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Preface

This book is on real and abstract analysis. There are four parts. The last part is an introduc-
tion to probability and stochastic processes. A course in multi-variable advanced calculus
is contained in the first two. There is more there than one would have time to do and there
are some advanced topics which are there because it is a convenient setting for them. Orig-
inally the first three parts were written for a multi-variable advanced calculus course which
changed over time by inclusion of more advanced topics. However, it was easier to keep
track of a single file. The emphasis is on finite dimensional spaces although not totally.
There are things which are almost never discussed in multi-variable advanced calculus like
the fixed point theorems. However, I think the Brouwer fixed point theorem is one of the
most important theorems in mathematics and is being neglected along with its corollaries.
I give several proofs in the exercises and in the book. There is too much reliance on these
theorems without ever considering proofs. That is why there is a chapter on fixed point
theorems. In general, I am trying to include all proofs of theorems instead of making the
reader chase after them somewhere else or accept them on faith. I object to attempts to
make mathematics functionally like a religion where we are asked to believe the words of
authority figures. Of course, when you try to include all the proofs, you run the risk of
making mistakes, and I certainly make my share, but one should at least try, even though it
also results in a longer book.

I am reviewing a few topics from linear algebra mainly to refresh the memory or to read
as needed, but I am assuming that people have had a reasonable course in linear algebra.
Linear algebra should come before a book like this one.

I sometimes present important ideas more than once. Sometimes there is a special
case in exercises and later the topic is discussed in the text. I think this can be useful in
understanding some of these big theorems. Such duplication may not have been deliberate
to begin with, but I have chosen to leave it in many cases.

Finite dimensional degree theory is neglected so there is a chapter on this also, pre-
sented as a part of analysis. It seems like it is common to neglect to give a careful treatment
of the degree in R”. This is too bad. You end up missing out on fantastic finite dimensional
topology like the Jordan separation theorem. I don’t know a good proof for this without
something like degree theory. Other somewhat unusual items are things like the Besicov-
itch covering theorem. It seems to me that this is very important and is certainly one of the
most profound theorems I have ever seen. Differentiation theory is carried out for general
Radon measures using this covering theorem. This is important because these kinds of mea-
sures are encountered in probability. Lebesgue measure is a special case. Abstract theory is
presented later and includes the standard theorems on representation, Banach spaces, and
so forth. Also included is a treatment of the Kolmogorov extension theorem. This major
result is being neglected but, if I understand the situation correctly, it is the foundation for
modern probability theory. It belongs in a course on analysis. The Bochner integral is also
commonly neglected so I have included a careful treatment of this important topic. Some
of us do our research in the context of spaces of Bochner integrable functions involving
various function spaces.

There is an introduction to probability and stochastic processes at the end. I have in-
cluded it because I encountered much of it in my old age and thought it was marvelous
mathematics. I was not raised on it and this likely shows. However, it may be that someone
can benefit from my efforts to understand this material. I have a hard time with it. There
is more in my Topics in analysis book, but that is mostly pretty unorganized because I was
gathering it from many different sources for our seminar. I am trying to present a more co-
herent presentation in this book. This is a very big topic and I must pick what I have found

13
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most interesting, likely offending others who know better than I do what is important.



Chapter 1

Review of Some Linear Algebra

This material can be referred to as needed. It is here in order to make the book self con-
tained.

1.1 The Matrix of a Linear Map

Recall the definition of a linear map. First of all, these need to be defined on a linear space
and have values in a linear space.

Definition 1.1.1 ze:7:vV - W be a function. Here V and W are linear spaces.
Then T € £ (V,W) and is a linear map means that for &, B scalars and vy, v, vectors,

T (OCV] —|—ﬁV2) =aTv,+BTv,

Also recall from linear algebra that if you have T' € £ (F",F™) it can always be un-
derstood in terms of a matrix. That is, there exists an m X n matrix A such that for all
x e F",

Ar=Tx

Recall that, from the way we multiply matrices,

A=(Te - Te,)

That is, the i column is just Te;.

1.2 Block Multiplication of Matrices

Consider the following problem

You know how to do this. You get

AE+BG AF+BH
CE+DG CF+DH J°

Now what if instead of numbers, the entries, A, B,C,D,E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case?

Suppose A is a matrix of the form

Air o A
A= : : (1.1
Arl Arm
where A;; is a s; X p; matrix where s; is constant for j=1,--- ,mforeachi=1,---,r. Such

a matrix is called a block matrix, also a partitioned matrix. How do you get the block

15
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A;;? Here is how for A an m X n matrix:

nxp;j

SiXm 0
(0 Iyxs, O)A| Ipyxp |- (1.2)

0
In the block column matrix on the right, you need to have c; — 1 rows of zeros above the
small p; x p; identity matrix where the columns of A involved in A;; are ¢j,--- ,¢;+p;—1
and in the block row matrix on the left, you need to have r; — 1 columns of zeros to the
left of the s; x s; identity matrix where the rows of A involved in A;; are r;,--- ,r; +s5;. An

important observation to make is that the matrix on the right specifies columns to use in the
block and the one on the left specifies the rows. Thus the block A;;, in this case, is a matrix
of size s; X p;. There is no overlap between the blocks of A. Thus the identity n X n identity
matrix corresponding to multiplication on the right of A is of the form

IPI XxP1 0

0 Ipm XPm
where these little identity matrices don’t overlap. A similar conclusion follows from con-
sideration of the matrices I;;,. Note that in (1.2), the matrix on the right is a block column
matrix for the above block diagonal matrix, and the matrix on the left in (1.2) is a block
row matrix taken from a similar block diagonal matrix consisting of the ;.

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form

B By,
: (1.3)
B B,
and A is a block matrix of the form
A o Aim
: . : (1.4)
Apt o Apm

such that for all 7, j, it makes sense to multiply BjsA,; for all s € {1,---,p}. (That is the
two matrices B;; and A; are conformable.) and that for fixed ij, it follows that B;;Ay; is the
same size for each s so that it makes sense to write ) BjsA;;.

The following theorem says essentially that when you take the product of two matrices,
you can partition both matrices, formally multiply the blocks to get another block matrix
and this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 1.2.1 Consider the following product.
0

1 ](0 1 0)
0
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where the first is n X r and the second is r X n. The small identity matrix I is an r X r matrix
and there are | zero rows above I and | zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form

o oo
o ~ 0O
©c oo

Proof: From the definition of matrix multiplication, the product is

0 0 0 0
I lo - I e - I |e - I lo
0 0 0 0

which yields the claimed result. In the formula e; refers to the column vector of length r
which has a 1 in the j”* position. This proves the lemma. l

Theorem 1.2.2 retBbea q X p block matrix as in (1.3) and let A be a p x n block
matrix as in (1.4) such that B;s is conformable with A; and each product, BisAy; for s =
1,---, pis of the same size, so that they can be added. Then BA can be obtained as a block
matrix such that the ij'" block is of the form

Y BiAs;. (1.5)
N
Proof: From (1.2)
0 0
BiAsj=(0 Ly, O)B| Iy, | (0 Ly, 0 )A[ Iyxg
0 0

where here it is assumed Bjs is r; X p; and Ay; is ps X g;. The product involves the s'" block
in the i"* row of blocks for B and the s block in the j”* column of A. Thus there are the
same number of rows above the I, » ,, as there are columns to the left of /,, ., in those two
inside matrices. Then from Lemma 1.2.1

0 0 0 0
IPsXPs ( 0 IPs X Ps 0 ) = 0 IPSXPs 0

0 0 0 0
Since the blocks of small identity matrices do not overlap,

0 0 0 Ipyxpy 0

Z 0 Ipx XPs 0 = =1 ’
N

0 0 0 0 Ipp XPp

and so,
0 0

ZBI'SASJ':Z< 0 lix; O )B Ipsxp, ( 0 Ipyxp, O )A 1£ij><q/'
N s 0 0
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0 0

:( 0 Irixri 0 )BZ Istps ( 0 ImXps 0 )A Iq_,-qu
N 0 0

0 0

=(0 Ly O)BIA[ Iyxg | =(0 Ly 0 )BA[ Ijxg
0 0

which equals the ;" block of BA. Hence the ij" block of BA equals the formal multipli-
cation according to matrix multiplication,

Y BiA,;.
N
This proves the theorem. l

Example 1.2.3 Multiply the following pair of partitioned matrices using the above theo-
rem by multiplying the blocks as described above and then in the conventional manner.

2 3 1 -1 2
-1 2 3 2 30
-2 1 -2 2 1

Doing it in terms of the blocks, this yields, after the indicated multiplications of the

blocks,
5+(-6) (5 2)+3(2 1)
3 3 7 =2 6 3
e (86
This is
—1 (11 5)
-3 13 1
-3 -7 7
Multiplying it out the usual way, you have
1 2 3 1 -1 2 -1 11 5
-1 2 3 2 3 0 )= -3 13 1
3 -2 1 -2 2 1 -3 -7 7

you see this is the same thing without the partition lines.

1.3 Schur’s Theorem

For some reason, not understood by me, Schur’s theorem is often neglected in beginning
linear algebra. This is too bad because it is one of the best theorems in linear algebra. Here
|-| denotes the usual norm in C" given by

n
=Y |y
j=1
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Definition 1.3.1 4 complex n x n matrix U is said to be unitary if U"U = 1. Here
U* is the transpose of the conjugate of U. The matrix is unitary if and only if its columns
Sform an orthonormal set in C". This follows from the way we multiply matrices in which
the ij"" entry of U*U is obtained by taking the conjugate of the i'" row of U times the j'"
column of U.

Theorem 1.3.2 (Schur) Let A be a complex n X n matrix. Then there exists a unitary
matrix U such that
U*AU =T, (1.6)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity".

Proof: The theorem is clearly true if A is a 1 x 1 matrix. Justlet U = 1, the 1 x 1 matrix
which has entry 1. Suppose it is true for (n — 1) x (n— 1) matrices and let A be an n x n
matrix. Then let v; be a unit eigenvector for A. Then there exists A1 such that

Av1 2111)1, "Ul‘ =1.
Extend {v } to a basis and then use the Gram - Schmidt process to obtain
{'U[ P ,’Un}

an orthonormal basis of C”. Let Uy be a matrix whose i’ column is v;. Then from the

definition of a unitary matrix Definition 1.3.1, it follows that Uy is unitary. Consider UjAUy.
v} v}

Uy AUy = (Av1 < Avy, ): (},11)1 - Av, )

)vl a
0 A

n
where Aj is an n— 1 x n— 1 matrix. Now by induction, there exists an (n—1) x (n—1)
unitary matrix U; such that

v

Thus UjAUj is of the form

ﬁikAlﬁl = Tnfly

an upper triangular matrix. Consider

/1 0
we(12)

An application of block multiplication shows that U; is a unitary matrix and also that

ciia (10 Ao« N[ 1 0N (A o«
vitisin=(o g ) (5 4 ) (o s )= (% 2 )7

where T is upper triangular. Then let U = UpU;. Since (UpU;)" = U Uy, it follows that
A is similar to 7 and that UyU is unitary. Hence A and T have the same characteristic

IListed with multiplicity’ means that the diagonal entries are repeated according to their multiplicity as roots
of the characteristic equation.
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polynomials, and since the eigenvalues of T are the diagonal entries listed with multiplicity,
this proves the theorem. l

The same argument yields the following corollary in the case where A has real entries.
The only difference is the use of the real inner product instead of the complex inner product.

