = {x : ω f (x) < 1

n}). Does there exist a function continuous at only the rational
numbers? Does there exist a function continuous at every irrational and discontinu-
ous elsewhere? Hint: Suppose D is any countable set, D = {di}∞

i=1, and define the
function, fn (x) to equal zero for every x /∈ {d1, · · · ,dn} and 2−n for x in this finite
set. Then consider g(x)≡ ∑

∞
n=1 fn (x). Show that this series converges uniformly.

3. Let f ∈C([0,1]) and suppose f ′(x) exists. Show there exists a constant, K, such that
| f (x)− f (y)| ≤ K|x− y| for all y ∈ [0,1]. Let Un = { f ∈C([0,1]) such that for each
x ∈ [0,1] there exists y ∈ [0,1] such that | f (x)− f (y)| > n|x− y|}. Show that Un is
open and dense in C([0,1]) where for f ∈C ([0,1]), ∥ f∥ ≡ sup{| f (x)| : x ∈ [0,1]} .
Show that ∩nUn is a dense Gδ set of nowhere differentiable continuous functions.
Thus every continuous function is uniformly close to one which is nowhere differen-
tiable.
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4. ↑ Suppose f (x) = ∑
∞
k=1 uk (x) where the convergence is uniform and each uk is a

polynomial. Is it reasonable to conclude that f ′ (x) = ∑
∞
k=1 u′k (x)? The answer is no.

Use Problem 3 and the Weierstrass approximation theorem to show this.

5. Let X be a normed linear space. A ⊆ X is “weakly bounded” if for each x∗ ∈
X ′, sup{|x∗(x)| : x ∈ A} < ∞, while A is bounded if sup{∥x∥ : x ∈ A} < ∞. Show
A is weakly bounded if and only if it is bounded.

6. ↑It turns out that the Fourier series sometimes converges to the function pointwise.
Suppose f is 2π periodic and Holder continuous. That is | f (x)− f (y)| ≤ K |x− y|θ
where θ ∈ (0,1]. Show that if f is like this, then the Fourier series converges to
f at every point. Next modify your argument to show that if at every point, x,
| f (x+)− f (y)| ≤ K |x− y|θ for y close enough to x and larger than x and

| f (x−)− f (y)| ≤ K |x− y|θ

for every y close enough to x and smaller than x, then Sn f (x)→ f (x+)+ f (x−)
2 , the

midpoint of the jump of the function. Hint: Use the Riemann Lebesgue lemma.

7. ↑ Let Y = { f such that f is continuous, defined on R, and 2π periodic}. Define
∥ f∥Y = sup{| f (x)| : x ∈ [−π,π]}. Show that (Y,∥ ∥Y ) is a Banach space. Let x ∈ R
and define Ln( f ) = Sn f (x). Show Ln ∈ Y ′ but limn→∞ ∥Ln∥= ∞. Show that for each
x ∈ R, there exists a dense Gδ subset of Y such that for f in this set, |Sn f (x)| is
unbounded. Finally, show there is a dense Gδ subset of Y having the property that
|Sn f (x)| is unbounded on the rational numbers. Hint: To do the first part, let f (y)
approximate sgn(Dn(x−y)). Here sgnr = 1 if r > 0,−1 if r < 0 and 0 if r = 0. This
rules out one possibility of the uniform boundedness principle. After this, show the
countable intersection of dense Gδ sets must also be a dense Gδ set.

8. Let α ∈ (0,1]. Define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+∥f∥ ≡ ∥f∥
α
< ∞}

where ∥f∥ ≡ sup{|f(x)| : x ∈ X} and

ρα (f)≡ sup{ |f(x)− f(y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) ,∥·∥
α
) is a complete normed linear space. This is called a

Holder space. What would this space consist of if α > 1?

9. ↑Let X be the Holder functions which are periodic of period 2π . Define Ln f (x) =
Sn f (x) where Ln : X →Y for Y given in Problem 7. Show ∥Ln∥ is bounded indepen-
dent of n. Conclude that Ln f → f in Y for all f ∈ X . In other words, for the Holder
continuous and 2π periodic functions, the Fourier series converges to the function
uniformly. Hint: Ln f (x) is given by

Ln f (x) =
∫

π

−π

Dn (y) f (x− y)dy
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where f (x− y) = f (x)+g(x,y) where |g(x,y)| ≤C |y|α . Use the fact the Dirichlet
kernel integrates to one to write

∣∣∣∣∫ π

−π

Dn (y) f (x− y)dy
∣∣∣∣≤

=| f (x)|︷ ︸︸ ︷∣∣∣∣∫ π

−π

Dn (y) f (x)dy
∣∣∣∣

+C
∣∣∣∣∫ π

−π

sin
((

n+
1
2

)
y
)
(g(x,y)/sin(y/2))dy

∣∣∣∣
Show the functions, y→ g(x,y)/sin(y/2) are bounded in L1 independent of x and
get a uniform bound on ∥Ln∥. Now use a similar argument to show {Ln f} is equicon-
tinuous in addition to being uniformly bounded. In doing this you might proceed as
follows. Show |Ln f (x)−Ln f (x′)| ≤∣∣∣∣∫ π

−π

Dn (y)
(

f (x− y)− f
(
x′− y

))
dy
∣∣∣∣≤ ∥ f∥

α

∣∣x− x′
∣∣α

+

∣∣∣∣∣
∫

π

−π

sin
((

n+
1
2

)
y
)(

f (x− y)− f (x)− ( f (x′− y)− f (x′))
sin
( y

2

) )
dy

∣∣∣∣∣
Then split this last integral into two cases, one for |y|< η and one where |y| ≥ η . If
Ln f fails to converge to f uniformly, then there exists ε > 0 and a subsequence, nk
such that

∥∥Lnk f − f
∥∥

∞
≥ ε where this is the norm in Y or equivalently the sup norm

on [−π,π]. By the Arzela Ascoli theorem, there is a further subsequence, Lnkl
f

which converges uniformly on [−π,π]. But by Problem 6 Ln f (x)→ f (x).

10. Let X be a normed linear space and let M be a convex open set containing 0. Define
ρ(x) = inf{t > 0 : x

t ∈M}. Show ρ is a gauge function defined on X . This particular
example is called a Minkowski functional. It is of fundamental importance in the
study of locally convex topological vector spaces. A set M, is convex if λx+(1−
λ )y ∈M whenever λ ∈ [0,1] and x,y ∈M.

11. ↑The Hahn Banach theorem can be used to establish separation theorems. Let M be
an open convex set containing 0. Let x /∈ M. Show there exists x∗ ∈ X ′ such that
Rex∗(x) ≥ 1 > Rex∗(y) for all y ∈ M. Hint: If y ∈ M,ρ(y) < 1. Show this. If
x /∈M, ρ(x)≥ 1. Try f (αx) = αρ(x) for α ∈ R. Then extend f to the whole space
using the Hahn Banach theorem and call the result F , show F is continuous, then fix
it so F is the real part of x∗ ∈ X ′.

12. A Banach space is said to be strictly convex if whenever ∥x∥ = ∥y∥ and x ̸= y, then∥∥ x+y
2

∥∥ < ∥x∥. F : X → X ′ is said to be a duality map if it satisfies the following:
a.) ∥F(x)∥ = ∥x∥. b.) F(x)(x) = ∥x∥2. Show that if X ′ is strictly convex, then
such a duality map exists. The duality map is an attempt to duplicate some of the
features of the Riesz map in Hilbert space. This Riesz map R is the map which
takes a Hilbert space to its dual defined as follows: R(x)(y) = (y,x) . The Riesz
representation theorem for Hilbert space says this map is onto. Hint: For an arbitrary
Banach space, let

F (x)≡
{

x∗ : ∥x∗∥ ≤ ∥x∥ and x∗ (x) = ∥x∥2
}
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Show F (x) ̸= /0 by using the Hahn Banach theorem on f (αx) = α ∥x∥2. Next show
F (x) is closed and convex. Finally show that you can replace the inequality in the
definition of F (x) with an equal sign. Now use strict convexity to show there is only
one element in F (x).

13. Prove the following theorem which is an improved version of the open mapping the-
orem, [14]. Let X and Y be Banach spaces and let A ∈L (X ,Y ). Then the following
are equivalent: AX = Y, A is an open map. Note this gives the equivalence between
A being onto and A being an open map. The open mapping theorem says that if A is
onto then it is open.

14. Suppose D⊆ X and D is dense in X . Suppose L : D→ Y is linear and ∥Lx∥ ≤ K∥x∥
for all x ∈ D. Show there is a unique extension of L, L̃, defined on all of X with
∥L̃x∥ ≤ K∥x∥ and L̃ is linear. You do not get uniqueness when you use the Hahn
Banach theorem. Therefore, in the situation of this problem, it is better to use this
result.

15. ↑A Banach space is uniformly convex if whenever ∥xn∥, ∥yn∥≤ 1 and ∥xn+yn∥→ 2,
it follows that ∥xn− yn∥ → 0. Show uniform convexity implies strict convexity (See
Problem 12). Hint: Suppose it is not strictly convex. Then there exist ∥x∥ and ∥y∥
both equal to 1 and

∥∥ xn+yn
2

∥∥ = 1 consider xn ≡ x and yn ≡ y, and use the conditions
for uniform convexity to get a contradiction.

16. Show that a closed subspace of a reflexive Banach space is reflexive.

17. xn converges weakly to x if for every x∗ ∈ X ′, x∗(xn)→ x∗(x). xn ⇀ x denotes weak
convergence. Show that if ∥xn− x∥→ 0, then xn ⇀ x.

18. ↑ Show that if X is uniformly convex, then if xn ⇀ x and ∥xn∥ → ∥x∥, it follows
∥xn− x∥ → 0. Hint: Use Lemma 12.3.8 to obtain f ∈ X ′ with ∥ f∥ = 1 and f (x) =
∥x∥. See Problem 15 for the definition of uniform convexity. Now by the weak
convergence, you can argue that if x ̸= 0, f (xn/∥xn∥)→ f (x/∥x∥). You also might
try to show this in the special case where ∥xn∥= ∥x∥= 1.

19. Suppose L ∈L (X ,Y ) and M ∈L (Y,Z). Show ML ∈L (X ,Z) and that (ML)∗ =
L∗M∗.

20. This problem presents the Radon Nikodym theorem. Suppose (Ω,F ) is a measur-
able space and that µ and λ are two finite measures defined on F . Suppose also that
λ ≪ µ which means that if µ (E) = 0 then λ (E) = 0. Now define Λ ∈ L2 (Ω,µ +λ )
as Λ( f ) ≡

∫
Ω

f dλ . Verify that this is really a bounded linear transformation on
L2 (Ω,µ +λ ) . Then by the Riesz representation theorem, Theorem 12.2.9, there ex-
ists h ∈ L2 (Ω,µ +λ ) such that for all f ∈ L2 (Ω,µ +λ ) ,

∫
Ω

f dλ =
∫

Ω
h f d (λ +µ).

Verify that h has almost all values real and contained in [0,1). This will use λ ≪ µ .
Then note the following:

∫
Ω

f (1−h)dλ =
∫

Ω
h f dµ . Now for E ∈ F , let fn =

XE ∑
n−1
k=0 hk. Thus

∫
E (1−hn)dλ =

∫
E ∑

n
k=1 hkdµ. Use monotone convergence to

show that λ (E) =
∫

E gdµ, g = ∑
∞
k=1 hk. Show that g ∈ L1 (Ω,µ). Formulate this as

a theorem. It is called the Radon Nikodym theorem. This elegant approach is due to
Von Neumann.

21. Let H be a separable Hilbert space and let D = {dn}∞

n=1 be a orthonormal set such
that D = H. Show using Theorem 12.2.13 that (x,y) = ∑

∞
k=1 (x,dk)(y,dk).
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22. Given an inner product space H show that every orthonormal set of vectors is linearly
independent. Now suppose V is a finite dimensional subspace of H. Show that V is
span(d1, ...,dn) where {dk}n

k=1 is a maximal orthonormal set of vectors contained in
V and that n is the dimension of V . Show that Px ≡ ∑

n
k=1 (x,dk)dk is the projection

of x to V . That is |x−∑
n
k=1 (x,dk)dk| ≤ |x−∑

n
k=1 akdk| for every choice of ak. Also

show that this projection map is unique.

23. Show that if g ∈ C ([−π,π]) with g(−π) = g(π) then for x the point on the unit
circle S1 determined in the usual way by x, then g : S1 → C is continuous. Let-
ting A be the algebra which consists of all products and linear combinations of the
functions

{
einx
}

n∈Z, show that A is dense in D consisting of the set of functions
of C ([−π,π]) with g(−π) = g(π). Now if f ∈ L2 (−π,π) , show there is g ∈ D
such that ∥ f −g∥L2(−π,π) < ε . Show the functions x→ 1√

2π
einx for n ∈ Z are an or-

thonormal set of functions for the inner product ( f ,g)≡
∫

π

−π
f gdx and that therefore,

Sn f (x) gives the best approximation to f in L2 (−π,π) out of all linear combinations
of eikx for |k| ≤ n. Conclude from this that ∥ f −Sn f∥L2(−π,π)→ 0. Also explain why{

einx
}

n∈Z is a maximal orthonormal set.



Chapter 13

Representation Theorems
13.1 Radon Nikodym Theorem

This chapter is on various representation theorems. The first theorem, the Radon Nikodym
Theorem, is a representation theorem for one measure in terms of another. This important
theorem represents one measure in terms of another. It is Theorem 7.11.9 on Page 180 or
Problem 19 on Page 317, this problem utilizing the approach of Von Neumann which is
also featured in [40].

Definition 13.1.1 Let µ and λ be two measures defined on a σ -algebra S , of sub-
sets of a set, Ω. λ is absolutely continuous with respect to µ,written as λ ≪ µ, if λ (E) = 0
whenever µ(E) = 0. A complex measure λ defined on a σ -algebra S is one which has the
property that if the Ei are distinct and measurable, then λ (∪iEi) = ∑i λ (Ei) ∈ C.

Recall Corollary7.11.13 on Page 181. I am stating it next for convenience.

Corollary 13.1.2 Let λ be a signed σ finite measure and let λ ≪ µ meaning that if
µ (E) = 0⇒ λ (E) = 0. Here assume that µ is a finite measure. Then there exists h ∈ L1

such that λ (E) =
∫

E hdµ .

There is an easy corollary to this.

Corollary 13.1.3 Let λ be a complex measure and λ ≪ µ for µ a finite measure. Then
there exists h ∈ L1 such that λ (E) =

∫
E hdµ .

Proof: Let (Reλ )(E) = Re(λ (E)) with Imλ defined similarly. Then these are signed
measures and so there are functions f1, f2 in L1 such that Reλ (E) =

∫
E f1dµ, Imλ (E) =∫

E f2dµ. Then h≡ f1 + i f2 satisfies the necessary condition. ■
More general versions are available. To see one of these, one can read the treatment in

Hewitt and Stromberg [22]. This involves the notion of decomposable measure spaces, a
generalization of σ finite.

13.2 Vector Measures
The next topic will use the Radon Nikodym theorem. It is the topic of vector and complex
measures. The main interest is in complex measures although a vector measure can have
values in any topological vector space. Whole books have been written on this subject. See
for example the book by Diestal and Uhl [13] titled Vector measures.

Definition 13.2.1 Let (V,∥ · ∥) be a normed linear space and let (Ω,S ) be a mea-
sure space. A function µ : S → V is a vector measure if µ is countably additive. That is,
if {Ei}∞

i=1 is a sequence of disjoint sets of S , µ(∪∞
i=1Ei) = ∑

∞
i=1 µ(Ei).

Note that it makes sense to take finite sums because it is given that µ has values in a
vector space in which vectors can be summed. In the above, µ (Ei) is a vector. It might be
a point in Rn or in any other vector space. In many of the most important applications, it
is a vector in some sort of function space which may be infinite dimensional. The infinite
sum has the usual meaning. That is ∑

∞
i=1 µ(Ei) = limn→∞ ∑

n
i=1 µ(Ei) where the limit takes

place relative to the norm on V .

319
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Definition 13.2.2 Let (Ω,S ) be a measure space and let µ be a vector measure
defined on S . A subset, π(E), of S is called a partition of E if π(E) consists of finitely
many disjoint sets of S and ∪π(E) = E. Let

|µ|(E) = sup{ ∑
F∈π(E)

∥µ(F)∥ : π(E) is a partition of E}.

|µ| is called the total variation of µ .

The next theorem may seem a little surprising. It states that, if finite, the total variation
is a nonnegative measure.

Theorem 13.2.3 If |µ|(Ω) < ∞, then |µ| is a measure on S . Even if |µ|(Ω) =
∞, |µ|(∪∞

i=1Ei) ≤ ∑
∞
i=1 |µ|(Ei) . That is |µ| is subadditive and |µ|(A) ≤ |µ|(B) whenever

A,B ∈S with A⊆ B.

Proof: Consider the last claim. Let a < |µ|(A) and let π (A) be a partition of A such
that

a < ∑
F∈π(A)

∥µ (F)∥ .

Then π (A)∪{B\A} is a partition of B and

|µ|(B)≥ ∑
F∈π(A)

∥µ (F)∥+∥µ (B\A)∥> a.

Since this is true for all such a, it follows |µ|(B)≥ |µ|(A) as claimed.
Let

{
E j
}∞

j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞
j=1E j. Then letting

a < |µ|(E∞) , it follows from the definition of total variation there exists a partition of E∞,
π(E∞) = {A1, · · · ,An} such that a < ∑

n
i=1 ∥µ(Ai)∥. Also,

Ai = ∪∞
j=1Ai∩E j

and so by the triangle inequality, ∥µ(Ai)∥ ≤ ∑
∞
j=1 ∥µ(Ai ∩E j)∥. Therefore, by the above,

and either Fubini’s theorem or Lemma 1.11.3 on Page 28

a <
n

∑
i=1

≥∥µ(Ai)∥︷ ︸︸ ︷
∞

∑
j=1
∥µ(Ai∩E j)∥=

∞

∑
j=1

n

∑
i=1
∥µ(Ai∩E j)∥ ≤

∞

∑
j=1
|µ|(E j)

because
{

Ai∩E j
}n

i=1 is a partition of E j.
Since a is arbitrary, this shows |µ|(∪∞

j=1E j) ≤ ∑
∞
j=1 |µ|(E j). If the sets, E j are not

disjoint, let F1 = E1 and if Fn has been chosen, let Fn+1 ≡ En+1 \∪n
i=1Ei. Thus the sets, Fi

are disjoint and ∪∞
i=1Fi = ∪∞

i=1Ei. Therefore,

|µ|
(
∪∞

j=1E j
)
= |µ|

(
∪∞

j=1Fj
)
≤

∞

∑
j=1
|µ|(Fj)≤

∞

∑
j=1
|µ|(E j)

and proves |µ| is always subadditive as claimed regardless of whether |µ|(Ω)< ∞.
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Now suppose |µ|(Ω)< ∞ and let E1 and E2 be sets of S such that E1∩E2 = /0 and let
{Ai

1 · · ·Ai
ni
}= π(Ei), a partition of Ei which is chosen such that

|µ|(Ei)− ε <
ni

∑
j=1
∥µ(Ai

j)∥ i = 1,2.

Such a partition exists because of the definition of the total variation. Consider the sets
which are contained in either of π (E1) or π (E2) , it follows this collection of sets is a
partition of E1∪E2 denoted by π(E1∪E2). Then by the above inequality and the definition
of total variation,

|µ|(E1∪E2)≥ ∑
F∈π(E1∪E2)

∥µ(F)∥> |µ|(E1)+ |µ|(E2)−2ε ,

which shows that since ε > 0 was arbitrary,

|µ|(E1∪E2)≥ |µ|(E1)+ |µ|(E2). (13.1)

Then 13.1 implies that whenever the Ei are disjoint, |µ|(∪n
j=1E j) ≥ ∑

n
j=1 |µ|(E j). There-

fore,
∞

∑
j=1
|µ|(E j)≥ |µ|(∪∞

j=1E j)≥ |µ|(∪n
j=1E j)≥

n

∑
j=1
|µ|(E j).

Since n is arbitrary, |µ|(∪∞
j=1E j) = ∑

∞
j=1 |µ|(E j) which shows that |µ| is a measure as

claimed. ■
In the case that µ is a complex measure, it is always the case that |µ|(Ω) < ∞ this is

shown soon. However, first is an interesting corollary. It concerns the case that µ is only
finitely additive.

Corollary 13.2.4 Suppose (Ω,F ) is a set with a σ algebra of subsets F and suppose
µ : F → C is only finitely additive. That is, µ

(
∪n

i=1Ei
)
= ∑

n
i=1 µ (Ei) whenever the Ei are

disjoint. Then |µ| , defined in the same way as above, is also finitely additive provided |µ|
is finite.

Proof: Say E ∩F = /0 for E,F ∈F . Let π (E) ,π (F) suitable partitions for which the
following holds.

|µ|(E ∪F)≥ ∑
A∈π(E)

|µ (A)|+ ∑
B∈π(F)

|µ (B)| ≥ |µ|(E)+ |µ|(F)−2ε.

Since ε is arbitrary, |µ|(E ∩F) ≥ |µ|(E)+ |µ|(F) . Similar considerations apply to any
finite union of disjoint sets. That is, if the Ei are disjoint, then |µ|

(
∪n

i=1Ei
)
≥∑

n
i=1 |µ|(Ei) .

Now let E = ∪n
i=1Ei where the Ei are disjoint. Then letting π (E) be a suitable partition

of E,
|µ|(E)− ε ≤ ∑

F∈π(E)
|µ (F)| ,

it follows that

|µ|(E)≤ ε + ∑
F∈π(E)

|µ (F)|= ε + ∑
F∈π(E)

∣∣∣∣∣ n

∑
i=1

µ (F ∩Ei)

∣∣∣∣∣
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≤ ε +
n

∑
i=1

∑
F∈π(E)

|µ (F ∩Ei)| ≤ ε +
n

∑
i=1
|µ|(Ei)

Since ε is arbitrary, this shows |µ|
(
∪n

i=1Ei
)
≤ ∑

n
i=1 |µ|(Ei) . Thus |µ| is finitely additive.

■
In the case that µ is a complex measure, it is always the case that |µ|(Ω)< ∞. First is

a lemma.

Lemma 13.2.5 Suppose µ is a real valued measure (signed measure by Definition
7.11.2). Then |µ| is a finite measure.

Proof: Suppose µ : F →R is a vector measure (signed measure by Definition 7.11.2).
By the Hahn decomposition, Theorem 7.11.5 on Page 179, Ω = P∪N where P is a positive
set and N is a negative one. Then on N, −µ is a measure and if A⊆ B and A,B measurable
subsets of N, then −µ (A)≤−µ (B). Similarly µ is a measure on P.

∑
F∈π(Ω)

|µ (F)| ≤ ∑
F∈π(Ω)

(|µ (F ∩P)|+ |µ (F ∩N)|)

= ∑
F∈π(Ω)

µ (F ∩P)+ ∑
F∈π(Ω)

−µ (F ∩N)

= µ
((
∪F∈π(Ω)F

)
∩P
)
+−µ

((
∪F∈π(Ω)F

)
∩N
)
≤ µ (P)+ |µ (N)|

It follows that |µ|(Ω)< µ (P)+ |µ (N)| and so |µ| has finite total variation. ■

Theorem 13.2.6 Suppose µ is a complex measure on (Ω,S ) where S is a σ al-
gebra of subsets of Ω. That is, whenever {Ei} is a sequence of disjoint sets of S ,

µ (∪∞
i=1Ei) =

∞

∑
i=1

µ (Ei) .

Then |µ|(Ω)< ∞.

Proof: If µ is a vector measure with values in C, Re µ and Im µ have values in R. Then

∑
F∈π(Ω)

|µ (F)| ≤ ∑
F∈π(Ω)

|Re µ (F)|+ |Im µ (F)|

= ∑
F∈π(Ω)

|Re µ (F)|+ ∑
F∈π(Ω)

|Im µ (F)|

≤ |Re µ|(Ω)+ |Im µ|(Ω)< ∞

thanks to Lemma 13.2.5. ■

Theorem 13.2.7 Let (Ω,S ) be a measure space and let λ : S → C be a complex
vector measure. Thus |λ |(Ω) < ∞. Let µ : S → [0,µ(Ω)] be a finite measure such that
λ ≪ µ . Then there exists a unique f ∈ L1(Ω) such that for all E ∈S ,∫

E
f dµ = λ (E).
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Proof: It is clear that Reλ and Imλ are real-valued vector measures on S . Since
|λ |(Ω)< ∞, it follows easily that |Reλ |(Ω) and | Imλ |(Ω)< ∞. This is clear because

|λ (E)| ≥ |Reλ (E)| , |Imλ (E)| .

Therefore, each of

|Reλ |+Reλ

2
,
|Reλ |−Re(λ )

2
,
| Imλ |+ Imλ

2
, and

| Imλ |− Im(λ )

2

are finite measures on S . It is also clear that each of these finite measures are abso-
lutely continuous with respect to µ and so there exist unique nonnegative functions in
L1(Ω), f1, f2, g1, g2 such that for all E ∈S ,

1
2
(|Reλ |+Reλ )(E) =

∫
E

f1dµ,

1
2
(|Reλ |−Reλ )(E) =

∫
E

f2dµ,

1
2
(| Imλ |+ Imλ )(E) =

∫
E

g1dµ,

1
2
(| Imλ |− Imλ )(E) =

∫
E

g2dµ.

Now let f = f1− f2 + i(g1−g2). ■

Theorem 13.2.8 The following hold where λ will be a complex measure so |λ | is
finite and µ will be a finite measure, both defined on S .

1. If µ is a finite nonnegative measure on S , and λ (E) ≡
∫

E hdµ for h ∈ L1 (Ω,µ),
then |λ |(E) =

∫
E |h|dµ.

2. If |
∫

E f dµ| ≤ µ(E) for all E ∈ S , then | f | ≤ 1 a.e. If |
∫

E f dµ| = µ(E) for all
E ∈S , then | f |= 1 µ a.e.

3. Letting g be such that λ (E) =
∫

E gd |λ | , it follows that |g| = 1 for |λ | a.e. If also
λ (E) =

∫
E hdµ for h ∈ L1 (Ω,µ) , then |h|= gh µ a.e.

Proof: 1.) Letting π (E) = {F1, ...,Fn} ,
n

∑
k=1
|λ (Fk)|=

n

∑
k=1

∣∣∣∣∫Fk

hdµ

∣∣∣∣≤ n

∑
k=1

∫
Fk

|h|dµ =
∫

E
|h|dµ

and so, taking the sup for all such partitions, |λ |(E) ≤
∫

E |h|dµ. Let simple functions
sn→ sgn(h) where |sgn(h)|= 1 and sgn(h)h = |h|. We can assume also that |sn| ≤ 1. Say
sn = ∑

mn
i=1 cn

i XFn
i

where the Fn
i are disjoint, {Fn

i }
mn
i=1 a partition of E. Then |λ |(E)≤

∫
E
|h|dµ =

∫
E

sgn(h)hdµ = lim
n→∞

∫
E

snhdµ = lim
n→∞

mn

∑
i=1

∫
Fn

i

cn
i hdµ

≤ lim
n→∞

∣∣∣∣∣mn

∑
i=1

∫
Fn

i

cn
i hdµ

∣∣∣∣∣≤ lim inf
n→∞

mn

∑
i=1

∣∣∣∣∫Fn
i

hdµ

∣∣∣∣≤ sup
n

mn

∑
i=1
|λ (Fn

i )| ≤ |λ |(E)
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so |λ |(E) =
∫

E |h|dµ .
2.) Now let |

∫
E f dµ| ≤ µ(E) for all E. Consider the following picture where

B(p,r)∩B(0,1) = /0

1
(0,0)

p

B(p,r)

Let E = f−1(B(p,r)). In fact µ (E) = 0. If µ(E) ̸= 0 then∣∣∣∣ 1
µ(E)

∫
E

f dµ− p
∣∣∣∣= ∣∣∣∣ 1

µ(E)

∫
E
( f − p)dµ

∣∣∣∣≤ 1
µ(E)

∫
E
| f − p|dµ < r

because on E, | f (ω)− p|< r. Hence 1
µ(E)

∫
E f dµ is closer to p than r and so∣∣∣∣ 1

µ(E)

∫
E

f dµ

∣∣∣∣> 1.

Refer to the picture. However, this contradicts the assumption of the lemma. It follows
µ(E) = 0. Since the set of complex numbers z such that |z|> 1 is an open set, it equals the
union of countably many balls, {Bi}∞

i=1 . Therefore,

µ
(

f−1({z ∈ C : |z|> 1}
)
= µ

(
∪∞

k=1 f−1 (Bk)
)
≤

∞

∑
k=1

µ
(

f−1 (Bk)
)
= 0.

Thus | f (ω)| ≤ 1 a.e. as claimed. If |
∫

E f dµ|= µ(E) for all E then from Part 1.), µ (E) =
|µ|(E) = |

∫
E f dµ|=

∫
E | f |dµ and so | f |= 1 a.e.

3.) Clearly λ ≪ |λ | so there exists a unique g in L1 (Ω,λ ) such that λ (E) =
∫

E gd |λ | .
From Part 1.), |λ |(E) =

∫
E |g|d |λ | for all E and so |g| = 1 a.e. Now if also λ (E) =∫

E gd |λ |=
∫

E hdµ, let sn be simple functions converging pointwise to g. Then
∫

E gsnd |λ |=∫
E snhdµ. From the dominated convergence theorem,

∫
E d |λ | =

∫
E ghdµ. Thus gh ≥ 0

µ a.e. and |g| = 1. Therefore, |h| = |gh| = gh. More formally, it is assumed gd |λ | =
hdµ, |g|= 1 so d |λ |= ghdµ and so we must have gh≥ 0 hence equal to |h|. ■

13.3 The Dual Space of Lp (Ω)

This is on representation of the dual space of Lp (Ω).

Theorem 13.3.1 (Riesz representation theorem) Let ∞ > p > 1 and let (Ω,S ,µ)
be a finite measure space. If Λ∈ (Lp(Ω))′, then there exists a unique h∈ Lq(Ω) ( 1

p +
1
q = 1)

such that

Λ f =
∫

Ω

h f dµ .

This function satisfies ∥h∥q = ∥Λ∥ where ∥Λ∥ is the operator norm of Λ.
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Proof: (Uniqueness) If h1 and h2 in Lq both represent Λ, consider

f = |h1−h2|q−2(h1−h2),

where h denotes complex conjugation. By Holder’s inequality, it is easy to see that f ∈
Lp(Ω). Thus

0 = Λ f −Λ f =
∫

h1|h1−h2|q−2(h1−h2)−h2|h1−h2|q−2(h1−h2)dµ =
∫
|h1−h2|qdµ.

Therefore h1 = h2 and this proves uniqueness.
Now let λ (E) = Λ(XE). Since this is a finite measure space, XE is an element of

Lp (Ω) and so it makes sense to write Λ(XE). Is λ a complex measure?
If {Ei}∞

i=1 is a sequence of disjoint sets of S , let Fn = ∪n
i=1Ei, F = ∪∞

i=1Ei. Then by
the Dominated Convergence theorem, ∥XFn −XF∥p→ 0. Therefore, by continuity of Λ,

λ (F)≡ Λ(XF) = lim
n→∞

Λ(XFn) = lim
n→∞

n

∑
k=1

Λ(XEk) =
∞

∑
k=1

λ (Ek).

This shows λ is a complex measure.
It is also clear from the definition of λ that λ ≪ µ . Therefore, by the Radon Nikodym

theorem, there exists h ∈ L1(Ω) with λ (E) =
∫

E hdµ = Λ(XE). Actually h ∈ Lq and satis-
fies the other conditions above. This is shown next.

Let s = ∑
m
i=1 ciXEi be a simple function. Then since Λ is linear,

Λ(s) =
m

∑
i=1

ciΛ(XEi) =
m

∑
i=1

ci

∫
Ei

hdµ =
∫

hsdµ . (13.2)

Claim: If f is uniformly bounded and measurable, then Λ( f ) =
∫

h f dµ.
Proof of claim: Since f is bounded and measurable, there exists a sequence of simple

functions, {sn}which converges to f pointwise and in Lp (Ω) , |sn| ≤ | f |. This follows from
Theorem 6.1.10 on Page 140 upon breaking f up into positive and negative parts of real
and complex parts. In fact this theorem gives uniform convergence. Then

Λ( f ) = lim
n→∞

Λ(sn) = lim
n→∞

∫
hsndµ =

∫
h f dµ,

the first equality holding because of continuity of Λ, the second following from 13.2 and
the third holding by the dominated convergence theorem.

This is a very nice formula but it still has not been shown that h ∈ Lq (Ω).
Let En = {x : |h(x)| ≤ n}. Thus |hXEn | ≤ n. Then |hXEn |q−2(hXEn) ∈ Lp(Ω). By the

claim, it follows that

∥hXEn∥
q
q =

∫
h|hXEn |q−2(hXEn)dµ = Λ(|hXEn |q−2(hXEn))

≤ ∥Λ∥
∥∥|hXEn |q−2(hXEn)

∥∥
p =

(∫
|hXEn |qdµ

)1/p

= ∥Λ∥ ∥hXEn∥
q
p
q ,

because q−1 = q/p and so it follows that ∥hXEn∥q ≤ ∥Λ∥. Letting n→ ∞, the monotone
convergence theorem implies ∥h∥q ≤ ∥Λ∥.
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Now that h is in Lq(Ω), it follows from the density of the simple functions, Theorem
9.4.1 on Page 230, that Λ f =

∫
h f dµ for all f ∈ Lp(Ω). It only remains to verify the

last claim that ∥h∥q = ∥Λ∥. However, from the definition and Holder’s inequality and
∥h∥q ≤ ∥Λ∥, ∥Λ∥ ≡ sup{

∫
h f : ∥ f∥p ≤ 1} ≤ ∥h∥q ≤ ∥Λ∥. ■

Next consider the case of L1 (Ω) . What is its dual space? I will assume here that (Ω,µ)
is a finite measure space. The argument will be a little different than the one given above
for Lp with p > 1.

Theorem 13.3.2 (Riesz representation theorem) Let (Ω,S ,µ) be a finite measure
space. If Λ ∈ (L1(Ω))′, then there exists a unique h ∈ L∞(Ω) such that

Λ( f ) =
∫

Ω

h f dµ

for all f ∈ L1(Ω). If h is the function in L∞(Ω) representing Λ ∈ (L1(Ω))′, then ∥h∥∞ =
∥Λ∥.

Proof: For measurable E, it follows that XE ∈ L1 (Ω,µ). Define a measure λ (E) ≡
Λ(XE) . This is a complex measure as in the proof of Theorem 13.3.1. Then it follows
from Corollary 13.1.3 that there exists a unique h ∈ L1 (Ω,µ) such that

λ (E)≡ Λ(XE) =
∫

E
hdµ (13.3)

I will show that h ∈ L∞ (Ω,µ) and that Λ( f ) =
∫

h f dµ for all f ∈ L1 (Ω) . First of all,
13.3 implies that for all simple functions s,Λ(s) =

∫
shdµ . Let {sn} be a sequence of

simple functions which satisfies |sn (ω)| ≤ 1 and sn→ sgnh in L1 (Ω) where sgn(h)h = |h|
so |sgn(h)| = 1. Since this is a finite measure space, sgn(h) is in L1 and sn → sgn(h) in
L1 (Ω). Also for E a measurable set, XEsn→XE sgn(h) pointwise and in L1. Then, using
the dominated convergence theorem and continuity of Λ,∫

E
|h|dµ = lim

n→∞

∫
E

snhdµ = lim
n→∞

Λ(snXE) = Λ(XE sgn(h))

≤ ∥Λ∥
∫

XE |sgnh|dµ ≤ ∥Λ∥µ (E)

Thus, whenever E is measurable, 1
µ(E)

∫
E |h|dµ ≤ ∥Λ∥ ,

∫
E
|h|
∥Λ∥dµ ≤ µ (E). By Theorem

13.2.8
|h|
∥Λ∥

≤ 1 a.e. and so |h(ω)| ≤ ∥Λ∥ a.e. ω (13.4)

This shows h ∈ L∞ and the density of the simple functions in L1 implies that for any f ∈
L1,Λ( f ) =

∫
h f dµ. It remains to verify that in fact ∥h∥

∞
= ∥Λ∥ .

|Λ( f )|=
∣∣∣∣∫ h f dµ

∣∣∣∣≤ ∥h∥∞

∫
| f |dµ = ∥h∥

∞
∥ f∥1

and so ∥Λ∥ ≤ ∥h∥
∞

. With 13.4, this shows the two are equal. ■
A more geometric treatment of the case where ∞ > p > 1 is in Hewitt and Stromberg

[22]. It is also included in my Real and Abstract Analysis book on my web site. I have been
assured that this other way is the right way to look at it because of its link to geometry and
I think that those who say this are right. However, I have never needed this representation
theorem for any measure space which is not σ finite and it is shorter to do what is being
done here. Next these results are extended to the σ finite case through the use of a trick.
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Lemma 13.3.3 Let (Ω,S ,µ) be a measure space and suppose there exists a measur-
able function, r such that r (x) > 0 for all x, there exists M such that |r (x)| < M for all x,
and

∫
rdµ < ∞. Then for Λ ∈ (Lp(Ω,µ))′, p ≥ 1, there exists h ∈ Lq(Ω,µ), L∞(Ω,µ) if

p = 1 such that Λ f =
∫

h f dµ. Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here
1
p +

1
q = 1.

Proof: Define a new measure µ̃ , according to the rule

µ̃ (E)≡
∫

E
rdµ. (13.5)

Thus µ̃ is a finite measure on S . For

Λ ∈ (Lp (µ))′ ,Λ( f ) = Λ

(
r1/p

(
r−1/p f

))
= Λ̃

(
r−1/p f

)
where Λ̃(g)≡ Λ

(
r1/pg

)
. Now Λ̃ is in Lp (µ̃)′ because

∣∣∣Λ̃(g)
∣∣∣ ≡ ∣∣∣Λ(r1/pg

)∣∣∣≤ ∥Λ∥(∫
Ω

∣∣∣r1/pg
∣∣∣p dµ

)1/p

= ∥Λ∥

∫
Ω

|g|p
dµ̃︷︸︸︷

rdµ


1/p

= ∥Λ∥∥g∥Lp(µ̃)

Therefore, by Theorems 13.3.2 and 13.3.1 there exists a unique h∈ Lq (µ̃) which represents
Λ̃. Here q = ∞ if p = 1 and satisfies 1/q+1/p = 1 otherwise. Then

Λ( f ) = Λ̃

(
r−1/p f

)
=
∫

Ω

h f r−1/prdµ =
∫

Ω

f
(

hr1/q
)

dµ

Now hr1/q ≡ h̃ ∈ Lq (µ) since h ∈ Lq (µ̃). In case p = 1,Lq (µ̃) and Lq (µ) are exactly the
same. In this case you have Λ( f ) = Λ̃

(
r−1 f

)
=
∫

Ω
h f r−1rdµ =

∫
Ω

f hdµ Thus the desired
representation holds. Then in any case,|Λ( f )| ≤

∥∥h̃
∥∥

Lq ∥ f∥Lp so ∥Λ∥ ≤
∥∥h̃
∥∥

Lq . Also, as
before,

∥∥h̃
∥∥q

Lq(µ)
=

∣∣∣∣∫
Ω

h̃
∣∣h̃∣∣q−2 h̃dµ

∣∣∣∣= ∣∣∣Λ(∣∣h̃∣∣q−2 h̃
)∣∣∣≤ ∥Λ∥(∫

Ω

∣∣∣|h̃|q−2h̃
∣∣∣p dµ

)1/p

= ∥Λ∥
(∫

Ω

(∣∣h̃∣∣q/p
)p
)1/p

= ∥Λ∥∥h∥q/p

and so
∥∥h̃
∥∥

Lq(µ)
≤ ∥Λ∥ ≤

∥∥h̃
∥∥

Lq(µ)
. It works the same for p = 1. Thus

∥∥h̃
∥∥

Lq(µ)
= ∥Λ∥ . ■

A situation in which the conditions of the lemma are satisfied is the case where the
measure space is σ finite. In fact, you should show this is the only case in which the
conditions of the above lemma hold.

Theorem 13.3.4 (Riesz representation theorem) Let (Ω,S ,µ) be σ finite and let
Λ ∈ (Lp(Ω,µ))′, p ≥ 1. Then there exists a unique h ∈ Lq(Ω,µ), L∞(Ω,µ) if p = 1 such
that Λ f =

∫
h f dµ. Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here 1

p +
1
q = 1.
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Proof: Without loss of generality, assume µ (Ω) = ∞. By Proposition 7.11.1, either µ

is a finite measure or µ (Ω) =∞. These are the only two cases. Then let {Ωn} be a sequence
of disjoint elements of S having the property that 1 < µ(Ωn) < ∞, ∪∞

n=1Ωn = Ω. Define
r(x) = ∑

∞
n=1

1
n2 XΩn(x) µ(Ωn)

−1, µ̃(E) =
∫

E rdµ . Thus
∫

Ω
rdµ = µ̃(Ω) = ∑

∞
n=1

1
n2 < ∞ so

µ̃ is a finite measure. The above lemma gives the existence part of the conclusion of the
theorem. Uniqueness is done as before. ■

13.4 The Dual Space of L∞ (Ω)

What about the dual space of L∞ (Ω)? This will involve the following Lemma. Also recall
the notion of total variation defined in Definition 13.2.2.

Lemma 13.4.1 Let (Ω,F ) be a measure space. Denote by BV (Ω) the space of finitely
additive complex measures ν such that |ν |(Ω)<∞. Then defining ∥ν∥≡ |ν |(Ω) , it follows
that BV (Ω) is a Banach space.

Proof: It is obvious that BV (Ω) is a vector space with the obvious conventions involv-
ing scalar multiplication. Why is ∥·∥ a norm? All the axioms are obvious except for the
triangle inequality. However, this is not too hard either.

∥µ +ν∥ ≡ |µ +ν |(Ω) = sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)+ν (A)|
}

≤ sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)|
}
+ sup

π(Ω)

{
∑

A∈π(Ω)

|ν (A)|
}

≡ |µ|(Ω)+ |ν |(Ω) = ∥ν∥+∥µ∥ .

Suppose now that {νn} is a Cauchy sequence. For each E ∈F ,

|νn (E)−νm (E)| ≤ ∥νn−νm∥

and so the sequence of complex numbers νn (E) converges. That to which it converges is
called ν (E) . Then it is obvious that ν (E) is finitely additive. Why is |ν | finite? Since ∥·∥
is a norm, it follows that there exists a constant C such that for all n, |νn|(Ω)<C. Let π (Ω)
be any partition. Then

∑
A∈π(Ω)

|ν (A)|= lim
n→∞

∑
A∈π(Ω)

|νn (A)| ≤C.

Hence ν ∈ BV (Ω). Let ε > 0 be given and let N be such that if n,m > N, then ∥νn−νm∥<
ε/2. Pick any such n. Then choose π (Ω) such that

|ν−νn|(Ω)− ε/2 < ∑
A∈π(Ω)

|ν (A)−νn (A)|

= lim
m→∞

∑
A∈π(Ω)

|νm (A)−νn (A)|< lim inf
m→∞
|νn−νm|(Ω)≤ ε/2

It follows that limn→∞ ∥ν−νn∥= 0. ■
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Corollary 13.4.2 Suppose (Ω,F ) is a measure space as above and suppose µ is a
measure defined on F . Denote by BV (Ω; µ) those finitely additive measures of BV (Ω) ν

such that ν ≪ µ in the usual sense that if µ (E) = 0, then ν (E) = 0. Then BV (Ω; µ) is a
closed subspace of BV (Ω).

Proof: It is clear that it is a subspace. Is it closed? Suppose νn→ ν and each νn is in
BV (Ω; µ) . Then if µ (E) = 0, it follows that νn (E) = 0 and so ν (E) = 0 also, being the
limit of 0. ■

Definition 13.4.3 For s a simple function s(ω)=∑
n
k=1 ckXEk (ω) and ν ∈BV (Ω) ,

define an “integral” with respect to ν as follows.∫
sdν ≡

n

∑
k=1

ckν (Ek) .

For f function which is in L∞ (Ω; µ) , define
∫

f dν as follows. Applying Theorem 6.1.10, to
the positive and negative parts of real and imaginary parts of f , there exists a sequence of
simple functions {sn} which converges uniformly to f off a set of µ measure zero. Then∫

f dν ≡ lim
n→∞

∫
sndν

Lemma 13.4.4 The above definition of the integral with respect to a finitely additive
measure in BV (Ω; µ) is well defined.

Proof: First consider the claim about the integral being well defined on the simple
functions. This is clearly true if it is required that the ck are disjoint and the Ek also disjoint
having union equal to Ω. Thus define the integral of a simple function in this manner. First
write the simple function as ∑

n
k=1 ckXEk where the ck are the values of the simple function.

Then use the above formula to define the integral. Next suppose the Ek are disjoint but the
ck are not necessarily distinct. Let the distinct values of the ck be a1, · · · ,am

∑
k

ckXEk = ∑
j

a j

(
∑

i:ci=a j

XEi

)
= ∑

j
a jν

(
∪i:ci=a j Ei

)
= ∑

j
a j ∑

i:ci=a j

ν (Ei) = ∑
k

ckν (Ek)

and so the same formula for the integral of a simple function is obtained in this case also.
Now consider two simple functions

s =
n

∑
k=1

akXEk , t =
m

∑
j=1

b jXFj

where the ak and b j are the distinct values of the simple functions. Then from what was
just shown,∫

(αs+β t)dν =
∫ ( n

∑
k=1

m

∑
j=1

αakXEk∩Fj +
m

∑
j=1

n

∑
k=1

βb jXEk∩Fj

)
dν

=
∫ (

∑
j,k

αakXEk∩Fj +βb jXEk∩Fj

)
dν

= ∑
j,k
(αak +βb j)ν (Ek ∩Fj)
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=
n

∑
k=1

m

∑
j=1

αakν (Ek ∩Fj)+
m

∑
j=1

n

∑
k=1

βb jν (Ek ∩Fj)

=
n

∑
k=1

αakν (Ek)+
m

∑
j=1

βb jν (Fj) = α

∫
sdν +β

∫
tdν

Thus the integral is linear on simple functions so, in particular, the formula given in the
above definition is well defined regardless.

So what about the definition for f ∈ L∞ (Ω; µ)? Since f ∈ L∞, there is a set of µ mea-
sure zero N such that on NC there exists a sequence of simple functions which converges
uniformly to f on NC. Consider sn and sm. As in the above, they can be written as
∑

p
k=1 cn

kXEk , ∑
p
k=1 cm

k XEk respectively, where the Ek are disjoint having union equal to
Ω. Then by uniform convergence, if m,n are sufficiently large,

∣∣cn
k− cm

k

∣∣ < ε or else the
corresponding Ek is contained in NC a set of ν measure 0 thanks to ν ≪ µ . Hence∣∣∣∣∫ sndν−

∫
smdν

∣∣∣∣ =

∣∣∣∣∣ p

∑
k=1

(cn
k− cm

k )ν (Ek)

∣∣∣∣∣
≤

p

∑
k=1
|cn

k− cm
k | |ν (Ek)| ≤ ε ∥ν∥

and so the integrals of these simple functions converge. Similar reasoning shows that the
definition is not dependent on the choice of approximating sequence. ■

Note also that for s simple,∣∣∣∣∫ sdν

∣∣∣∣≤ ∥s∥L∞ |ν |(Ω) = ∥s∥L∞ ∥ν∥

Next the dual space of L∞ (Ω; µ) will be identified with BV (Ω; µ). First here is a simple
observation. Let ν ∈ BV (Ω; µ) . Then define the following for f ∈ L∞ (Ω; µ) .Tν ( f ) ≡∫

f dν

Lemma 13.4.5 For Tν just defined, |Tν f | ≤ ∥ f∥L∞ ∥ν∥

Proof: As noted above, the conclusion true if f is simple. Now if f is in L∞, then it
is the uniform limit of simple functions off a set of µ measure zero. Therefore, by the
definition of the Tν ,

|Tν f |= lim
n→∞
|Tν sn| ≤ lim inf

n→∞
∥sn∥L∞ ∥ν∥= ∥ f∥L∞ ∥ν∥ . ■

Thus each Tν is in (L∞ (Ω; µ))′ .■
Here is the representation theorem, due to Kantorovitch, for the dual of L∞ (Ω; µ).

