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Preface
This book is on real and abstract analysis. There are four parts. The last part is an introduc-
tion to probability and stochastic processes. A course in multi-variable advanced calculus
is contained in the first two. There is more there than one would have time to do and there
are some advanced topics which are there because it is a convenient setting for them. Orig-
inally the first three parts were written for a multi-variable advanced calculus course which
changed over time by inclusion of more advanced topics. However, it was easier to keep
track of a single file. The emphasis is on finite dimensional spaces although not totally.
There are things which are almost never discussed in multi-variable advanced calculus like
the fixed point theorems. However, I think the Brouwer fixed point theorem is one of the
most important theorems in mathematics and is being neglected along with its corollaries.
I give several proofs in the exercises and in the book. There is too much reliance on these
theorems without ever considering proofs. That is why there is a chapter on fixed point
theorems. In general, I am trying to include all proofs of theorems instead of making the
reader chase after them somewhere else or accept them on faith. I object to attempts to
make mathematics functionally like a religion where we are asked to believe the words of
authority figures. Of course, when you try to include all the proofs, you run the risk of
making mistakes, and I certainly make my share, but one should at least try, even though it
also results in a longer book.

I am reviewing a few topics from linear algebra mainly to refresh the memory or to read
as needed, but I am assuming that people have had a reasonable course in linear algebra.
Linear algebra should come before a book like this one.

I sometimes present important ideas more than once. Sometimes there is a special
case in exercises and later the topic is discussed in the text. I think this can be useful in
understanding some of these big theorems. Such duplication may not have been deliberate
to begin with, but I have chosen to leave it in many cases.

Finite dimensional degree theory is neglected so there is a chapter on this also, pre-
sented as a part of analysis. It seems like it is common to neglect to give a careful treatment
of the degree in Rp. This is too bad. You end up missing out on fantastic finite dimensional
topology like the Jordan separation theorem. I don’t know a good proof for this without
something like degree theory. Other somewhat unusual items are things like the Besicov-
itch covering theorem. It seems to me that this is very important and is certainly one of the
most profound theorems I have ever seen. Differentiation theory is carried out for general
Radon measures using this covering theorem. This is important because these kinds of mea-
sures are encountered in probability. Lebesgue measure is a special case. Abstract theory is
presented later and includes the standard theorems on representation, Banach spaces, and
so forth. Also included is a treatment of the Kolmogorov extension theorem. This major
result is being neglected but, if I understand the situation correctly, it is the foundation for
modern probability theory. It belongs in a course on analysis. The Bochner integral is also
commonly neglected so I have included a careful treatment of this important topic. Some
of us do our research in the context of spaces of Bochner integrable functions involving
various function spaces.

There is an introduction to probability and stochastic processes at the end. I have in-
cluded it because I encountered much of it in my old age and thought it was marvelous
mathematics. I was not raised on it and this likely shows. However, it may be that someone
can benefit from my efforts to understand this material. I have a hard time with it. There
is more in my Topics in analysis book, but that is mostly pretty unorganized because I was
gathering it from many different sources for our seminar. I am trying to present a more co-
herent presentation in this book. This is a very big topic and I must pick what I have found

13
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most interesting, likely offending others who know better than I do what is important.



Chapter 1

Review of Some Linear Algebra
This material can be referred to as needed. It is here in order to make the book self con-
tained.

1.1 The Matrix of a Linear Map
Recall the definition of a linear map. First of all, these need to be defined on a linear space
and have values in a linear space.

Definition 1.1.1 Let T : V →W be a function. Here V and W are linear spaces.
Then T ∈L (V,W ) and is a linear map means that for α,β scalars and v1,v2 vectors,

T (αv1 +βv2) = αT v1 +βT v2

Also recall from linear algebra that if you have T ∈L (Fn,Fm) it can always be un-
derstood in terms of a matrix. That is, there exists an m× n matrix A such that for all
x ∈ Fn,

Ax= Tx

Recall that, from the way we multiply matrices,

A =
(

Te1 · · · Ten
)

That is, the ith column is just Tei.

1.2 Block Multiplication of Matrices
Consider the following problem(

A B
C D

)(
E F
G H

)
.

You know how to do this. You get(
AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E,F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case?

Suppose A is a matrix of the form

A =

 A11 · · · A1m
...

. . .
...

Ar1 · · · Arm

 (1.1)

where Ai j is a si× p j matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · ,r. Such
a matrix is called a block matrix, also a partitioned matrix. How do you get the block

15
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Ai j? Here is how for A an m×n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×p j︷ ︸︸ ︷ 0
Ip j×p j

0

. (1.2)

In the block column matrix on the right, you need to have c j− 1 rows of zeros above the
small p j× p j identity matrix where the columns of A involved in Ai j are c j, · · · ,c j + p j−1
and in the block row matrix on the left, you need to have ri− 1 columns of zeros to the
left of the si× si identity matrix where the rows of A involved in Ai j are ri, · · · ,ri + si. An
important observation to make is that the matrix on the right specifies columns to use in the
block and the one on the left specifies the rows. Thus the block Ai j, in this case, is a matrix
of size si× p j. There is no overlap between the blocks of A. Thus the identity n×n identity
matrix corresponding to multiplication on the right of A is of the form Ip1×p1 0

. . .
0 Ipm×pm

 ,

where these little identity matrices don’t overlap. A similar conclusion follows from con-
sideration of the matrices Isi×si . Note that in (1.2), the matrix on the right is a block column
matrix for the above block diagonal matrix, and the matrix on the left in (1.2) is a block
row matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form  B11 · · · B1p

...
. . .

...
Br1 · · · Brp

 (1.3)

and A is a block matrix of the form A11 · · · A1m
...

. . .
...

Ap1 · · · Apm

 (1.4)

such that for all i, j, it makes sense to multiply BisAs j for all s ∈ {1, · · · , p}. (That is the
two matrices Bis and As j are conformable.) and that for fixed i j, it follows that BisAs j is the
same size for each s so that it makes sense to write ∑s BisAs j.

The following theorem says essentially that when you take the product of two matrices,
you can partition both matrices, formally multiply the blocks to get another block matrix
and this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 1.2.1 Consider the following product. 0
I
0

( 0 I 0
)
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where the first is n× r and the second is r×n. The small identity matrix I is an r× r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form 0 0 0

0 I 0
0 0 0

 .

Proof: From the definition of matrix multiplication, the product is  0
I
0

0 · · ·

 0
I
0

e1 · · ·

 0
I
0

er · · ·

 0
I
0

0


which yields the claimed result. In the formula e j refers to the column vector of length r
which has a 1 in the jth position. This proves the lemma. ■

Theorem 1.2.2 Let B be a q× p block matrix as in (1.3) and let A be a p×n block
matrix as in (1.4) such that Bis is conformable with As j and each product, BisAs j for s =
1, · · · , p is of the same size, so that they can be added. Then BA can be obtained as a block
matrix such that the i jth block is of the form

∑
s

BisAs j. (1.5)

Proof: From (1.2)

BisAs j =
(
0 Iri×ri 0

)
B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0


where here it is assumed Bis is ri× ps and As j is ps×q j. The product involves the sth block
in the ith row of blocks for B and the sth block in the jth column of A. Thus there are the
same number of rows above the Ips×ps as there are columns to the left of Ips×ps in those two
inside matrices. Then from Lemma 1.2.1 0

Ips×ps

0

( 0 Ips×ps 0
)
=

 0 0 0
0 Ips×ps 0
0 0 0

 .

Since the blocks of small identity matrices do not overlap,

∑
s

 0 0 0
0 Ips×ps 0
0 0 0

=

 Ip1×p1 0
. . .

0 Ipp×pp

= I,

and so,

∑
s

BisAs j = ∑
s

(
0 Iri×ri 0

)
B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0
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=
(
0 Iri×ri 0

)
B∑

s

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0



=
(
0 Iri×ri 0

)
BIA

 0
Iq j×q j

0

=
(
0 Iri×ri 0

)
BA

 0
Iq j×q j

0


which equals the i jth block of BA. Hence the i jth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s

BisAs j.

This proves the theorem. ■

Example 1.2.3 Multiply the following pair of partitioned matrices using the above theo-
rem by multiplying the blocks as described above and then in the conventional manner. 1 2 3

−1 2
3 −2

3
1

 1
2

−1 2
3 0

−2 2 1


Doing it in terms of the blocks, this yields, after the indicated multiplications of the

blocks,  5+(−6)
(

5 2
)
+3
(

2 1
)(

3
−1

)
+

(
3
1

)
(−2)

(
7 −2
−9 6

)
+

(
6 3
2 1

) 
This is  −1

(
11 5

)(
−3
−3

) (
13 1
−7 7

) 
Multiplying it out the usual way, you have 1 2 3

−1 2 3
3 −2 1

 1 −1 2
2 3 0
−2 2 1

=

 −1 11 5
−3 13 1
−3 −7 7


you see this is the same thing without the partition lines.

1.3 Schur’s Theorem
For some reason, not understood by me, Schur’s theorem is often neglected in beginning
linear algebra. This is too bad because it is one of the best theorems in linear algebra. Here
|·| denotes the usual norm in Cn given by

|x|2 ≡
n

∑
j=1

∣∣x j
∣∣2
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Definition 1.3.1 A complex n× n matrix U is said to be unitary if U∗U = I. Here
U∗ is the transpose of the conjugate of U. The matrix is unitary if and only if its columns
form an orthonormal set in Cn. This follows from the way we multiply matrices in which
the i jth entry of U∗U is obtained by taking the conjugate of the ith row of U times the jth

column of U.

Theorem 1.3.2 (Schur) Let A be a complex n×n matrix. Then there exists a unitary
matrix U such that

U∗AU = T, (1.6)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity1.

Proof: The theorem is clearly true if A is a 1×1 matrix. Just let U = 1, the 1×1 matrix
which has entry 1. Suppose it is true for (n−1)× (n−1) matrices and let A be an n× n
matrix. Then let v1 be a unit eigenvector for A. Then there exists λ 1 such that

Av1 = λ 1v1, |v1|= 1.

Extend {v1} to a basis and then use the Gram - Schmidt process to obtain

{v1, · · · ,vn}

an orthonormal basis of Cn. Let U0 be a matrix whose ith column is vi. Then from the
definition of a unitary matrix Definition 1.3.1, it follows that U0 is unitary. Consider U∗0 AU0.

U∗0 AU0 =

 v∗1
...
v∗n

( Av1 · · · Avn
)
=

 v∗1
...
v∗n

( λ 1v1 · · · Avn
)

Thus U∗0 AU0 is of the form (
λ 1 a
0 A1

)
where A1 is an n− 1× n− 1 matrix. Now by induction, there exists an (n−1)× (n−1)
unitary matrix Ũ1 such that

Ũ∗1 A1Ũ1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡
(

1 0

0 Ũ1

)
.

An application of block multiplication shows that U1 is a unitary matrix and also that

U∗1 U∗0 AU0U1 =

(
1 0

0 Ũ∗1

)(
λ 1 ∗
0 A1

)(
1 0

0 Ũ1

)
=

(
λ 1 ∗
0 Tn−1

)
= T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗ = U∗1 U∗0 , it follows that

A is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
1‘Listed with multiplicity’ means that the diagonal entries are repeated according to their multiplicity as roots

of the characteristic equation.
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polynomials, and since the eigenvalues of T are the diagonal entries listed with multiplicity,
this proves the theorem. ■

The same argument yields the following corollary in the case where A has real entries.
The only difference is the use of the real inner product instead of the complex inner product.

Corollary 1.3.3 Let A be a real n× n matrix which has only real eigenvalues. Then
there exists a real orthogonal matrix Q such that

QT AQ = T

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity.

Proof: This follows by observing that if all eigenvalues are real, then corresponding
to each real eigenvalue, there exists a real eigenvector. Thus the argument of the above
theorem applies with the real inner product in Rn. ■

1.4 Hermitian and Symmetric Matrices
A complex n×n matrix A with A∗ = A is said to be Hermitian. A real n×n matrix A with
AT = A is said to be symmetric. In either case, note that for ⟨·, ·⟩ the inner product in Cn,

⟨Au,v⟩= (Au)T v̄ = uT AT v̄ = uT Av̄ = ⟨u,Av⟩.

Thus, as a numerical example, the matrix(
1 1− i

1+ i 2

)
is Hermitian, while  1 −1 −2

−1 2 4
−2 4 3


is symmetric. Hermitian matrices are named in honor of the French mathematician Charles
Hermite (1822–1901).

With Schur’s theorem, the theorem on diagonalization of a Hermitian matrix follows.

Theorem 1.4.1 Let A be Hermitian. Then the eigenvalues of A are all real, and
there exists a unitary matrix U such that

U∗AU = D,

a diagonal matrix whose diagonal entries are the eigenvalues of A listed with multiplicity.
In case A is symmetric, U may be taken to be an orthogonal matrix. The columns of U form
an orthonormal basis of eigenvectors of A.

Proof: By Schur’s theorem and the assumption that A is Hermitian, there exists a tri-
angular matrix T, whose diagonal entries are the eigenvalues of A listed with multiplicity,
and a unitary matrix U such that

T =U∗AU =U∗A∗U = (U∗AU)∗ = T ∗.
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It follows from this that T is a diagonal matrix and has all real entries down the main
diagonal. Hence the eigenvalues of A are real. If A is symmetric (real and Hermitian) it
follows from Corollary 1.3.3 that U may be taken to be orthogonal (The columns are an
orthonormal set in the inner product of Rn).

That the columns of U form an orthonormal basis of eigenvectors of A, follows right
away from the definition of matrix multiplication which implies that if ui is a column of
U, then Aui = column i of (UD) = λ iui. ■

1.5 The Right Polar Factorization
The right polar factorization involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. First here are
some lemmas which review and add to many of the topics discussed so far about adjoints
and orthonormal sets and such things. This is of fundamental significance in geometric
measure theory and also in continuum mechanics. Not surprisingly the stress should depend
on the part which stretches and distorts. See [23].

Lemma 1.5.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix A1/2 such that A1/2 has all nonnegative eigenvalues
and

(
A1/2

)2
= A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real nonnega-
tive entries and a unitary matrix U such that A =U∗DU. This is from Theorem 1.4.1 above.
Then denote by D1/2 the matrix which is obtained by replacing each diagonal entry of D
with its square root. Thus D1/2D1/2 = D. Then define

A1/2 ≡U∗D1/2U.

Then (
A1/2

)2
=U∗D1/2UU∗D1/2U =U∗DU = A.

Since D1/2 is real, (
U∗D1/2U

)∗
=U∗

(
D1/2

)∗
(U∗)∗ =U∗D1/2U

so A1/2 is Hermitian. ■
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property

stated in the next lemma.

Lemma 1.5.2 Suppose
{
w1, · · · ,wr,vr+1, · · · ,vp

}
is a linearly independent set of vec-

tors such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of thew1, · · · ,wr.

Proof: Let
{
u1, · · · ,up

}
be the orthonormal set delivered by the Gram Schmidt pro-

cess. Then u1 =w1 because by definition, u1 ≡w1/ |w1| =w1. Now suppose u j =w j
for all j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1−∑

k+1
j=1 (wk+1,u j)u j∣∣∣wk+1−∑
k+1
j=1 (wk+1,u j)u j

∣∣∣
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By induction, u j =w j and so this reduces to wk+1/ |wk+1|=wk+1. ■
This lemma immediately implies the following lemma.

Lemma 1.5.3 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an or-
thonormal set of vectors in V . Then this orthonormal set of vectors may be extended to
an orthonormal basis for V, {

w1, · · · ,wr,yr+1, · · · ,yp
}

Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is
orthonormal it follows from Lemma 1.5.2 the result is of the desired form, an orthonormal
basis extending {w1, · · · ,wr}. ■

Here is another lemma about preserving distance.

Lemma 1.5.4 Suppose R is an m×n matrix with m≥ n and R preserves distances. Then
R∗R = I. Also, if R takes an orthonormal basis to an orthonormal set, then R must preserve
distances.

Proof: Since R preserves distances, |Rx|= |x| for every x. Therefore from the axioms
of the dot product,

|x|2 + |y|2 +(x,y)+(y,x) = |x+y|2 = (R(x+y) ,R(x+y))

= (Rx,Rx)+(Ry,Ry)+(Rx,Ry)+(Ry,Rx)

= |x|2 + |y|2 +(R∗Rx,y)+(y,R∗Rx)

and so for all x,y,
(R∗Rx−x,y)+(y,R∗Rx−x) = 0

Hence for all x,y,
Re(R∗Rx−x,y) = 0

Now for a x,y given, choose α ∈ C such that

α (R∗Rx−x,y) = |(R∗Rx−x,y)|

Then
0 = Re(R∗Rx−x,αy) = Reα (R∗Rx−x,y) = |(R∗Rx−x,y)|

Thus |(R∗Rx−x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y =
R∗Rx−x to conclude that for all x,

R∗Rx−x= 0

which says R∗R = I since x is arbitrary.
Consider the last claim. Let R : Fn→ Fm such that {u1, · · · ,un} is an orthonormal basis

for Fn and {Ru1, · · · ,Run} is also an orthormal set, then∣∣∣∣∣R
(

∑
i

xiui

)∣∣∣∣∣
2

=

∣∣∣∣∣∑i
xiRui

∣∣∣∣∣
2

= ∑
i
|xi|2 =

∣∣∣∣∣∑i
xiui

∣∣∣∣∣
2

■

With this preparation, here is the big theorem about the right polar factorization.
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Theorem 1.5.5 Let F be an m×n matrix where m≥ n. Then there exists a Hermi-
tian n× n matrix U which has all nonnegative eigenvalues and an m× n matrix R which
satisfies R∗R = I such that F = RU.

Proof: Consider F∗F. This is a Hermitian matrix because

(F∗F)∗ = F∗ (F∗)∗ = F∗F

Also the eigenvalues of the n×n matrix F∗F are all nonnegative. This is because if x is an
eigenvalue,

λ (x,x) = (F∗Fx,x) = (Fx,Fx)≥ 0.

Therefore, by Lemma 1.5.1, there exists an n×n Hermitian matrix U having all nonnegative
eigenvalues such that

U2 = F∗F.

Consider the subspace U (Fn). Let {Ux1, · · · ,Uxr} be an orthonormal basis for

U (Fn)⊆ Fn.

Note that U (Fn) might not be all of Fn. Using Lemma 1.5.3, extend to an orthonormal
basis for all of Fn,

{Ux1, · · · ,Uxr,yr+1, · · · ,yn} .

Next observe that {Fx1, · · · ,Fxr} is also an orthonormal set of vectors in Fm. This is
because

(Fxk,Fx j) = (F∗Fxk,x j) =
(
U2xk,x j

)
= (Uxk,U∗x j) = (Uxk,Ux j) = δ jk

Therefore, from Lemma 1.5.3 again, this orthonormal set of vectors can be extended to an
orthonormal basis for Fm,

{Fx1, · · · ,Fxr,zr+1, · · · ,zm}

Thus there are at least as many zk as there are y j. Now for x ∈ Fn, since

{Ux1, · · · ,Uxr,yr+1, · · · ,yn}

is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · ,cr,dr+1, · · · ,dn

such that

x=
r

∑
k=1

ckUxk +
n

∑
k=r+1

dkyk

Define

Rx≡
r

∑
k=1

ckFxk +
n

∑
k=r+1

dkzk (1.7)

Then also there exist scalars bk such that

U x=
r

∑
k=1

bkUxk
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and so from 1.7,

RU x=
r

∑
k=1

bkFxk = F

(
r

∑
k=1

bkxk

)
Is F (∑r

k=1 bkxk) = F (x)?(
F

(
r

∑
k=1

bkxk

)
−F (x) ,F

(
r

∑
k=1

bkxk

)
−F (x)

)

=

(
(F∗F)

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U2

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U

(
r

∑
k=1

bkxk−x

)
,U

(
r

∑
k=1

bkxk−x

))

=

(
r

∑
k=1

bkUxk−Ux,
r

∑
k=1

bkUxk−Ux

)
= 0

Therefore, F (∑r
k=1 bkxk) = F (x) and this shows RUx = Fx. From 1.7 it follows that R

maps an orthonormal set to an orthonormal set and so R preserves distances. Therefore, by
Lemma 1.5.4 R∗R = I. ■

1.6 Elementary matrices
The elementary matrices result from doing a row operation to the identity matrix.

As before, everything will apply to matrices having coefficients in an arbitrary field of
scalars, although we will mainly feature the real numbers in the examples.

Definition 1.6.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by the same row added to a multiple of another row.

We refer to these as the row operations of type 1,2, and 3 respectively.

The elementary matrices are given in the following definition.

Definition 1.6.2 The elementary matrices consist of those matrices which result by
applying a row operation to an identity matrix. Those which involve switching rows of the
identity are called permutation matrices. More generally, a permutation matrix is a matrix
which comes by permuting the rows of the identity matrix, not just switching two rows.
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As an example of why these elementary matrices are interesting, consider the following.
Letting ri be the row vector of all zeros except for a 1 in the ith slot, r2

r1
r3

 a b c d
x y z w
f g h i

=

 x y z w
a b c d
f g h i

 .

A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to switching the first two rows of the identity matrix. This resulted
in applying the operation 1 to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. They are obtained from switch-
ing a couple of rows of the identity matrix. First Pi j, which involves switching row i and
row j of the identity where Let i < j. Then, as above, Then, as above, Pi j =

r1
...
r j
...
ri
...
rn


where

r j = (0 · · ·1 · · ·0)

with the 1 in the jth position from the left.
For Pi j this matrix which involves switching the i and j rows of the identity. Now

consider what this does to a column vector.

r1
...
r j
...
ri
...
rn





v1
...
vi
...

v j
...

vn


=



v1
...

v j
...
vi
...

vn


.

Now we try multiplication of a matrix on the left by this elementary matrix Pi j. Thus,

Pi j



a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

a j1 a j2 · · · · · · · · · · · · a jp
...

...
...

an1 an2 · · · · · · · · · · · · anp


.
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has the indicated columns listed in order:
Pi j



a11
...

ai1
...

a j1
...

an1


,Pi j



a12
...

ai2
...

a j2
...

an2


, · · · ,Pi j



a1p
...

aip
...

a jp
...

anp





=





a11
...

a j1
...

ai1
...

an1


,



a12
...

a j2
...

ai2
...

an2


, · · · ,



a1p
...

a jp
...

aip
...

anp




and so the resulting matrix is

=



a11 a12 · · · · · · · · · · · · a1p
...

...
...

a j1 a j2 · · · · · · · · · · · · a jp
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

an1 an2 · · · · · · · · · · · · anp


.

This has established the following lemma.

Lemma 1.6.3 Let Pi j denote the elementary matrix which involves switching the ith and
the jth rows of I. Then if Pi j, A are conformable, we have

Pi jA = B

where B is obtained from A by switching the ith and the jth rows.

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. We write

I =


r1
r2
...
rn


where

r j = (0 · · ·1 · · ·0)
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with the 1 in the jth position from the left. The elementary matrix which results from
applying this operation to the ith row of the identity matrix is of the form

E (c, i) =


r1
...

cri
...
rn

 .

Now consider what this does to a column vector.
r1
...

cri
...
rn




v1
...
vi
...

vn

=


v1
...

cvi
...

vn

 .

Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed and the way matrices are multi-
plied,

E (c, i)


a11 a12 · · · a1p

...
...

...
ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp


equals a matrix having the columns indicated below.

=


a11 a12 · · · a1p

...
...

...
cai1 cai2 · · · caip

...
...

...
an1 an2 · · · anp

 .

This proves the following lemma.

Lemma 1.6.4 Let E (c, i) denote the elementary matrix corresponding to the row op-
eration in which the ith row is multiplied by the nonzero constant c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Letting r j be the jth row of the
identity matrix, denote by E (c× i+ j) the elementary matrix obtained from the identity
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matrix by replacing r j with r j + cri. In case i < j this will be of the form

Pi j =



r1
...
ri
...

cri +r j
...
rn


.

Consider what this does to a column vector.



r1
...
ri
...

cri +r j
...
rn





v1
...
vi
...

v j
...

vn


=



v1
...
vi
...

cvi + v j
...

vn


.

From this and the way matrices are multiplied,

E (c× i+ j)



a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

a j2 a j2 · · · · · · · · · · · · a jp
...

...
...

an1 an2 · · · · · · · · · · · · anp


equals a matrix having the indicated columns listed in order.


E (c× i+ j)



a11
...

ai1
...

a j2
...

an1


,E (c× i+ j)



a12
...

ai2
...

a j2
...

an2


, · · ·E (c× i+ j)



a1p
...

aip
...

a jp
...

anp
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=



a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

a j2 + cai1 a j2 + cai2 · · · a jp + caip
...

...
...

an1 an2 · · · anp


.

The case where i > j is similar. This proves the following lemma in which, as above, the
ith row of the identity is ri.

Lemma 1.6.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replac-
ing the jth row of the identity r j with cri +r j. Letting the kth row of A be ak,

E (c× i+ j)A = B

where B has the same rows as A except the jth row of B is cai +a j.

The above lemmas are summarized in the following theorem.

Theorem 1.6.6 To perform any of the three row operations on a matrix A it suffices
to do the row operation on the identity matrix, obtaining an elementary matrix E, and then
take the product, EA. In addition to this, the following identities hold for the elementary
matrices described above.

E (c× i+ j)E (−c× i+ j) = E (−c× i+ j)E (c× i+ j) = I. (1.8)

E (c, i)E
(
c−1, i

)
= E

(
c−1, i

)
E (c, i) = I. (1.9)

Pi jPi j = I. (1.10)

Proof: Consider (1.8). Starting with I and taking −c times the ith row added to the jth

yields E (−c× i+ j) which differs from I only in the jth row. Now multiplying on the left
by E (c× i+ j) takes c times the ith row and adds to the jth thus restoring the jth row to its
original state. Thus E (c× i+ j)E (−c× i+ j) = I. Similarly E (−c× i+ j)E (c× i+ j) =
I. The reasoning is similar for (1.9) and (1.10). ■

Each of these elementary matrices has a significant geometric significance. The effect
of doing E

( 1
2 ×3+1

)
shears the box in one direction. Of course there would be corre-

sponding shears in the other directions also. Note that this does not change the volume.
You should think about the geometric effect of the other elementary matrices on a box.

Definition 1.6.7 For an n× n matrix A, an n× n matrix B which has the property
that AB = BA = I is denoted by A−1. Such a matrix is called an inverse. When A has an
inverse, it is called invertible.

The following lemma says that if a matrix acts like an inverse, then it is the inverse.
Also, the product of invertible matrices is invertible.
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Lemma 1.6.8 If B,C are both inverses of A, then B = C. That is, there exists at most
one inverse of a matrix. If A1, · · · ,Am are each invertible m×m matrices, then the product
A1A2 · · ·Am is also invertible and

(A1A2 · · ·Am)
−1 = A−1

m A−1
m−1 · · ·A

−1
1 .

Proof. From the definition and associative law of matrix multiplication,

B = BI = B(AC) = (BA)C = IC =C.

This proves the uniqueness of the inverse.
Next suppose A,B are invertible. Then

AB
(
B−1A−1)= A

(
BB−1)A−1 = AIA−1 = AA−1 = I

and also (
B−1A−1)AB = B−1 (A−1A

)
B = B−1IB = B−1B = I.

It follows from Definition 1.6.7 that AB has an inverse and it is B−1A−1. Thus the case of
m = 1,2 in the claim of the lemma is true. Suppose this claim is true for k. Then

A1A2 · · ·AkAk+1 = (A1A2 · · ·Ak)Ak+1.

By induction, the two matrices (A1A2 · · ·Ak) , Ak+1 are both invertible and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A
−1
2 A−1

1 .

By the case of the product of two invertible matrices shown above,

((A1A2 · · ·Ak)Ak+1)
−1 = A−1

k+1 (A1A2 · · ·Ak)
−1 = A−1

k+1A−1
k · · ·A

−1
2 A−1

1 .

This proves the lemma. ■
We will discuss methods for finding the inverse later. For now, observe that Theorem

1.6.6 says that elementary matrices are invertible and that the inverse of such a matrix is
also an elementary matrix. The major conclusion of the above Lemma and Theorem is the
following lemma about linear relationships.

Definition 1.6.9 Let v1, · · · ,vk,u be vectors. Then u is said to be a linear combi-
nation of the vectors {v1, · · · ,vk} if there exist scalars c1, · · · ,ck such that

u=
k

∑
i=1

civi.

We also say that when the above holds for some scalars c1, · · · ,ck, there exists a linear
relationship between the vector u and the vectors {v1, · · · ,vk}.

We will discuss this more later, but the following picture illustrates the geometric sig-
nificance of the vectors which have a linear relationship with two vectors u,v pointing in
different directions.
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y

z
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The following lemma states that linear relationships between columns in a matrix are
preserved by row operations. This simple lemma is the main result in understanding all the
major questions related to the row reduced echelon form as well as many other topics.

Lemma 1.6.10 Let A and B be two m× n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combinations are the same. (The
linear relationship between the kth column of A and the i1, · · · , ir columns of A is the same
as the linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A be the following matrix in which the ak are the columns(
a1 a2 · · · an

)
and let B be the following matrix in which the columns are given by the bk(

b1 b2 · · · bn
)
.

Then by Theorem 1.6.6 on Page 29, bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak = c1ai1 + · · ·+ crair .

Then multiplying by E,

bk = Eak = c1Eai1 + · · ·+ crEair = c1bi1 + · · ·+ crbir .

This proves the lemma. ■

Example 1.6.11 Find linear relationships between the columns of the matrix

A =

 1 3 11 10 36
1 2 8 9 23
1 1 5 8 10

 .

It is not clear what the relationships are, so we do row operations to this matrix. Lemma
1.6.10 says that all the linear relationships between columns are preserved, so the idea is to
do row operations until a matrix results which has the property that the linear relationships
are obvious. First take −1 times the top row and add to the two bottom rows. This yields 1 3 11 10 36

0 −1 −3 −1 −13
0 −2 −6 −2 −26
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Next take −2 times the middle row and add to the bottom row followed by multiplying the
middle row by −1 :  1 3 11 10 36

0 1 3 1 13
0 0 0 0 0

 .

Next take −3 times the middle row added to the top: 1 0 2 7 −3
0 1 3 1 13
0 0 0 0 0

 . (1.11)

At this point it is clear that the last column is −3 times the first column added to 13 times
the second. By Lemma 1.6.10, the same is true of the corresponding columns in the original
matrix A. As a check,

−3

 1
1
1

+13

 3
2
1

=

 36
23
10

 .

You should notice that other linear relationships are also easily seen from (1.11). For
example the fourth column is 7 times the first added to the second. This is obvious from
(1.11) and Lemma 1.6.10 says the same relationship holds for A.

This is really just an extension of the technique for finding solutions to a linear system of
equations. In solving a system of equations earlier, row operations were used to exhibit the
last column of an augmented matrix as a linear combination of the preceding columns. The
row reduced echelon form just extends this by making obvious the linear relationships
between every column, not just the last, and those columns preceding it. The matrix in
1.11 is in row reduced echelon form. The row reduced echelon form is the topic of the next
section.

1.7 The Row Reduced Echelon Form Of A Matrix
When you do row operations on a matrix, there is an ultimate conclusion. It is called
the row reduced echelon form. We show here that every matrix has such a row reduced
echelon form and that this row reduced echelon form is unique. The significance is that it
becomes possible to use the definite article in referring to the row reduced echelon form.
Hence important conclusions about the original matrix may be logically deduced from an
examination of its unique row reduced echelon form. First we need the following definition.

Definition 1.7.1 Define special column vectors ei as follows.

ei =
(

0 · · · 1 · · · 0
)T

.

Recall that T says to take the transpose. Thus ei is the column vector which has all zero
entries except for a 1 in the ith position down from the top.

Now here is the description of the row reduced echelon form.

Definition 1.7.2 An m× n matrix is said to be in row reduced echelon form if,
in viewing successive columns from left to right, the first nonzero column encountered is
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e1 and if, in viewing the columns of the matrix from left to right, you have encountered
e1,e2, · · · ,ek, the next column is either ek+1 or this next column is a linear combination of
the vectors, e1,e2, · · · ,ek.

Example 1.7.3 The following matrices are in row reduced echelon form.

 1 0 4 0
0 1 3 0
0 0 0 1

 ,


0 1 0 0 7
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 ,

 0 1 0 3
0 0 1 −5
0 0 0 0

 .

Definition 1.7.4 Given a matrix A, row reduction produces one and only one row
reduced matrix B with A∼ B. See Corollary 1.7.9. We call B the row reduced echelon form
of A.

Theorem 1.7.5 Let A be an m×n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof. Viewing the columns of A from left to right, take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this equal to zero. Thus the first
nonzero column is now e1. Denote the resulting matrix by A1. Consider the sub-matrix
of A1 to the right of this column and below the first row. Do exactly the same thing for
this sub-matrix that was done for A. This time the e1 will refer to Fm−1. Use the first 1
obtained by the above process which is in the top row of this sub-matrix and row operations,
to produce a zero in place of every entry above it and below it. Call the resulting matrix A2.
Thus A2 satisfies the conditions of the above definition up to the column just encountered.
Continue this way till every column has been dealt with and the result must be in row
reduced echelon form. ■

Here is some terminology about pivot columns.

Definition 1.7.6 The first pivot column of A is the first nonzero column of A which
becomes e1 in the row reduced echelon form. The next pivot column is the first column
after this which becomes e2 in the row reduced echelon form. The third is the next column
which becomes e3 in the row reduced echelon form and so forth.

The algorithm just described for obtaining a row reduced echelon form shows that these
columns are well defined, but we will deal with this issue more carefully in Corollary 1.7.9
where we show that every matrix corresponds to exactly one row reduced echelon form.

Definition 1.7.7 Two matrices A,B are said to be row equivalent if B can be ob-
tained from A by a sequence of row operations. When A is row equivalent to B, we write
A∼ B.

Proposition 1.7.8 In the notation of Definition 1.7.7. A ∼ A. If A ∼ B, then B ∼ A. If
A∼ B and B∼C, then A∼C.
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Proof.That A∼ A is obvious. Consider the second claim. By Theorem 1.6.6, there exist
elementary matrices E1,E2, · · · ,Em such that

B = E1E2 · · ·EmA.

It follows from Lemma 1.6.8 that (E1E2 · · ·Em)
−1 exists and equals the product of the

inverses of these matrices in the reverse order. Thus

E−1
m E−1

m−1 · · ·E
−1
1 B = (E1E2 · · ·Em)

−1 B

= (E1E2 · · ·Em)
−1 (E1E2 · · ·Em)A = A.

By Theorem 1.6.6, each E−1
k is an elementary matrix. By Theorem 1.6.6 again, the above

shows that A results from a sequence of row operations applied to B. The last claim is left
for an exercise. This proves the proposition. ■

There are three choices for row operations at each step in Theorem 1.7.5. A natural
question is whether the same row reduced echelon matrix always results in the end from
following any sequence of row operations.

We have already made use of the following observation in finding a linear relationship
between the columns of the matrix A, but here it is stated more formally. x1

...
xn

= x1e1 + · · ·+ xnen,

so to say two column vectors are equal, is to say the column vectors are the same linear
combination of the special vectors e j.

Corollary 1.7.9 The row reduced echelon form is unique. That is if B,C are two ma-
trices in row reduced echelon form and both are obtained from A by a sequence of row
operations, then B =C.

Proof.Suppose B and C are both row reduced echelon forms for the matrix A. It follows
that B and C have zero columns in the same positions because row operations do not affect
zero columns. By Proposition 1.7.8, B and C are row equivalent. In reading from left
to right in B, suppose e1, · · · ,er occur first in positions i1, · · · , ir respectively. Then from
the description of the row reduced echelon form, each of these columns of B, in positions
i1, · · · , ir, is not a linear combination of the preceding columns. Since C is row equivalent
to B, it follows from Lemma 1.6.10, that each column of C in positions i1, · · · , ir is not a
linear combination of the preceding columns of C. By the description of the row reduced
echelon form, e1, · · · ,er occur first in C, in positions i1, · · · , ir respectively. Therefore,
both B and C have the sequence e1,e2, · · · ,er occurring first (reading from left to right) in
the positions, i1, i2, · · · , ir. Since these matrices are row equivalent, it follows from Lemma
1.6.10, that the columns between the ik and ik+1 position in the two matrices are linear
combinations involving the same scalars, of the columns in the i1, · · · , ik position. Similarly,
the columns after the ir position are linear combinations of the columns in the i1, · · · , ir
positions involving the same scalars in both matrices. This is equivalent to the assertion
that each of these columns is identical in B and C. ■

Now with the above corollary, here is a very fundamental observation. The number of
nonzero rows in the row reduced echelon form is the same as the number of pivot columns.
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Namely, this number is r in both cases where e1, · · · ,er are the pivot columns in the row
reduced echelon form. This number r is called the rank of the matrix. This is discussed
more later, but first here are some other applications.

Consider a matrix which looks like this: (More columns than rows.)

Corollary 1.7.10 Suppose A is an m× n matrix and that m < n. That is, the number
of rows is less than the number of columns. Then one of the columns of A is a linear
combination of the preceding columns of A. Also, there exists x ∈ Fn such that x ̸= 0 and
Ax= 0.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading from
left to right, pick the first one which is not a pivot column. Then from the description of the
row reduced echelon form, this column is a linear combination of the preceding columns.
Say

a j = x1a1 + · · ·+ x j−1a j−1.

Therefore, from the way we multiply a matrix times a vector,

A



x1
...

x j−1
−1
0
...
0


=
(
a1 · · ·a j−1a j · · ·an

)


x1
...

x j−1
−1
0
...
0


= 0. ■

1.8 Finding the Inverse of a Matrix
Recall that the inverse of an n×n matrix A is a matrix B such that

AB = BA = I

where I is the identity matrix. It was shown that an elementary matrix is invertible and that
its inverse is also an elementary matrix. Also the product of invertible matrices is invertible
and its inverse is the product of the inverses in the reverse order. In this section, we consider
the problem of finding an inverse for a given n×n matrix.

Example 1.8.1 Let A =

(
1 1
1 2

)
. Show that

(
2 −1
−1 1

)
is the inverse of A.

To check this, multiply(
1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)
,
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and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)
,

showing that this matrix is indeed the inverse of A.

In the last example, how would you find A−1? You wish to find a matrix
(

x z
y w

)
such that (

1 1
1 2

)(
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x+ y = 1,x+2y = 0

and
z+w = 0,z+2w = 1.

Writing the augmented matrix for these two systems gives(
1 1 | 1
1 2 | 0

)
(1.12)

for the first system and (
1 1 | 0
1 2 | 1

)
(1.13)

for the second. Let’s solve the first system. Take (−1) times the first row and add to the
second to get (

1 1 | 1
0 1 | −1

)
Now take (−1) times the second row and add to the first to get(

1 0 | 2
0 1 | −1

)
.

Putting in the variables, this says x = 2 and y =−1.
Now solve the second system, (1.13) to find z and w. Take (−1) times the first row and

add to the second to get (
1 1 | 0
0 1 | 1

)
.

Now take (−1) times the second row and add to the first to get(
1 0 | −1
0 1 | 1

)
.

Putting in the variables, this says z =−1 and w = 1. Therefore, the inverse is(
2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Exactly the same row operations were used in
both systems. In each case, the end result was something of the form (I|v) where I is the
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identity and v gave a column of the inverse. In the above
(

x
y

)
, the first column of the

inverse was obtained first and then the second column
(

z
w

)
.

To simplify this procedure, you could have written(
1 1 | 1 0
1 2 | 0 1

)
and row reduced till you obtained(

1 0 | 2 −1
0 1 | −1 1

)
.

Then you could have read off the inverse as the 2×2 matrix on the right side. You should
be able to see that it is valid by adapting the argument used in the simple case above.

This is the reason for the following simple procedure for finding the inverse of a matrix.
This procedure is called the Gauss-Jordan procedure.

Procedure 1.8.2 Suppose A is an n× n matrix. To find A−1 if it exists, form the
augmented n×2n matrix

(A|I)

and then if possible, do row operations until you obtain an n×2n matrix of the form

(I|B) . (1.14)

When this has been done, B = A−1. If it is impossible to row reduce to a matrix of the form
(I|B) , then A has no inverse.

The procedure just described along with the preceding explanation shows that this pro-
cedure actually yields a right inverse. This is a matrix B such that AB = I. We will show
in Theorem 1.8.4 that this right inverse is really the inverse. This is a stronger result than
that of Lemma 1.6.8 about the uniqueness of the inverse. For now, here is an example.

Example 1.8.3 Let A =

 1 2 2
1 0 2
3 1 −1

. Find A−1 if it exists.

Set up the augmented matrix (A|I) : 1 2 2 | 1 0 0
1 0 2 | 0 1 0
3 1 −1 | 0 0 1


Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields 1 2 2 | 1 0 0

0 −2 0 | −1 1 0
0 −5 −7 | −3 0 1

 .
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Then take 5 times the second row and add to −2 times the last row. 1 2 2 | 1 0 0
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


Next take the last row and add to (−7) times the top row. This yields −7 −14 0 | −6 5 −2

0 −10 0 | −5 5 0
0 0 14 | 1 5 −2

 .

Now take (−7/5) times the second row and add to the top. −7 0 0 | 1 −2 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2

 .

Finally divide the top row by -7, the second row by -10 and the bottom row by 14, which
yields 

1 0 0 | − 1
7

2
7

2
7

0 1 0 | 1
2 − 1

2 0

0 0 1 | 1
14

5
14 − 1

7

 .

Therefore, the inverse is 
− 1

7
2
7

2
7

1
2 − 1

2 0

1
14

5
14 − 1

7

 .

What you have really found in the above algorithm is a right inverse. Is this right
inverse matrix, which we have called the inverse, really the inverse, the matrix which when
multiplied on both sides gives the identity?

Theorem 1.8.4 Suppose A,B are n× n matrices and AB = I. Then it follows that
BA = I also, and so B = A−1. For n×n matrices, the left inverse, right inverse and inverse
are all the same thing.

Proof. If AB = I for A,B n× n matrices, is BA = I? If AB = I, there exists a unique
solution x to the equation

Bx= y

for any choice of y. In fact,
x= A(Bx) = Ay.

This means the row reduced echelon form of B must be I. Thus every column is a pivot
column. Otherwise, there exists a free variable and the solution, if it exists, would not be
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unique, contrary to what was just shown must happen if AB = I. It follows that a right
inverse B−1 for B exists. The above procedure yields(

B I
)
→
(

I B−1
)
.

Now multiply both sides of the equation AB = I on the right by B−1. Then

A = A
(
BB−1)= (AB)B−1 = B−1.

Thus A is the right inverse of B, and so BA = I. This shows that if AB = I, then BA = I also.
Exchanging roles of A and B, we see that if BA = I, then AB = I. This proves the theorem.
■

This has shown that in the context of n× n matrices, right inverses, left inverses and
inverses are all the same and this matrix is called A−1.

The following corollary is also of interest.

Corollary 1.8.5 An n×n matrix A has an inverse if and only if the row reduced echelon
form of A is I.

Proof. First suppose the row reduced echelon form of A is I. Then Procedure 1.8.2
yields a right inverse for A. By Theorem 1.8.4 this is the inverse. Next suppose A has an
inverse. Then there exists a unique solution x to the equation Ax= y. given by x= A−1y.
It follows that in the augmented matrix (A|0) there are no free variables, and so every
column to the left of the zero column is a pivot column. Therefore, the row reduced echelon
form of A is I. ■

1.9 The Mathematical Theory of Determinants
It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the earlier one in terms of Laplace expansion. Let (i1, · · · , in) be an ordered
list of numbers from {1, · · · ,n} . This means the order is important so (1,2,3) and (2,1,3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [49]. A recent book which
also has a good introduction is Baker [4]

1.9.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 1.9.1 There exists a function, sgnn which maps each ordered list of numbers
from {1, · · · ,n} to one of the three numbers, 0,1, or −1 which also has the following prop-
erties.

sgnn (1, · · · ,n) = 1 (1.15)

sgnn (i1, · · · , p, · · · ,q, · · · , in) =−sgnn (i1, · · · ,q, · · · , p, · · · , in) (1.16)

In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by−1. Also, in the case where n > 1 and {i1, · · · , in}= {1, · · · ,n}
so that every number from {1, · · · ,n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in)≡
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(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (1.17)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: Define sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1)≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in)≡ sign

(
∏
r<s

(is− ir)

)

This delivers either −1,1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as ( j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p,q} , jr = ir. See the following illustration

i1
1

i2
2 · · · ip

p · · · iq
q · · · in

n
i1
1

i2
2 · · · iq

p · · · ip
q · · · in

n
j1
1

j2
2 · · · jp

p · · · jq
q · · · jn

n

Then

sgnn ( j1, · · · , jn)≡ sign

(
∏
r<s

( js− jr)

)

= sign

(
both p,q
(ip− iq)

one of p,q

∏
p< j<q

(i j− iq) ∏
p< j<q

(ip− i j)
neither p nor q

∏
r<s,r,s/∈{p,q}

(is− ir)

)
The last product consists of the product of terms which were in ∏r<s (is− ir) while the
two products in the middle both introduce q− p− 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn ( j1, · · · , jn) =−sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) there will
be the product of n−θ negative terms

(iθ+1−n) · · ·(in−n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) are those
which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms of the
form (n− i j) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) = (−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■
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Lemma 1.9.2 Every ordered list of distinct numbers from {1,2, · · · ,n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgnn
is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1
elements. Take two ordered lists of numbers, P1,P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches

in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 1.15 and
1.16, you could start with f (1, · · · ,n) = g(1, · · · ,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g(i1, · · · , in) . If any numbers are repeated,
then 1.16 gives both functions are equal to zero for that ordered list. ■

Definition 1.9.3 Given an ordered list of distinct numbers from {1,2, · · · ,n} , say

(i1, · · · , in) ,

this ordered list is called a permutation. The symbol for all such permutations is Sn. The
number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1,2, · · · ,n} to {1,2, · · · ,n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

1.9.2 The Definition of the Determinant

Definition 1.9.4 Let f be a real valued function which has the set of ordered lists
of numbers from {1, · · · ,n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · ·kn)

to be the sum of all the f (k1 · · ·kn) for all possible choices of ordered lists (k1, · · · ,kn) of
numbers of {1, · · · ,n} . For example,

∑
(k1,k2)

f (k1,k2) = f (1,2)+ f (2,1)+ f (1,1)+ f (2,2) .

Definition 1.9.5 Let (ai j) = A denote an n× n matrix. The determinant of A, de-
noted by det(A) is defined by

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·ankn
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where the sum is taken over all ordered lists of numbers from {1, · · · ,n}. Note it suffices
to take the sum over only those ordered lists in which there are no repeats because if there
are, sgn(k1, · · · ,kn) = 0 and so that term contributes 0 to the sum.

Let A be an n×n matrix A=(ai j) and let (r1, · · · ,rn) denote an ordered list of n numbers
from {1, · · · ,n}. Let A(r1, · · · ,rn) denote the matrix whose kth row is the rk row of the
matrix A. Thus

det(A(r1, · · · ,rn)) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (1.18)

and A(1, · · · ,n) = A.

Proposition 1.9.6 Let (r1, · · · ,rn) be an ordered list of numbers from

{1, · · · ,n}

Then

sgn(r1, · · · ,rn)det(A) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (1.19)

= det(A(r1, · · · ,rn)) . (1.20)

Proof: Let (1, · · · ,n) = (1, · · · ,r, · · ·s, · · · ,n) so r < s.

det(A(1, · · · ,r, · · · ,s, · · · ,n)) = (1.21)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kr, · · · ,ks, · · · ,kn)a1k1 · · ·arkr · · ·asks · · ·ankn ,

and renaming the variables, calling ks,kr and kr, ks, this equals

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,ks, · · · ,kr, · · · ,kn)a1k1 · · ·arks · · ·askr · · ·ankn

= ∑
(k1,··· ,kn)

−sgn

k1, · · · ,
These got switched︷ ︸︸ ︷

kr, · · · ,ks , · · · ,kn

a1k1 · · ·askr · · ·arks · · ·ankn

=−det(A(1, · · · ,s, · · · ,r, · · · ,n)) . (1.22)

Consequently,

det(A(1, · · · ,s, · · · ,r, · · · ,n)) =−det(A(1, · · · ,r, · · · ,s, · · · ,n)) =−det(A)

Now letting A(1, · · · ,s, · · · ,r, · · · ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det(A(r1, · · · ,rn)) = (−1)p det(A)

where it took p switches to obtain(r1, · · · ,rn) from (1, · · · ,n). By Lemma 1.9.1, this implies

det(A(r1, · · · ,rn)) = (−1)p det(A) = sgn(r1, · · · ,rn)det(A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · ,rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 1.21 -1.22 shows that det(A(r1, · · · ,rn)) = 0 and also sgn(r1, · · · ,rn) = 0 so
the formula holds in this case also. ■
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Observation 1.9.7 There are n! ordered lists of distinct numbers from

{1, · · · ,n}

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n−1 choices for the second. Thus there are n(n−1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · ,n} as
stated in the observation.

1.9.3 A Symmetric Definition
With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det(A) = det

(
AT
)
.

Corollary 1.9.8 The following formula for det(A) is valid.

det(A) =
1
n!
· ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn . (1.23)

And also det
(
AT
)
= det(A) where AT is the transpose of A. (Recall that for AT =

(
aT

i j

)
,

aT
i j = a ji.)

Proof: From Proposition 1.9.6, if the ri are distinct,

det(A) = ∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

Summing over all ordered lists, (r1, · · · ,rn) where the ri are distinct, (If the ri are not
distinct, sgn(r1, · · · ,rn) = 0 and so there is no contribution to the sum.)

n!det(A) = ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

Corollary 1.9.9 If two rows or two columns in an n× n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original ma-
trix. If A is an n× n matrix in which two rows are equal or two columns are equal then
det(A) = 0. Suppose the ith row of A equals

(xa1 + yb1, · · · ,xan + ybn)

Then
det(A) = xdet(A1)+ ydet(A2)

where the ith row of A1 is (a1, · · · ,an) and the ith row of A2 is (b1, · · · ,bn) , all other rows of
A1 and A2 coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.
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Proof: By Proposition 1.9.6 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 1.9.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det(A) = det
(
AT )=−det

(
AT

1
)
=−det(A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) =−det(A) and so det(A) = 0.

It remains to verify the last assertion.

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·
(
xarki + ybrki

)
· · ·ankn

= x ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·arki · · ·ankn

+y ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·brki · · ·ankn ≡ xdet(A1)+ ydet(A2) .

The same is true of columns because det
(
AT
)
= det(A) and the rows of AT are the columns

of A. ■

1.9.4 Basic Properties of the Determinant

Definition 1.9.10 A vector, w, is a linear combination {v1, · · · ,vr} if there exist
scalars c1, · · ·cr such that w= ∑

r
k=1 ckvk. This is the same as saying

w ∈ span(v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 1.9.11 Suppose A is an n× n matrix and some column (row) is a linear
combination of r other columns (rows). Then det(A) = 0.

Proof: Let A =
(
a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Say ai = ∑ j ̸=i c ja j. Then
by Corollary 1.9.9, det(A) =

det
(
a1 · · · ∑ j ̸=i c ja j · · · an

)
= ∑

j ̸=i
c j det

(
a1 · · · a j · · · an

)
= 0

because each of these determinants in the sum has two equal rows. ■
Recall the following definition of matrix multiplication.

Definition 1.9.12 If A and B are n×n matrices, A= (ai j) and B= (bi j), AB= (ci j)
where ci j ≡ ∑

n
k=1 aikbk j.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.
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Theorem 1.9.13 Let A and B be n×n matrices. Then

det(AB) = det(A)det(B) .

Proof: Let ci j be the i jth entry of AB. Then by Proposition 1.9.6,

det(AB) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)c1k1 · · ·cnkn

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)

(
∑
r1

a1r1br1k1

)
· · ·

(
∑
rn

anrnbrnkn

)

= ∑
(r1··· ,rn)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)br1k1 · · ·brnkn (a1r1 · · ·anrn)

= ∑
(r1··· ,rn)

sgn(r1 · · ·rn)a1r1 · · ·anrn det(B) = det(A)det(B) .■

The Binet Cauchy formula is a generalization of the theorem which says the deter-
minant of a product is the product of the determinants. The situation is illustrated in the
following picture where A,B are matrices.

B A

Theorem 1.9.14 Let A be an n×m matrix with n≥ m and let B be a m×n matrix.
Also let Ai

i = 1, · · · ,C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be
the m×m submatrices of B which are obtained by deleting corresponding n−m columns.
Then

det(BA) =
C(n,m)

∑
k=1

det(Bk)det(Ak)

Proof: This follows from a computation. By Corollary 1.9.8 on Page 43, det(BA) =

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm)(BA)i1 j1 (BA)i2 j2 · · ·(BA)im jm

=
1

m! ∑
(i1···im)

∑
( j1··· jm)

sgn(i1 · · · im)sgn( j1 · · · jm) ·

n

∑
r1=1

Bi1r1Ar1 j1

n

∑
r2=1

Bi2r2Ar2 j2 · · ·
n

∑
rm=1

BimrmArm jm

Now denote by Ik one of the subsets of {1, · · · ,n} which has m elements. Thus there are
C (n,m) of these.

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

Bi1r1 Ar1 j1Bi2r2Ar2 j2 · · ·BimrmArm jm
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=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
sgn(i1 · · · im)Bi1r1 Bi2r2 · · ·Bimrm ·

∑
( j1··· jm)

sgn( j1 · · · jm)Ar1 j1Ar2 j2 · · ·Arm jm

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m!

sgn(r1 · · ·rm)
2 det(Bk)det(Ak) =

C(n,m)

∑
k=1

det(Bk)det(Ak)

since there are m! ways of arranging the indices {r1, · · · ,rm}. ■

1.9.5 Expansion Using Cofactors

Lemma 1.9.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or
(

A 0
∗ a

)
(1.24)

where a is a number and A is an (n−1)× (n−1) matrix and ∗ denotes either a column
or a row having length n− 1 and the 0 denotes either a column or a row of length n− 1
consisting entirely of zeros. Then det(M) = adet(A) .

Proof: Denote M by (mi j) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in
the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det(M)≡ ∑
(k1,··· ,kn)

sgnn (k1, · · · ,kn)m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · ,kn) then using the earlier
conventions used to prove Lemma 1.9.1, det(M) equals

∑
(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · ,kθ−1,

θ

kθ+1, · · · ,
n−1
kn

)
m1k1 · · ·mnkn

Now suppose the second case. Then if kn ̸= n, the term involving mnkn in the above expres-
sion equals zero. Therefore, the only terms which survive are those for which θ = n or in
other words, those for which kn = n. Therefore, the above expression reduces to

a ∑
(k1,··· ,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet(A) .

To get the assertion in the first case, use Corollary 1.9.8 to write

det(M) = det
(
MT )= det

((
AT 0
∗ a

))
= adet

(
AT )= adet(A) .■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.
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Definition 1.9.16 Let A = (ai j) be an n× n matrix. Then a new matrix called the
cofactor matrix cof(A) is defined by cof(A) = (ci j) where to obtain ci j delete the ith row
and the jth column of A, take the determinant of the (n−1)× (n−1) matrix which results,
(This is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. To make
the formulas easier to remember, cof(A)i j will denote the i jth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outra-
geous totally unjustified assertion was made that the same number would be obtained by
expanding the determinant along any row or column. The following theorem proves this
assertion.

Theorem 1.9.17 Let A be an n×n matrix where n≥ 2. Then

det(A) =
n

∑
j=1

ai j cof(A)i j =
n

∑
i=1

ai j cof(A)i j . (1.25)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · ,ain) be the ith row of A. Let B j be the matrix obtained from A by
leaving every row the same except the ith row which in B j equals (0, · · · ,0,ai j,0, · · · ,0) .
Then by Corollary 1.9.9,

det(A) =
n

∑
j=1

det(B j)

For example if

A =

 a b c
d e f
h i j


and i = 2, then

B1 =

 a b c
d 0 0
h i j

 ,B2 =

 a b c
0 e 0
h i j

 ,B3 =

 a b c
0 0 f
h i j


Denote by Ai j the (n−1)× (n−1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof(A)i j ≡ (−1)i+ j det
(
Ai j
)
. At this point, recall that from Proposition

1.9.6, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 1.9.15,

det(B j) = (−1)n− j (−1)n−i det
((

Ai j ∗
0 ai j

))
= (−1)i+ j det

((
Ai j ∗
0 ai j

))
= ai j cof(A)i j .

Therefore,

det(A) =
n

∑
j=1

ai j cof(A)i j
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which is the formula for expanding det(A) along the ith row. Also,

det(A) = det
(
AT )= n

∑
j=1

aT
i j cof

(
AT )

i j =
n

∑
j=1

a ji cof(A) ji

which is the formula for expanding det(A) along the ith column. ■

1.9.6 A Formula for the Inverse
Note that this gives an easy way to write a formula for the inverse of an n×n matrix. Recall
the definition of the inverse of a matrix in Definition 1.6.7 on Page 29.

Theorem 1.9.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =(
a−1

i j

)
where

a−1
i j = det(A)−1 cof(A) ji

for cof(A)i j the i jth cofactor of A.

Proof: By Theorem 1.9.17 and letting (air) = A, if det(A) ̸= 0,

n

∑
i=1

air cof(A)ir det(A)−1 = det(A)det(A)−1 = 1.

Now in the matrix A, replace the kth column with the rth column and then expand along the
kth column. This yields for k ̸= r,

n

∑
i=1

air cof(A)ik det(A)−1 = 0

because there are two equal columns by Corollary 1.9.9. Summarizing,

n

∑
i=1

air cof(A)ik det(A)−1 = δ rk.

Using the other formula in Theorem 1.9.17, and similar reasoning,

n

∑
j=1

ar j cof(A)k j det(A)−1 = δ rk

This proves that if det(A) ̸= 0, then A−1 exists with A−1 =
(

a−1
i j

)
, where

a−1
i j = cof(A) ji det(A)−1 .

Now suppose A−1 exists. Then by Theorem 1.9.13,

1 = det(I) = det
(
AA−1)= det(A)det

(
A−1)

so det(A) ̸= 0. ■
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.
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Corollary 1.9.19 Let A be an n×n matrix and suppose there exists an n×n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n×n matrix such
that AC = I, then A−1 exists and A−1 =C.

Proof: Since BA = I, Theorem 1.9.13 implies detBdetA = 1 and so detA ̸= 0. There-
fore from Theorem 1.9.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1)= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n×n matrices.
Theorem 1.9.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

1.9.7 Cramer’s Rule

In case you are solving a system of equations, Ax= y for x, it follows that if A−1 exists,

x=
(
A−1A

)
x= A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n

∑
j=1

a−1
i j y j =

n

∑
j=1

1
det(A)

cof(A) ji y j.

By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det

 ∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·,yn)
T , and the

determinant of this modified matrix is taken and divided by det(A). This formula is known
as Cramer’s rule.

Definition 1.9.20 A matrix M, is upper triangular if Mi j = 0 whenever i > j. Thus
such a matrix equals zero below the main diagonal, the entries of the form Mii as shown.

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.
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With this definition, here is a simple corollary of Theorem 1.9.17.

Corollary 1.9.21 Let M be an upper (lower) triangular matrix. Then det(M) is ob-
tained by taking the product of the entries on the main diagonal.

1.9.8 Rank of a Matrix

Definition 1.9.22 A submatrix of a matrix A is the rectangular array of numbers
obtained by deleting some rows and columns of A. Let A be an m× n matrix. The deter-
minant rank of the matrix equals r where r is the largest number such that some r× r
submatrix of A has a non zero determinant. The row rank is defined to be the dimension
of the span of the rows. The column rank is defined to be the dimension of the span of the
columns.

Theorem 1.9.23 If A, an m× n matrix has determinant rank r, then there exist r
rows of the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (ai j) equals r. Thus some r× r subma-
trix has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · ·< jr

and the r rows whose indices are
i1 < · · ·< ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r+1)× (r+1) matrix

ai1 j1 · · · ai1 jr ai1 p
...

...
...

air j1 · · · air jr air p
al j1 · · · al jr al p


Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth row
is one of the chosen ones. The above matrix has determinant 0. This is because if p /∈
{ j1, · · · , jr} then the above would be a submatrix of A which is too large to have non zero
determinant. On the other hand, if p ∈ { j1, · · · , jr} then the above matrix has two columns
which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aik p. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with al p. This is given to be nonzero, it being the determinant of the matrix r× r matrix
in the upper left corner. Thus 0 = al pC+∑

r
k=1 Ckaik p which implies al p = ∑

r
k=1

−Ck
C aik p ≡

∑
r
k=1 mkaik p Since this is true for every p and since mk does not depend on p, this has shown

the lth row is a linear combination of the i1, i2, · · · , ir rows. ■

Corollary 1.9.24 The determinant rank equals the row rank.
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Proof: From Theorem 1.9.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so, it
follows from Theorem 1.9.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r× r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
4.2.3, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 1.9.11 the determinant
would be 0, a contradiction. ■

Corollary 1.9.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 1.9.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A. ■

The following theorem is of fundamental importance and ties together many of the
ideas presented above.

Theorem 1.9.26 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det(A) = 0. Then the determinant rank of A = r < n. Therefore, there
exist r columns such that every other column is a linear combination of these columns
by Theorem 1.9.23. In particular, it follows that for some m, the mth column is a linear
combination of all the others. Thus letting A =

(
a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars α i such that am =∑k ̸=m αkak. Now consider
the column vector, x≡

(
α1 · · · −1 · · · αn

)T . Then Ax = −am +∑k ̸=m αkak =

0. Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such
that ATx= 0. Taking the transpose of both sides yields xT A = 0T where the 0T is a 1×n
matrix or row vector. Now if Ay= x, then |x|2 = xT (Ay) =

(
xT A

)
y= 0y = 0 contrary

to x ̸= 0. Consequently there can be no y such that Ay= x and so A is not onto. This
shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det(A) ̸= 0 but then from Theorem
1.9.18 A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax= y.
In fact x= A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). ■

Corollary 1.9.27 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) ̸= 0.
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2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

1.9.9 An Identity of Cauchy

Theorem 1.9.28 Both the left and the right sides in the following yield the same
polynomial in the variables ai,bi for i≤ n.

∏
i, j

(ai +b j)

∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

...
1

an+b1
· · · 1

an+bn

∣∣∣∣∣∣∣= ∏
j<i

(ai−a j)(bi−b j) . (1.26)

Proof: The theorem is true if n = 2. This follows from some computations. Suppose it
is true for n−1, n≥ 3.∣∣∣∣∣∣∣∣∣∣

1
a1+b1

1
a1+b2

· · · 1
a1+bn

...
... · · ·

...
1

an−1+b1
1

an−1+b2
1

an−1+bn
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

an−a1
(a1+b1)(b1+an)

an−a1
(a1+b2)(b2+an)

· · · an−a1
(a1+bn)(an+bn)

...
... · · ·

...
an−an−1

(an−1+b1)(an+b1)
an−an−1

(b2+an)(b2+an−1)
an−an−1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
Continuing to use the multilinear properties of determinants, this equals∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)(b1+an)

1
(a1+b2)(b2+an)

· · · 1
(a1+bn)(an+bn)

...
... · · ·

...
1

(an−1+b1)(an+b1)
1

(b2+an)(b2+an−1)
1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
n−1

∏
k=1

(an−ak)

and this equals ∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
(a1+bn)

...
... · · ·

...
1

(an−1+b1)
1

(b2+an−1)
1

(bn+an−1)

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now take −1 times the last column and add to each previous column. Thus it equals∣∣∣∣∣∣∣∣∣∣

bn−b1
(a1+b1)(a1+bn)

bn−b2
(a1+b2)(a1+bn)

· · · 1
(a1+bn)

...
... · · ·

...
bn−b1

(b1+an−1)(bn+an−1)
bn−b2

(b2+an−1)(bn+an−1)
1

(an−1+bn)

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)
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Now continue simplifying using the multilinear property of the determinant.∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
...

... · · ·
...

1
(b1+an−1)

1
(b2+an−1)

1
0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

Expanding along the bottom row, what has just resulted is∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1
... · · ·

...
1

an−1+b1
· · · 1

an−1+bn−1

∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

By induction this equals

∏ j<i≤n−1 (ai−a j)(bi−b j)

∏i, j≤n−1 (ai +b j)

∏
n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

=
∏ j<i≤n (ai−a j)(bi−b j)

∏i, j≤n (ai +b j)
■

1.10 The Cayley Hamilton Theorem
Definition 1.10.1 Let A be an n× n matrix. The characteristic polynomial is de-
fined as

qA (t)≡ det(tI−A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p(t) = tn +
an−1tn−1 + · · ·+a1t +a0, denote by p(A) the matrix defined by

p(A)≡ An +an−1An−1 + · · ·+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra2. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 1.10.2 Suppose for all |λ | large enough,

A0 +A1λ + · · ·+Amλ
m = 0,

where the Ai are n×n matrices. Then each Ai = 0.

2A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time
later and a proof was given by Frobenius in 1878.
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Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ

−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. ■
With the lemma, here is a simple corollary.

Corollary 1.10.3 Let Ai and Bi be n×n matrices and suppose

A0 +A1λ + · · ·+Amλ
m = B0 +B1λ + · · ·+Bmλ

m

for all |λ | large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai,Bi then one can
substitute an n×n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 1.10.4 Let A be an n×n matrix and let q(λ )≡ det(λ I−A) be the char-
acteristic polynomial. Then q(A) = 0.

Proof: Let C (λ ) equal the transpose of the cofactor matrix of (λ I−A) for |λ | large.
(If |λ | is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ , (λ I−A)−1 exists.) Therefore, by Theorem 1.9.18

C (λ ) = q(λ )(λ I−A)−1 .

Say
q(λ ) = a0 +a1λ + · · ·+λ

n

Note that each entry in C (λ ) is a polynomial in λ having degree no more than n− 1. For
example, you might have something like

C (λ ) =

 λ
2−6λ +9 3−λ 0
2λ −6 λ

2−3λ 0
λ −1 λ −1 λ

2−3λ +2


=

 9 3 0
−6 0 0
−1 −1 2

+λ

 −6 −1 0
2 −3 0
1 1 −3

+λ
2

 1 0 0
0 1 0
0 0 1


Therefore, collecting the terms in the general case,

C (λ ) =C0 +C1λ + · · ·+Cn−1λ
n−1

for C j some n×n matrix. Then

C (λ )(λ I−A) =
(

C0 +C1λ + · · ·+Cn−1λ
n−1
)
(λ I−A) = q(λ ) I

Then multiplying out the middle term, it follows that for all |λ | sufficiently large,

a0I +a1Iλ + · · ·+ Iλ
n =C0λ +C1λ

2 + · · ·+Cn−1λ
n

−
[
C0A+C1Aλ + · · ·+Cn−1Aλ

n−1
]

=−C0A+(C0−C1A)λ +(C1−C2A)λ
2 + · · ·+(Cn−2−Cn−1A)λ

n−1 +Cn−1λ
n

Then, using Corollary 1.10.3, one can replace λ on both sides with A. Then the right side
is seen to equal 0. Hence the left side, q(A) I is also equal to 0. ■
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Chapter 2

Some Basic Topics
This chapter contains basic definitions and a few fundamental theorems which will be used
throughout the book whenever convenient.

2.1 Basic Definitions
A set is a collection of things called elements of the set. For example, the set of integers,
the collection of signed whole numbers such as 1,2,−4, etc. This set whose existence
will be assumed is denoted by Z. Other sets could be the set of people in a family or the
set of donuts in a display case at the store. Sometimes parentheses, { } specify a set by
listing the things which are in the set between the parentheses. For example the set of
integers between−1 and 2, including these numbers could be denoted as {−1,0,1,2}. The
notation signifying x is an element of a set S, is written as x ∈ S. Thus, 1 ∈ {−1,0,1,2,3}.
Here are some axioms about sets. Axioms are statements which are accepted, not proved.

Axiom 2.1.1 Two sets are equal if and only if they have the same elements.

Axiom 2.1.2 To every set, A, and to every condition S (x) there corresponds a set, B, whose
elements are exactly those elements x of A for which S (x) holds.

Axiom 2.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection. (You can take the union of a bunch of
sets.)

Axiom 2.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 2.1.5 If A is a set there exists a set, P (A) such that P (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3,1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some “condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no way
to determine to everyone’s satisfaction whether a given judge is an activist. Also, just
because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

57



58 CHAPTER 2. SOME BASIC TOPICS

So what is a condition?
We will leave these sorts of considerations and assume our conditions make sense,

whatever that means. The axiom of unions states that for any collection of sets, there is a
set consisting of all the elements in each of the sets in the collection. Of course this is also
open to further consideration. What is a collection? Maybe it would be better to say “set
of sets” or, given a set whose elements are sets there exists a set whose elements consist
of exactly those things which are elements of at least one of these sets. If S is such a set
whose elements are sets,

∪{A : A ∈S } or ∪S

signify this union.
Something is in the Cartesian product of a set or “family” of sets if it consists of a single

thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×{4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by ×.
Also, this is the notation for the Cartesian product of finitely many sets. If S is a set whose
elements are sets, ∏A∈S A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of S . You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

A is a subset of B, written A ⊆ B, if every element of A is also an element of B. This
can also be written as B ⊇ A. A is a proper subset of B, written A ⊂ B or B ⊃ A if A is a
subset of B but A is not equal to B,A ̸= B. A∩B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as /0. A∪B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set which is a set which contains the
one whose complement is being taken. Thus, the complement of A, denoted as AC ( or
more precisely as X \A) is a set obtained from using the axiom of specification to write

AC ≡ {x ∈ X : x /∈ A}

The symbol /∈ means: “is not an element of”. Note the axiom of specification takes place
relative to a given set. Without this universal set it makes no sense to use the axiom of
specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
that there are symbols for them. The symbol ∀ is read as “for all” or “for every” and the
symbol ∃ is read as “there exists”. Thus ∀∀∃∃ could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of which
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is contained in some universal set, U . Then

∪
{

AC : A ∈S
}
= (∩{A : A ∈S })C

and
∩
{

AC : A ∈S
}
= (∪{A : A ∈S })C .

These laws follow directly from the definitions. Also following directly from the definitions
are:

Let S be a set of sets then

B∪∪{A : A ∈S }= ∪{B∪A : A ∈S } .

and: Let S be a set of sets show

B∩∪{A : A ∈S }= ∪{B∩A : A ∈S } .

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if this is so, it qualifies for inclusion in A so it is an element of
itself and so this can’t be true either. Thus the most basic of conditions you could imagine,
that of being an element of, is meaningless and so allowing such a set causes the whole
theory to be meaningless. The solution is to not allow a universal set. As mentioned by
Halmos in Naive set theory, “Nothing contains everything”. Always beware of statements
involving quantifiers wherever they occur, even this one. This little observation described
above is due to Bertrand Russell and is called Russell’s paradox.

2.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 2.2.1 Let X and Y be sets.

X×Y ≡ {(x,y) : x ∈ X and y ∈ Y}

A relation is defined to be a subset of X ×Y . A function f , also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f , then
y = y1. The domain of f is defined as

D( f )≡ {x : (x,y) ∈ f} ,

written as f : D( f )→ Y . Another notation which is used is the following

f−1 (y)≡ {x ∈ D( f ) : f (x) = y}

This is called the inverse image.
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It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y,denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem.

Theorem 2.2.2 Let f : X →Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof:Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.

It only remains to verify that g(D) = B. It was just shown that g(D)⊆ B.
Suppose x ∈ B = X \ A. Then A∪ {x} does not satisfy P and so there exists y ∈

Y \ f (A∪{x}) ⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A satisfies P , it
follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D). Hence g(D) = B. ■

Theorem 2.2.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to one,
then there exists h : X → Y which is one to one and onto.
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Proof:Let A,B,C,D be the sets of Theorem2.2.2 and define

h(x)≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping. ■
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 2.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice
function written as f ∈∏i∈I Xi if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set, then

∏
i∈I

Xi ̸= /0.

Sometimes the two functions, f and g are onto but not one to one. It turns out that with
the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 2.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then

y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists

h : X → Y which is one to one and onto. ■

Definition 2.2.6 A set S, is finite if there exists a natural number n and a map θ

which maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, this will be written as θ : A→ B in the future.) Here N≡ {1,2, · · ·}, the natural
numbers. S is at most countable if there exists a map θ : N→S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 2.2.7 If X and Y are both at most countable, then X ×Y is also at most
countable. If either X or Y is countable, then X×Y is also countable.
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Proof: It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)
↓ ↗

(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 2.2.5, there exists a one to one and onto mapping
from X×Y to N. ■

Theorem 2.2.8 If X and Y are at most countable, then X ∪Y is at most countable.
If either X or Y are countable, then X ∪Y is countable.

Proof:As in the preceding theorem,

X = {x1,x2,x3, · · ·}

and
Y = {y1,y2,y3, · · ·} .

Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 2.2.5 yields the conclusion. ■

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable.
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2.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 2.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the
following axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 2.3.2 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 2.3.3 Let ∼ be an equivalence relation defined on a set, S and let H
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x∼ y and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

2.4 sup and inf
It is assumed in all that is done that R is complete. There are two ways to describe com-
pleteness of R. One is to say that every bounded set has a least upper bound and a greatest
lower bound. The other is to say that every Cauchy sequence converges. These two equiv-
alent notions of completeness will be taken as given. Cauchy sequences are discussed a
little later.

The symbol, Fwill mean eitherR orC. The symbol [−∞,∞] will mean all real numbers
along with +∞ and −∞ which are points which we pretend are at the right and left ends of
the real line respectively. The inclusion of these make believe points makes the statement
of certain theorems less trouble.

Definition 2.4.1 For A ⊆ [−∞,∞] ,A ̸= /0 supA is defined as the least upper bound
in case A is bounded above by a real number and equals ∞ if A is not bounded above.
Similarly infA is defined to equal the greatest lower bound in case A is bounded below by
a real number and equals −∞ in case A is not bounded below.

Lemma 2.4.2 If {An} is an increasing sequence in [−∞,∞], then

sup{An : n ∈ N}= lim
n→∞

An.

Similarly, if {An} is decreasing, then

inf{An : n ∈ N}= lim
n→∞

An.
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Proof: Let sup({An : n ∈ N}) = r. In the first case, suppose r < ∞. Then letting ε > 0
be given, there exists n such that An ∈ (r− ε,r]. Since {An} is increasing, it follows if
m > n, then r− ε < An ≤ Am ≤ r and so limn→∞ An = r as claimed. In the case where
r = ∞, then if a is a real number, there exists n such that An > a. Since {Ak} is increasing,
it follows that if m > n, Am > a. But this is what is meant by limn→∞ An = ∞. The other
case is that r =−∞. But in this case, An =−∞ for all n and so limn→∞ An =−∞. The case
where An is decreasing is entirely similar. ■

2.5 Double Series
Double series are of the form ∑

∞
k=m ∑

∞
j=m a jk ≡∑

∞
k=m

(
∑

∞
j=m a jk

)
. In other words, first sum

on j yielding something which depends on k and then sum these. The major consideration
for these double series is the question of when ∑

∞
k=m ∑

∞
j=m a jk = ∑

∞
j=m ∑

∞
k=m a jk In other

words, when does it make no difference which subscript is summed over first? In the case
of finite sums there is no issue here. You can always write ∑

M
k=m ∑

N
j=m a jk = ∑

N
j=m ∑

M
k=m a jk

because addition is commutative. However, there are limits involved with infinite sums and
the interchange in order of summation involves taking limits in a different order. Therefore,
it is not always true that it is permissible to interchange the two sums. A general rule of
thumb is this: If something involves changing the order in which two limits are taken, you
may not do it without agonizing over the question. In general, limits foul up algebra and
also introduce things which are counter intuitive. Here is an example. This example is a
little technical. It is placed here just to prove conclusively there is a question which needs
to be considered.

Example 2.5.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

...
0 0 c 0 −c
0 c 0 −c 0
b 0 −c 0 0
0 a 0 0 0

· · ·

The a,b,c are the values of amn. Thus ann = 0 for all n≥ 1, a21 = a,a12 = b,am(m+1) =−c
whenever m > 1, and am(m−1) = c whenever m > 2. The numbers next to the point are the
values of amn. You see ann = 0 for all n, a21 = a,a12 = b,amn = c for (m,n) on the line
y = 1+ x whenever m > 1, and amn = −c for all (m,n) on the line y = x− 1 whenever
m > 2.

Then ∑
∞
m=1 amn = a if n = 1, ∑

∞
m=1 amn = b− c if n = 2 and if n > 2,∑∞

m=1 amn = 0.
Therefore,

∞

∑
n=1

∞

∑
m=1

amn = a+b− c.

Next observe that ∑
∞
n=1 amn = b if m = 1,∑∞

n=1 amn = a+ c if m = 2, and ∑
∞
n=1 amn = 0 if

m > 2. Therefore,
∞

∑
m=1

∞

∑
n=1

amn = b+a+ c
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and so the two sums are different. Moreover, you can see that by assigning different values
of a,b, and c, you can get an example for any two different numbers desired.

It turns out that if ai j ≥ 0 for all i, j, then you can always interchange the order of
summation. This is shown next and is based on the following lemma. First, some notation
should be discussed.

Definition 2.5.2 Let f (a,b)∈ [−∞,∞] for a∈A and b∈B where A,B are sets which
means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is interpreted as a point
out at the end of the number line which is larger than every real number. Of course there is
no such number. That is why it is called ∞. The symbol, −∞ is interpreted similarly. Then
supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} .

Unlike limits, you can take the sup in different orders.

Lemma 2.5.3 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,
supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,

sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. ■

Theorem 2.5.4 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j

because for all j,∑∞
i=r ai j ≥ ∑

n
i=r ai j.Therefore,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j

= sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j = sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j

= sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■
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2.6 lim sup and lim inf
Sometimes the limit of a sequence does not exist. For example, if an = (−1)n , then
limn→∞ an does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition. First review the definition
of inf and sup on Page 63 along with the simple properties of these things.

Definition 2.6.1 Denote by [−∞,∞] the real line along with symbols ∞ and −∞. It
is understood that ∞ is larger than every real number and −∞ is smaller than every real
number. Then if {An} is an increasing sequence of points of [−∞,∞] , limn→∞ An equals ∞ if
the only upper bound of the set {An} is ∞. If {An} is bounded above by a real number, then
limn→∞ An is defined in the usual way and equals the least upper bound of {An}. If {An} is
a decreasing sequence of points of [−∞,∞] , limn→∞ An equals −∞ if the only lower bound
of the sequence {An} is −∞. If {An} is bounded below by a real number, then limn→∞ An is
defined in the usual way and equals the greatest lower bound of {An}. More simply, if {An}
is increasing,limn→∞ An ≡ sup{An} and if {An} is decreasing then limn→∞ An ≡ inf{An} .

Lemma 2.6.2 Let {an} be a sequence of real numbers and let Un ≡ sup{ak : k ≥ n} .
Then {Un} is a decreasing sequence. Also if Ln ≡ inf{ak : k ≥ n} , then {Ln} is an increas-
ing sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: Let Wn be an upper bound for {ak : k ≥ n} . Then since these sets are getting
smaller, it follows that for m < n, Wm is an upper bound for {ak : k ≥ n} . In particular if
Wm =Um, then Um is an upper bound for {ak : k ≥ n} and so Um is at least as large as Un,
the least upper bound for {ak : k ≥ n} . The claim that {Ln} is decreasing is similar. ■

From the lemma, the following definition makes sense.

Definition 2.6.3 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n} .

Theorem 2.6.4 Suppose {an} is a sequence of real numbers and also that both
limsupn→∞ an,liminfn→∞ an are real numbers. Then limn→∞ an exists if and only if the two
numbers are equal and in this case, the limit and the each of limsupn→∞ an,liminfn→∞ an
are equal.

Proof: First note that sup{ak : k ≥ n} ≥ inf{ak : k ≥ n} and so,

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n} ≥ lim
n→∞

inf{ak : k ≥ n} ≡ lim inf
n→∞

an.

Suppose first that limn→∞ an exists and is a real number a. Then from the definition of a
limit, there exists N corresponding to ε/6 in the definition. Hence, if m,n≥ N, then

|an−am| ≤ |an−a|+ |a−an|<
ε

6
+

ε

6
=

ε

3
.
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From the definition of sup{ak : k ≥ N} , there exists n1 ≥ N such that

sup{ak : k ≥ N} ≤ an1 + ε/3.

Similarly, there exists n2 ≥ N such that inf{ak : k ≥ N} ≥ an2 − ε/3. It follows that

sup{ak : k ≥ N}− inf{ak : k ≥ N} ≤ |an1 −an2 |+
2ε

3
< ε.

Since the sequence, {sup{ak : k ≥ N}}∞

N=1 is decreasing and {inf{ak : k ≥ N}}∞

N=1 is in-
creasing, it follows that

0≤ lim
N→∞

sup{ak : k ≥ N}− lim
N→∞

inf{ak : k ≥ N} ≤ ε

Since ε is arbitrary, this shows

lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N} (2.1)

Next suppose 2.1 and both equal a ∈ R. Then

lim
N→∞

(sup{ak : k ≥ N}− inf{ak : k ≥ N}) = 0

Since sup{ak : k ≥ N} ≥ inf{ak : k ≥ N}, it follows that for every ε > 0, there exists N
such that sup{ak : k ≥ N}− inf{ak : k ≥ N} < ε, and for every N,inf{ak : k ≥ N} ≤ a ≤
sup{ak : k ≥ N}

inf{ak : k ≥ N} ≤ a≤ sup{ak : k ≥ N}

Thus if n≥ N, |a−an|< ε which implies that limn→∞ an = a. In case

a = ∞ = lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N}

then if r ∈ R is given, there exists N such that inf{ak : k ≥ N} > r which is to say that
limn→∞ an = ∞. The case where a =−∞ is similar except you use sup{ak : k ≥ N}. ■

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 2.6.5 Suppose {an} is a sequence of points of [−∞,∞] . Also define λ =
limsupn→∞ an. Then if b > λ , it follows there exists N such that whenever n≥ N,an ≤ b.If
c < λ , then an > c for infinitely many values of n. Let γ = liminfn→∞ an.Then if d < γ,
it follows there exists N such that whenever n ≥ N,an ≥ d. If e > γ, it follows an < e for
infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 2.6.6 Let limn→∞ an = a > 0. Then limsupn→∞ anbn = a limsupn→∞ bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)
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for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λ n ≡ lim sup
n→∞

anbn ≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε))

= (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Now since ε > 0 is
arbitrary, the conclusion follows. ■

2.7 Nested Interval Lemma
The nested interval lemma is a simple and important lemma which is used later quite a bit.

Lemma 2.7.1 Let [ak,bk]⊇ [ak+1,bk+1] for all k = 1,2,3, · · · . Then there exists a point
p in ∩∞

k=1 [ak,bk]. If limk→∞ (bk−ak) = 0, then there is only one such point

Proof: We note that for any k, l,ak ≤ bl . Here is why. If k ≤ l, then ak ≤ al ≤ bl . If
k > l, then bl ≥ bk ≥ ak. It follows that for each l, supk ak ≤ bl . Hence supk ak is a lower
bound to the set of all bl and so it is no larger than the greatest lower bound. It follows
that supk ak ≤ infl bl . Pick x ∈ [supk ak, infl bl ]. Then for every k,ak ≤ x ≤ bk. Hence
x ∈ ∩∞

k=1 [ak,bk] .
To see the last claim, if q is another point in all the intervals, then both p and q are in

[ak,bk] and so |p−q| ≤ (bk−ak)< ε if k is large enough. Since ε is arbitrary, p = q. ■

2.8 The Hausdorff Maximal Theorem
This major theorem, or something like it (Several equivalent statements are proved later.), is
either absolutely essential or extremely convenient. First is the definition of what is meant
by a partial order.

Definition 2.8.1 A nonempty set F is called a partially ordered set if it has a partial
order denoted by ≺. This means it satisfies the following. If x ≺ y and y ≺ z, then x ≺ z.
Also x≺ x. It is like⊆ on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x≺ y
or y ≺ x. A chain, denoted by C ⊆F has the property that it is totally ordered meaning
that if x,y ∈ C , either x≺ y or y≺ x. A maximal chain is a chain C which has the property
that there is no strictly larger chain. In other words, if x ∈ F\∪C , then C∪{x} is no
longer a chain.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the xC right at the beginning of the argument.

Theorem 2.8.2 Let F be a nonempty partially ordered set with order≺. Then there
exists a maximal chain.

Proof: Suppose not. Then for C a chain, let θC denote C ∪{xC } . Thus for C a chain,
θC is a larger chain which has exactly one more element of F . Since F ̸= /0, pick x0 ∈
F . Note that {x0} is a chain. Let X be the set of all chains C such that x0 ∈ ∪C . Thus
X contains {x0}. Call two chains comparable if one is a subset of the other. Also, if S
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is a nonempty subset of F in which all chains are comparable, then ∪S is also a chain.
From now on S will always refer to a nonempty set of chains in which any pair are
comparable. Then summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X

3. If C ∈X then θC ∈X .

4. If S ⊆X then ∪S ∈X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.

Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ ∪C . The symbol ⊊ indicates proper subset.

This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1? If S ⊆ Y , is ∪S ∈ Y1? Is {x0} ∈B?
{x0} cannot properly contain C0 since x0 ∈ ∪C0. Therefore, C0 ⊇ {x0} so {x0} ∈B.
If S ⊆ Y1, and D ≡ ∪S , is D ∈ Y1? Since Y0 is a tower, D is comparable to C0.

If D ⊆ C0, then D is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why is
xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. 4.) holds. Two cases remain, to
show that Y1 satisfies 3.).

case 1: D ⊋ C0. Then by definition of B, xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. θD ∈ Y0 so θD is comparable to C0. First suppose θD ⊋ C0. Thus

D ⊆ C0 ⊊ D ∪{xD} . If x ∈ C0 and x is not in D then D ∪{x} ⊆ C0 ⊊ D ∪{xD}. This
is impossible. Consider x. Thus in this case that θD ⊋ C0, D = C0. It follows that
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. The other case is that θD ⊆ C0 so θD ∈B
by definition. This shows 3.) so Y1 is a tower and must equal Y0.

Claim 2: Any two chains in Y0 are comparable.
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. {x0} is in Y1 by definition. All chains of Y0 have x0 in their union. If
S ⊆Y1, is ∪S ∈Y1? Given D ∈Y0 either every chain of S is contained in D or at least
one contains D . Either way D is comparable to ∪S so ∪S ∈ Y1. It remains to show 3.).
Let C ∈ Y1 and D ∈ Y0. Since C is comparable to all chains in Y0, it follows from Claim
1 either C ⊊ D when xC ∈ ∪D and θC ⊆ D or C ⊇ D when θC ⊇ D . Hence Y1 = Y0
because Y0 is as small as possible.

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■
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If X is a nonempty set, ≤ is an order on X if

x≤ x,
either x≤ y or y≤ x

if x≤ y and y≤ z then x≤ z.

and≤ is a well order if (X ,≤) if every nonempty subset of X has a smallest element. More
precisely, if S ̸= /0 and S ⊆ X then there exists an x ∈ S such that x ≤ y for all y ∈ S. A
familiar example of a well-ordered set is the natural numbers.

Lemma 2.8.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.

Proof: Let X be a nonempty set and let a ∈ X . Then {a} is a well-ordered subset of X .
Let F = {S ⊆ X : there exists a well order for S}. Thus F ̸= /0. For S1, S2 ∈F , define
S1 ≺ S2 if S1 ⊆ S2 and there exists a well order for S2,≤2 such that (S2,≤2) is well-ordered
and if y ∈ S2 \ S1 then x ≤2 y for all x ∈ S1, and if ≤1is the well order of S1 then the two
orders are consistent on S1. Then observe that ≺ is a partial order on F . By the Hausdorff
maximal principle, let C be a maximal chain in F and let X∞ ≡ ∪C . Define an order, ≤,
on X∞ as follows. If x, y are elements of X∞, pick S ∈C such that x, y are both in S. Then if
≤S is the order on S, let x≤ y if and only if x≤S y. This definition is well defined because
of the definition of the order, ≺. Now let U be any nonempty subset of X∞. Then S∩U ̸= /0
for some S ∈ C . Because of the definition of ≤, if y ∈ S2 \ S1, Si ∈ C , then x ≤ y for all
x ∈ S1. Thus, if y ∈ X∞ \ S then x ≤ y for all x ∈ S and so the smallest element of S∩U
exists and is the smallest element in U . Therefore X∞ is well-ordered. Now suppose there
exists z ∈ X \X∞. Define the following order, ≤1, on X∞∪{z}.

x≤1 y if and only if x≤ y whenever x,y ∈ X∞

x≤1 z whenever x ∈ X∞.

Let C̃ = {S ∈ C or X∞∪{z}}. Then C̃ is a strictly larger chain than C contradicting max-
imality of C . Thus X \X∞ = /0 and this shows X is well-ordered by ≤. ■

With these two lemmas the main result follows.

Theorem 2.8.4 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It remains to show that the well-ordering principle implies the axiom of choice.
Let I be a nonempty set and let Xi be a nonempty set for each i ∈ I. Let X = ∪{Xi : i ∈ I}
and well order X . Let f (i) be the smallest element of Xi. Then f ∈∏i∈I Xi. ■

The book by Hewitt and Stromberg [26] has more equivalences.
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Metric Spaces
3.1 Open and Closed Sets, Sequences, Limit Points

It is most efficient to discus things in terms of abstract metric spaces to begin with.

Definition 3.1.1 A non empty set X is called a metric space if there is a function
d : X×X → [0,∞) which satisfies the following axioms.

1. d (x,y) = d (y,x)

2. d (x,y)≥ 0 and equals 0 if and only if x = y

3. d (x,y)+d (y,z)≥ d (x,z)

This function d is called the metric. We often refer to it as the distance also.

Definition 3.1.2 An open ball, denoted as B(x,r) is defined as follows.

B(x,r)≡ {y : d (x,y)< r}

A set U is said to be open if whenever x ∈ U, it follows that there is r > 0 such that
B(x,r) ⊆U. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x− y|.
Then the first thing to show is the following.

Proposition 3.1.3 An open ball is an open set.

Proof: Suppose y ∈ B(x,r) . We need to verify that y is an interior point of B(x,r). Let
δ = r−d (x,y) . Then if z ∈ B(y,δ ) , it follows that

d (z,x)≤ d (z,y)+d (y,x)< δ +d (y,x) = r−d (x,y)+d (y,x) = r

Thus y ∈ B(y,δ )⊆ B(x,r). ■

Definition 3.1.4 Let S be a nonempty subset of a metric space. Then p is a limit
point (accumulation point) of S if for every r > 0 there exists a point different than p in
B(p,r)∩S. Sometimes people denote the set of limit points as S′.

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 3.1.5 A point x is a limit point of the nonempty set A if and only if every
B(x,r) contains infinitely many points of A.

71



72 CHAPTER 3. METRIC SPACES

Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{d (ai,x) , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn) . Thus

every B(x,r) contains B(x,rn) for all n large enough and hence it contains ak for k ≥ n
where the ak are distinct, none equal to x. ■

A related idea is the notion of the limit of a sequence. Recall that a sequence is really
just a mapping from N to X . We write them as {xn} or {xn}∞

n=1 if we want to emphasize
the values of n. Then the following definition is what it means for a sequence to converge.

Definition 3.1.6 We say that x= limn→∞ xn when for every ε > 0 there exists N such
that if n≥ N, then

d (x,xn)< ε

Often we write xn→ x for short. This is equivalent to saying

lim
n→∞

d (x,xn) = 0.

Proposition 3.1.7 The limit is well defined. That is, if x,x′ are both limits of a sequence,
then x = x′.

Proof: From the definition, there exist N,N′ such that if n≥N, then d (x,xn)< ε/2 and
if n≥ N′, then d (x,xn)< ε/2. Then let M ≥max(N,N′) . Let n > M. Then

d
(
x,x′
)
≤ d (x,xn)+d

(
xn,x′

)
<

ε

2
+

ε

2
= ε

Since ε is arbitrary, this shows that x = x′ because d (x,x′) = 0. ■
Next there is an important theorem about limit points and convergent sequences.

Theorem 3.1.8 Let S ̸= /0. Then p is a limit point of S if and only if there exists a
sequence of distinct points of S,{xn} none of which equal p such that limn→∞ xn = p.

Proof: =⇒ Suppose p is a limit point. Why does there exist the promissed convergent
sequence? Let x1 ∈B(p,1)∩S such that x1 ̸= p. If x1, · · · ,xn have been chosen, let xn+1 ̸= p
be in B(p,δ n+1)∩S where

δ n+1 = min
{

1
n+1

,d (xi, p) , i = 1,2, · · · ,n
}
.

Then this constructs the necessary convergent sequence.
⇐= Conversely, if such a sequence {xn} exists, then for every r > 0, B(p,r) contains

xn ∈ S for all n large enough. Hence, p is a limit point because none of these xn are equal
to p. ■

Definition 3.1.9 A set H is closed means HC is open.

Note that this says that the complement of an open set is closed. If V is open, then the
complement of its complement is itself. Thus

(
VC
)C

=V an open set. Hence VC is closed.
Then the following theorem gives the relationship between closed sets and limit points.

Theorem 3.1.10 A set H is closed if and only if it contains all of its limit points.
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Proof: =⇒ Let H be closed and let p be a limit point. We need to verify that p ∈ H. If
it is not, then since H is closed, its complement is open and so there exists δ > 0 such that
B(p,δ )∩H = /0. However, this prevents p from being a limit point.
⇐= Next suppose H has all of its limit points. Why is HC open? If p ∈ HC then it is

not a limit point and so there exists δ > 0 such that B(p,δ ) has no points of H. In other
words, HC is open. Hence H is closed. ■

Corollary 3.1.11 A set H is closed if and only if whenever {hn} is a sequence of points
of H which converges to a point x, it follows that x ∈ H.

Proof: =⇒ Suppose H is closed and hn→ x. If x ∈ H there is nothing left to show. If
x /∈ H, then from the definition of limit, it is a limit point of H because none of the hn are
equal to x. Hence x ∈ H after all.
⇐= Suppose the limit condition holds, why is H closed? Let x ∈ H ′ the set of limit

points of H. By Theorem 3.1.8 there exists a sequence of points of H, {hn} such that
hn → x. Then by assumption, x ∈ H. Thus H contains all of its limit points and so it is
closed by Theorem 3.1.10. ■

Next is the important concept of a subsequence.

Definition 3.1.12 Let {xn}∞

n=1 be a sequence. Then if n1 < n2 < · · · is a strictly
increasing sequence of indices, we say

{
xnk

}∞

k=1 is a subsequence of {xn}∞

n=1.

The really important thing about subsequences is that they preserve convergence.

Theorem 3.1.13 Let
{

xnk

}
be a subsequence of a convergent sequence {xn} where

xn→ x. Then limk→∞ xnk = x also.

Proof: Let ε > 0 be given. Then there exists N such that d (xn,x) < ε if n ≥ N. It
follows that if k ≥ N, then nk ≥ N and so d

(
xnk ,x

)
< ε if k ≥ N. This is what it means to

say limk→∞ xnk = x. ■

3.2 Cauchy Sequences, Completeness
Of course it does not go the other way. For example, you could let xn = (−1)n and it has a
convergent subsequence but fails to converge. Here d (x,y) = |x− y| and the metric space
is just R.

However, there is a kind of sequence for which it does go the other way. This is called
a Cauchy sequence.

Definition 3.2.1 {xn} is called a Cauchy sequence if for every ε > 0 there exists N
such that if m,n≥ N, then d (xn,xm)< ε.

Now the major theorem about this is the following.

Theorem 3.2.2 Let {xn} be a Cauchy sequence. Then it converges if and only if any
subsequence converges.

Proof: =⇒ This was just done above.⇐= Suppose now that {xn} is a Cauchy sequence
and limk→∞ xnk = x. Then there exists N1 such that if k > N1, then d

(
xnk ,x

)
< ε/2. From

the definition of what it means to be Cauchy, there exists N2 such that if m,n ≥ N2, then
d (xm,xn) < ε/2. Let N ≥ max(N1,N2). Then if k ≥ N, then nk ≥ N and so d (x,xk) ≤
d
(
x,xnk

)
+d
(
xnk ,xk

)
< ε

2 +
ε

2 = ε. It follows from the definition that limk→∞ xk = x. ■
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Definition 3.2.3 A metric space is said to be complete if every Cauchy sequence
converges.

There certainly are metric spaces which are not complete. For example, if you consider
Q with d (x,y) ≡ |x− y| , this will not be complete because you can get a sequence which
is obtained as xn defined as the n decimal place description of

√
2. However, if a sequence

converges, then it must be Cauchy.

Lemma 3.2.4 If xn→ x, then {xn} is a Cauchy sequence.

Proof: Let ε > 0. Then there exists nε such that if m ≥ nε , then d (x,xm) < ε/2. If
m,k ≥ nε , then by the triangle inequality, d (xm,xk) ≤ d (xm,x) + d (x,xk) <

ε

2 + ε

2 = ε

showing that the convergent sequence is indeed a Cauchy sequence as claimed. ■
Another nice thing to note is this.

Proposition 3.2.5 If {xn} is a sequence and if p is a limit point of the set S=∪∞
n=1 {xn},

then there is a subsequence
{

xnk

}
such that limk→∞ xnk = x.

Proof: By Theorem 3.1.8, there exists a sequence of distinct points of S denoted as
{yk} such that none of them equal p and limk→∞ yk = p. Thus B(p,r) contains infinitely
many different points of the set D, this for every r. Let xn1 ∈ B(p,1) where n1 is the first
index such that xn1 ∈ B(p,1). Suppose xn1 , · · · ,xnk have been chosen, the ni increasing and
let 1 > δ 1 > δ 2 > · · ·> δ k where xni ∈ B(p,δ i) . Then let

δ k+1 < min
{

1
2k+1 ,d

(
p,xn j

)
,δ j, j = 1,2 · · · ,k

}
Let xnk+1 ∈ B(p,δ k+1) where nk+1 is the first index such that xnk+1 is contained B(p,δ k+1).
Then limk→∞ xnk = p. ■

Another useful result is the following.

Lemma 3.2.6 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).

Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y). Similar reasoning to what was just used shows
that d (xn,yn)− d (x,y) ≤ d (x,xn)+ d (yn,y) , so |d (xn,yn)−d (x,y)| ≤ d (x,xn)+ d (yn,y)
and the right side converges to 0 as n→ ∞. ■

3.3 Closure of a Set
Next is the topic of the closure of a set.

Definition 3.3.1 Let A be a nonempty subset of (X ,d) a metric space. Then A is
defined to be the intersection of all closed sets which contain A. Note the whole space, X is
one such closed set which contains A. The whole space X is closed because its complement
is open, its complement being /0. It is certainly true that every point of the empty set is an
interior point because there are no points of /0.
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Lemma 3.3.2 Let A be a nonempty set in (X ,d) . Then A is a closed set and A = A∪
A′where A′ denotes the set of limit points of A.

Proof: First of all, denote by C the set of closed sets which contain A. Then A = ∩C
and this will be closed if its complement is open. However, AC

= ∪
{

HC : H ∈ C
}
. Each

HC is open and so the union of all these open sets must also be open. This is because if x is
in this union, then it is in at least one of them. Hence it is an interior point of that one. But
this implies it is an interior point of the union of them all which is an even larger set. Thus
A is closed.

The interesting part is the next claim. First note that from the definition, A ⊆ A so if
x ∈ A, then x ∈ A. Now consider y ∈ A′ but y /∈ A. If y /∈ A, a closed set, then there exists
B(y,r)⊆ AC

. Thus y cannot be a limit point of A, a contradiction. Therefore, A∪A′ ⊆ A.
Next suppose x ∈ A and suppose x /∈ A. Then if B(x,r) contains no points of A different

than x, since x itself is not in A, it would follow that B(x,r)∩A = /0 and so recalling that
open balls are open, B(x,r)C is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x ∈ A. Hence if x /∈ A, then x ∈ A′ and so
A∪A′ ⊇ A ■

3.4 Separable Metric Spaces
Definition 3.4.1 A metric space is called separable if there exists a countable dense
subset D. This means two things. First, D is countable, and second, that if x is any point
and r > 0, then B(x,r)∩D ̸= /0. A metric space is called completely separable if there
exists a countable collection of nonempty open sets B such that every open set is the union
of some subset of B. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of B namely the empty subset.

Theorem 3.4.2 A metric space is separable if and only if it is completely separable.

Proof: ⇐= Let B be the special countable collection of open sets and for each B ∈B,
let pB be a point of B. Then let P ≡ {pB : B ∈B}. If B(x,r) is any ball, then it is the
union of sets of B and so there is a point of P in it. Since B is countable, so is P .

=⇒ Let D be the countable dense set and let B ≡{B(d,r) : d ∈ D,r ∈Q∩ [0,∞)} .
Then B is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y ∈ B(y,δ ) ⊆ B(x,R) . Then there exists d ∈ B

(
y, δ

10

)
. Let ε ∈ Q and δ

10 < ε < δ

5 . Then
y ∈ B(d,ε) ∈B. Is B(d,ε) ⊆ B(x,R)? If so, then the desired result follows because this
would show that every y∈ B(x,R) is contained in one of these sets of B which is contained
in B(x,R) showing that B(x,R) is the union of sets of B. Let z∈ B(d,ε)⊆ B

(
d, δ

5

)
. Then

d (y,z)≤ d (y,d)+d (d,z)<
δ

10
+ ε <

δ

10
+

δ

5
< δ

Hence B(d,ε) ⊆ B(y,δ ) ⊆ B(x,r). Therefore, every ball is the union of sets of B and,
since every open set is the union of balls, it follows that every open set is the union of sets
of B. ■
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Corollary 3.4.3 If (X ,d) is a metric space and S is a nonempty subset of X , then S is
also separable.

Proof: Let B be a countable basis for (X ,d). Say BS be those sets of B which
have nonempty intersections with S. By axiom of choice, there is a point in each of these
intersections. The resulting countable selection of points must be dense in S. Indeed, if
x ∈ S, then B(x,r) is the union of sets of B and so some point just described is in B(x,r).
■

Definition 3.4.4 Let S be a nonempty set. Then a set of open sets C is called an
open cover of S if ∪C ⊇S . (It covers up the set S. Think lilly pads covering the surface
of a pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 3.4.5 A metric space has the Lindeloff property if whenever C is an open
cover of a set S, there exists a countable subset of C denoted here by B such that B is also
an open cover of S.

Theorem 3.4.6 Every separable metric space has the Lindeloff property.

Proof: Let C be an open cover of a set S. Let B be a countable basis. Such exists by
Theorem 3.4.2. Let B̂ denote those sets of B which are contained in some set of C . Thus
B̂ is a countable open cover of S. Now for B ∈B, let UB be a set of C which contains B.
Letting Ĉ denote these sets UB it follows that Ĉ is countable and is an open cover of S. ■

Definition 3.4.7 A Polish space is a complete separable metric space. These things
turn out to be very useful in probability theory and in other areas.

3.5 Compact Sets
As usual, we are not worrying about empty sets. Fussing over these is usually a waste of
time. Thus if a set is mentioned, the default is that it is nonempty.

Definition 3.5.1 A metric space K is compact if whenever C is an open cover of K,
meaning K ⊆ ∪C , there exists a finite subset of C {U1, · · · ,Un} such that K ⊆ ∪n

k=1Uk. In
words, every open cover admits a finite sub-cover.

Directly from this definition is the following proposition.

Proposition 3.5.2 If K is a closed, nonempty subset of a nonempty compact set H, then
K is compact.

Proof: Let C be an open cover for K. Then C ∪
{

KC
}

is an open cover for H. Thus
there are finitely many sets from this last collection of open sets, U1, · · · ,Um which covers
H. Include only those which are in C . These cover K because KC covers no points of K. ■

This is the real definition given above. However, in metric spaces, it is equivalent to
another definition called sequentially compact.
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Definition 3.5.3 A metric space K is sequentially compact means that whenever
{xn} ⊆ K, there exists a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ K for some point x.

In words, every sequence has a subsequence which converges to a point in the set.

There is a fundamental property possessed by a sequentially compact set in a metric
space which is described in the following proposition. The special number described is
called a Lebesgue number.

Proposition 3.5.4 Let K be a sequentially compact set in a metric space and let C be
an open cover of K. Then there exists a number δ > 0 such that whenever x ∈ K, it follows
that B(x,δ ) is contained in some set of C .

Proof: If C is an open cover of K and has no Lebesgue number, then for each n∈N, 1
n is

not a Lebesgue number. Hence there exists xn ∈K such that B
(
xn,

1
n

)
is not contained in any

set of C . By sequential compactness, there is a subsequence
{

xnk

}
such that xnk → x ∈ K.

Now there is r > 0 such that B(x,r)⊆U ∈ C . Let k be large enough that 1
nk

< r
2 and also

large enough that xnk ∈ B
(
x, r

2

)
. Then B

(
xnk ,

1
nk

)
⊆ B

(
xnk ,

r
2

)
⊆ B(x,r) contrary to the

requirement that B
(

xnk ,
1
nk

)
is not contained in any set of C . ■

In any metric space, these two definitions of compactness are equivalent.

Theorem 3.5.5 Let K be a nonempty subset of a metric space (X ,d). Then it is
compact if and only if it is sequentially compact.

Proof: ⇐ Suppose K is sequentially compact. Let C be an open cover of K. By
Proposition 3.5.4 there is a Lebesgue number δ > 0. Let x1 ∈ K. If B(x1,δ ) covers K, then
pick a set of C containing this ball and this set will be a finite subset of C which covers
K. If B(x1,δ ) does not cover K, let x2 /∈ B(x1,δ ). Continue this way obtaining xk such
that d (xk,x j) ≥ δ whenever k ̸= j. Thus eventually {B(xi,δ )}n

i=1 must cover K because
if not, you could get a sequence {xk} which has every pair of points further apart than δ

and hence it has no Cauchy subsequence. Therefore, by Lemma 3.2.4, it would have no
convergent subsequence. This would contradict K is sequentially compact. Now let Ui ∈C
with Ui ⊇ B(xi,δ ) . Then ∪n

i=1Ui ⊇ K.
⇒ Now suppose K is compact. If it is not sequentially compact, then there exists a

sequence {xn} which has no convergent subsequence to a point of K. In particular, no point
of this sequence is repeated infinitely often. By Proposition 3.2.5 the set of points ∪n {xn}
has no limit point in K. (If it did, you would have a subsequence converging to this point
since every ball containing this point would contain infinitely many points of ∪n {xn}.)
Now consider the sets Hn ≡ ∪k≥n {xk}∪H ′ where H ′ denotes all limit points of ∪n {xn} in
X which is the same as the limit points of ∪k≥n {xk}. Therefore, each Hn is closed thanks to
Lemma 3.3.2. Now let Un ≡ HC

n . This is an increasing sequence of open sets whose union
contains K thanks to the fact that there is no constant subsequence. However, none of these
open sets covers K because Un is missing xn, violating the definition of compactness. Next
is an alternate argument.
⇒ Now suppose K is compact. If it is not sequentially compact, then there exists a

sequence {xn} which has no convergent subsequence to a point of K. If x ∈ K, then there
exists B(x,rx) which contains xn for only finitely many n. This is because x is not the limit
of a subsequence. Then {B(xi,ri)}N

i=1 is a finite sub-cover of K. If p is the largest index for
any xk contained in ∪N

i=1B(xi,ri) , let n > p and consider xn. It is a point in K but it can’t be
in any of the sets covering K. ■
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Definition 3.5.6 X be a metric space. Then a finite set of points {x1, · · · ,xn} is
called an ε net if X ⊆ ∪n

k=1B(xk,ε) . If, for every ε > 0 a metric space has an ε net, then
we say that the metric space is totally bounded.

Lemma 3.5.7 If a metric space (K,d) is sequentially compact, then it is separable and
totally bounded.

Proof: Pick x1 ∈K. If B(x1,ε)⊇K, then stop. Otherwise, pick x2 /∈B(x1,ε) . Continue
this way. If {x1, · · · ,xn} have been chosen, either K⊆∪n

k=1B(xk,ε) in which case, you have
found an ε net or this does not happen in which case, you can pick xn+1 /∈ ∪n

k=1B(xk,ε).
The process must terminate since otherwise, the sequence would need to have a convergent
subsequence which is not possible because every pair of terms is farther apart than ε . See
Lemma 3.2.4. Thus for every ε > 0, there is an ε net. Thus the metric space is totally
bounded. Let Nε denote an ε net. Let D = ∪∞

k=1N1/2k . Then this is a countable dense set. It
is countable because it is the countable union of finite sets and it is dense because given a
point, there is a point of D within 1/2k of it. ■

Also recall that a complete metric space is one for which every Cauchy sequence con-
verges to a point in the metric space.

The following is the main theorem which relates these concepts.

Theorem 3.5.8 For (X ,d) a metric space, the following are equivalent.

1. (X ,d) is compact.

2. (X ,d) is sequentially compact.

3. (X ,d) is complete and totally bounded.

Proof: By Theorem 3.5.5, the first two conditions are equivalent.
2.=⇒ 3. If (X ,d) is sequentially compact, then by Lemma 3.5.7, it is totally bounded.

If {xn} is a Cauchy sequence, then there is a subsequence which converges to x ∈ X by
assumption. However, from Theorem 3.2.2 this requires the original Cauchy sequence to
converge.

3.=⇒ 1. Since (X ,d) is totally bounded, there must be a countable dense subset of X .
Just take the union of 1/2k nets for each k ∈ N. Thus (X ,d) is completely separable by
Theorem 3.4.6 has the Lindeloff property. Hence, if X is not compact, there is a countable
set of open sets {Ui}∞

i=1 which covers X but no finite subset does. Consider the nonempty
closed sets Fn and pick xn ∈ Fn where

X \∪n
i=1Ui ≡ X ∩ (∪n

i=1Ui)
C ≡ Fn

Let
{

xk
m
}Mk

m=1 be a 1/2k net for X . We have for some m,B
(
xk

mk
,1/2k

)
contains xn for in-

finitely many values of n because there are only finitely many balls and infinitely many
indices. Then out of the finitely many

{
xk+1

m
}

where B
(
xk+1

m ,1/2k+1
)

has nonempty in-

tersection with B
(
xk

mk
,1/2k

)
, pick one xk+1

mk+1
such that B

(
xk+1

mk+1
,1/2k+1

)
contains xn for

infinitely many n. Then obviously
{

xk
mk

}∞

k=1
is a Cauchy sequence because

d
(

xk
mk
,xk+1

mk+1

)
≤ 1

2k +
1

2k+1 ≤
1

2k−1
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Hence for p < q,

d
(

xp
mp ,x

q
mq

)
≤

q−1

∑
k=p

d
(

xk
mk
,xk+1

mk+1

)
<

∞

∑
k=p

1
2k−1 =

1
2p−2

Now take a subsequence xnk ∈ B
(
xk

mk
,2−k

)
so it follows that limk→∞ xnk = limk→∞ xk

mk
=

x ∈ X . However, x ∈ Fn for each n since each Fn is closed and these sets are nested. Thus
x ∈ ∩nFn contrary to the claim that {Ui}∞

i=1 covers X . ■
For the sake of another point of view, here is another argument, this time that 3.)⇒ 2.).

This will illustrate something called the Cantor diagonalization process.
Assume 3.). Suppose {xk} is a sequence in X . By assumption there are finitely many

open balls of radius 1/n covering X . This for each n ∈N. Therefore, for n = 1, there is one
of the balls, having radius 1 which contains xk for infinitely many k. Therefore, there is a
subsequence with every term contained in this ball of radius 1. Now do for this subsequence
what was just done for {xk} . There is a further subsequence contained in a ball of radius
1/2. Continue this way. Denote the ith subsequence as {xki}∞

k=1. Arrange them as shown

x11,x21,x31,x41 · · ·
x12,x22,x32,x42 · · ·
x13,x23,x33,x43 · · ·

...

Thus all terms of {xki}∞

k=1 are contained in a ball of radius 1/i. Consider now the diagonal
sequence defined as yk ≡ xkk. Given n, each yk is contained in a ball of radius 1/n whenever
k≥ n. Thus {yk} is a subsequence of the original sequence and {yk} is a Cauchy sequence.
By completeness of X , this converges to some x ∈ X which shows that every sequence in X
has a convergent subsequence. This shows 3.)⇒ 2.). ■

Lemma 3.5.9 The closed interval [a,b] in R is compact and every Cauchy sequence in
R converges.

Proof: To show this, suppose it is not. Then there is an open cover C which admits no
finite subcover for [a,b] ≡ I0. Consider the two intervals

[
a, a+b

2

]
,
[ a+b

2 ,b
]
. One of these,

maybe both cannot be covered with finitely many sets of C since otherwise, there would
be a finite collection of sets from C covering [a,b] . Let I1 be the interval which has no
finite subcover. Now do for it what was done for I0. Split it in half and pick the half which
has no finite covering of sets of C . Thus there is a “nested” sequence of closed intervals
I0 ⊇ I1 ⊇ I2 · · · , each being half of the preceding interval. Say In = [an,bn] . By the nested
interval Lemma, Lemma 2.7.1, there is a point x in all these intervals. The point is unique
because the lengths of the intervals converge to 0. This point is in some O ∈ C . Thus
for some δ > 0, [x−δ ,x+δ ] , having length 2δ , is contained in O. For k large enough,
the interval [ak,bk] has length less than δ but contains x. Therefore, it is contained in
[x−δ ,x+δ ] and so must be contained in a single set of C contrary to the construction.
This contradiction shows that in fact [a,b] is compact.

Now if {xn} is a Cauchy sequence, then it is contained in some interval [a,b] which is
compact. Hence there is a subsequence which converges to some x ∈ [a,b]. By Theorem
3.2.2 the original Cauchy sequence converges to x. ■
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3.6 Continuous Functions
The following is a fairly general definition of what it means for a function to be continuous.
It includes everything seen in typical calculus classes as a special case.

Definition 3.6.1 Let f : X → Y be a function where (X ,d) and (Y,ρ) are metric
spaces. Then f is continuous at x ∈ X if and only if the following condition holds. For
every ε > 0, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε . If f is
continuous at every x ∈ X we say that f is continuous on X.

For example, you could have a real valued function f (x) defined on an interval [0,1] . In
this case you would have X = [0,1] and Y =R with the distance given by d (x,y) = |x− y|.
Then the following theorem is the main result.

Theorem 3.6.2 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then the
following two are equivalent.

a f is continuous at x.

b Whenever xn→ x, it follows that f (xn)→ f (x) .

Also, the following are equivalent.

c f is continuous on X .

d Whenever V is open in Y, it follows that f−1 (V )≡ {x : f (x) ∈V} is open in X .

e Whenever H is closed in Y, it follows that f−1 (H)≡ {x : f (x) ∈ H} is closed in X.

Proof: a =⇒ b: Let f be continuous at x and suppose xn→ x. Then let ε > 0 be given.
By continuity, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε. Since
xn→ x, it follows that there exists N such that if n≥ N, then d (xn,x)< δ and so, if n≥ N,
it follows that ρ ( f (xn) , f (x))< ε. Since ε > 0 is arbitrary, it follows that f (xn)→ f (x).

b =⇒ a: Suppose b holds but f fails to be continuous at x. Then there exists ε > 0
such that for all δ > 0, there exists x̂ such that d (x̂,x)< δ but ρ ( f (x̂) , f (x))≥ ε . Letting
δ = 1/n, there exists xn such that d (xn,x) < 1/n but ρ ( f (xn) , f (x)) ≥ ε . Now this is a
contradiction because by assumption, the fact that xn → x implies that f (xn)→ f (x). In
particular, for large enough n, ρ ( f (xn) , f (x))< ε contrary to the construction.

c =⇒ d: Let V be open in Y . Let x ∈ f−1 (V ) so that f (x) ∈ V. Since V is open, there
exists ε > 0 such that B( f (x) ,ε)⊆V . Since f is continuous at x, it follows that there exists
δ > 0 such that if x̂ ∈ B(x,δ ) , then f (x̂) ∈ B( f (x) ,ε) ⊆ V.( f (B(x,δ ))⊆ B( f (x) ,ε))
In other words, B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) ⊆ f−1 (V ) which shows that, since x was an
arbitrary point of f−1 (V ) , every point of f−1 (V ) is an interior point which implies f−1 (V )
is open.

d =⇒ e: Let H be closed in Y . Then f−1 (H)C = f−1
(
HC
)

which is open by assump-
tion. Hence f−1 (H) is closed because its complement is open.

e =⇒ d: Let V be open in Y. Then f−1 (V )C = f−1
(
VC
)

which is assumed to be closed.
This is because the complement of an open set is a closed set.

d =⇒ c: Let x ∈ X be arbitrary. Is it the case that f is continuous at x? Let ε > 0 be
given. Then B( f (x) ,ε) is an open set in V and so x ∈ f−1 (B( f (x) ,ε)) which is given
to be open. Hence there exists δ > 0 such that x ∈ B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) . Thus,
f (B(x,δ ))⊆ B( f (x) ,ε) so ρ ( f (x̂) , f (x))< ε . Thus f is continuous at x for every x. ■
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Example 3.6.3 x→ d (x,y) is a continuous function from the metric space to the metric
space of nonnegative real numbers.

This follows from Lemma 3.2.6. You can also define a metric on a Cartesian product
of metric spaces.

Proposition 3.6.4 Let (X ,d) be a metric space and consider (X×X ,ρ) where

ρ ((x, x̃) ,(y, ỹ))≡ d (x,y)+d (x̃, ỹ) .

Then this is also a metric space.

Proof: The only condition not obvious is the triangle inequality. However,

ρ ((x, x̃) ,(y, ỹ))+ρ ((y, ỹ) ,(z, z̃))≡ d (x,y)+d (x̃, ỹ)+d (y,z)+d (ỹ, z̃)

≥ d (x,z)+d (x̃, z̃) = ρ ((x, x̃) ,(z, z̃)) ■

Definition 3.6.5 If you have two metric spaces (X ,d) and (Y,ρ) , a function f :
X → Y is called a homeomorphism if and only if it is continuous, one to one, onto, and its
inverse is also continuous.

Here is a useful proposition.

Proposition 3.6.6 Let (X ,d) be a metric space and let S be a nonempty subset of X.
Define

dist(x,S)≡ inf{d (x,s) : s ∈ S}
Then |dist(x,S)−dist(y,S)| ≤ d (x,y) so x→ dist(x,S) is continuous.

Proof: Say dist(x,S)≥ dist(y,S) . Then there is s ∈ S such that dist(y,S)+ ε > d (y,s).
Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ d (x,s)− (d (y,s)− ε)

≤ d (x,y)+d (y,s)− (d (y,s)− ε) = d (x,y)+ ε

Since ε > 0 is arbitrary, this shows the claimed result. If dist(x,S) ≤ dist(y,S) , repeat
switching roles of x and y. ■

3.7 Continuity and Compactness
How does compactness relate to continuity? It turns out that the continuous image of a
compact set is always compact. This is an easy consequence of the above major theorem.

Theorem 3.7.1 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces and f is
continuous on X. Then if K ⊆ X is compact, it follows that f (K) is compact in (Y,ρ).

Proof: Let C be an open cover of f (K) . Denote by f−1 (C ) the sets of the form{
f−1 (U) : U ∈ C

}
. Then f−1 (C ) is an open cover of K. It follows there are finitely many

sets of the form
{

f−1 (U1) , · · · , f−1 (Un)
}

which covers K. It follows that {U1, · · · ,Un} is
an open cover for f (K). ■

The following is the important extreme values theorem for a real valued function de-
fined on a compact set.
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Theorem 3.7.2 Let K be a compact metric space and suppose f : K→R is a contin-
uous function. That is, R is the metric space where the metric is given by d (x,y) = |x− y|.
Then f achieves its maximum and minimum values on K.

Proof: Let λ ≡ sup{ f (x) : x ∈ K} . Then from the definition of sup, you have the ex-
istence of a sequence {xn} ⊆ K such that limn→∞ f (xn) = λ . There is a subsequence still
called {xn} which converges to some x ∈ K. From continuity, λ = limn→∞ f (xn) = f (x)
and so f achieves its maximum value at x. Similar reasoning shows that it achieves its
minimum value on K. ■

Definition 3.7.3 Let f : (X ,d)→ (Y,ρ) be a function. Then it is said to be uniformly
continuous on X if for every ε > 0 there exists a δ > 0 such that whenever x, x̂ are two points
of X with d (x, x̂)< δ , it follows that ρ ( f (x) , f (x̂))< ε.

Note the difference between this and continuity. With continuity, the δ could depend
on x but here it works for any pair of points in X .

There is a remarkable result concerning compactness and uniform continuity.

Theorem 3.7.4 Let f : (X ,d) → (Y,ρ) be a continuous function and let K be a
compact subset of X. Then the restriction of f to K is uniformly continuous.

Proof: First of all, K is a metric space and f restricted to K is continuous. Now
suppose it fails to be uniformly continuous. Then there exists ε > 0 and pairs of points xn, x̂n
such that d (xn, x̂n) < 1/n but ρ ( f (xn) , f (x̂n)) ≥ ε . Since K is compact, it is sequentially
compact and so there exists a subsequence, still denoted as {xn} such that xn→ x∈K. Then
also x̂n → x also and so by Lemma 3.2.6, ρ ( f (x) , f (x)) = limn→∞ ρ ( f (xn) , f (x̂n)) ≥ ε

which is a contradiction. ■

3.8 Lipschitz Continuity and Contraction Maps
The following may be of more interest in the case of normed vector spaces, but there is
no harm in stating it in this more general setting. You should verify that the functions
described in the following definition are all continuous.

Definition 3.8.1 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then
f is said to be Lipschitz continuous if for every x, x̂ ∈ X , ρ ( f (x) , f (x̂)) ≤ rd (x, x̂). The
function is called a contraction map if r < 1.

The big theorem about contraction maps is the following.

Theorem 3.8.2 Let f : (X ,d) → (X ,d) be a contraction map and let (X ,d) be
a complete metric space. Thus Cauchy sequences converge and also d ( f (x) , f (x̂)) ≤
rd (x, x̂) where r < 1. Then f has a unique fixed point. This is a point x ∈ X such that
f (x) = x. Also, if x0 is any point of X , then

d (x,x0)≤
d (x0, f (x0))

1− r

Also, for each n,

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
,

and x = limn→∞ f n (x0).
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Proof: Pick x0 ∈ X and consider the sequence of the iterates of the map f given by
x0, f (x0) , f 2 (x0) , · · · . We argue that this is a Cauchy sequence. For m < n, it follows from
the triangle inequality,

d ( f m (x0) , f n (x0))≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)
≤

∞

∑
k=m

rkd ( f (x0) ,x0)

The reason for this last is as follows.

d
(

f 2 (x0) , f (x0)
)
≤ rd ( f (x0) ,x0)

d
(

f 3 (x0) , f 2 (x0)
)
≤ rd

(
f 2 (x0) , f (x0)

)
≤ r2d ( f (x0) ,x0)

and so forth. Therefore, by the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0)≤ d ( f (x0) ,x0)
rm

1− r
(3.1)

which shows that this is indeed a Cauchy sequence. Therefore, there exists x such that
limn→∞ f n (x0) = x. By continuity, f (x) = f (limn→∞ f n (x0)) = limn→∞ f n+1 (x0) = x.

Also note that, letting m = 0 in 3.1, this estimate yields

d (x0, f n (x0))≤
d (x0, f (x0))

1− r

Now d (x0,x)≤ d (x0, f n (x0))+d ( f n (x0) ,x) and so

d (x0,x)−d ( f n (x0) ,x)≤
d (x0, f (x0))

1− r

Letting n→∞, it follows that d (x0,x)≤ d(x0, f (x0))
1−r because limn→∞ d ( f n (x0) ,x)= d (x,x)=

0 by Lemma 3.2.6.
It only remains to verify that there is only one fixed point. Suppose then that x,x′ are

two. Then
d
(
x,x′
)
= d

(
f (x) , f

(
x′
))
≤ rd

(
x′,x
)

and so d (x,x′) = 0 because r < 1. ■
The above is the usual formulation of this important theorem, but we actually proved a

better result.

Corollary 3.8.3 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r

and so it will remain in B if d(x0, f (x0))
1−r < δ .
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Proof: By assumption, the sequence of iterates stays in B. Then, as in the proof of the
preceding theorem, for m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0) =
rm

1− r
d ( f (x0) ,x0)

Hence the sequence of iterates is Cauchy and must converge to a point x in X . However, B
is closed and so it must be the case that x ∈ B. Then as before,

x = lim
n→∞

f n (x0) = lim
n→∞

f n+1 (x0) = f
(

lim
n→∞

f n (x0)
)
= f (x)

As to the sequence of iterates remaining in B where B is a ball as described, the inequality
above in the case where m = 0 yields d (x0, f n (x0))≤ 1

1−r d ( f (x0) ,x0) and so, if the right
side is less than δ , then the iterates remain in B. As to the fixed point being unique, it is as
before. If x,x′ are both fixed points in B, then d (x,x′) = d ( f (x) , f (x′))≤ rd (x,x′) and so
x = x′. ■

The contraction mapping theorem has an extremely useful generalization. In order to
get a unique fixed point, it suffices to have some power of f a contraction map.

Theorem 3.8.4 Let f : (X ,d)→ (X ,d) have the property that for some n ∈ N, f n is
a contraction map and let (X ,d) be a complete metric space. Then there is a unique fixed
point for f . As in the earlier theorem the sequence of iterates { f n (x0)}∞

n=1 also converges
to the fixed point.

Proof: From Theorem 3.8.2 there is a unique fixed point for f n. Thus f n (x) = x Then

f n ( f (x)) = f n+1 (x) = f (x)

By uniqueness, f (x) = x.
Now consider the sequence of iterates. Suppose it fails to converge to x. Then there

is ε > 0 and a subsequence nk such that d ( f nk (x0) ,x) ≥ ε . Now nk = pkn+ rk where rk
is one of the numbers {0,1,2, · · · ,n−1}. It follows that there exists one of these numbers
which is repeated infinitely often. Call it r and let the further subsequence continue to be
denoted as nk. Thus d ( f pkn+r (x0) ,x)≥ ε. In other words,

d ( f pkn ( f r (x0)) ,x)≥ ε

However, from Theorem 3.8.2, as k→ ∞, f pkn ( f r (x0))→ x which contradicts the above
inequality. Hence the sequence of iterates converges to x, as it did for f a contraction map.
■

3.9 Convergence of Functions
Next is to consider the meaning of convergence of sequences of functions. There are two
main ways of convergence of interest here, pointwise and uniform convergence.

Definition 3.9.1 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces. Then
{ fn} is said to converge pointwise to a function f : X→Y if for every x∈X , limn→∞ fn (x)=
f (x) . { fn} is said to converge uniformly if for all ε > 0, there exists N such that if n≥ N,
then supx∈X ρ ( fn (x) , f (x))< ε
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Here is a well known example illustrating the difference between pointwise and uniform
convergence.

Example 3.9.2 Let fn (x) = xn on the metric space [0,1] . Then this function converges
pointwise to

f (x) =
{

0 on [0,1)
1 at 1

but it does not converge uniformly on this interval to f .

Note how the target function f in the above example is not continuous even though
each function in the sequence is. The nice thing about uniform convergence is that it takes
continuity of the functions in the sequence and imparts it to the target function. It does this
for both continuity at a single point and uniform continuity. Thus uniform convergence is
a very superior thing.

Theorem 3.9.3 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces and sup-
pose each fn is continuous at x ∈ X and also that fn converges uniformly to f on X. Then
f is also continuous at x. In addition to this, if each fn is uniformly continuous on X , then
the same is true for f .

Proof: Let ε > 0 be given. Then

ρ ( f (x) , f (x̂))≤ ρ ( f (x) , fn (x))+ρ ( fn (x) , fn (x̂))+ρ ( fn (x̂) , f (x̂))

By uniform convergence, there exists N such that both ρ ( f (x) , fn (x)) ,ρ ( fn (x̂) , f (x̂)) are
less than ε/3 provided n≥ N. Thus picking such an n

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

From the continuity of fn, there exists a positive number δ > 0 such that if d (x, x̂) < δ ,
then ρ ( fn (x) , fn (x̂))< ε/3. Hence, if d (x, x̂)< δ , then

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))<

2ε

3
+

ε

3
= ε

Hence, f is continuous at x.
Next consider uniform continuity. It follows from the uniform convergence that if x, x̂

are any two points of X , then if n ≥ N, then, picking such an n,ρ ( f (x) , f (x̂)) ≤ 2ε

3 +
ρ ( fn (x) , fn (x̂)) . By uniform continuity of fn there exists δ such that if d (x, x̂)< δ , then the
term on the right in the above is less than ε/3. Hence if d (x, x̂)< δ , then ρ ( f (x) , f (x̂))< ε

and so f is uniformly continuous as claimed. ■

3.10 Compactness in C (X ,Y ) Ascoli Arzela Theorem
This will use the characterization of compact metric spaces to give a proof of a general
version of the Arzella Ascoli theorem. See Naylor and Sell [43] which is where I saw this
general formulation.

Definition 3.10.1 Let (X ,dX ) be a compact metric space. Let (Y,dY ) be another
complete metric space. Then C (X ,Y ) will denote the continuous functions which map X to
Y . Then ρ is a metric on C (X ,Y ) defined by ρ ( f ,g)≡ supx∈X dY ( f (x) ,g(x)) .
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Theorem 3.10.2 (C (X ,Y ) ,ρ) is a complete metric space where (X ,dX ) is a com-
pact metric space

Proof: It is first necessary to show that ρ is well defined. In this argument, I will
just write d rather than dX or dY . To show this, note that from Lemma 3.2.6, if xn → x,
and yn → y, then d (xn,yn)→ d (x,y) . Therefore, if f ,g are continuous, and xn → x so
f (xn)→ f (x) and g(xn)→ g(x) , d ( f (xn) ,g(xn))→ d ( f (x) ,g(x)) and so, ρ ( f ,g) is just
the maximum of a continuous function defined on a compact set. By Theorem 3.7.2, the
extreme values theorem, this maximum exists.

Clearly ρ ( f ,g) = ρ (g, f ) and

ρ ( f ,g)+ρ (g,h) = sup
x∈X

d ( f (x) ,g(x))+ sup
x∈X

d (g(x) ,h(x))

≥ sup
x∈X

(d ( f (x) ,g(x))+d (g(x) ,h(x)))

≥ sup
x∈X

(d ( f (x) ,h(x))) = ρ ( f ,h)

so the triangle inequality holds.
It remains to check completeness. Let { fn} be a Cauchy sequence. Then from the

definition, { fn (x)} is a Cauchy sequence in Y and so it converges to something called
f (x) . By Theorem 3.9.3, f is continuous. It remains to show that ρ ( fn, f )→ 0. Let x ∈ X .
Then from what was just noted,

d ( fn (x) , f (x)) = lim
m→∞

d ( fn (x) , fm (x))≤ lim sup
m→∞

ρ ( fn, fm)

since { fn} is given to be a Cauchy sequence, there exists N such that if m,n > N, then
ρ ( fn, fm)< ε . Therefore, if n > N,d ( fn (x) , f (x))≤ limsupm→∞ ρ ( fn, fm)≤ ε . Since x is
arbitrary, it follows that ρ ( fn, f )≤ ε, if n≥ N. ■

Here is a useful lemma.

Lemma 3.10.3 Let S be a totally bounded subset of (X ,d) a metric space. Then S is
also totally bounded.

Proof: Suppose not. Then there exists a sequence {pn} ⊆ S such that

d (pm, pn)≥ ε

for all m ̸= n. Now let qn ∈ B
(

pn,
ε

8

)
∩S. Then it follows that

ε

8
+d (qn,qm)+

ε

8
≥ d (pn,qn)+d (qn,qm)+d (qm, pm)≥ d (pn,qm)≥ ε

and so d (qn,qm)>
ε

2 . This contradicts total boundedness of S. ■
Next, here is an important definition.

Definition 3.10.4 Let A ⊆ C (X ,Y ) where (X ,dX ) and (Y,dY ) are metric spaces.
Thus A is a set of continuous functions mapping X to Y . Then A is said to be equicontin-
uous if for every ε > 0 there exists a δ > 0 such that if dX (x1,x2)< δ then for all f ∈A ,
dY ( f (x1) , f (x2))< ε . (This is uniform continuity which is uniform in A .) A is said to be
pointwise compact if { f (x) : f ∈A } has compact closure in Y .
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Here is the Ascoli Arzela theorem.

Theorem 3.10.5 Let (X ,dX ) be a compact metric space and let (Y,dY ) be a com-
plete metric space. Thus (C (X ,Y ) ,ρ) is a complete metric space. Let A ⊆ C (X ,Y ) be
pointwise compact and equicontinuous. Then A is compact. Here the closure is taken in
(C (X ,Y ) ,ρ).

Proof: The more useful direction is that the two conditions imply compactness of A .
I prove this first. Since A is a closed subset of a complete space, it follows from Theorem
3.5.8, that A will be compact if it is totally bounded. In showing this, it follows from
Lemma 3.10.3 that it suffices to verify that A is totally bounded. Suppose this is not
so. Then there exists ε > 0 and a sequence of points of A , { fn} such that ρ ( fn, fm) ≥ ε

whenever n ̸= m.
By equicontinuity, there exists δ > 0 such that if d (x,y)< δ , then dY ( f (x) , f (y))< ε

8
for all f ∈A . Let {xi}p

i=1 be a δ net for X . Since there are only finitely many xi, it follows
from pointwise compactness that there exists a subsequence, still denoted by { fn} which
converges at each xi. Now let x ∈ X be arbitrary. There exists N such that for each xi in that
δ net,

dY ( fn (xi) , fm (xi))< ε/8 whenever n,m≥ N

Then for m,n≥ N,

dY ( fn (x) ,dY m (x))

≤ dY ( fn (x) , fn (xi))+dY ( fn (xi) , fm (xi))+dY ( fm (xi) , fm (x))

< dY ( fn (x) , fn (xi))+ ε/8+dY ( fm (xi) , fm (x))

Pick xi such that d (x,xi) < δ . {xi}p
i=1 is a δ net and so this is surely possible. Then by

equicontinuity, the two ends are each less than ε/8 and so for m,n≥ N,

dY ( fn (x) , fm (x))≤ 3ε

8

Since x is arbitrary, it follows that ρ ( fn, fm)≤ 3ε/8< ε which is a contradiction. It follows
that A and hence A is totally bounded. This proves the more important direction.

Next suppose A is compact. Why must A be pointwise compact and equicontinuous?
If it fails to be pointwise compact, then there exists x ∈ X such that { f (x) : f ∈A } is not
contained in a compact set of Y . Thus there exists ε > 0 and a sequence of functions in A
{ fn} such that d ( fn (x) , fm (x)) ≥ ε . But this implies ρ ( fm, fn) ≥ ε and so A fails to be
totally bounded, a contradiction. Thus A must be pointwise compact. Now why must it be
equicontinuous? If it is not, then for each n ∈ N there exists ε > 0 and xn,yn ∈ X such that
d (xn,yn) < 1/n but for some fn ∈ A , d ( fn (xn) , fn (yn)) ≥ ε. However, by compactness,
there exists a subsequence

{
fnk

}
such that limk→∞ ρ

(
fnk , f

)
= 0 and also that xnk ,ynk →

x ∈ X . Hence

ε ≤ d
(

fnk

(
xnk

)
, fnk

(
ynk

))
≤ d

(
fnk

(
xnk

)
, f
(
xnk

))
+d
(

f
(
xnk

)
, f
(
ynk

))
+d
(

f
(
ynk

)
, fnk

(
ynk

))
≤ ρ

(
fnk , f

)
+d
(

f
(
xnk

)
, f
(
ynk

))
+ρ

(
f , fnk

)
and now this is a contradiction because each term on the right converges to 0. The middle
term converges to 0 because f

(
xnk

)
, f
(
ynk

)
→ f (x). See Lemma 3.2.6. ■
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3.11 Connected Sets
Stated informally, connected sets are those which are in one piece. In order to define what
is meant by this, I will first consider what it means for a set to not be in one piece. This is
called separated. Connected sets are defined in terms of not being separated. This is why
theorems about connected sets sometimes seem a little tricky.

Definition 3.11.1 A set, S in a metric space, is separated if there exist sets A,B
such that

S = A∪B, A,B ̸= /0, and A∩B = B∩A = /0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.
Remember A denotes the closure of the set A.

Note that the concept of connected sets is defined in terms of what it is not. This makes
it somewhat difficult to understand. One of the most important theorems about connected
sets is the following.

Theorem 3.11.2 Suppose U is a set of connected sets and that there exists a point
p which is in all of these connected sets. Then K ≡ ∪U is connected.

Proof: The argument is dependent on Lemma 3.3.2. Suppose

K = A∪B

where Ā∩B = B̄∩A = /0,A ̸= /0,B ̸= /0. Then p is in one of these sets. Say p ∈ A. Then if
U ∈U , it must be the case that U ⊆ A since if not, you would have

U = (A∩U)∪ (B∩U)

and the limit points of A∩U cannot be in B hence not in B∩U while the limit points of
B∩U cannot be in A hence not in A∩U . Thus B = /0. It follows that K cannot be separated
and so it is connected. ■

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

V

Theorem 3.11.3 Let f : X → Y be continuous where Y is a metric space and X is
connected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that f (X)=
A∪B where A and B separate f (X) . Then consider the sets f−1 (A) and f−1 (B) . If z
∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A. Therefore, there exists an
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open set, U containing f (z) such that U∩A= /0. But then, the continuity of f and Theorem
3.6.2 implies that f−1 (U) is an open set containing z such that f−1 (U)∩f−1 (A) = /0.
Therefore, f−1 (B) contains no limit points of f−1 (A) . Similar reasoning implies f−1 (A)
contains no limit points of f−1 (B). It follows that X is separated by f−1 (A) and f−1 (B) ,
contradicting the assumption that X was connected. ■

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 3.11.4 Let S be a set and let p ∈ S. Denote by Cp the union of all con-
nected subsets of S which contain p. This is called the connected component determined by
p.

Theorem 3.11.5 Let Cp be a connected component of a set S in a metric space.
Then Cp is a connected set and if Cp∩Cq ̸= /0, then Cp =Cq.

Proof: Let C denote the connected subsets of S which contain p. By Theorem 3.11.2,
∪C = Cp is connected. If x ∈Cp ∩Cq, then from Theorem 3.11.2, Cp ⊇Cp ∪Cq and so
Cp ⊇Cq . The inclusion goes the other way by the same reason. ■

This shows the connected components of a set are equivalence classes and partition the
set.

A set, I is an interval in R if and only if whenever x,y ∈ I then [x,y]⊆ I. The following
theorem is about the connected sets in R.

Theorem 3.11.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈C. You need to show (p,q)⊆C. If

x ∈ (p,q)\C

let C∩ (−∞,x) ≡ A, and C∩ (x,∞) ≡ B. Then C = A∪B and the sets A and B separate C
contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A and
y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S≡ {t ∈ [x,y] : [x, t]⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if
l /∈ B, then for some δ > 0,

(l, l +δ )∩B = /0

contradicting the definition of l as an upper bound for S. Therefore, l ∈ B which implies
l /∈ A after all, a contradiction. It follows I must be connected. ■

This yields a generalization of the intermediate value theorem from one variable calcu-
lus.

Corollary 3.11.7 Let E be a connected set in a metric space and suppose f : E → R
and that y ∈ ( f (e1) , f (e2)) where ei ∈ E. Then there exists e ∈ E such that f (e) = y.

Proof: From Theorem 3.11.3, f (E) is a connected subset of R. By Theorem 3.11.6
f (E) must be an interval. In particular, it must contain y. This proves the corollary. ■

The following theorem is a very useful description of the open sets in R.
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Theorem 3.11.8 Let U be an open set in R. Then there exist countably many dis-
joint open sets {(ai,bi)}∞

i=1 such that U = ∪∞
i=1 (ai,bi) .

Proof: Let p ∈U and let z ∈Cp, the connected component determined by p. Since U
is open, there exists, δ > 0 such that (z−δ ,z+δ ) ⊆U. It follows from Theorem 3.11.2
that (z−δ ,z+δ ) ⊆ Cp. This shows Cp is open. By Theorem 3.11.6, this shows Cp is an
open interval, (a,b) where a,b ∈ [−∞,∞] . There are therefore at most countably many of
these connected components because each must contain a rational number and the rational
numbers are countable. Denote by {(ai,bi)}∞

i=1 the set of these connected components. ■

Definition 3.11.9 A set E in a metric space is arcwise connected if for any two
points, p,q ∈ E, there exists a closed interval, [a,b] and a continuous function, γ : [a,b]→
E such that γ (a) = p and γ (b) = q.

An example of an arcwise connected metric space would be any subset of Rn which is
the continuous image of an interval. Arcwise connected is not the same as connected. A
well known example is the following.{(

x,sin
1
x

)
: x ∈ (0,1]

}
∪{(0,y) : y ∈ [−1,1]} (3.2)

You can verify that this set of points in the normed vector spaceR2 is not arcwise connected
but is connected.

Lemma 3.11.10 In Rp, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If x,y ∈ B(z,r) , then let γ (t) =
x+ t (y−x) for t ∈ [0,1] .

∥x+ t (y−x)−z∥ = ∥(1− t)(x−z)+ t (y−z)∥
≤ (1− t)∥x−z∥+ t ∥y−z∥
< (1− t)r+ tr = r

showing γ (t) stays in B(z,r).■

Proposition 3.11.11 If X ̸= /0 is arcwise connected, then it is connected.

Proof: Let p ∈ X . Then by assumption, for any x ∈ X , there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence Cp = X
and so X is connected. ■

Theorem 3.11.12 Let U be an open subset of Rp. Then U is arcwise connected if
and only if U is connected. Also the connected components of an open set are open sets.

Proof: By Proposition 3.11.11 it is only necessary to verify that if U is connected and
open, then U is arcwise connected. Pick p ∈U . Say x ∈U satisfies P if there exists a
continuous function, γ : [a,b]→U such that γ (a) = p and γ (b) = x.

A≡ {x ∈U such that x satisfies P .}
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If x ∈ A, then Lemma 3.11.10 implies B(x,r) ⊆ U is arcwise connected for small
enough r. Thus letting y ∈ B(x,r) , there exist intervals, [a,b] and [c,d] and continuous
functions having values in U , γ,η such that γ (a) = p,γ (b) =x,η (c) =x, and η (d) = y.
Then let γ1 : [a,b+d− c]→U be defined as

γ1 (t)≡
{
γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that B(x,r)⊆
A. Therefore, A is open. A ̸= /0 because since U is open there is an open set, B(p,δ )
containing p which is contained in U and is arcwise connected.

Now consider B ≡ U \A. I claim this is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore, letting
B(z,δ ) be such that z ∈ B(z,δ ) ⊆U, there exist points of A contained in B(z,δ ) . But
then, a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0,
then U = B∪A and so U is separated by the two sets B and A contradicting the assumption
that U is connected. Note that, since B is open, it contains no limit points of A and since A
is open, it contains no limit points of B.

It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking B(z,δ ) ⊆U, Cp ∪B(z,δ ) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior
point of Cp. ■

As an application, consider the following corollary.

Corollary 3.11.13 Let f : Ω→ Z be continuous where Ω is a connected nonempty
open set of a metric space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set while f−1 (l) = f−1

((
l− 1

6 , l +
1
6

))
also an open

set. ■

3.12 Partitions of Unity in Metric Space
Lemma 3.12.1 Let X be a metric space and let S be a nonempty subset of X .

dist(x,S)≡ inf{d (x,z) : z ∈ S}

Then
|dist(x,S)−dist(y,S)| ≤ d (x,y) .

Proof: Say dist(x,S)≥ dist(y,S) . Then letting ε > 0 be given, there exists z ∈ S such
that d (y,z)< dist(y,S)+ ε Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ dist(x,S)− (d (y,z)− ε)
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≤ d (x,z)− (d (y,z)− ε)≤ d (x,y)+d (y,z)−d (y,z)+ ε = d (x,y)+ ε

Since ε is arbitrary, |dist(x,S)−dist(y,S)| ≤ d (x,y). The situation is completely similar
if dist(x,S)< dist(y,S) . ■

Then this shows that x→ dist(x,S) is a continuous real valued function.
This is about partitions of unity in metric space. Assume here that closed balls are

compact. For example, you might be considering Rp with d (x,y)≡ |x−y|.

Definition 3.12.2 Define spt( f ) (support of f ) to be the closure of the set {x :
f (x) ̸= 0}. If V is an open set, Cc(V ) will be the set of continuous functions f , defined
on Ω having spt( f )⊆V .

Definition 3.12.3 If K is a compact subset of an open set, V , then K ≺ φ ≺ V if
φ ∈Cc(V ), φ(K) = {1}, φ(Ω) ⊆ [0,1],where Ω denotes the whole metric space. Also for
φ ∈Cc(Ω), K ≺ φ if φ(Ω)⊆ [0,1] and φ(K) = 1. φ ≺V if φ(Ω)⊆ [0,1] and spt(φ)⊆V.

Lemma 3.12.4 Let (Ω,d) be a metric space in which closed balls are compact. Then if
K is a compact subset of an open set V, then there exists φ such that K ≺ φ ≺V.

Proof: Since K is compact, the distance between K and VC is positive, δ > 0. Other-
wise there would be xn ∈ K and yn ∈VC with d (xn,yn)< 1/n. Taking a subsequence, still
denoted with n, we can assume xn→ x and yn→ x but this would imply x is in both K and
VC which is not possible. Now consider {B(x,δ/2)} for x ∈ K. This is an open cover and
the closure of each ball is contained in V . Since K is compact, finitely many of these balls
cover K. Denote their union as W . Then W is compact because it is the finite union of the
closed balls. Hence K ⊆W ⊆W ⊆V . Now consider

φ (x)≡
dist
(
x,WC

)
dist(x,K)+dist(x,WC)

the denominator is never zero because x cannot be in both K and WC. Thus φ is continuous
by Lemma 3.12.1. also if x ∈ K, then φ (x) = 1 and if x /∈W, then φ (x) = 0. ■

Theorem 3.12.5 (Partition of unity) Let K be a compact subset of a metric space
in which closed balls are compact and suppose K ⊆V = ∪n

i=1Vi, Vi open. Then there exist
ψ i ≺Vi with ∑

n
i=1 ψ i(x) = 1 for all x ∈ K.

Proof: Let K1 = K \∪n
i=2Vi. Thus K1 is compact and K1 ⊆ V1. Let K1 ⊆W1 ⊆W 1 ⊆

V1 with W 1compact. To obtain W1, use Lemma 3.12.4 to get f such that K1 ≺ f ≺V1 and let
W1≡{x : f (x) ̸= 0} .Thus W1,V2, · · ·Vn covers K and W 1⊆V1. Let K2 =K \(∪n

i=3Vi∪W1).
Then K2 is compact and K2 ⊆ V2. Let K2 ⊆W2 ⊆W 2 ⊆ V2 W 2 compact. Continue this
way finally obtaining W1, · · · ,Wn, K ⊆W1 ∪ ·· · ∪Wn, and W i ⊆ Vi W i compact. Now let
W i ⊆Ui ⊆U i ⊆Vi, U i compact.

Wi Ui Vi
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By Lemma 3.12.4, let U i ≺ φ i ≺Vi, ∪n
i=1W i ≺ γ ≺ ∪n

i=1Ui. Define

ψ i(x) =
{

γ(x)φ i(x)/∑
n
j=1 φ j(x) if ∑

n
j=1 φ j(x) ̸= 0,

0 if ∑
n
j=1 φ j(x) = 0.

If x is such that ∑
n
j=1 φ j(x) = 0, then x /∈ ∪n

i=1U i. Consequently γ(y) = 0 for all y near x
and so ψ i(y) = 0 for all y near x. Hence ψ i is continuous at such x. If ∑

n
j=1 φ j(x) ̸= 0, this

situation persists near x and so ψ i is continuous at such points. Therefore ψ i is continuous.
If x ∈ K, then γ(x) = 1 and so ∑

n
j=1 ψ j(x) = 1. Clearly 0≤ψ i (x)≤ 1 and spt(ψ j)⊆Vj. ■

3.13 Completion of Metric Spaces
Let (X ,d) be a metric space X ̸= /0. Perhaps this is not a complete metric space. In other
words, it may be that Cauchy Sequences do not converge. Of course if x ∈ X and if xn = x
for all n then {xn} is a Cauchy sequence and it converges to x.

Lemma 3.13.1 Denote by x a Cauchy sequence x being short for {xn}∞

n=1. Then if x,y
are two Cauchy sequences, limn→∞ d (xn,yn) exists.

Proof: Let ε > 0 be given and let N be so large that whenever n,m≥ N, it follows that
d (xn,xm) ,d (yn,ym)< ε/2. Then for such n,m

|d (xn,yn)−d (xm,ym)| ≤ |d (xn,yn)−d (xn,ym)|+ |d (xn,ym)−d (xm,ym)|
≤ d (yn,ym)+d (xn,xm)< ε

by Lemma 3.12.1. Therefore, {d (xn,yn)}n is a Cauchy sequence in R and so it converges.
■

Definition 3.13.2 Let x∼ y when limn→∞ d (xn,yn) = 0.

Lemma 3.13.3 ∼ is an equivalence relation.

Proof: Clearly x∼ x and if x∼ y then y ∼ x. Suppose then that x∼ y and y ∼ z. Is
x∼ z?

d (xn,zn)≤ d (xn,yn)+d (yn,zn)

and both of those terms on the right converge to 0. ■

Definition 3.13.4 Denote by [x] the equivalence class determined by the Cauchy
sequence x. Let d ([x] , [y])≡ limn→∞ d (xn,yn) .

Theorem 3.13.5 Denote by X̂ the set of equivalence classes. Then d defined above
is a metric, X̂ with this is a complete metric space, and X can be considered a dense subset
of X̂ .

Proof: That d just defined is a metric is obvious from the fact that the original metric d
satisfies the triangle inequality. It is also clear that d ([x] , [y]) ≥ 0 and that if [x] = [y] if
and only if d ([x] , [y]) = 0.

It remains to show that
(
X̂ ,d

)
is complete. Let {[x]n}nbe a Cauchy sequence. From

Theorem 3.2.2 it suffices to show the convergence of a subsequence. There is a subse-
quence, denoted as {[xn]} where xn is a representative of [x]n such that d

(
[xn] ,

[
xn+1

])
<
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4−n. Thus there is an increasing sequence {kn} such that d
(
xn

k ,x
n+1
l

)
< 2−n if k, l ≥ kn

where kn is increasing in n. Let y =
{

xn
kn

}∞

n=1
. For m≥ kn and the triangle inequality,

d (xn
m,ym) = d

(
xn

m,x
m
km

)
≤ d

(
xn

m,x
n
kn

)
+d
(
xn

kn
,xm

km

)
≤ 2−n +

m−1

∑
j=n

d
(

x j
k j
,x j+1

km

)
< 2−n +

m−1

∑
j=n

2− j < 2−n +2−(n−1) < 2−(n−2)

Then y is a Cauchy sequence since it is a subsequence of one and also d ([xn] , [y])→ 0.
To show that X is dense in X̂ , let [x] be given. Then for m large enough, d (xk,xm)< ε

whenever k ≥ m. It suffices to let y be the constant Cauchy sequence always equal to xm.
■

3.14 Exercises
1. Let d (x,y) = |x− y| for x,y ∈ R. Show that this is a metric on R.

2. Now consider Rn. Let ∥x∥
∞
≡max{|xi| , i = 1, · · · ,n} . Define d (x,y)≡ ∥x−y∥

∞
.

Show that this is a metric on Rn. In the case of n = 2, describe the ball B(0,r). Hint:
First show that ∥x+y∥ ≤ ∥x∥+∥y∥ .

3. Let C ([0,T ]) denote the space of functions which are continuous on [0,T ] . Define

∥ f∥ ≡ ∥ f∥
∞
≡ sup

t∈[0,T ]
| f (t)|= max

t∈[0,T ]
| f (t)|

Verify the following. ∥ f +g∥ ≤ ∥ f∥+∥g∥ . Then use to show that d ( f ,g)≡ ∥ f −g∥
is a metric and that with this metric, (C ([0,T ]) ,d) is a metric space.

4. Recall that [a,b] is compact. Also, it is Lemma 3.5.9 above. Thus every open cover
has a finite subcover of the set. Also recall that a sequence of numbers {xn} is a
Cauchy sequence means that for every ε > 0 there exists N such that if m,n>N, then
|xn− xm| < ε . First show that every Cauchy sequence is bounded. Next, using the
compactness of closed intervals, show that every Cauchy sequence has a convergent
subsequence. By Theorem 3.2.2, the original Cauchy sequence converges. Thus
R with the usual metric just described is complete because every Cauchy sequence
converges.

5. Using the result of the above problem, show that (Rn,∥·∥
∞
) is a complete metric

space. That is, every Cauchy sequence converges. Here d (x,y)≡ ∥x−y∥
∞

.

6. Suppose you had (Xi,di) is a metric space. Now consider the product space X ≡
∏

n
i=1 Xi with d (x,y) = max{d (xi,yi) , i = 1 · · · ,n} . Would this be a metric space?

If so, prove that this is the case.

Does triangle inequality hold? Hint: For each i,

di (xi,zi)≤ di (xi,yi)+di (yi,zi)≤ d (x,y)+d (y,z)

Now take max of the two ends.
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7. In the above example, if each (Xi,di) is complete, explain why (X ,d) is also com-
plete.

8. Show that C ([0,T ]) is a complete metric space. That is, show that if { fn} is a Cauchy
sequence, then there exists f ∈C ([0,T ]) such that

lim
n→∞

d ( f , fn) = lim
n→∞
∥ f − fn∥= 0

This is just a special case of theorems discussed in the chapter.

9. Let X be a nonempty set of points. Say it has infinitely many points. Define d (x,y) =
1 if x ̸= y and d (x,y) = 0 if x = y. Show that this is a metric. Show that in (X ,d)
every point is open and closed. In fact, show that every set is open and every set is
closed. Is this a complete metric space? Explain why. Describe the open balls.

10. Show that the union of any set of open sets is an open set. Show the intersection of
any set of closed sets is closed. Let A be a nonempty subset of a metric space (X ,d).
Then the closure of A, written as Ā is defined to be the intersection of all closed sets
which contain A. Show that Ā = A∪A′. That is, to find the closure, you just take the
set and include all limit points of the set. It was proved in the chapter, but go over it
yourself.

11. Let A′ denote the set of limit points of A, a nonempty subset of a metric space (X ,d) .
Show that A′ is closed.

12. A theorem was proved which gave three equivalent descriptions of compactness of
a metric space. One of them said the following: A metric space is compact if and
only if it is complete and totally bounded. Suppose (X ,d) is a complete metric space
and K ⊆ X . Then (K,d) is also clearly a metric space having the same metric as X .
Show that (K,d) is compact if and only if it is closed and totally bounded. Note the
similarity with the Heine Borel theorem on R. Show that on R, every bounded set is
also totally bounded. Thus the earlier Heine Borel theorem for R is obtained.

13. Suppose (Xi,di) is a compact metric space. Then the Cartesian product is also a
metric space. That is (∏n

i=1 Xi,d) is a metric space where d (x,y)≡max{di (xi,yi)}.
Show that (∏n

i=1 Xi,d) is compact. Recall the Heine Borel theorem for R. Explain
why ∏

n
i=1 [ai,bi] is compact in Rn with the distance given by

d (x,y) = max{|xi− yi|}

Hint: It suffices to show that (∏n
i=1 Xi,d) is sequentially compact. Let {xm}∞

m=1
be a sequence. Then {xm

1 }
∞

m=1 is a sequence in Xi. Therefore, it has a subsequence{
xk1

1

}∞

k1=1
which converges to a point x1 ∈ X1. Now consider

{
xk1

2

}∞

k1=1
the second

components. It has a subsequence denoted as k2 such that
{

xk2
2

}∞

k2=1
converges to a

point x2 in X2. Explain why limk2→∞ xk2
1 = x1. Continue doing this n times. Explain

why limkn→∞ xkn
l = xl ∈ Xl for each l. Then explain why this is the same as saying

limkn→∞x
kn = x in (∏n

i=1 Xi,d) .
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14. If you have a metric space (X ,d) and a compact subset of (X ,d) K, suppose that L is
a closed subset of K. Explain why L must also be compact. Hint: Use the definition
of compactness. Explain why every closed and bounded set in Rn is compact. Here
the distance is given by d (x,y)≡max1≤i≤n {|xi− yi|}.

15. Show that compactness is a topological property. If (X ,d) ,(Y,ρ) are both metric
spaces and f : X→Y has the property that f is one to one, onto, and continuous, and
also f−1 is one to one onto and continuous, then the two metric spaces are compact
or not compact together. That is one is compact if and only if the other is.

16. Consider R the real numbers. Define a distance in the following way. ρ (x,y) ≡
|arctan(x)− arctan(y)| Show this is a good enough distance and that the open sets
which come from this distance are the same as the open sets which come from the
usual distance d (x,y) = |x− y|. Explain why this yields that the identity mapping
f (x) = x is continuous with continuous inverse as a map from (R,d) to (R,ρ). To
do this, you show that an open ball taken with respect to one of these is also open
with respect to the other. However, (R,ρ) is not a complete metric space while
(R,d) is. Thus, unlike compactness. Completeness is not a topological property.
Hint: To show the lack of completeness of (R,ρ) , consider xn = n. Show it is a
Cauchy sequence with respect to ρ .

17. If K is a compact subset of (X ,d) and y /∈ K, show that there always exists x ∈ K
such that d (x,y) = dist(y,K). Give an example in R to show that this might not be
so if K is not compact.

18. If S is a nonempty set, the diameter of S denoted as diam(S) is defined as follows.
diam(S) ≡ sup{d (x,y) : x,y ∈ S} . Suppose (X ,d) is a complete metric space and
you have a nested sequence of closed sets whose diameters converge to 0. That
is, each An is closed, · · ·An ⊇ An+1 · · · and limn→∞ diam(An) = 0. Show that there is
exactly one point p contained in the intersection of all these sets An. Give an example
which shows that if the condition on the diameters does not hold, then maybe there
is no point in the intersection of these sets.

19. Two metric spaces (X ,d) ,(Y,ρ) are homeomorphic if there exists a continuous func-
tion f : X → Y which is one to one onto, and whose inverse is also continuous one
to one and onto. Show that the interval [0,1] is not homeomorphic to the unit circle.
Hint: Recall that the continuous image of a connected set is connected, Theorem
3.11.3. However, if you remove a point from [0,1] it is no longer connected but
removing a single point from the circle results in a connected set.

20. Using the same methods in the above problem, show that the unit circle is not home-
omorphic to the unit sphere

{
x2 + y2 + z2 = 1

}
and the unit circle is not homeomor-

phic to a figure eight.

21. The rational numbers Q and the natural numbers N have the property that there is a
one to one and onto map from N toQ. This is a simple consequence of the Schroeder
Bernstein theorem presented earlier. Both of these are also metric spaces with respect
to the usual metric on R. Are they homeomorphic? Hint: Suppose they were. Then
in Q consider (1,2) , all the rationals between 1 and 2 excluding 1 and 2. This is not
a closed set because 2 is a limit point of the set which is not in it. Now if you have f
a homeomorphism, consider f ((1,2)) . Is this set closed?



3.14. EXERCISES 97

22. If you have an open set O in R, show that O is the countable union of disjoint open
intervals. Hint: Consider the connected components. Go over this for yourself. It is
in the chapter.

23. Addition and multiplication on R can be considered mappings from R×R to R as
follows. +(x,y) ≡ x+ y, ·(x,y) ≡ xy. Here the metric on R×R can be taken as
d ((x,y) ,(x̂, ŷ)) ≡ max(|x− x̂| , |y− ŷ|) . Show these operations are continuous func-
tions.

24. Suppose K is a compact subset of a metric space (X ,d) and there is an open cover
C of K. Show that there exists a single positive δ > 0 such that if x ∈ K,B(x,δ )
is contained in some set of C . This number is called a Lebesgue number. Do this
directly from the definition of compactness in terms of open covers without using the
equivalence of compactness and sequential compactness.

25. Show uniform continuity of a continuous function defined on a compact set where
compactness only refers to open covers. Use the above problem on existence of the
Lebesgue number.

26. Let f : D→ R be a function. This function is said to be lower semicontinuous1

at x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows f (x) ≤
liminfn→∞ f (xn) . Suppose D is sequentially compact and f is lower semicontinu-
ous at every point of D. Show that then f achieves its minimum on D. Here D is
some metric space. Let f : D→ R be a function. This function is said to be upper
semicontinuous at x ∈ D if for any sequence {xn} ⊆ D which converges to x it fol-
lows f (x) ≥ limsupn→∞ f (xn) . Suppose D is sequentially compact and f is upper
semicontinuous at every point of D. Show that then f achieves its maximum on D.

27. Show that a real valued function defined on a metric space D is continuous if and
only if it is both upper and lower semicontinuous.

28. Give an example of a lower semicontinuous function defined on R which is not con-
tinuous and an example of an upper semicontinuous function which is not continu-
ous.

29. More generally, one considers functions which have values in [−∞,∞] . Then f is up-
per semicontinuous if, whenever xn → x, f (x) ≥ limsupn→∞ f (xn) and lower semi-
continuous if whenever xn → x, f (x) ≤ liminfn→∞ f (xn). Suppose { fα : α ∈ Λ}
is a collection of continuous real valued functions defined on a metric space. Let
F (x)≡ inf{ fα (x) : α ∈ Λ} . Show F is an upper semicontinuous function. Next let
G(x)≡ sup{ fα (x) : α ∈ Λ} . Show G is a lower semicontinuous function.

30. The result of this problem is due to Hausdorff. It says that if you have any lower
semicontinuous real valued function defined on a metric space (X ,d) , then it is the
limit of an increasing sequence of continuous functions. Here is an outline. You
complete the details.

(a) First suppose f (x)≥ 0 for all x. Define fn (x)≡ infz∈X { f (z)+nd (z,x)} . Then
f (x)≥ fn (x) and fn (x) is increasing in n. Also each fn is continuous because

1The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional
sets.
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fn (x) ≤ f (z)+ nd (z,y)+ nd (y,x) . Thus fn (x) ≤ fn (y)+ nd (y,x) . Why? It
follows that | fn (x)− fn (y)| ≤ nd (y,x) . Why?

(b) Let h(x) = limn→∞ fn (x). Then h(x)≤ f (x) . Why? Now for each ε > 0, and
fixed x, there exists zn such that fn (x)+ε > f (zn)+nd (zn,x)Why? Therefore,
zn→ x. Why?

(c) Then

h(x)+ ε = lim
n→∞

fn (x)+ ε ≥ lim inf
n→∞

( f (zn)+nd (zn,x))

≥ lim inf
n→∞

f (zn)≥ f (x)

Why? Therefore, h(x)≥ f (x) and so they are equal. Why?

(d) Now consider f : X → (−∞,∞) and is lower semicontinuous as just explained.
Consider π

2 + arctan f (x) ≡ g(x). Then arctan f (x) ∈
(
−π

2 ,
π

2

)
because f has

real values. Then g(x) is also lower semicontinuous having values in (0,π).
Why? By what was just shown, there exists gn (x) ↑ g(x) where each gn is
continuous. Consider fn (x) ≡ tan

(
gn (x)− π

2

)
. Then fn is continuous and in-

creases to f (x).

31. Generalize the above problem to the case where f is an upper semicontinuous real
valued function. That is, f (x)≥ limsupn→∞ f (xn) whenever xn→ x. Show there are
continuous functions { fn (x)} such that fn (x) ↓ f (x). Hint To save trouble, maybe
show that f is upper semicontinuous if and only if− f is lower semicontinuous. Then
maybe you could just use the above problem.

32. What if f is lower (upper) semicontinuous with values in [−∞,∞]? In this case, you
consider [−∞,∞] as a metric space as follows:d (x,y)≡ |arctan(x)− arctan(y)| . Then
you can generalize the above problems to show that if f is lower semicontinuous
with values into [−∞,∞] then it is the increasing limit of continuous functions with
values in [−∞,∞]. Note that in this case a function identically equal to ∞ would
be continuous so this is a rather odd sort of thing, a little different from what we
normally like to consider. Check the details and explain why in this setting, the lower
semicontinuous functions are exactly pointwise limits of increasing sequences of
continuous functions and the upper semicontinuous functions are exactly pointwise
limits of decreasing sequences of continuous functions.

33. This is a nice result in Taylor [57]. For a nonempty set T,∂T is the set of points p
such that B(p,r) contains points of T and points of TC for each r > 0. Suppose you
have T a proper subset of a metric space and S is a connected, nonempty set such
that S∩T ̸= /0,S∩TC ̸= /0. Show that S must contain a point of ∂T .

34. Zorn’s lemma is as follows: You have a nonempty partially ordered set F with the
partial order denoted by ≺ and suppose you have the property that every totally
ordered subset of F has an upper bound. Show that it follows that there exists a
maximal element f ∈ F such that if f ≺ g then f = g. Hint: Use the Hausdorff
maximal theorem to show this. In fact, this is equivalent to the Hausdorff maximal
theorem.



Chapter 4

Linear Spaces
The thing which is missing in the above material about metric spaces is any kind of algebra.
In most applications, we are interested in adding things and multiplying things by scalars
and so forth. This requires the notion of a vector space, also called a linear space. The
simplest example is Rn which is described next.

In this chapter, F will refer to either R or C. It doesn’t make any difference to the
arguments which it is and so F is written to symbolize whichever you wish to think about.
When it is desired to emphasize that certain quantities are vectors, bold face will often be
used. This is not necessarily done consistently. Sometimes context is considered sufficient.

4.1 Algebra in Fn, Vector Spaces
There are exactly two algebraic operations done with elements of Fn. One is addition and
the other is multiplication by numbers, called scalars. In the case of Cn the scalars are
complex numbers while in the case of Rn the only allowed scalars are real numbers. Thus,
the scalars always come from F in either case.

Definition 4.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined
by

ax= a(x1, · · · ,xn)≡ (ax1, · · · ,axn) . (4.1)

This is known as scalar multiplication. If x,y ∈ Fn then x+y ∈ Fn and is defined by

x+y = (x1, · · · ,xn)+(y1, · · · ,yn)

≡ (x1 + y1, · · · ,xn + yn) (4.2)

the points in Fn are also referred to as vectors.

Actually, in dealing with vectors in Fn, it is more customary in linear algebra to write
them as column vectors. To save space, I will sometimes write (x1, · · · ,xn)

T to indicate
the column vector having x1 on the top and xn on the bottom. With this definition, the
algebraic properties satisfy the conclusions of the following theorem. These conclusions
are called the vector space axioms. Any time you have a set and a field of scalars satisfying
the axioms of the following theorem, it is called a vector space or linear space.

Theorem 4.1.2 For v,w ∈ Fn and α,β scalars, (real numbers), the following hold.

v+w=w+v, (4.3)

the commutative law of addition,

(v+w)+z= v+(w+z) , (4.4)

the associative law for addition,
v+0= v, (4.5)

the existence of an additive identity,

v+(−v) = 0, (4.6)

99
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the existence of an additive inverse, Also

α (v+w) = α v+αw, (4.7)

(α +β ) v= α v+βv, (4.8)

α (βv) = αβ (v) , (4.9)

1v= v. (4.10)

In the above 0= (0, · · · ,0).

You should verify these properties all hold. For example, consider 4.7

α (v+w) = α (v1 +w1, · · · ,vn +wn)

= (α (v1 +w1) , · · · ,α (vn +wn))

= (αv1 +αw1, · · · ,αvn +αwn)

= (αv1, · · · ,αvn)+(αw1, · · · ,αwn)

= αv+αw.

As usual subtraction is defined as x−y ≡ x+(−y) .

4.2 Subspaces Spans and Bases
As mentioned above, Fn is an example of a vector space. In dealing with vector spaces,
the concept of linear combination is fundamental. When one considers only algebraic
considerations, it makes no difference what field of scalars you are using. It could be R, C,
Q or even a field of residue classes. However, go ahead and think R or C since the subject
of interest here is analysis.

Definition 4.2.1 Let
{
x1, · · · ,xp

}
be vectors in a vector space Y having the field

of scalars F. A linear combination is any expression of the form ∑
p
i=1 cixi where the ci are

scalars. The set of all linear combinations of these vectors is called span(x1, · · · ,xp) . A
vector v is said to be in the span of some set S of vectors if v is a linear combination of
vectors of S. This means: finite linear combination. If V ⊆Y, then V is called a subspace
if it contains 0 and whenever α,β are scalars and u and v are vectors of V, it follows
αu+βv ∈V . That is, it is “closed under the algebraic operations of vector addition and
scalar multiplication” and is therefore, a vector space. A linear combination of vectors
is said to be trivial if all the scalars in the linear combination equal zero. A set of vectors
is said to be linearly independent if the only linear combination of these vectors which
equals the zero vector is the trivial linear combination. Thus {x1, · · · ,xn} is called linearly
independent if whenever ∑

n
k=1 ckxk = 0, it follows that all the scalars, ck equal zero. A set

of vectors, {x1, · · · ,xn} , is called linearly dependent if it is not linearly independent. Thus
the set of vectors is linearly dependent if there exist scalars, ci, i = 1, · · · ,n, not all zero
such that ∑

n
k=1 ckxk = 0.

Lemma 4.2.2 A set of vectors {x1, · · · ,xn} is linearly independent if and only if none
of the vectors can be obtained as a linear combination of the others.
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Proof: Suppose first that {x1, · · · ,xn} is linearly independent. If

xk = ∑
j ̸=k

c jx j,

then 0 = 1xk +∑ j ̸=k (−c j)x j, a nontrivial linear combination, contrary to assumption.
This shows that if the set is linearly independent, then none of the vectors is a linear com-
bination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · · ,xn} linearly
independent? If it is not, there exist scalars, ci, not all zero such that ∑

n
i=1 cixi = 0. Say

ck ̸= 0. Then you can solve for xk as xk = ∑ j ̸=k (−c j/ck)x j contrary to assumption. This
proves the lemma. ■

The following is called the exchange theorem.

Theorem 4.2.3 If

span(u1, · · · ,ur)⊆ span(v1, · · · ,vs)≡V

and {u1, · · · ,ur} are linearly independent, then r ≤ s.

Proof: Suppose r > s. Let Fp denote the first p vectors in {u1, · · · ,ur}. Let F0 denote
the empty set. Let Ep denote a finite list of vectors of {v1, · · · ,vs} and let

∣∣Ep
∣∣ denote the

number of vectors in the list. Note that, by assumption, span(F0,Es) =V . For 0≤ p≤ s, let
Ep have the property span(Fp,Ep) =V and

∣∣Ep
∣∣ is as small as possible for this to happen.

If
∣∣Ep
∣∣ = 0, then span(Fp) = V which would imply that, since r > s ≥ p,ur ∈ span(Fs)

contradicting the linear independence of {u1, · · · ,ur}. Assume then that
∣∣Ep
∣∣ > 0. Then

up+1 ∈ span(Fp,Ep) and so there are constants, c1, · · · ,cp and d1, · · · ,dm such that up+1 =

∑
p
i=1 ciui +∑

m
j=1 diz j for {z1, · · · ,zm} ⊆ {v1, · · · ,vs} . Then not all the di can equal zero

because this would violate the linear independence of the {u1, · · · ,ur} . Therefore, you can
solve for one of the zk as a linear combination of

{
u1, · · · ,up+1

}
and the other z j. Thus

you can change Fp to Fp+1 and include one fewer vector in Ep+1 with span(Fp+1,Ep+1)=V
and so

∣∣Ep+1
∣∣< ∣∣Ep

∣∣ contrary to the claim that
∣∣Ep
∣∣was as small as possible. Thus

∣∣Ep
∣∣= 0

after all and so a contradiction results.
Alternate proof: Recall from linear algebra that if you have A an m×n matrix where

m < n so there are more columns than rows, then there exists a nonzero solution x to the
equation Ax= 0. Recall why this was. You must have free variables. Then by assumption,
you have u j = ∑

s
i=1 ai jvi. If s < r, then the matrix (ai j) has more columns than rows and so

there exists a nonzero vector x ∈ Fr such that ∑
r
j=1 ai jx j = 0. Then consider the following.

r

∑
j=1

x ju j =
r

∑
j=1

x j

s

∑
i=1

ai jvi = ∑
i

∑
j

ai jx jvi = ∑
i

0v j = 0

and since not all x j = 0, this contradicts the independence of {u1, · · · ,ur}. ■

Definition 4.2.4 A finite set of vectors, {x1, · · · ,xr} is a basis for a vector space V
if

span(x1, · · · ,xr) =V

and {x1, · · · ,xr} is linearly independent. Thus if v ∈V there exist unique scalars, v1, · · · ,vr
such that v= ∑

r
i=1 vixi. These scalars are called the components of v with respect to the

basis {x1, · · · ,xr} and {x1, · · · ,xr} are said to “span” V .
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Corollary 4.2.5 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s= n.
More generally, if you have two bases for a vector space V then they have the same number
of vectors.

Proof: From the exchange theorem, Theorem 4.2.3, if

{x1, · · · ,xr} ,{y1, · · · ,ys}

are two bases for V, then r ≤ s and s≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · · ,0,1,0 · · · ,0)T

for i = 1,2, · · · ,n are a basis for Fn. ■

Lemma 4.2.6 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span(v1, · · · ,vr) is a
subspace.

Proof: Suppose α,β are two scalars and let ∑
r
k=1 ckvk and ∑

r
k=1 dkvk are two elements

of V. What about α ∑
r
k=1 ckvk +β ∑

r
k=1 dkvk? Is it also in V ?

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk =
r

∑
k=1

(αck +βdk)vk ∈V

so the answer is yes. It is clear that 0 is in span(v1, · · · ,vr). This proves the lemma. ■

Definition 4.2.7 Let V be a vector space. It is finite dimensional when it has a
basis of finitely many vectors. Otherwise, it is infinite dimensional. Then dim(V ) read as
the dimension of V is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace of a finite di-
mensional vector space even has a basis. In fact it does and this is in the next theorem.
First, here is an interesting lemma.

Lemma 4.2.8 Suppose v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose ∑
k
i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that

d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk}, v = −∑

k
i=1
( ci

d

)
ui contrary to assumption. Therefore, d = 0. But then

∑
k
i=1 ciui = 0 and the linear independence of {u1, · · · ,uk} implies each ci = 0 also. ■

Theorem 4.2.9 Let V be a nonzero subspace of Y a finite dimensional vector space
having dimension n. Then V has a basis.

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as
in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Proof: Let v1 ∈ V where v1 ̸= 0. If span{v1} = V, stop. {v1} is a basis for V . Oth-
erwise, there exists v2 ∈ V which is not in span{v1} . By Lemma 4.2.8 {v1,v2} is a lin-
early independent set of vectors. If span{v1,v2} = V stop, {v1,v2} is a basis for V. If
span{v1,v2} ̸=V, then there exists v3 /∈ span{v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n+ 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 4.2.3, and the assumed dimension of Y . ■

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 4.2.10 Let V be a subspace of Y, a finite dimensional vector space of dimen-
sion n and let {v1, · · · ,vr} be a linearly independent set of vectors in V . Then either it is
a basis for V or there exist vectors, vr+1, · · · ,vs such that

{v1, · · · ,vr,vr+1, · · · ,vs}

is a basis for V.

Proof: This follows immediately from the proof of Theorem 4.2.9. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. ■

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 4.2.11 Let V be a subspace of Y, a finite dimensional vector space of
dimension n and suppose span(u1 · · · ,up) = V where the ui are nonzero vectors. Then
there exist vectors, {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆

{
u1 · · · ,up

}
and {v1 · · · ,vr} is a

basis for V .

Proof: Let r be the smallest positive integer with the property that for some set,

{v1, · · · ,vr} ⊆
{
u1, · · · ,up

}
,span(v1, · · · ,vr) =V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r− 1 vectors
would still span V contrary to the definition of r. ■

4.3 Inner Product and Normed Linear Spaces
4.3.1 The Inner Product in Fn

To do calculus, you must understand what you mean by distance. For functions of one
variable, the distance was provided by the absolute value of the difference of two numbers.
This must be generalized to Fn and to more general situations.

Definition 4.3.1 Let x,y ∈ Fn. Thus x = (x1, · · · ,xn) where each xk ∈ F and a
similar formula holding for y. Then the inner product of these two vectors is defined to be

(x,y)≡∑
j

x jy j ≡ x1y1 + · · ·+ xnyn.

Sometimes it is denoted as x ·y.
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Notice how you put the conjugate on the entries of the vector y. It makes no differ-
ence if the vectors happen to be real vectors but with complex vectors you must involve
a conjugate. The reason for this is that when you take the inner product of a vector with
itself, you want to get the square of the length of the vector, a positive number. Placing the
conjugate on the components of y in the above definition assures this will take place. Thus
(x,x) = ∑ j x jx j = ∑ j

∣∣x j
∣∣2 ≥ 0. If you didn’t place a conjugate as in the above definition,

things wouldn’t work out correctly. For example, (1+ i)2 + 22 = 4+ 2i and this is not a
positive number.

The following properties of the inner product follow immediately from the definition
and you should verify each of them.

Properties of the inner product:

1. (u,v) = (v,u)

2. If a,b are numbers and u,v,z are vectors then ((au+bv) ,z) = a(u,z)+b(v,z) .

3. (u,u)≥ 0 and it equals 0 if and only if u= 0.

Note this implies (x,αy) = α (x,y) because

(x,αy) = (αy,x) = α (y,x) = α (x,y)

The norm is defined as follows.

Definition 4.3.2 For x ∈ Fn, |x| ≡
(

∑
n
k=1 |xk|2

)1/2
= (x,x)1/2.

4.3.2 General Inner Product Spaces
Any time you have a vector space which possesses an inner product, something satisfying
the properties 1 - 3 above, it is called an inner product space.

Here is a fundamental inequality called the Cauchy Schwarz inequality which holds
in any inner product space. First here is a simple lemma.

Lemma 4.3.3 If z ∈ F there exists θ ∈ F such that θz = |z| and |θ |= 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z
|z|

. Recall that for z = x+ iy,z = x− iy

and zz = |z|2. In case z is real, there is no change in the above. ■

Theorem 4.3.4 (Cauchy Schwarz)Let H be an inner product space. The following
inequality holds for x and y ∈ H.

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 (4.11)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ F such that |θ |= 1 and θ (x,y) = |(x,y)| . Consider

p(t)≡
(
x+θ ty,x+ tθy

)
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where t ∈ R. Then from the above list of properties of the inner product,

0 ≤ p(t) = (x,x)+ tθ (x,y)+ tθ (y,x)+ t2 (y,y)

= (x,x)+ tθ (x,y)+ tθ(x,y)+ t2 (y,y)

= (x,x)+2t Re(θ (x,y))+ t2 (y,y)

= (x,x)+2t |(x,y)|+ t2 (y,y) (4.12)

and this must hold for all t ∈ R. Therefore, if (y,y) = 0 it must be the case that |(x,y)|=
0 also since otherwise the above inequality would be violated. Therefore, in this case,
|(x,y)| ≤ (x,x)1/2 (y,y)1/2 . On the other hand, if (y,y) ̸= 0, then p(t) ≥ 0 for all t
means the graph of y = p(t) is a parabola which opens up and it either has exactly one
real zero in the case its vertex touches the t axis or it has no real zeros. From the quadratic
formula this happens exactly when 4 |(x,y)|2− 4(x,x)(y,y) ≤ 0 which is equivalent to
4.11.

It is clear from a computation that if one vector is a scalar multiple of the other that
equality holds in 4.11. Conversely, suppose equality does hold. Then this is equivalent to
saying 4 |(x,y)|2−4(x,x)(y,y) = 0 and so from the quadratic formula, there exists one
real zero to p(t) = 0. Call it t0. Then

p(t0)≡
(
x+θ t0y,x+ t0θy

)
=
∣∣x+θ ty

∣∣2 = 0

and so x=−θ t0y. ■
Note that in establishing the inequality, I only used part of the above properties of the

inner product. It was not necessary to use the one which says that if (x,x) = 0 then x= 0.
That was only used to consider the case of equality.

Now the length of a vector can be defined.

Definition 4.3.5 Let z ∈ H. Then |z| ≡ (z,z)1/2.

Theorem 4.3.6 For length defined in Definition 4.3.5, the following hold.

|z| ≥ 0 and |z|= 0 if and only if z= 0 (4.13)

If α is a scalar, |αz|= |α| |z| (4.14)

|z+w| ≤ |z|+ |w| . (4.15)

Proof: The first two claims are left as exercises. To establish the third,

|z+w|2 ≡ (z+w,z+w)

= (z,z)+(w,w)+(w,z)+(z,w)

= |z|2 + |w|2 +2Re(w,z)

≤ |z|2 + |w|2 +2 |(w,z)|
≤ |z|2 + |w|2 +2 |w| |z|= (|z|+ |w|)2 .

Note that in an inner product space, you can define d (x,y)≡ |x−y| and this is a met-
ric for this inner product space. This follows from the above since d satisfies the conditions
for a metric,

d (x,y) = d (y,x) , d (x,y)≥ 0 and equals 0 if and only if x= y

d (x,y)+d (y,z) = |x−y|+ |y−z| ≥ |x−y+y−z|= |x−z|= d (x,z) .

It follows that all the theory of metric spaces developed earlier applies to this situation.
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4.3.3 Normed Vector Spaces
The best sort of a norm is one which comes from an inner product. However, any vector
space V which has a function ∥·∥ which maps V to [0,∞) is called a normed vector space if
∥·∥ satisfies 4.13 - 4.15. That is

∥z∥ ≥ 0 and ∥z∥= 0 if and only if z= 0 (4.16)

If α is a scalar, ∥αz∥= |α|∥z∥ (4.17)

∥z+w∥ ≤ ∥z∥+∥w∥ . (4.18)

The last inequality above is called the triangle inequality. Another version of this is

|∥z∥−∥w∥| ≤ ∥z−w∥ (4.19)

To see that 4.19 holds, note ∥z∥ = ∥z−w+w∥ ≤ ∥z−w∥+ ∥w∥ which implies
∥z∥−∥w∥ ≤ ∥z−w∥ and now switching z and w, yields ∥w∥−∥z∥ ≤ ∥z−w∥ which
implies 4.19.

Any normed vector space is a metric space, the distance given by d (x,y) ≡ ∥x−y∥.
This satisfies all the axioms of a distance. Therefore, any normed linear space is a metric
space with this metric and all the theory of metric spaces applies.

Definition 4.3.7 When X is a normed linear space which is also complete, it is
called a Banach space.

A Banach space may or may not be finite dimensional but it is always a linear space or
vector space. The field of scalars will always be R or C at least in this book. More is said
about Banach spaces later.

4.3.4 The p Norms
Examples of norms are the p norms on Cn for p ̸= 2. These do not come from an inner
product but they are norms just the same.

Definition 4.3.8 Let x ∈ Cn. Then define for p≥ 1,

∥x∥p ≡

(
n

∑
i=1
|xi|p

)1/p

.

The following inequality is called Holder’s inequality.

Proposition 4.3.9 For x,y ∈ Cn,

n

∑
i=1
|xi| |yi| ≤

(
n

∑
i=1
|xi|p

)1/p( n

∑
i=1
|yi|p

′
)1/p′

The proof will depend on the following lemma shown later.

Lemma 4.3.10 If a,b≥ 0 and p′ is defined by 1
p +

1
p′ = 1, then

ab≤ ap

p
+

bp′

p′
.
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Proof of the Proposition: If x or y equals the zero vector there is nothing to prove.

Therefore, assume they are both nonzero. Let A= (∑n
i=1 |xi|p)1/p and B=

(
∑

n
i=1 |yi|p

′)1/p′

.
Then using Lemma 4.3.10,

n

∑
i=1

|xi|
A
|yi|
B

≤
n

∑
i=1

[
1
p

(
|xi|
A

)p

+
1
p′

(
|yi|
B

)p′
]

=
1
p

1
Ap

n

∑
i=1
|xi|p +

1
p′

1
Bp

n

∑
i=1
|yi|p

′

=
1
p
+

1
p′

= 1

and so ∑
n
i=1 |xi| |yi| ≤ AB = (∑n

i=1 |xi|p)1/p
(

∑
n
i=1 |yi|p

′)1/p′

. ■

Theorem 4.3.11 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that ∥·∥p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ∥·∥ in place of ∥·∥p in
what follows. Note also that p

p′ = p−1. Then using the Holder inequality,

∥x+y∥p =
n

∑
i=1
|xi + yi|p ≤

n

∑
i=1
|xi + yi|p−1 |xi|+

n

∑
i=1
|xi + yi|p−1 |yi|

=
n

∑
i=1
|xi + yi|

p
p′ |xi|+

n

∑
i=1
|xi + yi|

p
p′ |yi|

≤

(
n

∑
i=1
|xi + yi|p

)1/p′
( n

∑
i=1
|xi|p

)1/p

+

(
n

∑
i=1
|yi|p

)1/p


= ∥x+y∥p/p′
(
∥x∥p +∥y∥p

)
so dividing by ∥x+y∥p/p′ , it follows

∥x+y∥p ∥x+y∥−p/p′ = ∥x+y∥ ≤ ∥x∥p +∥y∥p(
p− p

p′ = p
(

1− 1
p′

)
= p 1

p = 1.
)
. ■

It only remains to prove Lemma 4.3.10.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = t p−1

t = xq−1
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ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

Note equality occurs when ap = bq. ■
Alternate proof of the lemma: First note that if either a or b are zero, then there is

nothing to show so we can assume b,a > 0. Let b > 0 and let

f (a) =
ap

p
+

bq

q
−ab

Then the second derivative of f is positive on (0,∞) so its graph is convex. Also f (0)> 0
and lima→∞ f (a) = ∞. Then a short computation shows that there is only one critical point,
where f is minimized and this happens when a is such that ap = bq. At this point,

f (a) = bq−bq/pb = bq−bq−1b = 0

Therefore, f (a)≥ 0 for all a and this proves the lemma. ■
Another example of a very useful norm on Fn is the norm ∥·∥

∞
defined by

∥x∥
∞
≡max{|xk| : k = 1,2, · · · ,n}

You should verify that this satisfies all the axioms of a norm. Here is the triangle inequality.

∥x+y∥
∞

= max
k
{|xk + yk|} ≤max

k
{|xk|+ |yk|}

≤ max
k
{|xk|}+max

k
{|yk|}= ∥x∥∞

+∥y∥
∞

It turns out that in terms of analysis, it makes absolutely no difference which norm you
use. This will be explained later. First is a short review of the notion of orthonormal bases
which is not needed directly in what follows but is sufficiently important to include.

4.3.5 Orthonormal Bases
Not all bases for an inner product space H are created equal. The best bases are orthonor-
mal.

Definition 4.3.12 Suppose {v1, · · · ,vk} is a set of vectors in an inner product
space H. It is an orthonormal set if

(vi,v j) = δ i j =

{
1 if i = j
0 if i ̸= j

Every orthonormal set of vectors is automatically linearly independent.

Proposition 4.3.13 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is
linearly independent.

Proof: Suppose ∑
k
i=1 civi = 0. Then taking inner products with

v j,0 = (0,v j) = ∑
i

ci (vi,v j) = ∑
i

ciδ i j = c j.

Since j is arbitrary, this shows the set is linearly independent as claimed. ■
It turns out that if X is any subspace of H, then there exists an orthonormal basis for X .

The process by which this is done is called the Gram Schmidt process.
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Lemma 4.3.14 Let X be a subspace of dimension n which is contained in an inner
product space H. Let a basis for X be {x1, · · · ,xn} . Then there exists an orthonormal
basis for X , {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span(u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for X . Let u1 ≡ x1/ |x1| . Thus for k = 1,

span(u1) = span(x1)

and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have been chosen
such that (u j,ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1,u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1,u j)u j

∣∣∣ , (4.20)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 4.20 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k, then denoting by C the scalar
∣∣∣xk+1−∑

k
j=1 (xk+1,u j)u j

∣∣∣−1
,

(uk+1,ul) = C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)(u j,ul)

)

= C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)δ l j

)
= C ((xk+1,ul)− (xk+1,ul)) = 0.

The vectors,
{
u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.

4.4 Equivalence of Norms
As mentioned above, it makes absolutely no difference which norm you decide to use. This
holds in general finite dimensional normed spaces. First are some simple lemmas featuring
one dimensional considerations. In this case, the distance is given by d (x,y) = |x− y| and
so the open balls are sets of the form (x−δ ,x+δ ).

Also recall the Lemma 3.5.9 which is stated next for convenience.

Lemma 4.4.1 The closed interval [a,b] is compact.
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Corollary 4.4.2 The set Q≡ [a,b]+ i [c,d]⊆ C is compact, meaning

{x+ iy : x ∈ [a,b] ,y ∈ [c,d]}

Proof: Let {xn + iyn} be a sequence in Q. Then there is a subsequence such that
limk→∞ xnk = x ∈ [a,b] . There is a further subsequence such that liml→∞ ynkl

= y ∈ [c,d].
Thus, also liml→∞ xnkl

= x because subsequences of convergent sequences converge to
the same point. Therefore, from the way we measure the distance in C, it follows that
liml→∞

(
xnkl

+ ynkl

)
= x+ iy ∈ Q. ■

The next corollary gives the definition of a closed disk and shows that, like a closed
interval, a closed disk is compact.

Corollary 4.4.3 In C, let D(z,r)≡ {w ∈ C : |z−w| ≤ r}. Then D(z,r) is compact.

Proof: Note that

D(z,r)⊆ [Rez− r,Rez+ r]+ i [Imz− r, Imz+ r]

which was just shown to be compact. Also, if wk → w where wk ∈ D(z,r) , then by the
triangle inequality,

|z−w|= lim
k→∞

|z−wk| ≤ r

and so D(z,r) is a closed subset of a compact set. Hence it is compact by Proposition 3.5.2.
■

Recall that sequentially compact and compact are the same in any metric space which
is the context of the assertions here.

Lemma 4.4.4 Let Ki be a nonempty compact set in F. Then P≡ ∏
n
i=1 Ki is compact in

Fn.

Proof: Let {xk} be a sequence in P. Taking a succession of subsequences as in the
proof of Corollary 4.4.2, there exists a subsequence, still denoted as {xk} such that if xi

k is
the ith component of xk, then limk→∞ xi

k = xi ∈ Ki. Thus if x is the vector of P whose ith

component is xi,

lim
k→∞

|xk−x| ≡ lim
k→∞

(
n

∑
i=1

∣∣xi
k− xi∣∣2)1/2

= 0

It follows that P is sequentially compact, hence compact. ■
A set K in Fn is said to be bounded if it is contained in some ball B(0,r).

Theorem 4.4.5 A set K ⊆ Fn is compact if it is closed and bounded. If f : K→ R,
then f achieves its maximum and its minimum on K.

Proof: Say K is closed and bounded, being contained in B(0,r). Then if x∈K, |xi|< r
where xi is the ith component. Hence K ⊆ ∏

n
i=1 D(0,r) , a compact set by Lemma 4.4.4.

By Proposition 3.5.2, since K is a closed subset of a compact set, it is compact. The last
claim is just the extreme value theorem, Theorem 3.7.2. ■
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Definition 4.4.6 Let {v1, · · · ,vn} be a basis for V where (V,∥·∥) is a finite dimen-
sional normed vector space with field of scalars equal to either R or C. Define θ : V → Fn

as follows.

θ

(
n

∑
j=1

α jv j

)
≡α≡ (α1, · · · ,αn)

T

Thus θ maps a vector to its coordinates taken with respect to a given basis.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let

f (α)≡

∥∥∥∥∥∑i
α ivi

∥∥∥∥∥≡ ∥∥θ
−1α

∥∥
Then it is clear that f is a continuous function defined on Fn. This is because α→ ∑i α ivi
is a continuous map into V and from the triangle inequality x→ ∥x∥ is continuous as a
map from V to R.

Lemma 4.4.7 There exists δ > 0 and ∆≥ δ such that

δ = min{ f (α) : |α|= 1} , ∆ = max{ f (α) : |α|= 1}

Also,

δ |α| ≤
∥∥θ
−1α

∥∥≤ ∆ |α| (4.21)
δ |θv| ≤ ∥v∥ ≤ ∆ |θv| (4.22)

Proof: These numbers exist thanks to Theorem 4.4.5. It cannot be that δ = 0 because if
it were, you would have |α|= 1 but ∑

n
j=1 αkv j = 0 which is impossible since {v1, · · · ,vn}

is linearly independent. The first of the above inequalities follows from δ ≤
∥∥∥θ
−1 α
|α|

∥∥∥ =
f
(

α
|α|

)
≤ ∆. The second follows from observing that θ

−1α is a generic vector v in V . ■
Note that these inequalities yield the fact that convergence of the coordinates with re-

spect to a given basis is equivalent to convergence of the vectors. More precisely, to say
that limk→∞v

k = v is the same as saying that limk→∞ θvk = θv. Indeed,

δ |θvn−θv| ≤ ∥vn−v∥ ≤ ∆ |θvn−θv|

Now we can draw several conclusions about (V,∥·∥) for V finite dimensional.

Theorem 4.4.8 Let (V,∥·∥) be a finite dimensional normed linear space. Then the
compact sets are exactly those which are closed and bounded. Also (V,∥·∥) is complete. If
K is a closed and bounded set in (V,∥·∥) and f : K→R, then f achieves its maximum and
minimum on K.

Proof: First note that the inequalities 4.21 and 4.22 show that both θ
−1 and θ are

continuous. Thus these take convergent sequences to convergent sequences.
Let {wk}∞

k=1 be a Cauchy sequence. Then from 4.22, {θwk}∞

k=1 is a Cauchy sequence.
Thanks to Theorem 4.4.5, it converges to some β ∈ Fn. It follows that limk→∞ θ

−1
θwk =

limk→∞wk = θ
−1β ∈V . This shows completeness.
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Next let K be a closed and bounded set. Let {wk} ⊆ K. Then {θwk} ⊆ θK which
is also a closed and bounded set thanks to the inequalities 4.21 and 4.22. Thus there is a
subsequence still denoted with k such that θwk→ β ∈ Fn. Then as just done,wk→ θ

−1β.
Since K is closed, it follows that θ

−1
β ∈ K.

This has just shown that a closed and bounded set in V is sequentially compact hence
compact.

Finally, why are the only compact sets those which are closed and bounded? Let K be
compact. If it is not bounded, then there is a sequence of points of K,{km}∞

m=1 such that
∥km∥ ≥

∥∥km−1∥∥+1. It follows that it cannot have a convergent subsequence because the
points are further apart from each other than 1/2. Indeed,∥∥km−km+1∥∥≥ ∥∥km+1∥∥−∥km∥ ≥ 1 > 1/2

Hence K is not sequentially compact and consequently it is not compact. It follows
that K is bounded. If K is not closed, then there exists a limit point k which is not in K.
(Recall that closed means it has all its limit points.) By Theorem 3.1.8, there is a sequence
of distinct points having no repeats and none equal to k denoted as {km}∞

m=1 such that
km→ k. Then this sequence {km} fails to have a subsequence which converges to a point
of K. Hence K is not sequentially compact. Thus, if K is compact then it is closed and
bounded.

The last part is the extreme value theorem, Theorem 3.7.2. ■
Next is the theorem which states that any two norms on a finite dimensional vector

space are equivalent.

Theorem 4.4.9 Let ∥·∥ ,∥·∥1 be two norms on V a finite dimensional vector space.
Then they are equivalent, which means there are constants 0 < a < b such that for all v,

a∥v∥ ≤ ∥v∥1 ≤ b∥v∥

Proof: In Lemma 4.4.7, let δ ,∆ go with ∥·∥ and δ̂ , ∆̂ go with ∥·∥1. Then using the
inequalities of this lemma,

∥v∥ ≤ ∆ |θv| ≤ ∆

δ̂
∥v∥1 ≤

∆∆̂

δ̂
|θv| ≤ ∆

δ

∆̂

δ̂
∥v∥

and so δ̂

∆
∥v∥ ≤ ∥v∥1 ≤ ∆̂

δ
∥v∥. Thus the norms are equivalent. ■

It follows right away that the closed and open sets are the same with two different
norms. Also, all considerations involving limits are unchanged from one norm to another.

Corollary 4.4.10 Consider the metric spaces (V,∥·∥1) ,(V,∥·∥2) where V has dimen-
sion n. Then a set is closed or open in one of these if and only if it is respectively closed or
open in the other. In other words, the two metric spaces have exactly the same open and
closed sets. Also, a set is bounded in one metric space if and only if it is bounded in the
other.

Proof: This follows from Theorem 3.6.2, the theorem about the equivalent formulations
of continuity. Using this theorem, it follows from Theorem 4.4.9 that the identity map
I (x)≡x is continuous. The reason for this is that the inequality of this theorem implies that
if ∥vm−v∥1→ 0 then ∥Ivm− Iv∥2 = ∥I (vm−v)∥2→ 0 and the same holds on switching
1 and 2 in what was just written.
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Therefore, the identity map takes open sets to open sets and closed sets to closed sets.
In other words, the two metric spaces have the same open sets and the same closed sets.

Suppose S is bounded in (V,∥·∥1). This means it is contained in B(0,r)1 where the
subscript of 1 indicates the norm is ∥·∥1 . Let δ ∥·∥1 ≤ ∥·∥2 ≤ ∆∥·∥1 as described above.
Then S⊆ B(0,r)1 ⊆ B(0,∆r)2 so S is also bounded in (V,∥·∥2). Similarly, if S is bounded
in ∥·∥2 then it is bounded in ∥·∥1. ■

One can show that in the case of R where it makes sense to consider sup and inf, con-
vergence of Cauchy sequences can be shown to imply the other definition of completeness
involving sup, and inf.

4.5 Covering Theorems
These covering theorems make sense on any finite dimensional normed linear space. There
are two which are commonly used, the Vitali theorem and the Besicovitch theorem. The
first adjusts the size of balls and the second does not. Of the two, it is the Besicovitch
theorem which I will emphasize. However, the Vitali theorem is used more often and may
be a little easier. I decided to place these theorems early in the book to emphasize that they
only require a finite dimensional normed linear space.

4.5.1 Vitali Covering Theorem
The Vitali covering theorem is a profound result about coverings of a set in (X ,∥·∥) with
balls. Usually we are interested in Rp with some norm. We will tacitly assume all balls
have positive radius. They will not be single points. Before beginning the proof, here is a
useful lemma.

Lemma 4.5.1 In a normed linear space, B(x,r) = {y : ∥y−x∥ ≤ r} .

Proof: It is clear that B(x,r) ⊆ {y : ∥y−x∥ ≤ r} because if y ∈ B(x,r), then there
exists a sequence of points of B(x,r) ,{xn} such that ∥xn−y∥ → 0,∥xn∥ < r. However,
this requires that ∥xn∥ → ∥y∥ and so ∥y∥ ≤ r. Now let y be in the right side. It suffices
to consider ∥y−x∥ = 1. Then you could consider for t ∈ (0,1) , x+ t (y−x) = z (t).
Then ∥z (t)−x∥ = t ∥y−x∥ = tr < r and so z (t) ∈ B(x,r) . But also, ∥z (t)−y∥ =
(1− t)∥y−x∥= (1− t)r so limt→0 ∥z (t)−y∥= 0 showing that y ∈ B(x,r). ■

Thus the usual way we think about the closure of a ball is completely correct in a
normed linear space. Its limit points not in the ball are exactly y such that ∥y−x∥ = r.
Recall that this lemma is not always true in the context of a metric space. Recall the
discrete metric for example, in which the distance between different points is 1 and distance
between a point and itself is 0. In what follows I will use the result of this lemma without
comment. Balls will be either open, closed or neither. I am going to use the Hausdorff
maximal theorem, Theorem 2.8.2 because it yields a very simple argument. It can be done
other ways however. In the argument, the balls are not necessarily open nor closed. y is in
B(x,r) will mean that ∥y−x∥< r or ∥y−x∥= r.

Lemma 4.5.2 Let F be a nonempty collection of balls satisfying

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and let k ∈ (0,M) . Then there exists G ⊆F such that

If B(p,r) ∈ G , then r > k, (4.23)
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If B1,B2 ∈ G then B1∩B2 = /0, (4.24)

G is maximal with respect to 4.23 and 4.24. (4.25)

By this is meant that if H is a collection of balls satisfying 4.23 and 4.24, then H cannot
properly contain G .

Proof: Let S denote a subset of F such that 4.23 and 4.24 are satisfied. Since k < M,
4.23 is satisfied for some ball of S. Thus S ̸= /0. Partially order S with respect to set
inclusion. Thus A ≺B for A ,B in S means that A ⊆B. By the Hausdorff maximal
theorem, there is a maximal chain in S denoted by C . Then let G be ∪C . If B1,B2 are in
C , then since C is a chain, both B1,B2 are in some element of C and so B1∩B2 = /0. The
maximality of C is violated if there is any other element of S which properly contains G .
■

Proposition 4.5.3 Let F be a collection of balls, and let

A≡ ∪{B : B ∈F} .

Suppose
∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of balls whose closures are disjoint and

A⊆ ∪{B̂ : B ∈ G }

where for B = B(x,r) a ball, B̂ denotes the open ball B(x,5r).

Proof: Let G1 satisfy 4.23 - 4.25 for k = 2M
3 .

Suppose G1, · · · ,Gm−1 have been chosen for m ≥ 2. Let Gi denote the collection of
closures of the balls of Gi. Then let Fm be those balls of F , such that if B is one of these
balls, B has empty intersection with every closed ball of Gi for each i≤ m−1. Then using
Lemma 4.5.2, let Gm be a maximal collection of balls from Fm with the property that each
ball has radius larger than

( 2
3

)m
M and their closures are disjoint. Let G ≡ ∪∞

k=1Gk. Thus
the closures of balls in G are disjoint. Let x ∈ B(p,r) ∈F \G . Choose m such that(

2
3

)m

M < r ≤
(

2
3

)m−1

M

Then B(p,r) must have nonempty intersection with the closure of some ball from G1 ∪
·· ·∪Gm because if it didn’t, then Gm would fail to be maximal. Denote by B(p0,r0) a ball
in G1∪·· ·∪Gm whose closure has nonempty intersection with B(p,r). Thus both

r0,r >
(

2
3

)m

M, so r ≤
(

2
3

)m−1

M <
3
2

r0

Consider the picture, in which w ∈ B(p0,r0)∩B(p,r).

w
r0

p0 r
p
x
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Then for x ∈ B(p,r),

∥x−p0∥ ≤ ∥x−p∥+∥p−w∥+

≤r0︷ ︸︸ ︷
∥w−p0∥

≤ r+ r+ r0 ≤ 2

< 3
2 r0︷ ︸︸ ︷(

2
3

)m−1

M+ r0 ≤ 2
(

3
2

r0

)
+ r0 ≤ 4r0

Thus B(p,r) is contained in B(p0,4r0). It follows that the closures of the balls of G are
disjoint and the set

{
B̂ : B ∈ G

}
covers A. ■

Note that this theorem does not depend on the underlying space being finite dimen-
sional. However, it is typically used in this setting. The next theorem of Besicovitch
depends in an essential way on X being finite dimensional because it exploits compactness
and various constants originate explicitly from this compactness. However, no effort is
being made here to give the most general conditions under which such covering theorems
hold.

4.5.2 Besicovitch Covering Theorem
The covering theorems will have applications to measure theory presented later. In contrast
to the Vitali covering theorem, one does not enlarge the balls in the Besicovitch covering
theorem. This is extremely useful in the notion of general differentiation theorems for
measures other than Lebesgue measure. The proof of this major result has to do with
counting the number of times various balls can intersect. These estimates are used along
with the pigeon hole principle to prove the result. This principle says that if you have n
holes and m > n pigeons, each of which must go in a hole, then some hole has more than
one pigeon. In what follows x will continue to be in a normed linear space (X ,∥·∥) of
dimension p. This covering theorem is one of the most amazing and insightful ideas that I
have ever encountered. It is simultaneously elegant, elementary and profound. This section
is an attempt to present this wonderful result.

Here is a sequence of balls from F in the case that the set of centers of these balls is
bounded. I will denote by r (Bk) the radius of a ball Bk.

A construction of a sequence of balls

Lemma 4.5.4 Let F be a nonempty set of nonempty balls in X with

sup{diam(B) : B ∈F}= D < ∞

and let A denote the set of centers of these balls. Suppose A is bounded. Define a sequence
of balls from F ,

{
B j
}J

j=1 where J ≤ ∞ such that

r (B1)>
3
4

sup{r (B) : B ∈F} (4.26)

and if
Am ≡ A\ (∪m

i=1Bi) ̸= /0, (4.27)
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then Bm+1 ∈F is chosen with center in Am such that

r (Bm)> r (Bm+1)>
3
4

sup{r : B(a,r) ∈F , a ∈ Am} . (4.28)

Then letting B j = B(a j,r j) , this sequence satisfies
{

B(a j,r j/3)
}J

j=1 are disjoint,.

A⊆ ∪J
i=1Bi. (4.29)

Proof: First note that Bm+1 can be chosen as in 4.28. This is because the Am are
decreasing and so

3
4

sup{r : B(a,r) ∈F , a ∈ Am}

≤ 3
4

sup{r : B(a,r) ∈F , a ∈ Am−1}< r (Bm)

Thus the r (Bk) are strictly decreasing and so no Bk contains a center of any other B j.
If x ∈ B(a j,r j/3)∩ B(ai,ri/3) where these balls are two which are chosen by the

above scheme such that j > i, then from what was just shown∥∥a j−ai
∥∥≤ ∥∥a j−x

∥∥+∥x−ai∥ ≤
r j

3
+

ri

3
≤
(

1
3
+

1
3

)
ri =

2
3

ri < ri

and this contradicts the construction because a j is not covered by B(ai,ri).
Finally consider the claim that A⊆ ∪J

i=1Bi. Pick B1 satisfying 4.26. If

B1, · · · ,Bm

have been chosen, and Am is given in 4.27, then if Am = /0, it follows A⊆∪m
i=1Bi. Set J =m.

Now let a be the center of Ba ∈F . If a ∈ Am for all m,(That is a does not get covered
by the Bi.) then rm+1 ≥ 3

4 r (Ba) for all m, a contradiction since the balls B
(
a j,

r j
3

)
are

disjoint and A is bounded, implying that r j→ 0. Thus a must fail to be in some Am which
means it was covered by some ball in the sequence. ■

The covering theorem is obtained by estimating how many B j can intersect Bk for j < k.
The thing to notice is that from the construction, no B j contains the center of another Bi.
Also, the r (Bk) is a decreasing sequence.

Let α > 1. There are two cases for an intersection. Either r (B j)≥ αr (Bk) or αr (Bk)>
r (B j)> r (Bk).

First consider the case where we have a ball B(a,r) intersected with other balls of
radius larger than αr such that none of the balls contains the center of any other. This
is illustrated in the following picture with two balls. This has to do with estimating the
number of B j for j ≤ k where r (B j)≥ αr (Bk).

Ba

Bx By

a
r

x

rx

y

ry

px
py
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Imagine projecting the center of each big ball as in the above picture onto the surface of
the given ball, assuming the given ball has radius 1. By scaling the balls, you could reduce
to this case that the given ball has radius 1. Then from geometric reasoning, there should
be a lower bound to the distance between these two projections depending on dimension.
Thus there is an estimate on how many large balls can intersect the given ball with no ball
containing a center of another one.

Intersections with relatively big balls

Lemma 4.5.5 Let the balls Ba,Bx,By be as shown, having radii r,rx,ry respectively.
Suppose the centers of Bx and By are not both in any of the balls shown, and suppose
ry ≥ rx ≥ αr where α is a number larger than 1. Also let Px ≡ a+ r x−a

∥x−a∥ with Py being

defined similarly. Then it follows that ∥Px−Py∥ ≥ α−1
α+1 r. There exists a constant L(p,α)

depending on α and the dimension, such that if B1, · · · ,Bm are all balls such that any pair
are in the same situation relative to Ba as Bx, and By, then m≤ L(p,α) .

Proof: From the definition,

∥Px−Py∥= r
∥∥∥∥ x−a
∥x−a∥

− y−a
∥y−a∥

∥∥∥∥
= r
∥∥∥∥ (x−a)∥y−a∥− (y−a)∥x−a∥

∥x−a∥∥y−a∥

∥∥∥∥
= r
∥∥∥∥∥y−a∥(x−y)+(y−a)(∥y−a∥−∥x−a∥)

∥x−a∥∥y−a∥

∥∥∥∥
≥ r
∥x−y∥
∥x−a∥

− r
∥y−a∥|∥y−a∥−∥x−a∥|

∥x−a∥∥y−a∥

= r
∥x−y∥
∥x−a∥

− r
∥x−a∥

|∥y−a∥−∥x−a∥| . (4.30)

There are two cases. First suppose that ∥y−a∥−∥x−a∥ ≥ 0. Then the above

= r
∥x−y∥
∥x−a∥

− r
∥x−a∥

∥y−a∥+ r.

From the assumptions, ∥x−y∥ ≥ ry and also ∥y−a∥ ≤ r+ ry. Hence the above

≥ r
ry

∥x−a∥
− r
∥x−a∥

(r+ ry)+ r = r− r
r

∥x−a∥

≥ r
(

1− r
∥x−a∥

)
≥ r
(

1− r
rx

)
≥ r
(

1− 1
α

)
≥ r

α−1
α +1

.

The other case is that ∥y−a∥−∥x−a∥< 0 in 4.30. Then in this case 4.30 equals

= r
(
∥x−y∥
∥x−a∥

− 1
∥x−a∥

(∥x−a∥−∥y−a∥)
)

=
r

∥x−a∥
(∥x−y∥− (∥x−a∥−∥y−a∥))
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Then since ∥x−a∥ ≤ r+ rx,∥x−y∥ ≥ ry,∥y−a∥ ≥ ry, and remembering that ry ≥ rx ≥
αr,

≥ r
rx + r

(ry− (r+ rx)+ ry)≥
r

rx + r
(ry− (r+ ry)+ ry)

≥ r
rx + r

(ry− r)≥ r
rx + r

(rx− r)≥ r
rx +

1
α

rx

(
rx−

1
α

rx

)
=

r
1+(1/α)

(1−1/α) =
α−1
α +1

r

Replacing r with something larger, 1
α

rx is justified by the observation that x→ α−x
α+x is

decreasing. This proves the estimate between Px and Py .
Finally, in the case of the balls Bi having centers at xi, then as above, let Pxi = a+

r xi−a
∥xi−a∥ . Then (Pxi −a)r−1 is on the unit sphere having center 0. Furthermore,

∥∥(Pxi −a)r−1−
(
Pyi −a

)
r−1∥∥= r−1∥∥Pxi −Pyi

∥∥≥ r−1r
α−1
α +1

=
α−1
α +1

.

How many points on the unit sphere can be pairwise this far apart? The unit sphere is
compact and so there exists a 1

4

(
α−1
α+1

)
net having L(p,α) points. Thus m cannot be any

larger than L(p,α) because if it were, then by the pigeon hole principal, two of the points
(Pxi −a)r−1 would lie in a single ball B

(
p, 1

4

(
α−1
α+1

))
so they could not be α−1

α+1 apart. ■
The above lemma has to do with balls which are relatively large intersecting a given

ball. Next is a lemma which has to do with relatively small balls intersecting a given ball.
First is another lemma.

Lemma 4.5.6 Let Γ > 1 and B(a,Γr) be a ball and suppose {B(xi,ri)}m
i=1 are balls

contained in B(a,Γr) such that r≤ ri and none of these balls contains the center of another
ball. Then there is a constant M (p,Γ) such that m≤M (p,Γ).

Proof: Let zi = xi−a. Then B(zi,ri) are balls contained in B(0,Γr) with no ball
containing a center of another. Then B

(
zi
Γr ,

ri
Γr

)
are balls in B(0,1) with no ball containing

the center of another. By compactness, there is a 1
8Γ

net for B(0,1), {yi}
M(p,Γ)
i=1 . Thus the

balls B
(
yi,

1
8Γ

)
cover B(0,1). If m ≥M (p,Γ) , then by the pigeon hole principle, one of

these B
(
yi,

1
8Γ

)
would contain some zi

Γr and z j
Γr which requires

∥∥ zi
Γr −

z j
Γr

∥∥ ≤ 1
4Γ

<
r j

4Γr so
zi
Γr ∈ B

(z j
Γr ,

r j
Γr

)
. Thus m≤M (p,γ,Γ). ■

Intersections with small balls

Lemma 4.5.7 Let B be a ball having radius r and suppose B has nonempty intersection
with the balls B1, · · · ,Bm having radii r1, · · · ,rm respectively, and as before, no Bi contains
the center of any other and the centers of the Bi are not contained in B. Suppose α > 1
and r ≤ min(r1, · · · ,rm), each ri < αr. Then there exists a constant M (p,α) such that
m≤M (p,α).

Proof: Let B = B(a,r). Then each Bi is contained in B(a,2r+αr+αr) . This is
because if y ∈ Bi ≡ B(xi,ri) ,

∥y−a∥ ≤ ∥y−xi∥+∥xi−a∥ ≤ ri + r+ ri < 2r+αr+αr
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Thus Bi does not contain the center of any other B j, these balls are each contained in
B(a,r (2α +2)) , and each radius is at least as large as r. By Lemma 4.5.6 there is a
constant M (p,α) such that m≤M (p,α). ■

Now here is the Besicovitch covering theorem. In the proof, we are considering the
sequence of balls described above.

Theorem 4.5.8 There exists a constant Np, depending only on p with the following
property. If F is any collection of nonempty balls in X with

sup{diam(B) : B ∈F}< D < ∞

and if A is the set of centers of the balls in F , then there exist subsets of F , H1, · · · , HNp ,
such that each Hi is a countable collection of disjoint balls from F (possibly empty) and

A⊆ ∪Np
i=1∪{B : B ∈Hi}.

Proof: To begin with, suppose A is bounded. Let L(p,α) be the constant of Lemma
4.5.5 and let Mp = L(p,α)+M (p,α)+1. Define the following sequence of subsets of F ,
G1,G2, · · · ,GMp . Referring to the sequence {Bk} considered in Lemma 4.5.4, let B1 ∈ G1
and if B1, · · · ,Bm have been assigned, each to a Gi, place Bm+1 in the first G j such that Bm+1
intersects no set already in G j. The existence of such a j follows from Lemmas 4.5.5 and
4.5.7 and the pigeon hole principle. Here is why. Bm+1 can intersect at most L(p,α) sets of
{B1, · · · ,Bm} which have radii at least as large as αr (Bm+1) thanks to Lemma 4.5.5. It can
intersect at most M (p,α) sets of {B1, · · · ,Bm} which have radius smaller than αr (Bm+1)
thanks to Lemma 4.5.7. Thus each G j consists of disjoint sets of F and the set of centers
is covered by the union of these G j. This proves the theorem in case the set of centers is
bounded.

Now let R1 = B(0,5D) and if Rm has been chosen, let

Rm+1 = B(0,(m+1)5D)\Rm

Thus, if |k−m| ≥ 2, no ball from F having nonempty intersection with Rm can inter-
sect any ball from F which has nonempty intersection with Rk. This is because all these
balls have radius less than D. Now let Am ≡ A∩ Rm and apply the above result for a
bounded set of centers to those balls of F which intersect Rm to obtain sets of disjoint balls
G1 (Rm) ,G2 (Rm) , · · · ,GMp (Rm) covering Am. Then simply define G ′j ≡∪∞

k=1G j (R2k) ,G j ≡
∪∞

k=1G j (R2k−1) . Let Np = 2Mp and

{
H1, · · · ,HNp

}
≡
{

G ′1, · · · ,G ′Mp ,G1, · · · ,GMp

}
Note that the balls in G ′j are disjoint. This is because those in G j (R2k) are disjoint and if
you consider any ball in G j (R2m) , it cannot intersect a ball of G j (R2k) for m ̸= k because
|2k−2m| ≥ 2. Similar considerations apply to the balls of G j. ■

Of course, you could pick a particular α . If you make α larger, L(p,α) should get
smaller and M (p,α) should get larger. Obviously one could explore this at length to try
and get a best choice of α .
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4.6 Exercises
1. Let V be a vector space with basis {v1, · · · ,vn}. For v ∈ V, denote its coordinate

vector as v = (α1, · · · ,αn) where v = ∑
n
k=1 αkvk. Now define

∥v∥ ≡max{|αk| : k = 1, ...,n} .

Show that this is a norm on V .

2. Let (X ,∥·∥) be a normed linear space. You can let it be (Rn, |·|) if you like. Recall

|x| is the usual magnitude of a vector given by |x|=
√

∑
n
k=1 |xk|2. A set A is said to

be convex if whenever x,y ∈ A the line segment determined by these points given
by tx+(1− t)y for t ∈ [0,1] is also in A. Show that every open or closed ball is
convex. Remember a closed ball is D(x,r)≡ {x̂ : ∥x̂−x∥ ≤ r} while the open ball
is B(x,r)≡ {x̂ : ∥x̂−x∥< r}. This should work just as easily in any normed linear
space with any norm.

3. This problem is for those who have had a course in Linear algebra. A vector v
is in the convex hull of S if there are finitely many vectors of S,{v1, · · · ,vm} and
nonnegative scalars {t1, · · · , tm} such that v= ∑

m
k=1 tkvk, ∑

m
k=1 tk = 1.Such a linear

combination is called a convex combination. Suppose now that S⊆V, a vector space
of dimension n. Show that if v= ∑

m
k=1 tkvk is a vector in the convex hull for m >

n+ 1, then there exist other nonnegative scalars
{

t ′k
}

summing to 1 such that v=

∑
m−1
k=1 t ′kvk.Thus every vector in the convex hull of S can be obtained as a convex

combination of at most n+ 1 points of S. This incredible result is in Rudin [51].
Convexity is more a geometric property than a topological property. Hint: Consider
L :Rm→V×R defined by L(a)≡ (∑m

k=1 akvk,∑
m
k=1 ak) Explain why ker(L) ̸= {0} .

This will involve observing that Rm has higher dimension that V ×R. Thus L cannot
be one to one because one to one functions take linearly independent sets to linearly
independent sets and you can’t have a linearly independent set with more than n+1
vectors in V ×R. Next, letting a ∈ ker(L)\{0} and λ ∈ R, note that λ a ∈ ker(L) .
Thus for all λ ∈ R, v= ∑

m
k=1 (tk +λak)vk. Now vary λ till some tk +λak = 0 for

some ak ̸= 0. You can assume each tk > 0 since otherwise, there is nothing to show.
This is a really nice result because it can be used to show that the convex hull of a
compact set is also compact. You might try to show this if you feel like it.

4. Show that the usual norm in Fn given by |x|= (x,x)1/2 satisfies the following iden-
tities, the first of them being the parallelogram identity and the second being the
polarization identity.

|x+y|2 + |x−y|2 = 2 |x|2 +2 |y|2

Re(x,y) =
1
4

(
|x+y|2−|x−y|2

)
Show that these identities hold in any inner product space, not just Fn.

5. Suppose K is a compact subset of (X ,d) a metric space. Also let C be an open cover
of K. Show that there exists δ > 0 such that for all x ∈ K, B(x,δ ) is contained in a
single set of C . This number is called a Lebesgue number. Hint: For each x ∈ K,
there exists B(x,δ x) such that this ball is contained in a set of C . Now consider
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the balls
{

B
(

x, δ x
2

)}
x∈K

. Finitely many of these cover K.
{

B
(

xi,
δ xi
2

)}n

i=1
Now

consider what happens if you let δ ≤ min
{

δ xi
2 , i = 1,2, · · · ,n

}
. Explain why this

works. You might draw a picture to help get the idea.

6. Suppose C is a set of compact sets in a metric space (X ,d) and suppose that the
intersection of every finite subset of C is nonempty. This is called the finite inter-
section property. Show that ∩C , the intersection of all sets of C is nonempty.
This particular result is enormously important. Hint: You could let U denote the set{

KC : K ∈ C
}

. If ∩C is empty, then its complement is ∪U = X . Picking K ∈ C ,

it follows that U is an open cover of K. K ⊆ ∪m
i=1KC

i =
(
∩m

i=1Ki
)C Therefore, you

would need to have
{

KC
1 , · · · ,KC

m
}

is a cover of K. In other words, Now what does
this say about the intersection of K with these Ki?

7. If (X ,d) is a compact metric space and f : X → Y is continuous where (Y,ρ) is
another metric space, show that if f is continuous on X , then it is uniformly contin-
uous. Recall that this means that if ε > 0 is given, then there exists δ > 0 such that
if d (x, x̂) < δ , then ρ ( f (x) , f (x̂)) < ε . Compare with the definition of continuity.
Hint: If this is not so, then there exists ε > 0 and xn, x̂n such that d (xn, x̂n)< 1/n but
ρ ( f (xn) , f (x̂n))≥ ε . Now use compactness to get a contradiction.

8. Prove the above problem using another approach. Use the existence of the Lebesgue
number in Problem 5 to prove continuity on a compact set K implies uniform conti-
nuity on this set. Hint: Consider C ≡

{
f−1 (B( f (x) ,ε/2)) : x ∈ X

}
. This is an open

cover of X . Let δ be a Lebesgue number for this open cover. Suppose d (x, x̂) < δ .
Then both x, x̂ are in B(x,δ ) and so both are in f−1

(
B
(

f (x̄) , ε

2

))
. Hence

ρ ( f (x) , f (x̄))<
ε

2
, ρ ( f (x̂) , f (x̄))<

ε

2
.

Now consider the triangle inequality.

9. Let X be a vector space. A Hamel basis is a subset of X ,Λ such that every vector of
X can be written as a finite linear combination of vectors of Λ and the vectors of Λ

are linearly independent in the sense that if {x1, · · · ,xn} ⊆ Λ and ∑
n
k=1 ckxk = 0 then

each ck = 0. Using the Hausdorff maximal theorem, show that every non-zero vector
space has a Hamel basis. Hint: Let x1 ̸= 0. Let F denote the collection of subsets of
X , Λ containing x1 with the property that the vectors of Λ are linearly independent.
Partially order F by set inclusion and consider the union of a maximal chain.

10. Suppose X is a nonzero real or complex normed linear space and let

V = span(w1, ...,wm)

where {w1, ...,wm} is a linearly independent set of vectors of X . Show that V is a
closed subspace of X with V ⊊ X . First explain why Theorem 4.2.11 implies any
finite dimensional subspace of X can be written this way. Hint: You might want to
use something like Lemma 4.4.7 to show this.

11. Suppose X is a normed linear space and its dimension is either infinite or greater than
m where V ≡ span(w1, ...,wm) for {w1, ...,wm} an independent set of vectors of X .
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Show X \V is a dense open subset of X which is equivalent to V containing no ball
B(v,r) ,{w : ∥w− v∥< r}. Hint: If B(x,r) is contained in V, then show, that since V
is a subspace, B(0,r) is contained in V. Then show this implies X ⊆ V which is not
the case.

12. Show that if (X ,d) is a metric space and H,K are disjoint closed sets, there are
open sets UH ,UK such that H ⊆ UH ,K ⊆ UK and UH ∩UK = /0. Hint: Let k ∈
K. Explain why dist(k,H) ≡ inf{∥k−h∥ : h ∈ H} ≡ 2δ k > 0. Now consider UK ≡
∪k∈KB(k,δ k). Do something similar for h ∈ H and consider UH ≡ ∪k∈HB(h,δ h).

13. If, in a metric space, B(p,δ ) is a ball, show that

B(p,δ )⊆ D(p,δ )≡ {x : ∥x− p∥ ≤ δ}

Now suppose (X ,d) is a complete metric space and Un,n∈N is a dense open set in X .
Also let W be any nonempty open set. Show there exists a ball B1 ≡ B(p1,r1) having
radius smaller than 2−1 such that B1⊆U1∩W1. Next show there exists B2≡B(p2,r2)
such that B2 ⊆ B1 ∩U2 ∩W with the radius of B2 less than 2−2. Continue this way.
Explain why {pn}∞

n=1 is a Cauchy sequence converging to some p ∈W ∩ (∪∞
n=1Un).

This is the very important Baire theorem which says that in a complete metric space,
the intersection of dense open sets is dense.

14. Suppose you have a complete normed linear space, (X ,∥·∥). Use the above problems
leading to the Baire theorem in 13 to show that if B is a Hamel basis for for X , then
B cannot be countable. Hint: If B = {vi}∞

i=1 , consider Vn ≡ span(v1, ...,vn) . Then
use a problem listed above to argue that VC

n is a dense open set. Now apply Problem
13. This shows why the idea of a Hamel basis often fails to be very useful whereas,
in finite dimensional settings, it is just what is needed.

15. In any complete normed linear space which is infinite dimensional, show the unit
ball is not compact. Do this by showing the existence of a sequence which cannot
have a convergent subsequence. Hint: Pick ∥x1∥ = 1. Suppose x1, ...,xn have been
chosen, each ∥xk∥= 1. Then there is x /∈ span(x1, ...,xn)≡Vn. Now consider v such
that ∥x− v∥ ≤ 3

2 dist(x,Vn) . Then argue that for k ≤ n,

∥∥∥∥ x− v
∥x− v∥

− xk

∥∥∥∥=
∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x−

 ∈Vn︷ ︸︸ ︷
v+∥x− v∥xk


∥x− v∥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≥ dist(x,Vn)

(3/2)dist(x,Vn)
=

2
3

16. Let X be a complete inner product space. Let F denote subsets β ⊆ X such that
whenever x,y ∈ X ,(x,y) = 0 if x ̸= y and (x,x) = 1 if x = y. Thus these β are or-
thonormal sets. Show there exists a maximal orthonormal set. If X is separable, show
that this maximal orthonormal set is countable. Hint: Use the Hausdorff maximal
theorem. The next few problems involve linear algebra.

17. Let X be a real inner product space and let {v1, ...,vn} be vectors in X . Let G be the
n×n matrix Gi j ≡ (vi,v j) . Show that G−1 exists if and only if {v1, ...,vn} is linearly
independent. G is called the Grammian or the metric tensor.
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18. ↑Let X be as above, a real inner product space, and let V ≡ span(v1, ...,vn) . Let u∈X
and z ∈ V . Show that |u− z| = inf{|u− v| : v ∈V} if and only if (u− z,vi) = 0 for
all vi. Note that the vi might not be linearly independent. Also show that |u− z|2 =
|u|2− (z,u) .

19. ↑ Let G be the matrix of Problem 17 where {v1, ...,vn} is linearly independent and
V ≡ span(v1, ...,vn) ⊆ X , an inner product space. Let x ≡ ∑i xivi,y ≡ ∑i yivi be two
vectors of V. Show that (x,y) = ∑i, j xiGi jx j. Show that z ≡ ∑i zivi,z is closest to
u ∈ X if and only if for all i = 1, ...,n,(u,vi) = ∑ j Gi jz j. This gives a system of
linear equations which must be satisfied by the zi in order that z just given is the best
approximation to u. Next show that there exists such a solution thanks to Problem
17 which says that the matrix G is invertible, and if G−1 has i jth component Gi j, one
finds that ∑ j Gi j (u,v j) = zi.

20. ↑ In the situation of the above problems, suppose A is an m× n matrix. Use Prob-
lem 18 to show that for y ∈ Rm, there always exists a solution x to the system of
equations ATy = AT Ax. Explain how this is in a sense the best you can do to solve
y= Ax even though this last system of equations might not have a solution. Here AT

is the transpose of the matrix A. The equations ATy = AT Ax are called the normal
equations for the least squares problem. Hint: Verify that

(
ATy,x

)
= (y,Ax). Let

the subspace V be A(Rn), the vectors spanning it being {Ae1, ...,Aen}. From the
above problem, there exists Ax in V which is closest to y. Now use the character-
ization of this vector (y−Ax,Az) = 0 for all z ∈ Rn,Az being a generic vector in
A(Rn).

21. ↑As an example of an inner product space, consider C ([0,1]) with the inner product∫ 1
0 f (x)g(x)dx where this is the ordinary integral from calculus. Abusing notation,

let {xp1 , ...,xpn} with − 1
2 < p1 < · · ·< pn be functions, (vectors) in C ([0,1]) . Verify

that these vectors are linearly independent. Hint: You might want to use the Cauchy
identity, Theorem 1.9.28.

22. ↑As above, if {v1, ...,vn} is linearly independent, the Grammian is G = G(v1, ...,vn),
Gi j ≡ (vi,v j) , then if u /∈ span(v1, ...,vn) ≡ V you could consider G(v1, ...,vn,u) .
Then if d ≡ min{|u− v| : v ∈ span(v1, ...,vn)} , show that d2 = detG(v1,...,vn,u)

detG(v1,...,vn)
. Jus-

tify the following steps. Letting z be the closest point of V to u, from the above,(
u−∑

n
i=1 zivi,vp

)
= 0 for each vp and so

(u,vp) =
n

∑
i=1

(vp,vi)zi (∗)

Also, since (u− z,v) = 0 for all v ∈V, |u|2 = |u− z+ z|2 = |u− z|2 + |z|2 so

|u|2 =

∣∣∣∣∣u− n

∑
i=1

zivi

∣∣∣∣∣
2

+

∣∣∣∣∣ n

∑
i=1

zivi

∣∣∣∣∣
2

= d2 +

∣∣∣∣∣ n

∑
i=1

zivi

∣∣∣∣∣
2

= d2 +∑
j

=(u,v j)︷ ︸︸ ︷
∑

i
(v j,vi)ziz j = d2 +∑

j
(u,v j)z j



124 CHAPTER 4. LINEAR SPACES

= d2 +yTz, y ≡ ((u,v1) , · · · ,(u,vn))
T , z ≡

(
z1, · · · ,zn)T

From ∗, Gz= y,

(
G(v1, ...,vn) 0

yT 1

)(
z
d2

)
=

(
y

∥u∥2

)
. Now use Cramer’s

rule to solve for d2 and get

d2 =

det
(

G(v1, ...,vn) y

yT |u|2
)

det(G(v1, ...,vn))
≡ detG(v1, ...,vn,u)

detG(v1, ...,vn)

23. In the situation of Problem 21, let fk (x)≡ xk and let V ≡ span( fp1 , ..., fpn). give an
estimate for the distance d between fm and V for m a nonnegative integer and as in
the above problem − 1

2 < p1 < · · · < pn. Use Theorem 1.9.28 in the appendix and
the above problem with vi ≡ fpi and vn+1 ≡ fm. Justify the following manipulations.

The numerator in the above formula for the distance is of the form ∏ j<i≤n+1(pi−p j)
2

∏i, j≤n+1(pi+p j+1)

=
∏ j<i≤n (pi− p j)

2
∏ j≤n (m− p j)

2

∏i, j≤n (pi + p j +1)∏
n
i=1 (pi +m+1)∏

n
j=1 (p j +m+1)(2m+1)

While G( fp1 , ..., fpn) =
∏ j<i≤n(pi−p j)

2

∏i, j≤n(pi+p j+1)
. Thus d =

∏ j≤n|m−p j|
∏

n
i=1(pi+m+1)(

√
2m+1)

.

24. Suppose ∑
n
k=0 aktk = 0 for each t ∈ (−δ ,δ ) where ak ∈ X , a linear space. Show that

each ak = 0.

25. Suppose A ⊆ Rp is covered by a finite collection of Balls F . Show that then there
exists a disjoint collection of these balls, {Bi}m

i=1, such that A⊆∪m
i=1B̂i where B̂i has

the same center as Bi but 3 times the radius. Hint: Since the collection of balls is
finite, they can be arranged in order of decreasing radius. Mimic the argument for
Vitali covering theorem.



Chapter 5

Functions on Normed Linear Spaces
This chapter is about the general notion of functions defined on normed linear spaces even
if the linear space is not finite dimensional.

5.1 L (V,W ) as a Vector Space
In what follows, V,W will be vector spaces.

Definition 5.1.1 The term L (V,W ) signifies the set of linear maps from V to W.
This means that for v,u∈V and α,β scalars from F,L(αu+βv) = αL(u)+βL(v) . Given
L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by L+M according to the
rule1 (L+M)v ≡ Lv+Mv. For α a scalar and L ∈L (V,W ) , define αL ∈L (V,W ) by
αL(v)≡ α (Lv) .

Note that if you have V = Rn and W = Rm, an example of something in L (V,W ) is
given by Tv ≡ Av where A is a real m×n matrix.

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

Lemma 5.1.2 Let V and W be vector spaces and suppose {v1, · · · ,vn} is a basis for V.
Then if L : V →W is given by Lvk = wk ∈W and L(∑n

k=1 akvk)≡ ∑
n
k=1 akLvk = ∑

n
k=1 akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · ,vn} is a basis, there is exactly
one way to write a given vector of V as a linear combination. Next, observe that L is
obviously linear from the definition. If L,M are equal on the basis, then if ∑

n
k=1 akvk is

an arbitrary vector of V,L(∑n
k=1 akvk) = ∑

n
k=1 akLvk = ∑

n
k=1 akMvk = M (∑n

k=1 akvk) and so
L = M because they give the same result for every vector in V . ■

The message is that when you define a linear transformation, it suffices to tell what it
does to a basis.

Theorem 5.1.3 Let V and W be finite dimensional linear spaces of dimension n and
m respectively Then dim(L (V,W )) = mn.

Proof: Let two sets of bases be {v1, · · · ,vn} and {w1, · · · ,wm} for V and W respectively.
Using Lemma 5.1.2, let wiv j ∈L (V,W ) be the linear transformation defined on the basis,
{v1, · · · ,vn}, by wivk (v j) ≡ wiδ jk where δ ik = 1 if i = k and 0 if i ̸= k. I will show that
L∈L (V,W ) is a linear combination of these special linear transformations called dyadics.

Then let L ∈L (V,W ). Since {w1, · · · ,wm} is a basis, there exist constants, d jk such
that Lvr = ∑

m
j=1 d jrw j Now consider the following sum of dyadics. ∑

m
j=1 ∑

n
i=1 d jiw jvi. Ap-

ply this to vr. This yields ∑
m
j=1 ∑

n
i=1 d jiw jvi (vr) = ∑

m
j=1 ∑

n
i=1 d jiw jδ ir = ∑

m
j=1 d jrwi = Lvr.

Therefore, L = ∑
m
j=1 ∑

n
i=1 d jiw jvi showing the span of the dyadics is all of L (V,W ) .

1Note that this is the standard way of defining the sum of two functions.
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Now consider whether these dyadics form a linearly independent set. Suppose that
∑i,k dikwivk = 0. Are all the scalars dik equal to 0? 0 = ∑i,k dikwivk (vl) = ∑

m
i=1 dilwi so,

since {w1, · · · ,wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary, this shows
dil = 0 for all i and l. Thus these linear transformations form a basis and this shows that
the dimension of L (V,W ) is mn as claimed because there are m choices for the wi and n
choices for the v j. ■

5.2 The Norm of a Linear Map, Operator Norm
Not surprisingly all of the above holds for a finite dimensional normed linear space. First
here is an easy lemma which follows right away from Theorem 3.6.2, the theorem about
equivalent formulations of continuity.

Lemma 5.2.1 Let (V,∥·∥V ) and (W,∥·∥W ) be two normed linear spaces. Then a linear
map f : V →W is continuous if and only if it takes bounded sets to bounded sets. ( f is
bounded) If V is finite dimensional, then f must be continuous.

Proof: =⇒ Consider f (B(0,1)) . If this is not bounded, then there exists ∥vm∥V ≤ 1

but ∥ f (vm)∥W ≥ m. Then it follows that
∥∥∥ f
(

vm

m

)∥∥∥
W
≥ 1 which is impossible for all m

since
∥∥∥ vm

m

∥∥∥≤ 1
m and so continuity requires that limm→∞ f

(
vm

m

)
= 0 (Theorem 3.6.2). Thus

there exists M such that ∥ f (v)∥ ≤M whenever v ∈ B(0,1). In general, let S be a bounded
set. Then S ⊆ B(0,r) for large enough r. Hence, for v ∈ B, it follows that v/2r ∈ B(0,1) .
It follows that ∥ f (v/2r)∥W ≤ M and so ∥ f (v)∥W ≤ 2rM. Thus f takes bounded sets to
bounded sets.
⇐= Suppose f is bounded and not continuous. Then by Theorem 3.6.2 again, there

is a sequence vn → v but f (vn) fails to converge to f (v). Then there exists ε > 0 and a
subsequence, still denoted as vn such that ∥ f (vn)− f (v)∥= ∥ f (vn− v)∥ ≥ ε . Then∥∥∥∥ f

(
vn− v
∥vn− v∥

)∥∥∥∥≥ ε
1

∥vn− v∥
The right side is unbounded, but the left is bounded, a contradiction.

Consider the last claim about continuity. Let {v1, · · · ,vn} be a basis for V . By Lemma
4.4.7, if ym → 0, in V for ym = ∑

n
k=1 ym

k vk,then it follows that limm→∞ ym
k = 0 and conse-

quently, f (ym)→ f (0) = 0. In general, if ym→ y, then (ym− y)→ 0 and so f (ym− y) =
f (ym)− f (y)→ 0. That is, f (ym)→ f (y). ■

Definition 5.2.2 For f : (V,∥·∥V )→ (W,∥·∥W ) continuous, it was just shown that
there exists M such that ∥ f (v)∥ ≤ M, v ∈ B(0,1) . It follows that, since v

2∥v∥ ∈ B(0,1) ,
then ∥ f (v)∥ ≤ 2M ∥v∥. Therefore, letting ∥ f∥ ≡ sup∥v∥≤1 ∥ f (v)∥ it follows that for all
v∈V, ∥ f (v)∥ ≤ ∥ f∥∥v∥ .Thus a linear map is bounded if and only if ∥ f∥< ∞ if and only if
f is continuous. ‘The number ∥ f∥ is called the operator norm. For X a real normed linear
space, X ′ denotes the space L (X ,R) .

You can show that for L (V,W ) the space of bounded linear maps from V to W,
L (V,W ) becomes a normed linear space with this definition. This is true whether V,W are
finite or infinite dimensional. You can also show that if W is complete then so is L (V,W ).
This is left as an exercise. Also, when the vector spaces are finite dimensional, Lemma
5.2.1 shows that any linear function f is automatically bounded, hence continuous, hence
∥ f∥ exists. Here is an interesting observation about the operator norm.
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Lemma 5.2.3 Let f ∈L (V,W ) and let h ∈L (W,Z) where X ,Y,Z are normed vector
spaces. Then ∥h◦ f∥ ≤ ∥h∥∥ f∥ .

Proof: This follows right away from the definition. If ∥v∥ ≤ 1, then ∥ f (v)∥ ≤ ∥ f∥ .
This explains the first inequality in the following.

sup
∥v∥≤1

∥h◦ f (v)∥ ≤ sup
∥w∥≤∥ f∥

∥h(w)∥= sup
∥w∥≤∥ f∥

∥∥∥∥h
(

w
∥ f∥

)∥∥∥∥∥ f∥ ≤ ∥h∥∥ f∥ . ■

Theorem 5.2.4 Let (V,∥·∥) be a normed linear space with basis {v1, · · · ,vn} and
field of scalars F. Let f : (Fn,∥·∥)→ (V,∥·∥V ) be any linear map which is one to one and
onto. Then both f and f−1 are continuous. Also the compact sets of (V,∥·∥V ) are exactly
those which are closed and bounded.

Proof: Define another norm ∥·∥1 on Fn as follows. ∥x∥1 ≡ ∥ f (x)∥V . Since f is one
to one and onto and linear, this is indeed a norm. The details are left as an exercise. Then
from the theorem on the equivalence of norms, there are positive constants δ ,∆ such that
δ ∥x∥ ≤ ∥ f (x)∥V ≤ ∆∥x∥ . Since f is one to one and onto, this implies δ

∥∥ f−1 (v)
∥∥ ≤

∥v∥V ≤ ∆
∥∥ f−1 (v)

∥∥ . The first of these above inequalities implies f is continuous. The
second says

∥∥ f−1 (v)
∥∥≤ 1

δ
∥v∥V and so f−1 is continuous. Thus, from the above theorems,

both f and f−1 map closed sets to closed sets, compact sets to compact sets, open sets to
open sets and bounded sets to bounded sets.

Now let K ⊆ V be closed and bounded. Then from the above observations, f−1 (K) is
also closed and bounded. Therefore, it is compact. Now f

(
f−1 (K)

)
= K must be compact

because the continuous image of a compact set is compact, Theorem 3.7.1. Conversely,
if K ⊆ V is compact, then by the theorem just mentioned, f−1 (K) is compact and so it is
closed and bounded. Hence f

(
f−1 (K)

)
= K is also closed and bounded. ■

This is a remarkable theorem. It says that an algebraic isomorphism is also a home-
omorphism which is what it means to say that the map takes open sets to open sets and
the inverse does the same. In other words, there really isn’t any algebraic or topological
distinction between a finite dimensional normed vector space of dimension n and Fn. Of
course when one considers geometry, this is not so.

Here is another interesting theorem about coordinate maps. It follows right away from
earlier theorems.

Theorem 5.2.5 Let f : (V,∥·∥V )→ (W,∥·∥W ) be a continuous function where here
(V,∥·∥V ) is a normed linear space and (W,∥·∥W ) is a finite dimensional normed linear
space with basis {w1, · · · ,wn} . Thus f (v) ≡ ∑

n
k=1 fk (v)wk. Then f is continuous if and

only if each fk is a continuous F valued map.

Proof: =⇒ First, why is fk linear? This follows from

n

∑
k=1

(α fk (u)+β fk (v))wk = α

n

∑
k=1

fk (u)wk +β

n

∑
k=1

fk (v)wk

= α f (u)+β f (v) = f (αu+βv)≡
n

∑
k=1

fk (αu+βv)wk

Why is the coordinate function fk continuous? From Lemma 5.2.1, it suffices to verify that
fk is bounded. If this is not so, there exists vm,∥vm∥V ≤ 1 but | fk (vm)|W ≥ m. It follows
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that
∣∣ fk
( vm

m

)∣∣ ≥ 1. Since f is continuous, and vm/m→ 0, it follows that f
( vm

m

)
→ 0 in V.

However, by Lemma 4.4.7, fk
( vm

m

)
→ 0, a contradiction.

⇐= If each coordinate function is continuous, then

∥ f (v)− f (v̂)∥W =

∥∥∥∥∥ n

∑
k=1

fk (v)wk−
n

∑
k=1

fk (v̂)wk

∥∥∥∥∥≤ n

∑
k=1
| fk (v)− fk (v̂)|∥wk∥W

Since each fk is continuous, this shows that f is also. ■

5.3 Comparisons
Here are some useful lemmas about comparisons. Here |·| will be the usual norm but one
could generalize.

Lemma 5.3.1 Suppose S,T are linear, defined on a finite dimensional normed linear
space, S−1 exists, and let δ ∈ (0,1). Then whenever ∥S−T∥ is small enough, it follows
that

|Tv|
|Sv|

∈ (1−δ ,1+δ ) (5.1)

for all v ̸= 0. Similarly if T−1 exists and ∥S−T∥ is small enough,

|Tv|
|Sv|

∈ (1−δ ,1+δ )

Proof: Say S−1 exists. Then v → |Sv| is a norm. Then by equivalence of norms,
Theorem 4.4.9, there exists η > 0 such that for all v, |Sv| ≥ η |v| . Say ∥T −S∥< r < δη

|Tv|
|Sv|

=
|Sv− (S−T )v|

|Sv|
≥ |Sv|−∥T −S∥|v|

|Sv|
≥ |Sv|−δη |v|

|Sv|
≥ |Sv|−δ |Sv|

|Sv|
= 1−δ

|Tv|
|Sv|

=
|Sv+(T −S)v|

|Sv|
≤ |Sv|+∥T −S∥|v|

|Sv|
≤ |Sv|+δη |v|

|Sv|
≤ |Sv|+δ |Sv|

|Sv|
= 1+δ

Next suppose that T−1 exists. Then, letting δ̂ be small enough,
(

1− δ̂ ,1+ δ̂

)
⊆(

1
1+δ

, 1
1−δ

)
. From what was just shown, if ∥S−T∥ is small enough,

|Sv|
|Tv|

∈
(

1− δ̂ ,1+ δ̂

)
⊆
(

1
1+δ

,
1

1−δ

)
so
|Tv|
|Sv|

∈ (1−δ ,1+δ ) . ■

In short, the above lemma says that if one of S,T is invertible and the other is close to it,
then it is also invertible and the quotient of |Sv| and |Tv| is close to 1. Then the following
lemma is fairly obvious.

Lemma 5.3.2 Let S,T be n×n matrices which are invertible. Then

o(Tv) = o(Sv) = o(v)

and if L is a continuous linear transformation such that for a < b,

sup
v ̸=0

|Lv|
|Sv|

< b, inf
v ̸=0

|Lv|
|Sv|

> a

If ∥S−T∥ is small enough, it follows that the same inequalities hold with S replaced with
T . Here ∥·∥ denotes the operator norm.
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Proof: Consider the first claim. For

|o(Tv)|
|v|

=
|o(Tv)|
|Tv|

|Tv|
|v|
≤ |o(Tv)||Tv|

∥T∥

Thus o(Tv) = o(v) . It is similar for T replaced with S.
Consider the second claim. Pick δ sufficiently small. Then by Lemma 17.2.1

sup
v ̸=0

|Lv|
|Tv|

= sup
v ̸=0

|Lv|
|Sv|

|Sv|
|Tv|

≤ (1+δ ) sup
v ̸=0

|Lv|
|Sv|

< b

if δ is small enough. The other inequality is shown exactly similar. ■

5.4 Continuous Functions in Normed Linear Space
Of course not all functions are linear. Continuous functions have already been discussed
in general metric space, but now there are other considerations to consider due to the al-
gebra available in a normed linear space. The following theorem includes these kinds of
considerations for functions having values in a normed linear space.

Theorem 5.4.1 Let f ,g be continuous functions defined on D, a metric space. Also
let α,β be scalars. Then the following hold.

1. α f +βg is continuous.

2. If (W,∥·∥W ) is an inner product space, then ( f ,g) defined as

( f ,g)(v)≡ ( f (v) ,g(v)) , then ( f ,g) is continuous.

3. If f has values in F and g has values in (W,∥·∥W ) , then f g is continuous.

Proof: Say vn→ v. Then

∥(α f +βg)(vn)− (α f +βg)(v)∥ ≤ |α|∥ f (vn)− f (v)∥+ |β |∥g(vn)−g(v)∥

and the right side converges to 0 as n→ ∞ so this shows 1.
This follows from an easy computation. From the Cauchy Schwarz inequality,

|( f ,g)(v)− ( f ,g)(v̂)| ≤ |( f (v) ,g(v))− ( f (v) ,g(v̂))|+ |( f (v) ,g(v̂))− ( f (v̂) ,g(v̂))|

≤ ∥g(v)−g(v̂)∥∥ f (v)∥+∥ f (v)− f (v̂)∥∥g(v̂)∥

Now since g is continuous at v and so ∥g(v)−g(v̂)∥< 1 provided d (v, v̂) is small enough.
Thus ∥g(v̂)∥ ≤ ∥g(v)∥+1. Hence if d (v, v̂) is small enough,

|( f ,g)(v)− ( f ,g)(v̂)| ≤ (∥g(v)∥+1)∥ f (v)− f (v̂)∥+∥ f (v)∥∥g(v)−g(v̂)∥

Thus, by continuity of f ,g at v, if d (v, v̂) is sufficiently small, the right side is less than ε

and so f ·g is continuous at v. This shows 2. The proof of 3. is just like this. ■
Of course there are other things like cross product and determinant and so forth which

are defined in terms of the component functions of f . Then these things will be continuous
by an application of Theorem 5.2.5.
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5.5 Polynomials
For functions of one variable, the special kind of functions known as a polynomial has a
corresponding version when one considers a function of many variables. This is found in
the next definition.

Definition 5.5.1 Let α be an n dimensional multi-index. The meaning of this term is
thatα= (α1, · · · ,αn) where each α i is a positive integer or zero. Also, let |α| ≡∑

n
i=1 |α i| .

Then xα means xα ≡ xα1
1 xα2

2 · · ·x
αn
3 where each x j ∈ F. An n dimensional polynomial of

degree m is a function of the form p(x) = ∑|α|≤m dαx
α. where the dα are complex or real

numbers, more generally in some normed linear space X. Rational functions are defined as
the quotient of two real or complex valued polynomials. Thus these functions are defined
on Fn.

For example, f (x) = x1x2
2 + 7x4

3x1 is a polynomial of degree 5 and x1x2
2+7x4

3x1+x3
2

4x3
1x2

2+7x2
3x1−x3

2
is a

rational function.
Note that in the case of a rational function, the domain of the function might not be all

of Fn. For example, if f (x) = x1x2
2+7x4

3x1+x3
2

x2
2+3x2

1−4
,the domain of f would be all complex numbers

such that x2
2 +3x2

1 ̸= 4.
By Theorem 3.6.2 all polynomials are continuous. To see this, note that the function,

πk (x)≡ xk is a continuous function because of the inequality

|πk (x)−πk (y)|= |xk− yk| ≤ |x−y| .

Polynomials are simple sums of scalars times products of these functions. Similarly, by
this theorem, rational functions, quotients of polynomials, are continuous at points where
the denominator is non zero. More generally, if V is a normed vector space, consider a
V valued function of the form f (x) ≡ ∑|α|≤mdαx

α where dα ∈ V , sort of a V valued
polynomial. Then such a function is continuous by application of Theorem 3.6.2 and the
above observation about the continuity of the functions πk.

Thus there are lots of examples of continuous functions. However, it is even better than
the above discussion indicates. As in the case of a function of one variable, an arbitrary
continuous function can typically be approximated uniformly by a polynomial. This is the
n dimensional version of the Weierstrass approximation theorem.

5.6 Weierstrass Approximation Theorem
An arbitrary continuous function defined on an interval can be approximated uniformly by
a polynomial, there exists a similar theorem which is just a generalization of this which will
hold for continuous functions defined on a box or more generally a closed and bounded set.
However, we will settle for the case of a box first. The proof is based on the following
lemma.

Lemma 5.6.1 The following estimate holds for x ∈ [0,1] and m≥ 2.

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m
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Proof: First of all, from the binomial theorem,
m

∑
k=0

(
m
k

)(
et(k−mx)

)
xk (1− x)m−k = e−tmx

m

∑
k=0

(
m
k

)(
etk
)

xk (1− x)m−k

= e−tmx (1− x+ xet)m
= e−tmxg(t)m , g(0) = 1,g′ (0) = g′′ (0) = x

Take a partial derivative with respect to t twice.

m

∑
k=0

(
m
k

)
(k−mx)2 et(k−mx)xk (1− x)m−k

= (mx)2 e−tmxg(t)m +2(−mx)e−tmxmg(t)m−1 g′ (t)

+e−tmx
[
m(m−1)g(t)m−2 g′ (t)2 +mg(t)m−1 g′′ (t)

]
Now let t = 0 and note that the right side is m(x− x2)≤ m/4 for x ∈ [0,1] . Thus

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k = mx−mx2 ≤ m/4 ■

With this preparation, here is the first version of the Weierstrass approximation theorem.
I will allow f to have values in a complete, real or complex normed linear space. Thus,
f ∈C ([0,1] ;X) where X is a Banach space, Definition 4.3.7. Thus this is a function which
is continuous with values in X as discussed earlier with metric spaces.

Theorem 5.6.2 Let f ∈C ([0,1] ;X) and let the norm on X be denoted by ∥·∥ .

pm (x)≡
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
k
m

)
=

m

∑
k=0

qk (x) f
(

k
m

)
Then these polynomials having coefficients in X converge uniformly to f on [0,1]. Also
q0 (0) = 1,qk (0) = 0 for k ̸= 0, and qm (1) = 1 while qk (1) = 0 for k ̸= m.

Proof: Let ∥ f∥
∞

denote the largest value of ∥ f (x)∥. By uniform continuity of f ,
there exists a δ > 0 such that if |x− x′| < δ , then ∥ f (x)− f (x′)∥ < ε/2. By the binomial
theorem,

∥pm (x)− f (x)∥ ≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥
≤ ∑
| k

m−x|<δ

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥+2∥ f∥
∞ ∑
| k

m−x|≥δ

(
m
k

)
xk (1− x)m−k

Therefore,

≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k ε

2
+2∥ f∥

∞ ∑
(k−mx)2≥m2δ

2

(
m
k

)
xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1

m2δ
2

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ ε

2
+2∥ f∥

∞

1
4

m
1

δ
2m2

< ε

provided m is large enough. Thus ∥pm− f∥
∞
< ε when m is large enough. ■

Note that we do not need to have X be complete in order for this to hold. It would have
sufficed to have simply let X be a normed linear space.
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Corollary 5.6.3 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The mth term of this
sequence is ∑

m
k=0 qk (y) f

(
l
( k

m

))
where l : [0,1]→ [a,b] be one to one, linear and onto and

q0 (a) = 1 and if k ̸= 0,qk (a) = 0 and qm (b) = 1 and if k ̸= m, then qk (b) = 0.

Proof: Let l : [0,1]→ [a,b] be one to one, linear and onto. Then f ◦ l is continuous on
[0,1] and so if ε > 0 is given, if m large enough, then for all x ∈ [0,1] ,∥∥∥∥∥ m

∑
k=0

q̂k (x) f
(

l
(

k
m

))
− f ◦ l (x)

∥∥∥∥∥< ε

where q̂0 (0) = 1 and q̂k (0) = 0 for k ̸= 0, q̂m (1) = 1, q̂k (1) = 0 if k ̸= m. Therefore, for all
y ∈ [a,b] , ∥∥∥∥∥ m

∑
k=0

q̂k
(
l−1 (y)

)
f
(

l
(

k
m

))
− f (y)

∥∥∥∥∥< ε

Let qk (y)≡ q̂k
(
l−1 (y)

)
. ■

As another corollary, here is the version which will be used in Stone’s generalization
later.

Corollary 5.6.4 Let f be a continuous function defined on [−M,M] with f (0) = 0.
Then there is a sequence of polynomials {pm}, pm (0) = 0 and

lim
m→∞
∥pm− f∥

∞
= 0

Proof: From Corollary 5.6.3 there exists a sequence of polynomials {p̂m} such that
∥p̂m− f∥

∞
→ 0. Simply consider pm = p̂m− p̂m (0). ■

5.7 Functions of Many Variables
First note that if h : K×H→R is a real valued continuous function where K,H are compact
sets in metric spaces,

max
x∈K

h(x,y)≥ h(x,y) , so max
y∈H

max
x∈K

h(x,y)≥ h(x,y)

which implies maxy∈H maxx∈K h(x,y)≥max(x,y)∈K×H h(x,y) . The other inequality is also
obtained.

Let f ∈C (Rp;X) where Rp = [0,1]p . Then let x̂p ≡ (x1, ...,xp−1) . By Theorem 5.6.2,
if n is large enough,

max
xp∈[0,1]

∥∥∥∥∥ n

∑
k=0
f

(
·, k

n

)(
n
k

)
xk

p (1− xp)
n−k−f (·,xp)

∥∥∥∥∥
C([0,1]p−1;X)

<
ε

2

Now f
(
·, k

n

)
∈C (Rp−1;X) and so by induction, there is a polynomial pk (x̂p) such that

max
x̂p∈Rp−1

∥∥∥∥pk (x̂p)−
(

n
k

)
f

(
x̂p,

k
n

)∥∥∥∥
X
<

ε

(n+1)2
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Thus, letting p(x)≡ ∑
n
k=0pk (x̂p)xk

p (1− xp)
n−k ,

∥p−f∥C(Rp;X) ≤ max
xp∈[0,1]

max
x̂p∈Rp−1

∥∥p(x̂p,xp)−f (x̂p,xp)
∥∥

X < ε

where p is a polynomial with coefficients in X .
In general, if Rp ≡∏

p
k=1 [ak,bk] , note that there is a linear function lk : [0,1]→ [ak,bk]

which is one to one and onto. Thus l (x)≡ (l1 (x1) , ..., lp (xp)) is a one to one and onto map
from [0,1]p to Rp and the above result can be applied to f ◦ l to obtain a polynomial p with
∥p−f ◦ l∥C([0,1]p;X) < ε. Thus

∥∥p◦ l−1−f
∥∥

C(Rp;X) < ε and p◦ l−1 is a polynomial. This
proves the following theorem.

Theorem 5.7.1 Let f be a function in C (R;X) for X a normed linear space where
R ≡∏

p
k=1 [ak,bk] . Then for any ε > 0 there exists a polynomial p having coefficients in X

such that ∥p−f∥C(R;X) < ε .

These Bernstein polynomials are very remarkable approximations. It turns out that if f
is C1 ([0,1] ;X) , then limn→∞ p′n (x)→ f ′ (x) uniformly on [0,1] . This all works for func-
tions of many variables as well, but here I will only show it for functions of one variable.

Lemma 5.7.2 Let f ∈ C1 ([0,1]) and let pm (x) ≡ ∑
m
k=0

(
m
k

)
xk (1− x)m−k f

( k
m

)
be

the mth Bernstein polynomial. Then in addition to ∥pm− f∥[0,1] → 0, it also follows that
∥p′m− f ′∥[0,1]→ 0.

Proof: From simple computations,

p′m (x) =
m

∑
k=1

(
m
k

)
kxk−1 (1− x)m−k f

(
k
m

)
−

m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)

=
m

∑
k=1

m(m−1)!
(m− k)!(k−1)!

xk−1 (1− x)m−k f
(

k
m

)
−

m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k+1
m

)
−

m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k
(

f
(

k+1
m

)
− f

(
k
m

))
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=
m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k

(
f
( k+1

m

)
− f

( k
m

)
1/m

)

By the mean value theorem,
f( k+1

m )− f( k
m )

1/m = f ′
(
xk,m
)
, xk,m ∈

( k
m ,

k+1
m

)
. Now the desired

result follows as before from the uniform continuity of f ′ on [0,1]. Let δ > 0 be such
that if |x− y| < δ , then | f ′ (x)− f ′ (y)| < ε and let m be so large that 1/m < δ/2. Then if∣∣x− k

m

∣∣< δ/2, it follows that
∣∣x− xk,m

∣∣< δ and so

∣∣ f ′ (x)− f ′
(
xk,m
)∣∣= ∣∣∣∣∣ f ′ (x)− f

( k+1
m

)
− f

( k
m

)
1/m

∣∣∣∣∣< ε.

Now as before, letting M ≥ | f ′ (x)| for all x,

∣∣p′m (x)− f ′ (x)
∣∣≤ m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k ∣∣ f ′ (xk,m

)
− f ′ (x)

∣∣

≤ ∑{
x:|x− k

m |< δ
2

}
(

m−1
k

)
xk (1− x)m−1−k

ε

+M
m−1

∑
k=0

(
m−1

k

)
4(k−mx)2

m2δ
2 xk (1− x)m−1−k

≤ ε +4M
1
4

m
1

m2δ
2 = ε +M

1

mδ
2 < 2ε

whenever m is large enough. Thus this proves uniform convergence. ■
There is a more general version of the Weierstrass theorem which is easy to get. It

depends on the Tietze extension theorem, a wonderful little result which is interesting for
its own sake.

5.8 A Generalization
This is an interesting theorem which holds in arbitrary normal topological spaces. In par-
ticular it holds in metric space and this is the context in which it will be discussed. First,
review Lemma 3.12.1.

Lemma 5.8.1 Let H,K be two nonempty disjoint closed subsets of X . Then there exists
a continuous function, g : X → [−1/3,1/3] such that g(H) = −1/3, g(K) = 1/3,g(X)⊆
[−1/3,1/3] .

Proof: Let f (x) ≡ dist(x,H)
dist(x,H)+dist(x,K) . The denominator is never equal to zero because

if dist(x,H) = 0, then x ∈ H because H is closed. (To see this, pick hk ∈ B(x,1/k)∩H.
Then hk → x and since H is closed, x ∈ H.) Similarly, if dist(x,K) = 0, then x ∈ K and
so the denominator is never zero as claimed. Hence f is continuous and from its definition,
f = 0 on H and f = 1 on K. Now let g(x) ≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired

properties. ■
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Definition 5.8.2 For f : M ⊆ X→R, let ∥ f∥M ≡ sup{| f (x)| : x ∈M} . This is just
notation. I am not claiming this is a norm.

Lemma 5.8.3 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function, g which is defined and continuous on all
of X such that ∥ f −g∥M ≤ 2

3 , g(X)⊆ [−1/3,1/3] . If X is a normed vector space,and f is
odd, meaning that M is symmetric (x ∈M if and only if −x ∈M) and f (−x) = − f (x) .
Then we can assume g is also odd.

Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 5.8.1 there exists g
such that g is a continuous function defined on all of X and g(H) = −1/3, g(K) = 1/3,
and g(X)⊆ [−1/3,1/3] . It follows ∥ f −g∥M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
If both H,K = /0, let g = 0.

When M is symmetric and f is odd, g(x)≡ 1
3

dist(x,H)−dist(x,K)
dist(x,H)+dist(x,K) . When x ∈H this gives

1
3
−dist(x,K)
dist(x,K) = − 1

3 . Then x ∈ K, this gives 1
3

dist(x,H)
dist(x,H) =

1
3 . Also g(H) = −1/3, f (H) ⊆

[−1,−1/3] so for x ∈ H, |g(x)− f (x)| ≤ 2
3 . It is similar for x ∈ K. If x is in neither H

nor K, then g(x) ∈ [−1/3,1/3] and so is f (x) . Thus ∥ f −g∥M ≤ 2
3 . Now by assumption,

since f is odd, H =−K. It is clear that g is odd because

g(−x) =
1
3

dist(−x,H)−dist(−x,K)

dist(−x,H)+dist(−x,K)
=

1
3

dist(−x,−K)−dist(−x,−H)

dist(−x,−K)+dist(−x,−H)

=
1
3

dist(x,K)−dist(x,H)

dist(x,K)+dist(x,H)
=−g(x) . ■

Lemma 5.8.4 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of X such that g = f on M and g has its values in [−1,1] . If X is a normed linear space
and f is odd, then we can also assume g is odd.

Proof: Using Lemma 5.8.3, let g1 be such that g1 (X)⊆ [−1/3,1/3] and ∥ f −g1∥M ≤
2
3 . Suppose g1, · · · ,gm have been chosen such that g j (X)⊆ [−1/3,1/3] and∥∥∥∥∥ f −

m

∑
i=1

(
2
3

)i−1

gi

∥∥∥∥∥
M

<

(
2
3

)m

. (5.2)

This has been done for m = 1. Then
∥∥∥( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)∥∥∥
M
≤ 1 and so

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)

can play the role of f in the first step of the proof. Therefore, there exists gm+1 defined and
continuous on all of X such that its values are in [−1/3,1/3] and∥∥∥∥∥

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∥∥∥∥∥
M

≤ 2
3
.
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Hence ∥∥∥∥∥
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−
(

2
3

)m

gm+1

∥∥∥∥∥
M

≤
(

2
3

)m+1

.

It follows there exists a sequence, {gi} such that each has its values in [−1/3,1/3] and for
every m 5.2 holds. Then let g(x)≡ ∑

∞
i=1
( 2

3

)i−1
gi (x) . It follows

|g(x)| ≤

∣∣∣∣∣ ∞

∑
i=1

(
2
3

)i−1

gi (x)

∣∣∣∣∣≤ m

∑
i=1

(
2
3

)i−1 1
3
≤ 1

and
∣∣∣( 2

3

)i−1
gi (x)

∣∣∣ ≤ ( 2
3

)i−1 1
3 so the Weierstrass M test applies and shows convergence

is uniform. Therefore g must be continuous by Theorem 3.9.3. The estimate 5.2 implies
f = g on M. The last claim follows because we can take each gi odd. ■

The following is the Tietze extension theorem.

Theorem 5.8.5 Let M be a closed nonempty subset of a metric space X and let
f : M→ [a,b] be continuous at every point of M. Then there exists a function g continuous
on all of X which coincides with f on M such that g(X)⊆ [a,b] . If [a,b] is centered on 0,
and if X is a normed linear space and f is odd, then we can obtain that g is also odd.

Proof: Let f1 (x) = 1+ 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

5.8.4 and so there exists g1 : X → [−1,1] such that g is continuous on X and equals f1 on
M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+ b. This works. The last claim follows from the same

arguments which gave Lemma 5.8.4 or the change of variables just given. ■

Corollary 5.8.6 Let M be a closed nonempty subset of a metric space X and let f : M→
[a,b] be continuous at every point of M. Also let ∥ f −g∥ ≤ ε. Then there exists continuous
f̂ extending f with f̂ (X) ⊆ [a,b] and ĝ extending g such that ĝ(X) ⊆ [a− ε,b+ ε]. Also∥∥ f̂ − ĝ

∥∥≤ ε.

Proof: Let f̂ be the extension of f from the above theorem. Now let F be the extension
of f −g with ∥F∥ ≤ ε . Then let ĝ = f̂ −F. Then for x ∈M, ĝ(x) = f (x)− ( f (x)−g(x)) =
g(x). Thus it extends g and clearly ĝ(X)⊆ [a− ε,b+ ε]. ■

With the Tietze extension theorem, here is a better version of the Weierstrass approxi-
mation theorem.

Theorem 5.8.7 Let K be a closed and bounded subset of Rp and let f : K→ R be
continuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

Proof: By the Tietze extension theorem, there exists an extension of f to a continuous
function g defined on all Rp such that g = f on K. Now since K is bounded, there exist
intervals, [ak,bk] such that K ⊆∏

p
k=1 [ak,bk] = R. Then by the Weierstrass approximation

theorem, Theorem 5.7.1 there exists a sequence of polynomials {pm} converging uniformly
to g on R. Therefore, this sequence of polynomials converges uniformly to g = f on K as
well. This proves the theorem. ■

By considering the real and imaginary parts of a function which has values in C one
can generalize the above theorem.
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Corollary 5.8.8 Let K be a closed and bounded subset of Rp and let f : K → F be
continuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

More generally, the function f could have values in Rp. There is no change in the
proof. You just use norm symbols rather than absolute values and nothing at all changes
in the theorem where the function is defined on a rectangle. Then you apply the Tietze
extension theorem to each component in the case the function has values in Rp.

5.9 An Approach to the Integral
With the Weierstrass approximation theorem, you can give a rigorous definition of the
Riemann integral without wading in to Riemann sums. This shows the integral can be
defined directly from very simple ideas. First is a short review of the derivative of a function
of one variable.

Definition 5.9.1 Let f : [a,b]→ R. Then f ′ (x) ≡ limx→0
f (x+h)− f (x)

h where h is
always such that x,x+h are both in the interval [a,b] so we include derivatives at the right
and left end points in this definition.

The most important theorem about derivatives of functions of one variable is the mean
value theorem.

Theorem 5.9.2 Let f : [a,b]→ R be continuous. Then if the maximum value of f
occurs at a point x∈ (a,b) , it follows that if f ′ (x) = 0. If f achieves a minimum at x∈ (a,b)
where f ′ (x) exists, it also follows that f ′ (x) = 0.

Proof: By Theorem 3.7.2, f achieves a maximum at some point x. If f ′ (x) exists, then

f ′ (x) = lim
h→0+

f (x+h)− f (x)
h

= lim
h→0−

f (x+h)− f (x)
h

However, the first limit is non-positive while the second is non-negative and so f ′ (x) = 0.
The situation is similar if the minimum occurs at x ∈ (a,b). ■

The Cauchy mean value theorem follows. The usual one is obtained by letting g(x) = x.

Theorem 5.9.3 Let f ,g be continuous on [a,b] and differentiable on (a,b) . Then
there exists x∈ (a,b) such that f ′ (x)(g(b)−g(a)) = g′ (x)( f (b)− f (a)). If g(x) = x, this
yields f (b)− f (a) = f ′ (x)(b−a) , also f (a)− f (b) = f ′ (x)(a−b).

Proof: Let h(x)≡ f (x)(g(b)−g(a))−g(x)( f (b)− f (a)) . Then

h(a) = h(b) = f (a)g(b)−g(a) f (b) .

If h is constant, then pick any x ∈ (a,b) and h′ (x) = 0. If h is not constant, then it has
either a maximum or a minimum on (a,b) and so if x is the point where either occurs, then
h′ (x) = 0 which proves the theorem. ■
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Recall that an antiderivative of a function f is just a function F such that F ′ = f .

You know how to find an antiderivative for a polynomial.
(

xn+1

n+1

)′
= xn so

∫
∑

n
k=1 akxk =

∑
n
k=1 ak

xk+1

k+1 +C. With this information and the Weierstrass theorem, it is easy to define
integrals of continuous functions with all the properties presented in elementary calculus
courses. It is an approach which does not depend on Riemann sums yet still gives the
fundamental theorem of calculus. Note that if F ′ (x) = 0 for x in an interval, then for x,y
in that interval, F (y)−F (x) = 0(y− x) so F is a constant. Thus, if F ′ = G′ on an open
interval, F,G continuous on the closed interval, it follows that F −G is a constant and so
F (b)−F (a) = G(b)−G(a).

Definition 5.9.4 For p(x) a polynomial on [a,b] , let P′ (x) = p(x) . Thus, by the
mean value theorem if P′, P̂′ both equal p, it follows that P(b)−P(a) = P̂(b)− P̂(a) . Then
define

∫ b
a p(x)dx≡ P(b)−P(a). If f ∈C ([a,b]) , define

∫ b
a f (x)dx≡ limn→∞

∫ b
a pn (x)dx

where
lim
n→∞
∥pn− f∥ ≡ lim

n→∞
max

x∈[a,b]
| f (x)− pn (x)|= 0

Proposition 5.9.5 The above integral is well defined and satisfies the following prop-
erties.

1.
∫ b

a f dx = f (x̂)(b−a) for some x̂ between a and b. Thus
∣∣∣∫ b

a f dx
∣∣∣≤ ∥ f∥|b−a| .

2. If f is continuous on an interval which contains all necessary intervals,∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx, so

∫ b

a
f dx+

∫ a

b
f dx =

∫ b

b
f dx = 0

3. If F (x)≡
∫ x

a f dt, Then F ′ (x) = f (x) so any continuous function has an antideriva-
tive, and for any a ̸= b,

∫ b
a f dx = G(b)−G(a) whenever G′ = f on the open interval

determined by a,b and G continuous on the closed interval determined by a,b. Also,∫ b

a
(α f (x)+βg(x))dx = α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If a < b, and f (x)≥ 0, then
∫ b

a f dx≥ 0. Also
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

4.
∫ b

a 1dx = b−a.

Proof: First, why is the integral well defined? With notation as in the above definition,
the mean value theorem implies∫ b

a
p(x)dx≡ P(b)−P(a) = p(x̂)(b−a) (5.3)

where x̂ is between a and b and so
∣∣∣∫ b

a p(x)dx
∣∣∣ ≤ ∥p∥|b−a| . If ∥pn− f∥ → 0, then

limm,n→∞ ∥pn− pm∥= 0 and so∣∣∣∣∫ b

a
pn (x)dx−

∫ b

a
pm (x)dx

∣∣∣∣= |(Pn (b)−Pn (a))− (Pm (b)−Pm (a))|
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= |(Pn (b)−Pm (b))− (Pn (a)−Pm (a))|=
∣∣∣∣∫ b

a
(pn− pm)dx

∣∣∣∣≤ ∥pn− pm∥|b−a|

Thus the limit exists because
{∫ b

a pndx
}

n
is a Cauchy sequence and R is complete.

From 5.3, 1. holds for a polynomial p(x). Let ∥pn− f∥→ 0. Then by definition,∫ b

a
f dx≡ lim

n→∞

∫ b

a
pndx = pn (xn)(b−a) (5.4)

for some xn in the open interval determined by (a,b) . By compactness, there is a fur-
ther subsequence, still denoted with n such that xn → x ∈ [a,b] . Then fixing m such that
∥ f − pn∥< ε whenever n≥ m, assume n > m. Then ∥pm− pn∥ ≤ ∥pm− f∥+∥ f − pn∥<
2ε and so

| f (x)− pn (xn)| ≤ | f (x)− f (xn)|+ | f (xn)− pm (xn)|+ |pm (xn)− pn (xn)|

≤ | f (x)− f (xn)|+∥ f − pm∥+∥pm− pn∥< | f (x)− f (xn)|+3ε

Now if n is still larger, continuity of f shows that | f (x)− pn (xn)|< 4ε. Since ε is arbitrary,
pn (xn)→ f (x) and so, passing to the limit with this subsequence in 5.4 yields 1.

Now consider 2. It holds for polynomials p(x) obviously. So let ∥pn− f∥→ 0. Then∫ c

a
pndx+

∫ b

c
pndx =

∫ b

a
pndx

Pass to a limit as n→ ∞ and use the definition to get 2. Also note that
∫ b

b f (x)dx = 0
follows from the definition.

Next consider 3. Let h ̸= 0 and let x be in the open interval determined by a and b. Then
for small h,

F (x+h)−F (x)
h

=
1
h

∫ x+h

x
f (t)dt = f (xh)

where xh is between x and x+h. Let h→ 0. By continuity of f , it follows that the limit of
the right side exists and so

lim
h→0

F (x+h)−F (x)
h

= lim
h→0

f (xh) = f (x)

If x is either end point, the argument is the same except you have to pay attention to the
sign of h so that both x and x+h are in [a,b]. Thus F is continuous on [a,b] and F ′ exists
on (a,b) so if G is an antiderivative,∫ b

a
f (t)dt ≡ F (b) = F (b)−F (a) = G(b)−G(a)

The claim that the integral is linear is obvious from this. Indeed, if F ′ = f ,G′ = g,∫ b

a
(α f (t)+βg(t))dt = αF (b)+βG(b)− (αF (a)+βG(a))

= α (F (b)−F (a))+β (G(b)−G(a))

= α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt
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If f ≥ 0, then the mean value theorem implies that for some

t ∈ (a,b) ,F (b)−F (a) =
∫ b

a
f dx = f (t)(b−a)≥ 0.

Thus ∫ b

a
(| f |− f )dx≥ 0,

∫ b

a
(| f |+ f )dx≥ 0

and so
∫ b

a | f |dx≥
∫ b

a f dx and
∫ b

a | f |dx≥−
∫ b

a f dx so this proves
∣∣∣∫ b

a f dx
∣∣∣≤ ∫ b

a | f |dx. This,

along with part 2 implies the other claim that
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

The last claim is obvious because an antiderivative of 1 is F (x) = x. ■
Note also that the usual change of variables theorem is available because if F ′ = f , then

f (g(x))g′ (x) = d
dx F (g(x)) so that, from the above proposition,

F (g(b))−F (g(a)) =
∫ g(b)

g(a)
f (y)dy =

∫ b

a
f (g(x))g′ (x)dx.

We usually let y = g(x) and dy = g′ (x)dx and then change the limits as indicated above,
equivalently we massage the expression to look like the above. Integration by parts also
follows from differentiation rules.

Consider the iterated integral
∫ b1

a1
· · ·
∫ bp

ap
αxα1

1 · · ·x
α p
p dxp · · ·dx1. It means just what it

meant in calculus. You do the integral with respect to xp first, keeping the other variables
constant, obtaining a polynomial function of the other variables. Then you do this one with
respect to xp−1 and so forth. Thus, doing the computation, it reduces to

α

p

∏
k=1

(∫ bk

ak

xαk
k dxk

)
= α

p

∏
k=1

(
bαk+1

αk +1
− aαk+1

αk +1

)
and the same thing would be obtained for any other order of the iterated integrals. Since
each of these integrals is linear, it follows that if (i1, · · · , ip) is any permutation of (1, · · · , p) ,
then for any polynomial q,∫ b1

a1

· · ·
∫ bp

ap

q(x1, ...,xp)dxp · · ·dx1 =
∫ bi1

aip

· · ·
∫ bip

aip

q(x1, ...,xp)dxip · · ·dxi1

Now let f : ∏
p
k=1 [ak,bk]→ R be continuous. Then each iterated integral results in a con-

tinuous function of the remaining variables and so the iterated integral makes sense. For
example, by Proposition 5.9.5,

∣∣∣∫ d
c f (x,y)dy−

∫ d
c f (x̂,y)dy

∣∣∣=∣∣∣∣∫ d

c
( f (x,y)− f (x̂,y))dy

∣∣∣∣≤ max
y∈[c,d]

| f (x,y)− f (x̂,y)|< ε

if |x− x̂| is sufficiently small, thanks to uniform continuity of f on the compact set [a,b]×
[c,d]. Thus it makes perfect sense to consider the iterated integral

∫ b
a
∫ d

c f (x,y)dydx. Then
using Proposition 5.9.5 on the iterated integrals along with Theorem 5.7.1, there exists a
sequence of polynomials which converges to f uniformly {pn} . Then applying Proposition
5.9.5 repeatedly,∣∣∣∣∣

∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxp · · ·dx1−
∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxp · · ·dx1

∣∣∣∣∣
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≤ ∥ f − pn∥
p

∏
k=1
|bk−ak| (5.5)

With this, it is easy to prove a rudimentary Fubini theorem valid for continuous functions.

Theorem 5.9.6 f : ∏
p
k=1 [ak,bk]→ R be continuous. Then for (i1, · · · , ip) any per-

mutation of (1, · · · , p) ,∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1

If f ≥ 0, then the iterated integrals are nonnegative if each ak ≤ bk.

Proof: Let ∥pn− f∥
∏

p
k=1[ak,bk]

→ 0 where pn is a polynomial. Then from 5.5,

∫ bi1

ai1

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 = lim
n→∞

∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxip · · ·dxi1

= lim
n→∞

∫ b1

a1

· · ·
∫ bp

ap

pn (x)dxp · · ·dx1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1 ■

You could replace f with f XG where XG (x) = 1 if x ∈ G and 0 otherwise provided each
section of G consisting of holding all variables constant but 1, consists of finitely many
intervals. Thus you can integrate over all the usual sets encountered in beginning calculus.

5.10 The Stone Weierstrass Approximation Theorem
There is a profound generalization of the Weierstrass approximation theorem due to Stone.
It has to be one of the most elegant things available. It holds on locally compact Hausdorff
spaces but here I will show the version which is valid on compact sets. Later the more
general version is discussed.

Definition 5.10.1 A is an algebra of functions if A is a vector space and if when-
ever f ,g ∈A then f g ∈A .

To begin with assume that the field of scalars is R. This will be generalized later.
Theorem 5.6.2 implies the following corollary. See Corollary 5.6.3.

Corollary 5.10.2 The polynomials are dense in C ([a,b]).

Here is another approach to proving this theorem. It is the original approach used by
Weierstrass. Let m ∈ N and consider cm such that

∫ 1
−1 cm

(
1− x2

)m dx = 1. Then

1 = 2
∫ 1

0
cm
(
1− x2)m

dx≥ 2cm

∫ 1

0
(1− x)m dx = 2cm

1
m+1

so cm ≤ m+1. Then∫ 1

δ

cm
(
1− x2)m

dx+
∫ −δ

−1
cm
(
1− x2)m

dx≤ 2(m+1)
(

1−δ
2
)m
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which converges to 0. Thus

lim
m→∞

sup
x/∈[−δ ,δ ]

cm
(
1− x2)m

= 0 (5.6)

Now let φ n (t) ≡ cm
(
1− t2

)m. Consider f ∈ C ([−1,1]) and extend to let f (x) = f (1) if
x > 1 and f (x) = f (−1) if x <−1 and define pm (x)≡

∫ 1
−1 f (x− t)φ m (t)dt. Then

|pm (x)− f (x)| ≤
∫ 1

−1
| f (x− t)− f (x)|φ m (t)dt ≤

∫ 1

−1
X[−δ ,δ ] (t) | f (x− t)− f (x)|φ m (t)dt +

∫ 1

−1
X[−1,1]\[−δ ,δ ] (t) | f (x− t)− f (x)|φ m (t)dt

Choose δ so small that if |x− y| < δ , then | f (x)− f (y)| < ε . Also let M ≥ maxx | f (x)|.
Then

|pm (x)− f (x)| ≤ ε

∫ 1

−1
φ m (t)dt +2M

∫ 1

−1
X[−1,1]\[−δ ,δ ] (t)φ m (t)dt

= ε +2M
∫ 1

−1
X[−1,1]\[−δ ,δ ] (t)φ m (t)dt

From 5.6, The second term is no larger than 2M
∫ 1
−1 X[−1,1]\[−δ ,δ ] (t)εdt ≤ 4Mε whenever

m is large enough. Hence, for large enough m, supx∈[−1,1] |pm (x)− f (x)| ≤ (1+4M)ε .
Since ε is arbitrary, this shows that the functions pm converge uniformly to f on [−1,1].
However, pm is actually a polynomial. To see this, change the variables and obtain

pm (x) =
∫ x+1

x−1
f (t)φ m (x− t)dt

which will be a polynomial. To see this, note that a typical term is of the form∫ x+1

x−1
f (t)a(x− t)k dt,

clearly a polynomial in x. This proves Corollary 5.10.2 in case [a,b] = [−1,1]. In the
general case, there is a linear one to one onto map l : [−1,1]→ [a,b].

l (t) =
b−a

2
(t +1)+a

Then if f ∈C ([a,b]) , f ◦ l ∈C ([−1,1]) . Hence there is a polynomial p such that

max
t∈[−1,1]

| f ◦ l (t)− p(t)|< ε

Then letting t = l−1 (x) = 2(x−a)
b−a − 1, for x ∈ [a,b] ,maxx∈[a,b]

∣∣ f (x)− p
(
l−1 (x)

)∣∣ < ε but
x→ p

(
l−1 (x)

)
is a polynomial. This gives an independent proof of that corollary. ■

The next result is the key to the profound generalization of the Weierstrass theorem due
to Stone in which an interval will be replaced by a compact and later a locally compact set
and polynomials will be replaced with elements of an algebra satisfying certain axioms.

Corollary 5.10.3 On the interval [−M,M], there exist polynomials pn, pn (0) = 0, and
limn→∞ ∥pn−|·|∥∞

= 0. recall that ∥ f∥
∞
≡ supt∈[−M,M] | f (t)|.
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Proof: By Corollary 5.10.2 there exists a sequence of polynomials, { p̃n} such that
p̃n→ |·| uniformly. Then let pn (t)≡ p̃n (t)− p̃n (0) . ■

Definition 5.10.4 An algebra of functions, A defined on A, annihilates no point of
A if for all x ∈ A, there exists g ∈ A such that g(x) ̸= 0. The algebra separates points if
whenever x1 ̸= x2, then there exists g ∈A such that g(x1) ̸= g(x2).

The following generalization is known as the Stone Weierstrass approximation theorem.

Theorem 5.10.5 Let A be a compact topological space and let A ⊆C (A;R) be an
algebra of functions which separates points and annihilates no point. Then A is dense in
C (A;R).

Proof: First here is a lemma.

Lemma 5.10.6 Let c1 and c2 be two real numbers and let x1 ̸= x2 be two points of A.
Then there exists a function fx1x2 such that

fx1x2 (x1) = c1, fx1x2 (x2) = c2.

Proof of the lemma: Let g ∈ A satisfy g(x1) ̸= g(x2). Such a g exists because the
algebra separates points. Since the algebra annihilates no point, there exist functions h and
k such that h(x1) ̸= 0, k (x2) ̸= 0. Then let u ≡ gh− g(x2)h, v ≡ gk− g(x1)k. It follows
that u(x1) ̸= 0 and u(x2) = 0 while v(x2) ̸= 0 and v(x1) = 0. Let fx1x2 ≡

c1u
u(x1)

+ c2v
v(x2)

. This
proves the lemma. Now continue the proof of Theorem 5.10.5.

First note that A satisfies the same axioms as A but in addition to these axioms, A is
closed. The closure of A is taken with respect to the usual norm on C (A),

∥ f∥
∞
≡max{| f (x)| : x ∈ A} .

Suppose f ∈A and suppose M is large enough that ∥ f∥
∞
< M. Using Corollary 5.10.3, let

pn be a sequence of polynomials such that

∥pn−|·|∥∞
→ 0, pn (0) = 0.

It follows that pn ◦ f ∈A and so | f | ∈A whenever f ∈A . Also note that

max( f ,g) =
| f −g|+( f +g)

2

min( f ,g) =
( f +g)−| f −g|

2
.

Therefore, this shows that if f ,g ∈ A then max( f ,g) , min( f ,g) ∈ A . By induction, if
fi, i = 1,2, · · · ,m are in A then

max( fi, i = 1,2, · · · ,m) , min( fi, i = 1,2, · · · ,m) ∈A .

Now let h ∈C (A;R) and let x ∈ A. Use Lemma 5.10.6 to obtain fxy, a function of A
which agrees with h at x and y. Letting ε > 0, there exists an open set U (y) containing y
such that

fxy (z)> h(z)− ε if z ∈U(y).
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Since A is compact, let U (y1) , · · · ,U (yl) cover A. Let

fx ≡max
(

fxy1 , fxy2 , · · · , fxyl

)
.

Then fx ∈A and fx (z)> h(z)−ε for all z∈ A and fx (x) = h(x). This implies that for each
x ∈ A there exists an open set V (x) containing x such that for z ∈ V (x), fx (z) < h(z)+ ε.
Let V (x1) , · · · ,V (xm) cover A and let f ≡ min( fx1 , · · · , fxm). Therefore, f (z) < h(z)+ ε

for all z ∈ A and since fx (z)> h(z)−ε for all z ∈ A, it follows f (z)> h(z)−ε also and so
| f (z)−h(z)|< ε for all z. Since ε is arbitrary, this shows h ∈A and proves A =C (A;R).
■

5.11 Connectedness in Normed Linear Space
The main result is that a ball in a normed linear space is connected. This is the next
lemma. From this, it follows that for an open set, it is connected if and only if it is arcwise
connected.

Lemma 5.11.1 In a normed vector space, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If x,y ∈ B(z,r) , then let γ (t) =
x+ t (y−x) for t ∈ [0,1] .

∥x+ t (y−x)−z∥= ∥(1− t)(x−z)+ t (y−z)∥

≤ (1− t)∥x−z∥+ t ∥y−z∥< (1− t)r+ tr = r

showing γ (t) stays in B(z,r).■

Proposition 5.11.2 If X ̸= /0 is arcwise connected, then it is connected.

Proof: Let p ∈ X . Then by assumption, for any x ∈ X , there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence Cp = X
and so X is connected. ■

Theorem 5.11.3 Let U be an open subset of a normed vector space. Then U is
arcwise connected if and only if U is connected. Also the connected components of an open
set are open sets.

Proof: By Proposition 5.11.2 it is only necessary to verify that if U is connected and
open in the context of this theorem, then U is arcwise connected. Pick p ∈U . Say x ∈U
satisfies P if there exists a continuous function, γ : [a,b]→ U such that γ (a) = p and
γ (b) = x.

A≡ {x ∈U such that x satisfies P .}

Ifx∈A, then Lemma 5.11.1 implies B(x,r)⊆U is arcwise connected for small enough
r. Thus letting y ∈ B(x,r) , there exist intervals, [a,b] and [c,d] and continuous functions
having values in U , γ,η such that γ (a) = p,γ (b) = x,η (c) = x, and η (d) = y. Then let
γ1 : [a,b+d− c]→U be defined as

γ1 (t)≡
{
γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]
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Then it is clear that γ1 is a continuous function mapping p to y and showing that B(x,r)⊆
A. Therefore, A is open. A ̸= /0 because since U is open there is an open set, B(p,δ )
containing p which is contained in U and is arcwise connected.

Now consider B ≡ U \A. I claim this is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore, letting
B(z,δ ) be such that z ∈ B(z,δ ) ⊆U, there exist points of A contained in B(z,δ ) . But
then, a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0,
then U = B∪A and so U is separated by the two sets B and A contradicting the assumption
that U is connected.

It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking B(z,δ ) ⊆U, Cp ∪B(z,δ ) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior
point of Cp. ■

As an application, consider the following corollary.

Corollary 5.11.4 Let f : Ω→ Z be continuous where Ω is a connected open set in a
normed vector space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set while f−1 (l) = f−1

((
l− 1

6 , l +
1
6

))
also an open

set. ■

Definition 5.11.5 An important concept in a vector space is the concept of con-
vexity. A nonempty set K is called convex if whenever x,y ∈ K, it follows that for all
t ∈ [0,1] , tx+(1− t)y ∈ K also. That is, the line segment joining the two points x,y is in
K.

5.12 Saddle Points∗

A very useful idea in nonlinear analysis is the saddle point theorem also called the minmax
theorem. The proof of this theorem given here follows Brezis [8] which is where I found
it. A real valued function f defined on a linear space is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

It is concave if the inequality is turned around. It can be shown that in finite dimensions,
convex functions are automatically continuous, similar for concave functions. Recall the
following definition of upper and lower semicontinuous functions defined on a metric space
and having values in [−∞,∞].

Definition 5.12.1 A function is upper semicontinuous if whenever xn→ x, it follows
that f (x)≥ limsupn→∞ f (xn) and it is lower semicontinuous if f (x)≤ liminfn→∞ f (xn) .

The following lemma comes directly from the definition.
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Lemma 5.12.2 If F is a set of functions which are upper semicontinuous, then g(x)≡
inf{ f (x) : f ∈F} is also upper semicontinuous. Similarly, if F is a set of functions which
are lower semicontinuous, then if g(x) ≡ sup{ f (x) : f ∈F} it follows that g is lower
semicontinuous.

Note that in a metric space, the above definitions of upper and lower semicontinuity in
terms of sequences are equivalent to the definitions that

f (x)≥ lim
r→0

sup{ f (y) : y ∈ B(x,r)} , f (x)≤ lim
r→0

inf{ f (y) : y ∈ B(x,r)}

respectively.
Here is a technical lemma which will make the proof of the saddle point theorem

shorter. It seems fairly interesting also.

Lemma 5.12.3 Suppose H : A×B→R is strictly convex in the first argument and con-
cave in the second argument where A,B are compact convex nonempty subsets of Banach
spaces E,F respectively and x→ H (x,y) is lower semicontinuous while y→ H (x,y) is
upper semicontinuous. Let

H (g(y) ,y)≡min
x∈A

H (x,y)

Then g(y) is uniquely defined and also for t ∈ [0,1] ,

lim
t→0

g(y+ t (z− y)) = g(y) .

Proof: First suppose both z,w yield the definition of g(y) . Then

H
(

z+w
2

,y
)
<

1
2

H (z,y)+
1
2

H (w,y)

which contradicts the definition of g(y). As to the existence of g(y) this is nothing more
than the theorem that a lower semicontinuous function defined on a compact set achieves
its minimum.

Now consider the last claim about “hemicontinuity”, continuity along a line. For all
x ∈ A, it follows from the definition of g that

H (g(y+ t (z− y)) ,y+ t (z− y))≤ H (x,y+ t (z− y))

By concavity of H in the second argument,

(1− t)H (g(y+ t (z− y)) ,y)+ tH (g(y+ t (z− y)) ,z) (5.7)
≤ H (x,y+ t (z− y)) (5.8)

Now let tn → 0. Does g(y+ tn (z− y))→ g(y)? Suppose not. By compactness, each of
g(y+ tn (z− y)) is in a compact set and so there is a further subsequence, still denoted by
tn such that

g(y+ tn (z− y))→ x̂ ∈ A

Then passing to a limit in 5.8, one obtains, using the upper semicontinuity in one and lower
semicontinuity in the other the following inequality.

H (x̂,y)≤ lim inf
n→∞

(1− tn)H (g(y+ tn (z− y)) ,y)+
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lim inf
n→∞

tnH (g(y+ tn (z− y)) ,z)

≤ lim inf
n→∞

(
(1− tn)H (g(y+ tn (z− y)) ,y)
+tnH (g(y+ tn (z− y)) ,z)

)
≤ lim sup

n→∞

H (x,y+ tn (z− y))≤ H (x,y)

This shows that x̂ = g(y) because this holds for every x. Since tn → 0 was arbitrary, this
shows that in fact

lim
t→0+

g(y+ t (z− y)) = g(y) ■

Now with this preparation, here is the min-max theorem.

Definition 5.12.4 A norm is called strictly convex if whenever x ̸= y,∥∥∥∥x+ y
2

∥∥∥∥< ∥x∥2 +
∥y∥
2

Theorem 5.12.5 Let E,F be Banach spaces with E having a strictly convex norm.
Also suppose that A ⊆ E,B ⊆ F are compact and convex sets and that H : A×B→ R is
such that

x→ H (x,y) is convex

y→ H (x,y) is concave

Assume that x→ H (x,y) is lower semicontinuous and y→ H (x,y) is upper semicontinu-
ous. Then

min
x∈A

max
y∈B

H (x,y) = max
y∈B

min
x∈A

H (x,y)

This condition is equivalent to the existence of (x0,y0) ∈ A×B such that

H (x0,y)≤ H (x0,y0)≤ H (x,y0) for all x,y (5.9)

called a saddle point.

Proof: One part of the main equality is obvious.

max
y∈B

H (x,y)≥ H (x,y)≥min
x∈A

H (x,y)

and so for each x,
max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y)

and so
min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y) (5.10)

Next consider the other direction.
Define Hε (x,y)≡ H (x,y)+ ε ∥x∥2 where ε > 0. Then Hε is strictly convex in the first

variable. This results from the observation that∥∥∥∥x+ y
2

∥∥∥∥2

<

(
∥x∥+∥y∥

2

)2

≤ 1
2

(
∥x∥2 +∥y∥2

)
,
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Then by Lemma 5.12.3 there exists a unique x≡ g(y) such that

Hε (g(y) ,y)≡min
x∈A

Hε (x,y)

and also, whenever y,z ∈ A,

lim
t→0+

g(y+ t (z− y)) = g(y) .