Corollary 1.3.3 Let A be a real n x n matrix which has only real eigenvalues. Then
there exists a real orthogonal matrix Q such that

0TAQ=T

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity.

Proof: This follows by observing that if all eigenvalues are real, then corresponding
to each real eigenvalue, there exists a real eigenvector. Thus the argument of the above
theorem applies with the real inner product in R”. B

1.4 Hermitian and Symmetric Matrices

A complex n X n matrix A with A* = A is said to be Hermitian. A real n x n matrix A with
AT = A is said to be symmetric. In either case, note that for (-, ) the inner product in C",

(Au,v) = (Au)" o = u'ATo = u' A% = (u,Av).

Thus, as a numerical example, the matrix

1 1—i
1+i 2

1 -1 -2
~1 2 4
2 4 3

is Hermitian, while

is symmetric. Hermitian matrices are named in honor of the French mathematician Charles
Hermite (1822-1901).
With Schur’s theorem, the theorem on diagonalization of a Hermitian matrix follows.

Theorem 1.4.1 Ler A be Hermitian. Then the eigenvalues of A are all real, and
there exists a unitary matrix U such that

U*AU =D,

a diagonal matrix whose diagonal entries are the eigenvalues of A listed with multiplicity.
In case A is symmetric, U may be taken to be an orthogonal matrix. The columns of U form
an orthonormal basis of eigenvectors of A.

Proof: By Schur’s theorem and the assumption that A is Hermitian, there exists a tri-
angular matrix 7', whose diagonal entries are the eigenvalues of A listed with multiplicity,
and a unitary matrix U such that

T =U*AU =U*A*U = (U*AU)" =T"*.
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It follows from this that 7 is a diagonal matrix and has all real entries down the main
diagonal. Hence the eigenvalues of A are real. If A is symmetric (real and Hermitian) it
follows from Corollary 1.3.3 that U may be taken to be orthogonal (The columns are an
orthonormal set in the inner product of R").

That the columns of U form an orthonormal basis of eigenvectors of A, follows right
away from the definition of matrix multiplication which implies that if u; is a column of
U, then Au; = column i of (UD) = A;ju;. &

1.5 The Right Polar Factorization

The right polar factorization involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. First here are
some lemmas which review and add to many of the topics discussed so far about adjoints
and orthonormal sets and such things. This is of fundamental significance in geometric
measure theory and also in continuum mechanics. Not surprisingly the stress should depend
on the part which stretches and distorts. See [23].

Lemma 1.5.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix A'/? such that A'? has all nonnegative eigenvalues

and (Al/z)2 =A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real nonnega-
tive entries and a unitary matrix U such that A = U*DU. This is from Theorem 1.4.1 above.
Then denote by D'/2 the matrix which is obtained by replacing each diagonal entry of D
with its square root. Thus D'/2D'/2 = D. Then define

A2 =yu*p'?uU.
Then )
(A1/2) — U*D'2UU*D'?U = U*DU = A.
Since D'/? is real,

(U*DI/ZU)* _ U (D1/2)* (U =u*D' U

so A!/2 is Hermitian. W
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property
stated in the next lemma.

Lemma 1.5.2 Suppose {wl st Wry Vg ], ,vp} is a linearly independent set of vec-
tors such that {wy,--- ,w,} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the wy, - -+ ,w,.

Proof: Let {uy, -+, u,} be the orthonormal set delivered by the Gram Schmidt pro-
cess. Then u; = w, because by definition, u; = w1/ |w;| = w;. Now suppose u; = w);
for all j <k <r. Then if k < r, consider the definition of w. .

k+1
Wi+1 *Zjil (Werr,uj)uj

Up+1 =
k+1
’wk+l —Zjil (Wiy1,uj)u;
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By induction, u; = w; and so this reduces to wy 1/ |wii1| = w1 W
This lemma immediately implies the following lemma.

Lemma 1.5.3 Let V be a subspace of dimension p and let {wi,--- ,w,} be an or-
thonormal set of vectors in V. Then this orthonormal set of vectors may be extended to
an orthonormal basis for 'V,

{’LU],"' yWrsYpy1s - ayp}

Proof: First extend the given linearly independent set {wy,---,w,} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {wy,---,w,} is
orthonormal it follows from Lemma 1.5.2 the result is of the desired form, an orthonormal
basis extending {wy, -+, w,}. B

Here is another lemma about preserving distance.

Lemma 1.5.4 Suppose R is an m x n matrix with m > n and R preserves distances. Then
R*R =1. Also, if R takes an orthonormal basis to an orthonormal set, then R must preserve
distances.

Proof: Since R preserves distances, |Rx| = | x| for every . Therefore from the axioms
of the dot product,

2’ + |yl + (z,9) + (y,@) =[x+ y|* = R(z+y) ,R(x+y))
= (Rxz,Rx)+ (Ry,Ry)+ (Rx,Ry)+ (Ry,Rx)
>+ |y* + (R*Rz,y) + (y,R*Rz)

and so for all z,y,
(R'Rz—,y) + (y,R 'Rz — ) = 0

Hence for all x,y,
Re(R*Rx —x,y) =0

Now for a @, y given, choose & € C such that
o (R'Rx—x,y) = |(R"Rz —z,y)|

Then
0=Re(R*Rx —x,0y) =Rea (R*"Rx —x,y) = |(R*"Rx — x,y)|

Thus |(R*Rx —x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y =
R*Rx — x to conclude that for all x,

R'Rx—x=0
which says R*R = I since x is arbitrary.
Consider the last claim. Let R : " — ™ such that {wy, - - ,u, } is an orthonormal basis
for F” and {Ru;,--- ,Ru,} is also an orthormal set, then
2 2 2
R (inui) = Zx,'R’U,,' = Z|x,~\2 = Zx,-u,- ]
i i i

i

With this preparation, here is the big theorem about the right polar factorization.
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Theorem 1.5.5 Let F be an m x n matrix where m > n. Then there exists a Hermi-
tian n X n matrix U which has all nonnegative eigenvalues and an m X n matrix R which
satisfies R*"R = I such that F = RU.

Proof: Consider F*F. This is a Hermitian matrix because
(F*F)" =F*(F")*=F'F

Also the eigenvalues of the n x n matrix F*F are all nonnegative. This is because if x is an
eigenvalue,
A(x,x) = (F*'Fa,x) = (Fz,Fz)>0.

Therefore, by Lemma 1.5.1, there exists an n x n Hermitian matrix U having all nonnegative
eigenvalues such that

U*=F"F.
Consider the subspace U (F"). Let {Ux1,--- ,Ux,} be an orthonormal basis for
U (F") CF".

Note that U (F") might not be all of ”. Using Lemma 1.5.3, extend to an orthonormal
basis for all of ",

{le,"' 7U:l:r7yr+17"' 7yn}

Next observe that {Fx,---,Fx,} is also an orthonormal set of vectors in F™. This is
because

(Fay,Fxj) = (F*ka,wj):(Uza:k,wj)
= (ka,U*wj):(waUazj):@k

Therefore, from Lemma 1.5.3 again, this orthonormal set of vectors can be extended to an
orthonormal basis for F™,

{le7"' 7Fmr7zr+17"' 7zm}
Thus there are at least as many 2y as there are y;. Now for & € F", since

{UiBh"' 7Uwr7yr+17"' 7yn}

is an orthonormal basis for ", there exist unique scalars,

el Crydiyt, e dy
such that
r n
=Y aUxi+ Y dy,
k=1 k=r+1
Define
r n
Rx=Y cFzi+ ) dizy (1.7
k=1 k=r+1

Then also there exist scalars by such that

r
Ux= Z ka:IIk
k=1
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and so from 1.7,

k=1

RU x = ibkakZF <ibkask>
k=1

Is F (Y[ byxy) = F (x)?

(F (i bk$k> 7F(:13),F <i bk$k> F(w))
k=1 k=1

)
el ) )
( .
E

Therefore, F (Y;_; byxx) = F (x) and this shows RUx = Fx. From 1.7 it follows that R
maps an orthonormal set to an orthonormal set and so R preserves distances. Therefore, by
Lemma 1.54R*R=1. B

1.6 Elementary matrices

The elementary matrices result from doing a row operation to the identity matrix.
As before, everything will apply to matrices having coefficients in an arbitrary field of
scalars, although we will mainly feature the real numbers in the examples.

Definition 1.6.1 7ne row operations consist of the following
1. Switch two rows.
2. Multiply a row by a nonzero number:
3. Replace a row by the same row added to a multiple of another row.
We refer to these as the row operations of type 1,2, and 3 respectively.

The elementary matrices are given in the following definition.

Definition 1.6.2 7 elementary matrices consist of those matrices which result by
applying a row operation to an identity matrix. Those which involve switching rows of the
identity are called permutation matrices. More generally, a permutation matrix is a matrix
which comes by permuting the rows of the identity matrix, not just switching two rows.
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As an example of why these elementary matrices are interesting, consider the following.
Letting 7; be the row vector of all zeros except for a 1 in the i*" slot,

) a b ¢ d Xy z w
1 x vy z w |=|a b c d
3 f g h i f g h i

A 3 x4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to switching the first two rows of the identity matrix. This resulted
in applying the operation 1 to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. They are obtained from switch-
ing a couple of rows of the identity matrix. First P;;, which involves switching row i and
row j of the identity where Let i < j. Then, as above, Then, as above, Pl =

L
rj

T

Tn
where
r;=(0---1---0)

with the 1 in the j position from the left.
For PY this matrix which involves switching the i and j rows of the identity. Now
consider what this does to a column vector.