Theorem 13.4.6 Let θ : BV (Ω; µ)→ (L∞ (Ω; µ))′ be given by θ (ν)≡ Tν . Then θ

is one to one, onto and preserves norms.

Proof: It was shown in the above lemma that θ maps into (L∞ (Ω; µ))′ . It is obvious
that θ is linear. Why does it preserve norms? From the above lemma,

∥θν∥ ≡ sup
∥ f∥∞≤1

|Tν f | ≤ ∥ν∥
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It remains to turn the inequality around. Let π (Ω) be a partition. Then

∑
A∈π(Ω)

|ν (A)|= ∑
A∈π(Ω)

sgn(ν (A))ν (A)≡
∫

f dν

where sgn(ν (A)) is defined to be a complex number of modulus 1 such that

sgn(ν (A))ν (A) = |ν (A)|

and
f (ω) = ∑

A∈π(Ω)

sgn(ν (A))XA (ω) .

Therefore, choosing π (Ω) suitably, since ∥ f∥
∞
≤ 1,

∥ν∥− ε = |ν |(Ω)− ε ≤ ∑
A∈π(Ω)

|ν (A)|= Tν ( f )

= |Tν ( f )|= |θ (ν)( f )| ≤ ∥θ (ν)∥ ≤ ∥ν∥

Thus θ preserves norms. Hence it is one to one also. Why is θ onto?
Let Λ ∈ (L∞ (Ω; µ))′ . Then define

ν (E)≡ Λ(XE) (13.6)

This is obviously finitely additive because Λ is linear. Also, if µ (E) = 0, then XE = 0 in
L∞ and so Λ(XE) = 0. If π (Ω) is any partition of Ω, then

∑
A∈π(Ω)

|ν (A)| = ∑
A∈π(Ω)

|Λ(XA)|= ∑
A∈π(Ω)

sgn(Λ(XA))Λ(XA)

= Λ

(
∑

A∈π(Ω)

sgn(Λ(XA))XA

)
≤ ∥Λ∥

and so ∥ν∥ ≤ ∥Λ∥ showing that ν ∈ BV (Ω; µ). Also from 13.6, if s = ∑
n
k=1 ckXEk is a

simple function,∫
sdν =

n

∑
k=1

ckν (Ek) =
n

∑
k=1

ckΛ
(
XEk

)
= Λ

(
n

∑
k=1

ckXEk

)
= Λ(s)

Then letting f ∈ L∞ (Ω; µ) , there exists a sequence of simple functions converging to f
uniformly off a set of µ measure zero and so passing to a limit in the above with s replaced
with sn it follows that Λ( f ) =

∫
f dν and so θ is onto. ■

13.5 The Dual Space of C0 (X)

Consider the dual space of C0(X) where X is a Polish space in which the balls have compact
closure. It will turn out to be a space of measures. To show this, the following lemma will
be convenient. Recall C0 (X) is defined as follows.

Definition 13.5.1 f ∈C0 (X) means that for every ε > 0 there exists a compact set
K such that | f (x)|< ε whenever x /∈ K. Recall the norm on this space is

∥ f∥
∞
≡ ∥ f∥ ≡ sup{| f (x)| : x ∈ X}
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One should note right away that Cc (X) is dense in C0 (X) because if f ∈C0 (X) , then
| f (x)| < ε off some compact set K. Let V ⊇ K where V is open and let K ≺ h ≺ V . Now
consider h f ∈Cc (X). ∥ f −h f∥

∞
< ε .

The next lemma has to do with finding a functional which wants to be linear on the
space of positive continuous functions. This will be like the abstract Lebesgue integral.
Then the linear extension, as with the Lebesgue integral, will be set up to use the big
theorem on positive linear functionals.

Let L ∈C0(X)′. Also denote by C+
0 (X) the set of nonnegative continuous functions in

C0 (X) defined on X .

Definition 13.5.2 Letting L ∈C0 (X)′ , define for f ∈C+
0 (X)

λ ( f ) = sup{|Lg| : |g| ≤ f ,g ∈C+
0 (X)}.

Note that λ ( f )< ∞ because |Lg| ≤ ∥L∥∥g∥ ≤ ∥L∥∥ f∥ for |g| ≤ f . Isn’t this a lot like
the total variation of a vector measure? Indeed it is, and the proof that λ wants to be linear
is also similar to the proof that the total variation is a measure. This is the content of the
following lemma.

Lemma 13.5.3 If c≥ 0, λ (c f ) = cλ ( f ), f1 ≤ f2 implies λ ( f1)≤ λ ( f2), and

λ ( f1 + f2) = λ ( f1)+λ ( f2).

Also
0≤ λ ( f )≤ ∥L∥∥ f∥

∞

Proof: The first two assertions are easy to see so consider the third. For i = 1,2 and
fi ∈C+

0 (X) , let
|gi| ≤ fi,λ ( fi)≤ |Lgi|+ ε

Then let |ω i|= 1 and ω iL(gi) = |L(gi)| so that

|L(g1)|+ |L(g2)| = ω1L(g1)+ω2L(g2)

= L(ω1g1 +ω2g2) = |L(ω1g1 +ω2g2)|

Then
λ ( f1)+λ ( f2)≤ |L(g1)|+ |L(g2)|+2ε

= ω1L(g1)+ω2L(g2)+2ε = L(ω1g1)+L(ω2g2)+2ε

= L(ω1g1 +ω2g2)+2ε = |L(ω1g1 +ω2g2)|+2ε

where |gi| ≤ fi and now |ω1g1 +ω2g2| ≤ |g1|+ |g2| ≤ f1 + f2 and so the above shows

λ ( f1)+λ ( f2)≤ λ ( f1 + f2)+2ε.

Since ε is arbitrary, λ ( f1)+λ ( f2)≤ λ ( f1 + f2) . It remains to verify the other inequality.
Let |g| ≤ f1 + f2, |Lg| ≥ λ ( f1 + f2)− ε. Let

hi (x) =

{
fi(x)g(x)

f1(x)+ f2(x)
if f1 (x)+ f2 (x)> 0,

0 if f1 (x)+ f2 (x) = 0.
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Then hi is continuous and

h1(x)+h2(x) = g(x), |hi| ≤ fi.

The function hi is clearly continuous at points x where f1 (x)+ f2 (x)> 0. The reason it is
continuous at a point where f1 (x)+ f2 (x) = 0 is that at every point y where f1 (y)+ f2 (y)>
0, the top description of hi gives

|hi (y)|=
∣∣∣∣ fi (y)g(y)

f1 (y)+ f2 (y)

∣∣∣∣≤ |g(y)| ≤ f1 (y)+ f2 (y)

so if |y− x| is small enough, |hi (y)| is also small. Then it follows from this definition of
the hi that

−ε +λ ( f1 + f2) ≤ |Lg|= |Lh1 +Lh2| ≤ |Lh1|+ |Lh2|
≤ λ ( f1)+λ ( f2).

Since ε > 0 is arbitrary, this shows that

λ ( f1 + f2)≤ λ ( f1)+λ ( f2)≤ λ ( f1 + f2)

The last assertion follows from the observation that if |g| ≤ f , then ∥g∥
∞
≤ ∥ f∥

∞
so

λ ( f ) = sup{|Lg| : |g| ≤ f} ≤ sup
∥g∥∞≤∥ f∥∞

∥L∥∥g∥
∞
≤ ∥L∥∥ f∥

∞
■

Let Λ be the unique linear extension of Theorem 7.7.7 for which Λ f = λ ( f ) when f ≥
0. It is just like defining the integral for functions when you understand it for nonnegative
functions. As with integrals Λ( f )≤ Λ(| f |) = λ (| f |). Then from the above lemma,

|Λ f | ≤ λ (| f |)≤ ∥L∥∥ f∥
∞

. (13.7)

Also, if f ≥ 0,Λ f = λ ( f ) ≥ 0. Therefore, Λ is a positive linear functional on C0(X).
In particular, it is a positive linear functional on Cc (X). Thus there are now two linear
continuous mappings L,Λ which are defined on C0 (X) with the norm ∥·∥

∞
. The above

13.7 shows that in fact ∥Λ∥ ≤ ∥L∥. Also, from the definition of Λ

|Lg| ≤ λ (|g|) = Λ(|g|)≤ ∥Λ∥∥g∥
∞

so in fact, ∥L∥ ≤ ∥Λ∥ showing that these two have the same operator norms, ∥L∥= ∥Λ∥.
By Theorem 8.2.1 on Page 188, since Λ is a positive linear functional on Cc (X), there

exists a unique measure µ such that Λ f =
∫

X f dµ for all f ∈ Cc(X). This measure is
regular. In fact, it is actually a finite measure. First note that by density of Cc (X) in C0 (X)

∥Λ∥ = sup{Λ f : f ∈Cc (X) ,∥ f∥
∞
≤ 1}= sup{Λ f : 0≤ f ≤ 1, f ∈Cc (X)}

= sup
{∫

f dµ : 0≤ f ≤ 1, f ∈Cc (X)

}
= µ (X)

This is stated in the following lemma.

Lemma 13.5.4 Let L ∈ C0 (X)′ as above. Then letting µ be the Radon measure just
described, it follows µ is finite and µ (X) = ∥Λ∥= ∥L∥ .
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What follows is the Riesz representation theorem for C0(X)′.

Theorem 13.5.5 Let L ∈ (C0(X))′. Then there exists a finite Radon measure µ and
a function σ ∈ L∞(X ,µ) such that for all f ∈C0 (X) ,

L( f ) =
∫

X
f σdµ.

Furthermore, µ (X) = ∥L∥ , |σ |= 1 a.e. and if ν (E)≡
∫

E σdµ then µ = |ν | .

Proof: From the above there exists a unique Radon measure µ such that for all f ∈
Cc (X) ,Λ f =

∫
X f dµ . Then for f ∈Cc (X) ,

|L f | ≤ λ (| f |) = Λ(| f |) =
∫

X
| f |dµ = ∥ f∥L1(µ).

Since µ is both inner and outer regular, Cc(X) is dense in L1(X ,µ). (See Theorem 9.4.2)
Therefore L extends uniquely to an element of (L1(X ,µ))′, L̃. By the Riesz representation
theorem for L1 for finite measure spaces, there exists a unique σ ∈ L∞(X ,µ) such that for
all f ∈ L1 (X ,µ) , L̃ f =

∫
X f σdµ. In particular, for all f ∈ C0 (X) ,L f =

∫
X f σdµ and it

follows from Lemma 13.5.4, µ (X) = ∥L∥.
It remains to verify |σ | = 1 a.e. For any continuous f ≥ 0,Λ f ≡

∫
X f dµ ≥ |L f | =

|
∫

X f σdµ| . Now if E is measurable, the regularity of µ implies that there exists a sequence
of nonnegative bounded functions fn ∈Cc (X) such that fn (x)→XE (x) a.e. and in L1 (µ) .
Then using the dominated convergence theorem in the above,∫

E
dµ = lim

n→∞

∫
X

fndµ = lim
n→∞

Λ( fn)≥ lim
n→∞
|L fn|

= lim
n→∞

∣∣∣∣∫X
fnσdµ

∣∣∣∣= ∣∣∣∣∫E
σdµ

∣∣∣∣
and so if µ (E) > 0, 1 ≥

∣∣∣ 1
µ(E)

∫
E σdµ

∣∣∣which shows from Theorem 13.2.8 that |σ | ≤ 1 µ

a.e. But also, from Theorem 13.2.8, if ∥ f∥
∞
≤ 1,

|µ|(X) = µ (X) = ∥L∥= sup
∥ f∥∞≤1

∣∣∣∣∫X
f σdµ

∣∣∣∣≤ ∫X
| f | |σ |dµ

≤
∫

X
|σ |dµ ≤

∫
X

dµ = µ (X)

and so |σ | = 1 a.e. since µ (X) =
∫

X |σ |dµ = µ (X) and it is known that |σ | ≤ 1. If |σ |
were less than 1 on a set of positive measure, this could not hold.

It only remains to verify µ = |ν |. Recall ν (E)≡
∫

E σdµ. By Theorem 13.2.8, |ν |(E) =∫
E |σ |dµ =

∫
E 1dµ = µ (E) and so µ = |ν | . ■

Sometimes people write
∫

X f dν ≡
∫

X f σd |ν | where σd |ν | is the polar decomposition
of the complex measure ν . Then with this convention, the above representation is

L( f ) =
∫

X
f dν , |ν |(X) = ∥L∥ .

Also note that at most one ν can represent L. If there were two of them ν i, i = 1,2, then
ν1−ν2 would represent 0 and so |ν1−ν2|(X) = 0. Hence ν1 = ν2.
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The following is a rather important application of the above theory along with the mate-
rial on Fourier transforms presented earlier. It has to do with the fact that the characteristic
function of a probability measure is unique so if two such measures have the same charac-
teristic function, then they are the same measure. This can actually be shown rather easily.
You don’t have to accept this kind of thing on faith and speculations based on special cases.

Example 13.5.6 Let µ and ν be two Radon probability measures on the Borel sets of Rp.
The typical situation is that these are probability distribution functions for two random
variables. Then the characteristic function of µ is (2π)p/2 times the inverse Fourier trans-
form of µ

φ µ (t)≡
∫

X
eit·xdµ (x)

then a very important theorem from probability says that if φ µ (t) = φ ν (t) , then the two
measures are equal. This is very easy at this point, but not so easy if you don’t have the
general treatment of Fourier transforms presented above.

We have F−1 (µ)=F−1 (ν) in G ∗. Therefore, µ = ν in G ∗ and by definition,
∫

X ψdµ =∫
X ψdν for all ψ ∈ G . But by the Stone Weierstrass theorem, G is dense in C0 (Rp) and so

the equation holds for all ψ ∈ C0 (Rp). Now Cc (Rp) ⊆ C0 (Rp) and so the equation also
holds for all ψ ∈ Cc (Rp). By uniqueness in the Riesz representation theorem, it follows
that µ = ν . You could also use Theorem 13.5.5.

13.6 Exercises
1. Suppose µ is a vector measure having values inRn orCn. Can you show that |µ|must

be finite? Hint: You might define for each ei, one of the standard basis vectors, the
real or complex measure, µei

given by µei
(E)≡ ei ·µ (E) . Why would this approach

not yield anything for an infinite dimensional normed linear space in place of Rn?

2. The Riesz representation theorem of the Lp spaces can be used to prove a very inter-
esting inequality. Let r, p,q ∈ (1,∞) satisfy

1
r
=

1
p
+

1
q
−1.

Then
1
q
= 1+

1
r
− 1

p
>

1
r

and so r > q. Let θ ∈ (0,1) be chosen so that θr = q. Then also

1
r
=


1/p+1/p′=1︷ ︸︸ ︷

1− 1
p′

+
1
q
−1 =

1
q
− 1

p′

and so
θ

q
=

1
q
− 1

p′
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which implies p′ (1−θ) = q. Now let f ∈ Lp (Rn) , g ∈ Lq (Rn) , f ,g ≥ 0. Jus-
tify the steps in the following argument using what was just shown that θr = q and
p′ (1−θ) = q. Let

h ∈ Lr′ (Rn) .

(
1
r
+

1
r′

= 1
)

∣∣∣∣∫ f ∗g(x)h(x)dx
∣∣∣∣= ∣∣∣∣∫ ∫ f (y)g(x−y)h(x)dxdy

∣∣∣∣ .
≤
∫ ∫

| f (y)| |g(x−y)|θ |g(x−y)|1−θ |h(x)|dydx

≤
∫ (∫ (

|g(x−y)|1−θ |h(x)|
)r′

dx
)1/r′

·

(∫ (
| f (y)| |g(x−y)|θ

)r
dx
)1/r

dy

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)r′

dx
)p′/r′

dy

]1/p′

·

[∫ (∫ (
| f (y)| |g(x−y)|θ

)r
dx
)p/r

dy

]1/p

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)p′

dy
)r′/p′

dx

]1/r′

·

[∫
| f (y)|p

(∫
|g(x−y)|θr dx

)p/r

dy

]1/p

=

[∫
|h(x)|r

′
(∫
|g(x−y)|(1−θ)p′ dy

)r′/p′

dx

]1/r′

∥g∥q/r
q ∥ f∥p

= ∥g∥q/r
q ∥g∥

q/p′
q ∥ f∥p ∥h∥r′ = ∥g∥q ∥ f∥p ∥h∥r′ . (13.8)

Young’s inequality says that

∥ f ∗g∥r ≤ ∥g∥q ∥ f∥p . (13.9)

Therefore ∥ f ∗g∥r ≤ ∥g∥q ∥ f∥p. How does this inequality follow from the above
computation? Does 13.8 continue to hold if r, p,q are only assumed to be in [1,∞]?
Explain. Does 13.9 hold even if r, p, and q are only assumed to lie in [1,∞]?

3. Suppose (Ω,µ,S ) is a finite measure space and that { fn} is a sequence of functions
which converge weakly to 0 in Lp (Ω). This means that∫

Ω

fngdµ → 0

for every g ∈ Lp′ (Ω). Suppose also that fn (x)→ 0 a.e. Show that then fn → 0 in
Lp−ε (Ω) for every ε > 0 such that p− ε > 1.
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Hint: The weak convergence implies fn is bounded in Lp (Ω) where p> p−ε . (Con-
sider the uniform boundedness theorem.) Show

{
f p−ε
n

}
is uniformly integrable.

Then consider the Vitali convergence theorem.

4. Give an example of a sequence of functions in L∞ (−π,π) which converges weak ∗
to zero but which does not converge pointwise a.e. to zero. Convergence weak ∗
to 0 means that for every g ∈ L1 (−π,π) ,

∫
π

−π
g(t) fn (t)dt→ 0. Hint: First consider

g ∈ C∞
c (−π,π) and maybe try something like fn (t) = sin(nt). Do integration by

parts. Recall the Riemann Lebesgue lemma.

5. Let λ be a real vector measure on the measure space (Ω,F ). That is λ has values in
R. The Hahn decomposition says there exist measurable sets P,N such that

P∪N = Ω,P∩N = /0,

and for each F ⊆ P,λ (F) ≥ 0 and for each F ⊆ N,λ (F) ≤ 0. These sets P,N are
called the positive set and the negative set respectively. Show from the polar de-
composition of a vector measure the existence of the Hahn decomposition. Also
explain how this decomposition is unique in the sense that if P′,N′ is another Hahn
decomposition, then (P\P′)∪ (P′ \P) has measure zero, a similar formula holding
for N,N′. When you have the Hahn decomposition, as just described, you define
λ
+ (E)≡ λ (E ∩P) ,λ− (E)≡ λ (E ∩N). This is sometimes called the Hahn Jordan

decomposition.

6. The Hahn decomposition holds for measures which have values in (−∞,∞]. Let λ

be such a measure which is defined on a σ algebra of sets F . This is not a vector
measure because the set on which it has values is not a vector space. Thus this case is
not included in the above discussion. N ∈F is called a negative set if λ (B)≤ 0 for
all B⊆N. P∈F is called a positive set if for all F ⊆ P,λ (F)≥ 0. (Here it is always
assumed you are only considering sets of F .) Show that if λ (A) ≤ 0, then there
exists N ⊆ A such that N is a negative set and λ (N)≤ λ (A). Hint: This is done by
subtracting off disjoint sets having positive measure. Let A≡N0 and suppose Nn ⊆ A
has been obtained. Tell why tn ≡ sup{λ (E) : E ⊆ Nn} ≥ 0. Let Bn ⊆ Nn such that

λ (Bn)>
tn
2

Then Nn+1≡Nn\Bn. Thus the Nn are decreasing in n and the Bn are disjoint. Explain
why λ (Nn) ≤ λ (N0). Let N = ∩Nn. Argue tn must converge to 0 since otherwise
λ (N) =−∞. Explain why this requires N to be a negative set in A which has measure
no larger than that of A.

7. Using Problem 6 complete the Hahn decomposition for λ having values in (−∞,∞].
Now the Hahn Jordan decomposition for the measure λ is

λ
+ (E)≡ λ (E ∩P) , λ

− (E)≡−λ (E ∩N) .

Explain why λ
− is a finite measure. Hint: From the above problem, if λ (A) ≤ 0,

there is a negative set N contained in A. If Ω is positive, then you are done. If not,
you could consider a maximal disjoint union of negative sets. This will be countable.
Then take complement of its union which must be positive.
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8. What if λ has values in [−∞,∞). Prove there exists a Hahn decomposition for λ as
in the above problem. Why do we not allow λ to have values in [−∞,∞]? Hint: You
might want to consider −λ .

9. Suppose X is a Banach space and let X ′ denote its dual space. A sequence {x∗n}
∞

n=1
in X ′ is said to converge weak ∗ to x∗ ∈ X ′ if for every x ∈ X , limn→∞ x∗n (x) = x∗ (x) .
Let {φ n} be a mollifier defined on Rp. Also let δ be the measure defined by

δ (E) = 1 if 0 ∈ E and 0 if 1 /∈ E.

Explain how φ n→ δ weak ∗ in the dual space of C0 (Rp).

10. Let (Ω,F ,P) be a probability space and let X : Ω→ Rn be a random variable. This
means X−1 (open set) ∈F . Define a measure λ X on the Borel sets of Rn as follows.
For E a Borel set, λ X (E) ≡ P

(
X−1 (E)

)
Explain why this is well defined. Next

explain why λ X can be considered a Radon probability measure by completion. Ex-
plain why λ X ∈ G ∗ if

λ X (ψ)≡
∫
Rn

ψdλ X

where G is the collection of functions used to define the Fourier transform.

11. Using the above problem, the characteristic function of this measure (random vari-
able) is

φ X (y)≡
∫
Rn

eix·ydλ X

Show this always exists for any such random variable and is continuous. Next show
that for two random variables X ,Y,λ X = λY if and only if φ X (y) = φY (y) for all
y. In other words, show the distribution measures are the same if and only if the
characteristic functions are the same. A lot more can be concluded by looking at
characteristic functions of this sort. The important thing about these characteristic
functions is that they always exist, unlike moment generating functions. Note that
this is a specific version of Example 13.5.6.

12. Let B be the ball
{

f ∈ Lp (Ω) : ∥ f∥p ≤M
}

where Ω is a measurable subset of Rp

and the measure is a Radon measure, and suppose you have a sequence { fk} ⊆ B.
Show that there exists a subsequence, still denoted as { fk} and f ∈ B such that for
all g ∈ Lq (Ω) ,

lim
k→∞

∫
fkgdµ =

∫
f gdµ

That is, show that B is weakly sequentially compact. This is the term for what you
will show and it is the most important case of the Eberlein Smulian theorem on weak
compactness. It serves as the basis for may existence theorems in non linear analysis.
Hint: First use the fact that Lq (Ω) is separable, 1

q +
1
p = 1. See Corollary 10.7.3.

Then use the Cantor diagonalization process which was used earlier in the proof
of the Arzela Ascoli theorem, Theorem 9.2.4 to obtain a subsequence, still denoted
as { fk} such that for each g ∈ D for D the countable dense subset of Lq (Ω) , the
sequence of complex numbers{

∫
fkgdµ} converges. Now show that this converges

for every g ∈ Lq (Ω). Let F (g) ≡ limk→∞

∫
fkgdµ. Show that F ∈ (Lq (Ω))′. Now

use the Riesz representation theorem to get f ∈ Lp (Ω) representing F . Observe that
this works.
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Chapter 14

Fundamentals
14.1 Banach Spaces

I am going to present the most basic theorems in complex analysis for the case where the
functions have values in a Banach space. See Chapter 12 above for a short discussion
of the main properties of these spaces. There are good reasons for allowing functions to
have values in a complex Banach space. In particular, when X is a Banach space, so is
L (X ,X). The presentation of fundamental topics will include the case of λ → (λ I−A)−1

for A ∈ L (X ,X). This will make possible an easy discussion of some very important
theorems. Thus this extra generality is not just generalization for the sake of generalization.
It is here for a real reason, to make the transition to spectral theory of linear operators
believable. However, if the reader is convinced that these functional analysis topics will
never be of use to them, then replace X with C and a standard treatment will be obtained.
After presenting the fundamental concepts of this subject, in this general setting, I will
specialize to the usual case in which the functions have complex values. In fact, this is the
main thrust of this book. I am just trying not to neglect the other application.

It is useful to recall Problem 26 on Page 78 about when a function of a single real
variable has derivative equal to 0 the function is constant even if it has values in a Banach
space.

There is a fundamental theorem about intersections. As before, a set F is closed if its
complement is open or equivalently if it contains all of its limit points. The proof is exactly
as done earlier.

In the following, for S a nonempty set, diam(S)≡ sup{∥x− y∥ : x,y ∈ S}.

Theorem 14.1.1 Let Fn ⊇ Fn+1 · · · where each Fn is a closed set in X a Banach
space and suppose that the diameter of Fn converges to 0 as n→ ∞. Then there exists a
unique point in ∩∞

n=1Fn.

Proof: Obviously there can be no more than one point in the intersection because if x,y
are two points, then ∥x− y∥> δ > 0 for some δ but eventually both points would be in Fn
where n is so large that the diameter of Fn is less than δ . As to existence of the point in
the intersection, pick pn ∈ Fn. It is a Cauchy sequence since diam(Fn)→ 0 and so {pn}
converges to p. Now the pk for k ≥ n is in Fn, a closed set so by Corollary 2.2.8 applied to
X rather than Fp, it follows that p ∈ Fn, this for each n. Hence p ∈ ∩∞

n=1Fn. ■

14.2 The Cauchy Riemann Equations
These fundamental equations pertain to a complex valued function of a complex variable.
Recall the complex numbers should be considered as points in the plane. Thus a complex
number is of the form x+ iy where i2 = −1. Recall that the complex conjugate is defined
by x+ iy≡ x− iy and for z a complex number, |z| ≡ (zz)1/2 =

√
x2 + y2. Thus when x+ iy

is considered an ordered pair (x,y) ∈ R2 the magnitude of a complex number is nothing
more than the usual norm of the ordered pair. Also for z = x+ iy,w = u+ iv, |z−w| =√
(x−u)2 +(y− v)2so in terms of all topological considerations,R2 is the same asC. Thus

to say z→ f (z) is continuous, is the same as saying (x,y)→ u(x,y) , (x,y)→ v(x,y) are
continuous where f (z)≡ u(x,y)+ iv(x,y) with u and v being called the real and imaginary
parts of f . The only new thing is that writing an ordered pair (x,y) as x + iy with the
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convention i2 = −1 makes C into a field all this is earlier in the book. Now here is the
definition of what it means for a function to be analytic.

Definition 14.2.1 Let U be an open subset of C ,
(
R2
)

and let f : U → X where X
is a complex Banach space. Then f is said to be analytic on U if for every z ∈U,

lim
h→0

f (z+h)− f (z)
h

≡ f ′ (z)

exists where z→ f ′ (z) is a continuous function of z ∈U. For a function having values in C
denote by u(x,y) the real part of f and v(x,y) the imaginary part. Both u and v have real
values and

f (x+ iy)≡ f (z)≡ u(x,y)+ iv(x,y)

As earlier, the above definition of the derivative is equivalent to saying

f (z+h) = f (z)+ f ′ (z)h+o(h) ,

But here we insist that z→ f ′ (z) be continuous

All the usual rules of differentiation hold from using the same proofs.
First are some simple results in the case that f has values in C.

Proposition 14.2.2 Let U be an open subset of C . Then f : U → C is analytic if and
only if for f (x+ iy)≡ u(x,y)+ iv(x,y) , u(x,y) ,v(x,y) being the real and imaginary parts
of f , it follows

ux (x,y) = vy (x,y) , uy (x,y) =−vx (x,y)

and all these partial derivatives, ux,uy,vx,vy are continuous on U. (The above equations
are called the Cauchy Riemann equations.)

Proof: If f ′ (z) exists, then clearly Re( f )′ and Im( f )′ exist and so in particular, all the
partial derivatives of u,v exist. Thus f ′ (z) exists if and only if for ∆z = h+ ik,

f (z+∆z)− f (z) = u(x+h,y+ k)+ iv(x+h,y+ k)− (u(x,y)+ iv(x,y))

= ux (x,y)h+uy (x,y)k+ i(vx (x,y)h+ vy (x,y)k)+o((h,k))

= ux (x,y)h+uy (x,y)k+ i(vx (x,y)h+ vy (x,y)k)+o(∆z) (14.1)

Then from the above,

f ′ (z) = lim
k→0

( f (z+ ik)− f (z))
1
ik

=−uy (x,y) i+ vy (x,y)

f ′ (z) = lim
h→0

( f (z+h)− f (z))
1
h
= ux (x,y)+ ivx (x,y)

and so ux (x,y) = vy (x,y) ,uy (x,y) =−vx (x,y) the Cauchy Riemann equations. Thus these
Cauchy Riemann equations hold if f ′ (z) exists. Also, it follows from Theorem 4.5.2 on
Page 96 that if u,v are C1 then 14.1 holds and so f ′ (z) exists and is continuous. ■

Example 14.2.3 What if f : C→ R is analytic?
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It turns out that this is not very interesting. Letting u,v be as above, it follows that
v = 0 and so ux = 0y = 0 and uy = −0x = 0 so ∇u = 0 and so u is a constant. Therefore,
f (z) = c ∈ R.

Example 14.2.4 f (z) = z2 is analytic. f (z) =
∣∣z2
∣∣ is not.

For functions of a real variable, it is perfectly possible for the derivative to exist and not
be continuous. For example, consider

f (x)≡
{

x2 sin
( 1

x

)
if x ̸= 0

0 if x = 0

You can verify that f ′ (x) exists for all x but at 0 this derivative is not continuous. This will
NEVER happen with functions of a complex variable. This is shown later when it is more
convenient. For now make continuity of f ′ part of the requirement for f to be analytic.

14.3 The Logarithm
One of the most important examples of an analytic function is the logarithm. Earlier the
function ez was discussed. See Section 1.5.2. Recall ex+iy ≡ ex (cosy+ isiny) and this
will be an analytic function because the real and imaginary parts are C1 and the Cauchy
Riemann equations hold. This is one way to see this. Now I want to consider log(z) which
is in some sense the inverse of ez.

You want to have elog(z) = z = |z|(cosθ + isinθ) where θ is the angle of z. Now log(z)
should be a complex number and so it will have a real and imaginary part. Thus

eRe(log(z))+i Im(log(z)) = |z|(cosθ + isinθ) = z (14.2)

where θ is the angle of z. The magnitude of the left side needs to equal the magnitude
of the right side. Hence, eRe(log(z)) = |z| and so it is clear that Re(log(z)) = ln |z|. Note
that we must exclude z = 0 just as in the real case. What about Im(log(z))? Having found
Re(log(z)) , 14.2 is

|z|(cos(Im(logz))+ isin(Im(logz))) = |z|(cosθ + isinθ) (14.3)

which happens if and only if
Im(logz) = θ +2kπ (14.4)

for k an integer. Thus there are many solutions for Im(logz) to the above problem. A
branch of the logarithm is determined by picking one of them. The idea is that there is only
one possible solution for Im(logz) in any open interval of length 2π because if you have
two different k in 14.4, the two values of Im(logz) would differ by at least 2π so they could
not both be in an open interval of length 2π .

What is done is to consider ez where if z = |z|eiθ , then θ ∈ (a−π,a+π) for some a.
In other words, you consider the ray coming from 0 in the complex plane and including 0
which has angle a. Then regard ez as being defined for all of C other than this ray.

a
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This involves restricting the domain of the function to an open set so that it has an
inverse. It is like what was done for arctan and other trig. functions in calculus, except here
we are careful to have the domain be an open set. Then if this restriction is made, there
is exactly one solution Im(logz) to 14.3. The most common assignment of a is π, so we
leave out the negative real axis. However, one could leave out any other ray. If the usual
one is left out, this shows that we need to have log(z) = ln(|z|)+ iarg(z) where arg(z) is
the angle in the polar form of z which is in (−π,π). It is called the principal branch of the
logarithm when this is done. If you left out some other ray, then arg(z) would refer to an
angle in some other open interval of length 2π .

Now the above geometric description shows that any branch of z→ log(z) is contin-
uous. Indeed, if zn → z, then by the triangle inequality, ||zn|− |z|| ≤ |zn− z| and so by
continuity of ln, you get ln(|zn|)→ ln(|z|). As to convergence of arg(zn) to arg(z) , just
note that saying one is close to another is the same as saying that arg(zn) is in any open
set determined by two rays emanating from 0 which include z. This happens if zn→ z. Is
z→ log(z) differentiable? First note that, from Proposition 14.2.2, the Cauchy Riemann
equations, and the definition of ez ≡ ex (cosy+ isiny) , it follows that (ez)′ = ez and so

h = elog(z+h)− elog(z) = elog(z) (log(z+h)− log(z))+o(log(z+h)− log(z)) (14.5)

Then for z ̸= 0,
h
z
= log(z+h)− log(z)+o(log(z+h)− log(z)) (14.6)

By continuity, if h is small enough,

|o(log(z+h)− log(z))|< 1
2
|log(z+h)− log(z)| .

Hence
∣∣ h

z

∣∣≥ 1
2 |log(z+h)− log(z)| This shows that |log(z+h)−log(z)|

|h| ≤ 2
|z| for |h| small eno-

ugh. Now

|o(|log(z+h)− log(z)|)|
|h|

=
o(|log(z+h)− log(z)|)
|log(z+h)− log(z)|

|log(z+h)− log(z)|
|h|

and the second term on the right is bounded while the first converges to 0 as h→ 0. There-
fore, o(log(z+h)− log(z)) = o(h) and so it follows from 14.6, log(z+h)− log(z) =( 1

z

)
h+o(h) which shows that, just as in the real variable case log′ (z) = 1

z .
Note that by the same arguments used for functions of a real variable z→ 1

z is continu-
ous on |z| ̸= 0.

Definition 14.3.1 For a ∈ R, let l be the ray from 0 in the complex plane which
includes 0 and consider all complex numbers Da whose angle is in (a−π,a+π) and not
0.

log(z) = ln(|z|)+ iarg(z)

where arg(z) is the angle for z which is in (a−π,a+π). This function is one to one and
analytic on Da and elog(z) = z . This is called a branch of the logarithm. It is called the
principal branch if the ray defining Da is 0 along with the negative real axis.

Note that log(Da) , is the open set in C defined by Imz ∈ (a−π,a+π) . Thus there is
a one to one and onto analytic map which maps Da onto

{z ∈ C : Imz ∈ (a−π,a+π)} .
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This book is not about a detailed study of such conformal maps, (analytic functions with
values in C are called this) but this is an interesting example. Some people find these
kind of mappings very useful and they are certainly beautiful when you keep track of level
curves of real and imaginary parts. You can have lots of fun by having Matlab graph real
and imaginary parts.

14.4 Contour Integrals
In the theory of functions of a complex variable, the most important results are those in-
volving contour integration. I will use contour integration on curves of bounded variation
as in [10], [31], [23] and referred to in [15]. This is more general than piecewise C1 curves
but most results in Complex Analysis can be obtained from only considering the special
case. See Section 5.5 on piecewise smooth curves to see how to do this. The more gen-
eral treatment featured here harmonizes better with Stieltjes integrals. The most important
tools in complex analysis are Cauchy’s theorem in some form and Cauchy’s formula for an
analytic function. This section will give some of the very best versions of these theorems.
They all involve something called a contour integral. Now a contour integral is just a sort
of line integral as will be shown later. As earlier, γ∗ will denote the set of points and γ

will denote a parametrization. Here is the definition. It should look familiar and resemble
a corresponding definition for line integrals presented earlier.

Definition 14.4.1 Let γ : [a,b]→C be continuous and of bounded variation and let
f : γ∗→ X where X is a complex Banach space, usually C. Letting P≡ {t0, · · · , tn} where
a = t0 < t1 < · · ·< tn = b, define

∥P∥ ≡max
{∣∣t j− t j−1

∣∣ : j = 1, · · · ,n
}

and the Riemann Stieltjes sum by S (P) ≡ ∑
n
j=1 f (γ (τ j))

(
γ (t j)− γ

(
t j−1

))
where τ j ∈[

t j−1, t j
]
. (Note this notation is a little sloppy because it does not identify the specific

point τ j used. It is understood that this point is arbitrary.) Define
∫

γ
f (z)dz as the unique

number which satisfies the following condition. For all ε > 0 there exists a δ > 0 such
that if ∥P∥ ≤ δ , then

∣∣∣∫γ
f (z)dz−S (P)

∣∣∣ < ε. Sometimes this is written as
∫

γ
f (z)dz ≡

lim∥P∥→0 S (P) .

You note that this is essentially the same definition given earlier for the line integral
only this time the function has values in C (more generally X) rather than Rn and there is
no dot product involved. Instead, you multiply by the complex number γ (t j)− γ

(
t j−1

)
in

the Riemann Stieltjes sum.
Since the contour integral is defined in terms of limits of sums, it follows that the

contour integral is linear because sums are linear. This is just like what was done earlier
for line integrals.

The fundamental result in this subject is the following theorem. It is just like the earlier
material on line integrals. The proof is included for convenience.

Lemma 14.4.2 If γ is C1 on [a,b] having values in C, then
∫ b

a γ ′ (s)ds = γ (b)− γ (a)

and also the triangle inequality holds
∣∣∣∫ b

a γ ′ (s)ds
∣∣∣≤ ∫ b

a |γ ′ (s)|ds.

Proof: The first claim is the fundamental theorem of calculus applied to real and imag-
inary parts. Consider the second. There exists ω ∈ C with |ω| = 1 and

∣∣∣∫ b
a γ ′ (s)ds

∣∣∣ =
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ω
∫ b

a γ ′ (s)ds. Therefore,∣∣∣∣∫ b

a
γ
′ (s)ds

∣∣∣∣= ∫ b

a
ωγ
′ (s)ds =

∫ b

a
Re
(
ωγ
′ (t)
)

ds≤
∫ b

a

∣∣γ ′ (t)∣∣dt.■

As before, the total variation is denoted by V (γ, [a,b]). The reason I am going through
the details again and the argument may seem a little complicated is that the function does
not have values in Rp but in some Banach space.

Theorem 14.4.3 Let f : γ∗→ X be continuous and let γ : [a,b]→ C be continuous
and of bounded variation. Then

∫
γ

f dz exists. Also letting δ m > 0 be such that |t− s|< δ m

implies ∥ f (γ (t))− f (γ (s))∥< 1
m ,∥∥∥∥∫

γ

f dz−S (P)
∥∥∥∥≤ 2V (γ, [a,b])

m

whenever ∥P∥ < δ m. In addition to this, if γ has a continuous derivative on [a,b] , the
derivative taken from left or right at the endpoints, then∫

γ

f dz =
∫ b

a
f (γ (t))γ

′ (t)dt (14.7)

In general, if φ ∈ X ′, then φ

(∫
γ

f dz
)
=
∫

γ
φ ( f )dz.

Proof: The function, f ◦ γ , is uniformly continuous because it is defined on a compact
set. Therefore, there exists a decreasing sequence of positive numbers, {δ m} such that if
|s− t|< δ m, then ∥ f (γ (t))− f (γ (s))∥< 1

m . Let

Fm ≡ {S (P) : ∥P∥< δ m}.

Thus Fm is a closed set. (The symbol, S (P) in the above definition, means to include all
sums corresponding to P for any choice of τ j.) It is shown that

diam(Fm)≤
2V (γ, [a,b])

m
(14.8)

and then it will follow there exists a unique point, I ∈ ∩∞
m=1Fm. This is because X , the space

where f has its values is complete and Theorem 14.1.1. It will then follow I =
∫

γ
f dz. To

verify 14.8, it suffices to verify that whenever P and Q are partitions satisfying ∥P∥ < δ m
and ∥Q∥< δ m,

∥S (P)−S (Q)∥ ≤ 2
m

V (γ, [a,b]) . (14.9)

Suppose ∥P∥ < δ m and Q ⊇ P. Then also ∥Q∥ < δ m. To begin with, suppose that
P≡

{
t0, · · · , tp, · · · , tn

}
and Q≡

{
t0, · · · , tp−1, t∗, tp, · · · , tn

}
. Thus Q contains only one more

point than P. Letting S (Q) and S (P) be Riemann Steiltjes sums,

S (Q)≡
p−1

∑
j=1

f (γ (σ j))
(
γ (t j)− γ

(
t j−1

))
+ f (γ (σ∗))(γ (t∗)− γ (tp−1))
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+ f (γ (σ∗))(γ (tp)− γ (t∗))+
n

∑
j=p+1

f (γ (σ j))
(
γ (t j)− γ

(
t j−1

))
,

S (P)≡
p−1

∑
j=1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
+

= f(γ(τ p))(γ(tp)−γ(tp−1))︷ ︸︸ ︷
f (γ (τ p))(γ (t∗)− γ (tp−1))+ f (γ (τ p))(γ (tp)− γ (t∗))

+
n

∑
j=p+1

f (γ (τ j))
(
γ (t j)− γ

(
t j−1

))
.

Therefore,

∥S (P)−S (Q)∥ ≤
p−1

∑
j=1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣+ 1
m

∣∣γ (t∗)− γ (tp−1)
∣∣+

1
m

∣∣γ (tp)− γ (t∗)
∣∣+ n

∑
j=p+1

1
m

∣∣γ (t j)− γ
(
t j−1

)∣∣≤ 1
m

V (γ, [a,b]) . (14.10)

Clearly the extreme inequalities would be valid in 14.10 if Q had more than one extra point.
You simply do the above trick more than one time. Let S (P) and S (Q) be Riemann Steiltjes
sums for which ∥P∥ and ∥Q∥ are less than δ m and let R≡ P∪Q. Then from what was just
observed,

∥S (P)−S (Q)∥ ≤ ∥S (P)−S (R)∥+∥S (R)−S (Q)∥ ≤ 2
m

V (γ, [a,b]) .

and this shows 14.9 which proves 14.8. Therefore, there exists a unique point, I ∈ ∩∞
m=1Fm

which satisfies the definition of
∫

γ
f dz.

Now consider the claim about C1 contours. First, why is γ of bounded variation if it is
C1? For P≡ {t0, t1, ..., tn} a partition of [a,b] ,

n

∑
k=1
|γ (tk)− γ (tk−1)| =

n

∑
k=1

∣∣∣∣∫ tk

tk−1

γ
′ (s)ds

∣∣∣∣≤ n

∑
k=1

∫ tk

tk−1

∣∣γ ′ (s)∣∣ds

≤ M
n

∑
k=1

(tk− tk−1) = M (b−a)

where M ≥max{|γ ′ (t)| : t ∈ [a,b]}. Thus
∫

γ
f dz exists.

Let P = {t0, · · · , tn} . Let γ = γ1 + iγ2, γ j real. Then using the mean value theorem,

S (P) =
n

∑
k=1

f (γ (σ k))(γ (tk)− γ (tk−1))

=
n

∑
k=1

f (γ (σ k))(γ1 (tk)− γ1 (tk−1))+ i
n

∑
k=1

f (γ (σ k))(γ2 (tk)− γ2 (tk−1))

=
n

∑
k=1

f (γ (σ k))γ
′
1 (τk)(tk− tk−1)+ i

n

∑
k=1

f (γ (σ k))γ
′
2 (ξ k)(tk− tk−1)
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where τk,ξ k ∈ (tk−1, tk). By uniform continuity of γ ′j, and continuity of f on γ∗ which
implies ∥ f∥ is bounded, the above equals

=
n

∑
k=1

f (γ (σ k))γ
′
1 (σ k)(tk− tk−1)+ i

n

∑
k=1

f (γ (σ k))γ
′
2 (σ k)(tk− tk−1)+ e(∥P∥)

where lim∥P∥→0 e(∥P∥) = 0. Therefore, passing to a limit gives

lim
∥P∥→0

S (P) =
∫ b

a
f (γ (t))

(
γ
′
1 (t)+ iγ ′2 (t)

)
dt =

∫ b

a
f (γ (t))γ

′ (t)dt

For the last claim, φ ( f ) is continuous and so for ∥Pn∥→ 0,

φ

(∫
γ

f dz
)
= lim

n→∞
φ (S ( f ,Pn)) = lim

n→∞
S (φ ( f ) ,Pn) =

∫
γ

φ ( f )dz ■

In the case that f is specialized to have complex values, it is reasonable to ask for the
real and imaginary parts of the contour integral. It turns out these are just line integrals.
Let z = x+ iy and let f (z) ≡ u(x,y) + iv(x,y). Also let the parametrization be γ (t) ≡
x(t)+ iy(t). Then a term in the approximating sum is of the form

(u+ iv)(x(tk)+ iy(tk)− (x(tk−1)+ iy(tk−1)))

= (u+ iv)((x(tk)− x(tk−1))+ i(y(tk)− y(tk−1)))

= u(x(tk)− x(tk−1))− v(y(tk)− y(tk−1))

+i [v(x(tk)− x(tk−1))+u(y(tk)− y(tk−1))]

Thus in the limit, one obtains the contour integral is the sum of two line integrals∫
γ

(u(x,y) ,−v(x,y)) ·dr+ i
∫

γ

(v(x,y) ,u(x,y)) ·dr

where r(t) ≡ (x(t) ,y(t)). Also, if F ′ (z) = f (z) = (u+ iv) , then by the Cauchy Riemann
equations, u=Re(F)x = Im(F)y ,v= Im(F)x =−Re(F)y. (F ′ (z) = (ReF)x+ i(ImF)x =
(ImF)y + i(−ReF)y).

Proposition 14.4.4 Suppose f : γ∗→ C is continuous for γ : [a,b]→ C bounded vari-
ation and continuous. Then if r(t)≡ (Reγ (t) , Imγ (t))∫

γ

f dz =
∫

γ

(u(x,y) ,−v(x,y)) ·dr+ i
∫

γ

(v(x,y) ,u(x,y)) ·dr

Also, if F ′ (z) = f (z) , then∫
γ

f dz =
∫

γ

(
Re(F)x ,Re(F)y

)
·dr+ i

∫
γ

(
Im(F)x , Im(F)y

)
·dr

and so∫
γ

f dz = Re(F (γ (b)))−Re(F (γ (a)))+ i(Im(F (γ (b)))− Im(F (γ (a))))

≡ F (γ (b))−F (γ (a))

The last identity holds if F has values in a complex Banach space.
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Proof: This follows from the above observation which comes from the Cauchy Rie-
mann equations and Theorem 5.3.1 the earlier result about conservative vector fields.

For the last claim, let φ ∈ X ′. Then φ

(∫
γ

f dz
)
=
∫

γ
φ ( f )dz = φ (F (γ (b))−F (γ (a)))

and since X ′ separates the points of X ,
∫

γ
f dz = F (γ (b))−F (γ (a)). ■

Definition 14.4.5 A function F such that F ′ = f is called a primitive of f .