Thus Hε (g(y) ,y) = minx∈A Hε (x,y) . But also this shows that y→Hε (g(y) ,y) is the mini-
mum of functions which are upper semicontinuous and so this function is also upper semi-
continuous. Hence there exists y∗ such that

max
y∈B

Hε (g(y) ,y) = Hε (g(y∗) ,y∗) = max
y∈B

min
x∈A

Hε (x,y) (5.11)

Thus from concavity in the second argument and what was just defined, for t ∈ (0,1) ,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,(1− t)y∗+ ty)

≥ (1− t)Hε (g((1− t)y∗+ ty) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y)

≥ (1− t)Hε (g(y∗) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y) (5.12)

This is because minx Hε (x,y∗)≡ Hε (g(y∗) ,y∗) so

Hε (g((1− t)y∗+ ty) ,y∗)≥ Hε (g(y∗) ,y∗)

Then subtracting the first term on the right, one gets

tHε (g(y∗) ,y∗)≥ tHε (g((1− t)y∗+ ty) ,y)

and cancelling the t,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,y)

Now apply Lemma 5.12.3 and let t→ 0+ . This along with lower semicontinuity yields

Hε (g(y∗) ,y∗)≥ lim inf
t→0+

Hε (g((1− t)y∗+ ty) ,y) = Hε (g(y∗) ,y) (5.13)

Hence for every x,y

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥ Hε (g(y∗) ,y)

Thus
min

x
Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥max

y
Hε (g(y∗) ,y)

and so

max
y∈B

min
x∈A

Hε (x,y) ≥ min
x

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)

≥ max
y

Hε (g(y∗) ,y)≥min
x∈A

max
y∈B

Hε (x,y)
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Thus, letting C ≡max{∥x∥ : x ∈ A}

εC2 +max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

Since ε is arbitrary, it follows that

max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

This proves the first part because it was shown above in 5.10 that

min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y)

Now consider 5.9 about the existence of a “saddle point” given the equality of minmax
and maxmin. Let

α = max
y∈B

min
x∈A

H (x,y) = min
x∈A

max
y∈B

H (x,y)

Then from
y→min

x∈A
H (x,y) and x→max

y∈B
H (x,y)

being upper semicontinuous and lower semicontinuous respectively, there exist y0 and x0
such that

α = min
x∈A

H (x,y0) =

.

max
y∈B

minimum of u.s.c
min
x∈A

H (x,y) = min
x∈A

maximum of l.s.c.
max
y∈B

H (x,y) = max
y∈B

H (x0,y)

Then
α = max

y∈B
H (x0,y)≥ H (x0,y0) , α = min

x∈A
H (x,y0)≤ H (x0,y0)

so in fact α = H (x0,y0) and from the above equalities,

H (x0,y0) = α = min
x∈A

H (x,y0)≤ H (x,y0)

H (x0,y0) = α = max
y∈B

H (x0,y)≥ H (x0,y)

and so H (x0,y) ≤ H (x0,y0) ≤ H (x,y0) . Thus if the minmax condition holds, then there
exists a saddle point, namely (x0,y0).

Finally suppose there is a saddle point (x0,y0) where

H (x0,y)≤ H (x0,y0)≤ H (x,y0)

Then

min
x∈A

max
y∈B

H (x,y)≤max
y∈B

H (x0,y)≤ H (x0,y0)≤min
x∈A

H (x,y0)≤max
y∈B

min
x∈A

H (x,y)

However, as noted above, it is always the case that

max
y∈B

min
x∈A

H (x,y)≤min
x∈A

max
y∈B

H (x,y) ■

What was really needed? You needed compactness of A,B and these sets needed to be in
a linear space. Of course there needed to be a norm for which x→∥x∥ is strictly convex and
lower semicontinuous, so the conditions given above are sufficient but maybe not necessary.
You might try generalizing this much later after reading about weak topologies.
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5.13 Exercises
1. Consider the metric space C ([0,T ] ,Rn) with the norm ∥f∥ ≡ maxx∈[0,T ] ∥f (x)∥∞

.
Explain why the maximum exists. Show this is a complete metric space. Hint: If you
have {fm} a Cauchy sequence in C ([0,T ] ,Rn) , then for each x, you have {fm (x)}
a Cauchy sequence in Rn. Recall that this is a complete space. Thus there exists
f (x) = limm→∞fm (x). You must show that f is continuous. This was in the section
on the Ascoli Arzela theorem in more generality if you need an outline of how this
goes. Write down the details for this case. Note how f is in bold face. This means it
is a function which has values in Rn. f (t) = ( f1 (t) , f2 (t) , · · · , fn (t)).

2. For f ∈C ([0,T ] ,Rn) , you define the Riemann integral in the usual way using Rie-
mann sums. Alternatively, you can define it as∫ t

0
f (s)ds =

(∫ t

0
f1 (s)ds,

∫ t

0
f2 (s)ds, · · · ,

∫ t

0
fn (s)ds

)
Then show that the following limit exists in Rn for each t ∈ (0,T ) .

lim
h→0

∫ t+h
0 f (s)ds−

∫ t
0 f (s)ds

h
= f (t) .

You should use the fundamental theorem of calculus from one variable calculus and
the definition of the norm to verify this. As a review, in case we don’t get to it in
time, for f defined on an interval [0,T ] and s ∈ [0,T ] , limt→sf (t) = l means that
for all ε > 0, there exists δ > 0 such that if 0 < |t− s|< δ , then ∥f (t)− l∥

∞
< ε .

3. Suppose f :R→ R and f ≥ 0 on [−1,1] with f (−1) = f (1) = 0 and f (x)< 0 for all
x /∈ [−1,1] . Can you use a modification of the proof of the Weierstrass approximation
theorem for functions on an interval presented earlier to show that for all ε > 0 there
exists a polynomial p, such that |p(x)− f (x)| < ε for x ∈ [−1,1] and p(x) ≤ 0 for
all x /∈ [−1,1]?

4. A collection of functions F of C ([0,T ] ,Rn) is said to be uniformly equicontinu-
ous if for every ε > 0 there exists δ > 0 such that if f ∈ F and |t− s| < δ , then
∥f (t)−f (s)∥

∞
< ε . Thus the functions are uniformly continuous all at once. The

single δ works for every pair t,s closer together than δ and for all functions f ∈F .
As an easy case, suppose there exists K such that for all f ∈F , ∥f (t)−f (s)∥

∞
≤

K |t− s| . Show that F is uniformly equicontinuous. Now suppose G is a collection
of functions of C ([0,T ] ,Rn) which is bounded. That is, ∥f∥= maxt∈[0,T ] ∥f (t)∥∞

<
M < ∞ for all f ∈ G . Then let F denote the functions which are of the form
F (t) ≡ y0 +

∫ t
0 f (s)ds where f ∈ G . Show that F is uniformly equicontinuous.

Hint: This is a really easy problem if you do the right things. Here is the way
you should proceed. Remember the triangle inequality from one variable calcu-
lus which said that for a < b

∣∣∣∫ b
a f (s)ds

∣∣∣ ≤ ∫ b
a | f (s)|ds. Then

∥∥∥∫ b
a f (s)ds

∥∥∥
∞

=

maxi

∣∣∣∫ b
a fi (s)ds

∣∣∣≤maxi
∫ b

a | fi (s)|ds≤
∫ b

a ∥f (s)∥∞
ds. Reduce to the case just con-

sidered using the assumption that these f are bounded.

5. Suppose F is a set of functions in C ([0,T ] ,Rn) which is uniformly bounded and
uniformly equicontinuous as described above. Show it must be totally bounded.
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6. ↑If A⊆ (X ,d) is totally bounded, show that Ā the closure of A is also totally bounded.
In the above problem, explain why F̄ the closure of F is compact. This uses the
big theorem on compactness. Try and do this on your own, but if you get stuck,
it is in the section on Arzela Ascoli theorem. When you have done this problem,
you have proved the important part of the Arzela Ascoli theorem in the special case
where the functions are defined on an interval. You can use this to prove one of
the most important results in the theory of differential equations. This theorem is a
really profound result because it gives compactness in a normed linear space which
is not finite dimensional. Thus this is a non trivial generalization of the Heine Borel
theorem.

7. Let (X ,∥·∥) be a normed linear space. A set A is said to be convex if whenever x,y ∈
A the line segment determined by these points given by tx+(1− t)y for t ∈ [0,1] is
also in A. Show that every open or closed ball is convex. Remember a closed ball
is D(x,r)≡ {x̂ : ∥x̂−x∥ ≤ r} while the open ball is B(x,r)≡ {x̂ : ∥x̂−x∥< r}.
This should work just as easily in any normed linear space with any norm.

8. Let K be a nonempty closed and convex set in an inner product space (X , |·|) which is
complete. For example, Fn or any other finite dimensional inner product space. Let
y /∈ K and let λ = inf{|y− x| : x ∈ K} . Let {xn} be a minimizing sequence. That is
λ = limn→∞ |y− xn| . Explain why such a minimizing sequence exists. Next explain
the following using the parallelogram identity in the above problem as follows.∣∣∣∣y− xn + xm

2

∣∣∣∣2 = ∣∣∣ y2 − xn

2
+

y
2
− xm

2

∣∣∣2
=−

∣∣∣ y
2
− xn

2
−
( y

2
− xm

2

)∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

Hence
∣∣ xm−xn

2

∣∣2 =− ∣∣y− xn+xm
2

∣∣2 + 1
2 |y− xn|2 + 1

2 |y− xm|2

≤−λ
2 +

1
2
|y− xn|2 +

1
2
|y− xm|2

Next explain why the right hand side converges to 0 as m,n→ ∞. Thus {xn} is a
Cauchy sequence and converges to some x ∈ X . Explain why x ∈ K and |x− y|= λ .
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two x1,x2 and consider x1+x2

2 using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

9. Let K be a closed convex nonempty set in a complete inner product space (H, |·|)
(Hilbert space) and let y ∈ H. Denote the closest point to y by Px. Show that Px is
characterized as being the solution to the following variational inequality

Re(z−Py,y−Py)≤ 0

for all z ∈ K. That is, show that x = Py if and only if Re(z− x,y− x) ≤ 0 for all
z ∈ K. Hint: Let x ∈ K. Then, due to convexity, a generic thing in K is of the form
x+ t (z− x) , t ∈ [0,1] for every z ∈ K. Then

|x+ t (z− x)− y|2 = |x− y|2 + t2 |z− x|2− t2Re(z− x,y− x)
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If x = Px, then the minimum value of this on the left occurs when t = 0. Function
defined on [0,1] has its minimum at t = 0. What does it say about the derivative
of this function at t = 0? Next consider the case that for some x the inequality
Re(z− x,y− x)≤ 0. Explain why this shows x = Py.

10. Using Problem 9 and Problem 8 show the projection map, P onto a closed convex
subset is Lipschitz continuous with Lipschitz constant 1. That is |Px−Py| ≤ |x− y| .

11. Suppose, in an inner product space, you know Re(x,y) . Show that you also know
Im(x,y). That is, give a formula for Im(x,y) in terms of Re(x,y). Hint:

(x, iy) =−i(x,y) =−i(Re(x,y)+ iIm(x,y)) =−iRe(x,y)+ Im(x,y)

while, by definition, (x, iy) = Re(x, iy)+ iIm(x, iy) . Now consider matching real and
imaginary parts.

12. Let h > 0 be given and let f (t,x)∈Rn for each x∈Rn. Also let (t,x)→ f (t,x) be
continuous and supt,x ∥f (t,x)∥∞

<C < ∞. Let xh (t) be a solution to the following

xh (t) = x0 +
∫ t

0
f (s,xh (s−h))ds

where xh (s−h) ≡ x0 if s− h ≤ 0. Explain why there exists a solution. Hint:
Consider the intervals [0,h] , [h,2h] and so forth. Next explain why these functions
{xh}h>0 are equicontinuous and uniformly bounded. Now use the result of Problem
6 to argue that there exists a subsequence, still denoted byxh such that limh→0xh =x
in C ([0,T ] ;Rn) as discussed in Problem 5. Use what you learned about the Riemann
integral in single variable advanced calculus to explain why you can pass to a limit
and conclude that x(t) = x0 +

∫ t
0 f (s,x(s))ds Hint:∥∥∥∥∫ t

0
f (s,x(s))ds−

∫ t

0
f (s,xh (s−h))ds

∥∥∥∥
∞

≤
∥∥∥∥∫ t

0
f (s,x(s))ds−

∫ t

0
f (s,x(s−h))ds

∥∥∥∥
∞

+

∥∥∥∥∫ t

0
f (s,x(s−h))ds−

∫ t

0
f (s,xh (s−h))ds

∥∥∥∥
∞

≤
∫ T

0
∥f (s,x(s))−f (s,x(s−h))∥

∞
ds

+
∫ T

0
∥f (s,x(s−h))−f (s,xh (s−h))∥

∞
ds

Now use Problem 2 to verify that x′ = f (t,x) , x(0) = x0. When you have done
this, you will have proved the celebrated Peano existence theorem from ordinary
differential equations.

13. Let |α| ≡ ∑i α i. Let G denote all finite sums of functions of the form p(x)e−a|x|2

where p(x) is a polynomial and a > 0. If you consider all real valued continu-
ous functions defined on the closed ball B(0,R) show that if f is such a function,
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then for every ε > 0, there exists g ∈ G such that ∥ f −g∥
∞
< ε where ∥h∥

∞
≡

max
x∈B(0,R) |h(x)|. Thus, from multi-variable calculus, every continuous function f

is uniformly close to an infinitely differentiable function on any closed ball centered
at 0.

14. Suppose now that f ∈ C0 (Rp) . This means that f is everywhere continuous and
that lim∥x∥→∞ | f (x)| = 0. Show that for every ε > 0 there exists g ∈ G such that
supx∈Rp | f (x)−g(x)| < ε . Thus you can approximate such a continuous function
f uniformly on all ofRp with a function which has infinitely many continuous partial
derivatives. I assume the reader has had a beginning course in multi-variable calcu-
lus including partial derivatives. If not, a partial derivative is just a derivative with
respect to one of the variables, fixing all the others.

15. In Problem 23 on Page 124, and V ≡ span( fp1 , ..., fpn) , fr (x) ≡ xr,x ∈ [0,1] and
− 1

2 < p1 < p2 < · · · with limk→∞ pk = ∞. The distance between fm and V is

1√
2m+1 ∏

j≤n

∣∣m− p j
∣∣

(p j +m+1)
= d

Let dn = d so more functions are allowed to be included in V . Show that ∑n
1
pn

= ∞

if and only if limn→∞ dn = 0. Explain, using the Weierstrass approximation theorem
why this shows that if g is a function continuous on [0,1] , then there is a function
∑

N
k=1 ak fpk with

∣∣g−∑
N
k=1 ak fpk

∣∣ < ε . Here |g|2 ≡
∫ 1

0 |g(x)|
2 dx. This is Müntz’s

first theorem. Hint: dn → 0, if and only if lndn → −∞ so you might want to
arrange things so that this happens. You might want to use the fact that for x ∈
[0,1/2] ,−x≥ ln(1− x)≥−2x. See [10] which is where I read this. That product is

∏ j≤n

(
1−
(

1− |m−p j|
(p j+m+1)

))
and so ln of this expression is

n

∑
j=1

ln

(
1−

(
1−

∣∣m− p j
∣∣

(p j +m+1)

))

which is in the interval[
−2

n

∑
j=1

(
1−

∣∣m− p j
∣∣

(p j +m+1)

)
,−

n

∑
j=1

(
1−

∣∣m− p j
∣∣

(p j +m+1)

)]

and so dn → 0 if and only if ∑
∞
j=1

(
1− |m−p j|

(p j+m+1)

)
= ∞. Since pn → ∞ it suffices

to consider the convergence of ∑ j

(
1− p j−m

(p j+m+1)

)
= ∑ j

(
2m+1

(p j+m+1)

)
. Now recall

theorems from calculus.

16. For f ∈ C ([a,b] ;R) , real valued continuous functions, let | f | ≡
(∫ b

a | f (t)|
2
)1/2

≡

( f , f )1/2 where ( f ,g) ≡
∫ b

a f (x)g(x)dx. Recall the Cauchy Schwarz inequality
|( f ,g)| ≤ | f | |g| . Now suppose 1

2 < p1 < p2 · · · where limk→∞ pk = ∞. Let Vn =
span(1, fp1 , fp2 , ..., fpn) . For ∥·∥ the uniform approximation norm, show that for ev-
ery g ∈C ([0,1]) , there exists there exists a sequence of functions, fn ∈Vn such that
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∥g− fn∥→ 0. This is the second Müntz theorem. Hint: Show that you can approxi-
mate x→ xm uniformly. To do this, use the above Müntz to approximate mxm−1 with
∑k ckxpk−1 in the inner product norm.

∫ 1
0

∣∣mxm−1−∑
n
k=1 ckxpk−1

∣∣2 dx ≤ ε2. Then
xm−∑

n
k=1

ck
pk

xpk =
∫ x

0
(
mtm−1−∑

n
k=1 ckt pk−1

)
dt. Then∣∣∣∣∣xm−

n

∑
k=1

ck

pk
xpk

∣∣∣∣∣≤
∫ x

0

∣∣∣∣∣mtm−1−
n

∑
k=1

ckt pk−1

∣∣∣∣∣dt ≤
∫ 1

0
1

∣∣∣∣∣mtm−1−
n

∑
k=1

ckt pk−1

∣∣∣∣∣dt

Now use the Cauchy Schwarz inequality on that last integral to obtain

max
x∈[0,1]

∣∣∣∣∣xm−
n

∑
k=1

ck

pk
xpk

∣∣∣∣∣≤ ε.

In case m = 0, there is nothing to show because 1 is in Vn. Explain why the result
follows from this and the Weierstrass approximation theorem.



Chapter 6

Fixed Point Theorems
This is on fixed point theorems which feature the Brouwer fixed point theorem. This next
block of material is a discussion of simplices and triangulations used to prove the Brouwer
fixed point theorem in an elementary way. It features the famous Sperner’s lemma and is
based on very elementary concepts from linear algebra in an essential way. However, it is
pretty technical stuff. This elementary proof is harder than those which come from other
approaches like integration theory or degree theory. These other shorter ways of obtaining
the Brouwer fixed point theorem from analytical methods are presented later. If desired, this
chapter could be placed after the easier to prove version of the Brouwer fixed point theorem,
Theorem 11.6.8 on Page 329 after sufficient integration theory has been presented. I like
the approach presented in this chapter which is based on simplices because it is elementary
and contains a method for locating a fixed point. It seems philosophically wrong to make
this theorem depend on integration theory.

6.1 Simplices and Triangulations
Definition 6.1.1 Define an n simplex, denoted by [x0, · · · ,xn], to be the convex hull
of the n+1 points, {x0, · · · ,xn} where {xi−x0}n

i=1 are linearly independent. Thus

[x0, · · · ,xn]≡

{
n

∑
i=0

tixi :
n

∑
i=0

ti = 1, ti ≥ 0

}
.

Note that
{
x j−xm

}
j ̸=m are also independent. I will call the {ti} just described the coor-

dinates of a point x.

To see the last claim, suppose ∑ j ̸=m c j (x j−xm) = 0. Then you would have

c0 (x0−xm)+ ∑
j ̸=m,0

c j (x j−xm) = 0

= c0 (x0−xm)+ ∑
j ̸=m,0

c j (x j−x0)+

(
∑

j ̸=m,0
c j

)
(x0−xm) = 0

= ∑
j ̸=m,0

c j (x j−x0)+

(
∑
j ̸=m

c j

)
(x0−xm)

Then you get ∑ j ̸=m c j = 0 and each c j = 0 for j ̸= m,0. Thus c0 = 0 also because the sum
is 0 and all other c j = 0.

Since {xi−x0}n
i=1 is an independent set, the ti used to specify a point in the convex hull

are uniquely determined. If two of them are ∑
n
i=0 tixi = ∑

n
i=0 sixi.Then ∑

n
i=0 ti (xi−x0) =

∑
n
i=0 si (xi−x0) so ti = si for i≥ 1 by independence. Since the si and ti sum to 1, it follows

that also s0 = t0. If n≤ 2, the simplex is a triangle, line segment, or point. If n≤ 3, it is a
tetrahedron, triangle, line segment or point.

Definition 6.1.2 If S is an n simplex. Then it is triangulated if it is the union of
smller sub-simplices, the triangulation, such that if S1,S2 are two simplices in the triangu-
lation, with

S1 ≡
[
z1

0, · · · ,z1
m
]
, S2 ≡

[
z2

0, · · · ,z2
p
]

155



156 CHAPTER 6. FIXED POINT THEOREMS

then
S1∩S2 =

[
xk0 , · · · ,xkr

]
where

[
xk0 , · · · ,xkr

]
is in the triangulation and{
xk0 , · · · ,xkr

}
=
{
z1

0, · · · ,z1
m
}
∩
{
z2

0, · · · ,z2
p
}

or else the two simplices do not intersect.

The following proposition is geometrically fairly clear. It will be used without comment
whenever needed in the following argument about triangulations.

Proposition 6.1.3 Say [x1, · · · ,xr] , [x̂1, · · · , x̂r] , [z1, · · · ,zr] are all r−1 simplices and

[x1, · · · ,xr] , [x̂1, · · · , x̂r]⊆ [z1, · · · ,zr]

and [z1, · · · ,zr,b] is an r+1 simplex and

[y1, · · · ,ys] = [x1, · · · ,xr]∩ [x̂1, · · · , x̂r] (6.1)

where
{y1, · · · ,ys}= {x1, · · · ,xr}∩{x̂1, · · · , x̂r} (6.2)

Then
[x1, · · · ,xr,b]∩ [x̂1, · · · , x̂r,b] = [y1, · · · ,ys,b] (6.3)

Proof: If you have ∑
s
i=1 tiyi + ts+1b in the right side, the ti summing to 1 and nonneg-

ative, then it is obviously in both of the two simplices on the left because of 6.2. Thus
[x1, · · · ,xr,b]∩ [x̂1, · · · , x̂r,b]⊇ [y1, · · · ,ys,b].

Now suppose xk = ∑
r
j=1 tk

jz j, x̂k = ∑
r
j=1 t̂k

jz j, as usual, the scalars adding to 1 and
nonnegative.

Consider something in both of the simplices on the left in 6.3. Is it in the right? The
element on the left is of the form

r

∑
α=1

sαxα + sr+1b=
r

∑
α=1

ŝα x̂α + ŝr+1b

where the sα , are nonnegative and sum to one, similarly for ŝα . Thus

r

∑
j=1

r

∑
α=1

sα tα
j z j + sr+1b=

r

∑
α=1

r

∑
j=1

ŝα t̂α
j z j + ŝr+1b (6.4)

Now observe that

∑
j
∑
α

sα tα
j + sr+1 = ∑

α

∑
j

sα tα
j + sr+1 = ∑

α

sα + sr+1 = 1.

A similar observation holds for the right side of 6.4. By uniqueness of the coordinates in
an r+1 simplex, and assumption that [z1, · · · ,zr,b] is an r+1 simplex, ŝr+1 = sr+1 and so

r

∑
α=1

sα

1− sr+1
xα =

r

∑
α=1

ŝα

1− sr+1
x̂α
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where ∑α
sα

1−sr+1
= ∑α

ŝα

1−sr+1
= 1, which would say that both sides are a single element of

[x1, · · · ,xr]∩ [x̂1, · · · , x̂r] = [y1, · · · ,ys] and this shows both are equal to something of the
form ∑

s
i=1 tiyi,∑i ti = 1, ti ≥ 0. Therefore,

r

∑
α=1

sα

1− sr+1
xα =

s

∑
i=1

tiyi,
r

∑
α=1

sαxα =
s

∑
i=1

(1− sr+1) tiyi

It follows that
r

∑
α=1

sαxα + sr+1b=
s

∑
i=1

(1− sr+1) tiyi + sr+1b ∈ [y1, · · · ,ys,b]

which proves the other inclusion. ■
Next I will explain why any simplex can be triangulated in such a way that all sub-

simplices have diameter less than ε .
This is obvious if n ≤ 2. Supposing it to be true for n− 1, is it also so for n? The

barycenter b of a simplex [x0, · · · ,xn] is 1
1+n ∑ixi. This point is not in the convex hull of

any of the faces, those simplices of the form [x0, · · · , x̂k, · · · ,xn] where the hat indicates
xk has been left out. Thus, placing b in the kth position, [x0, · · · ,b, · · · ,xn] is a n simplex
also. First note that [x0, · · · , x̂k, · · · ,xn] is an n−1 simplex. To be sure [x0, · · · ,b, · · · ,xn]
is an n simplex, we need to check that certain vectors are linearly independent. If

0 =
k−1

∑
j=1

c j (x j−x0)+ak

(
1

n+1

n

∑
i=0
xi−x0

)
+

n

∑
j=k+1

d j (x j−x0)

then does it follow that ak = 0 = c j = d j?

0 =
k−1

∑
j=1

c j (x j−x0)+ak
1

n+1

(
n

∑
i=0

(xi−x0)

)
+

n

∑
j=k+1

d j (x j−x0)

0 =
k−1

∑
j=1

(
c j +

ak

n+1

)
(x j−x0)+ak

1
n+1

(xk−x0)

+
n

∑
j=k+1

(
d j +

ak

n+1

)
(x j−x0)

Thus ak
n+1 = 0 and each c j +

ak
n+1 = 0 = d j +

ak
n+1 so each c j and d j are also 0. Thus, this is

also an n simplex.
Actually, a little more is needed. Suppose [y0, · · · ,yn−1] is an n−1 simplex such that

[y0, · · · ,yn−1]⊆ [x0, · · · , x̂k, · · · ,xn] . Why is [y0, · · · ,yn−1,b] an n simplex? We know the
vectors

{
y j−y0

}n−1
k=1 are independent and that y j = ∑i̸=k t j

i xi where ∑i̸=k t j
i = 1 with each

being nonnegative. Suppose

n−1

∑
j=1

c j
(
y j−y0

)
+ cn (b−y0) = 0 (6.5)

If cn = 0, then by assumption, each c j = 0. The proof goes by assuming cn ̸= 0 and deriving
a contradiction. Assume then that cn ̸= 0. Then you can divide by it and obtain modified
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constants, still denoted as c j such that

b=
1

n+1

n

∑
i=0
xi = y0 +

n−1

∑
j=1

c j
(
y j−y0

)
Thus

1
n+1

n

∑
i=0

∑
s̸=k

t0
s (xi−xs) =

n−1

∑
j=1

c j
(
y j−y0

)
=

n−1

∑
j=1

c j

(
∑
s̸=k

t j
sxs−∑

s ̸=k
t0
s xs

)

=
n−1

∑
j=1

c j

(
∑
s ̸=k

t j
s (xs−x0)−∑

s ̸=k
t0
s (xs−x0)

)
Modify the term on the left and simplify on the right to get

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s ((xi−x0)+(x0−xs)) =

n−1

∑
j=1

c j

(
∑
s̸=k

(
t j
s − t0

s
)
(xs−x0)

)
Thus,

1
n+1

n

∑
i=0

(
∑
s ̸=k

t0
s

)
(xi−x0) =

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s (xs−x0)

+
n−1

∑
j=1

c j

(
∑
s ̸=k

(
t j
s − t0

s
)
(xs−x0)

)
Then, taking out the i = k term on the left yields

1
n+1

(
∑
s ̸=k

t0
s

)
(xk−x0) =−

1
n+1 ∑

i̸=k

(
∑
s ̸=k

t0
s

)
(xi−x0)

1
n+1

n

∑
i=0

∑
s ̸=k

t0
s (xs−x0)+

n−1

∑
j=1

c j

(
∑
s ̸=k

(
t j
s − t0

s
)
(xs−x0)

)
That on the right is a linear combination of vectors (xr−x0) for r ̸= k so by independence,
∑r ̸=k t0

r = 0. However, each t0
r ≥ 0 and these sum to 1 so this is impossible. Hence cn = 0

after all and so each c j = 0. Thus [y0, · · · ,yn−1,b] is an n simplex.
Now in general, if you have an n simplex [x0, · · · ,xn] , its diameter is the maximum of

|xk−xl | for all k ̸= l. Consider
∣∣b−x j

∣∣ . It equals∣∣∣∣∣ n

∑
i=0

1
n+1

(xi−x j)

∣∣∣∣∣=
∣∣∣∣∣∑i ̸= j

1
n+1

(xi−x j)

∣∣∣∣∣≤ n
n+1

diam(S) .

Consider the kth face of S which is the simplex [x0, · · · , x̂k, · · · ,xn]. By induction, it has a
triangulation into simplices which each have diameter no more than n

n+1 diam(S). Let these

n−1 simplices be denoted by
{

Sk
1, · · · ,Sk

mk

}
. Then the simplices

{[
Sk

i ,b
]}mk,n+1

i=1,k=1 are a tri-
angulation of S such that diam

([
Sk

i ,b
])
≤ n

n+1 diam(S). Do for
[
Sk

i ,b
]

what was just done
for S obtaining a triangulation of S as the union of what is obtained such that each simplex
has diameter no more than

( n
n+1

)2 diam(S). Continuing this way shows the existence of

the desired triangulation. You simply do the process k times where
( n

n+1

)k diam(S)< ε.
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6.2 Labeling Vertices
Next is a way to label the vertices. Let p0, · · · , pn be the first n+ 1 prime numbers. All
vertices of a simplex S = [x0, · · · ,xn] having {xk−x0}n

k=1 independent will be labeled
with one of these primes. In particular, the vertex xk will be labeled as pk if the simplex is
[x0, · · · ,xn]. The “value” of a simplex will be the product of its labels. Triangulate this S.

Consider a 1 simplex whose vertices are from the vertices of S, the original n simplex[
xk1 ,xk2

]
, label xk1 as pk1 and xk2 as pk2 . Then label all other vertices of this triangulation

which occur on
[
xk1 ,xk2

]
either pk1 or pk2 . Note that by independence of {xk−xr}k ̸=r ,

this cannot introduce an inconsistency because the segment cannot contain any other vertex
of S. Then obviously there will be an odd number of simplices in this triangulation having
value pk1 pk2 , that is a pk1 at one end and a pk2 at the other. Next consider the 2 simplices[
xk1 ,xk2 ,xk3

]
where the xki are from S. Label all vertices of the triangulation which lie

on one of these 2 simplices which have not already been labeled as either pk1 , pk2 , or pk2 .
Continue this way. This labels all vertices of the triangulation of S which have at least one
coordinate zero. For the vertices of the triangulation which have all coordinates positive,
the interior points of S, label these at random from any of p0, ..., pn. (Essentially, this is
the same idea. The “interior” points are the new ones not already labeled.) The idea is
to show that there is an odd number of n simplices with value ∏

n
i=0 pi in the triangulation

and more generally, for each m simplex
[
xk1 , · · · ,xkm+1

]
,m ≤ n with the xki an original

vertex from S, there are an odd number of m simplices of the triangulation contained in[
xk1 , · · · ,xkm+1

]
, having value pk1 · · · pkm+1 . It is clear that this is the case for all such 1

simplices. For convenience, call such simplices
[
xk1 , · · · ,xkm+1

]
m dimensional faces of S.

An m simplex which is a subspace of this one will have the “correct” value if its value is
pk1 · · · pkm+1 .

Suppose that the labeling has produced an odd number of simplices of the triangulation
contained in each m dimensional face of S which have the correct value. Take such an m
dimensional face

[
x j1 , . . . ,x jk+1

]
. Consider Ŝ≡[
x j1 , . . .x jk+1 ,x jk+2

]
Then by induction, there is an odd number of k simplices on the sth face[

x j1 , . . . , x̂ js , · · · ,x jk+2

]
having value ∏i ̸=s p ji . In particular, the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of

simplices with value ∏i≤k+1 p ji .
No simplex in any other face of Ŝ can have this value by uniqueness of prime factoriza-

tion. Pick a simplex on the face
[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
which has correct value ∏i≤k+1 p ji

and cross this simplex into Ŝ. Continue crossing simplices having value ∏i≤k+1 p ji which
have not been crossed till the process ends. It must end because there are an odd number
of these simplices having value ∏i≤k+1 p ji . If the process leads to the outside of Ŝ, then
one can always enter it again because there are an odd number of simplices with value
∏i≤k+1 p ji available and you will have used up an even number. Note that in this process,
if you have a simplex with one side labeled ∏i≤k+1 p ji , there is either one way in or out
of this simplex or two depending on whether the remaining vertex is labeled p jk+2 . When
the process ends, the value of the simplex must be ∏

k+2
i=1 p ji because it will have the addi-

tional label p jk+2 . Otherwise, there would be another route out of this, through the other
side labeled ∏i≤k+1 p ji . This identifies a simplex in the triangulation with value ∏

k+2
i=1 p ji .
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Then repeat the process with ∏i≤k+1 p ji valued simplices on
[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
which

have not been crossed. Repeating the process, entering from the outside, cannot deliver a
∏

k+2
i=1 p ji valued simplex encountered earlier because of what was just noted. There is either

one or two ways to cross the simplices. In other words, the process is one to one in select-
ing a ∏i≤k+1 p ji simplex from crossing such a simplex on the selected face of Ŝ. Continue
doing this, crossing a ∏i≤k+1 p ji simplex on the face of Ŝ which has not been crossed pre-
viously. This identifies an odd number of simplices having value ∏

k+2
i=1 p ji . These are the

ones which are “accessible” from the outside using this process. If there are any which are
not accessible from outside, applying the same process starting inside one of these, leads to
exactly one other inaccessible simplex with value ∏

k+2
i=1 p ji . Hence these inaccessible sim-

plices occur in pairs and so there are an odd number of simplices in the triangulation having
value ∏

k+2
i=1 p ji . We refer to this procedure of labeling as Sperner’s lemma. The system of

labeling is well defined thanks to the assumption that {xk−x0}n
k=1 is independent which

implies that {xk−xi}k ̸=i is also linearly independent. Thus there can be no ambiguity in
the labeling of vertices on any “face” the convex hull of some of the original vertices of S.
The following is a description of the system of labeling the vertices.

Lemma 6.2.1 Let [x0, · · · ,xn] be an n simplex with {xk−x0}n
k=1 independent, and let

the first n+ 1 primes be p0, p1, · · · , pn. Label xk as pk and consider a triangulation of
this simplex. Labeling the vertices of this triangulation which occur on

[
xk1 , · · · ,xks

]
with

any of pk1 , · · · , pks , beginning with all 1 simplices
[
xk1 ,xk2

]
and then 2 simplices and so

forth, there are an odd number of simplices
[
yk1

, · · · ,yks

]
of the triangulation contained in[

xk1 , · · · ,xks

]
which have value pk1 · · · pks . This for s = 1,2, · · · ,n.

A combinatorial method

We now give a brief discussion of the system of labeling for Sperner’s lemma from the
point of view of counting numbers of faces rather than obtaining them with an algorithm.
Let p0, · · · , pn be the first n+1 prime numbers. All vertices of a simplex S = [x0, · · · ,xn]
having {xk−x0}n

k=1 independent will be labeled with one of these primes. In particular,
the vertex xk will be labeled as pk. The value of a simplex will be the product of its labels.
Triangulate this S. Consider a 1 simplex coming from the original simplex

[
xk1 ,xk2

]
, label

one end as pk1 and the other as pk2 . Then label all other vertices of this triangulation which
occur on

[
xk1 ,xk2

]
either pk1 or pk2 . The assumption of linear independence assures that

no other vertex of S can be in
[
xk1 ,xk2

]
so there will be no inconsistency in the labeling.

Then obviously there will be an odd number of simplices in this triangulation having value
pk1 pk2 , that is a pk1 at one end and a pk2 at the other. Suppose that the labeling has been
done for all vertices of the triangulation which are on

[
x j1 , . . .x jk+1

]
,{

x j1 , . . .x jk+1

}
⊆ {x0, . . .xn}

any k simplex for k≤ n−1, and there is an odd number of simplices from the triangulation
having value equal to ∏

k+1
i=1 p ji . Consider Ŝ ≡

[
x j1 , . . .x jk+1 ,x jk+2

]
. Then by induction,

there is an odd number of k simplices on the sth face[
x j1 , . . . , x̂ js , · · · ,x jk+1

]
having value ∏i̸=s p ji . In particular the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
has an odd number of

simplices with value ∏
k+1
i=1 p ji := P̂k. We want to argue that some simplex in the triangu-

lation which is contained in Ŝ has value P̂k+1 := ∏
k+2
i=1 p ji . Let Q be the number of k+ 1
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simplices from the triangulation contained in Ŝ which have two faces with value P̂k (A k+1
simplex has either 1 or 2 P̂k faces.) and let R be the number of k+ 1 simplices from the
triangulation contained in Ŝ which have exactly one P̂k face. These are the ones we want
because they have value P̂k+1. Thus the number of faces having value P̂k which is described
here is 2Q+R. All interior P̂k faces being counted twice by this number. Now we count the
total number of P̂k faces another way. There are P of them on the face

[
x j1 , . . . ,x jk+1 , x̂ jk+2

]
and by induction, P is odd. Then there are O of them which are not on this face. These
faces got counted twice. Therefore,

2Q+R = P+2O

and so, since P is odd, so is R. Thus there is an odd number of P̂k+1 simplices in Ŝ.
We refer to this procedure of labeling as Sperner’s lemma. The system of labeling is

well defined thanks to the assumption that {xk−x0}n
k=1 is independent which implies that

{xk−xi}k ̸=i is also linearly independent. Thus there can be no ambiguity in the labeling
of vertices on any “face”, the convex hull of some of the original vertices of S. Sperner’s
lemma is now a consequence of this discussion.

6.3 The Brouwer Fixed Point Theorem
S≡ [x0, · · · ,xn] is a simplex in Rn. Assume {xi−x0}n

i=1 are linearly independent. Thus a
typical point of S is of the form ∑

n
i=0 tixi where the ti are uniquely determined and the map

x→ t is continuous from S to the compact set{
t ∈ Rn+1 : ∑ ti = 1, ti ≥ 0

}
The map t→ x is one to one and clearly continuous. Since S is compact, it follows that the
inverse map is also continuous. This is a general consideration but what follows is a short
explanation why this is so in this specific example.

To see this, suppose xk → x in S. Let xk ≡ ∑
n
i=0 tk

i xi with x defined similarly with tk
i

replaced with ti, x≡ ∑
n
i=0 tixi. Then

xk−x0 =
n

∑
i=0

tk
i xi−

n

∑
i=0

tk
i x0 =

n

∑
i=1

tk
i (xi−x0)

Thus

xk−x0 =
n

∑
i=1

tk
i (xi−x0) , x−x0 =

n

∑
i=1

ti (xi−x0)

Say tk
i fails to converge to ti for all i ≥ 1. Then there exists a subsequence, still denoted

with superscript k such that for each i = 1, · · · ,n, it follows that tk
i → si where si ≥ 0 and

some si ̸= ti. But then, taking a limit, it follows that

x−x0 =
n

∑
i=1

si (xi−x0) =
n

∑
i=1

ti (xi−x0)

which contradicts independence of the xi−x0. It follows that for all i ≥ 1, tk
i → ti. Since

they all sum to 1, this implies that also tk
0 → t0. Thus the claim about continuity is verified.

Let f : S→ S be continuous. When doing f to a point x, one obtains another point of
S denoted as ∑

n
i=0 sixi. Thus in this argument the scalars si will be the components after

doing f to a point of S denoted as ∑
n
i=0 tixi.
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Consider a triangulation of S such that all simplices in the triangulation have diameter
less than ε . The vertices of the simplices in this triangulation will be labeled from p0, · · · , pn
the first n+1 prime numbers. If [y0, · · · ,yn] is one of these simplices in the triangulation,
each vertex is of the form ∑

n
l=0 tlxl where tl ≥ 0 and ∑l tl = 1. Let yi be one of these

vertices, yi = ∑
n
l=0 tlxl , the tl being determined by yi. Define r j ≡ s j/t j if t j > 0 and ∞

if t j = 0. Then p(yi) will be the label placed on yi. To determine this label, let rk be the
smallest of these ratios. Then the label placed on yi will be pk where rk is the smallest of
all these extended nonnegative real numbers just described. If there is duplication, pick pk
where k is smallest. The value of the simplex will be the product of the labels. What does
it mean for the value of the simplex to be Pn ≡ p0 p1 · · · pn? It means that each of the first
n+1 primes is assigned to exactly one of the n+1 vertices of the simplex so each r j > 0
and there are no repeats in the r j.

Note that for the vertices which are on [xi1 , · · · ,xim ] , these will be labeled from the list
{pi1 , · · · , pim} because tk = 0 for each of these and so rk = ∞ unless k ∈ {i1, · · · , im} . In
particular, this scheme labels xi as pi.

By the Sperner’s lemma procedure described above, there are an odd number of sim-
plices having value ∏i ̸=k pi on the kth face and an odd number of simplices in the triangula-
tion of S for which the value of the simplex is p0 p1 · · · pn ≡ Pn. Thus if [y0, · · · ,yn] is one
of these simplices, and p(yi) is the label for yi, ∏

n
i=0 p(yi) = ∏

n
j=0 p j ≡ Pn

What is rk, the smallest of those ratios in determining a label? Could it be larger than
1? rk is certainly finite because at least some t j ̸= 0 since they sum to 1. Thus, if rk > 1,
you would have sk > tk. The s j sum to 1 and so some s j < t j since otherwise, the sum of the
t j equalling 1 would require the sum of the s j to be larger than 1. Hence rk was not really
the smallest after all and so rk ≤ 1. Hence sk ≤ tk. Thus if the value of a simplex is Pn, then
for each vertex of the simplex, the smallest ratio associated with it is of the form s j/t j ≤ 1
and each j gets used exactly once.

Let S ≡ {S1, · · · ,Sm} denote those simplices whose value is Pn. In other words, if
{y0, · · · ,yn} are the vertices of one of these simplices in S , and ys = ∑

n
i=0 ts

i xi, rks ≤ r j
for all j ̸= ks and {k0, · · · ,kn}= {0, · · · ,n}. Let b denote the barycenter of Sk = [y0, · · · ,yn].
b≡ ∑

n
i=0

1
n+1yi

Do the same system of labeling for each n simplex in a sequence of triangulations where
the diameters of the simplices in the kth triangulation are no more than 2−k. Thus each of
these triangulations has a n simplex having diameter no more than 2−k which has value Pn.
Let bk be the barycenter of one of these n simplices having value Pn. By compactness, there
is a subsequence, still denoted with the index k such that bk→ x. This x is a fixed point.

Consider this last claim. x = ∑
n
i=0 tixi and after applying f , the result is ∑

n
i=0 sixi.

Then bk is the barycenter of some σ k having diameter no more than 2−k which has value
Pn. Say σ k is a simplex having vertices

{
yk

0, · · · ,yk
n
}

and the value of
[
yk

0, · · · ,yk
n
]

is Pn.

Thus also limk→∞y
k
i = x. Re ordering these vertices if necessary, we can assume that the

label for yk
i is pi which implies that the smallest ratio rk is when k = i and as noted above,

this ratio is no larger than 1. Thus for each i = 0, · · · ,n,
si

ti
≤ 1, si ≤ ti

the ith coordinate of f
(
yk

i
)

with respect to the original vertices of S decreases and each i
is represented for i = {0,1, · · · ,n} . As noted above, yk

i → x and so the ith coordinate of
yk

i , t
k
i must converge to ti. Hence if the ith coordinate of f

(
yk

i
)

is denoted by sk
i , sk

i ≤ tk
i .

By continuity of f, it follows that sk
i → si. Thus the above inequality is preserved on taking
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k→ ∞ and so 0 ≤ si ≤ ti this for each i and these si, ti pertain to the single point x. But
these si add to 1 as do the ti and so in fact, si = ti for each i and so f (x) = x. This proves
the following theorem which is the Brouwer fixed point theorem.

Theorem 6.3.1 Let S be a simplex [x0, · · · ,xn] such that {xi−x0}n
i=1 are indepen-

dent. Also let f : S→ S be continuous. Then there exists x ∈ S such that f (x) = x.

Corollary 6.3.2 Let K be a closed convex bounded subset of Rn. Let f : K → K be
continuous. Then there exists x ∈ K such that f (x) = x.

Proof: Let S be a large simplex containing K and let P be the projection map onto K.
See Problem 10 on Page 152 for the necessary properties of this projection map. Consider
g (x) ≡ f (Px) . Then g satisfies the necessary conditions for Theorem 6.3.1 and so there
exists x ∈ S such that g (x) = x. But this says x ∈ K and so g (x) = f (x). ■

Definition 6.3.3 A set B has the fixed point property if whenever f : B→ B for f
continuous, it follows that f has a fixed point.

The proof of this corollary is pretty significant. By a homework problem, a closed
convex set is a retract of Rn. This is what it means when you say there is this continuous
projection map which maps onto the closed convex set but does not change any point in
the closed convex set. When you have a set A which is a subset of a set B which has the
property that continuous functions f : B→ B have fixed points, and there is a continuous
map P from B to A which leaves points of A unchanged, then it follows that A will have the
same “fixed point property”. You can probably imagine all sorts of sets which are retracts
of closed convex bounded sets. Also, if you have a compact set B which has the fixed point
property and h : B→ h(B) with h one to one and continuous, it will follow that h−1 is
continuous and that h(B) will also have the fixed point property. This is very easy to show.
This will allow further extensions of this theorem. This says that the fixed point property
is topological.

Several of the following theorems are generalizations of the Brouwer fixed point theo-
rem.

6.4 The Schauder Fixed Point Theorem
First we give a proof of the Schauder fixed point theorem which is an infinite dimensional
generalization of the Brouwer fixed point theorem. This is a theorem which lives in Banach
space. Recal that one of these is a complete normed vector space. There is also a version
of this theorem valid in locally convex topological vector spaces where the theorem is
sometimes called Tychonoff’s theorem. In infinite dimensions, the closed unit ball fails to
have the fixed point property. Thus something more is needed to get a fixed point.

We let K be a closed convex subset of X a Banach space and let

f be continuous, f : K→ K, and f (K) is compact.

Lemma 6.4.1 For each r > 0 there exists a finite set of points

{y1, · · · ,yn} ⊆ f (K)
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and continuous functions ψ i defined on f (K) such that for x ∈ f (K),

n

∑
i=1

ψ i (x) = 1, (6.6)

ψ i (x) = 0 if x /∈ B(yi,r) , ψ i (x)> 0 if x ∈ B(yi,r) .

If

fr (x)≡
n

∑
i=1

yiψ i ( f (x)), (6.7)

then whenever x ∈ K,
∥ f (x)− fr (x)∥ ≤ r.

Proof: Using the compactness of f (K) which implies this set is totally bounded, there
exists an r net

{y1, · · · ,yn} ⊆ f (K)⊆ K

such that {B(yi,r)}n
i=1 covers f (K). Let

φ i (y)≡ (r−∥y− yi∥)+

Thus φ i (y)> 0 if y ∈ B(yi,r) and φ i (y) = 0 if y /∈ B(yi,r). For x ∈ f (K), let

ψ i (x)≡ φ i (x)

(
n

∑
j=1

φ j (x)

)−1

.

Then 6.6 is satisfied. Indeed the denominator is not zero because x is in one of the B(yi,r).
Thus it is obvious that the sum of these ψ i ( f (x)) equals 1 for x ∈ K. Now let fr be given
by 6.7 for x ∈ K. For such x,

f (x)− fr (x) =
n

∑
i=1

( f (x)− yi)ψ i ( f (x))

Thus
f (x)− fr (x) = ∑

{i: f (x)∈B(yi,r)}
( f (x)− yi)ψ i ( f (x))

+ ∑
{i: f (x)/∈B(yi,r)}

( f (x)− yi)ψ i ( f (x))

= ∑
{i: f (x)−yi∈B(0,r)}

( f (x)− yi)ψ i ( f (x)) =

∑
{i: f (x)−yi∈B(0,r)}

( f (x)− yi)ψ i ( f (x))+ ∑
{i: f (x)/∈B(yi,r)}

0ψ i ( f (x)) ∈ B(0,r)

because 0 ∈ B(0,r), B(0,r) is convex, and 6.6. It is just a convex combination of things in
B(0,r). ■

Note that we could have had the yi in f (K) in addition to being in f (K). This would
make it possible to eliminate the assumption that K is closed later on. All you really need
is that K is convex.

We think of fr as an approximation to f . In fact it is uniformly within r of f on K. The
next lemma shows that this fr has a fixed point. This is the main result and comes from the
Brouwer fixed point theorem in Rn. This will be an approximate fixed point.
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Lemma 6.4.2 For each r > 0, there exists xr ∈ convex hull of f (K)⊆ K such that

fr (xr) = xr, ∥ fr (x)− f (x)∥< r for all x

Proof: If fr (xr) = xr and xr = ∑
n
i=1 aiyi for ∑

n
i=1 ai = 1 and the yi described in the above

lemma, we need

fr (xr)≡
n

∑
i=1

yiψ i ( f (xr)) =
n

∑
j=1

y jψ j

(
f

(
n

∑
i=1

aiyi

))
=

n

∑
j=1

a jy j = xr.

Also, if this is satisfied, then we have the desired approximate fixed point.
This will be satisfied if for each j = 1, · · · ,n,

a j = ψ j

(
f

(
n

∑
i=1

aiyi

))
; (6.8)

so, let

Σn−1 ≡

{
a ∈ Rn :

n

∑
i=1

ai = 1, ai ≥ 0

}
and let h : Σn−1→ Σn−1 be given by

h(a) j ≡ ψ j

(
f

(
n

∑
i=1

aiyi

))
.

Since h is a continuous function of a, the Brouwer fixed point theorem applies and there
exists a fixed point for h which is a solution to 6.8. ■

The following is the Schauder fixed point theorem.

Theorem 6.4.3 Let K be a closed and convex subset of X, a normed linear space.
Let f : K→ K be continuous and suppose f (K) is compact. Then f has a fixed point.

Proof: Recall that f (xr)− fr (xr) ∈ B(0,r) and fr (xr) = xr with xr ∈ convex hull of
f (K)⊆ K.

There is a subsequence, still denoted with subscript r with r→ 0 such that f (xr)→ x ∈
f (K). Note that the fact that K is convex is what makes f defined at xr. xr is in the
convex hull of f (K) ⊆ K. This is where we use K convex. Then since fr is uniformly
close to f , it follows that f (xr) = xr→ x also. Therefore,

f (x) = lim
r→0

f (xr) = lim
r→0

fr (xr) = lim
r→0

xr = x. ■

We usually have in mind the mapping defined on a Banach space. However, the com-
pleteness was never used. Thus the result holds in a normed linear space.

There is a nice corollary of this major theorem which is called the Schaefer fixed point
theorem or the Leray Schauder alterative principle [22].

Theorem 6.4.4 Let f : X → X be a compact map. Then either

1. There is a fixed point for f for all t ∈ [0,1] or
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2. For every r > 0, there exists a solution to x = t f (x) for t ∈ (0,1) such that ∥x∥> r.

Proof: Suppose there is t0 ∈ [0,1] such that t0 f has no fixed point. Then t0 ̸= 0. If
t0 = 0, then t0 f obviously has a fixed point. Thus t0 ∈ (0,1]. Then let rM be the radial
retraction onto B(0,M).

rM f (x) = M
f (x)
∥ f (x)∥

By Schauder’s theorem there exists x ∈ B(0,M) such that t0rM f (x) = x. Then if ∥ f (x)∥ ≤
M, rM has no effect and so t0 f (x) = x which is assumed not to take place. Hence ∥ f (x)∥>
M and so ∥rM f (x)∥ = M so ∥x∥ = t0M. Also t0rM f (x) = t0M f (x)

∥ f (x)∥ = x and so x =

t̂ f (x) , t̂ = t0 M
∥ f (x)∥ < 1. Since M is arbitrary, it follows that the solutions to x = t f (x) for

t ∈ (0,1) are unbounded. It was just shown that there is a solution to x = t̂ f (x) , t̂ < 1 such
that ∥x∥= t0M where M is arbitrary. Thus the second of the two alternatives holds. ■

As an example of the usefulness of the Schauder fixed point theorem, consider the
following application to the theory of ordinary differential equations. In the context of this
theorem, X =C ([0,T ] ;Rn), a Banach space with norm given by

∥x∥ ≡max{|x(t)| : t ∈ [0,T ]} .

I assume the reader knows about the Riemann integral in what follows and the elementary
fundamental theorem of calculus. More general versions of these things are presented later
in the book.

Theorem 6.4.5 Let f : [0,T ]×Rn → Rn be continuous and suppose there exists
L > 0 such that for all λ ∈ (0,1), if

x′ = λf (t,x) , x(0) = x0 (6.9)

for all t ∈ [0,T ], then ∥x∥< L. Then there exists a solution to

x′ = f (t,x) , x(0) = x0 (6.10)

for t ∈ [0,T ].

Proof: Let F : X → X where X described above.

Fy (t)≡
∫ t

0
f (s,y (s)+x0)ds

Let B be a bounded set in X . Then |f (s,y (s)+x0)| is bounded for s ∈ [0,T ] if y ∈ B. Say
|f (s,y (s)+x0)| ≤CB. Hence F (B) is bounded in X . Also, for y ∈ B,s < t,

|Fy (t)−Fy (s)| ≤
∣∣∣∣∫ t

s
f (s,y (s)+x0)ds

∣∣∣∣≤CB |t− s|

and so F (B) is pre-compact by the Ascoli Arzela theorem. By the Schaefer fixed point
theorem, there are two alternatives. Either there are unbounded solutions y to

λF (y) = y
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for various λ ∈ (0,1) or for all λ ∈ [0,1] , there is a fixed point for λF. In the first case,
there would be unbounded yλ solving

yλ (t) = λ

∫ t

0
f (s,yλ (s)+x0)ds

Then let xλ (s)≡ yλ (s)+x0 and you get ∥xλ∥ also unbounded for various λ ∈ (0,1). The
above implies

xλ (t)−x0 = λ

∫ t

0
f (s,xλ (s))ds

so x′
λ
= λf (t,xλ ) ,xλ (0) = x0 and these would be unbounded for λ ∈ (0,1) contrary

to the assumption that there exists an estimate for these valid for all λ ∈ (0,1). Hence
the first alternative must hold and hence there is y ∈ X such that Fy= y. Then letting
x(s)≡ y (s)+x0, it follows that

x(t)−x0 =
∫ t

0
f (s,x(s))ds

and so x is a solution to the differential equation on [0,T ]. ■
Note that existence of a solution to the differential equation is not assumed, only esti-

mates of possible solutions. These estimates are called a-priori estimates. Also note this is
a global existence theorem, not a local one for a solution defined on only a small interval.

6.5 The Kakutani Fixed Point Theorem
Definition 6.5.1 If A : X →P (Y ) is a set-valued map, define the graph of A by

G(A)≡ {(x,y) : y ∈ Ax}.

Consider a map A which maps Cp to P (Cp) which satisfies

Ax is compact and convex. (6.11)

and also the condition that if O is open and O⊇ Ax, then there exists δ > 0 such that if

y ∈ B(x,δ ) , then Ay ⊆ O. (6.12)

This last condition is sometimes referred to as upper semicontinuity. In words, A is upper
semicontinuous and has values which are compact and convex. This is equivalent to saying
that if Ax ∈ O and xn→ x, then for large enough n, it follows that Axn ⊆ O.

With this definition, here is a lemma which has to do with the situation when the graph
is closed.

Lemma 6.5.2 Let A satisfy 6.12. Then AK is a subset of a compact set whenever K is
compact. Also the graph of A is closed if Ax is closed.

Proof: Let x ∈ K. Then Ax is compact and contained in some open set whose closure
is compact, Ux. By assumption 6.12 there exists an open set Vx containing x such that if
y ∈Vx, then Ay ⊆Ux. Let Vx1 , · · · ,Vxm cover K. Then AK ⊆ ∪m

k=1Uxk , a compact set.
To see the graph of A is closed when Ax is closed, let xk→x,yk→ y where yk ∈ Axk.

Then letting O = Ax+ B(0,r) it follows from 6.12 that yk ∈ Axk ⊆ O for all k large
enough. Therefore, y ∈ Ax+B(0,2r) and since r > 0 is arbitrary and Ax is closed it
follows y ∈ Ax. ■

Also, there is a general consideration relative to upper semicontinuous functions.
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Lemma 6.5.3 If f is upper semicontinuous on some set K and g is continuous and
defined on f (K) , then g ◦f is also upper semicontinuous.

Proof: Let xn→ x in K. Let U ⊇ g ◦f (x) . Is g ◦f (xn) ∈U for all n large enough?
We have f (x) ∈ g−1 (U) , an open set. Therefore, if n is large enough, f (xn) ∈ g−1 (U).
It follows that for large enough n, g ◦f (xn) ∈U and so g ◦f is upper semicontinuous on
K. ■

The next theorem is an application of the Brouwer fixed point theorem. First define an
p simplex, denoted by [x0, · · · ,xp], to be the convex hull of the p+1 points,

{
x0, · · · ,xp

}
where {xi−x0}p

i=1 are independent. Thus

[x0, · · · ,xp]≡

{
p

∑
i=1

tixi :
p

∑
i=1

ti = 1, ti ≥ 0

}
.

If p ≤ 2, the simplex is a triangle, line segment, or point. If p ≤ 3, it is a tetrahedron,
triangle, line segment or point. A collection of simplices is a tiling of Rp if Rp is contained
in their union and if S1,S2 are two simplices in the tiling, with

S j =
[
x j

0, · · · ,x
j
p

]
,

then
S1∩S2 =

[
xk0 , · · · ,xkr

]
where {

xk0 , · · · ,xkr

}
⊆
{
x1

0, · · · ,x1
p
}
∩
{
x2

0, · · · ,x2
p
}

or else the two simplices do not intersect. The collection of simplices is said to be locally
finite if, for every point, there exists a ball containing that point which also intersects only
finitely many of the simplices in the collection. It is left to the reader to verify that for each
ε > 0, there exists a locally finite tiling of Rp which is composed of simplices which have
diameters less than ε . The local finiteness ensures that for each ε the vertices have no limit
point. To see how to do this, consider the case of R2. Tile the plane with identical small
squares and then form the triangles indicated in the following picture. It is clear something
similar can be done in any dimension. Making the squares identical ensures that the little
triangles are locally finite.

In general, you could consider [0,1]p . The point at the center is (1/2, · · · ,1/2) . Then
there are 2p faces. Form the 2p pyramids having this point along with the 2p−1 vertices of
the face. Then use induction on each of these faces to form smaller dimensional simplices
tiling that face. Corresponding to each of these 2p pyramids, it is the union of the simplices
whose vertices consist of the center point along with those of these new simplicies tiling the
chosen face. In general, you can write any p dimensional cube as the translate of a scaled
[0,1]p. Thus one can express each of identical cubes as a tiling of m(p) simplices of the
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appropriate size and thereby obtain a tiling of Rp with simplices. A ball will intersect only
finitely many of the cubes and hence finitely many of the simplices. To get their diameters
small as desired, just use [0,r]p instead of [0,1]p.

Thus one can give a function any value desired on these vertices and extend appropri-
ately to the rest of the simplex and obtain a continuous function.

The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theo-
rem from continuous single valued maps to upper semicontinuous maps which have closed
convex values.

Theorem 6.5.4 Let K be a compact convex subset of Rp and let A : K →P (K)
such that Ax is a closed convex subset of K and A is upper semicontinuous. Then there
exists x such that x ∈ Ax. This is the “fixed point”.

Proof: Let there be a locally finite tiling of Rp consisting of simplices having diameter
no more than ε . Let Px be the point in K which is closest to x. For each vertex xk, pick
Aεxk ∈ APxk and define Aε on all of Rp by the following rule. If

x ∈ [x0, · · · ,xp],

so x= ∑
p
i=0 tixi, ti ∈ [0,1] ,∑i ti = 1,then

Aε x≡
p

∑
k=0

tkAεxk.

Now by construction Aεxk ∈ APxk ∈ K and so Aε is a continuous map defined on Rp with
values in K thanks to the local finiteness of the collection of simplices. By the Brouwer
fixed point theorem Aε has a fixed point xε in K, Aεxε = xε .

xε =
p

∑
k=0

tε
k Aεx

ε
k , Aεx

ε
k ∈ APxε

k ⊆ K

where a simplex containing xε is

[xε

0, · · · ,x
ε
p], xε =

p

∑
k=0

tε
kx

ε
k

Also, xε ∈ K and is closer than ε to each xε
k so each xε

k is within ε of K. It follows that for
each k,

∣∣Pxε
k −xε

k

∣∣< ε and so
lim
ε→0
|Pxε

k −xε
k |= 0

By compactness of K, there exists a subsequence, still denoted with the subscript of ε such
that for each k, the following convergences hold as ε → 0

tε
k → tk, Aεx

ε
k → yk, Pxε

k → zk, x
ε
k → zk

Any pair of the xε
k are within ε of each other. Hence, any pair of the Pxε

k are within ε of
each other because P reduces distances. Therefore, in fact, zk does not depend on k.

lim
ε→0

Pxε
k = lim

ε→0
xε

k = z, lim
ε→0

xε = lim
ε→0

p

∑
k=0

tε
kx

ε
k =

p

∑
k=0

tkz= z
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By upper semicontinuity of A, for all ε small enough,

APxε
k ⊆ Az+B(0,r)

In particular, since Aεx
ε
k ∈ APxε

k ,

Aεx
ε
k ∈ Az+B(0,r) for ε small enough

Since r is arbitrary and Az is closed, it follows yk ∈ Az. It follows that since K is closed,

xε → z =
p

∑
k=0

tkyk, tk ≥ 0,
p

∑
k=0

tk = 1

Now by convexity of Az and the fact just shown that yk ∈ Az,

z=
p

∑
k=0

tkyk ∈ Az

and so z ∈ Az. This is the fixed point. ■
One can replace Rp with Cp in the above theorem because it is essentially R2p. Also

the theorem holds with no change for any finite dimensional normed linear space since
these are homeomorpic to Rp or Cp.

6.6 Ekeland’s Variational Principle
Recall the notation X ′ = L (X ,R) , the continuous linear functions mapping X to R. This
section deals with real Banach spaces. If you had complex ones, X ′ would denote L (X ,C).

Definition 6.6.1 A function φ : X → (−∞,∞] is called proper if it is not constantly
equal to ∞. Here X is assumed to be a complete metric space. The function φ is lower
semicontinuous if

xn→ x implies φ (x)≤ lim inf
n→∞

φ (xn)

It is bounded below if there is some constant C such that C ≤ φ (x) for all x.

The variational principle of Ekeland is the following theorem [22]. You start with an
approximate minimizer x0. It says there is yλ fairly close to x0 such that if you subtract a
“cone” from the value of φ at yλ , then the resulting function is less than φ (x) for all x ̸= yλ .

x0 yλ

Theorem 6.6.2 Let X be a complete metric space and let φ : X→ (−∞,∞] be proper,
lower semicontinuous and bounded below. Let x0 be such that

φ (x0)≤ inf
x∈X

φ (x)+ ε

Then for every λ > 0 there exists a yλ such that



6.6. EKELAND’S VARIATIONAL PRINCIPLE 171

1. φ (yλ )≤ φ (x0)

2. d (yλ ,x0)≤ λ

3. φ (yλ )− ε

λ
d (x,yλ )< φ (x) for all x ̸= yλ

To motivate the proof, see the following picture which illustrates the first two steps.
The Siwill be sets in X but are denoted symbolically by labeling them in X× (−∞,∞].

x1

x2

S1 S1

Then the end result of this iteration would be a picture like the following.

yλ

Thus you would have φ (yλ )− ε

λ
d (yλ ,x) ≤ φ (x) for all x which is seen to be what is

wanted.
Proof: Let x1 = x0 and define S1 ≡

{
z ∈ X : φ (z)≤ φ (x1)− ε

λ
d (z,x1)

}
. Then S1 con-

tains x1 so it is nonempty. It is also clear that S1 is a closed set. This follows from the lower
semicontinuity of φ . Suppose

Sk ≡
{

z ∈ X : φ (z)≤ φ (xk)−
ε

λ
d (z,xk)

}
where xk ∈ Sk−1. Pick xk+1 ∈ Sk and define Sk+1 similarly. Will this yield a nested sequence
of nonempty closed sets? Yes, it appears that it would because if z ∈ Sk then

φ (z) ≤
∈Sk−1

φ (xk)−
ε

λ
d (z,xk)≤

(
φ (xk−1)−

ε

λ
d (xk−1,xk)

)
− ε

λ
d (z,xk)

≤ φ (xk−1)−
ε

λ
d (z,xk−1)

showing that z has what it takes to be in Sk−1. Thus we would obtain a sequence of nested,
nonempty, closed sets according to this scheme.

Now here is how to choose the xk ∈ Sk−1. Let φ (xk) < infx∈Sk−1 φ (x)+ 1
2k . Then for

z ∈ Sn+1 ⊆ Sn, φ (z)≤ φ (xn+1)− ε

λ
d (z,xn+1) and so

ε

λ
d (z,xn+1) ≤ φ (xn+1)−φ (z)≤ inf

x∈Sn
φ (x)+

1
2n+1 −φ (z)

≤ φ (z)+
1

2n+1 −φ (z) =
1

2n+1
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Thus every z ∈ Sn+1 is within 1
2n+1 of the single point xn+1 and so the diameter of Sn

converges to 0 as n→ ∞. By completeness of X , there exists a unique yλ ∈ ∩nSn. Then it
follows in particular that for x0 = x1 as above, φ (yλ )≤ φ (x0)− ε

λ
d (yλ ,x0)≤ φ (x0) which

verifies the first of the above conclusions.
As to the second, φ (x0)≤ infx∈X φ (x)+ ε and so, for any x,

φ (yλ )≤ φ (x0)−
ε

λ
d (yλ ,x0)≤ φ (x)+ ε− ε

λ
d (yλ ,x0) ,

this being true for x = yλ . Hence ε

λ
d (yλ ,x0)≤ ε and so d (yλ ,x0)≤ λ .

Finally consider the third condition. If it does not hold, then there exists z ̸= yλ such that
φ (yλ ) ≥ φ (z)+ ε

λ
d (z,yλ ) so that φ (z) ≤ φ (yλ )− ε

λ
d (z,yλ ) . But then, by the definition

of yλ as being in all the Sn,φ (yλ )≤ φ (xn)− ε

λ
d (xn,yλ ) and so

φ (z) ≤ φ (xn)−
ε

λ
(d (xn,yλ )+d (z,yλ ))

≤ φ (xn)−
ε

λ
d (xn,z)

Since n is arbitrary, this shows that z ∈ ∩nSn but there is only one element of this intersec-
tion and it is yλ so z must equal yλ , a contradiction. ■

Note how if you make λ very small, you could pick ε very small such that the cone
looks pretty flat. Of course, you can always consider an equivalent metric d̂ (x,y) ≡
ε

λ
d (x,y) in all of these considerations.

6.6.1 Cariste Fixed Point Theorem
As mentioned in [22], the above result can be used to prove the Cariste fixed point theorem.

Theorem 6.6.3 Let φ be lower semicontinuous, proper, and bounded below on a
complete metric space X and let F : X →P (X) be set valued such that F (x) ̸= /0 for all
x. Also suppose that for each x ∈ X , there exists y ∈ F (x) such that φ (y)≤ φ (x)−d (x,y).
Then there exists x0 such that x0 ∈ F (x0).

Proof: In the above Ekeland variational principle, let ε = 1 = λ . Then there exists x0
such that for all y ̸= x0

φ (x0)−d (y,x0)< φ (y) , so φ (x0)< φ (y)+d (y,x0) (6.13)

for all y ̸= x0.

x→ φ(x0)−d(x,x0)

φ(x0)
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Suppose x0 /∈ F (x0) . From the assumption, there is y ∈ F (x0) (so y ̸= x0) such that
φ (y)≤ φ (x0)−d (x0,y) . Since y ̸= x0, it follows

φ (y)+d (x0,y)≤ φ (x0)< φ (y)+d (y,x0)

a contradiction. Hence x0 ∈ F (x0) after all. ■
It is a funny theorem. It is easy to prove, but you look at it and wonder what it says.

In fact, it implies the Banach fixed point theorem. If F is single valued, you would need to
have a function φ such that for each x,

φ (F (x))≤ φ (x)−d (x,y)

and if you have such a φ then you can assert there is a fixed point for F . Suppose F is
single valued and d (Fx,Fy) ≤ rd (x,y) ,0 < r < 1. Of course F has a fixed point using
easier techniques. However, this also follows from this result. Let φ (x) = 1

1−r d (x,F (x)) .
Then is it true that for each x, there exists y ∈ F (x) such that the inequality holds for all x?
Is

1
1− r

d (F (x) ,F (F (x)))≤ 1
1− r

d (x,F (x))−d (x,F (x))

Yes, this is certainly so because the right side reduces to r
1−r d (x,F (x)) . Thus this fixed

point theorem implies the usual Banach fixed point theorem.
The Ekeland variational principle says that when φ is lower semicontinuous proper and

bounded below, there exists y such that

φ (y)−d (x,y)< φ (x) for all x ̸= y

In fact this can be proved from the Cariste fixed point theorem. Suppose the variational
principle does not hold. This would mean that for all y there exists x ̸= y such that φ (y)−
d (x,y) ≥ φ (x) . Thus, for all x there exists y ̸= x such that φ (x)− d (x,y) ≥ φ (y). The
inequality is preserved if x = y. Then let

F (x)≡ {y ̸= x : φ (x)−d (x,y)≥ φ (y)} ̸= /0

by assumption. This is the hypothesis for the Cariste fixed point theorem. Hence there
exists x0 such that x0 ∈ F (x0) = {y ̸= x0 : φ (x0)−d (x0,y)≥ φ (y)} but this cannot happen
because you can’t have x0 ̸= x0. Thus the Ekeland variational principle must hold after all.

6.6.2 A Density Result
There are several applications of the Ekeland variational principle. For more of them, see
[22]. One of these is to show that there is a point where φ

′ is small assuming φ is bounded
below, lower semicontinuous, and Gateaux differentiable, meaning that there exists φ

′ (x)∈
X ′ such that if v ∈ X , then

φ
′ (x)(v)≡ lim

h→0

φ (x+hv)−φ (x)
h

, φ
′ (x) ∈ X ′

Here X is a real Banach space.

Theorem 6.6.4 Let X be a Banach space and φ : X → R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Then for every ε > 0 there exists x ∈ X
such that

φ (xε)≤ inf
x∈X

φ (x)+ ε and
∥∥φ
′ (xε)

∥∥
X ′ ≤ ε
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Proof: From the Ekeland variational principle with λ = 1, there exists xε such that
φ (xε) ≤ φ (x0) ≤ infx∈X φ (x)+ ε and for all x, φ (xε) < φ (x)+ ε ∥x− xε∥. Then letting
x = xε + hv where ∥v∥ = 1,φ (xε +hv)−φ (xε) > −ε |h|. Let h < 0. Then divide by it to
obtain φ(xε+hv)−φ(xε )

h < ε . Passing to a limit as h→ 0 yields φ
′ (x)(v) ≤ ε . Now v was

arbitrary with norm 1 and so sup∥v∥=1 |φ ′ (xε)(v)|= ∥φ ′ (xε)∥ ≤ ε ■
There is another very interesting application of the Ekeland variational principle [22].

Theorem 6.6.5 Let X be a real Banach space and φ : X → R be Gateaux differen-
tiable, bounded from below, and lower semicontinuous. Also suppose there exists a,c > 0
such that

a∥x∥− c≤ φ (x) for all x ∈ X

Then {φ ′ (x) : x ∈ X} is dense in the ball of X ′ centered at 0 with radius a. Here φ
′ (x) ∈ X ′

and is determined by

φ
′ (x)(v)≡ lim

h→0

φ (x+hv)−φ (x)
h

Proof: Let x∗ ∈ X ′,∥x∗∥ ≤ a. Let ψ (x) = φ (x)−x∗ (x) . This is lower semicontinuous.
It is also bounded from below because

ψ (x)≥ φ (x)−a∥x∥ ≥ (a∥x∥− c)−a∥x∥=−c

It is also clearly Gateaux differentiable and lower semicontinuous because the piece added
in is actually continuous. It is clear that the Gateaux derivative is just φ

′ (x)− x∗. By
Theorem 6.6.4, there exists xε such that ∥φ ′ (xε)− x∗∥ ≤ ε ■

Thus this theorem says that if φ (x) ≥ a∥x∥− c where φ has the nice properties of the
theorem, it follows that φ

′ (x) is dense in B(0,a) in the dual space X ′. It follows that if for
every a, there exists c such that φ (x)≥ a∥x∥−c for all x ∈ X then {φ ′ (x) : x ∈ X} is dense
in X ′. This proves the following lemma.

Lemma 6.6.6 Let X be a real Banach space and φ : X → R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Suppose for all a > 0 there exists a c > 0
such that φ (x)≥ a∥x∥− c for all x. Then {φ ′ (x) : x ∈ X} is dense in X ′.

If the above holds, then φ(x)
∥x∥ ≥ a− c

∥x∥ and so, since a is arbitrary, it must be the case
that

lim
∥x∥→∞

φ (x)
∥x∥

= ∞. (6.14)

In fact, this is sufficient to conclude that for each a > 0 there is c > 0 such that φ (x) ≥
a∥x∥− c. If not, there would exist a > 0 such that φ (xn)< a∥xn∥−n. Let −L be a lower
bound for φ (x). Then −L+n≤ a∥xn∥ and so ∥xn∥→ ∞. Now it follows that

a≥ φ (xn)

∥xn∥
+

n
∥xn∥

≥ φ (xn)

∥xn∥
(6.15)

which is a contradiction to 6.14. This proves the following interesting density theorem.

Theorem 6.6.7 Let X be a real Banach space and φ : X → R be Gateaux differen-
tiable, bounded from below, and lower semicontinuous. Also suppose the coercivity condi-
tion

lim
∥x∥→∞

φ (x)
∥x∥

= ∞
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Then {φ ′ (x) : x ∈ X} is dense in X ′. Here φ
′ (x) ∈ X ′ and is determined by

φ
′ (x)(v)≡ lim

h→0

φ (x+hv)−φ (x)
h

6.7 Exercises
1. It was shown that in a finite dimensional normed linear space that the compact sets

are exactly those which are closed and bounded. Explain why every finite dimen-
sional normed linear space is complete.

2. In any normed linear space, show that span(x1, · · · ,xn) is closed. That is, the span
of any finite set of vectors is always a closed subspace. Hint: Suppose you let
V = span(x1, · · · ,xn) and let vn→ v be convergent sequence of vectors in V . What
does this say about the coordinate maps? Remember these are linear maps into F and
so they are continuous.

3. It was shown that in a finite dimensional normed linear space that the compact sets
are exactly those which are closed and bounded. What if you have an infinite di-
mensional normed linear space X? Show that the unit ball D(0,r)≡ {x : ∥x∥ ≤ 1} is
NEVER compact even though it is closed and bounded. Hint: Suppose you have
{xi}n

i=1 where
∥∥xi− x j

∥∥ ≥ 1
2 . Let y /∈ span(x1, · · · ,xn) , a closed subspace. Such a y

exists because X is not finite dimensional. Explain why dist(y,span(x1, · · · ,xn))> 0.
This depends on span(x1, · · · ,xn) being closed. Let z ∈ span(x1, · · · ,xn) such that
∥y− z∥ ≤ 2dist(y,span(x1, · · · ,xn)) . Let xn+1 ≡ y−z

∥y−z∥ . Then consider the following:

∥xn+1− xk∥=
∥∥∥∥y− (z+∥y− z∥xk)

∥y− z∥

∥∥∥∥≥ ∥y− (z+∥y− z∥xk)∥
2dist(y,span(x1, · · · ,xn))

What of (z+∥y− z∥xk)? Where is it? Isn’t it in span(x1, · · · ,xn)? Explain why this
yields a sequence of points of X which are spaced at least 1/2 apart even though they
are all in the closed unit ball.

4. Find an example of two 2× 2 matrices A,B such that ∥AB∥ < ∥A∥∥B∥. This refers
to the operator norm taken with respect to the usual norm on R2. Hint: Maybe make
it easy on yourself and consider diagonal matrices.

5. Now let V =C ([0,1]) and let T : V →V be given by T f (x)≡
∫ x

0 f (t)dt. Show that
T is continuous and linear. Here the norm is

∥ f∥ ≡max{| f (x)| : x ∈ [0,1]} .

Can you find ∥T∥ where this is the operator norm defined by analogy to what was
given in the chapter?

6. Show that in any metric space (X ,d) , if U is an open set and if x ∈U, then there
exists r > 0 such that the closure of B(x,r) , B(x,r) ⊆U. This says, in topological
terms, that (X ,d) is regular. Is it always the case in a metric space that B(x,r) =
{y : d (y,x)≤ r} ≡ D(0,r)? Prove or disprove. Hint: In fact, the answer to the last
question is no.
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7. Let (X ,d) be a complete metric space. Let {Un} be a sequence of dense open sets.
This means that B(x,r)∩Un ̸= /0 for every x ∈ X , and r > 0. You know that ∩nUn is
not necessarily open. Show that it is nevertheless, dense. Hint: Let D = ∩nUn. You
need to show that B(x,r)∩D ̸= /0. There is a point p1 ∈ U1 ∩B(x,r) . Then there
exists r1 < 1/2 such that B(p1,r1)⊆U1∩B(x,r) . From the above problem, you can
adjust r1 such that B(p1,r1) ⊆U1 ∩B(x,r) . Next there exists p2 ∈ B(p1,r1)∩U2.
Let r2 < 1/22 be such that B(p2,r2)⊆ B(p1,r1)∩U2∩U1. Continue this way. You
get a nested sequence of closed sets {Bk} such that the diameter of Bk is no more
than 1/2k−1, the kth being contained in B(pk−1,rk−1)∩∩k−1

i=1 Ui. Explain why there is
a unique point in the intersection of these closed sets which is in B(x,r)∩∩∞

k=1Uk.
Then explain why this shows that D is dense.

8. The countable intersection of open sets is called a Gδ set. Show that the rational
numbers Q is NOT a Gδ set in R. In fact, show that no countable dense set can be a
Gδ set. Show that N is a Gδ set. It is not dense.

9. You have a function f : (X ,d)→ (Y,ρ). Define

ωδ f (x)≡ sup{ρ ( f (z) , f (y)) : z,y ∈ B(x,δ )}

Then explain why limδ→0 ωδ f (x)≡ω f (x) exists. Explain why a function is contin-
uous at x if and only if ω f (x) = 0. Next show that the set of all x where ω f (x) = 0
is a Gδ set. Hint: ω f (x) = 0 if and only if x is in something like this: ∩∞

n=1 ∪∞
k=1[

ω1/k f (ω)< 1
n

]
. Explain this. Then explain why ∪∞

k=1

[
ω1/k f (ω)< 1

n

]
is an open

set.

10. Prove or disprove.

(a) If A is compact, then Rn \A is connected. You might consider the case n > 1
and the case n = 1 separately.

(b) If A is connected in Rn, then Rn \A is also connected.

(c) If A is connected in Rn, then either A is open or A is closed.

(d) Rn \B(0,1) is connected. Two cases to consider: n = 1 and n > 1.

11. If A is a connected set in Rn, and A is not a single point, show that every point of A
is a limit point of A.

12. Consider the Cantor set. This is obtained by starting with [0,1] deleting (1/3,2,3)
and then taking the two closed intervals which result and deleting the middle open
third of each of these and continuing this way. Let Jk denote the union of the 2k

closed intervals which result at the kth step of the construction. The Cantor set is
J ≡ ∩∞

k=1Jk. Explain why J is a nonempty compact subset of R. Show that every
point of J is a limit point of J. Also show there exists a mapping from J onto [0,1]
even though the sum of the lengths of the deleted open intervals is 1. Show that the
Cantor set has empty interior. If x ∈ J, consider the connected component of x. Show
that this connected component is just x.

13. You have a complete metric space (X ,d) and a mapping T : X → X which satis-
fies d (T x,Ty) ≤ rd (x,y) , 0 < r < 1. Show x,T x,T 2x, · · · . converges to a point
z ∈ X such that T z = z. Next suppose you only know d(T x,x)

1−r < R and that on
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B(x,R) ,d (T x,Ty)≤ rd (x,y) where r < 1 as above. Show that then z ∈ B(x,R) and
that in fact each T kx ∈ B(x,R). Show also there is no more than one such fixed point
z on B(x,R).

14. In Theorem 5.7.1 it is assumed f has values in F. Show there is no change if f
has values in V, a normed vector space provided you redefine the definition of a
polynomial to be something of the form ∑|α|≤m aαx

α where aα ∈V .

15. How would you generalize the conclusion of Corollary 5.8.8 to include the situation
where f has values in a finite dimensional normed vector space?

16. If f and g are real valued functions which are continuous on some set, D, show that
min( f ,g) ,max( f ,g) are also continuous. Generalize this to any finite collection of
continuous functions. Hint: Note max( f ,g) = | f−g|+ f+g

2 . Now recall the triangle
inequality which can be used to show |·| is a continuous function.

17. Find an example of a sequence of continuous functions defined on Rn such that each
function is nonnegative and each function has a maximum value equal to 1 but the
sequence of functions converges to 0 pointwise onRn \{0} , that is, the set of vectors
in Rn excluding 0.

18. An open subset U of Rn is arcwise connected if and only if U is connected. Consider
the usual Cartesian coordinates relative to axes x1, · · · ,xn. A square curve is one
consisting of a succession of straight line segments each of which is parallel to some
coordinate axis. Show an open subset U of Rn is connected if and only if every two
points can be joined by a square curve.

19. Let x→ h(x) be a bounded continuous function. Show f is continuous for f (x) =
∑

∞
n=1

h(nx)
n2 .

20. Let S be a any countable subset of Rn. Show there exists a function, f defined on
Rn which is discontinuous at every point of S but continuous everywhere else. Hint:
This is real easy if you do the right thing. It involves the Weierstrass M test.

21. If f is any continuous function defined on K a sequentially compact subset of Rn,
show there exists a series of the form ∑

∞
k=1 pk, where each pk is a polynomial, which

converges uniformly to f on [a,b]. Hint: You should use the Weierstrass approxi-
mation theorem to obtain a sequence of polynomials. Then arrange it so the limit of
this sequence is an infinite sum.

22. Let K be a sequentially compact set in a normed vector space V and let f : V →W be
continuous where W is also a normed vector space. Show f (K) is also sequentially
compact.

23. If f is uniformly continuous, does it follow that |f | is also uniformly continuous?
If |f | is uniformly continuous does it follow that f is uniformly continuous? An-
swer the same questions with “uniformly continuous” replaced with “continuous”.
Explain why.



178 CHAPTER 6. FIXED POINT THEOREMS

24. Suppose S,T are linear maps on some finite dimensional vector space, S−1 exists and
let δ ∈ (0,1). Then whenever ∥S−T∥ is small enough, it follows that

|Tv|
|Sv|

∈ (1−δ ,1+δ ) (6.16)

for all v ̸= 0. Similarly if T−1 exists and ∥S−T∥ is small enough,

|Tv|
|Sv|

∈ (1−δ ,1+δ ) .

Hint: For the first part, consider the new norm ∥v∥ ≡
∣∣S−1v

∣∣ . Use equivalence of
norms and simple estimates to establish 6.16.

25. Let σ be an r simplex. Then [σ ,b] will consist of all (1−λ )σ +λb where λ ∈ [0,1].
If σ = [x1, · · · ,xr] , show that [σ ,b] = [x1, · · · ,xr,b]. Now if σ1,σ2 ⊆ σ where
[σ ,b] is an r+ 1 simplex and each σ i is an r simplex, show that [σ1,b]∩ [σ2,b] =
[σ2∩σ1,b] .

26. Let A :Rn→Rn be continuous and let f ∈Rn. Also let (·, ·) denote the standard inner
product in Rn. Letting K be a closed and bounded and convex set, show that there
exists x∈K such that for all y ∈K, (f −Ax,y−x)≤ 0. Hint: Show that this is the
same as saying P(f −Ax+x)= x for some x ∈ K where here P is the projection
map discussed above in Problem 10 on Page 152. Now use the Brouwer fixed point
theorem. This little observation is called Browder’s lemma. It is a fundamental result
in nonlinear analysis.

27. ↑In the above problem, suppose that you have a coercivity result which is

lim
∥x∥→∞

(Ax,x)
∥x∥

= ∞.

Show that if you have this, then you don’t need to assume the convex closed set is
bounded. In case K = Rn, and this coercivity holds, show that A maps onto Rn.

28. Let f : X → [−∞,∞] where X is a Banach space. This is said to be lower semi-
continuous if whenever xn → x, it follows that f (x) ≤ liminfn→∞ f (xn) . Show that
this is the same as saying that the epigraph of f is closed. Here we can make
X× [−∞,∞] into a metric space in a natural way by using the product topology where
the distance on [−∞,∞] will be d (σ ,α) ≡ |arctan(σ)− arctan(α)|. Here epi( f ) ≡
{(x,α) : α ≥ f (x)}. The function is upper semicontinuous if limsupn→∞ f (xn) ≤
f (x). What is a condition for f to be upper semicontinuous? Do you need a Banach
space to do this? Would it be sufficient to let X be a metric space?

29. Explain why the supremum of lower semicontinuous functions is lower semicontin-
uous and the infimum of upper semicontinuous functions is upper semicontinuous.

30. Let K be a nonempty closed and convex subset of Rn. Recall K is convex means that
if x,y ∈ K, then for all t ∈ [0,1] , tx+(1− t)y ∈ K. Show that if x ∈Rn there exists
a unique z ∈ K such that |x−z|= min{|x−y| : y ∈ K} .This z will be denoted as
Px. Hint: First note you do not know K is compact. Establish the parallelogram
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identity if you have not already done so, |u−v|2 + |u+v|2 = 2 |u|2 +2 |v|2 . Then
let {zk} be a minimizing sequence,

lim
k→∞

|zk−x|2 = inf{|x−y| : y ∈ K} ≡ λ .

Now using convexity, explain why∣∣∣∣zk−zm

2

∣∣∣∣2 + ∣∣∣∣x−zk +zm

2

∣∣∣∣2 = 2
∣∣∣∣x−zk

2

∣∣∣∣2 +2
∣∣∣∣x−zm

2

∣∣∣∣2
and then use this to argue {zk} is a Cauchy sequence. Then if zi works for i = 1,2,
consider (z1 +z2)/2 to get a contradiction.

31. In Problem 30 show that Px satisfies and is in fact characterized as the solution to
the following variational inequality. (x−Px,y−Px) ≤ 0 for all y ∈ K. Then show
that |Px1−Px2| ≤ |x1−x2|. Hint: For the first part note that if y ∈ K, the function
t → |x−(Px+ t (y−Px))|2 achieves its minimum on [0,1] at t = 0. For the second
part,

(x1−Px1) · (Px2−Px1)≤ 0, (x2−Px2) · (Px1−Px2)≤ 0.

Explain why (x2−Px2− (x1−Px1)) · (Px2−Px1) ≥ 0 and then use a some ma-
nipulations and the Cauchy Schwarz inequality to get the desired inequality. Thus P
is called a retraction onto K.

32. Browder’s lemma says: Let K be a convex closed and bounded set in Rn and let
A : K → Rn be continuous and f ∈ Rn. Then there exists x ∈ K such that for all
y ∈ K,

(f −Ax,y−x)≤ 0

show this is true. Hint: Consider x→P(f −Ax+x) where P is the projection onto
K. If there is a fixed point of this mapping, then P(f −Ax+x) = x. Now consider
the variational inequality satisfied. This little lemma is the basis for a whole lot of
nonlinear analysis involving nonlinear operators of various kinds.

33. Generalize the above problem as follows. Let K be a convex closed and bounded
set in Rn and let A : K→P (Rn) be upper semi-continuous having closed bounded
convex values and f ∈ Rn. Then there exists x ∈ K and z ∈ Ax such that for all
y ∈ K, (f −z,y−x)≤ 0 show this is true. Also show that if K is a closed convex
and bounded set in E a finite dimensional normed linear space and A : K→P (E ′) is
upper semicontinuous having closed bounded convex values and f ∈ E ′, then there
exists x ∈ K and z ∈ Ax such that for all y ∈ K,⟨ f − z,y− x⟩ ≤ 0. Hint: Use the con-
struction for the proof of the Kakutani fixed point theorem and the above Browder’s
lemma.

34. This problem establishes a remarkable result about existence for a system of in-
equalities based on the min max theorem, Theorem 5.12.5. Let E be a finite dimen-
sional Banach space and let K be a convex and compact subset of E. A set valued
map A : D(A) ⊆ K → E ′ is called monotone if whenever vi ∈ Aui, it follows that
⟨v1− v2,u1−u2⟩ ≥ 0. The graph, denoted as G (A) consists of all pairs [u,v] such
that v ∈ Au. This is a monotone subset of E ×E ′. Let z ∈ E ′ be fixed. Show that
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for [ui,vi] ∈ G (A) , for i = 1,2, · · · ,n there exists a solution x ∈ K to the system of
inequalities

⟨z+ vi,ui− x⟩ ≥ 0, i = 1,2, · · · ,n

Hint: Let Pn be all λ⃗ = (λ 1, · · · ,λ n) such that each λ k ≥ 0 and ∑
n
k=1 λ k = 1. Let

H : Pn×Pn→ R be given by

H
(

µ⃗, λ⃗
)
≡

n

∑
i=1

µ i

〈
z+ vi,

n

∑
j=1

λ ju j−ui

〉
(6.17)

Show that it is both convex and concave in both arguments. Then apply the min max
theorem. Then argue that H

(⃗
λ , λ⃗

)
≤ 0 from monotonicity considerations. Letting(

µ⃗0, λ⃗ 0

)
be the saddle point, you will have

H
(

µ⃗, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗

)
H
(

µ⃗, λ⃗ 0

)
≤ H

(
µ⃗0, λ⃗ 0

)
≤ H (⃗µ0, µ⃗0)≤ 0

H
(

µ⃗, λ⃗ 0

)
≤ 0

Now choose µ⃗ judiciously while allowing λ⃗ 0 to be used to define x which satisfies
all the inequalities.

35. ↑It gets even better. Let Ku,v≡{x ∈ K : ⟨z+ v,u− x⟩ ≥ 0} . Show that Ku,v is compact
and that the sets Ku,v have the finite intersection property. Therefore, there exists
x ∈ ∩[u,v]∈G (A)Ku,v. Explain why ⟨z+ v,u− x⟩ ≥ 0 for all [u,v] ∈ G (A). What would
the inequalities be if −A were monotone?

36. Problem 33 gave a solution to the inequality ⟨ f − z,y− x⟩ ≤ 0,z ∈ Ax under the con-
dition that A is upper semicontinuous. What are the differences between the result in
the above problem and the result of Problem 33. You could replace A with −A in the
earlier problem. If you did, would you get the result of the above problem?

37. Are there convenient examples of monotone set valued maps? Yes, there are. Let X
be a Banach space and let φ : X → (−∞,∞] be convex, lower semicontinuous, and
proper. See Problem 28 for a discussion of lower semicontinuous. Proper means that
φ (x) < ∞ for some x. Convex means the usual thing. φ (tx+(1− t)y) ≤ tφ (x)+
(1− t)φ (y) where t ∈ [0,1]. Then x∗ ∈ ∂φ (x) means that

⟨x∗,z− x⟩ ≤ φ (z)−φ (x) , for all z ∈ X

Show that if x∗ ∈ ∂φ (x) , then φ (x) < ∞. The set of points x where φ (x) < ∞ is
called the domain of φ denoted as D(φ). Also show that if [x,x∗] , [x̂, x̂∗] are two
points of the graph of ∂φ , then ⟨x̂∗− x∗, x̂− x⟩ ≥ 0 so that ∂φ is an example of a
monotone graph. You might wonder whether this graph is nonempty. See the next
problem for a partial answer to this question. Of course the above problem pertains
to finite dimensional spaces so you could just take any φ : Rn→ R which is convex
and differentiable. You can see that in this case the subgradient coincides with the
derivative discussed later.
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38. Let φ : Rn→ R be convex, proper lower semicontinuous, and bounded below. Show
that the graph of ∂φ is nonempty. Hint: Just consider ψ (x) = |x|2 + φ (x) and
observe that this is coercive. Then argue using convexity that ∂ψ (x) = ∂φ (x)+2x.
(You don’t need to assume that φ is bounded below but it is convenient to assume
this.)

39. Suppose f : [0,T ]×Rn → Rn is continuous and an estimate of the following form
holds. (f (t,x) ,x)≤ A+B |x|2 Show that there exists a solution to the initial value
problem x′ = f (t,x) , x(0) = x0 for t ∈ [0,T ].

40. In the above problem, suppose that −f +αI is monotone for large enough α in
addition to the estimate of that problem. Show that then there is only one solution to
the problem. In fact, show that the solution depends continuously on the initial data.

41. It was shown that if f : X → X is locally Lipschitz where X is a Banach space. Then
there exists a unique local solution to the IVP

y′ = f (y) , y(0) = y0

If f is bounded, then in fact the solutions exists on [0,T ] for any T > 0. Show that it
suffices to assume that ∥ f (y)∥ ≤ a+b∥y∥.

42. Suppose f (·, ·) :R×Rn→Rn is continuous and also that | f (t,x)| ≤M for all (t,x).
Show that there exists a solution to the initial value problem

x′ = f (t,x) , x(0) = x0 ∈ Rn

for t ∈ [0,T ]. Hint: You might consider T : C ([0,T ] ,Rn)→C ([0,T ] ,Rn) given by
Fx(t)≡ x0+

∫ t
0 f (s,x(s))ds. Argue that F has a fixed point using the Schauder fixed

point theorem.

43. Remove the assumption that | f (t,x)| ≤ M at the expense of obtaining only a local
solution.

Hint: You can consider the closed set in Rn B = B(x0,R) where R is some positive
number. Let P be the projection onto B.

44. In the Schauder fixed point theorem, eliminate the assumption that K is closed. Hint:
You can argue that the {yi} in the approximation can be in f (K).

45. Show that there is no one to one continuous function

f : [0,1]→
{
(x,y) : x2 + y2 ≤ 1

}
such that f is onto.
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Chapter 7

The Derivative
7.1 Limits of a Function

As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points x,which are limit points of D(f) and this concept is defined next. In all that follows
(V,∥·∥) and (W,∥·∥) are two normed linear spaces. Recall the definition of limit point first.

Definition 7.1.1 Let A ⊆W be a set. A point x, is a limit point of A if B(x,r)
contains infinitely many points of A for every r > 0.

Definition 7.1.2 Let f : D(f)⊆V →W be a function and let x be a limit point of
D(f). Then

lim
y→x

f (y) =L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < ∥y−x∥< δ , and y ∈ D(f)

then,
∥L−f (y)∥< ε.

Theorem 7.1.3 If limy→xf (y) =L and limy→xf (y) =L1, then L=L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x| < δ and y ∈
D(f), then ∥f (y)−L∥< ε, ∥f (y)−L1∥< ε. Pick such a y. There exists one because
x is a limit point of D(f). Then ∥L−L1∥ ≤ ∥L−f (y)∥+∥f (y)−L1∥ < ε + ε = 2ε .
Since ε > 0 was arbitrary, this shows L=L1. ■

One can define what it means for limy→x f (x) = ±∞. as in the case of real valued
functions.

Definition 7.1.4 If f (x) ∈ R, limy→x f (x) = ∞ if for every number l, there exists
δ > 0 such that whenever ∥y−x∥ < δ and y ∈ D(f), then f (x) > l. Also the asser-
tion that limy→x f (x) = −∞ means that for every number l, there exists δ > 0 such that
whenever ∥y−x∥< δ and y ∈ D(f), then f (x)< l.

The following theorem is just like the one variable version of calculus.

Theorem 7.1.5 Suppose f : D(f)⊆V → Fm. Then for x a limit point of D(f),

lim
y→x
f (y) =L (7.1)

if and only if
lim
y→x

fk (y) = Lk (7.2)

where f (y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp).
Suppose here that f has values in W, a normed linear space and

lim
y→x

f (y) = L, lim
y→x

g(y) = K

183
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where K,L ∈W. Then if a, b ∈ F,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (7.3)

If W is an inner product space,

lim
y→x

( f ,g)(y) = (L,K) (7.4)

If g is scalar valued with limy→x g(y) = K,

lim
y→x

f (y)g(y) = LK. (7.5)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦ f (y) = h(L) . (7.6)

Suppose limy→x f (y) = L. If ∥ f (y)−b∥≤ r for all y sufficiently close to x, then |L−b| ≤ r
also.

Proof: Suppose 7.1. Then letting ε > 0 be given there exists δ > 0 such that if 0 <
∥y− x∥< δ , it follows

| fk (y)−Lk| ≤ ∥f (y)−L∥< ε

which verifies 7.2.
Now suppose 7.2 holds. Then letting ε > 0 be given, there exists δ k such that if 0 <

∥y− x∥< δ k, then | fk (y)−Lk|< ε. Let 0< δ <min(δ 1, · · · ,δ p). Then if 0< ∥y− x∥< δ ,
it follows ∥f (y)−L∥

∞
< ε . Any other norm on Fm would work out the same way because

the norms are all equivalent.
Each of the remaining assertions follows immediately from the coordinate descriptions

of the various expressions and the first part. However, I will give a different argument for
these.

The proof of 7.3 is left for you. Now 7.4 is to be verified. Let ε > 0 be given. Then by
the triangle inequality,

|( f ,g)(y)− (L,K)| ≤ |( f ,g)(y)− ( f (y) ,K)|+ |( f (y) ,K)− (L,K)|
≤ ∥ f (y)∥∥g(y)−K∥+∥K∥∥ f (y)−L∥ .

There exists δ 1 such that if 0 < ∥y− x∥< δ 1 and y∈D( f ), then ∥ f (y)−L∥< 1,and so for
such y, the triangle inequality implies, ∥ f (y)∥< 1+∥L∥. Therefore, for 0 < ∥y− x∥< δ 1,

|( f ,g)(y)− (L,K)| ≤ (1+∥K∥+∥L∥) [∥g(y)−K∥+∥ f (y)−L∥] . (7.7)

Now let 0 < δ 2 be such that if y ∈ D( f ) and 0 < ∥x− y∥< δ 2,

∥ f (y)−L∥< ε

2(1+∥K∥+∥L∥)
, ∥g(y)−K∥< ε

2(1+∥K∥+∥L∥)
.

Then letting 0 < δ ≤min(δ 1,δ 2), it follows from 7.7 that |( f ,g)(y)− (L,K)|< ε and this
proves 7.4.

The proof of 7.5 is left to you.
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Consider 7.6. Since h is continuous near L, it follows that for ε > 0 given, there exists
η > 0 such that if ∥y−L∥< η , then ∥h(y)−h(L)∥< ε. Now since limy→x f (y) = L, there
exists δ > 0 such that if 0 < ∥y− x∥< δ , then ∥ f (y)−L∥< η .Therefore, if 0 < ∥y− x∥<
δ , ∥h( f (y))−h(L)∥< ε.

It only remains to verify the last assertion. Assume ∥ f (y)−b∥ ≤ r. It is required to
show that ∥L−b∥ ≤ r. If this is not true, then ∥L−b∥ > r. Consider B(L,∥L−b∥− r).
Since L is the limit of f , it follows f (y) ∈ B(L,∥L−b∥− r) whenever y ∈ D( f ) is close
enough to x. Thus, by the triangle inequality, ∥ f (y)−L∥< ∥L−b∥− r and so

r < ∥L−b∥−∥ f (y)−L∥ ≤ |∥b−L∥−∥ f (y)−L∥| ≤ ∥b− f (y)∥ ,

a contradiction to the assumption that ∥b− f (y)∥ ≤ r. ■
The relation between continuity and limits is as follows.

Theorem 7.1.6 For f : D( f )→W and x ∈ D( f ) a limit point of D( f ), f is contin-
uous at x if and only if limy→x f (y) = f (x) .

Proof: First suppose f is continuous at x a limit point of D( f ). Then for every ε > 0
there exists δ > 0 such that if ∥x− y∥ < δ and y ∈ D( f ), then | f (x)− f (y)| < ε . In
particular, this holds if 0 < ∥x− y∥ < δ and this is just the definition of the limit. Hence
f (x) = limy→x f (y).

Next suppose x is a limit point of D( f ) and limy→x f (y) = f (x). This means that if ε >
0 there exists δ > 0 such that for 0 < ∥x− y∥< δ and y ∈D( f ), it follows | f (y)− f (x)|<
ε . However, if y = x, then | f (y)− f (x)| = | f (x)− f (x)| = 0 and so whenever y ∈ D( f )
and ∥x− y∥< δ , it follows | f (x)− f (y)|< ε , showing f is continuous at x. ■

Example 7.1.7 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.

It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1).

Example 7.1.8 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all, observe the domain of the function is R2 \{(0,0)}, every point in R2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.
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7.2 Basic Definitions
The concept of derivative generalizes right away to functions of many variables. However,
no attempt will be made to consider derivatives from one side or another. This is because
when you consider functions of many variables, there isn’t a well defined side. However,
it is certainly the case that there are more general notions which include such things. I will
present a fairly general notion of the derivative of a function which is defined on a normed
vector space which has values in a normed vector space. The case of most interest is that
of a function which maps Fn to Fm but it is no more trouble to consider the extra generality
and it is sometimes useful to have this extra generality because sometimes you want to
consider functions defined, for example on subspaces of Fnand it is nice to not have to
trouble with ad hoc considerations. Also, you might want to consider Fn with some norm
other than the usual one.

In what follows, X ,Y will denote normed vector spaces. Thanks to Theorem 5.2.4 all
the definitions and theorems given below work the same for any norm given on the vector
spaces.

Let U be an open set in X , and let f : U → Y be a function.

Definition 7.2.1 A function g is o(v) if

lim
∥v∥→0

g (v)

∥v∥
= 0 (7.8)

A function f : U → Y is differentiable at x ∈ U if there exists a linear transformation
L ∈L (X ,Y ) such that

f (x+v) = f (x)+Lv+o(v)

This linear transformation L is the definition of Df (x). This derivative is often called the
Frechet derivative.

Note that from Theorem 5.2.4 the question whether a given function is differentiable is
independent of the norm used on the finite dimensional vector space. That is, a function is
differentiable with one norm if and only if it is differentiable with another norm.

The definition 7.8 means the error f (x+v)−f (x)−Lv converges to 0 faster than
∥v∥. Thus the above definition is equivalent to saying

lim
∥v∥→0

∥f (x+v)−f (x)−Lv∥
∥v∥

= 0 (7.9)

or equivalently,

lim
y→x

∥f (y)−f (x)−Df (x)(y−x)∥
∥y−x∥

= 0. (7.10)

The symbol, o(v) should be thought of as an adjective. Thus, if t and k are constants,

o(v) = o(v)+o(v) , o(tv) = o(v) , ko(v) = o(v)

and other similar observations hold.

Theorem 7.2.2 The derivative is well defined.
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Proof: First note that for a fixed nonzero vector v, o(tv) = o(t). This is because

lim
t→0

o(tv)
|t|

= lim
t→0
∥v∥ o(tv)∥tv∥

= 0

Now suppose both L1 and L2 work in the above definition. Then let v be any vector and let
t be a real scalar which is chosen small enough that tv+x ∈U . Then

f (x+ tv) = f (x)+L1tv+o(tv) , f (x+ tv) = f (x)+L2tv+o(tv) .

Therefore, subtracting these two yields (L2−L1)(tv) = o(tv) = o(t). Therefore, dividing
by t yields (L2−L1)(v) =

o(t)
t . Now let t → 0 to conclude that (L2−L1)(v) = 0. Since

this is true for all v, it follows L2 = L1. This proves the theorem. ■
In the following lemma, ∥Df (x)∥ is the operator norm of the linear transformation,

Df (x).

Lemma 7.2.3 Let f be differentiable at x. Then f is continuous at x and in fact, there
exists K > 0 such that whenever ∥v∥ is small enough,

∥f (x+v)−f (x)∥ ≤ K ∥v∥

Also if f is differentiable at x, then

o(∥f (x+v)−f (x)∥) = o(v)

Proof: From the definition of the derivative,

f (x+v)−f (x) = Df (x)v+o(v) .

Let ∥v∥ be small enough that o(∥v∥)
∥v∥ < 1 so that ∥o(v)∥ ≤ ∥v∥. Then for such v,

∥f (x+v)−f (x)∥ ≤ ∥Df (x)v∥+∥v∥ ≤ (∥Df (x)∥+1)∥v∥

This proves the lemma with K = ∥Df (x)∥+ 1. Recall the operator norm discussed in
Definition 5.2.2.

The last assertion is implied by the first as follows. Define

h(v)≡

{
o(∥f(x+v)−f(x)∥)
∥f(x+v)−f(x)∥ if ∥f (x+v)−f (x)∥ ̸= 0

0 if ∥f (x+v)−f (x)∥= 0

Then lim∥v∥→0h(v) = 0 from continuity of f at x which is implied by the first part. Also
from the above estimate, if ∥v∥ is sufficiently small,∥∥∥∥o(∥f (x+v)−f (x)∥)∥v∥

∥∥∥∥= ∥h(v)∥ ∥f (x+v)−f (x)∥∥v∥
≤ ∥h(v)∥(∥Df (x)∥+1)

and lim∥v∥→0 ∥h(v)∥= 0. This establishes the second claim. ■
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7.3 The Chain Rule
With the above lemma, it is easy to prove the chain rule.

Theorem 7.3.1 (The chain rule) Let U and V be open sets U ⊆ X and V ⊆ Y . Sup-
pose f : U → V is differentiable at x ∈ U and suppose g : V → Fq is differentiable at
f (x) ∈V . Then g ◦f is differentiable at x and

D(g ◦f)(x) = Dg (f (x))Df (x) .

Proof: This follows from a computation. Let B(x,r)⊆U and let r also be small enough
that for ∥v∥ ≤ r, it follows that f (x+v) ∈V . Such an r exists because f is continuous at
x. For ∥v∥< r, the definition of differentiability of g and f implies

g (f (x+v))−g (f (x)) =

Dg (f (x))(f (x+v)−f (x))+o(f (x+v)−f (x))
= Dg (f (x)) [Df (x)v+o(v)]+o(f (x+v)−f (x))
= D(g (f (x)))D(f (x))v+o(v)+o(f (x+v)−f (x)) (7.11)
= D(g (f (x)))D(f (x))v+o(v)

By Lemma 7.2.3. From the definition of the derivative D(g ◦f)(x) exists and equals
D(g (f (x)))D(f (x)). ■

7.4 The Matrix of the Derivative
The case of most interest here is the only one I will discuss. It is the case where X =Rn and
Y = Rm, the function being defined on an open subset of Rn. Of course this all generalizes
to arbitrary vector spaces and one considers the matrix taken with respect to various bases.
However, I am going to restrict to the case just mentioned here. As above, f will be defined
and differentiable on an open set U ⊆ Rn.

As discussed in the review material on linear maps, the matrix of Df (x) is the matrix
having the ith column equal to Df (x)ei and so it is only necessary to compute this. Let t
be a small real number such that

f (x+ tei)−f (x)−Df (x)(tei)

t
=
o(t)

t

Therefore,
f (x+ tei)−f (x)

t
= Df (x)(ei)+

o(t)
t

The limit exists on the right and so it exists on the left also. Thus

∂f (x)

∂xi
≡ lim

t→0

f (x+ tei)−f (x)
t

= Df (x)(ei)

and so the matrix of the derivative is just the matrix which has the ith column equal to the
ith partial derivative of f . Note that this shows that whenever f is differentiable, it follows
that the partial derivatives all exist. It does not go the other way however as discussed later.
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Theorem 7.4.1 Let f : U ⊆ Fn→ Fm and suppose f is differentiable at x. Then all
the partial derivatives ∂ fi(x)

∂x j
exist and if Jf (x) is the matrix of the linear transformation,

Df (x) with respect to the standard basis vectors, then the i jth entry is given by ∂ fi
∂x j

(x)

also denoted as fi, j or fi,x j . It is the matrix whose ith column is

∂f (x)

∂xi
≡ lim

t→0

f (x+ tei)−f (x)
t

.

Of course there is a generalization of this idea called the directional derivative.

Definition 7.4.2 In general, the symbol Dvf (x) is defined by

lim
t→0

f (x+ tv)−f (x)
t

where t ∈ F. In case |v|= 1,F = R, and the norm is the standard Euclidean norm, this is
called the directional derivative. More generally, with no restriction on the size of v and in
any linear space, it is called the Gateaux derivative. f is said to be Gateaux differentiable
at x if there exists Dvf (x) such that

lim
t→0

f (x+ tv)−f (x)
t

= Dvf (x)

where v → Dvf (x) is linear. Thus we say it is Gateaux differentiable if the Gateaux
derivative exists for each v and v→ Dvf (x) is linear. Note that ∂f(x)

∂xi
= Deif (x).

1

What if all the partial derivatives of f exist? Does it follow that f is differentiable?
Consider the following function, f : R2→ R,

f (x,y) =
{ xy

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.

Then from the definition of partial derivatives,

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0

and

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 7.2.3 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.

What if the one dimensional derivative in the definition of the Gateaux derivative exists
for all nonzero v? Is the function differentiable then? Maybe not. See Problem 12 in the
exercises for example.

1René Gateaux was one of the many young French men killed in world war I. This derivative is named after
him, but it developed naturally from ideas used in the calculus of variations which were due to Euler and Lagrange
back in the 1700’s.
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7.5 A Mean Value Inequality
The following theorem will be very useful in much of what follows. It is a version of the
mean value theorem as is the next lemma. The mean value theorem depends on the function
having values in R and in the lemma and theorem, it has values in a normed vector space.

Lemma 7.5.1 Let Y be a normed vector space and suppose h : [0,1]→Y is continuous
and differentiable from the right and satisfies

∥∥h′ (t)∥∥≤M, M≥ 0. Then ∥h(1)−h(0)∥≤
M.

Proof: Let ε > 0 be given and let

S≡ {t ∈ [0,1] : for all s ∈ [0, t] ,∥h(s)−h(0)∥ ≤ (M+ ε)s}

Then 0 ∈ S. Let t = supS. Then by continuity of h it follows

∥h(t)−h(0)∥= (M+ ε) t (7.12)

Suppose t < 1. Then there exist positive numbers, hk decreasing to 0 such that

∥h(t +hk)−h(0)∥> (M+ ε)(t +hk)

and now it follows from 7.12 and the triangle inequality that

∥h(t +hk)−h(t)∥+∥h(t)−h(0)∥
= ∥h(t +hk)−h(t)∥+(M+ ε) t > (M+ ε)(t +hk)

Thus
∥h(t +hk)−h(t)∥> (M+ ε)hk

Now dividing by hk and letting k→∞,
∥∥h′ (t)∥∥≥M+ε,a contradiction. Thus t = 1. Since

ε is arbitrary, the conclusion of the lemma follows. ■

Theorem 7.5.2 Suppose U is an open subset of X and f : U → Y has the property
that Df (x) exists for all x in U and that, x+ t (y−x) ∈U for all t ∈ [0,1]. (The line
segment joining the two points lies in U.) Suppose also that for all points on this line
segment, ∥Df (x+t (y−x))∥ ≤M. Then ∥f (y)−f (x)∥ ≤M |y−x| . More generally if
∥Dvf (y)∥≤M for all y on the segment joiningx andx+v, then ∥f (x+av)−f (x)∥≤
Ma. Also Davf (x) = aDvf (x) if a ̸= 0.

Proof: Let h(t) ≡ f (x+ t (y−x)) .Then by the chain rule applied to h(t), h′ (t) =
Df (x+ t (y−x))(y−x) and so∥∥h′ (t)∥∥= ∥Df (x+ t (y−x))(y−x)∥ ≤M ∥y−x∥

by Lemma 7.5.1, ∥h(1)−h(0)∥= ||f (y)−f (x)|| ≤M ||y−x|| . For the second part, let
h(t)≡ f (x+ tav). Then if a ̸= 0,

h′ (t) = lim
h→0

h(t +h)−h(t)
h

≡ lim
h→0

a
ha

(f (x+ tav+hav)−f (x+ tav))

= Dvf (x+ tav)a.

This shows that Davf (x) = aDvf (x) . Now for the inequality, there is nothing to show
if a = 0 so assume a ̸= 0. Then by assumption and Lemma 7.5.1, ∥h(1)−h(0)∥ =
∥f (x+av)−f (x)∥ ≤Ma. ■
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7.6 Existence of the Derivative, C1 Functions
There is a way to get the differentiability of a function from the existence and continuity of
one dimensional directional derivatives. The following theorem is the main result. It gives
easy to verify one dimensional conditions for the existence of the derivative. The meaning
of ∥·∥ will be determined by context in what follows. This theorem says that if the Gateaux
derivatives exist for each vector in a basis and they are also continuous, then the function
is differentiable.

Theorem 7.6.1 Let X be a normed vector space having basis {v1, · · · ,vn} and let
Y be another normed vector space. Let U be an open set in X and let f : U → Y have the
property that the one dimensional limits

Dvkf (x)≡ lim
t→0

f (x+ tvk)−f (x)
t

exist and x→ Dvkf (x) are continuous functions of x ∈U as functions with values in Y .
Then Df (x) exists and

Df (x) v=
n

∑
k=1

Dvkf (x)ak

where v= ∑
n
k=1 akvk. Furthermore, x→ Df (x) is continuous; that is

lim
y→x
∥Df (y)−Df (x)∥= 0.

Proof: Let v= ∑
n
k=1 akvk where all ak are small enough that for all k ≥ 0,

x+
k

∑
j=1

a jv j ∈ B(x,r)⊆U,
0

∑
k=1

akvk ≡ 0.

The mapping v → (a1, ...,an) is an isomorphism of V and Fn and we can define a norm
as ∑k |ak| which is equivalent to the norm on V thanks to Theorem 5.2.4. Let hk (x) ≡
f
(
x+∑

k−1
j=1 a jv j

)
−f (x) . Then collecting the terms,

f (x+v)−f (x) =
n

∑
k=1

(hk (x+akvk)−hk (x))+
n

∑
k=1

(f (x+akvk)−f (x)) (7.13)

Using Theorem 7.5.2,∥∥Dakvkhk (x+ takvk)
∥∥ =

∥∥akDvkhk (x+ takvk)
∥∥

=

∥∥∥∥∥ak

(
Dvkf

(
x+

k−1

∑
j=1

a jv j + takvk

)
−Dvkf (x+ takvk)

)∥∥∥∥∥
≤ C∥v∥ε

provided ∥v∥ is sufficiently small, thanks to the assumption that the Dvkf are continuous.
It follows, since ε is arbitrary that the first sum on the right in 7.13 is o(v). Now

(f (x+akvk)−f (x))−Dvkf (x)ak =
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f (x+akvk)−
(
f (x)+Dvkf (x)ak

)
= ak

(
f (x+akvk)−f (x)

ak
−Dvkf (x)

)
= o(v)

because ∥∥∥∥ak

(
f (x+akvk)−f (x)

ak
−Dvkf (x)

)∥∥∥∥
≤ ∥v∥

∥∥∥∥(f (x+akvk)−f (x)
ak

−Dvkf (x)

)∥∥∥∥ .
Collecting terms in 7.13,

f (x+v)−f (x) = o(v)+
n

∑
k=1

(f (x+akvk)−f (x)) = o(v)+
n

∑
k=1

Dvkf (x)ak

which shows that Df (x)(v) = ∑
n
k=1 Dvkf (x)ak where v= ∑

n
k=1 akvk. This formula also

shows that x→ Df (x) is continuous because of the continuity of these Dvkf . ■
Note how if X =Rp and the basis vectors are the ek, then the a are just the components

of the vector v taken with respect to the usual basis vectors. Thus this gives the above result
about the matrix of Df (x).

This motivates the following definition of what it means for a function to be C1.

Definition 7.6.2 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U → Y another finite dimensional normed vector space. Then f
is said to be C1 if there exists a basis for X ,{v1, · · · ,vn} such that the Gateaux deriva-
tives,Dvkf (x) exist on U and are continuous functions of x.

Note that as a special case where X = Rn, you could let the vk = ek and the condition
would reduce to nothing more than a statement that the partial derivatives ∂f

∂xi
are all con-

tinuous. If X =R, this is not a very interesting condition. It would say the derivative exists
if the derivative exists and is continuous.

Here is another definition of what it means for a function to be C1.

Definition 7.6.3 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U→Y another finite dimensional normed vector space. Then f is said
to be C1 if f is differentiable and x→Df (x) is continuous as a map from U to L (X ,Y ).

Now the following major theorem states these two definitions are equivalent. This is
obviously so in the special case where X =Rn and the special basis is the usual one because,
as observed earlier, the matrix of Df (x) is just the one which has for its columns the partial
derivatives which are given to be continuous.

Theorem 7.6.4 Let U be an open subset of a normed finite dimensional vector space
X and let f : U → Y another finite dimensional normed vector space. Then the two defini-
tions above are equivalent.

Proof: It was shown in Theorem 7.6.1, the one about the continuity of the Gateaux
derivatives yielding differentiability, that Definition 7.6.2 implies 7.6.3. Suppose then that
Definition 7.6.3 holds. Then if v is any vector,

lim
t→0

f (x+ tv)−f (x)
t

= lim
t→0

Df (x) tv+o(tv)
t

= Df (x)v+ lim
t→0

o(tv)
t

= Df (x)v
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Thus Dvf (x) exists and equals Df (x)v. By continuity of x→ Df (x) , this establishes
continuity of x→ Dvf (x) and proves the theorem. ■

Note that the proof of the theorem also implies the following corollary.

Corollary 7.6.5 Let U be an open subset of a normed finite dimensional vector space, X
and let f :U→Y another finite dimensional normed vector space. Then if there is a basis of
X ,{v1, · · · ,vn} such that the Gateaux derivatives, Dvkf (x) exist and are continuous, then
all Gateaux derivatives, Dvf (x) exist and are continuous for all v ∈X. Also Df (x)(v) =
Dvf (x).

From now on, whichever definition is more convenient will be used.

7.7 Higher Order Derivatives
If f : U ⊆ X → Y for U an open set, then x→ Df (x) is a mapping from U to L (X ,Y ), a
normed vector space. Therefore, it makes perfect sense to ask whether this function is also
differentiable.

Definition 7.7.1 The following is the definition of the second derivative. D2f (x)≡
D(Df (x)) .

Thus, Df (x+v)−Df (x) = D2f (x)v+o(v) .This implies

D2f (x) ∈L (X ,L (X ,Y )) , D2f (x)(u)(v) ∈ Y,

and the map (u,v)→D2f (x)(u)(v) is a bilinear map having values in Y . In other words,
the two functions,

u→ D2f (x)(u)(v) , v→ D2f (x)(u)(v)

are both linear.
The same pattern applies to taking higher order derivatives. For example, D3f (x) ≡

D
(
D2f (x)

)
and D3f (x) may be considered as a trilinear map having values in Y . In

general Dkf (x) may be considered a k linear map. This means

(u1, · · · ,uk)→ Dkf (x)(u1) · · ·(uk)

has the property u j→ Dkf (x)(u1) · · ·(u j) · · ·(uk) is linear.
Also, instead of writing D2f (x)(u)(v) , or D3f (x)(u)(v)(w) the following notation

is often used.
D2f (x)(u,v) or D3f (x)(u,v,w)

with similar conventions for higher derivatives than 3. Another convention which is often
used is the notation Dkf (x)vk instead of Dkf (x)(v, · · · ,v) .

Note that for every k, Dkf maps U to a normed vector space. As mentioned above,
Df (x) has values in L (X ,Y ) ,D2f (x) has values in L (X ,L (X ,Y )) , etc. Thus it makes
sense to consider whether Dkf is continuous. This is described in the following definition.

Definition 7.7.2 Let U be an open subset of X , a normed vector space, and let
f : U → Y. Then f is Ck (U) if f and its first k derivatives are all continuous. Also,
Dkf (x) when it exists can be considered a Y valued multi-linear function. Sometimes
these are called tensors in case f has scalar values.
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7.8 Some Standard Notation
In the case where X = Rn there is a special notation which is often used to describe higher
order mixed partial derivatives. It is called multi-index notation.

Definition 7.8.1 α = (α1, · · · ,αn) for α1 · · ·αn positive integers is called a multi-
index, as before with polynomials. For α a multi-index, |α| ≡ α1 + · · ·+αn, and if x ∈ X,

x= (x1, · · · ,xn),

and f a function, define

xα ≡ xα1
1 xα2

2 · · ·x
αn
n , Dαf(x)≡ ∂ |α|f(x)

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

.

Then in this special case, the following is another description of what is meant by a Ck

function.

Definition 7.8.2 Let U be an open subset of Rn and let f : U → Y. Then for k a
nonnegative integer, a differentiable function f is Ck if for every |α| ≤ k, Dαf exists and
is continuous.

Theorem 7.8.3 Let U be an open subset of Rn and let f : U → Y. Then if Drf (x)
exists for r ≤ k, then Drf is continuous at x for r ≤ k if and only if Dαf is continuous at x
for each |α| ≤ k.

Proof: First consider the case of a single derivative. Then as shown above, the matrix
of Df (x) is just

J (x)≡
(

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)

and to say that x→ Df (x) is continuous is the same as saying that each of these partial
derivatives is continuous. Written out in more detail,

f (x+v)−f (x) = Df (x)v+o(v) =
n

∑
k=1

∂f

∂xk
(x)vk +o(v)

Thus Df (x)v = ∑
n
k=1

∂f
∂xk

(x)vk. Now consider the second derivative.

D2f (x)(w)(v) =

Df (x+w)v−Df (x)v+o(w)(v)=
n

∑
k=1

(
∂f

∂xk
(x+w)− ∂f

∂xk
(x)

)
vk +o(w)(v)

=
n

∑
k=1

(
n

∑
j=1

∂ 2f (x)

∂x j∂xk
w j +o(w)

)
vk +o(w)(v) = ∑

j,k

∂ 2f (x)

∂x j∂xk
w jvk +o(w)(v)

and so D2f (x)(w)(v) = ∑ j,k
∂ 2f(x)
∂x j∂xk

w jvk. Hence D2f is continuous if and only if each of

these coefficients x→ ∂ 2f(x)
∂x j∂xk

is continuous. Obviously you can continue doing this and

conclude that Dkf is continuous if and only if all of the partial derivatives of order up to k
are continuous. ■
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In practice, this is usually what people are thinking when they say that f is Ck. But as
just argued, this is the same as saying that the r linear form x→Drf (x) is continuous into
the appropriate space of linear transformations for each r ≤ k.

Of course the above is based on the assumption that the first k derivatives exist and gives
two equivalent formulations which state that these derivatives are continuous. Can anything
be said about the existence of the derivatives based on the existence and continuity of the
partial derivatives? As pointed out, if the partial derivatives exist and are continuous, then
the function is differentiable and has continuous derivative. However, I want to emphasize
the idea of the Cartesian product.

7.9 The Derivative and the Cartesian Product
There are theorems which can be used to get differentiability of a function based on exis-
tence and continuity of the partial derivatives. A generalization of this was given above.
Here a function defined on a product space is considered. It is very much like what was
presented above and could be obtained as a special case but to reinforce the ideas, I will do
it from scratch because certain aspects of it are important in the statement of the implicit
function theorem.

The following is an important abstract generalization of the concept of partial derivative
presented above. Insead of taking the derivative with respect to one variable, it is taken with
respect to several but not with respect to others. This vague notion is made precise in the
following definition. First here is a lemma.

Lemma 7.9.1 Suppose U is an open set in X×Y. Then the set, Uy defined by

Uy ≡ {x ∈ X : (x,y) ∈U}

is an open set in X. Here X ×Y is a finite dimensional vector space in which the vector
space operations are defined componentwise. Thus for a,b ∈ F,

a(x1,y1)+b(x2,y2) = (ax1 +bx2,ay1 +by2)

and the norm can be taken to be

∥(x,y)∥ ≡max(∥x∥ ,∥y∥)

Proof: Recall by Theorem 5.2.4 it does not matter how this norm is defined and the
definition above is convenient. It obviously satisfies most axioms of a norm. The only one
which is not obvious is the triangle inequality. I will show this now.

∥(x,y)+(x1,y1)∥ ≡ ∥(x+x1,y+y1)∥ ≡max(∥x+x1∥ ,∥y+y1∥)
≤ max(∥x∥+∥x1∥ ,∥y∥+∥y1∥)
≤ max(∥x∥ ,∥y∥)+max(∥x1∥ ,∥y1∥)
≡ ∥(x,y)∥+∥(x1,y1)∥

Let x ∈Uy. Then (x,y) ∈U and so there exists r > 0 such that B((x,y) ,r) ∈U. This
says that if (u,v) ∈ X×Y such that ∥(u,v)− (x,y)∥< r, then (u,v) ∈U. Thus if

∥(u,y)− (x,y)∥= ∥u−x∥X < r,
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then (u,y) ∈U. This has just said that B(x,r)X , the ball taken in X is contained in Uy .
This proves the lemma. ■

Or course one could also consider Ux≡{y : (x,y) ∈U} in the same way and conclude
this set is open in Y . Also, the generalization to many factors yields the same conclusion.
In this case, for x ∈∏

n
i=1 Xi, let

∥x∥ ≡max
(
∥xi∥Xi

: x= (x1, · · · ,xn)
)

Then a similar argument to the above shows this is a norm on ∏
n
i=1 Xi. Consider the triangle

inequality.

∥(x1, · · · ,xn)+(y1, · · · ,yn)∥= max
i

(
∥xi +yi∥Xi

)
≤max

i

(
∥xi∥Xi

+∥yi∥Xi

)
≤max

i

(
∥xi∥Xi

)
+max

i

(
∥yi∥Xi

)
= ∥x∥+∥y∥

Corollary 7.9.2 Let U ⊆∏
n
i=1 Xi be an open set and let

U(x1,··· ,xi−1,xi+1,··· ,xn) ≡ {x ∈ F
ri : (x1, · · · ,xi−1,x,xi+1, · · · ,xn) ∈U} .

Then U(x1,··· ,xi−1,xi+1,··· ,xn) is an open set in Fri .

Proof: Let z ∈U(x1,··· ,xi−1,xi+1,··· ,xn). Then (x1, · · · ,xi−1,z,xi+1, · · · ,xn)≡ x ∈U by
definition. Therefore, since U is open, there exists r > 0 such that B(x,r)⊆U. It follows
that for B(z,r)Xi

denoting the ball in Xi, it follows that B(z,r)Xi
⊆U(x1,··· ,xi−1,xi+1,··· ,xn)

because to say that ∥z−w∥Xi
< r is to say that

∥(x1, · · · ,xi−1,z,xi+1, · · · ,xn)− (x1, · · · ,xi−1,w,xi+1, · · · ,xn)∥< r

and so w ∈U(x1,··· ,xi−1,xi+1,··· ,xn). ■
Next is a generalization of the partial derivative.

Definition 7.9.3 Let g : U ⊆∏
n
i=1 Xi→ Y , where U is an open set. Then the map

z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is a function from the open set in Xi,

{z : x= (x1, · · · ,xi−1,z,xi+1, · · · ,xn) ∈U}

to Y . When this map is differentiable, its derivative is denoted by Dig (x). To aid in the
notation, for v ∈ Xi, let θ iv ∈∏

n
i=1 Xi be the vector (0, · · · ,v, · · · ,0) where the v is in the

ith slot and for v ∈∏
n
i=1 Xi, let vi denote the entry in the ith slot of v. Thus, by saying

z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is differentiable is meant that for v ∈ Xi sufficiently small,

g (x+θ iv)−g (x) = Dig (x)v+o(v) .

Note Dig (x) ∈L (Xi,Y ) .
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As discussed above, we have the following definition of C1 (U) .

Definition 7.9.4 Let U ⊆ X be an open set. Then f : U →Y is C1 (U) if f is differ-
entiable and the mapping x→ Df (x) , is continuous as a function from U to L (X ,Y ).

With this definition of partial derivatives, here is the major theorem. Note the resem-
blance with the matrix of the derivative of a function having values in Rm in terms of the
partial derivatives.

Theorem 7.9.5 Let g,U,∏n
i=1 Xi, be given as in Definition 7.9.3. Then g is C1 (U)

if and only if Dig exists and is continuous on U for each i. In this case, g is differentiable
and

Dg (x)(v) = ∑
k

Dkg (x)vk (7.14)

where v = (v1, · · · ,vn) .

Proof: Suppose then that Dig exists and is continuous for each i. Note ∑
k
j=1 θ jv j =

(v1, · · · ,vk,0, · · · ,0) . Thus ∑
n
j=1 θ jv j = v and define ∑

0
j=1 θ jv j ≡ 0. Therefore,

g (x+v)−g (x) =
n

∑
k=1

[
g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)]
(7.15)

=
n

∑
k=1

[(
g

(
x+

k

∑
j=1

θ jv j

)
−g (x+θ kvk)

)
−

(
g

(
x+

k−1

∑
j=1

θ jv j

)
−g (x)

)]

+
n

∑
k=1

(g (x+θ kvk)−g (x))

If hk (x) ≡ g
(
x+∑

k−1
j=1 θ jv j

)
− g (x) then the top sum is ∑

n
k=1hk (x+θ kvk)−hk (x)

and from the definition of hk, ∥Dhk (x)∥ < ε a sufficiently small ball containing x. Thus
this top sum is dominated by ε ∥v∥ whenever ∥v∥ is small enough. Since ε is arbitrary, this
term is o(v) . The last term is ∑

n
k=1 Dkg (x)vk +o(vk) and so, collecting terms obtains

g (x+v)−g (x) =
n

∑
k=1

Dkg (x)vk +o(v)

which shows Dg (x) exists and equals the formula given in 7.14. Also x→ Dg (x) is
continuous since each of the Dkg (x) are.

Next suppose g is C1. I need to verify that Dkg (x) exists and is continuous. Let v ∈ Xk
sufficiently small. Then

g (x+θ kv)−g (x) = Dg (x)θ kv+o(θ kv) = Dg (x)θ kv+o(v)

since ∥θ kv∥ = ∥v∥. Then Dkg (x) exists and equals Dg (x) ◦ θ k. Now x→ Dg (x) is
continuous. Since θ k is linear, it follows from Lemma 5.2.1 that θ k : Xk→∏

n
i=1 Xi is also

continuous. ■
Note that the above argument also works at a single point x. That is, continuity at x of

the partials implies Dg (x) exists and is continuous at x.
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The way this is usually used is in the following corollary which has already been ob-
tained. Remember the matrix of Df (x). Recall that if a function is C1 in the sense that
x→Df (x) is continuous then all the partial derivatives exist and are continuous. The next
corollary says that if the partial derivatives do exist and are continuous, then the function is
differentiable and has continuous derivative.

Corollary 7.9.6 Let U be an open subset of Fn and let f :U → Fm be C1 in the sense
that all the partial derivatives of f exist and are continuous. Then f is differentiable and

f (x+v) = f (x)+
n

∑
k=1

∂f

∂xk
(x)vk +o(v) .

Similarly, if the partial derivatives up to order k exist and are continuous, then the function
is Ck in the sense that the first k derivatives exist and are continuous.

7.10 Mixed Partial Derivatives
Continuing with the special case where f is defined on an open set in Fn, I will next con-
sider an interesting result which was known to Euler in around 1734 about mixed partial
derivatives. It was proved by Clairaut some time later. It turns out that the mixed partial
derivatives, if continuous will end up being equal. Recall the notation fx =

∂ f
∂x = De1 f and

fxy =
∂ 2 f
∂y∂x = De1e2 f .

Theorem 7.10.1 Suppose f : U ⊆ F2→ R where U is an open set on which fx, fy,
fxy and fyx exist. Then if fxy and fyx are continuous at the point (x,y) ∈U, it follows

fxy (x,y) = fyx (x,y) .

Proof: Since U is open, there exists r > 0 such that B((x,y) ,r)⊆U. Now let |t| , |s|<
r/2, t,s real numbers and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ t,y+ s)− f (x+ t,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ s)− f (x,y))}. (7.16)

Note that (x+ t,y+ s) ∈U because

|(x+ t,y+ s)− (x,y)| = |(t,s)|=
(
t2 + s2)1/2

≤
(

r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h(t) ≡ f (x+ t,y+ s)− f (x+ t,y). Therefore, by the mean value theo-
rem from one variable calculus and the (one variable) chain rule,

∆(s, t) =
1
st
(h(t)−h(0)) =

1
st

h′ (αt) t

=
1
s
( fx (x+αt,y+ s)− fx (x+αt,y))

for some α ∈ (0,1) . Applying the mean value theorem again,

∆(s, t) = fxy (x+αt,y+β s)
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where α,β ∈ (0,1).
If the terms f (x+ t,y) and f (x,y+ s) are interchanged in 7.16, ∆(s, t) is unchanged

and the above argument shows there exist γ,δ ∈ (0,1) such that

∆(s, t) = fyx (x+ γt,y+δ s) .

Letting (s, t)→ (0,0) and using the continuity of fxy and fyx at (x,y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x,y) = fyx (x,y) .■

The following is obtained from the above by simply fixing all the variables except for
the two of interest.

Corollary 7.10.2 Suppose U is an open subset of X and f : U → R has the property
that for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x) .

By considering the real and imaginary parts of f in the case where f has values in C
you obtain the following corollary.

Corollary 7.10.3 Suppose U is an open subset of Fn and f : U → F has the property
that for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x) .

Finally, by considering the components of f you get the following generalization.

Corollary 7.10.4 Suppose U is an open subset of Fn and f : U → Fm has the property
that for two indices, k, l, f xk

, f xl
,f xlxk

, and f xkxl
exist on U and f xkxl

and f xlxk
are both

continuous at x ∈U. Then f xkxl
(x) = f xlxk

(x) .

This can be generalized to functions which have values in a normed linear space, but
I plan to stop with what is given above. One way to proceed would be to reduce to a
consideration of the coordinate maps and then apply the above. It would even hold in
infinite dimensions through the use of the Hahn Banach theorem. The idea is to reduce to
the scalar valued case as above.

In addition, it is obvious that for a function of many variables you could pick any pair
and say these are equal if they are both continuous.

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [2].

Example 7.10.5 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

From the definition of partial derivatives it follows that fx (0,0) = fy (0,0) = 0. Using
the standard rules of differentiation, for (x,y) ̸= (0,0) ,

fx = y
x4− y4 +4x2y2

(x2 + y2)2 , fy = x
x4− y4−4x2y2

(x2 + y2)2
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Now

fxy (0,0)≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0)≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that although the mixed partial derivatives do exist at (0,0) , they are not equal
there.

Incidentally, the graph of this function appears very innocent. Its fundamental sickness
is not apparent. It is like one of those whited sepulchers mentioned in the Bible.

7.11 A Cofactor Identity
Lemma 7.11.1 Suppose det(A) = 0. Then for all sufficiently small nonzero ε, it follows
that det(A+ εI) ̸= 0.

Proof: Let det(λ I−A) = λ
p +a1λ

p−1 + · · ·+ap−1λ +ap. First suppose A is a p× p
matrix. If det(A) ̸= 0, this will still be true for all ε small enough. Now suppose also that
det(A) = 0. Thus, the constant term of det(λ I−A) is 0. Consider εI +A ≡ Aε for small
real ε . The characteristic polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +a1 (λ − ε)p−1 + · · ·+(λ − ε)m am

where the a j are the coefficients in the characteristic polynomial for A and ak = 0 for
k > m,am ̸= 0. The constant term of this polynomial in λ must be nonzero for all ε small
enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε) = ε
m [am (−1)m + εC (ε)]

which is nonzero for all positive but very small ε. Thus εI +A is invertible for all ε small
enough but nonzero. ■

Recall that for A an p× p matrix, cof(A)i j is the determinant of the matrix which results
from deleting the ith row and the jth column and multiplying by (−1)i+ j. In the proof and
in what follows, I am using Dg to equal the matrix of the linear transformation Dg taken
with respect to the usual basis on Rp. Thus (Dg)i j = ∂gi/∂x j where g = ∑i giei for the ei
the standard basis vectors.
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Lemma 7.11.2 Let g : U → Rp be C2 where U is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Proof: From the cofactor expansion theorem,

δ k j det(Dg) =
p

∑
i=1

gi,k cof(Dg)i j (7.17)

This is because if k ̸= j, that on the right is the cofactor expansion of a determinant with
two equal columns while if k = j, it is just the cofactor expansion of the determinant. In
particular,

∂ det(Dg)
∂gi, j

= cof(Dg)i j (7.18)

which shows the last claim of the lemma. Assume that Dg (x) is invertible to begin with.
Differentiate 7.17 with respect to x j and sum on j. This yields

∑
r,s, j

δ k j
∂ (detDg)

∂gr,s
gr,s j = ∑

i j
gi,k j (cof(Dg))i j +∑

i j
gi,k cof(Dg)i j, j .

Hence, using δ k j = 0 if j ̸= k and 7.18,

∑
rs
(cof(Dg))rs gr,sk = ∑

rs
gr,ks (cof(Dg))rs +∑

i j
gi,kcof(Dg)i j, j .

Subtracting the first sum on the right from both sides and using the equality of mixed
partials,

∑
i

gi,k

(
∑

j
(cof(Dg))i j, j

)
= 0.

Since it is assumed Dg is invertible, this shows ∑ j (cof(Dg))i j, j = 0. If det(Dg) = 0, use
Lemma 7.11.1 to let gk (x) = g (x)+εkx where εk→ 0 and det(Dg+ εkI)≡ det(Dgk) ̸=
0. Then

∑
j
(cof(Dg))i j, j = lim

k→∞
∑

j
(cof(Dgk))i j, j = 0 ■

7.12 Newton’s Method
Remember Newton’s method from one variable calculus. It was an algorithm for finding the
zeros of a function. Beginning with xk the next iterate was xk+1 = xk− f ′ (xk)

−1 ( f (xk)) .
Of course the same thing can sometimes work in Rn or even more generally. Here you
have a function f (x) and you want to locate a zero. Then you could consider the se-
quence of iterates xk+1 = xk−Df (xk)

−1 (f (xk)) . If the sequence converges to x then
you would have x= x−Df (x)−1 (f (x)) and so you would need to have f (x) = 0. In the
next section, a modification of this well known method will be used to prove the Implicit
function theorem. The modification is that you look for a solution to the equation near
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x0 and replace the above algorithm with the simpler one xk+1 = xk−Df (x0)
−1 (f (xk)).

Then if T x= x−Df (x0)
−1 (f (x)) , it follows that as long as x is sufficiently close to

x0,DT (x) = I−Df (x0)
−1 Df (x) and the norm of this transformation is very small so

one can use the mean value inequality to conclude that T is a contraction mapping and
provide a sequence of iterates which converge to a fixed point. Actually, the situation will
be a little more complicated because we will do the implicit function theorem first, but this
is the idea.

7.13 Exercises
1. Here are some scalar valued functions of several variables. Determine which of these

functions are o(v). Here v is a vector in Rn, v = (v1, · · · ,vn).

(a) v1v2

(b) v2 sin(v1)

(c) v2
1 + v2

(d) v2 sin(v1 + v2)

(e) v1 (v1 + v2 + xv3)

(f) (ev1 −1− v1)

(g) (x ·v) |v|

2. Here is a function of two variables. f (x,y) = x2y+ x2. Find D f (x,y) directly from
the definition. Recall this should be a linear transformation which results from mul-
tiplication by a 1×2 matrix. Find this matrix.

3. Let f (x,y) =
(

x2 + y
y2

)
. Compute the derivative directly from the definition. This

should be the linear transformation which results from multiplying by a 2×2 matrix.
Find this matrix.

4. You have h(x) = g (f (x)) Here x ∈ Rn, f (x) ∈ Rm and g (y) ∈ Rp. where f,g
are appropriately differentiable. Thus Dh(x) results from multiplication by a matrix.
Using the chain rule, give a formula for the i jth entry of this matrix. How does this
relate to multiplication of matrices? In other words, you have two matrices which
correspond to Dg (f (x)) and Df (x) Call z= g (y) ,y= f (x) . Then

Dg (y) =
(

∂z
∂y1

· · · ∂z
∂ym

)
,Df (x) =

(
∂y
∂x1

· · · ∂y
∂xn

)
Explain the manner in which the i jth entry of Dh(x) is ∑k

∂ zi
∂yk

∂yy
∂x j

. This is a review

of the way we multiply matrices. what is the ith row of Dg (y) and the jth column of
Df (x)?

5. Find fx, fy, fz, fxy, fyx, fzy for the following. Verify the mixed partial derivatives are
equal.

(a) x2y3z4 + sin(xyz)

(b) sin(xyz)+ x2yz

6. Suppose f is a continuous function and f : U → R where U is an open set and
suppose that x ∈U has the property that for all y near x, f (x) ≤ f (y). Prove that
if f has all of its partial derivatives at x, then fxi (x) = 0 for each xi. Hint: Consider
f (x+ tv) = h(t). Argue that h′ (0) = 0 and then see what this implies about D f (x).
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7. As an important application of Problem 6 consider the following. Experiments are
done at n times, t1, t2, · · · , tn and at each time there results a collection of numerical
outcomes. Denote by {(ti,xi)}p

i=1 the set of all such pairs and try to find numbers a
and b such that the line x = at + b approximates these ordered pairs as well as pos-
sible in the sense that out of all choices of a and b, ∑

p
i=1 (ati +b− xi)

2 is as small
as possible. In other words, you want to minimize the function of two variables
f (a,b) ≡ ∑

p
i=1 (ati +b− xi)

2. Find a formula for a and b in terms of the given or-
dered pairs. You will be finding the formula for the least squares regression line.

8. Let f be a function which has continuous derivatives. Show that u(t,x) = f (x− ct)
solves the wave equation utt−c2∆u = 0. What about u(x, t) = f (x+ ct)? Here ∆u =
uxx.

9. Show that if ∆u = λu where u is a function of only x, then eλ tu solves the heat
equation ut −∆u = 0. Here ∆u = uxx.

10. Show that if f (x) = o(x), then f ′ (0) = 0.

11. Let f (x,y) be defined on R2 as follows. f
(
x,x2

)
= 1 if x ̸= 0. Define f (0,0) = 0,

and f (x,y) = 0 if y ̸= x2. Show that f is not continuous at (0,0) but that

lim
h→0

f (ha,hb)− f (0,0)
h

= 0

for (a,b) an arbitrary vector. Thus the Gateaux derivative exists at (0,0) in every
direction but f is not even continuous there.

12. Let

f (x,y)≡

{
xy4

x2+y8 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

Show that this function is not continuous at (0,0) but that the Gateaux derivative
limh→0

f (ha,hb)− f (0,0)
h exists and equals 0 for every vector (a,b).

13. Let U be an open subset of Rn and suppose that f : [a,b]×U → R satisfies

(x,y)→ ∂ f
∂yi

(x,y) ,(x,y)→ f (x,y)

are all continuous. Show that
∫ b

a f (x,y)dx,
∫ b

a
∂ f
∂yi

(x,y)dx all make sense and that in
fact

∂

∂yi

(∫ b

a
f (x,y)dx

)
=
∫ b

a

∂ f
∂yi

(x,y)dx

Also explain why y →
∫ b

a
∂ f
∂yi

(x,y)dx is continuous. Hint: You will need to use
the theorems from one variable calculus about the existence of the integral for a
continuous function. You may also want to use theorems about uniform continuity
of continuous functions defined on compact sets.
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14. I found this problem in Apostol’s book [1]. This is a very important result and is ob-

tained very simply. Read it and fill in any missing details. Let g(x)≡
∫ 1

0
e−x2(1+t2)

1+t2 dt

and f (x)≡
(∫ x

0 e−t2
dt
)2

. Note ∂

∂x

(
e−x2(1+t2)

1+t2

)
=−2xe−x2(1+t2). Explain why this

is so. Also show the conditions of Problem 13 are satisfied so that

g′ (x) =
∫ 1

0

(
−2xe−x2(1+t2)

)
dt.

Now use the chain rule and the fundamental theorem of calculus to find f ′ (x) . Then
change the variable in the formula for f ′ (x) to make it an integral from 0 to 1 and
show f ′ (x)+g′ (x) = 0. Now this shows f (x)+g(x) is a constant. Show the constant
is π/4 by letting x→ 0. Next take a limit as x→ ∞ to obtain the following formula

for the improper integral,
∫

∞

0 e−t2
dt,
(∫

∞

0 e−t2
dt
)2

= π/4. In passing to the limit in
the integral for g as x→ ∞ you need to justify why that integral converges to 0. To
do this, argue the integrand converges uniformly to 0 for t ∈ [0,1] and then explain
why this gives convergence of the integral. Thus

∫
∞

0 e−t2
dt =

√
π/2.

15. Recall the treatment of integrals of continuous functions in Proposition 5.9.5 or what
you used in beginning calculus. The gamma function is defined for x > 0 as Γ(x)≡∫

∞

0 e−ttx−1dt ≡ limR→∞

∫ R
0 e−ttx−1dt. Show this limit exists. Note you might have to

give a meaning to
∫ R

0 e−ttx−1dt if x < 1. Also show that Γ(x+1) = xΓ(x) , Γ(1) = 1.
How does Γ(n) for n an integer compare with (n−1)!?

16. Show the mean value theorem for integrals. Suppose f ∈C ([a,b]) . Then there exists
x ∈ (a,b), not just in [a,b] such that f (x)(b−a) =

∫ b
a f (t)dt. Hint: Let F (x) ≡∫ x

a f (t)dt and use the mean value theorem, Theorem 5.9.3 along with F ′ (x) = f (x).

17. Show, using the Weierstrass approximation theorem that linear combinations of the
form ∑i, j ai jgi (s)h j (t) where gi,h j are continuous functions on [0,b] are dense in
C ([0,b]× [0,b]) , the continuous functions defined on [0,b]× [0,b] with norm given
by

∥ f∥ ≡max{| f (x,y)| : (x,y) ∈ [0,b]× [0,b]}

Show that for h,g continuous,
∫ b

0
∫ s

0 g(s)h(t)dtds−
∫ b

0
∫ b

t g(s)h(t)dsdt = 0. Now
explain why if f is in C ([0,b]× [0,b]) ,∫ b

0

∫ s

0
f (s, t)dtds−

∫ b

0

∫ b

t
f (s, t)dsdt = 0.

18. Let f (x)≡
(∫ x

0 e−t2
dt
)2

. Use Proposition 5.9.5 which includes the fundamental the-
orem of calculus and elementary change of variables, show that

f ′ (x) = 2e−x2
(∫ x

0
e−t2

dt
)
= 2e−x2

(∫ 1

0
e−(xs)2

xds
)
=
∫ 1

0
2xe−x2(1+s2)ds.

Now show

f (x) =
∫ 1

0

∫ x

0
2te−t2(1+s2)dtds.

Show limx→∞

∫ x
0 e−t2

dt = 1
2
√

π



Chapter 8

Implicit Function Theorem
8.1 Statement and Proof of the Theorem

Recall the following notation. L (X ,Y ) is the space of bounded linear mappings from X to
Y where here (X ,∥·∥X ) and (Y,∥·∥Y ) are normed linear spaces. Recall that this means that
for each L ∈L (X ,Y ) ,∥L∥ ≡ sup∥x∥≤1 ∥Lx∥ < ∞. As shown earlier, this makes L (X ,Y )
into a normed linear space. In case X is finite dimensional, L (X ,Y ) is the same as the
collection of linear maps from X to Y . This was shown earlier. In what follows X ,Y will
be Banach spaces. If you like, think of them as finite dimensional normed linear spaces,
but if you like more generality, just think: complete normed linear space and L (X ,Y ) is
the space of bounded linear maps. In either case, this symbol is given in the following
definition.

Definition 8.1.1 Let (X ,∥·∥X ) and (Y,∥·∥Y ) be two normed linear spaces. Then
L (X ,Y ) denotes the set of linear maps from X to Y which also satisfy the following con-
dition. For L ∈L (X ,Y ) ,

lim
∥x∥X≤1

∥Lx∥Y ≡ ∥L∥< ∞

Recall that this operator norm is less than infinity is always the case where X is finite
dimensional. However, if you wish to consider infinite dimensional situations, you assume
the operator norm is finite as a qualification for being in L (X ,Y ).

Definition 8.1.2 A complete normed linear space is called a Banach space.

Theorem 8.1.3 If Y is a Banach space, then L (X ,Y ) is also a Banach space.

Proof: Let {Ln} be a Cauchy sequence in L (X ,Y ) and let x ∈ X .

∥Lnx−Lmx∥ ≤ ∥x∥∥Ln−Lm∥ .

Thus {Lnx} is a Cauchy sequence. Let Lx = limn→∞ Lnx. Then, clearly, L is linear because
if x1,x2 are in X , and a,b are scalars, then

L(ax1 +bx2) = lim
n→∞

Ln (ax1 +bx2) = lim
n→∞

(aLnx1 +bLnx2)

= aLx1 +bLx2.

Also L is bounded. To see this, note that {∥Ln∥} is a Cauchy sequence of real numbers
because |∥Ln∥−∥Lm∥| ≤ ∥Ln−Lm∥. Hence there exists K > sup{∥Ln∥ : n ∈ N}. Thus, if
x ∈ X , ∥Lx∥= limn→∞ ∥Lnx∥ ≤ K ∥x∥ . ■

The following theorem is really nice. The series in this theorem is called the Neuman
series.

Lemma 8.1.4 Let (X ,∥·∥) is a Banach space, and if A ∈ L (X ,X) and ∥A∥ = r < 1,
then (I−A)−1 = ∑

∞
k=0 Ak ∈ L (X ,X) where the series converges in the Banach space

L (X ,X). If O consists of the invertible maps in L (X ,X) , then O is open and if I is the
mapping which takes A to A−1, then I is continuous.

205
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Proof: First of all, why does the series make sense?∥∥∥∥∥ q

∑
k=p

Ak

∥∥∥∥∥≤ q

∑
k=p

∥∥∥Ak
∥∥∥≤ q

∑
k=p
∥A∥k ≤

∞

∑
k=p

rk ≤ rp

1− r

and so the partial sums are Cauchy in L (X ,X) . Therefore, the series converges to some-
thing in L (X ,X) by completeness of this normed linear space. Now why is it the inverse?

∞

∑
k=0

Ak (I−A) ≡ lim
n→∞

n

∑
k=0

Ak (I−A) = lim
n→∞

(
n

∑
k=0

Ak−
n+1

∑
k=1

Ak

)
= lim

n→∞

(
I−An+1)= I

because
∥∥An+1

∥∥≤ ∥A∥n+1 ≤ rn+1. Similarly,

(I−A)
∞

∑
k=0

Ak = lim
n→∞

(
I−An+1)= I

and so this shows that this series is indeed the desired inverse.
Next suppose A ∈ O so A−1 ∈ L (X ,X) . Then suppose ∥A−B∥ < r

1+∥A−1∥ ,r < 1.

Does it follow that B is also invertible? B = A− (A−B) = A
[
I−A−1 (A−B)

]
. Then∥∥A−1 (A−B)

∥∥ ≤ ∥∥A−1
∥∥∥A−B∥ < r and so

[
I−A−1 (A−B)

]−1 exists. Hence B−1 =[
I−A−1 (A−B)

]−1 A−1. Thus O is open as claimed. As to continuity, let A,B be as just
described. Then using the Neuman series,

∥IA−IB∥=
∥∥∥A−1−

[
I−A−1 (A−B)

]−1
A−1

∥∥∥
=

∥∥∥∥∥A−1−
∞

∑
k=0

(
A−1 (A−B)

)k
A−1

∥∥∥∥∥=
∥∥∥∥∥ ∞

∑
k=1

(
A−1 (A−B)

)k
A−1

∥∥∥∥∥
≤

∞

∑
k=1

∥∥A−1∥∥k+1 ∥A−B∥k = ∥A−B∥
∥∥A−1∥∥2

∞

∑
k=0

∥∥A−1∥∥k
(

r
1+∥A−1∥

)k

≤ ∥B−A∥
∥∥A−1∥∥2 1

1− r
.

Thus I is continuous at A ∈ O. ■
Next features the inverse in which there are two different spaces.

Lemma 8.1.5 Let

O≡ {A ∈L (X ,Y ) : A−1 ∈L (Y,X)}

and let I : O→L (Y,X) , IA≡ A−1. Then O is open and I is in Cm (O) for all m = 1,2, · · · .
Also

DI(A)(B) =−I(A)(B)I(A). (8.1)

In particular, I is continuous.
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Proof: Let A ∈ O and let B ∈L (X ,Y ) with ∥B∥ ≤ 1
2

∥∥A−1
∥∥−1

. Then∥∥A−1B
∥∥≤ ∥∥A−1∥∥∥B∥ ≤ 1

2

So by Lemma 8.1.4,

(A+B)−1 =
(
I +A−1B

)−1
A−1 =

∞

∑
n=0

(−1)n (A−1B
)n

A−1

=
[
I−A−1B+o(B)

]
A−1

which shows that O is open and, also,

I(A+B)−I(A) =
∞

∑
n=0

(−1)n (A−1B
)n

A−1−A−1

= −A−1BA−1 +o(B)

= −I(A)(B)I(A)+o(B)

which demonstrates 8.1. The reason the left over material is o(B) follows from the obser-
vation that o(B) is ∑

∞
n=2 (−1)n (A−1B

)n A−1 and so∥∥∥∥∥ ∞

∑
n=2

(−1)n (A−1B
)n

A−1

∥∥∥∥∥≤ ∞

∑
n=2

∥∥∥(A−1B
)n

A−1
∥∥∥≤ ∥∥A−1∥∥∥∥A−1∥∥2 ∥B∥2

∞

∑
n=0

1
2n

It follows from this that we can continue taking derivatives of I. For ∥B1∥ small,

− [DI(A+B1)(B)−DI(A)(B)] =

I(A+B1)(B)I(A+B1)−I(A)(B)I(A)

= I(A+B1)(B)I(A+B1)−I(A)(B)I(A+B1)+

I(A)(B)I(A+B1)−I(A)(B)I(A)

= [I(A)(B1)I(A)+o(B1)] (B)I(A+B1)+

I(A)(B) [I(A)(B1)I(A)+o(B1)]

= [I(A)(B1)I(A)+o(B1)] (B)
[
A−1−A−1B1A−1 +o(B1)

]
+

I(A)(B) [I(A)(B1)I(A)+o(B1)]

= I(A)(B1)I(A)(B)I(A)+I(A)(B)I(A)(B1)I(A)+o(B1)

and so

D2I(A)(B1)(B) = I(A)(B1)I(A)(B)I(A)+I(A)(B)I(A)(B1)I(A)

which shows I is C2 (O). Clearly we can continue in this way which shows I is in Cm (O)
for all m = 1,2, · · · . ■

Here are the two fundamental results presented earlier which will make it easy to prove
the implicit function theorem. First is the fundamental mean value inequality.
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Theorem 8.1.6 Suppose U is an open subset of X and f : U → Y is differentiable
on U and x+ t (y−x) ∈U for all t ∈ [0,1]. (The line segment joining the two points lies
in U.) Suppose also that for all points on this line segment,

∥Df (x+t (y−x))∥ ≤M.

Then
∥f (y)−f (x)∥ ≤M |y−x| .

Next recall the following theorem about fixed points of a contraction map. It was
Corollary 3.8.3.

Corollary 8.1.7 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r

and so it will remain in B if
d (x0, f (x0))

1− r
< δ .

The implicit function theorem deals with the question of solving, f (x,y) = 0 for x
in terms of y and how smooth the solution is. It is one of the most important theorems
in mathematics. The proof I will give holds with no change in the context of infinite di-
mensional complete normed vector spaces when suitable modifications are made on what
is meant by L (X ,Y ) . There are also even more general versions of this theorem than to
normed vector spaces.

Recall that for X ,Y normed vector spaces, the norm on X×Y is of the form

∥(x,y)∥= max(∥x∥ ,∥y∥) .

Theorem 8.1.8 (implicit function theorem) Let X ,Y,Z be finite dimensional normed
vector spaces and suppose U is an open set in X ×Y . Let f : U → Z be in C1 (U) and
suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈L (Z,X) . (8.2)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (8.3)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).
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Proof: Let T (x,y)≡ x−D1f (x0,y0)
−1f (x,y). Therefore, T (x0,y0) = x0 and

D1T (x,y) = I−D1f (x0,y0)
−1 D1f (x,y) . (8.4)

by continuity of the derivative which implies continuity of D1T , it follows there exists
δ > 0 such that if ∥x−x0∥< δ and ∥y−y0∥< δ , then

∥D1T (x,y)∥< 1
2
, D1f (x,y)

−1 exists (8.5)

The second claim follows from Lemma 8.1.5. By the mean value inequality, Theorem
8.1.6, whenever x,x′ ∈ B(x0,δ ) and y ∈ B(y0,δ ),∥∥T (x,y)−T

(
x′,y

)∥∥≤ 1
2

∥∥x−x′∥∥ . (8.6)

Also, it can be assumed δ is small enough that for some M and all such (x,y) ,∥∥∥D1f (x0,y0)
−1
∥∥∥∥D2f (x,y)∥< M (8.7)

Next, consider only y such that ∥y−y0∥< η where η < δ is so small that

∥T (x0,y)−x0∥<
δ

3

Then for such y, consider the mapping T y (x) = T (x,y). Thus by Corollary 8.1.7, for
each n ∈ N,

δ >
2
3

δ ≥ ∥T y (x0)−x0∥
1− (1/2)

≥
∥∥T n

y (x0)−x0
∥∥

Then by 8.6, the sequence of iterations of this map T y converges to a unique fixed point
x(y) in the ball B(x0,δ ). Thus, from the definition of T , f (x(y) ,y) = 0. This is the
implicitly defined function.

Next we show that this function is Lipschitz continuous. For y,ŷ in B(y0,η) ,

∥T (x,y)−T (x,ŷ)∥ =
∥∥∥D1f (x0,y0)

−1f (x,y)−D1f (x0,y0)
−1f (x, ŷ)

∥∥∥
≤ M ∥y− ŷ∥

thanks to the above estimate 8.7 and the mean value inequality, Theorem 8.1.6. Note
how convexity of B(y0,η) which says that the line segment joining y,ŷ is contained in
B(y0,η) is important to use this theorem. Then from this,

∥x(y)−x(ŷ)∥ = ∥T (x(y) ,y)−T (x(ŷ) , ŷ)∥ ≤ ∥T (x(y) ,y)−T (x(y) , ŷ)∥
+∥T (x(y) , ŷ)−T (x(ŷ) , ŷ)∥

≤M ∥y− ŷ∥+ 1
2
∥x(y)−x(ŷ)∥

Hence,
∥x(y)−x(ŷ)∥ ≤ 2M ∥y− ŷ∥ (8.8)
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Finally consider the claim that this implicitly defined function is C1.

0 = f (x(y+u) ,y+u)−f (x(y) ,y)
= D1f (x(y) ,y)(x(y+u)−x(y))+D2f (x(y) ,y)u

+o(x(y+u)−x(y) ,u) (8.9)

Consider the last term. o(x(y+u)−x(y) ,u)/∥u∥ equals{
o(x(y+u)−x(y),u)

∥(x(y+u)−x(y),u)∥X×Y

max(∥x(y+u)−x(y)∥,∥u∥)
∥u∥ if ∥(x(y+u)−x(y) ,u)∥X×Y ̸= 0

0 if ∥(x(y+u)−x(y) ,u)∥X×Y = 0

Now the Lipschitz condition just established shows that

max(∥x(y+u)−x(y)∥ ,∥u∥)
∥u∥

is bounded for nonzero u sufficiently small that y,y+u ∈ B(y0,η). Therefore,

lim
u→0

o(x(y+u)−x(y) ,u)
∥u∥

= 0

Then 8.9 shows that

0= D1f (x(y) ,y)(x(y+u)−x(y))+D2f (x(y) ,y)u+o(u)

Therefore, solving for x(y+u)−x(y) , it follows that

x(y+u)−x(y) = −D1f (x(y) ,y)
−1 D2f (x(y) ,y)u+D1f (x(y) ,y)

−1o(u)

= −D1f (x(y) ,y)
−1 D2f (x(y) ,y)u+o(u)

and now, the continuity of the partial derivatives D1f,D2f, continuity of the map A→ A−1,
along with the continuity of y→ x(y) shows that y→ x(y) is C1 with derivative equal to
−D1f (x(y) ,y)

−1 D2f (x(y) ,y). ■
The following is a nice result on functional dependence which is an application of the

implicit function theorem. See Widder [59].

Example 8.1.9 Suppose f ,g are C1 near (x0,y0) ∈ R2 and
Suppose f ,g are C1 and

1. det
(

fx (x,y) fy (x,y)
gx (x,y) gy (x,y)

)
= 0 near (x0,y0)

2. fx (x0,y0) ̸= 0.

Then there is a C1 function F such that g(x,y) = F ( f (x,y)) for (x,y) near (x0,y0).
Consider f (x,y)− z = 0 where z0 ≡ f (x0,y0). By assumption and implicit func-

tion theorem, there is a C1 function (y,z) → φ (y,z) so that for (y,z) near (y0,z0) the
x which solves f (x,y)− z = 0 is x = φ (y,z). In particular, for (x,y) close to (x0,y0) ,
f (φ (y, f (x,y)) ,y)− f (x,y) = 0 and so

φ (y, f (x,y)) = x. (∗)
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Also, for (y,z) near (y0,z0) , it follows fx (φ (y,z) ,y) ̸= 0.
Since f (φ (y, f (x,y)) ,y)− z = 0, fx (φ (y,z) ,y)φ y (y,z)+ fy (φ (y,z) ,y) = 0. It follows

from 1. that

∂

∂y
g(φ (y,z) ,y) = gx (φ (y,z) ,y)φ y (y,z)+gy (φ (y,z) ,y)

= −gx (φ (y,z) ,y)
(

fy (φ (y,z) ,y)
fx (φ (y,z) ,y)

)
+gy (φ (y,z) ,y)

=
1

fx (φ (y,z) ,y)

(
−gx (φ (y,z) ,y) fy (φ (y,z) ,y)
+gy (φ (y,z) ,y) fx (φ (y,z) ,y)

)
= 0

Therefore, g(φ (y,z) ,y) does not depend on y near (y0,z0) = (y0, f (x0,y0)). Thus there
exists a C1 function z→ F (z) for z near f (x0,y0) such that g(φ (y,z) ,y) = F (z) . From ∗,
for (x,y) near (x0,y0) ,

g(x,y) = g(φ (y, f (x,y)) ,y) = F ( f (x,y))

Note that if g(x,y) = F ( f (x,y)) , then (gx,gy) = F ′ ( f (x,y))( fx, fy) and so the above
determinant will equal 0.

The next theorem is a very important special case of the implicit function theorem
known as the inverse function theorem. Actually one can also obtain the implicit function
theorem from the inverse function theorem. It is done this way in [36], [39] and in [2].

Theorem 8.1.10 (inverse function theorem) Let x0 ∈U, an open set in X , and let
f : U → Y where X ,Y are finite dimensional normed vector spaces. Suppose

f is C1 (U) , and Df(x0)
−1 ∈L (Y,X). (8.10)

Then there exist open sets W, and V such that

x0 ∈W ⊆U, (8.11)

f : W →V is one to one and onto, (8.12)

f−1 is C1, (8.13)

Proof: Apply the implicit function theorem to the function F (x,y)≡ f (x)−y where
y0 ≡ f (x0). Thus the function y→ x(y) defined in that theorem is f−1. Now let W ≡
B(x0,δ )∩f−1 (B(y0,η)) and V ≡ B(y0,η) .This proves the theorem. ■

8.2 More Derivatives
When you consider a Ck function f defined on an open set U, you obtain the following

Df (x) ∈L (X ,Y ) ,D2f (x) ∈L (X ,L (X ,Y )) ,D3f (x) ∈L (X ,L (X ,L (X ,Y )))

and so forth. Thus they can each be considered as a linear transformation with values in
some vector space. When you consider the vector spaces, you see that these can also be
considered as multilinear functions on X with values in Y . Now consider the product of two
linear transformations A(y)B(y)w, where everything is given to make sense and here w
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is an appropriate vector. Then if each of these linear transformations can be differentiated,
you would do the following simple computation.

(A(y+u)B(y+u)−A(y)B(y))(w)

= (A(y+u)B(y+u)−A(y)B(y+u)+A(y)B(y+u)−A(y)B(y))(w)

= ((DA(y)u+o(u))B(y+u)+A(y)(DB(y)u+o(u)))(w)

= (DA(y)(u)B(y+u)+A(y)DB(y)(u)+o(u))(w)

= (DA(y)(u)B(y)+A(y)DB(y)(u)+o(u))(w)

Then
u→ (DA(y)(u)B(y)+A(y)DB(y)(u))(w)

is clearly linear and

(u,w)→ (DA(y)(u)B(y)+A(y)DB(y)(u))(w)

is bilinear and continuous as a function of y. By this we mean that for a fixed choice
of (u,w) the resulting Y valued function just described is continuous. Now if each of
AB,DA,DB can be differentiated, you could replace y with y+ û and do a similar com-
putation to obtain as many differentiations as desired, the kth differentiation yielding a k
linear function. You can do this as long as A and B have derivatives. Now in the case of the
implicit function theorem, you have

Dx(y) =−D1f (x(y) ,y)
−1 D2f (x(y) ,y) . (8.14)

By Lemma 8.1.5 and the implicit function theorem and the chain rule, this is the situation
just discussed. Thus D2x(y) can be obtained. Then the formula for it will only involve Dx
which is known to be continuous. Thus one can continue in this way finding derivatives till
f fails to have them. The inverse map never creates difficulties because it is differentiable of
order m for any m thanks to Lemma 8.1.5. Thus one can conclude the following corollary.

Corollary 8.2.1 In the implicit and inverse function theorems, you can replace C1 with
Ck in the statements of the theorems for any k ∈ N.

8.3 The Case of Rn

In many applications of the implicit function theorem,

f : U ⊆ Rn×Rm→ Rn

and f (x0,y0) = 0 while f is C1. How can you recognize the condition of the implicit
function theorem which says D1f (x0,y0)

−1 exists? This is really not hard. You recall the
matrix of the transformation D1f (x0,y0) with respect to the usual basis vectors is f1,x1 (x0,y0) · · · f1,xn (x0,y0)

...
...

fn,x1 (x0,y0) · · · fn,xn (x0,y0)


and so D1f (x0,y0)

−1 exists exactly when the determinant of the above matrix is nonzero.
This is the condition to check. In the general case, you just need to verify D1f (x0,y0) is
one to one and this can also be accomplished by looking at the matrix of the transformation
with respect to some bases on X and Z.
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8.4 Exercises
1. Let A ∈L (X ,Y ). Let f (x)≡ Ax. Verify from the definition that D f (x) = A. What

if f (x) = y+Ax? Note the similarity with functions of a single variable.

2. You have a level surface given by

f (x,y,z) = 0, f is C1 (U) ,(x,y,z) ∈U,

The question is whether this deserves to be called a surface. Using the implicit func-
tion theorem, show that if f (x0,y0,z0)= 0 and if ∂ f

∂ z (x0,y0,z0) ̸= 0 then in some open
subset of R3, the relation f (x,y,z) = 0 can be “solved” for z getting say z = z(x,y)
such that f (x,y,z(x,y))= 0. What happens if ∂ f

∂x (x0,y0,z0) ̸= 0 or ∂ f
∂y (x0,y0,z0) ̸= 0?

Explain why z is a C1 map for (x,y) in some open set.

3. Let x(t) = (x(t) ,y(t) ,z(t))T be a vector valued function defined for t ∈ (a,b) . Then
Dx(t) ∈L

(
R,R3

)
. We usually denote this simply as x′ (t) . Thus, considered as a

matrix, it is the 3× 1 matrix (x′ (t) ,y′ (t) ,z′ (t))T the T indicating that you take the
transpose. Don’t worry too much about this. You can also consider this as a vector.
What is the geometric significance of this vector? The answer is that this vector is
tangent to the curve traced out by x(t) for t ∈ (a,b). Explain why this is so using
the definition of the derivative. You need to describe what is meant by being tangent
first. By saying that the line x= a+ tb is tangent to a parametric curve consisting
of points traced out by x(t) for t ∈ (−δ ,δ ) at the point a= x(t) which is on both
the line and the curve, you would want to have

lim
u→0

x(t +u)− (a+bu)
u

= 0

With this definition of what it means for a line to be tangent, explain why the line
x(t)+x′ (t)u for u ∈ (−δ ,δ ) is tangent to the curve determined by t→ x(t) at the
point x(t) . So why would you take the above as a definition of what it means to be
tangent? Consider the component functions of x(t) . What does the above limit say
about the component functions and the corresponding components of b in terms of
slopes of lines tangent to curves?

4. Let f (x,y,z) be a C1 function f : U → R where U is an open set in R3. The gradient
vector, defined as (

∂ f
∂x (x,y,z)

∂ f
∂y (x,y,z)

∂ f
∂ z (x,y,z)

)T

has fundamental geometric significance illustrated by the following picture.

∇ f (x0,y0,z0)

x′1(t0)

x′2(s0)
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The way we present this in engineering math is to consider a smooth C1 curve
(x(t) ,y(t) ,z(t)) for t ∈ (a,b) such that when t = c∈ (a,b) ,(x(c) ,y(c) ,z(c)) equals
the point (x,y,z) in the level surface and such that (x(t) ,y(t) ,z(t)) lies in this sur-
face. Then 0 = f (x(t) ,y(t) ,z(t)) . Show, using the chain rule, that the gradient
vector at the point (x,y,z) is perpendicular to(

x′ (c) ,y′ (c) ,z′ (c)
)
.

Recall that the chain rule says that for h(t) = f (x(t) ,y(t) ,z(t)) ,Dh(t) =

(
∂ f
∂x (x(t) ,y(t) ,z(t))

∂ f
∂y (x(t) ,y(t) ,z(t))

∂ f
∂ z (x(t) ,y(t) ,z(t))

) x′

y′

z′


Since this holds for all such smooth curves in the surface which go through the given
point, we say that the gradient vector is perpendicular to the surface. In the picture,
there are two intersecting curves which are shown to intersect at a point of the sur-
face. We present this to the students in engineering math and everyone is happy with
it, but the argument is specious. Why do there exist any smooth curves in the surface
through a point? What would you need to assume to justify the existence of smooth
curves in the surface at some point of the level surface? Why?

5. This problem illustrates what can happen when the gradient of a scalar valued func-
tion vanishes or is not well defined. Consider the level surface given by

z−
√

(x2 + y2) = 0.

Sketch the graph of this surface. Why is there no unique tangent plane at the origin
(0,0,0)? Next consider z2−

(
x2 + y2

)
= 0. What about a well defined tangent plane

at (0,0,0)?

6. Suppose you have two level surfaces f (x,y,z) = 0 and g(x,y,z) = 0 which intersect
at a point (x0,y0,z0) , each f ,g is C1. Use the implicit function theorem to give con-
ditions which will guarantee that the intersection of these two surfaces near this point
is a curve. Explain why.

7. Let X ,Y be Banach spaces and let U be an open subset of X . Let f :U→Y be C1 (U) ,
let x0 ∈U, and δ > 0 be given. Show there exists ε > 0 such that if x1,x2 ∈ B(x0,ε) ,
then

∥ f (x1)− ( f (x2)+D f (x0)(x1− x2))∥ ≤ δ ∥x1− x2∥

Hint: You know f (x1)− f (x2) = D f (x2)(x1− x2)+o(x1− x2). Use continuity.

8. ↑This problem illustrates how if D f (x0) is one to one, then near x0 the same is true
of f . Suppose in this problem that all normed linear spaces are finite dimensional.
Suppose D f (x0) is one to one. Here f : U → Y where U ⊆ X .

(a) Show that there exists r > 0 such that ∥D f (x0)x∥ ≥ r∥x∥ . To do this, recall
equivalence of norms.

(b) Use the above problem to show that there is ε > 0 such that f is one to one on
B(x0,ε) provided D f (x0) is one to one.
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9. If U,V are open sets in Banach spaces X ,Y respectively and f : U →V is one to one
and onto and both f , f−1 are C1, show that D f (x) : X →Y is one to one and onto for
each x ∈U . Hint: f ◦ f−1 = identity. Now use chain rule.

10. A function f : U ⊆C→ C where U is an open set subset of the complex numbers C
is called analytic if

lim
h→0

f (z+h)− f (z)
h

≡ f ′ (z) , z = x+ iy

exists and z→ f ′ (z) is continuous. Show that if f is analytic on an open set U and if
f ′ (z) ̸= 0, then there is an open set V containing z such that f (V ) is open, f is one to
one, and f , f−1 are both continuous. Hint: This follows very easily from the inverse
function theorem. Recall that we have allowed for the field of scalars the complex
numbers.

11. Problem 8 has to do with concluding that f is locally one to one if D f (x0) is only
known to be one to one. The next obvious question concerns the situation where
D f (x0) maybe is possibly not one to one but is onto. There are two parts, a linear
algebra consideration, followed by an application of the inverse function theorem.
Thus these two problems are each generalizations of the inverse function theorem.

(a) Suppose X is a finite dimensional vector space and M ∈ L (X ,Y ) is onto Y .
Consider a basis for M (X) = Y,{Mx1, · · · ,Mxn} . Verify that {x1, · · · ,xn} is
linearly independent. Define X̂ ≡ span(x1, · · · ,xn). Show that if M̂ is the re-
striction of M to X̂ , then M is one to one and onto Y .

(b) Now suppose f : U ⊆ X → Y is C1 and D f (x0) is onto Y . Show that there is a
ball B( f (x0) ,ε) and an open set V ⊆ X such that f (V ) ⊇ B( f (x0) ,ε) so that
if D f (x) is onto for each x ∈U , then f (U) is an open set. This is called the
open map theorem. You might use the inverse function theorem with the spaces
X̂ ,Y . You might want to consider Problem 1. This is a nice illustration of why
we developed the inverse and implicit function theorems on arbitrary normed
linear spaces. You will see that this is a fairly easy problem.

12. Recall that a function f : U ⊆ X → Y where here assume X is finite dimensional, is
Gateaux differentiable if

lim
t→0

f (x+ tv)− f (x)
t

≡ Dv f (x)

exists. Here t ∈ R. Suppose that x→ Dv f (x) exists and is continuous on U . Show
it follows that f is differentiable and in fact Dv f (x) = D f (x)v. Hint: Let g(y) ≡
f (∑i yixi) and argue that the partial derivatives of g all exist and are continuous.
Conclude that g is C1 and then argue that f is just the composition of g with a linear
map.

13. Let

f (x,y) =

 (x2−y4)
2

(x2+y4)
2 if (x,y) ̸= (0,0)

1 if (x,y) = (0,0)

Show that f is not differentiable, and in fact is not even continuous, but Dv f (0,0)
exists and equals 0 for every v ̸= 0.
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14. Let

f (x,y) =

{
xy4

x2+y8 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

Show that f is not differentiable, and in fact is not even continuous, but Dv f (0,0)
exists and equals 0 for every v ̸= 0.

8.5 The Method of Lagrange Multipliers
As an application of the implicit function theorem, consider the method of Lagrange mul-
tipliers from calculus. Recall the problem is to maximize or minimize a function subject to
equality constraints. Let f : U → R be a C1 function where U ⊆ Rn and let

gi (x) = 0, i = 1, · · · ,m (8.15)

be a collection of equality constraints with m < n. Now consider the system of nonlinear
equations

f (x) = a

gi (x) = 0, i = 1, · · · ,m.

x0 is a local maximum if f (x0)≥ f (x) for allx nearx0 which also satisfies the constraints
8.15. A local minimum is defined similarly. Let F : U×R→ Rm+1 be defined by

F (x,a)≡


f (x)−a
g1 (x)

...
gm (x)

 . (8.16)

Now consider the m + 1× n Jacobian matrix, the matrix of the linear transformation,
D1F (x,a) with respect to the usual basis for Rn and Rm+1.

fx1 (x0) · · · fxn (x0)
g1x1 (x0) · · · g1xn (x0)

...
...

gmx1 (x0) · · · gmxn (x0)

 .

If this matrix has rank m+1 then some m+1×m+1 submatrix has nonzero determinant.
It follows from the implicit function theorem that there exist m+1 variables, xi1 , · · · ,xim+1
such that the system

F (x,a) = 0 (8.17)

specifies these m+ 1 variables as a function of the remaining n− (m+1) variables and
a in an open set of Rn−m. Thus there is a solution (x,a) to 8.17 for some x close to x0
whenever a is in some open interval. Therefore, x0 cannot be either a local minimum or a
local maximum. It follows that if x0 is either a local maximum or a local minimum, then
the above matrix must have rank less than m+ 1 which requires the rows to be linearly
dependent. Thus, there exist m scalars,

λ 1, · · · ,λ m,
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and a scalar µ, not all zero such that

µ

 fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 . (8.18)

If the column vectors  g1x1 (x0)
...

g1xn (x0)

 , · · ·

 gmx1 (x0)
...

gmxn (x0)

 (8.19)

are linearly independent, then, µ ̸= 0 and dividing by µ yields an expression of the form fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (8.20)

at every point x0 which is either a local maximum or a local minimum. This proves the
following theorem.

Theorem 8.5.1 Let U be an open subset of Rn and let f : U → R be a C1 function.
Then if x0 ∈U is either a local maximum or local minimum of f subject to the constraints
8.15, then 8.18 must hold for some scalars µ,λ 1, · · · ,λ m not all equal to zero. If the vectors
in 8.19 are linearly independent, it follows that an equation of the form 8.20 holds.

8.6 The Taylor Formula
First recall the Taylor formula with the Lagrange form of the remainder. It will only be
needed on [0,1] so that is what I will show.

Theorem 8.6.1 Let h : [0,1]→R have m+1 derivatives. Then there exists t ∈ (0,1)
such that

h(1) = h(0)+
m

∑
k=1

h(k) (0)
k!

+
h(m+1) (t)
(m+1)!

.

Proof: Let K be a number chosen such that

h(1)−

(
h(0)+

m

∑
k=1

h(k) (0)
k!

+K

)
= 0

Now the idea is to find K. To do this, let

F (t) = h(1)−

(
h(t)+

m

∑
k=1

h(k) (t)
k!

(1− t)k +K (1− t)m+1

)
Then F (1)=F (0)= 0. Therefore, by Rolle’s theorem or the mean value theorem, Theorem
5.9.3, there exists t between 0 and 1 such that F ′ (t) = 0. Thus,

0 = −F ′ (t) = h′ (t)+
m

∑
k=1

h(k+1) (t)
k!

(1− t)k

−
m

∑
k=1

h(k) (t)
k!

k (1− t)k−1−K (m+1)(1− t)m
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And so

= h′ (t)+
m

∑
k=1

h(k+1) (t)
k!

(1− t)k−
m−1

∑
k=0

h(k+1) (t)
k!

(1− t)k

−K (m+1)(1− t)m

= h′ (t)+
h(m+1) (t)

m!
(1− t)m−h′ (t)−K (m+1)(1− t)m

and so K = h(m+1)(t)
(m+1)! .This proves the theorem. ■

Now let f : U → R where U ⊆ X a normed vector space and suppose f ∈Cm (U) and
suppose Dm+1 f (x) exists on U . Let x ∈U and let r > 0 be such that

B(x,r)⊆U.

Then for ∥v∥< r consider
f (x+tv)− f (x)≡ h(t)

for t ∈ [0,1]. Then by the chain rule,

h′ (t) = D f (x+ tv)(v) ; h′′ (t) = D2 f (x+ tv)(v)(v)

and continuing in this way,

h(k) (t) = D(k) f (x+tv)(v)(v) · · ·(v)≡ D(k) f (x+tv)vk.

It follows from Taylor’s formula for a function of one variable given above that

f (x+v) = f (x)+
m

∑
k=1

D(k) f (x)vk

k!
+

D(m+1) f (x+tv)vm+1

(m+1)!
. (8.21)

This proves the following theorem.

Theorem 8.6.2 Let f : U → R and let f ∈Cm+1 (U). Then if

B(x,r)⊆U,

and ∥v∥< r, there exists t ∈ (0,1) such that 8.21 holds.

8.7 Second Derivative Test
Now consider the case where U ⊆ Rn and f : U → R is C2 (U). Then from Taylor’s theo-
rem, if v is small enough, there exists t ∈ (0,1) such that

f (x+v) = f (x)+D f (x)v+
D2 f (x+tv)v2

2
. (8.22)

Consider

D2 f (x+tv)(ei)(e j) ≡ D(D( f (x+tv))ei)e j

= D
(

∂ f (x+ tv)
∂xi

)
e j =

∂ 2 f (x+ tv)
∂x j∂xi
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where ei are the usual basis vectors. Lettin v= ∑
n
i=1 viei, the second derivative term in

8.22 reduces to

1
2 ∑

i, j
D2 f (x+tv)(ei)(e j)viv j =

1
2 ∑

i, j
Hi j (x+tv)viv j

where

Hi j (x+tv) = D2 f (x+tv)(ei)(e j) =
∂ 2 f (x+tv)

∂x j∂xi
.

Definition 8.7.1 The matrix whose i jth entry is ∂ 2 f (x)
∂x j∂xi

is called the Hessian matrix,
denoted asH (x).

From Theorem 7.10.1, this is a symmetric real matrix, thus self adjoint. By the conti-
nuity of the second partial derivative,

f (x+v) = f (x)+D f (x)v+
1
2
vT H (x)v+

1
2
(
vT (H (x+tv)−H (x))v

)
. (8.23)

where the last two terms involve ordinary matrix multiplication and

vT =
(

v1 · · · vn
)

for vi the components of v relative to the standard basis.

Definition 8.7.2 Let f : D→ R where D is a subset of some normed vector space.
Then f has a local minimum at x ∈ D if there exists δ > 0 such that for all y ∈ B(x,δ )

f (y)≥ f (x) .

f has a local maximum at x ∈ D if there exists δ > 0 such that for all y ∈ B(x,δ )

f (y)≤ f (x) .

Theorem 8.7.3 If f : U → R where U is an open subset of Rn and f is C2, suppose
D f (x) = 0. Then if H (x) has all positive eigenvalues, x is a local minimum. If the
Hessian matrix H (x) has all negative eigenvalues, then x is a local maximum. If H (x)
has a positive eigenvalue, then there exists a direction in which f has a local minimum at
x, while if H (x) has a negative eigenvalue, there exists a direction in which H (x) has a
local maximum at x.

Proof: Since D f (x)= 0, formula 8.23 holds and by continuity of the second derivative,
H (x) is a symmetric matrix. Thus H (x) has all real eigenvalues. Suppose first that H (x)

has all positive eigenvalues and that all are larger than δ
2 > 0. Then by Theorem 1.4.1,

H (x) has an orthonormal basis of eigenvectors, {vi}n
i=1 and if u is an arbitrary vector,

such that u= ∑
n
j=1 u jv j where u j = u ·v j, then

uT H (x) u=
n

∑
j=1

u jv
T
j H (x)

n

∑
j=1

u jv j
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=
n

∑
j=1

u2
jλ j ≥ δ

2
n

∑
j=1

u2
j = δ

2 |u|2 .

From 8.23 and the continuity of H, if v is small enough,

f (x+v)≥ f (x)+
1
2

δ
2 |v|2− 1

4
δ

2 |v|2 = f (x)+
δ

2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reason-
ing. Suppose H (x) has a positive eigenvalue λ

2. Then let v be an eigenvector for this
eigenvalue. Then from 8.23,

f (x+tv) = f (x)+
1
2

t2vT H (x)v+

1
2

t2 (vT (H (x+tv)−H (x))v
)

which implies

f (x+tv) = f (x)+
1
2

t2
λ

2 |v|2 + 1
2

t2 (vT (H (x+tv)−H (x))v
)

≥ f (x)+
1
4

t2
λ

2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. This proves
the theorem. ■

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x,y) = x4 + y2, f2 (x,y) =−x4 + y2.

Then D fi (0,0) = 0 and for both functions, the Hessian matrix evaluated at (0,0) equals(
0 0
0 2

)
but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

8.8 The Rank Theorem
This is a very interesting result. The proof follows Marsden and Hoffman. First here is
some linear algebra.

Theorem 8.8.1 Let L : Rn→ RN have rank m. Then there exists a basis

{u1, · · · ,um,um+1, · · · ,un}

such that a basis for ker(L) is {um+1, · · · ,un} .
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Proof: Since L has rank m, there is a basis for L(Rn) which is of the form

{Lu1, · · · ,Lum}

Then if ∑i ciui = 0 you can do L to both sides and conclude that each ci = 0. Hence
{u1, · · · ,um} is linearly independent. Let {v1, · · · ,vk} be a basis for ker(L) . Let x ∈ Rn.
Then Lx = ∑

m
i=1 ciLui for some choice of scalars ci. Hence L(x−∑

m
i=1 ciui) = 0 which

shows that there exist d j such that x= ∑
m
i=1 ciui +∑

k
j=1 d jv j It follows that

span(u1, · · · ,um,v1, · · · ,vk) = Rn

Is this set of vectors linearly independent? Suppose ∑
m
i=1 ciui+∑

k
j=1 d jv j = 0 Do L to both

sides to get ∑
m
i=1 ciLui = 0 Thus each ci = 0. Hence ∑

k
j=1 d jv j = 0 and so each d j = 0 also.

It follows that k = n−m and we can let

{v1, · · · ,vk}= {um+1, · · · ,un} . ■

Another useful linear algebra result is the following lemma.

Lemma 8.8.2 Let V ⊆Rn be a subspace and suppose A(x) ∈L
(
V,RN

)
for x in some

open set U. Also suppose x→ A(x) is continuous for x ∈U. Then if A(x0) is one to one
on V for some x0 ∈U, then it follows that for all x close enough to x0, A(x) is also one
to one on V .

Proof: Consider V as an inner product space with the inner product from Rn and
A(x)∗A(x) . Then A(x)∗A(x) ∈L (V,V ) and x→ A(x)∗A(x) is also continuous. Also
for v ∈V, (

A(x)∗A(x)v,v
)

V = (A(x)v,A(x)v)RN

If A(x0)
∗A(x0)v= 0, then from the above, it follows that A(x0)v= 0 also. Therefore,

v= 0 and so A(x0)
∗A(x0) is one to one on V . For all x close enough to x0, it follows

from continuity that A(x)∗A(x) is also one to one. Thus, for such x, if A(x)v= 0, Then
A(x)∗A(x)v= 0 and so v= 0. Thus, for x close enough to x0, it follows that A(x) is
also one to one on V . ■

Theorem 8.8.3 Let f : A⊆Rn→RN where A is open in Rn. Let f be a Cr function
and suppose that Df (x) has rank m for all x ∈ A. Let x0 ∈ A. Then there are open sets
U,V ⊆ Rn with x0 ∈ V, and a Cr function h : U → V with inverse h−1 : V →U also Cr

such that f ◦h depends only on (x1, · · · ,xm).

Proof: Let L = Df (x0), and N0 = kerL. Using the above linear algebra theorem, there
exists

{u1, · · · ,um}

such that {Lu1, · · · ,Lum} is a basis for LRn. Extend to form a basis for Rn,

{u1, · · · ,um,um+1, · · · ,un}

such that a basis for N0 = kerL is {um+1, · · · ,un}. Let

M ≡ span(u1, · · · ,um) .
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Let the coordinate maps be ψk so that if x ∈ Rn,

x= ψ1 (x)u1 + · · ·+ψn (x)un

Since these coordinate maps are linear, they are infinitely differentiable.
Next I will define coordinate maps for x ∈ RN . Then by the above construction,

{Lu1, · · · ,Lum} is a basis for L(Rn). Let a basis for RN be

{Lu1, · · · ,Lum,vm+1, · · · ,vN}

(Note that, since the rank of Df (x) = m you must have N ≥ m.) The coordinate maps φ i
will be defined as follows for x ∈ RN .

x= φ 1 (x)Lu1 + · · ·φ m (x)Lum +φ m+1 (x)vm+1 + · · ·+φ N (x)vN

Now define two infinitely differentiable maps G : Rn→ Rn and H : RN → Rn,

G(x)≡
(
0, · · · ,0,ψm+1 (x) , · · · ,ψn (x)

)
H (y)≡ (φ 1 (y) , · · · ,φ m (y) ,0, · · · ,0)

For x ∈ A⊆ Rn, let
g (x)≡ H (f (x))+G(x) ∈ Rn

Thus the first term picks out the first m entries of f (x) and the second term the last n−m
entries of x. It is of the form(

φ 1 (f (x)) , · · · ,φ m (f (x)) ,ψm+1 (x) , · · · ,ψn (x)
)

Then
Dg (x0)(v) = HL(v)+G v= HLv+Gv (8.24)

which is of the form

Dg (x0)(v) =
(
φ 1 (Lv) , · · · ,φ m (Lv) ,ψm+1 (v) , · · · ,ψn (v)

)
If this equals 0, then all the components of v, ψm+1 (v) , · · · ,ψn (v) are equal to 0. Hence

v =
m

∑
i=1

ciui.

But also the coordinates of Lv,φ 1 (Lv) , · · · ,φ m (Lv) are all zero so Lv= 0 and so 0 =

∑
m
i=1 ciLui so by independence of the Lui, each ci = 0 and consequently v= 0.

This proves the conditions for the inverse function theorem are valid for g. Therefore,
there is an open ball U and an open set V , x0 ∈V , such that g : V →U is a Cr map and its
inverse g−1 : U →V is also. We can assume by continuity and Lemma 8.8.2 that V and U
are small enough that for each x ∈V,Dg (x) is one to one. This follows from the fact that
x→ Dg (x) is continuous.

Since it is assumed that Df (x) is of rank m,Df (x)(Rn) is a subspace which is m
dimensional, denoted as Px. Also denote L(Rn) = L(M) as P.
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PPx

M ⊆ Rn

RN

Thus {Lu1, · · · ,Lum} is a basis for P. Using Lemma 8.8.2 again, by making V,U
smaller if necessary, one can also assume that for each x ∈ V, Df (x) is one to one on M
(although not on Rn) and HDf (x) is one to one on M. This follows from continuity and
the fact that L =Df (x0) is one to one on M. Therefore, it is also the case that Df (x) maps
the m dimensional space M onto the m dimensional space Px and H is one to one on Px.
The reason for this last claim is as follows: If Hz= 0 where z ∈ Px, then HDf (x)w= 0
where w ∈ M and Df (x)w= z. Hence w= 0 because HDf (x) is one to one, and so
z= 0 which shows that indeed H is one to one on Px.

Denote as Lx the inverse of H which is defined on Rm×0, Lx : Rm×0→ Px. That 0
refers to the N−m string of zeros in the definition given above for H.

Define h≡ g−1 and consider f1 ≡ f ◦h. It is desired to show that f1 depends only on
x1, · · · ,xm. Let D1 refer to (x1, · · · ,xm) and let D2 refer to (xm+1, · · · ,xn). Then f = f1 ◦g
and so by the chain rule

Df (x)(y) = Df1 (g (x))Dg (x)(y) (8.25)

Now as in 8.24, for y ∈ Rn,

Dg (x)(y) = HDf (x)(y)+Gy

=
(
φ 1 (Df (x)y) , · · · ,φ m (Df (x)y) ,ψm+1 (y) , · · · ,ψn (y)

)
Recall that from the above definitions of H and G,

G(y)≡
(
0, · · · ,0,ψm+1 (y) , · · · ,ψn (y)

)
H (Df (x)(y)) = (φ 1 (Df (x)y) , · · · ,φ m (Df (x)y) ,0, · · · ,0)

Let π1 : Rn → Rm denote the projection onto the first m positions and π2 the projection
onto the last n−m. Thus

π1Dg (x)(y) = (φ 1 (Df (x)y) , · · · ,φ m (Df (x)y))

π2Dg (x)(y) =
(
ψm+1 (y) , · · · ,ψn (y)

)
Now in general, for z ∈ Rn,

Df1 (g (x))z = D1f1 (g (x))π1z+D2f1 (g (x))π2z

Therefore, it follows that Df1 (g (x))Dg (x)(y) is given by

Df (x)(y) = Df1 (g (x))Dg (x)(y)

= D1f1 (g (x))π1Dg (x)(y)+D2f1 (g (x))π2Dg (x)(y)
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Df (x)(y) = Df1 (g (x))Dg (x)(y) = D1f1 (g (x))

=π1Dg(x)(y)︷ ︸︸ ︷
π1HDf (x)(y)

+D2f1 (g (x))π2Gy

We need to verify the last term equals 0. Solving for this term,

D2f1 (g (x))π2Gy = Df (x)(y)−D1f1 (g (x))π1HDf (x)(y)

As just explained, Lx ◦H is the identity on Px, the image of Df (x). Then

D2f1 (g (x))π2Gy = Lx ◦HDf (x)(y)−D1f1 (g (x))π1HDf (x)(y)

=
(

Lx ◦HDf (x)−D1f1 (g (x))π1HDf (x)
)
(y)

Factoring out that underlined term,

D2f1 (g (x))π2Gy = [Lx−D1f1 (g (x))π1]HDf (x)(y)

Now Df (x) : M→Px =Df (x)(Rn) is onto. (This is based on the assumption that Df (x)
has rank m.) Thus it suffices to consider only y ∈M in the right side of the above. However,
for such y,π2Gy= 0 because to be in M,ψk (y) = 0 if k ≥ m+ 1, and so the left side of
the above equals 0. Thus it appears this term on the left is 0 for any y chosen. How can
this be so? It can only take place if D2f1 (g (x)) = 0 for every x ∈ V . Thus, since g is
onto, it can only take place if D2f1 (x) = 0 for all x ∈U . Therefore on U it must be the
case that f1 depends only on x1, · · · ,xm as desired. ■

8.9 The Local Structure of C1 Mappings
In linear algebra it is shown that every invertible matrix can be written as a product of
elementary matrices, those matrices which are obtained from doing a row operation to the
identity matrix. Two of the row operations produce a matrix which will change exactly one
entry of a vector when it is multiplied by the elementary matrix. The other row operation
involves switching two rows and this has the effect of switching two entries in a vector
when multiplied on the left by the elementary matrix. Thus, in terms of the effect on a
vector, the mapping determined by the given matrix can be considered as a composition of
mappings which either flip two entries of the vector or change exactly one. A similar local
result is available for nonlinear mappings. I found this interesting result in the advanced
calculus book by Rudin.

Definition 8.9.1 Let U be an open set in Rn and let G : U → Rn. Then G is called
primitive if it is of the form

G(x) =
(

x1 · · · α (x) · · · xn
)T

.

Thus, G is primitive if it only changes one of the variables. A function F : Rn → Rn is
called a flip if

F (x1, · · · ,xk, · · · ,xl , · · · ,xn) = (x1, · · · ,xl , · · · ,xk, · · · ,xn)
T .

Thus a function is a flip if it interchanges two coordinates. Also, for m = 1,2, · · · ,n, define

Pm (x)≡
(

x1 x2 · · · xm 0 · · · 0
)T
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It turns out that if h(0) = 0,Dh(0)−1 exists, and h is C1 on U , then h can be written
as a composition of primitive functions and flips. This is a very interesting application of
the inverse function theorem.

Theorem 8.9.2 Let h : U → Rn be a C1 function with h(0) = 0,Dh(0)−1 exists.
Then there is an open set V ⊆U containing 0, flips F 1, · · · ,F n−1, and primitive functions
Gn,Gn−1, · · · ,G1 such that for x ∈V,

h(x) = F 1 ◦ · · · ◦F n−1 ◦Gn ◦Gn−1 ◦ · · · ◦G1 (x) .

The primitive functionG j leaves xi unchanged for i ̸= j.

Proof: Let
h1 (x)≡ h(x) =

(
α1 (x) · · · αn (x)

)T

Dh(0)e1 =
(

α1,1 (0) · · · αn,1 (0)
)T

where αk,1 denotes ∂αk
∂x1

. Since Dh(0) is one to one, the right side of this expression cannot
be zero. Hence there exists some k such that αk,1 (0) ̸= 0. Now define

G1 (x)≡
(

αk (x) x2 · · · xn
)T

Then the matrix of DG1 (0) is of the form
αk,1 (0) · · · · · · αk,n (0)

0 1 0
...

. . .
...

0 0 · · · 1


and its determinant equals αk,1 (0) ̸= 0. Therefore, by the inverse function theorem, there
exists an open set U1, containing 0 and an open set V2 containing 0 such thatG1 (U1) =V2
and G1 is one to one and onto, such that it and its inverse are both C1. Let F 1 denote the
flip which interchanges xk with x1. Now define

h2 (y)≡ F 1 ◦h1 ◦G−1
1 (y)

Thus

h2 (G1 (x)) ≡ F 1 ◦h1 (x) (8.26)

=
(

αk (x) · · · α1 (x) · · · αn (x)
)T

Therefore,
P1h2 (G1 (x)) =

(
αk (x) 0 · · · 0

)T
.

Also
P1 (G1 (x)) =

(
αk (x) 0 · · · 0

)T

so P1h2 (y) = P1 (y) for all y ∈V2. Also, h2 (0) = 0 and Dh2 (0)
−1 exists because of the

definition of h2 above and the chain rule. Since F 2
1 = I, the identity map, it follows from

(8.26) that
h(x) = h1 (x) = F 1 ◦h2 ◦G1 (x) . (8.27)
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Note that on an open set V2 ≡ G1 (U1) containing the origin, h2 leaves the first entry un-
changed. This is what P1h2 (G1 (x)) = P1 (G1 (x)) says. In contrast, h1 = h left possibly
no entries unchanged.

Suppose then, that for m≥ 2, hm leaves the first m−1 entries unchanged,

Pm−1hm (x) = Pm−1 (x) (8.28)

for all x ∈Um, an open subset of U containing 0, and hm (0) = 0, Dhm (0)−1 exists. From
(8.28), hm (x) must be of the form

hm (x) =
(

x1 · · · xm−1 α1 (x) · · · αn (x)
)T

where these αk are different than the ones used earlier. Then

Dhm (0)em =
(

0 · · · 0 α1,m (0) · · · αn,m (0)
)T ̸= 0

because Dhm (0)−1 exists. Therefore, there exists a k ≥ m such that αk,m (0) ̸= 0, not the
same k as before. Define

Gm (x)≡
(

x1 · · · xm−1 αk (x) · · · xn
)T (8.29)

so a change in Gm occurs only in the mth slot. Then Gm (0) = 0 and DGm (0)−1 exists
similar to the above. In fact

det(DGm (0)) = αk,m (0) .

Therefore, by the inverse function theorem, there exists an open set Vm+1 containing 0 such
that Vm+1 =Gm (Um) with Gm and its inverse being one to one, continuous and onto. Let
Fm be the flip which flips xm and xk. Then define hm+1 on Vm+1 by

hm+1 (y) = Fm ◦hm ◦G−1
m (y) .

Thus for x ∈Um,

hm+1 (Gm (x)) = (Fm ◦hm)(x) . (8.30)

and consequently, since F 2
m = I,

Fm ◦hm+1 ◦Gm (x) = hm (x) (8.31)

It follows

Pmhm+1 (Gm (x)) = Pm (Fm ◦hm)(x)

=
(

x1 · · · xm−1 αk (x) 0 · · · 0
)T

and
Pm (Gm (x)) =

(
x1 · · · xm−1 αk (x) 0 · · · 0

)T
.

Therefore, for y ∈Vm+1,

Pmhm+1 (y) = Pm (y) .
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As before, hm+1 (0) = 0 and Dhm+1 (0)
−1 exists. Therefore, we can apply (8.31) repeat-

edly, obtaining the following:

h(x) = F 1 ◦h2 ◦G1 (x)

= F 1 ◦F 2 ◦h3 ◦G2 ◦G1 (x)

...
= F 1 ◦ · · · ◦F n−1 ◦hn ◦Gn−1 ◦ · · · ◦G1 (x)

where hn fixes the first n−1 entries,

Pn−1hn (x) = Pn−1 (x) =
(

x1 · · · xn−1 0
)T

,

and so hn (x) is a primitive mapping of the form

hn (x) =
(

x1 · · · xn−1 α (x)
)T

.

Therefore, define the primitive functionGn (x) to equal hn (x). ■

8.10 Invariance of Domain
As an application of the inverse function theorem is a simple proof of the important invari-
ance of domain theorem which says that continuous and one to one functions defined on an
open set in Rn with values in Rn take open sets to open sets. You know that this is true for
functions of one variable because a one to one continuous function must be either strictly
increasing or strictly decreasing. This will be used when considering orientations of curves
later. However, the n dimensional version isn’t at all obvious but is just as important if you
want to consider manifolds with boundary for example. The need for this theorem occurs
in many other places as well in addition to being extremely interesting for its own sake. The
inverse function theorem gives conditions under which a differentiable function maps open
sets to open sets. The following lemma, depending on the Brouwer fixed point theorem is
the thing which will allow this to be extended to continuous one to one functions. It says
roughly that if a continuous function does not move points near p very far, then the image
of a ball centered at p contains an open set.

Lemma 8.10.1 Let f be continuous and map B(p,r)⊆ Rn to Rn. Suppose that for all

x ∈ B(p,r), |f (x)−x|< εr. Then it follows that f
(

B(p,r)
)
⊇ B(p,(1− ε)r)

Proof: This is from the Brouwer fixed point theorem, Corollary 6.3.2. Consider for
y ∈ B(p,(1− ε)r) ,

h(x)≡ x−f (x)+y

Then h is continuous and for x ∈ B(p,r),

|h(x)−p|= |x−f (x)+y−p|< εr+ |y−p|< εr+(1− ε)r = r

Hence h : B(p,r)→ B(p,r) and so it has a fixed point x by Corollary 6.3.2 or Theorem
11.6.8. Thus

x−f (x)+y= x

so f (x) = y. ■
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The notation ∥f∥K means supx∈K |f (x)|. If you have a continuous function h defined
on a compact set K, then the Stone Weierstrass theorem implies you can uniformly ap-
proximate it with a polynomial g. That is ∥h−g∥K is small. The following lemma says
that you can also have g (z) = h(z) and Dg (z)−1 exists so that near z, the function g
will map open sets to open sets as claimed by the inverse function theorem. First is a little
observation about approximating.

Lemma 8.10.2 Suppose det(A) = 0. Then for all sufficiently small nonzero ε,

det(A+ εI) ̸= 0

Proof: First suppose A is a p× p matrix. Suppose also that det(A) = 0. Thus, the
constant term of det(λ I−A) is 0. Consider εI+A≡ Aε for small real ε . The characteristic
polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +ap−1 (λ − ε)p−1 + · · ·+(λ − ε)m am

where the a j are the coefficients in the characteristic equation for A and m is the largest such
that am ̸= 0. The constant term of this characteristic polynomial for Aε must be nonzero for
all ε small enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε)

which shows that εI +A is invertible for all ε small enough but nonzero. ■

Lemma 8.10.3 Let K be a compact set in Rn and let h : K→ Rn be continuous, z ∈ K
is fixed. Let δ > 0. Then there exists a polynomial g (each component a polynomial) such
that

∥g−h∥K < δ , g (z) = h(z) , Dg (z)−1 exists

Proof: By the Weierstrass approximation theorem, Corollary 5.8.8, or Theorem 5.10.5,
there exists a polynomial ĝ such that

∥ĝ−h∥K <
δ

3

Then define for y ∈ K
g (y)≡ ĝ (y)+h(z)− ĝ (z)

Then
g (z) = ĝ (z)+h(z)− ĝ (z) = h(z)

Also

|g (y)−h(y)| ≤ |(ĝ (y)+h(z)− ĝ (z))−h(y)|

≤ |ĝ (y)−h(y)|+ |h(z)− ĝ (z)|< 2δ

3

and so since y was arbitrary,

∥g−h∥K ≤
2δ

3
< δ
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If Dg (z)−1 exists, then this is what is wanted. If not, use Lemma 8.10.2 and note that for
all η small enough, you could replace g with y→ g (y)+η (y−z) and it will still be the
case that ∥g−h∥K < δ along with g (z) = h(z) but now Dg (z)−1 exists. Simply use the
modified g. ■

The main result is essentially the following lemma which combines the conclusions of
the above.

Lemma 8.10.4 Let f : B(p,r)→ Rn where the ball is also in Rn. Let f be one to one,
f continuous. Then there exists δ > 0 such that

f
(

B(p,r)
)
⊇ B(f (p) ,δ ) .

In other words, f (p) is an interior point of f
(

B(p,r)
)

.

Proof: Since f
(

B(p,r)
)

is compact, it follows that f−1 : f
(

B(p,r)
)
→ B(p,r) is

continuous. By Lemma 8.10.3, there exists a polynomial g : f
(

B(p,r)
)
→ Rn such that∥∥g−f−1∥∥

f(B(p,r)) < εr, ε < 1, Dg (f (p))−1

exists, and g (f (p)) = f−1 (f (p)) = p

From the first inequality in the above,

|g (f (x))−x|=
∣∣g (f (x))−f−1 (f (x))

∣∣≤ ∥∥g−f−1∥∥
f(B(p,r)) < εr

By Lemma 8.10.1,

g ◦f
(

B(p,r)
)
⊇ B(p,(1− ε)r) = B(g (f (p)) ,(1− ε)r)

Since Dg (f (p))−1 exists, it follows from the inverse function theorem that g−1 also exists
and that g,g−1 are open maps on small open sets containing f (p) and p respectively. Thus
there exists η < (1− ε)r such that g−1 is an open map on B(p,η)⊆ B(p,(1− ε)r). Thus

g ◦f
(

B(p,r)
)
⊇ B(p,(1− ε)r)⊇ B(p,η)

So do g−1‘ to both ends. Then you have g−1 (p) = f (p) is in the open set g−1 (B(p,η)) .
Thus

f
(

B(p,r)
)
⊇ g−1 (B(p,η))⊇ B

(
g−1 (p) ,δ

)
= B(f (p) ,δ ) ■

p
q ◦f

(
B(p,r)

)B(p,(1− ε)r))

p= q(f(p))

With this lemma, the invariance of domain theorem comes right away. This remarkable
theorem states that if f : U → Rn for U an open set in Rn and if f is one to one and
continuous, then f (U) is also an open set in Rn.
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Theorem 8.10.5 Let U be an open set in Rn and let f : U → Rn be one to one and
continuous. Then f (U) is also an open subset in Rn.

Proof: It suffices to show that if p ∈U then f (p) is an interior point of f (U). Let
B(p,r)⊆U. By Lemma 8.10.4, f (U)⊇ f

(
B(p,r)

)
⊇ B(f (p) ,δ ) so f (p) is indeed an

interior point of f (U). ■
The inverse mapping theorem assumed quite a bit about the mapping. In particular it

assumed that the mapping had a continuous derivative. The following version of the inverse
function theorem seems very interesting because it only needs an invertible derivative at a
point.

Corollary 8.10.6 Let U be an open set inRp and let f : U→Rp be one to one and con-
tinuous. Then, f−1 is also continuous on the open set f (U). If f is differentiable at x1 ∈U
and if Df (x1)

−1 exists for x1 ∈U, then it follows that Df−1 (f (x1)) = Df (x1)
−1.

Proof: |·| will be a norm on Rp, whichever is desired. If you like, let it be the Euclidean
norm. ∥·∥ will be the operator norm. The first part of the conclusion of this corollary is
from invariance of domain.

From the assumption that Df (x1) and Df (x1)
−1 exists,

y−f (x1) = f
(
f−1 (y)

)
−f (x1) = Df (x1)

(
f−1 (y)−x1

)
+o

(
f−1 (y)−x1

)
Since Df (x1)

−1 exists,

Df (x1)
−1 (y−f (x1)) = f

−1 (y)−x1 +o
(
f−1 (y)−x1

)
by continuity, if |y−f (x1)| is small enough, then

∣∣f−1 (y)−x1
∣∣ is small enough that in

the above, ∣∣o(f−1 (y)−x1
)∣∣< 1

2

∣∣f−1 (y)−x1
∣∣

Hence, if |y−f (x1)| is sufficiently small, then from the triangle inequality of the form
|p−q| ≥ ||p|− |q|| ,∥∥∥Df (x1)

−1
∥∥∥ |(y−f (x1))| ≥

∣∣∣Df (x1)
−1 (y−f (x1))

∣∣∣
≥
∣∣f−1 (y)−x1

∣∣− 1
2

∣∣f−1 (y)−x1
∣∣= 1

2

∣∣f−1 (y)−x1
∣∣

|y−f (x1)| ≥
∥∥∥Df (x1)

−1
∥∥∥−1 1

2

∣∣f−1 (y)−x1
∣∣

It follows that for |y−f (x1)| small enough,∣∣∣∣∣o
(
f−1 (y)−x1

)
y−f (x1)

∣∣∣∣∣≤
∣∣∣∣∣o
(
f−1 (y)−x1

)
f−1 (y)−x1

∣∣∣∣∣ 2∥∥∥Df (x1)
−1
∥∥∥−1

Then, using continuity of the inverse function again, it follows that if |y−f (x1)| is
possibly still smaller, then f−1 (y)− x1 is sufficiently small that the right side of the
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above inequality is no larger than ε . Since ε is arbitrary, it follows o
(
f−1 (y)−x1

)
=

o(y−f (x1)) .Now from differentiability of f at x1,

y−f (x1) = f
(
f−1 (y)

)
−f (x1) = Df (x1)

(
f−1 (y)−x1

)
+o

(
f−1 (y)−x1

)
= Df (x1)

(
f−1 (y)−x1

)
+o(y−f (x1))

= Df (x1)
(
f−1 (y)−f−1 (f (x1))

)
+o(y−f (x1))

Therefore, solving for f−1 (y)−f−1 (f (x1)) ,

f−1 (y)−f−1 (f (x1)) = Df (x1)
−1 (y−f (x1))+o(y−f (x1))

From the definition of the derivative, this shows that Df−1 (f (x1)) = Df (x1)
−1 . ■

8.11 Exercises
1. This problem was suggested to me by Matt Heiner. Earlier there was a problem in

which two surfaces intersected at a point and this implied that in fact, they inter-
sected in a smooth curve. Now suppose you have two spheres x2 + y2 + z2 = 1 and
(x−2)2 + y2 + z2 = 1. These intersect at the single point (1,0,0) . Why does the
implicit function theorem not imply that these surfaces intersect in a curve?

2. Maximize 2x+y subject to the condition that x2

4 + y2

9 ≤ 1. Hint: You need to consider
interior points and also the method of Lagrange multipliers for the points on the
boundary of this ellipse.

3. Maximize x+ y subject to the condition that x2 + y2

9 + z2 ≤ 1.

4. Find the points on y2x = 16 which are closest to (0,0).

5. Use Lagrange multipliers to “solve” the following maximization problem. Maximize
xy2z3 subject to the constraint x + y + z = 12. Show that the Lagrange multiplier
method works very well but gives an answer which is neither a maximum nor a
minimum. Hint: Show there is no maximum by considering y = 12−5x,z = 4x and
then letting x be large.

6. Let f (x,y,z) = x2− 2yx+ 2z2− 4z+ 2. Identify all the points where D f = 0. Then
determine whether they are local minima local maxima or saddle points.

7. Let f (x,y) = x4−2x2 +2y2 +1. Identify all the points where D f = 0. Then deter-
mine whether they are local minima local maxima or saddle points.

8. Let f (x,y,z) =−x4 +2x2−y2−2z2−1. Identify all the points where D f = 0. Then
determine whether they are local minima local maxima or saddle points.

9. Let f : V → R where V is a finite dimensional normed vector space. Suppose f is
convex which means f (tx+(1− t)y) ≤ t f (x)+ (1− t) f (y) whenever t ∈ [0,1].
Suppose also that f is differentiable. Show then that for every x,y ∈V ,

(D f (x)−D f (y))(x−y)≥ 0.

Thus convex functions have monotone derivatives.
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10. Suppose B is an open ball in X and f : B→ Y is differentiable. Suppose also there
exists L∈L (X ,Y ) such that ∥Df (x)−L∥< k for allx∈B. Show that ifx1,x2 ∈B,

|f (x1)−f (x2)−L(x1−x2)| ≤ k |x1−x2| .

Hint: Consider Tx= f (x)−Lx and argue ∥DT (x)∥< k.

11. Let f : U ⊆ X → Y , Df (x) exists for all x ∈ U , B(x0,δ ) ⊆ U , and there exists
L ∈L (X ,Y ), such that L−1 ∈L (Y,X), and for all x ∈ B(x0,δ )

∥Df (x)−L∥< r
∥L−1∥ , r < 1.

Show that there exists ε > 0 and an open subset of B(x0,δ ) called V , such that
f : V → B(f (x0) ,ε) is one to one and onto. Also Df−1 (y) exists for each y ∈
B( f (x0) ,ε) and is given by the formula Df−1 (y) =

[
Df
(
f−1 (y)

)]−1
. Hint: Let

Ty (x)≡ T (x,y)≡ x−L−1 (f (x)−y)

for |y−f (x0)|< (1−r)δ
2∥L−1∥ , consider {T n

y (x0)}. This is a version of the inverse func-

tion theorem for f only differentiable, not C1.

12. If f is one to one and C1, and Df (x0) is invertible, then locally the function f is
one to one. Explain why this is, maybe using the above problem. However, this is a
strictly local result! Let f : R2→ R2 be given by

f (x,y) =
(

ex cosy
ex siny

)
This clearly is not one to one because if you replace y with y+2π, you get the same
value. Now verify that Df (x,y)−1 exists for all (x,y).

13. Show every polynomial, ∑|α|≤k dαxα is Ck for every k. Show that if f is defined
and continuous on a compact set K, then there is an infinitely differentiable function
which is uniformly close to f on K.

14. Suppose U ⊆ R2 is an open set and f : U → R3 is C1. Suppose Df (s0, t0) has rank
two and

f (s0, t0) =
(

x0 y0 z0
)T

.

Show that for (s, t) near (s0, t0), the points f (s, t) may be realized in one of the
following forms.

{(x,y,φ (x,y)) : (x,y) near (x0,y0)},

{(φ (y,z) ,y,z) : (y,z) near (y0,z0)},

or
{(x,φ (x,z) ,z,) : (x,z) near (x0,z0)}.

This shows that parametrically defined surfaces can be obtained locally in a particu-
larly simple form.

15. Minimize ∑
n
j=1 x j subject to the constraint ∑

n
j=1 x2

j = a2. Your answer should be some
function of a which you may assume is a positive number.
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16. A curve is formed from the intersection of the plane, 2x+3y+z = 3 and the cylinder
x2 + y2 = 4. Find the point on this curve which is closest to (0,0,0) .

17. A curve is formed from the intersection of the plane, 2x+3y+ z = 3 and the sphere
x2 + y2 + z2 = 16. Find the point on this curve which is closest to (0,0,0) .

18. Let A = (Ai j) be an n× n matrix which is symmetric. Thus Ai j = A ji and recall
(Ax)i = Ai jx j where you sum over the repeated index. Show ∂

∂xi
(Ai jx jxi) = 2Ai jx j.

Show that when you use the method of Lagrange multipliers to maximize the func-
tion, Ai jx jxi subject to the constraint, ∑

n
j=1 x2

j = 1, the value of λ which corresponds
to the maximum value of this functions is such that Ai jx j = λxi. Thus Ax = λx.
Thus λ is an eigenvalue of the matrix A.

19. Let x1, · · · ,x5 be 5 positive numbers. Maximize their product subject to the constraint
that

x1 +2x2 +3x3 +4x4 +5x5 = 300.

20. Let f (x1, · · · ,xn) = xn
1xn−1

2 · · ·x1
n. Then f achieves a maximum on the set,

S≡

{
x ∈ Rn :

n

∑
i=1

ixi = 1 and each xi ≥ 0

}
.

If x ∈ S is the point where this maximum is achieved, find x1/xn.

21. Maximize ∏
n
i=1 x2

i subject to the constraint, ∑
n
i=1 x2

i = r2. Show the maximum is(
r2/n

)n
. Now show from this that

(
∏

n
i=1 x2

i
)1/n ≤ 1

n ∑
n
i=1 x2

i and finally, conclude
that if each number xi ≥ 0, then(

n

∏
i=1

xi

)1/n

≤ 1
n

n

∑
i=1

xi

and there exist values of the xi for which equality holds. This says the “geometric
mean” is always smaller than the arithmetic mean.

22. Show that there exists a smooth solution y = y(x) to the equation

xey + yex = 0

which is valid for x,y both near 0. Find y′ (x) at a point (x,y) near (0,0) . Then find
y′′ (x) for such (x,y). Can you find an explicit formula for y(x)?

23. The next few problems involve invariance of domain. Suppose U is a nonempty open
set in Rn,f : U → Rn is continuous, and suppose that for each x ∈U, there is a ball
Bx containing x such that f is one to one on Bx. That is, f is locally one to one.
Show that f (U) is open.

24. ↑ In the situation of the above problem, suppose f : Rn→ Rn is locally one to one.
Also suppose that lim|x|→∞ |f (x)| = ∞. Show it follows that f (Rn) = Rn. That is,
f is onto. Show that this would not be true if f is only defined on a proper open
set. Also show that this would not be true if the condition lim|x|→∞ |f (x)|= ∞ does
not hold. Hint: You might show that f (Rn) is both open and closed and then use
connectedness. To get an example in the second case, you might think of ex+iy. It
does not include 0+ i0. Why not?
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25. ↑ Show that if f :Rn→Rn is C1 and if Df (x) exists and is invertible for all x∈Rn,
then f is locally one to one. Thus, from the above problem, if lim|x|→∞ |f (x)|= ∞,

then f is also onto. Now consider f : R2→ R2 given by

f (x,y) =
(

ex cosy
ex siny

)
Show that this does not map onto R2. In fact, it fails to hit (0,0), but Df (x,y) is
invertible for all (x,y). Show why it fails to satisfy the limit condition.

26. You know from linear algebra that there is no onto linear mapping A : Rm→ Rp for
p > m. Show that there is no locally one to one continuous mapping which will map
Rm onto Rp.

27. In Example 8.1.9 on Page 210, could you replace y with y ∈ Rm and obtain a modi-
fied version of this example?
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Chapter 9

Measures and Measurable Functions
The Lebesgue integral is much better than the Rieman integral. This has been known for
over 100 years. It is much easier to generalize to many dimensions and it is much easier to
use in applications. It is also this integral which is most important in probability. However,
this integral is more abstract. This chapter will develop the abstract machinery for this
integral.

The next definition describes what is meant by a σ algebra. This is the fundamental
object which is studied in probability theory. The events come from a σ algebra of sets.
Recall that P (Ω) is the set of all subsets of the given set Ω. It may also be denoted by 2Ω

but I won’t refer to it this way.

Definition 9.0.1 F ⊆P (Ω) , the set of all subsets of Ω, is called a σ algebra if
it contains /0,Ω, and is closed with respect to countable unions and complements. That
is, if {An}∞

n=1 is countable and each An ∈F , then ∪∞
n=1An ∈F also and if A ∈F , then

Ω\A ∈F . It is clear that any intersection of σ algebras is a σ algebra. If K ⊆P (Ω) ,
σ (K ) is the smallest σ algebra which contains K . In fact, the intersection of all σ

algebras containing K is obviously a σ algebra so this intersection is σ (K ).

If F is a σ algebra, then it is also closed with respect to countable intersections. Here

is why. Let {Fk}∞

k=1 ⊆ F . Then (∩kFk)
C = ∪kFC

k ∈ F and so ∩kFk =
(
(∩kFk)

C
)C

=(
∪kFC

k

)C ∈F .

Example 9.0.2 You could consider N and for your σ algebra, you could have P (N). This
satisfies all the necessary requirements. Note that in fact, P (S) works for any S. However,
useful examples are not typically the set of all subsets.

9.1 Simple Functions and Measurable Functions
A σ algebra is a collection of subsets of a set Ω which includes /0,Ω, and is closed with
respect to countable unions and complements.

Definition 9.1.1 A measurable space, denoted as (Ω,F ) , is one for which F is a
σ algebra contained in P (Ω). Let f : Ω→ X where X is a metric space. Then f is said to
be measurable means f−1 (U) ∈F whenever U is open.

It is important to have a theorem about pointwise limits of measurable functions. The
following is a fairly general such theorem which holds in the situations to be considered
in this book. First recall dist(x,S) in Lemma 3.12.1 which impliles that x→ dist(x,S) is
continuous.

Theorem 9.1.2 Let { fn} be a sequence of measurable functions mapping Ω to the
metric space (X ,d) where (Ω,F ) is a measureable space. Suppose the pointwise limit
f (ω) = limn→∞ fn (ω) for all ω. Then f is also a measurable function.

Proof: It is required to show f−1 (U) is measurable for all U open. Let

Vm ≡
{

x ∈U : dist
(
x,UC)> 1

m

}
.

237
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Thus, since dist is continuous, (Lemma 3.12.1), Vm ⊆
{

x ∈U : dist
(
x,UC

)
≥ 1

m

}
, Vm ⊆

Vm ⊆Vm+1, and ∪mVm =U. Then since Vm is open, f−1 (Vm) = ∪∞
n=1∩∞

k=n f−1
k (Vm) and so

f−1 (U) = ∪∞
m=1 f−1 (Vm) = ∪∞

m=1∪∞
n=1∩∞

k=n f−1
k (Vm)

⊆ ∪∞
m=1 f−1 (Vm

)
= f−1 (U)

which shows f−1 (U) is measurable. ■
Important examples of a metric spaces are R,C,Fn, where F is either R or C. However,

it is also very convenient to consider the metric space (−∞,∞], the real line with ∞ tacked
on at the end. This can be considered as a metric space in a very simple way.

ρ (x,y) = |arctan(x)− arctan(y)|

with the understanding that arctan(∞) ≡ π/2. It is easy to show that this metric restricted
to R gives the same open sets on R as the usual metric given by d (x,y) = |x− y| but in
addition, allows the inclusion of that ideal point out at the end of the real line denoted as
∞. This is considered mainly because it makes the development of the theory easier. The
open sets in (−∞,∞] are described in the following lemma.

Lemma 9.1.3 The open balls in (−∞,∞] consist of sets of the form (a,b) for a,b real
numbers and (a,∞]. This is a separable metric space.

Proof: If the center of the ball is a real number, then the ball will result in an interval
(a,b) where a,b are real numbers. If the center of the ball is ∞, then the ball results in
something of the form (a,∞]. It is obvious that this is a separable metric space with the
countable dense set being Q since every ball contains a rational number. ■

If you kept both −∞ and ∞ with the obvious generalization that arctan(−∞) ≡ −π

2 ,
then the resulting metric space would be a complete separable metric space. However, it is
not convenient to include −∞, so this won’t be done. The reason is that it will be desired
to make sense of things like f +g.

Then for functions which have values in (−∞,∞] we have the following extremely
useful description of what it means for a function to be measurable.

Lemma 9.1.4 Let f : Ω→ (−∞,∞] where F is a σ algebra of subsets of Ω. Here
(−∞,∞] is the metric space just described with the metric given by

ρ (x,y) = |arctan(x)− arctan(y)| .

Then the following are equivalent.

f−1((d,∞]) ∈F , for all finite d,

f−1((−∞,d)) ∈F , for all finite d,

f−1([d,∞]) ∈F , for all finite d,

f−1((−∞,d]) ∈F , for all finite d,

f−1 ((a,b)) ∈F for all a < b,−∞ < a < b < ∞.

Any of these equivalent conditions is equivalent to the function being measurable.
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Proof: First note that the first and the third are equivalent. To see this, observe
f−1([d,∞]) = ∩∞

n=1 f−1((d− 1/n,∞]), and so if the first condition holds, then so does the
third. f−1((d,∞]) = ∪∞

n=1 f−1([d+1/n,∞]), and so if the third condition holds, so does the
first.

Similarly, the second and fourth conditions are equivalent. Now from the definition
of inverse image, f−1((−∞,d]) = ( f−1((d,∞]))C so the first and fourth conditions are
equivalent. Thus the first four conditions are equivalent and if any of them hold, then
for −∞ < a < b < ∞, f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈F . Finally, if the last
condition holds, f−1 ([d,∞]) =

(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈F and so the third condition

holds. Therefore, all five conditions are equivalent.
Since (−∞,∞] is a separable metric space, it follows from Theorem 3.4.2 that every

open set U is a countable union of open intervals U = ∪kIk where Ik is of the form (a,b)
or (a,∞] and, as just shown if any of the equivalent conditions holds, then f−1 (U) =
∪k f−1 (Ik) ∈F . Conversely, if f−1 (U) ∈F for any open set U ∈ (−∞,∞], then in partic-
ular, f−1 ((a,b)) ∈F which is one of the equivalent conditions and so all the equivalent
conditions hold. ■

Note that if f is continuous and g is measurable, then f ◦g is always measurable. This
is because, for U open, ( f ◦g)−1 (U) = g−1

(
f−1 (U)

)
= g−1 (open) which is measurable.

There is a fundamental theorem about the relationship of simple functions to measur-
able functions given in the next theorem.

Definition 9.1.5 Let E ∈F for F a σ algebra. Then

XE (ω)≡
{

1 if ω ∈ E
0 if ω /∈ E

This is called the indicator function of the set E. Let s : (Ω,F )→ R. Then s is a simple
function if it is of the form

s(ω) =
n

∑
i=1

ciXEi (ω)

where Ei ∈F and ci ∈R, the Ei being disjoint. Thus simple functions are those which have
finitely many values and are measurable. In the next theorem, it will also be assumed that
each ci ≥ 0.

Each simple function is measurable. This is easily seen as follows. First of all, you can
assume the ci are distinct because if not, you could just replace those Ei which correspond
to a single value with their union. Then if you have any open interval (a,b) ,s−1 ((a,b)) =
∪{Ei : ci ∈ (a,b)} and this is measurable because it is the finite union of measurable sets.

Theorem 9.1.6 Let f ≥ 0 be measurable. Then there exists a sequence of nonnega-
tive simple functions {sn} satisfying

0≤ sn(ω) (9.1)

· · · sn(ω)≤ sn+1(ω) · · ·

f (ω) = lim
n→∞

sn(ω) for all ω ∈Ω. (9.2)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.
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Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X f−1([ k

n ,
k+1

n ))(ω)+2nXI(ω).

Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) =
2n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0≤ f (ω)− tn (ω)≤ 1
n
. (9.3)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 9.1-9.2. Also each sn has finitely many values and is
measurable. To see this, note that s−1

n ((a,∞]) = ∪n
k=1t−1

k ((a,∞]) ∈F
To verify the last claim, note that in this case the term 2nXI(ω) is not present and for

n large enough, 2n/n is larger than all values of f . Therefore, for all n large enough, 9.3
holds for all ω . Thus the convergence is uniform.

The last claim follows right away from Theorem 9.1.2. ■
There is a more general theorem which applies to measurable functions which have

values in a separable metric space. In this context, a simple function is one which is of the
form ∑

m
k=1 xkXEk (ω) where the Ek are disjoint measurable sets and the xk are in X . I am

abusing notation somewhat by using a sum. You can’t add in a general metric space. The
symbol means the function has value xk on the set Ek. However, if X were a vector space,
this notation would be a nice way to express what is meant.

Theorem 9.1.7 Let (Ω,F ) be a measurable space and let f : Ω→ X where (X ,d)
is a separable metric space. Then f is a measurable function if and only if there exists a
sequence of simple functions,{ fn} such that for each ω ∈Ω and n ∈ N,

d ( fn (ω) , f (ω))≥ d ( fn+1 (ω) , f (ω)) (9.4)

and
lim
n→∞

d ( fn (ω) , f (ω)) = 0. (9.5)

Proof: Let D = {xk}∞

k=1 be a countable dense subset of X . First suppose f is measur-
able. Then since in a metric space every closed set C is the countable intersection of open
sets,

C = ∩∞
k=1 {x ∈ X : dist(x,C)< 1/k} ,

it follows f−1 (closed set) ∈F . Now let Dn = {xk}n
k=1 . Let

A1 ≡
{

ω : d (x1, f (ω)) = min
k≤n

d (xk, f (ω))

}
= ∩n

k=1 {ω : d (xk, f (ω))−d (x1, f (ω))≥ 0}

That is, A1 is those ω such that f (ω) is approximated best out of Dn by x1. Why is this a
measurable set? It is because ω → d (xk, f (ω))−d (x1, f (ω)) is a real valued measurable



9.2. MEASURES AND THEIR PROPERTIES 241

function, being the composition of a continuous function, y→ d (xk,y)− d (x1,y) and a
measurable function, ω → f (ω) . Next let

A2 ≡
{

ω /∈ A1 : d (x2, f (ω)) = min
k≤n

d (xk, f (ω))

}
and continue in this manner obtaining disjoint measurable sets, {Ak}n

k=1 such that for ω ∈
Ak the best approximation to f (ω) from Dn is xk. Then fn (ω)≡ ∑

n
k=1 xkXAk (ω) . Note

d ( fn+1 (ω) , f (ω)) = min
k≤n+1

d (xk, f (ω))≤min
k≤n

d (xk, f (ω)) = d ( fn (ω) , f (ω))

and so this verifies 9.4. It remains to verify 9.5.
Let ε > 0 be given and pick ω ∈Ω. Then there exists xn ∈D such that d (xn, f (ω))< ε .

It follows from the construction that

d ( fn (ω) , f (ω))≤ d (xn, f (ω))< ε.

This proves the first half.
Conversely, suppose the existence of the sequence of simple functions as described

above. Each fn is a measurable function because f−1
n (U) = ∪{Ak : xk ∈U}. Therefore,

the conclusion that f is measurable follows from Theorem 9.1.2 on Page 237. ■
Another useful observation is that the set where a sequence of measurable functions

converges is also a measurable set.

Proposition 9.1.8 Let { fn} be measurable with values in a complete normed vector
space. Let A≡ {ω : { fn (ω)} converges} . Then A is measurable.

Proof: The set A is the same as the set on which { fn (ω)} is a Cauchy sequence. This
set is

∩∞
n=1∪∞

m=1∩p,q>m

[∥∥ fp (ω)− fq (ω)
∥∥< 1

n

]
which is a measurable set thanks to the measurability of each fn. ■

9.2 Measures and their Properties
What is meant by a measure?

Definition 9.2.1 Let (Ω,F ) be a measurable space. Here F is a σ algebra of sets
of Ω. Then µ : F → [0,∞] is called a measure if whenever {Fi}∞

i=1 is a sequence of disjoint
sets of F , it follows that

µ (∪∞
i=1Fi) =

∞

∑
i=1

µ (Ei)

Note that the series could equal ∞. If µ (Ω) < ∞, then µ is called a finite measure. An
important case is when µ (Ω) = 1 when it is called a probability measure.

Note that µ ( /0) = µ ( /0∪ /0) = µ ( /0)+µ ( /0) and so µ ( /0) = 0.

Example 9.2.2 You could have P (N) = F and you could define µ (S) to be the number
of elements of S. This is called counting measure. It is left as an exercise to show that this
is a measure.
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Example 9.2.3 Here is a pathological example. Let Ω be uncountable and F will be those
sets which have the property that either the set is countable or its complement is countable.
Let µ (E) = 0 if E is countable and µ (E) = 1 if E is uncountable. It is left as an exercise
to show that this is a measure.

Of course the most important measure in this book will be Lebesgue measure which
gives the “volume” of a subset of Rn. However, this requires a lot more work.

Lemma 9.2.4 If µ is a measure and Fi ∈ F , then µ (∪∞
i=1Fi) ≤ ∑

∞
i=1 µ (Fi). Also if

Fn ∈F and Fn ⊆ Fn+1 for all n, then if F = ∪nFn,

µ (F) = lim
n→∞

µ (Fn)

If Fn ⊇ Fn+1 for all n, then if µ (F1)< ∞ and F = ∩nFn, then

µ (F) = lim
n→∞

µ (Fn)

Proof: Let G1 = F1 and if G1, · · · ,Gn have been chosen disjoint, let Gn+1 ≡ Fn+1 \
∪n

i=1Gi. Thus the Gi are disjoint. In addition, these are all measurable sets. Now

µ (Gn+1)+µ (Fn+1∩ (∪n
i=1Gi)) = µ (Fn+1)

and so µ (Gn)≤ µ (Fn). Therefore,

µ (∪∞
i=1Gi) = ∑

i
µ (Gi)≤∑

i
µ (Fi) .

Now consider the increasing sequence of Fn ∈F . If F ⊆ G and these are sets of F ,
then µ (G) = µ (F)+ µ (G\F) so µ (G) ≥ µ (F). Also F = ∪∞

i=1 (Fi+1 \Fi)+F1. Then
µ (F) = ∑

∞
i=1 µ (Fi+1 \Fi)+µ (F1). Now µ (Fi+1 \Fi)+µ (Fi) = µ (Fi+1). If any µ (Fi) =

∞, there is nothing to prove. Assume then that these are all finite. Then µ (Fi+1 \Fi) =
µ (Fi+1)−µ (Fi) and so

µ (F) =
∞

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1)

= lim
n→∞

n

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

µ (Fn+1)

Next suppose µ (F1)< ∞ and {Fn} is a decreasing sequence. Then F1 \Fn is increasing
to F1 \F and so by the first part,

µ (F1)−µ (F) = µ (F1 \F) = lim
n→∞

µ (F1 \Fn) = lim
n→∞

(µ (F1)−µ (Fn))

This is justified because µ (F1 \Fn)+µ (Fn) = µ (F1) and all numbers are finite by assump-
tion. Hence µ (F) = limn→∞ µ (Fn). ■

I like to remember this as En ↑ E ⇒ µ (En) ↑ µ (E) and En ↓ E ⇒ µ (En) ↓ µ (E) if
µ (E1)< ∞.

There is a monumentally important theorem called the Borel Cantelli lemma. This is
next.
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Lemma 9.2.5 If (Ω,F ,µ) is a measure space and if {Ei} ⊆F and ∑
∞
i=1 µ (Ei) < ∞,

then there exists a set N of measure 0 (µ (N) = 0) such that if ω /∈ N, then ω is in only
finitely many of the Ei.

Proof: The set of ω in infinitely many Ei is N ≡ ∩∞
n=1 ∪k≥n Ek because this consists

of those ω which are in some Ek for k ≥ n for any choice of n. Now µ (N) ≤ ∑
∞
k=n µ (Ek)

which is just the tail of a convergent series. Thus, it converges to 0 as n→ ∞. Hence it is
less than ε for n large enough. Thus µ (N) is no more than ε for any ε > 0. ■

9.3 Dynkin’s Lemma
Dynkin’s lemma is a very useful result. It is used quite a bit in books on probability. It
resembles an important result on monotone classes but seems easier to use.

Definition 9.3.1 Let Ω be a set and let K be a collection of subsets of Ω. Then K
is called a π system if /0,Ω ∈K and whenever A,B ∈K , it follows A∩B ∈K .

The following is the fundamental lemma which shows these π systems are useful. This
is due to Dynkin.

Lemma 9.3.2 Let K be a π system of subsets of Ω, a set. Also let G be a collection of
subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if
H ≡ {G : 1 - 3 all hold}

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that G is the smallest collection satisfying 1 - 3. Let A ∈K and define

GA ≡ {B ∈ G : A∩B ∈ G } .

I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system contained in G , K ⊆ GA. Indeed, if C ∈K then
A∩C ∈K ⊆ G so C ∈ GA. Property 3 is obvious because if {Bi} is a sequence of disjoint
sets in GA, then

A∩∪∞
i=1Bi = ∪∞

i=1A∩Bi ∈ G

because A∩Bi ∈ G and the property 3 of G .
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It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other
words, I need to show that A∩BC ∈ G . However,

A∩BC =
(
AC ∪ (A∩B)

)C ∈ G

Here is why. Since B ∈ GA, A∩B ∈ G and since A ∈K ⊆ G it follows AC ∈ G by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, AC and (A∩B) is
in G and then from 2 the complement of their union is in G . Thus GA satisfies 1 - 3 and
this implies, since G is the smallest such, that GA ⊇ G . However, GA is constructed as a
subset of G . This proves that for every B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G and
consider

GB ≡ {A ∈ G : A∩B ∈ G } .

I just proved K ⊆ GB. The other arguments are identical to show GB satisfies 1 - 3 and is
therefore equal to G . This shows that whenever A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′1 = A1
and

A′n+1 ≡ An+1 \ (∪n
i=1Ai) = An+1∩

(
∩n

i=1AC
i
)
= ∩n

i=1
(
An+1∩AC

i
)
∈ G

because finite intersections of sets of G are in G . Since the A′i are disjoint, it follows
∪∞

i=1Ai = ∪∞
i=1A′i ∈ G . Therefore, G ⊇ σ (K ). ■

Corollary 9.3.3 Given 2, closed with respect to complements, the condition that G is
closed with respect to countable disjoint unions is equivalent to G the condition that G is
closed with respect to countable intersections.

Proof: ⇒ Consider ∩kEk where Ek ∈ G . Then ∩kEk =
(
∪kEC

k

)C. Now the EC
k are not

necessarily disjoint, but each is in G and so one can use the scheme of the last part of the
proof of Lemma 9.3.2 to reduce to this case and conclude ∪kEC

k ∈ G . Then the countable
intersection is just the complement of this last set.
⇐ Suppose the countable intersection of sets of G is in G and consider a countable

union ∪kEk of sets of G . Then ∪kEk =
(
∩kEC

k

)C ∈ G . ■

9.4 Outer Measures
There is also something called an outer measure which is defined on the set of all subsets.

Definition 9.4.1 Let Ω be a nonempty set and let λ : P (Ω)→ [0,∞) satisfy the
following:

1. λ ( /0) = 0

2. If A⊆ B, then λ (A)≤ λ (B)

3. λ (∪∞
i=1Ei)≤ ∑

∞
i=1 λ (Ei)

Then λ is called an outer measure.
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Every measure determines an outer measure. For example, suppose that µ is a measure
on F a σ algebra of subsets of Ω. Then define

µ̄ (S)≡ inf{µ (E) : E ⊇ S, E ∈F} .

This is easily seen to be an outer measure. Also, we have the following Proposition.

Proposition 9.4.2 Let µ be a measure defined on a σ algebra of subsets F of Ω as
just described. Then µ̄ as defined above, is an outer measure and also, if E ∈ F , then
µ̄ (E) = µ (E).

Proof: The first two properties of an outer measure are obvious. What of the third? If
any µ̄ (Ei) = ∞, then there is nothing to show so suppose each of these is finite. Let Fi ⊇ Ei
such that Fi ∈F and µ̄ (Ei)+

ε

2i > µ (Fi) . Then

µ̄ (∪∞
i=1Ei)≤ µ (∪∞

i=1Fi)≤
∞

∑
i=1

µ (Fi)<
∞

∑
i=1

(
µ̄ (Ei)+

ε

2i

)
=

∞

∑
i=1

µ̄ (Ei)+ ε

Since ε is arbitrary, this establishes the third condition. Finally, if E ∈F , then by defini-
tion, µ̄ (E)≤ µ (E) because E ⊇ E. Also, µ (E)≤ µ (F) for all F ∈F such that F ⊇ E. It
follows that µ (E) is a lower bound of all such µ (F) and so µ̄ (E)≥ µ (E) .■

9.5 Measures From Outer Measures
Theorem 9.7.4 describes an outer measure on P (R). There is a general procedure for con-
structing a σ algebra and a measure from an outer measure which is due to Caratheodory
about 1918.

Thus, when you have a measure on (Ω,F ), you can obtain an outer measure on
(Ω,P (Ω)) from this measure as in Proposition 9.4.2, and if you have an outer measure on
(Ω,P (Ω)) , this will define a σ algebra F and a measure on (Ω,F ). This last assertion
is the topic of this section.

Definition 9.5.1 Let Ω be a nonempty set and let µ : P(Ω)→ [0,∞] be an outer
measure. For E ⊆Ω, E is µ measurable if for all S⊆Ω,

µ(S) = µ(S\E)+µ(S∩E). (9.6)

To help in remembering 9.6, think of a measurable set E, as a process which divides a
given set into two pieces, the part in E and the part not in E as in 9.6. In the Bible, there
are several incidents recorded in which a process of division resulted in more stuff than
was originally present.1 Measurable sets are exactly those which are incapable of such a
miracle. With an outer measure, it is always the case that µ(S) ≤ µ(S \E)+ µ(S∩E).
The set is measurable, when equality is always obtained for any choice of S ∈P (Ω). You
might think of the measurable sets as the non-miraculous sets. The idea is to show that
these sets form a σ algebra on which the outer measure µ is a measure.

First here is a definition and a lemma.
11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was

either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R3 into five disjoint pieces and assemble the pieces to form two disjoint balls of the same size as
the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985.
It is known that all such examples must involve the axiom of choice.
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Definition 9.5.2 (µ⌊S)(A) ≡ µ(S∩A) for all A ⊆ Ω. Thus µ⌊S is the name of a
new outer measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 9.5.3 If A is µ measurable, then for any S, A is µ⌊S measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆Ω,

(µ⌊S)(T ) = (µ⌊S)(T ∩A)+(µ⌊S)(T \A).

Thus it is desired to show

µ(S∩T ) = µ(T ∩A∩S)+µ(T ∩S∩AC). (9.7)

But 9.7 holds because A is µ measurable. Apply Definition 9.5.1 to S∩T instead of S. ■
If A is µ⌊S measurable, it does not follow that A is µ measurable. Indeed, if you believe

in the existence of non measurable sets which is discussed later, you could let A = S for
such a µ non measurable set and verify that S is µ⌊S measurable.

The next theorem is the main result on outer measures which shows that starting with
an outer measure you can obtain a measure.

Theorem 9.5.4 Let Ω be a set and let µ be an outer measure on P (Ω). The col-
lection of µ measurable sets S , forms a σ algebra and

If Fi ∈S, Fi∩Fj = /0, then µ(∪∞
i=1Fi) =

∞

∑
i=1

µ(Fi). (9.8)

If · · ·Fn ⊆ Fn+1 ⊆ ·· · , then if F = ∪∞
n=1Fn and Fn ∈S , it follows that

µ(F) = lim
n→∞

µ(Fn). (9.9)

If · · ·Fn ⊇ Fn+1 ⊇ ·· · , and if F = ∩∞
n=1Fn for Fn ∈S then if µ(F1)< ∞,

µ(F) = lim
n→∞

µ(Fn). (9.10)

This measure space is also complete which means that if µ (F) = 0 for some F ∈S then
if G⊆ F, it follows G ∈S also.

Proof: First note that /0 and Ω are obviously in S . Now suppose A,B∈S . I will show
A\B≡ A∩BC is in S . To do so, consider the following picture.

S
⋂

AC⋂BC

S
⋂

AC⋂B

S
⋂

A
⋂

B
S
⋂

A
⋂

BC

A

B

S
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It is required to show that µ (S) = µ (S\ (A\B))+ µ (S∩ (A\B)) . First consider S \
(A\B) . From the picture, it equals(

S∩AC ∩BC)∪ (S∩A∩B)∪
(
S∩AC ∩B

)
Therefore, µ (S)≤ µ (S\ (A\B))+µ (S∩ (A\B))

≤ µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ (S∩ (A\B))

= µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ

(
S∩A∩BC)

= µ
(
S∩AC ∩BC)+µ

(
S∩A∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
= µ

(
S∩BC)+µ (S∩B) = µ (S)

and so this shows that A\B ∈S whenever A,B ∈S .
Since Ω ∈S , this shows that A ∈S if and only if AC ∈S . Now if A,B ∈S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪n
i=1Ai. If

A,B ∈S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai∩A j = /0 and Ai ∈S ,

µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai). (9.11)

Now let A = ∪∞
i=1Ai where Ai ∩A j = /0 for i ̸= j. ∑

∞
i=1 µ(Ai) ≥ µ(A) ≥ µ(∪n

i=1Ai) =

∑
n
i=1 µ(Ai). Since this holds for all n, you can take the limit as n → ∞ and conclude,

∑
∞
i=1 µ(Ai) = µ(A) which establishes 9.8.

Consider part 9.9. Without loss of generality µ (Fk)< ∞ for all k since otherwise there
is nothing to show. Suppose {Fk} is an increasing sequence of sets of S . Then letting
F0 ≡ /0, {Fk+1 \Fk}∞

k=0 is a sequence of disjoint sets of S since it was shown above that
the difference of two sets of S is in S . Also note that from 9.11

µ (Fk+1 \Fk)+µ (Fk) = µ (Fk+1)

and so if µ (Fk)< ∞, then

µ (Fk+1 \Fk) = µ (Fk+1)−µ (Fk) .

Therefore, letting F ≡ ∪∞
k=1Fk which also equals ∪∞

k=1 (Fk+1 \Fk) , it follows from part 9.8
just shown that

µ (F) =
∞

∑
k=0

µ (Fk+1 \Fk) = lim
n→∞

n

∑
k=0

µ (Fk+1 \Fk)

= lim
n→∞

n

∑
k=0

µ (Fk+1)−µ (Fk) = lim
n→∞

µ (Fn+1) .

In order to establish 9.10, let the Fn be as given there. Then, since (F1 \Fn) increases to
(F1 \F), 9.9 implies

lim
n→∞

(µ (F1)−µ (Fn)) = lim
n→∞

µ (F1 \Fn) = µ (F1 \F) .
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The problem is, I don’t know F ∈S and so it is not clear that µ (F1 \F) = µ (F1)−µ (F).
However, µ (F1 \F)+µ (F)≥ µ (F1) and so µ (F1 \F)≥ µ (F1)−µ (F). Hence

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F)≥ µ (F1)−µ (F)

which implies limn→∞ µ (Fn) ≤ µ (F) . But since F ⊆ Fn, µ (F) ≤ limn→∞ µ (Fn) and this
establishes 9.10. Note that it was assumed µ (F1)< ∞ because µ (F1) was subtracted from
both sides.

It remains to show S is closed under countable unions. Recall that if A ∈ S , then
AC ∈S and S is closed under finite unions. Let Ai ∈S , A = ∪∞

i=1Ai, Bn = ∪n
i=1Ai. Then

µ(S) = µ(S∩Bn)+µ(S\Bn) (9.12)
= (µ⌊S)(Bn)+(µ⌊S)(BC

n ).

By Lemma 9.5.3 Bn is (µ⌊S) measurable and so is BC
n . I want to show µ(S) ≥ µ(S \A)+

µ(S∩A). If µ(S) = ∞, there is nothing to prove. Assume µ(S)< ∞. Then apply Parts 9.10
and 9.9 to the outer measure µ⌊S in 9.12 and let n→ ∞. Thus Bn ↑ A, BC

n ↓ AC and this
yields µ(S) = (µ⌊S)(A)+(µ⌊S)(AC) = µ(S∩A)+µ(S\A).

Therefore A ∈S and this proves Parts 9.8, 9.9, and 9.10.
It only remains to verify the assertion about completeness. Letting G and F be as

described above, let S⊆Ω. I need to verify µ (S)≥ µ (S∩G)+µ (S\G). However,

µ (S∩G)+µ (S\G) ≤ µ (S∩F)+µ (S\F)+µ (F \G)

= µ (S∩F)+µ (S\F) = µ (S)

because by assumption, µ (F \G)≤ µ (F) = 0. ■

Corollary 9.5.5 Completeness is the same as saying that if (E \E ′)∪(E ′ \E)⊆N ∈F
and µ (N) = 0, then if E ∈F , it follows that E ′ ∈F also.

Proof: If the new condition holds, then suppose G⊆ F where µ (F) = 0,F ∈F . Then
= /0︷ ︸︸ ︷

(G\F)∪ (F \G)⊆ F and µ (F) is given to equal 0. Therefore, G ∈F .
Now suppose the earlier version of completeness and let(

E \E ′
)
∪
(
E ′ \E

)
⊆ N ∈F

where µ (N) = 0 and E ∈F . Then we know (E \E ′) ,(E ′ \E) ∈F and all have measure
zero. It follows E \ (E \E ′) = E ∩E ′ ∈F . Hence

E ′ =
(
E ∩E ′

)
∪
(
E ′ \E

)
∈F ■

9.6 Measurable Sets Include Borel Sets?
If you have an outer measure, it determines a measure. This section gives a very convenient
criterion which allows you to conclude right away that the measure is a Borel measure.

Theorem 9.6.1 Let µ be an outer measure on the subsets of (X ,d), a metric space.
If µ(A∪B) = µ(A)+µ(B) whenever dist(A,B)> 0, then the σ algebra of measurable sets
S contains the Borel sets.
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Proof: It suffices to show that closed sets are in S , the σ -algebra of measurable sets,
because then the open sets are also in S and consequently S contains the Borel sets. Let
K be closed and let S be a subset of Ω. Is µ(S)≥ µ(S∩K)+µ(S\K)? It suffices to assume
µ(S) < ∞. Let Kn ≡

{
x : dist(x,K)≤ 1

n

}
. By Lemma 3.12.1 on Page 91, x→ dist(x,K)

is continuous and so Kn is a closed set having K as a subset. That in KC
n is at a positive

distance from K. By the assumption of the theorem,

µ(S)≥ µ((S∩K)∪ (S\Kn)) = µ(S∩K)+µ(S\Kn) (9.13)

Now
µ(S\Kn)≤ µ(S\K)≤ µ(S\Kn)+µ((Kn \K)∩S). (9.14)

If limn→∞ µ((Kn \K)∩ S) = 0 then the theorem will be proved because this limit along
with 9.14 implies limn→∞ µ (S\Kn) = µ (S\K) and then taking a limit in 9.13, µ(S) ≥
µ(S∩K)+µ(S\K) as desired. Therefore, it suffices to establish this limit.

Since K is closed, a point, x /∈ K must be at a positive distance from K and so

Kn \K = ∪∞
k=nKk \Kk+1.

Therefore

µ(S∩ (Kn \K))≤
∞

∑
k=n

µ(S∩ (Kk \Kk+1)). (9.15)

If
∞

∑
k=1

µ(S∩ (Kk \Kk+1))< ∞, (9.16)

then µ(S∩ (Kn \K))→ 0 because it is dominated by the tail of a convergent series so it
suffices to show 9.16.

M

∑
k=1

µ(S∩ (Kk \Kk+1)) =

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1)). (9.17)

By the construction, the distance between any pair of sets, S∩(Kk \Kk+1) for different even
values of k is positive and the distance between any pair of sets, S∩(Kk \Kk+1) for different
odd values of k is positive. Therefore,

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1))≤

µ

( ⋃
k even, k≤M

(S∩ (Kk \Kk+1))

)
+µ

( ⋃
k odd, k≤M

(S∩ (Kk \Kk+1))

)

≤ µ (S)+µ (S) = 2µ (S)

and so for all M, ∑
M
k=1 µ(S∩ (Kk \Kk+1))≤ 2µ (S) showing 9.16. ■
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9.7 An Outer Measure on P (R)
A measure on R is like length. I will present something more general than length because
it is no trouble to do so and the generalization is useful in many areas of mathematics such
as probability.

Definition 9.7.1 The following definition is important.

F (x+)≡ lim
y→x+

F (y) , F (x−) = lim
y→x−

F (y)

Thus one of these is the limit from the left and the other is the limit from the right.

In probability, one often has F (x)≥ 0, F is increasing, and F (x+) = F (x). This is the
case where F is a probability distribution function. In this case, F (x) ≡ P(X ≤ x) where
X is a random variable. In this case, limx→∞ F (x) = 1 but we are considering more general
functions than this including the simple example where F (x) = x. This last example will
end up giving Lebesgue measure on R. Recall the following definition.

Definition 9.7.2 P (S) denotes the set of all subsets of S.

Also recall

Definition 9.7.3 For two sets, A,B in a metric space,

dist(A,B)≡ inf{d (x,y) : x ∈ A,y ∈ B} .

Theorem 9.7.4 Let F be an increasing function defined on R. This will be called an
integrator function. There exists a function µ : P (R)→ [0,∞] which satisfies the following
properties.

1. If A⊆ B, then 0≤ µ (A)≤ µ (B) ,µ ( /0) = 0.

2. µ
(
∪∞

k=1Ai
)
≤ ∑

∞
i=1 µ (Ai)

3. µ ([a,b]) = F (b+)−F (a−) ,

4. µ ((a,b)) = F (b−)−F (a+)

5. µ ((a,b]) = F (b+)−F (a+)

6. µ ([a,b)) = F (b−)−F (a−).

7. If dist(A,B) = δ > 0, then µ (A∪B) = µ (A)+µ (B) .

Then the σ algebra of µ measurable sets F contains the Borel sets. This measure is
called Lebesgue Stieltjes measure.

Proof: First it is necessary to define the function µ . This is contained in the following
definition.

Definition 9.7.5 For A⊆ R,

µ (A) = inf

{
∞

∑
i=1

(F (bi−)−F (ai+)) : A⊆ ∪∞
i=1 (ai,bi)

}
.
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In words, you look at all coverings of A with open intervals. For each of these open
coverings, you add the “lengths” of the individual open intervals and you take the infimum
of all such numbers obtained.

Then 1.) is obvious because if a countable collection of open intervals covers B, then
it also covers A. Thus the set of numbers obtained for B is smaller than the set of numbers
for A. Why is µ ( /0) = 0? Pick a point of continuity of F. Such points exist because F
is increasing and so it has only countably many points of discontinuity. Let a be this
point. Then /0⊆ (a−δ ,a+δ ) and so µ ( /0)≤F (a+δ )−F (a−δ ) for every δ > 0. Letting
δ → 0, it follows that µ ( /0) = 0.

Consider 2.). If any µ (Ai) = ∞, there is nothing to prove. The assertion simply is
∞≤∞. Assume then that µ (Ai)< ∞ for all i. Then for each m ∈N there exists a countable
set of open intervals, {(am

i ,b
m
i )}

∞

i=1 such that

µ (Am)+
ε

2m >
∞

∑
i=1

(F (bm
i −)−F (am

i +)) .

Then using Theorem 2.5.4 on Page 65,

µ (∪∞
m=1Am) ≤ ∑

i,m
(F (bm

i −)−F (am
i +))

=
∞

∑
m=1

∞

∑
i=1

(F (bm
i −)−F (am

i +))≤
∞

∑
m=1

µ (Am)+
ε

2m =
∞

∑
m=1

µ (Am)+ ε,

and since ε is arbitrary, this establishes 2.).
Next consider 3.). By definition, there exists a sequence of open intervals, {(ai,bi)}∞

i=1
whose union contains [a,b] such that

µ ([a,b])+ ε ≥
∞

∑
i=1

(F (bi−)−F (ai+)) .

By Theorem 4.4.8, finitely many of these open intervals also cover [a,b]. It follows there
exist finitely many of these intervals, denoted as {(ai,bi)}n

i=1 , which overlap, such that a ∈
(a1,b1) ,b1 ∈ (a2,b2) , · · · ,b ∈ (an,bn) . Therefore, µ ([a,b]) ≤ ∑

n
i=1 (F (bi−)−F (ai+)) .

It follows
n

∑
i=1

(F (bi−)−F (ai+)) ≥ µ ([a,b])≥
n

∑
i=1

(F (bi−)−F (ai+))− ε

≥ F (b+)−F (a−)− ε

Therefore, F (b+δ )−F (a−δ )≥ µ ([a,b])≥ F (b+)−F (a−)− ε. Letting δ → 0,

F (b+)−F (a−)≥ µ ([a,b])≥ F (b+)−F (a−)− ε

Since ε is arbitrary, this shows µ ([a,b]) = F (b+)−F (a−) . This establishes 3.).
Consider 4.). For small δ > 0,µ ([a+δ ,b−δ ]) ≤ µ ((a,b)) .Therefore, from 3.) and

the definition of µ ,

F ((b−δ ))−F ((a+δ ))≤ F ((b−δ )+)−F ((a+δ )−)

= µ ([a+δ ,b−δ ])≤ µ ((a,b))≤ F (b−)−F (a+)
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the last inequality from the definition. Now letting δ decrease to 0 it follows F (b−)−
F (a+)≤ µ ((a,b))≤ F (b−)−F (a+) . This shows 4.)

Consider 5.). From 3.) and 4.), for small δ > 0,

F (b+)−F ((a+δ ))≤ F (b+)−F ((a+δ )−)
= µ ([a+δ ,b])≤ µ ((a,b])≤ µ ((a,b+δ ))

= F ((b+δ )−)−F (a+)≤ F (b+δ )−F (a+) .

Now let δ converge to 0 from above to obtain F (b+)−F (a+) = µ ((a,b]) . This estab-
lishes 5.) and 6.) is entirely similar to 5.).

Finally, consider 7.). Let

V ≡ ∪
{

B
(

x,
δ

10

)
: x ∈ A∪B

}
.

Let A∪B⊆ ∪∞
i=1 (ai,bi) where

µ (A∪B)+ ε > ∑
i

F (bi−)−F (ai+)

Then, taking the intersection of each of these intervals with V, it can be assumed that all of
the intervals are contained in V since such an intersection will only strengthen the above
inequality. Now refer to V as the union of these intervals, none of which can intersect
both A and B. Thus V consists of disjoint open sets, one containing A consisting of the
intervals which intersect A,UA and the other consisting of those which intersect B,UB. Let
IA denote the intervals which intersect A and let IB denote the remaining intervals. Also
let ∆((ai,bi))≡ F (bi−)−F (ai+) . Then from the above,

µ (A∪B)+ ε > ∑
I∈IA

∆(I)+ ∑
I∈IB

∆(I)≥ µ (A)+µ (B)≥ µ (A∪B)

Since ε > 0 is arbitrary, this shows 7.). That F contains the Borel sets follows from 7.)
also. ■

We have just shown that µ is an outer measure on P (R). Unlike what was presented
earlier, this outer measure did not begin with a measure.

9.8 Measures and Regularity
It is often the case that Ω is not just a set. In particular, it is often the case that Ω is some sort
of topological space, often a metric space. In this case, it is usually if not always the case
that the open sets will be in the σ algebra of measurable sets. This leads to the following
definition.

Definition 9.8.1 A Polish space is a complete separable metric space. For a Polish
space E or more generally a metric space or even a general topological space, B (E)
denotes the Borel sets of E. This is defined to be the smallest σ algebra which contains the
open sets. Thus it contains all open sets and closed sets and compact sets and many others.

For example, R is a Polish space as is any separable Banach space. Amazing things
can be said about finite measures on the Borel sets of a Polish space. First the case of a
finite measure on a metric space will be considered.
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It is best to not attempt to describe a generic Borel set. Always work with the definition
that it is the smallest σ algebra containing the open sets. Attempts to give an explicit
description of a “typical” Borel set tend to lead nowhere because there are so many things
which can be done.You can take countable unions and complements and then countable
intersections of what you get and then another countable union followed by complements
and on and on. You just can’t get a good useable description in this way. However, it is easy

to see that something like
(
∩∞

i=1∪∞
j=i E j

)C
is a Borel set if the E j are. This is useful. This

said, you can look at Hewitt and Stromberg [26] in their discussion of why there are more
Lebesgue measurable sets than Borel measurable sets to see the kind of technicalities which
result by describing Borel sets. This is an extremely significant result based on describing
Borel sets, so it can be done.

Definition 9.8.2 A measure µ defined on a σ algebra F which includes B (E) will
be called inner regular on F if for all F ∈F ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed} (9.18)

A measure, µ defined on F will be called outer regular on F if for all F ∈F ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open} (9.19)

When a measure is both inner and outer regular, it is called regular. Actually, it is more
useful and likely more standard to refer to µ being inner regular as

µ (F) = sup{µ (K) : K ⊆ F and K is compact} (9.20)

Thus the word “closed” is replaced with “compact”. A complete measure defined on a σ

algebra F which includes the Borel sets which is finite on compact sets and also satisfies
9.19 and 9.20 for each F ∈F is called a Radon measure. A Gδ set, pronounced as G delta
is the countable intersection of open sets. An Fσ set, pronounced F sigma is the countable
union of closed sets.

In every case which has ever been of interest to me, the measure has been σ finite.

Definition 9.8.3 If (X ,F ,µ) is a measure space, it is called σ finite if there are
Xn ∈F with ∪nXn = X and µ (Xn)< ∞.

For finite measures, defined on the Borel sets of a metric space X , B(X), the first
definition of regularity is automatic. These are always outer and inner regular provided
inner regularity refers to closed sets. Note that if A⊇ B then A\B = BC \AC.

Lemma 9.8.4 Let µ be a finite measure defined on a σ algebra F ⊇B (X) where X is
a metric space. Then the following hold.

1. µ is regular on B (X) meaning 9.18, 9.19 whenever F ∈B (X) .

2. µ is outer regular satisfying 9.19 on sets of F if and only if it is inner regular
satisfying 9.18 on sets of F .

3. If µ is either inner or outer regular on sets of F then if E is any set of F , there exist
F an Fσ set and G a Gδ set such that F ⊆ E ⊆ G and µ (G\F) = 0.
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Proof: 1.) First note every open set is the countable union of closed sets and every
closed set is the countable intersection of open sets. Here is why. Let V be an open set and
let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V. Thus

µ (V ) = sup{µ (K) : K ⊆V and K is closed} .

If U is open and contains V, then µ (U)≥ µ (V ) and so

µ (V )≤ inf{µ (U) : U ⊇V, U open} ≤ µ (V ) since V ⊆V.

Thus µ is inner and outer regular on open sets. In what follows, K will be closed and V
will be open.

Let K be the open sets. This is a π system since it is closed with respect to finite
intersections. Let

G ≡ {E ∈B (X) : µ is inner and outer regular on E} so G ⊇K .

For E ∈ G , let V ⊇ E ⊇ K such that µ (V \K) = µ (V \E)+µ (E \K)< ε . Thus KC ⊇ EC

and so µ
(
KC \EC

)
= µ (E \K)< ε. Thus µ is outer regular on EC because

µ
(
KC)= µ

(
EC)+µ

(
KC \EC)< µ

(
EC)+ ε, KC ⊇ EC

Also, EC ⊇ VC and µ
(
EC \VC

)
= µ (V \E) < ε so µ is inner regular on EC and so G is

closed for complements. If the sets of G {Ei} are disjoint, let Ki⊆Ei⊆Vi with µ (Vi \Ki)<
ε2−i. Then for E ≡ ∪iEi,and choosing m sufficiently large,

µ (E) = ∑
i

µ (Ei)≤
m

∑
i=1

µ (Ei)+ ε ≤
m

∑
i=1

µ (Ki)+2ε = µ (∪m
i=1Ki)+2ε

and so µ is inner regular on E ≡ ∪iEi. It remains to show that µ is outer regular on E.
Letting V ≡ ∪iVi,

µ (V \E)≤ µ (∪i (Vi \Ei))≤∑
i

ε2−i = ε.

Hence µ is outer regular on E since µ (V ) = µ (E)+µ (V \E)≤ µ (E)+ ε and V ⊇ E.
By Dynkin’s lemma, G = σ (K )≡B (X).
2.) Suppose that µ is outer regular on sets of F ⊇B (X). Letting E ∈F , by outer

regularity, there exists an open set V ⊇ EC such that µ (V )−µ
(
EC
)
< ε . Since µ is finite,

ε > µ (V )− µ
(
EC
)
= µ

(
V \EC

)
= µ

(
E \VC

)
= µ (E)− µ

(
VC
)

and VC is a closed set
contained in E. Therefore, if 9.19 holds, then so does 9.18. The converse is proved in the
same way.

3.) The last claim is obtained by letting G = ∩nVn where Vn is open, contains E,
Vn ⊇Vn+1, and µ (Vn)< µ (E)+ 1

n and Kn, increasing closed sets contained in E such that
µ (E) < µ (Kn)+

1
n . Then let F ≡ ∪Fn and G ≡ ∩nVn. Then F ⊆ E ⊆ G and µ (G\F) ≤

µ (Vn \Kn)< 2/n. ■
Next is a lemma which allows the replacement of closed with compact in the definition

of inner regular.
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Lemma 9.8.5 Let µ be a finite measure on a σ algebra containing B (X) , the Borel
sets of X , a separable complete metric space, Polish space. Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, µ is inner regular
in the sense that for all F ∈B (X) ,

µ (F) = sup{µ (K) : K ⊆ F and K is compact}

Proof: Let {ak} be a countable dense subset of C. Thus ∪∞
k=1B

(
ak,

1
n

)
⊇C. Therefore,

there exists mn such that

µ

(
C \∪mn

k=1B
(

ak,
1
n

))
≡ µ (C \Cn)<

ε

2n , ∪
mn
k=1 B

(
ak,

1
n

)
≡Cn.

Now let K =C∩ (∩∞
n=1Cn) . Then K is a subset of Cn for each n and so for each ε > 0 there

exists an ε net for K since Cn has a 1/n net, namely a1, · · · ,amn . Since K is closed, it is
complete and so it is also compact since it is complete and totally bounded, Theorem 3.5.8.
Now

µ (C \K)≤ µ (∪∞
n=1 (C \Cn))<

∞

∑
n=1

ε

2n = ε.

Thus µ (C) can be approximated by µ (K) for K a compact subset of C. The last claim
follows from Lemma 9.8.4. ■

The next theorem is the main result. It says that if the measure is outer regular and µ is
σ finite then there is an approximation for E ∈F in terms of Fσ and Gδ sets in which the
Fσ set is a countable union of compact sets. Also µ is inner and outer regular on F .

Theorem 9.8.6 Suppose (X ,F ,µ) ,F ⊇B (X) is a measure space for X a metric
space and µ is σ finite, X =∪nXn with µ (Xn)< ∞ and the Xn disjoint. Suppose also that µ

is outer regular. Then for each E ∈F , there exists F,G an Fσ and Gδ set respectively such
that F ⊆ E ⊆ G and µ (G\F) = 0. In particular, µ is inner and outer regular on F . In
case X is a complete separable metric space (Polish space), one can have F in the above
be the countable union of compact sets and µ is inner regular in the sense of 9.20.

Proof: Since µ is outer regular and µ (Xn) < ∞, there exists an open set Vn ⊇ E ∩Xn
such that

µ (Vn \ (E ∩Xn)) = µ (Vn)−µ (E ∩Xn)<
ε

2n .

Then let V ≡ ∪nVn so that V ⊇ E. Then E = ∪nE ∩Xn and so

µ (V \E)≤ µ (∪n (Vn \ (E ∩Xn)))≤∑
n

µ (Vn \ (E ∩Xn))< ∑
n

ε

2n = ε

Similarly, there exists Un open such that µ
(
Un \

(
EC ∩Xn

))
< ε

2n ,Un ⊇ EC ∩Xn so if U ≡
∪nUn,µ

(
U \EC

)
= µ

(
E \UC

)
< ε. Now UC is closed and contained in E because U ⊇EC.

Hence, letting ε = 1
2n , there exist closed sets Cn, and open sets Vn such that Cn ⊆E ⊆Vn and

µ (Vn \Cn)<
1

2n−1 . Letting G≡∩nVn,F ≡∪nCn,F ⊆ E ⊆G and µ (G\F)≤ µ (Vn \Cn)<
1

2n−1 . Since n is arbitrary, µ (G\F) = 0.
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To finish the proof, I will use Lemma 9.8.5 in the case where X is a Polish space.
By the first part, µ (G\F) = 0 where F is the countable union of closed sets {Ck}∞

k=1
and F ⊆ E ⊆ G. Letting µn (E)≡ µ (E ∩Xn) , µn is a finite measure and so if Ck is one of
those closed sets, Lemma 9.8.5 implies

µn (Ck)≡ µ (Ck ∩Xn) = sup{µ (K∩Xn) : K ⊆Ck, K compact}

Pick Kk compact such that µn (Ck \Kk)<
ε

2k ,Kk ⊆Ck. Then letting F̂ ≡∪kKk, it follows F̂
is a countable union of compact sets contained in F and

µ
(
F \ F̂

)
= µ (∪kCk \ (∪kKk))≤ µ (∪k (Ck \Kk))≤∑

k
µ (Ck \Kk)< ε

Therefore, letting F̂m be a countable union of compact sets contained in F for which
µ
(
F \ F̂m

)
< 1

2m , let F̃ ≡ ∪mF̂m. Then F̃ is a countable union of compact sets and

µ
(
F \ F̃

)
≤ µ

(
F \ F̂m

)
<

1
2m

and so µ
(
F \ F̃

)
= 0. Then

µ
(
G\ F̃

)
= µ (G\F)+µ

(
F \ F̃

)
= µ (G\F) = 0

so as claimed, one can have F in the first part be the countable union of compact sets.
Letting E ∈F , it was just shown that there exist G a Gδ set and F the countable union of
compact sets such that µ (G\F) = 0,F ⊆ E ⊆ G. Therefore, µ (E) = µ (E \F)+µ (F) =
µ (F) and so this shows inner regularity in the sense of 9.20 because if l < µ (E) = µ (F) ,
one could include enough of the compact sets whose union is F to obtain a compact set K
for which µ (K)> l. ■

An important example is the case of a random vector and its distribution measure.

Definition 9.8.7 A measurable functionX : (Ω,F ,µ)→ Z a metric space is called
a random variable when µ (Ω) = 1. For such a random variable, one can define a distri-
bution measure λX on the Borel sets of Z as follows. λX (G) ≡ µ

(
X−1 (G)

)
. This is a

well defined measure on the Borel sets of Z because it makes sense for every G open and
G ≡

{
G⊆ Z :X−1 (G) ∈F

}
is a σ algebra which contains the open sets, hence the Borel

sets. Such a random variable is also called a random vector when Z is a vector space.

Corollary 9.8.8 LetX be a random variable with values in a separable complete met-
ric space Z. Then λX is an inner and outer regular measure defined on B (Z).

One such example of a complete metric space and a measure which is finite on compact
sets is the following where the closures of balls are compact. Thus, this involves finite di-
mensional situations essentially. Note that if you have a metric space in which the closures
of balls are compact sets, then the metric space must be separable. This is because you can
pick a point ξ and consider the closures of balls B(ξ ,n). Then B(ξ ,n) is complete and
totally bounded so it has a countable dense subset Dn. Let D = ∪nDn.

Corollary 9.8.9 Let Ω be a complete metric space which is the countable union of
compact sets Kn and suppose, for µ a Borel measure, µ (Kn) is finite. Then µ must be
regular on B (Ω). In particular, if Ω is a metric space and the closure of each ball is
compact, and µ is finite on balls, then µ must be regular.
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Proof: Let the compact sets be increasing without loss of generality, and let µn (E) ≡
µ (Kn∩E) . Thus µn is a finite measure defined on the Borel sets of a Polish space so it
is regular. Letting l < µ (E) , there exists n such that l < µn (E) ≤ µ (E) . By what was
shown above in Lemma 9.8.5, there exists H compact, H ⊆ E such that also for a large n,
µn (H) > l. Hence µ (H ∩Kn) > l and so µ is inner regular. It remains to verify that µ is
outer regular. If µ (E) =∞, there is nothing to show. Assume then that µ (E)<∞. Let Vn ⊇
E with µn (Vn \E)< ε2−n so also µ (Vn)< ∞. We can assume also that Vn ⊇Vn+1 for all n.
Thus µ ((Vn \E)∩Kn) < 2−nε . Let G = ∩kVk. Then G ⊆ Vn so µ ((G\E)∩Kn) < 2−nε.
Letting n→ ∞,µ (G\E) = 0 and G ⊇ E. Then, since V1 has finite measure, µ (G\E) =
limn→∞ µ (Vn \E) and so for all n large enough, µ (Vn \E) < ε so µ (E)+ ε > µ (Vn) and
so µ is outer regular. In the last case, if the closure of each ball is compact, then Ω is
automatically complete because every Cauchy sequence is contained in some ball and so
has a convergent subsequence. Since the sequence is Cauchy, it also converges by Theorem
3.2.2 on Page 73. ■

9.9 One Dimensional Lebesgue Stieltjes Measure
Now with these major results about measures, it is time to specialize to the outer measure of
Theorem 9.7.4. The next theorem gives Lebesgue Stieltjes measure on R. The conditions
9.21 and 9.22 given below are known respectively as inner and outer regularity.

Theorem 9.9.1 Let F denote the σ algebra of Theorem 9.5.4, associated with the
outer measure µ in Theorem 9.7.4, on which µ is a measure. Then every open interval is
in F . So are all open and closed sets and consequently all Borel sets. Furthermore, if E is
any set in F

µ (E) = sup{µ (K) : K compact, K ⊆ E} (9.21)

µ (E) = inf{µ (V ) : V is an open set V ⊇ E} (9.22)

If E ∈F , there exists F a countable union of compact sets, an Fσ set and a set G a countable
intersection of open sets, a Gδ set such that F ⊆ E ⊆ G but µ (G\F) = 0. Also µ is finite
on compact sets.

Proof: By Theorem 9.7.4 and Theorem 9.6.1 the σ algebra includes the Borel sets
B (R). However, note that F is complete and there is no such requirement for this measure
on B (R). Thus it is reasonable to think that F could be larger than B (R).

Now consider the last claim about regularity. The assertion of outer regularity on F
is not hard to get. Letting E be any set µ (E) < ∞, there exist open intervals covering E
denoted by {(ai,bi)}∞

i=1 such that

µ (E)+ ε >
∞

∑
i=1

F (bi−)−F (ai+) =
∞

∑
i=1

µ (ai,bi)≥ µ (V )

where V is the union of the open intervals just mentioned. Thus

µ (E)≤ µ (V )≤ µ (E)+ ε.

This shows outer regularity. If µ (E) = ∞, there is nothing to show. Since µ is finite on
intervals, it is σ finite. It follows from Theorem 9.8.6 that µ is inner regular also and the
claim about approximation with Fσ and Gδ sets follows. ■
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Definition 9.9.2 When the integrator function is F (x) = x, the Lebesgue Stieltjes
measure just discussed is known as one dimensional Lebesgue measure and is denoted as
m.

Proposition 9.9.3 For m Lebesgue measure, m([a,b]) = m((a,b)) = b− a. Also m is
translation invariant in the sense that if E is any Lebesgue measurable set, then m(x+E)=
m(E).

Proof: The formula for the measure of an interval comes right away from Theorem
9.7.4. From this, it follows right away that whenever E is an interval, m(x+E) = m(E).
Every open set is the countable disjoint union of open intervals, so if E is an open set, then
m(x+E) = m(E). What about closed sets? First suppose H is a closed and bounded set.
Then letting (−n,n)⊇ H,

µ (((−n,n)\H)+ x)+µ (H + x) = µ ((−n,n)+ x)

Hence, from what was just shown about open sets,

µ (H) = µ ((−n,n))−µ ((−n,n)\H)

= µ ((−n,n)+ x)−µ (((−n,n)\H)+ x) = µ (H + x)

Therefore, the translation invariance holds for closed and bounded sets. If H is an arbitrary
closed set, then

µ (H + x) = lim
n→∞

µ (H ∩ [−n,n]+ x) = lim
n→∞

µ (H ∩ [−n,n]) = µ (H) .

It follows right away that µ is translation invariant on Fσ and Gδ sets. Now using Theorem
9.9.1, if E is an arbitrary measurable set, there exist an Fσ set F and a Gδ set G such that
F ⊆ E ⊆ G and m(F) = m(G) = m(E). Then

m(F) = m(x+F)≤ m(x+E)≤ m(x+G) = m(G) = m(E) = m(F) . ■

9.10 Exercises
1. Show carefully that if S is a set whose elements are σ algebras which are subsets of

P (Ω) , then ∩S is also a σ algebra. Now let G ⊆P (Ω) satisfy property P if G
is closed with respect to complements and countable disjoint unions as in Dynkin’s
lemma, and contains /0 and Ω. If H ⊆ G is any set whose elements are subsets of
P (Ω) which satisfies property P, then ∩H also satisfies property P. Thus there is a
smallest subset of G satisfying P. In other words, verify the details of the proof of
Dynkin’s lemma.

2. The Borel sets of a metric space (X ,d) are the sets in the smallest σ algebra which
contains the open sets. These sets are denoted as B (X). Thus B (X) = σ (open sets)
where σ (F ) simply means the smallest σ algebra which contains F . Show that in
Rn, B (Rn) = σ (P) where P consists of the half open rectangles which are of the
form ∏

n
i=1[ai,bi).

3. Recall that f : (Ω,F )→ X where X is a metric space is measurable means that
inverse images of open sets are in F . Show that if E is any set in B (X) , then
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f−1 (E) ∈ F . Thus, inverse images of Borel sets are measurable. Next consider
f : (Ω,F ) → X being measurable and g : X → Y is Borel measurable, meaning
that g−1 (open) ∈ B (X). Explain why g ◦ f is measurable. Hint: You know that
(g◦ f )−1 (U) = f−1

(
g−1 (U)

)
. For your information, it does not work the other

way around. That is, measurable composed with Borel measurable is not necessarily
measurable. In fact examples exist which show that if g is measurable and f is
continuous, then g◦ f may fail to be measurable. An example is given later.

4. If you have Xi is a metric space, let X = ∏
n
i=1 Xi with the metric

d (x,y)≡max{di (xi,yi) , i = 1,2, · · · ,n}

You considered this in an earlier problem. Show that any set of the form
n

∏
i=1

Ei, Ei ∈B (Xi)

is a Borel set. That is, the product of Borel sets is Borel. Hint: You might consider
the continuous functions π i : ∏

n
j=1 X j → Xi which are the projection maps. Thus

π i (x)≡ xi. Then π
−1
i (Ei) would have to be Borel measurable whenever Ei ∈B (Xi).

Explain why. You know π i is continuous. Why would π
−1
i (Borel) be a Borel set?

Then you might argue that ∏
n
i=1 Ei = ∩n

i=1π
−1
i (Ei) .

5. You have two finite measures defined on B (X) µ,ν . Suppose these are equal on
every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

6. Show that (N,P (N) ,µ) is a measure space where µ (S) equals the number of el-
ements of S. You need to verify that if the sets Ei are disjoint, then µ (∪∞

i=1Ei) =

∑
∞
i=1 µ (Ei) .

7. Let Ω be an uncountable set and let F denote those subsets of Ω, F such that either
F or FC is countable. Show that this is a σ algebra. Next define the following
measure. µ (A) = 1 if A is uncountable and µ (A) = 0 if A is countable. Show that µ

is a measure. This is a perverted example.

8. Let µ (E) = 1 if 0 ∈ E and µ (E) = 0 if 0 /∈ E. Show this is a measure on P (R).

9. Give an example of a measure µ and a measure space and a decreasing sequence of
measurable sets {Ei} such that limn→∞ µ (En) ̸= µ (∩∞

i=1Ei).

10. You have a measure space (Ω,F ,P) where P is a probability measure on F . Then
you also have a measurable function X : Ω→ Z where Z is some metric space. Thus
X−1 (U) ∈ F whenever U is open. Now define a measure on B (Z) denoted by
λ X and defined by λ X (E) = P({ω : X (ω) ∈ E}) . Explain why this yields a well
defined probability measure on B (Z) which is regular. This is called the distribution
measure.

11. Let K ⊆V where K is closed and V is open. Consider the following function.

f (x) =
dist
(
x,VC

)
dist(x,K)+dist(x,VC)

Explain why this function is continuous, equals 0 off V and equals 1 on K.
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12. Let (Ω,F ) be a measurable space and let f : Ω→ X be a measurable function. Then
σ ( f ) denotes the smallest σ algebra such that f is measurable with respect to this σ

algebra. Show that σ ( f ) =
{

f−1 (E) : E ∈B (X)
}

.

13. Let (Ω,F ,µ) be a measure space. A sequence of functions { fn} is said to converge
in measure to a measurable function f if and only if for each

ε > 0, lim
n→∞

µ (ω : | fn (ω)− f (ω)|> ε) = 0.

Show that if this happens, then there exists a subsequence
{

fnk

}
and a set of measure

N such that if ω /∈N, then limk→∞ fnk (ω)= f (ω). Also show that if limn→∞ fn (ω)=
f (ω) , and µ (Ω)<∞, then fn converges in measure to f . Hint:For the subsequence,
let µ

(
ω :
∣∣ fnk (ω)− f (ω)

∣∣> ε
)
< 2−k and use Borel Cantelli lemma.

14. Let X ,Y be separable metric spaces. Then X ×Y can also be considered as a metric
space with the metric ρ ((x,y) ,(x̂, ŷ)) ≡ max(dX (x, x̂) ,dY (y, ŷ)) . Verify this. Then
show that if K consists of sets A×B where A,B are Borel sets in X and Y respec-
tively, then it follows that σ (K ) = B (X×Y ) , the Borel sets from X ×Y . Extend
to the Cartesian product ∏i Xi of finitely many separable metric spaces.

9.11 Completion of a Measure Space
Next is the notion of the completion of a measure space. The idea is that you might not
have completeness in your measure space but you can always complete it.

Definition 9.11.1 Recall that a measure space (Ω,F ,λ ) is σ finite if there is a
countable set {Ωn}∞

n=1 such that ∪nΩn = Ω and λ (Ωn)< ∞.

The next theorem is like some earlier ones related to regularity including the approxi-
mation with Gδ and Fσ sets. The arguments are similar.

Theorem 9.11.2 Let (Ω,F ,µ) be a measure space. Then there exists a measure
space, (Ω,G ,λ ) satisfying

1. (Ω,G ,λ ) is a complete measure space.

2. λ = µ on F

3. G ⊇F

4. For every E ∈ G there exists G ∈F such that G⊇ E and µ (G) = λ (E) .

In addition to this, if (Ω,F ,µ) is σ finite, then the following approximation result
holds.

5. For every E ∈ G there exists F ∈F and G ∈F such that F ⊆ E ⊆ G and

µ (G\F) = λ (G\F) = 0 (9.23)

There is a unique complete measure space (Ω,G ,λ ) extending (Ω,F ,µ) which sat-
isfies 9.23. In particular, there are no new sets if the original measure space was
already complete.
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Proof: Define the outer measure

λ (A)≡ inf{µ (E) : E ∈F ,E ⊇ A} , λ ( /0)≡ 0.

Denote by G the σ algebra of λ measurable sets. Then (Ω,G ,λ ) is complete by the general
Caratheodory procedure presented earlier.

I claim that λ = µ on F . If A ∈F ,

µ (A)≤ inf{µ (E) : E ∈F ,E ⊇ A} ≡ λ (A)≤ µ (A)

because A⊇ A. Thus, these are all equal in the above and λ = µ on F .
Why is F ⊆ G ? Letting λ (S)< ∞, (There is nothing to prove if λ (S) = ∞.) let G ∈F

be such that G⊇ S and λ (S) = µ (G) . This is possible because

λ (S)≡ inf{µ (E) : E ⊇ S and E ∈F} .

Then if A ∈F ,

λ (S) ≤ λ (S∩A)+λ
(
S∩AC)≤ λ (G∩A)+λ

(
G∩AC)

= µ (G∩A)+µ
(
G∩AC)= µ (G) = λ (S) .

Thus F ⊆ G .
Finally suppose µ is σ finite. Let Ω = ∪∞

n=1Ωn where the Ωn are disjoint sets of F

and µ (Ωn) < ∞. If the Ωn are not disjoint, replace Ωn with Ωn \∪n−1
k=1Ωk. Letting A ∈ G ,

consider An ≡ A∩Ωn. From what was just shown, there exists Gn ⊇ AC ∩Ωn, Gn ⊆ Ωn
such that µ (Gn) = λ

(
AC ∩Ωn

)
,Gn ∈F .

Ωn∩AC

Ωn∩A

Gn

Since µ (Ωn)< ∞, this implies

λ
(
Gn \

(
AC ∩Ωn

))
= λ (Gn)−λ

(
AC ∩Ωn

)
= 0.

Now GC
n ⊆ A∪ΩC

n but Gn ⊆ Ωn and so GC
n ⊆ A∪Ωn. Define Fn ≡ GC

n ∩Ωn ⊆ An and it
follows λ (An \Fn) =

λ
(
A∩Ωn \

(
GC

n ∩Ωn
))

= λ (A∩Ωn∩Gn) = λ (A∩Gn) = λ
(
Gn \AC)

≤ λ
(
Gn \

(
AC ∩Ωn

))
= 0.

Letting F = ∪nFn, it follows that F ∈F and

λ (A\F)≤
∞

∑
k=1

λ (Ak \Fk) = 0.

Also, there exists Gn ⊇ An such that µ (Gn) = λ (Gn) = λ (An) . Since the measures are
finite, it follows that λ (Gn \An) = 0. Then letting G = ∪∞

n=1Gn, it follows that G⊇ A and

λ (G\A) = λ (∪∞
n=1Gn \∪∞

n=1An)

≤ λ (∪∞
n=1 (Gn \An))≤

∞

∑
n=1

λ (Gn \An) = 0.



262 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

Thus µ (G\F) = λ (G\F) = λ (G\A)+λ (A\F) = 0.
If you have

(
λ
′,G ′

)
complete and satisfying 9.23, then letting E ∈ G ′, it follows from

5, that there exist F,G ∈F such that

F ⊆ E ⊆ G, µ (G\F) = 0 = λ (G\F) .

Therefore, by completeness of the two measure spaces, E ∈ G . The opposite inclusion is
similar. Hence G = G ′. If E ∈ G , let F ⊆ E ⊆ G where µ (G\F) = 0. Then

λ (E)≤ µ (G) = µ (F) = λ
′ (F)≤ λ

′ (E)

The opposite inequality holds by the same reasoning. Hence λ = λ
′. If (Ω,F ,µ) is already

complete, then you could let this be
(
Ω,G ′,λ ′

)
and find that G = F = G ′. ■

Another useful result is the following.

Corollary 9.11.3 Suppose, in the situation of Theorem 9.11.2, f ≥ 0 and is G measur-
able. Then there exists g,0≤ g≤ f and f = g for all ω off a set of measure zero.

Proof: Let sn ↑ f where sn (ω) = ∑
mn
i=1 ciXEi (ω) for ω ∈ Ω. Then by the regularity

assertion of this theorem, there exists Fi ∈F such that Fi ⊆ Ei and λ (Ei \Fi) = 0. Then
let ŝn (ω) = ∑

mn
i=1 ciXFi (ω) . Then ŝn ≤ sn and letting N = ∪∞

n=1 {ω : sn (ω) ̸= ŝn (ω)} , it
follows that λ (N) = 0 and for ω /∈ N,

ŝn (ω) = sn (ω)→ f (ω) = g(ω) .

Now let g(ω)≡ liminfn→∞ ŝn (ω)≤ limn→∞ s(ω) = f (ω) and g is F measurable because
if gn (ω) = inf{ŝk : k ≥ n} , this is F measurable since

g−1
n ((−∞,a)) = ∪k≥nŝ−1

k (−∞,a) ∈F

Now g being the limit of these gn, it follows that g is also F measurable. ■
This will show that in most situations, you can simply modify your function on a set of

measure zero and consider one which is F measurable.
Recall Corollary 9.8.9 about regularity. Then there is an easy corollary.

Corollary 9.11.4 Let Ω be a complete metric space which is the countable union of
compact sets Kn and suppose, for µ a Borel measure, µ (Kn) is finite. Then µ must be
regular on B (Ω). If (µ̄,G ) is the completion, then µ̄ is inner and outer regular on sets of
G . Also, if E ∈ G , there are Fσ and Gδ sets, F,G respectively such that µ̄ (G\F) = 0 and
F ⊆ E ⊆ G.

9.12 Vitali Coverings
There is another covering theorem which may also be referred to as the Besicovitch cover-
ing theorem. At first, the balls will be closed but this assumption will be removed. Assume
the following: (X , µ̄) is a finite dimensional normed linear space of dimension p and µ̄ is
an outer measure on P (X). We really have in mind that X is Rp with some norm. Assume
the following:

1. Let µ the measure determined by µ̄ on the σ algebra S which contains the Borel
sets.
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2. Or let µ be a measure on S where S contains the Borel sets and µ̄ is the outer
measure determined by µ as described in Proposition 9.4.2. Always assume the
following:

3. µ (B(x,r))< ∞.

4. If E ∈S , then

µ (E) = sup{µ (K) : K ⊆ E and K is compact}
µ (E) = inf{µ (V ) : V ⊇ E and V is open}

If this measure µ is also complete, then recall it is termed a Radon measure.
Note that S is given to contain all closed sets and open sets. The above situation is

very common. See Corollary 9.8.9 which gives 4 follows from 3. In fact, the above is the
typical case for measures on finite dimensional spaces.

Definition 9.12.1 A collection of balls, F covers a set E in the sense of Vitali if
whenever x ∈ E and ε > 0, there exists a ball B ∈F whose center is x having diameter
less than ε.

I will give a proof of the following theorem.

Theorem 9.12.2 Let E be a set with µ (E) < ∞ and either 1 or 2 along with the
regularity conditions 3 and 4. Suppose F is a collection of closed balls which cover E
in the sense of Vitali. Then there exists a sequence of disjoint balls {Bi} ⊆F such that

µ

(
E \∪N

j=1B j

)
= 0, N ≤ ∞.

Proof: Let Np be the constant of the Besicovitch covering theorem, Theorem 4.5.8.

Choose r > 0 such that (1− r)−1
(

1− 1
2Np+2

)
≡ λ < 1. If µ (E) = 0, there is nothing to

prove so assume µ (E) > 0. Let U1 be an open set containing E with (1− r)µ (U1) <
µ (E) and 2µ (E) > µ (U1) , and let F1 be those sets of F which are contained in U1
whose centers are in E. Thus F1 is also a Vitali cover of E. Now by the Besicovitch cov-
ering theorem proved earlier, Theorem 4.5.8, there exist balls B, of F1 such that E ⊆
∪Np

i=1 {B : B ∈ Gi} where Gi consists of a collection of disjoint balls of F1. Therefore,
µ (E)≤ ∑

Np
i=1 ∑B∈Gi µ (B) and so, for some i≤ Np,

(Np +1) ∑
B∈Gi

µ (B)> µ (E) .

It follows there exists a finite set of balls of Gi, {B1, · · · ,Bm1} such that

(Np +1)
m1

∑
i=1

µ (Bi)> µ (E) (9.24)

and so

(2Np +2)
m1

∑
i=1

µ (Bi)> 2µ (E)> µ (U1) .
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Now 9.24 implies
µ (U1)

2N2 +2
≤ 2µ (E)

2N2 +2
=

µ (E)
N2 +1

<
m1

∑
i=1

µ (Bi) .

Also U1 was chosen such that (1− r)µ (U1)< µ (E) , and so

λ µ (E)≥ λ (1− r)µ (U1) =

(
1− 1

2Np +2

)
µ (U1)

≥ µ (U1)−
m1

∑
i=1

µ (Bi) = µ (U1)−µ

(
∪m1

j=1B j

)
= µ

(
U1 \∪m1

j=1B j

)
≥ µ

(
E \∪m1

j=1B j

)
.

Since the balls are closed, you can consider the sets of F which have empty intersection
with ∪m1

j=1B j and this new collection of sets will be a Vitali cover of E \∪m1
j=1B j. Letting this

collection of balls play the role of F in the above argument, and letting E \∪m1
j=1B j play

the role of E, repeat the above argument and obtain disjoint sets of F , {Bm1+1, · · · ,Bm2} ,
such that

λ µ

(
E \∪m1

j=1B j

)
> µ

((
E \∪m1

j=1B j

)
\∪m2

j=m1+1B j

)
= µ

(
E \∪m2

j=1B j

)
,

and so λ
2
µ (E)> µ

(
E \∪m2

j=1B j

)
. Continuing in this way, yields a sequence of disjoint

balls {Bi} contained in F and µ

(
E \∪N

j=1B j

)
≤ µ

(
E \∪mk

j=1B j

)
< λ

k
µ (E ) for all k. If

the process stops because E gets covered, then N is finite and if not, then N =∞. Therefore,
µ

(
E \∪N

j=1B j

)
= 0 and this proves the Theorem. ■

It is not necessary to assume µ (E) < ∞. It is given that µ (B(x,R)) < ∞. Letting
C (x,r) be all y with ∥y−x∥ = r. Then there are only finitely many r < R such that
µ (C (x,r))≥ 1

n . Hence there are only countably many r < R such that µ (C (x,r))> 0.

Corollary 9.12.3 Let E nonempty set and either 1 or 2 along with the regularity con-
ditions 3 and 4. Suppose F is a collection of closed balls which cover E in the sense of
Vitali. Then there exists a sequence of disjoint balls {Bi} ⊆F such that

µ
(
E \∪N

j=1B j
)
= 0,N ≤ ∞

Proof: By 3, µ is finite on compact sets. Recall these are closed and bounded. There
are at most countably many numbers, {bi}∞

i=1 such that µ (C (0,bi)) > 0. It follows that
there exists an increasing sequence of positive numbers, {ri}∞

i=1 such that limi→∞ ri = ∞

and µ (C (0,ri)) = 0. Now let

D1 ≡ {x : ∥x∥< r1} ,D2 ≡ {x : r1 < ∥x∥< r2} ,
· · · ,Dm ≡ {x : rm−1 < ∥x∥< rm} , · · · .

Let Fm denote those closed balls of F which are contained in Dm. Then letting Em denote
E ∩Dm, Fm is a Vitali cover of Em,µ (Em) < ∞, and so by Theorem 9.12.2, there exists
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a countable sequence of balls from Fm

{
Bm

j

}N

j=1
, such that µ

(
Em \∪N

j=1Bm
j

)
= 0. Then

consider the countable collection of balls,
{

Bm
j

}∞

j,m=1
.

µ
(
E \∪∞

m=1∪N
j=1 Bm

j
)
≤ µ

(
∪∞

j=1∂B(0,ri)
)
+

+
∞

∑
m=1

µ
(
Em \∪N

j=1Bm
j
)

= 0 ,N ≤ ∞. ■

If some Em is empty, you could let your balls be the empty set.

You don’t need to assume the balls are closed. In fact, the balls can be open, closed
or anything in between and the same conclusion can be drawn provided you change the
definition of a Vitali cover a little. For each point of the set covered, the covering includes
all balls centered at that point having radius sufficiently small. In case that µ (C (x,r)) = 0
for all x,r where C (x,r)≡ {y : ∥y−x∥= r} , no modification is necessary. This includes
the case of Lebesgue measure. However, in the general case, consider the following modi-
fication of the notion of a Vitali cover.

Definition 9.12.4 Suppose F is a collection of balls which cover E in the sense
that for all ε > 0 there are uncountably many balls of F centered at x having radius less
than ε .

Corollary 9.12.5 Let 1 or 2 along with the regularity conditions 3 and 4. Suppose F
is a collection of balls which cover E in the sense of Definition 9.12.4. Then there exists a
sequence of disjoint balls, {Bi} ⊆F such that µ

(
E \∪N

j=1B j

)
= 0 for N ≤ ∞.

Proof: Let x ∈ E. Thus x is the center of arbitrarily small balls from F . Since µ

is finite on compact sets, only countably many can fail to have µ (∂B(x,r)) = 0. Leave
the balls out which have µ (∂B(x,r)) > 0. Let F ′ denote the closures of the balls of F ′.
Thus, for these balls, µ (∂B(x,r)) = 0. Since for each x ∈ E there are only countably
many exceptions, F ′ is still a Vitali cover of E. Therefore, by Corollary 9.12.3 there is a
disjoint sequence of these balls of F ′,

{
Bi
}∞

i=1 for which µ

(
E \∪N

j=1B j

)
= 0. However,

since their boundaries have µ measure zero, it follows µ

(
E \∪N

j=1B j

)
= 0, N ≤ ∞. ■

9.13 Differentiation of Increasing Functions
As a spectacular application of the covering theorem, is the famous theorem that an increas-
ing function has a derivative a.e. Here the a.e. refers to Lebesgue measure, the Stieltjes
measure from the increasing function F (x) = x.

Definition 9.13.1 The Dini derivates are as follows. In these formulas, f is a real
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valued function defined on R.

D+ f (x) ≡ lim
r→0+

(
sup

0<u≤r

f (x+u)− f (x)
u

)
≡ lim sup

u→0+

f (x+u)− f (x)
u

,

D+ f (x) ≡ lim
r→0+

(
inf

0<u≤r

f (x+u)− f (x)
u

)
≡ lim inf

u→0+

f (x+u)− f (x)
u

,

D− f (x) ≡ lim
r→0+

(
sup

0<u≤r

f (x)− f (x−u)
u

)
≡ lim sup

u→0+

f (x)− f (x−u)
u

,

D− f (x) ≡ lim
r→0+

(
inf

0<u≤r

f (x)− f (x−u)
u

)
≡ lim inf

u→0+

f (x)− f (x−u)
u

.

Lemma 9.13.2 The function f : R→ R has a derivative if and only if all the Dini
derivates are equal.