71 Vi Vi
T; Vi Vj
Ti Vi B Vi
rl’l Vﬂ Vn

Now we try multiplication of a matrix on the left by this elementary matrix P'/. Thus,

all alZ e ... “ e .. alp

all a12 e ... “ e “ e alp
P

a]l a]2 e ... “ .. e ajp

anl an N N anp
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has the indicated columns listed in order:

ai ap ap
a; ap aip
ij ij . ij
pY , P : oo, PY
aj1 a2 ajp
anl an2 Anp
ar an aip
aji aj ajp
= ) PR
ail ap Aip
anl an2 Anp

and so the resulting matrix is

ajg ap e e e eeoagp
aji aA:/'Z ajp
: ail a:iZ Qip
Unl @ e e e e Gy

This has established the following lemma.

Lemma 1.6.3 Ler P denote the elementary matrix which involves switching the i'" and
the j** rows of I. Then if P A are conformable, we have

PiA=B
where B is obtained from A by switching the i'* and the j™* rows.

Next consider the row operation which involves multiplying the i’ row by a nonzero
constant, c. We write
T

T2
I =

Tn

where
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with the 1 in the j position from the left. The elementary matrix which results from
applying this operation to the i’ row of the identity matrix is of the form

T
E(c,iy=| cr;

r n

Now consider what this does to a column vector.

T1 Vi Vi
cri Vi = CVi
Tn Vn Vn

Denote by E (c, i) this elementary matrix which multiplies the i’ row of the identity by the
nonzero constant, c. Then from what was just discussed and the way matrices are multi-
plied,

air  ap aip
E(c,i) aip a4 Aip
anl  dnp2 Anp

ai a2 aip
= cajy cap - Cdip
anpl  ap2 Anp

This proves the following lemma.

Lemma 1.6.4 Let E (c,i) denote the elementary matrix corresponding to the row op-

eration in which the i’ row is multiplied by the nonzero constant c. Thus E (c,i) involves

multiplying the i’ row of the identity matrix by c. Then
E(c,)A=B
where B is obtained from A by multiplying the i'" row of A by c.

Finally consider the third of these row operations. Letting 7; be the j" row of the
identity matrix, denote by E (¢ X i+ j) the elementary matrix obtained from the identity
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matrix by replacing r; with r; + cr;. In case i < j this will be of the form

T1
L
P/ =
cri+ T
rn
Consider what this does to a column vector.
1 Vi Vi
Ti Vi Vi
crit+r; Vj cvi+vj
rn Vn V}’l
From this and the way matrices are multiplied,
al ] alz .. . e . e DAY alp
ai] ai2 e e e DY aip
E(cxi+j)
aj2 aj2 e e e DY ajp
anl an2 e e e e anp

equals a matrix having the indicated columns listed in order.

ar apn dip

ai ap aip
E(cxi+j) JE (e xi+j) s E(exi+])

ap aij ajp

dnl an2 Qnp
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ari a2 T aip
a1 ap e aip

B ajp +-ca,'1 ajp Jr cap -+ djp + Caip
anl ann cee Aanp

The case where i > j is similar. This proves the following lemma in which, as above, the
i"" row of the identity is ;.

Lemma 1.6.5 Let E (c x i+ j) denote the elementary matrix obtained from I by replac-
ing the j" row of the identity v ; with cr; + ;. Letting the k' row of A be ay,

E(cxi+j)A=B

th

where B has the same rows as A except the j'"" row of Bis ca; +a;.

The above lemmas are summarized in the following theorem.

Theorem 1.6.6 7 perform any of the three row operations on a matrix A it suffices
to do the row operation on the identity matrix, obtaining an elementary matrix E, and then
take the product, EA. In addition to this, the following identities hold for the elementary
matrices described above.

E(ecxi+ J)E(—cxi+j)=E(—cxi+j)E(cxi+j)=1 (1.8)
E(c,i)E(c™,i)=E (c"i)E(c,i) =1 (1.9)
PPV =1. (1.10)

Proof: Consider (1.8). Starting with I and taking —c times the i row added to the ;"
yields E (—c x i+ j) which differs from I only in the j"* row. Now multiplying on the left
by E (¢ x i+ j) takes c times the i’ row and adds to the j* thus restoring the j”* row to its
original state. Thus E (¢ X i+ j)E (—c¢ x i+ j)=1. Similarly E (—c¢ X i+ j)E (¢ X i+ j) =
I. The reasoning is similar for (1.9) and (1.10). B

Each of these elementary matrices has a significant geometric significance. The effect
of doing E (% X3+ 1) shears the box in one direction. Of course there would be corre-
sponding shears in the other directions also. Note that this does not change the volume.
You should think about the geometric effect of the other elementary matrices on a box.

Definition 1.6.7 For an n x n matrix A, an n X n matrix B which has the property
that AB = BA = I is denoted by A~'. Such a matrix is called an inverse. When A has an
inverse, it is called invertible.

The following lemma says that if a matrix acts like an inverse, then it is the inverse.
Also, the product of invertible matrices is invertible.
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Lemma 1.6.8 If B,C are both inverses of A, then B = C. That is, there exists at most
one inverse of a matrix. If Ay, --- A, are each invertible m X m matrices, then the product
A1Ay -+ A, s also invertible and

(A1Ay-An) ' =A1ACT AT
Proof. From the definition and associative law of matrix multiplication,
B=BI=B(AC)=(BA)C=IC=C.

This proves the uniqueness of the inverse.
Next suppose A, B are invertible. Then

AB(B'A™ ) =ABB YA '=AIAT =AAT =1

and also
(B'A™"YAB=B"'(A"'A)B=B"'IB=B"'B=1.

It follows from Definition 1.6.7 that AB has an inverse and it is B"'A~!. Thus the case of
m = 1,2 in the claim of the lemma is true. Suppose this claim is true for k. Then

AlAy - ApArgr = (A1Ag - Ap) App .
By induction, the two matrices (AjAz---Ayg), Ax+1 are both invertible and
(A1 Ay) ' =A A AT
By the case of the product of two invertible matrices shown above,
(A1Az- A Ar) ' = AL (A4 A T =4 A A TATL

This proves the lemma. Wl

We will discuss methods for finding the inverse later. For now, observe that Theorem
1.6.6 says that elementary matrices are invertible and that the inverse of such a matrix is
also an elementary matrix. The major conclusion of the above Lemma and Theorem is the
following lemma about linear relationships.

Definition 1.6.9 7. v, , Vi, u be vectors. Then u is said to be a linear combi-
nation of the vectors {vy,--- , vy} if there exist scalars cy,- - ,cx such that

k
u = Z CiVj.
i=1

We also say that when the above holds for some scalars cy,--- ,c, there exists a linear
relationship between the vector u and the vectors {vi,--- ,v;}.

We will discuss this more later, but the following picture illustrates the geometric sig-
nificance of the vectors which have a linear relationship with two vectors w,v pointing in
different directions.
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The following lemma states that linear relationships between columns in a matrix are
preserved by row operations. This simple lemma is the main result in understanding all the
major questions related to the row reduced echelon form as well as many other topics.

Lemma 1.6.10 Let A and B be two m x n matrices and suppose B results from a row
operation applied to A. Then the k" column of B is a linear combination of the iy,--- ,i,
columns of B if and only if the k" column of A is a linear combination of the iy,--- i,
columns of A. Furthermore, the scalars in the linear combinations are the same. (The
linear relationship between the k™ column of A and the iy, -- ,i, columns of A is the same
as the linear relationship between the k'™ column of B and the iy, - -- i, columns of B.)

Proof: Let A be the following matrix in which the ay are the columns
(a1 ar - ay)
and let B be the following matrix in which the columns are given by the by
( by bp - by )

Then by Theorem 1.6.6 on Page 29, by = Ea; where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ap =cia; +---+cra;,.
Then multiplying by E,
by =Eay =ciEa; +---+c,Ea;, = cib; +---+¢,b;,.
This proves the lemma. l
Example 1.6.11 Find linear relationships between the columns of the matrix

1 3 11 10 36
A=|1 2 8 9 23
1 1 5 8 10

It is not clear what the relationships are, so we do row operations to this matrix. Lemma
1.6.10 says that all the linear relationships between columns are preserved, so the idea is to
do row operations until a matrix results which has the property that the linear relationships
are obvious. First take —1 times the top row and add to the two bottom rows. This yields

1 3 11 10 36
0 -1 -3 -1 -—13
0 -2 -6 -2 =26
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Next take —2 times the middle row and add to the bottom row followed by multiplying the
middle row by —1 :

1 3 11 10 36
01 3 1 13
00 0 0 O

Next take —3 times the middle row added to the top:

1 0 2 7 =3
01 3 1 13 |. (1.11)
00 0 0 O

At this point it is clear that the last column is —3 times the first column added to 13 times
the second. By Lemma 1.6.10, the same is true of the corresponding columns in the original
matrix A. As a check,

1 3 36
=31 1 |+13| 2 | =1 23
1 1 10

You should notice that other linear relationships are also easily seen from (1.11). For
example the fourth column is 7 times the first added to the second. This is obvious from
(1.11) and Lemma 1.6.10 says the same relationship holds for A.

This is really just an extension of the technique for finding solutions to a linear system of
equations. In solving a system of equations earlier, row operations were used to exhibit the
last column of an augmented matrix as a linear combination of the preceding columns. The
row reduced echelon form just extends this by making obvious the linear relationships
between every column, not just the last, and those columns preceding it. The matrix in
1.11 is in row reduced echelon form. The row reduced echelon form is the topic of the next
section.

1.7 The Row Reduced Echelon Form Of A Matrix

When you do row operations on a matrix, there is an ultimate conclusion. It is called
the row reduced echelon form. We show here that every matrix has such a row reduced
echelon form and that this row reduced echelon form is unique. The significance is that it
becomes possible to use the definite article in referring to the row reduced echelon form.
Hence important conclusions about the original matrix may be logically deduced from an
examination of its unique row reduced echelon form. First we need the following definition.

Definition 1.7.1 Define special column vectors e; as follows.
ei=(0 - 1 - 0 )T.

Recall that T says to take the transpose. Thus e; is the column vector which has all zero
entries except for a 1 in the i’ position down from the top.

Now here is the description of the row reduced echelon form.

Definition 1.7.2 An m x n matrix is said to be in row reduced echelon Jorm if;
in viewing successive columns from left to right, the first nonzero column encountered is
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ey and if, in viewing the columns of the matrix from left to right, you have encountered
ey,ey, - ey, the next column is either ey or this next column is a linear combination of
the vectors, ej,ey, - , €.

Example 1.7.3 The following matrices are in row reduced echelon form.

1 0 4 0 0 1007 010 3
0001 3

013 0|, oo 1 -5

00 0 1 00000 000 O
00000

Definition 1.7.4 Given a matrix A, row reduction produces one and only one row
reduced matrix B with A ~ B. See Corollary 1.7.9. We call B the row reduced echelon form
of A.