As in the case of line integrals, these contour integrals are independent of parametriza-
tion in the sense that if γ (t) = η (s) where t = t (s) with s→ t (s) an increasing continuous
function, then

∫
γ

f dz =
∫

η
f dw.

Definition 14.4.6 If one reverses the order in which points of γ∗ are encountered,
then one replaces γ with −γ in which, for γ : [a,b]→ C, −γ (t) encounters the points of γ∗

in the opposite order, the definition of the contour integral shows that −
∫

γ
f dz =

∫
−γ

f dz.
You could get a parametrization for −γ as −γ (t) ≡ γ (b− t) for t ∈ [0,b−a] or if you
wanted to use the same interval, define −γ : [a,b]→ C by −γ (t)≡ γ (b+a− t) .

The following theorem follows easily from the above definitions and theorem. One can
also see from the definition that something like the triangle inequality will hold. This is
contained in the next theorem.

Theorem 14.4.7 Let f be continuous on γ∗ having values in a complex Banach
space X , writen as f ∈C (γ∗,X) and let γ : [a,b]→ C be of bounded variation and contin-
uous. Let

M ≥max{∥ f ◦ γ (t)∥ : t ∈ [a,b]} . (14.11)

Then ∥∥∥∥∫
γ

f dz
∥∥∥∥≤MV (γ, [a,b]) . (14.12)

Also if { fn} is a sequence of functions of C (γ∗,X) which is converging uniformly to the
function f on γ∗, then

lim
n→∞

∫
γ

fndz =
∫

γ

f dz. (14.13)

Proof: Let 14.11 hold. From Theorem 14.4.3, when ∥P∥< δ m,∥∥∥∥∫
γ

f dz−S (P)
∥∥∥∥≤ 2

m
V (γ, [a,b])

and so∥∥∥∥∫
γ

f dz
∥∥∥∥≤ ∥S (P)∥+ 2

m
V (γ, [a,b])≤

n

∑
j=1

M
∣∣γ (t j)− γ

(
t j−1

)∣∣+ 2
m

V (γ, [a,b])

≤MV (γ, [a,b])+
2
m

V (γ, [a,b]) .

This proves 14.12 since m is arbitrary. To verify 14.13 use the above inequality to write∥∥∥∥∫
γ

f dz−
∫

γ

fndz
∥∥∥∥= ∥∥∥∥∫

γ

( f − fn)dz
∥∥∥∥
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≤max{∥ f ◦ γ (t)− fn ◦ γ (t)∥ : t ∈ [a,b]}V (γ, [a,b]) .

Since the convergence is assumed to be uniform, this proves 14.13. ■
Now suppose γ is continuous and bounded variation and f : γ∗×K→ C is continuous

where K is compact. Then consider the function F (w)≡
∫

γ
f (z,w)dz

Lemma 14.4.8 The function F just defined is continuous.

Proof: The function f is uniformly continuous since it is continuous on a compact set.
Therefore, there exists δ > 0 such that if |(z1,w1)− (z2,w2)|< δ , then

∥ f (z1,w1)− f (z2,w2)∥< ε

It follows that if |w1−w2|< δ , then from Theorem 14.4.7

∥F (w1)−F (w2)∥=
∥∥∥∥∫

γ

( f (z,w1)− f (z,w2))dz
∥∥∥∥≤ εV (γ, [a,b])

Since ε is arbitrary, this proves the lemma. ■
With this lemma, it becomes easy to give a version of Fubini’s theorem.

Theorem 14.4.9 Let γ i be continuous and bounded variation. Let f be continuous
on γ∗1× γ∗2 having values in X a complex complete normed linear space. Then∫

γ1

∫
γ2

f (z,w)dwdz =
∫

γ2

∫
γ1

f (z,w)dzdw

Proof: This follows quickly from the above lemma and the definition of the contour in-
tegral. Say γ i is defined on [ai,bi]. Let a partition of [a1,b1] be denoted by {t0, t1, · · · , tn}=
P1 and a partition of [a2,b2] be denoted by {s0,s1, · · · ,sm}= P2.∫

γ1

∫
γ2

f (z,w)dwdz =
n

∑
i=1

∫
γ1([ti−1,ti])

∫
γ2

f (z,w)dwdz

=
n

∑
i=1

m

∑
j=1

∫
γ1([ti−1,ti])

∫
γ2([s j−1,s j])

f (z,w)dwdz

To save room, denote γ1 ([ti−1, ti]) by γ1i and γ2
([

s j−1,s j
])

by γ2 jThen if ∥Pi∥ , i = 1,2 is
small enough, Theorem 14.4.7 implies∥∥∥∥∥

∫
γ1i

∫
γ2 j

f (z,w)dwdz−
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz

∥∥∥∥∥
=

∥∥∥∥∥
∫

γ1i

∫
γ2 j

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dwdz

∥∥∥∥∥≤
max

(∥∥∥∥∥
∫

γ2 j

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dw

∥∥∥∥∥
)

V (γ1, [ti−1, ti])

≤ εV
(
γ2,
[
s j−1,s j

])
V (γ1, [ti−1, ti]) (14.14)
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Also from this theorem,∥∥∥∥∥
∫

γ2 j

∫
γ1i

f (z,w)dzdw−
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw

∥∥∥∥∥
≤max

(∥∥∥∥∫
γ1i

( f (z,w)− f (γ1 (ti) ,γ2 (s j)))dz
∥∥∥∥)V

(
γ2,
[
s j−1,s j

])
≤ εV

(
γ2,
[
s j−1,s j

])
V (γ1, [ti−1, ti]) (14.15)

Now approximating with sums and
∫

γ1i
dz = γ1 (t j)− γ1

(
t j−1

)
, (Note that a primitive of 1

is F (z) = z) ∫
γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw = f (γ1 (ti) ,γ2 (s j))
∫

γ2 j

∫
γ1i

dzdw

= f (γ1 (ti) ,γ2 (s j))
∫

γ1i

∫
γ2 j

dwdz =
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz (14.16)

Therefore, ∥∥∥∥∫
γ1

∫
γ2

f (z,w)dwdz−
∫

γ2

∫
γ1

f (z,w)dzdw
∥∥∥∥≤

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (z,w)dwdz
−∑

n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz

∥∥∥∥∥
+

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ1i

∫
γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz
−∑

n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw

∥∥∥∥∥
+

∥∥∥∥∥ ∑
n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (γ1 (ti) ,γ2 (s j))dzdw
−∑

n
i=1 ∑

m
j=1
∫

γ2 j

∫
γ1i

f (z,w)dzdw

∥∥∥∥∥
From 14.16 the middle term is 0. Thus, from the estimates 14.15 and 14.14,∥∥∥∥∫

γ1

∫
γ2

f (z,w)dwdz−
∫

γ2

∫
γ1

f (z,w)dzdw
∥∥∥∥

≤ 2εV (γ2, [a2,b2])V (γ1, [a1,b1])

Since ε is arbitrary, the two integrals are equal. ■

14.5 Primitives and Cauchy Goursat Theorem
In beginning calculus, the notion of an antiderivative was very important. It is similar for
functions of complex variables. The role of a primitive is also a lot like a potential in
computing line integrals. Recall that a primitive of f is a function F such that F ′ (z) =
f (z). In calculus, in the context of a function of one real variable, this is often called an
antiderivative and every continuous function has one thanks to the fundamental theorem
of calculus. However, it will be shown below that the situation is not at all the same for
functions of a complex variable.

So what if a function has a primitive? Say F ′ (z) = f (z) where f is continuous with
values in X a complex Banach space.
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Theorem 14.5.1 Suppose γ is continuous and also of bounded variation, and that γ

is a parametrization of Γ where t ∈ [a,b] and the orientation is from t = a to t = b. Suppose
f : Γ→ X is continuous and has a primitive F. Thus F ′ (z) = f (z) for some open Ω ⊇ Γ.
Then

∫
γ

f (z)dz = F (γ (b))−F (γ (a)) .

Proof: First suppose f has values in C. Then the desired conclusion is from Proposi-
tion 14.4.4. It holds in general because if φ ∈ X ′, then φ (F)′ = φ ( f ) and so from Theo-
rem 14.4.3, φ (F (b)−F (a)) = φ (F (b))−φ (F (a)) =

∫
γ

φ ( f (z))dz = φ

(∫
γ

f (z)dz
)

By

Proposition 12.3.9 about how the elements of X ′ separate points, F (b)−F (a) =
∫

γ
f (z)dz

as claimed. ■
Probably the most fundamental result in the subject is Cauchy’s theorem which says

that the contour integral of an analytic function over a simple closed curve equals 0. The
following is like what was first done by Cauchy back in the early 1800’s. Recall that f ′

continuous is part of the definition of “analytic”.

Theorem 14.5.2 Let γ∗ be a simple closed curve with parametrization γ (t) having
finite length, (γ has finite total variation). Letting U be the inside, assume U is a region
for which Green’s theorem holds. Let f be analytic near U ∪ γ∗ and have complex values.
Then

∫
γ

f dz = 0. The same conclusion holds if f has values in a complex Banach space.

Proof: From Observation 14.4.4,∫
γ

f dz =
∫

C
(u(x,y) ,−v(x,y)) ·dr+ i

∫
C
(v(x,y) ,u(x,y)) ·dr

where C is the oriented simple closed curve in the plane resulting from γ∗. Now by Green’s
theorem, this equals

∫
U ((−v)x−uy)dm2 + i

∫
U (ux− vy)dm2 = 0 because of the Cauchy

Riemann equations, Proposition 14.2.2. To obtain the last claim, by Theorem 14.4.3,
φ

(∫
γ

f dz
)
=
∫

γ
φ ( f )dz = 0. By Proposition 12.3.9 about how the elements of X ′ sepa-

rate points, it follows that
∫

γ
f dz = 0. ■

The following picture illustrates the theorem which follows in which we punch holes in
U above. Assume the closures of these holes do not intersect, as illustrated in the picture.

γ1
z2γ2

z1

γ3z3

Ω
γ

Assume the curves γk illustrated above bound ellipses or circular disks or more gener-
ally regions for which Green’s theorem holds. The main interest is in circular disks. Orient
these clockwise as shown. Then using Corollary 10.8.4, it follows that for U the inside of
γ1 and U j the inside of γ j, U \

(
∪n

j=1U j

)
also satisfies Green’s theorem. In this picture

n = 3. The following is a generalization of the above theorem.

Theorem 14.5.3 Let γ∗ be a simple closed curve with parametrization γ (t) having
counter clockwise orientation and finite length, (γ has finite total variation). Letting U be
the inside, assume U is a region for which Green’s theorem holds with the orientation of γ .
Let the U j be as described above for j = 1,2, ...,n and suppose f is analytic near the closed
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set (U ∪ γ∗) \∪n
j=1U j on an open set Ω. (Maybe f is not analytic at the z j for example.)

Then
∫

γ
f (w)dw+∑

n
j=1
∫

γ̄ j
f (w)dw = 0. Letting γ j be the opposite orientation which is

counter clockwise,
∫

γ
f (w)dw = ∑

n
j=1
∫

γ j
f (w)dw.

Proof: This follows from Corollary 10.8.4 and a repeat of the above proof which uses
the Cauchy Riemann equations and Green’s theorem. ■

If you use the general Green’s theorem of the appendix, you can generalize the as-
sumptions of this theorem. Green’s theorem holds automatically if γ∗ has finite length and
it suffices to have f continuous on U ∪ γ∗ and analytic on U .

The following Cauchy Goursat theorem will provide the needed generalization which
involves not assuming that z→ f ′ (z) is continuous.

If you have two points in C, z1 and z2, you can consider γ (t) ≡ z1 + t (z2− z1) for
t ∈ [0,1] to obtain a continuous bounded variation curve from z1 to z2. More generally, if
z1, · · · ,zm are points in C you can obtain a continuous bounded variation curve from z1 to
zm which consists of first going from z1 to z2 and then from z2 to z3 and so on, till in the
end one goes from zm−1 to zm. Denote this piecewise linear curve as γ (z1, · · · ,zm) . Now let
T be a triangle with vertices z1,z2 and z3 encountered in the counter clockwise direction as
shown.

z1 z2

z3

Denote by
∫

∂T f (z)dz, the expression,
∫

γ(z1,z2,z3,z1)
f (z)dz. Consider the following pic-

ture.

TT 1
1

T 1
2T 1

3 T 1
4z1 z2

z3

Thus ∫
∂T

f (z)dz =
4

∑
k=1

∫
∂T 1

k

f (z)dz. (14.17)

On the “inside lines” the integrals cancel because there are two integrals going in opposite
directions for each of these inside lines. Recall Theorem 14.4.3 which tells how to evaluate
a line integral with a C1 parametrization.

Theorem 14.5.4 (Cauchy Goursat) Let f : Ω→ X , where Ω is an open subset of C
and X is a complex Banach space, have the property that f ′ (z) exists for all z ∈Ω and let
T be a triangle contained in Ω,meaning that the triangle and its inside is contained in Ω.
Then

∫
∂T f (w)dw = 0.

Proof: Suppose not. Then
∥∥∫

∂T f (w)dw
∥∥= α ̸= 0.From 14.17 it follows

α ≤
4

∑
k=1

∥∥∥∥∫
∂T 1

k

f (w)dw
∥∥∥∥

and so for at least one of these T 1
k , denoted from now on as T1,

∥∥∥∫∂T1
f (w)dw

∥∥∥≥ α

4 . Now
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let T1 play the same role as T . Subdivide as in the above picture, and obtain T2 such that∥∥∥∥∫
∂T2

f (w)dw
∥∥∥∥≥ α

42 .

Continue in this way, obtaining a sequence of triangles,

Tk ⊇ Tk+1,diam(Tk)≤ diam(T )2−k,

and
∥∥∥∫∂Tk

f (w)dw
∥∥∥ ≥ α

4k .Then let z ∈ ∩∞
k=1Tk and note that by assumption, f ′ (z) exists.

Therefore, for all k large enough,∫
∂Tk

f (w)dw =
∫

∂Tk

(
f (z)+ f ′ (z)(w− z)+g(w)

)
dw

where |g(w)| < ε |w− z| . Now observe that w → f (z) + f ′ (z)(w− z) has a primitive,
namely,

F (w) = f (z)w+ f ′ (z)(w− z)2 /2.

Therefore, by Theorem 14.5.1,
∫

∂Tk
f (w)dw =

∫
∂Tk

g(w)dw. From Theorem 14.4.7,

α

4k ≤
∥∥∥∥∫

∂Tk

g(w)dw
∥∥∥∥≤ εdiam(Tk)(length of ∂Tk)

≤ ε2−k (length of T )diam(T )2−k,

and so α ≤ ε (length of T )diam(T ) . Since ε is arbitrary, this shows α = 0, a contradiction.
Thus

∫
∂T f (w)dw = 0 as claimed. ■

Note that no assumption of continuity of z→ f ′ (z) was needed.
Obviously, there is a version of the above Cauchy Goursat theorem which is valid for

a rectangle. Indeed, apply the Cauchy Goursat theorem for the triangles obtained from a
diagonal of the rectangle. The diagonal will be oriented two different ways depending on
which triangle it is a part of.

Corollary 14.5.5 Let Ω be an open set on which f ′ (z) exists. Here f has values in a
complex Banach space. Then if R is a rectangle contained in Ω along with its inside, then∫

R f (z)dz = 0.

14.6 Primitives for Differentiable Functions
This section is on the existence of primitives.

Theorem 14.6.1 (Morera1) Let Ω be an open set and let f ′ (z) exist for all z ∈ Ω,
where f : Ω→ X a complex Banach space. Let D≡ B(z0,r)⊆Ω. Then there exists ε > 0
such that f has a primitive on B(z0,r+ ε).

1Giancinto Morera 1856-1909. This theorem or one like it dates from around 1886
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Proof: Choose ε > 0 small enough that B(z0,r+ ε) ⊆ Ω. Then for w ∈ B(z0,r+ ε) ,
define F (w)≡

∫
γ(z0,w) f (u)du. Then by the Cauchy Goursat theorem, and w∈B(z0,r+ ε) ,

it follows that for |h| small enough,

F (w+h)−F (w)
h

=
1
h

∫
γ(w,w+h)

f (u)du =
1
h

∫ 1

0
f (w+ th)hdt =

∫ 1

0
f (w+ th)dt

which converges to f (w) due to the continuity of f at w. ■

Definition 14.6.2 A star shaped open set Ω has a special point p called a star
center such that γ (p,z) is contained in Ω for every z ∈Ω.

Proposition 14.6.3 Let f ′ (z) exist for all z ∈ Ω a star shaped open set. Then f has a
primitive on Ω.

Proof: Define the primitive as F (w)≡
∫

γ(p,w) f (u)du where p is the star center. ■

14.7 The Winding Number
First I will give a heuristic description which gives a useful way to see what the winding
number is for simple enough contours. The winding number of a circle oriented counter
clockwise is 1. You simply parametrize the circle in the counter clockwise direction and
compute the contour integral or use the Cauchy integral formula for a circle with f (w) = 1.
However, more generally, it is helpful to use the analytic function log . Now log(w− z) =
ln |w− z|+ iarg(w− z) is a primitive for 1

w−z for w−z not on the negative real axis. That is,
for w− z a complex number not a negative real number. Thus the integral is ln(z−Rez)+
iπ− (ln(z−Rez)+ i(−π)) = 2πi and so the winding number is 1. Actually, you would let
ε → 0 in the following where the angles between the horizontal line beginning at z and the
other two lines are both ε and obtain the integral as

lim
ε→0

ln
∣∣w+

ε

∣∣+ i(π + ε)−
(
ln
∣∣w−ε ∣∣+ i(−π− ε)

)
where w+

ε → z−Rez and w−ε → z−Rez. It is illustrated in the case of a circle.

z0

z
w+

ε

w−ε

Thus the definition of a winding number is n(z,γ)≡ 1
2πi
∫

γ
1

w−z dw, and as just described,
it gives±1 depending on the orientation of the curve. It was shown for a circle in the above,
but the same would result if you had other sufficiently simple closed curve with rectifiable
boundary having z on its inside. This is because you would have |z−w| bounded away
from 0 and so the extra pieces of the line integral disappear in the limit and you simply
pick up the jump in arg(z) which is 2π or −2π depending on the direction of motion. This
is how we define positive and negative directions on a closed curve in the plane.

However, if you have a simple closed curve Γ and z is not on its inside, then you could
obtain a branch of the logarithm by sending a ray from z away from the simple closed curve
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and letting log(w− z) be determined for w not on this ray, a star shaped region. Thus the
entire simple closed curve would be in a star shaped open set on which w→ log(w− z) is
analytic and so

∫
γ

1
w−z dw = 0 because the integrand has a primitive.

But what if you have a simple closed curve with z on its inside/outside but every ray
from z intersects the curve in many points? It becomes increasingly unclear that the above
simple argument is satisfactory. It is fine for things like circles and rectangles and ellipses
and in fact is clear for the curves we typically encounter in complex analysis. However, the
winding number of a general situation still is an integer which is shown next.

Note that the complement of a compact set has exactly one unbounded connected com-
ponent. This is because if K is the compact set, then K ⊆ B(0,r) for large r and the
connected set B(0,r)C ⊆ KC. Thus any other components are contained in B(0,r).

Proposition 14.7.1 Let γ : [a,b]→C be a parametrization of a closed curve γ∗ of finite
length and γ (a) = γ (b). Then there is an integer m such that

m = n(γ,z) =
1

2πi

∫
γ

1
w− z

dw, z /∈ γ
∗

Then also z→ n(γ,z) is continuous and so it is a constant on every component of γ∗C. It
equals 0 on the unbounded component of γ∗C.

Proof: For convenience let the interval be [0,2π] and γ (0) = γ (2π) and first assume γ

is a C1 function. Let F (t)≡
∫ t

0
γ ′(s)

γ(s)−z ds. Then F (2π) =
∫

γ
1

w−z dw and

(
e−F(t) (γ (t)− z)

)′
=
−γ ′ (t)
γ (t)− z

e−F(t) (γ (t)− z)+ e−F(t)
γ
′ (t) = 0.

and so e−F(2π) (γ (2π)− z) = (γ (0)− z) . Since γ (2π) = γ (0), eF(2π) = 1 and so F (2π) =
m2πi for some integer m. Hence 1

2πi
∫

γ
1

w−z dw = m.
In case γ is only of bounded variation, let γn→ γ uniformly on [0,2π] and

1
2πi

∫
γn

1
w− z

dw→ 1
2πi

∫
γ

1
w− z

dw

where each γn is C1 and coincides with γ at the end points of the interval. This is from
Theorem 5.2.3. Since n(γn,z) is an integer, eventually for large n, n(γn,z) = m for some
integer m and so 1

2πi
∫

γ
1

w−z dw = m.

As to continuity,
∣∣∣∫γ

1
w−z dw−

∫
γ

1
w−ẑ dw

∣∣∣ = ∣∣∣∫γ
z−ẑ

(w−z)(w−ẑ)dw
∣∣∣ ≤ |z− ẑ| 1

δ
2 |γ| where |γ|

is the length of γ and 0 < δ ≤min(dist(z,γ∗) ,dist(ẑ,γ∗)) . Thus z→ n(γ,z) is continuous
and integer valued so by Corollary 2.10.13, it must be constant on every component of γ∗C.
Thus n(γ,z) = 0 on the unbounded component because you can let |z| → ∞ in the formula
for the winding number. The winding number is constant, but as |z| → ∞,n(γ,z)→ 0. ■

14.8 The Cauchy Formula
The issue which must be considered next is the continuity of the derivative. Recall that we
have theorems about analytic functions and we have theorems about differentiable func-
tions. It turns out that the derivative will end up being continuous. Thus one can use either
analytic or differentiable in what follows.
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Consider the following picture where you have a large circle of radius R and a small
circle of radius r centered at z, a point on the inside of γR. The Cauchy integral formula
gives f (z) in terms of the values of f on the large circle.

Theorem 14.8.1 If f is differentiable on Ω an open set, then f ′ is continuous and
in fact, f (z) = 1

2πi
∫

γr

f (w)
w−z dw where B(z0,r)⊆Ω,γr the counter clockwise boundary of the

ball.

Proof: Let B(z0,r+ ε)⊆Ω. Let z ∈ B(z0,r) and let γr be the counter clockwise orien-
tation of the circle of radius r which is the boundary of B(z0,r). Pick δ > 0 such that the
following picture is applicable, the small circle having radius δ .

−γδ

z

γr

Γ1
Γ2

There are two closed curves Γ1,Γ2 which intersect in vertical lines in the above picture,
these contours each contained in a star shaped region on which the derivative of f exists.
Therefore, there exists a primitive of w→ f (w)− f (z)

w−z valid on those two star shaped regions.
Then adding the contour integrals which are each 0,∫

γr

f (w)− f (z)
w− z

dw =
∫

γδ

f (w)− f (z)
w− z

dw

Since f ′ (z) exists, the integral on the right converges as δ → 0 to 0. Then it follows that∫
γr

f (w)
w− z

dw =
∫

γr

f (z)
w− z

dw = n( f ,z)(2πi) f (z)

However, from the above argument about the winding number, n( f ,z) = 1. Therefore,
f (z) = 1

2πi
∫

γr

f (w)
w−z dw. Then using the above representation

f (z+h)− f (z)
h

=
1

2πi

∫
γr

f (w)
(
− 1
(w− z)(h−w+ z)

)
dw

Passing to a limit as h → 0, this yields f ′ (z) = 1
2πi
∫

γr

f (w)
(w−z)2 dw. If desired, you could

continue taking derivatives and so f ′ is continuous and in fact, f is infinitely differentiable.
■

Corollary 14.8.2 The same Cauchy integral formula holds if f is only differentiable on
the inside of the large circle and continuous on its closure.

Proof: Letting z be on the inside of the large circle, you could shrink the large circle by
decreasing its radius to r̂ and be in the situation of the above theorem. Thus

f (z) =
1

2πi

∫
γ r̂

f (w)
w− z

dw =
1

2π

∫ 2π

0

f
(
z0 + r̂eit

)
z0 + r̂eit − z

r̂eitdt
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and now take the limit as r̂→ r and use uniform continuity of f on B(z0,r) to obtain f (z) =
1

2πi
∫

γr

f (w)
w−z dw. ■

This is the Cauchy integral formula for a disk. This remarkable formula is sufficient to
show that if a function has a derivative, then it has infinitely many and in addition to this,
the function can be represented as a power series. Let z0 be the center of the large circle.

In the situation of Theorem 14.8.1,

f (z) =
1

2πi

∫
γR

f (w)
w− z0− (z− z0)

dw =
1

2πi

∫
γR

1
w− z0

f (w)
1− z−z0

w−z0

dw

Now
∣∣∣ z−z0

w−z0

∣∣∣= |z−z0|
R < 1 for all w ∈ γ∗R. Therefore, the above equals

1
2πi

∫
γR

∞

∑
k=0

f (w)(z− z0)
k

(w− z0)
k+1 dw =

1
2πi

∫
γR

(
∞

∑
k=0

(z− z0)
k

(w− z0)
k+1

)
f (w)dw

Since f is continuous, one can apply the Weierstrass M test Theorem 2.5.42 to conclude
that the above series converges uniformly on γ∗R. Then the above reduces to

f (z) =
1

2πi

∞

∑
k=0

(∫
γR

f (w)

(w− z0)
k+1 dw

)
(z− z0)

k

This proves part of the next theorem which says, among other things, that when f has
one derivative on the interior of a circle, then it must have all derivatives. Note that the
function has values in a complex Banach space.

Theorem 14.8.3 Suppose z0 ∈U, an open set in C and f : U → X has a derivative
for each z ∈U. Then if B(z0,R)⊆U, then for each z ∈ B(z0,R) ,

f (z) =
∞

∑
n=0

an (z− z0)
n . (14.18)

where an ≡ 1
2πi
∫

γR
1

(w−z0)
n+1 f (w)dw ∈ X and γR is a positively oriented parametrization

for the circle bounding B(z0,R). Then

f (k) (z0) = k!ak, (14.19)

lim sup
n→∞

∥an∥1/n |z− z0|< 1, (14.20)

f (k) (z) =
∞

∑
n=k

n(n−1) · · ·(n− k+1)an (z− z0)
n−k , (14.21)

Proof: 14.18 follows from the above argument. Now consider 14.20. The above argu-
ment based on the Cauchy integral formula for a disk shows that if R > |ẑ− z0|> |z− z0| ,
then f (ẑ) = ∑

∞
n=0 an (ẑ− z0)

n and so, by the root test, Theorem 1.12.1,

1≥ lim sup
n→∞

∥an∥1/n |ẑ− z0|> lim sup
n→∞

∥an∥1/n |z− z0|
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Consider 14.21 which involves identifying the an in terms of the derivatives of f . This is
obvious if k = 0. Suppose it is true for k. Then for small h ∈ C,

1
h

(
f (k) (z+h)− f (k) (z)

)
=

1
h

∞

∑
n=k

n(n−1) · · ·(n− k+1)an

(
(z+h− z0)

n−k− (z− z0)
n−k
)

=
1
h

∞

∑
n=k+1

n(n−1) · · ·(n− k+1)an

 ∑
n−k
j=0

(
n− k

j

)
h j (z− z0)

(n−k)− j

−(z− z0)
n−k


=

∞

∑
n=k+1

n(n−1) · · ·(n− k+1)an

(
n−k

∑
j=1

(
n− k

j

)
h j−1 (z− z0)

(n−k)− j

)

=
∞

∑
n=k+1

n(n−1) · · ·(n− k+1)(n− k)an (z− z0)
(n−k)−1

+h
∞

∑
n=k+1

n(n−1) · · ·(n− k+1)an

(
n−k

∑
j=2

(
n− k

j

)
h j−2 (z− z0)

(n−k)− j

)

By what was shown earlier, limsupn→∞ ∥an∥1/n |z− z0|< 1. Consider the norm of the part
in the above which multiplies h, |h|< 1.∥∥∥∥∥n(n−1) · · ·(n− k+1)an

(
n−k

∑
j=2

(
n− k

j

)
h j−2 (z− z0)

(n−k)− j

)∥∥∥∥∥
≤ n(n−1) · · ·(n− k+1)∥an∥|z− z0|(n−k)−2

n−k

∑
j=2

(
n− k

j

)(
|h|
|z− z0|

) j−2

(
m
j

)
=

m(m−1) · · ·(m− j+1)
j!

=
m(m−1) · · ·(m− j+3)(m− j+2)(m− j+1)

j ( j−1)( j−2)!

=

(
m

j−2

)
(m− j+2)(m− j+1)

j ( j−1)
≤
(

m
j−2

)
(m)(m−1)

2

Thus the above is no more than

≤ n(n−1) · · ·(n− k+1)∥an∥|z− z0|(n−k)−2 ·
(n− k)((n− k)−1)

2

n−k

∑
j=2

(
n− k
j−2

)(
h

|z− z0|

) j−2

≤ n(n−1) · · ·(n− k+1)(n− k)((n− k)−1)∥an∥
(

1+
|h|
|z− z0|

)n−k
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and

lim sup
n→∞

(
n(n−1) · · ·(n− k+1)(n− k)((n− k)−1) ·

∥an∥
(

1+ |h|
|z−z0|

)n−k

)1/n

= lim sup
n→∞

∥an∥1/n |z− z0|
(

1+
|h|
|z− z0|

)
< 1 if h is small enough.

Thus, by the root test, the infinite series which multiplies h converges for small h and is
decreasing in h and so that entire term converges to 0 as h→ 0. This leaves

f (k+1) (z) =
∞

∑
n=k+1

n(n−1) · · ·(n− k+1)(n− k)an (z− z0)
n−(k+1) ■

Corollary 14.8.4 Suppose f is continuous on ∂B(z0,r) and suppose that for all z ∈
B(z0,r) ,

f (z)≡ 1
2πi

∫
γ

f (w)
w− z

dw,

where γ (t) ≡ z0 + reit , t ∈ [0,2π] . Then f is analytic on B(z0,r) and in fact has infinitely
many derivatives on B(z0,r) .

Proof: This is just a repeat of the above arguments. You show that f (z) is given by a
power series for |z− z0|< r and from this, the result follows. ■

Also, the following illustrates a difference from what is expected in real analysis. It
says that uniform convergence tends to take with it differentiability.

Lemma 14.8.5 Let γ (t) = z0+reit , for t ∈ [0,2π]. Let fn→ f uniformly on B(z0,r) and
suppose fn (z) = 1

2πi
∫

γ

fn(w)
w−z dw for z ∈ B(z0,r) . Then it follows that f (z) = 1

2πi
∫

γ

f (w)
w−z dw,

implying that f is analytic on B(z0,r) .

Proof: From the formula for fn and the uniform convergence of fn to f on γ∗, the
integrals converge to 1

2πi
∫

γ

f (w)
w−z dw. Therefore, f (z) = 1

2πi
∫

γ

f (w)
w−z dw. ■

Note that this shows you can’t expect anything like the Weierstrass approximation the-
orem to hold. That theorem allows the uniform appoximation of a continuous nowhere
differentiable function with polynomials.

Because of Theorem 14.8.3, from now on, the term analytic will be used interchange-
ably with “has a derivative”. This has shown that if the function has one derivative on an
open set, then it has all of them. Now here is another version of Morera’s theorem.

Corollary 14.8.6 Let Ω be an open set. Suppose that whenever γ (z1,z2,z3,z1) is a
closed curve bounding a triangle T, which is contained in Ω, and f is a continuous function
defined on Ω, it follows that

∫
γ(z1,z2,z3,z1)

f (z)dz = 0, then f is analytic on Ω.

Proof: As in the proof of Morera’s theorem, let B(z0,r)⊆Ω and use the given condition
to construct a primitive, F for f on B(z0,r) . Then F is analytic and so by Theorem 14.8.3,
it follows that F and hence f have infinitely many derivatives, implying that f is analytic
on B(z0,r) . Since z0 is arbitrary, this shows f is analytic on Ω. ■

The following observation is useful to keep in mind.
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Observation 14.8.7 Suppose ∑
∞
n=0 anhn converges for |h| < r. Then it follows that

limh→0
1
hk ∑

∞
n=k+1 anhn = 0. To see this, note the expression is h∑

∞
n=k+1 anhn−(k+1). Now

the sum of the absolute values is ∑
∞
n=k+1 ∥an∥|h|n−(k+1) and it converges because there ex-

ists ĥ, such that r >
∣∣ĥ∣∣> |h|. By the root test, Theorem 1.12.1, limsupn→∞ ∥an∥1/n ∣∣ĥ∣∣≤ 1

so limsupn→∞ ∥an∥1/n |h|< 1 Now applying this to the sum in question,

lim sup
n→∞

∥an∥1/n |h|
n−(k+1)

n = lim sup
n→∞

∥an∥1/n |h|< 1

Also the sum decreases in |h| and so

lim
h→0

∥∥∥∥∥h
∞

∑
n=k+1

anhn−(k+1)

∥∥∥∥∥≤ lim
h→0
|h|

∞

∑
n=k+1

∥an∥|h|n−(k+1) = 0

The tail of the series just described is sometimes referred to as “higher order terms”.

14.9 Zeros of Analytic Functions
The following is a remarkable result about the zeros of an analytic function on a connected
open set. It turns out that if the set of zeros have a limit point, then the function ends up
being constant. Note how radically different this is from the theory of functions of a real
variable. Consider, for example the function

f (x)≡
{

x2 sin
( 1

x

)
if x ̸= 0

0 if x = 0

which has a derivative for all x ∈ R and for which 0 is a limit point of the set of zeros Z,
even though f is not identically equal to zero.

Definition 14.9.1 Suppose f is an analytic function defined near a point α where
f (α) = 0. Thus α is a zero of the function f . The zero is of order m if f (z) = (z−α)m g(z)
where g is an analytic function which is not equal to zero at α.

Theorem 14.9.2 Let Ω be a connected open set (region) and let f : Ω → X be
analytic. Then the following are equivalent.

1. f (z) = 0 for all z ∈Ω

2. There exists z0 ∈Ω such that f (n) (z0) = 0 for all n.

3. There exists z0 ∈Ω which is a limit point of the set, Z ≡ {z ∈Ω : f (z) = 0} .

Proof: It is clear the first condition implies the second two. Suppose the third holds.

Then for z near z0, f (z)=∑
∞
n=k

f (n)(z0)
n! (z− z0)

n where k≥ 1 since z0 is a zero of f . Suppose
k < ∞. Then f (z) = (z− z0)

k g(z) where g(z0) ̸= 0. Letting zn→ z0 where zn ∈ Z,zn ̸= z0,

it follows 0 = (zn− z0)
k g(zn) which implies g(zn) = 0. Then by continuity of g, we see

that g(z0) = 0 also, contrary to the choice of k. Therefore, k cannot be less than ∞ and so
z0 is a point satisfying the second condition.
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Now suppose the second condition and let S ≡
{

z ∈Ω : f (n) (z) = 0 for all n
}
. Then

Ω \ S is an open set because if f (n) (z) ̸= 0 then this situation persists for w near z. How-
ever, S is also open. To see this, let z ∈ S. Then for all w close enough to z, f (w) =

∑
∞
k=0

f (k)(z)
k! (w− z)k = 0. Thus f is identically equal to zero near z∈ S. Therefore, all points

near z are contained in S also, showing that S is an open set. Now Ω= S∪(Ω\S) , the union
of two disjoint open sets, S being nonempty. It follows the other open set, Ω \ S, must be
empty because Ω is connected. Therefore, the first condition is verified. ■

(See the following diagram.)

1.)
↙↗ ↘

2.) ←− 3.)

Recall that
ez ≡ ex (cos(y)+ isin(y)) (14.22)

Is it also true that ez = ∑
∞
k=0

zk

k! ?

Theorem 14.9.3 (Euler’s Formula) Let z = x+ iy. Then ez = ∑
∞
k=0

zk

k! .

Proof: The Cauchy Riemann equations show that ez given by 14.22 is analytic. So is
exp(z) ≡ ∑

∞
k=0

zk

k! . In fact the power series converges for all z ∈ C. Furthermore the two
functions, ez and exp(z) agree on the real line which is a set which contains a limit point.
Therefore, they agree for all values of z ∈ C. ■

There is an amazing theorem which counts the number of zeroes on the inside of a
closed curve provided these are counted according to multiplicity. z ∈ C is a zero of f of
multiplicity m ∈ N means that for w near z, f (w) = g(w)(w− z)m where g(z) ̸= 0. The
counting zeros theorem is as follows:

Theorem 14.9.4 Let f be analytic with values in C in an open set containing the
closed disk

D(z0,r)≡ {z : |z− z0| ≤ r}

and suppose f has no zeros on the circle C (z0,r) , the boundary of D(z0,r). Then the
number of zeros of f counted according to multiplicity which are contained in D(z0,r) is

1
2πi
∫

C(z0,r)
f ′(z)
f (z) dz where C (z0,r) is oriented in the counter clockwise direction.

Proof: There are only finitely many zeros in D(z0,r) . Otherwise, there would exist
a limit point of the set of zeros z. If z is in B(z0,r) , then by Theorem 14.5.3, f = 0 on
D(z0,r). If it is on C (z0,r) , this would contradict having no zeros on the boundary.

Let these zeros be
{

z1, ...,zp
}

listed according to multiplicity. Consider zk and suppose
it is a zero of order mk so f (z) = (z− zk)

mk g(z) where g(zk) ̸= 0,m≥ 1. Then enclose each
zk with a small circle C (zk,rk) bounding D(zk,r) such that the D(zk,rk) do not intersect.
Thus f ′(z)

f (z) is analytic on the inside of C (z0,r) except for these zeroes.

f ′ (z)
f (z)

=
m(z− zk)

m−1 gk (z)+(z− zk)
m g′k (z)

(z− zk)
m gk (z)

=
mk

(z− zk)
+

g′k (z)
gk (z)
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By Theorem 14.5.3,

1
2πi

∫
C(z0,r)

f ′ (z)
f (z)

dz =
p

∑
k=1

1
2πi

∫
C(zk,rk)

mk

(z− zk)

+
1

2πi

∫
C(zk,rk)

g′k (z)
gk (z)

=
p

∑
k=1

mk = p ■

14.10 The Gamma and Zeta Functions
Up to now we have considered the exponential function, logarithms, and polynomials. Two
other very important examples of analytic functions are the gamma and Zeta functions.
It turns out these two functions are related. I am giving the obvious generalization of
the Gamma function from the real variable version. However, more complete discussions
employ infinite products to describe the gamma function, a topic not emphasized in this
book. See [10] for a more complete discussion of these two functions.

Definition 14.10.1 For Re(z)> 0 define Γ(z)≡
∫

∞

0 e−ttz−1dz.

Theorem 14.10.2 For f , | f (t)| ≤ Ce−rt ,r > 0, G(z) ≡
∫

∞

0 f (t) tz−1dt is analytic
for Re(z) > 0. In case f (t) = e−t so G = Γ, the fundamental identity Γ(z+1) = zΓ(z)
holds for all Rez > 0.

Proof: Formally differentiating under the integral sign, one would expect that G′ (z) =∫
∞

0 f (t) ln(t) tz−1dt. This just needs to be shown.
Is z→

∫
∞

0 f (t) ln(t) tz−1dt continuous for Rez > 0? Let 0 < δ < Re(z)< ∆. If Re(ẑ) ∈
(δ ,∆) , then

∣∣ f (t) ln(t) t ẑ−1
∣∣≤ g(t) where

g(t)≡
{

| f (t)| |ln(t)| t∆−1 for t ≥ 1
| f (t)| |ln(t)| tδ−1 for 0 < t < 1

a function in L1. That this is in L1 is shown using integration by parts. Now if zn → z,
then eventually Rezn ∈ (δ ,∆) and so f (t) ln(t) tzn−1 → f (t) ln(t) tz−1 and by the domi-
nated convergence theorem, the integrals also converge. Thus z→

∫
∞

0 f (t) ln(t) tz−1dt is
continuous.

Now for Re(z)> 0, (G(z+h)−G(z))h−1 =

=
∫

∞

0
f (t)h−1

(
tz+h−1− tz−1

)
dt =

∫
∞

0
f (t)h−1

(∫ 1

0
h ln(t) tz+sh−1ds

)
dt

=
∫

∞

0

∫ 1

0
f (t) ln(t) tz+sh−1dsdt

The integrand is absolutely integrable and so we can use Fubini’s theorem to obtain

(G(z+h)−G(z))h−1 =
∫ 1

0

∫
∞

0
f (t) ln(t) tz+sh−1dtds

By continuity, limh→0
∫

∞

0 f (t) ln(t) tz+sh−1dt =
∫

∞

0 f (t) ln(t) tz−1dt and so it follows that
limh→0 (G(z+h)−G(z))h−1 =

∫
∞

0 f (t) ln(t) tz−1dt.
The last claim about the identity follows from Theorem 14.9.2 applied to the analytic

function Γ(z+1)−zΓ(z) . It is valid on (0,∞) so the identity continues to hold for Re(z)>
0. All these positive real numbers are limit points of the set where Γ(z+1)− zΓ(z) = 0.
You could probably prove this through a computation also. ■
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Corollary 14.10.3 Let Rez,Rew > 0. Then B(z,w) =
∫ 1

0 tz−1 (1− t)w−1 dt exists and
for fixed w, z→B(z,w) is analytic and similarly w→B(z,w) is analytic. Also Γ(z)Γ(w) =
Γ(w+ z)B(z,w) . In addition to this, Γ(z) ̸= 0 for all Rez > 0 and B(z,w) ̸= 0 for Rez >
0,Rew > 0.

Proof: The existence of the integral follows from consideration of the real and imagi-
nary parts. For u positive, |uα | ≡

∣∣∣eln(u)(Re(α)+i Im(α))
∣∣∣= uRe(α). The integral is a an analytic

function of z,w also from similar arguments given above.
Now consider the identity. It is true if both z,w are positive real numbers. This is by

Problem 7 on Page 235. It is an exercise in Fubini’s theorem. Thus by Theorem 14.9.2 the
identity is true whenever Rez > 0 and w is real and positive. Then by the same theorem
again, the identity is true for Rew > 0 and Rez > 0.

Let zn be positive, distinct real numbers and zn→ 0. Suppose Γ(w) = 0,Rew> 0. Then,
by the identity, Γ(zn)Γ(w− zn) = Γ(w)B(zn,w− zn), a simple computation shows that
Γ(zn)→∞ so eventually Γ(zn) ̸= 0. But then, since the right side is 0, limn→∞ Γ(w− zn) =
0 and so w is a limit point in the set of zeros of Γ so by Theorem 14.9.2, Γ(w) = 0 for all
Rew > 0 which is not true because Γ(n) = (n−1)! for n a positive integer. It follows that
Γ(w) ̸= 0 for all Rew > 0. Then, by the identity again, B(z,w) ̸= 0 for Rez > 0,Rew > 0.
■

Next is the zeta function ζ (z).

Definition 14.10.4 For Re(z) > 1,ζ (z) ≡ ∑
∞
k=1

1
kz . This series will converge for

such z = x+ iy because |kz| ≡
∣∣∣eln(k)(x+iy)

∣∣∣= kx so if x > 1, the series converges absolutely.

In the formula for Γ(z) , change the variable letting t = ns for n ∈ N.

Γ(z)≡
∫

∞

0
e−ttz−1dz =

∫
∞

0
e−ns (ns)z−1 nds = nz

∫
∞

0
e−nssz−1ds

1
nz Γ(z) =

∫
∞

0
e−nssz−1ds

Now, assuming Rez > 1 so the series for ζ (z) is defined, you could write

ζ (z)Γ(z) =
∞

∑
n=1

∫
∞

0
e−nssz−1ds

It is routine to see that ∑
∞
n=1

∫
∞

0

∣∣e−nssz−1
∣∣ds < ∞ so Fubini’s theorem applies. Indeed, for

z = x+ iy,x > 1,

∞

∑
n=1

∫
∞

0

∣∣e−nssz−1∣∣ds =
∞

∑
n=1

∫
∞

0

∣∣e−nssx−1 (cos(y ln(ns)))
∣∣ds

≤
∞

∑
n=1

∫
∞

0

∣∣e−nssx−1∣∣ds =
∞

∑
n=1

Γ(x)
nx < ∞

Think of the sum as a Lebesgue integral with respect to counting measure. Therefore, from
the formula for the sum of a geometric series, the above is of the form

ζ (z)Γ(z) =
∫

∞

0

(
∞

∑
n=1

e−ns

)
sz−1ds =

∫
∞

0
(es−1)−1 sz−1ds
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Now z→ 1
kz is analytic and so z→ ∑

n
k=1

1
kz is also analytic. Since the series converges

uniformly for Rez ≥ 1
l + 1, it follows that z→ ∑

∞
k=1

1
kz is also analytic on Rez > 1. This

applies Lemma 14.8.5 to a small circle centered at z with Rez > 1, the circle lying in
Rez ≥ 1+ 1

l for some l ∈ N. The uniform convergence implies the limit of the functions
∑

n
k=1

1
kz as n→ ∞ is analytic.

Proposition 14.10.5 z→ ζ (z) is analytic on Rez > 1 and on this region the following
identity holds. ζ (z)Γ(z) =

∫
∞

0 (es−1)−1 sz−1ds. In particular, z→
∫

∞

0 (es−1)−1 sz−1ds is
analytic on Rez > 1.

Consider 1
ez−1 . This is undefined when z = 0. Writing it in terms of a power series in

the bottom, it equals
1

z+ z2

2 + p̂(z)
=

1
z

1
1+ z

2 + p(z)

where p(z) is a power series beginning with exponent 2. Then for small z this is of the
form

1
z

(
1−
( z

2
+ p(z)

)
+
( z

2
+ p(z)

)2
−
( z

2
+ p(z)

)3
+ · · ·

)
and this equals 1/z−1/2+q(z) where q(z) is some power series which begins with expo-
nent 1. Thus 1

ez−1 −
1
z equals a power series which will converge near z = 0.

Now consider ∫ 1

0

(
1

et −1
− 1

t

)
tz−1dt

The function 1
ez−1 −

1
z is unbounded near 2kπi for k a nonzero integer but elsewhere is

analytic. In particular, there is a power series p(z) whose first nonzero term is of degree 2
such that

1
ez−1

− 1
z
=

1
z+ p(z)

− 1
z
=

−p(z)
(z+ p(z))z

which can be redefined at z = 0 to make it analytic. Thus if |z| ≤ 1, this function 1
ez−1 −

1
z

will be bounded. By Theorem 14.10.2, applied to f (t) the zero extension of 1
et−1 −

1
t off

[0,1] , z→
∫ 1

0
( 1

et−1 −
1
t

)
tz−1dt is analytic. It follows that for all Rez > 1,

ζ (z)Γ(z) =
∫

∞

0

(
et −1

)−1 tz−1dt

=
∫ 1

0

(
1

et −1
− 1

t

)
tz−1dt +

∫ 1

0

1
t

tz−1dt +
∫

∞

1

(
et −1

)−1 tz−1dt

=

analytic on Rez>0︷ ︸︸ ︷∫ 1

0

(
1

et −1
− 1

t

)
tz−1dt +

analytic at z ̸=1︷ ︸︸ ︷
1

z−1
+

analytic on Rez>0︷ ︸︸ ︷∫
∞

1

(
et −1

)−1 tz−1dt

That last integral is analytic because you can let f (t) be 0 on [0,1] and 1
et−1 ≤ 3e−t . Indeed,

it is clear that et

et−1 ≤ 3 for t ≥ 1. Now apply Theorem 14.10.2. Thus the right side extends
the product ζ (z)Γ(z) to an analytic function valid for Rez ∈ (0,1). By Corollary 14.10.3,
z→ ζ (z) can be extended to an analytic function on 0 < Rez < 1 given by

ζ (z) =
1

Γ(z)

(∫ 1

0

(
1

et −1
− 1

t

)
tz−1dt +

1
z−1

+
∫

∞

1

tz−1

et −1
dt
)
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No one knows whether all zeros of ζ are on the line Rez = 1/2. The hypothesis that these
zeros are all on this line is Riemann’s hypothesis and it is one of the most famous of all
unsolved problems.