Proof: If D+ f (x) = D+ f (x) , then if u is small enough, let yn be a decreasing sequence
converging to x. Then

0 = D+ f (x)−D+ f (x)≥ lim sup
n→∞

f (yn)− f (x)
yn− x

− lim inf
n→∞

f (yn)− f (x)
yn− x

and so the limit of the difference quotient exists for any such {yn} . Thus the derivative
from the right exists at x. Therefore, D+ f (x) > D+ f (x) if and only if there is no right
derivative. Similarly D− f (x) > D− f (x) if and only if there is no derivative from the left
at x. Also, there is a derivative if and only if there is a derivative from the left, right and
the two are equal. This happens when D+ f (x) = D− f (x) = D− f (x) = D+ f (x) . Thus this
happens if and only if all Dini derivates are equal. ■

The Lebesgue measure of single points is 0 and so we do not need to worry about
whether the intervals are closed in using Corollary 9.12.3.

Let ∆ f (I) = f (b)− f (x) or f (x)− f (a) if I is an interval having end points a < b
with x the midpoint. Now suppose

{
J j
}

are disjoint intervals contained in I. Then, since
f is increasing, ∆ f (I) ≥ ∑ j ∆ f (J j). In this notation, the above lemma implies that if
D− f (x) > b or D+ f (x) > b, then for each ε > 0 there is an interval J of length less than
ε which is centered at x and ∆ f (J)

(1/2)m(J) > b where m(J) is the Lebesgue measure of J which
is the length of J. If either D− f (x) or D+ f (x)< a, the above lemma implies that for each
ε > 0 there exists I centered at x with |I|< ε and ∆ f (I)

(1/2)m(I) < a. For example, if D− f (x)< a,
there exists a sequence yn ↑ x with

f (yn)− f (x)
yn− x

=
f (x)− f (yn)

x− yn
< a

so let In be the interval centered at x which has left end point yn.
Note that the set of jumps J of an increasing function must be countable because these

jumps determine disjoint open intervals of the form ( f (x−) , f (x+)) for x ∈ J and each
must contain a rational number of which, there are only countably many.

Lemma 9.13.3 An increasing function f is Borel measurable and its derivates are Borel
measurable functions.
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Proof: The set of jumps J is countable so it is a Borel set of measure zero, an Fσ set.
Since f is increasing, its only points of discontinuity are points where it has a jump. Hence
it is continuous off this set J. f−1 ([c,∞)) is an interval of the form [d,∞) or (d,∞). Thus
f is Borel measurable. Consider D+ f for x /∈ J. Let gr (x)≡ sup0<u≤r

f (x+u)− f (x)
u . Thus it

is the supremum of functions continuous on JC. Hence if x ∈ g−1
r (c,∞) ,c≥ 0, and x /∈ JC,

f (x+u)− f (x)
u > c for some 0 < u≤ r. It follows that, since f is continuous at x, if x̂ is close

enough to x, it is also true that f (x̂+u)− f (x̂)
u > c. Thus if x∈ g−1

r (c,∞)∩JC, then for some δ x

small enough, (x−δ x,x+δ x)⊆ g−1
r (c,∞). Hence, g−1

r (c,∞)∩JC is the intersection of an
open set, the union of the intervals (x−δ x,x+δ x) for x ∈ g−1

r (c,∞)∩ JC, with JCa Borel
set. It follows that gr is decreasing in r and is measurable because, since J is countable,
[gr > c] is the union of a countable set with a Borel set. Thus for all x,

D+ f (x) = lim
r→0+

(
sup

0<u≤r

f (x+u)− f (x)
u

)
= lim

r→0+
(gr (x)) = lim

rn→0
grn (x)

where rn is a decreasing sequence converging to 0. It follows that x→ D+ f (x) is Borel
measurable as claimed because it is the limit of Borel measurable functions. Similar rea-
soning shows that the other derivates are measurable also. ■

Theorem 9.13.4 Let f : R→ R be increasing. Then f ′ (x) exists for all x off a set
of measure zero.

Proof: Let Nab for 0 < a < b denote either{
x : D+ f (x)> b > a > D+ f (x)

}
,
{

x : D− f (x)> b > a > D− f (x)
}
,

or {
x : D− f (x)> b > a > D+ f (x)

}
,
{

x : D+ f (x)> b > a > D− f (x)
}

From the above lemma, Nab is measurable. Assume that Nab is bounded and let V be open
with V ⊇ Nab, m(Nab)+ ε > m(V ) . By Corollary 9.12.3 and the above discussion, there
are open, disjoint intervals {In} , each centered at a point of Nab such that

2∆ f (In)

m(In)
< a, m(Nab) = m(Nab∩∪iIi) = ∑

i
m(Nab∩ Ii)

Now do for Nab∩ Ii what was just done for Nab and get disjoint intervals J j
i contained in Ii

with
2∆ f

(
J j

i

)
m
(

J j
i

) > b, m(Nab∩ Ii) = ∑
j

m
(

Nab∩ Ii∩ J j
i

)
Then

a(m(Nab)+ ε)> am(V )≥ a∑
i

m(Ii)> ∑
i

2∆ f (Ii)≥∑
i

∑
j

2∆ f
(

J j
i

)
≥ b∑

i
∑

j
m
(

J j
i

)
≥ b∑

i
∑

j
m
(

J j
i ∩Nab

)
= b∑

i
m(Nab∩ Ii) = bm(Nab)

Since ε is arbitrary and a < b, this shows m(Nab) = 0. If Nab is not bounded, apply the
above to Nab∩ (−r,r) and conclude this has measure 0. Hence so does Nab.
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The countable union of Nab for a,b positive rational and Nab defined in any of the above
ways is an exceptional set off which D+ f (x) = D+ f (x) ≥ D− f (x) ≥ D− f (x) ≥ D+ f (x)
and so these are all equal. This shows that off a set of measure zero, the function has a
derivative a.e. ■

9.14 Exercises
1. Suppose you have (X ,F ,µ) where F ⊇ B (X) and also µ (B(x0,r)) < ∞ for all

r > 0. Let S (x0,r)≡ {x ∈ X : d (x,x0) = r} . Show that

{r > 0 : µ (S (x0,r))> 0}

cannot be uncountable. Explain why there exists a strictly increasing sequence rn→
∞ such that µ (x : d (x,x0) = rn) = 0. In other words, the skin of the ball has measure
zero except for possibly countably many values of the radius r.

2. Lebesgue measure was discussed. Recall that m((a,b)) = b−a and it is defined on
a σ algebra which contains the Borel sets, more generally on P (R). Also recall
that m is translation invariant. Let x ∼ y if and only if x− y ∈ Q. Show this is an
equivalence relation. Now let W be a set of positive measure which is contained in
(0,1). For x ∈W, let [x] denote those y ∈W such that x ∼ y. Thus the equivalence
classes partition W . Use axiom of choice to obtain a set S⊆W such that S consists of
exactly one element from each equivalence class. Let T denote the rational numbers
in [−1,1]. Consider T+ S ⊆ [−1,2]. Explain why T+ S ⊇W . For T ≡

{
r j
}
,

explain why the sets
{

r j +S
}

j are disjoint. Now suppose S is measurable. Then
show that you have a contradiction if m(S) = 0 since m(W ) > 0 and you also have
a contradiction if m(S) > 0 because T+ S consists of countably many disjoint sets.
Explain why S cannot be measurable. Thus there exists T ⊆ R such that m(T ) <
m(T ∩S)+m

(
T ∩SC

)
. Is there an open interval (a,b) such that if T = (a,b) , then

the above inequality holds?

3. Consider the following nested sequence of compact sets, {Pn}.Let P1 = [0,1], P2 =[
0, 1

3

]
∪
[ 2

3 ,1
]
, etc. To go from Pn to Pn+1, delete the open interval which is the

middle third of each closed interval in Pn. Let P = ∩∞
n=1Pn. By the finite intersection

property of compact sets, P ̸= /0. Show m(P) = 0. If you feel ambitious also show
there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus, although P has measure zero, it has the same number of points in it as
[0,1] in the sense that there is a one to one and onto mapping from one to the other.
Hint: There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the topological properties of the Cantor set rather than some
silly representation in terms of sums of powers of two and three. All you need to do
is use the Schroder Bernstein theorem and show there is an onto map from the Cantor
set to [0,1]. If you do this right and remember the theorems about characterizations
of compact metric spaces, Proposition 3.5.8 on Page 78, you may get a pretty good
idea why every compact metric space is the continuous image of the Cantor set.

4. Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of
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these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor set of
Problem 3. This function is called the Cantor function.It is a very important example
to remember. Note it has derivative equal to zero a.e. and yet it succeeds in climbing
from 0 to 1. Explain why this interesting function cannot be recovered by integrating
its derivative. (It is not absolutely continuous, explained later.) Hint: This isn’t
too hard if you focus on getting a careful estimate on the difference between two
successive functions in the list considering only a typical small interval in which the
change takes place. The above picture should be helpful.

5. ↑ This problem gives a very interesting example found in the book by McShane [40].
Let g(x) = x+ f (x) where f is the strange function of Problem 4. Let P be the Cantor
set of Problem 3. Let [0,1] \P = ∪∞

j=1I j where I j is open and I j ∩ Ik = /0 if j ̸= k.
These intervals are the connected components of the complement of the Cantor set.
Show m(g(I j)) = m(I j) so m(g(∪∞

j=1I j)) = ∑
∞
j=1 m(g(I j)) = ∑

∞
j=1 m(I j) = 1. Thus

m(g(P)) = 1 because g([0,1]) = [0,2]. By Problem 2 there exists a set, A ⊆ g(P)
which is non measurable. Define φ(x) =XA(g(x)). Thus φ(x) = 0 unless x∈ P. Tell
why φ is measurable. (Recall m(P) = 0 and Lebesgue measure is complete.) Now
show that XA(y) = φ(g−1(y)) for y ∈ [0,2]. Tell why g is strictly increasing and
g−1 is continuous but φ ◦g−1 is not measurable. (This is an example of measurable
◦ continuous ̸= measurable.) Show there exist Lebesgue measurable sets which are
not Borel measurable. Hint: The function, φ is Lebesgue measurable. Now recall
that Borel ◦ measurable = measurable.

6. Show that every countable set of real numbers is of Lebesgue measure zero.

7. Review the Cantor set in Problem 12 on Page 176. You deleted middle third open
intervals. Show that you can take out open intervals in the middle which are not
necessarily middle thirds, and end up with a set C which has Lebesgue measure
equal to 1− ε . Also show if you can that there exists a continuous and one to one
map f : C→ J where J is the usual Cantor set of Problem 12 which also has measure
0.

8. Recall that every bounded variation function is the difference of two increasing func-
tions. Show that every bounded variation function has a derivative a.e. For a dis-
cussion of these, see Definition 11.15.1 on Page 348 below if you have not seen it
already.

9. Suppose you have a π system K of sets of Ω and suppose G ⊇K and that G is
closed with respect to complements and that whenever {Fk} is a decreasing sequence
of sets of G it follows that ∩kFk ∈ G . Show that then G contains σ (K ). This is an
alternative formulation of Dynkin’s lemma. It was shown after the Dynkin lemma
that closure with respect to countable intersections is equivalent.
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10. For x ∈Rp to be in ∏
p
i=1 Ai, it means that the ith component of x, xi is in Ai for each

i. Now for ∏
p
i=1 (ai,bi)≡ R, let V (R) = ∏

p
i=1 (bi−ai) . Next, for A ∈P (Rp) let

µ (A)≡ inf

{
∑
k

V
(

Rk
)

: A⊆ ∪kRk

}
This is just like one dimensional Lebesgue measure except that instead of open in-
tervals, we are using open boxes Rk. Show the following.

(a) µ is an outer measure.
(b) µ

(
∏

p
i=1 [ai,bi]

)
= ∏

p
i=1 (bi−ai) = µ

(
∏

p
i=1 (ai,bi)

)
.

(c) If dist(A,B)> 0, then µ (A)+µ (B) = µ (A∪B) so B (Rp)⊆F the set of sets
measurable with respect to this outer measure µ .

This is Lebesgue measure on Rp. Hint: Suppose for some j,b j−a j < ε. Show that
µ
(
∏

p
i=1 (ai,bi)

)
≤ ε ∏i ̸= j (bi−ai). Now use this to show that if you have a covering

by finitely many open boxes, such that the sum of their volumes is less than some
number, you can replace with a covering of open boxes which also has the sum of
their volumes less than that number but which has each box with sides less than δ .
To do this, you might consider replacing each box in the covering with 2mp open
boxes obtained by bisecting each side m times where m is small enough that each
little box has sides smaller than δ/2 in each of the finitely many boxes in the cover
and then fatten each of these just a little to cover up what got left out and retain the
sum of the volumes of the little boxes to still be less than the number you had.

11. ↑Show that Lebesgue measure defined in the above problem is both inner and outer
regular and is translation invariant.

12. Let (Ω,F ,µ) be a measure space and let s(ω) = ∑
n
i=0 ciXEi (ω) where the Ei are

distinct measurable sets but the ci might not be. Thus the ci are the finitely many
values of s. Say each ci ≥ 0 and c0 = 0. Define

∫
sdµ as ∑i ciµ (Ei). Show that this is

well defined and that if you have s(ω) = ∑
n
i=1 ciXEi (ω) , t (ω) = ∑

m
j=1 d jXFj (ω) ,

then for a,b nonnegative numbers, as(ω)+ bt (ω) can be written also in this form
and that

∫
(as+bt)dµ = a

∫
sdµ + b

∫
tdµ . Hint: s(ω) = ∑i ∑ j ciXEi∩Fj (ω) =

∑ j ∑i ciXEi∩Fj (ω) and (as+bt)(ω) = ∑ j ∑i (aci +bd j)XEi∩Fj (ω).

13. ↑Having defined the integral of nonnegative simple functions in the above problem,
letting f be nonnegative and measurable. Define∫

f dµ ≡ sup
{∫

sdµ : 0≤ s≤ f ,s simple
}
.

Show that if fn is nonnegative and measurable and n→ fn (ω) is increasing, show
that for f (ω) = limn→∞ fn (ω) , it follows that

∫
f dµ = limn→∞

∫
fndµ . Hint: Show∫

fndµ is increasing to something α ≤ ∞. Explain why
∫

f dµ ≥ α. Now pick a
nonnegative simple function s ≤ f . For r ∈ (0,1) , [ fn > rs] ≡ En is increasing in n
and ∪nEn = Ω. Tell why

∫
fndµ ≥

∫
XEn fndµ ≥ r

∫
sdµ . Let n→ ∞ and show that

α ≥ r
∫

sdµ . Now explain why α ≥ r
∫

f dµ . Since r is arbitrary, α ≥
∫

f dµ ≥ α .

14. ↑Show that if f ,g are nonnegative and measurable and a,b≥ 0, then∫
(a f +bg)dµ = a

∫
f dµ +b

∫
gdµ
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9.15 Multifunctions and Their Measurability
This is an introduction to the idea of measurable multifunctions. This is a very important
topic which has surprising usefulness in nonlinear analysis and other areas and not enough
attention is payed to it. As an application, I will give a proof of Kuratowski’s theorem and
also an interesting fixed point result in which the fixed point is a measurable function of ω

in a measure space. One of the main references for this material is the book Papageorgiu
and Hu [31] where you can find more of this kind of thing.

9.15.1 The General Case
Let X be a separable complete metric space and let (Ω,F ) be a set and a σ algebra of
subsets of Ω. A multifunction, is a map from Ω to the nonempty subsets of X . Thus Γ is a
multifunction if for each ω, Γ(ω) ̸= /0. For more on the theorems presented in this section,
see [31].

Definition 9.15.1 Define Γ− (S)≡ {ω ∈Ω : Γ(ω)∩S ̸= /0} . When

Γ
− (U) ∈F

for all U open, we say that Γ is measurable.

More can be said than what follows, but the following is the essential idea for a mea-
surable multifunction.

Theorem 9.15.2 The following are equivalent for any measurable space consisting
only of a set Ω and a σ algebra F . Here nothing is known about Γ(ω) other than that is
a nonempty set.

1. For all U open in X ,Γ− (U) ∈F where Γ− (U)≡ {ω : Γ(ω)∩U ̸= /0}

2. There exists a sequence, {σn} of measurable functions satisfying σn (ω) ∈ Γ(ω)
such that for all ω ∈ Ω,Γ(ω) = {σn (ω) : n ∈ N}. These functions are called mea-
surable selections.

Proof: First 1.) ⇒ 2.). A measurable selection will be obtained in Γ(ω). Let D ≡
{xn}∞

n=1 be a countable dense subset of X . For ω ∈ Ω, let ψ1 (ω) = xn where n is the
smallest integer such that Γ(ω)∩ B(xn,1) ̸= /0. Therefore, ψ1 (ω) has countably many
values, xn1 ,xn2 , · · · where n1 < n2 < · · · . Now the set on which ψ1 has the value xn is as
follows: {ω : ψ1 = xn}=

{ω : Γ(ω)∩B(xn,1) ̸= /0}∩ [Ω\∪k<n {ω : Γ(ω)∩B(xk,1) ̸= /0}] ∈F .

Thus ψ1 is measurable and dist(ψ1 (ω) ,Γ(ω)) < 1. Let Ωn ≡ {ω ∈Ω : ψ1 (ω) = xn} .
Then Ωn ∈F and Ωn ∩Ωm = /0 for n ̸= m and ∪∞

n=1Ωn = Ω because if ω is given, Γ(ω)
does intersect some B(xn,1) . Let

Dn ≡ {xk ∈ D : xk ∈ B(xn,1)} .

Now for each n, and ω ∈Ωn, let ψ2 (ω) = xk where k is the smallest index such that xk ∈Dn
and B

(
xk,

1
2

)
∩Γ(ω) ̸= /0. Thus

dist(ψ2 (ω) ,Γ(ω))<
1
2
, d (ψ2 (ω) ,ψ1 (ω))< 1. (9.25)
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This defines ψ2 (ω) on Ωn and so it defines ψ2 on Ω satisfying 9.25. Continue this way,
obtaining ψk a measurable function such that

dist(ψk (ω) ,Γ(ω))<
1

2k−1 , d
(
ψk+1 (ω) ,ψk (ω)

)
<

1
2k−2 .

Then for each ω,{ψk (ω)} is a Cauchy sequence of measurable functions converging to
a point, σ (ω) ∈ Γ(ω). This has shown that if Γ is measurable, there exists a measurable
selection, σ (ω) ∈ Γ(ω). Of course, if Γ(ω) is closed, then σ (ω) ∈ Γ(ω). Note that this
had nothing to do with any measure.

It remains to show that there exists a sequence of these measurable selections σn such
that the conclusion of 2.) holds. To do this define for a single ω ∈Ω

Γni (ω)≡
{

Γ(ω)∩B
(
xn,2−i

)
if Γ(ω)∩B

(
xn,2−i

)
̸= /0

Γ(ω) otherwise when there is empty intersection .

The following picture illustrates Γni(ω) when ω is such that there is nonempty intersection.
Also, given x ∈ Γ(ω), and i, there is xn from the countable dense set such that the situation
of the picture occurs.

•xn

•x ∈ Γ(ω)Γ(ω)

Γni(ω)

B(xn,2−i)

Is Γni measurable? If so, then from the above, it has a measurable selection σni and
the set of these σni must have the property that {σni (ω)}n,i is dense in Γ(ω) for each ω .

Let U be open. Then

{ω : Γni (ω)∩U ̸= /0}=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[{

ω : Γ(ω)∩B
(
xn,2−i)= /0

}
∩{ω : Γ(ω)∩U ̸= /0}

]
=
{

ω : Γ(ω)∩B
(
xn,2−i)∩U ̸= /0

}
∪[(

Ω\
{

ω : Γ(ω)∩B
(
xn,2−i) ̸= /0

})
∩{ω : Γ(ω)∩U ̸= /0}

]
,

a measurable set. Thus Γni is measurable as hoped.
By what was just shown, there exists σni, a measurable function such that σni (ω) ∈

Γni (ω) ⊆ Γ(ω) for all ω ∈ Ω. If x ∈ Γ(ω), then x ∈ B
(

xn,2−(i+1)
)

whenever xn is close

enough to x. Thus both x,σn(i+1) (ω) are in B
(
xn,2−(i+1)

)
and so

∣∣σn(i+1) (ω)− x
∣∣< 2−i.

It follows that condition 2.) holds with the countable dense subset of Γ(ω) being the
{σni (ω)}. Note that this had nothing to do with a measure.

Now consider why 2.)⇒ 1.). We have {σn (ω)} ⊆ Γ(ω) and σn is measurable and
∪nσn (ω) equals Γ(ω). Why is Γ a measurable multifunction? Let U be an open set

Γ
− (U) ≡ {ω : Γ(ω)∩U ̸= /0}=

{
ω : Γ(ω)∩U ̸= /0

}
= ∪nσ

−1
n (U) ∈F ■
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For much more on multi-functions, you should see the book by Hu and Papageorgiou.
[31] The above proof follows the presentation in this book but there is more to be seen there
where complete measures are included in the theory and an equivalence is shown between
strong measurability, about to be discussed, and measurability without an assumption that
the multifunction has compact values.

9.15.2 A Special Case When Γ(ω) Compact

Measurability is a statement that Γ− (U) ∈F whenever U is open.

Definition 9.15.3 A multifunction Γ is strongly measurable if Γ− (F) ∈F for all
F closed.

Observation 9.15.4 If Γ is strongly measurable, then it is measurable because if you
have U open in a metric space, it is the countable union of closed sets Fn. Hence Γ− (U) =
∪kΓ− (Fk) ∈F .

Now suppose Γ(ω) is compact for every ω and that Γ− (U) ∈ F for every U open.
Then let F be a closed set and let {Un} be a decreasing sequence of open sets whose
intersection equals F such that also, for all n, Un ⊇Un+1. Then

Γ(ω)∩F = ∩nΓ(ω)∩Un = ∩nΓ(ω)∩Un

Now because of compactness, the set on the left is nonempty if and only if each set Γ(ω)∩
Un on the right is also nonempty. Thus Γ− (F) = ∩nΓ− (Un) ∈F . It follows that in this
special case, the two conditions, measurability and strong measurability are equivalent.
Note that there is no condition on measures or completeness or any such thing. This proves
the following proposition.

Proposition 9.15.5 Let X be a Polish space and let Γ : X → P (X) have compact
values. Then Γ is measurable if and only if it is strongly measurable, the latter being the
statement that Γ− (C) is measurable whenever C is closed.

Recall how if a function f is measurable, then f−1 (Borel set) ∈F . Something like
this happens in case Γ is strongly measurable. Let Γ be strongly measurable. Let G be the
sets G such that Γ− (G) and Γ−

(
GC
)

are both in F . Then clearly G is closed with respect

to complements. If G ∈ G is GC? Is Γ−
(
GC
)

and Γ−
((

GC
)C) in F ? This is just the

definition of what it means to be in G . Also if you have {Gi} ⊆ G , Then

Γ
− (∪iGi) = ∪iΓ

− (Gi) ∈F

and so G is closed with respect to countable unions. Hence G must contain the Borel sets
because it is a σ algebra and the closed sets are in G . Thus Γ− (G) ∈F whenever G is
Borel.

9.15.3 Kuratowski’s Theorem
Also there is a useful corollary from Theorem 9.15.2 and Proposition 9.15.5.



274 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

Corollary 9.15.6 Let K (ω) be a compact subset of a separable metric space X and
suppose

{
u j (ω)

}∞

j=1 ⊆ K (ω) with each ω → u j (ω) measurable into X. Then there ex-
ists u(ω) ∈ K (ω) such that ω → u(ω) is measurable into X and a subsequence n(ω)
depending on ω such that limn(ω)→∞ un(ω) (ω) = u(ω).

Proof: Define Γn (ω) = ∪k≥nuk (ω).This is a nonempty compact subset of K (ω) ⊆
X . I claim that ω → Γn (ω) is a measurable multifunction into X . It is necessary to
show that Γ−n (O) defined as {ω : Γn (ω)∩O ̸= /0} is measurable whenever O is open in
X . For ω ∈ Γ−n (O) it means that some uk (ω) ∈ O,k ≥ n. Thus Γ−n (O) = ∪k≥nu−1

k (O) and
this is measurable by the assumption that each uk is. Since Γ−n (ω) is compact, it is also
strongly measurable by Proposition 9.15.5, meaning that Γ− (H) is measurable whenever
H is closed. Now, let Γ(ω) be defined as Γ(ω)≡∩nΓn (ω) and then for H closed, Γ− (H)
is nonempty if and only if Γ−n (H) is nonempty for each n and Γ− (H) = ∩nΓ−n (H) and
each set in the intersection is measurable, so this shows that ω → Γ(ω) is also (strongly)
measurable. Therefore, it has a measurable selection u(ω). It follows from the definition
of Γ(ω) that there exists a subsequence n(ω) such that u(ω) = limn(ω)→∞ un(ω) (ω) ■

This corollary makes possible a fairly short proof of the very amazing and enormously
significant Kuratowski theorem [35] which gives measurability of maximums of Carath-
eodory functions.

Definition 9.15.7 The functions f : Ω×E→R in which f (·,ω) is continuous and
ω → f (x,ω) is measurable are called Caratheodory functions.

Now here is the Kuratowski theorem.

Theorem 9.15.8 Let E be a compact metric space and let (Ω,F ) be a measure
space. Suppose ψ : E ×Ω → R has the property that x → ψ (x,ω) is continuous and
ω→ ψ (x,ω) is measurable. Then there exists a measurable function f having values in E
such that ψ ( f (ω) ,ω) = maxx∈E ψ (x,ω) . Furthermore, ω→ψ ( f (ω) ,ω) is measurable.

Proof: Let C = {ei}∞

i=1 be a countable dense subset of E. For example, take the union
of 1/2n nets for all n. Let Cn ≡ {e1, ...,en} . Let ω → fn (ω) be measurable and satisfy
ψ ( fn (ω) ,ω) = supx∈Cn

ψ (x,ω) . This is easily done as follows. Let

Bk ≡
{

ω : ψ (ek,ω)≥ ψ (e j,ω) for all j ̸= k
}
.

Then let A1 ≡ B1 and if A1, ...,Ak have been chosen, let Ak+1 ≡ Bk+1 \
(
∪k

j=1Bk

)
. Thus

each Ak is measurable and you let fn (ω) ≡ ek for ω ∈ Ak. Using Corollary 9.15.6, there
is measurable f (ω) and a subsequence n(ω) ≥ n such that fn(ω) (ω)→ f (ω) . Then by
continuity, ψ ( f (ω) ,ω) = limn(ω)→∞ ψ

(
fn(ω) (ω) ,ω

)
and this is an increasing sequence

in this limit. Hence ψ ( f (ω) ,ω) ≥ supx∈Cn
ψ (x,ω) for each n and so ψ ( f (ω) ,ω) ≥

supx∈C ψ (x,ω) = supx∈E ψ (x,ω). Since f is measurable, it is the limit of a sequence
{gn (ω)} such that gn has finitely many values occuring on measurable sets, Theorem 9.1.7.
Hence, by continuity, ψ ( f (ω) ,ω) = limn→∞ ψ (gn (ω) ,ω) and since ω → ψ (gn (ω) ,ω)
is measurable, so is ψ ( f (ω) ,ω). ■

One can generalize fairly easily. It is the same argument but carrying around more ω .

Theorem 9.15.9 Let E (ω) be a compact metric space in a separable metric space
(X ,d) and suppose that ω → E (ω) is a measurable multifunction where (Ω,F ) be a
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measure space. Suppose ψω : E (ω)×Ω → R has the property that x → ψω (x,ω) is
continuous and ω → ψω (x(ω) ,ω) is measurable if x(ω) ∈ E (ω) and ω → x(ω) is mea-
surable (x(ω) a measurable selection of E (ω)). Then there exists a measurable func-
tion f with f (ω) ∈ E (ω) such that ψω ( f (ω) ,ω) = maxx∈E(ω) ψω (x,ω) . Furthermore,
ω → ψω ( f (ω) ,ω) is measurable.

Proof: Let C (ω) = {ei (ω)}∞

i=1 be a countable dense subset of E (ω) with each ei (ω)
measurable. This countable dense subset exists by Theorem 9.15.2. Let

Cn (ω)≡ {e1 (ω) , ...,en (ω)} .

Let ω → fn (ω) be measurable and satisfy

ψω ( fn (ω) ,ω) = sup
x∈Cn(ω)

ψ (x,ω) .

This is easily done as follows. Let

Bk ≡
{

ω : ψω (ek (ω) ,ω)≥ ψω (e j (ω) ,ω) for all j ̸= k
}
.

Then let A1 ≡ B1 and if A1, ...,Ak have been chosen, let Ak+1 ≡ Bk+1 \
(
∪k

j=1Bk

)
. Thus

each Ak is measurable, and you let fn (ω) ≡ ek (ω) for ω ∈ Ak, so fn (ω) ∈ E (ω) and
fn is measurable. Using Corollary 9.15.6, there is measurable f (ω) and a subsequence
n(ω)≥ n such that fn(ω) (ω)→ f (ω) . Then by continuity,

ψω ( f (ω) ,ω) = lim
n(ω)→∞

ψω

(
fn(ω) (ω) ,ω

)
and this is an increasing sequence in this limit. Hence

ψω ( f (ω) ,ω)≥ sup
x∈Cn(ω)

ψω (x,ω)

for each n and so

ψω ( f (ω) ,ω)≥ sup
x∈C(ω)

ψω (x,ω) = sup
x∈E(ω)

ψω (x,ω) .

Since f is measurable, it follows by assumption, that ω→ψω ( f (ω) ,ω) is measurable. ■
Note the following: If you have the simpler situation where ψ (x,ω) defined on X×Ω

with x→ ψ (x,ω) continuous and ω → ψ (x,ω) measurable but E (ω) a compact mea-
surable multifunction as above, then the conditions will hold because you would have
ω→ψ (x(ω) ,ω) is measurable if x(ω) is. Indeed, x(ω) is the limit of a sequence {xn (ω)}
such that xn has finitely many values on measurable sets, Theorem 9.1.7. Hence, by conti-
nuity, ψ (x(ω) ,ω) = limn→∞ ψ (xn (ω) ,ω) and since ω→ψ (xn (ω) ,ω) is measurable, so
is ψ (x(ω) ,ω).

9.15.4 Measurability of Fixed Points
As an interesting application is a consideration of the existence of measurable Brouwer
fixed points. This is really quite amazing since Brouwer fixed points are not obtained as the
limit of a sequence of iterates although the above Sperner’s lemma algorithm provides an
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algorithm for finding one. This is a very nice application of the marvelous Kuratowski the-
orem. It is possible to get this result directly from Corollary 9.15.6 applied to the Sperner’s
lemma method of proving the Brouwer fixed point theorem. We sent in a paper once which
did this and we thought the result was amazing. However, I had forgotten about Kura-
towski’s theorem which makes this very easy. Fortunately, the referee knew this theorem.

Theorem 9.15.10 Let K be a closed convex bounded subset of Rp. Let

x→ f (x,ω) : K→ K

be continuous for each ω and ω→ f (x,ω) is measurable, meaning inverse images of sets
open in K are in F where (Ω,F ) is a measurable space. Then there exists x(ω) ∈ K such
that ω → x(ω) is measurable and f (x(ω) ,ω) = x(ω).

Proof: Simply consider E = K and ψ (x,ω) ≡ −|x−f (x,ω)| . It has a maximum
x(ω) for each ω thanks to continuity of f (·,ω). Thanks to the Brouwer fixed point theo-
rem, this x(ω) must be a fixed point. By the above Kuratowski theorem, one of these x(ω)
is measurable. Obviously, by continuity of f (·,ω), ω → f (x(ω) ,ω) is measurable. ■

If desired, you can extend this to the case where K (ω) is a measurable multifunction.

9.15.5 Other Measurability Considerations
Here are some other general considerations about measurable multifunctions. The first has
to do with getting a new measurable multifunction from old ones and the second has to do
with measurability of ε nets. These are technical results which are sometimes useful, for
example, if you want to generalize to the Schauder fixed point theorem.

Lemma 9.15.11 Suppose f : K (ω)×Ω→ X ,K ⊆ X . Here X is Polish space, separable
complete metric space, and (Ω,F ) is a measurable space. Also ω→K (ω) is a measurable
multifunction as in Theorem 9.15.2. Also suppose

1. ω → f (x,ω) is measurable and x→ f (x,ω) is continuous.

2. K (ω)≡ f (K (ω) ,ω).

Then you can conclude that ω →K (ω) is a measurable multifunction. If K (ω) is
compact, then it is also strongly measurable.

Proof: Let {xn (ω)} be a countable dense subset of K (ω) , each xn measurable. Then
if U is open,

{ω : K (ω)∩U ̸= /0}= ∪∞
n=1 f (xn (·) , ·)−1 (U) (9.26)

and each of the sets in the union is measurable. The latter claim follows from the continuity
of f (·,ω) . If x(ω) is measurable, then we can express it as the limit of functions sn which
have finitely many values on measurable sets for which ω → f (sn (ω) ,ω) is clearly mea-
surable. Then f (x(ω) ,ω) is the limit of f (sn (ω) ,ω). The reason for the equality in 9.26
is as follows. It is clear that the right side is contained in the left. Now if K (ω)∩U ̸= /0,
then by definition, f (x,ω)∈U for some x∈K (ω) but then by continuity, f (xn (ω) ,ω)∈U
also for some xn (ω) close to x. Thus the two sets are actually equal. Thus ω →K (ω) is
measurable. If K (ω) has compact values it will be strongly measurable as discussed in
Proposition 9.15.5. ■
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There is also the following general result about the existence of a measurable ε net.
This is formulated in Banach space because it is convenient to add. A Banch space is just
a complete normed vector space. It could also be formulated in Polish space with a little
more difficulty. One just defines things a little differently.

Proposition 9.15.12 Let ω →K (ω) be a measurable multifunction where K (ω) is
a pre compact set. Recall this means its closure is compact. Thus K (ω) must have an
ε net for each ε > 0. Then for each ε > 0, there exists N (ω) and measurable functions
y j, j = 1,2, · · · ,N (ω) , y j (ω) ∈K (ω) , such that ∪N(ω)

j=1 B(y j (ω) ,ε) ⊇K (ω) for each
ω . Also ω → N (ω) is measurable.

Proof: Suppose that ω →K (ω) is a measurable multifunction having compact val-
ues in X a Banach space. Let {σn (ω)} be the measurable selections such that for each
ω,{σn (ω)}∞

n=1 is dense in K (ω). Let y1 (ω) ≡ σ1 (ω) . Now let 2(ω) be the first index
larger than 1 such that

∥∥σ2(ω) (ω)−σ1 (ω)
∥∥> ε

2 . Thus 2(ω) = k on the measurable set{
ω ∈Ω : ∥σ k (ω)−σ1 (ω)∥> ε

2

}
∩
{

ω ∈Ω : ∩k−1
j=1

∥∥σ j (ω)−σ1 (ω)
∥∥≤ ε

2

}
Suppose 1(ω) ,2(ω) , · · · ,(m−1)(ω) have been chosen such that this is a strictly increas-
ing sequence for each ω, each is a measurable function, and for i, j ≤ m−1,∥∥σ i(ω) (ω)−σ j(ω) (ω)

∥∥> ε

2
.

Each ω → σ i(ω) (ω) is measurable since it equals ∑
∞
k=1 X[i(ω)=k] (ω)σ k (ω) . Then m(ω)

will be the first index larger than (m−1)(ω) such that∥∥σm(ω) (ω)−σ j(ω) (ω)
∥∥> ε

2

for all j (ω) < m(ω). Thus ω → m(ω) is also measurable because it equals k on the
measurable set(

∩
{

ω :
∥∥σ k (ω)−σ j(ω) (ω)

∥∥> ε

2
, j ≤ m−1

})
∩{ω : (m−1)(ω)< k}

∩
(
∪
{

ω :
∥∥σ k−1 (ω)−σ j(ω) (ω)

∥∥≤ ε

2
, j ≤ m−1

})
The top line says that it does what is wanted and the second says it is the first after
(m−1)(ω) which does so.

Since K (ω) is a pre compact set, it follows that the above measurable set will be
empty for all m(ω) sufficiently large called N (ω) , also a measurable function, and so the
process ends. Let yi (ω) ≡ σ i(ω) (ω) . Then this gives the desired measurable ε net. The
fact that

∪N(ω)
i=1 B(yi (ω) ,ε)⊇K (ω)

follows because if there exists z ∈K (ω)\
(
∪N(ω)

i=1 B(yi (ω) ,ε)
)
, then B

(
z, ε

2

)
would have

empty intersection with all of the balls B
(
yi (ω) , ε

3

)
and by density of the σ i (ω) in K (ω) ,

there would be some σ l (ω) contained in B
(
z, ε

3

)
for arbitrarily large l and so the process

would not have ended as shown above. ■
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9.16 Exercises
1. Using some form of Kuratowski’s theorem show the following: Let K (ω) be a closed

convex bounded subset of Rn where ω → K (ω) is a measurable multifunction. Let
x→ f (x,ω) : K (ω)→ K (ω) be continuous for each ω and ω → f (x,ω) is mea-
surable, meaning inverse images of sets open in Rn are in F where (Ω,F ) is a
measurable space. Then there exists x(ω) ∈ K (ω) such that ω → x(ω) is measur-
able and f (x(ω) ,ω) = x(ω).

2. If you have K (ω) a closed convex nonempty set in Rn and also ω→ K (ω) is a mea-
surable multifunction, show ω→ PK(ω)x is measurable where PK(ω) is the projection
map which gives the closest point in K (ω). Consider Corollary 6.3.2 on Page 163 or
Theorem 11.6.8 and Problem 10 on Page 152 to see the use of this projection map.
Also you may want to use Theorem 9.15.2 involving the countable dense subset of
K (ω) consisting of measurable functions.

3. Let ω→K (ω) be a measurable multifunction inRp and let K (ω) be convex, closed,
and compact for each ω . Let A(·,ω) : K (ω)→ Rp be continuous and ω→ A(x,ω)
be measurable. Then if ω→y (ω) is measurable, there exists measurable ω→x(ω)
such that for all z ∈ K (ω) ,

(y (ω)−A(x(ω) ,ω) ,z (ω)−x(ω))≤ 0

This is a measurable version of Browder’s lemma, a very important result in nonlin-
ear analysis. Hint: You want to have for each ω ,

PK(ω) (y (ω)−A(x,ω)+x) = x

Use Problem 2 and the measurability of Brouwer fixed points discussed above.

4. In the situation of the above problem, suppose also that lim|x|→∞

(A(x,ω),x)
|x| = ∞

Show that there exists measurable x(ω) such that A(x(ω) ,ω) = y (ω). Hint: Let
xn (ω) be the solution of Problem 3 in which Kn = B(0,n). Show that these are
bounded for each ω . Then use Corollary 9.15.6 to get x(ω) , a suitable limit such
that A(x(ω) ,ω) = y (ω).



Chapter 10

The Abstract Lebesgue Integral
The general Lebesgue integral requires a measure space, (Ω,F ,µ) and, to begin with, a
nonnegative measurable function. I will use Lemma 2.5.3 about interchanging two supre-
mums frequently. Also, I will use the observation that if {an} is an increasing sequence of
points of [0,∞] , then supn an = limn→∞ an which is obvious from the definition of sup.

10.1 Nonnegative Measurable Functions
10.1.1 Riemann Integrals for Decreasing Functions
First of all, the notation [g < f ] means {ω ∈Ω : g(ω)< f (ω)} with other variants of this
notation being similar. Also, the convention, 0 ·∞ = 0 will be used to simplify the presen-
tation whenever it is convenient to do so. The notation a∧b means the minimum of a and
b.

Definition 10.1.1 Let f : [a,b]→ [0,∞] be decreasing. Note that ∞ is a possible
value. Define ∫ b

a
f (λ )dλ ≡ lim

M→∞

∫ b

a
M∧ f (λ )dλ = sup

M

∫ b

a
M∧ f (λ )dλ

where a∧b means the minimum of a and b. Note that for f bounded,

sup
M

∫ b

a
M∧ f (λ )dλ =

∫ b

a
f (λ )dλ

where the integral on the right is the usual Riemann integral because eventually M > f .
For f a nonnegative decreasing function defined on [0,∞),∫

∞

0
f dλ ≡ lim

R→∞

∫ R

0
f dλ = sup

R>1

∫ R

0
f dλ = sup

R
sup
M>0

∫ R

0
f ∧Mdλ

Since decreasing bounded functions are Riemann integrable, the above definition is
well defined. For a discussion of this, see Calculus of One and Many Variables on the web
site or any elementary Calculus text. Now here is an obvious property.

Lemma 10.1.2 Let f be a decreasing nonnegative function defined on an interval [a,b] .
Then if [a,b] =∪m

k=1Ik where Ik ≡ [ak,bk] and the intervals Ik are non overlapping, it follows∫ b

a
f dλ =

m

∑
k=1

∫ bk

ak

f dλ .

Proof: This follows from the computation,∫ b

a
f dλ ≡ lim

M→∞

∫ b

a
f ∧Mdλ = lim

M→∞

m

∑
k=1

∫ bk

ak

f ∧Mdλ =
m

∑
k=1

∫ bk

ak

f dλ

Note both sides could equal +∞. ■
In all considerations below, we assume h is fairly small, certainly much smaller than R.

Thus R−h > 0.

279
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Lemma 10.1.3 Let g be a decreasing nonnegative function defined on an interval [0,R] .
Then ∫ R

0
g∧Mdλ = sup

h>0

m(R,h)

∑
i=1

(g(ih)∧M)h

where m(h,R) ∈ N satisfies R−h < hm(h,R)≤ R.

Proof: Since g∧M is a decreasing bounded function the lower sums converge to the
integral as h→ 0. Thus

∫ R

0
g∧Mdλ = lim

h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h+(g(R)∧M)(R−hm(h,R))

)

Now the last term in the above is no more than Mh and so the above is

lim
h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
= sup

h>0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
.■

10.1.2 The Lebesgue Integral for Nonnegative Functions
Here is the definition of the Lebesgue integral of a function which is measurable and has
values in [0,∞].

Definition 10.1.4 Let (Ω,F , µ) be a measure space and suppose f : Ω→ [0,∞]
is measurable. Then define

∫
f dµ ≡

∫
∞

0 µ ([ f > λ ])dλ which makes sense because λ →
µ ([ f > λ ]) is nonnegative and decreasing.

Note that if f ≤ g, then
∫

f dµ ≤
∫

gdµ because µ ([ f > λ ])≤ µ ([g > λ ]) .
For convenience ∑

0
i=1 ai ≡ 0.

Lemma 10.1.5 In the above definition,
∫

f dµ = suph>0 ∑
∞
i=1 µ ([ f > hi])h

Proof: Let m(h,R) ∈ N satisfy R−h < hm(h,R) ≤ R. Then limR→∞ m(h,R) = ∞ and
so from Lemma 10.1.3,∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ = sup

M
sup

R

∫ R

0
µ ([ f > λ ])∧Mdλ

= sup
M

sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

Hence, switching the order of the sups, this equals

sup
R>0

sup
h>0

sup
M

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h = sup
R>0

sup
h>0

lim
M→∞

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

= sup
h>0

sup
R

m(R,h)

∑
k=1

(µ ([ f > kh]))h = sup
h>0

∞

∑
k=1

(µ ([ f > kh]))h. ■
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10.2 Nonnegative Simple Functions
To begin with, here is a useful lemma.

Lemma 10.2.1 If f (λ ) = 0 for all λ > a, where f is a decreasing nonnegative function,
then

∫
∞

0 f (λ )dλ =
∫ a

0 f (λ )dλ .

Proof: From the definition,∫
∞

0
f (λ )dλ = lim

R→∞

∫ R

0
f (λ )dλ = sup

R>1

∫ R

0
f (λ )dλ = sup

R>1
sup

M

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ R

0
f (λ )∧Mdλ = sup

M
sup
R>1

∫ a

0
f (λ )∧Mdλ

= sup
M

∫ a

0
f (λ )∧Mdλ ≡

∫ a

0
f (λ )dλ . ■

Now the Lebesgue integral for a nonnegative function has been defined, what does it
do to a nonnegative simple function? Recall a nonnegative simple function is one which
has finitely many nonnegative real values which it assumes on measurable sets. Thus a
simple function can be written in the form s(ω) = ∑

n
i=1 ciXEi (ω) where the ci are each

nonnegative, the distinct values of s.

Lemma 10.2.2 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function where the

Ei are distinct but the ai might not be. Thus the values of s are the ai. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (10.1)

Proof: Without loss of generality, assume 0≡ a0 < a1≤ a2≤ ·· · ≤ ap and that µ (Ei)<
∞, i > 0. Here is why. If µ (Ei) = ∞, then letting a ∈ (ai−1,ai) , by Lemma 10.2.1, the left
side is∫ ap

0
µ ([s > λ ])dλ ≥

∫ ai

a0

µ ([s > λ ])dλ

≡ sup
M

∫ ai

0
µ ([s > λ ])∧Mdλ ≥ sup

M
sup

M
Mµ (Ei)ai = ∞

and so both sides of 10.1 are equal to ∞. Thus it can be assumed for each i,µ (Ei) < ∞.
Then it follows from Lemma 10.2.1 and Lemma 10.1.2,∫

∞

0
µ ([s > λ ])dλ =

∫ ap

0
µ ([s > λ ])dλ =

p

∑
k=1

∫ ak

ak−1

µ ([s > λ ])dλ

=
p

∑
k=1

(ak−ak−1)
p

∑
i=k

µ (Ei) =
p

∑
i=1

µ (Ei)
i

∑
k=1

(ak−ak−1) =
p

∑
i=1

aiµ (Ei) ■

Note that this is the same result as in Problem 12 on Page 270 but here there is no question
about the definition of the integral of a simple function being well defined.

Lemma 10.2.3 If a,b≥ 0 and if s and t are nonnegative simple functions, then∫
as+btdµ = a

∫
sdµ +b

∫
tdµ .
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Proof: Let s(ω) = ∑
n
i=1 α iXAi(ω), t(ω) = ∑

m
i=1 β jXB j(ω) where α i are the distinct

values of s and the β j are the distinct values of t. Clearly as+ bt is a nonnegative simple
function because it has finitely many values on measurable sets. In fact, (as+ bt)(ω) =

∑
m
j=1 ∑

n
i=1(aα i + bβ j)XAi∩B j(ω) where the sets Ai ∩B j are disjoint and measurable. By

Lemma 10.2.2,∫
as+btdµ

=
m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai∩B j) =
n

∑
i=1

a
m

∑
j=1

α iµ(Ai∩B j)+b
m

∑
j=1

n

∑
i=1

β jµ(Ai∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j) = a
∫

sdµ +b
∫

tdµ . ■

10.3 The Monotone Convergence Theorem
The following is called the monotone convergence theorem. This theorem and related
convergence theorems are the reason for using the Lebesgue integral. If limn→∞ fn (ω) =
f (ω) and fn is increasing in n, then clearly f is also measurable because

f−1 ((a,∞]) = ∪∞
k=1 f−1

k ((a,∞]) ∈F

For a different approach to this, see Problem 12 on Page 270.

Theorem 10.3.1 (Monotone Convergence theorem) Suppose that the function f has
all values in [0,∞] and suppose { fn} is a sequence of nonnegative measurable functions
having values in [0,∞] and satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·
Then f is measurable and

∫
f dµ = limn→∞

∫
fndµ.

Proof: By Lemma 10.1.5 limn→∞

∫
fndµ = supn

∫
fndµ

= sup
n

sup
h>0

∞

∑
k=1

µ ([ fn > kh])h = sup
h>0

sup
N

sup
n

N

∑
k=1

µ ([ fn > kh])h

= sup
h>0

sup
N

N

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h =
∫

f dµ. ■

Note how it was important to have
∫

∞

0 [ f > λ ]dλ in the definition of the integral and
not [ f ≥ λ ]. You need to have [ fn > kh] ↑ [ f > kh] so µ ([ fn > kh])→ µ ([ f > kh]) . To
illustrate what goes wrong without the Lebesgue integral, consider the following example.

Example 10.3.2 Let {rn} denote the rational numbers in [0,1] and let

fn (t)≡
{

1 if t /∈ {r1, · · · ,rn}
0 otherwise

Then fn (t) ↑ f (t) where f is the function which is one on the rationals and zero on the
irrationals. Each fn is Riemann integrable (why?) but f is not Riemann integrable because
it is everywhere discontinuous. Also, there is a gap between all upper sums and lower
sums. Therefore, you can’t write

∫
f dx = limn→∞

∫
fndx.
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An observation which is typically true related to this type of example is this. If you
can choose your functions, you don’t need the Lebesgue integral. The Riemann Darboux
integral is just fine. It is when you can’t choose your functions and they come to you as
pointwise limits that you really need the superior Lebesgue integral or at least something
more general than the Riemann integral. The Riemann integral is entirely adequate for
evaluating the seemingly endless lists of boring problems found in calculus books. It is
shown later that the two integrals coincide when the Lebesgue integral is taken with respect
to Lebesgue measure and the function being integrated is continuous.

10.4 Other Definitions
To review and summarize the above, if f ≥ 0 is measurable,∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ (10.2)

another way to get the same thing for
∫

f dµ is to take an increasing sequence of non-
negative simple functions, {sn} with sn (ω)→ f (ω) and then by monotone convergence
theorem,

∫
f dµ = limn→∞

∫
sn where if sn (ω) = ∑

m
j=1 ciXEi (ω) ,

∫
sndµ = ∑

m
i=1 ciµ (Ei) .

Similarly this also shows that for such nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.

Here is an equivalent definition of the integral of a nonnegative measurable function. The
fact it is well defined has been discussed above.

Definition 10.4.1 For s a nonnegative simple function,

s(ω) =
n

∑
k=1

ckXEk (ω) ,
∫

s =
n

∑
k=1

ckµ (Ek) .

For f a nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.

10.5 Fatou’s Lemma
The next theorem, known as Fatou’s lemma is another important theorem which justifies
the use of the Lebesgue integral.

Theorem 10.5.1 (Fatou’s lemma) Let fn be a nonnegative measurable function. Let
g(ω) = liminfn→∞ fn(ω). Then g is measurable and

∫
gdµ ≤ liminfn→∞

∫
fndµ . In other

words,
∫
(liminfn→∞ fn)dµ ≤ liminfn→∞

∫
fndµ.

Proof: Let gn(ω) = inf{ fk(ω) : k ≥ n}. Then

g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) =

(
∪∞

k=n f−1
k ([a,∞])C

)C ∈F .

Thus gn is measurable by Lemma 9.1.4. Also g(ω) = limn→∞ gn(ω) so g is measurable
because it is the pointwise limit of measurable functions. Now the functions gn form an
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increasing sequence of nonnegative measurable functions so the monotone convergence
theorem applies. This yields∫

gdµ = lim
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The last inequality holding because
∫

gndµ ≤
∫

fndµ. (Note that it is not known whether
limn→∞

∫
fndµ exists.) ■

10.6 The Integral’s Righteous Algebraic Desires
The monotone convergence theorem shows the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 10.6.1 Let f ,g be nonnegative measurable functions and let a,b be non-
negative numbers. Then a f +bg is measurable and∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (10.3)

Proof: By Theorem 9.1.6 on Page 239 there exist increasing sequences of nonnegative
simple functions, sn→ f and tn→ g. Then a f +bg, being the pointwise limit of the simple
functions asn+btn, is measurable. Now by the monotone convergence theorem and Lemma
10.2.3, ∫

(a f +bg)dµ = lim
n→∞

∫
asn +btndµ = lim

n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ. ■

As long as you are allowing functions to take the value +∞, you cannot consider some-
thing like f +(−g) and so you can’t very well expect a satisfactory statement about the
integral being linear until you restrict yourself to functions which have values in a vector
space. To be linear, a function must be defined on a vector space. This is discussed next.

10.7 The Lebesgue Integral, L1

The functions considered here have values in C, which is a vector space. A function f with
values in C is of the form f = Re f + i Im f where Re f and Im f are real valued functions.
In fact Re f = f+ f

2 , Im f = f− f
2i .

Definition 10.7.1 Let (Ω,S ,µ) be a measure space and suppose f : Ω→C. Then
f is said to be measurable if both Re f and Im f are measurable real valued functions.

Of course there is another definition of measurability which says that inverse images of
open sets are measurable. This is equivalent to this new definition.

Lemma 10.7.2 Let f : Ω→ C. Then f is measurable if and only if Re f , Im f are both
real valued measurable functions. Also if f ,g are complex measurable functions and a,b
are complex scalars, then a f +bg is also measurable.
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Proof: ⇒Suppose first that f is measurable. Recall that C is considered as R2 with
(x,y) being identified with x+ iy. Thus the open sets of C can be obtained with either of

the two equivlanent norms |z| ≡
√
(Rez)2 +(Imz)2 or ∥z∥

∞
= max(Rez, Imz). Therefore,

if f is measurable

Re f−1 (a,b)∩ Im f−1 (c,d) = f−1 ((a,b)+ i(c,d)) ∈F

In particular, you could let (c,d) = R and conclude that Re f is measurable because in
this case, the above reduces to the statement that Re f−1 (a,b) ∈ F . Similarly Im f is
measurable.
⇐ Next, if each of Re f and Im f are measurable, then

f−1 ((a,b)+ i(c,d)) = Re f−1 (a,b)∩ Im f−1 (c,d) ∈F

and so, since every open set is the countable union of sets of the form (a,b)+ i(c,d) , it
follows that f is measurable.

Now consider the last claim. Let h : C×C→ C be given by h(z,w) ≡ az+bw. Then
h is continuous. If f ,g are complex valued measurable functions, consider the complex
valued function, h◦ ( f ,g) : Ω→ C. Then

(h◦ ( f ,g))−1 (open) = ( f ,g)−1 (h−1 (open)
)
= ( f ,g)−1 (open)

Now letting U,V be open in C, ( f ,g)−1 (U×V ) = f−1 (U)∩ g−1 (V ) ∈ F . Since ev-
ery open set in C×C is the countable union of sets of the form U ×V, it follows that
( f ,g)−1 (open) is in F . Thus a f +bg is also complex measurable. ■

As is always the case for complex numbers, |z|2 = (Rez)2 +(Imz)2. Also, for g a real
valued function, one can consider its positive and negative parts defined respectively as

g+ (x)≡ g(x)+ |g(x)|
2

, g− (x) =
|g(x)|−g(x)

2
.

Thus |g| = g+ + g− and g = g+ − g− and both g+ and g− are measurable nonnegative
functions if g is measurable.

Then the following is the definition of what it means for a complex valued function f
to be in L1 (Ω).

Definition 10.7.3 Let (Ω,F ,µ) be a measure space. Then a complex valued mea-
surable function f is in L1 (Ω) if

∫
| f |dµ < ∞. For a function in L1 (Ω) , the integral is

defined as follows.∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
I will show that with this definition, the integral is linear and well defined. First note

that it is clearly well defined because all the above integrals are of nonnegative functions
and are each equal to a nonnegative real number because for h equal to any of the functions,
|h| ≤ | f | and

∫
| f |dµ < ∞.

Here is a lemma which will make it possible to show the integral is linear.

Lemma 10.7.4 Let g,h,g′,h′ be nonnegative measurable functions in L1 (Ω) and sup-
pose that g−h = g′−h′.Then

∫
gdµ−

∫
hdµ =

∫
g′dµ−

∫
h′dµ.
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Proof: By assumption, g+ h′ = g′+ h. Then from the Lebesgue integral’s righteous
algebraic desires, Theorem 10.6.1,

∫
gdµ +

∫
h′dµ =

∫
g′dµ +

∫
hdµ which implies the

claimed result. ■

Lemma 10.7.5 Let Re
(
L1 (Ω)

)
denote the vector space of real valued functions in

L1 (Ω) where the field of scalars is the real numbers. Then
∫

dµ is linear on Re
(
L1 (Ω)

)
,

the scalars being real numbers.

Proof: First observe that from the definition of the positive and negative parts of a func-
tion, ( f +g)+−( f +g)−= f++g+−( f−+g−) because both sides equal f +g. Therefore
from Lemma 10.7.4 and the definition, it follows from Theorem 10.6.1 that∫

f +gdµ ≡
∫

( f +g)+− ( f +g)− dµ =
∫

f++g+dµ−
∫

f−+g−dµ

=
∫

f+dµ +
∫

g+dµ−
(∫

f−dµ +
∫

g−dµ

)
=
∫

f dµ +
∫

gdµ.

what about taking out scalars? First note that if a is real and nonnegative, then (a f )+ = a f+

and (a f )− = a f− while if a < 0, then (a f )+ = −a f− and (a f )− = −a f+. These claims
follow immediately from the above definitions of positive and negative parts of a function.
Thus if a < 0 and f ∈ L1 (Ω) , it follows from Theorem 10.6.1 that∫

a f dµ ≡
∫

(a f )+ dµ−
∫

(a f )− dµ =
∫

(−a) f−dµ−
∫

(−a) f+dµ

= −a
∫

f−dµ +a
∫

f+dµ = a
(∫

f+dµ−
∫

f−dµ

)
≡ a

∫
f dµ.

The case where a≥ 0 works out similarly but easier. ■
Now here is the main result.

Theorem 10.7.6 ∫
dµ is linear on L1 (Ω) and L1 (Ω) is a complex vector space. If

f ∈ L1 (Ω) , then Re f , Im f , and | f | are all in L1 (Ω) . Furthermore, for f ∈ L1 (Ω) ,∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
≡

∫
Re f dµ + i

∫
Im f dµ

and the triangle inequality holds, ∣∣∣∣∫ f dµ

∣∣∣∣≤ ∫ | f |dµ. (10.4)

Also, for every f ∈ L1 (Ω) it follows that for every ε > 0 there exists a simple function s
such that |s| ≤ | f | and

∫
| f − s|dµ < ε.

Proof: First consider the claim that the integral is linear. It was shown above that the
integral is linear on Re

(
L1 (Ω)

)
. Then letting a+ ib,c+ id be scalars and f ,g functions in

L1 (Ω) ,

(a+ ib) f +(c+ id)g = (a+ ib)(Re f + i Im f )+(c+ id)(Reg+ i Img)
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= cRe(g)−b Im( f )−d Im(g)+aRe( f )+ i(bRe( f )+ c Im(g)+a Im( f )+d Re(g))

It follows from the definition that∫
(a+ ib) f +(c+ id)gdµ =

∫
(cRe(g)−b Im( f )−d Im(g)+aRe( f ))dµ

+i
∫

(bRe( f )+ c Im(g)+a Im( f )+d Re(g)) (10.5)

Also, from the definition,

(a+ ib)
∫

f dµ +(c+ id)
∫

gdµ = (a+ ib)
(∫

Re f dµ + i
∫

Im f dµ

)
+(c+ id)

(∫
Regdµ + i

∫
Imgdµ

)
which equals

= a
∫

Re f dµ−b
∫

Im f dµ + ib
∫

Re f dµ + ia
∫

Im f dµ

+c
∫

Regdµ−d
∫

Imgdµ + id
∫

Regdµ−d
∫

Imgdµ.

Using Lemma 10.7.5 and collecting terms, it follows that this reduces to 10.5. Thus the
integral is linear as claimed.

Consider the claim about approximation with a simple function. Letting h equal any
of

(Re f )+ ,(Re f )− ,(Im f )+ ,(Im f )− , (10.6)

It follows from the monotone convergence theorem and Theorem 9.1.6 on Page 239 there
exists a nonnegative simple function s ≤ h such that

∫
|h− s|dµ < ε

4 . Therefore, letting
s1,s2,s3,s4 be such simple functions, approximating respectively the functions listed in
10.6, and s≡ s1− s2 + i(s3− s4) ,∫

| f − s|dµ ≤
∫ ∣∣(Re f )+− s1

∣∣dµ +
∫ ∣∣(Re f )−− s2

∣∣dµ

+
∫ ∣∣(Im f )+− s3

∣∣dµ +
∫ ∣∣(Im f )−− s4

∣∣dµ < ε

It is clear from the construction that |s| ≤ | f |.
What about 10.4? Let θ ∈ C be such that |θ | = 1 and θ

∫
f dµ = |

∫
f dµ| . Then from

what was shown above about the integral being linear,∣∣∣∣∫ f dµ

∣∣∣∣= θ

∫
f dµ =

∫
θ f dµ =

∫
Re(θ f )dµ ≤

∫
| f |dµ.

If f ,g ∈ L1 (Ω) , then it is known that for a,b scalars, it follows that a f +bg is measur-
able. See Lemma 10.7.2. Also

∫
|a f +bg|dµ ≤

∫
|a| | f |+ |b| |g|dµ < ∞. ■

The following corollary follows from this. The conditions of this corollary are some-
times taken as a definition of what it means for a function f to be in L1 (Ω).
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Corollary 10.7.7 f ∈ L1(Ω) if and only if there exists a sequence of complex simple
functions, {sn} such that

sn (ω)→ f (ω) for all ω ∈Ω

limm,n→∞

∫
(|sn− sm|)dµ = 0 (10.7)

When f ∈ L1 (Ω) , ∫
f dµ ≡ lim

n→∞

∫
sn. (10.8)

Proof: From the above theorem, if f ∈ L1 there exists a sequence of simple functions
{sn} such that ∫

| f − sn|dµ < 1/n, sn (ω)→ f (ω) for all ω

Then
∫
|sn− sm|dµ ≤

∫
|sn− f |dµ +

∫
| f − sm|dµ ≤ 1

n +
1
m .

Next suppose the existence of the approximating sequence of simple functions. Then
f is measurable because its real and imaginary parts are the limit of measurable functions.
By Fatou’s lemma,

∫
| f |dµ ≤ liminfn→∞

∫
|sn|dµ < ∞ because |

∫
|sn|dµ−

∫
|sm|dµ| ≤∫

|sn− sm|dµ which is given to converge to 0. Thus {
∫
|sn|dµ} is a Cauchy sequence and

is therefore, bounded.
In case f ∈ L1 (Ω) , letting {sn} be the approximating sequence, Fatou’s lemma implies∣∣∣∣∫ f dµ−

∫
sndµ

∣∣∣∣≤ ∫ | f − sn|dµ ≤ lim inf
m→∞

∫
|sm− sn|dµ < ε

provided n is large enough. Hence 10.8 follows. ■
This is a good time to observe the following fundamental observation which follows

from a repeat of the above arguments.

Theorem 10.7.8 Suppose Λ( f ) ∈ [0,∞] for all nonnegative measurable functions
and suppose that for a,b≥ 0 and f ,g nonnegative measurable functions,

Λ(a f +bg) = aΛ( f )+bΛ(g) .

In other words, Λ wants to be linear. Then Λ has a unique linear extension to the set of
measurable functions { f measurable : Λ(| f |)< ∞} , this set being a vector space.

10.8 The Dominated Convergence Theorem
One of the major theorems in this theory is the dominated convergence theorem. Before
presenting it, here is a technical lemma about limsup and liminf which is really pretty
obvious from the definition.

Lemma 10.8.1 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and only if
liminfn→∞ an = limsupn→∞ an and in this case, the limit equals the common value of these
two numbers.

Proof: Suppose first limn→∞ an = a ∈ R. Letting ε > 0 be given, an ∈ (a− ε,a+ ε)
for all n large enough, say n ≥ N. Therefore, both inf{ak : k ≥ n} and sup{ak : k ≥ n} are
contained in [a− ε,a+ ε] whenever n ≥ N. It follows limsupn→∞ an and liminfn→∞ an are



10.8. THE DOMINATED CONVERGENCE THEOREM 289

both in [a− ε,a+ ε] , showing |liminfn→∞ an− limsupn→∞ an| < 2ε. Since ε is arbitrary,
the two must be equal and they both must equal a. Next suppose limn→∞ an =∞. Then if l ∈
R, there exists N such that for n≥ N, l ≤ an and therefore, for such n, l ≤ inf{ak : k ≥ n} ≤
sup{ak : k ≥ n} and this shows, since l is arbitrary that liminfn→∞ an = limsupn→∞ an = ∞.
The case for −∞ is similar.

Conversely, suppose liminfn→∞ an = limsupn→∞ an = a. Suppose first that a∈R. Then,
letting ε > 0 be given, there exists N such that if n≥N,sup{ak : k ≥ n}− inf{ak : k ≥ n}<
ε. Therefore, if k,m > N, and ak > am,

|ak−am|= ak−am ≤ sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

showing that {an} is a Cauchy sequence. Therefore, it converges to a ∈ R, and as in the
first part, the liminf and limsup both equal a. If liminfn→∞ an = limsupn→∞ an = ∞, then
given l ∈ R, there exists N such that for n ≥ N, infn>N an > l.Therefore, limn→∞ an = ∞.
The case for −∞ is similar. ■

Here is the dominated convergence theorem.

Theorem 10.8.2 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose

f (ω) = lim
n→∞

fn(ω),

and there exists a measurable function g, with values in [0,∞],1 such that

| fn(ω)| ≤ g(ω) and
∫

g(ω)dµ < ∞.

Then f ∈ L1 (Ω) and

0 = lim
n→∞

∫
| fn− f |dµ = lim

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣
Proof: f is measurable by Theorem 9.1.2. Since | f | ≤ g, it follows that

f ∈ L1(Ω) and | f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 10.5.1),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ =

∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ , 0≤− limsupn→∞

∫
| f − fn|dµ. Hence

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Lemma 10.8.1 because the limsup and liminf are equal. ■

1Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Corollary 10.8.3 Suppose fn ∈ L1 (Ω) and f (ω) = limn→∞ fn (ω) . Suppose also there
exist measurable functions, gn, g with values in [0,∞] such that

lim
n→∞

∫
gndµ =

∫
gdµ

gn (ω)→ g(ω) µ a.e. and both
∫

gndµ and
∫

gdµ are finite. Also suppose | fn (ω)| ≤
gn (ω) . Then limn→∞

∫
| f − fn|dµ = 0.

Proof: It is just like the above. This time g+gn−| f − fn| ≥ 0 and so by Fatou’s lemma,∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ = lim

n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
((gn +g)−| f − fn|)dµ ≥

∫
2gdµ

and so − limsupn→∞

∫
| f − fn|dµ ≥ 0. Thus

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥
∣∣∣∣∫ f dµ−

∫
fndµ

∣∣∣∣≥ 0. ■

Definition 10.8.4 Let E be a measurable subset of Ω.
∫

E f dµ ≡
∫

f XEdµ.

If L1(E) is written, the σ algebra is defined as {E ∩A : A ∈ F} and the measure is
µ restricted to this smaller σ algebra. Clearly, if f ∈ L1(Ω), then f XE ∈ L1(E) and if
f ∈ L1(E), then letting f̃ be the 0 extension of f off of E, it follows f̃ ∈ L1(Ω).

Another very important observation applies to the case where Ω is also a metric space.
In this lemma, spt( f ) denotes the closure of the set on which f is nonzero.

Definition 10.8.5 Let K be a set and let V be an open set containing K. Then the
notation K ≺ f ≺ V means that f (x) = 1 for all x ∈ K and spt( f ) is a compact subset of
V . spt( f ) is defined as the closure of the set where f is not zero. It is called the “support”
of f . A function f ∈ Cc (Ω) for Ω a metric space if f is continuous on Ω and spt( f ) is
compact. This Cc (Ω) is called the continuous functions with compact support.

Recall Lemma 3.12.4. Listed next for convenience.

Lemma 10.8.6 Let Ω be a metric space in which the closed balls are compact and let K
be a compact subset of V , an open set. Then there exists a continuous function f : Ω→ [0,1]
such that K ≺ f ≺V.

Theorem 10.8.7 Let (Ω,S ,µ) be a regular measure space, meaning that µ is in-
ner and outer regular and µ (K) < ∞ for each compact set K. Suppose also that the con-
clusion of Lemma 3.12.4 holds. Then for each ε > 0 and f ∈ L1 (Ω) , there is g ∈ Cc(Ω)
such that

∫
Ω
| f −g|dµ < ε .
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Proof: First consider a measurable set E where µ (E) < ∞. Let K ⊆ E ⊆ V where
µ (V \K)< ε. Now let K ≺ h≺V. Then∫

|h−XE |dµ ≤
∫

XV\Kdµ = µ (V \K)< ε. (10.9)

By Corollary 10.7.7, there is a sequence of simple functions converging pointwise to f
such that for m,n > N, ε

2 >
∫
(|sn− sm|)dµ. Then let n→ ∞ and apply the dominated

convergence theorem to get
∫
| f − sm|dµ ≤ ε

2 . However, from 10.9, there is g in Cc (Ω)
such that

∫
|sm−g|dµ < ε

2 and so
∫
| f −g|dµ ≤

∫
| f − sm|dµ +

∫
|sm−g|dµ < ε. ■

10.9 Some Important General Theory
10.9.1 Eggoroff’s Theorem
You might show that a sequence of measurable real or complex valued functions converges
on a measurable set. This is Proposition 9.1.8 above. Eggoroff’s theorem says that if the
set of points where a sequence of measurable functions converges is all but a set of measure
zero, then the sequence almost converges uniformly in a certain sense.

Theorem 10.9.1 (Egoroff) Let (Ω,F ,µ) be a finite measure space, µ (Ω)< ∞ and
let fn, f be complex valued functions such that Re fn, Im fn are all measurable and

lim
n→∞

fn(ω) = f (ω)

for all ω /∈ E where µ(E) = 0. Then for every ε > 0, there exists a set,

F ⊇ E, µ(F)< ε,

such that fn converges uniformly to f on FC.

Proof: First suppose E = /0 so that convergence is pointwise everywhere. It follows
then that Re f and Im f are pointwise limits of measurable functions and are therefore
measurable. Let Ekm = {ω ∈Ω : | fn(ω)− f (ω)| ≥ 1/m for some n > k}. Note that

| fn (ω)− f (ω)|=
√

(Re fn (ω)−Re f (ω))2 +(Im fn (ω)− Im f (ω))2

and so,
[
| fn− f | ≥ 1

m

]
is measurable. Hence Ekm is measurable because

Ekm = ∪∞
n=k+1

[
| fn− f | ≥ 1

m

]
.

For fixed m,∩∞
k=1Ekm = /0 because fn converges to f . Therefore, if ω ∈ Ω there exists

k such that if n > k, | fn (ω)− f (ω)| < 1
m which means ω /∈ Ekm. Note also that Ekm ⊇

E(k+1)m. Since µ(E1m)< ∞, Theorem 9.2.4 on Page 242 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m) < ε2−m and let F = ∪∞
m=1Ek(m)m. Then µ(F) <

ε because µ (F)≤ ∑
∞
m=1 µ

(
Ek(m)m

)
< ∑

∞
m=1 ε2−m = ε.
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Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈FC, then ω ∈

∞⋂
m=1

EC
k(m)m.

Hence ω ∈ EC
k(m0)m0

so | fn(ω)− f (ω)| < 1/m0 < η for all n > k(m0). This holds for all

ω ∈ FCand so fn converges uniformly to f on FC.
Now if E ̸= /0, consider {XEC fn}∞

n=1. Each XEC fn has real and imaginary parts mea-
surable and the sequence converges pointwise to XE f everywhere. Therefore, from the
first part, there exists a set of measure less than ε,F such that on FC,{XEC fn} converges
uniformly to XEC f . Therefore, on (E ∪F)C , { fn} converges uniformly to f . This proves
the theorem. ■

10.9.2 The Vitali Convergence Theorem
The Vitali convergence theorem is a convergence theorem which in the case of a finite
measure space is superior to the dominated convergence theorem.

Definition 10.9.2 Let (Ω,F ,µ) be a measure space and let S ⊆ L1(Ω). S is
uniformly integrable if for every ε > 0 there exists δ > 0 such that for all f ∈S

|
∫

E
f dµ|< ε whenever µ(E)< δ .

Lemma 10.9.3 If S is uniformly integrable, then |S| ≡ {| f | : f ∈S} is uniformly inte-
grable. Also S is uniformly integrable if S is finite.

Proof: Let ε > 0 be given and suppose S is uniformly integrable. First suppose the
functions are real valued. Let δ be such that if µ (E)< δ , then |

∫
E f dµ|< ε

2 for all f ∈S.
Let µ (E)< δ . Then if f ∈S,∫

E
| f |dµ ≤

∫
E∩[ f≤0]

(− f )dµ +
∫

E∩[ f>0]
f dµ =

∣∣∣∣∫E∩[ f≤0]
f dµ

∣∣∣∣+ ∣∣∣∣∫E∩[ f>0]
f dµ

∣∣∣∣
<

ε

2
+

ε

2
= ε.

In general, if S is a uniformly integrable set of complex valued functions, the inequalities,∣∣∣∣∫E
Re f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ , ∣∣∣∣∫E
Im f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ ,
imply ReS ≡ {Re f : f ∈S} and ImS ≡ {Im f : f ∈S} are also uniformly integrable.
Therefore, applying the above result for real valued functions to these sets of functions, it
follows |S| is uniformly integrable also.

For the last part, is suffices to verify a single function in L1 (Ω) is uniformly integrable.
To do so, note that from the dominated convergence theorem, limR→∞

∫
[| f |>R] | f |dµ = 0.

Let ε > 0 be given and choose R large enough that
∫
[| f |>R] | f |dµ < ε

2 . Now let µ (E)< ε

2R .
Then ∫

E
| f |dµ =

∫
E∩[| f |≤R]

| f |dµ +
∫

E∩[| f |>R]
| f |dµ

< Rµ (E)+
ε

2
<

ε

2
+

ε

2
= ε.

This proves the lemma. ■
The following gives a nice way to identify a uniformly integrable set of functions.
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Lemma 10.9.4 Let S be a subset of L1 (Ω,µ) where µ (Ω) < ∞. Let t → h(t) be a
continuous function which satisfies limt→∞

h(t)
t = ∞. Then S is uniformly integrable and

bounded in L1 (Ω) if sup{
∫

Ω
h(| f |)dµ : f ∈S}= N < ∞.

Proof: First I show S is bounded in L1 (Ω; µ) which means there exists a constant M
such that for all f ∈S,

∫
Ω
| f |dµ ≤M. From the properties of h, there exists Rn such that

if t ≥ Rn, then h(t) ≥ nt. Therefore,
∫

Ω
| f |dµ =

∫
[| f |≥Rn]

| f |dµ +
∫
[| f |<Rn]

| f |dµ. Letting
n = 1, and f ∈S,∫

Ω

| f |dµ =
∫
[| f |≥R1]

| f |dµ +
∫
[| f |<R1]

| f |dµ

≤
∫
[| f |≥R1]

h(| f |)dµ +R1µ ([| f |< R1])≤ N +R1µ (Ω)≡M. (10.10)

Next let E be a measurable set. Then for every f ∈S, it follows from 10.10∫
E
| f |dµ =

∫
[| f |≥Rn]∩E

| f |dµ +
∫
[| f |<Rn]∩E

| f |dµ

≤ 1
n

∫
Ω

| f |dµ +Rnµ (E)≤ M
n
+Rnµ (E) (10.11)

Let n be large enough that M/n < ε/2 and then let µ (E)< ε/2Rn. Then 10.11 is less than
ε/2+Rn (ε/2Rn) = ε ■

Letting h(t)= t2, it follows that if all the functions in S are bounded, then the collection
of functions is uniformly integrable. Another way to discuss uniform integrability is the
following. This other way involving equi-integrability is used a lot in probability.

Definition 10.9.5 Let (Ω,F ,µ) be a measure space with µ (Ω) < ∞. A set S ⊆
L1 (Ω) is said to be equi-integrable if for every ε > 0 there exists λ > 0 sufficiently large,
such that

∫
[| f |>λ ] | f |dµ < ε for all f ∈S.

Then the relation between this and uniform integrability is as follows.

Proposition 10.9.6 In the context of the above definition, S is equi-integrable if and
only if it is a bounded subset of L1 (Ω) which is also uniformly integrable.

Proof: ⇒ I need to show S is bounded and uniformly integrable. First consider
bounded. Choose λ to work for ε = 1. Then for all f ∈S,∫

| f |dµ =
∫
[| f |>λ ]

| f |dµ +
∫
[| f |≤λ ]

| f | ≤ 1+λ µ (Ω)

Thus it is bounded. Now let E be a measurable subset of Ω. Let λ go with ε/2 in the
definition of equi-integrable. Then for all f ∈S,∫

E
| f |dµ ≤

∫
[| f |>λ ]

| f |dµ +
∫

E∩[| f |≤λ ]
| f |dµ ≤ ε

2
+λ µ (E)

Then let µ (E) be small enough that λ µ (E)< ε/2 and this shows uniform integrability.
⇐ I need to verify equi-integrable from bounded and uniformly integrable. Let δ be

such that if µ (E) < δ , then
∫

E | f |dµ < ε for all f ∈ S. If not, then there exists fn ∈ S
with [| fn|> n]> δ . Thus

∫
| fn|dµ ≥

∫
[| fn|>n] | fn|dµ ≥ nµ ([| fn|> n])> nδ and so S is not

bounded after all. ■
The following theorem is Vitali’s convergence theorem.
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Theorem 10.9.7 Let { fn} be a uniformly integrable set of complex valued func-
tions, µ(Ω)< ∞, and fn(x)→ f (x) a.e. where f is a measurable complex valued function.
Then f ∈ L1 (Ω) and

lim
n→∞

∫
Ω

| fn− f |dµ = 0. (10.12)

Proof: First it will be shown that f ∈ L1 (Ω). By uniform integrability, there exists
δ > 0 such that if µ (E) < δ , then

∫
E | fn|dµ < 1 for all n. By Egoroff’s theorem, there

exists a set E of measure less than δ such that on EC, { fn} converges uniformly. There-
fore, for p large enough, and n > p,

∫
EC

∣∣ fp− fn
∣∣dµ < 1 which implies

∫
EC | fn|dµ <

1+
∫

Ω

∣∣ fp
∣∣dµ.Then since there are only finitely many functions, fn with n≤ p, there exists

a constant, M1 such that for all n,
∫

EC | fn|dµ < M1. But also,∫
Ω

| fm|dµ =
∫

EC
| fm|dµ +

∫
E
| fm| ≤M1 +1≡M.

Therefore, by Fatou’s lemma,
∫

Ω
| f |dµ ≤ liminfn→∞

∫
| fn|dµ ≤ M, showing that f ∈ L1

as hoped.
Now S∪{ f} is uniformly integrable so there exists δ 1 > 0 such that if µ (E) < δ 1,

then
∫

E |g|dµ < ε/3 for all g ∈ S∪{ f}.
By Egoroff’s theorem, there exists a set, F with µ (F) < δ 1 such that fn converges

uniformly to f on FC. Therefore, there exists m such that if n>m, then
∫

FC | f − fn|dµ < ε

3 .
It follows that for n > m,∫

Ω

| f − fn|dµ ≤
∫

FC
| f − fn|dµ +

∫
F
| f |dµ +

∫
F
| fn|dµ <

ε

3
+

ε

3
+

ε

3
= ε,

which verifies 10.12. ■

10.10 One Dimensional Lebesgue Stieltjes Integral
Let F be an increasing function defined on R. Let µ be the Lebesgue Stieltjes measure
defined in Theorems 9.9.1 and 9.7.4. The conclusions of these theorems are reviewed here.

Theorem 10.10.1 Let F be an increasing function defined on R, an integrator
function. There exists a function µ : P (R)→ [0,∞] which satisfies the conditions of The-
orem 9.7.4 in terms of measures of intervals and the inner and outer regularity properties.

The Lebesgue integral taken with respect to this measure, is called the Lebesgue Stielt-
jes integral. Note that any real valued continuous function is measurable with respect to S .
This is because if f is continuous, inverse images of open sets are open and open sets are in
S . Thus f is measurable because f−1 ((a,b)) ∈S . Similarly if f has complex values this
argument applied to its real and imaginary parts yields the conclusion that f is measurable.
This will be denoted here by

∫
f dµ but it is often the case that it is denoted as

∫
f dF.

In the case of most interest, where F (x) = x, how does the Lebesgue integral compare
with the Riemann integral? The short answer is that if f is Riemann integrable, then it
is also Lebesgue interable and the two integrals coincide. It is customary to denote the
Lebesgue integral in this context as

∫ b
a f dm.

Theorem 10.10.2 Suppose f is Riemann integrable on an interval [a,b]. Then f is
also Lebesgue integrable and the two integrals are the same.
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Proof: It suffices to consider the case that f is nonnegative. Otherwise, one simply
considers the positive and negative parts of the real and imaginary parts of the function.
Thus f is a bounded function and there is a decreasing sequence of upper step functions,
denoted as {un} and an increasing sequence of lower step functions denoted as {ln} such
that ∫ b

a
lndt ≤

∫ b

a
f dt ≤

∫ b

a
undt,

∣∣∣∣∫ b

a
undt−

∫ b

a
lndt
∣∣∣∣< 2−n

Since f must be bounded, it can be assumed that |un (t)| , |ln (t)|< M for some constant M.
Let g(t) = limn→∞ un (t) and h(t) = limn→∞ ln (t) . Then from the dominated convergence
theorem (Why?) one obtains∫ b

a
f dt = lim

n→∞

∫ b

a
lndt = lim

n→∞

∫ b

a
lndm =

∫ b

a
hdm

≤
∫ b

a
gdm≤ lim

n→∞

∫ b

a
undm = lim

n→∞

∫ b

a
undt =

∫ b

a
f dt

Also, from the construction, h(t)≤ f (t)≤ g(t). From the above,
∫ b

a |g(t)−h(t)|dm= 0. It
follows that g is measurable (why?) and f (t) = g(t) for m a.e. t. (why?) By completeness
of the measure, it follows that f is Lebesgue measurable and

∫ b
a f dm=

∫ b
a gdm =

∫ b
a hdm=∫ b

a f dt. (why?) ■
If you have seen the Darboux Stieltjes integral, defined like the Riemann integral in

terms of upper and lower sums, the following compares the Lebesgue Stieltjes integral
with this one also. For f a continuous function, how does the Lebesgue Stieltjes integral
compare with the Darboux Stieltjes integral? To answer this question, here is a technical
lemma.

Lemma 10.10.3 Let D be a countable subset of R and suppose a,b /∈ D. Also suppose
f is a continuous function defined on [a,b] . Then there exists a sequence of functions {sn}
of the form sn (x)≡ ∑

mn
k=1 f

(
zn

k−1

)
X[zn

k−1,z
n
k)
(x) such that each zn

k /∈ D and

sup{|sn (x)− f (x)| : x ∈ [a,b]}< 1/n.

Proof: First note that D contains no intervals. To see this let D = {dk}∞

k=1 . If D has an
interval of length 2ε, let Ik be an interval centered at dk which has length ε/2k. Therefore,
the sum of the lengths of these intervals is no more than ∑

∞
k=1

ε

2k = ε. Thus D cannot contain
an interval of length 2ε. Since ε is arbitrary, D cannot contain any interval.

Since f is continuous, it follows from Theorem 3.7.4 on Page 82 that f is uniformly
continuous. Therefore, there exists δ > 0 such that if |x− y| ≤ 3δ , then | f (x)− f (y)| <
1/n. Now let {x0, · · · ,xmn} be a partition of [a,b] such that |xi− xi−1| < δ for each i. For
k = 1,2, · · · ,mn−1, let zn

k /∈ D and
∣∣zn

k− xk
∣∣< δ . Then∣∣zn

k− zn
k−1
∣∣≤ |zn

k− xk|+ |xk− xk−1|+
∣∣xk−1− zn

k−1
∣∣< 3δ .

It follows that for each x ∈ [a,b] ,
∣∣∣∑mn

k=1 f
(
zn

k−1

)
X[zn

k−1,z
n
k)
(x)− f (x)

∣∣∣< 1/n. ■

Proposition 10.10.4 Let f be a continuous function defined on R. Also let F be an
increasing function defined on R. Then whenever c,d are not points of discontinuity of F
and [a,b] ⊇ [c,d] ,

∫ b
a f X[c,d]dF =

∫
f X[c,d]dµ.Here µ is the Lebesgue Stieltjes measure

defined above.
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Proof: Since F is an increasing function it can have only countably many disconti-
nuities. The reason for this is that the only kind of discontinuity it can have is where
F (x+) > F (x−) . Now since F is increasing, the intervals (F (x−) ,F (x+)) for x a point
of discontinuity are disjoint and so since each must contain a rational number and the ra-
tional numbers are countable, and therefore so are these intervals.

Let D denote this countable set of discontinuities of F . Then if l,r /∈D, [l,r]⊆ [a,b] , it
follows quickly from the definition of the Darboux Stieltjes integral that∫ b

a
X[l,r)dF = F (r)−F (l) = F (r−)−F (l−) = µ ([l,r)) =

∫
X[l,r)dµ.

Now let {sn} be the sequence of step functions of Lemma 10.10.3 such that these step
functions converge uniformly to f on [c,d] , say maxx | f (x)− sn (x)|< 1/n. Then∣∣∣∣∫ (X[c,d] f −X[c,d]sn

)
dµ

∣∣∣∣≤ ∫ ∣∣X[c,d] ( f − sn)
∣∣dµ ≤ 1

n
µ ([c,d])

and
∣∣∣∫ b

a
(
X[c,d] f −X[c,d]sn

)
dF
∣∣∣ ≤ ∫ b

a X[c,d] | f − sn|dF < 1
n (F (b)−F (a)) .Also if sn is

given by the formula of Lemma 10.10.3,∫
X[c,d]sndµ =

∫ mn

∑
k=1

f
(
zn

k−1
)
X[zn

k−1,z
n
k)

dµ =
mn

∑
k=1

∫
f
(
zn

k−1
)
X[zn

k−1,z
n
k)

dµ

=
mn

∑
k=1

f
(
zn

k−1
)

µ
(
[zn

k−1,z
n
k)
)
=

mn

∑
k=1

f
(
zn

k−1
)(

F (zn
k−)−F

(
zn

k−1−
))

=
mn

∑
k=1

f
(
zn

k−1
)(

F (zn
k)−F

(
zn

k−1
))

=
mn

∑
k=1

∫ b

a
f
(
zn

k−1
)
X[zn

k−1,z
n
k)

dF =
∫ b

a
sndF.

Therefore, ∣∣∣∣∫ X[c,d] f dµ−
∫ b

a
X[c,d] f dF

∣∣∣∣≤ ∣∣∣∣∫ X[c,d] f dµ−
∫

X[c,d]sndµ

∣∣∣∣
+

∣∣∣∣∫ X[c,d]sndµ−
∫ b

a
sndF

∣∣∣∣+ ∣∣∣∣∫ b

a
sndF−

∫ b

a
X[c,d] f dF

∣∣∣∣
≤ 1

n
µ ([c,d])+

1
n
(F (b)−F (a))

and since n is arbitrary, this shows
∫

f dµ−
∫ b

a f dF = 0. ■
In particular, in the special case where F is continuous and f is continuous,

∫ b
a f dF =∫

X[a,b] f dµ. Thus, if F (x) = x so the Darboux Stieltjes integral is the usual integral from
calculus,

∫ b
a f (t)dt =

∫
X[a,b] f dµ where µ is the measure which comes from F (x) = x

as described above. This measure is often denoted by m. Thus when f is continuous∫ b
a f (t)dt =

∫
X[a,b] f dm and so there is no problem in writing

∫ b
a f (t)dt for either the

Lebesgue or the Riemann integral. Furthermore, when f is continuous, you can compute
the Lebesgue integral by using the fundamental theorem of calculus because in this case,
the two integrals are equal. ■
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Note that as a special case, if f is continuous on R and equals 0 off some finite interval
I, written as f ∈Cc (R) , then

∫
R f dF =

∫
R f dµ where the first integral is defined as

∫ d
c f dF

where (c,d) ⊇ I. You could use the Riemann Stieltjes integral to define a positive linear
functional on Cc (R) as just explained and then it follows that the Lebesuge integral taken
with respect to the Lebesgue Stieltjes measure above equals this functional on Cc (R). This
idea will be discussed more later in the abstract theory when such functionals will be shown
to determine measures.

10.11 The Distribution Function
For (Ω,F ,µ) a measure space, the integral of a nonnegative measurable function was de-
fined earlier as

∫
f dµ ≡

∫
∞

0 µ ([ f > t])dt. This idea will be developed more in this section.

Definition 10.11.1 Let f ≥ 0 and suppose f is measurable. The distribution func-
tion is the function defined by t→ µ ([t < f ]) .

Lemma 10.11.2 If { fn} is an increasing sequence of functions converging pointwise to
f then µ ([ f > t]) = limn→∞ µ ([ fn > t]) .

Proof: The sets, [ fn > t] are increasing and their union is [ f > t] because if f (ω) > t,
then for all n large enough, fn (ω)> t also. Therefore, the desired conclusion follows from
properties of measures, the one which says that if En ↑ E, then µ (En) ↑ µ (E). ■

Note how it was important to have strict inequality in the definition.

Lemma 10.11.3 Suppose s≥ 0 is a simple function, s(ω)≡∑
n
k=1 akXEk (ω) where the

ak are the distinct nonzero values of s,0 < a1 < a2 < · · · < an on the measurable sets Ek.
Suppose φ is a C1 function defined on [0,∞) which has the properties that φ (0) = 0, and
also that φ

′ (t)> 0 for all t. Then∫
∞

0
φ
′ (t)µ ([s > t])dm(t) =

∫
φ (s)dµ (s) .

Proof: First note that if µ (Ek) = ∞ for any k then both sides equal ∞ and so without
loss of generality, assume µ (Ek)< ∞ for all k. Letting a0 ≡ 0, the left side equals

n

∑
k=1

∫ ak

ak−1

φ
′ (t)µ ([s > t])dm(t) =

n

∑
k=1

∫ ak

ak−1

φ
′ (t)

n

∑
i=k

µ (Ei)dm

=
n

∑
k=1

n

∑
i=k

µ (Ei)
∫ ak

ak−1

φ
′ (t)dm =

n

∑
k=1

n

∑
i=k

µ (Ei)(φ (ak)−φ (ak−1))

=
n

∑
i=1

µ (Ei)
i

∑
k=1

(φ (ak)−φ (ak−1)) =
n

∑
i=1

µ (Ei)φ (ai) =
∫

φ (s)dµ. ■

With this lemma the next theorem which is the main result follows easily.

Theorem 10.11.4 Let f ≥ 0 be measurable and let φ be a C1 function defined on
[0,∞) which satisfies φ

′ (t)> 0 for all t > 0 and φ (0) = 0. Then∫
φ ( f )dµ =

∫
∞

0
φ
′ (t)µ ([ f > t])dm.
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Proof: By Theorem 9.1.6 on Page 239 there exists an increasing sequence of nonnega-
tive simple functions, {sn} which converges pointwise to f . By the monotone convergence
theorem and Lemma 10.11.2,∫

φ ( f )dµ = lim
n→∞

∫
φ (sn)dµ = lim

n→∞

∫
∞

0
φ
′ (t)µ ([sn > t])dm

=
∫

∞

0
φ
′ (t)µ ([ f > t])dm ■

This theorem can be generalized to a situation in which φ is only increasing and con-
tinuous. In the generalization I will replace the symbol φ with F to coincide with earlier
notation.

The following lemma and theorem say essentially that for F an increasing function
equal to 0 at 0,

∫
(0,∞] µ ([ f > t])dF =

∫
Ω

F ( f )dµ . I think it is particularly memorable if
F is differentiable when it looks like what was just discussed.

∫
(0,∞] µ ([ f > t])F ′ (t)dt =∫

Ω
F ( f )dµ

Lemma 10.11.5 Suppose s≥ 0 is a simple function, s(ω)≡∑
n
k=1 akXEk (ω) where the

ak are the distinct nonzero values of s,a1 < a2 < · · · < an. Suppose F is an increasing
function defined on [0,∞),F (0) = 0,F being continuous at 0 from the right and continuous
at every ak. Then letting µ be a measure and (Ω,F ,µ) a measure space,∫

(0,∞]
µ ([s > t])dν =

∫
Ω

F (s)dµ.

where the integral on the left is the Lebesgue integral for the Lebesgue Stieltjes measure ν

which comes from the increasing function F as in Theorem 10.10.1 above.

Proof: This follows from the following computation. Since F is continuous at 0 and
the values ak, ∫

∞

0
µ ([s > t])dν (t) =

n

∑
k=1

∫
(ak−1,ak]

µ ([s > t])dν (t)

=
n

∑
k=1

∫
(ak−1,ak]

n

∑
j=k

µ (E j)dF (t) =
n

∑
j=1

µ (E j)
j

∑
k=1

ν ((ak−1,ak])

=
n

∑
j=1

µ (E j)
j

∑
k=1

(F (ak)−F (ak−1)) =
n

∑
j=1

µ (E j)F (a j)≡
∫

Ω

F (s)dµ ■

Now here is the generalization to nonnegative measurable f .

Theorem 10.11.6 Let f ≥ 0 be measurable with respect to F , (Ω,F ,µ) a mea-
sure space, and let F be an increasing continuous function defined on [0,∞) and F (0) = 0.
Then

∫
Ω

F ( f )dµ =
∫
(0,∞] µ ([ f > t])dν (t) where ν is the Lebesgue Stieltjes measure de-

termined by F as in Theorem 10.10.1 above.

Proof: By Theorem 9.1.6 on Page 239 there exists an increasing sequence of nonnega-
tive simple functions, {sn} which converges pointwise to f . By the monotone convergence
theorem and Lemma 10.11.5,∫

Ω

F ( f )dµ = lim
n→∞

∫
Ω

F (sn)dµ = lim
n→∞

∫
(0,∞]

µ ([sn > t])dν =
∫
(0,∞]

µ ([ f > t])dν ■
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Note that the function t→ µ ([ f > t]) is a decreasing function. Therefore, one can make
sense of an improper Riemann Stieltjes integral

∫
∞

0 µ ([ f > t])dF (t) . With more work, one
can have this equal to the corresponding Lebesgue integral above.

10.12 Good Lambda Inequality
There is a very interesting and important inequality called the good lambda inequality (I
am not sure if there is a bad lambda inequality.) which follows from the above theory of
distribution functions. It involves the inequality

µ ([ f > βλ ]∩ [g≤ δλ ])≤ φ (δ )µ ([ f > λ ]) (10.13)

for β > 1, nonnegative functions f ,g and is supposed to hold for all small positive δ and
φ (δ )→ 0 as δ→ 0. Note the left side is small when g is large and f is small. The inequality
involves dominating an integral involving f with one involving g as described below. As
above, ν is the Lebesgue Stieltjes measure described above in terms of F , an increasing
function. Is there any way to see the inequality in 10.13 might make sense? Look at the
expression on the left. If δ is small enough, you might think that the intersection of the two
sets would have smaller measure than µ ([ f > λ ]).

Theorem 10.12.1 Let (Ω,F ,µ) be a finite measure space and let F be a continu-
ous increasing function defined on [0,∞) such that F (0) = 0. Suppose also that for every
α > 1, there exists a constant Cα such that for all x ∈ [0,∞),F (αx)≤Cα F (x) . Also sup-
pose f ,g are nonnegative measurable functions and there exists β > 1, such that for all
λ > 0 and 1 > δ > 0,

µ ([ f > βλ ]∩ [g≤ δλ ])≤ φ (δ )µ ([ f > λ ]) (10.14)

where limδ→0+ φ (δ ) = 0 and φ is increasing. Under these conditions, there exists a con-
stant C depending only on β ,φ such that∫

Ω

F ( f (ω))dµ (ω)≤C
∫

Ω

F (g(ω))dµ (ω) .

Proof: Let β > 1 be as given above. First suppose f is bounded. This is so there can be
no question of existence of the integrals.

∫
Ω

F ( f )dµ =
∫

Ω
F
(

β
f
β

)
dµ ≤Cβ

∫
Ω

F
(

f
β

)
dµ.

Let ν be the Lebesgue Stieltjes measure which comes from F , (dν = dF). From Theorem
10.11.6, Cβ

∫
Ω

F
(

f
β

)
dµ = Cβ

∫
∞

0 µ ([ f/β > λ ])dν = Cβ

∫
∞

0 µ ([ f > βλ ])dν . Now using
the given inequality, ∫

Ω

F ( f )dµ =

Cβ

∫
∞

0
µ ([ f > βλ ]∩ [g≤ δλ ])dν (λ )+Cβ

∫
∞

0
µ ([ f > βλ ]∩ [g > δλ ])dν (λ )

≤ Cβ φ (δ )
∫

∞

0
µ ([ f > λ ])dν (λ )+Cβ

∫
∞

0
µ ([g > δλ ])dν (λ )

≤ Cβ φ (δ )
∫

Ω

F ( f )dµ +Cβ

∫
Ω

F
( g

δ

)
dµ
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Now choose δ small enough that Cβ φ (δ )< 1
2 and then subtract the first term on the right

in the above from both sides. It follows from the properties of F again that∫
Ω

F ( f )dµ ≤ 2CβC
δ
−1

∫
Ω

F (g)dµ. (10.15)

This establishes the inequality in the case where f is bounded.
In general, let fn = min( f ,n) . For n≤ λ , the inequality

µ ([ f > βλ ]∩ [g≤ δλ ])≤ φ (δ )µ ([ f > λ ])

holds with f replaced with fn because both sides equal 0 thanks to β > 1. If n > λ , then
[ f > λ ] = [ fn > λ ] and so the inequality still holds because in this case,

µ ([ fn > βλ ]∩ [g≤ δλ ]) ≤ µ ([ f > βλ ]∩ [g≤ δλ ])

≤ φ (δ )µ ([ f > λ ]) = φ (δ )µ ([ fn > λ ])

Therefore, 10.14 is valid with f replaced with fn. Now pass to the limit in
∫

Ω
F ( fn)dµ ≤

2CβC
δ
−1
∫

Ω
F (gn)dµ as n→ ∞ and use the monotone convergence theorem. ■

10.13 Radon Nikodym Theorem
Let µ,ν be two finite measures on the measurable space (Ω,F ) and let α ≥ 0. Let λ ≡
ν−αµ . Then it is clear that if {Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) = ∑
∞
i=1 λ (Ei)

and that the series converges. The next proposition is fairly obvious.

Proposition 10.13.1 Let (Ω,F ,λ ) be a measure space and let λ : F → [0,∞) be a
measure. Then λ is a finite measure.

Proof: Since λ (Ω)< ∞ this is a finite measure. ■

Definition 10.13.2 Let (Ω,F ) be a measurable space and let λ : F → R satisfy:
If {Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) =∑
∞
i=1 λ (Ei) and the series converges. Such

a real valued function is called a signed measure. In this context, a set E ∈F is called
positive if whenever F is a measurable subset of E, it follows λ (F) ≥ 0. A negative set is
defined similarly. Note that this requires λ (Ω) ∈ R.

Lemma 10.13.3 The countable union of disjoint positive sets is positive.

Proof: Let Ei be positive and consider E ≡ ∪∞
i=1Ei. If A ⊆ E with A measurable, then

A∩Ei ⊆ Ei and so λ (A∩Ei)≥ 0. Hence λ (A) = ∑i λ (A∩Ei)≥ 0. ■

Lemma 10.13.4 Let λ be a signed measure on (Ω,F ). If E ∈F with 0 < λ (E), then
E has a measurable subset which is positive.

Proof: If every measurable subset F of E has λ (F) ≥ 0, then E is positive and we
are done. Otherwise there exists measurable F ⊆ E with λ (F)< 0. Let the elements of F
consist of sets of disjoint sets of measurable subsets of E each of which has measure less
than 0. Partially order F by set inclusion. By the Hausdorff maximal theorem, Theorem
2.8.4, there is a maximal chain C . Then ∪C is a set consisting of disjoint measurable sets
F ∈F such that λ (F)< 0. Since each set in ∪C has measure strictly less than 0, it follows
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that ∪C is a countable set, {Fi}∞

i=1 . Otherwise, there would exist an infinite subset of ∪C
with each set having measure less than − 1

n for some n ∈ N so λ would not be real valued.
Letting F = ∪iFi, then E \F has no measurable subsets S for which λ (S) < 0 since, if it
did, C would not have been maximal. Thus E \F is positive. ■

A major result is the following, called a Hahn decomposition.

Theorem 10.13.5 Let λ be a signed measure on a measurable space (Ω,F ) . Then
there are disjoint measurable sets P,N such that P is a positive set, N is a negative set, and
P∪N = Ω.

Proof: If Ω is either positive or negative, there is nothing to show, so suppose Ω is
neither positive nor negative. F will consist of collections of disjoint measurable sets F
such that λ (F)> 0. Thus each element of F is necessarily countable. Partially order F by
set inclusion and use the Hausdorff maximal theorem to get C a maximal chain. Then, as
in the above lemma, ∪C is countable, say {Pi}∞

i=1 because λ (F)> 0 for each F ∈ ∪C and
λ has values in R. The sets in ∪C are disjoint because if A,B are two of them, then they
are both in a single element of C . Letting P ≡ ∪iPi, and N = PC, it follows from Lemma
10.13.3 that P is positive. It is also the case that N must be negative because otherwise, C
would not be maximal. ■

Clearly a Hahn decomposition is not unique. For example, you could have obtained
a different Hahn decomposition if you had considered disjoint negative sets F for which
λ (F)< 0 in the above argument .

Let k ∈ N,
{

αk
n
}∞

n=0 be equally spaced points αk
n = 2−kn. Then αk

2n = 2−k (2n) =
2−(k−1)n≡ αk−1

n and α
k+1
2n ≡ 2−(k+1)2n = αk

n. Similarly Nk+1
2n = Nk

n because these depend
on the αk

n. Also let
(
Pk

n ,N
k
n
)

be a Hahn decomposition for the signed measure ν −αk
nµ

where ν ,µ are two finite measures. Now from the definition, Nk
n+1 \Nk

n = Nk
n+1∩Pk

n . Also,
Nn ⊆Nn+1 for each n and we can take N0 = /0. Then

{
Nk

n+1 \Nk
n
}∞

n=0 covers all of Ω except
possibly for a set of µ measure 0.

Lemma 10.13.6 Let S≡Ω\
(
∪nNk

n
)
= Ω\

(
∪nNl

n
)

for any l. Then µ (S) = 0.

Proof: S = ∩nPk
n so for all n,ν (S)−αk

nµ (S) ≥ 0. But letting n→ ∞, it must be that
µ (S) = 0. ■

As just noted, if E ⊆ Nk
n+1 \Nk

n , then

ν (E)−α
k
nµ (E)≥ 0≥ ν (E)−α

k
n+1µ (E) , so α

k
n+1µ (E)≥ ν (E)≥ α

k
nµ (E) (10.16)

Nk
n

Nk
n+1

αk
n+1µ(E)≥ ν(E)≥ αk

nµ(E)

Then define f k (ω)≡ ∑
∞
n=0 αk

nX∆k
n
(ω) where ∆k

m ≡ Nk
m+1 \Nk

m. Thus,

f k =
∞

∑
n=0

α
k+1
2n X(Nk+1

2n+2\N
k+1
2n ) =

∞

∑
n=0

α
k+1
2n X

∆
k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

≤
∞

∑
n=0

α
k+1
2n+1X∆

k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

= f k+1 (10.17)
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Thus k→ f k (ω) is increasing. Let f (ω) ≡ limk→∞ f k (ω). Thus f = 0 on S. Now let
E be measurable. Thus µ (E) = µ (E ∩S)+ µ

(
E ∩SC

)
, similar for λ and λ

(
E ∩SC

)
=

∑n λ
(
E ∩SC ∩∆k

n
)
. To save space, let Ẽ ≡ E ∩SC. Then using 10.16∫

XẼ f kdµ ≤
∞

∑
n=0

α
k
n+1µ

(
Ẽ ∩∆

k
n

)
≤

∞

∑
n=0

α
k
nµ

(
Ẽ ∩∆

k
n

)
+

∞

∑
n=0

2−k
µ

(
Ẽ ∩∆

k
n

)
≤

∞

∑
n=0

ν

(
Ẽ ∩∆

k
n

)
+2−k

µ
(
Ẽ
)
= ν

(
Ẽ
)
+2−k

µ
(
Ẽ
)
≤
∫

XẼ f kdµ +2−k
µ
(
Ẽ
)

(10.18)

From the monotone convergence theorem it follows ν
(
Ẽ
)
=
∫

XẼ f dµ =
∫

XE f dµ .
This proves most of the following theorem which is the Radon Nikodym theorem.

Theorem 10.13.7 Let ν and µ be finite measures defined on a measurable space
(Ω,F ). Then there exists a measurable set S with µ (S) = 0 and a nonnegative measurable
function ω → f (ω) such that ν (E) =

∫
E f dµ +ν (E ∩S) .

Proof: Let S be defined in Lemma 10.13.6 so S≡Ω\
(
∪nNk

n
)

and µ (S) = 0. If E ∈F ,
and f as described above,

ν (E) = ν
(
E ∩SC)+ν (E ∩S) =

∫
E∩SC

f dµ +ν (E ∩S) =
∫

E
f dµ +ν (E ∩S)

Thus if E ⊆ SC, we have ν (E) =
∫

E f dµ . ■

Definition 10.13.8 Let µ,ν be finite measures on (Ω,F ). Then ν≪ µ means that
whenever µ (E) = 0, it follows that ν (E) = 0.

Sometimes people write f = dλ

dµ
, in the case ν ≪ µ and this is called the Radon

Nikodym derivative.

Proposition 10.13.9 If ν ,µ are finite measures and ν ≪ µ, then there exists nonneg-
ative measurable f such that ν (E) =

∫
E f dµ.

Proof: In Theorem 10.13.7, ν (E ∩S) = 0 because µ (S) = 0 and ν ≪ µ . ■

Definition 10.13.10 Let S be in the above theorem. Then

ν || (E)≡ ν
(
E ∩SC)= ∫

E∩SC
f dµ =

∫
E

f dµ

while ν⊥ (E)≡ ν (E ∩S) . Thus ν ||≪ µ and ν⊥ is nonzero only on sets which are contained
in S which has µ measure 0.

Corollary 10.13.11 In the above situation, let λ be a signed measure and let λ ≪ µ

meaning that if µ (E) = 0⇒ λ (E) = 0. Here assume that µ is a finite measure. Then there
exists h ∈ L1 such that λ (E) =

∫
E hdµ .

Proof: Let P∪N be a Hahn decomposition of λ . Let

λ+ (E)≡ λ (E ∩P) , λ− (E)≡−λ (E ∩N) .

Then both λ+ and λ− are absolutely continuous measures and so there are nonnegative h+
and h− with λ− (E) =

∫
E h−dµ and a similar equation for λ+. Then 0 ≤ −λ (Ω∩N) ≤

λ− (Ω) < ∞, similar for λ+ so both of these measures are necessarily finite. Hence
both h− and h+ are in L1 so h ≡ h+− h− is also in L1 and λ (E) = λ+ (E)− λ− (E) =∫

E (h+−h−)dµ . ■
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Proposition 10.13.12 This Lebesgue decomposition is unique. If f , f̂ both work in
Theorem 10.13.7, then f = f̂ µ a.e. This function f ∈ L1 (Ω),

∫
Ω

f dµ < ∞.

Proof: Say ν ||+ν⊥= ν̂ ||+ ν̂⊥. Then ν || (E)− ν̂ || (E) = ν⊥ (E)− ν̂⊥ (E) . If µ (E) = 0,
then the left side is also 0 and so ν⊥ (E)− ν̂⊥ (E) = 0. But then for any E,

ν⊥ (E)− ν̂⊥ (E) =
∫

E
hdµ (10.19)

for h a function in L1 (Ω) . This is because ν⊥− ν̂⊥ is a signed measure λ ≪ µ and Corol-
lary 10.13.11. From the above, if S, Ŝ are the exceptional sets of µ measure zero,

ν⊥ (E)− ν̂⊥ (E) = ν⊥
(
E ∪

(
S∪ Ŝ

))
− ν̂⊥

(
E ∪

(
S∪ Ŝ

))
=
∫

E∪(S∪Ŝ)
hdµ = 0 (10.20)

because µ
(
S∪ Ŝ

)
= 0 and so the right side of 10.19 must be 0 after all, so ν⊥ (E) = ν̂⊥ (E).

It follows that ν || = ν̂ || also. Now in Theorem 10.13.7, if you have two f , f̂ which work,
then

ν || (E) =
∫

E
f dµ =

∫
E

f̂ dµ = v̂|| (E) (10.21)

and so, f = f̂ a.e. because you can apply this equation to En ≡
[

f − f̂ > 1/n
]

and conclude
that

0 =
∫

En

f − f̂ dµ ≥ 1
n

µ (En) = 0 (10.22)

so µ
([

f − f̂ > 0
])

= ∪mµ (En) = 0. Similarly µ
([

f̂ − f > 0
])

= 0. ■
This unique decomposition of a measure ν into the sum of two measures, one absolutely

continuous with respect to µ and the other supported on a set of µ measure zero is called
the Lebesgue decomposition.

Definition 10.13.13 A measure space (Ω,F ,µ) is σ finite if there are countably
many measurable sets {Ωn} such that µ is finite on measurable subsets of Ωn.

There is a routine corollary of the above theorem.

Corollary 10.13.14 Suppose µ,ν are both σ finite measures defined on (Ω,F ). Then
a similar conclusion to the above theorem can be obtained.

ν (E) =
∫

E
f dµ +ν (E ∩S) , µ (S) = 0 (10.23)

for f a nonnegative measurable function. If ν (Ω) < ∞, then f ∈ L1 (Ω). This f is unique
up to a set of µ measure zero.

Proof: Since both µ,ν are σ finite, there are
{

Ω̃k
}∞

k=1 such that ν
(
Ω̃k
)
,µ
(
Ω̃k
)

are

finite. Let Ω0 = /0 and Ωk ≡ Ω̃k \
(
∪k−1

j=0Ω̃ j

)
so that µ,ν are finite on Ωk and the Ωk

are disjoint. Let Fk be the measurable subsets of Ωk, equivalently the intersections with
Ωk with sets of F . Now let νk (E) ≡ ν (E ∩Ωk) , similar for µk. By Theorem 10.13.7,
there exists Sk ⊆ Ωk, and fk as described there, unique up to sets of µ measure 0. Thus
µk (Sk) = 0 and νk (E) =

∫
E∩Ωk

fkdµk + νk (E ∩Sk) Now let f (ω) ≡ fk (ω) for ω ∈ Ωk.
Thus

ν (E ∩Ωk) = ν (E ∩ (Ωk \Sk))+ν (E ∩Sk) =
∫

E∩Ωk

f dµ +ν (E ∩Sk) (10.24)

Summing over all k,ν (E) = ν
(
E ∩SC

)
+ν (E ∩S) =

∫
E f dµ +ν (E ∩S) . In particular, if

ν≪ µ, then ν (E ∩S) = 0 and so ν (E) =
∫

E f dµ. The last claim is obvious from 10.23. ■
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10.14 Iterated Integrals
This is about what can be said for the σ algebra of product measurable sets. First it is
necessary to define what this means.

Definition 10.14.1 A measure space (Ω,F ,µ) is called σ finite if there are mea-
surable subsets Ωn such that µ (Ωn)< ∞ and Ω = ∪∞

n=1Ωn.

Next is a σ algebra which comes from two σ algebras.

Definition 10.14.2 Let (X ,E ) ,(Y,F ) be measurable spaces. That is, a set with
a σ algebra of subsets. Then E ×F will be the smallest σ algebra which contains the
measurable rectangles, sets of the form E×F where E ∈ E , F ∈F . The sets in this new
σ algebra are called product measurable sets.

Definition 10.14.3 Given two finite measure spaces, (X ,E ,µ) and (Y,F ,ν) ,one
can define a new measure µ×ν defined on E ×F by specifying what it does to measurable
rectangles as follows:

(µ×ν)(A×B) = µ (A)ν (B)

whenever A ∈ E and B ∈F .

We also have the following important proposition which holds in every context inde-
pendent of any measure.

Proposition 10.14.4 Let E ⊆ E ×F be product measurable E ×F where E is a σ

algebra of sets of X and F is a σ algebra of sets of Y . then if Ex ≡ {y ∈ Y : (x,y) ∈ E} and
Ey ≡ {x ∈ X : (x,y) ∈ E} , then Ex ∈ E and Ey ∈F .

Proof: It is obvious that if K is the measurable rectangles, then the conclusion of the
proposition holds. If G consists of the sets of E ×F for which the proposition holds,
then it is clearly closed with respect to countable disjoint unions and complements. This is
obvious in the case of a countable disjoint union since

(
∪iE i

)
x = ∪iE i

x, similar for y. As
to complement, if E ∈ G , then Ex ∈F and so

(
EC
)

x = (Ex)
C ∈F . It is similar for y. By

Dynkin’s lemma, G ⊇ E ×F . However G was defined as a subset of E ×F so these are
equal. ■

Let (X ,E ,µ) and (Y,F ,ν) be two finite measure spaces. Define K to be the set of
measurable rectangles, A×B, A ∈ E and B ∈F . Let

G ≡
{

E ⊆ X×Y :
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ

}
(10.25)

where in the above, part of the requirement is for all integrals to make sense.
Then K ⊆ G . This is obvious.
Next I want to show that if E ∈ G then EC ∈ G . Observe XEC = 1−XE and so∫

Y

∫
X

XEC dµdν =
∫

Y

∫
X
(1−XE)dµdν =

∫
X

∫
Y
(1−XE)dνdµ

=
∫

X

∫
Y

XEC dνdµ

which shows that if E ∈ G , then EC ∈ G .
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Next I want to show G is closed under countable unions of disjoint sets of G . Let {Ai}
be a sequence of disjoint sets from G . Then, using the monotone convergence theorem as
needed, ∫

Y

∫
X

X∪∞
i=1Aidµdν =

∫
Y

∫
X

∞

∑
i=1

XAidµdν =
∫

Y

∞

∑
i=1

∫
X

XAidµdν

=
∞

∑
i=1

∫
Y

∫
X

XAidµdν =
∞

∑
i=1

∫
X

∫
Y

XAidνdµ

=
∫

X

∞

∑
i=1

∫
Y

XAidνdµ =
∫

X

∫
Y

∞

∑
i=1

XAidνdµ =
∫

X

∫
Y

X∪∞
i=1Aidνdµ, (10.26)

Thus G is closed with respect to countable disjoint unions.
From Lemma 9.3.2, G ⊇ σ (K ) , the smallest σ algebra containing K . Also the com-

putation in 10.26 implies that on σ (K ) one can define a measure, denoted by µ ×ν and
that for every E ∈ σ (K ) ,

(µ×ν)(E) =
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ. (10.27)

with each iterated integral making sense.
Next is product measure. First is the case of finite measures. Then this will extend to σ

finite measures. The following theorem is Fubini’s theorem.

Theorem 10.14.5 Let f : X ×Y → [0,∞] be measurable with respect to the σ al-
gebra, σ (K )≡ E ×F just defined and let µ×ν be the product measure of 10.27 where
µ and ν are finite measures on (X ,E ) and (Y,F ) respectively. Then∫

X×Y
f d (µ×ν) =

∫
Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ.

Proof: Let {sn} be an increasing sequence of σ (K ) ≡ E ×F measurable simple
functions which converges pointwise to f . The above equation holds for sn in place of f
from what was shown above. The final result follows from passing to the limit and using
the monotone convergence theorem. ■

Of course one can generalize right away to measures which are only σ finite. This is
also called Fubini’s theorem.

Definition 10.14.6 Let (X ,E ,µ) ,(Y,F ,ν) both be σ finite. Thus there exist dis-
joint measurable Xn with ∪∞

n=1Xn and disjoint measurable Yn with ∪∞
n=1Yn = Y such that

µ,ν restricted to Xn,Yn respectively are finite measures. Let En be intersections of sets of
E with Xn and Fn similarly defined. Then letting K consist of all measurable rectangles
A×B for A ∈ E ,B ∈ F , and letting E ×F ≡ σ (K ) define the product measure of E
contained in this σ algebra as (µ×ν)(E)≡ ∑n ∑m (µn×νm)(E ∩ (Xn×Ym)) .

Lemma 10.14.7 The above definition yields a well defined measure on E ×F .

Proof: This follows from the standard theorems about sums of nonnegative numbers.
See Theorem 2.5.4. For example if you have two other disjoint sequences Xk,Yl on which
the measures are finite, then

(µ×ν)(E) = ∑
n

∑
m

∑
k

∑
l
(µn×νm)(E ∩ (Xn∩Xk×Ym∩Yl))

= ∑
k

∑
l

∑
n

∑
m
(µk×ν l)(E ∩ (Xn∩Xk×Ym∩Yl))
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and so the definition with respect to the two different increasing sequences gives the same
thing. Thus the definition is well defined. (µ×ν) is a measure because if the Ei are disjoint
E ×F measurable sets and E = ∪iEi,

(µ×ν)(E)≡∑
n

∑
m
(µn×νm)(∪iEi∩ (Xn×Ym)) = ∑

n
∑
m

∑
i
(µn×νm)(Ei∩ (Xn×Ym))

= ∑
i

∑
n

∑
m
(µn×νm)(Ei∩ (Xn×Ym))≡∑

i
(µ×ν)(Ei) ■

Theorem 10.14.8 Let f : X ×Y → [0,∞] be measurable with respect to the σ al-
gebra, σ (K ) just defined as the smallest σ algebra containing the measurable rectangles,
and let µ × ν be the product measure of 10.27 where µ and ν are σ finite measures on
(X ,E ) and (Y,F ) respectively. (10.14.1) Then∫

X×Y
f d (µ×ν) =

∫
Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ. (10.28)

Proof: Letting E ∈ E ×F ,∫
X×Y

XEd (µ×ν)≡ (µ×ν)(E)≡∑
n

∑
m
(µn×νm)(E ∩ (Xn×Ym))

= ∑
n

∑
m

∫
Yn

∫
Xn

XEdµndνn =
∫

Y

∫
X

XEdµdν

the last coming from a use of the monotone convergence theorem applied to sums. It
follows that 10.28 holds for simple functions and then from monotone convergence theorem
and Theorem 9.1.6, it holds for nonnegative E ×F measurable functions. ■

It is also useful to note that all the above holds for ∏
p
i=1 Xi in place of X ×Y and µ i a

measure on Ei a σ algebra of sets of Xi. You would simply modify the definition of G in
10.25 including all permutations for the iterated integrals and for K you would use sets of
the form ∏

p
i=1 Ai where Ai is measurable. Everything goes through exactly as above.

Thus the following is mostly obtained.

Theorem 10.14.9 Let {(Xi,Ei,µ i)}
p
i=1 be σ finite measure spaces and ∏

p
i=1 Ei de-

notes the smallest σ algebra which contains the measurable boxes of the form ∏
p
i=1 Ai

where Ai ∈ Ei. Then there exists a measure λ defined on ∏
p
i=1 Ei such that if f : ∏

p
i=1 Xi

→ [0,∞] is ∏
p
i=1 Ei measurable, (i1, · · · , ip) is any permutation of (1, · · · , p) , then∫

f dλ =
∫

Xip

· · ·
∫

Xi1

f dµ i1 · · ·dµ ip
(10.29)

If each Xi is a complete separable metric space such that µ i is finite on balls and Ei contains
B (Xi), the Borel sets of Xi, then λ is a regular measure on a σ algebra of sets of ∏

p
i=1 Xi

with the metric given by d (x,y) ≡ max{d (xi,yi) : xi,yi ∈ Xi}, which includes the Borel
sets.

Proof: It remains to verify the last claim. This is because all sets ∏
p
i=1 B(ξ i,r) are

contained in ∏
p
i=1 Ei and are the open balls for the topology of ∏

p
i=1 Xi. Then by separability

of each Xi, the product ∏
p
i=1 Xi is also separable and so this product with the above metric

is completely separable. Thus every open set is the countable union of these sets so open
sets are in ∏

p
i=1 Ei which consequently contains the Borel sets. Now from Corollary 9.8.9,

λ is regular because it is finite on balls. ■
The conclusion 10.29 is called Fubini’s theorem. More generally
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Theorem 10.14.10 Suppose, in the situation of Theorem 10.14.9 f ∈ L1 with re-
spect to the measure λ . Then 10.29 continues to hold.

Proof: It suffices to prove this for f having real values because if this is shown the
general case is obtained by taking real and imaginary parts. Since f ∈ L1

(
∏

p
i=1 Xi

)
,∫

| f |dλ < ∞ and so both 1
2 (| f |+ f ) and 1

2 (| f |− f ) are in L1
(
∏

p
i=1 Xi

)
and are each non-

negative. Hence from Theorem 10.14.9,∫
f dλ =

∫ [1
2
(| f |+ f )− 1

2
(| f |− f )

]
dλ =

∫ 1
2
(| f |+ f )dλ −

∫ 1
2
(| f |− f )dλ

=
∫
· · ·
∫ 1

2
(| f |+ f )dµ i1 · · ·dµ ip

−
∫
· · ·
∫ 1

2
(| f |− f )dµ i1 · · ·dµ ip

=
∫
· · ·
∫ 1

2
(| f |+ f )− 1

2
(| f |− f )dµ i1 · · ·dµ ip

=
∫
· · ·
∫

f dµ i1 · · ·dµ ip
■

The following corollary is a convenient way to verify the hypotheses of the above theorem.

Corollary 10.14.11 Suppose f is measurable with respect to ∏
p
i=1 Ei and suppose for

some permutation, (i1, · · · , ip) ,
∫
· · ·
∫
| f |dµ i1 · · ·dµ ip

< ∞. Then f ∈ L1
(
∏

p
i=1 Xi

)
.

Proof: By Theorem 10.14.9,
∫
Rp | f |dλ =

∫
· · ·
∫
| f (x)|dµ i1 · · ·dµ ip

< ∞ and so f is in
L1 (Rp). ■

You can of course consider the completion of a product measure by using the outer
measure approach described earlier. This could have been used to get Lebesgue measure.

If you have f ≥ 0 and you consider the completion of
(
∏

p
i=1 Xi,∏

p
i=1 Ei,∏

p
i=1 µ i

)
de-

noted by
(

∏
p
i=1 Xi,∏

p
i=1 Ei,∏

p
i=1 µ i

)
and f is ∏

p
i=1 Ei measurable, then the procedure for

completing a measure space implies there are h ≥ f ≥ g where h,g are both ∏
p
i=1 Ei mea-

surable and f = g = h a.e. relative to the complete measure. Here (Xi,Ei,µ i) is finite or σ

finite. Then you can define the iterated integral of f as that single number which is between
the iterated integrals of g and h both of which make sense. Thus one can make sense of
an iterated integral even if the function is not product measurable as long as the function is
measurable in the completion of the product measure space. See Problem 18 on Page 354.

Given a finite measure µ defined on the product measurable sets, there exists a decom-
position into iterated integrals as described in the following theorem.

Theorem 10.14.12 Let (X ,E ) , and (Y,F ) be measurable spaces and let E ×F ≡
σ (K ) where K denotes the measurable rectangles E×F for E ∈ E and F ∈F . Let µ

be a finite measure on E ×F . Letting α (E)≡ µ (E×Y ), there exist probability measures
νx unique up to a set of α measure zero such that for all f ≥ 0 and E ×F measurable,∫

X×Y
f dµ =

∫
X

∫
Y

f dνxdα

Proof: Consider for E,F ∈ E ,F respectively,
∫

X×Y XE (x)XF (y)dµ. Letting α (E)≡
µ (E×Y ) , it follows that E →

∫
X×Y XE (x)XF (y)dµ is absolutely continuous with re-

spect to α . Therefore, there exists a unique nonnegative function in L1 called hF such that
for any E ∈ E , ∫

X×Y
XE (x)XF (y)dµ =

∫
X

XE (x)hF (x)dα (10.30)
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That is hF does not depend on E ∈ E . Note also that 10.30 shows right away that hF (x)≤ 1
a.e. Just let F = Y . Also, this shows that hY (x) = 1 for α a.e. x because from 10.30,∫

X×Y
XE (x)dµ = µ (E×Y ) = α (E) =

∫
X

XE (x)hY (x)dα

where hY (x)≤ 1. Now let Em =
[
hY < 1− 1

m

]
so α (Em)≤

(
1− 1

m

)
α (Em) Then the above

shows α (Em) = 0 and so, taking a union for m ∈N, yields that the set where hY is less than
1 has α measure zero.

Now F →
∫

X XE (x)hF (x)dα is clearly a measure because
∫

X×Y XE (x)XF (y)dµ =∫
X XE (x)hF (x)dα implies that if {Fi} are disjoint, then h∪iFi = ∑i hFi this by the unique-

ness in the Radon Nikodym theorem. That is, for fixed x,F→ hF (x) is a measure νx. Since
hY (x) = 1 for α a.e. x and 0≤ hF (x)≤ 1,hY (x) = 1 α a.e., we can let νx be a probability
measure for α a.e. x. Summarizing,∫

X×Y
XE (x)XF (y)dµ =

∫
X

XE (x)
∫

Y
XF (y)dνxdα =

∫
X

∫
Y

XE×F (x,y)dνxdα

If ν̂x also works, then it must equal νx for α a.e. x.
Let the π system K consist of E×F where E ∈ E and F ∈F . Let G be those sets

A of E ×F ≡ σ (K ) such that
∫

X×Y XAdµ =
∫

X
∫

Y XA (x,y)dνxdα Then G contains K
and is closed with respect to countable disjoint unions and complements, the latter coming
from the observation that X ×Y ∈ K which allows the same kind of argument used in
the above treatment of product measures. Therefore, by Dynkin’s lemma, G = σ (K ) and
so, using approximation with simple functions and the monotone convergence theorem, we
obtain that for any f which is E ×F ≡ σ (K ) measurable and nonnegative the iterated
integrals make sense and

∫
X×Y f dµ =

∫
X
∫

Y f dνxdα ■
These measures νx are called slicing measures. They can be used to define what is

meant by independent random variables in probability. This also shows that a given µ is a
product measure exactly when the νx don’t depend on x.

Consider now many spaces ∏
n
i=1 Xi where µ is a measure on E ≡ ∏

n
i=1 Ei where this

denotes the product measurable sets from the (Xi,Ei) . Then for f nonnegative and E mea-
surable, ∫

X1×···×Xn

f dµ =
∫

X1×···×Xn−1

∫
Xn

f dν(x1,··· ,xn−1) (xn)dν (x1, · · · ,xn−1)

Here for E ∈∏
n−1
i=1 Ei, ν (E)≡ ν (E×Xn) . This ν is denoted as ν (x1, · · · ,xn−1). Then this

equals ∫
X1×···×Xn−2

∫
Xn−1

∫
Xn

f dν(x1,··· ,xn−1) (xn)dν(x1,··· ,xn−2) (xn−1)dν (x1, · · · ,xn−2)

...∫
X1

· · ·
∫

Xn

f dν(x1,··· ,xn−1) (xn)dν(x1,··· ,xn−2) (xn−1) · · ·dνx1 (x2)dν (x1)

where for E ∈ E1

Corollary 10.14.13 For E ≡ ∏
n
i=1 Ei, and f : ∏

n
i=1 Xi → [0,∞] ,for (Xi,Ei) a measur-

able space and for µ a finite probability measure on E , meaning µ (∏n
i=1 Xi) = 1, there are

probability measures as denoted below by ν with various subscripts such that∫
X1×···×Xn

f dµ =
∫

X1

· · ·
∫

Xn

f dν(x1,··· ,xn−1) (xn)dν(x1,··· ,xn−2) (xn−1) · · ·dνx1 (x2)dν (x1)
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10.15 Jensen’s Inequality
When you have φ : R→ R is convex, then secant lines lie above the graph of φ . Say
x < w < z so w = λ z+(1−λ )x for some λ ∈ (0,1). Then refering to the following picture,

φ (w)−φ (x)
w− x

≤ λφ (z)+(1−λ )φ (x)−φ (x)
(λ z+(1−λ )x)− x

=
λ (φ (z)−φ (x))

λ (z− x)
=

φ (z)−φ (x)
z− x

For y < w < x so w = λy+(1−λ )x. Since w− x < 0,

φ (w)−φ (x)
w− x

≥ λφ (y)+(1−λ )φ (x)−φ (x)
λ (y− x)

=
φ (y)−φ (x)

y− x

Since x is arbitrary, this has shown that slopes of secant lines of the graph of φ over intervals
increase as the intervals move to the right.

y x z

Lemma 10.15.1 If φ : R→ R is convex, then φ is continuous. Also, if φ is convex,
µ(Ω) = 1, and f ,φ ( f ) : Ω→ R are in L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ .

Proof: Let λ ≡ limw→x+
φ(w)−φ(x)

w−x . Those slopes of secant lines are decreasing and so
this limit exists. Then in the picture, for w ∈ (x,z) ,φ (x)+ λ (w− x) ≤ φ (w) ≤ φ (x)+(

φ(z)−φ(x)
z−x

)
(w− x) and so φ is continuous from the right. A similar argument shows φ is

continuous from the left. In particular, letting µ ≡ limw→x−
φ(x)−φ(w)

x−w ≤ λ because each
of these slopes is smaller than the slopes whose inf gives λ . Then this shows that for
w ∈ (y,x) , φ(w)−φ(x)

w−x ≤ λ so φ (w)−φ (x)≥ λ (w− x) and so φ (w)≥ φ (x)+λ (w− x) and

for these ω, φ(x)−φ(w)
x−w ≥ φ(x)−φ(y)

x−y so φ (w) ≤ φ (x) +
(

φ(x)−φ(y)
x−y

)
(w− x) so one obtains

continuity from the left. This has also shown that for w not equal to x,φ (w) ≥ φ (x) +
λ (w− x) or in other words, φ (x)≤ φ (w)+λ (x−w) .Letting x =

∫
Ω

f dµ, and using the λ

whose existence was just established, for each ω,

φ

(∫
Ω

f dµ

)
≤ φ ( f (ω))+λ

(∫
Ω

f dµ− f (ω)

)
Do

∫
Ω

dµ to both sides and use µ (Ω) = 1. Thus

φ

(∫
Ω

f dµ

)
≤
∫

Ω

φ ( f )dµ +λ

(∫
Ω

f dµ−
∫

Ω

f dµ

)
=
∫

Ω

φ ( f )dµ.

There are no difficulties with measurability because φ is continuous. ■

Corollary 10.15.2 In the situation of Lemma 10.15.1 where µ(Ω) = 1, suppose f has
values in [0,∞) and is measurable. Also suppose φ is convex and increasing on [0,∞). Then
φ(
∫

Ω
f du)≤

∫
Ω

φ( f )dµ .

Proof: Let fn (ω) = f (ω) if f (ω) ≤ n and let fn (ω) = n if f (ω) ≥ n. Then both
fn,φ ( fn) are in L1 (Ω) . Therefore, the above holds and φ(

∫
Ω

fndu) ≤
∫

Ω
φ( fn)dµ. Let

n→ ∞ and use the monotone convergence theorem. ■
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10.16 Faddeyev’s Lemma
This next lemma is due to Faddeyev. I found it in [42].

Lemma 10.16.1 Let f ,g be nonnegative measurable nonnegative functions on a mea-
sure space (Ω,µ). Then

∫
f gdµ =

∫
∞

0
∫
[g>t] f dµdt =

∫
∞

0
∫

∞

0 µ ([ f > s]∩ [g > t])dsdt.

Proof: First suppose g = aXE where E is measurable, a > 0. Now [g > t] = /0 if
t ≥ a and it equals XE if t < a. Thus the right side equals

∫ a
0
∫

E f dµdt =
∫ a

0
∫

XE f dµ =∫
aXE f dµ which equals the left side. Thus the first equation is true if g = aXE . Similar

reasoning shows that when you have g a nonnegative simple function, g = ∑
n
i=1 aiXEi

where we can arrange to have {ai} increasing, the first equation still holds. Now by the
monotone convergence theorem, this yields the desired result for the first equation.

To get the second equal sign, note that∫
∞

0

∫
[g>t]

f dµdt =
∫

∞

0

∫
X[g>t] f dµdt =

∫
∞

0

∫
∞

0
µ
([

X[g>t] f > s
])

dsdt

=
∫

∞

0

∫
∞

0
µ ([ f > s]∩ [g > t])dsdt ■

10.17 Exercises
1. Let Ω = N={1,2, · · ·}. Let F = P(N), the set of all subsets of N, and let µ(S) =

number of elements in S. Thus µ({1}) = 1 = µ({2}), µ({1,2}) = 2, etc. In this
case, all functions are measurable. For a nonnegative function, f defined on N, show∫
N f dµ = ∑

∞
k=1 f (k) . What do the monotone convergence and dominated conver-

gence theorems say about this example?

2. For the measure space of Problem 1, give an example of a sequence of nonnegative
measurable functions { fn} converging pointwise to a function f , such that inequality
is obtained in Fatou’s lemma.

3. If (Ω,F ,µ) is a measure space and f ≥ 0 is measurable, show that if g(ω) = f (ω)
a.e. ω and g≥ 0, then

∫
gdµ =

∫
f dµ. Show that if f ,g ∈ L1 (Ω) and g(ω) = f (ω)

a.e. then
∫

gdµ =
∫

f dµ .

4. Let { fn} , f be measurable functions with values in C. { fn} converges in measure if
limn→∞ µ(x ∈Ω : | f (x)− fn(x)| ≥ ε) = 0 for each fixed ε > 0. Prove the theorem of
F. Riesz. If fn converges to f in measure, then there exists a subsequence { fnk}which
converges to f a.e. In case µ is a probability measure, this is called convergence in
probability. It does not imply pointwise convergence but does imply that there is a
subsequence which converges pointwise off a set of measure zero. Hint: Choose n1
such that µ(x : | f (x)− fn1(x)| ≥ 1) < 1/2. Choose n2 > n1 such that µ(x : | f (x)−
fn2(x)| ≥ 1/2) < 1/22 n3 > n2 such that µ(x : | f (x)− fn3(x)| ≥ 1/3) < 1/23, etc.
Now consider what it means for fnk(x) to fail to converge to f (x). Use the Borel
Cantelli Lemma 9.2.5 on Page 243.

5. Let (X ,F ,µ) be a regular measure space. For example, it could beRp with Lebesgue
measure. Why do we care about a measure space being regular? This problem will
show why. Suppose that closures of balls are compact as in the case of Rp.
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(a) Let µ (E)<∞. By regularity, there exists K ⊆E ⊆V where K is compact and V
is open such that µ (V \K)< ε . Show there exists W open such that K ⊆ W̄ ⊆V
and W̄ is compact. Now show there exists a function h such that h has values in
[0,1] ,h(x) = 1 for x ∈ K, and h(x) equals 0 off W . Hint: You might consider
Problem 11 on Page 259.

(b) Show that
∫
|XE −h|dµ < ε

(c) Next suppose s = ∑
n
i=1 ciXEi is a nonnegative simple function where each

µ (Ei) < ∞. Show there exists a continuous nonnegative function h which
equals zero off some compact set such that

∫
|s−h|dµ < ε

(d) Now suppose f ≥ 0 and f ∈ L1 (Ω) . Show that there exists h ≥ 0 which is
continuous and equals zero off a compact set such that

∫
| f −h|dµ < ε

(e) If f ∈ L1 (Ω) with complex values, show the conclusion in the above part of
this problem is the same.

6. Let (Ω,F ,µ) be a measure space and suppose f ,g : Ω→ (−∞,∞] are measurable.
Prove the sets {ω : f (ω) < g(ω)} and {ω : f (ω) = g(ω)} are measurable. Hint:
The easy way to do this is to write

{ω : f (ω)< g(ω)}= ∪r∈Q [ f < r]∩ [g > r] .

Note that l (x,y) = x− y is not continuous on (−∞,∞] so the obvious idea doesn’t
work. Here [g > r] signifies {ω : g(ω)> r}.

7. Let { fn} be a sequence of real or complex valued measurable functions. Let

S = {ω : { fn(ω)} converges}.

Show S is measurable. Hint: You might try to exhibit the set where fn converges
in terms of countable unions and intersections using the definition of a Cauchy se-
quence.

8. Suppose un(t) is a differentiable function for t ∈ (a,b) and suppose that for t ∈ (a,b),
|un(t)|, |u′n(t)|< Kn where ∑

∞
n=1 Kn < ∞. Show(∑∞

n=1 un (t))
′ = ∑

∞
n=1 u′n(t).

Hint: This is an exercise in the use of the dominated convergence theorem and the
mean value theorem.

9. Suppose { fn} is a sequence of nonnegative measurable functions defined on a mea-
sure space, (Ω,S ,µ). Show that

∫
∑

∞
k=1 fkdµ = ∑

∞
k=1

∫
fkdµ . Hint: Use the mon-

otone convergence theorem along with the fact the integral is linear.

10. Explain why for each t > 0,x→ e−tx is a function in L1 (R) and
∫

∞

0 e−txdx = 1
t . Thus∫ R

0

sin(t)
t

dt =
∫ R

0

∫
∞

0
sin(t)e−txdxdt

Now explain why you can change the order of integration in the above iterated in-
tegral. Then compute what you get. Next pass to a limit as R → ∞ and show∫

∞

0
sin(t)

t dt = 1
2 π. This is a very important integral. Note that the thing on the left

is an improper integral. sin(t)/t is not Lebesgue integrable because it is not ab-
solutely integrable. That is

∫
∞

0

∣∣ sin t
t

∣∣dm = ∞. It is important to understand that the
Lebesgue theory of integration only applies to nonnegative functions and those which
are absolutely integrable.
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11. Let the rational numbers in [0,1] be {rk}∞

k=1 and define

fn (t) =
{

1 if t ∈ {r1, · · · ,rn}
0 if t /∈ {r1, · · · ,rn}

Show that limn→∞ fn (t) = f (t) where f is one on the rational numbers and 0 on the
irrational numbers. Explain why each fn is Riemann integrable but f is not. How-
ever, each fn is actually a simple function and its Lebesgue and Riemann integral is
equal to 0. Apply the monotone convergence theorem to conclude that f is Lebesgue
integrable and in fact,

∫
f dm = 0.

12. Show limn→∞
n
2n ∑

n
k=1

2k

k = 2. This problem was shown to me by Shane Tang, a for-
mer student. It is a nice exercise in dominated convergence theorem if you massage
it a little. Hint:

n
2n

n

∑
k=1

2k

k
=

n

∑
k=1

2k−n n
k
=

n−1

∑
l=0

2−l n
n− l

=
n−1

∑
l=0

2−l
(

1+
l

n− l

)
≤

n−1

∑
l

2−l (1+ l)

13. Suppose you have a real vector space E (ω) which is a subspace of a normed linear
space V , this for each ω ∈Ω where (Ω,F ) is a measurable space. Suppose E (ω) =
span(b1 (ω) , · · · ,bn (ω)) where these bi (ω) are linearly independent and each is
measurable into V . Define θ (ω) :Rn→ E (ω) by θ (ω)(∑n

i=1 aiei)≡∑
n
i=1 aibi (ω) .

Show that θ (ω) maps functions measurable into Rn to functions measurable into V .
Now show θ (ω)−1 also maps functions measurable into V to functions measurable
into Rn. Hint: For the second part you need to start with a function ω → h(ω)
which is measurable into V with values in E (ω). Thus h(ω) = ∑

n
i=1 ai (ω)bi (ω) .

You need to verify that the ai are measurable. To do this, assume first that ∥h(ω)∥ is
bounded by some constant M. Then consider Sr ≡

{
ω : inf|a|>r ∥∑i aibi (ω)∥> M

}
.

Explain why every ω is in some Sr. Then consider Φ(a,ω) which will be defined as
−∥∑i aibi (ω)−h(ω)∥for ω ∈ Sr. Thus the maximum of this functional for ω ∈ Ω

is 0. Show that for ω ∈ Sr the maximum will occur on the set |a| ≤ M + 1. Then
apply Kuratowski’s lemma. Finally consider a truncation of h called hm and apply
what was just shown to this truncation which has ∥hm (ω)∥ ≤m. Then let m→∞ and
observe that for large enough m,hm (ω) = h(ω) and so the am

i (ω) are also constant
from this value onward. Thus limm→∞ am

i (ω) ≡ ai (ω) exists and ai is measurable,
being the limit of measurable functions.

14. Give an example of a sequence of functions { fn} , fn ≥ 0 and a function f ≥ 0 such
that f (x) = liminfn→∞ fn (x) but

∫
f dm < liminfn→∞

∫
fndm so you get strict in-

equality in Fatou’s lemma.

15. Let f be a nonnegative Riemann integrable function defined on [a,b] . Thus there is
a unique number between all the upper sums and lower sums. First explain why,
if ai ≥ 0,

∫
∑

n
i=1 aiX[ti,ti−1) (t)dm = ∑i ai (ti− ti−1) . Explain why there exists an in-

creasing sequence of Borel measurable functions {gn} converging to a Borel mea-
surable function g, and a decreasing sequence of functions {hn} which are also Borel
measurable converging to a Borel measurable function h such that gn ≤ f ≤ hn,∫

gndm equals a lower sum,
∫

hndm equals an upper sum
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and
∫
(h−g)dm = 0. Explain why {x : f (x) ̸= g(x)} is a set of measure zero. Then

explain why f is measurable and
∫ b

a f (x)dx =
∫

f dm so that the Riemann integral
gives the same answer as the Lebesgue integral. Here m is one dimensional Lebesgue
measure discussed earlier.

16. Let λ ,µ be finite measures. We say λ ≪ µ if whenever µ (E) = 0 it follows λ (E) =
0. Show that if λ ≪ µ, then for every ε > 0 there exists δ > 0 such that if µ (E)< δ ,
then λ (E)< ε .

17. If λ is a signed measure with values in R so that when {Ei} are disjoint, ∑i λ (Ei)
converges, show that the infinite series converges absolutely also.

18. In the Radon Nikodym Theorem 10.13.7, show that if f , f̂ both work, then f = f̂ a.e.

19. Suppose ν≪ µ where these are finite measures so there exists h≥ 0 and measurable
such that ν (E) =

∫
E hdµ by the Radon Nikodym theorem. Show that if f is mea-

surable and non-negative, then
∫

f dν =
∫

f hdµ . Hint: It holds if f is χE and so it
holds for a simple function. Now consider a sequence of simple functions increasing
to f and use the monotone convergence theorem.

20. If the functions fi of the above problem are “independent” you have

µ (∩m
i=1 [ fi ≥ si]) =

m

∏
i=1

µ ([ fi ≥ si])

Suppose then that { fi}m
i=1 are independent. Show

∫
Ω ∏

m
i=1 fidµ = ∏

m
i=1
∫

Ω
fidµ. If µ

is a probability measure, then such measurable functions are called random variables.

21. Suppose the situation of Corollary 10.14.13 in which µ is a probability measure on
(∏n

i=1 Xi,E ) where E consists of the product measurable sets and for f a nonnegative
E measurable function,∫

X1×···×Xn

f dµ

=
∫

X1

· · ·
∫

Xn

f dν(x1,··· ,xn−1) (xn)dν(x1,··· ,xn−2) (xn−1) · · ·dνx1 (x2)dν (x1)

Show that if the slicing measures do not depend on the subscripts, then whenever
Ek+1 ∈ Ek+1,

ν(x1,··· ,xk) (Ek+1) = µ (X1×·· ·×Xk×Ek+1×Xk+2×·· ·×Xn)≡ µ (Ek+1)

where Ek+1 → µ (Ek+1) is a probability measure which does not depend on the
vector (x1, · · · ,xk) . If any of the slicing measures does depend on the subscripts,
show that something like this cannot take place.

Hint: Consider XEk+1 = f .

22. Suppose ν(x1,··· ,xk) = νk asside from an appropriate set of ν(x1,··· ,xk) measure zero,
where νk does not depend on (x1, · · · ,xk). Show that then,

∫
X1×···×Xn ∏

n
i=1 XEidµ =

∏
n
i=1 ν i (Ei) = ∏

n
i=1 µ (Ei). This has to do with the notion of independent events.
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23. Use Jensen’s inequality in Corollary 10.15.2 to show that if f is nonnegative and
measurable, then for p > 1 show that whenever µ is a finite measure, then if f p ∈
L1 (Ω) it follows that f ∈ L1 (Ω). Give an example to show that this is not necessarily
true if µ (Ω) = ∞. Hint: For the second part, you might consider Ω = N, the σ

algebra the set of all subsets, and µ (S) equal to the number of elements in S. Maybe
f (n) = 1/n.



Chapter 11

Regular Measures
So far, most examples have been in one dimensional settings. This is about to change.

11.1 Regular Measures in a Metric Space
In this section X will be a metric space in which the closed balls are compact. The extra
generality involving a metric space instead of Rp would allow the consideration of mani-
folds for example. However, Rp is an important case.

Definition 11.1.1 The symbol Cc (V ) for V an open set will denote the continuous
functions having compact support which is contained in V . Recall that the support of a
continuous function f is defined as the closure of the set on which the function is nonzero.
L : Cc (X)→C is called a positive linear functional if it is linear, L(α f +βg)=αL f +βLg
and satisfies L f ≤ Lg if f ≤ g. Also, recall that a measure µ is regular on some σ algebra
F containing the Borel sets if for every F ∈F ,

µ (F) = sup{µ (K) : K ⊆ F and K compact}
µ (F) = inf{µ (V ) : V ⊇ F and V is open}

A complete measure, finite on compact sets, which is regular as above, is called a Radon
measure. A set is called an Fσ set if it is the countable union of closed sets and a set is Gδ

if it is the countable intersection of open sets.

Remarkable things happen in the above context. Some are described in the following
proposition.

Proposition 11.1.2 Suppose (X ,d) is a metric space in which the closed balls are com-
pact and X is a countable union of closed balls. Also suppose (X ,F ,µ) is a complete
measure space, F contains the Borel sets, and that µ is regular and finite on measurable
subsets of finite balls. Then

1. For each E ∈ F , there is an Fσ set F and a Gδ set G such that F ⊆ E ⊆ G and
µ (G\F) = 0.

2. Also if f ≥ 0 is F measurable, then there exists g≤ f such that g is Borel measurable
and g = f a.e.

and h≥ f such that h is Borel measurable and h = f a.e.

3. If E ∈ F is a bounded set contained in a ball B(x0,r) = V , then there exists a
sequence of continuous functions in Cc (V ) {hn} having values in [0,1] and a set
of measure zero N such that for x /∈ N,hn (x)→XE (x) . Also

∫
|hn−XE |dµ → 0.

Letting Ñ be a Gδ set of measure zero containing N,hnXÑC →XF where F ⊆ E and
µ (E \F) = 0.

4. If f ∈ L1 (X ,F ,µ) , there exists g ∈Cc (X) , such that
∫

X | f −g|dµ < ε. There also
exists a sequence of functions in Cc (X) {gn} which converges pointwise to f .

315
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Proof: 1. Let Rn≡B(x0,n) ,R0 = /0. If E is measurable, let En≡E∩(Rn \Rn−1) . Thus
these En are disjoint and their union is E. By outer regularity, there exists open Un ⊇ En
such that µ (Un \En) < ε/2n. Now if U ≡ ∪nUn, it follows that U \E ⊆ ∪n (Un \En) so
µ (U \E)≤∑

∞
n=1

ε

2n = ε . This has shown that there exists an open set U containing E such
that µ (U \E) ≤ ε . Let Vn be open, containing E and µ (Vn \E) < 1

2n ,Vn ⊇ Vn+1. Let G ≡
∩nVn. This is a Gδ set containing E and µ (G\E)≤ µ (Vn \E)< 1

2n and so µ (G\E) = 0.
By inner regularity, there is Fn an Fσ set contained in En with µ (En \Fn) = 0. Then let
F ≡ ∪nFn. This F is an Fσ set and µ (E \F) ≤ ∑n µ (En \Fn) = 0. Thus F ⊆ E ⊆ G and
µ (G\F)≤ µ (G\E)+µ (E \F) = 0.

2. If f is measurable and nonnegative, from Theorem 9.1.6 there is an increasing se-
quence of simple functions sn such that limn→∞ sn (x) = f (x) . Say sn (x)≡∑

mn
k=1 cn

kXEn
k
(x) .

Let mp
(
En

k \Fn
k

)
= 0 where Fn

k is an Fσ set. Replace En
k with Fn

k and let s̃n be the result-
ing simple function. Let g(x) ≡ limn→∞ s̃n (x) . Then g is Borel measurable and g ≤ f
and g = f except for a set of measure zero, the union of the sets where sn is not equal to
s̃n. As to the other claim, let hn (x) ≡ ∑

∞
k=1 XAkn (x)

k
2n where Akn is a Gδ set containing

f−1
(
( k−1

2n , k
2n ]
)

for which µ
(
Akn \ f−1

(
( k−1

2n , k
2n ]
))
≡ µ (Dkn) = 0. If N = ∪k,n Dkn, then

N is a set of measure zero. On NC, hn (x)→ f (x) . Let h(x) = liminfn→∞ hn (x). Note
that XAkn (x)

k
2n ≥X f−1(( k−1

2n , k
2n ]) (x)

k
2n and so hn (x)≥ h(x) and liminfn→∞ hn (x) is Borel

measurable because each hn is.

3. Let Kn ⊆ E ⊆ Vn with Kn compact and Vn open such that Vn ⊆ B(x0,r) and also
that µ (Vn \Kn)< 2−(n+1). Then from Lemma 3.12.4, there is hn with Kn ≺ hn ≺Vn. Then∫
|hn−XE |dµ < 2−n and so

µ

(
|hn−XE |>

(
2
3

)n)
<

((
3
2

)n ∫
[|hn−XE |>( 2

3 )
n
]
|hn−XE |dµ

)
≤
(

3
4

)n

By Lemma 9.2.5 there is a set of measure zero N such that if x /∈N, it is in only finitely many
of the sets

[
|hn−XE |>

( 2
3

)n
]
. Thus on NC, eventually, for all k large enough, |hk−XE | ≤( 2

3

)k
so hk (x)→XE (x) off N. The assertion about convergence of the integrals follows

from the dominated convergence theorem and the fact that each hn is nonnegative, bounded
by 1, (Kn ≺ hn ≺ Vn) and is 0 off some ball. In the last claim, it only remains to verify
that hnXÑC converges to an indicator function because each hnXÑC is Borel measurable.
(Ñ ⊇N and Ñ is a Borel set and µ

(
Ñ \N

)
= 0) Thus its limit will also be Borel measurable.

However, hnXÑC converges to 1 on E ∩ ÑC,0 on EC ∩ ÑC and 0 on Ñ. Thus E ∩ ÑC = F
and hnXÑC (x)→XF where F ⊆ E and µ (E \F)≤ µ

(
Ñ
)
= 0.

4. It suffices to assume f ≥ 0 because you can consider the positive and negative parts
of the real and imaginary parts of f and reduce to this case. Let fn (x)≡XB(x0,n) (x) f (x) .
Then by the dominated convergence theorem, if n is large enough,

∫
| f − fn|dµ < ε. There

is a nonnegative simple function s ≤ fn such that
∫
| fn− s|dµ < ε. This follows from

picking k large enough in an increasing sequence of simple functions {sk} converging to fn
and the dominated convergence theorem. Say s(x) = ∑

m
k=1 ckXEk (x) . Then let Kk ⊆ Ek ⊆

Vk where Kk,Vk are compact and open respectively and ∑
m
k=1 ckµ (Vk \Kk)< ε . By Lemma
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3.12.4, there exists hk with Kk ≺ hk ≺Vk. Then

∫ ∣∣∣∣∣ m

∑
k=1

ckXEk (x)−
m

∑
k=1

ckhk (x)

∣∣∣∣∣dµ ≤ ∑
k

ck

∫ ∣∣XEk (x)−hk (x)
∣∣dx

< 2∑
k

ckµ (Vk \Kk)< 2ε

Let g≡ ∑
m
k=1 ckhk (x) . Thus

∫
|s−g|dµ ≤ 2ε. Then∫

| f −g|dµ ≤
∫
| f − fn|dµ +

∫
| fn− s|dµ +

∫
|s−g|dµ < 4ε

Since ε is arbitrary, this proves the first part of 4. For the second part, let gn ∈Cc (X) such
that

∫
| f −gn|dµ < 2−n. Let An ≡

{
x : | f −gn|>

( 2
3

)n
}
. Then

µ (An)≤
(

3
2

)n ∫
An

| f −gn|dµ ≤
(

3
4

)n

.

Thus, if N is all x in infinitely many An, then by the Borel Cantelli lemma, µ (N) = 0 and
if x /∈ N, then x is in only finitely many An and so for all n large enough, | f (x)−gn (x)| ≤( 2

3

)n
. ■

For the rest of this chapter, I will specialize toRp or at least a finite dimensional normed
linear space. For different proofs and some results which are not discussed here, a good
source is [17] which is where I first read some of these things.

Recall the following Besicovitch covering theorem for Radon measures. It is Corollary
9.12.3 on Page 264 and the earlier version, Theorem 4.5.8 on Page 119 which are listed
here for the sake of convenience.

Corollary 11.1.3 Let E be a nonempty set and let µ be a Radon measure on a σ algebra
which contains the Borel sets of Rp. Suppose F is a collection of closed balls which cover
E in the sense of Vitali. Then there exists a sequence of disjoint closed balls {Bi} ⊆F such

that µ

(
E \∪N

j=1B j

)
= 0,N ≤ ∞.

Theorem 11.1.4 There exists a constant Np, depending only on p with the following
property. If F is any collection of nonempty balls in Rp with

sup{diam(B) : B ∈F}= D < ∞

and if A is the set of centers of the balls in F , then there exist subsets of F , H1, · · · , HNp ,
such that each Hi is a countable collection of disjoint balls from F (possibly empty) and

A⊆ ∪Np
i=1∪{B : B ∈Hi}.

11.2 Constructing Measures from Functionals
Here is a theorem which is the main result on measures and functionals defined on a space
of continuous functions. The typical situation is of a metric space in which closed balls are
compact.
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Definition 11.2.1 Cc (X) will denote the complex values functions which have com-
pact support in some metric space X. This is clearly a linear space. Then a linear function
L : Cc (X)→ C is called “postitive” if whenever f ≥ 0, then L f ≥ 0.

Theorem 11.2.2 Let L : Cc (X)→ C be a positive linear functional where X is a
metric space and X is a countable union of compact sets. Then there exists a complete
measure µ defined on a σ algebra F which contains the Borel sets B (X) which is finite
on compact sets and has the following properties.

1. µ is regular and if E is measurable, there are Fσ and Gδ sets F,G such that F ⊆ E ⊆
G and µ (G\F) = 0.

2. For all f ∈Cc (X) ,L f =
∫

X f dµ

Proof: See the notation and lemmas near Definition 3.12.3 having to do with partitions
of unity on a metric space for what is needed in this proof. For V open, let µ̄ (V ) ≡
sup{L f : f ≺V}. Then for an arbitrary set F, let µ̄ (F) ≡ inf{µ̄ (V ) : V ⊇ F} , µ̄ ( /0) ≡ 0.
In what follows, V will be an open set and K a compact set.

Claim 1: µ̄ is well defined.
Proof of Claim 1: Note there are two descriptions of µ̄ (V ) for V open. They need

to be the same. Let µ̄1 be the definition involving supremums of L f and let µ̄ be the
general definition. Let V ⊆U where V,U open. Then by definition, µ̄ (V )≤ µ̄1 (U) and so
µ̄ (V )≡ inf{µ̄1 (U) : U ⊇V} ≥ µ̄1 (V ) . However, V ⊆V and so µ̄ (V )≤ µ̄1 (V ) . ■

Claim 2: µ̄ is finite on compact sets. Also, if K ≺ f , it follows that µ̄ (K)≤ L( f )< ∞.
Proof of Claim 2: Let K ≺ f ≺ X . Let Vε ≡ {x : f (x)> 1− ε} , an open set since f is

continuous. Then let g≺Vε so it follows that f
1−ε
≥ g. Then L(g)≤ 1

1−ε
L( f )< ∞. Then

taking the sup over all such g, it follows that µ̄ (K)≤ µ̄ (Vε)≤ 1
1−ε

L f . Now let ε → 0 and
conclude that µ̄ (K)≤ L( f ). ■

Claim 3: µ̄ is subadditive: µ̄ (∪iEi)≤ ∑i µ̄ (Ei).
Proof of Claim 3: First consider the case of open sets. Let V = ∪iVi. Let l < µ̄ (V ) .

Then there exists f ≺V with L f > l. Then sup( f ) is contained in ∪n
i=1Vi. Now let supψ i ⊆

Vi and ∑
n
i=1 ψ i = 1 on sup( f ) . This is from Theorem 3.12.5. Then

l < L f =
n

∑
i=1

L(ψ i f )≤
n

∑
i=1

µ̄ (Vi)≤∑
i

µ̄ (Vi) .

Since l is arbitrary, it follows that µ̄ (V ) ≤ ∑i µ̄ (Vi) . Now consider the general case. Let
E = ∪iEi. If ∑i µ̄ (Ei) = ∞, there is nothing to show. Assume then that this sum is finite
and let Vi ⊇ Ei, µ̄ (Ei)+

ε

2i > µ̄ (V ). Then

µ̄ (E)≤ µ̄ (∪iVi)≤∑
i

µ̄ (Vi)≤∑
i

(
µ̄ (Ei)+

ε

2i

)
= ∑

i
µ̄ (Ei)+ ε

Since ε is arbitrary, this shows µ̄ is subadditive. ■
Claim 4: If dist(A,B) = δ > 0, then µ̄ (A∪B) = µ̄ (A)+ µ̄ (B).
Proof of Claim 4: If the right side is infinite, there is nothing to show so we can assume

that µ̄ (A) , µ̄ (B) are both finite. First suppose U,V are open and disjoint having finite outer
measure. Let µ̄ (U)≤ L f1 + ε where f1 ≺U and let f2 ≺V with µ̄ (V )≤ L( f2)+ ε . Then

µ̄ (U ∪V )≤ µ̄ (U)+ µ̄ (V )≤ L f1 +L f2 +2ε ≤ L( f1 + f2)+2ε ≤ µ̄ (U ∪V )+2ε
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Since ε is arbitrary, this shows that µ̄ (U ∪V ) = µ̄ (U)+ µ̄ (V ). Now in case A,B are as
assumed, let U ≡ ∪x∈U B(x,δ/3) ,V ≡ ∪x∈V B(x,δ/3) . Then these are disjoint open sets
containing A and B respectively. Then there is O open, O ⊇ A∪B such that µ̄ (A∪B)+
ε > µ̄ (O) . Replacing U with U ⊆ O and V with V ∩O, we can assume µ̄ (A∪B)+ ε >
µ̄ (U ∪V ) . Then

µ̄ (A)+ µ̄ (B) ≤ µ̄ (U)+ µ̄ (V ) = µ̄ (U ∪V )

< ε + µ̄ (A∪B)≤ ε + µ̄ (A)+ µ̄ (B)

Since ε is arbitrary, this shows that µ̄ (A)+ µ̄ (B) = µ̄ (A∪B).
From Theorem 9.5.4 there is a complete measure µ defined on a σ algebra F which

equals µ̄ on F . From Claim 4 and Theorem 9.6.1, F contains the Borel sets B (X). From
the definition, µ is outer regular and so it follows from Theorem 9.8.6 that µ is regular
because it is finite on compact sets and X is the union of countably many compact sets so
µ is σ finite. Hence, by that theorem, the claimed approximation result also holds.

It only remains to show that the integrals with respect to the measure represent the
functional. This will complete the proof.

Claim 5:
∫

f dµ = L f for all f ∈Cc (X) .
Proof: Let f ∈Cc(X), f real-valued, and suppose f (X)⊆ [a,b]. Choose t0 < a and let

t0 < t1 < · · ·< tn = b, ti− ti−1 < ε . Let

Ei = f−1((ti−1, ti])∩ spt( f ). (11.1)

Note that ∪n
i=1Ei is a closed set equal to spt( f ).

∪n
i=1Ei = spt( f ) (11.2)

Since X = ∪n
i=1 f−1((ti−1, ti]). Let Vi ⊇ Ei,Vi is open and let Vi satisfy

f (x)< ti + ε for all x ∈Vi, µ(Vi \Ei)< ε/n. (11.3)

By Theorem 3.12.5, there exists hi ∈Cc(X) such that

hi ≺Vi,
n

∑
i=1

hi(x) = 1 on spt( f ).

Now note that for each i, f (x)hi(x)≤ hi(x)(ti + ε). Therefore,

L f = L(
n

∑
i=1

f hi)≤ L(
n

∑
i=1

hi(ti + ε)) =
n

∑
i=1

(ti + ε)L(hi)

=
n

∑
i=1

(|t0|+ ti + ε)L(hi)−|t0|L

(
n

∑
i=1

hi

)
.

Now note that |t0|+ ti + ε ≥ 0 and so from the definition of µ and claim 2, this is no larger
than

n

∑
i=1

(|t0|+ ti + ε)µ(Vi)−|t0|µ(spt( f ))≤
n

∑
i=1

(|t0|+ ti + ε)(µ(Ei)+ ε/n)−|t0|µ(spt( f ))
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≤ |t0|

µ(spt( f ))︷ ︸︸ ︷
n

∑
i=1

µ(Ei)+
ε

n
n |t0|+∑

i
tiµ (Ei)+∑

i
ti

ε

n
+∑

i
εµ (Ei)+

ε2

n
−|t0|µ(spt( f ))

≤ ε |t0|+ ε (|t0|+ |b|)+ εµ(spt( f ))+ ε
2 +∑

i
tiµ (Ei)

≤ ε |t0|+ ε (|t0|+ |b|)+2εµ(spt( f ))+ ε
2 +

n

∑
i=1

ti−1µ(Ei)

≤ ε (2 |t0|+ |b|+2µ(spt( f ))+ ε)+
∫

f dµ

Since ε > 0 is arbitrary, L f ≤
∫

f dµ for all f ∈Cc(X), f real. Hence equality holds because
L(− f ) ≤ −

∫
f dµ so L( f ) ≥

∫
f dµ . Thus L f =

∫
f dµ for all f ∈ Cc(X). Just apply the

result for real functions to the real and imaginary parts of f . ■
Using Corollary 9.8.9 we obtain the following corollary. Note that the conditions of

the above theorem imply that X is a Polish space in the usual case where closed balls are
compact.

Corollary 11.2.3 If X is a Polish space then in the above theorem, we obtain inner
regularity of µ in terms of compact sets. That is if F ∈F , then

µ (F) = sup{µ (K) : K ⊆ F,K compact}

11.3 The p Dimensional Lebesgue Measure
Theorem 11.2.2 will provide many examples of Radon measures on Rp. Lebesgue measure
is obtained by letting

L f ≡
∫
R
· · ·
∫
R

f (x1, ...,xp)dm1 (x1) · · ·dmp (xp)

for f ∈Cc (Rp). Thus Lebesgue measure is a Radon measure, denoted as mp. In this case,
the σ algebra will be denoted as Fp. Lebesgue measure also has other very important
properties. Integrals can be easily computed and the measure is translation invariant.

Theorem 11.3.1 Whenever f is measurable and nonnegative, then whenever g is
Borel measurable and equals f a.e. and h is Borel and equals f a.e.∫

R
· · ·
∫
R

h(x1, ...,xp)dm1 (xi1) · · ·dmp
(
xip

)
=

∫
Rp

f dmp =
∫
R
· · ·
∫
R

g(x1, ...,xp)dm1 (xi1) · · ·dmp
(
xip

)
where (i1, i2, ..., ip) is any permutation of the integers {1,2, ..., p}. Also, mp is regular and
complete. If R is of the form ∏

p
i=1 Ii where Ii is an interval, then mp (R) is the product of the

lengths of the sides of R. Also if E ∈Fp, then mp (x+E) = mp (E).
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Proof: Let K consist of all open rectangles ∏i (ai,bi) along with /0 and Rp. Thus this
is a π system. Let Rn ≡ ∏

p
i=1 (−n,n). Let G consist of the Borel sets E ⊆ Rp such that∫

Rn∩E dmp =
∫
R · · ·

∫
RXRn∩Edm1 (xi1) · · ·dmp

(
xip

)
. Then K ⊆ G . It is obvious from the

monotone convergence theorem that G is closed with respect to countable disjoint unions.
Indeed, this theorem implies that for E = ∪iEi, the Ei disjoint,

∫
Rn∩E

dmp = lim
m→∞

∫
Rn∩∪m

i=1Ei

dmp = lim
m→∞

(
m

∑
i=1

∫
XRn∩Eidmp

)

= lim
m→∞

(
m

∑
i=1

∫
R
· · ·
∫
R

XRn∩Eidm1 (xi1) · · ·dmp
(
xip

))

= lim
m→∞

(∫
R
· · ·
∫
R

m

∑
i=1

XRn∩Eidm1 (xi1) · · ·dmp
(
xip

))

= lim
m→∞

(∫
R
· · ·
∫
R

XRn∩∪m
i=1Eidm1 (xi1) · · ·dmp

(
xip

))
=

(∫
R
· · ·
∫
R

XRn∩Edm1 (xi1) · · ·dmp
(
xip

))
As to complements,

∫
Rn

dmp =
∫

Rn∩EC dmp +
∫

Rn∩E dmp. Thus∫
R
· · ·
∫
R

XRn∩EC dm1 (xi1) · · ·dmp
(
xip

)
=

∫
R
· · ·
∫
R
(XRn −XRn∩E)dm1 (xi1) · · ·dmp

(
xip

)
=
∫

Rn∩EC
dmp

It follows that G = B (Rp) , the Borel sets. Hence∫
Rp

XEdmp =
∫
R
· · ·
∫
R

XEdm1 (xi1) · · ·dmp
(
xip

)
for any Borel set E after letting n→ ∞ and using the monotone convergence theorem.
Approximating a nonnegative Borel function g with an increasing sequence of simple Borel
measurable functions, and using the monotone convergence theorem yields∫

gdmp =
∫
R
· · ·
∫
R

g(x1, ...,xp)dm1 (xi1) · · ·dmp
(
xip

)
The claim about the measure of a box being the product of the lengths of its sides also
comes from this.

By Proposition 11.1.2, for f measurable, there exists g Borel measurable such that
g = f a.e. and g≤ f . Then∫

Rp
f dmp =

∫
Rp

gdmp =
∫
R
· · ·
∫
R

g(x1, ...,xp)dm1 (xi1) · · ·dmp
(
xip

)
It is similar if h≥ f and equal to f a.e.

It remains to consider the claim about translation invariance. If R is a box, R =

∏
p
i=1 (ai,bi) , then it is clear that mp (x+R) = mp (R). Let K be as above and let G be

those Borel sets E for which mp (x+E ∩Rn) = mp (E ∩Rn) where Rn is as above. Thus G
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contains K . Then it is obvious G is closed with respect to countable disjoint unions. The
case of complements maybe is not as obvious.

(x+Rn)\ (x+Rn∩E) = x+Rn∩EC.

Then

mp
(
x+Rn∩EC) = mp (x+Rn)−mp (x+Rn∩E)

= mp (Rn)−mp (Rn∩E) = mp
(
Rn∩EC)

Thus by Dynkin’s lemma, G = B (Rp) . Thus for all E Borel,

mp (E ∩Rn) = mp (x+E ∩Rn) .

Now let n→ ∞. It follows that mp is translation invariant for all Borel sets.
In general, if E is Lebesgue measurable, it follows from Proposition 11.1.2 that there

are sets F ⊆ E ⊆ G where F,G are Borel and mp (F) = mp (E) = mp (G). Then

mp (E) = mp (F) = mp (F +x)≤ mp (E +x)≤ mp (G+x) = mp (G) = mp (E)

and so all the inequalities are equal signs. Hence mp (E +x) = mp (E). ■
The following is a useful lemma. In this lemma, Xi will be some metric space or more

generally a topological space. It is useful in recognizing a Borel measurable set when you
see it.

Lemma 11.3.2 If Ei is a Borel set in Xi, then ∏
p
k=1 Eik is a Borel set in ∏

p
k=1 Xik .

Proof: Let π ir : ∏
p
k=1 Xik → Xir be the projection map. That is π ir (x) = xir when

x =
(
xi1 ,xi2 , ...,xip

)
. Obviously this is continuous. Therefore, if U is an open set in

Xir ,π
−1
ir (U) = Xi1 ×Xi2 × ·· · ×U × ·· · ×Xip . Is an open set. Let Bir be the Borel sets

of Xir E such that π
−1
ir (E) = Xi1 ×Xi2 ×·· ·×E×·· ·×Xip is a Borel set in ∏

p
k=1 Xik . Then

Bir is a σ algebra and it contains the open sets. Therefore, it contains the Borel sets of Xir .
It follows that ∏

p
k=1 Eik = ∩

p
k=1π

−1
ik

(
Eik

)
is a finite intersection of Borel sets in ∏

p
k=1 Xik

and so it is also a Borel set. ■

Example 11.3.3 Let A≡ {(x,y) : y < g(x)} for g a Borel measurable real valued function.
Then A is a Borel set.

To see this, partition R into equally spaced points
{

rn
k

}∞

k=−∞
,rn

k < rn
k+1,r

n
k+1− rn

k =

2−n and let gn (x) ≡ ∑
∞
k=−∞

rn
k−1Xg−1((rn

k−1,r
n
k ])

(x) so that gn (x)→ g(x) for each x. Let

An ≡ {(x,y) : y < gn (x)} . Now each Ak is Borel by the above Lemma. Then thanks to
convergence, A = ∩∞

m=1∩k≥m Ak so A is Borel.

Example 11.3.4 Let A ≡ {(x,y) : y≤ g(x)} for g a Borel measurable function. Then A is
a Borel set.

This follows from observing that if An ≡ {(x,y) : y < g(x)+2−n} then A = ∩∞
n=1An.

Thus sets of the form [a,b]×{(x,y) : y≤ g(x)} for g Borel measurable are Borel measur-
able. These examples justify the usual calculus manipulations involving iterated integrals,
the next example being an illustration of this.
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Example 11.3.5 Find the iterated integral
∫ 1

0
∫ 1

x
sin(y)

y dydx.

Notice the limits. The iterated integral equals
∫
R2 XA (x,y)

sin(y)
y dm2 where

A = {(x,y) : x≤ y where x ∈ [0,1]} .

Fubini’s theorem can be applied because the function (x,y)→ sin(y)/y is continuous ex-
cept at y = 0 and can be redefined to be continuous there. The function is also bounded so
(x,y)→XA (x,y)

sin(y)
y clearly is in L1

(
R2
)
. Therefore,

∫
R2

XA (x,y)
sin(y)

y
dm2 =

∫ ∫
XA (x,y)

sin(y)
y

dxdy

=
∫ 1

0

∫ y

0

sin(y)
y

dxdy =
∫ 1

0
sin(y)dy = 1− cos(1)

Here is a general and important result.

Example 11.3.6 Integration by parts. Suppose f ,g are both absolutely continuous, then∫ b
a f g′dt =∫ b

a

(
f (a)+

∫ t

a
f ′ (s)ds

)
g′ (t)dt = f (a)(g(b)−g(a))+

∫ b

a

∫ t

a
f ′ (s)dsg′ (t)dt

= f (a)(g(b)−g(a))+
∫ b

a

∫ b

s
f ′ (s)g′ (t)dtds

= f (a)(g(b)−g(a))+
∫ b

a
f ′ (s)(g(b)−g(s))ds

= f (a)(g(b)−g(a))+g(b)( f (b)− f (a))−
∫ b

a
f ′ (s)g(s)ds

= g(b) f (b)− f (a)g(a)−
∫ b

a
f ′ (s)g(s)ds

11.4 Maximal Functions
In this section the Besicovitch covering theorem, Theorem 4.5.8 will be used to obtain the
Lebesgue differentiation theorem for general Radon measures. This will end up including
Lebesgue measure presented later. In what follows, µ will be a Radon measure, complete,
inner and outer regular, and finite on compact sets. Also

Z ≡ {x ∈ Rp : µ (B(x,r)) = 0 for some r > 0}, (11.4)

Lemma 11.4.1 Z is measurable and µ (Z) = 0.

Proof: For each x ∈ Z, there exists a ball B(x,r) with µ (B(x,r)) = 0. Let C be the
collection of these balls. Since Rp has a countable basis, a countable subset C̃ ≡ {Bi}∞

i=1,
of C also covers Z. Then letting µ denote the outer measure determined by µ , µ (Z) ≤
∑

∞
i=1 µ (Bi) =∑

∞
i=1 µ (Bi) = 0. Therefore, Z is measurable, (µ̄ (S)≥ µ̄ (S∩Z)+ µ̄

(
S∩ZC

)
)

and has measure zero as claimed. ■
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Let M f : Rp→ [0,∞] by

M f (x)≡
{

supr≤1
1

µ(B(x,r))

∫
B(x,r) | f |dµ if x /∈ Z

0 if x ∈ Z
.

I will begin using ∥ f∥1 for the integral
∫

Ω
| f |dµ .

The special points described in the following theorem are called Lebesgue points.

Theorem 11.4.2 Let µ be a Radon measure and let f ∈ L1 (Rp,µ) meaning that∫
Ω
| f |dµ < ∞. Then for µ a.e.x, limr→0

1
µ(B(x,r))

∫
B(x,r) | f (y)− f (x)|dµ (y) = 0. Also

µ ([M f > ε])≤ Npε−1 ∥ f∥1 .

Proof: First consider the following claim which is called a weak type estimate.
Claim 1: The following inequality holds for Np the constant of the Besicovitch cover-

ing theorem, Theorem 4.5.8: µ ([M f > ε])≤ Npε−1 ∥ f∥1
Proof of claim: First note [M f > ε]∩ Z = /0 and without loss of generality, you can

assume µ ([M f > ε])> 0. Let U be an open set containing [M f > ε] such that µ ([M f > ε])
Next, for each x∈ [M f > ε] there exists a ball Bx =B(x,rx) with rx≤ 1 and the following
inequality holding. µ (Bx)

−1 ∫
B(x,rx) | f |dµ > ε. Let F be this collection of balls so that

[M f > ε] is the set of centers of balls of F . By the Besicovitch covering theorem, Theorem
4.5.8, [M f > ε] ⊆ ∪Np

i=1 {B : B ∈ Gi} where Gi is a collection of disjoint balls of F . Now
for some i, µ ([M f > ε])/Np ≤ µ (∪{B : B ∈ Gi}) because if this is not so, then for all
i,µ ([M f > ε])/Np > µ (∪{B : B ∈ Gi}) and so

µ ([M f > ε])≤
Np

∑
i=1

µ (∪{B : B ∈ Gi})<
Np

∑
i=1

µ ([M f > ε])

Np
= µ ([M f > ε]),

a contradiction. Therefore for this i,

µ ([M f > ε])

Np
≤ µ (∪{B : B ∈ Gi}) = ∑

B∈Gi

µ (B)≤ ∑
B∈Gi

ε
−1
∫

B
| f |dµ

≤ ε
−1
∫
Rp
| f |dµ = ε

−1 ∥ f∥1 .

This shows Claim 1.
Claim 2: If g is any continuous function defined on Rp, then for x /∈ Z,

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dµ (y) = 0

and
lim
r→0

1
µ (B(x,r))

∫
B(x,r)

g(y)dµ (y) = g(x). (11.5)

Proof: Since g is continuous at x, whenever r is small enough,

1
µ (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dµ (y)≤ 1
µ (B(x,r))

∫
B(x,r)

ε dµ (y) = ε.

11.5 follows from the above and the triangle inequality. This proves the claim.
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Now let g ∈ Cc (Rp) and x /∈ Z. Then from the above observations about continuous
functions,

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> ε

])
(11.6)

≤ µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)−g(y)|dµ (y)>
ε

2

])
+µ

([
x /∈ Z : |g(x)− f (x)|> ε

2

])
.

≤ µ

([
M ( f −g)>

ε

2

])
+µ

([
| f −g|> ε

2

])
(11.7)

Now
∫
[| f−g|> ε

2 ]
| f −g|dµ ≥ ε

2 µ
([
| f −g|> ε

2

])
and so using Claim 1 in 11.7, it follows

that 11.6 is dominated by
(

2
ε
+

Np
ε

)∫
| f −g|dµ. But by Theorem 10.8.7, g can be chosen

to make this as small as desired. Hence 11.6 is 0. Now observe that

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> 0
])

≤
∞

∑
k=1

µ

([
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)>
1
k

])
= 0

By completeness of µ this implies[
x /∈ Z : limsup

r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)> 0
]

is a set of µ measure zero. ■
The following corollary is the main result referred to as the Lebesgue Besicovitch Dif-

ferentiation theorem.

Definition 11.4.3 f ∈ L1
loc (Rp,µ) means f XB is in L1 (Rp,µ) whenever B is a

ball.

Theorem 11.4.4 If f ∈ L1
loc (Rp,µ), then for µ a.e.x /∈ Z,

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y) = 0 . (11.8)

Proof: If f is replaced by f XB(0,k) then the conclusion 11.8 holds for all x /∈ Fk where
Fk is a set of µ measure 0. Letting k = 1,2, · · · , and F ≡ ∪∞

k=1Fk, it follows that F is a
set of measure zero and for any x /∈ F , and k ∈ {1,2, · · ·}, 11.8 holds if f is replaced by
f XB(0,k). Picking any such x, and letting k > |x|+1, this shows

lim
r→0

1
µ (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dµ (y)

= lim
r→0

1
µ (B(x,r))

∫
B(x,r)

∣∣ f XB(0,k) (y)− f XB(0,k) (x)
∣∣dµ (y) = 0

because for all r small enough, B(x,r)⊆ B(0,k). ■
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Definition 11.4.5 Let E be a measurable set. Then x ∈ E is called a point of den-
sity ifx /∈Z and limr→0

µ(B(x,r)∩E)
µ(B(x,r)) = 1. Recall Z is the set of pointsxwhere µ (B(x,r))= 0

for some r > 0.

Proposition 11.4.6 Let E be a measurable set. Then µ a.e. x ∈ E is a point of density.

Proof: This follows from letting f (x) = XE (x) in Theorem 11.4.4. ■
From Theorem 11.4.2, µ ([M f > λ ])≤ Np

λ
∥ f∥L1 .

M f ≡ sup
r≤1

1
µ (B(x,r))

∫
B(x,r)

| f |dµ ≤ sup
r≤1

1
µ (B(x,r))

∫
B(x,r)

(
| f |X[| f |> λ

2 ]
+

λ

2

)
dµ

= M
(

f X[| f |> λ
2 ]

)
+

λ

2

Therefore, [M f > λ ]⊆
[
M
(

f X[| f |> λ
2 ]

)
> λ/2

]
so

[M f > 2λ ]⊆
[
M
(

f X[| f |>λ ]

)
> λ

]
≤

Np

λ

∫
[| f |>λ ]

| f |dµ.

This shows the following modified weak estimate.

Corollary 11.4.7 Let f be in L1 (Rp,µ) . Then µ ([M f > 2λ ])≤ Np
λ

∫
[| f |>λ ] | f |dµ .

11.5 Strong Estimates for Maximal Function
Here p > 1, not the dimension. Let ∥ f∥p

Lp(Rn)
≡
∫
Rn | f |p dµ. Let λ

1/p ≡ 2η so λ = 2pη p

and dλ = 2p pη p−1dη . Then use Corollary 11.4.7 so

∫
|M f |p dµ =

∫
∞

0
µ

([
M f > λ

1/p
])

dλ =
∫

∞

0
µ ([M f > 2η ])2p pη

p−1dη

≤
∫

∞

0

N
η

∫
[| f |>η ]

| f |2p pη
p−1dµdη = N2p p

∫ ∫ | f |
0
| f |η p−2dηdµ =Cp

∫
| f |p dµ

Of course this is all assuming that M f is measurable. This is most easily shown if
µ = mn Lebesgue measure and this is the case of most interest to me. Consider x→∫

B(x,r) | f (y)|dm ≡ fr (x). This is continuous assuming f ∈ L1
loc thanks to continuity of

translation of Lebesgue measure. Thus x→ 1
B(x,r)

∫
B(x,r) | f (y)|dm is continuous. Now it

follows that M f (x) = sup0<r<1 fr (x) = sup0<r<1,r∈Q fr (x) is Borel measurable. There-
fore, we can state the following corollary.

Corollary 11.5.1 Let ∥ f∥Lp <∞ where µ =mn inRn. Then ∥M f∥Lp ≤Cp ∥ f∥Lp where
C depends only on p> 1 and the dimension. This is called a strong estimate for the maximal
function as opposed to the one from Theorem 11.4.2 for p = 1 which is called a weak
estimate.
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11.6 The Brouwer Fixed Point Theorem
I found this proof of the Brouwer fixed point theorem in Evans [18] and Dunford and
Schwartz [16]. The main idea which makes proofs like this work is Lemma 7.11.2 which
is stated next for convenience.

Lemma 11.6.1 Let g : U →Rp be C2 where U is an open subset of Rp. Then it follows
that ∑

p
j=1 cof(Dg)i j, j = 0,where here (Dg)i j ≡ gi, j ≡ ∂gi

∂x j
. Also, cof(Dg)i j =

∂ det(Dg)
∂gi, j

.

Definition 11.6.2 Let h be a function defined on an open set, U ⊆ Rp. Then h ∈
Ck
(
U
)

if there exists a function g defined on an open set, W containng U such that g= h

on U and g is Ck (W ) .

Lemma 11.6.3 There does not exist h ∈ C2
(

B(0,R)
)

with h : B(0,R)→ ∂B(0,R)

which has the property that h(x) =x for all x∈ ∂B(0,R)≡{x : |x|= R} Such a function
is called a retract.

Proof: First note that if h is such a retract, then for all x ∈ B(0,R), det(Dh(x)) = 0.
This is because if det(Dh(x)) ̸= 0 for some such x, then by the inverse function theorem,
h(B(x,δ )) is an open set for small enough δ but this would require that this open set is
a subset of ∂B(0,R) which is impossible because no open ball is contained in ∂B(0,R).
Here and below, let BR denote B(0,R).

Now suppose such an h exists. Let λ ∈ [0,1] and let pλ (x)≡ x+λ (h(x)−x) . This
function, pλ is a homotopy of the identity map and the retract h. Let

I (λ )≡
∫

B(0,R)
det(Dpλ (x))dx.

Then using the dominated convergence theorem,

I′ (λ ) =
∫

B(0,R)
∑
i. j

∂ det(Dpλ (x))

∂ pλ i, j

∂ pλ i j (x)

∂λ
dx

=
∫

B(0,R)
∑

i
∑

j

∂ det(Dpλ (x))

∂ pλ i, j
(hi (x)− xi), j dx

=
∫

B(0,R)
∑

i
∑

j
cof(Dpλ (x))i j (hi (x)− xi), j dx

Now by assumption, hi (x) = xi on ∂B(0,R) and so one can integrate by parts, in the
iterated integrals used to compute

∫
B(0,R) and write

I′ (λ ) =−∑
i

∫
B(0,R)

∑
j

cof(Dpλ (x))i j, j (hi (x)− xi)dx = 0.

Therefore, I (λ ) equals a constant. However, I (0) = mp (B(0,R)) ̸= 0 and as pointed out
above, I (1) = 0. ■

The following is the Brouwer fixed point theorem for C2 maps.
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Lemma 11.6.4 If h∈C2
(

B(0,R)
)

and h : B(0,R)→B(0,R), then h has a fixed point

x such that h(x) = x.

Proof: Suppose the lemma is not true. Then for all x, |x−h(x)| ̸= 0. Then define
g (x) = h(x)+ x−h(x)

|x−h(x)| t (x) where t (x) is nonnegative and is chosen such that g (x) ∈
∂B(0,R) .

This mapping is illustrated in the following picture.

h(x)x

g(x)

If x→ t (x) is C2 near B(0,R), it will follow g is a C2 retract onto ∂B(0,R) contrary
to Lemma 11.6.3. Thus t (x) is the nonnegative solution t to∣∣∣∣h(x)+ x−h(x)

|x−h(x)|
t (x)

∣∣∣∣2 = |h(x)|2 +2
(
h(x) ,

x−h(x)
|x−h(x)|

)
t + t2 = R2 (11.9)

then by the quadratic formula,

t (x) =−
(
h(x) ,

x−h(x)
|x−h(x)|

)
+

√(
h(x) ,

x−h(x)
|x−h(x)|

)2

+
(

R2−|h(x)|2
)

Is x→ t (x) a function in C2? If what is under the radical is positive, then this is so because
s→
√

s is smooth for s > 0. In fact, this is the case here. The inside of the radical is
positive if R > |h(x)|. If |h(x)| = R, it is still positive because in this case, the angle
between h(x) and x−h(x) cannot be π/2 because of the shape of the ball. This shows
that x→ t (x) is the composition of C2 functions and is therefore C2. Thus this g (x) is a
C2 retract and by the above lemma, there isn’t one. ■

Now it is easy to prove the Brouwer fixed point theorem. The following theorem is the
Brouwer fixed point theorem for a ball.

Theorem 11.6.5 Let BR be the above closed ball and let f : BR→BR be continuous.
Then there exists x ∈ BR such that f (x) = x.

Proof: Let f k (x)≡
f(x)

1+k−1 . Thus

∥f k−f∥ = max
x∈BR

{∣∣∣∣ f (x)

1+(1/k)
−f (x)

∣∣∣∣}= max
x∈BR

{∣∣∣∣f (x)−f (x)(1+(1/k))
1+(1/k)

∣∣∣∣}
= max

x∈BR

{∣∣∣∣f (x)(1/k)
1+(1/k)

∣∣∣∣}≤ R
1+ k

Letting ∥h∥ ≡max{|h(x)| : x ∈ BR} , It follows from the Weierstrass approximation the-
orem, there exists a function whose components are polynomials gk such that ∥gk−f k∥<

R
k+1 . Then if x ∈ BR, it follows

|gk (x)| ≤ |gk (x)−f k (x)|+ |f k (x)|<
R

1+ k
+

kR
1+ k

= R
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and so gk maps BR to BR. By Lemma 11.6.4 each of these gk has a fixed point xk such that
gk (xk) =xk. The sequence of points, {xk} is contained in the compact set, BR and so there
exists a convergent subsequence still denoted by {xk} which converges to a point x ∈ BR.
Then from uniform convergence of gk to f , f (x) = limk→∞f (xk) = limk→∞gk (xk) =
limk→∞xk = x. ■

Definition 11.6.6 A set A is a retract of a set B if A⊆ B, and there is a continuous
map h : B→ A such that h(x) = x for all x ∈ A and h is onto. B has the fixed point
property means that whenever g is continuous and g : B→ B, it follows that g has a fixed
point.

Proposition 11.6.7 Let A be a retract of B and suppose B has the fixed point property.
Then so does A.

Proof: Suppose f : A→ A. Let h be the retract of B onto A. Then f ◦h : B→ B is
continuous. Thus, it has a fixed point x ∈ B so f (h(x)) = x. However, h(x) ∈ A and
f : A→ A so in fact, x ∈ A. Now h(x) = x and so f (x) = x. ■

Recall that every convex compact subset K of Rp is a retract of all of Rp obtained by
using the projection map. See Problems beginning with 8 on Page 151. In particular, K
is a retract of a large closed ball containing K, which ball has the fixed point property.
Therefore, K also has the fixed point property. This shows the following which is a con-
venient formulation of the Brouwer fixed point theorem. However, Proposition 11.6.7 is
more general.

Theorem 11.6.8 Every convex closed and bounded subset of Rp has the fixed point
property.

11.7 Change of Variables, Linear Maps
This is about changeing the variables for linear maps where Fp denotes the Lebesgue
measurable sets.

Theorem 11.7.1 In case h : Rp → Rp is Lipschitz, satisfying the Lipschitz condi-
tion ∥h(x)−h(y)∥ ≤ K ∥x−y∥ , then if T is a set for which mp(T ) = 0, it follows that
mp (h(T )) = 0. Also if E ∈Fp, then h(E) ∈Fp.

Proof: By the Lipschitz condition, ∥h(x+v)−h(x)∥ ≤ K ∥v∥ and you can simply
let T ⊆V where mp (V )< ε/(K p5p) . Then there is a countable disjoint sequence of balls
{Bi} such that

{
B̂i
}

covers T and each ball Bi is contained in V each having radius no more
than 1. Then the Lipschitz condition implies h

(
B̂i
)
⊆ B(h(xi) ,5K) and so

m̄p (h(T ))≤
∞

∑
i=1

mp
(
h
(
B̂i
))
≤ 5pK p

∞

∑
i=1

mp (Bi)≤ K p5pmp (V )< ε

Since ε is arbitrary, this shows that h(T ) is measurable and mp (h(T )) = 0.
Now let E ∈Fp, mp (E)< ∞. Then by of the measure and Theorem 9.8.6, there exists

F which is the countable union of compact sets such that E = F ∪N where N is a set of
measure zero. Then from the first part, h(E \F) ⊆ h(N) and this set on the right has
measure zero and so by completeness of the measure, h(E \F) ∈ Fp and so h(E) =
h(E \F)∪h(F) ∈ Fp because F = ∪kKk, each Kk compact. Hence h(F) = ∪kh(Kk)
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which is the countable union of compact sets, a Borel set, due to the continuity of h. For
arbitrary E, h(E) = ∪∞

k=1h(E ∩B(0,k)) ∈Fp. ■
Of course an example of a Lipschitz map is a linear map. ∥Ax−Ay∥= ∥A(x−y)∥ ≤

∥A∥∥x−y∥ . Therefore, if A is linear and E is Lebesgue measurable, then A(E) is also
Lebesgue measurable. This is convenient.

Lemma 11.7.2 Every open set U in Rp is a countable disjoint union of half open boxes
of the form Q≡∏

p
i=1[ai,ai +2−k) where ai = l2−k for l some integer.

Proof: It is clear that there exists Qk a countable disjoint collection of these half open
boxes each of sides of length 2−k whose union is all of Rp. Let B1 be those sets of Q1
which are contained in U, if any. Having chosen Bk−1, let Bk consist of those sets of Qk
which are contained in U such that none of these are contained in Bk−1. Then ∪∞

k=1Bk is
a countable collection of disjoint boxes of the right sort whose union is U . This is because
if R is a box of Qk and R̂ is a box of Qk−1, then either R ⊆ R̂ or R∩ R̂ = /0. If p ∈U then
it is ultimately contained in some Bk for k as small as possible because p is at a positive
distance from UC. ■

Corollary 11.7.3 If D is a diagonal matrix having nonnegative eigenvalues, and U is
an open set, it follows that mp (DU) = det(D)mp (U) .

Proof: The multiplication by D just scales each side of the boxes whose disjoint union
is U , multiplying the side in the ith direction by the ith diagonal element. Thus if R is
one of the boxes, mp (DR) = det(D)mp (R) . The desired result follows from adding these
together. ■

I will write dx or dy instead of dmp (x) or dmp (y) to save on notation.

Theorem 11.7.4 Let E ∈Fp and let A be a p× p matrix. Then A(E) is Lebesgue
measurable and mp (A(E)) = |det(A)|mp (E). Also, if E is any Lebesgue measurable set,
then

∫
XA(E) (y)dy =

∫
XE (x) |det(A)|dx.

Proof: First note that if C (x,r)≡ {y ∈ Rp : |y−x|= r} , then mp (C (x,r)) = 0. This
follows from translation invariance and Corollary 11.7.3 applied to diagonal D having di-
agonal entries r (1+ ε) and one with diagonal entries r (1− ε) to obtain that for arbitrary
ε > 0,

mp (C (0,r)) ≤ mp (B(0,(1+ ε)r)\B(0,(1− ε)r))

= mp (B(0,r)) [((1+ ε)r)p− ((1− ε)r)p]

Here |·| is the Euclidean norm so all orthogonal transormations acting on a ball centered
at 0 leave the ball unchanged. Now let U be an open set, then by Theorem 9.12.2, there are
disjoint open balls {Bi}∞

i=1 such that U = (∪iBi)∪N where mn (N) = 0.
From the right polar decomposition, Theorem 1.5.5 and the fact that one can diagonal-

ize a symmetric matrix S, A = RS = RQ∗DQ where R and Q are orthogonal matrices and
D is a diagonal matrix with all nonnegative diagonal entries. Thus, if B is an open ball
centered at 0,

mp (A(B)) = mp (RQ∗DQ(B)) = mp (RQ∗D(B))

= |det(R)| |det(Q∗)|det(D)mp (B) = |det(A)|mp (B)
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By continuity of translation, the same holds if B has a center at some other point than
0. It follows that mp (A(U)) = ∑i mp (ABi) = ∑i |det(A)|mp (Bi) = |det(A)|mp (U) . Now
let K be the open sets and S be those Borel sets E such that mp (A(E ∩B(0,n))) =
|det(A)|mp (E ∩B(0,n)) . It is routine to verify that S is closed with respect to countable
disjoint unions and complements. Therefore, S= σ (K ) and so this holds for all Borel E.
Letting n→ ∞, it follows that for all E Borel, mp (A(E)) = |det(A)|mp (E).

If E is only Lebesgue measurable, then by regularity and Proposition 11.1.2, there exists
G and F, Gδ and Fσ sets respectively such that F ⊆ E ⊆G and mp (G) = mp (E) = mp (F).
Then AF ⊆ AE ⊆ AG and and for m̄p the outer measure determined by mp,

|det(A)|mp (F) = mp (AF)≤ mp (AE)≤ mp (AG)

= det(A)mp (G) = |det(A)|mp (E) = |det(A)|mp (F)

Thus all inequalities are equal signs. ■

Theorem 11.7.5 Let f ≥ 0 and suppose it is Lebesgue measurable. Then if A is a
p× p matrix, ∫

XA(Rp) (y) f (y)dmp (y) =
∫

f (Ax) |det(A)|dmp (x) . (11.10)

Proof: From Theorem 11.7.4, the equation is true if det(A) = 0. It follows that it
suffices to consider only the case where A−1 exists. First suppose f (y) = XE (y) where E
is a Lebesgue measurable set. In this case, A(Rn) = Rn. Then from Theorem 11.7.4∫

XA(Rp) (y) f (y)dy =
∫

XE (y)dy = mp (E) = |det(A)|mp
(
A−1E

)
=
∫
Rn
|det(A)|XA−1E (x)dx =

∫
Rn
|det(A)|XE (Ax)dx =

∫
f (Ax) |det(A)|dx

It follows from this that 11.10 holds whenever f is a nonnegative simple function. Fi-
nally, the general result follows from approximating the Lebesgue measurable function
with nonnegative simple functions using Theorem 9.1.6 and then applying the monotone
convergence theorem. ■

This is now a very good change of variables formula for a linear transformation. Next
this is extended to differentiable functions.

11.8 Differentiable Functions and Measurability
To begin with, certain kinds of functions map measurable sets to measurable sets. It was
shown earlier, Theorem 11.7.1, that Lipschitz functions do this. So do differentiable func-
tions.

In this part of the argument it is convenient to take all balls with respect to the norm
on Rp given by ∥x∥ = max{|xk| : k = 1,2, · · · , p} . Thus from the definition of this norm,
B(x,r) is the open box, ∏

p
k=1 (xk− r,xk + r) and so mp (B(x,r)) = (2r)p = 2prp. Also for

a linear transformation A ∈L (Rp,Rp) , I will continue to use ∥A∥ ≡ sup∥x∥≤1 ∥Ax∥ .

Lemma 11.8.1 Let T ⊆U, where U is open, h is continuous, and let h be differentiable
at each x ∈ T and suppose that mp (T ) = 0, then mp (h(T )) = 0.
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Proof: For k ∈ N, let Tk ≡ {x ∈ T : ∥Dh(x)∥< k} and let ε > 0 be given. Since
Tk is a subset of a set of measure zero, it is measurable, but we don’t need to pay much
attention to this fact. Now by outer regularity, there exists an open set V , containing Tk
which is contained in U such that mp (V ) < ε . Let x ∈ Tk. Then by differentiability,
h(x+v) = h(x)+Dh(x)v+o(v) and so there exist arbitrarily small rx < 1 such that
B(x,5rx)⊆V and whenever ∥v∥ ≤ 5rx,∥o(v)∥< 1

5 ∥v∥ . Thus, from the Vitali covering
theorem, Theorem 4.5.3,

h(B(x,5rx)) ⊆ Dh(x)(B(0,5rx))+h(x)+B(0,rx)⊆ B(0,k5rx)+

+B(0,rx)+h(x) ⊆ B(h(x) ,(5k+1)rx)⊆ B(h(x) ,6krx)

From the Vitali covering theorem, there exists a countable disjoint sequence of these
balls, {B(xi,ri)}∞

i=1 such that {B(xi,5ri)}∞

i=1 =
{

B̂i

}∞

i=1
covers Tk. Then letting mp denote

the outer measure determined by mp,

mp (h(Tk))≤ mp

(
h
(
∪∞

i=1B̂i

))
≤

∞

∑
i=1

mp

(
h
(

B̂i

))

≤
∞

∑
i=1

mp (B(h(xi) ,6krxi)) =
∞

∑
i=1

mp (B(xi,6krxi))

= (6k)p
∞

∑
i=1

mp (B(xi,rxi))≤ (6k)p mp (V )≤ (6k)p
ε.

Since ε > 0 is arbitrary, this shows mp (h(Tk)) = mp (h(Tk)) = 0. Now mp (h(T )) =
limk→∞ mp (h(Tk)) = 0. ■

Lemma 11.8.2 Let h be continuous on U and let h be differentiable on T ⊆U. If S is
a Lebesgue measurable subset of T , then h(S) is Lebesgue measurable.

Proof: By Theorem 11.2.2 there exists F which is a countable union of compact sets
F = ∪∞

k=1Kk such that F ⊆ S, mp (S\F) = 0. Then h(F) = ∪kh(Kk) ∈B (Rp) because
the continuous image of a compact set is compact. Also, h(S\F) is a set of measure zero
by Lemma 11.8.1 and so h(S) = h(F)∪h(S\F) ∈Fp because it is the union of two sets
which are in Fp. ■

In particular, this proves the following theorem from a different point of view to that
done before, using x→ Ax being differentiable rather than x→ Ax being Lipschitz. Later
on, is a theorem which says that Lipschitz implies differentiable a.e. However, it is also
good to note that ifh has a derivative on an open set U , it does not follow thath is Lipschitz.

I will also use the following fundamental assertion, Sard’s lemma.

Lemma 11.8.3 (Sard) Let U be an open set in Rp. Let h : U → Rp be continuous and
let h be differentiable on A⊆U. Let Z ≡ {x ∈ A : detDh(x) = 0} . Then mp (h(Z)) = 0.

Proof: Suppose first that A is bounded. Let ε > 0 be given. Also let V ⊇ Z with V ⊆U
open, and mp (Z)+ ε > mp (V ) . Now let x ∈ Z. Then since h is differentiable at x, there
exists δx > 0 such that if r < δx, then B(x,r)⊆V and also,

h(B(x,r))⊆ h(x)+Dh(x)(B(0,r))+B(0,rη) , η < 1.
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Regard Dh(x) as an n× n matrix, the matrix of the linear transformation Dh(x) with
respect to the usual coordinates. Since x∈ Z, it follows that there exists an invertible matrix
M such that MDh(x) is in row reduced echelon form with a row of zeros on the bottom.
Therefore, using Theorem 11.7.4 about taking out the determinant of a transformation,

mp (h(B(x,r))) =
∣∣det

(
M−1)∣∣mp (M (h(B(x,r))))

≤
∣∣det

(
M−1)∣∣mp (M (Dh(x))(B(0,r))+MB(0,rη))

≤
∣∣det

(
M−1)∣∣α p−1 ∥M (Dh(x))∥p−1 (2r+2ηr)p−1 ∥M∥2rη

≤ C
(
∥M∥ ,

∣∣det
(
M−1)∣∣ ,∥Dh(x)∥)4p−1rp2η

Here αn is the volume of the unit ball in Rn. This is because M (Dh(x))(B(0,r)) +
MB(0,rη) in the third line up is contained in a cylinder, the base in Rp−1 which has
radius ∥M (Dh(x))∥(2r+2ηr) and height ∥M∥2rη . Thus its measure is no more than∫
Rp−1

∫ ∥Mrη∥
−∥Mrη∥ dxpdmp−1.Then letting δx be still smaller if necessary, corresponding to suf-

ficiently small η ,
mp (h(B(x,r)))≤ εmp (B(x,r)) .

The balls of this form constitute a Vitali cover of Z. Hence, by the covering theorem Corol-
lary 9.12.5, there exists {Bi}∞

i=1 ,Bi =Bi (xi,ri) , a collection of disjoint balls, each of which
is contained in V, such that mp (h(Bi)) ≤ εmp (Bi) and mp (Z \∪iBi) = 0. Hence from
Lemma 11.8.1,

mp (h(Z)\∪ih(Bi))≤ mp (h(Z \∪iBi)) = 0

Therefore,

mp (h(Z))≤∑
i

mp (h(Bi))≤ ε ∑
i

mp (Bi)≤ ε (mp (V ))≤ ε (mp (Z)+ ε) .

Since ε is arbitrary, this shows mp (h(Z)) = 0. What if A is not bounded? Then consider
Zn = Z∩B(0,n)⊆ A∩B(0,n) . From what was just shown, h(Zn) has measure 0 and so it
follows that h(Z) also does, being the countable union of sets of measure zero. ■

11.9 Change of Variables, Nonlinear Maps
This preparation leads to a good change of variables formula. First is a lemma which is
likely familiar by now.

Lemma 11.9.1 Let h : Ω→ Rp where (Ω,F ) is a measurable space and suppose h is
continuous. Then h−1 (B) ∈F whenenver B is a Borel set.

Proof: Measurability applied to components of h shows that h−1 (U) ∈F whenever
U is an open set. If G is consists of the subsets G of Rp for which h−1 (G) ∈F , then G is
a σ algebra and G contains the open sets. ■

Definition 11.9.2 Let h : U → h(U) be continuous, U open, and let H ⊆ U be
measurable and h is one to one and differentiable on H. Define λ (F)≡ mp (h(F ∩H)) .

Lemma 11.9.3 λ is a well defined measure on measurable subsets of U and λ ≪ mp.
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Proof: Since the Ei are disjoint and h is one to one. λ (∪iEi) ≡ mp (h(∪iEi∩H)) =

∑i mp (h(Ei∩H)) = ∑i λ (Ei). If mp (E) = 0, then λ (E)≡mp (h(E ∩H)) = 0 because of
Lemma 11.8.1. ■

Since λ ≪mp, it follows from the Radon Nikodym theorem of Corollary 10.13.14 that
there exists g ∈ L1

loc (U) such that for F a measurable subset of U,

λ (F) = mp (h(F ∩H)) =
∫

F
gdmp (11.11)

where g = 0 off H. To see that this corollary applies, note that both λ and mp are finite on
compact sets and that every open set is a countable union of compact sets.

Now let F be a Borel set so that h−1 (F)∩H is measurable and plays the role of F in
the above. Then

λ
(
h−1 (F)

)
≡ mp

(
h
(
h−1 (F)∩H

))
=
∫

U
Xh−1(F)∩H (x)g(x)dmp (x) =

∫
H

XF (h(x))g(x)dmp (x)

Thus also for s a Borel measurable nonnegative simple function,∫
h(H)

s(y)dmp (y) =
∫

H
s(h(x))(x)g(x)dmp (x)

Using a sequence of nonnegative simple functions to approximate a nonnegative Borel
measurable f , we obtain from the monotone convergence theorem that∫

h(H)
f (y)dmp (y) =

∫
H

f (h(x))(x)g(x)dmp (x)

If f is only Lebesgue measurable, then there are nonnegative Borel measurable functions
k, l such that k (y)≤ f (y)≤ l (y) with equality holding off a set of mp measure zero. Then
k (h(x))g(x) ≤ f (h(x))g(x) ≤ l (h(x))g(x) and the two on the ends are Lebesgue
measurable which forces the function in the center to also be Lebesgue measurable by
completeness of Lebesgue measure because∫

H
l (h(x))g(x)− k (h(x))g(x)dmp =

∫
h(H)

l (y)dmp−
∫
h(H)

k (y)dmp

=
∫
h(H)

f (y)dmp−
∫
h(H)

f (y)dmp = 0

Thus l (h(x))g(x)− k (h(x))g(x) = 0 a.e. Then for f nonnegative and Lebesgue mea-
surable, ∫

H
f (h(x))g(x)dmp =

∫
h(H)

f (y)dmp.

This shows the following lemma.

Lemma 11.9.4 Let h : U→h(U) be continuous, U open, and let H ⊆U be measurable
and h is one to one and differentiable on H. Then there exists nonnegative measurable
g ∈ L1

loc such that whenever f is nonnegative and Lebesgue measurable,∫
h(H)

f (y)dmp =
∫

H
f (h(x))g(x)dmp

where all necessary measurability is obtained.
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It remains to identify g.

Lemma 11.9.5 For a.e. x, satisfying |detDh(x)|> 0, and r small enough,

Dh(x)B(0,(1− ε)r) ⊆ h(B(x,r))⊆ h
(

B(x,r)
)
⊆ Dh(x)B(0,(1+ ε)r),

mp (h(B(x,r)))
mp (B(x,r))

∈ [|detDh(x)|(1− ε)p , |detDh(x)|(1+ ε)p]

lim
r→0

mp (h(B(x,r)))
mp (B(x,r))

= |detDh(x)|

Proof: For r small enough,

h(B(x,r)) ⊆ h(x)+Dh(x)B(0,r)+Dh(x)Dh(x)−1 B(0,εr)

⊆ h(x)+Dh(x)B(0,r)+Dh(x)B(0,εr)

⊆ h(x)+Dh(x)(B(0,(1+ ε)r))

and so mp (h(B(x,r)))≤ |det(Dh(x))|mp (B(0,(1+ ε)r)) . Also,

h(x+v) = h(x)+Dh(x)v+Dh(x)Dh(x)−1o(v)

and so
∥∥∥Dh(x)−1 (h(x+v)−h(x))−v

∥∥∥ = ∥∥∥Dh(x)−1o(v)
∥∥∥ = ∥o(v)∥ . Thus if r is

chosen sufficiently small, it follows that for v ∈ B(0,r)∥∥∥Dh(x)−1 (h(x+v)−h(x))−v
∥∥∥< εr

and so, from Lemma 8.10.1, B(0,(1− ε)r)⊆ Dh(x)−1
(
h
(
x+B(0,r)

)
−h(x)

)
.

h
(

B(x,r)
)
= h

(
x+B(0,r)

)
−h(x)⊇ Dh(x)B(0,(1− ε)r)

Therefore, since mp (B(x,r)) = mp

(
B(x,r)

)
,

|det(Dh(x))|mp (B(0,(1− ε)r)) = |det(Dh(x))|(1− ε)p rp
α p ≤ mp (h(B(x,r)))

so for r small enough,

mp (h(B(x,r)))
mp (B(0,(1+ ε)r))

≤ |det(Dh(x))| ≤
mp (h(B(x,r)))

mp (B(0,(1− ε)r))

The claim follows from this since ε > 0 is arbitrary. ■

Lemma 11.9.6 For a.e. x with |detDh(x)|> 0, limr→0
mp(h(B(x,r)∩H))

mp(h(B(x,r)))
= g(x)
|detDh(x)| .

Proof: Using the result of Lemma 11.9.5, for a.e. x satisfying |detDh(x)| > 0, if r
small enough, then

mp (h(B(x,r))) ∈ [|detDh(x)|mp (B(x,r))(1− ε)p , |detDh(x)|mp (B(x,r))(1+ ε)p]
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Therefore, for Qr ≡
mp(h(B(x,r)∩H))

mp(h(B(x,r)))
≥ 1
|detDh(x)|mp(B(x,r))(1+ε)p

∫
B(x,r) gdmp so

1
mp (B(0,r))(1+ ε)p

∫
B(x,r)

g
|detDh(x)|

dmp ≤ Qr

≤ 1
mp (B(0,r))(1− ε)p

∫
B(x,r)

g
|detDh(x)|

dmp

and so for Lebesgue points of g, a.e. x with |detDh(x)| ̸= 0,

1
(1+ ε)p ≤

g(x)
|detDh(x)|

≤ 1
(1− ε)p

Then for such x, 1
(1+ε)p

g
|detDh(x)| ≤ liminfr→0 Qr ≤ limsupr→0 Qr,≤ 1

(1−ε)p
g

|detDh(x)| so,

since ε is arbitrary, limr→0 Qr =
g(x)

|detDh(x)| . ■

Lemma 11.9.7 For a.e. x ∈ H,g(x) = |detDh(x)|.

Proof: First considerx such that |det(Dh(x))| ̸= 0. Then by Lemmas 11.9.5 and 11.9.6

lim
r→0

mp (h(B(x,r)∩H))

mp (B(x,r))
= lim

r→0

mp (h(B(x,r)∩H))

mp (h(B(x,r)))
mp (h(B(x,r)))

mp (B(x,r))

=
g(x)

|detDh(x)|
|detDh(x)|= g(x)

for a.e. x where |det(Dh(x))| ̸= 0.
If |detDh(x)|= 0 then for r small enough,

1
mp (B(x,r))

∫
B(x,r)

gdmp =
mp (h(B(x,r)∩H))

mp (B(x,r))

≤
mp (h(x)+Dh(x)B(0,r)+B(0,εr))

mp (B(x,r))
=

mp (Dh(x)B(0,r)+B(0,εr))
mp (B(x,r))

Now Dh(x)B(0,r) + B(0,εr) has finite diameter and lies in a p− 1 dimensional sub-
set. Therefore, from Theorem 11.7.4 on linear mappings, there is an orthogonal matrix Q
preserving all distances such that

|detQ|mp (Dh(x)B(0,r)+B(0,εr)) = mp (QDh(x)B(0,r)+B(0,εr))

where QDh(x)B(0,r) lies in a ball in Rp−1 of some radius r̂ = ∥Dh(x)∥r,. Thus the set
on the right side is contained in a cylinder of radius r̂+ εr and height 2rε so its measure is
no more than α p−1 (r̂+ rε)p−1 2εr for α p−1 = mp−1 (B(0,1)) . Thus,

1
mp (B(x,r))

∫
B(x,r)

gdmp ≤
(∥Dh(x)∥+1)p

α p−1 (r+ rε)p−1 2εr
α prp

= 2(∥Dh(x)∥+1)p α p−1

α p
(1+ ε)p−1

ε

Since ε is arbitrary, for every Lebesgue point where |detDh(x)| = 0, it follows g = 0 =
|detDh(x)| . ■

Here is the change of variables formula which follows from Lemma 11.9.4 now that g
has been identified.



11.10. MAPPINGS NOT ONE TO ONE 337

Theorem 11.9.8 Let U be an open set and let h : U→h(U) be continuous and one
to one and differentiable on the measurable H ⊆U. Then if f ≥ 0 is Lebesgue measurable,∫

h(H)
f (y)dmp =

∫
H

f (h(x)) |det(Dh(x))|dmp

11.10 Mappings Not One to One
Let H ⊆U and h is differentiable on H. Let Z ≡ {x ∈ H : |detDh(x)|= 0}. Then it is
possible to decompose H \Z into countably many disjoint measurable sets such that h will
be one to one on each of these sets.

Lemma 11.10.1 Let h : H ⊆U ⊆ Rp→ Rp be differentiable on H and let

Z ≡ {x : det(Dh(x)) = 0} .

Then there is a countable set {Fi}i of disjoint Borel sets such that h is one to one on each
of these and [det(Dh(x)) ̸= 0] = H \Z = ∪iFi.

Proof: Let h be differentiable on the measurable set H ⊆U ⊆ Rp for U an open set
in Rp. Let S be a countable dense subset of the set of invertible matrices and let C be a
countable dense subset of B, a Borel subset of the points x of U where det(Dh(x)) ̸= 0.
To get S one could simply consider all matrices of which have a rational number in each
entry. This would be dense in L (Rp,Rp) which is therefore a separable metric space,
which therefore has a countable basis of open balls. Then S being a subset must also
be separable. (Corollary 3.4.3) I will decompose B into a disjoint union of Borel sets on
which h is one to one. This will be done by establishing 11.15 given below where T is an
invertible transformation. For T ∈S , c∈C , i∈N, define E (T,c, i) to be those b∈B

(
c, 1

i

)
such that for all a ∈ B

(
b, 2

i

)
,

|h(a)−h(b)−Dh(b)(a−b)|< ε |T (a−b)| (11.12)

and also Dh(b) is close enough to T that the following hold.

inf
v ̸=0

|Dh(b)v|
|Tv|

> 1− ε, sup
v ̸=0

|Dh(b)v|
|Tv|

< 1+ ε (11.13)

where ε < 1/4. These are Borel sets because of continuity of h so that the derivative Dh
is also Borel measurable. Indeed each entry of the matrix of Dh is a limit of difference
quotients which are continuous.

•b
•c

B(c, 1
i )

B(b, 2
i )

Note that it is not clear whether c ∈ E(T,c, i) because of the above two requirements
11.13. What is going on here is that we are looking for b such that Dh(b) is sufficiently
close to one of those T which also are in a piece of B. Thus we start with one of those T
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and one of those points c and look for all b, if any, which do the right things. There are
countably many of these pieces of B being denoted as E (T,c, i).

The union of these E (T,c, i) is all of B because if b ∈ B,

|h(a)−h(b)−Dh(b)(a−b)|< ε |Dh(b)(a−b)| (11.14)

whenever a ∈ B
(
b, 2

i

)
provided i is sufficiently large. Thus also, by Lemma 5.3.1, there

is T ∈S such that the above holds for Dh(b) replaced with T and a ∈ B
(
b, 2

i

)
and also

11.13. Thus b ∈ E (T,c, i), so indeed the union of these sets is B.
Now let a,b ∈ E (T,c, i) . Since a,b ∈ E (T,c, i) , a,b are within 1/i of c and so a is

within 2/i of b and so 11.12 holds because of the definition of E (T,c, i). Therefore, from
11.12 and the inequalities which follow, 11.13,

(1−3ε) |T (a−b)| ≤ |h(a)−h(b)| ≤ (1+3ε) |T (a−b)| (11.15)

Indeed from 11.14 and 11.13

|h(a)−h(b)| ≤ (1+ ε) |Dh(b)(a−b)| ≤ (1+ ε)2 |T (a−b)| ≤ (1+3ε) |T (a−b)|

The bottom inequality is similar. Thus h is one to one on E (T,c, i). Now enumerate these
Borel sets {Ei}∞

i=1. Let F1 = E1 and if F1, ...,Fm have been chosen, let Fm+1 ≡ Em+1 \(
∪m

i=1Fi
)
. ■

Theorem 11.10.2 Let U be an open set and let h : U → h(U) be continuous and
differentiable on the measurable H ⊆ U such that h(U \H) has measure zero. Then if
f ≥ 0 is Lebesgue measurable,∫

h(H)
#(y) f (y)dmp =

∫
H

f (h(x)) |det(Dh(x))|dmp

where #(y) is the number of elements of h−1 (y) in U.

Proof: Let {Fi} be the Borel sets of Lemma 11.10.1 whose union equals H \Z where
Z is the set where Dh(x) exists but is not invertible and h one to one on each Fi. Thus for
f Lebesgue measurable,

∫
h(H\Z)Xh(Fi) f (y)dmp =

∫
Fi

f (h(x)) |det(Dh(x))|dmp. Let
n(y)≡ ∑i Xh(Fi) (y). Then, adding these yields,∫

h(H\Z)
n(y) f (y)dmp =

∫
H\Z

f (h(x)) |det(Dh(x))|dmp

Now #(y) = n(y) except for h(U \H)∪h(Z) which is a set of mp measure zero by
assumption and by Sard’s Lemma, Lemma 11.8.3 for h(Z). Therefore,∫

h(H)
#(y) f (y)dmp =

∫
h(H\Z)

#(y) f (y)dmp =
∫

H\Z
f (h(x)) |det(Dh(x))|dmp

=
∫

H
f (h(x)) |det(Dh(x))|dmp ■

h is one to one when #(y)= 1 and in this case we get the usual change of variables formula.



11.11. SPHERICAL COORDINATES 339

11.11 Spherical Coordinates
As usual, Sp−1 is the unit sphere, the boundary of the unit ball B(0,1) in Rp. It is a metric
space with respect to the usual notion of distance which it inherits from being a part of Rp.
Then (0,∞)×Sp−1 is also a metric space with the metric

d ((ρ,ω) ,(ρ̂, ω̂))≡max{|ρ− ρ̂| , |ω− ω̂|}

Indeed, this kind of thing delivers a metric for an arbitrary finite product of metric spaces.
See Problem 6 on Page 94.

Definition 11.11.1 Define λ : Rp \{0}→ (0,∞)×Sp−1 as λ (x)≡
(
|x| , x

|x|

)
Then with this definition, the following is true.

Lemma 11.11.2 Let λ be as defined above. Then λ is one to one, onto, and continuous
with continuous inverse.

Proof: First of all, it is obviously onto. Indeed, if (ρ,ω) ∈ (0,∞)× Sp−1, consider
x ≡ ρω. Why is this one to one? If x ̸= x̂, then there are two cases. It might be that
|x| ̸= |x̂| and in this case, clearly λ (x) ̸= λ (x̂) . The other case is that |x| = |x̂| = ρ but
these two vectors x,x̂ are not equal. In this case, x

|x| −
x̂
|x̂| =

1
ρ
(x− x̂) ̸= 0. Thus λ is one

to one.
Is λ continuous? Suppose xn→ x ̸= 0. Does λ (xn)→ λ (x)? First of all, the triangle

inequality shows that |xn| → |x| . It only remains to verify xn
|xn| →

x
|x| . This is clearly the

case because ∣∣∣∣ xn

|xn|
− x

|x|

∣∣∣∣= ∣∣∣∣ |x|xn−|xn|x
|xn| |x|

∣∣∣∣→ ∣∣∣∣ |x|x−|x|x|x| |x|

∣∣∣∣= 0

Is λ
−1 also continuous? One could show this directly or observe that λ

−1 is automat-
ically continuous on

[ 1
n ,n
]
× Sp−1 because this is a compact set. Indeed,

[ 1
n ,n
]
× Sp−1 =

λ
({
x ∈ Rp : 1

n ≤ |x| ≤ n
})

. If λ (xn)→ λ (x) , does it follow that xn→ x? If not, there
exists a subsequence, still denoted as xn such that xn→ y ̸= x. But then, by continuity of
λ , λ (xn)→ λ (y) and so λ (y) = λ (x) which does not occur because λ is one to one.

It follows, since (0,∞)×Sp−1 = ∪n
[ 1

n ,n
]
×Sp−1, that λ

−1 is continuous. ■
Thus the open sets for (0,∞)× Sp−1 are all of the form λ (U) where U is open in

Rp \{0}. Also, the open sets of Rp \{0} are of the form λ
−1 (V ) where V is an open set

of (0,∞)× Sp−1. One can replace the word “open” with the word “Borel” in the previous
observation.

Motivated by familiar formulas for the area of a sphere and the circumference of a
circle, here is a definition of a surface measure defined on the Borel sets of Sp−1.

Definition 11.11.3 Let E be a Borel set on Sp−1. Then

λ
−1 ((0,1]×E)≡ {ρω : ρ ∈ (0,1],ω ∈ E}

will be a part of the unit ball formed from the cone starting at 0 and extending to the points
of E, leaving out 0. Since (0,1]×E is a Borel set in (0,∞)×Sp−1 thanks to Problem 4 on
Page 259, this cone just described is a Borel set in Rp. Then

σ (E)≡ pmp

(
λ
−1 ((0,1]×E)

)
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This is obviously a measure on the Borel sets of Sp−1.

Is this even a good idea? Note mp

(
λ
−1 ({r}×E)

)
= 0 because λ

−1 ({r}×E) is just a
part of the sphere of radius r which has mp measure zero. The reason this is so is as follows.
Letting α p ≡ mp (B(0,1)) , the sphere of radius r is contained in B(0,r+ ε)\B(0,r− ε)
and so the sphere has mp measure no more than α p ((r+ ε)p− (r− ε)p) for every ε > 0.

Lemma 11.11.4 Let G be a Borel set in (0,∞)×Sp−1. Then

mp

(
λ
−1 (G)

)
=
∫

∞

0

∫
Sp−1

XG (ρ,ω)ρ
p−1dσdρ (11.16)

and the iterated integrals make sense.

Proof: Let K ≡
{

I×E : I is an interval in (0,∞) and E is Borel in Sp−1
}
. This is a π

system and each set of K is a Borel set. Then if I is one of these intervals, having end
points a < b,∫

∞

0

∫
Sp−1

XI×E (ρ,ω)ρ
p−1dσdρ =

∫ b

a
ρ

p−1
∫

E
dσdρ = σ (E)

(
bp

p
− ap

p

)

= p mp

(
λ
−1 ((0,1]×E)

)(bp

p
− ap

p

)
= mp

(
λ
−1 ((0,1]×E)

)
(bp−ap)

= mp

(
λ
−1 ((a,b)×E)

)
= mp

(
λ
−1 (I×E)

)
Let G denote those Borel sets G in (0,∞)×Sp−1 for which, Gn ≡ G∩ (0,n)×Sp−1,

mp

(
λ
−1 (Gn)

)
=
∫

∞

0

∫
Sp−1

XGn (ρ,ω)ρ
p−1dσdρ

the iterated integrals making sense. It is routine to verify that G is closed with respect to
complements and countable disjoint unions. It was also shown above that it contains K .
By Dynkin’s lemma, Lemma 9.3.2, G equals the Borel sets in (0,∞)×Sp−1. Now use the
monotone convergence theorem. ■

Theorem 11.11.5 Let f be a Borel measurable nonnegative function. Then∫
f dmp =

∫
∞

0

∫
Sp−1

f (ρω)ρ
p−1dσdρ (11.17)

Proof: From the above lemma, if F is an arbitrary Borel set, it has the same measure
as F ∩ (Rp \{0}) so there is no loss of generality in assuming 0 /∈ F .∫

Rp
XF dmp = mp (F) = mp

(
λ
−1 (λ (F))

)
=
∫

∞

0

∫
Sp−1

Xλ (F) (ρ,ω)ρ
p−1dσdρ

=
∫

∞

0

∫
Sp−1

XF

(
λ
−1 (ρ,ω)

)
ρ

p−1dσdρ =
∫

∞

0

∫
Sp−1

XF (ρω)ρ
p−1dσdρ

Now if f is nonnegative and Borel measurable, one can approximate using Borel simple
functions increasing pointwise to f and use the monotone convergence theorem to obtain
11.17. ■

Note that by Theorem 10.14.9, you can interchange the order of integration in 11.16 if
desired.
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Example 11.11.6 For what values of s is the integral
∫

B(0,R)

(
1+ |x|2

)s
dy bounded inde-

pendent of R? Here B(0,R) is the ball, {x ∈ Rp : |x| ≤ R} .

I think you can see immediately that s must be negative but exactly how negative? It
turns out it depends on p and using polar coordinates, you can find just exactly what is
needed. From the polar coordinates formula above,∫

B(0,R)

(
1+ |x|2

)s
dy =

∫ R

0

∫
Sp−1

(
1+ρ

2)s
ρ

p−1dσdρ =Cp

∫ R

0

(
1+ρ

2)s
ρ

p−1dρ

Now the very hard problem has been reduced to considering an easy one variable prob-
lem of finding when

∫ R
0 ρ p−1

(
1+ρ2

)s dρ is bounded independent of R. You need 2s+
(p−1)<−1 so you need s <−p/2.

11.12 Symmetric Derivative for Radon Measures
Here we have two Radon measures µ,λ defined on a σ algebra of sets F which are subsets
of an open subset U of Rp, possibly all of Rp. They are complete and Borel and inner and
outer regular, and finite on compact sets. Thus both of these measures are σ finite.

In this section is the symmetric derivative Dµ (λ ). In what follows, B(x,r) will denote
a closed ball with center x and radius r. Also, let λ and µ be Radon measures and as above,
Z will denote a µ measure zero set off of which µ (B(x,r))> 0 for all r > 0. Generalizing
the notion of limsup and liminf,

limsup
r→0

f (r)≡ lim
r→0

(sup{ f (t) : t < r}) , lim inf
r→0

f (r)≡ lim
r→0

(inf{ f (t) : t < r})

Then directly from this definition, the limr→0 exists if and only if these two are equal.

Definition 11.12.1 For x /∈ Z, define the upper and lower symmetric derivatives
as

Dµ λ (x)≡ limsup
r→0

λ (B(x,r))
µ (B(x,r))

, Dµ λ (x)≡ lim inf
r→0

λ (B(x,r))
µ (B(x,r))

.

respectively. Also define Dµ λ (x)≡ Dµ λ (x) = Dµ λ (x) in the case when both the upper
and lower derivatives are equal. Recall that Z ≡ {x : µ (B(x,r)) = 0 for some r > 0} and
that this set has measure zero.

Lemma 11.12.2 Let λ and µ be Radon measures on Fλ and Fµ respectively and let
a,b > 0. If A is a subset of

{
x /∈ Z : Dµ λ (x)≥ b

}
then λ (A)≥ bµ (A) and if A is a subset

of
{
x /∈ Z : Dµ λ (x)≤ a

}
, then λ (A)≤ aµ (A) .

Proof: Let λ be the outer measure determined by λ , similar for µ and µ . Suppose first
that A is a subset of

{
x /∈ Z : Dµ λ (x)≥ b

}
so µ (B(x,r))> 0 for all r > 0 and λ (A)< ∞.

Let small ε > 0, and let V be a bounded open set with V ⊇ A and λ (V )− ε < λ (A) . Then
for each x ∈ A, λ (B(x,r))

µ(B(x,r)) > b− ε, B(x,r) ⊆ V,for infinitely many values of r which are
arbitrarily small. Thus the collection of such closed balls constitutes a Vitali cover for
A. By Corollary 9.12.3 there is a disjoint sequence of these closed balls {Bi} such that
µ (A\∪∞

i=1Bi) = 0,

µ (A)≤ µ (A\∪∞
i=1Bi)+µ (∪∞

i=1Bi∩A)≤
∞

∑
i=1

µ (Bi∩A) (11.18)
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≤
∞

∑
i=1

µ (Bi)<
1

b− ε

∞

∑
i=1

λ (Bi)≤
1

b− ε
λ (V )<

ε +λ (A)
b− ε

Since ε is arbitrary, this shows µ (A)b≤ λ (A) . In case λ (A) = ∞, there is nothing to show.
Now suppose A is a subset of

{
x /∈ Z : Dµ λ (x)≤ a

}
. Suppose first that A is bounded

so µ (A)<∞ and let V be a bounded open set containing A with µ (V )−ε < µ (A) . Then for
each x∈ A, there are arbitrarily small r such that λ (B(x,r))

µ(B(x,r)) < a+ε, B(x,r)⊆V . Therefore,
by Corollary 9.12.3 again, there exists a disjoint sequence of these balls, {Bi} satisfying
this time,

λ (A\∪∞
i=1Bi) = 0 and λ (A)≤

∞

∑
i=1

λ (A∩Bi)≤
∞

∑
i=1

λ (Bi)

≤
∞

∑
i=1

(a+ ε)µ (Bi)≤ (a+ ε)µ (V )≤ (a+ ε)(ε +µ (A))

Since ε > 0 is arbitrary, λ (A) ≤ aµ (A) .This proves the lemma in case A is bounded. If
not, replace A with A∩B(0,R) , get the result for this and let R→∞. If µ (A) = ∞, there is
nothing to show. ■

Theorem 11.12.3 Let λ ,µ be Radon measures on Fλ and Fµ respectively. There
exists a set of measure zero N containing Z such that for x /∈ N, Dµ λ (x) exists and also
XNC (·)Dµ λ (·) is a µ measurable function. Furthermore, Dµ λ (x)< ∞ µ a.e.

Proof: First I show Dµ λ (x) exists a.e. Let 0 < a < b < ∞ and let A be any bounded
subset of N (a,b)≡

{
x /∈ Z : Dµ λ (x)> b > a > Dµ λ (x)

}
. By Lemma 11.12.2, aµ (A)≥

λ (A) ≥ bµ (A) and so µ (A) = 0 and so A is µ measurable. It follows µ (N (a,b)) = 0
because µ (N (a,b))≤ ∑

∞
m=1 µ (N (a,b)∩B(0,m)) = 0. Now{

x /∈ Z : Dµ λ (x)> Dµ λ (x)
}
⊆ ∪{N (a,b) : 0 < a < b, and a,b ∈Q}

and the latter set is a countable union of sets of measure 0, so off a set of measure 0, N for
which N ⊇ Z, one has Dµ λ (x) = Dµ λ (x) .

We can assume also that N is a Borel set from regularity considerations. See Theorem
9.11.2 for example. It remains to verify XNC (·)Dµ λ (·) is finite a.e. and is µ measurable.
Let I =

{
x : Dµ λ (x) = ∞

}
. Then by Lemma 11.12.2 λ (I∩B(0,m)) ≥ aµ (I∩B(0,m))

for all a > 0, and since λ is finite on bounded sets, the above implies µ (I∩B(0,m)) = 0
for each m which implies that I is µ measurable and has µ measure zero since I = ∪∞

m=1I∩
B(0,m) .

Now the issue is measurability. Let λ be an arbitrary Radon measure. I need show
that x→ λ (B(x,r)) is measurable. Here is where it is convenient to have the balls be
closed balls. If V is an open set containing B(x,r) , then for y close enough to x,B(y,r)⊆
V also and so, limsupy→x λ (B(y,r)) ≤ λ (V ) . However, since V is arbitrary and λ is
outer regular, or observing that B(x,r) the closed ball is the intersection of nested open
sets, it follows that limsupy→x λ (B(y,r)) ≤ λ (B(x,r)) . Thus x→ λ (B(x,r)) is upper

semicontinuous, similar for x→ µ (B(x,r)) and so, x→ λ (B(x,r))
µ(B(x,r)) is measurable. Hence

XNC (x)Dµ (λ )(x) = limri→0 XNC (x)
λ (B(x,ri))
µ(B(x,ri))

is also measurable. ■
Typically I will write Dµ λ (x) rather than the more precise XNC (x)Dµ λ (x) since

the values on the set of measure zero N are not important due to the completeness of the
measure µ . This is done in the next section.
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11.13 Radon Nikodym Theorem, Radon Measures
The Radon Nikodym theorem is an abstract result but this will be a special version. It will
give a pointwise description in terms of the symmetric derivative of the Radon Nikodym
derivative presented earlier.

Definition 11.13.1 Let λ ,µ be two Radon measures defined on F , a σ algebra
of subsets of an open set U. Then λ ≪ µ means that whenever µ (E) = 0, it follows that
λ (E) = 0.

Next is a representation theorem for λ in terms of an integral involving Dµ λ .

Theorem 11.13.2 Let λ and µ be Radon measures defined on Fλ ,Fµ respec-
tively, σ algebras of the open set U, then there exists a set of µ measure zero N such that
Dµ λ (x) exists off N and if E ⊆ NC,E ∈ Fλ ∩Fµ , then λ (E) =

∫
U
(
Dµ λ

)
XEdµ . If

λ ≪ µ on Fλ ∩Fµ , then λ (E) =
∫

E Dµ λdµ . In any case, λ (E)≥
∫

E Dµ λdµ so Dµ λ is
in L1

loc (Rp,µ) because λ (B)< ∞ for any ball B.

Proof: The proof is based on Lemma 11.12.2. Let E ⊆ NC where N has µ measure 0
and includes the set Z along with the set where the symmetric derivative does not exist. It
can be assumed that N is a Gδ set. Define

ln (x)≡
∞

∑
k=1

an
k−1X(Dµ λ)

−1
(In

k )
(x) , un (x)≡

∞

∑
k=1

an
kX(Dµ λ)

−1
(In

k )
(x)

where In
k ≡ ((k−1)2−n,k2−n] ≡ (an

k−1,a
n
k ] for k,n ∈ N. Thus un (x) ≥ Dµ λ (x) > ln (x)

and un (x)− ln (x) = 2−n. Also, ln (x) increases to Dµ λ (x). Letting

En
k ≡

[
x ∈ E : Dµ λ (x) ∈ In

k
]
,

and assuming µ (E)< ∞,
∫

E Dµ λdµ ∈ [
∫

E lndµ,
∫

E undµ]

=

[
∞

∑
k=1

an
k−1µ (En

k ) ,
∞

∑
k=1

an
k µ (En

k )

]
⊆
[∫

E
lndµ,

∫
E

lndµ +2−n
µ (E)

]
(11.19)

From Lemma 11.12.2, µ
(
En

k

)
an

k ≥ λ
(
En

k

)
≥ an

k−1µ
(
En

k

)
and so the interval in 11.19 con-

tains ∑
∞
k=1 λ

(
En

k

)
. This equals λ (E) because of Lemma 11.12.2 which implies

λ
(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
≤ aµ

(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
≤ aµ (E) , µ (E)< ∞

and since this is true for every positive a, it follows that

λ
(
E ∩

{
x ∈ NC : Dµ λ (x) = 0

})
= 0

so the sum ∑
∞
k=1 λ

(
En

k

)
= λ (E) . Then, from the monotone convergence theorem in 11.19,

one can pass to a limit and find that
∫

E Dµ λdµ = λ (E) .
Now if E is an arbitrary set in NC, maybe not bounded, the above shows

λ (E ∩B(0,n)) =
∫

E∩B(0,n)
Dµ λdµ
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Let n→ ∞ and use the monotone convergence theorem. Thus for all E ⊆ NC, λ (E) =∫
E Dµ λdµ . For the last claim,

∫
E Dµ λdµ =

∫
E∩NC Dµ λdµ = λ

(
E ∩NC

)
≤ λ (E).

In case, λ ≪ µ, it does not matter that E ⊆ NC because, since µ (N) = 0, so is λ (N)
and so

λ (E) = λ
(
E ∩NC)= ∫

E∩NC
Dµ λdµ =

∫
E

Dµ λdµ

for any E ∈F . ■
What if λ and µ are just two arbitrary Radon measures defined on F ? What then? It

was shown above that Dµ λ (x) exists for µ a.e. x, off a Gδ set N of µ measure 0 which
includes Z, the set of x where µ (B(x,r)) = 0 for some r > 0. Also, it was shown above
that if E ⊆ NC, then λ (E) =

∫
E Dµ λ (x)dµ. Define for arbitrary E ∈F ,

λ µ (E)≡ λ
(
E ∩NC) , λ⊥ (E)≡ λ (E ∩N)

Then
λ (E) = λ (E ∩N)+λ

(
E ∩NC)= λ⊥ (E)+λ µ (E)

= λ (E ∩N)+
∫

E∩NC
Dµ λ (x)dµ = λ (E ∩N)+

∫
E

Dµ λ (x)dµ

≡ λ (E ∩N)+λ µ (E)≡ λ⊥ (E)+λ µ (E)

This shows the following corollary.

Corollary 11.13.3 Let µ,λ be two Radon measures. Then there exist two measures,
λ µ ,λ⊥ such that λ µ ≪ µ, λ = λ µ +λ⊥ and a set of µ measure zero N such that λ⊥ (E) =
λ (E ∩N) . Also λ µ is given by the formula λ µ (E)≡

∫
E Dµ λ (x)dµ.

Proof: If x ∈ N, this could happen two ways, either x ∈ Z or Dµ λ (x) fails to exist.
It only remains to verify that λ µ given above satisfies λ µ ≪ µ. However, this is obvious
because if µ (E) = 0, then

∫
E Dµ λ (x)dµ = 0. ■

Since Dµ λ (x)=Dµ λ (x)XNC (x) , it doesn’t matter which we use but maybe Dµ λ (x)
doesn’t exist at some points of N, so although I will use Dµ λ (x) , it might be more precise
to use Dµ λ (x)XNC (x).

This is sometimes called the Lebesgue decomposition.
How does this relate to Corollary 10.13.14? It tells how to find the function f in that

Corollary as a symmetric derivative. This is very useful when you want to have an explicit
description of the Radon Nikodym derivative.

11.14 Absolutely Continuous Functions
Can you integrate the derivative to get the function as in calculus? The answer is that some-
times you can and when this is the case, the function is called absolutely continuous. This is
explained in this section. Recall the following which summarizes Theorems 9.9.1 on Page
257 and 9.7.4 on Page 250. In what follows m will be one dimensional Lebesgue measure.
Recall that for F increasing, F (x+)≡ limh→0+ F (x+h) ,F (x−)≡ limh→0+ F (x−h) .

Theorem 11.14.1 Let F be an increasing function on R. Then there is an outer
measure µ and a σ algebra F on which µ is a measure such that F contains the Borel
sets. This measure µ satisfies

µ ([a,b]) = F (b+)−F (a−) , µ ((a,b)) = F (b−)−F (a+)
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µ ((a,b]) = F (b+)−F (a+) , µ ([a,b)) = F (b−)−F (a−) .

Furthermore, if E is any set in F

µ (E) = sup{µ (K) : K compact, K ⊆ E} (11.20)

µ (E) = inf{µ (V ) : V is an open set V ⊇ E} (11.21)

Of interest is the symmetric derivative of F , defined as limh→0
F((x+h)+)−F((x−h)−)

2h
Now from Theorem 11.12.3 it follows that for a.e. x,

lim
h→0+

µ ([x−h,x+h])
2h

= lim
h→0+

F ((x+h)+)−F ((x−h)−)
2h

≡ Dmµ (x)

exists a.e. x. From Corollary 11.13.3, µ = µ⊥+ µm where µm (E) ≡
∫

E Dmµ (x)dm and
there is a Borel set of m measure zero N such that µ⊥ (E) = µ (E ∩N)

In case µ ≪ m then from Theorem 11.13.2, if E is Borel, µ (E) =
∫

E Dmµ (x)dm. This
begs the following question.

What properties on F are equivalent to this measure µ being absolutely continuous with
respect to m,µ ≪ m? Here is a definition of what it means for a function to be absolutely
continuous with respect to Lebesgue measure. Thus there are now two things being called
“absolutely continuous” functions and measures.

Definition 11.14.2 Let [a,b] be a closed and bounded interval and let F : [a,b]→
R. Then F is said to be absolutely continuous if for every ε > 0 there exists δ > 0 such
that if ∑

m
i=1 |yi− xi|< δ where the intervals (xi,yi) are non-overlapping, then it follows that

∑
m
i=1 |F (yi)−F (xi)|< ε.

It turns out that if, in the definition, you allow arbitrary intervals, non-overlapping or
not, then you end up with a Lipschitz function which is obviously absolutely continuous.
This is shown later.

The following theorem gives the desired equivalence between absolute continuity of F
and µ ≪ m.

Theorem 11.14.3 Let F be an increasing function on [a,b] and let µ be the mea-
sure of Theorem 11.14.1. Then µ ≪ m if and only if F is absolutely continuous.

Proof:⇒First suppose that µ ≪ m. Then by Theorem 11.13.2, for all Borel sets E,

µ (E) =
∫

E
Dmµ (x)dm

In particular, F must be continuous because Dmµ is in L1
loc. Thus

F (y−)−F (x+) =
∫
(x,y)

Dmµ (x)dm =
∫
(x,y]

Dmµ (x)dm = F (y+)−F (x+)

showing that for arbitrary y,F (y−) = F (y+) so the function F is continuous as claimed.
Also F (b)−F (a) =

∫
[a,b] Dmµ (x)dm so Dmµ is in L1 ([a,b] ,m).
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If the function F is not absolutely continuous, then there exists ε > 0 and open sets
En consisting of unions of finitely many non-overlapping open intervals such that if En =
∪mn

i=1 (x
n
i ,y

n
i ) , then ∑

m
i=1 |yn

i − xn
i |= m(En)< 2−n but∫

[a,b]
XEn (x)Dmµ (x)dm = µ (En) =

mn

∑
i=1

µ (xn
i ,y

n
i ) =

mn

∑
i=1

(F (yn
i )−F (xn

i ))≥ ε (11.22)

However, XEn (x)→ 0 a.e. because ∑n m(En) < ∞ and so, by the Borel Cantelli lemma,
there is a set of measure zero N such that for x /∈ N, x is in only finitely many of the En. In
particular, XEn (x) = 0 for all n large enough if x /∈ N. Then by the dominated convergence
theorem, the inequality 11.22 cannot be valid for all n because the limit of the integral on
the left equals 0. This is a contradiction. Hence F must be absolutely continuous after all.
⇐Next suppose the function F is absolutely continuous. Suppose m(E) = 0. Does it

follow that µ (E) = 0? Let ε > 0 be given. Let δ correspond to ε/2 in the definition of
absolute continuity. Let E ⊆ V where V is an open set such that m(V ) < δ . By Theorem
3.11.8, V =∪i (ai,bi) where these open intervals are disjoint. It follows that for each n, ε

2 >

∑
n
i=1 F (bi)−F (ai) = µ

(
∪n

i=1 (ai,bi)
)
. Then letting n→ ∞,ε > ε

2 ≥ µ (∪∞
i=1 (ai,bi)) =

µ (V )≥ µ (E). Since ε > 0 is arbitrary, it follows that µ (E) = 0 and so µ ≪ m. ■
An example which shows that increasing and continuous is not enough, see Problem 5

on Page 269.

Corollary 11.14.4 F is increasing on [a,b] and absolutely continuous if and only if
F ′ (x) exists for a.e. x and F ′ is in L1 ([a,b] ,m) and for every x,y such that a≤ x≤ y≤ b

F (y)−F (x) =
∫ y

x
F ′ (t)dm

Proof:⇒Suppose first that F is absolutely continuous. Then by Theorem 11.13.2, for
µ defined above, µ (E) =

∫
E Dmµ (x)dm for all E Borel. In particular,

F (y)−F (x) =
∫
(x,y)

Dmµ (t)dm(t) (11.23)

Since Dmµ is in L1 ([a,b] ,m) , it follows that almost every point is a Lebesgue point and so
for such Lebesgue points x,∣∣∣∣F (x+h)−F (x)

h
−Dmµ (x)

∣∣∣∣= ∣∣∣∣1h
∫
[x,x+h]

(Dmµ (t)−Dmµ (x))dm(t)
∣∣∣∣

≤ 2
∣∣∣∣ 1
2h

∫
[x−h,x+h]

|Dmµ (t)−Dmµ (x)|dm(t)
∣∣∣∣

which converges to 0 as h→ 0 since x is a Lebesgue point. Similarly, at each Lebesgue
point, limh→0

F(x)−F(x−h)
h = Dmµ (x) Thus F is differentiable at each Lebesgue point and

the derivative equals Dmµ at these points. Now 11.23 yields the desired result that the
function can be recovered from integrating its derivative.
⇐Next suppose F (y)−F (x) =

∫ y
x F ′ (t)dm where F ′ (t) exists a.e. and F ′ is in L1.

Then if {Ii}i are nonoverlapping intervals,
∫
∪iIi F ′ (t)dm = m(∪iF (Ii)) < ε if m(∪iIi) is

small enough, as an application of the dominated convergence theorem or as in the first
part of Theorem 11.14.3. ■

The importance of the intervals being non overlapping is discussed in the following
proposition. I think it is also interesting that it implies F is Lipschitz. In this proposition,
F is defined on some interval, possibly R.
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Proposition 11.14.5 Suppose Definition 11.14.2 is unchanged except do not insist that
the intervals be non-overlapping. Then F is not just absolutely continuous, it is also Lips-
chitz. The converse also holds.

Proof: Choose m such that ∑
∞
n=m 2−n < δ where δ goes with 1 in the definition of abso-

lute continuity. Let r ≤ 1/2 and this implies that any such choice of r yields ∑
∞
n=m rn < δ .

Let Enr ≡ [F ′ > r−n] . If any Enr has measure zero, then F ′ is bounded off a set of mea-
sure zero and this is what is desired. Otherwise, each Enr has a point of density. Let hn ∈
[rn−1,rn−2) so r−n+1hn ≥ 1 and let r be small enough and m large enough that ∑

∞
n=m hn < δ .

For tN+m a point of density for E(N+m)r let In≡ (tN+m− rhn/2, tN+m + rhn/2) . Pick N large,

say N > 9. Make r smaller if necessary so that for n ∈ [m,N +m] , m(Enr∩In)
m(In)

> 1
2 . Note that

E(N+m)r ⊆ Enr for n < N+m and tN+m ∈ Enr must be a point of density for Enr. Then, since
F ′ > r−n on Enr, one obtains the following sequence of inequalities.

4.5 <
N +1

2
=

m+N

∑
n=m

1
2
<

m+N

∑
n=m

≥1︷ ︸︸ ︷
r−nrhn

m(En∩ In)

m(In)
=

m+N

∑
n=m

r−nm(In)
m(En∩ In)

m(In)
=

m+N

∑
n=m

r−nm(En∩ In)

≤
m+N

∑
n=m

∫ tN+m+rhn/2

tN+m−rhn/2
XEnF ′ (t)dm≤

m+N

∑
n=m

F (tN+m + rhn/2)−F (tN+m− rhn/2)< 1

by assumption, since the sum of the lengths of the intervals is smaller than δ . Thus 4.5≤ 1,
a contradiction. Hence some Enr has measure zero and so F ′ is bounded by a constant K
off a set of measure zero. Hence, |F (s)−F (t)|=

∣∣∫ t
s F ′ (u)du

∣∣≤ K |s− t| showing that F
is Lipschitz.

The other direction is fairly obvious. If F is Lipschitz continuous, with Lipschitz con-
stant K then if ∑

m
i=1 |xi+1− xi| < δ , then ∑

m
i=1 |F (xi+1)−F (xi)| ≤ K ∑

m
i=1 |xi+1− xi| so if

ε > 0 is given, let δ = ε/K. ■
Note that when µ is the Lebesgue Stieltjes measure coming from increasing continuous

F, it follows from the definition that Dmµ (x) = limh→0
F(x+h)−F(x−h)

2h . The following is
another characterization of absolute continuity.

Corollary 11.14.6 Let µ be the Lebesgue Stieltjes measure described above for in-
creasing F defined on Fµ containing the Borel sets. Let I ≡ {x : Dmµ (x) = ∞} . Then
µ ≪ m on Fm ∩Fµ if and only if µ (I) has measure 0. Here Fm is the σ algebra of
Lebesgue measurable sets.

Proof: ⇒ If µ ≪ m, then by Theorem 11.13.2, for all E ∈Fµ ∩Fm, it follows that
µ (E) =

∫
E Dmµ (x)dm. Then by the fundamental theorem of calculus, Theorem 11.13.2,

there is a set of m measure zero N such that off this set, Dmµ (x) exists and is in R. Thus
N ⊇ I and by absolute continuity, µ (I) = 0.
⇐ Next suppose µ (I) = 0. Then F has no jumps because if it did, then µ (a jump)> 0

and the jump is also contained in I. Let m(E) = 0 for E a bounded set. Then define

Gn ≡
{

t : lim inf
r→0

µ (B(t,r))
2r

≤ n
}
,n ∈ N
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and note that I =
{

t : liminfr→0
µ(B(t,r))

2r = ∞

}
. Consider Gn ∩E where m(E) = 0. Let V

be a bounded open set and V ⊇ Gn ∩E and m(V ) < ε/n. Then there is a Vitali cover of
Gn ∩E consisting of closed balls B such that µ (B) ≤ nm(B) , each ball contained in V.
Then by the covering theorem Theorem 9.12.2 on Page 263, there is a disjoint union of
these which covers Gn∩E called Bi,µ (E ∩Gn \∪iBi) = 0 and so µ (E ∩Gn) = ∑i µ (Bi)≤
n∑i m(Bi)< nm(V )< ε and since ε is arbitrary, µ (E ∩Gn) = 0. Now, since µ (I) = 0,

µ (E) = µ (E ∩ I)∪∪nµ (E ∩Gn) = ∪nµ (E ∩Gn) = lim
n→∞

µ (E ∩Gn) = 0

In general, if m(E) = 0, let En ≡ E ∩B(0,n). Then from what was just shown, µ (En) = 0
and so, taking a limit, µ (E) = 0 also. Thus µ ≪ m. ■

11.15 Total Variation
The total variation function of an absolutely continuous function is itself absolutely contin-
uous. This is shown here along with some of its implications.

Definition 11.15.1 A finite subset, P of [a,b] is called a partition of [x,y] ⊆ [a,b]
if P = {x0,x1, · · · ,xn} where x = x0 < x1 < · · · ,< xn = y. For f : [a,b] → R and P =
{x0,x1, · · · ,xn} define VP [x,y] ≡ ∑

n
i=1 | f (xi)− f (xi−1)| . Denoting by P [x,y] the set of

all partitions of [x,y] define V [x,y] ≡ supP∈P[x,y]VP [x,y] . For simplicity, V [a,x] will be
denoted by V (x) . It is called thetotal variation of the function f .

There are some simple facts about the total variation of an absolutely continuous func-
tion f which are contained in the next lemma.

Lemma 11.15.2 Let f be an absolutely continuous function defined on [a,b] and let
V be its total variation function as described above. Then V is an increasing bounded
function. Also if P and Q are two partitions of [x,y] with P ⊆ Q, then VP [x,y] ≤ VQ [x,y]
and if [x,y]⊆ [z,w],V [x,y]≤V [z,w] If P = {x0,x1, · · · ,xn} is a partition of [x,y] , then

V [x,y] =
n

∑
i=1

V [xi,xi−1] . (11.24)

Also if y> x, V (y)−V (x)≥ | f (y)− f (x)| and the function, x→V (x)− f (x) is increasing.
The total variation function V is absolutely continuous.

Proof: The claim that V is increasing is obvious as is the next claim about P ⊆ Q
leading to VP [x,y] ≤ VQ [x,y] . To verify this, simply add in one point at a time and verify
that from the triangle inequality, the sum involved gets no smaller. The claim that V is
increasing consistent with set inclusion of intervals is also clearly true and follows directly
from the definition.

Now let t < V [x,y] where P0 = {x0,x1, · · · ,xn} is a partition of [x,y] . There exists a
partition, P of [x,y] such that t <VP [x,y] . Without loss of generality it can be assumed that
{x0,x1, · · · ,xn}⊆P since if not, you can simply add in the points of P0 and the resulting sum
for the total variation will get no smaller. Let Pi be those points of P which are contained
in [xi−1,xi] . Then t < Vp [x,y] = ∑

n
i=1 VPi [xi−1,xi] ≤ ∑

n
i=1 V [xi−1,xi] . Since t < V [x,y] is

arbitrary,

V [x,y]≤
n

∑
i=1

V [xi,xi−1] (11.25)
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Note that 11.25 does not depend on f being absolutely continuous.
Suppose now that f is absolutely continuous. Let δ correspond to ε = 1. Then if

[x,y] is an interval of length no larger than δ , the definition of absolute continuity im-
plies V [x,y] < 1. Then from 11.25, V [a,nδ ] ≤ ∑

n
i=1 V [a+(i−1)δ ,a+ iδ ] < ∑

n
i=1 1 = n.

Thus V is bounded on [a,b]. Now let Pi be a partition of [xi−1,xi] such that VPi [xi−1,xi] >
V [xi−1,xi]− ε

n . Then letting P = ∪Pi,

−ε +
n

∑
i=1

V [xi−1,xi]<
n

∑
i=1

VPi [xi−1,xi] =VP [x,y]≤V [x,y] .

Since ε is arbitrary, 11.24 follows from this and 11.25.
Now let x < y. V (y)− f (y)− (V (x)− f (x)) =

V (y)−V (x)− ( f (y)− f (x))≥V (y)−V (x)−| f (y)− f (x)| ≥ 0.

It only remains to verify that V is absolutely continuous.
Let ε > 0 be given and let δ correspond to ε/2 in the definition of absolute continuity

applied to f . Suppose ∑
n
i=1 |yi− xi| < δ and consider ∑

n
i=1 |V (yi)−V (xi)|. By 11.25 this

last is no larger than ∑
n
i=1 V [xi,yi] . Now let Pi be a partition of [xi,yi] such that VPi [xi,yi]+

ε

2n >V [xi,yi] . Then by the definition of absolute continuity,

n

∑
i=1
|V (yi)−V (xi)|=

n

∑
i=1

V [xi,yi]≤
n

∑
i=1

VPi [xi,yi]+η < ε/2+ ε/2 = ε

and shows V is absolutely continuous as claimed. ■
Now with the above results, the following is the main result on absolutely continuous

functions.

Theorem 11.15.3 Let f : [a,b]→R be a function. Then f is absolutely continuous
if and only if f ′ (t) exists a.e., f ′ is in L1 ([a,b] ,m) , and for every a≤ x≤ y≤ b,

f (y)− f (x) =
∫ y

x
f ′ (t)dt ≡

∫
[x,y]

f ′ (t)dm(t)

Proof: Suppose f is absolutely continuous. Using Lemma 11.15.2, f (x) = V (x)−
(V (x)− f (x)) , the difference of two increasing functions, both of which are absolutely
continuous. See Problem 1 on Page 349. Denote the derivatives of these two increasing
functions by k and l respectively. Then for x≤ y,

f (y)− f (x) =
∫
[x,y]

k (t)dm(t)−
∫
[x,y]

l (t)dm(t)

Letting g(t) ≡ k (t)− l (t) , it follows that f (y)− f (x) =
∫ y

x g(t)dt where g ∈ L1. Then
from the fundamental theorem of calculus, Theorem 11.4.2, if x is a Lebesgue point of g,
not equal to one of the end points.∣∣∣∣ f (x+h)− f (x)

h
−g(x)

∣∣∣∣= ∣∣∣∣1h
∫ x+h

x
g(t)−g(x)dt

∣∣∣∣≤ 2
(

1
2h

∫ x+h

x−h
|g(t)−g(x)|dt

)
which converges to 0. Hence g(x) = f ′ (x) a.e.
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Next suppose f (y)− f (x) =
∫ y

x f ′ (t)dt where f ′ ∈ L1. If f is not absolutely continu-
ous, there exists ε > 0 and sets Vn each of which is the union of non-overlapping intervals
such that m(Vn)< 2−n but

∫
Vn
| f ′ (t)|dt ≥ ε . However, by the Borel Cantelli lemma, there

exists a set of measure zero N such that for x /∈N, it follows that x is in only finitely many of
the Vn. Thus XVn (x)→ 0. Then a use of the dominated convergence theorem implies that
limn→∞

∫
Vn
| f ′ (t)|dt = 0 which is a contradiction. Thus f must be absolutely continuous.

■
The following picture illustrates the main items shown so far about functions of one

variable.

Lipschitz
absolutely continuous

∫ y
x f ′(t)dt = f (y)− f (x)

11.16 Exercises
1. Show that if f is absolutely continuous on [a,b] and if V (x) is the total variation of

f on [0,x] , then V is also absolutely continuous.

2. In Problem 5 on Page 310, you showed that if f ∈ L1 (Rp) , there exists h which
is continuous and equal to 0 off some compact set such that

∫
| f −h|dm < ε. De-

fine fy (x) ≡ f (x−y) . Explain why fy is Lebesgue measurable and
∫
| fy|dmp =∫

| f |dmp. Now justify the following formula.
∫
| fy− f |dmp ≤

∫
| fy−hy|dmp +∫

|hy−h|dmp +
∫
|h− f |dmp ≤ 2ε +

∫
|hy−h|dmp. Now explain why the last term

is less than ε if ∥y∥ is small enough. Explain continuity of translation in L1 (Rp)
which says that limy→0

∫
Rp | fy− f |dmp = 0

3. This problem will help to understand that a certain kind of function exists. Let f (x)=
e−1/x2

if x ̸= 0 and let f (x) = 0 if x = 0. Show that f is infinitely differentiable. Note
that you only need to be concerned with what happens at 0. There is no question
elsewhere. This is a little fussy but is not too hard.

4. ↑Let f (x) be as given above. Now let f̂ (x) = f (x) if x ≤ 0 and let f̂ (x) = 0 if
x > 0. Show that f̂ (x) is also infinitely differentiable. Now let r > 0 and define
g(x) ≡ f̂ (−(x− r)) f̂ (x+ r). Show that g is infinitely differentiable and vanishes
for |x| ≥ r. Let ψ (x) = ∏

p
k=1 g(xk). For U = B(0,2r) with the norm given by ∥x∥=

max{|xk| ,k ≤ p} , show that ψ ∈C∞
c (U).

5. ↑Using the above problem, show there exists ψ ≥ 0 such that ψ ∈C∞
c (B(0,1)) and∫

ψdmp = 1. Now define ψn (x) ≡ npψ (nx). Show that ψn equals zero off a com-
pact subset of B

(
0, 1

n

)
and

∫
ψndmp = 1. We say that spt(ψn)⊆ B

(
0, 1

n

)
. spt( f ) is

defined as the closure of the set on which f is not equal to 0. Such a sequence of func-
tions as just defined {ψn} where

∫
ψndmp = 1 and ψn ≥ 0 and spt(ψn) ⊆ B

(
0, 1

n

)
is called a mollifier.

6. ↑It is important to be able to approximate functions with those which are infinitely
differentiable. Suppose f ∈ L1 (Rp) and let {ψn} be a mollifier as above. We de-
fine the convolution as follows. f ∗ψn (x) ≡

∫
f (x−y)ψn (y)dmp (y) Here the

notation means that the variable of integration is y. Show that f ∗ψn (x) exists
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and equals
∫

ψn (x−y) f (y)dmp (y) . Now show using the dominated convergence
theorem that f ∗ψn is infinitely differentiable. Next show that

lim
n→∞

∫
| f (x)− f ∗ψn (x)|dmp = 0.

Thus, in terms of being close in L1 (Rp) , every function in L1 (Rp) is close to one
which is infinitely differentiable.

7. ↑From Problem 5 above and f ∈ L1 (Rp), there exists h ∈Cc (Rp) , continuous and
spt(h) a compact set, such that

∫
| f −h|dmp < ε. Now consider h ∗ψn. Show

that this function is in C∞
c
(
spt(h)+B

(
0, 2

n

))
. The notation means you start with

the compact set spt(h) and fatten it up by adding the set B
(
0, 1

n

)
. It means x+y

such that x ∈ spt(h) and y ∈ B
(
0, 1

n

)
. Show the following. For all n large enough,∫

| f −h∗ψn|dmp < ε so one can approximate with a function which is infinitely dif-
ferentiable and also has compact support. Also show that h∗ψn converges uniformly
to h. If h is a function in Ck (Rn) in addition to being continuous with compact sup-
port, show that for each |α| ≤ k,Dα (h∗ψn)→ Dα h uniformly. Hint: If you do this
for a single partial derivative, you will see how it works in general.

8. ↑Let f ∈ L1 (R). Show that limn→∞

∫
f (x)sin(nx)dm = 0. Hint: Use the result of

the above problem to obtain g ∈C∞
c (R) , continuous and zero off a compact set, such

that
∫
| f −g|dm < ε. Then show that limn→∞

∫
g(x)sin(nx)dm(x) = 0 You can do

this by integration by parts. Then consider this. |
∫

f (x)sin(nx)dm|=∣∣∣∣∫ f (x)sin(nx)dm−
∫

g(x)sin(nx)dm
∣∣∣∣+ ∣∣∣∣∫ g(x)sin(nx)dm

∣∣∣∣
≤
∫
| f −g|dm+

∣∣∣∣∫ g(x)sin(nx)dm
∣∣∣∣

This is the celebrated Riemann Lebesgue lemma which is the basis for all theorems
about pointwise convergence of Fourier series and Fourier integrals.

9. As another application of theory of regularity, here is a very important result. Sup-
pose f ∈ L1 (Rp) and for every ψ ∈C∞

c (Rp)
∫

f ψdmp = 0. Show that then it follows
f (x) = 0 for a.e.x. That is, there is a set of measure zero such that off this set f
equals 0. Hint: What you can do is to let E be a measurable set which is bounded
and let Kn ⊆ E ⊆ Vn where mp (Vn \Kn) < 2−n. Here Kn is compact and Vn is open.
By an earlier exercise, Problem 11 on Page 259, there exists a function φ n which is
continuous, has values in [0,1] equals 1 on Kn and spt(φ n)⊆V. To get this last part,
show there exists Wn open such that W̄n ⊆Vn and Wn contains Kn. Then you use the
problem to get spt(φ n)⊆ W̄n. Now you form ηn = φ n ∗ψ l where {ψ l} is a mollifier.
Show that for l large enough, ηn has values in [0,1] ,spt(ηn)⊆Vn and ηn ∈C∞

c (Vn).
Now explain why ηn→XE off a set of measure zero. To do this, you might want to
consider the Borel Cantelli lemma, Lemma 9.2.5 on Page 243. Then∣∣∣∣∫ f XEdmp

∣∣∣∣= ∣∣∣∣∫ f (XE −ηn)dmp

∣∣∣∣+ ∣∣∣∣∫ f ηndmp

∣∣∣∣= ∣∣∣∣∫ f (XE −ηn)dmp

∣∣∣∣
Now explain why this converges to 0 on the right. This will involve the dominated
convergence theorem. Conclude that

∫
f XEdmp = 0 for every bounded measurable
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set E. Show that this implies that
∫

f XEdmp = 0 for every measurable E. Explain
why this requires f = 0 a.e.

10. Suppose f ,g are absolutely continuous on [a,b] . Prove the usual integration by parts
formula. Hint: You might try the following:∫ b

a
f ′ (t)g(t)dm(t) =

∫ b

a
f ′ (t)

(∫ t

a
g′ (s)dm(s)+g(a)

)
dm(t)

Now do one integration and then interchange the order of integration.

11. Let x→ F ( f (x)) be absolutely continuous whenever x→ f (x) is absolutely con-
tinuous. Then F is Lipschitz. This is due to G. M. Fishtenholz. Hint: Reduce to
Proposition 11.14.5 using an appropriate Lipschitz continuous function f .

12. Suppose g : [c,d]→ [a,b] and is absolutely continuous and increasing and f : [a,b]→
R is Lipschitz continuous. Show that then f ◦g is absolutely continuous and∫ b

a
f (t)dm(t) =

∫ d

c
f ′ (g(s))g′ (s)ds = f (b)− f (a)

13. If f ∈ L1 (Ω,µ), show that limµ(E)→0
∫

E | f |dµ = 0. Defining F (x)≡
∫ x

a f (t)dm(t)
for f ∈ L1 ([a,b] ,m) , verify that F is absolutely continuous with F ′ (x) = f (x) a.e.

14. Show that if f is absolutely continuous, as defined in Definition 11.14.2, then it is of
bounded variation.

15. Let f : [a,b]→R be absolutely continuous. Show that in fact, the total variation of f
on [a,b] is

∫ b
a | f ′|dm. Hint: One direction is easy, that V [a,b]≤

∫ b
a | f ′|dm. To do the

other direction, show there is a sequence of step functions sn (t) ≡ ∑
mn
k=1 αn

kXIn
k
(t)

which converges to sgn f ′ pointwise a.e., In
k =

(
cn

k−1,c
n
k

)
. This will involve regularity

notions. Explain why it can be assumed each
∣∣αn

k

∣∣≤ 1. Then∣∣∣∣∫ b

a
f ′sn

∣∣∣∣=
∣∣∣∣∣ mn

∑
k=1

α
n
k

∫
In
k

f ′
∣∣∣∣∣≤ mn

∑
k=1

∣∣ f (cn
k)− f

(
cn

k−1
)∣∣≤V ([a,b] , f )

Now pass to a limit using the dominated convergence theorem.

16. Let F (x) =
(∫ x

0 e−t2
dt
)2

. Justify the following:

F ′ (x) = 2
(∫ x

0
e−t2

dt
)

e−x2
= 2xe−x2

(∫ 1

0
e−x2t2

dt
)
= 2x

(∫ 1

0
e−x2(t2+1)dt

)
Now integrate.

F (x) =
∫ x

0

∫ 1

0
2ue−u2(t2+1)dtdu =

∫ 1

0

∫ x

0
2ue−u2(t2+1)dudt

=
∫ 1

0
−e−u2(t2+1) 1

1+ t2 |
x
0dt =

∫ 1

0

(
1

1+ t2 − e−x2 1
1+ t2

)
dt

Now let x→ ∞ and conclude F (∞) =
(∫

∞

0 e−t2
dt
)2

=
∫ 1

0
1

1+t2 dt = π

4 .
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17. This problem outlines an approach to Stirling’s formula following [49] and [7]. From
the above problems, Γ(n+1) = n! for n ≥ 0. Consider more generally Γ(x+1)
for x > 0. Actually, we will always assume x > 1 since it is the limit as x → ∞

which is of interest. Γ(x+1) =
∫

∞

0 e−ttxdt. Change variables letting t = x(1+u) to
obtain Γ(x+1) = xx+1e−x ∫ ∞

−1 ((1+u)e−u)
x du. Next let h(u) be such that h(0) =

1 and (1+u)e−u = exp
(
− u2

2 h(u)
)
. Show that the thing which works is h(u) =

2
u2 (u− ln(1+u)). Use L’Hospital’s rule to verify that the limit of h(u) as u→ 0 is
1. The graph of h is illustrated in the following picture. Verify that its graph is like
this, with an asymptote at u =−1 decreasing and equal to 1 at 0 and converging to 0
as u→ ∞.

−1

1

Next change the variables again letting u = s
√

2
x . This yields, from the original

description of h

Γ(x+1) = xxe−x
√

2x
∫

∞

−
√

x/2
exp

(
−s2h

(
s

√
2
x

))
ds

For s < 1,h
(

s
√

2
x

)
> 2−2ln2 = 0.61371 so the above integrand is dominated by

e−(2−2ln2)s2
. Consider the integrand in the above for s > 1. Show that the exponent

part is

−

(
√

2
√

xs− x ln

(
1+ s

√
2
x

))

The expression
(√

2
√

xs− x ln
(

1+ s
√

2
x

))
is increasing in x. You can show this

by fixing s and taking a derivative with respect to x. Therefore, it is larger than
√

2
√

1s− ln
(

1+ s
√

2
1

)
and so

exp

(
−s2h

(
s

√
2
x

))
≤ exp

(
−

(
√

2
√

1s− ln

(
1+ s

√
2
1

)))
=

(
1+ s
√

2
)

e−
√

2s

Thus, there exists a dominating function for X[−
√ x

2 ,∞]
(s)exp

(
−s2h

(
s
√

2
x

))
and

these functions converge pointwise to exp
(
−s2

)
as x→ ∞ so by the dominated con-

vergence theorem,

lim
x→∞

∫
∞

−
√

x/2
exp

(
−s2h

(
s

√
2
x

))
ds =

∫
∞

−∞

e−s2
ds =

√
π

See Problem 16. This yields a general Stirling’s formula, limx→∞
Γ(x+1)

xxe−x
√

2x
=
√

π .
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18. Let µ̄ be the completion of the measure µ = ∏
p
i=1 µ i on the product σ algebra

∏
p
i=1 Fi. Show that if f ≥ 0 is ∏

p
i=1 Fi measurable, then there are two functions

g,h which are ∏
p
i=1 Fi measurable and g≥ f ≥ h while µ([g−h > 0]) = 0. Assume

the original measure spaces are finite or σ finite.

19. In the representation theorem for positive linear functionals, show that if µ (V ) =
sup{L f : f ≺V} , then the σ algebra and measure representing the functional are
unique.

20. Show that
∫

∞

0 e−x2
dx = 1

2
√

π. Hint: First verify the integral is finite. You might use
monotone convergence theorem to do this. It is easier than the stuff you worried
about in beginning calculus. Next let I =

∫
∞

0 e−x2
dx so I2 =

∫
∞

0
∫

∞

0 e−(x2+y2)dxdy.
Now change the variables using polar coordinates. It is all justified by the big change
of variables theorem we have done. This becomes an easy problem when you do
this.

21. Show that
∫

∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1. Here σ is a positive number called the standard
deviation and µ is a number called the mean. Hint: Just use the above result to find∫

∞

−∞
e−x2

dx and then change the variables in this one.

22. The Gamma function is Γ(α) ≡
∫

∞

0 e−ttα−1dt. Verify that this function is well de-
fined in the sense that it is finite for all α > 0. Next verify that Γ(1) = 1 = Γ(2)
and Γ(x+1) = Γ(x)x. Conclude that Γ(n+1) = n! if n is an integer. Now consider
Γ(1/2). This is

∫
∞

0 e−tt−1/2dt. Change the variables in this integral. You might let
t = u2. Then consider the above problem.

23. Let p,q> 0 and define B(p,q)=
∫ 1

0 xp−1 (1− x)q−1. Show that the following identity
holds: Γ(p)Γ(q) = B(p,q)Γ(p+q) . Hint: It is fairly routine if you start with the
left side and proceed to change variables.

24. Let E be a Lebesgue measurable set in R. Suppose m(E) > 0. Consider the set
E −E = {x− y : x ∈ E,y ∈ E}. Show that E −E contains an interval. This is an
amazing result. Recall the case of the fat Cantor set which contained no intervals
but had positive measure. Hint: Without loss of generality, you can assume E is
bounded. Let f (x) =

∫
XE(t)XE(x+ t)dt. Explain why f is continuous at 0 and

f (0)> 0 and use continuity of translation in L1. To see it is continuous,

| f (x)− f (x̂)| ≤
∫

XE(t) |XE(x+ t)−XE (x̂+ t)|dt

≤
∫
|XE(x+ t)−XE (x̂+ t)|dt

Now explain why this is small whenever x̂−x is small due to continuity of translation
in L1 (R). Thus f (0) = m(E)> 0 and so by continuity, f > 0 near 0. If the integral
is nonzero, what can you say about the integrand? You must have for all x ∈ (−δ ,δ )
both x+ t ∈ E and t ∈ E. Now consider this a little.

25. Does there exist a closed uncountable set which is contained in the set of irrational
numbers? If so, explain why and if not, explain why. Thus this uncountable set has
no rational number as a limit point.



11.16. EXERCISES 355

26. Find the area of the bounded region R, determined by 5x+ y = 1,5x+ y = 9,y = 2x,
and y = 5x.

27. Here are three vectors. (1,2,3)T ,(1,0,1)T , and (2,1,0)T . These vectors determine
a parallelepiped, R, which is occupied by a solid having density ρ = y. Find the
mass of this solid. To find the mass of the solid, you integrate the density. Thus, if
P is this parallelepiped, the mass is

∫
P ydm3 Hint: Let h : [0,1]3 → P be given by

h(t1, t2, t3) = t1

 1
2
3

+ t2

 1
0
1

+ t3

 2
1
0

 then by definition of what is meant

by a parallelepiped, h
(
[0,1]2

)
= P and h is one to one and onto.

28. Suppose f ,g ∈ L1 (Rp) . Define f ∗ g(x) by
∫

f (x−y)g(y)dmp (y) . First show
using the preceding problem that there is no loss of generality in assuming that
both f ,g are Borel measurable. Next show this makes sense a.e. x and that in
fact for a.e. x,

∫
| f (x−y)| |g(y)|dmp (y) < ∞. Next show

∫
| f ∗g(x)|dmp (x) ≤∫

| f |dmp
∫
|g|dmp. Hint: You can use Fubini’s theorem to write∫ ∫

| f (x−y)| |g(y)|dmp (y)dmp (x) =∫ ∫
| f (x−y)| |g(y)|dmp (x)dmp (y) =

∫
| f (z)|dmp

∫
|g(y)|dmp.

29. Suppose X : (Ω,F ,P) where P is a probability measure and suppose X : Ω→ R is
measurable. That is, X−1 (open set)∈F . Then consider the distribution measure λ X
defined on the Borel sets of Rp and given as follows. λ X (E) = P(X ∈ E). Explain
why this is a probability measure on B (R) and why X−1 (B) ∈F whenever B is a
Borel set. Next show that if X ∈ L1 (Ω) ,

∫
Ω

XdP =
∫
R xdλ X . Suppose h is a complex

valued Borel measurable function defined on R which is also bounded. Show that∫
h(x)dλ X (x) =

∫
h(X (ω))dP

Hint: Recall that from the definition of the integral,∫
R
|x|dλ X =

∫
∞

0
λ X (|x|> α)dα =

∫
∞

0
P(|X |> α)dα =

∫
Ω

|X |dP < ∞

30. Let h : U → h(U) be one to one and C1. Use the inverse function theorem to give a
much easier proof of the change of variables formula.

31. If a continuous function is one to one on a compact set, explain why its inverse is
continuous.

32. Suppose U is a nonempty set in Rp. Let ∂U consist of the points p ∈ Rp such that
B(p,r) contains points of U as well as points of Rp \U . Show that U is contained in
the union of the interior of U, denoted as int(U) with ∂U . Now suppose that f : U→
Rp and is one to one and continuous. Explain why int(f (U)) equals f (int(U)).

33. Prove the Radon Nikodym theorem, Theorem 11.13.2 in case λ ≪ µ another way
by using the earlier general Radon Nikodym theorem, Theorem 10.13.7 or its corol-
lary and then identifying the function ensured by that theorem with the symmetric
derivative, using the fundamental theorem of calculus, Theorem 11.4.2.
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34. Suppose x is a Lebesgue point of f with respect to Lebesgue measure so that

lim
r→0

1
mp (x,r)

∫
B(x,r)

| f (x)− f (y)|dmp (y) = 0.

Suppose x ∈ Er ⊆ B(x,σr) ,Er a measurable set and there exists δ such that

δmp (B(x,r))< mp (Er)

for all r. Verify that limr→0
1

mp(Er)

∫
Er
| f (x)− f (y)|dmp (y) = 0.

35. Generalize Corollary 11.14.6 to the case where m is replaced by mp and µ is some
Radon measure on Fµ a σ algebra of sets of Rp or an open subset of Rp.

36. If F is increasing and continuous and I consists of all t such that F ′+ (t) = ∞ or
F ′− (t) = ∞, show that if µ (I) = 0 for µ the Lebesgue Stieltjes measure associated
with F, then F is absolutely continuous.

37. Let I ≡
{

t : min
(

liminfh→0
F(t+h)−F(t)

h , liminfh→0
F(t)−F(t−h)

h

)
= ∞

}
where F is in-

creasing and continuous. Let µ be the Lebesgue Stieltjes measure coming from F .
Show that if µ (I) = 0, then µ ≪ m. This I is the set where F ′ (t) = ∞. Conversely,
if µ ≪ m, then F is continuous and µ (I) = ∞. Hint: Let

Gn ≡
{

t : min
(

lim inf
h→0

F (t +h)−F (t)
h

, lim inf
h→0

F (t)−F (t−h)
h

)
≤ n
}

and follow the idea of Corollary 11.14.6 using a covering theorem, Theorem 9.12.2.
The assumption that F is continuous is needed to say that, for example, F(t+h)−F(t)

h =
µ([t,t+h])

h .

38. Let h : U → h(U) be C1 and one to one. Give a much easier change of variables
formula using the covering theorem for Vitali covers and the material on linear map-
pings. Then extend to the case where h is maybe not one to one using the inverse
function theorem. You might first prove such a theorem for f continuous with com-
pact support and use the Riesz representation theorem for positive linear functionals.



Chapter 12

The Lp Spaces
12.1 Basic Inequalities and Properties

One of the main applications of the Lebesgue integral is to the study of various sorts of
functions space. These are vector spaces whose elements are functions of various types.
One of the most important examples of a function space is the space of measurable func-
tions whose absolute values are pth power integrable where p ≥ 1. These spaces, referred
to as Lp spaces, are very useful in applications. In the chapter (Ω,S ,µ) will be a measure
space.

Definition 12.1.1 Let 1≤ p < ∞. Define

Lp(Ω)≡ { f : f is measurable and
∫

Ω

| f (ω)|pdµ < ∞}

In terms of the distribution function,

Lp (Ω) = { f : f is measurable and
∫

∞

0
pt p−1

µ ([| f |> t])dt < ∞}

because
∫

∞

0 µ ([| f |p > t])dt =
∫

∞

0 µ
(
| f |> t1/p

)
dt =

∫
∞

0 psp−1µ ([| f |> s])ds.

For each p > 1 define q by 1
p +

1
q = 1. Often one uses p′ instead of q in this context.

Lp (Ω) is a vector space and has a norm. This is similar to the situation for Rn but the
proof requires the following fundamental inequality. When p = 1, we use the symbol ∞ to
represent q. The space L∞ (Ω) will be discussed later.

Theorem 12.1.2 (Holder’s inequality) If f and g are measurable functions, then if
p > 1, ∫

| f | |g| dµ ≤
(∫
| f |pdµ

) 1
p
(∫
|g|qdµ

) 1
q

. (12.1)

Proof: First recall Lemma 4.3.10, stated here for convenience.

Lemma 12.1.3 If p> 1, and 0≤ a,b then ab≤ ap

p + bq

q . Equality occurs when ap = bq.

Proof of Holder’s inequality: If either
∫
| f |pdµ or

∫
|g|pdµ equals ∞, the inequality

12.1 is obviously valid because ∞≥ anything. If either
∫
| f |pdµ or

∫
|g|pdµ equals 0, then

f = 0 a.e. or g = 0 a.e. and so in this case the left side of the inequality equals 0 and so the
inequality is therefore true. Therefore assume both

∫
| f |pdµ and

∫
|g|pdµ are less than ∞

and not equal to 0. Let (
∫
| f |pdµ)1/p = I ( f ) and let (

∫
|g|pdµ)1/q = I (g). Then using the

lemma, ∫ | f |
I ( f )

|g|
I (g)

dµ ≤ 1
p

∫ | f |p

I ( f )p dµ +
1
q

∫ |g|q

I (g)q dµ = 1.

Hence,
∫
| f | |g| dµ ≤ I ( f ) I (g) = (

∫
| f |pdµ)1/p (

∫
|g|qdµ)1/q . This proves Holder’s in-

equality. ■
The following lemma will be needed.

357
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Lemma 12.1.4 Suppose x,y ∈ C. Then |x+ y|p ≤ 2p−1 (|x|p + |y|p) .

Proof: The function f (t) = t p is concave up for t ≥ 0 because p > 1. Therefore, the
secant line joining two points on the graph of this function must lie above the graph of the
function. This is illustrated in the following picture.

|x| |y|m

(|x|+ |y|)/2 = m

Since
(
|x|+|y|

2

)p
≤ |x|

p+|y|p
2 , |x+ y|p ≤ (|x|+ |y|)p ≤ 2p−1 (|x|p + |y|p) ■

Note that if y = φ (x) is any function for which the graph of φ is concave up, you could
get a similar inequality by the same argument.

Corollary 12.1.5 (Minkowski inequality) Let 1≤ p < ∞. Then(∫
| f +g|p dµ

)1/p

≤
(∫
| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

. (12.2)

Proof: If p = 1, this is obvious. Let p > 1. Without loss of generality, assume
(
∫
| f |p dµ)1/p+(

∫
|g|p dµ)1/p < ∞ and (

∫
| f +g|p dµ)1/p ̸= 0 or there is nothing to prove.

Therefore, using the above lemma,∫
| f +g|pdµ ≤ 2p−1

(∫
| f |p + |g|pdµ

)
< ∞.

Now | f (ω)+g(ω)|p ≤ | f (ω)+g(ω)|p−1 (| f (ω)|+ |g(ω)|) . Also, it follows from the
definition of p and q that p−1 = p

q . Therefore, using this and Holder’s inequality,
∫
| f +

g|pdµ ≤ ∫
| f +g|p−1| f |dµ +

∫
| f +g|p−1|g|dµ =

∫
| f +g|

p
q | f |dµ +

∫
| f +g|

p
q |g|dµ

≤ (
∫
| f +g|pdµ)

1
q (
∫
| f |pdµ)

1
p +(

∫
| f +g|pdµ)

1
q (
∫
|g|pdµ)

1
p.

Dividing both sides by (
∫
| f +g|pdµ)

1
q yields 12.2. ■

The above theorem implies the following corollary.

Corollary 12.1.6 Let fi ∈ Lp (Ω) for i = 1,2, · · · ,n. Then(∫ ∣∣∣∣∣ n

∑
i=1

fi

∣∣∣∣∣
p

dµ

)1/p

≤
n

∑
i=1

(∫
| fi|p

)1/p

.

This shows that if f ,g ∈ Lp, then f +g ∈ Lp. Also, it is clear that if a is a constant and
f ∈ Lp, then a f ∈ Lp because

∫
|a f |p dµ = |a|p

∫
| f |p dµ < ∞. Thus Lp is a vector space

and
a.) (

∫
| f |p dµ)1/p ≥ 0,(

∫
| f |p dµ)1/p = 0 if and only if f = 0 a.e.
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b.) (
∫
|a f |p dµ)1/p = |a| (

∫
| f |p dµ)1/p if a is a scalar.

c.) (
∫
| f +g|p dµ)1/p ≤ (

∫
| f |p dµ)1/p +(

∫
|g|p dµ)1/p.

f → (
∫
| f |p dµ)1/p would define a norm if (

∫
| f |p dµ)1/p = 0 implied f = 0. Unfor-

tunately, this is not so because if f = 0 a.e. but is nonzero on a set of measure zero,
(
∫
| f |p dµ)1/p = 0 and this is not allowed. However, all the other properties of a norm are

available and so a little thing like a set of measure zero will not prevent the consideration
of Lp as a normed vector space if two functions in Lp which differ only on a set of measure
zero are considered the same. That is, an element of Lp is really an equivalence class of
functions where two functions are equivalent if they are equal a.e. With this convention,
here is a definition.

Definition 12.1.7 Let f ∈ Lp (Ω). Define ∥ f∥p ≡ ∥ f∥Lp ≡ (
∫
| f |p dµ)1/p .

Then with this definition and using the convention that elements in Lp are considered to
be the same if they differ only on a set of measure zero, ∥ ∥p is a norm on Lp (Ω) because
if || f ||p = 0 then f = 0 a.e. and so f is considered to be the zero function because it differs
from 0 only on a set of measure zero.

The following is an important definition.

Definition 12.1.8 A complete normed linear space is called a Banach1 space.

Lp is a Banach space. This is the next big theorem which says that these Lp spaces are
always complete.

Theorem 12.1.9 The following holds for Lp(Ω,F ,µ), p ≥ 1. If { fn} is a Cauchy
sequence in Lp(Ω), then there exists f ∈ Lp (Ω) and a subsequence which converges a.e.
to f ∈ Lp(Ω), and ∥ fn− f∥p→ 0.

Proof: Let { fn} be a Cauchy sequence in Lp(Ω). This means that for every ε > 0 there
exists N such that if n,m≥ N, then ∥ fn− fm∥p < ε . Now select a subsequence as follows.
Let n1 be such that ∥ fn− fm∥p < 2−1 whenever n,m≥ n1. Let n2 be such that n2 > n1 and
∥ fn− fm∥p < 2−2 whenever n,m ≥ n2. If n1, · · · ,nk have been chosen, let nk+1 > nk and
whenever n,m ≥ nk+1,∥ fn− fm∥p < 2−(k+1). The subsequence just mentioned is { fnk}.
Thus

µ

({
ω :
∣∣ fnk (ω)− fnk+1 (ω)

∣∣p > (2
3

)k
})
≡ µ (Ek)

≤
(

3
2

)k ∫
Ek

∣∣ fnk (ω)− fnk+1 (ω)
∣∣p dµ

1These spaces are named after Stefan Banach, 1892-1945. Banach spaces are the basic item of study in the
subject of functional analysis and will be considered later in this book.

There is a recent biography of Banach, R. Katuża, The Life of Stefan Banach, (A. Kostant and W. Woyczyński,
translators and editors) Birkhauser, Boston (1996). More information on Banach can also be found in a recent
short article written by Douglas Henderson who is in the department of chemistry and biochemistry at BYU.

Banach was born in Austria, worked in Poland and died in the Ukraine but never moved. This is because
borders kept changing. There is a rumor that he died in a German concentration camp which is apparently not
true. It seems he died after the war of lung cancer.

He was an interesting character. He hated taking examinations so much that he did not receive his undergraduate
university degree. Nevertheless, he did become a professor of mathematics due to his important research. He and
some friends would meet in a cafe called the Scottish cafe where they wrote on the marble table tops until Banach’s
wife supplied them with a notebook which became the ”Scotish notebook” and was eventually published.
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≤
(

3
2

)k ∥∥ fnk − fnk+1

∥∥p
Lp <

(
3
2

)k

2−kp ≤ 3k

4k

Hence ∑k µ (Ek)< ∞ and so, by the Borel Cantelli lemma, Lemma 9.2.5 on Page 243, there
is a set of measure zero N such that if ω /∈ N, then

∣∣ fnk (ω)− fnk+1 (ω)
∣∣≤ ( 2

3

)k/p
. Since

∑
k

(
2
3

)k/p

< ∞,
{
XNC (ω) fnk (ω)

}∞

k=1

is a Cauchy sequence for all ω. Let it converge to f (ω), a measurable function since it is a
limit of measurable functions. By Fatou’s lemma, and the Minkowski inequality, Corollary
12.1.5, ∥ f − fnk∥p =

(∫ ∣∣ f − fnk

∣∣p dµ
)1/p ≤

lim inf
m→∞

(∫ ∣∣ fnm − fnk

∣∣p dµ

)1/p

= lim inf
m→∞

∥∥ fnm − fnk

∥∥
p ≤

lim inf
m→∞

m−1

∑
j=k

∥∥∥ fn j+1 − fn j

∥∥∥
p
≤

∞

∑
i=k

∥∥ fni+1 − fni

∥∥
p ≤ 2−(k−1). (12.3)

Therefore, f ∈ Lp(Ω) because ∥ f∥p ≤ ∥ f − fnk∥p +∥ fnk∥p < ∞, and limk→∞ ∥ fnk − f∥p =
0. This proves b.).

This has shown fnk converges to f in Lp (Ω). It follows the original Cauchy sequence
also converges to f in Lp (Ω). This is a general fact that if a subsequence of a Cauchy
sequence converges, then so does the original Cauchy sequence. This is Theorem 3.2.2. ■

In working with the Lp spaces, the following inequality also known as Minkowski’s
inequality is very useful. See [25]. It is similar to the Minkowski inequality for sums. To
see this, replace the integral,

∫
X with a finite summation sign and you will see the usual

Minkowski inequality or rather the version of it given in Corollary 12.1.6.

Lemma 12.1.10 Let (X ,S ,µ) and (Y,F ,λ ) be finite measure spaces and let f be
µ×λ measurable. Then the following inequality is valid for p≥ 1.

∫
X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y
(
∫

X
| f (x,y)|dµ)pdλ

) 1
p

. (12.4)

Proof: This is an application of the Fubini theorem and Holder inequality. Recall that
p−1 = p/p′. Let J (y)≡

∫
X | f (x,y)|dµ. Then∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ =
∫

Y
J (y)p/p′

∫
X
| f (x,y)|dµdλ

=
∫

Y

∫
X
| f (x,y)|J (y)p/p′ dµdλ =

∫
X

∫
Y
| f (x,y)|J (y)p/p′ dλdµ

≤
(∫

Y
J (y)p dλ

)1/p′ ∫
X

(∫
Y
| f (x,y)|p dλ

)1/p

dµ

=

(∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ

)1/p′ ∫
X

(∫
Y
| f (x,y)|p dλ

)1/p

dµ
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Thus
∫

Y (
∫

X | f (x,y)|dµ)p dλ ≤(∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ

)1/p′ ∫
X

(∫
Y
| f (x,y)|p dλ

)1/p

dµ (12.5)

If f is bounded, divide both sides by the first factor on the right and obtain 12.4. Otherwise
replace f with min( f ,n), divide and then apply the monotone convergence theorem as
n→ ∞ to get 12.4. Note that 12.4 holds even if the first factor on the right in 12.5 equals
zero. ■

Now consider the case where the measure spaces are σ finite.

Theorem 12.1.11 Let (X ,S ,µ) and (Y,F ,λ ) be σ -finite measure spaces and let
f be product measurable. Then the following inequality is valid for p≥ 1.

∫
X

(∫
Y
| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ

) 1
p

. (12.6)

Proof: Since the two measure spaces are σ finite, there exist measurable sets, Xm and
Yk such that Xm ⊆ Xm+1 for all m, Yk ⊆ Yk+1 for all k, and µ (Xm) ,λ (Yk) < ∞. From the
above, ∫

Xm

(∫
Yk

| f (x,y)|p dλ

) 1
p

dµ ≥
(∫

Yk

(
∫

Xm

| f (x,y)|dµ)pdλ

) 1
p

. (12.7)

Now use the monotone convergence theorem to pass to a limit first as k→ ∞ and then as
m→ ∞. ■

Note that the proof of this theorem depends on two manipulations, the interchange of
the order of integration and Holder’s inequality. Also observe that there is nothing to check
in the case of double sums. Thus if ai j ≥ 0, it is always the case that

(
∑ j (∑i ai j)

p)1/p ≤

∑i

(
∑ j ap

i j

)1/p
because the integrals in this case are just sums and (i, j)→ ai j is measurable.

The Lp spaces have many important properties. Before considering these, here is a
definition of L∞

Definition 12.1.12 f ∈ L∞(Ω,µ) if there exists a set of measure zero E, and a
constant C < ∞ such that | f (x)| ≤C for all x /∈ E. Then ∥ f∥

∞
is defined as ∥ f∥

∞
≡ inf{C :

| f (x)| ≤C a.e.}, the inf of all such C.

Proposition 12.1.13 ∥ ∥
∞

is a norm on L∞(Ω,µ) provided f and g are identified if
f (x) = g(x) a.e. Also, L∞(Ω,µ) is complete. In addition to this, ∥ f∥

∞
has the property that

| f (x)| ≤ ∥ f∥
∞

for a.e. x so the norm is the smallest constant with this property.

Proof: It is obvious that ∥ f∥
∞
≥ 0. Let Cn ↓ ∥ f∥

∞
where | f (x)| ≤ Cn off a set of

measure zero En. Then let E ≡ ∪nEn. This is also a set of measure zero and if x /∈ E, then
| f (x)| ≤Cn for all Cn and so | f (x)| ≤ ∥ f∥

∞
for all x /∈ E. Thus ∥ f∥

∞
is the smallest number

C with | f (x)| ≤C a.e. In case ∥ f∥
∞
= 0, f (x) = 0 off of E and so we regard f as 0 because

it equals 0 a.e.
If c = 0 there is nothing to show in the claim that ∥c f∥

∞
= |c|∥ f∥

∞
. Assume then

that c ̸= 0. |c|∥ f∥
∞
≥ |c f (x)| a.e. Thus |c|∥ f∥

∞
≥ ∥c f∥

∞
whenever c ̸= 0. Thus ∥ f∥

∞
=∥∥ 1

c c f
∥∥

∞
≤ 1
|c| ∥c f∥

∞
and so |c|∥ f∥

∞
≤ ∥c f∥

∞
. It remains to verify the triangle inequality.
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It was just shown that ∥ f∥
∞

is the smallest constant such that | f (x)| ≤ ∥ f∥
∞

a.e. Hence
if f ,g ∈ L∞ (Ω) ,| f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ ∥ f∥

∞
+ ∥g∥

∞
a.e. and so by definition

∥ f +g∥
∞
≤ ∥ f∥

∞
+∥g∥

∞
.

Next suppose you have a Cauchy sequence in L∞ (Ω) { fn} . Let | fn (x)− fm (x)| <
∥ fn− fm∥∞

for x /∈ Enm, µ (Enm) = 0 and let | fn (x)| ≤ ∥ fn∥∞
for x /∈ En, µ (En) = 0. Then

let E ≡ ∪nEn ∪∪m,nEnm. It follows that for x /∈ E, limn→∞ fn (x) exists. Let f (x) be this
limit for x /∈ E and let f (x) = 0 on E. Also |∥ fn∥∞

−∥ fm∥∞
| ≤ ∥ fn− fm∥∞

since ∥·∥
∞

is a
norm. Therefore, for x /∈ E,| f (x)|= limn→∞ | fn (x)| ≤ limn→∞ ∥ fn∥∞

≡C so f ∈ L∞ (Ω,µ).
Also, for x /∈ E, | fm (x)− fn (x)| ≤ ∥ fm− fn∥∞

< ε if m > n and n is large enough. There-
fore, for such n, letting m→∞, | f (x)− fn (x)| ≤ ε for x /∈ E. It follows that ∥ f − fn∥∞

≤ ε

if n large enough and so by definition, limn→∞ ∥ f − fn∥∞
= 0. ■

12.2 Density Considerations
Theorem 12.2.1 Let p≥ 1 and let (Ω,S ,µ) be a measure space. Then the simple
functions are dense in Lp (Ω). In fact, if f ∈ Lp (Ω) , then there is a sequence of simple
functions {sn} such that |sn| ≤ | f | and ∥ f − sn∥p→ 0.

Proof: Recall that a function f , having values in R can be written in the form f =
f+− f− where

f+ = max(0, f ) , f− = max(0,− f ) .

Therefore, an arbitrary complex valued function, f is of the form

f = Re f+−Re f−+ i
(
Im f+− Im f−

)
.

If each of these nonnegative functions is approximated by a simple function, it follows f is
also approximated by a simple function. Approximating each of the positive and negative
parts with simple functions having absolute value less than what is approximated, it would
follow that |sn| ≤ 4 | f | and all that is left is to verify that ∥sn− f∥p→ 0 which occurs if it
happens for each of these positive and negative parts of real and imaginary parts.

Now | f (x)− sn(x)| ≤ 5 | f | and so | f (x)− sn(x)|p ≤ 5p | f |p which is in L1. Then by the
dominated convergence theorem, 0 = limn→∞

∫
| f (x)− sn(x)|pdµ showing that the simple

functions are dense in Lp. ■
Note how this observation always holds and requires no assumptions on the measures.
Recall that for Ω a topological space, Cc(Ω) is the space of continuous functions with

compact support in Ω. Also recall the following definition.

Definition 12.2.2 Let (Ω,S ,µ) be a measure space and suppose (Ω,τ) is also a
topological space (metric space if you like.). Then (Ω,S ,µ) is called a regular measure
space if the σ algebra of Borel sets is contained in S and for all E ∈S ,

µ(E) = inf{µ(V ) : V ⊇ E and V open}

and if µ (E)< ∞,

µ(E) = sup{µ(K) : K ⊆ E and K is compact }

and µ (K)< ∞ for any compact set, K.
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For example Lebesgue measure is an example of such a measure. More generally these
measures are often referred to as Radon measures when they are complete. Recall the
following important result which is Lemma 3.12.4.

Lemma 12.2.3 Let Ω be a metric space in which the closed balls are compact and let K
be a compact subset of V , an open set. Then there exists a continuous function f : Ω→ [0,1]
such that f (x) = 1 for all x ∈ K and spt( f ) is a compact subset of V . That is, K ≺ f ≺V.

It is not necessary to be in a metric space to do this. You can accomplish the same
thing using Urysohn’s lemma in a normal topological space or, as is often done, a locally
compact Hausdorff space. This can be discussed later.

Theorem 12.2.4 Let (Ω,S ,µ) be a regular measure space as in Definition 12.2.2
where the conclusion of Lemma 3.12.4 holds. Then Cc(Ω) is dense in Lp(Ω).

Proof: First consider a measurable set, E where µ (E) < ∞. Let K ⊆ E ⊆ V where
µ (V \K)< ε. Now let K ≺ h≺V. Then∫

|h−XE |p dµ ≤
∫

X p
V\Kdµ = µ (V \K)< ε.

It follows that for each s a simple function in Lp (Ω) , there exists h ∈ Cc (Ω) such that
∥s−h∥p < ε. This is because if s(x) = ∑

m
i=1 ciXEi(x) is a simple function in Lp where

the ci are the distinct nonzero values of s each µ (Ei) < ∞ since otherwise s /∈ Lp due to
the inequality

∫
|s|p dµ ≥ |ci|p µ (Ei) . By Theorem 12.2.1, simple functions are dense in

Lp (Ω) . Therefore, Cc (Ω) is dense in Lp (Ω). ■

12.3 Separability
The most important case is of course Lebesgue measure on Rn or more generally, some
Radon measure.

Theorem 12.3.1 For p≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall
this means there exists a countable set D such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that ∥ f −g∥p < ε .