Theorem 1.7.5 Let A be an m x n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof. Viewing the columns of A from left to right, take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this equal to zero. Thus the first
nonzero column is now e;. Denote the resulting matrix by A;. Consider the sub-matrix
of A1 to the right of this column and below the first row. Do exactly the same thing for
this sub-matrix that was done for A. This time the e; will refer to F™ 1. Use the first 1
obtained by the above process which is in the top row of this sub-matrix and row operations,
to produce a zero in place of every entry above it and below it. Call the resulting matrix Aj.
Thus A, satisfies the conditions of the above definition up to the column just encountered.
Continue this way till every column has been dealt with and the result must be in row
reduced echelon form. Wl

Here is some terminology about pivot columns.

Definition 1.7.6 1xe first pivot column of A is the first nonzero column of A which
becomes ey in the row reduced echelon form. The next pivot column is the first column
after this which becomes ey in the row reduced echelon form. The third is the next column
which becomes ej in the row reduced echelon form and so forth.

The algorithm just described for obtaining a row reduced echelon form shows that these
columns are well defined, but we will deal with this issue more carefully in Corollary 1.7.9
where we show that every matrix corresponds to exactly one row reduced echelon form.

Definition 1.7.7 Two matrices A, B are said to be row equivalent if B can be ob-
tained from A by a sequence of row operations. When A is row equivalent to B, we write
A~B.

Proposition 1.7.8 In the notation of Definition 1.7.7. A~ A. IfA ~ B, then B ~ A. If
A~Band B~ C,then A~ C.
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Proof.That A ~ A is obvious. Consider the second claim. By Theorem 1.6.6, there exist
elementary matrices E, Ey,--- , E,, such that

B=FEE, ---E,A.

It follows from Lemma 1.6.8 that (E1E2~~-Em)71 exists and equals the product of the
inverses of these matrices in the reverse order. Thus

E,'E' - E;'B=(E\E2---E,) ' B

= (E\Ey-+ Ey) " (E\Ey---En)A=A.

By Theorem 1.6.6, each E~ !is an elementary matrix. By Theorem 1.6.6 again, the above
shows that A results from a sequence of row operations applied to B. The last claim is left
for an exercise. This proves the proposition. Wl

There are three choices for row operations at each step in Theorem 1.7.5. A natural
question is whether the same row reduced echelon matrix always results in the end from
following any sequence of row operations.

We have already made use of the following observation in finding a linear relationship
between the columns of the matrix A, but here it is stated more formally.

X1
=x1ey+ -+ xp€p,

Xn

so to say two column vectors are equal, is to say the column vectors are the same linear
combination of the special vectors e;.

Corollary 1.7.9 The row reduced echelon form is unique. That is if B,C are two ma-
trices in row reduced echelon form and both are obtained from A by a sequence of row
operations, then B=C.

Proof.Suppose B and C are both row reduced echelon forms for the matrix A. It follows
that B and C have zero columns in the same positions because row operations do not affect
zero columns. By Proposition 1.7.8, B and C are row equivalent. In reading from left
to right in B, suppose ey, - -, e, occur first in positions iy, - - ,i, respectively. Then from
the description of the row reduced echelon form, each of these columns of B, in positions
i1, ,ir, is not a linear combination of the preceding columns. Since C is row equivalent
to B, it follows from Lemma 1.6.10, that each column of C in positions iy, -- ,i, is not a
linear combination of the preceding columns of C. By the description of the row reduced
echelon form, ey,---,e, occur first in C, in positions iy,--- i, respectively. Therefore,
both B and C have the sequence e, ey, - ,e, occurring first (reading from left to right) in
the positions, i1,i,- - ,i,. Since these matrices are row equivalent, it follows from Lemma
1.6.10, that the columns between the i; and iy, position in the two matrices are linear
combinations involving the same scalars, of the columns in the iy, - - - , iy position. Similarly,
the columns after the i, position are linear combinations of the columns in the iy,--- i,
positions involving the same scalars in both matrices. This is equivalent to the assertion
that each of these columns is identical in Band C. W

Now with the above corollary, here is a very fundamental observation. The number of
nonzero rows in the row reduced echelon form is the same as the number of pivot columns.
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Namely, this number is r in both cases where ey, -- , e, are the pivot columns in the row
reduced echelon form. This number r is called the rank of the matrix. This is discussed
more later, but first here are some other applications.

Consider a matrix which looks like this: (More columns than rows.)

Corollary 1.7.10 Suppose A is an m x n matrix and that m < n. That is, the number
of rows is less than the number of columns. Then one of the columns of A is a linear
combination of the preceding columns of A. Also, there exists x € F" such that x # 0 and
Az =0.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading from
left to right, pick the first one which is not a pivot column. Then from the description of the
row reduced echelon form, this column is a linear combination of the preceding columns.
Say

aj=x1a1+--+xj_1a;_1.

Therefore, from the way we multiply a matrix times a vector,

X1 X1
Xj—1 Xj—1
A —1 :(a1~--aj,1aj--~a,,) —1 =0. 1
0 0
0 0

1.8 Finding the Inverse of a Matrix
Recall that the inverse of an n X n matrix A is a matrix B such that
AB=BA=1

where [ is the identity matrix. It was shown that an elementary matrix is invertible and that
its inverse is also an elementary matrix. Also the product of invertible matrices is invertible
and its inverse is the product of the inverses in the reverse order. In this section, we consider
the problem of finding an inverse for a given n X n matrix.

Example 1.8.1 Let A = ( i ; ) . Show that ( _21 711 ) is the inverse of A.

To check this, multiply

(o)A )-Gv)
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(50 1)

showing that this matrix is indeed the inverse of A.

and

In the last example, how would you find A~!? You wish to find a matrix ( i c )

() 2)-(e V)

This requires the solution of the systems of equations,

such that

x+y=1x+2y=0

and
z+w=0,z4+2w=1.

Writing the augmented matrix for these two systems gives

11 ] 1
<12|0) (1.12)

1 1] 0
<12|1) (1.13)

for the second. Let’s solve the first system. Take (—1) times the first row and add to the

second to get
L 1] 1
0 1 | -1

Now take (—1) times the second row and add to the first to get

10 | 2
01 | —1)

Putting in the variables, this saysx =2 and y = —1.
Now solve the second system, (1.13) to find z and w. Take (—1) times the first row and

add to the second to get
1 1] 0
o1 | 1)

Now take (—1) times the second row and add to the first to get
1 0o | -1
0o 1 | 1 ’
Putting in the variables, this says z = —1 and w = 1. Therefore, the inverse is
2 -1
-1 1 '

Didn’t the above seem rather repetitive? Exactly the same row operations were used in
both systems. In each case, the end result was something of the form (I|v) where I is the

for the first system and
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identity and v gave a column of the inverse. In the above ( i > , the first column of the

inverse was obtained first and then the second column < va > .

To simplify this procedure, you could have written

1 1 ] 10
1 2| 0 1
and row reduced till you obtained

10| 2 -1
01 | -1 1 )

Then you could have read off the inverse as the 2 x 2 matrix on the right side. You should
be able to see that it is valid by adapting the argument used in the simple case above.

This is the reason for the following simple procedure for finding the inverse of a matrix.
This procedure is called the Gauss-Jordan procedure.

Procedure 1.8.2 Suppose A is an n x n matrix. To find A~ if it exists, form the
augmented n X 2n matrix
(AlT)

and then if possible, do row operations until you obtain an n x 2n matrix of the form
(I|B). (1.14)

When this has been done, B =A=' If it is impossible to row reduce to a matrix of the form
(I|B), then A has no inverse.

The procedure just described along with the preceding explanation shows that this pro-
cedure actually yields a right inverse. This is a matrix B such that AB = I. We will show
in Theorem 1.8.4 that this right inverse is really the inverse. This is a stronger result than
that of Lemma 1.6.8 about the uniqueness of the inverse. For now, here is an example.

1 2 2
Example 1.83 LetA=| 1| 0 2 . Find A~ if it exists.
31 -1

Set up the augmented matrix (A|l) :

1
1
3

—_ O N

10
2 ] 0 1
-1 ] 00

- O O

Next take (—1) times the first row and add to the second followed by (—3) times the first
row added to the last. This yields

1 2 2 | 1 00
0 2 0 | -1 10
0 -5 -7 | =3 01
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Then take 5 times the second row and add to —2 times the last row.

1 2 2 | 1 0 0
0 -10 0 | =5 5 0
0 0 14 | 1 5 =2

Next take the last row and add to (—7) times the top row. This yields

~7 -14 0 | -6 5 -2
0 —-10 0 | =5 5 0
0 0 14| 1 5 =2

Now take (—7/5) times the second row and add to the top.

-7 0 0 | 1 -2 -2
0 —-10 0 | =5 5 0
0 0 14 | 1 5 -2

Finally divide the top row by -7, the second row by -10 and the bottom row by 14, which
yields

1 2 2
Loo| -3 57 3
1 1
01 0 | 5 —3 0
1 5 1
001 [ g 7 -3
Therefore, the inverse is
_1 2 2
7 7 7
1 1
: 2 0
1 5 _1
4 14 7

What you have really found in the above algorithm is a right inverse. Is this right
inverse matrix, which we have called the inverse, really the inverse, the matrix which when
multiplied on both sides gives the identity?

Theorem 1.8.4 Suppose A,B are n x n matrices and AB = I. Then it follows that
BA = I also, and so B=A""'. For n x n matrices, the left inverse, right inverse and inverse
are all the same thing.

Proof. If AB =1 for A,B n X n matrices, is BA = I? If AB = I, there exists a unique
solution z to the equation

Bxr=1vy

for any choice of y. In fact,
x =A(Bz)=Ay.

This means the row reduced echelon form of B must be /. Thus every column is a pivot
column. Otherwise, there exists a free variable and the solution, if it exists, would not be
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unique, contrary to what was just shown must happen if AB = I. It follows that a right
inverse B~! for B exists. The above procedure yields

(B 1)=(1 B').
Now multiply both sides of the equation AB = I on the right by B~!. Then
A=A(BB')Y=(AB)B'=B"".

Thus A is the right inverse of B, and so BA = I. This shows that if AB = I, then BA =1 also.
Exchanging roles of A and B, we see that if BA = I, then AB = I. This proves the theorem.
]

This has shown that in the context of n x n matrices, right inverses, left inverses and
inverses are all the same and this matrix is called A~

The following corollary is also of interest.