14.11 The General Cauchy Integral Formula
In general, closed curves can be very wriggly and it may not be entirely clear about what
is meant by counter clockwise orientation. The following is the general Cauchy integral
formula. Note that for most contours encountered, n(γ,z) is easy to see. It is 1 if motion
is counter clockwise and −1 if motion is clockwise. This comes from using an appropriate
branch of the logarithm to determine the winding number, as explained earlier.

Theorem 14.11.1 Let U be a bounded region for which Green’s theorem holds
and let ∂U be an oriented boundary for which Γ = ∑ j γ j is a parametrization for which the
conclusion of Green’s theorem is valid. Also let f be analytic near U ∪Γ with values in X
a complex Banach space. Then if z ∈U, f (z) = 1

2πi
∫

γ

f (w)
w−z dw.

Proof: Consider the function

g(w)≡
{ f (w)− f (z)

w−z if w ̸= z
f ′ (z) if w = z

(14.23)

This is clearly continuous on U ∪Γ. It is also clear that g′ (w) exists if w ̸= z. It remains to
consider whether g′ (z) exists. However, f has all derivatives near z and so

g(z+h) =
f (z+h)− f (z)

h
=

f ′ (z)(h)+ 1
2 f ′′ (z)h2 +o

(
h2
)

h
.

Therefore, limh→0
1
h (g(z+h)−g(z)) = 1

2 f ′′ (z). In case f is complex valued, it follows
that for u,v the real and imaginary parts of g and Green’s theorem,∫

γ

g(w)dw =

(∫
U
((−v)x−uy)dm2 + i

∫
U
(ux− vy)dm2

)
= 0

If f has values in X the same holds by considering φ ( f ) for φ ∈ X ′. Thus

0 =
1

2πi

∫
γ

g(w)dw =
1

2πi

∫
γ

f (w)
w− z

dw− 1
2πi

∫
γ

f (z)
w− z

dw

=
1

2πi

∫
γ

f (w)
w− z

dw− f (z) ■

Note that U could be a region whose boundary consists of oriented curves as in the
following:

U

One could also have more holes oriented as in the above.
The following is a spectacular application. It is Liouville’s theorem.
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Theorem 14.11.2 Suppose f is analytic on C, having values in X a Banach space,
and that ∥ f (z)∥ is bounded for z ∈ C. Then f is constant.

Proof: It was shown above that if γr is a counter clockwise oriented parametrization
for the circle of radius r centered at z, then

f ′ (z) =
1

2πi

∫
γr

f (w)

(w− z)2 dw if |z|< r

and so ∥ f ′ (z)∥≤ 1
2π

C2πr 1
r2 where ∥ f (z)∥<C for all z and this is true for any r so let r→∞

and you can conclude that f ′ (z)= 0 for all z∈C. However, continuing this argument shows
that f (k) (z) = 0 for all z and for each k ≥ 1. Thus the power series for f (z) , which exists

by Theorem 14.8.3, is f (z) = f (0)+∑
∞
k=1

f (k)(0)
k! zk = f (0) .

Alternatively, consider the line segment between z and w and use Problem 26 on Page
78 on t→ f (z+ t(w− z)). ■

This leads right away to the shortest proof of the fundamental theorem of algebra.

Theorem 14.11.3 Let p(z) be a non constant polynomial with complex coeffi-
cients. Then p(z) = 0 for some z ∈ C. That is, p(z) has a root in C.

Proof: Suppose not. Then 1/p(z) is analytic on C. Also, the leading term dominates
the others and so 1/p(z) must be bounded. Indeed, lim|z|→∞ (1/ |p(z)|) = 0 and the contin-
uous function z→ 1/ |p(z)| achieves a maximum on any bounded closed ball centered at 0.
By Liouville’s theorem, this quotient must be constant. However, by assumption, 1/p(z)
is not constant. Hence there is a root of p(z). ■

14.12 Simply Connected Regions
The Riemann sphere is a useful way to present the concept of the extended complex plane.
Consider the unit sphere, S2 given by (z−1)2+y2+x2 = 1. Define a map from the complex
plane to the surface of this sphere as follows. Extend a line from the point, p in the complex
plane to the point (0,0,2) on the top of this sphere and let θ (p) denote the point of this
sphere which the line intersects. Think of ∞ as a point which, when added in to C gives an
“extended complex plane” Ĉ in such a way that ∞ corresponds to θ (∞)≡ (0,0,2).

(0,0,2)

(0,0,1)
p

θ(p)

C
Then θ

−1 is sometimes called sterographic projection.

Definition 14.12.1 Let Ĉ ≡ C∪{∞} be a metric space as follows.
d (z,w)≡ ρ (θz,θw) where ρ is the distance in R3.

Lemma 14.12.2 The above does make Ĉ into a metric space. zn → ∞ is the same as
limn→∞ |zn|= ∞. In fact Ĉ is a compact metric space.

Proof: It is clear that d (z,w)≥ 0 and equals 0 if and only if z = w because θ is one to
one. The main issue is the triangle inequality. However, d (z,w)+d (w,u) ≡ ρ (θz,θw)+
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ρ (θw,θu) ≥ ρ (θz,θu) ≡ d (z,u). Thus it is a metric space. To say that zn→ ∞ is to say
that ρ (θzn,θ∞)→ 0. From the diagram, this means limn→∞ |zn|= ∞.

Suppose you have {zn} a sequence in Ĉ. If the sequence has no subsequence which
converges to ∞, then there exists ε > 0 such that for n large enough, ρ (θzn,θ∞)≥ ε which
corresponds to {zn} remaining in a compact subset of C for all n large enough. Hence there
is a convergent subsequence which converges to some point of C. ■

The mapping θ is clearly continuous because it takes converging sequences, to con-
verging sequences. Furthermore, it is clear that θ

−1 is also continuous. The notion of
connected sets is the same as earlier. The usual definition of being connected if it is not
separated will be retained in this extended complex plane.

Example 14.12.3 Consider the open set S≡ {z ∈ C such that Im(z)> 0} . Let S∪{∞} ≡
Ŝ. This is connected in Ĉ .

It is clear that θ (S∪{∞}) is half of S2 including the top point, obviously an arcwise
connected set. Thus Ŝ is connected.

Definition 14.12.4 A connected set S ⊆ C is said to be simply connected if S is
connected and also Ĉ \S is connected in Ĉ. Equivalently θ (S) and θ

(
Ĉ\S

)
are connected

subsets of the Riemann sphere.

Example 14.12.5 Consider the set S ≡ {z ∈ C such that |z|> 1} . This is a connected set,
but it is not simply connected.

Consider θ (S) . This is connected, but θ

(
Ĉ\S

)
is not.

Is there an easy way to see that an open connected set is NOT simply connected? The
answer is yes, using the Jordan curve theorem. Suppose you have an open connected set
Ω and a simple closed curve contained in Ω called Γ. If there is a point z ∈UΓ the inside
region of Γ which is not in Ω, then Ω cannot be simply connected because, letting VΓ be the
unbounded component of ΓC, Ĉ\Ω⊆ V̂Γ∪UΓ disjoint open sets in Ĉ and there are points
of Ĉ \Ω in each of these disjoint open sets. Therefore, Ĉ \Ω cannot be connected. Here
V̂Γ ≡VΓ∪{∞}.

Example 14.12.6 Consider the set S ≡ {z ∈ C such that |z|> 1} . This is a connected set,
but it is not simply connected. Indeed, {z : |z|= 1.5} is in S but its inside isn’t. From the
original definition, SC = {∞}∪{z : |z| ≤ 1} which is clearly not connected in Ĉ.

Example 14.12.7 Consider S ≡ {z ∈ C such that |z| ≤ 1} . This connected set is simply
connected because Ĉ \S corresponds to a connected set on S2.

14.13 Exercises
1. Suppose U is an open subset of C and f : U → R is analytic. Describe f on the

connected components of U .

2. Suppose f : C→ C is analytic. Let g(z) ≡ f (z̄) . Show that g′ (z) does not exist
unless f ′ (z̄) = 0.
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3. Suppose f is an entire function (analytic on C) and suppose Re f is never 0. Show
that f must be constant. Hint: Consider

U = {(x,y) : Re f (x,y)> 0} ,V = {(x,y) : Re f (x,y)< 0} .

These are open and disjoint so one must be empty. If V is empty, consider 1/e f (z).
Use Liouville’s theorem.

4. Suppose f : C→ C is analytic. Suppose also there is an estimate

| f (z)| ≤M
(
1+ |z|α

)
,α > 0.

Show that f must be a polynomial. Hint: Consider the formula for the derivative in
which γr is positively oriented and a circle or radius r for r very large centered at 0,
f (n) (z) = n!

2πi
∫

γr

f (w)
(w−z)n+1 dw and pick large n. Then let r→ ∞.

5. Define for z ∈ C, sinz ≡ ∑
∞
k=0 (−1)n z2n+1

(2n+1)! . That is, you just replace x with z. Give
a similar definition for cosz, and ez. Show that the series converges for sinz and that
a corresponding series converges for cosz. Then show that sinz = eiz−e−iz

2i , cosz =
eiz+e−iz

2 . Show that it is no longer true that the functions sinz,cosz must be bounded
in absolute value by 1. Hint: This is a very easy problem if you use the theorem
about the zeros of an analytic function, Theorem 14.9.2.

6. Verify the identities cos(z−w) = coszcosw+sinzsinw and similar identities. Hint:
This is a very easy problem if you use the theorem about the zeros of an analytic
function, Theorem 14.9.2.

7. Consider the following contour in which the large semicircle has radius R and the
small one has radius r ≡ 1/R.

x

y

The function z→ eiz

z is analytic on the curve and on its inside. Therefore, the con-
tour integral with respect to the given orientation is 0. Use this contour and the
Cauchy integral theorem to verify that

∫
∞

0
sinz

z dz = π/2 where this improper integral
is defined as limR→∞

∫ R
−1/R

sinz
z dz. The function is actually not absolutely integrable

and so the precise description of its meaning just given is important. You can use
dominated convergence theorem to simplify some of the limits if you like but it is
possible to establish the needed estimates through elementary means. I recommend
using the dominated convergence theorem. To do this, show that the integral over the
large circle of

∫
CR

e−z

z dz→ 0 as R→ ∞ and verify that you get something else like
−π for the integral over the small integral as r→ 0.

8. Suppose f (z) = u(x,y)+ iv(x,u) is analytic. Show that both u,v satisfy Laplace’s
equation, uxx +uyy = 0.

9. Suppose you have two complex numbers z = a+ ib and w = x+ iy. Show that the
dot product of the two vectors (a,b) · (x,y) is Re((a+ ib)(x− iy)) = Re(zw̄) .
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10. ↑Suppose you have two curves t→ z(t) and s→ w(s) which intersect at some point
z0 corresponding to t = t0 and s = s0. Show that the cosine of the angle θ between

these two curves at this point is cos(θ) =
Re(z′(t0)w′(s0))
|z′(t0)||w′(s0)|

. Now suppose z→ f (z) is
analytic. Thus there are two curves t → f (z(t)) and s→ f (w(s)) which intersect
when t = t0 and s = s0. Show that the angle between these two new curves at their
point of intersection is also θ . This shows that analytic mappings preserve the angles
between curves.

11. Suppose z = x+ iy and f (z) = u(x,y)+ iv(x,y) where f is analytic. Explain how
level curves of u and v intersect in right angles.

12. Suppose Γ is a simple closed rectifiable curve and that γ is an oriented parametriza-
tion for Γ which is oriented positively, n(γ,z) = 1 for all z on the inside of Γ. Now
let Γ̂ be a simple closed rectifiable curve on the inside of Γ and let γ̂ be an orientation
of Γ̂ also oriented positively. Explain why, if z is on the inside of Γ̂ and f is analytic
on the inside Ui of Γ, continuous on Ui∪Γ, then

∫
γ̂

f (w)
w−z dw =

∫
γ

f (w)
w−z dw and if z is on

the inside of Γ but outside of Γ̂, Then
∫

γ̂

f (w)
w−z dw = 0 while

∫
γ

f (w)
w−z dw = f (z) and if z

is outside of Γ then both integrals are 0.

13. Give another very short proof of the fundamental theorem of algebra using the result
of Theorem 14.9.4. In fact, show directly that if p(z) is a polynomial of degree n then
it has n roots counted according to multiplicity. Hint: Let p(z) be a polynomial.
Then by the Euclidean algorithm, Lemma 1.8.3, you can see that there can be no
more than n roots of the polynomial p(z) having complex coefficients. Otherwise
the polynomial could not have degree n. You should show this. Now there must exist
ΓR, a circle centered at 0 of radius R which encloses all roots of p(z). Letting m be
the number of roots, m = 1

2πi
∫

γR

p′(z)
p(z) dz. Now write down in terms of an integral on

[0,2π] and let R→ ∞ to get n in the limit on the right. Hence n = m.

14. Suppose now you have a rectifiable simple closed curve Γ and on Γ∗, | f (z)|> |g(z)|
where f ,g are analytic on an open set containing Γ∗. Suppose also that f has no
zeros on Γ∗. In particular, f is not identically 0. Let λ ∈ [0,1].

(a) Verify that for λ ∈ [0,1] , f +λg has no zeros on Γ∗.

(b) Verify that on Γ∗,

∣∣∣∣ ( f ′(z)+λg′(z))
f (z)+λg(z) −

f ′(z)+µg′(z)
f (z)+µg(z)

∣∣∣∣≤C |µ−λ | .

(c) Use Theorem 14.4.7 to show that for γ a positively oriented parametrization of
Γ,λ → 1

2πi
∫

γ

f ′(z)+λg′(z)
f (z)+λg(z) dz is continuous.

(d) Now explain why this shows that the number of zeros of f +λg on the inside
of Γ is the same as the number of zeros of f on the inside of Γ. This is a version
of Rouche’s theorem.

15. Give an extremely easy proof of the fundamental theorem of algebra as follows. Let
γR be a parametrization of the circle centered at 0 having radius R which has positive
orientation so n(γ,z) = 1. Let p(z) be a polynomial anzn+an−1zn−1+ · · ·+a1z+a0.
Now explain why you can choose R so large that |anzn|>

∣∣an−1zn−1 + · · ·+a1z+a0
∣∣

for all |z| ≥ R. Using Problem 14 above explain why all zeros of p(z) are inside γ∗R
and why there are exactly n of them counted according to multiplicity.
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16. The polynomial z5 + z4− z3− 3z2− 5z+ 1 = p(z) has no rational roots. You can
check this by applying the rational root theorem from algebra. However, it has five
complex roots. Also

∣∣z4− z3−3z2−5z+1
∣∣≤ |z|4+ |z|3+3 |z|2+5 |z|+1. By graph-

ing, observe that x5−
(
x4 + x3 +3x2 +5x+1

)
> 0 for all x ≥ 2.4. Explain why the

roots of p(z) are inside the circle |z|= 2.4.

17. Let f be analytic on U and let B(z,r)⊆U . Let γr be the positively oriented boundary
of B(z,r). Explain, using the Cauchy integral formula why

| f (z)| ≤max{| f (w)| : w ∈ γ
∗
r} ≡ mr.

Show that if equality is achieved, then | f (w)| must be constantly equal to mr on γ∗r .

18. Let f :C→C be analytic with f ′ (z) ̸= 0 for all z. Say f (x+ iy) = u(x,y)+ iv(x,y).

Thus the mapping (x,y)→
(

u(x,y)
v(x,y)

)
is a C1 mapping of R2 to R2. Show that

at any point
∣∣∣∣ ux uy

vx vy

∣∣∣∣ ̸= 0. Therefore, by the inverse function theorem, Theorem

4.8.7, this mapping is locally one to one. However, the function does not need to be
globally one to one. Give an easy example which shows this to be the case. Hint:
You might want to consider something involving the exponential function.

19. Let Γ be a simple closed rectifiable curve and let { fn} be a sequence of functions
which are analytic on Ui, the inside of Γ and continuous on Γ∗. Then if γ is a
parametrization of Γ with n(γ,z) = 1 for z ∈ Ui, then fn (z) = 1

2πi
∫

γ

fn(w)
w−z dw. This

is by the Cauchy integral formula presented above. Suppose fn converges uniformly
on Γ∗ to a continuous function f . Show that then, for z ∈Ui, and f (z) defined as
f (z) ≡ 1

2πi
∫

γ

f (w)
w−z dw. It follows that fn (z)→ f (z) for each z ∈ Ui and also f is

analytic on Ui. Hint: You might use Theorem 14.4.7. This is very different than
what happens with functions of a real variable in which uniform convergence of
polynomials pn to f does not necessarily confer differentiability on f . For example,
to approximate f , a continuous function having no derivatives or even a very easy
function like f (x) = |x− (1/2)| for x ∈ [0,1].

20. Sketch an example of two differentiable functions defined on [0,1] such that their
product is 0 but neither function is 0. Explain why this never happens for the set
of analytic functions defined on an open connected set. In other words, if you have
f g = 0 where f ,g are analytic on D an open connected set, then either f = 0 or
g = 0. For those who like to classify algebraically, this says that the set of analytic
functions defined on an open connected set is an integral domain. It is clear that
this set of functions is a ring with the usual operations. The extra ingredient is this
observation that there are no nonzero zero divisors. Hint: To show this, consider
D\ f−1 (0) an open set. If f−1 (0) = D, then you are done. Otherwise, you have g is
0 on an open set. Now use Theorem 14.9.2.

21. For D ≡ {z ∈ C : |z|< 1} , consider the function sin
( 1

1−z

)
. Show that this function

has infinitely many zeros in D. Thus there is a limit point to the set of zeros, but its
limit point is not in D. It is good to keep this example in mind when considering
Theorem 14.9.2.
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22. Suppose Ω is an open connected subset of C with the property that if Γ is a simple
closed curve contained in Ω and UΓ, VΓ respectively the bounded and unbounded
components of ΓC, then UΓ ⊆Ω. Show that Ω is simply connected. Hint: If Ĉ\Ω =

A∪B where A,B separate Ĉ \Ω with ∞ ∈ B, argue that B \ {∞} is closed and A is
compact. Show dist(A,B\{∞}) = δ > 0. Then make a grating of finitely many
horizontal and vertical lines equally spaced with distance between successive lines
no more than δ/10 such that the small squares cover up A. Now consider the vertices
which are contained in Ω. Each has four lines or maybe two lines emanating from
it. Start at such a vertex p and travel over sides of squares, never going back the
way you came along one of these sides till you return to the point p at which you
started. Delete all paths of the form p̂, p̂1, ..., p̂ where p̂ ̸= p. The result must be a
simple closed curve Γ contained in Ω,∞ /∈UΓ. By assumption UΓ does not contain
any points of A. Since you could have started at any point of this grating, and there
are finitely many vertices, A must be empty. A more systematic way of doing this
is in the material on cycles in next chapter showing that the points of A must be
included.



Chapter 15

Isolated Singularities
15.1 Open Mapping Theorem

The open mapping theorem is for an analytic function with values in C. It is an even more
surprising result than the theorem about the zeros of an analytic function. The follow-
ing proof of this important theorem uses an interesting local representation of the analytic
function. First is a useful lemma.

Lemma 15.1.1 Suppose V is open and φ : V → B(0,δ ) ⊆ C is one to one and onto
and φ

−1 is continuous. Then if φ is analytic with φ
′ (z) ̸= 0 for all z ∈V , then φ

−1 is also
analytic and the usual formula for

(
φ
−1)′ is valid.

Proof: Let z ∈V . Say w = φ (z). By definition,

h = φ
(
φ
−1 (w+h)

)
−φ

(
φ
−1 (w)

)
= φ

′ (
φ
−1 (w)

)(
φ
−1 (w+h)−φ

−1 (w)
)

+o
(
φ
−1 (w+h)−φ

−1 (w)
)
. (15.1)

Then∣∣o(φ−1 (w+h)−φ
−1 (w)

)∣∣< |φ ′ (z)|
2

∣∣φ−1 (w+h)−φ
−1 (w)

∣∣ where z≡ φ
−1 (w)

whenever |h| is small enough. Thus, from 15.1, for small enough h,

|h|> |φ
′ (z)|
2

∣∣φ−1 (w+h)−φ
−1 (w)

∣∣ , ∣∣∣∣φ−1 (w+h)−φ
−1 (w)

h

∣∣∣∣< 2
|φ ′ (z)|

Then, for such small h,∣∣∣∣∣o
(
φ
−1 (w+h)−φ

−1 (w)
)

h

∣∣∣∣∣ =

∣∣∣∣∣o
(
φ
−1 (w+h)−φ

−1 (w)
)

φ
−1 (w+h)−φ

−1 (w)

∣∣∣∣∣
∣∣∣∣φ−1 (w+h)−φ

−1 (w)
h

∣∣∣∣
≤

∣∣∣∣∣o
(
φ
−1 (w+h)−φ

−1 (w)
)

φ
−1 (w+h)−φ

−1 (w)

∣∣∣∣∣ 2
|φ ′ (z)|

and so, by continuity of φ
−1,o

(
φ
−1 (w+h)−φ

−1 (w)
)
= o(h). From 15.1, it follows that

1
φ ′(z)h+o(h) = φ

−1 (w+h)−φ
−1 (w) showing that

(
φ
−1)′ (w) = 1

φ ′(z) where φ (z) = w. ■

Theorem 15.1.2 (Open mapping theorem) Let Ω be a region (open connected set)
in C and suppose f : Ω→ C is analytic. Then f (Ω) is either a point or a region. In the
case where f (Ω) is a region, it follows that for each z0 ∈ Ω, there exists an open set V
containing z0 and m ∈ N such that for all z ∈V,

f (z) = f (z0)+φ (z)m (15.2)

where φ : V → B(0,δ ) is one to one, analytic and onto, φ (z0) = 0, φ
′ (z) ̸= 0 on V and

φ
−1 analytic on B(0,δ ) . Thus f (z0)+B(0,δ m)⊆ f (V ). If f is one to one then m = 1 for

each z0 and f−1 : f (Ω)→Ω is analytic.

373
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Proof: Suppose f (Ω) is not a point. Then for z0 ∈Ω it follows there exists r > 0 such
that f (z) ̸= f (z0) for all z ∈ B(z0,r)\{z0} . Otherwise, z0 would be a limit point of the set,

{z ∈Ω : f (z)− f (z0) = 0}

which would imply from Theorem 14.9.2 that f (z) = f (z0) for all z ∈Ω. Therefore, mak-
ing r smaller if necessary, and using the power series of f ,

f (z) = f (z0)+(z− z0)
m g(z) ?

= ( f (z0)+
(
(z− z0)g(z)1/m

)m
)

where g is analytic near z0 and g(z0) ̸= 0. Does an analytic g(z)1/m exist? By continuity,
g(B(z0,r)) ⊆ B(g(z0) ,ε) where ε is small enough that 0 /∈ B(g(z0) ,ε), so there exists
a branch of the logarithm on C⧹B(g(z0) ,ε) , Definition 14.3.1. Call it log even though
it might not be the principle branch. Then consider e(1/m) log(g(z)) ≡ g(z)1/m and so we
can obtain an analytic function denoted by g(z)1/m as in the above formula. Let φ (z) =
(z− z0)g(z)1/m . Then φ (z0) = 0 and

φ
′ (z) = e(1/m) log(g(z))+(z− z0)e(1/m) log(g(z)) 1

g(z)
g′ (z)

so φ
′ (z0) = e(1/m) log(g(z0)) ̸= 0. Shrinking r some more if necessary, assume φ

′ (z) ̸= 0 for
all z ∈ B(z0,r). The representation

f (z) = f (z0)+φ (z)m ,z ∈ B(z0,r)

where φ
′ (z) ̸= 0 for all z ∈ B(z0,r) and φ (z0) = 0 has been obtained.

1.) Let φ (z) = u(x,y)+ iv(x,y) where z = x+ iy. Consider the mapping(
x
y

)
→
(

u(x,y)
v(x,y)

)
where u,v are C1 because φ is given to be analytic. The Jacobian of this map at (x,y) ∈
B(z0,r) is ∣∣∣∣ ux (x,y) uy (x,y)

vx (x,y) vy (x,y)

∣∣∣∣= ∣∣∣∣ ux (x,y) −vx (x,y)
vx (x,y) ux (x,y)

∣∣∣∣
= ux (x,y)

2 + vx (x,y)
2 =

∣∣φ ′ (z)∣∣2 ̸= 0.

This follows from a use of the Cauchy Riemann equations. Also(
u(x0,y0)
v(x0,y0)

)
=

(
0
0

)
Therefore, by the inverse function theorem there exists an open set V, containing z0 and
δ > 0 such that (u,v)T maps V ⊆ B(z0,r) one to one onto B(0,δ ) with φ

′ (z) ̸= 0 on V,φ
maps open subsets of V to open sets, and by Lemma 15.1.1, φ

−1 is analytic.
It also follows that φ

m maps V onto B(0,δ m) . Indeed, |φ (z)|m = |φ (z)m| . Therefore,
the formula 15.2 implies that f maps the open set V, containing z0 to an open set. This
shows f (Ω) is an open set because z0 was arbitrary. f (Ω) is connected because f is
continuous and Ω is connected. Thus f (Ω) is a region (open and connected).



15.1. OPEN MAPPING THEOREM 375

2.) Alternatively, let δ be small enough that the only zero of φ (z)− φ (z0) is z0 in
B(z0,δ ). If no such small positive δ exists, then the zeroes of φ (z)− φ (z0) would have
a limit point and so φ would be a constant. This would force f to be constant also. Then
φ (z0) /∈ φ (C (z0,δ )) and so if |w−φ (z0)| is small enough, then w /∈ φ (C (z0,δ )) either.
Thus there is ε > 0 with B(φ (z0) ,ε)∩φ (C (z0,δ )) = /0. Consider for w ∈ B(φ (z0) ,ε) =
B(0,ε) the formula for counting zeroes.

1
2πi

∫
C(z0,δ )

φ
′ (z)

φ (z)−w
dz

It is a continuous function of w and equals 1 at 0 = φ (z0) so, since it is integer valued, it
equals 1 on all of B(0,ε) , but this is the number of zeroes of φ (z)−w. Thus φ (B(z0,δ )) =
B(0,ε). Hence, φ

m (B(z0,δ )) = B(0,εm). It follows that

f (B(z0,δ )) = f (z0)+B(0,εm) = B( f (z0) ,ε
m)

and so this shows that f maps small open balls to open balls. Thus f (Ω) is a connected
open set.

It only remains to verify the assertion about the case where f is one to one. If m > 1,
then e

2πi
m ̸= 1 and so for z1 ∈V,

e
2πi
m φ (z1) ̸= φ (z1) . (15.3)

But e
2πi
m φ (z1)∈ B(0,δ ) and so there exists z2 ̸= z1(since φ is one to one) such that φ (z2) =

e
2πi
m φ (z1) . But then

φ (z2)
m =

(
e

2πi
m φ (z1)

)m
= e2πi

φ (z1)
m = φ (z1)

m

implying f (z2) = f (z1) contradicting an assumption that f is one to one. Thus m = 1
and f ′ (z) = φ

′ (z) ̸= 0 on V. Since f maps open sets to open sets, it follows that f−1 is
continuous and so by Lemma 15.1.1 again, f−1 is analytic. ■

One does not have to look very far to find that this sort of thing does not hold for
functions mapping R to R. Take for example, the function f (x) = x2. Then f (R) is neither
a point nor a region. In fact f (R) fails to be open.

Corollary 15.1.3 Suppose in the situation of Theorem 15.1.2 m > 1 for the local repre-
sentation of f given in this theorem. Then there exists δ > 0 such that if w∈ B( f (z0) ,δ ) =
f (V ) for V an open set containing z0, then f−1 (w) consists of m distinct points in V. ( f is
m to one on V )

Proof: Let w ∈ B( f (z0) ,δ
m) . Then w = f (ẑ) where ẑ ∈ V. Thus f (ẑ) = f (z0) +

φ (ẑ)m . Consider the m distinct numbers,
{

e
2kπi

m φ (ẑ)
}m

k=1
. Then each of these numbers

is in B(0,δ ) and so since φ maps V one to one onto B(0,δ ) , there are m distinct numbers
in V , {zk}m

k=1 such that φ (zk) = e
2kπi

m φ (ẑ). Then

f (zk) = f (z0)+φ (zk)
m = f (z0)+

(
e

2kπi
m φ (ẑ)

)m

= f (z0)+ e2kπi
φ (ẑ)m = f (z0)+φ (ẑ)m = f (ẑ) = w ■

Nothing remotely resembling this happens for functions of a real variable. This is yet
another manifestation of the fact that analytic functions are really glorified polynomials.
With the open mapping theorem, the maximum modulus theorem is fairly easy.
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Theorem 15.1.4 Let Ω be an open connected, bounded set in C and let f : Ω→ C
be analytic. Let ∂Ω≡ Ω̄\Ω. Then

max
{
| f (z)| : z ∈ Ω̄

}
= max{| f (z)| : z ∈ ∂Ω}

and if the maximum of | f (z)| is achieved at a point of Ω, then f is a constant.

Proof: Suppose f (Ω) is not a single point. That is, f is not constant. Then by the
open mapping theorem, f (Ω) is an open connected subset of C and so z→ | f (z)| has no
maximum. Indeed, if w ∈ f (Ω) , then for some r > 0,B(w,r) ⊆ f (Ω) and so there are
points of f (Ω) farther from 0 than w. Thus the maximum of | f (z)| for z ∈ Ω̄ is on ∂Ω. If
f (Ω) is a single point, then the equation still holds. ■

15.2 Functions Analytic on an Annulus
First consider the definition of an annulus.

Definition 15.2.1 Define ann(a,r,R)≡ {z : r < |z−a|< R} .

Thus ann(a,0,R) would denote the punctured ball, B(a,R) \ {a} and when r > 0, the
annulus looks like the following.

a

The annulus consists of the points between the two circles.
In the following picture, let there be two parametrizations, γR for the large circle and

γ̂r for the small one with clockwise orientation as shown. I will let γr be the same circle
oriented counter clockwise. There are also two line segments oriented as shown which miss
a particular z ∈ ann(z0,r,R) and constitute the intersection of the two simple closed curves
Γ1,Γ2. These two simple closed curves are oriented as shown, both counter clockwise.
Thus n(Γ1,z) = 1 and n(Γ2,z) = 0. Let f be continuous on ann(z0,r,R) and be analytic on
ann(z0,r,R).

γR

γ̂r
zz0

The region between the two oriented circles satisfies Green’s theorem with the indicated
orientations by Corollary 10.8.4. First suppose f is analytic near ann(z0,r,R). Then it
follows from Theorem 14.11.1, that for z in the annulus,

f (z) =
∫

γR

f (w)
w− z

dw+
∫

γ̂r

f (w)
w− z

dw =
∫

γR

f (w)
w− z

dw−
∫

γr

f (w)
w− z

dw

there γr is the opposite orientation to γ̂r.
The same formula holds in case f is only analytic on ann(z0,r,R) and continuous on

ann(z0,r,R). To see this, replace R with R̂ < R but close to R and r with r̂ > r but close to
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r, and obtain the above formula valid for γ R̂ and γ r̂.Then pass to a limit using continuity of
f on ann(z0,r,R) to replace R̂ and r̂ with R and r. The details are routine and left for you.
Thus,

f (z) =
1

2πi

[∫
γR

f (w)
w− z0− (z− z0)

dw+
∫

γr

f (w)
(z− z0)− (w− z0)

dw
]

=
1

2πi

[∫
γR

1
w− z0

f (w)
1− z−z0

w−z0

dw+
∫

γr

1
z− z0

f (w)
1− w−z0

z−z0

dw

]

Now note that for z in the annulus between the two circles and w ∈ γ∗R,
∣∣∣ z−z0

w−z0

∣∣∣< 1, and for

w ∈ γ∗r ,
∣∣∣w−z0

z−z0

∣∣∣< 1. In fact, in each case, there is b < 1 such that

w ∈ γ
∗
R,

∣∣∣∣ z− z0

w− z0

∣∣∣∣< b < 1, w ∈ γ
∗
r ,

∣∣∣∣w− z0

z− z0

∣∣∣∣< b < 1 (15.4)

Thus you can use the formula for the sum of an infinite geometric series and conclude

f (z) =
1

2πi

 ∫
γR

f (w) 1
w−z0

∑
∞
n=0

(
z−z0
w−z0

)n
dw

+
∫

γr
f (w) 1

(z−z0)
∑

∞
n=0

(
w−z0
z−z0

)n
dw


Then from the uniform estimates of 15.4 and the Weierstrass M test, Theorem 2.5.42, one
can conclude uniform convergence of the partial sums for w ∈ γ∗R or γ∗r and so one can
interchange the summation with the integral and write

f (z) =
∞

∑
n=0

(
1

2πi

∫
γR

f (w)
1

(w− z0)
n+1 dw

)
(z− z0)

n

+
∞

∑
n=0

(
1

2πi

∫
γr

f (w)(w− z0)
n dw

)
1

(z− z0)
n+1 ,

both series converging absolutely. Thus there are an,bn ∈ X such that

f (z) =
∞

∑
n=0

an (z− z0)
n +

∞

∑
n=1

bn (z− z0)
−n

This proves the following theorem.

Theorem 15.2.2 Let z ∈ ann(z0,r,R) and let f : ann(z0,r,R)→ X be analytic on
ann(z0,r,R) and continuous on ann(z0,r,R). Then for any z ∈ ann(z0,r,R) ,

f (z) =
∞

∑
n=0

an (z− z0)
n +

∞

∑
n=1

bn (z− z0)
−n (15.5)

where

an =
1

2πi

∫
γR

f (w)
1

(w− z0)
n+1 dw, bn =

1
2πi

∫
γr

f (w)(w− z0)
n−1 dw

and both of these series in 15.5 converge absolutely. If r < r̂ < R̂ < R, then convergence of
both series is absolute and uniform for z ∈ ann

(
z0, r̂, R̂

)
.
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Note that for arbitrary α with r < α ≤ R̂ < R,

1
2πi

∫
γ R̂

f (w)
1

(w− z0)
n+1 dw =

1
2πi

∫
γα

f (w)
1

(w− z0)
n+1 dw (15.6)

Here γα is oriented counter clockwise like ΓR̂. This follows from Theorem 14.11.1 as in
the above argument to prove Theorem 15.2.2.

Corollary 15.2.3 The an and bn are uniquely determined. Specifically,

bn =
1

2πi

∫
γα

f (w)(w− z0)
n−1 dw, an =

1
2πi

∫
γα

f (w)
1

(w− z0)
n+1 dw, α ∈ (r,R)

Also,
∫

γα
f (z)dz = 2πib1.

Proof: Let α ∈ (r,R) and let γα be a parametrization of the circle centered at z0 of radius
α which is counterclockwise. Then f (w) = ∑

∞
n=0 an (w− z0)

n+∑
∞
n=1 bn (w− z0)

−nfor w in
the annulus. For k ≥ 1,

f (w)(w− z0)
k−1 =

∞

∑
n=0

an (w− z0)
n+k−1 +

∞

∑
n=1

bn (w− z0)
−n+k−1

By uniform convergence,

∫
γα

f (w)(w− z0)
k−1 dw =

∞

∑
n=0

an

∫
γα

(w− z0)
n+k−1 dw+

∞

∑
n=1

bn

∫
γα

(w− z0)
−n+k−1 dw

Now in the sums, all integrals are 0 except the one when n= k in the second sum. Therefore,∫
γα

f (w)(w− z0)
k−1 dw = bk

∫
γα

(w− z0)
−1 dw = 2πibk

This shows that for any α,r < α < R,bk =
1

2πi
∫

γα
f (w)(w− z0)

k−1 dw. Similar reasoning
gives an = 1

2πi
∫

γα
f (w) 1

(w−z0)
n+1 dw and as explained above, nothing changes when α is

changed.
The last claim follows from observing that all the terms in the Laurent series have

primitives except the one corresponding to b1 =
1

2πi
∫

γα
f (w)dw. ■

Definition 15.2.4 For f continuous on the closure of an annulus as just described
and analytic on the annulus, it follows that on the annulus, f can be written as the sum of
a power series and a series involving (z− z0) raised to negative powers. This is called the
Laurent series. The series involving negative powers of (z− z0) is called the principal part
of the Laurent series. b1 is called the residue at z0 denoted as res( f ,z0).

Note that if f is analytic near z0, but possibly not at z0 then the r in γr can be taken as
small as desired.
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15.3 Cauchy Integral Formula for a Cycle
There is a much more elaborate formulation of the Cauchy integral formula which involves
cycles and an additional assumption that the function of interest is analytic on an open
set which contains the contours over which the integrals are taken. Thus we abandon
the generality which allows the weaker assumption that the function is continuous on the
contours of interest and is only known to be analytic on the inside.

The reason for this is that a key part of the argument uses Liouville’s theorem. This,
and the notion of winding number are what makes possible the Cauchy integral theorem
for a cycle. Recall that the winding number is defined as n(γ,z) ≡ 1

2πi
∫

γ
1

w−z dw where γ

is a parametrization of an oriented curve γ∗ and z /∈ γ∗. This makes perfect sense for any
bounded variation curve γ∗. Recall that z→ n(γ,z) is continuous on the complement of γ∗.

Consider a situation typified by the following picture in which Ω is the open set between
the dotted curves and γ j are closed rectifiable curves in Ω.

γ2
z2

γ3
z3

γ4z4

Ω
γ1

The open set is between the dotted lines and also excludes the points z2,z3,z4. Note
how if you pick any z /∈ Ω, including the zk, then ∑

4
k=1 n(γk,z) = 0. This open set is

not simply connected as described in Definition 14.12.4. Its complement relative to the
extended complex plane is not connected. Note how this is manifested by the points left
out.

Definition 15.3.1 Let {γk}
n
k=1 be a set of parametrizations which are continu-

ous and of bounded variation. Then {γk}
n
k=1 is called a cycle if whenever, z /∈ ∪n

k=1γ∗k ,

∑
n
k=1 n(γk,z) is an integer. Note that, unlike the above picture, there is no reason to believe

the γ∗k are closed curves.

Now the following is the general Cauchy integral formula. In the theorem, it is only
assumed that the sum of the winding numbers is an integer. Thus, it is probably, but not
necessarily the case that you have in mind each contour being a closed curve.

Theorem 15.3.2 Let Ω be an open subset of the plane (not necessarily simply con-
nected) and let f : Ω→ X be analytic. If γk : [ak,bk]→ Ω, k = 1, · · · ,m are continuous
curves having bounded variation such that for all z /∈ ∪m

k=1γ∗k ,

m

∑
k=1

n(γk,z) equals an integer

and for all z /∈Ω,∑m
k=1 n(γk,z) = 0.Then for all z ∈Ω\∪m

k=1γ∗k ,

f (z)
m

∑
k=1

n(γk,z) =
m

∑
k=1

1
2πi

∫
γk

f (w)
w− z

dw.

Proof: Let φ be defined on Ω×Ω by

φ (z,w)≡
{ f (w)− f (z)

w−z if w ̸= z
f ′ (z) if w = z

.
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Then φ is analytic as a function of z and analytic as a function of w and is continuous in
Ω×Ω. This follows from the argument given in Theorem 14.11.1, resulting from the fact
that if a function has one derivative on an open set, then it has them all. Indeed, it is obvious
that z→ φ (z,w) and w→ φ (z,w) are analytic if z ̸= w. In case z = w, for small h,

φ (z+h,z)−φ (z,z)
h

=

 f (z)−∑
∞
k=0

f (k)(z)
k! hk

−h
− f ′ (z)

 1
h

=
1
h

(
− f ′ (z)h
−h

+o(h)− f ′ (z)
)
→ 0

The case of w→ φ (z,w) is similar.
Define h(z)≡ 1

2πi ∑
m
k=1

∫
γk

φ (z,w)dw. Is h analytic on Ω? To show this is the case, ver-
ify
∫

∂T h(z)dz = 0 for every triangle T, such that the triangle and its inside are contained
in Ω and apply the Corollary 14.8.6. This is an application of the Fubini theorem of The-

orem 14.4.9. By Theorem 14.4.9,
∫

∂T
∫

γk
φ (z,w)dwdz =

∫
γk

=0︷ ︸︸ ︷∫
∂T

φ (z,w)dzdw = 0 because

z→ φ (z,w) is analytic. By Corollary 14.8.6, h is analytic on Ω as claimed.
Now recall that by assumption, ∑

m
k=1 n(γk,z) = 0 for z ∈ΩC. Let H ⊇ΩC,

H ≡

{
z ∈ C\∪m

k=1 γ
∗
k :

m

∑
k=1

n(γk,z) = 0

}

=

{
z ∈ C\∪m

k=1 γ
∗
k :

m

∑
k=1

n(γk,z) ∈ (−1/2,1/2)

}

the second equality holding because it is given that the sum of these is integer valued. Thus
H is an open set because z→ ∑

m
k=1 n(γk,z) is continuous. Also, Ω∪H = C because by

assumption, ΩC ⊆ H. Extend h(z) to a function g(z) defined on all of C as follows:

g(z)≡

{
h(z)≡ 1

2πi ∑
m
k=1

∫
γk

φ (z,w)dw if z ∈Ω

1
2πi ∑

m
k=1

∫
γk

f (w)
w−z dw if z ∈ H if∑

m
k=1 n(γk,z) = 0

. (15.7)

Why is g(z) well defined? On Ω∩H, z /∈ ∪m
k=1γ∗k and so

g(z) =
1

2πi

m

∑
k=1

∫
γk

φ (z,w)dw =
1

2πi

m

∑
k=1

∫
γk

f (w)− f (z)
w− z

dw

=
1

2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw− 1
2πi

m

∑
k=1

∫
γk

f (z)
w− z

dw =
1

2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw

because z ∈ H so ∑
m
k=1 n(γk,z) = 0. This shows g(z) is well defined. Also, g is analytic on

Ω because it equals h there. It is routine to verify that g is analytic on H also because of
the second line of 15.7 which is an analytic function of z. (See discussion at the end if this
is not clear. )

Therefore, g is an entire function, meaning that it is analytic on all of C.
Now note that ∑

m
k=1 n(γk,z) = 0 for all z contained in the unbounded component of

C\ ∪m
k=1 γ∗k which component contains B(0,r)C for r large enough. It follows that for
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|z| > r, it must be the case that z ∈ H and so for such z, the bottom description of g(z)
found in 15.7 is valid. Therefore, it follows lim|z|→∞ ∥g(z)∥ = 0 and so g is bounded and
analytic on all of C. By Liouville’s theorem, g is a constant. Hence, the constant can only
equal zero.

For z ∈Ω\∪m
k=1γ∗k , since it was just shown that h(z) = g(z) = 0 on Ω

0 = h(z) =
1

2πi

m

∑
k=1

∫
γk

φ (z,w)dw =
1

2πi

m

∑
k=1

∫
γk

f (w)− f (z)
w− z

dw =

1
2πi

m

∑
k=1

∫
γk

f (w)
w− z

dw− f (z)
m

∑
k=1

n(γk,z) . ■

In case it is not obvious why g is analytic on H, use the formula. For z ∈ H, z /∈ γ∗k for
any k. The issue reduces to showing that z→ ∑

m
k=1

∫
γk

f (w)
w−z dw is analytic. You can show

this by taking a limit of a difference quotient and argue that the limit can be taken inside
the integral. Taking a difference quotient and simplifying a little, one obtains∫

γk

f (w)
w−(z+h)dw−

∫
γk

f (w)
w−z dw

h
=
∫

γk

f (w)
(w− z)(w− (z+h))

dw

considering only small h, the denominator is bounded below by some δ > 0 and also f (w)
is bounded on the compact set γ∗k , | f (w)| ≤M. Then for such small h,∣∣∣∣∣ f (w)

(w− z)(w− (z+h))
− f (w)

(w− z)2

∣∣∣∣∣
=

∣∣∣∣ 1
w− z

(
1

(w− (z+h))
− 1

(w− z)

)
f (w)

∣∣∣∣≤ ∣∣∣∣ 1
w− z

∣∣∣∣ 1
δ

hM

it follows that one obtains uniform convergence as h→ 0 of the integrand to f (w)
(w−z)2 for any

sequence h→ 0 and by Theorem 14.4.7, the integral converges to
∫

γk

f (w)
(w−z)2 dw.

The following is an interesting and fairly easy corollary.

Corollary 15.3.3 Let Ω be an open set (note that Ω might not be simply connected)
and let γk : [ak,bk]→ Ω, k = 1, · · · ,m, be closed, continuous and of bounded variation.
Suppose also that ∑

m
k=1 n(γk,z) = 0 for all z /∈ Ω and ∑

m
k=1 n(γk,z) is an integer for z ∈

∩m
k=1

(
Ω\ γ∗k

)
. Then if f : Ω→ X is analytic, ∑

m
k=1

∫
γk

f (w)dw = 0.

Proof: This follows from Theorem 15.3.2 as follows. Let g(w) = f (w)(w− z) where
z ∈Ω\∪m

k=1γk ([ak,bk]) . Then by this theorem,

0 = 0
m

∑
k=1

n(γk,z) = g(z)
m

∑
k=1

n(γk,z) =
m

∑
k=1

1
2πi

∫
γk

g(w)
w− z

dw =
1

2πi

m

∑
k=1

∫
γk

f (w)dw. ■

What if Ω is simply connected? Can one assert something interesting in this case
beyond what is said above? Yes, and this is a very important result. Recall what it meant
for an open set Ω ⊆ C to be simply connected. It meant that Ω is connected and ΩC is
connected in the extended complex plane Ĉ.
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Corollary 15.3.4 Let γ : [a,b]→Ω be a continuous closed curve of bounded variation
where Ω is a simply connected region contained in C (Thus Ω does not contain ∞.) and let
f : Ω→ X be analytic. Then

∫
γ

f (w)dw = 0.

Proof: Let D denote the unbounded component of Ĉ\γ∗. Thus ∞ ∈ Ĉ\γ∗. Then
the connected set, Ĉ \Ω is contained in D since ∞ is contained in both Ĉ \Ω and D. It
follows that n(γ, ·) must be constant on Ĉ \Ω, its value being its value on D. However,
for z ∈ D,n(γ,z) = 1

2πi
∫

γ
1

w−z dw and so lim|z|→∞ n(γ,z) = 0 showing n(γ,z) = 0 on D.

Therefore this verifies the hypothesis of Theorem 15.3.2. Let z ∈Ω∩D and define g(w)≡
f (w)(w− z) . Thus g is analytic on Ω and by Theorem 15.3.2,

0 = n(z,γ)g(z) =
1

2πi

∫
γ

g(w)
w− z

dw =
1

2πi

∫
γ

f (w)dw.■

The following is a very significant result which will be used later. It is a fairly large
jump to go from star shaped to simply connected which is what this corollary does.

Corollary 15.3.5 Suppose Ω is a simply connected open set and f : Ω→ X is analytic.
Then f has a primitive F, on Ω. Recall this means there exists F such that F ′ (z) = f (z)
for all z ∈Ω.