Proof: Let Q be all functions of the form cX[a,b) where

[a,b)≡ [a1,b1)× [a2,b2)×·· ·× [an,bn),

and both ai, bi are rational, while c has rational real and imaginary parts. Let D be the set of
all finite sums of functions in Q. Thus, D is countable. In fact D is dense in Lp(Rn,µ). To
prove this, it is necessary to show that for every f ∈ Lp(Rn,µ), there exists an element of
D , s such that ∥s− f∥p < ε. If it can be shown that for every g ∈Cc(Rn) there exists h ∈D
such that ∥g− h∥p < ε , then this will suffice because if f ∈ Lp(Rn) is arbitrary, Theorem
12.2.4 implies there exists g ∈Cc(Rn) such that ∥ f − g∥p ≤ ε

2 and then there would exist
h ∈Cc(Rn) such that ∥h−g∥p <

ε

2 . By the triangle inequality,

∥ f −h∥p ≤ ∥h−g∥p +∥g− f∥p <
ε

2
+

ε

2
= ε.

Therefore, assume at the outset that f ∈Cc(Rn).
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Let Pm consist of all sets of the form [a,b) ≡ ∏
n
i=1[ai,bi) where ai = j2−mand bi =

( j + 1)2−m for j an integer. Thus Pm consists of a tiling of Rn into half open rectan-
gles having diameters 2−mn

1
2 . There are countably many of these rectangles; so letPm =

{[ai,bi)} for i ≥ 1, and Rn = ∪∞
i=1[ai,bi). Let cm

i be complex numbers with rational real
and imaginary parts satisfying

| f (ai)− cm
i |< 2−m, |cm

i | ≤ | f (ai)|. (12.8)

Let sm(x) = ∑
∞
i=1 cm

i X[ai,bi)
(x).

Since f (ai) = 0 except for finitely many values of i, the above is a finite sum. Then
12.8 implies sm ∈D . If sm converges uniformly to f then it will follow that sm is close to f
in Lp.

Since f ∈ Cc(Rn) it follows that f is uniformly continuous and so given ε > 0 there
exists δ > 0 such that if |x−y|< δ , | f (x)− f (y)|< ε/2. Now let m be large enough that
every box in Pm has diameter less than δ and also that 2−m < ε/2. Then if [ai,bi) is one of
these boxes of Pm, and x ∈ [ai,bi), | f (x)− f (ai)|< ε/2 and | f (ai)− cm

i |< 2−m < ε/2.
Therefore, using the triangle inequality, it follows that for x ∈ [ai,bi),

| f (x)− sm(x)| = | f (x)− cm
i |= | f (x)− f (ai)|+ | f (ai)− cm

i |
< 2−m +2−m < ε

and since x is arbitrary, this establishes uniform convergence. From the construction, sm
and f are zero off some compact set K which does not depend on m. Therefore, for m large,∫
| f (x)− sm(x)|pdµ < ε pµ(K) and since ε is arbitrary, this shows that the countable set

D is dense in Lp(Ω) as claimed. ■
Here is an easier proof if you know the Weierstrass approximation theorem, Theorem

5.7.1 for example.

Theorem 12.3.2 For p≥ 1 and µ a Radon measure, Lp(Rn,µ) is separable. Recall
this means there exists a countable set D , such that if f ∈ Lp(Rn,µ) and ε > 0, there exists
g ∈D such that ∥ f −g∥p < ε .

Proof: As noted above, the continuous functions with compact support are dense in
Lp(Rn,µ). Let spt( f ) ⊆ (−R,R)n. Consider the polynomials having rational coefficients.
By the Weierstrass approximation theorem, and adusting coeffients to make them all ratio-
nal, there exists p, ∥ f − p∥[−R,R]n < ε

Rn/p the norm being the uniform norm ∥g∥[−R,R]n ≡
max{|g(x)| : x ∈ [−R,R]n}. Now let spt( f )≺ τε ≺Vε where µ (V \ spt( f ))< ε p. Then

∥ f − τε p∥p
p ≤

∫
spt( f )

(
ε

Rn/p

)p
dµ +

∫
V\spt( f )

dµ

≤ ε p

Rn 4nRn +µ (V \ spt( f ))< (1+4n)ε
p

Letting P denote the polynomials with rational coefficients, let εk → 0 and consider the
set of functions ∪kτεkP ≡ D . This is countable and from the above computation, it is
dense in Lp. ■

Corollary 12.3.3 Let Ω be any µ measurable subset of Rn and let µ be a Radon mea-
sure. Then Lp(Ω,µ) is separable. Here the σ algebra of measurable sets will consist of all
intersections of measurable sets with Ω and the measure will be µ restricted to these sets.
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Proof: Let D̃ be the restrictions of D to Ω. If f ∈ Lp(Ω), let F be the zero extension
of f to all of Rn. Let ε > 0 be given. By Theorem 12.3.1 or 12.3.2 there exists s ∈D such
that ∥F− s∥p < ε . Thus

∥s− f∥Lp(Ω,µ) ≤ ∥s−F∥Lp(Rn,µ) < ε

and so the countable set D̃ is dense in Lp(Ω). ■

12.4 Continuity of Translation
Definition 12.4.1 Let f be a function defined on U ⊆Rn and letw ∈Rn. Then fw
will be the function defined on w+U by fw(x) = f (x−w).

Theorem 12.4.2 (Continuity of translation in Lp) Let f ∈ Lp(Rn) with the measure
being Lebesgue measure. Then lim∥w∥→0 ∥ fw− f∥p = 0.

Proof: Let ε > 0 be given and let g ∈ Cc(Rn) with ∥g− f∥p < ε

3 . Since Lebesgue
measure is translation invariant (mn(w+E) = mn(E)),∥gw− fw∥p = ∥g− f∥p <

ε

3 . You
can see this from looking at simple functions and passing to the limit or you could use the
change of variables formula to verify it.

Therefore

∥ f − fw∥p ≤ ∥ f −g∥p +∥g−gw∥p +∥gw− fw∥<
2ε

3
+∥g−gw∥p. (12.9)

But lim|w|→0 gw(x) = g(x) uniformly in x because g is uniformly continuous. Now let B
be a large ball containing spt(g) and let δ 1 be small enough that B(x,δ ) ⊆ B whenever
x ∈ spt(g). If ε > 0 is given there exists δ < δ 1 such that if |w| < δ , it follows that
|g(x−w)−g(x)|< ε/3

(
1+mn (B)

1/p
)

. Therefore,

∥g−gw∥p =

(∫
B
|g(x)−g(x−w)|p dmn

)1/p

≤ ε
mn (B)

1/p

3
(

1+mn (B)
1/p
) <

ε

3
.

Thus, whenever |w| < δ , it follows ∥g−gw∥p <
ε

3 and so from 12.9 ∥ f − fw∥p < ε . ■
Here is a remarkable corollary.

Corollary 12.4.3 Suppose f ∈ L1 (Rp,mp) and let v be any nonzero vector. Then there
is a set of measure zero N and a sequence tn→ 0+ such that if x /∈ N, and 0 < sn ≤ tn

lim
n→∞
| f (x)− f (x+ snv)|= 0.

Proof: Let tn be such that if sn≤ tn, ∥ f − f (·+ snv)∥L1 < 4−n. This exists by continuity
of translation in L1 (Rp,mp). Then

mp (En)≡ mp
({
x : | f (x)− f (x+snv)| ≥ 2−n})≤ ∫ | f − f (·+ snv)|dmp

2−n < 2−n

Thus there is a set of measure zero N such that if x /∈ N, then x is in only finitely many of
the sets En. It follows that for all n sufficiently large | f (x)− f (x+snv)|< 2−n. ■
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12.5 Mollifiers and Density of Smooth Functions
Definition 12.5.1 Let U be an open subset of Rn. C∞

c (U) is the vector space of all
infinitely differentiable functions which equal zero for all x outside of some compact set
contained in U. Similarly, Cm

c (U) is the vector space of all functions which are m times
continuously differentiable and whose support is a compact subset of U.

Example 12.5.2 Let U = B(z,2r)

ψ (x) =

 exp
[(
|x−z|2− r2

)−1
]

if |x−z|< r,

0 if |x−z| ≥ r.

Then a little work shows ψ ∈C∞
c (U). The following also is easily obtained.

Lemma 12.5.3 Let U be any open set. Then C∞
c (U) ̸= /0.

Proof: Pick z ∈U and let r be small enough that B(z,2r)⊆U . Then let

ψ ∈C∞
c (B(z,2r))⊆C∞

c (U)

be the function of the above example.

Definition 12.5.4 Let U = {x∈Rn : |x|< 1}. A sequence {ψm}⊆C∞
c (U) is called

a mollifier 2 if ψm(x)≥ 0, ψm(x) = 0, if |x| ≤ 1
m ,and

∫
ψm(x) = 1. Sometimes it may be

written as {ψε} where ψε satisfies the above conditions except ψε (x) = 0 if |x| ≥ ε . In
other words, ε takes the place of 1/m and in everything that follows ε → 0 instead of
m→ ∞.

As before,
∫

f (x,y)dµ(y) will mean x is fixed and the function y→ f (x,y) is being
integrated. To make the notation more familiar, dx is written instead of dmn(x).

Example 12.5.5 Let ψ ∈ C∞
c (B(0,1)) with ψ(x) ≥ 0 and

∫
ψdm = 1. Let ψm(x) =

cmψ(mx) where cm is chosen in such a way that
∫

ψmdm = 1. By the change of variables
theorem cm = mn. Also ψm is zero off B(0,1/m).

Definition 12.5.6 A function f , is said to be in L1
loc(Rn,µ) if f is µ measurable and

if | f |XK ∈ L1(Rn,µ) for every compact set K.Here µ is a regular, complete measure onRn.
Usually µ =mn, Lebesgue measure. When this is so, write L1

loc(Rn), etc. If f ∈ L1
loc(Rn,µ),

and g ∈Cc(Rn), f ∗g(x)≡
∫

f (y)g(x−y)dµ .

The following lemma will be useful in what follows. It says that one of these very
un-regular functions in L1

loc (Rn,µ) is smoothed out by convolving with a mollifier.

Lemma 12.5.7 Let f ∈ L1
loc(Rn,µ), and g ∈ C∞

c (Rn). Then f ∗ g is an infinitely dif-
ferentiable function. Here µ is a Radon measure on Rn. In case f is continuous with
compact support spt( f ) , and if ψm is a mollifier as described above, then spt( f ∗ψm) ⊆
spt( f )+B(0,1/m) . Also ∥ f − f ∗ψm∥→ 0.

2This is sometimes called an approximate identity if the differentiability is not included.
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Proof: Consider the difference quotient for calculating a partial derivative of f ∗g.

f ∗g(x+ te j)− f ∗g(x)
t

=
∫

f (y)
g(x+ te j−y)−g(x−y)

t
dµ (y) .

Using the fact that g ∈ C∞
c (Rn), the quotient g(x+te j−y)−g(x−y)

t is uniformly bounded.
To see this easily, use Theorem 7.5.2 on Page 190 to get the existence of a constant, M
depending on max{||Dg(x)|| : x ∈ Rn} such that

∣∣g(x+ te j−y)−g(x−y)
∣∣ ≤M |t| for

any choice of x and y. Therefore, there exists a dominating function for the integrand of
the above integral which is of the form C | f (y)|XK where K is a compact set depending
on the support of g. It follows the limit of the difference quotient above passes inside the
integral as t → 0 and ∂

∂x j
( f ∗g)(x) =

∫
f (y) ∂

∂x j
g(x−y)dµ (y) . Now letting ∂

∂x j
g play

the role of g in the above argument, partial derivatives of all orders exist. A similar use of
the dominated convergence theorem shows all these partial derivatives are also continuous.

For the last claim, it is clear that spt( f ∗ψm)⊆ spt( f )+B(0,1/m) since off spt( f )+
B(0,1/m) the integral for f ∗ψm will be 0. To verify the last claim, let ε > 0 be given. By
uniform continuity of f , | f (x)− f (x−y)|< ε whenever |y| is sufficiently small. There-
fore,

| f (x)− f ∗ψm (x)| =

∣∣∣∣∫ ( f (x)− f (x−y))ψm (y)dµ (y)
∣∣∣∣

≤
∫

B(0,1/m)
| f (x)− f (x−y)|ψm (y)dµ (y)< ε

∫
ψmdµ = ε

whenever m is large enough. ■

Theorem 12.5.8 For each p≥ 1, C∞
c (Rn) is dense in Lp(Rn). Here the measure is

Lebesgue measure.

Proof: Let f ∈ Lp(Rn) and let ε > 0 be given. Choose g∈Cc(Rn) such that ∥ f −g∥p <
ε

2 . This can be done by using Theorem 12.2.4. Now let

gm (x) = g∗ψm (x)≡
∫

g(x−y)ψm (y)dmn (y) =
∫

g(y)ψm (x−y)dmn (y)

where {ψm} is a mollifier. It follows from Lemma 12.5.7 gm ∈ C∞
c (Rn). It vanishes if

x /∈ spt(g)+B(0, 1
m ).

∥g−gm∥p =

(∫
|g(x)−

∫
g(x−y)ψm(y)dmn(y)|pdmn(x)

) 1
p

≤
(∫

(
∫
|g(x)−g(x−y)|ψm(y)dmn(y))

pdmn(x)

) 1
p

≤
∫ (∫

|g(x)−g(x−y)|pdmn(x)

) 1
p

ψm(y)dmn(y)

=
∫

B(0, 1
m )
∥g−gy∥pψm(y)dmn(y)<

ε

2

whenever m is large enough thanks to the uniform continuity of g. Theorem 12.1.11 was
used to obtain the third inequality. There is no measurability problem because the function

(x,y)→ |g(x)−g(x−y)|ψm(y)
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is continuous. Thus when m is large enough,

∥ f −gm∥p ≤ ∥ f −g∥p +∥g−gm∥p <
ε

2
+

ε

2
= ε . ■

This is a very remarkable result. Functions in Lp (Rn) don’t need to be continuous
anywhere and yet every such function is very close in the Lp norm to one which is infinitely
differentiable having compact support. The same result holds for Lp (U) for U an open set.
This is the next corollary.

Corollary 12.5.9 Let U be an open set. For each p ≥ 1, C∞
c (U) is dense in Lp(U).

Here the measure is Lebesgue measure.

Proof: Let f ∈ Lp(U) and let ε > 0 be given. Choose g∈Cc(U) such that ∥ f −g∥p <
ε

2 .
This is possible because Lebesgue measure restricted to the open set, U is regular. Thus
the existence of such a g follows from Theorem 12.2.4. Now let

gm (x) = g∗ψm (x)≡
∫

g(x−y)ψm (y)dmn (y) =
∫

g(y)ψm (x−y)dmn (y)

where {ψm} is a mollifier. It follows from Lemma 12.5.7 gm ∈C∞
c (U) for all m sufficiently

large. It vanishes if x /∈ spt(g)+B(0, 1
m ). Then

∥g−gm∥p =

(∫
|g(x)−

∫
g(x−y)ψm(y)dmn(y)|pdmn(x)

) 1
p

≤
(∫

(
∫
|g(x)−g(x−y)|ψm(y)dmn(y))

pdmn(x)

) 1
p

≤
∫ (∫

|g(x)−g(x−y)|pdmn(x)

) 1
p

ψm(y)dmn(y)

=
∫

B(0, 1
m )
∥g−gy∥pψm(y)dmn(y)<

ε

2

whenever m is large enough thanks to uniform continuity of g. Theorem 12.1.11 was used
to obtain the third inequality. There is no measurability problem because the function

(x,y)→ |g(x)−g(x−y)|ψm(y)

is continuous. Thus when m is large enough,

∥ f −gm∥p ≤ ∥ f −g∥p +∥g−gm∥p <
ε

2
+

ε

2
= ε . ■

Another thing should probably be mentioned. If you have had a course in complex
analysis, you may be wondering whether these infinitely differentiable functions having
compact support have anything to do with analytic functions which also have infinitely
many derivatives. The answer is no! Recall that if an analytic function has a limit point in
the set of zeros then it is identically equal to zero. Thus these functions in C∞

c (Rn) are not
analytic. This is a strictly real analysis phenomenon and has absolutely nothing to do with
the theory of functions of a complex variable.
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12.6 Smooth Partitions of Unity
Partitions of unity were discussed earlier. Here the idea of a smooth partition of unity is
considered. The earlier general result on metric space is Theorem 3.12.5 on Page 92. Recall
the following notation.

Notation 12.6.1 I will write φ ≺V to symbolize φ ∈Cc (V ) , φ has values in [0,1] , and φ

has compact support in V . I will write K ≺ φ ≺V for K compact and V open to symbolize
φ is 1 on K and φ has values in [0,1] with compact support contained in V .

Definition 12.6.2 A collection of sets H is called locally finite if for every x, there
exists r > 0 such that B(x,r) has nonempty intersection with only finitely many sets of H .
Of course every finite collection of sets is locally finite. This is the case of most interest in
this book but the more general notion is interesting.

The thing about locally finite collection of sets is that the closure of their union equals
the union of their closures. This is clearly true of a finite collection.

Lemma 12.6.3 Let H be a locally finite collection of sets of a normed vector space V .
Then

∪H = ∪
{

H : H ∈H
}
.

Proof: It is obvious⊇ holds in the above claim. It remains to go the other way. Suppose
then that p is a limit point of ∪H and p /∈ ∪H . There exists r > 0 such that B(p,r) has
nonempty intersection with only finitely many sets of H say these are H1, · · · ,Hm. Then I
claim p must be a limit point of one of these. If this is not so, there would exist r′ such that
0 < r′ < r with B(p,r′) having empty intersection with each of these Hi. But then p would
fail to be a limit point of ∪H . Therefore, p is contained in the right side. It is clear ∪H
is contained in the right side and so This proves the lemma. ■

A good example to consider is the rational numbers each being a set in R. This is not a
locally finite collection of sets and you note that Q= R ̸= ∪{x : x ∈Q} . By contrast, Z is
a locally finite collection of sets, the sets consisting of individual integers. The closure of
Z is equal to Z because Z has no limit points so it contains them all.

Lemma 12.6.4 Let K be a closed set in Rp and let {Vi}∞

i=1 be a locally finite sequence
of bounded open sets whose union contains K. Then there exist functions, ψ i ∈C∞

c (Vi) such
that for all x ∈ K,1 = ∑

∞
i=1 ψ i (x) and the function f (x) given by f (x) = ∑

∞
i=1 ψ i (x) is

in C∞ (Rp) .

Proof: Let K1 = K \∪∞
i=2Vi. Thus K1 is compact because it is a closed subset of a

bounded set and K1 ⊆V1. Let W1 be an open set having compact closure which satisfies

K1 ⊆W1 ⊆W 1 ⊆V1

Thus W1,V2, · · · covers K and W 1 ⊆ V1. Suppose W1, · · · ,Wr have been defined such that
Wi ⊆Vi for each i, and W1, · · · ,Wr,Vr+1, · · · covers K. Then let

Kr+1 ≡ K \ (
(
∪∞

i=r+2Vi
)
∪
(
∪r

j=1Wj
)
).

It follows Kr+1 is compact because Kr+1 ⊆Vr+1. Let Wr+1 satisfy

Kr+1 ⊆Wr+1 ⊆W r+1 ⊆Vr+1, W r+1 is compact
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Continuing this way defines a sequence of open sets {Wi}∞

i=1 having compact closures with
the property

Wi ⊆Vi, K ⊆ ∪∞
i=1Wi.

Note {Wi}∞

i=1 is locally finite because the original sequence, {Vi}∞

i=1 was locally finite. Now
let Ui be open sets which satisfy

W i ⊆Ui ⊆U i ⊆Vi, U i is compact.

Similarly, {Ui}∞

i=1 is locally finite.

Wi Ui Vi

Now the local finiteness implies ∪∞
i=1Wi = ∪∞

i=1Wi . Define φ i and γ, continuous having
compact support such that

U i ≺ φ i ≺Vi, ∪∞
i=1W i ≺ γ ≺ ∪∞

i=1Ui.

by convolving each of these with a mollifier, we can use Lemma 12.5.7 to preserve the
above and also have each of these functions infinitely differentiable. Now define

ψ i(x) =

{
γ(x)φ i(x)/∑

∞
j=1 φ j(x) if ∑

∞
j=1 φ j(x) ̸= 0,

0 if ∑
∞
j=1 φ j(x) = 0.

All of these infinite sums are really finite sums because of the local finiteness of the {Vi}.
Thus for y near a given x, all φ j (y) are zero. Therefore, all continuity and differentiability
of the individual φ j is retained by the “infinite” sum.

If x is such that ∑
∞
j=1 φ j(x) = 0, then x /∈ ∪∞

i=1Ui because φ i equals one on Ui. Conse-
quently γ (y) = 0 for all y near x thanks to the fact that ∪∞

i=1Ui is closed and so ψ i(y) = 0
for all y near x. Hence ψ i is infinitely differentiable at such x. If ∑

∞
j=1 φ j(x) ̸= 0, this

situation persists near x because each φ j is continuous and so ψ i is infinitely differentiable
at such points also. Therefore ψ i is infinitely differentiable. If x ∈ K, then γ (x) = 1 and
so ∑

∞
j=1 ψ j(x) = 1. Clearly 0≤ ψ i (x)≤ 1 and spt(ψ j)⊆Vj. ■

The functions, {ψ i} are called a C∞ partition of unity. The following is very useful.

Corollary 12.6.5 In the context of Lemma 12.6.4, if H is a compact subset of Vi for
some Vi there exists a partition of unity such that ψ i (x) = 1 for all x ∈ H in addition to the
conclusion of Lemma 12.6.4.

Proof: Keep Vi the same but replace all the Vj with Ṽj ≡ Vj \H. Now in the proof
above, applied to this modified collection of open sets, if j ̸= i,φ j (x) = 0 whenever x ∈H.
Therefore, ψ i (x) = 1 on H. ■

If K is compact, we can always reduce to a finite cover and so we obtain the following:

Theorem 12.6.6 Let K be a compact set in Rn and let {Ui}∞

i=1 be an open cover of
K. Then there exist functions, ψk ∈C∞

c (Ui) such that ψ i ≺Ui and for all x ∈ K, it follows
that ∑

∞
i=1 ψ i (x) = 1. If K1 is a compact subset of U1 there exist such functions such that

also ψ1 (x) = 1 for all x ∈ K1.
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12.7 Exercises
1. Let E be a Lebesgue measurable set in R. Suppose m(E)> 0. Consider the set E−

E = {x− y : x ∈ E,y ∈ E}. Show that E−E contains an interval. Hint: Let f (x) =∫
XE(t)XE(x+ t)dt. Note f is continuous at 0 and f (0) > 0 and use continuity of

translation in Lp.

2. Establish the inequality ∥ f g∥r ≤ ∥ f∥p ∥g∥q whenever 1
r = 1

p +
1
q .

3. Let (Ω,S ,µ) be counting measure onN. Thus Ω =N and S =P (N) with µ (S) =
number of things in S. Let 1 ≤ p ≤ q. Show that in this case, L1 (N) ⊆ Lp (N) ⊆
Lq (N) . Hint: This is real easy if you consider what

∫
Ω

f dµ equals. How are the
norms related?

4. Consider the function, f (x,y) = xp−1

py + yq−1

qx for x,y> 0 and 1
p +

1
q = 1. Show directly

that f (x,y)≥ 1 for all such x,y and show this implies xy≤ xp

p + yq

q .

5. Give an example of a sequence of functions in Lp (R) which converges to zero in Lp

but does not converge pointwise to 0. Does this contradict the proof of the theorem
that Lp is complete?

6. Let K be a bounded subset of Lp (Rn) and suppose that there exists G such that G is
compact with

∫
Rn\G |u(x)|

p dx< ε p and for all ε > 0, there exist a δ > 0 and such that
if |h|< δ , then

∫
|u(x+h)−u(x)|p dx < ε p for all u ∈ K. Show that K is precom-

pact in Lp (Rn). Hint: Let φ k be a mollifier and consider Kk ≡{u∗φ k : u ∈ K} .Verify
the conditions of the Ascoli Arzela theorem for these functions defined on G and
show there is an ε net for each ε > 0. Can you modify this to let an arbitrary open
set take the place of Rn?

7. Let (Ω,d) be a metric space and suppose also that (Ω,S ,µ) is a regular measure
space such that µ (Ω) < ∞ and let f ∈ L1 (Ω) where f has complex values. Show
that for every ε > 0, there exists an open set of measure less than ε, denoted here by
V and a continuous function, g defined on Ω such that f = g on VC. Thus, aside from
a set of small measure, f is continuous. If | f (ω)| ≤M, show that it can be assumed
that |g(ω)| ≤ M. This is called Lusin’s theorem. Hint: Use Theorems 12.2.4 and
12.1.9 to obtain a sequence of functions in Cc (Ω) ,{gn} which converges pointwise
a.e. to f and then use Egoroff’s theorem to obtain a small set, W of measure less
than ε/2 such that convergence is uniform on WC. Now let F be a closed subset of
WC such that µ

(
WC \F

)
< ε/2. Let V = FC. Thus µ (V ) < ε and on F = VC, the

convergence of {gn} is uniform showing that the restriction of f to VC is continuous.
Now use the Tietze extension theorem.

8. Let φ m ∈C∞
c (Rn),φ m (x)≥ 0 and

∫
Rn φ m(y)dy = 1 with

lim
m→∞

sup{|x| : x ∈ spt(φ m)}= 0.

Show if f ∈ Lp(Rn), limm→∞ f ∗φ m = f in Lp(Rn).

9. Let φ : R→ R be convex. This means φ(λx+ (1− λ )y) ≤ λφ(x) + (1− λ )φ(y)
whenever λ ∈ [0,1]. Verify that if x < y < z, then φ(y)−φ(x)

y−x ≤ φ(z)−φ(y)
z−y and that
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φ(z)−φ(x)
z−x ≤ φ(z)−φ(y)

z−y . Show if s ∈ R there exists λ such that φ(s) ≤ φ(t)+λ (s− t)
for all t. Show that if φ is convex, then φ is continuous.

10. Let 1
p +

1
p′ = 1, p> 1, let f ∈ Lp(R), g∈ Lp′(R). Show f ∗g is uniformly continuous

on R and |( f ∗ g)(x)| ≤ ∥ f∥Lp∥g∥Lp′ . Hint: You need to consider why f ∗ g exists
and then this follows from the definition of convolution and continuity of translation
in Lp.

11. B(p,q) =
∫ 1

0 xp−1(1− x)q−1dx,Γ(p) =
∫

∞

0 e−tt p−1dt for p,q > 0. The first of these
is called the beta function, while the second is the gamma function. Show a.) Γ(p+
1) = pΓ(p); b.) Γ(p)Γ(q) = B(p,q)Γ(p+q).

12. Let f ∈ Cc(0,∞). Define F(x) = 1
x
∫ x

0 f (t)dt. Show ∥F∥Lp(0,∞) ≤ p
p−1∥ f∥Lp(0,∞)

whenever p > 1. Hint: Argue there is no loss of generality in assuming f ≥ 0 and
then assume this is so. Integrate

∫
∞

0 |F(x)|pdx by parts as follows:

∫
∞

0
F pdx =

show = 0︷ ︸︸ ︷
xF p|∞0 − p

∫
∞

0
xF p−1F ′dx.

Now show xF ′ = f −F and use this in the last integral. Complete the argument by
using Holder’s inequality and p−1 = p/q.

13. ↑ Now suppose f ∈ Lp(0,∞), p > 1, and f not necessarily in Cc(0,∞). Show that
F(x) = 1

x
∫ x

0 f (t)dt still makes sense for each x > 0. Show the inequality of Problem
12 is still valid. This inequality is called Hardy’s inequality. Hint: To show this, use
the above inequality along with the density of Cc (0,∞) in Lp (0,∞).

14. Suppose f ,g≥ 0. When does equality hold in Holder’s inequality?

15. Show the Vitali Convergence theorem implies the Dominated Convergence theorem
for finite measure spaces but there exist examples where the Vitali convergence the-
orem works and the dominated convergence theorem does not.

16. ↑ Suppose µ(Ω) < ∞, { fn} ⊆ L1(Ω), and
∫

Ω
h(| fn|)dµ < C for all n where h is a

continuous, nonnegative function satisfying limt→∞
h(t)

t =∞. Show { fn} is uniformly
integrable. In applications, this often occurs in the form of a bound on ∥ fn∥p.

17. ↑ Sometimes, especially in books on probability, a different definition of uniform
integrability is used than that presented here. A set of functions S, defined on a
finite measure space, (Ω,S ,µ) is said to be uniformly integrable if for all ε > 0 there
exists α > 0 such that for all f ∈S,

∫
[| f |≥α] | f |dµ ≤ ε. Show that this definition is

equivalent to the definition of uniform integrability with the addition of the condition
that there is a constant, C < ∞ such that

∫
| f |dµ ≤C for all f ∈S.

18. Suppose f ∈ L∞∩L1. Show limp→∞ ∥ f∥Lp = ∥ f∥∞. Hint:

(|| f ||
∞
− ε)p

µ ([| f |> || f ||
∞
− ε])≤

∫
[| f |>|| f ||∞−ε]

| f |p dµ ≤

∫
| f |p dµ =

∫
| f |p−1 | f |dµ ≤ || f ||p−1

∞

∫
| f |dµ.

Now raise both ends to the 1/p power and take liminf and limsup as p→ ∞. You
should get || f ||

∞
− ε ≤ liminf || f ||p ≤ limsup || f ||p ≤ || f ||∞
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19. Suppose µ(Ω)<∞. Show that if 1≤ p< q, then Lq(Ω)⊆ Lp(Ω). Hint Use Holder’s
inequality.

20. Show L1(R)⊈ L2(R) and L2(R)⊈ L1(R) if Lebesgue measure is used. Hint: Con-
sider 1/

√
x and 1/x.

21. Suppose that θ ∈ [0,1] and r,s,q > 0 with 1
q = θ

r +
1−θ

s . Show that (
∫
| f |qdµ)1/q ≤(∫

| f |rdµ)1/r
)θ (∫ | f |sdµ)1/s

)1−θ
. If q,r,s ≥ 1 this says that ∥ f∥q ≤ ∥ f∥θ

r ∥ f∥1−θ
s .

Using this, show that ln
(
∥ f∥q

)
≤ θ ln(∥ f∥r)+(1−θ) ln(∥ f∥s) . Hint:

∫
| f |qdµ =∫

| f |qθ | f |q(1−θ)dµ.Now note that 1 = θq
r + q(1−θ)

s and use Holder’s inequality.

22. Suppose f is a function in L1 (R) and f is infinitely differentiable. Is f ′ ∈ L1 (R)?
Hint: What if φ ∈C∞

c (0,1) and f (x) = φ (2n (x−n)) for x ∈ (n,n+1) , f (x) = 0 if
x < 0?

23. Establish the following for f ̸= 0 in Lp

∥ f∥p =
∫

Ω

| f |p

∥ f∥p−1
p

dµ =
∫

Ω

f
| f |p−2 f̄

∥ f∥p−1
p

≤ sup
∥g∥q≤1

∫
| f | |g|dµ ≤ ∥ f∥p

24. ↑From the above problem, if f is nonnegative and product measurable,(∫ (∫
f (x,y)dµ (x)

)p

dν (y)
)1/p

= sup
∥h∥q≤1

∫ (∫
f (x,y)dµ (x)

)
h(y)dν (y)

Now use Fubini’s theorem and then the Holder inequality to obtain

= sup
∥h∥q≤1

∫ ∫
f (x,y)h(y)dν (y)dµ (x)≤

∫ (∫
f (x,y)p dν (y)

)1/p

dµ (x)

This gives another proof of the important Minkowski inequality for integrals.

25. Let 0 < p < 1 and let f ,g be measurable C valued functions. Also∫
Ω

|g|p/(p−1) dµ < ∞,
∫

Ω

| f |p dµ < ∞

Then show the following backwards Holder inequality holds.

∫
Ω

| f g|dµ ≥
(∫

Ω

| f |p dµ

)1/p(∫
Ω

|g|p/(p−1) dµ

)(p−1)/p

Hint: You should first note that g = 0 only on a set of measure zero. Then you
could write

∫
Ω
| f |p dµ =

∫
Ω
|g|−p | f g|p dµ. Apply the usual Holder inequality with

1/p one of the exponents and 1/(1− p) the other exponent. Then the above is ≤(∫
Ω
|g|−p/(1−p) dµ

)1−p
(
∫

Ω
| f g|dµ)p etc. Note the usual Holder inequality in case

p > 1 is
∫

Ω
| f g|dµ ≤ (

∫
Ω
| f |p dµ)1/p

(∫
Ω
|g|p/(p−1) dµ

)(p−1)/p
.
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26. Let 0 < p < 1 and suppose
∫
|h|p dµ < ∞ for h = f ,g. Then(∫

(| f |+ |g|)p dµ

)1/p

≥
(∫
| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

This is the backwards Minkowski inequality. Hint: First explain why, since p <
1,(| f |+ |g|)p ≤ | f |p + |g|p. It follows from this that∫

Ω

(
(| f |+ |g|)p−1

)p/(p−1)
dµ < ∞

since
∫
|h|p dµ < ∞ for h = f ,g. Then (| f |+ |g|)p−1 plays the role of |g| in the above

backwards Holder inequality. Next do this:∫
Ω

(| f |+ |g|)p dµ =
∫

Ω

(| f |+ |g|)p−1 (| f |+ |g|)dµ

=
∫

Ω

(| f |+ |g|)p−1 | f |dµ +
∫

Ω

(| f |+ |g|)p−1 |g|dµ

Now apply the backwards Holder inequality of the above problem. The first term
gives ∫

Ω

(| f |+ |g|)p−1 | f |dµ ≥
(∫

Ω

(| f |+ |g|)p dµ

)(p−1)/p(∫
Ω

| f |p dµ

)1/p

27. Let f ∈ L1
loc (R) . Show there exists a set of measure zero N such that if x /∈ N, then

if {In} is a sequence of intervals containing x such that m(In)→ 0 then

1
m(In)

∫
In
| f − f (x)|dx→ 0.

Generalize to higher dimensions if possible. Also, does In have to be an interval?

28. Suppose F (x) =
∫ x

a f (t)dt so that F is absolutely continuous where f ∈ L1 ([a,b]).
Show that f ∈ Lp for p > 1 if and only if there is M < ∞ such that whenever
a = x0 < x1 < · · ·< xn = b it follows that ∑

n
i=1
|F(xi)−F(xi−1)|p

(xi−xi−1)
p−1 < M. This problem is

a result of F. Riesz. Hint: The first part is an easy application of Holder’s inequality.
For the second, let Pn be a sequence of paritions of [a,b] such that the subinter-

vals have lengths converging to 0. Define fn (x)≡ ∑
n
k=1

F(xn
k)−F(xn

k−1)
xn

k−xn
k−1

XIn
k
(x) where

the intervals of Pn are In
k =

[
xn

k−1,x
n
k+1

]
. Then for a.e. x, fn (x)→ f (x) thanks

to the Lebesgue fundamental theorem of calculus and Problem 27. Now apply Fa-
tou’s lemma to say that

∫ b
a | f (x)|

p dx ≤ liminfn→∞

∫ b
a | fn (x)|p dx and simplify this

last integral by breaking it into a sum of integrals over the sub-intervals of Pn.

Note |F(xn
k)−F(xn

k−1)|
p

(xn
k−xn

k−1)
p does not depend on x ∈ In

k .

29. If f ∈ Lp (U,mp) , where U is a bounded open set in Rn, show there exists a sequence
of smooth functions which converges to f a.e. Then show there exists a sequence of
polynomials whose restriction to U converges a.e. to f on U .

30. In Corollary 12.4.3 can you generalize where f is only in L1
loc (Rp,mp).



Chapter 13

Fourier Transforms
13.1 Fourier Transforms of Functions in G

First is a definition of a very specialized set of functions. Here the measure space will be
(Rn,mn,Fn) , familiar Lebesgue measure.

First recall the following definition of a polynomial.

Definition 13.1.1 α = (α1, · · · ,αn) for α1 · · ·αn nonnegative integers is called a
multi-index. For α a multi-index, |α| ≡ α1 + · · ·+αn and if x ∈ Rn,x= (x1, · · · ,xn) , and
f a function, define

xα ≡ xα1
1 xα2

2 · · ·x
αn
n .

A polynomial in n variables of degree m is a function of the form

p(x) = ∑
|α|≤m

aαx
α .

Here α is a multi-index as just described and aα ∈ C. Also define for α = (α1, · · · ,αn) a
multi-index

Dα f (x)≡ ∂ |α| f
∂xα1

1 ∂xα2
2 · · ·∂xαn

n
.

Definition 13.1.2 Define G1 to be the functions of the form p(x)e−a|x|2 where a >
0 is rational and p(x) is a polynomial having all rational coefficients, aα being “rational”
if it is of the form a+ ib for a,b ∈Q. Let G be all finite sums of functions in G1. Thus G is
an algebra of functions which has the property that if f ∈ G then f ∈ G .

Thus there are countably many functions in G1. This is because, for each m, there are
countably many choices for aα for |α| ≤m since there are finitely many α for |α| ≤m and
for each such α, there are countably many choices for aα sinceQ+iQ is countable. (Why?)
Thus there are countably many polynomials having degree no more than m. This is true for
each m and so the number of different polynomials is a countable union of countable sets
which is countable. Now there are countably many choices of e−α|x|2 and so there are
countably many in G1 because the Cartesian product of countable sets is countable.

Now G consists of finite sums of functions in G1. Therefore, it is countable because for
each m ∈ N, there are countably many such sums which are possible.

I will show now that G is dense in Lp (Rn) but first, here is a lemma which follows from
the Stone Weierstrass theorem.

Lemma 13.1.3 G is dense in C0 (Rn) with respect to the norm,

|| f ||
∞
≡ sup{| f (x)| : x ∈ Rn}

Proof: By the Weierstrass approximation theorem, it suffices to show G separates the
points and annihilates no point. It was already observed in the above definition that f ∈ G
whenever f ∈ G . If y1 ̸= y2 suppose first that |y1| ̸= |y2| . Then in this case, you can let
f (x) ≡ e−|x|

2
. Then f ∈ G and f (y1) ̸= f (y2). If |y1| = |y2| , then suppose y1k ̸= y2k.

This must happen for some k because y1 ̸=y2. Then let f (x)≡ xke−|x|
2
. Thus G separates

points. Now e−|x|
2

is never equal to zero and so G annihilates no point of Rn. ■

375
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These functions are clearly quite specialized. Therefore, the following theorem is some-
what surprising.

Theorem 13.1.4 For each p ≥ 1, p < ∞,G is dense in Lp (Rn). Since G is count-
able, this shows that Lp (Rn) is separable.

Proof: Let f ∈ Lp (Rn) . Then there exists g ∈Cc (Rn) such that ∥ f −g∥p < ε . Now let
b > 0 be large enough that ∫

Rn

(
e−b|x|2

)p
dx < ε

p.

Then x→ g(x)eb|x|2 is in Cc (Rn)⊆C0 (Rn) . Therefore, from Lemma 13.1.3 there exists
ψ ∈ G such that ∥∥∥geb|·|2 −ψ

∥∥∥
∞

< 1

Therefore, letting φ (x)≡ e−b|x|2ψ (x) it follows that φ ∈ G and for all x ∈ Rn,

|g(x)−φ (x)|< e−b|x|2

Therefore, (
∫
Rn |g(x)−φ (x)|p dx)1/p ≤

(∫
Rn

(
e−b|x|2

)p
dx
)1/p

< ε . It follows

∥ f −φ∥p ≤ ∥ f −g∥p +∥g−φ∥p < 2ε.■

From now on, we can drop the restriction that the coefficients of the polynomials in G
are rational. We also drop the restriction that a is rational. Thus G will be finite sums of
functions which are of the form p(x)e−a|x|2 where the coefficients of p are complex and
a > 0.

The following lemma is also interesting even if it is obvious.

Lemma 13.1.5 For ψ ∈ G , p a polynomial, and α,β multi-indices, Dα ψ ∈ G and
pψ ∈ G . Also

sup{|xβ Dα
ψ(x)| : x ∈ Rn}< ∞

Thus these special functions are infinitely differentiable (smooth). They also have the
property that they and all their partial derivatives vanish as |x| → ∞.

Let G be the functions of Definition 13.1.2 except, for the sake of convenience, remove
all references to rational numbers. Thus G consists of finite sums of polynomials having
coefficients in C times e−a|x|2 for some a > 0. The idea is to first understand the Fourier
transform on these very specialized functions.

Definition 13.1.6 For ψ ∈ G Define the Fourier transform F and the inverse Four-
ier transform, F−1 by

Fψ(t)≡ (2π)−n/2
∫
Rn

e−it·x
ψ(x)dx, F−1

ψ(t)≡ (2π)−n/2
∫
Rn

eit·x
ψ(x)dx.

where t ·x≡∑
n
i=1 tixi. Note there is no problem with this definition because ψ is in L1 (Rn)

and therefore,
∣∣eit·xψ(x)

∣∣≤ |ψ(x)| , an integrable function.
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The following lemma follows from the dominated convergence theorem and routine
manipulations.

Lemma 13.1.7 For ψ ∈ G ,

Dα
t F (ψ) = (−i)|α|F (xα

ψ (x)) , Dα
t F−1 (ψ) = (i)|α|F−1 (xα

ψ (x))

In this lemma, xα ψ (x) denotes the function x→ xα ψ (x).
One reason for using the functions G is that it is very easy to compute the Fourier

transform of these functions. The first thing to do is to verify F and F−1 map G to G and
that F−1 ◦F (ψ) = ψ. Next is a simple lemma from calculus which is about the Fourier
transforms of e−c|t|2 .

Lemma 13.1.8 The following hold. (c > 0)(
1

2π

)n/2 ∫
Rn

e−c|t|2e−is·tdt =
(

1
2π

)n/2 ∫
Rn

e−c|t|2eis·tdt

=

(
1

2π

)n/2

e−
|s|2
4c

(√
π√
c

)n

=

(
1
2c

)n/2

e−
1
4c |s|

2
. (13.1)

That is, F
(

e−c|t|2
)
=
( 1

2c

)n/2
e−

1
4c |s|

2
and F−1

(
e−c|t|2

)
=
( 1

2c

)n/2
e−

1
4c |s|

2
.

Proof: Consider first the case of one dimension. Let H (s) be given by

H (s)≡
∫
R

e−ct2
e−istdt =

∫
R

e−ct2
cos(st)dt

Then H (0)2 =
∫
R
∫
R e−c(t2+s2)dtds=

∫
∞

0
∫ 2π

0 e−cr2
rdθdr = 1

c π so H (0)=
√

π

c . Then using

the dominated convergence theorem to differentiate, H ′ (s) + s
2c H (s) = 0,H (0) =

√
π

c .
Thus

d
ds

(
es2/4cH (s)

)
= 0 and so es2/4cH (s)−

√
π

c
= 0, so H (s) =

√
π

c
e−s2/4c

Hence
1√
2π

∫
R

e−ct2
e−istdt =

√
π

c
1√
2π

e−
s2
4c =

(
1
2c

)1/2

e−
s2
4c .

This proves the formula in the case of one dimension. The case of the inverse Fourier
transform is similar. The n dimensional formula follows from Fubini’s theorem. ■

With these formulas, it is easy to verify F,F−1 map G to G and F ◦F−1 = F−1 ◦F = id.

Theorem 13.1.9 Each of F and F−1 map G to G . Also F−1 ◦ F (ψ) = ψ and
F ◦F−1 (ψ) = ψ .

Proof: It is obvious that F,F−1 map G to G using Lemmas 13.1.7, 13.1.8. Indeed, for
ψ (x) = xα e−c|x|2 ,

F (ψ) = (−i)|α|Dα F
(

e−c|x|2
)
= (−i)|α|Dα

((
1
2c

)n/2

e−
1
4c |s|

2

)

= (−i)|α| (−1)|α|
(

1
2c

)|α|+n/2

sα e−
1
4c |s|

2
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Similarly, for ψ (x) = xα e−c|x|2 ,

F−1 (ψ) = i|α| (−1)|α|
(

1
2c

)|α|+n/2

sα e−
1
4c |s|

2
(13.2)

For ψ (x) = xα e−c|x|2 ,

F−1 ◦F (ψ) = F−1

(
(−i)|α| (−1)|α|

(
1
2c

)|α|+n/2

sα e−
1
4c |s|

2

)

= i|α|
(

1
2c

)|α|+n/2

F−1
(
sα e−

1
4c |s|

2
)

From 13.2 with c→ 1/(4c) ,

= i|α|
(

1
2c

)|α|+n/2

i|α| (−1)|α|
(

1
2(1/4c)

)|α|+n/2

sα e−
1

4(1/(4c)) |s|
2
= sα e−c|s|2

Since G consists of sums of multiples of such ψ, this has shown that F−1 ◦F (ψ) = ψ . ■

13.2 Fourier Transforms of Just about Anything
I will define Fourier Transforms of the linear functions acting on G and then show that this
includes virtually anything which could possibly be of any interest.

Definition 13.2.1 Let G ∗ denote the vector space of linear functions defined on G
which have values in C. Thus T ∈ G ∗ means T : G → C and T is linear,

T (aψ +bφ) = aT (ψ)+bT (φ) for all a,b ∈ C,ψ,φ ∈ G

Let ψ ∈ G . Then ψ is an element of G ∗ by defining ψ (φ)≡
∫
Rn ψ (x)φ (x)dx.

Then we have the following important lemma.

Lemma 13.2.2 The following is obtained for all φ ,ψ ∈ G .

Fψ (φ) = ψ (Fφ) , F−1
ψ (φ) = ψ

(
F−1

φ
)

Also if ψ ∈ G and ψ = 0 in G ∗ so that ψ (φ) = 0 for all φ ∈ G , then ψ = 0 as a function.

Proof:

Fψ (φ)≡
∫
Rn

Fψ (t)φ (t)dt =
∫
Rn

(
1

2π

)n/2 ∫
Rn

e−it·x
ψ(x)dxφ (t)dt

=
∫
Rn

ψ(x)

(
1

2π

)n/2 ∫
Rn

e−it·x
φ (t)dtdx =

∫
Rn

ψ(x)Fφ (x)dx≡ ψ (Fφ)

The other claim is similar.
Suppose now ψ (φ) = 0 for all φ ∈ G . Then

∫
Rn ψφdx = 0 for all φ ∈ G . Therefore,

this is true for φ = ψ̄ and so ψ = 0. ■
This lemma suggests a way to define the Fourier transform of something in G ∗.
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Definition 13.2.3 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 13.2.4 F and F−1 are both one to one, onto, and are inverses of each other.

Proof: First note F and F−1 are both linear. This follows directly from the definition.
Suppose now FT = 0. Then FT (φ) = T (Fφ) = 0 for all φ ∈ G . But F and F−1 map G
onto G because if ψ ∈ G , then as shown above, ψ = F

(
F−1 (ψ)

)
. Therefore, T = 0 and

so F is one to one. Similarly F−1 is one to one. Now

F−1 (FT )(φ)≡ (FT )
(
F−1

φ
)
≡ T

(
F
(
F−1 (φ)

))
= T φ .

Therefore, F−1 ◦F (T ) = T. Similarly, F ◦F−1 (T ) = T. Thus both F and F−1 are one to
one and onto and are inverses of each other as suggested by the notation. ■

Probably the most interesting things in G ∗ are functions of various kinds. The following
lemma will be useful in considering this situation.

Lemma 13.2.5 If f ∈ L1
loc (Rn) and

∫
Rn f φdx = 0 for all φ ∈Cc (Rn), then f = 0 a.e.

Proof: Let E be bounded and Lebesgue measurable. By regularity, there exists a com-
pact set Kk ⊆ E and an open set Vk ⊇ E such that mn (Vk \Kk)< 2−k. Let hk equal 1 on Kk,
vanish on VC

k , and take values between 0 and 1. Let Ek ≡
[∣∣hk−XEk

∣∣> ( 2
3

)k
]
. Then

mn (Ek)≤
(

3
2

)k ∫
Ek

∣∣hk−XEk

∣∣dmn <

(
3
2

)k ∫
Vk\Kk

2dmn = 2
(

3
2

)k 1
2k = 2

(
3
4

)k

and so ∑k mn (Ek)< ∞ so there is a set of measure zero such that off this set, hk→XEk .
Hence, by the dominated convergence theorem,

∫
f XEdmn = limk→∞

∫
f hkdmn = 0. It

follows that for E an arbitrary Lebesgue measurable set,
∫

f XB(0,R)XEdmn = 0. Let

sgn f =

{
f
| f | if | f | ̸= 0
0 if | f |= 0

By Theorem 9.1.6 applied to positive and negative parts, there exists {sk}, a sequence of
simple functions converging pointwise to sgn f such that |sk| ≤ 1. Then by the dominated
convergence theorem again,

∫
| f |XB(0,R)dmn = limk→∞

∫
f XB(0,R)skdmn = 0. Since R is

arbitrary, | f |= 0 a.e. ■

Corollary 13.2.6 Let f ∈ L1 (Rn) and suppose
∫
Rn f (x)φ (x)dx = 0 for all φ ∈ G .

Then f = 0 a.e.

Proof: Let ψ ∈Cc (Rn) . Then by the Stone Weierstrass approximation theorem, there
exists a sequence of functions, {φ k} ⊆ G such that φ k→ ψ uniformly. Then by the domi-
nated convergence theorem,

∫
f ψdx = limk→∞

∫
f φ kdx = 0. By Lemma 13.2.5 f = 0. ■

The next theorem is the main result of this sort.

Theorem 13.2.7 Let f ∈ Lp (Rn) , p≥ 1, or suppose f is measurable and has poly-

nomial growth, | f (x)| ≤K
(

1+ |x|2
)m

for some m∈N. Then if
∫

f ψdx= 0, for all ψ ∈ G ,
then it follows f = 0.
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Proof: First note that if f ∈ Lp (Rn) or has polynomial growth, then it makes sense
to write the integral

∫
f ψdx described above. This is obvious in the case of polynomial

growth. In the case where f ∈ Lp (Rn) it also makes sense because

∫
| f | |ψ|dx≤

(∫
| f |p dx

)1/p(∫
|ψ|p

′
dx
)1/p′

< ∞

due to the fact mentioned above that all these functions in G are in Lp (Rn) for every p≥ 1.
Suppose now that f ∈ Lp, p ≥ 1. The case where f ∈ L1 (Rn) was dealt with in Corollary
13.2.6. Suppose f ∈ Lp (Rn) for p > 1. Then

| f |p−2 f ∈ Lp′ (Rn) ,

(
p′ = q,

1
p
+

1
q
= 1
)

and by density of G in Lp′ (Rn) (Theorem 13.1.4), there exists a sequence {gk} ⊆ G such
that

∥∥∥gk−| f |p−2 f
∥∥∥

p′
→ 0. Then

∫
Rn
| f |p dx =

∫
Rn

f
(
| f |p−2 f −gk

)
dx+

∫
Rn

f gkdx

=
∫
Rn

f
(
| f |p−2 f −gk

)
dx≤ ∥ f∥Lp

∥∥∥gk−| f |p−2 f
∥∥∥

p′

which converges to 0. Hence f = 0.
It remains to consider the case where f has polynomial growth. Thusx→ f (x)e−|x|

2
∈

L1 (Rn) . Therefore, for all ψ ∈ G , 0 =
∫

f (x)e−|x|
2
ψ (x)dx because e−|x|

2
ψ (x) ∈ G .

Therefore, by the first part, f (x)e−|x|
2
= 0 a.e. ■

Note that “polynomial growth” could be replaced with a condition of the form

| f (x)| ≤ K
(

1+ |x|2
)m

ek|x|α , α < 2

and the same proof would yield that these functions are in G ∗. The main thing to observe
is that almost all functions of interest are in G ∗.

Theorem 13.2.8 Let f be a measurable function with polynomial growth,

| f (x)| ≤C
(

1+ |x|2
)N

for some N,

or let f ∈ Lp (Rn) for some p ∈ [1,∞]. Then f ∈ G ∗ if f (φ)≡
∫

f φdx.

Proof: Let f have polynomial growth first. Then the above integral is clearly well
defined and so in this case, f ∈ G ∗.

Next suppose f ∈ Lp (Rn) with ∞ > p≥ 1. Then it is clear again that the above integral
is well defined because of the fact that φ is a sum of polynomials times exponentials of the
form e−c|x|2 and these are in Lp′ (Rn). Also φ → f (φ) is clearly linear in both cases. ■

This has shown that for nearly any reasonable function, you can define its Fourier trans-
form as described above. You could also define the Fourier transform of a finite Borel mea-
sure µ because for such a measure ψ→

∫
Rn ψdµ is a linear functional on G . This includes

the very important case of probability distribution measures. The theoretical basis for this
assertion will be given a little later.
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13.2.1 Fourier Transforms of Functions in L1 (Rn)

First suppose f ∈ L1 (Rn) .

Theorem 13.2.9 Let f ∈ L1 (Rn) . Then F f (φ) =
∫
Rn gφdt where

g(t) =
(

1
2π

)n/2 ∫
Rn

e−it·x f (x)dx

and F−1 f (φ) =
∫
Rn gφdt where g(t) =

( 1
2π

)n/2 ∫
Rn eit·x f (x)dx. In short,

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx, F−1 f (t)≡ (2π)−n/2
∫
Rn

eit·x f (x)dx.

Proof: From the definition and Fubini’s theorem,

F f (φ) ≡
∫
Rn

f (t)Fφ (t)dt =
∫
Rn

f (t)
(

1
2π

)n/2 ∫
Rn

e−it·x
φ (x)dxdt

=
∫
Rn

((
1

2π

)n/2 ∫
Rn

f (t)e−it·xdt

)
φ (x)dx.

Since φ ∈G is arbitrary, it follows from Theorem 13.2.7 that F f (x) is given by the claimed
formula. The case of F−1 is identical. ■

Here are interesting properties of these Fourier transforms of functions in L1.

Theorem 13.2.10 If f ∈ L1 (Rn) and ∥ fk − f∥1 → 0, then F fk and F−1 fk con-
verge uniformly to F f and F−1 f respectively. If f ∈ L1 (Rn), then F−1 f and F f are both
continuous and bounded. Also,

lim
|x|→∞

F−1 f (x) = lim
|x|→∞

F f (x) = 0. (13.3)

Furthermore, for f ∈ L1 (Rn) both F f and F−1 f are uniformly continuous.

Proof: The first claim follows from the following inequality.

|F fk (t)−F f (t)| ≤ (2π)−n/2
∫
Rn

∣∣e−it·x fk(x)− e−it·x f (x)
∣∣dx

= (2π)−n/2
∫
Rn
| fk (x)− f (x)|dx = (2π)−n/2 ∥ f − fk∥1 .

which a similar argument holding for F−1.
Now consider the second claim of the theorem.∣∣F f (t)−F f

(
t′
)∣∣≤ (2π)−n/2

∫
Rn

∣∣∣e−it·x− e−it′·x
∣∣∣ | f (x)|dx

The integrand is bounded by 2 | f (x)|, a function in L1 (Rn) and converges to 0 as t′→ t
and so the dominated convergence theorem implies F f is continuous. To see F f (t) is
uniformly bounded,

|F f (t)| ≤ (2π)−n/2
∫
Rn
| f (x)|dx < ∞.
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A similar argument gives the same conclusions for F−1.
It remains to verify 13.3 and the claim that F f and F−1 f are uniformly continuous.

|F f (t)| ≤
∣∣∣∣(2π)−n/2

∫
Rn

e−it·x f (x)dx
∣∣∣∣

Now let ε > 0 be given and let g ∈C∞
c (Rn) such that (2π)−n/2 ∥g− f∥1 < ε/2. Then

|F f (t)| ≤ (2π)−n/2
∫
Rn
| f (x)−g(x)|dx+

∣∣∣∣(2π)−n/2
∫
Rn

e−it·xg(x)dx
∣∣∣∣

≤ ε/2+
∣∣∣∣(2π)−n/2

∫
Rn

e−it·xg(x)dx
∣∣∣∣ .

Now integrating by parts, it follows that for ∥t∥
∞
≡max

{∣∣t j
∣∣ : j = 1, · · · ,n

}
> 0

|F f (t)| ≤ ε/2+(2π)−n/2

∣∣∣∣∣ 1
∥t∥

∞

∫
Rn

n

∑
j=1

∣∣∣∣∂g(x)
∂x j

∣∣∣∣dx

∣∣∣∣∣ (13.4)

and this last expression converges to zero as ∥t∥
∞
→∞. The reason for this is that if t j ̸= 0,

integration by parts with respect to x j gives

(2π)−n/2
∫
Rn

e−it·xg(x)dx = (2π)−n/2 1
−it j

∫
Rn

e−it·x ∂g(x)
∂x j

dx.

Therefore, choose the j for which ∥t∥
∞
=
∣∣t j
∣∣ and the result of 13.4 holds. Therefore, from

13.4, if ∥t∥
∞

is large enough, |F f (t)|< ε . Similarly, lim∥t∥→∞ F−1 (t) = 0.
Consider the claim about uniform continuity. Let ε > 0 be given. Then there exists R

such that if ∥t∥
∞
> R, then |F f (t)|< ε

2 . Since F f is continuous, it is uniformly continuous
on the compact set [−R−1,R+1]n. Therefore, there exists δ 1 such that if ∥t− t′∥

∞
< δ 1

for t′,t ∈ [−R−1,R+1]n, then ∣∣F f (t)−F f
(
t′
)∣∣< ε/2. (13.5)

Now let 0 < δ < min(δ 1,1) and suppose ∥t− t′∥
∞
< δ . If both t,t′ are contained in

[−R,R]n, then 13.5 holds. If t ∈ [−R,R]n and t′ /∈ [−R,R]n, then both are contained in
[−R−1,R+1]n and so this verifies 13.5 in this case. The other case is that neither point is
in [−R,R]n and in this case,∣∣F f (t)−F f

(
t′
)∣∣≤ |F f (t)|+

∣∣F f
(
t′
)∣∣< ε

2
+

ε

2
= ε. ■

There is a very interesting relation between the Fourier transform and convolutions.

Theorem 13.2.11 Let f ,g ∈ L1(Rn). Then f ∗g ∈ L1, F( f ∗g) = (2π)n/2 F f Fg.

Proof: Consider ∫
Rn

∫
Rn
| f (x−y)g(y)|dydx.

The function, (x,y)→ | f (x−y)g(y)| is Lebesgue measurable and so by Fubini’s theo-
rem, ∫

Rn

∫
Rn
| f (x−y)g(y)|dydx =

∫
Rn

∫
Rn
| f (x−y)g(y)|dxdy = ∥ f∥1 ∥g∥1 < ∞.
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It follows that for a.e. x,
∫
Rn | f (x−y)g(y)|dy < ∞ and for each of these values of x, it

follows that
∫
Rn f (x−y)g(y)dy exists and equals a function of x which is in L1 (Rn) , f ∗

g(x). Now

F( f ∗g)(t)≡ (2π)−n/2
∫
Rn

e−it·x f ∗g(x)dx

= (2π)−n/2
∫
Rn

e−it·x
∫
Rn

f (x−y)g(y)dydx

= (2π)−n/2
∫
Rn

e−it·yg(y)
∫
Rn

e−it·(x−y) f (x−y)dxdy

= (2π)n/2 F f (t)Fg(t) . ■

There are many other considerations involving Fourier transforms of functions in L1.
Some others are in the exercises.

13.2.2 Fourier Transforms of Functions in L2 (Rn)

Consider F f and F−1 f for f ∈ L2(Rn). First note that the formula given for F f and F−1 f
when f ∈ L1 (Rn) will not work for f ∈ L2(Rn) unless f is also in L1(Rn). Recall that
a+ ib = a− ib.

Theorem 13.2.12 For φ ∈ G , ∥Fφ∥2 = ∥F−1φ∥2 = ∥φ∥2.

Proof: First note that for ψ ∈ G ,

F(ψ) = F−1(ψ) , F−1(ψ) = F(ψ). (13.6)

This follows from the definition. For example,

Fψ (t) = (2π)−n/2
∫
Rn

e−it·x
ψ (x)dx = (2π)−n/2

∫
Rn

eit·xψ (x)dx

Let φ ,ψ ∈ G . It was shown above that
∫
Rn(Fφ)ψ(t)dt =

∫
Rn φ(Fψ)dx. Similarly,∫

Rn
φ(F−1

ψ)dx =
∫
Rn
(F−1

φ)ψdt. (13.7)

Now, 13.6 - 13.7 imply∫
Rn
|φ |2dx =

∫
Rn

φφdx =
∫
Rn

φ(F−1(Fφ))dx =
∫
Rn

φF(Fφ)dx

=
∫
Rn

Fφ(Fφ)dx =
∫
Rn
|Fφ |2dx.

Similarly ∥φ∥2 = ∥F−1φ∥2. ■

Lemma 13.2.13 Let f ∈ L2 (Rn) and let φ k → f in L2 (Rn) where φ k ∈ G . (Such a
sequence exists because of density of G in L2 (Rn).) Then F f and F−1 f are both in L2 (Rn)
and the following limits take place in L2.

lim
k→∞

F (φ k) = F ( f ) , lim
k→∞

F−1 (φ k) = F−1 ( f ) .
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Proof: Let ψ ∈ G be given. Then from Theorem 13.2.8,

F f (ψ) ≡ f (Fψ)≡
∫
Rn

f (x)Fψ (x)dx

= lim
k→∞

∫
Rn

φ k (x)Fψ (x)dx = lim
k→∞

∫
Rn

Fφ k (x)ψ (x)dx.

Also by Theorem 13.2.12 {Fφ k}
∞

k=1 is Cauchy in L2 (Rn) since

∥Fφ k−Fφ l∥L2 = ∥φ k−φ l∥L2 ,

and so limk→∞ Fφ k = h for some h ∈ L2 (Rn). Therefore, from the above, F f (ψ) =∫
Rn h(x)ψ (x) which shows that F ( f )∈ L2 (Rn) and h=F ( f ) . The case of F−1 is entirely

similar. ■
Since F f and F−1 f are in L2 (Rn) , this also proves the following theorem.

Theorem 13.2.14 If f ∈ L2(Rn), F f and F−1 f are the unique elements of L2 (Rn)
such that for all φ ∈ G , ∫

Rn
F f (x)φ(x)dx =

∫
Rn

f (x)Fφ(x)dx, (13.8)

∫
Rn

F−1 f (x)φ(x)dx =
∫
Rn

f (x)F−1
φ(x)dx. (13.9)

Theorem 13.2.15 (Plancherel)

∥ f∥2 = ∥F f∥2 = ∥F−1 f∥2. (13.10)

Proof: Use the density of G in L2 (Rn) to obtain a sequence, {φ k} converging to f in
L2 (Rn). Then by Lemma 13.2.13

∥F f∥2 = lim
k→∞

∥Fφ k∥2 = lim
k→∞

∥φ k∥2 = ∥ f∥2 .

Similarly, ∥ f∥2 = ∥F−1 f∥2. ■
The following corollary is a generalization of this. To prove this corollary, use the

following simple lemma which comes as a consequence of the Cauchy Schwarz inequality.

Lemma 13.2.16 Suppose fk→ f in L2 (Rn) and gk→ g in L2 (Rn). Then

lim
k→∞

∫
Rn

fkgkdx =
∫
Rn

f gdx

Proof:∣∣∣∣∫Rn
fkgkdx−

∫
Rn

f gdx
∣∣∣∣≤ ∣∣∣∣∫Rn

fkgkdx−
∫
Rn

fkgdx
∣∣∣∣+ ∣∣∣∣∫Rn

fkgdx−
∫
Rn

f gdx
∣∣∣∣

≤ ∥ fk∥2 ∥g−gk∥2 +∥g∥2 ∥ fk− f∥2 .

Now ∥ fk∥2 is a Cauchy sequence and so it is bounded independent of k. Therefore, the
above expression is smaller than ε whenever k is large enough. ■
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Corollary 13.2.17 For f ,g ∈ L2(Rn),∫
Rn

f gdx =
∫
Rn

F f Fgdx =
∫
Rn

F−1 f F−1gdx.

Proof: First note the above formula is obvious if f ,g ∈ G . To see this, note∫
Rn

F f Fgdx =
∫
Rn

F f (x)
1

(2π)n/2

∫
Rn

e−ix·tg(t)dtdx

=
∫
Rn

1

(2π)n/2

∫
Rn

eix·tF f (x)dxg(t)dt =
∫
Rn

(
F−1 ◦F

)
f (t)g(t)dt =

∫
Rn

f (t)g(t)dt.

The formula with F−1 is exactly similar.
Now to verify the corollary, let φ k→ f in L2 (Rn) and let ψk→ g in L2 (Rn). Then by

Lemma 13.2.13∫
Rn

F f Fgdx = lim
k→∞

∫
Rn

Fφ k Fψkdx = lim
k→∞

∫
Rn

φ kψkdx =
∫
Rn

f gdx

A similar argument holds for F−1. ■
How does one compute F f and F−1 f ?

Theorem 13.2.18 For f ∈ L2(Rn), let fr = f XEr where Er is a bounded measur-
able set with Er ↑ Rn. Then the following limits hold in L2 (Rn) .

F f = lim
r→∞

F fr , F−1 f = lim
r→∞

F−1 fr.

Proof: ∥ f − fr∥2→ 0 and so ∥F f −F fr∥2→ 0 and ∥F−1 f −F−1 fr∥2→ 0 which both
follow from Plancherel’s Theorem. ■

What are F fr and F−1 fr? Let φ ∈ G∫
Rn

F frφdx =
∫
Rn

frFφdx = (2π)−
n
2

∫
Rn

∫
Rn

fr(x)e−ix·y
φ(y)dydx

=
∫
Rn
[(2π)−

n
2

∫
Rn

fr(x)e−ix·ydx]φ(y)dy.

Since this holds for all φ ∈ G , a dense subset of L2(Rn), it follows that

F fr(y) = (2π)−
n
2

∫
Rn

fr(x)e−ix·ydx.

Similarly

F−1 fr(y) = (2π)−
n
2

∫
Rn

fr(x)eix·ydx.

This shows that to take the Fourier transform of a function in L2 (Rn), it suffices to take the
limit as r→ ∞ in L2 (Rn) of (2π)−

n
2
∫
Rn fr(x)e−ix·ydx. A similar procedure works for the

inverse Fourier transform.
Note this reduces to the earlier definition in case f ∈ L1 (Rn). Now consider the convo-

lution of a function in L2 with one in L1.



386 CHAPTER 13. FOURIER TRANSFORMS

Theorem 13.2.19 Let h ∈ L2 (Rn) and let f ∈ L1 (Rn). Then h∗ f ∈ L2 (Rn),

F−1 (h∗ f ) = (2π)n/2 F−1hF−1 f , F (h∗ f ) = (2π)n/2 FhF f ,

and
||h∗ f ||2 ≤ ∥h∥2 ∥ f∥1 . (13.11)

Proof: An application of Minkowski’s inequality yields(∫
Rn

(∫
Rn
|h(x−y)| | f (y)|dy

)2

dx

)1/2

≤ ∥ f∥1 ∥h∥2 . (13.12)

Hence
∫
|h(x−y)| | f (y)|dy < ∞ a.e. x and x→

∫
h(x−y) f (y)dy is in L2 (Rn). Let

Er ↑ Rn, m(Er)< ∞. Thus, hr ≡XEr h ∈ L2 (Rn)∩L1 (Rn), and letting φ ∈ G ,∫
F (hr ∗ f )(φ)dx =

≡
∫

(hr ∗ f )(Fφ)dx = (2π)−n/2
∫ ∫ ∫

hr (x−y) f (y)e−ix·t
φ (t)dtdydx

= (2π)−n/2
∫ ∫ (∫

hr (x−y)e−i(x−y)·tdx
)

f (y)e−iy·tdyφ (t)dt

=
∫

(2π)n/2 Fhr (t)F f (t)φ (t)dt.

Since φ is arbitrary and G is dense in L2 (Rn), F (hr ∗ f ) = (2π)n/2 FhrF f . Now by Mink-
owski’s Inequality, hr ∗ f → h∗ f in L2 (Rn) and also it is clear that hr → h in L2 (Rn) ; so,
by Plancherel’s theorem, you may take the limit in the above and conclude the following
equation: F (h∗ f ) = (2π)n/2 FhF f . The assertion for F−1 is similar and 13.11 follows
from 13.12. ■

13.2.3 The Schwartz Class
The problem with G is that it does not contain C∞

c (Rn). I have used it in presenting the
Fourier transform because the functions in G have a very specific form which made some
technical details work out easier than in any other approach I have seen. The Schwartz
class is a larger class of functions which does contain C∞

c (Rn) and also has the same nice
properties as G . The functions in the Schwartz class are infinitely differentiable and they
vanish very rapidly as |x|→∞ along with all their partial derivatives. This is the description
of these functions, not a specific form involving polynomials times e−α|x|2 . To describe this
precisely requires some notation.

Definition 13.2.20 f ∈S, the Schwartz class, if f ∈C∞(Rn) and for all positive
integers N, ρN( f )< ∞ where

ρN( f ) = sup{(1+ |x|2)N |Dα f (x)| : x ∈ Rn , |α| ≤ N}.

Thus f ∈S if and only if f ∈C∞(Rn) and

sup{|xβ Dα f (x)| : x ∈ Rn}< ∞ (13.13)

for all multi indices α and β .
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Also note that if f ∈S, then p( f ) ∈S for any polynomial, p with p(0) = 0 and that

S⊆ Lp(Rn)∩L∞(Rn)

for any p ≥ 1. To see this assertion about the p( f ), it suffices to consider the case of the
product of two elements of the Schwartz class. If f ,g ∈S, then Dα ( f g) is a finite sum of
derivatives of f times derivatives of g. Therefore, ρN ( f g)< ∞ for all N. You may wonder
about examples of things in S. Clearly any function in C∞

c (Rn) is in S. However there
are other functions in S. For example e−|x|

2
is in S as you can verify for yourself and so

is any function from G . Note also that the density of Cc (Rn) in Lp (Rn) shows that S is
dense in Lp (Rn) for every p.

Recall the Fourier transform of a function in L1 (Rn) is given by

F f (t)≡ (2π)−n/2
∫
Rn

e−it·x f (x)dx.

Therefore, this gives the Fourier transform for f ∈ S. The nice property which S has in
common with G is that the Fourier transform and its inverse map S one to one onto S.
This means I could have presented the whole of the above theory in terms of S rather than
in terms of G . However, it is more technical.

Theorem 13.2.21 If f ∈S, then F f and F−1 f are also in S.

Proof: To begin with, let α = e j = (0,0, · · · ,1,0, · · · ,0), the 1 in the jth slot.

F−1 f (t+he j)−F−1 f (t)
h

= (2π)−n/2
∫
Rn

eit·x f (x)
(

eihx j −1
h

)
dx. (13.14)

Consider the integrand in 13.14.∣∣∣∣eit·x f (x)
(

eihx j −1
h

)∣∣∣∣ = | f (x)|

∣∣∣∣∣
(

ei(h/2)x j − e−i(h/2)x j

h

)∣∣∣∣∣
= | f (x)|

∣∣∣∣ isin((h/2)x j)

(h/2)

∣∣∣∣≤ | f (x)| ∣∣x j
∣∣

and this is a function in L1 (Rn) because f ∈S. Therefore by the Dominated Convergence
Theorem,

∂F−1 f (t)
∂ t j

= (2π)−n/2
∫
Rn

eit·xix j f (x)dx = i(2π)−n/2
∫
Rn

eit·xxe j f (x)dx.

Now xe j f (x) ∈ S and so one can continue in this way and take derivatives indefinitely.
Thus F−1 f ∈C∞(Rn) and from the above argument,

Dα F−1 f (t) = (2π)−n/2
∫
Rn

eit·x (ix)α f (x)dx.

To complete showing F−1 f ∈S,

tβ Dα F−1 f (t) = (2π)−n/2
∫
Rn

eit·xtβ (ix)a f (x)dx.
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Integrate this integral by parts to get

tβ Dα F−1 f (t)= (2π)−n/2
∫
Rn

i|β |eit·xDβ ((ix)a f (x))dx. (13.15)

Here is how this is done.∫
R

eit jx j t
β j
j (ix)α f (x)dx j =

eit jx j

it j
t
β j
j (ix)α f (x) |∞−∞ +

i
∫
R

eit jx j t
β j−1
j De j((ix)α f (x))dx j

where the boundary term vanishes because f ∈ S. Returning to 13.15, use the fact that
|eia|= 1 to conclude∣∣∣tβ Dα F−1 f (t)

∣∣∣≤C
∫
Rn

∣∣∣Dβ ((ix)a f (x))
∣∣∣dx < ∞.

It follows F−1 f ∈S. Similarly F f ∈S whenever f ∈S. ■
Of course S can be considered a subset of G ∗ as follows. For ψ ∈S,ψ (φ)≡

∫
Rn ψφdx.

Theorem 13.2.22 Let ψ ∈ S. Then
(
F ◦F−1

)
(ψ) = ψ and (F−1 ◦F)(ψ) = ψ

whenever ψ ∈S. Also F and F−1 map S one to one and onto S.

Proof: The first claim follows from the fact that F and F−1 are inverses of each other
on G ∗ which was established above. For the second, let ψ ∈ S. Then ψ = F

(
F−1ψ

)
.

Thus F maps S onto S. If Fψ = 0, then do F−1 to both sides to conclude ψ = 0. Thus F
is one to one and onto. Similarly, F−1 is one to one and onto. ■

13.2.4 Convolution
To begin with it is necessary to discuss the meaning of φ f where f ∈ G ∗ and φ ∈ G . What
should it mean? First suppose f ∈ Lp (Rn) or measurable with polynomial growth. Then
φ f also has these properties. Hence, it should be the case that φ f (ψ) =

∫
Rn φ f ψdx =∫

Rn f (φψ)dx. This motivates the following definition.

Definition 13.2.23 Let T ∈ G ∗ and let φ ∈ G . Then φT ≡ T φ ∈ G ∗ will be defined
by

φT (ψ)≡ T (φψ) .

The next topic is that of convolution. It was just shown that

F ( f ∗φ) = (2π)n/2 FφF f , F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

whenever f ∈ L2 (Rn) and φ ∈ G so the same definition is retained in the general case
because it makes perfect sense and agrees with the earlier definition.

Definition 13.2.24 Let f ∈ G ∗ and let φ ∈ G . Then define the convolution of f
with an element of G as follows.

f ∗φ ≡ (2π)n/2 F−1 (FφF f ) ∈ G ∗
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There is an obvious question. With this definition, is it true that

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f

as it was earlier?

Theorem 13.2.25 Let f ∈ G ∗ and let φ ∈ G .

F ( f ∗φ) = (2π)n/2 FφF f , (13.16)

F−1 ( f ∗φ) = (2π)n/2 F−1
φF−1 f . (13.17)

Proof: Note that 13.16 follows from Definition 13.2.24 and both assertions hold for
f ∈ G . Consider 13.17. Here is a simple formula involving a pair of functions in G .(

ψ ∗F−1F−1
φ
)
(x)

=

(∫ ∫ ∫
ψ (x−y)eiy·y1eiy1·zφ (z)dzdy1dy

)
(2π)n

=

(∫ ∫ ∫
ψ (x−y)e−iy·ỹ1e−iỹ1·zφ (z)dzdỹ1dy

)
(2π)n = (ψ ∗FFφ)(x) .

Now for ψ ∈ G ,

(2π)n/2 F
(
F−1

φF−1 f
)
(ψ)≡ (2π)n/2 (F−1

φF−1 f
)
(Fψ)≡

(2π)n/2 F−1 f
(
F−1

φFψ
)
≡ (2π)n/2 f

(
F−1 (F−1

φFψ
))

=

f
(
(2π)n/2 F−1 ((FF−1F−1

φ
)
(Fψ)

))
≡

f
(
ψ ∗F−1F−1

φ
)
= f (ψ ∗FFφ) (13.18)

Also
(2π)n/2 F−1 (FφF f )(ψ)≡ (2π)n/2 (FφF f )

(
F−1

ψ
)
≡

(2π)n/2 F f
(
FφF−1

ψ
)
≡ (2π)n/2 f

(
F
(
FφF−1

ψ
))

=

= f
(

F
(
(2π)n/2 (FφF−1

ψ
)))

= f
(

F
(
(2π)n/2 (F−1FFφF−1

ψ
)))

= f
(
F
(
F−1 (FFφ ∗ψ)

))
f (FFφ ∗ψ) = f (ψ ∗FFφ) . (13.19)

The last line follows from the following.∫
FFφ (x−y)ψ (y)dy =

∫
Fφ (x−y)Fψ (y)dy =

∫
Fψ (x−y)Fφ (y)dy

=
∫

ψ (x−y)FFφ (y)dy.

From 13.19 and 13.18 , since ψ was arbitrary,

(2π)n/2 F
(
F−1

φF−1 f
)
= (2π)n/2 F−1 (FφF f )≡ f ∗φ

which shows 13.17. ■
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13.3 Exercises
1. For f ∈ L1 (Rn), show that if F−1 f ∈ L1 or F f ∈ L1, then f equals a continuous

bounded function a.e.

2. Suppose f ,g ∈ L1(R) and F f = Fg. Show f = g a.e.

3. Show that if f ∈ L1 (Rn) , then lim|x|→∞ F f (x) = 0.

4. ↑ Suppose f ∗ f = f or f ∗ f = 0 and f ∈ L1(R). Show f = 0.

5. For this problem define
∫

∞

a f (t)dt ≡ limr→∞

∫ r
a f (t)dt. Note this coincides with the

Lebesgue integral when f ∈ L1 (a,∞). Show

(a)
∫

∞

0
sin(u)

u du = π

2

(b) limr→∞

∫
∞

δ

sin(ru)
u du = 0 whenever δ > 0.

(c) If f ∈ L1 (R), then limr→∞

∫
R sin(ru) f (u)du = 0.

Hint: For the first two, use 1
u =

∫
∞

0 e−utdt and then, using this, apply Fubini’s
theorem to

∫ R
0 sinu

∫
R e−utdtdu. For the last part, first establish it for f ∈C∞

c (R) and
then use the density of this set in L1 (R) to obtain the result. This is sometimes called
the Riemann Lebesgue lemma.

6. ↑Suppose that g∈ L1 (R) and that at some x > 0, g is locally Holder continuous from
the right and from the left. This means

lim
r→0+

g(x+ r)≡ g(x+) , lim
r→0+

g(x− r)≡ g(x−)

exists and there exist constants K,δ > 0 and r ∈ (0,1] such that for |x− y|< δ ,

|g(x+)−g(y)|< K |x− y|r , |g(x−)−g(y)|< K |x− y|r

for y > x and y < x respectively. Show that under these conditions,

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du =

g(x+)+g(x−)
2

.

7. Let g ∈ L1 (R) and suppose g is locally Holder continuous from the right and from
the left at x. Show that then

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =
g(x+)+g(x−)

2
.

This is very interesting. If g ∈ L2 (R), this shows F−1 (Fg)(x) = g(x+)+g(x−)
2 , the

midpoint of the jump in g at the point, x. In particular, if g ∈ G , F−1 (Fg) = g. Hint:
Show the left side of the above equation reduces to

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du

and then use Problem 6 to obtain the result.
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8. ↑ A measurable function g defined on (0,∞) has exponential growth if |g(t)| ≤Ceηt

for some η . For Re(s)> η , define the Laplace Transform: Lg(s)≡
∫

∞

0 e−sug(u)du.
Assume that g has exponential growth as above and is Holder continuous from the
right and from the left at t. Pick γ > η . Show that

lim
R→∞

1
2π

∫ R

−R
eγteiytLg(γ + iy)dy =

g(t+)+g(t−)
2

.

This formula is sometimes written in the form 1
2πi
∫ γ+i∞

γ−i∞ estLg(s)ds and is called the
complex inversion integral for Laplace transforms. It can be used to find inverse
Laplace transforms. Hint: Plug in the formula for the Laplace transform and then
massage to get it in the form of the preceding problem.

9. Suppose f ∈ G . Show F( fx j)(t) = it jF f (t).

10. Let f ∈ G and let k be a positive integer.∥ f∥k,2 ≡ (∥ f∥2
2 +∑|α|≤k ∥Dα f∥2

2)
1/2. One

could also define ∥ f∥′k,2 ≡ (
∫

Rn |F f (x)|2(1 + |x|2)kdx)1/2. Show both ∥·∥k,2and
∥·∥′k,2 are norms on G and that they are equivalent. These are Sobolev space norms.
For which values of k does the second norm make sense? How about the first norm?

11. ↑Define Hk(Rn),k ≥ 0 by f ∈ L2(Rn) such that

(
∫
|F f (x)|2(1+ |x|2)kdx)

1
2 < ∞, ∥ f∥′k,2 ≡ (

∫
|F f (x)|2(1+ |x|2)kdx)

1
2.

Show Hk(Rn) is a Banach space, and that if k is a positive integer, Hk(Rn) will be the
set of all f ∈ L2(Rn) such that there exists {u j} ⊆ G with ∥u j− f∥2 → 0 and {u j}
is a Cauchy sequence in ∥ ∥k,2 of Problem 10. This is one way to define Sobolev
Spaces. Hint: One way to do the second part of this is to define a new measure µ by

µ (E)≡
∫

E

(
1+ |x|2

)k
dx.Then show µ is a Borel measure which is inner and outer

regular and show there exists {gm} such that gm ∈ G and gm→ F f in L2(µ). Thus
gm = F fm, fm ∈ G because F maps G onto G . Then by Problem 10, { fm } is Cauchy
in the norm ∥ ∥k,2.

12. ↑ If 2k > n, show that if f ∈ Hk(Rn), then f equals a bounded continuous function
a.e. Hint: Show that for k this large, F f ∈ L1(Rn), and then use Problem 1. To do
this, write

|F f (x)|= |F f (x)|(1+ |x|2)
k
2 (1+ |x|2)

−k
2 ,

So
∫
|F f (x)|dx =

∫
|F f (x)|(1+ |x|2) k

2 (1+ |x|2)−k
2 dx.Use the Cauchy Schwarz in-

equality. This is an example of a Sobolev imbedding Theorem.

13. Let u ∈ G . Then Fu ∈ G and so, in particular, it makes sense to form the integral,∫
R

Fu
(
x′,xn

)
dxn

where (x′,xn) = x ∈ Rn. For u ∈ G , define γu(x′)≡ u(x′,0). Find a constant such
that F (γu)(x′) equals this constant times the above integral. Hint: By the dominated
convergence theorem∫

R
Fu
(
x′,xn

)
dxn = lim

ε→0

∫
R

e−(εxn)
2
Fu
(
x′,xn

)
dxn.
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Now use the definition of the Fourier transform and Fubini’s theorem as required in
order to obtain the desired relationship.

14. Let h(x) =
(∫ x

0 e−t2
dt
)2

+

(∫ 1
0

e−x2(1+t2)
1+t2 dt

)
. Show that h′ (x) = 0 and h(0) = π/4.

Then let x→∞ to conclude that
∫

∞

0 e−t2
dt =

√
π/2. Show that

∫
∞

−∞
e−t2

dt =
√

π and

that
∫

∞

−∞
e−ct2

dt =
√

π√
c .

15. Recall that for f a function, fy (x) = f (x−y) . Find a relationship between F fy (t)
and F f (t) given that f ∈ L1 (Rn).

16. For f ∈ L1 (Rn) , simplify F f (t+y) .

17. For f ∈ L1 (Rn) and c a nonzero real number, show F f (ct) = Fg(t) where g(x) =
f
(
x
c

)
.

18. Suppose that f ∈ L1 (R) and that
∫
|x| | f (x)|dx < ∞. Find a way to use the Fourier

transform of f to compute
∫

x f (x)dx.

19. Let (Ω,F ,P) be a probability space and let X : Ω→ Rn be a random variable. This
means X−1 (open set) ∈F . Define a measure λ X on the Borel sets of Rn as follows.
For E a Borel set, λ X (E) ≡ P

(
X−1 (E)

)
. Explain why this is well defined. Next

explain why λ X can be considered a Radon probability measure by completion. Ex-
plain why λ X ∈ G ∗ if λ X (ψ) ≡

∫
Rn ψdλ X where G is the collection of functions

used to define the Fourier transform.

20. Using the above problem, the characteristic function of this measure (random vari-
able) is φ X (y) ≡

∫
Rn eix·ydλ X . Show this always exists for any such random vari-

able and is continuous. Next show that for two random variables X ,Y,λ X = λY if
and only if φ X (y) = φY (y) for all y. In other words, show the distribution mea-
sures are the same if and only if the characteristic functions are the same. A lot more
can be concluded by looking at characteristic functions of this sort. The important
thing about these characteristic functions is that they always exist, unlike moment
generating functions.

21. Show that Cc (Rm), the continuous functions with compact support, with the norm
given by ∥ f∥ ≡ sup{| f (y)| : y ∈ Rm} is separable. Hint: You might note that this
space is a subset of C0 (Rm) which is separable.

22. Show that if µ and ν are two Radon measures defined on σ algebras, Sµ and Sν , of
subsets of Rn and if µ (V ) = ν (V ) for all V open, then µ = ν and Sµ = Sν . Hint:
Since the two measures agree on open sets, it follows that the two measures agree
on every Gδ and Fσ set. By Proposition 11.1.2 on Page 315, if E ∈Sµ , then there
exists F,G such that F ⊆ E ⊆ G and µ (G) = ν (G) = ν (F) = µ (F) with F an Fσ

set and G a Gδ set. Use completeness of the measures.



Chapter 14

Integration on Manifolds
Till now, integrals have mostly pertained to measurable subsets of Rp and not something
like a surface contained in a higher dimensional space. This is what is considered in this
chapter. First is an abstract description of manifolds and then an interesting application of
the representation theorem for positive linear functionals is used to give a measure on a
manifold. This is the higher dimensional version of arc length for a smooth curve seen in
calculus.

Definition 14.0.1 Let S be a nonempty set in a metric space (X ,d). ∂S is the set
of points x, if any with the property that B(x,r) contains points of S and points of X \S for
each r > 0. The interior of S consists of the union of all open subsets of S.

Lemma 14.0.2 Let U be a nonempty open set in a metric space (X ,d) . ∂U = Ū \U.

Proof: If x ∈ ∂U, then x can’t be in U because some ball containing x is contained in
U . However, it must be in Ū because if not, some ball containing x would contain no points
of Ū since Ū is closed.

If x ∈ Ū \U then if some ball containing x fails to contain other points which are in U
then that ball would show x /∈ Ū . Hence every ball containing x must contain points of U .
However, x itself is not in U and so x ∈ ∂U . ■

14.1 Manifolds
Definition 14.1.1 An essential part of the definition of a manifold is the idea of
a relatively open set defined next. Recall that a homeomorphism is a one to one, onto,
continuous mapping from one metric space to another which has continuous inverse. A
half space will be of the form {x : xi ≥ ai} or {x : xi ≤ ai} .

Definition 14.1.2 Let X be a metric space and let Ω⊆ X. Then a set U is called a
relatively open set or open in Ω if it is the intersection of an open set of X with Ω. Thus Ω is
a metric space with respect to the distance d (x,y) inherited from X and all considerations
such as limit points, closures, limits, closed sets, open sets etc. in this metric space are taken
with respect to this metric. Continuity is also defined in terms of this metric on Ω inherited
from X. Ω is a p dimensional manifold with boundary if there is a locally finite cover {Ui}
(here it will be a finite cover) of sets open in Ω such that each Ui is homeomorphic to a set
open in H where H is a half space or some finite intersection of such half spaces. Denote
the open sets and homeomorphisms by (Ui,Ri) . The collection of these is called an atlas.
Thus RiUi is a set open in HRi where HRi is described above. Note that it could be a closed
box. Then a point x is called a boundary point if and only if Rix is a boundary point of the
interior of some HRi for some i.

R−1

I will be assuming that Ω is compact and so we can replace “locally finite” with finite
in the above definition. First I need to verify that the idea of ∂Ω is well defined.

Lemma 14.1.3 ∂Ω is well defined in the sense that the statement that x is a boundary
point does not depend on which chart is considered.

393
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Proof: Suppose x is not a boundary point with respect to the chart (U,R) but is a
boundary point with respect to (V,S). Then U ∩V is open in Ω so Rx ∈ B ⊆ R(U ∩V )
where R(U ∩V ) is open in HR and B is an open ball contained in R(U ∩V ). But then, by
Theorem 8.10.5, S◦R−1 (B) is open in Rp and contains Sx so x is not a boundary point with
respect to (V,S) after all. ■

Definition 14.1.4 Let V ⊆ Rq. Ck
(
V ;Rp

)
is the set of functions which are restric-

tions to V of some function defined on Rq which has k continuous derivatives which has
values in Rp . When k = 0, it means the restriction to V of continuous functions. A function
is in D

(
V ;Rp

)
if it is the restriction to V of a differentiable function defined on Rq. A

Lipschitz function f is one which satisfies ∥f (x)−f (y)∥ ≤ K ∥x−y∥.

Thus, if f ∈Ck
(
V ;Rq

)
or D

(
V ;Rp

)
, we can consider it defined on V and not just on

V . This is the way one can generalize a one sided derivative of a function defined on a
closed interval.

Lemma 14.1.5 Suppose A is a m×n matrix in which m > n and A is one to one. Then
∥v∥ ≡ |Av| is a norm on Rn equivalent to the usual norm.

Proof: All the algebraic properties of the norm are obvious. If ∥v∥ = 0 then |Av| = 0
and since A is one to one, it follows v = 0 also. Now recall that all norms on Rn are
equivalent. ■

We have in mind, from now on that our manifold will be a compact subset of Rq for
some q≥ p.

Proposition 14.1.6 Suppose in the atlas for a manifold with boundary Ω it is also the

case that each chart (U,R) hasR−1 ∈C1
(
R(U)

)
and DR−1 (x) is one to one onR(U).

Then for two charts (U,R) and (V,S) , it will be the case thatS◦R−1 :R(U ∩V )→S (V )

will be also C1
(
R(U ∩V )

)
.

Proof: Then

DR−1 (x)h+o(h) = R−1 (x+h)−R−1 (x)

= S−1 (S (R−1 (x+h)
))
−S−1 (S (R−1 (x)

))
(14.1)

= DS−1 (S (R−1 (x)
))(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
+o
(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
(14.2)

By continuity ofR−1,S, if h is small enough, which will always be assumed,∣∣o(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
≤ α

2

∣∣S (R−1 (x+h)
)
−S

(
R−1 (x)

)∣∣
where here there is α > 0 such that∣∣DS−1 (S (R−1 (x)

))(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))∣∣
≥ α

∣∣(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
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thanks to the assumption that DS−1 (S (R−1 (x)
))

is one to one. Thus from 14.2

α

2

∣∣(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣≤ ∣∣DR−1 (x)h+o(h)
∣∣ (14.3)

Now ∣∣o(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
|h|

≤
∣∣o(S (R−1 (x+h)

)
−S

(
R−1 (x)

))∣∣∣∣S (R−1 (x+h)
)
−S

(
R−1 (x)

)∣∣
∣∣S (R−1 (x+h)

)
−S

(
R−1 (x)

)∣∣
|h|

From 14.3, the second factor in the above is bounded. Now continuity of S ◦R−1 implies
that as h→ 0, the first factor also converges to 0. Thus

o
(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
= o(h)

Returning to 14.2,

DR−1 (x)h+o(h) = DS−1 (S (R−1 (x)
))(
S ◦R−1 (x+h)−S ◦R−1 (x)

)
Thus if h= tv,

lim
t→0

DS−1 (S (R−1 (x)
))((S ◦R−1 (x+ tv)−S ◦R−1 (x)

)
t

)

= DR−1 (x)v+ lim
t→0

o(tv)
t

= DR−1 (x)v

By the above lemma, limt→0
(S◦R−1(x+tv)−S◦R−1(x))

t = Dv

(
S ◦R−1)(x) exists. Also

DS−1 (S (R−1 (x)
))

Dv

(
S ◦R−1)(x) = DR−1 (x)v

Let A(x) ≡ DS−1 (S (R−1 (x)
))

. Then A∗A is invertible and x→ A(x) is continuous.
Then

A(x)∗A(x)Dv

(
S ◦R−1)(x) = A(x)∗DR−1 (x)v

Dv

(
S ◦R−1)(x) =

(
A(x)∗A(x)

)−1 A(x)∗DR−1 (x)v

so Dv

(
S ◦R−1)(x) is continuous. It follows from Theorem 7.6.1 that S ◦R−1 is a func-

tion in C1
(
R
(
U ∩V

))
because the Gateaux derivatives exist and are continuous. ■

Saying DR−1 (x) is one to one is the analog of the situation in calculus with a smooth
curve in which we assume the derivative is non zero and that the parametrization has con-
tinuous derivative.

I will be assuming that we can replace “locally finite” with finite in the above definition.
This would happen, for example if Ω were compact, but this is not necessary. First I need
to verify that the idea of ∂Ω is well defined.

Definition 14.1.7 A compact subset Ω of Rq will be called a differentiable p di-
mensional manifold with boundary if it is a C0 manifold and also has some differentiable
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structure about to be described. Ω is a differentiable manifold ifR j ◦R−1
i is differentiable

on Ri (U j ∩Ui) . This is implied by the condition of Proposition 14.1.6. If, in addition to
this, it has an atlas (Ui,Ri) such that all partial derivatives are continuous and for all x

det
(
DR−1

i (Ri (x))
)∗ (

DR−1
i (Ri (x))

)
̸= 0

then it is called a smooth manifold. This condition is like the one for a smooth curve in
calculus in which the derivative does not vanish. If , in addition “differentiable” is replaced
with Ck meaning the first k derivatives exist and are continuous, then it will be a smooth Ck

manifold with boundary.

Next is the concept of an oriented manifold. Orientation can be defined for general C0

manifolds using the topological degree, but the reason for considering this, at least here,
involves some sort of differentiability.

Definition 14.1.8 A differentiable manifold Ω with boundary is called orientable
if there exists an atlas, {(Ur,Rr)}m

r=1, such that whenever Ui∩U j ̸= /0,

det
(
D
(
R j ◦R−1

i
))

(u)≥ 0 for all u ∈Ri (Ui∩U j) (14.4)

An atlas satisfying 14.4 is called an oriented atlas. Also the following notation is often
used with the convention that v=Ri ◦R−1

j (u)

∂ (v1 · · ·vp)

∂ (u1 · · ·up)
≡ detD

(
Ri ◦R−1

j

)
(u)

In this case, another atlas will be called an equivalent atlas (Vi,Si) if

det
(
D
(
S j ◦R−1

i
))

(u)≥ 0 for all u ∈Ri (Ui∩Vj)

You can verify using the chain rule that this condition does indeed define an equivalence
relation. Thus an oriented manifold would consist of a metric space along with an equiv-
alence class of atlases. You could also define a piecewise smooth manifold as the union of
finitely many smooth manifolds which have intersection only at boundary points.

Orientation is about the order in which the variables are listed or the way the positive
coordinate axes point relative to each other. When you have an n×n matrix, you can always
write its row reduced echelon form as a product of elementary matrices, some of which are
permutation matrices or involve changing the direction by multiplying by a negative scalar,
which also changes orientation the others having positive determinant. If there are an odd
number of switches or multiplication by a negative scalar, you get the determinant is non-
positive. If an even number, the determinant is non-negative. This is why we use the
determinant to keep track of orientation in the above definition.

Example 14.1.9 Let f : Rp+1→ R is C1 and suppose and that D f (x) ̸= 0 for all x con-
tained in the set {x : f (x) = 0} . Then if {x : f (x) = 0} is nonempty, it is a C1 manifold
thanks to an application of the implicit function theorem.

Note that this includes Sp−1,{x ∈ Rp : |x|= 1} and lots of other things like x4 + y2 +
z4 = 1 and so forth. The details are left as an exercise.
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Recall from calculus how you can get pointy places in a space curve when the derivative
of the parametrization is allowed to vanish. Here this would correspond to some DR−1

i (u)

not being one to one which is the same as having D
(
Ri ◦R−1

i (u)
)

having zero determi-
nant.

In the above, it is not assumed that DR−1 is one to one. This can be used to include
the concept of a higher dimensional version of a piecewise smooth curve. Suppose, for
example you have Q1 ≡ [−1,0]×∏

p
i=2 [ai,bi] ,Q2 ≡ [0,1]×∏

p
i=2 [ai,bi] so there are two

boxes joined along a common side. Let R−1
1i ,R

−1
2 j be as described above on these boxes

and that R−1
1i and R−1

2 j are continuous along the common face. We assume the union
of R−1

ri (Uri) ,r = 1,2 is a smooth manifold so that DR−1
ri exists on Qr. Maybe DR−1

1i ,
DR−1

2 j are one to one on Q1,Q2 but on the common face, there is a difference in D1R
−1
1i ,

D1R
−1
2 j at a point on that face. Thus, if the restriction ofR−1

i to Qr isR−1
ri thenR−1

i is not
differentiable at points on this face. However, we could change the parametrization at the
expense of allowing DR−1

ri to equal zero on the common face which will result inR−1
i be-

ing differentiable. One simply replaces x→R−1
ri (x1, ...,xp) with x→R−1

ri

(
x3

1,x2, ...,xp
)
.

This could be generalized to strings of boxes, successive pairs intersecting along a face
thereby obtaining a higher dimensional notion of “piecewise smooth” as a case where the
determinant of DR−1

i is allowed to vanish. This is why it is useful in what follows to
have a change of variables formula which does not require the non-vanishing of the de-
terminant of the derivative of the transformation. This is the higher dimensional notion
of pointy places occuring in space curves at points where the derivative vanishes. Note
that the resulting union of the two smooth manifolds would end up being orientable if
det
(
D
(
R1 j ◦R−1

2i

))
(u)> 0 for all pertinent u on the common face. Here we would take

the partial derivative D1 from the appropriate side in the chain rule. This is all very fussy
but is mentioned to illustrate that in order to include piecewise smooth manifolds it suffices
to only require that an atlas be differentiable. Thanks to Theorem 11.7.1 edges of a differ-
entiable manifold can be ignored in the development of the area measure on a manifold if
they result from some lower dimensional curve in Rp or more generally a set of measure
zero in Rp. In this regard, see the rank theorem, Theorem 8.8.3 which identifies this as
happening when DR−1

i has smaller rank.

14.2 The Area Measure on a Manifold
Next the “surface measure” on a manifold is given. In what follows, the manifold will be a
compact subset of Rq. This has nothing to do with orientation. It will involve the following
definition. To motivate this definition, recall the way you found the length of a curve in
calculus where t ∈ [a,b] . It was

∫ b
a |r′ (t)|dt =

∫ b
a det

(
Dr (t)∗Dr (t)

)1/2 dt where r(t) is a

parametrization for the curve. Think of dl = det
(
Dr (t)∗Dr (t)

)1/2 dt and you sum these
to get the length.

Definition 14.2.1 Let (Ui,Ri) be an atlas for a p dimensional differentiable man-
ifold with boundary Ω. Also let {ψ i}

r
i=1 be a partition of unity from Theorem 3.12.5

sptψ i ⊆Ui. Then for f ∈Cc (Ω) , define

L f ≡
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du
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Here du signifies dmp (u) and

Ji (u)≡
(
det
(
DR−1

i (u)∗DR−1
i (u)

))1/2

I need to show that the same thing is obtained if another atlas and/or partition of unity
is used.

Theorem 14.2.2 The functional L is well defined in the sense that if another atlas
is used, then for f ∈Cc (Ω) , the same value is obtained for L f .

Proof: Let the other atlas be
{
(Vj,S j)

}s
j=1 where v ∈ Vj and S j has the same prop-

erties as the Ri. Then
(
S j ◦R−1

i

)
(u) = v so R−1

i (u) = S−1
j (v) and so R−1

i (u) =

S−1
j

((
S j ◦R−1

i

)
(u)
)

implying DR−1
i (u) = DS−1

j (v)D
(
S j ◦R−1

i

)
(u) . Therefore,

Ji (u) =
(
det
(
DR−1

i (u)∗DR−1
i (u)

))1/2

=

det


p×p︷ ︸︸ ︷

D
(
S j ◦R−1

i
)∗
(u)

(p×q)(q×p)︷ ︸︸ ︷
DS−1

j (v)∗DS−1
j (v)

p×p︷ ︸︸ ︷
D
(
S j ◦R−1

i
)
(u)




1/2

=
[
det
(

D
(
S j ◦R−1

i
)∗
(u)
)

det
(
D
(
S j ◦R−1

i
)
(u)
)]1/2

J j (v)

=
∣∣det

(
D
(
S j ◦R−1

i
)
(u)
)∣∣J j (v) (14.5)

Similarly
J j (v) =

∣∣∣det
(

D
(
Ri ◦S−1

j

)
(v)
)∣∣∣Ji (u) . (14.6)

Let L̂ go with this new atlas. Thus

L̂( f )≡
s

∑
j=1

∫
S j(V j)

f
(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv (14.7)

where η j is a partition of unity associated with the sets Vj as described above. Now letting
ψ i be the partition of unity for the Ui, v= S j ◦R−1

i (u) for u ∈Ri (Vj ∩Ui) .

∫
S j(V j)

f
(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv

=
r

∑
i=1

∫
S j(V j∩Ui)

f
(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv

By Lemma 11.8.1, the assumptions of differentiability imply that the boundary points of
Ω are always mapped to a set of measure zero so these can be neglected if desired. Now
S j (Vj ∩Ui) = S j ◦R−1

i (Ri (Vj ∩Ui)) and so using 14.6, the above expression equals

r

∑
i=1

∫
Ri(V j∩Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)
·∣∣∣det

(
D
(
Ri ◦S−1

j

)
(v)
)∣∣∣Ji (u)

∣∣detD
(
S j ◦R−1

i
)
(u)
∣∣du
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Now I =
(
Ri ◦S−1

j

)
◦
(
S j ◦R−1

i

)
and so the chain rule implies that the product of the two

Jacobians is 1. Hence 14.7 equals

s

∑
j=1

r

∑
i=1

∫
Ri(V j∩Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

s

∑
j=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
) s

∑
j=1

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du = L( f )

Thus L is a well defined positive linear functional. ■

Definition 14.2.3 By the representation theorem for positive linear functionals,
Theorem 11.2.2, there exists a complete Radon measure σ p defined on the Borel sets of
Ω such that L f =

∫
Ω

f dσ p. Then σ p is what is meant by the measure on the differentiable
manifold Ω.

If O is an open set in Ω, what is σ p (O)? Let fn ↑XO where fn is continuous. Then by
the monotone convergence theorem,

σ p (O) = lim
n→∞

L( fn) = lim
n→∞

r

∑
i=1

∫
Ri(Ui)

fn
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

= lim
n→∞

r

∑
i=1

∫
Ri(Ui∩O)

fn
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui∩O)

XO
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du.

If K is a compact subset of some Ui, then use Corollary 12.6.5 to obtain a partition of
unity which has ψ i = 1 on K so that all other ψ j equal 0. Then∫

Ω

XKdσ p =
∫
Ri(Ui)

XK
(
R−1

i (u)
)

Ji (u)du

It then follows from regularity of the measure and the monotone convergence theorem that
if E is any measurable set contained in Ui, you can replace K in the above with E. In
general, this implies that for nonnegative measurable f , having support in Ui,∫

Ω

f dσ p =
∫
Ri(Ui)

f
(
R−1

i (u)
)

Ji (u)du

Indeed, ∂Ω is a closed subset of Ω and so X∂Ω is measurable. That part of the boundary
contained in Ui would then involve a Lebesgue integral over a set of mp measure zero. This
shows the following proposition.

Proposition 14.2.4 Let Ω be a differentiable manifold as discussed above and let σ p
be the measure on the manifold defined above. Then σ p (∂Ω) = 0.
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Using Rademacher’s theorem which is presented later, which says that every Lipschitz
function defined on an open set is differentiable a.e. and Theorem 11.7.1 which says that
Lipschitz functions map sets of measure zero to sets of measure zero and measurable sets
to measurable sets, the following corollary is obtained using the same arguments.

Corollary 14.2.5 Let Ω be a subset of a finite dimensional normed linear space be a
Lipschitz manifold meaning that it is a C0 manifold for which each atlas (Ui,Ri) has Ri
Lipchitz on Ui and R−1

i is Lipschitz on Ri (Ui) . Then there is a regular complete measure
σ p defined on a σ algebra F of subsets of Ω which is finite on compact sets, includes the
Borel sets, and satisfies∫

Ω

f dσ p =
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

for all f ∈Cc (Ω) where here the partition of unity comes from Theorem 3.12.5 with respect
to the distance coming from the norm.

The justification for using Ji (u)du in the definition of the area measure comes from
geometric reasoning which has not been presented yet. This will be done in the chapter on
Hausdorff measures. However, it was noted above that this is a generalization of a familiar
example from calculus. It would also be possible to verify that it works from familiar
definitions in calculus in the case of a two dimensional manifold. Also note that it suffices
to assume only that DR−1

i (u) exists for a.e. u.

14.3 Divergence Theorem
The divergence theorem considered here will feature an open set inRp whose boundary has
a particular form. For convenience, if x ∈ Rp, x̂i ≡

(
x1 · · · xi−1 xi+1 · · · xp

)T
.

Definition 14.3.1 Let U ⊆ Rp satisfy the following conditions. There exist open
boxes, Q1, · · · ,QN , Qi = ∏

p
j=1

(
ai

j,b
i
j

)
such that ∂U ≡U \U is contained in their union.

Also, there exists an open set, Q0 such that Q0 ⊆ Q0 ⊆ U and U ⊆ Q0 ∪Q1 ∪ ·· · ∪QN .
Assume for each Qi, there exists k and a function gi such that U ∩Qi is of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏

k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and ai

k < xk < gi (x1, · · · ,xk−1,xk+1, · · · ,xp)

 (14.8)

or else of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏
k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and gi (x1, · · · ,xk−1,xk+1, · · · ,xp)< xk < bi

j

 (14.9)

The function, gi is differentiable and has a measurable partial derivatives on

Ai ⊆
k−1

∏
j=1

(
ai

j,b
i
j
)
×

p

∏
j=k+1

(
ai

j,b
i
j
)
≡ Q̂k
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where

mp−1

(
k−1

∏
j=1

(
ai

j,b
i
j
)
×

p

∏
j=k+1

(
ai

j,b
i
j
)
\Ai

)
= 0.

and we assume there is a constant C such that for all i and j,
∣∣∣ ∂gi

∂x j

∣∣∣ ≤C off Ai and that in
each variable, g can be recovered from integrating an appropriate partial derivative. That
is, each gk is absolutely continuous in each variable.

To illustrate the above here is a picture.

U ∩Qi

Qi U ∩Qi
Qi

Recall from calculus that if z−g(x̂) = 0 then to get a normal vector to the level surface,
it will be ± the gradient.

Lemma 14.3.2 Let α1, · · · ,α p be real numbers and let A(α1, · · · ,α p) be the matrix
which has 1+α2

i in the iith slot and α iα j in the i jth slot when i ̸= j. Then detA = 1+
∑

p
i=1 α2

i .

Proof of the claim: The matrix, A(α1, · · · ,α p) is of the form

A(α1, · · · ,α p) =


1+α2

1 α1α2 · · · α1α p
α1α2 1+α2

2 α2α p
...

. . .
...

α1α p α2α p · · · 1+α2
p


Now consider the product of a matrix and its transpose, BT B below.

1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
−α1 −α2 · · · −α p 1




1 0 · · · 0 −α1
0 1 0 −α2
...

. . .
...

0 1 −α p
α1 α2 · · · α p 1

 (14.10)

This product equals a matrix of the form
(

A(α1, · · · ,α p) 0
0 1+∑

p
i=1 α2

i

)
. Therefore,(

1+∑
p
i=1 α2

i
)

det(A(α1, · · · ,α p)) = det(B)2 = det
(
BT
)2
. However, using row operations,

detBT = det


1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
0 0 · · · 0 1+∑

p
i=1 α2

i

= 1+
p

∑
i=1

α
2
i

and therefore, (
1+

p

∑
i=1

α
2
i

)
det(A(α1, · · · ,α p)) =

(
1+

p

∑
i=1

α
2
i

)2
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which shows det(A(α1, · · · ,α p)) =
(
1+∑

p
i=1 α2

i
)
. ■

Now consider the case of σ on ∂U . The maps will be of the form

x̂ ∈ Qk→
(

x1 · · · xi−1 g(x̂i) xi+1 · · · xp
)T

= h(x̂i)

I need to describe det
(
Dh(x̂i)

∗Dh(x̂i)
)1/2 ≡ J (x̂) .

Consider an example sufficient to see what happens in general in which p= 3 and i= 2.
Then in this case, J (x̂) will be the square root of the determinant of(

1 gx1 0
0 gx3 1

) 1 0
gx1 gx3
0 1

=

(
g2

x1
+1 gx1gx3

gx1gx3 g2
x3
+1

)
.

One can verify that this is just a special case in which Dh(x̂i)
∗Dh(x̂i) will be of the form

considered in Lemma 14.3.2. Thus by this lemma, J (x) =
√

1+∑k ̸=i g2
,xk

.
Then if U ∩Q is of the form in 14.8 or in 14.9 one can identify the unit exterior normal

to the surface either on the top or the bottom of U ∩Q from beginning calculus. These are
respectively

n=

(
−g,x1 · · · −g,xp−1 · · · 1

)T√
1+∑

p−1
k=1 g2

,xk

,

(
g,x1 · · · g,xp−1 · · · −1

)T√
1+∑

p−1
k=1 g2

,xk

The first pointing up away from U and the second pointing down away from U .
If you simply assume gk is differentiable, there is no problem in Definition 14.3.1.

One can show with Rademacher’s theorem that it suffices to assume these functions are
Lipschitz continuous.

In the following proof, I will regard f (x1,x2, ...,xp) as a function of the listed variables.

Definition 14.3.3 LetF ∈C1
(
U ;Rp

)
and the rectangular coordinates are denoted

as x=(x1, ...,xp). Then the divergence ofF written as div(F ) is defined as ∑i
∂Fi
∂xi
≡∑i Fi,i.

It is also written as ∇ ·F .

Theorem 14.3.4 Let U be a bounded open set in Rp satisfying the conditions of
Definition 14.3.1 and let F ∈C1

(
U ;Rp

)
. Then∫

U

p

∑
i=1

Fi,i (x)dmp =
∫

∂U
F ·ndσ p−1

where n is the unit exterior normal to U just described.

Proof: Let spt(ψ i) be a compact subset of Qi and ∑
N
i=0 ψ i = 1 on Ū and each ψ i is

infinitely differentiable. This partition of unity exists by Lemma 12.6.4. There is an explicit
description of the unit outer normal for each point of the boundary of U described above in
either of the two cases described in Definition 14.3.1 and illustrated in the above picture.
Then∫

U
∑

i
Fi,i (x)dmp =

∫
U

∑
i

N

∑
k=0

(ψkF)i,i (x)dmp = ∑
i

N

∑
k=0

∫
U
(ψkF)i,i (x)dmp

=
N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp (14.11)
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Now consider one of the terms in the above. For the sake of simplicity assume k = p so that
the special direction corresponds to xp. Also, I will assume that the function g(x̂) is on the
top, so it is like the left picture in the above. A similar argument works if g(x̂) were on the
bottom. Either way we can specify a unit exterior normal a.e. I will omit the subscript on
gk, Qk, and ψk.

Case that i < p : Pick i < p. Letting Q̂ be (x1, ...,xp−1) where x ∈ Q, For any i,∫
Q
(ψkF)i,i dmp =

∫
Q̂

∫ g(x1,...,xp−1)

−∞

(ψkFi)i dxpdx̂ =
∫

Q̂

∫ 0

−∞

Di (ψFi)(x̂,y+g(x̂))dydx̂

(14.12)
Now for i < p, that in the integrand is not ∂

∂xi
(ψFi)(x̂,y+g(x̂)) . Indeed, by the chain

rule,

∂

∂xi
(ψFi)(x̂,y+g(x̂)) = Di (ψFi)(x̂,y+g(x̂))+Dp (ψFi)(x̂,y+g(x̂))

∂g(x̂)
∂xi

Since spt(ψ)⊆ Q, it follows that 14.12 reduces to∫ 0

−∞

∫
Q̂

∂

∂xi
(ψFi)(x̂,y+g(x̂))dx̂dy−

∫
Q̂

∫ 0

−∞

Dp (ψFi)(x̂,y+g(x̂))
∂g(x̂)

∂xi
dydx̂

= 0−
∫

Q̂
(ψFi)(x̂,g(x̂))dx̂

Case that i = p : In this case, 14.12 becomes
∫

Q̂ (ψFp)(x̂,g(x̂))dx̂. Recall how it

was just shown that the unit normal is

(
−gx1 ,...,−gxp−1 ,1

)
√

∑
p−1
i=1 g2

xk
+1

and dσ =
√

∑
p−1
i=1 g2

xk
+1dmp−1.

Then the above reduces to
∫

∂ (Q∩U) (ψF ) ·ndσ . The same result will hold for all the Qi.
The sign changes if in the situation of 14.9. As to Q0,

∫
Q0 ∑i (ψ0F)i,i (x)dmp = 0 because

spt(ψ0)⊆ Q0. Returning to 14.11, it follows that∫
U

∑
i

Fi,i (x)dmp =
N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp =

N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp

=
N

∑
k=1

∫
∂ (Qk∩U)

(ψkF ) ·ndσ =
N

∑
k=1

∫
∂U

(ψkF ) ·ndσ

=
∫

∂U

(
N

∑
k=0

ψk

)
F ·ndσ =

∫
∂U
F ·ndσ ■

Definition 14.3.5 The expression ∑
p
i=1 Fi,i (x) is called div(F ) . It is defined above

in terms of the coordinates with respect to a fixed orthonormal basis (e1, · · · ,ep). However,
it does not depend on such a particular choice for coordinates.

If you had some other orthonormal basis (v1, · · · ,vp) and if (y1, · · · ,yp) are the coordi-
nates of a point z with respect to this other orthonormal system, then there is an orthogonal
matrix Q such that y = Qx for y the coordinate vector for the new basis and x the coordi-
nate vector for the old basis. Then

Ji (x)≡
(
det
(
DR−1

i (x)∗DR−1
i (x)

))1/2
=
(

det
((

DR−1
i (y)Q

)∗
DR−1

i (y)Q
))1/2
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=
(
det
(
Q∗DR−1

i (y)∗DR−1
i (y)Q

))1/2
=
(
det
(
Q∗DR−1

i (y)∗DR−1
i (y)Q

))1/2
= Ji (y)

so the two definitions of dσ will be the same with either set of coordinates.
List the vi in the order which will give det(Q) = 1. That is to say, the two bases have

the same orientation.The insistence that detQ = 1 will ensure that the unit normal vectors
defined as above will point away from U . Thus we could take the divergence with respect
to coordinates of any orthonormal basis having the same orientation. Note that for a.e.
geometric point z

div(F )(z) = lim
r→0

1
mp (B(z,r))

∫
B(z,r)

div(F )dmp = lim
r→0

1
mp (B(z,r))

∫
∂B(z,r)

F ·ndσ p−1

the first equal sign from the fundamental theorem of calculus and the last expression on the
right being independent of the choice of basis. This implies that we could have generalized
the kind of region to be one for which the little rectangles are allowed to be slanted. Creases
and pointy places in the manifold can result from places where some Ji (x)= 0, due to some
DR−1

i not being one to one, but this will not matter because in the definition of the surface
measure this will be a set of measure zero on the manifold. The change of variables formula
which was so important in the above argument is unaffected by these creases.

Globally the region could be quite complicated. As an example in two dimensions, it
might look like this:

Corollary 14.3.6 If the divergence is computed with respect to y where y = Qx for Q
orthogonal with determinant 1, and each box used in the argument of Theorem 14.3.4 is
taken with respect to such a new basis (v1, · · · ,vp), then one still obtains

∫
U div(F )dmp =∫

∂U F ·ndσ p−1.

14.4 Volumes of Balls in Rp

This short section will give an explicit description of surface area given in Section 11.11.
Recall, B(x,r) denotes the set of all y ∈ Rp such that |y−x| < r. By the change of

variables formula for multiple integrals or simple geometric reasoning, all balls of radius
r have the same volume. Furthermore, simple reasoning or change of variables formula
will show that the volume of the ball of radius r equals α prp where α p will denote the
volume of the unit ball in Rp. With the divergence theorem, it is now easy to give a simple
relationship between the surface area of the ball of radius r and the volume. Let dα p−1 be

the area measure above. By the divergence theorem,
∫

B(0,r)

p
div(x)dx=

∫
∂B(0,r)x· x|x|dα p−1

because the unit outward normal on ∂B(0,r) is x
|x| . Therefore, pα prp = rα p−1 (∂B(0,r))

and so α p−1 (∂B(0,r)) = pα prp−1.

Let ω p denote the area of the sphere Sp−1 = {x ∈ Rp : |x|= 1}. I just showed that
ω p = pα p.

I want to find α p now.
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y
r
ρ Rn−1

Taking slices at height y as shown and using that these slices have p− 1 dimensional
area equal to α p−1rp−1, it follows α pρ p = 2

∫ ρ

0 α p−1
(
ρ2− y2

)(p−1)/2 dy since the r at a
given y is

√
ρ2− y2. In the integral, change variables, letting y = ρ cosθ . Then α pρ p =

2ρ pα p−1
∫ π/2

0 sinp (θ)dθ . It follows that

α p = 2α p−1

∫
π/2

0
sinp (θ)dθ . (14.13)

From this we find a formula for α p.
First note that Γ

( 1
2

)
=
∫

∞

0 e−tt−1/2dt =
∫

∞

0 e−u2
u−12udu = 2

∫
∞

0 e−u2
=
√

π from ele-
mentary calculus using polar coordinates and change of variables.

Theorem 14.4.1 α p = π p/2

Γ( p
2 +1)

where Γ denotes the gamma function, defined for

α > 0 by Γ(α)≡
∫

∞

0 e−ttα−1dt.

Proof: Let p = 1 first. Then α1 = π = π1/2

Γ( 1
2+1)

because Γ(α +1) = αΓ(α) so the

right side is π1/2
1
2 Γ( 1

2 )
= 2 which is indeed the one dimensional area of the unit ball in one

dimension. Similarly it is true for p = 2,3. Assume true for p ≥ 3. Then using 14.13 and
induction,

α p+1 = 2

α p

π p/2

Γ
( p

2 +1
) ∫ π/2

0
sinp+1 (θ)dθ

Using an integration by parts, this equals 2 π p/2

Γ( p
2 +1)

p
p+1

∫ π/2
0 sinp−1 (θ)dθ . By 14.13 and

induction this is

π p/2

Γ
( p

2 +1
) p

p+1
α p−1

α p−2
=

π p/2

Γ
( p

2 +1
) p

p+1

π(p−1)/2

Γ

(
p−1

2 +1
)

π(p−2)/2

Γ

(
p−2

2 +1
) =

2π(p+1)/2Γ
( p

2

)
Γ
( p

2 +1
)

Γ

(
p−1

2 +1
) p/2

p+1

=
2π(p+1)/2Γ

( p
2 +1

)
Γ
( p

2 +1
)

Γ

(
p−1

2 +1
) 1

p+1
=

π(p+1)/2

Γ

(
p+1

2

) 1
p+1

2

=
π(p+1)/2

Γ

(
p+1

2 +1
) ■

14.5 Exercises
1. A random vectorX, with values in Rp has a multivariate normal distribution written

asX ∼ Np (m,Σ) if for all Borel E ⊆ Rp,

λX (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp
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Here Σ is a positive definite symmetric matrix. Recall that λX (E) ≡ P(X ∈ E) .
Using the change of variables formula, show that λX defined above is a probability
measure. One thing you must show is that∫

Rp

1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp = 1

Hint: To do this, you might use the fact from linear algebra that Σ = Q∗DQ where D
is a diagonal matrix and Q is an orthogonal matrix. Thus Σ−1 =Q∗D−1Q. Maybe you
could first let y= D−1/2Q(x−m) and change the variables. Note that the change
of variables formula works fine when the open sets are all of Rp. You don’t need
to confine your attention to finite open sets which would be the case with Riemann
integrals which are only defined on bounded sets.

2. Consider the surface z = x2 for (x,y) ∈ (0,1)× (0,1) . Find the area of this sur-
face. Hint: You can make do with just one chart in this case. Let R−1 (x,y) =(
x,y,x2

)T
,(x,y) ∈ (0,1)× (0,1). Then

DR−1 =

(
1 0 2x
0 1 0

)T

It follows that DR−1∗DR−1 =

(
4x2 +1 0

0 1

)
.

3. A parametrization for most of the sphere of radius a > 0 in three dimensions is

x = asin(φ)cos(θ)
y = asin(φ)sin(θ)

z = acos(φ)

where we will let φ ∈ (0,π) ,θ ∈ (0,2π) so there is just one chart involved. As
mentioned earlier, this includes all of the sphere except for the line of longitude
corresponding to θ = 0. Find a formula for the area of this sphere. Again, we are
making do with a single chart.

4. Let V be such that the divergence theorem holds. Show that
∫

V ∇ · (u∇v) dV =∫
∂V u ∂v

∂n dA where n is the exterior normal and ∂v
∂n denotes the directional derivative

of v in the direction n. Remember the directional derivative.

lim
t→0

v(x+tn)− v(x)
t

= lim
t→0

Dv(x)(tn)+o(t)
t

= Dv(x)(n) = ∇v(x) ·n

5. To prove the divergence theorem, it was shown first that the spacial partial deriva-
tive in the volume integral could be exchanged for multiplication by an appropriate
component of the exterior normal. This problem starts with the divergence theorem
and goes the other direction. Assuming the divergence theorem, holds for a region
V , show that

∫
∂V nudA =

∫
V ∇udV . Note this implies

∫
V

∂u
∂x dV =

∫
∂V n1udA.

6. Fick’s law for diffusion states the flux of a diffusing species, J is proportional to
the gradient of the concentration c. Write this law getting the sign right for the
constant of proportionality and derive an equation similar to the heat equation for
the concentration c. Typically, c is the concentration of some sort of pollutant or a
chemical.
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7. Sometimes people consider diffusion in materials which are not homogeneous. This
means that J = −K∇c where K is a 3× 3 matrix and c is called the concentration.
Thus in terms of components, Ji = −∑ j Ki j

∂c
∂x j

. Here c is the concentration which
means the amount of pollutant or whatever is diffusing in a volume is obtained by
integrating c over the volume. Derive a formula for a nonhomogeneous model of
diffusion based on the above.

8. Let V be such that the divergence theorem holds. Show that∫
V

(
v∇

2u−u∇
2v
)

dV =
∫

∂V

(
v

∂u
∂n
−u

∂v
∂n

)
dA

where n is the exterior normal and ∂u
∂n is defined in Problem 4. Here ∇

2u≡ ∑i u,xixi .

9. Let V be a ball and suppose ∇
2u = f in V while u = g on ∂V . Show that there is at

most one solution to this boundary value problem which is C2 in V and continuous
on V with its boundary. Hint: You might consider w = u− v where u and v are
solutions to the problem. Then use the result of Problem 4 and the identity w∇

2w =
∇ · (w∇w)−∇w ·∇w to conclude ∇w = 0. Then show this implies w must be a
constant by considering h(t) = w(t x+ (1− t)y) and showing h is a constant.

10. Show that
∫

∂V ∇×v ·ndA = 0 where V is a region for which the divergence theorem
holds and v is a C2 vector field.

11. Let F (x,y,z) = (x,y,z) be a vector field inR3 and let V be a three dimensional shape
and let n= (n1,n2,n3). Show that

∫
∂V (xn1 + yn2 + zn3) dA = 3× volume of V .

12. LetF = xi+yj+zk and let V denote the tetrahedron formed by the planes, x= 0,y=
0,z = 0, and 1

3 x+ 1
3 y+ 1

5 z = 1. Verify the divergence theorem for this example.

13. Suppose f : U →R is continuous where U is some open set and for all B⊆U where
B is a ball,

∫
B f (x) dV = 0. Show that this implies f (x) = 0 for all x ∈U .

14. Let U denote the box centered at (0,0,0) with sides parallel to the coordinate planes
which has width 4, length 2 and height 3. Find the flux integral

∫
∂U F ·ndS where

F = (x+3,2y,3z). Hint: If you like, you might want to use the divergence theorem.

15. Find the flux out of the cylinder whose base is x2 + y2 ≤ 1 which has height 2 of the
vector field F =

(
xy,zy,z2 + x

)
.

16. Find the flux out of the ball of radius 4 centered at 0 of the vector field F =
(x,zy,z+ x).

17. In one dimension, the heat equation is of the form ut = αuxx. Show that u(x, t) =
e−αn2t sin(nx) satisfies the heat equation
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Chapter 15

Degree Theory
This chapter is on the Brouwer degree, a very useful concept with numerous and important
applications. The degree can be used to prove some difficult theorems in topology such
as the Brouwer fixed point theorem, the Jordan separation theorem, and the invariance of
domain theorem. A couple of these big theorems have been presented earlier, but when you
have degree theory, they get much easier. Degree theory is also used in bifurcation theory
and many other areas in which it is an essential tool. The degree will be developed forRp in
this book. When this is understood, it is not too difficult to extend to versions of the degree
which hold in Banach space. There is more on degree theory in the book by Deimling [12]
and much of the presentation here follows this reference. Another more recent book which
is really good is [15]. This is a whole book on degree theory.

The original reference for the approach given here, based on analysis, is [27] and dates
from 1959. The degree was developed earlier by Brouwer and others using different meth-
ods. The more classical approach based on simplices and approximations with these is in
[29]. I have given an approach based on singular homology as an appendix in [38].

To give you an idea what the degree is about, consider a real valued C1 function defined
on an interval I, and let y ∈ f (I) be such that f ′ (x) ̸= 0 for all x ∈ f−1 (y). In this case the
degree is the sum of the signs of f ′ (x) for x ∈ f−1 (y), written as d ( f , I,y).

y

In the above picture, d ( f , I,y) is 0 because there are two places where the sign is 1 and
two where it is −1.

The amazing thing about this is the number you obtain in this simple manner is a spe-
cialization of something which is defined for continuous functions and which has nothing
to do with differentiability. The reason one can extend the above simple idea to continuous
functions is is an integral expression for the degree which is insensitive to homotopy. It is
very similar to the winding number of complex analysis. The difference between the two
is that with the degree, the integral which ties it all together is taken over the open set while
the winding number is taken over the boundary, although proofs of it in the case of the
winding number sometimes involve Green’s theorem which involves an integral over the
open set. I think these analogies are better seen in the other presentation in [38].

In this chapter Ω will refer to a bounded open set.

Definition 15.0.1 For Ω a bounded open set, denote by C
(
Ω
)

the set of functions
which are restrictions of functions in Cc (Rp) , equivalently C (Rp) to Ω and by Cm

(
Ω
)
,m≤

∞ the space of restrictions of functions in Cm
c (Rp) , equivalently Cm (Rp) to Ω. If f ∈C

(
Ω
)

the symbol f will also be used to denote a function defined on Rp equalling f on Ω when
convenient. The subscript c indicates that the functions have compact support. The norm
in C

(
Ω
)

is defined as follows.

∥ f∥
∞,Ω = ∥ f∥

∞
≡ sup

{
| f (x)| : x ∈Ω

}
.

409
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If the functions take values in Rp write Cm
(
Ω;Rp

)
or C

(
Ω;Rp

)
for these functions if there

is no differentiability assumed. The norm on C
(
Ω;Rp

)
is defined in the same way as above,

∥f∥
∞,Ω = ∥f∥

∞
≡ sup

{
|f (x)| : x ∈Ω

}
.

If m = ∞, the notation means that there are infinitely many derivatives. Also, C (Ω;Rp)
consists of functions which are continuous on Ω that have values in Rp and Cm (Ω;Rp)
denotes the functions which have m continuous derivatives defined on Ω. Also let P con-
sist of functions f (x) such that fk (x) is a polynomial, meaning an element of the alge-
bra of functions generated by

{
1,x1, · · · ,xp

}
. Thus a typical polynomial is of the form

∑i1···ip a(i1 · · · ip)xi1 · · ·xip where the i j are nonnegative integers and a(i1 · · · ip) is a real
number.

Some of the theorems are simpler if you base them on the Weierstrass approximation
theorem.

Note that, by applying the Tietze extension theorem to the components of the function,
one can always extend a function continuous on Ω to all of Rp so there is no loss of gener-
ality in simply regarding functions continuous on Ω as restrictions of functions continuous
on Rp. Next is the idea of a regular value.

Definition 15.0.2 For W an open set in Rp and g ∈C1 (W ;Rp) , y is called a reg-
ular value of g if whenever x ∈ g−1 (y), det(Dg (x)) ̸= 0. Note that if g−1 (y) = /0, it
follows that y is a regular value from this definition. That is, y is a regular value if and
only if

y /∈ g ({x ∈W : detDg (x) = 0})

Denote by Sg the set of singular values of g, those y such that det(Dg (x)) = 0 for some
x ∈ g−1 (y).

Also, ∂Ω will often be referred to. It is those points with the property that every open
set (or open ball) containing the point contains points not in Ω and points in Ω. Then the
following simple lemma will be used frequently.

Lemma 15.0.3 Define ∂U to be those points x with the property that for every r > 0,
B(x,r) contains points of U and points of UC. Then for U an open set, ∂U = U \U. Let
C be a closed subset of Rp and let K denote the set of components of Rp \C. Then if K is
one of these components, it is open and ∂K ⊆C.

Proof: Letx∈U \U. If B(x,r) contains no points of U, thenx /∈U . If B(x,r) contains
no points of UC, then x ∈U and so x /∈U \U . Therefore, U \U ⊆ ∂U . Now let x ∈ ∂U .
If x ∈U, then since U is open there is a ball containing x which is contained in U contrary
to x ∈ ∂U . Therefore, x /∈U. If x is not a limit point of U, then some ball containing x
contains no points of U contrary to x ∈ ∂U . Therefore, x ∈U \U which shows the two
sets are equal.

Why is K open for K a component of Rp \C? This follows from Theorem 3.11.12 and
results from open balls being connected. Thus if k ∈ K, letting B(k,r) ⊆ CC, it follows
K ∪B(k,r) is connected and contained in CC and therefore is contained in K because K is
maximal with respect to being connected and contained in CC.

Now for K a component of Rp \C, why is ∂K ⊆C? Let x ∈ ∂K. If x /∈C, then x ∈ K1,
some component of Rp \C. If K1 ̸= K then x cannot be a limit point of K and so it cannot
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be in ∂K. Therefore, K = K1 but this also is a contradiction because if x ∈ ∂K then x /∈ K
thanks to the first part that ∂U =U \U . ■

Note that for an open set U ⊆ Rp, and h : U → Rp, dist(h(∂U) ,y)≥ dist
(
h
(
U
)
,y
)

because U ⊇ ∂U .
The following lemma will be nice to keep in mind.

Lemma 15.0.4 f ∈C
(
Ω× [a,b] ;Rp

)
if and only if

t→ f (·, t) ∈C
(
[a,b] ;C

(
Ω;Rp))

Also
∥f∥

∞,Ω×[a,b] = max
t∈[a,b]

(
∥f (·,t)∥

∞,Ω

)
Proof:⇒By uniform continuity, if ε > 0 there is δ > 0 such that if |t− s|< δ , then for

all x ∈Ω, ∥f (x,t)−f (x,s)∥< ε

2 . It follows that

∥f (·, t)−f (·,s)∥
∞
≤ ε

2
< ε

⇐Say (xn, tn)→ (x,t) . Does it follow that f (xn, tn)→ f (x,t)?

∥f (xn, tn)−f (x,t)∥ ≤ ∥f (xn, tn)−f (xn, t)∥+∥f (xn, t)−f (x, t)∥
≤ ∥f (·, tn)−f (·, t)∥∞

+∥f (xn, t)−f (x, t)∥

both terms converge to 0, the first because f is continuous into C
(
Ω;Rp

)
and the second

because x→ f (x, t) is continuous.
The claim about the norms is next. Let (x, t) be such that ∥f∥

∞,Ω×[a,b] < ∥f (x, t)∥+ε .
Then

∥f∥
∞,Ω×[a,b] < ∥f (x, t)∥+ ε ≤ max

t∈[a,b]

(
∥f (·, t)∥

∞,Ω

)
+ ε

and so ∥f∥
∞,Ω×[a,b] ≤ maxt∈[a,b] max

(
∥f (·,t)∥

∞,Ω

)
because ε is arbitrary. However, the

same argument works in the other direction. There exists t such that

∥f (·, t)∥
∞,Ω = max

t∈[a,b]

(
∥f (·, t)∥

∞,Ω

)
by compactness of the interval. Then by compactness of Ω, there is x such that

∥f (·,t)∥
∞,Ω = ∥f (x, t)∥ ≤ ∥f∥

∞,Ω×[a,b]

and so the two norms are the same. ■

15.1 Sard’s Lemma and Approximation
First are easy assertions about approximation of continuous functions with smooth ones.

The following is the Weierstrass approximation theorem. It is Corollary 5.6.3 presented
earlier.
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Corollary 15.1.1 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The polynomials are of
the form

m

∑
k=0

pk (t) f
(

l
(

k
m

))
(15.1)

where l is a linear one to one and onto map from [0,1] to [a,b] and p0 (a) = 1 but pk (a) = 0
if k ̸= 0, pm (b) = 1 but pk (b) = 0 for k ̸= m.

Applying the Weierstrass approximation theorem, Theorem 5.8.7 or Theorem 5.10.5 to
the components of a vector valued function yields the following Theorem.

Theorem 15.1.2 If f ∈C
(
Ω;Rp

)
for Ω a bounded subset ofRp, then for any ε > 0,

there exists g ∈C∞
(
Ω;Rp

)
such that ∥g−f∥

∞,Ω < ε.

Recall Sard’s lemma, shown earlier. It is Lemma 11.8.3. I am stating it here for conve-
nience.

Lemma 15.1.3 (Sard) Let Ω be an open set in Rp and let h : Ω→Rp be differentiable.
Let

S≡ {x ∈Ω : detDh(x) = 0} .

Then mp (h(S)) = 0.

First note that if y /∈ g (Ω) , then y /∈ g ({x ∈Ω : detDg (x) = 0}) so it is a regular
value.

Observe that any uncountable set in Rp has a limit point. To see this, tile Rp with
countably many congruent boxes. One of them has uncountably many points. Now sub-
divide this into 2p congruent boxes. One has uncountably many points. Continue sub-
dividing this way to obtain a limit point as the unique point in the intersection of a nested
sequence of compact sets whose diameters converge to 0.

Lemma 15.1.4 Let g ∈C∞ (Rp;Rp) and let {yi}
∞

i=1 be points ofRp and let η > 0. Then
there exists e with ∥e∥< η and yi +e is a regular value for g for all i.

Proof: Let S = {x ∈ Rp : detDg (x) = 0}. By Sard’s lemma, g (S) has measure zero.
Let N ≡ ∪∞

i=1 (g (S)−yi) . Thus N has measure 0. Pick e ∈ B(0,η) \N. Then for each
i,yi +e /∈ g (S) . ■

Next we approximate f with a smooth function g such that each yi is a regular value
of g.

Lemma 15.1.5 Let f ∈C
(
Ω;Rp

)
,Ω a bounded open set, and let {yi}

∞

i=1 be points not
in f (∂Ω) and let δ > 0. Then there exists g ∈C∞

(
Ω;Rp

)
such that ∥g−f∥

∞,Ω < δ and

yi is a regular value for g for each i. That is, if g (x) = yi, then Dg (x)−1 exists. Also,
if δ < dist(f (∂Ω) ,y) for some y a regular value of g ∈ C∞

(
Ω;Rp

)
, then g−1 (y) is a

finite set of points in Ω. Also, if y is a regular value of g ∈C∞ (Rp,Rp) , then g−1 (y) is
countable.
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Proof: Pick g̃ ∈C∞
(
Ω;Rp

)
,∥g̃−f∥

∞,Ω < δ . From Lemma 15.1.4, yi +e is a regular
value for g̃ for each i where e can be chosen as small as desired. Let g= g̃−e where e is
so small that also ∥g−f∥

∞,Ω < δ . Thus yi is a regular value of g for all i. (same as yi +e
regular value of g̃). This shows the first part.

It remains to verify the last claims. Since ∥g−f∥
Ω,∞ < δ , if x ∈ ∂Ω, then

∥g (x)−y∥ ≥ ∥f (x)−y∥−∥f (x)−g (x)∥ ≥ dist(f (∂Ω) ,y)−δ > δ −δ = 0

and so y /∈ g (∂Ω), so if g (x) = y, then x ∈ Ω. Thus g−1 (y) is a compact subset of Ω

and so for each x ∈ g−1 (y) there is a ball containing x, Bx contained in Ω such that there
is at most one point in g−1 (y)∩Bx this by the inverse function theorem. Finitely many of
these balls cover g−1 (y) so this set must be finite and at each point, the determinant of the
derivative of g is nonzero. For y a regular value, g−1 (y) is countable since otherwise, there
would be a limit point x ∈ g−1 (y) and g would fail to be one to one near x contradicting
the inverse function theorem. ■

Now with this, here is a definition of the degree.

Definition 15.1.6 Let Ω be a bounded open set in Rp and let f : Ω→ Rp be con-
tinuous. Let y /∈ f (∂Ω) . Then the degree is defined as follows: Let g be infinitely differ-
entiable,

∥f −g∥
∞,Ω < δ ≡ dist(f (∂Ω) ,y) ,

and y is a regular value of g. Then y /∈ g (∂Ω) and we define

d (f,Ω,y)≡∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y) ,x ∈Ω
}

where the sum is finite by Lemma 15.1.5, defined to equal 0 if g−1 (y) is empty.

Note that if g is such an approximation of f then if x ∈ ∂Ω and t ∈ [0,1] ,

|tg (x)+(1− t)f (x)−y| ≥ |f (x)−y|− t ∥g−f∥
∞

> dist(f (∂Ω) ,y)−dist(f (∂Ω) ,y) = 0

Thus t g+ (1− t)f maps no point of ∂Ω to y. In particular, g maps no point of ∂Ω to y.

Lemma 15.1.7 The above sum in the definition makes sense for a single g and, assum-
ing this definition of d (f,Ω,y) is well defined, then it would follow that if y /∈ f (Ω) , then
d (f,Ω,y) = 0.

Proof: As just noted, if ∥f −g∥
∞,Ω < dist(f (∂Ω) ,y) then y /∈ g (∂Ω). In fact

y /∈ (tg (x)+(1− t)f (x))(∂Ω)

for any t ∈ [0,1]. Thus the sum is a finite sum and makes sense by Lemma 15.1.5. What if
y /∈ f (Ω)? In this case, assuming the definition is well defined, you could pick g such that
y is a regular value for g and also ∥f −g∥

∞,Ω < dist
(
f
(
Ω
)
,y
)

so the above definition
would say that d (f,Ω,y) = 0 because there would be no terms in the sum. ■

We really need to verify that this definition is well defined, not dependent on which g
is chosen. This involves the use of an integral.

Next is an identity. It was Lemma 7.11.2 on Page 201.
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Lemma 15.1.8 Let g : Ω→ Rp be C2 where Ω is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Next is an integral representation of ∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y)
}

but first is a
little lemma about disjoint sets.

Lemma 15.1.9 Let K be a compact set and C a closed set in Rp such that K ∩C = /0.
Then

dist(K,C)≡ inf{∥k−c∥ : k ∈ K,c ∈C}> 0.

Proof: Let d ≡ inf{∥k−c∥ : k ∈ K,c ∈C}. Let {ki} ,{ci} be such that

d +
1
i
> ∥ki−ci∥ .

Since K is compact, there is a subsequence still denoted by {ki} such that ki → k ∈ K.
Then also

∥ci−cm∥ ≤ ∥ci−ki∥+∥ki−km∥+∥cm−km∥

If d = 0, then as m, i→ ∞ it follows ∥ci−cm∥ → 0 and so {ci} is a Cauchy sequence
which must converge to some c ∈ C. But then ∥c−k∥ = limi→∞ ∥ci−ki∥ = 0 and so
c= k ∈C∩K, a contradiction to these sets being disjoint. ■

In particular the distance between a point and a closed set is always positive if the point
is not in the closed set. Of course this is obvious even without the above lemma.

Definition 15.1.10 Let g ∈ C∞
(
Ω;Rp

)
where Ω is a bounded open set. Also let

φ ε be a mollifier.

φ ε ∈C∞
c (B(0,ε)) , φ ε ≥ 0,

∫
φ ε dx = 1.

The idea is that ε will converge to 0 to get suitable approximations.

First, here is a technical lemma which will be used to identify the degree with an inte-
gral.

Lemma 15.1.11 Let y /∈ g (∂Ω) for g ∈C∞
(
Ω;Rp

)
. Also suppose y is a regular value

of g. Then for all positive ε small enough,∫
Ω

φ ε (g (x)−y)detDg (x)dx = ∑
{

sgn(detDg (x)) : x ∈ g−1 (y)
}

Proof: First note that the sum is finite from Lemma 15.1.5. It only remains to verify
the equation. If y /∈ g (Ω) , then for ε < dist

(
g
(
Ω
)
,y
)
, φ ε (g (x)−y) = 0 for all x ∈ Ω

so both sides equal 0.
I need to show the left side of this equation is constant for ε small enough and equals the

right side. By what was just shown, there are finitely many points, {xi}m
i=1 = g

−1 (y). By
the inverse function theorem, there exist disjoint open sets Ui withxi ∈Ui, such that g is one
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to one on Ui with det(Dg (x)) having constant sign on Ui and g (Ui) is an open set contain-
ing y. Then let ε be small enough that B(y,ε)⊆ ∩m

i=1g (Ui) . Also, y /∈ g
(
Ω\
(
∪n

i=1Ui
))

,

a compact set. Let ε be still smaller, if necessary, so that B(y,ε)∩g
(
Ω\
(
∪n

i=1Ui
))

= /0
and let Vi ≡ g−1 (B(y,ε))∩Ui.

g(U2)g(U3)

g(U1)•yε

•x1

•x2

•
x3 V1

V2

V3

Therefore, for any ε this small,∫
Ω

φ ε (g (x)−y)detDg (x)dx =
m

∑
i=1

∫
Vi

φ ε (g (x)−y)detDg (x)dx

The reason for this is as follows. The integrand on the left is nonzero only if g (x)−y ∈
B(0,ε) which occurs only if g (x) ∈ B(y,ε) which is the same as x ∈ g−1 (B(y,ε)).
Therefore, the integrand is nonzero only if x is contained in exactly one of the disjoint sets,
Vi. Now using the change of variables theorem, (z= g (x)−y,g−1 (y+z) = x.)

=
m

∑
i=1

∫
g(Vi)−y

φ ε (z)detDg
(
g−1 (y+z)

)∣∣detDg−1 (y+z)
∣∣dz (15.2)

By the chain rule, I = Dg
(
g−1 (y+z)

)
Dg−1 (y+z) and so in the above for a single Vi,

detDg
(
g−1 (y+z)

)∣∣detDg−1 (y+z)
∣∣

= sgn
(
detDg

(
g−1 (y+z)

))∣∣detDg
(
g−1 (y+z)

)∣∣ ∣∣detDg−1 (y+z)
∣∣

= sgn
(
detDg

(
g−1 (y+z)

))
= sgn(detDg (x)) = sgn(detDg (xi)) .

Therefore, 15.2 reduces to

m

∑
i=1

sgn(detDg (xi))
∫
g(Vi)−y

φ ε (z)dz =

m

∑
i=1

sgn(detDg (xi))
∫

B(0,ε)
φ ε (z)dz =

m

∑
i=1

sgn(detDg (xi)) .

In case g−1 (y) = /0, there exists ε > 0 such that g
(
Ω
)
∩B(y,ε) = /0 and so for ε this small,∫

Ω

φ ε (g (x)−y)detDg (x)dx = 0.■

As noted above, this will end up being d (g,Ω,y) in this last case where g−1 (y) = /0.
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Lemma 15.1.12 Suppose g, ĝ both satisfy Definition 15.1.6. For δ given there, δ =
dist(f (∂Ω) ,y) ,

δ > ∥f −g∥
∞,Ω , δ > ∥f − ĝ∥

∞,Ω

Then for t ∈ [0,1] so does tg+ (1− t) ĝ. In particular, y /∈ (tg+(1− t) ĝ)(∂Ω). Also
d (f −y,Ω,0) = d (f,Ω,y).

Proof: This follows from the fact that B(y,δ ) in ∥·∥
∞,Ω is convex. From the triangle

inequality, if t ∈ [0,1] ,

∥f−(tg+(1− t) ĝ)∥
∞
≤ t ∥f −g∥

∞
+(1− t)∥f − ĝ∥

∞

< tδ +(1− t)δ = δ .

If ∥h−f∥
∞
< δ , as was just shown for h≡ tg+(1− t) ĝ, then if x ∈ ∂Ω,

∥y−h(x)∥ ≥ ∥y−f (x)∥−∥h(x)−f (x)∥> dist(f (∂Ω) ,y)−δ ≥ δ −δ = 0

Now consider the last claim. This follows because ∥g−f∥
∞

small is the same as
∥g−y−(f −y)∥

∞
being small. They are the same. Also, (g−y)−1 (0) = g−1 (y) and

Dg (x) = D(g−y)(x). ■
Next is an important result on homotopy which is used to show that Definition 15.1.6

is well defined.

Lemma 15.1.13 If h is in C∞
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) then for 0< ε <

dist(0,h(∂Ω× [a,b])) ,

t→
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

is constant for t ∈ [a,b]. As a special case, d (f ,Ω,y) is well defined. Also, if y /∈ f
(
Ω
)
,

then d (f,Ω,y) = 0.

Proof: By continuity of h, h(∂Ω× [a,b]) is compact and so is at a positive distance
from 0. Let ε > 0 be such that for all t ∈ [a,b] ,

B(0,ε)∩h(∂Ω× [a,b]) = /0 (15.3)

Define for t ∈ (a,b), H (t) ≡
∫

Ω
φ ε (h(x, t))detD1h(x, t)dx. I will show that H ′ (t) = 0

on (a,b) . Then, since H is continuous on [a,b] , it will follow from the mean value theorem
that H (t) is constant on [a,b]. If t ∈ (a,b),

H ′ (t) =
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t (x, t)detD1h(x, t)dx

+
∫

Ω

φ ε (h(x, t))∑
α, j

detD1 (h(x, t)),α j hα, jtdx≡A+B. (15.4)

In this formula, the function det is considered as a function of the n2 entries in the n× n
matrix and the ,α j represents the derivative with respect to the α jth entry hα, j. Now as in
the proof of Lemma 7.11.2 on Page 201, detD1 (h(x, t)),α j = (cofD1 (h(x, t)))α j and so

B =
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD1 (h(x, t)))α j hα, jtdx.
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By hypothesis
x→ φ ε (h(x, t))(cof D1 (h(x, t)))α j for x ∈Ω

is in C∞
c (Ω) because if x ∈ ∂Ω, it follows that for all t ∈ [a,b] ,h(x, t) /∈ B(0,ε) and so

φ ε (h(x, t)) = 0 off some compact set contained in Ω. Therefore, integrate by parts and
write

B =−
∫

Ω
∑
α

∑
j

∂

∂x j
(φ ε (h(x, t)))(cof D1 (h(x, t)))α j hα,tdx+

−
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD(h(x, t)))
α j, j hα,tdx

The second term equals zero by Lemma 15.1.8. Simplifying the first term yields

B = −
∫

Ω
∑
α

∑
j
∑
β

φ ε,β (h(x, t))hβ , jhα,t (cofD1 (h(x, t)))α j dx

= −
∫

Ω
∑
α

∑
β

φ ε,β (h(x, t))hα,t ∑
j

hβ , j (cofD1 (h(x, t)))α j dx

Now the sum on j is the dot product of the β
th row with the α th row of the cofactor matrix

which equals zero unless β = α because it would be a cofactor expansion of a matrix with
two equal rows. When β = α, the sum on j reduces to det(D1 (h(x, t))) . ThusB reduces
to

=−
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t det(D1 (h(x, t)))dx

Which is the same thing as A, but with the opposite sign. Hence A+B in 15.4 is 0 and
H ′ (t) = 0 and so H is a constant on [a,b].

Finally consider the last claim. If g, ĝ both work in the definition for the degree, then
consider h(x, t)≡ tg (x)+(1− t) ĝ (x)−y for t ∈ [0,1] . For x ∈ ∂Ω,

|tg (x)+(1− t) ĝ (x)−y|
= |t (g (x)−f (x))+(1− t)(ĝ (x)−f (x))+f (x)−y|

≥ |f (x)−y|− |t (g (x)−f (x))+(1− t)(ĝ (x)−f (x))|
≥ dist(f (∂Ω) ,y)− (t ∥g−f∥

∞
+(1− t)∥ĝ−f∥

∞
)

> dist(f (∂Ω) ,y)− (tδ +(1− t)δ ) = 0

From Lemma 15.1.12, h satisfies what is needed for the first part of this lemma. Namely,
0 /∈ h(∂Ω× [0,1]) . Then from the first part, if 0 < ε < dist(0,h(∂Ω× [0,1])) and ε is
also sufficiently small that the second and last equations hold in what follows,

d (f ,Ω,y) = ∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y)
}
=
∫

Ω

φ ε (h(x,1))detD1h(x,1)dx

=
∫

Ω

φ ε (h(x,0))detD1h(x,0)dx = ∑
{

sgn(det(Dĝ (x))) : x ∈ ĝ−1 (y)
}
■
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15.2 Properties of the Degree
Now that the degree for a continuous function has been defined, it is time to consider
properties of the degree. In particular, it is desirable to prove a theorem about homotopy
invariance which depends only on continuity considerations.

Theorem 15.2.1 If h is in C
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) for each t,

then t→ d (h(·, t) ,Ω,0) is constant for t ∈ [a,b].

Proof: Let 0 < δ = min |h(∂Ω× [a,b])| . By Corollary 15.1.1, there exists hm (·, t) =
∑

m
k=0 pk (t)h(·, tk) for pk (t) a polynomial in t of degree m such that p0 (a) = 1 but pk (a) =

0 if k ̸= 0 and pm (b) = 1 but pk (b) = 0 if k ̸= m and

max
t∈[a,b]

∥hm (·, t)−h(·, t)∥
∞,Ω < δ , t0 = a, tm = b (15.5)

Now replace h(·, tk) with gm
k (·) ∈ C∞

(
Ω,Rp

)
and 0 is a regular value of gm

k and let
gm (·, t)≡ ∑

m
k=0 pk (t)gm

k (·) where the functions gm
k are close enough to h(·, tk) that

max
t∈[a,b]

∥gm (·, t)−h(·, t)∥
∞,Ω < δ . (15.6)

gm ∈ C∞
(
Ω× [a,b] ;Rp

)
because all partial derivatives with respect to either t or x are

continuous. Thus gm
0 (·) = gm (·,a) , gm

m (·) = gm (·,b) . Also, from the definition of the
degree and Lemma 15.1.13, for small enough ε ,

d (h(·,a) ,Ω,0) = d (gm
0 (·) ,Ω,0) =

∫
Ω

φ ε (gm (x,a))detD1gm (x,a)dx

=
∫

Ω

φ ε (gm (x,b))detD1gm (x,b)dx = d (gm
m (·) ,Ω,0) = d (h(·,b) ,Ω,0)

Since a,b are arbitrary, this proves the theorem. ■
Now the following theorem is a summary of the main result on properties of the degree.

Theorem 15.2.2 Definition 15.1.6 is well defined and the degree satisfies the fol-
lowing properties.

1. (homotopy invariance) If h∈C
(
Ω× [0,1] ,Rp

)
and y (t) /∈ h (∂Ω, t) for all t ∈ [0,1]

where y is continuous, then

t→ d (h(·, t) ,Ω,y (t))

is constant for t ∈ [0,1] .

2. If Ω⊇Ω1∪Ω2 where Ω1∩Ω2 = /0, for Ωi an open set, then if

y /∈ f
(
Ω\ (Ω1∪Ω2)

)
,

then
d (f ,Ω1,y)+d (f ,Ω2,y) = d (f ,Ω,y)

3. d (I,Ω,y) = 1 if y ∈Ω.
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4. d (f ,Ω, ·) is continuous and constant on every connected component of Rp \f (∂Ω).

5. d (g,Ω,y) = d (f ,Ω,y) if g|
∂Ω

= f |
∂Ω

.

6. If y /∈ f (∂Ω), and if d (f,Ω,y) ̸= 0, then there exists x ∈Ω such that f (x) = y.

Proof: That the degree is well defined follows from Lemma 15.1.13.
Consider 1., the first property about homotopy. This follows from Theorem 15.2.1

applied to H (x, t)≡ h(x, t)−y (t).
Consider 2. where y /∈ f

(
Ω\ (Ω1∪Ω2)

)
. Note that

dist
(
y,f

(
Ω\ (Ω1∪Ω2)

))
≤ dist(y,f (∂Ω))

Then let g be in C
(
Ω;Rp

)
and

∥g−f∥
∞

< dist
(
y,f

(
Ω\ (Ω1∪Ω2)

))
≤ min(dist(y,f (∂Ω1)) ,dist(y,f (∂Ω2)) ,dist(y,f (∂Ω)))

where y is a regular value of g. Then by definition,

d (f,Ω,y)≡∑
{

det(Dg (x)) : x ∈ g−1 (y)
}

= ∑
{

det(Dg (x)) : x ∈ g−1 (y) ,x ∈Ω1
}

+∑
{

det(Dg (x)) : x ∈ g−1 (y) ,x ∈Ω2
}

≡ d (f,Ω1,y)+d (f,Ω2,y)

It is of course obvious that this can be extended by induction to any finite number of disjoint
open sets Ωi.

Note that 3. is obvious because I (x) = x and so if y ∈ Ω, then I−1 (y) = y and
DI (x) = I for any x so the definition gives 3.

Now consider 4. Let U be a connected component of Rp \f (∂Ω) . This is open as well
as connected and arc wise connected by Theorem 3.11.12. Hence, if u,v ∈U, there is a
continuous function y (t) which is in U such that y (0) = u and y (1) = v. By homotopy
invariance, it follows d (f ,Ω,y (t)) is constant. Thus d (f ,Ω,u) = d (f ,Ω,v).

Next consider 5. When f = g on ∂Ω, it follows that if y /∈ f (∂Ω) , then y /∈ f (x)+
t (g (x)−f (x)) for t ∈ [0,1] and x∈ ∂Ω so d (f + t (g−f) ,Ω,y) is constant for t ∈ [0,1]
by homotopy invariance in part 1. Therefore, let t = 0 and then t = 1 to obtain 5.

Claim 6. follows from Lemma 15.1.13 which says that if y /∈ f
(
Ω
)
, then d (f ,Ω,y) =

0. ■
From the above, there is an easy corollary which gives related properties of the degree.

Corollary 15.2.3 The following additional properties of the degree are also valid.

1. If y /∈ f
(
Ω\Ω1

)
and Ω1 is an open subset of Ω, then d (f ,Ω,y) = d (f ,Ω1,y) .

2. d (·,Ω,y) is defined and constant on{
g ∈C

(
Ω;Rp) : ∥g−f∥

∞
< r
}

where r = dist(y,f (∂Ω)).
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3. If y ∈ f (Ω) , dist(y,f (∂Ω))≥ δ and |z−y|< δ , then d (f ,Ω,y) = d (f ,Ω,z).

Proof: Consider 1. You can take Ω2 = /0 in 2 of Theorem 15.2.2 or you can modify
the proof of 2 slightly. Consider 2. To verify, let h(x, t) = f (x)+ t (g (x)−f (x)) . Then
note that y /∈ h(∂Ω, t) and use Property 1 of Theorem 15.2.2.

Finally, consider 3. Let y (t)≡ (1− t)y+ tz. Then for x ∈ ∂Ω

|(1− t)y+ tz−f (x)| = |y−f (x)+ t (z−y)|
≥ δ − t |z−y|> δ −δ = 0

Then by 1 of Theorem 15.2.2, d (f ,Ω,(1− t)y+ tz) is constant. When t = 0 you get
d (f ,Ω,y) and when t = 1 you get d (f ,Ω,z) . ■

Corollary 15.2.4 Let h ∈ C∞
(
Ω,Rn

)
where Ω is a bounded open set in Rnand let

y /∈ h(∂Ω) . Then d (h,Ω,y) = limε→0
∫

Ω
φ ε (h(x)−y)detDh(x)dx.

Proof: Let
∥∥∥h̃−h∥∥∥

∞,Ω
< δ where 0 < δ < dist(y,h(∂Ω)) and y is a regular value

for h̃, and Dh̃(x) = Dh(x). Then

d (h,Ω,y) = d
(
h̃,Ω,y

)
= lim

ε→0

∫
Ω

φ ε

(
h̃(x)−y

)
detDh̃(x)dx

= lim
ε→0

∫
Ω

φ ε

(
h̃(x)−y

)
detDh̃(x)dx

= lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dx

because for h(x, t) = t (h(x)−y)+(1− t)
(
h̃(x)−y

)
,

t→
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

is constant for t ∈ [0,1]. ■

15.3 Brouwer Fixed Point Theorem
The degree makes it possible to give a very simple proof of the Brouwer fixed point theo-
rem.

Theorem 15.3.1 (Brouwer fixed point) Let B = B(0,r)⊆ Rp and let f : B→ B be
continuous. Then there exists a point x ∈ B, such that f (x) = x.

Proof: Assume there is no fixed point. Consider h(x, t) ≡ x− tf (x) for t ∈ [0,1] .
Then for ∥x∥= r, 0 /∈ x− tf (x) , t ∈ [0,1] . By homotopy invariance, t→ d (I− tf ,B,0)
is constant. But when t = 0, this is d (I,B,0) = 1 ̸= 0. This is a contradiction so there must
be a fixed point after all. ■

You can use standard stuff from Hilbert space to get this the fixed point theorem for
a compact convex set. Let K be a closed bounded convex set and let f : K → K be con-
tinuous. Let P be the projection map onto K as in Problem 10 on Page 152. Then P is
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continuous because |Px−Py| ≤ |x−y|. Recall why this is. From the characterization of
the projection map P, (x−Px,y−Px)≤ 0 for all y ∈ K. Therefore,

(x−Px,Py−Px)≤ 0, (y−Py,Px−Py)≤ 0 so (y−Py,Py−Px)≥ 0

Hence, subtracting the first from the last,

(y−Py− (x−Px) ,Py−Px)≥ 0

consequently,
|x−y| |Py−Px| ≥ (y−x,Py−Px)≥ |Py−Px|2

and so |Py−Px| ≤ |y−x| as claimed.
Now let r be so large that K ⊆ B(0,r) . Then consider f ◦P. This map takes B(0,r)→

B(0,r). In fact it maps B(0,r) to K. Therefore, being the composition of continuous func-
tions, it is continuous and so has a fixed point in B(0,r) denoted asx. Hence f (P(x))=x.
Now, since f maps into K, it follows that x ∈ K. Hence Px= x and so f (x) = x. This
has proved the following general Brouwer fixed point theorem.

Theorem 15.3.2 Let f : K→ K be continuous where K is compact and convex and
nonempty, K ⊆ Rp. Then f has a fixed point.

Definition 15.3.3 f is a retract of B(0,r) onto ∂B(0,r) if f is continuous,

f
(

B(0,r)
)
⊆ ∂B(0,r)

and f (x) = x for all x ∈ ∂B(0,r).

Theorem 15.3.4 There does not exist a retract of B(0,r) onto ∂B(0,r), its bound-
ary.

Proof: Suppose f were such a retract. Then for all x∈ ∂B(0,r), f (x)=x and so from
the properties of the degree, the one which says if two functions agree on ∂Ω, then they
have the same degree, 1 = d (I,B(0,r) ,0) = d (f ,B(0,r) ,0) which is clearly impossible
because f−1 (0) = /0 which implies d (f ,B(0,r) ,0) = 0. ■

You should now use this theorem to give another proof of the Brouwer fixed point
theorem.

15.4 Borsuk’s Theorem
In this section is an important theorem which can be used to verify that d (f ,Ω,y) ̸= 0. This
is significant because when this is known, it follows from Theorem 15.2.2 that f−1 (y) ̸= /0.
In other words there exists x ∈Ω such that f (x) = y.

Definition 15.4.1 A bounded open set, Ω is symmetric if −Ω = Ω. A continuous
function f : Ω→ Rp is odd if f (−x) =−f (x).

Suppose Ω is symmetric and g ∈ C∞
(

Ω;Rp
)

is an odd map for which 0 is a regular
value. Then the chain rule implies Dg (−x) = Dg (x) and so d (g,Ω,0) must equal an
odd integer because if x ∈ g−1 (0), it follows that−x ∈ g−1 (0) also and since Dg (−x) =
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Dg (x), it follows the overall contribution to the degree from x and−xmust be an even in-
teger. Also 0 ∈ g−1 (0) and so the degree equals an even integer added to sgn (detDg (0)),
an odd integer, either−1 or 1. It seems reasonable to expect that something like this would
hold for an arbitrary continuous odd function defined on symmetric Ω. In fact this is the
case and this is next. The following lemma is the key result used. This approach is due to
Gromes [24]. See also Deimling [12] which is where I found this argument. I think it is
one of the cleverest calculus manipulations I have seen.

To get an idea consider the case of p = 1. Then Ω is bounded and symmetric and h
is odd and in C∞

(
Ω
)
. Suppose that h′ (0) ̸= 0. I want to find arbitrarily small ε such that

ĥ(x)≡ h(x)−εx3 has 0 as a regular value for x ̸= 0. Let ε be a regular value for h(x)
x3 ≡ f (x)

for x ̸= 0. By Sard’s lemma the singular values of f (x) contain no balls so we can take ε as
small as desired and have ε a regular value of f . Then at a point where ĥ(x) = 0, f (x) = ε

and so ĥ(x)+ εx3 = x3 f (x). Now differentiate this. ĥ′ (x)+ 3εx2 = 3x2 f (x)+ x3 f ′ (x) =
3x2ε + x3 f ′ (x) so ĥ′ (x) = x3 f ′ (x) ̸= 0. This is the motivation for the following process.

The idea is to start with a smooth odd map and approximate it with a smooth odd map
which also has 0 a regular value. Note that 0 is a value because g (0) =−g (0).

Process: Suppose h0 ∈ C∞
(
Ω,Rp

)
is odd and det(Dh0 (0)) ̸= 0. Let Ωk be those

points of Ω where xk ̸= 0. Here x≡ (x1, ...,xp) . Then x→ h0(x)

x3
k

is a smooth map defined

on Ωk so by Sard’s lemma, its singular values do not contain B(0,η). Therefore, there is
yk with yk a regular value and

∥∥yk
∥∥ < η where η > 0 is given. Then consider ĥ(x) ≡

h0 (x)− x3
ky

k. I want to argue that 0 is a regular value of ĥ on Ωk. Note that h0(x)

x3
k

= yk if

and only if ĥ(x) = 0.

Letting f (x)≡ h0(x)

x3
k

=
ĥ(x)+x3

ky
k

x3
k

, then ĥ(x) = x3
k

(
f (x)−yk

)
and Df (x) is invert-

ible at the x of interest, one where ĥ(x) = 0 and f (x)−yk = 0. Then

Dĥ(x)(u) = 3x2
k

(
=0

f (x)−yk

)
(u)+ x3

kDf (x)(u) . (15.7)

At the point of interest, the first term on the right is 0 and so

det
(

Dĥ(x)
)
= x3

k det(Df (x)) ̸= 0.

If 0 is a regular value for h0 on U ⊆ Ω, will 0 be a regular value for ĥ on U where
ĥ is described above? The only points of concern are those x ∈ U for which xk = 0
because if xk ̸= 0 then x ∈ Ωk. But for these points where xk = 0, ĥ(x) = h0 (x) and
Dĥ(x) = Dh0 (x) because 3x2

k = 0 when xk = 0. Thus the new function ĥ has 0 a regular
value for all x ∈U ∪Ωk. This Process is the basis for the following lemma.

Lemma 15.4.2 Let h0 ∈ C∞
(
Ω,Rp

)
is odd and det(Dh0 (0)) ̸= 0 for Ω a symmetric

open set and let η > 0. Then there are vectors yk each with
∥∥yk
∥∥ < η such that h(x) ≡

h0 (x)−∑
p
k=1 x3

ky
k has 0 as a regular value.

Proof: Use the above process leading to 15.7 repeatedly. Start with h0 which has 0 a
regular value on {0} . Then use the process to get h1 (x) = h0 (x)−y1x3

1 which has 0 as
a regular value on {0}∪Ω1. Then repeat the process to get h2 (x) = h1 (x)−y2x3

2 which
has 0 as a regular value on {0}∪Ω1∪Ω2. Continue this way and let h= hp which has 0
a regular value on {0}∪Ω1∪·· ·∪Ωp = Ω. ■
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Lemma 15.4.3 Let g ∈C∞
(

Ω;Rp
)

be an odd map. Then for every ε > 0, there exists
h ∈C∞

(
Ω;Rp

)
such that h is also an odd map, ∥h−g∥

∞
< ε , and 0 is a regular value of

h,0 /∈ g (∂Ω) . Here Ω is a symmetric bounded open set. In addition, d (g,Ω,0) is an odd
integer.

Proof: In this argument η > 0 will be a small positive number. Let h0 (x) = g (x)+ηx
where η is sufficiently small but nonzero that detDh0 (0) ̸= 0. See Lemma 8.10.2. Note
that h0 is odd and 0 is a value of h0 thanks to h0 (0) = 0. This has taken care of 0.
However, it is not known whether 0 is a regular value of h0 because there may be other
x where h0 (x) = 0. By Lemma 15.4.2, there are vectors y j with

∥∥yk
∥∥ ≤ η and 0 is a

regular value of h(x)≡ h0 (x)−∑
p
j=1y

jx3
j . Then

∥h−g∥
∞, Ω

≤ max
x∈Ω

{
∥ηx∥+

p

∑
k=1

∥∥∥yk
∥∥∥∥x∥}

≤ η ((p+1)diam(Ω))< ε < dist(g (∂Ω) ,0)

provided η was chosen sufficiently small to begin with.
So what is d (h,Ω,0)? Since 0 is a regular value and h is odd,

h−1 (0) = {x1, · · · ,xr,−x1, · · · ,−xr,0} .

So consider Dh(x) and Dh(−x).

Dh(−x)u+o(u) = h(−x+u)−h(−x) =−h(x+(−u))+h(x)

=−(Dh(x)(−u))+o(−u) = Dh(x)(u)+o(u)

Hence Dh(x) = Dh(−x) and so the determinants of these two are the same. It follows
from the definition that d (g,Ω,0) = d (h,Ω,0)

=
r

∑
i=1

sgn(det(Dh(xi)))+
r

∑
i=1

sgn(det(Dh(−xi)+ sgn(det(Dh(0)))))

= 2m±1 some integer m ■

Theorem 15.4.4 (Borsuk) Let f ∈C
(

Ω;Rp
)

be odd and let Ω be symmetric with
0 /∈ f (∂Ω). Then d (f ,Ω,0) equals an odd integer.

Proof: Let ψn be a mollifier which is symmetric, ψ (−x) = ψ (x). Also recall that f
is the restriction to Ω of a continuous function, still denoted as f which is defined on all of
Rp. Let g be the odd part of this function. That is,

g (x)≡ 1
2
(f (x)−f (−x)) = f (x) on Ω

Thus d (f ,Ω,0) = d (g,Ω,0). Then

gn (−x)≡ g ∗ψn (−x) =
∫

Ω

g (−x−y)ψn (y)dy

=−
∫

Ω

g (x+y)ψn (y)dy =−
∫

Ω

g (x−(−y))ψn (−y)dy =−gn (x)

Thus gn is odd and is infinitely differentiable. Let n be large enough that

∥gn−g∥∞,Ω < δ < dist(f (∂Ω) ,0) = dist(g (∂Ω) ,0)

Then by definition of the degree, d (f,Ω,0) = d (g,Ω,0) = d (gn,Ω,0) and by Lemma
15.4.3 this is an odd integer. ■
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15.5 Some Applications
With Borsuk’s theorem it is possible to give relatively easy proofs of some very important
and difficult theorems.

Lemma 15.5.1 Let g : B(0,r) ⊆ Rp → Rp be one to one and continuous. Then there
exists δ > 0 such that B(g (0) ,δ )⊆ g (B(0,r)) .

Proof: For t ∈ [0,1] , let h(x, t)≡ g (x)−g (−tx) . Then for x ∈ ∂B(0,r) , h(x, t) ̸=
0 because if this were so, the fact g is one to one implies x = −tx and this requires
x= 0, not the case since ∥x∥ = r. Then d (h(·, t) ,B(0,r) ,0) is constant by Theorem
15.2.1, homotopy invariance. Hence it is an odd integer for all t thanks to Borsuk’s
theorem, because h(·,1) is odd. Now let B(0,δ ) be such that B(0,δ )∩h(∂Ω,0) = /0.
Then 0 ̸= d (h(·,0) ,B(0,r) ,0) = d (h(·,0) ,B(0,r) ,z) for z ∈ B(0,δ ) because the de-
gree is constant on connected components of Rp \h(∂Ω,0) by Theorem 15.2.2. Hence
z= h(x,0) = g (x)−g (0) for some x ∈ B(0,r). Thus

g (B(0,r))⊇ g (0)+B(0,δ ) = B(g (0) ,δ ) . ■

Theorem 15.5.2 (invariance of domain)Let Ω be any open subset of Rp and let
f : Ω→ Rp be continuous and one to one. Then f maps open subsets of Ω to open sets in
Rp.

Proof: Let B(x0,r) ⊆ Ω where f is one to one on B(x0,r). Let g be defined on
B(0,r) given by

g (x)≡ f (x+x0)

Then g satisfies the conditions of Lemma 15.5.1, being one to one and continuous. It
follows from that lemma that there exists δ > 0 such that

f (Ω) ⊇ f (B(x0,r)) = f (x0 +B(0,r))

= g (B(0,r))⊇ g (0)+B(0,δ )

= f (x0)+B(0,δ ) = B(f (x0) ,δ )

This shows that for any x0 ∈ Ω,f (x0) is an interior point of f (Ω) which shows f (Ω) is
open. ■

Definition 15.5.3 If f : U ⊆ Rp → Rp where U is an open set. Then f is locally
one to one if for every x ∈U, there exists δ > 0 such that f is one to one on B(x,δ ).

Then an examination of the proof of the above theorem shows the following corollary.

Corollary 15.5.4 In Theorem 15.5.2 it suffices to assume f is locally one to one.

With the above, one gets easily the following amazing result. It is something which is
clear for linear maps but this is a statement about continuous maps.

Corollary 15.5.5 If p > m there does not exist a continuous one to one map from Rp to
Rm.
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Proof: Suppose not and let f be such a continuous map, f (x)≡ ( f1 (x) , · · · , fm (x))T .
Then let g (x)≡ ( f1 (x) , · · · , fm (x) ,0, · · · ,0)T where there are p−m zeros added in. Then
g is a one to one continuous map from Rp to Rp and so g (Rp) would have to be open from
the invariance of domain theorem and this is not the case. ■

Corollary 15.5.6 Let f : Rp→ Rp and lim|x|→∞ |f (x)|= ∞ where f is locally one to
one and continuous. Then f maps Rp onto Rp.

Proof: By the invariance of domain theorem, f (Rp) is an open set. It is also true that
f (Rp) is a closed set. Here is why. If f (xk)→ y, the growth condition ensures that {xk}
is a bounded sequence. Taking a subsequence which converges to x ∈ Rp and using the
continuity of f, it follows f (x) = y. Thus f (Rp) is both open and closed which implies
f must be an onto map since otherwise, Rp would not be connected. ■

The proofs of the next two theorems make use of the Tietze extension theorem, Theo-
rem 5.8.5.

Theorem 15.5.7 Let Ω be a symmetric open set in Rp such that 0 ∈ Ω and let
f : ∂Ω→ V be continuous where V is an m dimensional subspace of Rp,m < p. Then
f (−x) = f (x) for some x ∈ ∂Ω.

Proof: You could reduce to the case where V = Rm if desired. Suppose not. Using the
Tietze extension theorem on components of the function, extend f to all of Rp, f

(
Ω
)
⊆V .

(Here the extended function is also denoted by f .) Let g (x) = f (x)− f (−x). Then
0 /∈ g (∂Ω) and so for some r > 0, B(0,r) ⊆ Rp \g (∂Ω). For z ∈ B(0,r), d (g,Ω,z) =
d (g,Ω,0) ̸= 0 because B(0,r) is contained in a component of Rp \g (∂Ω) and Borsuk’s
theorem implies that d (g,Ω,0) ̸= 0 since g is odd. Hence V ⊇ g (Ω)⊇ B(0,r) and this is
a contradiction because V is m dimensional. ■

This theorem is called the Borsuk Ulam theorem. Note that it implies there exist two
points on opposite sides of the surface of the earth which have the same atmospheric pres-
sure and temperature, assuming the earth is symmetric and that pressure and temperature
are continuous functions. The next theorem is an amusing result which is like combing
hair. It gives the existence of a “cowlick”.

Theorem 15.5.8 Let p be odd and let Ω be an open bounded set in Rp with 0 ∈Ω.
Suppose f : ∂Ω→Rp \{0} is continuous. Then for some x ∈ ∂Ω and λ ̸= 0, f (x) = λx.

Proof: Using the Tietze extension theorem, extend f to all of Rp. Also denote the
extended function by f . Suppose for all x ∈ ∂Ω, f (x) ̸= λx for all λ ∈ R. Then

0 /∈ tf (x)+(1− t)x, (x, t) ∈ ∂Ω× [0,1] .

0 /∈ tf (x)− (1− t)x, (x, t) ∈ ∂Ω× [0,1] .

Thus there exists a homotopy of f and I and a homotopy of f and −I. Then by the
homotopy invariance of degree,

d (f ,Ω,0) = d (I,Ω,0) , d (f ,Ω,0) = d (−I,Ω,0) .

But this is impossible because d (I,Ω,0) = 1 but d (−I,Ω,0) = (−1)n =−1. ■
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15.6 Product Formula, Separation Theorem
This section is on the product formula for the degree which is used to prove the Jordan sep-
aration theorem. To begin with is a significant observation which is used without comment
below. Recall that the connected components of an open set are open. The formula is all
about the composition of continuous functions.

Ω
f→ f (Ω)⊆ Rp g→ Rp

Lemma 15.6.1 Let {Ki}N
i=1 ,N ≤ ∞ be the connected components of Rp \C where C is

a closed set. Then ∂Ki ⊆C.

Proof: Since Ki is a connected component of an open set, it is itself open. See Theorem
3.11.12. Thus ∂Ki consists of all limit points of Ki which are not in Ki. Let p be such a
point. If it is not in C then it must be in some other K j which is impossible because these
are disjoint open sets. Thus if x is a point in U it cannot be a limit point of V for V disjoint
from U . ■

Definition 15.6.2 Let the connected components of Rp \f (∂Ω) be denoted by Ki.
From the properties of the degree listed in Theorem 15.2.2, d (f ,Ω, ·) is constant on each
of these components. Denote by d (f ,Ω,Ki) the constant value on the component Ki.

The following is the product formula. Note that if K is an unbounded component of
f (∂Ω)C , then d (f ,Ω,y) = 0 for all y ∈ K by homotopy invariance and the fact that for
large enough ∥y∥ ,f−1 (y) = /0 since f

(
Ω
)

is compact.

Theorem 15.6.3 (product formula)Let {Ki}∞

i=1 be the bounded components of Rp \
f (∂Ω) for f ∈C

(
Ω;Rp

)
, let g ∈C (Rp,Rp), and suppose that y /∈ g (f (∂Ω)) or in other

words, g−1 (y)∩f (∂Ω) = /0. Then

d (g ◦f ,Ω,y) =
∞

∑
i=1

d (f ,Ω,Ki)d (g,Ki,y) . (15.8)

All but finitely many terms in the sum are zero. If there are no bounded components of
f (∂Ω)C , then d (g ◦f ,Ω,y) = 0.

Proof: The compact set f
(
Ω
)
∩g−1 (y) is contained inRp\f (∂Ω) so f

(
Ω
)
∩g−1 (y)

is covered by finitely many of the components K j one of which may be the unbounded
component. Since these components are disjoint, the other components fail to intersect
f
(
Ω
)
∩g−1 (y). Thus, if Ki is one of these others, either it fails to intersect g−1 (y) or Ki

fails to intersect f
(
Ω
)
. Thus either d (f ,Ω,Ki) = 0 because Ki fails to intersect f

(
Ω
)

or
d (g,Ki,y) = 0 if Ki fails to intersect g−1 (y). Thus the sum is always a finite sum. I am
using Theorem 15.2.2, the part which says that if y /∈ h

(
Ω
)
, then d (h,Ω,y) = 0. Note

that by Lemma 15.6.1 ∂Ki ⊆ f (∂Ω) so g (∂Ki)⊆ g (f (∂Ω)) and so y /∈ g (∂Ki) because
it is assumed that y /∈ g (f (∂Ω)).

Let g̃ be in C∞ (Rp,Rp) and let ∥g− g̃∥
∞,f(Ω) < dist(y,g (f (∂Ω))) . Thus, for each

of the finitely many Ki intersecting f
(
Ω
)
∩g−1 (y) ,

d (g,Ki,y) = d (g̃,Ki,y) and
d (g ◦f ,Ω,y) = d (g̃ ◦f ,Ω,y) (15.9)
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By Lemma 15.1.5, there exists g̃ such that y is a regular value of g̃ in addition to 15.9
and g̃−1 (y)∩f (∂Ω) = /0. Then g̃−1 (y) is contained in the union of the Ki along with the
unbounded component(s) and by Lemma 15.1.5 g̃−1 (y) is countable. As discussed there,

g̃−1 (y)∩Ki is finite if Ki is bounded. Let g̃−1 (y)∩Ki =
{
xi

j

}mi

j=1
,mi ≤ ∞. mi could only

be ∞ on the unbounded component.
Now use Lemma 15.1.5 again to get f̃ in C∞

(
Ω;Rp

)
such that each xi

j is a regular

value of f̃ on Ω and also
∥∥∥f̃ −f∥∥∥

∞

is very small, so small that

d
(
g̃ ◦ f̃ ,Ω,y

)
= d (g̃ ◦f ,Ω,y) = d (g ◦f ,Ω,y)

and d
(
f̃ ,Ω,xi

j

)
= d

(
f ,Ω,xi

j

)
for each i, j.

Thus, from the above,

d (g ◦f ,Ω,y) = d
(
g̃ ◦ f̃ ,Ω,y

)
,

d
(
f̃ ,Ω,xi

j

)
= d

(
f ,Ω,xi

j
)
= d (f ,Ω,Ki)

d (g̃,Ki,y) = d (g,Ki,y)

Is y a regular value for g̃ ◦ f̃ on Ω? Suppose z ∈Ω and y= g̃ ◦ f̃ (z) so f̃ (z) ∈ g̃−1 (y) .

Then f̃ (z) = xi
j for some i, j and Df̃ (z)−1 exists. Hence

D
(
g̃ ◦ f̃

)
(z) = Dg̃

(
xi

j
)

Df̃ (z) ,

both linear transformations invertible. Thus y is a regular value of g̃ ◦ f̃ on Ω.
What of xi

j in Ki where Ki is unbounded? As observed, the sum of sgn
(

detDf̃ (z)
)

for z ∈ f̃−1
(
xi

j

)
is d

(
f̃ ,Ω,xi

j

)
and is 0 because the degree is constant on Ki which is

unbounded.
From the definition of the degree, the left side of 15.8 d (g ◦f ,Ω,y) equals

∑

{
sgn
(

detDg̃
(
f̃ (z)

))
sgn
(

detDf̃ (z)
)

: z ∈ f̃−1 (
g̃−1 (y)

)}
The g̃−1 (y) are the xi

j. Thus the above is of the form

= ∑
i

∑
j

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(

det
(

Df̃ (z)
))

As mentioned, if xi
j ∈ Ki an unbounded component, then

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(

det
(

Df̃ (z)
))

= 0

and so, it suffices to only consider bounded components in what follows and the sum makes
sense because there are finitely many xi

j in bounded Ki. This also shows that if there are
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no bounded components of f (∂Ω)C, then d (g ◦f ,Ω,y) = 0. Thus d (g ◦f ,Ω,y) equals

= ∑
i

∑
j

sgn
(
det
(
Dg̃
(
xi

j
)))

∑
z∈f̃−1

(
xi

j

)sgn
(

det
(

Df̃ (z)
))

= ∑
i

d (g̃,Ki,y)d
(
f̃ ,Ω,Ki

)
To explain the last step,

∑
z∈f̃−1

(
xi

j

)sgn
(

det
(

Df̃ (z)
))
≡ d

(
f̃ ,Ω,xi

j

)
= d

(
f̃ ,Ω,Ki

)
.

This proves the product formula because g̃ and f̃ were chosen close enough to f,g respec-
tively that

∑
i

d
(
f̃ ,Ω,Ki

)
d (g̃,Ki,y) = ∑

i
d (f ,Ω,Ki)d (g,Ki,y) ■

Before the general Jordan separation theorem, I want to first consider the examples of
most interest.

Recall that if a function f is continuous and one to one on a compact set K, then f
is a homeomorphism of K and f (K). Also recall that if U is a nonempty open set, the
boundary of U , denoted as ∂U and meaning those points x with the property that for all
r > 0 B(x,r) intersects both U and UC, is U \U .

Proposition 15.6.4 Let C be a compact set and let f : C→ D ⊆ Rp, p ≥ 2 be one to
one and continuous so that C and f (C)≡D are homeomorphic. Suppose CC has only one
connected component so CC is connected. Then DC also has only one component.

Proof: Extend f , using the Tietze extension theorem on its entries to all of Rp and let
g be an extension of f−1 to all of Rp. Suppose DC has a bounded component K. Then
from Lemma 15.6.1,∂K ⊆D,g (∂K)⊆ g (D) =C. It follows that d (f ◦g,K,z) = 1 where
z ∈ K because on ∂K, f ◦g = id.

If z ∈ K, then z ̸= f ◦g (k) for any k ∈ ∂K because f ◦g = id on ∂K ⊆ C, this by
Lemma 15.6.1. Then g (∂K)C ⊇ CC. If Q is a bounded component of g (∂K)C then if Q
contains a point of CC it follows that CC is connected, has no points of C and hence no
points of g (∂K) so Q⊇CC and Q is not bounded after all. Thus g (∂K)C has no bounded
components. Then from the product formula Theorem 15.6.3, d (f ◦g,K,z) = 0 which is
a contradiction. Thus there is no bounded component of DC. ■

This says that if a compact set H fails to separate Rp and if f is continuous and one to
one, then also f (H) fails to separate Rp.

It is obvious that the unit sphere Sp−1 divides Rp into two disjoint open sets, the inside
and the outside. The following shows that this also holds for any homeomorphic image of
Sp−1.

Proposition 15.6.5 Let B be the ball B(0,1) with Sp−1 its boundary, p ≥ 2. Suppose
f : Sp−1→C ≡ f

(
Sp−1

)
⊆ Rp is a homeomorphism. Then CC also has exactly two com-

ponents, one bounded and one unbounded.
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Proof: By Proposition 15.6.4 there is at least one component of f (∂B)C called K since
it is clear that

(
Sp−1

)C is not connected. Let f denote the extension of f to all of Rp and
let g= f−1 on f (∂B) where g is also extended using the Tietze extension theorem to all
of Rp. Let H be the unbounded component of Rp \Sp−1.

From Lemma 15.6.1, ∂K ⊆ f (∂B) so g (∂K)⊆ ∂B. Also,

f ◦g (∂K)⊆ f ◦g (f (∂B)) = f (∂B) .

Recall that K has no points in f (∂B) so if p ∈ K, then p cannot be in f (∂B) and conse-
quently p cannot be in f ◦g (∂K) either. Summarizing this,

∂K ⊆ f (∂B) , g (∂K)⊆ ∂B, f ◦g (∂K)∩K = /0

Then picking p ∈ K, by the product rule,

1 = d (id,K,p) = d (f ◦g,K,p) = ∑
i

d (g,K,Qi)d (f,Qi,p)

where here the Qi are the bounded components of (g (∂K))C. These are maximal open
connected sets in Rp. Recall g (∂K) ⊆ ∂B. If Qi has a point of H, then H would be
connected and contain no points of g (∂K) and so H would be contained in Qi which does
not happen because Qi is bounded. Thus Qi ⊆ B̄ but also Qi is open and so it must be
contained in B. Now B is connected and open and contains no points of g (∂K) because it
contains no points of ∂B which is a larger set than g (∂K) and so in fact Qi = B and there
is only one term in the above sum. Thus, from properties of the degree,

1 = d (id,K,p) = d (f ◦g,K,p) = d (g,K,B)d (f,B,p)

= d (g,K,0)d (f,B,K) = d (g ◦f ,B,0)

so by the product rule there is no more than one bounded component of f (∂B)C the K just
mentioned. To emphasize this, if you had bounded components Ki of f (∂B)C , i ≤ m ≤ ∞

Then 1 = d (g,Ki,0)d (f,B,Ki) = d (g ◦f ,B,0) , but then, by the product rule, you would

have for K ≡ K0, 1 = d (g ◦f ,B,0) = ∑
m
k=0

=1
d (g,Ki,0)d (f,B,Ki) = m+ 1. Thus there is

exactly one bounded component of f (∂B)C. ■
A repeat of the above proof yields the following corollary. Replace B with Ω.

Corollary 15.6.6 Let Ω ⊆ Rp, p ≥ 2be a bounded open connected set such that ∂ΩC

has two components, a bounded and an unbounded component. Suppose f : ∂Ω→ C ≡
f (∂Ω)⊆Rp is a homeomorphism. Then CC also has exactly two components, one bounded
and one unbounded.

As an application, here is a very interesting little result. It has to do with d (f ,Ω,f (x))
in the case where f is one to one and Ω is open and connected. You might imagine this
should equal 1 or−1 based on one dimensional analogies. Recall a one to one map defined
on an interval is either increasing or decreasing. It either preserves or reverses orientation.
It is similar in n dimensions and it is a nice application of the Jordan separation theorem
and the product formula.

Proposition 15.6.7 Let Ω be an open connected bounded set in Rp, p ≥ 2 such that
Rp \∂Ω consists of two connected components. Let f ∈C

(
Ω;Rp

)
be continuous and one

to one. Then f (Ω) is the bounded component ofRp\f (∂Ω) and for y ∈ f (Ω) , d (f ,Ω,y)
either equals 1 or −1.
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Proof: By the Jordan separation theorem, Corollary 15.6.6, Rp \ f (∂Ω) consists of
two components, a bounded component B and an unbounded component U . Using the
Tietze extention theorem, there exists g defined on Rp such that g= f−1 on f

(
Ω
)
. Thus

on ∂Ω,g ◦f = id. It follows from this and the product formula that

1 = d (id,Ω,g (y)) = d (g ◦f ,Ω,g (y)) = d (g,B,g (y))d (f ,Ω,B)

Therefore, d (f ,Ω,B) ̸= 0 and so for every z ∈ B, it follows z ∈ f (Ω) . Thus B ⊆ f (Ω) .
On the other hand, f (Ω) cannot have points in both U and B because it is a connected set.
Therefore f (Ω) ⊆ B and this shows B = f (Ω). Thus d (f ,Ω,B) = d (f ,Ω,y) for each
y ∈ B and the above formula shows this equals either 1 or −1 because the degree is an
integer. ■

The one dimensional case also fits into this although it is easier to do by more elemen-
tary means. In the case where n = 1, the argument is essentially the same. There is one and
only one bounded component for R\ f ({a,b}) . This shows how to generalize orientation.
It is just the degree. One could use this to describe an orientable manifold without any
direct reference to differentiability.

In the case of f
(
Sp−1

)
one wants to verify that this is the is the boundary of both

components, the bounded one and the unbounded one.

Theorem 15.6.8 Let Sp−1 be the unit sphere in Rp, p≥ 2. Suppose γ : Sp−1→ Γ⊆
Rp is one to one onto and continuous. Then Rp \Γ consists of two components, a bounded
component (called the inside) Ui and an unbounded component (called the outside), Uo.
Also the boundary of each of these two components of Rp \Γ is Γ and Γ has empty interior.

Proof: γ−1 is continuous since Sp−1 is compact and γ is one to one. By the Jordan
separation theorem, Rp \Γ =Uo∪Ui where these on the right are the connected compo-
nents of the set on the left, both open sets. Only Ui is bounded. Thus Γ∪Ui ∪Uo = Rp.
Since both Ui,Uo are open, ∂U ≡U \U for U either Uo or Ui. If x ∈ Γ, and is not a limit
point of Ui, then there is B(x,r) which contains no points of Ui. Let S be those points x of
Γ for which, B(x,r) contains no points of Ui for some r > 0. This S is open in Γ. Let Γ̂ be
Γ \ S. Then if Ĉ = γ−1

(
Γ̂
)
, it follows that Ĉ is a closed set in Sp−1and is a proper subset

of Sp−1. It is obvious that taking a relatively open set from Sp−1 results in a compact set
whose complement in Rp is an open connected set. By Proposition 15.6.4, Rp \ Γ̂ is also an
open connected set. Start with x ∈Ui and consider a continuous curve which goes from x
to y ∈Uo which is contained in Rp \ Γ̂ . Thus the curve contains no points of Γ̂. However,
it must contain points of Γ which can only be in S. The first point of Γ intersected by this
curve is a point in Ui and so this point of intersection is not in S after all because every ball
containing it must contain points of Ui. Thus S = /0 and every point of Γ is in Ui. Similarly,
every point of Γ is in Uo. Thus Γ ⊆Ui \Ui and Γ ⊆Uo \Uo. However, if x ∈Ui \Ui, then
x /∈Uo because it is a limit point of Ui and so x ∈ Γ. It is similar with Uo. Thus Γ =Ui \Ui
and Γ = Uo \Uo. This could not happen if Γ had an interior point. Such a point would be
in Γ but would fail to be in either ∂Ui or ∂Uo. ■

When p = 2, this theorem is called the Jordan curve theorem.
What if γ maps B̄ toRp instead of γ only being defined on Sp−1? Obviously, one should

be able to say a little more.

Corollary 15.6.9 Let B be an open ball and let γ : B̄→ Rp be one to one and contin-
uous. Let Ui,Uo be as in the above theorem, the bounded and unbounded components of
γ (∂B)C. Then Ui = γ (B).
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Proof: This follows from Proposition 15.6.7.
Note how this yields the invariance of domain theorem. If f is one to one on U an open

set, you could consider B̄ ⊆U and then f (B) is the bounded component of f (∂B)C. You
can do this for each ball contained in U . Thus f (U) is open.

15.7 General Jordan Separation Theorem
What follows is the general Jordan separation theorem. First note that if C,D are compact
sets and f : C→ D is a homeomorphism, continuous, one to one and onto, then if C,D are
both in R and if CC, has no bounded components, then C would be a closed interval and so
would D. Thus CC,DC have the same number of bounded components. In general for Rp,
Proposition 15.6.4 says CC,DC both have no bounded components together. The Jordan
Separation Theorem shows that CC,DC have the same number of bounded components in
general.

Lemma 15.7.1 Let Ω be a bounded open set in Rp, f ∈ C
(
Ω;Rp

)
, and suppose the

sequence {Ωi}∞

i=1 are disjoint open sets contained in Ω such that

y /∈ f
(
Ω\∪∞

j=1Ω j
)

Then d (f ,Ω,y) = ∑
∞
j=1 d (f ,Ω j,y) where the sum has only finitely many terms equal to

0.

Proof: By assumption, the compact set f−1 (y) ≡
{
x ∈Ω : f (x) = y

}
has empty

intersection with Ω\∪∞
j=1Ω j and so this compact set is covered by finitely many of the Ω j,

say {Ω1, · · · ,Ωn−1} and y /∈ f
(
∪∞

j=nΩ j

)
. By Theorem 15.2.2 and letting O = ∪∞

j=nΩ j,

d (f ,Ω,y) =
n−1

∑
j=1

d (f ,Ω j,y)+d (f,O,y) =
∞

∑
j=1

d (f ,Ω j,y)

because d (f,O,y) = 0 as is d (f ,Ω j,y) for every j ≥ n. ■

Theorem 15.7.2 (Jordan separation theorem) Let f be a homeomorphism of C and
f (C)≡ D where C is a compact set in Rp. Then Rp \C and Rp \D have the same number
of connected components.

Proof: If either C or D has no bounded components, then so does the other, this from
Proposition 15.6.4. Let f denote a Tietze extension of f to all of Rp and let g be a Tietze
extension of f−1 to all of Rp. Let the bounded components of CC be {Jr}n

r=1 ≡J and let
the bounded components of DC be {Ks}m

s=1 ≡K ,n,m≤∞. If both are ∞ then we consider
the theorem proved. Assume one of n,m is less than ∞. Pick xr ∈ Jr and ys ∈ Ks. By
Lemma 15.6.1, ∂Ks ⊆ D and so g (∂Ks)⊆ g (D) =C. f ◦g (∂Ks)⊆ f (C) = D and Ks is a
component of DC and so ys /∈ f ◦g (∂Ks) . Then from the definition of the degree and its
properties along with the product formula,

1 = d (f ◦g,Ks,ys) = ∑
j

d (g,Ks,Q j)d (f,Q j,ys) (15.10)

where the Q j are the bounded components of g (∂Ks)
C. If the unbounded component of

CC is U, then considering Q j, it can’t have any point of U . This is because U has no points
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of g (∂Ks) a smaller set than C and so Q j ∪U would be connected, open, and contained
in g (∂Ks)

C so it would equal Q j resulting in Q j not being bounded after all. Could Q j
intersect some Jr? If it does, then Jr ⊆ Q j because Jr is connected and does not intersect
g (∂Ks)

C . Consider f
(
Q̄ j⧹∪J j

)
where J j are the components Jr contained in Q j. Is

ys ∈ f
(
Q̄ j⧹∪J j

)
? From Lemma 15.6.1, ∂Q j ⊆ g (∂Ks) ⊆C so f (∂Q j) ⊆ ∂Ks and so

ys /∈ f (∂Q j) . Suppose ys = f (z) where z ∈Q j. If z is not in any of the Jr but is in Q̄ j then
z ∈C so f (z) = ys ∈ D. But ys is in Ks a component of DC so this is impossible. Hence
z is in one of the Jr and so this Jr is in J j. Therefore, ys /∈ f

(
Q̄ j⧹∪J j

)
and so we can

apply Lemma 15.7.1 in 15.10. First note that if Jr ∈J j then d (g,Ks,Q j) = d (g,Ks,Jr)

1 = d (f ◦g,Ks,ys) = ∑
j

d (g,Ks,Q j)d (f,Q j,ys) = ∑
j

∑
J∈J j

d (g,Ks,J)d (f,J,ys)

Since the Q j cover at least CC, it follows that each J intersects some Q j and from the above
is contained in Q j. Thus the J j cover ∪J . Therefore, the above equals

= ∑
J∈J

d (g,Ks,J)d (f,J,ys) =
n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks)

where J is the set of components of CC. Recall that in the product formula the sums are
finite. Then adding over s, it follows

m =
m

∑
s=1

n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks)

However, we could do the same thing in the other order starting with components in CC

and obtain

1 =
m

∑
s=1

d (g,Ks,Jr)d (f,Jr,Ks)

and then summing over r,

n =
n

∑
r=1

m

∑
s=1

d (g,Ks,Jr)d (f,Jr,Ks) =
m

∑
s=1

n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks) = m. ■

15.8 Uniqueness of the Degree
I am mainly interested in the topological theorems which can be proved using the above
topological degree. To me this justifies its importance. Nevertheless, there are other meth-
ods for finding the degree which are based more directly on topological considerations and
algebra. These other methods are older than the presentation given here. Nevertheless if
the degree satisfies the properties of the degree given in Theorem 15.2.2 along with the
following condition, then this is sufficient to determine the degree.

Condition 15.8.1 Let f : B(w,R)→ Rp be such that f−1 (f (w)) = {w} and suppose
Df (w) is invertible. Then d (f ,B(w,R) ,f (w)) = sgn(det(Df (w))).

This follows from a repeat of the arguments which led to the degree in the above.
Homotopy invariance and the properties of Theorem 15.2.2 can be used to get the same
definition of the degree for continuous functions given in the above. From this all the rest
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followed. In an appendix to my book “Linear Algebra and Analysis” such an approach to
the degree based on algebra is given and it verifies the above condition. Thus this other
approach based on homology gives the same degree function. Also, the above condition
will end up following from Theorem 15.2.2 and by insisting that if s(x) = x̂ where x̂ has
two components switched so it corresponds to that elementary matrix then the degree is
−1, this will suffice with the other properties to show the above condition. This process
is followed in that other approach to the degree. That something more is required follows
because the degree also keeps track of orientation.

15.9 Exercises
1. Show that if y1, · · · ,yr in Rp \f (∂Ω) , then if f̃ has the property that∥∥∥f̃ −f∥∥∥

∞

< min
i≤r

dist(yi,f (∂Ω)) ,

then d (f ,Ω,yi) = d
(
f̃ ,Ω,yi

)
for each yi. Hint: Consider for

t ∈ [0,1] ,f (x)+ t
(
f̃ (x)−f (x)

)
−yi

and homotopy invariance.

2. Show the Brouwer fixed point theorem is equivalent to the nonexistence of a contin-
uous retraction onto the boundary of B(0,r).

3. Give a version of Proposition 15.6.7 which is valid for the case where n = 1.

4. It was shown that if lim|x|→∞ |f (x)| = ∞,f : Rn → Rn is locally one to one and
continuous, then f maps Rn onto Rn. Suppose you have f : Rm → Rn where f is
one to one, continuous, and lim|x|→∞ |f (x)| = ∞, m < n. Show that f cannot be
onto.

5. Can there exist a one to one onto continuous map, f which takes the unit interval to
the unit disk?

6. Let m < n and let Bm (0,r) be the ball in Rm and Bn (0,r) be the ball in Rn. Show
that there is no one to one continuous map from Bm (0,r) to Bn (0,r). Hint: It is like
the above problem.

7. Consider the unit disk,
{
(x,y) : x2 + y2 ≤ 1

}
≡ D and the annulus{

(x,y) :
1
2
≤ x2 + y2 ≤ 1

}
≡ A.

Is it possible there exists a one to one onto continuous map f such that f (D) = A?
Thus D has no holes and A is really like D but with one hole punched out. Can you
generalize to different numbers of holes? Hint: Consider the invariance of domain
theorem. The interior of D would need to be mapped to the interior of A. Where do
the points of the boundary of A come from? Consider Theorem 3.11.3.
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8. Suppose C is a compact set in Rn which has empty interior and f : C→ Γ ⊆ Rn is
one to one onto and continuous with continuous inverse. Could Γ have nonempty
interior? Show also that if f is one to one and onto Γ then if it is continuous, so is
f−1.

9. Let K be a nonempty closed and convex subset of Rp. Recall K is convex means that
if x,y ∈K, then for all t ∈ [0,1] , tx+(1− t)y ∈K. Show that if x∈Rp there exists
a unique z ∈ K such that |x−z| = min{|x−y| : y ∈ K} . This z will be denoted
as Px. Hint: First note you do not know K is compact. Establish the parallelogram
identity if you have not already done so,

|u−v|2 + |u+v|2 = 2 |u|2 +2 |v|2 .

Then let {zk} be a minimizing sequence,

lim
k→∞

|zk−x|2 = inf{|x−y| : y ∈ K} ≡ λ .

Using convexity, explain why∣∣∣∣zk−zm

2

∣∣∣∣2 + ∣∣∣∣x−zk +zm

2

∣∣∣∣2 = 2
∣∣∣∣x−zk

2

∣∣∣∣2 +2
∣∣∣∣x−zm

2

∣∣∣∣2
and then use this to argue {zk} is a Cauchy sequence. Then if zi works for i = 1,2,
consider (z1 +z2)/2 to get a contradiction.

10. In Problem 9 show that Px satisfies the following variational inequality. (x−Px) ·
(y−Px)≤ 0 for all y ∈ K. Then show that |Px1−Px2| ≤ |x1−x2|. Hint: For the
first part note that if y ∈ K, the function

t→ |x−(Px+ t (y−Px))|2

achieves its minimum on [0,1] at t = 0. For the second part,

(x1−Px1) · (Px2−Px1)≤ 0, (x2−Px2) · (Px1−Px2)≤ 0.

Explain why
(x2−Px2− (x1−Px1)) · (Px2−Px1)≥ 0

and then use a some manipulations and the Cauchy Schwarz inequality to get the
desired inequality.

11. Suppose D is a set which is homeomorphic to B(0,1). This means there exists a
continuous one to one map, h such that h

(
B(0,1)

)
= D such that h−1 is also one

to one. Show that if f is a continuous function which maps D to D then f has a fixed
point. Now show that it suffices to say that h is one to one and continuous. In this
case the continuity of h−1 is automatic. Sets which have the property that continuous
functions taking the set to itself have at least one fixed point are said to have the fixed
point property. Work Problem 7 using this notion of fixed point property. What about
a solid ball and a donut? Could these be homeomorphic?

12. Using the definition of the derivative and the Vitali covering theorem, show that
if f ∈ C1

(
U,Rn

)
and ∂U has n dimensional measure zero then f (∂U) also has

measure zero. (This problem has little to do with this chapter. It is a review.)
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13. Suppose Ω is any open bounded subset of Rn which contains 0 and that f : Ω→ Rn

is continuous with the property that f (x) ·x ≥ 0 for all x ∈ ∂Ω. Show that then
there exists x ∈ Ω such that f (x) = 0. Give a similar result in the case where
the above inequality is replaced with ≤. Hint: You might consider the function
h(t,x)≡ tf (x)+(1− t)x.

14. Suppose Ω is an open set in Rn containing 0 and suppose that f : Ω→Rn is continu-
ous and |f (x)| ≤ |x| for all x ∈ ∂Ω. Show f has a fixed point in Ω. Hint: Consider
h(t,x)≡ t (x−f (x))+(1− t)x for t ∈ [0,1] . If t = 1 and some x ∈ ∂Ω is sent to
0, then you are done. Suppose therefore, that no fixed point exists on ∂Ω. Consider
t < 1 and use the given inequality.

15. Let Ω be an open bounded subset of Rn and let f,g : Ω→ Rn both be continu-
ous, 0 /∈ f (∂Ω) , such that |f (x)| − |g (x)| > 0 for all x ∈ ∂Ω. Show that then
d (f −g,Ω,0) = d (f ,Ω,0) . Show that if there exists x ∈ f−1 (0) , then there exists
x ∈ (f −g)−1 (0). Hint: Consider h(t,x) ≡ (1− t)f (x)+ t (f (x)−g (x)) and
argue 0 /∈ h(t,∂Ω) for t ∈ [0,1].

16. Let f : C→ C where C is the field of complex numbers. Thus f has a real and
imaginary part. Letting z = x+ iy, f (z) = u(x,y)+ iv(x,y). Recall that the norm in
C is given by |x+ iy| =

√
x2 + y2 and this is the usual norm in R2 for the ordered

pair (x,y) . Thus complex valued functions defined on C can be considered as R2

valued functions defined on some subset of R2. Such a complex function is said to
be analytic if the usual definition holds. That is f ′ (z) = limh→0

f (z+h)− f (z)
h . In other

words,
f (z+h) = f (z)+ f ′ (z)h+o(h) (15.11)

at a point z where the derivative exists. Let f (z) = zn where n is a positive integer.
Thus zn = p(x,y)+ iq(x,y) for p,q suitable polynomials in x and y. Show this func-
tion is analytic. Next show that for an analytic function and u and v the real and
imaginary parts, the Cauchy Riemann equations hold, ux = vy, uy =−vx. In terms of
mappings show 15.11 has the form(

u(x+h1,y+h2)
v(x+h1,y+h2)

)

=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) uy (x,y)
vx (x,y) vy (x,y)

)(
h1
h2

)
+o(h)

=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) −vx (x,y)
vx (x,y) ux (x,y)

)(
h1
h2

)
+o(h)

where h= (h1,h2)
T and h is given by h1 + ih2. Thus the determinant of the above

matrix is always nonnegative. Letting Br denote the ball B(0,r) = B((0,0) ,r) show

d ( f ,Br,0) = n where f (z) = zn. As a mapping on R2, f (x,y) =
(

u(x,y)
v(x,y)

)
. Thus

show d (f ,Br,0) = n. Hint: You might consider g(z) ≡∏
n
j=1 (z−a j) where the a j

are small real distinct numbers and argue that both this function and f are analytic
but that 0 is a regular value for g although it is not so for f . However, for each a j
small but distinct d (f ,Br,0) = d (g,Br,0).
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17. Using Problem 16, prove the fundamental theorem of algebra as follows. Let p(z)
be a nonconstant polynomial of degree n, p(z) = anzn + an−1zn−1 + · · · Show that
for large enough r, |p(z)|> |p(z)−anzn| for all z ∈ ∂B(0,r). Now from Problem 15
you can conclude d (p,Br,0) = d ( f ,Br,0) = n where f (z) = anzn.

18. Suppose f :Rp→Rp satisfies |f (x)−f (y)| ≥α |x−y| , α > 0. Show that f must
map Rp onto Rp. Hint: First show f is one to one. Then use invariance of domain.
Next show, using the inequality, that the points not in f (Rp) must form an open set
because if y is such a point, then there can be no sequence {f (xn)} converging to
it. Finally recall that Rp is connected.

19. Suppose D is a nonempty bounded open set in Rp and suppose f : D→ ∂D is con-
tinuous with f (x) = x for x ∈ ∂D. Show this cannot happen. Hint: Let y ∈ D
and note that id and f agree on ∂D. Therefore, from properties of the degree,
d (f ,D,y) = d (id,D,y). Explain why this cannot occur.

20. Assume D is a closed ball in Rp and suppose f : D→ D is continuous. Use the
above problem to conclude f has a fixed point. Hint: If no fixed point, let g (x) be
the point on ∂D which results from extending the ray starting at f (x) to x. This
would be a continuous map from D to ∂D which does not move any point on ∂D.
Draw a picture. This may be the easiest proof of the Brouwer fixed point theorem
but note how dependent it is on the properties of the degree.

21. Use Corollary 15.6.9 to prove the invariance of domain theorem that if U is open
and f : U ⊆ Rp → Rp is continuous and one to one, then f (U) is open. This was
discussed in the chapter but go through the details.



Chapter 16

Hausdorff Measure
16.1 Lipschitz Functions

Definition 16.1.1 A function f :U ⊆Rn→Rm is Lipschitz if there is a constant K
such that for all x,y ∈U, |f (x)−f (y)| ≤ K |x−y| . We assume U ̸= /0.

In what follows, dt will be used instead of dm in order to make the notation more
familiar.

Lemma 16.1.2 Suppose f : [a,b]→ R is Lipschitz continuous. Then f ′ exists a.e., is in
L1 ([a,b]) , and f (x) = f (a)+

∫ x
a f ′ (t)dt. In fact, the almost everywhere existence of the

derivative holds with only the assumption that f is increasing or of bounded variation on
finite intervals. If f :R→ R is Lipschitz, then f ′ is in L1

loc (R) and the above formula holds.

Proof: Let the Lipschitz constant for f be K. Then let g(x)≡ 2Kx− f (x) and h(x)≡
2K + f (x) . Then these are both increasing continuous functions. By Theorem 9.7.4 there
are Lebesgue Stieltjes measures µ f ,µg satisfying g(d)− g(c) = µg ([c,d]) = µg ((c,d))
with a similar relation for µh. Also µg,µh≪ m1 and are Borel measures so by the Radon
Nikodym theorem, there exist nonnegative Borel measurable functions α,β such that for
all E ⊆ [a,b] Borel, µg (E) =

∫
E αdm,µh (E) =

∫
E βdm. Let r (x) ≡ 1

2 (β (x)−α (x)) . It
follows that f (x) = f (a)+

∫ x
a r (t)dt. From the fundamental theorem of calculus, it follows

that r (x) = f ′ (x) a.e. Recall why this is: For x ∈ (a,b),∣∣∣∣ f (x+h)− f (x)
h

∣∣∣∣≤ 2
1

2h

∫ x+h

x−h
|r (t)− f (x)|dt

which converges to 0 at Lebesgue points. The last claim follows similarly from the Radon
Nikodym theorem and its corollaries. ■

Recall that it was shown earlier that the derivative of an increasing function exists
a.e.(Theorem 9.13.4.) This says more.

16.2 Lipschitz Functions and Gateaux Derivatives
Recall the Gateaux derivative is Dv f (x) ≡ limh→0

f (x+hv)− f (x)
h . Each of these is a Borel

function because they can be obtained as the limit of a sequence hn → 0 of continuous
functions.

Corollary 16.2.1 Suppose f : Rp→ R is Lipschitz continuous,

| f (x)− f (y)| ≤ K |x−y| .

Then f (x+v)− f (x) =
∫ 1

0 Dv f (x+ tv)dt where the integrand is the Gateaux derivative
and also |Dv f (x+ tv)| ≤ K |v| a.e. Also ∇ f (x) exists off a set of measure zero.

Proof: t → f (x+ tv)− f (x) ≡ g(t) is Lipschitz, so by the definition of the Gateaux
derivative and Lemma 16.1.2, (See Theorem 7.5.2)

f (x+v)− f (x) =
∫ 1

0
g′ (t)dt =

∫ 1

0
lim
h→0

f (x+ tv+h |v|(v/ |v|))− f (x+ tv)
h |v|

|v|

=
∫ 1

0
Dv/|v| f (x+ tv/ |v|)dt |v|=

∫ 1

0
Dv f (x+ tv)dt

437
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Letting xp≡ (x1, ...,xp−1,0) and v ≡ ep, it follows that for every xp,
∂

∂xp
f (xp, t) exists

for a.e. t. Thus ∂

∂xp
f exists off a set of measure zero. It is similar for the other partial

derivatives, and so, taking a union of p exceptional sets of measure zero, it follows that
∇ f (x) exists a.e. ■

16.3 Rademacher’s Theorem
It turns out that Lipschitz functions on Rp can be differentiated a.e. This is called Radem-
acher’s theorem. It also can be shown to follow from the Lebesgue theory of differentiation.
We denote Dv f (x) the directional derivative of f in the direction v. Here v is a unit
vector. In the following lemma, notation is abused slightly. The symbol f (x+tv) will
mean t → f (x+tv) and d

dt f (x+tv) will refer to the derivative of this function of t. It is
a good idea to review Theorem 11.11.5 on integration with polar coordinates because this
will be used in what follows. I will also denote as dx the symbol dmp (x) to save space.

Lemma 16.3.1 Let u : Rp→ R be Lipschitz with Lipschitz constant K. Let

un ≡ u∗φ n ≡
∫

u(x−y)dmp (y)

where {φ n} is a mollifier,

φ n (y)≡ np
φ (ny) ,

∫
φ (y)dmp (y) = 1, φ (y)≥ 0, φ ∈C∞

c (B(0,1))

Then
∇un (x) = ∇u∗φ n (x) (16.1)

where ∇u is defined almost everywhere according to Proposition 16.3.4. In fact,∫ b

a

∂u
∂xi

(x+ tei)dt = u(x+bei)−u(x+aei) (16.2)

and
∣∣∣ ∂u

∂xi

∣∣∣ ≤ K so |∇u(x)| ≤ √pK for a.e. x. Also, un (x)→ u(x) uniformly on Rp and

for a suitable subsequence, still denoted with n, ∇un (x)→ ∇u(x) for a.e. x.

Proof: To get the existence of the gradient satisfying the condition given in 16.2, apply
Proposition 16.3.4 to each variable. Now

un (x+hei)−un (x)

h
=

∫
Rp

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dmp (y)

=
∫

B(0, 1
n )

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dmp (y)

=
∫

B(0,1)

(
u(x+hei−y)−u(x−y)

h

)
φ n (y)dmp (y)

Now if x−y is off a set of measure zero, the above difference quotient converges to
∂u
∂xi

(x−y). You just use Proposition 16.3.4 on the ith variable. If hk is any sequence
converging to 0, you can apply the dominated conergence theorem in the above and obtain

∂un (x)

∂xi
=
∫

B(0,1)

∂u(x−y)
∂xi

φ n (y)dmp (y) =
∂u
∂xi
∗φ n (x)
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This proves 16.1.

|un (x)−u(x)| ≤
∫
Rp
|u(x−y)−u(x)|φ n (y)dmp (y)

=
∫

B(0, 1
n )
|u(x−y)−u(x)|φ n (y)dmp (y)

by uniform continuity of u coming from the Lipschitz condition, when n is large enough,
this is no larger than

∫
Rp εφ n (y)dmp (y) = ε and so uniform convergence holds.

Now consider the last claim. From the first part,

|unxi (x)−uxi (x)| =

∣∣∣∣∣
∫

B(0, 1
n )

uxi (x−y)φ n (y)dmp (y)−uxi (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫

B(x, 1
n )

uxi (z)φ n (x−z)dmp (z)−uxi (x)

∣∣∣∣∣
|unxi (x)−uxi (x)| ≤

∫
Rp
|uxi (x−y)−uxi (x)|φ n (y)dmp (y)

=
∫

B(0, 1
n )
|uxi (x−y)−uxi (x)|φ n (y)dmp (y)

=
∫

B(x, 1
n )
|uxi (z)−uxi (x)|φ n (x−z)dmp (z)

≤ np
∫

B(x, 1
n )
|uxi (z)−uxi (x)|φ (n(x−z))dmp (z)

≤ C
mp
(
B
(
0, 1

n

)) ∫
B(x, 1

n )
|uxi (z)−uxi (x)|dmp (z)

which converges to 0 for a.e. x, in fact at any Lebesgue point. This is because uxi is
bounded by K and so is in L1

loc. ■
Note that the above holds just as well if u has values in some Rm and the same proof

would work, replacing |·| with ∥·∥ or the Euclidean norm |·|.
The following lemma gives an interesting inequality due to Morrey. To simplify nota-

tion dz will mean dmp (z).

Lemma 16.3.2 Let u be a C1 function on Rp. Then there exists a constant C, depending
only on p such that for any x, y ∈ Rp,

|u(x)−u(y)| ≤C
(∫

B(x,2|x−y|)
|∇u(z) |qdz

)1/q(
| x− y|(1−p/q)

)
. (16.3)

Here q > p and C is some constant depending on p,q.

Proof: In the argument C will be a generic constant which depends on p,q. Consider
the following picture.
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x
U

W
V
y

This is a picture of two balls of radius r = |x−y| in Rp, U and V having centers at x
and y respectively, which intersect in the set W. The center of U is on the boundary of V
and the center of V is on the boundary of U as shown in the picture. There exists a constant
C, independent of r depending only on p such that mp(W )

mp(U) =
mp(W )
mp(V ) =

1
C . You could compute

this constant if you desired but it is not important here.
Then

|u(x)−u(y)| =
1

mp (W )

∫
W
|u(x)−u(y)|dz

≤ 1
mp (W )

∫
W
|u(x)−u(z)|dz+

1
mp (W )

∫
W
|u(z)−u(y)|dz

=
C

mp (U)

[∫
W
|u(x)−u(z)|dz+

∫
W
|u(z)−u(y)|dz

]
≤ C

mp (U)

[∫
U
|u(x)−u(z)|dz+

∫
V
|u(y)−u(z)|dz

]
(16.4)

Now consider these two terms. Let q > p. Consider the first term.
Letting U0 denote the ball of the same radius as U but with center at 0.

1
mp (U)

∫
U
|u(x)−u(z)|dz =

1
mp (U0)

∫
U0

|u(x)−u(z+x)|dz

=
1

mp (U0)

∫
U0

∣∣∣∣∫ 1

0
∇u(x+ tz) ·zdt

∣∣∣∣dz≤ 1
mp (U0)

∫ 1

0

∫
U0

|∇u(x+ tz)| |z|dzdt

≤ 1
mp (U0)

∫ 1

0

(∫
U0

|∇u(x+ tz)|q dz
)1/q(∫

U0

|z|q/(q−1) dz
)(q−1)/q

=
1

mp (U0)

∫ 1

0

(∫
U0

|∇u(x+ tz)|q dz
)1/q(∫

Sp−1

∫ r

0
ρ

q/(q−1)
ρ

p−1dρdσ

)(q−1)/q

= Cpq
r

1
q (q−p+pq)

mp (U0)

∫ 1

0

(∫
U0

|∇u(x+ tz)|q dz
)1/q

dt

=
Cpq

α (p)
r1− p

q

mp (U0)

∫ 1

0

(∫
U0

|∇u(x+ tz)|q dz
)1/q

dt

where Cpq = σ p−1
(
Sp−1

)(q−1)/q
(

q−1
q−p+pq

)(q−1)/q
.

Now estimate the last term.∫ 1

0

(∫
U0

|∇u(x+ tz)|q dz
)1/q

dt =
∫ 1

0

(
1
t p

∫
tU0

|∇u(x+v)|q dv
)1/q

dt

≤
∫ 1

0

1
t p/q

(∫
U0

|∇u(x+v)|q dv
)1/q

dt
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=
q

q− p

(∫
U0

|∇u(x+v)|q dv
)1/q

=
q

q− p

(∫
U
|∇u(z)|q dz

)1/q

Since q > p . Thus

1
mp (U)

∫
U
|u(x)−u(z)|dz≤C

(∫
U
|∇u(z)|q dz

)1/q

≤C
(∫

B(x,2|x−y|)
|∇u(z)|q dz

)1/q

and similarly

1
mp (V )

∫
V
|u(x)−u(z)|dz≤C

(∫
B(x,2|x−y|)

|∇u(z)|q dz
)1/q

From 16.4, |u(x)−u(y)| ≤C
(∫

B(x,2|x−y|) |∇u(z)|q dz
)1/q
|x−y|1−

p
q ■

Corollary 16.3.3 Let u be Lipschitz on Rp with constant K. Then there is a constant C
depending only on p,q such that

|u(x)−u(y)| ≤C
(∫

B(x,2|x−y|)
|∇u(z) |qdz

)1/q(
| x− y|(1−p/q)

)
. (16.5)

Here q > p.

Proof: Let un = u ∗ φ n where {φ n} is a mollifier as in Lemma 16.3.1. Then from
Lemma 16.3.2, there is a constant depending only on p such that

|un (x)−un (y)| ≤C
(∫

B(x,2|x−y|)
|∇un (z) |qdz

)1/q(
| x− y|(1−p/q)

)
.

Now |∇un| = |∇u∗φ n| by Lemma 16.3.1 and this last is bounded. Also, by this lemma,
∇un (z)→ ∇u(z) a.e. and un (x)→ u(x) for all x. Therefore, by the dominated conver-
gence theorem, pass to the limit as n→ ∞ and obtain 16.5. ■

Note you can write 16.5 in the form

|u(x)−u(y)| ≤ C
(

1
|x−y|p

∫
B(x,2|x−y|)

|∇u(z) |qdz
)1/q

|x−y|

= Ĉ
(

1
mp (B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z) |qdz
)1/q

|x−y|

Before leaving this remarkable formula, note that if you are in any situation where the
above formula holds and ∇u exists in some sense and is in Lq,q > p, then u would need to
be continuous. This is the basis for the Sobolev embedding theorem.

Here is Rademacher’s theorem.

Theorem 16.3.4 Suppose u is Lipschitz with constant K then if x is a point where
∇u(x) exists,

|u(y)−u(x)−∇u(x) · (y−x)|

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |qdz
)1/q

| x− y|. (16.6)

Also u is differentiable at a.e. x and also

u(x+tv)−u(x) =
∫ t

0
Dvu(x+ sv)ds (16.7)
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Proof: This follows easily from letting g(y) ≡ u(y)− u(x)−∇u(x) · (y−x) . As
explained above, |∇u(x)| ≤ √pK at every point where ∇u exists, the exceptional points
being in a set of measure zero. Then g(x) = 0, and ∇g(y) = ∇u(y)−∇u(x) at the points
y where the gradient of g exists. From Corollary 16.3.3,

|u(y)−u(x)−∇u(x) · (y−x)|= |g(y)|= |g(y)−g(x)|

≤ C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |qdz

)1/q

|x−y|1−
p
q

= C
(∫

B(x,2|x−y|)
|∇u(z)−∇u(x) |qdz

)1/q 1
|x−y|p

1
q
|x−y|

= C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x) |qdz
)1/q

|x− y|.

Now this is no larger than

≤C
(

1
m(B(x,2 |x−y|))

∫
B(x,2|x−y|)

|∇u(z)−∇u(x)|(2√pK)q−1 dz
)1/q

|x− y|

It follows that at Lebesgue points of ∇u, the above expression is o(|x−y|) and so at all
such points u is differentiable. As to 16.7, this follows from an application of Lemma
16.1.2 to f (t) = u(x+tv). ■

Note that for a.e. x,Dvu(x) = ∇u(x) ·v. If you have a line with direction vector v,
does it follow that Du(x+ tv) exists for a.e. t? We know the directional derivative exists
a.e. t but it might not be clear that it is ∇u(x) ·v.

For |w|= 1, denote the measure of Section 11.11 defined on the unit sphere Sp−1 as σ .
Let Nw be defined as those t ∈ [0,∞) for which Dwu(x+ tw) ̸= ∇u(x+ tw) ·w.

B≡
{
w ∈ Sp−1 : Nw has positive measure

}
This is contained in the set of points of Rp where the derivative of v(·) ≡ u(x+ ·) fails
to exist. Thus from Section 11.11 the measure of this set is

∫
B
∫

Nw
ρn−1dρdσ (w) This

must equal zero from what was just shown about the derivative of the Lipschitz function v
existing a.e. and so σ (B) = 0. The claimed formula follows from this. Thus we obtain the
following corollary.

Corollary 16.3.5 Let u be Lipschitz. Then for any x and v ∈ Sp−1 \Bx where σ (Bx) =
0, it follows that for all t,

u(x+tv)−u(x) =
∫ t

0
Dvu(x+ sv)ds =

∫ t

0
∇u(x+ sv) ·vds

In all of the above, the function u is defined on all of Rp. However, it is always the
case that Lipschitz functions can be extended off a given set. Thus if a Lipschitz function is
defined on some set Ω, then it can always be considered the restriction to Ω of a Lipschitz
map defined on all of Rp.

Theorem 16.3.6 If h : Ω→ Rm is Lipschitz, then there exists h : Rp→ Rm which
extends h and is also Lipschitz.
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Proof: It suffices to assume m = 1 because if this is shown, it may be applied to the
components of h to get the desired result. Suppose

|h(x)−h(y)| ≤ K |x−y|. (16.8)

Define
h(x)≡ inf{h(w)+K |x−w| :w ∈Ω}. (16.9)

If x ∈Ω, then for allw ∈Ω, h(w)+K |x−w| ≥ h(x) by 16.8. This shows h(x)≤ h(x).
But also you could takew= x in 16.9 which yields h(x)≤ h(x). Therefore h(x) = h(x)
if x ∈Ω.

Now suppose x,y ∈Rp and consider
∣∣h(x)−h(y)

∣∣. Without loss of generality assume
h(x) ≥ h(y) . (If not, repeat the following argument with x and y interchanged.) Pick
w ∈Ω such that h(w)+K |y−w|− ε < h(y). Then∣∣h(x)−h(y)

∣∣= h(x)−h(y)≤ h(w)+K |x−w|−

[h(w)+K |y−w|− ε]≤ K |x−y|+ ε.

Since ε is arbitrary,
∣∣h(x)−h(y)

∣∣≤ K |x−y| ■

16.4 Weak Derivatives
A related concept is that of weak derivatives. Let Ω ⊆ Rp be an open set. A distribution
on Ω is defined to be a linear functional on C∞

c (Ω), called the space of test functions. The
space of all such linear functionals will be denoted by D∗ (Ω) . Actually, more is sometimes
done here. One imposes a topology on C∞

c (Ω) making it into a topological vector space,
and when this has been done, D ′ (Ω) is defined as the continuous linear maps. To see this,
consult the book by Yosida [60] or the book by Rudin [51]. I am ignoring this topology
because in practice, one is usually more interested in some other topology which is much
less exotic. Thus D∗ (Ω) is an algebraic dual which has nothing to do with topology.

The following is a basic lemma which will be used in what follows. First recall the
following definition.

Definition 16.4.1 For Ω an open set inRn,C∞
c (Ω) denotes those functions φ which

are infinitely differentiable and have compact support in Ω. This is a nonempty set of
functions by Lemma 12.5.3.

With this definition, the fundamental lemma is as follows.

Lemma 16.4.2 Suppose f ∈ L1
loc (Rn) and suppose

∫
f φdx = 0 for all φ ∈ C∞

c (Rn).
Then f (x) = 0 a.e. x.

Proof: Without loss of generality f is real-valued. Let E ≡ { x : f (x) > ε} and let
Em ≡ E ∩B(0,m). We show that m(Em) = 0. If not, there exists an open set V , and a
compact set K satisfying

K ⊆ Em ⊆V ⊆ B(0,m) , mp (V \K)< 4−1m(Em) ,
∫

V\K
| f |dx < ε4−1mp (Em) .

Let H and W be open sets satisfying K ⊆ H ⊆ H ⊆W ⊆W ⊆V and let H ≺ g≺W where
the symbol, ≺, has the same meaning as it does in Definition 3.12.3. That is, g equals 1 on
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H and has compact support contained in W . Then let φ δ be a mollifier and let h ≡ g ∗φ δ

for δ small enough that K ≺ h≺V. Thus

0 =
∫

f hdx =
∫

K
f dx+

∫
V\K

f hdx≥ εmp (K)− ε4−1mp (Em)

≥ ε
(
mp (Em)−4−1mp (Em)

)
− ε4−1mp (Em)≥ 2−1

εmp(Em).

Therefore, mp (Em) = 0, a contradiction. Thus mp (E) ≤ ∑
∞
m=1 mp (Em) = 0 and so, since

ε > 0 is arbitrary, mp ({x : f (x)> 0}) = 0. Similarly m({x : f (x)< 0}) = 0. If f is com-
plex valued, the above applies to the real and imaginary parts. ■

Example: The space L1
loc (Ω) may be considered as a subset of D∗ (Ω) as follows.

f (φ) ≡
∫

Ω
f (x)φ (x)dx for all φ ∈ C∞

c (Ω). Recall that f ∈ L1
loc (Ω) if f XK ∈ L1 (Ω)

whenever K is compact.
This is well defined thanks to Lemma 16.4.2.
Example: δ x ∈D∗ (Ω) where δx (φ)≡ φ (x).
It will be observed from the above two examples and a little thought that D∗ (Ω) is

truly enormous. We shall define the derivative of a distribution in such a way that it agrees
with the usual notion of a derivative on those distributions which are also continuously
differentiable functions. With this in mind, let f be the restriction to the open set Ω of a
smooth function defined on Rp. Then Dxi f makes sense and for φ ∈C∞

c (Ω)

Dxi f (φ)≡
∫

Ω

Dxi f (x)φ (x)dx =−
∫

Ω

f Dxiφdx =− f (Dxiφ).

Motivated by this, here is the definition of a weak derivative.

Definition 16.4.3 For T ∈D∗ (Ω) ,DxiT (φ)≡−T (Dxiφ).

One can continue taking derivatives indefinitely. Thus, Dxix j T ≡ Dxi

(
Dx j T

)
and it is

clear that all mixed partial derivatives are equal because this holds for the functions in
C∞

c (Ω). Thus one can differentiate virtually anything, even functions that may be discon-
tinuous everywhere. However the notion of “derivative” is very weak, hence the name,
“weak derivatives”.

Example: Let Ω = R and let H (x)≡
{

1 if x≥ 0,
0 if x < 0. Then

DH (φ) =−
∫

H (x)φ
′ (x)dx = φ (0) = δ 0(φ).

Note that in this example, DH is not a function.
What happens when D f is a function?

Theorem 16.4.4 Let Ω = (a,b) and suppose that f and D f are both in L1 (a,b).
Then f is equal to a continuous function a.e., still denoted by f and f (x) = f (a) +∫ x

a D f (t)dt.

Proof: Consider f −
∫ (·)

a D f (t)dt ≡ T. Is this function equal to some constant a.e.? Let
φ ∈C∞

c (a,b) . By Fubini’s theorem, DT (φ)≡∫ b

a

(
f (x)−

∫ x

a
D f (t)dt

)
φ
′ (x)dx =

∫ b

a
f (x)φ

′ (x)dx−
∫ b

a

∫ x

a
D f (t)φ

′ (x)dtdx
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≡ −D f (φ)−
∫ b

a
D f (t)

∫ b

t
φ
′ (x)dxdt =−D f (φ)+

∫ b

a
D f (t)φ (t)dt

= −D f (φ)+D f (φ) = 0

Thus the theorem is proved if it is shown that whenever DT = 0, it follows that T is a
constant. This is the following lemma.

Lemma 16.4.5 Let T ∈ D∗ (a,b) and suppose DT = 0. Then there exists a constant C
such that T (φ) =

∫ b
a Cφdx.

Proof: T (Dφ) = 0 for all φ ∈ C∞
c (a,b) from the definition of DT = 0. Let φ 0 ∈

C∞
c (a,b) ,

∫ b
a φ 0 (x)dx = 1, and let

ψφ (x) =
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt

for φ ∈ C∞
c (a,b). Thus ψφ ∈ C∞

c (a,b) and Dψφ = φ −
(∫ b

a φ (y)dy
)

φ 0. Therefore, φ =

Dψφ +
(∫ b

a φ (y)dy
)

φ 0, so T (φ) = T (Dψφ )+
(∫ b

a φ (y)dy
)

T (φ 0) =
∫ b

a T (φ 0)φ (y)dy.
Let C = T φ 0. ■

It follows from this lemma that f (x)−
∫ x

a D f (t)dt = C for some constant which we
denote as f (a) so that f (x) = f (a)+

∫ x
a D f (t)dt. ■

Theorem 16.4.4 says that f (x) = f (a)+
∫ x

a D f (t)dt whenever it makes sense to write∫ x
a D f (t)dt, if D f is interpreted as a weak derivative. Somehow, this is the way it ought

to be. It follows from the fundamental theorem of calculus that f ′ (x) exists for a.e. x
in the classical sense where the derivative is taken in the sense of a limit of difference
quotients and f ′ (x) = D f (x). This raises an interesting question. Suppose f is continuous
on [a,b] and f ′ (x) exists in the classical sense for a.e. x. Does it follow that f (x) =
f (a) +

∫ x
a f ′ (t)dt? The answer is no. You can build such an example from the Cantor

function which is increasing and has a derivative a.e. which equals 0 a.e. and yet climbs
from 0 to 1, Problem 4 on Page 268. Thus, in a sense weak derivatives are more agreeable
than the classical ones.

16.5 Definition of Hausdorff Measures
First I will discuss some outer measures. In all that is done here, α (p) will be the volume
of the ball in Rp which has radius 1. Hausdorff measures are very geometrically motivated
and so the norm in Rp will be the usual Euclidean norm unless indicated otherwise.

Definition 16.5.1 For a set E, denote by r (E) the number which is half the diam-
eter of E. Thus r (E) ≡ 1

2 sup{|x−y| : x,y ∈ E} ≡ 1
2 diam(E) Let E ⊆ Rp. H s

δ
(E) ≡

inf{∑∞
j=1 β (s)(r (C j))

s : E ⊆ ∪∞
j=1C j,r (C j) < δ}. Define H s(E) ≡ limδ→0+H s

δ
(E). In

case s = 0 and E is an infinite set, then for small enough δ , H 0
δ
(E) > m for any positive

m so H 0 (E) = ∞ and in case E is a finite set, then H 0
δ
(E) will clearly be the number

of things in E for all δ small enough. Thus H 0 is just counting measure and the H 0
δ

are
outer measures converging to H 0 provided we define H 0 ( /0)≡ 0.

Note that H s
δ
(E) if you make δ smaller, H s

δ
(E) will become larger and so the limit

clearly exists.
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In the above definition, β (s) is an appropriate positive constant depending on s. It will
turn out that for p an integer, β (p) = α (p) where α (p) is the Lebesgue measure of the
unit ball, B(0,1) where the Euclidean norm is used to determine this ball.

Lemma 16.5.2 H s and H s
δ

are outer measures for all s≥ 0.

Proof: The case s= 0 comes directly from the definition so assume s> 0. If A⊆B, then
H s(A) ≤H s(B) with similar assertions valid for H s

δ
. To see that H s

δ
( /0) = 0, let C j ≡

B
(
0,ε(1/s)2−( j+1)/s

)
where ε(1/s) < δ so that H s

δ
( /0) ≤ ∑

∞
j=1 β (s)

(
ε1/s2−( j+1)/s

)s
=

β (s) ε

2 . Since ε is arbitrary, H s( /0) = 0.
Suppose E = ∪∞

i=1Ei and H s
δ
(Ei)< ∞ for each i. Let {Ci

j}∞
j=1 be a covering of Ei with

∑
∞
j=1 β (s)(r(Ci

j))
s− ε/2i < H s

δ
(Ei) and diam(Ci

j)≤ δ . Then

H s
δ
(E)≤

∞

∑
i=1

∞

∑
j=1

β (s)(r(Ci
j))

s ≤
∞

∑
i=1

H s
δ
(Ei)+ ε/2i ≤ ε +

∞

∑
i=1

H s
δ
(Ei).

It follows that since ε > 0 is arbitrary, H s
δ
(E)≤∑

∞
i=1 H s

δ
(Ei) which shows H s

δ
is an outer

measure. Now notice that H s
δ
(E) is increasing as δ → 0. Picking a sequence δ k decreasing

to 0, the monotone convergence theorem implies H s(E)≤ ∑
∞
i=1 H s(Ei). ■

The outer measure H s is called s dimensional Hausdorff measure when restricted to
the σ algebra of H s measurable sets. It is automatically a complete measure meaning that
if E ⊆ F where H s (F) = 0 then E is measurable. This follows from Theorem 9.5.4.

Next I will show the σ algebra of H s measurable sets includes the Borel sets.

16.6 Properties of Hausdorff Measure
Using Theorem 9.6.1 on Page 248, the following is obtained.

Theorem 16.6.1 The σ algebra of H s measurable sets contains the Borel sets
and H s has the property that for all E ⊆ Rp, there exists a Borel set F ⊇ E such that
H s(F) = H s(E).

Proof: Let dist(A,B) = 2δ 0 > 0. Is it the case that H s(A)+H s(B) = H s(A∪B)?
This is what is needed to use Theorem 9.6.1 about measurable sets including the Borel sets.

Let {C j}∞
j=1be a covering of A∪B such that diam(C j)≤ δ < δ 0 for each j and

H s
δ
(A∪B)+ ε >

∞

∑
j=1

β (s)(r (C j))
s.

Thus H s
δ
(A∪B)+ ε > ∑ j∈J1

β (s)(r (C j))
s +∑ j∈J2

β (s)(r (C j))
s where

J1 = { j : C j ∩A ̸= /0}, J2 = { j : C j ∩B ̸= /0}.

Recall dist(A,B) = 2δ 0, J1∩J2 = /0. It follows H s
δ
(A∪B)+ε >H s

δ
(A)+H s

δ
(B). Letting

δ → 0, and noting ε > 0 was arbitrary, yields H s(A∪B) ≥H s(A)+H s(B). Equality
holds because H s is an outer measure. By Theorem 9.6.1, H s is a Borel measure.

To verify the second assertion, note there is no loss of generality in letting H s (E)< ∞.
Let E ⊆ ∪∞

j=1C j, r(C j)< δ , and

H s
δ
(E)+δ >

∞

∑
j=1

β (s)(r (C j))
s. (16.10)
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Let Fδ = ∪∞
j=1C j. Thus Fδ ⊇ E and

H s
δ
(E)≤H s

δ
(Fδ )≤

∞

∑
j=1

β (s)(r
(
C j
)
)s =

∞

∑
j=1

β (s)(r (C j))
s < δ +H s

δ
(E).

Let δ k→ 0 and let F = ∩∞
k=1Fδ k

. Then F ⊇ E and

H s
δ k
(E)≤H s

δ k
(F)≤H s

δ k
(Fδ )≤ δ k +H s

δ k
(E).

Letting k→ ∞, H s(E)≤H s(F)≤H s(E)
We can also arrange to have F containing E be a Gδ set. In 16.10, replace C j with

C j +B
(
0,η j

)
which is an open set having diameter no more than diam(C j)+ 2η j so by

taking η j small enough, we can replace each C j with an open set O j in such a way as to
preserve 16.10 with C j replaced with O j and also r (O j)< δ . Then letting Vδ ≡ ∪ jO j,

H s
δ
(E)≤H s

δ
(Vδ )≤

∞

∑
j=1

β (s)(r (O j))
s < δ +H s

δ
(E).

Then let G = ∩kVδ k
where δ k → 0 and let the Vδ k

be decreasing as k increases, each
Vδ containing E. Then for each δ , H s

δ k
(E) ≤H s

δ k
(G) < δ +H s

δ k
(E) Let k→ ∞ to find

H s(E)≤H s(G)≤H s(E) as before. ■
A measure satisfying the conclusion of Theorem 16.6.1 is called a Borel regular mea-

sure.

16.7 H p and mp

Next I will compare H p and mp. First recall this covering theorem which is a summary of
Corollary 9.12.5 found on Page 265.

Theorem 16.7.1 Let E ⊆ Rp and let F be a collection of balls of bounded radii
such that F covers E in the sense of Vitali. Then there exists a countable collection of
disjoint balls from F , {B j}∞

j=1, such that mp(E \∪∞
j=1B j) = 0.

Recall the following interesting lemma stated here for convenience. It is Lemma 11.7.2.

Lemma 16.7.2 Every open set U in Rp is a countable disjoint union of half open boxes
of the form Q≡∏

p
i=1[ai,ai +2−k) where ai = l2−k for l some integer.

Lemma 16.7.3 If S⊆Rp and mp (S) = 0, then H p (S) =H p
δ
(S) = 0. Also, there exists

a constant k such that H p (E) ≤ kmp (E) for all E Borel k ≡ β (p)
α(p) . Also, if Q0 ≡ [0,1)p,

the unit cube, then ∞ > H p ([0,1)p)> 0.

Proof: Suppose first mp (S) = 0. Without loss of generality, S is bounded. Then by
outer regularity, there exists a bounded open V containing S and mp (V ) < ε . For each

x ∈ S, there exists a ball Bx such that B̂x ⊆ V and δ > r
(

B̂x

)
. By the Vitali covering

theorem there is a sequence of disjoint balls {Bk} such that
{

B̂k

}
covers S. Here B̂k has
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the same center as Bk but 5 times the radius. Then letting α (p) be the Lebesgue measure
of the unit ball in Rp

H p
δ
(S)≤∑

k
β (p)r

(
B̂k

)p
=

β (p)
α (p)

5p
∑
k

α (p)r (Bk)
p ≤ β (p)

α (p)
5pmp (V )<

β (p)
α (p)

5p
ε

Since ε is arbitrary, this shows H p
δ
(S) = 0 and H p (S)≡ limδ→0 H p

δ
(S) = 0.

Letting U be an open set and δ > 0, consider all balls B contained in U which have
diameters less than δ . This is a Vitali covering of U and therefore by Theorem 16.7.1, there
exists {Bi} , a sequence of disjoint balls of radii less than δ contained in U such that ∪∞

i=1Bi
differs from U by a set of Lebesgue measure zero. Let α (p) be the Lebesgue measure of
the unit ball in Rp. Then from what was just shown,

H p
δ
(U) = H p

δ
(∪iBi)≤

∞

∑
i=1

β (p)r (Bi)
p =

β (p)
α (p)

∞

∑
i=1

α (p)r (Bi)
p

=
β (p)
α (p)

∞

∑
i=1

mp (Bi) =
β (p)
α (p)

mp (U)≡ kmp (U) , k ≡ β (p)
α (p)

Now letting E be Lebesgue measurable, it follows from the outer regularity of mp there
exists a decreasing sequence of open sets, {Vi} containing E such such that mp (Vi)→
mp (E) . Then from the above, H p

δ
(E) ≤ limi→∞ H p

δ
(Vi) ≤ limi→∞ kmp (Vi) = kmp (E) .

Since δ > 0 is arbitrary, it follows that also H p (E) ≤ kmp (E) . This proves the first part
of the lemma and that ∞ > H p ([0,1)p).

If H p ([0,1)p)= 0, it follows H p (Rp)= 0 becauseRp is the countable union of trans-
lates of Q0 ≡ [0,1)p and it is clear that H p is translation invariant. Since each H p

δ
is no

larger than H p, H p
δ
(Rp) = 0. Therefore, there exists a sequence of sets, {Ci} each having

diameter less than δ such that the union of these sets equals Rp but 1 > ∑
∞
i=1 β (p)r (Ci)

p .
Now let Bi be a ball having radius ri equal to diam(Ci) = 2r (Ci) which contains Ci. These
Bi cover Rp, 1

2 ri = r (Ci) . It follows that

1 >
∞

∑
i=1

β (p)r (Ci)
p =

∞

∑
i=1

β (p)
α (p)2p mp (Bi) = ∞,

a contradiction. This shows that H p ([0,1)p)> 0. ■
Note that the above shows that H p ([−n,n)p) is always a finite positive real number

for n ∈ N.

Theorem 16.7.4 By choosing β (p) properly, one can obtain H p = mp on all
Lebesgue measurable sets.

Proof: Define l = mp(Q0)
H p(Q0)

where Q0 = [0,1)p is the half open unit cube in Rp. It

follows then that l = mp(Q)
H p(Q) where Q = ∏

p
i=1[ai,ai + 2−k) where ai = l2−k for l some in-

teger because of translation invariance of both measures and that Q0 is the union of such
Q. By Lemma 16.7.2, lH p (V ) = mp (V ) for any V open. Letting Vn be an increasing
sequence of bounded open sets whose union is Rp, it follows that the set of Borel E sat-
isfying lH p (E ∩Vn) = mp (E ∩Vn) is a σ algebra which contains the open sets and so
this equation is true for all Borel sets. Letting n→ ∞, lH p (F) = mp (F) for any Borel F .
For E Lebesgue measurable, there is F Borel contained in E with mp (E \F) = 0 and so
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F is H p measurable as is E \F because H p (E \F) = 0 from Lemma 16.7.3 and H p

is an outer measure. Recall that sets having outer measure 0 end up being measurable
sets. Thus E = F ∪ (E \F) is H p measurable also. This implies from Theorem 16.6.1
and Proposition 11.1.2 that if E is Lebesgue measurable, there is Borel F ⊇ E such that
mp (E) = mp (F) = lH p (F) = lH p (E). Now choose β (p) to make the constant l = 1.■

The exact determination of β (p) is more technical.

16.8 Technical Considerations
Let α(p) be the volume of the unit ball in Rp. Thus the volume of B(0,r) in Rp is α(p)rp

from the change of variables formula. There is a very important and interesting inequality
known as the isodiametric inequality which says that if A is any set in Rp, then

mp(A)≤ α(p)(2−1diam(A))p = α (p)r (A)p .

This inequality may seem obvious at first but it is not really. The reason it is not is that
there are sets which are not subsets of any sphere having the same diameter as the set. For
example, consider an equilateral triangle. You have to include the vertices and so the center
of such a ball would need to be closer to each vertex than the radius of the small circles.
See the above picture

Lemma 16.8.1 Let f : Rp−1→ [0,∞) be Borel measurable and let

S = {(x,y) : |y|< f (x)}.

Then S is a Borel set in Rp.

Proof: Set sk be an increasing sequence of Borel measurable functions converging
pointwise to f . sk(x)=∑

Nk
m=1 ck

mXEk
m
( x). Let Sk =∪Nk

m=1Ek
m×(−ck

m,c
k
m). Then (x,y)∈ Sk

if and only if f (x)> 0 and |y|< sk(x)≤ f (x). It follows that Sk ⊆ Sk+1 and S = ∪∞
k=1Sk.

But each Sk is a Borel set and so S is also a Borel set. ■
Let Pi be the projection onto span(e1, · · · ,ei−1,ei+1, · · · ,ep) where the ek are the stan-

dard basis vectors in Rp, ek being the vector having a 1 in the kth slot and a 0 elsewhere.
Thus Pix≡ ∑ j ̸=i x je j. Also let APix ≡ {xi : (x1, · · · ,xi, · · · ,xp) ∈ A}

xAPix

Pix ∈ span{e1, · · · ,ei−1ei+1, · · · ,en}.

Lemma 16.8.2 Let A⊆ Rp be a Borel set. Then Pix→ m(APix) is a Borel measurable
function defined on Pi(Rp).

Proof: From Proposition 10.14.4, APix is measurable if S is product measurable. By
Theorem 10.14.9, the Borel sets are product measurable and Pix→m(APix) is measurable,
in fact product measurable. Therefore, the desired conclusion of this lemma follows. ■
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16.8.1 Steiner Symmetrization

Definition 16.8.3 Define S(A,ei)≡ {x≡ Pix+ yei : |y|< 2−1m(APix)}.

Here is a picture of the idea used in producing S(A,ei) from A. The one on the top is
S (A,ei). The two sets have the same area but S (A,ei) smaller diameter than A.

A

S(A,ei)

Lemma 16.8.4 Let A be a Borel subset of Rp. Then S(A,ei) satisfies

Pix+ yei ∈ S(A,ei) if and only if Pix− yei ∈ S(A,ei),

S(A,ei) is a Borel set in Rp,

mp(S(A,ei)) = mp(A), (16.11)

diam(S(A,ei))≤ diam(A). (16.12)

Proof: The first assertion is obvious from the definition. The Borel measurability of
S(A,ei) follows from the definition and Lemmas 16.8.2 and 16.8.1. To show 16.11,

mp(S(A,ei)) =
∫

PiRp

∫ 2−1m(APix)

−2−1m(APix)
dxidx1 · · ·dxi−1dxi+1 · · ·dxp =

∫
PiRp

m(APix)dx1 · · ·dxi−1dxi+1 · · ·dxp =
∫

PiRp

∫
R

XAdxidx1 · · ·dxi−1dxi+1 · · ·dxp =mp (A)

Now suppose x1 and x2 ∈ S(A,ei), and x1 = Pix1 + y1ei, x2 = Pix2 + y2ei.

Then y1 ∈
[
−m(APix1)

2 ,
m(APix1)

2

]
,y2 ∈

[
−m(APix2)

2 ,
m(APix2)

2

]
. There exists

x1i ∈ [infAPix1 ,supAPix1 ] and x2i ∈ [infAPix2 ,supAPix2 ]

such that x1i ∈ APix1 and x2i ∈ APix2 . The second pair of intervals is at least as long as the
corresponding interval in the first pair and the second pair are not necessarily centered at
the same point. Therefore, such an x1i and x2i can be chosen such that |x2i− x1i| ≥ |y1− y2|
and so x̂1 ≡ Pix1 + x1iei and x̂2 ≡ Pix2 + x2iei are in A and |x̂1− x̂2| ≥ |x1−x2| so the
diameter of S (A,ei) is no more than the diameter of A as claimed. ■

The next lemma says that if A is already symmetric with respect to the jth direction,
then this symmetry is not destroyed by taking S (A,ei).

Lemma 16.8.5 Suppose A is a Borel set in Rp such that Pjx+e jx j ∈ A if and only if
Pj x+ (−x j)e j ∈ A. Then if i ̸= j, Pjx+e jx j ∈ S(A,ei) if and only if Pj x+ (−x j)e j ∈
S(A,ei).
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Proof: By definition, Pjx+e jx j ∈ S(A,ei) if and only if |xi| < 2−1m(APi(Pjx+e jx j)).
Now xi ∈ APi(Pjx+e jx j) if and only if xi ∈ APi(Pjx+(−x je j)) by the assumption on A which
says that A is symmetric in the e j direction. Hence Pjx+e jx j ∈ S(A,ei) if and only if
|xi|< 2−1m(APi(Pjx+(−x j)e j)) if and only if Pj x+ (−x j)e j ∈ S(A,ei). ■

16.8.2 The Isodiametric Inequality
The next theorem is called the isodiametric inequality. It is the key result used to compare
Lebesgue and Hausdorff measures.

Theorem 16.8.6 Let A be any Lebesgue measurable set in Rp. Then it follows that
mp(A)≤ α(p)(r (A))p.

Proof: Suppose first that A is Borel. Let A1 = S(A,e1) and Ak = S(Ak−1,ek). Then
by Lemma 16.8.4, Ap is a Borel set, diam(Ap) ≤ diam(A) , mp(Ap) = mp(A) and Ap is
symmetric. Thus x ∈ Ap if and only if −x ∈ Ap. It follows that Ap ⊆ B(0,r (Ap)). If
x ∈ Ap \B(0,r (Ap)), then −x ∈ Ap \B(0,r (Ap)) and so diam(Ap) ≥ 2 |x| > diam(Ap).
Therefore, there is no such x and mp(Ap) ≤ α(p)(r (Ap))

p ≤ α(p)(r (A))p. It remains to
establish this inequality for arbitrary measurable sets. Letting A be such a set, let {Kk} be
an increasing sequence of compact subsets of A such that mp(A) = limk→∞ mp(Kk). Then

mp(A) = lim
k→∞

mp(Kk)≤ lim sup
k→∞

α(p)(r (Kk))
p ≤ α(p)(r (A))p. ■

16.9 The Proper Value of β (p)
I will show that the proper determination of β (p) is α (p), the volume of the unit ball. Since
β (p) has been adjusted such that l = 1 in Theorem 16.7.4, mp (B(0,1)) = H p (B(0,1)).
There exists a covering of B(0,1) of sets of radii less than δ ,{Ci}∞

i=1 such that

H p
δ
(B(0,1))+ ε > ∑

i
β (p)r (Ci)

p

Then by Theorem 16.8.6, the isodiametric inequality,

H p
δ
(B(0,1))+ ε > ∑

i
β (p)r (Ci)

p =
β (p)
α (p) ∑

i
α (p)r

(
Ci
)p

≥ β (p)
α (p) ∑

i
mp
(
Ci
)
≥ β (p)

α (p)
mp (B(0,1)) =

β (p)
α (p)

H p (B(0,1))

Now taking the limit as δ → 0, H p (B(0,1))+ ε ≥ β (p)
α(p)H

p (B(0,1)) and since ε > 0 is
arbitrary, this shows α (p)≥ β (p).

By the Vitali covering theorem in Corollary 9.12.5, there exists a sequence of disjoint
balls of radius no more than δ , {Bi} such that B(0,1) = (∪∞

i=1Bi)∪N. where mp (N) =
0. Then H p

δ
(N) = 0 can be concluded because H p

δ
≤H p and Lemma 16.7.3. Using

mp (B(0,1)) = H p (B(0,1)) again,

H p
δ
(B(0,1)) = H p

δ
(∪iBi)≤

∞

∑
i=1

β (p)r (Bi)
p =

β (p)
α (p)

∞

∑
i=1

α (p)r (Bi)
p
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=
β (p)
α (p)

∞

∑
i=1

mp (Bi) =
β (p)
α (p)

mp (∪iBi) =
β (p)
α (p)

mp (B(0,1)) =
β (p)
α (p)

H p (B(0,1))

which implies α (p) ≤ β (p) and so the two are equal. This proves that if α (p) = β (p) ,
then the H p = mp on the measurable sets of Rp.

This gives another way to think of Lebesgue measure which is a particularly nice way
because it is coordinate free, depending only on the notion of distance.

For s< p, note that H s is not a Radon measure because it will not generally be finite on
compact sets. For example, let p= 2 and consider H 1(L) where L is a line segment joining
(0,0) to (1,0). Then H 1(L) is no smaller than H 1(L) when L is considered a subset of
R1, p = 1. Thus by what was just shown, H 1(L) ≥ 1. Hence H 1([0,1]× [0,1]) = ∞.
The situation is this: L is a one-dimensional object inside R2 and H 1 is giving a one-
dimensional measure of this object. In fact, Hausdorff measures can make such heuristic
remarks as these precise. Define the Hausdorff dimension of a set A, as

dim(A) = inf{s : H s(A) = 0}

16.10 A Formula for α (p)
What is α(p) for p a positive integer? Let p be a positive integer. Theorem 14.4.1 on Page
405 says that

Theorem 16.10.1 α(p) = π p/2(Γ(p/2+1))−1 where Γ(s) is the gamma function
Γ(s) =

∫
∞

0 e−tts−1dt.

From now on, in the definition of Hausdorff measure, it will always be the case that
β (s) = α (s) . As shown above, this is the right thing to have β (s) to equal if s is a posi-
tive integer because this yields the important result that Hausdorff measure is the same as
Lebesgue measure. Note the formula, πs/2(Γ(s/2+1))−1 makes sense for any s≥ 0.



Chapter 17

The Area Formula
I am grateful to those who have found errors in this material, some of which were egregious.
I would not have found these mistakes because I never teach this material and I don’t use it
in my research. I do think it is wonderful mathematics however.

17.1 Estimates for Hausdorff Measure
This section is on estimates which relate Hausdorff measure to Lebesgue measure. This
will allow a geometric motivation for measures on Lipschitz manifolds.

The main case will be for h a Lipschitz function, |h(x)−h(y)| ≤ K |x−y| defined
on Rn. This is no loss of generality because of Theorem 16.3.6. However, the main presen-
tation will include more general situations than this. One uses the differentiability of h off
a set of measure zero to show the existence of disjoint Borel sets E on which h is Lipschitz
with its inverse also being Lipschitz on h(E).

The following lemma states that Lipschitz maps take sets of measure zero to sets of
measure zero. It also gives a convenient estimate. This involves the consideration of H n

as an outer measure. Thus it is not necessary to know the set B is measurable.
In fact, one only needs to have h locally Lipschitz in much of what follows.

Definition 17.1.1 Let h : Rn→ Rm. This function is said to be locally Lipschitz if
for every x ∈ Rn, there exists a ball Bx containing x and a constant Kx such that for all
y,z ∈ Bx,

|h(z)−h(y)| ≤ Kx |z−y|

Lemma 17.1.2 If h is Lipschitz with Lipschitz constant K then for B⊆ Rn,

H n (h(B))≤ KnH n (B)

Also, if T is a set in Rn, mn (T ) = 0, then H n (h(T )) = 0. It is not necessary that h be
one to one.

Proof: If H n (B) = ∞, there is nothing to show. Assume H n (B) < ∞. Let {Ci}∞

i=1
cover B with each having diameter less than δ and let this cover be such that

∑
i

β (n)
1
2

diam(Ci)
n < H n

δ
(B)+ ε

Then {h(Ci)} covers h(B) and each set has diameter no more than Kδ . Then

H n
Kδ

(h(B)) ≤ ∑
i

β (n)
(

1
2

diam(h(Ci))

)n

≤ Kn
∑

i
β (n)

(
1
2

diam(Ci)

)n

≤ Kn (H n
δ
(B)+ ε

)
Since ε is arbitrary, this shows that H n

Kδ
(h(B))≤ KnH n

δ
(B). Now take a limit as δ → 0.

The second claim follows from mn = H n on Lebesgue measurable sets of Rn. ■

Lemma 17.1.3 If h is locally Lipschitz and mn (T ) = 0, then H n (h(T )) = 0. It is not
necessary that h be one to one.

453
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Proof: Let Tk ≡ {x ∈ T : h has Lipschitz constant k near x} .Thus T = ∪kTk. I will
show h(Tk) has H n measure zero and then it will follow that h(T ) = ∪∞

k=1h(Tk) , the
h(Tk) increasing in k, must also have measure zero.

Let ε > 0 be given. By outer regularity, there exists an open set V containing Tk such
that mn (V )< ε . Forx∈ Tk it follows there exists rx < 1 such that the ball centered atxwith
radius rx is contained in V and in this ball, h has Lipschitz constant k. By the Besicovitch
covering theorem, Theorem 4.5.8, there are Nn sets of these balls {G1, · · · ,GNn} such that
the balls in Gk are disjoint and the union of all balls in the Nn sets covers Tk. Then

H n (h(Tk)) ≤
Nn

∑
k=1

∑{H n (h(B)) : B ∈ Gk}

≤ Nnknmn (V )< Nnkn
ε

Since ε is arbitrary, this shows that H n (h(Tk)) = 0. Hence H n (h(T )) = 0 also, since it
is the limit of the H n (h(Tk)). ■

Lemma 17.1.4 If S is a Lebesgue measurable set inRn andh is Lipschitz or locally Lip-
schitz then h(S) is H n measurable. Also, if h is Lipschitz with constant K,H n (h(S))≤
Knmn (S). It is not necessary that h be one to one.

Proof: The estimate follows from Lemma 17.1.2 or 17.1.3 and the observation that, as
shown before, Theorem 16.7.4, if S is Lebesgue measurable in Rn, then H n (S) = mn (S).
The estimate also shows that h maps sets of Lebesgue measure zero to sets of H n mea-
sure zero. Why is h(S) H n measurable if S is Lebesgue measurable? This follows from
completeness of H n. Indeed, let F be Fσ and contained in S with mn (S\F) = 0. Then
h(S) = h(S\F)∪h(F) . The second set is Borel and the first has H n measure zero. By
completeness of H n, h(S) is H n measurable. ■

Recall Theorem 1.5.5 on Page 23. This is stated here for convenience.

Theorem 17.1.5 Let F be an m× p matrix where m≥ p. Then there exists an m× p
matrix R and a p× p matrix U such that

F = RU, U =U∗,

all eigenvalues of U are non negative,U2 = F∗F, R∗R = I, and |Rx|= |x|.

Thus, if h : Rp→ Rm,m≥ p, and Dh(x) exists, then Dh(x) = R(x)U (x) where

(U (x)u,v) = (U (x)v,u) ,(U (x)u,u)≥ 0

and R∗R = I so R preserves lengths. Recall that R∗ is the adjoint defined by (Rx,y) =
(x,R∗y) . This convention will be used in what follows.

Lemma 17.1.6 In this situation where R∗R = I, |R∗u| ≤ |u|.

Proof: First note that (u−RR∗u,RR∗u) = (u,RR∗u)−|RR∗u|2 = |R∗u|2−|R∗u|2 =
0, and so

|u|2 = |u−RR∗u+RR∗u|2 = |u−RR∗u|2 + |RR∗u|2 = |u−RR∗u|2 + |R∗u|2 . ■

Then the following corollary follows from Lemma 17.1.6.
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Corollary 17.1.7 Let T ⊆ Rm. Then H n (T )≥H n (R∗T ) .

Hausdorff measure makes possible a unified development of p dimensional area. As
in the case of Lebesgue measure, the first step in this is to understand basic considerations
related to linear transformations.

Lemma 17.1.8 Let R ∈L (Rp,Rm), p≤m, and R∗R = I. Then if A⊆Rp, H p(RA) =
H p(A). In fact, if P : Rp→ Rm satisfies |Px−Py|= |x−y| , then H p (PA) = H p (A) .

Proof: Now let P be an arbitrary mapping which preserves lengths, like R, and let A be
bounded so P(A) is also bounded. Then P(A) ⊆ ∪∞

j=1C j, r(C j) < δ , and H p
δ
(PA)+ ε >

∑
∞
j=1 α(p)(r(C j))

p.Since P preserves lengths, it follows P is one to one and P−1 is one to
one on P(Rp) and P−1 also preserves lengths on P(Rp) . Replacing each C j with C j∩(PA),

H p
δ
(PA)+ ε >

∞

∑
j=1

α(p)r(C j ∩ (PA))p =
∞

∑
j=1

α(p)r
(
P−1 (C j ∩ (PA))

)p ≥H p
δ
(A).

Thus H p
δ
(PA) ≥H p

δ
(A). Similarly H p

δ
(P−1 (PA)) ≥H p

δ
(PA) so H p

δ
(A) ≥H p

δ
(PA).

Letting δ → 0 yields the desired conclusion in the case where A is bounded. For the general
case, let Ar = A∩B(0,r). Then H p(PAr) = H p(Ar). Now let r→ ∞. ■

Lemma 17.1.9 Let F ∈ L (Rp,Rm), p ≤ m, and let F = RU where R and U are de-
scribed in Theorem 1.5.5 on Page 23. Then if A⊆ Rp is Lebesgue measurable,

H p(FA) = det(U)mp(A).

Proof: Using Theorem 11.7.4 on Page 330 and Theorem 16.7.4,

H p(FA) = H p(RUA) = H p(UA) = mp(UA) = det(U)mp(A). ■

Definition 17.1.10 Define J to equal det(U). Thus

J = det((F∗F)1/2) = (det(F∗F))1/2.

This is the essential idea for the area formula, but in the area formula, we must consider
h : Rp→ Rm for h nonlinear and so h(U) is not a subspace.

17.2 Comparison Theorems
First is a simple lemma which is fairly interesting which involves comparison of two lin-
ear transformations. These are Lemmas 5.3.2 and 5.3.1 which follows from fundamental
properties of the operator norm. I am stating them here for convenience.

Lemma 17.2.1 Suppose S,T are linear, defined on a finite dimensional normed linear
space, S−1 exists, and let δ ∈ (0,1). Then whenever ∥S−T∥ is small enough, it follows
that

|Tv|
|Sv|

∈ (1−δ ,1+δ ) (17.1)

for all v ̸= 0. Similarly if T−1 exists and ∥S−T∥ is small enough,

|Tv|
|Sv|

∈ (1−δ ,1+δ )
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Lemma 17.2.2 Let S,T be n×n matrices which are invertible. Then

o(Tv) = o(Sv) = o(v)

and if L is a continuous linear transformation such that for a < b,

sup
v ̸=0

|Lv|
|Sv|

< b, inf
v ̸=0

|Lv|
|Sv|

> a

If ∥S−T∥ is small enough, it follows that the same inequalities hold with S replaced with
T . Here ∥·∥ denotes the operator norm.

17.3 The Area Formula
This follows [17] which is where I encountered this material. Let G be an open set and
let h : G ⊆ Rn→ Rm where m ≥ n be continuous. Let Dh(x) exist for all x ∈ A a Borel
set contained in G. Also, XADh(x), considered as a matrix has all of its entries Borel
measurable if h is continuous because these are obtained as partial derivatives which are
limits of continuous functions. Of course this is automatic if h is Lipschitz because then A
is all of G other than a set of measure zero. Recall that if h is Lipschitz continuous, h(E)
is H n Hausdorff measurable whenever E is n dimensional Lebesgue measurable.

For convenience 0 < ε < 1/4 in what follows.
For x ∈ A, let Dh(x)≡ R(x)U (x) where R(x) preserves lengths and

U (x)≡
(
Dh(x)∗Dh(x)

)1/2
.

This is the right polar factorization of Theorem 1.5.5. Let A+ denote those points of A for
which U (x)−1 exists, where det

(
Dh(x)∗Dh(x)

)
> 0. Thus this is a Borel measurable

subset of A. Note that det
(
Dh(x)∗Dh(x)

)
≥ 0 for all x ∈ A.

Let B be a Borel measurable subset of A+ and let b ∈ B. Let S be a countable dense
subset of the space of symmetric invertible matrices and let C be a countable dense subset
of B. The idea is to decompose B into countably many Borel sets E on which h is one
to one and Lipschitz with h−1 Lipschitz on h(E) . This will be done by establishing 17.6
given below where T is an invertible symmetric transformation. For T ∈ S and c ∈ C ,
define E (T,c, i) to be those b ∈ B

(
c, 1

i

)
such that for all a ∈ B

(
b, 2

i

)
,

|h(a)−h(b)−Dh(b)(a−b)|< ε |T (a−b)| (17.2)

and also U (b) is close enough to T that the following hold.

inf
v ̸=0

|Dh(b)v|
|Tv|

= inf
v ̸=0

|U (b)v|
|Tv|

> 1− ε, (17.3)

sup
v ̸=0

|Dh(b)v|
|Tv|

= sup
v ̸=0

|U (b)v|
|Tv|

< 1+ ε (17.4)

•b
•c

B(c, 1
i )

B(b, 2
i )
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Note that it is not clear whether c ∈ E(T,c, i) because of the above two requirements.
What is going on here is that we are looking for b such that Dh(b) is sufficiently close to
one of those T which also are in a piece of B. Thus we start with one of those T and one
of those points c and look for all b, if any, which do the right things. In one dimension, the
T and Dh(b) would just be slopes. There are countably many of these pieces of B being
denoted as E (T,c, i).

The union of these E (T,c, i) is all of B because if b ∈ B,

|h(a)−h(b)−Dh(b)(a−b)|< ε |U (b)(a−b)| (17.5)

whenever a ∈ B
(
b, 2

i

)
provided i is sufficiently large. Thus also, by Lemma 17.2.1, there

is T ∈S such that the above holds for U (b) replaced with T and a ∈ B
(
b, 2

i

)
and also

17.3, 17.4. Thus b ∈ E (T,c, i), so indeed the union of these sets is B.
Now let a,b ∈ E (T,c, i) . Since a,b ∈ E (T,c, i) , a,b are within 1/i of c and so a is

within 2/i of b and so 17.2 holds because of the definition of E (T,c, i). Therefore, from
17.2 and the inequalities which follow, 17.3 and 17.4,

(1−3ε) |T (a−b)| ≤ |h(a)−h(b)| ≤ (1+3ε) |T (a−b)| (17.6)

Indeed, from 17.5, 17.4,

|h(a)−h(b)| < |U (b)(a−b)|+ ε |U (b)(a−b)|= (1+ ε) |U (b)(a−b)|
< (1+ ε)2 |T (a−b)|< (1+3ε) |T (a−b)|

The other side of 17.6 is similar.
There are countably many of these E(T,c, i) each being a Borel set. Therefore, B is a

disjoint union of these sets called {Ek} where I will denote the special T as Tk correspond-
ing to Ek. Thus from 17.6 and the definition of Hausdorff measure, it follows that

H n (h(Ek)) ∈ [(1−3ε)H n (TkEk) ,(1+3ε)H n (TkEk)]

= [(1−3ε)mn (TkEk) ,(1+3ε)mn (TkEk)] (17.7)

From 17.3 and 17.4 and b ∈ Ek,

U (b)(B(0,1))⊆ (1+ ε)Tk (B(0,1)) , U (b)(B(0,1))⊇ (1− ε)Tk (B(0,1))

which implies on taking the Lebesgue measure that

(1− ε)n |det(Tk)| ≤ det(U (b))≤ (1+ ε)n |det(Tk)|

Therefore, from 17.7,

H n (h(Ek)) ∈ [(1−3ε) |det(Tk)|mn (Ek) ,(1+3ε) |det(Tk)|mn (Ek)]

=

[∫
Ek

(1−3ε) |det(Tk)|dmn,
∫

Ek

(1+3ε) |det(Tk)|dmn

]
⊆
[∫

Ek

(1−3ε)

∣∣∣∣det(U (x))

(1+ ε)n

∣∣∣∣dmn (x) ,
∫

Ek

(1+3ε)

∣∣∣∣det(U (x))

(1− ε)n

∣∣∣∣dmn (x)
]

(17.8)

Note that this does not assume h is one to one on B.
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Lemma 17.3.1 Let h : G→ Rm be Lipschitz. Let B ⊆ A+ where B is Borel and where
A consists of the points x ∈ G where Dh(x) exists and A+ consists of those points x ∈ A
where for Dh(x) = R(x)U (x) in which R∗R = I, det(U (x))> 0. Then if h is one to one
on B,

H n (h(B)) =
∫

B
det(U (x))dmn (x) (17.9)

Also for Z ≡ A\A+,
H n (h(Z)) = 0 (17.10)

regardless of whether h is one to one. Letting #(y) be the number of points in h−1 (y) ≡
{x ∈ G : h(x) = y}∩B, in the general case where h is not required to be one to one,∫

h(B)
#(y)dH n (y) =

∫
B

det(U (x))dmn (x)

Proof: Let the {Ek,Tk} be as described above where Tk goes with Ek. Let the union
of these Ek be A+. Since the Ek are disjoint and h is one to one, 17.9 follows from 17.8
applied to B∩Ek and summing over k, since ε is arbitrary.

Consider now the next assertion which is a form of Sard’s lemma. Let P be the projec-
tion onto Rm. Now consider 17.8 where we assume h is Lipschitz on G. Since this holds
for any small positive ε, it follows that

H n (h(Ek ∩B)) =
∫
h(B)

Xh(Ek∩B) (y)dH n (y) =
∫

Ek∩B
|det(U (x))|dmn (x) (17.11)

First suppose G is bounded. Let kε (x) ≡
(
h(x)
εx

)
so kε is one to one. Then for all

x ∈ A, det
(
Dkε (x)

∗Dkε (x)
)
= det

(
Dh(x)∗Dh(x)+ ε2In

)
> 0. Note that Pkε = h and

for kε , A = A+. Letting {Ek} be the disjoint Borel sets on which kε is Lipschitz and one
to one with inverse also Lipschitz, it follows

H n (kε (Z∩Ek)) =
∫

Z∩Ek

det
(
Dh(x)∗Dh(x)+ ε

2In
)1/2

dx

Also, since h = Pkε , where P is Lipschitz with Lipschitz constant no more than 1, it
follows from Lemma 17.1.2 that

H n (h(Z∩Ek))≤
∫

Z∩Ek

det
(
Dh(x)∗Dh(x)+ ε

2In
)1/2

dx

Then, h(Z)⊆ ∪kh(Z∩Ek). Hence,

H n (h(Z)) ≤ ∑
k

H n (h(Z∩Ek))≤∑
k

∫
Z∩Ek

det
(
Dh(x)∗Dh(x)+ ε

2In
)1/2

dx

=
∫

Z
det
(
Dh(x)∗Dh(x)+ ε

2In
)1/2

dx

Since h is assumed Lipschitz, the expression in the integrand is bounded independent of ε

and so, since G is bounded, the dominated convergence theorem applies and it follows that

H n (h(Z))≤
∫

Z
det
(
Dh(x)∗Dh(x)

)1/2 dx = 0 (17.12)
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In case G is not bounded, apply the above to Gn ≡ G∩B(0,n) for n ∈ N. Then pass to a
limit.

Now consider h is only Lipschitz, maybe not one to one. Adding over k in 17.11,∫
h(B)

∑
k

Xh(Ek∩B) (y)dH n (y) =
∫
h(B)

#(y)dH n (y) =
∫

B
|det(U (x))|dmn (x)

This is because if x ∈ B and h(x) = y then x ∈ B∩Ek for some values of k but h is one
to one on B∩Ek and so this happens for at most one x ∈ Ek ∩B.

Now suppose F is a Borel set in h(G) so h−1 (F) is a Borel set in Rn. In the above let
B = h−1 (F)∩A+. Then∫

h(h−1(F)∩A+)
#(y)dH n (y) =

∫
h−1(F)∩A+

|det(U (x))|dmn (x)

Then this is∫
h(A)

XF (y)#(y)dH n (y) =
∫
h(A+)

XF (y)#(y)dH n (y)

=
∫

A+
XF (h(x)) |det(U (x))|dmn (x)

=
∫

A
XF (h(x)) |det(U (x))|dmn (x)

because h(A\A+) has H n measure zero and on A\A+, |det(U (x))|= 0. Since h is Lip-
schitz, Rademacher’s theorem implies that G\A has mn measure zero and so also h(G\A)
has H n measure zero. Thus for F a Borel set,∫

h(G)
XF (y)#(y)dH n (y) =

∫
G

XF (h(x)) |det(U (x))|dmn (x)

For {Ek} disjoint bounded Borel sets whose union is A+ which are described above,
consider λ (E) ≡H n (E ∩h(Ek)) for E an H n measurable set. This makes sense and is
a measure because h is one to one on Ek, h(Ek) is H n measurable because h is Lipschitz
on Ek and Ek is a Borel set, hence by Lemma 17.1.4 h(Ek) is H n measurable. λ is a finite
measure because these Ek are all bounded and from what was shown above,

λ (Rm) = H n (h(Ek)) =
∫

Ek

det(U (x))dx < ∞

By Lemma 9.8.4, λ is regular on Borel sets. However, by Theorem 16.6.1, whenever E
is a H n measurable set, there exists a Borel set F such that λ (E) = λ (F) and F ⊇ E.
Therefore, by Lemma 9.8.4, λ is a regular measure and if E is H n measurable, there exist
F,H with these being Borel sets and such that F ⊆ E ⊆ H and λ (H \F) = 0. Therefore,

XF (h(x))det(U (x))≤XE (h(x))det(U (x))≤XH (h(x))det(U (x))

and ∫
Ek

(XH (h(x))det(U (x))−XF (h(x))det(U (x)))dx = 0
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so, XH (h(x))det(U (x))−XF (h(x))det(U (x)) = 0 a.e. By completeness of Lebesgue
measure, x→XE (h(x))det(U (x))XEk (x) is Lebesgue measurable and∫

h(Ek)
XE (y)dH n =

∫
h(Ek)

XF (y)dH n =
∫

Ek

XF (h(x))det(U (x))dx

=
∫

Ek

XE (h(x))det(U (x))dx

Using the above argument, we can add these over k and obtain∫
h(G)

#(y)XE (y)dH n =
∫
h(A)

#(y)XE (y)dH n =
∫
h(A+)

#(y)XE (y)dH n

=
∫

A+
XE (h(x))det(U (x))dx

=
∫

A
XE (h(x))det(U (x))dx

=
∫

G
XE (h(x))det(U (x))dx (17.13)

because G\A has measure zero and so does h(G\A) and det(U (x)) = 0 on A\A+. Also,
from 17.10, h(A\A+) has measure zero. ■

Note that H n (G\A+) = 0 so it suffices to let #(y) simply be the number of points in
h−1 (y). This has almost shown the following theorem.

Definition 17.3.2 To save on notation, I will denote det(U (x)) as J∗ (x).

Theorem 17.3.3 Suppose h : G→ Rm is Lipschitz, G some open set, and let A be
the Borel set on which Dh exists with mp (G\A) = 0.(Rademacher’s theorem). Then if
g≥ 0 and is H n measurable,∫

h(G)
#(y)g(y)dH n =

∫
G

g(h(x))J∗ (x)dmn.

and everything makes sense where here #(y) is defined as the number of times h hits y
from points in A+ or G. If h is one to one on A+, we can replace #(y) with 1.

Proof: From 17.13 one can assert this holds for H n measurable simple functions
and then, passing to a limit with monotone convergence theorem, one obtains the above
theorem. ■

Next is an interesting version of the chain rule for Lipschitz maps. The proof of this
theorem is based on the following lemma.

Lemma 17.3.4 If h : Rn→ Rn is Lipschitz, then if h(x) = 0 for all x ∈ A, then

det(Dh(x)) = 0 a.e.x ∈ A

Proof: By the area formula, 0 =
∫
{0} #(y)dy =

∫
A |det(Dh(x))|dx, and so it follows

that det(Dh(x)) = 0 a.e. ■

Theorem 17.3.5 Let f , g be Lipschitz mappings from Rn to Rn with g (f (x)) = x
on A, a measurable set. Then for a.e. x ∈ A, Dg (f (x)), Df (x), and D(g ◦f)(x) all
exist and I = D(g ◦f)(x) = Dg (f (x))Df (x) .
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Proof: By Lemma 17.3.4 there is a set of measure zero N1 off which

det(D(g ◦f)(x)− I) = 0

and in particular D(g ◦f)(x) exists. Let N2 be the set of measure zero off which f is
differentiable. Let M be the set of points in f (Rn \N2) where, g fails to be differentiable.
What about f−1 (M)? If x ∈ f−1 (M) then Dg (f (x)) fails to exist and so x is in the first
exceptional set N1 or else in N2 because D(g ◦f)(x) will fail to exist. Thus f−1 (M) is a
set of measure zero. So letx /∈N1∪N2. Then for suchx, D(g ◦f)(x) ,Dg (f (x)) ,Df (x)
all exist and I = Dg (f (x))Df (x). ■

You could give a generalization to the above by essentially repeating the argument.

Corollary 17.3.6 Suppose h is differentiable on A, a measurable set and that f,g are
Lipschitz with g (f (x)) = h(x) for x ∈ A. Then for a.e. x ∈ A,

Dh(x) = Dg (f (x))Df (x)

In other words, the chain rule holds off a set of measure zero.

17.4 The Divergence Theorem
Using Rademacher’s theorem, all conditions are satisfied for Definition 14.3.1 provided
each of the gi used there are Lipschitz. When this happens, we say U is a bounded open
set with a Lipschitz boundary which lies on one side of its boundary. Thus we obtain the
divergence theorem. Here I will use H p−1 for surface measure σ on the boundary of U
since, by the area formula, this is what it is.

Theorem 17.4.1 Let U be a bounded open set with a Lipschitz boundary which lies
on one side of its boundary. Then if f ∈C1

c (Rp) ,∫
U

f,k (x)dmp =
∫

∂U
f nkdH p−1 (17.14)

where n = (n1, · · · ,nn) is the H p−1 measurable unit outer normal. Also, if F is a vector
field such that each component is in C1

c (Rp) , then∫
U

div(F )dmp =
∫

∂U
F ·ndH p−1. (17.15)

Proof: To obtain the first formula from the second which was proved earlier, consider

F ≡
(

0 · · · f · · · 0
)T

where f is in the kth slot. ■
You could approximate F in the above theorem by convolving with a mollifier as in

Lemma 16.3.1 yielding a modified F with one in which each component is in infinitely
differentiable, apply the divergence theorem of Theorem 14.3.4 to these and pass to a limit
using the dominated convergence theorem to obtain the divergence theorem for F . Thus
the following corollary is obtained.

Corollary 17.4.2 In the context of Theorem 17.4.1 it suffices to assume F is Lipschitz.
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17.5 The Coarea Formula
The area formula was discussed above. This formula implies that for E a measurable set

H n (f (E)) =
∫

XE (x)J∗ (x)dm

where f : Rn→ Rm for f a one to one Lipschitz mapping and m≥ n. The coarea formula
is a statement about the Hausdorff measure of a set which involves the inverse image of f .
It looks a little like the method of shells in Calculus. We will let f :Rn→Rm where m≤ n
in what follows.

It is possible to obtain the coarea formula as a computation involving the area formula
and some simple linear algebra and this is the approach taken here. I found this formula in
[17] which has a somewhat different proof. I find this material very hard, so I hope what
follows doesn’t have grievous errors. I have never had occasion to use this coarea formula,
but I think it is obviously of enormous significance and gives a very interesting geometric
assertion. I will use the form of the chain rule in Theorem 17.3.5 as needed.

To begin with, here is the linear algebra identity. Recall that for a real matrix A∗ is just
the transpose of A. Thus AA∗ and A∗A are symmetric.

Theorem 17.5.1 Let A be an m×n matrix and let B be an n×m matrix for m≤ n.
Then for I an appropriate size identity matrix, det(I +AB) = det(I +BA) .

Proof: Use block multiplication to write(
I +AB 0

B I

)(
I A
0 I

)
=

(
I +AB A+ABA

B BA+ I

)
(

I A
0 I

)(
I 0
B I +BA

)
=

(
I +AB A+ABA

B I +BA

)
Hence (

I +AB 0
B I

)(
I A
0 I

)
=

(
I A
0 I

)(
I 0
B I +BA

)
so (

I A
0 I

)−1( I +AB 0
B I

)(
I A
0 I

)
=

(
I 0
B I +BA

)
which shows that the two matrices(

I +AB 0
B I

)
,

(
I 0
B I +BA

)
are similar and so they have the same determinant. Thus det(I +AB) = det(I +BA). Note
that the two matrices are different sizes. ■

With these lemmas it is now possible to establish the coarea formula. First we define
Λ(n,m) as all possible ordered lists of m numbers taken from {1,2, ...,n} . Recall x ∈ Rn

and f (x) ∈ Rm where m ≤ n. Recall that this was part of the Binet Cauchy theorem,
Theorem 1.9.14,

det
(
Df (x)Df (x)∗

)
= ∑

i∈Λ(n,m)

(
detDxi

f (x)
)2
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Now let ic ∈Λ(n,n−m) consist of the remaining indices taken in order where i∈Λ(n,m) .
For i= (i1, · · · , im), define xi ≡ (xi1 , ...,xim) and xic to be the other components of x taken

in order. Then let f i (x)≡
(
f (x)
xic

)
. Thus there are C (n,n−m) =C (n,m) different f i

featuring C (n,m) different xi,xic .

Example 17.5.2 Say f : R4→ R2. Here are some examples for f i:
f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x2
x4

 ,


f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x1
x2

 ,


f1 (x1,x2,x3,x4)
f2 (x1,x2,x3,x4)

x3
x4


Suppose first that xic =

(
xm+1 · · · xn

)T so

f i (x) =

(
f (x)
xic

)
, Df (x) =

(
Dxi

f (x) Dxic
f (x)

0 I

)
and so from row operations, detDf i (x) = detDxi

f (x) . It is similar in the general case
except one might have a sign change which is not important in what follows. So

detDf i (x) = detDxi
f (x) . (17.16)

Earlier with the area formula, we integrated J∗ (x) ≡ det
(
Df (x)∗Df (x)

)1/2. With

the coarea formula, we integrate J∗ (x) ≡ det
(
Df (x)Df (x)∗

)1/2. This proof involves
doing this integration and seeing what happens. In case n = m the claim of the theorem
will follow from the area formula because H 0 (E) is the number of elements of E, so one
can assume if desired that in what follows n > m although the argument does include this
case.

Theorem 17.5.3 Let f : Rn → Rm where n ≥ m be a Lipschitz map. Let A be
Lebesgue measurable. Then the following formula holds along with all measurability as-
sertions needed for it to make sense.∫

Rm
H n−m (A∩f−1 (y)

)
dy =

∫
f(A)

H n−m (A∩f−1 (y)
)

dy =
∫

A
J∗ (x)dx (17.17)

where J∗ (x)≡ det
(
Df (x)Df (x)∗

)1/2
.

Proof: First assume A is Borel, f differentiable on A. Now note that

det
(
Df (x)Df (x)∗

)
= ∑

i∈Λ(n,m)

det
(
Df i (x)

)2

by the Binet Cauchy theorem and 17.16.

Lemma 17.5.4 Suppose A is a measurable nonempty set and det
(
Df (x)Df (x)∗

)
> 0

for all x ∈ A. Then there exist disjoint, measurable Ai, one for each i ∈ Λ(n,m) such that
for all j ̸= i,det

(
Df j (x)

)2
= 0 for x ∈ Ai.
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Proof: By assumption that det
(
Df (x)Df (x)∗

)
= ∑i∈Λ(n,m) det

(
Df i (x)

)2
> 0, we

can let Ai ≡ ∩j ̸=i

{
x : Df j (x) = 0

}
.■

Maybe some of these Ai are /0 but this will not matter.
Suppose f i is one to one on a Borel set Ei ⊆ Rn which has positive measure and that

its inverse, denoted as gi is also Lipschitz on f i
(
Ei
)

and Df i is invertible on Ei. Thus,
for x ∈ Ei∩A,(

y1
y2

)
= y= f i (x) =

(
f (x)
xic

)
, giic

(
f i (x)

)
= y2 =xic , y1 = f

(
gi (y)

)
(17.18)

Differentiate y1 = f
(
gi (y)

)
with respect to y2 to obtain

0 = Dxi
f
(
gi (y)

)
Dy2g

i
i (y)+Dxic

f
(
gi (y)

)
Dy2g

i
ic (y)

= Dxi
f
(
gi (y)

)
Dy2g

i
i (y)+Dxic

f
(
gi (y)

)
. (17.19)

Also,
Df i

(
gi (y)

)
Dgi (y) = I,

∣∣det
(
Dgi (y)

)∣∣= ∣∣detDf i
(
gi (y)

)∣∣−1

Say y = (y1,y2)
T and suppose z = (zi,zic)

T ∈ f−1 (y1)∩Ei∩A. Then

f i

(
zi
zic

)
=

(
y1
y2

)
=

(
f (z)
zic

)
, so

(
zi
zic

)
= gi

(
y1
y2

)
Thus,

gi
(
f−1 (y1)∩Ei∩A

)
= f−1 (y1)∩Ei∩A (17.20)

so if we fix y1, then y2→ gi (y1,y2) gives a parametrization for the Borel set f−1 (y1)∩
Ei∩A and Dy2g

i
ic
(y) = I.

Now from the area formula,∫
Ei∩A

det
(
Df i (x)Df i (x)∗

)1/2
dx = (17.21)

=
∫
fi(Ei∩A)

det
(

Df i
(
gi (y)

)
Df i

(
gi (y)

)∗)1/2∣∣detDf i
(
gi (y)

)∣∣−1
dy (17.22)

Letting y ≡ (y1,y2) , and using what was just shown about y2 → gi (y1,y2) being a
parametrization, the above integral can be expressed as the following iterated integral:∫

Rm

∫
f−1(y1)∩Ei∩A

det
(

Dfxi

(
gi
)

Dfxi

(
gi
)∗)1/2∣∣detDfxi

(
gi
)∣∣−1

(y1,y2)dy2dy1,

(17.23)
Therefore, the inner integral is measurable and the integrand is

det
[(

Dxi
f
(
gi (y)

)
Dxic

f
(
gi (y)

))( Dxi
f
(
gi (y)

)∗
Dxic

f
(
gi (y)

)∗ )]1/2 ∣∣detDfxi

(
gi (y)

)∣∣−1
.

(17.24)
Let A≡ Dxi

f
(
gi (y)

)
so A is m×m, B≡ Dy2g

i
i (y) an m× (n−m) . Using 17.19, 17.24

is of the form

det
[(

A −AB
)( A∗

−B∗A∗

)]1/2

|detA|−1

= det [AA∗+ABB∗A∗]1/2 |detA|−1

= det [A(I +BB∗)A∗]1/2 |detA|−1 = det(I +BB∗)1/2
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From Theorem 17.5.1, 17.23 equals det(I +B∗B)1/2. Note how the size of the matrices
changes. Since B = Dy2g

i
i (y) and Dy2g

i
ic
(y) = I, the above reduces to

det(I +B∗B)1/2 = det
[(

B∗ I
)( B

I

)]1/2

=

det
[(

Dy2g
i
i (y)

∗ Dy2g
i
ic
(y)∗

)( Dy2g
i
i (y)

Dy2g
i
ic
(y)

)]1/2

= det
(
Dy2g

i (y)∗Dy2g
i (y)

)1/2

Therefore, from area formula and the above simplification of 17.24 and 17.20, 17.23∫
XEi∩A (x)det

(
Dxi

f (x)Dxi
f (x)∗

)1/2 dx

=
∫
Rm

∫
f−1(y1)∩Ei∩A

det
(
Dy2g

i (y)∗Dy2g
i (y)

)1/2
dy2dy1

=
∫
Rm

H n−m (f−1 (y1)∩Ei∩A
)

dy1 (17.25)

Note how this also shows that y1→H n−m
(
f−1 (y1)∩Ei∩A

)
is measurable since it

equals the inner integral in an iterated integral having Borel integrand.
Now suppose that A = A+ ≡ {x ∈ A : J∗ (x)> 0} , and A is a Borel set. Let Ai be as in

Lemma 17.5.4. Lemma 17.3.1 says there are disjoint Borel sets
{

Ei
j

}∞

j=1
whose union is

Ai on which the conditions for Ei in the above argument hold. Adding the above in 17.25
over j, for Ei replaced with Ei

j and using Lemma 17.5.4,∫
XAi

(x)det
(
Df i (x)Df i (x)∗

)1/2
dx

=
∫

XAi
(x)det

(
Df (x)Df (x)∗

)1/2 dx =
∫
Rm

H n−m (f−1 (y1)∩Ai

)
dy1

Now add the above over all Ai to obtain 17.17.
What if A\A+ ̸= /0? Then consider (A\A+)×Rm ≡ Â as the new A and

f̂ (x1, ...,xn+m)≡
(
f (x1, ...,xn) εxn+1e1 · · · εxn+mem

)
Thus Df̂ (x)Df̂ (x)∗ = Df (x)Df (x)∗+ ε2mI and so if ε > 0, det

(
Df̂ (x)Df̂ (x)∗

)
≡

J∗ε (x) ̸= 0 since Df̂ (x)Df̂ (x)∗ has positive eigenvalues at least ε2m. Then from what was
done above, letting Ê be a bounded Borel set in Rn+m and E the corresponding bounded
set in Rn,∫

XÂ∩Ê (x)J∗ε (x)dmn+m =
∫
Rm

H n−m
(
f̂
−1

(y1)∩ Â∩ Ê
)

dy1

≥
∫
Rm

H n−m (f−1 (y1)∩
(
A\A+

)
∩E
)

dy1

where limε→0 J∗ε (x) = 0. This follows since projections decrease distance. Then by the
dominated convergence theorem we can pass to a limit and find∫

Rm
H n−m (f−1 (y1)∩

(
A\A+

)
∩E
)
= 0.
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Since this holds for any bounded E, this implies
∫
Rm H n−m

(
f−1 (y1)∩ (A\A+)

)
= 0.

Thus the desired formula holds in this case also.
Borel measurability of A can be replaced with Lebesgue measurability. Let A be

Lebesgue measurable and let F ⊆ A ⊆ G where mn (G\F) = 0 and F is Fσ and G is
Gδ . From the above,

∫
Rm H n−m

(
G∩f−1 (y)

)
dy =

∫
Rm H n−m

(
F ∩f−1 (y)

)
dy and so

from the above arguments, H n−m
(
F ∩f−1 (y)

)
= H n−m

(
G∩f−1 (y)

)
a.e. Thus y→

H n−m
(
A∩f−1 (y)

)
is measurable by completeness of the measure and

∫
Rm

H n−m (A∩f−1 (y)
)

dy

∈
[∫
Rm

H n−m (F ∩f−1 (y)
)

dy,
∫
Rm

H n−m (G∩f−1 (y)
)

dy
]

=

[∫
F

J∗ (x)dx,
∫

G
J∗ (x)dx

]
=

[∫
A

J∗ (x)dx,
∫

A
J∗ (x)dx

]

We don’t need to restrict A to be contained in NC where N is the set of Lebesgue
measure 0 where Df does not exist. Consider NC ∩B(0,k) .(

NC ∩B(0,k)∩f−1 (y)
)
∪
(
N∩B(0,k)∩f−1 (y)

)
= B(0,k)∩f−1 (y)

and the ends are H n−m measurable so it follows that so is N ∩B(0,k)∩ f−1 (y). Also
y→H n−m

(
N∩B(0,k)∩f−1 (y)

)
is measurable by similar reasoning and

∫
Rm

H n−m (N∩B(0,k)∩f−1 (y)
)

dy

=
∫
Rm

H n−m (B(0,k)∩f−1 (y)
)

dy−
∫
Rm

H n−m (NC ∩B(0,k)∩f−1 (y)
)

dy = 0

So, passing to a limit and the monotone convergence theorem, we get∫
Rm

H n−m (N∩f−1 (y)
)

dy = 0.

Therefore, the set of points where f fails to be differentiable is irrelevant and can be ig-
nored. ■

Also note that by definition,∫
Rm

H n−m (A∩f−1 (y)
)

dy =
∫
f(A)

H n−m (A∩f−1 (y)
)

dy.

Recall that H 0 (E) equals the number of elements in E. Thus, if n = m, the coarea
formula implies∫

A
J∗f (x)dx =

∫
f(A)

H 0 (A∩f−1 (y)
)

dy =
∫
f(A)

#(y)dy≥
∫
f(A)

1dy

Thus, this gives a version of Sard’s theorem by letting the singular set S be A in the above.
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17.6 Change of Variables
Now let s(x) = ∑

p
i=1 ciXEi (x) where Ei is Lebesgue measurable and ci ≥ 0. Then

∫
Rn

s(x)J∗ (f)(x)dx =
p

∑
i=1

ci

∫
Ei

J∗ (f)(x)dx =
p

∑
i=1

ci

∫
Rm

H n−m (Ei∩f−1(y)
)

dy

=
∫
Rm

p

∑
i=1

ciH
n−m (Ei∩f−1(y)

)
dy =

∫
Rm

[∫
f−1(y)

s dH n−m
]

dy

=
∫
Rm

[∫
f−1(y)

s dH n−m
]

dy =
∫
f(Rn)

[∫
f−1(y)

s dH n−m
]

dy. (17.26)

Theorem 17.6.1 Let g≥ 0 be Lebesgue measurable and let

f : Rn→ Rm, n≥ m, f being Lipschitz

Then ∫
Rn

g(x)J∗ (f)(x)dx =
∫
f(Rn)

[∫
f−1(y)

g(u)dH n−m (u)

]
dy. (17.27)

Proof: Let si ↑ g where si is a simple function satisfying 17.26. Then let i→ ∞ and use
the monotone convergence theorem to replace si with g. This proves the change of variables
formula. ■

Note how if m = n this will end up reducing to the conclusion of Theorem 11.10.2.
The following is an easy example of the use of the coarea formula to give a familiar

relation.

Example 17.6.2 Let f : Rn → R be given by f (x) ≡ |x| . Then J∗ (x) ends up being 1.
Then by the coarea formula,∫

B(0,r)
dmn =

∫ r

0
H n−1 (B(0,r)∩ f−1 (y)

)
dy =

∫ r

0
H n−1 (∂B(0,y))dy

Then mn (B(0,r))≡ αnrn =
∫ r

0 H n−1 (∂B(0,y))dy. Then differentiate both sides to obtain
nαnrn−1 =H n−1 (∂B(0,r)) . In particular H 2 (∂B(0,r)) = 3 4

3 πr2 = 4πr2. Of course αn
was computed earlier. Recall from Theorem 14.4.1 on Page 405

αn = π
n/2(Γ(n/2+1))−1

Therefore, the n−1 dimensional Hausdorf measure of the boundary of the ball of radius r
in Rn is nπn/2(Γ(n/2+1))−1rn−1.

I think it is clear that you could generalize this to other more complicated situations.
The above is nice because J∗ (x) = 1. This won’t be so in general when considering other
level surfaces.
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17.7 Integration and the Degree
There is a very interesting application of the degree to integration. I saw something like it in
[20]. I want to consider the case where h :Rn→Rn is only Lipschitz continuous, vanishing
outside a bounded set. In the following proposition, let φ ε be a symmetric nonnegative
mollifier,

φ ε (x)≡
1
εn φ

(x
ε

)
,sptφ ⊆ B(0,1) .

Ω will be a bounded open set. By Rademacher’s theorem, h satisfies Dh(x) exists a.e.
If U is a bounded open set, limm→∞ D(h∗ψm) = limm→∞ Dh∗ψm = Dh in L1 (U ;Rn×n)
where ψm is a mollifier. Thus a subsequence converges a.e.

Now recall the definition of the degree.

Definition 17.7.1 Let Ω be a bounded open set in Rp and let f : Ω→ Rp be con-
tinuous. Let y /∈ f (∂Ω) . Then the degree is defined as follows: Let g be infinitely differ-
entiable,

∥f −g∥
∞,Ω < δ ≡ dist(f (∂Ω) ,y) ,

and y is a regular value of g.Then y /∈ g (∂Ω) and we define

d (f,Ω,y)≡∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y) ,x ∈Ω
}

where the sum is finite by Lemma 15.1.5, defined to equal 0 if g−1 (y) is empty.