Corollary 1.8.5 Annxnmatrix A has an inverse if and only if the row reduced echelon
formof Ais I.

Proof. First suppose the row reduced echelon form of A is /. Then Procedure 1.8.2
yields a right inverse for A. By Theorem 1.8.4 this is the inverse. Next suppose A has an
inverse. Then there exists a unique solution z to the equation Az = y. givenby x = A" ly.
It follows that in the augmented matrix (A|0) there are no free variables, and so every
column to the left of the zero column is a pivot column. Therefore, the row reduced echelon
formofAis/. W

1.9 The Mathematical Theory of Determinants

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the earlier one in terms of Laplace expansion. Let (iy,--- ,i,) be an ordered
list of numbers from {1, ,n}. This means the order is important so (1,2,3) and (2,1,3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [49]. A recent book which
also has a good introduction is Baker [4]

1.9.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 1.9.1 There exists a function, sgn, which maps each ordered list of numbers
Sfrom {1,--- n} to one of the three numbers, 0,1, or —1 which also has the following prop-
erties.

sgn, (1,---,n) =1 (1.15)
Sgnn(ila"' 0 Z Y/ P ’ln) :7Sgnn(i17”’ 'y Py 7in) (116)

In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by —1. Also, in the case where n > 1 and {iy,--- ,i,} ={1,--- ,n}
so that every number from {1,--- n} appears in the ordered list, (i1, ,i,),

Sgnn(i17"' 7i9—17n7i9+1;"' ;ln)
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(_l)niesgnn—l (ila' B 7i971ai9+l7' o 7iVl) (117)

where n = ig in the ordered list, (i1, -+ ,in).

Proof: Define sign(x) =1ifx > 0,—1 if x <0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn, (1) = 1. For the general case
where n > 1, simply define

sgn,, (i1, ,in) = sign (H(z‘ - ir)>

r<s

This delivers either —1, 1, or 0 by definition. What about the other claims? Suppose you
switch i, with i, where p < g so two numbers in the ordered list (iy,--- ,i,) are switched.
Denote the new ordered list of numbers as (ji,---,j,). Thus j, =i, and j, = i, and if
ré¢ {p,q}, jr =ir. See the following illustration

I iy Ip Iq In
1 2 p q n
i | I O L in
1 2 p q n
O I O I A B
1 2 p q n

Then

sgny, (Ji,-++ 5 Jn) = sign (H (Js _jr)>

r<s
both p,q one of p.q neither p nor ¢
= sign | (ip —iq) H (ij—iq) H (ip—1ij) H (is—1ir)
p<j<q p<j<q r<s,n,s¢{p,q}

The last product consists of the product of terms which were in [],., (is —i,) while the
two products in the middle both introduce ¢ — p — 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iy — i, which occured in sgn,, (i1, - ,i,).
Therefore, this switch introduced a minus sign and

Sgnn(jla"' ajl’l) = _Sgnn(ih"' 7in)

Now consider the last claim. In computing sgn, (i1, ,ig_1,7,ig+1," " ,in) there will
be the product of n — 0 negative terms

(i1 1) (i — )

and the other terms in the product for computing sgn,, (i1, - ,ig_1,M,ig+1," - ,iy) are those
which are required to compute sgn,_ (i1, - ,ig—1,ig+1, " ,in) multiplied by terms of the
form (n — i) which are nonnegative. It follows that

sgn, (ila"' ,l.6,17i’l,l.9+1,"' ain) = (_1)n_esgnn—1 (il7"' 7i97lai6+17"' 7in)

It is obvious that if there are repeats in the list the function gives 0. ll
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Lemma 1.9.2 Every ordered list of distinct numbers from {1,2,--- ,n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgn,
is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n — 1
elements. Take two ordered lists of numbers, P, P». Make one switch in both to place n at
the end. Call the result P/' and P;. Then using induction, there are finitely many switches
in P{' so that it will coincide with P5. Now switch the n in what results to where it was in
Ps.

To see sgn,, is unique, if there exist two functions, f and g both satisfying 1.15 and
1.16, you could start with f(1,---,n) = g(1,---,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, ,i,) = g (i1, ,in) . If any numbers are repeated,
then 1.16 gives both functions are equal to zero for that ordered list. l

Definition 1.9.3 Given an ordered list of distinct numbers from {1,2,--- .n}, say

(ilv"' 7in)>
this ordered list is called a permutation. The symbol for all such permutations is S,. The
number sgn,, (i1, ,iy) is called the sign of the permutation.
A permutation can also be considered as a function from the set

{1727"' 711} to {sz ,l’l}

as follows. Let f (k) = i;. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgn,, because the context supplies the
appropriate n.

1.9.2 The Definition of the Determinant

Definition 1.9.4 L. f be a real valued function which has the set of ordered lists
of numbers from {1,--- ,n} as its domain. Define

Z fky---ky)
(kp,+ kn)

to be the sum of all the f (ki ---ky) for all possible choices of ordered lists (ky,--- ,ky) of
numbers of {1,--- ,n}. For example,

Y, flkik)=f(L2)+f(21)+f(1L1)+(2.2).

(ky.k2)

Definition 1.9.5 s (4 i) = A denote an n x n matrix. The determinant of A, de-
noted by det (A) is defined by

det(A) = Z sgn (ki kn)aig, - ani,
(kl-,"'~]<n>
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where the sum is taken over all ordered lists of numbers from {1,--- .n}. Note it suffices
to take the sum over only those ordered lists in which there are no repeats because if there
are, sgn (ki,--- ,k,) = 0 and so that term contributes 0 to the sum.

Let A be an n X n matrix A = (g;;) and let (ry,- - - ,r,) denote an ordered list of n numbers
from {1,---,n}. Let A(ry,---,r,) denote the matrix whose k'* row is the r; row of the
matrix A. Thus

det(A(ry,-,ra)) =Y, sgn(ki, - kn)arg - anp, (1.18)
(klw"'vkﬂ)

and A (L, ---,n) =A.

Proposition 1.9.6 Let (ry,--- ,r,) be an ordered list of numbers from

{1, ,n}
Then
sgn(ry,---,ra)det(A) = Y sgn(ki,ka)ang o ang, (1.19)
(kl7"';kn>
= det(A(r1, - ,m)). (1.20)
Proof: Let (1,---,n) = (1,---,r,---5,--- ,n) sor <s.
det(A(l,---,r,-~~,s,---,n)): (121)

Y, sen(kic ke, ke k) aigy G, At Ay
(k1 kn)

and renaming the variables, calling k;, k- and k., k;, this equals

= Z sen (k- ks, Kpye o k) @ik e kg Aty A,

(klx“‘akn)
These got switched
——
= Z —sgn [ ki,oooy ke iks ek | @ik sty Gy G,
(kp,e kn)

=—det(A(1,---,s,--,5,--+,n)). (1.22)
Consequently,
det(A(1,---,s, - ,h--,n))=—det(A(1,---,r,---,s,--+,n)) = —det(A)

Now letting A(1,---,s,---,r,--- ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,
det(A(ry,--+,ry)) = (—1)"det(A)

where it took p switches to obtain(ry,- - ,r,) from (1,--- ,n). By Lemma 1.9.1, this implies
det(A(ry,--+,rm)) = (—1)"det(A) =sgn(ry, - ,ry)det(A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (ry,---,r,). However, if there is a repeat, say the 7" row equals the s'" row, then the
reasoning of 1.21 -1.22 shows that det(A (ry,---,r,)) = 0 and also sgn (ry,--+,r,) = 0 so
the formula holds in this case also. Bl
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Observation 1.9.7 There are n! ordered lists of distinct numbers from

{17...7,1}

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n — 1 choices for the second. Thus there are n (n — 1) ways
to fill the first two slots. Then for each of these ways there are n — 2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1,--- ,n} as
stated in the observation.

1.9.3 A Symmetric Definition

With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det (A) = det (AT).

Corollary 1.9.8 The following formula for det(A) is valid.

1
det(A) = - Z Z sgn(ry, -, ry)sgn(ky, -+, ky) ar ;- Qri, - (1.23)
n (r1y o) (ks kn)

And also det (AT) = det(A) where AT is the transpose of A. (Recall that for AT = (aiTj),

aiTj:aj,-.)

Proof: From Proposition 1.9.6, if the r; are distinct,

det(A) = Z sgn(ry, -+, rn)sgn(ki, - kn) Qr ke, -~ Ar i, -

(kla"'7kn)
Summing over all ordered lists, (ry,---,r,) where the r; are distinct, (If the r; are not
distinct, sgn (ry,- - ,r,) = 0 and so there is no contribution to the sum.)

n'det(A): Z Z Sgn(rla"'7rn)Sgn(k]a"'akn)ar|k1"'ar,,k,,-
("1~"'«,rn> (kl’...,kn)

This proves the corollary since the formula gives the same number for A as it does for A” .
|

Corollary 1.9.9 if two rows or two columns in an n x n matrix A, are switched, the
determinant of the resulting matrix equals (—1) times the determinant of the original ma-
trix. If A is an n X n matrix in which two rows are equal or two columns are equal then
det(A) = 0. Suppose the i'" row of A equals

(xa1 +yb17 , Xn +ybn)

Then
det(A) = xdet(A;) +ydet(Ay)

where the i'" row of Ay is (ay,--- ,ay,) and the i'" row of Ay is (by,--- ,by) , all other rows of
A1 and A; coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.
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Proof: By Proposition 1.9.6 when two rows are switched, the determinant of the re-
sulting matrix is (—1) times the determinant of the original matrix. By Corollary 1.9.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A; is the matrix obtained from A by switching two columns,

det(A) =det (AT) = —det (A] ) = —det(4;).

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) = —det(A) and so det(A) = 0.
It remains to verify the last assertion.

det(A)= Y sgn(ki,- kn)aig, - (X¥am, + b)) -k,
(k1,~-~,kn)

=X Z Sgn(klv"'akn)alkl"'arki"'ankn
(klv'":kﬂ>

+y Y, sgn(ki, k) aig b anr, = xdet (Ap) +ydet (Az).
(k1 kn)

The same is true of columns because det (A7) = det(A) and the rows of A” are the columns
ofA. W

1.9.4 Basic Properties of the Determinant

Definition 1.9.10 4 vector, w, is a linear combination {vy,--- ,v,} if there exist
scalars c1,- - ¢, such that w = Y| cxvg. This is the same as saying

w € span(vy, - ,v,).

The following corollary is also of great use.

Corollary 1.9.11 Suppose A is an n x n matrix and some column (row) is a linear
combination of r other columns (rows). Then det(A) = 0.