Proof: Pick a point, z0 ∈Ω and let V denote those points z of Ω for which there exists a
curve, γ : [a,b]→Ω such that γ is continuous, of bounded variation, γ (a) = z0, and γ (b) =
z. Then it is easy to verify that V is both open and closed in Ω and therefore, V = Ω because
Ω is connected. Denote by γz0,z such a curve from z0 to z and define F (z)≡

∫
γz0 ,z

f (w)dw.
Then F is well defined because if γ j, j = 1,2 are two such curves, it follows from Corollary
15.3.4 that

∫
γ1

f (w)dw+
∫
−γ2

f (w)dw = 0, implying that
∫

γ1
f (w)dw =

∫
γ2

f (w)dw.Now
this function F is a primitive because, thanks to Corollary 15.3.4

(F (z+h)−F (z))h−1 =
1
h

∫
γz,z+h

f (w)dw =
1
h

∫ 1

0
f (z+ th)hdt

and so, taking the limit as h→ 0, F ′ (z) = f (z) .■
Next is a technical result about finding suitable cycles which seems to often be taken

for granted, but it is not at all obvious. It is about getting closed curves which enclose each
of finitely many compact sets such that there is no intersection between curves, and each
goes around the corresponding compact set in the positive direction.

15.4 An Example of a Cycle
The next theorem deals with the existence of a cycle with nice properties. Basically,
you go around the compact subset of an open set with suitable contours while staying
in the open set. The method involves the following simple concept. If a cycle Γ con-
sists of oriented curves {γ1, · · · ,γr} , define for p /∈ Γ∗, n(Γ, p) ≡ ∑

r
i=1 n(γ i, p) . Also,∫

Γ
f (λ )dλ ≡ ∑

r
i=1
∫

γ i
f (λ )dλ .

Definition 15.4.1 A tiling of R2 =C is the union of infinitely many equally spaced
vertical and horizontal lines. You can think of the small squares which result as tiles. To
tile the plane or R2 =C means to consider such a union of horizontal and vertical lines. It
is like graph paper. See the picture below for a representation of part of a tiling of C.
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Here is something which is clear. If you have a square parametrized by γ oriented in
the counter clockwise direction, then for z on the inside of this square, n(z,γ) = 1 and if z
is on the outside of this square, then n(z,γ) = 0. This observation is used in the following.

Theorem 15.4.2 Let K1,K2, · · · ,Km be disjoint compact subsets of an open set Ω

in C. Then there exist continuous, closed, bounded cycles
{

Γ j
}m

j=1 for which Γ∗j ∩Kk = /0
for each k, j,Γ∗j ∩Γ∗k = /0, Γ∗j ⊆ Ω. Also, if p ∈ Kk and j ̸= k, n(Γk, p) = 1, n(Γ j, p) = 0
so if p is in some Kk,∑

m
j=1 n(Γ j, p) = 1 each Γ j being the union of oriented simple closed

curves, while for all z /∈ Ω,∑m
k=1 n(Γk,z) = 0. Also, if p ∈ Γ∗j , then for i ̸= j,n(Γi, p) = 0.

Proof: Consider z→ dist
(
z,∪k ̸= jKk ∪ΩC

)
. From Lemma 2.4.8 this is a continuous

function. Thus it has a minimum on K j. Let this be δ j. Then δ j > 0 because the K j are
disjoint. Let 0 < δ < min

{
δ j, j = 1, · · · ,m

}
. Now tile the plane with squares, each of

which has diameter less than δ/8. Thus none of these squares can intersect more than one
K j. Orient the boundaries of each square counter clockwise. Thus a direction of motion is
specified along all the edges of each square in the tiling.

Let Fj denote the oriented boundaries of squares from the tiling which intersect K j.
Also for z /∈ γ∗,γ ∈ Fi, let n(Fi,z)denote the sum of the winding numbers n(γ,z) for γ ∈ Fi.
Thus, for such z,n(Fj,z) = 1 if z ∈ K j and n(Fj,z) = 0 if z ∈ Ki for i ̸= j or for z ∈ ΩC.
When an edge of some γ ∈ Fj intersects K j, delete this edge retaining the orientations of
the line segments which were not deleted.

Q Q̂ R

Let Fj be this new collection of oriented simple closed curves. It is still the case that
n(Fj,z) = 1 if z ∈ K j and n(Fj,z) = 0 if z ∈ Ki for i ̸= j or for z ∈ ΩC because you can
add together the integrals over the small oriented squares considered in obtaining Γ j to get
n(Fj,z). If z ∈ K j,n(z,Γ j) = 1 if z is not on a removed edge. If it is on an edge which
was removed, then continuity of z→ n(z,Γ j) gives the same result. The construction is
illustrated in the following picture.

K1

K2

Ω

Then as explained above, if p is in some K j then n(Fj,z) = 1 and if z is in Ki, i ̸= j, then
n(Fj,z) = 0. Each step in the process results in Fj which is a finite set of simple closed
curves. However, if this is not clear, consider the following which likely could be used as
another way to prove the theorem.
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Each orientation on an edge corresponds to a direction of motion over that edge. Call
such a motion over the edge a route. Initially, every vertex, (corner of γ ∈ Fj) has the
property that there are the same number of routes to and from that vertex. When an edge
containing a point of K is deleted, every vertex either remains unchanged as to the number
of routes to and from that vertex or it loses both a route away and a route to. Thus the
property of having the same number of routes to and from each vertex is preserved by
deleting these edges. It follows that you can begin at any of the remaining vertices and
follow the routes leading out from this and successive vertices according to orientation
and eventually return to that vertex from which you started. Otherwise, there would be a
vertex which would have only one route leading to it which does not happen. Now if you
have used all the routes out of this vertex, pick another vertex and do the same process.
Otherwise, pick an unused route out of the vertex and follow it to return. Continue this way
till all routes are used exactly once, resulting in closed oriented curves, Γk. ■

Note that these curves are all piecewise smooth.

15.5 Isolated Singularities
This is about the situation where the Laurent series of f has nonzero principal part. When
this occurs, we say that z0 is a singularity. The singularities are isolated if each is the center
of a ball such that f is analytic except for the center of the ball.

Definition 15.5.1 Let B′ (a,r)≡ {z ∈ C such that 0 < |z−a|< r}. Thus this is the
usual ball without the center. A function is said to have an isolated singularity at the point
a ∈ C if f is analytic on B′ (a,r) for some r > 0.

It turns out isolated singularities can be neatly classified into three types, removable
singularities, poles, and essential singularities. The next theorem deals with the case of a
removable singularity.

Definition 15.5.2 An isolated singularity of f is said to be removable if there exists
an analytic function g analytic at a and near a such that f = g at all points near a.

Theorem 15.5.3 Let f : B′ (a,r)→ X be analytic. Thus f has an isolated singular-
ity at a. Then a is a removable singularity if and only if

lim
z→a

f (z)(z−a) = 0.

Thus the above limit occurs if and only if there exists a unique analytic function, g :
B(a,r) → X such that g = f on B′ (a,r) . In other words, you can re define f at a so
that the resulting function is analytic.

Proof:⇒Let h(z)≡ (z−a)2 f (z) ,h(a)≡ 0. Then h is analytic on B(a,r) because it is
easy to see that

h′ (a) = lim
z→a

h(z)−h(a)
(z−a)

= lim
z→a

(z−a)2 f (z)
z−a

= lim
z→a

(z−a) f (z) = 0 (15.8)

Thus h(z) = ∑
∞
k=2 ak (z−a)k where a0 = a1 = 0 because of 15.8, that h′ (a) = h(a) = 0. It

follows that for |z−a|> 0, f (z) = ∑
∞
k=2 ak (z−a)k−2 ≡ g(z) .

⇐The converse is obvious. ■
In general, we have the following definition for an isolated singularity.
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Definition 15.5.4 Let a be an isolated singularity of a X valued function f . When

f (z) = g(z)+
M

∑
k=1

bk

(z−a)k (15.9)

for some finite M for z near a then a is called a pole. The order of the pole in 15.9 is M.
Essential singularities are those which have infinitely many nonzero terms in the principal
part of the Laurent series. When a function f is analytic except for isolated singularities
and the isolated singularities are all poles, and there are only finitely many of these poles
in every compact set, the function is called meromorphic.

Analytic functions are the analog of polynomials in algebra. Meromorphic functions
are the appropriate generalization of rational functions. To further understand the case
of a non-removable singularity, we have the amazing Casorati Weierstrass theorem. This
theorem pertains to the special case where f has values in C rather than a complex Banach
space.

Theorem 15.5.5 (Casorati Weierstrass) Let a be an isolated singularity and sup-
pose for some r > 0, f (B′ (a,r)) is not dense in C. Then either a is a removable singularity
or there exist finitely many b1, · · · ,bM for some finite number M such that for z near a,where
g(z) is analytic near a.Thus either f equals an analytic function near a, f has a pole at a
or f (B′ (a,r)) is dense in C for each r > 0.

Proof: Suppose B(z0,δ ) has no points of f (B′ (a,r)) . Such a ball must exist if the set
of points f (B′ (a,r)) is not dense. Then for z∈ B′ (a,r) , | f (z)− z0| ≥ δ > 0. It follows from
Theorem 15.5.3 that 1

f (z)−z0
has a removable singularity at a since limz→a

1
f (z)−z0

(z−a) =
0. Hence

1
f (z)− z0

=
∞

∑
k=0

ak (z−a)k

If ak = 0 for k = 0, ...,m−1, then 1
( f (z)−z0)(z−a)m = g(z) where g(a) ̸= 0 and so

( f (z)− z0)(z−a)m = h(z)

for h analytic near a so f (x) has a pole of order m at a. If m= 0 so a0 ̸= 0, then f is analytic
near a. Thus either f equals an analytic function or it has a pole or f (B′ (a,r)) is dense in
C for all r > 0. ■

Thus the case where f (B′ (a,r)) is dense corresponds to the principal part of the Laurent
series being infinite. For more about essential singularities see Conway [10] about the
Picard theorems.

Actually, if you insist only that the singularities are isolated and poles, then you can
prove that there are finitely many in any compact set so part of the above definition is
actually redundant, but this will be shown later. What follows is the definition of something
called a residue. This pertains to a singularity which has a pole at an isolated singularity.

Definition 15.5.6 The residue of f at an isolated singularity α which is a pole,
written res( f ,α) is the coefficient of (z−α)−1 where

f (z) = g(z)+
m

∑
k=1

bk

(z−α)k .

Thus res( f ,α) = b1 in the above. Here it suffices to assume that f has values in X a Banach
space.
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15.6 The Residue Theorem
The following is the residue theorem. To illustrate the situation, here is a picture.

a1 a2 a3 a4 a5 Γ

Recall the definition of the residue at a pole.

Definition 15.6.1 Let f (z) = ∑
∞
n=0 an (z− z0)

n +∑
∞
n=1 bn (z− z0)

−n be the Laurent
series at the pole z0. Then res(z0) is defined to be b1.

Theorem 15.6.2 Let Γ be a simple closed curve which divides the plane into two
regions, a bounded region, the inside, and an unbounded region, the outside. Suppose also
that Γ is of finite length and oriented so that Green’s theorem holds for U the inside of
Γ. Suppose f is a function analytic on an open set containing U ∪ Γ except for finitely
many singularities {ak}n

k=1 which are all either removable or poles. Then
∫

Γ
f (z)dz =

2πi∑
n
k=1 res( f ,ak) .

Proof: It was shown that f ′ is continuous on the open set U \∪{ak}n
k=1 . Therefore,

f is analytic on this set and from Theorem 14.5.3, if γk is a circle oriented counter clock-
wise centered at ak, such that the closed disks bounded by the γk are disjoint, then it fol-
lows

∫
Γ

f (w)dw = ∑
n
j=1
∫

γ j
f (w)dw. However, from Corollary 15.2.3, at ak,

∫
γk

f (z)dz =
2πib1 ≡ 2πi res( f ,ak) . ■

In words, the contour integral is 2πi times the sum of the residues. So is there a way to
find the residues? The answer is yes.

Procedure 15.6.3 Say you want to find res( f ,a) = b1 in

f (z) = g(z)+
M

∑
n=1

bn

(z−a)n , g analytic

This is the case where you have a pole of order M at a. You would multiply by (z−a)M .
This would give

f (z)(z−a)M = g(z)(z−a)M +
M

∑
n=1

bn (z−a)M−n

Then you would take M− 1 derivatives and then take the limit as z→ a. This would give
(M−1)!b1.

You can see from the formula that this will work and so there is no question that the
limit exists. Because of this, you could use L’Hospitals rule to formally find this limit.
This rule pertains only to real functions of a real variable. However, since you know the
limit exists in this case from the existence of the Laurent series and that a is a pole so the
principal part is finite. Thus you can pick a one dimensional direction and apply L’Hospital
to the real and imaginary parts to identify the limit which is typically what needs to be
done.
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15.7 Evaluation of Improper Integrals
Letting p(x) ,q(x) be polynomials, you can use the above method of residues to evaluate
obnoxious integrals of the form

∫
∞

−∞

p(x)
q(x)dx ≡ limR→∞

∫ R
−R

p(x)
q(x)dx provided the degree of

p(x) is two less than the degree of q(x) and the zeros of q(z) involve Im(z) > 0. These
integrals are called Cauchy principal value integrals. The contour to use for such problems
is γR which goes from (−R,0) to (R,0) along the real line and then on the semicircle of
radius R from (R,0) to (−R,0).

x

y

Letting CR be the circular part of this contour, for large R,
∣∣∣∫CR

p(z)
q(z)dz

∣∣∣≤ πR CRk

Rk+2 which
converges to 0 as R→ ∞. Therefore, it is only a matter of taking large enough R to enclose
all the roots of q(z) which are in the upper half plane, finding the residues at these points
and then computing the contour integral. Then you would let R→ ∞ and the part of the
contour on the semicircle will disappear leaving the Cauchy principal value integral which
is desired. There are other situations which will work just as well. You simply need to have
the case where the integral over the curved part of the contour converges to 0 as R→ ∞.

Here is an easy example.

Example 15.7.1 Find
∫

∞

−∞

1
x2+1 dx

You know from calculus that the answer is π . Lets use the method of residues to
find this. The function 1

z2+1 has poles at i and −i. We don’t need to consider −i. It
seems clear that the pole at i is of order 1 and so all we have to do is take limz→i

x−i
1+x2 =

1
(x−i)(x+i) (x− i) = 1

2i . Then the integral equals 2πi
( 1

2i

)
= π .

That one is easy. Now here is a genuinely obnoxious integral.

Example 15.7.2 Find
∫

∞

−∞

1
1+x4 dx

It will have poles at the roots of 1+ x4. These roots are(
1
2
− 1

2
i
)√

2,−
(

1
2
+

1
2

i
)√

2,−
(

1
2
− 1

2
i
)√

2,
(

1
2
+

1
2

i
)√

2

Using the above contour, we only need consider −
( 1

2 −
1
2 i
)√

2,
( 1

2 +
1
2 i
)√

2. Since they
are all distinct, the poles at these two will be of order 1. To find the residues at these points,
you would need

lim
z→−( 1

2+
1
2 i)
√

2

(
z−
(
−
( 1

2 −
1
2 i
)√

2
))

1+ z4 , lim
z→( 1

2+
1
2 i)
√

2

(
z−
(( 1

2 +
1
2 i
)√

2
))

1+ z4

As noted above, you could use L’Hospital’s rule to find these limits.

lim
z→−( 1

2+
1
2 i)
√

2

1
4z3 , lim

z→( 1
2+

1
2 i)
√

2

1
4z3
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and these are 1
4(−( 1

2+
1
2 i)
√

2)
3 and 1

4(( 1
2+

1
2 i)
√

2)
3 which are 1

8

√
2+ 1

8 i
√

2 and− 1
8

√
2− 1

8 i
√

2.

Then the contour integral is

2πi
((

1
8
− 1

8
i
)√

2
)
+2πi

(
−
(

1
8
+

1
8

i
)√

2
)
=

1
2

√
2π

You might observe that this is a lot easier than doing the usual partial fractions and trig
substitutions etc. Now here is another tedious example.

Example 15.7.3 Find
∫

∞

−∞

x+2

(x2+1)(x2+4)
2 dx

The poles of interest are located at i,2i. The pole at 2i is of order 2 and the one at i is
of order 1. In this case, the partial fractions expansion is

1
9 x+ 2

9
x2 +1

−
1
3 x+ 2

3

(x2 +4)2 −
1
9 x+ 2

9
x2 +4

and you could use this to find the integral or the residues. However, lets use what was
described above. At 2i,

lim
z→2i

d
dz

(
(z−2i)2 (z+2)

(z2 +1)(z2 +4)2

)
= lim

z→2i

d
dz

(
(z+2)

(z2 +1)(z+2i)2

)

= lim
z→2i

(
−3z3 +2iz2 + z−2i+8z2 +8iz+4

(z2 +1)2 (z+2i)3

)
=

(
− 1

18
+

11
144

i
)

The pole at i would be limz→i
( 1

9 z+ 2
9 )(z−i)

(z+i)(z−i) =
( 1

9 i+ 2
9 )

(i+i) = 1
18 −

1
9 i Thus the integral is

2πi
(

1
18
− 1

9
i
)
+2πi

(
− 1

18
+

11
144

i
)
=

5
72

π.

Sometimes you don’t blow up the curves and take limits. Sometimes the problem of
interest reduces directly to a complex integral over a closed curve. Here is an example of
this.

Example 15.7.4 The integral is
∫ 2π

0
sinθ

2+sinθ
dθ .

For z on the unit circle, z = eiθ , z = 1
z and therefore,

cosθ =
1
2

(
z+

1
z

)
, sinθ =

1
2i

(
z− 1

z

)
.

Thus dz = ieiθ dθ and so dθ = dz
iz . Note that this is done in order to get a complex integral

which reduces to the one of interest. It follows that a contour integral which reduces to the
integral of interest is, for γ the positive orientation of the unit circle, the integral is

∫
γ

1
2i

(
z− 1

z

)
2+ 1

2i

(
z− 1

z

) dz
iz

=
∫

γ

z2−1
z(−4z+ iz2− i)

dz
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The poles are z = 0,z = −2i+ i
√

3,z = −2i− i
√

3. The first two are inside the circle γ∗

and the third is not. The residues are

lim
z→0

z
z2−1

z(−4z+ iz2− i)
= −i,

lim
z→(−2i+i

√
3)

(
z−
(
−2i+ i

√
3
)) z2−1

z(−4z+ iz2− i)
=

2
3

i
√

3.

It follows that the original integral equals 2πi
(
−i+ 2

3 i
√

3
)
= 2π − 4

3 π
√

3. Other rational
functions of the trig functions will work out by this method also, provided you integrate on
[0,2π]. These may have a pole at 0 so you would not want the contour to pass through this
point.

Sometimes we have to be clever about which version of an analytic function should be
used. The following is such an example.

Example 15.7.5 The integral here is
∫

∞

0
lnx

1+x4 dx.

It is natural to try and use the contour in the following picture in which the small circle
has radius r and the large one has radius R.

x

y

However, this will create problems with the log since the usual version of the log is not
defined on the negative real axis. This difficulty may be eliminated by simply using another
branch of the logarithm. Leave out the ray from 0 along the negative y axis and use this
example to define L(z) on this set. Thus L(z) = ln |z|+ iarg1 (z) where arg1 (z) will be the
angle θ , between −π

2 and 3π

2 such that z = |z|eiθ . Then the function used is f (z) ≡ L(z)
1+z4 .

Now the only singularities contained in this contour are 1
2

√
2+ 1

2 i
√

2, − 1
2

√
2+ 1

2 i
√

2 and

the integrand f has simple poles at these points. Thus res
(

f , 1
2

√
2+ 1

2 i
√

2
)
=

lim
z→ 1

2
√

2+ 1
2 i
√

2

(
z−
(

1
2

√
2+ 1

2 i
√

2
))

(ln |z|+ iarg1 (z))

1+ z4

= lim
z→ 1

2
√

2+ 1
2 i
√

2

(ln |z|+ iarg1 (z))+
(

z−
(

1
2

√
2+ 1

2 i
√

2
))

(1/z)

4z3

=

ln
(√

1
2 +

1
2

)
+ i π

4

4
(

1
2

√
2+ 1

2 i
√

2
)3 =

(
1

32
− 1

32
i
)√

2π

Similarly res
(

f , −1
2

√
2+ 1

2 i
√

2
)
= 3

32

√
2π + 3

32 i
√

2π.Of course it is necessary to consider

the integral along the small semicircle of radius r. This reduces to
∫ 0

π

ln|r|+it

1+(reit)
4

(
rieit

)
dt
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which clearly converges to zero as r→ 0 because r lnr→ 0. Therefore, taking the limit as
r→ 0, ∫

large semicircle

L(z)
1+ z4 dz+ lim

r→0+

∫ −r

−R

ln(−t)+ iπ
1+ t4 dt+

lim
r→0+

∫ R

r

ln t
1+ t4 dt = 2πi

(
3
32

√
2π +

3
32

i
√

2π +
1

32

√
2π− 1

32
i
√

2π

)
.

Observing that
∫

large semicircle
L(z)
1+z4 dz→ 0 as R→ ∞,

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

∫ 0

−∞

1
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2

where e(R)→ 0 as R→ ∞. From an Example 15.7.2, this becomes

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

(√
2

4
π

)
=

(
−1

8
+

1
4

i
)

π
2
√

2.

Now letting r→ 0+ and R→ ∞,

2
∫

∞

0

ln t
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2− iπ

(√
2

4
π

)
=−1

8

√
2π

2,

and so
∫

∞

0
ln t

1+t4 dt =− 1
16

√
2π2, which is probably not the first thing you would thing of. You

might try to imagine how this could be obtained using elementary techniques. Showing the
integral exists is routine, but I think that finding it might prove impossible. This process is
not always routine.

Example 15.7.6 Let α ∈ (0,1). Find
∫

∞

0
xα

1+x2 dx.

Note that z→ zα is analytic for z ̸= 0. In fact, using the branch of the logarithm used
above, it is eln(|z|)α+iarg1(z)α . Now consider

∫
Γr,R

zα

1+z2 dz where Γr,R is the contour of the
above problem including the large semi-circle and the small semi-circle. Then it is routine
to see that the integrals over the small and large semi-circles converge to 0 as R→ ∞ and
r→ 0. There is only one residue at i and it is limz→i (z− i) zα

1+z2 = 1
2 sin 1

2 πα− 1
2 icos 1

2 πα.
Thus in the limit,∫ 0

−∞

|x|α eiπα

1+ x2 dx+
∫

∞

0

xα

1+ x2 dx = 2πi
(

1
2

sin
1
2

πα− 1
2

icos
1
2

πα

)

and so
(∫

∞

0
xα

1+x2 dx
)(

eiπα +1
)
= π

(
ei 1

2 πα

)
.Then simplifying, you get the amazing for-

mula
∫

∞

0
xα

1+x2 dx = π

2cos 1
2 πα

.

Sometimes one must be “creative” about which contour to use. In the next case, cos
(
z2
)

is not bounded and so integrals which involve a contour over a large semicircle like the
above, are not likely to be helpful.

Example 15.7.7 The Fresnel integrals are
∫

∞

0 cosx2dx,
∫

∞

0 sinx2dx.
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To evaluate these integrals we will consider f (z) = eiz2
on the curve which goes from

the origin to the point r on the x axis and from this point to the point r
(

1+i√
2

)
along a circle

of radius r, and from there back to the origin as illustrated in the following picture.

x

y

Thus the curve is shaped like a slice of pie. The angle is 45◦. Denote by γr the curved
part. Since f is analytic,

0 =
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
ei
(

t
(

1+i√
2

))2(1+ i√
2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
e−t2

(
1+ i√

2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
√

π

2

(
1+ i√

2

)
+ e(r) (15.10)

where e(r)→ 0 as r → ∞. This used
∫

∞

0 e−t2
dt =

√
π

2 . Now examine the first of these
integrals.∣∣∣∣∫

γr

eiz2
dz
∣∣∣∣= ∣∣∣∣∫ π

4

0
ei(reit)

2
rieitdt

∣∣∣∣≤ r
∫ π

4

0
e−r2 sin2tdt =

r
2

∫ 1

0

e−r2u
√

1−u2
du

=
r
2

∫ r−(3/2)

0

1√
1−u2

du+
r
2

(∫ 1

0

1√
1−u2

)
e−(r1/2)

which converges to zero as r→ ∞. Therefore, taking the limit as r→ ∞, in 15.10,
√

π

2

(
1+ i√

2

)
=
∫

∞

0
eix2

dx

and so the Fresnel integrals are given by
∫

∞

0 sinx2dx =
√

π

2
√

2
=
∫

∞

0 cosx2dx.
The following example is one of the most interesting. By an auspicious choice of the

contour it is possible to obtain a very interesting formula for cotπz known as the Mittag
Leffler expansion of cotπz.

Example 15.7.8 Let γN be the contour which goes from −N− 1
2 −Ni horizontally to N +

1
2 −Ni and from there, vertically to N + 1

2 +Ni and then horizontally to −N− 1
2 +Ni and

finally vertically to −N− 1
2 −Ni. Thus the contour is a large rectangle and the direction of

integration is in the counter clockwise direction.

• •

••

(−N− 1
2 )−Ni (N + 1

2 )−Ni

(N + 1
2 )+Ni(−N− 1

2 )+Ni
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Consider the following integral. IN ≡
∫

γN
π cosπz

(α2−z2)sinπz
dz where α is not an integer. This

will be used to verify the formula of Mittag Leffler,

1
α2 +

∞

∑
n=1

2
α2−n2 =

π cotπα

α
. (15.11)

It is left as an exercise to verify that cotπz is bounded on this contour and that therefore,
IN → 0 as N → ∞. Now compute the residues of the integrand at ±α and at n where
|n|< N+ 1

2 for n an integer. These are the only singularities of the integrand in this contour
and therefore, IN can be obtained by using these. First consider the residue at ±α . These
are obviously poles of order 1 and so to get the one at α, you take

lim
z→α

(z−α)π cosπz
(α2− z2)sinπz

= lim
z→α

−π cosπz
(α + z)sinπz

=
−π cosπα

2α sinπα

You get the same thing at −α . Next consider the residue at n. If you consider the power
series, you will see that this should also be a pole of order 1. Thus it is

lim
z→n

(z−n)π cosπz
(α2− z2)sinπz

= lim
z→n

π cosπz− (z−n)π2 sin(πz)
−2zsinπz+(α2− z2)π cos(πz)

=
π (−1)n

(α2−n2)π (−1)n =
1

α2−n2

Therefore, 0 = limN→∞ IN = limN→∞ 2πi
[
∑

N
n=−N

1
α2−n2 − π cotπα

α

]
which establishes

the following formula of Mittag Leffler. limN→∞ ∑
N
n=−N

1
α2−n2 = π cotπα

α
. Writing this in

a slightly nicer form, we obtain 15.11.
The next example illustrates the technique of a branch cut. Note that a branch of the

logarithm is determined by cutting out the nonnegative real axis and defining a logarithm
on what is left.

Example 15.7.9 For p ∈ (0,1) , find
∫

∞

0
xp−1

1+x dx. This example illustrates the use of some-
thing called a branch cut. The idea is you need to pick a single determination of zp−1

which converges to xp−1 for x real and z getting close to x. It will make use of the following
contour. In this contour, the radius of the large circle is R and the radius of the small one
is r. The angle between the straight lines and the x axis is ε . Denote this contour by γR,r,ε .

Choose a branch of the logarithm of the form log(z) = ln |z|+ iA(z) where A(z) is the
angle of z in (0,2π). Thus zp−1 = e(p−1)(ln|z|+iA(z))

The straight line on the top is parametrized by reiε + t
(
Reiε

)
= z, t ∈ [0,1]. The con-

tour integral along this line is
∫ 1

0
|reiε+t(Reiε)|p−1

e(p−1)iε

1+reiε+t(Reiε)
Reiε dt. Along the bottom of the two
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straight lines, you get the parametrization rei(2π−ε)+ t
(

Rei(2π−ε)
)
= z, t ∈ [0,1] and con-

tour integral

−
∫ 1

0

∣∣∣rei(2π−ε)+ t
(

Rei(2π−ε)
)∣∣∣p−1

e(p−1)i(2π−ε)

1+ rei(2π−ε)+ t
(
Rei(2π−ε)

) Rei(2π−ε)dt

The contour integral over the small circle: z = reit , t ∈ [ε,2π− ε] is

−
∫ 2π−ε

ε

rp−1e(p−1)it

1+ reit rieitdt.

This integral is dominated by 4πrp provided |r| < 1/2 which converges to 0 as r → 0
uniformly in ε . The integral over the large circle: z = Reit , t ∈ [ε,2π− ε] is similar to this
but with r replaced with R. This one is dominated by 2πRp/(1+R) which converges to 0
as R→ ∞. Thus

∫
γR,r,ε

zp−1

1+z dz =

∫ 1

0

∣∣reiε + t
(
Reiε

)∣∣p−1 e(p−1)iε

1+ reiε + t (Reiε)
Reiε dt

−
∫ 1

0

∣∣∣rei(2π−ε)+ t
(

Rei(2π−ε)
)∣∣∣p−1

e(p−1)i(2π−ε)

1+ rei(2π−ε)+ t
(
Rei(2π−ε)

) Rei(2π−ε)dt

+e(R,ε)+ e(r,ε)

where the last two terms converge to 0 uniformly in ε as r→ 0 and R→ ∞. Let ε → 0+
and this yields an expression of the form

∫ 1

0

|r+ tR|p−1

1+ r+ tR
Rdt−

∫ 1

0

|r+ tR|p−1 e(p−1)i(2π)

1+ r+ tR
Rdt + e(R)+ e(r)

where the last two terms converge to 0 as r→ 0,R→ ∞. Now let x = r+ tR and this all
reduces to∫ R

r

xp−1

1+ x
dx− e(p−1)i(2π)

∫ R

r

xp−1

1+ x
dx+ e(R)+ e(r) = lim

ε→0

∫
γR,r,ε

zp−1

1+ z
dz

and this last integral can be computed using the method of residues. It has a residue at −1
and since the pole is of order 1, this residue is

lim
z→−1

(z+1)
zp−1

z+1
= lim

z→−1
e(p−1)(ln|z|+iA(z)) = e(p−1)i(π)

Thus, letting r = 1/R and letting R→∞,
∫

∞

0
xp−1

1+x dx
(

1− e(p−1)i(2π)
)
= 2πie(p−1)i(π) which

shows that∫
∞

0

xp−1

1+ x
dx =

2πie(p−1)i(π)

1− e(p−1)i(2π)
=

2πi
e−(p−1)i(π)− e(p−1)i(π)

=
2πi

−i2sin((p−1)π)
=− π

sin((p−1)π)
=

π

sin(pπ)
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Isn’t this an amazing formula?
Actually, people typically are a little more informal in the consideration of such inte-

grals. They regard the bottom side of the line x ≥ 0 as being associated with θ = 2π and
the top side being associated with θ = 0 and leave out the fuss with taking limits as ε → 0
and so forth. Recall, for example, the simple idea of the winding number in terms of a
branch of the logarithm which was discussed earlier. It is a little like that. This kind of
integral is a case of a general concept called a Mellen transformation. These are of the
form

∫
∞

0 xp−1 f (x)dx. The zeta function was obtained in this way a little earlier.

15.8 The Inversion of Laplace Transforms
Recall Theorem 11.4.1 about the inversion of the Laplace transform.

Theorem 15.8.1 Let g be a measurable function defined on (0,∞) which has expo-
nential growth |g(t)| ≤Ceηt for some real η and is Holder continuous from the right and
left as in 11.2 and 11.3. For Re(s)> η

L g(s)≡
∫

∞

0
e−sug(u)du

Then for any c > η ,

lim
R→∞

1
2π

∫ R

−R
e(c+iy)tL g(c+ iy)dy =

g(t+)+g(t−)
2

(15.12)

The idea is to find a way to evaluate that Cauchy principal value integral on the left, at
least for simple cases. Write the integral on the left as a contour integral. Thus z = c+ iy
and dz= idy and this is just the contour integral 1

2πi
∫ c+iR

c−iR eutL g(u)du where the contour is
the straight line from c− iR to c+ iR. Indeed, if you parametrize this contour as z = c+ iy
and use the procedures for evaluation of contour integrals, you get the integral in 15.12.
Then taking the limit as R→∞ it is customary to write this limit as 1

2πi
∫ c+i∞

c−i∞ eutL g(u)du.
This is called the Bromwich integral and as shown earlier it recovers the mid point of the
jump of g at t for every point t where g is Holder continuous from the right and from the
left. Remember t ≥ 0. Now u→ eutL g(u) is analytic for Re(u)> η and in particular for
Re(u) ≥ c therefore, all of the poles of u→ L g(u) are contained in the set Re(u) < c.
Indeed, in practice, u→L g(u) ends up being represented by a formula which is clearly a
meromorphic function, one which is analytic except for isolated poles.

So how do you compute this Bromwich integral? This is where the method of residues
is very useful. Consider the following contour.

x

x = cy

Let γR be the above contour oriented as shown. The radius of the circular part is R. Let
CR be this curved part. Then one can show that under suitable assumptions

lim
R→∞

1
2πi

∫
CR

eutF (u)du = 0 (15.13)
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and this is the case we will consider because it is very easy to compute. We assume c > 0.

Lemma 15.8.2 Let the contour be as shown and assume 15.13 for meromorphic F (u)
such that F (u) also has only finitely many poles whose real parts are less than η < c,
a positive numer, F (u) being analytic if Re(u) ≥ c. Then f (t) , given by the Bromwich
integral, has exponential growth | f (t)| ≤Cect Lipschitz continuous near every point t > 0
and its Laplace transform is F (s).

Proof: Since F has only finitely many poles It only remains to verify Lipschitz conti-
nuity near a point t > 0. Let R be so large that the above contour γ∗R encloses all poles of
F . Then for such large R, the contour integrals are not changing because all the poles are
enclosed. Thus, letting t̂ ∈ (t−δ , t +δ ) , t−δ > 0, it follows that

f (t̂) = lim
R→∞

1
2πi

∫
γR

eut̂F (u)du =
1

2πi

∫
γR

eut̂F (u)du

Therefore,

| f (t̂)− f (t)|=
∣∣∣∣ 1
2πi

∫
γR

eut̂F (u)du− 1
2πi

∫
γR

eutF (u)du
∣∣∣∣

=
1

2π

∣∣∣∣∫
γR

(
eut̂ − eut

)
F (u)du

∣∣∣∣= 1
2π

∣∣∣∣∫
γR

(∫ t̂

t
seusds

)
F (u)du

∣∣∣∣
The contour contains no poles and F is continuous, so |F (u)| is bounded by some number
M on γR. Then the above is no more than

≤M
1

2π
2πR

∣∣∣∣∫ t̂

t
seusds

∣∣∣∣= RMt̂ec(t̂+t) |t̂− t| ≤ RM (t +δ )ec(t̂+t) |t̂− t|

The claim of exponential growth follows from observing that the residue at each pole z
is of the form eztb1 and |eztb1|< |b1|ect . ■

A sufficient condition for 15.13 is that for all |z| large enough,

|F (z)| ≤ C
|z|α

, some α > 0. (15.14)

Note that this assumption implies there are finitely many poles for F (z) because if w is a
pole, you have limz→w |F (z)|= ∞.

Lemma 15.8.3 Let the contour be as shown and assume the growth condition 15.14.
Then the above limit in 15.13 exists for t > 0.

Proof: Assume c≥ 0 as shown and let θ be the angle between the positive x axis and a
point on CR. Let 0 < β < α . Then the contour integral over CR will be broken up into three
pieces, two pieces around the y axis

θ ∈
[

π

2
− arcsin

( c
R

)
,

π

2
+ arcsin

( c
R1−β

)]
,[

3π

2
− arcsin

( c
R1−β

)
,

3π

2
+ arcsin

( c
R

)]
,
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and the third having θ ∈
(

π

2 + arcsin
(

c
R1−β

)
, 3π

2 − arcsin
(

c
R1−β

))
. Then,

∫
CR

etzF (z)dz =
∫ 3π

2 −arcsin
(

c
R1−β

)
π
2 +arcsin

(
c

R1−β

) e(Rcosθ+iRsinθ)tF
(

Reiθ
)

Rieiθ dθ+ (15.15)

+
∫ π

2 +arcsin
(

c
R1−β

)
π
2−arcsin( c

R )
e(Rcosθ+iRsinθ)tF

(
Reiθ

)
Rieiθ dθ

+
∫ 3π

2 +arcsin( c
R )

3π
2 −arcsin

(
c

R1−β

) e(Rcosθ+iRsinθ)tF
(

Reiθ
)

Rieiθ dθ

Consider the last two integrals first. For large |z| , with z ∈ C∗R, the sum of the absolute
values of these is no more than∣∣∣∣∣

∫ π
2 +arcsin

(
c

R1−β

)
π
2−arcsin( c

R )
eR(cosθ)t C

Rα
Rdθ

∣∣∣∣∣+
∣∣∣∣∣
∫ 3π

2 +arcsin( c
R )

3π
2 −arcsin

(
c

R1−β

) eR(cosθ)t C
Rα

Rdθ

∣∣∣∣∣
≤ CeR(cos( π

2−arcsin( c
R )))t

(
arcsin

( c
R1−β

)
+ arcsin

( c
R

))
R1−α

+CeR(cos( 3π
2 +arcsin( c

R )))t
(

arcsin
( c

R1−β

)
+ arcsin

( c
R

))
R1−α

Now from trig. identities, cos
(

π

2 − arcsin(θ)
)
= θ ,cos

( 3π

2 + arcsin(θ)
)
= θ , and so

the above reduces to 2Cect
(

arcsin
(

c
R1−β

)
+ arcsin

( c
R

))
R1−α which converges to 0 as

R→ ∞. Recall 0 < β < α . It remains to consider the integral in 15.15. For large |z| ,
the absolute value of this integral is no more than

∫ 3π
2 −arcsin( c

R )

π
2 +arcsin( c

R )
eR(cosθ)t C

Rα
Rdθ ≤Cπe

Rt cos
(

π
2 +arcsin

(
c

R1−β

))
R1−α =CπR1−α e−ctRβ

which converges to 0 as R→ ∞. ■

Proposition 15.8.4 If Re p < c for all p a pole of F (s) and if F (s) is meromorphic and
satisfies the growth condition 15.14, and if f (t) is defined by the Bromwich integral, then
F (s) is the Laplace transform of f (t) for large s.

Proof: This follows from Lemmas 15.8.2 and 15.8.3. These lemmas say that if F (s)
satisfies the growth condition, then we can define a locally Lipschitz function f (t) in terms
of that Bromwich integral or equivalently the contour integral. Then consider F̂ (s) the
Laplace transform of f (t) for large s. Then Bromwich integral makes F (s) into f (t) by
definition and by the earlier theory, it makes F̂ (s) into f (t) and so F (s) = F̂ (s). ■

From this proposition, we have the following procedure.

Procedure 15.8.5 Suppose F (s) is a Laplace transform and is meromorphic on C
and satisfies 15.14. (This situation is quite typical) Then to compute the Holder continuous
function of t, f (t) whose Laplace transform gives F (s) , do the following. Find the sum of
the residues of eztF (z) for Rez < c where all poles have real part smaller than c.
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Example 15.8.6 Suppose F (s) = s

(s2+1)
2 . Find f (t) such that F (s) is the Laplace trans-

form of f (t).

There are two residues of this function, one at i and one at−i. At both of these points the

poles are of order two and so we find the residue at i by res( f , i) = lims→i
d
ds

(
etss(s−i)2

(s2+1)
2

)
=

−iteit

4 and the residue at −i is res( f ,−i) = lims→−i
d
ds

(
etss(s+i)2

(s2+1)
2

)
= ite−it

4 . From the above

procedure, the function f (t) is the sum of these.

ite−it

4
+
−iteit

4
=

1
4

it
(
e−it − eit)= 1

4
it (cos(t)− isin t− (cos t + isin t)) =

1
2

t sin t

You should verify that this actually works giving L ( f ) = s

(s2+1)
2 .

Example 15.8.7 Find f (t) if F (s) , the Laplace transform is e−s/s.

You need to compute the residues of est e−s

s . The function equals 1
s ∑

∞
k=0

(−1)k(t−1)ksk

k! .
Thus the residue is 1. However, this fails to be the function whose Laplace transform is
F (s) . What is wrong? The problem with this is the failure of the estimate on F (s) to hold
for large s. Indeed, if s =−n, you would have en/n but it would need to be less than C/nα

which is not possible. The estimate requires F (s)→ 0 as |s| →∞ and this does not happen
here. You can verify directly that the function which works is u1 (t) which is 0 for t < 1
and 1 for t ≥ 1. Thus if the estimate does not hold, the procedure does not necessarily hold
either.

15.9 Exercises
1. Suppose f has a pole at z. Show that limw→z f (w) = ∞. Recall that this means that

limw→z | f (w)|= ∞.

2. Find the following improper integral.
∫

∞

−∞

cosx
1+x4 dx Hint: Use upper semicircle con-

tour and consider instead
∫

∞

−∞

eix

1+x4 dx. This is because the integral over the semicircle
will converge to 0 as R→∞ if you have eiz but this won’t happen if you use cosz be-
cause cosz will be unbounded. Just write down and check and you will see why this
happens. Thus you should use eiz

1+z4 and take real part. I think the standard calculus
techniques will not work for this horrible integral.

3. Find
∫

∞

−∞

cos(x)

(1+x2)
2 dx. Hint: Do the same as above replacing cosx with eix.

4. Let α ∈ (0,1) . Find
∫

∞

0
x2α−1

1+x2 dx. Hint: Use the contour ΓR,r of Example 15.7.5.

5. Consider the following contour.

x
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The small semicircle has radius r and is centered at (1,0). The large semicircle has
radius R and is centered at (0,0). Use the method of residues to compute

lim
r→0

(
lim

R→∞

∫ R

r

x
1− x3 dx+

∫ r

−R

x
1− x3 dx

)
This is called the Cauchy principal value for

∫
∞

−∞

x
1−x3 dx. The integral makes no sense

in terms of a real honest integral. The function has a pole on the x axis. Another
instance of this was in Problem 7 on Page 369 where

∫
∞

0 sin(x)/xdx was determined
similarly. However, you can define such a Cauchy principal value. Rather than
belabor this issue, I will illustrate with this example. These principal value integrals
occur because of cancelation. They depend on a particular way of taking a limit.
They are not mathematically respectable but are certainly interesting. They are in that
general area of finding something by taking a certain kind of symmetric limit. Such
problems include the Lebesgue fundamental theorem of calculus with the symmetric
derivative.

6. Find
∫ 2π

0
cos(θ)

1+sin2(θ)
dθ .

7. Find
∫ 2π

0
dθ

2−sinθ
.

8. Find
∫ π/2
−π/2

dθ

2−sinθ
.

9. Suppose you have a function f (z) which is the quotient of two polynomials in which
the degree of the top is two less than the degree of the bottom and you consider the
contour.

x

Then define
∫

γR
f (z)eiszdz. in which s is real and positive. Explain why the integral

makes sense and why the part of it on the semicircle converges to 0 as R→ ∞. Use
this to find

∫
∞

−∞

eisx

k2+x2 dx, k > 0.

10. Show using methods from real analysis that for b≥ 0,
∫

∞

0 e−x2
cos(2bx)dx=

√
π

2 e−b2
.

Hint: Let F (b)≡
∫

∞

0 e−x2
cos(2bx)dx−

√
π

2 e−b2
. Then from Problem 2 on Page 262,

F (0) = 0. Using the mean value theorem on difference quotients and the dominated
convergence theorem, explain why

F ′ (b) =
∫

∞

0
−2xe−x2

sin(2bx)dx+2b
√

π

2
e−b2

F ′ (b) = 2b
(∫

∞

0
e−x2

cos(2bx)dx+
√

π

2
e−b2

)
= 2b

(
F (b)+

√
π

2
e−b2

+

√
π

2
e−b2

)
= 2bF (b)+

√
π2be−b2

Now use the integrating factor method for solving linear differential equations from
beginning differential equations to solve the ordinary differential equation.

d
db

(
e−b2

F (b)
)
=
√

π2be−2b2
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Then e−b2
F (b)− 0 = − 1

2 e−2b2√
π + 1

2
√

π , F (b) = − 1
2 e−b2

+ 1
2
√

πe−b2
= 0. You

fill in the details. This is meant to be a review of real variable techniques.

11. You can do the same problem as above using contour integration. For b= 0 it follows
from Problem 2 on Page 262. For b > 0, use the contour which goes from −a to a
to a+ ib to −a+ ib to −a. Then let a→ ∞ and show that the integral of e−z2

over
the vertical parts of this contour converge to 0. Hint: You know from the earlier
problem what happens on the bottom part of the contour. Also for z = x+ ib,e−z2

=

e−(x2−b2+2ixb) = eb2
e−x2

(cos(2xb)+ isin(2xb)) .

12. Consider the circle of radius 1 oriented counter clockwise. Evaluate
∫

γ
z−6 cos(z)dz

13. Consider the circle of radius 1 oriented counter clockwise. Evaluate
∫

γ
z−7 cos(z)dz

14. Find
∫

∞

0
2+x2

1+x4 dx.

15. Suppose f is an entire function and that it has no zeros. Show there must exist an
entire function g such that f (z) = eg(z). Hint: Letting γ (0,z) be the line segment
which goes from 0 to z, let ĝ(z)≡

∫
γ(0,z)

f ′(w)
f (w) dw. Then show that ĝ′ (z) = f ′(z)

f (z) . Then(
e−ĝ(z) f (z)

)′
= e−ĝ(z)− f ′(z)

f (z) f (z)+ e−ĝ(z) f ′ (t) = 0. Now when you have an entire
function whose derivative is 0, it must be a constant. Modify ĝ(z) to make f (z) =
eg(z).

16. Let f be an entire function with zeros {α1, · · · ,αn} listed according to multiplicity.
Thus you might have repeats in this list. Show that there is an analytic function
g(z) such that for all z ∈ C, f (z) = ∏

n
k=1 (z−αk)eg(z) Hint: You know f (z) =

∏
n
k=1 (z−αk)h(z) where h(z) has no zeros. To see this, note that near α1, f (z) =

a1 (z−α1)+a2 (z−α1)
2 + · · · and so f (z) = (z−α1) f1 (z) where f1 (z) ̸= 0 at α1.

Now do the same for f1 and continue till fn = h. Now use the above problem.

17. Let F (s) = 2
(s−1)2+4

so it is the Laplace transform of some f (t). Use the method of

residues to determine f (t).

18. This problem is about finding the fundamental matrix for a system of ordinary dif-
ferential equations Φ′ (t) = AΦ(t) , Φ(0) = I having constant coefficients. Here A
is an n× n matrix and I is the identity matrix. A matrix, Φ(t) satisfying the above
is called a fundamental matrix for A. In the following, s will be large, larger than all
poles of (sI−A)−1.

(a) Show that L
(∫ (·)

0 f (u)du
)
(s) = 1

s F (s) where F (s)≡L ( f )(s)

(b) Show that L (I) = 1
s I where I is the identity matrix.

(c) Show that there exists an n×n matrix Φ(t) such that L (Φ)(s) = (sI−A)−1 .
Hint: From linear algebra

(
(sI−A)−1

)
i j
=

cof(sI−A) ji

det(sI−A)
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Show that the i jth entry of (sI−A)−1 satisfies the conditions of Proposition
15.8.4 and so there exists Φ(t) such that L (Φ)(s) = (sI−A)−1. By Lemma
15.8.2, this t→Φ(t) is continuous.

(d) Thus (sI−A)L (Φ)(s) = I. Then explain why
(
I− 1

s A
)
L (Φ)(s) = 1

s I =

L (I) and L (Φ)(s)− 1
s L (AΦ)(s) = L (I)

L (Φ)−L

(∫ (·)

0
AΦ(u)du

)
= L (I)

so Φ(t)−
∫ t

0 AΦ(u)du = I and so Φ is a fundamental matrix.
(e) Next explain why Φ must be unique by showing that if Φ(t) is a fundamen-

tal matrix, then its Laplace transform must be (sI−A)−1 and use the theorem
which says that if the two continuous functions have the same Laplace trans-
form, then they are the same function.