Also recall the fundamental integral identity.

Lemma 17.7.2 Let y /∈ g (∂Ω) for g ∈C∞
(
Ω;Rp

)
. Also suppose y is a regular value

of g. Then for all positive ε small enough,∫
Ω

φ ε (g (x)−y)detDg (x)dx = ∑
{

sgn(detDg (x)) : x ∈ g−1 (y)
}

The sum is the definition of the degree for g as described. There was also an important
identity about homotopy Lemma 15.1.13 which includes the following.

Lemma 17.7.3 If h is in C∞
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) then for 0 < ε <

dist(0,h(∂Ω× [a,b])), t→
∫

Ω
φ ε (h(x, t))detD1h(x, t)dx is constant for t ∈ [a,b].

Lethm in what follows beh∗ψm forh continuous and ψm a mollifier. Eventuallyhwill
be Lipschitz continuous. Let y ∈ h(∂Ω)C there is a ball B(y,δ ) such that d (h,Ω,y) =
d (hm,Ω, ŷ) for all m large enough and ŷ ∈ B(y,δ ) . This follows from the properties of
the degree. Also, from a use of Lemma 17.7.2, this lemma gives

d (hm,Ω,z) =
∫

Ω

φ ε (hm (x)−z)det(Dhm (x))dx

for all z ∈ B(y,δ ) for sufficiently small ε . Now let f ∈Cc (B(y,δ )) . Then∫
f (z)d (hm,Ω,z)dz =

∫
f (z)

∫
Ω

φ ε (hm (x)−z)det(Dhm (x))dxdz

=
∫

Ω

det(Dhm (x))
∫

f (z)φ ε (hm (x)−z)dzdx

=
∫

f (z)
∫

Ω

det(Dhm (x))φ ε (hm (x)−z)dxdz
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So letting ε → 0,
∫

f (z)d (hm,Ω,z)dz =
∫

f (z)det(Dhm (z))dz. Next suppose

f ∈Cc

(
h(∂Ω)C

)
Then spt( f ) is covered by finitely many of such balls like the above, {Bi}m

i=1 with the
property that if g ∈Cc (Bi) , then∫

g(z)d (hm,Ω,z)dz =
∫

Ω

g(hm (x))det(Dhm (x))dx

Now let
{

ψ j

}
be a partition of unity on spt f with sptψ i ⊆ Bi. Then

∫
f (z)d (hm,Ω,z)dz =

∫ m

∑
i=1

ψ i (z) f (z)d (hm,Ω,z)dz

=
m

∑
i=1

∫
ψ i (z) f (z)d (hm,Ω,z)dz =

m

∑
i=1

∫
Ω

ψ i (hm (x)) f (hm (x))det(Dhm (x))dx

=
∫

Ω

m

∑
i=1

ψ i (hm (x)) f (hm (x))det(Dhm (x))dx =
∫

Ω

f (hm (x))det(Dhm (x))dx

If h is Lipschitz, then limm→∞hm (x) = h(x) uniformly and also for a.e. x, Dhm (x)→
Dh(x) and so, since everything is bounded, we can apply the dominated convergence
theorem and conclude that∫

f (z)d (h,Ω,z)dz =
∫

Ω

f (h(x))det(Dh(x))dx

This proves the following interesting proposition.

Proposition 17.7.4 Let f ∈Cc

(
h(∂Ω)C

)
and let h be Lipschitz on Rn. Then

∫
f (y)d (h,Ω,y)dy =

∫
Ω

f (h(x))det(Dh(x))dx.

Note that d (h,Ω,y) = 0 if y /∈ h(Ω) so the integral on the left is taken over h(Ω).
Recall that the area formula gives the formula∫

h(Ω)
f (y)#(y)dy =

∫
Ω

f (h(x)) |det(Dh(x))|dx.

You could probably say more. For example, the degree is constant on components of
h(dΩ)C and so considering these components, you maybe could use the Riesz represen-
tation theorem for positive linear functionals to get this formula for more general f . Say
Ω is open and connected, for example, and suppose d (h,Ω,y) is 3 on y ∈ h(Ω) . Then
you could let Λ f ≡

∫
f (y)3dy =

∫
Ω

f (h(x))det(Dh(x))dx and this would be a positive

linear functional on Cc

(
h(∂Ω)C

)
.
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Chapter 18

Differential Forms
This is a generalization of single variable ideas from calculus to multiple dimensions. It
generalizes the fundamental theorem of calculus of the form

∫ b
a f ′ (t)dt = f (b)− f (a) and

integration by parts. The challenge is in keeping track of orientation. This was considered
to some extent in the chapter on manifolds but differential forms allow for a more system-
atic presentation. Most of what follows involves whatever assumptions of smoothness are
convenient, but to extend to the case of Lipschitz mappings, I will use Lemma 16.3.1.

Also note that the composition of Lipschitz mappings is Lipschitz and the usual chain
rule will hold off some set of measure zero, see Theorem 17.3.5.

Recall from calculus that when you had a differential form, written as∫
C

a(x,y,z)dx+b(x,y,z)dy+ c(x,y,z)dz

where C is an oriented curve, it gave the work done by the force field

F (x,y,z) = (a(x,y,z) ,b(x,y,z) ,c(x,y,z))

on an object moving over the oriented curve C. How was it evaluated? You had a paramet-
rization

r : [a,b]→ R3,r (t) = (x(t) ,y(t) ,z(t))

and then you did the following.∫ b

a

(
a(x(t) ,y(t) ,z(t))

dx
dt

+b(x(t) ,y(t) ,z(t))
dy
dt

+ c(x(t) ,y(t) ,z(t))
dz
dt

)
dt

Note how the orientation of the curve comes from the interval and the choice of parameter-
ization. The interval [a,b] is called the parameter domain and t is referred to as a parameter.
The curve itself is some object in R3.

You can think of the differential form a(x,y,z)dx+b(x,y,z)dy+c(x,y,z)dz as a sym-
bol which represents something which makes vector valued functions r defined on [a,b]
into numbers according to the above procedure. You might also have written the line inte-
gral in the form ∫

r
a(x,y,z)dx+b(x,y,z)dy+ c(x,y,z)dz

Thus it is a functional which makes vector valued functions defined on [a,b] into numbers
and if you change the orientation, this number changes. It is desired to extend this simple
idea to functions of k > 1 variables. That which will take the place of an interval will be
a box ∏

k
j=1 [a j,b j] or a chain of boxes formed by pasting boxes together along a common

face. The latter will give a more general parameter domain than just a box. This is anal-
ogous to the notion of piecewise smooth curves where the curve was obtained by joining
one smooth curve to another at an end point.

First here is some notation.

Notation 18.0.1 Let r : ∏
k
j=1 [a j,b j]→ Rp, p ≥ k with r ∈ C1

(
∏

k
j=1 [a j,b j] ,Rp

)
. This

last symbol means that r is the restriction to ∏
k
j=1 [a j,b j] of a C1 function defined on

471
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all of Rk. Now let I denote an ordered list of k indices taken from {1,2, · · · , p}. Thus
I = (i1, · · · , ik). Then

det
(

drI

du

)
≡ det


xi1,u1 xi1,u2 · · · xi1,uk
xi2,u1 xi2,u2 · · · xi2,uk

...
...

...
xik,u1 xik,u2 · · · xik,uk

≡ ∂
(
xi1 , · · ·xik

)
∂ (u1, · · · ,uk)

It is the same as det
(
DrI

)
where rI has values in Rp and is obtained by keeping the rows

of r in the order determined by I and leaving out the other rows. More generally, suppose
I is an ordered list of l indices and that J is an ordered list of l indices. Then

det
(

drI

duJ

)
≡ det


xi1,u j1

xi1,u j2
· · · xi1,u jl

xi2,u j1
xi2,u j2

· · · xi2,u jl
...

...
...

xil ,u j1
xil ,u j2

· · · xil ,u jl

≡ ∂
(
xi1 , · · ·xil

)
∂
(
u j1 , · · · ,u jl

) , x= r (u)

Now with this definition, here is the generalization of the differential forms defined in
calculus.

Definition 18.0.2 A differential form of order k is ω ≡ ∑I aI (x)dxI where

dxI ≡ dxi1 ∧dxi2 ∧·· ·∧dxik

To save space, let [a,b] ≡ ∏
k
k=1 [a j,b j] ,(a,b) ≡ ∏

k
k=1 (a j,b j) etc. For I = (i1, · · · , ik) ,∫

(·) ω is a function mapping functions r in C1
(

∏
k
j=1 [a j,b j] ,Rp

)
or Lipschitz functions to

R , defined by∫
r

ω ≡
∫
[a,b]

∑
I

aI (r (u))det
(

dxI (u)

du

)
dmk =

∫
[a,b]

∑
I

aI (r (u))det
(

drI (u)

du

)
dmk

The sum is taken over all ordered lists of indices from {1, · · · , p}. Note that if there are any

repeats in an ordered list I, then det
(

drI(u)
du

)
= 0 and so it suffices to consider the sum

only over lists of indices in which there are no repeats. Thus the sum can be considered
to consist of no more than P(p,k) terms where this denotes the permutations of p things
taken k at a time.

Consider the free Abelian group of mappings having some specified regularity from a
given [a,b] to Rp. This consists of finite sums of the form ∑mrr and one can define∫

∑mrr
ω ≡∑mr

∫
r

ω

Thus the integral defined on such an r can be extended to give meaning to an arbitrary
element of this free Abelian group.

Actually, if I,J are the same set of indices, listed in different order, then det
(

dxI(u)
du

)
will be±det

(
dxJ(u)

du

)
so you could always write the differential form in terms of sums over
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strictly increasing lists of indices, and if this is done, you can always have only C (p,k) =
p!

k!(p−k)! terms in the sum where this denotes combinations of p things taken k at a time.
It will always be assumed that aI is as smooth as desired to make everything work. As

to r ∈C1 ([a,b] ,Rp) or Lipschitz, it is not required to have DrI (u) be nonzero for any I.
This means r ([a,b]) can be various sets which have points and edges.

Note that if p < k, then the functional ∑I aI (x)dxI should equal the zero function
because you would have xp+1 = · · · = xk = 0 and so there would be at least one row of
zeros in the above determinant. Thus, I will suppose that k ≤ p in what follows.

Example 18.0.3 Consider the ball B(0,r). Spherical coordinates are r = (x,y,z) where

x = ρ sin(φ)cos(θ) , y = ρ sin(φ)sin(θ) ,z = ρ cos(φ)

Let (ρ,φ ,θ) ∈ [0,r]× [0,π]× [0,2π] which is a box like what was just described. This
mapping is C1 and onto the ball. However, it is clearly not one to one. However, r is one to
one on (0,r]× [0,π]× [0,2π) off a closed set S of m3 measure zero. Also r (S) has measure
zero by Sard’s theorem. Recall from calculus that ∂ (x,y,z)

∂ (ρ,φ ,θ) = ρ2 sinφ which is positive if
ρ > 0 and θ ∈ (0,π).

In a similar manner, you could obtain a solid ellipse.

x = asin(φ)cos(θ) , y = bsin(φ)sin(θ) ,z = ccos(φ)

for a,b,c > 0.

Example 18.0.4 Consider the boundary of the ball B(0,r). Spherical coordinates are

x = r sin(φ)cos(θ) , y = r sin(φ)sin(θ) ,z = r cos(φ)

Let (φ ,θ)∈ [0,π]× [0,2π] which is a box like what was just described. This mapping is C1

and onto the boundary of this ball. It is clearly not one to one. However, off a set S of m2
measure zero, the mapping is indeed one to one on what remains of this box and r (S) has
H 2 measure zero.

∂ (x,y)
∂ (φ ,θ)

=

∣∣∣∣ r cosφ cosθ −r sinφ sinθ

r cosφ sinθ r sinφ cosθ

∣∣∣∣= r2 cosφ sinφ

∂ (x,z)
∂ (φ ,θ)

=

∣∣∣∣ r cosφ cosθ −r sinφ

r cosφ sinθ 0

∣∣∣∣= r2 cos(φ)sin(φ)sin(θ)

∂ (y,z)
∂ (φ ,θ)

=

∣∣∣∣ −r sinφ sinθ −r sinφ

r sinφ cosθ 0

∣∣∣∣= r2 sin2 (φ)cos(θ)

Similarly, you could obtain the boundary of an ellipse in the same way.

Example 18.0.5 One can obtain the cylinder of radius r of height h as follows.

x = r cos(θ) ,y = r sin(θ) ,z

where (θ ,z) ∈ [0,2π]× [0,h] a box. The mapping is clearly C1 but is not one to one.

More generally,
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Example 18.0.6 Say u→ (a(u) ,b(u)) for u ∈ [a,b] is a curve in the plane where a,b are
C1 and you consider

x = a(u) ,y = b(u) ,z = s

where (s,u) ∈ [c,d]× [a,b] . This would be a surface in three dimensions. It may or may
not be a one to one mapping depending on whether the curve is or is not a closed curve. It
would not be one to one if the curve is a closed curve with (x(b) ,y(b)) = (x(a) ,y(a)).

Many other examples are available including higher dimensional versions of the above.

Lemma 18.0.7 Each differential form ω can be written in a unique way as

∑
i1<i2<···<ik

ai1,i2,··· ,ik (x)dxi1 ∧dxi2 ∧·· ·∧dxik (18.1)

Also if σ is a permutation and J = σ (I) , then the following holds: dxJ = sgn(σ)dxI

Proof: Consider the second claim. By definition,∫
r

dxJ ≡
∫
[a,b]

det
(

dxJ

du

)
dmk =

∫
[a,b]

sgn(σ)det
(

dxI

du

)
dmk ≡ sgn(σ)

∫
r

dxI

this shows the second claim. The first claim that the form can be written as claimed is
shown above. It involves switching rows and then combining terms.

Now it will be shown that the above sum in 18.1 is uniquely determined. This can be
shown by considering a particular function in C1 ([a,b] ,Rp) which is chosen auspiciously
to reveal ai1,i2,··· ,ik (x) ,x ∈ (a,b). Letting I be an ordered list of k indices from {1, · · · , p}.
Say I = (i1, · · · , ik) with i1 < i2 < · · · < ik, an ascending list, meaning that the indices are
increasing. Define rδ (u) as follows: rδ (u)≡(

x1 · · · xi1 +
δ

b1−a1
(u1−a1) · · · xik +

δ

bk−ak
(uk−ak) · · · xp

)T

≡ x+dδ (u)

So what is
∫
rδ

ω? By definition, it equals∫
rδ

ω = ∑
J ascending

∫
[a,b]

aJ (rδ (u))det
(

drδJ (u)

du

)
dmk

=
k

∏
j=1

(
δ

b j−a j

)∫
[a,b]

aI (x+dδ (u))dmk (u) (18.2)

because if J does not consist of the same indices as I, then there must be a row of zeros in
drδJ(u)

du and so the integral for that term in the above formula must equal 0. Re define u j

as (u j−a j)
δ

b j−a j
= u j, j = 1, ...,k so u ∈ [0,δ]≡∏

k
s=1 [0,δ ]. The appropriate Jacobian is

then
(

∏
k
j=1

(
δ

b j−a j

))−1
and so 18.2 reduces to

∫
[0,δ] aI (x+u)dmk (u) . Thus

δ
−k
∫
rδ

ω = δ
−k
∫
[0,δ]

aI (x+u)dmk (u)

so by the fundamental theorem of calculus, limδ→0 δ
−k ∫

rδ
ω = aI (x) . This verifies uni-

queness. ■
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18.1 The Wedge Product
Next is the definition of the wedge product.

Definition 18.1.1 Denote differential forms, the functionals defined above which
act on C1 ([a,b] ,Rp) as Ωk. Then letting ω ∈Ωk and η ∈Ωl , let ω ∧η ∈Ωk+l be defined
as follows. Letting

ω ≡ ∑
I ascending

aI (x)dxI , η ≡ ∑
J ascending

bJ (x)dxJ

then
ω ∧η ≡ ∑

I ascending
∑

J ascending
aI (x)bJ (x)dxI ∧dxJ

where for I = (i1, · · · , ik) ,J ≡ ( j1, · · · , jl) ,

dxI ∧dxJ ≡ dxi1 ∧·· ·∧dxik ∧dx j1 ∧·· ·∧dx jl

This is well defined thanks to the above lemma which shows that there is only one way to
write a differential form like the above sums in which I is ascending in each term.

What if I and J are not ascending? Does it still work? Let I = (i1, · · · , ik) ,J ≡
( j1, · · · , jl) and let σ (I) be ascending and let η (J) be ascending, σ ,η being two permuta-
tions. Then from Lemma 18.0.7, the second claim,

∈Ωk

dxI ∧
∈Ωl

dxJ =
writing each in ascending form

sgn(σ)dxσ(I)∧ sgn(η)dxη(J)

above definition
= sgn(σ)sgn(η)dxσ(I)∧dxη(J)

=
definition of the wedge product dxσ(I)∧dxη(J)

sgn(σ)sgn(η)dxσ(i1)∧·· ·∧dxσ(ik)∧dxη( j1)∧·· ·∧dxη( jl)

= dxi1 ∧·· ·∧dxik ∧dx j1 ∧·· ·∧dx jl

Thus it is correct to write dxI ∧ dxJ = dxi1 ∧ ·· · ∧ dxik ∧ dx j1 ∧ ·· · ∧ dx jl even if I =
(i1, · · · , ik) ,J ≡ ( j1, · · · , jl) are not ascending.

This is the main idea behind the following fundamental result. In this lemma, I,J are
not necessarily ascending.

Lemma 18.1.2 Let ω ≡ ∑I aI (x)dxI ,η ≡ ∑J bJ (x)dxJ be in Ωk and Ωl respectively.
Then

ω ∧η = ∑
I,J

aI (x)bJ (x)dxI ∧dxJ

Proof: For each I, let σ I (I) be ascending where σ I is a permutation, similar for J.
Then, as noted above in the proof of Lemma 18.0.7 and denoting by Î, Ĵ the ascending lists
of indices.

ω = ∑
Î

 ∑
{I:σ I(I)=Î}

aI (x)sgn(σ I)

dxÎ , η = ∑
Ĵ

 ∑
{I:σ J(J)=Ĵ}

bJ (x)sgn(σ J)

dxĴ
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Then by definition, ω ∧η =

∑
Ĵ,Î

 ∑
{I:σ I(I)=Î}

aI (x)sgn(σ I)

 ∑
{I:σ J(J)=Ĵ}

bJ (x)sgn(σ J)

dxÎ ∧dxĴ

= ∑
Ĵ,Î

∑
{I:σ I(I)=Î}

∑
{I:σ J(J)=Ĵ}

aI (x)bJ (x)sgn(σ I)(sgn(σ J))dxÎ ∧dxĴ

By the alternating property of determinants,

= ∑
Ĵ,Î

∑
{I:σ I(I)=Î}

∑
{I:σ J(J)=Ĵ}

aI (x)bJ (x)dxI ∧dxJ = ∑
I,J

aI (x)bJ (x)dxI ∧dxJ ■

From this lemma, it is obvious that ∧ acts like multiplication in the sense that it is
distributive over addition, and associative. However, it is not commutative. From properties
of determinants,

dxI ∧dxJ

= dxi1 ∧·· ·∧dxik ∧dx j1 ∧·· ·∧dx jl

= (−1)l+k−1 dx jl ∧dxi1 ∧·· ·∧dxik ∧dx j1 ∧·· ·∧dx jl−1

= (−1)l+k−1 (−1)l+k−1 dx jl−1 ∧dx jl ∧dxi1 ∧·· ·∧dxik ∧dx j1 ∧·· ·∧dx jl−2

etc. Thus you get eventually(
(−1)l+k−1

)l
dx j1 ∧·· ·∧dx jl ∧dxi1 ∧·· ·∧dxik

Now l2− l + lk = lk + l (l−1) However, l (l−1) must be even. Therefore, this equals
(−1)|I||J| dxJ ∧dxI where |I| is the number of indices in I, similarly for J. This shows the
following theorem which summarizes the algebraic properties of the wedge product.

Theorem 18.1.3 Let α,β ,γ be in some Ωk. Then the following properties hold. If
α,β are the same size, (α +β )∧γ =α∧γ+β ∧γ . For α,β ,γ arbitrary, then the following
formula is obtained: (α ∧β )∧ γ = α ∧ (β ∧ γ). Finally, there is the condition about what
happens when order is reversed. If α ∈Ωk and β ∈Ωl ,α ∧β = (−1)lk

β ∧α .

Proof: The only claim which is not obvious is the last. However, this is also clear from
Lemma 18.1.2 and the above computation involving dxI ∧dxJ . ■

18.2 The Exterior Derivative
A zero form is a function. Say f is such a smooth function. Then d f ∈ Ω1 is defined as
follows.

d f ≡
p

∑
i=1

fxi (x)dxi

Then for r ∈C1 ([0,1] ,Rp) ,∫
r

d f ≡
∫ 1

0

p

∑
i=1

fxi (r (u))r′i (u)du =
∫ 1

0

d
du

( f (r (u)))du = f (r (1))− f (r (0))

In general, if you have something in Ωk, you can define its exterior derivative as follows.
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Definition 18.2.1 Let ω = ∑I ascending aI (x)dxI . Then

dω ≡ ∑
I ascending

daI (x)∧dxI

It is clear that d is linear.

It doesn’t matter whether ω is written in terms of ascending indices. The same formula
holds with no change.

Lemma 18.2.2 Let ω = ∑I aI (x)dxI then dω = ∑I daI (x)∧dxI

Proof: Denote by Î the ascending indices. Then if σ I (I) is ascending,

ω = ∑
Î

∑
{I}={Î}

aI (x)dxI = ∑
Î

 ∑
{I}={Î}

aI (x)sgn(σ I (I))

dxÎ

Then since d is linear, dω = ∑Î

(
∑{I}={Î} daI (x)sgn(σ I (I))

)
∧dxÎ . Then since ∧ is also

linear,

= ∑
Î

 ∑
{I}={Î}

daI (x)sgn(σ I (I))∧dxÎ


= ∑

Î

 ∑
{I}={Î}

daI (x)∧dxI

= ∑
I

daI (x)∧dxI ■

Next is a product rule. First note that it follows right away from the definition and the
product rule from beginning calculus that

d ( f g) = d ( f )g+gd (g)

Lemma 18.2.3 Let α,β be in Ωk and Ωl respectively. Then d (α ∧β ) = dα ∧ β +

(−1)k
α ∧dβ . Also d2 = 0.

Proof: Let α = ∑I aI (x)dxI ,β = ∑J bJ (x)dxJ . Then α∧β = ∑I,J aIbJdxI∧dxJ and
so d (α ∧β ) equals, thanks to the above lemma,

∑
I,J

d (aIbJ)∧dxI ∧dxJ = ∑
I,J

[d (aI (x))bJ (x)+aI (x)d (bJ (x))]∧dxI ∧dxJ

= ∑
I,J

d (aI (x))bJ (x)∧dxI ∧dxJ +∑
I,J

aI (x)d (bJ (x))∧dxI ∧dxJ

From the definition of the wedge product and Lemma 18.1.2,

= dα (x)∧β +∑
I,J

aI (x)d (bJ (x))∧dxI ∧dxJ

Now we will interchange the 1 form d (bJ (x)) and the k form dxI . From Theorem 18.1.3

= dα (x)∧β (x)+(−1)k
∑
I,J

aI (x)dxI ∧d (bJ (x))∧dxJ
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Then from Lemma 18.1.2 again,

= dα (x)∧β (x)+(−1)k
∑

I
aI (x)dxI ∧∑

J
d (bJ (x))∧dxJ

= dα (x)∧β (x)+(−1)k
α (x)∧dβ (x)

One of the important properties of the exterior derivative is that d2 = 0. Let

ω = ∑
I

aI (x)dxI , dω = ∑
I

p

∑
r=1

aI,xr dxr ∧dxI

Then by definition, d2ω = ∑I ∑
p
r=1 ∑

p
s=1 aI,xrxs dxs∧dxr ∧dxI

= ∑
I

∑
r<s

aI,xrxsdxs∧dxr ∧dxI +∑
I

∑
s<r

aI,xrxsdxs∧dxr ∧dxI

= ∑
I

∑
r<s

aI,xrxsdxs∧dxr ∧dxI +∑
I

∑
r<s

aI,xsxr dxr ∧dxs∧dxI

In keeping with the convention that we assume aI are as smooth as desired, we can conclude
that the mixed partial derivatives are equal and so the above reduces to

∑
I

∑
r<s

aI,xrxs dxs∧dxr ∧dxI +∑
I

∑
r<s

aI,xrxs dxr ∧dxs∧dxI

= ∑
I

∑
r<s

aI,xrxs dxs∧dxr ∧dxI−∑
I

∑
r<s

aI,xrxs dxs∧dxr ∧dxI = 0 ■

It might be interesting to note that if one means weak derivatives, then the mixed partial
derivatives are always equal.

18.3 Stokes Theorem
Now that the algebra of differential forms has been presented, it is time for the main topic
Stokes theorem. Recall [a,b] is defined as ∏

k
l=1 [al ,bl ] . Let x ∈Rp, p≥ k,r : [a,b]→Rp,

and let ω a k−1 form be given as follows

ω = ∑
I∈J

α I (x)dxi1 ∧·· ·∧dxik−1

where here I = (i1, ..., ik−1) is an increasing list of k−1 indices from (1,2, ..., p) and J will
denote the set of all such increasing lists of indices. Thus there are C (p,k−1) elements in
the set J. Assume that α I is C1 but here x= r (u) is C2. After this case is done, it is easy
to generalize.

This is a generalization of line integrals which is about integration over curves in space.
Recall there was a parameter domain [a,b] and a map r : [a,b]→ Rp and there were two
orientations or directions over the curve which was the set of points r ([a,b]). This concept
of orientation is dealt with in multiple dimensions by the use of differential forms and the
concept of determinants from linear algebra. The interval [a,b] is replaced by [a,b] . Stokes
theorem then is a statement about r ([a,b]) and the boundary of r ([a,b]) just as it is in the
case of a line integral.

Stokes theorem relates the integral over some r to the integral over the “boundary” of
r. This is defined next.
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Definition 18.3.1 Denote as Λ(k) the set of finite sums of differential forms of or-
der k. I will now describe the boundary ∂ : Λ(k)→ Λ(k−1) by first defining it on r and
then, if desired, one would know it on all of Λ(k). If k = 1, then ∂r ≡ r (b)− r (a) . In
general, for r : [a,b]→ Rp and l ≤ k,

∂lr (u1, · · · , ûl , · · · ,uk)

≡ r (u1, · · · ,bl ,ul+1, · · · ,uk)−r (u1, · · · ,al ,ul+1, · · · ,uk)≡ rbl −ral .

Note that rbl ,ral are defined on

[a1,b1]×·· ·× [al−1,bl−1]× [al+1,bl+1]×·· ·× [ak,bk]≡ [a,b]l .

Specifically, if ω = ∑I aI (x)dxI where I denotes ordered lists of indices of length k− 1
taken from {1, ..., p}∫

∂lr
ω ≡

∫
[a,b]l

∑
I

aI
(
rbl (u)

)
det

(
drI

bl
(u)

du

)
dmk−1

−
∫
[a,b]l

∑
I

aI
(
rbl (u)

)
det

(
drI

al
(u)

du

)
dmk−1

where u comes from [a,b]l . Here rbl is r with bl in the lth position, similar for ral . Thus

det
(

drI
bl
(u)

du

)
,det

(
drI

al
(u)

du

)
are (−1)1+l AJ

1l where AJ
1l is the (1, l)th cofactor of det

(
DrJ

)
where J has length k and the matrix DrJ is the matrix of 18.4, having the top row(

x j,u1 x j,u2 · · · x j,uk

)
Then

∫
∂r ω ≡ ∑l

∫
∂lr

ω .

With this preparation, Stoke’s theorem follows from a computation.

dω ≡∑
I∈J

p

∑
j=1

∂α I

∂x j
(x)dx j ∧dxi1 ∧·· ·∧dxik−1 , I = (i1, · · · , ik−1)

Definition 18.3.2 As discussed earlier, define∫
r

dω ≡∑
I∈J

p

∑
j=1

∫
[a,b]

∂α I

∂x j
(r (u))

∂
(
x j,xi1 · · ·xik−1

)
∂ (u1, · · · ,uk)

du (18.3)

By definition,
∂

(
x j ,xi1 ···xik−1

)
∂ (u1,··· ,uk)

is the determinant of
x j,u1 x j,u2 · · · x j,uk
xi1,u1 xi1,u2 · · · xi1,uk

...
...

...
xik−1,u1 xik−1,u2 · · · xik−1,uk

 (18.4)

Note how this matrix is just the matrix of Df where

f (u) =
(
x j (u) ,xi1 (u) , ...,xik−1 (u)

)T
.
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Then expanding the determinant in 18.3 along the first row, it equals

= ∑
I∈J

p

∑
j=1

∫
[a,b]

∂α I

∂x j
(r (u))

expanding determinant
k

∑
l=1

∂x j

∂ul
AI

1l du

where AI
1l is the (1, l)th cofactor for the determinant of 18.4.

AI
1l = (−1)1+l ∂

(
xi1 , · · · ,xik−1

)
∂ (u1, · · · , ûl · · · ,uk)

, I = (i1, · · · , ik−1) (18.5)

Then this equals

= ∑
I∈J

k

∑
l=1

∫
[a,b]

p

∑
j=1

∂α I

∂x j
(r (u))

∂x j

∂ul
AI

1ldu= ∑
I∈J

k

∑
l=1

∫
[a,b]

∂α I (r (u))

∂ul
AI

1ldu

Now

∑
l

∂α I (r (u))

∂ul
AI

1l = ∑
l

∂

∂ul

(
α I (r (u))AI

1l
)
−∑

l
α I (r (u))AI

1l,l

= ∑
l

∂

∂ul

(
α I (r (u))AI

1l
)

By Lemma 7.11.2, that cofactor identity depending on equality of mixed partials. There-
fore, from 18.3 and Fubini’s theorem,∫

r
dω = ∑

I∈J

k

∑
l=1

∫
[a,b]

∂

∂ul

(
α I (r (u))AI

1l
)

= ∑
I∈J

k

∑
l=1

∫
[a,b]l

∫
[al ,bl ]

∂

∂ul

((
α I (r (u))AI

1l
))

duldul

=
k

∑
l=1

∫
[a,b]l

∑
I∈J

(
(α I ◦r)AI

1l
)
(ul (bl))−

(
(α I ◦r)AI

1l
)
(ul (al))dul (18.6)

where here [a,b]l means the [al ,bl ] is missing in the product [a,b] and ul (bl) is given
by the formula (u1, ...,ul−1,bl ,ul+1, ...,uk) with ul (al) defined similarly. The term AI

1l is

the cofactor in 18.5 (−1)1+l ∂

(
xi1 ,··· ,xik−1

)
∂ (u1,··· ,ûl ··· ,uk)

. The term
∫
[a,b]l

(
(α I ◦r)AI

1l

)
(ul (bl))dul is

an integration over the variables corresponding to a face of [a,b] and so it is a kind of
boundary term. By Definition 18.3.1 or simply making a definition that this is what we
mean by the integral over the boundary, this is

∫
∂r ω . Thus, this proves Stokes’ theorem.

Theorem 18.3.3 Let ω = ∑I α I (x)dxi1 ∧ ·· · ∧ dxik−1 be a k− 1 form. Let r :
[a,b]→ Rp, p≥ k be in C2 ([a,b] ;Rp) . Then

∫
∂r ω =

∫
r dω .

Note that there is no assumption that Dr has nonzero determinant. Everything above is
valid under an assumption that r is only C2. There was a reason why in calculus smooth
curves had a parametrization with nonvanishing derivative. If the derivative vanishes, this
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can yield a pointy place in the curve resulting from the given parametrization so it would
not deserve to be called a smooth curve. It is the same here. Since Dr is allowed to
vanish, one can have r ([a,b]) many different kinds of sets. However, if you insist that Dr
be invertible, the points on the box would be preserved by an application of the implicit
function theorem.

The above could be improved by using the above to approximate functions which are
not C2 with functions which are, obtained by mollifying, and then passing to a limit to get
more general situations. In particular, consider r a function in C1 ([a,b] ;Rp). Then by
Lemma 16.3.1 there is a sequence of functions {rn} each C2 which converges uniformly
to r and such that Drn converges uniformly to Dr on [a,b]. Then Stoke’s theorem holds
with r replaced with rn and so, passing to a limit as n→ ∞ one obtains Stoke’s theorem
for r. This yields the following corollary.

Corollary 18.3.4 Let ω = ∑I α I (x)dxi1 ∧·· ·∧dxik−1 be an k−1 form, each α I being
C1 ([a,b]). Let r : [a,b]→ Rp, p≥ k be in C1 ([a,b] ;Rp). Then

∫
∂r ω =

∫
r dω .

Proof: From the above,
∫

∂rn
ω =

∫
rn

dω where rn is C2. Both terms involve integrals
over [a,b] or [a,b]l and the convergence is uniform, so one can pass to a limit as n→ ∞

retaining the same formula with rn replaced with r. ■
Suppose you have two boxes [a,b] and [c,d] and these intersect on a common face, say

the lth face. Thus cl = bl . Then in the above description for the boundary integral on the
common face, the two contributions cancel because you have the same thing except one has
|bl
al and the other has |dl

bl
. Therefore, you would get Stokes theorem for the box consisting

of these two pasted together, the boundary integrals consisting of the sum of the boundary
integrals of the remaining faces. Continuing this way, consider a chain of these boxes such
that each box intersects another along a complete face. Then you could do the above for
each pair of boxes in the chain and note that the boundary integrals will cancel along the
common faces. Thus, in place of a single box you could have a much more complicated
shape and the boundary integral would take place over exactly those faces which do not
have intersection with faces of other boxes whereas

∫
r dω would take place over the union

of the boxes since the boundaries are sets of measure zero relative to mk. The following
picture illustrates what is meant.

Thus, adding over the boxes yields a parameter domain which looks like the following
for
∫
r dω .

By now, it should be clear that fairly general regions can be included. Also, we only
need to have aI continuous on the face of two of these intersecting boxes. This is an analog
of a piece-wise smooth curve.
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18.4 Lipschitz Maps
This will be based on the approximation with C1 maps. Let r : [a,b]⊆Rk→Rp where r is
Lipschitz and k ≤ p as before. The idea is to extend the above Stokes theorem to this case
where r is Lipschitz rather than C1. First extend r as follows. For t ≥ bl and ul ∈ [a,b]l ,
let

r (u1, ...,ul−1, t,ul+1, ...,uk)≡ r (u1, ...,ul−1,bl ,ul+1, ...,uk)

and also if t ≤ al and ul ∈ [a,b]l , let

r (u1, ...,ul−1, t,ul+1, ...,uk)≡ r (u1, ...,ul−1,al ,ul+1, ...,uk)

This is done for each l. Then define for h > 0

rh (u)≡
(

1
2h

)k ∫ u1+
2h

(b1−a1)
(u1−a1)

−2h+u1+
2h

(b1−a1)
(u1−a1)

· · ·
∫ uk+

2h
(bk−ak)

(uk−ak)

−2h+uk+
2h

(bk−ak)
(uk−ak)

r (t)dtk · · ·dt1 (18.7)

Consider those integrals. When u1 = a1 you are integrating over [a1−2h,a1] and when
u1 = b1 you are integrating over [b1,b1 +2h] . Of course it is similar for the other [al ,bl ] .
In general, each iterated integral is taken over an interval of length 2h. For example,

u1 +
2h

(b1−a1)
(u1−a1)−

(
−2h+u1 +

2h
(b1−a1)

(u1−a1)

)
= 2h

Now consider the right end of the lth interval in [a,b] where ul = bl . Then this is describ-
ing one of the two faces corresponding to the lth interval. By Fubini’s theorem and the
construction of the extention of r, 18.7 implies that this equation simplifies to

rh (ul (bl)) =

(
1

2h

)k−1 ∫ u1+
2h

(b1−a1)
(u1−a1)

−2h+u1+
2h

(b1−a1)
(u1−a1)

· · ·
∫ uk+

2h
(bk−ak)

(uk−ak)

−2h+uk+
2h

(bk−ak)
(uk−ak)

·

r (t1, ...,bl , ...tk)dtk · · · d̂tl · · ·dt1

Now by the fundamental theorem of calculus, for i ̸= l,

rh
ui
(ul (bl)) =

(
1

2h

)k−2 ∫ u1+
2h

(b1−a1)
(u1−a1)

−2h+u1+
2h

(b1−a1)
(u1−a1)

· · ·
∫ uk+

2h
(bk−ak)

(uk−ak)

−2h+uk+
2h

(bk−ak)
(uk−ak)

·

r

(
t1, ...,ui +

2h
(bi−ai)

(ui−a1) , ...bl , ...tk

)
1

2h

(
1+

2h
bi−ai

)
−

r

(
t1, ...,−2h+ui +

2h
(bi−ai)

(ui−ai) , ...bl , ...tk

)
1
2h

(
1+

2h
bi−ai

)
·

dtk · · · d̂ti, · · · , d̂tl · · ·dt1

By the material on Rademacher’s theorem, that integrand is(
1+

2h
bi−ai

)
1

2h

∫ ui+
2h

(bi−ai)
(ui−ai)

−2h+ui+
2h

(bi−ai)
(ui−ai)

rui (t1, ..., ti, ...bl , ...tk)dti
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Now a.e. point of [a,b]l is a Lebesgue point and so we can pass to a limit and obtain
pointwise a.e. convergence of rh

ui
(ul (bl)) to rui (ul (bl)) .

Some comment on this might be useful because these Lebesgue points are not always at
the center of the box of sides of length 2h determined by the limits of the iterated integrals.
A given point ul (bl) ∈ B(ul (bl) ,3h) where this ball is taken with respect to ∥·∥

∞
. Thus,

from Lebesgue’s fundamental theorem of calculus, we have on this face at Lebesgue points
the following converges to 0 as h→ 0 which is what was desired(

1+
2h

bi−ai

)(
3
2

)k−1

·(
1

3h

)k−1 ∫
B(ul(bl),3h)

∥rui (ul (bl))−rui (t1, ..., ti, ...bl , ...tk)∥dtl

Indeed,
( 3

2

)k−1 ( 1
3h

)k−1
=
( 1

2h

)k−1
and the integral in the above is taken over the larger set

B(ul (bl) ,3h).
As to points of [a,b] , the pointwise convergence of rh

u j
(u) to ru j (u) follows from

similar reasoning but is a little less involved. Now rh is clearly C1 and so we have Stokes
theorem for rh.

k

∑
l=1

∫
[a,b]l

∑
I∈J

((
α I ◦rh

)
AIh

1l

)
(ul (bl))−

(
(α I ◦r)AIh

1l

)
(ul (al))dul

=
∫
r

dω ≡∑
I∈J

p

∑
j=1

∫
[a,b]

∂α I

∂x j

(
rh (u)

) ∂
(
x j,xi1 · · ·xik−1

)
∂ (u1, · · · ,uk)

du

where the superscript indicates that all is defined in terms of rh. Then from the dominated
convergence theorem, it follows that we can pass to a limit and obtain Stokes theorem
where the boundary terms are defined from Rademacher’s theorem on the faces of [a,b].

Theorem 18.4.1 Let r : [a,b]⊆Rk→Rp, p≥ k be Lipschitz and also suppose that
α I ∈ C1 (r ([a,b])) for I ⊆ J, the set of increasing lists of k− 1 indices from (1,2, ..., p).
Then one obtains Stokes theorem∫

r(∂ [a,b])
ω ≡

k

∑
l=1

∫
[a,b]l

∑
I∈J

(
(α I ◦r)AI

1l
)
(ul (bl))−

(
(α I ◦r)AI

1l
)
(ul (al))dul

=
∫
r

dω ≡∑
I∈J

p

∑
j=1

∫
[a,b]

∂α I

∂x j
(r (u))

∂
(
x j,xi1 · · ·xik−1

)
∂ (u1, · · · ,uk)

du

where the partial derivatives of AI
1l = (−1)1+l ∂

(
xi1 ,··· ,xik−1

)
∂ (u1,··· ,ûl ··· ,uk)

are defined in terms of Rad-
emacher’s theorem applied to the k−1 dimensional faces of [a,b].

18.5 What Does it Mean?
Stokes theorem is a statement about integration by parts. However, one can give geometric
meaning to what it says. These considerations will come from the area formula which I
will use as needed.
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For a particular l there are two faces in the boundary term for the Stokes formula.
Consider the one where the lth component is bl . Recall that J was the set of increasing lists
of k−1 indices. ∫

[a,b]l
∑
I∈J

(
(α I ◦r)AI

1l
)
(ul (bl))dul

Here AI
1l = (−1)1+l ∂

(
xi1 ,··· ,xik−1

)
∂ (u1,··· ,ûl ··· ,uk)

and I = (i1, ..., ik−1) . Letting

J∗ (ul) =
√

∑
I∈J

(
AI

1l

)2
(ul (bl)),

this term is of the form∫
[a,b]l

∑
I∈J

(
(α I ◦r)

AI
1l

J∗ (ul)

)
(ul (bl))J∗ (ul)dul (18.8)

Define AI
1l

J∗(ul)
= 0 if J∗ (ul) = 0 on Zl . By Lemma 17.3.1, H k−1 (rl (Zl)) = 0 so the con-

siderations presented here hold off a set of H k−1 measure zero in rl ([a,b]l). Also we can
ignore the set where the derivative does not exist thanks to Lemma 17.1.2 which says Lip-
schitz mapse of sets of measure zero have measure zero. Using the Binet Cauchy theorem
to identify J∗ (ul) with

(
det
(
Drbl (ul)

∗Drbl (ul)
))1/2

, 18.8 reduces to∫
rbl

([a,b]l)
#(x)∑

I∈J
α I (x)NI

bl
(x)dH k−1 (x)

where NI
bl

(
rbl (ul)

)
=

AI
1l

J∗(ul)
(ul (bl)) =

1
J∗(ul)

(−1)1+l ∂

(
xi1 ,··· ,xik−1

)
∂ (u1,··· ,ûl ··· ,uk)

is a component of a

unit vector in RC(p,k−1) at least H k−1 a.e. Assume that rbl is one to one or is one to one
off a set S which has H k−1

(
rbl (S)

)
= 0. That way we can eliminate #(x) the number of

times x is hit by rbl replacing it with 1. Thus, generalizing the notation, the boundary term
in Stokes theorem is of the form

k

∑
l=1

∫
rbl

([a,b]l)
∑
I∈J

α I (x)NI
bl
(x)dH k−1 (x)

−
k

∑
l=1

∫
ral ([a,b]l)

∑
I∈J

α I (x)NI
al
(x)dH k−1 (x)

where ∑I∈J

(
NI

bl
(x)
)2

= 1. Letting NI = NI
bl

on rbl ([a,b]l) and −NI
al

on ral ([a,b]l) , the
above is of the form ∫

r(∂ [a,b])
∑
I∈J

α I (x)NI (x)dH k−1

Similarly ∫
r

dω ≡ ∑
I∈J

∫
[a,b]

p

∑
j=1

∂α I

∂x j
(r (u))

∂
(
x j,xi1 · · ·xik−1

)
∂ (u1, · · · ,uk)

du

=
∫
[a,b]

p

∑
j=1

∑
I∈J

∂α I

∂x j
(r (u))

∂
(
x j,xi1 · · ·xik−1

)
∂ (u1, · · · ,uk)

du
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Now that determinant is only nonzero if j is none of the is. By the Binet Cauchy theorem,

det
(
Dr (u)∗Dr (u)

)
= J∗ (u)

2 = ∑
xi1<···<xik

(
∂
(
xi1 · · · ,xik

)
∂ (u1, · · · ,uk)

)2

and so it follows from the area formula that there exists NI
j for each I an increasing list of

k−1 indices such that for J all such increasing lists, ∑
p
j=1 ∑I∈J

(
NI

j

)2
= 1 and

∫
r

dω =
∫
[a,b]

p

∑
j=1

∑
I∈J

∂α I

∂x j
(r (u))

∂

(
x j ,xi1 ···xik−1

)
∂ (u1,··· ,uk)

J∗ (u)
J∗ (u)du (18.9)

=
∫
r([a,b])

#(x)∑
I∈J

p

∑
j=1

∂α I

∂x j
(x)NI

j (x)dH k

where #(x) is the number of times x is hit by r. Thus if r is one to one off Ŝ where r
(
Ŝ
)

has H k measure zero, it follows that we can remove #(x) from the formula. As before,
we can ignore the set where J∗ (u) = 0 thanks to Lemma 17.3.1. Also we can ignore the
set of u where the function is not differentiable by Lemma 17.1.2.

Observation 18.5.1 Stokes theorem may be thought of as a statement about r ([a,b])
and r (∂ [a,b]) which involves geometrical concepts dependent on these sets. This holds
whenever Lipschitz r restricted to each face of [a,b] is one to one off a set S where r (S)
has H k−1 measure zero, and r is one to one off Ŝ where r

(
Ŝ
)

has H k measure zero.

I think that the most important case is where k = p and in this case we have the diver-
gence theorem. Here there are exactly p−1 increasing lists of indices I and these are of the
form

(
1, · · · , ĵ, · · · , p

)
. We let α I be denoted as a j (−1) j+1 where j is the index missing

in I. Therefore, the formula for
∫
r dω reduces to

±
∫
r([a,b])

p

∑
j=1

∂a j

∂x j
(x)dH k

assuming that r is one to one off a set S for which r (S) has H p measure zero. This is
because from 18.9

∂α I

∂x j
(r (u))

∂

(
x j ,xi1 ···xik−1

)
∂ (u1,··· ,uk)

J∗ (u)
J∗ (u) =

(
(−1) j+1

)2
ai (r (u))

∂(x1,··· ,x j ··· ,xp)
∂ (u1,··· ,uk)

J∗ (u)
=±1

The boundary terms reduce to

k

∑
l=1

∫
rbl

([a,b]l)

p

∑
j=1

a j (x)N j (x)dH k−1 (x)−
k

∑
l=1

∫
ral ([a,b]l)

p

∑
j=1

a j (x)N j (x)dH k−1 (x)

where for x= r (u) ,N j (x) = (−1) j+l ∂(x1,··· ,x̂ j ··· ,xp)
∂(u1,··· ,ûl ,··· ,up)

. This can be written in the form

±
∫
r([a,b])

p

∑
j=1

∂a j

∂x j
(x)dH k =

∫
r(∂ [a,b])

p

∑
j=1

a j (x)N j (x)dH k−1 (x)
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This divergence theorem is discussed more later when also the unit vector N whose jth

component is N j is described as an exterior unit normal provided
∂(x1,··· ,xp)
∂ (u1,··· ,uk)

≥ 0. Note how

the (−1) j+1 on the a j is responsible for the (−1) j+l instead of (−1)1+l in the description
of N j.

18.6 Examples of r([a,b])
I want to point out that there are many examples of r([a,b]) which fit into the above
integration by parts idea of Stokes theorem in which r is Lipschitz, in order to tie this more
to the way we usually think of these theorems in Calculus. Consider the following picture
in which a closed ball B of radius 1 is inscribed into the box Q ≡ [−1,1] ≡∏

k
i=1 [−1,1].

Let P be the projection map onto this ball B.

Then it is geometrically obvious that the projection map P satisfies P(Q\B) = ∂B a set
of H k measure zero and that P : ∂ [−1,1]→ ∂B is one to one and onto on ∂ [−1,1]. Now
let r : B→Rp for p≥ k be Lipschitz and one to one. Then r ◦P : [−1,1]→ r (B) satisfies
all the necessary conditions for an application of Stokes theorem including the geometric
descriptions just given. What kinds of sets are in r (B) for B a closed ball and r Lipschitz
and one to one? I think you can see that this would include virtually everything of interest.
You could stretch B in various directions, pinch it, bend it, etc. Roughly speaking, imagine
a ball of soft clay and doing what a child would do to it before he tears it into little pieces,
throws them around the room and stomps them into the carpet. The result would be one of
the possible sets r (B). Since r is a homeomorphism, the interior of B corresponds to the
relative interior of r (B), points x ∈ r (B) = r◦P([−1,1]) which are not in r (∂B). The
boundary faces of [−1,1] and r◦P restricted to these faces will parametrize finitely many
disjoint pieces of r (∂B).

Of course you could also consider chains of such boxes as described earlier in the case
that r is C1. However, when you can allow r to be Lipschitz, it is clear that the theory is
sufficiently general to include most things which would be of interest in any application
from a single box. Next is a discussion of orientation placed here to make an analogy with
the case of line integrals and oriented curves.

18.7 Orientation and Degree
Here I will consider orientation briefly. As in the case of a curve, it reduces to considera-
tions of r−1◦r̂.

Proposition 18.7.1 Suppose r ([a,b]) = r̂
([
â, b̂

])
, two sets in Rp and both r, r̂ are

one to one and Lipschitz, [a,b] ,
[
â, b̂

]
being two parameter domains in Rk,k ≤ p. Then

for

ω = a(x)dxi1 ∧·· ·∧dxik

Assume also that r−1◦r̂ is Lipschitz and det
(
D
(
r−1◦r̂

)
(t)
)
≥ 0 a.e. This is a statement

about orientation. It follows then that
∫
r ω =

∫
r̂ ω.
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Proof: Let (a,b)≡∏
k
j=1 (a j,b j). Now from the area formula

∫
r

ω ≡
∫
[a,b]

a(r (u))
∂
(
xi1 , ...,xik

)
∂ (u1, ...,uk)

(u)du

=
∫
[â,b̂]

a
(
r
(
r−1◦r̂

)
(t)
) ∂
(
xi1 , ...,xik

)
∂ (u1, ...,uk)

(
r−1 ◦r̂ (t)

)
det
(
D
(
r−1◦r̂

)
(t)
)

dt

=
∫
[â,b̂]

a
(
r
(
r−1◦r̂

)
(t)
) ∂
(
xi1 , ...,xik

)
∂ (t1, ..., tk)

(t)dt ≡
∫
r̂

ω ■

An application of the area formula gives the following corollary. I will use r−1◦r̂ to
denote a Lipschitz function which is one to one off a set S which equals the Lipschitz
function r−1◦r̂ on SC. In particular if S has measure 0 and r−1◦r̂ is Lipschitz on SC, then
you could extend to a Lipschitz function which would map S to a set of measure zero, thus
being in the situation of this corollary.

Corollary 18.7.2 Suppose r−1◦r̂ is one to one off a set S⊆
[
â, b̂

]
and that r−1 ◦r̂ (S)

has measure zero. Then the above would hold with no change.

Since this allows for Lipschitz functions, this is slightly more general than the usual
situation from Calculus even in one dimension. However, more can be said. Orientation is
really a statement about the degree of the map r−1◦r̂, a concept which makes perfect sense
without any direct reference to differentiability.

Recall that with a smooth curve C having points p,q and a one to one map to this curve,
there are two ways to move over the curve, from p to q or from q to p. One defines equiva-
lence classes on the continuous mappings r which map a closed interval to C. Two of these
r, r̂ are equivalent if r−1◦r̂ is increasing. It follows from the intermediate value theorem
of Bolzano and a simple argument that this composition of maps is either increasing or
decreasing. Thus, from the theorem about differentiation of monotone functions,

(
r−1◦r̂

)′
is nonnegative a.e. exactly when the two parametrizations give the same orientation. In the
above, this is determined by det

(
D
(
r−1◦r̂

))
. In addition, this reduces to a topological no-

tion having to do with the degree. Instead of “increasing” we say that d
(
r−1 ◦r̂,Ω,(a,b)

)
is 1. The notion of “increasng” is not available.

Recall that from Proposition 15.6.7, Corollary 15.6.6, d
(
r−1◦r̂,

(
â, b̂

)
,(a,b)

)
is ei-

ther 1 or −1. This is the topological degree of the mapping r−1◦r̂ which is constant on
the connected component (a,b) of Rk \r−1 ◦r̂

(
∂

([
â, b̂

]))
. Suppose then that this de-

gree d
(
r−1◦r̂,

(
â, b̂

)
,y
)

is 1. Then from Proposition 17.7.4 on Page 469, it follows that
whenever f ∈Cc (a,b)∫

f (u)d
(
r−1◦r̂,Ω,u

)
du =

∫
(â,b̂)

f
(
r−1 ◦r̂ (t)

)
det
(
D
(
r−1◦r̂

)
(t)
)

dt

You could take an increasing sequence fn (u)→X(a,b) (u) of the above sort. From the
area formula, ∫

fn (u)du =
∫
(â,b̂)

f
(
r−1 ◦r̂ (t)

)∣∣det
(
D
(
r−1◦r̂

)
(t)
)∣∣dt
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and so

0 =
∫
(â,b̂)

fn
(
r−1 ◦r̂ (t)

)(∣∣det
(
D
(
r−1◦r̂

)
(t)
)∣∣−det

(
D
(
r−1◦r̂

)
(t)
))

dt.

Using the monotone convergence theorem, it follows that

0 =
∫
(â,b̂)

(∣∣det
(
D
(
r−1◦r̂

)
(t)
)∣∣−det

(
D
(
r−1◦r̂

)
(t)
))

dt.

and so det
(
D
(
r−1◦r̂

)
(t)
)
≥ 0 a.e. This is the condition given in the above proposition.

Thus this condition which applies to Lipschitz functions follows from a statement that
d
(
r−1◦r̂,Ω,u

)
= 1. Conversely, if the condition det

(
D
(
r−1◦r̂

)
(t)
)
≥ 0 a.e. it will follow

from the above formula that d
(
r−1◦r̂,Ω,u

)
= 1 since it cannot equal −1.

18.8 Examples of Stoke’s Theorem
Here the attempt is made to tie this formalism to the usual things studied in calculus.

18.8.1 Fundamental Theorem of Calculus
First let k = p = 1. What does Stoke’s theorem say? In this case, dω is a 1 form and so ω

should be a 0 form which is just a function. ω = a(x) , dω = a′ (x)dx. Then if r : [a,b]→R
is C1, ∫

r
dω ≡

∫
r

a′ (x)dx≡
∫ b

a
a′ (r (u))

dr
du

du = a(r (b))−a(r (a))∫
∂r

ω =
∫

∂r
a(x) = (−1)2 a(r (b))− (−1)2 a(r (a))

which is the same thing. It is just the fundamental theorem of calculus essentially.

18.8.2 Line Integrals for Conservative Fields
What if p = 3,k = 1? This is similar. You need to have ω a zero form. Thus ω =
a(x1, ...,xm) . Then dω = ∑i axidxi. Letting r : [a,b]→ Rm,∫

r
dω =

∫ b

a
∇a ·r′du = a(r (b))−a(r (a))

∫
∂r

ω = (−1)(1+1) a(r (b))− (−1)(1+1) a(r (a))

which is the same thing. This is the case of a conservative vector field, the potential function
being a.

18.8.3 Green’s Theorem
Next ω be a 1 form and let p = k = 2 so dω is a 2 form and ω is a 1 form. Say

ω = P(x,y)dx+Q(x,y)dy

dω = Py (x,y)dy∧dx+Qxdx∧dy
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Recall that terms like dx∧dx are zero because they result in a determinant which equals 0.
Then let r be smooth and map [a,b]× [c,d] to R2.

r (s,u)≡ (x(s,u) ,y(s,u))T .

Then
∫
r dω ≡∫ b

a

∫ d

c
Py (x(s,u) ,y(s,u))

∣∣∣∣ ys yu
xs xu

∣∣∣∣+Qx (x(s,u) ,y(s,u))
∣∣∣∣ xs xu

ys yu

∣∣∣∣dsdu

=
∫ b

a

∫ d

c
[Qx (x(s,u) ,y(s,u))−Py (x(s,u) ,y(s,u))] (xsyu− xuys)dsdu

Let U = r ([a,b]× [c,d]) . Then by the change of variables theorem, this equals∫
U
(Qx (x,y)−Py (x,y))sgn(xsyu− xuys)dxdy

Next consider
∫

∂r ω . For r (s,u) = (x(s,u) ,y(s,u))T , this equals∫ d

c
P(x(1,u) ,y(1,u))

∂x(1,u)
∂u

+Q(x(1,u) ,y(1,u))
∂y(1,u)

∂u
du

−
∫ d

c
P(x(0,u) ,y(0,u))

∂x(0,u)
∂u

+Q(x(0,u) ,y(0,u))
∂y(0,u)

∂u
du

+
∫ b

a
P(x(s,0) ,y(s,0))

∂x(s,0)
∂ s

+Q(x(s,0) ,y(s,0))
∂y(s,0)

∂ s
ds

−
∫ b

a
P(x(s,1) ,y(s,1))

∂x(s,1)
∂ s

+Q(x(s,1) ,y(s,1))
∂y(s,1)

∂ s
ds

This is computing a line integral by summing the contributions around the edges of [a,b]×
[c,d]. It is

∫
C Pdx+Qdy where the orientation on this curve C comes from the counter

clockwise orientation on the boundary of [a,b]× [c,d] as shown in the picture.

a b

c

d

Thus if xsyu− xuys > 0, this is just Green’s theorem from calculus. Thus this gives a
proof of this important theorem provided the region U is the C1 image of a rectangle. One
could generalize to consider chains of rectangles which, as mentioned above yields fairly
general surfaces in R2. One could also include Lipschitz maps for even more generality.
However, this falls short of the best results for Green’s theorem which involve a rectifiable
simple closed curve with U its interior. Rectifiable only requires the curve to have finite
length.

18.8.4 Stoke’s Theorem from Calculus
Next let k = 2 and p = 3. Thus dω is a 2 form so ω is a 1 form. Say

ω = P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
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Then

dω = Pydy∧dx+Pzdz∧dx+Qxdx∧dy+Qzdz∧dy+Rxdx∧dz+Rydy∧dz

Now let r : [0,1]2→ R3,r (s,u) = (x(s,u) ,y(s,u) ,z(s,u)). Then letting the various func-
tions be defined at r (s,u) ,∫

r
dω =

∫
[0,1]2

(
Py det

(
ys yu
xs xu

)
+Pz det

(
zs zu
xs xu

)
+Qx det

(
xs xu
ys yu

)

+Qz det
(

zs zu
ys yu

)
+Rx det

(
xs xu
zs zu

)
+Ry det

(
ys yu
zs zu

))
dsdu

This equals ∫
[0,1]2

(Ry−Qz)(yszu− yuzs)+(Pz−Rx)(xuzs− xszu)

+(Qx−Py)(xsyu− xuys)dsdu

By the definition of surface area on S≡ r
(
[0,1]2

)
, see Definition 14.2.1 the area increment

on the surface r
(
[0,1]2

)
is√
|yszu− yuzs|2 + |xuzs− xszu|2 + |xsyu− xuys|2dsdu

= det
(
Dr (u,s)∗Dr (s,u)

)1/2 dsdu

also the vector (Ry−Qz)i+(Pz−Rx) j+ (Qx−Py)k is the curl of the vector field F ≡
Pi+Qj+Rj. Thus in more familiar calculus notation, the above integral is of the form∫

S≡r([0,1]2)∇×F ·pdS where p is a vector which is in the direction of

(yszu− yuzs)i+(xuzs− xszu)j+(xsyu− xuys)k.

It happens that this vector p is perpendicular to the surface S at every point where rs×ru ̸=
0,which is seen to occur in the above formula. Recall that this follows from noting that, as
(hopefully) discussed in beginning calculus,you have rs ·rs×ru = ru ·rs×ru = 0 and this
is sufficient to claim, based on geometric reasoning that it is perpendicular to the surface.
Thus

∫
r dω is one side of the usual Stoke’s theorem from calculus. You could generalize

to chains of rectangles as well.
Next consider what happens with

∫
∂r ω . This is just like it was with Green’s theorem

but with more terms. To save on space, P(x(1,u) ,y(1,u) ,z(1,u)) is denoted as P(1,u)
with similar considerations for Q and R. Then this results in∫ 1

0

(
P(1,u)

∂x(1,u)
∂u

+Q(1,u)
∂y(1,u)

∂u
+R(1,u)

dz(1,u)
du

)
du

−
∫ 1

0

(
P(0,u)

∂x(0,u)
∂u

+Q(0,u)
∂y(0,u)

∂u
+R(1,u)

dz(1,u)
du

)
du

+
∫ 1

0
P(s,0)

∂x(s,0)
∂ s

+Q(s,0)
∂y(s,0)

∂ s
+R(s,0)

dz(s,0)
ds

ds

−
∫ 1

0
P(s,1)

∂x(s,1)
∂ s

+Q(s,1)
∂y(s,1)

∂ s
+R(s,1)

dz(s,1)
ds

ds



18.8. EXAMPLES OF STOKE’S THEOREM 491

As before, this is a line integral of the form
∫

C Pdx+Qdy+Rdz. where C is an oriented
curve bounding the surface S. This orientation will determine the direction of the vector p
above.

18.8.5 The Divergence Theorem
In this case, we have a parameter domain [a,b]⊆ Rp and the differential form is

ω =
p

∑
r=1

αr (x)(−1)r−1 dx1∧·· ·∧dx̂r ∧·· ·∧dxp

where dx̂r with the hat means that dxr is omitted. The reason for the (−1)r−1 is to make
minus signs disappear in dω . This led to the divergence theorem

±
∫
r([a,b])

p

∑
j=1

∂α j

∂x j
(x)dH k =

∫
r(∂ [a,b])

p

∑
j=1

α j (x)N j (x)dH k−1 (x)

where the + sign holds if and only if
∂(x1,··· ,xp)
∂(u1,··· ,up)

≥ 0. We needed to have r is one to one off

a set Ŝ where r
(
Ŝ
)

has H p measure zero and rbl ,ral are also one to one or at least one to
one off a set S where rbl (S) ,ral (S) have H p−1 measure zero. It remains to consider the
vector N which has jth component N j. I want to argue that this vector is a.e. normal to
r (∂ [a,b]) and that sometimes it is an outer normal. Recall that for x= rbl (ul) , N j (x) =

(−1) j+l ∂(x1,··· ,x̂ j ,··· ,xp)
∂(u1,··· ,ûl ··· ,up)

1
J∗(x)

. Thus for a point on the boundary, for i ̸= l,

xui ·N =
p

∑
j=1

x j,uiN
j (x) =

p

∑
j=1

x j,ui (−1)l+ j ∂ (x1, · · · , x̂ j, · · · ,xp)

∂ (u1, · · · , ûl · · · ,up)

1
J∗ (x)

=
1

J∗ (x)
det
(
xu1 · · · xui · · · xui · · · xup

)
= 0

since it is a determinant with two equal columns. This involved expanding along the lth

column which was filled by xui . Also, expanding along this column,

xul ·N =
1

J∗ (x)
det(Dr) = sgn(det(Dr))

It follows that N is perpendicular to r (∂ [a,b]) and that the angle between xul and N is

no more than 90 degrees if
∂(x1,··· ,xp)
∂(u1,··· ,up)

≥ 0. Now on the face where ul = bl , xul points away

from this face and so N points in roughly the same direction and is an “outer” normal.
Similar considerations apply when ul = al but here the −xul points away and we use −N
because of the subtraction in the boundary integrals. This yields the following.

Theorem 18.8.1 Let r be Lipschitz and one to one off S where r (S) has H p mea-
sure zero and suppose a similar condition holds for ral and rbl . Let α j be C1

ω =
p

∑
j=1

α j (x)(−1) j−1 dx1∧·· ·∧dx̂ j ∧·· ·∧dxp, α(x) = (α1 (x) , ...,α p (x))
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and suppose det(Dr (u))≥ 0. Then∫
r

dω =
∫
r([a,b])

∑
j

∂α j

∂x j
(x)dH p =

∫
r(∂ [a,b])

α ·NdH p−1 (18.10)

whereN is an outer unit normal in the sense that the angle between the vector xul andN

is no more than 90 degrees if
∂(x1,··· ,xp)
∂(u1,··· ,up)

≥ 0.

Also, if you know the divergence theorem, then you can directly give the usual Calculus
version of Green’s and Stoke’s theorems from Calculus. This is developed in the exercises.

18.9 The Reynolds Transport Formula
The Reynolds transport formula is a generalization of the formula for taking the derivative
under an integral. It depends on the divergence theorem. I will use the chain rule of
Theorem 17.3.5 as needed.

d
dt

∫ b(t)

a(t)
f (x, t)dx =

∫ b(t)

a(t)

∂ f
∂ t

(x, t)dx+ f (b(t) , t)b′ (t)− f (a(t) , t)a′ (t)

First is an interesting lemma about the determinant. A p× p matrix can be thought of
as a vector in Cp2

. Just imagine stringing it out into one long list of numbers. In fact, a
way to give the norm of a matrix is just ∑i ∑ j

∣∣Ai j
∣∣2 ≡ ∥A∥2. This is called the Frobenius

norm for a matrix. It makes no difference since all norms are equivalent, but this one is
convenient in what follows. Also recall that det maps p× p matrices to C. It makes sense
to ask for the derivative of det on the set of invertible matrices, an open subset of Cp2

with
the norm measured as just described because A→ det(A) is continuous, so the set where
det(A) ̸= 0 would be an open set. Recall from linear algebra that the sum of the entries
on the main diagonal satisfies trace(AB) = trace(BA) whenever both products make sense.
Indeed, trace(AB)≡ ∑i ∑ j Ai jB ji = trace(BA)

This next lemma is a very interesting observation about the determinant of a matrix
added to the identity.

Lemma 18.9.1 det(I +U) = 1+ trace(U)+ o(U) where o(U) is defined in terms of
the Frobenius norm for p× p matrices.

Proof:

det(I +U)≡ ∑
i1,i2,...,ip

sgn(i1, i2, ..., ip)(δ i11 +Ui11) · · ·
(
δ ip p +Uip p

)
which equals det(I) added to trace(U) added to a sum of higher order terms of products of
the Ui j. The trace(U) comes from using only one Ui j in the above product. The resulting
term will be 0 unless i = j and so the end result of these will be trace(U). Of course if
more of the Ui j are included in the product, this yields the o(U) term. ■

Of course, by equivalence of norms, one could use any other norm for the p× p matri-
ces.
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With this lemma, it is easy to find Ddet(F) whenever F is invertible.

det(F +U) = det
(
F
(
I +F−1U

))
= det(F)det

(
I +F−1U

)
= det(F)

(
1+ trace

(
F−1U

)
+o(U)

)
= det(F)+det(F) trace

(
F−1U

)
+o(U)

Therefore, det(F +U)− det(F) = det(F) trace
(
F−1U

)
+ o(U) . This proves the follow-

ing.

Proposition 18.9.2 Let F−1 exist. Then Ddet(F)(U) = det(F) trace
(
F−1U

)
.

From this, suppose F (t) is a p× p matrix and all entries are differentiable. Then the
following describes d

dt det(F)(t) .

Proposition 18.9.3 Let F (t) be a p× p matrix and all entries are at least Lipschitz.
Then for a.e. t

d
dt

det(F)(t) = det(F (t)) trace
(
F−1 (t)F ′ (t)

)
= det(F (t)) trace

(
F ′ (t)F−1 (t)

)
(18.11)

Proof: From the above,

det(F (t +h))−det(F (t))

= det(F (t)) trace
(
F−1 (F (t +h)−F (t))

)
+

=o(h) since F ′ exists
o(F (t +h)−F (t))

Dividing by h and taking a limit yields 18.11. ■
Let y= h(t,x) with F = F (t,x) = D2h(t,x) . I will write ∇y to indicate the gradient

with respect to the y variables and F ′ to indicate ∂

∂ t F (t,x). I will be assuming what is
needed to use the various theorems. In particular let h be differentiable and one to one in x.
Note that h(t,x) = y and so by the inverse function theorem, or actually Corollary 8.10.6,
this defines x as a function of y, also differentiable as h because it is always assumed
detF > 0.

Now let Vt be h(t,V0) where V0 is an open bounded set. Let V0 have a Lipschitz bound-
ary so one can use the divergence theorem on V0. Thus this is concerned with smooth mo-
tion of a bounded open set with Lipschitz boundary. Let (t,y)→ f (t,y) be Lipschitz. The
idea is to simplify d

dt
∫

Vt
f (t,y)dmp (y). This will involve the change of variables in which

the Jacobian will be det(F) which is assumed positive thus preserving the orientation of
the normal vector for V0 and Vt . In applications of this theory, det(F)≤ 0 is not physically
possible. Since h(t, ·) is better than Lipschitz and the boundary of V0 is Lipschitz, Vt will
be such that one can use the divergence theorem because the composition of Lipschitz func-
tions is Lipschitz. See Corollary 14.3.6. Then, using the dominated convergence theorem
as needed along with the area formula,

d
dt

∫
Vt

f (t,y)dmp (y) =
d
dt

∫
V0

f (t,h(t,x))det(F)dmp (x) (18.12)

=
∫

V0

∂

∂ t
f (·,h(·,x))det(F)dmp (x)+

∫
V0

f (t,h(t,x))
∂

∂ t
(det(F))dmp (x)
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=
∫

V0

∂

∂ t
(f (t,h(t,x)))det(F)dmp (x)+

∫
V0

f (t,h(t,x)) trace
(
F ′F−1)det(F)dmp (x)

=
∫

V0

(
∂

∂ t
f (t,h(t,x))+∑

i

∂f

∂yi

∂yi

∂ t

)
det(F)dmp (x)

+
∫

V0

f (t,h(t,x)) trace
(
F ′F−1)det(F)dmp (x)

=
∫

Vt

∂

∂ t
f (t,y)dmp (y)+

∫
Vt

∑
i

∂f

∂yi

∂yi

∂ t
+f (t,y) trace

(
F ′F−1)dmp (y)

Now v ≡ ∂

∂ th(t,x) and also, as noted above, y ≡ h(t,x) defines y as a function of x and
so trace

(
F ′F−1

)
= ∑α

∂vi
∂xα

∂xα

∂yi
. Hence the double sum ∑α,i

∂vi
∂xα

∂xα

∂yi
is ∂vi

∂yi
= ∇y · v. The

above then gives

∫
Vt

∂

∂ t
f (t,y)dmp (y)+

∫
Vt

(
∑

i

∂f

∂yi

∂yi

∂ t
+f (t,y)∇y ·v

)
dmp (y)

=
∫

Vt

∂

∂ t
f (t,y)dmp (y)+

∫
Vt

(D2f (t,y)v+f (t,y)∇y ·v)dmp (y) (18.13)

Now consider the ith component of the second integral in the above. It is∫
Vt

∇y fi (t,y) ·v+ fi (t,y)∇y ·vdmp (y) =
∫

Vt

∇y · ( fi (t,y)v)dmp (y)

At this point, use the divergence theorem to get this equals
∫

∂Vt
fi (t,y)v ·ndH p−1. There-

fore, from 18.13 and 18.12,

d
dt

∫
Vt

f (t,y)dmp (y) =
∫

Vt

∂

∂ t
f (t,y)dmp (y)+

∫
∂Vt

f (t,y)v ·ndH p−1 (18.14)

this is the Reynolds transport formula.

Proposition 18.9.4 Let y= h(t,x) where h is C1 and let f be Lipschitz continuous
and let Vt ≡ h(t,V0) where V0 is a bounded open set which is on one side of a Lipschitz
boundary so that the divergence theorem holds for V0. Then 18.14 is obtained.

As with the divergence theorem, Some generalization should be possible to the case
where h giving the motion is only Lipschitz by using the version of the chain rule in
Theorem 17.3.5 in the above argument when needed.

18.10 Exercises

1. Let f :Rn→R be given by f (x)≡
(

∑
n
i=1

x2
i

a2
i

)1/2
where each ai > 0. Thus for y > 0

f−1 (y) is the boundary of an n dimensional ellipsoid. Using change of variables
formula and the coarea formula, find the area of f−1 (r).
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2. Let π : Rn→ Rm be defined as π (x) = xi where i= (i1, i2, ..., im) . What does The-
orem 17.6.1 say if π = f in this theorem?

3. In calculus, you found the area of the parallelogram determined by two vectors u,v
in R3 by taking the magnitude |u×v| , meaning the Euclidean norm of the cross
product. Show that you get the same answer by forming(

det
(
u v

)∗ (
u v

))1/2

where here you have
(
u v

)
is the matrix which has u as first column and v as

second column.

4. In calculus, you also found the volume of a parallelepiped determined by the vectors
u,v,w by |u·(v×w)| , the absolute value of the box product. Show this turns out
to be the same thing as(

det
(
u v w

)∗ (
u v w

))1/2
.

5. Imagine a fluid which does not move. Let B(x,ε) be a small ball in this fluid. Use
the Euclidean norm. Then the force exerted on the ball of fluid is −

∫
∂B(x,ε) pndA

where p is the pressure. Here n is the unit exterior normal. Now the force acting
on the ball from gravity is −gk

∫
B(x,ε) ρdV where ρ signifies the density of the fluid

and k signifies the direction which is up. The vectors i,j are in the direction of the
positive x and y axes respectively. These two forces add to 0 because it is given that
the fluid does not move. Use the divergence theorem to show that ∇p = ρgk. This
is a really neat result.

6. Archimedes principle states that when a solid body is immersed in a static fluid, the
force acting on the body by the fluid is directly up and equals the total weight of
the fluid displaced. Surely this is an amazing result. It doesn’t matter about the
shape of the body. Remember that the weight is the acceleration of gravity times
the mass. Hint: You need to start with the force acting on the body B by the fluid
which is−

∫
∂B pndA. Assume the divergence theorem holds for B. As shown, this is

typically the case.

7. You have a closed region R which is fixed in space. A fluid is flowing through R.
The density of this fluid is ρ (t,x) where x gives the coordinates in space and ρ

depends on t because it might change as time progresses. The velocity of this fluid
is v (t,x). Then the rate at which the fluid crosses a surface S from one side to the
other is

∫
S ρv ·ndS where n is the unit normal to the surface which points in the

direction of interest. You can think about this a little and see that it is a reasonable
claim. If, for example, v ·n = 0, then the velocity of the fluid would be parallel to
the surface so it would not cross it at all. Also, the total mass of the fluid which is
in R is

∫
R ρdV. Assuming anything you like about regularity, which is what we do in

situations like this, explain using the divergence theorem why
∫

V
∂ρ

∂ t +∇ · (ρv)dV =
0. Recall that ∇·F denotes the divergence of F . Now explain why it should be the
case that ∂ρ

∂ t +∇ · (ρv) = 0. This is called the balance of mass equation.

8. The permutation symbol is ε i jk = 1 if the permutation
(

1 2 3
i j k

)
is even and

−1 if this permutation is odd. Such a permutation is odd or even depending on
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whether it requires an odd or even number of switches to obtain (1,2,3) . Thus ε123 =
1,ε213 = −1 and so forth. Show that ∑k ε i jkε irs = δ jrδ ks− δ jsδ kr. We often agree
to add over a repeated index to avoid having to write the summation symbol. Thus
∑k ε i jkε irs = ε i jkε irs. If you do this, avoid having the repeated index repeated more
than once in any term. Here δ i j is 1 if i = j and 0 if i ̸= j.

9. Let U be a bounded open set inRp and suppose u ∈C2 (U)∩C
(
U
)

such that ∇
2u≥ 0

in U. Then letting ∂U =U \U, it follows that

max
{

u(x) : x ∈U
}
= max{u(x) : x ∈ ∂U} .

The symbol ∇
2 is the Laplacian. Thus ∇

2u = ∑i uxixi . In terms of repeated index
summation convention, ∇

2u = u,ii. Hint: Suppose this does not happen. Then there
exists x0 ∈U with

u(x0)> max{u(x) : x ∈ ∂U} .
Since U is bounded, there exists ε > 0 such that

u(x0)> max
{

u(x)+ ε |x|2 : x ∈ ∂U
}
.

Therefore, u(x)+ ε |x|2 also has its maximum in U because for ε small enough,

u(x0)+ ε |x0|2 > u(x0)> max
{

u(x)+ ε |x|2 : x ∈ ∂U
}

for all x ∈ ∂U . Now let x1 be the point in U where u(x)+ ε |x|2 achieves its max-
imum. Now recall the second derivative test from single variable calculus. Explain
why at a local maximum of f you must have ∇

2 f ≤ 0. Apply this to the function
x→ u(x)+ ε |x|2 at the point x1 and get a contradiction. This is called the weak
maximum principle.

10. Review the cross product from calculus. Show that in R3,(a×b)i = ε i jka jbk where
summation is over repeated indices. Using the above reduction identity of Problem
8, simplify (a×b)×c in terms of dot products. Then do the same for a×(b×c).

11. Show that ∇ · (∇×v) = 0. Now show
∫

∂V ∇×v ·ndA = 0 where V is a region for
which the divergence theorem holds and v is a C2 vector field. ∇×v is the curl of v.
In the new notation, (∇×v)i = ε i jk∂ jvk where ∂ j is an operator which means to take
the partial derivative with respect to x j. It is understood here that the coordinates are
rectangular coordinates. The first part of this is real easy if you remember the big
theorem about equality of mixed partial derivatives.

12. Let U be a bounded open set in R2 which has a Lipschitz boundary so that the
divergence theorem holds. Let the axes be oriented in the usual way as in calculus.
Let P(x,y) ,Q(x,y) be two smooth functions defined on Ū . What does the divergence
theorem say for the vector field (Q,−P)? If r : [a,b]→ R2 is Lipschitz with r (a) =
r (b) and r is one to one with ∂U = r ([a,b]) and r′ (t) is in the direction of k×n
so r′ (t)×k is in the direction of n, a statement about orientation. Thus for r (t) =
(x(t) ,y(t)) ,

n= c

∣∣∣∣∣∣
i j k

x′ (t) y′ (t) 0
0 0 1

∣∣∣∣∣∣= c
(
y′ (t)i− x′ (t)j

)
, so c =

1√
y′ (t)2 + x′ (t)2
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for some c a positive constant. (This is the cross product from calculus. Review
this.), use the area formula to describe the boundary integral from the divergence
theorem as an integral over [a,b]. We write this integral as

∫
∂U Pdx+Qdy. This

yields a version of Green’s theorem,
∫

U Qx−Pydm2 =
∫

∂U Pdx+Qdy provided ∂U
is a Lipschitz curve oriented as just described. However, more generality is possible,
although I am not sure how far this has been generalized. You really only need to
have the boundary of U be a rectifiable simple closed curve meaning it has finite
length. In this setting, the Jordan curve theorem makes it possible to make sense of
Green’s theorem and in fact it holds. In what was just discussed, Ū was the Lipschitz
image of some rectangle. The general version only requires that the boundary of U
be the image of the unit circle. Nevertheless, this version in this problem is pretty
good.

13. Let U be a bounded open set for which Green’s theorem holds. Let C be the oriented
boundary consistent with Green’s theorem. Show: area of U =

∫
C xdy .

14. Let U be an open set with which is on one side of its boundary as above with the
boundary being the image of a Lipschitz map which is one to one. (Note this condi-
tion eliminates the curve crossing itself.) Now suppose you have a closed polygonal
curve going from (x0,y0)→ (x1,y1)→ (x2,y2) · · ·(xp,yp) = (x0,y0) oriented such
that the direction of motion is in the direction k×n where n is the unit outer normal
from the divergence theorem. Show that if U is this enclosed polygon, then

Area of U =
1
2

n

∑
k=1

(xk + xk−1)(yk− yk−1)

This is a pretty remarkable result. Just draw a few such polygons and think how you
would find their area without it.

15. Orient the u,v axes just like the usual arrangement of the x and y axes, u axis like the
x axis. Let r : U → R3 where U is an open subset of R2. Suppose r is C2 and let
F be a C1 vector field defined in V, an open set containing r (U). Show, using the
above reduction identity of Problem 8 that

(ru×rv) · (∇×F )(r (u,v)) = ((F ◦r)u ·rv− (F ◦r)v ·ru)(u,v) . (18.15)

The left side is the dot product of the curl of the vector field F with a normal vector
to the surface r (U) , namely ru × rv. Show that the right side can be written as
((F ◦r) ·rv)u− ((F ◦r) ·ru)v thanks to equality of mixed partial derivatives. Now
suppose U is a region for which Green’s theorem holds, the curve C bounding U
being Lipschitz. Verify Stokes’ theorem∫

U
(ru×rv) · (∇×F )(r (u,v))dudv =

∫
R
(F ◦r) ·rudu+(F ◦r) ·rvdv

whereR(t) = (u(t) ,v(t)) for t→ (u(t) ,v(t)) being a parametrization of C oriented
so that (u′ (t) ,v′ (t) ,0)×k is an exterior normal to U . Show the left integral can be
written as

∫
r(U) ∇×F ·NdH 2 whereN is a unit normal to the surface r (U). Show

the integral on the right can be written as the differential form
∫
R F1dx+F2dy+F3dz

whereR(t) = r (u(t) ,v(t)).
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16. Let f : C→ C. Thus if x+ iy ∈ C, f (x+ iy) = u(x,y)+ iv(x,y) where u is the real
part and v is the imaginary part. As in one variable calculus, we define

lim
h→0

f (z+h)− f (z)
h

= f ′ (z)

and we say that this derivative exists exactly when this limit exists. Consider h = it
and then let h = t. Take limits in these two ways and conclude that if f ′ (z) exists,
then it is given by

f ′ (z) = ux + ivx = vy− iuy

Thus you have the Cauchy Riemann equations ux = vy,vx = −uy. Show that if u,v
are both C1, and these Cauchy Riemann equation hold, then the function will be
differentiable. When this happens, we say the function is analytic. (In fact it can be
shown that if the limit of the difference quotient exists, then these real and imaginary
parts will automatically be continuous and the function will be analytic.)

17. For a function f : C→ C which is continuous and γ : [a,b]→ Γ ⊆ C where Γ is a
piecewise smooth curve, we define the contour integral∫

Γ

f (z)dz =
∫ b

a
f (γ (t))γ

′ (t)dt.

Show that this equals F (γ (b))−F (γ (a)) if f is analytic, this for some function F .
In particular, if Γ is a suitable closed curve, then

∫
Γ

f (z)dz = 0. This is Cauchy’s
theorem from complex analysis.

18. Suppose f ∈ L1 (U) where U is some open set in Rp. Go ahead and assume f is
Borel measurable although it should work with f only Lebesgue measurable. Show
there is a set of mp−1 measure zero N such that if xp ≡ (x1,x2, · · · ,xp−1) /∈ N, then
xp→ f (xp,xp) is in L1

(
Uxp

)
where Uxp =

{
t : (xp, t) ∈U

}
.

19. If f ∈ L1 (U) and fxp ∈ L1 (U) where U ⊆ Rp is a box like ∏k (ak,bk). Let fxp refer
to the weak partial derivative. Can you show that for fixed s, t ∈ (ak,bk) then for a.e.
xp, f (xp, t)− f (xp,s) =

∫ t
s fxp (xp,τ)dτ? Assume f is Borel measurable.
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Chapter 19

Hausdorff Spaces and Measures
19.1 General Topological Spaces

It turns out that metric spaces are not sufficiently general for some applications. This sec-
tion is a brief introduction to general topology. In making this generalization, the properties
of balls in a metric space are stated as axioms for a subset of the power set of a given set X .
This subset of the power set P (X) (set of all subsets) will be known as a basis for a topol-
ogy. The properties of balls which are of importance are that the intersection of finitely
many is the union of balls and that the union of all of them give the whole space. Recall
that with a metric space, an open set was just one in which every point was an interior
point. This simply meant that every point is contained in a ball which is contained in the
given set. All that is being done here is to make these simple properties into axioms.

Definition 19.1.1 Let X be a nonempty set and suppose B ⊆P (X). Then B is a
basis for a topology if it satisfies the following axioms.

1.) Whenever p ∈ A∩B for A,B ∈B, it follows there exists C ∈B such that p ∈C ⊆
A∩B.

2.) ∪B = X.
Then a subset U, of X is an open set if for every point x ∈U, there exists B ∈B such

that x ∈ B ⊆U. Thus the open sets are exactly those which can be obtained as a union of
sets of B. Denote these subsets of X by the symbol τ and refer to τ as the topology or the
set of open sets.

Note that this is simply the analog of saying a set is open exactly when every point is
an interior point.

Proposition 19.1.2 Let X be a set and let B be a basis for a topology as defined above
and let τ be the set of open sets determined by B. Then

/0 ∈ τ, X ∈ τ, (19.1)

If C ⊆ τ, then ∪C ∈ τ (19.2)

If A,B ∈ τ, then A∩B ∈ τ. (19.3)

Proof: If p ∈ /0 then there exists B ∈B such that p ∈ B⊆ /0 because there are no points
in /0. Therefore, /0 ∈ τ . Now if p ∈ X , then by part 2.) of Definition 19.1.1 p ∈ B ⊆ X for
some B ∈B and so X ∈ τ .

If C ⊆ τ, and if p ∈ ∪C , then there exists a set, B ∈ C such that p ∈ B. However, B is
itself a union of sets from B and so there exists C ∈B such that p ∈C ⊆ B ⊆ ∪C . This
verifies 19.2.

Finally, if A,B ∈ τ and p ∈ A∩B, then since A and B are themselves unions of sets of
B, it follows there exists A1,B1 ∈B such that A1 ⊆ A,B1 ⊆ B, and p∈ A1∩B1. Therefore,
by 1.) of Definition 19.1.1 there exists C ∈B such that p ∈C ⊆ A1∩B1 ⊆ A∩B, showing
that A∩B ∈ τ as claimed. Of course from the above, if A∩B = /0, then A∩B ∈ τ . ■

Definition 19.1.3 A set X together with such a collection of its subsets satisfying
19.1-19.3 is called a topological space. τ is called the topology or set of open sets of X.
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Definition 19.1.4 A topological space is said to be Hausdorff if whenever p and q
are distinct points of X, there exist disjoint open sets U,V such that p ∈U, q ∈V . In other
words points can be separated with open sets.

Hausdorff

p
U

q
V

Definition 19.1.5 A subset of a topological space is said to be closed if its comple-
ment is open. Let p be a point of X and let E ⊆ X. Then p is said to be a limit point of E if
every open set containing p contains a point of E distinct from p.

Theorem 19.1.6 If (X ,τ) is a Hausdorff space and if p ∈ X, then {p} is a closed
set.

Proof: If x ̸= p, there exist open sets U and V such that x ∈U, p ∈ V and U ∩V = /0.
Therefore, {p}C is an open set so {p} is closed. ■

It would have been enough to assume that if x ̸= y, then there exists an open set con-
taining x which does not contain y.

Proposition 19.1.7 If (X ,τ) is a Hausdorff space then a point p is a limit point of a
set E if and only if every open set containing p contains infinitely many points of E each
different than p.

Proof:⇐ is obvious. Consider⇒. If p is a limit point and if U is an open set containing
p but there are only finitely many points of E different than p contained in U,{qi}m

i=1 , then
consider V ≡ U ∩∩m

i=1 {qi}C which is an open set because each {qi}C is open. This is
because if x ̸= qi there exists open Vqi containing x such that qi /∈ Vqi and so V is a finite
intersection of open sets. Therefore, there is a qm+1 ∈V \{p} , a contradiction. ■

Theorem 19.1.8 A subset E, of X is closed if and only if it contains all its limit
points. A set is closed if and only if its complement is open and a set is open if and only if
its complement is closed.

Proof: Suppose first that E is closed and let x be a limit point of E. Is x ∈ E? If x /∈ E,
then EC is an open set containing x which contains no points of E, a contradiction. Thus
x ∈ E.

Now suppose E contains all its limit points. Is EC open? If x ∈ EC, then x is not a limit
point of E because E has all its limit points and so there exists an open set, U containing
x such that U contains no point of E other than x. Since x /∈ E, it follows that x ∈U ⊆ EC

which implies EC is an open set because this shows EC is the union of open sets.
By definition, E closed⇒ EC is open. If EC is open, then no point of EC can be a limit

point of E and so E is closed since it contains all its limit points so EC open⇒ E closed.
■

Definition 19.1.9 A topological space (X ,τ) is said to be regular if whenever C
is a closed set and p is a point not in C, there exist disjoint open sets U and V such that
p ∈U, C ⊆V .
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Regular

p
U

C V

Definition 19.1.10 The topological space, (X ,τ) is said to be normal if whenever
C and K are disjoint closed sets, there exist disjoint open sets U, V with C ⊆U, K ⊆ V .
Thus any two disjoint closed sets can be separated with open sets.

Normal

C
U

K V

Definition 19.1.11 Let E be a subset of X. E is defined to be the smallest closed
set containing E.

Lemma 19.1.12 The above definition is well defined.

Proof: Let C denote all the closed sets which contain E. Then C is nonempty because
X ∈ C .

(∩{A : A ∈ C })C = ∪
{

AC : A ∈ C
}
,

an open set which shows that ∩C is a closed set and is the smallest closed set which
contains E. ■

Theorem 19.1.13 E = E ∪{limit points of E}.

Proof: Let x∈ E and suppose that x /∈ E. If x is not a limit point either, then there exists
an open set U , containing x which does not intersect E. But then UC is a closed set which
contains E which does not contain x, contrary to the definition that E is the intersection of
all closed sets containing E. Therefore, x must be a limit point of E after all.

Now E ⊆ E so suppose x is a limit point of E. Is x ∈ E? If H is a closed set containing
E, which does not contain x, then HC is an open set containing x which contains no points
of E other than x negating the assumption that x is a limit point of E. ■

The following is the definition of continuity in terms of general topological spaces. It
is really just a generalization of the ε − δ definition of continuity given in calculus.

Definition 19.1.14 Let (X ,τ) and (Y,η) be two topological spaces and let f : X→
Y . f is continuous at x ∈ X if whenever V is an open set of Y containing f (x), there exists
an open set U ∈ τ such that x ∈U and f (U)⊆V . f is continuous if f−1(V ) ∈ τ whenever
V ∈ η .

Then the following comes from the definition.

Proposition 19.1.15 In the situation of Definition 19.1.14 f is continuous if and only
if f is continuous at every point of X.

Proof: ⇒ Suppose f is continuous and let f (x) ∈ V an open set in Y . Then x ∈
f−1 (V )≡U ∈ τ .
⇐ Next suppose f is continuous at every point. Then if V ∈ η , and x ∈ f−1 (V ) ,

continuity at x implies there is open Ux ⊆ f−1 (V ). Thus f−1 (V ) = ∪x∈ f−1(V )Ux and so
f−1 (V ) is open. ■
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Definition 19.1.16 Let (Xi,τ i) be topological spaces. ∏
n
i=1 Xi is the Cartesian

product. Define a product topology as follows. Let B = ∏
n
i=1 Ai where Ai ∈ τ i. Then

B is a basis for the product topology.

Theorem 19.1.17 The set B of Definition 19.1.16 is a basis for a topology as
claimed.

Proof: Suppose x ∈ (∏n
i=1 Ai)∩ (∏n

i=1 Bi) where Ai and Bi are open sets. Suppose
that x= (x1, · · · ,xn) . Then xi ∈ Ai ∩Bi for each i. Therefore, x ∈ ∏

n
i=1 Ai ∩Bi ∈B and

∏
n
i=1 Ai∩Bi ⊆ ∏

n
i=1 Ai. ■

The definition of compactness is also considered for a general topological space. This
is given next.

Definition 19.1.18 A subset, E, of a topological space (X ,τ) is said to be compact
if whenever C ⊆ τ and E ⊆ ∪C , there exists a finite subset of C ,{U1 · · ·Un}, such that
E ⊆ ∪n

i=1Ui. (Every open covering admits a finite subcovering.) E is precompact if E
is compact. A topological space is called locally compact if it has a basis B, with the
property that B is compact for each B ∈B.

In general topological spaces there may be no concept of “bounded”. Even if there is,
closed and bounded is not necessarily the same as compactness. However, in any Hausdorff
space every compact set must be a closed set.

Theorem 19.1.19 If (X ,τ) is a Hausdorff space, then every compact subset must
also be a closed set.

Proof: Suppose p /∈K a compact set. For each x∈ X \{p}, there exist open sets, Ux and
Vx such that x∈Ux, p∈Vx, and Ux∩Vx = /0. If K is assumed to be compact, there are finitely
many of these sets, Ux1 , · · · ,Uxm which cover K. Then let V ≡ ∩m

i=1Vxi . It follows that V is
an open set containing p which has empty intersection with each of the Uxi . Consequently,
V contains no points of K and is therefore not a limit point of K. ■

Definition 19.1.20 If every finite subset of a set P whose elements are sets has
nonempty intersection, the set P is said to have the finite intersection property.

Theorem 19.1.21 Let K be a set whose elements are compact subsets of a Haus-
dorff topological space, (X ,τ). Suppose K has the finite intersection property. Then
/0 ̸= ∩K .

Proof: Suppose to the contrary that /0 = ∩K . Then consider C ≡
{

KC : K ∈K
}
. It

follows C is an open cover of K0 where K0 is any particular element of K . But then there
are finitely many K ∈K , K1, · · · ,Kr such that K0 ⊆ ∪r

i=1KC
i implying that

K0∩ (∩r
i=1Ki)⊆

(
∪r

i=1KC
i
)
∩ (∩r

i=1Ki) = (∩r
i=1Ki)

C ∩ (∩r
i=1Ki) = /0,

contradicting the finite intersection property. ■
There is a fundamental theorem, called Urysohn’s lemma which is valid for locally

compact Hausdorff spaces which is presented next.

Lemma 19.1.22 Let X be a locally compact Hausdorff space and let K ⊆V ⊆ X where
K is compact and V is open. Then there exists an open set Uk containing k such that Uk is
compact and Uk ⊆Uk ⊆V. Also there exists U such that U is compact and K ⊆U ⊆U ⊆V .
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Proof: Since X is locally compact, there exists a basis of open sets whose closures are
compact U . Denote by C the set of all U ∈U which contain k and let C ′ denote the set of
all closures of these sets of C intersected with the closed set VC. Thus C ′ is a collection
of compact sets. There are finitely many of the sets of C ′ which have empty intersection.
If not, then C ′ has the finite intersection property and so there exists a point p in all of
them. Since X is a Hausdorff space, there exist disjoint basic open sets from U , A,B such
that k ∈ A and p ∈ B. Therefore, p /∈ A contrary to the above requirement that p be in all
such sets. It follows there are sets A1, · · · ,Am in C such that VC ∩A1 ∩ ·· · ∩Am = /0.Let
Uk ≡ A1∩·· ·∩Am. Then Uk ⊆ A1∩·· ·∩Am and so it has empty intersection with VC. Thus
it is contained in V . Also Uk is a closed subset of the compact set A1 so it is compact and
k ∈Uk.

For the second part, consider all such Uk. Since K is compact, there are finitely many
which cover K Uk1 , · · · ,Ukn . Then let U ≡∪n

i=1Uki . It follows that U = ∪n
i=1Uki and each of

these is compact so this set works. ■
The following is Urysohn’s lemma for locally compact Hausdorff spaces.

Theorem 19.1.23 (Urysohn) Let (X ,τ) be locally compact and let H ⊆U where
H is compact and U is open. Then there exists g : X → [0,1] such that g is continuous,
g(x) = 1 on H and g(x) = 0 if x /∈ V for some open set V such that V ⊆U such that V is
compact.

Proof: This involves using Lemma 19.1.22 repeatedly. First use this lemma to obtain
V open such that its closure is compact and contained in U with V ⊇ H. Thus H ⊆ V ⊆
V ⊆U,V compact.

Let D≡ {rn}∞
n=1 be the rational numbers in (0,1). Using Lemma 19.1.22, let Vr1 be an

open set such that
H ⊆Vr1 ⊆V r1 ⊆V, V r1 is compact

Suppose Vr1 , · · · ,Vrk have been chosen and list the rational numbers r1, · · · ,rk in order,

rl1 < rl2 < · · ·< rlk for {l1, · · · , lk}= {1, · · · ,k}.

If rk+1 > rlk then letting p = rlk , let Vrk+1 satisfy

V p ⊆Vrk+1 ⊆V rk+1 ⊆V, V rk+1 compact

If rk+1 ∈ (rli ,rli+1), let p = rli and let q = rli+1 . Then let Vrk+1 satisfy

V p ⊆Vrk+1 ⊆V rk+1 ⊆Vq, V rk+1 compact

If rk+1 < rl1 , let p = rl1 and let Vrk+1 satisfy

H ⊆Vrk+1 ⊆V rk+1 ⊆Vp, V rk+1 compact

Thus there exist open sets Vr for each r ∈Q∩ (0,1) with the property that if r < s,

H ⊆Vr ⊆V r ⊆Vs ⊆V s ⊆V.

Now for D≡Q∩ (0,1) , in the following, t will be in D

f (x)≡min(inf{t ∈ D : x ∈Vt},1) , f (x)≡ 1 if x /∈
⋃
t∈D

Vt .
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I claim f is continuous. f (x)< a, means there must be some t ∈ D with t < a and x ∈Vt .
Thus f−1 ([0,a)) = ∪{Vt : t < a, t ∈ D}, an open set.

Next consider x ∈ f−1 ([0,a]) so f (x) ≤ a. If t > a, then x ∈ Vt from the definition of
f (x). Thus

f−1 ([0,a])⊆ ∩{Vt : t > a}= ∩{V t : t > a}
which is a closed set. If x ∈∩{Vt : t > a}, then f (x)≤ a from the definition and so equality
holds and f−1 ([0,a]) is closed. This is also true if a = 1. In this case, f−1 ([0,1]) = X .
Therefore, for a≥ 0,

f−1 ((a,1])∪ f−1 ([0,a]) = X

and so f−1 ((a,1]) is an open set. It follows that f is continuous because f−1 (a,b) =
f−1 ([0,b))∩ f−1 ((a,1]) the intersection of two open sets. Since this is so for every inter-
val, it follows that the inverse image of any open set is open and so f is continuous. Clearly
f (x) = 0 on H. If x∈VC, then x /∈Vt for any t ∈D so f (x) = 1 on VC. Let g(x) = 1− f (x).
■

In any metric space there is a much easier proof of the conclusion of Urysohn’s lemma
which applies. The following is Lemma 3.12.1 listed here for convenience.

Lemma 19.1.24 Let S be a nonempty subset of a metric space, (X ,d) . Define

f (x)≡ dist(x,S)≡ inf{d (x,y) : y ∈ S} .

Then f is continuous.

In a metric space it is all much easier.

Theorem 19.1.25 Let (X ,τ) be a locally compact metric space in which the clo-
sures of balls are compact and let H ⊆U where H is compact and U is open. Then there
exists g : X→ [0,1] such that g is continuous, g(x) = 1 on H and g(x) = 0 if x /∈V for some
open set V whose closure is compact.

Proof: Let δ > 0 be such that for all h ∈ H,dist
(
h,UC

)
> δ . This exists because

h→ dist
(
h,UC

)
is continuous and so achieves its minimum on H which must be positive

because UC is closed. Now consider the balls B(h,δ ). These cover the compact set H
and so there are finitely many which do so. B(h1,δ ) , · · · ,B(hm,δ ) where the closure of
each of these is compact. Also B(h j,δ )⊆U. Because if x ∈ B(h j,δ ), then d (x,h j)≤ δ <

dist
(
h,UC

)
. Let V =∪m

j=1B(h j,δ ) . Thus V =∪m
j=1B(h j,δ ) because there are only finitely

many sets. Also V is compact because it is a finite union of compact sets. Now define

g(x)≡
dist
(
x,VC

)
dist(x,H)+dist(x,VC)

This is continuous, equals 1 on H and equals 0 off V because the denominator is always
positive since both H,VC are closed. ■

A useful construction when dealing with locally compact Hausdorff spaces is the notion
of the one point compactification of the space.

Definition 19.1.26 Suppose (X ,τ) is a locally compact Hausdorff space. Then let
X̃ ≡ X ∪{∞} where ∞ is just the name of some point which is not in X which is called the
point at infinity. A basis for the topology τ̃ for X̃ is

τ ∪
{

KC where K is a compact subset of X
}
.
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The complement is taken with respect to X̃ and so the open sets, KC are basic open sets
which contain ∞.

The reason this is called a compactification is contained in the next lemma.

Lemma 19.1.27 If (X ,τ) is a locally compact Hausdorff space, then
(

X̃ , τ̃
)

is a com-

pact Hausdorff space. Also if U is an open set of τ̃, then U \{∞} is an open set of τ .

Proof: Since (X ,τ) is a locally compact Hausdorff space, it follows
(

X̃ , τ̃
)

is a Haus-
dorff topological space. The only case which needs checking is the one of p ∈ X and ∞.
Since (X ,τ) is locally compact, there exists an open set of τ, U having compact closure
which contains p. Then p ∈U and ∞ ∈UC and these are disjoint open sets containing the
points, p and ∞ respectively. Now let C be an open cover of X̃ with sets from τ̃ . Then ∞

must be in some set, U∞ from C , which must contain a set of the form KC where K is a
compact subset of X . Then there exist sets from C , U1, · · · ,Ur which cover K. Therefore,
a finite subcover of X̃ is U1, · · · ,Ur,U∞.

To see the last claim, suppose U contains ∞ since otherwise there is nothing to show.
Notice that if C is a compact set, then X \C is an open set. Therefore, if x ∈U \{∞} , and
if X̃ \C is a basic open set contained in U containing ∞, then if x is in this basic open set
of X̃ , it is also in the open set X \C ⊆U \{∞} . If x is not in any basic open set of the form
X̃ \C then x is contained in an open set of τ which is contained in U \{∞}. Thus U \{∞}
is indeed open in τ . ■

Lemma 19.1.28 Let (X ,τ) be a topological space and let B be a basis for τ . Then K
is compact if and only if every open cover of basic open sets admits a finite subcover.

Proof: Suppose first that X is compact. Then if C is an open cover consisting of basic
open sets, it follows it admits a finite subcover because these are open sets in C .

Next suppose that every basic open cover admits a finite subcover and let C be an open
cover of X . Then define C̃ to be the collection of basic open sets which are contained in
some set of C . It follows C̃ is a basic open cover of X and so it admits a finite subcover,{

U1, · · · ,Up
}

. Now each Ui is contained in an open set of C . Let Oi be a set of C which
contains Ui. Then

{
O1, · · · ,Op

}
is an open cover of X . ■

Actually, there is a profound generalization of this lemma.

19.2 The Alexander Sub-basis Theorem
The Hausdorff maximal theorem is one of several convenient versions of the axiom of
choice. For a discussion of this, see the appendix on the subject. There is this one, the well
ordering principal, and Zorn’s lemma. They are all equivalent to the axiom of choice and
which one you use is a matter of taste.

Theorem 19.2.1 (Hausdorff maximal principle) Let F be a nonempty partially
ordered set. Then there exists a maximal chain.

The main tool in the study of products of compact topological spaces is the Alexander
subbasis theorem which is presented next. Recall a set is compact if every basic open cover
admits a finite subcover, Lemma 19.1.28. This was pretty easy to prove. However, there is
a much smaller set of open sets called a subbasis which has this property. The proof of this
result is much harder.
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Definition 19.2.2 S ⊆ τ is called a subbasis for the topology τ if the set B of
finite intersections of sets of S is a basis for the topology τ .

Theorem 19.2.3 Let (X ,τ) be a topological space and let S ⊆ τ be a subbasis for
τ . Then if H ⊆ X , H is compact if and only if every open cover of H consisting entirely of
sets of S admits a finite subcover.

Proof: The only if part is obvious because the subasic sets are themselves open.
If every basic open cover admits a finite subcover then the set in question is compact.

Suppose then that H is a subset of X having the property that subbasic open covers admit
finite subcovers. Is H compact? Assume this is not so. Then what was just observed
about basic covers implies there exists a basic open cover of H, O , which admits no finite
subcover. Let F be defined as

{O : O is a basic open cover of H which admits no finite subcover}.

The assumption is that F is nonempty. Partially order F by set inclusion and use the
Hausdorff maximal principle to obtain a maximal chain, C , of such open covers and let
D = ∪C . If D admits a finite subcover, then since C is a chain and the finite subcover has
only finitely many sets, some element of C would also admit a finite subcover, contrary to
the definition of F . Therefore, D admits no finite subcover. If D ′ properly contains D and
D ′ is a basic open cover of H, then D ′ has a finite subcover of H since otherwise, C would
fail to be a maximal chain, being properly contained in C∪{D ′}. Every set of D is of the
form

U = ∩m
i=1Bi, Bi ∈S

because they are all basic open sets. If it is the case that for all U ∈ D one of the Bi is
found in D , then replace each such U with the subbasic set from D containing it. But
then this would be a subbasic open cover of H which by assumption would admit a finite
subcover contrary to the properties of D . Therefore, one of the sets of D , denoted by
U , has the property that U = ∩m

i=1Bi, Bi ∈ S and no Bi is in D . Thus D ∪{Bi} admits
a finite subcover, for each of the above Bi because it is strictly larger than D . Let this
finite subcover corresponding to Bi be denoted by V i

1, · · · ,V i
mi
,Bi. Consider {U,V i

j , j =
1, · · · ,mi, i = 1, · · · ,m}. If p ∈ H \∪{V i

j}, then p ∈ Bi for each i and so p ∈ U . This is
therefore a finite subcover of D contradicting the properties of D . Therefore, F must be
empty. ■

19.3 The Product Topology and Compactness
Now here is the definition of the product topological space.

Definition 19.3.1 Let (Xi,τ i) for i ∈ I be a topological space. By the axiom of
choice, ∏i∈I Xi ̸= /0. Then by definition, a basis for a topology on ∏i∈I Xi consists of sets of
the form ∏i∈I Ai where Ai = Xi except forfinitely many i and for these, Ai ∈ τ i. A sub-basis
for this topology consists of sets of the form ∏i∈I Ai where Ai = Xi for all but a single i and
for this one, Ai ∈ τ i. This product topology is denoted by ∏τ i. The resulting topological
space is (∏i∈I Xi,∏τ i). “Subbasic” sets will be those which are in the sub-basis.

It is important that the basic open sets have the ith entries not all of Xi in only finitely
many i. If you don’t insist on this, you will be dealing with something called the “box
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topology” and the following major theorem will not be true. You might go through the
proof and see that this is the case. By the Alexander subbasis theorem, compactness is
equivalent to saying that every open cover of subbasic sets admits a finite subcover.

Theorem 19.3.2 (Tychanoff) If (Xi,τ i) is compact, then so is (∏i∈I Xi,∏τ i).

Proof: By the Alexander subbasis theorem, the theorem will be proved if every sub-
basic open cover admits a finite subcover. Therefore, let O be a subbasic open cover of
∏i∈I Xi. Let

O j = {Q ∈ O : Q = Pj (A) for some A ∈ τ j}.
Thus O j consists of those sets of O which have a possibly proper subset of Xi only in the
slot i = j. Let

π jO j = {A : Pj (A) ∈ O j}.
Thus π jO j picks out those proper open subsets of X j which occur in O j.

If no π jO j covers X j, then by the axiom of choice, there exists f ∈ ∏i∈I Xi \∪π iOi.
Therefore, f ( j) /∈ ∪π jO j for each j ∈ I. Now f is a point of ∏i∈I Xi and so f ∈ Pk (A) ∈O
for some k. However, this is a contradiction as it was shown that f (k) is not an element
of A. (A is one of the sets whose union makes up ∪πkOk.) This contradiction shows that
for some j, π jO j covers X j. Thus X j = ∪π jO j and so by compactness of X j, there exist
A1, · · · ,Am, sets in τ j such that X j ⊆∪m

i=1Ai and Pj (Ai)∈O . Therefore, {Pj (Ai)}m
i=1 covers

∏i∈I Xi. By the Alexander subbasis theorem this proves ∏i∈I Xi is compact. ■

19.4 Stone Weierstrass Theorem
This theorem was presented earlier in the context of a real algebra of functions on a compact
set. Here this is extended to the case where the functions are defined on a locally compact
Hausdorff space and also extended to the case where the functions have values in C.

19.4.1 The Case of Locally Compact Sets

Definition 19.4.1 Let (X ,τ) be a locally compact Hausdorff space. C0 (X) denotes
the space of real or complex valued continuous functions defined on X with the property
that if f ∈C0 (X) , then for each ε > 0 there exists a compact set K such that | f (x)|< ε for
all x /∈ K. Define || f ||

∞
= sup{| f (x)| : x ∈ X}.

This norm is well defined because | f (x)| < 1 for x not in some compact set K and
| f (x)| achieves its maximum on K.

Lemma 19.4.2 For (X ,τ) a locally compact Hausdorff space with the above norm,
C0 (X) is a complete space.

Proof: Let
(

X̃ , τ̃
)

be the one point compactification described in Lemma 19.1.27.

D≡
{

f ∈C
(

X̃
)

: f (∞) = 0
}
.

Then D is a closed subspace of C
(

X̃
)

. For f ∈C0 (X) ,

f̃ (x)≡
{

f (x) if x ∈ X
0 if x = ∞
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and let θ : C0 (X)→D be given by θ f = f̃ . Then θ is one to one and onto and also satisfies
∥ f∥

∞
= ∥θ f∥

∞
. Now D is complete because it is a closed subspace of a complete space

and so C0 (X) with ∥·∥
∞

is also complete. ■
The above refers to functions which have values in C but the same proof works for

functions which have values in any complete normed linear space.
In the case where the functions in C0 (X) all have real values, I will denote the resulting

space by C0 (X ;R) with similar meanings in other cases.
With this lemma, the generalization of the Stone Weierstrass theorem to locally com-

pact sets is as follows.

Theorem 19.4.3 Let A be an algebra of functions in C0 (X ;R) where (X ,τ) is a
locally compact Hausdorff space which separates the points and annihilates no point. Then
A is dense in C0 (X ;R).

Proof: Let
(

X̃ , τ̃
)

be the one point compactification as described in Lemma 19.1.27.

Let Ã denote all finite linear combinations,
{

∑
n
i=1 ci f̃i + c0 : f ∈A , ci ∈ R

}
where for

f ∈C0 (X ;R) ,

f̃ (x)≡
{

f (x) if x ∈ X
0 if x = ∞

.

Then Ã is obviously an algebra of functions in C
(

X̃ ;R
)

. It separates points because this
is true of A . Similarly, it annihilates no point because of the inclusion of c0 an arbitrary
element of R in the definition above. Therefore from Theorem 5.10.5, Ã is dense in
C
(

X̃ ;R
)
. Letting f ∈C0 (X ;R) , it follows f̃ ∈C

(
X̃ ;R

)
so there exists a sequence {hn}⊆

Ã such that hn converges uniformly to f̃ . Now hn is of the form ∑
n
i=1 cn

i f̃ n
i + cn

0 and since
f̃ (∞) = 0, you can take each cn

0 = 0 and so this has shown the existence of a sequence of
functions in A such that it converges uniformly to f . ■

19.4.2 The Case of Complex Valued Functions
What about the general case where C0 (X) consists of complex valued functions and the
field of scalars is C rather than R? The following is the version of the Stone Weierstrass
theorem which applies to this case. You have to assume that for f ∈A it follows f̄ ∈A .

Lemma 19.4.4 Let z be a complex number. Then Re(z) = Im(i z̄) , Im(z) = Re(i z̄) .

Proof: The following computation comes from the definition of real and imaginary
parts.

Re(z) =
z+ z̄

2
=

iz+ i z̄
2i

=
i z̄− (i z̄)

2i
= Im(i z̄)

Im(z) =
z− z̄

2i
=

i z̄− iz
2

=
i z̄+(i z̄)

2
= Re(i z̄) ■

Theorem 19.4.5 Suppose A is an algebra of functions in C0 (X) for X a locally
compact Hausdorff space which separates the points of X and annihilates no point of X ,
and has the property that if f ∈A , then f̄ ∈A . Then A is dense in C0 (X).
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Proof: Let ReA ≡ {Re f : f ∈A }, ImA ≡{Im f : f ∈A }.
Claim 1: ReA = ImA
Proof of claim: A typical element of ReA is Re f where f ∈ A , then from Lemma

19.4.4, Re( f ) = Im
(
i f̄
)
∈ ImA . Thus ReA ⊆ ImA . By assumption, i f̄ ∈A . The other

direction works the same. Just use the other formula in Lemma 19.4.4.
Claim 2: Both ReA and ImA are real algebras.
Proof of claim: It is obvious these are both real vector spaces. Since these are equal, it

suffices to consider ReA . It remains to show that ReA is closed with respect to products.

f + f̄
2

g+ ḡ
2

=
1
4
[

f g+ f ḡ+ f̄ g+ f g
]
=

1
4
[
2Re( f g)+2Re

(
f̄ g
)]

Now by assumption, f g ∈A and so Re( f g) ∈ ReA . Also Re
(

f̄ g
)
∈ ReA because both

f̄ ,g are in A and it is an algebra. Thus, the above is in ReA because, as noted, this is a
real vector space.

Claim 3: A = ReA + i ImA
Proof of claim: If f ∈ A , then f = f+ f̄

2 + i f− f̄
2i ∈ ReA + i ImA so A ⊆ ReA +

i ImA . Now a generic element of ReA + i ImA is Re( f )+ i Im(g) for f ,g ∈A .

Re( f )+ i Im(g)≡ f + f̄
2

+ i
(

g− ḡ
2i

)
=

f +g
2

+
f̄ − ḡ

2
∈A

because A is closed with respect to conjugates. Thus ReA + i ImA ⊆A .
Both ReA and ImA must separate the points. Here is why: If x1 ̸= x2, then there exists

f ∈A such that f (x1) ̸= f (x2) . If Im f (x1) ̸= Im f (x2) , this shows there is a function in
ImA , Im f which separates these two points. If Im f fails to separate the two points, then
Re f must separate the points and so, by Lemma 19.4.4,

Re f (x1) = Im
(
i f̄ (x1)

)
̸= Re f (x2) = Im

(
i f̄ (x2)

)
Thus ImA separages the points. Similarly ReA separates the points using a similar argu-
ment or because it is equal to ImA .

Neither ReA nor ImA annihilate any point. This is easy to see because if x is a
point, there exists f ∈ A such that f (x) ̸= 0. Thus either Re f (x) ̸= 0 or Im f (x) ̸= 0. If
Im f (x) ̸= 0, this shows this point is not annihilated by ImA . Since they are equal, ReA
does not annihilate this point either.

It follows from Theorem 19.4.3 that ReA and ImA are dense in the real valued func-
tions of C0 (X). Let f ∈C0 (X) . Then there exists {hn} ⊆ReA and {gn} ⊆ ImA such that
hn→ Re f uniformly and gn→ Im f uniformly. Therefore, hn + ign ∈A and it converges
to f uniformly. ■

19.5 Partitions of Unity
As before, the idea of a partition of unity if of fundamental significance. It will be used to
construct measures.

Definition 19.5.1 Define spt( f ) (support of f ) to be the closure of the set {x :
f (x) ̸= 0}. If V is an open set, Cc(V ) will be the set of continuous functions f , defined
on Ω having spt( f )⊆V . Thus in Theorem 19.1.23, f ∈Cc(V ).
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Definition 19.5.2 If K is a compact subset of an open set V , then K ≺ φ ≺V if

φ ∈Cc(V ), φ(K) = {1}, φ(Ω)⊆ [0,1],

where Ω denotes the whole topological space considered. Also for φ ∈Cc(Ω), K ≺ φ if

φ(Ω)⊆ [0,1] and φ(K) = 1.

and φ ≺V if φ ∈Cc (V ) and

φ(Ω)⊆ [0,1] and spt(φ)⊆V.

Theorem 19.5.3 (Partition of unity) Let K be a compact subset of a locally compact
Hausdorff topological space satisfying Theorem 19.1.23 and suppose

K ⊆V = ∪n
i=1Vi, Vi open.

Then there exist ψ i ≺Vi with ∑
n
i=1 ψ i(x) = 1 for all x ∈ K.

Proof: The proof is just like the one in Theorem 3.12.5 on Page 92. Let K1 =K\∪n
i=2Vi.

Thus K1 is compact and K1 ⊆V1. Let K1 ⊆W1 ⊆W 1 ⊆V1 with W 1compact. To obtain W1,
use Theorem 19.1.23 to get f such that K1 ≺ f ≺ V1 and let W1 ≡ {x : f (x) ̸= 0} . Thus
W1,V2, · · ·Vn covers K and W 1 ⊆ V1. Let K2 = K \ (∪n

i=3Vi ∪W1). Then K2 is compact
and K2 ⊆ V2. Let K2 ⊆W2 ⊆W 2 ⊆ V2, W 2 compact. Continue this way finally obtaining
W1, · · · ,Wn, K ⊆W1 ∪ ·· · ∪Wn, and W i ⊆ Vi W i compact. Now let W i ⊆Ui ⊆U i ⊆ Vi ,U i
compact.

Wi Ui Vi

By Theorem 19.1.23, let U i ≺ φ i ≺Vi, ∪n
i=1W i ≺ γ ≺∪n

i=1Ui.
Define

ψ i(x) =
{

γ(x)φ i(x)/∑
n
j=1 φ j(x) if ∑

n
j=1 φ j(x) ̸= 0,

0 if ∑
n
j=1 φ j(x) = 0.

If x is such that ∑
n
j=1 φ j(x) = 0, then x /∈ ∪n

i=1U i. Conse-
quently γ(y) = 0 for all y near x and so ψ i(y) = 0 for all y near x. Hence ψ i is continuous
at such x. If ∑

n
j=1 φ j(x) ̸= 0, this situation persists near x and so ψ i is continuous at such

points. Therefore ψ i is continuous. If x ∈ K, then γ(x) = 1 and so ∑
n
j=1 ψ j(x) = 1. Clearly

0≤ ψ i (x)≤ 1 and spt(ψ j)⊆Vj. ■
The following corollary won’t be needed immediately but is quite useful.

Corollary 19.5.4 In the context of the above theorem, if H is a compact subset of Vi,
there exists a partition of unity such that ψ i (x) = 1 for all x ∈ H in addition to the conclu-
sion of Theorem 19.5.3.

Proof: Keep Vi the same but replace Vj with Ṽj ≡ Vj \H. Now in the proof above, ap-
plied to this modified collection of open sets, if j ̸= i,φ j (x) = 0 whenever x∈H. Therefore,
ψ i (x) = 1 on H. ■

19.6 Measures on Hausdorff Spaces
In the case of a Hausdorff topological space, the following lemma gives conditions under
which the σ algebra of µ measurable sets for an outer measure µ contains the Borel sets.
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In words, it assumes the outer measure is inner regular on open sets and outer regular on all
sets. Also it assumes you can approximate the measure of an open set with a compact set
and the measure of a compact set with an open set. Recall that the Borel sets are those sets in
the smallest σ algebra that contains the open sets. The big result is the Riesz representation
theorem for positive linear functionals and the following lemma is the technical part of the
proof of this big theorem in addition to being interesting for its own sake. It holds in a
Hausdorff space, not just one which is locally compact.

Lemma 19.6.1 Let Ω be a Hausdorff space and suppose µ is an outer measure satisfy-
ing µ is finite on compact sets and the following conditions,

1. µ (E) = inf{µ (V ) ,V ⊇ E,V open} for all E. (Outer regularity.)

2. For every open set V,µ (V ) = sup{µ (K) : K ⊆V,K compact} (Inner regularity on
open sets.)

3. If A,B are compact disjoint sets, then µ (A∪B) = µ (A)+µ (B).

Then the following hold.

1. If ε > 0 and if K is compact, there exists V open such that V ⊇ K and

µ (V \K)< ε

2. If ε > 0 and if V is open with µ (V )< ∞, there exists a compact subset K of V such
that

µ (V \K)< ε

3. The µ measurable sets S defined as

S ≡ {E ⊆Ω : µ (S) = µ (S\E)+µ (S∩E) for all S}

contains the Borel sets and also µ is inner regular on every open set,

µ (V ) = sup{µ (K) : K ⊆V,K compact}

and for every E ∈S with µ(E)< ∞,

µ (E) = sup{µ (K) : K ⊆ E,K compact}

Proof: First we establish 1 and 2 and use them to establish the last assertion. Consider
2. Suppose it is not true. Then there exists an open set V having µ (V ) < ∞ but for all
K ⊆ V,µ (V \K) ≥ ε for some ε > 0. By inner regularity on open sets, there exists K1 ⊆
V,K1 compact, such that µ (K1)≥ ε/2. Now by assumption, µ (V \K1)≥ ε and so by inner
regularity on open sets again, there exists compact K2 ⊆ V \K1 such that µ (K2) ≥ ε/2.
Continuing this way, there is a sequence of disjoint compact sets contained in V {Ki} such
that µ (Ki)≥ ε/2.

V

K1 K4K2

K3
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Now this is an obvious contradiction because by 3,

µ (V )≥ µ (∪n
i=1Ki) =

n

∑
i=1

µ (Ki)≥ n
ε

2

for each n, contradicting µ (V )< ∞.
Next consider 1. By outer regularity, there exists an open set W ⊇ K such that µ (W )<

µ (K)+ 1. By 2, there exists compact K1 ⊆W \K such that µ ((W \K)\K1) < ε. Then
consider V ≡W \K1. This is an open set containing K and from what was just shown,

µ ((W \K1)\K) = µ ((W \K)\K1)< ε.

Now consider the last assertion.
Define S1 = {E ∈P (Ω) : E ∩K ∈S } for all compact K.
First it will be shown the compact sets are in S . From this it will follow the closed sets

are in S1. Then you show S1 = S . Thus S1 = S is a σ algebra and so it contains the
Borel sets since it contains the closed sets. Finally you show the inner regularity assertion.

Claim 1: Compact sets are in S .
Proof of claim: Let V be an open set with µ (V )< ∞. I will show that for C compact,

µ (V )≥ µ(V \C)+µ(V ∩C).

If µ(V ) = ∞ the above is obvious. The various sets are illustrated in the following diagram.

VH C
K

By 2, there exists a compact set K ⊆V \C such that µ ((V \C)\K)< ε and a compact
set H ⊆V such that µ (V \H)< ε . Thus µ (V )≤ µ (V \H)+µ (H)< ε +µ (H). Then

µ (V )≤ µ (H)+ ε ≤ µ (H ∩C)+µ (H \C)+ ε

≤ µ (V ∩C)+µ (V \C)+ ε ≤ µ (H ∩C)+µ (K)+3ε

By 3,
= µ (H ∩C)+µ (K)+3ε = µ ((H ∩C)∪K)+3ε ≤ µ (V )+3ε.

Since ε is arbitrary, this shows that

µ(V ) = µ(V \C)+µ(V ∩C). (19.4)

Of course 19.4 is exactly what needs to be shown for arbitrary S in place of V . It suffices
to consider only S having µ (S)< ∞. If S⊆Ω, with µ(S)< ∞, let V ⊇ S, µ(S)+ε > µ(V ).
Then from what was just shown, if C is compact,

ε +µ(S)> µ(V ) = µ(V \C)+µ(V ∩C)≥ µ(S\C)+µ(S∩C).

Since ε is arbitrary, this shows the compact sets are in S . This proves the claim.
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As discussed above, this verifies the closed sets are in S1 because if H is closed and C
is compact, then compact H∩C ∈S . If S1 is a σ algebra, this will show that S1 contains
the Borel sets. Thus I first show S1 is a σ algebra.

To see that S1 is closed with respect to taking complements, let E ∈ S1 and K a
compact set.

K = (EC ∩K)∪ (E ∩K).

Then from the fact, just established, that the compact sets are in S , EC∩K = K \(E∩K)∈
S. S1 is closed under countable unions because if K is a compact set and En ∈S1,

K∩∪∞
n=1En = ∪∞

n=1K∩En ∈S

because it is a countable union of sets of S . Thus S1 is a σ algebra.
Therefore, if E ∈S and K is a compact set, just shown to be in S , it follows K∩E ∈S

because S is a σ algebra which contains the compact sets and so S1 ⊇S . It remains to
verify S1 ⊆S . Recall that

S1 ≡ {E : E ∩K ∈S for all K compact}

Let E ∈ S1 and let V be an open set with µ(V ) < ∞ and choose K ⊆ V such that
µ(V \K)< ε . Then since E ∈S1, it follows E ∩K,EC ∩K ∈S and so

µ (V ) ≤ µ (V \E)+µ (V ∩E)≤

The two sets are disjoint and in S︷ ︸︸ ︷
µ (K \E)+µ (K∩E) +2ε

= µ (K)+2ε ≤ µ (V )+3ε

Since ε is arbitrary, this shows µ (V ) = µ (V \E)+µ (V ∩E) which would show E ∈S if
V were an arbitrary set.

Now let S⊆Ω be such an arbitrary set. If µ(S) = ∞, then µ(S) = µ(S∩E)+µ(S\E).
If µ(S)< ∞, let

V ⊇ S, µ(S)+ ε ≥ µ(V ).

Then
µ(S)+ ε ≥ µ(V ) = µ(V \E)+µ(V ∩E)≥ µ(S\E)+µ(S∩E).

Since ε is arbitrary, this shows that E ∈ S and so S1 = S . Thus S ⊇ Borel sets as
claimed.

From 2 µ is inner regular on all open sets. It remains to show that

µ(F) = sup{µ(K) : K ⊆ F} (19.5)

for all F ∈S with µ(F)< ∞. It might help to refer to the following crude picture to keep
things straight. It also might not help. V is between the dotted lines.

V C∩K

µ < ε V

U \F
F
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From the picture as needed: Let µ (U \F) < ε where U is open and let K ⊆ U and
µ (U \K)< ε , µ(V \ (U \F))< ε with V open and V ⊇U \F =U ∩FC so VC ⊆UC ∪F .
This is possible because all sets are in S . Then VC∩K ⊆

(
UC ∪F

)
∩K = F∩K ⊆ F. Now

VC ∩K is compact and

µ
(
F \
(
K∩VC)) = µ

(
F ∩

(
KC ∪V

))
= µ (F ∩V )+µ

(
F ∩KC)

≤ µ (F ∩V )+µ (U \K)< µ (F ∩V )+ ε (19.6)

However,

ε > µ(V \ (U \F)) = µ

(
V ∩

(
U ∩FC)C)= µ

(
V ∩

(
UC ∪F

))
≥ µ (V ∩F)

and so from 19.6, µ
(
F \
(
K∩VC

))
≤ 2ε . Since K∩VC is compact, this shows 19.5. ■

19.7 Measures and Positive Linear Functionals
This is on the Riesz representation theorem for positive linear functionals. It is a really
marvelous result. It produces measures on locally compact Hausdorff spaces. Thus this
doesn’t help a lot in producing measures on infinite dimensional spaces but it works great
on Rn or closed subsets of Rn and so forth.

Definition 19.7.1 Let (Ω,τ) be a topological space. L : Cc(Ω)→ C is called a
positive linear functional if L is linear, L(a f1+b f2) = aL f1+bL f2, and if L f ≥ 0 whenever
f ≥ 0.

Theorem 19.7.2 (Riesz representation theorem) Let (Ω,τ) be a locally compact
Hausdorff space and let L be a positive linear functional on Cc(Ω). Then there exists a σ

algebra S containing the Borel sets and a unique measure µ , defined on S , such that

µ is complete, (19.7)
µ(K) < ∞ for all K compact, (19.8)

µ(F) = sup{µ(K) : K ⊆ F, K compact},

for all F open and for all F ∈S with µ(F)< ∞,

µ(F) = inf{µ(V ) : V ⊇ F, V open}

for all F ∈S , and ∫
f dµ = L f for all f ∈Cc(Ω). (19.9)

The plan is to define an outer measure and then to show that it, together with the σ

algebra of sets measurable in the sense of Caratheodory, satisfies the conclusions of the
theorem. Always, K will be a compact set and V will be an open set.

Definition 19.7.3 µ(V )≡ sup{L f : f ≺V} for V open,

µ( /0) = 0, µ(E)≡ inf{µ(V ) : V ⊇ E}

for arbitrary sets E.
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Lemma 19.7.4 µ is a well-defined outer measure.

Proof: First it is necessary to verify that µ is well defined because there are two de-
scriptions of it on open sets. Suppose then that µ1 (V )≡ inf{µ(U) : U ⊇V and U is open}.
It is required to verify that µ1 (V ) = µ (V ) where µ is given as sup{L f : f ≺V}. If U ⊇V,
then µ (U)≥ µ (V ) directly from the definition. Hence from the definition of µ1, it follows
µ1 (V ) ≥ µ (V ) . On the other hand, V ⊇ V and so µ1 (V ) ≤ µ (V ) . This verifies µ is well
defined.

It remains to show that µ is an outer measure. Let V = ∪∞
i=1Vi and let f ≺ V . Then

spt( f )⊆ ∪n
i=1Vi for some n. Let ψ i ≺Vi, ∑

n
i=1 ψ i = 1 on spt( f ).

L f =
n

∑
i=1

L( f ψ i)≤
n

∑
i=1

µ(Vi)≤
∞

∑
i=1

µ(Vi).

Hence µ(V ) ≤ ∑
∞
i=1 µ(Vi) since f ≺ V is arbitrary. Now let E = ∪∞

i=1Ei. Is µ(E) ≤
∑

∞
i=1 µ(Ei)? Without loss of generality, it can be assumed µ(Ei) < ∞ for each i since if

not so, there is nothing to prove. Let Vi ⊇ Ei with µ(Ei)+ ε2−i > µ(Vi).

µ(E)≤ µ(∪∞
i=1Vi)≤

∞

∑
i=1

µ(Vi)≤ ε +
∞

∑
i=1

µ(Ei).

Since ε was arbitrary, µ(E)≤ ∑
∞
i=1 µ(Ei). It is clear from the definition that if A⊆ B, then

µ (A)≤ µ (B). ■

Lemma 19.7.5 Let K be compact, g≥ 0, g ∈Cc(Ω), and g = 1 on K. Then µ(K)≤ Lg.
Also µ(K)< ∞ whenever K is compact.

Proof: Let α ∈ (0,1) and Vα = {x : g(x)> α} so Vα ⊇ K and let h≺Vα .

g > α

VαK

Then h≤ 1 on Vα while gα−1 ≥ 1 on Vα and so gα−1 ≥ h which implies L(gα−1)≥ Lh
and that therefore, since L is linear, Lg ≥ αLh. Since h ≺ Vα is arbitrary, and K ⊆ Vα ,
Lg≥ αµ (Vα)≥ αµ (K) . Letting α ↑ 1 yields Lg≥ µ(K). This proves the first part of the
lemma. The second assertion follows from this and Theorem 19.1.23. If K is given, let
K ≺ g≺Ω and so from what was just shown, µ (K)≤ Lg < ∞. ■

Lemma 19.7.6 If A and B are disjoint compact subsets of Ω, then µ(A∪B) = µ(A)+
µ(B).

Proof: By Theorem 19.1.23, there exists h ∈Cc (Ω) such that A ≺ h ≺ BC. Let U1 =
h−1(( 1

2 ,1]), V1 = h−1([0, 1
2 )). Then A⊆U1,B⊆V1 and U1∩V1 = /0.

B V1A U1
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From Lemma 19.7.5 µ(A∪B)< ∞ and so there exists an open set, W such that

W ⊇ A∪B, µ (A∪B)+ ε > µ (W ) .

Now let U =U1∩W and V =V1∩W . Then

U ⊇ A, V ⊇ B, U ∩V = /0,and µ(A∪B)+ ε ≥ µ (W )≥ µ(U ∪V ).

Let A≺ f ≺U, B≺ g≺V . Then by Lemma 19.7.5,

µ(A∪B)+ ε ≥ µ(U ∪V )≥ L( f +g) = L f +Lg≥ µ(A)+µ(B).

Since ε > 0 is arbitrary, this proves the lemma. ■
From Lemma 19.7.5 the following lemma is obtained.

Lemma 19.7.7 Let f ∈Cc(Ω), f (Ω) ⊆ [0,1]. Then µ(spt( f )) ≥ L f . Also, every open
set, V satisfies µ (V ) = sup{µ (K) : K ⊆V} .

Proof: Let V ⊇ spt( f ) and let spt( f ) ≺ g ≺ V . Then L f ≤ Lg ≤ µ(V ) because f ≤ g.
Since this holds for all V ⊇ spt( f ), L f ≤ µ(spt( f )) by definition of µ .

Vspt( f ) spt(g)

Finally, let V be open and let l < µ (V ) . Then from the definition of µ, there exists
f ≺ V such that L( f ) > l. Therefore, l < µ (spt( f )) ≤ µ (V ) and so this shows the claim
about inner regularity of the measure on an open set. ■

At this point, the conditions of Lemma 19.6.1 have been verified. Thus S contains the
Borel sets and µ is inner regular on sets of S having finite measure.

It remains to show µ satisfies 19.9.

Lemma 19.7.8 ∫
f dµ = L f for all f ∈Cc(Ω).

Proof: Let f ∈Cc(Ω), f real-valued, and suppose f (Ω)⊆ [a,b]. Choose t0 < a and let
t0 < t1 < · · ·< tn = b, ti− ti−1 < ε . Let

Ei = f−1((ti−1, ti])∩ spt( f ). (19.10)

Note that ∪n
i=1Ei = spt( f ) since Ω = ∪n

i=1 f−1((ti−1, ti]). Let Vi ⊇ Ei,Vi is open and let Vi
satisfy

f (x)< ti + ε for all x ∈Vi, µ(Vi \Ei)< ε/n. (19.11)

By Theorem 19.5.3 there exists hi ∈ Cc(Ω) such that hi ≺ Vi, ∑
n
i=1 hi(x) = 1 on spt( f ).

Now note that for each i, f (x)hi(x) ≤ hi(x)(ti + ε). (If x ∈ Vi, this follows from 19.11. If
x /∈Vi both sides equal 0.) Therefore,

L f = L(
n

∑
i=1

f hi)≤ L(
n

∑
i=1

hi(ti + ε)) =
n

∑
i=1

(ti + ε)L(hi)

=
n

∑
i=1

(|t0|+ ti + ε)L(hi)−|t0|L

=1 on spt( f )(
n

∑
i=1

hi

)
.
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Now note that |t0|+ ti +ε ≥ 0 and so from the definition of µ and Lemma 19.7.5, this is no
larger than

n

∑
i=1

(|t0|+ ti + ε)µ(Vi)−|t0|µ(spt( f ))

≤
n

∑
i=1

(|t0|+ ti + ε)(µ(Ei)+ ε/n)−|t0|µ(spt( f ))

≤ |t0|

µ(spt( f ))︷ ︸︸ ︷
n

∑
i=1

µ(Ei)+ |t0|ε +
n

∑
i=1

tiµ(Ei)+ ε(|t0|+ |b|)

n

∑
i=1

ti
ε

n
+ ε

n

∑
i=1

µ(Ei)+ ε
2−|t0|µ(spt( f )).

The first and last terms cancel. Therefore this is no larger than

(2|t0|+ |b|+µ(spt( f ))+ ε)ε +

≤
∫

f dµ

n

∑
i=1

ti−1µ(Ei)+ εµ(spt( f ))+
n

∑
i=1

(|t0|+ |b|)
ε

n

≤
∫

f dµ +(2|t0|+ |b|+2µ(spt( f ))+ ε)ε +(|t0|+ |b|)ε

Since ε > 0 is arbitrary, L f ≤
∫

f dµ for all f ∈ Cc(Ω), f real valued. Hence equality
holds because L(− f ) ≤ −

∫
f dµ so L( f ) ≥

∫
f dµ . Thus L f =

∫
f dµ for all f ∈ Cc(Ω).

Just apply the result for real functions to the real and imaginary parts of f . This gives the
existence part of the Riesz representation theorem.

It only remains to prove uniqueness. Suppose both µ1 and µ2 are measures on S
satisfying the conclusions of the theorem. Then if K is compact and V ⊇ K, let K ≺ f ≺V .
Then

µ1(K)≤
∫

f dµ1 = L f =
∫

f dµ2 ≤ µ2(V ).

Thus, taking the inf for all V ⊇K, µ1(K)≤ µ2(K) for all K. Similarly, the inequality can be
reversed and so it follows the two measures are equal on compact sets. By the assumption
of inner regularity on open sets, the two measures are also equal on all open sets. By outer
regularity, they are equal on all sets of S . ■

Example 19.7.9 Let L( f ) =
∫

∞

−∞
f (t)dt for all f ∈Cc (R) where this is just the ordinary

Riemann integral. Then the resulting measure is known as one dimensional Lebesgue
measure.

Example 19.7.10 Let L( f ) =
∫

∞

−∞
· · ·
∫

∞

−∞
f (x)dx1 · · ·dxn for f ∈Cc (Rn). Then the result-

ing measure is mn, n dimensional Lebesgue measure.

Here is a nice observation.

Proposition 19.7.11 In Example 19.7.10 the order of integration is not important. The
same functional is obtained in any order.
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Proof: Let spt( f ) ⊆ [−R,R]n. It clearly suffices to show this for n = 2. Then by the
definition of the Riemann integral,

∫ R
−R
∫ R
−R f (x,y)dxdy =∫ R

−R
∑

i

∫ xi+1

xi

f (s,y)dsdy =
n−1

∑
j=0

n−1

∑
i=0

∫ yi+1

yi

∫ xi+1

xi

f (s, t)dsdt

=
n−1

∑
j=0

n−1

∑
i=0

∫ yi+1

yi

f (si, t)(xi+1− xi)dt

=
n−1

∑
j=0

n−1

∑
i=0

f (si, t j)(xi+1− xi)
(
y j+1− y j

)
=

n−1

∑
i=0

n−1

∑
j=0

f (si, t j)(xi+1− xi)
(
y j+1− y j

)
where−R = x0 < x1 < · · ·< xn = R is a uniform partition of [−R,R] with the yi also giving
a uniform partition of [−R,R]. Similar reasoning implies∫ R

−R

∫ R

−R
f (x,y)dydx =

n−1

∑
i=0

n−1

∑
j=0

f (ŝi, t̂ j)(xi+1− xi)
(
y j+1− y j

)
.

Now (si, t j) ,(ŝi, t̂ j) are both in [xi,xi+1]×
[
y j,y j+1

]
. Thus, by uniform continuity, if n is

large enough, ∣∣ f (si, t j)− f (ŝi, t̂ j)
∣∣< ε

4R2

Then it follows that
∣∣∣∫ R
−R
∫ R
−R f (x,y)dxdy−

∫ R
−R
∫ R
−R f (x,y)dydx

∣∣∣≤
n−1

∑
i=0

n−1

∑
j=0

∣∣ f (ŝi, t̂ j)− f (si, t j)
∣∣(xi+1− xi)

(
y j+1− y j

)
≤

n−1

∑
i=0

n−1

∑
j=0

ε

4R2 (xi+1− xi)
(
y j+1− y j

)
= ε

Since ε is arbitrary, this shows that the two iterated integrals are the same. In case n> 2, you
can do exactly the same argument using the mean value theorem for integrals and obtain
the same result by a similar argument, or you could use this result on pairs of integrals. ■

19.8 Slicing Measures
I saw this material first in the book [17]. It can be presented as an application of the theory
of differentiation of Radon measures and the Riesz representation theorem for positive
linear functionals. It is an amazing theorem and can be used to understand conditional
probability However, here I will obtain it from Theorem 10.14.12.

Theorem 19.8.1 Let µ be a finite Radon measure on Rn+m defined on a σ algebra,
F . Then there exists a unique finite Radon measure α, defined on a σ algebra S , of sets
of Rn which satisfies

α (E) = µ (E×Rm) (19.12)

for all E Borel. There also exists a Borel set of α measure zero N, such that for each x /∈N,
there exists a Radon probability measure νx such that if f is a nonnegative µ measurable
function or a µ measurable function in L1 (µ),

y→ f (x,y) is νx measurable α a.e.
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x→
∫
Rm

f (x,y)dνx (y) is α measurable (19.13)

and ∫
Rn+m

f (x,y)dµ =
∫
Rn

(∫
Rm

f (x,y)dνx (y)
)

dα (x). (19.14)

If ν̂x is any other collection of Radon measures satisfying 19.13 and 19.14, then ν̂x = νx

for α a.e. x.

Proof: By Theorem 10.14.12 and the above lemmas, there exist unique Borel mea-
surable α,νx such that 19.14 holds for all nonnegative Borel measurable functions f .
This is because the Borel sets are contained in the product measurable sets. Now one
can use the Riesz representation theorem on functionals f →

∫
Rn+m f (x,y)dµ and f →∫

Rm f (x,y)dνx (y) along with regularity of these measures obtained from the Riesz rep-
resentation theorem to extend and obtain the same result for f only µ measurable. ■

19.9 Exercises
1. Let X be a finite dimensional normed linear space, real or complex. Show that X is

separable. Hint: Let {vi}n
i=1 be a basis and define a map from Fn to X ,θ , as follows.

θ (∑n
k=1 xkek)≡∑

n
k=1 xkvk. Show θ is continuous and has a continuous inverse. Now

let D be a countable dense set in Fn and consider θ (D).

2. Let α ∈ (0,1]. We define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+∥f∥ ≡ ∥f∥
α
< ∞}

where ∥f∥ ≡ sup{|f (x)| : x ∈ X} and

ρα (f)≡ sup{ |f (x)−f (y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) ,∥·∥
α
) is a complete normed linear space. This is called a

Holder space. What would this space consist of if α > 1?

3. Let {fn}∞
n=1 ⊆Cα (X ;Rn) where X is a compact subset of Rp and suppose

∥fn∥α
≤M

for all n. Show there exists a subsequence, nk, such that fnk
converges in C (X ;Rn).

We say the given sequence is precompact when this happens. (This also shows the
embedding of Cα (X ;Rn) into C (X ;Rn) is a compact embedding.) Hint: You might
want to use the Ascoli Arzela theorem.

4. Suppose f ∈C0 ([0,∞)) and also | f (t)| ≤Ce−rt . Let A denote the algebra of linear
combinations of functions of the form e−st for s sufficiently large. Thus A is dense in
C0 ([0,∞)) . Show that if

∫
∞

0 e−st f (t)dt = 0 for each s sufficiently large, then f (t) =
0. Next consider only | f (t)| ≤ Cert for some r. That is f has exponential growth.
Show the same conclusion holds for f if

∫
∞

0 e−st f (t)dt = 0 for all s sufficiently large.
This justifies the Laplace transform procedure of differential equations where if the
Laplace transforms of two functions are equal, then the two functions are considered
to be equal. More can be said about this. Hint: For the last part, consider g(t) ≡
e−2rt f (t) and apply the first part to g. If g(t) = 0 then so is f (t).
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5. A set S along with an order ≤ is said to be a well ordered set if every nonempty
subset of S has a smallest element. Here ≤ is an order in the usual way. If x,y ∈ S,
then either x ≤ y or y ≤ x and it satisfies the transitive law: If x ≤ y and y ≤ z, then
x ≤ z. Using the Hausdorff maximal theorem, show that every nonempty set can be
well ordered. That is, there is an order for which the given set is well ordered. In
particular Q the rational numbers can be well ordered. However, show that there is
no way that the well order can coincide with the usual order on any open interval.

6. Verify that P(N) the set of all subsets of the natural numbers is uncountable. Thus
there exist uncountable sets. Pick an uncountable set Ω. Then you can consider this
set to be well ordered, with the order denoted as ≤. Consider Ω̂≡

{ω ∈Ω such that there are uncountably many elements of Ω less than ω}

If Ω̂ = /0, let Ω0 = Ω̂. If Ω̂ ̸= /0, let ω0 be the first element of Ω̂ and in this case let
Ω0 ≡ {ω : ω < ω0} That is ω ̸= ω0 and ω ≤ ω0. Explain why Ω0 is uncountable.
Explain why every element of Ω0 has a “next” element. Now define a topology
in the usual way. In particular, show that sets of the form [α,b),(a,b) where α

is the first element of Ω0 is a basis for a topology for Ω0. Verify that a sub-basis
is sets of the form [α,b),(a,ω0). Explain why this is a Hausdorff space. Explain
why every element of Ω0 is preceeded by countably many elements of Ω0 and show
every increasing sequence converges. Show that this cannot be a separable space.
Suppose you have a cover of (a,b] consisting of “sub-basic” open sets. Without loss
of generality, all of these have nonempty intersection with (a,b). Let p be the first
such that (p,ω0) is in the open cover, assuming there are such sets. Thus you could
simply use (p,ω0) instead of all the others. If p ≤ a, you are done. If not, then
p ∈ (a,b] and so some set of the other kind, [α,q) must contain p and so at most
two sets from the open cover contain (a,b). Consider the other cases to verify that
(a,b] is compact. Now explain why (a,b) is either equal to (a,b] or (a,b). In the
second case, verify that (a,b) would be of the form (a, b̂] which was just shown to
be compact thanks to Alexander sub-basis theorem. Is Ω0 locally compact?

7. In the above example, show that Ω0 is not compact. However, show that every se-
quence has a subsequence which converges. Recall that in any metric space, com-
pactness and sequential compactness are equivalent. Hence one can conclude that
there is no metric which will deliver the same topology for Ω0 described above.
That is to say, this horrible topological space is not metrizable. However, the Riesz
representation theorem presented above would hold for this terrible thing.



Chapter 20

Product Measures
Sometimes it is necessary to consider infinite Cartesian products of topological spaces.

20.1 Algebras
First of all, here is the definition of an algebra and theorems which tell how to recognize
one when you see it. An algebra is like a σ algebra except it is only closed with respect to
finite unions.

Definition 20.1.1 A is said to be an algebra of subsets of a set Z if Z ∈A , /0∈A ,
and when E,F ∈A , E ∪F and E \F are both in A .

It is important to note that if A is an algebra, then it is also closed under finite intersec-
tions. This is because E∩F = (EC∪FC)C ∈A since EC = Z\E ∈A and FC = Z\F ∈A .
Note that every σ algebra is an algebra but not the other way around.

Something satisfying the above definition is called an algebra because union is like
addition, the set difference is like subtraction and intersection is like multiplication. Fur-
thermore, only finitely many operations are done at a time and so there is nothing like a
limit involved.

How can you recognize an algebra when you see one? The answer to this question is
the purpose of the following lemma.

Lemma 20.1.2 Suppose R and E are subsets of P(Z)1 such that E is defined as the
set of all finite disjoint unions of sets of R. Suppose also

/0,Z ∈R

A∩B ∈R whenever A,B ∈R,

A\B ∈ E whenever A,B ∈R.

Then E is an algebra of sets of Z.

Proof: Note first that if A ∈R, then AC ∈ E because AC = Z \A.
Now suppose that E1and E2 are in E ,

E1 = ∪m
i=1Ri, E2 = ∪n

j=1R j

where the Ri are disjoint sets in R and the R j are disjoint sets in R. Then

E1∩E2 = ∪m
i=1∪n

j=1 Ri∩R j

which is clearly an element of E because no two of the sets in the union can intersect and
by assumption they are all in R. Thus by induction, finite intersections of sets of E are in
E . Consider the difference of two elements of E next.

If E =∪n
i=1Ri ∈ E , EC =∩n

i=1RC
i = finite intersection of sets of E which was just shown

to be in E . Now, if E1,E2 ∈ E , E1 \E2 = E1 ∩EC
2 ∈ E from what was just shown about

finite intersections.
1Set of all subsets of Z

523
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Finally consider finite unions of sets of E . Let E1 and E2 be sets of E . Then

E1∪E2 = (E1 \E2)∪E2 ∈ E

because E1\E2 consists of a finite disjoint union of sets of R and these sets must be disjoint
from the sets of R whose union yields E2 because (E1 \E2)∩E2 = /0. ■

The following corollary is particularly helpful in verifying the conditions of the above
lemma.

Corollary 20.1.3 Let (Z1,R1,E1) and (Z2,R2,E2) be as described in Lemma 20.1.2.
Then (Z1×Z2,R,E ) also satisfies the conditions of Lemma 20.1.2 if R is defined as

R ≡{R1×R2 : Ri ∈Ri}

and
E ≡{ finite disjoint unions of sets of R}.

Consequently, E is an algebra of sets.

Proof: It is clear /0,Z1×Z2 ∈R. Let A×B and C×D be two elements of R.

A×B∩C×D = (A∩C)× (B∩D) ∈R

by assumption.

(A×B)\ (C×D) = A×

∈E2︷ ︸︸ ︷
(B\D)∪

∈E1︷ ︸︸ ︷
(A\C)×

∈R2︷ ︸︸ ︷
(D∩B) = (A×Q)∪ (P×R)

where Q ∈ E2, P ∈ E1, and R ∈R2.

A

B

C

D

Since A×Q and P×R do not intersect, it follows that the above expression is in E
because each of these terms are. ■

20.2 Caratheodory Extension Theorem
The Caratheodory extension theorem is a fundamental result which makes possible the
consideration of measures on infinite products among other things. The idea is that if a
finite measure defined only on an algebra is trying to be a measure, then in fact it can be
extended to a measure.

Definition 20.2.1 Let E be an algebra of sets of Ω. Thus E contains /0,Ω, and
is closed with respect to differences and finite unions. Then µ0 is a finite measure on E
means µ0 is finitely additive: If Ei,E are sets of E with the Ei disjoint and E = ∪∞

i=1Ei,
then µ (E) = ∑

∞
i=1 µ (Ei)
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In this definition, µ0 is trying to be a measure and acts like one whenever possible.
Note the extra assumption that E ∈ E . This would be automatic if it were a finite sum and
finite union. Under these conditions, µ0 can be extended uniquely to a complete measure
µ , defined on a σ algebra of sets containing E such that µ agrees with µ0 on E . The
following is the main result.

Theorem 20.2.2 Let µ0 be a measure on an algebra of sets E , which satisfies
µ0 (Ω) < ∞. Then there exists a complete measure space (Ω,S , µ) such that µ (E) =
µ0 (E) for all E ∈ E . Also if ν is any measure which agrees with µ0 on E , then ν = µ on
σ (E ), the σ algebra generated by E .

Proof: Define an outer measure as follows.

µ (S)≡ inf

{
∞

∑
i=1

µ0 (Ei) : S⊆ ∪∞
i=1Ei,Ei ∈ E

}
Claim 1: µ is an outer measure.
Proof of Claim 1: Let S⊆ ∪∞

i=1Si and let Si ⊆ ∪∞
j=1Ei j, where

µ (Si)+
ε

2i ≥
∞

∑
j=1

µ (Ei j) .

Then
µ (S)≤∑

i
∑

j
µ (Ei j) = ∑

i

(
µ (Si)+

ε

2i

)
= ∑

i
µ (Si)+ ε.

Since ε is arbitrary, this shows µ is an outer measure as claimed.
By the Caratheodory procedure, there exists a unique σ algebra S , consisting of the µ

measurable sets such that (Ω,S , µ) is a complete measure space. It remains to show that
µ extends µ0.

Claim 2: If S is the σ algebra of µ measurable sets, S ⊇ E and µ = µ0 on E .
Proof of Claim 2: First observe that if A ∈ E , then µ (A) ≤ µ0 (A) by definition. It

remains to turn the inequality around. Letting

µ (A)+ ε >
∞

∑
i=1

µ0 (Ei) , ∪∞
i=1Ei ⊇ A, Ei ∈ E ,

it follows that µ (A) + ε > ∑
∞
i=1 µ0 (Ei∩A) ≥ µ0 (A) since A = ∪∞

i=1Ei ∩ A. Therefore,
µ = µ0 on E .

Consider the assertion that E ⊆S . Let A ∈ E and let S ⊆Ω be any set. By definition,
there exist sets {Ei} ⊆ E such that ∪∞

i=1Ei ⊇ S but

µ (S)+ ε >
∞

∑
i=1

µ (Ei) =
∞

∑
i=1

µ0 (Ei) .

Then by the assumption that µ0 is a measure on E and that µ = µ0 on sets of E ,

µ (S)≤ µ (S∩A)+µ (S\A)

≤ µ ((∪∞
i=1Ei)\A)+µ (∪∞

i=1 (Ei∩A))≤
∞

∑
i=1

µ (Ei\A)+
∞

∑
i=1

µ (Ei∩A)
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=
∞

∑
i=1

µ0 (Ei\A)+
∞

∑
i=1

µ0 (Ei∩A) =
∞

∑
i=1

µ (Ei)< µ (S)+ ε.

Since ε is arbitrary, this shows A ∈S .
This has proved the existence part of the theorem. To verify uniqueness, σ (E ) ⊆

S . Let G ≡ {E ∈ σ (E ) : µ (E) = ν (E)} . Then G is given to contain E and is obviously
closed with respect to countable disjoint unions and complements because σ (E ) ⊆ S .
Therefore by Dynkin’s theorem, Lemma 9.3.2, G = σ (E ). ■

The following lemma is also very significant. Actually Lemmas 9.8.4 and 9.8.5 are of
even more use, but one can use the following to get useful information in some cases. In
particular, in the proof of the Kolmogorov extension theorem, one can consider the special
case that Mt = R or Rnt in that theorem. The following lemma is Corollary 9.8.9 on Page
9.8.9. However, I am giving a different proof here to emphasize the theorem on positive
linear functionals and measures.

Lemma 20.2.3 Let M be a metric space with the closed balls compact and suppose µ is
a measure defined on the Borel sets of M which is finite on compact sets. Then there exists
a unique Radon measure, µ which equals µ on the Borel sets. In particular µ must be both
inner and outer regular on all Borel sets.

Proof: Define a positive linear functional, Λ( f ) =
∫

f dµ. Let µ be the Radon measure
which comes from the Riesz representation theorem for positive linear functionals. Thus
for all f ∈Cc (M) ,

∫
f dµ =

∫
f dµ. If V is an open set, let { fn} be a sequence of continuous

functions in Cc (M) which is increasing and converges to XV pointwise. Then applying
the monotone convergence theorem,

∫
XV dµ = µ (V ) =

∫
XV dµ = µ (V ) and so the two

measures coincide on all open sets. Every compact set is a countable intersection of open
sets and so the two measures coincide on all compact sets. Now let B(a,n) be a ball of
radius n and let E be a Borel set contained in this ball. Then by regularity of µ there
exist sets F,G such that G is a countable intersection of open sets and F is a countable
union of compact sets such that F ⊆ E ⊆ G and µ (G\F) = 0. Now µ (G) = µ (G) and
µ (F) = µ (F) . Thus

µ (G\F)+µ (F) = µ (G) = µ (G) = µ (G\F)+µ (F)

and so µ (G\F) = µ (G\F) . It follows µ (E) = µ (F) = µ (F) = µ (G) = µ (E) . If E is
an arbitrary Borel set, then µ (E ∩B(a,n)) = µ (E ∩B(a,n)) and letting n→∞, this yields
µ (E) = µ (E) . ■

20.3 Kolmogorov Extension Theorem
This extension theorem is one of the most important theorems in probability theory, at
least according to my understanding of the situation. As an example, one sometimes wants
to consider infinitely many independent normally distributed random variables. Is there a
probability space such that this kind of thing even exists? The answer is yes and one way
to show this is through the use of the Kolmogorov extension theorem. I am presenting the
most general version of this theorem that I have seen. For another proof see the book by
Strook [56]. What I am using here is a modification of one in Billingsley [6].

Let Mt be a complete separable metric space. This is called a Polish space. I will
denote a totally ordered index set, (Like R) and the interest will be in building a measure
on the product space, ∏t∈I Mt . If you like less generality, just think of Mt = Rkt or even
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Mt = R. By the well ordering principle, you can always put an order on any index set so
this order is no restriction, but we do not insist on a well order and in fact, index sets of
most interest are R or [0,∞). Also for X a topological space, B (X) will denote the Borel
sets.

Notation 20.3.1 The symbol J will denote a finite subset of I,J = (t1, · · · , tn) , the ti taken
in order. EJ will denote a set which has a set Et of B (Mt) in the tth position for t ∈ J and
for t /∈ J, the set in the tth position will be Mt . KJ will denote a set which has a compact set
in the tth position for t ∈ J and for t /∈ J, the set in the tth position will be Mt . Also denote
by RJ the sets EJ and R the union of all such RJ . Let EJ denote finite disjoint unions of
sets of RJ and let E denote finite disjoint unions of sets of R. Thus if F is a set of E , there
exists J such that F is a finite disjoint union of sets of RJ . For F ∈ Ω, denote by πJ (F )
the set ∏t∈J Ft where F = ∏t∈I Ft .

Lemma 20.3.2 The sets E ,EJ defined above form an algebra of sets of ∏t∈I Mt .

Proof: First consider RJ . If A,B ∈ RJ , then A∩B ∈ RJ also. Is A\B a finite
disjoint union of sets of RJ? It suffices to verify that πJ (A\B) is a finite disjoint union
of πJ (RJ). Let |J| denote the number of indices in J. If |J| = 1, then it is obvious that
πJ (A\B) is a finite disjoint union of sets of πJ (RJ). In fact, letting J = (t) and the tth

entry of A is A and the tth entry of B is B, then the tth entry of A\B is A\B, a Borel set
of Mt , a finite disjoint union of Borel sets of Mt .

Suppose then that for A,B sets of RJ , πJ (A\B) is a finite disjoint union of sets of
πJ (RJ) for |J| ≤ n, and consider J = (t1, · · · , tn, tn+1) . Let the tth

i entry of A and B be
respectively Ai and Bi. It follows that πJ (A\B) has the following in the entries for J

(A1×A2×·· ·×An×An+1)\ (B1×B2×·· ·×Bn×Bn+1)

Letting A represent A1×A2×·· ·×An and B represent B1×B2×·· ·×Bn, A\B is of the
form

A× (An+1 \Bn+1)∪ (A\B)× (An+1∩Bn+1)

By induction, (A\B) is the finite disjoint union of sets of R(t1,··· ,tn). Therefore, the above
is the finite disjoint union of sets of RJ . It follows that EJ is an algebra.

Now suppose A,B ∈R. Then for some finite set J, both are in RJ . Then from what
was just shown,

A\B ∈ EJ ⊆ E , A∩B ∈R.

By Lemma 20.1.2 on Page 523 this shows E is an algebra. ■
With this preparation, here is the Kolmogorov extension theorem. In the statement and

proof of the theorem, Fi,Gi, and Ei will denote Borel sets. Any list of indices from I will
always be assumed to be taken in order. Thus, if J ⊆ I and J = (t1, · · · , tn) , it will always
be assumed t1 < t2 < · · ·< tn.

Theorem 20.3.3 For each finite set

J = (t1, · · · , tn)⊆ I,

suppose there exists a Borel probability measure, νJ = ν t1···tn defined on the Borel sets of
∏t∈J Mt such that the following consistency condition holds. If

(t1, · · · , tn)⊆ (s1, · · · ,sp) ,
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then
ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(20.1)

where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices tk, then Gsi = Msi .
Then for E defined in Notation 20.3.1, there exists a probability measure P and a σ algebra
F = σ (E ) such that (∏t∈I Mt ,P,F ) is a probability space. Also there exist measurable
functions, Xs : ∏t∈I Mt →Ms defined for s ∈ I as Xsx≡ xs such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(20.2)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn =
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (20.3)

Proof: Let E be the algebra of sets defined in the above notation. I want to define a
measure on E . For F ∈ E , there exists J such that F is the finite disjoint union of sets
of RJ . Define P0 (F ) ≡ νJ (πJ (F )) . Then P0 is well defined because of the consistency
condition on the measures νJ . P0 is clearly finitely additive because the νJ are measures
and one can pick J as large as desired to include all t where there may be something other
than Mt . Also, from the definition,

P0 (Ω)≡ P0

(
∏
t∈I

Mt

)
= ν t1 (Mt1) = 1.

Next I will show P0 is a finite measure on E . After this it is only a matter of using the
Caratheodory extension theorem to get the existence of the desired probability measure P.

Claim: Suppose En is in E and suppose En ↓ /0. Then P0 (E
n) ↓ 0.

Proof of the claim: If not, there exists a sequence such that althoughEn ↓ /0,P0 (E
n) ↓

ε > 0. Let En ∈ EJn . Thus it is a finite disjoint union of sets of RJn . By regularity of the
measures νJ , which follows from Lemmas 9.8.4 and 9.8.5, there existsKJn ⊆En such that

νJn (πJn (KJn))+
ε

2n+2 > νJn (πJn (E
n))

Thus P0 (KJn)+
ε

2n+2 ≡ νJn (πJn (KJn))+
ε

2n+2 > νJn (πJn (E
n))≡ P0 (E

n) .The interesting
thing about theseKJn is: they have the finite intersection property. Here is why.

ε ≤ P0
(
∩m

k=1KJk

)
+P0

(
Em \∩m

k=1KJk

)
≤ P0

(
∩m

k=1KJk

)
+P0

(
∪m

k=1E
k \KJk

)
< P0

(
∩m

k=1KJk

)
+

∞

∑
k=1

ε

2k+2 < P0
(
∩m

k=1KJk

)
+ ε/2,

and so P0
(
∩m

k=1KJk

)
> ε/2. In considering all theEn, there are countably many entries in

the product space which have something other than Mt in them. Say these are {t1, t2, · · ·} .
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Let pti be a point which is in the intersection of the ti components of the sets KJn . The
compact sets in the ti position must have the finite intersection property also because if not,
the sets KJn can’t have it. Thus there is such a point. As to the other positions, use the
axiom of choice to pick something in each of these. Thus the intersection of these KJn

contains a point which is contrary to En ↓ /0 because these sets are contained in the En.
With the claim, it follows P0 is a measure on E . Here is why: If E = ∪∞

k=1E
k where

E,Ek ∈ E , then (E \∪n
k=1Ek) ↓ /0 and so P0

(
∪n

k=1Ek
)
→ P0 (E) .Hence if the Ek are

disjoint, P0
(
∪n

k=1Ek
)
= ∑

n
k=1 P0 (Ek)→ P0 (E) . Thus for disjointEk having ∪kEk =E ∈

E , P0
(
∪∞

k=1Ek
)
= ∑

∞
k=1 P0 (Ek) .

Now to conclude the proof, apply the Caratheodory extension theorem to obtain P
a probability measure which extends P0 to a σ algebra which contains σ (E ) the sigma
algebra generated by E with P=P0 on E . Thus forEJ ∈E , P(EJ)=P0 (EJ)= νJ (PJE j) .

Next, let (∏t∈I Mt ,F ,P) be the probability space and for x ∈∏t∈I Mt let Xt (x) = xt ,
the tth entry of x. It follows Xt is measurable (also continuous) because if U is open in Mt ,
then X−1

t (U) has a U in the tth slot and Ms everywhere else for s ̸= t. Thus inverse images
of open sets are measurable. Also, letting J be a finite subset of I and for J = (t1, · · · , tn) ,
and Ft1 , · · · ,Ftn Borel sets in Mt1 · · ·Mtn respectively, it follows F J , where F J has Fti in the
tth
i entry, is in E and therefore,

P([Xt1 ∈ Ft1 ]∩ [Xt2 ∈ Ft2 ]∩·· ·∩ [Xtn ∈ Ftn ]) =

P([(Xt1 ,Xt2 , · · · ,Xtn) ∈ Ft1 ×·· ·×Ftn ]) = P(F J) = P0 (F J)

= ν t1···tn (Ft1 ×·· ·×Ftn)

Finally consider the claim about the integrals. Suppose f (xt1 , · · · ,xtn) = XF where F
is a Borel set of ∏t∈J Mt where J = (t1, · · · , tn). To begin with suppose

F = Ft1 ×·· ·×Ftn (20.4)

where each Ft j is in B
(
Mt j

)
. Then∫

Mt1×···×Mtn

XF (xt1 , · · · ,xtn)dν t1···tn = ν t1···tn (Ft1 ×·· ·×Ftn)

= P

(
∏
t∈I

Ft

)
=
∫

Ω

X∏t∈I Ft (x)dP =
∫

Ω

XF (xt1 , · · · ,xtn)dP (20.5)

where Ft = Mt if t /∈ J. Let K denote sets F of the sort in 20.4. It is clearly a π system.
Now let G denote those sets F in B (∏t∈J Mt) such that 20.5 holds. Thus G ⊇K . It is
clear that G is closed with respect to countable disjoint unions and complements. Hence
G ⊇ σ (K ) but σ (K ) = B (∏t∈J Mt) because every open set in ∏t∈J Mt is the countable
union of rectangles like 20.4 in which each Fti is open. Therefore, 20.5 holds for every
F ∈B (∏t∈J Mt) .

Passing to simple functions and then using the monotone convergence theorem yields
the final claim of the theorem. ■

As a special case, you can obtain a version of product measure for possibly infinitely
many factors. Suppose in the context of the above theorem that ν t is a probability measure
defined on the Borel sets of Mt ≡ Rnt for nt a positive integer, and let the measures, ν t1···tn

be defined on the Borel sets of ∏
n
i=1 Mti by ν t1···tn (E) ≡

product measure︷ ︸︸ ︷
(ν t1 ×·· ·×ν tn)(E) . Then these
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measures satisfy the necessary consistency condition and so the Kolmogorov extension
theorem given above can be applied to obtain a measure P defined on a measure space
(∏t∈I Mt ,F ) and measurable functions Xs : ∏t∈I Mt → Ms such that for Fti a Borel set in
Mti ,

P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
i=1

Fti

)
= ν t1···tn (Ft1 ×·· ·×Ftn)

= ν t1 (Ft1) · · ·ν tn (Ftn) . (20.6)

In particular, P(Xt ∈ Ft) = ν t (Ft) . Then P in the resulting probability space given by
(∏t∈I Mt ,F ,P) will be denoted as ∏t∈I ν t . This proves the following theorem which de-
scribes an infinite product measure.

Theorem 20.3.4 Let Mt for t ∈ I be given as in Theorem 20.3.3 and let ν t be a Borel
probability measure defined on the Borel sets of Mt . Then there exists a measure P and a
σ algebra F = σ (E ) where E is given in the Notation 20.3.1 such that (∏t Mt ,F ,P) is a
probability space satisfying 20.6 whenever each Fti is a Borel set of Mti . This probability
measure could be denoted as ∏t ν t .

20.4 Exercises
1. Suppose X and Y are metric spaces having compact closed balls. Show (X×Y,dX×Y )

is also a metric space which has the closures of balls compact. Here

dX×Y ((x1,y1) ,(x2,y2))≡max(d (x1,x2) ,d (y1,y2)) .

Let A ≡ {E×F : E is a Borel set in X ,F is a Borel set in Y} . Show σ (A ), which
is the smallest σ algebra containing A contains the Borel sets. Hint: Show every
open set in a metric space which has closed balls compact can be obtained as a
countable union of compact sets. Next show this implies every open set can be
obtained as a countable union of open sets of the form U ×V where U is open in X
and V is open in Y .

2. Suppose (Ω,S ,µ) is a measure space which may not be complete. Could you obtain
a complete measure space,

(
Ω,S ,µ1

)
by simply letting S consist of all sets of the

form E where there exists F ∈S such that (F \E)∪ (E \F) ⊆ N for some N ∈S
which has measure zero and then let µ (E) = µ1 (F)? Explain.

3. Let (Ω,S ,µ) measure space and let f : Ω→ [0,∞) be measurable. Define A ≡
{(x,y) : y < f (x)} . Show that

∫
f dµ =

∫ ∫
XA (x,y)dµdm Next show that A is prod-

uct measurable in the sense that Ax is m measurable and Ay is µ measurable. Here
Ax ≡ {y : (x,y) ∈ A} and Ay similar. Next show that you can interchange the order of
integration. Hint: First suppose f is a nonnegative simple function.

4. For f a nonnegative measurable function, it was shown
∫

f dµ =
∫

µ ([ f > t])dt.
Would it work the same if you used

∫
µ ([ f ≥ t])dt? Explain.

5. Let (Ω,F ,µ) be a finite measure space and suppose { fn} is a sequence of non-
negative functions which satisfy fn (ω) ≤C independent of n,ω . Suppose also this
sequence converges to 0 in measure. That is, for all ε > 0, limn→∞ µ ([ fn ≥ ε]) = 0
Show that then limn→∞

∫
Ω

fn (ω)dµ = 0.
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6. Explain why for each t > 0,x→ e−tx is a function in L1 (R) and
∫

∞

0 e−txdx = 1
t . Thus∫ R

0
sin(t)

t dt =
∫ R

0
∫

∞

0 sin(t)e−txdxdt Now explain why you can change the order of
integration in the above iterated integral. Then compute what you get. Next pass to
a limit as R→ ∞ and show

∫
∞

0
sin(t)

t dt = 1
2 π

7. Let f (y) = g(y) = |y|−1/2on (−1,0)∪(0,1) and f (y) = g(y) = 0 off (−1,0)∪(0,1).
Find x where

∫
R f (x− y)g(y)dy makes sense.

8. Let Ei be a Borel set in R. Show that ∏
n
i=1 Ei is a Borel set in Rn.

9. Let {an} be an increasing sequence of numbers in (0,1) which converges to 1. Let gn
be a nonnegative function which equals zero outside (an,an+1) such that

∫
gndx = 1.

Now for (x,y) ∈ [0,1)× [0,1) define f (x,y) ≡ ∑
∞
k=1 gn (y)(gn (x)−gn+1 (x)) . Ex-

plain why this is actually a finite sum for each such (x,y) so there are no conver-
gence questions in the infinite sum. Explain why f is a continuous function on
[0,1)× [0,1). You can extend f to equal zero off [0,1)× [0,1) if you like. Show the
iterated integrals exist but are not equal. In fact, show∫ 1

0

∫ 1

0
f (x,y)dydx = 1 ̸= 0 =

∫ 1

0

∫ 1

0
f (x,y)dxdy.

Does this example contradict the Fubini theorem, Corollary 10.14.11 on Page 307?
Explain why or why not.

10. Let f : [a,b]→ R be Rieman integrable. Thus f is a bounded function and by Dar-
boux’s theorem, there exists a unique number between all the upper sums and lower
sums of f , this number being the Riemann integral. Show that f is Lebesgue mea-
surable and

∫ b
a f (x)dx =

∫
[a,b] f dm where the second integral in the above is the

Lebesgue integral taken with respect to one dimensional Lebesgue measure and the
first is the ordinary Riemann integral.

11. Let (Ω,F ,µ) be a σ finite measure space and let f : Ω→ [0,∞) be measurable. Also
let φ : [0,∞)→ R be increasing with φ (0) = 0 and φ a C1 function. Show that∫

Ω

φ ◦ f dµ =
∫

∞

0
φ
′ (t)µ ([ f > t])dt.

Hint: This can be done using the following steps. Let tn
i = i2−n. Show that

X[ f>t] (ω) = lim
n→∞

∞

∑
i=0

X[ f>tn
i+1]

(ω)X[tn
i ,t

n
i+1)

(t)

Now this is a countable sum of F ×B ([0,∞)) measurable functions and so it fol-
lows that (t,ω)→X[ f>t] (ω) is F ×B ([0,∞)) measurable. Consequently, so is
X[ f>t] (ω)φ (t) . Note that it is important in the argument to have f > t. Now ob-
serve ∫

Ω

φ ◦ f dµ =
∫

Ω

∫ f (ω)

0
φ
′ (t)dtdµ =

∫
Ω

∫
∞

0
X[ f>t] (ω)φ

′ (t)dtdµ

Use Fubini’s theorem. For your information, this does not require the measure space
to be σ finite. You can use a different argument which ties in to the first definition of
the Lebesgue integral. The function t→ µ ([ f > t]) is called the distribution function.
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12. Give a different proof of the above as follows. First suppose f is a simple function,
f (ω) = ∑

n
k=1 akXEk (ω) where the ak are strictly increasing, φ (a0) = a0 ≡ 0. Then

explain carefully the steps to the following argument.∫
Ω

φ ◦ f dµ =
n

∑
i=1

∫
φ(ai)

φ(ai−1)
µ ([φ ◦ f > t])dt =

n

∑
i=1

∫
φ(ai)

φ(ai−1)

n

∑
k=i

µ (Ek)dt

=
n

∑
i=1

n

∑
k=i

µ (Ek)
∫ ai

ai−1

φ
′ (t)dt =

n

∑
i=1

∫ ai

ai−1

φ
′ (t)

n

∑
k=i

µ (Ek)dt

=
n

∑
i=1

∫ ai

ai−1

φ
′ (t)µ ([ f > t])dt =

∫
∞

0
φ
′ (t)µ ([ f > t])dt

Note that this did not require the measure space to be σ finite and comes directly
from the definition of the integral.

13. Give another argument for the above result as follows.∫
φ ◦ f dµ =

∫
∞

0
µ ([φ ◦ f > t])dt =

∫
∞

0
µ
([

f > φ
−1 (t)

])
dt

and now change the variable in the last integral, letting φ (s) = t. Justify the easy
manipulations.



Chapter 21

Banach Spaces
21.1 Theorems Based on Baire Category

Some examples of Banach spaces that have been discussed up to now are Rn,Cn, and
Lp (Ω). Theorems about general Banach spaces are proved in this chapter. The main
theorems to be presented here are the uniform boundedness theorem, the open mapping
theorem, the closed graph theorem, and the Hahn Banach Theorem. The first three of these
theorems come from the Baire category theorem which is about to be presented. They are
topological in nature. The Hahn Banach theorem has nothing to do with topology. Banach
spaces are all normed linear spaces and as such, they are all metric spaces because a normed
linear space may be considered as a metric space with d (x,y) ≡ ||x− y||. You can check
that this satisfies all the axioms of a metric. As usual, if every Cauchy sequence converges,
the metric space is called complete.

Definition 21.1.1 A complete normed linear space is called a Banach space.

21.1.1 Baire Category Theorem
The following remarkable result is called the Baire category theorem. To get an idea of its
meaning, imagine you draw a line in the plane. The complement of this line is an open set
and is dense because every point, even those on the line, are limit points of this open set.
Now draw another line. The complement of the two lines is still open and dense. Keep
drawing lines and looking at the complements of the union of these lines. You always have
an open set which is dense. Now what if there were countably many lines? The Baire
category theorem implies the complement of the union of these lines is dense. In particular
it is nonempty. Thus you cannot write the plane as a countable union of lines. This is a
rather rough description of this very important theorem. The precise statement and proof
follow.

Theorem 21.1.2 Let (X ,d) be a complete metric space and let {Un}∞
n=1 be a se-

quence of open subsets of X satisfying Un = X (Un is dense). Then D≡ ∩∞
n=1Un is a dense

subset of X.

Proof: Let p ∈ X and let r0 > 0. I need to show D∩B(p,r0) ̸= /0. Since U1 is dense,
there exists p1 ∈U1∩B(p,r0), an open set. Let p1 ∈ B(p1,r1)⊆ B(p1,r1)⊆U1∩B(p,r0)
and r1 < 2−1. This is possible because U1 ∩ B(p,r0) is an open set and so there ex-
ists r1 such that B(p1,2r1) ⊆ U1 ∩B(p,r0). But B(p1,r1) ⊆ B(p1,r1) ⊆ B(p1,2r1) be-
cause B(p1,r1)⊆ {x ∈ X : d (x, p1)≤ r1} ≤ B(p1,2r1). Indeed, {x ∈ X : d (x, p1)≤ r1} is
a closed set containing B(p1,r) so it contains B(p1,r1).

r0 p

p1
·

There exists p2 ∈U2∩B(p1,r1) because U2 is dense. Let

p2 ∈ B(p2,r2)⊆ B(p2,r2)⊆U2∩B(p1,r1)⊆U1∩U2∩B(p,r0).

533
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and let r2 < 2−2. Continue in this way. Thus rn < 2−n,

B(pn,rn)⊆U1∩U2∩ ...∩Un∩B(p,r0),

B(pn,rn)⊆ B(pn−1,rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n are
contained in B(pn,rn), a set whose diameter is no larger than 2−n. Since X is complete,
there exists p∞ such that limn→∞ pn = p∞. Since all but finitely many terms of {pn} are in
B(pm,rm), it follows that p∞ ∈ B(pm,rm) for each m. Therefore, p∞ ∈ ∩∞

m=1B(pm,rm) ⊆
∩∞

i=1Ui∩B(p,r0). ■
The following corollary is also called the Baire category theorem. It involves a count-

able union of closed sets rather than a countable intersection of open sets.

Corollary 21.1.3 Let X be a complete metric space and suppose X = ∪∞
i=1Fi where

each Fi is a closed set. Then for some i, interior Fi ̸= /0.

Proof: If all Fi has empty interior, then FC
i would be a dense open set. Therefore, from

Theorem 21.1.2, /0 = (∪∞
i=1Fi)

C = ∩∞
i=1FC

i ̸= /0. ■
The set D of Theorem 21.1.2 is called a Gδ set because it is the countable intersection

of open sets. Thus D is a dense Gδ set.
Recall that a norm satisfies:
a.) ∥x∥ ≥ 0, ∥x∥= 0 if and only if x = 0.
b.) ∥x+ y∥ ≤ ∥x∥+∥y∥.
c.) ∥cx∥= |c|∥x∥ if c is a scalar and x ∈ X .
From Theorem 3.6.2, continuity means that if limn→∞ xn = x, then

lim
n→∞

f (xn) = f (x).

Theorem 21.1.4 Let X and Y be two normed linear spaces and let L : X→Y be lin-
ear (L(ax+by) = aL(x)+bL(y) for a,b scalars and x,y∈ X). The following are equivalent

a.) L is continuous at 0
b.) L is continuous
c.) There exists K > 0 such that ∥Lx∥Y ≤ K ∥x∥X for all x ∈ X (L is bounded).

Proof: a.)⇒b.) Let xn → x. It is necessary to show that Lxn → Lx. But (xn− x)→ 0
and so from continuity at 0, it follows L(xn− x) = Lxn−Lx→ 0 so Lxn→ Lx. This shows
a.) implies b.).

b.)⇒c.) Since L is continuous, L is continuous at 0. Hence ∥Lx∥Y < 1 whenever ∥x∥X ≤
δ for some δ . Therefore, suppressing the subscript on the ∥ ∥,∥L

(
δx
∥x∥

)
∥ ≤ 1. Hence

∥Lx∥ ≤ 1
δ
∥x∥.

c.)⇒a.) follows from the inequality given in c.). ■

Definition 21.1.5 Let L : X → Y be linear and continuous where X and Y are
normed linear spaces. Denote the set of all such continuous linear maps by L (X ,Y ) and
define

∥L∥= sup{∥Lx∥ : ∥x∥ ≤ 1}. (21.1)

This is called the operator norm.
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Note that from Theorem 21.1.4 ||L|| is well defined because of part c.) of that Theorem.
The next lemma follows immediately from the definition of the norm and the assump-

tion that L is linear.

Lemma 21.1.6 With ∥L∥ defined in 21.1, L (X ,Y ) is a normed linear space. Also
∥Lx∥ ≤ ∥L∥∥x∥.

Proof: Let x ̸= 0 then x/∥x∥ has norm equal to 1 and so
∥∥∥L
(

x
∥x∥

)∥∥∥≤ ∥L∥ . Therefore,
multiplying both sides by ∥x∥, ∥Lx∥ ≤ ∥L∥∥x∥. This is obviously a linear space. It remains
to verify the operator norm really is a norm. First of all, if ∥L∥ = 0, then Lx = 0 for all
∥x∥ ≤ 1. It follows that for any x ̸= 0,0 = L

(
x
∥x∥

)
and so Lx = 0. Therefore, L = 0. Also,

if c is a scalar,
∥cL∥= sup

∥x∥≤1
∥cL(x)∥= |c| sup

∥x∥≤1
∥Lx∥= |c|∥L∥ .

It remains to verify the triangle inequality. Let L,M ∈L (X ,Y ) .

∥L+M∥ ≡ sup
∥x∥≤1

∥(L+M)(x)∥ ≤ sup
∥x∥≤1

(∥Lx∥+∥Mx∥)

≤ sup
∥x∥≤1

∥Lx∥+ sup
∥x∥≤1

∥Mx∥= ∥L∥+∥M∥ .

This shows the operator norm is really a norm as hoped. ■
For example, consider the space of linear transformations defined on Rn having values

in Rm. The fact the transformation is linear automatically imparts continuity to it. You
should give a proof of this fact. Recall that every such linear transformation can be realized
in terms of matrix multiplication.

Thus, in finite dimensions the algebraic condition that an operator is linear is sufficient
to imply the topological condition that the operator is continuous. The situation is not so
simple in infinite dimensional spaces such as C (X ;Rn). This explains the imposition of the
topological condition of continuity as a criterion for membership in L (X ,Y ) in addition
to the algebraic condition of linearity. Here is an example which shows that this extra
assumption cannot be eliminated.

Example 21.1.7 Let V denote all linear combinations of functions of the form e−αx2
for

α > 0. Thus a typical element of V is an expression of the form

n

∑
k=1

β ke−αkx2
,αk > 0.

Let L : V → C be given by L f ≡
∫
R f (x)dx. For a norm on V,∥ f∥ ≡max{| f (x)| : x ∈ R} .

Of course V is not complete, but it is a normed linear space and you could consider its
completion if desired, in terms of equivalence classes of Cauchy sequences, similar to the
construction of R from Q. Recall that

∫
∞

−∞
e−x2

dx =
∫

∞

−∞

1
n e−(x2/n2) =

√
π where here

n ∈ N. Consider the sequence of functions fn (x) ≡ 1
n e−(x2/n2). Its maximum value is 1/n

and so ∥ fn∥ → 0 but L fn fails to converge to 0. Thus L is not continuous although it is
linear.

Theorem 21.1.8 If Y is a Banach space, then L (X ,Y ) is also a Banach space.
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Proof: Let {Ln} be a Cauchy sequence in L (X ,Y ) and let x ∈ X .

∥Lnx−Lmx∥ ≤ ∥x∥ ∥Ln−Lm∥.

Thus {Lnx} is a Cauchy sequence. Let Lx = limn→∞ Lnx. Then, clearly, L is linear because
if x1,x2 are in X , and a,b are scalars, then

L(ax1 +bx2) = lim
n→∞

Ln (ax1 +bx2) = lim
n→∞

(aLnx1 +bLnx2) = aLx1 +bLx2.

Also L is continuous. To see this, note that {∥Ln∥} is a Cauchy sequence of real numbers
because |∥Ln∥−∥Lm∥| ≤ ∥Ln−Lm∥. Hence there exists K > sup{∥Ln∥ : n ∈ N}. Thus, if
x ∈ X , ∥Lx∥= limn→∞ ∥Lnx∥ ≤ K ∥x∥ .■

21.1.2 Uniform Boundedness Theorem
The next big result is sometimes called the Uniform Boundedness theorem, or the Banach-
Steinhaus theorem. This is a very surprising theorem which implies that for a collection
of bounded linear operators, if they are bounded pointwise, then they are also bounded
uniformly. As an example of a situation in which pointwise bounded does not imply uni-
formly bounded, consider the functions fα (x)≡X(α,1) (x)x−1 for α ∈ (0,1). Clearly each
function is bounded and the collection of functions is bounded at each point of (0,1), but
there is no bound for all these functions taken together.

Theorem 21.1.9 Let X be a Banach space and let Y be a normed linear space. Let
{Lα}α∈Λ be a collection of elements of L (X ,Y ). Then one of the following happens.

a.) sup{∥Lα∥ : α ∈ Λ}< ∞

b.) There exists a dense Gδ set D, such that for all x ∈ D,

sup{∥Lα x∥ α ∈ Λ}= ∞.

Proof: For each n ∈ N, define Un = {x ∈ X : sup{∥Lα x∥ : α ∈ Λ}> n}. Then Un is an
open set because if x ∈Un, then there exists α ∈ Λ such that ∥Lα x∥> n. But then, since Lα

is continuous, this situation persists for all y sufficiently close to x, say for all y ∈ B(x,δ ).
Then B(x,δ )⊆Un which shows Un is open.

Case b.) is obtained from Theorem 21.1.2 if each Un is dense.
The other case is that for some n, Un is not dense. If this occurs, there exists x0 and

r > 0 such that for all B(x0,r) ⊆UC
n so for all x ∈ B(x0,r) , ∥Lα x∥ ≤ n for all α . Now if

y ∈ B(0,r), x0 + y ∈ B(x0,r). Consequently, for all such y, ∥Lα(x0 + y)∥ ≤ n. This implies
that for all α ∈Λ and ∥y∥< r, ∥Lα y∥≤ n+∥Lα(x0)∥≤ 2n. Therefore, if ∥y∥≤ 1,

∥∥ r
2 y
∥∥< r

and so for all α ,
∥∥Lα

( r
2 y
)∥∥≤ 2n. Now multiplying by r/2 it follows that whenever ∥y∥≤ 1,

∥Lα (y)∥ ≤ 4n/r. Hence case a.) holds. ■

21.1.3 Open Mapping Theorem
Another remarkable theorem which depends on the Baire category theorem is the open
mapping theorem. Unlike Theorem 21.1.9 it requires both X and Y to be Banach spaces.

Theorem 21.1.10 Let X and Y be Banach spaces, let L ∈L (X ,Y ), and suppose L
is onto. Then L maps open sets onto open sets.
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To aid in the proof, here is a lemma.

Lemma 21.1.11 Let a and b be positive constants and suppose B(0,a) ⊆ L(B(0,b)).
Then L(B(0,b))⊆ L(B(0,2b)).

Proof: Let z ∈ L(B(0,b)). Then let x1 ∈ B(0,b) with ∥z−Lx1∥ < a
21 . Then it follows

that on multiplying by 2, ∥2z−2Lx1∥< a and so there is x2 ∈ B(0,b) with

∥(2z−2Lx1)−Lx2∥<
a
2

which implies
∥∥∥z−

(
Lx1 +

Lx2
2

)∥∥∥< a
22 . If xi ∈ B(0,b) and

∥∥∥z−∑
n
i=0

Lxi
2i

∥∥∥< a
2n , then∥∥∥∥∥2n

(
z−

n

∑
i=0

Lxi

2i

)∥∥∥∥∥< a

Continuing this way, there is xn+1 ∈ B(0,b) such that∥∥∥∥∥2n

(
z−

n

∑
i=0

Lxi

2i

)
−L(xn+1)

∥∥∥∥∥< a
2

and so
∥∥∥z−∑

n+1
i=0

Lxi
2i

∥∥∥ < a
2n+1 . Let x ≡ ∑

∞
i=0

xi
2i . Then from the triangle inequality, ∥x∥ <

∑
∞
i=0

b
2i = 2b and by continuity of L,

∥z−Lx∥= lim
n→∞

∥∥∥∥∥z−L

(
n

∑
i=0

xi

2i

)∥∥∥∥∥≤ lim
n→∞

a
2n = 0 ■

Proof of Theorem 21.1.10: Y = ∪∞
n=1L(B(0,n)). By Corollary 21.1.3, L(B(0,n0)) has

nonempty interior for some n0. Thus B(y,r)⊆ L(B(0,n0)) for some y and some r > 0. Since
L is linear B(−y,r)⊆ L(B(0,n0)) also. Here is why. If z∈B(−y,r), then−z∈B(y,r) and so
there exists xn ∈ B(0,n0) such that Lxn→−z. Therefore, L(−xn)→ z and −xn ∈ B(0,n0)
also. Therefore z ∈ L(B(0,n0)). Then it follows that

B(0,r) ⊆ B(y,r)+B(−y,r)≡ {y1 + y2 : y1 ∈ B(y,r) and y2 ∈ B(−y,r)}
⊆ L(B(0,2n0))

The reason for the last inclusion is that from the above, if y1 ∈ B(y,r) and y2 ∈ B(−y,r),
there exists xn,zn ∈ B(0,n0) such that Lxn→ y1, Lzn→ y2. Therefore, ∥xn + zn∥ ≤ 2n0 and
so (y1 + y2) ∈ L(B(0,2n0)).

By Lemma 21.1.11, L(B(0,2n0))⊆ L(B(0,4n0)) so B(0,r)⊆ L(B(0,4n0)). Letting a =
r(4n0)

−1, it follows, since L is linear, that B(0,a)⊆ L(B(0,1)). It follows since L is linear,

L(B(0,r))⊇ B(0,ar). (21.2)

Now let U be open in X and let x+B(0,r) = B(x,r)⊆U . Using 21.2,

L(U)⊇ L(x+B(0,r))

= Lx+L(B(0,r))⊇ Lx+B(0,ar) = B(Lx,ar).
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Hence Lx ∈ B(Lx,ar)⊆ L(U) which shows that every point, Lx ∈ LU , is an interior point
of LU and so LU is open. ■

This theorem is surprising because it implies that if |·| and ∥·∥ are two norms with
respect to which a vector space X is a Banach space such that |·| ≤ K ∥·∥, then there exists
a constant k, such that ∥·∥ ≤ k |·| . This can be useful because sometimes it is not clear how
to compute k when all that is needed is its existence. To see the open mapping theorem
implies this, consider the identity map idx = x. Then id : (X ,∥·∥)→ (X , |·|) is continuous
and onto. Hence id is an open map which implies id−1 is continuous. Theorem 21.1.4 gives
the existence of the constant k.

21.1.4 Closed Graph Theorem

Definition 21.1.12 Let f : D→ E. The set of all ordered pairs of the form

{(x, f (x)) : x ∈ D}

is called the graph of f .

Definition 21.1.13 If X and Y are normed linear spaces, make X ×Y into a
normed linear space by using the norm ∥(x,y)∥ = max(∥x∥ ,∥y∥) along with component-
wise addition and scalar multiplication. Thus a(x,y)+b(z,w)≡ (ax+bz,ay+bw).

There are other ways to give a norm for X×Y . For example, you could define ∥(x,y)∥=
∥x∥+∥y∥

Lemma 21.1.14 The norm defined in Definition 21.1.13 on X ×Y along with the defi-
nition of addition and scalar multiplication given there make X ×Y into a normed linear
space.

Proof: The only axiom for a norm which is not obvious is the triangle inequality.
Therefore, consider

∥(x1,y1)+(x2,y2)∥ = ∥(x1 + x2,y1 + y2)∥
= max(∥x1 + x2∥ ,∥y1 + y2∥)
≤ max(∥x1∥+∥x2∥ ,∥y1∥+∥y2∥)

Both ∥x1∥+∥x2∥ and ∥y1∥+∥y2∥ are no larger than

max(∥x1∥ ,∥y1∥)+max(∥x2∥ ,∥y2∥)

and so the above is

≤max(∥x1∥ ,∥y1∥)+max(∥x2∥ ,∥y2∥) = ∥(x1,y1)∥+∥(x2,y2)∥ .

It is obvious X×Y is a vector space from the above definition. ■

Lemma 21.1.15 If X and Y are Banach spaces, then X ×Y with the norm and vector
space operations defined in Definition 21.1.13 is also a Banach space.
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Proof: The only thing left to check is that the space is complete. But this follows from
the simple observation that {(xn,yn)} is a Cauchy sequence in X ×Y if and only if {xn}
and {yn} are Cauchy sequences in X and Y respectively. Thus if {(xn,yn)} is a Cauchy
sequence in X ×Y , it follows there exist x and y such that xn → x and yn → y. But then
from the definition of the norm, (xn,yn)→ (x,y). ■

Lemma 21.1.16 Every closed subspace of a Banach space is a Banach space.

Proof: If F ⊆ X where X is a Banach space and {xn} is a Cauchy sequence in F , then
since X is complete, there exists a unique x ∈ X such that xn → x. However this means
x ∈ F = F since F is closed. ■

Definition 21.1.17 Let X and Y be Banach spaces and let D ⊆ X be a subspace.
A linear map L : D→ Y is said to be closed if its graph is a closed subspace of X ×Y .
Equivalently, L is closed if xn→ x and Lxn→ y implies x ∈ D and y = Lx.

Note the distinction between closed and continuous. If the operator is closed the as-
sertion that y = Lx only follows if it is known that the sequence {Lxn} converges. In the
case of a continuous operator, the convergence of {Lxn} follows from the assumption that
xn→ x. It is not always the case that a mapping which is closed is necessarily continuous.
Consider the function f (x) = tan(x) if x is not an odd multiple of π

2 and f (x)≡ 0 at every
odd multiple of π

2 . Then the graph is closed and the function is defined on R but it clearly
fails to be continuous. Of course this function is not linear. You could also consider the
map,

d
dx

:
{

y ∈C1 ([0,1]) : y(0) = 0
}
≡ D→C ([0,1]) .

where the norm is the uniform norm on C ([0,1]) , ||y||
∞

. If y ∈ D, then y(x) =
∫ x

0 y′ (t)dt.
Therefore, if dyn

dx → f ∈C ([0,1]) and if yn→ y in C ([0,1]) it follows that

yn (x) =
∫ x

0
dyn(t)

dx dt
↓ ↓

y(x) =
∫ x

0 f (t)dt

and so by the fundamental theorem of calculus f (x) = y′ (x) and so the mapping is closed.
It is obviously not continuous because it takes y(x) and y(x)+ 1

n sin(nx) to two functions
which are far from each other even though these two functions are very close in C ([0,1]).
Furthermore, it is not defined on the whole space, C ([0,1]).

The next theorem, the closed graph theorem, gives conditions under which closed im-
plies continuous.

Theorem 21.1.18 Let X and Y be Banach spaces and suppose L : X →Y is closed
and linear. Then L is continuous.

Proof: Let G be the graph of L. G = {(x,Lx) : x ∈ X}. By Lemma 21.1.16 it follows
that G is a Banach space. Define P : G→ X by P(x,Lx) = x. P maps the Banach space G
onto the Banach space X and is continuous and linear. By the open mapping theorem, P
maps open sets onto open sets. Since P is also one to one, this says that P−1 is continuous.
Thus

∥∥P−1x
∥∥≤ K ∥x∥. Hence

∥Lx∥ ≤max(∥x∥ ,∥Lx∥)≤ K ∥x∥
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By Theorem 21.1.4 on Page 534, this shows L is continuous. ■
The following corollary is quite useful. It shows how to obtain a new norm on the

domain of a closed operator such that the domain with this new norm becomes a Banach
space.

Corollary 21.1.19 Let L : D ⊆ X → Y where X ,Y are a Banach spaces, and L is a
closed operator. Then define a new norm on D by

∥x∥D ≡ ∥x∥X +∥Lx∥Y .

Then D with this new norm is a Banach space.

Proof: If {xn} is a Cauchy sequence in D with this new norm, it follows both {xn} and
{Lxn} are Cauchy sequences and therefore, they converge. Since L is closed, xn → x and
Lxn→ Lx for some x ∈ D. Thus ∥xn− x∥D→ 0. ■

21.2 Hahn Banach Theorem
The closed graph, open mapping, and uniform boundedness theorems are the three major
topological theorems in functional analysis. The other major theorem is the Hahn-Banach
theorem which has nothing to do with topology. Before presenting this theorem, here are
some preliminaries about partially ordered sets.

21.2.1 Partially Ordered Sets
Recall Theorem 2.8.2 which is stated next for convenience.

Theorem 21.2.1 (Hausdorff Maximal Principle) Let F be a nonempty partially
ordered set. Then there exists a maximal chain.

21.2.2 Gauge Functions and Hahn Banach Theorem

Definition 21.2.2 Let X be a real vector space ρ : X→R is called a gauge function
if

ρ(x+ y)≤ ρ(x)+ρ(y),

ρ(ax) = aρ(x) if a≥ 0. (21.3)

Suppose M is a subspace of X and z /∈ M. Suppose also that f is a linear real-valued
function having the property that f (x) ≤ ρ(x) for all x ∈ M. Consider the problem of
extending f to M⊕Rz such that if F is the extended function, F(y) ≤ ρ(y) for all y ∈
M⊕Rz and F is linear. Since F is to be linear, it suffices to determine how to define F(z).
Letting a > 0, it is required to define F (z) such that the following hold for all x,y ∈M.

f (x)︷︸︸︷
F (x)+aF (z) = F(x+az)≤ ρ(x+az),

f (y)︷︸︸︷
F (y)−aF (z) = F(y−az)≤ ρ(y−az). (21.4)
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Note that something in M⊕Rz is of the form x+ az or x− az for a ≥ 0 and this includes
all possibilities. Now multiplying by a−1 for a > 0, the above holds if and only if for all
x,y ∈M,

F (y)−F (z)≤ ρ (y− z) ,F (x)+F (z)≤ ρ (x+ z)

Thus we need to choose F (z) such that for all x,y ∈M,

f (y)−ρ(y− z)≤ F(z)≤ ρ(x+ z)− f (x). (21.5)

Is there any such number between f (y)−ρ(y− z) and ρ(x+ z)− f (x) for every pair x,y ∈
M? This is where f (x)≤ ρ(x) on M and that f is linear is used. For x,y ∈M,

ρ(x+ z)− f (x)− [ f (y)−ρ(y− z)]

= ρ(x+ z)+ρ(y− z)− ( f (x)+ f (y))

≥ ρ(x+ y)− f (x+ y)≥ 0.

Then if a= sup{ f (y)−ρ(y− z) : y ∈M}, b= inf{ρ(x+ z)− f (x) : x ∈M} , it follows that
[a,b] ̸= /0. Choose F(z) in [a,b] so it will satisfy 21.5. This has proved the following lemma.

Lemma 21.2.3 Let M be a subspace of X, a real linear space, and let ρ be a gauge
function on X. Suppose f : M→ R is linear, z /∈M, and f (x) ≤ ρ (x) for all x ∈M. Then
f can be extended to M⊕Rz such that, if F is the extended function, F is linear and
F(x)≤ ρ(x) for all x ∈M⊕Rz.

With this lemma, the Hahn Banach theorem can be proved.

Theorem 21.2.4 (Hahn Banach theorem) Let X be a real vector space, let M be
a subspace of X, let f : M → R be linear, let ρ be a gauge function on X, and suppose
f (x)≤ ρ(x) for all x ∈M. Then there exists a linear function, F : X → R, such that

a.) F(x) = f (x) for all x ∈M
b.) F(x)≤ ρ(x) for all x ∈ X.

Proof: Let F = {(V,g) : V ⊇M, V is a subspace of X , g : V →R is linear, g(x) = f (x)
for all x ∈M, and g(x) ≤ ρ(x) for x ∈ V}. Then (M, f ) ∈F so F ̸= /0. Define a partial
order by the following rule. (V,g)≤ (W,h) means

V ⊆W and h(x) = g(x) if x ∈V.

By Theorem 21.2.1, there exists a maximal chain, C ⊆ F . Let Y = ∪{V : (V,g) ∈ C }
and let h : Y → R be defined by h(x) = g(x) where x ∈ V and (V,g) ∈ C . This is well
defined because if x ∈ V1 and V2 where (V1,g1) and (V2,g2) are both in the chain, then
since C is a chain, the two elements are related. Therefore, g1 (x) = g2 (x). Also h is linear
because if ax+by ∈ Y , then x ∈ V1 and y ∈ V2 where (V1,g1) and (V2,g2) are elements of
C . Therefore, letting V denote the larger of the two Vi, and g be the function that goes with
V , it follows ax+by ∈V where (V,g) ∈ C . Therefore,

h(ax+by) = g(ax+by) = ag(x)+bg(y) = ah(x)+bh(y) .

Also, h(x) = g(x)≤ ρ(x) for any x ∈ Y because for such x, x ∈V where (V,g) ∈ C .
Is Y = X? If not, there exists z ∈ X \Y and there exists an extension of h to Y ⊕Rz

using Lemma 21.2.3. Letting h denote this extended function, contradicts the maximality
of C . Indeed, C ∪{

(
Y ⊕Rz, h

)
} would be a longer chain. ■

This is the original version of the theorem. There is also a version of this theorem for
complex vector spaces which is based on a trick.
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21.2.3 The Complex Version of the Hahn Banach Theorem
First is a lemma which is quite interesting for its own sake.

Lemma 21.2.5 Let h : V → R where V is a complex normed linear space. Then h is
linear with respect to real scalars if and only if F (x)≡ h(x)− ih(ix) is linear with respect
to complex scalars.

Proof:⇐ By assumption, F is linear with respect to real scalars. Let c ∈ R. Then

cF (x) = ch(x)− cih(ix) = F (cx) = h(cx)− ih(cix) .

Equating real parts, it follows ch(x) = h(cx). Also

F (x+ y) = h(x+ y)− ih(i(x+ y)) = F (x)+F (y)

= h(x)− ih(ix)+h(y)− ih(iy)

Equating real parts, h(x+ y) = h(x)+h(y).
⇒ I need to show that F is linear with respect to complex scalars.

F (ix) ≡ h(ix)− ih(−x) = h(ix)+ ih(x)

= i(h(x)− ih(ix)) = iF (ix)

It is fairly obvious that F (x+ y) = F (x)+F (y) . Also, if c is real, it is clear that F (cx) =
cF (x). Therefore,

F ((a+ ib)x) = F (ax)+F (ibx)

= aF (x)+ ibF (x) = (a+ ib)F (x) ■

Corollary 21.2.6 (Hahn Banach) Let M be a subspace of a complex normed linear
space X, and suppose f : M→ C is linear and satisfies | f (x)| ≤ K ∥x∥ for all x ∈M. Then
there exists a linear function F, defined on all of X such that F(x) = f (x) for all x ∈M and
|F(x)| ≤ K ∥x∥ for all x ∈ X.

Proof: First note f (x) = Re f (x)+ i Im f (x) and so

Re f (ix)+ i Im f (ix) = f (ix) = i f (x) = iRe f (x)− Im f (x).

Therefore, Im f (x) =−Re f (ix), and

f (x) = Re f (x)− iRe f (ix).

This is important because it shows it is only necessary to consider Re f in understanding f .
From Lemma 21.2.5 Re f is linear with respect to real scalars.

Consider X as a real vector space and let ρ(x)≡ K ∥x∥. Then for all x ∈M,

|Re f (x)| ≤ | f (x)| ≤ K ∥x∥ ≡ ρ(x).

From Theorem 21.2.4, Re f may be extended to a function h which satisfies

h(ax+by) = ah(x)+bh(y) if a,b ∈ R
h(x) ≤ K ∥x∥ for all x ∈ X .
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Actually, |h(x)| ≤K ∥x∥ . The reason for this is that h(−x) =−h(x)≤K ∥−x∥=K ∥x∥ and
therefore, h(x)≥−K ∥x∥ so−h(x)≤K ∥x∥. Thus |h(x)| ≤K ∥x∥. Let F(x)≡ h(x)− ih(ix).
By Lemma 21.2.5, F is complex linear.

Now wF(x) = |F(x)| for some |w|= 1. Therefore

|F(x)| = wF(x) = F (wx)≡ h(wx)−

must equal zero︷ ︸︸ ︷
ih(iwx) = h(wx)

= |h(wx)| ≤ K∥wx∥= K ∥x∥ . ■

21.2.4 The Dual Space and Adjoint Operators

Definition 21.2.7 Let X be a Banach space. Denote by X ′ the space of continuous
linear functions which map X to the field of scalars. Thus X ′ = L (X ,F). By Theorem
21.1.8 on Page 535, X ′ is a Banach space. Remember with the norm defined on L (X ,F),

∥ f∥= sup{| f (x)| : ∥x∥ ≤ 1}

X ′ is called the dual space.

Definition 21.2.8 Let X and Y be Banach spaces and suppose L ∈L (X ,Y ). Then
define the adjoint map in L (Y ′,X ′), denoted by L∗, by

L∗y∗(x)≡ y∗(Lx)

for all y∗ ∈ Y ′.

The following diagram is a good one to help remember this definition.

X ′
L∗

← Y ′

X
→
L

Y

This is a generalization of the adjoint of a linear transformation on an inner product
space from Linear Algebra. Recall

(Ax,y) = (x,A∗y)

What is being done here is to generalize this algebraic concept to arbitrary Banach spaces.
There are some issues which need to be discussed relative to the above definition. First of
all, it must be shown that L∗y∗ ∈ X ′. Also, it will be useful to have the following lemma
which is a useful application of the Hahn Banach theorem.

Lemma 21.2.9 Let X be a normed linear space and let x ∈ X \V where V is a closed
subspace of X. Then there exists x∗ ∈ X ′ such that x∗(x) = ∥x∥ ̸= 0, x∗ (V ) = {0}, and
∥x∗∥= 1

dist(x,V ) ∥x∥ . In the case that V = {0} , ∥x∗∥= 1.

Proof: Let f :Fx+V→F be defined by f (αx+v)=α ∥x∥. First it is necessary to show
f is well defined and continuous. If α1x+v1 = α2x+v2 then if α1 ̸= α2, then x ∈V which
is assumed not to happen so f is well defined. It remains to show f is continuous. Suppose



544 CHAPTER 21. BANACH SPACES

then that αnx+ vn→ 0. It is necessary to show αn→ 0. If this does not happen, then there
exists a subsequence, still denoted by αn such that |αn| ≥ δ > 0. Then x+(1/αn)vn→ 0.
Thus ∥x− (−(1/αn)vn)∥ → 0 so x is a limit of points of V contradicting the assumption
that x /∈V and V is a closed subspace. Hence f is continuous on Fx+V. Thus

∥ f∥= sup
∥αx+v∥≤1

|α|∥x∥ .

What is sup |α|, given that ∥αx+ v∥= |α|
∥∥x+ v

α

∥∥≤ 1? Since v
α

is a generic element of V
this reduces to sup |α| such that |α|∥x+ v∥ ≤ 1. Thus the largest |α| can be is 1

dist(x,V ) and
so

∥ f∥= 1
dist(x,V )

∥x∥

Now for z ∈ Fx +V, | f (z)| ≤ ∥ f∥∥z∥ = 1
dist(x,V ) ∥x∥∥z∥ . By the complex Hahn Banach

theorem, there exists x∗ ∈ X ′ such that x∗ = f on Fx+V and for all z ∈ X ,

|x∗ (z)| ≤ ∥ f∥∥z∥= 1
dist(x,V )

∥x∥∥z∥

Thus ∥x∗∥ ≤ ∥ f∥ . However, equality must occur because

1
dist(x,V )

∥x∥ = ∥ f∥ ≡ sup
∥z∥≤1,z∈Fx+V

| f (z)|

= sup
∥z∥≤1,z∈Fx+V

|x∗ (z)| ≤ sup
∥z∥≤1

|x∗ (z)| ≡ ∥x∗∥ .

In case V = {0} ,dist(x,V ) = ∥x∥ and so ∥x∗∥= 1. ■

Theorem 21.2.10 Let L ∈L (X ,Y ) where X and Y are Banach spaces. Then
a.) L∗ ∈L (Y ′,X ′) as claimed and ∥L∗∥= ∥L∥.
b.) If L maps one to one onto a closed subspace of Y , then L∗ is onto.
c.) If L maps onto a dense subset of Y , then L∗ is one to one.

Proof: It is routine to verify L∗y∗ and L∗ are both linear. This follows immediately
from the definition. As usual, the interesting thing concerns continuity.

∥L∗y∗∥= sup
∥x∥≤1

|L∗y∗ (x)|= sup
∥x∥≤1

|y∗ (Lx)| ≤ ∥y∗∥∥L∥ .

Thus L∗ is continuous as claimed and ∥L∗∥ ≤ ∥L∥ .
By Lemma 21.2.9, there exists y∗x ∈Y ′ such that ∥y∗x∥= 1 and y∗x (Lx)= ∥Lx∥ .Therefore,

∥L∗∥ = sup
∥y∗∥≤1

∥L∗y∗∥= sup
||y∗||≤1

sup
||x||≤1

|L∗y∗ (x)|

= sup
||y∗||≤1

sup
||x||≤1

|y∗ (Lx)|= sup
||x||≤1

sup
||y∗||≤1

|y∗ (Lx)|

≥ sup
||x||≤1

|y∗x (Lx)|= sup
||x||≤1

||Lx||= ∥L∥

showing that ||L∗|| ≥ ||L|| and this shows part a.).
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Next consider b.). Let x∗ ∈ X ′. Is there y∗ ∈ Y ′ such that L∗ (y∗) = x∗? This will be
so if and only if for all x ∈ X ,y∗ (Lx) = x∗ (x) . Let f (Lx) ≡ x∗ (x) . This defines f on
L(X) because of the assumption that L is one to one. Is f continuous on L(X)? Suppose
Lxn→ Lx in L(X) . Does it follow that xn→ x? Yes, because L(X) is a closed subspace of
a Banach space Y and is therefore also a Banach space. Since L is one to one, it follows
from the open mapping theorem that L−1 is continuous on L(X) and so indeed, xn → x
and so x∗ (xn)→ x∗ (x) showing that f is continuous on L(X) . Now by the Hahn Banach
theorem, there is an extension y∗of f to all of Y which has the same norm. Thus L∗ is onto
as claimed.

Consider the last assertion. Suppose L∗y∗ = 0. Is y∗ = 0? Letting Lx ∈ D where D is
the dense subset of Y,y∗ (Lx) = L∗y∗ (x) = 0 and so y∗ sends all in a dense subset of Y to 0.
Hence, by continuity of y∗, it equals 0. Thus L∗ is one to one. ■

Corollary 21.2.11 Suppose X and Y are Banach spaces, L ∈L (X ,Y ), and L is one to
one and onto. Then L∗ is also one to one and onto.

There exists a natural mapping, called the James map from a normed linear space X , to
the dual of the dual space which is described in the following definition.

Definition 21.2.12 Define J : X → X ′′ by J(x)(x∗) = x∗(x).

Theorem 21.2.13 The map J has the following properties.
a.) J is one to one and linear.
b.) ∥Jx∥= ∥x∥ and ∥J∥= 1.
c.) J(X) is a closed subspace of X ′′ if X is complete.
Also if x∗ ∈ X ′,

∥x∗∥= sup
{
|x∗∗ (x∗)| : ∥x∗∗∥ ≤ 1, x∗∗ ∈ X ′′

}
.

Proof:

J (ax+by)(x∗) ≡ x∗ (ax+by) = ax∗ (x)+bx∗ (y)

= (aJ (x)+bJ (y))(x∗) .

Since this holds for all x∗ ∈ X ′, it follows that J (ax+by) = aJ (x)+bJ (y) and so J is linear.
If Jx = 0, then by Lemma 21.2.9 there exists x∗ such that x∗(x) = ∥x∥ and ∥x∗∥= 1. Then
0 = J(x)(x∗) = x∗(x) = ∥x∥ . This shows a.).

To show b.), let x ∈ X and use Lemma 21.2.9 to obtain x∗ ∈ X ′ such that x∗(x) = ∥x∥
with ∥x∗∥= 1. Then

∥x∥ ≥ sup{|y∗(x)| : ∥y∗∥ ≤ 1}= sup{|J(x)(y∗)| : ∥y∗∥ ≤ 1}= ∥Jx∥
≥ |J(x)(x∗)|= |x∗(x)|= ∥x∥

Therefore, ∥Jx∥= ∥x∥ as claimed. Therefore,

∥J∥= sup{∥Jx∥ : ∥x∥ ≤ 1}= sup{∥x∥ : ∥x∥ ≤ 1}= 1.

This shows b.).
To verify c.), use b.). If Jxn→ y∗∗ ∈ X ′′ then by b.), xn is a Cauchy sequence converging

to some x ∈ X because ∥xn− xm∥ = ∥Jxn− Jxm∥ and {Jxn} is a Cauchy sequence. Then
Jx = limn→∞ Jxn = y∗∗.
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Finally, to show the assertion about the norm of x∗, use what was just shown applied to
the James map from X ′ to X ′′′ still referred to as J.

∥x∗∥= sup{|x∗ (x)| : ∥x∥ ≤ 1}= sup{|J (x)(x∗)| : ∥Jx∥ ≤ 1}

≤ sup{|x∗∗ (x∗)| : ∥x∗∗∥ ≤ 1}= sup{|J (x∗)(x∗∗)| : ∥x∗∗∥ ≤ 1}

≡ ∥Jx∗∥= ∥x∗∥. ■

Definition 21.2.14 When J maps X onto X ′′, X is called reflexive.

It happens the Lp spaces are reflexive whenever p > 1. This is shown later.

21.3 Uniform Convexity of Lp

These terms refer roughly to how round the unit ball is. Here is the definition.

Definition 21.3.1 A Banach space is uniformly convex if whenever

∥xn∥, ∥yn∥ ≤ 1

and ∥xn + yn∥ → 2, it follows that ∥xn− yn∥ → 0. More precisely, for every ε > 0, there is
a δ > 0 such that if ∥x+ y∥> 2−δ for ∥x∥ ,∥y∥ both no more than 1, then ∥x− y∥< ε .

You can show that uniform convexity implies strict convexity. There are various other
things which can also be shown. See the exercises for some of these. In this section, it
will be shown that the Lp spaces are examples of uniformly convex spaces. This involves
some inequalities known as Clarkson’s inequalities. Before presenting these, here are the
backwards Holder inequality and the backwards Minkowski inequality. Recall that in the
Holder inequality, p

p−1 = q = p′ and for p > 1,

∫
Ω

| f | |g|dµ ≤
(∫

Ω

| f |p dµ

)1/p(∫
Ω

|g|p/(p−1) dµ

)(p−1)/p

The idea in these inequalities is to consider the case that p ∈ (0,1). This inequality is
easy to remember if you just take Holder’s inequality and turn it around in the case that
0 < p < 1.

Lemma 21.3.2 Let 0 < p < 1 and let f ,g be measurable functions . Also∫
Ω

|g|p/(p−1) dµ < ∞,
∫

Ω

| f |p dµ < ∞,

which implies that g is 0 only on a set of measure zero. Then the following backwards
Holder inequality holds.

∫
Ω

| f g|dµ ≥
(∫

Ω

| f |p dµ

)1/p(∫
Ω

|g|p/(p−1) dµ

)(p−1)/p
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Proof: If
∫
| f g|dµ = ∞, there is nothing to prove. Hence assume this is finite. Then∫

| f |p dµ =
∫
|g|−p | f g|p dµ

This makes sense because, due to the hypothesis on g it must be the case that g equals 0
only on a set of measure zero, since p/(p−1)< 0.

Then by the usual Holder inequality, one of the exponents being 1/p > 1, the other
being 1/(1− p) also larger than 1 with p+(1− p) = 1,

∫
| f |p dµ ≤

(∫
| f g|dµ

)p
(∫ ( 1

|g|p
)1/(1−p)

dµ

)1−p

=

(∫
| f g|dµ

)p(∫
|g|p/p−1 dµ

)1−p

Now divide by
(∫
|g|p/p−1 dµ

)1−p
and then take the pth root. ■

Here is the backwards Minkowski inequality. It looks just like the ordinary Minkowski
inequality except the inequality is turned around.

Corollary 21.3.3 Let 0 < p < 1 and suppose
∫
|h|p dµ < ∞ for h = f ,g. Then(∫

(| f |+ |g|)p dµ

)1/p

≥
(∫
| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p

Proof: If
∫
(| f |+ |g|)p dµ = 0 then there is nothing to prove since this implies | f | =

|g|= 0 a.e. so assume this is not zero.∫
(| f |+ |g|)p dµ =

∫
(| f |+ |g|)p−1 (| f |+ |g|)dµ

Since p < 1, (| f |+ |g|)p ≤ | f |p + |g|p and so∫ (
(| f |+ |g|)p−1

)p/p−1
dµ < ∞.

Hence the backward Holder inequality applies and it follows that∫
(| f |+ |g|)p dµ =

∫
(| f |+ |g|)p−1 | f |dµ +

∫
(| f |+ |g|)p−1 |g|dµ

≥
(∫ (

(| f |+ |g|)p−1
)p/p−1

dµ

)(p−1)/p
[(∫

| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p
]

=

(∫
(| f |+ |g|)p dµ

)(p−1)/p
[(∫

| f |p dµ

)1/p

+

(∫
|g|p dµ

)1/p
]

and so, dividing gives the desired inequality. ■
Consider the “easy” Clarkson inequalities.
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Lemma 21.3.4 For any p≥ 2 the following inequality holds for any t ∈ [0,1] ,(
1+ t

2

)p

+

(
1− t

2

)p

≤ 1
2
(t p +1)

Proof: It is clear that, since p ≥ 2, the inequality holds for t = 0 and t = 1.Thus it
suffices to consider only t ∈ (0,1). Let x = 1/t. Then, dividing by t p, the inequality holds
if and only if (

x+1
2

)p

+

(
x−1

2

)p

≤ 1
2
(1+ xp)

for all x≥ 1. Let

f (x) =
1
2
(1+ xp)−

((
x+1

2

)p

+

(
x−1

2

)p)
Then f (1) = 0 and

f ′ (x) =
p
2

xp−1−

(
p
2

(
x+1

2

)p−1

+
p
2

(
x−1

2

)p−1
)

Since p−1≥ 1, g(x) = xp−1 is convex. Its graph is like a smile. Thus 1
2 (g(x1)+g(x2))≥

g
( x1+x2

2

)
and so

f ′ (x)≥ p
2

xp−1− p

(
x+1

2 + x−1
2

2

)p−1

=
p
2

xp−1− p
( x

2

)p−1
≥ 0

Hence f (x)≥ 0 for all x≥ 1.■

Corollary 21.3.5 If z,w ∈ C and p≥ 2, then∣∣∣∣ z+w
2

∣∣∣∣p + ∣∣∣∣ z−w
2

∣∣∣∣p ≤ 1
2
(|z|p + |w|p) (21.6)

Proof: One of |w| , |z| is larger. Say |z| ≥ |w| . Then dividing both sides of the proposed
inequality by |z|p it suffices to verify that for all complex t having |t| ≤ 1,∣∣∣∣1+ t

2

∣∣∣∣p + ∣∣∣∣1− t
2

∣∣∣∣p ≤ 1
2
(|t|p +1) (21.7)

Say t = reiθ where r ≤ 1.Then we need to estimate∣∣∣∣1+ reiθ

2

∣∣∣∣p + ∣∣∣∣1− reiθ

2

∣∣∣∣p
It suffices to show that this is no larger than 1

2 (r
p +1). The function on the left in 21.7

equals

1
2p

(
(1+ r cosθ)2 + r2 sin2 (θ)

)p/2
+
(
(1− r cosθ)2 + r2 sin2 (θ)

)p/2

=
1
2p

(
1+ r2 +2r cosθ

)p/2
+
(
1+ r2−2r cosθ

)p/2
, (21.8)
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I want to find the maximum value of this function of θ for θ ∈ [0,2π] . By calculus, this
will be when the derivative is 0 or at an endpoint. The derivative with respect to θ is 1

2p

times

p
2

((
1+ r2 +2r cosθ

) p−2
2 (−2r sinθ)+(2r sinθ)

(
1+ r2−2r cosθ

) p−2
2

)
=

p
2
(2r sinθ)

((
1+ r2−2r cosθ

) p−2
2 −

(
1+ r2 +2r cosθ

) p−2
2

)
This equals 0 when θ = 0,π,2π or when θ = π

2 ,
3π

2 . At the last two values, the value of the
function in 21.8 is

1
2p−1

(
1+ r2)p/2 ≤ 1

2
(rp +1) .

This follows from convexity of y = xp/2 for p≥ 2. Here is why:

1
2p−1

(
1+ r2)p/2

=
2p/2

2p−1

(
1+ r2

2

)p/2

≤ 2p/2

2p−1
1
2
(1+ rp)

At 0 or π, the value of the function in 21.8 is((
1+ r2−2r

)p/2
+
(
1+ r2 +2r

)p/2
) 1

2p =

(
1+ r

2

)p

+

(
1− r

2

)p

and from the above lemma, this is no larger than 1
2 (r

p +1). ■
With this corollary, here is the easy Clarkson inequality.

Theorem 21.3.6 Let p≥ 2. Then∥∥∥∥ f +g
2

∥∥∥∥p

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥p

Lp
≤ 1

2
(
∥ f∥p

Lp +∥g∥p
Lp
)

Proof: This follows right away from the above corollary.∫
Ω

∣∣∣∣ f +g
2

∣∣∣∣p dµ +
∫

Ω

∣∣∣∣ f −g
2

∣∣∣∣p dµ ≤ 1
2

∫
Ω

(| f |p + |g|p)dµ ■

Now it remains to consider the hard Clarkson inequalities. These pertain to p < 2. First
is the following elementary inequality.

Lemma 21.3.7 For 1 < p < 2, the following inequality holds for all t ∈ [0,1] .(
1+ t

2

)q

+

(
1− t

2

)q

≤
(

1
2
+

1
2

t p
)q/p

where here 1/p+1/q = 1 so q > 2.

Proof: First note that if t = 0 or 1, the inequality holds. Next observe that the map
s→ 1−s

1+s maps (0,1) onto (0,1). Replace t with (1− s)/(1+ s). Then the desired inequality
is equivalent to the following for s ∈ (0,1) .(

1
s+1

)q

+

(
s

s+1

)q

≤
(

1
2
+

1
2

(
1− s
s+1

)p)q/p



550 CHAPTER 21. BANACH SPACES

Multiplying both sides by (1+ s)q , this inequality is equivalent to showing that for all
s ∈ (0,1) ,

1+ sq ≤ ((1+ s)p)
q/p
(

1
2
+

1
2

(
1− s
s+1

)p)q/p

=

(
1
2

)q/p

((1+ s)p +(1− s)p)
q/p

This is the same as establishing

1
2
((1+ s)p +(1− s)p)− (1+ sq)p−1 ≥ 0 (21.9)

where p− 1 = p/q due to the definition of q above. Note how this has reduced to an
expression in which exponents are p or p−1 rather than q. We know p ∈ (1,2) whereas, q
is something larger than 2.(

p
l

)
≡ p(p−1) · · ·(p− l +1)

l!
, l ≥ 1

and
(

p
0

)
≡ 1. What is the sign of

(
p
l

)
? Recall that 1 < p < 2 so the sign is positive

if l = 0, l = 1, l = 2. What about l = 3?
(

p
3

)
= p(p−1)(p−2)

3! so this is negative. Then(
p
4

)
is positive. Thus these alternate between positive and negative with

(
p

2k

)
> 0

for all k. What about
(

p−1
k

)
? When k = 0 it is positive. When k = 1 it is also positive.

When k = 2 it equals (p−1)(p−2)
2! < 0. Then when k = 3,

(
p−1

3

)
> 0. Thus

(
p−1

k

)
is positive when k is odd and is negative when k is even.

Now return to 21.9. The left side equals

1
2

(
∞

∑
k=0

(
p
k

)
sk +

∞

∑
k=0

(
p
k

)
(−s)k

)
−

∞

∑
k=0

(
p−1

k

)
sqk.

The first term equals 0. Then this reduces to

∞

∑
k=1

(
p

2k

)
s2k−

(
p−1

2k

)
sq2k−

(
p−1

2k−1

)
sq(2k−1)

From the above observation about the binomial coefficients, the above is larger than

∞

∑
k=1

(
p

2k

)
s2k−

(
p−1

2k−1

)
sq(2k−1)

It remains to show the kth term in the above sum is nonnegative. Now q(2k−1) > 2k for
all k ≥ 1 because q > 2. Then since 0 < s < 1(

p
2k

)
s2k−

(
p−1

2k−1

)
sq(2k−1) ≥ s2k

((
p

2k

)
−
(

p−1
2k−1

))
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However, this is nonnegative because it equals

s2k

 p(p−1) · · ·(p−2k+1)
(2k)!

−

>0︷ ︸︸ ︷
(p−1)(p−2) · · ·(p−2k+1)

(2k−1)!


≥ s2k

(
p(p−1) · · ·(p−2k+1)

(2k)!
− (p−1)(p−2) · · ·(p−2k+1)

(2k)!

)
= s2k (p−1)(p−2) · · ·(p−2k+1)

(2k)!
(p−1)> 0. ■

Corollary 21.3.8 Let z,w ∈ C. Then for p ∈ (1,2) ,∣∣∣∣ z+w
2

∣∣∣∣q + ∣∣∣∣ z−w
2

∣∣∣∣q ≤ (1
2
|z|p + 1

2
|w|p

)q/p

Proof: One of |w| , |z| is larger. Say |w| ≥ |z| . Then dividing by |w|q , for t = z/w,
showing the above inequality is equivalent to showing that for all t ∈ C, |t| ≤ 1,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t
2

∣∣∣∣q ≤ (1
2
|t|p + 1

2

)q/p

Now q > 2 and so by the same argument given in proving Corollary 21.3.5, for t = reiθ , the
left side of the above inequality is maximized when θ = 0. Hence, from Lemma 21.3.7,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t
2

∣∣∣∣q ≤ ∣∣∣∣ |t|+1
2

∣∣∣∣q + ∣∣∣∣1−|t|2

∣∣∣∣q

≤
(

1
2
|t|p + 1

2

)q/p

. ■

From this the hard Clarkson inequality follows. The two Clarkson inequalities are
summarized in the following theorem.

Theorem 21.3.9 Let 2≤ p. Then∥∥∥∥ f +g
2

∥∥∥∥p

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥p

Lp
≤ 1

2
(
∥ f∥p

Lp +∥g∥p
Lp
)

Let 1 < p < 2. Then for 1/p+1/q = 1,∥∥∥∥ f +g
2

∥∥∥∥q

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥q

Lp
≤
(

1
2
∥ f∥p

Lp +
1
2
∥g∥p

Lp

)q/p

Proof: The first was established above. Consider the second.∥∥∥∥ f +g
2

∥∥∥∥q

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥q

Lp
=

(∫
Ω

∣∣∣∣ f +g
2

∣∣∣∣p dµ

)q/p

+

(∫
Ω

∣∣∣∣ f −g
2

∣∣∣∣p dµ

)q/p
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=

(∫
Ω

(∣∣∣∣ f +g
2

∣∣∣∣q)p/q

dµ

)q/p

+

(∫
Ω

(∣∣∣∣ f −g
2

∣∣∣∣q)p/q

dµ

)q/p

Now p/q < 1 and so the backwards Minkowski inequality applies. Thus

≤

(∫
Ω

(∣∣∣∣ f +g
2

∣∣∣∣q + ∣∣∣∣ f −g
2

∣∣∣∣q)p/q

dµ

)q/p

From Corollary 21.3.8,

≤

∫
Ω

((
1
2
| f |p + 1

2
|g|p
)q/p

)p/q

dµ

q/p

=

(∫
Ω

(
1
2
| f |p + 1

2
|g|p
)

dµ

)q/p

=

(
1
2
∥ f∥p

Lp +
1
2
∥g∥p

Lp

)q/p

■

Now with these Clarkson inequalities, it is not hard to show that all the Lp spaces are
uniformly convex.

Theorem 21.3.10 The Lp spaces are uniformly convex.

Proof: First suppose p ≥ 2. Suppose ∥ fn∥Lp ,∥gn∥Lp ≤ 1 and
∥∥∥ fn+gn

2

∥∥∥
Lp
→ 1. Then

from the first Clarkson inequality,∥∥∥∥ fn +gn

2

∥∥∥∥p

Lp
+

∥∥∥∥ fn−gn

2

∥∥∥∥p

Lp
≤ 1

2
(
∥ fn∥p

Lp +∥gn∥p
Lp
)
≤ 1

and so ∥ fn−gn∥Lp → 0.

Next suppose 1 < p < 2 and
∥∥∥ fn+gn

2

∥∥∥
Lp
→ 1. Then from the second Clarkson inequality

∥∥∥∥ fn +gn

2

∥∥∥∥q

Lp
+

∥∥∥∥ fn−gn

2

∥∥∥∥q

Lp
≤
(

1
2
∥ fn∥p

Lp +
1
2
∥gn∥p

Lp

)q/p

≤ 1

which shows that ∥ fn−gn∥Lp → 0. ■

21.4 Closed Subspaces
Theorem 21.4.1 Let X be a Banach space and let V = span(x1, · · · ,xn) . Then V is
a closed subspace of X.

Proof: Without loss of generality, it can be assumed {x1, · · · ,xn} is linearly indepen-
dent. Otherwise, delete those vectors which are in the span of the others till a linearly
independent set is obtained. Let

x = lim
p→∞

n

∑
k=1

cp
k xk ∈V . (21.10)
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First suppose cp ≡
(
cp

1 , · · · ,c
p
n
)

is not bounded in Fn. Then dp ≡ cp/ |cp|Fn is a unit vector
in Fn and so there exists a subsequence, still denoted by dp which converges to d where
|d|= 1. Then

0= lim
p→∞

x
∥cp∥ = lim

p→∞

n

∑
k=1

dp
k xk =

n

∑
k=1

dkxk

where ∑k |dk|2 = 1 in contradiction to the linear independence of the {x1, · · · ,xn}. Hence it
must be the case that cp is bounded in Fn. Then taking a subsequence, still denoted as p, it
can be assumed cp→ c and then in 21.10 it follows x = ∑

n
k=1 ckxk ∈ span(x1, · · · ,xn). ■

Proposition 21.4.2 Let E be a separable Banach space. Then there exists an increas-
ing sequence of subspaces, {Fn} such that dim(Fn+1)−dim(Fn)≤ 1 and equals 1 for all n
if the dimension of E is infinite. Also ∪∞

n=1Fn is dense in E. In the case where E is infinite
dimensional, Fn = span(e1, · · · ,en) where for each n

dist(en+1,Fn)≥
1
2

(21.11)

and defining,
Gk ≡ span

({
e j : j ̸= k

})
dist(ek,Gk)≥

1
4

. (21.12)

Proof: Since E is separable, so is ∂B(0,1) , the boundary of the unit ball thanks to
Corollary 3.4.3. Let {wk}∞

k=1 be a countable dense subset of ∂B(0,1).
Let e1 = w1. Let F1 = Fe1. Suppose Fn has been obtained and equals the following:

span(e1, · · · ,en) where {e1, · · · ,en} is independent, ∥ek∥= 1, and

dist(en,span(e1, · · · ,en−1))≥
1
2
.

For each n, Fn is closed by Theorem 21.4.1.
If Fn contains {wk}∞

k=1 , let Fm = Fn for all m > n. Otherwise, pick w ∈ {wk} to be the
point of {wk}∞

k=1 having the smallest subscript which is not contained in Fn. Then w is at
a positive distance λ from Fn because Fn is closed. Therefore, there exists y ∈ Fn such that
λ ≤ ∥y−w∥ ≤ 2λ . Let en+1 =

w−y
∥w−y∥ . It follows

w = ∥w− y∥en+1 + y ∈ span(e1, · · · ,en+1)≡ Fn+1

Then if x ∈ span(e1, · · · ,en) ,

∥en+1− x∥ =

∥∥∥∥ w− y
∥w− y∥

− x
∥∥∥∥= ∥∥∥∥ w− y

∥w− y∥
− ∥w− y∥x
∥w− y∥

∥∥∥∥
≥ 1

2λ
∥w− y−∥w− y∥x∥ ≥ λ

2λ
=

1
2
.

This has shown the existence of an increasing sequence of subspaces, {Fn} as described
above. It remains to show the union of these subspaces is dense. First note that the union of
these subspaces must contain the {wk}∞

k=1 because if wm is missing, then it would contradict
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the construction at the mth step. That one should have been chosen. However, {wk}∞

k=1 is
dense in ∂B(0,1). If x ∈ E and x ̸= 0, then x

∥x∥ ∈ ∂B(0,1) then there exists

wm ∈ {wk}∞

k=1 ⊆ ∪
∞
n=1Fn

such that
∥∥∥wm− x

∥x∥

∥∥∥< ε

∥x∥ . But then ∥∥x∥wm− x∥< ε . and so ∥x∥wm is a point of ∪∞
n=1Fn

which is within ε of x. This proves ∪∞
n=1Fn is dense as desired. 21.11 follows from the

construction. It remains to verify 21.12.
Let y∈Gk. Thus for some n,y=∑

k−1
j=1 c je j+∑

n
j=k+1 c je j and I need to show ∥y− ek∥≥

1/4. Without loss of generality, cn ̸= 0 and n > k. Suppose 21.12 does not hold for some
such y so that ∥∥∥∥∥ek−

(
k−1

∑
j=1

c je j +
n

∑
j=k+1

c je j

)∥∥∥∥∥< 1
4
. (21.13)

Then from the construction,

1
4
> |cn|

∥∥∥∥∥ek−

(
k−1

∑
j=1

(c j/cn)e j +
n−1

∑
j=k+1

(c j/cn)e j + en

)∥∥∥∥∥≥ |cn|
1
2

and so |cn|< 1/2. Consider the left side of 21.13. By the construction

1
4
>

∥∥∥∥∥∥∥
ek−cnen︷ ︸︸ ︷

cn (ek− en)+(1− cn)ek−

(
k−1

∑
j=1

c je j +
n−1

∑
j=k+1

c je j

)∥∥∥∥∥∥∥
≥ |1− cn|− |cn|

∥∥∥∥∥(ek− en)−

(
k−1

∑
j=1

(c j/cn)e j +
n−1

∑
j=k+1

(c j/cn)e j

)∥∥∥∥∥
≥ |1− cn|− |cn|

1
2
≥ 1− 3

2
|cn|> 1− 3

2
1
2
=

1
4
,

a contradiction. This proves the desired estimate. ■

Definition 21.4.3 A Banach space X has a Schauder basis {ek}∞

k=1 if for every
x ∈ X , there are unique scalars ck such that x = ∑

∞
k=1 ckxk. This is different than a basis

because you allow countable sums. For example, you might consider Fourier series.

21.5 Weak And Weak ∗ Topologies
Proposition 21.4.2 shows that in infinite dimensional space, closed and bounded will not
be compact. However, in applications one would like to be able to get convergence of
subsequences. This involves asking for less than norm convergence and the concept of
weak topologies.

21.5.1 Basic Definitions

Let X be a Banach space and let X ′ be its dual space.1 For A′ a finite subset of X ′, denote
by ρA′ the function defined on X

ρA′ (x)≡ max
x∗∈A′
|x∗ (x)| (21.14)

1Actually, all this works in much more general settings than this.
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and also let BA′ (x,r) be defined by

BA′ (x,r)≡ {y ∈ X : ρA′ (y− x)< r} (21.15)

Then certain things are obvious. First of all, if a ∈ F and x,y ∈ X ,

ρA′ (x+ y) ≤ ρA′ (x)+ρA′ (y) ,

ρA′ (ax) = |a|ρA′ (x) .

Similarly, letting A be a finite subset of X , denote by ρA the function defined on X ′

ρA (x
∗)≡max

x∈A
|x∗ (x)| (21.16)

and let BA (x∗,r) be defined by

BA (x∗,r)≡
{

y∗ ∈ X ′ : ρA (y
∗− x∗)< r

}
. (21.17)

It is also clear that

ρA (x
∗+ y∗) ≤ ρ (x∗)+ρA (y

∗) ,

ρA (ax∗) = |a|ρA (x
∗) .

Lemma 21.5.1 The sets BA′ (x,r) where A′ is a finite subset of X ′ and x ∈ X form a
basis for a topology on X known as the weak topology. The sets BA (x∗,r) where A is a
finite subset of X and x∗ ∈ X ′ form a basis for a topology on X ′ known as the weak ∗
topology.

Proof: The two assertions are very similar. I will verify the one for the weak topology.
The union of these sets, BA′ (x,r) for x∈ X and r > 0 is all of X . Now suppose z is contained
in the intersection of two of these sets. Say

z ∈ BA′ (x,r)∩BA′1
(x1,r1)

Then let C′ = A′∪A′1 and let

0 < δ ≤min
(

r−ρA′ (z− x) ,r1−ρA′1
(z− x1)

)
.

Consider y ∈ BC′ (z,δ ) . Then

r−ρA′ (z− x)≥ δ > ρC′ (y− z)≥ ρA′ (y− z)

and so
r > ρA′ (y− z)+ρA′ (z− x)≥ ρA′ (y− x)

which shows y ∈ BA′ (x,r) . Similar reasoning shows y ∈ BA′1
(x1,r1) and so

BC′ (z,δ )⊆ BA′ (x,r)∩BA′1
(x1,r1) .

Therefore, these sets are a basis for a toplogy known as the weak topology which consists
of the union of all sets of the form BA′ (x,r). ■
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21.5.2 Banach Alaoglu Theorem
Why does anyone care about these topologies? The short answer is that in the weak ∗
topology, the closed unit ball in X ′ is compact. This is not true in the norm topology thanks
to Proposition 21.4.2. This wonderful result is the Banach Alaoglu theorem. First recall
the notion of the product topology, and the Tychonoff theorem, Theorem 19.3.2 on Page
509 which are stated here for convenience.

Definition 21.5.2 Let I be a set and suppose for each i ∈ I, (Xi,τ i) is a nonempty
topological space. The Cartesian product of the Xi, denoted by ∏i∈I Xi, consists of the set of
all choice functions defined on I which select a single element of each Xi. Thus f ∈∏i∈I Xi
means for every i ∈ I, f (i) ∈ Xi. The axiom of choice says ∏i∈I Xi is nonempty. Next is a
description of a subbasis for a topology. Let Pj (A) = ∏i∈I Bi where Bi = Xi if i ̸= j and
B j = A. A subbasis for a topology on the product space consists of all sets Pj (A) where
A ∈ τ j. (These sets have an open set from the topology of X j in the jth slot and the whole
space in the other slots.) Thus a basis consists of finite intersections of these sets. Note
that the intersection of two of these basic sets is another basic set and their union yields
∏i∈I Xi. Therefore, they satisfy the condition needed for a collection of sets to serve as a
basis for a topology. This topology is called the product topology and is denoted by ∏τ i.

Theorem 21.5.3 If (Xi,τ i) is compact, then so is (∏i∈I Xi,∏τ i).

The Banach Alaoglu theorem is as follows.

Theorem 21.5.4 Let B′ be the closed unit ball in X ′. Then B′ is compact in the weak
∗ topology.

Proof: By the Tychonoff theorem, Theorem 21.5.3, P≡∏x∈X B(0,∥x∥) is compact in
the product topology where the topology on B(0,∥x∥) is the usual topology of F. Recall P
is the set of functions which map a point x ∈ X to a point in B(0,∥x∥). Therefore, B′ ⊆ P.
Also the basic open sets in the weak ∗ topology on B′ are obtained as the intersection of
basic open sets in the product topology of P to B′ and so it suffices to show B′ is a closed
subset of P. Suppose then that f ∈ P\B′. Since | f (x)| ≤ ∥x∥ for each x, it follows f cannot
be linear. There are two ways this can happen. One way is that for some x,y

f (x+ y) ̸= f (x)+ f (y) (21.18)

for some x,y ∈ X and the other is that f (λx) ̸= λ f (x) for some λ ,x. Consider the first. If
g is close enough to f at the three points, x+y,x, and y, 21.18 will hold for g in place of f .
In other words there is a basic open set containing f , such that for all g in this basic open
set, g /∈ B′. A similar consideration applies in case f (λx) ̸= λ f (x) for some scalar λ and
x. Since P\B′ is open, it follows B′ is a closed subset of P and is therefore, compact. ■

Note that if the canonical map J : X → X ′′ discussed earlier given by Jx(x∗)≡ x∗ (x) is
onto, then we could conclude that B the closed unit ball in X is weakly compact because
J would be a homeomorphism of B′′ and B. Thus reflexive spaces are important in these
considerations.

Sometimes one can consider the weak ∗ topology as a metric space. You can do it for K
when K is weak ∗ compact and X is separable. Note that it was just shown that the closed
ball is weak ∗ compact.
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Theorem 21.5.5 If K ⊆ X ′ is compact in the weak ∗ topology and X is separable
in the weak topology then there exists a metric d, on K such that if τd is the topology on
K induced by d and if τ is the topology on K induced by the weak ∗ topology of X ′, then
τ = τd . Thus one can consider K with the weak ∗ topology as a metric space.

Proof: Let D = {xn} be the dense countable subset in X . The metric is

d ( f ,g)≡
∞

∑
n=1

2−n ρxn
( f −g)

1+ρxn
( f −g)

where ρxn
( f ) = | f (xn)|. Clearly d ( f ,g) = d (g, f ) ≥ 0. If d ( f ,g) = 0, then this requires

f (xn) = g(xn) for all xn ∈ D. Is it the case that f = g? Does f (x) = g(x) for all x, not just
for the xn?

Letting x be given, B{ f ,g} (x,r) contains some xn ∈ D. Hence

max{| f (xn)− f (x)| , |g(xn)−g(x)|}< r

and f (xn) = g(xn) . It follows that | f (x)−g(x)| ≤

| f (x)− f (xn)|++

∣∣∣∣∣∣∣
=0︷ ︸︸ ︷

f (xn)−g(xn)

∣∣∣∣∣∣∣+ |g(xn)−g(x)|< 2r.

Since r is arbitrary, this implies f (x) = g(x) .
It is routine to verify the triangle inequality from the easy to establish inequality,

x
1+ x

+
y

1+ y
≥ x+ y

1+ x+ y
,

valid whenever x,y≥ 0. Therefore this is a metric.
Thus there are two topological spaces, (K,τ) and (K,d), the first being K with the

weak ∗ topology and the second being K with the topology from this metric. Suppose
B( f ,r) is an open ball with respect to the metric space topology. I claim that B( f ,r) is
open in the weak ∗ topology τ . To do this, let d ( f ,g)< r. Is there a finite set A⊆ X such
that BA (g,δ ) ⊆ B( f ,r)? Let An ≡ {x1, ...,xn} and pick n large enough that ∑

∞
k=n 2−n <

r−d( f ,g)
2 ≡ δ . Then if h ∈ BAn (g,δ ) , it follows that

d ( f ,h) ≤ d ( f ,g)+d (g,h)< d ( f ,g)+
n−1

∑
k=1

2−k |g(xk)−h(xk)|+
r−d ( f ,g)

2

< d ( f ,g)+
∞

∑
k=1

δ2−k +δ = d ( f ,g)+2δ = d ( f ,g)+(r−d ( f ,g)) = r

Thus BA (g,δ ) ⊆ B( f ,r) and so B( f ,r) is the union of weak ∗ open sets and is therefore,
weakly open. It follows that τd ⊆ τ . Thus it is clear that if i is the identity map, i : (K,τ)→
(K,d), then i is continuous.

Now suppose U ∈ τ . Is U in τd? Since K is compact with respect to τ, it follows from
the above that K is compact with respect to τd ⊆ τ . Hence K \U is compact with respect
to τd and so it is closed with respect to τd . Thus U is open with respect to τd . The identity
map i : (K,d)→ (K,τ) is continuous. ■
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Note that the above proof is about the elements of X ′ continuous with respect to the
weak topology on X and D is dense with respect to this weak topology.

The fact that this set with the weak ∗ topology can be considered a metric space is very
significant because if a point is a limit point in a metric space, one can extract a convergent
sequence. Also this has shown that the closed unit ball in X ′ can be considered a metric
space provided X is separable. Therefore, it is sequentially compact from Theorem 3.5.8.

Note that if a Banach space is separable, then it is weakly separable. In fact, the count-
able dense set D with respect to the norm is also dense with respect to the weak topology.
To see this, suppose A = {x∗1, ...x∗m} is a finite subset of X ′. Consider BA (x,r) . Is there a
point of D in BA (x,r)? Choose xn ∈ D close enough to x that

max{|x∗i (x)− x∗i (xn)| , i = 1, ...,m}< r

This can be done because |x∗i (x)− x∗i (xn)| ≤ ∥x∗i ∥∥x− xn∥ and this can be made small by
taking

∥x− xn∥< min

{
r

1+
∥∥x∗i
∥∥ , i = 1, ...,m

}
.

Corollary 21.5.6 If X is weakly separable and K ⊆ X ′ is compact in the weak ∗ topol-
ogy, then K is sequentially compact. That is, if { fn}∞

n=1⊆K, then there exists a subsequence
fnk and f ∈ K such that for all x ∈ X, limk→∞ fnk (x) = f (x) .

Proof: By Theorem 21.5.5, K is a metric space for the metric described there and it is
compact. Therefore by the characterization of compact metric spaces, Proposition 3.5.8 on
Page 78, K is sequentially compact. This proves the corollary. ■

21.5.3 Eberlein Smulian Theorem
Next consider the weak topology. The most interesting results have to do with a reflexive
Banach space. The following lemma ties together the weak and weak ∗ topologies in the
case of a reflexive Banach space. It shows that a reflexive Banach space is actually a dual
space.

Definition 21.5.7 For X a Banach space, define J : X → X ′′ by: For x∗ ∈ X ′,
Jx(x∗)≡ x∗ (x).

For the properties of J see Theorem 21.2.13.

Lemma 21.5.8 Let J : X → X ′′ be the James map Jx(x∗)≡ x∗ (x) and let X be reflexive
so that J is onto. Then J : (X , weak topology)→ (X ′′, weak ∗ topology) is a homeomor-
phism. This means J is one to one, onto, and both J and J−1 are continuous.

Proof: Let x∗ ∈ X ′ and let Bx∗ (x,r)≡ {y : |x∗ (x)− x∗ (y)|< r}. Thus Bx∗ (x,r) is a sub-
basic set for the weak topology on X . I claim that JBx∗ (x,r) = Bx∗ (Jx,r). where Bx∗ (Jx,r)
is a subbasic set for the weak ∗ topology on X ′′. If y∈Bx∗ (x,r) , then ∥Jy− Jx∥= ∥x− y∥<
r and so JBx∗ (x,r) ⊆ Bx∗ (Jx,r) . Now if x∗∗ ∈ Bx∗ (Jx,r) , then since J is reflexive, there
exists y ∈ X such that Jy = x∗∗ and so ∥y− x∥ = ∥Jy− Jx∥ < r showing that JBx∗ (x,r) =
Bx∗ (Jx,r) . A typical subbasic set in the weak ∗ topology is of the form Bx∗ (Jx,r) . Thus J
maps the subbasic sets of the weak topology to the subbasic sets of the weak ∗ topology of
X ′′. Therefore, J is a homeomorphism as claimed. ■

The following is an easy corollary.
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Corollary 21.5.9 If X is a reflexive Banach space, then the closed unit ball is weakly
compact.

Proof: Let B be the closed unit ball. Then B = J−1 (B∗∗) where B∗∗ is the unit ball in
X ′′ which is compact in the weak ∗ topology. Therefore B is weakly compact because J−1

is continuous. ■

Corollary 21.5.10 If X is a reflexive Banach space, and X ′ is weak ∗ separable, then
the closed unit ball is weakly sequentially compact.

Proof: This follows from Corollary 21.5.6 because X can be considered as the dual
space of X ′ according to the rule x(x∗)≡ x∗ (x) . This definition gives x as continuous and
linear. It is clearly linear and is continuous because |x(x∗)|= |x∗ (x)| ≤ ∥x∗∥∥x∥ If f ∈ X ′′,
then f = Jx and so f (x∗) = Jx(x∗) ≡ x∗ (x) ≡ x(x∗). Since X ′ is weakly separable, it
follows from the above corollary. To reiterate the reasoning, B is the unit ball in X ′′ and so
it is weak ∗ compact and is also a metric space so it is weakly sequentially compact also.
■

In fact if K ⊆ X is weakly compact and X is reflexive with X ′ separable, then K is
sequentially weakly compact.

Corollary 21.5.11 Let X be a reflexive Banach space. If K ⊆ X is compact in the weak
topology and X ′ is separable in the weak ∗ topology, then there exists a metric d, on K such
that if τd is the topology on K induced by d and if τ is the topology on K induced by the
weak topology of X, then τ = τd . Thus one can consider K with the weak topology as a
metric space. Thus K is weakly sequentially compact.

Proof: This follows from Theorem 21.5.5 and Lemma 21.5.8. Lemma 21.5.8 implies
J (K) is compact in X ′′. Then since X ′ is separable in the weak ∗ topology, X is separable in
the weak topology and so there is a metric, d′′ on J (K) which delivers the weak ∗ topology
on J (K). Let d (x,y)≡ d′′ (Jx,Jy) . Then

(K,τd)
J→ (J (K) ,τd′′)

id→ (J (K) ,τweak ∗)
J−1
→ (K,τweak)

and all the maps are homeomorphisms. ■
Recall Lemma 21.2.9.

Lemma 21.5.12 Let Y be a closed subspace of a Banach space X and let y ∈ X \Y.
Then there exists x∗ ∈ X ′ such that x∗ (Y ) = 0 but x∗ (y) ̸= 0.

Next is the Eberlein Smulian theorem which states that a Banach space is reflexive if
and only if the closed unit ball is weakly sequentially compact. Actually, only half the
theorem is proved here, the more useful only if part. The book by Yoshida [60] has the
complete theorem discussed. First here is an interesting lemma for its own sake.

Lemma 21.5.13 A closed subspace of a reflexive Banach space is reflexive.

Proof: Let Y be the closed subspace of the reflexive space, X . Consider the following
diagram

Y ′′ i∗∗ 1-1→ X ′′

Y ′ i∗ onto← X ′

Y i→ X
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This diagram follows from Theorem 21.2.10 on Page 544, the theorem on adjoints. Now
let y∗∗ ∈ Y ′′. Is y∗∗ = JY y for some y ∈ Y ? Since X is reflexive, i∗∗y∗∗ = JX (y) for some y.
I want to show that y ∈ Y . If it is not in Y then since Y is closed, there exists x∗ ∈ X ′ such
that x∗ (y) ̸= 0 but x∗ (Y ) = 0. Then i∗x∗ = 0. Hence

0 = y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = J (y)(x∗) = x∗ (y) ̸= 0,

a contradiction. Hence y ∈ Y . Letting JY denote the James map from Y to Y ′′ and x∗ ∈ X ′,

y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = JX (y)(x∗)

= x∗ (y) = x∗ (iy) = i∗x∗ (y) = JY (y)(i∗x∗)

Since i∗ is onto, this shows y∗∗ = JY (y) . ■

Theorem 21.5.14 (Eberlein Smulian) The closed unit ball in a reflexive Banach
space X, is weakly sequentially compact. By this is meant that if {xn} is contained in the
closed unit ball, there exists a subsequence,

{
xnk

}
and x ∈ X such that for all x∗ ∈ X ′, it

follows that x∗
(
xnk

)
→ x∗ (x) .

Proof: Let {xn} ⊆ B ≡ B(0,1). Let Y be the closure of the linear span of {xn}. Thus
Y is a separable. It is reflexive because it is a closed subspace of a reflexive space so the
above lemma applies. By the Banach Alaoglu theorem, the closed unit ball B∗Y in Y ′ is
weak ∗ compact. Also by Theorem 21.5.5, B∗Y is a metric space with a suitable metric. The
following diagram illustrates the rest of the argument.

B∗∗ Y ′′ i∗∗ 1-1→ X ′′

B∗Y Y ′ weak∗ separable i∗ onto← X ′

BY Y separable i→ X

Thus B∗Y is complete and totally bounded with respect to this metric and it follows that
B∗Y with the weak ∗ topology is separable. This implies Y ′ is also separable in the weak ∗
topology. To see this, let {y∗n} ≡ D be a weak ∗ dense set in B∗Y and let y∗ ∈ Y ′. Let p be
a large enough positive rational number that y∗/p ∈ B∗. Then if A is any finite set from Y,
there exists y∗n ∈ D such that ρA (y

∗/p− y∗n) <
ε

p . It follows py∗n ∈ BA (y∗,ε) showing that
rational multiples of D are weak ∗ dense in Y ′. Letting BY = B∩Y, this BY is the closed
unit ball in Y and Y ′ is weak ∗ separable. Therefore, by Corollary 21.5.10, BY is weakly
sequentially compact. Thus there exists

{
xnk

}
such that xnk → x ∈ BY weakly in Y. Letting

x∗ ∈ X∗, i∗x∗ ∈ Y ′ and so

x∗
(
xnk

)
= i∗x∗

(
xnk

)
→ i∗x∗ (x) = x∗ (x)

and so in fact, xnk → x weakly in X . ■
The following is the form of the Eberlein Smulian theorem which is often used.

Corollary 21.5.15 Let {xn} be any bounded sequence in a reflexive Banach space X .
Then there exists x ∈ X and a subsequence,

{
xnk

}
such that for all x∗ ∈ X ′, it follows that

limk→∞ x∗
(
xnk

)
= x∗ (x) .
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Proof: If a subsequence, xnk has
∥∥xnk

∥∥→ 0, then the conclusion follows. Simply let
x = 0. Suppose then that ∥xn∥ is bounded away from 0. That is, ∥xn∥ ∈ [δ ,C]. Take a
subsequence such that

∥∥xnk

∥∥→ a. Then consider xnk/
∥∥xnk

∥∥. By the Eberlein Smulian

theorem, this subsequence has a further subsequence, xnk j
/
∥∥∥xnk j

∥∥∥ which converges weakly
to x∈B where B is the closed unit ball. It follows from routine considerations that xnk j

→ ax
weakly. ■

21.6 Differential Equations
It is a good idea to do Problems 22-24 at this time. Consider y′ = f (t,y,λ ) ,y(t0) = y0
for t near t0 where λ ∈ V ⊆ Λ with V an open subset of Λ some Banach space. Assume
f : (t0−δ , t0 +δ )×U ×V → Z is C1 ((t0−δ , t0 +δ )×U×V ) where U is an open subset
of Z a Banach space and u0 ∈U . Let α ∈ (−δ ,δ ) and let

αs≡ t− t0,φ (s)≡ y(t)− y0

Thus φ (0) = 0. Also φ ∈ C1 ([−1,1] ;Z) so φ ∈ D1 ≡
{

y ∈C1 ([−1,1] ,Z) : y(0) = 0
}
.

From the above problems, D1 is a Banach space. It is also the case that

φ
′ (s) = y′ (t)α = α f (αs,y0 +φ (s) ,λ )

Let L be as in Problem 22, Lφ = φ
′. Then the problem reduces to

Lφ (s)−α f (αs,y0 +φ (s) ,λ ) = 0,s ∈ [−1,1]

Let UZ be the open of Problem 24, all u ∈ D1 (so u(0) = 0) such that u(t) ∈UZ an open
set in Z containing 0, this for each t ∈ [−1,1]. Let

F : (−δ ,δ )×U×UZ×V →C ([−1,1] ;Z)

be defined by
F (α, ỹ0,ψ,µ)(s)≡ Lψ (s)−α f (αs, ỹ0 +ψ (s) ,µ)

Are the various partial derivatives continuous?

F (α +β , ỹ0,ψ,µ)(s)−F (α, ỹ0,ψ,µ)(s)

= α f (αs, ỹ0 +ψ (s) ,µ)− (α +β ) f ((α +β )s, ỹ0 +ψ (s) ,µ)

=−β f (αs, ỹ0 +ψ (s) ,µ)+(α +β )

(
f (αs, ỹ0 +ψ (s) ,µ)

− f ((α +β )s, ỹ0 +ψ (s) ,µ)

)
= −β f (αs, ỹ0 +ψ (s) ,µ)− (α +β )(D1 f (αs, ỹ0 +ψ (s) ,µ)β s+o(β s))

= −β f (αs, ỹ0 +ψ (s) ,µ)−α (D1 f (αs, ỹ0 +ψ (s) ,µ)β s+o(β s))

Thus α→D1F (α, ỹ0,ψ,µ) is continuous as a map from (−δ ,δ ) to L (R,C ([−1,1] ;Z)) .
Similarly, ỹ0→ D2F (α, ỹ0,ψ,µ) is continuous as a map from U to L (Z,C ([−1,1] ;Z)).
and µ → D4F (α, ỹ0,ψ,µ) is continuous as a map from V to L (Λ,C ([−1,1] ;Z)) . What
remains is to consider D3F . Note that νn→ ν in D1 implies νn (s)→ ν (s) in Z for each s.

F (α, ỹ0,ψ +η ,µ)(s)−F (α, ỹ0,ψ,µ)(s)+Lη
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= F (α, ỹ0,ψ (s)+η (s) ,µ)−F (α, ỹ0,ψ (s) ,µ)

= −αD3 f (α, ỹ0,ψ (s) ,µ)η (s)+o(η (s))+Lη

Now because of the definition of D1, if g(η)(s) ≡ o(η (s)) , then g(η) = o(η) . Indeed,
∥g(η)(s)∥
∥η∥ ≤ ∥g(η)(s)∥

∥η(s)∥ < ε if ∥η∥D1 is small enough. Hence ∥g(η)∥ ≤ ε ∥η∥ if ∥η∥ is small
enough. Thus D3F (α, ỹ0,ψ,µ)(s) = −αD3 f (α, ỹ0,ψ,µ)+L, so ψ → D3F (α, ỹ0,ψ,µ)
is continuous into L

(
D1,C ([−1,1] ;Z)

)
. Since L is continuous, one to one and onto,

the open mapping theorem says that L−1 : C ([−1,1] ;Z) → D1 is continuous, Problem
23. It follows that for given y0 ∈ U, D3F (0,y0,0,λ ) = L which is invertible. By the
implicit function theorem, there exists a unique φ (α, ỹ0,µ) where φ is a C1 function of
α, ỹ0,µ for α close enough to 0, ỹ0 close enough to y0 and µ close enough to λ , say
(α, ỹ0,µ) ∈ (−σ ,σ)×B(y0,r)×B(λ ,δ ) for which

F (α, ỹ0,φ ,µ)(s)≡ Lφ (s)−α f (αs, ỹ0 +φ (s, ỹ0,µ) ,µ) = 0

Pick small positive α . Thus, this α will be fixed. Now go backwards in how this started.
Let t = αs+ t0 so t− t0 ∈ [−α,α]. Let y(t, ỹ0,µ) ≡ φ (s, ỹ0,µ)+ ỹ0 so y′ (t)α = φ

′ (s) =
Lφ = α f (t,y(t, ỹ0,µ) ,µ) so y(t0, ỹ0,µ) = y0,y′ (t,y0,µ) = f (t,y(t, ỹ0,µ) ,µ).

If f had been Ck instead of just C1, the same conclusion would follow except now you
would have y(t, ỹ0,µ) a Ck function of ỹ0 and µ for (ỹ0,µ) close to a particular (y0,λ ) .

This use of the implicit function theorem to give existence, uniqueness, and differen-
tiable dependence on initial data and a given parameter is extemely significant because it
justifies often used procedures for writing a solution to a differential equation in terms of a
Taylor series in powers of a parameter.

This proves the following theorem which is an existence and uniqueness theorem for
the initial value problem for ordinary differential equations that also gives a description of
dependence on the initial data and an arbitrary parameter.

Theorem 21.6.1 Let f : (t0−δ , t0 +δ )×U×V → Z where U is an open set in Z,V
an open set in Λ, some Banach space. Suppose f is

Ck ((t0−δ , t0 +δ )×U×V,Z) .

Then if (y0,λ ) ∈ (U×V ) , there exists α > 0 and a unique solution to

y′ (t) = f (t, ỹ0,µ) ,y(t0) = ỹ0

for t− t0 ∈ [−α,α] whenever (ỹ0,µ) is close enough to (y0,λ ). Denoting this solution as
y(t) = y(t, ỹ0,µ) , it follows that (ỹ0,µ)→ y(t, ỹ0,µ) is a Ck function.

The case where t is not just real but is allowed to be complex and f is analytic is
also available, but I have not discussed analytic functions here. This leads to being able
to expand the solution in a power series. See [11] for more on this subject including the
analytic case. This case is also in [36].

Example 21.6.2 Consider y′= y2+ε,y(0) = 0 where ε is a small real number. Then there
is a solution t→ y(t) on a small interval containing 0. According to the above theorem,

y(t) =
2

∑
k=0

ak (t)ε
k +o

(
ε

2)
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Use the initial condition to find that ak (0) = 0 for each k. Then neglecting higher powers
of ε than 2,

2

∑
k=0

a′k (t)ε
k = 2ε

2a0 (t)a2 (t)+ ε
2a2

1 (t)+2εa0 (t)a1 (t)+a2
0 (t)+ ε

Matching the powers of ε,a′0 (t) = a2
0 (t) ,a0 (0) = 0 so a0 (t) = 0. Similarly a′1 (t) = 1 so

a1 (t) = t and a′2 (t) = t2,a2 (0) = 0,a2 (t) = t3

3 . Thus y(t) = tε + t3

3 ε2 +o
(
ε2
)
. The exact

solution for positive ε is
√

ε tan
(
t
√

ε
)

and this equals tε + 1
3 t3ε2 +o

(
ε2
)
. This is an easy

example, but the same idea will hold for harder examples for which it might not be possible
to find an exact solution.

21.7 Lyapunov Schmidt Procedure
You have f : X×Λ→Y where here X ,Λ are Banach spaces and f is Cp. Suppose (0,0) ∈
X ×Λ and f (0,0) = 0. Then if D1 f (0,0)−1 is in L (Y,X) , the implicit function theorem
says that there exists x(λ ) a Cp function such that locally f (x(λ ) ,λ ) = 0. So what if
D1 f (0,0) fails to be one to one? Sometimes this case is also considered. It may be that
D1 f (0,0) is one to one on some subspace and other nice things happen. In particular,
suppose the following.

Letting X2 ≡ kerD1 f (0,0) assume

X = X1⊕X2, dim(X2)< ∞

where X1 is a closed subspace. Thus D1 f (0,0) is one to one on X1. We let

Y1 = D1 f (0,0)(X1)

and suppose that Y = Y1⊕Y2 where dim(Y2)< ∞, and Y1 is also a closed subspace.

X1
D1 f (0,0)→ Y1 = D1 f (0,0)(X1) , Y1 closed

Y = Y1⊕Y2, dim(Y2)< ∞
< ∞

By the open mapping theorem, D1 f (0,0)−1 is also continuous.
Let Q be a continuous projection onto Y1 which is assumed to exist2 such that QY2 = 0

and (I−Q) is a projection onto Y2. Then the equation f (x(λ ) ,λ ) = 0 can be written as
the pair

Q f (x,λ ) = 0
(I−Q) f (x,λ ) = 0

Consider the top. For x = x1 + x2 where xi ∈ Xi, this is

Q f (x1 + x2,λ ) = 0

Then if g(x1,x2,λ ) = Q f (x1 + x2,λ ) , one has g : X1×X2×Λ→ Y1

D1g(x1,x2,λ )h = D1Q f (x1 + x2,λ )h, h ∈ X1.

2In Hilbert space, the existence of this projection map is obvious and it is assumed that it exists here.
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Thus D1g(0,0,0)−1 is continuous by the open mapping theorem (D1 f (0,0) is one to one
on X1), and by the implicit function theorem, there is a solution to

Q f (x1 + x2,λ ) = 0

for x1 = x1 (x2,λ ). (Note how it is important that X1 and Y1 be Banach spaces.) Then the
other equation yields

(I−Q) f (x1 (x2,λ )+ x2,λ ) = 0

and so for fixed λ , this is a finite set of equations of a variable in a finite dimensional space.
This depends on being able to write X =X1⊕X2 where X1 is closed, X2 = kerD1 f (0,0) ,

a similar situation for Y = Y1⊕Y2. So when does this happen? Are there conditions on
D1 f (0,0) which will cause it to occur?

There are such conditions. For example, D1 f (0,0) could be a Fredholm operator de-
fined in Definition 21.7.1.

Definition 21.7.1 Let T ∈L (X ,Y ) . Then this is a Fredholm operator means

1. dim(ker(T ))< ∞

2. dim(E)< ∞ where Y = T X⊕E

The following are some easy examples in which all that nonsense about things being
finite dimensional and part of a direct sum does not need to be considered.

Example 21.7.2 Say X = R2 and Λ = R. Let f (x,y,λ ) = x+ xy+ y2 +λ . Then

D1 f (0,0,0) = (1,0)

this 1×2 matrix mapping R2 to R. Thus X2 = (0,α)T : α ∈ R and X1 = (α,0)T : α ∈ R.
In this case, Y1 = R and so Q = I. Thus the above reduces to the single equation

f ((α,0)+(0,β ) ,λ ) = 0

and so since D1 f (0,0,0) is one to one, x1 = (α,0) = x1 ((0,β ) ,λ ) . Of course this is
completely obvious because if you consider f in the natural way as a function of three
variables, then the implicit function theorem immediately gives x = x(y,λ ) which is essen-
tially the same result. We just write (α,0) in place of α . The first independent variable is
a function of the other two.

Example 21.7.3 Here is another easy example. f : R2×R→ R2

f (x,y,λ ) =
(

x+ xy+ y2 + sin(λ )
x+ y2− x2 +λ

)
Then

D1f (x,y,λ ) =
(

1+ y x+2y
1−2x 2y

)
So

D1f ((0,0) ,0) =
(

1 0
1 0

)
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Then

X2 = kerD1f ((0,0) ,0) =
{(

0
β

)
: β ∈ R

}
and X1 =

{(
α

0

)
: α ∈ R

}
and clearly D1f ((0,0) ,0) is indeed one to one on X1.

D1f (0,0)(X1) =

{(
y
y

)
: y ∈ R

}
= Y1

In this case, let

Q
(

α

β

)
=

(
α+β

2
α+β

2

)
=

(
1/2 1/2
1/2 1/2

)(
α

β

)

so (I−Q) =

(
1/2 −1/2
−1/2 1/2

)
. Thus the equations are

Qf (x,λ ) = 0
(I−Q)f (x,λ ) = 0

This reduces to (
− 1

2 x2 + 1
2 xy+ x+ y2 + 1

2 λ + 1
2 sinλ

− 1
2 x2 + 1

2 xy+ x+ y2 + 1
2 λ + 1

2 sinλ

)
=

(
0
0

)
( 1

2 x2 + 1
2 yx− 1

2 λ + 1
2 sinλ

− 1
2 x2− 1

2 yx+ 1
2 λ − 1

2 sinλ

)
=

(
0
0

)
Note how in both the top and the bottom, there is only one equation and one can solve
for x in terms of y,λ near (0,0,0) which is what the above general argument shows. Of
course you can see this directly using the implicit function theorem. Then can you solve for
y = y(λ )? This would involve trying to solve for y as a function of λ in the following where
x(y,λ ) comes from the first equations.

1
2

x2 (y,λ )+
1
2

yx(y,λ )− 1
2

λ +
1
2

sinλ = 0

If you can do this, then you would have found (x,y) as a function of λ for small λ .

In this example, in the top equation, at (0,0,0) ,xy = 0. Also xλ =−1 so x(y,λ )≈−λ

other than higher order terms for small y,λ . Then in the bottom equation, for all variables
very small, you would have λ

2 +y(−λ )−λ + sin(λ ) = 0, y(λ ) =−1+ sin(λ )
λ

+λ at least
approximately. Thus it seems there is a nonzero solution to the equation f (x,y,λ ) = 0
which is valid for small λ ,x,y, this in addition to the zero solution. Note that for small
nonzero λ ,−1 + sin(λ )

λ
+ λ ̸= 0. It equals approximately λ − λ

2

3! for small λ from the
power series for sin .

In the next example, the same procedure gives a solution to a problem

f ((x,y) ,λ ) = 0

such that for small λ , (x,y) is a function of λ which is nonzero and

f ((0,0) ,λ ) = 0

Thus for small λ , there are two solutions to the nonlinear system of equations.
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Example 21.7.4 Let

f ((x,y) ,λ ) =
(

x+ xy+ y2 + xsin(λ )
x+ y2− x2 + xλ

)
In this case f ((0,0) ,λ ) = 0 even though λ might not be 0. The Lyapunov Schmidt proce-
dure will be used to show that there are nonzero solutions x(λ ) ,y(λ ) such that

f ((x(λ ) ,y(λ )) ,λ ) = 0

At origin,

D1f ((0,0) ,0) =
(

1 0
1 0

)
Thus X1 = span(e1) and X2 = span(e2). Then Y1 = span(e1 + e2) and Y2 = span(e1− e2) .
Also D1f ((0,0) ,0) is one to one on X1 and its range is Y1. Then let

Q
(

α

β

)
=

(
α+β

2
α+β

2

)
=

(
1/2 1/2
1/2 1/2

)(
α

β

)

(I−Q) =

(
1/2 −1/2
−1/2 1/2

)
Then Qf = 0 is yields the equation

x+
1
2

xλ +
1
2

xsinλ +
1
2

xy− 1
2

x2 + y2 = 0

Also (I−Q)f = 0 yields the equation

1
2

xsinλ − 1
2

xλ +
1
2

xy+
1
2

x2 = 0

Now consider xy and xλ at (0,0) from the first equation. Both of these are easily seen to
be 0. Now consider xyy. After some computations, this is seen to be xyy = −2. Similarly,
xyλ (0,0) = 0,xλλ (0,0) = 0 also. Thus up to terms of degree 3,

x(y,λ ) =−y2 =
1
2
(−2)y2

Place this in the bottom equation.

1
2

y2
λ − 1

2
y2 sinλ − 1

2
y3 +

1
2

y4 = 0

Now the idea is to find y = y(λ ), hopefully nonzero. Divide by y2 and multiply by 2.

y2− y+λ − sinλ = 0

Then for small λ this is approximately equal to

y2− y+
λ

3

6
= 0
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Then a solution for y for small λ is

y =
1+
√

1− 2
3 λ

3

2

Of course there is another solution as well, when you replace the + with a minus sign. This
is the one we want because when λ = 0 it reduces to y = 0. This shows that there exist
solutions to the equations f ((x,y) ,λ ) = 0 which for small λ are approximately

(x(λ ) ,y(λ )) =

−y2,
1−
√

1− 2
3 λ

3

2


In terms of λ very small,

(x(λ ) ,y(λ )) =

1
6

λ
3 +

1
6

√
3
√

3−2λ
3− 1

2
,

1−
√

1− 2
3 λ

3

2


Using a power series in λ to approximate these functions, this reduces to

(x(λ ) ,y(λ )) =
(
− 1

36
λ

6,
1
6

λ
3 +

1
36

λ
6 +

1
108

λ
9
)

where higher order terms are neglected. Thus there exist other solutions than the zero
solution even though λ may be nonzero. Note that in this example, f ((0,0) ,λ ) = 0.

Note that all of this works as well if the function f is defined on an open subset of X×Λ

because it is really just an application of the implicit function theorem.

21.8 The Holder Spaces
This is such an important example that I am including it. It is an example of a Banach space
which is not separable.

Definition 21.8.1 Let p > 1. Then f ∈ C1/p ([0,1]) means that f ∈ C ([0,1]) and
also

ρ p ( f )≡ sup

{
| f (x)− f (y)|
|x− y|1/p : x,y ∈ X , x ̸= y

}
< ∞

Then the norm is defined as ∥ f∥C([0,1])+ρ p ( f )≡ ∥ f∥1/p.

It is an exercise to verify that C1/p ([0,1]) is a Banach space.
Let p > 1. Then C1/p ([0,1]) is not separable. Define uncountably many functions, one

for each ε where ε is a sequence of −1 and 1. Thus εk ∈ {−1,1}. Thus ε ̸= ε′ if the two
sequences differ in at least one slot, one giving 1 and the other equaling −1. There are
uncountably many of these sequences, equal to the number of subsets of N. Now define
fε (t)≡ ∑

∞
k=1 εk2−k/p sin

(
2kπt

)
. Then this is 1/p Holder. Let s < t.

| fε (t)− fε (s)| ≤ ∑
k≤|log2(t−s)|

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣
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+ ∑
k>|log2(t−s)|

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

If t = 1 and s= 0, there is really nothing to show because then the difference equals 0. There
is also nothing to show if t = s. From now on, 0 < t− s < 1. Let k0 be the largest integer
which is less than or equal to |log2 (t− s)| = − log2 (t− s). Note that − log(t− s) > 0
because 0 < t− s < 1. Then

| fε (t)− fε (s)| ≤ ∑
k≤k0

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

+ ∑
k>k0

∣∣∣2−k/p sin
(

2k
πt
)
−2−k/p sin

(
2k

πs
)∣∣∣

≤ ∑
k≤k0

2−k/p2k
π |t− s|+ ∑

k>k0

2−k/p2

Now k0 ≤ − log2 (t− s) < k0 + 1 and so −k0 ≥ log2 (t− s) ≥ −(k0 +1). Hence 2−k0 ≥
|t− s| ≥ 2−k02−1 and so 2−k0/p ≥ |t− s|1/p ≥ 2−k0/p2−1/p. Using this in the sums,

| fε (t)− fε (s)| ≤ |t− s|Cp + ∑
k>k0

2−k/p2k0/p2−k0/p2

≤ |t− s|Cp + ∑
k>k0

2−k/p2k0/p
(

21/p |t− s|1/p
)

2

≤ |t− s|Cp + ∑
k>k0

2−(k−k0)/p
(

21/p |t− s|1/p
)

2

≤ Cp |t− s|+
(

21+1/p
) ∞

∑
k=1

2−k/p |t− s|1/p

= Cp |t− s|+Dp |t− s|1/p ≤Cp |t− s|1/p +Dp |t− s|1/p

Thus fε is indeed 1/p Holder continuous.
Now consider ε ̸= ε′. Suppose the first discrepancy in the two sequences occurs with

ε j. Thus one is 1 and the other is −1. Let t = i+1
2 j+1 ,s =

i
2 j+1

| fε (t)− fε (s)− ( fε′ (t)− fε′ (s))|=∣∣∣∣∣ ∑
∞
k= j εk2−k/p sin

(
2kπt

)
−∑

∞
k= j εk2−k/p sin

(
2kπs

)
−
(

∑
∞
k= j ε ′k2−k/p sin

(
2kπt

)
−∑

∞
k= j ε ′k2−k/p sin

(
2kπs

)) ∣∣∣∣∣
Now consider what happens for k > j. Then sin

(
2kπ

i
2 j+1

)
= sin(mπ) = 0for some integer

m. Thus the whole mess reduces to∣∣∣∣(ε j− ε
′
j
)

2− j/p sin
(

2 jπ (i+1)
2 j+1

)
−
(
ε j− ε

′
j
)

2− j/p sin
(

2 jπi
2 j+1

)∣∣∣∣
=

∣∣∣∣(ε j− ε
′
j
)

2− j/p sin
(

π (i+1)
2

)
−
(
ε j− ε

′
j
)

2− j/p sin
(

πi
2

)∣∣∣∣
= 2

(
2− j/p

)
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In particular, |t− s|= 1
2 j+1 so 21/p |t− s|1/p = 2− j/p

| fε (t)− fε (s)− ( fε′ (t)− fε′ (s))|= 2
(

21/p
)
|t− s|1/p

which shows that

sup
0≤s<t≤1

| fε (t)− fε′ (t)− ( fε (s)− fε′ (s))|
|t− s|1/p ≥ 21/p (2)

Thus there exists a set of uncountably many functions in C1/p ([0,T ]) and for any two of
them f ,g, you get

∥ f −g∥C1/p([0,1]) > 2

so C1/p ([0,1]) is not separable.

21.9 Exercises
1. Is N a Gδ set? What about Q? What about a countable dense subset of a complete

metric space?

2. ↑ Let f : R→ C be a function. Define the oscillation of a function in B(x,r) by
ωr f (x) = sup{| f (z)− f (y)| : y,z ∈ B(x,r)}. Define the oscillation of the function
at the point, x by ω f (x) = limr→0 ωr f (x). Show f is continuous at x if and only
if ω f (x) = 0. Then show the set of points where f is continuous is a Gδ set (try
Un = {x : ω f (x) < 1

n}). Does there exist a function continuous at only the rational
numbers? Does there exist a function continuous at every irrational and discontinu-
ous elsewhere? Hint: Suppose D is any countable set, D = {di}∞

i=1, and define the
function, fn (x) to equal zero for every x /∈ {d1, · · · ,dn} and 2−n for x in this finite
set. Then consider g(x)≡ ∑

∞
n=1 fn (x). Show that this series converges uniformly.

3. Let f ∈C([0,1]) and suppose f ′(x) exists. Show there exists a constant, K, such that
| f (x)− f (y)| ≤ K|x− y| for all y ∈ [0,1]. Let Un = { f ∈C([0,1]) such that for each
x ∈ [0,1] there exists y ∈ [0,1] such that | f (x)− f (y)| > n|x− y|}. Show that Un is
open and dense in C([0,1]) where for f ∈C ([0,1]),

∥ f∥ ≡ sup{| f (x)| : x ∈ [0,1]} .

Show that ∩nUn is a dense Gδ set of nowhere differentiable continuous functions.
Thus every continuous function is uniformly close to one which is nowhere differen-
tiable.

4. ↑ Suppose f (x) = ∑
∞
k=1 uk (x) where the convergence is uniform and each uk is a

polynomial. Is it reasonable to conclude that f ′ (x) = ∑
∞
k=1 u′k (x)? The answer is no.

Use Problem 3 and the Weierstrass approximation theorem to show this.

5. Let X be a normed linear space. A ⊆ X is “weakly bounded” if for each x∗ ∈
X ′, sup{|x∗(x)| : x ∈ A} < ∞, while A is bounded if sup{∥x∥ : x ∈ A} < ∞. Show
A is weakly bounded if and only if it is bounded.
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6. Let f be a 2π periodic locally integrable function on R. The Fourier series for f is
given by

∞

∑
k=−∞

akeikx ≡ lim
n→∞

n

∑
k=−n

akeikx ≡ lim
n→∞

Sn f (x)

where
ak =

1
2π

∫
π

−π

e−ikx f (x)dx.

Show
Sn f (x) =

∫
π

−π

Dn (x− y) f (y)dy

where

Dn(t) =
sin((n+ 1

2 )t)
2π sin( t

2 )
.

Verify that
∫

π

−π
Dn (t)dt = 1. Also show that if g ∈ L1 (R) , then

lim
a→∞

∫
R

g(x)sin(ax)dx = 0.

This last is called the Riemann Lebesgue lemma. Hint: For the last part, assume first
that g ∈C∞

c (R) and integrate by parts. Then exploit density of the set of functions in
L1 (R).

7. ↑It turns out that the Fourier series sometimes converges to the function pointwise.
Suppose f is 2π periodic and Holder continuous. That is | f (x)− f (y)| ≤ K |x− y|θ
where θ ∈ (0,1]. Show that if f is like this, then the Fourier series converges to
f at every point. Next modify your argument to show that if at every point, x,
| f (x+)− f (y)| ≤ K |x− y|θ for y close enough to x and larger than x and

| f (x−)− f (y)| ≤ K |x− y|θ

for every y close enough to x and smaller than x, then Sn f (x)→ f (x+)+ f (x−)
2 , the

midpoint of the jump of the function. Hint: Use Problem 6.

8. ↑ Let Y = { f such that f is continuous, defined on R, and 2π periodic}. Define
∥ f∥Y = sup{| f (x)| : x ∈ [−π,π]}. Show that (Y,∥ ∥Y ) is a Banach space. Let x ∈ R
and define Ln( f ) = Sn f (x). Show Ln ∈ Y ′ but limn→∞ ∥Ln∥= ∞. Show that for each
x ∈ R, there exists a dense Gδ subset of Y such that for f in this set, |Sn f (x)| is
unbounded. Finally, show there is a dense Gδ subset of Y having the property that
|Sn f (x)| is unbounded on the rational numbers. Hint: To do the first part, let f (y)
approximate sgn(Dn(x−y)). Here sgnr = 1 if r > 0,−1 if r < 0 and 0 if r = 0. This
rules out one possibility of the uniform boundedness principle. After this, show the
countable intersection of dense Gδ sets must also be a dense Gδ set.

9. Let α ∈ (0,1]. Define, for X a compact subset of Rp,

Cα (X ;Rn)≡ {f ∈C (X ;Rn) : ρα (f)+∥f∥ ≡ ∥f∥
α
< ∞}

where
∥f∥ ≡ sup{|f (x)| : x ∈ X}
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and

ρα (f)≡ sup{ |f (x)−f (y)|
|x−y|α

: x,y ∈ X , x ̸= y}.

Show that (Cα (X ;Rn) ,∥·∥
α
) is a complete normed linear space. This is called a

Holder space. What would this space consist of if α > 1?

10. ↑Let X be the Holder functions which are periodic of period 2π . Define Ln f (x) =
Sn f (x) where Ln : X →Y for Y given in Problem 8. Show ∥Ln∥ is bounded indepen-
dent of n. Conclude that Ln f → f in Y for all f ∈ X . In other words, for the Holder
continuous and 2π periodic functions, the Fourier series converges to the function
uniformly. Hint: Ln f (x) is given by

Ln f (x) =
∫

π

−π

Dn (y) f (x− y)dy

where f (x− y) = f (x)+g(x,y) where |g(x,y)| ≤C |y|α . Use the fact the Dirichlet
kernel integrates to one to write

∣∣∣∣∫ π

−π

Dn (y) f (x− y)dy
∣∣∣∣≤

=| f (x)|︷ ︸︸ ︷∣∣∣∣∫ π

−π

Dn (y) f (x)dy
∣∣∣∣

+C
∣∣∣∣∫ π

−π

sin
((

n+
1
2

)
y
)
(g(x,y)/sin(y/2))dy

∣∣∣∣
Show the functions, y→ g(x,y)/sin(y/2) are bounded in L1 independent of x and
get a uniform bound on ∥Ln∥. Now use a similar argument to show {Ln f} is equicon-
tinuous in addition to being uniformly bounded. In doing this you might proceed as
follows. Show∣∣Ln f (x)−Ln f

(
x′
)∣∣≤ ∣∣∣∣∫ π

−π

Dn (y)
(

f (x− y)− f
(
x′− y

))
dy
∣∣∣∣

≤ ∥ f∥
α

∣∣x− x′
∣∣α

+

∣∣∣∣∣
∫

π

−π

sin
((

n+
1
2

)
y
)(

f (x− y)− f (x)− ( f (x′− y)− f (x′))
sin
( y

2

) )
dy

∣∣∣∣∣
Then split this last integral into two cases, one for |y|< η and one where |y| ≥ η . If
Ln f fails to converge to f uniformly, then there exists ε > 0 and a subsequence, nk
such that

∥∥Lnk f − f
∥∥

∞
≥ ε where this is the norm in Y or equivalently the sup norm

on [−π,π]. By the Arzela Ascoli theorem, there is a further subsequence, Lnkl
f

which converges uniformly on [−π,π]. But by Problem 7 Ln f (x)→ f (x).

11. Let X be a normed linear space and let M be a convex open set containing 0. Define

ρ(x) = inf{t > 0 :
x
t
∈M}.

Show ρ is a gauge function defined on X . This particular example is called a
Minkowski functional. It is of fundamental importance in the study of locally con-
vex topological vector spaces. A set, M, is convex if λx+(1−λ )y ∈M whenever
λ ∈ [0,1] and x,y ∈M.
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12. ↑The Hahn Banach theorem can be used to establish separation theorems. Let M be
an open convex set containing 0. Let x /∈ M. Show there exists x∗ ∈ X ′ such that
Rex∗(x) ≥ 1 > Rex∗(y) for all y ∈ M. Hint: If y ∈ M,ρ(y) < 1. Show this. If
x /∈M, ρ(x)≥ 1. Try f (αx) = αρ(x) for α ∈ R. Then extend f to the whole space
using the Hahn Banach theorem and call the result F , show F is continuous, then fix
it so F is the real part of x∗ ∈ X ′.

13. A Banach space is said to be strictly convex if whenever ∥x∥= ∥y∥ and x ̸= y, then∥∥∥∥x+ y
2

∥∥∥∥< ∥x∥ .

F : X → X ′ is said to be a duality map if it satisfies the following: a.) ∥F(x)∥ =
∥x∥ . b.) F(x)(x) = ∥x∥2. Show that if X ′ is strictly convex, then such a duality map
exists. The duality map is an attempt to duplicate some of the features of the Riesz
map in Hilbert space. This Riesz map is the map which takes a Hilbert space to its
dual defined as follows.

R(x)(y) = (y,x)

The Riesz representation theorem for Hilbert space says this map is onto. Hint: For
an arbitrary Banach space, let

F (x)≡
{

x∗ : ∥x∗∥ ≤ ∥x∥ and x∗ (x) = ∥x∥2
}

Show F (x) ̸= /0 by using the Hahn Banach theorem on f (αx) = α ∥x∥2. Next show
F (x) is closed and convex. Finally show that you can replace the inequality in the
definition of F (x) with an equal sign. Now use strict convexity to show there is only
one element in F (x).

14. Prove the following theorem which is an improved version of the open mapping the-
orem, [14]. Let X and Y be Banach spaces and let A ∈L (X ,Y ). Then the following
are equivalent.

AX = Y,

A is an open map.

Note this gives the equivalence between A being onto and A being an open map. The
open mapping theorem says that if A is onto then it is open.

15. Suppose D⊆ X and D is dense in X . Suppose L : D→ Y is linear and ∥Lx∥ ≤ K ∥x∥
for all x ∈ D. Show there is a unique extension of L, L̃, defined on all of X with
∥L̃x∥ ≤ K ∥x∥ and L̃ is linear. You do not get uniqueness when you use the Hahn
Banach theorem. Therefore, in the situation of this problem, it is better to use this
result.

16. ↑A Banach space is uniformly convex if whenever ∥xn∥, ∥yn∥≤ 1 and ∥xn+yn∥→ 2,
it follows that ∥xn− yn∥ → 0. Show uniform convexity implies strict convexity (See
Problem 13). Hint: Suppose it is not strictly convex. Then there exist ∥x∥ and ∥y∥
both equal to 1 and

∥∥ xn+yn
2

∥∥= 1 consider xn≡ x and yn≡ y, and use the conditions for
uniform convexity to get a contradiction. It can be shown that Lp is uniformly convex
whenever ∞ > p > 1. See Hewitt and Stromberg [26] or Ray [47]. See Theorem
21.3.10.
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17. Show that a closed subspace of a reflexive Banach space is reflexive. This is done in
the chapter. However, try to do it yourself.

18. xn converges weakly to x if for every x∗ ∈ X ′, x∗(xn)→ x∗(x). xn ⇀ x denotes weak
convergence. Show that if ∥xn− x∥→ 0, then xn ⇀ x.

19. ↑ Show that if X is uniformly convex, then if xn ⇀ x and ∥xn∥ → ∥x∥, it follows
∥xn− x∥ → 0. Hint: Use Lemma 21.2.9 to obtain f ∈ X ′ with ∥ f∥ = 1 and f (x) =
∥x∥. See Problem 16 for the definition of uniform convexity. Now by the weak
convergence, you can argue that if x ̸= 0, f (xn/∥xn∥)→ f (x/∥x∥). You also might
try to show this in the special case where ∥xn∥= ∥x∥= 1.

20. Suppose L ∈L (X ,Y ) and M ∈L (Y,Z). Show ML ∈L (X ,Z) and that (ML)∗ =
L∗M∗.

21. This problem gives a simple condition for the subgradient of a convex function to be
onto. Let X be a reflexive Banach space and suppose φ : X → (−∞,∞] is convex,
proper, lower semicontinuous. This means

(a) Convex: φ (tx+(1− t)y)≤ tφ (x)+(1− t)φ (y) for all t ∈ [0,1] .

(b) Lower semicontinuous: If xn→ x, then φ (x)≤ liminfn→∞ φ (xn) .

(c) The subgradient of φ at x, denoted as ∂φ (x) is defined as follows: y∗ ∈ ∂φ (x)
means y∗ (z− x)≤ φ (z)−φ (x) for any z.

Suppose then that for all y∗ ∈ X ′,

lim
||x||→∞

φ (x)−⟨y∗,x⟩= ∞

this last condition being called “coercive”. Show that under these conditions, you
can conclude that ∂φ is not just nonempty for some x but that in fact every y∗ ∈ X ′

is contained in some ∂φ (x). Thus ∂φ is actually onto. Hint: Consider the function
x→ φ (x)−⟨y∗,x⟩ . Argue that it is lower semicontinuous. Let

λ ≡ inf{φ (x)−⟨y∗,x⟩ : x ∈ X}

Let {xn} be a minimizing sequence. Argue that from the coercivity condition, ∥xn∥
must be bounded. Now use the Eberlein Smulian theorem, to verify that there is a
weakly convergent subsequence xn→ x weakly. In finite dimensions, you just use the
Heine Borel theorem. You know the epigraph of φ intersected with X×R is a convex
and closed subset of X ×R. Explain why this is so. This will require a separation
theorem in infinite dimensional space like Problem 12 above. In finite dimensional
space, there isn’t much to show here. Next explain why φ must be weakly lower
semicontinuous. If you can’t do this part, just use the theorem that a function which is
convex and lower semicontinuous is also weakly lower semicontinuous or specialize
to finite dimensions and use advanced calculus. That is, if xn → x weakly, then
φ (x)≤ liminfn→∞ φ (xn). Conclude that λ >−∞ and equals φ (x)−⟨y∗,x⟩ which is
no larger than φ (z)−⟨y∗,z⟩ . Now conclude that y∗ ∈ ∂φ (x) .

22. Let Z be a Banach space . Let D1 ≡
{

y ∈C1 ([−1,1] ,Z) : y(0) = 0
}
. Let ∥y∥D1 ≡

max(∥y∥
∞
,∥y′∥

∞
) . Show D1 is a Banach space.



574 CHAPTER 21. BANACH SPACES

23. ↑Let L : D1→C ([−1,1] ,Z) ,Ly≡ y′. Show L is continuous, defined on D1 and one
to one onto L

(
D1
)
. Show L

(
D1
)
= C ([−1,1] ,Z). Thus L−1 is continuous by the

open mapping theorem. Hint: Adapt the Rieman integral to an integral which has
values in a Banach space including the fundamental theorem of calculus. Then if u∈
C ([−1,1] ,Z) , consider

∫ t
0 u(s)ds≡ w(t) and argue Lw = u.

24. ↑Let UZ denote an open set in Z. Let f : UZ → Z be C1. Then define for u ∈
D1, f (u)(t)≡ f (u(t)) . Show that f

(
D1
)
⊆C ([−1,1] ,Z) . If UZ consists of u∈D1

such that u(t) ∈UZ for each t ∈ [−1,1] , show that UZ is an open subset of D1. If
f : U → Z is C1, show that f : UZ →D1 is also C1 and that

D f (u)(v)(t) = D f (u(t))(v(t)) .



Chapter 22

Hilbert Spaces
In this chapter, Hilbert spaces, which have been alluded to earlier are given a complete
discussion. These spaces, as noted earlier are just complete inner product spaces.

22.1 Basic Theory
Definition 22.1.1 Let X be a vector space. An inner product is a mapping from
X × X to C if X is complex and from X × X to R if X is real, denoted by (x,y) which
satisfies the following.

(x,x)≥ 0, (x,x) = 0 if and only if x = 0, (22.1)

(x,y) = (y,x). (22.2)

For a,b ∈ C and x,y,z ∈ X,

(ax+by,z) = a(x,z)+b(y,z). (22.3)

Note that 22.2 and 22.3 imply (x,ay+bz) = a(x,y)+b(x,z). Such a vector space is called
an inner product space.

The Cauchy Schwarz inequality is fundamental for the study of inner product spaces.

Theorem 22.1.2 (Cauchy Schwarz) In any inner product space

|(x,y)| ≤ ∥x∥ ∥y∥ .

Equality holds if and only if x is a multiple of y. The inequality holds under the weaker
assumption that (x,x)≥ 0 without the stipulation that this happens only if x = 0.

Proof: Let ω ∈C, |ω|= 1, and ω(x,y) = |(x,y)|= Re(x,yω). Let F(t) = (x+tyω,x+
tωy), t ∈R. If y= 0 there is nothing to prove because (x,0) = (x,0+0) = (x,0)+(x,0) and
so (x,0) = 0. Thus, it can be assumed y ̸= 0. Then from the axioms of the inner product,

F(t) = ∥x∥2 +2t Re(x,ωy)+ t2 ∥y∥2 ≥ 0.

This yields ∥x∥2+2t|(x,y)|+t2 ∥y∥2≥ 0. Since this inequality holds for all t ∈R, it follows
from the quadratic formula that 4|(x,y)|2−4∥x∥2 ∥y∥2 ≤ 0. In getting this inequality, it was
only necessary to assume (x,x)≥ 0.

Consider the claim about equality. Note that if x = αy, then equality holds directly.
Indeed this is the only way this can happen because if equality holds in the Cauchy Schwarz
inequality, F (t) = 0 for some real t. This happens only if x =−tωy for some t real. ■

Proposition 22.1.3 For an inner product space, ∥x∥ ≡ (x,x)1/2 does specify a norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

∥x+ y∥2 ≡ (x+ y,x+ y)≡ ∥x∥2 +∥y∥2 +2Re(x,y)

≤ ∥x∥2 +∥y∥2 +2 |(x,y)|
≤ ∥x∥2 +∥y∥2 +2∥x∥∥y∥= (∥x∥+∥y∥)2. ■

The following lemma is called the parallelogram identity.

575



576 CHAPTER 22. HILBERT SPACES

Lemma 22.1.4 In an inner product space,

∥x+ y∥2 +∥x− y∥2 = 2∥x∥2 +2∥y∥2.

The proof, a straightforward application of the inner product axioms, is left to the
reader.

Lemma 22.1.5 For x ∈ H, an inner product space,

∥x∥= sup
∥y∥≤1

|(x,y)| (22.4)

Proof: By the Cauchy Schwarz inequality, if x ̸= 0,

∥x∥ ≥ sup
∥y∥≤1

|(x,y)| ≥
(

x,
x
∥x∥

)
= ∥x∥ .

It is obvious that 22.4 holds in the case that x = 0.

Definition 22.1.6 A Hilbert space is an inner product space which is complete.
Thus a Hilbert space is a Banach space in which the norm comes from an inner product as
described above.

In Hilbert space, one can define a projection map onto closed convex nonempty sets.

Definition 22.1.7 A set K is convex if whenever λ ∈ [0,1] and x,y ∈ K, λx+(1−
λ )y ∈ K.

Theorem 22.1.8 Let K be a closed convex nonempty subset of a Hilbert space H,
and let x ∈H. Then there exists a unique point Px ∈ K such that ∥Px− x∥ ≤ ∥y− x∥ for all
y ∈ K.

Proof: Consider uniqueness. Suppose that z1 and z2 are two different elements of K
such that for i = 1,2,

∥zi− x∥ ≤ ∥y− x∥ (22.5)

for all y ∈ K. Also, note that since K is convex, z1+z2
2 ∈ K. Therefore, by the parallelogram

identity,

∥z1− x∥2 ≤
∥∥∥∥ z1 + z2

2
− x
∥∥∥∥2

=

∥∥∥∥ z1− x
2

+
z2− x

2

∥∥∥∥2

= 2(
∥∥∥∥ z1− x

2

∥∥∥∥2

+

∥∥∥∥ z2− x
2

∥∥∥∥2

)−
∥∥∥∥ z1− z2

2

∥∥∥∥2

=
1
2
∥z1− x∥2 +

1
2
∥z2− x∥2−

∥∥∥∥ z1− z2

2

∥∥∥∥2

≤ ∥z1− x∥2−
∥∥∥∥ z1− z2

2

∥∥∥∥2

,

where the last inequality holds because of 22.5. Hence z1 = z2 after all and this shows
uniqueness.
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Now let λ = inf{∥x− y∥ : y ∈ K} and let yn be a minimizing sequence. This means
{yn} ⊆ K satisfies limn→∞ ∥x− yn∥= λ . By the parallelogram identity,

∥yn− x+ ym− x∥2 +∥yn− ym∥2 = 2
(
∥yn− x∥2 +∥ym− x∥2

)
and so, since ∥yn− x+ ym− x∥2 = 4(∥ yn+ym

2 − x∥2),

∥yn− ym∥2 = 2
(
∥yn− x∥2 +∥ym− x∥2

)
−4(∥yn + ym

2
− x∥2)

≤ 2
(
∥yn− x∥2 +∥ym− x∥2

)
−4λ

2

The right side converges as m,n→ 0 to 0. Therefore, {yn}∞

n=1 is a Cauchy sequence. Since
H is complete, yn→ y for some y ∈ H which must be in K because K is closed. Therefore

∥x− y∥= lim
n→∞
∥x− yn∥= λ .

Let Px = y. ■

Corollary 22.1.9 Let K be a closed, convex, nonempty subset of a Hilbert space, H,
and let x ∈ H. Then for z ∈ K, z = Px if and only if

Re(x− z,y− z)≤ 0 (22.6)

for all y ∈ K.

Before proving this, consider what it says in the case where the Hilbert space is Rn.