Proof: Let A = ( a; -+ ay ) be the columns of A and suppose the condition that
one column is a linear combination of r of the others is satisfied. Say a; =} ;+;c;a;. Then
by Corollary 1.9.9, det(A) =

det( a; - Z#icjaj a,,):chdet( a, - aj - a,,)zO
J#i

because each of these determinants in the sum has two equal rows. B
Recall the following definition of matrix multiplication.

Definition 1.9.12 IfA and B are n x n matrices, A = (a;;) and B = (b;;), AB = (c;})
where c;j = Yi_, aixby;.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.
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Theorem 1.9.13 Let A and B be n x n matrices. Then
det (AB) =det(A)det(B).
Proof: Let ¢;; be the i 7" entry of AB. Then by Proposition 1.9.6,

det (AB) = Z sgn (k] R ,kn) Clky " * Cnk,
(k1 kn)

= ( Z )sgn kla ok (Zalrl r|k|> (Zanrnbrnkn>
ki ok T

Z Z ggl’l k17 akn) br|k1 "'brnkn (alrl "'anr,l)
(riesrn) (ky e k)

= Z sgn(ry---ry)air, - - - anr, det(B) = det (A) det (B) .1

(r15rn)

The Binet Cauchy formula is a generalization of the theorem which says the deter-
minant of a product is the product of the determinants. The situation is illustrated in the
following picture where A, B are matrices.

B A

Theorem 1.9.14 et A be an n x m matrix with n > m and let B be a m X n matrix.
Also let A;

i=1,---,C(nm)
be the m x m submatrices of A which are obtained by deleting n — m rows and let B; be

the m X m submatrices of B which are obtained by deleting corresponding n — m columns.

Then
C(n,m)

det(BA) = Z det (By)det (Ay)

Proof: This follows from a computation. By Corollary 1.9.8 on Page 43, det(BA) =

— ), ) sen(it-im)sgn(ji-o-jm) (BA); ;, (BA), ), -+ (BA);
: (i1++im) (J1++Jm)

= Y X sen(acin)sgn(icm)

! (l] “im (]1 ]m)

n
Z BilrlArljl Z Bizszfzjz"' Z BimrmArmjm

ri=I1 r=I rm=1

imJjm

Now denote by I; one of the subsets of {1,---,n} which has m elements. Thus there are
C (n,m) of these.

C(n,m)
= Z Z Z Z sgn (i m)Sgn(j1-++ jm) -
k=1 {rh arm} I '(ll “im) (J1+Jm)
BllrlArl]lBlerArZ.lz B A

ImTm* >TmJm
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1 .
= Z ﬁ Z sgn (ll T lm)Bilrl Bizrz By

(j1-jm)
C(n,m) 1 5 C(n,m)
= Z Z —sgn(ry -+ ry)” det(By)det (Ax) = Z det (By)det (Ag)
m!
k=1 {ri, rm}y=l k=1
since there are m! ways of arranging the indices {ry,--- ,r,}. B

1.9.5 Expansion Using Cofactors

Lemma 1.9.15 Suppose a matrix is of the form

M:<132>0r<1:2> (124)

where a is a number and A is an (n— 1) x (n— 1) matrix and * denotes either a column
or a row having length n — 1 and the 0 denotes either a column or a row of length n — 1
consisting entirely of zeros. Then det(M) = adet(A).

Proof: Denote M by (m;;) . Thus in the first case, m,, = a and m,; = 0 if i 7 n while in
the second case, my,, = a and m;,, = 0 if i 7 n. From the definition of the determinant,

det(M) = Z sgn,, (ki k) mug, - My,
(klw"'vkil)

Letting 6 denote the position of n in the ordered list, (ki,---,k,) then using the earlier
conventions used to prove Lemma 1.9.1, det (M) equals

n—1

0
Z (_])”76 sgn, (kla T akefl 7k9+] PR ky ) Mify - My,
(et kn)

Now suppose the second case. Then if k, # n, the term involving m,,, in the above expres-
sion equals zero. Therefore, the only terms which survive are those for which 8 = n or in
other words, those for which k, = n. Therefore, the above expression reduces to

a Y osgn, (ki) myg me_yy, = adet(A).
(klﬂ"'akn71>

To get the assertion in the first case, use Corollary 1.9.8 to write

AT 0

det(M):det(MT):det<< . 4 )) =adet (A") = adet(A).H

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.
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Definition 1.9.16 LerA = (q; i) be an n x n matrix. Then a new matrix called the
cofactor matrix cof (A) is defined by cof (A) = (c;j) where to obtain c;j delete the i'" row
and the j™ column of A, take the determinant of the (n— 1) x (n — 1) matrix which results,
(This is called the ij minor of A. ) and then multiply this number by (—l)Hj . To make
the formulas easier to remember, cof (A); i will denote the ij™ entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outra-
geous totally unjustified assertion was made that the same number would be obtained by
expanding the determinant along any row or column. The following theorem proves this
assertion.

Theorem 1.9.17 Let A be an n x n matrix where n > 2. Then

n n
det(A) = Y aijcof (A);; =Y ajjcof (A),;. (1.25)
j=1 i=1
The first formula consists of expanding the determinant along the i'* row and the second
expands the determinant along the j'* column.

Proof: Let (a;1,--- ,a;,) be the i'" row of A. Let B ; be the matrix obtained from A by
leaving every row the same except the " row which in Bj equals (0,---,0,4;;,0,---,0).
Then by Corollary 1.9.9,

det(A) = i det(B))
=1

For example if

S

Il
S AU Q

Y
~. 0

and i = 2, then
a b ¢ a c a b c
Bi=|d 0 0 |,Bp=| 0 e 0 |,B35=( 0 0 f
h i h i ] h [

Denote by A"/ the (n— 1) x (n — 1) matrix obtained by deleting the " row and the ;"
column of A. Thus cof (4),;; = (-1 )"/ det (A¥) . At this point, recall that from Proposition
1.9.6, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by —1 to get the determinant of the new matrix. Therefore,
by Lemma 1.9.15,

den(ey) = (e ()
- (1)i+/det<< A(;'f a»;j )) — ajcof (A),.

n
det(A) = Z aij cof(A)l-,»
Jj=1 ’

Therefore,
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which is the formula for expanding det (A) along the i’ row. Also,

det(A) =det (A") = Za,]cof AT Zaﬂcof
j=1

which is the formula for expanding det (A) along the i’ column. B

1.9.6 A Formula for the Inverse

Note that this gives an easy way to write a formula for the inverse of an n x n matrix. Recall
the definition of the inverse of a matrix in Definition 1.6.7 on Page 29.

Theorem 1.9.18 A-! exists if and only if det(A) # 0. If det(A) # 0, then A~ =

(afjl> where
;' =det(A)" cof (A) ;
for cof (A),; the ij™ cofactor of A.

Proof: By Theorem 1.9.17 and letting (a;,) = A, if det(A) # 0,
n
Y aircof (A), det(A) ™" = det(A)det(A) ' = 1.

Now in the matrix A, replace the k" column with the 7" column and then expand along the
k' column. This yields for k # r,

n
Z ajrcof (A) det(A) ' =0
i=1
because there are two equal columns by Corollary 1.9.9. Summarizing,
n
Zaircof( )i det (A ) =6
Using the other formula in Theorem 1.9.17, and similar reasoning,

Za”cof det( )~ L

This proves that if det (A) # 0, then A~! exists with A~ = (a;jl> , where

ag;' = cof (A) j;det(A)~".

Now suppose A~ ! exists. Then by Theorem 1.9.13,
1 =det(I) =det (AA™") = det(A)det (A7")

sodet(A) £0. R
The next corollary points out that if an n X n matrix A has a right or a left inverse, then
it has an inverse.
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Corollary 1.9.19 Let A be an n x n matrix and suppose there exists an n x n matrix B
such that BA =I. Then A" exists and A~ = B. Also, if there exists C an n x n matrix such
that AC = I, then A~" exists and A~ = C.

Proof: Since BA = I, Theorem 1.9.13 implies det BdetA = 1 and so detA # 0. There-
fore from Theorem 1.9.18, A~! exists. Therefore,

A'=(BA)A"'=B(AA"")=BI=B.

The case where CA = [ is handled similarly. l

The conclusion of this corollary is that left inverses, right inverses and inverses are all
the same in the context of n X n matrices.

Theorem 1.9.18 says that to find the inverse, take the transpose of the cofactor matrix
and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A~! is equal to one over
the determinant of A times the adjugate matrix of A.

1.9.7 Cramer’s Rule
In case you are solving a system of equations, Az = y for x, it follows that if A~! exists,
z=(A"A)z=A"(Az)=A""y

thus solving the system. Now in the case that A~ exists, there is a formula for A~! given
above. Using this formula,

n n ‘l
-1
Xi = Zlaij Yi= Z,] det(A) cof (A) ;-
= =

By the formula for the expansion of a determinant along a column,
% e yl e *

= ———det| : :
M der(a) | - ~ A
* e yn e *

where here the i column of A is replaced with the column vector, (y;----, yn)T, and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 1.9.20 4 marrix M, is upper triangular if M;; = O whenever i > j. Thus
such a matrix equals zero below the main diagonal, the entries of the form M;; as shown.

* % *
0 =x
0 0 =*

A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.
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With this definition, here is a simple corollary of Theorem 1.9.17.

Corollary 1.9.21 Let M be an upper (lower) triangular matrix. Then det(M) is ob-
tained by taking the product of the entries on the main diagonal.

1.9.8 Rank of a Matrix

Definition 1.9.22 A submatrix of a matrix A is the rectangular array of numbers
obtained by deleting some rows and columns of A. Let A be an m x n matrix. The deter-
minant rank of the matrix equals r where r is the largest number such that some r X r
submatrix of A has a non zero determinant. The row rank is defined to be the dimension
of the span of the rows. The column rank is defined to be the dimension of the span of the
columns.