19. In the situation of the above problem, show that there is one and only one solution to
the initial value problem

x′ (t) = Ax(t)+ f(t) , x(0) = x0, t ≥ 0

and it is given by x(t) = Φ(t)x0 +
∫ t

0 Φ(t−u) f(u)du Hint: Verify that

L

(∫ (·)

0
Φ(t−u) f(u)du

)
(s) = L (Φ)(s)L (f)(s) .

Thus if x is given by the variation of constants formula just listed, then

L (x)(s) = (sI−A)−1 x0 +(sI−A)−1 L (f)(s)
(sI−A)L (x)(s) = x0 +L ( f )

Now divide by s and verify x(t) = x0 +
∫ t

0 Ax(u)du +
∫ t

0 f(u)du. You could also
simply differentiate the variation of constants formula using chain rule and verify
it works. This completes most of the mathematical substance of an entire under-
graduate ordinary differential equations course. When you have a way to find the
fundamental matrix and the variation of constants formula, there really isn’t much
else left, at least in terms of finding solutions.

20. Find the fundamental matrix for the system of ordinary differential equations x′ =

Ax where A =

 2 2 −1
−1 1 −1
−1 2 −2

. Hint: As above, Φ(t) is the inverse Laplace

transform of (sI−A)−1 where I is the identity. For your convenience, it follows from
the linear algebra formula for the inverse in terms of the transpose of the cofactor
matrix that

(sI−A)−1 =


s

s2−2s+1
2

s2−2s+1 − 1
s2−2s+1

− 1
s2−2s+1

s2−5
(s+1)(s−1)2

s−3
−s3+s2+s−1

s+1
−s3+s2+s−1 − 2s−6

−s3+s2+s−1 − s2−3s+4
−s3+s2+s−1


Now use the procedure for finding residues of est (sI−A)−1. The sum of these
residues being the inverse Laplace transform.
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21. Find the fundamental matrix for the system of ordinary differential equations x′ = Ax

where A =

 −2 −2 −2
2 2 1
3 2 3

 . Then it is routine from the formula for the inverse

in terms of the transpose of the cofactor matrix that

(sI−A)−1 =


s−4

s2−2s+2 − 2
s2−2s+2 − 2

s2−2s+2
− 2s−3
−s3+3s2−4s+2

s
s2−2s+2 − s−2

−s3+3s2−4s+2
1

2s−2
3s−2

1
2 s2−s+1

1
1
2 s2−s+1

s2

(2s−2)( 1
2 s2−s+1)


Use this to find the fundamental matrix.

22. The Schwarz lemma is as follows: Suppose F : B(0,1)→ B(0,1) , F is analytic, and
F (0) = 0. Then for all z ∈ B(0,1) , |F (z)| ≤ |z| , and |F ′ (0)| ≤ 1.

If |F ′ (0)|= 1, then there exists λ ∈Cwith |λ |= 1 and F (z)= λ z. Prove the Schwarz
lemma. Hint: Since F has a power series of the form ∑

∞
k=1 akzk, it follows that

F (z)/z equals an analytic function g(z) for all z ∈ B(0,1). By the maximum modu-

lus theorem, applied to g(z) , if |z|< r < 1,
∣∣∣F(z)

z

∣∣∣≤maxt∈[0,2π]
|F(reit)|

r ≤ 1
r . Explain

why this implies |g(z)|=
∣∣∣F(z)

z

∣∣∣≤ 1. Now explain why limz→0
F(z)

z = F ′ (0) = g(0)

and so |F ′ (0)| ≤ 1. It only remains to verify that if |F ′ (0)| = 1, then F (z) is just a
rotation as described. If |F ′ (0)|= 1, then the analytic function g(z) has the property
that it achieves its maximum at an interior point. Apply the maximum modulus the-
orem to conclude that g(z) must be a constant. Explain why this requires

∣∣∣F(z)
z

∣∣∣= 1
for all z. Use this to conclude the proof.
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Chapter 16

Mapping Theorems
In this chapter the functions will have values in C.

16.1 Meromorphic Functions
First is a review of the definition of a meromorphic function. Just as polynomials are gener-
alized by analytic functions, rational functions are generalized by meromorphic functions.
These are designed to rule out the case where f (B′ (α,r)) is dense in C. They have poles
and removable singularities and that is all. Also all singularities are isolated.

Definition 16.1.1 A function f is meromorphic on an open set Ω, written as f ∈
M (Ω) for Ω an open set, means f is analytic in

B′ (α,r)≡ {z : 0 < |z−α|< r}

for some r > 0 for every α ∈ Ω and at each α ∈ Ω either limz→α (z−α) f (z) = 0 so α is
removable or limz→α | f (z)|= ∞.

Example 16.1.2 Every rational function is meromorphic. This is because of the funda-
mental theorem of algebra and the partial fractions theorem presented much earlier along
with the next lemma which says that if f is analytic on B′ (α,r) , limz→α | f (z)| = ∞ if and
only if α is a pole.

Lemma 16.1.3 Let f ∈M (Ω) . Then the poles are those α where limz→α | f (z)| = ∞

The set of poles of a meromorphic function can’t have a limit point in Ω. There are at most
countably many poles in Ω. Thus all singularities are removable or poles.

Proof: Let α ∈ Ω. Since f is analytic on B′ (α,r) , f (z) = g(z)+∑
M
k=1

bk
(z−α)k where

M ≤∞ and g is analytic. If α is not removable, then the principal part of the Laurent series
is nonzero. If M < ∞, then α is a pole and f (z) = h(z)+∑

m
k=1

bk
(z−α)k , bm ̸= 0 and so

| f (z)| |z−α|m ≥ |bm|−

(
|h(z)| |z−α|m +

m−1

∑
k=1

bk |z−α|m−k

)

>
|bm|

2
if |z−α| small enough

Conversely, if limz→α | f (z)|=∞, you can’t have M =∞ because by the Casorati Weier-
strass theorem, Theorem 15.5.5, about an isolated singularity α, f (B′ (α,r)) is dense in C
for all small r > 0. Thus poles are exactly those α where limz→α | f (z)|= ∞.

Now if αk is a pole and αk → α ∈ Ω, for α not equal to any αk, then it follows that
f is not analytic on B′ (α,r) for some r > 0. Thus the poles can’t have a limit point in Ω.
Observe that

Ω = ∪∞
k=1

{
z : dist

(
z,ΩC)≤ 1

k

}
∩B(0,k)≡ ∪∞

k=1Kk

where Kk is compact. If Ω = C, let Kk = B(0,k). Then by what was just shown, there are
finitely many poles in Kk and so the number of poles is at most countable. ■

The fact that the poles cannot have a limit point in Ω is fairly significant. It shows that
if P is the set of poles and if Ω is connected, then Ω\P is an open connected set if Ω is.

403
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Lemma 16.1.4 Suppose Ω is an open connected set and suppose P is a set of points
contained in Ω such that P has no limit point in Ω. Then Ω\P is a connected open set.

Proof: Suppose Ω \P = A∪B where A,B have empty intersection and A has no limit
points of B while B has no limit points of A and neither is empty. For p ∈ P, we know that
p is not a limit point of P and so B(p,r) contains points of A∪B. For r sufficiently small,
all points in B′ (p,r) are in A∪B because p is not a limit point of P but, since Ω is open,
B(p,r) ⊆ Ω for r small enough. Also, each A,B is an open set since Ω \P is open. Now
it is obvious that B′ (p,r) is a connected open set contained in A∪B and so B′ (p,r) must
be contained in either A or in B. Let PA be those points of P such that B′ (p,r) ⊆ A for all
r small enough and let PB be defined similarly. Then Ω = (A∪PA)∪ (B∪PB) since this on
right involves adding in P to Ω\P. If p ∈ PA, then B′ (p,r)⊆ A and so p is not a limit point
of B. From what was shown above, p is not a limit point of PB either. If x ∈ A, then x is not
a limit point of B. Neither is it a limit point of PB because PB has no limit points in Ω as
shown in Lemma 16.1.3. Similarly, B∪PB has no limit points of A∪PA. This separates Ω

and is a contradiction to Ω being connected. ■
The following is a useful lemma. It is about subtracting off all the singular parts of a

function in M (Ω) and getting one which is analytic.

Lemma 16.1.5 Let f ∈M (Ω) and suppose Pf the set of poles consists of {α1, · · · ,αn} .
Then there exists a function g analytic on Ω such that for all z /∈Pf , f (z)−∑

n
i=1 Si (z)= g(z)

where Si (z) is the singular part corresponding to α i. That is, for z near α i,

f (z) = hi (z)+
mi

∑
k=1

bk

(z−α i)
k = hi (z)+Si (z) , hi analytic near α i (16.1)

Proof: Note that f (z)−∑
n
i=1 Si (z) is meromorphic on Ω. However, it has no poles.

Indeed, if α is a pole, then it must be one of the α i since all the Si would be analytic at
α if this were not the case. But limz→α i (z−α i)( f (z)−∑

n
i=1 Si (z)) = 0 and so each α i

is a removable singularity. Thus one can re-define at each α i and so there is an analytic
g(z) = f (z)−∑

n
i=1 Si (z). ■

Because of this lemma, it is all right to be a little sloppy and simply write f (z)−
∑

n
i=1 Si (z) equals an analytic function.

Proposition 16.1.6 Let Ω be a connected open set. Then M (Ω) is a field with the
usual conventions about summation and multiplication of functions.

Proof: It is almost obvious that M (Ω) is a ring. The part of this which is not entirely
obvious is whether the product of two meromorphic functions is meromorphic. It is clear
that f g is analytic on B′ (α,r) for small enough r. The only difficulty arises when α is a
zero for f but a pole for g. Thus f (z) = ∑

∞
k=r ak (z−α)k ,g(z) = h(z)+∑

m
k=1

bk
(z−α)k for

h analytic. But this means f (z)g(z) = f (z)h(z)+ f (z)∑
m
k=1

bk
(z−α)k . If r is as large as m,

then f g has a removable singularity. Otherwise, f g will have a pole. Thus the product
of meromorphic functions is indeed meromorphic. It is clear that the sum of two of these
meromorphic functions is meromorphic.

As usual, the main issue is the existence of multiplicative inverses. So suppose f ∈
M (Ω) and f ̸= 0. Then it is analytic on the connected set Ω\P where P is the set of poles.
Thus the set of zeros has no limit point. If it did, then f would be 0 on the connected set
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Ω\P. Consider 1/ f . It is analytic in B′ (α,r) for r small enough. If α is a zero of f , then
limz→α

1
| f (z)| = ∞ and 1/ f is analytic near α so α is a pole for 1/ f . If α is not a zero of f ,

then limz→α
1

f (z) (z−α) = 0 so α is a removable singularity. Thus 1/ f ∈M (Ω). ■

16.2 Meromorphic on Extended Complex Plane
I won’t pay a lot of attention to this topic, but sometimes people like to consider functions
which are called meromorphic on the extended complex plane. It turns out this forces the
function to have only finitely many poles and in fact the function ends up being a rational
function. Thus this is a fancy way to say that the function is a rational function.

Definition 16.2.1 We say f ∈M
(
Ĉ
)

if it is meromorphic on C which means

that either limz→0 z f
( 1

z

)
= 0 when f is said to have a removable singularity at ∞ or

lim|z|→0
∣∣ f ( 1

z

)∣∣ = ∞ and there are no poles α , |α| > r for some r when we say f has a
pole at ∞.

It turns out from Problem 1 on Page 415 that this is just a fancy way of saying that the
function is a rational function.

16.3 Rouche’s Theorem
Rouche’s theorem counts the number of poles and zeros of a meromorphic function f
∈M (C) inside a simple closed curve Γ. There are only finitely many of these poles and
zeroes in U the connected inside of a simple closed curve Γ. Indeed, there are finitely many
poles in Γ∪U as explained above. If Γ contains no poles and no zeroes, then this means
there are finitely many poles in U . Then f (z)−∑

m
i=1 Si (z) is analytic in U where the Si are

the singular parts corresponding to poles zi. If there are infinitely many zeroes, then there
is a limit point which can only be in U and so f −∑i Si would be identically zero which
is impossible if there are any poles. In this case, f would be identically 0 on U and hence
zero on points of Γ, contrary to assumption.

Not surprisingly, there are more general formulations of Rouche’s theorem. I am spe-
cializing to the case which is usually of most interest.

Theorem 16.3.1 Let f ∈M (U) where U is the inside of a bounded variation sim-
ple closed curve γ∗ such that Green’s theorem holds1. Also suppose γ∗ contains none of the
poles nor any of the zeros of f , and let γ be positively oriented so that for z on the inside of
γ∗,n(γ,z) = 1. Now let {p1, · · · , pm} and {z1, · · · ,zn} be respectively the poles and zeros
of f which are on the inside of γ∗. Let zk be a zero of multiplicity rk and let pk be a pole of
multiplicity lk. Then

1
2πi

∫
γ

f ′ (z)
f (z)

dz =
n

∑
k=1

rk−
m

∑
k=1

lk

Thus the zeros and poles are counted according to multiplicity.

Proof: This theorem follows from computing the residues of f ′/ f which has residues
only at poles and zeros of f . I will do this now. First suppose f has a pole of multiplicity p

1This is always the case from the general version of Green’s theorem in the appendix.
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at α. Then f has the form given in 16.1. Therefore,

f ′ (z)
f (z)

=
h′ (z)−∑

p
k=1

kbk
(z−α)k+1

h(z)+∑
p
k=1

bk
(z−α)k

=
−p bp

(z−α) + s(z)

bp + r (z)

where limz→α s(z) = limz→α r (z) = 0. Thus

lim
z→α

(z−α)
f ′ (z)
f (z)

=−p = res
(

f ′

f
,α

)
,

where p is the multiplicity of the pole.
Next suppose f has a zero of multiplicity p at α. Then

lim
z→α

(z−α)
f ′ (z)
f (z)

= lim
z→α

∑
∞
k=p akk (z−α)k

∑
∞
k=p ak (z−α)k = lim

z→α

∑
∞
k=p akk (z−α)k−p

∑
∞
k=p ak (z−α)k−p = p

and from this, res( f ′/ f ) = p, the multiplicity of the zero. The conclusion of this theorem
now follows from the residue theorem, Theorem 15.6.2. ■

16.4 Fractional Linear Transformations
These mappings map lines and circles to either lines or circles.

Definition 16.4.1 A fractional linear transformation is a function of the form

f (z) =
az+b
cz+d

(16.2)

where ad−bc ̸= 0.

Note that if c = 0, this reduces to a linear transformation (a/d)z+(b/d) . Special cases
of these are defined as follows.

dilations: z→ δ z, δ ̸= 0, inversions: z→ 1
z
,

translations: z→ z+ρ.

The next lemma is the key to understanding fractional linear transformations.

Lemma 16.4.2 The fractional linear transformation, 16.2 can be written as a finite
composition of dilations, inversions, and translations.

Proof: If d = 0 then c ̸= 0 and 16.2 reduces to a
c +

b
c

( 1
z

)
which is recovered as

z→ 1
z
→ b

c

(
1
z

)
→ b

c

(
1
z

)
+

a
c

So assume d ̸= 0. Then, using the special transformations, consider

z → 1
z
→ d

z
→ d

z
+ c =

cz+d
z
→ z

cz+d

→ αz
cz+d

→ αz
cz+d

+ p =
(α + pc)z+d p

cz+d
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Now let d p = b and α + pc = a. Thus p = b
d ,α = a− bc

d = ad−bc
d ̸= 0. Thus 16.2 is a

composition of the special transformations. ■
This lemma implies the following corollary.

Corollary 16.4.3 Fractional linear transformations map circles and lines to circles or
lines.

Proof: It is obvious that dilations and translations map circles to circles and lines to
lines. What of inversions? If inversions have this property, the above lemma implies a
general fractional linear transformation has this property as well.

Note that all circles and lines may be put in the form

α
(
x2 + y2)+ax+by = r

where α = 1 gives a circle centered at (a,b) with radius r and α = 0 gives a line. In terms
of complex variables you may therefore consider all possible circles and lines in the form

αzz̄+aRe(z)+b Im(z)+ γ = 0

αzz̄+a
(

z+ z̄
2

)
+b
(

z− z̄
2i

)
+ γ = 0

αzz̄+
(

a
2
+

b
2i

)
z+
(

a
2
− b

2i

)
z̄+ γ = 0

αzz̄+
(

a
2
− b

2
i
)

z+
(

a
2
+

b
2

i
)

z̄+ γ = 0

αzz+β z+β z+ γ = 0, (16.3)

Note that even if α is not 0 or 1 the expression still corresponds to either a circle or a line
because you can divide by α if α ̸= 0. Now I verify that replacing z with 1

z results in an
expression of the form in 16.3. Thus, let w = 1

z where z satisfies 16.3. Then(
α +βw+βw+ γww

)
=

1
zz

(
αzz+β z+β z+ γ

)
= 0

and so w also satisfies a relation like 16.3. One simply switches α with γ and β with β .
Note the situation is slightly different than with dilations and translations. These obviously
take circles and lines to circles and lines. In the case of an inversion, a circle becomes either
a line or a circle and similarly, a line becomes either a circle or a line. ■

The next example is quite important. It takes a line to a circle.

Example 16.4.4 Consider the fractional linear transformation, w = z−i
z+i . This maps the

upper half plane to the unit disk centered at 0.

The upper half plane is composed of points of the form x+ iy where y > 0. Substituting
in to the transformation,

w =
x+ i(y−1)
x+ i(y+1)

,
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which is seen to be a point on the interior of the unit disk because |y−1| < |y+1| which
implies |x+ i(y+1)| > |x+ i(y−1)|. Therefore, this transformation maps the upper half
plane to the interior of the unit disk. If y = 0, |x+ i|= |x− i| so the line x = x+ i0 is mapped
to the boundary of the unit circle.

One might wonder whether the mapping is one to one and onto. The mapping is clearly
one to one because it has an inverse, z = −i w+1

w−1 for all w in the interior of the unit disk.
Also, a short computation verifies that z so defined is in the upper half plane. There-
fore, this transformation maps {z ∈ C such that Imz > 0} one to one and onto the unit disk
{z ∈ C such that |z|< 1} . Note that this transformation is analytic near Im(z)≥ 0.

16.5 Some Examples
There is a simple procedure for determining a fractional linear transformation which maps
a given set of three points to another set of three points. The problem is as follows: There
are three distinct points in the complex plane, z1,z2, and z3 and it is desired to find a
fractional linear transformation such that zi→ wi for i = 1,2,3 where here w1,w2, and w3
are three distinct points in the complex plane. Then the procedure says that to find the
desired fractional linear transformation solve the following equation for w.

w−w1

w−w3
· w2−w3

w2−w1
=

z− z1

z− z3
· z2− z3

z2− z1

The result will be a fractional linear transformation with the desired properties.
Why should this procedure work? First note that it will be a fractional linear trans-

formation because it involves solving for w in w−w1
w−w3

· a = z−z1
z−z3
· b which will turn out as

it should. Here is a heuristic argument to indicate why you would expect this to map the
points as desired rather than a rigorous proof. The reader may want to tighten the argument
to give a proof. First suppose z = z1. Then the right side equals zero and so the left side
also must equal zero. However, this requires w = w1. Next suppose z = z2. Then the right
side equals 1. To get a 1 on the left, you need w = w2. Finally z3 is a pole on the right so to
have a pole on the left at w3 you need w = w3.

Example 16.5.1 Let z1 = 0,z2 = 1, and z3 = 2 and let w1 = 0,w2 = i, and w3 = 2i.

Then the equation to solve is w
w−2i ·

−i
i = z

z−2 ·
−1
1 . Solving this yields w = iz which

clearly works.

Example 16.5.2 Let ξ ∈ C and suppose Im(ξ )> 0. This is a more general example than
16.4.4 where ξ = i. It will have similar mapping properties. As in 16.4.4, the pole is in the
lower half plane. Define

f (z)≡ z−ξ

z−ξ

Then f
(
C\
{

ξ

})
= C\{1} and f maps the upper half plane to the unit ball centered at

0.

Let U ≡C\
{

ξ

}
. This is clearly an open connected set. Also let V ≡C\{1} . Then f

maps U one to one and onto V. Indeed, if w ∈V, then solve w = z−ξ

z−ξ
for z. This yields z =

ξ w−ξ

w−1 . As long as w ̸= 1, this gives a solution because z ̸= ξ . (ξ (w−1) ̸= ξ w−ξ ). Thus f
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is onto. If you have z−ξ

z−ξ
= ẑ−ξ

ẑ−ξ
, then you would have zẑ−ξ ẑ−ξ z−ξ ξ = zẑ−ξ z−ξ ẑ−ξ ξ

and so you would need to have ξ ẑ+ξ z = ξ z+ξ ẑ,
(

ξ −ξ

)
ẑ =

(
ξ −ξ

)
z which requires

ẑ = z. The function is one to one and analytic on U . Therefore, f−1 is also continuous by
the open mapping theorem.

What about f (R)? f (R) ⊆ S1, the unit circle {z : |z|= 1} because
∣∣x− ξ̄

∣∣ = |x−ξ |.
But f (R) is missing the point 1. Therefore, f (R) = S1 \{1} since otherwise, f (R) would
not be connected. In other words, f (R) cannot miss any other points.

What does f do to the upper half plane U+ ≡ {z : Im(z)> 0}? Say ξ = x+ iy,y > 0.
Then for a,b ∈ R, with b > 0 so a+ ib a typical point of U+,

f (a+ ib) =
(a+bi)− (x+ iy)
(a+bi)− (x− iy)

=
(a− x)+ i(b− y)
(a− x)+ i(b+ y)

, so | f (a+ ib)|< 1

Thus f (U+)⊆B. If |w|< 1, then as above, w= f (z) where z= ξ w−ξ

w−1 ∈U+. Thus f (U+) =
B just like Example 16.4.4. Alternatively, for L≡ the lower half plane, B = (B∩ f (U+))∪(
B∩ f

(
L\
{

ξ̄
}))

, two disjoint open sets. Thus one is empty and it can only be the second
so f (U+) = B.

Thus this is another example of an analytic function defined on a connected open set,
in this case, the upper half plane such that the image of this analytic function is the unit
ball. This begs the question of which connected open sets can be mapped one to one by an
analytic function onto the unit ball. It turns out that every simply connected open set will
have this property. Recall that an open connected set is simply connected if its complement
is connected in Ĉ. Also recall Corollary 15.3.5 which says that an analytic function on a
simply connected region has a primitive.

Lemma 16.5.3 For α ∈ B(0,1) , let φ α (z)≡ z−α

1−αz . Then φ α is analytic on B(0,1) , φ α

maps B(0,1) one to one and onto B(0,1), φ
−1
α = φ−α , and φ

′
α (α) = 1

1−|α|2
.

Proof: Notice that φ α is analytic on B(0,1) because the only possible singularity is a
pole at z = 1/α which is not in B(0,1). For |z|< 1/ |α| ,

φ α ◦φ−α (z)≡
( z+α

1+αz

)
−α

1−α
( z+α

1+αz

) = (z+α)−α (1+αz)
(1+αz)−α (z+α)

=
z−|α|2 z

1−|α|2
= z

If I show that φ α maps B(0,1) to B(0,1) for all |α| < 1, this will have shown that φ α is
one to one and onto B(0,1). Note that geometric considerations or a simple computation
shows

∣∣ 1−z
1−z

∣∣= 1.

Consider
∣∣φ α

(
eiθ
)∣∣ . This yields

∣∣∣ eiθ−α

1−αeiθ

∣∣∣ = ∣∣∣ 1−αe−iθ

1−αeiθ

∣∣∣ = 1where the first equality is

obtained by multiplying by
∣∣e−iθ

∣∣ = 1. Therefore, φ α maps ∂B(0,1) one to one and onto
∂B(0,1) . By the maximum modulus theorem, Theorem 15.1.4, it follows |φ α (z)| < 1
whenever |z|< 1. The same is true of φ−α .

It only remains to verify the assertion about the derivative. Long division gives φ α (z) =

(−α)−1 +
(
−α+(α)−1

1−αz

)
and so φ

′
α (z) = (−1)(1−αz)−2

(
−α +(α)−1

)
(−α)

= α (1−αz)−2
(
−α +(α)−1

)
= (1−αz)−2

(
1−|α|2

)
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and so φ
′
α (α) = 1

1−|α|2
. ■

The next lemma is called the Schwarz lemma. It was presented earlier in the exercises.

Lemma 16.5.4 Suppose F : B(0,1)→ B(0,1), F is analytic, and F (0) = 0. Then
1.) for all z ∈ B(0,1) , |F (z)| ≤ |z| and |F ′ (0)| ≤ 1.
2.) |F ′ (0)|= 1 if and only if F (z) = λ z where |λ |= 1.

Proof: 1.) G(z) = F(z)
z if z ̸= 0,F ′ (0) if z = 0. Then G(z) is analytic. Then by the

maximum modulus theorem, for |z| ≤ r < 1,
∣∣∣F(z)

z

∣∣∣ ≤ max
{
|G(z)|=

∣∣∣F(z)
z

∣∣∣ : |z|= r
}
≤ 1

r

and |G(0)| = |F ′ (0)| ≤ 1/r. Thus |F (z)| ≤ |z|/r for each r < 1 and so |F (z)| ≤ |z| and
|F ′ (0)| ≤ 1.

2.) If F (z) = λ z, |λ |= 1, then |F ′ (0)|= 1. Conversely, if |F ′ (0)|= 1, |G(z)| achieves
its maximum at 0, an interior point, and so G(z) is therefore constant by the open mapping
theorem. Thus G(z) = λ for some |λ |= 1 which says F (z) = λ z. ■

Rudin [40] gives a memorable description of what this lemma says: If an analytic
function maps the unit ball to itself, keeping 0 fixed, then it must do one of two things, either
be a rotation or move all points closer to 0. Note that if |F (z)| = |z| for any z ∈ B(0,1) ,
then |F (z)| is a constant because the analytic function F (z)/z has maximum modulus at
an interior point.

In the next section, the problem of considering which regions can be mapped onto the
unit ball by a one to one analytic function will be considered. Some can and some can’t.
The main result in this subject is the Riemann mapping theorem which says that any simply
connected open set Ω, Ω ̸= C can be so mapped onto the unit ball by a one to one analytic
function. A key result in showing this is the fact that such regions have something called
the square root property.

Definition 16.5.5 A region, Ω has the square root property if whenever f , 1
f : Ω→

C are both analytic, it follows there exists φ : Ω→ C such that φ is analytic and f (z) =
φ

2 (z) .

The following lemma says that every simply connected region has the square root prop-
erty. This holds because analytic functions have primitives on simply connected regions.

Lemma 16.5.6 Let Ω be a simply connected region properly contained in C. Then Ω

has the square root property.

Proof: Let f and 1
f both be analytic on Ω. Then f ′

f is analytic on Ω so by Corollary

15.3.5, there exists F̃ , analytic on Ω such that F̃ ′ = f ′
f on Ω. Then

(
f e−F̃

)′
= 0 and so

f (z) = CeF̃ = ea+ibeF̃ . Now let F ≡ F̃ + a+ ib. Then F is still a primitive of f ′/ f and
f (z) = eF(z). Now let φ (z) ≡ e

1
2 F(z). Then φ is the desired square root and so Ω has the

square root property. ■

16.6 Riemann Mapping Theorem
From the open mapping theorem, analytic functions map regions to other regions or else to
single points. The Riemann mapping theorem states that for every simply connected region
Ω which is not equal to all ofC there exists an analytic function, f such that f (Ω)=B(0,1)
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and in addition to this, f is one to one. It involves several ideas which have been developed
up to now. An important part of the proof is based on the following theorem, a case of
Montel’s theorem. Before beginning, note that the Riemann mapping theorem is a classic
example of a major existence theorem. In mathematics there are two sorts of questions,
those related to whether something exists and those involving methods for finding it. I am
afraid that the latter is typically all that gets studied by undergraduate students but the real
questions are related to existence.

There is a long and involved history for proofs of this theorem. The first proofs were
based on the Dirichlet principle and turned out to be incorrect, thanks to Weierstrass who
pointed out the errors. For more on the history of this theorem, see Hille [23].

The following is about the existence of a subsequence having certain salubrious prop-
erties. It is this wonderful result which will give the existence of the mapping desired.
The other parts of the argument are technical details to set things up and use this theorem.
See Conway [10] for a more general version. The theorem is a lot like the Arzela Ascoli
theorem and is a compactness result.

16.6.1 Montel’s Theorem

Theorem 16.6.1 Let Ω be an open set in C and let F denote a set of analytic
functions mapping Ω to B(0,M) ⊆ C. Then there exists a sequence of functions from F ,
{ fn}∞

n=1 and an analytic function f such that for each k ∈ N, f (k)n converges uniformly to
f (k) on every compact subset of Ω. Here f (k) denotes the kth derivative.

Proof: First note there exists a sequence of compact sets Kn, Kn ⊆ intKn+1 ⊆Ω for all
n where here intK denotes the interior of the set K, the union of all open sets contained in
K and ∪∞

n=1Kn = Ω. In fact, you can verify that B(0,n)∩
{

z ∈Ω : dist
(
z,ΩC

)
≤ 1

n

}
works

for Kn. Then there exist positive numbers, δ n such that if z ∈ Kn, then B(z,δ n)⊆ intKn+1.
Now denote by Fn the set of restrictions of functions of F to Kn. Then let z ∈ Kn and let
γ (t)≡ z+δ neit , t ∈ [0,2π] . It follows that for z1 ∈ B(z,δ n) , and f ∈F ,

| f (z)− f (z1)| =

∣∣∣∣ 1
2πi

∫
γ

f (w)
(

1
w− z

− 1
w− z1

)
dw
∣∣∣∣

≤ 1
2π

∣∣∣∣∫
γ

f (w)
z− z1

(w− z)(w− z1)
dw
∣∣∣∣

Letting |z1− z| < δ n
2 , | f (z)− f (z1)| ≤ M

2π
2πδ n

|z−z1|
δ

2
n/2
≤ 2M |z−z1|

δ n
. If ε > 0 is given and if

|z− z1| < εδ n/2M for z,z1 ∈ Kn, then | f (z)− f (z1)| < ε. It follows that Fn is equicon-
tinuous and uniformly bounded, so by the Arzela Ascoli theorem, Theorem 9.2.4 there
exists a sequence, { fnk}∞

k=1 ⊆ F which converges uniformly on Kn. Let { f1k}∞

k=1 con-
verge uniformly on K1. Then use the Arzela Ascoli theorem applied to this sequence to
get a subsequence, denoted by { f2k}∞

k=1 which also converges uniformly on K2. Continue
in this way to obtain { fnk}∞

k=1 which converges uniformly on K1, · · · ,Kn. Now the diag-
onal sequence { fnn}∞

n=m is a subsequence of { fmk} ∞
k=1 and so it converges uniformly on

Km for all m. Denoting fnn by fn for short, this is the sequence of functions promised by
the theorem. It is clear { fn}∞

n=1 converges uniformly on every compact subset of Ω be-
cause every such set is contained in Km for all m large enough. (Why?) Let f (z) be the
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point to which fn (z) converges. Then f is a continuous function defined on Ω. Is f ana-
lytic? Yes it is by Lemma 14.8.5. Alternatively, you could let T ⊆ Ω be a triangle. Then∫

∂T f (z)dz = limn→∞

∫
∂T fn (z)dz = 0. Therefore, by Morera’s theorem, f is analytic.

As for the uniform convergence of the derivatives of f , recall Theorem 15.4.2 about the
existence of a cycle. Let K be a compact subset of Ω. Then for some n, K is a compact
subset of int(Kn) and let {γk}

m
k=1 be closed oriented curves contained γ∗k ⊆ int(Kn)\K such

that ∑
m
k=1 n(γk,z) = 1 for every z ∈ K. Also let η denote the distance between ∪ jγ

∗
j and

K,η ≡ inf
{
|z−w| : z ∈ K,w ∈ ∪ jγ

∗
j

}
It follows that η > 0. (Why? In general, two disjoint

compact sets are at a positive distance from each other. ) Then for z ∈ K,

∣∣∣ f (k) (z)− f (k)n (z)
∣∣∣ =

∣∣∣∣∣ k!
2πi

m

∑
j=1

∫
γ j

f (w)− fn (w)

(w− z)k+1 dw

∣∣∣∣∣
≤ k!

2π
∥ fk− f∥Kn

m

∑
j=1

(length of γk)
1

ηk+1 .

where here ∥ fk− f∥Kn
≡max{| fk (z)− f (z)| : z ∈ Kn} . Thus you get uniform convergence

of the derivatives on each compact subset of Ω. ■
Another surprising consequence of this theorem is that the property of being one to one

is preserved if the target function is known to not be a constant.

Lemma 16.6.2 Suppose hn is one to one, analytic on Ω, a connected open set (region)
and converges uniformly to h on compact subsets of Ω along with all derivatives. Then if h
is not a constant, it follows that h is also one to one.

Proof: Pick z1 ∈Ω and suppose z2 is another point of Ω. As shown above, h is analytic.
Thus, if the zeros of h− h(z1) have a limit point in Ω, then h(z) is a constant which is
assumed to not be the case. Since the zeros of h−h(z1) have no limit point, there exists a
circular contour bounding a circle which has z2 on the inside of this circle but not z1 such
that γ∗ contains no zeros of h−h(z1). Taking a subsequence if necessary, it can be assumed
γ∗ contains no zeros of hn−hn (z1) either.

•
z1

γ
•
z2

Using the theorem on counting zeros, Theorem 16.3.1, and the fact that hn is one to
one, we know that hn−hn (z1) has no zeros inside this circle and so

0 = lim
n→∞

1
2πi

∫
γ

h′n (w)
hn (w)−hn (z1)

dw =
1

2πi

∫
γ

h′ (w)
h(w)−h(z1)

dw,

which shows that h− h(z1) has no zeros in B(z2,r) . In particular z2 is not a zero of h−
h(z1) . This shows that h is one to one since z2 ̸= z1 was arbitrary. ■

Theorem 16.6.1 is an example of a normal family of functions.

Definition 16.6.3 Let F denote a collection of functions which are analytic on Ω,
a region (open and connected). Then F is normal if every sequence contained in F has a
subsequence which converges uniformly on compact subsets of Ω.
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16.6.2 The Proof of Riemann Mapping Theorem
The existence part of the Riemann mapping theorem is from Montel’s theorem, Theorem
16.6.1 and showing that what is obtaned is actually what is desired comes from the Schwarz
lemma, Lemma 16.5.4 and the remarkable properties of the special fractional linear trans-
formation of Lemma 16.5.3.

This approach is in Rudin [40] and Conway [10]. I will present it in a sequence of
lemmas, each of which is interesting for its own sake. All that is needed for Ω⊊ C is that
it is a region with the square root property. Recall that simply connected Ω implies square
root property, Lemma 16.5.6. In fact the other direction also holds but I won’t go into that
here.

Lemma 16.6.4 Let Ω have square root property, contain 0 and define F to be the set of
functions f such that f : Ω→ B(0,1) is one to one and analytic. Suppose F is nonempty.
Letting η ≡ sup{|ψ ′ (0)| : ψ ∈F} , suppose there exists h ∈F with h′ (0) = η ,h(0) = 0.
Then h is onto B(0,1).

Proof: Suppose α ∈ B(0,1) \ h(Ω). Then both φ α ◦ h,1/φ α ◦ h are analytic so since
Ω has the square root property, there exists analytic

√
φ α ◦h. Let φ α for |α| < 1 be from

Lemma 16.5.3, φ α (z)≡ z−α

1−αz and φ α (α) = 0. Let

ψ ≡ φ√
φα◦h(0)

◦
√

φ α ◦h (16.4)

Thus ψ (0) = φ√
φα◦h(0)

◦
√

φ α ◦h(0) = 0 and ψ is a one to one mapping of Ω into B(0,1)
so ψ is also in F . Therefore,∣∣ψ ′ (0)∣∣≤ η ,

∣∣∣∣(√φ α ◦h
)′
(0)
∣∣∣∣≤ η . (16.5)

Define s(w)≡ w2. Then using Lemma 16.5.3, in particular, the description of φ
−1
α = φ−α ,

you can solve 16.4 for h to obtain

h(z) = φ−α ◦ s◦φ−
√

φα◦h(0)
◦ψ =

 ≡F︷ ︸︸ ︷
φ−α ◦ s◦φ−

√
φα◦h(0)

◦ψ

(z) = (F ◦ψ)(z) (16.6)

Now F (0) = φ−α ◦ s◦φ−
√

φα◦h(0)
(0) = φ

−1
α (φ α ◦h(0)) = h(0) = 0 and F maps B(0,1)

into B(0,1) because it is the composition of functions which map onto B(0,1). Also, F
is not one to one because, by Lemma 16.5.3, it maps B(0,1) onto B(0,1) and has s in its
definition. Indeed, there exists z1,z2 ∈ B(0,1) such that

φ−
√

φα◦h(0)
(z1) =−

1
2
, φ−
√

φα◦h(0)
(z2) =

1
2
.

Since φ−
√

φα◦h(0)
is one to one, z1 ̸= z2 but, since s(z) = z2, F (z1) = F (z2).

Since F (0) = h(0) = 0, you can apply the Schwarz lemma to F . Since F is not one to
one, it can’t be true that F (z) = λ z for |λ |= 1 and so by the Schwarz lemma it must be the
case that |F ′ (0)|< 1. But this implies from 16.6 and 16.5 that

η =
∣∣h′ (0)∣∣= ∣∣F ′ (ψ (0))

∣∣ ∣∣ψ ′ (0)∣∣= ∣∣F ′ (0)∣∣ ∣∣ψ ′ (0)∣∣< ∣∣ψ ′ (0)∣∣≤ η ,

a contradiction. Thus h is onto after all. ■
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Lemma 16.6.5 F in the above lemma is nonempty and η is a positive real number.

Proof: Since Ω ̸= C it follows there exists ξ /∈ Ω.Thus 1
z−ξ

,z− ξ are both analytic

and since Ω has the square root property, there exists analytic φ with φ (z) =
√

z−ξ and
φ is not constant, so φ (Ω) is an open connected set, not a single point. Also φ is one
to one. Pick a ∈ φ (Ω) ,a ̸= 0 and za such that a =

√
za−ξ . Then consider 0 < r ≡

inf
{∣∣∣√z−ξ +a

∣∣∣} . Is r > 0? If so, we can let ψ (z) = r√
z−ξ+a

and obtain ψ maps Ω to

B(0,1). If this is not so, there exists zn,
√

zn−ξ +a→ 0 and so

zn−ξ +2a
√

zn−ξ +a2→ 0 so zn−ξ −2a2 +a2→ 0

and so there exists z = limn→∞ zn and z−ξ = a2 = za−ξ so z = za. But this is impossible
because it requires that

√
za−ξ +a = 0 so

√
za−ξ = −a ̸= a. Note that ψ just defined,

is one to one. Thus F is nonempty.
For ψ ∈F , let γ be a small circular contour of radius r about 0 and B(0,1)⊆Ω.

ψ
′ (0) =

1
2πi

∫
γ

ψ (w)
w2 dw,

∣∣ψ ′ (0)∣∣≤ (1/2π)2πr
(
1/r2)= 1/r

thus η < ∞. Consider the special ψ of Claim 1. ψ (z) = r√
z−ξ+a

. Then

ψ (z)
(√

z−ξ +a
)
= r

and so

ψ
′ (z)

(√
z−ξ +a

)
+ψ (z)

(
1

2
√

z−ξ

)
= 0

and so ψ ′ (0)
(√
−ξ +a

)
=−ψ (0)

(
1

2
√
−ξ

)
. Now from the construction, ψ (0) ̸= 0 and

also
∣∣∣√−ξ +a

∣∣∣≥ r > 0 so ψ ′ (0) ̸= 0 which shows η > 0. ■

Lemma 16.6.6 There is an analytic function h∈F such that |h′ (0)|= h′ (0) = η . Also
h(0) = 0. Thus if 0 ∈Ω⊊C, for Ω having the square root property, h(Ω) = B(0,1) .

Proof: By Theorem 16.6.1, there exists a sequence, {ψn}, of functions in F and an an-
alytic function h, such that |ψ ′n (0)| → η and ψn→ h,ψ ′n→ h′, uniformly on each compact
subset of Ω. It follows ∣∣h′ (0)∣∣= lim

n→∞

∣∣ψ ′n (0)∣∣= η > 0 (16.7)

Now let |ω| = 1 and let ωh′ (0) = |h′ (0)| . Thus {ωψn} could be used in place of {ψn}
and we can assume h′ (0) = |h′ (0)|= η and for all z ∈Ω,

|h(z)|= lim
n→∞
|ψn (z)| ≤ 1. (16.8)

By 16.7, h is not a constant. Therefore, in fact, |h(z)| < 1 for all z ∈ Ω in 16.8 by the
open mapping theorem because h(Ω) is a region (open and connected).

It follows from Lemma 16.6.2 that h is one to one. In particular h−1 is analytic on h(Ω)
by the open mapping theorem. Why is h(0) = 0?
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If h(0) ̸= 0, then h(0) < 1 and you can consider φ h(0) ◦ h where φ α (z) ≡ z−α

1−αz is
the fractional linear transformation defined in Lemma 16.5.3. By this lemma it follows
φ h(0) ◦h ∈F . Now using the chain rule and this lemma,∣∣∣∣(φ h(0) ◦h

)′
(0)
∣∣∣∣ =

∣∣∣φ ′h(0) (h(0))∣∣∣ ∣∣h′ (0)∣∣
=

∣∣∣∣∣ 1

1−|h(0)|2

∣∣∣∣∣ ∣∣h′ (0)∣∣=
∣∣∣∣∣ 1

1−|h(0)|2

∣∣∣∣∣η > η

Contradicting the definition of η . The last claim is from the above lemmas. ■

Theorem 16.6.7 (Riemann mapping theorem) Let Ω ̸=C for Ω a region (connected
open set) and suppose Ω has the square root property. Then for z0 ∈Ω there exists a unique
h : Ω→ B(0,1) such that h is one to one, onto, analytic, h−1 is analytic, h(Ω) = B(0,1) ,
h′ (z0) > 0, and h(z0) = 0. In particular, a unique such h exists whenever Ω is a simply
connected proper subset of C.

Proof: This follows from the above lemma. Consider Ω̂ ≡ Ω− z0 so 0 ∈ Ω̂. Then let
ĥ : Ω̂→ B(0,1) with all the right properties in the lemma and let h(z) = ĥ(z− z0).

Suppose g also has these same properties for z0 = 0. Suppose g′ (0) ≤ h′ (0) . Oth-
erwise turn around the following argument. Let F ≡ h ◦ g−1. Then F maps B(0,1) onto
B(0,1) ,F (0) = 0, and F one to one. Also F ′ (0) = h′ (0)(1/g′ (0))≥ 1. By The Schwarz
Lemma, Lemma 16.5.3, F (z) = λ z = h

(
g−1 (z)

)
. For w = g−1 (z) ,h(w) = λ z = λg(w)

where |λ | = 1. Therefore, h′ (w) = λg′ (w) . However, when w = 0, both h′ (w) ,g′ (w) are
positive and so λ = 1. It follows h = g. This works the same way with arbitrary z0. The last
claim follows from Lemma 16.5.6 which says that simply connected sets have the square
root property. ■

16.7 Exercises
1. Suppose f ∈M

(
Ĉ
)
. Then f is a rational function.

(a) First show there are finitely many poles of f {α1, · · · ,αn} so f is analytic for
|z|> r.

(b) Suppose f has a removable singularity at ∞. That is limz→0 z f
( 1

z

)
= 0. First

of all, let Si (z) be the singular part of the Laurent series expanded about α i.
Explain why f (z)−∑

n
i=1 Si (z) ≡ fn (z) , fn an entire function. Explain why

fn (z) = ∑
∞
k=0 ak

(
1
zk

)
and so fn (z) is bounded for large |z|. Now explain why

fn is bounded and use Liouville’s theorem. Conclude that the function is a
rational function.

(c) Next case is when f has a pole at ∞, meaning lim|z|→0 | f (1/z)|= ∞. Show that
in this case also, f is a rational function.

2. Explain why any rational function is in M
(
Ĉ
)

. Thus, with the preceeding problem,

M
(
Ĉ
)

equals the rational functions.
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3. Suppose you have f ∈M (C) , not M
(
Ĉ
)
. Show that if f has finitely many zeros

{α1, · · · ,αn} and poles {β 1, · · · ,β m} , then there is an entire function g(z) such that
(z−α1)

r1 ···(z−αn)
rn

(z−β 1)
p1 ···(z−β m)

pm eg(z) = f (z) where pi is the order of the pole at β i and ri is the
order of the zero at α i. Hint: First show f (z) = ∏

n
k=1 (z−αk)

rk h(z) where h(z) is
meromorphic but has no zeros. Then h(z) has the same poles with the same orders
as f (z). Then h(z)−∑

m
i=1 Si (z) = l (z) where l (z) is entire and the Si (z) are the

principal parts h(z) corresponding to β i. Argue now that

f (z) =
∏

n
k=1 (z−αk)

rk

∏
m
k=1 (z−β k)

pk
(q(z))

where q(z) is analytic on C and can’t have any zeros. Next use Problem 15 on Page
399.

4. Let w1,w2,w3 be independent periods for a meromorphic function f (z). This means
that if ∑

3
i=1 aiwi = 0 for each ai an integer, then each ai = 0. Hint: At some point

you may want to use Lemma 16.1.4.

(a) Show that if ai is an integer, then ∑
3
i=1 aiwi is also a period of f (z).

(b) Let PN be periods of the form ∑
3
i=1 aiwi for ai an integer with |ai| ≤ N. Show

there are (2N +1)3 such periods.

(c) Show PN ⊆
[
−N

(
∑

3
i=1 |wi|

)
,N
(
∑

3
i=1 |wi|

)]2 ≡ QN .

(d) Between the cubes of any two successive positive integers, there is the square
of a positive integer. Thus (2N)3 < M2 < (2N +1)3. Show this is so. It is easy
to verify if you show that (x+1)3/2− x3/2 > 2 for all x≥ 2 showing that there
is an integer m between (n+1)3/2 and n3/2. Then squaring things, you get the
result.

(e) Partition QN into M2 small squares. If Q is one of these, show its sides are no
longer than((

2N
(
∑

3
i=1 |wi|

))2

M2

)1/2

≤

((
N
(
∑

3
i=1 |wi|

))2

(2N)3

)1/2

≤ C
N1/2

(f) You have (2N +1)3 points which are contained in M2 squares where M2 is
smaller than (2N +1)3 . Explain why one of these squares must contain two
different periods of PN .

(g) Suppose the two periods are ∑
3
i=1 aiwi and ∑

3
i=1 âiwi, both in Q which has sides

of length no more than C/N1/2. Thus the distance between these two periods
has length no more than

√
2C/
√

N. Explain why this shows that there is a
sequence of periods of f which converges to 0. Explain why this requires f to
be a constant.

This result, that there are at most two independent periods is due to Jacobi from
around 1835. In fact, there are nonconstant functions which have two independent
periods but they can’t be bounded.
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5. Suppose you have f is analytic and has two independent periods. Show that f is a
constant. Hint: Consider a parallelogram determined by the two periods and apply
Liouville’s theorem. Functions having two independent periods which are analytic
except for poles are known as elliptic functions.