K
y θ

x
z

Condition 22.6 says the angle θ , shown in the diagram, is always obtuse. Remember
from calculus, the sign of x ·y is the same as the sign of the cosine of the included angle
between x and y. Thus, in finite dimensions, the conclusion of this corollary says that
z = Px exactly when the angle of the indicated angle is obtuse. Surely the picture suggests
this is reasonable.

The inequality 22.6 is an example of a variational inequality and this corollary charac-
terizes the projection of x onto K as the solution of this variational inequality.

Proof of Corollary: Let z ∈ K and let y ∈ K also. Since K is convex, it follows that if
t ∈ [0,1],

z+ t(y− z) = (1− t)z+ ty ∈ K.

Furthermore, every point of K can be written in this way. (Let t = 1 and y ∈ K.) Therefore,
z = Px if and only if for all y ∈ K and t ∈ [0,1],

∥x− (z+ t(y− z))∥2 = ∥(x− z)− t(y− z)∥2 ≥ ∥x− z∥2

for all t ∈ [0,1] and y ∈ K if and only if for all t ∈ [0,1] and y ∈ K

∥x− z∥2 + t2 ∥y− z∥2−2t Re(x− z,y− z)≥ ∥x− z∥2
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If and only if for all t ∈ [0,1],

t2 ∥y− z∥2−2t Re(x− z,y− z)≥ 0. (22.7)

Now this is equivalent to 22.7 holding for all t ∈ (0,1). Therefore, dividing by t ∈ (0,1) ,
22.7 is equivalent to

t ∥y− z∥2−2Re(x− z,y− z)≥ 0

for all t ∈ (0,1) which is equivalent to 22.6. ■

Corollary 22.1.10 Let K be a nonempty convex closed subset of a Hilbert space, H.
Then the projection map P is continuous. In fact,|Px−Py| ≤ |x− y| .

Proof: Let x,x′ ∈ H. Then by Corollary 22.1.9,

Re
(
x′−Px′,Px−Px′

)
≤ 0, Re

(
x−Px,Px′−Px

)
≤ 0

Hence

0 ≤ Re
(
x−Px,Px−Px′

)
−Re

(
x′−Px′,Px−Px′

)
= Re

(
x− x′,Px−Px′

)
−
∣∣Px−Px′

∣∣2
and so |Px−Px′|2 ≤ |x− x′| |Px−Px′| . ■

The next corollary is a more general form for the Brouwer fixed point theorem.

Corollary 22.1.11 Let f : K→ K where K is a convex compact subset of Rn. Then f
has a fixed point.

Proof: Let K ⊆ B(0,R) and let P be the projection map onto K. Then consider the
map f ◦P which maps B(0,R) to B(0,R) and is continuous. By the Brouwer fixed point
theorem for balls, this map has a fixed point. Thus there exists x such that (f ◦P)(x) = x.
Now the equation also requires x ∈ K and so P(x) = x. Hence f (x) = x. ■

Recall the following definition from linear algebra about direct sum notation.

Definition 22.1.12 Let H be a vector space and let U and V be subspaces. U ⊕
V = H if every element of H can be written as a sum of an element of U and an element of
V in a unique way.

The case where the closed convex set is a closed subspace is of special importance and
in this case the above corollary implies the following.

Corollary 22.1.13 Let K be a closed subspace of a Hilbert space H, and let x ∈ H.
Then for z ∈ K, z = Px if and only if

(x− z,y) = 0 (22.8)

for all y ∈ K. Furthermore, H = K⊕K⊥ where

K⊥ ≡ {x ∈ H : (x,k) = 0 for all k ∈ K}

and
∥x∥2 = ∥x−Px∥2 +∥Px∥2 . (22.9)
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Proof: Since K is a subspace, the condition 22.6 implies Re(x− z,y)≤ 0 for all y ∈ K.
Replacing y with −y, it follows Re(x− z,−y) ≤ 0 which implies Re(x− z,y) ≥ 0 for all
y. Therefore, Re(x− z,y) = 0 for all y ∈ K. Now let |α| = 1 and α (x− z,y) = |(x− z,y)|.
Since K is a subspace, it follows αy ∈ K for all y ∈ K. Therefore,

0 = Re(x− z,αy) = (x− z,αy) = α (x− z,y) = |(x− z,y)|.
This shows that z = Px, if and only if 22.8.

For x ∈ H, x = x−Px+Px and from what was just shown, x−Px ∈ K⊥ and Px ∈ K.
This shows that K⊥+K = H. Is there only one way to write a given element of H as a
sum of a vector in K with a vector in K⊥? Suppose y+ z = y1 + z1 where z,z1 ∈ K⊥ and
y,y1 ∈ K. Then (y− y1) = (z1− z) and so from what was just shown, (y− y1,y− y1) =
(y− y1,z1− z) = 0 which shows y1 = y and consequently z1 = z. Finally, letting z = Px,

∥x∥2 = (x− z+ z,x− z+ z) = ∥x− z∥2 +(x− z,z)+(z,x− z)+∥z∥2

= ∥x− z∥2 +∥z∥2 ■

The following theorem is called the Riesz representation theorem for the dual of a
Hilbert space. If z ∈ H then define an element f ∈ H ′ by the rule (x,z) ≡ f (x). It follows
from the Cauchy Schwarz inequality and the properties of the inner product that f ∈ H ′.
The Riesz representation theorem says that all elements of H ′ are of this form.

Theorem 22.1.14 Let H be a Hilbert space and let f ∈ H ′. Then there exists a
unique z ∈ H such that f (x) = (x,z) for all x ∈ H.

Proof: Letting y,w ∈ H the assumption that f is linear implies

f (y f (w)− f (y)w) = f (w) f (y)− f (y) f (w) = 0

which shows that y f (w)− f (y)w ∈ f−1 (0), which is a closed subspace of H since f is
continuous. If f−1 (0) = H, then f is the zero map and z = 0 is the unique element of H
which satisfies f (x) = (x,z). If f−1 (0) ̸= H, pick u /∈ f−1 (0) and let w≡ u−Pu ̸= 0. Thus
Corollary 22.1.13 implies (y,w) = 0 for all y∈ f−1 (0). In particular, let y = x f (w)− f (x)w
where x ∈ H is arbitrary. Therefore,

0 = ( f (w)x− f (x)w,w) = f (w)(x,w)− f (x)∥w∥2.

Thus, solving for f (x) and using the properties of the inner product,

f (x) =

(
x,

f (w)w
∥w∥2

)
Let z = f (w)w/∥w∥2. This proves the existence of z. If f (x) = (x,zi) i = 1,2, for all x ∈H,
then for all x ∈H, then (x,z1− z2) = 0 which implies, upon taking x = z1− z2 that z1 = z2.
■

If R : H→H ′ is defined by Rx(y)≡ (y,x) , the Riesz representation theorem above states
this map is onto. This map is called the Riesz map. It is routine to show R is conjugate
linear and ∥Rx∥= ∥x∥. In fact,

R(αx+βy)(u) ≡ (u,αx+βy) = ᾱ (u,x)+ β̄ (u,y)

≡ ᾱRx(u)+ β̄Ry(u) =
(
ᾱRx+ β̄Ry

)
(u)

so it is conjugate linear meaning it goes across plus signs and you factor out conjugates.

∥Rx∥ ≡ sup
∥y∥≤1

|Rx(y)| ≡ sup
∥y∥≤1

|(y,x)|= ∥x∥
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22.2 The Hilbert Space L(U)

Let L ∈L (U,H) . Then one can consider the image of L,L(U) as a Hilbert space. This is
another interesting application of Theorem 22.1.8. First here is a definition which involves
abominable and atrociously misleading notation which nevertheless seems to be well ac-
cepted.

Definition 22.2.1 Let L∈L (U,H), the bounded linear maps from U to H for U,H
Hilbert spaces. For y ∈ L(U) , let L−1y denote the unique vector in

{x ∈U : Lx = y} ≡My

which is closest in U to 0.

{x : Lx = y}
L−1(y)

Note this is a good definition because {x ∈U : Lx = y} is closed thanks to the continuity
of L and it is obviously convex. Thus Theorem 22.1.8 applies. With this definition define an
inner product on L(U) as follows. For y,z ∈ L(U) ,

(y,z)L(U) ≡
(
L−1y,L−1z

)
U

The notation is abominable because L−1 (y) is the normal notation for My.

In terms of linear algebra, this L−1 is the Moore Penrose inverse. There you obtain the
least squares solution x to Lx = y which has smallest norm. Here there is an actual solution
and among those solutions you get the one which has least norm. Of course a real honest
solution is also a least squares solution so this is the Moore Penrose inverse restricted to
L(U).

Lemma 22.2.2 In the context of the above definition, L−1 (y) is characterized by(
L−1 (y) ,x

)
U = 0 for all x ∈ ker(L)

L
(
L−1 (y)

)
= y,

(
L−1 (y) ∈My

)
In addition to this, L−1 is linear and the above definition does define an inner product.

Proof: By definition, L−1 (y) is the unique point of the closed convex set My which is
closest to 0 in U . Thus it is characterized by(

0−L−1 (y) ,u−L−1 (y)
)

U ≤ 0

for all u ∈ My. Note that L
(
u−L−1 (y)

)
= y− y = 0. Also, if v ∈ ker(L) , then if u =

L−1 (y)+ v, then u− L−1 (y) ∈ ker(L). Thus a generic element of ker(L) is u− L−1 (y)
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for u ∈ My and L−1 (y) is therefore characterized by
(
L−1 (y) ,v

)
U = 0 for all v ∈ ker(L)

because ker(L) is a subspace. Also, L
(
L−1 (y)

)
= y. Now from this characterization of

L−1, it is obvious that L−1 is linear. The inner product is well defined because L−1 (y) is
uniquely determined. Does it satisfy the axioms? Say 0 = (y,y)L(U) . Then L−1 (y) = 0

and so doing L to both sides, y = 0. It is clear that (y,z)L(U) = (z,y)L(U) because these are
defined in terms of a given inner product on U .

(ay+bŷ,z)L(U) ≡
(
L−1 (ay+bŷ) ,L−1z

)
U

=
(
aL−1 (y)+bL−1 (ŷ) ,L−1z

)
U

= a
(
L−1 (y) ,L−1z

)
U +b

(
L−1 (ŷ) ,L−1z

)
U

= a(y,z)L(U)+b(ŷ,z)L(U)

Thus this is an inner product as claimed. ■
With the above definition, here is the main result.

Theorem 22.2.3 Let U,H be Hilbert spaces and let L ∈L (U,H) . Then Definition
22.2.1 makes L(U) into a Hilbert space. Also L : U → L(U) is continuous and L−1 :
L(U)→U is continuous. Also,

∥L∥L (U,H) ∥Lx∥L(U) ≥ ∥Lx∥H (22.10)

If U is separable, so is L(U). Also
(
L−1 (y) ,x

)
= 0 for all x∈ ker(L) , and L−1 : L(U)→U

is linear. Also, in case that L is one to one, both L and L−1 preserve norms.

Proof: First consider the claim that L : U → L(U) is continuous and L−1 : L(U)→U
is also continuous.

∥Lu∥2
L(U) =

(
L−1 (Lu) ,L−1 (Lu)

)
U ≤ ∥u∥

2
U

(Recall that L−1 (Lu) is the smallest vector in U which maps to Lu. Since u is mapped by L
to Lu, it follows that

∥∥L−1 (L(u))
∥∥

U ≤ ∥u∥U .) Hence L is continuous.

Next, why is L−1 continuous? By definition of the norm,
∥∥L−1 (y)

∥∥2
U ≡ ∥y∥

2
L(U). Thus

L−1 is continuous and
∥∥L−1

∥∥
L (L(U),U)

= 1.
Why is L(U) a Hilbert space? Let {yn} be a Cauchy sequence in L(U) .

∥yn− ym∥2
L(U) ≡

∥∥L−1 (yn− ym)
∥∥2

U

Then from what was just observed, it follows that L−1 (yn) is a Cauchy sequence in U.
Hence L−1 (yn)→ x ∈U. Then by continuity of L just shown, yn → Lx. This shows that
L(U) is a Hilbert space. It was already shown that it is an inner product space and this has
shown that it is complete.

If x ∈U, then ∥Lx∥H ≤ ∥L∥L (U,H) ∥x∥U . It follows that

∥L(x)∥H =
∥∥L
(
L−1 (L(x))

)∥∥
H ≤ ∥L∥L (U,H)

∥∥L−1 (L(x))
∥∥

U

= ∥L∥L (U,H) ∥L(x)∥L(U) .

This verifies 22.10.
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If U is separable, then letting D be a countable dense subset, it follows from the conti-
nuity of the operators L,L−1 discussed above that L(D) is separable in L(U). To see this,
note that

∥Lxn−Lx∥L(U) =
∥∥L
(
L−1 (Lxn−Lx)

)∥∥≤ ∥L∥L (U,H)

∥∥L−1 (L(xn− x))
∥∥

U

≤ ∥L∥L (U,H) ∥xn− x∥U

As before, L−1 (L(xn− x)) is the smallest vector which maps onto L(xn− x) and so its
norm is no larger than ∥xn− x∥U .

Consider the last claim. If L is one to one, then for y ∈ L(U) , there is only one vector
which maps to y. Therefore, L−1 (L(x)) = x.Hence for y ∈ L(U) ,∥y∥L(U) ≡

∥∥L−1 (y)
∥∥

U .
Also,

∥Lu∥L(U) ≡
∥∥L−1 (L(u))

∥∥
U ≡ ∥u∥U

Thus when L is one to one, ∥L∥L (U,L(U)) = 1. ■

22.3 Approximations in Hilbert Space
The Gram Schmidt process applies in any vector space which has an inner product.

Theorem 22.3.1 Let {x1, · · · ,xn} be a basis for M a subspace of H a Hilbert space.
Then there exists an orthonormal basis for M, {u1, · · · ,un} which has the property that for
each k ≤ n, span(x1, · · · ,xk) = span(u1, · · · ,uk) . Also if {x1, · · · ,xn} ⊆ H, then the finite
dimensional subspace span(x1, · · · ,xn) is a closed subspace.

Proof: Let {x1, · · · ,xn} be a basis for M. Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) =
span(x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (u j ·ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1 ·u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1 ·u j)u j

∣∣∣ , (22.11)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) which is seen easily by solving 22.11 for xk+1 and it
follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 ·ul) =C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)(u j ·ul)

)

=C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)δ l j

)
=C ((xk+1 ·ul)− (xk+1 ·ul)) = 0.
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The vectors,
{

u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length.

Consider the second claim about finite dimensional subspaces. Without loss of gener-
ality, assume {x1, · · · ,xn} is linearly independent. If it is not, delete vectors until a linearly
independent set is obtained. Then by the first part,

span(x1, · · · ,xn) = span(u1, · · · ,un)≡M

where the ui are an orthonormal set of vectors. Suppose {yk} ⊆ M and yk → y ∈ H. Is
y ∈M? Let yk ≡ ∑

n
j=1 ck

ju j. Then let ck ≡
(
ck

1, · · · ,ck
n
)T

. Then

∣∣∣ck−cl
∣∣∣2 ≡

n

∑
j=1

∣∣∣ck
j− cl

j

∣∣∣2 =( n

∑
j=1

(
ck

j− cl
j

)
u j,

n

∑
j=1

(
ck

j− cl
j

)
u j

)
= ∥yk− yl∥2

which shows
{
ck
}

is a Cauchy sequence in Fn and so it converges to c ∈ Fn. Thus

y = lim
k→∞

yk = lim
k→∞

n

∑
j=1

ck
ju j =

n

∑
j=1

c ju j ∈M. ■

Theorem 22.3.2 Let M be the span of {u1, · · · ,un} in a Hilbert space H and let
y ∈ H. Then Py is given by

Py =
n

∑
k=1

(y,uk)uk (22.12)

and the distance is given by √
|y|2−

n

∑
k=1
|(y,uk)|2. (22.13)

Proof: (
y−

n

∑
k=1

(y,uk)uk,up

)
= (y,up)−

n

∑
k=1

(y,uk)(uk,up)

= (y,up)− (y,up) = 0

It follows that (y−∑
n
k=1 (y,uk)uk,u) = 0 for all u ∈ M and so by Corollary 22.1.13 this

verifies 22.12.
The square of the distance, d is given by

d2 =

(
y−

n

∑
k=1

(y,uk)uk,y−
n

∑
k=1

(y,uk)uk

)

= |y|2−2
n

∑
k=1
|(y,uk)|2 +

n

∑
k=1
|(y,uk)|2

and this shows 22.13. ■
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22.4 Orthonormal Sets
The concept of an orthonormal set of vectors is a generalization of the notion of the standard
basis vectors of Rn or Cn.

Definition 22.4.1 Let H be a Hilbert space. S ⊆ H is called an orthonormal set if
∥x∥= 1 for all x ∈ S and (x,y) = 0 if x,y ∈ S and x ̸= y. For any set, D,

D⊥ ≡ {x ∈ H : (x,d) = 0 for all d ∈ D} .

If S is a set, span(S) is the set of all finite linear combinations of vectors from S.

You should verify that D⊥ is always a closed subspace of H. It is assumed that our
Hilbert spaces are not {0}.

Theorem 22.4.2 In any separable Hilbert space H, there exists a countable or-
thonormal set, S = {xi} such that the span of these vectors is dense in H. Furthermore, if
span(S) is dense, then for x ∈ H,

x =
∞

∑
i=1

(x,xi)xi ≡ lim
n→∞

n

∑
i=1

(x,xi)xi. (22.14)

Also, (x,y) = ∑
∞
i=1 (x,xi)(y,yi).

Proof: Let F denote the collection of all orthonormal subsets of H. F is nonempty
because some {x} ∈F where ∥x∥= 1. The set, F is a partially ordered set with the order
given by set inclusion. By the Hausdorff maximal theorem, there exists a maximal chain,
C in F . Then let S≡∪C. It follows S must be a maximal orthonormal set of vectors. This
is because if x,y ∈ S, then both vectors are in a single C ∈ C. Therefore, (x,y) = 0 or one.

It remains to verify that S is countable span(S) is dense, and the condition, 22.14 holds.
To see S is countable note that if x,y ∈ S, then

∥x− y∥2 = ∥x∥2 +∥y∥2−2Re(x,y) = ∥x∥2 +∥y∥2 = 2.

Therefore, the open sets, B
(
x, 1

2

)
for x ∈ S are disjoint and cover S. Since H is assumed

to be separable, there exists a point from a countable dense set in each of these disjoint
balls showing there can only be countably many of the balls and that consequently, S is
countable as claimed.

It remains to verify 22.14 and that span(S) is dense. If span(S) is not dense, then
span(S) is a closed proper subspace of H and letting y /∈ span(S),z ≡ y−Py

||y−Py|| ∈ span(S)⊥

where P is the projection map mentioned earlier. But then S∪{z} would be a larger or-
thonormal set of vectors contradicting the maximality of S.

It remains to verify 22.14. Let S = {xi}∞

i=1 and consider the problem of choosing the
constants, ck in such a way as to minimize the expression∥∥∥∥∥x−

n

∑
k=1

ckxk

∥∥∥∥∥
2

=

∥x∥2 +
n

∑
k=1
|ck|2−

n

∑
k=1

ck (x,xk)−
n

∑
k=1

ck(x,xk).
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This equals ∥x∥2 +∑
n
k=1 |ck− (x,xk)|2−∑

n
k=1 |(x,xk)|2and therefore, this minimum is ach-

ieved when ck = (x,xk) and equals ∥x∥2−∑
n
k=1 |(x,xk)|2. Now since span(S) is dense, if

n large enough then for some choice of constants ck, ∥x−∑
n
k=1 ckxk∥2 < ε. However, from

what was just shown, ∥∥∥∥∥x−
n

∑
i=1

(x,xi)xi

∥∥∥∥∥
2

≤

∥∥∥∥∥x−
n

∑
k=1

ckxk

∥∥∥∥∥
2

< ε

showing that limn→∞ ∑
n
i=1 (x,xi)xi = x as claimed.

For the last claim, from what was just shown and the observation that if xn → x and
yn→ y, then (xn,yn)→ (x,y) ,

(x,y) = lim
n→∞

(
n

∑
i=1

(x,xi)xi,
n

∑
j=1

(y,x j)x j

)
= lim

n→∞
∑

i, j≤n
(x,xi)(y,x j)(xi,x j)

= lim
n→∞

n

∑
i=1

(x,xi)(y,xi) =
∞

∑
i=1

(x,xi)(y,yi) ■

The proof of this theorem contains the following corollary.

Corollary 22.4.3 Let S be any orthonormal set of vectors and let

{x1, · · · ,xn} ⊆ S.

Then if x ∈ H ∥∥∥∥∥x−
n

∑
k=1

ckxk

∥∥∥∥∥
2

≥

∥∥∥∥∥x−
n

∑
i=1

(x,xi)xi

∥∥∥∥∥
2

for all choices of constants, ck. In addition to this, Bessel’s inequality follows,

∥x∥2 ≥
n

∑
k=1
|(x,xk)|2 .

If S is countable and span(S) is dense, then letting {xi}∞

i=1 = S, 22.14 follows.

Corollary 22.4.4 If V is a closed subspace of a Hilbert space H and if

V = span
(
{uk}N

k=1

)
where the uk are an orthonormal set and N ≤ ∞, then for P the projection map onto V, it
follows that Py = ∑

N
k=1 (y,uk)uk and when N = ∞ the series converges to Py. In particular,

when y ∈V,y = Py = ∑
N
k=1 (y,uk)uk.

Proof: The case where N < ∞ was done above. For y ∈ H,(
y−

∞

∑
k=1

(y,uk)uk,um

)
= (y,um)− (y,um) = 0

assuming the series makes sense. Therefore, if this happens, then Py=∑
∞
k=1 (y,uk)uk. Now

note that (y,uk) = (y−Py,uk)+(Py,uk) = (Py,uk). Now, by assumption, there are scalars
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cn
k such that limn→∞

∥∥Py−∑
n
k=1 cn

kuk
∥∥ = 0. Then by Corollary 22.4.3 and what was just

observed,

0 = lim
n→∞

∥∥∥∥∥Py−
n

∑
k=1

(Py,uk)uk

∥∥∥∥∥= lim
n→∞

∥∥∥∥∥Py−
n

∑
k=1

(y,uk)uk

∥∥∥∥∥
and so the sum converges to Py as claimed. ■

22.5 Compact Operators in Hilbert Space
Definition 22.5.1 Let A ∈L (H,H) where H is a Hilbert space. So the map, x→
(Ax,y) is continuous and linear. By the Riesz representation theorem, there exists a unique
element of H, denoted by A∗y such that

(Ax,y) = (x,A∗y) .

It is clear y→ A∗y is linear and continuous. It is linear because(
(x,A∗ (ay+bz)) = ā(Ax,y)+ b̄(Ax,z)

= ā(x,A∗y)+ b̄(x,A∗z) = (x,aA∗y+bA∗z)

)
A∗ is called the adjoint of A. A is a self adjoint operator if A = A∗. Thus for a self adjoint
operator, (Ax,y) = (x,Ay) for all x,y ∈ H and so (Ax,x) = (x,Ax) = (Ax,x) so (Ax,x)
is real. A is a compact operator if whenever {xk} is a bounded sequence, there exists
a convergent subsequence of {Axk}. Equivalently, A maps bounded sets to sets whose
closures are compact.

There is an important observation about the range of a compact operator. It is a general
result so I will express it in terms of Banach space.

Proposition 22.5.2 Let X be a Banach space and let A ∈L (X ,X) be a compact oper-
ator meaning that the image of a bounded set is a pre-compact set. Then A(X) is separable.

Proof: If for every n ∈ N there is a 1/n net for A(B(0,1)) , then A(B(0,1)) would be
separable, and a countable dense subset would be the union of these 1/n nets. It would fol-
low then that A(X) is also separable. A countable dense subset would be positive rational
numbers times these countably many points in A(B(0,1)). Therefore, if A(X) is not sepa-
rable, there is some ε > 0 such that there is no ε net, for A(B(0,1)) meaning that there are
infinitely many points which are all ε apart in A(B(0,1)). Let these points be {Auk}∞

k=1 .
But now this is a contradiction because there can be no convergent subsequence. ■

The big result is called the Hilbert Schmidt theorem. It is a generalization to arbitrary
Hilbert spaces of standard finite dimensional results having to do with diagonalizing a
symmetric matrix.

Theorem 22.5.3 Let A be a compact self adjoint operator defined on a Hilbert
space H. Then there exists a countable set of eigenvalues, {λ i} and an orthonormal set of
eigenvectors, ui satisfying

λ i is real, |λ n| ≥ |λ n+1| , Aui = λ iui, (22.15)

and either limn→∞ λ n = 0,or for some n, span(u1, · · · ,un) = A(H) . In any case,

span({ui}∞

i=1) is dense in A(H) . (22.16)

and for all x ∈ H, Ax = ∑
∞
k=1 λ k (x,uk)uk where the sum might be finite.
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Proof: First note that if you have a self adjoint operator A, then its eigenvalues are real.
Here is why:

(Au,u) = λ ∥u∥2 = (u,Au) = λ̄ ∥u∥2 .

If ∥A∥= 0 then pick u ∈ H with ∥u∥= 1 and let λ = 0. Since A(H) = 0 it follows the
span of u is dense in A(H) and the formula for Ax holds.

Assume A ̸= 0. I will show there exists an eigenvector u. From the definition of ∥A∥
there exists xn,∥xn∥= 1, and ∥Axn∥→ ∥A∥ ≡ |λ |. Now it is clear that A2 is also a compact
self adjoint operator. Consider((

λ
2−A2

)
xn,xn

)
= λ

2 (xn,xn)−
(
A2xn,xn

)
= λ

2−∥Axn∥2→ 0.

Since A is compact, there exists a subsequence of {xn} still denoted by {xn} such that Axn

converges to some element of H. Thus since λ
2−A2 satisfies

((
λ

2−A2
)

y,y
)
≥ 0 in

addition to being self adjoint, it follows

x,y→
((

λ
2−A2

)
x,y
)

satisfies all the axioms for an inner product except for the one which says that (z,z) = 0
only if z = 0. Therefore, the Cauchy Schwarz inequality may be used to write∣∣∣((λ

2−A2
)

xn,y
)∣∣∣≤ ((λ

2−A2
)

y,y
)1/2((

λ
2−A2

)
xn,xn

)1/2
≤ en ∥y∥ .

where en→ 0 as n→ ∞. Taking the sup over ∥y∥ ≤ 1, limn→∞

∥∥∥(λ
2−A2

)
xn

∥∥∥= 0. Since

A2xn converges, it follows, since λ ̸= 0 that {xn} is a Cauchy sequence converging to x with
∥x∥= 1. Therefore, A2xn→ A2x and so

∥∥∥(λ
2−A2

)
x
∥∥∥= 0. Now this shows that

(λ I +A)(λ I−A)x = 0.

If (λ I−A)x = 0, let u≡ x. If (λ I−A)x = y ̸= 0, let u≡ y
∥y∥ . Note that this did not identify

the sign of λ . Also note that since λ ̸= 0,u ∈ A(H).
Let A ∈ F mean that A consists of vectors of A(H) ,A is an orthonormal set of

vectors, and for each u ∈ A ,Au = λu for some λ . I claim that A is countable because
from the compactness of A,A(H) is separable by Proposition 22.5.2 but these vectors of
A(H) are all at least 1/2 apart. Partially order F by set inclusion. Let C be a maximal
chain. Then A∞ ≡ ∪C is a maximal element of F . I need to show its span is dense in
A(H) . If spanA∞ fails to contain A(H) , then there is a nonzero vector w≡ Av which is not
in spanA∞. Then (w−Pw)/∥w−Pw∥ is a unit vector perpendicular to spanA∞. Is this
vector in A(H)? Is P(Av) = A(Pv)? Using Corollary 22.4.4,

P(w) = P(Av) =
N

∑
k=1

(Av,uk)uk =
N

∑
k=1

λ k (v,uk)uk

=
N

∑
k=1

(v,uk)Auk = A(Pv) ∈ A(H)

so this unit vector w is in
(
spanA∞

)⊥
and A∞∪{w} is larger than the maximal element of

F so it must be the case that spanA∞ ⊇ A(H) after all.
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As noted, this orthonormal set A∞ is countable. Let it be {uk}N
k=1 where N ≤ ∞. Thus

for x ∈ H,Ax ∈ A(H)⊆ A(H) and so, by Corollary 22.4.4,

Ax =
N

∑
k=1

(Ax,uk)uk =
N

∑
k=1

(x,Auk)uk =
N

∑
k=1

λ k (x,uk)uk (22.17)

and the series converges. Also, the formula implies directly that Aum = λ mum so |λ m| ≤
∥A∥.

I claim limsupn→∞ |λ n|= 0. If this were not so, then for some ε > 0, 0 < ε ≤ |λ n| for
a subsequence still denoted as λ n but then

∥Aun−Aum∥2 = ∥λ nun−λ mum∥2 = |λ n|2 + |λ m|2 ≥ 2ε
2

and so there could not exist a convergent subsequence of {Auk}∞

k=1 contrary to the assump-
tion that A is compact. This verifies the claim that limn→∞ λ n = 0. Also, since |λ m| ≤ ∥A∥ ,
if S ⊆ N, supm∈S |λ m| = maxm∈S |λ m| and so, we can re-number the uk if necessary such
that the eigenvalues satisfy |λ k| ≥ |λ k+1| for all k. Thus, if λ m = 0 for some m, it follows
from 22.17 that A(H) is contained in the span of finitely many of the vectors {uk}. ■

Define v⊗u ∈L (H,H) by v⊗u(x) = (x,u)v, then 22.17 is of the form

A =
N

∑
k=1

λ kuk⊗uk

This is the content of the following corollary.

Corollary 22.5.4 The main conclusion of the above theorem can be written as A =

∑
N
k=1 λ kuk⊗uk where the convergence of the partial sums takes place in the operator norm.

Proof: Without loss of generality, assume N = ∞.∣∣∣∣∣
((

A−
n

∑
k=1

λ kuk⊗uk

)
x,y

)∣∣∣∣∣=
∣∣∣∣∣
(

Ax−
n

∑
k=1

λ k (x,uk)uk,y

)∣∣∣∣∣
=

∣∣∣∣∣
(

∞

∑
k=n

λ k (x,uk)uk,y

)∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
k=n

λ k (x,uk)(uk,y)

∣∣∣∣∣
≤ |λ n|

(
∞

∑
k=n
|(x,uk)|2

)1/2(
∞

∑
k=n
|(y,uk)|2

)1/2

≤ |λ n|∥x∥∥y∥

It follows ∥(A−∑
n
k=1 λ kuk⊗uk)(x)∥ ≤ |λ n|∥x∥ ■

Corollary 22.5.5 Let A be a compact self adjoint operator and

A =
N

∑
k=1

λ kuk⊗uk

where Auk = λ kuk with ∥uk∥= 1, the |λ k| decreasing. Then |λ k+1|= ∥Ak∥ where Ak is the
restriction of A to {u1, ...,uk}⊥.
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Proof: First note that if Vk ≡ {u1, ...,uk}⊥ , then A : Vk→Vk. Thus

∥Ak∥ ≡ sup{∥Aku∥ ,∥u∥ ≤ 1,(u,ui) = 0, i≤ k}

Since the |λ k| are decreasing, this will be maximized by picking u = uk+1 and then the
result is just |λ k|. ■

Lemma 22.5.6 If Vλ is the eigenspace for λ ̸= 0 and B : Vλ → Vλ is a compact self
adjoint operator with Bx = λx for all x ∈Vλ then Vλ must be finite dimensional.

Proof: First note that B(Vλ ) = Vλ because if u ∈ Vλ , then Bu = λu and so B
( u

λ

)
= u.

From Theorem 22.5.3, A∞ that maximal set might be finite in which case it would yield a
finite orthonormal basis for Vλ = B(Vλ ). But it can’t be infinite because there is only one
eigenvalue and it is not zero so cannot converge to 0. ■

Next is the case of most interest when H is separable. In this case, the eigenfunctions
actually give an orthonormal basis for H.

Corollary 22.5.7 Let A be a compact self adjoint operator defined on a separable
Hilbert space, H. Then there exists a countable set of eigenvalues, {λ i} and an or-
thonormal set of eigenvectors {vi} satisfying Avi = λ ivi,∥vi∥= 1,span({vi}∞

i=1) is dense in
H.Furthermore, if λ i ̸= 0, the space, Vλ i ≡ {x ∈ H : Ax = λ ix} is finite dimensional.

Proof: Let B be the restriction of A to Vλ i . Thus B is a compact self adjoint operator
which maps Vλ to Vλ and has only one eigenvalue λ i on Vλ i . By Lemma 22.5.6, Vλ is finite

dimensional. As to the density of some span({vi}∞

i=1) in H, let W ≡ span({ui})
⊥

where
A = ∑

N
k=1 λ kuk⊗ uk. By Theorem 22.4.2, there is a maximal orthonormal set of vectors,

{wi}∞

i=1 whose span is dense in W . There are only countably many of these since the space
H is separable. Then consider {vi}∞

i=1 = {ui}∞

i=1 ∪{wi}∞

i=1 . Awi = ∑
N
k=1 λ k (wi,uk) = 0.

Thus each wi is an eigenvector for A. ■
Suppose λ /∈ {λ k}∞

k=1 , the eigenvalues of A, and λ ̸= 0. Then the above formula for A,
yields an interesting formula for (A−λ I)−1. Note first that since limn→∞ λ n = 0, it follows
that λ

2
n/(λ n−λ )2 must be bounded, say by a positive constant, M.

Corollary 22.5.8 Let A be a compact self adjoint operator and let λ /∈ {λ n}∞

n=1 and
λ ̸= 0 where the λ n are the eigenvalues of A. (Ax = λx,x ̸= 0)Then

(A−λ I)−1 x =− 1
λ

x+
1
λ

∞

∑
k=1

λ k

λ k−λ
(x,uk)uk. (22.18)

Proof: Let m < n. Then since the {uk} form an orthonormal set,∣∣∣∣∣ n

∑
k=m

λ k

λ k−λ
(x,uk)uk

∣∣∣∣∣≤
(

n

∑
k=m

(
λ k

λ k−λ

)2

|(x,uk)|2
)1/2

≤M

(
n

∑
k=m
|(x,uk)|2

)1/2

.

(22.19)
But from Bessel’s inequality, ∑

∞
k=1 |(x,uk)|2 ≤ ∥x∥2 and so for m large enough, the first

term in 22.19 is smaller than ε . This shows the infinite series in 22.18 converges. It is now
routine to verify that the formula in 22.18 is the inverse. ■
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22.5.1 Nuclear Operators
A very useful idea in linear algebra is the trace of a matrix. It is one of the principle invari-
ants and is just the sum of the entries along the main diagonal. Thus if A ∈L (Cn,Cn),
the trace is ∑ie

T
i Aei where the ei are the standard orthonormal basis vectors, ei having a

1 in the ith position and 0 elsewhere. If you used another orthonormal basis, {vi} the trace
would be the same because the mapping vi → ei will preserve lengths and is therefore a
unitary transformation. The two computations would involve a similarity transformation.
In infinite dimensions when you have a separable Hilbert space, the notion of trace might
not make sense. The nuclear operators are those for which it will make sense.

Definition 22.5.9 A self adjoint operator A ∈L (H,H) for H a separable Hilbert
space is called a nuclear operator if for some complete orthonormal set, {ek} ,It follows
that ∑

∞
k=1 |(Aek,ek)|< ∞.

We specialize to self adjoint operators because this will ensure that (Ax,x) is real. To
begin with here is an interesting lemma.

Lemma 22.5.10 Suppose {An} is a sequence of compact operators in L (X ,Y ) for two
Banach spaces, X and Y and suppose A ∈L (X ,Y ) and limn→∞ ∥A−An∥ = 0. Then A is
also compact.

Proof: Let D be a bounded set in X such that ∥b∥ ≤C for all b ∈ D. I need to verify
A(B) is totally bounded. Suppose then it is not. Then there exists ε > 0 and an infinite
sequence, {Abi} where bi ∈ D and

∥∥Abi−Ab j
∥∥ ≥ ε whenever i ̸= j. Then let n be large

enough that ∥A−An∥ ≤ ε

4C .Then∥∥Anbi−Anb j
∥∥ =

∥∥Abi−Ab j +(An−A)bi− (An−A)b j
∥∥

≥
∥∥Abi−Ab j

∥∥− (∥(An−A)bi∥+
∥∥(An−A)b j

∥∥)
≥

∥∥Abi−Ab j
∥∥−2

ε

4C
C ≥ ε

2
,

a contradiction to An being compact. ■
Then one can prove the following lemma. In this lemma, A≥ 0 will mean (Ax,x)≥ 0.

Lemma 22.5.11 Let A≥ 0 be a nuclear operator defined on a separable Hilbert space
H. Then A is compact and also, whenever {ek} is a complete orthonormal set,

A =
∞

∑
j=1

∞

∑
i=1

(Aei,e j)ei⊗ e j.

Proof: First consider the formula. Since A is given to be continuous,

Ax = A

(
∞

∑
j=1

(x,e j)e j

)
=

∞

∑
j=1

(x,e j)Ae j,

the series converging because x = ∑
∞
j=1 (x,e j)e j. Then also since A is self adjoint,

∞

∑
j=1

∞

∑
i=1

(Aei,e j)ei⊗ e j (x)≡
∞

∑
j=1

∞

∑
i=1

(Aei,e j)(x,e j)ei =
∞

∑
j=1

(x,e j)
∞

∑
i=1

(Aei,e j)ei
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=
∞

∑
j=1

(x,e j)
∞

∑
i=1

(Ae j,ei)ei =
∞

∑
j=1

(x,e j)Ae j

Next consider the claim that A is compact. Let CA ≡
(

∑
∞
j=1
∣∣(Ae j,e j)

∣∣)1/2
. Let An be

defined by An ≡ ∑
∞
j=1 ∑

n
i=1 (Aei,e j)(ei⊗ e j) . Then An has values in span(e1, · · · ,en) and

so it must be a compact operator because bounded sets in a finite dimensional space must
be precompact. Then

|(Ax−Anx,y)|=

∣∣∣∣∣ ∞

∑
j=1

∞

∑
i=n+1

(Aei,e j)(y,e j)(ei,x)

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
j=1

(y,e j)
∞

∑
i=n+1

(Aei,e j)(ei,x)

∣∣∣∣∣
≤

∣∣∣∣∣ ∞

∑
j=1

∣∣(y,e j)
∣∣(Ae j,e j)

1/2
∞

∑
i=n+1

(Aei,ei)
1/2 |(ei,x)|

∣∣∣∣∣
≤

(
∞

∑
j=1

∣∣(y,e j)
∣∣2)1/2(

∞

∑
j=1

∣∣(Ae j,e j)
∣∣)1/2

·

(
∞

∑
i=n+1

|(x,ei)|2
)1/2(

∞

∑
i=n+1

|(Aeiei)|
)1/2

≤ ∥y∥∥x∥CA

(
∞

∑
i=n+1

|(Aei,ei)|
)1/2

and this shows that if n is sufficiently large, it follows that |((A−An)x,y)| ≤ ε ∥x∥∥y∥ so
for such n,∥A−An∥< ε. Therefore, limn→∞ ∥A−An∥= 0 and so A is the limit in operator
norm of finite rank bounded linear operators, each of which is compact. Therefore, A is
also compact. ■

Definition 22.5.12 The trace of a nuclear operator A ∈L (H,H) such that A≥ 0
is defined to equal ∑

∞
k=1 (Aek,ek) where {ek} is an orthonormal basis for the separable

Hilbert space, H.

Theorem 22.5.13 Definition 22.5.12 is well defined and equals ∑
∞
j=1 λ j where the

λ j are the nonnegative eigenvalues of A.

Proof: Suppose {uk} be the basis of eigenvectors of the Hilbert Schmidt theorem Then
ek = ∑

∞
j=1 u j (ek,u j) . By Lemma 22.5.11 A is compact and so by the Hilbert Schmidt the-

orem, Theorem 22.5.3, A = ∑
∞
k=1 λ kuk⊗uk where the uk are the orthonormal eigenvectors

of A which form a complete orthonormal set. Then

∞

∑
k=1

(Aek,ek) =
∞

∑
k=1

(
A(ek) ,

∞

∑
i=1

ui (ek,ui)

)
=

∞

∑
k=1

∞

∑
i=1

(A(ek) ,ui)(ek,ui)

=
∞

∑
k=1

∞

∑
i=1

(ek,Aui)(ek,ui) =
∞

∑
k=1

∞

∑
i=1

(
ek,

∞

∑
j=1

(Aui,u j)u j

)
(ek,ui)

=
∞

∑
k=1

∑
i

∑
j
(Aui,u j)(ek,u j)(ui,ek) =

∞

∑
k=1

∑
i

∑
j

λ jδ i j (ek,u j)(ui,ek)

=
∞

∑
k=1

∞

∑
i=1

λ i |(ui,ek)|2 =
∞

∑
i=1

λ i

∞

∑
k=1
|(ui,ek)|2 =

∞

∑
i=1

λ i ∥ui∥2 =
∞

∑
i=1

λ i ■
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This is just like it is for a matrix. Recall the trace of a matrix is the sum of the eigen-
values.

It is also easy to see that in any Hilbert space, there exist nuclear operators. Let
∑

∞
k=1 |λ k|< ∞. Then let {ek} be an orthonormal set of vectors. Let A≡ ∑

∞
k=1 λ kek⊗ ek,λ k

real. It is not too hard to verify this works.
Much more can be said about nuclear operators.

22.5.2 Hilbert Schmidt Operators
In all of this, H,G will be separable Hilbert spaces.

Definition 22.5.14 Let T be a continuous linear mapping from H to G and when-
ever {ek} is an orthonormal basis for H, then ∑k ∥Tek∥2 < ∞. Such an operator is called a
Hilbert Schmidt operator.We write T ∈L2 (H,G) . Picking an orthonormal basis (complete
orthonormal set), define ∥T∥2

L2
≡ ∑k ∥Tek∥2

G .

It is necessary to show that this is well defined and does not depend on the orthonormal
basis. For now let the orthonormal basis be fixed.

Lemma 22.5.15 If T is Hilbert Schmidt, then ∥T∥L (H,G) ≤ ∥T∥L2(H,G). Also T ∗ is
Hilbert Schmidt and T ∗T is Hilbert Schmidt. In fact, if T ∈L2 (H,G) and S ∈L (G,H)
then ST ∈L2 (H,H).

Proof: Pick an orthonormal basis for H,{ek} ∑k ∥Tek∥2 < ∞ and an orthonormal basis
for G,{ fk}. Then let x = ∑

n
k=1 (x,ek)ek ≡ ∑

n
k=1 xkek. Then

∥T x∥=

(
∞

∑
k=1
|(T x, fk)|2

)1/2

=

 ∞

∑
k=1

∣∣∣∣∣
(

n

∑
j=1

x jTe j, fk

)∣∣∣∣∣
2
1/2

=

 ∞

∑
k=1

∣∣∣∣∣ n

∑
j=1

(x jTe j, fk)

∣∣∣∣∣
2
1/2

≤
n

∑
j=1

(
∞

∑
k=1

∣∣(x jTe j, fk)
∣∣2)1/2

≤
n

∑
j=1

∣∣x j
∣∣( ∞

∑
k=1

∣∣(Te j, fk)
∣∣2)1/2

=
n

∑
j=1

∣∣x j
∣∣∥∥Te j

∥∥≤( n

∑
j=1

∣∣x j
∣∣2)1/2( n

∑
j=1

∥∥Te j
∥∥2

)1/2

= ∥x∥∥T∥L2

Therefore, since finite sums of the form ∑
n
k=1 xkek are dense in H, it follows ∥T∥ ≤ ∥T∥L2

.

Letting { fi} be orthonormal in G,∥Tek∥2 = ∑ j
∣∣(Tek, f j)

∣∣2 and so

∑
k
∥Tek∥2 = ∑

k
∑

j

∣∣(Tek, f j)
∣∣2 = ∑

j
∑
k

∣∣(ek,T ∗ f j)
∣∣2 = ∑

j

∥∥T ∗ f j
∥∥2

so T ∗ is also Hilbert Schmidt.
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Let {ei} be an orthonormal basis for H so ∑i ∥Tei∥2 < ∞. Then

∑
i
∥T ∗Tei∥2 ≤ ∥T ∗∥2

∑
i
∥Tei∥2 < ∞

For the last claim, let {ek} be an orthonormal basis. Then

∑
k
∥ST (ek)∥2 ≤∑

k
∥S∥2 ∥Tek∥2 < ∞. ■

Definition 22.5.16 Define (S,T ) ≡ ∑k (Sek,Tek) where {ek} is a given orthonor-
mal basis. This is well defined because the sum converges absolutely. Indeed,

∑
k
|(Sek,Tek)| ≤∑

k
|Sek| |Tek| ≤

(
∑
k
|Sek|2

)1/2(
∑
k
|Tek|2

)1/2

< ∞

Definition 22.5.17 For X ∈ G and Y ∈ H,X ⊗Y (h) ≡ X (h,Y ) . This is a contin-
uous linear map from H to G because ∥X⊗Y (h)∥ = ∥X (h,Y )∥ ≤ ∥h∥∥Y∥∥X∥ . Next we
show X⊗Y ∈L2 (H,G) among other things.

Theorem 22.5.18 L2 (H,G) is a separable Hilbert space with norm given by

∥T∥L2
≡

(
∑
k
∥Tek∥2

)1/2

where {ek} is some fixed orthonormal basis for H. Also L2 (H,G)⊆L (H,G) and

∥T∥ ≤ ∥T∥L2
. (22.20)

All Hilbert Schmidt opearators are compact. Also for X ∈G and Y ∈H,X⊗Y ∈L2 (H,G)
and

∥X⊗Y∥L2
= ∥X∥G ∥Y∥H (22.21)

If T is Hilbert Schmidt, then so is T ∗T and T ∗and ST for any S ∈L (G,H). If T = T ∗ and
G = H, then the choice of orthonormal basis in computing ∥T∥L2

is not important.

Proof: Is ∥T∥L2
really a norm? This obviously is so except for the triangle inequality.

But this follows from the triangle inequality.

∥T +S∥L2
≡

(
∑
k
∥Tek +Sek∥2

)1/2

≤

(
∑
k
∥Tek∥2

)1/2

+

(
∑
k
∥Sek∥2

)1/2

= ∥T∥L2
+∥S∥L2

Next is the claim that L2 is a Hilbert space. So pick an orthonormal basis {ek}. It is
clear that L2 is an inner product space with respect to the inner product described above in
Definition 22.5.16.

Consider completeness. Suppose that {Tn} is a Cauchy sequence in L2 (H,G) . Then
from 22.20 {Tn} is a Cauchy sequence in L (H,G) and so there exists a unique T such



594 CHAPTER 22. HILBERT SPACES

that limn→∞ ∥Tn−T∥ = 0. Then it only remains to verify T ∈L2 (H,G) . But by Fatou’s
lemma, for {ek} orthonormal,

∑
k
∥Tek∥2 ≤ lim inf

n→∞
∑
k
∥Tnek∥2 ≡ lim inf

n→∞
∥Tn∥2

L2
< ∞.

All that remains is to verify L2 (H,G) is separable and these Hilbert Schmidt operators
are compact. I will show an orthonormal basis for L2 (H,G) is

{
f j⊗ ek

}
where { fk} is

an orthonormal basis for G and {ek} is an orthonormal basis for H. Here, for f ∈ G and
e ∈ H, f ⊗ e(x)≡ (x,e) f .

I need to show f j ⊗ ek ∈L2 (H,G) and that it is an orthonormal basis for L2 (H,G)
as claimed. Let the {ek} be the orthonormal basis used to define the inner product but the{

f j
}

are just an arbitrary orthonormal basis for G.

∑
k

∥∥ f j⊗ ei (ek)
∥∥2

= ∑
k

∥∥ f jδ ik
∥∥2

=
∥∥ f j
∥∥2

= 1 < ∞

so each of these operators is in L2 (H,G). As noted above, they are also each continuous.
Next I show they are orthonormal. From the definition of the inner product,

( f j⊗ ek, fs⊗ er) = ∑
p
( f j⊗ ek (ep) , fs⊗ er (ep))

= ∑
p

δ rpδ kp ( f j, fs) = ∑
p

δ rpδ kpδ js

If j = s and k = r this reduces to 1. Otherwise, this gives 0. Thus these operators are
orthonormal.

Why is L2 (H,G) a separable Hilbert space? Let T ∈L2 (H,G). Consider

Tn ≡
n

∑
i=1

n

∑
j=1

(Tei, f j) f j⊗ ei

Then

Tnek =
n

∑
i=1

n

∑
j=1

(Tei, f j)(ek,ei) f j =
n

∑
j=1

(Tek, f j) f j,

a partial sum for Tek. It follows ∥Tnek∥ ≤ ∥Tek∥ and limn→∞ Tnek = Tek. Therefore, from
the dominated convergence theorem,

lim
n→∞
∥T −Tn∥2

L2
≡ lim

n→∞
∑
k
∥(T −Tn)ek∥2 = 0.

Therefore, the linear combinations of the f j ⊗ ei are dense in L2 (H,G) and this proves
completeness of the orthonomal basis.

By only using rational scalars in the linear combinations we see that L2 (H,G) is sep-
arable. From 22.20 it also shows that every T ∈L2 (H,G) is the limit in the operator norm
of a sequence of compact operators. This follows because each of the f j⊗ ei is easily seen
to be a compact operator because if B⊆H is bounded, then ( f j⊗ ei)(B) is a bounded sub-
set of a one dimensional vector space so it is pre-compact. Thus Tn is compact, being a
finite sum of these. By Lemma 22.5.10, so is T .
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Consider 22.21.

∥X⊗Y∥2
L2
≡∑

k
∥X⊗Y (ek)∥2

G ≡∑
k
∥X (ek,Y )∥2

G

= ∥X∥2
G ∑

k
|(ek,Y )|2 = ∥X∥2

G ∥Y∥
2
H

Finally, consider the last claim. I need to show that for self adjoint operators in L2
the choice of orthonormal basis does not matter. This is because if {ek} ,

{
f j
}

are two
orthonormal bases, then

∑
k
∥Tek∥2 = ∑

k
∑

j

∣∣(Tek, f j)
∣∣2 = ∑

j
∑
k

∣∣(ek,T f j)
∣∣2 = ∑

j

∥∥T f j
∥∥2

.■

In fact the orthonormal basis does not matter in defining the norm of any Hilbert
Schmidt operator which is not surprising from linear algebra. I will show this as an ap-
plication a little later in Proposition 22.6.4.

22.6 Roots of Positive Linear Maps
In this section, H will be a Hilbert space, real or complex, and T will denote an operator
which satisfies the following definition. This will be a more general result than the above
because it will hold for infinite dimensional spaces.

Definition 22.6.1 Let T satisfy T = T ∗ (Hermitian) and for all x ∈ H,

(T x,x)≥ 0 (22.22)

Such an operator is referred to as positive and self adjoint. It is probably better to refer to
such an operator as “nonnegative” since the possibility that T x = 0 for some x ̸= 0 is not
being excluded. Instead of “self adjoint” you can also use the term, Hermitian. To save
on notation, write T ≥ 0 to mean T is positive, satisfying 22.22. When we say A ≤ B this
means B−A≥ 0.

A useful theorem about the existence of roots of positive self adjoint operators is pre-
sented. This proof is very elementary. I found it in [34] for square roots.

22.6.1 The Product of Positive Self Adjoint Operators
With the above definition here is a fundamental result about positive self adjoint operators.

Proposition 22.6.2 Let S,T be positive and self adjoint such that ST = T S. Then ST
is also positive and self adjoint.

Proof: It is obvious that ST is self adjoint.

(ST x,y) = (T Sx,y) = (Sx,Ty) = (x,STy)

The only problem is to show that ST is positive. The idea is to write S = Sn+1 +∑
n
k=0 S2

k
where S0 = S and the operators Sk are self adjoint. This is because if you have

(
T S2x,x

)
,
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where everything commutes, this equals (ST Sx,x) = (T Sx,Sx)≥ 0. Thus it will be possible
to deal with the terms of the sum which are squared. First assume (Sx,x)≤ (x,x) so S≤ I.

Define a sequence recursively as follows.

Sn+1 = Sn−S2
n, S≡ S0 (22.23)

Then ∑
n
k=0 S2

k = ∑
n
k=0 (Sk−Sk+1) = S−Sn+1, S = Sn+1+∑

n
k=0 S2

k . Now S0 ≥ 0 by assump-
tion. Assume Sn ≥ 0. Then

Sn+1 = Sn−S2
n = (I−Sn)Sn (Sn +(I−Sn)) = S2

n (I−Sn)+(I−Sn)
2 Sn

It follows that Sn+1 ≥ 0 because clearly those two terms on the end are positive. Therefore,

(Sx,x) = (Sn+1x,x)+
n

∑
k=0

(
S2

kx,x
)
≥

n

∑
k=0
∥Skx∥2 , (Sx,x)≥

∞

∑
k=0
∥Skx∥2

also and so limk→∞ ∥Skx∥= 0. T Sx = T Sn+1x+∑
n
k=0 T S2

kx.

(T Sx,x) = (Sn+1x,T x)+
n

∑
k=0

(
T S2

kx,x
)
= (Sn+1x,T x)+

n

∑
k=0

(T Skx,Skx)

so passing to a limit as n→ ∞,(T Sx,x) = 0+ limsupn→∞ ∑
n
k=0 (T Skx,Skx)≥ 0.

Thus if S≤ I, the theorem is proved. If S is general, S
∥S∥ ≤ I. In this case,

(
T S
∥S∥x,x

)
=(

S
∥S∥T x,x

)
≥ 0 and so (ST x,x)≥ 0. ■

The proposition is like the familiar statement about real numbers which says that when
you multiply two nonnegative real numbers the result is a nonnegative real number.

22.6.2 Roots of Positive Self Adjoint Operators
With this preparation, it is time to give the theorem about roots.

Theorem 22.6.3 Let T ∈L (H,H) be a positive self adjoint linear operator. Then
for m ∈ N, there exists a unique mth root A with the following properties. Am = T,A is
positive and self adjoint, A commutes with every operator which commutes with T .

Proof: Define the following sequence of operators:

A0 ≡ 0, An+1 ≡ An +
1
m
(T −Am

n )

Say T ≤ I.
Claim 1: An ≤ I.
Proof of Claim 1: True if n = 0. Assume true for n. Then

I−An+1 = I−An +
1
m
(Am

n −T )≥ I−An +
1
m
(Am

n − I)

= I−An−
1
m
(I−Am

n )

= (I−Am)−
1
m
(I−Am)

(
I + · · ·+Am−1

n
)
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Now, since An ≤ I, I + · · ·+Am−1
n ≤ mI, it follows that

= (I−Am)

(
I− 1

m

(
I + · · ·+Am−1

n
))
≥ (I−Am)(I− I) = 0

so by induction, An ≤ I.
Claim 2: An ≤ An+1.
Proof of Claim 2: From the definition of An, this is true if n = 0 because

A1 = T ≥ 0 = A0.

Suppose true for n. Then from Claim 1,

An+2−An+1 = An+1 +
1
m

(
T −Am

n+1
)
−
[

An +
1
m
(T −Am

n )

]
= An+1−An +

1
m

(
Am

n −Am
n+1
)

= (An+1−An)− (An+1−An)
1
m

(
Am−1

n+1 +Am−2
n+1 An + · · ·+Am−1

n
)

≥ (An+1−An)− (An+1−An) I = 0

since each An,An+1 ≤ I, so this proves the claim.
Claim 3: An ≥ 0
Proof of Claim 3: This is true if n = 0. Suppose it is true for n.

(An+1x,x) = (Anx,x)+
1
m
(T x,x)− 1

m
(Am

n x,x)

≥ (Anx,x)+
1
m
(T x,x)− 1

m
(Anx,x)≥ 0

because by Proposition 22.6.2, An−Am
n = An

(
I−Am−1

n
)
≥ 0 because An ≤ I.

Thus (Anx,x) is increasing and bounded above so it converges. Now let n > k. Using
Proposition 22.6.2 AnAk ≥ A2

k and also

(An−Ak)(An +Ak)≤ 2(An−Ak) .

Thus the following holds.

∥Anx−Akx∥2 =
(
(An−Ak)

2 x,x
)
=
(
A2

nx,x
)
−2(AnAkx,x)+

(
A2

kx,x
)

≤
(
A2

nx,x
)
−2
(
A2

kx,x
)
+
(
A2

kx,x
)
= ((An−Ak)(An +Ak)x,x)

≤ 2 [(Anx,x)− (Akx,x)]

which converges to 0 as k,n→ ∞. Therefore, limn→∞ Anx exists since {Anx} is a Cauchy
sequence. Let this limit be Ax. Then clearly A is linear. Also, since each An ≥ 0 and self
adjoint, the Cauchy Schwarz inequality implies

|(Ax,y)|= lim
n→∞
|(Anx,y)| ≤ lim sup

n→∞

∣∣∣(Anx,x)1/2 (Any,y)1/2
∣∣∣≤ ∥x∥∥y∥
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so A is also continuous. Now (Ax,x) = limn→∞ (Anx,x)≥ 0 so A is positive and it is clearly
also self adjoint since each An is. From passing to the limit in the definition of An,

Ax = Ax+
1
m
(T x−Amx)

and so T x = Amx. This proves the theorem in the case that T ≤ I. Then if T > I, consider
T/∥T∥. T/∥T∥ ≤ I and so there is B such that Bm = T/∥T∥ . Let A = ∥T∥1/m B. This
proves the existence of the mth root. It is clear that A commutes with every continuous
linear operator that commutes with T because this is true of each of the iterates. In fact,
each of these is just a polynomial in T . It remains to verify uniqueness.

Next suppose both A and B are mth roots of T having all the properties stated in the the-
orem. Then AB = BA because both A and B commute with every operator which commutes
with T . Then from Proposition 22.6.2,((

Am−1 +Am−2B+ ...+Bm−1)(A−B)x,(A−B)x
)
≥ 0 (22.24)

Therefore, ((Am−Bm)x,(A−B)x) = (0,(A−B)x) = 0.
Now this means

(
AkBl (A−B)x,(A−B)x

)
= 0 for all k+ l = m− 1 since the sum of

such terms is 0 and each of them is nonnegative. Now this implies(√
AkBl (A−B)x,

√
AkBl (A−B)x

)
= 0

and so
√

AkBl (A−B)x = 0⇒ AkBl (A−B)x = 0,k+ l = m−1. Then, using the binomial
theorem,

0 =

=(A−B)m−1

m−1

∑
j=0

(
m−1

j

)
Am−1− jB j (−1) j (A−B)x = (A−B)m x

This clearly implies A = B. To see this, consider m = 7.
If m = 7,(A−B)7 x = 0 so

(A−B)8 x = 0

so
(
(A−B)4 x,(A−B)4 x

)
= 0 which implies (A−B)4 x = 0 which implies(

(A−B)2 x,(A−B)2 x
)
= 0

so
(
(A−B)2 x,x

)
= 0 which yields ((A−B)x,(A−B)x) = 0, so (A−B) = 0. ■

This next was shown earlier, but this is a nice way to think of it in terms of a square
root.

Proposition 22.6.4 Let T ∈L2 (H,G). Then if {ek} ,
{

f j
}

are two orthonormal bases,
then ∑k ∥Tek∥2 = ∑k ∥T fk∥2 .

Proof: T ∗T is self adjoint and in L2 (H,H). Therefore,

∑
k

∥∥∥√T ∗T ek

∥∥∥2
= ∑

k
(T ∗Tek,ek) = ∑

k
∥Tek∥2
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which is finite. Thus
√

T ∗T is self adjoint and in L2 (H,H) and so

∑
k

∥∥∥√T ∗T ek

∥∥∥2
= ∑

k

∥∥∥√T ∗T fk

∥∥∥2
= ∑

k
∥T fk∥2

showing that ∑k ∥Tek∥2 = ∑k ∥T fk∥2. ■
There is a whole book on powers of operators. This has just given a short introduction.

See [33].

22.7 Differential Equations in Banach Space
Here we consider the initial value problem for functions which have values in a Banach
space. Let X be a Banach space.

Definition 22.7.1 Define BC ([a,b] ;X) as bounded continuous functions f which
have values in the Banach space X. For f ∈ BC ([a,b] ;X) , γ a real number. Then

∥ f∥
γ
≡ sup

t∈[a,b]

∥∥∥ f (t)eγ(t−a)
∥∥∥ (22.25)

Then this is a norm. The usual norm is given by ∥ f∥ ≡ supt∈[a,b] ∥ f (t)∥ .

Lemma 22.7.2 ∥·∥
γ

is a norm for BC ([a,b] ;X) and BC ([a,b] ;X) is a complete normed
linear space. Also, a sequence is Cauchy in ∥·∥

γ
if and only if it is Cauchy in ∥·∥.

Proof: First consider the claim about ∥·∥
γ

being a norm. To simplify notation, let
T = [a,b]. It is clear that ∥ f∥

γ
= 0 if and only if f = 0 and ∥ f∥

γ
≥ 0. Also,

∥α f∥
γ
≡ sup

t∈T

∥∥∥α f (t)eγ(t−a)
∥∥∥= |α|sup

t∈T

∥∥∥ f (t)eγ(t−a)
∥∥∥= |α|∥ f∥

γ

so it does what is should for scalar multiplication. Next consider the triangle inequality.

∥ f +g∥
γ

= sup
t∈T

∥∥∥( f (t)+g(t))eγ(t−a)
∥∥∥≤ sup

t∈T

(∣∣∣ f (t)eγ(t−a)
∣∣∣+ ∣∣∣g(t)eγ(t−a)

∣∣∣)
≤ sup

t∈T

∣∣∣ f (t)eγ(t−a)
∣∣∣+ sup

t∈T

∣∣∣g(t)eγ(t−a)
∣∣∣= ∥ f∥

γ
+∥g∥

γ

The rest follows from the next inequalities.

∥ f∥ ≡ sup
t∈T
∥ f (t)∥= sup

t∈T

∥∥∥ f (t)eγ(t−a)e−γ(t−a)
∥∥∥≤ e|γ(b−a)| ∥ f∥

γ

≡ e|γ(b−a)| sup
t∈T

∥∥∥ f (t)eγ(t−a)
∥∥∥≤ (e|γ|(b−a)

)2
sup
t∈T
∥ f (t)∥=

(
e|γ|(b−a)

)2
∥ f∥ ■

Now consider the ordinary initial value problem

x′ (t) = F (t,x(t)) , x(t0) = x0, t ∈ [a,b] , t0 ∈ [a,b] (22.26)

where here F : [a,b]×X → X is continuous and satisfies the Lipschitz condition

∥F (t,x)−F (t,y)∥ ≤ K ∥x− y∥ , F : [a,b]×X → X is continuous (22.27)
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Thanks to the fundamental theorem of calculus, there exists a solution to 22.26 if and only
if it is a solution to the integral equation

x(t) = x0 +
∫ t

t0
F (s,x(s))ds (22.28)

Then we have the following theorem.

Theorem 22.7.3 Let 22.27 hold. Then there exists a unique solution to 22.26 in
BC ([a,b] ;X).

Proof: Use the norm of 22.25 where γ ̸= 0 is described later. Let T : BC ([a,b] ;X)→
BC ([a,b] ;X) be defined by

T x(t)≡ x0 +
∫ t

t0
F (s,x(s))ds

Then

∥T x(t)−Ty(t)∥X =

∥∥∥∥∫ t

t0
F (s,x(s))ds−

∫ t

t0
F (s,y(s))ds

∥∥∥∥
≤ K

∫ t

t0
∥x(s)− y(s)∥ds = K

∫ t

t0

∥∥∥(x(s)− y(s))eγ(s−a)e−γ(s−a)
∥∥∥ds

≤ K
∫ t

t0
e−γ(s−a)ds∥x− y∥

γ
= K

(
e−γ(t−a)

−γ
+

e−γ(t0−a)

γ

)
∥x− y∥

γ

Therefore, letting γ < 0

eγ(t−a) ∥T x(t)−Ty(t)∥X ≤ K

(
1
−γ

+
eγ(t−t0)

γ

)
∥x− y∥

γ
< K

(
1
|γ|

)
∥x− y∥

γ

∥T x−Ty∥
γ
≤ K

(
1
|γ|

)
∥x− y∥

γ

Letting γ =−m2, this reduces to

∥T x−Ty∥−m2 ≤
K
m2 ∥x− y∥−m2

and so if K/m2 < 1/2, this shows the solution to the integral equation is the unique fixed
point of a contraction mapping defined on BC ([a,b] ;X). This shows existence and unique-
ness of the initial value problem 22.26. ■

Definition 22.7.4 Let S : [0,∞)→L (X ,X) be continuous and satisfy

1. S (t + s) = S (t)S (s) called the semigroup identity.

2. S (0) = I

3. limh→0+
S(h)x−x

h = Ax for A a densely defined closed linear operator whenever x ∈
D(A)⊆ X .
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Then S is called a continuous semigroup and A is said to generate S.

Then we have the following corollary of Theorem 22.7.3. First note the following. For
t ≥ 0 and h≥ 0, if x ∈ D(A) , the semigroup identity implies

lim
h→0

S (t +h)x−S (t)x
h

= lim
h→0

S (t)
S (h)x− x

h
= S (t) lim

h→0

S (h)x− x
h

≡ S (t)Ax

As shown above, L (X ,X) is a Banach space with the operator norm whenever X is a
Banach space.

Corollary 22.7.5 Let X be a Banach space and let A ∈L (X ,X) . Let S (t) be the solu-
tion in L (X ,X) to

S′ (t) = AS (t) , S (0) = I, t ≥ 0 (22.29)

Then t → S (t) is a continuous semigroup whose generator is A. In this case that A is
actually defined on all of X, not just on a dense subset. Furthermore, in this case where
A ∈ L (X ,X), S (t)A = AS (t) . If T (t) is any semigroup having A as a generator, then
T (t) = S (t). Also you can express S (t) as a power series, S (t) = ∑

∞
n=0

(At)
n!

n
.

Proof: The solution to the initial value problem 22.29 exists on [−b,b] for all b so
it exists on all of R thanks to the uniqueness on every finite interval. First consider the
semigroup property. Let Ψ(t)≡ S (t + s) ,Φ(t)≡ S (t)S (s) . Then

Ψ
′ (t) = S′ (t + s) = AS (t + s) = AΨ(t) , Ψ(0) = S (s)

Φ
′ (t) = S′ (t)S (s) = AS (t)S (s) = AΦ(t) , Φ(0) = S (s)

By uniqueness, Φ(t) = Ψ(t) for all t ≥ 0. Thus S (t)S (s) = S (t + s) = S (s)S (t) . Now
from this, for t > 0

S (t)A = S (t) lim
h→0

S (h)− I
h

= lim
h→0

S (t)
S (h)− I

h
= lim

h→0

S (h)− I
h

S (t) = AS (t) .

As to A being the generator of S (t) , letting x ∈ X , then from the differential equation
solved,

lim
h→0+

S (h)x− x
h

= lim
h→0+

1
h

∫ h

0
AS (t)xdt = AS (0)x = Ax.

If T (t) is a semigroup generated by A then for t > 0,

T ′ (t)≡ lim
h→0

T (t +h)−T (t)
h

= lim
h→0

T (h)− I
h

T (t) = AT (t)

and T (0) = I. However, uniqueness applies because T and S both satisfy the same initial
value problem and this yields T (t) = S (t).

To show the power series equals S (t) it suffices to show it satisfies the initial value
problem. Using the mean value theorem,

∞

∑
n=0

An ((t +h)n− tn)

n!
=

∞

∑
n=1

An (t +θ n (h))
n−1

(n−1)!
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where θ n (h) ∈ (0,h). Then taking a limit as h→ 0 and using the dominated convergence
theorem, the limit of the difference quotient is

∞

∑
n=1

Antn−1

(n−1)!
= A

∞

∑
n=1

An−1tn−1

(n−1)!
= A

∞

∑
n=0

(At)
n!

n

Thus ∑
∞
n=0

(At)
n!

n
satisfies the differential equation. It clearly satisfies the initial condition.

Hence it equals S (t). ■
Note that as a consequence of the above argument showing that T and S are the same, it

follows that T (t)A=AT (t) so one obtains that if the generator is a bounded linear operator,
then the semigroup commutes with this operator.

When dealing with differential equations, one of the best tools is Gronwall’s inequality.
This is presented next.

Theorem 22.7.6 Suppose u is nonnegative, continuous, and real valued and that

u(t)≤C+
∫ t

0
ku(s)ds, k ≥ 0

Then u(t)≤Cekt .

Proof: Let w(t)≡
∫ t

0 ku(s)ds. Then

w′ (t) = ku(t)≤ kC+ kw(t)

and so w′ (t)− kw(t)≤ kC which implies d
dt

(
e−ktw(t)

)
≤ kCe−kt . Therefore,

e−ktw(t)≤Ck
∫ t

0
e−ksds =Ck

(
1
k
− 1

k
e−kt

)
so w(t)≤C

(
ekt −1

)
. From the original inequality, u(t)≤C+w(t)≤C+Cekt−C =Cekt .

■

22.8 General Theory of Continuous Semigroups
Much more on semigroups is available in Yosida [60]. This is just an introduction to the
subject.

22.8.1 Generators of Semigroups

Definition 22.8.1 A strongly continuous semigroup defined on X ,a Banach space
is a function S : [0,∞)→ X which satisfies the following for all x0 ∈ X .

S (t) ∈ L (X ,X) ,S (t + s) = S (t)S (s) ,

t → S (t)x0 is continuous, lim
t→0+

S (t)x0 = x0

Sometimes such a semigroup is said to be C0. It is said to have the linear operator A as its
generator if

D(A)≡
{

x : lim
h→0

S (h)x− x
h

exists
}
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and for x ∈ D(A) , A is defined by

lim
h→0

S (h)x− x
h

≡ Ax

The assertion that t → S (t)x0 is continuous and that S (t) ∈ L (X ,X) is not suffi-
cient to say there is a bound on ∥S (t)∥ for all t ≥ 0. Also the assertion that for each
x0, limt→0+ S (t)x0 = x0 is not the same as saying that S (t)→ I in L (X ,X) . It is a much
weaker assertion. The next theorem gives information on the growth of ∥S (t)∥ . It turns out
it has exponential growth. Thus S (t) is a lot like et .

Lemma 22.8.2 Let M ≡ sup{∥S (t)∥ : t ∈ [0,T ]} . Then M < ∞.

Proof: If this is not true, then there exists tn ∈ [0,T ] such that ∥S (tn)∥ ≥ n. That is
the operators S (tn) are not uniformly bounded. By the uniform boundedness principle,
Theorem 21.1.9, there exists x ∈ X such that ∥S (tn)x∥ is not bounded. However, this is
impossible because it is given that t → S (t)x is continuous on [0,T ] and so t → ∥S (t)x∥
must achieve its maximum on this compact set. ■

Now here is the main result for growth of ∥S (t)∥.

Theorem 22.8.3 For M described in Lemma 22.8.2, there exists α such that

∥S (t)∥ ≤Meαt , t ≥ 0

In fact, α can be chosen such that M1/T = eα .

Proof: Let t be arbitrary. Then t = mT + r (t) where 0 ≤ r (t) < T . Then by the semi-
group property

∥S (t)∥= ∥S (mT + r (t))∥= ∥S (r (t))S (T )m∥ ≤Mm+1

Now mT ≤ t ≤ mT + r (t)≤ (m+1)T and so m≤ t
T ≤ m+1. Therefore,

∥S (t)∥ ≤M(t/T )+1 = M
(

M1/T
)t
.

Let M1/T ≡ eα and then ∥S (t)∥ ≤Meαt ■

Definition 22.8.4 Let S (t) be a continuous semigroup as described above. It is
called a contraction semigroup if for all t ≥ 0,∥S (t)∥≤ 1. It is called a bounded semigroup
if there exists M such that for all t ≥ 0,∥S (t)∥ ≤M.

Note that for S (t) an arbitrary continuous semigroup satisfying ∥S (t)∥ ≤Meαt , It fol-
lows that the semigroup, T (t) = e−αtS (t) is a bounded semigroup which satisfies ∥T (t)∥≤
M.

The next proposition has to do with taking a Laplace transform of a semigroup. It
suffices to let the integral be the usual Riemann integral for a function having values in a
Banach space. You define it the same way as in single variable calculus in terms of limits
of Riemann sums. Later, this will be generalized.
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Proposition 22.8.5 Given a continuous semigroup S (t) , its generator A exists and is a
closed densely defined operator. Furthermore, for ∥S (t)∥≤Meαt and λ > α, λ I−A is one
to one and onto from D(A) to X. Also (λ I−A)−1 maps X onto D(A) and is in L (X ,X).
Also for these values of λ > α,(λ I−A)−1 x =

∫
∞

0 e−λ tS (t)xdt.For λ > α, the following
estimate holds. ∥∥∥(λ I−A)−1

∥∥∥≤ M
|λ −α|

(22.30)

Proof: First note D(A) ̸= /0. In fact 0 ∈ D(A). It follows from Theorem 22.8.3 that for
all λ larger than α , one can define a Laplace transform, R(λ )x≡

∫
∞

0 e−λ tS (t)xdt ∈ X . The
integral is the ordinary improper Riemann integral. Note that for λ > α , R(λ ) ∈L (X ,X)
thanks to the estimates. Indeed, approximating with Riemann sums, to justify the details,

∥R(λ )x∥ ≤
∫

∞

0
e−λ t ∥S (t)x∥dt ≤

∫
∞

0
Me−(λ−α)tdt ∥x∥ ≤ M

|λ −α|
∥x∥ (22.31)

Claim 1: For λ > α,R(λ )x ∈D(A) and x = (λ I−A)R(λ )x so R(λ ) is a right inverse
of (λ I−A).

Proof of Claim 1: From the semigroup formula,

S (h)R(λ )x−R(λ )x
h

=
ehλ

∫
∞

0 e−λ (t+h)S (t +h)xdt−
∫

∞

0 e−λ tS (t)xdt
h

=

ehλ
∫

∞

h e−λ tS (t)xdt−
∫

∞

0 e−λ tS (t)xdt
h

=

(
ehλ −1

)
R(λ )x− eλh ∫ h

0 e−λ tS (t)xdt
h

Then it follows that the limit as h→ 0 exists and equals λR(λ )x−x which by definition of
A is A(R(λ )x). So by definition, R(λ )x∈D(A) as claimed, and λ IR(λ )x−A(R(λ )x)= x
and so x = (λ I−A)R(λ )x. This shows Claim 1.

Claim 2: D(A) is dense in X and for any x ∈ X , limλ→∞ λR(λ )x = x.
Proof of Claim 2: Note that

∫
∞

0 λe−λ tdt = 1 and so

∥λR(λ )x− x∥ =

∥∥∥∥∫ ∞

0
λe−λ tS (t)xdt− x

∥∥∥∥= ∥∥∥∥∫ ∞

0
λe−λ t (S (t)x− x)dt

∥∥∥∥
≤

∫
∞

0
λe−λ t ∥(S (t)x− x)∥dt

which from the estimates and standard approximate identity type arguments converges to
0 as follows: Let ε > 0 be given. Then choose δ such that ∥(S (t)x− x)∥< ε if 0≤ t ≤ δ .
Then for λ large enough the second term in the following is no more than ε∫

∞

0
λe−λ t ∥(S (t)x− x)∥dt ≤

∫
δ

0
λe−λ t

ε +
∫

∞

δ

λe−λ t (Meαt +1
)
∥x∥dt.

Thus for λ large enough,
∫

∞

0 λe−λ t ∥(S (t)x− x)∥dt < 2ε . This shows that D(A) is dense
in X and for any x, limλ→∞ λR(λ )x = x. This proves Claim 2.

Claim 3: For λ > α, x = R(λ )(λ I−A)x for x ∈ D(A) so (λ I−A) is one to one and
R(λ ) is a left inverse also. Thus R(λ ) = (λ I−A)−1 and from 22.31, estimate 22.30 holds.

Proof of Claim 3: If x ∈ D(A) , you could approximate with Riemann sums and pass
to a limit and obtain the following for λ > α.∥∥∥∥R(λ )

(
S (h)x− x

h

)
−R(λ )Ax

∥∥∥∥= ∥∥∥∥∫ ∞

0
e−λ tS (t)

(
S (h)x− x

h
−Ax

)
dt
∥∥∥∥
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≤
∫

∞

0

∥∥∥e−λ tS (t)
∥∥∥∥∥∥∥S (h)x− x

h
−Ax

∥∥∥∥dt

Then, passing to a limit as h→ 0+, this integrand converges uniformly to 0 so for all
λ > α,

lim
h→0

R(λ )

(
S (h)x− x

h

)
= R(λ )Ax (22.32)

Also, S (h) commutes with R(λ ) . This follows from approximating with Riemann sums
and taking a limit. Thus also

lim
h→0

R(λ )

(
S (h)x− x

h

)
= lim

h→0

(
S (h)R(λ )x−R(λ )x

h

)
= AR(λ )x

so we have for x ∈ D(A) ,R(λ )Ax = AR(λ )x. However, this implies

R(λ )(λ I−A)x = (λ I−A)R(λ )x = x

from Claim 1. Thus R(λ ) is a left inverse of (λ I−A). Since R(λ ) = (λ I−A)−1 , this
shows the estimate 22.30 from 22.31. This proves Claim 3.

Why is A a closed operator? Suppose xn → x where xn ∈ D(A) and that Axn → ξ . I
need to show that this implies that x ∈ D(A) and that Ax = ξ . Thus xn→ x and for λ > α,

(λ I−A)xn → λx− ξ . However, 22.30 shows that (λ I−A)−1 = R(λ ) is continuous and
so

xn→ (λ I−A)−1 (λx−ξ ) = x

It follows that x ∈ D(A) . Then doing (λ I−A) to both sides of the equation, λx− ξ =
λx−Ax and so Ax = ξ showing that A is a closed operator as claimed. ■

Definition 22.8.6 The linear mapping for λ > α where ∥S (t)∥ ≤ Meαt given by
(λ I−A)−1 = R(λ ) is called the resolvent.

The following corollary is also very interesting.

Corollary 22.8.7 Let S (t) be a continuous semigroup and let A be its generator. Then
for 0 < a < b < ∞ and x ∈D(A) , S (b)x−S (a)x =

∫ b
a S (t)Axdt and also for t > 0 you can

take the derivative from the left,

lim
h→0+

S (t)x−S (t−h)x
h

= S (t)Ax

Proof: Letting y∗ ∈ X ′, you can take y∗ inside the integral by approximating with
Riemann sums. Thus

y∗
(∫ b

a
S (t)Axdt

)
=
∫ b

a
y∗
(

S (t) lim
h→0

S (h)x− x
h

)
dt

The difference quotients are bounded because they converge to Ax. Therefore, from the
dominated convergence theorem and using the semigroup property,

y∗
(∫ b

a
S (t)Axdt

)
= lim

h→0

∫ b

a
y∗
(

S (t)
S (h)x− x

h

)
dt
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= lim
h→0

(
1
h

∫ b+h

a+h
y∗S (t)xdt− 1

h

∫ b

a
y∗S (t)xdt

)

= lim
h→0

(
1
h

∫ b+h

b
y∗S (t)xdt− 1

h

∫ a+h

a
y∗S (t)xdt

)
= y∗ (S (b)x−S (a)x)

Since y∗ is arbitrary, this proves the first part. Now from what was just shown, if t > 0 and
h is small enough,

S (t)x−S (t−h)x
h

=
1
h

∫ t

t−h
S (s)Axds

which converges to S (t)Ax as h→ 0+ . ■

22.8.2 Hille Yosida Theorem
Given a closed densely defined operator, when is it the generator of a continuous semi-
group? This is answered in the following theorem which is called the Hille Yosida theorem.
It concerns the case of a bounded semigroup. However, if you have an arbitrary continuous
semigroup, S (t) , then it was shown above that S (t)e−αt is bounded for suitable α so the
case discussed below is obtained.

Theorem 22.8.8 Suppose A is a densely defined linear operator which has the
property that for all λ > 0,

(λ I−A)−1 ∈L (X ,X)

which means that λ I − A : D(A)→ X is one to one and onto with continuous inverse.
Suppose also that for all n ∈ N, ∥∥∥((λ I−A)−1

)n∥∥∥≤ M
λ

n . (22.33)

Then there exists a continuous semigroup S (t) which has A as its generator and satisfies
∥S (t)∥ ≤M and A is closed. In fact letting

Sλ (t)≡ exp
(
−λ +λ

2 (λ I−A)−1
)
≡ exp(Aλ )

it follows limλ→∞ Sλ (t)x = S (t)x uniformly on finite intervals. Conversely, if A is the
generator of S (t) , a bounded continuous semigroup having ∥S (t)∥≤M, then (λ I−A)−1 ∈
L (X ,X) for all λ > 0 and 22.33 holds.

Proof: The condition 22.33 implies, that
∥∥∥(λ I−A)−1

∥∥∥≤ M
λ
.

Consider, for λ > 0, the operator which is defined on D(A) ,λ (λ I−A)−1 A. On D(A) ,
this equals

−λ I +λ
2 (λ I−A)−1 (22.34)

because

(λ I−A)λ (λ I−A)−1 A = λA

(λ I−A)
(
−λ I +λ

2 (λ I−A)−1
)

= −λ (λ I−A)+λ
2 = λA
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and, by assumption, (λ I−A) is one to one. From the second line of 22.34, the operator
−λ I +λ

2 (λ I−A)−1 makes sense on all of X not just on D(A). Also(
−λ I +λ

2 (λ I−A)−1
)
(λ I−A) =−λ (λ I−A)+λ

2I = λA

λA(λ I−A)−1 (λ I−A) = λA

so, since (λ I−A) is onto, it follows that on X ,

−λ I +λ
2 (λ I−A)−1 = Aλ (λ I−A)−1 ≡ Aλ

Denote this as Aλ to save notation. Thus on D(A) ,

λA(λ I−A)−1 = λ (λ I−A)−1 A = Aλ

although the λ (λ I−A)−1 A only makes sense on D(A).This is summarized next.

Lemma 22.8.9 There is a bounded linear operator given for λ > 0 by

−λ I +λ
2 (λ I−A)−1 = λA(λ I−A)−1 ≡ Aλ

On D(A) ,Aλ = λ (λ I−A)−1 A. Also, for all x ∈ X ,

lim
λ→∞

λ (λ I−A)−1 x− x = 0. (22.35)

Replacing x with Ax, it follows that for all x ∈ D(A) ,

lim
λ→∞

Aλ x = Ax. (22.36)

Proof: First assume x ∈ D(A)∥∥∥λ (λ I−A)−1 x− x
∥∥∥= ∥∥∥(λ I−A)−1 (λx− (λ I−A)x)

∥∥∥
=

∥∥∥(λ I−A)−1 Ax
∥∥∥≤ M

λ
∥Ax∥ (22.37)

which converges to 0 as λ → ∞.
Now let x be general and let x̂ ∈ D(A) . From 22.33,

∣∣∣λ (λ I−A)−1
∣∣∣≤M. Then∥∥∥λ (λ I−A)−1 x− x

∥∥∥ ≤
∥∥∥λ (λ I−A)−1 x−λ (λ I−A)−1 x̂

∥∥∥
+
∥∥∥λ (λ I−A)−1 x̂− x̂

∥∥∥+∥x̂− x∥

Let x̂ be close enough to x that the first and last terms on the right added together are less
than ε/2. Then whenever λ is large enough, the first part of the argument shows that the
middle term is no more than ε/2. This verifies 22.35, 22.36. ■

Now from Corollary 22.7.5, there exists an approximate continuous semigroup Sλ (t)
generated by Aλ which is the solution to

S′
λ
(t) = Aλ Sλ (t) ,Sλ (0) = I (22.38)
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In terms of power series,

Sλ (t)≡ e−λ t
∞

∑
k=0

tk
(

λ
2 (λ I−A)−1

)k

k!
= et(−λ I+λ

2(λ I−A)−1) (22.39)

Thus, by assumption 22.33 and triangle inequality,

∥Sλ (t)∥ ≤ e−λ t
∞

∑
k=0

tk

k!
λ

2k M

λ
k = e−λ tMeλ t = M (22.40)

Next is an easy observation about operators commuting.

Lemma 22.8.10 For λ ,µ > 0, (λ I−A)−1 and (µI−A)−1 commute.

Proof: Suppose

y = (µI−A)−1 (λ I−A)−1 x (22.41)

z = (λ I−A)−1 (µI−A)−1 x (22.42)

I need to show y = z. This follows from the observation that

(λ I−A)(µI−A)y = (µI−A)(λ I−A)y = (µI−A)(λ I−A)z = x

■
It follows from the description of Sλ (t) in terms of a power series that Sλ (t) and Sµ (s)

commute and also Aλ commutes with Sµ (t) for any t. Indeed, the absolute convergence of
the series 22.39 means we can use the Cauchy product to compute the product of these two
series and see Sλ (t) ,Sµ (t) commute. One could also exploit uniqueness and the theory of
ordinary differential equations to verify this. I will use this fact in what follows whenever
needed.

I want to show that for each x ∈ D(A) ,

lim
λ→∞

Sλ (t)x≡ S (t)x

where S (t) is the desired semigroup. Let x ∈ D(A) . Then

Sµ (t)x−Sλ (t)x =
∫ t

0

d
dr

(
Sλ (t− r)Sµ (r)

)
xdr

=
∫ t

0

(
−S′

λ
(t− r)Sµ (r)+Sλ (t− r)S′µ (r)

)
xdr

=
∫ t

0

(
Sλ (t− r)Sµ (r)Aλ −Sµ (r)Sλ (t− r)Aµ

)
xdr

=
∫ t

0
Sλ (t− r)Sµ (r)

(
Aµ x−Aλ x

)
dr

It follows that ∥∥Sµ (t)x−Sλ (t)x
∥∥≤ ∫ t

0

∥∥Sλ (t− r)Sµ (r)
(
Aµ x−Aλ x

)∥∥dr
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≤M2t
∥∥Aµ x−Aλ x

∥∥≤M2t
(∥∥Aµ x−Ax

∥∥+∥Ax−Aλ x∥
)

Now by Lemma 22.8.9, the right side converges uniformly to 0 in t ∈ [0,T ] an arbitrary
finite interval. Denote that to which it converges S (t)x. Therefore, t→ S (t)x is continuous
for each x ∈ D(A) and also from 22.40,

∥S (t)x∥= lim
λ→∞

∥Sλ (t)x∥ ≤M ∥x∥

so that S (t) can be extended uniquely to a continuous linear map, still called S (t) defined on
all of X which also satisfies ∥S (t)∥≤M since D(A) is dense in X . The uniform convergence
on [0,T ] implies t→ S (t) is continuous.

It remains to verify that A generates S (t) and for all x, limt→0+ S (t)x−x = 0. From the
above,

Sλ (t)x = x+
∫ t

0
Sλ (s)Aλ xds (22.43)

and so limt→0+ ∥Sλ (t)x− x∥ = 0. By the uniform convergence just shown, there exists λ

large enough that for all t ∈ [0,δ ] ,∥S (t)x−Sλ (t)x∥< ε. Then

lim sup
t→0+

∥S (t)x− x∥ ≤ lim sup
t→0+

(∥S (t)x−Sλ (t)x∥+∥Sλ (t)x− x∥)

≤ lim sup
t→0+

(ε +∥Sλ (t)x− x∥)≤ ε

It follows limt→0+ S (t)x = x because ε is arbitrary.
Next, limλ→∞ Aλ x = Ax for all x ∈ D(A) by Lemma 22.8.9. Therefore, passing to the

limit in 22.43 yields from the uniform convergence

S (t)x = x+
∫ t

0
S (s)Axds

and by continuity of s→ S (s)Ax, it follows

lim
h→0+

S (h)x− x
h

= lim
h→0

1
h

∫ h

0
S (s)Axds = Ax

Thus letting B denote the generator of S (t) , D(A) ⊆ D(B) and A = B on D(A) . It only
remains to verify D(A) = D(B) .

To do this, let λ > 0 and consider the following where y ∈ X is arbitrary.

(λ I−B)−1 y = (λ I−B)−1
(
(λ I−A)(λ I−A)−1 y

)
Now (λ I−A)−1 y ∈ D(A)⊆ D(B) and A = B on D(A) and so

(λ I−A)(λ I−A)−1 y = (λ I−B)(λ I−A)−1 y

which implies,
(λ I−B)−1 y =

(λ I−B)−1
(
(λ I−B)(λ I−A)−1 y

)
= (λ I−A)−1 y

Recall from Proposition 22.8.5, an arbitrary element of D(B) is of the form (λ I−B)−1 y
and this has shown every such vector is in D(A) , in fact it equals (λ I−A)−1 y. Hence
D(B)⊆ D(A) which shows A generates S (t) and this proves the first half of the theorem.
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Next suppose A is the generator of a semigroup S (t) having ∥S (t)∥ ≤ M. Then by
Proposition 22.8.5 for all λ > 0,(λ I−A) is onto and (λ I−A)−1 =

∫
∞

0 e−λ tS (t)dt. Thus,∥∥∥((λ I−A)−1
)n∥∥∥

=

∥∥∥∥∫ ∞

0
· · ·
∫

∞

0
e−λ (t1+···+tn)S (t1 + · · ·+ tn)dt1 · · ·dtn

∥∥∥∥
≤

∫
∞

0
· · ·
∫

∞

0
e−λ (t1+···+tn)Mdt1 · · ·dtn =

M
λ

n . ■

22.8.3 An Evolution Equation
When Λ generates a continuous semigroup, one can consider a very interesting theorem
about evolution equations of the form y′−Λy = g(t) provided t→ g(t) is C1.

Theorem 22.8.11 Let Λ be the generator of S (t) , a continuous semigroup on X , a
Banach space and let t→ g(t) be in C1 (0,∞;X). Then there exists a unique solution to the
initial value problem y′ = Λy+g, y(0) = y0 ∈ D(Λ) and it is given by

y(t) = S (t)y0 +
∫ t

0
S (t− s)g(s)ds. (22.44)

This solution is continuous having continuous derivative and has values in D(Λ).

Proof: First I show the following claim.
Claim: For t > 0,

∫ t
0 S (t− s)g(s)ds ∈ D(Λ) and

Λ

(∫ t

0
S (t− s)g(s)ds

)
= S (t)g(0)−g(t)+

∫ t

0
S (t− s)g′ (s)ds

Proof of the claim:

1
h

(
S (h)

∫ t

0
S (t− s)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)

=
1
h

(∫ t

0
S (t− s+h)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)
=

1
h

(∫ t−h

−h
S (t− s)g(s+h)ds−

∫ t

0
S (t− s)g(s)ds

)

=
1
h

∫ 0

−h
S (t− s)g(s+h)ds+

∫ t−h

0
S (t− s)

g(s+h)−g(s)
h

−1
h

∫ t

t−h
S (t− s)g(s)ds

Using the estimate in Theorem 22.8.3 on Page 603, the triangle inequality and the uniform
convergence of the integrands, the limit as h→ 0 of the above equals

S (t)g(0)−g(t)+
∫ t

0
S (t− s)g′ (s)ds
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which proves the claim since the limit exists and is therefore, Λ
(∫ t

0 S (t− s)g(s)ds
)
.

Since y0 ∈ D(Λ) ,

S (t)Λy0 = S (t) lim
h→0

S (h)y0− y0

h
= lim

h→0

S (t +h)−S (t)
h

y0

= lim
h→0+

S (h)S (t)y0−S (t)y0

h
≡ ΛS (t)y0 (22.45)

This is because the limit exists and so it is by definition the right side. So S (t)y0 ∈ D(Λ).
Now consider 22.44.

y(t +h)− y(t)
h

=
S (t +h)−S (t)

h
y0+

1
h

(∫ t+h

0
S (t− s+h)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)

=
S (t +h)−S (t)

h
y0 +

1
h

∫ t+h

t
S (t− s+h)g(s)ds

+
1
h

(
S (h)

∫ t

0
S (t− s)g(s)ds−

∫ t

0
S (t− s)g(s)ds

)
From the claim and 22.45, the limit of the right side is

ΛS (t)y0 +g(t)+Λ

(∫ t

0
S (t− s)g(s)ds

)
= Λ

(
S (t)y0 +

∫ t

0
S (t− s)g(s)ds

)
+g(t)

Hence y′ (t) = Λy(t)+g(t) and from the formula, y′ is continuous since by the claim and
22.45 it also equals

S (t)Λy0 +g(t)+S (t)g(0)−g(t)+
∫ t

0
S (t− s)g′ (s)ds

which is continuous. The claim and 22.45 also shows y(t) ∈ D(Λ). This proves the exis-
tence part of the lemma.

It remains to prove the uniqueness part. It suffices to show that if

y′−Λy = 0, y(0) = 0

and y is C1 having values in D(Λ) , then y = 0. Suppose then that y is this way. Letting
0 < s < t,

d
ds

(S (t− s)y(s))≡

lim
h→0

S (t− s−h)
y(s+h)− y(s)

h
− S (t− s)y(s)−S (t− s−h)y(s)

h

provided the limit exists. Since y′ exists and y(s) ∈ D(Λ) , this equals

S (t− s)y′ (s)−S (t− s)Λy(s) = 0.
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Let y∗ ∈ X ′. This has shown that on the open interval (0, t), s→ y∗ (S (t− s)y(s)) has a
derivative equal to 0. Also from continuity of S and y, this function is continuous on [0, t].
Therefore, it is constant on [0, t] by the mean value theorem. At s= 0, this function equals 0.
Therefore, it equals 0 on [0, t]. Thus for fixed s > 0 and letting t > s,y∗ (S (t− s)y(s)) = 0.
Now let t decrease toward s. Then y∗ (y(s)) = 0 and since y∗ was arbitrary, it follows
y(s) = 0. ■

22.8.4 Adjoints for Closed Operators, Hilbert Space
In Hilbert space, there are some special things which are true.

Definition 22.8.12 Let A be a densely defined closed operator on H a real Hilbert
space. Then A∗ is defined as follows.

D(A∗)≡ {y ∈ H : |(Ax,y)| ≤C |x|}

Then since D(A) is dense, there exists a unique element of H denoted by A∗y such that

(Ax,y) = (x,A∗y)

for all x ∈ D(A) .

Lemma 22.8.13 Let A be closed and densely defined on D(H) ⊆ H, a Hilbert space.
Then A∗ is also closed and densely defined. Also (A∗)∗ = A. If (λ I−A)−1 ∈ L (H,H) ,

then (λ I−A∗)−1 ∈L (H,H) and
((

(λ I−A)−1
)n)∗

=
(
(λ I−A∗)−1

)n
.

Proof: Denote by [x,y] an ordered pair in H×H. Define τ : H×H→ H×H by

τ [x,y]≡ [−y,x]

Then the definition of adjoint implies that for G (B) equal to the graph of B,

G (A∗) = (τG (A))⊥ (22.46)

In this notation the inner product on H×H with respect to which ⊥ is defined is given by

([x,y] , [a,b])≡ (x,a)+(y,b) .

Here is why this is so. For [x,A∗x] ∈ G (A∗) it follows that for all y ∈ D(A)

([x,A∗x] , [−Ay,y]) =−(Ay,x)+(y,A∗x) = 0

and so [x,A∗x] ∈ (τG (A))⊥ which shows G (A∗) ⊆ (τG (A))⊥. To obtain the other inclu-
sion, let [a,b] ∈ (τG (A))⊥ . This means that for all x ∈ D(A) ,

([a,b] , [−Ax,x]) = 0.

In other words, for all x ∈ D(A) ,(Ax,a) = (x,b) and so |(Ax,a)| ≤C |x| for all x ∈ D(A)
which shows a ∈ D(A∗) and (x,A∗a) = (x,b) for all x ∈ D(A) . Therefore, since D(A) is
dense, it follows b = A∗a and so [a,b] ∈ G (A∗) . This shows the other inclusion.
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Note that if V is any subspace of the Hilbert space H×H,
(
V⊥
)⊥

=V and S⊥ is always
a closed subspace. Also τ and ⊥ commute. The reason for this is that [x,y] ∈ (τV )⊥ means
that (x,−b)+(y,a) = 0. for all [a,b] ∈V and [x,y] ∈ τ

(
V⊥
)

means [−y,x] ∈V⊥ so for all
[a,b] ∈V , (−y,a)+ (x,b) = 0.which says the same thing. It is also clear that τ ◦ τ has the
effect of multiplication by −1.

It follows from the above description of the graph of A∗ that even if G (A) were not
closed it would still be the case that G (A∗) is closed.

Why is D(A∗) dense? Suppose z ∈ D(A∗)⊥ . Then for all y ∈ D(A∗) so that [y,Ay] ∈

G (A∗) , it follows [z,0] ∈ G (A∗)⊥ =
(
(τG (A))⊥

)⊥
= τG (A) but this implies [0,z] ∈

−G (A). and so z =−A0 = 0. Thus D(A∗) must be dense since there is no nonzero vector
in D(A∗)⊥ .

Since A is a closed operator, meaning G (A) is closed in H ×H, it follows from the
above formula that

G
(
(A∗)∗

)
=

(
τ

(
(τG (A))⊥

))⊥
=
(

τ (τG (A))⊥
)⊥

=
(
(−G (A))⊥

)⊥
=
(
G (A)⊥

)⊥
= G (A)

and so (A∗)∗ = A.
Now consider the final claim. First let y ∈D(A∗) = D(λ I−A∗) . Then letting x ∈H be

arbitrary, (
x,
(
(λ I−A)(λ I−A)−1

)∗
y
)

(
(λ I−A)(λ I−A)−1 x,y

)
=
(

x,
(
(λ I−A)−1

)∗
(λ I−A∗)y

)
Thus (

(λ I−A)(λ I−A)−1
)∗

= I =
(
(λ I−A)−1

)∗
(λ I−A∗) (22.47)

on D(A∗). Next let x ∈ D(A) = D(λ I−A) and y ∈ H arbitrary.

(x,y) =
(
(λ I−A)−1 (λ I−A)x,y

)
=
(
(λ I−A)x,

(
(λ I−A)−1

)∗
y
)

Now it follows
∣∣∣((λ I−A)x,

(
(λ I−A)−1

)∗
y
)∣∣∣≤ |y| |x| for any x ∈ D(A) and so(

(λ I−A)−1
)∗

y ∈ D(A∗)

Hence
(x,y) =

(
x,(λ I−A∗)

(
(λ I−A)−1

)∗
y
)
.

Since x ∈ D(A) is arbitrary and D(A) is dense, it follows

(λ I−A∗)
(
(λ I−A)−1

)∗
= I (22.48)

From 22.47 and 22.48 it follows (λ I−A∗)−1 =
(
(λ I−A)−1

)∗
and (λ I−A∗) is one to one

and onto with continuous inverse. Finally, from the above,(
(λ I−A∗)−1

)n
=
((

(λ I−A)−1
)∗)n

=
((

(λ I−A)−1
)n)∗

. ■
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With this preparation, here is an interesting result about the adjoint of the generator of
a continuous bounded semigroup. I found this in Balakrishnan [5].

Theorem 22.8.14 Suppose A is a densely defined closed operator which generates
a continuous semigroup, S (t) . Then A∗ is also a closed densely defined operator which
generates S∗ (t) and S∗ (t) is also a continuous semigroup.

Proof: First suppose S (t) is also a bounded semigroup, ∥S (t)∥ ≤ M. From Lemma
22.8.13 A∗ is closed and densely defined. It follows from the Hille Yosida theorem, Theo-
rem 22.8.8 that ∣∣∣((λ I−A)−1

)n∣∣∣≤ M
λ

n

From Lemma 22.8.13 and the fact the adjoint of a bounded linear operator preserves the
norm,

M
λ

n ≥
∣∣∣(((λ I−A)−1

)n)∗∣∣∣= ∣∣∣(((λ I−A)−1
)∗)n∣∣∣

=
∣∣∣((λ I−A∗)−1

)n∣∣∣
and so by Theorem 22.8.8 again it follows A∗ generates a continuous semigroup, T (t)
which satisfies ∥T (t)∥ ≤M. I need to identify T (t) with S∗ (t). However, from the proof of
Theorem 22.8.8 and Lemma 22.8.13, it follows that for x ∈ D(A∗) and a suitable sequence
{λ n} ,

(T (t)x,y) =

 lim
n→∞

e−λ nt
∞

∑
k=0

tk
(

λ
2
n (λ nI−A∗)−1

)k

k!
x,y



= lim
n→∞

e−λ nt
∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)∗

k!
x,y



= lim
n→∞

x,e−λ nt

 ∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)

k!

y


= (x,S (t)y) = (S∗ (t)x,y) .

Therefore, since y is arbitrary, S∗ (t) = T (t) on x ∈ D(A∗) a dense set and this shows the
two are equal. This proves the proposition in the case where S (t) is also bounded.

Next only assume S (t) is a continuous semigroup. Then by Proposition 22.8.5 there
exists α > 0 such that

∥S (t)∥ ≤Meαt .

Then consider the operator −αI +A and the bounded semigroup e−αtS (t). For x ∈ D(A)

lim
h→0+

e−αhS (h)x− x
h

= lim
h→0+

(
e−αh S (h)x− x

h
+

e−αh−1
h

x
)

= −αx+Ax
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Thus−αI+A generates e−αtS (t) and it follows from the first part that−αI+A∗ generates
e−αtS∗ (t) . Thus

−αx+A∗x = lim
h→0+

e−αhS∗ (h)x− x
h

= lim
h→0+

(
e−αh S∗ (h)x− x

h
+

e−αh−1
h

x
)

= −αx+ lim
h→0+

S∗ (h)x− x
h

showing that A∗ generates S∗ (t) . It follows from Proposition 22.8.5 that A∗ is closed and
densely defined. It is obvious S∗ (t) is a semigroup. Why is it continuous? This also
follows from the first part of the argument which establishes that e−αtS∗ (t) is continuous.
This proves the theorem.

22.8.5 Adjoints, Reflexive Banach Space
Here the adjoint of a generator of a semigroup is considered. I will show that the adjoint
of the generator generates the adjoint of the semigroup in a reflexive Banach space. This is
about as far as you can go although a general but less satisfactory result is given in Yosida
[60].

Definition 22.8.15 Let A be a densely defined closed operator on H a real Banach
space. Then A∗ is defined as follows.

D(A∗)≡
{

y∗ ∈ H ′ : |y∗ (Ax)| ≤C ||x|| for all x ∈ D(A)
}

Then since D(A) is dense, there exists a unique element of H ′ denoted by A∗y such that

A∗ (y∗)(x) = y∗ (Ax)

for all x ∈ D(A) .

Lemma 22.8.16 Let A be closed and densely defined on D(A) ⊆ H, a Banach space.
Then A∗ is also closed and densely defined. Also (A∗)∗ = A. In addition to this, if

(λ I−A)−1 ∈L (H,H) ,

then (λ I−A∗)−1 ∈L (H ′,H ′) and((
(λ I−A)−1

)n)∗
=
(
(λ I−A∗)−1

)n

Proof: Denote by [x,y] an ordered pair in H×H. Define τ : H×H→ H×H by

τ [x,y]≡ [−y,x]

A similar notation will apply to H ′×H ′. Then the definition of adjoint implies that for
G (B) equal to the graph of B,

G (A∗) = (τG (A))⊥ (22.49)
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For S⊆ H×H, define S⊥ by{
[a∗,b∗] ∈ H ′×H ′ : a∗ (x)+b∗ (y) = 0 for all [x,y] ∈ S

}
If S⊆ H ′×H ′ a similar definition holds.

{[x,y] ∈ H×H : a∗ (x)+b∗ (y) = 0 for all [a∗,b∗] ∈ S}

Here is why 22.49 is so. For [x∗,A∗x∗] ∈ G (A∗) it follows that for all y ∈ D(A)

x∗ (Ay) = A∗x∗ (y)

and so for all [y,Ay] ∈ G (A) ,

−x∗ (Ay)+A∗x∗ (y) = 0

which is what it means to say [x∗,A∗x∗] ∈ (τG (A))⊥ . This shows

G (A∗)⊆ (τG (A))⊥

To obtain the other inclusion, let [a∗,b∗] ∈ (τG (A))⊥ . This means that for all [x,Ax] ∈
G (A) ,

−a∗ (Ax)+b∗ (x) = 0

In other words, for all x ∈ D(A) ,

|a∗ (Ax)| ≤ ∥b∗∥∥x∥

which means by definition, a∗ ∈ D(A∗) and A∗a∗ = b∗. Thus [a∗,b∗] ∈ G (A∗).This shows
the other inclusion.

Note that if V is any subspace of H ×H,
(
V⊥
)⊥

= V . and S⊥ is always a closed
subspace. Also τ and ⊥ commute. The reason for this is that [x∗,y∗] ∈ (τV )⊥ means that

−x∗ (b)+ y∗ (a) = 0

for all [a,b] ∈V and [x∗,y∗] ∈ τ
(
V⊥
)

means [−y∗,x∗] ∈ −
(
V⊥
)
=V⊥ so for all [a,b] ∈V,

−y∗ (a)+ x∗ (b) = 0

which says the same thing. It is also clear that τ ◦ τ has the effect of multiplication by −1.
If V ⊆ H ′×H ′, the argument for commuting ⊥ and τ is similar.

It follows from the above description of the graph of A∗ that even if G (A) were not
closed it would still be the case that G (A∗) is closed.

Why is D(A∗) dense? If it is not dense, then by a typical application of the Hahn
Banach theorem, there exists y∗∗ ∈ H ′′ such that y∗∗ (D(A∗)) = 0 but y∗∗ ̸= 0. Since H is
reflexive, there exists y ∈ H such that x∗ (y) = 0 for all x∗ ∈ D(A∗) . Thus

[y,0] ∈ G (A∗)⊥ =
(
(τG (A))⊥

)⊥
= τG (A)

and so [0,y] ∈ G (A) which means y = A0 = 0, a contradiction. Thus D(A∗) is indeed
dense. Note this is where it was important to assume the space is reflexive. If you consider
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C ([0,1]) it is not dense in L∞ ([0,1]) but if f ∈ L1 ([0,1]) satisfies
∫ 1

0 f gdm = 0 for all
g ∈C ([0,1]) , then f = 0. Hence there is no nonzero f ∈C ([0,1])⊥.

Since A is a closed operator, meaning G (A) is closed in H ×H, it follows from the
above formula that

G
(
(A∗)∗

)
=

(
τ

(
(τG (A))⊥

))⊥
=
(

τ (τG (A))⊥
)⊥

=
(
(−G (A))⊥

)⊥
=
(
G (A)⊥

)⊥
= G (A)

and so (A∗)∗ = A.
Now consider the final claim. First let y∗ ∈ D(A∗) = D(λ I−A∗) . Then letting x ∈ H

be arbitrary,

y∗ (x) =
(
(λ I−A)(λ I−A)−1

)∗
y∗ (x) = y∗

(
(λ I−A)(λ I−A)−1 x

)
Since y∗ ∈D(A∗) and (λ I−A)−1 x ∈D(A) , this equals (λ I−A)∗ y∗

(
(λ I−A)−1 x

)
. Now

by definition, this equals
(
(λ I−A)−1

)∗
(λ I−A)∗ y∗ (x). It follows that for y∗ ∈ D(A∗) ,

(
(λ I−A)−1

)∗
(λ I−A)∗ y∗ =

(
(λ I−A)−1

)∗
(λ I−A∗)y∗ = y∗ (22.50)

Next let y∗ ∈ H ′ be arbitrary and x ∈ D(A)

y∗ (x) = y∗
(
(λ I−A)−1 (λ I−A)x

)
=
(
(λ I−A)−1

)∗
y∗ ((λ I−A)x)

= (λ I−A)∗
(
(λ I−A)−1

)∗
y∗ (x)

In going from the second to the third line, the first line shows
(
(λ I−A)−1

)∗
y∗ ∈ D(A∗)

and so the third line follows. Since D(A) is dense, it follows

(λ I−A∗)
(
(λ I−A)−1

)∗
= I (22.51)

Then 22.50 and 22.51 show λ I−A∗ is one to one and onto from D(A∗) to H ′ and

(λ I−A∗)−1 =
(
(λ I−A)−1

)∗
.

Finally, from the above,
(
(λ I−A∗)−1

)n
=
((

(λ I−A)−1
)∗)n

=
((

(λ I−A)−1
)n)∗

. This
proves the lemma.

With this preparation, here is an interesting result about the adjoint of the generator of
a continuous bounded semigroup.

Theorem 22.8.17 Suppose A is a densely defined closed operator which generates
a continuous semigroup, S (t) . Then A∗ is also a closed densely defined operator which
generates S∗ (t) and S∗ (t) is also a continuous semigroup.
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Proof: First suppose S (t) is also a bounded semigroup, ∥S (t)∥ ≤ M. From Lemma
22.8.16 A∗ is closed and densely defined. It follows from the Hille Yosida theorem, Theo-
rem 22.8.8 that ∥∥∥((λ I−A)−1

)n∥∥∥≤ M
λ

n

From Lemma 22.8.16 and the fact the adjoint of a bounded linear operator preserves the
norm,

M
λ

n ≥
∥∥∥(((λ I−A)−1

)n)∗∥∥∥= ∥∥∥(((λ I−A)−1
)∗)n∥∥∥= ∥∥∥((λ I−A∗)−1

)n∥∥∥
and so by Theorem 22.8.8 again it follows A∗ generates a continuous semigroup, T (t)
which satisfies ||T (t)|| ≤M. I need to identify T (t) with S∗ (t). However, from the proof of
Theorem 22.8.8 and Lemma 22.8.16, it follows that for x∗ ∈D(A∗) and a suitable sequence
{λ n} ,

T (t)x∗ (y) = lim
n→∞

e−λ nt
∞

∑
k=0

tk
(

λ
2
n (λ nI−A∗)−1

)k

k!
x∗ (y)

= lim
n→∞

e−λ nt
∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)∗

k!
x∗ (y)

= lim
n→∞

x∗

e−λ nt

 ∞

∑
k=0

tk
((

λ
2
n (λ nI−A)−1

)k
)

k!
y


= x∗ (S (t)y) = S∗ (t)x∗ (y) .

Therefore, since y is arbitrary, S∗ (t)= T (t) on x∈D(A∗) a dense set and this shows the two
are equal. In particular, S∗ (t) is a semigroup because T (t) is. This proves the proposition
in the case where S (t) is also bounded.

Next only assume S (t) is a continuous semigroup. Then by Proposition 22.8.5 there
exists α > 0 such that ∥S (t)∥≤Meαt . Then consider the operator−αI+A and the bounded
semigroup e−αtS (t). For x ∈ D(A)

lim
h→0+

e−αhS (h)x− x
h

= lim
h→0+

(
e−αh S (h)x− x

h
+

e−αh−1
h

x
)
=−αx+Ax

Thus−αI+A generates e−αtS (t) and it follows from the first part that−αI+A∗ generates
the semigroup e−αtS∗ (t) . Thus

−αx+A∗x = lim
h→0+

e−αhS∗ (h)x− x
h

= lim
h→0+

(
e−αh S∗ (h)x− x

h
+

e−αh−1
h

x
)
=−αx+ lim

h→0+

S∗ (h)x− x
h

showing that A∗ generates S∗ (t) . It follows from Proposition 22.8.5 that A∗ is closed and
densely defined. It is obvious S∗ (t) is a semigroup. Why is it continuous? This also follows
from the first part of the argument which establishes that t→ e−αtS∗ (t)x is continuous. ■
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22.9 Exercises
1. For f ,g ∈C ([0,1]) let ( f ,g) =

∫ 1
0 f (x)g(x)dx. Is this an inner product space? Is it a

Hilbert space? What does the Cauchy Schwarz inequality say in this context?

2. Let S denote the unit sphere in a Banach space X , S ≡ {x ∈ X : ∥x∥= 1} . Show
that if Y is a Banach space, then A ∈ L (X ,Y ) is compact if and only if A(S) is
precompact, A(S) is compact. A ∈L (X ,Y ) is said to be compact if whenever B is
a bounded subset of X , it follows A(B) is a compact subset of Y. In words, A takes
bounded sets to precompact sets.

3. ↑ Show that A ∈L (X ,Y ) is compact if and only if A∗ is compact. Hint: Use the
result of 2 and the Ascoli Arzela theorem to argue that for S∗ the unit ball in X ′,
there is a subsequence, {y∗n} ⊆ S∗ such that y∗n converges uniformly on the compact
set, A(S). Thus {A∗y∗n} is a Cauchy sequence in X ′. To get the other implication,
apply the result just obtained for the operators A∗ and A∗∗. Then use results about
the embedding of a Banach space into its double dual space.

4. Prove the parallelogram identity, |x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2. Next suppose
(X ,∥ ∥) is a real normed linear space and the parallelogram identity holds. Can it be
concluded there exists an inner product (·, ·) such that ∥x∥= (x,x)1/2?

5. Let K be a closed, bounded and convex set in Rn and let f : K→ Rn be continuous
and let y ∈ Rn. Show using the Brouwer fixed point theorem there exists a point
x ∈ K such that P(y−f (x)+x) = x. Next show that (y−f (x) ,z−x) ≤ 0 for
all z ∈ K. The existence of this x is known as Browder’s lemma and it has great
significance in the study of certain types of nolinear operators. Now suppose f :
Rn → Rn is continuous and satisfies lim|x|→∞

(f(x),x)
|x| = ∞.Show using Browder’s

lemma that f is onto.

6. Show that every inner product space is uniformly convex. This means that if xn,yn are
vectors whose norms are no larger than 1 and if ∥xn + yn∥ → 2, then ∥xn− yn∥ → 0.
More precisely, for every ε > 0, there is a δ > 0 such that if ∥x+ y∥ > 2− δ for
∥x∥ ,∥y∥ both 1, then ∥x− y∥< ε .

7. Let H be separable and let S be an orthonormal set. Show S is countable. Hint: How
far apart are two elements of the orthonormal set?

8. Suppose {x1, · · · ,xm} is a linearly independent set of vectors in a normed linear
space. Show span(x1, · · · ,xm) is a closed subspace. Also show every orthonormal
set of vectors is linearly independent.

9. Show every Hilbert space, separable or not, has a maximal orthonormal set of vec-
tors.

10. ↑ Prove Bessel’s inequality, which says that if {xn}∞
n=1 is an orthonormal set in H,

then for all x ∈ H, ∥x∥2 ≥ ∑
∞
k=1 |(x,xk)|2. Hint: Show that if M = span(x1, · · · ,xn),

then Px = ∑
n
k=1 xk(x,xk). Then observe ∥x∥2 = ∥x−Px∥2 +∥Px∥2.

11. ↑ Show S is a maximal orthonormal set if and only if span(S) is dense in H, where
span(S) is defined as span(S)≡ {all finite linear combinations of elements of S}.
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12. ↑ Suppose {xn}∞
n=1 is a maximal orthonormal set. Show that x = ∑

∞
n=1(x,xn)xn ≡

limN→∞ ∑
N
n=1(x,xn)xn and ∥x∥2 = ∑

∞
i=1 |(x,xi)|2. Show (x,y) = ∑

∞
n=1(x,xn)(y,xn).

Hint: For the last part of this, you might proceed as follows. Show ((x,y)) ≡
∑

∞
n=1(x,xn)(y,xn) is a well defined inner product on the Hilbert space which delivers

the same norm as the original inner product. Then you could verify that there ex-
ists a formula for the inner product in terms of the norm and conclude the two inner
products, (·, ·) and ((·, ·)) must coincide.

13. Suppose X is an infinite dimensional Banach space and suppose {x1 · · ·xn} are lin-
early independent with ∥xi∥= 1. By Problem 8 span(x1 · · ·xn)≡ Xn is a closed linear
subspace of X . Now let z /∈ Xn and pick y ∈ Xn such that ∥z− y∥ ≤ 2 dist(z,Xn) and
let xn+1 =

z−y
∥z−y∥ . Show the sequence {xk} satisfies ∥xn− xk∥ ≥ 1/2 whenever k < n.

Now show the unit ball {x ∈ X : ∥x∥ ≤ 1} in a normed linear space is compact if and
only if X is finite dimensional. Hint:

∥∥∥ z−y
∥z−y∥ − xk

∥∥∥= ∥∥∥ z−y−xk∥z−y∥
∥z−y∥

∥∥∥.
14. Show that if A is a self adjoint operator on a Hilbert space and Ay = λy for λ a

complex number and y ̸= 0, then λ must be real. Also verify that if A is self adjoint
and Ax = µx while Ay = λy, then if µ ̸= λ , it must be the case that (x,y) = 0.

15. Theorem 22.8.11 gives the the existence and uniqueness for an evolution equation of
the form y′−Λy = g, y(0) = y0 ∈ D(Λ) where g is in C1 (0,∞;H) for H a Banach
space. Recall Λ was the generator of a continuous semigroup S (h). Generalize this
to an equation of the form

y′−Λy = g+Ly, y(0) = y0 ∈ H

where L is a continuous linear map. Hint: You might consider Λ+L and show it
generates a continuous semigroup. Then apply the theorem.

16. Generalize Theorem 22.8.11 in case you know that for each t > 0,S (t)x ∈ D(Λ) .
You might see about removing the differentiability of g as a requirement and maybe
the assumption that y0 ∈ D(Λ). Analytic semigroups have this property. There we
typically start with the closed operator and construct the semigroup S (t) using meth-
ods from complex analysis.



Chapter 23

Representation Theorems
23.1 Radon Nikodym Theorem

This chapter is on various representation theorems. The first theorem, the Radon Nikodym
Theorem, is a representation theorem for one measure in terms of another. This important
theorem represents one measure in terms of another. It is Theorem 10.13.7 on Page 302.
For a very different approach, see [50] which has a nice proof due to Von Neumann which is
based not on the Hahn decomposition of a signed measure, but on the Riesz representation
theorem in Hilbert space.

Definition 23.1.1 Let µ and λ be two measures defined on a σ -algebra S , of
subsets of a set, Ω. λ is absolutely continuous with respect to µ,written as λ ≪ µ, if
λ (E) = 0 whenever µ(E) = 0. A complex measure λ defined on a σ -algebra S is one
which has the property that if the Ei are distinct and measurable, then λ (∪iEi) = ∑i λ (Ei).
It is a complex measure because each λ (Ei) ∈ C.

Recall Corollary10.13.11 on Page 302 which involves the case where λ is a signed
measure. I am stating it next for convenience.

Corollary 23.1.2 Let µ be a finite measure and λ a signed measure (λ (E) ∈ R) with
λ ≪ µ meaning that if µ (E) = 0 then λ (E) = 0. Then there exists h∈ L1 such that λ (E) =∫

E hdµ .

There is an easy corollary to this which includes complex measures.

Theorem 23.1.3 Let λ be a complex measure and λ ≪ µ for µ a finite measure.
Then there exists h ∈ L1 such that λ (E) =

∫
E hdµ .

Proof: Let (Reλ )(E) = Re(λ (E)) with Imλ defined similarly. Then these are signed
measures and so there are functions f1, f2 in L1 such that Reλ (E) =

∫
E f1dµ, Imλ (E) =∫

E f2dµ. Then h≡ f1 + i f2 satisfies the necessary condition. ■
More general versions of the Radon Nikodym theorem available. To see one of these,

one can read the treatment in Hewitt and Stromberg [26]. This involves the notion of
decomposable measure spaces, a generalization of σ finite.

23.2 Vector Measures
A vector measure is a generalization of a signed or complex measure and it can have values
in any topological vector space. Whole books have been written on this subject. See for
example the book by Diestal and Uhl [13] titled Vector Measures. I will emphasize only
normed linear spaces. This section is about representing one of these measures with respect
to its total variation.

Definition 23.2.1 Let (V,∥ · ∥) be a normed linear space and let (Ω,S ) be a mea-
sure space. A function µ : S → V is a vector measure if µ is countably additive. That is,
if {Ei}∞

i=1 is a sequence of disjoint sets of S ,

µ(∪∞
i=1Ei) =

∞

∑
i=1

µ(Ei).

A signed measure is an example as in Definition 10.13.2 on Page 300.

621
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Note that it makes sense to take finite sums because it is given that µ has values in a
vector space in which vectors can be summed. In the above, µ (Ei) is a vector. It might be
a point in Rp or in any other vector space. In many of the most important applications, it
is a vector in some sort of function space which may be infinite dimensional. The infinite
sum has the usual meaning. That is ∑

∞
i=1 µ(Ei) = limn→∞ ∑

n
i=1 µ(Ei) where the limit takes

place relative to the norm on V .

Definition 23.2.2 Let (Ω,S ) be a measure space and let µ be a vector measure
defined on S . A subset, π(E), of S is called a partition of E if π(E) consists of finitely
many disjoint sets of S and ∪π(E) = E. Let

|µ|(E) = sup{ ∑
F∈π(E)

∥µ(F)∥ : π(E) is a partition of E}.

|µ| is called the total variation of µ .

The next theorem may seem a little surprising. It states that, if finite, the total variation
is a nonnegative measure.

Theorem 23.2.3 If |µ|(Ω) < ∞, then |µ| is a measure on S . Even if |µ|(Ω) =
∞, |µ|(∪∞

i=1Ei) ≤ ∑
∞
i=1 |µ|(Ei) . That is |µ| is always subadditive and |µ|(A) ≤ |µ|(B)

whenever A,B ∈S with A⊆ B. In earlier terminology, |µ| is an outer measure.

Proof: Consider the last claim. Let a < |µ|(A) and let π (A) be a partition of A such
that a < ∑F∈π(A) ∥µ (F)∥ . Then π (A)∪{B\A} is a partition of B and

|µ|(B)≥ ∑
F∈π(A)

∥µ (F)∥+∥µ (B\A)∥> a.

Since this is true for all such a, it follows |µ|(B)≥ |µ|(A) as claimed.
Let

{
E j
}∞

j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞
j=1E j. Then letting

a < |µ|(E∞) , it follows from the definition of total variation there exists a partition of
E∞, π(E∞) = {A1, · · · ,An} such that a < ∑

n
i=1 ∥µ(Ai)∥. Also, Ai = ∪∞

j=1Ai∩E j and so by
the triangle inequality, ∥µ(Ai)∥ ≤ ∑

∞
j=1
∥∥µ(Ai∩E j)

∥∥. Therefore, by the above, and either
Fubini’s theorem or Lemma 2.5.4 on Page 65,

a <
n

∑
i=1

≥∥µ(Ai)∥︷ ︸︸ ︷
∞

∑
j=1

∥∥µ(Ai∩E j)
∥∥= ∞

∑
j=1

n

∑
i=1

∥∥µ(Ai∩E j)
∥∥≤ ∞

∑
j=1
|µ|(E j)

because
{

Ai∩E j
}n

i=1 is a partition of E j.
Since a is arbitrary, this shows |µ|(∪∞

j=1E j) ≤ ∑
∞
j=1 |µ|(E j). If the sets, E j are not

disjoint, let F1 = E1 and if Fn has been chosen, let Fn+1 ≡ En+1 \∪n
i=1Ei. Thus the sets, Fi

are disjoint and ∪∞
i=1Fi = ∪∞

i=1Ei. Therefore,

|µ|
(
∪∞

j=1E j
)
= |µ|

(
∪∞

j=1Fj
)
≤

∞

∑
j=1
|µ|(Fj)≤

∞

∑
j=1
|µ|(E j)

and proves |µ| is always subadditive as claimed, regardless of whether |µ|(Ω)< ∞.
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Now suppose |µ|(Ω)< ∞ and let E1 and E2 be sets of S such that E1∩E2 = /0 and let
{Ai

1 · · ·Ai
ni
}= π(Ei), a partition of Ei which is chosen such that

|µ|(Ei)− ε <
ni

∑
j=1

∥∥µ(Ai
j)
∥∥ i = 1,2.

Such a partition exists because of the definition of the total variation. Considering the sets
which are contained in either of π (E1) or π (E2) , it follows this finite collection of sets is a
partition of E1∪E2 denoted by π(E1∪E2). Then by the above inequality and the definition
of total variation,

|µ|(E1∪E2)≥ ∑
F∈π(E1∪E2)

∥µ(F)∥> |µ|(E1)+ |µ|(E2)−2ε ,

which shows that since ε > 0 was arbitrary, |µ|(E1∪E2)≥ |µ|(E1)+ |µ|(E2). By induction,
whenever the Ei are disjoint, |µ|(∪n

j=1E j)≥ ∑
n
j=1 |µ|(E j). Therefore,

∞

∑
j=1
|µ|(E j)≥ |µ|(∪∞

j=1E j)≥ |µ|(∪n
j=1E j)≥

n

∑
j=1
|µ|(E j).

Now let n→ ∞. Thus, |µ|(∪∞
j=1E j) = ∑

∞
j=1 |µ|(E j) which shows that |µ| is a measure as

claimed. ■
The following corollary is interesting. It concerns the case that µ is only finitely addi-

tive.

Corollary 23.2.4 Suppose (Ω,F ) is a set with a σ algebra of subsets F and suppose
µ : F → C is only finitely additive. That is, µ

(
∪n

i=1Ei
)
= ∑

n
i=1 µ (Ei) whenever the Ei are

disjoint. Then |µ| , defined in the same way as above, is also finitely additive provided |µ|
is finite.

Proof: Say E ∩F = /0 for E,F ∈F . Let π (E) ,π (F) suitable partitions for which the
following holds.

|µ|(E ∪F)≥ ∑
A∈π(E)

|µ (A)|+ ∑
B∈π(F)

|µ (B)| ≥ |µ|(E)+ |µ|(F)−2ε.

Since ε is arbitrary, |µ|(E ∩F) ≥ |µ|(E)+ |µ|(F) . Similar considerations apply to any
finite union of disjoint sets. That is, if the Ei are disjoint, then |µ|

(
∪n

i=1Ei
)
≥∑

n
i=1 |µ|(Ei) .

Now let E = ∪n
i=1Ei where the Ei are disjoint. Then letting π (E) be a suitable partition

of E,
|µ|(E)− ε ≤ ∑

F∈π(E)
|µ (F)| ,

it follows that

|µ|(E)≤ ε + ∑
F∈π(E)

|µ (F)|= ε + ∑
F∈π(E)

∣∣∣∣∣ n

∑
i=1

µ (F ∩Ei)

∣∣∣∣∣
≤ ε +

n

∑
i=1

∑
F∈π(E)

|µ (F ∩Ei)| ≤ ε +
n

∑
i=1
|µ|(Ei)
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Since ε is arbitrary, this shows |µ|
(
∪n

i=1Ei
)
≤ ∑

n
i=1 |µ|(Ei) . Thus |µ| is finitely additive.

■
In the case that λ is a complex measure, it is always the case that |λ |(Ω)< ∞. First is

a lemma.

Lemma 23.2.5 Suppose λ is a real valued measure called a signed measure (Definition
10.13.2). Then |λ | is a finite measure.

Proof: Suppose λ : F →R is a vector measure (signed measure by Definition 10.13.2).
By the Hahn decomposition, Theorem 10.13.5 on Page 301, Ω=P∪N where P is a positive
set and N is a negative one. Then on N, −λ acts like a measure in the sense that if A ⊆ B
and A,B measurable subsets of N, then −λ (A)≤−λ (B). Similarly λ is a measure on P.

∑
F∈π(Ω)

|λ (F)| ≤ ∑
F∈π(Ω)

(|λ (F ∩P)|+ |λ (F ∩N)|)

= ∑
F∈π(Ω)

λ (F ∩P)+ ∑
F∈π(Ω)

−λ (F ∩N)

= λ
((
∪F∈π(Ω)F

)
∩P
)
+−λ

((
∪F∈π(Ω)F

)
∩N
)
≤ λ (P)+ |λ (N)|

It follows that |λ |(Ω)< λ (P)+ |λ (N)| and so |λ | has finite total variation. ■

Theorem 23.2.6 Suppose λ is a complex measure on (Ω,S ) where S is a σ al-
gebra of subsets of Ω. Then |λ |(Ω)< ∞.

Proof: If λ is a vector measure with values in C, Reλ and Imλ have values in R. Then

∑
F∈π(Ω)

|λ (F)| ≤ ∑
F∈π(Ω)

|Reλ (F)|+ |Imλ (F)|

= ∑
F∈π(Ω)

|Reλ (F)|+ ∑
F∈π(Ω)

|Imλ (F)|

≤ |Reλ |(Ω)+ |Imλ |(Ω)< ∞

thanks to Lemma 23.2.5. ■
The following corollary is about representing a complex measure λ in terms of its total

variation |λ |. It is like representing a complex number in the form reiθ . In particular, I
want to show that in the Radon Nikodym theorem

∣∣∣ dλ

dµ

∣∣∣ = 1 a.e. First is a lemma which is

interesting for its own sake and shows
∣∣∣ dλ

dµ

∣∣∣≤ 1.

Lemma 23.2.7 Suppose (Ω,S ,µ) is a measure space and f is a function in L1(Ω,µ)
with the property that ∣∣∣∣∫E

f dµ

∣∣∣∣≤ µ(E)

for all E ∈S . Then | f | ≤ 1 a.e.

Proof of the lemma: Consider the following picture where B(p,r)∩B(0,1) = /0.
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1
(0,0)

•p

B(p,r)

Let E = f−1(B(p,r)). In fact µ (E) = 0. If µ(E) ̸= 0 then∣∣∣∣ 1
µ(E)

∫
E

f dµ− p
∣∣∣∣= ∣∣∣∣ 1

µ(E)

∫
E
( f − p)dµ

∣∣∣∣≤ 1
µ(E)

∫
E
| f − p|dµ < r

because on E, | f (ω)− p|< r. Hence 1
µ(E)

∫
E f dµ is closer to p than r and so∣∣∣∣ 1

µ(E)

∫
E

f dµ

∣∣∣∣> 1.

Refer to the picture. However, this contradicts the assumption of the lemma. It follows
µ(E) = 0. Since the set of complex numbers z such that |z|> 1 is an open set, it equals the
union of countably many balls, {Bi}∞

i=1 . Therefore,

µ
(

f−1({z ∈ C : |z|> 1}
)
= µ

(
∪∞

k=1 f−1 (Bk)
)
≤

∞

∑
k=1

µ
(

f−1 (Bk)
)
= 0.

Thus | f (ω)| ≤ 1 a.e. as claimed. ■
Note that the above argument would work with essentially no change ifCwere replaced

with V a separable normed linear space.

Corollary 23.2.8 Let λ be a complex vector measure with |λ |(Ω) < ∞.1 Then there
exists a unique f ∈ L1(Ω) such that λ (E) =

∫
E f d|λ |. Furthermore, | f | = 1 for |λ | a.e.

This is called the polar decomposition of λ . We write dλ = f d |λ | sometimes.

Proof: Letting µ = |λ | in Theorem 23.1.3, the first claim follows because λ ≪ |λ | and
so such an L1 function exists and is unique. It is required to show | f |= 1 a.e. If |λ |(E) ̸= 0,∣∣∣ λ (E)
|λ |(E)

∣∣∣= ∣∣∣ 1
|λ |(E)

∫
E f d|λ |

∣∣∣≤ 1. Therefore by Lemma 23.2.7, | f | ≤ 1, |λ | a.e. Now let

En =

[
| f | ≤ 1− 1

n

]
.

Let {F1, · · · ,Fm} be a partition of En. Then

m

∑
i=1
|λ (Fi)|=

m

∑
i=1

∣∣∣∣∫Fi

f d|λ |
∣∣∣∣≤ m

∑
i=1

∫
Fi

| f |d|λ |

≤
m

∑
i=1

∫
Fi

(
1− 1

n

)
d |λ |=

m

∑
i=1

(
1− 1

n

)
|λ |(Fi) = |λ |(En)

(
1− 1

n

)
.

Then taking the supremum over all partitions, |λ |(En) ≤
(
1− 1

n

)
|λ |(En) which shows

|λ |(En) = 0. Hence |λ |([| f |< 1]) = 0 because [| f |< 1] = ∪∞
n=1En. ■

Next is a specific case which leads to complex measures.
1As proved above, the assumption that |λ |(Ω)< ∞ is redundant.
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Corollary 23.2.9 Suppose (Ω,S ) is a measure space and µ is a finite nonnegative
measure on S . Then for h ∈ L1 (µ) , define a complex measure, λ by λ (E) ≡

∫
E hdµ.

Then |λ |(E) =
∫

E |h|dµ. Furthermore, |h|= gh where gd |λ | is the polar decomposition of
λ , defined by λ (E) =

∫
E gd |λ |.

Proof: From Corollary 23.2.8, there exists g such that |g| = 1, |λ | a.e. and for all
E ∈S

λ (E) =
∫

E
gd |λ | , λ (E)≡

∫
E

hdµ, so
∫

E
hdµ =

∫
E

gd |λ | (23.1)

Since |g| = 1, there is a sequence sn of simple functions converging pointwise to g with
|sn| ≤ 1. (Approximate the positive and negative parts of the real and imaginary parts of
ḡ with an increasing sequence of simple functions. Then assemble these to get sn. See
Theorem 10.7.6 on Page 286.) Then from 23.1,

∫
E gsnd |λ | =

∫
E snhdµ. Passing to the

limit using the dominated convergence theorem,
∫

E d |λ |=
∫

E ghdµ. It follows gh≥ 0 a.e.
and |g|= 1 a.e. Therefore, |h|= |gh|= gh. It follows from the above, that

|λ |(E) =
∫

E
d |λ |=

∫
E

ghdµ =
∫

E
|h|dµ ■

Formally: If dλ = hdµ, and dλ = gd |λ | , |g| = 1, then d |λ | = |h|dµ and so you might
expect to have dλ = g |h|dµ so g |h| = h and so |h| = ḡh. That which should be true is.
Emphasizing the most significant part of this, if dλ = hdµ, then d |λ |= |h|dµ .

23.3 Representation for the Dual Space of Lp

Recall the concept of the dual space of a Banach space in the chapter on Banach space
starting on Page 533. The next topic deals with the dual space of Lp for p ≥ 1 in the case
where the measure space is σ finite or finite. In what follows q = ∞ if p = 1 and otherwise,
1
p +

1
q = 1. In what follows, |·| is the usual norm on C.

Theorem 23.3.1 (Riesz representation theorem) Let ∞ > p > 1 and let (Ω,S ,µ)
be a finite measure space. If Λ ∈ (Lp(Ω))′, then there exists a unique h ∈ Lq(Ω) such that

Λ f =
∫

Ω

h f dµ .

This function satisfies ∥h∥q = ∥Λ∥ where ∥Λ∥ is the operator norm of Λ.

Proof: (Uniqueness) If h1 and h2 both represent Λ, consider

f = |h1−h2|q−2(h1−h2),

where h denotes complex conjugation. By Holder’s inequality, it is easy to see that f ∈
Lp(Ω). Thus 0 = Λ f −Λ f =

∫
h1|h1− h2|q−2(h1− h2)− h2|h1− h2|q−2(h1− h2)dµ =∫

|h1 − h2|qdµ . Therefore h1 = h2 and this proves uniqueness in every case regarless
whether µ is finite.

Now let λ (E) = Λ(XE). Since this is a finite measure space, XE is an element of
Lp (Ω) and so it makes sense to write Λ(XE). In fact λ is a complex measure having finite
total variation. First I show that it is a measure. Then by Theorem 23.2.6, λ has finite total
variation.
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If {Ei}∞
i=1 is a sequence of disjoint sets of S , let Fn = ∪n

i=1Ei, F = ∪∞
i=1Ei. Then by

the Dominated Convergence theorem, ∥XFn −XF∥p→ 0. Therefore, by continuity of Λ,

λ (F)≡ Λ(XF) = lim
n→∞

Λ(XFn) = lim
n→∞

n

∑
k=1

Λ(XEk) =
∞

∑
k=1

λ (Ek).

This shows λ is a complex measure. Since a similar theorem will be proved in which λ has
values in an infinite dimensional space, I will prove this directly without using Theorem
23.2.6. Let A1, · · · ,An be a partition of Ω. |ΛXAi | = wi(ΛXAi) = Λ(wiXAi) for some
wi ∈ C, |wi|= 1. Thus

n

∑
i=1
|λ (Ai)| =

n

∑
i=1
|Λ(XAi)|= Λ(

n

∑
i=1

wiXAi)

≤ ∥Λ∥(
∫
|

n

∑
i=1

wiXAi |
pdµ)

1
p = ∥Λ∥(

∫
Ω

dµ)
1
p = ∥Λ∥µ(Ω)

1
p.

This is because if x ∈Ω, x is contained in exactly one of the Ai and so the absolute value of
the sum in the first integral above is equal to 1. Therefore |λ |(Ω)< ∞ because this was an
arbitrary partition. with |λ | finite.

It is also clear from the definition of λ that λ ≪ µ . Therefore, by the Radon Nikodym
theorem, there exists h ∈ L1(Ω) with λ (E) =

∫
E hdµ = Λ(XE). Actually h ∈ Lq and satis-

fies the other conditions above. This is shown next.
Let s = ∑

m
i=1 ciXEi be a simple function. Then since Λ is linear,

Λ(s) =
m

∑
i=1

ciΛ(XEi) =
m

∑
i=1

ci

∫
Ei

hdµ =
∫

hsdµ . (23.2)

Claim: If f is uniformly bounded and measurable, then

Λ( f ) =
∫

h f dµ.

Proof of claim: Since f is bounded and measurable, there exists a sequence of simple
functions, {sn}which converges to f pointwise and in Lp (Ω) , |sn| ≤ | f |. This follows from
Theorem 9.1.6 on Page 239 upon breaking f up into positive and negative parts of real and
complex parts. In fact this theorem gives uniform convergence. Then

Λ( f ) = lim
n→∞

Λ(sn) = lim
n→∞

∫
hsndµ =

∫
h f dµ,

the first equality holding because of continuity of Λ, the second following from 23.2 and
the third holding by the dominated convergence theorem.

This is a very nice formula but it still has not been shown that h ∈ Lq (Ω).
Let En = {x : |h(x)| ≤ n}. Thus |hXEn | ≤ n. Then

|hXEn |q−2(hXEn) ∈ Lp(Ω).

By the claim, it follows that

∥hXEn∥
q
q =

∫
h|hXEn |q−2(hXEn)dµ = Λ(|hXEn |q−2(hXEn))
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≤ ∥Λ∥
∥∥|hXEn |q−2(hXEn)

∥∥
p =

(∫
|hXEn |qdµ

)1/p

= ∥Λ∥ ∥hXEn∥
q
p
q ,

because q−1 = q/p and so it follows that ∥hXEn∥q ≤ ∥Λ∥. Letting n→ ∞, the monotone
convergence theorem implies

∥h∥q ≤ ∥Λ∥. (23.3)

Now that h has been shown to be in Lq(Ω), it follows from 23.2 and the density of the
simple functions, Theorem 12.2.1 on Page 362, that Λ f =

∫
h f dµ for all f ∈ Lp(Ω). It

only remains to verify the last claim that ∥h∥q = ∥Λ∥ not just 23.3. However, from the
definition and Holder’s inequality and 23.3, ∥Λ∥ ≡ sup{

∫
h f : ∥ f∥p ≤ 1} ≤ ∥h∥q ≤ ∥Λ∥ ■

To represent elements of the dual space of L1(Ω), another Banach space is needed.

Definition 23.3.2 Let (Ω,S ,µ) be a measure space. L∞(Ω) is the vector space of
measurable functions such that for some M > 0, | f (x)| ≤M for all x outside of some set of
measure zero (| f (x)| ≤M a.e.). Define f = g when f (x) = g(x) a.e. and ∥ f∥∞ ≡ inf{M :
| f (x)| ≤M a.e.}.

Theorem 23.3.3 L∞(Ω) is a Banach space.

Proof: It is clear that L∞(Ω) is a vector space. Is ∥ ∥∞ a norm?
Claim: If f ∈ L∞ (Ω), then | f (x)| ≤ || f ||

∞
a.e.

Proof of the claim:
{

x : | f (x)| ≥ || f ||
∞
+n−1

}
≡ En is a set of measure zero according

to the definition of || f ||
∞

. Furthermore, {x : | f (x)|> || f ||
∞
}= ∪nEn and so it is also a set

of measure zero. This verifies the claim.
Now if || f ||

∞
= 0 it follows that f (x) = 0 a.e. Also if

f ,g ∈ L∞ (Ω)

then | f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ || f ||
∞
+ ||g||

∞
a.e. and so || f ||

∞
+ ||g||

∞
serves as one

of the constants, M in the definition of || f +g||
∞

. Therefore, || f +g||
∞
≤ || f ||

∞
+ ||g||

∞
.

Next let c be a number. Then |c f (x)| = |c| | f (x)| ≤ |c| || f ||
∞

and so ||c f ||
∞
≤ |c| || f ||

∞
.

Therefore since c is arbitrary, || f ||
∞
= ||c(1/c) f ||

∞
≤
∣∣ 1

c

∣∣ ||c f ||
∞

which implies |c| || f ||
∞
≤

||c f ||
∞

. Thus ∥ ∥∞ is a norm as claimed.
To verify completeness, let { fn} be a Cauchy sequence in L∞(Ω) and use the above

claim to get the existence of a set of measure zero, Enm such that for all x /∈ Enm,

| fn(x)− fm(x)| ≤ ∥ fn− fm∥∞.

Let E = ∪n,mEnm. Thus µ(E) = 0 and for each x /∈ E, { fn(x)}∞
n=1 is a Cauchy sequence in

C. Let

f (x) =
{

0 if x ∈ E
limn→∞ fn(x) if x /∈ E = lim

n→∞
XEC(x) fn(x).

Then f is clearly measurable because it is the limit of measurable functions. If

Fn = {x : | fn(x)|> ∥ fn∥∞}

and F = ∪∞
n=1Fn, it follows µ(F) = 0 and that for x /∈ F ∪E,

| f (x)| ≤ lim inf
n→∞
| fn(x)| ≤ lim inf

n→∞
∥ fn∥∞

< ∞
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because {∥ fn∥∞
} is a Cauchy sequence. (|∥ fn∥∞

−∥ fm∥∞
| ≤ ∥ fn− fm∥∞

by the triangle
inequality.) Thus f ∈ L∞(Ω). Let n be large enough that whenever m > n, ∥ fm− fn∥∞

< ε .
Then, if x /∈ E,

| f (x)− fn(x)|= lim
m→∞
| fm(x)− fn(x)| ≤ lim

m→∞
inf ∥ fm− fn∥∞ < ε .

Hence ∥ f − fn∥∞
< ε for all n large enough. ■

The next theorem is the Riesz representation theorem for
(
L1 (Ω)

)′.
Theorem 23.3.4 (Riesz representation theorem) Let (Ω,S ,µ) be a finite measure
space. If Λ ∈ (L1(Ω))′, then there exists a unique h ∈ L∞(Ω) such that

Λ( f ) =
∫

Ω

h f dµ

for all f ∈ L1(Ω). If h is the function in L∞(Ω) representing Λ ∈ (L1(Ω))′, then ∥h∥
∞
=

∥Λ∥.

Proof: Just as in the proof of Theorem 23.3.1, there exists a unique h ∈ L1(Ω) such
that for all simple functions s,

Λ(s) =
∫

hs dµ . (23.4)

To show h ∈ L∞(Ω), let ε > 0 be given and let E = {x : |h(x)| ≥ ∥Λ∥+ ε}. Let |k|= 1 and
hk = |h|. Since the measure space is finite, k ∈ L1(Ω). As in Theorem 23.3.1 let {sn} be a
sequence of simple functions converging to k in L1(Ω), and pointwise. It follows from the
construction in Theorem 9.1.6 on Page 239 that it can be assumed |sn| ≤ 1. Therefore

Λ(kXE) = lim
n→∞

Λ(snXE) = lim
n→∞

∫
E

hsndµ =
∫

E
hkdµ

where the last equality holds by the Dominated Convergence theorem. Therefore,

∥Λ∥µ(E) ≥ |Λ(kXE)|= |
∫

Ω

hkXEdµ|=
∫

E
|h|dµ

≥ (∥Λ∥+ ε)µ(E).

It follows that µ(E) = 0. Since ε > 0 was arbitrary, ∥Λ∥ ≥ ∥h∥∞. Since h ∈ L∞(Ω), the
density of the simple functions in L1 (Ω) and 23.4 imply

Λ f =
∫

Ω

h f dµ , ∥Λ∥ ≥ ∥h∥
∞

. (23.5)

This proves the existence part of the theorem. To verify uniqueness, suppose h1 and h2 both
represent Λ and let f ∈ L1(Ω) be such that | f | ≤ 1 and f (h1− h2) = |h1− h2|. Then 0 =
Λ f −Λ f =

∫
(h1−h2) f dµ =

∫
|h1−h2|dµ. Thus h1 = h2. Finally, ∥Λ∥= sup{|

∫
h f dµ| :

∥ f∥1 ≤ 1} ≤ ∥h∥∞ ≤ ∥Λ∥by 23.5. ■
Next these results are extended to the σ finite case.

Lemma 23.3.5 Let (Ω,S ,µ) be a measure space and suppose there exists a measur-
able function, r such that r (x) > 0 for all x, there exists M such that |r (x)| < M for all x,
and

∫
rdµ < ∞. Then for Λ ∈ (Lp(Ω,µ))′, p ≥ 1, there exists h ∈ Lq(Ω,µ), L∞(Ω,µ) if

p = 1 such that Λ f =
∫

h f dµ. Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here
1
p +

1
q = 1.
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Proof: Define a new measure µ̃ , according to the rule

µ̃ (E)≡
∫

E
rdµ. (23.6)

Thus µ̃ is a finite measure on S . For

Λ ∈ (Lp (µ))′ ,Λ( f ) = Λ

(
r1/p

(
r−1/p f

))
= Λ̃

(
r−1/p f

)
where Λ̃(g)≡ Λ

(
r1/pg

)
. Now Λ̃ is in Lp (µ̃)′ because

∣∣∣Λ̃(g)
∣∣∣ ≡ ∣∣∣Λ(r1/pg

)∣∣∣≤ ∥Λ∥(∫
Ω

∣∣∣r1/pg
∣∣∣p dµ

)1/p

= ∥Λ∥

∫
Ω

|g|p
dµ̃︷︸︸︷

rdµ


1/p

= ∥Λ∥∥g∥Lp(µ̃)

Therefore, by Theorems 23.3.4 and 23.3.1 there exists a unique h∈ Lq (µ̃) which represents
Λ̃. Here q = ∞ if p = 1 and satisfies 1/q+1/p = 1 otherwise. Then

Λ( f ) = Λ̃

(
r−1/p f

)
=
∫

Ω

h f r−1/prdµ =
∫

Ω

f
(

hr1/q
)

dµ

Now hr1/q ≡ h̃ ∈ Lq (µ) since h ∈ Lq (µ̃). In case p = 1,Lq (µ̃) and Lq (µ) are exactly the
same. In this case you have

Λ( f ) = Λ̃
(
r−1 f

)
=
∫

Ω

h f r−1rdµ =
∫

Ω

f hdµ

Thus the desired representation holds. Then in any case,|Λ( f )| ≤
∥∥h̃
∥∥

Lq ∥ f∥Lp so ∥Λ∥ ≤∥∥h̃
∥∥

Lq . Also, as before,

∥∥h̃
∥∥q

Lq(µ)
=

∣∣∣∣∫
Ω

h̃
∣∣h̃∣∣q−2 h̃dµ

∣∣∣∣= ∣∣∣Λ(∣∣h̃∣∣q−2 h̃
)∣∣∣≤ ∥Λ∥(∫

Ω

∣∣∣|h̃|q−2h̃
∣∣∣p dµ

)1/p

= ∥Λ∥
(∫

Ω

(∣∣h̃∣∣q/p
)p
)1/p

= ∥Λ∥∥h∥q/p

and so
∥∥h̃
∥∥

Lq(µ)
≤ ∥Λ∥ . It works the same for p = 1. Thus

∥∥h̃
∥∥

Lq(µ)
= ∥Λ∥ . ■

A situation in which the conditions of the lemma are satisfied is the case where the
measure space is σ finite. In fact, you should show this is the only case in which the
conditions of the above lemma hold.

Theorem 23.3.6 (Riesz representation theorem) Let (Ω,S ,µ) be σ finite and let
Λ ∈ (Lp(Ω,µ))′, p ≥ 1. Then there exists a unique h ∈ Lq(Ω,µ), L∞(Ω,µ) if p = 1 such
that Λ f =

∫
h f dµ. Also ∥h∥= ∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here 1

p +
1
q = 1.

Proof: Without loss of generality, assume µ (Ω) = ∞. By Proposition 10.13.1, either µ

is a finite measure or µ (Ω) =∞. These are the only two cases. Then let {Ωn} be a sequence
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of disjoint elements of S having the property that 1 < µ(Ωn) < ∞, ∪∞
n=1Ωn = Ω. Define

r(x) = ∑
∞
n=1

1
n2 XΩn(x) µ(Ωn)

−1, µ̃(E) =
∫

E rdµ . Thus
∫

Ω
rdµ = µ̃(Ω) = ∑

∞
n=1

1
n2 < ∞ so

µ̃ is a finite measure. The above lemma gives the existence part of the conclusion of the
theorem. Uniqueness is done as before. ■

With the Riesz representation theorem, it is easy to show that Lp(Ω), p> 1 is a reflexive
Banach space. Recall Definition 21.2.14 on Page 546 for the definition. From this, one
obtains a weak compactness result.

23.4 Weak Compactness
Theorem 23.4.1 For (Ω,S ,µ) a σ finite measure space and p > 1, Lp(Ω) is re-
flexive. Thus every bounded sequence has a weakly convergent subsequence.

Proof: Let δ r : (Lr(Ω))′ → Lr′(Ω) be defined for 1
r +

1
r′
= 1 by

∫
(δ rΛ)g dµ = Λg

for all g ∈ Lr(Ω). From Theorem 23.3.6 δ r is one to one, onto, continuous and linear.
By the open map theorem, δ

−1
r is also one to one, onto, and continuous (δ rΛ equals the

representor of Λ). Thus δ
∗
r is also one to one, onto, and continuous by Corollary 21.2.11.

Now observe that J = δ
∗
p ◦δ

−1
q . To see this, let z∗ ∈ (Lq)′, y∗ ∈ (Lp)′,

δ
∗
p ◦δ

−1
q (δ qz∗)(y∗) = (δ ∗pz∗)(y∗) = z∗(δ py∗) =

∫
(δ qz∗)(δ py∗)dµ,

J(δ qz∗)(y∗) = y∗(δ qz∗) =
∫
(δ py∗)(δ qz∗)dµ .

Therefore δ
∗
p ◦δ

−1
q = J on δ q(Lq)′ = Lp. But the two δ maps are onto and so J is also onto.

■
What about weak compactness in L1 (Ω)? I will give a simple sufficient condition in the

case of a finite measure space. More can be said. See for example Dunford and Schwartz
[16]. I have this in my Topics in Analysis book also. Recall Proposition 10.9.6 on Page
293 which says equi-integrable is the same as bounded and uniformly integrable. Thus in
the following, you can replace equi-integrable with bounded and uniformly integrable.

Theorem 23.4.2 Let (Ω,F ,µ) be a finite measure space and let { fn} be a se-
quence in L1 (Ω) which is equi-integrable. Then there exists a subsequence which con-
verges weakly in L1 (Ω) to some function f .

Proof: Let

En ≡
{

f−1
n (B(z,r)) : r is a positive rational and z ∈Q+ iQ

}
.

Let E = ∪∞
n=1En. Thus E and En are countable. Also, every open set is the countable union

of these sets B(z,r). Now let K be all finite intersections of sets of E and include /0
and Ω in K . Then σ (K ) contains inverse images of Borel sets for each fn. Thus each
fn is measurable with respect to σ (K ). Also K is countable. Then, using a Cantor
diagonal argument, we can have

∫
E gndµ converges for all E ∈K . Let G be those sets

G ∈ σ (K ) such that
∫

G gndµ converges. Suppose Gk are disjoint and each in G . Then,

since Ω has finite measure, limn→∞ µ

(
∪∞

j=kG j

)
= 0 because ∑k µ (Gk) converges. Let G=

∪∞
k=1Gk and so

∫
G gndµ−

∫
G gmdµ =

∫
G ∑

∞
k=1 XGk (gn−gm)dµ =∑

N
k=1

∫
Gk

(gn−gm)dµ+
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e(N,n,m) where |e(N,n,m)|< ε for all n,m provided N is chosen large enough. This is by
uniform integrability which is a consequence of equi-integrability. See Proposition 10.9.6.
It follows that∣∣∣∣∫G

gndµ−
∫

G
gmdµ

∣∣∣∣ ≤
∣∣∣∣∣ N

∑
k=1

∫
Gk

(gn−gm)dµ

∣∣∣∣∣+ |e(N,n,m)|

<

∣∣∣∣∣ N

∑
k=1

∫
Gk

(gn−gm)dµ

∣∣∣∣∣+ ε < 2ε

provided n,m are large enough. Thus G is closed with respect to countable disjoint unions.
If
∫

G gndµ converges, then
∫

GC gndµ =
∫

Ω
gndµ −

∫
G gndµ and so

∫
GC gndµ converges.

Hence, by Dynkin’s lemma, G ⊇ σ (K ) . For E ∈ σ (K ) define

λ (E) ≡ lim
n→∞

∫
E

gndµ, then λ ≪ µ so there is g such that∫
E

gdµ = λ (E) = lim
n→∞

∫
E

gndµ by Radon Nikodym, g ∈ L1

That λ is a measure follows from the above argument that G is closed with respect to
countable disjoint unions.

Now it was just shown that for s a simple function measurable with respect to σ (K ) ,∫
sgdµ = lim

n→∞

∫
sgndµ.

Can we replace s with h ∈ L∞ (Ω,σ (K ) ,µ)? Letting h be a representative which is uni-
formly bounded, there exists a sequence of simple functions {sn} which converges uni-
formly to h. ∣∣∣∣∫ hgdµ−

∫
hgndµ

∣∣∣∣≤ ∣∣∣∣∫ hgdµ−
∫

sgdµ

∣∣∣∣
+

∣∣∣∣∫ sgdµ−
∫

sgn

∣∣∣∣+ ∣∣∣∣∫ sgndµ−
∫

hgndµ

∣∣∣∣
The first term on the right is no more than ε ∥g∥L1 because s was chosen to be uniformly
within ε of h. As to the last term, it is no more than ε maxn ∥gn∥L1 which is no more than
εC since the equi-integrability implies ∥gn∥L1 is bounded. The middle term converges to 0
and so limn→∞ |

∫
hgdµ−

∫
hgndµ|= 0.

Now consider L∞ (Ω,σ (K ) ,µ)
i∗← L∞ (Ω,F ,µ)

L1 (Ω,σ (K ) ,µ)
i→ L1 (Ω,F ,µ)

where the inclusion map i is

continuous. Let h ∈ L∞ (Ω,F ,µ) so i∗h ∈ L∞ (Ω,σ (K ) ,µ). Then

lim
n→∞

∫
hgndµ = lim

n→∞

∫
higndµ = lim

n→∞

∫
i∗hgndµ = lim

n→∞

∫
i∗hgdµ = lim

n→∞

∫
hgdµ

and this shows that gn converges weakly to g. ■
One can extend this to an arbitrary measure space by fussing with more details that

involve consideration of a σ algebra which is σ finite.
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23.5 The Dual Space of L∞ (Ω)

What about the dual space of L∞ (Ω)? This will involve the following Lemma. Also recall
the notion of total variation defined in Definition 23.2.2.

Lemma 23.5.1 Let (Ω,F ) be a measure space. Denote by BV (Ω) the space of finitely
additive complex measures ν such that |ν |(Ω)< ∞. This means that if {Ei}n

i=1 is disjoint,
then ν

(
∪n

i=1Ei
)
= ∑

n
i=1 ν (Ei) for any n ∈ N. Then defining ∥ν∥ ≡ |ν |(Ω) , it follows that

BV (Ω) is a Banach space.

Proof: It is obvious that BV (Ω) is a vector space with the obvious conventions involv-
ing scalar multiplication. Why is ∥·∥ a norm? All the axioms are obvious except for the
triangle inequality. However, this is not too hard either.

∥µ +ν∥ ≡ |µ +ν |(Ω) = sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)+ν (A)|
}

≤ sup
π(Ω)

{
∑

A∈π(Ω)

|µ (A)|
}
+ sup

π(Ω)

{
∑

A∈π(Ω)

|ν (A)|
}
≡ |µ|(Ω)+ |ν |(Ω) = ∥ν∥+∥µ∥ .

Suppose now that {νn} is a Cauchy sequence. For each E ∈ F , |νn (E)−νm (E)| ≤
∥νn−νm∥ and so the sequence of complex numbers νn (E) converges. That to which it
converges is called ν (E) . Then it is obvious that ν (E) is finitely additive. Why is |ν | finite?
Since ∥·∥ is a norm, it follows that there exists a constant C such that for all n, |νn|(Ω)<C.
Let π (Ω) be any partition. Then ∑A∈π(Ω) |ν (A)| = limn→∞ ∑A∈π(Ω) |νn (A)| ≤ C. Hence
ν ∈ BV (Ω). Let ε > 0 be given and let N be such that if n,m > N, then ∥νn−νm∥< ε/2.
Pick any such n. Then choose π (Ω) such that

|ν−νn|(Ω)− ε/2 < ∑
A∈π(Ω)

|ν (A)−νn (A)|

= lim
m→∞

∑
A∈π(Ω)

|νm (A)−νn (A)|< lim inf
m→∞
|νn−νm|(Ω)≤ ε/2

It follows that limn→∞ ∥ν−νn∥= 0. ■

Corollary 23.5.2 Suppose (Ω,F ) is a measure space as above and suppose µ is a
measure defined on F . Denote by BV (Ω; µ) those finitely additive measures of BV (Ω) ν

such that ν ≪ µ in the usual sense that if µ (E) = 0, then ν (E) = 0. Then BV (Ω; µ) is a
closed subspace of BV (Ω).

Proof: It is clear that it is a subspace. Is it closed? Suppose νn→ ν and each νn is in
BV (Ω; µ) . Then if µ (E) = 0, it follows that νn (E) = 0 and so ν (E) = 0 also, being the
limit of 0. ■

Definition 23.5.3 For s a simple function s(ω)=∑
n
k=1 ckXEk (ω) and ν ∈BV (Ω) ,

define an “integral” with respect to ν as follows.
∫

sdν ≡ ∑
n
k=1 ckν (Ek) . For f function

which is in L∞ (Ω; µ) , define
∫

f dν as follows. Applying Theorem 9.1.6, to the positive
and negative parts of real and imaginary parts of f , there exists a sequence of simple
functions {sn} which converges uniformly to f off a set of µ measure zero. Then

∫
f dν ≡

limn→∞

∫
sndν
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Lemma 23.5.4 The above definition of the integral with respect to a finitely additive
measure in BV (Ω; µ) is well defined.

Proof: First consider the claim about the integral being well defined on the simple
functions. This is clearly true if it is required that the ck are disjoint and the Ek also disjoint
having union equal to Ω. Thus define the integral of a simple function in this manner. First
write the simple function as ∑

n
k=1 ckXEk where the ck are the values of the simple function.

Then use the above formula to define the integral. Next suppose the Ek are disjoint but the
ck are not necessarily distinct. Let the distinct values of the ck be a1, · · · ,am

∑
k

ckXEk = ∑
j

a j

(
∑

i:ci=a j

XEi

)
= ∑

j
a jν

(
∪i:ci=a j Ei

)
= ∑

j
a j ∑

i:ci=a j

ν (Ei) = ∑
k

ckν (Ek)

and so the same formula for the integral of a simple function is obtained in this case also.
Now consider two simple functions s = ∑

n
k=1 akXEk , t = ∑

m
j=1 b jXFj where the ak and b j

are the distinct values of the simple functions. Then from what was just shown,

∫
(αs+β t)dν =

∫ ( n

∑
k=1

m

∑
j=1

αakXEk∩Fj +
m

∑
j=1

n

∑
k=1

βb jXEk∩Fj

)
dν

=
∫ (

∑
j,k

αakXEk∩Fj +βb jXEk∩Fj

)
dν = ∑

j,k
(αak +βb j)ν (Ek ∩Fj)

=
n

∑
k=1

m

∑
j=1

αakν (Ek ∩Fj)+
m

∑
j=1

n

∑
k=1

βb jν (Ek ∩Fj)

=
n

∑
k=1

αakν (Ek)+
m

∑
j=1

βb jν (Fj) = α

∫
sdν +β

∫
tdν

Thus the integral is linear on simple functions so, in particular, the formula given in the
above definition is well defined regardless.

So what about the definition for f ∈ L∞ (Ω; µ)? Since f ∈ L∞, there is a set of µ mea-
sure zero N such that on NC there exists a sequence of simple functions which converges
uniformly to f on NC. Consider sn and sm. As in the above, they can be written as
∑

p
k=1 cn

kXEk , ∑
p
k=1 cm

k XEk respectively, where the Ek are disjoint having union equal to
Ω. Then by uniform convergence, if m,n are sufficiently large,

∣∣cn
k− cm

k

∣∣ < ε or else the
corresponding Ek is contained in NC a set of ν measure 0 thanks to ν ≪ µ . Hence∣∣∣∣∫ sndν−

∫
smdν

∣∣∣∣ =

∣∣∣∣∣ p

∑
k=1

(cn
k− cm

k )ν (Ek)

∣∣∣∣∣
≤

p

∑
k=1
|cn

k− cm
k | |ν (Ek)| ≤ ε ∥ν∥

and so the integrals of these simple functions converge. Similar reasoning shows that the
definition is not dependent on the choice of approximating sequence. ■
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Note also that for s simple, |
∫

sdν | ≤ ∥s∥L∞ |ν |(Ω) = ∥s∥L∞ ∥ν∥
Next the dual space of L∞ (Ω; µ) will be identified with BV (Ω; µ). First here is a simple

observation. Let ν ∈ BV (Ω; µ) . Then define the following for f ∈ L∞ (Ω; µ) .

Tν ( f )≡
∫

f dν

Lemma 23.5.5 For Tν just defined, |Tν f | ≤ ∥ f∥L∞ ∥ν∥.

Proof: As noted above, the conclusion true if f is simple. Now if f is in L∞, then it
is the uniform limit of simple functions off a set of µ measure zero. Therefore, by the
definition of the Tν ,

|Tν f |= lim
n→∞
|Tν sn| ≤ lim inf

n→∞
∥sn∥L∞ ∥ν∥= ∥ f∥L∞ ∥ν∥ . ■

Thus each Tν is in (L∞ (Ω; µ))′ .■
Here is the representation theorem, due to Kantorovitch, which describes the dual of

L∞ (Ω; µ).

Theorem 23.5.6 Let θ : BV (Ω; µ)→ (L∞ (Ω; µ))′ be given by θ (ν)≡ Tν . Then θ

is one to one, onto and preserves norms.

Proof: It was shown in the above lemma that θ maps into (L∞ (Ω; µ))′ . It is obvious
that θ is linear. Why does it preserve norms? From the above lemma,

∥θν∥ ≡ sup
∥ f∥∞≤1

|Tν f | ≤ ∥ν∥

It remains to turn the inequality around. Let π (Ω) be a partition. Then

∑
A∈π(Ω)

|ν (A)|= ∑
A∈π(Ω)

sgn(ν (A))ν (A)≡
∫

f dν

where sgn(ν (A)) is defined to be a complex number of modulus 1, sgn(ν (A))ν (A) =
|ν (A)| and

f (ω) = ∑
A∈π(Ω)

sgn(ν (A))XA (ω) .

Therefore, choosing π (Ω) suitably, since ∥ f∥
∞
≤ 1,

∥ν∥− ε = |ν |(Ω)− ε ≤ ∑
A∈π(Ω)

|ν (A)|= Tν ( f )

= |Tν ( f )|= |θ (ν)( f )| ≤ ∥θ (ν)∥ ≤ ∥ν∥

Thus θ preserves norms. Hence it is one to one also. Why is θ onto?
Let Λ ∈ (L∞ (Ω; µ))′ . Then define

ν (E)≡ Λ(XE) (23.7)

This is obviously finitely additive because Λ is linear. Also, if µ (E) = 0, then XE = 0 in
L∞ and so Λ(XE) = 0. If π (Ω) is any partition of Ω, then

∑
A∈π(Ω)

|ν (A)| = ∑
A∈π(Ω)

|Λ(XA)|= ∑
A∈π(Ω)

sgn(Λ(XA))Λ(XA)

= Λ

(
∑

A∈π(Ω)

sgn(Λ(XA))XA

)
≤ ∥Λ∥
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and so ∥ν∥ ≤ ∥Λ∥ showing that ν ∈ BV (Ω; µ). Also from 23.7, if s = ∑
n
k=1 ckXEk is a

simple function,

∫
sdν =

n

∑
k=1

ckν (Ek) =
n

∑
k=1

ckΛ
(
XEk

)
= Λ

(
n

∑
k=1

ckXEk

)
= Λ(s)

Then letting f ∈ L∞ (Ω; µ) , there exists a sequence of simple functions converging to f
uniformly off a set of µ measure zero and so passing to a limit in the above with s replaced
with sn it follows that Λ( f ) =

∫
f dν and so θ is onto. ■

23.6 Non σ Finite Case
It turns out that for p> 1, you don’t have to assume the measure space is σ finite. The Riesz
representation theorem holds always. The proof involves the notion of uniform convexity.
First recall Clarkson’s inequalities. These fundamental inequalities were used to verify that
Lp (Ω) is uniformly convex. More precisely, the unit ball in Lp (Ω) is uniformly convex.

Lemma 23.6.1 Let 2≤ p. Then∥∥∥∥ f +g
2

∥∥∥∥p

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥p

Lp
≤ 1

2
(
∥ f∥p

Lp +∥g∥p
Lp
)

Let 1 < p < 2. then for 1/p+1/q = 1,∥∥∥∥ f +g
2

∥∥∥∥q

Lp
+

∥∥∥∥ f −g
2

∥∥∥∥q

Lp
≤
(

1
2
∥ f∥p

Lp +
1
2
∥g∥p

Lp

)q/p

Recall the following definition of uniform convexity.

Definition 23.6.2 A Banach space, X, is said to be uniformly convex if whenever
∥xn∥ ≤ 1 and

∥∥ xn+xm
2

∥∥→ 1 as n,m→∞, then {xn} is a Cauchy sequence and xn→ x where
∥x∥ = 1. More precisely, for every ε > 0, there is a δ > 0 such that if ∥x+ y∥ > 2−δ for
∥x∥ ,∥y∥ both 1, then ∥x− y∥< ε .

Observe that Clarkson’s inequalities imply Lp is uniformly convex for all p > 1. Con-
sider the harder case where 1 < p. The other case is similar. Say ∥ f∥ = ∥g∥ = 1 and

∥ f +g∥Lp > 2−δ . Then from the second inequality
(

2−δ

2

)q
+
∥∥∥ f−g

2

∥∥∥q

Lp
≤ 1and so

∥ f −g∥q
Lp ≤ 2q

(
1−
(

2−δ

2

)q)
< ε

provided δ is small enough.
Uniformly convex spaces have a very nice property which is described in the following

lemma. Roughly, this property is that any element of the dual space achieves its norm at
some point of the closed unit ball.

Lemma 23.6.3 Let X be uniformly convex and let φ ∈ X ′. Then there exists x ∈ X such
that ∥x∥= 1, φ (x) = ∥φ∥ .
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Proof: There is nothing to show if φ = 0 so suppose it is not. Let ∥xn∥ = 1 and let
φ (xn)→ ∥φ∥. Then as n,m→ ∞, φ

( xn+xm
2

)
→ ∥φ∥ . Without loss of generality, we can

also assume φ (xn) is positive. Hence if m,n are large enough, then

∥φ∥(1− ε)< φ

(
xn + xm

2

)
≤ ∥φ∥

∥∥∥∥xn + xm

2

∥∥∥∥
Thus, if m,n are large enough, ∥xn + xm∥ ≥ 2(1− ε). It follows that limm,n→∞ ∥xn + xm∥=
2 and so by uniform convexity, limm,n→∞ ∥xn− xm∥ = 0.Thus the sequence is a Cauchy
sequence and so there is x,∥x∥= 1 and xn→ x so ∥φ∥= limn→∞ φ (xn) = φ (x). ■

The proof of the Riesz representation theorem will be based on the following lemma
which says that if you can show a directional derivative exists, then it can be used to rep-
resent a functional in terms of this directional derivative. It is very interesting for its own
sake.

Lemma 23.6.4 (McShane) Let X be a complex normed linear space and let φ ∈ X ′.
Suppose there exists x ∈ X , ∥x∥ = 1 with φ (x) = ∥φ∥ ̸= 0. Let y ∈ X and let ψy(t) =
∥x+ ty∥ for t ∈ R. Suppose ψ ′y(0) exists for each y ∈ X. Then for all y ∈ X,

ψ
′
y(0)+ iψ ′−iy(0) = ∥φ∥−1

φ (y) .

Proof: Suppose first that ∥φ∥= 1. The idea is to show that in the limit as t→ 0,

|1+ tφ (y)|−1
t

,
∥x+ ty∥−∥x∥

t

act the same. The first part of the argument is devoted to showing this.
By assumption, there is x such that ∥x∥= 1 and φ (x) = 1 = ∥φ∥ . Then φ (y−φ(y)x) =

0 and so

φ(x+ t(y−φ(y)x)) = φ (x)+ tφ (y)− tφ (y)
=1

φ (x) = φ (x) = 1 = ∥φ∥.

Therefore, ∥x+ t(y−φ(y)x)∥ ≥ 1 since, from the above,

∥φ∥∥x+ t(y−φ(y)x)∥= ∥x+ t(y−φ(y)x)∥ ≥ ∥φ∥= 1

Also for small t, |φ(y)t|< 1, and so 1≤ ∥x+ t (y−φ(y)x)∥= ∥(1−φ(y)t)x+ ty∥

≤ |1−φ (y) t|
∥∥∥∥x+

t
1−φ (y) t

y
∥∥∥∥.

Divide both sides by |1−φ (y) t|. Using the standard formula for the sum of a geometric
series,

1+ tφ (y)+o(t) =
1

1− tφ(y)

Therefore,

1
|1−φ (y) t|

= |1+φ (y) t +o(t)| ≤
∥∥∥∥x+

t
1−φ (y) t

y
∥∥∥∥= ∥x+ ty+o(t)∥ (23.8)

where limt→0 o(t)(t−1) = 0. Thus, |1+φ (y) t| ≤ ∥x+ ty∥+o(t) . Now since tφ (y) ∈ C,

|1+ tφ (y)|−1≥ 1+ t Reφ (y)−1 = t Reφ (y) .
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Thus for t > 0,

Reφ (y) ≤ |1+ tφ (y)|−1
t

∥x∥=1
≤ ∥x+ ty∥−∥x∥

t
+

o(t)
t

and for t < 0,

Reφ (y)≥ |1+ tφ (y)|−1
t

≥ ∥x+ ty∥−∥x∥
t

+
o(t)

t
By assumption that the directional derivative exists, and letting t→ 0+ and t→ 0−,

Reφ (y) = lim
t→0

∥x+ ty∥−∥x∥
t

= ψ
′
y (0) .

Now φ (y) = Reφ(y)+ i Imφ(y) so φ(−iy) =−i(φ (y)) =−iReφ(y)+ Imφ(y) and

φ(−iy) = Reφ (−iy)+ i Imφ (−iy).

Hence Reφ(−iy) = Imφ(y). Consequently,

φ (y) = Reφ(y)+ i Imφ(y) = Reφ (y)+ iReφ (−iy)

= ψ
′
y(0)+ iψ ′−iy(0).

This proves the lemma when ∥φ∥= 1. For arbitrary φ ̸= 0, let φ (x) = ∥φ∥ ,∥x∥= 1. Then
from above, if φ 1 (y)≡ ∥φ∥

−1
φ (y) , ∥φ 1∥= 1 and so from what was just shown,

φ 1 (y) =
φ(y)
∥φ∥

= ψ
′
y(0)+ iψ−iy(0) ■

This shows you can represent φ in terms of this directional derivative.
Now here are some short observations. For t ∈ R, p > 1, and x,y ∈ C, x ̸= 0

lim
t→0

|x+ ty|p−|x|p

t
= p |x|p−2 (RexRey+ Imx Imy)

= p |x|p−2 Re(x̄y) (23.9)

Also from convexity of f (r) = rp, for |t|< 1,

|x+ ty|p−|x|p ≤ ∥x|+ |t| |y∥p−|x|p

=

[
(1+ |t|)

(
|x|+ |t| |y|

1+ |t|

)]p

−|x|p ≤ (1+ |t|)p |x|p

1+ |t|
+
|t| |y|p

1+ |t|
− |x|p

≤ (1+ |t|)p−1 (|x|p + |t| |y|p)−|x|p ≤
(
(1+ |t|)p−1−1

)
|x|p +2p−1 |t| |y|p

Now for f (t) ≡ (1+ t)p−1 , f ′ (t) is uniformly bounded, depending on p, for t ∈ [0,1] .
Hence the above is dominated by an expression of the form

Cp (|x|p + |y|p) |t| (23.10)

The above lemma and uniform convexity of Lp can be used to prove a general version
of the Riesz representation theorem next. Let p > 1 and let η : Lq→ (Lp)′ be defined by

η(g)( f ) =
∫

Ω

g f dµ. (23.11)
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Theorem 23.6.5 (Riesz representation theorem p> 1) The map η is 1-1, onto, con-
tinuous, and

∥ηg∥= ∥g∥, ∥η∥= 1.

Proof: Obviously η is linear. Suppose ηg = 0. Then 0 =
∫

g f dµ for all f ∈ Lp. Let
f = |g|q−2g. Then f ∈ Lpand so 0 =

∫
|g|qdµ. Hence g = 0 and η is one to one. That

ηg ∈ (Lp)′ is obvious from the Holder inequality. In fact, |η(g)( f )| ≤ ∥g∥q∥ f∥p, and so
∥η(g)∥ ≤ ∥g∥q. To see that equality holds, let f = |g|q−2g ∥g∥1−q

q . Then ∥ f∥p = 1 and

η(g)( f ) =
∫

Ω

|g|qdµ ∥g∥1−q
q = ∥g∥q.

Thus ∥η∥= 1.
It remains to show η is onto. Let φ ∈ (Lp)′. Is φ = ηg for some g ∈ Lq? Without loss

of generality, assume φ ̸= 0. By uniform convexity of Lp, Lemma 23.6.3, there exists g
such that φg = ∥φ∥, g ∈ Lp, ∥g∥ = 1. For f ∈ Lp, define φ f (t) ≡

∫
Ω
|g+ t f |p dµ. Thus

ψ f (t)≡ ∥g+ t f∥p ≡ φ f (t)
1
p . Does φ

′
f (0) exist? Let [g = 0] denote the set {x : g(x) = 0}.

φ f (t)−φ f (0)
t

=
∫

(|g+ t f |p−|g|p)
t

dµ

From 23.10, the integrand is bounded by Cp (| f |p + |g|p) . Therefore, using 23.9, the dom-
inated convergence theorem applies and it follows φ

′
f (0) =

lim
t→0

φ f (t)−φ f (0)
t

= lim
t→0

[∫
[g=0]
|t|p−1 | f |pdµ +

∫
[g̸=0]

(|g+ t f |p−|g|p)
t

dµ

]
= p

∫
[g̸=0]
|g|p−2 Re(ḡ f )dµ = p

∫
|g|p−2 Re(ḡ f )dµ

Hence ψ ′f (0) = ∥g∥
−p
q
∫
|g(x)|p−2 Re(g(x) f̄ (x))dµ . Note 1

p −1 =− 1
q Therefore,

ψ
′
−i f (0) = ∥g∥

−p
q

∫
|g(x)|p−2 Re(ig(x) f̄ (x))dµ.

But Re(ig f̄ ) = Im(−g f̄ ) and so by the McShane lemma,

φ ( f ) = ∥φ∥ ∥g∥
−p
q

∫
|g(x)|p−2[Re(g(x) f̄ (x))+ i Re(ig(x) f̄ (x))]dµ

= ∥φ∥ ∥g∥
−p
q

∫
|g(x)|p−2[Re(g(x) f̄ (x))+ i Im(−g(x) f̄ (x))]dµ

= ∥φ∥ ∥g∥
−p
q

∫
|g(x)|p−2g(x) f (x)dµ .

This shows that φ = η(∥φ∥ ∥g∥
−p
q |g|p−2g) and verifies η is onto. ■

23.7 The Dual Space of C0 (X)

Consider the dual space of C0(X) where X is a locally compact Hausdorff space. It will
turn out to be a space of measures. To show this, the following lemma will be convenient.
Recall this space is defined as follows.
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Definition 23.7.1 f ∈C0 (X) means that for every ε > 0 there exists a compact set
K such that | f (x)|< ε whenever x /∈ K. Recall the norm on this space is

∥ f∥
∞
≡ ∥ f∥ ≡ sup{| f (x)| : x ∈ X}

Also define C+
0 (X) to be the nonnegative functions of C0 (X).

From the representation theorem about positive linear functionals on C0 (X) , we know
that if Λ is such a positive linear functional, then Λ f =

∫
X f dµ . What if Λ is also continuous

so that |Λ f | ≤ ∥Λ∥∥ f∥
∞

?

Lemma 23.7.2 Suppose Λ : C0 (X)→ C is a positive linear functional which is also
continuous. Then if µ is the Radon measure representing Λ, it follows that ∥Λ∥= µ (X) so
in particular, µ is finite.

Proof: From the regularity of µ,µ (X) = sup{µ (K) : K ⊆ X ,K compact} . For such a
K let K ≺ f ≺ X and so it follows that µ (X) = sup{Λ f : f ≺ X} . However, 0 ≤ Λ f ≤
∥Λ∥∥ f∥

∞
≤ ∥Λ∥ and so µ (X) ≤ ∥Λ∥. To go the other direction, use density of Cc (X) in

C0 (X) to obtain f ∈ Cc (X) such that ∥ f∥
∞
≤ 1 and ∥Λ∥ < |Λ f |+ ε. Since Λ is a posi-

tive linear functional, one can assume that f ≥ 0 since otherwise the inequality could be
strengthened by replacing f with its positive part f+. Then with this f ,

µ (X)≤ ∥Λ∥< |Λ f |+ ε = Λ f + ε ≤ µ (X)+ ε

and so, since ε is arbitrary, µ (X) = ∥Λ∥. ■
Next consider the case where L is in L (C0 (X) ,C) so it is not known to take nonnega-

tive functions to nonnegative scalars.

Lemma 23.7.3 Let L ∈ L (C0 (X) ,C) . Then there exists λ : C+
0 (X)→ [0,∞) which

satisfies

λ (a f +bg) = aλ ( f )+bλ (g) , if a,b≥ 0
|λ ( f )| ≤ ∥L∥∥ f∥

∞
(23.12)

Proof: Define, for f ∈C+
0 (X) , λ ( f ) ≡ sup{|Lg| : |g| ≤ f}. Then the second part is

obvious because
|λ ( f )|= λ ( f )≤ sup{∥L∥∥g∥

∞
} ≤ ∥L∥∥ f∥

∞

Consider the first claim of 23.12. It is obvious that λ (0 f ) = 0λ ( f ) from the above.
If c > 0, why is λ (c f ) = cλ ( f )? If |g| ≤ c f , then 1

c |g| ≤ f and so 1
c |Lg| ≤ λ ( f ) so

|Lg| ≤ cλ ( f ) . Taking sup for all such g,λ (c f ) ≤ cλ ( f ) . Thus also λ ( f ) = λ
( 1

c c f
)
≤

1
c λ (c f ) so cλ ( f )≤ λ (c f ) showing that cλ ( f ) = λ (c f ) if c≥ 0. It remains to verify that
λ ( f1 + f2) = λ ( f1)+λ ( f2).

For f j ∈C+
0 (X) , there exists gi ∈C0 (X) such that |gi| ≤ fi and

λ ( f1)+λ ( f2)≤ |L(g1)|+ |L(g2)|+2ε = L(ω1g1)+L(ω2g2)+2ε

= L(ω1g1 +ω2g2)+2ε = |L(ω1g1 +ω2g2)|+2ε

where |gi| ≤ fi and |ω i|= 1 and ω iL(gi) = |L(gi)|. Now

|ω1g1 +ω2g2| ≤ |g1|+ |g2| ≤ f1 + f2
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and so the above shows

λ ( f1)+λ ( f2)≤ λ ( f1 + f2)+2ε.

Since ε is arbitrary, λ ( f1)+λ ( f2)≤ λ ( f1 + f2) . It remains to verify the other inequality.
Now let |g| ≤ f1 + f2,

|Lg| ≥ λ ( f1 + f2)− ε.

Let

hi (x) =

{
fi(x)g(x)

f1(x)+ f2(x)
if f1 (x)+ f2 (x)> 0,

0 if f1 (x)+ f2 (x) = 0.

Then hi is continuous and h1(x)+ h2(x) = g(x), |hi| ≤ fi. The function hi is clearly con-
tinuous at points x where f1 (x)+ f2 (x) > 0. The reason it is continuous at a point where
f1 (x)+ f2 (x) = 0 is that at every point y where f1 (y)+ f2 (y) > 0, the top description of
the function gives

|hi (y)|=
∣∣∣∣ fi (y)g(y)

f1 (y)+ f2 (y)

∣∣∣∣≤ |g(y)| ≤ f1 (y)+ f2 (y)

so if |y− x| is small enough, |hi (y)| is also small. Then it follows from this definition of
the hi that

−ε +λ ( f1 + f2) ≤ |Lg|= |Lh1 +Lh2| ≤ |Lh1|+ |Lh2|
≤ λ ( f1)+λ ( f2).

Since ε > 0 is arbitrary, this shows that

λ ( f1 + f2)≤ λ ( f1)+λ ( f2)≤ λ ( f1 + f2) ■

λ cannot be linear because it is not defined on a vector space. However, it wants to be
linear. This is the content of the above lemma. Therefore, I will call λ righteous.

23.7.1 Extending Righteous Functionals
The process of extending such a righteous functional to one which is linear is the same
process used earlier with the abstract Lebesgue integral. It is just like Theorem 10.7.8
except here the functional is defined on continuous functions which are nonnegative rather
than measurable nonnegative functions. The inequality of 23.12 is also preserved.

Lemma 23.7.4 Suppose λ is a mapping which has λ ( f )≥ 0 which is defined on C+
0 (X)

such that
λ (a f +bg) = aλ ( f )+bλ (g) , (23.13)

whenever a,b ≥ 0 and f ,g ≥ 0. Then there exists a unique extension of λ to all of C0 (X),
Λ such that whenever f ,g ∈C0 (X) and a,b ∈C, it follows Λ(a f +bg) = aΛ( f )+bΛ(g) .
If

|λ ( f )| ≤C∥ f∥
∞

(23.14)

then |Λ f | ≤ λ (| f |)≤C∥ f∥
∞

.
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Proof: There is only one possible way to extend this functional to obtain a linear func-
tional and the arguments are identical with those of Theorem 10.7.8 so I will refer to this
earlier theorem for these arguments. In particular, you must have

Λ( f ) = Λ(Re f )+ iΛ(Im f ) = Λ(Re f )+−Λ(Re f )−

+i
(
Λ(Im f )+−Λ(Im f )−

)
= λ (Re f )+−λ (Re f )−+ i

(
λ (Im f )+−λ (Im f )−

)
Since the nature of the functions is different, being continuous here rather than only mea-
surable, the only thing left is to show the claim about continuity of Λ in case of 23.14.

What of the last claim that |Λ f | ≤ λ (| f |)? Let ω have |ω| = 1 and |Λ f | = ωΛ( f ) .
Since Λ is linear,

|Λ f |= ωΛ( f ) = Λ(ω f ) = Λ(Reω f )≤ Λ
(
Re(ω f )+

)
= λ

(
Re(ω f )+

)
≤ λ (| f |)≤C∥ f∥

∞
■

Corollary 23.7.5 Let L ∈L (C0 (X) ,C) . Then there exists Λ ∈L (C0 (X) ,C) which
satisfies ∥Λ∥= ∥L∥ but also Λ is a positive linear functional meaning it f ≥ 0, then Λ( f )≥
0.

Proof: Let λ be the righteous functional defined in Lemma 23.7.3 which satisfies
|λ ( f )| ≤ ∥L∥∥ f∥

∞
. Then let Λ be its extension defined in Lemma 23.7.4 which also satis-

fies |Λ( f )| ≤ ∥L∥∥ f∥
∞
. Then this is a positive linear functional and ∥Λ∥ ≤ ∥L∥. However,

from the definition of λ ,

|Lg| ≤ λ (|g|) = Λ(|g|)≤ ∥Λ∥∥g∥
∞

and so also ∥L∥ ≤ ∥Λ∥. ■

23.7.2 The Riesz Representation Theorem
What follows is the Riesz representation theorem for C0(X)′.

Theorem 23.7.6 Let L ∈ (C0(X))′ for X a locally compact Hausdorf space. Then
there exists a σ algebra F and a finite Radon measure µ and a function σ ∈ L∞(X ,µ)
such that for all f ∈C0 (X) ,

L( f ) =
∫

X
f σdµ.

Furthermore, µ (X) = ∥L∥ , |σ |= 1 a.e. and if ν (E)≡
∫

E σdµ then µ = |ν | .

Proof: From Corollary 23.7.5, there exists a positive linear functional Λ defined on
C0 (X) with ∥Λ∥ = ∥L∥ . Then let µ be the Radon measure representing Λ for which, by
Lemma 23.7.2, µ (X) = ∥Λ∥= ∥L∥.

For f ∈ Cc (X) , |L f | ≤ λ (| f |) = Λ(| f |) =
∫

X | f |dµ = ∥ f∥L1(µ).Since µ is both inner
and outer regular thanks to it being finite, Cc(X) is dense in L1(X ,µ). (See Theorem 12.2.4
for more than is needed.) Thus there is a unique extension of L to L̃ ∈

(
L1(X ,µ)

)′ and
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by the Riesz representation theorem for the dual of L1 (µ) , there exists σ ∈ L∞ (µ) with
L̃( f ) =

∫
X f σdµ. In particular,

L( f ) =
∫

X
f σdµ for f ∈C0 (X) .

It remains to verify that |σ |= 1.
If E is measurable, the regularity of µ implies there exists a sequence of nonnegative

bounded functions fn ∈ Cc (X) such that fn (x)→XE (x) a.e. and in L1 (µ) . Then using
the dominated convergence theorem,∫

E
dµ = lim

n→∞

∫
X

fndµ = lim
n→∞

Λ( fn)≥ lim
n→∞
|L fn|= lim

n→∞

∣∣∣∣∫X
fnσdµ

∣∣∣∣= ∣∣∣∣∫E
σdµ

∣∣∣∣
and so if µ (E)> 0, 1≥

∣∣∣ 1
µ(E)

∫
E σdµ

∣∣∣which shows from Lemma 23.2.7 that |σ | ≤ 1 a.e.

But also, choosing f1 appropriately, ∥ f1∥∞
≤ 1, |L f1|+ ε > ∥L∥ = µ (X). Letting

ω (L f1) = |L f1| , |ω|= 1,

µ (X) = ∥L∥= sup
∥ f∥∞≤1

|L f | ≤ |L f1|+ ε = ωL f1 + ε =
∫

X
f1ωσdµ + ε

=
∫

X
Re( f1ωσ)dµ + ε ≤

∫
X
|σ |dµ + ε ≤ µ (X)+ ε

and since ε is arbitrary, µ (X)≤
∫

X |σ |dµ ≤ µ (X) which requires |σ |= 1 a.e. since it was
shown to be no larger than 1 and if it is smaller than 1 on a set of positive measure, then the
above could not hold.

If ν (E)≡
∫

E σdµ,by Corollary 23.2.9, |ν |(E) =
∫

E |σ |dµ =
∫

E 1dµ = µ (E) ■
Sometimes people write L( f ) =

∫
X f dν ≡

∫
X f σd |ν | =

∫
X f σdµ where σd |ν | is the

polar decomposition of the complex measure ν (E)≡
∫

E σdµ . Then with this convention,
the above representation is L( f ) =

∫
X f dν , |ν |(X) = ∥L∥ . Also note that at most one ν can

represent L. If there were two of them ν i, i = 1,2, then 0 =
∫

X f σd |ν1−ν2| , |σ |= 1, and
so it will follow that |ν1−ν2|(X) = 0 because you could approximate σ̄ with a sequence
fn and after using the dominated convergence theorem, you would get |ν1−ν2|(X) =
0. Hence ν1 = ν2.

Corollary 23.7.7 Let L ∈L (C0 (X) ,C) . Then there exists a unique complex measure
ν such that for all f ∈C0 (X) ,L( f ) =

∫
X f dν and |ν |(X) = ∥L∥.

23.8 Exercises
1. Suppose µ is a vector measure having values in Rn or Cn. Can you show that |µ|

must be finite? Hint: You might define for each ei, one of the standard basis vectors,
the real or complex measure, µei

given by µei
(E) ≡ ei · µ (E) . Why would this

approach not yield anything for an infinite dimensional normed linear space in place
of Rn? Have a look at the proof of Theorem 23.1.3.

2. The Riesz representation theorem of the Lp spaces can be used to prove a very inter-
esting inequality. Let r, p,q ∈ (1,∞) satisfy 1

r = 1
p +

1
q −1. Then 1

q = 1+ 1
r −

1
p > 1

r
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and so r > q. Let θ ∈ (0,1) be chosen so that θr = q. Then also 1
r =


1/p+1/p′=1︷ ︸︸ ︷

1− 1
p′

+

1
q − 1 = 1

q −
1
p′ and so θ

q = 1
q −

1
p′ which implies p′ (1−θ) = q. Now let f ∈

Lp (Rn) , g ∈ Lq (Rn) , f ,g ≥ 0. Justify the steps in the following argument using
what was just shown that θr = q and p′ (1−θ) = q. Let h ∈ Lr′ (Rn) .

( 1
r +

1
r′ = 1

)
,∣∣∣∣∫ f ∗g(x)h(x)dx

∣∣∣∣
=

∣∣∣∣∫ ∫ f (y)g(x−y)h(x)dxdy
∣∣∣∣

≤
∫ ∫

| f (y)| |g(x−y)|θ |g(x−y)|1−θ |h(x)|dydx

≤
∫ (∫ (

|g(x−y)|1−θ |h(x)|
)r′

dx
)1/r′

·(∫ (
| f (y)| |g(x−y)|θ

)r
dx
)1/r

dy

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)r′

dx
)p′/r′

dy

]1/p′

[∫ (∫ (
| f (y)| |g(x−y)|θ

)r
dx
)p/r

dy

]1/p

≤

[∫ (∫ (
|g(x−y)|1−θ |h(x)|

)p′

dy
)r′/p′

dx

]1/r′

[∫
| f (y)|p

(∫
|g(x−y)|θr dx

)p/r

dy

]1/p

=

[∫
|h(x)|r

′
(∫
|g(x−y)|(1−θ)p′ dy

)r′/p′

dx

]1/r′

∥g∥q/r
q ∥ f∥p

= ∥g∥q/r
q ∥g∥

q/p′
q ∥ f∥p ∥h∥r′ = ∥g∥q ∥ f∥p ∥h∥r′ . (23.15)

Young’s inequality says that

∥ f ∗g∥r ≤ ∥g∥q ∥ f∥p . (23.16)

Therefore ∥ f ∗g∥r ≤ ∥g∥q ∥ f∥p. How does this inequality follow from the above
computation? Does 23.15 continue to hold if r, p,q are only assumed to be in [1,∞]?
Explain. Does 23.16 hold even if r, p, and q are only assumed to lie in [1,∞]?
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3. Suppose (Ω,µ,S ) is a finite measure space and that { fn} is a sequence of functions
which converge weakly to 0 in Lp (Ω). This means that

∫
Ω

fngdµ → 0 for every
g ∈ Lp′ (Ω). Suppose also that fn (x)→ 0 a.e. Show that then fn→ 0 in Lp−ε (Ω) for
every p > ε > 0.

4. Give an example of a sequence of functions in L∞ (−π,π) which converges weak ∗
to zero but which does not converge pointwise a.e. to zero. Convergence weak ∗
to 0 means that for every g ∈ L1 (−π,π) ,

∫
π

−π
g(t) fn (t)dt→ 0. Hint: First consider

g ∈ C∞
c (−π,π) and maybe try something like fn (t) = sin(nt). Do integration by

parts.

5. Let (Ω,F ) be a measurable space and let λ : F → (−∞,∞] be such that if the Ei
are disjoint sets in F then λ (∪iEi) = ∑i λ (Ei) where this sum either equals a real
number or +∞. The Hahn decomposition says there exist measurable sets P,N such
that P∪N =Ω, P∩N = /0, and for each F ⊆P,λ (F)≥ 0 and for each F ⊆N,λ (F)≤
0. These sets P,N are called the positive set and the negative set respectively. Show
the existence of the Hahn decomposition. Also explain how this decomposition is
unique in the sense that if P′,N′ is another Hahn decomposition, then (P\P′)∪
(P′ \P) has measure zero, a similar formula holding for N,N′. When you have the
Hahn decomposition, as just described, you define λ

+ (E) ≡ λ (E ∩P) ,λ− (E) ≡
−λ (E ∩N). This is sometimes called the Hahn Jordan decomposition. Hint: You
could use similar arguments leading to Theorem 10.13.5. However, this time be
sure that the Hausdorff maximality argument is applied to sets which have negative
measure.

6. From Problem 5 for λ having values in (−∞,∞] you have the Hahn Jordan decompo-
sition for the measure λ , λ

+ (E) ≡ λ (E ∩P) , λ
− (E) ≡ −λ (E ∩N) . Explain why

λ
− is a finite measure. Hint: It is a complex measure which happens to have values

in R.

7. If µ : F → [0,∞) is a finite measure and if λ : F → (−∞,∞) is another signed
measure and λ ≪ µ meaning that if µ (E) = 0, then λ (E) = 0, show that λ

+,λ−≪
µ with both being finite measures. Explain why there exists f ∈ L1 (Ω) with λ (E) =∫

XE f dµ .

8. Suppose λ is like the above problem but has values in [0,∞] and µ is a finite real
valued measure on F . Suppose also that λ ≪ µ. Show there exists a measurable
f ≥ 0 such that λ (E) =

∫
XE f dµ

9. What if λ has values in [−∞,∞). Prove there exists a Hahn decomposition for λ as
in the above problem. Why do we not allow λ to have values in [−∞,∞]? Hint: You
might want to consider −λ .

10. Suppose X is a Banach space and let X ′ denote its dual space. A sequence {x∗n}
∞

n=1
in X ′ is said to converge weak ∗ to x∗ ∈ X ′ if for every x ∈ X , limn→∞ x∗n (x) = x∗ (x).
Let {φ n} be a mollifier. Also let δ be the measure defined by δ (E) = 1 if 0 ∈ E and
0 if 1 /∈ E. Explain how φ n→ δ weak ∗.

11. It was shown above that if φ ∈ X ′ where X is a uniformly convex Banach space, then
there exists x ∈ X ,∥x∥= 1, and φ (x) = ∥φ∥ . Show that this x must be unique. Hint:
Recall that uniform convexity implies strict convexity.
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12. Suppose λ (E) =
∫

E hdµ where h is real valued and µ is a finite measure so that λ

is also real valued. Let P,N be a Hahn decomposition for λ . Show that |λ |(E) =∫
E |h|dµ. Hint: Argue that on P it follows h ≥ 0 a.e. and on N,h ≤ 0 a.e. Then

estimate ∑F∈π(E) λ (F) using a Hahn decomposition. If we defined |x+ iy|1 as |x|1+
|y|1 , and the total variation exactly the same way for a complex valued measure ex-
cept for letting |·|1 refer to this way of measuring magnitude, then everything would
be much easier. Why don’t we do this and save a lot of trouble?



Chapter 24

The Bochner Integral
From my experience, the Bochner integral tends to be ignored. However, it is one of the
most useful and important ideas in functional analysis, at least in my experience. Perhaps
it is not useful in number theory or modern algebra, but I have used it in almost every paper
I have written durring my career. Therefore, I am including it in this book. If people are
not interested in it, they can ignore it, but if so, they will be missing out on some very
nice mathematics. The work of Pettis about weak and strong measurability is particularly
interesting.

24.1 Strong and Weak Measurability
In this section (Ω,F ) will be a measurable space and X will be a Banach space which
contains the values of either a function or a measure. The Banach space will be either a
real or a complex Banach space but the field of scalars does not matter and so it is denoted
by F with the understanding that F= C unless otherwise stated. The theory presented here
includes the case where X = Rn or Cn but it does not include the situation where f could
have values in something like [0,∞] which is not a vector space. To begin with here is a
definition.

Definition 24.1.1 A function, x : Ω→ X, for X a Banach space, is finitely valued
and measurable if it is of the form x(ω) = ∑

n
i=1 aiXBi (ω) where Bi ∈F for each i. These

are called simple functions. A function x from Ω to X is said to be strongly measurable
if there exists a sequence of finitely valued and measurable functions {xn} with xn (ω)→
x(ω). The function x is said to be weakly measurable if, for each f ∈ X ′, f ◦ x is a scalar
valued measurable function.

The approximating simple functions can be modified so that the norm of each is no
more than 2∥x(ω)∥. This is a useful observation.

Lemma 24.1.2 Let x be strongly measurable. Then ∥x∥ is a real valued measurable
function. There exists a sequence of simple functions {yn} which converges to x(ω) point-
wise and also ∥yn (ω)∥ ≤ 2∥x(ω)∥ for all ω .

Proof: Consider the first claim. Letting xn be a sequence of simple functions converging
to x pointwise, it follows that ∥xn∥ is a real valued measurable function. Since ∥x∥ is a
pointwise limit, ∥x∥ is a real valued measurable function.

Let limn→∞ xn (ω) = x(ω) where xn (ω)≡ ∑
mn
k=1 an

kXEn
k
(ω).Then define

yn (ω)≡
{

xn (ω) if ∥xn (ω)∥< 2∥x(ω)∥
0 if ∥xn (ω)∥ ≥ 2∥x(ω)∥

so yn (ω) = ∑
mn
k=1 an

kXEn
k∩[∥an

k∥≤2∥x∥] (ω) . It follows yn is a simple function. If ∥x(ω)∥= 0,
then yn (ω) = 0 and so yn (ω)→ x(ω). If ∥x(ω)∥ > 0, then eventually, yn (ω) = xn (ω)
and so in this case, yn (ω)→ x(ω). ■

Earlier, a function was measurable if inverse images of open sets were measurable.
Something similar holds here. The difference is that another condition needs to hold about
the values being separable. First is a somewhat obvious lemma.

647
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Lemma 24.1.3 Suppose S is a nonempty subset of a metric space (X ,d) and S ⊆ T
where T is separable. Then there exists a countable dense subset of S.

Proof: Let D be the countable dense subset of T . Now consider the countable set B
of balls having center at a point of D and radius a positive rational number such that also,
each ball in B has nonempty intersection with S. Let D consist of a point from S∩B
whenever B ∈B (axiom of choice). Let s ∈ S and consider B(s,ε). Let r be rational with
r < ε . Now B

(
s, r

10

)
contains a point d ∈ D. Thus B

(
d, r

10

)
∈B and s ∈ B

(
d, r

10

)
. Let

d̂ ∈ D ∩B
(
d, r

10

)
. Thus d

(
s, d̂
)
< r

5 < r < ε so d̂ ∈ B(s,ε) and this shows that D is a
countable dense subset of S as claimed. ■

The following is a general result in metric space.

Lemma 24.1.4 Let X be a metric space and suppose V is a nonempty open set. Then
there exists open sets Vm such that

· · ·Vm ⊆V m ⊆Vm+1 ⊆ ·· · , V =
∞⋃

m=1

Vm. (24.1)

Proof: Recall that if S is a nonempty set, x→ dist(x,S) is a continuous map from X
to R. First assume V ̸= X . Let Vm ≡

{
x ∈V : dist

(
x,VC

)
> 1

m

}
. Then for large enough

m, this set is nonempty and contained in V. Furthermore, if x ∈ V then it is at a positive
distance to the closed set VC so eventually, x ∈Vm. Now

Vm ⊆Vm ⊆
{

x ∈V : dist
(
x,VC)≥ 1

m

}
⊆Vm+1 ⊆V

Indeed, if p is a limit point of Vm, then there are xn ∈Vm with xn→ p. Thus dist
(
xn,VC

)
→

dist
(

p,VC
)

and so p is in
{

x ∈V : dist
(
x,VC

)
≥ 1

m

}
. ■

Theorem 24.1.5 x is strongly measurable if and only if x−1 (U) is measurable for
all U open in X and x(Ω) is separable. Thus, if X is separable, x is strongly measurable if
and only if x−1 (U) is measurable for all U open.

Proof:⇐Suppose first x−1 (U) is measurable for all U open in X and x(Ω) is separable.
It follows x−1 (B) is measurable for all B Borel because {B : x−1 (B) is measurable} is a σ

algebra containing the open sets. Let {an}∞
n=1 be the dense subset of x(Ω). Let

Un
k ≡ {z ∈ X : ∥z−ak∥ ≤min{{∥z−al∥}n

l=1}.

In words, Um
k is the set of points of X which are as close to ak as they are to any of the al

for l ≤ n.
Bn

k ≡ x−1 (Un
k ) , Dn

k ≡ Bn
k \
(
∪k−1

i=1 Bn
i

)
, Dn

1 ≡ Bn
1,

and xn (ω)≡∑
n
k=1 akXDn

k
(ω).Thus xn (ω) is a closest approximation to x(ω) from {ak}n

k=1
and so xn (ω)→ x(ω) because {an}∞

n=1 is dense in x(Ω). Furthermore, xn is measurable
because each Dn

k is measurable.
⇒Now suppose that x is strongly measurable. Then some sequence of measurable finite

valued functions {xn} converges pointwise to x. Then x−1
n (W ) is measurable for every

open set W because it is just a finite union of measurable sets. If xn (ω) = ∑
n
k=1 ckXEk (ω) ,
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then x−1
n (W ) = ∪{Ek : ck ∈W} . Thus, x−1

n (W ) is measurable for every Borel set W . This
follows from the observation that

{
W : x−1

n (W ) is measurable
}

is a σ algebra containing
the open sets. Since X is a metric space, it follows that if U is an open set in X , there exists
a sequence of open sets, {Vn} which satisfies

V n ⊆U, V n ⊆Vn+1, U = ∪∞
n=1Vn.

Then x−1 (Vm)⊆
⋃

n<∞

⋂
k≥n

x−1
k (Vm)⊆ x−1

(
V m
)
.This implies

x−1 (U) =
⋃

m<∞

x−1 (Vm)⊆
⋃

m<∞

⋃
n<∞

⋂
k≥n

x−1
k (Vm)⊆

⋃
m<∞

x−1 (V m
)
⊆ x−1 (U).

Since x−1 (U) =
⋃

m<∞

⋃
n<∞

⋂
k≥n

x−1
k (Vm),it follows that x−1 (U) is measurable for every open

U . It remains to show x(Ω) is separable. Let D ≡ all values of the xn. Then x(Ω) ⊆ D,
which has a countable dense subset. By Lemma 24.1.3, x(Ω) is separable. ■

Lemma 24.1.6 Let x ∈ X a normed linear space. Then there exists f ∈ X ′ such that
∥ f∥= 1 and f (x) = ∥x∥.

Proof: Consider the one dimensional subspace M ≡
{

α
x
∥x∥ : α ∈ F

}
and define a con-

tinuous linear functional on M by g
(

α
x
∥x∥

)
≡ α. Then the operator norm of g is obtained

as ∥g∥ ≡ sup|α|≤1 |α|= 1. Extend g to all of X using the Hahn Banach theorem, calling the

extended function f . Then ∥ f∥= 1 and f (x) = f
(
∥x∥ x

∥x∥

)
≡ ∥x∥. ■

The next lemma is interesting for its own sake. Roughly it says that if a Banach space
is separable, then the unit ball in the dual space is weak ∗ separable. This will be used
to prove Pettis’s theorem, one of the major theorems in this subject which relates weak
measurability to strong measurability. First here is a standard application which comes
from earlier material on the Hahn Banach theorem.

Lemma 24.1.7 If X is a separable Banach space with B′ the closed unit ball in X ′, then
there exists a sequence { fn}∞

n=1 ≡ D′ ⊆ B′ with the property that for every x ∈ X ,∥x∥ is
obtained as ∥x∥= sup f∈D′ | f (x)| . If H is a dense subset of X ′ then D′ may be chosen to be
contained in H.

Proof: Let {ak}∞
k=1 be a countable dense set in X . Consider the mapping φ n : B′→ Fn

given by φ n ( f )≡ ( f (a1) , · · · , f (an)) .
Then φ n (B

′) is contained in a compact subset of Fn because | f (ak)| ≤ ∥ak∥ . There-
fore, there exists a countable dense subset of φ n (B

′) ,{φ n ( fk)}∞

k=1 . Pick hk
j ∈ H ∩B′ such

that lim j→∞

∥∥∥ fk−hk
j

∥∥∥ = 0. Then
{

φ n

(
hk

j

)}
k, j

must also be dense in φ n (B
′) . Let D′n ={

hk
j

}
k, j

. Thus D′n is a countable collection of f ∈ B′ which can be used to approximate

each ∥ak∥ ,k ≤ n. Indeed, if x is arbitrary, there exists fx ∈ B′ with fx (x) = ∥x∥ and so if
x = ak, then ∥ak∥ will be close to g(ak) for some g ∈ D′n. Define D′ ≡ ∪∞

n=1D′n.
From the construction, D′ is countable and can be used to approximate each ∥am∥ . That

is, ∥am∥= sup{| f (am)| : f ∈ D′} Then, for x arbitrary, | f (x)| ≤ ∥x∥ and so

∥x∥ ≤ ∥x−am∥+∥am∥= ∥x−am∥+ sup
{
| f (am)| : f ∈ D′

}
≤ ∥x−am∥+ sup

{
| f (am− x)+ f (x)| : f ∈ D′

}
≤ sup

{
| f (x)| : f ∈ D′

}
+2∥x−am∥ ≤ ∥x∥+2∥x−am∥ .
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Since am is arbitrary and the {am}∞

m=1 are dense, this establishes the claim of the lemma.
■

Note that the proof would work the same if H were only given to be weak ∗ dense.
The next theorem is one of the most important results in the subject. It is due to Pettis

and appeared in 1938 [45].

Theorem 24.1.8 If x has values in a separable Banach space X, then x is weakly
measurable if and only if x is strongly measurable.

Proof: ⇒It is necessary to show x−1 (U) is measurable whenever U is open. Since
every open set is a countable union of balls, it suffices to show x−1 (B(a,r)) is measurable
for any ball, B(a,r) . Since, B(x,r) =∪∞

n=1B
(
x,
(
1− 1

n

)
r
)

or by Lemma 24.1.4, every open

ball is the countable union of closed balls, it suffices to verify x−1
(

B(a,r)
)

is measurable.

For D′ described in Lemma 24.1.7,

x−1
(

B(a,r)
)

= {ω : ∥x(ω)−a∥ ≤ r}=

{
ω : sup

f∈D′
| f (x(ω)−a)| ≤ r

}
= ∩ f∈D′ {ω : | f (x(ω)−a)| ≤ r}
= ∩ f∈D′ {ω : | f (x(ω))− f (a)| ≤ r}

= ∩ f∈D′ ( f ◦ x)−1 B( f (a) ,r)

which equals a countable intersection of measurable sets because it is assumed that f ◦ x is
measurable for all f ∈ X ′.
⇐Next suppose x is strongly measurable. Then there exists a sequence of simple func-

tions xn which converges to x pointwise. Hence for all f ∈ X ′, f ◦ xn is measurable since f
is continuous and f ◦ xn→ f ◦ x pointwise. Thus x is weakly measurable. ■

The same method of proof yields the following interesting corollary.

Corollary 24.1.9 Let X be a separable Banach space and let B (X) denote the σ alge-
bra of Borel sets. Let H be a dense subset of X ′. Then B (X) = σ (H)≡F , where σ (H)
is the smallest σ algebra of subsets of X which has the property that every function, x∗ ∈H
is measurable. That is (x∗)−1 (open) ∈F .

Proof: First I need to show F contains open balls because then F will contain the
open sets and hence the Borel sets. As noted above, it suffices to show F contains closed
balls. Let D′ be those functionals in B′ defined in Lemma 24.1.7 contained in H. Then

{x : ∥x−a∥ ≤ r} =

{
x : sup

x∗∈D′
|x∗ (x−a)| ≤ r

}
= ∩x∗∈D′ {x : |x∗ (x−a)| ≤ r}
= ∩x∗∈D′ {x : |x∗ (x)− x∗ (a)| ≤ r}

= ∩x∗∈D′x
∗−1
(

B(x∗ (a) ,r)
)
∈ σ (H)

which is measurable because this is a countable intersection of measurable sets. Thus F
contains closed balls, hence open balls, hence open sets so σ (H)≡F ⊇B (X) .

To show the other direction for the inclusion, note that each x∗ is B (X) measurable
because x∗−1 (open set) = open set. Therefore, B (X)⊇ σ (H) . ■
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What of limits of measurable functions? The next theorem says that the usual theo-
rem about limits of measurable functions being measurable holds. The proof is similar to
showing that the limit of measurable finitely valued functions is measurable given above.

Theorem 24.1.10 Let xn and x be functions mapping Ω to X where F is a σ al-
gebra of measurable sets of Ω and X is a Banach space. Thus X satisfies 24.1. Then
if xn is strongly measurable, and x(ω) = limn→∞ xn(ω), it follows that x is also strongly
measurable. (Pointwise limits of measurable functions are measurable.)

Proof: Let {Vm} be the sequence of 24.1. Since x is the pointwise limit of xn,

x−1(Vm)⊆ {ω : xk(ω) ∈Vm for all k large enough} ⊆ x−1(Vm).

Therefore,
x−1(V ) = ∪∞

m=1x−1(Vm)⊆ ∪∞
m=1∪∞

n=1∩∞
k=nx−1

k (Vm)

⊆ ∪∞
m=1x−1(Vm) = x−1(V ).

It follows x−1(V ) ∈F because it equals the expression in the middle which is measurable.
Note that this shows the characterization of measurability in terms of inverse images of
open sets being measureable sets. Thus the theorem is proved in the case of separable
Banach spaces. However, Lemma 24.1.3 can be applied to conclude that this holds in
general because each xn is separably valued given they are each strongly measurable and
x(Ω)⊆ D where D = ∪nDn for Dn a countable dense subset of xn (Ω). ■

Note that the same conclusion in terms of inverse images being measurable would hold
for any metric space.

Corollary 24.1.11 x is strongly measurable if and only if x(Ω) is separable and x is
weakly measurable.

Proof: Strong measurability clearly implies weak measurability. If xn (ω) → x(ω)
where xn is simple, then f (xn (ω))→ f (x(ω)) for all f ∈ X ′. Hence f ◦ x is measurable
by Theorem 24.1.10 because it is the limit of a sequence of measurable functions. Let D
denote the set of all values of the xn. Then D is a separable set containing x(Ω). Thus D is
a separable metric space. Therefore x(Ω) is separable also by the last part of the proof of
Theorem 24.1.5.

Now suppose D is a countable dense subset of x(Ω) and x is weakly measurable. Let
Z be the subset consisting of all finite linear combinations of D with the scalars coming
from the set of rational points of F. Thus, Z is countable. Letting Y = Z, Y is a separable
Banach space containing x(Ω). If f ∈ Y ′, f can be extended to an element of X ′ by the
Hahn Banach theorem. Therefore, x is a weakly measurable Y valued function. Now use
Theorem 24.1.8 to conclude x is strongly measurable. ■

Weakly measurable as defined above means ω → x∗ (x(ω)) is measurable for every
x∗ ∈ X ′. The next lemma ties this weak measurability to the usual version of measurability
in which a function is measurable when inverse images of open sets are measurable.

Lemma 24.1.12 Let X be a Banach space and let x : (Ω,F )→ K ⊆ X where K is
weakly compact and X ′ is separable. Then x is weakly measurable if and only if x−1 (U) ∈
F whenever U is a weakly open set.
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Proof: By Corollary 21.5.11 on Page 559, there exists a metric d, such that the met-
ric space topology with respect to d coincides with the weak topology on K. Since K is
compact, it follows that K is also separable. Hence it is completely separable and so there
exists a countable basis of open sets B for the weak topology on K. It follows that if U is
any weakly open set, covered by basic sets of the form BA (x,r) where A is a finite subset
of X ′, there exists a countable collection of these sets of the form BA (x,r) which covers U .

Suppose now that x is weakly measurable. To show x−1 (U)∈F whenever U is weakly
open, it suffices to verify x−1 (BA (z,r)) ∈F for any set, BA (z,r) . Let A = {x∗1, · · · ,x∗m} .
Then

x−1 (BA (z,r)) = {ω ∈Ω : ρA (x(ω)− z)< r}

≡
{

ω ∈Ω : max
x∗∈A
|x∗ (x(ω)− z)|< r

}
= ∪m

i=1 {ω ∈Ω : |x∗i (x(ω)− z)|< r}
= ∪m

i=1 {ω ∈Ω : |x∗i (x(ω))− x∗i (z)|< r}

which is measurable because each x∗i ◦ x is given to be measurable.
Next suppose x−1 (U) ∈F whenever U is weakly open. Then in particular this holds

when U = Bx∗ (z,r) for arbitrary x∗. Hence

{ω ∈Ω : x(ω) ∈ Bx∗ (z,r)} ∈F .

But this says the same as

{ω ∈Ω : |x∗ (x(ω))− x∗ (z)|< r} ∈F

Since x∗ (z) can be a completely arbitrary element of F, it follows x∗ ◦x is an F valued mea-
surable function. In other words, x is weakly measurable according to the former definition.
■

One can also define weak ∗ measurability and prove a theorem just like the Pettis theo-
rem above. The next lemma is the analogue of Lemma 24.1.7.

Lemma 24.1.13 Let B be the closed unit ball in X. If X ′ is separable, there exists a
sequence {xm}∞

m=1 ≡ D⊆ B with the property that for all y∗ ∈ X ′,∥y∗∥= supx∈D |y∗ (x)| .

Proof: Let {x∗k}∞
k=1be the dense subset of X ′. Define φ n : B → Fn by the formula

φ n (x)≡ (x∗1 (x) , · · · ,x∗n (x)) .
Then

∣∣x∗k (x)∣∣ ≤ ∥∥x∗k
∥∥ and so φ n (B) is contained in a compact subset of Fn. There-

fore, there exists a countable set, Dn ⊆ B such that φ n (Dn) is dense in φ n (B) . That is,
{(x∗1 (x) , · · · ,x∗n (x)) : x ∈ Dn} is dense in φ n (B) . D≡ ∪∞

n=1Dn.
It remains to verify this works. Let y∗ ∈ X ′. I want to show that ∥y∗∥= supx∈D |y∗ (x)|.

There exists y,∥y∥ ≤ 1, such that

|y∗ (y)|> ∥y∗∥− ε.

By density, there exists one of the x∗k from the countable dense subset of X ′ such that also

∥x∗k − y∗∥< ε, so |x∗k (y)|> ∥y∗∥−2ε

Now x∗k (y) ∈ φ k (B) and so there exists x ∈ Dk ⊆ D⊆ B such that also

|x∗k (x)|> ∥y∗∥−2ε.
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Then since
∥∥x∗k − y∗

∥∥< ε, this implies

∥y∗∥ ≥ |y∗ (x)|= |(y∗− x∗k)(x)+ x∗k (x)| ≥ |x∗k (x)|− ε > ∥y∗∥−3ε

It follows that
∥y∗∥−3ε ≤ sup

x∈D
|y∗ (x)| ≤ ∥y∗∥

This proves the lemma because ε is arbitrary. ■
The next theorem is another version of the Pettis theorem. First here is a definition.

Definition 24.1.14 A function y having values in X ′ is weak ∗ measurable, when
for each x ∈ X, y(·)(x) is a measurable scalar valued function.

Theorem 24.1.15 If X ′ is separable and y : Ω→ X ′ is weak ∗ measurable meaning
ω → y(ω)(x) is a F valued measurable function, then y is strongly measurable.

Proof: It is necessary to show y−1 (B(a∗,r)) is measurable for a∗ ∈ X ′. This will suffice
because the separability of X ′ implies every open set is the countable union of such balls
of the form B(a∗,r). It also suffices to verify inverse images of closed balls are measurable
because every open ball is the countable union of closed balls. From Lemma 24.1.13,

y−1
(

B(a∗,r)
)

= {ω : ∥y(ω)−a∗∥ ≤ r}

=

{
ω : sup

x∈D
|(y(ω)−a∗)(x)| ≤ r

}
=

{
ω : sup

x∈D
|y(ω)(x)−a∗ (x)| ≤ r

}
= ∩x∈Dy(·)(x)−1

(
B(a∗ (x) ,r)

)
which is a countable intersection of measurable sets by hypothesis. ■

The following are interesting consequences of the theory developed so far and are of
interest independent of the theory of integration of vector valued functions.

Theorem 24.1.16 If X ′ is separable, then so is X.

Proof: Let D = {xm} ⊆ B, the unit ball of X , be the sequence promised by Lemma
24.1.13. Let V be all finite linear combinations of elements of {xm} with rational scalars.
Thus V is a separable subspace of X . The claim is that V = X . If not, then it follows that
there exists x0 ∈ X \V . But by the Hahn Banach theorem there exists x∗0 ∈ X ′ satisfying
x∗0 (x0) ̸= 0, but x∗0 (v) = 0 for every v ∈V . Hence

∥∥x∗0
∥∥= supx∈D

∣∣x∗0 (x)∣∣= 0, a contradic-
tion. ■

Corollary 24.1.17 If X is reflexive, then X is separable if and only if X ′ is separable.

Proof: From the above theorem, if X ′ is separable, then so is X . Now suppose X is
separable with a dense subset equal to D. Then since X is reflexive, J (D) is dense in X ′′

where J is the James map satisfying Jx(x∗) ≡ x∗ (x) . Recall how this J preserves norms
and maps onto X ′′ for X reflexive. Then since X ′′ is separable, it follows from the above
theorem that X ′ is also separable. ■

Note how this shows that L1 (Rp,mp) is not reflexive because this is a separable space,
but L∞ (Rp,mp) is clearly not. For example, you could consider X[0,r] for r a positive
irrational number. There are uncountably many of these functions in L∞ ([0,1]) and it is
clear that

∥∥X[0,r]−X[0,r̂]
∥∥

∞
= 1.
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24.1.1 Eggoroff’s Theorem
In the context of a more general notion of measurable function having values in a metric
space, here is a version of Egoroff’s theorem. Here we introduce a finite measure µ . None
of the above section had anything to do with a measure.

Theorem 24.1.18 (Egoroff) Let (Ω,F ,µ) be a finite measure space,(µ(Ω) < ∞)
and let fn, f be X valued measurable functions where X is a separable metric space and
for all ω /∈ E where µ(E) = 0, fn (ω)→ f (ω). Then for every ε > 0, there exists a set,
F ⊇ E, µ(F)< ε, such that fn converges uniformly to f on FC.

Proof: First suppose E = /0 so that convergence is pointwise everywhere. Let

Ekm = {ω ∈Ω : d ( fn (ω) , f (ω))≥ 1/m for some n > k}.

Claim:
[
ω : d ( fn (ω) , f (ω))≥ 1

m

]
is measurable.

Proof of claim: Let {xk}∞

k=1 be a countable dense subset of X and let r denote a positive
rational number, Q+. Then

∪k∈N,r∈Q+ f−1
n (B(xk,r))∩ f−1

(
B
(

xk,
1
m
− r
))

=

[
d ( f , fn)<

1
m

]
(24.2)

Here is why. If ω is in the set on the left, then d ( fn (ω) ,xk)< r and d ( f (ω) ,xk)<
1
m − r.

Therefore,

d ( f (ω) , fn (ω))< r+
1
m
− r =

1
m
.

Thus the left side is contained in the right. Now let ω be in the right side. That is
d ( fn (ω) , f (ω))< 1

m . Choose 2r < 1
m−d ( fn (ω) , f (ω)) and pick xk ∈ B( fn (ω) ,r). Then

d ( f (ω) ,xk)≤ d ( f (ω) , fn (ω))+d ( fn (ω) ,xk)<
1
m
−2r+ r =

1
m
− r

Thus ω ∈ f−1
n (B(xk,r))∩ f−1

(
B
(
xk,

1
m − r

))
and so ω is in the left side. Thus the two

sets are equal. Now the set on the left in 24.2 is measurable because it is a countable
union of measurable sets. This proves the claim since

[
ω : d ( fn (ω) , f (ω))≥ 1

m

]
is the

complement of this measurable set.
Hence Ekm is measurable because Ekm = ∪∞

n=k+1

[
ω : d ( fn (ω) , f (ω))≥ 1

m

]
. For fixed

m,∩∞
k=1Ekm = /0 because fn (ω) converges to f (ω). Therefore, if ω ∈Ω there exists k such

that if n > k, | fn (ω)− f (ω)| < 1
m which means ω /∈ Ekm. Note also that Ekm ⊇ E(k+1)m.

Since µ(E1m)< ∞, Theorem 9.2.4 on Page 242 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m) < ε2−m and let F =
∞⋃

m=1
Ek(m)m. Then µ(F) <

ε because

µ (F)≤
∞

∑
m=1

µ
(
Ek(m)m

)
<

∞

∑
m=1

ε2−m = ε

Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈FC, then ω ∈

∞⋂
m=1

EC
k(m)m.

Hence ω ∈ EC
k(m0)m0

so d ( f (ω) , fn (ω)) < 1/m0 < η for all n > k(m0). This holds for all

ω ∈ FCand so fn converges uniformly to f on FC.
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Now if E ̸= /0, consider {XEC fn}∞

n=1 . Then XEC fn is measurable and the sequence
converges pointwise to XE f everywhere. Therefore, from the first part, there exists a
set of measure less than ε,F such that on FC,{XEC fn} converges uniformly to XEC f .
Therefore, on (E ∪F)C , { fn} converges uniformly to f . ■

24.2 The Bochner Integral
24.2.1 Definition and Basic Properties

Definition 24.2.1 Let ak ∈ X , a Banach space and let a simple function ω→ x(ω)
be

x(ω) =
n

∑
k=1

akXEk (ω) (24.3)

where for each k, Ek is measurable and µ (Ek)< ∞. Thus this is a measurable finite valued
function zero off a set of finite measure. Then define∫

Ω

x(ω)dµ ≡
n

∑
k=1

akµ (Ek).

Proposition 24.2.2 Definition 24.2.1 is well defined, the integral is linear on simple
functions and ∥∥∥∥∫

Ω

x(ω)dµ

∥∥∥∥≤ ∫
Ω

∥x(ω)∥dµ

whenever x is a simple function.

Proof: It suffices to verify that if ∑
n
k=1 akXEk (ω) = 0,then ∑

n
k=1 akµ (Ek) = 0. Let

f ∈ X ′. Then

f

(
n

∑
k=1

akXEk (ω)

)
=

n

∑
k=1

f (ak)XEk (ω) = 0

and, therefore,

0 =
∫

Ω

(
n

∑
k=1

f (ak)XEk (ω)

)
dµ =

n

∑
k=1

f (ak)µ (Ek) = f

(
n

∑
k=1

akµ (Ek)

)
.

Since f ∈ X ′ is arbitrary, and X ′ separates the points of X , ∑
n
k=1 akµ (Ek) = 0 as hoped. It

is now obvious that the integral is linear on simple functions.
As to the triangle inequality, say x(ω) = ∑

n
k=1 akXEk (ω) where the Ek are disjoint.

Then from the triangle inequality,∥∥∥∥∫
Ω

x(ω)dµ

∥∥∥∥=
∥∥∥∥∥ n

∑
k=1

akµ (Ek)

∥∥∥∥∥≤ n

∑
k=1
∥ak∥µ (Ek) =

∫
Ω

∥x(ω)∥dµ ■

Definition 24.2.3 A strongly measurable function x is Bochner integrable if there
exists a sequence of simple functions xn converging to x pointwise and satisfying∫

Ω

∥xn (ω)− xm (ω)∥dµ → 0 as m,n→ ∞. (24.4)
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If x is Bochner integrable, define∫
Ω

x(ω)dµ ≡ lim
n→∞

∫
Ω

xn (ω)dµ. (24.5)

First it is important to show that this integral is well defined. When this is done, an
easier to use condition will be developed. Note that by Lemma 24.1.2, if x is strongly
measurable, ∥x∥ is a measurable real valued function. Thus, it makes sense to consider∫

Ω
∥x∥dµ and also

∫
Ω
∥x− xn∥dµ .

Theorem 24.2.4 The definition of Bochner integrability is well defined. Also, a
strongly measurable function x is Bochner integrable if and only if

∫
Ω
∥x∥dµ < ∞. In this

case that the function is Bochner integrable, an approximating sequence of simple functions
{yn} exists such that ∥yn (ω)∥ ≤ 2∥x(ω)∥ for all ω and

lim
n→∞

∫
Ω

∥yn (ω)− x(ω)∥dµ = 0

Proof:⇒First consider the claim about the integral being well defined. Let {xn} be a
sequence of simple functions converging pointwise to x and satisfying the conditions given
above for x to be Bochner integrable. Then∣∣∣∣∫

Ω

∥xn (ω)∥dµ−
∫

Ω

∥xm (ω)∥dµ

∣∣∣∣≤ ∫
Ω

∥xn− xm∥dµ

which is given to converge to 0 as n,m→ ∞ which shows that {
∫

Ω
∥xn (ω)∥dµ}∞

n=1 is a
Cauchy sequence. Hence it is bounded and so, by Fatou’s lemma,∫

Ω

∥x(ω)∥dµ ≤ lim inf
n→∞

∫
Ω

∥xn (ω)∥dµ < ∞

The limit in 24.5 exists because∥∥∥∥∫
Ω

xndµ−
∫

Ω

xmdµ

∥∥∥∥= ∥∥∥∥∫
Ω

(xn− xm)dµ

∥∥∥∥≤ ∫
Ω

∥xn− xm∥dµ

and the last term is no more than ε whenever n,m are large enough. From Fatou’s lemma,
if n is large enough, ∫

Ω

∥xn− x∥dµ < ε

Now if you have another sequence {x̂n} satisfying the condition 24.4 along with point-
wise convergence to x,∥∥∥∥∫

Ω

xndµ−
∫

Ω

x̂ndµ

∥∥∥∥ =

∥∥∥∥∫
Ω

(xn− x̂n)dµ

∥∥∥∥≤ ∫
Ω

∥xn− x̂n∥dµ

≤
∫

Ω

∥xn− x∥dµ +
∫

Ω

∥x− x̂n∥dµ < 2ε

if n is large enough. Hence convergence of the integrals of the simple functions takes place
and these integrals converge to the same thing. Thus the definition is well defined and∫

Ω
∥x∥dµ < ∞.
⇐Next suppose

∫
Ω
∥x∥dµ < ∞ for x strongly measurable. By Lemma 24.1.2, there

is a sequence of finite valued measurable functions {yn} with ∥yn (ω)∥ ≤ 2∥x(ω)∥ and
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yn (ω)→ x(ω) for each ω . Thus, in fact, yn is a simple function because it must be zero
off a set of finite measure because∫

Ω

∥yn (ω)∥dµ < 2
∫

Ω

∥x(ω)∥dµ

Then by the dominated convergence theorem for scalar valued functions,

lim
n→∞

∫
Ω

∥yn− x∥dµ = 0

Thus, ∫
Ω

∥yn− ym∥dµ ≤
∫

Ω

∥yn− x∥dµ +
∫

Ω

∥x− ym∥dµ < ε

if m,n are large enough so {yn} is a suitable approximating sequence for x. ■
This is a very nice theorem. It says that all you have to do is verify measurability

and absolute integrability just like the case of scalar valued functions. Other things which
are totally similar are that the integral is linear, the triangle inequality holds, and you can
take a continuous linear functional inside the integral. These things are considered in the
following theorem.

Theorem 24.2.5 The Bochner integral is well defined and if x is Bochner integrable
and f ∈ X ′,

f
(∫

Ω

x(ω)dµ

)
=
∫

Ω

f (x(ω))dµ (24.6)

and the triangle inequality is valid,∥∥∥∥∫
Ω

x(ω)dµ

∥∥∥∥≤ ∫
Ω

∥x(ω)∥dµ. (24.7)

Also, the Bochner integral is linear. That is, if a,b are scalars and x,y are two Bochner
integrable functions, then∫

Ω

(ax(ω)+by(ω))dµ = a
∫

Ω

x(ω)dµ +b
∫

Ω

y(ω)dµ (24.8)

Proof: Theorem 24.2.4 shows
∫

Ω
∥x(ω)∥dµ < ∞ and that the definition of the integral

is well defined.
It remains to verify the triangle inequality on Bochner integral functions and the claim

about passing a continuous linear functional inside the integral. First of all, consider the
triangle inequality. From Lemma 24.1.2, there is a sequence of simple functions {yn}
satisfying 24.4 and converging to x pointwise such that also ∥yn (ω)∥ ≤ 2∥x(ω)∥. Thus,∥∥∥∥∫

Ω

x(ω)dµ

∥∥∥∥≡ lim
n→∞

∥∥∥∥∫
Ω

yn (ω)dµ

∥∥∥∥≤ lim
n→∞

∫
Ω

∥yn (ω)∥dµ =
∫

Ω

∥x(ω)∥dµ

the last step coming from the dominated convergence theorem since ∥yn (ω)∥ ≤ 2∥x(ω)∥
and ∥yn (ω)∥→ ∥x(ω)∥ for each ω . This shows the triangle inequality.

From Definition 24.2.1 and Theorem 24.2.4 and {yn} being the approximating sequence
described there,

f
(∫

Ω

yndµ

)
=
∫

Ω

f (yn)dµ.
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Thus,

f
(∫

Ω

xdµ

)
= lim

n→∞
f
(∫

Ω

yndµ

)
= lim

n→∞

∫
Ω

f (yn)dµ =
∫

Ω

f (x)dµ,

the last equation holding from the dominated convergence theorem (| f (yn)| ≤ ∥ f∥∥yn∥ ≤
2∥ f∥∥x∥). This shows 24.6.

It remains to verify 24.8. Let f ∈ X ′. Then from 24.6

f
(∫

Ω

(ax(ω)+by(ω))dµ

)
=

∫
Ω

(a f (x(ω))+b f (y(ω)))dµ

= a
∫

Ω

f (x(ω))dµ +b
∫

Ω

f (y(ω))dµ

= f
(

a
∫

Ω

x(ω)dµ +b
∫

Ω

y(ω)dµ

)
.

Since X ′ separates the points of X ,it follows∫
Ω

(ax(ω)+by(ω))dµ = a
∫

Ω

x(ω)dµ +b
∫

Ω

y(ω)dµ

and this proves 24.8. ■
A similar result is the following corollary.

Corollary 24.2.6 Let an X valued function x be Bochner integrable. Let L ∈L (X ,Y )
where Y is another Banach space. Then Lx is a Y valued Bochner integrable function and

L
(∫

Ω

x(ω)dµ

)
=
∫

Ω

Lx(ω)dµ

Proof: From Theorem 24.2.4 there is a sequence of simple functions {yn} having the
properties listed in that theorem. These are measurable with finitely many values and are
forced to be simple because ∥yn∥ ≤ 2∥x∥. Then consider {Lyn} which converges pointwise
to Lx. Since L is continuous and linear,∫

Ω

∥Lyn−Lx∥Y dµ ≤ ∥L∥
∫

Ω

∥yn− x∥X dµ

which converges to 0. This implies

lim
m,n→∞

∫
Ω

∥Lyn−Lym∥dµ = 0

and so by definition Lx is Bochner integrable. Also∫
Ω

x(ω)dµ = lim
n→∞

∫
Ω

yn (ω)dµ∫
Ω

Lx(ω)dµ = lim
n→∞

∫
Ω

Lyn (ω)dµ = lim
n→∞

L
∫

Ω

yn (ω)dµ

Next, ∥∥∥∥L
(∫

Ω

x(ω)dµ

)
−
∫

Ω

Lx(ω)dµ

∥∥∥∥
Y

≤
∥∥∥∥L
(∫

Ω

x(ω)dµ

)
−L

∫
Ω

yn (ω)dµ

∥∥∥∥
Y

+

∥∥∥∥∫
Ω

Lyn (ω)dµ−
∫

Ω

Lx(ω)dµ

∥∥∥∥
Y
< ε/2+ ε/2 = ε

whenever n large enough. ■
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24.2.2 Taking a Closed Operator Out of the Integral
Now let X and Y be separable Banach spaces and suppose A : D(A) ⊆ X → Y be a closed
operator. Recall this means that the graph of A,

G(A)≡ {(x,Ax) : x ∈ D(A)}

is a closed subset of X×Y with respect to the product topology obtained from the norm

∥(x,y)∥= max(∥x∥ ,∥y∥) .

Thus also G(A) is a separable Banach space with the above norm. You can also consider
D(A) as a separable Banach space having the graph norm

∥x∥D(A) ≡max(∥x∥ ,∥Ax∥) (24.9)

which is isometric to G(A) with the mapping, θx ≡ (x,Ax) . Recall why this is. It is clear
that θ is one to one and onto G(A) . Is it continuous? If xn→ x in D(A) , this means that
xn → x in X and Axn → y. Then, since A is closed, it follows that y = Ax so (xn,Axn)→
(x,Ax) in G(A) . Hence θ is indeed continuous and onto. Similar reasoning shows that
D(A) with this norm is complete. Hence it is a Banach space. Thus θ

−1 is also continuous.
The following lemma is a fundamental result which was proved earlier in the discussion
on the Eberlein Smulian theorem in which this was an essential fact to allow the case of a
reflexive Banach space which maybe was not separable. See Lemma 21.5.13 for the proof.

Lemma 24.2.7 A closed subspace of a reflexive Banach space is reflexive.

Then, with this lemma, one has the following corollary.

Corollary 24.2.8 Suppose Y is a reflexive Banach space and X is a Banach space such
that there exists a continuous one to one mapping, g : X → Y such that g(X) is a closed
subset of Y. Then X is reflexive.

Proof: By the open mapping theorem, g(X) and X are homeomorphic since g−1 must
also be continuous. Therefore, since g(X) is reflexive because it is a closed subspace of a
reflexive space, it follows X is also reflexive. ■

Lemma 24.2.9 Suppose V is a reflexive Banach space and that V is a dense subset of
W, another Banach space in the topology of W. Then i∗W ′ is a dense subset of V ′ where
here i is the inclusion map of V into W.

Proof: First note that i∗ is one to one. If i∗w∗ = 0 for w∗ ∈W ′, then this means that for
all v ∈V,

i∗w(v) = w∗ (v) = 0

and since V is dense in W, this shows w∗ = 0.
Consider the following diagram

V ′′ i∗∗→ W ′′

V ′ i∗← W ′

V i→ W
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in which i is the inclusion map. Next suppose i∗W ′ is not dense in V ′. Then, using the Hahn
Banach theorem, there exists v∗∗ ∈V ′′ such that v∗∗ ̸= 0 but v∗∗ (i∗W ′) = 0. It follows from
V being reflexive, that v∗∗ = Jv0 where J is the James map from V to V ′′for some v0 ∈ V .
Thus for every w∗ ∈W ′,

0 = v∗∗ (i∗w∗)≡ i∗∗v∗∗ (w∗)

= i∗∗Jv0 (w∗) = Jv0 (i∗w∗)

≡ i∗w∗ (v0) = w∗ (v0)

and since W ′ separates the points of W, it follows v0 = 0 which contradicts v∗∗ ̸= 0. ■
Note that in the proof, only V reflexive was used.
This lemma implies an easy corollary.

Corollary 24.2.10 Let E and F be reflexive Banach spaces and let A be a closed op-
erator A : D(A) ⊆ E → F. Suppose also that D(A) is dense in E. Then making D(A) into
a Banach space by using the above graph norm given in 24.9, it follows that D(A) is a
Banach space and i∗E ′ is a dense subspace of D(A)′ .

Proof: First note that E×F is a reflexive Banach space and G (A) is a closed subspace
of E×F so it is also a reflexive Banach space. Now D(A) is isometric to G (A) and so it
follows D(A) is a dense subspace of E which is reflexive. Therefore, from Lemma 24.2.9
the conclusion follows. ■

With this preparation, here is another interesting theorem. This one is about taking
outside the integral a closed linear operator as opposed to a continuous linear operator.

Theorem 24.2.11 Let X ,Y be separable Banach spaces and let A : D(A)⊆ X→Y
be a closed operator where D(A) is a dense separable subset of X with respect to the
graph norm on D(A) described above1. Suppose also that i∗X ′ is a dense subspace of
D(A)′ where D(A) is a Banach space having the graph norm described in 24.9. Suppose
that (Ω,F ,µ) is a measure space and x : Ω→ X is strongly measurable and it happens
that x(ω) ∈ D(A) for all ω ∈ Ω. Then x is strongly measurable as a mapping into D(A).
Also Ax is strongly measurable as a map into Y and if∫

Ω

∥x(ω)∥dµ,
∫

Ω

∥Ax(ω)∥dµ < ∞, (24.10)

then ∫
Ω

x(ω)dµ ∈ D(A) (24.11)

and
A
∫

Ω

x(ω)dµ =
∫

Ω

Ax(ω)dµ. (24.12)

Proof: First of all, consider the assertion that x is strongly measurable into D(A) .
Letting f ∈D(A)′ be given, there exists a sequence, {gn}⊆ i∗X ′ such that gn→ f in D(A)′ .
Therefore, ω→ gn (x(ω)) is measurable by assumption and gn (x(ω))→ f (x(ω)) , which
shows that ω → f (x(ω)) is measurable. By the Pettis theorem, it follows that ω → x(ω)
is strongly measurable as a map into D(A).

1Note that this follows from the assumed separability of X ,Y because the graph is a subset of the separable
space X×Y
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It follows from Theorem 24.2.4 there exists a sequence of simple functions {xn} of the
form

xn (ω) =
mn

∑
k=1

an
kXEn

k
(ω) ,xn (ω) ∈ D(A) ,

which converges strongly and pointwise to x(ω) in D(A). Thus

xn (ω)→ x(ω) , Axn (ω)→ Ax(ω) ,

which shows ω → Ax(ω) is stongly measurable in Y as claimed.
It remains to verify the assertions about the integral. 24.10 implies x is Bochner in-

tegrable as a function having values in D(A) with the norm on D(A) described above.
Therefore, by Theorem 24.2.4 there exists a sequence of simple functions {yn} having val-
ues in D(A), limm,n→∞

∫
Ω
∥yn− ym∥D(A) dµ = 0, yn (ω) converging pointwise to x(ω), and

also ∥yn (ω)∥D(A) ≤ 2∥x(ω)∥D(A) and limn→∞

∫
Ω
∥x(ω)− yn (ω)∥D(A) ds = 0. Therefore,∫

Ω

yn (ω)dµ ∈ D(A) ,
∫

Ω

yn (ω)dµ →
∫

Ω

x(ω)dµ in X ,

and since yn is a simple function and A is linear,

A
∫

Ω

yn (ω)dµ =
∫

Ω

Ayn (ω)dµ →
∫

Ω

Ax(ω)dµ in Y.

It follows, since A is a closed operator, that
∫

Ω
x(ω)dµ ∈ D(A) and

A
∫

Ω

x(ω)dµ =
∫

Ω

Ax(ω)dµ. ■

Here is another version of this theorem which has different hypotheses.

Theorem 24.2.12 Let X and Y be separable Banach spaces and let A : D(A) ⊆
X → Y be a closed operator. Also let (Ω,F ,µ) be a measure space and let x : Ω→
X be Bochner integrable such that x(ω) ∈ D(A) for all ω. Also suppose Ax is Bochner
integrable. Then ∫

Axdµ = A
∫

xdµ

and
∫

xdµ ∈ D(A).

Proof: Consider the graph of A,

G(A)≡ {(x,Ax) : x ∈ D(A)} ⊆ X×Y.

Then since A is closed, G(A) is a closed separable Banach space with the norm ∥(x,y)∥ ≡
max(∥x∥ ,∥y∥) . Therefore, for g∗ ∈ G(A)′ , apply the Hahn Banach theorem and obtain
(x∗,y∗)∈ (X×Y )′ such that g∗ (x,Ax) = (x∗ (x) ,y∗ (Ax)) . Now it follows from the assump-
tions that ω → (x∗ (x(ω)) ,y∗ (Ax(ω))) is measurable with values in G(A) . It is also sep-
arably valued because this is true of G(A) . By the Pettis theorem, ω → (x(ω) ,A(x(ω)))
must be strongly measurable. Also

∫
∥x(ω)∥+ ∥A(x(ω))∥dµ < ∞ by assumption and

so there exists a sequence of simple functions having values in G(A) ,{(xn (ω) ,Axn (ω))}
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which converges to (x(ω) ,A(ω)) pointwise such that
∫
∥(xn,Axn)− (x,Ax)∥dµ → 0 in

G(A) . Now for simple functions is it routine to verify that∫
(xn,Axn)dµ =

(∫
xndµ,

∫
Axndµ

)
=

(∫
xndµ,A

∫
xndµ

)
Also ∥∥∥∥∫ xndµ−

∫
xdµ

∥∥∥∥ ≤
∫
∥xn− x∥dµ

≤
∫
∥(xn,Axn)− (x,Ax)∥dµ

which converges to 0. Also∥∥∥∥∫ Axndµ−
∫

Axdµ

∥∥∥∥ =

∥∥∥∥A
∫

xndµ−
∫

Axdµ

∥∥∥∥
≤

∫
∥Axn−Ax∥dµ

≤
∫
∥(xn,Axn)− (x,Ax)∥dµ

and this converges to 0. Therefore,
∫

xndµ →
∫

xdµ and A
∫

xndµ →
∫

Axdµ. Since each∫
xndµ ∈ D(A) , and A is closed, this implies

∫
xdµ ∈ D(A) and A

∫
xdµ =

∫
Axdµ . ■

24.3 Operator Valued Functions
Consider the case where A(ω) ∈L (X ,Y ) for X and Y separable Banach spaces. With the
operator norm L (X ,Y ) is a Banach space and so if A is strongly measurable, the Bochner
integral can be defined as before. However, it is also possible to define the Bochner integral
of such operator valued functions for more general situations. In this section, (Ω,F ,µ)
will be a measure space as usual.

Lemma 24.3.1 Let x ∈ X and suppose A is strongly measurable. Then ω → A(ω)x is
strongly measurable as a map into Y.

Proof: Since A is assumed to be strongly measurable, it is the pointwise limit of
measurable finite valued functions of the form An(ω) ≡ ∑

mn
k=1 An

kXEn
k
(ω) where An

k is in
L (X ,Y ). It follows An (ω)x→ A(ω)x for each ω and so, since ω → An (ω)x is a simple
Y valued function, ω → A(ω)x must be strongly measurable. ■

Definition 24.3.2 Suppose A(ω) ∈L (X ,Y ) for each ω ∈Ω where X ,Y are sepa-
rable Banach spaces. Suppose also that for each x ∈ X ,

ω → A(ω)x is strongly measurable (24.13)

and there exists C such that for each x ∈ X ,∫
Ω

∥A(ω)x∥dµ <C∥x∥ (24.14)

Then
∫

Ω
A(ω)dµ ∈L (X ,Y ) is defined by the following formula.(∫

Ω

A(ω)dµ

)
(x)≡

∫
Ω

A(ω)xdµ (24.15)
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Lemma 24.3.3 The above definition is well defined. Furthermore, if 24.13 holds then
ω →∥A(ω)∥ is measurable and if 24.14 holds, then ∥

∫
Ω

A(ω)dµ∥ ≤
∫

Ω
∥A(ω)∥dµ.

Proof: It is clear that in case ω → A(ω)x is measurable for all x ∈ X there exists a
unique Ψ ∈L (X ,Y ) such that Ψ(x) =

∫
Ω

A(ω)xdµ. This is because x→
∫

Ω
A(ω)xdµ is

linear and continuous. It is continuous because∥∥∥∥∫
Ω

A(ω)xdµ

∥∥∥∥≤ ∫
Ω

∥A(ω)x∥dµ ≤
∫

Ω

∥A(ω)∥dµ ∥x∥

Thus Ψ =
∫

Ω
A(ω)dµ and the definition is well defined.

Now consider the assertion about ω → ∥A(ω)∥. Let D′ ⊆ B′ the closed unit ball in Y ′

be such that D′ is countable and ∥y∥= supy∗∈D′ |y∗ (y)| . This is from Lemma 24.1.7. Recall
X is separable. Also let D be a countable dense subset of B, the unit ball of X . Then

{ω : ∥A(ω)∥> α} =

{
ω : sup

x∈D
∥A(ω)x∥> α

}
= ∪x∈D {ω : ∥A(ω)x∥> α}

= ∪x∈D
(
∪y∗∈D′ {|y∗ (A(ω)x)|> α}

)
and this is measurable because ω → A(ω)x is strongly, hence weakly measurable.

Now suppose 24.14 holds. Then for all x,
∫

Ω
∥A(ω)x∥dµ < C∥x∥ . It follows that for

∥x∥ ≤ 1,∥∥∥∥(∫
Ω

A(ω)dµ

)
(x)
∥∥∥∥= ∥∥∥∥∫

Ω

A(ω)xdµ

∥∥∥∥≤ ∫
Ω

∥A(ω)x∥dµ ≤
∫

Ω

∥A(ω)∥dµ

and so ∥
∫

Ω
A(ω)dµ∥ ≤

∫
Ω
∥A(ω)∥dµ. ■

Now it is interesting to consider the case where A(ω) ∈L (H,H) where ω → A(ω)x
is strongly measurable and A(ω) is compact and self adjoint. Recall the Kuratowski mea-
surable selection theorem, Theorem 9.15.8 on Page 274 listed here for convenience.

Theorem 24.3.4 Let E be a compact metric space and let (Ω,F ) be a measure
space. Suppose ψ : E ×Ω → R has the property that x → ψ (x,ω) is continuous and
ω→ψ (x,ω) is measurable. Then there exists a measurable function, f having values in E
such that ψ ( f (ω) ,ω) = supx∈E ψ (x,ω) . Furthermore, ω → ψ ( f (ω) ,ω) is measurable.

24.3.1 Review of Hilbert Schmidt Theorem
This section is a review of earlier material and is presented a little differently. I think it does
not hurt to repeat some things relative to Hilbert space. I will give a proof of the Hilbert
Schmidt theorem which will generalize to a result about measurable operators. It will be a
little different then the earlier proof. Recall the following.

Definition 24.3.5 Define v⊗u ∈L (H,H) by v⊗u(x) = (x,u)v. A ∈L (H,H) is
a compact operator if whenever {xk} is a bounded sequence, there exists a convergent sub-
sequence of {Axk}. Equivalently, A maps bounded sets to sets whose closures are compact
or to use other terminology, A maps bounded sets to sets which are precompact.

Next is a convenient description of compact operators on a Hilbert space.
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Lemma 24.3.6 Let H be a Hilbert space and suppose A ∈L (H,H) is a compact op-
erator. Then

1. A is a compact operator if and only if whenever if xn→ x weakly in H, it follows that
Axn→ Ax strongly in H.

2. For u,v ∈ H, v⊗u : H→ H is a compact operator.

3. Let B be the closed unit ball in H. If A is self adjoint and compact, then if xn → x
weakly on B, it follows that (Axn,xn)→ (Ax,x) so x→|(Ax,x)| achieves its maximum
value on B.

4. The function, v⊗u is compact and the operator u⊗u is self adjoint.

Proof: Consider ⇒ of 1. Suppose then that xn → x weakly. Since {xn} is weakly
bounded, it follows from the uniform boundedness principle that {∥xn∥} is bounded. Let
xn ∈ B̂ for B̂ some closed ball. If Axn fails to converge to Ax, then there is ε > 0 and a
subsequence still denoted as {xn} such that xn→ x weakly but ∥Axn−Ax∥ ≥ ε > 0. Then
A
(
B̂
)

is precompact because A is compact so there is a further subsequence, still denoted
by {xn} such that Axn converges to some y ∈ H. Therefore,

(y,w) = lim
n→∞

(Axn,w) = lim
n→∞

(xn,A∗w)

= (x,A∗w) = (Ax,w)

which shows Ax = y since w is arbitrary. However, this is a contradiction to ∥Axn−Ax∥ ≥
ε > 0.

Consider ⇐ of 1. Why is A compact if it satisfies the property that it takes weakly
convergent sequences to strongly convergent ones? If A is not compact, then there exists B̂
a bounded set such that A

(
B̂
)

is not precompact. Thus, there exists a sequence {Axn}∞

n=1 ⊆
A
(
B̂
)

which has no convergent subsequence where xn ∈ B̂ the bounded set. However,
there is a subsequence {xn} ∈ B̂ which converges weakly to some x ∈ H because of weak
compactness. Hence Axn→ Ax by assumption and so this is a contradiction to there being
no convergent subsequence of {Axn}∞

n=1.
Next consider 2. Letting {xn} be a bounded sequence,

v⊗u(xn) = (xn,u)v.

There exists a weakly convergent subsequence of {xn} say
{

xnk

}
converging weakly to

x ∈ H. Therefore, ∥∥v⊗u
(
xnk

)
− v⊗u(x)

∥∥= ∥∥(xnk ,u
)
− (x,u)

∥∥∥v∥
which converges to 0. Thus v⊗u is compact as claimed. It takes bounded sets to precom-
pact sets.

Next consider 3. To verify the assertion about x→ (Ax,x), let xn→ x weakly. Since A
is compact, Axn→ Ax by part 1. Then, since A is self adjoint,

|(Axn,xn)− (Ax,x)|
≤ |(Axn,xn)− (Ax,xn)|+ |(Ax,xn)− (Ax,x)|
≤ |(Axn,xn)− (Ax,xn)|+ |(Axn,x)− (Ax,x)|
≤ ∥Axn−Ax∥∥xn∥+∥Axn−Ax∥∥x∥ ≤ 2∥Axn−Ax∥
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which converges to 0. Now let {xn} be a maximizing sequence for |(Ax,x)| for x∈ B and let
λ ≡ sup{|(Ax,x)| : x ∈ B} . There is a subsequence still denoted as {xn} which converges
weakly to some x ∈ B by weak compactness. Hence |(Ax,x)|= limn→∞ |(Axn,xn)|= λ .

Next consider 4. It only remains to verify that u⊗u is self adjoint. This follows from
the definition.

((u⊗u)x,y) ≡ (u(x,u) ,y) = (x,u)(u,y)

(x,(u⊗u)y) ≡ (x,u(y,u)) = (u,y)(x,u) ,

the same thing. ■

Observation 24.3.7 Note that if A is any self adjoint operator,

(Ax,x) = (x,Ax) = (Ax,x) .

so (Ax,x) is real valued.

From Lemma 24.3.6, the maximum of |(Ax,x)| exists on the closed unit ball B.

Lemma 24.3.8 Let A ∈ L (H,H) and suppose it is self adjoint and compact. Let B
denote the closed unit ball in H. Let e ∈ B be such that |(Ae,e)| = maxx∈B |(Ax,x)| .Then
letting λ = (Ae,e) , it follows Ae = λe. You can always assume ∥e∥= 1.

Proof: From the above observation, (Ax,x) is always real and since A is compact,
|(Ax,x)| achieves a maximum at e. It remains to verify e is an eigenvector. If |(Ae,e)|= 0
for all e ∈ B, then A is a self adjoint nonnegative ((Ax,x) ≥ 0) operator and so by Cauchy
Schwarz inequality, (Ae,x)≤ (Ax,x)1/2 (Ae,e)1/2 = 0 and so Ae = 0 for all e. Assume then
that A is not 0. You can always make |(Ae,e)| at least as large by replacing e with e/∥e∥.
Thus, there is no loss of generality in letting ∥e∥= 1 in every case.

Suppose λ = (Ae,e)≥ 0 where |(Ae,e)|= maxx∈B |(Ax,x)| . Thus

((λ I−A)e,e) = λ ∥e∥2−λ = 0

Then it is easy to verify that λ I−A is a nonnegative (((λ I−A)x,x)≥ 0 for all x.) and self
adjoint operator. To see this, note that

((λ I−A)x,x) = ∥x∥2
(
(λ I−A)

x
∥x∥

,
x
∥x∥

)
= ∥x∥2

λ −∥x∥2
(

A
x
∥x∥

,
x
∥x∥

)
≥ 0

Therefore, the Cauchy Schwarz inequality can be applied to write

((λ I−A)e,x)≤ ((λ I−A)e,e)1/2 ((λ I−A)x,x)1/2 = 0

Since this is true for all x it follows Ae = λe. Just pick x = (λ I−A)e.
Next suppose maxx∈B |(Ax,x)|=−(Ae,e) . Let −λ = (−Ae,e) and the previous result

can be applied to −A and −λ . Thus −λe =−Ae and so Ae = λe. ■
With these lemmas here is a major theorem, the Hilbert Schmidt theorem. I think this

proof is a little slicker than the more standard proof given earlier.
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Theorem 24.3.9 Let A ∈L (H,H) be a compact self adjoint operator on a Hilbert
space. Then there exist real numbers {λ k}∞

k=1 and vectors {ek}∞

k=1 such that

∥ek∥= 1,(ek,e j)H = 0 if k ̸= j,Aek = λ kek,

|λ n| ≥ |λ n+1| for all n, lim
n→∞

λ n = 0,

lim
n→∞

∥∥∥∥∥A−
n

∑
k=1

λ k (ek⊗ ek)

∥∥∥∥∥
L (H,H)

= 0. (24.16)

Proof: This is done by considering a sequence of compact self adjoint operators,
A,A1,A2, · · · . Here is how these are defined. Using Lemma 24.3.8 let e1,λ 1 be given by
that lemma such that

|(Ae1,e1)|= max
x∈B
|(Ax,x)| , λ 1 = (Ae1,e1)⇒ Ae1 = λ 1e1

Then by that lemma, Ae1 = λ 1e1 and ∥e1∥ = 1. Now define A1 = A−λ 1e1⊗ e1. This is
compact and self adjoint by Lemma 24.3.6. Thus, one could repeat the argument.

If An has been obtained, use Lemma 24.3.8 to obtain en+1 and λ n+1 such that

|(Anen+1,en+1)|= max
x∈B
|(Anx,x)| , λ n+1 = (Anen+1,en+1) .

By that lemma again, Anen+1 = λ n+1en+1 and ∥en+1∥= 1. Then An+1 ≡ An−λ n+1en+1⊗
en+1. Thus iterating this,

An = A−
n

∑
k=1

λ kek⊗ ek. (24.17)

Assume for j,k ≤ n,(ek,e j) = δ jk. Then the new vector en+1 will be orthogonal to the
earlier ones. This is the next claim.

Claim 1: If k < n+ 1 then (en+1,ek) = 0. Also Aek = λ kek for all k and from the
construction, Anen+1 = λ n+1en+1.

Proof of claim: From the above,

λ n+1en+1 = Anen+1 = Aen+1−
n

∑
k=1

λ k (en+1,ek)ek.

From the above and induction hypothesis that (ek,e j) = δ jk for j,k ≤ n,

λ n+1 (en+1,e j) = (Aen+1,e j)−
n

∑
k=1

λ k (en+1,ek)(ek,e j)

= (en+1,Ae j)−
n

∑
k=1

λ k (en+1,ek)(ek,e j)

= λ j (en+1,e j)−λ j (en+1,e j) = 0.

To verify the second part of this claim,

λ n+1en+1 = Anen+1 = Aen+1−
n

∑
k=1

λ kek (en+1,ek) = Aen+1
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This proves the claim.
Claim 2: |λ n| ≥ |λ n+1| .
Proof of claim: From 24.17 and the definition of An and ek⊗ ek,

(An−1en+1,en+1) =

((
A−

n−1

∑
k=1

λ kek⊗ ek

)
en+1,en+1

)
= (Aen+1,en+1) = (Anen+1,en+1)

Thus,

λ n+1 = (Anen+1,en+1) = (An−1en+1,en+1)−λ n |(en,en+1)|2 = (An−1en+1,en+1)

By the previous claim. Therefore,

|λ n+1|= |(An−1en+1,en+1)| ≤ |(An−1en,en)|= |λ n|

by the definition of |λ n|. (en makes |(An−1x,x)| as large as possible.)
Claim 3: limn→∞ λ n = 0.
Proof of claim: If for some n,λ n = 0, then λ k = 0 for all k > n by claim 2. Thus, for

some n,A = ∑
n
k=1 λ kek⊗ek. Assume then that λ k ̸= 0 for any k. Then if limk→∞ |λ k|= ε >

0, one contradicts, ∥ek∥= 1 for all k because

∥Aen−Aem∥2 = ∥λ nen−λ mem∥2 = λ
2
n +λ

2
m ≥ 2ε

2

which shows there is no Cauchy subsequence of {Aen}∞

n=1 , which contradicts the compact-
ness of A. This proves the claim.

Claim 4: ∥An∥→ 0
Proof of claim: Let x,y ∈ B

|λ n+1| ≥
∣∣∣∣(An

x+ y
2

,
x+ y

2

)∣∣∣∣= ∣∣∣∣14 (Anx,x)+
1
4
(Any,y)+

1
2
(Anx,y)

∣∣∣∣
≥ 1

2
|(Anx,y)|− 1

4
|(Anx,x)+(Any,y)|

≥ 1
2
|(Anx,y)|− 1

4
(|(Anx,x)|+ |(Any,y)|)≥ 1

2
|(Anx,y)|− 1

2
|λ n+1|

and so 3 |λ n+1| ≥ |(Anx,y)| . It follows ∥An∥ ≤ 3 |λ n+1| . By 24.17 this proves 24.16 and
completes the proof. ■

24.3.2 Measurable Compact Operators
Here the operators will be of the form A(ω) where ω ∈ Ω and ω → A(ω)x is strongly
measurable and A(ω) is a compact operator in L (H,H).

Theorem 24.3.10 Let A(ω) ∈ L (H,H) be a compact self adjoint operator and
H is a separable Hilbert space such that ω → A(ω)x is strongly measurable. Then there
exist real numbers {λ k (ω)}∞

k=1 and vectors {ek (ω)}∞

k=1 such that

∥ek (ω)∥= 1



668 CHAPTER 24. THE BOCHNER INTEGRAL

(ek (ω) ,e j (ω))H = 0 if k ̸= j,

A(ω)ek (ω) = λ k (ω)ek (ω) ,

|λ n (ω)| ≥ |λ n+1 (ω)| for all n,

lim
n→∞

λ n (ω) = 0,

lim
n→∞

∥∥∥∥∥A(ω)−
n

∑
k=1

λ k (ω)(ek (ω)⊗ ek (ω))

∥∥∥∥∥
L (H,H)

= 0.

The function ω → λ j (ω) is measurable and ω → e j (ω) is strongly measurable.

Proof: It is simply a repeat of the above proof of the Hilbert Schmidt theorem except
at every step when the ek and λ k are defined, you use the Kuratowski measurable selection
theorem, Theorem 24.3.4 on Page 663 to obtain λ k (ω) is measurable and that ω → ek (ω)
is also measurable. This follows because the closed unit ball in a separable Hilbert space is
a compact metric space.

When you consider maxx∈B |(An (ω)x,x)| , let ψ (x,ω) = |(An (ω)x,x)| . Then ψ is con-
tinuous in x by Lemma 24.3.6 on Page 664 and it is measurable in ω by assumption. There-
fore, by the Kuratowski theorem, ek (ω) is measurable in the sense that inverse images of
weakly open sets in B are measurable. However, by Lemma 24.1.12 on Page 651 this is
the same as weakly measurable. Since H is separable, this implies ω → ek (ω) is also
strongly measurable. The measurability of λ k and ek is the only new thing here and so this
completes the proof. ■

24.4 Fubini’s Theorem for Bochner Integrals
Now suppose (Ω1,F ,µ) and (Ω2,S ,λ ) are two σ finite measure spaces. Recall the notion
of product measure. There was a σ algebra, denoted by F ×S which is the smallest σ

algebra containing the elementary sets, (finite disjoint unions of measurable rectangles) and
a measure, denoted by µ×λ defined on this σ algebra such that for E ∈F ×S ,

s1→ λ (Es1) , (Es1 ≡ {s2 : (s1,s2) ∈ E})

is µ measurable and

s2→ µ (Es2) , (Es2 ≡ {s1 : (s1,s2) ∈ E})

is λ measurable. In terms of nonnegative functions which are F ×S measurable,

s1 → f (s1,s2) is µ measurable,
s2 → f (s1,s2) is λ measurable,

s1 →
∫

Ω2

f (s1,s2)dλ is µ measurable,

s2 →
∫

Ω1

f (s1,s2)dµ is λ measurable,

and the conclusion of Fubini’s theorem holds.∫
Ω1×Ω2

f d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)dλdµ

=
∫

Ω2

∫
Ω1

f (s1,s2)dµdλ .
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The following theorem is the version of Fubini’s theorem valid for Bochner integrable
functions.

Theorem 24.4.1 Let f : Ω1×Ω2→ X be strongly measurable with respect to µ×λ

and suppose ∫
Ω1×Ω2

|| f (s1,s2)||d (µ×λ )< ∞. (24.18)

Then there exist a set of µ measure zero, N and a set of λ measure zero, M such that the
following formula holds with all integrals making sense.∫

Ω1×Ω2

f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)XNC (s1)dλdµ

=
∫

Ω2

∫
Ω1

f (s1,s2)XMC (s2)dµdλ .

Proof: First note that from 24.18 and the usual Fubini theorem for nonnegative valued
functions, ∫

Ω1×Ω2

|| f (s1,s2)||d (µ×λ ) =
∫

Ω1

∫
Ω2

|| f (s1,s2)||dλdµ

and so ∫
Ω2

∥ f (s1,s2)∥dλ < ∞ (24.19)

for µ a.e. s1. Say for all s1 /∈ N where µ (N) = 0.
Let φ ∈ X ′. Then φ ◦ f is F ×S measurable and∫

Ω1×Ω2

|φ ◦ f (s1,s2)|d (µ×λ )

≤
∫

Ω1×Ω2

∥φ∥∥ f (s1,s2)∥d (µ×λ )< ∞

and so from the usual Fubini theorem for complex valued functions,∫
Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ. (24.20)

Now also if you fix s2, it follows from the definition of strongly measurable and the
properties of product measure mentioned above that s1 → f (s1,s2) is strongly measur-
able. Also, by 24.19

∫
Ω2
∥ f (s1,s2)∥dλ < ∞ for s1 /∈ N. Therefore, by Theorem 24.2.4

s2→ f (s1,s2)XNC (s1) is Bochner integrable. By 24.20 and 24.6∫
Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ )

=
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ

=
∫

Ω1

∫
Ω2

φ ( f (s1,s2)XNC (s1))dλdµ

=
∫

Ω1

φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
dµ. (24.21)



670 CHAPTER 24. THE BOCHNER INTEGRAL

Each iterated integral makes sense and

s1 →
∫

Ω2

φ ( f (s1,s2)XNC (s1))dλ

= φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
(24.22)

is µ measurable because

(s1,s2) → φ ( f (s1,s2)XNC (s1))

= φ ( f (s1,s2))XNC (s1)

is product measurable. Now consider the function,

s1→
∫

Ω2

f (s1,s2)XNC (s1)dλ . (24.23)

I want to show this is also Bochner integrable with respect to µ so I can factor out φ once
again. It’s measurability follows from the Pettis theorem and the above observation 24.22.
Also, ∫

Ω1

∥∥∥∥∫
Ω2

f (s1,s2)XNC (s1)dλ

∥∥∥∥dµ

≤
∫

Ω1

∫
Ω2

∥ f (s1,s2)∥dλdµ

=
∫

Ω1×Ω2

∥ f (s1,s2)∥d (µ×λ )< ∞.

Therefore, the function in 24.23 is indeed Bochner integrable and so in 24.21 the φ can be
taken outside the last integral. Thus,

φ

(∫
Ω1×Ω2

f (s1,s2)d (µ×λ )

)
=

∫
Ω1×Ω2

φ ◦ f (s1,s2)d (µ×λ )

=
∫

Ω1

∫
Ω2

φ ◦ f (s1,s2)dλdµ

=
∫

Ω1

φ

(∫
Ω2

f (s1,s2)XNC (s1)dλ

)
dµ

= φ

(∫
Ω1

∫
Ω2

f (s1,s2)XNC (s1)dλdµ

)
.

Since X ′ separates the points,∫
Ω1×Ω2

f (s1,s2)d (µ×λ ) =
∫

Ω1

∫
Ω2

f (s1,s2)XNC (s1)dλdµ.

The other formula follows from similar reasoning. ■
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24.5 The Spaces Lp (Ω;X)

Recall that x is Bochner when it is strongly measurable and
∫

Ω
∥x(s)∥dµ < ∞. It is natural

to generalize to
∫

Ω
∥x(s)∥p dµ < ∞.

Definition 24.5.1 x ∈ Lp (Ω;X) for p ∈ [1,∞) if x is strongly measurable and∫
Ω

∥x(s)∥p dµ < ∞

Also

∥x∥Lp(Ω;X) ≡ ∥x∥p ≡
(∫

Ω

∥x(s)∥p dµ

)1/p

. (24.24)

As in the case of scalar valued functions, two functions in Lp (Ω;X) are considered
equal if they are equal a.e. With this convention, and using the same arguments found
in the presentation of scalar valued functions it is clear that Lp (Ω;X) is a normed linear
space with the norm given by 24.24. In fact, Lp (Ω;X) is a Banach space. This is the main
contribution of the next theorem.

Lemma 24.5.2 If xn is a Cauchy sequence in Lp (Ω;X) satisfying

∞

∑
n=1
∥xn+1− xn∥p < ∞,

then there exists x ∈ Lp (Ω;X) such that xn (s)→ x(s) a.e. and

∥x− xn∥p→ 0.

Proof: Let gN (s)≡ ∑
N
n=1 ∥xn+1 (s)− xn (s)∥X . Then by the triangle inequality,(∫

Ω

gN (s)p dµ

)1/p

≤
N

∑
n=1

(∫
Ω

∥xn+1 (s)− xn (s)∥p dµ

)1/p

≤
∞

∑
n=1
∥xn+1− xn∥p < ∞.

Let

g(s) = lim
N→∞

gN (s) =
∞

∑
n=1
∥xn+1 (s)− xn (s)∥X .

By the monotone convergence theorem,(∫
Ω

g(s)p dµ

)1/p

= lim
N→∞

(∫
Ω

gN (s)p dµ

)1/p

< ∞.

Therefore, there exists a measurable set of measure 0 called E, such that for s /∈E, g(s)<∞.
Hence, for s /∈ E, limN→∞ xN+1 (s) exists because

xN+1 (s) = xN+1 (s)− x1 (s)+ x1 (s) =
N

∑
n=1

(xn+1 (s)− xn (s))+ x1 (s).
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Thus, if N > M, and s is a point where g(s)< ∞,

∥xN+1 (s)− xM+1 (s)∥X ≤
N

∑
n=M+1

∥xn+1 (s)− xn (s)∥X

≤
∞

∑
n=M+1

∥xn+1 (s)− xn (s)∥X

which shows that {xN+1 (s)}∞

N=1 is a Cauchy sequence for each s /∈ E. Now let

x(s)≡
{

limN→∞ xN (s) if s /∈ E,
0 if s ∈ E.

Theorem 24.1.10 shows that x is strongly measurable. By Fatou’s lemma,∫
Ω

∥x(s)− xN (s)∥p dµ ≤ lim inf
M→∞

∫
Ω

∥xM (s)− xN (s)∥p dµ.

But if N and M are large enough with M > N,(∫
Ω

∥xM (s)− xN (s)∥p dµ

)1/p

≤
M

∑
n=N
∥xn+1− xn∥p ≤

∞

∑
n=N
∥xn+1− xn∥p < ε

and this shows, since ε is arbitrary, that

lim
N→∞

∫
Ω

∥x(s)− xN (s)∥p dµ = 0.

It remains to show x ∈ Lp (Ω;X). This follows from the above and the triangle inequality.
Thus, for N large enough,(∫

Ω

∥x(s)∥p dµ

)1/p

≤
(∫

Ω

∥xN (s)∥p dµ

)1/p

+

(∫
Ω

∥x(s)− xN (s)∥p dµ

)1/p

≤
(∫

Ω

∥xN (s)∥p dµ

)1/p

+ ε < ∞. ■

Theorem 24.5.3 Lp (Ω;X) is complete. Also every Cauchy sequence has a subse-
quence which converges pointwise.

Proof: If {xn} is Cauchy in Lp (Ω;X), extract a subsequence {xnk} satisfying∥∥xnk+1 − xnk

∥∥
p ≤ 2−k

and apply Lemma 24.5.2. The pointwise convergence of this subsequence was established
in the proof of this lemma. This proves the theorem because if a subsequence of a Cauchy
sequence converges, then the Cauchy sequence must also converge. ■

Observation 24.5.4 If the measure space is Lebesgue measure then you have continu-
ity of translation in Lp (Rn;X) in the usual way. More generally, for µ a Radon measure
on Ω a locally compact Hausdorff space, Cc (Ω;X) is dense in Lp (Ω;X) . Here Cc (Ω;X) is
the space of continuous X valued functions which have compact support in Ω. The proof of
this little observation follows immediately from approximating with simple functions and
then applying the appropriate considerations to the simple functions.
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Clearly Fatou’s lemma and the monotone convergence theorem make no sense for func-
tions with values in a Banach space but the dominated convergence theorem holds in this
setting.

Theorem 24.5.5 If x is strongly measurable and xn (s)→ x(s) a.e. (for s off a set
of measure zero) with

∥xn (s)∥ ≤ g(s) a.e.

where
∫

Ω
gdµ < ∞, then x is Bochner integrable and∫

Ω

x(s)dµ = lim
n→∞

∫
Ω

xn (s)dµ.

Proof: The measurability of x follows from Theorem 24.1.10 if convergence happens
for each s. Otherwise, x is measurable by assumption. Then ∥xn (s)− x(s)∥ ≤ 2g(s) a.e.
so, from Fatou’s lemma,∫

Ω

2g(s)dµ ≤ lim inf
n→∞

∫
Ω

(2g(s)−∥xn (s)− x(s)∥)dµ

=
∫

Ω

2g(s)dµ− lim sup
n→∞

∫
Ω

∥xn (s)− x(s)∥dµ

and so,
lim sup

n→∞

∫
Ω

∥xn (s)− x(s)∥dµ ≤ 0

Also, from Fatou’s lemma again,∫
Ω

∥x(s)∥dµ ≤ lim inf
n→∞

∫
Ω

∥xn (s)∥dµ <
∫

Ω

g(s)dµ < ∞

so x ∈ L1. Then by the triangle inequality,

lim sup
n→∞

∥∥∥∥∫
Ω

x(s)dµ−
∫

Ω

xn (s)dµ

∥∥∥∥≤ lim sup
n→∞

∫
Ω

∥xn (s)− x(s)∥dµ = 0 ■

One can also give a version of the Vitali convergence theorem.

Definition 24.5.6 Let A ⊆ L1 (Ω;X). Then A is said to be uniformly integrable if
for every ε > 0 there exists δ > 0 such that whenever µ (E)< δ , it follows∫

E
∥ f∥X dµ < ε

for all f ∈A . It is bounded if

sup
f∈A

∫
Ω

∥ f∥X dµ < ∞.

Theorem 24.5.7 Let (Ω,F ,µ) be a finite measure space and let X be a separa-
ble Banach space. Let { fn} ⊆ L1 (Ω;X) be uniformly integrable and bounded such that
fn (ω)→ f (ω) for each ω ∈Ω. Then f ∈ L1 (Ω;X) and

lim
n→∞

∫
Ω

∥ fn− f∥X dµ = 0.
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Proof: Let ε > 0 be given. Then by uniform integrability there exists δ > 0 such that
if µ (E)< δ then ∫

E
∥ fn∥dµ < ε/3.

By Fatou’s lemma the same inequality holds for f . Fatou’s lemma shows f ∈ L1 (Ω;X), f
being measurable because of Theorem 9.1.2.

By Egoroff’s theorem, Theorem 24.1.18, there exists a set of measure less than δ , E
such that the convergence of { fn} to f is uniform off E. Therefore,∫

Ω

∥ f − fn∥dµ ≤
∫

E
(∥ f∥X +∥ fn∥X )dµ +

∫
EC
∥ f − fn∥X dµ

<
2ε

3
+
∫

EC

ε

(µ (Ω)+1)3
dµ < ε

if n is large enough. ■
Note that a convenient way to achieve uniform integrability is to say { fn} is bounded

in Lp (Ω;X) for some p > 1. This follows from Holder’s inequality.∫
E
∥ fn∥dµ ≤

(∫
E

dµ

)1/p′(∫
Ω

∥ fn∥p dµ

)1/p

≤Cµ (E)1/p′ .

The following theorem is interesting.

Theorem 24.5.8 Let 1 ≤ p < ∞ and let p < r ≤ ∞. Then Lr ([0,T ] ,X) is a Borel
subset of Lp ([0,T ] ;X). Letting C ([0,T ] ;X) denote the continuous functions having values
in X, C ([0,T ] ;X) is also a Borel subset of Lp ([0,T ] ;X) . Here the measure is ordinary one
dimensional Lebesgue measure on [0,T ].

Proof: First consider the claim about Lr ([0,T ] ;X). Let

BM ≡
{

x ∈ Lp ([0,T ] ;X) : ∥x∥Lr([0,T ];X) ≤M
}
.

Then BM is a closed subset of Lp ([0,T ] ;X) . Here is why. If {xn} is a sequence of
elements of BM and xn → x in Lp ([0,T ] ;X) , then passing to a subsequence, still denoted
by xn, it can be assumed xn (s)→ x(s) a.e. Hence Fatou’s lemma can be applied to conclude∫ T

0
∥x(s)∥r ds≤ lim inf

n→∞

∫ T

0
∥xn (s)∥r ds≤Mr < ∞.

Now ∪∞
M=1BM = Lr ([0,T ] ;X) . Note this did not depend on the measure space used. It

would have been equally valid on any measure space.
Consider now C ([0,T ] ;X) . The norm on this space is the usual norm, ∥·∥

∞
. The argu-

ment above shows ∥·∥
∞

is a Borel measurable function on Lp ([0,T ] ;X) . This is because
BM ≡{x ∈ Lp ([0,T ] ;X) : ∥x∥

∞
≤M} is a closed, hence Borel subset of Lp ([0,T ] ;X). Now

let θ ∈ L (Lp ([0,T ] ;X) ,Lp (R;X)) such that θ (x(t)) = x(t) for all t ∈ [0,T ] and also
θ ∈ L (C ([0,T ] ;X) ,BC (R;X)) where BC (R;X) denotes the bounded continuous func-
tions with a norm given by ∥x∥ ≡ supt∈R ∥x(t)∥ , and θx has compact support.

For example, you could define

x̃(t)≡


x(t) if t ∈ [0,T ]
x(2T − t) if t ∈ [T,2T ]
x(−t) if t ∈ [−T,0]
0 if t /∈ [−T,2T ]



24.5. THE SPACES Lp (Ω;X) 675

and let Φ ∈C∞
c (−T,2T ) such that Φ(t) = 1 for t ∈ [0,T ]. Then you could let

θx(t)≡Φ(t) x̃(t) .

Then let {φ n} be a mollifier and define

ψnx(t)≡ φ n ∗θx(t) .

It follows ψnx is uniformly continuous because∥∥ψnx(t)−ψnx
(
t ′
)∥∥

X

≤
∫
R

∣∣φ n
(
t ′− s

)
−φ n (t− s)

∣∣∥θx(s)∥X ds

≤ C∥x∥p

(∫
R

∣∣φ n
(
t ′− s

)
−φ n (t− s)

∣∣p′ ds
)1/p′

Also for x ∈C ([0,T ] ;X) , it follows from usual mollifier arguments that

∥ψnx− x∥L∞([0,T ];X)→ 0.

Here is why. For t ∈ [0,T ] ,

∥ψnx(t)− x(t)∥X ≤
∫
R

φ n (s)∥θx(t− s)−θx(t)∥ds

≤ Cθ

∫ 1/n

−1/n
φ n (s)dsε =Cθ ε

provided n is large enough due to the compact support and consequent uniform continuity
of θx.

If ||ψnx− x||L∞([0,T ];X)→ 0, then {ψnx} is a Cauchy sequence in C ([0,T ] ;X) and this
requires that x equals a continuous function a.e. Thus C ([0,T ] ;X) consists exactly of those
functions, x of Lp ([0,T ] ;X) such that ∥ψnx− x∥

∞
→ 0. It follows

C ([0,T ] ;X) =

∩∞
n=1∪∞

m=1∩∞
k=m

{
x ∈ Lp ([0,T ] ;X) : ∥ψkx− x∥

∞
≤ 1

n

}
. (24.25)

It only remains to show

S≡
{

x ∈ Lp ([0,T ] ;X) : ∥ψkx− x∥
∞
≤ α

}
is a Borel set. Suppose then that xn ∈ S and xn → x in Lp ([0,T ] ;X). Then there exists a
subsequence, still denoted by n such that xn → x pointwise a.e. as well as in Lp. There
exists a set of measure 0 such that for all n, and t not in this set,

∥ψkxn (t)− xn (t)∥ ≡
∥∥∥∥∫ 1/k

−1/k
φ k (s)(θxn (t− s))ds− xn (t)

∥∥∥∥≤ α

xn (t) → x(t) .
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Then

∥ψkxn (t)− xn (t)− (ψkx(t)− x(t))∥

≤ ∥xn (t)− x(t)∥X +

∥∥∥∥∫ 1/k

−1/k
φ k (s)(θxn (t− s)−θx(t− s))ds

∥∥∥∥
≤ ∥xn (t)− x(t)∥X +Ck,θ ∥xn− x∥Lp(0,T ;X)

which converges to 0 as n→ ∞. It follows that for a.e. t,

∥ψkx(t)− x(t)∥ ≤ α.

Thus S is closed and so the set in 24.25 is a Borel set. ■
As in the scalar case, the following lemma holds in this more general context.

Lemma 24.5.9 Let (Ω,µ) be a regular measure space where Ω is a locally compact
Hausdorff space or more simply a metric space with closed balls compact. Then Cc (Ω;X)
the space of continuous functions having compact support and values in X is dense in
Lp (0,T ;X) for all p ∈ [0,∞). For any measure space (Ω,F ,µ), the simple functions are
dense in Lp (0,T ;X) .

Proof: First, the simple functions are dense in Lp (0,T ;X) . Let f ∈ Lp (0,T ;X) and let
{xn} denote a sequence of simple functions which converge to f pointwise which also have
the property that

∥xn (s)∥ ≤ 2∥ f (s)∥

Then ∫
Ω

∥xn (s)− f (s)∥p dµ → 0

from the dominated convergence theorem. Therefore, the simple functions are indeed dense
in Lp (0,T ;X) .

Next suppose (Ω,µ) is a regular measure space. If x(s) ≡ ∑i aiXEi (s) is a simple
function, then by regularity, there exist compact sets Ki and open sets, Vi such that Ki ⊆
Ei ⊆Vi and µ (Vi \Ki)

1/p < ε/∑i ||ai|| . Let Ki ≺ hi ≺Vi. Then consider

∑
i

aihi ∈Cc (Ω) .

By the triangle inequality,(∫
Ω

∥∥∥∥∥∑i
aihi (s)−aiXEi (s)

∥∥∥∥∥
p

dµ

)1/p

≤ ∑
i

(∫
Ω

∥ai (hi (s)−XEi (s))∥
p dµ

)1/p

≤ ∑
i

(∫
Ω

∥ai∥p |hi (s)−XEi (s)|
p dµ

)1/p

≤∑
i
∥ai∥

(∫
Vi\Ki

dµ

)1/p

≤ ∑
i
∥ai∥µ (Vi \Ki)

1/p < ε

This and the first part of the lemma shows that Cc (Ω;X) = Lp (Ω;X). ■
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24.6 Measurable Representatives
In this section consider the special case where X = L1 (B,ν) where (B,F ,ν) is a measure
space and x ∈ L1 (Ω;X). Thus for each s ∈Ω, x(s) ∈ L1 (B,ν). In general, the map

(s, t)→ x(s)(t)

will not be product measurable, but one can obtain a measurable representative. This is
important because it allows the use of Fubini’s theorem on the measurable representative.

By Theorem 24.2.4, there exists a sequence of simple functions, {xn}, of the form

xn (s) =
m

∑
k=1

akXEk (s) (24.26)

where ak ∈ L1 (B,ν) which satisfy the conditions of Definition 24.2.3 and

∥xn− xm∥L1(Ω,L1(B))→ 0 as m,n→ ∞ (24.27)

For such a simple function, you can assume the Ek are disjoint and then

∥xn∥L1(Ω,L1(B)) =
m

∑
k=1
∥ak∥L1(B) µ (Ek) =

m

∑
k=1

∫
B
|ak|dνµ (Ek)

=
∫

Ω

∫
B
|ak (t)|dν (t)XEk (s)dµ (s)

=
∫

Ω

∫
B
|xn|dνdµ

Also, each xn is product measurable. Thus from 24.27,

∥xn− xm∥L1(Ω,L1(B)) =
∫

Ω

∫
B
|xn− xm|dνdµ

which shows that {xn} is a Cauchy sequence in L1 (Ω×B,µ×λ ) . Then there exists y ∈
L1 (Ω×B,µ×λ ) and a subsequence still called {xn} such that

lim
n→∞

∫
Ω

∫
B
|xn− y|dνdµ = lim

n→∞

∫
Ω

∥xn− y∥L1(B) dµ

= ∥xn− y∥L1(Ω,L1(B)) = 0.

Now consider 24.27. Since limm→∞ xm (s) = x(s) in L1 (B) , it follows from Fatou’s lemma
that

∥xn− x∥L1(Ω,L1(B)) ≤ lim inf
m→∞
∥xn− xm∥L1(Ω,L1(B)) < ε

for all n large enough. Hence

lim
n→∞
∥xn− x∥L1(Ω,L1(B)) = 0

and so
x(s) = y(s) in L1 (B) µ a.e. s

In particular, for a.e. s, it follows that

x(s)(t) = y(s, t) for a.e. t.
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Now
∫

Ω
x(s)dµ ∈ X = L1 (B,ν) so it makes sense to ask for (

∫
Ω

x(s)dµ)(t), at least µ

a.e. t. To find what this is, note∥∥∥∥∫
Ω

xn (s)dµ−
∫

Ω

x(s)dµ

∥∥∥∥
X
≤
∫

Ω

∥xn (s)− x(s)∥X dµ.

Therefore, since the right side converges to 0,

lim
n→∞

∥∥∥∥∫
Ω

xn (s)dµ−
∫

Ω

x(s)dµ

∥∥∥∥
X
=

lim
n→∞

∫
B

∣∣∣∣(∫
Ω

xn (s)dµ

)
(t)−

(∫
Ω

x(s)dµ

)
(t)
∣∣∣∣dν = 0.

But (∫
Ω

xn (s)dµ

)
(t) =

∫
Ω

xn (s, t)dµ a.e. t.

Therefore

lim
n→∞

∫
B

∣∣∣∣∫
Ω

xn (s, t)dµ−
(∫

Ω

x(s)dµ

)
(t)
∣∣∣∣dν = 0. (24.28)

Also, since xn→ y in L1 (Ω×B),

0 = lim
n→∞

∫
B

∫
Ω

|xn (s, t)− y(s, t)|dµdν ≥

lim
n→∞

∫
B

∣∣∣∣∫
Ω

xn (s, t)dµ−
∫

Ω

y(s, t)dµ

∣∣∣∣dν . (24.29)

From 24.28 and 24.29 ∫
Ω

y(s, t)dµ =

(∫
Ω

x(s)dµ

)
(t) a.e. t.

Thus the following theorem is obtained.

Theorem 24.6.1 Let X = L1 (B) where (B,F ,ν) is a σ finite measure space and
let x ∈ L1 (Ω;X). Then there exists a measurable representative, y ∈ L1 (Ω×B), such that

x(s) = y(s, ·) a.e. s in Ω, the equation in L1 (B) ,

and ∫
Ω

y(s, t)dµ =

(∫
Ω

x(s)dµ

)
(t) a.e. t.

24.7 Vector Measures
There is also a concept of vector measures.

Definition 24.7.1 Let (Ω,S ) be a set and a σ algebra of subsets of Ω. A mapping

F : S → X
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is said to be a vector measure if

F (∪∞
i=1Ei) =

∞

∑
i=1

F (Ei)

whenever {Ei}∞

i=1 is a sequence of disjoint elements of S . For F a vector measure,

|F |(A)≡ sup{ ∑
F∈π(A)

∥µ (F)∥ : π (A) is a partition of A}.

This is the same definition that was given in the case where F would have values in C,
the only difference being the fact that now F has values in a general Banach space X as
the vector space of values of the vector measure. Recall that a partition of A is a finite set,
{F1, · · · ,Fm} ⊆S such that ∪m

i=1Fi = A. The same theorem about |F | proved in the case of
complex valued measures holds in this context with the same proof. For completeness, it is
included here.

Theorem 24.7.2 If |F |(Ω)< ∞, then |F | is a measure on S .

Proof: Let E1 and E2 be sets of S such that E1∩E2 = /0 and let {Ai
1, · · · ,Ai

ni
}= π(Ei),

a partition of Ei which is chosen such that

|F |(Ei)− ε <
ni

∑
j=1
∥F(Ai

j)∥ i = 1,2.

Consider the sets which are contained in either of π (E1) or π (E2) , it follows this collection
of sets is a partition of E1 ∪E2 which is denoted here by π(E1 ∪E2). Then by the above
inequality and the definition of total variation,

|F |(E1∪E2)≥ ∑
F∈π(E1∪E2)

∥F(F)∥> |F |(E1)+ |F |(E2)−2ε ,

which shows that since ε > 0 was arbitrary,

|F |(E1∪E2)≥ |F |(E1)+ |F |(E2). (24.30)

Let
{

E j
}∞

j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞
j=1E j. Then by the

definition of total variation there exists a partition of E∞, π(E∞) = {A1, · · · ,An} such that

|F |(E∞)− ε <
n

∑
i=1
∥F(Ai)∥ .

Also,

Ai = ∪∞
j=1Ai∩E j, so F (A j) =

∞

∑
j=1

F (Ai∩E j)

and so by the triangle inequality, ∥F(Ai)∥ ≤ ∑
∞
j=1
∥∥F(Ai∩E j)

∥∥. Therefore, by the above,

|F |(E∞)− ε <
n

∑
i=1

≥∥F(Ai)∥︷ ︸︸ ︷
∞

∑
j=1

∥∥F(Ai∩E j)
∥∥= ∞

∑
j=1

n

∑
i=1

∥∥F(Ai∩E j)
∥∥≤ ∞

∑
j=1
|F |(E j)
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because
{

Ai∩E j
}n

i=1 is a partition of E j.
Since ε > 0 is arbitrary, this shows

|F |(∪∞
j=1E j)≤

∞

∑
j=1
|F |(E j).

Also, 24.30 implies that whenever the Ei are disjoint, |F |(∪n
j=1E j)≥ ∑

n
j=1 |F |(E j). There-

fore,
∞

∑
j=1
|F |(E j)≥ |F |(∪∞

j=1E j)≥ |F |(∪n
j=1E j)≥

n

∑
j=1
|F |(E j).

Since n is arbitrary,

|F |(∪∞
j=1E j) =

∞

∑
j=1
|F |(E j)

which shows that |F | is a measure as claimed. ■

Definition 24.7.3 A Banach space is said to have the Radon Nikodym property if
whenever

(Ω,S ,µ) is a finite measure space

F : S → X is a vector measure with |F |(Ω)< ∞

F ≪ µ

then one may conclude there exists g ∈ L1 (Ω;X) such that

F (E) =
∫

E
g(s)dµ

for all E ∈S .

Some Banach spaces have the Radon Nikodym property and some don’t. No attempt is
made to give a complete answer to the question of which Banach spaces have this property,
but the next theorem gives examples of many spaces which do. This next lemma was used
earlier. I am presenting it again.

Lemma 24.7.4 Suppose ν is a complex measure defined on S a σ algebra where
(Ω,S ) is a measurable space, and let µ be a measure on S with |ν (E)| ≤ rµ (E) and
suppose there is h ∈ L1 (Ω,µ) such that for all E ∈S ,

ν (E) =
∫

E
hdµ, ,

Then |h| ≤ r a.e.

Proof: Let B(p,δ )⊆ C\B(0,r) and let E ≡ h−1 (B(p,δ )) . If µ (E)> 0. Then∣∣∣∣ 1
µ (E)

∫
E

hdµ− p
∣∣∣∣≤ 1

µ (E)

∫
E
|h(ω)− p|dµ < δ

Thus,
∣∣∣ ν(E)

µ(E) − p
∣∣∣< δ and so |ν (E)− pµ (E)|< δ µ (E) which implies

|ν (E)| ≥ (|p|−δ )µ (E)> rµ (E)≥ |ν (E)|
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which contradicts the assumption. Hence h−1 (B(p,δ )) is a set of µ measure zero for
all such balls contained in C \B(0,r) and so, since countably many of these balls cover
C\B(0,r), it follows that µ

(
h−1

(
C\B(0,r)

))
= 0 and so |h(ω)| ≤ r for a.e. ω . ■

Theorem 24.7.5 Suppose X ′ is a separable dual space. Then X ′ has the Radon
Nikodym property.

Proof: By Theorem 24.1.16, X is separable. Let D be a countable dense subset of X .
Let F≪ µ,µ a finite measure and F a vector measure and let |F |(Ω)< ∞. Pick x ∈ X and
consider the map

E→ F (E)(x)

for E ∈S . This defines a complex measure which is absolutely continuous with respect to
|F |. Therefore, by the earlier Radon Nikodym theorem, there exists fx ∈ L1 (Ω, |F |) such
that

F (E)(x) =
∫

E
fx (s)d |F |. (24.31)

Also, by definition ∥F (E)∥ ≤ |F |(E) so |F (E)(x)| ≤ |F |(E)∥x∥ . By Lemma 24.7.4,
| fx (s)| ≤ ∥x∥ for |F | a.e. s. Let D̃ consist of all finite linear combinations of the form
∑

m
i=1 aixi where ai is a rational point of F and xi ∈ D. For each of these countably many

vectors, there is an exceptional set of measure zero off which | fx (s)| ≤ ∥x∥. Let N be the
union of all of them and define fx (s)≡ 0 if s /∈ N. Then since F (E) is in X ′, it is linear and
so for ∑

m
i=1 aixi ∈ D̃,∫

E
f∑

m
i=1 aixi (s)d |F | = F (E)

(
m

∑
i=1

aixi

)
=

m

∑
i=1

aiF (E)(xi)

=
∫

E

m

∑
i=1

ai fxi (s)d |F |

and so by uniqueness in the Radon Nikodym theorem,

f∑
m
i=1 aixi (s) =

m

∑
i=1

ai fxi (s) |F | a.e.

and so, we can regard this as holding for all s /∈ N. Also, if x ∈ D̃, | fx (s)| ≤ ∥x∥. Now for
x,y ∈ D̃, ∣∣ fx (s)− fy (s)

∣∣= ∣∣ fx−y (s)
∣∣≤ ∥x− y∥

and so, by density of D̃, we can define

hx (s)≡ lim
n→∞

fxn (s) where xn→ x,xn ∈ D̃

For s ∈ N, all functions equal 0. Thus for all x, |hx (s)| ≤ ∥x∥. The dominated convergence
theorem and continuity of F (E) implies that for xn→ x, with xn ∈ D̃,∫

E
hx (s)d |F |= lim

n→∞

∫
E

fxn (s)d |F |= lim
n→∞

F (E)(xn) = F (E)(x). (24.32)

It follows from the density of D̃ that for all x,y ∈ X ,s /∈ N, and a,b ∈ F, let xn→ x,yn→
y,an→ a,bn→ b, with xn,yn ∈ D̃ and an,bn ∈Q or Q+ iQ in case F= C. Then

hax+by (s) = lim
n→∞

fanxn+bnyn (s) = lim
n→∞

an fxn (s)+bn fyn (s)≡ ahx (s)+bhy (s), (24.33)
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Let θ (s) be given by θ (s)(x) = hx (s) if s /∈ N and let θ (s) = 0 if s ∈ N. By 24.33 it
follows that θ (s) ∈ X ′ for each s. Also

θ (s)(x) = hx (s) ∈ L1 (Ω)

so θ (·) is weak ∗ measurable. Since X ′ is separable, Theorem 24.1.15 implies that θ is
strongly measurable. Furthermore, by 24.33,

∥θ (s)∥ ≡ sup
∥x∥≤1

|θ (s)(x)| ≤ sup
∥x∥≤1

|hx (s)| ≤ 1.

Therefore,
∫

Ω
∥θ (s)∥d |F |< ∞ so θ ∈ L1 (Ω;X ′). Thus, if E ∈S ,∫

E
hx (s)d |F |=

∫
E

θ (s)(x)d |F |=
(∫

E
θ (s)d |F |

)
(x). (24.34)

From 24.32 and 24.34, (
∫

E θ (s)d |F |)(x) = F (E)(x) for all x ∈ X and therefore,∫
E

θ (s)d |F |= F (E).

Finally, since F ≪ µ, |F | ≪ µ also and so there exists k ∈ L1 (Ω) such that

|F |(E) =
∫

E
k (s)dµ

for all E ∈S , by the scalar Radon Nikodym Theorem. It follows

F (E) =
∫

E
θ (s)d |F |=

∫
E

θ (s)k (s)dµ.

Letting g(s) = θ (s)k (s), this has proved the theorem. ■
Since each reflexive Banach spaces is a dual space, the following corollary holds.

Corollary 24.7.6 Any separable reflexive Banach space has the Radon Nikodym prop-
erty.

It is not necessary to assume separability in the above corollary. For the proof of a more
general result, consult Vector Measures by Diestal and Uhl, [13].

24.8 The Riesz Representation Theorem
The Riesz representation theorem for the spaces Lp (Ω;X) holds under certain conditions.
The proof follows the proofs given earlier for scalar valued functions.

Definition 24.8.1 If X and Y are two Banach spaces, X is isometric to Y if there
exists θ ∈L (X ,Y ) such that

∥θx∥Y = ∥x∥X .

This will be written as X ∼= Y . The map θ is called an isometry.

The next theorem says that Lp′ (Ω;X ′) is always isometric to a subspace of (Lp (Ω;X))′

for any Banach space, X .
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Theorem 24.8.2 Let X be any Banach space and let (Ω,S ,µ) be a measure space.
Then for p > 1, Lp′ (Ω;X ′) is isometric to a subspace of (Lp (Ω;X))′. Also, for g ∈
Lp′ (Ω;X ′),

sup
|| f ||p≤1

∣∣∣∣∫
Ω

g(ω)( f (ω))dµ

∣∣∣∣= ∥g∥p′ .

If p = 1 and p′ = ∞, this is still true assuming µ (Ω)< ∞.