Theorem 1.9.23 If A, an m x n matrix has determinant rank r, then there exist r
rows of the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (a;;) equals r. Thus some r X r subma-
trix has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the » columns whose indices are

B <

and the r rows whose indices are
h<--<li

I want to show that every row is a linear combination of these rows. Consider the /' row
and let p be an index between 1 and n. Form the following (r+ 1) x (r+ 1) matrix

Aijy 0 Qigje Gigp

airjl e air.jr airp

Qjp o e dip
Of course you can assume [ ¢ {i|,---,i,} because there is nothing to prove if the /" row
is one of the chosen ones. The above matrix has determinant 0. This is because if p ¢
{ji, -+, Jjr} then the above would be a submatrix of A which is too large to have non zero
determinant. On the other hand, if p € {ji,---, j,} then the above matrix has two columns

which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let C; denote the
cofactor associated with the entry g;, ,. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by —1 raised to an appropriate power. Let C denote the cofactor associated
with a;,,. This is given to be nonzero, it being the determinant of the matrix r X r matrix
in the upper left corner. Thus 0 = a;,C + Y _ Ca;, , which implies a;, = Y ;_, _Tckaikp =
Y i—1 mkai,p Since this is true for every p and since n; does not depend on p, this has shown
the " row is a linear combination of the i1, is,- - - , i, rows. l

Corollary 1.9.24 The determinant rank equals the row rank.
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Proof: From Theorem 1.9.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so, it
follows from Theorem 1.9.23 that there exist p rows for p < r = determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r x r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
4.2.3, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 1.9.11 the determinant
would be 0, a contradiction. B

Corollary 1.9.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering A”. The rows of A are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 1.9.24,
column rank of A = row rank of A7 = determinant rank of A7 = determinant rank of A. H

The following theorem is of fundamental importance and ties together many of the
ideas presented above.

Theorem 1.9.26 Let A be an n x n matrix. Then the following are equivalent.
1. det(A) =0.
2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore, there
exist r columns such that every other column is a linear combination of these columns
by Theorem 1.9.23. In particular, it follows that for some m, the m" column is a linear
combination of all the others. Thus letting A = ( a, - ay - ag ) where the
columns are denoted by a;, there exists scalars o; such that a,, = Zk7ém ajay. Now consider

the column vector, x = ( o - =1 - a, )T. Then Ax = —a,, +Zk¢m oa; =
0. Since also A0 = 0, it follows A is not one to one. Similarly, A” is not one to one by the
same argument applied to A”. This verifies that 1.) implies 2.).

Now suppose 2.). Then since A7 is not one to one, it follows there exists = % 0 such
that AT 2 = 0. Taking the transpose of both sides yields 227 A = 07 where the 07 isa 1 xn
matrix or row vector. Now if Ay = x, then |z|* = 27 (Ay) = (27 A) y = 0y = 0 contrary
to « # 0. Consequently there can be no y such that Ay = @ and so A is not onto. This
shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det(A) # O but then from Theorem
1.9.18 A~! exists and so for every y € F” there exists a unique = € F" such that Ax = y.
In fact £ = A~'y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). B

Corollary 1.9.27 Let A be an n x n matrix. Then the following are equivalent.

1. det(A) #0.
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2. A and AT are one to one.
3. A is onto.

Proof: This follows immediately from the above theorem.

1.9.9 An Identity of Cauchy

Theorem 1.9.28 Both the left and the right sides in the following yield the same
polynomial in the variables a;, b; for i < n.

1 ... 1

al+bl al+bn
[Ta+b))| o =] (ai—a)) (bi—bj). (1.26)
iJ 1 . 1 j<i

an+by an+by,

Proof: The theorem is true if n = 2. This follows from some computations. Suppose it
is true forn — 1, n > 3.

1 1 1
aj+by aj+by ay+by
1 _1 1
an— 11+bl an— 11+b2 Aan— 11+bn
an+by aptby; an+by
an—aj anp—ajg anp—ajg
(a1+b1)(b1+an) (a1+b2)(b2+an) (a1+bn)(an-+bn)
= an—ap—1 an—dn—1 an—dp—1
(an71+b11)(an+b1) <b2+a")(1b2+an71) (0n+bn)(1bn +an—1)
an+by an+by o an+bn

Continuing to use the multilinear properties of determinants, this equals

1 1 1

(a1+b1) (b +an) (a1+b2)(ba+an) o (a1 +by)(an—+by)
: : : n—1
i i i (an —ax)
@1 FB)Gantb)  Eatan)(Brtan) @n +bn) (B -1) k=1
an+by an+by o an+by

and this equals

1 1 1
@+b)  Tatb) 7 Tarthy

1 1 1 n b
(a”’ll+b1) (b2+iznfl) Witn,l) Hk:l (a” + k)

Now take —1 times the last column and add to each previous column. Thus it equals

bn*b] bn*b2 . 1
(a1+b1)(a1+bn) (a1+b2)(a1+bu) (a1+bn)
: : o | T (- a)
by—b by—by 1 Hn: a +bk
(b1+an—1)(bnt+an_1) (b2+an—1)(bnt+an_1) (an—1+bn) k=l ( " )
0 0 1
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Now continue simplifying using the multilinear property of the determinant.

1 1 e 1

(ar+by) (a1+b2)
: . HZ;]I (anfak) Hz;ll (bnfbk)
1 1 n n—1

(brtan—1)  (brta-1) 1| Tz (an +6) [T:2 (ax+ba)

Expanding along the bottom row, what has just resulted is

1 1

¥b +b,_ _ _
“a AT (- ) T (b — Br)
L e (b TR (ak+ba)
a,_1+by ap—1+by—1

By induction this equals

Hj<i§n—1 (ai — aj) (bi — bj) Z;% (an —ay) Hz;i (bn — bk)
ITij<n—1(ai+bj) ITi (an +bx) T | (ax +by)

_ Hj<i§n (ai — a;) (bi—bj)
[Ti,j<n (ai +bj)

1.10 'The Cayley Hamilton Theorem

Definition 1.10.1 Ler A be an n x n matrix. The characteristic polynomial is de-
fined as
ga(t)=det(tI—A)

and the solutions to qa (t) = 0 are called eigenvalues. For A a matrix and p(t) =" +
an 1" ' -4 ayt + ag, denote by p (A) the matrix defined by

pA)=A"+a, (A" At al.
The explanation for the last term is that A° is interpreted as I, the identity matrix.
The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by g4 () = 0. It is one of the most important theorems in linear

algebra®. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 1.10.2 Suppose for all | 1| large enough,
Ag+A A+ +A,A" =0,

where the A; are n X n matrices. Then each A; = 0.

2 A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time
later and a proof was given by Frobenius in 1878.
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Proof: Suppose some A; # 0. Let p be the largest index of those which are non zero.
Then multiply by A~ 7.

AA P+ M A, AT A, =0
Now let A — co. Thus A, = 0 after all. Hence each A; = 0. W
With the lemma, here is a simple corollary.
Corollary 1.10.3 Let A; and B; be n x n matrices and suppose
Ag+A A+ +AA" =By+BiA+---+B,A"
Sor all |A| large enough. Then A; = B; for all i. If A; = B; for each A;,B; then one can
substitute an n X n matrix M for A and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. Ml
With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 1.10.4 et A be an n x n matrix and let ¢ (L) =det(AI —A) be the char-
acteristic polynomial. Then q(A) = 0.

Proof: Let C(A) equal the transpose of the cofactor matrix of (A —A) for |4| large.
(If |A| is large enough, then A cannot be in the finite list of eigenvalues of A and so for such
A, (A1 —A) ™! exists.) Therefore, by Theorem 1.9.18

C(A)=qA)(A1-A)"".
Say

g(A) =ay+aA+---+A"
Note that each entry in C (1) is a polynomial in A having degree no more than n — 1. For
example, you might have something like

A2—61+9 3-1 0
C(A) = 2A4—-6  A?-31 0

A—1 A—1 2A2-31+2
9 3 0 6 -1 0

1 00
= 6 0 0 |+A[ 2 -3 0 |+A*[ 0 1 0
-1 -1 2 1 1 -3 0 0 1
Therefore, collecting the terms in the general case,
CA)=Co+CiA+ - +Cp A"

for C; some n X n matrix. Then
CA) (M —A) = (c0+clx+~-+cn_1z"—l) (AI—A)=q(A)I
Then multiplying out the middle term, it follows that for all |4 | sufficiently large,
aol +arI + - +IA" = CoA +Ci A% + -+ Gyt A"
~[coa+ciante o ant]

= —CoA+(Co—ClA) A+ (CL —CA)A* + -+ (Cyy — Gt A) A G A"
Then, using Corollary 1.10.3, one can replace A on both sides with A. Then the right side
is seen to equal 0. Hence the left side, g (A) [ is also equal to 0. W



Part 1

Topology, Continuity, Algebra,
Derivatives

55






Chapter 2

Some Basic Topics

This chapter contains basic definitions and a few fundamental theorems which will be used
throughout the book whenever convenient.

2.1 Basic Definitions

A set is a collection of things called elements of the set. For example, the set of integers,
the collection of signed whole numbers such as 1,2,—4, etc. This set whose existence
will be assumed is denoted by Z. Other sets could be the set of people in a family or the
set of donuts in a display case at the store. Sometimes parentheses, { } specify a set by
listing the things which are in the set between the parentheses. For example the set of
integers between —1 and 2, including these numbers could be denoted as {—1,0,1,2}. The
notation signifying x is an element of a set S, is written as x € S. Thus, 1 € {—1,0,1,2,3}.
Here are some axioms about sets. Axioms are statements which are accepted, not proved.

Axiom 2.1.1 Two sets are equal if and only if they have the same elements.

Axiom 2.1.2 To every set, A, and to every condition S (x) there corresponds a set, B, whose
elements are exactly those elements x of A for which S (x) holds.

Axiom 2.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection. (You can take the union of a bunch of
sets.)

Axiom 2.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 2.1.5 If A is a set there exists a set, & (A) such that & (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3,1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some “condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x€Z:x=2yforsomeycZ}.

In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no way
to determine to everyone’s satisfaction whether a given judge is an activist. Also, just
because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S ={x € setof dogs : it is colder in the mountains than in the winter} .

57
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So what is a condition?

We will leave these sorts of considerations and assume our conditions make sense,
whatever that means. The axiom of unions states that for any collection of sets, there is a
set consisting of all the elements in each of the sets in the collection. Of course this is also
open to further consideration. What is a collection? Maybe it would be better to say “set
of sets” or, given a set whose elements are sets there exists a set whose elements consist
of exactly those things which are elements of at least one of these sets. If . is such a set
whose elements are sets,

U{A:Ae S} or Uy

signify this union.

Something is in the Cartesian product of a set or “family” of sets if it consists of a single
thing taken from each set in the family. Thus (1,2,3) € {1,4,.2} x {1,2,7} x {4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by x.
Also, this is the notation for the Cartesian product of finitely many sets. If . is a set whose
elements are sets, [[4<.~ A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of .. You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

A is a subset of B, written A C B, if every element of A is also an element of B. This
can also be written as B D A. A is a proper subset of B, writtetn A C Bor BDAif Aisa
subset of B but A is not equal to B,A # B. AN B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as 0. AU B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set which is a set which contains the
one whose complement is being taken. Thus, the complement of A, denoted as A€ ( or
more precisely as X \ A) is a set obtained from using the axiom of specification to write

AC={xeX:x¢A}

The symbol ¢ means: “is not an element of””. Note the axiom of specification takes place
relative to a given set. Without this universal set it makes no sense to use the axiom of
specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
that there are symbols for them. The symbol V is read as “for all” or “for every” and the
symbol 3 is read as “there exists”. Thus VV33 could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let .# be a set of sets each of which
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is contained in some universal set, U. Then
u{AC:ae 7} =(N{A:Ae 7})°

nd
) N{AC:Ae 7} =(Uf{A:Ae 7})°.