6. Suppose f is an entire function, analytic on C, and that it has two periods w1,w2.
That is f (z+w1) = f (z) and f (z+w2) = f (z). Suppose also that the ratio of these
two periods is not a real number so vectors, w1 and w2 are not parallel. Show, using
Liouville’s theorem, that f (z) equals a constant. Hint: Consider the parallelogram
determined by the two vectors w1,w2 and tile C with similar parallelograms. Elliptic
functions are those which have two periods like this and are analytic except for poles.
These are points where | f (z)| becomes unbounded. Thus the only analytic elliptic
functions are constants.

7. You can show that if r is a real irrational number the expressions of the form m+nr
for m,n integers are dense in R. See my single variable advanced calculus book or
modify the argument in Problem 4. This is due to Dirichlet also in the 1830s. (Let PN
be everything of the form m+nr where |m| , |n| ≤ N. Thus there are (2N +1)2 such
numbers contained in [−N (1+ |r|) ,N (1+ |r|)] ≡ I. Let M be an integer, (2N)2 <

M < (2N +1)2 and partition I into M equal intervals. Now argue some interval has
two of these numbers in PN etc.) In particular, |m+nr| can be made as small as
desired. Now suppose f is a non constant meromorphic function and it is periodic
having periods w1,w2 where if, for m,n integers, mw1 +nw2 = 0 then both m,n are
zero. Show that w1/w2 cannot be real. This was also done by Jacobi.

8. Suppose you have a nonconstant meromorphic function f which has two periods
w1,w2 such that if mw1 + nw2 = 0 for m,n integers, then m = n = 0. Let Pa be a
parallelogram with lower left vertex at a and sides determined by w1 and w2 such
that no pole of f is on any of the sides. Show that the sum of the residues of f found
inside Pa must be zero.

9. Let f (z) = az+b
cz+d and let g(z) = a1z+b1

c1z+d1
. Show that f ◦g(z) equals the quotient of two

expressions, the numerator being the top entry in the vector(
a b
c d

)(
a1 b1
c1 d1

)(
z
1

)
and the denominator being the bottom entry. Show that if you define

φ

((
a b
c d

))
≡ az+b

cz+d
,

then φ (AB) = φ (A)◦φ (B) . Find an easy way to find the inverse of f (z) = az+b
cz+d and

give a condition on the a,b,c,d which insures this function has an inverse.

10. The modular group2 is the set of fractional linear transformations, az+b
cz+d such that

a,b,c,d are integers and ad − bc = 1. Using Problem 9 or brute force show this
modular group is really a group with the group operation being composition. Also
show the inverse of az+b

cz+d is dz−b
−cz+a .

2This is the terminology used in Rudin’s book Real and Complex Analysis.
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11. The next few problems are about approximating an analytic function with rational
functions. For K compact and f ,g continuous on K, let

∥ f −g∥K,∞ ≡max{∥ f (z)−g(z)∥ : z ∈ K}

Let R be a rational function (Laurent series is finite) which has a pole only at a ∈V,
a component of C \K. Suppose b ∈ V. Then for ε > 0 given, there exists a rational
function Q, having a pole only at b such that ∥R−Q∥K,∞ < ε. If it happens that V is
unbounded, then there exists a polynomial, P such that ∥R−P∥K,∞ < ε. Hint: Say
that b∈V satisfies P if for all ε > 0 there exists a rational function, Qb, having a pole
only at b such that ∥R−Qb∥K,∞ < ε. Now define a set, S≡ {b ∈V : b satisfies P }.
Observe that S ̸= /0 because a ∈ S. Now set about showing that S is open and also
contains all its limit points in the connected sets V . Conclude that S = V since V is
connected.

12. ↑Let K be a compact subset of an open set, Ω and let f be analytic on Ω. Then there
exists a rational function, Q whose poles are not in K such that ∥Q− f∥K,∞ < ε .
Hint: By Theorem 15.4.2 there are oriented curves, γk described there such that for
all z ∈ K, f (z) = 1

2πi ∑
p
k=1

∫
γk

f (w)
w−z dw. Now approximate these contour integrals with

Riemann sums.

13. ↑ Use the above problems to verify Runge’s theorem: Let K be a compact subset of
an open set, Ω and let

{
b j
}

be a set which consists of one point from each component
of Ĉ\K. Let f be analytic on Ω. Then for each ε > 0, there exists a rational function,
Q whose poles are all contained in the set,

{
b j
}

such that ∥Q− f∥K,∞ < ε. If Ĉ\K
has only one component, then Q may be taken to be a polynomial.

14. ↑ Generalize the above Runge theorem to this version of Runge’s theorem: Let Ω be
an open set, and let A be a set which has one point in each component of Ĉ\Ω and let
f be analytic on Ω. Then there exists a sequence of rational functions, {Rn} having
poles only in A such that Rn converges uniformly to f on compact subsets of Ω. Hint:
Show that there is a sequence of compact sets Kn such that Ω = ∪∞

k=1Kn, · · · ,Kn ⊆
intKn+1 · · · , and use the result of the above problem.



Chapter 17

Spectral Theory of Linear Maps
This chapter provides a short introduction to the spectral theory of linear maps defined on
a Banach space. It is only an introduction. You should see Dunford and Schwarz [15] for a
complete treatment of these topics.

17.1 The Resolvent and Spectral Radius
The idea is that you have A ∈L (X ,X) where X is a complex Banch space. We eliminate
from consideration the stupid case that X is only the 0 vector. To begin with, here is a fun-
damental lemma which will be used whenever convenient. It is about taking a continuous
linear transformation through the integral sign.

Lemma 17.1.1 Let f : γ∗→L (X ,X) be continuous where γ : [a,b]→C has finite total
variation and X is a Banach space. Let A ∈L (X ,X) . Then

A
∫

γ

f (z)dz =
∫

γ

A f (z)dz,
(∫

γ

f (z)dz
)

A =
∫

γ

f (z)Adz

When we write AB for A,B ∈L (X ,X) , it means A◦B. That is, A◦B(x) = A(B(x))

Proof: This follows from the definition of the integral, see Theorem 14.4.3 on Page
346. Let P denote a sequence of partitions such that ∥P∥→ 0.∫

γ

f (z)dz≡ lim
∥P∥→0

∑
P

f (γ (τ i))(γ (ti)− γ (ti−1))

Now multiplication of an element of L (X ,X) by A ∈L (X ,X) is continuous because

∥AB1−AB2∥ ≤ ∥A∥∥B1−B2∥ , ∥B1A−B2A∥ ≤ ∥B1−B2∥∥A∥

Therefore,

A
∫

γ

f (z)dz ≡ A lim
∥P∥→0

∑
P

f (γ (τ i))(γ (ti)− γ (ti−1))

= lim
∥P∥→0

A∑
P

f (γ (τ i))(γ (ti)− γ (ti−1))

= lim
∥P∥→0

∑
P

A f (γ (τ i))(γ (ti)− γ (ti−1))≡
∫

γ

A f (z)dz

There are no issues regarding existence of the various quantities because the functions are
continuous and the curve is of bounded variation. The other claim is completely similar. ■

Corresponding to A there are two sets defined next.

Definition 17.1.2 The resolvent set, denoted as ρ (A) is defined as{
λ ∈ C : (λ I−A)−1 ∈L (X ,X)

}
The spectrum of A, denoted as σ (A) is C\ρ (A). When λ ∈ ρ (A) , we call (λ I−A)−1 the
resolvent. Thus, in particular, when λ is in ρ (A) ,λ I−A is one to one and onto.

419
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There is a fundamental identity involving the resolvent which should be noted first. In
order to remember this identity, simply write (λ I−A)−1 ≈ 1

λ−A and proceed formally.

1
λ −A

− 1
µ−A

=
µ−λ

(λ −A)(µ−A)

This suggests that for µ,λ ∈ ρ (A) ,

(λ I−A)−1− (µI−A)−1 = (µ−λ )(λ I−A)−1 (µI−A)−1

= (µ−λ )(µI−A)−1 (λ I−A)−1 (17.1)

Now since (λ I−A) ,(µI−A) are both one to one and onto, we observe by multiplying on
the left by (µI−A) and on the right by (λ I−A) that the result on both sides are the same.
Thus these are indeed the same.

(µI−A)(λ I−A)−1− I and (µ−λ )(λ I−A)−1

(µI−A)− (λ I−A) and (µ−λ )

which are the same. Similarly, the second line of 17.1 holds.

Proposition 17.1.3 For A ∈L (X ,X) and λ ,µ ∈ ρ (A) ,

(λ I−A)−1− (µI−A)−1 = (µ−λ )(λ I−A)−1 (µI−A)−1

= (µ−λ )(µI−A)−1 (λ I−A)−1

Next is a useful lemma.

Lemma 17.1.4 Let B ∈ L (X ,X) and suppose ∥B∥ < 1. Then (I−B)−1 exists and is

given by the series (I−B)−1 = ∑
∞
k=0 Bk. Also,

∥∥∥(I−B)−1
∥∥∥≤ 1

1−∥B∥ . The series converges

in L (X ,X).

Proof: The series converges by the root test, Theorem 1.12.1 generalized to the case
where Fp is replaced by X as in Problem 5 on Page 75. Indeed,

∥Bn∥1/n ≤ (∥B∥n)1/n = ∥B∥< 1

so limsupn→∞ ∥Bn∥1/n ≤ ∥B∥ < 1. Now also (I−B)∑
n
k=0 Bk = I−Bn+1 where

∥∥Bn+1
∥∥≤

∥B∥n+1 and converges to 0. Thus,

(I−B)
∞

∑
k=0

Bk = lim
n→∞

(I−B)
n

∑
k=0

Bk = lim
n→∞

(
I−Bn+1)= I

Similarly the infinite sum is the left inverse of I−B. To see this, note that if ∥An−A∥→ 0,
then AnC→ AC because

∥AnC−AC∥ ≡ sup
∥x∥≤1

∥(An−A)Cx∥ ≤ ∥An−A∥∥C∥
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Therefore, ∑
∞
k=0 Bk (I−B) = limn→∞ ∑

n
k=0 Bk (I−B) = limn→∞

(
I−Bn+1

)
= I. As to the

estimate, if ∥x∥ ≤ 1,

∥∥∥(I−B)−1 x
∥∥∥ =

∥∥∥∥∥
(

∞

∑
k=0

Bk

)
(x)

∥∥∥∥∥=
∥∥∥∥∥ ∞

∑
k=0

Bk (x)

∥∥∥∥∥
≤

∞

∑
k=0

∥∥∥Bk
∥∥∥≤ ∞

∑
k=0
∥B∥k =

1
1−∥B∥

■

The major result about resolvents is the following proposition. Note that the resolvent
has values in L (X ,X) which is a Banach space.

Proposition 17.1.5 Let A ∈L (X ,X) for X a Banach space. Then the following hold.

1. ρ (A) is open

2. λ → (λ I−A)−1 is continuous

3. λ → (λ I−A)−1 is analytic

4. For |λ |> ∥A∥ ,
∥∥∥(λ I−A)−1

∥∥∥≤ 1
|λ |−∥A∥ and (λ I−A)−1 = ∑

∞
k=0

Ak

λ
k+1

Proof: 1.) Let λ ∈ ρ (A) . Let |µ−λ |<
∥∥∥(λ I−A)−1

∥∥∥−1
. Then

µI−A = (µ−λ ) I +λ I−A = (λ I−A)
[
I− (λ −µ)(λ I−A)−1

]
(17.2)

Now
∥∥∥(λ −µ)(λ I−A)−1

∥∥∥= |λ −µ|
∥∥∥(λ I−A)−1

∥∥∥< 1 from the assumed estimate. Thus,

[
I− (λ −µ)(λ I−A)−1

]−1
=

∞

∑
k=0

(λ −µ)k
(
(λ I−A)−1

)k

and so from 17.2,

(µI−A)−1 =
[
I− (λ −µ)(λ I−A)−1

]−1
(λ I−A)−1 (17.3)

=
∞

∑
k=0

(λ −µ)k
(
(λ I−A)−1

)k+1

This shows ρ (A) is open.
2.) Next consider continuity. This follows from Proposition 17.1.3.
3.) From Theorem 14.8.1, it suffices to show that the function is differentiable. This

follows from the continuity and the resolvent equation.

(λ I−A)−1− (µI−A)−1

λ −µ
=

(µ−λ )(µI−A)−1 (λ I−A)−1

λ −µ

= −(µI−A)−1 (λ I−A)−1

so taking the limit as λ → µ one obtains the derivative at µ is −
(
(µI−A)−1

)2
.
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4.) Finally consider the estimate. For |λ | > ∥A∥ ,(λ I−A) = λ
(
I− A

λ

)
and so from

Lemma 17.1.4,

(λ I−A)−1 =
1
λ

(
I− A

λ

)−1

=
∞

∑
k=0

Ak

λ
k+1

and
∥∥∥(λ I−A)−1

∥∥∥≤ 1
|λ |

1
1− ∥A∥|λ |

= 1
|λ |−∥A∥ .■

The notion of spectrum is just a generalization of the concept of eigenvalues in linear
algebra. In linear algebra, everything is finite dimensional and the spectrum is just the set of
eigenvalues. You can get them by looking for solutions to the characteristic equation which
involves a determinant and they exist because of the fundamental theorem of algebra. No
such thing is available in a general Banach space. However, many of the same results still
hold.

Proposition 17.1.6 For A ∈ L (X ,X) ,σ (A) ̸= /0 and σ (A) is a compact set. If λ ∈
σ (A) , then for all n ∈ N, it follows that λ

n ∈ σ (An).

Proof: Suppose first that σ (A) = /0. Then you would have λ → (λ I−A)−1 is analytic
and in fact from estimate 4 above,

lim
|λ |→∞

∥∥∥(λ I−A)−1
∥∥∥= 0 (17.4)

Thus there exists r such that if |λ |< r, then
∥∥∥(λ I−A)−1

∥∥∥< 1. However,
∥∥∥(λ I−A)−1

∥∥∥ is

bounded for |λ | ≤ r and so λ → (λ I−A)−1 is analytic on all of C (entire) and is bounded.
Therefore, it is constant thanks to Liouville’s theorem, Theorem 14.11.2. But the constant
can only be 0 thanks to 17.4. Therefore, (λ I−A)−1 = 0 which is nonsense since we are
not considering X = {0}. Indeed, if this is so, then I = (λ I−A)(λ I−A)−1 would be the
zero map.

σ (A) is the complement of the open set ρ (A) and so σ (A) is closed. It is bounded
thanks to 4 of Proposition 17.1.5. Therefore, it is compact by the Heine Borel theorem.

It remains to verify the last claim.

(λ I−A)
n−1

∑
k=0

λ
kA(n−1)−k =

n−1

∑
k=0

λ
k+1A(n−1)−k−

n−1

∑
k=0

λ
kAn−k

=
n

∑
k=1

λ
kAn−k−

n−1

∑
k=0

λ
kAn−k = λ

nI−An (17.5)

=
n−1

∑
k=0

λ
kA(n−1)−k (λ I−A)

If λ ∈ σ (A) , then this means (λ I−A)−1 does not exist. Thanks to the open mapping
theorem, this is equivalent to either λ I−A not being one to one or not onto because by
this theorem, if it is both, then it is continuous and has continuous inverse because it maps
open sets to open sets. Now consider the identity 17.5. If λ I−A is not one to one, then the
bottom line and the middle line shows that λ

nI−A is not one to one. If (λ I−A) is not onto,
then the top line and the middle line show that λ

nI−An is not onto. Thus λ
n ∈ σ (An). ■

Definition 17.1.7 σ (A) is closed and bounded. Let r (A) denote the spectral radius
defined as max{|λ | : λ ∈ σ (A)}
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It is very important to have a description of this spectral radius. The following famous
result is due to Gelfand.

Theorem 17.1.8 Let A ∈L (X ,X). Then r (A) = limn→∞ ∥An∥1/n.

Proof: Let λ ∈ σ (A). By Proposition 17.1.6 λ
n ∈ σ (An) and so by Proposition 17.1.5,

|λ n|= |λ |n ≤ ∥An∥ . Thus for λ ∈ σ (A) ,

|λ | ≤ lim inf
n→∞
∥An∥1/n so r (A)≤ lim inf

n→∞
∥An∥1/n (17.6)

But also, from Proposition 17.1.5, for |λ | > ∥A∥ ,(λ I−A)−1 = ∑
∞
k=0

Ak

λ
k+1 . By Corollary

15.2.3 about uniqueness of the Laurent series, the above formula for the Laurent series
must hold for all |λ | > r (A). By the root test, Theorem 1.12.1, it must be the case that if

|λ | > r (A) , then limsupn→∞

∥∥∥ An

λ
n+1

∥∥∥1/n
= 1
|λ | limsupn→∞ ∥An∥1/n ≤ 1. Therefore, if |λ | >

r (A) , it follows that limsupn→∞ ∥An∥1/n ≤ |λ | . This being true for all such λ implies with
17.6 that r (A)≥ limsupn→∞ ∥An∥1/n ≥ liminfn→∞ ∥An∥1/n ≥ r (A) .■

17.2 Functions of Linear Transformations
This will all be based on the theorems about existence of cycles, stated here for conve-
nience.

Theorem 17.2.1 Let K1,K2, · · · ,Km be disjoint compact subsets of an open set Ω

in C. Then there exist continuous, closed, bounded cycles
{

Γ j
}m

j=1 for which Γ∗j ∩Kk = /0
for each k, j,Γ∗j ∩Γ∗k = /0, Γ∗j ⊆ Ω. Also, if p ∈ Kk and j ̸= k, n(Γk, p) = 1, n(Γ j, p) = 0
so if p is in some Kk, ∑

m
j=1 n(Γ j, p) = 1 each Γ j being the union of oriented simple closed

curves, while for all z /∈ Ω,∑m
k=1 n(Γk,z) = 0. Also, if p ∈ Γ∗j , then for i ̸= j,n(Γi, p) = 0.

One can add in the compact sets Γ∗k to the list of disjoint compact sets and obtain the
following corollary. Essentially, what this does is to change each Γk a little bit, getting Γ̂k
with the same properties but also n

(
Γ̂k, p

)
= 0 if p ∈ Γ∗k .

Corollary 17.2.2 In the context of Theorem 15.4.2, there exist continuous, closed and
bounded cycles

{
Γ̂ j
}m

j=1 having exactly the same properties as the Γ j above but also with

the property that, n
(
Γ̂ j,z

)
= 0 if z is in any of the Γ∗i even if i = j. Thus as before, if p is

in some Kk,∑
m
j=1 n

(
Γ̂ j, p

)
= 1 each Γ̂ j being the union of oriented simple closed curves,

while for all z /∈ Ω, ∑
m
k=1 n

(
Γ̂k,z

)
= 0.

How to think of this? The Γk go counter clockwise around the Kk and so do the Γ̂k
but these are “inside” the Γk. All that given above in terms of winding numbers is just the
precise way to express this idea.

Let A ∈L (X ,X) and suppose σ (A) = ∪n
k=1Kk where the Kk are disjoint compact sets.

Let δ be small enough that no point of any Kk is within δ of any other K j as in the proof of
Theorem 15.4.2. Let the open set containing K j be given by U j ≡ K j +B(0,δ/2) , defined
as all numbers in C of the form k+ d where |d| < δ

2 and k ∈ K j. Let and Γ∗j ⊆ U j also
where Γ j is an oriented contour for which n(Γ j,z) = 1 for all z ∈ K j. In addition to this, the
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open sets just described are disjoint. Now let fk (z) = 1 on Uk and let it be 0 everywhere
else. Thus fk is not analytic on C but it is analytic on ∪ jU j ≡Ω and Ω contains σ (A).

Now fk (λ )(λ I−A)−1 is not analytic on Ω because Ω contains σ (A).
There is a general notion of finding functions of linear operators. First recall the fol-

lowing corollary of the Cauchy integral formula.

Corollary 17.2.3 Let Ω be an open set (note that Ω might not be simply connected
or even connected) and let γk : [ak,bk]→ Ω, k = 1, · · · ,m, be closed, continuous and of
bounded variation. Suppose also that ∑

m
k=1 n(γk,z) = 0 for all z /∈ Ω and ∑

m
k=1 n(γk,z) is

an integer for z ∈Ω. Then if f : Ω→ X is analytic, ∑
m
k=1

∫
γk

f (w)dw = 0. Thus if Γ is the
sum of these oriented curves,

∫
Γ

f (w)dw = 0.

Definition 17.2.4 Let A∈L (X ,X) and let Ω be an open set which contains σ (A) .
Let Γ be a cycle which has Γ∗ ⊆Ω∩σ (A)C , and suppose that

1. n(Γ,z) = 1 if z ∈ σ (A).

2. n(Γ,z) is an integer if z ∈Ω.

3. n(Γ,z) = 0 if z /∈Ω.

Then if f is analytic on Ω, define f (A)≡ 1
2πi
∫

Γ
f (λ )(λ I−A)−1 dλ .

First of all, why does this make sense for things which have another meaning? In
particular, why does it make sense if λ

n = f (λ ) where n≥ 0? Is An correctly given by this
formula? If not, then this isn’t a very good way to define f (A). This involves the following
theorem which says that if you look at f (A)g(A) defined above, it gives the same thing as
the above applied to f (λ )g(λ ).

Theorem 17.2.5 Suppose Ω⊇ σ (A) where Ω is an open set. Let Γ be an oriented
cycle, the union of oriented simple closed curves such that n(Γ,z) = 1 if z ∈ σ (A) ,n(Γ,z)
is an integer if z ∈Ω, and n(Γ,z) = 0 if z /∈Ω. Then define for f ,g analytic on Ω,

f (A)≡ 1
2πi

∫
Γ

f (λ )(λ I−A)−1 dλ , g(A)≡ 1
2πi

∫
Γ

g(λ )(λ I−A)−1 dλ

It follows that f (A)g(A) = 1
2πi
∫

Γ
f (λ )g(λ )(λ I−A)−1 dλ .

Proof: From Corollary 17.2.2, let Γ̂ be such that for λ ∈ Γ, n
(
Γ̂,λ

)
= 0 but the defi-

nition of g(A) works as well for Γ̂. This is an application of Corollary 17.2.3. You get the
same thing for g(A) , f (A) with either cycle Γ̂ or Γ. Then using Lemma 17.1.1 as needed,

−4π
2 f (A)g(A) =

(∫
Γ

f (λ )(λ I−A)−1 dλ

)(∫
Γ̂

g(µ)(µI−A)−1 dµ

)
=

∫
Γ

∫
Γ̂

f (λ )g(µ)(λ I−A)−1 (µI−A)−1 dµdλ

Using the resolvent identity 17.1, this equals∫
Γ

∫
Γ̂

f (λ )g(µ)
1

µ−λ

[
(λ I−A)−1− (µI−A)−1

]
dµdλ
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Now using the Fubini theorem, Theorem 14.4.9,

=
∫

Γ

f (λ )(λ I−A)−1
∫

Γ̂

g(µ)
1

µ−λ
dµdλ +

∫
Γ̂

g(µ)(µI−A)−1
∫

Γ

f (λ )
1

λ −µ
dλdµ

The first term is 0 from Cauchy’s integral formula, Theorem 14.11.1 applied to the indi-
vidual simple closed curves whose union is Γ because the winding number n

(
Γ̂,λ

)
= 0.

Thus the inside integral vanishes. From the Cauchy integral formula, the second term is
2πi

∫
Γ̂

g(µ)(µI−A)−1 f (µ)dµ and so

f (A)g(A) =
1

2πi

∫
Γ̂

f (µ)g(µ)(µI−A)−1 dµ =
1

2πi

∫
Γ

f (λ )g(λ )(λ I−A)−1 dλ ■

Now consider the case that f (λ ) = λ . Is f (A), defined in terms of integrals as above,
equal to A? If so, then from the theorem just shown, λ

n used in the integral formula does
lead to An. Thus one considers 1

2πi
∫

Γ
λ (λ I−A)−1 dλ where Γ is a cycle such that n(Γ,z)=

1 if z ∈ σ (A), n(Γ,z) is an integer if z ∈Ω, and n(Γ,z) = 0 if z /∈Ω,Γ∗∩σ (A) = /0.
Let Ω̂≡ σ (A)C and let γ̂R be a large circle of radius R > ∥A∥ oriented clockwise, which

includes σ (A)∪Γ∗on its inside.
Consider the following picture in which σ (A) is the union of the two compact sets,

K1,K2 which are contained in the closed curves shown and Γ is the union of the oriented
cycles Γi. A similar picture would apply if there were more than two Ki. All that is of
interest here is that there is a cycle Γ oriented such that for all z ∈ σ (A) ,n(Γ,z) = 1,
n(Γ,z) is an integer if z∈ Ω̂, and γ̂R is a large circle oriented clockwise as shown, R > ∥A∥.

γ̂R

K1

Γ1

K2

Γ2

Then in this case, f (λ ) = λ is analytic everywhere and Ω̂ ≡ σ (A)C . Let γR ≡ −γ̂R.
Thus, by Corollary 17.2.3, 1

2πi
∫

Γ
f (λ )(λ I−A)−1 dλ + 1

2πi
∫

γ̂R
f (λ )(λ I−A)−1 dλ = 0 and

so, f (A) ≡ 1
2πi
∫

Γ
f (λ )(λ I−A)−1 dλ = 1

2πi
∫

γR
f (λ )(λ I−A)−1 dλ . The integrand in the

integral on the right is λ ∑
∞
k=0

Ak

λ
k+1 for λ ∈ γ∗R and convergence is uniform on γ∗R. Then all

terms vanish except the one when k = 1 because all the other terms have primitives. The
uniform convergence implies that the integral of the sum is the sum of the integrals and
there is only one which survives. Therefore,

f (A)≡ 1
2πi

∫
γR

A
λ

dλ = A

It follows from Theorem 17.2.5 that if f (λ ) = λ
n, then f (A) = An. This shows that it is

not unreasonable to make this definition. Similar reasoning yields

f (A) = I if f (λ ) = λ
0 = 1. (17.7)
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We may not be able to explicitly evaluate f (A) in case f (λ ) is not analytic off σ (A) but
at least the definition is reasonable and seems to work as it should in the special case when
f (A) is known by another method, say a power series. These details about a power series
are left to the reader.

With Theorem 17.2.5, one can prove the spectral mapping theorem.

Theorem 17.2.6 Suppose Ω ⊇ σ (A) where Ω is an open set and let f be analytic
on Ω. Let Γ be an oriented cycle, the union of oriented simple closed curves such that
n(Γ,z) = 1 if z ∈ σ (A) ,n(Γ,z) is an integer if z ∈Ω, and n(Γ,z) = 0 if z /∈Ω. Then for

f (A)≡ 1
2πi

∫
Γ

f (λ )(λ I−A)−1 dλ ,

it follows that σ ( f (A)) = f (σ (A))

Proof: Let µ ∈ Ω. µ → f (λ )− f (µ)
λ−µ

has a removable singularity at λ so it is equal to an
analytic function of µ called g(µ). Recall why this is. Since f is analytic at λ , we know
that for µ near λ

f (µ) =
∞

∑
k=0

ak (µ−λ )k

and so, when this is substituted into the difference quotient, one obtains the power series
for an analytic function called g(µ).

Then f (λ )− f (µ) = g(µ)(λ −µ). From Theorem 17.2.5,

f (A)− f (λ ) I =
1

2πi

∫
Γ

( f (µ)− f (λ ))(µI−A)−1 dµ

=
1

2πi

∫
Γ

g(µ)(µ−λ )(µI−A)−1 dµ

= g(A)(A−λ I) = (A−λ I)g(A)

If λ ∈ σ (A) then either (A−λ I) fails to be one to one or it fails to be onto. If (A−λ I)
fails to be one to one, then f (A)− f (λ ) I also fails to be one to one and so f (λ )∈σ ( f (A)).
If (A−λ I) fails to be onto, then f (A)− f (λ ) I also fails to be onto and so f (λ )∈σ ( f (A)).
In other words, f (σ (A))⊆ σ ( f (A)).

Now suppose ν ∈σ ( f (A)) . Is ν = f (λ ) for some λ ∈σ (A)? If not, then ( f (λ )−ν)−1

is analytic function of λ ∈ σ (A) and by continuity, this must hold in an open set Ω̂ which
contains σ (A). Therefore, using this open set in the above considerations, it follows from
Theorem 17.2.5 that for Γ pertaining to this new open set as above,

( f (A)−ν)−1 ( f (A)−ν) =
1

2πi

∫
Γ

( f (µ)−ν)−1 ( f (µ)−ν)(µI−A)−1 dµ = I

and so ν was not really in σ ( f (A)) after all. Hence the equality holds. ■

17.3 Invariant Subspaces
This is where we need the machinery of Theorem 17.2.1. Up till now, we could have
done most things by simply considering large circles containing σ (A). Here the idea is to
consider pieces of σ (A). Let σ (A) = ∪n

i=1Ki where the Ki are disjoint and compact. Let

δ i = min
{

dist
(
z,∪ j ̸=iK j

)
: z ∈ Ki

}
> 0
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and let 0 < δ < min{δ i, i = 1, · · · ,n}. Then letting Ui ≡ Ki +B(0,δ ) , it follows that the
Ui are disjoint open sets. Let Γ j be a oriented cycle such that for z ∈ K j,n(Γ j,z) = 1 and
for z ∈ Ki, i ̸= j,n(Γ j,z) = 0, and if z ∈ Γ∗j , then n(Γi,z) = 0. Let Γ be the sum of these
oriented cycles. Thus n(Γ,z) = 0 if z /∈Ω≡ ∪n

i=1Ui and Ui ⊇ Γ∗i . Define

fi (λ )≡
{

1 on Ui
0 on U j for j ̸= i (17.8)

Thus fi is analytic on Ω. Then fi (A) ≡ Pi ≡ 1
2πi
∫

Γ
fi (λ )(λ I−A)−1 dλ . By the spectral

mapping theorem, Theorem 17.2.6,

σ ( fi (A)) = fi (σ (A)) = {0,1} (17.9)

Note that for λ ∈ ρ (A) ,A(λ I−A)−1 = (λ I−A)−1 A as can be seen by multiplying
both sides by (λ I−A) and observing that the result is A on both sides. Then since (λ I−A)
is one to one, the identity follows. Now let Pk ∈ L (X ,X) be the linear transformation
given by Pk =

1
2πi
∫

Γk
(λ I−A)−1 dλ .

From Lemma 17.1.1,

APk = A
1

2πi

∫
Γk

(λ I−A)−1 dλ =
1

2πi

∫
Γk

A(λ I−A)−1 dλ

=
1

2πi

∫
Γk

(λ I−A)−1 Adλ =
1

2πi

(∫
Γk

(λ I−A)−1 dλ

)
A = PkA (17.10)

With these introductory observations, the following is the main result about invariant
subspaces. First is some notation.

Definition 17.3.1 Let X be a vector space and let Xk be a subspace. Then X =

∑
n
k=1 Xk means that every x ∈ X can be written in the form x = ∑

n
k=1 xk,xk ∈ Xk. We write

X =
n⊕

k=1

Xk if whenever 0 = ∑k xk, it follows that each xk = 0. In other words, we use the

new notation when there is a unique way to write each vector in X as a sum of vectors in
the Xk. When this uniqueness holds, the sum is called a direct sum. In case AXk ⊆ Xk, we
say that Xk is A invariant and Xk is an invariant subspace.

Theorem 17.3.2 Let σ (A) = ∪n
k=1Kk where K j ∩Ki = /0, each K j being compact.

There exist Pk ∈L (X ,X) for each k = 1, · · · ,n such that

1. I = ∑
n
k=1 Pk

2. PiPj = 0 if i ̸= j

3. P2
i = Pi for each i

4. X =
n⊕

k=1

Xk where Xk = PkX and each Xk is a Banach space.

5. AXk ⊆ Xk which says that Xk is A invariant.

6. Pkx = x if x ∈ Xk. If x ∈ X j, then Pkx = 0 if k ̸= j.
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Proof: Consider 1. where fk is in 17.8.

n

∑
k=1

Pk =
1

2πi

∫
Γ

n

∑
k=1

fk (λ )(λ I−A)−1 dλ =
1

2πi

∫
Γ

1(λ − I)−1 dλ = I

from 17.7. Consider 2. Let λ be on Γi and µ on Γ j. Then from Theorem 17.2.5

PiPj =
1

2πi

∫
Γ

fi (λ ) f j (λ )(λ I−A)−1 dλ =
1

2πi

∫
Γ

0dλ = 0

Now from 1., I = ∑
n
i=1 Pi and so, multiplying both sides by Pi,Pi = P2

i .This shows 3.
Consider 4. Note that from 1. X = ∑

n
k=1 Xk where Xk ≡ PkX . However, this is a direct

sum because if 0 = ∑k Pkxk, then doing Pj to both sides and using part 2., 0 = P2
j x j = Pjx j

and so the summands are all 0 since j is arbitrary. As to Xk being a Banach space, suppose
Pkxn→ y. Is y∈ Xk? Pkxn = Pk (Pkxn) and so, by continuity of Pk, this converges to Pky∈ Xk.
Thus Pkxn → y and Pkxn → Pky so y = Pky and y ∈ Xk. Thus Xk is a closed subspace of a
Banach space and must therefore be a Banach space itself.

5. follows from 17.10. If Pkx ∈ Xk, then APkx = PkAx ∈ Xk. Hence A : Xk→ Xk.
Finally consider 6. Suppose x ∈ Xk. Then x = Pky. Then Pkx = P2

k y = Pky = x so for
x ∈ Xk,Pkx = x and Pk restricted to Xk is just the identity. If Pjx is a vector of X j, and k ̸= j,
then PkPjx = 0x = 0. ■

Note that these Pk are not dependent on the choice of the particular choice of open sets
Uk containing Kk. If you had two sets of these Uk,Ûk, then one could obtain Γ̂k such that
Γ̂∗k ⊆Uk ∩Ûk such that for p ∈ Γ∗j , Γ̂

∗
j ,n(Γk, p) = 0. f̂k = fk on each Γ̂∗j . As in the above,

if P̂k are the new projection maps, P̂kPj = 0,PkP̂j = 0,PkP̂k = P̂k. Then ∑
n
k=1 Pk = ∑

n
k=1 P̂k.

Multiply by Pj to obtain Pj = P̂j.
From the spectral mapping theorem, Theorem 17.2.6, σ (Pk) = σ ( fk (A)) = {0,1} be-

cause fk (λ ) has only these two values. Then the following is also obtained

Theorem 17.3.3 Let n > 1,σ (A) =∪n
k=1Kk where the Kk are compact and disjoint.

Let Pk be the projection map defined above and Xk ≡ PkX. Then define Ak ≡ APk. The
following hold

1. Ak : Xk→ Xk,Akx = Ax for all x ∈ Xk so Ak is just the restriction of A to Xk.

2. σ (Ak) = {0,Kk} .

3. A = ∑
n
k=1 Ak.

4. If we regard Ak as a mapping A : Xk→ Xk, then σ (Ak) = Kk.

Proof: Letting fk (λ ) be the function in 17.8 equal to 1 on Uk,

g(λ )≡ λ , Ak =
1

2πi

∫
Γ

fk (λ )g(λ )(λ I−A)−1 dλ

and so, by the spectral mapping theorem,

σ (Ak) = σ ( fk (A)g(A)) = fk (σ (A))g(σ (A)) = {0,Kk}

because the possible values for fk (λ )g(λ ) for λ ∈ σ (A) are {0,Kk}. This shows 2. Part
1. is obvious from Theorem 17.3.2. So is Part 3. Consider the last claim about Ak.
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If µ /∈ Kk then in all of the above, Uk could have excluded µ. Assume this is the case.
Thus λ → 1

µ−λ
is analytic on Uk. Therefore, using Theorem 17.2.5 applied to the Banach

space Xk,

(µI−A)−1 =
1

2πi

∫
Γk

1
µ−λ

(λ I−A)−1 dλ

and so µ /∈ σ (Ak) . Therefore, Kk ⊇ σ (Ak). If µI − A fails to be onto, then this must
be the case for some Ak. Here is why. If y /∈ (µI−A)(X) , then there is no x such that
(µI−A)x = y. However, y = ∑k Pky. If each Ak is onto, then there would be xk ∈ Xk such
that (µI−Ak)xk = yk. Recall that Pkxk = xk. Therefore, (µPk−APk)xk = Pky, and also
(µI−A)(Pkxk) = Pky. Summing this on k,(µI−A)∑k xk = ∑k Pky = y and it would be the
case that (µI−A) is onto. Thus if (µI−A) is not onto, then µI−Ak : Xk→ Xk is not onto
for some k. If µI−A fails to be one to one, then there exists x ̸= 0 such that (µI−A)x = 0.
However, x = ∑k xk where xk ∈ Xk. Then, since Ak is just the restriction of A to Xk and Pk
is the restriction of I to Xk,∑k (µPk−Ak)xk = 0 where I refers to Xk. Now recall that this
is a direct sum. Hence (µPk−Ak)xk = (µI−Ak)xk = 0. If each µI−Ak is one to one,
then each xk = 0 and so it follows that x = 0 also, it being the sum of the xk. It follows
that σ (A)⊆ ∪kσ (Ak) and so σ (A)⊆ ∪kσ (Ak)⊆ ∪kKk = σ (A) , σ (Ak)⊆ Kk, and so you
cannot have σ (Ak) ⊊ Kk, proper inclusion, for any k since otherwise, the above could not
hold. ■

It might be interesting to compare this with the algebraic approach to the same problem
in Linear Algebra. That approach in Linear Algebra has the advantage of dealing with arbi-
trary fields of scalars and is based on polynomials, the division algorithm, and the minimum
polynomial where this in this chapter is limited to the field of complex numbers. However,
the approach in this chapter based on complex analysis applies to arbitrary Banach spaces
whereas the algebraic methods only apply to finite dimensional spaces. Isn’t it interesting
how two totally different points of view lead to essentially the same result about a direct
sum of invariant subspaces?

Another thing to note is that aside from having σ (A) a compact set, it was not all that
important to know that A is a bounded linear operator. Everything was done in terms of the
resolvent (λ I−A)−1 . This suggests that all of the above theory generalizes to unbounded
closed operators of various kinds. A case of this is considered next.

17.4 Sectorial Operators and Analytic Semigroups
In solving ordinary differential equations, the main result involves the fundamental matrix
Φ(t) where Φ′ (t) = AΦ(t) ,Φ(0) = I, or Φ′ (t)+AΦ(t) = 0,Φ(0) = I and the variation
of constants formula. Recall that Φ(t + s) = Φ(t)Φ(s). This was discussed starting with
Problem 18 on Page 399. This idea generalizes to the situation where A is a closed densely
defined operator defined on D(A) ⊆ X , a Banach space under some conditions which are
sufficiently general to include what was done above with A an n× n matrix as a special
case. The identity Φ(t)Φ(s) = Φ(t + s) holds for any t,s ∈ R and so is called a group
of transformations. However, in the more general case, the identity only holds for t,s ≥ 0
which is why it is called a semigroup. In this more general setting, I will call it S (t). I am
mostly following the presentation in Henry [21] in this short introduction. In what follows
H will be a Banach space unless specified to be a Hilbert space. This new material differs
in letting A be only a closed densely defined operator. It might not be a bounded operator.
Thus A : D(A)⊆ H→ H where the graph of A is a closed subset of H×H.

These semigroups are useful in considering various partial differential equations which
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can be considered just like they were ordinary differential equations in the form u′+Au =
f (u). The semigroups discussed here, when applied to actual examples, have the property
of allowing one to begin with a very un-smooth initial condition, something in H, and
making S (t)x in D(A) for all t > 0. When applied to partial differential equations, this
typically has the effect of making a solution t → S (t)x smoother for positive t than the
initial condition. As in the case of continuous linear maps, there is a definition of the
resolvent set.

Definition 17.4.1 For A a closed densely defined linear operator, ρ (A) is defined
as {

λ ∈ C : (λ I−A)−1 ∈L (X ,X)
}

thus λ I−A is one to one and onto and (λ I−A)−1 is continuous for all λ ∈ ρ (A).

Lemma 17.4.2 The resolvent identity holds for µ,λ ∈ ρ (A) .

(λ I−A)−1 (µI−A)−1 = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
If for each x, supλ

∥∥∥(λ I−A)−1 x
∥∥∥ < ∞ for all λ near µ ∈ ρ (A) , then λ → (λ I−A)−1 is

analytic for λ on its resolvent set.

Proof: The identity holds if and only if

(λ I−A)−1 (µI−A)−1 (µI−A) = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
(µI−A)

if and only if

(λ I−A)−1 = (µ−λ )−1
(
(λ I−A)−1 (µI−A)− I

)
= (µ−λ )−1

(
(λ I−A)−1 ((µ−λ ) I +(λ I−A))− I

)
if and only if

(µ−λ )(λ I−A)−1 = (λ I−A)−1 ((µ−λ ) I +(λ I−A))− I

= (µ−λ )(λ I−A)−1 + I− I

which is so.
Then if one assumes that for each x ∈H, supλ

∥∥∥(λ I−A)−1 x
∥∥∥< ∞ for all λ near µ, the

uniform boundedness theorem implies
∥∥∥(λ I−A)−1

∥∥∥ is bounded for λ near µ . From this, it

follows that this resolvent λ → (λ I−A)−1 is analytic for λ on its resolvent set. Indeed the
resolvant identity shows that λ → (λ I−A)−1 is continuous and then the resolvent identity

shows that
(
(λ I−A)−1

)′
=−

(
(λ I−A)−1

)2
. ■

As to the resolvent set, the following describes it in the case of sectorial operators.

Definition 17.4.3 Let φ < π/2 and for a ∈R, let Saφ denote the sector in the com-
plex plane

{z ∈ C\{a} : |arg(z−a)| ≤ π−φ}
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This sector is as shown below.

Saφ

aφ

A closed, densely defined linear operator A is called sectorial if for some sector as
described above, it follows that for all λ ∈ Saφ ,

(λ I−A)−1 ∈L (H,H) , (17.11)

and for some M ∥∥∥(λ I−A)−1
∥∥∥≤ M
|λ −a|

(17.12)

The following perturbation theorem is very useful for sectorial operators. I won’t use it
here, but in applications of this theory, it is useful. First note that for λ ∈ Saφ ,

A(λ I−A)−1 =−I +λ (λ I−A)−1 (17.13)

Also, if x ∈ D(A) ,

(λ −A)−1 Ax =−x+λ (λ I−A)−1 x (17.14)

This follows from algebra and noting that λ I−A maps D(A) onto H because (λ I−A)−1 ∈
L (H,H). Thus the above is true if and only if

A =
(
−I +λ (λ I−A)−1

)
(λ I−A)

which is obviously true. 17.14 is similar. Thus from 17.13,∥∥∥A(λ I−A)−1
∥∥∥≤ 1+ |λ |

∥∥∥(λ I−A)−1
∥∥∥≤ 1+ |λ | M

|λ −a|
≤C (17.15)

for some constant C whenever |λ | is large enough and in Saφ .

Proposition 17.4.4 Suppose A is a sectorial operator as defined above so it is a densely
defined closed operator on D(A)⊆ H which satisfies∥∥∥A(λ I−A)−1

∥∥∥≤C (17.16)

whenever |λ | ,λ ∈ Saφ , is sufficiently large and suppose B is a densely defined closed oper-
ator such that D(B)⊇ D(A) and for all x ∈ D(A) ,

∥Bx∥ ≤ ε ∥Ax∥+K ∥x∥ (17.17)

for some K, where εC < 1. Then A+B is also sectorial.
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Proof: I need to consider (λ I− (A+B))−1 . This equals((
I−B(λ I−A)−1

)
(λ I−A)

)−1
. (17.18)

The issue is whether this makes any sense for all λ ∈ Sbφ for some b∈R. Let b > a be very
large so that if λ ∈ Sbφ , then 17.16 holds. Then from 17.17, it follows that for ∥x∥ ≤ 1,∥∥∥B(λ I−A)−1 x

∥∥∥ ≤ ε

∥∥∥A(λ I−A)−1 x
∥∥∥+K

∥∥∥(λ I−A)−1 x
∥∥∥

≤ εC+K/ |λ −a|

and so if b is made sufficiently large and λ ∈ Sbφ , then for all ∥x∥ ≤ 1,∥∥∥B(λ I−A)−1 x
∥∥∥≤ εC+K/ |λ −a|< r < 1

Therefore, for such b,
(

I−B(λ I−A)−1
)−1

=∑
∞
k=0

(
B(λ I−A)−1

)k
exists and so for such

b, the expression in 17.18 makes sense and equals (λ I−A)−1
(

I−B(λ I−A)−1
)−1

and
furthermore, ∥∥∥∥(λ I−A)−1

(
I−B(λ I−A)−1

)−1
∥∥∥∥≤ M
|λ −a|

1
1− r

≤ M′

|λ −b|

by adjusting the constants because M
|λ−a|

|λ−b|
1−r is bounded for λ ∈ Sbφ . ■

In finite dimensions, this kind of thing just shown always holds. There you have D(A)
is the whole space typically and B will satisfy such an inequality in 17.17. The following
example shows that all the bounded operators are sectorial.

Example 17.4.5 If A ∈L (H,H) , then A is sectorial.

The spectrum σ (A) is bounded by ∥A∥ and so there is clearly a sector of the above
form contained in the resolvent set of A. As to the estimate 17.12, let a be larger than 2∥A∥
and let Saφ be contained in the resolvent set. Then for λ ∈ Saφ , |λ |> 2∥A∥ and so∥∥∥(λ I−A)−1

∥∥∥= |λ |−1

∥∥∥∥∥
(

I− A
λ

)−1
∥∥∥∥∥≤ |λ |−1

∥∥∥∥∥ ∞

∑
k=0

(
A
λ

)k
∥∥∥∥∥≤ |λ |−1 2

Now for λ ∈ Saφ ,
∣∣∣λ−a

λ

∣∣∣≤M for some constant M and so
∥∥∥(λ I−A)−1

∥∥∥≤ 2M
|λ−a| Thus this

theory includes the case of ordinary differential equations in Rp. You might note that both
A and −A will be sectorial in this case.

Definition 17.4.6 For a sectorial operator as defined above, let the contour γ be as
shown next where the orientation is also as shown by the arrow, a being the center of the
circle having radius d.

Saφγd,φ

φ
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The radius of the little circle is not important because the functions to be integrated will
be analytic on Saφ .

Next is a semigroup for t in the open sector described in the following picture. The idea
is to consider a region Sr which includes t > 0. The angle between the dotted lines and the
solid lines emanating up and down from 0 will be a right angle. Thus the angle between
the horizontal x axis and either of the dotted lines is π/2−φ . The interest will be in t in
the sector Sr between the two solid lines.

Sr ≡
{

t : 0≤ |arg(t)| ≤ r <
π

2
−φ

}

0

t

φ π/2−φ
Sr

Definition 17.4.7 For t ∈ Sr define

S (t)≡ 1
2πi

∫
γ

eλ t (λ I−A)−1 dλ (17.19)

Also define S (0) ≡ I. Here γ = γd,φ . From the Cauchy integral theorem it will not matter
which d is used so one picks a convenient d.

Lemma 17.4.8 For t ∈ Sr, and λ on the either of the straight sides of γ, there exists
δ r > 0 such that ∣∣∣eλ t

∣∣∣≤ ∣∣eat ∣∣e−δ r |λ−a||t| = eaRe(t)e−δ r |λ−a||t| (17.20)

Also the integral of the above definition 1
2πi
∫

γ
eλ t (λ I−A)−1 dλ exists. Let a′ > a, and let

γ ′ be γ +(a′−a) so it just shifts to contour to the right.