Proof: First observe that for f ∈ Lp (Ω;X) and g ∈ Lp′ (Ω;X ′),

ω → g(ω)( f (ω))

is a function in L1 (Ω). (To obtain measurability, write f as a limit of simple functions.
Holder’s inequality then yields the function is in L1 (Ω).) Define

θ : Lp′ (
Ω;X ′

)
→ (Lp (Ω;X))′

by

θg( f )≡
∫

Ω

g(ω)( f (ω))dµ.

Holder’s inequality implies

∥θg∥ ≤ ∥g∥p′ (24.35)

and it is also clear that θ is linear. Next it is required to show ∥θg∥= ∥g∥p′ . To begin with,
always assume p > 1.

This will first be verified for simple functions. Assume ∥g∥p′ ̸= 0 since if not, there is
nothing to show. Let

g(ω) =
m

∑
i=1

c∗i XEi (ω) , g ∈ Lp′ (
Ω;X ′

)
,c∗i ̸= 0

where 0 ̸= c∗i ∈ X ′, the Ei are disjoint. Let di ∈ X be such that ∥di∥X = 1 and

c∗i (di)≥ ∥c∗i ∥− ε

Then let

f (ω)≡ 1

∥g∥p′−1
Lp′ (Ω;X ′)

m

∑
i=1

di ∥c∗i ∥
p′−1 XEi (ω)

Then since p′−1 = p′/p,

∫
Ω

∥ f∥p dµ =
1

∥g∥p′

Lp′ (Ω;X ′)

∫
Ω

m

∑
i=1
∥c∗i ∥

p′XEi (ω)dµ =
∥g∥p′

Lp′ (Ω;X ′)

∥g∥p′

Lp′ (Ω;X ′)

= 1
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Also
∫

Ω
g(ω)( f (ω)) =

1

∥g∥p′−1
Lp′ (Ω;X ′)

∫
Ω

m

∑
i=1

c∗i (di)∥c∗i ∥
p′−1 XEi (ω)dµ

≥ 1

∥g∥p′−1
Lp′ (Ω;X ′)

∫
Ω

m

∑
i=1

(∥c∗i ∥− ε)∥c∗i ∥
p′−1 XEi (ω)dµ

=
1

∥g∥p′−1
Lp′ (Ω;X ′)

m

∑
i=1
∥c∗i ∥

p′
µ (Ei)−

1

∥g∥p′−1
Lp′ (Ω;X ′)

ε

m

∑
i=1
∥c∗i ∥

p′−1
µ (Ei)

= ∥g∥Lp′ (Ω;X ′)− ε

Therefore, ∥g∥Lp′ (Ω;X ′) ≥ ∥θ (g)∥ ≥ |
∫

Ω
g(ω)( f (ω))| ≥ ∥g∥Lp′ (Ω;X ′)− ε and since ε is ar-

bitrary, it follows that ∥g∥Lp′ (Ω;X ′) = ∥θ (g)∥ whenever g is a simple function.

In general, let g∈ Lp′ (Ω;X ′) and let gn be a sequence of simple functions converging to
g in Lp′ (Ω;X ′). Such a sequence exists by Lemma 24.1.2. Let gn (ω)→ g(ω) ,∥gn (ω)∥ ≤
2∥g(ω)∥ . Then each gn is in Lp′ (Ω;X ′) and by the dominated convergence theorem they
converge to g in Lp′ (Ω;X ′). Then for ∥·∥ the norm in (Lp (Ω;X))′ ,

∥θg∥= lim
n→∞
∥θgn∥= lim

n→∞
∥gn∥= ∥g∥.

This proves the theorem in case p = 1 and shows θ is the desired isometry.
Next suppose p = 1 and g ∈ L∞ (Ω;X ′). It is still the case that ∥θg∥ ≤ ∥g∥L∞(Ω;X ′). As

above, one must choose f appropriately. In this case, assume µ is a finite measure. Begin
with g a simple function g(ω) = ∑

m
i=1 c∗i XEi (ω) . Suppose ∥c∗1∥ is at least as large as all

other ∥c∗i ∥ modify if the largest of these occurs at k ̸= 1. Thus ∥g∥
∞
= ∥c∗i ∥X ′ . Now let

c∗1 (d1) ≥ ∥c∗1∥− εµ (Ei) ,∥d1∥X = 1, and let f (ω) ≡ d1
µ(Ei)

XEi (ω) . Then
∫

Ω
∥ f∥dµ = 1.

Also

g(ω)( f (ω))
c∗1 (d1)

µ (Ei)
XEi (ω)≥ 1

µ (Ei)
XEi (ω)(∥c∗1∥− εµ (Ei))

and so

|θg( f )| =

∣∣∣∣∫
Ω

g(ω)( f (ω))dµ

∣∣∣∣≥ ∣∣∣∣∫
Ω

(
1

µ (Ei)
XEi (ω)(∥c∗1∥− εµ (Ei))

)
dµ

∣∣∣∣
≥ ∥c∗1∥− εµ (Ω) = ∥g∥

∞
− εµ (Ω)

Thus
∥g∥

∞
≥ ∥θg∥ ≥ ∥g∥

∞
− εµ (Ω)

and so, since ε is arbitrary, it follows that ∥θg∥ = ∥g∥L∞(Ω;X ′). Extending from simple
functions to functions in L∞ (Ω;X ′) goes as before. Approximate with simple functions
and pass to a limit. ■

Theorem 24.8.3 If X is a Banach space and X ′ has the Radon Nikodym property,
then if (Ω,S ,µ) is a finite measure space,(Lp (Ω;X))′ ∼= Lp′ (Ω;X ′) and in fact the map-
ping θ of Theorem 24.8.2 is onto.

Proof: Let l ∈ (Lp (Ω;X))′ and define F (E) ∈ X ′ by F (E)(x)≡ l (XE (·)x) .
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Lemma 24.8.4 F defined above is a vector measure with values in X ′ and |F |(Ω)< ∞.

Proof of the lemma: Clearly F (E) is linear. Also

∥F (E)∥= sup
∥x∥≤1

∥F (E)(x)∥ ≤ ∥l∥ sup
∥x∥≤1

∥XE (·)x∥Lp(Ω;X) ≤ ∥l∥µ (E)1/p.

Let {Ei}∞
i=1 be a sequence of disjoint elements of S and let E = ∪n<∞En.∣∣∣∣∣F (E)(x)−

n

∑
k=1

F (Ek)(x)

∣∣∣∣∣=
∣∣∣∣∣l (XE (·)x)−

n

∑
i=1

l (XEi (·)x)

∣∣∣∣∣ (24.36)

≤ ∥l∥

∥∥∥∥∥XE (·)x−
n

∑
i=1

XEi (·)x

∥∥∥∥∥
Lp(Ω;X)

≤ ∥l∥µ

(⋃
k>n

Ek

)1/p

∥x∥.

Since µ (Ω)< ∞, limn→∞ µ

( ⋃
k>n

Ek

)1/p

= 0 and so inequality 24.36 shows that

lim
n→∞

∥∥∥∥∥F (E)−
n

∑
k=1

F (Ek)

∥∥∥∥∥
X ′

= 0.

To show |F |(Ω) < ∞, let ε > 0 be given, let {H1, · · · ,Hn} be a partition of Ω, and let
∥xi∥ ≤ 1 be chosen in such a way that F (Hi)(xi)> ∥F (Hi)∥− ε/n. Thus

−ε +
n

∑
i=1
∥F (Hi)∥<

n

∑
i=1
|l (XHi (·)xi)| ≤ ∥l∥

∥∥∥∥∥ n

∑
i=1

XHi (·)xi

∥∥∥∥∥
Lp(Ω;X)

≤ ∥l∥
(∫

Ω

n

∑
i=1

XHi (s)dµ

)1/p

= ∥l∥µ (Ω)1/p.

Since ε > 0 was arbitrary, ∑
n
i=1 ∥F (Hi)∥ < ∥l∥µ (Ω)1/p.Since the partition was arbitrary,

this shows |F |(Ω)≤ ∥l∥µ (Ω)1/p and this proves the lemma. ■
Continuing with the proof of Theorem 24.8.3, note that F≪ µ. Since X ′ has the Radon

Nikodym property, there exists g ∈ L1 (Ω;X ′) such that F (E) =
∫

E g(s)dµ. Also, from the
definition of F (E) ,

l

(
n

∑
i=1

xiXEi (·)

)
=

n

∑
i=1

l (XEi (·)xi)

=
n

∑
i=1

F (Ei)(xi) =
n

∑
i=1

∫
Ei

g(s)(xi)dµ. (24.37)

It follows from 24.37 that whenever h is a simple function,

l (h) =
∫

Ω

g(s)(h(s))dµ. (24.38)

Let Gn ≡ {s : ∥g(s)∥X ′ ≤ n} and let j : Lp (Gn;X)→ Lp (Ω;X) be given by

jh(s) =
{

h(s) if s ∈ Gn,
0 if s /∈ Gn.
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Letting h be a simple function in Lp (Gn;X),

j∗l (h) = l ( jh) =
∫

Gn

g(s)(h(s))dµ. (24.39)

Since the simple functions are dense in Lp (Gn;X), and g ∈ Lp′ (Gn;X ′), it follows 24.39
holds for all h ∈ Lp (Gn;X). By Theorem 24.8.2,

∥g∥Lp′ (Gn;X ′) = ∥ j∗l∥(Lp(Gn;X))′ ≤ ∥l∥(Lp(Ω;X))′ .

By the monotone convergence theorem, ∥g∥Lp′ (Ω;X ′) = limn→∞ ∥g∥Lp′ (Gn;X ′)≤∥l∥(Lp(Ω;X))′ .

Therefore g ∈ Lp′ (Ω;X ′) and since simple functions are dense in Lp (Ω;X), 24.38 holds
for all h ∈ Lp (Ω;X) . Thus l = θg and the theorem is proved because, by Theorem 24.8.2,
∥l∥= ∥g∥ and so the mapping θ is onto because l was arbitrary. ■

As in the scalar case, everything generalizes to the case of σ finite measure spaces. The
proof is almost identical.

Lemma 24.8.5 Let (Ω,S ,µ) be a σ finite measure space and let X be a Banach space
such that X ′ has the Radon Nikodym property. Then there exists a measurable function, r
such that r (x)> 0 for all x, such that |r (x)|< M for all x, and

∫
rdµ < ∞. For

Λ ∈ (Lp(Ω;X))′, p≥ 1,

there exists a unique h ∈ Lp′(Ω;X ′), L∞(Ω;X ′) if p = 1 such that Λ f =
∫

h( f )dµ. Also
∥h∥= ∥Λ∥. (∥h∥= ∥h∥p′ if p > 1, ∥h∥∞ if p = 1). Here 1

p +
1
p′ = 1.

Proof: First suppose r exists as described. Also, to save on notation and to emphasize
the similarity with the scalar case, denote the norm in the various spaces by |·|. Define a
new measure µ̃ , according to the rule

µ̃ (E)≡
∫

E
rdµ. (24.40)

Thus µ̃ is a finite measure on S . Now define a mapping, η : Lp(Ω;X ,µ)→ Lp(Ω;X , µ̃)

by η f = r−
1
p f . Then

∥η f∥p
Lp(µ̃)

=
∫ ∣∣∣r− 1

p f
∣∣∣p rdµ = ∥ f∥p

Lp(µ)

and so η is one to one and in fact preserves norms. I claim that also η is onto. To see this,
let g ∈ Lp(Ω;X , µ̃) and consider the function, r

1
p g. Then∫ ∣∣∣r 1

p g
∣∣∣p dµ =

∫
|g|p rdµ =

∫
|g|p dµ̃ < ∞

Thus r
1
p g ∈ Lp (Ω;X ,µ) and η

(
r

1
p g
)
= g showing that η is onto as claimed. Thus η is

one to one, onto, and preserves norms. Consider the diagram below which is descriptive of
the situation in which η∗ must be one to one and onto.

h,Lp′ (µ̃) Lp (µ̃)′ , Λ̃

η∗

→ Lp (µ)′ ,Λ

Lp (µ̃)
η

← Lp (µ)
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Then for Λ ∈ Lp (µ)′ , there exists a unique Λ̃ ∈ Lp (µ̃)′ such that η∗Λ̃ = Λ,
∥∥∥Λ̃

∥∥∥ = ∥Λ∥ .
By the Riesz representation theorem for finite measure spaces, there exists a unique h ∈
Lp′ (µ̃)≡ Lp′ (Ω;X ′, µ̃) which represents Λ̃ in the manner described in the Riesz represen-
tation theorem. Thus ∥h∥Lp′ (µ̃) =

∥∥∥Λ̃

∥∥∥= ∥Λ∥ and for all f ∈ Lp (µ) ,

Λ( f ) = η
∗
Λ̃( f )≡ Λ̃(η f ) =

∫
h(η f )dµ̃ =

∫
rh
(

r−
1
p f
)

dµ

=
∫

r
1
p′ h f dµ.

Now ∫ ∣∣∣∣r 1
p′ h
∣∣∣∣p′ dµ =

∫
|h|p

′
rdµ = ∥h∥p′

Lp′ (µ̃)
< ∞.

Thus
∥∥∥∥r

1
p′ h
∥∥∥∥

Lp′ (µ)
= ∥h∥Lp′ (µ̃) =

∥∥∥Λ̃

∥∥∥ = ∥Λ∥ and represents Λ in the appropriate way. If

p = 1, then 1/p′ ≡ 0. Now consider the existence of r. Since the measure space is σ finite,
there exist {Ωn} disjoint, each having positive measure and their union equals Ω. Then
define

r (ω)≡
∞

∑
n=1

1
n2 µ(Ωn)

−1XΩn (ω)

This proves the Lemma.

Theorem 24.8.6 (Riesz representation theorem) Let (Ω,S ,µ) be σ finite and let
X ′ have the Radon Nikodym property. Then for Λ ∈ (Lp(Ω;X ,µ))′, p ≥ 1 there exists
a unique h ∈ Lq(Ω,X ′,µ), L∞(Ω,X ′,µ) if p = 1 such that Λ f =

∫
h( f )dµ. Also ∥h∥ =

∥Λ∥. (∥h∥= ∥h∥q if p > 1, ∥h∥∞ if p = 1). Here 1
p +

1
q = 1.

Proof: The above lemma gives the existence part of the conclusion of the theorem.
Uniqueness is done as before.

Corollary 24.8.7 If X ′ is separable, then for (Ω,S ,µ) a σ finite measure space,

(Lp (Ω;X))′ ∼= Lp′ (
Ω;X ′

)
.

Corollary 24.8.8 If X is separable and reflexive, then for (Ω,S ,µ) a σ finite measure
space,

(Lp (Ω;X))′ ∼= Lp′ (
Ω;X ′

)
.

Corollary 24.8.9 If X is separable and reflexive and (Ω,S ,µ) a σ finite measure
space,then if p ∈ (1,∞) , then Lp (Ω;X) is reflexive.

Proof: This is just like the scalar valued case.

24.9 An Example of Polish Space
Here is an interesting example. Obviously L∞ (0,T,H) is not separable with the normed
topology. However, bounded sets turn out to be metric spaces which are complete and
separable. This is the next lemma. Recall that a Polish space is a complete separable
metric space. In this example, H is a separable real Hilbert space or more generally a
separable real Banach space.
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Lemma 24.9.1 Let B = B(0,L) be a closed ball in L∞ (0,T,H) . Then B is a Polish
space with respect to the weak ∗ topology. The closure is taken with respect to the usual
topology.

Proof: Let {zk}∞

k=1 = X be a dense countable subspace in L1 (0,T,H) . You start with
a dense countable set and then consider all finite linear combinations having coefficients in
Q. Then the metric on B is

d (f,g)≡
∞

∑
k=1

2−k

∣∣∣⟨f −g,zk⟩L∞,L1

∣∣∣
1+
∣∣∣⟨f −g,zk⟩L∞,L1

∣∣∣
Is B complete? Suppose you have a Cauchy sequence {fn} . This happens if and only if
{⟨fn,zk⟩}∞

n=1 is a Cauchy sequence for each k. Therefore, there exists

ξ (zk) = lim
n→∞
⟨fn,zk⟩ .

Then for a,b ∈Q, and z,w ∈ X

ξ (az+bw) = lim
n→∞
⟨fn,az+bw⟩= lim

n→∞
a⟨fn,z⟩+b⟨fn,w⟩= aξ (z)+bξ (w)

showing that ξ is linear on X a dense subspace of L1 (0,T,H). Is ξ bounded on this dense
subspace with bound L? For z ∈ X ,

|ξ (z)| ≡ lim
n→∞
|⟨fn,z⟩| ≤ lim sup

n→∞

∥fn∥L∞ ∥z∥L1 ≤ L∥z∥L1

Hence ξ is also bounded on this dense subset of L1 (0,T,H) . Therefore, there is a unique
bounded linear extension of ξ to all of L1 (0,T,H) still denoted as ξ such that its norm
in L1 (0,T,H)′ is no larger than L. It follows from the Riesz representation theorem that
there exists a unique f ∈ L∞ (0,T,H) such that for all w ∈ L1 (0,T,H) , ξ (w) = ⟨f,w⟩
and ∥f∥ ≤ L. This f is the limit of the Cauchy sequence {fn} in B. Thus B is complete.

Is B separable? Let f ∈ B. Let ε > 0 be given. Choose M such that ∑
∞
k=M+1 2−k < ε

4 .
Then the finite set {z1, · · · ,zM} is uniformly integrable. There exists δ > 0 such that if
m(S) < δ , then

∫
S |zk|H dm <

(
ε

4(1+∥f∥L∞ )

)
Then there is a sequence of simple functions

{sn} which converge uniformly to f off a set of measure zero, N, ∥sn∥L∞ ≤ ∥f∥L∞ . By
regularity of the measure, there exists a continuous function with compact support hn such
that sn = hn off a set of measure no more than δ/4n and also ∥hn∥L∞ ≤ ∥f∥L∞ . Then off
a set of measure no more than 1

3 δ , hn (r)→ f (r). Now by Eggorov’s theorem and outer
regularity, one can enlarge this exceptional set to obtain an open set S of measure no more
than δ/2 such that the convergence is uniform off this exceptional set. Thus f equals the
uniform limit of continuous functions on SC. Define

h(r)≡

 limn→∞hn (r) = f (r) on SC

0 on S\N
0 on N

Then ∥h∥L∞ ≤ ∥f∥L∞ . Now consider h̄∗ψm (r) where ψr is approximate identity.

ψm (t) =
1
2

mX[−1/m,1/m] (t) , h̄∗ψm (t)

=
1
2

m
∫ 1/m

−1/m
h̄(t− s)ds =

1
2

m
∫ t+1/m

t−1/m
h̄(s)ds
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where we define h̄ to be the 0 extension of h̄ off [0,T ]. This is a continuous function of t.
Also a.e.t is a Lebesgue point and so for a.e.t,∣∣∣∣12m

∫ t+1/m

t−1/m
h̄(s)ds− h̄(t)

∣∣∣∣→ 0

∣∣h̄∗ψm (r)
∣∣≡ ∣∣∣∣∫R h̄(r− s)ψm (s)ds

∣∣∣∣≤ ∥h∥L∞ ≤ ∥f∥L∞

Thus this continuous function is in L∞ (0,T,H). Letting z= zk ∈ L1 (0,T,H) be one of
those defined above,∣∣∣∣∫ T

0

〈
h̄∗ψm (t)−f (t) ,z (t)

〉
dt
∣∣∣∣≤ ∫ T

0

∣∣〈h̄∗ψm (t)−h(t) ,z (t)
〉∣∣dt

+
∫ T

0
|⟨h(t)−f (t) ,z (t)⟩|dt (24.41)

for a.e. t, h̄∗ψm (t)−h(t)→ 0 and the integrand in the first integral in the above is bounded
by 2∥f∥L∞ |z (t)|H so by the dominated convergence theorem, as m→ ∞, the first integral
converges to 0. As to the second, it is dominated by∫

S
|⟨h(t)−f (t) ,z (t)⟩|dt ≤ 2∥f∥L∞

∫
S
|z (t)|dt <

2∥f∥L∞ ε

4(1+∥f∥L∞)
≤ ε

2

Therefore, choosing m large enough so that the first integral on the right in 24.41 is less
than ε

4 for each zk for k ≤M, then for each of these,

d
(
f,h̄∗ψm

)
≤ ε

4
+

M

∑
k=1

2−k (ε/4)+(ε/2)
1+((ε/4)+(ε/2))

=
ε

4
+

M

∑
k=1

2−k 3
4

ε

3
4 ε +1

≤ ε

4
+

3ε

4

M

∑
k=1

2−k <
ε

4
+

3ε

4
= ε

which appears to show that C ([0,T ] ,H) is weak ∗ dense in L∞ (0,T,H). However, this last
space is obviously separable in terms of the norm topology. Let D be a countable dense
subset of C ([0,T ] ,H). For f ∈ L∞ (0,T,H) let g ∈ C ([0,T ] ,H) such that d (f,g) < ε

4 .
Then let h ∈ D be so close to g in C ([0,T ] ,H) that

M

∑
k=1

2−k

∣∣∣⟨h−g,zk⟩L∞,L1

∣∣∣
1+
∣∣∣⟨h−g,zk⟩L∞,L1

∣∣∣ < ε

2

Then d (f,h) ≤ d (f,g)+ d (g,h) < ε

4 +
ε

2 +
ε

4 = ε It appears that D is dense in B in the
weak ∗ topology. ■

24.10 Weakly Convergent Sequences
There is an interesting little result which relates to weak limits in L2 (Γ,E) for E a Banach
space. I am not sure where to put this thing but think that this would be a good place for it.
It obviously generalizes to Lp spaces.
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Proposition 24.10.1 Let E be a Banach space and let {un} be a sequence in L2 (Γ,E)
and let G(x) be a weakly compact set in E, and un (x) ∈ G(x) a.e. for each n. Let
limsup{un (x)} denote the set of all weak limits of subsequences of {un (x)} and let H (x)
be the closure of the convex hull of limsup{un (x)}. Then if un → u weakly in L2 (Γ,E) ,
then u(x) ∈ H (x) for a.e. x.

Proof: Let H =
{

w ∈ L2 (Γ,E) : w(x) ∈ H (x) a.e.
}

. Then H is convex. If you have
wi ∈ H, then since each H (x) is convex, it follows that λw1 (x)+ (1−λ )w2 (x) ∈ H for
a.e. x and λ ∈ [0,1]. Is H closed? Suppose you have wn ∈ H and wn → w in L2 (Γ,E).
Then there is a subsequence such that pointwise convergence happens a.e. and so since H
is closed, you have w(x) ∈ H for a.e. x. Hence H is also weakly closed in L2 (Γ,H). Thus
if u is the weak limit of {un} in L2 (Γ,E) , it must be the case that u(x) ∈ H (x) a.e. ■

As a case of this which might be pretty interesting, suppose G(x) is not just weakly
compact but also convex. Then H (x) = G(x) and you can say that u(x) ∈H (x) a.e. when-
ever it is a weak limit in L2 (Γ,E) of functions un for which un (x) ∈ G(x).

24.11 Some Embedding Theorems
The next lemma is a very useful little result which involves embeddings of Banach spaces.

Lemma 24.11.1 Suppose V ⊆W and the injection map is compact, hence continuous.
Suppose also that W ⊆ U with continuous injection. Then for any ε > 0 there exists Cε

such that for all v ∈V,∥v∥W ≤ ε ∥v∥V +Cε ∥v∥U

Proof: Suppose not. Then there exists ε > 0 for which things don’t work out. Thus
there exists vn ∈ V such that ∥vn∥W > ε ∥vn∥V + n∥vn∥U . Dividing by ∥vn∥V , it can also
be assumed that ∥vn∥V = 1. Thus ∥vn∥W > ε + n∥vn∥U , and so ∥vn∥U → 0. However, vn
is contained in the closed unit ball of V which is, by assumption precompact in W . Hence,
there exists a subsequence, still denoted as {vn} such that vn → v in W . But it was just
determined that v = 0 and so 0≥ limsupn→∞ (ε +n∥vn∥U )≥ ε which is a contradiction. ■

Recall the following definition, this time for the space of continuous functions defined
on a compact set with values in a Banach space.

Definition 24.11.2 Let A ⊆C (K;V ) where the last symbol denotes the continuous
functions defined on a compact set K ⊆ X a metric space having values in V a Banach
space. Then A is equicontinuous if for every ε > 0, there exists δ > 0 such that for every
f ∈A , if d (x,y)< δ , then ∥ f (x)− f (y)∥V < ε. Also A ⊆C (K;V ) is uniformly bounded
means

sup
f∈A
∥ f∥

∞,V < ∞ where ∥ f∥
∞,V ≡max

x∈K
∥ f (x)∥V .

Here is a general version of the Ascoli Arzela theorem valid for Banach spaces.

Theorem 24.11.3 Let V ⊆W ⊆U where the injection map of V into W is compact
and W embedds continuously into U, these being Banach spaces. Assume:

1. A ⊆C (K;U) where K is compact and A is equicontinuous.

2. sup f∈A ∥ f∥
∞,V < ∞ where ∥ f∥

∞,V ≡maxx∈K ∥ f (x)∥V .

Then
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1. A ⊆C (K;W ) and A is equicontinuous into W

2. A is pre-compact in C (K;W ) . This means that A is compact in C (K;W ).

Proof: Let C ≡ sup f∈A ∥ f∥
∞,V < ∞ . Let ε > 0 be given. Then from Lemma 24.11.1,

∥ f (x)− f (y)∥W ≤
ε

5C
∥ f (x)− f (y)∥V +Cε ∥ f (x)− f (y)∥U ≤

2ε

5
+Cε ∥ f (x)− f (y)∥U

By equicontinuity in C (K,U) , there exists a δ > 0 such that if d (x,y) < δ , then for all
f ∈ A , Cε ∥ f (x)− f (y)∥U < 2ε

5 . Thus if d (x,y) < δ , then ∥ f (x)− f (y)∥W < ε for all
f ∈A .

It remains to verify that A is pre-compact in C (K;W ) . Since this space of continuous
functions is complete, it suffices to verify that for all ε > 0, A has an ε net. Suppose
then that for some ε > 0 there is no ε net. Thus there is an infinite sequence { fn} for
which ∥ fn− fm∥∞,W ≥ ε whenever m ̸= n. There exists δ > 0 such that if d (x,y) < δ ,

then for all fn, ∥ fn (x)− fn (y)∥W < ε

5 .Let {xk}p
k=1 be a δ/2 net for K. This is where we

use K is compact. By compactness of the embedding of V into W, there exists a further
subsequence, still called { fn} such that each { fn (xk)}∞

n=1 converges, this for each xk in
that δ/2 net. Thus there is a single N such that if n > N, then for all m,n > N, and
k ≤ p,∥ fn (xk)− fm (xk)∥W < ε

5 . Now letting x ∈ K be arbitrary, it is in B(xk,δ/2) for
some xk. Therefore, for n,m larger than N,

∥ fn (x)− fm (x)∥W ≤ ∥ fn (x)− fn (xk)∥W +∥ fn (xk)− fm (xk)∥W +∥ fm (xk)− fm (x)∥

<
ε

5
+

ε

5
+

ε

5
=

3ε

5
Taking the maximum for all x, for m,n>N,∥ fn− fm∥W,∞ ≤ 3ε

5 < ε contrary to the assump-
tion that every pair is further apart than ε . Thus A is totally bounded so its closure would
also be totally bounded and complete. In other words, A is pre-compact in C (K;W ). ■

In the following theorem about compact subsets of an Lp space, the measure will be
Lebesgue measure. It depends on the above version of the Ascoli Arzela theorem. First
note the following which I will use when convenient. For a,b ≥ 0, and p ≥ 1, then by
convexity of φ (t) = t p for t ≥ 0, (a+b)p ≤ 2p−1 (ap +bp). Also, for such p,(a+b)1/p ≤
a1/p+b1/p. Usually the thing of interest in this theorem is the case where V =W =U =R.
However, the more general version to be presented is interesting I think. Of course closed
and bounded sets are compact in R so the usual case works as a special case of what is
about to be presented.

Theorem 24.11.4 Let V ⊆W ⊆ U where these are Banach spaces such that the
injection map of V into W is compact and the injection map of W into U is continuous. Let
Ω be an open set in Rm and let A be a bounded subset of Lp (Ω;V ) and suppose that for
all ε > 0, there exist a δ > 0 such that if |h|< δ , then for ũ denoting the zero extension of
u off Ω, ∫

Rm
∥ũ(x+h)− ũ(x)∥p

U dx < ε
p (24.42)

Suppose also that for each ε > 0 there exists an open set, Gε ⊆ Ω such that Gε ⊆ Ω is
compact and for all u ∈A , ∫

Ω\Gε

∥u(x)∥p
W dx < ε

p (24.43)

Then A is precompact in Lp (Rn;W ).
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Proof: Let ∞ > M ≥ supu∈Lp(Ω;V ) ∥u∥
p
Lp(Ω;V )

. Let {ψn} be a mollifier with support in
B(0,1/n). I need to show that A has an η net in Lp (Ω;W ) for every η > 0. Suppose
for some η > 0 it fails to have an η net. Without loss of generality, let η < 1. Then by
24.43, it follows that for small enough ε > 0,Aε ≡

{
uXGε

: u ∈A
}

fails to have an η/2

net. Indeed, pick ε small enough that for all u ∈ A ,
∥∥∥uXGε

−u
∥∥∥

Lp(Ω;W )
< η

5 . Then if{
ukXGε

}r

k=1
is an η/2 net for Aε , so that ∪r

k=1B
(

ukXGε
, η

2

)
⊇ Aε , then for w ∈ A ,

wXGε
∈ B

(
ukXGε

, η

2

)
for some uk. Hence,

∥w−uk∥Lp(Ω;W ) ≤
∥∥∥w−wXGε

∥∥∥
Lp(Ω;W )

+
∥∥∥wXGε

−ukXGε

∥∥∥
Lp(Ω;W )

+
∥∥∥ukXGε

−uk

∥∥∥
Lp(Ω;W )

≤ η

5
+

η

2
+

η

5
< η

and so {uk}r
k=1 would be an η net for A which is assumed to not exist.

Pick this ε in all that follows. By compactness, Lemma 24.11.1, there exists Cη such
that for all u ∈V,

∥u∥p
W ≤

η

50(2p−1)M
∥u∥p

V +Cη ∥u∥p
U (24.44)

Let Aεn consist of Aεn ≡
{

uXGε
∗ψn : u ∈A

}
. I want to show that Aεn satisfies the

conditions for Theorem 24.11.3.

Lemma 24.11.5 For each n, Aεn satisfies the conditions of Theorem 24.11.3.

Proof: First consider the equicontinuity condition of that theorem. It suffices to show
that if η > 0 then there exists δ > 0 such that if |h|< δ , then for any u ∈A and x ∈ Gε ,∥∥∥uXGε

∗ψn (x+h)−uXGε
∗ψn (x)

∥∥∥
U
< η

Always assume |h|< dist
(
Gε ,Ω

C
)
, and x∈Gε . Also assume that |h| is small enough that(∫

Rm

∣∣∣(XGε
(x−y+h)−XGε

(x−y)
)

ψn (y)
∣∣∣p′ dz

)1/p′

=

(∫
Rm

∣∣∣(XGε
(z+h)−XGε

(z)
)

ψn (x−z)
∣∣∣p′ dz

)1/p′

<
η

2M
(24.45)

This can be obtained because by Holder’s inequality,(∫
Rm

∣∣∣(XGε
(z+h)−XGε

(z)
)

ψn (x−z)
∣∣∣p′ dz

)1/p′

≤
(∫

Rm

∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣2p′

dz
) 1

2p′
(∫

Rm
ψn (x−z)

2p′ dz
) 1

2p′

which is small independent of x for |h| small enough, thanks to continuity of translation in
L2p′ (Rm). Then
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∥∥∥uXGε
∗ψn (x+h)−uXGε

∗ψn (x)
∥∥∥

U

=

∥∥∥∥∫Rm

(
ũ(x+h−y)XGε

(x+h−y)− ũ(x−y)XGε
(x−y)

)
ψn (y)dy

∥∥∥∥
U

≤
∫
Rm

∥∥∥(ũ(x+h−y)XGε
(x+h−y)− ũ(x−y)XGε

(x−y)
)∥∥∥

U
ψn (y)dy

Changing the variables,

≤
∫
Rm

∥∥∥∥∥ (ũ(z+h)− ũ(z))XGε
(z+h)

+ũ(z)
(
XGε

(z+h)−XGε
(z)
) ∥∥∥∥∥

U

ψn (x−z)dz

≤
∫
Rm

∥∥∥(ũ(z+h)− ũ(z))XGε
(z+h)

∥∥∥
U

ψn (x−z)dz

+
∫
Rm
∥ũ(z)∥U

∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣ψn (x−z)dz (24.46)

The first integral

≤
(∫

Rm
∥ũ(z+h)− ũ(z)∥p

U

)1/p(∫
Rm

ψ
p′
n (x−z)dz

)1/p′

You make the obvious change here in case p = 1. Instead of the above, you would have

≤
∫
Rm
∥ũ(z+h)− ũ(z)∥U dz2∥ψn∥∞

Since Lebesgue measure is translation independent, there is a constant Cn such that the
above is ≤ Cn

(∫
Rm ∥ũ(z+h)− ũ(z)∥p

U

)1/p
< η/2 and this holds for all u ∈ A . As for

the second integral in 24.46, from 24.45, it follows that this term is no larger than

≤
(∫

Rm
∥ũ(z)∥p

U dz
)1/p(∫

Rm

(∣∣∣XGε
(z+h)−XGε

(z)
∣∣∣ψn (x−z)

)p′

dz
)1/p′

and by 24.45, < M η

2M = η

2 . Thus, if δ < dist
(
Gε ,Ω

C
)

and 24.45 holds, then for all u ∈A ,
when |h|< δ , ∥∥∥uXGε

∗ψn (x+h)−uXGε
∗ψn (x)

∥∥∥
U
< η

and so the desired equicontinuity condition holds for Aεn. Note that δ does depend on n
but for each n, things work out well.

I also need to verify that the functions in Aεn are uniformly bounded. For x ∈ Gε and
u ∈A , ∥∥∥uXGε

∗ψn (x)
∥∥∥

V
≤
∫

Gε

∥u(z)∥ψn (x−z)dz

≤
(∫

Ω

∥u(z)∥p dz
)1/p(∫

Ω

ψn (x−z)
p′
)1/p′

≤MCn ■
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Now is a general statement about norms, indicating that the Lp norm is no more than a
constant times the norm involving the maximum.(∫

Gε

∥v(x)∥p
W dx

)1/p

≤ max
x∈Gε

∥v(x)∥W m
(
Gε

)
≡ m

(
Gε

)
∥v∥W,∞

It follows from Theorem 24.11.3 that for every η > 0, there exists a η net in C
(
Gε ;W

)
for

Aεn, this for each n. Then from the above inequality, it follows that for each η , there exists
an η net in Lp

(
Gε ;W

)
for Aεn.

Recall also, from the assumption that the theorem is not true, Aε ≡
{

uXGε
: u ∈A

}
has no η/2 net in Lp

(
Gε ;W

)
. Next I estimate the distance in Lp

(
Gε ;W

)
between uXGε

for u ∈A and uXGε
∗ψn. The idea is that for each n,Aεn has an η/8 net and for n large

enough, uXGε
is close to uXGε

∗ψn so a contradiction will result if the functions of the
second sort are totally bounded while those functions of the first sort don’t. Assume always
that 1/n < dist

(
Gε ,Ω

C
)
. Using Minkowski’s inequality,∥∥∥uXGε

−uXGε
∗ψn

∥∥∥
Lp(Gε ;W)

=

(∫
Rm

∥∥∥∥∫Rm

(
uXGε

(x)−uXGε
(x−y)

)
ψn (y)dy

∥∥∥∥p

W
dx
)1/p

≤
∫

B(0,1/n)
ψn (y)

(∫
Rm

∥∥∥(uXGε
(x)−uXGε

(x−y)
)∥∥∥p

W
dx
)1/p

dy

≤
∫

B(0,1/n)
ψn (y)

(∫
Rm
∥(ũ(x)− ũ(x−y))∥p

W dx
)1/p

dy

≤
∫

B(0,1/n)
ψn (y)

( ∫
Rm

η

50(2p−1)M
∥ũ(x)− ũ(x−y)∥p

V

+Cη ∥ũ(x)− ũ(x−y)∥p
U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)

( ∫
Rm

η

50(2p−1)M
2p−12

(
∥ũ(x)∥p

V

)
dx

+Cη

∫
Rm ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)

( ∫
Rm

η

25M

(
∥ũ(x)∥p

V

)
dx

+
∫
Rm Cη ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)

(
η

25
+
∫
Rm

Cη ∥ũ(x)− ũ(x−y)∥p
U dx

)1/p

dy

By assumption 24.42, there exists N such that if n≥ N, then |y|< 1
n and for all u ∈A ,∥∥∥uXGε

−uXGε
∗ψn

∥∥∥
Lp(Gε ;W)

≤
∫

B(0, 1
n )

ψn (y)

(
η

25
+

η p

8p

)1/p

dy

≤
∫

B(0, 1
n )

ψn (y)
(

η

25
+

η

8

)
dy =

η

25
+

η

8

Recall η < 1.
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Let n be this large. Then let
{

ukXGε
∗ψn

}r

k=1
be a η

8 net for Aεn in Lp
(
Gε ;W

)
.

Then consider the balls B
(

ukXGε
, η

4

)
in Lp

(
Gε ;W

)
. If wXGε

is in Aε , is it in some

B
(

ukXGε
, η

2

)
? By what was just shown, there is k such that∥∥∥wXGε

∗ψn−ukXGε
∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8

and also ∥∥∥wXGε
−wXGε

∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8
+

η

25∥∥∥ukXGε
−ukXGε

∗ψn

∥∥∥
Lp(Gε ;W)

<
η

8
+

η

25

Thus, ∥∥∥wXGε
−ukXGε

∥∥∥
Lp(Gε ;W )

≤
∥∥∥wXGε

−wXGε
∗ψn

∥∥∥
Lp(Gε ;W)

+
∥∥∥wXGε

∗ψn−ukXGε
∗ψn

∥∥∥
Lp(Gε ;W)

+
∥∥∥ukXGε

∗ψn−ukXGε

∥∥∥
Lp(Gε ;W)

<
3η

8
+

2η

25
<

η

2

It follows that
{

ukXGε

}r

k=1
is a η/2 net for Lp

(
Gε ;W

)
contrary to the construction. Thus

A has an η net after all. ■
In case Ω is a closed interval, there are several versions of these sorts of embeddings

which are enormously useful in the study of nonlinear evolution equations or inclusions.
The following theorem is an infinite dimensional version of the Ascoli Arzela theorem.

It is like a well known result due to Simon [52]. It is an appropriate generalization when
you do not necessarily have weak derivatives. I am giving another proof although Theorem
24.11.3 given above is actually more general.

Theorem 24.11.6 Let q > 1 and let E ⊆W ⊆ X where the injection map is contin-
uous from W to X and compact from E to W. Let S be defined by{

u such that ∥u(t)∥E ≤ R for all t ∈ [a,b] , and ∥u(s)−u(t)∥X ≤ R |t− s|1/q
}
.

Thus S is bounded in L∞ (a,b,E) and in addition, the functions are uniformly Holder contin-
uous into X . Then S⊆C ([a,b] ;W ) and if {un}⊆ S, there exists a subsequence,

{
unk

}
which

converges to a function u ∈C ([a,b] ;W ) in the following way: limk→∞

∥∥unk −u
∥∥

∞,W = 0.

Proof: First consider the issue of S being a subset of C ([a,b] ;W ) . Let ε > 0 be given.
Then by Lemma 24.11.1, there exists a constant, Cε such that for all u ∈W

∥u∥W ≤
ε

6R
∥u∥E +Cε ∥u∥X .

Therefore, for all u ∈ S,

∥u(t)−u(s)∥W ≤
ε

6R
∥u(t)−u(s)∥E +Cε ∥u(t)−u(s)∥X
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≤ ε

6R
(∥u(t)∥E +∥u(s)∥E)+Cε ∥u(t)−u(s)∥X ≤

ε

3
+Cε R |t− s|1/q . (24.47)

Since ε is arbitrary, it follows u ∈C ([a,b] ;W ).
Let D = Q∩ [a,b] so D is a countable dense subset of [a,b]. Let D = {tn}∞

n=1. By
compactness of the embedding of E into W, there exists a subsequence u(n,1) such that
as n→ ∞, u(n,1) (t1) converges to a point in W. Now take a subsequence of this, called
(n,2) such that as n→ ∞,u(n,2) (t2) converges to a point in W. It follows that u(n,2) (t1) also
converges to a point of W. Continue this way. Now consider the diagonal sequence, uk ≡
u(k,k) This sequence is a subsequence of u(n,l) whenever k > l. Therefore, uk (t j) converges
for all t j ∈ D.

Claim: Let {uk} be as just defined, converging at every point of D≡ [a,b]∩Q. Then
{uk} converges at every point of [a,b].

Proof of claim: Let ε > 0 be given. Let t ∈ [a,b] . Pick tm ∈D∩ [a,b] such that in 24.47
Cε R |t− tm| < ε/3. Then there exists N such that if l,n > N, then ||ul (tm)−un (tm)||X <
ε/3. It follows that for l,n > N,

∥ul (t)−un (t)∥W ≤ ∥ul (t)−ul (tm)∥W +∥ul (tm)−un (tm)∥W +∥un (tm)−un (t)∥W

≤ 2ε

3
+

ε

3
+

2ε

3
< 2ε

Since ε was arbitrary, this shows {uk (t)}∞

k=1 is a Cauchy sequence. Since W is complete,
this shows this sequence converges.

Now for t ∈ [a,b] , it was just shown that if ε > 0 there exists Nt such that if n,m > Nt ,
then ∥un (t)−um (t)∥W < ε

3 . Now let s ̸= t. Then

∥un (s)−um (s)∥W ≤ ∥un (s)−un (t)∥W +∥un (t)−um (t)∥W +∥um (t)−um (s)∥W

From 24.47

∥un (s)−um (s)∥W ≤ 2
(

ε

3
+Cε R |t− s|1/q

)
+∥un (t)−um (t)∥W

and so it follows that if δ is sufficiently small and s ∈ B(t,δ ) , then when n,m > Nt it
follows that ∥un (s)−um (s)∥ < ε. Since [a,b] is compact, there are finitely many of these
balls, {B(ti,δ )}p

i=1 , such that for s ∈ B(ti,δ ) and n,m > Nti , the above inequality holds.
Let N > max

{
Nt1 , · · · ,Ntp

}
. Then if m,n > N and s∈ [a,b] is arbitrary, it follows the above

inequality must hold. Therefore, this has shown the following claim.
Claim: Let ε > 0 be given. Then there exists N such that if m,n > N, then it follows

that ||un−um||∞,W < ε.
Now let u(t) = limk→∞ uk (t) .

∥u(t)−u(s)∥W ≤ ∥u(t)−un (t)∥W +∥un (t)−un (s)∥W +∥un (s)−u(s)∥W (24.48)

Let N be in the above claim and fix n > N. Then

∥u(t)−un (t)∥W = lim
m→∞
∥um (t)−un (t)∥W ≤ ε

and similarly, ∥un (s)−u(s)∥W ≤ ε. Then if |t− s| is small enough, 24.47 shows the middle
term in 24.48 is also smaller than ε. Therefore, if |t− s| is small enough,

∥u(t)−u(s)∥W < 3ε.
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Thus u is continuous. Finally, let N be as in the above claim. Then letting m,n > N, it
follows that for all t ∈ [a,b] ,

∥um (t)−un (t)∥W < ε.

Therefore, letting m→ ∞, it follows that for all t ∈ [a,b] ,∥u(t)−un (t)∥W ≤ ε. and so
∥u−un∥∞,W ≤ ε. ■

Here is an interesting corollary. Recall that for E a Banach space C0,α ([0,T ] ,E) is the
space of continuous functions u from [0,T ] to E such that ∥u∥

α,E ≡ ∥u∥∞,E +ρα,E (u)< ∞

where here ρα,E (u)≡ supt ̸=s
∥u(t)−u(s)∥E
|t−s|α

Corollary 24.11.7 Let E ⊆ W ⊆ X where the injection map is continuous from W
to X and compact from E to W. Then if γ > α, the embedding of C0,γ ([0,T ] ,E) into
C0,α ([0,T ] ,X) is compact.

Proof: Let φ ∈C0,γ ([0,T ] ,E)

∥φ (t)−φ (s)∥X
|t− s|α

≤
(
∥φ (t)−φ (s)∥W
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W

≤
(
∥φ (t)−φ (s)∥E
|t− s|γ

)α/γ

∥φ (t)−φ (s)∥1−(α/γ)
W ≤ ργ,E (φ)∥φ (t)−φ (s)∥1−(α/γ)

W

Now suppose {un} is a bounded sequence in C0,γ ([0,T ] ,E) . By Theorem 24.11.6 above,
there is a subsequence still called {un} which converges in C0 ([0,T ] ,W ) . Thus from the
above inequality

∥un (t)−um (t)− (un (s)−um (s))∥X
|t− s|α

≤ ργ,E (un−um)∥un (t)−um (t)− (un (s)−um (s))∥1−(α/γ)
W

≤ C ({un})
(

2∥un−um∥∞,W

)1−(α/γ)

which converges to 0 as n,m→ ∞. Thus, ρα,X (un−um)→ 0 as n,m→ ∞ Also

∥un−um∥∞,X → 0

as n,m→ ∞ so this sequence is a Cauchy sequence in C0,α ([0,T ] ,X). ■
The next theorem is a well known result probably due to Lions, Teman, or Aubin.

Theorem 24.11.8 Let E ⊆W ⊆ X where the injection map is continuous from W
to X and compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q and ∥u∥Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) .
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Proof: It suffices to show S has an η net in Lp ([a,b] ;W ) for each η > 0.
If not, there exists η > 0 and a sequence {un} ⊆ S, such that

∥un−um∥ ≥ η (24.49)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define un (t)≡∑
k
i=1 uniX[ti−1,ti) (t) , uni ≡ 1

ti−ti−1

∫ ti
ti−1

un (s)ds. The idea is to show that
un approximates un well and then to argue that a subsequence of the {un} is a Cauchy
sequence yielding a contradiction to the above ∥un−um∥ ≥ η .

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality, Lemma 10.15.1 that

||un (t)−un (t)||pW =
k

∑
i=1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

W
X[ti−1,ti) (t)

≤
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
W dsX[ti−1,ti) (t)

and so ∫ b

a
∥un (t)−un (s)∥p

W ds

≤
∫ b

a

k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
W dsX[ti−1,ti) (t)dt

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
W dsdt. (24.50)

From Lemma 24.11.1 if ε > 0, there exists Cε such that

∥un (t)−un (s)∥p
W ≤ ε ∥un (t)−un (s)∥p

E +Cε ∥un (t)−un (s)∥p
X

≤ 2p−1
ε (∥un (t)∥p +∥un (s)∥p)+Cε |t− s|p/q

This is substituted in to 24.50 to obtain∫ b

a
∥un (t)−un (s)∥p

W ds≤
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k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(
2p−1

ε (∥un (t)∥p +∥un (s)∥p)+Cε |t− s|p/q
)

dsdt

=
k

∑
i=1

2p
ε

∫ ti

ti−1

∥un (t)∥p
W +

Cε

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q dsdt

≤ 2p
ε

∫ b

a
∥un (t)∥p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q
∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2p
ε

∫ b

a
∥un (t)∥p dt +Cε

k

∑
i=1

1
(ti− ti−1)

(ti− ti−1)
p/q (ti− ti−1)

2

≤ 2p
εRp +Cε

k

∑
i=1

(ti− ti−1)
1+p/q = 2p

εRp +Cε k
(

b−a
k

)1+p/q

.

Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows
that ||un−un||Lp([a,b];W ) <

η

4 .
Thus k is fixed and un at a step function with k steps having values in E. Now use

compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp (a,b;W ) and use this to contradict 24.49. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus ∥un (t)∥E = ∑
k
i=1 ∥un

i ∥E X[ti−1,ti) (t) and so
R≥

∫ b
a ∥un (t)∥p

E dt = T
k ∑

k
i=1 ∥un

i ∥
p
E . Therefore, the {un

i } are all bounded. It follows that af-
ter taking subsequences k times there exists a subsequence

{
unk

}
such that unk is a Cauchy

sequence in Lp (a,b;W ) . You simply get a subsequence such that unk
i is a Cauchy sequence

in W for each i. Then denoting this subsequence by n,

∥un−um∥Lp(a,b;W ) ≤ ∥un−un∥Lp(a,b;W )+∥un−um∥Lp(a,b;W )+∥um−um∥Lp(a,b;W )

≤ η

4
+∥un−um∥Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 24.49. ■
You can give a different version of the above to include the case where there is, instead

of a Holder condition, a bound on u′ for u∈ S. It is stated next. We are assuming a situation
in which

∫ b
a u′ (t)dt = u(b)−u(a) . This happens, for example, if u′ is the weak derivative.

This is discussed in the exercises. These kind of theorems are in [52].

Corollary 24.11.9 Let E ⊆W ⊆ X where the injection map is continuous from W to X
and compact from E to W. Let p≥ 1, let q > 1, and define

S≡ {u ∈ Lp ([a,b] ;E) : for some C, ∥u(t)−u(s)∥X ≤C |t− s|1/q and ∥u∥Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact in
Lp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence
{

unk

}
which converges

in Lp ([a,b] ;W ) . The same conclusion can be drawn if it is known instead of the Holder
condition that ∥u′∥L1([a,b];X) is bounded.

Proof: The first part is Theorem 24.11.8. Therefore, we just prove the new stuff which
involves a bound on the L1 norm of the derivative. It suffices to show S has an η net in
Lp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

∥un−um∥ ≥ η (24.51)
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for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define un (t)≡∑
k
i=1 uniX[ti−1,ti) (t) , uni ≡ 1

ti−ti−1

∫ ti
ti−1

un (s)ds. The idea is to show that
un approximates un well and then to argue that a subsequence of the {un} is a Cauchy
sequence yielding a contradiction to 24.51.

Therefore,

un (t)−un (t) =
k

∑
i=1

un (t)X[ti−1,ti) (t)−
k

∑
i=1

uniX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality, Lemma 10.15.1, that

∥un (t)−un (t)∥p
W =

k

∑
i=1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

W
X[ti−1,ti) (t)

And so ∫ T

0
∥un (t)−un (t)∥p

W dt =
k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

W
dt

≤
k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt

+Cε

k

∑
i=1

∫ ti

ti−1

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

X
dt (24.52)

Consider the second of these. It equals Cε ∑
k
i=1
∫ ti

ti−1

∥∥∥ 1
ti−ti−1

∫ ti
ti−1

∫ t
s u′n (τ)dτds

∥∥∥p

X
dt.This is

no larger than

≤ Cε

k

∑
i=1

∫ ti

ti−1

(
1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτds
)p

dt

= Cε

k

∑
i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

dt =Cε

k

∑
i=1

(
(ti− ti−1)

1/p
∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

Since b−a
k = ti− ti−1,

= Cε

(
k

∑
i=1

(
b−a

k

)1/p ∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

≤ Cε (b−a)
k

(
k

∑
i=1

∫ ti

ti−1

∥∥u′n (τ)
∥∥

X dτ

)p

=
Cε (b−a)

k

(∥∥u′n
∥∥

L1([a,b],X)

)p
<

η p

10p
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if k is chosen large enough. Now consider the first in 24.52. By Jensen’s inequality, Lemma
10.15.1,

k

∑
i=1

∫ ti

ti−1

ε

∥∥∥∥ 1
ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds
∥∥∥∥p

E
dt

≤
k

∑
i=1

∫ ti

ti−1

ε
1

ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥p
E dsdt

≤ ε2p−1
k

∑
i=1

1
ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(∥un (t)∥p +∥un (s)∥p)dsdt

= 2ε2p−1
k

∑
i=1

∫ ti

ti−1

(∥un (t)∥p)dt = ε (2)
(
2p−1)∥un∥Lp([a,b],E) ≤Mε

Now pick ε sufficiently small that Mε < η p

10p and then k large enough that the second term
in 24.52 is also less than η p/10p. Then it will follow that

∥ūn−un∥Lp([a,b],W ) <

(
2η p

10p

)1/p

= 21/p η

10
≤ η

5

Thus k is fixed and un at a step function with k steps having values in E. Now use
compactness of the embedding of E into W to obtain a subsequence such that {un} is
Cauchy in Lp ([a,b] ;W ) and use this to contradict 24.51. The details follow.

Suppose un (t) = ∑
k
i=1 un

i X[ti−1,ti) (t) . Thus ∥un (t)∥E = ∑
k
i=1 ∥un

i ∥E X[ti−1,ti) (t) and so
R≥

∫ b
a ∥un (t)∥p

E dt = T
k ∑

k
i=1 ∥un

i ∥
p
E Therefore, the {un

i } are all bounded. It follows that af-
ter taking subsequences k times there exists a subsequence

{
unk

}
such that unk is a Cauchy

sequence in Lp ([a,b] ;W ) . You simply get a subsequence such that unk
i is a Cauchy se-

quence in W for each i. Then denoting this subsequence by n,

∥un−um∥Lp(a,b;W ) ≤ ∥un−un∥Lp(a,b;W )+∥un−um∥Lp(a,b;W )+∥um−um∥Lp(a,b;W )

≤ η

4
+∥un−um∥Lp(a,b;W )+

η

4
< η

provided m,n are large enough, contradicting 24.51. ■

24.12 Conditional Expectation in Banach Spaces
Let (Ω,F ,P) be a probability space and let X ∈ L1 (Ω;R). Also let G ⊆F where G is
also a σ algebra. Then the usual conditional expectation is defined by∫

A
XdP =

∫
A

E (X |G )dP

where E (X |G ) is G measurable and A ∈ G is arbitrary. Recall this is an application of the
Radon Nikodym theorem. Also recall E (X |G ) is unique up to a set of measure zero.

I want to do something like this here. Denote by L1 (Ω;E,G ) those functions in
L1 (Ω;E) which are measurable with respect to G .
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Theorem 24.12.1 Let E be a separable Banach space and let X ∈ L1 (Ω;E,F )
where X is measurable with respect to F and let G be a σ algebra which is contained in
F . Then there exists a unique Z ∈ L1 (Ω;E,G ) such that for all A ∈ G ,∫

A
XdP =

∫
A

ZdP

Denoting this Z as E (X |G ) , it follows ∥E (X |G )∥ ≤ E (∥X∥ |G ) .

Proof: First consider uniqueness. Suppose Z′ is another in L1 (Ω;E,G ) which works.

Consider a dense subset of E {an}∞

n=1. Then the balls
{

B
(

an,
∥an∥

4

)}∞

n=1
must cover E \

{0}. Here is why. If y ̸= 0, pick an ∈ B
(

y, ∥y∥5
)
.

an
y

0
Then ∥an∥≥ 4∥y∥/5 and so ∥an− y∥< ∥y∥/5. Thus y∈B(an,∥y∥/5)⊆B

(
an,
∥an∥

4

)
.

Now suppose Z is G measurable and
∫

A ZdP = 0 for all A ∈ G . Then define the set A by

A≡ Z−1
(

B
(

an,
∥an∥

4

))
it follows 0 =

∫
A Z−an +andP and so

∥an∥P(A) =

∥∥∥∥∫A
andP

∥∥∥∥= ∥∥∥∥∫A
(an−Z)dP

∥∥∥∥
≤

∫
Z−1

(
B
(

an,
∥an∥

4

)) ∥an−Z∥dP≤ ∥an∥
4

P(A)

which is a contradiction unless P(A) = 0. Therefore, letting

N ≡ ∪∞
n=1Z−1

(
B
(

an,
∥an∥

4

))
= Z−1 (E \{0})

it follows N has measure zero and so Z = 0 a.e. This proves uniqueness because if Z,Z′

both hold, then from the above argument, Z−Z′ = 0 a.e.
Next I will show Z exists. To do this recall Theorem 24.2.4 on Page 656 which is stated

below for convenience.

Theorem 24.12.2 An E valued function, X, is Bochner integrable if and only if X
is strongly measurable and ∫

Ω

∥X (ω)∥dP < ∞. (24.53)

In this case there exists a sequence of simple functions {Xn} satisfying∫
Ω

∥Xn (ω)−Xm (ω)∥dP→ 0 as m,n→ ∞. (24.54)

Xn (ω) converging pointwise to X (ω),

∥Xn (ω)∥ ≤ 2∥X (ω)∥ (24.55)
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and
lim
n→∞

∫
Ω

∥X (ω)−Xn (ω)∥dP = 0. (24.56)

Now let {Xn} be the simple functions just defined and let Xn (ω) = ∑
m
k=1 xkXFk (ω)

where Fk ∈F , the Fk being disjoint. Then define Zn ≡ ∑
m
k=1 xkE

(
XFk |G

)
. Thus, if A ∈ G ,

∫
A

ZndP =
m

∑
k=1

xk

∫
A

E
(
XFk |G

)
dP =

m

∑
k=1

xk

∫
A
XFk dP

=
m

∑
k=1

xkP(Fk ∩A) =
∫

A
XndP (24.57)

Then since E
(
XFk |G

)
≥ 0, it follows that ∥Zn∥ ≤ ∑

m
k=1 ∥xk∥E

(
XFk |G

)
. Thus if A ∈ G ,

E (∥Zn∥XA) ≤ E

(
m

∑
k=1
∥xk∥XAE

(
XFk |G

))
=

m

∑
k=1
∥xk∥

∫
A

E
(
XFk |G

)
dP

=
m

∑
k=1
∥xk∥

∫
A
XFk dP = E (XA ∥Xn∥) . (24.58)

Note the use of≤ in the first step in the above. Although the Fk are disjoint, all that is known
about E

(
XFk |G

)
is that it is nonnegative. Similarly, E (∥Zn−Zm∥) ≤ E (∥Xn−Xm∥) and

this last term converges to 0 as n,m→ ∞ by the properties of the Xn. Therefore, {Zn} is a
Cauchy sequence in L1 (Ω;E;G ) . It follows it converges to some Z in L1 (Ω;E,G ) . Then
letting A ∈ G , and using 24.57,∫

A
ZdP =

∫
XAZdP = lim

n→∞

∫
XAZndP = lim

n→∞

∫
A

ZndP

= lim
n→∞

∫
A

XndP =
∫

A
XdP.

Then define Z ≡ E (X |G ).
It remains to verify ∥E (X |G )∥ ≡ ∥Z∥ ≤ E (∥X∥ |G ) . This follows because, from the

above, ∥Zn∥→ ∥Z∥ , ∥Xn∥→ ∥X∥ in L1 (Ω) and so if A ∈ G , then from 24.58,

1
P(A)

∫
A
∥Zn∥dP≤ 1

P(A)

∫
A
∥Xn∥dP

and so, passing to the limit,

1
P(A)

∫
A
∥Z∥dP≤ 1

P(A)

∫
A
∥X∥dP =

1
P(A)

∫
A

E (∥X∥|G )dP

Since A is arbitrary, this shows that ∥E (X |G )∥ ≡ ∥Z∥ ≤ E (∥X∥ |G ) . ■
In the case where E is reflexive, one could also use Corollary 24.7.6 on Page 682 to

get the above result. You would define a vector measure on G , ν (F) ≡
∫

F XdP and then
you would use the fact that reflexive separable Banach spaces have the Radon Nikodym
property to obtain Z ∈ L1 (Ω;E,G ) such that ν (F) =

∫
F XdP =

∫
F ZdP.

The function, Z whose existence and uniqueness is guaranteed by Theorem 24.12.2 is
called E (X |G ).
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24.13 Exercises
1. Show L1 (R) is not reflexive. Hint: L1 (R) is separable. What about L∞ (R)?

2. If f ∈ L1 (Rn;X) for X a Banach space, does the usual fundamental theorem of cal-
culus work? That is, can you say limr→0

1
m(B(x,r))

∫
B(x,r) f (t)dm = f (x) a.e.?

3. Does the Vitali convergence theorem hold for Bochner integrable functions? If so,
give a statement of the appropriate theorem and a proof.

4. Suppose g ∈ L1 ([a,b] ;X) where X is a Banach space. Then if
∫ b

a g(t)φ (t)dt = 0 for
all φ ∈C∞

c (a,b) , then g(t) = 0 a.e. Show that this is the case. Hint: It will likely
depend on the regularity properties of Lebesgue measure.

5. Suppose f ∈ L1 (a,b;X) and for all φ ∈ C∞
c (a,b) ,

∫ b
a f (t)φ

′ (t)dt = 0.Then there
exists a constant, a ∈ X such that f (t) = a a.e. Hint: Let

ψφ (x)≡
∫ x

a
[φ (t)−

(∫ b

a
φ (y)dy

)
φ 0 (t)]dt, φ 0 ∈C∞

c (a,b) ,
∫ b

a
φ 0 (x)dx = 1

Then explain why ψφ ∈C∞
c (a,b), ψ ′

φ
= φ −

(∫ b
a φ (y)dy

)
φ 0. Then use the assump-

tion on ψφ . Next use the above problem. Verify that f (y) =
∫ b

a f (t)φ 0 (t)dt a.e. y

6. Let f ∈ L1 ([a,b] ,X) . Then we say that the weak derivative of f is in L1 ([a,b] ,X) if
there is a function denoted as f ′ ∈ L1 ([a,b] ,X) such that for all φ ∈C∞

c (a,b) ,

−
∫ b

a
f (t)φ

′ (t)dt =
∫ b

a
f ′ (t)φ (t)dt

Show that this definition is well defined. Next, using the above problems, show
that if f , f ′ ∈ L1 ([a,b] ,X) , it follows that there is a continuous function, denoted by
t→ f̂ (t) such that f̂ (t) = f (t) a.e. t and f̂ (t) = f̂ (a)+

∫ t
0 f ′ (s)ds. Thus, unlike the

classical definition of the derivative, when a function and its derivative are both in L1,
it has a representative f̂ which equals the function a.e. such that f̂ can be recovered
from its derivative. Recall the well known example of this not working out which
is based on the Cantor function of Problem 4 on Page 268. This function had zero
derivative a.e. and yet it climbed from 0 to 1 on the unit interval. Thus one could not
recover it from integrating its classical derivative. Incidentally, if the function has
a derivative everywhere, then you can recover it by taking the generalized Riemann
integral of the derivative, although the Lebesgue integral of this derivative might not
even be defined. This is in my book on single variable advanced calculus, but this
integral is not discussed here.



Chapter 25

Stone’s Theorem and Partitions of Unity
This section is devoted to Stone’s theorem which says that a metric space is paracompact,
defined below. See [41] for this which is where I read it. First is the definition of what is
meant by a refinement. A metric space is an example of a topological space and it is the
context for what is done below.

Definition 25.0.1 Let S be a topological space. We say that a collection of sets D
is a refinement of an open cover S, if every set of D is contained in some set of S. An open
refinement would be one in which all sets are open, with a similar convention holding for
the term “ closed refinement”.

Definition 25.0.2 We say that a collection of sets D, is locally finite if for all p∈ S,
the topological space, there exists V an open set containing p such that V has nonempty
intersection with only finitely many sets of D.

Definition 25.0.3 We say S is paracompact if it is Hausdorff and for every open
cover S, there exists an open refinement D such that D is locally finite and D covers S.

Recall how the union of finitely many closed sets is closed. This can be generalized to
a locally finite set of closed sets. Think N for example. The following implies this.

Theorem 25.0.4 If D is locally finite then

∪{D : D ∈D}= ∪{D : D ∈D}.

Proof: It is clear the left side is a subset of the right because the right is a closed set
which contains the left since a limit point of any D is in the set on the right . If p∈∪{D : D∈
D}, there is nothing to show. Let p not be in this set but be a limit point of ∪{D : D ∈D}.
Is p in some D? Let p∈V , an open set intersecting only finitely many sets of D, D1, ...,Dn.
If p is not in any of Di then p ∈W where W is some open set which contains no points of
∪n

i=1Di. Then V ∩W contains no points of any set of D and this contradicts the assumption
that p is a limit point of ∪{D : D ∈D}. Thus p ∈ Di for some i. ■

We say S⊆P (S) is countably locally finite if

S= ∪∞
n=1Sn

and each Sn is locally finite. The following theorem appeared in the 1950’s. It will be used
to prove Stone’s theorem.

Theorem 25.0.5 Let S be a regular topological space. (If p ∈U open, then there
exists an open set V such that p ∈ V̄ ⊆U. ) The following are equivalent

1.) Every open covering of S has a refinement that is open, covers S and is countably
locally finite.

2.) Every open covering of S has a refinement that is locally finite and covers S. (The
sets in refinement maybe not open.)

3.) Every open covering of S has a refinement that is closed, locally finite, and covers
S. (Sets in refinement are closed.)

4.) Every open covering of S has a refinement that is open, locally finite, and covers S.
(Sets in refinement are open.)

705
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Proof:
1.)⇒ 2.)
Let S be an open cover of S and let B be an open countably locally finite refinement

B= ∪∞
n=1Bn

where Bn is an open refinement of S and Bn is locally finite. For B ∈Bn, let

En (B) = B\
⋃
k<n

(∪{B : B ∈Bk})≡ B∩

(⋃
k<n

(∪{B : B ∈Bk})

)C

.

Thus, in words, En (B) consists of points in B which are not in any set from any Bk for
k < n.

Claim: {En (B) : n ∈ N, B ∈Bn} is locally finite.
Proof of the claim: Let p ∈ S. Then p ∈ B0 ∈Bn for some n. Let V be open, p ∈ V,

and V intersects only finitely many sets of B1∪ ...∪Bn. Then consider B0∩V . If m > n,

(B0∩V )∩Em (B)⊆

(⋃
k<m

(∪{B : B ∈Bk)

)C

⊆ BC
0 .

In words, Em (B) has nothing in it from any of the Bk for k <m. In particular, it has nothing
in it from B0. Thus (B0∩V )∩Em (B) = /0 for m > n. Thus p∈ B0∩V which intersects only
finitely many sets of S, no more than those intersected by V . This establishes the claim.

Claim: {En (B) : n ∈ N, B ∈Bn} covers S.
Proof: Let p ∈ S and let n = min{k ∈ N : p ∈ B for some B ∈Bk}. Let p ∈ B ∈Bn.

Then p ∈ En (B).
The two claims show that 1.)⇒ 2.).
2.)⇒ 3.)
Let S be an open cover and let

G ≡ {U : U is open and U ⊆V ∈Sfor some V ∈S.

Then since S is regular, G covers S. (If p ∈ S, then p ∈U ⊆U ⊆V ∈S. ) By 2.), G has a
locally finite refinement C, covering S. Consider {E : E ∈ C}. This collection of closed sets
covers S and is locally finite because if p ∈ S, there exists V, p ∈ V, and V has nonempty
intersections with only finitely many elements of C, say E1, · · · ,En. If E ∩V ̸= /0, then
E ∩V ̸= /0 and so V intersects only E1, · · · ,En. This shows 2.)⇒ 3.).

3.)⇒ 4.) Here is a table of symbols with a short summary of their meaning.

Open covering Locally finite refinement
S original covering B by 3. can be closed refinement
F open intersectors C closed refinement

Let S be an open cover and let B be a locally finite refinement which covers S. By 3.)
we can take B to be a closed refinement but this is not important here. Let

F≡ {U : U is open and U intersects only finitely many sets of B}.
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Then F covers S because B is locally finite. (If p ∈ S, then there exists an open set U
containing p which intersects only finitely many sets of B. Thus p ∈U ∈ F.) By 3., F has
a locally finite closed refinement C, which covers S. Define for B ∈B

C(B)≡ {C ∈ C : C∩B = /0}

Thus these closed sets C do not intersect B and so B is in their complement. We use C(B)
to fatten up B. Let

E (B)≡ (∪{C : C ∈ C(B)})C.

In words, E (B) is the complement of the union of all closed sets of C which do not intersect
B. Thus E (B) ⊇ B, and has fattened up B. Then since C(B) is locally finite, E (B) is an
open set by Theorem 25.0.4. Now let F (B) be defined such that for B ∈B,

B⊆ F (B) ∈S

(by definition B is in some set of S), and let

L= {E (B)∩F (B) : B ∈B}

The intersection with F (B) is to ensure that L is a refinement of S. The important thing
to notice is that if C ∈ C intersects E (B) , then it must also intersect B. If not, you could
include it in the list of closed sets which do not intersect B and whose complement is E (B).
Thus E (B) would be too large.

Claim: L covers S.
This claim is obvious because if p ∈ S then p ∈ B for some B ∈B. Hence

p ∈ E (B)∩F (B) ∈ L.

Claim: L is locally finite and a refinement of S.
Proof: It is clear L is a refinement of S because every set of L is a subset of a set of

S, F (B). Let p ∈ S. There exists an open set W, such that p ∈W and W intersects only
C1, · · · ,Cn, elements of C. Hence W ⊆ ∪n

i=1Ci since C covers S.
But Ci is contained in a set Ui ∈ F which intersects only finitely many sets of B. Thus

each Ci intersects only finitely many B ∈B and so each Ci intersects only finitely many of
the sets, E (B). (If it intersects E (B) , then it intersects B.) Thus W intersects only finitely
many of the E (B) , hence finitely many of the E (B)∩F (B). It follows that L is locally
finite.

It is obvious that 4.)⇒ 1.). ■
The following theorem is Stone’s theorem.

Theorem 25.0.6 If S is a metric space then S is paracompact (Every open cover
has a locally finite open refinement also an open cover.)

Proof: Let S be an open cover. Well order S. For B ∈S,

Bn ≡ {x ∈ B : dist
(
x,BC)< 1

2n }, n = 1,2, · · · .

B
Bn
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Thus Bn is contained in B but approximates it up to 2−n. Let

En (B) = Bn \∪{D : D≺ B and D ̸= B}

where ≺ denotes the well order. If B, D ∈S, then one is first in the well order. Let D≺ B.
Then from the construction, En (B)⊆ DC and En (D) is further than 1/2n from DC. Hence,
assuming neither set is empty,

dist(En (B) ,En (D))≥ 2−n

for all B, D ∈S. Fatten up En (B) as follows.

Ẽn (B)≡ ∪{B
(
x,8−n) : x ∈ En (B)}.

Thus Ẽn (B)⊆ B and

dist
(

Ẽn (B), Ẽn (D)
)
≥ 1

2n −2
(

1
8

)n

≡ δ n > 0.

It follows that the collection of open sets

{Ẽn (B) : B ∈S} ≡Bn

is locally finite. In fact, B
(

p, δ n
2

)
cannot intersect more than one of them. In addition to

this,
S⊆ ∪{Ẽn (B) : n ∈ N, B ∈S}

because if p ∈ S, let B be the first set in S to contain p. Then p ∈ En (B) for n large enough
because it will not be in anything deleted. Thus this is an open countably locally finite
refinement. Thus 1.) in the above theorem is satisfied. ■

25.1 Partitions of Unity and Stone’s Theorem
First recall that if S is nonempty, then dist(x,S) satisfies |dist(x,S)−dist(y,S)| ≤ d (x,y) .
It was Lemma 3.12.1.

Theorem 25.1.1 Let S be a metric space and let S be any open cover of S. Then
there exists a set F, an open refinement of S, and functions {φ F : F ∈ F} such that

φ F : S→ [0,1]

φ F is continuous

φ F (x) equals 0 for all but finitely many F ∈ F

∑{φ F (x) : F ∈ F}= 1 for all x ∈ S.

Each φ F is locally Lipschitz continuous which means that for each z there is an open set W
containing z for which, if x,y ∈W, then there is a constant K such that

|φ F (x)−φ F (y)| ≤ Kd (x,y)
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Proof: By Stone’s theorem, there exists a locally finite open refinement F of S covering
S. For F ∈ F

gF (x)≡ dist
(
x,FC)

Let
φ F (x)≡ (∑{gF (x) : F ∈ F})−1gF (x) .

Now
∑{gF (x) : F ∈ F}

is a continuous function because if x ∈ S, then there exists an open set W with x ∈W and
W has nonempty intersection with only finitely many sets of F ∈ F. Then for y ∈W,

∑{gF (y) : F ∈ F}=
n

∑
i=1

gFi (y).

Since F is a cover of S,
∑{gF (x) : F ∈ F} ̸= 0

for any x ∈ S. Hence φ F is continuous. This also shows φ F (x) = 0 for all but finitely many
F ∈ F. It is obvious that

∑{φ F (x) : F ∈ F}= 1

from the definition.
Let z ∈ S. Then there is an open set W containing z such that W has nonempty intersec-

tion with only finitely many F ∈F . Thus for y,x ∈W,∣∣∣φ Fj
(x)−φ Fj

(y)
∣∣∣≤ ∣∣∣∣gFj (x)∑

n
i=1 gFi (y)−gFj (y)∑

n
i=1 gFi (x)

∑
n
i=1 gFi (x)∑

n
i=1 gFi (y)

∣∣∣∣
If F is not one of these Fi, then gF (x) = φ F (x) = φ F (y) = gF (y) = 0. Thus there is nothing
to show for these. It suffices to consider the ones above. Restricting W if necessary, we can
assume that for x ∈W,

∑
F

gF (x) =
n

∑
i=1

gFi (x)> δ > 0, gFj (x)< ∆ < ∞, j ≤ n

Then, simplifying the above, and letting x,y ∈W, for each j ≤ n,∣∣∣φ Fj
(x)−φ Fj

(y)
∣∣∣≤ 1

δ
2

∣∣∣∣ gFj (x)∑F gF (y)−gFj (y)∑F gF (y)
+gFj (y)∑F gF (y)−gFj (y)∑F gF (x)

∣∣∣∣
≤ 1

δ
2 ∆
∣∣gFj (x)−gFj (y)

∣∣+ 1

δ
2 ∆

n

∑
i=1
|gFi (y)−gFi (x)|

≤ ∆

δ
2 d (x,y)+

∆

δ
2 nd (x,y) = (n+1)

∆

δ
2 d (x,y)

Thus on this set W containing z, all φ F are Lipschitz continuous with Lipschitz constant
(n+1) ∆

δ
2 . ■

The functions described above are called a partition of unity subordinate to the open
cover S. A useful observation is contained in the following corollary.
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Corollary 25.1.2 Let S be a metric space and let S be any open cover of S. Then there
exists a set F, an open refinement of S, and functions {φ F : F ∈ F} such that

φ F : S→ [0,1]

φ F is continuous

φ F (x) equals 0 for all but finitely many F ∈ F

∑{φ F (x) : F ∈ F}= 1 for all x ∈ S.

Each φ F is Lipschitz continuous. If U ∈S and H is a closed subset of U, the partition of
unity can be chosen such that each φ F = 0 on H except for one which equals 1 on H.

Proof: Just change your open cover to consist of U and V \H for each V ∈S. Then
every function but one equals 0 on H and so exactly one of them equals 1 on H. ■

25.2 An Extension Theorem, Retracts
Recall the Tietze extension theorem which involved extending a real valued function de-
fined on a closed set to a real valued function defined on the whole space. There is a big
generalization in which the continuous function has values in a normed linear space. As
with the Tietze extension theorem, the closed set is in a metric space.

Lemma 25.2.1 Let A be a closed set in a metric space and let xn /∈ A,xn→ a0 ∈ A and
an ∈ A such that d (an,xn)≤ 6dist(xn,A) . Then an→ a0.

Proof: By assumption,

d (an,a0) ≤ d (an,xn)+d (xn,a0)< 6dist(xn,A)+d (xn,a0)

≤ 6d (xn,a0)+d (xn,a0) = 7d (xn,a0)

and this converges to 0. ■

•
a0

•xn

•
an

A

In the proof of the following theorem, you get a covering of AC with open balls B such
that for each of these balls, there exists a ∈ A such that for all x ∈ B,∥x−a∥ is no more
than six times the distance of x to A. The 6 is not important. Any other constant with this
property would work. Then you use Stone’s theorem.

Recall a Banach space is a normed vector space which is also a complete metric space
where the metric comes from the norm.

d (x,y) = ∥x− y∥

Thus you can add things in a Banach space.
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Definition 25.2.2 A Banach space is a complete normed linear space. If you have
a subset B of a Banach space, then conv(B) denotes the smallest closed convex set which
contains B. It can be obtained by taking the intersection of all closed convex sets containing
B. Recall that a set C is convex if whenever x,y ∈ C, then so is λx + (1−λ )y for all
λ ∈ [0,1]. Note how this makes sense in a vector space but maybe not in a general metric
space.

In the following theorem, we have in mind both X and Y are Banach spaces, but this is
not needed in the proof. All that is needed is that X is a metric space and Y a normed linear
space or possibly something more general in which it makes sense to do addition and scalar
multiplication.

Theorem 25.2.3 Let A be a closed subset of a metric space X and let F : A→ Y,
Y a normed linear space. Then there exists an extension of F denoted as F̂ such that F̂ is
defined on all of X and agrees with F on A. It has values in conv(F (A)) , the convex hull
of F (A).

Proof: For each c /∈ A, let Bc be a ball contained in AC centered at c where distance of
c to A is at least diam(Bc) .

• Bc

A

So for x ∈ Bc what about dist(x,A)? How does it compare with dist(c,A)?

dist(c,A) ≤ d (c,x)+dist(x,A)≤ 1
2

diam(Bc)+dist(x,A)

≤ 1
2

dist(c,A)+dist(x,A)

so dist(c,A)≤ 2dist(x,A) . Now the following is also valid. Letting x ∈ Bc be arbitrary, it
follows from the assumption on the diameter that there exists a0 ∈ A such that d (c,a0) <
2dist(c,A) . Then

d (x,a0)≤ sup
y∈Bc

d (y,a0)≤ sup
y∈Bc

(d (y,c)+d (c,a0))≤
diam(Bc)

2
+2dist(c,A)

≤ dist(c,A)
2

+2dist(c,A)< 3dist(c,A) (25.1)

It follows from 25.1, d (x,a0)≤ 3dist(c,A)≤ 6dist(x,A) . Thus for any x ∈ Bc, there is
an a0 ∈ A such that d (x,a0) is bounded by a fixed multiple of the distance from x to A.

By Stone’s theorem, there is a locally finite open refinement R. These are open sets
each of which is contained in one of the balls just mentioned such that each of these balls
is the union of sets of R. Thus R is a locally finite cover of AC. Since x ∈ AC is in one
of those balls, it was just shown that there exists aR ∈ A such that for all x ∈ R ∈ R we
have d (x,aR) ≤ 6dist(x,A) . Of course there may be more than one because R might be
contained in more than one of those special balls. One aR is chosen for each R ∈R.
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Now let φ R (x)≡ dist
(
x,RC

)
. Then let

F̂ (x)≡

{
F (x) for x ∈ A

∑R∈R F (aR)
φR(x)

∑R̂∈R φ R̂(x)
for x /∈ A

The sum in the bottom is always finite because the covering is locally finite. Also, this sum
is never 0 because R is a covering. Also F̂ has values in conv(F (K)) . It only remains to
verify that F̂ is continuous. It is clearly so on the interior of A thanks to continuity of F . It
is also clearly continuous on AC because the functions φ R are continuous. So it suffices to
consider xn→ a ∈ ∂A⊆ A where xn /∈ A and see whether F (a) = limn→∞ F̂ (xn).

Suppose this does not happen. Then there is a sequence converging to some a∈ ∂A and
ε > 0 such that

ε ≤
∥∥F̂ (a)− F̂ (xn)

∥∥ all n

For xn ∈R, it was shown above that d (xn,aRn)≤ 6dist(xn,A) . By the above Lemma 25.2.1,
it follows that aRn→ a and so F (aRn)→ F (a) .

ε ≤
∥∥F̂ (a)− F̂ (xn)

∥∥≤ ∑
R∈R
∥F (aRn)−F (a)∥ φ R (xRn)

∑R̂∈R φ R̂ (xRn)

By local finiteness of the cover, each xn involves only finitely many R Thus, in this limit
process, there are countably many R involved

{
R j
}∞

j=1. Thus one can apply Fatou’s lemma.

ε ≤ lim inf
n→∞

∥∥F̂ (a)− F̂ (xn)
∥∥

≤
∞

∑
j=1

lim inf
n→∞

∥∥F
(
aR jn

)
−F (a)

∥∥ φ R j

(
xR jn

)
∑

∞
j=1 φ R̂ j

(
xR jn

)
≤

∞

∑
j=1

lim inf
n→∞

∥∥F
(
aR jn

)
−F (a)

∥∥= 0 ■

The last step is needed because you lose local finiteness as you approach ∂A. Note that
the only thing needed was that X is a metric space. The addition takes place in Y so it
needs to be a vector space. Did it need to be complete? No, this was not used. Nor was
completeness of X used. The main interest here is in Banach spaces, but the result is more
general than that.

It also appears that F̂ is locally Lipschitz on AC.

Definition 25.2.4 Let S be a subset of X , a Banach space. Then it is a retract if
there exists a continuous function R : X → S such that Rs = s for all s ∈ S. This R is a
retraction. More generally, S⊆ T is called a retract of T if there is a continuous R : T → S
such that Rs = s for all s ∈ S.

Theorem 25.2.5 Let K be closed and convex subset of X a Banach space. Then K
is a retract.

Proof: By Theorem 25.2.3, there is a continuous function Î extending I to all of X . Then
also Î has values in conv(IK) = conv(K) =K. Hence Î is a continuous function which does
what is needed. It maps everything into K and keeps the points of K unchanged. ■

Sometimes people call the set a retraction also or the function which does the job a re-
traction. This seems like strange thing to call it because a retraction is the act of repudiating
something you said earlier. Nevertheless, I will call it that. Note that if S is a retract of the
whole metric space X , then it must be a retract of every set which contains S.



Part IV

Stochastic Processes and
Probability

713





Chapter 26

Independence
Caution: This material on probability and stochastic processes may be half baked in places.
This is not to say that nothing else is half baked. However, the probability is higher here.
Probability is not my main research area so my qualifications for even writing this are not
all they could be. However, I like probability and think it fits in well with what is presented
earlier and hope this might be useful for someone like me. This book is not a research
monograph written for experts, and I am no expert. I have included mainly those items
which I have found most interesting. However, there is an awful lot in this subject, far
more than I can include. For more topics see the references.

This material was written down earlier in the Topics in Analysis book but in a haphazard
manner as I encountered it rather than in the most logical manner. I am trying to present it
here in a more coherent form.

26.1 Random Variables and Independence
Recall Lemma 20.2.3 on Page 526 which is stated here for convenience.

Lemma 26.1.1 Let M be a metric space with the closed balls compact and suppose λ is
a measure defined on the Borel sets of M which is finite on compact sets. Then there exists
a unique Radon measure, λ which equals λ on the Borel sets. In particular λ must be both
inner and outer regular on all Borel sets.

Also important is the following fundamental result which is called the Borel Cantelli
lemma. It is Lemma 9.2.5 on Page 243.

Lemma 26.1.2 Let (Ω,F ,λ ) be a measure space and let {Ai} be a sequence of mea-
surable sets satisfying ∑

∞
i=1 λ (Ai)< ∞. Then letting S denote the set of ω ∈Ω which are in

infinitely many Ai, it follows S is a measurable set and λ (S) = 0.

Here is another nice observation.

Proposition 26.1.3 Suppose Ei is a separable Banach space. Then if Bi is a Borel set
of Ei, it follows ∏

n
i=1 Bi is a Borel set in ∏

n
i=1 Ei.

Proof: An easy way to do this is to consider the projection maps π ix≡ xi. Then these
projection maps are continuous. Hence for U open, π

−1
i (U) ≡∏

n
j=1 A j, A j = E j if j ̸= i

and Ai = U. Thus π
−1
i (open) equals an open set. Let S ≡

{
V ⊆ R : π

−1
i (V ) is Borel

}
.

Then S contains all the open sets and is clearly a σ algebra. Therefore, S contains the
Borel sets. Let Bi be a Borel set in Ei. Then ∏

n
i=1 Bi = ∩n

i=1π
−1
i (Bi) , a finite intersection

of Borel sets. ■

Definition 26.1.4 A probability space is a measure space, (Ω,F ,P) where P is a
measure satisfying P(Ω) = 1. A random vector (variable) is a measurable function, X :
Ω→ Z where Z is some topological space. It is often the case that Z will equal Rp. Assume
Z is a separable Banach space. Define the following σ algebra.

σ (X)≡
{
X−1 (E) : E is Borel in Z

}
Thus σ (X)⊆F . For E a Borel set in Z define λX (E)≡ P

(
X−1 (E)

)
. This is called the

distribution of the random variableX . If
∫

Ω
|X (ω)|dP < ∞ then define E (X)≡

∫
Ω
XdP

where the integral is defined as the Bochner integral.

715
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Recall the following fundamental result which was proved earlier but which I will give
a short proof of now. Recall Definition 24.1.1 about strongly measurable being the limit of
simple functions.

Proposition 26.1.5 Let (Ω,S ,µ) be a measure space and letX : Ω→ Z where Z is a
separable Banach space. Then X is strongly measurable if and only if X−1 (U) ∈S for
all U open in Z.

Proof: To begin with, let D(a,r) be the closure of the open ball B(a,r). By Lemma
24.1.7, there exists { fi} ⊆ B′, the unit ball in Z′ such that ∥z∥Z = supi {| fi (z)|} . Then

D(a,r) = {z : ∥a− z∥ ≤ r}= ∩i {z : | fi (z)− fi (a)| ≤ r}

= ∩i f−1
i

(
B( fi (a) ,r)

)
Thus X−1 (D(a,r)) = ∩iX

−1
(

f−1
i

(
B( fi (a) ,r)

))
= ∩i ( fi ◦X)−1

(
B( fi (a) ,r)

)
. If X

is strongly measurable, then it is weakly measurable and so each fi ◦X is a real (complex)
valued measurable function. Hence the expression on the right in the above is measurable.
Now if U is any open set in Z, then it is the countable union of such closed disks U =
∪iDi. Therefore,X−1 (U) =∩iX

−1 (Di)∈S . It follows that strongly measurable implies
inverse images of open sets are in S .

Conversely, suppose X−1 (U) ∈S for every open U . Then for f ∈ Z′, f ◦X is real
valued and measurable. Therefore,X is weakly measurable. By the Pettis theorem, Theo-
rem 24.1.8, it follows that f ◦X is strongly measurable. ■

Proposition 26.1.6 If X : Ω→ Z is measurable, then σ (X) equals the smallest σ

algebra such that X is measurable with respect to it. Also if Xi are random variables
having values in separable Banach spaces Zi, then σ (X) = σ (X1, · · · ,Xn) whereX is the
vector mapping Ω to ∏

n
i=1 Zi and σ (X1, · · · ,Xn) is the smallest σ algebra such that each Xi

is measurable with respect to it.

Proof: Let G denote the smallest σ algebra such that X is measurable with respect
to this σ algebra. By definition X−1 (open) ∈ G . Furthermore, the set of all E such that
X−1 (E) ∈ G is a σ algebra. Hence it includes all the Borel sets. Hence X−1 (Borel) ∈ G
and so G ⊇ σ (X) . However, σ (X) defined above is a σ algebra such that X is measur-
able with respect to σ (X) . Therefore, G = σ (X).

Letting Bi be a Borel set in Zi,∏
n
i=1 Bi is a Borel set by Proposition 26.1.3 and so

X−1 (∏n
i=1 Bi) = ∩n

i=1X−1
i (Bi) ∈ σ (X1, · · · ,Xn) . If G denotes the Borel sets F ⊆∏

n
i=1 Zi

such thatX−1 (F) ∈ σ (X1, · · · ,Xn) , then G is clearly a σ algebra which contains the open
sets. Hence G = B the Borel sets of ∏

n
i=1 Zi. This shows that σ (X) ⊆ σ (X1, · · · ,Xn) .

Next we observe that σ (X) is a σ algebra with the property that each Xi is measurable
with respect to σ (X) . This follows from X−1

i (Bi) = X
−1
(

∏
n
j=1 A j

)
∈ σ (X) , where

each A j = Z j except for Ai = Bi.Since σ (X1, · · · ,Xn) is defined as the smallest such σ

algebra, it follows that σ (X)⊇ σ (X1, · · · ,Xn) .■
For random variables having values in a separable Banach space or even more generally

for a separable metric space, much can be said about regularity of λX .
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Definition 26.1.7 A measure, µ defined on B (E) for E a separable metric space
will be called inner regular if for all F ∈B (E) ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed}

A measure, µ defined on B (E) will be called outer regular if for all F ∈B (E) ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open}

When a measure is both inner and outer regular, it is called regular.

Note that if the metric space isRp then λX can be considered a Radon measure because
you can use it to obtain a positive linear functional and then use the Riesz representation
theorem for these.

For probability measures, the above definition of regularity tends to come free. Note
it is a little weaker than the usual definition of regularity because K is only assumed to be
closed, not compact. This is stated for convenience. It is Lemma 9.8.4 on Page 253.

Lemma 26.1.8 Let µ be a finite measure defined on B (E) where E is a metric space.
Then µ is regular.

One can say more if the metric space is complete and separable. In fact in this case the
above definition of inner regularity can be shown to imply the usual one where the closed
sets are replaced with compact sets. It is Lemma 9.8.5 on Page 255.

Lemma 26.1.9 Let µ be a finite measure on a σ algebra containing B (X) , the Borel
sets of X , a separable complete metric space. (Polish space) Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, µ is inner regular
in the sense that for all F ∈B (X) ,

µ (F) = sup{µ (K) : K ⊆ F and K is compact}

Definition 26.1.10 A measurable functionX : (Ω,F ,µ)→ Z a topological space
is called a random variable when µ (Ω) = 1. For such a random variable, one can define
a distribution measure λX on the Borel sets of Z as follows:λX (G)≡ µ

(
X−1 (G)

)
. This

is a well defined measure on the Borel sets of Z because it makes sense for every G open
and G ≡

{
G⊆ Z :X−1 (G) ∈F

}
is a σ algebra which contains the open sets, hence the

Borel sets. Such a measurable function is also called a random vector.

Corollary 26.1.11 LetX be a random variable (random vector) with values in a com-
plete metric space, Z. Then λX is an inner and outer regular measure defined on B (Z).

Proposition 26.1.12 For X a random vector defined above, X having values in a
complete separable metric space Z, then λX is inner and outer regular and Borel.

(Ω,P) X→ (Z,λX)
h→ E

If h is Borel measurable and h ∈ L1 (Z,λX ;E) for E a Banach space, then∫
Ω

h(X (ω))dP =
∫

Z
h(x)dλX . (26.1)
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In the case where Z = E, a separable Banach space, if X is measurable then X ∈
L1 (Ω;E) if and only if the identity map on E is in L1 (E;λX) and∫

Ω

X (ω)dP =
∫

E
xdλX (x) (26.2)

Proof: The regularity claims are established above. It remains to verify 26.1.
Since h ∈ L1 (Z,E) , it follows there exists a sequence of simple functions {hn} such

that
hn (x)→ h(x) ,

∫
Z
∥hm−hn∥dλX → 0 as m,n→ ∞.

The first convergence above implies

hn ◦X → h◦X pointwise on Ω (26.3)

Then letting hn (x)=∑
m
k=1xkXEk (x) , where the Ek are disjoint and Borel, it follows easily

that hn ◦X is also a simple function of the form hn ◦X (ω) = ∑
m
k=1xkXX−1(Ek)

(ω) and
by assumptionX−1 (Ek) ∈F . From the definition of the integral, it is easily seen∫

hn ◦XdP =
∫

hndλX ,
∫
∥hn∥◦XdP =

∫
∥hn∥dλX

Also, hn ◦X−hm ◦X is a simple function and so∫
∥hn ◦X−hm ◦X∥dP =

∫
∥hn−hm∥dλX (26.4)

It follows from the definition of the Bochner integral and 26.3, and 26.4 that h ◦X is in
L1 (Ω;E) and ∫

h◦XdP = lim
n→∞

∫
hn ◦XdP = lim

n→∞

∫
hndλX =

∫
hdλX .

Finally consider the case that E = Z for E a separable Banach space, and suppose
X ∈ L1 (Ω;E). Then letting h be the identity map on E, it follows h is obviously separably
valued and h−1 (U) ∈B (E) for all U open and so h is measurable. Why is it in L1 (E;E)?∫

E
∥h(x)∥dλX =

∫
∞

0
λX ([∥h∥> t])dt ≡

∫
∞

0
P(X ∈ [∥x∥> t])dt

≡
∫

∞

0
P([∥X∥> t])dt =

∫
Ω

∥X∥dP < ∞

Thus the identity map on E is in L1 (E;λX) . Next let the identity map h be in L1 (E;λX) .
Then X (ω) = h ◦X (ω) and so from the first part, X ∈ L1 (Ω;E) and from 26.1, 26.2
follows. ■

26.2 Convergence in Probability
Definition 26.2.1 { fn} is said to be Cauchy in probability if for each ε > 0,

lim
n,m→∞

P(∥ fn− fm∥> ε) = 0

This means: for each δ > 0 there exists kδ such that if m,n≥ kδ , then P(∥ fn− fm∥> ε)<
δ .
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Proposition 26.2.2 { fn} is Cauchy in probability, these being functions having values
in a Banach space then there exists a set of measure zero N and a subsequence

{
fnk

}
such

that for ω /∈ N, limk→∞ fnk (ω) converges.

Proof: From the above definition, there exists n1 such that if m,n≥ n1, then

P
(
∥ fn− fm∥> 2−1)< 2−1

From the definition, there exists n2 > n1 such that P
(
∥ fn− fm∥> 2−2

)
< 2−2 whenever

n,m≥ n1 and so forth. Thus

P
(∥∥ fnk+1 − fnk

∥∥> 2−k
)
< 2−k

Letting Ak ≡
[∥∥ fnk+1 − fnk

∥∥> 2−k
]
, it follows from the Borell Cantelli lemma that there is

a set of measure zero, namely N ≡∩∞
n=1∪k≥n Ak such that P

(
NC
)
= 1= P

(
∪∞

n=1∩k≥n AC
k

)
.

To say ω ∈ NC is the same as saying that there exists n such that ω is in AC
k for all k ≥ n.

In other words, eventually
∥∥ fnk+1 − fnk

∥∥≤ 2−k. Now it follows that∥∥ fn+p (ω)− fnk (ω)
∥∥≤ ∞

∑
j=k

∥∥ fn+ j+1 (ω)− fn+ j (ω)
∥∥< 2−(k−1)

if k is large enough. Hence
{

fnk (ω)
}

k is a Cauchy sequence for each ω /∈ N and since E
is complete, this sequence converges. ■

26.3 Kolmogorov Extension Theorem
Let Mt be a complete separable metric space. This is called a Polish space. I will denote
a totally ordered index set, (Like R) and the interest will be in building a measure on the
product space, ∏t∈I Mt . If you like less generality, just think of Mt = Rkt or even Mt = R.
By the well ordering principle, you can always put an order on any index set so this order
is no restriction, but we do not insist on a well order and in fact, index sets of great interest
are R or [0,∞). Also for X a topological space, B (X) will denote the Borel sets.

Notation 26.3.1 The symbol J will denote a finite subset of I,J = (t1, · · · , tn) , the ti taken
in order. EJ will denote a set which has a set Et of B (Mt) in the tth position for t ∈ J and
for t /∈ J, the set in the tth position will be Mt . KJ will denote a set which has a compact set
in the tth position for t ∈ J and for t /∈ J, the set in the tth position will be Mt . Also denote
by RJ the sets EJ and R the union of all such RJ . Let EJ denote finite disjoint unions of
sets of RJ and let E denote finite disjoint unions of sets of R. Thus if F is a set of E , there
exists J such that F is a finite disjoint union of sets of RJ . For F ∈ Ω, denote by πJ (F )
the set ∏t∈J Ft where F = ∏t∈I Ft .

With this preparation, here is the Kolmogorov extension theorem. It is Theorem 20.3.3
proved earlier. In the statement and proof of the theorem, Fi,Gi, and Ei will denote Borel
sets. Any list of indices from I will always be assumed to be taken in order. Thus, if J ⊆ I
and J = (t1, · · · , tn) , it will always be assumed t1 < t2 < · · ·< tn.

Theorem 26.3.2 For each finite set J = (t1, · · · , tn)⊆ I, suppose there exists a Borel
probability measure, νJ = ν t1···tn defined on the Borel sets of ∏t∈J Mt such that the following
consistency condition holds. If (t1, · · · , tn)⊆ (s1, · · · ,sp) , then

ν t1···tn (Ft1 ×·· ·×Ftn) = νs1···sp

(
Gs1 ×·· ·×Gsp

)
(26.5)
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where if si = t j, then Gsi = Ft j and if si is not equal to any of the indices tk, then Gsi =
Msi . Then for E defined in the above Notation, there exists a probability measure P and
a σ algebra F = σ (E ) such that (∏t∈I Mt ,P,F ) is a probability space. Also there exist
measurable functions, Xs : ∏t∈I Mt →Ms defined for s ∈ I as

Xsx≡ xs

such that for each (t1 · · · tn)⊆ I,

ν t1···tn (Ft1 ×·· ·×Ftn) = P([Xt1 ∈ Ft1 ]∩·· ·∩ [Xtn ∈ Ftn ])

= P

(
(Xt1 , · · · ,Xtn) ∈

n

∏
j=1

Ft j

)
= P

(
∏
t∈I

Ft

)
(26.6)

where Ft = Mt for every t /∈ {t1 · · · tn} and Fti is a Borel set. Also if f is a nonnegative

function of finitely many variables, xt1 , · · · ,xtn , measurable with respect to B
(

∏
n
j=1 Mt j

)
,

then f is also measurable with respect to F and∫
Mt1×···×Mtn

f (xt1 , · · · ,xtn)dν t1···tn =
∫

∏t∈I Mt

f (xt1 , · · · ,xtn)dP (26.7)

26.4 Independent Events and σ Algebras
The concept of independence is probably the main idea which separates probability from
analysis and causes some of us, myself included, to struggle to understand what is going on.
I think that these ideas are the main difficulty some encounter when trying to understand
probability, not the kind based on combinatorics but what is being presented here.

Definition 26.4.1 Let (Ω,F ,P) be a probability space. The sets in F are called
events. A set of events, {Ai}i∈I is called independent if whenever

{
Aik

}m
k=1 is a finite subset

P
(
∩m

k=1Aik

)
=

m

∏
k=1

P
(
Aik

)
.

Each of these events defines a rather simple σ algebra,
(
Ai,AC

i , /0,Ω
)

denoted by Fi.
Now the following lemma is interesting because it motivates a more general notion of
independent σ algebras.

Lemma 26.4.2 Suppose {Ai}i∈I are independent events. Then for

Bi ∈Fi ≡
{

Ai,AC
i , /0,Ω

}
for i ∈ I. Then for any m ∈ N, P

(
∩m

k=1Bik

)
= ∏

m
k=1 P

(
Bik

)
.

Proof: The proof is by induction on the number l of the Bik which are not equal to
Aik . First suppose l = 0. Then the above assertion is true by assumption since {Ai}i∈I is
independent. Suppose it is so for some l and there are l + 1 sets not equal to Aik . If any
equals /0 there is nothing to show. Both sides equal 0. If any equals Ω, there is also nothing
to show. You can ignore that set in both sides and then you have by induction the two sides
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are equal because you have no more than l sets different than Aik . The only remaining case
is where some Bik = AC

ik
. Say Bim+1 = AC

im+1
for simplicity.

P
(
∩m+1

k=1 Bik

)
= P

(
AC

im+1
∩∩m

k=1Bik

)
= P

(
∩m

k=1Bik

)
−P

(
Aim+1 ∩∩

m
k=1Bik

)
Then by induction,

=
m

∏
k=1

P
(
Bik

)
−P

(
Aim+1

) m

∏
k=1

P
(
Bik

)
=

m

∏
k=1

P
(
Bik

)(
1−P

(
Aim+1

))
= P

(
AC

im+1

) m

∏
k=1

P
(
Bik

)
=

m+1

∏
k=1

P
(
Bik

)
thus proving it for l +1. ■

This motivates a more general notion of independence in terms of σ algebras.

Definition 26.4.3 If {Fi}i∈I is any set of σ algebras contained in F , they are said
to be independent if whenever Aik ∈Fik for k = 1,2, · · · ,m, then

P
(
∩m

k=1Aik

)
=

m

∏
k=1

P
(
Aik

)
.

A set of random variables {X i}i∈I is independent if the σ algebras {σ (X i)}i∈I are in-
dependent σ algebras. Here σ (X) denotes the smallest σ algebra such that X is mea-
surable. Thus σ (X) =

{
X−1 (U) : U is a Borel set

}
. More generally, σ (X i : i ∈ I) is the

smallest σ algebra such that eachX i is measurable.

Note that by Lemma 26.4.2 you can consider independent events in terms of indepen-
dent σ algebras. That is, a set of independent events can always be considered as events
taken from a set of independent σ algebras. This is a more general notion because here the
σ algebras might have infinitely many sets in them.

Lemma 26.4.4 Suppose the set of random variables, {X i}i∈I is independent. Also
suppose I1 ⊆ I and j /∈ I1. Then the σ algebras σ (X i : i ∈ I1) , σ (X j) are independent σ

algebras.

Proof: Let B ∈ σ (X j) . I want to show that for any A ∈ σ (X i : i ∈ I1) , it follows that
P(A∩B) = P(A)P(B) . Let K consist of finite intersections of sets of the formX−1

k (Bk)
where Bk is a Borel set and k ∈ I1. Thus K is a π system and σ (K ) = σ (X i : i ∈ I1) .
This is because it follows from the definition that σ (K )⊇ σ (X i : i ∈ I1) because σ (K )
contains all X−1

i (B) for B Borel. For the other inclusion, the right side consists of all sets
X−1

i (B) where B is a Borel set and so the right side, being a σ algebra also must contain
all finite intersections of these sets which means σ (X i : i ∈ I1) must contain K and so
σ (X i : i ∈ I1)⊇ σ (K ).

Now if you have one of these sets of the form A = ∩m
k=1X

−1
k (Bk) where without

loss of generality, it can be assumed the k are distinct since X−1
k (Bk) ∩X−1

k

(
B′k
)
=

X−1
k

(
Bk ∩B′k

)
, then

P(A∩B) = P
(
∩m

k=1X
−1
k (Bk)∩B

)
= P(B)

m

∏
k=1

P
(
X−1

k (Bk)
)

= P(B)P
(
∩m

k=1X
−1
k (Bk)

)
.
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Thus K is contained in

G ≡ {A ∈ σ (X i : i ∈ I1) : P(A∩B) = P(A)P(B)} .

Now G is closed with respect to complements and countable disjoint unions. Here is why:
If each Ai ∈ G and the Ai are disjoint,

P((∪∞
i=1Ai)∩B) = P(∪∞

i=1 (Ai∩B))

= ∑
i

P(Ai∩B) = ∑
i

P(Ai)P(B)

= P(B)∑
i

P(Ai) = P(B)P(∪∞
i=1Ai)

If A ∈ G , P
(
AC ∩B

)
+P(A∩B) = P(B) and so

P
(
AC ∩B

)
= P(B)−P(A∩B) = P(B)−P(A)P(B)

= P(B)(1−P(A)) = P(B)P
(
AC) .

Therefore, from the lemma on π systems, Lemma 9.3.2 on Page 243, it follows

σ (X i : i ∈ I1)⊇ G ⊇ σ (K ) = σ (X i : i ∈ I1) .■

Definition 26.4.5 When X is a random variable with values in a Banach space Z,
the notation E (X) means

∫
Z X (ω)dP where the latter is the Bochner integral. I will use

this notation whenever convenient. E (X) is called the expectation of X or the expected
value of X. I will sometimes also use E as the name of a Banach space, but it should be
clear from the context which is meant.

Recall Lemma 10.16.1

Lemma 26.4.6 Let f ,g be nonnegative measurable nonnegative functions on a measure
space (Ω,µ). Then

∫
f gdµ =

∫
∞

0
∫
[g>t] f dµdt =

∫
∞

0
∫

∞

0 µ ([ f > s]∩ [g > t])dsdt.

Corollary 26.4.7 If { fi}m
i=1 are nonnegative measurable functions, it follows from in-

duction that ∫ m

∏
i=1

fidµ =
∫

∞

0
· · ·
∫

∞

0
µ (∩m

i=1 [ fi > ti])dt1 · · ·dtm

Proof: The case of n = 2 was just done. So suppose true for n ≥ 2. Then from this
case and induction,

∫ n+1

∏
i=1

fidµ =
∫

∞

0

∫
[ fn+1>tn+1]

n

∏
i=1

fidµdtn+1 =
∫

∞

0

∫ n

∏
i=1

X[ fn+1>tn+1] fidµdtn+1

=
∫

∞

0

∫
∞

0
· · ·
∫

∞

0
µ
(
∩n

i=1
[
X[ fn+1>tn+1] fi > ti

])
dt1 · · ·dtndtn+1

=
∫

∞

0
· · ·
∫

∞

0
µ (∩n

i=1 [ fn+1 > tn+1]∩ [ fi > ti])dt1 · · ·dtn+1

=
∫

∞

0
· · ·
∫

∞

0
µ
(
∩n+1

i=1 [ fi > ti]
)

dt1 · · ·dtn+1 ■
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Lemma 26.4.8 If {Xk}r
k=1 are independent random variables having values in Z a

separable metric space, and if gk is a Borel measurable function, then {gk (Xk)}r
k=1 is

also independent.

Proof: First consider the claim about {gk (Xk)}r
k=1. Letting O be an open set in Z,

(gk ◦Xk)
−1 (O) =X−1

k

(
g−1

k (O)
)
=X−1

k (Borel set) ∈ σ (Xk) .

It follows (gk ◦Xk)
−1 (E) is in σ (Xk) whenever E is Borel because the sets whose inverse

images are measurable includes the Borel sets. Thus σ (gk ◦Xk)⊆ σ (Xk) . ■

Theorem 26.4.9 Suppose {Xi}m
i=1 are independent random variables with values

in X a Banach space, then ∏
m
i=1 ∥Xi∥

∫
Ω ∏

m
i=1 ∥Xi∥dP = ∏

m
i=1
∫

Ω
∥Xi∥dP.

Proof: The real valued random variables ∥Xi∥ are respectively measurable in σ (Xi) and
so, from Corollary 26.4.7 and the independence of ∥Xi∥ ,∫ m

∏
i=1
∥Xi∥dµ =

∫
∞

0
· · ·
∫

∞

0
µ (∩m

i=1 [∥Xi∥i > ti])dt1 · · ·dtm

=
∫

∞

0
· · ·
∫

∞

0

m

∏
i=1

depends only on ti
µ ([∥Xi∥i > ti])dt1 · · ·dtm

=
m

∏
i=1

∫
∞

0
µ ([∥Xi∥i > ti])dti =

m

∏
i=1

∫
Ω

∥Xi∥dP ■

Note that if each Xi ∈ L1 and these are independent, then their product is also in L1.
Maybe this would be a good place to put a really interesting result known as the Doob

Dynkin lemma. This amazing result is illustrated with the following diagram in which
X = (X1, · · · ,Xm). By Proposition 26.1.6 σ (X) = σ (X1, · · · ,Xn) , the expression on the
right being the smallest σ algebra such that each Xi is measurable. The following diagram
summarizes this result.

(Ω,σ (X))
Y→ F

X

↘ ◦
g
↗

(∏m
i=1 Ei,B (∏m

i=1 Ei))

You start with Y and can write it as the composition g◦X provided Y is σ (X) measurable.

Lemma 26.4.10 Let (Ω,F ) be a measure space and let Xi : Ω→ Ei where Ei is a
separable Banach space. Suppose also that Y : Ω→ F where F is a separable Banach
space. Then Y is σ (X1, · · · ,Xm) measurable if and only if there exists a Borel measurable
function g : ∏

m
i=1 Ei→ F such that Y = g(X1, · · · ,Xm).

Proof: First suppose Y (ω) = f XW (ω) where f ∈ F and W ∈ σ (X1, · · · ,Xm) . Then
by Proposition 26.1.6, W is of the form (X1, · · · ,Xm)

−1 (B)≡X−1 (B) where B is Borel in
∏

m
i=1 Ei. Therefore,

Y (ω) = f XX−1(B) (ω) = f XB (X (ω)) .
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Now suppose Y is measurable with respect to σ (X1, · · · ,Xm) . Then there exist simple func-
tions

Yn (ω) =
mn

∑
k=1

fkXBk (X (ω))≡ gn (X (ω))

where the Bk are Borel sets in ∏
m
i=1 Ei, such that Yn (ω)→ Y (ω) , each gn being Borel.

Thus gn converges on X (Ω) . Furthermore, the set on which gn does converge is a Borel
set equal to

∩∞
n=1∪∞

m=1∩p,q≥m

[∣∣∣∣gp−gq
∣∣∣∣< 1

n

]
which containsX (Ω) . Therefore, modifying gn by multiplying it by the indicator function
of this Borel set containing X (Ω), we can conclude that gn converges to a Borel function
g and, passing to a limit in the above, Y (ω) = g(X (ω))

Conversely, suppose Y (ω) = g(X (ω)) . Why is Y σ (X) measurable?

Y−1 (open) =X−1 (g−1 (open)
)
=X−1 (Borel) ∈ σ (X) ■

26.5 Banach Space Valued Random Variables
Recall that for X a random variable, σ (X) is the smallest σ algebra containing all the sets
of the form X−1 (F) where F is Borel. Since such sets, X−1 (F) for F Borel form a σ

algebra it follows σ (X) =
{

X−1 (F) : F is Borel
}
.

Next consider the case where you have a set of σ algebras. The following lemma is
helpful when you try to verify such a set of σ algebras is independent. It says you only
need to check things on π systems contained in the σ algebras. This is really nice because
it is much easier to consider the smaller π systems than the whole σ algebra.

Lemma 26.5.1 Suppose {Fi}i∈I is a set of σ algebras contained in F where F is a
σ algebra of sets of Ω. Suppose that Ki ⊆Fi is a π system and Fi = σ (Ki). Suppose
also that whenever J is a finite subset of I and A j ∈K j for j ∈ J, it follows P(∩ j∈JA j) =

∏ j∈J P(A j) . Then {Fi}i∈I is independent.

Proof: I need to verify that under the given conditions, if { j1, j2, · · · , jn} ⊆ I and
A jk ⊆F jk , then P

(
∩n

k=1A jk

)
= ∏

n
k=1 P

(
A jk

)
. By hypothesis, this is true if each A jk ∈K jk .

Suppose it is true whenever there are at most r− 1 ≥ 0 of the A jk which are not in K jk .
Consider ∩n

k=1A jk where there are r sets which are not in the corresponding K jk . Without
loss of generality, say there are at most r− 1 sets in the first n− 1 which are not in the
corresponding K jk .

Pick
(
A j1 · · · ,A jn−1

)
let

G(
A j1 ···A jn−1

) ≡
{

B ∈F jn : P
(
∩n−1

k=1A jk ∩B
)
=

n−1

∏
k=1

P
(
A jk

)
P(B)

}
I am going to show G(

A j1 ···A jn−1

) is closed with respect to complements and countable

disjoint unions and then apply the Lemma on π systems. By the induction hypothesis,
K jn ⊆ G(

A j1 ···A jn−1

). If B ∈ G(
A j1 ···A jn−1

),
n−1

∏
k=1

P
(
A jk

)
= P

(
∩n−1

k=1A jk

)
= P

((
∩n−1

k=1A jk ∩BC)∪ (∩n−1
k=1A jk ∩B

))
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= P
(
∩n−1

k=1A jk ∩BC)+P
(
∩n−1

k=1A jk ∩B
)
= P

(
∩n−1

k=1A jk ∩BC)+ n−1

∏
k=1

P
(
A jk

)
P(B)

and so

P
(
∩n−1

k=1A jk ∩BC)= n−1

∏
k=1

P
(
A jk

)
(1−P(B)) =

n−1

∏
k=1

P
(
A jk

)
P
(
BC)

showing if B ∈ G(
A j1 ··· ,A jn−1

), then so is BC. It is clear that G(
A j1 ··· ,A jn−1

) is closed with

respect to disjoint unions also. Here is why. If
{

B j
}∞

j=1 are disjoint sets in G(
A j1 ···A jn−1

),

P
(
∪∞

i=1Bi∩∩n−1
k=1A jk

)
=

∞

∑
i=1

P
(
Bi∩∩n−1

k=1A jk

)
=

∞

∑
i=1

P(Bi)
n−1

∏
k=1

P
(
A jk

)
=

n−1

∏
k=1

P
(
A jk

) ∞

∑
i=1

P(Bi) =
n−1

∏
k=1

P
(
A jk

)
P(∪∞

i=1Bi)

Therefore, by the π system lemma, Lemma 9.3.2 G(
A j1 ···A jn−1

) = F jn . This proves the

induction step in going from r−1 to r. ■
What is a useful π system for B (E) , the Borel sets of E where E is a Banach space?
Recall the fundamental lemma used to prove the Pettis theorem. It was proved on Page

649.

Lemma 26.5.2 Let E be a separable real Banach space. Sets of the form

{x ∈ E : x∗i (x)≤ α i, i = 1,2, · · · ,m}

where x∗i ∈ D′, a dense subspace of the unit ball of E ′ and α i ∈ [−∞,∞) are a π system,
and denoting this π system by K , it follows σ (K ) = B (E). The sets of K are examples
of “cylindrical” sets. The D′ is that set for the proof of the Pettis theorem.

Proof: The sets described are obviously a π system. I want to show σ (K ) contains
the closed balls because then σ (K ) contains the open balls and hence the open sets and
the result will follow. Let D′ be described in Lemma 24.1.7. As pointed out earlier it can
be any dense subset of B′. Then

{x ∈ E : ∥x−a∥ ≤ r}=

{
x ∈ E : sup

f∈D′
| f (x−a)| ≤ r

}

=

{
x ∈ E : sup

f∈D′
| f (x)− f (a)| ≤ r

}
= ∩ f∈D′ {x ∈ E : f (a)− r ≤ f (x)≤ f (a)+ r}

= ∩ f∈D′ {x ∈ E : f (x)≤ f (a)+ r and (− f )(x)≤ r− f (a)}
which equals a countable intersection of sets of the given π system. Therefore, every closed
ball is contained in σ (K ). It follows easily that every open ball is also contained in σ (K )
because

B(a,r) = ∪∞
n=1B

(
a,r− 1

n

)
.
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Since the Banach space is separable, it is completely separable and so every open set is the
countable union of balls. This shows the open sets are in σ (K ) and so σ (K ) ⊇B (E) .
However, all the sets in the π system are closed hence Borel because they are inverse images
of closed sets. Therefore, σ (K )⊆B (E) and so σ (K ) = B (E). ■

As mentioned above, we can replace D′ in the above with M, any dense subset of E ′.

Observation 26.5.3 Denote by Cα,n the set {β ∈ Rn : β i ≤ α i} . Also denote by gn an
element of Mn where M is a dense subset of E ′with the understanding that gn : E → Rn

according to the rule
gn (x)≡ (g1 (x) , · · · ,gn (x)) .

Then the sets in the above lemma can be written as g−1
n (Cα,n). In other words, sets of the

form g−1
n (Cα,n) form a π system for B (E).

Next suppose you have some random variables having values in a separable Banach
space, E, {Xi}i∈I . How can you tell if they are independent? To show they are independent,
you need to verify that

P
(
∩n

k=1X−1
ik

(
Fik

))
=

n

∏
k=1

P
(

X−1
ik

(
Fik

))
whenever the Fik are Borel sets in E. It is desirable to find a way to do this easily.

Lemma 26.5.4 Let K be a π system of sets of E, a separable real Banach space and
let (Ω,F ,P) be a probability space and X : Ω→ E be a random variable. Then

X−1 (σ (K )) = σ
(
X−1 (K )

)
Proof: First note that X−1 (σ (K )) is a σ algebra which contains X−1 (K ) and so it

contains σ
(
X−1 (K )

)
. Thus X−1 (σ (K ))⊇ σ

(
X−1 (K )

)
. Now let

G ≡
{

A ∈ σ (K ) : X−1 (A) ∈ σ
(
X−1 (K )

)}
Then G ⊇K . If A ∈ G , then X−1 (A) ∈ σ

(
X−1 (K )

)
and so

X−1 (A)C = X−1 (AC) ∈ σ
(
X−1 (K )

)
because σ

(
X−1 (K )

)
is a σ algebra. Hence AC ∈ G . Finally suppose {Ai} is a sequence

of disjoint sets of G . Then

X−1 (∪∞
i=1Ai) = ∪∞

i=1X−1 (Ai) ∈ σ
(
X−1 (K )

)
again because σ

(
X−1 (K )

)
is a σ algebra. It follows from Lemma 9.3.2 on Page 243 that

G ⊇ σ (K ) and this shows that whenever

A ∈ σ (K ) , X−1 (A) ∈ σ
(
X−1 (K )

)
.

Thus X−1 (σ (K ))⊆ σ
(
X−1 (K )

)
. ■

With this lemma, here is the desired result about independent random variables. Essen-
tially, you can reduce to the case of random vectors having values in Rn.
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26.6 Reduction to Finite Dimensions
Let E be a Banach space and let g ∈ (E ′)n . Then for x ∈ E, g ◦ x is the vector in Fn which
equals (g1 (x) ,g2 (x) , · · · ,gn (x)).

Theorem 26.6.1 Let Xi be a random variable having values in E a real separable
Banach space. The random variables {Xi}i∈I are independent if whenever

{i1, · · · , in} ⊆ I,

mi1 , · · · ,min are positive integers, and gmi1
, · · · ,gmin

are respectively in

(M)mi1 , · · · ,(M)min

for M a dense subspace of E ′,
{
gmi j
◦Xi j

}n

j=1
are independent random vectors having

values in Rmi1 , · · · ,Rmin respectively.

Proof: It is necessary to show that the events X−1
i j

(
Bi j

)
are independent events when-

ever Bi j are Borel sets. By Lemma 26.5.1 and the above Lemma 26.5.2, it suffices to verify
that the events

X−1
i j

(
g−1

mi j

(
Cα⃗,mi j

))
=
(
gmi j
◦Xi j

)−1(
Cα⃗,mi j

)
are independent where Cα⃗,mi j

are the cones described in Lemma 26.5.2. Thus

α⃗=
(
αk1 , · · · ,αkm

)
, Cα⃗,mi j

=

mi j

∏
i=1

(−∞,αki ]

But this condition is implied when the finite dimensional valued random vectors gmi j
◦Xi j

are independent. ■
The above assertion also goes the other way as you may want to show.

26.7 0,1 Laws
I am following [55] for the proof of many of the following theorems. Recall the set of ω

which are in infinitely many of the sets {An} is ∩∞
n=1∪∞

m=n Am. This is in ∩∞
n=1∪∞

m=n Am if
and only if for every n there exists m≥ n such that it is in Am.

Theorem 26.7.1 Suppose An ∈ Fn where the σ algebras {Fn}∞

n=1 are indepen-
dent. Suppose also that ∑

∞
k=1 P(Ak) = ∞. Then P(∩∞

n=1∪∞
m=n Am) = 1.

Proof: It suffices to verify that P
(
∪∞

n=1∩∞
m=n AC

m
)
= 0 which can be accomplished by

showing that P
(
∩∞

m=nAC
m
)
= 0 for each n. The sets

{
AC

k

}
satisfy AC

k ∈ Fk. Therefore,
noting that e−x ≥ 1− x,

P
(
∩∞

m=nAC
m
)

= lim
N→∞

P
(
∩N

m=nAC
m
)
= lim

N→∞

N

∏
m=n

P
(
AC

m
)

= lim
N→∞

N

∏
m=n

(1−P(Am))≤ lim
N→∞

N

∏
m=n

e−P(Am)

= lim
N→∞

exp

(
−

N

∑
m=n

P(Am)

)
= 0. ■
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The Kolmogorov zero one law follows next. It has to do with something called a tail
event.

Definition 26.7.2 Let {Fn} be a sequence of σ algebras. Then Tn ≡ σ
(
∪∞

k=nFk
)

where this means the smallest σ algebra which contains each Fk for k ≥ n. Then a tail
event is a set which is in the σ algebra, T ≡ ∩∞

n=1Tn.

As usual, (Ω,F ,P) is the underlying probability space such that all σ algebras are
contained in F .

Lemma 26.7.3 Suppose {Fn}∞

n=1 are independent σ algebras and suppose A is a tail
event and Aki ∈Fki , i = 1, · · · ,m are given sets. Then

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A)

Proof: Let K be the π system consisting of finite intersections of the form

Bm1 ∩Bm2 ∩·· ·∩Bm j

where Bmi ∈Fki for ki > max{k1, · · · ,km} ≡ N. Thus σ (K ) = σ
(
∪∞

i=N+1Fi
)
. Now let

G ≡
{

B ∈ σ (K ) : P
(
Ak1 ∩·· ·∩Akm ∩B

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(B)

}
Then clearly K ⊆ G . It is also true that G is closed with respect to complements and
countable disjoint unions. By the lemma on π systems, G = σ (K ) = σ

(
∪∞

i=N+1Fi
)
.

Since A is in σ
(
∪∞

i=N+1Fi
)

due to the assumption that it is a tail event, it follows that

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A) ■

Theorem 26.7.4 Suppose the σ algebras, {Fn}∞

n=1 are independent and suppose
A is a tail event. Then P(A) either equals 0 or 1.

Proof: Let A ∈T ≡ ∩∞
n=1Tn ≡ ∩∞

n=1σ
(
∪∞

k=nFk
)
. I want to show that P(A) = P(A)2.

Since A is in T , it is in each σ
(
∪∞

k=nFk
)
. Let K denote sets of the form Ak1 ∩ ·· · ∩Akm

for some m, Ak j ∈Fk j where each k j > n. Thus K is a π system and

σ (K ) = σ
(
∪∞

k=n+1Fk
)
≡Tn+1

Let
G ≡

{
B ∈Tn+1 ≡ σ

(
∪∞

k=n+1Fk
)

: P(A∩B) = P(A)P(B)
}

Thus K ⊆ G because

P
(
Ak1 ∩·· ·∩Akm ∩A

)
= P

(
Ak1 ∩·· ·∩Akm

)
P(A)

by Lemma 26.7.3. However, it is routine that G is closed with respect to countable disjoint
unions and complements. Therefore by the Lemma on π systems Lemma 9.3.2 on Page
243, it follows G = σ (K ) = σ

(
∪∞

k=n+1Fk
)
.

Thus for any B ∈ σ
(
∪∞

k=n+1Fk
)
= Tn+1,P(A∩B) = P(A)P(B). However, A is in all

of these Tn+1 and so P(A∩A) = P(A) = P(A)2 so P(A) equals either 0 or 1. ■
What sorts of things are tail events of independent σ algebras?
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Theorem 26.7.5 Let {Xk} be a sequence of independent random variables having
values in Z a Banach space. That is, the σ algebras σ (Xk) are independent. Then

A≡ {ω : {Xk (ω)} converges}

is a tail event. So is

B≡

{
ω :

{
∞

∑
k=1
Xk (ω)

}
converges

}
.

Proof: Since Z is complete, A is the same as the set where {Xk (ω)} is a Cauchy
sequence. This set is

∩∞
n=1∩∞

p=1∪∞
m=p∩l,k≥m {ω : ∥Xk (ω)−X l (ω)∥< 1/n}

Note that

∪∞
m=p∩l,k≥m {ω : ∥Xk (ω)−X l (ω)∥< 1/n} ∈ σ

(
∪∞

j=pσ (X j)
)

for every p is the set where ultimately any pair ofXk,X l are closer together than 1/n,

∩∞
p=1∪∞

m=p∩l,k≥m {ω : ∥Xk (ω)−X l (ω)∥< 1/n}

is a tail event. The set where {Xk (ω)} is a Cauchy sequence is the intersection of all these
and is therefore, also a tail event.

Now consider B. This set is the same as the set where the partial sums are Cauchy
sequences. Let Sn ≡ ∑

n
k=1Xk. The set where the sum converges is then

∩∞
n=1∩∞

p=2∪∞
m=p∩l,k≥m {ω : ∥Sk (ω)−Sl (ω)∥< 1/n}

Say k < l and consider for m≥ p

{ω : ∥Sk (ω)−Sl (ω)∥< 1/n, k ≥ m}

This is the same as{
ω :

∥∥∥∥∥ l

∑
j=k−1

X j (ω)

∥∥∥∥∥< 1/n,k ≥ m

}
∈ σ

(
∪∞

j=p−1σ (X j)
)

Thus
∪∞

m=p∩l,k≥m {ω : ∥Sk (ω)−Sl (ω)∥< 1/n} ∈ σ
(
∪∞

j=p−1σ (X j)
)

and so the intersection for all p of these is a tail event. Then the intersection over all n of
these tail events is a tail event. ■

From this it can be concluded that if you have a sequence of independent random vari-
ables, {Xk} the set where it converges is either of probability 1 or probability 0. A similar
conclusion holds for the set where the infinite sum of these random variables converges.
This is stated in the next corollary. This incredible assertion is the next corollary.

Corollary 26.7.6 Let {Xk} be a sequence of random variables having values in a
Banach space. Then limn→∞Xn (ω) either exists for a.e. ω or the convergence fails to
take place for a.e. ω. Also if

A≡

{
ω :

∞

∑
k=1
Xk (ω) converges

}
,

then P(A) = 0 or 1.
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26.8 Strong Law of Large Numbers
Kolmogorov’s inequality is a very interesting inequality which depends on independence
of a set of random vectors. The random vectors have values in Rn or more generally some
real separable Hilbert space.

Lemma 26.8.1 If Y,X are independent random variables having values in a real sep-
arable Hilbert space, H with E

(
|X|2

)
,E
(
|Y |2

)
< ∞, then

∫
Ω

(X,Y )dP =

(∫
Ω

XdP,
∫

Ω

Y dP
)
.

Proof: Let {ek} be a complete orthonormal basis. Thus from Theorem 22.4.2,∫
Ω

(X,Y )dP =
∫

Ω

∞

∑
k=1

(X,ek)(Y,ek)dP

Now

∫
Ω

∞

∑
k=1
|(X,ek)(Y,ek)|dP≤

∫
Ω

(
∑
k
|(X,ek)|

2

)1/2(
∑
k
|(Y,ek)|

2

)1/2

dP

=
∫

Ω

|X| |Y |dP≤
(∫

Ω

|X|2 dP
)1/2(∫

Ω

|Y |2 dP
)1/2

< ∞

and so by Fubini’s theorem and independence ofX,Y ,∫
Ω

(X,Y )dP =
∫

Ω

∞

∑
k=1

(X,ek)(Y,ek)dP =
∞

∑
k=1

∫
Ω

(X,ek)(Y,ek)dP

=
∞

∑
k=1

∫
Ω

(X,ek)dP
∫

Ω

(Y,ek)dP =
∞

∑
k=1

(∫
Ω

XdP,ek

)(∫
Ω

Y dP,ek

)
dP

=

(∫
Ω

XdP,
∫

Ω

Y dP
)

■

Now here is Kolmogorov’s inequality.

Theorem 26.8.2 Suppose {Xk}n
k=1 are independent with E (|Xk|)< ∞, E (Xk) =

0. Then for any ε > 0,

P

([
max

1≤k≤n

∣∣∣∣∣ k

∑
j=1
X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

n

∑
j=1

E
(
|Xk|2

)
.

Proof: Let A=
[
max1≤k≤n

∣∣∣∑k
j=1X j

∣∣∣≥ ε

]
. Now let A1≡ [|X1| ≥ ε] and if A1, · · · ,Am

have been chosen,

Am+1 ≡

[∣∣∣∣∣m+1

∑
j=1
X j

∣∣∣∣∣≥ ε

]
∩

m⋂
r=1

[∣∣∣∣∣ r

∑
j=1
X j

∣∣∣∣∣< ε

]
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Thus the Ak partition A and ω ∈ Ak means
∣∣∣∑k

j=1X j

∣∣∣ ≥ ε but this did not happen for∣∣∣∑r
j=1X j

∣∣∣ for any r < k. Note also that Ak ∈ σ (X1, · · · ,Xk) . Then from algebra,∣∣∣∣∣ n

∑
j=1
X j

∣∣∣∣∣
2

=

(
k

∑
i=1
X i +

n

∑
j=k+1

X j,
k

∑
i=1
X i +

n

∑
j=k+1

X j

)

=

∣∣∣∣∣ k

∑
j=1
X j

∣∣∣∣∣
2

+ ∑
i≤k, j>k

(X i,X j)+ ∑
i≤k, j>k

(X j,X i)+ ∑
i>k, j>k

(X j,X i)

Written more succinctly,
∣∣∣∑n

j=1X j

∣∣∣2 = ∣∣∣∑k
j=1X j

∣∣∣2 +∑ j>k or i>k (X i,X j). Now multiply
both sides by XAk and integrate. Suppose i ≤ k for one of the terms in the second sum.
Then by Lemma 26.4.4 and Ak ∈ σ (X1, · · · ,Xk), the two random vectors XAkX i,X j are
independent, ∫

Ω

XAk (X i,X j)dP =

(∫
Ω

XAkX idP,
∫

Ω

X jdP
)
= 0

the last equality holding because by assumption E (X j) = 0. Therefore, it can be assumed
both i, j are larger than k and

∫
Ω

XAk

∣∣∣∣∣ n

∑
j=1
X j

∣∣∣∣∣
2

dP =
∫

Ω

XAk

∣∣∣∣∣ k

∑
j=1
X j

∣∣∣∣∣
2

dP+ ∑
j>k,i>k

∫
Ω

XAk (X i,X j)dP (26.8)

The last term on the right is interesting. Suppose i > j. The integral inside the sum is of the
form

∫
Ω

(
X i,XAkX j

)
dP. The second factor in the inner product is in

σ (X1, · · · ,Xk,X j)

and X i is not included in the list of random vectors. Thus by Lemma 26.4.4, the two
random vectorsX i,XAkX j are independent and so the last term in 26.8 reduces to(∫

Ω

X idP,
∫

Ω

XAkX jdP
)
=

(
0,
∫

Ω

XAkX jdP
)
= 0.

A similar result holds if j > i. Thus the mixed terms in the last term of 26.8 are all equal to
0. Hence 26.8 reduces to∫

Ω

XAk

∣∣∣∣∣ n

∑
j=1
X j

∣∣∣∣∣
2

dP =
∫

Ω

XAk

∣∣∣∣∣ k

∑
j=1
X j

∣∣∣∣∣
2

dP+∑
i>k

∫
Ω

XAk |X i|2 dP

and so
∫

Ω
XAk

∣∣∣∑n
j=1X j

∣∣∣2 dP ≥
∫

Ω
XAk

∣∣∣∑k
j=1X j

∣∣∣2 dP ≥ ε2P(Ak) .Now, summing these
yields

ε
2P(A)≤

∫
Ω

XA

∣∣∣∣∣ n

∑
j=1
X j

∣∣∣∣∣
2

dP≤
∫

Ω

∣∣∣∣∣ n

∑
j=1
X j

∣∣∣∣∣
2

dP = ∑
i, j

∫
Ω

(X i,X j)dP

By independence of the random vectors the mixed terms of the above sum equal zero and
so it reduces to ∑

n
i=1
∫

Ω
|X i|2 dP ■

This theorem implies the following amazing result.
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Theorem 26.8.3 Let {Xk}∞

k=1 be independent random vectors having values in a
separable real Hilbert space and suppose E (|Xk|)< ∞ for each k and E (Xk) = 0. Sup-

pose also that ∑
∞
j=1 E

(∣∣X j
∣∣2)< ∞.Then ∑

∞
j=1X j converges a.e.

Proof: Let ε > 0 be given. By Kolmogorov’s inequality, Theorem 26.8.2, it follows
that for p≤ m < n

P

([
max

m≤k≤n

∣∣∣∣∣ k

∑
j=m
X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

n

∑
j=p

E
(∣∣X j

∣∣2)≤ 1
ε2

∞

∑
j=p

E
(∣∣X j

∣∣2) .
Therefore, letting n→ ∞ it follows that for all m,n such that p≤ m≤ n

P

([
max

p≤m≤n

∣∣∣∣∣ n

∑
j=m
X j

∣∣∣∣∣≥ ε

])
≤ 1

ε2

∞

∑
j=p

E
(∣∣X j

∣∣2) .
It follows from the assumption ∑

∞
j=1 E

(∣∣X j
∣∣2) < ∞ there exists a sequence, {pn} such

that if m≥ pn

P

([
max

k≥m≥pn

∣∣∣∣∣ k

∑
j=m
X j

∣∣∣∣∣≥ 2−n

])
≤ 2−n.

By the Borel Cantelli lemma, Lemma 26.1.2, there is a set of measure 0, N such that for
ω /∈ N, ω is in only finitely many of the sets,[

max
k≥m≥pn

∣∣∣∣∣ k

∑
j=m
X j

∣∣∣∣∣≥ 2−n

]

and so for ω /∈ N, it follows that for large enough n,[
max

k≥m≥pn

∣∣∣∣∣ k

∑
j=m
X j (ω)

∣∣∣∣∣< 2−n

]
.

However, this says the partial sums
{

∑
k
j=1X j (ω)

}∞

k=1
are a Cauchy sequence. Therefore,

they converge. ■
With this amazing result, there is a simple proof of the strong law of large numbers but

first is an elementary lemma. In the following lemma, sk and a j could have values in any
normed linear space.

Lemma 26.8.4 Suppose sk→ s. Then limn→∞
1
n ∑

n
k=1 sk = s. Also if ∑

∞
j=1

a j
j converges,

then limn→∞
1
n ∑

n
j=1 a j = 0.

Proof: Consider the first part. Since sk → s, it follows there is some constant, C such
that |sk|<C for all k and |s|<C also. Choose K so large that if k ≥ K, then for n > K,

|s− sk|< ε/2.∣∣∣∣∣s− 1
n

n

∑
k=1

sk

∣∣∣∣∣≤ 1
n

n

∑
k=1
|sk− s|= 1

n

K

∑
k=1
|sk− s|+ 1

n

n

∑
k=K
|sk− s|
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≤ 2CK
n

+
ε

2
n−K

n
<

2CK
n

+
ε

2

Therefore, whenever n is large enough,
∣∣s− 1

n ∑
n
k=1 sk

∣∣< ε.

Now consider the second claim. Let sk = ∑
k
j=1

a j
j and s = limk→∞ sk Then by the first

part,

s = lim
n→∞

1
n

n

∑
k=1

sk = lim
n→∞

1
n

n

∑
k=1

k

∑
j=1

a j

j

= lim
n→∞

1
n

n

∑
j=1

a j

j

n

∑
k= j

1 = lim
n→∞

1
n

n

∑
j=1

a j

j
(n− j)

= lim
n→∞

(
n

∑
j=1

a j

j
− 1

n

n

∑
j=1

a j

)
= s− lim

n→∞

1
n

n

∑
j=1

a j ■

Now here is the strong law of large numbers.

Theorem 26.8.5 Suppose {Xk} are independent random variables, and also sup-
pose that E (|Xk|)< ∞ for each k and E (Xk) =mk. Suppose also

∞

∑
j=1

1
j2 E

(∣∣X j−m j
∣∣2)< ∞. (26.9)

Then limn→∞
1
n ∑

n
j=1 (X j−m j) = 0.

Proof: Consider the sum ∑
∞
j=1

X j−m j
j . This sum converges a.e. because of 26.9 and

Theorem 26.8.3 applied to the random vectors
{

X j−m j
j

}
. Therefore, from Lemma 26.8.4

it follows that for a.e. ω, limn→∞
1
n ∑

n
j=1 (X j (ω)−m j) = 0 ■

The next corollary is often called the strong law of large numbers. It follows immedi-
ately from the above theorem.

Corollary 26.8.6 Suppose
{
X j
}∞

j=1 are independent having mean m and variance

equal to σ2 ≡
∫

Ω

∣∣X j−m
∣∣2 dP < ∞. Then for a.e. ω ∈Ω,

lim
n→∞

1
n

n

∑
j=1
X j (ω) =m
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Chapter 27

Analytical Considerations
27.1 The Characteristic Function

One of the most important tools in probability is the characteristic function. To begin with,
assume the random variables have values in Rp.

Definition 27.1.1 Let X be a random variable as above. The characteristic func-
tion is

φX (t)≡ E
(
eit·X)≡ ∫

Ω

eit·X(ω)dP =
∫
Rp

eit·xdλX

the last equation holding by Proposition 26.1.12.

Recall the following fundamental lemma and definition, Lemma 13.2.4 on Page 379
where G was a set of functions described there.

Definition 27.1.2 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 27.1.3 F and F−1 are both one to one, onto, and are inverses of each other.

The main result on characteristic functions is the following.

Theorem 27.1.4 Let X and Y be random vectors with values in Rp and suppose
E
(
eit·X) = E

(
eit·Y ) for all t ∈ Rp. Then λX = λY .

Proof: For ψ ∈ G , let λX (ψ)≡
∫
Rp ψdλX and λY (ψ)≡

∫
Rp ψdλY . Thus both λX

and λY are in G ∗. Then letting ψ ∈ G and using Fubini’s theorem,∫
Rp

∫
Rp

eit·y
ψ (t)dtdλY =

∫
Rp

∫
Rp

eit·ydλY ψ (t)dt =
∫
Rp

E
(
eit·Y )

ψ (t)dt

=
∫
Rp

E
(
eit·X)

ψ (t)dt =
∫
Rp

∫
Rp

eit·xdλXψ (t)dt

=
∫
Rp

∫
Rp

eit·x
ψ (t)dtdλX .

Thus λY

(
F−1ψ

)
= λX

(
F−1ψ

)
. Since ψ ∈ G is arbitrary and F−1 is onto, this implies

λX = λY in G ∗. But G is dense in C0 (Rp) from the Stone Weierstrass theorem and so
λX = λY as measures. Recall from real analysis the dual space of C0 (Rn) is the space of
complex measures.

Alternatively, the above shows that since F−1 is onto, for all ψ ∈ G ,∫
Rp

ψdλY =
∫
Rp

ψdλX

and then, by a use of the Stone Weierstrass theorem, the above will hold for all ψ ∈Cc (Rn)
and now, by the Riesz representation theorem for positive linear functionals, λY = λX . ■

You can also give a version of this theorem in which reference is made only to the
probability distribution measures.

735
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Definition 27.1.5 For µ a probability measure on the Borel sets of Rn,

φ µ (t)≡
∫
Rn

eit·xdµ.

Theorem 27.1.6 Let µ and ν be probability measures on the Borel sets of Rp and
suppose φ µ (t) = φ ν (t) . Then µ = ν .

Proof: The proof is identical to the above. Just replace λX with µ and λY with ν . ■

27.2 Conditional Probability
Here I will consider the concept of conditional probability depending on the theory of
differentiation of general Radon measures. This leads to a different way of thinking about
independence.

If X,Y are random vectors defined on a probability space having values in Rp1 and
Rp2 respectively, and if E is a Borel set in the appropriate space, then (X,Y ) is a random
vector with values in Rp1 ×Rp2 and λ (X,Y ) (E×Rp2) = λX (E), λ (X,Y ) (Rp1 ×E) =
λY (E). Thus, by Theorem 19.8.1 on Page 520, there exist probability measures, denoted
here by λX|y and λY |x, such that whenever E is a Borel set in Rp1 ×Rp2 ,∫

Rp1×Rp2
XEdλ (X,Y ) =

∫
Rp1

∫
Rp2

XEdλY |xdλX ,

and ∫
Rp1×Rp2

XEdλ (X,Y ) =
∫
Rp2

∫
Rp1

XEdλX|ydλY .

Definition 27.2.1 Let X and Y be two random vectors defined on a probability
space. The conditional probability measure of Y given X is the measure λY |x in the
above. Similarly the conditional probability measure ofX given Y is the measure λX|y .

More generally, one can use the theory of slicing measures to consider any finite list
of random vectors, {X i}, defined on a probability space with X i ∈ Rpi , and write the
following for E a Borel set in ∏

n
i=1Rpi .∫

Rp1×···×Rpn
XEdλ (X1,···,Xn)

=
∫
Rp1×···×Rpn−1

∫
Rpn

XEdλXn|(x1,··· ,xn−1)dλ (X1,···,Xn−1)

=
∫
Rp1×···×Rpn−2

∫
Rpn−1

∫
Rpn

XEdλXn|(x1,··· ,xn−1)dλXn−1|(x1,··· ,xn−2)dλ (X1,···,Xn−2)

...∫
Rp1
· · ·
∫
Rpn

XEdλXn|(x1,··· ,xn−1)dλXn−1|(x1,··· ,xn−2) · · ·dλX2|x1dλX1 . (27.1)

Obviously, this could have been done in any order in the iterated integrals by simply modi-
fying the “given” variables, those occurring after the symbol |, to be those which have been
integrated in an outer level of the iterated integral. For simplicity, write

λXn|(x1,··· ,xn−1) = λXn|x1,··· ,xn−1



27.2. CONDITIONAL PROBABILITY 737

Definition 27.2.2 Let {X1, · · · ,Xn} be random vectors defined on a probability
space having values in Rp1 , · · · ,Rpn respectively. The random vectors are independent if
for every E a Borel set in Rp1 ×·· ·×Rpn ,∫

Rp1×···×Rpn
XEdλ (X1,··· ,Xn)

=
∫
Rp1
· · ·
∫
Rpn

XEdλXndλXn−1 · · ·dλX2dλX1 (27.2)

and the iterated integration may be taken in any order. If A is any set of random vectors
defined on a probability space, A is independent if any finite set of random vectors from
A is independent.

Thus, the random vectors are independent exactly when the dependence on the givens
in 27.1 can be dropped.

Does this amount to the same thing as discussed earlier? Suppose you have three ran-
dom variables X,Y,Z. Let A =X−1 (E), B = Y −1 (F) ,C = Z−1 (G) where E,F,G are
Borel sets. Thus these inverse images are typical sets in

σ (X) ,σ (Y ) ,σ (Z)

respectively. First suppose that the random variables are independent in the earlier sense.
Then

P(A∩B∩C) = P(A)P(B)P(C)

=
∫
Rp1

XE (x)dλX

∫
Rp2

XF (y)dλY

∫
Rp3

XG (z)dλZ

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZdλY dλX

Also
P(A∩B∩C) =

∫
Rp1×Rp2×Rp3

XE (x)XF (y)XG (z)dλ (X,Y,Z)

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZ|xydλY |xdλX

Thus ∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZdλY dλX

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZ|xydλY |xdλX

Now letting G = Rp3 , it follows that∫
Rp1

∫
Rp2

XE (x)XF (y)dλY dλX =
∫
Rp1

∫
Rp2

XE (x)XF (y)dλY |xdλX

By uniqueness of the slicing measures or an application of the Besikovitch differentiation
theorem, it follows that for λX a.e. x,

λY = λY |x
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Thus, using this in the above,∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZdλY dλX

=
∫
Rp1

∫
Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZ|xydλY dλX

and also it reduces to∫
Rp1×Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZdλ (X,Y )

=
∫
Rp1×Rp2

∫
Rp3

XE (x)XF (y)XG (z)dλZ|xydλ (X,Y )

Now by uniqueness of the slicing measures again, for λ (X,Y ) a.e. (x,y) , it follows that

λZ = λZ|xy

Similar conclusions hold for λX ,λY . In each case, off a set of measure zero the distribu-
tion measures equal the slicing measures.

Conversely, if the distribution measures equal the slicing measures off sets of measure
zero as described above, then it is obvious that the random variables are independent. The
same reasoning applies for any number of random variables.

Thus this gives a different and more analytical way to think of independence of finitely
many random variables. Clearly, the argument given above will apply to any finite set of
random variables.

Proposition 27.2.3 Equations 27.2 and 27.1 hold with XE replaced by any nonnega-
tive Borel measurable function and for any bounded continuous function or for any function
in L1.

Proof: The two equations hold for simple functions in place of XE and so an appli-
cation of the monotone convergence theorem applied to an increasing sequence of simple
functions converging pointwise to a given nonnegative Borel measurable function yields the
conclusion of the proposition in the case of the nonnegative Borel function. For a bounded
continuous function or one in L1, one can apply the result just established to the positive
and negative parts of the real and imaginary parts of the function.

Lemma 27.2.4 LetX1, · · · ,Xn be random vectors with values in Rp1 , · · · ,Rpn respec-
tively and let

g : Rp1 ×·· ·×Rpn → Rk

be Borel measurable. Then g (X1, · · · ,Xn) is a random vector with values in Rk and if
h : Rk→ [0,∞), then ∫

Rk
h(y)dλg(X1,··· ,Xn) (y) =∫

Rp1×···×Rpn
h(g (x1, · · · ,xn))dλ (X1,··· ,Xn). (27.3)

If X i is a random vector with values in Rpi , i = 1,2, · · · and if gi : Rpi → Rki , where gi is
Borel measurable, then the random vectors gi (X i) are also independent whenever theX i
are independent.
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Proof: First let E be a Borel set in Rk. From the definition,

λg(X1,··· ,Xn) (E) = P(g (X1, · · · ,Xn) ∈ E)

= P
(
(X1, · · · ,Xn) ∈ g−1 (E)

)
= λ (X1,··· ,Xn)

(
g−1 (E)

)
∫
Rk

XEdλg(X1,··· ,Xn) =
∫
Rp1×···×Rpn

Xg−1(E)dλ (X1,··· ,Xn)

=
∫
Rp1×···×Rpn

XE (g (x1, · · · ,xn))dλ (X1,··· ,Xn).

This proves 27.3 in the case when h is XE . To prove it in the general case, approximate
the nonnegative Borel measurable function with simple functions for which the formula is
true, and use the monotone convergence theorem.

It remains to prove the last assertion that functions of independent random vectors are
also independent random vectors. Let E be a Borel set in Rk1 ×·· ·×Rkn . Then for

π i (x1, · · · ,xn)≡ xi,∫
Rk1×···×Rkn

XEdλ (g1(X1),··· ,gn(Xn))

≡
∫
Rp1×···×Rpn

XE ◦ (g1 ◦π1, · · · ,gn ◦πn)dλ (X1,··· ,Xn)

=
∫
Rp1
· · ·
∫
Rpn

XE ◦ (g1 ◦π1, · · · ,gn ◦πn)dλXn · · ·dλX1

=
∫
Rk1
· · ·
∫
Rkn

XEdλgn(Xn) · · ·dλg1(X1) ■

Of course if Xi, i = 1,2, ...,n are independent, this means the σ algebras σ (Xi) are indepen-
dent. Now σ (gi ◦Xi)⊆ σ (Xi) because

(gi ◦Xi)
−1 (Borel set) = X−1

i
(
g−1

i (Borel set)
)
= X−1

i (Borel set) ∈ σ (Xi)

and so the variables gi ◦Xi, i = 1,2, ...,n are independent. I think this is a more direct way
of seeing this second claim.

Proposition 27.2.5 Let ν1, · · · ,νn be Radon probability measures defined onRp. Then
there exists a probability space and independent random vectors

{X1, · · · ,Xn}

defined on this probability space such that λX i = ν i.

Proof: Let (Ω,S ,P) ≡ ((Rp)n ,S1×·· ·×Sn,ν1×·· ·×νn) where this is just the
product σ algebra and product measure which satisfies the following for measurable rect-
angles.

(ν1×·· ·×νn)

(
n

∏
i=1

Ei

)
=

n

∏
i=1

ν i (Ei).

Now letX i (x1, · · · ,xi, · · · ,xn) = xi.



740 CHAPTER 27. ANALYTICAL CONSIDERATIONS

Then from the definition, if E is a Borel set in Rp,

λX i (E)≡ P{X i ∈ E}

= (ν1×·· ·×νn)(Rp×·· ·×E×·· ·×Rp) = ν i (E).

This defines the random vectors {X1, · · · ,Xn} such that λX i = ν i on all Borel sets. Are
these random vectors independent? Let M consist of all Borel sets of (Rp)n such that∫

Rp
· · ·
∫
Rp

XE (x1, · · · ,xn)dλX1 · · ·dλXn =
∫
(Rp)n

XEdλ (X1,··· ,Xn).

It is clear that M contains all products of Borel sets ∏
n
i=1 Ei which is a π system called

K . It is also clearly closed with respect to countable disjoint unions and complements.
Thus. by the lemma on π systems, Lemma 9.3.2, it contains σ (K ) which is the Borel
sets because it contains all open sets. Therefore, the given random vectors are independent
because you can dispense with the givens. ■

The following Lemma was proved earlier in a different way.

Lemma 27.2.6 If {Xi}n
i=1 are independent random variables having values in R,

E

(
n

∏
i=1

Xi

)
=

n

∏
i=1

E (Xi).

Proof: By Lemma 27.2.4 and denoting by P the product, ∏
n
i=1 Xi,

E

(
n

∏
i=1

Xi

)
=

∫
R

zdλ P (z) =
∫
Rn

n

∏
i=1

xidλ (X1,··· ,Xn)

=
∫
R
· · ·
∫
R

n

∏
i=1

xidλ X1 · · ·dλ Xn =
n

∏
i=1

E (Xi).■

27.3 Conditional Expectation, Sub-martingales
This concept is developed more later when conditional expectation relative to a σ algebra is
discussed. However, I think there tends to be a disconnect between that more abstract idea
and what we usually think of where conditional expectation involves expectation in which
conditional probability is used, where a random variable is “given” to have a particular
value, as described above. Certainly this is the case in beginning treatments of probabil-
ity as an application of combinatorics or in beginning statistics classes. Therefore, to tie
this in to this more elementary way of thinking, I will present conditional expectation in
terms of conditional probability as defined above, where values of random variables are
given. This leads to a rudimentary treatment of the sub-martingale convergence theorem
presented here. However, the more abstract version presented later is much less difficult I
think, because it is dependent on the Radon Nikodym theorem rather than the very difficult
Besicovitch differentiation theory of Radon measures.

Definition 27.3.1 Let X and Y be random vectors having values in Fp1 and Fp2

respectively. Then if
∫
|x|dλX|y (x)< ∞,define E (X|y)≡

∫
xdλX|y (x).
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Proposition 27.3.2 Suppose
∫
Fp1×Fp2 |x|dλ (X,Y ) (x) < ∞. Then E (X|y) exists for

λY a.e. y and ∫
Fp2

E (X|y)dλY =
∫
Fp1
xdλX (x) = E (X).

Proof: ∞ >
∫
Fp1×Fp2 |x|dλ (X,Y ) =

∫
Fp2

∫
Fp1 |x|dλX|y (x)dλY (y) and so∫

Fp1
|x|dλX|y (x)< ∞,

λY a.e. Now
∫
Fp2 E (X|y)dλY =

=
∫
Fp2

∫
Fp1
xdλX|y (x)dλY (y) =

∫
Fp1×Fp2

xdλ (X,Y )

=
∫
Fp1

∫
Fp2
xdλY |x (y)dλX (x) =

∫
Fp2
xdλX (x) = E (X) ■

Definition 27.3.3 Let {Xn} be any sequence, finite or infinite, of random variables
with values in R which are defined on some probability space, (Ω,S ,P). We say {Xn} is a
martingale if

E (Xn|xn−1, · · · ,x1) = xn−1

and we say {Xn} is a sub-martingale if

E (Xn|xn−1, · · · ,x1)≥ xn−1.

Recall Lemma 10.15.1, Jensen’s inequality. It is stated next for convenience.

Lemma 27.3.4 If φ : R → R is convex, then φ is continuous. Also, if φ is convex,
µ(Ω) = 1, and f ,φ ( f ) : Ω→ R are in L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ .

Next is the notion of an upcrossing.

Definition 27.3.5 Let {xi}I
i=1 be any sequence of real numbers, I ≤ ∞. Define an

increasing sequence of integers {mk} as follows. m1 is the first integer ≥ 1 such that
xm1 ≤ a, m2 is the first integer larger than m1 such that xm2 ≥ b, m3 is the first integer
larger than m2 such that xm3 ≤ a, etc. Then each sequence,

{
xm2k−1 , · · · ,xm2k

}
, is called an

upcrossing of [a,b].

Here is a picture of an upcrossing.

b

a

Proposition 27.3.6 Let {Xi}n
i=1 be a finite sequence of real random variables defined

on Ω where (Ω,S ,P) is a probability space. Let U[a,b] (ω) denote the number of upcross-
ings of Xi (ω) of the interval [a,b]. Then U[a,b] is a random variable, in other words, a
nonnegative measurable function.
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Proof: Let X0 (ω) ≡ a + 1, let Y0 (ω) ≡ 0, and let Yk (ω) remain 0 for k = 0, · · · , l
until Xl (ω) ≤ a. When this happens (if ever), Yl+1 (ω) ≡ 1. Then let Yi (ω) remain 1 for
i = l +1, · · · ,r until Xr (ω)≥ b when Yr+1 (ω)≡ 0. Let Yk (ω) remain 0 for k ≥ r+1 until
Xk (ω) ≤ a when Yk (ω) ≡ 1 and continue in this way. Thus the upcrossings of Xi (ω) are
identified as unbroken strings of ones with a zero at each end, with the possible exception
of the last string of ones which may be missing the zero at the upper end and may or may
not be an upcrossing.

Note also that Y0 is measurable because it is identically equal to 0 and that if Yk is
measurable, then Yk+1 is measurable because the only change in going from k to k+1 is a
change from 0 to 1 or from 1 to 0 on a measurable set determined by Xk. Now let

Zk (ω) =

{
1 if Yk (ω) = 1 and Yk+1 (ω) = 0,
0 otherwise,

if k < n and

Zn (ω) =

{
1 if Yn (ω) = 1 and Xn (ω)≥ b,
0 otherwise.

Thus Zk (ω) = 1 exactly when an upcrossing has been completed and each Zi is a random
variable.

U[a,b] (ω) =
n

∑
k=1

Zk (ω)

so U[a,b] is a random variable as claimed. ■
The following corollary collects some key observations found in the above construction.

Corollary 27.3.7 U[a,b] (ω) ≤ the number of unbroken strings of ones in the sequence
{Yk (ω)} there being at most one unbroken string of ones which produces no upcrossing.
Also

Yi (ω) = ψ i

({
X j (ω)

}i−1
j=1

)
, (27.4)

where ψ i is some function of the past values of X j (ω).

Lemma 27.3.8 (upcrossing lemma) Let {Xi}n
i=1 be a sub-martingale and suppose

E (|Xn|)< ∞.

Then

E
(
U[a,b]

)
≤ E (|Xn|)+ |a|

b−a
.

Proof: Let φ (x)≡ a+(x−a)+. Thus φ is a convex and increasing function.

φ (Xk+r)−φ (Xk) =
k+r

∑
i=k+1

φ (Xi)−φ (Xi−1)

=
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))Yi +
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi).

The upcrossings of φ (Xi) are exactly the same as the upcrossings of Xi and from 27.4,

E

(
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi)

)
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=
k+r

∑
i=k+1

∫
Ri
(φ (xi)−φ (xi−1))

(
1−ψ i

({
x j
}i−1

j=1

))
dλ (X1,··· ,Xi)

=
k+r

∑
i=k+1

∫
Ri−1

∫
R
(φ (xi)−φ (xi−1))·(

1−ψ i

({
x j
}i−1

j=1

))
dλ Xi|x1···xi−1dλ (X1,··· ,Xi−1)

=
k+r

∑
i=k+1

∫
Ri−1

(
1−ψ i

({
x j
}i−1

j=1

))
·

∫
R
(φ (xi)−φ (xi−1))dλ Xi|x1···xi−1dλ (X1,··· ,Xi−1) (27.5)

By Jensen’s inequality, Lemma 27.3.4 and that this is a sub-martingale, and that φ is in-
creasing in addition to being convex,∫

R
φ (xi)dλ Xi|x1···xi−1 ≥ φ

(∫
R

xidλ Xi|x1···xi−1

)
≥ φ (xi−1) .

Therefore, from 27.5, E
(
∑

k+r
i=k+1 (φ (Xi)−φ (Xi−1))(1−Yi)

)
≥

k+r

∑
i=k+1

∫
Ri−1

(
1−ψ i

({
x j
}i−1

j=1

))
(φ (xi−1)−φ (xi−1))dλ (X1,··· ,Xi−1) = 0

Now let the unbroken strings of ones for {Yi (ω)} be

{k1, · · · ,k1 + r1} ,{k2, · · · ,k2 + r2} , · · · ,{km, · · · ,km + rm} (27.6)

where m = V (ω) ≡ the number of unbroken strings of ones in the sequence {Yi (ω)}. By
Corollary 27.3.7 V (ω)≥U[a,b] (ω).

φ (Xn (ω))−φ (X1 (ω))

=
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))Yk (ω)

+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)).

Summing the first sum over the unbroken strings of ones (the terms in which Yi (ω) = 0
contribute nothing), and observing that for x > a,φ (x) = x,

φ (Xn (ω))−φ (X1 (ω))≥U[a,b] (ω)(b−a)+0+

n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)) (27.7)

where the zero on the right side results from a string of ones which does not produce an
upcrossing. It is here that we use φ (x) ≥ a. Such a string begins with φ (Xk (ω)) = a and
results in an expression of the form φ (Xk+m (ω))−φ (Xk (ω))≥ 0 since φ (Xk+m (ω))≥ a.
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If we had not replaced Xk with φ (Xk) , it would have been possible for φ (Xk+m (ω)) to be
less than a and the zero in the above could have been a negative number.

Therefore from 27.7,

(b−a)E
(
U[a,b]

)
≤ E (φ (Xn)−φ (X1))≤ E (φ (Xn)−a)

= E
(
(Xn−a)+

)
≤ |a|+E (|Xn|) ■

With this estimate, the amazing sub-martingale convergence theorem follows. This
incredible theorem says that a bounded in L1 sub-martingale must converge a.e.

Theorem 27.3.9 (sub-martingale convergence theorem) Let {Xi}∞

i=1 be a sub-mart-
ingale with K ≡ sup{E (|Xn|) : n≥ 1}< ∞. Then there exists a random variable X∞, such
that E (|X∞|)≤ K and limn→∞ Xn (ω) = X∞ (ω) a.e.

Proof: Let a,b ∈ Q and let a < b. Let Un
[a,b] (ω) be the number of upcrossings of

{Xi (ω)}n
i=1. Then let

U[a,b] (ω)≡ lim
n→∞

Un
[a,b] (ω) = number of upcrossings of {Xi} .

By the upcrossing lemma, E
(

Un
[a,b]

)
≤ E(|Xn|)+|a|

b−a ≤ K+|a|
b−a and so by the monotone conver-

gence theorem, E
(
U[a,b]

)
≤ K+|a|

b−a < ∞ which shows U[a,b] (ω) is finite a.e., for all ω /∈ S[a,b]
where P

(
S[a,b]

)
= 0. Define S ≡ ∪

{
S[a,b] : a,b ∈Q, a < b

}
. Then P(S) = 0 and if ω /∈ S,

{Xk}∞

k=1 has only finitely many upcrossings of every interval having rational endpoints.
Thus, for ω /∈ S,

lim sup
k→∞

Xk (ω) = lim inf
k→∞

Xk (ω) = lim
k→∞

Xk (ω)≡ X∞ (ω) .

Letting X∞ (ω) = 0 for ω ∈ S, Fatou’s lemma implies∫
Ω

|X∞|dP =
∫

Ω

lim inf
n→∞
|Xn|dP≤ lim inf

n→∞

∫
Ω

|Xn|dP≤ K ■

27.4 Characteristic Functions and Independence
There is a way to tell if random vectors are independent by using their characteristic func-
tions.

Proposition 27.4.1 If X i is a random vector having values in Rpi , then the random
vectors are independent if and only if

E
(
eiP)= n

∏
j=1

E
(
eit j ·X j

)
where P≡ ∑

n
j=1 t j ·X j for t j ∈ Rp j .

The proof of this proposition will depend on the following lemma.
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Lemma 27.4.2 Let Y be a random vector with values in Rp and let f be bounded and
measurable with respect to the Radon measure λY , and satisfy∫

f (y)eit·ydλY = 0

for all t ∈ Rp. Then f (y) = 0 for λY a.e. y.

Proof: You could write the following for φ ∈ G∫
φ (t)

∫
f (y)eit·ydλY dt = 0 =

∫
f (y)

(∫
φ (t)eit·ydt

)
dλY

Recall that the inverse Fourier transform maps G onto G . Hence
∫

f (y)ψ (y)dλY = 0 for
all ψ ∈ G . Thus this is also so for every ψ ∈C∞

0 (Rp)⊇C∞
c (Rp) by an obvious application

of the Stone Weierstrass theorem. Let {φ k} be a sequence of functions in C∞
c (Rp) which

converges to

sgn( f )≡
{

f̄/ | f | if f ̸= 0
0 if f = 0

pointwise and in L1 (Rp,λY ) , each |φ k| ≤ 2. Then for any ψ ∈C∞
0 (Rp) ,

0 =
∫

f (y)φ n (y)ψ (y)dλY →
∫
| f (y)|ψ (y)dλY

Also, the above holds for any ψ ∈Cc (Rp) as can be seen by taking such a ψ and convolving
with a mollifier. By the Riesz representation theorem, f (y) = 0 λY a.e. (The measure
µ (E)≡

∫
E | f (y)|dλY equals 0.) ■

Proof of the proposition: If theX j are independent, the formula follows from Lemma
27.2.6 and Lemma 27.2.4.

Now suppose the formula holds. Thus ∏
n
j=1 E

(
eit j ·X j

)
=∫

Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn·xndλX1dλX2 · · ·dλXn = E
(
eiP)

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1 eit2·x2 · · ·eitn·xndλX1|x2···xndλX2|x3···xn · · ·dλXn . (27.8)

Then from the above Lemma 27.4.2, the following equals 0 for λXn a.e. xn.∫
Rpn−1

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−1·xn−1dλX1dλX2 · · ·dλXn−1−

∫
Rpn−1

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2

· · ·eitn−1·xn−1dλX1|x2···xndλX2|x3···xn · · ·dλXn−1|xn

Let ti = 0 for i = 1,2, · · · ,n−2. Then this implies∫
Rpn−1

eitn−1·xn−1dλXn−1 =
∫
Rpn−1

eitn−1·xn−1dλXn−1|xn
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By the fact that the characteristic function determines the distribution measure, Theorem
27.1.4, it follows that for these xn off a set of λXn measure zero,λXn−1 = λXn−1|xn .
Returning to 27.8, one can replace λXn−1|xn with λXn−1 to obtain∫

Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn·xndλX1dλX2 · · ·dλXn−1dλXn

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

eit1·x1 eit2·x2 · · ·eitn·xn ·

dλX1|x2···xndλX2|x3···xn · · ·dλXn−1dλXn

Next let tn = 0 and applying the above Lemma 27.4.2 again, this implies that for λXn−1
a.e. xn−1, the following equals 0.∫

Rpn−2
· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2dλX1dλX2 · · ·dλXn−2−

∫
Rpn−2

· · ·
∫
Rp2

∫
Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2 ·

dλX1|x2···xndλX2|x3···xn · · ·dλXn−2|xnxn−1

Let ti = 0 for i = 1,2, · · · ,n−3. Then you obtain∫
Rpn−2

eitn−2·xn−2dλXn−2 =
∫
Rpn−2

eitn−2·xn−2dλXn−2|xnxn−1

and so λXn−2 = λXn−2|xnxn−1 for xn−1 off a set of λXn−1 measure zero. Continuing this
way, it follows that

λXn−k = λXn−k|xnxn−1···xn−k+1

for xn−k+1 off a set of λXn−k+1 measure zero. Thus if E is Borel in Rpn−1 ×·· ·×Rp1 ,∫
Rpn×···×Rp1

XEdλ (X1···Xn) =

∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλX1|x2···xndλX2|x3···xn · · ·dλXn−1|xndλXn∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλX1|x2···xndλX2|x3···xn · · ·dλXn−1dλXn

...

=
∫
Rpn
· · ·
∫
Rp2

∫
Rp1

XEdλX1dλX2 · · ·dλXn

One could achieve this iterated integral in any order by similar arguments to the above. By
Definition 27.2.2 and the discussion which follows, this implies that the random variables
X i are independent. ■

Here is another proof of the Doob Dynkin lemma based on differentiation theory.
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Lemma 27.4.3 Suppose X,Y 1,Y 2, · · · ,Y k are random vectors X having values in
Rn and Y j having values in Rp j and

X,Y j ∈ L1 (Ω) .

SupposeX is σ (Y 1, · · · ,Y k) measurable. Thus

{
X−1 (E) : E Borel

}
⊆

{
(Y 1, · · · ,Y k)

−1 (F) : F is Borel in
k

∏
j=1
Rp j

}

Then there exists a Borel function, g : ∏
k
j=1Rp j → Rn such that

X = g (Y 1,Y 2, · · · ,Y k) .

Proof: For the sake of brevity, denote by Y the vector (Y 1, · · · ,Y k) and by y the
vector (y1, · · · ,yk) and let ∏

k
j=1Rp j ≡ RP. For E a Borel set of Rn,∫

Y −1(E)
XdP =

∫
Rn×RP

XRn×E (x,y)xdλ (X,Y )

=
∫

E

∫
Rn
xdλX|ydλY . (27.9)

Consider the function y→
∫
Rn xdλX|y. Since dλY is a Radon measure having inner and

outer regularity, it follows the above function is equal to a Borel function for λY a.e. y.
This function will be denoted by g. Then from 27.9∫

Y −1(E)
XdP =

∫
E
g (y)dλY =

∫
RP

XE (y)g (y)dλY

=
∫

Ω

XE (Y (ω))g (Y (ω))dP =
∫
Y −1(E)

g (Y (ω))dP

and since Y −1 (E) is an arbitrary element of σ (Y ) , this shows that since X is σ (Y )
measurable,X = g (Y ) P a.e. ■

What about the case whereX is not necessarily measurable in σ (Y 1, · · · ,Y k)?

Lemma 27.4.4 There exists a unique function Z (ω) which satisfies∫
F
X (ω)dP =

∫
F
Z (ω)dP

for all
F ∈ σ (Y 1, · · · ,Y k)

such that Z is σ (Y 1, · · · ,Y k) measurable. It is denoted by

E (X|σ (Y 1, · · · ,Y k))

Proof: It is like the above. Letting E be a Borel set in Rp,∫
Y −1(E)

XdP =
∫
Rn×RP

XRn×E (x,y)xdλ (X,Y ) =
∫

E

∫
Rn
xdλX|ydλY .
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Now let g (y) ≡ E (X|y1, · · · ,yk) be a Borel representative of
∫
Rn xdλX|y It follows

ω → g (Y (ω)) = E (X|Y 1 (ω) , · · · ,Y k (ω)) is σ (Y 1, · · · ,Y k) measurable because by
definition ω→Y (ω) is σ (Y 1, · · · ,Y k) measurable and a Borel measurable function com-
posed with a measurable one is still measurable. It follows that for all E Borel in Rp,∫

Y −1(E)
XdP =

∫
E

E (X|y1, · · · ,yk)dλY

=
∫
Y −1(E)

E (X|Y 1 (ω) , · · · ,Y k (ω))dP

so Z (ω) = E (X|Y 1 (ω) , · · · ,Y k (ω)) works because a generic set of σ (Y 1, · · · ,Y k) is
Y −1 (E) for E a Borel set in Rp. If both Z,Z1 work, then for all

F ∈ σ (Y 1, · · · ,Y k) ,∫
F
(Z−Z1)dP = 0

Since F is arbitrary, some routine computations show Z =Z1 a.e. ■

Observation 27.4.5 Note that a.e.

E (X|Y 1 (ω) , · · · ,Y k (ω)) = E (X|σ (Y 1, · · · ,Y k))

where the one on the left is the expected value of X given values of Y j (ω). This one
corresponds to the sort of thing we say in words. The one on the right is an abstract
concept which is usually obtained using the Radon Nikodym theorem and its description is
given in the lemma. This lemma shows that its meaning is really to take the expected value
ofX given values for the Y k.

27.5 Characteristic Functions for Measures
Recall the characteristic function for a random variable having values in Rp. I will give
a review of this to begin with. Then the concept will be generalized to random variables
(vectors) which have values in a real separable Banach space.

Definition 27.5.1 LetX be a random variable. The characteristic function is

φX (t)≡ E
(
eit·X)≡ ∫

Ω

eit·X(ω)dP =
∫
Rp

eit·xdλX

the last equation holding by Proposition 26.1.12 on Page 717.

Recall the following fundamental lemma and definition, Lemma 13.2.4 on Page 379.

Definition 27.5.2 For T ∈ G ∗, define FT,F−1T ∈ G ∗ by

FT (φ)≡ T (Fφ) , F−1T (φ)≡ T
(
F−1

φ
)

Lemma 27.5.3 F and F−1 are both one to one, onto, and are inverses of each other.

The main result on characteristic functions is the following in Theorem 27.1.4 on Page
735 which is stated here for convenience.
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Theorem 27.5.4 Let X and Y be random vectors with values in Rp and suppose
E
(
eit·X) = E

(
eit·Y ) for all t ∈ Rp. Then λX = λY .

I want to do something similar for random variables which have values in a separable
real Banach space, E instead of Rp.

Corollary 27.5.5 Let K be a π system of subsets of Ω and suppose two probability
measures, µ and ν defined on σ (K ) are equal on K . Then µ = ν .

Proof: This follows from the Lemma 9.3.2 on Page 243. Let

G ≡{E ∈ σ (K ) : µ (E) = ν (E)}

Then K ⊆ G , since µ and ν are both probability measures, it follows that if E ∈ G , then
so is EC. Since these are measures, if {Ai} is a sequence of disjoint sets from G then

µ (∪∞
i=1Ai) = ∑

i
µ (Ai) = ∑

i
ν (Ai) = ν (∪∞

i=1A)

and so from Lemma 9.3.2, G = σ (K ) . ■
Next recall the following fundamental lemma used to prove Pettis’ theorem. It is proved

on Page 649 but is stated here for convenience.

Lemma 27.5.6 If E is a separable Banach space with B′ the closed unit ball in E ′, then
there exists a sequence { fn}∞

n=1 ≡ D′ ⊆ B′ with the property that for every x ∈ E,

∥x∥= sup
f∈D′
| f (x)|

Definition 27.5.7 Let E be a separable real Banach space. A cylindrical set is one
which is of the form

{x ∈ E : x∗i (x) ∈ Γi, i = 1,2, · · · ,m}
where here x∗i ∈ E ′ and Γi is a Borel set in R.

It is obvious that /0 is a cylindrical set and that the intersection of two cylindrical sets
is another cylindrical set. Thus the cylindrical sets form a π system. What is the smallest
σ algebra containing the cylindrical sets? It is the Borel sets of E. This is a special case
of Lemma 26.5.2. Recall why this was. Letting { fn}∞

n=1 = D′ be the sequence of Lemma
27.5.6 it follows that

{x ∈ E : ∥x−a∥ ≤ δ}

=

{
x ∈ E : sup

f∈D′
| f (x−a)| ≤ δ

}
=

{
x ∈ E : sup

f∈D′
| f (x)− f (a)| ≤ δ

}
= ∩∞

n=1

{
x ∈ E : fn (x) ∈ B( fn (a) ,δ )

}
which yields a countable intersection of cylindrical sets. It follows the smallest σ algebra
containing the cylindrical sets contains the closed balls and hence the open balls and con-
sequently the open sets and so it contains the Borel sets. However, each cylindrical set is a
Borel set and so in fact this σ algebra equals B (E).

From Corollary 27.5.5 it follows that two probability measures which are equal on the
cylindrical sets are equal on the Borel sets B (E).
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Definition 27.5.8 Let µ be a probability measure on B (E) where E is a real sep-
arable Banach space. Then for x∗ ∈ E ′,

φ µ (x
∗)≡

∫
E

eix∗(x)dµ (x) .

φ µ is called the characteristic function for the measure µ .

Note this is a little different than earlier when the symbol φ X (t) was used and X was
a random variable. Here the focus is more on the measure than a random variable X such
that its distribution measure is µ . It might appear this is a more general concept but in fact
this is not the case. You could just consider the separable Banach space or Polish space
with the Borel σ algebra as your probabililty space and then consider the identity map as
a random variable having the given measure as a distribution measure. Of course a major
result is the one which says that the characteristic function determines the measures.

Theorem 27.5.9 Let µ and ν be two probability measures on B (E) where E is a
separable real Banach space. Suppose

φ µ (x
∗) = φ ν (x

∗)

for all x∗ ∈ E ′. Then µ = ν .

Proof: It suffices to verify that µ (A) = ν (A) for all A ∈ K where K is the set of
cylindrical sets. Fix gn ∈ (E ′)n . Thus the two measures are equal if for all such gn, n ∈ N,

µ
(
g−1

n (B)
)
= ν

(
g−1

n (B)
)

for B a Borel set in Rn. Of course, for such a choice of gn ∈ (E ′)n , there are measures
defined on the Borel sets of Rn µn and νn which are given by

µn (B)≡ µ
(
g−1

n (B)
)
, νn (B)≡ ν

(
g−1

n (B)
)

and so it suffices to verify that these two measures are equal. So what are their character-
istic functions? Note that gn is a random variable taking E to Rn and µn, νn are just the
probability distribution measures of this random variable. Therefore,

φ µn
(t)≡

∫
Rn

eit·sdµn =
∫

E
eit·gn(x)dµ

Similarly,

φ νn
(t)≡

∫
Rn

eit·sdνn =
∫

E
eit·gn(x)dν

Now t ·gn ∈E ′ and so by assumption, the two ends of the above are equal. Hence φ µn
(t) =

φ νn
(t) and so by Theorem 27.1.6, µn = νn which, as shown above, implies µ = ν . ■

27.6 Independence in Banach Space
I will consider the relation between the characteristic function and independence of random
variables having values in a Banach space. Recall an earlier proposition which relates
independence of random vectors with characteristic functions. It is proved starting on Page
744.



27.6. INDEPENDENCE IN BANACH SPACE 751

Proposition 27.6.1 Let {Xk}n
k=1be random vectors such that Xk has values in Rpk .

Then the random vectors are independent if and only if

E
(
eiP)= n

∏
j=1

E
(
eit j ·X j

)
where P≡ ∑

n
j=1 t j ·X j for t j ∈ Rp j .

It turns out there is a generalization of the above proposition to the case where the
random variables have values in a real separable Banach space. Before proving this recall
an earlier theorem which had to do with reducing to the case where the random variables
had values in Rn, Theorem 26.6.1. It is restated here for convenience.

Theorem 27.6.2 The random variables {Xi}i∈I are independent if whenever

{i1, · · · , in} ⊆ I,

mi1 , · · · ,min are positive integers, and gmi1
, · · · ,gmin

are in(
E ′
)mi1 , · · · ,

(
E ′
)min

respectively,
{
gmi j
◦Xi j

}n

j=1
are independent random vectors having values in

Rmi1 , · · · ,Rmin

respectively.

Now here is the theorem about independence and the characteristic functions.

Theorem 27.6.3 Let {Xk}n
k=1be random variables such that Xk has values in Ek, a

real separable Banach space. Then the random variables are independent if and only if

E
(
eiP)= n

∏
j=1

E
(

eit∗j (X j)
)

where P≡ ∑
n
j=1 t∗j (X j) for t∗j ∈ E ′j.

Proof: If the random variables are independent, then so are the random variables,
t∗j (X j) and so the equation follows.

The interesting case is when the equation holds.
It suffices to consider only the case where each Ek = E. This is because you can con-

sider each X j to have values in ∏
n
k=1 Ek by letting X j take its values in the jth component

of the product and 0 in the other components. Can you draw the conclusion the random
variables are independent? By Theorem 26.6.1, it suffices to show the random variables{
gmk
◦Xk

}n
k=1 are independent where gmk

=
(
x∗1, · · · ,x∗mk

)
∈ (E ′)mk . This happens if when-

ever tmk ∈ Rmk and

P =
n

∑
k=1
tmk ·

(
gmk
◦Xk

)
,
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it follows

E
(
eiP)= n

∏
k=1

E
(

eitmk ·
(
gmk
◦Xk

))
. (27.10)

However, the expression on the right in 27.10 equals

n

∏
k=1

E
(

ei
(
tmk ·gmk

)
◦Xk

)
and tmk ·gmk

≡ ∑
mk
j=1 t jx∗j ∈ E ′. Also the expression on the left equals

E
(

ei∑
n
k=1 tmk ·gmk

◦Xk
)

Therefore, by assumption, 27.10 holds. ■
There is an obvious corollary which is useful.

Corollary 27.6.4 Let {Xk}n
k=1be random variables such that Xk has values in Ek, a real

separable Banach space. Then the random variables are independent if and only if

E
(
eiP)= n

∏
j=1

E
(

eit∗j (X j)
)

where P≡ ∑
n
j=1 t∗j (X j) for t∗j ∈M j where M j is a dense subset of E ′j.

Proof: The easy direction follows from Theorem 27.6.3. Suppose then the above equa-
tion holds for all t∗j ∈ M j. Then let t∗j ∈ E ′ and let

{
t∗n j

}
be a sequence in M j such that

limn→∞ t∗n j = t∗j in E ′. Then define

P≡
n

∑
j=1

t∗j X j, Pn ≡
n

∑
j=1

t∗n jX j.

It follows

E
(
eiP)= lim

n→∞
E
(
eiPn
)
= lim

n→∞

n

∏
j=1

E
(

eit∗n j(X j)
)
=

n

∏
j=1

E
(

eit∗j (X j)
)
■

27.7 Convolution and Sums
Lemma 26.1.9 on Page 717 makes possible a definition of convolution of two probability
measures defined on B (E) where E is a separable Banach space. I will first show a little
theorem about density of continuous functions in Lp (E) and then define the convolution of
two finite measures. First here is a simple technical lemma.

Lemma 27.7.1 Suppose K is a compact subset of U an open set in E a metric space.
Then there exists δ > 0 such that

dist(x,K)+dist
(
x,UC)≥ δ for all x ∈ E.
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Proof: For each x ∈ K, there exists a ball, B(x,δ x) such that B(x,3δ x) ⊆U . Finitely
many of these balls cover K because K is compact, say {B(xi,δ xi)}

m
i=1. Let

0 < δ < min(δ xi : i = 1,2, · · · ,m) .

Now pick any x ∈ K. Then x ∈ B(xi,δ xi) for some xi and so

B(x,δ )⊆ B(xi,2δ xi)⊆U.

Therefore, for any x ∈ K,dist
(
x,UC

)
≥ δ . If x ∈ B(xi,2δ xi) for some xi, it follows that

dist
(
x,UC

)
≥ δ because then B(x,δ ) ⊆ B(xi,3δ xi) ⊆U. If x /∈ B(xi,2δ xi) for any of the

xi, then x /∈ B(y,δ ) for any y ∈ K because all these sets are contained in some B(xi,2δ xi) .
Consequently dist(x,K)≥ δ . ■

From this lemma, there is an easy corollary.

Corollary 27.7.2 Suppose K is a compact subset of U, an open set in E a metric space.
Then there exists a uniformly continuous function f defined on all of E, having values in
[0,1] such that f (x) = 0 if x /∈U and f (x) = 1 if x ∈ K.

Proof: Consider

f (x)≡
dist
(
x,UC

)
dist(x,UC)+dist(x,K)

.

Then some algebra yields∣∣ f (x)− f
(
x′
)∣∣≤ 1

δ

(∣∣dist
(
x,UC)−dist

(
x′,UC)∣∣+ ∣∣dist(x,K)−dist

(
x′,K

)∣∣)
where δ is the constant of Lemma 27.7.1. Now it is a general fact that∣∣dist(x,S)−dist

(
x′,S

)∣∣≤ d
(
x,x′
)
.

See Proposition 3.6.6. Therefore, | f (x)− f (x′)| ≤ 2
δ

d (x,x′) and this proves the corollary.
■

Now suppose µ is a finite measure defined on the Borel sets of a separable Banach
space E. It was shown above that µ is inner and outer regular. Lemma 26.1.9 on Page 717
shows that µ is inner regular in the usual sense with respect to compact sets. This makes
possible the following theorem.

Theorem 27.7.3 Let µ be a finite measure on B (E) where E is a separable Ba-
nach space and let f ∈ Lp (E; µ) . Then for any ε > 0, there exists a uniformly continuous,
bounded g defined on E such that

∥ f −g∥Lp(E) < ε.

Proof: As usual in such situations, it suffices to consider only f ≥ 0. Then by Theorem
9.1.6 on Page 239 and an application of the monotone convergence theorem, there exists a
simple measurable function,

s(x)≡
m

∑
k=1

ckXAk (x)

such that || f − s||Lp(E) < ε/2. Now by regularity of µ there exist compact sets, Kk and

open sets, Vk such that 2∑
m
k=1 |ck|µ (Vk \K)1/p < ε/2 and by Corollary 27.7.2 there exist
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uniformly continuous functions gk having values in [0,1] such that gk = 1 on Kk and 0 on
VC

k . Then consider

g(x) =
m

∑
k=1

ckgk (x) .

This function is bounded and uniformly continuous. Furthermore,

∥s−g∥Lp(E) ≤

(∫
E

∣∣∣∣∣ m

∑
k=1

ckXAk (x)−
m

∑
k=1

ckgk (x)

∣∣∣∣∣
p

dµ

)1/p

≤

(∫
E

(
m

∑
k=1
|ck|
∣∣XAk (x)−gk (x)

∣∣)p)1/p

≤
m

∑
k=1
|ck|
(∫

E

∣∣XAk (x)−gk (x)
∣∣p dµ

)1/p

≤
m

∑
k=1
|ck|
(∫

Vk\Kk

2pdµ

)1/p

= 2
m

∑
k=1
|ck|µ (Vk \K)1/p < ε/2.

Therefore,
∥ f −g∥Lp ≤ ∥ f − s∥Lp +∥s−g∥Lp < ε/2+ ε/2 ■

Lemma 27.7.4 Let A ∈B (E) where µ is a finite measure on B (E) for E a separable
Banach space. Also let xi ∈ E for i = 1,2, · · · ,m. Then for x ∈ Em,

x→ µ

(
A+

m

∑
i=1

xi

)
, x→ µ

(
A−

m

∑
i=1

xi

)
are Borel measurable functions. Furthermore, the above functions are

B (E)×·· ·×B (E)

measurable where the above denotes the product measurable sets as described in Theorem
10.14.9 on Page 306.

Proof: First consider the case where A =U, an open set. Let

y ∈

{
x ∈ Em : µ

(
U +

m

∑
i=1

xi

)
> α

}
(27.11)

Then from Lemma 26.1.9 on Page 717 there exists a compact set, K ⊆U +∑
m
i=1 yi such

that µ (K)> α. Then if y′ is close enough to y, it follows K ⊆U +∑
m
i=1 y′i also. Therefore,

for all y′ close enough to y,

µ

(
U +

m

∑
i=1

y′i

)
≥ µ (K)> α.

In other words the set described in 27.11 is an open set and so y→ µ (U +∑
m
i=1 yi) is Borel

measurable whenever U is an open set in E.
Define a π system, K to consist of all open sets in E. Then define G as{

A ∈ σ (K ) = B (E) : y→ µ

(
A+

m

∑
i=1

yi

)
is Borel measurable

}
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I just showed G ⊇K . Now suppose A ∈ G . Then

µ

(
AC +

m

∑
i=1

yi

)
= µ (E)−µ

(
A+

m

∑
i=1

yi

)
and so AC ∈ G whenever A ∈ G . Next suppose {Ai} is a sequence of disjoint sets of G .
Then

µ

(
(∪∞

i=1Ai)+
m

∑
j=1

y j

)
= µ

(
∪∞

i=1

(
Ai +

m

∑
j=1

y j

))
=

∞

∑
i=1

µ

(
Ai +

m

∑
j=1

y j

)
and so ∪∞

i=1Ai ∈ G because the above is the sum of Borel measurable functions. By the
lemma on π systems, Lemma 9.3.2 on Page 243, it follows G =σ (K )=B (E) . Similarly,
x→ µ

(
A−∑

m
j=1 x j

)
is also Borel measurable whenever A ∈B (E). Finally note that

B (E)×·· ·×B (E)

contains the open sets of Em because the separability of E implies the existence of a count-
able basis for the topology of Em consisting of sets of the form ∏

m
i=1 Ui where the Ui come

from a countable basis for E. Since every open set is the countable union of sets like the
above, each being a measurable box, the open sets are contained in B (E)× ·· ·×B (E)
which implies B (Em)⊆B (E)×·· ·×B (E) also. ■

With this lemma, it is possible to define the convolution of two finite measures.

Definition 27.7.5 Let µ and ν be two finite measures on B (E) , for E a separable
Banach space. Then define a new measure, µ ∗ν on B (E) as follows

µ ∗ν (A)≡
∫

E
ν (A− x)dµ (x) .

This is well defined because of Lemma 27.7.4 which says that x→ ν (A− x) is Borel mea-
surable.

Here is an interesting theorem about convolutions. However, first here is a little lemma.
The following picture is descriptive of the set described in the following lemma.

A
E

E

SA

Lemma 27.7.6 For A a Borel set in E, a separable Banach space, define

SA ≡ {(x,y) ∈ E×E : x+ y ∈ A}

Then SA ∈B (E)×B (E) , the σ algebra of product measurable sets, the smallest σ alge-
bra which contains all the sets of the form A×B where A and B are Borel.
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Proof: Let K denote the open sets in E. Then K is a π system. Let

G ≡ {A ∈ σ (K ) = B (E) : SA ∈B (E)×B (E)} .

Then K ⊆ G because if U ∈K then SU is an open set in E×E and all open sets are in
B (E)×B (E) because a countable basis for the topology of E ×E are sets of the form
B×C where B and C come from a countable basis for E. Therefore, K ⊆ G . Now let
A ∈ G . For (x,y) ∈ E×E, either x+ y ∈ A or x+ y /∈ A. Hence E×E = SA ∪ SAC which
shows that if A ∈ G then so is AC. Finally if {Ai} is a sequence of disjoint sets of G

S∪∞
i=1Ai = ∪

∞
i=1SAi

and this shows that G is also closed with respect to countable unions of disjoint sets. There-
fore, by the lemma on π systems, Lemma 9.3.2 on Page 243 it follows G = σ (K ) =
B (E) . This proves the lemma.

Theorem 27.7.7 Let µ, ν , and λ be finite measures on B (E) for E a separable
Banach space. Then

µ ∗ν = ν ∗µ (27.12)

(µ ∗ν)∗λ = µ ∗ (ν ∗λ ) (27.13)

If µ is the distribution for an E valued random variable, X and if ν is the distribution for an
E valued random variable, Y, and X and Y are independent, then µ ∗ν is the distribution
for the random variable, X +Y . Also the characteristic function of a convolution equals
the product of the characteristic functions.

Proof: First consider 27.12. Letting A ∈B (E) , the following computation holds from
Fubini’s theorem and Lemma 27.7.6

µ ∗ν (A) ≡
∫

E
ν (A− x)dµ (x) =

∫
E

∫
E

XSA (x,y)dν (y)dµ (x)

=
∫

E

∫
E

XSA (x,y)dµ (x)dν (y) = ν ∗µ (A) .

Next consider 27.13. Using 27.12 whenever convenient,

(µ ∗ν)∗λ (A) ≡
∫

E
(µ ∗ν)(A− x)dλ (x)

=
∫

E

∫
E

ν (A− x− y)dµ (y)dλ (x)

while

µ ∗ (ν ∗λ )(A) ≡
∫

E
(ν ∗λ )(A− y)dµ (y)

=
∫

E

∫
E

ν (A− y− x)dλ (x)dµ (y)

=
∫

E

∫
E

ν (A− y− x)dµ (y)dλ (x) .

The necessary product measurability comes from Lemma 27.7.4.
Recall
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(µ ∗ν)(A)≡
∫

E
ν (A− x)dµ (x) .

Therefore, if s is a simple function, s(x) = ∑
n
k=1 ckXAk (x) ,∫

E
sd (µ ∗ν) =

n

∑
k=1

ck

∫
E

ν (Ak− x)dµ (x) =
∫

E

n

∑
k=1

ckν (Ak− x)dµ (x)

=
∫

E

n

∑
k=1

ckXAk−x (y)dν (y)dµ (x) =
∫

E

∫
E

s(x+ y)dν (y)dµ (x)

Approximating with simple functions it follows that whenever f is bounded and measurable
or nonnegative and measurable,∫

E
f d (µ ∗ν) =

∫
E

∫
E

f (x+ y)dν (y)dµ (x) (27.14)

Therefore, letting Z = X +Y, and λ the distribution of Z, it follows from independence of
X and Y that for t∗ ∈ E ′,

φ λ (t
∗)≡ E

(
eit∗(Z)

)
= E

(
eit∗(X+Y )

)
= E

(
eit∗(X)

)
E
(

eit∗(Y )
)

But also, it follows from 27.14

φ (µ∗ν) (t
∗) =

∫
E

eit∗(z)d (µ ∗ν)(z) =
∫

E

∫
E

eit∗(x+y)dν (y)dµ (x)

=
∫

E

∫
E

eit∗(x)eit∗(y)dν (y)dµ (x)

=

(∫
E

eit∗(y)dν (y)
)(∫

E
eit∗(x)dµ (x)

)
= E

(
eit∗(X)

)
E
(

eit∗(Y )
)

Since φ λ (t
∗) = φ (µ∗ν) (t

∗) , it follows λ = µ ∗ν .
Note the last part of this argument shows the characteristic function of a convolution

equals the product of the characteristic functions. ■
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Chapter 28

The Normal Distribution
This particular distribution is likely the most important one in statistics and it will be essen-
tial to understand in developing the Wiener process later. To begin with, 1√

2π

∫
R e−

1
2 u2

du =

1 as is easily shown as done earlier by the standard calculus trick of

I =
∫
R

e−
1
2 u2

du, I2 =
∫
R

∫
R

e−
1
2 (u2+v2)dudv

and then changing to polar coordinates to obtain I2 = 2π . I will use this identity whenever
convenient. Also useful is the following lemma.

Lemma 28.0.1 1√
2π

∫
R e−

1
2 (u−it)2

du = 1.

Proof: e−
1
2 (u−it)2

= e−
1
2 (u2−2itu−t2) = e−

1
2 u2

e
1
2 t2

(cos(tu)+ isin(tu)) and so, the inte-
gral equals

1√
2π

∫
R

e−
1
2 u2

e
1
2 t2

cos(tu)du

Now let f (t)≡ 1√
2π

∫
R e−

1
2 u2

e
1
2 t2

cos(tu)du. Using the dominated convergence theorem,

f ′ (t) =
1√
2π

∫
R

d
dt

(
e−

1
2 u2

e
1
2 t2

cos(tu)
)

du

=
1√
2π

∫
R

(
e−

1
2 u2
(

te
1
2 t2

cos(tu)− e
1
2 t2

usin(tu)
))

du

Now f (0) is known to be 1. Assume then that t ̸= 0.

− 1√
2π

e
1
2 t2
∫
R

e−
1
2 u2

usin(tu)du =
1√
2π

e
1
2 t2
∫
R

e−
1
2 u2

t cos(tu)du

and this shows that f ′ (t) = 0 so f (t) is the constant 1. ■

28.1 The Multivariate Normal Distribution
The multivariate normal distribution is very important in statistics and it will be shown in
this chapter why this is the case.

Definition 28.1.1 A random vectorX,with values inRp has a multivariate normal
distribution written asX ∼ Np (m,Σ) if for all Borel E ⊆ Rp,

λX (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

for µ a given vector and Σ a given positive definite symmetric matrix, called the covariance
matrix. In case p = 1, this is called the variance.

Theorem 28.1.2 ForX ∼ Np (m,Σ) ,m= E (X) and

Σ = E
(
(X−m)(X−m)∗

)
.

759
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Proof: Let R be an orthogonal transformation such that

RΣR∗ = D = diag
(
σ

2
1, · · · ,σ2

p
)
, σ i > 0.

Changing the variable by x−m= R∗y,

E (X) ≡
∫
Rp
xe

−1
2 (x−m)∗Σ−1(x−m)dx

(
1

(2π)p/2 det(Σ)1/2

)

=
∫
Rp

(R∗y+m)e−
1
2y
∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)

= m
∫
Rp

e−
1
2y
∗D−1ydy

(
1

(2π)p/2
∏

p
i=1 σ i

)
=m

by Fubini’s theorem and the easy to establish formula 1√
2πσ

∫
R e−

y2

2σ2 dy = 1,(let u = y/σ),

Next let
M ≡ E

(
(X−m)(X−m)∗

)
Thus, changing the variable as above by x−m= R∗y

M =
∫
Rp

(x−m)(x−m)∗ e
−1
2 (x−m)∗Σ−1(x−m)dx

(
1

(2π)p/2 det(Σ)1/2

)

= R∗
∫
Rp
yy∗e−

1
2y
∗D−1ydy

(
1

(2π)p/2
∏

p
j=1 σ j

)
R

If i ̸= j, (RMR∗)i j =
∫
Rp yiy je−

1
2y
∗D−1ydy

(
1

(2π)p/2
∏

p
k=1 σ k

)
= 0 so RMR∗ is a diagonal

matrix.

(RMR∗)ii =
∫
Rp

y2
i e−

1
2y
∗D−1ydy

(
1

(2π)p/2
∏

p
j=1 σ j

)
.

Using Fubini’s theorem and the easy to establish equations,

1√
2πσ

∫
R

e−
y2

2σ2 dy = 1,
1√

2πσ

∫
R

y2e−
y2

2σ2 dy = σ
2,

it follows (RMR∗)ii = σ2
i . Hence RMR∗ = D and so M = R∗DR = Σ. ■

Theorem 28.1.3 SupposeX1 ∼ Np (m1,Σ1) ,X2 ∼ Np (m2,Σ2) and the two ran-
dom vectors are independent. Then

X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2). (28.1)

Also, ifX ∼ Np (m,Σ) then −X ∼ Np (−m,Σ) . Furthermore, ifX ∼ Np (m,Σ) then

E
(
eit·X)= eit·me−

1
2 t
∗Σt (28.2)

If a is a constant andX ∼ Np (m,Σ) , then aX ∼ Np
(
am,a2Σ

)
.
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Proof: Consider E
(
eit·X) forX ∼ Np (m,Σ).

E
(
eit·X)≡ 1

(2π)p/2 (detΣ)1/2

∫
Rp

eit·xe−
1
2 (x−m)∗Σ−1(x−m)dx.

Let R be an orthogonal transformation such that

RΣR∗ = D = diag
(
σ

2
1, · · · ,σ2

p
)
.

Let R(x−m) = y. Then

E
(
eit·X)= 1

(2π)p/2
∏

p
i=1 σ i

∫
Rp

eit·(R∗y+m)e−
1
2y
∗D−1ydy.

Therefore
E
(
eit·X)= 1

(2π)p/2
∏

p
i=1 σ i

∫
Rp

eis·(y+Rm)e−
1
2y
∗D−1ydy

where s= Rt. This equals

eit·m
p

∏
i=1

(∫
R

eisiyie
− 1

2σ2
i

y2
i
dyi

)
1√

2πσ i

= eit·m
p

∏
i=1

(∫
R

eisiσ iue−
1
2 u2

du
)

1√
2π

= eit·m
p

∏
i=1

e−
1
2 s2

i σ2
i

1√
2π

∫
R

e−
1
2 (u−isiσ i)

2
du

By Lemma 28.0.1, this equals eit·me−
1
2 ∑

p
i=1 s2

i σ2
i = eit·me−

1
2 t
∗Σt. This proves 28.2.

SinceX1 andX2 are independent, eit·X1 and eit·X2 are also independent. Hence

E
(
eit·X1+X2

)
= E

(
eit·X1

)
E
(
eit·X2

)
.

Thus,

E
(
eit·X1+X2

)
= E

(
eit·X1

)
E
(
eit·X2

)
= eit·m1e−

1
2 t
∗Σ1teit·m2e−

1
2 t
∗Σ2t

= eit·(m1+m2)e−
1
2 t
∗(Σ1+Σ2)t,

which, as shown above is the characteristic function of a random vector distributed as
Np (m1 +m2,Σ1 +Σ2). Now it follows that X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2) by The-
orem 27.1.4. This proves 28.1.

The assertion about −X is also easy to see because

E
(

eit·(−X)
)

= E
(

ei(−t)·X
)

=
1

(2π)p/2 (detΣ)1/2

∫
Rp

ei(−t)·xe−
1
2 (x−m)∗Σ−1(x−m)dx

=
1

(2π)p/2 (detΣ)1/2

∫
Rp

eit·xe−
1
2 (x+m)∗Σ−1(x+m)dx
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which is the characteristic function of a random variable which is N (−m,Σ) . Theorem
27.1.4 again implies −X ∼ N (−m,Σ) . Finally consider the last claim. You apply what is
known aboutX with t replaced with at and then massage things. This gives the character-
istic function for aX is given by

E (exp(i t·aX)) = exp(i t·am)exp
(
−1

2
t∗Σa2t

)
which is the characteristic function of a normal random vector having mean am and co-
variance a2Σ. ■

28.2 Linear Combinations
Following [44] a random vector has a generalized normal distribution if its characteristic
function is given as eit·me−

1
2 t
∗Σt where Σ is symmetric and has nonnegative eigenvalues.

For a random real valued variable, m is scalar and so is Σ so the characteristic function
of such a generalized normally distributed random variable is eitµ e−

1
2 t2σ2

. These gener-
alized normal distributions do not require Σ to be invertible, only that the eigenvalues be
nonnegative. In one dimension this would correspond the characteristic function of a dirac
measure having point mass 1 at µ. In higher dimensions, it could be a mixture of such
things with more familiar things. I won’t try very hard to distinguish between general-
ized normal distributions and normal distributions in which the covariance matrix has all
positive eigenvalues. These generalized normal distributions are discussed more a little
later.

Here are some other interesting results about normal distributions found in [44]. The
next theorem has to do with the question whether a random vector is normally distributed
in the above generalized sense.

Theorem 28.2.1 LetX = (X1, · · · ,Xp) where each Xi is a real valued random vari-
able. Then X is normally distributed in the above generalized sense if and only if every
linear combination, ∑

p
j=1 aiXi is normally distributed. In this case the mean ofX is

m= (E (X1) , · · · ,E (Xp))

and the covariance matrix forX is

Σ jk = E
(
(X j−m j)(Xk−mk)

∗) .
Proof: Suppose first X is normally distributed. Then its characteristic function is of

the form
φX (t) = E

(
eit·X)= eit·me−

1
2 t
∗Σt.

Then letting a= (a1, · · · ,ap)

E
(

eit ∑
p
j=1 aiXi

)
= E

(
eita·X)= eita·me−

1
2a
∗Σat2

which is the characteristic function of a normally distributed random variable with mean
a ·m and variance σ2 = a∗Σa. This proves half of the theorem. If X is normally dis-
tributed, then every linear combination is normally distributed.
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Conversely, suppose every linear combination is normally distributed. Next suppose
∑

p
j=1 a jX j = a ·X is normally distributed with mean µ and variance σ2 so that its charac-

teristic function is given as eitµ e−
1
2 t2σ2

. I will now relate µ and σ2 to various quantities
involving the X j. Letting m j = E (X j) ,m= (m1, · · · ,mp)

∗

µ =
p

∑
j=1

a jE (X j) =
p

∑
j=1

a jm j, σ
2 = E

( p

∑
j=1

a jX j−
p

∑
j=1

a jm j

)2


= E

( p

∑
j=1

a j (X j−m j)

)2
= ∑

j,k
a jakE ((X j−m j)(Xk−mk))

It follows the mean of the random variable, a ·X is µ = ∑ j a jm j = a ·m and its variance
is

σ
2 = a∗E

(
(X−m)(X−m)∗

)
a

Therefore, E
(
eita·X) = eitµ e−

1
2 t2σ2

= eita·me−
1
2 t2a∗E((X−m)(X−m)∗)a. Letting s = ta

this shows
E
(
eis·X)= eis·me−

1
2s
∗E((X−m)(X−m)∗)s = eis·me−

1
2s
∗Σs

which is the characteristic function of a normally distributed random variable withm given
above and Σ given by

Σ jk = E ((X j−m j)(Xk−mk)) .

By assumption, a is completely arbitrary and so it follows that s is also. Hence, X is
normally distributed as claimed. ■

Corollary 28.2.2 Let X = (X1, · · · ,Xp) ,Y = (Y1, · · · ,Yp) where each Xi,Yi is a real
valued random variable. Suppose also that for every a∈Rp, a ·X and a ·Y are both nor-
mally distributed with the same mean and variance. Then X and Y are both multivariate
normal random vectors with the same mean and variance.

Proof: In the Proof of Theorem 28.2.1 the proof implies that the characteristic functions
of a ·X and a ·Y are both of the form eitme−

1
2 σ2t2

. Then as in the proof of that theorem, it
must be the case that m = ∑

p
j=1 a jm j where E (Xi) = mi = E (Yi) and

σ
2 = a∗E

(
(X−m)(X−m)∗

)
a= a∗E

(
(Y −m)(Y −m)∗

)
a

and this last equation must hold for every a. Therefore,

E
(
(X−m)(X−m)∗

)
= E

(
(Y −m)(Y −m)∗

)
≡ Σ

and so the characteristic function of both X and Y is eis·me−
1
2s
∗Σs as in the proof of

Theorem 28.2.1. ■

Theorem 28.2.3 Suppose X = (X1, · · · ,Xp) is normally distributed with mean m
and covariance Σ. Then if X1 is uncorrelated with any of the Xi, meaning

E ((X1−m1)(X j−m j)) = 0 for j > 1,

then X1 and (X2, · · · ,Xp) are both normally distributed and the two random vectors are
independent. Here m j ≡ E (X j) . More generally, if the covariance matrix is a diagonal
matrix, the random variables,

{
X1, · · · ,Xp

}
are independent.
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Proof: From Theorem 28.1.2 Σ = E
(
(X−m)(X−m)∗

)
. Then by assumption,

Σ =

(
σ2

1 0
0 Σp−1

)
. (28.3)

I need to verify that if E ∈ σ (X1) and F ∈ σ (X2, · · · ,Xp) , then P(E ∩F) = P(E)P(F) .

Let E = X−1
1 (A) and F = (X2, · · · ,Xp)

−1 (B) where A and B are Borel sets in R and
Rp−1 respectively. Thus I need to verify that

P([(X1,(X2, · · · ,Xp)) ∈ (A,B)]) =

µ(X1,(X2,··· ,Xp)) (A×B) = µX1
(A)µ(X2,··· ,Xp) (B) . (28.4)

Using 28.3, Fubini’s theorem, and definitions,

µ(X1,(X2,··· ,Xp)) (A×B) =∫
Rp

XA×B (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx

=
∫
R

XA (x1)
∫
Rp−1

XB (X2, · · · ,Xp) ·

1

(2π)(p−1)/2√2π
(
σ2

1

)1/2 det(Σp−1)
1/2

e
−(x1−m1)

2

2σ2
1 ·

e
−1
2 (x

′−m′)
∗
Σ
−1
p−1

(
x
′−m′

)
dx′dx1

where x′ = (x2, · · · ,xp) andm′ = (m2, · · · ,mp) . Now this equals

∫
R

XA (x1)
1√

2πσ2
1

e
−(x1−m1)

2

2σ2
1 ·

∫
B

1

(2π)(p−1)/2 det(Σp−1)
1/2 e

−1
2 (x

′−m′)
∗
Σ
−1
p−1

(
x
′−m′

)
dx′dx. (28.5)

In case B = Rp−1, the inside integral equals 1 and

µX1
(A) = µ(X1,(X2,··· ,Xp))

(
A×Rp−1)= ∫

R
XA (x1)

1√
2πσ2

1

e
−(x1−m1)

2

2σ2
1 dx1

which shows X1 is normally distributed as claimed. Similarly, letting A = R,

µ(X2,··· ,Xp) (B) = µ(X1,(X2,··· ,Xp)) (R×B)

=
∫

B

1

(2π)(p−1)/2 det(Σp−1)
1/2 e

−1
2 (x

′−m′)
∗
Σ
−1
p−1

(
x
′−m′

)
dx′

and (X2, · · · ,Xp) is also normally distributed with mean m′ and covariance Σp−1. Now
from 28.5, 28.4 follows. In case the covariance matrix is diagonal, the above reasoning
extends in an obvious way to prove the random variables,

{
X1, · · · ,Xp

}
are independent.
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However, another way to prove this is to use Proposition 27.4.1 on Page 744 and con-
sider the characteristic function. Let E (X j) = m j and P = ∑

p
j=1 t jX j. Then since X is

normally distributed and the covariance is a diagonal,

D≡

 σ2
1 0

. . .
0 σ2

p


,

E
(
eiP) = E

(
eit·X)= eit·me−

1
2 t
∗Σt = exp

(
p

∑
j=1

it jm j−
1
2

t2
j σ

2
j

)

=
p

∏
j=1

exp
(

it jm j−
1
2

t2
j σ

2
j

)
(28.6)

Also,

E
(
eit jX j

)
= E

(
exp

(
it jX j + ∑

k ̸= j
i0Xk

))
= exp

(
it jm j−

1
2

t2
j σ

2
j

)
With 28.6, this shows E

(
eiP
)
= ∏

p
j=1 E

(
eit jX j

)
which shows by Proposition 27.4.1 that the

random variables,
{

X1, · · · ,Xp
}

are independent. ■

28.3 Finding Moments
Let X be a random variable with characteristic function

φ X (t)≡ E (exp(itX))

Then this can be used to find moments of the random variable assuming they exist. The
kth moment is defined as E

(
Xk
)
. This can be done by using the dominated convergence

theorem to differentiate the characteristic function with respect to t and then plugging in
t = 0. For example, φ

′
X (t) = E (iX exp(itX)) and now plugging in t = 0 you get iE (X) .

Doing another differentiation you obtain φ
′′
X (t) = E

(
−X2 exp(itX)

)
and plugging in t = 0

you get −E
(
X2
)

and so forth.
An important case is where X is normally distributed with mean 0 and variance σ2.

In this case, as shown above, the characteristic function is e−
1
2 t2σ2

. Also all moments exist
when X is normally distributed. So what are these moments? Dt

(
e−

1
2 t2σ2

)
=−tσ2e−

1
2 t2σ2

and plugging in t = 0 you find the mean equals 0 as expected.

Dt

(
−tσ2e−

1
2 t2σ2

)
=−σ

2e−
1
2 t2σ2

+ t2
σ

4e−
1
2 t2σ2

and plugging in t = 0 you find the second moment is σ2. Then do it again.

Dt

(
−σ

2e−
1
2 t2σ2

+ t2
σ

4e−
1
2 t2σ2

)
= 3σ

4te−
1
2 t2σ2 − t3

σ
6e−

1
2 t2σ2

Then E
(
X3
)
= 0.

Dt

(
3σ

4te−
1
2 t2σ2 − t3

σ
6e−

1
2 t2σ2

)
= 3σ

4e−
1
2 t2σ2 −6σ

6t2e−
1
2 t2σ2

+ t4
σ

8e−
1
2 t2σ2
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and so E
(
X4
)
= 3σ4. By now you can see the pattern. If you continue this way, you find

the odd moments are all 0 and

E
(
X2m)=Cm

(
σ

2)m
. (28.7)

This is an important observation. In the case of X a random vector, you have φX (t) ≡
E (exp(it ·X)) and by taking d

dt j
, you can follow the above procedure to obtain E (X j) and

then by using successive differentiations, you can find E (Xn
i ) or any polynomial in the Xi

assuming the expectations exist.

28.4 Prokhorov and Levy Theorems
Recall one can define the characteristic function of a probability measure µ as

∫
Rp eit·xdµ .

In a sense it is more natural. One can also generalize to replace Rp with E a Banach space
in which the dot product t ·x is replaced with t (x) where t ∈ E ′. However, the main interest
here is in Rp.

Definition 28.4.1 A set of Borel probability measures {µn}
∞

n=1 defined on a Polish
space E is called “tight” if for all ε > 0 there exists a compact set, Kε such that

µn ([x /∈ Kε ])< ε

for all µn.

How do you determine in general that a set of probability measures is tight?

Lemma 28.4.2 Let E be a separable complete metric space and let Λ be a set of Borel
probability measures. Then Λ is tight if and only if for every ε > 0 and r > 0 there exists a
finite collection of balls, {B(ai,r)}m

i=1 such that

µ

(
∪m

i=1B(ai,r)
)
> 1− ε

for every µ ∈ Λ.

Proof: If Λ is tight, then there exists a compact set, Kε such that

µ (Kε)> 1− ε

for all µ ∈ Λ. Then consider the open cover, {B(x,r) : x ∈ Kε} . Finitely many of these
cover Kε and this yields the above condition.

Now suppose the above condition and let

Cn ≡ ∪mn
i=1B(an

i ,1/n)

satisfy µ (Cn) > 1− ε/2n for all µ ∈ Λ. Then let Kε ≡ ∩∞
n=1Cn. This set Kε is a compact

set because it is a closed subset of a complete metric space and is therefore complete, and
it is also totally bounded by construction. For µ ∈ Λ,

µ
(
KC

ε

)
= µ

(
∪nCC

n
)
≤∑

n
µ
(
CC

n
)
< ∑

n

ε

2n = ε

Therefore, Λ is tight. ■
In case the Polish space is Rp, the case of most interest, there is a very nice condition

interms of characteristic functions which gives “tightness”.
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Lemma 28.4.3 If {µn}is a sequence of Borel probability measures defined on the Borel
sets of Rpsuch that

lim
n→∞

φ µn
(t) = ψ (t)

for all t, where ψ (0) = 1 and ψ is continuous at 0, then {µn}
∞

n=1 is tight.

Proof: Let e j be the jth standard unit basis vector. Letting t= te j in the definition and
u > 0 ∣∣∣∣1u

∫ u

−u

(
1−φ µn

(te j)
)

dt
∣∣∣∣= ∣∣∣∣1u

∫ u

−u

(
1−

∫
Rp

eitx j dµn (x)
)

dt
∣∣∣∣ (28.8)

=

∣∣∣∣1u
∫ u

−u

(∫
Rp

(
1− eitx j

)
dµn (x)

)
dt
∣∣∣∣= ∣∣∣∣∫Rp

1
u

∫ u

−u

(
1− eitx j

)
dtdµn (x)

∣∣∣∣
=

∣∣∣∣2∫Rp

(
1−

sin(ux j)

ux j

)
dµn (x)

∣∣∣∣≥ 2
∫
[|x j|≥ 2

u ]

(
1− 1∣∣ux j

∣∣
)

dµn (x)

≥ 2
∫
[|x j|≥ 2

u ]

(
1− 1

u(2/u)

)
dµn (x) =

∫
[|x j|≥ 2

u ]
1dµn (x) = µn

([
x :
∣∣x j
∣∣≥ 2

u

])
.

If ε > 0 is given, there exists r > 0 such that if u ≤ r, 1
u
∫ u
−u (1−ψ (te j))dt < ε/p for all

j = 1, · · · , p and so, by the dominated convergence theorem, the same is true with φ µn
in place of ψ provided n is large enough, say n ≥ N (r). Thus, from 28.8, if n ≥ N (r),
µn
([
x :
∣∣x j
∣∣> 2r

])
< ε/p for all j ∈ {1, · · · , p}. It follows for n≥ N (r) ,

µn ([x : ∥x∥
∞
> 2r])< ε.

and so let Kε ≡ [−r,r]p. ■
In the case of Rp, and µn,µ Borel probability measures, convergence of characteristic

functions yields something interesting for ψ ∈ G or S, the Schwartz class.

Lemma 28.4.4 If φ µn
(t)→ φ µ (t) for all t, then whenever ψ ∈S, the Schwartz class,

µn (ψ)≡
∫
Rp

ψ (y)dµn (y)→
∫
Rp

ψ (y)dµ (y)≡ µ (ψ)

as n→ ∞.

Proof: By definition, φ µ (y) ≡
∫
Rp eiy·xdµ (x) . Also remember the inverse Fourier

transform. Letting ψ ∈S, the Schwartz class,

F−1 (µ)(ψ) ≡ µ
(
F−1

ψ
)
≡
∫
Rp

F−1
ψdµ

=
1

(2π)p/2

∫
Rp

∫
Rp

eiy·x
ψ (x)dxdµ (y)

=
1

(2π)p/2

∫
Rp

ψ (x)
∫
Rp

eiy·xdµ (y)dx =
1

(2π)p/2

∫
Rp

ψ (x)φ µ (x)dx

and so, considered as elements of S∗ or G ∗, F−1 (µ) = φ µ (·)(2π)−(p/2) ∈ L∞. By the
dominated convergence theorem

(2π)p/2 F−1 (µn)(ψ) ≡
∫
Rp

φ µn
(t)ψ (t)dt→

∫
Rp

φ µ (t)ψ (t)dt

= (2π)p/2 F−1 (µ)(ψ)
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whenever ψ ∈S or G . Thus

µn (ψ) = FF−1
µn (ψ)≡ F−1

µn (Fψ)→ F−1
µ (Fψ)

≡ F−1Fµ (ψ) = µ (ψ). ■

The set G of S generalizes to ψ any bounded uniformly continuous function.

Lemma 28.4.5 If φ µn
(t)→ φ µ (t) where {µn} and µ are probability measures defined

on the Borel sets of Rp, then if ψ is any bounded uniformly continuous function,

lim
n→∞

∫
Rp

ψdµn =
∫
Rp

ψdµ.

Proof: Let ε > 0 be given, let ψ be a bounded function in C∞ (Rp). Now let η ∈
C∞

c (Qr) where Qr ≡ [−r,r]p satisfy the additional requirement that η = 1 on Qr/2 and
η (x)∈ [0,1] for all x. By Lemma 28.4.3 the set, {µn}

∞

n=1 , is tight and so if ε > 0 is given,
there exists r sufficiently large such that for all n,∫

[x/∈Qr/2]
|1−η | |ψ|dµn <

ε

3
,

and since µ is a single measure, the following holds whenever r is large enough.∫
[x/∈Qr/2]

|1−η | |ψ|dµ <
ε

3
.

Thus, ∣∣∣∣∫Rp
ψdµn−

∫
Rp

ψdµ

∣∣∣∣≤ ∣∣∣∣∫Rp
ψdµn−

∫
Rp

ψηdµn

∣∣∣∣+∣∣∣∣∫Rp
ψηdµn−

∫
Rp

ψηdµ

∣∣∣∣+ ∣∣∣∣∫Rp
ψηdµ−

∫
Rp

ψdµ

∣∣∣∣
≤ 2ε

3
+

∣∣∣∣∫Rp
ψηdµn−

∫
Rp

ψηdµ

∣∣∣∣< ε

whenever n is large enough by Lemma 28.4.4 because ψη ∈S. This establishes the con-
clusion of the lemma in the case where ψ is also infinitely differentiable. To consider the
general case, let ψ only be uniformly continuous and let ψk = ψ ∗φ k where φ k is a molli-
fier whose support is in (−(1/k) ,(1/k))p. Then ψk converges uniformly to ψ and so the
desired conclusion follows for ψ after a routine estimate. ■

Here are some items which are of considerable interest for their own sake.

Theorem 28.4.6 Let H be a compact metric space. Then there exists a compact
subset of [0,1] ,K and a continuous function, θ which maps K onto H.

Proof: Without loss of generality, it can be assumed H is an infinite set since otherwise
the conclusion is trivial. You could pick finitely many points of [0,1] for K.

Since H is compact, it is totally bounded. Therefore, there exists a 1 net for H {hi}m1
i=1 .

Letting H1
i ≡ B(hi,1), it follows H1

i is also a compact metric space and so there exists a 1/2

net for each H1
i ,
{

hi
j

}mi

j=1
. Then taking the intersection of B

(
hi

j,
1
2

)
with H1

i to obtain sets
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denoted by H2
j and continuing this way, one can obtain compact subsets of H,

{
H i

k

}
which

satisfies: each H i
j is contained in some H i−1

k , each H i
j is compact with diameter less than

i−1, each H i
j is the union of sets of the form H i+1

k which are contained in it. Denoting by{
H i

j

}mi

j=1
those sets corresponding to a superscript of i, it can also be assumed mi < mi+1.

If this is not so, simply add in another point to the i−1 net. Now let
{

Ii
j

}mi

j=1
be disjoint

closed intervals in [0,1] each of length no longer than 2−mi which have the property that Ii
j

is contained in Ii−1
k for some k. Letting Ki ≡ ∪mi

j=1Ii
j, it follows Ki is a sequence of nested

compact sets. Let K = ∩∞
i=1Ki. Then each x ∈ K is the intersection of a unique sequence

of these closed intervals,
{

Ik
jk

}∞

k=1
. Define θx ≡ ∩∞

k=1Hk
jk
. Since the diameters of the H i

j

converge to 0 as i→∞, this function is well defined. It is continuous because if xn→ x, then
ultimately xn and x are both in Ik

jk
, the kth closed interval in the sequence whose intersection

is x. Hence,
d (θxn,θx)≤ diameter(Hk

jk)≤ 1/k.

To see the map is onto, let h ∈ H. Then from the construction, there exists a sequence{
Hk

jk

}∞

k=1
of the above sets whose intersection equals h. Then θ

(
∩∞

i=1Ik
jk

)
= h. ■

Note θ is probably not one to one.
As an important corollary, it follows that the continuous functions defined on any com-

pact metric space is separable.

Corollary 28.4.7 Let H be a compact metric space and let C (H) denote the continuous
functions defined on H with the usual norm,

|| f ||
∞
≡max{| f (x)| : x ∈ H}

Then C (H) is separable.

Proof: The proof is by contradiction. Suppose C (H) is not separable. Let Hk de-
note a maximal collection of functions of C (H) with the property that if f ,g ∈Hk, then
|| f −g||

∞
≥ 1/k. The existence of such a maximal collection of functions is a consequence

of a simple use of the Hausdorff maximality theorem. Then ∪∞
k=1Hk is dense. Therefore, it

cannot be countable by the assumption that C (H) is not separable. It follows that for some
k,Hk is uncountable. Now by Theorem 28.4.6 there exists a continuous function θ defined
on a compact subset K of [0,1] which maps K onto H. Now consider the functions defined
on K

Gk ≡ { f ◦θ : f ∈Hk} .

Then Gk is an uncountable set of continuous functions defined on K with the property
that the distance between any two of them is at least as large as 1/k. This contradicts
separability of C (K) which follows from the Weierstrass approximation theorem in which
the separable countable set of functions is the restrictions of polynomials that involve only
rational coefficients. ■

The next theorem gives the existence of a measure based on an assumption that a set of
measures is tight. It is a sort of sequential compactness result. It is Prokhorov’s theorem
about a tight set of measures. Recall that Λ is tight means that for every ε > 0 there exists
K compact such that µ

(
KC
)
< ε for all µ ∈ Λ.
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Theorem 28.4.8 Let Λ = {µn}
∞

n=1 be a sequence of probability measures defined
on the Borel sets of E a Polish space. If Λ is tight then there exists a probability measure
λ and a subsequence of {µn}

∞

n=1 , still denoted by {µn}
∞

n=1 such that whenever φ is a
continuous bounded complex valued function defined on E,

lim
n→∞

∫
φdµn =

∫
φdλ .

Conversely, if µn converges weakly to λ , then {µn} is tight.

Proof: By tightness, there exists an increasing sequence of compact sets, {Kn} such
that µ (Kn)> 1− 1

n for all µ ∈ Λ. Now letting µ ∈ Λ and φ ∈C (Kn) such that ∥φ∥
∞
≤ 1,

it follows ∣∣∣∣∫Kn

φdµ

∣∣∣∣≤ µ (Kn)≤ 1

and so the restrictions of the measures of Λ to Kn are contained in the unit ball of C (Kn)
′ .

Recall from the Riesz representation theorem, the dual space of C (Kn) is a space of com-
plex Borel measures. Theorem 21.5.5 on Page 557 implies the unit ball of C (Kn)

′ is weak
∗ sequentially compact. This follows from the observation that C (Kn) is separable which
follows easily from the Weierstrass approximation theorem. Recall from the Riesz repre-
sentation theorem, the dual space of C (Kn) is a space of complex Borel measures. Theorem
21.5.5 on Page 557 implies the unit ball of C (Kn)

′ is weak ∗ sequentially compact. This
follows from the observation that C (Kn) is separable which is proved in Corollary 28.4.7
and leads to the fact that the unit ball in C (Kn)

′ is actually metrizable by Theorem 21.5.5
on Page 557.

Thus the unit ball in C (Kn)
′ is actually metrizable by Theorem 21.5.5 on Page 557.

Therefore, there exists a subsequence of Λ, {µ1k} such that their restrictions to K1 converge
weak ∗ to a measure, λ 1 ∈C (K1)

′. That is, for every φ ∈C (K1) ,

lim
k→∞

∫
K1

φdµ1k =
∫

K1

φdλ 1

By the same reasoning, there exists a further subsequence {µ2k} such that the restrictions
of these measures to K2 converge weak ∗ to a measure λ 2 ∈ C (K2)

′ etc. Continuing this
way,

µ11,µ12,µ13, · · · → Weak∗ in C (K1)
′

µ21,µ22,µ23, · · · → Weak∗ in C (K2)
′

µ31,µ32,µ33, · · · → Weak∗ in C (K3)
′

...

Here the jth sequence is a subsequence of the ( j−1)th. Let λ n denote the measure in
C (Kn)

′ to which the sequence {µnk}
∞

k=1 converges weak ∗. Let {µn} ≡ {µnn} , the diag-
onal sequence. Thus this sequence is ultimately a subsequence of every one of the above
sequences and so µn converges weak ∗ in C (Km)

′ to λ m for each m.
Claim: For p > n, the restriction of λ p to the Borel sets of Kn equals λ n.

Proof of claim: Let H be a compact subset of Kn. Then there are sets, Vl open in Kn
which are decreasing and whose intersection equals H. This follows because this is a metric
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space. Then let H ≺ φ l ≺Vl . It follows

λ n (Vl) ≥
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≥ λ p (H) .

Now considering the ends of this inequality, let l → ∞ and pass to the limit to conclude
λ n (H)≥ λ p (H) . Similarly,

λ n (H) ≤
∫

Kn

φ ldλ n = lim
k→∞

∫
Kn

φ ldµk

= lim
k→∞

∫
Kp

φ ldµk =
∫

Kp

φ ldλ p ≤ λ p (Vl) .

Then passing to the limit as l → ∞, it follows λ n (H) ≤ λ p (H) . Thus the restriction of
λ p,λ p|Kn to the compact sets of Kn equals λ n. Then by inner regularity it follows the two
measures, λ p|Kn , and λ n are equal on all Borel sets of Kn. Recall that for finite measures
on the Borel sets of separable metric spaces, regularity is obtained for free.

It is fairly routine to exploit regularity of the measures to verify that λ m (F)≥ 0 for all
F a Borel subset of Km. (Whenever φ ≥ 0,

∫
Km

φdλ m ≥ 0 because
∫

Km
φdµk ≥ 0. Now you

can approximate XF with a suitable nonnegative φ using regularity of the measure.) Also,
letting φ ≡ 1,

1≥ λ m (Km)≥ 1− 1
m
. (28.9)

Define for F a Borel set,

λ (F)≡ lim
n→∞

λ n (F ∩Kn) .

The limit exists because the sequence on the right is increasing due to the above observation
that λ n = λ m on the Borel subsets of Km whenever n > m. Thus for n > m

λ n (F ∩Kn)≥ λ n (F ∩Km) = λ m (F ∩Km) .

Now let {Fk} be a sequence of disjoint Borel sets. Then

λ (∪∞
k=1Fk) ≡ lim

n→∞
λ n (∪∞

k=1Fk ∩Kn) = lim
n→∞

λ n (∪∞
k=1 (Fk ∩Kn))

= lim
n→∞

∞

∑
k=1

λ n (Fk ∩Kn) =
∞

∑
k=1

λ (Fk)

the last equation holding by the monotone convergence theorem.
It remains to verify limk→∞

∫
φdµk =

∫
φdλ for every φ bounded and continuous. This

is where tightness is used again. Suppose ∥φ∥
∞
< M. Then as noted above, λ n (Kn) =

λ (Kn) because for p > n,λ p (Kn) = λ n (Kn) and so letting p→ ∞, the above is obtained.
Also, from 28.9,

λ
(
KC

n
)

= lim
p→∞

λ p
(
KC

n ∩Kp
)
≤ lim sup

p→∞

(λ p (Kp)−λ p (Kn))

≤ lim sup
p→∞

(λ p (Kp)−λ n (Kn))≤ lim sup
p→∞

(
1−
(

1− 1
n

))
=

1
n
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Consequently,∣∣∣∣∫ φdµk−
∫

φdλ

∣∣∣∣≤ ∣∣∣∣∫KC
n

φdµk +
∫

Kn

φdµk−
(∫

Kn

φdλ +
∫

KC
n

φdλ

)∣∣∣∣
≤
∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk−
∫

KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ ∣∣∣∣∫KC
n

φdµk

∣∣∣∣+ ∣∣∣∣∫KC
n

φdλ

∣∣∣∣
≤

∣∣∣∣∫Kn

φdµk−
∫

Kn

φdλ n

∣∣∣∣+ M
n
+

M
n

First let n be so large that 2M/n < ε/2 and then pick k large enough that the above expres-
sion is less than ε.

Now suppose µn converges to λ weakly. Then for ε there is a compact set such that
λ (K) > 1− ε/2. This is true because of Lemma 9.8.5 on Page 255 which says that finite
measures on a Polish space are inner regular. Then let ψ be a continuous function with
values in [0,1] which equals 1 on K and is 0 off a compact set K̂⊇K. Then

∫
ψdλ > 1−ε/2

and also, there exists N such that for all n ≥ N,
∫

ψdµn > 1− ε/2. Thus n ≥ N implies
µn
(
K̂
)
> 1− ε/2. Therefore, enlarging K̂ finitely many times, one obtains K̃ ⊇ K such

that for all µn and λ ,λ
(
K̃
)
,µn

(
K̃
)
> 1− ε/2. Thus µn

(
K̃C
)
≤ ε/2 < ε for all n and so

{µn} is tight as claimed. ■

Definition 28.4.9 Let µ,{µn} be probability measures defined on the Borel sets of
Rp and let the sequence of probability measures, {µn} satisfy

lim
n→∞

∫
φdµn =

∫
φdµ.

for every φ a bounded continuous function. Then µn is said to converge weakly to µ .

With the above, it is possible to prove the following amazing theorem of Levy.

Theorem 28.4.10 Suppose {µn} is a sequence of probability measures defined on

the Borel sets of Rp and let
{

φ µn

}
denote the corresponding sequence of characteristic

functions. If there exists ψ which is continuous at 0, ψ (0) = 1, and for all t,

φ µn
(t)→ ψ (t) ,

then there exists a probability measure λ defined on the Borel sets of Rp and

φ λ (t) = ψ (t) .

That is, ψ is a characteristic function of a probability measure. Also, {µn} converges
weakly to λ .

Proof: By Lemma 28.4.3 {µn} is tight. Therefore, there exists a subsequence
{

µnk

}
converging weakly to a probability measure λ which implies that

φ λ (t)≡
∫

eit·xdλ (x) = lim
n→∞

∫
eit·xdµnk

(x) = lim
n→∞

φ µnk
(t) = ψ (t) ■
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Note how it was only necessary to assume ψ (0) = 1 and ψ is continuous at 0 in order
to conclude that ψ is a characteristic function. This helps to see why Prokhorov’s and
Levy’s theorems are so amazing. Limits of characteristic functions tend to be characteristic
functions. What about random variables?

If you have a probability measure λ on the Borel sets of Rp, is there a random variable
X such that λ = λX? Yes. You could let Ω =Rp and X (x) = x and P(E)≡ λ (E) for all
E Borel. Then λX

(
X−1 (E)

)
≡ P(E) ≡ λ (E) so this is indeed a random variable such

that λ = λX . Thus for a probability measure λ , you can generally get a random variable
which has λ as its distribution measure. Later, this is considered more. You might have
more than one random variable having λ as its distribution measure.

In this next corollary, it suffices to have the random variables have values in a Banach
space. However, I will write |X| rather than ∥X∥.

Corollary 28.4.11 In the context of Theorem 28.4.10, suppose µn is the distribution
measure of the random variable Xn and that supn E (|Xn|q) =Mq <∞ for all q≥ 1 and that
µn converges weakly to the probability measure µ . Then if µ is the distribution measure
for a random variableX, then E (|X|q)< ∞ for all q≥ 1.

Proof:
E (|X|q) =

∫
∞

0
P(|X|q > α)dα =

∫
∞

0
µ ([|x|q > α])dα

≤
∫

∞

0
µ ([|x|q > α])dα ≤

∫
∞

0

∫
Rp

(1−ψα)dµdα

where ψα = 1 on B
(
0, 1

2 α1/q
)

is nonnegative, and is in Cc
(
B
(
0,α1/q

))
. Thus if |x|q > α,

then 1−ψα (x) = 1 which shows the above inequality holds. Also, if (1−ψα (x)) > 0,
then |x| > 1

2 α1/q and so |x|q > 1
2q α . Since weak convergence holds and 1−ψα is a

bounded continuous function,∫
Rp

(1−ψα)dµ = lim
n→∞

∫
Rp

(1−ψα)dµn (28.10)

Therefore, from the above and Fatou’s lemma,∫
Ω

|X|q dP≤
∫

∞

0
lim
n→∞

∫
Rp

(1−ψα)dµndα

≤ lim inf
n→∞

∫
∞

0
µn

([
|x|q > 1

2q α

])
dα

Changing the variable,

= lim inf
n→∞

2q
∫

∞

0
µn (|x|

q > δ )dδ = lim inf
n→∞

2qE (|Xn|q)< ∞ ■

Now recall the multivariate normal distribution.

Definition 28.4.12 A random vectorX, with values in Rp has a multivariate nor-
mal distribution written as

X ∼ Np (m,Σ)

if for all Borel E ⊆ Rp, the distribution measure is given by

λX (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dx
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form a given vector and Σ a given positive definite symmetric matrix. Recall also that the
characteristic function of this random variable is

E
(
eit·X)= eit·me−

1
2 t
∗Σt (28.11)

So what if det(Σ) = 0? Is there a probability measure having characteristic function
eit·me−

1
2 t
∗Σt? Let Σn→ Σ in the Frobenius norm, det(Σn)> 0. That is the i jth components

converge and all the eigenvalues are positive. Then from the definition of the characteristic
function,

φ λXn
(t) = eit·me−

1
2 t
∗Σnt→ ψ (t)≡ eit·me−

1
2 t
∗Σt

Now clearly ψ (0) = 1 and ψ is continuous so by Levy’s theorem, Theorem 28.4.10, there
is a probability measure µ such that ψ (t) = φ µ (t) . As noted above, there is also a random
variableX with λX = µ . Consider the moments forXn.

Lemma 28.4.13 LetX ∼ N (0,Σ) where Σ is positive definite. Then the moments ofX
all exist and are dominated by an expression which is continuously dependent on det(Σ).

Proof: Let q ≥ 1. E (|X|q) =
∫
Rp

|x|q

(2π)p/2 det(Σ)1/2 e
−1
2 x∗Σ−1xdx. Let R be an orthogonal

matrix with Σ = R∗DR where D is a diagonal matrix having the positive eigenvalues σ j on
the diagonal. Thus x∗Σ−1x= x∗R∗D−1Rx so let Rx≡ y. Changing the variable in the
integral and assuming q = 2m for m a positive integer,

E
(
|X|2m

)
=

∫
Rp

(
∑

p
k=1 y2

k

)m

(2π)p/2
∏

p
j=1 σ

1/2
j

e
−1
2 y∗D−1ydy

= 2p 1

(2π)p/2

∫
∞

0
· · ·
∫

∞

0

(
∑

p
k=1 y2

k

)m

∏
p
j=1 σ

1/2
j

e
−1
2 y∗D−1ydy

From convexity of x→ xm

= 2p 1

(2π)p/2

∫
∞

0
· · ·
∫

∞

0

(
p∑

p
k=1

1
p y2

k

)m

∏
p
j=1 σ

1/2
j

e
−1
2 y∗D−1ydy

≤ 2p pm−1

(2π)p/2

∫
∞

0
· · ·
∫

∞

0

∑
p
k=1 y2m

k

∏
p
j=1 σ

1/2
j

e
−1
2 ∑

p
k=1 y2

kσ−1
dy

= 2p pm−1

(2π)p/2

∫
∞

0
· · ·
∫

∞

0

∑k ̸=l y2m
k

∏
p
j=1 σ

1/2
j

e
−1
2 ∑k ̸=l y2

kσ−1
dx1 · · · d̂xl · · ·dxp

·
∫

∞

0

1

σ
1/2
l

y2m
l e−

1
2 y2

l σ
−1
l dyl

Now letting u = ylσ
−1/2
l ,dyl = σ

1/2
l du and so that last integral is of the form∫

∞

0
σ

m
l u2me−

1
2 u2

du = Ĉmσ
m
l
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and so, doing this repeatedly, one obtains for the above integral an expression of the form

2p pm−1

(2π)p/2 Cm

(
p

∏
k=1

σ k

)m

= 2p pm−1

(2π)p/2 Cm det(Σ)m

which shows that the moments of X all exist and are dominated by an expression which
depends continuously on det(Σ) . ■

In particular, these moments are bounded in case Σn → Σ where perhaps det(Σ) = 0
but Σn is positive definite. With Corollary 28.4.11, this has proved the following theorem
about the generalized normal distribution.

Theorem 28.4.14 Let Σ be nonnegative and self adjoint p× p matrix. Then there
exists a random variable X whose distribution measure λX has characteristic function
ψ (t)≡ e−

1
2 t
∗Σt. Then all the moments exist and E (XX∗) = Σ.

Proof: It remains to verify E (XX∗) = Σ but this is routine from the fact that the
moments exist. Use the characteristic function to compute E (XiX j). Take d

dt j

(
d

dti
(ψ (t))

)
.

Using repeated index summation convention,

ψ (t) = e−
1
2 trΣrsts ,ψ ti = e−

1
2 trΣrsts (−Σists) ,ψ tit j

= e−
1
2 trΣrsts (−Σ jsts)(−Σists)+ e−

1
2 trΣrsts (−Σi j)

Thus i2E (XiX j) =−Σi j showing that E (XX∗) = Σ as claimed. ■
The case where m= 0 is the one of most interest here, but you could always reduce

to this case by considering a random variable X−m where E (X) =m. There is an
interesting corollary to this theorem.

Corollary 28.4.15 Let H be a real Hilbert space. Then there exist random variables
W (h) for h ∈ H such that for any finite set { f1, f2, · · · , fn},

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed with mean 0 and covariance Σi j = ( fi, f j) and for every h,g,

E (W (h)W (g)) = (h,g)H

If {ei} is an orthogonal set of vectors of H, then {W (ei)} are independent random vari-
ables.

Proof: Let µh1···hm
be a generalized multivariate normal probability distribution with

covariance Σi j = (hi,h j) and mean 0. That such a thing exists follows from Theorem
28.4.14. Thus the characteristic function of this probability measure is e−

1
2 t
∗Σt. Now con-

sider Ek1 ×·· ·×Ekn for Borel sets Ek j where {h1, · · · ,hm} ⊆ {k1 · · ·kn} for n > m and the
set Ek j = R whenever k j /∈ {h1, · · · ,hm} For simplicity, say h1, · · · ,hm are the first m slots
of k1, · · · ,kn. Now consider µk1···kn

,

{h1 · · ·hm,km+1 · · ·kn}= {k1 · · ·kn}

Let ν be a measure on B (Rm) which is given by ν (E) ≡ µk1···kn
(E×Rn−m). Then does

it follow that ν = µh1···hm
? If so, then the Kolmogorov consistency condition will hold for
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these measures µh1···hm
. To determine whether this is so, take the characteristic function of

ν . Let Σ1 be the n×n matrix which comes from the {k1 · · ·kn} and let Σ2 be the one which
comes from the {h1 · · ·hm}.∫

Rm
eit·xdν (x) ≡

∫
Rn−m

∫
Rm

ei(t,0)·(x,y)dµk1···kn
(x,y)

= e−
1
2 (t
∗,0∗)Σ1(t,0) = e−

1
2 t
∗Σ2t

which is the characteristic function for µh1···hm
. Therefore, these two measures are the

same and the Kolmogorov consistency condition holds. It follows from The Kolmogorov
extension theorem Theorem 20.3.3 that there exists a measure µ defined on the Borel sets
of ∏h∈HR which extends all of these measures. This argument also shows that if a random
vector X has characteristic function e−

1
2 t
∗Σt, then if Xk is one of its components, then the

characteristic function of Xk is e−
1
2 t2|hk|2so this scalar valued random variable has mean

zero and variance |hk|2. Then if ω ∈ ∏h∈HR, W (h)(ω) ≡ πh (ω) where πh denotes the
projection onto position h in this product. Also define

(W ( f1) ,W ( f2) , · · · ,W ( fn))≡ π f1··· fn (ω)

Then this is a random variable whose covariance matrix is just Σi j = ( fi, f j)H and whose
characteristic equation is e−

1
2 t
∗Σt so this verifies that

(W ( f1) ,W ( f2) , · · · ,W ( fn))

is normally distributed with covariance Σ. If you have two of them, W (g) ,W (h) , then
E (W (h)W (g)) = (h,g)H . This follows from what was just shown that (W ( f ) ,W (g)) is
normally distributed and so the covariance will be(

| f |2 ( f ,g)
( f ,g) |g|2

)
=

 E
(

W ( f )2
)

E (W ( f )W (g))

E (W ( f )W (g)) E
(

W (g)2
) 

Finally consider the claim about independence. Any finite subset of {W (ei)} is gener-
alized normal with the covariance matrix being a diagonal. Therefore,

(W (ei1) , · · · ,W (ein))

is normally distributed with covariance a diagonal matrix so by Theorem 28.2.3, the random
variables {W (ei)} are independent. ■

28.5 The Central Limit Theorem
The central limit theorem is one of the most marvelous theorems in mathematics. It can be
proved through the use of characteristic functions. Recall for x ∈ Rp,

∥x∥
∞
≡max

{∣∣x j
∣∣ , j = 1, · · · , p

}
.

Also recall the definition of the distribution function for a random vector,X .

FX (x)≡ P(X j ≤ x j, j = 1, · · · , p) .

How can you tell if a sequence of random vectors with values in Rp is tight? The next
lemma gives a way to do this. It is Lemma 28.4.3. I am stating it here for convenience.
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Lemma 28.5.1 If {Xn}is a sequence of random vectors with values in Rpsuch that

lim
n→∞

φXn
(t)≡ lim

n→∞
φ λXn

(t) = ψ (t)

for all t, where ψ (0) = 1 and ψ is continuous at 0, then {λXn}
∞

n=1 is tight.

In proving the central limit theorem, one considers the pointwise convergence of char-
acteristic functions and then seeks to obtain information about the distribution of the limit
function. In fact, one is in the situation of the following lemma which is Lemma 28.4.4.

Lemma 28.5.2 If φXn
(t)→ φX (t) for all t, then whenever ψ ∈S,

λXn (ψ)≡
∫
Rp

ψ (y)dλXn (y)→
∫
Rp

ψ (y)dλX (y)≡ λX (ψ)

as n→ ∞.

The above gives what I want for ψ ∈ S but this needs to be generalized to ψ any
bounded uniformly continuous function. The following is Lemma 28.4.5.

Lemma 28.5.3 If φXn
(t)→ φX (t) , then if ψ is any bounded uniformly continuous

function,

lim
n→∞

∫
Rp

ψdλXn =
∫
Rp

ψdλX .

Definition 28.5.4 Let µ be a Radon measure onRp. A Borel set A, is a µ continuity
set if µ (∂A) = 0 where ∂A≡ A\ int(A) and int denotes the interior.

The main result is the following continuity theorem. More can be said about the equiv-
alence of various criteria [6].

Theorem 28.5.5 If φXn
(t)→ φX (t) then λXn (A)→ λX (A) whenever A is a λX

continuity set.

Proof: First suppose K is a closed set and let

ψk (x)≡ (1− k dist(x,K))+.

Thus, since K is closed limk→∞ψk (x) = XK (x). Choose k large enough that∫
Rp

ψkdλX ≤ λX (K)+ ε.

Then by Lemma 28.5.3, applied to the bounded uniformly continuous function ψk,

lim sup
n→∞

λXn (K)≤ lim sup
n→∞

∫
ψkdλXn =

∫
ψkdλX ≤ λX (K)+ ε.

Since ε is arbitrary, this shows limsupn→∞ λXn (K)≤ λX (K) for all K closed.
Next suppose V is open and let

ψk (x) = 1−
(
1− k dist

(
x,VC))+.
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Thus ψk (x) ∈ [0,1] ,ψk = 1 if dist
(
x,VC

)
≥ 1/k, and ψk = 0 on VC. Since V is open,

it follows limk→∞ ψk (x) = XV (x). Choose k large enough that
∫

ψkdλX ≥ λX (V )− ε.
Then by Lemma 28.5.3,

lim inf
n→∞

λXn (V )≥ lim inf
n→∞

∫
ψk (x)dλXn =

∫
ψk (x)dλX ≥ λX (V )− ε

and since ε is arbitrary, liminfn→∞ λXn (V )≥ λX (V ). Now let λX (∂A) = 0 for A a Borel
set.

λX (int(A)) ≤ lim inf
n→∞

λXn (int(A))≤ lim inf
n→∞

λXn (A)≤

lim sup
n→∞

λXn (A) ≤ lim sup
n→∞

λXn

(
A
)
≤ λX

(
A
)
.

But λX (int(A)) = λX

(
A
)

by assumption and so limn→∞ λXn (A) = λX (A) as claimed.
■

As an application of this theorem the following is a version of the central limit theorem
in the situation in which the limit distribution is multivariate normal. It concerns a sequence
of random vectors, {Xk}∞

k=1, which are identically distributed, have finite mean m, and

satisfy E
(
|Xk|2

)
< ∞.

Definition 28.5.6 ForX a random vector with values in Rp, let

FX (x)≡ P
({

X j ≤ x j for each j = 1,2, ..., p
})

.

A different proof of the central limit theorem is in [48].

Lemma 28.5.7 If all the zi and wi have absolute value no more than 1, then
|∏n

i=1 zi−∏
n
i=1 wi| ≤ ∑

n
k=1 |zk−wk| .

Proof: It is clearly true if n = 1. Suppose true for n. Then∣∣∣∣∣n+1

∏
i=1

zi−
n+1

∏
i=1

wi

∣∣∣∣∣≤
∣∣∣∣∣n+1

∏
i=1

zi− zn+1

n

∏
i=1

wi

∣∣∣∣∣+
∣∣∣∣∣zn+1

n

∏
i=1

wi−
n+1

∏
i=1

wi

∣∣∣∣∣
≤

∣∣∣∣∣ n

∏
i=1

zi−
n

∏
i=1

wi

∣∣∣∣∣+ |zn+1−wn+1|

∣∣∣∣∣ n

∏
i=1

wi

∣∣∣∣∣≤ n+1

∑
k=1
|zk−wk| ■

Theorem 28.5.8 Let {Xk}∞

k=1 be random vectors satisfying E
(
|Xk|2

)
< ∞ which

are independent and identically distributed with mean m and positive definite covariance
Σ≡ E

(
(X−m)(X−m)∗

)
. Let Zn ≡ ∑

n
j=1

X j−m√
n . Then for Z ∼ Np (0,Σ) ,

limn→∞ FZn (x) = FZ (x) for all x.

Proof: The characteristic function of Zn is given by

φZn
(t) = E

(
eit·∑n

j=1
X j−m√

n

)
=

n

∏
j=1

E

(
e

it·
(

X j−m√
n

))
.



28.5. THE CENTRAL LIMIT THEOREM 779

By Taylor’s theorem applied to real and imaginary parts of eix, it follows

eix = 1+ ix− f (x)
x2

2

where | f (x)|< 2 and limx→0 f (x) = 1. DenotingX j asX, this implies

eit·
(
X−m√

n

)
= 1+ i t·X−m√

n
− f

(
t·
(
X−m√

n

))
(t·(X−m))2

2n

Thus eit·
(
X−m√

n

)
= 1+ i t· X−m√n −

(t·(X−m))2

2n +
(

1− f
(
t·
(

X−m√
n

)))
(t·(X−m))2

2n . This
implies

φZn
(t) =

n

∏
j=1

E

[
1−

(t·(X j−m))2

2n
+

(t·(X j−m))2

2n

(
1− f

(
t·
(
X j−m√

n

)))]

Then φZn
(t) =

n

∏
j=1

E

[
1−

(t·(X j−m))2

2n
+

(t·(X j−m))2

2n

(
1− f

(
t·
(
X j−m√

n

)))]

−
n

∏
j=1

E

[
1−

(t·(X j−m))2

2n

]
+

n

∏
j=1

(
1−

E (t·(X j−m))2

2n

)

Now (t·(X−m))2 = t∗ (X−m)(X−m)∗ t. Since theseXk are identically distributed
with the same meanm, the above is of the form

en +
n

∏
j=1

(
1−

E (t·(X j−m))2

2n

)
= en +

(
1− 1

2n
t∗Σt

)n

where for large n, the needed expressions have small absolute value and so, from the above
lemma, for large n,

|en| ≤
1

2n

n

∑
j=1

E
(
(t·(X j−m))2

∣∣∣∣1− f
(
t·
(
X j−m√

n

))∣∣∣∣)
Now write X for Xk since all are identically distributed. Then the above right side is no
more than

1
2

E
(
(t·(X−m))2

∣∣∣∣1− f
(
t·
(
X−m√

n

))∣∣∣∣)
which converges to 0 as n→ ∞ by the dominated convergence theorem. Therefore,

lim
n→∞

φZn
(t) = lim

n→∞

(
1− 1

2n
t∗Σt

)n

= e−
1
2 t
∗Σt = φZ (t)

where Z ∼ Np (0,Σ). Therefore, from Theorem 28.5.5, FZn (x)→ FZ (x) for all x be-
cause

Rx ≡
p

∏
k=1

(−∞,xk]
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is a set of λZ continuity due to the assumption that λZ ≪ mp which is implied by Z ∼
Np (0,Σ). ■

Suppose X is a random vector with covariance Σ and mean m, and suppose also that
Σ−1 exists. Consider Σ−(1/2) (X−m)≡ Y. Then E (Y ) = 0 and

E (Y Y ∗) = E
(

Σ
−(1/2) (X−m)(X∗−m)Σ

−(1/2)
)

= Σ
−(1/2)E ((X−m)(X∗−m))Σ

−(1/2) = I.

Thus Y has zero mean and covariance I. This implies the following corollary to Theorem
28.5.8.

Corollary 28.5.9 Let
{
X j
}∞

j=1 be independent identically distributed random vari-

ables and suppose they have meanm and positive definite covariance Σ where Σ−1 exists.
Then if

Zn ≡
n

∑
j=1

Σ−(1/2) (X j−m)√
n

,

it follows that for Z ∼ Np (0,I), FZn (x)→ FZ (x) for all x.



Chapter 29

Martingales
29.1 Conditional Expectation

From Observation 27.4.5 on Page 748, it was shown that the conditional expectation of a
random variableX given some others really is just what the words suggest. Given ω ∈Ω,
it results in a value for the “other” random variables and then you essentially take the
expectation ofX given this information which yields the value of the conditional expecta-
tion of X given the other random variables. It was also shown in Lemma 27.4.4 that this
gives the same result as finding a σ (X1, · · · ,Xn) measurable function Z such that for all
F ∈ σ (X1, · · · ,Xn) , ∫

F
XdP =

∫
F
ZdP

This was done for a particular type of σ algebra but there is no need to be this specialized.
The following is the general version of conditional expectation given a σ algebra. It makes
perfect sense to ask for the conditional expectation given a σ algebra and this is what will
be done from now on.

Definition 29.1.1 Let (Ω,M ,P) be a probability space and let S ⊆ F be two
σ algebras contained in M . Let f be F measurable and in L1 (Ω;W ) for W a Banach
space. Then E ( f |S ) , called the conditional expectation of f with respect to S is defined
as follows:

E ( f |S ) is S measurable

For all E ∈S , ∫
E

E ( f |S )dP =
∫

E
f dP

The existence and uniqueness of the conditional expectation is described earlier in The-
orem 24.12.1 on Page 702. For convenience, here is this theorem.

Theorem 29.1.2 Let E be a separable Banach space and X ∈ L1 (Ω;E,M ) where
X is measurable with respect to M and let S be a σ algebra which is contained in M .
Then there exists a unique Z ∈ L1 (Ω;E,S ) such that for all A ∈S ,∫

A
XdP =

∫
A

ZdP

Denoting this Z as E (X |S ) , it follows

∥E (X |S )∥ ≤ E (∥X∥ |S ) .

A few properties are described next. Let W be a separable Banach space in the follow-
ing lemma.

Lemma 29.1.3 The above is well defined. Also, if S ⊆F then if X ∈ L1 (Ω;W ) ,

E (X |S ) = E (E (X |F ) |S ) . (29.1)

If Z is in L∞ (Ω;W ′)bounded and measurable in S then

ZE (X |S ) = E (ZX |S ) . (29.2)

781
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Also, if a,b ∈W ′, and X ,Y ∈ L1 (Ω;W )

aE (X |S )+bE (Y |S ) = E (aX +bY |S ) . (29.3)

Proof: To begin with consider 29.3. By definition, if F ∈S ,∫
F

aE (X |S )+bE (Y |S )dP = a
∫

F
E (X |S )dP+b

∫
F

E (Y |S )dP

= a
∫

F
XdP+b

∫
F

Y dP =
∫

F
(aX +bY )dP≡

∫
F

E (aX +bY |S )dP

Since F is arbitrary, this shows 29.3.
Let F ∈S . Then∫

F
E (E (X |F ) |S )dP ≡

∫
F

E (X |F )dP

≡
∫

F
XdP≡

∫
F

E (X |S )dP

and so, by uniqueness, E (E (X |F ) |S ) = E (X |S ). This shows 29.1.
To establish 29.2, note that if Z = aXF where F ∈S , and a∈W ′, by Definition 29.1.1,∫

aXF E (X |S )dP =
∫

F
E (aX |S )dPdP =

∫
F

aXdP

=
∫

aXF XdP =
∫

E (aXF X |S )dP

which shows 29.2 in the case where Z is aXF ,F ∈S . It follows this also holds for simple
functions with values in W ′. Let Z be in L∞ (Ω;W ) . By Theorem 24.2.4 there is a sequence
of simple functions {sn}, ∥sn (ω)∥ ≤ 2∥Z (ω)∥ which converges to Z and let F ∈S . Then
by what was just shown,∫

F
snE (X |S )dP =

∫
F

E (snX |S )dP≡
∫

F
snXdP (29.4)

Now ∥∥∥∥∫F
E (snX |S )dP−

∫
F

E (ZX |S )dP
∥∥∥∥ =

∥∥∥∥∫F
(sn−Z)XdP

∥∥∥∥
≤

∫
F
∥(sn−Z)X∥dP

and this converges to 0 by the dominated convergence theorem. Also from Theorem 24.12.1

∥snE (X |S )∥= ∥E (snX |S )∥ ≤ E (∥snX∥|S )≤ 2E (∥ZX∥|S )

which is in L1 (Ω) . Thus one can apply the dominated convergence theorem to the left side
of 29.4 and use what was just shown to pass to a limit in 29.4 and obtain∫

F
ZE (X |S )dP =

∫
F

ZXdP≡
∫

F
E (ZX |S )dP.

Since this holds for every F ∈S , this shows 29.2. ■
The next major result is a generalization of Jensen’s inequality whose proof depends

on the following lemma about convex functions. It pertains to the case where the functions
have values in R.
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Lemma 29.1.4 Let φ be a convex real valued function defined on an interval I. Then
for each x ∈ I, there exists ax such that for all t ∈ I,

φ (t)≥ ax (t− x)+φ (x) .

Also φ is continuous on I.

Proof: Let x ∈ I and let t > x. Then by convexity of φ ,

φ (x+λ (t− x))−φ (x)
λ (t− x)

≤ φ (x)(1−λ )+λφ (t)−φ (x)
λ (t− x)

=
φ (t)−φ (x)

t− x
.

Therefore t→ φ(t)−φ(x)
t−x is increasing if t > x. If t < x, t− x < 0 so

φ (x+λ (t− x))−φ (x)
λ (t− x)

≥ φ (x)(1−λ )+λφ (t)−φ (x)
λ (t− x)

=
φ (t)−φ (x)

t− x

and so t→ φ(t)−φ(x)
t−x is increasing for t ̸= x. Let

ax ≡ inf
{

φ (t)−φ (x)
t− x

: t > x
}
.

Then if t1 < x, and t > x,

φ (t1)−φ (x)
t1− x

≤ ax ≤
φ (t)−φ (x)

t− x
.

Thus for all t ∈ I,
φ (t)≥ ax (t− x)+φ (x). (29.5)

The continuity of φ follows easily from this and the observation that convexity simply
says that the graph of φ lies below the line segment joining two points on its graph. Thus,
we have the following picture which clearly implies continuity. ■

Lemma 29.1.5 Let I be an interval on R and let φ be a convex function defined on I.
Then there exists a sequence {(an,bn)} such that

φ (t) = sup{ant +bn,n = 1, · · ·} .

Proof: Let ax be as defined in the above lemma. Let

ψ (x)≡ sup{ar (x− r)+φ (r) : r ∈Q∩ I}.
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Thus if r1 ∈Q, ψ (r1)≡ sup{ar (r1− r)+φ (r) : r ∈Q∩ I} ≥ φ (r1) . Then ψ is convex on
I so ψ is continuous. Therefore, ψ (t)≥ φ (t) for all t ∈ I. By 29.5,

ψ (t)≥ φ (t)≥ sup{ar (t− r)+φ (r) ,r ∈Q∩ I} ≡ ψ (t).

Thus ψ (t) = φ (t) . Let Q∩ I = {rn}, an = arn and bn =−arnrn +φ (rn). Continuity gives
the desired results at endpoints of I.■

In this lemma, X ,Y have values in R.

Lemma 29.1.6 If X ≤ Y, then E (X |S )≤ E (Y |S ) a.e. Also X → E (X |S ) is linear.

Proof: Let A ∈S .∫
A

E (X |S )dP≡
∫

A
XdP≤

∫
A

Y dP≡
∫

A
E (Y |S )dP.

Hence E (X |S ) ≤ E (Y |S ) a.e. as claimed. That X → E (X |S ) is linear follows from
Lemma 29.1.3.

Theorem 29.1.7 (Jensen’s inequality)Let X (ω) ∈ I a closed interval and let φ :
I→ R be convex. Suppose E (|X |) ,E (|φ (X)|)< ∞. Then φ (E (X |S ))≤ E (φ (X) |S ).

Proof: Let φ (x) = sup{anx+bn}. Letting A ∈S ,

1
P(A)

∫
A

E (X |S )dP =
1

P(A)

∫
A

XdP ∈ I a.e.

whenever P(A) ̸= 0. The claim that 1
P(A)

∫
A XdP ∈ I follows from approximating X with

simple functions having values in I. Hence E (X |S )(ω) ∈ I a.e. and so it makes sense
to consider φ (E (X |S )). Now anE (X |S )+ bn = E (anX +bn|S ) ≤ E (φ (X) |S ).Thus
sup{anE (X |S )+bn}= φ (E (X |S ))≤ E (φ (X) |S ) a.e. ■

29.2 Conditional Expectation and Independence
The situation of interest is a sequence of random variables {Yi} having values in a separable
Banah space along with two other random variables X ,Z both of which are measurable with
respect to E where E ,σ (Y1, ...) are independent σ algebras contained in M , so if A ∈ E
and B∈ σ (Y1, ...), then P(A∩B) = P(A)P(B) . Also let σ (Z,Y ) be the smallest σ algebra
for which Z and each Yk are measurable. Then both X ,Z would seem to relate only to E and
so it would seem that the values of the Yk would be irrelevant and E (X |Z)=E (X |σ (Z,Y )).
That is, the conditional expectation given the extra conditions from the Yk is unchanged. Is
it like the earlier notion in which independence means you can dispense with the givens?
Recall also the notation E (X |Z) is defined as E (X |σ (Z)) .

Recall that if f−1 (O) ∈ F a σ algebra and this holds for all O open, then if S ≡{
B : f−1 (B) ∈F

}
it follows that S is a σ algebra and so it contains the Borel sets.

Proposition 29.2.1 Let E ,σ (Y1,Y2...) be independent σ algebras contained in M .
Also let σ (Z,Y ) be the smallest σ algebra which respect to which each Yk and Z is mea-
surable. Let Z,X be E measurable. Then E (X |Z) = E (X |σ (Z,Y )).
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Proof: First I claim that σ (Z,Y ) consists of (Z,Y )−1 (B) where B is Borel in W ×WN

where WN ≡∏
∞
i=1 W . To see this, let{

(Z,Y )−1 (B) : B is Borel in W 1+N
}
≡F .

Then F is a σ algebra and for VJ of the form ∏
∞
j=1 Vj where Vj = W for all j except for

those contained in a finite set J and for the other j,Vj is an open set, and U an open set
in W, then (Z,Y )−1 (U×VJ) = Z−1 (U)∩Y −1 (VJ) ∈F so that, in particular, choosing
VJ and U appropriately shows Z,Yk are all measurable with respect to F . Hence F ⊇
σ (Z,Y ). Also, U ×VJ just described, where U is in a countable basis for W and each
Vj is W or in a countable basis for W is a countable basis for the topology of W 1+N. By
definition, σ (Z,Y ) must contain (Z,Y )−1 (U×VJ) for U ×VJ in this countable basis.
Therefore, σ (Z,Y ) must contain (Z,Y )−1 (O) for all O open and so also σ (Z,Y ) must
contain (Z,Y )−1 (B) for B Borel, so σ (Z,X) ⊇ F . Also, this shows that for K these
sets in the countable basis for W 1+N,σ (K ) = σ (Z,Y ) =F . Now consider the following
computation. ∫

(Z,Y )−1(U×VJ)
E (X |σ (Z,Y ))dP

≡
∫
(Z,Y )−1(U×VJ)

XdP

=
∫

XY −1(VJ)
XZ−1(U)XdP ∗

= P
(
Y −1 (VJ)

)∫
XZ−1(U)XdP

∗∗
= P

(
Y −1 (VJ)

)∫
E
(
XZ−1(U)X |Z

)
dP =

∫
XY −1(VJ)

E
(
XZ−1(U)X |Z

)
dP

=
∫

Z−1(U)
XY −1(VJ)

E (X |Z)dP =
∫
(Z,Y )−1(U×VJ)

E (X |Z)dP

Then ∗ happens because X[Z∈U ]X is E measurable and XY −1(VJ)
is F measurable and by

assumption, these are independent σ algebras. ∗∗ happens because Ω is σ (Z) measurable
and the definition of conditional expectation. Next step happens because XY −1(VJ)

is F

measurable and E
(
XZ−1(U)X |Z

)
is E measurable. Then the rest follows because XZ−1(U)

is σ (Z) measurable so it comes out of the conditional expectation.
Now let G be those sets G of σ (Z,Y ) = σ (K ) such that∫

G
XdP≡

∫
G

E (X |σ (Z,Y ))dP =
∫

G
E (X |σ (Z))dP≡

∫
G

E (X |Z)dP

As just shown, K ⊆ G . If G = ∪∞
k=1Gk where the Gk are disjoint and the equation holds

for each Gk∫
G

E (X |Z)dP =
∫ ∞

∑
k=1

XGk E (X |Z)dP =
∞

∑
k=1

∫
Gk

E (X |Z)dP

=
∞

∑
k=1

∫
Gk

E (X |σ (Z,Y ))dP =
∫ ∞

∑
k=1

XGk E (X |σ (Z,Y ))dP

=
∫

G
E (X |σ (Z,Y ))dP
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Thus G is closed with respect to countable disjoint unions. If G ∈ G then both sides of the
following equal E (X) and so∫

G
E (X |σ (Z,Y ))dP+

∫
GC

E (X |σ (Z,Y ))dP

=
∫

G
E (X |Z)dP+

∫
GC

E (X |Z)dP

and subtracting
∫

G E (X |σ (Z,Y ))dP =
∫

G E (X |Z)dP from both sides yields∫
GC

E (X |σ (Z,Y ))dP =
∫

GC
E (X |Z)dP.

This proves G is all of σ (K ) = σ (Z,Y ). By uniqueness, E (X |Z) = E (X |σ (Z,Y )) a.e.
■

29.3 Discrete Stochastic Processes
Earlier a special case of a discreet martingale and sub-martingale was discussed. This
section considers the general case where one just has an increasing list of σ algebras. The
idea is that you have an increasing list of real numbers {an} which is well ordered and
X (an)≡ Xan is measurable with respect to Fan where the Fan are increasing in n. Such a
sequence of Fan measurable functions is called a stochastic processes.We usually let this
well ordered increasing list be some subset of N for the sake of convenience, but it could
be equally spaced points in an interval, for example. We let F denote a σ algebra which
contains all of these Fk. For convenience, you could call it F∞.

Definition 29.3.1 Let Fk be an increasing sequence of σ algebras which are sub-
sets of F and Xk be a sequence of Banach space valued random variables with E (∥Xk∥)<
∞ such that Xk is Fk measurable. Such a thing is called a stochastic process. It is called a
martingale if

E (Xk+1|Fk) = Xk,

In case the Banach space is R the stochastic process is a sub-martingale if

E (Xk+1|Fk)≥ Xk,

and a supermartingale if
E (Xk+1|Fk)≤ Xk.

Saying that Xk is Fk measurable is referred to by saying {Xk} is adapted to Fk.

For sub and super martingales, you need to be considering X which has values in R.
No such restriction is necessary for a martingale. If {Xk} is a Banach space valued mar-
tingale, then from Theorem 29.1.2, {∥Xk∥} is a sub-martingale and that if {Xk} is a real
sub-martingale and φ is convex and increasing, then {φ (Xk)} is a sub-martingale. This is
discussed below.

Also in general, for a stochastic process, E (Xn|Fn−2) = E (E (Xn|Fn−1) |Fn−2) . Thus
if {Xn} is a sub-martingale, Lemma 29.1.6 implies E (Xn|Fn−2)≥ Xn−2. Similarly,

S (Xn|Fk)≥ Xk

whenever k < n. Something similar happens with a martingale where you can replace ≥
with = or a super- martingale where you replace ≥ with ≤. I will use this observation
without comment in what follows.
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Lemma 29.3.2 Let φ be a convex and increasing function and suppose

{(Xn,Fn)}

is a sub-martingale. Then if E (|φ (Xn)|)< ∞, it follows

{(φ (Xn) , Fn)}

is also a sub-martingale.

Proof: It is given that E (Xn+1,Fn)≥ Xn and so

φ (Xn)≤ φ (E (Xn+1|Fn))≤ E (φ (Xn+1) |Fn)

by Jensen’s inequality. ■
Certainly one of the most amazing things about sub-martingales is the convergence

theorem. Recall the earlier sub-martingale convergence theorem. I am going to present the
same thing here in this more general setting. Then later, I will present it again in the case
of continuous sub-martingales. This which follows is almost identical to the earlier proof.

So why did I even bother with the earlier development? It is because I wanted to make
a smooth transition from the idea we usually have of conditional probability where it is
probability of something given the value of something else to this more general and much
more abstract notion involving σ algebras.

An upcrossing occurs when a sequence goes from a up to b. Thus it crosses the interval,
[a,b] in the up direction, hence the name upcrossing. More precisely,

Definition 29.3.3 Let {xi}I
i=1 be any sequence of real numbers, I ≤ ∞. Define an

increasing sequence of integers {mk} as follows. m1 is the first integer ≥ 1 such that
xm1 ≤ a, m2 is the first integer larger than m1 such that xm2 ≥ b, m3 is the first integer
larger than m2 such that xm3 ≤ a, etc. Then each sequence,

{
xm2k−1 , · · · ,xm2k

}
, is called an

upcrossing of [a,b].

Here is a picture of an upcrossing.

b

a

Proposition 29.3.4 Let {Xi}n
i=1 be a finite sequence of real random variables defined

on Ω where (Ω,F ,P) is a probability space. Let U[a,b] (ω) denote the number of upcross-
ings of Xi (ω) of the interval [a,b]. Then U[a,b] is a random variable.

Proof: Let X0 (ω) ≡ a + 1, let Y0 (ω) ≡ 0, and let Yk (ω) remain 0 for k = 0, · · · , l
until Xl (ω) ≤ a. When this happens (if ever), Yl+1 (ω) ≡ 1. Then let Yi (ω) remain 1 for
i = l + 1, · · · ,r until Xr (ω) ≥ b when Yr+1 (ω) ≡ 0. Let Yk (ω) remain 0 for k ≥ r + 1
until Xk (ω)≤ a when Yk (ω)≡ 1 and continue in this way. Thus the upcrossings of Xi (ω)
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are identified as unbroken strings of ones for Yk with a zero at each end, with the possible
exception of the last string of ones which may be missing the zero at the upper end and
may or may not be an upcrossing.

Note also that Y0 is measurable because it is identically equal to 0 and that if Yk is
measurable, then Yk+1 is measurable because the only change in going from k to k+1 is a
change from 0 to 1 or from 1 to 0 on a measurable set determined by Xk. In particular,

Y−1
k+1 (1) = ([Yk = 1]∩ [Xk < b])∪ ([Yk = 0]∩ [Xk ≤ a])

This set is in F by induction. Of course, Y−1
k+1 (0) is just the complement of this set. Thus

Yk+1 is F measurable since 0,1 are the only two values. Now let

Zk (ω) =

{
1 if Yk (ω) = 1 and Yk+1 (ω) = 0,
0 otherwise,

if k < n and

Zn (ω) =

{
1 if Yn (ω) = 1 and Xn (ω)≥ b,
0 otherwise.

Thus Zk (ω) = 1 exactly when an upcrossing has been completed and each Zi is a random
variable.

U[a,b] (ω) =
n

∑
k=1

Zk (ω)

so U[a,b] is a random variable as claimed. ■
The following corollary collects some key observations found in the above construction.

Corollary 29.3.5 U[a,b] (ω) ≤ the number of unbroken strings of ones in the sequence
{Yk (ω)} , there being at most one unbroken string of ones which produces no upcrossing.
Also

Yi (ω) = ψ i

({
X j (ω)

}i−1
j=1

)
, (29.6)

where ψ i is some function of the past values of X j (ω).

The following is called the upcrossing lemma.

29.3.1 Upcrossings

Lemma 29.3.6 (upcrossing lemma) Let {(Xi,Fi)}n
i=1 be a sub-martingale and let

U[a,b] (ω)

be the number of upcrossings of [a,b]. Then

E
(
U[a,b]

)
≤ E (|Xn|)+ |a|

b−a
.

Proof: Let φ (x) ≡ a+(x−a)+ so that φ is an increasing convex function always at
least as large as a. By Lemma 29.3.2 it follows that {(φ (Xk) ,Fk)} is also a sub-martingale.

φ (Xk+r)−φ (Xk) =
k+r

∑
i=k+1

φ (Xi)−φ (Xi−1)
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=
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))Yi +
k+r

∑
i=k+1

(φ (Xi)−φ (Xi−1))(1−Yi).

Observe that Yi is Fi−1 measurable from its construction in Proposition 29.3.4, Yi depend-
ing only on X j for j < i.

Now let the unbroken strings of ones for {Yi (ω)} be

{k1, · · · ,k1 + r1} ,{k2, · · · ,k2 + r2} , · · · ,{km, · · · ,km + rm} (29.7)

where m = V (ω) ≡ the number of unbroken strings of ones in the sequence {Yi (ω)}. By
Corollary 29.3.5 V (ω)≥U[a,b] (ω).

φ (Xn (ω))−φ (X1 (ω))

=
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))Yk (ω)

+
n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)).

The first sum in the above reduces to summing over the unbroken strings of ones be-
cause the terms in which Yi (ω) = 0 contribute nothing. Therefore, observing that for
x > a,φ (x) = x,

φ (Xn (ω))−φ (X1 (ω))≥U[a,b] (ω)(b−a)+0+

n

∑
k=1

(φ (Xk (ω))−φ (Xk−1 (ω)))(1−Yk (ω)) (29.8)

where the zero on the right side results from a string of ones which does not produce
an upcrossing. It is here that it is important that φ (x) ≥ a. Such a string begins with
φ (Xk (ω)) = a and results in an expression of the form φ (Xk+m (ω))−φ (Xk (ω))≥ 0 since
φ (Xk+m (ω))≥ a. If Xk had not been replaced with φ (Xk) , it would have been possible for
φ (Xk+m (ω)) to be less than a and the zero in the above could have been a negative number
This would have been inconvenient.

Next take the expectation of both sides in 29.8. This results in

E (φ (Xn)−φ (X1)) ≥ (b−a)E
(
U[a,b]

)
+E

(
n

∑
k=1

(φ (Xk)−φ (Xk−1))(1−Yk)

)
≥ (b−a)E

(
U[a,b]

)
The reason for the last inequality where the term at the end was dropped is

E ((φ (Xk)−φ (Xk−1))(1−Yk))

= E (E ((φ (Xk)−φ (Xk−1))(1−Yk) |Fk−1))

= E ((1−Yk)E (φ (Xk) |Fk−1)− (1−Yk)E (φ (Xk−1) |Fk−1))

≥ E ((1−Yk)(φ (Xk−1)−φ (Xk−1))) = 0.

Recall that Yk is Fk−1 measurable and that (φ (Xk) ,Fk) is a sub-martingale. ■
The reason for this lemma is to prove the amazing sub-martingale convergence theorem.
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29.3.2 The Sub-martingale Convergence Theorem

Theorem 29.3.7 (sub-martingale convergence theorem) Let

{(Xi,Fi)}∞

i=1

be a sub-martingale with K ≡ supE (|Xn|) < ∞. Then there exists a random variable X ,
such that E (|X |)≤ K and

lim
n→∞

Xn (ω) = X (ω) a.e.

Proof: Let a,b ∈ Q and let a < b. Let Un
[a,b] (ω) be the number of upcrossings of

{Xi (ω)}n
i=1. Then let

U[a,b] (ω)≡ lim
n→∞

Un
[a,b] (ω) = number of upcrossings of {Xi} .

By the upcrossing lemma,

E
(

Un
[a,b]

)
≤ E (|Xn|)+ |a|

b−a
≤ K + |a|

b−a

and so by the monotone convergence theorem,

E
(
U[a,b]

)
≤ K + |a|

b−a
< ∞

which shows U[a,b] (ω) is finite a.e., for all ω /∈ S[a,b] where P
(
S[a,b]

)
= 0. Define

S≡ ∪
{

S[a,b] : a,b ∈Q, a < b
}
.

Then P(S) = 0 and if ω /∈ S, {Xk}∞

k=1 has only finitely many upcrossings of every interval
having rational endpoints. For such ω it cannot be the case that

lim sup
k→∞

Xk (ω)> lim inf
k→∞

Xk (ω)

because then you could pick rational a,b such that [a,b] is between the limsup and the
liminf and there would be infinitely many upcrossings of [a,b]. Thus, for ω /∈ S,

lim sup
k→∞

Xk (ω) = lim inf
k→∞

Xk (ω) = lim
k→∞

Xk (ω)≡ X∞ (ω) .

Letting X∞ (ω) ≡ 0 for ω ∈ S, Fatou’s lemma implies∫
Ω

|X∞|dP =
∫

Ω

lim inf
n→∞
|Xn|dP≤ lim inf

n→∞

∫
Ω

|Xn|dP≤ K ■

As a simple application, here is an easy proof of a nice theorem about convergence of
sums of independent random variables.

Theorem 29.3.8 Let {Xk} be a sequence of independent real valued random vari-
ables such that E (|Xk|)< ∞,E (Xk) = 0, and

∞

∑
k=1

E
(
X2

k
)
< ∞.

Then ∑
∞
k=1 Xk converges a.e.
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Proof: Let Fn ≡ σ (X1, · · · ,Xn) . Consider Sn ≡ ∑
n
k=1 Xk.

E (Sn+1|Fn) = Sn +E (Xn+1|Fn) .

Letting A ∈Fn it follows from independence that∫
A

E (Xn+1|Fn)dP ≡
∫

A
Xn+1dP =

∫
Ω

XAXn+1dP

= P(A)
∫

Ω

Xn+1dP = 0

and so E (Sn+1|Fn) = 0. Therefore, {Sn} is a martingale. Now using independence again,

E (|Sn|)≤ E
(∣∣S2

n
∣∣)= n

∑
k=1

E
(
X2

k
)
≤

∞

∑
k=1

E
(
X2

k
)
< ∞

and so {Sn} is an L1 bounded martingale. Therefore, it converges a.e. ■

Corollary 29.3.9 Let {Xk} be a sequence of independent real valued random variables
such that E (|Xk|)< ∞,E (Xk) = mk, and

∞

∑
k=1

E
(
|Xk−mk|2

)
< ∞.

Then ∑
∞
k=1 (Xk−mk) converges a.e.

This can be extended to the case where the random variables have values in a separable
Hilbert space. Recall that for {ek} an orthonormal basis and ∑

∞
k=1 |ak|2H < ∞,∑∞

k=1 akek ∈H
and the infinite sum makes sense. Also, for x ∈ H,x = ∑k (x,ek)ek the convergence in H.

Theorem 29.3.10 Let {Xk} be a sequence of independent H valued random vari-
ables where H is a real separable Hilbert space such that E (|Xk|H) < ∞,E (Xk) = 0, and

∑
∞
k=1 E

(
|Xk|2H

)
< ∞. Then ∑

∞
k=1 Xk converges a.e.

Proof: Let {ek} be an orthonormal basis for H. Then {(Xn,ek)H}
∞

n=1 are real valued,
independent, and their mean equals 0. Also

∞

∑
n=1

E
(∣∣∣(Xn,ek)

2
H

∣∣∣)≤ ∞

∑
n=1

E
(
|Xn|2H

)
< ∞

and so from Theorem 29.3.8, the series, ∑
∞
n=1 (Xn,ek)H converges a.e. Therefore, there

exists a set of measure zero such that for ω not in this set, ∑n (Xn (ω) ,ek)H converges for
each k. For ω not in this exceptional set, define

Yk (ω)≡
∞

∑
n=1

(Xn (ω) ,ek)H

Next define S (ω)≡ ∑
∞
k=1 Yk (ω)ek. Of course it is not clear this even makes sense. I need

to show ∑
∞
k=1 |Yk (ω)|2 < ∞. Using the independence of the Xn

E
(
|Yk|2

)
≤ lim inf

N→∞
E

((
N

∑
n=1

N

∑
m=1

(Xn,ek)H (Xm,ek)H

))

= lim inf
N→∞

E

(
N

∑
n=1

(Xn,ek)
2
H

)
=

∞

∑
n=1

E
(
(Xn,ek)

2
H

)
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the last from the monotone convergence theorem. Hence from the above,

E

(
∑
k
|Yk|2

)
= ∑

k
E
(
|Yk|2

)
≤∑

k
∑
n

E
(
(Xn,ek)

2
H

)
= ∑

n
E

(
∑
k
(Xn,ek)

2

)
= ∑

n
E
(
|Xn|2H

)
< ∞

the last by assumption. Therefore, for ω off a set of measure zero, and for Yk (ω) ≡
∑

∞
n=1 (Xn (ω) ,ek)H which exists a.e. by Theorem 29.3.8, ∑k |Yk (ω)|2 < ∞ and so for a.e.

ω, S (ω)≡ ∑
∞
k=1 Yk (ω)ek makes sense. Thus for these ω

S (ω) = ∑
l
(S (ω) ,el)el = ∑

l
Yl (ω)el ≡∑

l
∑
n
(Xn (ω) ,el)H el

= ∑
n

∑
l
(Xn (ω) ,el)el = ∑

n
Xn (ω) .■

Now with this theorem, here is a strong law of large numbers.

Theorem 29.3.11 Suppose {Xk} are independent random variables and

E (|Xk|)< ∞

for each k and E (Xk) =mk. Suppose also

∞

∑
j=1

1
j2 E

(∣∣X j−m j
∣∣2)< ∞. (29.9)

Then limn→∞
1
n ∑

n
j=1 (X j−m j) = 0 a.e.

Proof: Consider the sum
∞

∑
j=1

X j−m j

j
.

This sum converges a.e. because of 29.9 and Theorem 29.3.10 applied to the random vec-
tors

{
X j−m j

j

}
. Therefore, from Lemma 26.8.4 it follows that for a.e. ω ,

lim
n→∞

1
n

n

∑
j=1

(X j (ω)−m j) = 0.■

The next corollary is often called the strong law of large numbers. It follows immedi-
ately from the above theorem.

Corollary 29.3.12 Suppose
{
X j
}∞

j=1 are independent random vectors, λX i = λX j

for all i, j having meanm and variance equal to

σ
2 ≡

∫
Ω

∣∣X j−m
∣∣2 dP < ∞.

Then for a.e. ω ∈Ω, limn→∞
1
n ∑

n
j=1X j (ω) =m
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29.3.3 Doob Sub-martingale Estimates
Another very interesting result about sub-martingales is the Doob sub-martingale estimate.
First is a technical lemma which is frequently useful in situations where we want to inter-
change order of integration. I shall likely use this lemma without comment occasionally.

Lemma 29.3.13 If f is F measurable and nonnegative then

(λ ,ω)→X[ f>λ ] is F ×B (R) measurable.

Proof: Let s be a nonnegative simple function, s(ω) = ∑
n
k=1 ckXEk (ω) where we can

let the sum be written such that the ck are strictly increasing in k and these are the positive
values of s. Also let Fk = ∪n

i=kEi.

X[s>λ ] =
n

∑
k=1

X[ck−1,ck) (λ )XFk (ω) , c0 ≡ 0.

which is clearly product measurable. To see that this formula is valid, first consider the
case where λ ∈ [0,c1). Then X[s>λ ] = 1 on F1 and 0 off F1. The first term of the right
side equals 1 and the others are 0 due to X[ck−1,ck) (λ ). Thus the formula holds for such
λ . Now suppose λ ∈ [c j−1,c j). Then left side is 1 when s(ω) = cl for some l ≥ c j. In this
case, the right side has exactly one term equal to 1 and it is X[c j−1,c j) (λ )XFj (ω) . The
remaining case is that λ ≥ cn. In this case, the right side equals 0 and the left side also
equals 0 because s(ω) is never strictly larger than cn. ■

For arbitrary f ≥ 0 and measurable, there is an increasing sequence of simple functions
sn converging pointwise to f . Therefore,

lim
n→∞

X[sn>λ ] = X[ f>λ ]

and so X[ f>λ ] is product measurable. ■

Theorem 29.3.14 Let {(Xi,Fi)}∞

i=1 be a sub-martingale. Then for λ > 0,

P
([

max
1≤k≤n

Xk > λ

])
≤ 1

λ

∫
Ω

X[max1≤k≤n Xk>λ ]X
+
n dP≤ 1

λ

∫
Ω

X+
n dP

Proof: Let

A1 ≡ [X1 > λ ] ,A2 ≡ [X2 > λ ]\A1,

· · · ,Ak ≡ [Xk > λ ]\
(
∪k−1

i=1 Ai

)
· · ·

Thus each Ak is Fk measurable, the Ak are disjoint, and their union equals[
max

1≤k≤n
Xk > λ

]
.

Therefore from the definition of a sub-martingale and Jensen’s inequality,

P
([

max
1≤k≤n

Xk > λ

])
=

n

∑
k=1

P(Ak)≤
1
λ

n

∑
k=1

∫
Ak

XkdP
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≤ 1
λ

n

∑
k=1

∫
Ak

E (Xn|Fk)dP≤ 1
λ

n

∑
k=1

∫
Ak

E (Xn|Fk)
+ dP

≤ 1
λ

n

∑
k=1

∫
Ak

E
(
X+

n |Fk
)

dP =
1
λ

n

∑
k=1

∫
Ak

X+
n dP≤ 1

λ

∫
Ω

X[max1≤k≤n Xk>λ ]X
+
n dP. ■

Now suppose Xk is a martingale with values in W a Banach space. Then from the
theorem on conditional expectation, E (∥Xk+1∥|Fk) ≥ ∥E (Xk+1|Fk)∥ = ∥Xk∥ . Thus k→
∥Xk∥ is a sub-martingale and so one gets the following interesting corollary.

Corollary 29.3.15 Let Xn be a martingale with values in a Banach space W. Then for
λ > 0,

P
([

max
1≤k≤n

∥Xk∥> λ

])
≤ 1

λ

∫
Ω

X[max1≤k≤n∥Xk∥>λ ] ∥Xn∥dP≤ 1
λ

∫
Ω

∥Xn∥dP

Now suppose Xk is a martingale with values in W a Banach space. For p> 1,k→∥Xk∥p

is a sub-martingale because

E (∥Xk+1∥p |Fk)≥ (E (∥Xk+1∥|Fk))
p ≥ ∥E (Xk+1|Fk)∥p = ∥Xk∥p

Therefore, from the definition of the Lebesgue integral of a positive function,∫
Ω

(
max

1≤k≤n
∥Xk∥

)p

dP =
∫

Ω

max
1≤k≤n

∥Xk∥p dP =
∫

∞

0
P
([

max
1≤k≤n

∥Xk∥p > λ

])
dλ

Change variables λ = µ p and using the Doob estimate, Theorem 29.3.14,

=
∫

∞

0
P
([

max
1≤k≤n

∥Xk∥> λ
1/p
])

dλ = p
∫

∞

0
P
([

max
1≤k≤n

∥Xk∥> µ

])
µ

p−1dµ

To save on notation, let X∗n ≡max1≤k≤n ∥Xk∥ . Then using Lemma 29.3.13 as needed,

≤
∫

∞

0

pµ p−1

µ

∫
Ω

X[X∗n >µ] ∥Xn∥dPdµ =
∫

Ω

∥Xn (ω)∥
∫

∞

0

pµ p−1

µ
X[X∗n >µ]dµdP

Then p−1 = p/q where 1/p+1/q = 1,

≤
∫

Ω

∫ X∗n

0
pµ

p−2 ∥Xn∥dµdP =
p

p−1

∫
Ω

(X∗n )
p/q ∥Xn∥dP

≤ p
p−1

(∫
Ω

(X∗n )
p
)1/q(∫

Ω

∥Xn∥p dP
)1/p

This proves the following version of the above Doob estimate.

Theorem 29.3.16 Let n→ Xn be a martingale with values in a Banach space W
and Xn ∈ Lp (Ω;W ) , p > 1, then for X∗n ≡maxk≤n {∥Xk∥} , then∫

Ω

(X∗n )
p dP≤ p

p−1

(∫
Ω

(X∗n )
p
)1/q(∫

Ω

∥Xn∥p dP
)1/p

In fact, (∫
Ω

(X∗n )
p dP

)1/p

≤ p
p−1

(∫
Ω

∥Xn∥p dP
)1/p
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Proof: The second claim is all which remains. Let n be given. Then let

A1 ≡ {ω : ∥X1 (ω)∥ ≥ ∥Xk (ω)∥ for k ̸= 1} .

Let
A2 ≡ {ω : ∥X2 (ω)∥ ≥ ∥Xk (ω)∥k,k ̸= 2}\A1,

etc. Then these sets are disjoint and so

X∗n =
n

∑
k=1

XAk ∥Xk∥ ,
∫

Ω

(X∗n )
p dP =

n

∑
k=1

∫
Ak

∥Xk∥p dP < ∞

and so, we can divide both sides with (
∫

Ω
(X∗n )

p)
1/q to obtain the last claim. ■

Later on I will consider the case of continuous sub-martingales and martingales. In this
case, you have to work harder and one way is to use a stopping time. These stopping times
are about to be discussed in the next section for discreet processes.

29.4 Optional Sampling and Stopping Times
I think that the optional sampling theorem of Doob is amazing. That is why it gets repeated
quite a bit. It is one of those theorems that you read and when you get to the end, having
followed the argument, you sit back and feel amazed at what you just went through. You
ask yourself if it is really true or whether you made some mistake. At least this is how it
affects me.

First it is necessary to define the notion of a stopping time. If you have an increasing
sequence of σ algebras {Fn} and a process {Xn} such that Xn is Fn measurable, the idea
of a stopping time τ is that τ is measurable and Xmin(τ,n) is a Fn measurable function. In
other words, by stopping with this stopping time, we preserve the Fn measurability. It is
customary to write n∧ τ = min(n∧ τ). Thus, we want to have X−1

n∧τ (O) ∈Fn where O is
an open set in some metric space where Xn has its values and a∧b means min(a,b).

X−1
n∧τ (O) = [τ ≤ n]∩

[
ω : Xτ(ω) (ω) ∈ O

]
∪ [τ > n]∩ [ω : Xn (ω) ∈ O]

Now
[τ ≤ n]∩

[
ω : Xτ(ω) (ω) ∈ O

]
= ∪n

k=1 [τ = k]∩ [Xk ∈ O]

To have this in Fn, one needs [τ = k]∈Fk for each k≤ n. That is [τ ≤ k]∈Fk. Now once
this is done, [τ > n] = [τ ≤ n]C ∈ Fn also. This motivates the following definition and
shows that the requirement [τ ≤ n] ∈Fn implies that ω → Xn∧τ(ω) (ω) is Fn measurable
when Xn is Fn measurable and is exactly what is needed for this to happen.

Definition 29.4.1 Let (Ω,F ,P) be a probability space and let {Fn}∞

n=1 be an in-
creasing sequence of σ algebras each contained in F . A stopping time is a measurable
function τ which maps Ω to N,

τ
−1 (A) ∈F for all A ∈P (N) ,

such that for all n ∈ N,
[τ ≤ n] ∈Fn.
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Note this is equivalent to saying [τ = n] ∈Fn because [τ = n] = [τ ≤ n]\ [τ ≤ n−1] . For
τ a stopping time define Fτ as follows.

Fτ ≡ {A ∈F : A∩ [τ ≤ n] ∈Fn for all n ∈ N} (29.10)

These sets in Fτ are referred to as “prior” to τ .

Lemma 29.4.2 The requirement 29.10 is equivalent to saying that A∩ [τ = n] ∈Fn for
all n ∈ N.

Proof: [τ = n]∩A = [τ ≤ n]∩A \ [τ ≤ n−1]∩A ∈ Fn so if 29.10 holds, then A∩
[τ = n] ∈Fn for all n. Conversely, if A∩ [τ = n] ∈Fn, then A∩ [τ ≤ n] = ∪k≤nA∩ [τ = k]
which is the union of sets in Fn since the Fk are increasing in k. ■

Another good thing to observe is the following lemma.

Lemma 29.4.3 If σ ≤ τ and σ ,τ are two stopping times, then Fσ ⊆Fτ .

Proof: Say A ∈Fσ which means that A∩ [σ ≤ n] ∈Fn for all n. Now consider A∩
[τ = n] . Is this in Fn? Since σ ≤ τ,

A∩ [τ = n] =
∈Fn

[τ = n]∩
∈Fn

∪n
j=1A∩ [σ = j] ∈Fn

since each [σ = j]∩A ∈Fn. ■
Next is a significant observation that a stochastic process A(n) where A(n) is Fn mea-

surable satisfies A(τ) ∈Fτ .

Proposition 29.4.4 Let A(k) be Fk measurable for each k where Fk is an increasing
sequence of σ algebras. Then A(τ) is Fτ measurable if τ is a stopping time corresponding
to the Fk. If σ ,τ are two stopping times, then so are τ ∧σ and τ ∨σ , the minimum and
maximum of the two stopping times.

Proof: I need to show that for O an open set [A(τ) ∈ O] is Fτ measurable. I need to
show that [A(τ) ∈ O]∩ [τ ≤ k]∈Fk for each k. It suffices to show that for each j, [τ = j]∩
[A( j) ∈ O]∩ [τ ≤ k]∈Fk for each k. If j≤ k, then left side reduces to [τ = j]∩ [A( j) ∈ O] .
However, A( j) is F j measurable and so [A( j) ∈ O] ∈F j ⊆Fk while [τ = j] ∈F j ⊆Fk
so all is well if j≤ k. However, if j > k, then the expression [τ = j]∩ [A( j)≤ r]∩ [τ ≤ k] =
/0 ∈Fk and so it works in this case also. Thus A(τ) is indeed Fτ measurable.

For the last claim, [τ ∧σ ≤ j] = [τ ≤ j]∪ [σ ≤ j] ∈ F j and [τ ∨σ ≤ j] = [τ ≤ j]∩
[σ ≤ j] ∈F j. ■

Example 29.4.5 As an example of a stopping time, let Xn be Fn measurable where the
Fn are increasing σ algebras. Let O be a Borel set, and let τ (ω) be the first n such that
Xn (ω) ∈O. If X−1

n (O) = /0 for all n, then τ (ω)≡ ∞ and we consider F∞ to be F . This is
an example of a stopping time called the first hitting time. With these discreet processes, it
is enough to let O be Borel.

Lemma 29.4.6 The first hitting time of a Borel set O is a stopping time. Also Fτ is a σ

algebra.
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Proof: [τ ≤ n] = ∪n
k=1 [τ = k] = ∪n

k=1 [Xk ∈ O]∩
(
∪ j<k

[
X j ∈ OC

])
. Now

∈Fk
[Xk ∈ O]∩

(
∪ j<k

∈F j[
X j ∈ OC]) ∈Fn

and so this is indeed a stopping time, being the union of finitely many sets of Fn. As just
noted, this means that Xn∧τ is Fn measurable.

For the claim about Fτ , it is obvious that Ω, /0 are in Fτ . Suppose A ∈Fτ . Then for

k arbitrary, AC ∩ [τ ≤ k]∪
∈Fk

A∩ [τ ≤ k] =
∈Fk

[τ ≤ k] and so AC ∩ [τ ≤ k] ∈Fk. It is even more
obvious that Fτ is closed with respect to countable unions. ■

Of course τ has values i, in a countable well ordered set of numbers, i≤ i+1. We have
the following about the relation with stopping times and conditional expectations.

Lemma 29.4.7 Let X be in L1 (Ω). Then

1. Fτ ∩ [τ = i] = Fi∩ [τ = i] and E (X |Fτ) = E (X |Fi) a.e. on the set [τ = i] . Also if
A ∈Fτ or Fi, then A∩ [τ = i] ∈Fi∩Fτ .

2. E (X |Fτ) = E (X |Fi) a.e. on the set [τ ≤ i] .

Proof: 1.) A typical set in Fτ ∩ [τ = i] is B ≡ A∩ [τ = i] where A ∈ Fτ . Thus A∩
[τ = i] = B ∈Fi so A∩ [τ = i] = A∩ [τ = i]∩ [τ = i] = B∩ [τ = i] ∈Fi∩ [τ = i] .

A typical set in Fi∩ [τ = i] is A∩ [τ = i] where A∈Fi. Then A∩ [τ = i]∩ [τ = j]∈F j
for all j. If j ̸= i, you get /0 and if j = i, you get A∩ [τ = i] ∈Fi = F j so A∩ [τ = i] = B ∈
Fτ and so A∩ [τ = i]∩ [τ = i] = B∩ [τ = i] ∈Fτ ∩ [τ = i].

For A ∈ Fτ , A∩ [τ = i] ∈ Fi by definition. However, it is also the case, from what
was just shown that A∩ [τ = i]∈Fτ because A∩ [τ = i]∩ [τ = j]∈F j for every j. Also, if
A∈Fi, then A∩ [τ = i]∈Fi by definition of a stopping time and A∩ [τ = i]∩ [τ = j]∈F j
for every j. Thus if A is either in Fτ or Fi, then [τ = i]∩A ∈Fi∩Fτ .

Now let A ∈Fτ . Then∫
A∩[τ=i]

E (X |Fi)dP =
∫

A∩[τ=i]
XdP≡

∫
A∩[τ=i]

E (X |Fτ)dP

2.) If A ∈Fτ ,then A∩ [τ = j] ∈F j by definition of Fτ and so by definition of conditional
expectation,

∫
A∩[τ≤i]

E (X |Fi)dP =

E(E(X |Fi)|F j)=E(X |F j)
i

∑
j=1

∫
A∩[τ= j]

E (X |Fi)dP =
i

∑
j=1

∫
A∩[τ= j]

E (X |F j)dP

=
i

∑
j=1

∫
A∩[τ= j]

E (X |Fτ)dP =
∫

A∩[τ≤i]
E (X |Fτ)dP

Since A ∈Fτ is arbitrary, it follows that E (X |Fi) = E (X |Fτ) a.e. on the set [τ ≤ i]. ■
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29.4.1 Optional Sampling for Martingales
Now it is time for the optional sampling theorem. Suppose {Xn} is a martingale. In par-
ticular, each Xn ∈ L1 (Ω;W ) and E (Xn|Fk) = Xk whenever k ≤ n. We can assume Xn has
values in some separable Banach space. Then ∥Xn∥ is a sub-martingale because if k ≤ n,
then if A ∈Fk, ∫

A
E (∥Xn∥|Fk)dP≥

∫
A
∥E (Xn|Fk)∥dP =

∫
A
∥Xk∥dP

Now suppose we have two stopping times τ and σ and τ is bounded meaning it has values
in {1,2, · · · ,n} .

The optional sampling theorem says the following. For M (n) a martingale, ∥M (n)∥ ∈
L1, then the following holds a.e.

M (σ ∧ τ) = E (M (τ) |Fσ )

Furthermore, it all makes sense. First of all, why does it make sense? We need to verify
that M (τ) is integrable. ∫

∥M (τ)∥=
n

∑
k=1

∫
[τ=k]
∥M (k)∥dP < ∞

Similarly, M (σ ∧ τ) is integrable. The reason is that σ ∧ τ is a stopping time which is
bounded by n. Thus the above follows with τ replaced with σ ∧τ . Why is σ ∧τ a stopping
time? It is because [σ ∧ τ ≤ k] = [σ ≤ k]∪ [τ ≤ k] ∈Fk. It is also clear that τ = i ∈ N will
be a stopping time.

Now let A ∈Fσ . Then using Lemma 29.4.7 as needed,∫
A

M (σ ∧ τ) =
n

∑
i=1

∫
A∩[τ=i]

M (σ ∧ i) =
n

∑
i=1

∞

∑
j=1

∫
A∩[τ=i]∩[σ= j]

M ( j∧ i)

If j ≤ i,
M ( j∧ i) = M ( j) = E (M (i) |F j) .

If j > i,
M ( j∧ i) = M (i) = E (M (i) |F j) .

On [ j = σ ] , E (M (i) |F j) = E (M (i) |Fσ ) Thus the last term in the above is

=
n

∑
i=1

∞

∑
j=1

∫
A∩[τ=i]∩[σ= j]

E (M (i) |Fσ ) =
n

∑
i=1

∫
A∩[τ=i]

E (M (i) |Fσ )

Now XA∩[τ=i]M (i) = XA∩[τ=i]M (τ) so

=
n

∑
i=1

∫
E
(
XA∩[τ=i]M (i) |Fσ

)
=

n

∑
i=1

∫
E
(
XA∩[τ=i]M (τ) |Fσ

)
=
∫

E (XAM (τ) |Fσ ) =
∫

A
E (M (τ) |Fσ )

Since A is an arbitrary element of Fσ , this shows the optional sampling theorem that
M (σ ∧ τ) = E (M (τ) |Fσ ) .
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Proposition 29.4.8 Let M be a martingale having values in some separable Banach
space. Let τ be a bounded stopping time and let σ be another stopping time. Then every-
thing makes sense in the following formula and

M (σ ∧ τ)≡Mσ∧τ = E (M (τ) |Fσ ) a.e.

29.4.2 Optional Sampling Theorem for Sub-Martingales
What about the case where {X (n)} is a sub-martingale? Shouldn’t there be something
like the conclusion of Proposition 29.4.8? This requires a very interesting theorem which
involves the decomposition of a sub-martingale into a sum. Recall {X (k)}∞

k=1 is a sub-
martingale if

E (X (k+1) |Fk)≥ X (k)

where the Fk are an increasing sequence of σ algebras in the usual way. The following
is the very interesting result about writing a sub-martingale as the sum of an increasing
process and a martingale.

Lemma 29.4.9 Let {X (k)}∞

k=0 be a sub-martingale adapted to the increasing sequence
of σ algebras, {Fk} . Then there exists a unique increasing process {A(k)}∞

k=0 such that
A(0) = 0 and A(k+1) is Fk measurable for all k and a martingale, {M (k)}∞

k=0 such that

X (k) = A(k)+M (k) .

Furthermore, for τ a stopping time, A(τ) is Fτ measurable.

Proof: Define ∑
−1
k=0≡ 0. First consider the uniqueness assertion. Suppose A is a process

which does what it is supposed to do.

n−1

∑
k=0

E (X (k+1)−X (k) |Fk) =
n−1

∑
k=0

E (A(k+1)−A(k) |Fk)

+
n−1

∑
k=0

E (M (k+1)−M (k) |Fk)

Then since {M (k)} is a martingale,

n−1

∑
k=0

E (X (k+1)−X (k) |Fk) =
n−1

∑
k=0

A(k+1)−A(k) = A(n)

This shows uniqueness and gives a formula for A(n) assuming it exists. It is only a matter
of verifying this does work. Define

A(n)≡
n−1

∑
k=0

E (X (k+1)−X (k) |Fk) , A(0) = 0.

Then A is increasing because from the definition,

A(n+1)−A(n) = E (X (n+1)−X (n) |Fn)≥ 0.

Also from the definition above, A(n) is Fn−1 measurable, so consider

{X (k)−A(k)} .
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Why is this a martingale?

E (X (k+1)−A(k+1) |Fk) = E (X (k+1) |Fk)−A(k+1)

= E (X (k+1) |Fk)−
k

∑
j=0

E (X ( j+1)−X ( j) |F j)

= E (X (k+1) |Fk)−E (X (k+1)−X (k) |Fk)

−
k−1

∑
j=0

E (X ( j+1)−X ( j) |F j)

= X (k)−
k−1

∑
j=0

E (X ( j+1)−X ( j) |F j) = X (k)−A(k)

Let M (k)≡ X (k)−A(k). A(τ) is Fτ measurable by Proposition 29.4.4. ■
Note the nonnegative integers could be replaced with any finite set or ordered countable

set of numbers with no change in the conclusions of this lemma or the above optional
sampling theorem.

Next consider the case of a sub-martingale.

Theorem 29.4.10 Let {X (k)} be a sub-martingale with respect to the increasing
sequence of σ algebras, {Fk} and let σ ,τ be two stopping times such that τ is bounded.
Then X (τ) defined as

ω → X (τ (ω))

is integrable and
X (σ ∧ τ)≤ E (X (τ) |Fσ ) .

Proof: The claim about X (τ) being integrable is the same as done earlier. If τ ≤ l,

E (|X (τ (ω))|) =
l

∑
i=1

∫
[τ=i]
|X (i)|dP < ∞

By Lemma 29.4.9 there is a martingale, {M (k)} and an increasing process {A(k)} such
that A(k+1) is Fk measurable such that

X (k) = M (k)+A(k) .

Then from the fact A is increasing,

E (X (τ) |Fσ ) = E (M (τ)+A(τ) |Fσ ) = M (τ ∧σ)+E (A(τ) |Fσ )

≥ M (τ ∧σ)+E (A(τ ∧σ) |Fσ )

= M (τ ∧σ)+A(τ ∧σ)≡ X (τ ∧σ) .

because in the above, it follows from Lemma 29.4.9, A(τ ∧σ) is Fτ∧σ measurable and
from Lemma 29.4.3, Fτ∧σ ⊆Fσ and so E (A(τ ∧σ) |Fσ ) = A(τ ∧σ) . ■

Say τ is bounded by n and σ is a stopping time. A useful way to remember the above
theorem is in the following proposition.

Proposition 29.4.11 Suppose τ is a bounded stopping time and σ is a stopping time.
Then if {X (k)} is a sub-martingale, then X (1) ,X (τ ∧σ) ,X (τ) is also a sub-martingale.
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Proof: Consider X (1) ,X (τ ∧σ) ,X (τ) . Then

E (X (τ) |Fτ∧σ )≥ X (σ ∧ τ ∧ τ) = X (σ ∧ τ) .

Also E (X (σ ∧ τ) |F1) ≥ X (σ ∧ τ ∧1) = X (1) so this stochastic process is a sub-martin-
gale. ■

This optional sampling theorem gives a convenient way to consider the Doob maximal
estimate presented earlier.

Proposition 29.4.12 Let {X (k)} be a real valued sub-martingale, and let λ > 0. Then
for X∗n ≡max{Xk : k ≤ n} as earlier,∫

[X∗n≤λ ]
X (n)+ dP≥ λP([X∗n > λ ]) = λP

([
(X∗n )

+ > λ
])

Proof: Let τ = n and let σ be the first hitting time of the set (λ ,∞) by X (k) . Then
ω ∈ [X∗n > λ ] if and only if for some k≤ n,Xk > λ if and only if σ (ω) = k for some k≤ n.
By Proposition 29.4.11 X (1) ,X (σ ∧n) ,X (n) is a sub-martingale and the set of interest
[X∗n > λ ] is the one where σ < ∞. Then

E (X (n)) ≥ E (X (σ ∧n)) =
∫
[σ<∞]

X (σ ∧n)dP+
∫
[σ=∞]

X (σ ∧n)dP

=
∫
[σ<∞]

X (σ ∧n)dP+
∫
[σ=∞]

X (n)dP

≥ λP([σ < ∞])+
∫
[σ=∞]

X (n)dP

Therefore,

E
(
X[X∗n >λ ]X (n)+

)
≥ E

(
X[X∗n >λ ]X (n)

)
≥ λP([σ < ∞]) = λP([X∗n > λ ]) .■

Now let Xn∗ = min{X (k) : k ≤ n} . What about P([Xn∗ <−λ ])? Let σ be the first hit-
ting time for (−∞,−λ ) and note that [Xn∗ <−λ ] consists of the set of ω where σ (ω)< ∞.
As noted in Proposition 29.4.11, X (1) ,X (σ ∧n) ,X (n) is a sub-martingale. Thus∫

X (1)dP ≤
∫
[σ<∞]

X (σ ∧n)dP+
∫
[σ=∞]

X (σ ∧n)dP

=
∫
[σ<∞]

X (σ ∧n)dP+
∫
[σ=∞]

X (n)dP

It follows that∫
X (1)dP−

∫
[σ=∞]

X (n)dP≤
∫
[σ<∞]

X (σ ∧n)dP≤−λP([σ < ∞])

and so,

λP([σ < ∞]) = λP([Xn∗ < λ ])≤
∫
|X (1)|+ |X (n)|dP

Therefore, we obtain the following theorem which is a maximal estimate for sub-martin-
gales.
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Theorem 29.4.13 Let {X (k)} be a real sub-martingale and let λ > 0 be given.
Then

P([max{|Xk| ,k = 1, ...,n}> λ ])≤ 2
λ

∫
|X (1)|+ |X (n)|dP

Proof: [max{|Xk| ,k = 1, ...,n}> λ ]⊆ [X∗n > λ ]∪ [Xn∗ <−λ ] and so

P([max{|Xk| ,k = 1, ...,n}> λ ]) ≤ 1
λ

∫
X+

n dP+
1
λ

∫
(|X (1)|+ |X (n)|)dP

≤ 2
λ

∫
|X (1)|+ |X (n)|dP.■

29.5 Reverse Sub-martingale Convergence Theorem
Sub-martingale: E (Xn+1|Fn)≥ Xn. Reverse sub-martingale: E (Xn|Fn+1)≥ Xn+1 and here
the Fn are decreasing.

Definition 29.5.1 Let {Xn}∞

n=0 be a sequence of real random variables such that
E (|Xn|)< ∞ for all n and let {Fn} be a sequence of σ algebras such that Fn ⊇Fn+1 for
all n. Then {Xn} is called a reverse sub-martingale if for all n,

E (Xn|Fn+1)≥ Xn+1.

Note it is just like a sub-martingale only the indices and σ algebras are going the other
way. Here is an interesting lemma. This lemma gives uniform integrability for a reverse
sub-martingale. The application I have in mind in the next lemma is that supn E (|Xn|)< ∞

but it is stated more generally and this condition appears to be obtained for free given the
existence of X∞ in the following lemma.

Lemma 29.5.2 Suppose for each n, E (|Xn|) < ∞, Xn is Fn measurable, Fn+1 ⊆Fn
for all n ∈ N, and there exist X∞ F∞ measurable such that F∞ ⊆Fn for all n and X0 F0
measurable such that F0 ⊇Fn for all n such that for all n ∈ {0,1, · · ·} ,

E (Xn|Fn+1)≥ Xn+1, E (Xn|F∞)≥ X∞,

where E (|X∞|)< ∞. Then {Xn : n ∈ N} is equi-integrable.

Proof:
E (Xn+1)≤ E (E (Xn|Fn+1)) = E (Xn)

Therefore, the sequence {E (Xn)} is a decreasing sequence bounded below by E (X∞) so it
has a limit. I am going to show the functions are equi-integrable. Let k be large enough
that ∣∣∣E (Xk)− lim

m→∞
E (Xm)

∣∣∣< ε (29.11)

and suppose n > k. Then if λ > 0,∫
[|Xn|≥λ ]

|Xn|dP =
∫
[Xn≥λ ]

XndP+
∫
[Xn≤−λ ]

(−Xn)dP
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=
∫
[Xn≥λ ]

XndP+
∫

Ω

(−Xn)dP+
∫
[−Xn<λ ]

XndP

≤
∫
[Xn≥λ ]

E (Xk|Fn)dP+
∫

Ω

(−Xn)dP+
∫
[−Xn<λ ]

E (Xk|Fn)dP

≤
∫
[Xn≥λ ]

XkdP+
∫

Ω

(−Xk)dP+
∫
[Xn>−λ ]

XkdP+ ε

=
∫
[Xn≥λ ]

XkdP−
(∫

Ω

Xk−
∫
[Xn>−λ ]

XkdP
)
+ ε

=
∫
[Xn≥λ ]

XkdP−
(∫

[Xn≤−λ ]
XkdP

)
+ ε

=
∫
[Xn≥λ ]

XkdP+

(∫
[−Xn≥λ ]

(−Xk)dP
)
+ ε =

∫
[|Xn|≥λ ]

|Xk|dP+ ε

Applying the maximal inequality for sub-martingales, Theorem 29.4.13,

P
([

max
{∣∣X j

∣∣ : j = n, · · · ,1
}
≥ λ

])
≤ 1

λ
(E (|X0|)+E (|X∞|))≤

C
λ

and taking sup for all n, P
([

sup
{∣∣X j

∣∣}≥ λ
])
≤ C

λ
. From the above, for n > k,∫

[|Xn|≥λ ]
|Xn|dP≤

∫
[|Xn|≥λ ]

|Xk|dP+ ε, P([|xn| ≥ λ ])≤ C
λ

Since the single function Xk is equi-integrable, it follows that for all λ large enough,∫
[|Xn|≥λ ] |Xn|dP ≤ 2ε for all n > k. Since there are only finitely many X j for j ≤ k, this

shows {Xn} is equi-integrable. Hence {Xn} is uniformly integrable. ■
Note that this also gives Xn bounded in L1 (Ω) from Proposition 10.9.6 on Page 293.

Now with this lemma and the upcrossing lemma it is easy to prove an important conver-
gence theorem.

Theorem 29.5.3 Let {Xn,Fn}∞

n=0 be a backwards sub-martingale as described ab-
ove and suppose supn≥0 E (|Xn|)<∞. Then {Xn} converges a.e. and in L1 (Ω) to a function,
X∞ ∈ L1 (Ω) .

Proof: By the upcrossing lemma applied to the sub-martingale {Xk}N
k=0 , the number

of upcrossings (Downcrossings is probably a better term. They are upcrossings as n gets
smaller.) of the interval [a,b] satisfies the inequality

E
(

UN
[a,b]

)
≤ 1

b−a
C

Letting N → ∞, it follows the expected number of upcrossings, E
(
U[a,b]

)
is bounded.

Therefore, there exists a set of measure 0 Nab such that if ω /∈ Nab,U[a,b] (ω) < ∞. Let
N = ∪{Nab : a,b ∈Q}. Then for ω /∈ N,

lim sup
n→∞

Xn (ω) = lim inf
n→∞

Xn (ω)
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because if inequality holds, then letting

lim inf
n→∞

Xn (ω)< a < b < lim sup
n→∞

Xn (ω)

it would follow U[a,b] (ω) = ∞, contrary to ω /∈ Nab.
Let X∞ (ω)≡ limn→∞ Xn (ω) . Then by Fatou’s lemma,∫

Ω

|X∞ (ω)|dP≤ lim inf
n→∞

∫
Ω

|Xn|dP < ∞.

and so X∞ is in L1 (Ω) . By the Vitali convergence theorem and Lemma 29.5.2 which shows
{|Xn|} is uniformly integrable, it follows

lim
n→∞

∫
Ω

|X∞ (ω)−Xn (ω)|dP = 0. ■

29.6 Strong Law of Large Numbers
There is a version of the strong law of large numbers which does not depend on the random
variables having finite variance. First are some preparatory lemmas. The approach followed
here is from Ash [3].

The message of the following lemma, E (Xk|σ (Sn)) = E (Xk|σ (Sn,Y )) makes sense.
The expectation of Xk for k ≤ n given the value of Sn ≡ ∑

n
k=1 Xk is the same as the ex-

pectation of Xk given the value of Sn and Xn+1, .... It makes intuitive sense because the
random variables are independent so knowledge of X j for j ≥ n+1 should be irrelevant to
the expectation of Xk.

Lemma 29.6.1 Let {Xn} be a sequence of independent random variables such that
E (|Xk|)< ∞ for all k and let Sn ≡ ∑

n
k=1 Xk. Then for k ≤ n,

E (Xk|σ (Sn)) = E (Xk|σ (Sn,Y )) a.e. (29.12)

where Y = (Xn+1,Xn+2, · · ·) ∈ RN ≡∏
∞
i=1R. Also for k ≤ n as above,

σ (Sn,Y ) = σ (Sn,Sn+1, · · ·) .

Proof: Note that both Xk and Sn are measurable with respect to σ (X1, ...,Xn) and
σ (X1, ...,Xn) and σ (Y ) are independent. Therefore, by Proposition 29.2.1 29.12 holds.

It only remains to prove the last assertion. For k > 0,

Xn+k = Sn+k−Sn+k−1

Thus

σ (Sn,Y ) = σ (Sn,Xn+1, · · ·)
= σ (Sn,(Sn+1−Sn) ,(Sn+2−Sn+1) , · · ·)

Thus, by induction, each Sn+k is measurable with respect to σ (Sn,Y ) and so,

σ (Sn,Sn+1, · · ·)⊆ σ (Sn,Y )

To get the other inclusion,

σ (Sn,Sn+1, · · ·) = σ (Sn,Xn+1 +Sn,Xn+2 +Xn+1 +Sn, · · ·)

so by induction, each Xn+k and Sn is measurable with respect to σ (Sn,Sn+1, · · ·) and so
σ (Sn,Y )⊆ σ (Sn,Sn+1, · · ·). ■
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Lemma 29.6.2 Let {Xk} be a sequence of independent identically distributed random
variables such that E (|Xk|)< ∞. Then letting Sn = ∑

n
k=1 Xk, it follows that for k ≤ n

E (Xk|σ (Sn,Sn+1, · · ·)) = E (Xk|σ (Sn)) =
Sn

n
.

Proof: It was shown in Lemma 29.6.1 the first equality holds. It remains to show the
second. Letting A = S−1

n (B) where B is Borel, it follows there exists B′ ⊆ Rn a Borel set
such that

S−1
n (B) = (X1, · · · ,Xn)

−1 (B′) .
Then ∫

A
E (Xk|σ (Sn))dP =

∫
S−1

n (B)
XkdP

=
∫
(X1,··· ,Xn)

−1(B′)
XkdP =

∫
(X1,··· ,Xn)

−1(B′)
xkdλ (X1,··· ,Xn)

=
∫
· · ·
∫

X
(X1,··· ,Xn)

−1(B′) (x)xkdλ X1dλ X2 · · ·dλ Xn

=
∫
· · ·
∫

X
(X1,··· ,Xn)

−1(B′) (x)xldλ X1dλ X2 · · ·dλ Xn

=
∫

A
E (Xl |σ (Sn))dP

and so since A ∈ σ (Sn) is arbitrary,

E (Xl |σ (Sn)) = E (Xk|σ (Sn))

for each k, l ≤ n. Therefore,

Sn = E (Sn|σ (Sn)) =
n

∑
j=1

E (X j|σ (Sn)) = nE (Xk|σ (Sn)) a.e.

and so

E (Xk|σ (Sn)) =
Sn

n
a.e.

as claimed. ■
With this preparation, here is the strong law of large numbers for identically distributed

random variables.

Theorem 29.6.3 Let {Xk} be a sequence of independent identically distributed ran-
dom variables such that E (|Xk|) < ∞ for all k. Since these are identicaly distributed,
E (|Xk|) does not depend on k and so the process is bounded. Letting m = E (Xk) ,

lim
n→∞

1
n

n

∑
k=1

Xk (ω) = m a.e.

and convergence also takes place in L1 (Ω).
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Proof: Consider the reverse sub-martingale {E (X1|σ (Sn,Sn+1, · · ·))} . By Theorem
29.5.3, this converges a.e. and in L1 (Ω) to a random variable X∞. However, from Lemma
29.6.2, E (X1|σ (Sn,Sn+1, · · ·)) = Sn/n. Therefore, Sn/n converges a.e. and in L1 (Ω) to X∞.
I need to argue that X∞ is constant and also that it equals m. For a ∈ R let

Ea ≡ [X∞ ≥ a]

For a small enough, P(Ea) ̸= 0. Then since Ea is a tail event for the independent ran-
dom variables, {Xk} it follows from the Kolmogorov zero one law, Theorem 26.7.4, that
P(Ea) = 1. Let b ≡ sup{a : P(Ea) = 1}. The sets, Ea are decreasing as a increases. Let
{an} be a strictly increasing sequence converging to b. Then

[X∞ ≥ b] = ∩n [X∞ ≥ an]

and so 1 = P(Eb) = limn→∞ P(Ean) . On the other hand, if c > b, then P(Ec) < 1 and so
P(Ec) = 0. Hence P([X = b]) = 1. It remains to show b = m. This is easy because by the
L1 convergence,

b =
∫

Ω

X∞dP = lim
n→∞

∫
Ω

Sn

n
dP = lim

n→∞
m = m.■



Chapter 30

Continuous Stochastic Processes
The change here is that the stochastic process will depend on t ∈ I an interval rather than
n ∈ N. Everything becomes much more technical.

30.1 Fundamental Definitions and Properties
Here E will be a separable Banach space and B (E) will be the Borel sets of E. Let
(Ω,F ,P) be a probability space and I will be an interval of R. A set of E valued random
variables, one for each t ∈ I, {X (t) : t ∈ I} is called a stochastic process. Thus for each t,
X (t) is a measurable function of ω ∈ Ω. Set X (t,ω) ≡ X (t)(ω) . Functions t → X (t,ω)
are called trajectories. Thus there is a trajectory for each ω ∈Ω. A stochastic process, Y is
called a version or a modification of a stochastic process X if for all t ∈ I,

X (t,ω) = Y (t,ω) a.e. ω

There are several descriptions of stochastic processes.

1. X is measurable if X (·, ·) : I×Ω→ E is B(I)×F measurable. Note that a stochastic
process X is not necessarily measurable.

2. X is stochastically continuous at t0 ∈ I means: for all ε > 0 and δ > 0 there exists
ρ > 0 such that

P([∥X (t)−X (t0)∥ ≥ ε])≤ δ whenever |t− t0|< ρ, t ∈ I.

Note the above condition says that for each ε > 0,

lim
t→t0

P([∥X (t)−X (t0)∥ ≥ ε]) = 0.

3. X is stochastically continuous if it is stochastically continuous at every t ∈ I.

4. X is stochastically uniformly continuous if for every ε,δ > 0 there exists ρ > 0 such
that whenever s, t ∈ I with |s− t|< ρ, it follows

P([∥X (t)−X (s)∥ ≥ ε])≤ δ .

5. X is mean square continuous at t0 ∈ I if

lim
t→t0

E
(
∥X (t)−X (t0)∥2

)
≡ lim

t→t0

∫
Ω

∥X (t)(ω)−X (t0)(ω)∥2 dP = 0.

6. X is mean square continuous in I if it is mean square continuous at every point of I.

7. X is continuous with probability 1 or continuous if t→ X (t,ω) is continuous for all
ω outside some set of measure 0.

8. X is Hölder continuous if t→ X (t,ω) is Hölder continuous for a.e. ω.

Lemma 30.1.1 A stochastically continuous process on [a,b]≡ I is uniformly stochasti-
cally continuous on [a,b]≡ I.

807
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Proof: If this is not so, there exists ε,δ > 0 and points of I,sn, tn such that even though
|tn− sn|< 1

n ,
P([∥X (sn)−X (tn)∥ ≥ ε])> δ . (30.1)

Taking a subsequence, still denoted by sn and tn there exists t ∈ I such that the above hold
and limn→∞ sn = limn→∞ tn = t. Then

P([∥X (sn)−X (tn)∥ ≥ ε])

≤ P([∥X (sn)−X (t)∥ ≥ ε/2])+P([∥X (t)−X (tn)∥ ≥ ε/2]) .

But the sum of the last two terms converges to 0 as n→ ∞ by stochastic continuity of X at
t, violating 30.1 for all n large enough. ■

For a stochastically continuous process defined on a closed and bounded interval, there
always exists a measurable version. This is significant because then you can do things with
product measure and iterated integrals.

Proposition 30.1.2 Let X be a stochastically continuous process defined on a closed
interval, I ≡ [a,b]. Then there exists a measurable version of X.

Proof: By Lemma 30.1.1 X is uniformly stochastically continuous and so there exists
a sequence of positive numbers, {ρn} such that if |s− t|< ρn, then

P
([
∥X (t)−X (s)∥ ≥ 1

2n

])
≤ 1

2n . (30.2)

Then let
{

tn
0 , t

n
1 , · · · , tn

mn

}
be a partition of [a,b] in which

∣∣tn
i − tn

i−1

∣∣< ρn. Now define Xn as
follows:

Xn (t)≡
mn

∑
i=1

X
(
tn
i−1
)
X[tn

i−1,t
n
i )
(t) , Xn (b)≡ X (b) .

Then Xn is obviously B(I)×F measurable because it is the sum of functions which are.
Consider the set A on which {Xn (t,ω)} is a Cauchy sequence. This set is of the form

A = ∩∞
n=1∪∞

m=1∩p,q≥m

[∥∥Xp−Xq
∥∥< 1

n

]
and so it is a B(I)×F measurable set. Now define

Y (t,ω)≡
{

limn→∞ Xn (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A

I claim Y (t,ω) = X (t,ω) for a.e. ω. To see this, consider 30.2. From the construction of
Xn, it follows that for each t,

P
([
∥Xn (t)−X (t)∥ ≥ 1

2n

])
≤ 1

2n (30.3)

Also, for a fixed t, if Xn (t,ω) fails to converge to X (t,ω) , then ω must be in infinitely
many of the sets,

Bn ≡
[
∥Xn (t)−X (t)∥ ≥ 1

2n

]
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which is a set of measure zero by the Borel Cantelli lemma and 30.3. Recall why this is so.

P(∩∞
k=1∪∞

n=k Bn)≤
∞

∑
n=k

P(Bn)<
1

2k−1

Therefore, for each t,(t,ω)∈A for a.e. ω. Hence X (t) =Y (t) a.e. and so Y is a measurable
version of X . ■

One also has the following lemma about extending a process from a dense subset.

Lemma 30.1.3 Let D be a dense subset of an interval, I = [0,T ] and suppose X : D→ E
satisfies ∣∣∣∣X (d)−X

(
d′
)∣∣∣∣≤C

∣∣d−d′
∣∣γ

for all d′,d ∈ D. Then X extends uniquely to a continuous Y defined on [0,T ] such that∣∣∣∣Y (t)−Y
(
t ′
)∣∣∣∣≤C

∣∣t− t ′
∣∣γ .

Proof: Let t ∈ I and let dk → t where dk ∈ D. Then {X (dk)} is a Cauchy sequence
because ||X (dk)−X (dm)|| ≤C |dk−dm|γ . Therefore, X (dk) converges. The thing it con-
verges to will be called Y (t) . Note this is well defined, giving X (t) if t ∈D. Also, if dk→ t
and d′k → t, then

∣∣∣∣X (dk)−X
(
d′k
)∣∣∣∣ ≤ C

∣∣dk−d′k
∣∣γ and so X (dk) and X

(
d′k
)

converge to
the same thing. Therefore, it makes sense to define Y (t)≡ limd→t X (d). It only remains to
verify the estimate. But letting |d− t| and |d′− t ′| be small enough,∣∣∣∣Y (t)−Y

(
t ′
)∣∣∣∣ =

∣∣∣∣X (d)−X
(
d′
)∣∣∣∣+ ε

≤ C
∣∣d′−d

∣∣+ ε ≤C
∣∣t− t ′

∣∣+2ε.

Since ε is arbitrary, this proves the existence part of the lemma. Uniqueness follows from
observing that Y (t) must equal limd→t X (d). ■

30.2 Kolmogorov Čentsov Continuity Theorem

Lemma 30.2.1 Let rm
j denote j

( T
2m

)
where j ∈ {0,1, · · · ,2m} . Also let Dm =

{
rm

j

}2m

j=1
and D = ∪∞

m=1Dm. Suppose X (t) satisfies∥∥∥X
(

rk
j+1

)
−X

(
rk

j

)∥∥∥≤ 2−γk (30.4)

for all k ≥M. Then if d,d′ ∈ Dm for m > n≥M such that |d−d′| ≤ T 2−n, then∥∥X
(
d′
)
−X (d)

∥∥≤ 2
m

∑
j=n+1

2−γ j. (30.5)

Also, there exists a constant C depending on M such that for all d,d′ ∈ D,∥∥X (d)−X
(
d′
)∥∥≤C

∣∣d−d′
∣∣γ .

Proof: Suppose d′ < d. Suppose first m = n+ 1. Then d = (k+1)T 2−(n+1) and d′ =
kT 2−(n+1). Then from 30.4∥∥X

(
d′
)
−X (d)

∥∥≤ 2−γ(n+1) ≤ 2
n+1

∑
j=n+1

2−γ j.
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Suppose the claim 30.5 is true for some m > n and let d,d′ ∈ Dm+1 with |d−d′| < T 2−n.
If there is no point of Dm between these, then d′,d are adjacent points either in Dm or in
Dm+1. Consequently,

∣∣∣∣X (d′)−X (d)
∣∣∣∣≤ 2−γm < 2

m+1

∑
j=n+1

2−γ j.

Assume therefore, there exist points of Dm between d′ and d. Let d′ ≤ d′1 ≤ d1 ≤ d where
d1,d′1 are in Dm and d′1 is the smallest element of Dm which is at least as large as d′ and
d1 is the largest element of Dm which is no larger than d. Then |d′−d′1| ≤ T 2−(m+1) and
|d1−d| ≤ T 2−(m+1) while all of these points are in Dm+1 which contains Dm. Therefore,
from 30.4 and induction, ∥∥X

(
d′
)
−X (d)

∥∥
≤

∥∥X
(
d′
)
−X

(
d′1
)∥∥+∥∥X

(
d′1
)
−X (d1)

∥∥
+∥X (d1)−X (d)∥

≤ 2×2−γ(m+1)+2
m

∑
j=n+1

2−γ j = 2
m+1

∑
j=n+1

2−γ j

≤ 2

(
2−γ(n+1)

1−2−γ

)
=

(
2T−γ

1−2−γ

)(
T 2−(n+1)

)γ

(30.6)

It follows the above holds for any d,d′ ∈D such that |d−d′| ≤ T 2−n because they are both
in some Dm for m > n.

Consider the last claim. Let d,d′ ∈D, |d−d′| ≤ T 2−M. Then d,d′ are both in some Dm
for m > M. The number |d−d′| satisfies

T 2−(n+1) <
∣∣d−d′

∣∣≤ T 2−n

for large enough n≥M. Just pick the first n such that T 2−(n+1) < |d−d′| . Then from 30.6,

∥∥X
(
d′
)
−X (d)

∥∥≤ ( 2T−γ

1−2−γ

)(
T 2−(n+1)

)γ

≤
(

2T−γ

1−2−γ

)(∣∣d−d′
∣∣)γ

Now [0,T ] is covered by 2M intervals of length T 2−M and so for any pair d,d′ ∈ D,∥∥X (d)−X
(
d′
)∥∥≤C

∣∣d−d′
∣∣γ

where C is a suitable constant depending on 2M . ■
For γ ≤ 1, you can show, using convexity arguments, that it suffices to have C =(

2T−γ

1−2−γ

)1/γ (
2M
)1−γ

. Of course the case where γ > 1 is not interesting because it would
result in X being a constant.

The following is the amazing Kolmogorov Čentsov continuity theorem [32].

Theorem 30.2.2 Suppose X is a stochastic process on [0,T ] . Suppose also that
there exists a constant, C and positive numbers α,β such that

E
(
∥X (t)−X (s)∥α

)
≤C |t− s|1+β (30.7)



30.2. KOLMOGOROV ČENTSOV CONTINUITY THEOREM 811

Then there exists a stochastic process Y such that for a.e. ω, t → Y (t)(ω) is Hölder con-
tinuous with exponent γ < β

α
and for each t, P([∥X (t)−Y (t)∥> 0]) = 0. (Y is a version

of X .)

Proof: Let rm
j denote j

( T
2m

)
where j ∈ {0,1, · · · ,2m} . Also let Dm =

{
rm

j

}2m

j=1
and

D = ∪∞
m=1Dm. Consider the set,

[∥X (t)−X (s)∥> δ ]

By 30.7,

P([∥X (t)−X (s)∥> δ ])δ
α ≤

∫
[||X(t)−X(s)||>δ ]

∥X (t)−X (s)∥α dP

≤ C |t− s|1+β . (30.8)

Letting t = rk
j+1, s = rk

j ,and δ = 2−γk where γ ∈
(

0, β

α

)
, this yields

P
([∥∥∥X

(
rk

j+1

)
−X

(
rk

j

)∥∥∥> 2−γk
])
≤C2αγk

(
T 2−k

)1+β

=CT 1+β 2k(αγ−(1+β ))

There are 2k of these differences so letting Nk = ∪2k

j=1

[∥∥∥X
(

rk
j+1

)
−X

(
rk

j

)∥∥∥> 2−γk
]

it
follows

P(Nk)≤C2αγk
(

T 2−k
)1+β

2k =C2k(αγ−β )T 1+β .

Since γ < β/α, ∑
∞
k=1 P(Nk) ≤ CT 1+β

∑
∞
k=1 2k(αγ−β ) < ∞ and so by the Borel Cantelli

lemma, Lemma 26.1.2, there exists a set of measure zero N, such that if ω /∈ N, then ω

is in only finitely many Nk. In other words, for ω /∈ N, there exists M (ω) such that if
k ≥M (ω) , then for each j,∣∣∣∣∣∣X (rk

j+1

)
(ω)−X

(
rk

j

)
(ω)
∣∣∣∣∣∣≤ 2−γk. (30.9)

It follows from Lemma 30.2.1 that t → X (t)(ω) is Holder continuous on D with Holder
exponent γ. Note the constant is a measurable function of ω, depending on the number of
measurable Nk which contain ω .

By Lemma 30.1.3, one can define Y (t)(ω) to be the unique function which extends
d → X (d)(ω) off D for ω /∈ N and let Y (t)(ω) = 0 if ω ∈ N. Thus by Lemma 30.1.3
t → Y (t)(ω) is Holder continuous. Also, ω → Y (t)(ω) is measurable because it is the
pointwise limit of measurable functions

Y (t)(ω) = lim
d→t

X (d)(ω)XNC (ω) . (30.10)

It remains to verify the claim that Y (t)(ω) = X (t)(ω) a.e.

X[∥Y (t)−X(t)∥>ε]∩NC (ω)≤ lim inf
d→t

X[∥X(d)−X(t)∥>ε]∩NC (ω)
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because if ω ∈ N both sides are 0 and if ω ∈ NC then the above limit in 30.10 holds and
so if ||Y (t)(ω)−X (t)(ω)|| > ε, the same is true of ||X (d)(ω)−X (t)(ω)|| whenever d
is close enough to t and so by Fatou’s lemma,

P([∥Y (t)−X (t)∥> ε]) =
∫

X[∥Y (t)−X(t)∥>ε]∩NC (ω)dP

≤
∫

lim inf
d→t

X[∥X(d)−X(t)∥>ε] (ω)dP

≤ lim inf
d→t

∫
X[∥X(d)−X(t)∥>ε] (ω)dP

≤ lim inf
d→t

P
([
∥X (d)−X (t)∥α > ε

α
])

≤ lim inf
d→t

ε
−α

∫
[∥X(d)−X(t)∥α>εα ]

∥X (d)−X (t)∥α dP

≤ lim inf
d→t

C
εα
|d− t|1+β = 0.

Therefore,

P([∥Y (t)−X (t)∥> 0]) = P
(
∪∞

k=1

[
∥Y (t)−X (t)∥> 1

k

])
≤

∞

∑
k=1

P
([
∥Y (t)−X (t)∥> 1

k

])
= 0. ■

A few observations are interesting. In the proof, the following inequality was obtained.∥∥X
(
d′
)
(ω)−X (d)(ω)

∥∥ ≤ 2
T γ (1−2−γ)

(
T 2−(n+1)

)γ

≤ 2
T γ (1−2−γ)

(∣∣d−d′
∣∣)γ

which was so for any d′,d ∈ D with |d′−d| < T 2−(M(ω)+1). Thus the Holder continuous
version of X will satisfy

∥Y (t)(ω)−Y (s)(ω)∥ ≤ 2
T γ (1−2−γ)

(|t− s|)γ

provided |t− s|< T 2−(M(ω)+1). Does this translate into an inequality of the form

∥Y (t)(ω)−Y (s)(ω)∥ ≤ 2
T γ (1−2−γ)

(|t− s|)γ

for any pair of points t,s ∈ [0,T ]? It seems it does not for any γ < 1 although it does yield

∥Y (t)(ω)−Y (s)(ω)∥ ≤C (|t− s|)γ

where C depends on the number of intervals having length less than T 2−(M(ω)+1) which
it takes to cover [0,T ] . First note that if γ > 1, then the Holder continuity will imply t →
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Y (t)(ω) is a constant. Therefore, the only case of interest is γ < 1. Let s, t be any pair of
points and let s = x0 < · · ·< xn = t where |xi− xi−1|< T 2−(M(ω)+1). Then

∥Y (t)(ω)−Y (s)(ω)∥ ≤
n

∑
i=1
∥Y (xi)(ω)−Y (xi−1)(ω)∥

≤ 2
T γ (1−2−γ)

n

∑
i=1

(|xi− xi−1|)γ (30.11)

How does this compare to (∑n
i=1 |xi− xi−1|)γ = |t− s|γ ? This last expression is smaller than

the right side of 30.11 for any γ < 1. Thus for γ < 1, the constant in the conclusion of the
theorem depends on both T and ω /∈ N.

In the case where α ≥ 1, here is another proof of this theorem. It is based on the one
in the book by Stroock [56]. This one makes the assumption that α ≥ 1. It isn’t for α > 0.
This version is sufficient for what is done in this book. The Holder estimate is particularly
useful.

Theorem 30.2.3 Suppose X is a stochastic process on [0,T ] having values in the
Banach space E. Suppose also that there exists a constant C and positive numbers α,β ,α ≥
1, such that

E
(
∥X (t)−X (s)∥α

)
≤C |t− s|1+β (30.12)

Then there exists a stochastic process Y such that for a.e. ω, t → Y (t)(ω) is Hölder con-
tinuous with exponent γ < β

α
and for each t, P([∥X (t)−Y (t)∥> 0]) = 0. (Y is a version

of X .) Also

E
(

sup
0≤s<t≤T

∥Y (t)−Y (s)∥
(t− s)γ

)
≤C

where C depends on α,β ,T,γ .

Proof: The proof considers piecewise linear approximations of X which are automati-
cally continuous. These are shown to converge to Y in Lα (Ω;C ([0,T ] ,E)) so it will follow
that Y must be continuous for a.e. ω . Finally, it is shown that Y is a version of X and
is Holder continuous. In the proof, I will use C to denote a constant which depends on
the quantities γ,α,β ,T . Let

{
tn
k

}2n

k=0 be a uniform partition of the interval [0,T ] so that
tn
k+1− tn

k = T 2−n. Now let

Mn ≡max
k≤2n

∥∥X (tn
k )−X

(
tn
k−1
)∥∥

Then Mα
n ≤maxk≤2n

∥∥X
(
tn
k

)
−X

(
tn
k−1

)∥∥α ≤ ∑
2n

k=1

∥∥X
(
tn
k

)
−X

(
tn
k−1

)∥∥α and so

E (Mα
n )≤

2n

∑
k=1

C
(
T 2−n)1+β

=C2n2−n(1+β ) =C2−nβ (30.13)

Next denote by Xn the piecewise linear function which results from the values of X at
the points tn

k . Consider the following picture which illustrates a part of the graphs of Xn and
Xn+1.
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tn
k−1 tn

k
tn+1
2k−2 tn+1

2ktn+1
2k−1

Then

max
t∈[0,T ]

∥Xn+1 (t)−Xn (t)∥ ≤ max
1≤k≤2n+1

∥∥∥∥∥X
(
tn+1
2k−1

)
−

X
(
tn
k

)
+X

(
tn
k−1

)
2

∥∥∥∥∥
≤ max

k≤2n+1

(
1
2

∥∥X
(
tn+1
2k−1

)
−X

(
tn+1
2k

)∥∥+ 1
2

∥∥X
(
tn+1
2k−1

)
−X

(
tn+1
2k−2

)∥∥)≤Mn+1

Denote by ∥·∥
∞

the usual norm in C ([0,T ] ,E) ,maxt∈[0,T ] ∥Z (t)∥ ≡ ∥Z∥
∞
. Then from what

was just established,

E
(
∥Xn+1−Xn∥α

∞

)
=
∫

Ω

∥Xn+1−Xn∥α

∞
dP≤ E

(
Mα

n+1
)
=C2−nβ

which shows that

∥Xn+1−Xn∥Lα (Ω;C([0,T ],E)) =

(∫
Ω

∥Xn+1−Xn∥α

∞
dP
)1/α

≤C
(

2(β/α)
)−n

Since α ≥ 1, we can use the triangle inequality and conclude

∥Xm−Xn∥Lα (Ω;C([0,T ],E)) ≤

∞

∑
k=n

C
(

2(β/α)
)−k
≤C

(
2(β/α)

)−n

1−2(−β/α)
=C

(
2(β/α)

)−n
(30.14)

Thus {Xn} is a Cauchy sequence in Lα (Ω;C ([0,T ] ,E)) and so it converges to some Y in
this space, a subsequence converging pointwise. Then from Fatou’s lemma,

∥Y −Xn∥Lα (Ω;C([0,T ],E)) ≤C
(

2(β/α)
)−n

. (30.15)

Also, for a.e. ω, t→ Y (t) is in C ([0,T ] ,E) . It remains to verify that Y (t) = X (t) a.e.
From the construction, it follows that for any n and m ≥ n, Y

(
tn
k

)
= Xm

(
tn
k

)
= X

(
tn
k

)
.

Thus

∥Y (t)−X (t)∥ ≤ ∥Y (t)−Y (tn
k )∥+∥Y (tn

k )−X (t)∥
= ∥Y (t)−Y (tn

k )∥+∥X (tn
k )−X (t)∥

Now from the hypotheses of the theorem,

P
(
∥X (tn

k )−X (t)∥α > ε
)
≤ 1

ε
E
(
∥X (tn

k )−X (t)∥α
)
≤ C

ε
|tn

k − t|1+β
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Thus, there exists a sequence of mesh points {sn} converging to t such that

P
(
∥X (sn)−X (t)∥α > 2−n)≤ 2−n

Then by the Borel Cantelli lemma, there is a set of measure zero N such that for ω /∈
N,∥X (sn)−X (t)∥α ≤ 2−n for all n large enough. Then

∥Y (t)−X (t)∥ ≤ ∥Y (t)−Y (sn)∥+∥X (sn)−X (t)∥

which shows that, by continuity of Y, for ω not in an exceptional set of measure zero,
∥Y (t)−X (t)∥= 0.

It remains to verify the assertion about Holder continuity of Y . Let 0≤ s < t ≤ T. Then
for some n,

2−(n+1)T ≤ t− s≤ 2−nT (30.16)

Thus
∥Y (t)−Y (s)∥ ≤ ∥Y (t)−Xn (t)∥+∥Xn (t)−Xn (s)∥+∥Xn (s)−Y (s)∥

≤ 2 sup
τ∈[0,T ]

∥Y (τ)−Xn (τ)∥+∥Xn (t)−Xn (s)∥ (30.17)

Now
∥Xn (t)−Xn (s)∥

t− s
≤ ∥Xn (t)−Xn (s)∥

2−(n+1)T

From 30.16 a picture like the following must hold in which tn+1
k−1 ≤ s < tn+1

k < t ≤ tn+1
k+1 .

s t tn+1
k+1tn+1

ktn+1
k−1

Therefore, from the above, 30.16,

∥Xn (t)−Xn (s)∥
t− s

≤
∥∥X
(
tn+1
k−1

)
−X

(
tn+1
k

)∥∥+∥∥X
(
tn+1
k+1

)
−X

(
tn+1
k

)∥∥
2−(n+1)T

≤ C2nMn+1

It follows from 30.17,

∥Y (t)−Y (s)∥ ≤ 2∥Y −Xn∥∞
+C2nMn+1 (t− s)

Next, letting γ < β/α, and using 30.16,

∥Y (t)−Y (s)∥
(t− s)γ ≤ 2

(
T−12n+1)γ ∥Y −Xn∥∞

+C2n (2−n)1−γ Mn+1

= C2nγ (∥Y −Xn∥∞
+Mn+1)

The above holds for any s, t satisfying 30.16. Then

sup
{
∥Y (t)−Y (s)∥

(t− s)γ ,0≤ s < t ≤ T, |t− s| ∈
[
2−(n+1)T,2−nT

]}
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≤C2nγ (∥Y −Xn∥∞
+Mn+1)

Denote by Pn the ordered pairs (s, t) satisfying the above condition that

0≤ s < t ≤ T, |t− s| ∈
[
2−(n+1)T,2−nT

]
and also

sup
(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ ≤C2nγ (∥Y −Xn∥∞

+Mn+1)

Note that the union of the Pn pertains to all (s, t) with |t− s| ≤ T/2. If |t− s| > T/2,
then E

(
∥Y (t)−Y (s)∥
|t−s|γ

)
≤
( 2

T

)γ
2∥Y∥L1(Ω;C([0,T ];E)) so the desired condition holds and we can

ignore this case.
Thus for a.e. ω, and for all n,(

sup
(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ

)α

≤C
∞

∑
k=0

2kαγ
(
∥Y −Xk∥α

∞
+Mα

k+1
)

Note that n is arbitrary. Hence

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤

sup
n

sup
(s,t)∈Pn

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤ sup
n

(
sup

(s,t)∈Pn

∥Y (t)−Y (s)∥
(t− s)γ

)α

≤
∞

∑
k=0

C2kαγ
(
∥Y −Xk∥α

∞
+Mα

k+1
)

By continuity of Y, the result on the left is unchanged if the ordered pairs are restricted to
lie in Q∩ [0,T ]×Q∩ [0,T ] , a countable set. Thus the left side is measurable. It follows
from 30.13 and 30.15 which say

∥Y −Xk∥Lα (Ω;C([0,T ],E)) ≤C
(

2(β/α)
)−k

, E (Mα
k )≤C2−kβ

that

E
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α)
≤

∞

∑
k=0

C2kαγ 2−βk ≡C < ∞

because αγ−β < 0. By continuity of Y, there are no measurability concerns in taking the
above expectation. Note that this implies, since α ≥ 1,

E
(

sup
0≤s<t≤T

∥Y (t)−Y (s)∥
(t− s)γ

)
≤

(
E
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α))1/α

≤ C1/α ≡C

Now

P
(

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

> 2αk
)
≤ 1

2αk C
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and so there exists a set of measure zero N such that for ω /∈ N,

sup
0≤s<t≤T

(
∥Y (t)−Y (s)∥

(t− s)γ

)α

≤ 2αk

for all k large enough. Pick such a k, depending on ω /∈ N. Then for any s, t,

∥Y (t)−Y (s)∥
(t− s)γ ≤ 2k

and so, this has shown that for ω /∈ N, ∥Y (t)−Y (s)∥ ≤C (ω)(t− s)γ ■
Note that if X (t) is known to be continuous off a set of measure zero, then the piece-

wise linear approximations converge to X (t) in C ([0,T ] ,E) off this set of measure zero.
Therefore, it must be that off a set of measure zero, Y (t) = X (t) and so in fact X (t) is
Holder continuous off a set of measure zero and the condition on expectation also must
hold, that is

E
(

sup
0≤s<t≤T

∥X (t)−X (s)∥
(t− s)γ

)
≤C.

30.3 Filtrations
Instead of having a sequence of σ algebras, one can consider an increasing collection of σ

algebras indexed by t ∈ R. This is called a filtration.

Definition 30.3.1 Let X be a stochastic process defined on an interval, I = [0,T ]
or [0,∞). Suppose the probability space, (Ω,F ,P) has an increasing family of σ algebras,
{Ft}. This is called a filtration. If for arbitrary t ∈ I the random variable X (t) is Ft mea-
surable, then X is said to be adapted to the filtration {Ft}. Denote by Ft+ the intersection
of all Fs for s > t. The filtration is normal if

1. F0 contains all A ∈F such that P(A) = 0

2. Ft = Ft+ for all t ∈ I.

X is called progressively measurable if for every t ∈ I, the mapping

(s,ω) ∈ [0, t]×Ω, (s,ω)→ X (s,ω)

is B([0, t])×Ft measurable.

Thus X is progressively measurable means

(s,ω)→X[0,t] (s)X (s,ω)

is B([0, t])×Ft measurable. As an example of a normal filtration, here is an example.

Example 30.3.2 For example, you could have a stochastic process, X (t) and you could
define

Gt ≡ σ (X (s) : s≤ t),
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the completion of the smallest σ algebra such that each X (s) is measurable for all s ≤ t.
This gives an example of a filtration to which X (t) is adapted which satisfies 1. More
generally, suppose X (t) is adapted to a filtration, Gt . Define

Ft ≡ ∩s>tGs

Then
Ft+ ≡ ∩s>tFs = ∩s>t ∩r>s Gr = ∩s>tFs ≡Ft .

and each X (t) is measurable with respect to Ft . Thus there is no harm in assuming a
stochastic process adapted to a filtration can be modified so the filtration is normal. Also
note that Ft defined this way will be complete so if A∈Ft has P(A) = 0 and if B⊆ A, then
B ∈Ft also. This is because this relation between the sets and the probability of A being
zero, holds for this pair of sets when considered as elements of each Gs for s > t. Hence
B ∈ Gs for each s > t and is therefore one of the sets in Ft .

What is the description of a progressively measurable set?

t

QQ
⋂
[0, t]×Ω

It means that for Q progressively measurable, Q∩ [0, t]×Ω as shown in the above
picture is B ([0, t])×Ft measurable. It is like saying a little more descriptively that the
function is progressively product measurable.

I shall generally assume the filtration is normal.

Observation 30.3.3 If X is progressively measurable, then it is adapted. Furthermore
the progressively measurable sets, those E∩ [0,T ]×Ω for which XE is progressively mea-
surable form a σ algebra.

To see why this is, consider X progressively measurable and fix t. Then (s,ω) →
X (s,ω) for (s,ω)∈ [0, t]×Ω is given to be B ([0, t])×Ft measurable, the ordinary product
measure and so fixing any s∈ [0, t] , it follows the resulting function of ω is Ft measurable.
In particular, this is true upon fixing s = t. Thus ω→ X (t,ω) is Ft measurable and so X (t)
is adapted.

A set E ⊆ [0,T ]×Ω is progressively measurable means that XE is progressively mea-
surable. That is XE restricted to [0, t]×Ω is B ([0, t])×Ft measurable. In other words, E
is progressively measurable if

E ∩ ([0, t]×Ω) ∈B ([0, t])×Ft .

If Ei is progressively measurable, does it follow that E ≡∪∞
i=1Ei is also progressively mea-

surable? Yes.

E ∩ ([0, t]×Ω) = ∪∞
i=1Ei∩ ([0, t]×Ω) ∈B ([0, t])×Ft
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because each set in the union is in B ([0, t])×Ft . If E is progressively measurable, is EC?

EC ∩ ([0, t]×Ω)∪

∈B([0,t])×Ft︷ ︸︸ ︷
(E ∩ ([0, t]×Ω)) =

∈B([0,t])×Ft︷ ︸︸ ︷
[0, t]×Ω

and so EC ∩ ([0, t]×Ω) ∈B ([0, t])×Ft . Thus the progressively measurable sets are a σ

algebra.
Another observation of interest is in the following lemma.

Lemma 30.3.4 Suppose Q is in B ([0,a])×Fr. Then if b≥ a and t ≥ r, then Q is also
in B ([0,b])×Ft .

Proof: Consider a measurable rectangle A×B where A ∈B ([0,a]) and B ∈Fr. Is it
true that A×B∈B ([0,b])×Ft? This reduces to the question whether A∈B ([0,b]). If A is
an interval, it is clear that A∈B ([0,b]). Consider the π system of intervals and let G denote
those Borel sets A ∈B ([0,a]) such that A ∈B ([0,b]). If A ∈ G , then [0,b]\A ∈B ([0,b])
by assumption (the difference of Borel sets is surely Borel). However, this set equals

([0,a]\A)∪ (a,b]

and so
[0,b] = ([0,a]\A)∪ (a,b]∪A

The set on the left is in B ([0,b]) and the sets on the right are disjoint and two of them
are also in B ([0,b]). Therefore, the third, ([0,a]\A) is in B ([0,b]). It is obvious that G
is closed with respect to countable disjoint unions. Therefore, by Lemma 9.3.2, Dynkin’s
lemma, G ⊇ σ (Intervals) = B ([0,a]).

Therefore, such a measurable rectangle A×B where A ∈B ([0,a]) and B ∈Fr is in
B ([0,b])×Ft and in fact it is a measurable rectangle in B ([0,b])×Ft . Now let K
denote all these measurable rectangles A×B where A ∈B ([0,a]) and B ∈Fr. Let G (new
G ) denote those sets Q of B ([0,a])×Fr which are in B ([0,b])×Ft . Then if Q ∈ G ,

Q∪ ([0,a]×Ω\Q)∪ (a,b]×Ω = [a,b]×Ω

Then the sets are disjoint and all but [0,a]×Ω\Q are in B ([0,b])×Ft . Therefore, this one
is also in B ([0,b])×Ft . If Qi ∈ G and the Qi are disjoint, then ∪iQi is also in B ([0,b])×
Ft and so G is closed with respect to countable disjoint unions and complements. Hence
G ⊇ σ (K ) = B ([0,a])×Fr which shows

B ([0,a])×Fr ⊆B ([0,b])×Ft ■

A significant observation is the following which states that the integral of a progres-
sively measurable function is progressively measurable.

Proposition 30.3.5 Suppose X : [0,T ]×Ω→ E where E is a separable Banach space.
Also suppose that X (·,ω) ∈ L1 ([0,T ] ,E) for each ω . Here Ft is a filtration and with
respect to this filtration, X is progressively measurable. Then

(t,ω)→
∫ t

0
X (s,ω)ds

is also progressively measurable.
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Proof: Suppose Q ∈ [0,T ]×Ω is progressively measurable. This means for each t,

Q∩ [0, t]×Ω ∈B ([0, t])×Ft

What about (s,ω) ∈ [0, t]×Ω, (s,ω)→
∫ s

0 XQdr? Is that function on the right B ([0, t])×
Ft measurable? We know that Q∩ [0,s]×Ω is B ([0,s])×Fs measurable and hence
B ([0, t])×Ft measurable. When you integrate a product measurable function, you do
get one which is product measurable. Therefore, this function must be B ([0, t])×Ft
measurable. This shows that (t,ω)→

∫ t
0 XQ (s,ω)ds is progressively measurable. Here is

a claim which was just used.
Claim: If Q is B ([0, t])×Ft measurable, then (s,ω)→

∫ s
0 XQdr is also B ([0, t])×Ft

measurable.
Proof of claim: First consider A×B where A ∈B ([0, t]) and B ∈Ft . Then∫ s

0
XA×Bdr =

∫ s

0
XAXBdr = XB (ω)

∫ s

0
XA (s)dr

This is clearly B ([0, t])×Ft measurable. It is the product of a continuous function of s
with the indicator function of a set in Ft . Now let

G ≡
{

Q ∈B ([0, t])×Ft : (s,ω)→
∫ s

0
XQ (r,ω)dr is B ([0, t])×Ft measurable

}
Then it was just shown that G contains the measurable rectangles. It is also clear that
G is closed with respect to countable disjoint unions and complements. Therefore, G ⊇
σ (Kt) = B ([0, t])×Ft where Kt denotes the measurable rectangles A×B where B ∈Ft
and A ∈B ([0, t]) = B ([0,T ])∩ [0, t]. This proves the claim.

Thus if Q is progressively measurable, (s,ω)→
∫ s

0 XQ (r,ω)dr ≡ f (s,ω) is progres-
sively measurable because for (s,ω) ∈ [0, t]×Ω,(s,ω)→ f (s,ω) is B ([0, t])×Ft mea-
surable. This is what was to be proved in this special case.

Now consider the conclusion of the proposition. By considering the positive and neg-
ative parts of φ (X) for φ ∈ E ′, and using Pettis theorem, it suffices to consider the case
where X ≥ 0. Then there exists an increasing sequence of progressively measurable simple
functions {Xn} converging pointwise to X . From what was just shown,

(t,ω)→
∫ t

0
Xnds

is progressively measurable. Hence, by the monotone convergence theorem, (t,ω) →∫ t
0 Xds is also progressively measurable. ■

What else can you do to something which is progressively measurable and obtain some-
thing which is progressively measurable? It turns out that shifts in time can preserve pro-
gressive measurability. Let Ft be a filtration on [0,T ] and extend the filtration to be equal
to F0 and FT for t < 0 and t > T , respectively. Recall the following definition of progres-
sively measurable sets.

Definition 30.3.6 Denote by P those sets Q in FT ×B ([0,T ]) such that for t ∈
[−∞,T ]

Ω× (−∞, t]∩Q ∈Ft ×B ((−∞, t]) .
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Lemma 30.3.7 Define Q+h as

Q+h≡ {(t +h,ω) : (t,ω) ∈ Q} .

Then if Q ∈P, it follows that Q+h ∈P .

Proof: This is most easily seen through the use of the following diagram. In this dia-
gram, Q is in P so it is progressively measurable.

QS Q+h

tt−h
By definition, S in the picture is B ((−∞, t−h])×Ft−h measurable. Hence S+ h ≡

Q+ h∩Ω× (−∞, t] is B ((−∞, t])×Ft−h measurable. To see this, note that if B×A ∈
B ((−∞, t−h])×Ft−h, then translating it by h gives a set in B ((−∞, t])×Ft−h. Then if
G consists of sets S in B ((−∞, t−h])×Ft−h for which S+ h is in B ((−∞, t])×Ft−h,
G is closed with respect to countable disjoint unions and complements. Thus, G equals
B ((−∞, t−h])×Ft−h. In particular, it contains the set S just described. ■

Now for h > 0,

τh f (t)≡
{

f (t−h) if t ≥ h,
0 if t < h. .

Lemma 30.3.8 Let Q ∈P. Then τhXQ is P measurable.

Proof: If τhXQ (t,ω) = 1, then you need to have (t−h,ω) ∈ Q and so (t,ω) ∈ Q+h.
Thus

τhXQ = XQ+h,

which is P measurable since Q ∈P . In general,

τhXQ = X[h,T ]×ΩXQ+h,

which is P measurable. ■
This lemma implies the following.

Lemma 30.3.9 Let f (t,ω) have values in a separable Banach space and suppose f is
P measurable. Then τh f is P measurable.

Proof: Taking values in a separable Banach space and being P measurable, f is the
pointwise limit of P measurable simple functions. If sn is one of these, then from the above
lemmas, τhsn is P measurable. Then, letting n→ ∞, it follows that τh f is P measurable.
■

The following is similar to Proposition 30.1.2. It shows that under pretty weak condi-
tions, an adapted process has a progressively measurable adapted version.

Proposition 30.3.10 Let X be a stochastically continuous adapted process for a nor-
mal filtration defined on a closed interval, I ≡ [0,T ]. Then X has a progressively measur-
able adapted version.
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Proof: By Lemma 30.1.1 X is uniformly stochastically continuous and so there exists
a sequence of positive numbers, {ρn} such that if |s− t|< ρn, then

P
([
∥X (t)−X (s)∥ ≥ 1

2n

])
≤ 1

2n . (30.18)

Then let
{

tn
0 , t

n
1 , · · · , tn

mn

}
be a partition of [0,T ] in which

∣∣tn
i − tn

i−1

∣∣< ρn. Now define Xn as
follows:

Xn (t)(ω) ≡
mn

∑
i=1

X
(
tn
i−1
)
(ω)X[tn

i−1,t
n
i )
(t)

Xn (T ) ≡ X (T ) .

Then (s,ω)→ Xn (s,ω) for (s,ω) ∈ [0, t]×Ω is obviously B([0, t])×Ft measurable. Con-
sider the set, A on which {Xn (t,ω)} is a Cauchy sequence. This set is of the form

A = ∩∞
n=1∪∞

m=1∩p,q≥m

[∥∥Xp−Xq
∥∥< 1

n

]
and so it is a B(I)×F measurable set and A∩ [0, t]×Ω is B([0, t])×Ft measurable for
each t ≤ T because each Xq in the above has the property that its restriction to [0, t]×Ω is
B([0, t])×Ft measurable. Now define

Y (t,ω)≡
{

limn→∞ Xn (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A

I claim that for each t, Y (t,ω) = X (t,ω) for a.e. ω. To see this, consider 30.18. From
the construction of Xn, it follows that for each t,

P
([
∥Xn (t)−X (t)∥ ≥ 1

2n

])
≤ 1

2n

Also, for a fixed t, if Xn (t,ω) fails to converge to X (t,ω) , then ω must be in infinitely
many of the sets,

Bn ≡
[
∥Xn (t)−X (t)∥ ≥ 1

2n

]
which is a set of measure zero by the Borel Cantelli lemma. Recall why this is so.

P(∩∞
k=1∪∞

n=k Bn)≤
∞

∑
n=k

P(Bn)<
1

2k−1

Therefore, for each t,(t,ω)∈A for a.e. ω. Hence X (t) =Y (t) a.e. and so Y is a measurable
version of X . Y is adapted because the filtration is normal and hence Ft contains all sets of
measure zero. Therefore, Y (t) differs from X (t) on a set which is Ft measurable. ■

There is a more specialized situation in which the measurability of a stochastic process
automatically implies it is adapted. Furthermore, this can be defined easily in terms of a π

system of sets.

Definition 30.3.11 Let Ft be a filtration on (Ω,F ,P) and denote by P∞ the
smallest σ algebra of sets of [0,∞)×Ω containing the sets

(s, t]×F,F ∈Fs {0}×F, F ∈F0.
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This is called the predictable σ algebra. and the sets in this σ algebra are called the
predictable sets. Denote by PT the intersection of P∞ to [0,T ]×Ω. A stochastic process
X which maps either [0,T ]×Ω or [0,∞)×Ω to E, a separable real Banach space is called
predictable if for every Borel set A ∈B (E) , it follows X−1 (A) ∈PT or P∞.

This is a lot like product measure except one of the σ algebras is changing.

Proposition 30.3.12 Let Ft be a filtration as above and let X be a predictable stochas-
tic process. Then X is Ft adapted.

Proof: Let s0 > 0 and define

Gs0 ≡
{

S ∈P∞ : Ss0 ∈Fs0

}
where

Ss0 ≡ {ω ∈Ω : (s0,ω) ∈ S} .

Ω
Ss0

s0

It is clear Gs0 is a σ algebra. The next step is to show Gs0 contains the sets

(s, t]×F,F ∈Fs (30.19)

and
{0}×F, F ∈F0. (30.20)

It is clear {0}×F is contained in Gs0 because ({0}×F)s0
= /0 ∈Fs0 . Similarly, if s ≥ s0

or if s, t < s0 then ((s, t]×F)s0
= /0 ∈Fs0 . The only case left is for s < s0 and t ≥ s0. In this

case, letting As ∈Fs, ((s, t]×As)s0
= As ∈Fs ⊆Fs0 . Therefore, Gs0 contains all the sets

of the form given in 30.19 and 30.20 and so since P∞ is the smallest σ algebra containing
these sets, it follows P∞ = Gs0 . The case where s0 = 0 is entirely similar but shorter.

Therefore, if X is predictable, letting A ∈B (E) , X−1 (A) ∈P∞ or PT and so(
X−1 (A)

)
s ≡ {ω ∈Ω : X (s,ω) ∈ A}= X (s)−1 (A) ∈Fs

showing X (t) is Ft adapted. ■
Another way to see this is to recall the progressively measurable functions are adapted.

Then show the predictable sets are progressively measurable.

Proposition 30.3.13 Let P denote the predictable σ algebra and let R denote the
progressively measurable σ algebra. Then P ⊆R.

Proof: Let G denote those sets of P such that they are also in R. Then G clearly
contains the π system of sets {0}×A,A ∈F0, and (s, t]×A,A ∈Fs. Furthermore, G is
closed with respect to countable disjoint unions and complements. It follows G contains
the σ algebra generated by this π systems which is P . ■
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Proposition 30.3.14 Let X (t) be a stochastic process having values in E a complete
metric space and let it be Ft adapted and left continuous. Then it is predictable. Also, if
X (t) is stochastically continuous and adapted on [0,T ] , then it has a predictable version.

Proof:Define Im,k ≡ ((k−1)2−mT,k2−mT ] if k≥ 1 and Im,0 = {0} if k = 1. Then define

Xm (t) ≡
2m

∑
k=1

X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ] (t)

+X (0)X[0,0] (t)

Here the sum means that Xm (t) has value X (T (k−1)2−m) on the interval

((k−1)2−mT,k2−mT ].

Thus Xm is predictable because each term in the sum is. Thus

X−1
m (U) = ∪2m

k=1
(
X
(
T (k−1)2−m)X((k−1)2−mT,k2−mT ]

)−1
(U)

= ∪2m

k=1((k−1)2−mT,k2−mT ]×
(
X
(
T (k−1)2−m))−1

(U) ,

a finite union of predictable sets. Since X is left continuous,

X (t,ω) = lim
m→∞

Xm (t,ω)

and so X is predictable.
Next consider the other claim. Since X is stochastically continuous on [0,T ] , it is

uniformly stochastically continuous on this interval by Lemma 30.1.1. Therefore, there
exists a sequence of partitions of [0,T ] , the mth being

0 = tm,0 < tm,1 < · · ·< tm,n(m) = T

such that for Xm defined as above, then for each t

P
([

d (Xm (t) ,X (t))≥ 2−m])≤ 2−m (30.21)

Then as above, Xm is predictable. Let A denote those points of PT at which Xm (t,ω)
converges. Thus A is a predictable set because it is just the set where Xm (t,ω) is a Cauchy
sequence. Now define the predictable function Y

Y (t,ω)≡
{

limm→∞ Xm (t,ω) if (t,ω) ∈ A
0 if (t,ω) /∈ A

From 30.21 it follows from the Borel Cantelli lemma that for fixed t, the set of ω which are
in infinitely many of the sets, [

d (Xm (t) ,X (t))≥ 2−m]
has measure zero. Therefore, for each t, there exists a set of measure zero, N (t) such that
for ω /∈ N (t) and all m large enough

d (Xm (t,ω) ,X (t,ω))< 2−m
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Hence for ω /∈ N (t) , (t,ω) ∈ A and so Xm (t,ω)→ Y (t,ω) which shows

d (Y (t,ω) ,X (t,ω)) = 0 if ω /∈ N (t) .

The predictable version of X (t) is Y (t). ■
Here is a summary of what has been shown above.

adapted and left continuous
⇓

predictable
⇓

progressively measurable
⇓

adapted

Also

stochastically continuous and adapted =⇒ progressively measurable version

30.4 Martingales and Sub-Martingales
This was done earlier for discreet martingales. The idea here is to consider indiscreet (What
a word to use for a martingale!) ones.

Definition 30.4.1 Let X be a stochastic process defined on an interval I with values
in a separable Banach space, E. It is called integrable if E (∥X (t)∥) < ∞ for each t ∈ I.
Also let Ft be a filtration. An integrable and adapted stochastic process X is called a
martingale if for s≤ t

E (X (t) |Fs) = X (s) P a.e. ω.

Recalling the definition of conditional expectation, this says that for F ∈Fs∫
F

X (t)dP =
∫

F
E (X (t) |Fs)dP =

∫
F

X (s)dP

for all F ∈ Fs. A real valued stochastic process is called a sub-martingale if whenever
s≤ t,

E (X (t) |Fs)≥ X (s) a.e.

and a supermartingale if
E (X (t) |Fs)≤ X (s) a.e.

Example 30.4.2 Let Ft be a filtration and let Z be in L1 (Ω,FT ,P) . Then let X (t) ≡
E (Z|Ft).

This works because for s < t, E (X (t) |Fs)≡ E (E (Z|Ft) |Fs) = E (Z|Fs)≡ X (s).

Proposition 30.4.3 The following statements hold for a stochastic process defined on
[0,T ]×Ω having values in a real separable Banach space, E.

1. If X (t) is a martingale then ∥X (t)∥ , t ∈ [0,T ] is a sub-martingale.
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2. If g is an increasing convex function from [0,∞) to [0,∞) and

E (g(∥X (t)∥))< ∞

for all t ∈ [0,T ] then g(∥X (t)∥) , t ∈ [0,T ] is a sub-martingale.

Proof: Let s≤ t. Then from properties of conditional expecation and Theorem 24.12.1
on Page 702,

∥X (s)∥ = ∥E (X (s)−X (t) |Fs)+E (X (t) |Fs)∥

≤
=0 a.e.︷ ︸︸ ︷

∥E (X (s)−X (t) |Fs)∥+∥E (X (t) |Fs)∥ ≤ ∥E (X (t) |Fs)∥
≤ E (∥X (t)∥|Fs)

Consider the second claim. Recall Jensen’s inequality for sub-martingales, Theorem
29.1.7 on Page 784. From the first part

∥X (s)∥ ≤ E (∥X (t)∥|Fs) a.e.

and so from Jensen’s inequality,

g(∥X (s)∥)≤ g(E (∥X (t)∥|Fs))≤ E (g(∥X (t)∥) |Fs) a.e.,

showing that g(∥X (t)∥) is also a sub-martingale. ■

30.5 Some Maximal Estimates
Martingales and sub-martingales have some very interesting maximal estimates. I will
present some of these here. The proofs are fairly general. For convenience, assume each Ft
contains the sets of measure zero from F . This is so that it suffices to assume t→ X (t)(ω)
is right continuous off some set of measure zero. If it were right continuous for each ω,
then it wouldn’t matter. Actually, in this book, I will mainly be interested in continuous
processes. It is also possible to show that for real valued processes, one can get a right
continuous version but this will not be used.

Lemma 30.5.1 Let {Ft} be a filtration and let {X (t)} be a nonnegative valued sub-
martingale for t ∈ [S,T ] . Then for λ > 0 and any p≥ 1, if, for each t, At is a Ft measurable
subset of [X (t)> λ ] , then

P(At)≤
1

λ
p

∫
At

X (T )p dP.

Proof: From Jensen’s inequality,

λ
pP(At) ≤

∫
At

X (t)p dP≤
∫

At

E (X (T ) |Ft)
p dP

≤
∫

At

E (X (T )p |Ft)dP =
∫

At

X (T )p dP ■

The following theorem is the main result.
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Theorem 30.5.2 Let {Ft} be a filtration and let {X (t)} be a nonnegative valued
right continuous1 sub-martingale for t ∈ [S,T ] . Then for all λ > 0 and p≥ 1, for

X∗ ≡ sup
t∈[S,T ]

X (t) ,

P([X∗ > λ ])≤ 1
λ

p

∫
Ω

X[X∗>λ ]X (T )p dP

In the case that p > 1, it is also true that

E ((X∗)p)≤
(

p
p−1

)
E (X (T )p)

1/p
(E ((X∗)p))

1/p′

Also there are no measurability issues related to the above supt∈[S,T ] X (t)≡ X∗. If X (t) ∈
Lp (Ω) for each t, then

E ((X∗)p)
1/p ≤

(
p

p−1

)
E (X (T )p)

1/p

Thus X∗ is also in Lp (Ω).

Proof: Let S≤ tm
0 < tm

1 < · · ·< tm
Nm

= T where tm
j+1− tm

j = (T −S)2−m. First consider
m = 1.

At1
0
≡
{

ω ∈Ω : X
(
t1
0
)
(ω)> λ

}
, At1

1
≡
{

ω ∈Ω : X
(
t1
1
)
(ω)> λ

}
\At1

0

At1
2
≡
{

ω ∈Ω : X
(
t1
2
)
(ω)> λ

}
\
(

At1
0
∪At1

0

)
.

Do this type of construction for m = 2,3,4, · · · yielding disjoint sets,
{

Atm
j

}2m

j=0
whose

union equals
∪t∈Dm [X (t)> λ ]

where Dm =
{

tm
j

}2m

j=0
. Thus Dm ⊆Dm+1. Then also, D≡∪∞

m=1Dm is dense and countable.

From Lemma 30.5.1,

P(∪t∈Dm [X (t)> λ ]) = P

([
sup

t∈Dm

X (t)> λ

])
=

2m

∑
j=0

P
(

Atm
j

)
≤ 1

λ
p

2m

∑
j=0

∫
Atmj

X[supt∈Dm X(t)>λ ]X (T )p dP (30.22)

≤ 1
λ

p

∫
Ω

X[supt∈Dm X(t)>λ ]X (T )p dP≤ 1
λ

p

∫
Ω

X[supt∈D X(t)>λ ]X (T )p dP.

Let m→ ∞ in the above to obtain

P(∪t∈D [X (t)> λ ]) = P
([

sup
t∈D

X (t)> λ

])
≤ 1

λ
p

∫
Ω

X[supt∈D X(t)>λ ]X (T )p dP. (30.23)

1t→ X (t)(ω) is continuous from the right for a.e. ω .
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From now on, we begin using the assumption that for a.e. ω ∈ Ω, t → X (t)(ω) is right
continuous. Then with this assumption of right continuity, the following claim holds.

sup
t∈[S,T ]

X (t)≡ X∗ = sup
t∈D

X (t)

which verifies that X∗ is measurable. Then from 30.23,

P([X∗ > λ ]) = P
([

sup
t∈D

X (t)> λ

])

≤ 1
λ

p

∫
Ω

X[supt∈D X(t)>λ ]X (T )p dP =
1

λ
p

∫
Ω

X[X∗>λ ]X (T )p dP

Now consider the other inequality. Using the distribution function technique and the
above estimate obtained in the first part, and earlier facts about the distribution function,

E ((X∗)p) =
∫

∞

0
pα

p−1P([X∗ > α])dα

Then using Lemma 29.3.13 to justify interchange in order of integration,

≤
∫

∞

0
pα

p−1 1
α

∫
Ω

X[X∗>α]X (T )dPdα = p
∫

Ω

∫ X∗

0
α

p−2dαX (T )dP

=
p

p−1

∫
Ω

(X∗)p−1 X (T )dP≤ p
p−1

(∫
Ω

(X∗)p
)1/p′(∫

Ω

X (T )p
)1/p

=
p

p−1
E (X (T )p)

1/p E ((X∗)p)
1/p′

. (30.24)

Now assume X (t) ∈ Lp (Ω) . Returning to 30.22, and letting X∗n be supt∈Dn
X (t) , this says

that

P([X∗n > λ ])≤ 1
λ

p

∫
Ω

X[X∗n >λ ]X (T )p dP

Then X∗n achieves its maximum at one of finitely many values for t on a suitable subset of
Ω. Thus it makes sense to write

∫
Ω
(X∗n )

p dP. Now repeat the argument. This yields

E ((X∗n )
p)≤ p

p−1
E (X (T )p)

1/p E ((X∗n )
p)

1/p′

Dividing by E ((X∗n )
p)

1/p′
, one obtains

(E ((X∗n )
p))

1/p ≤ p
p−1

E (X (T )p)
1/p

Now let n→ ∞ and use the monotone convergence theorem. ■
If you assumed t → X (t) is lower semi-continuous instead of right continuous, it ap-

pears the above argument would also work.
With Theorem 30.5.2, here is an important maximal estimate for martingales having

values in E, a real separable Banach space. In the following, either t → X (t)(ω) is right
continuous for all ω or for a.e. ω each Ft contains the sets of measure zero.
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Theorem 30.5.3 Let X (t) for t ∈ I = [0,T ] be an E valued right continuous mar-
tingale with respect to a filtration Ft . Then for p≥ 1,

P
([

sup
t∈I
∥X (t)∥> λ

])
≤ 1

λ
p E (∥X (T )∥p) . (30.25)

If p > 1,

E

((
sup

t∈[S,T ]
∥X (t)∥

)p)
≤
(

p
p−1

)
E (∥X (T )∥p)

1/p E

((
sup

t∈[S,T ]
∥X (t)∥

)p)1/p′

(30.26)
If, in addition, each X (t) ∈ Lp (Ω) for each t, then

E

((
sup

t∈[S,T ]
∥X (t)∥

)p)1/p

≤
(

p
p−1

)
E (∥X (T )∥p)

1/p (30.27)

Proof: By Proposition 30.4.3 ∥X (t)∥ , t ∈ I is a sub-martingale and so from Theorem
30.5.2, it follows 30.25 and 30.26 hold. 30.27 also holds from Theorem 30.5.2. You just
apply that theorem to the sub-martingale Z (t)≡ ∥X (t)∥ and let Z∗ (t) = sups∈[S,T ] ∥X (s)∥ .
■
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Chapter 31

Optional Sampling Theorems
As with discreet martingales, there is a notion of stopping time and optional sampling
theorems. These are considered by approximating with discreet stopping times. It is like
the case of the integral where one uses step functions or simple functions to approximate a
given function.

31.1 Review of Discreet Stopping Times
First it is necessary to define the notion of a stopping time. The following definition was
discussed earlier in the context of discreet processes.

Definition 31.1.1 Let (Ω,F ,P) be a probability space and let {Fn}∞

n=1 be an in-
creasing sequence of σ algebras each contained in F , called a discrete filtration. A stop-
ping time is a measurable function, τ which maps Ω to N,

τ
−1 (A) ∈F for all A ∈P (N) ,

such that for all n ∈ N,
[τ ≤ n] ∈Fn.

Note this is equivalent to saying
[τ = n] ∈Fn

because
[τ = n] = [τ ≤ n]\ [τ ≤ n−1] .

For τ a stopping time define Fτ as follows.

Fτ ≡ {A ∈F : A∩ [τ ≤ n] ∈Fn for all n ∈ N}

These sets in Fτ are referred to as “prior” to τ .

It is clear that Fτ is a σ algebra.
The most important example of a stopping time is the first hitting time.

Example 31.1.2 The first hitting time of an adapted process X (n) of a Borel set G is a
stopping time. This is defined as

τ ≡min{k : X (k) ∈ G}

To see this, note that

[τ = n] = ∩k<n
[
X (k) ∈ GC]∩ [X (n) ∈ G] ∈Fn.

This led to the following proposition. It was Proposition 29.4.4.

Proposition 31.1.3 For τ a stopping time, Fτ is a σ algebra and if Y (k) is Fk mea-
surable for all k,Y (k) having values in a separable Banach space E, then

ω → Y (τ (ω))

is Fτ measurable.

831
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To see this,

(Y ◦ τ)−1 (G)∩ [τ ≤ n] = ∪k


∈Fk︷ ︸︸ ︷

Y (k)−1 (G)

∩ [τ = k]∩ [τ ≤ n]

The term in the union is /0 if k > n and so the whole thing reduces to

∪n
k=1


∈Fk︷ ︸︸ ︷

Y (k)−1 (G)

∩ [τ = k] ∈Fn

showing that (Y ◦ τ)−1 (G) ∈Fτ .
The following lemma contains the fundamental properties of stopping times for discrete

filtrations. It was Lemma 29.4.7.

Lemma 31.1.4 In the situation of Definition 31.1.1,

1. Fτ ∩ [τ = i] = Fi∩ [τ = i] and E (X |Fτ) = E (X |Fi) a.e. on the set [τ = i] . Also if
A ∈Fτ or Fi, then A∩ [τ = i] ∈Fi∩Fτ .

2. E (X |Fτ) = E (X |Fi) a.e. on the set [τ ≤ i] .

3. Also, if σ ≤ τ, then Fσ ⊆Fτ

Proof: The first two are in the above mentioned lemma. The first part of 1. comes
fairly quickly from the definition. The next part of 1. about the conditional expectations
is essentially because one can regard Fτ ∩ [τ = i] and Fi∩ [τ = i] as two equal σ algebras
contained in [τ = i] and so the two conditional expectations are the same on [τ = i]. The
third part of 1. also follows from the definition. Then 2. is clearly true from 1. applied to
[τ = j] for j ≤ i.

Say A ∈Fτ . Then for j ≤ i, [τ = j] ∈Fτ because [τ = j]∩ [τ ≤ k] ∈Fk for each k.
Thus ∫

A∩[τ= j]
XdP =

∫
A∩[τ= j]

E (X |Fτ)dP =
∫

A∩[τ= j]
∈F j

E (X |F j)dP

=
∫

A∩[τ= j]
E (X |Fi)dP

Since A is arbitrary, E (X |Fτ) = E (X |Fi).
Now consider 3. If A ∈Fσ , this means A∩ [σ ≤ i] ∈Fi or equivalently, A∩ [σ = i] ∈

Fi for all i. Take such an A. Then A∩ [τ = n] = ∪n
i=1A∩ [σ = i] ∈Fn and so Fσ ⊆Fτ . ■

The assertion that
E (Y |Fτ) = E (Y |Fk) a.e.

on [τ = k] and that a function g which is Fτ or Fk measurable when restricted to [τ = k]
is G measurable for

G =[τ = k]∩Fτ = [τ = k]∩Fk

is the main result in the above lemma and this fact leads to the amazing Doob optional
sampling theorem below. Also note that if Y (k) is any process defined on the positive
integers k, then by definition, Y (k)(ω) = Y (τ (ω))(ω) on the set [τ = k] because τ is
constant on this set.
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31.2 Review of Doob Optional Sampling Theorem
With this lemma, here is a major theorem, the optional sampling theorem of Doob. This
one is for martingales having values in a Banach space. To begin with, consider the case of
a martingale defined on a countable set. This was discussed earlier but it is the sort of thing
that seems to me should be repeated because it is so amazing.

Theorem 31.2.1 Let {M (k)} be a martingale having values in E a separable real
Banach space with respect to the increasing sequence of σ algebras, {Fk} and let σ ,τ
be two stopping times such that τ is bounded. Then M (τ) defined as ω → M (τ (ω)) is
integrable and

M (σ ∧ τ) = E (M (τ) |Fσ ) .

Proof: By Proposition 31.1.3 M (τ) is Fτ measurable.
Next note that since τ is bounded by some l,∫

Ω

∥M (τ (ω))∥dP≤
l

∑
i=1

∫
[τ=i]
∥M (i)∥dP < ∞.

This proves the first assertion and makes possible the consideration of conditional expecta-
tion.

(E (M (l) |Fτ) = M (τ)) Let l≥ τ as described above. Then for k≤ l, by Lemma 31.1.4,

Fk ∩ [τ = k] = Fτ ∩ [τ = k]≡ G

implying that if g is either Fk measurable or Fτ measurable, then its restriction to [τ = k]
is G measurable and so if A ∈Fτ ∩ [τ = k] then∫

A
E (M (l) |Fτ)dP ≡

∫
A

M (l)dP =
∫

A
E (M (l) |Fk)dP

=
∫

A
M (k)dP =

∫
A

M (τ)dP (on A,τ = k)

Therefore, since A was arbitrary, E (M (l) |Fτ) = M (τ) a.e. on [τ = k] for every k ≤ l. It
follows E (M (l) |Fτ) = M (τ) a.e. since it is true on each [τ = k] for all k ≤ l.

(M (σ ∧ τ) = E (M (τ) |Fσ )) Now consider E (M (τ) |Fσ ) on the set [σ = i]∩ [τ = j].
By Lemma 31.1.4, on this set,

E (M (τ) |Fσ ) = E (M (τ) |Fi) = E (E (M (l) |Fτ) |Fi) = E (E (M (l) |F j) |Fi)

If j ≤ i, this reduces to

E (M (l) |F j) = M ( j) = M (σ ∧ τ) .

If j > i, this reduces to
E (M (l) |Fi) = M (i) = M (σ ∧ τ)

and since this exhausts all possibilities for values of σ and τ, it follows

E (M (τ) |Fσ ) = M (σ ∧ τ) a.e. ■

You can also give a version of the above to sub-martingales. This requires the following
very interesting decomposition of a sub-martingale into the sum of an increasing stochastic
process and a martingale. This was presented earlier as Lemma 29.4.9.
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Theorem 31.2.2 Let {Xn} be a sub-martingale. Then there exists a unique stochas-
tic process, {An} and martingale, {Mn} such that

1. An (ω)≤ An+1 (ω) , A1 (ω) = 0,

2. An is Fn−1 adapted for all n≥ 1 where F0 ≡F1.

and also Xn = Mn +An.

Recall that the thing which works is

A(n)≡
n−1

∑
k=0

E (X (k+1)−X (k) |Fk) , A(0) = 0

and that this is the only thing which will do what is required.
Now here is a version of the optional sampling theorem for sub-martingales. This was

also presented earlier. However, it is good to go through the proof as a review.

Theorem 31.2.3 Let {X (k)} be a real valued sub-martingale with respect to the
increasing sequence of σ algebras, {Fk} such that τ is bounded. Then X (τ) defined as

ω → X (τ (ω))

is integrable and
X (σ ∧ τ)≤ E (X (τ) |Fσ )

Proof: That ω→ X (τ (ω)) is integrable follows right away as in the optional sampling
theorem for martingales. You just consider the finitely many values of τ .

Use Theorem 31.2.2 above to write

X (n) = M (n)+A(n)

where M is a martingale and A is increasing with A(n) being Fn−1 measurable and A(0) =
0 as discussed in Theorem 31.2.2. Then

E (X (τ) |Fσ ) = E (M (τ)+A(τ) |Fσ )

Now since A is increasing, you can use the optional sampling theorem for martingales to
conclude that, since Fσ∧τ ⊆Fσ and A(σ ∧ τ) is Fσ∧τ measurable,

≥ E (M (τ)+A(σ ∧ τ) |Fσ ) = E (M (τ) |Fσ )+A(σ ∧ τ)

= M (σ ∧ τ)+A(σ ∧ τ) = X (σ ∧ τ) .■

Note that if σ ≤ τ, the conclusion is X (σ)≤ E (X (τ) |Fσ ).

31.3 Doob Optional Sampling Continuous Case
31.3.1 Stopping Times
Let X (t) be a stochastic process adapted to a filtration {Ft} for t ∈ [0,T ] meaning that
X (t) is Ft measurable each Ft being a subset of F . We will assume two things. The
stochastic process is right continuous and the filtration is normal. Recall what this means:
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Definition 31.3.1 A normal filtration is one which satisfies the following :

1. F0 contains all A ∈F such that P(A) = 0. Here F is the σ algebra which contains
all Ft .

2. Ft = Ft+ for all t ∈ I where Ft+ ≡ ∩s>tFs.

For an F measurable [0,∞) valued function τ to be a stopping time, we want to have
the stopped process Xτ defined by Xτ (t)(ω)≡ X (t ∧ τ (ω))(ω) to be adapted whenever X
is right continuous and adapted. Thus a stopping time is a measurable function which can
be used to stop the process while retaining the property of being adapted. The definition of
such a condition which will make τ a stopping time is the same as in the case of a discreet
process.

Definition 31.3.2 τ an F measurable function is a stopping time if [τ ≤ t] ∈Ft .

Then this definition does what is desired. This is in the following proposition. For
convenience, here is a definition.

Definition 31.3.3 Let {t}k ≡ 2−kn where n is as large as possible and have 2−kn≤
t.

It seems like the theory is based on reducing to discrete stopping times defined as
follows.

Definition 31.3.4

τk (ω)≡
∞

∑
n=0

X
τ−1((n2−k,(n+1)2−k]) (ω)(n+1)2−k.

Thus τk has values in the set
{

n2−k
}∞

n=0 ,τk ≥ τ and τk is within 2−k of τ .

Then τk is a discrete stopping time with respect to the increasing σ algebras F{t}k .
This is in the following lemma.

Lemma 31.3.5 Let τ be a stopping time and let τk be defined above in Definition 31.3.4.
Then [τk ≤ {t}k] ∈F{t}k and for all t, [τk ≤ t] ∈Ft . If you have finitely many stopping
times

{
σ k
}n

k=1 for n < ∞ then σ ≡min
{

σ k
}n

k=1 and σ ≡max
{

σ k
}n

k=1 are also stopping
times.

Proof: If t = (n+1)2−k then [τk ≤ {t}k] is the same as
[
τ ≤ (n+1)2−k

]
= [τ ≤ t] ∈

Ft =F{t}k . The other case is where for some n, t ∈
(
n2−k,(n+1)2−k

)
. Then {t}k = n2−k

and so [τk ≤ {t}k] is
[
τ ≤ n2−k

]
∈Fn2−k = F{t}k . Thus, in particular, [τk ≤ t] ∈Ft since

{t}k ≤ t.
As to the second claim,[

min
{

σ
k
}n

k=1
≤ t
]
= ∪n

k=1

[
σ

k ≤ t
]
∈Ft

and
[
max

{
σ k
}n

k=1 ≤ t
]
= ∩n

k=1

[
σ k ≤ t

]
∈Ft . ■



836 CHAPTER 31. OPTIONAL SAMPLING THEOREMS

Proposition 31.3.6 Let {Ft} be a normal filtration and let X (t) be a right continuous
process adapted to {Ft} . Then if τ is a stopping time, it follows that the stopped process
Xτ defined by Xτ (t)≡ X (τ ∧ t) is also adapted.

Proof: Let τk (ω) ≡ ∑
∞
n=0 X

τ−1((n2−k,(n+1)2−k]) (ω)(n+1)2−k. Thus τk has discreet

values n2−k,n = 1, ... and τk (ω) = (n+1)2−k exactly when ω is in[
τ ∈

[
0,(n+1)2−k

]]
\
[
τ ∈

[
0,n2−k

]]
and these sets are both in F(n+1)2−k . Now consider X (τ ∧ t)−1 (O) for O an open set. Since
O is open, it follows from right continuity of X that if X (τ ∧ t) ∈ O, then X (τk ∧ t) ∈ O
whenever k is large enough, depending on ω of course. Thus

X (τ ∧ t)−1 (O) = ∪∞
m=1∩k≥m X (τk ∧ t)−1 (O)

Now X (τk ∧ t)−1 (O) =
(
[τk ≤ {t}k]∩X (τk)

−1 (O)
)
∪
(
[τk > {t}k]∩X (t)−1 (O)

)
. The

second term in the union is in Ft because X is adapted and [τk > {t}k] is the comple-
ment of the set [τk ≤ {t}k] which is in Ft . The first term is of the form [τk ≤ {t}k]∩(
∪2k{t}k

j=0 X
(
2−k j

)−1
(O)
)
∈Ft again because X is adapted. Since each X (τk ∧ t)−1 (O) ∈

Ft , it follows that X (τ ∧ t)−1 (O) = ∪∞
m=1∩k≥m X (τk ∧ t)−1 (O) is in Ft . ■

By analogy to the discreet case, here are the prior sets.

Definition 31.3.7 Let (Ω,F ,P) be a probability space and let Ft be a filtration.
Recall a measurable function, τ : Ω→ [0,∞] is called a stopping time if

[τ ≤ t] ∈Ft

for all t ≥ 0. Associated with a stopping time is the σ algebra, Fτ defined by

Fτ ≡ {A ∈F : A∩ [τ ≤ t] ∈Ft for all t} .

These sets are also called those “prior” to τ.

Note that Fτ is obviously closed with respect to countable unions. If A ∈Fτ , then

AC ∩ [τ ≤ t] = [τ ≤ t]\ (A∩ [τ ≤ t]) ∈Ft

Thus Fτ is a σ algebra. What if τ ≤ σ? Does it follow that Fτ ⊆ Fσ ? What about
ω → X (τ)? Is this measurable?

Recall {t}k ≡ n2−k where n is as large as possible with n2−k ≤ t.

Proposition 31.3.8 Let τ be a stopping time and let τk be the stopping time having
discreet values described in Lemma 31.3.5 which for a given stopping time τ is given by

τk (ω)≡
∞

∑
n=0

X
τ−1((n2−k,(n+1)2−k]) (ω)(n+1)2−k.

Then
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1. Fτ ⊆Fτk and if Ft is normal, then if A ∈Fτk for all k, it follows that A ∈Fτ .

2. A ∈Fτk if and only if A∩
[
τk = n2−k

]
∈Fn2−k for all n.

3. If τ ≤ σ , then τk ≤ σ k.

4. More generally, if τ ≤ σ are two stopping times, then Fτ ⊆Fσ .

5. If X (t) is a right continuous process adapted to the normal filtration Ft and τ is a
stopping time, then ω→ X (τ (ω)) is Fτ measurable. Here X has values in a Banach
space.

Proof: 1.) Let A ∈Fτ . Then for t ∈ (n2−k,(n+1)2−k], if t < (n+1)2−k,

A∩ [τk ≤ t] = A∩
[
τk ≤ n2−k

]
= A∩

[
τ ≤ n2−k

]
∈Fn2−k ⊆Ft

so A∈Fτk . If t = (n+1)2−k then A∩ [τk ≤ t]∈F(n+1)2−k =Ft . Thus A∈Fτk and Fτ ⊆
Fτk . Now for the other part, Consider A∩ [τ ≤ t] . If t ∈ (n2−k,(n+1)2−k], then [τ ≤ t] =[
τk ≤ (n+1)2−k

]
and so A∩ [τ ≤ t] =A∩

[
τk ≤ (n+1)2−k

]
∈F(n+1)2−k ⊆Ft+2−k . Since

the filtration is normal, and for all k, A∩ [τ ≤ t] ∈Ft+2−k , it follows that A∩ [τ ≤ t] ∈Ft
and so A ∈Fτ as claimed.

2.) Note [
τk = n2−k

]
=

[
τk ≤ n2−k

]
\
[
τk ≤ (n−1)2−k

]
=

[
τ ≤ 2−kn

]
\
[
τ ≤ (n−1)2−k

]
If A ∈Fτk then by definition,

A∩
[
τk = n2−k

]
= A∩

([
τk ≤ n2−k

]
\
[
τk ≤ (n−1)2−k

])
= A∩

([
τ ≤ 2−kn

]
\
[
τ ≤ (n−1)2−k

])
∈Fn2−k

Conversely, if
A∩
[
τk = n2−k

]
∈Fn2−k

for all n, then consider A∩ [τk ≤ t] for t ∈ (n2−k,(n+1)2−k]. Is A∩ [τk ≤ t] ∈ Ft? If
t < (n+1)2−k, then A∩ [τk ≤ t] = ∑

n
j=1 A∩

[
τk = j2−k

]
∈Fn2−k ⊆Ft . If t = (n+1)2−k,

A∩ [τk ≤ t] = ∑
n+1
j=1 A∩

[
τk = j2−k

]
∈Ft and so A ∈F(n+1)2−k ⊆Fτk . This proves 2.).

3.) The values of both τk and σ k are n2−k for some nonnegative integer n. τk equals
n2−k on τ−1

(
(n−1)2−k,n2−k]

)
. Thus on this set, σ cannot be smaller than or equal to

(n−1)2−k. Hence σ k is at least n2−k.
4.) Let τ ≤ σ and let A ∈ Fτ . A∩ [σ ≤ t] = A∩ [τ ≤ t]∩ [σ ≤ t] because τ ≤ σ .

However, A∩ [τ ≤ t]∈Ft and [σ ≤ t]∈Ft so the right side is in Ft which means A∈Fσ .
5.)Let U be an open set.

X (τk)
−1 (U)∩ [τk < t] = ∪ j2−k≤{t}k X

(
j2−k

)−1
(U) ∈F{t}k .

Now say t ∈
(
(n2−k,(n+1)2−k]

)
. If t < (n+1)2−k, then X (τk)

−1 (U) ∩ [τk ≤ t] was
just given. It is in Fn2−k = F{t}k ⊆ Ft . Otherwise t = (n+1)2−k and in this case,
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X (τk)
−1 (U)∩ [τk ≤ t] is in F(n+1)2−k = Ft . Thus ω → X (τk)(ω) is Fτk measurable.

It follows that for a fixed k̂, X (τk) is Fτ k̂
measurable for each k > k̂ because τk is de-

creasing in k so this follows from Part 4. Now let k→ ∞ and use right continuity of X to
conclude that X (τ) is Fτ k̂

measurable. Thus X (τ)−1 (U) ∈Fτ k̂
for each k̂ and so, by Part

1, it follows that X (τ)−1 (U) ∈Fτ . Therefore, X (τ) is Fτ measurable. ■
Next is an important proposition which gives a typical example of a stopping time.

Since the process has t in an interval, one must be much more careful about the nature of
the set which is hit.

Proposition 31.3.9 Let B be an open subset of topological space E and let X (t) be a
right continuous Ft adapted stochastic process such that Ft is normal. Then define

τ (ω)≡ inf{t > 0 : X (t)(ω) ∈ B} .

This is called the first hitting time. Then τ is a stopping time. If X (t) is continuous and
adapted to Ft , a normal filtration, then if H is a nonempty closed set such that H =∩∞

n=1Bn
for Bn open, Bn ⊇ Bn+1,

τ (ω)≡ inf{t > 0 : X (t)(ω) ∈ H}

is also a stopping time.

Proof: Consider the first claim. ω ∈ [τ = a] implies that for each n ∈ N, there exists
t ∈
[
a,a+ 1

n

]
such that X (t) ∈ B. Also for t < a, you would need X (t) /∈ B. By right

continuity, this is the same as saying that X (d) /∈ B for all rational d < a. (If t < a, you
could let dn ↓ t where X (dn) ∈ BC, a closed set. Then it follows that X (t) is also in the
closed set BC.) Thus, aside from a set of measure zero, for each m ∈ N,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ]
[X (t) ∈ B]

)
∩
(
∩t∈[0,a)

[
X (t) ∈ BC])

Since X (t) is right continuous, this is the same as(
∩∞

n=m∪d∈Q∩[a,a+ 1
n ]
[X (d) ∈ B]

)
∩
(
∩d∈Q∩[0,a)

[
X (d) ∈ BC]) ∈Fa+ 1

m

Thus, since the filtration is normal,

[τ = a] ∈ ∩∞
m=1Fa+ 1

m
= Fa+ = Fa

I want to consider [τ ≤ a]. What of [τ < a]? This is equivalent to saying that X (t) ∈ B for
some t < a. Since X is right continuous, this is the same as saying that X (t) ∈ B for some
t ∈Q, t < a. Thus

[τ < a] = ∪d∈Q,d<a [X (d) ∈ B] ∈Fa

It follows that [τ ≤ a] = [τ < a]∪ [τ = a] ∈Fa. Thus τ is indeed a stopping time.
Now consider the claim involving the additional assumption that X (t) is continuous and

it is desired to hit a closed set H = ∩∞
n=1Bn where Bn is open, Bn ⊇ Bn+1. (Note that if the

topological space is a metric space, this is always possible so this is not a big restriction.)
Then let τn be the first hitting time of Bn by X (t). Then it can be shown that

[τ ≤ a] = ∩n [τn ≤ a] ∈Fa
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To show this, first note that ω ∈ [τ ≤ a] if and only if there exists t ≤ a such that X (t)(ω)∈
H. This follows from continuity and the fact that H is closed. Thus τn ≤ a for all n
because for some t ≤ a, X (t) ∈ H ⊆ Bn for all n. Next suppose ω ∈ [τn ≤ a] for all n.
Then for δ n ↓ 0, there exists tn ∈ [0,a+δ n] such that X (tn)(ω) ∈ Bn. It follows there is a
subsequence, still denoted by tn such that tn → t ∈ [0,a]. By continuity of X , it must be
the case that X (t)(ω) ∈H and so ω ∈ [τ ≤ a] . This shows the above formula. Now by the
first part, each [τn ≤ a] ∈Fa and so [τ ≤ a] ∈Fa also. ■

Another useful result for real valued stochastic process is the following in which conti-
nuity is generalized to lower semicontinuity.

Proposition 31.3.10 Let X (t) be a real valued stochastic process which is Ft adapted
for a normal filtration Ft , with the property that t→ X (t) is lower semicontinuous. Then

τ ≡ inf{t : X (t)> α}

is a stopping time.

Proof: As above, for each m > 0,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ]
[X (t)> α]

)
∩
(
∩t∈[0,a) [X (t)≤ α]

)
Now

∩t∈[0,a) [X (t)≤ α]⊆ ∩t∈[0,a),t∈Q [X (t)≤ α]

If ω is in the right side, then for arbitrary t < a, let tn ↓ t where tn ∈ Q and t < a. Then
X (t)≤ liminfn→∞ X (tn)≤ α and so ω is in the left side also. Thus

∩t∈[0,a) [X (t)≤ α] = ∩t∈[0,a),t∈Q [X (t)≤ α]

∪t∈[a,a+ 1
n ]
[X (t)> α]⊇ ∪t∈[a,a+ 1

n ],t∈Q
[X (t)> α]

If ω is in the left side, then for some t in the given interval, X (t) > α. If for all s ∈[
a,a+ 1

n

]
∩Q you have X (s)≤ α, then you could take sn→ t where X (sn)≤ α and con-

clude from lower semicontinuity that X (t) ≤ α also. Thus there is some rational s where
X (s)> α and so the two sides are equal. Hence,

[τ = a] =
(
∩∞

n=m∪t∈[a,a+ 1
n ],t∈Q

[X (t)> α]
)
∩
(
∩t∈[0,a),t∈Q [X (t)≤ α]

)
The first set on the right is in Fa+(1/m) and so is the next set on the right. Hence [τ = a] ∈
∩mFa+(1/m) = Fa. To be a stopping time, one needs [τ ≤ a] ∈Fa. What of [τ < a]? This
equals ∪t∈[0,a) [X (t)> α] = ∪t∈[0,a)∩Q [X (t)> α] ∈Fa, the equality following from lower
semi-continuity. Thus [τ ≤ a] = [τ = a]∪ [τ < a] ∈Fa. ■

31.3.2 The Optional Sampling Theorem Continuous Case

Proposition 31.3.11 Let M (t) , t ≥ 0 be a martingale with values in E a separable
Banach space and let τ be a bounded stopping time whose maximum is T . Then M (τ) is
Fτ measurable and in fact,

∫
Ω
∥M (τ)∥dP < ∞. Letting

τk (ω)≡
∞

∑
n=0

X
τ−1((n2−k,(n+1)2−k]) (ω)(n+1)2−k

be the discrete stopping times. {M (τk)} are uniformly integrable on FT .
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Proof: From Proposition 31.3.8 M (τ) is measurable. Since τ is bounded, this is always
a finite sum for τk. Then each ω is in exactly one τ−1

(
(n2−k,(n+1)2−k]

)
for some n. Say

ω ∈ τ−1
(
(n2−k,(n+1)2−k]

)
. Then for that ω,M (τk (ω)) = M

(
(n+1)2−k

)
(ω). Thus

M (τk (ω)) is given by

M (τk (ω)) =
∞

∑
n=0

X
τ−1((n2−k,(n+1)2−k]) (ω)M

(
(n+1)2−k

)
(ω)

and

∥M (τk)(ω)∥ ≤
∞

∑
n=0

Xτ−1(In) (ω)
∥∥∥M
(
(n+1)2−k

)∥∥∥ ,
In ≡ (n2−k,(n+1)2−k]

Then, since M (t) is a martingale, E
(
M
(
(n+1)2−k

)
|Fn2−k

)
= M

(
n2−k

)
and so∥∥∥M

(
n2−k

)∥∥∥ =
∥∥∥E
(

M
(
(n+1)2−k

)
|Fn2−k

)∥∥∥
≤ E

(∥∥∥M
(
(n+1)2−k

)∥∥∥ |Fn2−k

)
.

Therefore, iterating this gives∥∥∥M
(
(n+1)2−k

)∥∥∥≤ E
(
∥M (Tk)∥|F(n+1)2−k

)
where Tk is the smallest number greater than or equal to T which is of the form m2−k for m
a positive integer. Then, since Xτ−1(In) is F(n+1)2−k measurable, it is FTk measurable and
so

∥M (τk)∥ ≤
∞

∑
n=0

Xτ−1(In) (ω)E
(
∥M (Tk)∥|F(n+1)2−k

)
=

∞

∑
n=0

E
(
Xτ−1(In) ∥M (Tk)∥|F(n+1)2−k

)
because Xτ−1(In) is F(n+1)2−k measurable. Thus

∫
Ω

∥M (τk)∥dP≤
∞

∑
n=0

∫
Ω

Xτ−1(In) ∥M (Tk)∥dP =
∫

Ω

∥M (Tk)∥dP.

Thus ∫
Ω

∥M (τk)∥dP≤
∫

Ω

∥M (Tk)∥dP

Now use right continuity and Fatou’s lemma.∫
Ω

∥M (τ)∥dP≤ lim inf
k→∞

∫
Ω

∥M (τk)∥dP≤ lim inf
k→∞

∫
Ω

∥M (Tk)∥dP

Pick T̂ > Tk for all k = 1,2, .... Then

M (Tk) = E
(
M
(
T̂
)
|FTk

)
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and so ∥M (Tk)∥ ≤ E
(∥∥M

(
T̂
)∥∥ |FTk

)
and so∫

Ω

∥M (Tk)∥dP≤
∫

Ω

E
(∥∥M

(
T̂
)∥∥ |FTk

)
dP =

∫
Ω

∥∥M
(
T̂
)∥∥dP < ∞

Therefore, ∫
Ω

∥M (τ)∥dP≤ lim inf
k→∞

∫
Ω

∥M (τk)∥dP≤
∫

Ω

∥∥M
(
T̂
)∥∥dP < ∞

because it is given that M (t) is in L1 for each t.
In the above, you could replace Ω with A ∈FT and conclude∫

A
∥M (τk)∥dP≤

∫
A

∥∥M
(
T̂
)∥∥dP

which implies the M (τk) are uniformly integrable. Given ε > 0 there is δ > 0 such that if
P(A)< δ then ∫

A

∥∥M
(
T̂
)∥∥dP < ε

and so also
∫

A ∥M (τk)∥dP < ε . ■
Now consider an increasing in t family of stopping times, τ (t) (ω→ τ (t)(ω)). It turns

out this is a sub-martingale.

Lemma 31.3.12 Let {τ (t)} be an increasing in t family of stopping times, τ (t)≥ τ (s)
if s < t. Then τ (t) is adapted to the σ algebras Fτ(t) and {τ (t)} is a sub-martingale
adapted to these σ algebras.

Proof: First I need to show that a stopping time, τ is Fτ measurable. Consider [τ ≤ s] .
Is this in Fτ ? Is [τ ≤ s]∩ [τ ≤ r] ∈Fr for each r? This is obviously so if s≤ r because the
intersection reduces to [τ ≤ s] ∈Fs ⊆Fr. On the other hand, if s > r then the intersection
reduces to [τ ≤ r] ∈Fr and so it is clear that τ is Fτ measurable. It remains to verify that
t→ τ (t) is a sub-martingale.

Let s < t and let A ∈Fτ(s)∫
A

E
(
τ (t) |Fτ(s)

)
dP≡

∫
A

τ (t)dP≥
∫

A
τ (s)dP

and this shows E
(
τ (t) |Fτ(s)

)
≥ τ (s) so this is a submartingale as claimed. ■

Now here is an important example. Recall that for τ a stopping time, so is t∨τ because

[t ∨ τ ≤ s] =
Ω if t≤s, /0 otherwise

[t ≤ s] ∩ [τ ≤ s] ∈Fs.

Also recall that if σ is a stopping time, then for adapted Y, Y (σ) is Fσ adapted. This is in
Proposition 31.3.8.

Proposition 31.3.13 Let τ be a stopping time and let X be continuous and adapted to
the filtration Ft . Then for a > 0, define σ as

σ (ω)≡ inf{t > τ (ω) : ∥X (t)(ω)−X (τ (ω))∥= a}

Then σ is also a stopping time. That is [σ ≤ t] ∈Ft .
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Proof: To see this is so, let

Y (t)(ω) = ∥X (t ∨ τ)(ω)−X (τ (ω))∥

Then Y (t) is Ft∨τ measurable. It is desired to show that Y is Ft adapted. Hence if U is
open in R, then

Y (t)−1 (U) =
(

Y (t)−1 (U)∩ [τ ≤ t]
)
∪
(

Y (t)−1 (U)∩ [τ > t]
)

The second set in the above union on the right equals either /0 or [τ > t] depending on
whether 0 ∈ U. If τ > t, then Y (t) = 0 and so the second set equals [τ > t] if 0 ∈ U. If
0 /∈U, then the second set equals /0. Thus the second set above is in Ft . It is necessary to
show the first set is also in Ft . The first set equals

Y (t)−1 (U)∩ [τ ≤ t] = Y (t)−1 (U)∩ [τ ∨ t ≤ t]

because [τ ∨ t ≤ t] = [τ ≤ t]. However, Y (t)−1 (U) ∈Ft∨τ and so the set on the right in the
above is in Ft . For A to be in Ft∨τ means A∩ [τ ∨ t ≤ s] ∈Fs for each s. In particular, this
is true for s = t. Therefore, Y (t) is adapted. Then σ is just the first hitting time for Y (t) to
equal the closed set a. Therefore, σ is a stopping time by Proposition 31.3.9. ■

The following corollary involves the same argument. Just replace

∥X (t ∨ τ)(ω)−X (τ (ω))∥

with g(X (t ∨ τ)(ω)−X (τ (ω))) .

Corollary 31.3.14 Let τ be a stopping time and let X be continuous and adapted to the
filtration Ft . Also let g be a continuous real valued function. Then for a > 0, define σ as

σ (ω)≡ inf{t > τ (ω) : g(X (t)(ω)−X (τ (ω))) = a}

Then σ is also a stopping time.

Next I want a version of the Doob optional sampling theorem which applies to martin-
gales defined on [0,L],L≤∞. First recall the fundamental property of conditional expecta-
ton that ∥E ( f |G )∥ ≤ E (∥ f∥G ).

Here is a lemma for an optional sampling theorem for the continuous case.

Lemma 31.3.15 Let X (t) have the property that it is a right continuous nonnegative
sub-martingale, t ≥ 0 such that the filtration {Ft} is normal. Recall this includes Ft =

∩s>tFs. Also let τ be a stopping time with values in [0,T ] . Let Pn =
{

tn
k

}mn+1
k=1 be a

sequence of partitions of [0,T ] which have the property that

Pn ⊆Pn+1, lim
n→∞
∥Pn∥= 0,

where ∥Pn∥ ≡ sup
{∣∣tn

k − tn
k+1

∣∣ : k = 1,2, · · · ,mn
}

. Then let

τn (ω)≡
mn

∑
k=0

tn
k+1Xτ−1((tn

k ,t
n
k+1])

(ω) , tn
mn+1 = T
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It follows that τn is a stopping time and also the functions |X (τn)| are uniformly integrable.
Furthermore, |X (τ)| is integrable. Also X (0) ,X (τn) ,X (T ) is a sub-martingale for the
filtration F0,Fτn ,FT . If instead X (t) is a martingale having values in a separable Banach
space, X (0) ,X (τn) ,X (T ) is a martingale for the filtration F0,Fτn ,FT . In this case,
the conclusions about integrability and uniform integrability apply to the sub-martingale
∥X (t)∥ .

Proof: First of all, say t ∈ (tn
k , t

n
k+1]. If t < tn

k+1, then

[τn ≤ t] = [τ ≤ tn
k ] ∈Ftn

k
⊆Ft

and if t = tn
k+1, then [

τn ≤ tn
k+1
]
=
[
τ ≤ tn

k+1
]
∈Ftn

k+1
= Ft

and so τn is a stopping time. Thus from Proposition 31.3.11, X (τn) is in L1 (Ω) the mea-
surability being resolved from Proposition 31.3.8.

Now

X (τn) = X

(
mn

∑
k=0

tn
k+1Xτ−1((tn

k ,t
n
k+1])

(ω)

)
=

mn

∑
k=0

X
(
tn
k+1
)
X

τ−1((tn
k ,t

n
k+1])

(ω)

Now 0,τn,T is an increasing list of stopping times. Is it the case that it is a sub-
martingale for F0,Fτn ,FT ?

E (X (τn) |F0) =
mn

∑
k=0

E
(

X
(
tn
k+1
)
X

τ−1((tn
k ,t

n
k+1])
|F0

)

=
mn

∑
k=0

X
τ−1((tn

k ,t
n
k+1])

E
(
X
(
tn
k+1
)
|F0

)
≥

mn

∑
k=0

X
τ−1((tn

k ,t
n
k+1])

X (0) = X (0)

Now also X (T ) = ∑
mn
k=0 X (T )X

τ−1((tn
k ,t

n
k+1])

(ω) so

E (X (T ) |Fτn) =
mn

∑
k=0

E
(
X

τ−1((tn
k ,t

n
k+1])

X (T ) |Fτn

)
. (31.1)

What is the value of τn on
[
τ ∈ (tn

k , t
n
k+1]

]
? It is tn

k+1, and so from Lemma 31.1.4

E
(
X

τ−1((tn
k ,t

n
k+1])

X (T ) |Fτn

)
= E

(
X

τ−1((tn
k ,t

n
k+1])

X (T ) |Ftn
k+1

)
= X

τ−1((tn
k ,t

n
k+1])

E
(

X (T ) |Ftn
k+1

)
because X

τ−1((tn
k ,t

n
k+1])

is Ftn
k+1

measurable. Now since X is a sub-martingale,

E
(

X (T ) |Ftn
k+1

)
≥ X

(
tn
k+1
)

and so 31.1 implies

E (X (T ) |Fτn) =
mn

∑
k=0

E
(
X

τ−1((tn
k ,t

n
k+1])

X (T ) |Fτn

)
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=
mn

∑
k=0

X
τ−1((tn

k ,t
n
k+1])

E
(

X (T ) |Ftn
k+1

)
≥

mn

∑
k=0

X
τ−1((tn

k ,t
n
k+1])

X
(
tn
k+1
)
= X (τn)

Thus this is indeed a sub-martingale. The same argument holds in case X is a martingale.
One simply replaces the inequalities with equal signs.

Having shown that X (0) ,X (τn) ,X (T ) is a sub-martingale,∫
[X(τn)≥λ ]

X (τn)dP ≤
∫
[X(τn)≥λ ]

E (X (T ) |Fτn)dP

=
∫

Ω

E
(
X[X(τn)≥λ ]X (T ) |Fτn

)
dP

=
∫
[X(τn)≥λ ]

X (T )dP

If the interest were in a martingale where X (t) is in a Banach space, you would simply do
all the remaining analysis for the sub-martingale ∥X (t)∥. Thus, from now on, I will mainly
consider a real sub-martingale. From maximal estimates, for example Theorem 29.3.14,

P([X (τn)≥ λ ])≤ 1
λ

∫
Ω

X (T )+ dP =
1
λ

∫
Ω

X (T )dP

and now it follows from the above that the random variables X (τn) are equiintegrable.
Recall this means that

lim
λ→∞

sup
n

∫
[X(τn)≥λ ]

X (τn)dP = 0

Hence they are uniformly integrable and bounded in L1.
To verify again that |X (τ)| is integrable, note that by right continuity, X (τn)→ X (τ)

pointwise. Apply the Vitali convergence theorem to obtain∫
Ω

|X (τ)|dP = lim
n→∞

∫
Ω

|X (τn)|dP≤
∫

Ω

X (T )dP < ∞. ■

Theorem 31.3.16 Let M (t) be a right continuous martingale with values in a
separable Banach space adapted to a normal filtration. Let σ ,τ be two stopping times
such that τ is bounded. Then M (σ ∧ τ) = E (M (τ) |Fσ ) . If X is a real sub-martingale,
X (σ ∧ τ)≤ E (X (τ) |Fσ ) .

Proof: Letting M (t) , t ≥ 0 be a martingale with values in a separable Banach space
adapted to a filtration Ft . Let τk and σ k be the discreet stopping times such that τk is at
least as big as τ but within 2−k of τ discussed earlier. Therefore, from the optional sampling
theorem for discreet martingales in Theorem 31.2.1,

M (σn∧ τn) = E (M (τn) |Fσn)

Now let A ∈Fσ . Using Proposition 31.3.8 as needed, Fσ ⊆Fσn and∫
A

M (σn∧ τn)dP =
∫

A
E (M (τn) |Fσn)dP

Fσ⊆Fσn=
∫

A
M (τn)dP
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Next note that from the right continuity of M, M (σn∧ τn)→M (σ ∧ τ) and M (τn)→M (τ)
and so, by uniform integrability from Proposition AMS-LATEX, the Vitali convergence the-
orem applies and we conclude that on passing to a limit,∫

A
M (σ ∧ τ)dP =

∫
A

M (τ)dP

Since M (σ ∧ τ) is Fσ∧τ measurable, hence Fσ measurable, and so, from the definition of
conditional expectation, the fact that A is arbitrary implies M (σ ∧ τ) = E (M (τ) |Fσ ) .

Now consider the case where X is a sub-martingale. Then by the same observation
above about these stopping times and the discreet theory,

E (X (τn) |Fσn)≥ X (τn∧σn)

and so, if A ∈Fσ∫
A

X (τn∧σn)dP≤
∫

A
E (X (τn) |Fσn)dP≡

∫
A

X (τn)dP

and so, by right continuity and Lemma 31.3.15 and the Vitali convergence theorem, we can
pass to a limit and conclude that∫

A
X (τ ∧σ)dP≤

∫
A

X (τ)dP =
∫

A
E (X (τ) |Fσ )dP

Now X (τ ∧σ) is Fτ∧σ measurable so this function is also Fσ measurable and so, since
the above inequality holds for all A ∈Fσ , it follows that X (τ ∧σ)≤ E (X (τ) |Fσ ). ■

Note that a function defined on a countable ordered set such as the integers or equally
spaced points is right continuous so the optional sampling theorem for discreet processes
is a special case of this one.

31.4 Maximal Inequalities and Stopping Times
As in the case of discrete martingales and sub-martingales, there are maximal inequalities
available. Typical ones were presented earlier but here I will use the idea of a stopping
time. This gives a typical applicaton of stopping times by making it possible to consider a
bounded process and do all the hard work with it and then pass to a limit.

Definition 31.4.1 Let X (t) be a right continuous sub-martingale for t ∈ I and let
{τn} be a sequence of stopping times such that limn→∞ τn = ∞. Then Xτn is called the
stopped sub-martingale and it is defined by

Xτn (t)≡ X (t ∧ τn) .

More generally, if τ is a stopping time, the stopped sub-martingale (martingale) is Xτ (t)≡
X (t ∧ τ) .

Proposition 31.4.2 The stopped sub-martingale is a sub-martingale.

Proof: By the optional sampling theorem for sub-martingales, Theorem 31.3.16, it
follows that for s < t,

E (Xτ (t) |Fs) ≡ E (X (t ∧ τ) |Fs)≥ X (t ∧ τ ∧ s)

= X (τ ∧ s)≡ Xτ (s) . ■

Note that a similar argument would work for martingales.
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Theorem 31.4.3 Let {X (t)} be a right continuous nonnegative sub-martingale ad-
apted to the normal filtration Ft for t ∈ [0,T ]. Let p≥ 1. Define

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0.

Then for λ > 0, if X (t)p is in L1 (Ω) for each t,

P([X∗ (T )> λ ])≤ 1
λ

p

∫
X[X∗(T )>λ ]X (T )p dP (31.2)

If X (t) is continuous, the above inequality holds without this assumption. In case p > 1,
and X (t) continuous, then for each t ≤ T,(∫

Ω

|X∗ (t)|p dP
)1/p

≤ p
p−1

(∫
Ω

X (T )p dP
)1/p

(31.3)

Proof: The first inequality follows from Theorem 30.5.2. However, it can also be
obtained a different way using stopping times. First note that from right continuity, X∗ (t) =
sup{X (d) : d ∈ D} where D is a dense countable set in (0, t). Therefore, X∗ (t) is always
measurable.

First I will assume X (t) is a bounded sub-martingale. These certainly exist. Just take a
bounded stopping time τ and consider Xτ .

Define the stopping time

τ ≡ inf{t > 0 : X (t)> λ}∧T.

(The infimum over an empty set will equal ∞.)This is a stopping time by 31.3.9 because it
is just a continuous function of the first hitting time of an open set. Also from the definition
of X∗ in which the supremum is taken over an open interval,

[τ < t] = [X∗ (t)> λ ]

Note this also shows X∗ (t) is Ft measurable. Then it follows that X p (t) is also a sub-
martingale since rp is increasing and convex. By the optional sampling theorem,

X (0)p ,X (τ)p ,X (T )p

is a sub-martingale. Recall X (σ ∧ τ)≤ E (X (τ) |Fσ ) when τ is bounded. I need to verify
that

E (X (T )p |Fτ)≥ X (τ)p ,E (X (τ)p |F0)≥ X (0)p .

But from the optional sampling theorem Theorem 31.3.16

E (X (T )p |Fτ) ≥ X (T ∧ τ)p = X (τ)p

E (X (τ)p |F0) ≥ X (τ ∧0)p = X (0)p

Also [τ < T ] ∈Fτ . Recall that A is Fτ measurable means A∩ [τ ≤ t] ∈Ft . Since τ is
a stopping time, [τ ≤ T ]∩ [τ ≤ t] = [τ ≤ t] ∈Ft and so [τ ≤ T ] ∈Fτ .∫

[τ<T ]
X (τ)p dP≤

∫
[τ<T ]

E (X (T )p |Fτ)dP =
∫
[τ<T ]

X (T )p dP
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By right continuity, on [τ < T ] , X (τ)≥ λ . Therefore,

λ
pP([X∗ (T )> λ ]) = λ

pP([τ < T ])
X(τ)≥λ

≤
∫
[τ<T ]

X (τ)p dP =
∫
[τ<T ]

E (X (T )p |Fτ)dP =
∫
[X∗(T )>λ ]

X (T )p dP

This proves 31.2 in case X is bounded. In general case, suppose X is not just right contin-
uous but also continuous.

Next let {τn} be a “localizing sequence” given by

τn ≡ inf{t : X (t)> n} .

If t < τn, then X (t) ≤ n by definition of τn. Could X (τn) > n? If so, then by continuity,
X (t) > n for some t < τn so τn was not chosen correctly. Thus Xτn is bounded because
X (τn∧ t)≤ n, and so from what was just shown,

λ
pP
([
(Xτn)∗ (T )> λ

])
≤
∫
[(Xτn )∗(T )>λ ]

(Xτn)(T )p dP

Then (Xτn)(T ) is increasing to X (T ) and (Xτn)∗ (T ) increases to X∗ (T ) as n→ ∞ so 31.2
follows from the monotone convergence theorem. This proves 31.2.

Let Xτn be as just defined. Thus it is a bounded sub-martingale. To save on notation,
the X in the following argument is really Xτn . This is done so that all the integrals are finite.
If p > 1, then from the first part,

∫
Ω

|X∗ (t)|p dP≤
∫

Ω

|X∗ (T )|p dP =
∫

∞

0
pλ

p−1

≤ 1
λ

∫
X[X∗(T )>λ ]X(T )dP︷ ︸︸ ︷

P([X∗ (T )> λ ]) dλ

≤ p
∫

∞

0
λ

p−1 1
λ

∫
Ω

X[X∗(T )>λ ]X (T )dPdλ

By Lemma 29.3.13, applied to the second half of the above and using Holder’s inequality,

∫
Ω

|X∗ (T )|p dP ≤ p
∫

Ω

X (T )
∫ X∗(T )

0
λ

p−2dλdP = p
∫

Ω

X (T )
X∗ (T )p−1

p−1
dP

≤ p
p−1

(∫
Ω

X∗ (T )p dP
)1/p′(∫

Ω

X (T )p dP
)1/p

Now divide both sides by (
∫

Ω
X∗ (T )p dP)1/p′ and restore Xτn for X .(∫

Ω

Xτn∗ (T )p dP
)1/p

≤ p
p−1

(∫
Ω

Xτn (T )p dP
)1/p

Now let n→ ∞ and use the monotone convergence theorem to obtain the inequality of the
theorem 31.3. ■

Here is another sort of maximal inequality in which X (t) is not assumed nonnegative.
A version of this was also presented earlier.
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Theorem 31.4.4 Let {X (t)} be a right continuous sub-martingale adapted to the
normal filtration Ft for t ∈ [0,T ] and X∗ (t) defined as in Theorem 31.4.3

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0,

P([X∗ (T )> λ ])≤ 1
λ

E (|X (T )|) (31.4)

For t > 0, let
X∗ (t) = inf{X (s) : s < t} .

Then
P([X∗ (T )<−λ ])≤ 1

λ
E (|X (T )|+ |X (0)|) (31.5)

Also
P([sup{|X (s)| : s < T}> λ ])

≤ 2
λ

E (|X (T )|+ |X (0)|) (31.6)

Proof: The function f (r)= r+≡ 1
2 (|r|+ r) is convex and increasing. Therefore, X+ (t)

is also a sub-martingale but this one is nonnegative. Also

[X∗ (T )> λ ] =
[(

X+
)∗
(T )> λ

]
and so from Theorem 31.4.3,

P([X∗ (T )> λ ]) = P
([(

X+
)∗
(T )> λ

])
≤ 1

λ
E
(
X+ (T )

)
≤ 1

λ
E (|X (T )|) .

Next let
τ = min(inf{t : X (t)<−λ} ,T )

then as before, X (0) ,X (τ) ,X (T ) is a sub-martingale and so∫
[τ<T ]

X (τ)dP+
∫
[τ=T ]

X (τ)dP =
∫

Ω

X (τ)dP≥
∫

Ω

X (0)dP

Now for ω ∈ [τ < T ] ,X (t)(ω)<−λ for some t < T and so it follows that by right conti-
nuity, X (τ)(ω)≤−λ . therefore,

−λ

∫
[τ<T ]

dP≥−
∫
[τ=T ]

X (T )dP+
∫

Ω

X (0)dP

If X∗ (T ) < −λ , then from the definition given above, there exists t < T such that X (t) <
−λ and so τ < T. If τ < T, then by definition, there exists t < T such that X (t)<−λ and
so X∗ (T )<−λ . Hence [τ < T ] = [X∗ (T )<−λ ] . It follows that

P([X∗ (T )<−λ ]) = P([τ < T ])

≤ 1
λ

∫
[τ=T ]

X (T )dP− 1
λ

∫
Ω

X (0)dP≤ 1
λ

E (|X (T )|+ |X (0)|)

and this proves 31.5.
Finally, combining the above two inequalities,

P([sup{|X (s)| : s < T}> λ ]) = P([X∗ (T )<−λ ])+P([X∗ (T )> λ ])

≤ 2
λ

E (|X (T )|+ |X (0)|) . ■
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31.5 Continuous Sub-martingale Convergence
Here, {Y (t)} will be a continuous sub-martingale and a < b. Let X (t) ≡ (Y (t)−a)++a
so X (0)≥ a. Then X is also a sub-martingale. It is an increasing convex function of one. If
Y (t) has an upcrossing of [a,b] , then X (t) starts off at a and ends up at least as large as b.
If X (t) has an upcrossing of [a,b] then it must start off at a since it cannot be smaller and
it ends up at least as large as b. Thus we can count the upcrossings of Y (t) by considering
the upcrossings of X (t) and X (t) is always at least as large as a.

The next task is to consider an upcrossing estimate as was done before for discrete
sub-martingales.

τ0 ≡ min(inf{t > 0 : X (t) = a} ,M) ,

τ1 ≡ min
(
inf
{

t > 0 : (X (t ∨ τ0)−X (τ0))+ = b−a
}
,M
)
,

τ2 ≡ min
(
inf
{

t > 0 : (X (τ1)−X (t ∨ τ1))+ = b−a
}
,M
)
,

τ3 ≡ min
(
inf
{

t > 0 : (X (t ∨ τ2)−X (τ2))+ = b−a
}
,M
)
,

τ4 ≡ min
(
inf
{

t > 0 : (X (τ3)−X (t ∨ τ3))+ = b−a
}
,M
)
,

...

If X (t) is never a, then τ0 ≡M where we assume t ∈ [0,M] and there are no upcrossings.
It is obvious τ1 ≥ τ0 since otherwise, the inequality could not hold. Thus the evens have
X (τ2k) = a and X (τ2k+1) = b. The following lemma follows from Corollary 31.3.14.

Lemma 31.5.1 The above τ i are stopping times for t ∈ [0,M].

Note that in the above, if η = M, then σ = M also. Thus in the definition of the τ i, if
any τ i = M, it follows that also τ i+1 = M and so there is no change in the stopping times.
Also note that these stopping times τ i are increasing as i increases.

Let

UnM
[a,b] ≡ lim

ε→0

n

∑
k=0

X (τ2k+1)−X (τ2k)

ε +X (τ2k+1)−X (τ2k)

Note that if an upcrossing occurs after τ2k on [0,M], then τ2k+1 > τ2k because there exists
t such that

(X (t ∨ τ2k)−X (τ2k))+ = b−a

However, you could have τ2k+1 > τ2k without an upcrossing occuring. This happens when
τ2k < M and τ2k+1 = M which may mean that X (t) never again climbs to b. You break the
sum into those terms where X (τ2k+1)−X (τ2k) = b− a and those where this is less than
b− a. Suppose for a fixed ω, the terms where the difference is b− a are for k ≤ m. Then
there might be a last term for which X (τ2k+1)−X (τ2k)< b−a because it fails to complete
the up crossing. There is only one of these at k = m+1. Then the above sum is

≤ 1
b−a

m

∑
k=0

X (τ2k+1)−X (τ2k)+
X (M)−a

ε +X (M)−a

≤ 1
b−a

n

∑
k=0

X (τ2k+1)−X (τ2k)+
X (M)−a

ε +X (M)−a

≤ 1
b−a

n

∑
k=0

X (τ2k+1)−X (τ2k)+1
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Then UnM
[a,b] is clearly a random variable which is at least as large as the number of

upcrossings occurring for t ≤M using only 2n+1 of the stopping times. From the optional
sampling theorem,

E (X (τ2k))−E (X (τ2k−1)) =
∫

Ω

X (τ2k)−X (τ2k−1)dP

=
∫

Ω

E
(
X (τ2k) |Fτ2k−1

)
−X (τ2k−1)dP

≥
∫

Ω

X (τ2k−1)−X (τ2k−1)dP = 0

Note that X (τ2k) = a while X (τ2k−1) = b so the above may seem surprising. However,
the two stopping times can both equal M so this is actually possible. For example, it could
happen that X (t) = a for all t ∈ [0,M].

Next, take the expectation of both sides,

E
(

UnM
[a,b]

)
≤ 1

b−a

n

∑
k=0

E (X (τ2k+1))−E (X (τ2k))+1

≤ 1
b−a

n

∑
k=0

E (X (τ2k+1))−E (X (τ2k))+
1

b−a

n

∑
k=1

E (X (τ2k))−E (X (τ2k−1))+1

=
1

b−a
(E (X (τ1))−E (X (τ0)))+

1
b−a

n

∑
k=1

E (X (τ2k+1))−E (X (τ2k−1))+1

≤ 1
b−a

(E (X (τ2n+1))−E (X (τ0)))+1

≤ 1
b−a

(E (X (M))−a)+1

which does not depend on n. The last inequality follows because 0≤ τ2n+1 ≤M and X (t)
is a sub-martingale. Let n→ ∞ to obtain

E
(

UM
[a,b]

)
≤ 1

b−a
(E (X (M))−a)+1

where UM
[a,b] is an upper bound to the number of upcrossings of {X (t)} on [0,M] . This

proves the following interesting upcrossing estimate.

Lemma 31.5.2 Let {Y (t)} be a continuous sub-martingale adapted to a normal filtra-
tion Ft for t ∈ [0,M] . Then if UM

[a,b] is defined as the above upper bound to the number of
upcrossings of {Y (t)} for t ∈ [0,M] , then this is a random variable and

E
(

UM
[a,b]

)
≤ 1

b−a

(
E (Y (M)−a)++a−a

)
+1

=
1

b−a
E (|Y (M)|)+ 1

b−a
|a|+1

With this it is easy to prove a continuous sub-martingale convergence theorem.
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Theorem 31.5.3 Let {X (t)} be a continuous sub-martingale adapted to a normal
filtration such that

sup
t
{E (|X (t)|)}=C < ∞.

Then there exists X∞ ∈ L1 (Ω) such that

lim
t→∞

X (t)(ω) = X∞ (ω) a.e. ω.

Proof: Let U[a,b] be defined by

U[a,b] = lim
M→∞

UM
[a,b].

Thus the random variable U[a,b] is an upper bound for the number of upcrossings. From
Lemma 31.5.2 and the assumption of this theorem, there exists a constant C independent
of M such that

E
(

UM
[a,b]

)
≤ C

b−a
+1.

Letting M→ ∞, it follows from monotone convergence theorem that

E
(
U[a,b]

)
≤ C

b−a
+1

also. Therefore, there exists a set of measure 0 Nab such that if ω /∈Nab, then U[a,b] (ω)<∞.
That is, there are only finitely many upcrossings. Now let

N = ∪{Nab : a,b ∈Q} .

It follows that for ω /∈ N, it cannot happen that

lim sup
t→∞

X (t)(ω)− lim inf
t→∞

X (t)(ω)> 0

because if this expression is positive, there would be arbitrarily large values of t where
X (t)(ω) > b and arbitrarily large values of t where X (t)(ω) < a where a,b are rational
numbers chosen such that

lim sup
t→∞

X (t)(ω)> b > a > lim inf
t→∞

X (t)(ω)

Thus there would be infinitely many upcrossings which is not allowed for ω /∈N. Therefore,
the limit limt→∞ X (t)(ω) exists for a.e. ω . Let X∞ (ω) equal this limit for ω /∈ N and let
X∞ (ω) = 0 for ω ∈ N. Then X∞ is measurable and by Fatou’s lemma,∫

Ω

|X∞ (ω)|dP≤ lim inf
n→∞

∫
Ω

|X (n)(ω)|dP <C. ■

Now here is an interesting result of Doob.

Theorem 31.5.4 Let {M (t)} be a continuous real martingale adapted to the nor-
mal filtration Ft . Then the following are equivalent.

1. The random variables M (t) are equi-integrable.
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2. There exists M (∞) ∈ L1 (Ω) such that limt→∞ ∥M (∞)−M (t)∥L1(Ω) = 0.

In this case, M (t) = E (M (∞) |Ft) and convergence also takes place pointwise.

Proof: Suppose the equi-integrable condition. Then there exists λ large enough that
for all t, ∫

[|M(t)|≥λ ]
|M (t)|dt < 1.

It follows that for all t,∫
Ω

|M (t)|dP =
∫
[|M(t)|≥λ ]

|M (t)|dP+
∫
[|M(t)|<λ ]

|M (t)|dP

≤ 1+λ .

Since the martingale is bounded in L1, by Theorem 31.5.3 there exists M (∞) ∈ L1 (Ω)
such that limt→∞ M (t)(ω) = M (∞)(ω) pointwise a.e. By the assumption {M (t)} are
equi-integrable, it follows from Proposition 10.9.6 these functions are uniformly integrable.
Then by the Vitali convergence theorem, Theorem 10.9.7, if tn→ ∞, then

∥M (tn)−M (∞)∥L1(Ω)→ 0

Next suppose there is a function M (∞) to which M (t) converges in L1 (Ω) . Then for t
fixed and A ∈Ft , then as s→ ∞,s > t∫

A
M (t)dP =

∫
A

E (M (s) |Ft)dP≡
∫

A
M (s)dP

→
∫

A
M (∞)dP =

∫
A

E (M (∞) |Ft)

which shows E (M (∞) |Ft) = M (t) a.e. since A ∈Ft is arbitrary. By Theorem 24.12.1,∫
[|M(t)|≥λ ]

|M (t)|dP =
∫
[|M(t)|≥λ ]

|E (M (∞) |Ft)|dP

≤
∫
[|M(t)|≥λ ]

E (|M (∞)| |Ft)dP

=
∫
[|M(t)|≥λ ]

|M (∞)|dP (31.7)

Now from this,

λP([|M (t)| ≥ λ ]) ≤
∫
[|M(t)|≥λ ]

|M (t)|dP≤
∫

Ω

|E (M (∞) |Ft)|dP

≤
∫

Ω

E (|M (∞)| |Ft)dP =
∫

Ω

|M (∞)|dP

and so
P([|M (t)| ≥ λ ])≤ C

λ

From 31.7, this shows {M (t)} is equi-integrable hence uniformly integrable because this
is true of the single function |M (∞)|. ■



31.6. HITTING THIS BEFORE THAT 853

31.6 Hitting This Before That
Let {M (t)} be a real valued continuous martingale for t ∈ [0,T ] where T ≤∞ and M (0) =
0. In case T = ∞, assume the conditions of Theorem 31.5.4 are satisfied. Thus, according
to these conditions, there exists M (∞) and the M (t) are equi-integrable. With the Doob
optional sampling theorem it is possible to estimate the probability that M (t) hits a before
it hits b where a < 0 < b. There is no loss of generality in assuming T = ∞ since if it is less
than ∞, you could just let M (t)≡M (T ) for all t > T. In this case, the equiintegrability of
the M (t) follows because for t < T,∫

[|M(t)|>λ ]
|M (t)|dP =

∫
[|M(t)|>λ ]

|E (M (T ) |Ft)|dP

≤
∫
[|M(t)|>λ ]

E (|M (T )| |Ft)dP =
∫
[|M(t)|>λ ]

|M (T )|dP

and from Theorem 31.4.4,

P(|M (t)|> λ )≤ P([M∗ (t)> λ ])≤ 1
λ

∫
Ω

|M (T )|dP.

Definition 31.6.1 Let M be a process adapted to the filtration Ft and let τ be a
stopping time. Then Mτ , called the stopped process is defined by

Mτ (t)≡M (τ ∧ t) .

With this definition, here is a simple lemma. I will use this lemma whenever convenient
without comment.

Lemma 31.6.2 Let M be a right continuous martingale adapted to the normal filtration
Ft and let τ be a stopping time. Then Mτ is also a martingale adapted to the filtration Ft .
The same is true for a sub-martingale.

Proof: Let s < t. By the Doob optional sampling theorem,

E (Mτ (t) |Fs)≡ E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = Mτ (s) .

As for a sub-martingale X (t) , for s < t

E (Xτ (t) |Fs)≡ E (X (τ ∧ t) |Fs)≥ X (τ ∧ t ∧ s)≡ Xτ (s) . ■

Theorem 31.6.3 Let {M (t)} be a continuous real valued martingale adapted to the
normal filtration Ft and let

M∗ ≡ sup{|M (t)| : t ≥ 0}

and M (0) = 0. Letting
τx ≡ inf{t > 0 : M (t) = x}

Then if a < 0 < b the following inequalities hold.

(b−a)P([τb ≤ τa])≥−aP([M∗ > 0])≥ (b−a)P([τb < τa])

and
(b−a)P([τa < τb])≤ bP([M∗ > 0])≤ (b−a)P([τa ≤ τb]) .

In words, P([τb ≤ τa]) is the probability that M (t) hits b no later than when it hits a. (Note
that if τa = ∞ = τb then you would have [τa = τb] .)
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Proof: For x ∈ R, define

τx ≡ inf{t ∈ R such that M (t) = x}

with the usual convention that inf( /0) = ∞. Let a < 0 < b and let

τ = τa∧ τb

Then the following claim will be important.
Claim: E (M (τ)) = 0.
Proof of the claim: Let t > 0. Then by the Doob optional sampling theorem,

E (M (τ ∧ t)) = E (E (M (t) |Fτ)) = E (M (t)) (31.8)
= E (E (M (t) |F0)) = E (M (0)) = 0. (31.9)

Observe the martingale Mτ must be bounded because it is stopped when M (t) equals either
a or b. There are two cases according to whether τ = ∞. If τ = ∞, then M (t) never hits a
or b so M (t) has values between a and b. In this case Mτ (t) = M (t) ∈ [a,b] . On the other
hand, you could have τ < ∞. Then in this case Mτ (t) is eventually equal to either a or b
depending on which it hits first. In either case, the martingale Mτ is bounded and by the
martingale convergence theorem, Theorem 31.5.3, there exists Mτ (∞) such that

lim
t→∞

Mτ (t)(ω) = Mτ (∞)(ω) = M (τ)(ω)

and since the Mτ (t) are bounded, the dominated convergence theorem implies

E (M (τ)) = lim
t→∞

E (M (τ ∧ t)) = 0.

This proves the claim.
Let

M∗ (ω)≡ sup{|M (t)(ω)| : t ∈ [0,∞]} .

Also note that [τa = τb] = [τ = ∞]. This is because a ̸= b. If M (t) = a, then M (t) ̸= b so
it cannot happen that these are equal at any finite time. But if τ = ∞, then both τa,τb = ∞.
Now from the claim,

0 = E (M (τ)) =
∫
[τa<τb]

M (τ)dP

+
∫
[τb<τa]

M (τ)dP+
∫
[τa=τb]∩[M∗>0]

M (∞)dP (31.10)

+
∫
[τa=τb]∩[M∗=0]

M (∞)dP

The last term equals 0. By continuity, M (τ) is either equal to a or b depending on whether
τa < τb or τb < τa. Thus

0 = E (M (τ)) = aP([τa < τb])

+bP([τb < τa])+
∫
[τa=τb]∩[M∗>0]

M (∞)dP (31.11)
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Consider this last term. By the definition, [τa = τb] corresponds to M (t) never hitting
either a or b. Since M (0) = 0, this can only happen if M (t) has values in [a,b] . Therefore,
this last term satisfies

aP([τa = τb]∩ [M∗ > 0]) ≤
∫
[τa=τb]∩[M∗>0]

M (∞)dP

≤ bP([τa = τb]∩ [M∗ > 0]) (31.12)

Obviously the following inequality holds because on the left you have

aP([τa = τb]∩ [M∗ > 0])

and on the right you have the larger bP([τa = τb]∩ [M∗ > 0]) . That 0 is in the middle
follows from 31.11.

aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])≤

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa]) (31.13)

Note that [τb < τa] , [τa < τb]⊆ [M∗ > 0] and so

[τb < τa]∪ [τa < τb]∪ ([τa = τb]∩ [M∗ > 0]) = [M∗ > 0] (31.14)

The following diagram may help in keeping track of the various substitutions.

[τa < τb] [τb < τa] [τb = τa]∩ [M∗ > 0]

Left side of 31.13

From 31.14, this yields on substituting for P([τa < τb])

0 ≥ aP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]
+bP([τb < τa])

and so since [τa ̸= τb]⊆ [M∗ > 0] ,

0≥ a [P([M∗ > 0])−P([τa > τb])]+bP([τb < τa])

−aP([M∗ > 0])≥ (b−a)P([τb < τa]) (31.15)

Next use 31.14 to substitute for P([τb < τa])

0≥ aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])

+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

= aP([τa ≤ τb]∩ [M∗ > 0])+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

and so
(b−a)P([τa ≤ τb])≥ bP([M∗ > 0]) (31.16)
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Right side of 31.13

From 31.14, used to substitute for P([τa < τb]) this yields

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= bP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]
+bP([τb < τa])

= bP([τa ≥ τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]

and so
(b−a)P([τa ≥ τb])≥−aP([M∗ > 0]) (31.17)

Next use 31.14 to substitute for the term P([τb < τa]) and write

0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])

= bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])

+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]

= aP([τa < τb])+bP([M∗ > 0])−bP([τa < τb]∩ [M∗ > 0])
= aP([τa < τb])+bP([M∗ > 0])−bP([τa < τb])

and so
(b−a)P([τa < τb])≤ bP([M∗ > 0]) (31.18)

Now the boxed in formulas in 31.15 - 31.18 yield the conclusion of the theorem. ■
Note P([τa < τb]) means M (t) hits a before it hits b with other occurrences of similar

expressions being defined similarly.

31.7 The Space M p
T (E)

Here p≥ 1. Also, we assume the filtration is a normal filtration.

Definition 31.7.1 Then M ∈M p
T (E) if t→M (t)(ω) is continuous for a.e. ω and

M (t) is adapted, and

E

(
sup

t∈[0,T ]
∥M (t)∥p

)
< ∞

Here E is a separable Banach space.

Proposition 31.7.2 Define a norm on M p
T (E) by

∥M∥M p
T (E) ≡ E

(
sup

t∈[0,T ]
∥M (t)∥p

)1/p

.

Then with this norm, M p
T (E) is a Banach space. Also, a Cauchy sequence in this space has

a subsequence which converges uniformly for all ω off a set of measure zero. Those M in
M p

T (E) which are martingales constitute a closed subspace of M p
T (E). If σ is a stopping

time, then if M ∈M p
T (E), so is Mσ and ∥M∥M p

T (E) ≥ ∥Mσ∥M p
T (E). Thus if Mn → M in

M p
T (E) , then Mσ

n →Mσ in M p
T (E) .
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Proof: First it is good to observe that supt∈[0,T ] ∥M (t)∥p is measurable. This follows
because of the continuity of t →M (t) . Let D be a dense countable set in [0,T ] . Then by
continuity,

sup
t∈[0,T ]

∥M (t)∥p = sup
t∈D
∥M (t)∥p

and the expression on the right is measurable because D is countable.
Next it is necessary to show this is a norm. It is clear that ∥M∥M p

T (E) ≥ 0 and equals

0 only if 0 = E
(

supt∈[0,T ] ∥M (t)∥p
)

which requires M (t) = 0 for all t for ω off a set of
measure zero so that M = 0. It is also clear that ∥αM∥M p

T (E) = |α|∥M∥M p
T (E) . It remains

to check the triangle inequality. Let M,N ∈M p
T (E) .

∥M+N∥M p
T (E) ≡ E

(
sup

t∈[0,T ]
∥M (t)+N (t)∥p

)1/p

≤ E

(
sup

t∈[0,T ]
(∥M (t)∥+∥N (t)∥)p

)1/p

≤ E

((
sup

t∈[0,T ]
∥M (t)∥+ sup

t∈[0,T ]
∥N (t)∥

)p)1/p

≡

(∫
Ω

(
sup

t∈[0,T ]
∥M (t)∥+ sup

t∈[0,T ]
∥N (t)∥

)p

dP

)1/p

≤

(∫
Ω

(
sup

t∈[0,T ]
∥M (t)∥

)p

dP

)1/p

+

(∫
Ω

(
sup

t∈[0,T ]
∥N (t)∥

)p

dP

)1/p

≡ ∥M∥M p
T (E)+∥N∥M p

T (E)

Next consider the claim that M p
T (E) is a Banach space. Let {Mn} be a Cauchy se-

quence. Then

E

(
sup

t∈[0,T ]
∥Mn (t)−Mm (t)∥p

)
→ 0 (31.19)

as m,n→ ∞. Now

P

(
sup

t∈[0,T ]
∥Mn (t)−Mm (t)∥> λ

)
≤ 1

λ
p E

(
sup

t∈[0,T ]
∥Mn (t)−Mm (t)∥

)p

Therefore, one can extract a subsequence
{

Mnk

}
such that

E

(
sup

t∈[0,T ]

∥∥Mnk (t)−Mnk+1 (t)
∥∥p

)
≤ 4−k.
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Then for this subsequence,

P

(
sup

t∈[0,T ]

∥∥Mnk (t)−Mnk+1 (t)
∥∥> 2−k

)

≤ 2kE

(
sup

t∈[0,T ]

∥∥Mnk (t)−Mnk+1 (t)
∥∥p

)
≤ 2−k

and so, there is a set of measure zero N such that if ω /∈ N, then for all k large enough,
supt∈[0,T ]

∥∥Mnk (t)−Mnk+1 (t)
∥∥ ≤ 2−k and so for ω /∈ N, there exists M continuous such

that Mnk (t)→M (t) uniformly in t ∈ [0,T ]. Thus for each ω, ∥M (t)∥p ≤
∥∥Mnk (t)

∥∥p
+ ε

for all t ∈ [0,T ] if k is large enough. Therefore, ∥M (t)∥p ≤ supt
∥∥Mnk (t)

∥∥p
+ ε and so

supt ∥M (t)∥p ≤ supt
∥∥Mnk (t)

∥∥p
+ ε for all t large enough. It follows that for each ω off a

set of measure zero, supt ∥M (t)∥p ≤ liminfk→∞ supt
∥∥Mnk (t)

∥∥p
. Is M ∈M p

T ? By Fatou’s
lemma, ∫

Ω

sup
t∈[0,T ]

∥M (t)∥p dP≤ lim inf
k→∞

∥∥Mnk

∥∥p
M p

T (E)

which is finite because {Mn} is a Cauchy sequence. Thus M ∈M p
T (E). Now also,(∫

Ω

sup
t

∥∥M (t)−Mnk (t)
∥∥p dP

)1/p

≤ lim inf
m→∞

(∫
Ω

sup
t

∥∥Mnm (t)−Mnk (t)
∥∥p dP

)1/p

< ε

if k is large enough because for m > k,∥∥Mnm −Mnk

∥∥
M p

T
≤

∞

∑
r=k

∥∥Mnr+1 −Mnr

∥∥
M p

T

≤
∞

∑
r=k

(
41/p

)−r
=
(

p√4
)−k

/
(

1−
(

p√4
−1))

.

This shows that every Cauchy sequence has a convergent subsequence and so the original
Cauchy sequence also converges. This shows M p

T is complete.
It only remains to verify that if each Mn is a martingale, then so is M a martingale.

Let s ≤ t and let B ∈ Fs. For each s, Mn (s)→ M (s) in Lp (Ω). Then from the above,
ω →M (s)(ω) is Fs measurable. Then it follows that∫

B
M (s)dP = lim

n→∞

∫
B

Mn (s)dP = lim
n→∞

∫
B

E (Mn (t) |Fs)dP

= lim
n→∞

∫
B

Mn (t)dP =
∫

B
M (t)dP

and so by definition, E (M (t) |Fs) = M (s) which shows M is a martingale.
It is clear that if σ is a stopping time, then if M ∈M p

T (E) so is Mσ and that

∥Mσ∥M p
T (E) ≤ ∥M∥M p

T (E)

Thus if Mn→M in M p
T (E) , then Mσ

n →Mσ in M p
T (E). ■

Note that if Mn→M in M p
T (E) , this says

∫
Ω

supt∈[0,T ] ∥Mn (t)−M (t)∥p dP= 0. Hence
this would also be true that limn→∞

∫
A supt∈[0,T ] ∥Mn (t)−M (t)∥p dP = 0 also, whenever A

is a measurable set.



Chapter 32

Quadratic Variation
32.1 How to Recognize a Martingale

The main ideas are most easily understood in the special case where it is assumed the
martingale is bounded. Then one can extend to more general situations using a localizing
sequence of stopping times.

Let {M (t)} be a continuous martingale having values in a separable Hilbert space. The
idea is to consider the submartingale,

{
∥M (t)∥2

}
and write it as the sum of a martingale

and an increasing submartingale. An important part of the argument is the following lemma
which gives a checkable criterion for a stochastic process to be a martingale.

Lemma 32.1.1 Let {X (t)} be a stochastic process adapted to the filtration {Ft} for
t ≥ 0. Then it is a martingale for the given filtration if for every stopping time σ it follows

E (X (t)) = E (X (σ)) .

In fact, it suffices to check this on stopping times which have two values.

Proof: Let s < t and A ∈Fs. Define a stopping time

σ (ω)≡ sXA (ω)+ tXAC (ω)

This is a stopping time because [σ ≤ l] = Ω ∈Fl if l ≥ t. Also [σ ≤ l] = A ∈Fs ⊆Fl if
l ∈ [s, t) and [σ ≤ l] = /0 ∈Fl if l < s. Then by assumption,∫

A
X (t)dP+

∫
AC

X (t)dP =

by assumption︷ ︸︸ ︷∫
X (t)dP =

∫
X (σ)dP =

∫
A

X (s)dP+
∫

AC
X (t)dP

Therefore, ∫
A

X (t)dP =
∫

A
X (s)dP

and since X (s) is Fs measurable, it follows E (X (t) |Fs) = X (s) a.e. and this shows
{X (t)} is a martingale. ■

Note that if t ∈ [0,T ] , it suffices to check the expectation condition for stopping times
which have two values no larger than T .

The following lemma will be useful.

Lemma 32.1.2 Suppose Xn → X in L1 (Ω,F ,P;E) where E is a separable Banach
space. Then letting G be a σ algebra contained in F ,

E (Xn|G )→ E (X |G )

in L1 (Ω) .

859
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Proof: This follows from the definitions and Theorem 24.12.1 on Page 702.∫
Ω

∥E (X |G )−E (Xn|G )∥dP =
∫

Ω

∥E (Xn−X |G )∥dP

≤
∫

Ω

E (∥Xn−X∥|G )dP =
∫

Ω

∥Xn−X∥dP ■

The next corollary is like the earlier result which allows you to take a sufficiently mea-
surable function out of the conditional expectation.

Corollary 32.1.3 Let X ,Y be in L2 (Ω,F ,P;H) where H is a separable Hilbert space
and let X be G measurable where G ⊆F . Then

E ((X ,Y ) |G ) = (X ,E (Y |G )) a.e.

Proof: First let X = aXB where B ∈ G . Then for A ∈ G ,∫
A

E ((aXB,Y ) |G )dP =
∫

A
XBE ((a,Y ) |G )dP =

∫
A
XB (a,Y )dP

=
∫

A∩B
(a,Y )dP =

(
a,
∫

A∩B
Y dP

)
∫

A
(aXB,E (Y |G ))dP =

∫
A
XB (a,E (Y |G ))dP

=

(
a,
∫

A
XBE (Y |G )dP

)
=

(
a,
∫

A∩B
Y dP

)
It follows that the formula holds for X simple.

Therefore, letting Xn be a sequence of G measurable simple functions converging point-
wise to X and also in L2 (Ω) ,

E ((Xn,Y ) |G ) = (Xn,E (Y |G ))

Now the desired formula holds from Lemma 32.1.2. ■
The following is related to something called a martingale transform. It is a lot like what

will happen later with the Ito integral.
Maybe it is a good idea to try and give some reason for considering the following.

Say you have a bounded variation and adapted function f and you wanted to consider the
Stieltjes integral

∫ T
0 f dM. If f is of bounded variation, this Stieltjes integral will exist from

the standard theory of Stieltjes integration. In particular, if g is Stieltjes integrable with
respect to d f then f is Stieltjes integrable with respect to dg and an integration by parts
formula holds. Now assuming M is continuous and f is of bounded variation, you would
have the existence of

∫ T
0 Md f and so also the existence of

∫ T
0 f dM. Of course you might

have different partitions for each different ω. In the following, this is handled by writing a
sum of the form

∑
k≥0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

where ξ k is in Fτk and τk is a stopping time, the τk being an increasing sequence of
stopping times having limit ∞. You could think of this as the value of f at the left end
point. Of course what is happening here pertains to Hilbert space, but the inner product is
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sufficiently like multiplication to draw the analogy and you would still have an integration
by parts formula and the same result on existence of the integral. The theory of Stieltjes
integrals is in my single variable advanced calculus book. An early reference to this is
Hobson [28]. See also [2]. What is going to happen here is that these Stieltjes sums will
end up being a martingale. The following is stated for the more general situation where
M (t) is only right continuous.

Proposition 32.1.4 Let {τk} be an increasing sequence of stopping times for the nor-
mal filtration {Ft} such that

lim
k→∞

τk = ∞, τ0 = 0.

Also let ξ k be Fτk measurable with values in H, a separable Hilbert space and let M (t) be
a right continuous martingale adapted to the normal filtration Ft which has the property
that M (t) ∈ L2 (Ω;H) for all t,M (0) = 0. Then if |ξ k| ≤C,

E

(∑
k≥0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2
≤C2E

(
∥M (t)∥2

)
(32.1)

Proof: First of all, the sum converges because eventually τk∧t = t. Therefore, for large
enough k, M (τk+1∧ t)−M (τk ∧ t)≡ ∆Mk = 0. Consider first the finite sum, k ≤ q.

E

( q

∑
k=0

(ξ k,∆Mk)

)2
 (32.2)

When the sum is multiplied out, you get mixed terms. Consider one of these mixed
terms, j < k

E
(
(ξ k,∆Mk)

(
ξ j,∆M j

))
Using Corollary 32.1.3 and Doob’s optional sampling theorem, this equals

E
(

E
(
(ξ k,∆Mk)

(
ξ j,∆M j

)
|Fτk

))
= E

((
ξ j,∆M j

)
E
(
(ξ k,∆Mk) |Fτk

))

= E
((

ξ j,∆M j

)(
ξ k,E

(
M (τk+1∧ t)−M (τk ∧ t) |Fτk

)))
= E

((
ξ j,∆M j

)
(ξ k,0)

)
= 0

Note that in using the optional sampling theorem, the stopping time τk+1∧ t is bounded.
Therefore, the only terms which survive in 32.2 are the non mixed terms and so this

expression reduces to

q

∑
k=0

E (ξ k,∆Mk)
2 ≤C2

q

∑
k=0

E
(
∥∆Mk∥2

)

=C2
q

∑
k=0

E
(
∥M (τk+1∧ t)−M (τk ∧ t)∥2

)
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= C2
q

∑
k=0

E
(
∥M (τk+1∧ t)∥2

)
+E

(
∥M (τk ∧ t)∥2

)
−2E ((M (τk ∧ t) ,M (τk+1∧ t))) (32.3)

Consider the term E ((M (τk ∧ t) ,M (τk+1∧ t))) . By Doob’s optional sampling theorem for
martingales and Corollary 32.1.3 again, this equals

E
(
E
(
(M (τk ∧ t) ,M (τk+1∧ t)) |Fτk

))
= E

((
M (τk ∧ t) ,E

(
M (τk+1∧ t) |Fτk

)))
= E ((M (τk ∧ t) ,M (τk+1∧ t ∧ τk))) = E

(
∥M (τk ∧ t)∥2

)
It follows 32.3 equals

C2
q

∑
k=0

E
(
∥M (τk+1∧ t)∥2

)
−E

(
∥M (τk ∧ t)∥2

)
≤ C2E

(
∥M (t)∥2

)
.

Then from Fatou’s lemma,

E

(∑
k≥0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2
≤

lim inf
q→∞

E

( q

∑
k=0

(ξ k,(M (τk+1∧ t)−M (τk ∧ t)))

)2


≤ C2E
(
∥M (t)∥2

)
■

Now here is an interesting lemma which will be used to prove uniqueness in the main
result.

32.2 Martingales and Total Variation
Lemma 32.2.1 Let Ft be a normal filtration and let A(t) ,B(t) be adapted to Ft , con-
tinuous, and increasing with A(0) = B(0) = 0 and suppose A(t)−B(t) is a martingale.
Then A(t)−B(t) = 0 for all t.

Proof: I shall show A(l) = B(l) where l is arbitrary. Let M (t) be the name of the
martingale. Define a stopping time

τ ≡ inf{t > 0 : |M (t)|>C}∧ l∧ inf{t > 0 : A(t)>C}
∧ inf{t > 0 : B(t)>C}

where inf( /0)≡ ∞ and denote the stopped martingale Mτ (t)≡M (t ∧ τ) .Then this is also a
martingale with respect to the filtration Ft because by Doob’s optional sampling theorem
for martingales. Recall why this is: if s < t,

E (Mτ (t) |Fs)≡ E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = M (τ ∧ s) = Mτ (s)
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Note the bounded stopping time is τ∧t and the other one is σ = s in this theorem. Then Mτ

is a continuous martingale which is also uniformly bounded. It equals Aτ −Bτ . The stop-
ping time ensures Aτ and Bτ are uniformly bounded by C. Thus all of |Mτ (t)| ,Bτ (t) ,Aτ (t)
are bounded by C on [0, l] . Now let Pn≡{tk}n

k=1 be a uniform partition of [0, l] and let
Mτ (Pn) denote

Mτ (Pn)≡max{|Mτ (ti+1)−Mτ (ti)|}n
i=1 .

Then

E
(

Mτ (l)2
)
= E

(n−1

∑
k=0

Mτ (tk+1)−Mτ (tk)

)2


Now consider a mixed term in the sum where j < k.

E
(
(Mτ (tk+1)−Mτ (tk))

(
Mτ
(
t j+1

)
−Mτ (t j)

))
= E

(
E
(
(Mτ (tk+1)−Mτ (tk))

(
Mτ
(
t j+1

)
−Mτ (t j)

)
|Ftk

))
= E

((
Mτ
(
t j+1

)
−Mτ (t j)

)
E
(
(Mτ (tk+1)−Mτ (tk)) |Ftk

))
= E

((
Mτ
(
t j+1

)
−Mτ (t j)

)
(Mτ (tk)−Mτ (tk))

)
= 0

It follows

E
(

Mτ (l)2
)

= E

(
n−1

∑
k=0

(Mτ (tk+1)−Mτ (tk))
2

)

≤ E

(
n−1

∑
k=0

Mτ (Pn) |Mτ (tk+1)−Mτ (tk)|
)

≤ E

(
n−1

∑
k=0

Mτ (Pn)(|Aτ (tk+1)−Aτ (tk)|+ |Bτ (tk+1)−Bτ (tk)|)

)

≤ E

(
Mτ (Pn)

n−1

∑
k=0

(|Aτ (tk+1)−Aτ (tk)|+ |Bτ (tk+1)−Bτ (tk)|)

)
≤ E (Mτ (Pn)2C)

the last step holding because A and B are increasing. Now letting n→∞, the right side con-
verges to 0 by the dominated convergence theorem and limn→∞ Mτ (Pn)(ω) = 0 because
of continuity of M. Thus for τ = τC given above, M (l∧ τC) = 0 a.e. Now let C ∈ N and
let NC be the exceptional set off which M (l∧ τC) = 0. Then letting Nl denote the union
of all these exceptional sets for C ∈ N, it is also a set of measure zero and for ω not in
this set, M (l∧ τC) = 0 for all C. Since the martingale is continuous, it follows for each
such ω, eventually τC > l and so M (l) = 0. Thus for ω /∈ Nl ,M (l)(ω) = 0. Now let
N =∪l∈Q∩[0,∞)Nl . Then for ω /∈N,M (l)(ω) = 0 for all l ∈Q∩ [0,∞) and so by continuity,
this is true for all positive l. ■

Note this shows a continuous martingale is not of bounded variation unless it is a
constant.

If you had a continuous bounded variation function f (t) , you might want to do some-
thing like

∫ T
0

1
2 ( f ′ (t) , f (t))dt =

∫ T
0

1
2 ( f (t) ,d f ) = | f (T )|2. We do this all the time when
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we discuss curves. From what was just shown, however, it will not be possible to do this
directly in the context of Stieltjes integrals. What happens is something else. We get
something called the quadratic variation of the martingale M denoted by [M] which is in-
creasing and ∥M∥2 = [M]+N where N is a martingale. It will make perfect sense to write∫ t

0 f (s)d [M] (s). Thus N does not have finite total variation but [M] does.

32.3 The Quadratic Variation
This section is on the quadratic variation of a martingale. Actually, you can also consider
the quadratic variation of a local martingale which is more general. Therefore, this concept
is defined first. We will generally assume M (0) = 0 since there is no real loss of generality
in doing so. One can simply subtract M (0) otherwise. What is about to be presented
is called the quadratic variation because it considers the variation of ∥M (t)∥2 rather than
M (t) which, as just shown is not finite.

Definition 32.3.1 Let {M (t)} be adapted to the normal filtration Ft for t > 0. Then
{M (t)} is a local martingale (submartingale) if there exist stopping times τn increasing to
infinity such that for each n, the process Mτn (t) ≡M (t ∧ τn) is a martingale (submartin-
gale) with respect to the given filtration. The sequence of stopping times is called a local-
izing sequence. The martingale Mτn is called the stopped martingale . Exactly the same
convention applies to a localized submartingale. When M is continuous,we can always as-
sume that Mτn is a bounded martingale (submartingale) by taking the minimum of τn with
the first hitting time of n ∈ N by ∥M∥. I will use this observation whenever convenient. If
this is done, then τn = ∞ for n large enough.

Observation 32.3.2 If M is a local martingale (submartingale) and if σ is a stopping
time, then Mσ is also a local martingale (submartingale).

To see this, use the localizing sequence. Say M is a local submartingale. The case of a
martingale is similar. Let s≤ t.

E
(
(Mσ )τn (t) |Fs

)
= E (Mτn (σ ∧ t) |Fs)≥Mτn (σ ∧ s) = (Mσ )τn (s) .

By the optional sampling theorem.

Proposition 32.3.3 If M (t) is a continuous local martingale (submartingale) for a nor-
mal filtration as above, M (0) = 0, then there exists a localizing sequence τn such that for
each n the stopped martingale(submartingale) Mτn is uniformly bounded. Also if M is
a martingale, then Mτ is also a martingale (submartingale). If τn is an increasing se-
quence of stopping times such that limn→∞ τn = ∞, and for each τn and real valued stop-
ping time δ , there exists a function X of τn∧δ such that X (τn∧δ ) is Fτn∧δ measurable,
then limn→∞ X (τn∧δ )≡ X (δ ) exists for each ω and X (δ ) is Fδ measurable.

Proof: First review the claim about Mτ being a martingale (submartingale) when M is.
By optional sampling theorem,

E (Mτ (t) |Fs) = E (M (τ ∧ t) |Fs) = M (τ ∧ t ∧ s) = Mτ (s) .

The case where M is a submartingale is similar.
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Next suppose σn is a localizing sequence for the local martingale(submartingale) M.
Then define

ηn ≡ inf{t > 0 : ∥M (t)∥> n} .

Therefore, by continuity of M, ∥M (ηn)∥ ≤ n. Now consider τn ≡ ηn ∧σn. This is an
increasing sequence of stopping times. By continuity of M, it must be the case that ηn→∞.
Hence σn∧ηn→ ∞.

Finally, consider the last claim. Pick ω. Then X (τn (ω)∧δ (ω))(ω) is eventually con-
stant as n→ ∞ because for all n large enough, τn (ω) > δ (ω) and so this sequence of
functions converges pointwise. That which it converges to, denoted by X (δ ) , is Fδ mea-
surable because each function ω → X (τn (ω)∧δ (ω))(ω) is Fδ∧τn ⊆ Fδ measurable.
■

Observation 32.3.4 Suppose M is a local martingale and τn is a localizing sequence
of stoppings times. Does Mτn (t) converge in probability to M (t)? Mτk (t) = M (t) at ω

where τk (ω) = ∞ and so [∥Mτk (t)−M (t)∥> ε] ⊆ [τk < ∞] and P([τk < ∞])→ 0 by as-
sumption that τk is a localizing sequence.

One can also give a generalization of Lemma 32.2.1 to conclude a local martingale
must be constant or else they must fail to be of bounded variation.

Corollary 32.3.5 Let Ft be a normal filtration and let A(t) ,B(t) be adapted to Ft ,
continuous, and increasing with A(0) = B(0) = 0 and suppose A(t)−B(t) ≡ M (t) is a
local martingale. Then M (t) = A(t)−B(t) = 0 a.e. for all t.

Proof: Let {τn} be a localizing sequence for M. For given n, consider the martingale,

Mτn (t) = Aτn (t)−Bτn (t)

Then from Lemma 32.2.1, it follows Mτn (t) = 0 for all t for all ω /∈ Nn, a set of measure
0. Let N = ∪nNn. Then for ω /∈ N, M (τn (ω)∧ t)(ω) = 0. Let n→ ∞ to conclude that
M (t)(ω) = 0. Therefore, M (t)(ω) = 0 for all t. ■

Recall Example 31.3.13 on Page 841. For convenience, here is a version of what it
says.

Lemma 32.3.6 Let X (t) be continuous and adapted to a normal filtration Ft and let η

be a stopping time. Then if K is a closed set,

τ ≡ inf{t > η : X (t) ∈ K}

is also a stopping time.

Proof: First consider Y (t) = X (t ∨η)− X (η) . I claim that Y (t) is adapted to Ft .
Consider U and open set and [Y (t) ∈U ] . Is it in Ft? We know it is in Ft∨η . It equals

([Y (t) ∈U ]∩ [η ≤ t])∪ ([Y (t) ∈U ]∩ [η > t])

Consider the second of these sets. It equals

([X (η)−X (η) ∈U ]∩ [η > t])
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If 0 ∈U, then it reduces to [η > t] ∈Ft . If 0 /∈U, then it reduces to /0 still in Ft . Next
consider the first set. It equals

[X (t ∨η)−X (η) ∈U ]∩ [η ≤ t]

= [X (t ∨η)−X (η) ∈U ]∩ [t ∨η ≤ t] ∈Ft

from the definition of Ft∨η . (You know that [X (t ∨η)−X (η) ∈U ] ∈Ft∨η and so when
this is intersected with [t ∨η ≤ t] one obtains a set in Ft . This is what it means to be in
Ft∨η .) Now τ is just the first hitting time of Y (t) of the closed set. ■

Proposition 32.3.7 Let M (t) be a continuous local martingale for t ∈ [0,T ] having
values in H a separable Hilbert space adapted to the normal filtration {Ft} such that
M (0) = 0. Then there exists a unique continuous, increasing, nonnegative, local sub-
martingale [M] (t) called the quadratic variation such that

∥M (t)∥2− [M] (t)

is a real local martingale and [M] (0) = 0. Here t ∈ [0,T ] . If δ is any stopping time[
Mδ

]
= [M]δ

Proof: First it is necessary to define some stopping times. Define stopping times
τn

0 ≡ ηn
0 ≡ 0.

η
n
k+1 ≡ inf

{
s > η

n
k : ∥M (s)−M (ηn

k)∥= 2−n} ,
τ

n
k ≡ η

n
k ∧T

where inf /0 ≡ ∞. These are stopping times by Example 31.3.13 on Page 841. See also the
above Lemma 32.3.6. Then for t > 0 and δ any stopping time, and fixed ω, for some k,

t ∧δ ∈ Ik (ω) , I0 (ω)≡ [τn
0 (ω) ,τn

1 (ω)] , Ik (ω)≡ (τn
k (ω) ,τn

k+1 (ω)] some k

Here is why. The sequence
{

τn
k (ω)

}∞

k=1 eventually equals T for all n sufficiently large.
This is because if it did not, it would converge, being bounded above by T and then by
continuity of M,

{
M
(
τn

k (ω)
)}∞

k=1 would be a Cauchy sequence contrary to the requirement
that ∥∥M

(
τ

n
k+1 (ω)

)
−M (τn

k (ω))
∥∥

=
∥∥M
(
η

n
k+1 (ω)

)
−M (ηn

k (ω))
∥∥= 2−n.

Note that if δ is any stopping time, then∥∥M
(
t ∧δ ∧ τ

n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∥∥

=
∥∥∥Mδ

(
t ∧ τ

n
k+1
)
−Mδ (t ∧ τ

n
k)
∥∥∥≤ 2−n

You can see this is the case by considering the cases, t ∧ δ ≥ τn
k+1, t ∧ δ ∈ [τn

k ,τ
n
k+1), and

t ∧ δ < τn
k . It is only this approximation property and the fact that the τn

k partition [0,T ]
which is important in the following argument.

Now let αn be a localizing sequence such that Mαn is bounded as in Proposition 32.3.3.
Thus Mαn (t) ∈ L2 (Ω) and this is all that is needed. In what follows, let δ be a stopping
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time and denote Mα p∧δ by M to save notation. Thus M will be uniformly bounded and
from the definition of the stopping times τn

k , for t ∈ [0,T ] ,

M (t)≡ ∑
k≥0

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k) , (32.4)

and the terms of the series are eventually 0, as soon as τn
k = ∞.

Therefore,

∥M (t)∥2 =

∥∥∥∥∥∑
k≥0

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)

∥∥∥∥∥
2

Then this equals
= ∑

k≥0

∥∥M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
∥∥2

+ ∑
j ̸=k

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,
(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)))

(32.5)

Consider the second sum. It equals

2 ∑
k≥0

k−1

∑
j=0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,
(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)))

= 2 ∑
k≥0

(M (t ∧ τ
n
k+1
)
−M (t ∧ τ

n
k)
)
,

telescopes
k−1

∑
j=0

(
M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
))

= 2 ∑
k≥0

((
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
,M (t ∧ τ

n
k)
)

This last sum equals Pn (t) defined as

2 ∑
k≥0

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))
≡ Pn (t) (32.6)

This is because in the kth term, if t ≥ τn
k , then it reduces to(

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))

while if t < τn
k , then the term reduces to ((M (t)−M (t)) ,M (t)) = 0 which is also the same

as (
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))

.

This is a finite sum because eventually, for large enough k, τn
k = T . However the number

of nonzero terms depends on ω . This is not a good thing. However, a little more can be
said. In fact the sum in 32.6 converges in L2 (Ω). Say ∥M (t,ω)∥ ≤C.

E

( q

∑
k≥p

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))2
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=
q

∑
k≥p

E
((

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))2
)
+ mixed terms (32.7)

Consider one of these mixed terms for j < k.

E


M

(
τ

n
j
)
,


∆ j︷ ︸︸ ︷

M
(
t ∧ τ

n
j+1
)
−M

(
t ∧ τ

n
j
)
 ·

M (τn
k) ,


∆k︷ ︸︸ ︷

M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)





Then it equals

E
(
E
((

M
(
τ

n
j
)
,∆ j
)(

M
(
τ

n
j
)
,∆k
)
|Fτk

))
= E

((
M
(
τ

n
j
)
,∆ j
)

E
((

M
(
τ

n
j
)
,∆k
)
|Fτk

))
= E

((
M
(
τ

n
j
)
,∆ j
)(

M
(
τ

n
j
)
,E
(
∆k|Fτk

)))
= 0

since E
(
∆k|Fτk

)
= E

(
M
(
t ∧ τn

k+1

)
−M

(
t ∧ τn

k

)
|Fτk

)
= 0. Now since the mixed terms

equal 0, it follows from 32.7, that expression is dominated by

C2
q

∑
k≥p

E
(∥∥M

(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
∥∥2
)

(32.8)

A mixed term in the above is of the form: For j < k,

E (∆k,∆ j) = E
(

E
(
(∆k,∆ j) |Fτn

k

))
= E

((
∆ j,E

(
∆k|Fτn

k

)))
= 0

Thus 32.8 equals

C2
q

∑
k=p

E
(∥∥M

(
t ∧ τ

n
k+1
)∥∥2
)
−E

(
∥M (t ∧ τ

n
k)∥

2
)

= C2E
(∥∥M

(
t ∧ τ

n
q+1
)∥∥2−

∥∥M
(
t ∧ τ

n
p
)∥∥2
)

The integrand converges to 0 as p,q→ ∞ and the uniform bound on M allows a use of the
dominated convergence theorem. Thus the partial sums of the series of 32.6 converge in
L2 (Ω) as claimed.

By adding in the values of
{

τ
n+1
k

}
Pn (t) can be written in the form

2 ∑
k≥0

(
M
(
τ

n+1′
k

)
,
(
M
(
t ∧ τ

n+1
k+1

)
−M

(
t ∧ τ

n+1
k

)))
where τ

n+1′
k has some repeats. From the construction,∥∥M

(
τ

n+1′
k

)
−M

(
τ

n+1
k

)∥∥≤ 2−(n+1)

Thus

Pn (t)−Pn+1 (t) = 2 ∑
k≥0

(
M
(
τ

n+1′
k

)
−M

(
τ

n+1
k

)
,
(
M
(
t ∧ τ

n+1
k+1

)
−M

(
t ∧ τ

n+1
k

)))
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and so from Proposition 32.1.4 applied to ξ k ≡M
(
τ

n+1′
k

)
−M

(
τ

n+1
k

)
,

E
(
∥Pn (t)−Pn+1 (t)∥2

)
≤
(

2−2nE
(
∥M (t)∥2

))
. (32.9)

Now t→ Pn (t) is continuous because it is a finite sum of continuous functions. It is also
the case that {Pn (t)} is a martingale. To see this use Lemma 32.1.1. Let σ be a stopping
time having two values. Then using Corollary 32.1.3 and the Doob optional sampling
theorem, Theorem 31.3.16

E

(
q

∑
k=0

(
M (τn

k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

M (τn
k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

E
(
M (τn

k) ,
(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
))
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
σ ∧ τ

n
k+1
)
−M (σ ∧ τ

n
k)
)
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
σ ∧ τ

n
k+1∧ τ

n
k
)
−M (σ ∧ τ

n
k)
)))

= 0

Note the Doob theorem applies because σ ∧τn
k+1 is a bounded stopping time due to the fact

σ has only two values. Similarly

E

(
q

∑
k=0

(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

M (τn
k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)))

=
q

∑
k=0

E
((

E
(
M (τn

k) ,
(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
))
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
)
|Fτn

k

))
=

q

∑
k=0

E
((

M (τn
k) ,E

(
M
(
t ∧ τ

n
k+1∧ τ

n
k
)
−M (t ∧ τ

n
k)
)))

= 0

It follows each partial sum for Pn (t) is a martingale. As shown above, these partial sums
converge in L2 (Ω) and so it follows that Pn (t) is also a martingale. Note the Doob theorem
applies because t ∧ τn

k+1 is a bounded stopping time.
I want to argue that Pn is a Cauchy sequence in M 2

T (R). By Theorem 31.4.3 and
continuity of Pn which yields appropriate measurability in supt≤T |Pn (t)−Pn+1 (t)| ,

E

((
sup
t≤T
|Pn (t)−Pn+1 (t)|

)2
)1/2

≤ 2E
(
|Pn (T )−Pn+1 (T )|2

)1/2
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By 32.9, ≤ 2−nE
(
∥M (T )∥2

)1/2
which shows {Pn} is a Cauchy sequence in M 2

T (R).
Therefore, by Proposition 31.7.2, there exists {N (t)} ∈M 2

T (R) such that Pn → N in
M 2

T (H) . That is

lim
n→∞

E

(
sup

t∈[0,T ]
|Pn (t)−N (t)|2

)1/2

= 0.

Since {N (t)} ∈M 2
T (R) , it is a continuous martingale and N (t) ∈ L2 (Ω) , and N (0) = 0

because this is true of each Pn (0) . From the above 32.5,

∥M (t)∥2 = Qn (t)+Pn (t) (32.10)

where
Qn (t) = ∑

k≥0

∥∥M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
∥∥2

and Pn (t) is a martingale. Then from 32.10, Qn (t) is a submartingale and converges for
each t to something, denoted as [M] (t) in L1 (Ω) uniformly in t ∈ [0,T ]. This is because
Pn (t) converges uniformly on [0,T ] to N (t) in L2 (Ω) and ∥M (t)∥2 does not depend on n.
Then also [M] is a submartingale which equals 0 at 0 because this is true of Qn and because
if A ∈Fs where s < t,∫

A
E ([M] (t) |Fs)dP≡

∫
A
[M] (t)dP = lim

n→∞

∫
A

(
∥M (t)∥2−Pn (t)

)
dP

= lim
n→∞

∫
A

E
(
∥M (t)∥2−Pn (t) |Fs

)
dP≥ lim inf

n→∞

∫
A
∥M (s)∥2−Pn (s)dP

= lim inf
n→∞

∫
A

Qn (s)dP≥
∫

A
[M] (s)dP.

Note that Qn (t) is increasing because as t increases, the definition allows for the pos-
sibility of more nonzero terms in the sum. Therefore, [M] (t) is also increasing in t. The
function t→ [M] (t) is continuous because ∥M (t)∥2 = [M] (t)+N (t) and t→ N (t) is con-
tinuous as is t → ∥M (t)∥2 . That is, off a set of measure zero, these are both continuous
functions of t and so the same is true of [M] .

Now put back in Mα p∧δ in place of M where δ is a stopping time. From the above, this
has shown ∥∥∥Mα p∧δ (t)

∥∥∥2
=
[
Mα p∧δ

]
(t)+Np (t)

where Np is a martingale and[
Mα p∧δ

]
(t) = lim

n→∞
∑
k≥0

∥∥∥Mα p∧δ
(
t ∧ τ

n
k+1
)
−Mα p∧δ (t ∧ τ

n
k)
∥∥∥2

= lim
n→∞

∑
k≥0

∥∥M
(
t ∧ τ

n
k+1∧α p∧δ

)
−M (t ∧ τ

n
k ∧α p∧δ )

∥∥2 in L1 (Ω) , (32.11)

the convergence being uniform on [0,T ] . The above formula shows that
[
Mα p∧δ

]
(t) is a

Ft∧δ∧α p measurable random variable which depends on t ∧ δ ∧α p.(Note that t ∧ δ is a
real valued stopping time even if δ = ∞.) Therefore, by Proposition 32.3.3, there exists a
random variable, denoted as

[
Mδ
]
(t) which is the pointwise limit as p→∞ of these random
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variables which is Ft∧δ measurable because, for a given ω, when α p becomes larger than
t, the sum in 32.11 loses its dependence on p. Thus from pointwise convergence in 32.11,[

Mδ

]
(t)≡ lim

n→∞
∑
k≥0

∥∥M
(
t ∧δ ∧ τ

n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∥∥2

In case δ = ∞, the above gives an Ft measurable random variable denoted by [M] (t) such
that

[M] (t)≡ lim
n→∞

∑
k≥0

∥∥M
(
t ∧ τ

n
k+1
)
−M (t ∧ τ

n
k)
∥∥2

Now stopping with the stopping time δ , this shows that[
Mδ

]
(t)≡ lim

n→∞
∑
k≥0

∥∥M
(
t ∧δ ∧ τ

n
k+1
)
−M (t ∧δ ∧ τ

n
k)
∥∥2

= [M]δ (t)

That is, the quadratic variation of the stopped local martingale makes sense a.e. and equals
the stopped quadratic variation of the local martingale.

This has now shown that

∥Mαn (t)∥2− [M]αn (t) = ∥Mαn (t)∥2− [Mαn ] (t)

= Nn (t) , Nn (t) a martingale

and both of the random variables on the left converge pointwise as n→ ∞ to a function
which is Ft measurable. Hence so does Nn (t). Of course Nn (t) is likewise a function
of αn ∧ t and so by Proposition 32.3.3 again, it converges pointwise to a Ft measurable
function called N (t) and N (t) is a continuous local martingale.

It remains to consider the claim about the uniqueness. Suppose then there are two
which work, [M] , and [M]1. Then [M]− [M]1 equals a local martingale G which is 0 when
t = 0. Thus the uniqueness assertion follows from Corollary 32.3.5. ■

Here is a corollary which tells how to manipulate stopping times. It is contained in the
above proposition, but it is worth emphasizing it from a different point of view.

Corollary 32.3.8 In the situation of Proposition 32.3.7 let τ be a stopping time. Then

[Mτ ] = [M]τ .

Proof:

[M]τ (t)+N1 (t) =
(
∥M∥2

)τ

(t) = ∥Mτ∥2 (t) = [Mτ ] (t)+N2 (t)

where Ni is a local martingale. Therefore,

[M]τ (t)− [Mτ ] (t) = N2 (t)−N1 (t) ,

a local martingale. Therefore, by Corollary 32.3.5, this shows [M]τ (t)− [Mτ ] (t) = 0. ■

32.4 The Covariation
Definition 32.4.1 The covariation of two continuous H valued local martingales
for H a separable Hilbert space M,N,M (0) = 0 = N (0) , is defined as follows.

[M,N]≡ 1
4
([M+N]− [M−N])
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Lemma 32.4.2 The following hold for the covariation.

[M] = [M,M]

[M,N] = local martingale+
1
4

(
∥M+N∥2−∥M−N∥2

)
= (M,N)+ local martingale.

Proof: From the definition of covariation,

[M] = ∥M∥2−N1

[M,M] =
1
4
([M+M]− [M−M]) =

1
4

(
∥M+M∥2−N2

)
= ∥M∥2− 1

4
N2

where Ni is a local martingale. Thus [M]− [M,M] is equal to the difference of two in-
creasing continuous adapted processes and it also equals a local martingale. By Corollary
32.3.5, this process must equal 0. Now consider the second claim.

[M,N] =
1
4
([M+N]− [M−N]) =

1
4

(
∥M+N∥2−∥M−N∥2 +N

)
= (M,N)+

1
4
N

where N is a local martingale. ■

Corollary 32.4.3 Let M,N be two continuous local martingales,

M (0) = N (0) = 0,

as in Proposition 32.3.7. Then [M,N] is of bounded variation and

(M,N)H − [M,N]

is a local martingale. Also for τ a stopping time,

[M,N]τ = [Mτ ,Nτ ] = [Mτ ,N] = [M,Nτ ] .

In addition to this,
[M−Mτ ] = [M]− [Mτ ]≤ [M]

and also
M,N→ [M,N]

is bilinear and symmetric.

Proof: Since [M,N] is the difference of increasing functions, it is of bounded variation.

(M,N)H − [M,N] =

(M,N)H︷ ︸︸ ︷
1
4

(
∥M+N∥2−∥M−N∥2

)

−

[M,N]︷ ︸︸ ︷
1
4
([M+N]− [M−N])
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which equals a local martingale from the definition of [M+N] and [M−N]. It remains to
verify the claim about the stopping time. Using Corollary 32.3.8

[M,N]τ =
1
4
([M+N]− [M−N])τ

=
1
4
(
[M+N]τ − [M−N]τ

)
=

1
4
([Mτ +Nτ ]− [Mτ −Nτ ])≡ [Mτ ,Nτ ] .

The really interesting part is the next equality. This will involve Corollary 32.3.5.

[M,N]τ − [Mτ ,N] = [Mτ ,Nτ ]− [Mτ ,N]

≡ 1
4
([Mτ +Nτ ]− [Mτ −Nτ ])− 1

4
([Mτ +N]− [Mτ −N])

=
1
4
([Mτ +Nτ ]+ [Mτ −N])− 1

4
([Mτ +N]+ [Mτ −Nτ ]) , (32.12)

the difference of two increasing adapted processes. Also, this equals

local martingale − (Mτ ,N)+(Mτ ,Nτ)

Claim: (Mτ ,N)− (Mτ ,Nτ) = (Mτ ,N−Nτ) is a local martingale. Let σn be a localizing
sequence for both M and N. Such a localizing sequence is of the form τM

n ∧τN
n where these

are localizing sequences for the indicated local submartingale. Then obviously,

(−(Mτ ,N)+(Mτ ,Nτ))σn =−
(
Mσn∧τ ,Nσn

)
+
(
Mσn∧τ ,Nσn∧τ

)
where Nσn and Mσn are martingales. To save notation, denote these by M and N respec-
tively. Now use Lemma 32.1.1. Let σ be a stopping time with two values.

E ((Mτ (σ) ,N (σ)−Nτ (σ))) = E (E ((Mτ (σ) ,N (σ)−Nτ (σ)) |Fτ))

Now Mτ (σ) is M (σ ∧ τ) which is Fτ measurable and so by the Doob optional sampling
theorem,

= E (Mτ (σ) ,E (N (σ)−Nτ (σ) |Fτ))

= E (Mτ (σ) ,N (σ ∧ τ)−N (τ ∧σ)) = 0

while
E ((Mτ (t) ,N (t)−Nτ (t))) = E (E ((Mτ (t) ,N (t)−Nτ (t)) |Fτ))

Since Mτ (t) is Fτ measurable,

= E ((Mτ (t) ,E (N (t)−Nτ (t) |Fτ)))

= E ((Mτ (t) ,E (N (t ∧ τ)−N (t ∧ τ)))) = 0

This shows the claim is true.
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Now from 32.12 and Corollary 32.4.3, [M,N]τ − [Mτ ,N] = 0. Similarly [M,N]τ −
[M,Nτ ] = 0. Now consider the next claim that [M−Mτ ] = [M]− [Mτ ]. From the defi-
nition, it follows

[M−Mτ ]− ([M]+ [Mτ ]−2 [M,Mτ ])

= ∥M−Mτ∥2−
(
∥M∥2 +∥Mτ∥2−2(M,Mτ)

)
+ local martingale

= local martingale.

By the first part of the corollary which ensures [M,Mτ ] is of bounded variation, the left side
is the difference of two increasing adapted processes and so by Corollary 32.3.5 again, the
left side equals 0. Thus from the above,

[M−Mτ ] = [M]+ [Mτ ]−2 [M,Mτ ] = [M]+ [Mτ ]−2 [Mτ ,Mτ ]

= [M]+ [Mτ ]−2 [Mτ ] = [M]− [Mτ ]≤ [M]

Finally consider the claim that [M,N] is bilinear. From the definition, letting M1,M2,N
be H valued local martingales,

(aM1 +bM2,N)H = [aM1 +bM2,N]+ local martingale
a(M1,N)+b(M2,N)H = a [M1,N]+b [M2,N]+ local martingale

Hence
[aM1 +bM2,N]− (a [M1,N]+b [M2,N]) = local martingale.

The left side can be written as the difference of two increasing functions thanks to [M,N]
of bounded variation and so by Lemma 32.2.1 it equals 0. [M,N] is obviously symmetric
from the definition. ■

32.5 The Burkholder Davis Gundy Inequality
Define

M∗ (ω)≡ sup{∥M (t)(ω)∥ : t ∈ [0,T ]} .
The Burkholder Davis Gundy inequality is an amazing inequality which involves M∗ and
[M] (T ).

Before presenting this, here is the good lambda inequality, Theorem 10.12.1 on Page
299 listed here for convenience.

Theorem 32.5.1 Let (Ω,F ,µ) be a finite measure space and let F be a continuous
increasing function defined on [0,∞) such that F (0) = 0. Suppose also that for all α > 1,
there exists a constant Cα such that for all x ∈ [0,∞),

F (αx)≤Cα F (x) .

Also suppose f ,g are nonnegative measurable functions and there exists β > 1,0 < r ≤ 1,
such that for all λ > 0 and 1 > δ > 0,

µ ([ f > βλ ]∩ [g≤ rδλ ])≤ φ (δ )µ ([ f > λ ]) (32.13)

where limδ→0+ φ (δ ) = 0 and φ is increasing. Under these conditions, there exists a con-
stant C depending only on β ,φ ,r such that∫

Ω

F ( f (ω))dµ (ω)≤C
∫

Ω

F (g(ω))dµ (ω) .
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The proof of the Burkholder Davis Gundy inequality also will depend on the hitting
this before that theorem which is listed next for convenience.

Theorem 32.5.2 Let {M (t)} be a continuous real valued martingale adapted to the
normal filtration Ft and let

M∗ ≡ sup{|M (t)| : t ≥ 0}

and M (0) = 0. Letting
τx ≡ inf{t > 0 : M (t) = x}

Then if a < 0 < b the following inequalities hold.

(b−a)P([τb ≤ τa])≥−aP([M∗ > 0])≥ (b−a)P([τb < τa])

and
(b−a)P([τa < τb])≤ bP([M∗ > 0])≤ (b−a)P([τa ≤ τb]) .

In words, P([τb ≤ τa]) is the probability that M (t) hits b no later than when it hits a. (Note
that if τa = ∞ = τb then you would have [τa = τb] .)

Then the Burkholder Davis Gundy inequality is as follows. Generalizations will be
presented later.

Theorem 32.5.3 Let {M (t)} be a continuous H valued martingale which is uni-
formly bounded, M (0) = 0, where H is a separable Hilbert space and t ∈ [0,T ] . Then if F
is a function of the sort described in the good lambda inequality above, there are constants,
C and c independent of such martingales M such that

c
∫

Ω

F
(
([M] (T ))1/2

)
dP≤

∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
([M] (T ))1/2

)
dP

where
M∗ (ω)≡ sup{∥M (t)(ω)∥ : t ∈ [0,T ]} .

Proof: Using Corollary 32.4.3, let

N (t) ≡ ∥M (t)−Mτ (t)∥2− [M−Mτ ] (t)

= ∥M (t)−Mτ (t)∥2− [M] (t)+ [M]τ (t)

where
τ ≡ inf{t ∈ [0,T ] : ∥M (t)∥> λ}

Thus N is a martingale and N (0)= 0. In fact N (t)= 0 as long as t ≤ τ . As usual inf( /0)≡∞.
Note

for some t<T,∥M(t)∥>λ

[τ < ∞] = [M∗ > λ ]⊇ [N∗ > 0]

This is because to say τ < ∞ is to say there exists t < T such that ∥M (t)∥> λ which is the
same as saying M∗ > λ . Thus the first two sets are equal. Either τ < ∞ or τ = ∞. If τ = ∞,
then from the formula for N (t) above, N (t) = 0 for all t ∈ [0,T ] and so it can’t happen that
N∗ > 0. Thus [τ = ∞]⊆ [N∗ = 0] so [N∗ > 0]⊆ [τ < ∞].
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Let β > 2 and let δ ∈ (0,1) . Then β −1 > 1 > δ > 0. Consider the following which is
set up to use the good lambda inequality.

Sr ≡ [M∗ > βλ ]∩
[
([M] (T ))1/2 ≤ rδλ

]
where 0 < r < 1.It is shown that Sr corresponds to hitting “this before that” and there is an
estimate for this which involves P([N∗ > 0]) which is bounded above by P([M∗ > λ ]) as
discussed above. This will satisfy the hypotheses of the good lambda inequality.

Claim: For ω ∈ Sr, N (t) hits λ
2
(

1−δ
2
)
.

Proof of claim: For ω ∈ Sr, there exists a t < T such that ∥M (t)∥ > βλ and so using
Corollary 32.4.3 and triangle inequality,

N (t) ≥ |∥M (t)∥−∥Mτ (t)∥|2− [M−Mτ ] (t)≥ |βλ −λ |2− [M] (t)

≥ (β −1)2
λ

2−δ
2
λ

2

which shows that N (t) hits (β −1)2
λ

2 − δ
2
λ

2 for ω ∈ Sr. By the intermediate value
theorem, it also hits λ

2
(

1−δ
2
)

. This proves the claim.

Claim: N (t)(ω) never hits −δ
2
λ

2 for ω ∈ Sr.

Proof of claim: Suppose t is the first time N (t) reaches −δ
2
λ

2. Then t > τ because
N (t) = 0 on [0,τ] and so

N (t) = −δ
2
λ

2 ≥ |∥M (t)∥−λ |2− [M] (t)+ [Mτ ] (t)

≥ −r2
λ

2
δ

2,

a contradiction since r < 1. This proves the claim.
Therefore, for all ω ∈ Sr, N (t)(ω) reaches λ

2
(

1−δ
2
)

before it reaches −δ
2
λ

2. It
follows

P(Sr)≤ P
(

N (t) reaches λ
2
(

1−δ
2
)

before −δ
2
λ

2
)

and because of Theorem 31.6.3 this is no larger than

P([N∗ > 0])
δ

2
λ

2

λ
2
(

1−δ
2
)
−
(
−δ

2
λ

2
) = P([N∗ > 0])δ

2 ≤ δ
2P([M∗ > λ ]) .

Thus
P
(
[M∗ > βλ ]∩

[
([M] (T ))1/2 ≤ rδλ

])
≤ P([M∗ > λ ])δ

2

By the good lambda inequality,∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
([M] (T ))1/2

)
dP

which is one half the inequality.
Now consider the other half. This time define the stopping time τ by

τ ≡ inf
{

t ∈ [0,T ] : ([M] (t))1/2 > λ

}
and let

Sr ≡
[
([M] (T ))1/2 > βλ

]
∩ [2M∗ ≤ rδλ ] .
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Then there exists t < T such that [M] (t)> β
2
λ

2. This time, let

N (t)≡ [M] (t)− [Mτ ] (t)−∥M (t)−Mτ (t)∥2

This is still a martingale since by Corollary 32.4.3

[M] (t)− [Mτ ] (t) = [M−Mτ ] (t)

Claim: N (t)(ω) hits λ
2
(

1−δ
2
)

for some t < T for ω ∈ Sr.

Proof of claim: Fix such a ω ∈ Sr. Let t < T be such that [M] (t)> β
2
λ

2. Then, since
β > 2, t > τ and so for that ω,

N (t) > β
2
λ

2−λ
2−∥M (t)−M (τ)∥2

≥ (β −1)2
λ

2− (∥M (t)∥+∥M (τ)∥)2

≥ (β −1)2
λ

2− r2
δ

2
λ

2 ≥ λ
2−δ

2
λ

2

By the intermediate value theorem, it hits λ
2
(

1−δ
2
)
. The last inequality follows because

it is assumed that 2M∗ ≤ rδλ . This proves the claim.
Claim: N (t)(ω) never hits −δ

2
λ

2 for ω ∈ Sr.
Proof of claim: By Corollary 32.4.3, if it did at t, then t > τ because N (t) = 0 for

t ≤ τ, and so

0 ≤ [M] (t)− [Mτ ] (t) = ∥M (t)−M (τ)∥2−δ
2
λ

2

≤ (∥M (t)∥+∥M (τ)∥)2−δ
2
λ

2 ≤ r2
δ

2
λ

2−δ
2
λ

2 < 0,

a contradiction. The last inequality follows from 2M∗ ≤ rδλ on Sr. This proves the claim.
It follows that for each r ∈ (0,1) ,

P(Sr)≤ P
(

N (t) hits λ
2
(

1−δ
2
)

before −δ
2
λ

2
)

By Theorem 31.6.3 this is no larger than

P([N∗ > 0])
δ

2
λ

2

λ
2
(

1−δ
2
)
+δ

2
λ

2
= P([N∗ > 0])δ

2

≤ P([τ < ∞])δ
2 = P

([
([M] (T ))1/2 > λ

])
δ

2

Now by the good lambda inequality, there is a constant k independent of M such that∫
Ω

F
(
([M] (T ))1/2

)
dP≤ k

∫
Ω

F (2M∗)dP≤ kC2

∫
Ω

F (M∗)dP

by the assumptions about F . Therefore, combining this result with the first part,

(kC2)
−1
∫

Ω

F
(
([M] (T ))1/2

)
dP ≤

∫
Ω

F (M∗)dP

≤ C
∫

Ω

F
(
([M] (T ))1/2

)
dP ■

Of course, everything holds for local martingales in place of martingales.
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Theorem 32.5.4 Let {M (t)} be a continuous H valued local martingale, M (0) =
0, where H is a separable Hilbert space and t ∈ [0,T ] . Then if F is a function of the sort
described in the good lambda inequality, that is,

F (0) = 0, F continuous, F increasing,

F (αx)≤ cα F (x) ,

there are constants, C and c independent of such local martingales M such that

c
∫

Ω

F
(
[M] (T )1/2

)
dP≤

∫
Ω

F (M∗)dP≤C
∫

Ω

F
(
[M] (T )1/2

)
dP

where
M∗ (ω)≡ sup{∥M (t)(ω)∥ : t ∈ [0,T ]} .

Proof: Let {τn} be an increasing localizing sequence for M such that Mτn is uniformly
bounded. Such a localizing sequence exists from Proposition 32.3.3. Then from Theorem
32.5.3 there exist constants c,C independent of τn such that

c
∫

Ω

F
(
[Mτn ] (T )1/2

)
dP ≤

∫
Ω

F
(
(Mτn)∗

)
dP

≤ C
∫

Ω

F
(
[Mτn ] (T )1/2

)
dP

By Corollary 32.4.3, this implies

c
∫

Ω

F
((

[M]τn
)
(T )1/2

)
dP ≤

∫
Ω

F
(
(Mτn)∗

)
dP

≤ C
∫

Ω

F
((

[M]τn
)
(T )1/2

)
dP

and now note that
(
[M]τn

)
(T )1/2 and (Mτn)∗ increase in n to [M] (T )1/2 and M∗ respec-

tively. Then the result follows from the monotone convergence theorem. ■
Here is a corollary [46].

Corollary 32.5.5 Let {M (t)} be a continuous H valued local martingale and let ε,δ ∈
(0,∞) . Then there is a constant C, independent of ε,δ such that

P


 M∗(T )︷ ︸︸ ︷

sup
t∈[0,T ]

∥M (t)∥ ≥ ε


≤ C

ε
E
(
[M]1/2 (T )∧δ

)
+P

(
[M]1/2 (T )> δ

)
Proof: Let the stopping time τ be defined by

τ ≡ inf
{

t > 0 : [M]1/2 (t)> δ

}
Then

P([M∗ ≥ ε]) = P([M∗ ≥ ε]∩ [τ = ∞])+P([M∗ ≥ ε]∩ [τ < ∞])

On the set where [τ = ∞] , Mτ = M and so P([M∗ ≥ ε])≤

≤ 1
ε

∫
Ω

(Mτ)∗ dP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])



32.5. THE BURKHOLDER DAVIS GUNDY INEQUALITY 879

By Theorem 32.5.4 and Corollary 32.4.3,

≤ C
ε

∫
Ω

[Mτ ]1/2 (T )dP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
=

C
ε

∫
Ω

(
[M]τ

)1/2
(T )dP+P

(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])
≤ C

ε

∫
Ω

[M]1/2 (T )∧δdP+P
(
[M∗ ≥ ε]∩

[
[M]1/2 (T )> δ

])

≤ C
ε

∫
Ω

[M]1/2 (T )∧δdP+P
([

[M]1/2 (T )> δ

])
■

The Burkholder Davis Gundy inequality along with the properties of the covariation implies
the following amazing proposition.

Proposition 32.5.6 The space M2
T (H) is a Hilbert space with respect to an equivalent

norm. Here H is a separable Hilbert space.

Proof: We already know from Proposition 31.7.2 that this space is a Banach space. It is
only necessary to exhibit an equivalent norm which makes it a Hilbert space. However, you
can let F (λ ) = λ

2 in the Burkholder Davis Gundy theorem and obtain for M ∈ M2
T (H) ,

the two norms (∫
Ω

[M] (T )dP
)1/2

=

(∫
Ω

[M,M] (T )dP
)1/2

and (∫
Ω

(M∗)2 dP
)1/2

are equivalent. The first comes from an inner product since from Corollary 32.4.3, [·, ·] is
bilinear and symmetric and nonnegative. If [M,M] (T ) = [M] (T ) = 0 in L1 (Ω) , then from
the Burkholder Davis Gundy inequality, M∗ = 0 in L2 (Ω) and so M = 0. Hence∫

Ω

[M,N] (T )dP

is an inner product which yields the equivalent norm. ■
Later, the Wiener process will be discussed and the existence of such a process is

proved. For now, the following example shows something about such processes.

Example 32.5.7 An example of a real martingale is the Wiener process W (t). It has the
property that whenever t1 < t2 < · · · < tn, the increments {W (ti)−W (ti−1)} are indepen-
dent and whenever s < t,W (t)−W (s) is normally distributed with mean 0 and variance
(t− s). For the Wiener process, we let

Ft ≡ ∩u>tσ (W (s)−W (r) : r < s≤ u)

and it is with respect to this normal filtration that W is a continuous martingale. What is
the quadratic variation of such a process?
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The quadratic variation of the Wiener process is just t. This is because if A ∈Fs,s < t,

E
(
XA

(
|W (t)|2− t

))
=

E
(
XA

(
|W (t)−W (s)|2 + |W (s)|2 +2(W (s) ,W (t)−W (s))− (t− s+ s)

))
Now

E (XA (2(W (s) ,W (t)−W (s)))) = P(A)E (2W (s))E (W (t)−W (s)) = 0

by the independence of the increments. Thus the above reduces to

E
(
XA

(
|W (t)−W (s)|2 + |W (s)|2− (t− s+ s)

))

= E
(
XA

(
|W (t)−W (s)|2− (t− s)

))
+E

(
XA

(
|W (s)|2− s

))
= P(A)E

(
|W (t)−W (s)|2− (t− s)

)
+E

(
XA

(
|W (s)|2− s

))
= E

(
XA

(
|W (s)|2− s

))
and so E

(
|W (t)|2− t|Fs

)
= |W (s)|2− s showing that t → |W (t)|2− t is a martingale.

Hence, by uniqueness, [W ] (t) = t.

32.6 Approximation With Step Functions
There is a really nice result about approximating a function f ∈ Lp ([0,T ] ,E) with step
functions. In this we deal with a specific representative of the equivalence class for f ∈
Lp ([0,T ] ,E).

Lemma 32.6.1 Let f ∈ L2 ([0,T ] ;E) for E a Banach space. For simplicity let f be
Borel measurable. Then there exists a sequence of nested partitions, Pk ⊆Pk+1,

Pk ≡
{

tk
0 , · · · , tk

mk

}
such that the step functions given by

f r
k (t) ≡

mk

∑
j=1

f
(

tk
j

)
X[tk

j−1,t
k
j )
(t)

f l
k (t) ≡

mk

∑
j=1

f
(

tk
j−1

)
X[tk

j−1,t
k
j )
(t)

both converge to f in L2 ([0,T ] ;E) as k→ ∞ and

lim
k→∞

max
{∣∣∣tk

j − tk
j+1

∣∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

The mesh points
{

tk
j

}mk

j=0
can be chosen to miss a given set of measure zero N if N does not

contan either 0 or T .
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Note that it would make no difference in terms of the conclusion of this lemma if you
defined

f l
k (t)≡

mk

∑
j=1

f
(

tk
j−1

)
X(tk

j−1,t
k
j ]
(t)

because the modified function equals the one given above off a countable subset of [0,T ] ,
the union of the mesh points. One could change f r

k similarly with no change in the conclu-
sion.

Proof: Let f be 0 off (0,T ). Thus we will let it be defined on all of R. Let γn (t) ≡
k/2n,δ n (t) ≡ (k+1)/2n, where t ∈ (k/2n,(k+1)/2n], and 2−n < δ . Thus γn (t) is the
closest k2−n,k ∈ Z which is smaller than or equal to t while δ n (t) is the closest k2−n larger
than or equal to t. Let g ∈Cc ((0,T ) ,E) so the support of g is in [δ ,T −δ ] for some δ > 0
such that

∫
[δ ,T−δ ]C

∥ f∥p dt < ε and also

∫ T

0
∥ f −g∥p dt =

∫
R
∥ f −g∥p dt < ε.

Then ∫ T

0

∫ T

0
∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E dsdu

=
∫ T

0

∫ T

0
∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E duds

=
∫ T

0

∫ T−s

−s
∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dtds

≤
∫ T

0

∫ 2T

−2T
∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dtds

=
∫ 2T

−2T

∫ T

0
∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dsdt

≤
∫ 2T

−2T

∫
R
∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dsdt < 5T ε

No effort is made to get the best possible estimate in the above. Then∫ T

0

∫ T

0
∥ f (γn (u− s)+ s)− f (u)− (g(γn (u− s)+ s)−g(u))∥p

E duds

≤ 2p−1
∫ T

0

∫ T

0

(
∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E
+∥ f (u)−g(u)∥p

E

)
duds

≤ 2p−1
ε5T +2p−1

εT = 2p−16εT (32.14)

It follows that if n is chosen large enough, then∫ T

0

∫ T

0
∥g(γn (u− s)+ s)−g(u)∥p

E duds < εT
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from uniform continuity of g. Therefore, from 32.14∫ T

0

∫ T

0
∥ f (γn (u− s)+ s)− f (u)∥p duds

≤ 2p−1
∫ T

0

∫ T

0
∥g(γn (u− s)+ s)−g(u)∥p duds

+2p−1
∫ T

0

∫ T

0
∥ f (γn (u− s)+ s)− f (u)− (g(γn (u− s)+ s)−g(u))∥p

E duds

≤ 2p−1
εT +2p−1 (2p−16εT

)
(32.15)

Now γn (u− s)+ s≥ 0 unless u < δ . So consider∫ T

0

∫ T

0

∥∥ f
(
(γn (u− s)+ s)+

)
− f (u)

∥∥p
duds≤

∫ T

0

∫ T

2−n
∥ f (γn (u− s)+ s)− f (u)∥p duds+

∫ T

0

∫ 2−n

0
∥ f (u)∥p duds

≤ 2p−1
εT +2p−1 (2p−16εT

)
+ ε ≡ η

Thus, since ε is arbitrary, so is η .
The function u→ (γn (u− s)+ s)+ has jumps 0 = t0, t1, t2, ....tmn−1, tmn = T where these

are listed in increasing order. The possible values of these ti are k2−n + s for some k ∈ Z.
They are equally spaced being 2−n apart except for the first two and the last two which are
no more than 2−n. One can slide this list of partition points around according to the choice
of s ∈ [0,T ]. Now suppose you have a set of measure zero N. Pick s ∈ [0,T ] such that none
of the ti are in N and ∫ T

0

∥∥ f
(
(γn (u− s)+ s)+

)
− f (u)

∥∥p
E du < 2η

Now let fn (u)≡∑
mn
k=1 f (tk−1)X[tk−1,tk) (u). This is a step function of the desired sort. Then

∫ T

0
∥ fn (u)− f (u)∥p

E du =
mn

∑
k=1

∫ tk

tk−1

∥ f (tk−1)− f (u)∥p
E du

=
mn

∑
k=1

∫ tk

tk−1

∥∥ f
(
(γn (u− s)+ s)+

)
− f (u)

∥∥p
E du

=
∫ T

0

∥∥ f
(
(γn (u− s)+ s)+

)
− f (u)

∥∥p
E du < 2η

Picking a sequence of these step functions f j corresponding to η = 2− j, one obtains the
desired sequence in which values of f are assigned at the left end point of the interval.
Making n still larger in the above argument and using the same argument with the right end
points, one can also obtain a similar step function in which the values of f are given at the
right end point which also converges to f in L2 ([0,T ] ,E). ■



Chapter 33

Quadratic Variation and Stochastic In-
tegration

Let Ft be a normal filtration and let {M (t)} be a continuous local martingale adapted to
Ft having values in U a separable real Hilbert space.

Definition 33.0.1 Let Ft be a normal filtration and let

f (t)≡
mn−1

∑
k=0

fkX(tk,tk+1] (t)

where {tk}mn
k=0 is a partition of [0,T ] and each fk is Ftk measurable, fkM∗ ∈ L2 (Ω) where

M∗ (ω)≡ sup
t∈[0,T ]

∥M (t)(ω)∥

Such a function is called an elementary function. Also let {M (t)} be a continuous local
martingale adapted to Ft which has values in a separable real Hilbert space U such that
M (0) = 0. For such an elementary real valued function, define∫ t

0
f dM ≡

mn−1

∑
k=0

fk (M (t ∧ tk+1)−M (t ∧ tk)) . (33.1)

Since the t→Ft is increasing, this definition is well defined. Also the set of elementary
functions is a vector space.

Then with this definition, here is a wonderful lemma.

Lemma 33.0.2 For f an elementary function as above,
{∫ t

0 f dM
}

is a continuous local
martingale and

E

(∥∥∥∥∫ t

0
f dM

∥∥∥∥2

U

)
=
∫

Ω

∫ t

0
f (s)2 d [M] (s)dP. (33.2)

If N is another continuous local martingale adapted to Ft and both f ,g are elementary
functions such that for each k,

fkM∗,gkN∗ ∈ L2 (Ω) ,

then

E
((∫ t

0
f dM,

∫ t

0
gdN

)
U

)
=
∫

Ω

∫ t

0
f gd [M,N] (33.3)

and both sides make sense.

Proof: Let {τ l} be a localizing sequence for M such that Mτ l is a bounded martingale.
Then from the definition, for each ω∫ t

0
f dM = lim

l→∞

∫ t

0
f dMτ l = lim

l→∞

(∫ t

0
f dM

)τ l

and it is clear that
{∫ t

0 f dMτ l
}

is a martingale because it is just the sum of some martin-
gales. Thus {τ l} is a localizing sequence for

∫ t
0 f dM. It is also clear

∫ t
0 f dM is continuous

883
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because it is a finite sum of continuous random variables. In the argument to get 33.2, I will
write M rather than Mτ l . Then it is understood that you can let l→ ∞ to obtain the desired
formula for a local martingale. Thus, in what follows, M is a bounded martingale.

E

(∥∥∥∥∫ t

0
f dM

∥∥∥∥2

U

)

= E

(
mn−1

∑
k=0

fk (M (t ∧ tk+1)−M (t ∧ tk)) ,
mn−1

∑
j=0

f j
(
M
(
t ∧ t j+1

)
−M (t ∧ t j)

))

Let M (t ∧ tk+1)−M (t ∧ tk) = ∆Mk. Thus ∆Mk is Ftk+1 measurable. Consider a mixed term
in the above in which j < k

E ( fk∆Mk, f j∆M j) = E
(
E
(

fk∆Mk, f j∆M j|Ftk

))
= E

(
fk, f j∆M jE

(
∆Mk|Ftk

))
= 0

because E
(
M (t ∧ tk+1)−M (t ∧ tk) |Ftk

)
= M (t ∧ tk+1∧ tk)−M (t ∧ tk) . Thus

E

(∥∥∥∥∫ t

0
f dM

∥∥∥∥2

U

)
=

mn−1

∑
k=0

E ( fk∆Mk, fk∆Mk)

=
mn−1

∑
k=0

E
(
E
(
( fk∆Mk, fk∆Mk) |Ftk

))
(33.4)

=
mn−1

∑
k=0

E
(

f 2
k E
(
(∆Mk,∆Mk) |Ftk

))
(33.5)

now

E
(
(M (t ∧ tk+1) ,M (t ∧ tk)) |Ftk

)
=

(
E
(
M (t ∧ tk+1) |Ftk

)
,M (t ∧ tk)

)
= ∥M (t ∧ tk)∥2

and so

E
(
(∆Mk,∆Mk) |Ftk

)
= E

((
M (t ∧ tk+1)−M (t ∧ tk) ,
M (t ∧ tk+1)−M (t ∧ tk)

)
|Ftk

)
=

E
(
∥M (t ∧ tk+1)∥2 |Ftk

)
+E

(
∥M (t ∧ tk)∥2 |Ftk

)
−2E

(
(M (t ∧ tk+1) ,M (t ∧ tk)) |Ftk

)
= E

(
∥M (t ∧ tk+1)∥2 |Ftk

)
−∥M (t ∧ tk)∥2

Therefore, the right side of 33.5 is

mn−1

∑
k=0

E
(

f 2
k ∥M (t ∧ tk+1)∥2

)
−E

(
f 2
k ∥M (t ∧ tk)∥2

)
.

Now recall that ∥M (t)∥2 = [M] (t)+N (t) where N (t) is a martingale. It then reduces to

mn−1

∑
k=0

E
(

f 2
k ([M (t ∧ tk+1)]+N (t ∧ tk+1))

)
−E

(
f 2
k ([M] (t ∧ tk)+N (t ∧ tk))

)
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=
∫

Ω

∫ t

0
f (s)2 d [M]dP

since the martingales integrate to 0. This proves the first formula. If f (s) ∈ L (U,H) ,
you could probably modify this argument. In this case, you couldn’t factor out of the inner
product because it would no longer be a scalar. However, if f (s) ∈L2 (U,H) you maybe
could do something. This is really a version of the Ito isometry discussed later.

Next is a similar argument for the case of two different elementary functions. There
is no loss of generality in assuming the mesh points are the same for the two elementary
functions because if not, one can simply add in points to make this happen. It suffices to
consider 33.3 because the other formula is a special case. To begin with, let {τ l} be a
localizing sequence which makes both Mτ l and Nτ l into bounded martingales. Consider
the stopped process.

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)

= E

((
mn−1

∑
k=0

fk (Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,

mn−1

∑
k=0

gk (Nτ l (t ∧ tk+1)−Nτ l (t ∧ tk))

))
To save on notation, write Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)≡ ∆Mk (t) , similar for ∆Nk. Thus

∆Mk = Mτ l∧tk+1 −Mτ l∧tk ,

similar for ∆Nk. Then the above equals

E

(
mn−1

∑
k=0

(
fk∆Mk,

mn−1

∑
k=0

gk∆Nk

))
= E

(
∑
k, j

fkg j (∆Mk,∆N j)

)
Now consider one of the mixed terms with j < k.

E (( fk∆Mk,g j∆N j)) = E
(
E
(
( fk∆Mk,g j∆N j) |Ftk

))
= E

(
g j∆N j, fkE

(
∆Mk|Ftk

))
= 0

since E
(
∆Mk|Ftk

)
= E

(
(Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) |Ftk

)
= 0 by the Doob optional sam-

pling theorem. Thus

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)
= (33.6)

=
mn−1

∑
k=0

E ( fkgk (∆Mk,∆Nk)) =
mn−1

∑
k=0

E ( fkgk ([∆Mk,∆Nk]+Nk)) (33.7)

where Nk is a martingale such that Nk (t) = 0 for all t ≤ tk. This is because the martin-
gale (Nτ l )tk+1 − (Nτ l )tk = ∆Nk equals 0 for such t; and so E (Nk (t)) = 0. Thus fkgkNk
is a martingale which equals zero when t = 0. Therefore, its expectation also equals 0.
Consequently the above reduces to

mn−1

∑
k=0

E ( fkgk [∆Mk,∆Nk]) .



886 CHAPTER 33. QUADRATIC VARIATION AND STOCHASTIC INTEGRATION

At this point, recall the definition of the covariation. The above equals

1
4

mn−1

∑
k=0

E ( fkgk ([∆Mk +∆Nk]− [∆Mk−∆Nk]))

Rewriting this yields

=
1
4

mn−1

∑
k=0

E
(

fkgk
([
(Mτ l )tk+1 +(Nτ l )tk+1 −

(
(Mτ l )tk +(Nτ l )tk

)]
−
[
(Mτ l )tk+1 − (Nτ l )tk+1 −

(
(Mτ l )tk − (Nτ l )tk

)]))
To save on notation, denote

(Mτ l )tk+1 +(Nτ l )tk+1 −
(
(Mτ l )tk +(Nτ l )tk

)
≡ ∆k (Mτ l +Nτ l )

(Mτ l )tk+1 − (Nτ l )tk+1 −
(
(Mτ l )tk − (Nτ l )tk

)
≡ ∆k (Mτ l −Nτ l )

Thus the above equals

1
4

mn−1

∑
k=0

E ( fkgk ([∆k (Mτ l +Nτ l )]− [∆k (Mτ l −Nτ l )]))

Now from Corollary 32.4.3,

=
1
4

mn−1

∑
k=0

E
(

fkgk
(
[∆k (M+N)]τ l − [∆k (M−N)]τ l

))
Letting l→ ∞, this reduces to

=
1
4

mn−1

∑
k=0

E ( fkgk ([∆k (M+N)]− [∆k (M−N)]))

=
1
4

(∫
Ω

∫ t

0
f g(d [M+N]−d [M−N])

)
=

∫
Ω

∫ t

0
f gd [M,N]

Now consider the left side of 33.7.

E
((∫ t

0
f dMτ l ,

∫ t

0
gdNτ l

)
U

)

≡
∫

Ω
∑
k, j

fkg j ((Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,(
Nτ l
(
t ∧ t j+1

)
−Nτ l (t ∧ t j)

))
dP

Then for each ω, the integrand converges as l→ ∞ to

∑
k, j

fkg j
(
(M (t ∧ tk+1)−M (t ∧ tk)) ,

(
N
(
t ∧ t j+1

)
−N (t ∧ t j)

))



887

But also you can do a sloppy estimate which will allow the use of the dominated conver-
gence theorem.∥∥∥∥∥∑k, j fkg j (Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,

(
Nτ l
(
t ∧ t j+1

)
−Nτ l (t ∧ t j)

)∥∥∥∥∥
≤∑

k, j
| fk|
∣∣g j
∣∣4M∗N∗ ∈ L1 (Ω)

by assumption. Thus the left side of 33.7 converges as l→ ∞ to∫
Ω

∑
k, j

fkg j
(
(M (t ∧ tk+1)−M (t ∧ tk)) ,

(
N
(
t ∧ t j+1

)
−N (t ∧ t j)

))
dP

=
∫

Ω

(∫ t

0
f dM,

∫ t

0
gdN

)
U

dP ■

Note for each ω, the inside integral in 33.2 is just a Stieltjes integral taken with respect
to the increasing integrating function [M].

Of course, with this estimate it is obvious how to extend the integral to a larger class of
functions.

Definition 33.0.3 Let ν (ω) denote the Radon measure representing the functional

Λ(ω)(g)≡
∫ T

0
gd [M] (t)(ω)

(t→ [M] (t)(ω) is a continuous increasing function and ν (ω) is the measure representing
the Stieltjes integral, one for each ω .) Then let GM denote functions f (s,ω) which are the
limit of such elementary functions in the space L2

(
Ω;L2 ([0,T ] ,ν (·))

)
, the norm of such

functions being

∥ f∥2
G ≡

∫
Ω

∫ T

0
f (s)2 d [M] (s)dP

For f ∈ G just defined, ∫ t

0
f dM ≡ lim

n→∞

∫ t

0
fndM

where { fn} is a sequence of elementary functions converging to f in

L2 (
Ω;L2 ([0,T ] ,ν (·))

)
.

Now here is an interesting lemma.

Lemma 33.0.4 Let M,N be continuous local martingales, M (0) = N (0) = 0 having
values in a separable Hilbert space, U. Then

[M+N]1/2 ≤
(
[M]1/2 +[N]1/2

)
(33.8)

[M+N]≤ 2([M]+ [N]) (33.9)

Also, let νM+N denote the measure obtained from the increasing function [M+N] and
νN ,νM be defined similarly,

νM+N ≤ 2(νM +νN) (33.10)

on all Borel sets.
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Proof: Since (M,N)→ [M,N] is bilinear and satisfies

[M,N] = [N,M]

[aM+bM1,N] = a [M,N]+b [M1,N]

[M,M] ≥ 0

which follows from Corollary 32.4.3, the usual Cauchy Schwarz inequality holds and so

|[M,N]| ≤ [M]1/2 [N]1/2

Thus

[M+N] ≡ [M+N,M+N] = [M,M]+ [N,N]+2 [M,N]

≤ [M]+ [N]+2 [M]1/2 [N]1/2 =
(
[M]1/2 +[N]1/2

)2

This proves 33.8. Now square both sides. Then the right side is no larger than

2([M]+ [N])

and this shows 33.9.
Now consider the claim about the measures. It was just shown that

[(M+N)− (M+N)s]≤ 2([M−Ms]+ [N−Ns])

and from Corollary 32.4.3 this implies that for t > s

[M+N] (t)− [M+N] (s∧ t)

= [M+N] (t)− [M+N]s (t)

= [M+N− (Ms +Ns)] (t)

= [M−Ms +(N−Ns)] (t)

≤ 2 [M−Ms] (t)+2 [N−Ns] (t)

≤ 2([M] (t)− [M] (s))+2([N] (t)− [N] (s))

Thus
νM+N ([s, t])≤ 2(νM ([s, t])+νN ([s, t]))

By regularity of the measures, this continues to hold with any Borel set F in place of [s, t].
■

Theorem 33.0.5 The integral is well defined and has a continuous version which is
a local martingale. Furthermore it satisfies the Ito isometry,

E

(∥∥∥∥∫ t

0
f dM

∥∥∥∥2

U

)
=
∫

Ω

∫ t

0
f (s)2 d [M] (s)dP (33.11)

Let the norm on GN ∩GM be the maximum of the norms on GN and GM and denote by EN
and EM the elementary functions corresponding to the martingales N and M respectively.
Define GNM as the closure in GN ∩GM of EN ∩EM . Then for f ,g ∈ GNM,

E
((∫ t

0
f dM,

∫ t

0
gdN

))
=
∫

Ω

∫ t

0
f gd [M,N] (33.12)
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Proof: It is clear the definition is well defined because if { fn} and {gn} are two
sequences of elementary functions converging to f in L2

(
Ω;L2 ([0,T ] ,ν)

)
and if

∫ 1t
0 f dM

is the integral which comes from {gn} ,∫
Ω

∥∥∥∥∫ 1t

0
f dM−

∫ t

0
f dM

∥∥∥∥2

dP

= lim
n→∞

∫
Ω

∥∥∥∥∫ t

0
gndM−

∫ t

0
fndM

∥∥∥∥2

dP

≤ lim
n→∞

∫
Ω

∫ T

0
∥gn− fn∥2 dνdP = 0.

Consider the claim the integral has a continuous version. Recall Theorem 31.4.3, part
of which is listed here for convenience.

Theorem 33.0.6 Let {X (t)} be a right continuous nonnegative submartingale ad-
apted to the normal filtration Ft for t ∈ [0,T ]. Let p≥ 1. Define

X∗ (t)≡ sup{X (s) : 0 < s < t} , X∗ (0)≡ 0.

Then for λ > 0

P([X∗ (T )> λ ])≤ 1
λ

p

∫
Ω

X (T )p dP (33.13)

Let { fn} be a sequence of elementary functions converging to f in

L2 (
Ω;L2 ([0,T ] ,ν (·))

)
.

Then letting

Xτ l
n,m (t) =

∥∥∥∥∫ t

0
( fn− fm)dMτ l

∥∥∥∥
U
,

Xn,m (t) =
∥∥∥∥∫ t

0
( fn− fm)dM

∥∥∥∥
U
=

∥∥∥∥∫ t

0
fndM−

∫ t

0
fmdM

∥∥∥∥
U

It follows Xτ l
n,m is a continuous nonnegative submartingale and from Theorem 31.4.3 just

listed,

P
([

Xτ l∗
n,m (T )> λ

])
≤ 1

λ
2

∫
Ω

Xτ l
n,m (T )2 dP

≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [Mτ l ]dP

≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [M]dP

Letting l→ ∞,

P
([

X∗n,m (T )> λ
])
≤ 1

λ
2

∫
Ω

∫ T

0
| fn− fm|2 d [M]dP

Therefore, there exists a subsequence, still denoted by { fn} such that

P
([

X∗n,n+1 (T )> 2−n])< 2−n
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Then by the Borel Cantelli lemma, the ω in infinitely many of the sets[
X∗n,n+1 (T )> 2−n]

has measure 0. Denoting this exceptional set as N, it follows that for ω /∈ N, there exists
n(ω) such that for n > n(ω) ,

sup
t∈[0,T ]

∥∥∥∥∫ t

0
fndM−

∫ t

0
fn+1dM

∥∥∥∥≤ 2−n

and this implies uniform convergence of
{∫ t

0 fndM
}

. Letting

G(t) = lim
n→∞

∫ t

0
fndM,

for ω /∈N and G(t) = 0 for ω ∈N, it follows that for each t, the continuous adapted process
G(t) equals

∫ t
0 f dM a.e. Thus

{∫ t
0 f dM

}
has a continuous version.

It suffices to verify 33.12. Let { fn} and {gn} be sequences of elementary functions
converging to f and g in GM ∩GN . By Lemma 33.0.2,

E
((∫ t

0
fndM,

∫ t

0
gndN

)
U

)
=
∫

Ω

∫ t

0
fngnd [M,N]

Then by the Holder inequality and the above definition,

lim
n→∞

E
((∫ t

0
fndM,

∫ t

0
gndN

)
U

)
= E

((∫ t

0
f dM,

∫ t

0
gdN

)
U

)
Consider the right side which equals

1
4

∫
Ω

∫ t

0
fngnd [M+N]dP− 1

4

∫
Ω

∫ t

0
fngnd [M−N]dP

Now from Lemma 33.0.4,∣∣∣∣∫
Ω

∫ t

0
fngnd [M+N]dP−

∫
Ω

∫ t

0
f gd [M+N]dP

∣∣∣∣
=

∣∣∣∣∫
Ω

∫ t

0
fngndνM+NdP−

∫
Ω

∫ t

0
f gdνM+NdP

∣∣∣∣
≤ 2

(∫
Ω

∫ t

0
| fngn− f g|dνMdP+

∫
Ω

∫ t

0
| fngn− f g|dνNdP

)
and by the choice of the fn and gn, these both converge to 0. Similar considerations apply
to ∣∣∣∣∫

Ω

∫ t

0
fngnd [M−N]dP−

∫
Ω

∫ t

0
f gd [M−N]dP

∣∣∣∣
and show

lim
n→∞

∫
Ω

∫ t

0
fngnd [M,N] =

∫
Ω

∫ t

0
f gd [M,N] ■
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33.1 The Stieltjes Integral
When we do Stieltjes integration, the first thing to consider is continuous functions. I
am going to do this here. It seems to me that this is an important case to consider if
for no other reason than this is what we do with Stieltjes integration. If M is continuous
and f is of bounded variation, and

{
tn
k

}mn−1
k=0 is a partition Pn of [0,T ] for which ∥Pn∥ ≡

max
{∣∣tn

k+1− tn
k

∣∣ ,k = 0,1, ...,mn−1
}
, then

lim
n→∞

mn−1

∑
k=0

f (tn
k )
(
M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)
=
∫ t

0
f dM (33.14)

exists in U . This is because of the integration by parts theorem for Stieltjes integrals.
Indeed,

∫ t
0 Md f exists by standard arguments. This is a little different here because M has

values in a Hilbert space, but the proof is essentially the same as for scalar valued functions.
See the proof in my single variable advanced calculus book, or [2] or [28]. Thus for a.e.
ω, one obtains the limit in 33.14 directly from the theory of Stieltjes integration, this limit
taking place in U . Suppose now that

M∗ ∈ L2 (Ω)

In the above context, 33.11 is

E

(∥∥∥∥∫ t

0
f dM

∥∥∥∥2

U

)
=
∫

Ω

∫ t

0
f (s)2 d [M] (s)dP

when f is an elementary function. Let f (t,ω) be bounded and continuous in t with f (t, ·)

Ft measurable. Let Pn =
{

tn
j

}mn−1

j=0
and let fk be the elementary function

fk (t,ω)≡
mn−1

∑
j=0

fk
(
tn

j
)
X(tn

j ,t
n
j+1]

(t)

Thus these elementary functions converge uniformly to f for t ∈ [0,T ] for fixed ω as
∥Pn∥ → 0 and they are all bounded uniformly. Therefore, from 33.11 and the maximal
estimates of Theorem 30.5.3,

1
2

E

(
sup
t≤T

∥∥∥∥∫ t

0
fkdM−

∫ t

0
fmdM

∥∥∥∥2

U

)
≤

E

(∥∥∥∥∫ T

0
fkdM−

∫ T

0
fmdM

∥∥∥∥2

U

)
=
∫

Ω

∫ T

0
| fk (s)− fm (s)|2 d [M] (s)dP (33.15)

This is because you can assume, by taking the union of the two partitions involved, that
you are dealing with a single partition for both fk and fm. Now for a.e. ω ,

lim
k,m→∞

∫ T

0
| fk (s)− fm (s)|2 d [M] (s) = 0.

This is because of the Burkholder Davis Gundy inequality which implies d [M] is a finite
measure for a.e. ω. Indeed, from this inequality,

c
∫

Ω

(
([M] (T ))1/2

)2
dP = c

∫
Ω

[M] (T )dP
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= c
∫

Ω

∫ T

0
d [M]dP≤

∫
Ω

(M∗)2 dP < ∞ (33.16)

Hence for a.e. ω, limk,m→∞

∫ T
0 | fk (s)− fm (s)|2 d [M] (s) = 0. Also from the fact these

elementary functions are all bounded, that inside integral on the right in 33.15 is no more
than K [M (T )] for a constant K which comes from the upper bound of all these elementary
functions. This is a function in L1 (Ω) by 33.16. Now if A is a measurable set,∫

A

∫ T

0
| fn+k (s)− fn (s)|2 d [M] (s)dP≤ K

∫
A
[M] (T )

and [M] (T ) is a function in L1 so this collection of functions of ω ,∫ T

0
| fk (s)− fm (s)|2 d [M] (s)

is uniformly integrable. By the Vitali convergence theorem,

lim
k,m→∞

∫
Ω

∫ T

0
| fk (s)− fm (s)|2 d [M] (s)dP = 0.

By 33.15,
{∫ t

0 fkdM
}∞

k=1 is a Cauchy sequence in M 2
T (U) and so there is a unique martin-

gale I (t)≡
∫ t

0 f dM such that
∫ t

0 fkdM→ I (t) in M 2
T (U) . Also by Proposition 31.7.2, there

is a subsequence which converges uniformly on [0,T ] for a.e. ω . In case f is of bounded
variation in addition to being continuous because in this case, the Stieltjes sums

∫ t
0 fnk dM

converge to
∫ t

0 f dM. This proves the following interesting relationship.

Proposition 33.1.1 In the above context where M∗ ∈ L2 (Ω) , M a martingale with val-
ues in U a separable Hilbert space, suppose t → f (t,ω) is of bounded variation and is
continuous and ω→ f (t,ω) is adapted to the filtration Ft . Also suppose (t,ω)→ f (t,ω)
is bounded. Then the ordinary Stieltjes integral

∫ t
0 f (s)dM (ω) is a martingale.

In the above argument, it was not necessary that t→ f (t,ω) have bounded variation so
the I (t) is in a sense more general than the Stieltjes integral but it extends the idea of the
Stieltjes integral.

What if M is only a local martingale? Then you could let σm be the first hitting time of
m by ∥M (t)∥ and you could repeat everything and get∫ t

0
f (s)dMσm =

∫ t∧σm

0
f (s)dM

is a martingale. The approximating sums in this case would be

mn−1

∑
k=0

f (tn
k )
(
Mσm

(
t ∧ tn

k+1
)
−Mσm (t ∧ tn

k )
)
→
∫ t

0
f (s)dMσm

mn−1

∑
k=0

f (tn
k )
(
Mσm

(
t ∧ tn

k+1
)
−Mσm (t ∧ tn

k )
)

=

(
mn−1

∑
k=0

f (tn
k )
(
M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
))σm

→
∫ t∧σm

0
f (s)dM
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as ∥Pn∥ → ∞. Thus, more generally, this Stieltjes integral
∫ t

0 f dM is a local martingale.
This is all written with scalar valued f (s,ω) in mind, but if f (s,ω) were something
in L (U,U) would it be any different? In case [M] depends only on t, all the above
considerations become easier. Indeed, if [M] is just an increasing function of t,33.15
would imply that one could get

∫ t
0 fk (s)dM is a Cauchy sequence in M 2

T (U) whenever
limk,m→∞

∫
Ω

∫ T
0 | fk (s)− fm (s)|2 dF (s)dP = 0 where F (s) = [M] (s) and F an increasing

function. In fact, the main interest will be when [M] (t) = t as in Example 32.5.7 so{∫ t
0 fk (s)dM

}
being a Cauchy sequence in M 2

T (U) comes from assuming simply that
{ fk} is Cauchy in L2

(
Ω;L2 ([0,T ])

)
.

33.2 The Stochastic Integral When f (s) ∈L2 (U,H)

Let H,U be separable Hilbert spaces and suppose for each s, f (s) ∈L2 (U,H) , the space
of Hilbert Schmidt operators described in the section on compact operators Section 22.5.2.
Recall that f (s) ∈L2 (U,H) implies f (s)∗ f (s) is a self adjoint compact operator thanks
to Theorem 22.5.18. Thus as pointed out there, we can pick any orthonormal basis {ek}
for U and

∥ f ∗ (s) f (s)∥2
L2

=
∞

∑
k=1
∥ f ∗ (s) f (s)ek∥2

H

the same value being obtained for any of these orthonormal sets. Now also f ∗ (s) f (s) is
compact and self adjoint so by the Hilbert Schmidt theorem, Theorem 22.5.3, there is a
decreasing list of positive numbers {λ k} and a corresponding orthonormal set of eigenvec-
tors {ek} such that f ∗ (s) f (s)ek = λ kek. Then from this equation, ∥ f (s)ek∥2 = λ k and so
∑k |λ k|< ∞.

Also, for L ∈ L2 (U,H) since L∗L is nonnegative, there is a self adjoint square root√
L∗L and

√
L∗Lek =

√
λ kek. Note also,

∥∥√L∗Lek
∥∥2

= ∥Lek∥2. As pointed out earlier,
This implies that for any pair of orthonormal basis {ek} ,{êk}

∑
k
∥Lek∥2 = ∑

k

∥∥∥√L∗Lek

∥∥∥2
= ∑

k

∥∥∥√L∗Lêk

∥∥∥2
= ∑

k
∥Lêk∥2

so the norm of something in L2 (U,H) can be defined using any orthonormal basis.

Definition 33.2.1 An elementary function is one of the form

f (t)≡
mn−1

∑
r=0

frX(tr ,tr+1] (t)

where fr ∈ L2 (U,H) and fr is Ftr measurable. In this section, assume also that fr is
bounded. Here t0 < t1 < · · · < tmn is a partition of [0,T ] as above. We can define the
stochastic integral of an elementary function with respect to a continuous martingale M (t)
as ∫ t

0
f dM ≡

mn−1

∑
r=0

fr (M (t ∧ tr+1)−M (t ∧ tr))

Note that
∫ t

0 f dM ∈ H for a given ω . Also note that, since the Ft are increasing, given
two elementary functions, we can write them both with respect to the same partition and
consequently this set of elementary functions is a linear space and the integral on these
functions is linear.
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Note that for tr < s≤ t,

E ( fr (M (t ∧ tr+1)−M (t ∧ tr)) |Fs) = frE (M (t ∧ tr+1)−M (t ∧ tr) |Fs)

= fr (M (s∧ tr+1)−M (s∧ tr))

However, for t ≤ tr the term in the sum equals 0. Thus each term in that sum is a martingale.
It follows that

∫ t
0 f dM is a martingale for f an elementary function. It is also a continuous

martingale because each term is continuous. By Theorem 30.5.3, the maximal estimate and
the theorem about the quadratic variation,

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤ 2E

(∥∥∥∥∫ T

0
f dM

∥∥∥∥2
)

Now from the definition of the integral given above, E
(∥∥∥∫ T

0 f dM
∥∥∥2
)
=

E

(
mn−1

∑
r=0

fr (M (tr+1)−M (tr)) ,
mn−1

∑
r=0

fr (M (tr+1)−M (tr))

)
H

(33.17)

because T ≥ tr for each tr in the partition of the interval. Consider a mixed term in the
above product in which j < k

E ( fk (M (tk+1)−M (tk)) , f j (M (t j)−M (t j)))

= E
(
E
[

fk (M (tk+1)−M (tk)) , f j (M (t j)−M (t j)) |Ftk

])
= E

(
E
[
(M (tk+1)−M (tk)) , f ∗k f j (M (t j)−M (t j)) |Ftk

])
= E

(
f ∗k f j (M (t j)−M (t j)) ,E

[
(M (tk+1)−M (tk)) |Ftk

])
= 0

Now from Lemma 22.5.15 on Hilbert Schmidt operators,

∥ frM∥2 ≤ ∥ fr∥2 ∥M∥2 ≤ ∥ fr∥2
L2
∥M∥2 .

Therefore, from 33.17,

E

(
mn−1

∑
r=0

fr (M (tr+1)−M (tr)) ,
mn−1

∑
r=0

fr (M (tr+1)−M (tr))

)
H

=

mn−1

∑
r=0

E
(
∥ fr (M (tr+1)−M (tr))∥2

)
≤

mn−1

∑
r=0

E
(
∥ fr∥2 ∥(M (tr+1)−M (tr))∥2

)
=

mn−1

∑
r=0

E
(
∥ fr∥2

L2
∥M (tr+1)∥2

)
+

mn−1

∑
r=0

E
(
∥ fr∥2

L2
∥M (tr)∥2

)
−2

mn−1

∑
r=0

E
(
∥ fr∥2

L2
(M (tr+1) ,M (tr))

)
(33.18)

Consider the mixed term on the end.

E
(
∥ fr∥2

L2
(M (tr+1) ,M (tr))

)
= E

(
E
(
∥ fr∥2

L2
(M (tr+1) ,M (tr)) |Ftr

))
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= E
(
∥ fr∥2

L2
M (tr) ,E

(
M (tr+1) |Ftr

))
= E

(
∥ fr∥2

L2
∥M (tr)∥2

)
Thus 33.18 reduces to

mn−1

∑
r=0

E
(
∥ fr∥2

L2
∥M (tr+1)∥2

)
−E

(
∥ fr∥2

L2
∥M (tr)∥2

)
=

∫
Ω

mn−1

∑
r=0
∥ fr∥2

L2

(
∥M (tr+1)∥2−∥M (tr)∥2

)
dP

=
∫

Ω

mn−1

∑
r=0
∥ fr∥2

L2
([M (tr+1)]− [M (tr)])dP

because the martingales from the quadratic variation have expectation 0. This has proved
the following theorem.

Theorem 33.2.2 Let f be an elementary function corresponding to the partition
P = {tk}mn

k=0 . Then

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤

∫
Ω

mn−1

∑
r=0
∥ fr∥2

L2
([M (tr+1)]− [M (tr)])dP

=
∫

Ω

∫ T

0
∥ f∥2

L2
d [M] (t)dP (33.19)

That integral on the right end is just the conventional Stieltjes integral of a step function.
Recall that [M] is increasing and continuous.

Theorem 33.2.3 Let f be uniformly bounded, ∥ f (t,ω)∥L2(U,H) ≤K, continuous in
t, and adapted. Also let M (t) be a bounded continuous martingale with values in U and
suppose [M] (T ) ∈ L1 (Ω,P). Let fn be an elementary function approximating f

fn (t)≡
mn−1

∑
k=0

f (tn
k )X(tn

k ,t
n
k+1]

(t)

where Pn =
{

tn
k

}mn
k=0 is a partition of [0,T ] . Assume

∥Pn∥ ≡max
{∣∣tn

k+1− tn
k

∣∣ : k ≤ mn
}
.

Then there exists a unique continuous bounded martingale denoted as
∫ t

0 f dM which satis-
fies

lim
∥Pn∥→0

∫ t

0
fndM =

∫ t

0
f dM in M 2

T (H)

where this means: For every ε > 0 there is δ > 0 such that if Pn is a partition having
∥Pn∥< δ , then ∥∥∥∥∫ (·)

0
fndM−

∫ (·)

0
f dM

∥∥∥∥
M 2

T (H)

< ε.

For any such sequence of partitions and approximating elementary functions, there is a
set of measure zero N such that if ω /∈ N, then

∫ t
0 fndM (ω)→

∫ t
0 f dM (ω) uniformly in

t ∈ [0,T ] . Also, for such f just described,

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2

L2
d [M] (t)dP (33.20)
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Proof:Letting fn be an approximating elementary function for f corresponding to Pn
a partition with ∥Pn∥ → 0, it follows that for each ω, fn (t)→ f (t) uniformly in t. From
33.19,

1
2

∥∥∥∥∫ t

0
fndM (ω)−

∫ t

0
fmdM (ω)

∥∥∥∥2

M 2
T (H)

≤
∫

Ω

∫ T

0
∥ fn− fm∥2

L2
d [M] (t)dP (33.21)

By the uniform convergence to f , the inside Stieltjes integral converges to 0 as n,m→ ∞.
The integrand is bounded by 4K2 [M] (T ) ∈ L1 (Ω) and so one can apply the dominated
convergence theorem to conclude that

{∫ t
0 fndM (ω)

}
is a Cauchy sequence in M 2

T (H) .

Therefore, there is a unique
∫ t

0 f dM ∈M 2
T (H) to which these

∫ t
0 fndM converge. By Propo-

sition 31.7.2 there exists a subsequence converging uniformly in t for all ω off some set of
measure zero. The above inequality in 33.21 also implies that

∫ (·)
0 f dM is independent of

approximating sequence of elementary functions.

Now 1
2 E
(

supt∈[0,T ]
∥∥∫ t

0 fndM
∥∥2
)
≤
∫

Ω

∫ T
0 ∥ fn∥2

L2
d [M] (t)dP and so, passing to a limit

using the dominated convergence theorem yields 33.20. ■

Definition 33.2.4 Let f be continuous in t, adapted, and uniformly bounded, and
let M be a continuous bounded martingale. Then one can define for ω off a set of measure
0,
∫ t

0 f dM where

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM−

∫ t

0
fndM

∥∥∥∥2
)

= 0 (33.22)

where { fn} is any sequence of elementary functions converging to f .

If f is of bounded variation in addition to being continuous, then the convergence for
each ω follows directly from considerations involving Stieltjes integrals without any prob-
abilistic considerations. However, here f is only required to be continuous. Later, this will
be relaxed further.

Note that there was no need for f to have values in L2 (U,H) . It would suffice to have
f ∈L (U,H) and all of the above would work the same way. You would simply replace
∥ f∥L2(U,H) with ∥ f∥L (U,H). The reason for the specialization involves some technical
considerations relative to the Wiener process and the need for compactness. Therefore, I
have chosen to present it from the beginning with this more specialized case.

Now here is a fundamental lemma about integrals of these elementary functions having
to do with stopping times.

Lemma 33.2.5 Suppose M is a continuous bounded martingale having values in a sep-
arable Hilbert space U and let f be an elementary function having values in L2 (U,H)
for H a separable Hilbert space. Then the above inequality 33.20 is valid. Also, if σ is a
stopping time, then ∫ t

0
f dMσ =

∫ t∧σ

0
f dM (33.23)

Also,
1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σ

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0

∥∥ f X[0,σ ]

∥∥2
L2

d [M]dP (33.24)
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Proof: It only remains to verify 33.23. The first equal sign is obvious from the defini-
tion of

∫ t
0 f dM. Both sides equal

mn−1

∑
r=0

fr (M (t ∧σ ∧ tr+1)−M (t ∧σ ∧ tr))

Now consider 33.24. From 33.23, the left side is

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dMσ

∥∥∥∥2
)
≤

∫
Ω

∫ T

0
∥ f∥2

L2
d [Mσ ]dP

=
∫

Ω

∫ T

0
∥ f∥2

L2
d [M]σ dP

=
∫

Ω

∫ T

0
X[0,σ ] ∥ f∥2

L2
d [M]dP =

∫
Ω

∫ T

0

∥∥X[0,σ ] f
∥∥2

L2
d [M]dP

This is because when t > σ , [M]σ (t) = [M] (σ), a constant. Thus the contribution to the
conventional integral is 0 from then on. On the other hand, [M]σ (t) = [M] (t) for t ≤ σ and
so the last equation follows. ■

Now here is a nice proposition which is a summary of what has just been discussed
along with some other observations.

Proposition 33.2.6 For ∥ f (t,ω)∥ bounded by K and continuous in t for each ω having
values in L2 (U,H) , and for M a continuous bounded martingale with values in U, t →∫ t

0 f dM is a continuous martingale with values in H. Assume that [M] (T ) ∈ L1 (Ω). Also
the fundamental inequality

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2

L2
d [M]dP (33.25)

is valid for f . In addition, f →
∫ t

0 f dM is linear on the linear space of bounded continuous
in t adapted functions. If σ is a stopping time,∫ t∧σ

0
f dM =

∫ t

0
f dMσ (33.26)

Proof: Since the integral is a limit of integrals of elementary functions for ω off a set
of measure zero and since this integral is linear on these functions, the integral is linear.
Finally, consider the claim 33.26. From Proposition 31.7.2, and letting { fn} be elemen-
tary functions approximating f as above, then by that proposition again, there is a further
subsequence still denoted with n such that for a.e. ω,∫ t

0
f dMσ = lim

n→∞

∫ t

0
fndMσ = lim

n→∞

∫ t∧σ

0
fndM =

∫ t∧σ

0
f dM ■

Note how this does not require f to be of bounded variation. If f were of bounded vari-
ation, you would get pointwise convergence of the Stieltjes sums for

∫ t
0 fndM to

∫ t
0 f dM

as a consequence of simple considerations involving Stieltjes integrals. Then the new in-
formation is that the Stieltjes integral

∫ t
0 f dM for f of bounded variation is a continuous

martingale.
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33.3 More on Stopping Times
Next I want to consider

∫ t
0 f X[0,σ ]dM in the case of elementary functions for f a continuous

in t, adapted, and bounded. This involves the same process as earlier and it is analogous to
the traditional definition of the Stieltjes integral. First we approximate with an elementary
function and then pass to a limit.

Proposition 33.3.1 Let σ be a stopping time and let {tk}mn
k=0 be partition points of

[0,T ] . Also define the discrete approximation of σ

σn (ω)≡
mn−1

∑
k=0

tkXσ−1((tk,tk+1])
(ω)

Then for f an elementary function with respect to {tk}n
k=0 points as described above, it

follows that f X[0,σn] is an elementary function and σn is a stopping time. Also∫ t

0
f X[0,σn]dM =

∫ t∧σn

0
f dM

Proof: First, why is σn a stopping time? Consider [σn ≤ t] . Say t ∈ (tk, tk+1]. In case,
t = tk+1, [σn ≤ t] = [σ ≤ t] ∈Ft . Otherwise, [σn ≤ t] = [σ ≤ tk] ∈Ftk ⊆Ft . Thus σn is
indeed a stopping time. Now

f X[0,σn] (t) =
mn−1

∑
k=0

fkX[0,σn] (t)X(tk,tk+1] (t) .

t is somewhere. Say t ∈ (tk, tk+1]. Then consider fkX[0,σn] (t) . For this t, this term is
nonzero if and only if ω ∈ [t ≤ σn] if and only if ω ∈ [tk < σn] ∈Ftk . Thus this term is the
indicator function of a set in Ftk for all t ∈ (tk, tk+1]. It follows f X[0,σn] is an elementary
function and can be written as ∑

mn−1
k=0 fkX[tk<σn]X(tk,tk+1] (t) , so its integral is

mn−1

∑
k=0

fkX[tk<σn] (M (t ∧ tk+1)−M (t ∧ tk))

=
mn−1

∑
k=0

fk (M (t ∧ tk+1∧σn)−M (t ∧ tk ∧σn))

because if σn > tk in the kth term and the term is nonzero, then σn = tk+1. If σn ≤ tk, the
kth term on the left is 0 and on the right that term is

fk (M (t ∧σn)−M (t ∧σn)) ,

also zero. Now the right side in the above is just
∫ t∧σn

0 f dM and the left side is defined
earlier as

∫ t
0 f X[0,σn]dM. ■

Lemma 33.3.2 Let f be bounded, adapted, and continuous in t and let σ be a stopping
time with finite values in [0,T ]. Also assume [M] (T ) ∈ L1 (Ω,P). Then letting σn be as
above,

σn (ω)≡
mn−1

∑
k=0

tkXσ−1((tk,tk+1])
(ω) ,
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fnX[0,σn] → f X[0,σ ] in L2 (Ω× [0,T ] ;L2 (U,H)). Here fn (t) is the elementary function

∑
mn−1
k=0 f

(
tn
k

)
X(tn

k ,t
n
k+1]

(t) where
{

tmn
k

}
is a partition Pn with ∥Pn∥→ 0 so that fn converges

uniformly to f for each ω .

Proof: Note that |σn (ω)−σ (ω)| ≤ ∥Pn∥ . Then∥∥ fnX[0,σn]− f X[0,σ ]

∥∥ ≤
∥∥( fn− f )X[0,σn]

∥∥+∥∥ f X[σn,σ ]

∥∥∥∥ fnX[0,σn]− f X[0,σ ]

∥∥2 ≤ 2
(∥∥( fn− f )X[0,σn]

∥∥2
+
∥∥ f X[σn,σ ]

∥∥2
)

Thus ∫
Ω

∫ T

0

∥∥ fnX[0,σn]− f X[0,σ ]

∥∥2 d [M]dP

≤ 2
∫

Ω

∫ T

0
∥ fn− f∥2 d [M]dP+2K

∫
Ω

∫ T

0
X[σn,σ ]d [M]dP

≤ 2
∫

Ω

∫ T

0
∥ fn− f∥2 d [M]dP+2K

∫
Ω

[M] (σ)− [M] (σn)dP (33.27)

the integrands
∫ T

0 ∥ fn− f∥2 d [M] and [M] (σ)− [M] (σn) both converge to 0 a.e. ω as
n→∞ thanks to continuity of [M]. Also the assumption that [M] (T ) is in L1 along with the
boundedness of f imply these integrands are uniformly integrable. Hence we can use the
Vitali convergence theorem and conclude that the limit of 33.27 is 0. ■

Now note that if you fix ω, fnX[0,σn] (t)→ f X[0,σ ] (t) for each t < σ (ω) . Thus, if
f is of bounded variation as well as being continuous in each t, standard Stieltjes in-
tegral considerations involving continuity of f and M show that

∫ t
0 fnX[0,σn] (t)dM →∫ t

0 f X[0,σ ] (t)dM with no probabilistic complications at all.

Definition 33.3.3 Let f be adapted, continuous in t, and bounded. Let M be a
continuous bounded martingale. Also let σ be a stopping time and let σn be the discreet
approximation above relative to partitions Pn =

{
tn
k

}mn
k=0 where ∥Pn∥ → 0 and { fn} the

sequence of elementary functions approximating f ,

fn (t)≡
mn−1

∑
k=0

f (tn
k )X(tn

k ,t
n
k+1]

(t) ,

Then there exists a martingale denoted as
∫ t

0 f X[0,σ ]dM such that∫ t

0
f X[0,σ ]dM = lim

n→∞

∫ t

0
fnX[0,σn]dM in M2

T (H)

This is something new. Earlier we had
∫ t

0 f dM defined where f is continuous on [0,T ] .
We also have

∫ t∧σ

0 f dM defined where σ is a stopping time and f is continuous on [0,T ] .
However, f X[0,σ ] is not necessarily continuous on [0,T ] . It is continuous on [0,T ∧σ ] so
the time intervals are changing as a function of ω .

To begin with, we can stop the martingale
∫ t

0 fndM with the stopping time σ , this de-
noted as

∫ t∧σ

0 fndM. Then∫ t∧σ

0
fndM−

∫ t∧σn

0
fndM

=
mn−1

∑
k=0

f (tn
k )

(
(M (t ∧σ ∧ tk+1)−M (t ∧σ ∧ tk))
−(M (t ∧σn∧ tk+1)−M (t ∧σn∧ tk))

)
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=
mn−1

∑
k=0

f (tn
k )

(
(M (t ∧σ ∧ tk+1)−M (t ∧σn∧ tk+1))
−(M (t ∧σ ∧ tk)− (M (t ∧σn∧ tk)))

)
Now from maximal theorems,

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σ

0
fndM−

∫ t∧σn

0
fndM

∥∥∥∥2
)

≤ E

(∥∥∥∥∫ T∧σ

0
fndM−

∫ T∧σn

0
fndM

∥∥∥∥2
)

= E

(
∑

mn−1
k=0

∥∥ f
(
tn
k

)
(M (σ ∧ tk+1)−M (σn∧ tk+1))

∥∥2

+
∥∥ f
(
tn
k

)
(M (σ ∧ tk)− (M (σn∧ tk)))

∥∥2

)
+?? (33.28)

where ?? is −2 times the expectation of a sum of mixed terms which can be written in the
following form after noticing that M (σ ∧ tk)− (M (σn∧ tk)) is Ftk measurable.

E
(

f
(
tn
k

)∗ f
(
tn
k

)
M (σ ∧ tk)

−(M (σn∧ tk)) ,E
(
M (σ ∧ tk+1)−M (σn∧ tk+1) |Ftk

) )
= E

(
f (tn

k )
∗ f (tn

k )M (σ ∧ tk)− (M (σn∧ tk)) ,M (σ ∧ tk)−M (σn∧ tk)
)

= E
(
∥ f (tn

k )(M (σ ∧ tk)−M (σn∧ tk))∥2
)

Therefore 33.28 reduces to

E

(
∑

mn−1
k=0

∥∥ f
(
tn
k

)
(M (σ ∧ tk+1)−M (σn∧ tk+1))

∥∥2

−
∥∥ f
(
tn
k

)
(M (σ ∧ tk)− (M (σn∧ tk)))

∥∥2

)
= E

(
∥ f (T )(M (T ∧σ )−M (T ∧σn ))∥2

)
This converges to 0 because the integrand converges to 0 since σn (ω)→ σ (ω) and the
integrand is uniformly bounded by assumption. Thus this has shown that

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σ

0
fndM−

∫ t∧σn

0
fndM

∥∥∥∥2
)
→ 0.

This has shown the following technical lemma.

Lemma 33.3.4 Letting f be bounded and continuous in t and adapted and letting M be
a bounded continuous martingale, and σn the discrete approximation of a stopping time σ

and fn the elementary function approximating f as described above, then it follows that

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σ

0
fndM−

∫ t∧σn

0
fndM

∥∥∥∥2
)
→ 0.

Theorem 33.3.5 Definition 33.3.3, is well defined and
∫ t

0 f X[0,σ ]dM is a martin-
gale equal to

∫ t∧σ

0 f dM. Also, there is a set of measure zero N and a subsequence, still
denoted as n such that for ω /∈ N,∫ t

0
fnX[0,σn]dM (ω)→

∫ t

0
f X[0,σ ]dM (ω) (33.29)

uniformly in t ∈ [0,T ].
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Proof: From Proposition 31.7.2,
∫ t∧σ

0 fndM →
∫ t∧σ

0 f dM in M 2
T (H) . From Lemma

33.3.2 it follows that also∫ t∧σn

0
fndM =

∫ t

0
fnX[0,σn]dM→

∫ t∧σ

0
f dM

in M 2
T (H) . Therefore,

{∫ t
0 fnX[0,σn]dM

}
is a Cauchy sequence in M 2

T (H) and so con-
verges to a continuous martingale denoted as

∫ t
0 f X[0,σ ]dM. Any two sequences of approx-

imating elementary functions lead to the same
∫ t

0 f X[0,σ ]dM Thanks to Lemma 33.3.2 and
the inequality∥∥∥∥∫ t∧σ

0
fndM−

∫ t∧σ

0
f̂ndM

∥∥∥∥2

M 2
T (H)

≤ 2
∫

Ω

∫ T

0

∥∥ fn− f̂n
∥∥2

L2
d [M]dP

in which the right side converges to 0. By Proposition 31.7.2 again, there is a set of measure
zero N such that if ω /∈ N, then 33.29 holds. ■

Again, if f is not just continuous and adapted but is also of bounded variation, the con-
vergence for each ω follows from Stieltjes integration theory. Essentially, what the above
shows is that even in this case, the integral is a continuous martingale. Also, the above
gives meaning to the expression

∫ t
0 f X[0,σ ]dM (ω) as a limit in M 2

T (H) of integrals of ap-
propriate elementary functions just as

∫ t
0 f dM (ω) was a limit of integrals of appropriate

elementary functions. It is the same thing you see with Stieltjes integration but here it is
much more elaborate. In place of bounded variation you have adapted and the integrator
function is now a martingale.

33.4 Local Martingales as Integrators
Now suppose M is a local martingale. This means that there is a localizing sequence of
stopping times {τn} ,τn → ∞, such that Mτn is a martingale. Recall Proposition 32.3.3
which says that we can always assume the localizing sequence τn makes Mτn uniformly
bounded as well as a martingale.

I will use this fact whenever convenient from now on. We know that
∫ t∧τ

0 f dM ≡∫ t
0 f dMτ if M is a bounded martingale so the followng definition will simply extend this

idea to give a definition for the stochastic integral in the case where M is continuous but
maybe not bounded.

Definition 33.4.1 Let M be a continuous local martingale with a localizing se-
quence τn for which Mτn is a bounded martingale. Let f be bounded and continuous in t
and adapted. Then

∫ t
0 f dM is defined as follows.∫ t∧τn

0
f dM ≡

∫ t

0
f dMτn

thus for a given ω,
∫ t

0 f dM = limn→∞

∫ t
0 f dMτn .

Lemma 33.4.2 The above definition does define an adapted process
∫ t

0 f dM which is a
continuous local martingale.

Proof: First note that if σn is another localizing sequence,
∫ t

0 f dM (ω) is the same when
defined from either localizing sequence. The reason is that for either sequence, there is n
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such that if m≥ n, then for a given ω , τm (ω) ,σm (ω) are both ∞. It follows upon using ap-
proximation with elementary functions and passing to a limit using a suitable subsequence
of elementary functions that for such τm,σm,

∫ t∧τm

0
f dM (ω) ,

∫ t∧σm

0
f dM (ω) = lim

p→∞

p−1

∑
k=0

f
(
t p
k

)(
M
(
t ∧ t p

k+1

)
−M

(
t ∧ t p

k

))
(ω)

this limit being independent of the localizing sequence used. The reason it is a local con-
tinuous martingale is that Mτn is a bounded continuous martingale and so(∫ t

0
f dM

)τn

≡
∫ t∧τn

0
f dM ≡

∫ t

0
f dMτn

is a martingale. ■
The idea is that if you know it at t ∧ τn for all τn where τn→ ∞, then you know it at t

because you can simply pick τn larger than t and from the above, it doesn’t matter which
localizing sequence you use.

Now suppose M is just a local martingale so there is a localizing sequence of stopping
times {τn} such that Mτn is a bounded martingale and suppose [M] (T ) ∈ L1 (Ω) . Let fn
be elementary functions converging to f a bounded, adapted, continuous in t function,
convergence uniform in t for each ω . Then from the fundamental inequality above and
using the formulas for stopping times,

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧τ p

0
fndM

∥∥∥∥2
)

=
1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
fndMτ p

∥∥∥∥2
)

≤
∫

Ω

∫ T

0
∥ fn∥2 d [M]τ p (t)dP≤

∫
Ω

∫ T

0
∥ fn∥2 d [M] (t)dP

Since ∥ f∥ is assumed bounded and [M] (T ) ∈ L1, it follows that there is a dominating
function on the right, namely K2 [M] (T )where K ≥ ∥ f (t,ω)∥ for all (t,ω). Let n→ ∞

and use the dominated convergence on the right and either Fatou’s lemma or monotone
convergence theorem on the left to obtain

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2 d [M] (t)dP

The reason the monotone convergence theorem applies is that on the left, the stopping time
effectively restricts the values of t over which the sup is taken until τ p ≥ t. You could also
apply Fatou’s lemma.

This has shown the following proposition.

Proposition 33.4.3 Let f be adapted, continuous in t and bounded. Also let M be a
local martingale with [M] (T ) ∈ L1 (Ω). Then

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2 d [M] (t)dP
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If f is bounded, continuous, and of bounded variation, and adapted and M is a local
martingale, this shows that the Stieltjes integral

∫ t
0 f dM is a local martingale.

It is clear that if M is a local martingale with localizing sequence τ p and if σ is a
stopping time, then Mσ is also a local martingale with localizing sequence τ p because
(Mσ )τ p = (Mτ p)σ , the latter being a bounded martingale. Now for f continuous in t and
bounded and adapted, ∫ t∧σ∧τ p

0
f dM ≡

∫ t

0
f dMσ∧τ p ≡

∫ t∧τ p

0
f dMσ

Therefore, from the definition, whenever M is a local martingale and f bounded and con-
tinuous in t and adapted, ∫ t∧σ

0
f dM =

∫ t

0
f dMσ (33.30)

33.5 The Stochastic Integral and the Quadratic Varia-
tion

In this simple case of the above, you have a bounded martingale M with values in U and
you have f ∈ U ′. Thus f ∈ L (U,R). Is f actually in L2 (U,R)? By Riesz represen-
tation theorem, there is x ∈ U such that Rx = f . Then if {gk} is an orthonormal basis
for U,∑k | f (gk)|2 = ∑k |(gk,Rx)|2 = ∑k |(gk,x)|2 = ∥x∥2 because it is just the sum of the
squares of the Fourier coefficients of x. Thus f ∈L2 (U,R).

Now an example of a continuous in t, adapted, bounded function in L2 (U,R) is just
RM (t) ≡ f (t). Therefore, it makes perfect sense to consider

∫ t
0 (RM)dM. Let ∥Pn∥ → 0

and let the stochastic integral of an elementary function fn (t) =∑
mn−1
k=0 RM

(
tn
k

)
X(tn

k ,t
n
k+1]

(t)
be of the form

mn−1

∑
k=0

RM (tn
k )
(
M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

where
{

tn
k

}mn
k=0 is this partition Pn.

ALWAYS assume in this that the partitions are nested, Pn ⊆ Pn+1.

Qn (t) ≡
mn−1

∑
k=0

∥∥M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
∥∥2

U

=
mn−1

∑
k=0

∥∥M
(
t ∧ tn

k+1
)∥∥2

+∥M (t ∧ tn
k )∥

2−2
(
M
(
t ∧ tn

k+1
)
,M (t ∧ tn

k )
)

=
mn−1

∑
k=0

∥∥M
(
t ∧ tn

k+1
)∥∥2−∥M (t ∧ tn

k )∥
2−2

(
M (t ∧ tn

k ) ,M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
)

= ∥M (t)∥2−2
∫ t

0
(RMn)dM

Then passing to a limit, then Qn (t)→ Q(t) in L2 (Ω) because 2
∫ t

0 (RMn)dM converges in
M 2

T (R) . Using a subsequence, we can also get uniform convergence in t for all ω off a set
of measure zero. Thus Q is increasing. It follows

Q(t) = ∥M (t)∥2−2
∫ t

0
(RM)dM = [M] (t)+N (t)−2

∫ t

0
(RM)dM
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and so Q(t)− [M] (t) equals a martingale. Thus from Lemma 32.2.1, Q(t)− [M] (t) = 0.
This proves the first part of the following important result.

Theorem 33.5.1 Let H be a Hilbert space and suppose (M,Ft) , t ∈ [0,T ] is a uni-
formly bounded continuous martingale with values in H. Also let

{
tn
k

}mn
k=1 be a sequence of

partitions satisfying

lim
n→∞

max
{∣∣tn

i − tn
i+1
∣∣ , i = 0, · · · ,mn

}
= 0, {tn

k }
mn
k=1 ⊆

{
tn+1
k

}mn+1
k=1 .

Then

[M] (t) = lim
n→∞

mn−1

∑
k=0

∥∥M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
∥∥2

H

the limit taking place in L2 (Ω). In case M is just a continuous local martingale, the above
limit happens in probability.

Proof: It only remains to show the claim about the case where M is a local martingale.
Suppose M is only a continuous local martingale. By Proposition 32.3.3 there exists an
increasing localizing sequence {τk} such that Mτk is a uniformly bounded martingale. Then

P(∪∞
k=1 [τk = ∞]) = 1

As above, let

Qn (t)≡
mn−1

∑
k=0

∥∥M
(
t ∧ tn

k+1
)
−M (t ∧ tn

k )
∥∥2

H

where there are mn points in Pn where as before, Pn ⊆ Pn+1 for all n.
Let η ,ε > 0 be given. Then there exists k large enough that P([τk = ∞]) > 1−η/2.

This is because the sets [τk = ∞] increase to Ω other than a set of measure zero. Then for
this k, [∣∣Qτk

n − [M]τk (t)
∣∣> ε

]
∩ [τk = ∞] = [|Qn− [M] (t)|> ε]∩ [τk = ∞]

Thus

P([|Qn− [M] (t)|> ε]) ≤ P([|Qn− [M] (t)|> ε]∩ [τk = ∞])

+P([τk < ∞])

≤ P
([∣∣Qτk

n − [M]τk (t)
∣∣> ε

])
+η/2

The convergence in probability of Qτk
n (t) to [M]τk (t) follows from the convergence in

L2 (Ω) shown earlier for bounded martingales, and so if n is large enough, the right side
of the above inequality is less than η/2+η/2 = η . Since η was arbitrary, this proves
convergence in probability. ■

33.6 The Case of f ∈ L2 (Ω× [0,T ] ;L2 (U,H))

At this point I will discontinue the general treatment in terms of arbitrary martingales and
suppose that [M] (t) = F (t) a continuous increasing function which depends only on t and
not on ω . In fact, the most interest is centered on the Wiener process in which [M] (t) = at
for a> 0 and this is the case considered here. Of course a does not matter so we will simply
assume [M] (t) = t.
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It is not necessary to have f be uniformly bounded. Instead, one can consider f ∈
L2 (Ω× [0,T ] ;L2 (U,H)) where f is progressively measurable. I considered the case
where f is continuous in t above because it is a convenient way to tie this in to the or-
dinary theory of Stieltjes integrals and to point out that these standard objects do deliver
martingales in some reasonable cases.

As before, I will first consider the case where M is a bounded martingale and then ex-
tend to the case where M is a local martingale. As before, it is all based on the fundamental
inequality

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤ E

(∥∥∥∥∫ T

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2

L2
dtdP (33.31)

which was shown to hold for all adapted f continuous in t and also bounded, which implies
the integral on the right is finite.

Let f ∈ L2 (Ω× [0,T ] ;L2 (U,H)) be adapted and let f (t,ω) be extended as 0 for t off
[0,T ].

Definition 33.6.1 Let fn (t)≡ n
∫ t

t−1/n f (s)ds.

Lemma 33.6.2 fn is adapted and t→ fn (t) is continuous for a.e. ω .

Proof: First consider the claim about continuity. For each ω off a set of measure zero,
f ∈ L2 ([0,T ] ;L2) and so, for such ω

∥ fn (t)− fn (t̂)∥2
L2

=

∥∥∥∥n
∫ t

t−1/n
f (s)ds−n

∫ t̂

t̂−1/n
f (s)ds

∥∥∥∥2

dP

= n
∥∥∥∥∫ t̂−1/n

t−1/n
f (s)ds+

∫ t̂

t
f (s)ds

∥∥∥∥2

dP

≤ 2n

(∥∥∥∥∫ t̂−1/n

t−1/n
f (s)ds

∥∥∥∥2

+

∥∥∥∥∫ t̂

t
f (s)ds

∥∥∥∥2
)
≤ 8n(t− t̂)∥ f∥2

L2([0,T ];L2)

It follows that ω → n
∫ t

t−1/n f (s)ds is Ft measurable because X[0,t] f is Ft ×B ([0,T ])
measurable by assumption that f is progressively measurable. ■

Observe that

∥ fn− f∥L2(Ω×[0,T ];L2(U,H)) ≡
(∫ T

0

∫
Ω

∥ fn− f∥2
L2

dPdt
)1/2

=

(∫
Ω

∫ T

0

∥∥∥∥n
∫ 0

−1/n
( f (t + s)− f (t))ds

∥∥∥∥2

L2

dtdP

)1/2

From Minkowski’s inequality,

≤ n
∫ 0

−1/n

(∫
Ω

∫ T

0
∥ f (t + s)− f (t)∥2 dtdP

)1/2

ds (33.32)

so

∥ fn− f∥2
L2(Ω×[0,T ];L2(U,H)) ≤

∫
Ω

n
∫ 0

−1/n

∫ T

0
∥ f (t + s)− f (t)∥2 dtdsdP
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Now

n
∫ 0

−1/n

∫ T

0
∥ f (t + s)− f (t)∥2 dtds

≤ 2n
∫ 0

−1/n

∫ T

0
∥ f (t + s)∥2 dtds+2n

∫ 0

−1/n

∫ T

0
∥ f (t)∥2 dtds

≤ 4
∫ T

0
∥ f (t)∥2 ds

which by definition is in L1 (Ω) . Therefore, the integrands

n
∫ 0

−1/n

∫ T

0
∥ f (t + s)− f (t)∥2 dtds

converge to 0 by continuity of translation in L2 and are uniformly integrable. By Vitali
convergence theorem, limn→∞ ∥ fn− f∥2

L2(Ω×[0,T ];L2(U,H)) = 0.
I want to use the fundamental inequality 33.31 which has only been presented above

for f bounded. Therefore, let gn (t,ω) ≡ Pmn ( f (t,ω)) where Pmn is the projection onto
B(0,mn) in the Hilbert space L2 (U,H). As follows from the definition, one can obtain an
inner product for the norm in this Banach space in the form ( f ,g) ≡ ∑

∞
k=1 ( f (ei) ,g(ei))H

where {ei} is some orthonormal basis for U . Now Pmn is Lipschitz continuous and if mn is
large enough, ∥gn− fn∥L2(Ω×[0,T ];L2(U,H)) < 2−n and so gn (t,ω) is bounded and continuous
and adapted and

lim
n→∞
∥gn− f∥L2(Ω×[0,T ];L2(U,H)) = 0 (33.33)

With this preparation, here is the main result.

Theorem 33.6.3 Let f be adapted and in L2 (Ω× [0,T ] ;L2 (U,H)) . Then there
exists a sequence {gn} of adapted functions continuous in t such that

lim
n→∞
∥gn− f∥2

L2(Ω×[0,T ];L2(U,H)) = lim
n→∞

∫
Ω

∫ T

0
∥gn− f∥2 dtdP = 0

Also it follows that
∫ t

0 gndM is a Cauchy sequence in M 2
T (H) converging to a continuous

martingale denoted as
∫ t

0 f dM in M 2
T (H). In addition, for f ∈ L2 (Ω× [0,T ] ;L2 (U,H)) ,

adapted, the fundamental inequality holds.

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2

L2
dtdP

If M is only a local martingale, then the same inequality is valid. Also, if σ is any stopping
time, ∫ t∧σ

0
f dM =

∫ t

0
f dMσ

Proof: It follows from the above argument there exists a sequence of adapted continu-
ous, bounded, functions converging to f in L2 (Ω× [0,T ] ;L2 (U,H)) . Therefore,

lim
m,n→∞

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
(gn−gm)dM

∥∥∥∥2
)
≤ lim

m,n→∞

∫
Ω

∫ T

0
∥gn−gm∥2 dtdP = 0
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and by completeness of M 2
T (H) ,

∫ t
0 gndM converges to a continuous martingale which I

can call
∫ t

0 f dM. It is clear that any two sequences give the same result from the inequality
satisfied. Therefore, the stochastic integral

∫ t
0 f dM is well defined. Also from the theory of

M 2
T (H) , there is a subsequence for which

∫ t
0 gndM converges uniformly in t to

∫ t
0 f dM off

some set of measure zero.
In case M is only a local martingale, we see from approximating f with continuous in t

and adapted and bounded functions gn as above that the appropriate way to define
∫ t

0 f dM
is as

∫ t∧σn
0 f dM ≡

∫ t
0 f dMσn where {σn} is a localizing sequence for M.

The quadratic variation of Mσn is no more than the quadratic variation of M and so

lim
m,n→∞

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σn

0
(gn−gm)dM

∥∥∥∥2
)

≤ lim
m,n→∞

∫
Ω

∫ T

0
∥gn−gm∥2 dtdP = 0

Thus we can obtain
∫ t

0 f dMσn as a limit in M 2
T (H) as just done. Then one can define∫ t

0 f dM ≡ limn→∞

∫ t
0 f dMσn where σn is a localizing sequence for M. Also, we can pass to

a limit as n→ ∞ using the monotone convergence theorem in the inequality

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t∧σn

0
f dMσn

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2 dtdP

The stopping time has the effect of restricting the time interval, so as σn increases, one is
taking sup over a larger set. That is why the monotone convergence theorem applies on the
left side. Then

1
2

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f dM

∥∥∥∥2
)
≤
∫

Ω

∫ T

0
∥ f∥2 dtdP

As to the last claim about stopping times, it works for f bounded and continuous in t
and adapted and M a martingale. Therefore, it also works for

f ∈ L2 (Ω× [0,T ] ;L2 (U,H)) .

In general, when M is only a local martingale with localizing sequence stopping times
{τn} , then Mσ is also a local martingale with localizing sequence {τn}. I need to show
that ∫ t∧σ

0
f dM =

∫ t

0
f dMσ

as local martingales. I need to show that∫ t∧σ∧τn

0
f dM =

∫ t

0
f d (Mσ )τn

The equation is true because of the definition of
∫ t∧σ

0 f dM in terms of the stopping times.
Therefore,

∫ t∧σ

0 f dM =
∫ t

0 f dMσ as local martingales. Of course if M is a martingale, this
is true also. ■
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C1 and differentiability, 192
C∞
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Cm

c , 366
Fσ , 253
Gδ , 534
Gδ , 253
L1

approximation, 315
weak compactness, 631

Lp

definition, 359
density of continuous functions, 363
density of simple functions, 362
density of smooth functions, 368
norm, 359
separability, 363

Lp

reflexive, 631
weak compactness, 631

L1

complex vector space, 286
L1(Ω), 285
L∞, 361
Lp

compactness, 371
continuity of translation, 365

Lp(Ω), 357
Lp (Ω;X), 671
L1

loc, 366
X×Y

norm, 538
ε net, 78
Fn, 99
D∗, 443
G , 375
L (X ,Y ), 535

Banach space, 535
π systems, 243
σ algebra, 237

a-priori estimates, 167
absolutely continuous

existence of derivative, 346
function, 345
function and measure, 345
integral of derivative, 349

integral of the derivative, 346
Lipschitz, 347
measure, 345

accumulation point, 71
adapted, 786, 817
adjoint linear map, 544
adjugate, 49
Alexander subbasis theorem, 507
algebra, 141

Cartesian product, 524
measure on algebra, 524
recognizing one, 523

algebra of sets, 523
approximate identity, 366
apriori estimates, 167
arcwise connected, 90

connected, 90, 144
area measure

on manifold, 399
arithmetic mean, 233
Arzela Ascoli theorem

Banach space, 690
Ascolil Arzela theorem

general form, 87
at most countable, 61
axiom of choice, 57, 61
axiom of extension, 57
axiom of specification, 57
axiom of unions, 57

backwards Holder inequality, 373
backwards Minkowski inequality, 374
Baire

category, 533, 534
Baire theorem, 122
Banach

space, 533
Banach Alaoglu theorem, 556
Banach space, 106, 205, 359, 533, 711
Banach Steinhaus theorem, 536
barycenter, 157
basis, 101
basis of a topology, 501
Bernstein polynomial

approximation of derivative, 133
Besicovitch

covering theorem, 119, 317
Besicovitch covering theorem, 263
Bessel’s inequality, 585, 619
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Binet Cauchy formula, 45
block matrix, 15
block multiplication, 15, 17
Bochner integrable, 655
Borel

measure, 248
Borel Cantelli lemma, 242, 715
Borel measure

metric space, 248
Polish space, 256

Borel regular, 447
Borel sets, 252
Borsuk, 423
Borsuk Ulam theorem, 425
Borsuk’s theorem, 421
bounded continuous linear functions, 534
bounded linear maps, 205

continuity, 126
bounded set, 110
Brouwer fixed point theorem, 329, 420, 578

complact convex set, 163
Browder’s lemma, 178, 278, 619
Burkholder Davis Gundy

inequality, 877
Burkholder Davis Gundy inequality, 875

Cantor function, 269
Cantor set, 268
Caratheodory extension theorem, 525
Caratheodory functions, 274
Caratheodory’s procedure, 246
Cariste fixed point theorem, 172
Cauchy Schwarz inequality, 104, 575
Cauchy sequence, 73
Cayley Hamilton theorem, 53
central limit theorem, 778
chain, 68
chain rule, 188
change of variables, 467

linear map, 330
linear maps, 331

characteristic function, 750
characteristic polynomial, 53
Clairaut’s theorem, 198
Clarkson

inequalities, 551
Clarkson inequalities, 552
Clarkson inequality

p≥ 2, 548
easy one, 549

closed disk, 110
closed graph theorem, 539
closed set, 72, 502
closed sets

limit points, 72
closure of a set, 74, 75, 503
coarea formula, 462, 463
cofactor, 47
cofactor identity, 201, 414
column rank, 50
compact map

finite dimensional approximation, 163
compact set, 76, 504
compactness

closed interval, 109
equivalent conditions, 78

completely separable, 75
complex

measure, 621
complex valued measurable functions, 284
components of a vector, 101
conditional expectation, 781

Banach space, 701
independence, 784

connected, 88
open balls, 90, 144

connected component, 89
boundary, 410

connected components, 89
equivalence class, 89
equivalence relation, 89
open sets, 90

connected set
continuous function, 91, 145
continuous image, 88

connected sets
intersection, 88
intervals, 89
real line, 89
union, 88

continuity
algebraic properties, 129
bounded linear maps, 126
coordinate maps, 127
uniform, 82

continuity of translation, 365



914 INDEX

continuity set, 777
continuous function, 80, 503

maximum and minimum, 82
continuous functions

compact support, 290
equivalent conditions, 80

continuous image of compact set, 81
continuous martingale

not of bounded variation, 863
contraction map, 82

fixed point, 208
fixed point theorem, 82

convergence in measure, 310
convex, 711

set, 576
sets, 145

convex
functions, 372

convex combination, 120
convex function

continuous, 741
convex hull, 120, 155, 711
convolution, 366, 388
convolution of measures, 755
coordinate map, 111
coordinates, 155
countable, 61
covariance matrix, 759
covariation, 871
cowlicks, 425
Cramer’s rule, 49
cylindrical set, 725, 749

definition of Lp, 359
definition of a Ck function, 194
density of G in Lp, 376
density of continuous functions in Lp, 363
derivative

chain rule, 188
continuity, 193
continuity of Gateaux derivative, 193
continuous, 187
continuous Gateaux derivatives, 191
Frechet, 186
Gateaux, 189, 191
generalized partial, 196
higher order, 193
matrix, 189

partial, 196
second, 193
well defined, 186

derivative of inverse, 230
derivatives, 186
determinant

definition, 41
expansion along row, column, 47
matrix inverse, 48
permutation of rows, 42
product, 45
row, column operations, 43
symmetric definition, 43
transpose, 43

diameter of a set, 96
differentiable, 186

continuous, 187
continuous partials, 197

differentiable map of Lebesgue measurable
set, 332

differential equations
dependence on data, 562
global existence, 166

differential forms
generalalities, 472

differentiation
Radon measures, 341

differentiation almost everywhere
monotone function, 267

dimension of a vector space, 102
Dini derivates, 265
directional derivative, 191
distance, 71
distribution, 443, 715
distribution function, 297
divergence theorem, 402
dominated convergence

generalization, 290
dominated convergence theorem, 289, 673
Doob Dynkin lemma, 723
Doob estimate, 793
Doob’s sub-martingale estimate, 826
dot product, 103
dual space, 543
duality maps, 572
dyadics, 125
Dynkin’s lemma, 243

alternative conditions, 269
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Eberlein Smulian theorem, 560
Eggoroff theorem, 291
Egoroff theorem, 654
eigenvalue, 233
eigenvalues, 53
Ekeland variational principle, 170
elementary function, 883, 893
elementary functions

linear space, 893
elementary matrices, 24
embedding into its double dual space, 545
equality of mixed partial derivatives, 200
equi-integrable, 293
equicontinuous, 86, 690
equivalence class, 63
equivalence relation, 63
events, 720
evolution equation

continuous semigroup, 610
exchange theorem, 101
expectation, 722

products of random variables, 723
exponential growth, 391
extending off closed set, 711
extention

mapping, 711
extreme values theorem, 82

F sigma
set, 253

Faddeyev, 310
Fatou’s lemma, 283
Fick’s law, 406
filtration, 817
filtration

normal, 817
finding the inverse, 37
finite intersection property, 504
finite measure

regularity, 255, 717
first hitting time, 796

closed set, 838
open set, 838

fixed point property, 329, 434
fixed point theorem

Cariste, 172
Kakutani, 169

flip, 224

Fourier and inverse Fourier transforms, 379
Fourier series

uniform convergence, 571
Fourier transform

L1, 381
L2, 383
continuous, 381
convolution, 382, 388
in G ∗, 378
of functions in G, 376
convolution, 386

Fourier transform L1, 381
Fourier transforms

polynomial growth, 380
Frechet derivative, 186
Fredholm operator

Banach space, 564
Fubini’s theorem, 306

Bochner integrable functions, 669
general product measures, 305

function, 60
functions

measurable, 237
fundamental theorem of calculus

general Radon measures, 325
Radon measures, 324

G delta, 253
Gamma function, 372, 452
gamma function, 204
Gateaux

derivative, 437
Gateaux derivative, 189, 191

continuous, 193
gauge function, 540
Gauss Jordan method for inverses, 37
generalized normal distribution, 762
geometric mean, 233
good lambda inequality, 299, 874
Gram Schmidt process, 109
Gram Schmidt process., 108
graph of a linear map, 538
Green’s theorem, 497

Hahn
decomposition, 301

Hahn Banach theorem, 541
complex version, 542
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Hahn decomposition, 645
Hahn Jordan decomposition, 645
Hamel basis, 121
Hardy’s inequality, 372
Haursdorff measures, 445
Hausdorff

maximal principle, 68
Hausdorff and Lebesgue measure, 452
Hausdorff dimension, 452
Hausdorff maximal principle, 507, 540
Hausdorff measure

set of measure 0, 453
Hausdorff measures, 446
Hausdorff space, 502
Hermitian

diagonalization, 20
non-defective, 20

Hermitian matrix, 20
Hessian matrix, 219
higher order derivative

multilinear form, 193
higher order derivatives, 193

implicit function theorem, 212
inverse function theorem, 212

Hilbert Schmidt
operator, 592

Hilbert Schmidt theorem, 586, 665
Hilbert space, 575
hitting this before that, 853
Holder inequality

backwards, 546
Holder space

not separable, 567
Holder spaces, 567
Holder’s inequality, 106, 357
homeomorphism, 81

implicit function theorem, 208
higher order derivatives, 212

increasing function
existence of the derivative, 437

independent, 313
independent events, 720
independent random vectors, 721
independent sigma algebras, 721
indicator function

approximation, 315
inner product space, 575

inner regular, 253, 717
compact sets, 253

inner regularity, 257
Integral

Riemann and Lebesgue, 531
integral

continuous function, 138
decreasing function, 279
functions in L1, 285
linear, 285

integral over a measurable set, 290
integrals

iterated, 141
integration

with respect to a martingale, 883
integration by parts, 323
integration with respect to martingales

Ito isometry, 888
interior point, 71
intermediate value theorem, 89
invariance of domain, 230, 424
inverse, 29, 37
inverse

left right, 38
product of matrices, 30
row reduced echelon form, 39

inverse function theorem, 211, 232
higher order derivatives, 212

inverse image, 59
inverses and determinants, 48
invertible, 29
invertible maps, 205

different spaces, 206
isodiametric inequality, 449, 451
isometric, 682
iterated integrals, 141
Ito isometry, 888

James map, 545
Jensen’s inequality, 741
Jensens inequality, 784
Jordan curve theorem, 430
Jordan separation theorem, 431

Kakutani fixed point theorem, 169
Kantorovitch, 635
Kolmogorov Centsov theorem, 810, 813
Kolmogorov extension theorem, 527, 719
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Kolmogorov zero one law, 728
Kolmogorov’s inequality, 730
Kuratowski theorem, 274

Lagrange multipliers, 216, 217
Laplace expansion, 46
Laplace transform, 391, 521
least squares regression, 203
Lebesgue

decomposition, 303
Lebesgue integral

desires to be linear, 284
nonnegative function, 280
other definitions, 283
simple function, 281

Lebesgue integral versus Riemann Stieltjes
integral, 295

Lebesgue measurable function
approximation with Borel measurable,

315
Lebesgue measure

approximation with Borel sets, 315
one dimensional, 258
properties, 315

Lebesgue number, 77, 97
Lebesgue points, 324
Lebesgue Stieltjes measure, 250, 257, 345
left inverse, 38, 39
Leray Schauder alternative, 165
Levy theorem, 772
lim inf, 66

properties, 67
lim sup, 66

properties, 67
lim sup and lim inf, 288
limit

continuity, 185
infinite limits, 183
point, 71

limit of a function, 183
limit of a sequence, 72

well defined, 72
limit point, 183, 502
limits

combinations of functions, 183
existence of limits, 66
independent random variables, 729

limits and continuity, 185

Lindeloff property, 76
linear

not continuous, 535
linear combination, 30, 44, 100
linear functional

positive, 318
linear independence, 103
linear map of measurable set, 330
linear maps, 15

closed, 539
continuous, 534
equivalent conditions, 534

linear relationship, 30
linear relationships

row operations, 31
linear space, 99
linear transformation

defined on a basis, 125
dimension of vector space, 125
rank m, 220

linear transformations
a vector space, 125
sum, 125

linearly dependent, 100
linearly independent, 100
linearly independent set

enlarging to a basis, 103
Lipschitz

continuous, 82
functions, 437

Lipschitz function
integral of its derivative, 437

Lipschitz functions, 394
of measurable sets, 329

Lipschitz maps
extension, 442

little o notation, 186
local martingale, 864
local maximum, 219
local minimum, 219
local submartingale, 864
localizing sequence, 864
locally compact, 504
locally compact , 504
locally finite, 369, 705
locally one to one, 233
lower semicontinuous, 97
Lusin’s theorem, 371
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Lyapunov Schmidt procedure, 563

manifold
orientable, 396

map
C1, 225
primitive and flips, 225

martingale, 741
quadratic variation, 866

martingales
equiintegrable, 851

matrix
left inverse, 49
lower triangular, 49
right inverse, 49
right, left inverse, 49
row, column, determinant rank, 50
upper triangular, 49

matrix
block multiplication, 17
inverse, 29, 37
more columns than rows, 35
non zero kernel, 35
partitioned, 17
Schur’s theorem, 19

matrix multiplication
block, 17

maximal chain, 68
maximal estimate

real sub-martingales, 801
maximal function

Radon measures, 324
McShane’s lemma, 637
mean value inequality, 208
mean value theorem, 208

Cauchy, 137
measurability

limit of simple functions, 239
measurable, 245

complex valued, 284
equivalent formulations, 238
linear combinations, 284
multifunction, 271
multifunctions, 271

measurable complex functions
simple functions, 288

measurable functions, 237
approximation, 240

pointwise limit, 237
pointwise limits, 651
simple functions, 238

measurable into (−∞,∞], 238
measurable representative, 678
measurable selection, 272
measurable sets, 245
measure, 241

inner regular, 253
on an algebra, 524
outer regular, 253
properties, 242
vector, 621

measure space
completion, 260
regular, 362

measures
complex, 621
decreasing sequences of sets, 242
increasing sequences of sets, 242
regularity, 253, 256
tight, 766
weak convergence, 770

measures from outer measures, 246
metric, 71

properties, 71
metric space, 71

compact sets, 78
complete, 74
completely separable, 75
open set, 71
separable, 75

min max theorem, 147
min-max theorem, 147
Minkowski functional, 571
Minkowski inequality, 358

integrals, 360
Minkowski inequality

backwards, 546
Minkowski theorem

for integrals, 373
Minkowski’s inequality, 360
minor, 47
mixed partial derivatives, 198
modification, 807
mollifier, 366
monotone convergence theorem, 282
monotone function
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differentiable, 267
multi - index, 130
multi-index, 194, 375
multi-index notation, 194
multifunction

strongly measurable, 273
multifunctions, 271

measurability, 271
Muntz theorem, 153

negative part, 285
Neuman series, 205
Newton’s method, 201
no retract onto boundary of ball, 421
non equal mixed partials

example, 199
norm

p norm, 106
normal, 405, 759, 773
normal filtration, 817
normal topological space, 503
Normed linear space, 106
nowhere differentiable functions, 569
nuclear operator, 590

one dimensional Stieltjes measure, 294
one point compactification, 506
open ball, 71

open set, 71
open cover, 76, 504
open mapping theorem, 536
open set, 71
open sets, 501

countable basis, 75
operator norm, 534
optional sampling theorem, 798
ordered

partial, 68
totally ordered, 68

oriented atlas, 396
orthonormal, 108
orthonormal set, 584
outer measure, 244

measurable, 245
total variation, 622

outer measure on real line, 250
outer regular, 253, 717

G delta and F sigma sets, 255

outer regularity, 257

p norms, 107
paracompact space, 705
parallelogram identity, 619
partial derivatives, 189, 196

continuous, 197
partial order, 68
partially ordered set, 68
partition

one dimension, 348
partition of unity, 92, 512, 709

metric space, 708, 710
partitioned matrix, 17
permutation, 41
permutation matrix, 24
pi systems, 243
pivot column, 33
Plancherel theorem, 383, 384
point of density, 326
pointwise compact, 86
pointwise convergence, 85
polar coordinates

integral, 340
polar decomposition, 625
Polish space, 76, 252
polynomial, 375

in many variables, 130
polynomials, 130
positive, 595
positive linear functional, 315, 516

measure, 318
positive part, 285
positive self adjoint

products, 595
roots, 596

power set, 57
precompact, 504, 521
predictable, 823
preserving distance, 22
primitive, 224
prior, 796
prior sets, 836
probability distribution function, 250
probability space, 715
product measure, 306

regular, 306
product of matrices
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inverse, 30
product space

norm, 538
product topology, 504
products of Borel sets, 259, 322
progressively measurable, 817
progressively measurable

integral of, 819
progressively measurable version, 821
projection in Hilbert space, 577
Prokhorov’s theorem, 770

quadratic variation
convergence in probability, 904
fantastic properties, 887

Rademacher’s theorem, 441
Radon measure, 253, 263, 362, 363
Radon Nikodym

Radon measures, 343
theorem, 302

Radon Nikodym derivative, 302
Radon Nikodym property, 680
Radon Nikodym theorem

Radon Measures, 343
random variable, 715

distribution measure, 256
random vector, 715

independent, 736
rank, 35
rank of a matrix, 50
rank theorem, 221
rational function, 130
real and imaginary parts, 284
recognizing a martingale

stopping times, 859
refinement of a cover, 705
reflexive Banach Space, 546
reflexive Banach space, 631

weak compactness, 560
regular, 253
regular measure space, 362
regular topological space, 502
regular values, 410
resolvent, 605
retract, 329

Banach space, 712
closed and convex set, 712

fixed point property, 329
reverse sub-martingale, 802
Reynolds

transport formula, 494
Riemann integral, Lebesgue integral, 294
Riesz F., 374
Riesz map, 579
Riesz representation theorem, 684

Hilbert space, 579
locally compact Hausdorff space, 516

Riesz Representation theorem
C (X), 642

Riesz representation theorem Lp

σ finite case, 630, 687
finite measures, 626

Riesz representation theorem for L1

finite measures, 629
right inverse, 37–39
right polar factorization, 21
row equivalent, 33
row operations, 24
row operations

linear relationships, 31
row rank, 50
row reduced echelon form, 32
row reduced echelon form

existence, 33
uniqueness, 34

Russell’s paradox, 59

saddle point, 147
Sard’s theorem, 332, 412
scalars, 99
Schaefer fixed point theorem, 165
Schauder fixed point

approximate fixed point, 164
Schauder fixed point theorem, 165, 166
Schroder Bernstein theorem, 60
Schur’s theorem, 19
Schwartz class, 386
second derivative, 193
second derivative test, 219, 220
sections of open sets, 196
self adjoint, 595
semigroup, 600

adjoint, 614
contraction

bounded, 603
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generator, 602
growth estimate, 603
Hille Yosida theorem, 606
strongly continuous, 602

separability of C(H), 769
separable metric space

Lindeloff property, 76
separated sets, 88
separation theorem, 572
sequence, 72

Cauchy, 73
subsequence, 73

sequential weak* compactness, 558
sequentially compact set, 77
series

double sum, 64
set

F sigma, 253
set valued functions

measurability, 271
sets, 57

G delta, 253
sgn, 39

uniqueness, 41
sigma algebra, 237
sign of a permutation, 41
signed measure, 300

Hahn decomposition, 301
signed measures

Hahn decomposition, 300
simple functions, 647

approximation, 238
singular values, 410
slicing measures, 308
smooth manifold, 396
Sobolev Space

embedding theorem, 391
equivalent norms, 391

Sobolev spaces, 391
space of continuous martingales, 856

Hilbert space, 879
span, 44, 100
Sperner’s lemma, 160
Steiner symetrization, 450
Stirling’s formula, 353
stochastic integral

as Stieltjes integral, 891
elementary function, 893

linear, 893
stochastic process, 786, 807

descriptions, 807
Stone Weierstrass theorem, 510
Stone’s theorem, 707
stong law of large numbers, 792
stopped martingale, 862, 864
stopped process, 853
stopped sub-martingale, 845
stopped submartingale, 864
stopping time, 795, 831, 835
stopping times

conditional expectation, 797
strict convexity, 572
strictly convex

norm, 147
strong law of large numbers, 733, 805
strongly measurable, 647

inverse images open sets, 648
sub-martingale, 741, 786
sub-martingale convergence theorem, 789

continuous case, 850
subbasis, 508
subspace, 100
sums

independent random variables, 729
independent variables, 731, 790

supermartingale, 786
support of a function, 92, 290, 511
symmetric derivative

existence, 342
measurable, 342
Radon measure, 341
upper and lower, 341

symmetric domain
degree, 423

symmetric matrix, 20

tail event, 728
Taylor formula, 217
Taylor’s formula, 218
Taylor’s theorem, 218
Tietze extension theorem, 136
tight, 766
topological space, 501
total variation, 348, 622
totally bounded, 78, 86
totally ordered, 68
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trace, 591
trajectories, 807
translation invariant, 258
triangle inequality, 106, 358
triangulated, 155
triangulation, 155
trivial, 100

uniform boundedness, 536
uniform boundedness theorem, 536
uniform continuity, 82
uniform continuity and compactness, 82
uniform convergence, 85
uniform convergence and continuity, 85
uniform convexity, 546, 572
uniformly bounded, 690
uniformly convex, 546
uniformly integrable, 292, 372
uniqueness of limits, 183
upcrossing, 741, 787
upper semicontinuity

set valued map, 167
upper semicontinuous, 97
upper semicontinuous composition, 168
Urysohn’s lemma, 505, 506

variance, 759
variational inequality, 577
vector

measure, 621
vector measures, 679
vector space

dimension, 102
vector space axioms, 99
vector valued function

limit theorems, 183
vectors, 99
version, 807
Vitali

convergence theorem, 292
Vitali

convergence theorem, 673
Vitali convergence theorem, 293
Vitali cover, 263
Vitali covering theorem, 114
volume of unit ball, 452

weak and weak* topologies, 554
weak convergence, 573

measures, 770
weak convergence of measures, 772
weak derivative, 444
weak topology, 555
weak∗ measurable, 653
weak* topology, 555

metric space, 557
weakly measurable, 647
wedge product, 475

algebraic properties, 476
Weierstrass

Stone Weierstrass theorem, 143
Weierstrass approximation

estimate, 130
well ordered sets, 70

Young’s inequality, 644
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