Then a similar inequality to 17.20 will hold with a replaced with a′. Also

1
2πi

∫
γ

eλ t (λ I−A)−1 dλ =
1

2πi

∫
γ ′

eλ t (λ I−A)−1 dλ (17.21)

Proof: On either of the straight lines of γ , λ = yw+ a,y positive, where |w| = 1,y =
|λ −a| and arg(w) is either π−φ or 3π

2 −φ . Therefore,∣∣∣eλ t
∣∣∣= ∣∣eat ∣∣eRe(tyw) =

∣∣eat ∣∣e|y||t|cos(arg(tw)) =
∣∣eat ∣∣e|y||t|cos(arg(t)+arg(w))
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Now arg(tw) = arg(t)+arg(w)∈ (π−φ)+[−r,r]∈
(

π

2 ,
3π

2

)
on the top line and arg(tw)∈

3π

2 − φ + [−r,r] ∈
(

π

2 ,
3π

2

)
on the bottom line. Either way, there exists δ r > 0 such that

cos(arg(tw)) ≤ −δ r. This shows 17.20 and implies the existence of the integral defining
S (t).

For the last claim, consider the part of γ,γ ′ contained in TR ≡ {z : |Im(z)| ≤ R}. Let hR
be the horizontal parts of the oriented closed contours shown below and let γR and γ ′R be
those parts of γ,γ ′ in TR.

Then from the Cauchy integral theorem,∣∣∣∣−∫
γR

eλ t (λ I−A)−1 dλ +
∫

γ ′R

eλ t (λ I−A)−1 dλ +
∫

hR

eλ t (λ I−A)−1 dλ

∣∣∣∣= 0

From the resolvent estimate as R→ ∞ the last integral in the above converges to 0 and so,
passing to a limit one obtains

∣∣∣∫γ ′ e
λ t (λ I−A)−1 dλ −

∫
γ

eλ t (λ I−A)−1 dλ

∣∣∣= 0. ■

Lemma 17.4.9 Let f (λ ) ,A f (y) be bounded, | f (λ )| , |A f (λ )|< M and continuous on
γ∗d,φ and have values in D(A). Then A

∫
γd,φ

eλ t f (λ )dλ =
∫

γd,φ
eλ tA f (λ )dλ if t ∈ Sr.

Proof: This follows from the above estimate and noting that for |λ | large the integrand
is dominated by an exponential with negative exponent. Therefore, one can approximate the
integrals over those straight segments with integrals over segments of finite length. Then
using the obvious conclusion for Riemann sums followed by passing to the limit using A is
closed, the desired equation follows. ■

Because of this lemma, I will move A into and out of the integrals which occur in what
follows.

Next is consideration of the above definition along with estimates.

Lemma 17.4.10 The above of S(t) of Definition 17.4.7

S (t)≡ 1
2πi

∫
γ

eλ t (λ I−A)−1 dλ

is well defined for t ∈ Sr. Also there is a constant Mr such that

∥S (t)∥ ≤Mr
∣∣eat ∣∣= MreaRe(t) (17.22)

for every t ∈ Sr such that |arg t| ≤ r <
(

π

2 −φ
)
. If Sr is the sector just described, t such that

|arg t| ≤ r <
(

π

2 −φ
)
, then for any x ∈ H,

lim
t→0,t∈Sr

S (t)x = x (17.23)

Also, for |arg t| ≤ r <
(

π

2 −φ
)
∥AS (t)∥ ≤Mr

∣∣eat ∣∣ 1
|t|

+Nr
∣∣eat ∣∣ |a| (17.24)
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Proof: Since S (t) does not depend on d > 0, we can take d = 1/ |t| . Then the circu-

lar part of the contour is λ = a+ 1
|t|e

iθ ,dλ = i
|t|e

iθ dθ . Then eλ t = e
(

a+ 1
|t| e

iθ
)
(|t|(eiarg t))

=

eateei(θ+arg(t))
. Then on the circle which is part of γ the contour integral equals

1
2π

∫
π−φ

φ−π

eateei(θ+arg(t))
((

a+
1
|t|

eiθ
)

I−A
)−1 1
|t|

eiθ dθ

≤ e
2π

∫
π−φ

φ−π

∣∣eat ∣∣ M∣∣∣ 1
|t|e

iθ
∣∣∣ 1
|t|

dθ =
Me
2π

∫
π−φ

φ−π

∣∣eat ∣∣dθ < Me
∣∣eat ∣∣≡ M̂eaRe(t) (17.25)

where M̂ does not depend on t. The estimate 17.12 was used to obtain the inequality. What
about the rest of the contour defining S (t)? Letting arg(w) be chosen as either π − φ or
3π

2 −φ , λ = yw+a where y = |λ −a| . Then on either straight segment we have

1
2πi

∫
∞

1/|t|
e(yw+a)t ((yw+a) I−A)−1 wdy, |w|= 1

and the bottom is similar. Thus, from Lemma 17.4.8 and the resolvent estimate 17.12 we
can dominate these two by an expression of the form

1
π

∫
∞

1/|t|

∣∣eat ∣∣M
y

e−δ ry|t|dy =
M
π

∣∣eat ∣∣ 1
|t|

∫
∞

1
e−δ ru |t|du

=
M
π

∣∣eat ∣∣∫ ∞

1
e−δ rudu≤ M

π

1
δ r

∣∣eat ∣∣
Taking u = y |t|. This together with 17.25 gives 17.22. In particular, ∥S (t)∥e−at is bounded
for t ∈ [0,∞). As noted in Lemma 17.4.9. It was important that |arg t| ≤ r <

(
π

2 −φ
)
.

Now let x ∈ D(A) . From 17.14,

eλ t

λ
(λ −A)−1 Ax+

eλ t

λ
x = eλ t (λ I−A)−1 x (17.26)

On the circular part of the contour, λ = a+ 1
|t|e

iθ . The contour integral is of the form

∫
π−φ

φ−π

eateei(θ+arg(t)) 1
a+ 1

|t|e
iθ

((
a+

1
|t|

eiθ
)

I−A
)−1

Ax
i
|t|

eiθ dθ

which is dominated by

e
∣∣eat ∣∣∫ π−φ

φ−π

1∣∣∣a+ 1
|t|e

iθ
∣∣∣ M∣∣∣ 1
|t|e

iθ
∣∣∣ ∥Ax∥ 1

|t|
≤ eatM̂ ∥Ax∥

∫
π−φ

φ−π

|t|
|a |t|+ eiθ |

dθ

which converges to 0 as t→ 0. On the other part of the contour, λ = yw+a where |w|= 1,
arg(w) = π−φ ,y > 1/ |t|, either of the straight segments are of the form

eat

2πi

∫
∞

1/|t|
eywt 1

yw+a
((yw+a) I−A)−1 wAxdy
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and from Lemma 17.4.8 these two sides are dominated by

|eat |
π

∫
∞

1/|t|
e−δ ry|t| 1

|yw+a|
M
y

dy∥Ax∥

Now letting u = |t|y this equals

|eat |
π

∫
∞

1
e−δ ru 1∣∣∣ u

|t|w+a
∣∣∣ |t|Mu 1

|t|
du∥Ax∥= |e

at |
π

∫
∞

1
e−δ ru |t|

|uw+ |t|a|
M
u

du∥Ax∥

Which converges to 0 as t → 0 in the sector |arg t| ≤ r <
(

π

2 −φ
)
. Thus from 17.26, for

t ∈ Sr

S (t)x = ε (t)+
1

2πi

∫
γ

eλ t

λ
xdλ , lim

t→0
ε (t) = 0 (17.27)

Now approximate γ with a closed contour having a large circular arc of radius R such that
the resulting bounded contour γR has 0 on its inside and∥∥∥∥∥∥∥∥∥

1
2πi

∫
γ

eλ t

λ
xdλ −

=x︷ ︸︸ ︷
1

2πi

∫
γR

eλ t

λ
xdλ

∥∥∥∥∥∥∥∥∥< η (R)

where limR→∞ η (R) = 0. By the Cauchy integral formula, 1
2πi
∫

γR
eλ t

λ
xdλ = x and so, from

this, the above, and 17.27,

∥S (t)x− x∥ ≤

∥∥∥∥∥ε (t)+
1

2πi

∫
γ

eλ t

λ
xdλ − x

∥∥∥∥∥≤ ∥ε (t)∥+η (R)

Let R→ ∞ and then it follows limt→0 ∥S (t)x− x∥ = limt→0 ∥ε (t)∥ = 0. By the first part,
∥S (t)∥ is bounded for small t in Sr so it follows that, since D(A) is dense, then for any
x ∈H, It follows that limt→0,t∈Sr S (t)x = x where t is in the sector Sr given by |arg t| ≤ r <(

π

2 −φ
)
.

Now for |arg t| ≤ r <
(

π

2 −φ
)
, AS (t) = 1

2πi
∫

γε,φ
eλ tA(λ I−A)−1 dλ . From 17.13 this

is
1

2πi

∫
γ

eλ t
(
−I +λ (λ I−A)−1

)
dλ

On the circle, λ = a+ 1
|t|e

iθ and as above, this is

∫
π−φ

φ−π

eateei(θ+arg(t))

(
−I +

(
a+

1
|t|

eiθ
)((

a+
1
|t|

eiθ
)

I−A
)−1

)
i
|t|

eiθ dθ

and by the estimates and letting M > 1, this is dominated by

e
∣∣eat ∣∣∫ π−φ

φ−π

1+M

∣∣∣a+ 1
|t|e

iθ
∣∣∣

1/ |t|

 1
|t|

dθ ≤ e
∣∣eat ∣∣M ∫

π−φ

φ−π

(
1+
∣∣∣a |t|+ eiθ

∣∣∣) 1
|t|

dθ
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≤ e
∣∣eat ∣∣M ∫

π−φ

φ−π

(2+a |t|) 1
|t|

dθ ≤ e
∣∣eat ∣∣M 1

|t|
4π +M2πe

∣∣eat ∣∣ |a| (17.28)

Now consider one of the straight lines. On either of these λ = a+wy where |w| = 1
and y≥ 1/ |t|. Then the contour integral is

eat

2πi

∫
∞

1/|t|
eywt

(
−I +(a+wy)((a+wy) I−A)−1

)
wdy

As earlier, the norm of this is dominated by |e
at |

2π

∫
∞

1/|t| e
−y|t|δ r

(
1+M |a+wy|

|wy|

)
dy =

=
|eat |
2π

∫
∞

1
e−xc(r)

(
1+M

|a+w(x/ |t|)|
|w(x/ |t|)|

)
1
|t|

dx

=
|eat |
2π

∫
∞

1
e−xδ r

(
1+M

|a |t|+wx|
|x|

)
1
|t|

dx≤ |e
at |

2π

(
Mr

1
|t|

)
+Nr |a|

|eat |
2π

Combining this with 17.28 and adjusting constants, ∥AS (t)∥ ≤Mr |eat | 1
|t| +Nr |eat | |a| ■

Also recall that if the contour is shifted to the right slightly, the integral over the shifted
contour, γ ′ coincides with the integral over γ by Lemma 17.4.8. The following is the main
result. Recall that the radius of the circle in γ is not important.

Theorem 17.4.11 Let A be a sectorial operator as defined in Definition 17.4.3 for
the sector Sa,φ . Then there exists a semigroup S (t) for t ∈ |argz| ≤ r <

(
π

2 −φ
)

which
satisfies the following conditions.

1. Then S (t) given above in 17.19 is analytic for t ∈ Sr.

2. For any x ∈ H and t ∈ Sr, then for n a positive integer, S(n) (t)x = AnS (t)x

3. S is a semigroup on the open sector, Sr. That is, for all t,s ∈ Sr,

S (t + s) = S (t)S (s)

4. limt→0,t∈Sr S (t)x = x for all x ∈ H where |arg t| ≤ r <
(

π

2 −φ
)

5. For some constants M,N, if t is positive and real, then it follows that ∥S (t)∥ ≤Meat ,
∥AS (t)∥ ≤Meat 1

|t| +N |eat | |a|

Proof: Consider the first claim. This follows right away from the formula: S (t) ≡
1

2πi
∫

γ
eλ t (λ I−A)−1 dλ . One can differentiate under the integral sign using the dominated

convergence theorem and estimates from Lemma 17.4.9 to obtain

2πiS′ (t)≡
∫

γ

λeλ t (λ I−A)−1 dλ =
∫

γ

eλ t
(

I +A(λ I−A)−1
)

dλ =
∫

γ

eλ tA(λ I−A)−1 dλ

because of Lemma 17.4.9.
Now from Lemma 17.4.9 one can take A out of the integral and

S′ (t) = A
(

1
2πi

∫
γ

eλ t (λ I−A)−1 dλ

)
= AS (t)
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To get the higher derivatives, note S (t) has infinitely many derivatives due to t being a
complex variable. Therefore,

S′′ (t) = lim
h→0

S′ (t +h)−S′ (t)
h

= lim
h→0

A
S (t +h)−S (t)

h

and S(t+h)−S(t)
h → AS (t) and so since A is closed, AS (t) ∈ D(A) and the above becomes

A2S (t). Continuing this way yields the claims 1.) and 2.). Note this also implies S (t)x ∈
D(A) for each t ∈ Sr which says more than S (t)x ∈ H. In practice this has the effect of
regularizing the solution to an initial value problem.

Next consider the semigroup property. Let s, t ∈ Sr. As described above let γ ′ denote
the contour shifted slightly to the right. Then

S (t)S (s) =
(

1
2πi

)2 ∫
γ

∫
γ ′

eλ t (λ I−A)−1 eµs (µI−A)−1 dµdλ (17.29)

Using the resolvent identity,

(λ I−A)−1 (µI−A)−1 = (µ−λ )−1
(
(λ I−A)−1− (µI−A)−1

)
,

then substituting this resolvent identity in 17.29, it equals(
1

2πi

)2 ∫
γ

∫
γ ′

eµseλ t
(
(µ−λ )−1

(
(λ I−A)−1− (µI−A)−1

))
dµdλ

= −
(

1
2πi

)2 ∫
γ

eλ t
∫

γ ′
eµs (µ−λ )−1 (µI−A)−1 dµdλ

+

(
1

2πi

)2 ∫
γ

∫
γ ′

eµseλ t (µ−λ )−1 (λ I−A)−1 dµdλ

The order of integration can be interchanged because of the absolute convergence and Fu-
bini’s theorem. Then this reduces to

= −
(

1
2πi

)2 ∫
γ ′
(µI−A)−1 eµs

∫
γ

eλ t (µ−λ )−1 dλdµ

+

(
1

2πi

)2 ∫
γ

(λ I−A)−1 eλ t
∫

γ ′
eµs (µ−λ )−1 dµdλ

Now the following diagram might help in drawing some interesting conclusions.

The first iterated integral equals 0. This can be seen from the above picture and that µ→
(µI−A)−1 eµs ∫

γ
eλ t (µ−λ )−1 dλ is analytic and so has a primitive. From the estimates,
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∫
γ ′ will be approximated by the closed contour indicated in the picture which is therefore

0. The second iterated integral equals

1
2πi

∫
γ

(λ I−A)−1 eλ teλ sdλ = S (t + s)

from the Cauchy integral formula. This verifies the semigroup identity.
4.) is done in Lemma 17.4.10 which also includes 5.) when you let t be positive and

real. ■

17.5 The Numerical Range
In Hilbert space, there is a useful easy to check criterion which implies an operator is
sectorial.

Definition 17.5.1 Let A be a closed densely defined operator A : D(A)→ H for H
a Hilbert space. The numerical range is the following set.

{(Au,u) : u ∈ D(A)}

Also recall the resolvent set ρ (A), those λ ∈C such that (λ I−A)−1 ∈L (H,H) . Thus, to
be in this set λ I−A is one to one and onto with continuous inverse.

Proposition 17.5.2 Suppose the numerical range of A, a closed densely defined oper-
ator A : D(A)→ H for H a Hilbert space is contained in the set

{z ∈ C : |arg(z)| ≥ π−φ}

where 0 < φ < π/2 and suppose A−1 ∈L (H,H) ,(0 ∈ ρ (A)). Then A is sectorial with the
sector

S0,φ ′ ≡
{

λ ̸= 0 : |arg(λ )| ≤ π−φ
′}

where π/2 > φ
′ > φ . Here arg(z) is the angle which is between −π and π .

Proof: Here is a picture of the situation along with details used to motivate the proof.

φ
(A u
|u| ,

u
|u| )

λ

In the picture the angle which is a little larger than φ is φ
′. Let λ be as shown with

|argλ | ≤ π−φ
′. Then from the picture and trigonometry, if u ∈ D(A) ,

|λ |sin
(
φ
′−φ

)
<

∣∣∣∣λ −(A
u
|u|

,
u
|u|

)∣∣∣∣
and so |u| |λ |sin(φ ′−φ) <

∣∣∣(λu−Au, u
|u|

)∣∣∣ ≤ ∥(λ I−A)u∥ . Hence for all λ such that

|argλ | ≤ π−φ
′ and u ∈ D(A) ,

|u|<
(

1
sin(φ ′−φ)

)
1
|λ |
|(λ I−A)u| ≡ M

|λ |
|(λ I−A)u|
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Thus (λ I−A) is one to one on S0,φ ′ and if λ ∈ ρ (A) , then
∥∥∥(λ I−A)−1

∥∥∥ < M
|λ | . By as-

sumption 0 ∈ ρ (A) so A is onto and A−1 exists. Now if |µ| is small, (µI−A)−1 must exist
because it equals

((
µA−1− I

)
A
)−1 and for |µ|<

∥∥A−1
∥∥,
(
µA−1− I

)−1 ∈L (H,H) since
the infinite series

∞

∑
k=0

(−1)k (
µA−1)k

converges and must equal to
(
µA−1− I

)−1
. Therefore, there exists µ ∈ S0,φ ′ such that

µ ̸= 0 and µ ∈ ρ (A). Also if µ ̸= 0 and µ ∈ S0,φ ′ , then if |λ −µ| < |µ|
M ,(λ I−A)−1 must

exist because

(λ I−A)−1 =
[(

(λ −µ)(µI−A)−1− I
)
(µI−A)

]−1

where
(
(λ −µ)(µI−A)−1− I

)−1
exists because

∥∥∥(λ −µ)(µI−A)−1
∥∥∥= |λ −µ|

∥∥∥(µI−A)−1
∥∥∥< |µ|

M
· M
|µ|

= 1.

It follows that if S ≡
{

λ ∈ S0,φ ′ : λ ∈ ρ (A)
}
, then S is open in S0,φ . However, S is also

closed because if λ = limn→∞ λ n where λ n ∈ S, then if λ = 0, it is given λ ∈ S. If λ ̸= 0,
then for large enough n, |λ −λ n| < |λ n|

M and so λ ∈ S. Since S0,φ ′ is connected, it follows
S = S0,φ ′ . ■

Corollary 17.5.3 If for some a ∈ R, the numerical values of −aI +A are in the set
{λ : |λ | ≥ π−φ} where 0 < φ < π/2, and a ∈ ρ (A) then A is sectorial.

Proof: By assumption, 0 ∈ ρ (−aI +A) and also from Proposition 17.5.2, for µ ∈ S0,φ ′

where π/2 > φ
′ > φ ,

((−aI +A)−µI)−1 ∈L (H,H) ,
∥∥∥((−aI +A)−µI)−1

∥∥∥≤ M
|µ|

Therefore, for µ ∈ S0,φ ′ ,µ +a ∈ ρ (A) . Therefore, if λ ∈ Sa,φ ′ ,λ −a ∈ S0,φ ′∥∥∥(A−λ I)−1
∥∥∥= ∥∥∥(A−aI− (λ −a) I)−1

∥∥∥≤ M
|λ −a|

■

Can you consider fractional powers of sectorial operators? See Henry [21] for more
on these topics along with fractional powers of these operators. It turns out to be useful in
defining intermediate Banach spaces.



Appendix A

Green’s Theorem for a Jordan Curve
This chapter contains a more general version of Green’s theorem which applies to a Jordan
Curve which has finite length along with its inside. This is more general than what was
done earlier because you just start with a Jordan curve having finite length then the inside
is automatically a region for which Green’s theorem applies. If you want, you could gen-
eralize all those theorems in the chapters on complex analysis where it is assumed Green’s
theorem holds. See Theorem 8.7.21 presented earlier on the Jordan Curve Theorem.

The top and bottom points of J determine two simple curves joined at these two points.
Consider the horizontal line y = y1+y2

2 in moving from left to right, Jl will be the first of
these two simple curves encountered. As in the proof of the Jordan curve theorem, the
last one encountered must be the other simple curve denoted as Jr. Otherwise, as explained
there in the proof of Theorem 8.7.21 the two simple curves would have to intersect at points
other than (x1,y1) and (x2,y2). Now as in the proof of the Jordan curve theorem, consider
the horizontal line y = y1+y2

2 . In moving along this line from left to right, let the first point
of Jr be β and let the last point of Jl encountered before β be α . As in the proof of the
Jordan curve theorem, the open segment is contained on the inside component of JC. Thus
there are now two simple curves joined at {α,β} , namely the one which goes from α to β

to (x1,y1) and back to α , also specifying an orientation, and the one which goes from β to
α to (x2,y2) and back to β . Each has height at least (y1− y2)/2 and the insides of the two
new simple closed curves also have height at least (y1− y2)/2.

(x2,y2)

(x1,y1)

α
β

Ui
JrJl

Lemma A.0.1 Let J be a simple closed rectifiable curve. Also let δ > 0 be given such
that 2δ is smaller than both the height and width of J. Then there exist finitely many non
overlapping regions {Rk}n

k=1 consisting of simple closed rectifiable curves along with their
insides whose union equals Ui ∪ J. These regions consist of two kinds, those contained in
Ui and those with nonempty intersection with J. These latter regions are called “border”
regions. The boundary of a border region consists of straight line segments parallel to the
coordinate axes which are of the form x = m

(
δ

4

)
or y = k

(
δ

4

)
for m,k integers along with

arcs from J. The non border regions consist of rectangles. Thus all of these regions have
boundaries which are rectifiable simple closed curves. Also each region is contained in a
square having sides of length no more than δ . The construction also yields an orientation
for J and for all these regions, the orientations for any segment shared by two regions are
opposite.

Proof: Let 0 < 2δ < min(height, width) and for y0 = m
(

δ

4

)
and l the line y = mδ/4

where m ∈ Z is chosen to make m
(

δ

4

)
as close as possible to the average of the second

441
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components of the top and bottom points of J (x1,y1) and (x2,y2). Thus m
(

δ

4

)
is within δ

4

of this average. Here 0 < 2δ < min(height, width) of J. In the argument, δ is fixed. Let γ∗0
be the open segment with endpoints α,β described above which divides J into two simple
closed curves both at least as high as 1

2 (y1− y2) .
You can orient J by letting the direction of motion along γ∗ be from left to right for

the simple closed curve which contains (x1,y1). Thus the orientation is left end point of
segment, right end point followed by (x1,y1) Thus this specifies a direction of motion on
part of J including three points and therefore on all of J. This is the orientation to be used
from now on. Now you have two simple closed curves joined along a line segment. Do the
same process as the above on each of these and continue doing it till all regions have height
no more than δ .

Each time you do this process, you get two simple closed curves in place of one. If the
height of one of the curves is h = (y1− y2)> δ , then both new simple closed curves have
length at least 1

8 δ . To see this, note that, by the definition of mδ/4 with a new m so mδ/4
approximates the mid point as well as possible, the new simple closed curve Ĵ has

height
(
Ĵ
)
≥ y1−

mδ

4
≥ y1−

((
y1 + y2

2

)
+

δ

4

)
=

h
2
− δ

4
>

δ

8

When a region has height no more than δ , don’t split into two regions. This must eventually
take place because if not, then there would be a sequence of simple closed curves each with
height larger than δ

8 stacked on top of each other. This would violate the assumption that J
has finite length.

Use the orientation on J obtained earlier to orient the resulting horizontal line segments.
Thus, from this proposition, each segment has opposite orientation as part of the two simple
closed curves resulting from its inclusion in this process.

Now follow the same process just described on each of the non overlapping “short”
regions just obtained using vertical rather than horizontal lines, letting the orientation of
the vertical edges be determined from the orientation already obtained for J, but this time
feature width instead of height and let the lines be vertical of the form x = k

(
δ

4

)
where k

is an integer. ■
It follows that each of the resulting regions has sides of length no more than δ but at

least δ/8. Next is an estimate of how many of these regions can contain points of J. I am
making absolutely no effort to get any kind of best estimate or even one which looks nice.
In general, for a curve C, let |C| denote the length of C.

Lemma A.0.2 Suppose Ui is covered with non-overlapping boxes having sides at least
η . Then there are no more than 4

(
4|J|
η

+1
)

of these boxes which intersect J. In particular,

in the above construction, there are no more than 4+ 128|J|
δ

border regions, meaning those
which have nonempty intersection with J. Also m2 (J) = 0.

Proof: Decompose J into N arcs of length
(

η

4

)
with maybe one having length less than(

η

4

)
. Thus N−1≤ |J|

( η

4 )
and so N ≤ 4|J|

η
+1. The resulting arcs are each contained in a box

having sides of length no more than η . Each of these N arcs can’t intersect any more than
four of the rectangles which have sides of length at least η . Therefore, at most 4N boxes
can intersect J. Thus there are no more than 4

(
4|J|
η

+1
)

border regions consisting of those
regions which intersect J. In particular, for the above construction, there are no more than
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4
(

4|J|
δ/8 +1

)
= 4+ 128|J|

δ
. This proves the lemma. This also shows that, since each region

has sides of length no more than δ , J is contained, up to a set of measure zero in a Borel
set of total volume no more than

(
4+ 128|J|

δ

)
δ

2 which is as small as desired by making δ

smaller. ■
The following is a proof of Green’s theorem based on the above. Included in this

formula is a way to analytically define the orientation of a simple closed curve in the plane.
Recall that there were two orientations of a simple closed curve depending on the fact that
there are two orientations for a circle in the plane. Green’s theorem can distinguish between
these two orientations. First is a simple lemma.

Lemma A.0.3 Let R = [a,b]× [c,d] be a rectangle and let P,Q be functions which are
C1 in some open set containing R. Orient the boundary of R as shown in the following
picture. This is called the counter clockwise direction or the positive orientation

Then letting γ denote the oriented boundary of R as shown,∫
R
(Qx (x,y)−Py (x,y))dm2 =

∫
γ

f·dγ

where f(x,y)≡ (P(x,y) ,Q(x,y)) . In this context the line integral is usually written using
the notation

∫
∂R Pdx+Qdy. If the bounding curve were oriented in the opposite direction,

then the area integral would be
∫

R (Py (x,y)−Qx (x,y))dm2.

Proof: This follows from direct computation. It also follows from Lemma 10.8.2.
Writing as an integral with respect to m2 is just Fubini’s theorem. ■

With this lemma, it is possible to prove Green’s theorem and also give an analytic
criterion which will distinguish between different orientations of a simple closed rectifiable
curve. First here is a discussion which amounts to a computation.

Let J be a rectifiable simple closed curve with inside Ui and outside Uo. Let {Rk}
nδ

k=1
denote the non overlapping regions of Lemma A.0.1 all oriented as explained there and let
J also be oriented as explained there. Since the shared edges of the horizontal and vertical
lines have opposite orientations, all these regions which are on the inside of J are rectangles
and have the same orientation, counter clockwise.

Let Bδ be the set of border regions and let Iδ be the rectangles contained in Ui. Thus
in taking the sum of the line integrals over the boundaries of the interior rectangles, the
integrals over the “interior edges” cancel out and you are left with a line integral over the
exterior edges of a polygon which is composed of the union of the squares in Iδ .

Now let f(x,y) = (P(x,y) ,Q(x,y)) be a vector field which is continuous on Ui and C1

on Ui, and suppose also that both Py and Qx are in L1 (Ui) (Absolutely integrable) and that
P,Q are continuous on Ui ∪ J. (An easy way to get all this to happen is to let P,Q be in
C1
(
Ui∪ J

)
, restrictions to Ui ∪ J of functions which are C1 on some open set containing

Ui∪ J, but what is assumed here is a lot more general.) Note that ∪δ>0 {R : R ∈Iδ}=Ui
and that for Iδ ≡∪{R : R ∈Iδ} , the following pointwise convergence holds for δ denoting
a sequence converging to 0.

lim
δ→0

XIδ (x) = XUi (x) .
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By the dominated convergence theorem,

lim
δ→0

∫
Iδ
(Qx−Py)dm2 =

∫
Ui

(Qx−Py)dm2

where m2 denotes two dimensional Lebesgue measure discussed earlier. Let ∂R denote
the boundary of R for R one of these regions of Lemma A.0.1 oriented as described. Let
wδ (R)

2 denote

(max{Q(x) : x ∈ ∂R}−min{Q(x) : x ∈ ∂R})2

+(max{P(x) : x ∈ ∂R}−min{P(x) : x ∈ ∂R})2

By uniform continuity of P,Q on the compact set Ui ∪ J, if δ is small enough, wδ (R) < ε

for all R ∈Bδ . Then for R ∈Bδ , it follows from Theorem 5.2.1, for |∂R| denoting the
length of ∂R, ∣∣∣∣∫

∂R
f ·dγ

∣∣∣∣≤ (1
2

)
wδ (R)(|∂R|)< ε (|∂R|) (1.1)

whenever δ is small enough. Always let δ be this small.
Also since the line integrals cancel on shared edges

∑
R∈Iδ

∫
∂R

f ·dγ + ∑
R∈Bδ

∫
∂R

f ·dγ =
∫

J
f ·dγ (1.2)

Consider the second sum on the left. From 1.1,∣∣∣∣∣ ∑
R∈Bδ

∫
∂R

f ·dγ

∣∣∣∣∣≤ ∑
R∈Bδ

∣∣∣∣∫
∂R

f ·dγ

∣∣∣∣≤ ε ∑
R∈Bδ

(|∂R|)

Denote by JR the part of J which is contained in R ∈Bδ . Then the above sum equals

ε

(
∑

R∈Bδ

(|JR|+ |∂Rδ |)

)
=

(
ε |J|+ ε ∑

R∈Bδ

|∂Rδ |
)

where |∂Rδ | is the sum of the lengths of the straight edges of Rδ . This last sum is easy
to estimate. Recall from A.0.1 there are no more than 4+ 128|J|

δ
of these border regions.

Furthermore, the sum of the lengths of all four edges of one of these is no more than 4δ

and so

∑
R∈Bδ

|∂Rδ | ≤ 4
(

4+
128 |J|

δ

)
4δ = 1024 |J|+64δ .

Thus
∣∣∣∑R∈Bδ

∫
∂R f ·dγ

∣∣∣ ≤ ε (1025 |J|+64δ ) Let εn → 0 and let δ n be the corresponding
sequence of δ such that δ n→ 0 also. Hence

lim
n→∞

∣∣∣∣∣∣ ∑
R∈Bδn

∫
∂R

f ·dγ

∣∣∣∣∣∣= 0.

Then using Green’s theorem proved above for squares,∫
J

f ·dγ = lim
n→∞

∑
R∈Iδn

∫
∂R

f ·dγ + lim
n→∞

∑
R∈Bδn

∫
∂R

f ·dγ



A.1. EXERCISES 445

= lim
n→∞

∑
R∈Iδn

∫
∂R

f ·dγ = lim
n→∞

∫
Iδn

±(Qx−Py)dm2 =
∫

Ui

±(Qx−Py)dm2

where the ± adjusts for whether the interior rectangles are all oriented positively (counter
clockwise) or all oriented negatively (clockwise). It was assumed these rectangles are
oriented counter clockwise and so the + sign would be used. ■

This has proved the general form of Green’s theorem which is stated in the following
theorem.

Theorem A.0.4 Let J be a rectifiable simple closed curve in R2 having inside Ui
and outside Uo. Let P,Q be functions with the property that Qx,Py ∈ L1 (Ui) and P,Q are
C1 on Ui. Assume also P,Q are continuous on J∪Ui. Then there exists an orientation for J
(Remember there are only two.) such that for

f(x,y) = (P(x,y) ,Q(x,y)) ,
∫

J
f ·dγ =

∫
Ui

(Qx−Py)dm2.

Proof: In the construction of the regions, an orientation was imparted to J. The above
computation shows

∫
J f ·dγ =

∫
Ui
(Qx−Py)dm2 ■

Note that the Cauchy integral theorem and other theorems depending on it can be gen-
eralized to the case where the function is analytic on the inside region and continuous on
the boundary instead of analytic near the closure of the region because these results depend
on this Green’s theorem.

Recall the winding number gives an analytical description of the number of times a
curve winds around a point. When this is 1 it is the positive direction. How does this relate
to Green’s theorem?

Corollary A.0.5 Let γ : [a,b]→ C be one to one on [a,b) and γ (a) = γ (b) . Then if
z is a point on the inside of γ∗ it follows that n(γ,z) = ±1 and if z is in the unbounded
component of γ∗C, the outside, then n(γ,z) = 0.

Proof: Letting Ui denote the inside of γ∗, let the regions describe in the above be such
that the inside point z, is on the inside of one of the interior regions. Choose the regions in
such a way that z is on the inside of an interior region. Then the winding number of z with
respect to the specified interior region is ±1 and the winding number of z with respect to
all the other regions is 0. Then, since the orientations of all edges of intersecting regions
are opposite, one adds the line integrals about the boundaries of all these regions and the
whole sum reduces to 1

2πi
∫

γ
1

w−z dw =±1 depending on the orientation of the simple closed
curve. If z is not on the inside of γ∗, then the winding number about z on each small region
is clearly 0 provided we take the regions with small enough diameter. Indeed, a branch of
the logarithm can be obtained to use as a primitive of 1

z−w . ■

A.1 Exercises
1. Consider the following diagram.
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(x2,y2)

(x1,y1)

z1

z2

α
β

Ui
JrJl

In this diagram there is a polygonal curve from z1 to z2 in the inside component
of JC,Ui in which there are no horizontal segments. Here z1,z2 are very close to
the top and bottom points respectively. This intersects a horizontal line shown in
finitely many points and for one of the segments, it crosses the horizontal line an odd
number of times. Pick the part of J the simple closed curve which corresponds to
that segment. Explain why this divides J into two simple closed curves and that if
the horizontal line is y = c, one Jordan curve has height at least |y1− c| and the other
having height at least |c− y2|. For the existence of the curves from z1 to (x1,y1)
and from z2 to (x2,y2) shown in the picture, consult Problem 30 on Page 218. This
approach to splitting up the simple closed curve into smaller regions is in Apostol
[2].
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C1, 96
Ck, 96
C∞

c , 252
Cm

c , 252
Cc(Ω), 186
Fσ , 152, 194
Gδ , 152, 194
Lp

continuity of translation, 255
separable, 256

L1(Ω), 166
Lp

compactness, 262
X×Y

norm, 302
∩, 3
∪, 3
ε net, 46
G , 274
L (X ,Y ), 69

Banach space, 69
π systems, 142
σ algebra, 137

epsilon net, 223

a.e., 153
accumulation point, 38
adjoint, 76
adjoint linear map, 312
algebra, 81
almost everywhere, 153
alternative norm, 221
analytic functions

counting zeros, 362
integral domain, 371
uniform convergence, 371

analytic mappings
preservation of angles, 370

annulus, 376
approximate identity, 253
approximation

Gδ and Fσ , 194
arc, 72

Jordan, 72
arcwise connected, 72

connected, 72
Arzela Ascoli theorem, 224

at most countable, 7
axiom of choice, 6

Baire
category, 298, 299

Banach fixed point theorem, 220
Banach space, 55, 219
Banach Steinhaus theorem, 299
beta function, 364
binomial theorem, 34
border regions, 441
Borel measure

regular, 192
bounded continuous linear functions, 68
bounded variation, 113
branch cut, 392
Bromwich integral, 394
Brouwer fixed point theorem, 305
Browder’s lemma, 217

Cantor function, 156
Cantor set, 156
Caratheodory’s procedure, 147
Casorati Weierstrass theorem, 385
Cauchy principal value, 398
Cauchy Riemann equations, 342
Cauchy Schwarz

inequality, 17
Cauchy sequence, 297

bounded, 42
convergence, 43
convergence of subsequence, 41

chain, 9
chain rule, 93
change of variables

map not one to one, 249
change of variables general case, 249
characteristic function

of a measure, 335
closed graph theorem, 303
closed set, 39
closed sets

intersection, 40
limit points, 39
union, 40

closure of a set, 41
limit points, 41

cofactor identity, 99

449



450 INDEX

compact and sequentially compact, 48
compact set, 45
compact sets

intersection, 49
compact support, 255
compactness

equivalent conditions, 46
complete, 220
completely separable, 43
completion of Borel measure, 194
complex measure

Radon Nikodym, 322
total variation, 322

complex numbers
roots, 13

conjugate
of product, 35

connected, 70
open balls, 72

connected component, 71
connected components, 71

equivalence class, 71
equivalence relation, 71
open sets, 72

connected set
continuous function, 73
continuous image, 71

connected sets
intersection, 70
intervals, 71
real line, 71
union, 70

conservative, 126
continuity

uniform, 53
continuous

not differentiable anywhere, 59
continuous function, 50

maximum and minimum, 53
continuous functions

dense, 252
equivalent conditions, 50

continuous image of compact set, 53
contour integral, 345
contraction mapping

fixed points, 220
new norm, 219

convergence

in measure, 182
infinite series, 58
pointwise, 55
uniform, 55, 220

convex
set, 304

convex
functions, 235

convolution, 263, 288
countable, 7
countable basis, 43
counting measure, 141
counting zeros, 362, 370
counting zeros and poles, 405
curves

piecewise smooth, 131
cycle, 379

around compact sets, 383

De Moivre’s theorem, 13
derivative

chain rule, 93
continuous, 92
Frechet, 92
matrix, 94
well defined, 92

derivatives, 92
differentiable, 92

continuous, 92
differentiable function

measurable sets, 239
sets of measure zero, 239

differential equations
Peano existence theorem, 236

dilations, 406
direct sum, 427
distance to a set, 44
dominated convergence

generalization, 171
dominated convergence theorem, 170
double sums

changing order, 28
dual space, 311
duality maps, 317
Dynkin’s lemma, 142

Eggoroff theorem, 174, 216
elliptic functions, 417
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embedding into its double dual space,
313

empty set, 3
epsilon net, 223
equality of mixed partial derivatives, 98
equicontinuous, 224
equivalence class, 8
equivalence relation, 8
equivalent norms, 63
equivalent parametrizations, 127
essentially bounded, 228
extended complex plane, 367, 368

separated sets, 368
extending nonnegative functionals, 169
extreme values theorem, 53

Fatou’s lemma, 164
finite Borel measure

regular, 192
finite dimensional normed linear space

compactness, 62
complete, 62
extreme values, 62

finite intersection property
compact sets, 49

first mean value theorem integrals, 133
fixed point property, 204
fixed points contraction mapping, 220
Fourier series, 308

convergence, 318
uniform convergence, 316

Fourier transform, 268
L1, 280
L2, 283
continuous, 281
convolution, 282, 288
of functions in G, 275
convolution, 286
general definition, 278
in G ∗, 278
inverse, 268, 278, 281
polynomial growth, 280

fractional linear transformation
maps upper half plane to unit ball,

408
fractional linear transformations, 406

maps unit ball to unit ball, 409
Frechet derivative, 92

Fresnel integrals, 390
Fubini’s theorem, 173
function, 5
functions of a linear operator, 424
fundamental matrix, 399
fundamental theorem of algebra, 14, 26,

54
fundamental theorem of algebra

plausibility argument, 27
fundamental theorem of calculus, 370

Radon measures, 231

G delta, 194
Gamma function, 235
gamma function, 134

analytic, 363
existence and convergence, 265
factorial, 265
properties, 265

gauge function, 309
general spherical coordinates, 250
Gram Schmidt process, 19
graph of a linear map, 302
greatest common divisor, 22

description, 22
Green’s theorem, 261

Jordan curve of finite length, 445

Hahn
decomposition, 178, 337

Hahn Banach theorem, 310
complex version, 311

Hahn Jordan decomposition, 337
Hamel basis, 12
Hardy’s inequality, 236
Hausdorff

maximal principle, 9, 307
Heine Borel theorem, 48
higher order terms, 361
Hilbert Space, 77
Hilbert space, 304
Holder’s inequality, 225

imaginary part, 342
implicit function theorem, 102, 105, 106
indicator function, 140
infinitely differentiable function, 253
initial value problem, 222
inner product axioms, 17
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inner product space, 304
inner regular, 189
integral

decreasing function, 159
functions in L1, 165
linear, 166

integral domain, 371
integral over a measurable set, 171
interchange order of integration, 132
interior point, 38
intermediate value theorem, 71
intersection, 3
intersection of two curves, 208
intervals

notation, 3
invariance of domain, 206
invariant subspace, 427
inverse Fourier transform, 268
inverse function theorem, 104, 106
inverse image, 5, 50
inversions, 406
irreducible, 22

relatively prime, 22
isolated singularity, 384

Jacobi
periodic functions, 416

James map, 313
Jensens inequality, 235
Jordan arc, 72
Jordan curve

finite length, 441
Green’s theorem, 445
orientation, 445

Jordan curve theorem, 209

Lagrange multipliers, 109
Laplace transform, 263, 266

inverse well defined, 268
inversion, 273, 394
properties, 266

Laurent
series, 377

Laurent series, 377, 378
principal part, 378

least squares regression, 108
Lebesgue

integral desires to be linear, 164

integral of nonnegative function,
160

integral simple function, 161
measurable a.e. equal to Borel

measurable, 193
measure, 151
number, 45
other definitions of integral, 163
points, 231

Lebesgue decomposition, 180
level curves

intersecting at right angles, 370
lim inf, 30

properties, 31
lim sup, 30

properties, 31
limit of a function, 52
limit of a sequence

well defined, 37
limit point, 38
limits

existence of limits, 30
Lindeloff property, 44
line integrals

fundamental theorem, 126
linear

not continuous, 297
linear maps

closed, 302
continuous, 68
equivalent conditions, 68

linear operators, 64
linear transformation

norm, 64
linear transformations, 64
Liouville’s theorem, 366
Lipschitz mappings of sets of measure

zero, 212
little o notation, 92
locally integrable, 278
locally one to one, 371
logarithm

analytic, 344
branch, 344
branches, 344
principal branch, 344

Lusin, 216
Lyapunov Schmidt procedure, 111
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matrix of linear transformation, 64
maximal chain, 9
maximal function

Radon measures, 231
maximum modulus theorem, 376
mean value inequality, 78, 119
measurability

limit of simple functions, 140
measurable, 146

function, 138
measurable complex functions

simple functions, 168
measurable function

a.e. Borel, 144
measurable sets, 146
measure, 141

Borel, 150
counting, 141
finite, 141
metric space, 150
probability, 141
properties, 141

measures
absolutely continuous, 319
decreasing sequences of sets, 141
increasing sequences of sets, 141

measures from outer measures, 147
Mellen transform, 394
meromorphic, 385, 403

on extended complex plane, 405
meromorphic functions

a field, 404
meromorphic on extended complex

plane
rational function, 415

metric space
compact sets, 46
complete, 42
completely separable, 43
completion, 74
open set, 38
separable, 43

Minkowski functional, 316
Minkowski inequality

integrals, 233
Mittag Leffler, 391
mixed partial derivatives, 97
modular group, 417

mollifier, 253
monotone convergence theorem, 162
Montel’s theorem, 411
multi-index, 274

negative part, 165
nested interval lemma, 31, 32
normal family of functions, 412
nowhere differentiable function, 60
nowhere differentiable functions, 314
numerical range, 439

open ball, 38
open set, 38

open cover, 44
open mapping theorem, 300, 373
open sets, 38

countable basis, 43
intersection, 40
union, 40

operator
sectorial, 430

operator norm, 65, 68
order of a pole, 385
order of a zero, 361
ordered

partial, 9
totally ordered, 9

orientation, 127
simple closed curve, 128

oriented curve, 127
orthonormal, 18
orthonormal set, 307

maximal, 307
outer measure

measurable, 146
outer measure on R, 145
outer regular, 189

parallelogram identity, 17
partial derivatives, 94
partial fractions, 25

unique, 26
partial order, 9, 307
partially ordered set, 9, 198
partition of unity, 187
periodic functions, 416

Jacobi, 416
pi systems, 142
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Picard
iterates, 223

piecewise definition of curves, 124
piecewise smooth

differentiable, 131
Plancherel theorem, 283, 284
point of density, 233
polar form complex number, 12
poles, 403
Polish space, 44
polynomial, 274

degree, addition, multiply, equal,
leading term, monic, division,
divides, greatest common
divisor, 20

divides, 22
greatest common divisor, 22
greatest common divisor,

uniqueness, 22
irreducible, 22
irreducible factorization, 23
relatively prime, 22

polynomials
canceling, 23
factoring, 14
factorization, 24

positive linear functional, 186
positive part, 165
precompact, 236
primitive, 349
principal part

Laurent series, 378
product measure, 173
product space

norm, 302
projection in Hilbert space, 305

Radon measure, 189
Radon Nikodym

theorem, 180
Radon Nikodym derivative, 180
Radon Nikodym theorem

Von Neumann, 317
random variable

distribution measure, 144, 192
real and imaginary parts, 165
real part, 342
reflexive Banach Space, 314

region, 258
regularity

inner and outer, 151
removable singularity, 384
residue, 378, 385
resolvent, 419
resolvent set, 419, 439
retract, 204

fixed point property, 204
Riemann sphere, 367
Riesz map, 307
Riesz representation theorem

C (X), 334
L1, finite measures, 326
Lp, σ finite case, 327
Lp, finite measures, 324
Hilbert space, 306
positive linear functionals, 188

ring, 371
root test, 33
Rouche’s theorem, 370, 405
Runge, 418

Sard’s lemma, 246
Schroder Bernstein theorem, 6
Schwartz class, 286
Schwarz lemma, 401, 410
second mean value theorem, 134
sectorial, 430, 431
semigroup, 437

analytic, 437
separable metric space

Lindeloff property, 44
separated, 70
separation theorem, 316
sequence

Cauchy, 297
subsequence, 39

sequentially compact, 45
set notation, 3
sigma algebra, 137
sigma finite, 172
signed measure, 178

Hahn decomposition, 178
signed measures

Hahn decomposition, 178
simple closed curve

orientation, 127
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simple curve, 72, 113, 127
simple functions, 140
simply connected, 368
smooth functions

dense, 253
Sobolev Space, 291

embedding theorem, 291
equivalent norms, 291
interpolation inequality, 293
trace, 293

spectral mapping theorem, 426
spectral radius, 422
spectrum, 419
spt, 186
square root property, 410

simply connected, 410
star center, 355
star shaped, 355
stereographic projection, 368
Stirling’s formula, 135, 264
Stone Weierstrass theorem, 85
sup

changing order, 28
support

function, 255

Tietze extension theorem, 61
total variation, 320
totally bounded, 46
totally ordered, 9, 198
translation invariance, 152, 197
translations, 406

uniform boundedness, 299

uniform boundedness theorem, 299
uniform continuity, 53
uniform continuity and compactness, 54
uniform convergence

infinite sums, 58
uniform norm, 55, 220
uniformly bounded, 224
uniformly integrable, 175, 182
union, 3

variation of constants formula, 400
variational inequality, 305
vector measures, 319
Vitali

convergence theorem, 175
Vitali convergence theorem, 177
Vitali covering, 200

weak convergence, 317
Weierstrass

approximation estimate, 79
M test, 16, 59
Stone Weierstrass theorem, 81

well ordered sets, 10

Young’s inequality, 336

zero
multiplicity, 35

zeros of analytic function
counting them, 370

zeta function
definition, 364
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