These laws follow directly from the definitions. Also following directly from the definitions
are:
Let .# be a set of sets then

BUU{A:Ae ¥} =U{BUA:Ac.¥}.
and: Let . be a set of sets show
BNnu{A:Ae ¥} =U{BNA:Ac.¥}.

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if this is so, it qualifies for inclusion in A so it is an element of
itself and so this can’t be true either. Thus the most basic of conditions you could imagine,
that of being an element of, is meaningless and so allowing such a set causes the whole
theory to be meaningless. The solution is to not allow a universal set. As mentioned by
Halmos in Naive set theory, “Nothing contains everything”. Always beware of statements
involving quantifiers wherever they occur, even this one. This little observation described
above is due to Bertrand Russell and is called Russell’s paradox.

2.2 The Schroder Bernstein Theorem

It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 2.2.1 Ler X and Y be sets.
XxY={(x,y):x€Xandy€eY}

A relation is defined to be a subset of X X Y. A function f, also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f, then
v =y1. The domain of f is defined as

D(f) ={x: (xy) € [},

written as f : D(f) — Y. Another notation which is used is the following

S O)={xeD(f): flx) =y}

This is called the inverse image.
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It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y,denoted as f (x) while the
name of the function is f. “mapping” is often a noun meaning function. However, it also
is a verb as in “f is mapping A to B . That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y. However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem.

Theorem 2.2.2 Lt f:X—=Yandg:Y — X be two functions. Then there exist sets
A,B,C,D, such that

AUB=X,CUD=Y,ANB=0,CND =0,
f(A)=C, g(D)=B.

The following picture illustrates the conclusion of this theorem.

X Y
A A C = f(A)
B=g(D) BELE D

Proof:Consider the empty set, d C X. If y € Y\ f(0), then g(y) ¢ @ because 0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A9 C X
satisfies & if whenevery € Y\ f (Ao), g(v) ¢ Ao.

o ={Ag C X : Ag satisfies Z}.

LetA=Ux. If ye Y\ f(A), then foreach Ag € &7,y €Y \ f(Ao) and so g (y) ¢ Ag. Since
g(y) ¢ Ap forall Ag € &7, it follows g (y) ¢ A. Hence A satisfies &2 and is the largest subset
of X which does so. Now define

C=f(A),D=Y\C, B=X\A.

It only remains to verify that g (D) = B. It was just shown that g (D) C B.

Suppose x € B= X\ A. Then AU {x} does not satisfy & and so there exists y €
Y\ f(AU{x}) C D suchthat g(y) € AU{x}.Buty ¢ f(A) and so since A satisfies 2, it
follows g (y) ¢ A. Hence g (y) =x and so x € g(D). Hence g(D) =B. B

Theorem 2.2.3 (Schroder Bernstein) If f : X — Y and g : Y — X are one to one,
then there exists h : X — Y which is one to one and onto.
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Proof:Let A, B,C, D be the sets of Theorem?2.2.2 and define

| fx) ifxeA
h(x):{ g '(x)ifxeB

Then 4 is the desired one to one and onto mapping. B
Recall that the Cartesian product may be considered as the collection of choice func-
tions.

Definition 2.2.4 Let I be a set and let X; be a set for each i € I. f is a choice
Sunction written as f € [1;e; X; if f (i) € X; for each i € I.

The axiom of choice says that if X; # 0 for each i € I, for I a set, then

[1xi #o.

iel

Sometimes the two functions, f and g are onto but not one to one. It turns out that with
the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 2.2.5 Iff: X — Y isonto and g : Y — X is onto, then there exists h: X —Y
which is one to one and onto.

Proof: Foreachy €Y, f~'(y) = {x € X : f(x) =y} # 0. Therefore, by the axiom of
choice, there exists f; le [Ler £~ (y) which is the same as saying that for each y € Y,
fo ' () € £~ (). Similarly, there exists g, ' (x) € g! (x) for all x € X. Then f; ' is one to
one because if f; ' (y1) = f; ' (v2), then

n=r0"00) = 62) =

Similarly g, ! is one to one. Therefore, by the Schroder Bernstein theorem, there exists
h : X — Y which is one to one and onto. H

Definition 2.2.6 A ser s, is finite if there exists a natural number n and a map 0
which maps {1,--- ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map 0 mapping N one to one and onto S.(When 6 maps a set A
to a set B, this will be written as 0 : A — B in the future.) Here N = {1,2,---}, the natural
numbers. S is at most countable if there exists a map 0 : N —S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 2.2.7 If X and Y are both at most countable, then X X Y is also at most
countable. If either X orY is countable, then X X Y is also countable.
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Proof: It is given that there exists a mapping 1 : N — X which is onto. Define 1 (i) = x;
and consider X as the set {x1,x,x3,--- }. Similarly, consider ¥ as the set {y;,y,y3,--- }. It
follows the elements of X x Y are included in the following rectangular array.

(x1,91) (x1,2) (x1,y3) --- <« Those which have x; in first slot.
(x2,y1) (x2,2) (x2,y3) --- < Those which have x; in first slot.

(x3,y1) (x3,02) (x3,y3) -+ < Those which have x3 in first slot. -

Follow a path through this array as follows.

(x1,01) = (x1,52) (x1,y3) —
v S
(x2,1) (x2,y2)
1 Va
(x3,51)

Thus the first element of X x Y is (x,y;), the second element of X X Y is (x1,y2), the third
element of X XY is (x2,y1) etc. This assigns a number from N to each element of X x Y.
Thus X x Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists & : N — X which is one to one and onto. Let § : X x ¥ — N be defined
by B ((x,y)) = &' (x). Thus f is onto N. By the first part there exists a function from
Nonto X x Y. Therefore, by Corollary 2.2.5, there exists a one to one and onto mapping
fromX xY toN. l

Theorem 2.2.8 If X and Y are at most countable, then X UY is at most countable.
If either X orY are countable, then X UY is countable.

Proof:As in the preceding theorem,
X= {x17x2ax3a o }

and
Y= {)’1»)’2»)’3»"‘}
Consider the following array consisting of X UY and path through it.

X1 — X2 X3 —
v A
y — »n

Thus the first element of X UY is x1, the second is x, the third is y; the fourth is y, etc.

Consider the second claim. By the first part, there is a map from N onto X x Y. Suppose
without loss of generality that X is countable and & : N — X is one to one and onto. Then
define B (y) =1, forall y € Y,and B (x) = @' (x). Thus, 8 maps X x Y onto N and this
shows there exist two onto maps, one mapping X UY onto N and the other mapping N onto
X UY. Then Corollary 2.2.5 yields the conclusion. ll

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable.
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2.3 Equivalence Relations

There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 2.3.1 Let S be a set. ~ isan equivalence relation on S if it satisfies the
following axioms.

1. x~x forallx €S. (Reflexive)
2. If x ~ytheny ~ x. (Symmetric)
3. Ifx~yandy ~ z then x ~ z. (Transitive)

Definition 2.3.2 [x] denotes the set of all elements of S which are equivalent to x

and [x] is called the equivalence class determined by x or just the equivalence class of x.
With the above definition one can prove the following simple theorem.

Theorem 2.3.3 Let ~ be an equivalence relation defined on a set, S and let 7€
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x ~ 'y and [x] = [y] or it is not true that x ~ 'y and [x| N [y] = 0.

2.4 sup and inf

It is assumed in all that is done that R is complete. There are two ways to describe com-
pleteness of R. One is to say that every bounded set has a least upper bound and a greatest
lower bound. The other is to say that every Cauchy sequence converges. These two equiv-
alent notions of completeness will be taken as given. Cauchy sequences are discussed a
little later.

The symbol, F will mean either R or C. The symbol [—eo, o] will mean all real numbers
along with +oc0 and —eo which are points which we pretend are at the right and left ends of
the real line respectively. The inclusion of these make believe points makes the statement
of certain theorems less trouble.

Definition 2.4.1 roraAc [—o0,00] , A # O supA is defined as the least upper bound
in case A is bounded above by a real number and equals oo if A is not bounded above.
Similarly infA is defined to equal the greatest lower bound in case A is bounded below by
a real number and equals —oo in case A is not bounded below.

Lemma 2.4.2 if{A,} is an increasing sequence in [, o), then
sup{A, :n € N} = lim A,
n—yoo
Similarly, if {A,} is decreasing, then

inf{A, :n e N} = lim A,,.
n—oo



64 CHAPTER 2. SOME BASIC TOPICS

Proof: Let sup ({A, : n € N}) = r. In the first case, suppose r < o. Then letting € > 0
be given, there exists n such that A, € (r — €,r]. Since {A,} is increasing, it follows if
m > n, then r— €& <A, <A, <rand so lim,_,A, = r as claimed. In the case where
r = oo, then if a is a real number, there exists n such that A, > a. Since {A;} is increasing,
it follows that if m > n, A,, > a. But this is what is meant by lim,_,. A, = c. The other
case is that » = —oo. But in this case, A, = —oo for all n and so lim,,_,..A, = —o. The case
where A, is decreasing is entirely similar. l

2.5 Double Series

Double series are of the form Y7, Y% au = Y7, (Z;“Zm aji) . In other words, first sum
on j yielding something which depends on k and then sum these. The major consideration
for these double series is the question of when Y37 | 357, ajx = Y7, Yy, @jx In other
words, when does it make no difference which subscript is summed over first? In the case
of finite sums there is no issue here. You can always write ):Q’Izm Z/ Ak = ):j —m Zk m@jk
because addition is commutative. However, there are limits involved with infinite sums and
the interchange in order of summation involves taking limits in a different order. Therefore,
it is not always true that it is permissible to interchange the two sums. A general rule of
thumb is this: If something involves changing the order in which two limits are taken, you
may not do it without agonizing over the question. In general, limits foul up algebra and
also introduce things which are counter intuitive. Here is an example. This example is a
little technical. It is placed here just to prove conclusively there is a question which needs
to be considered.

Example 2.5.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

0 0 ¢ 0 —c
0 ¢ — 0
b 0 — O 0
0 a O 0 0
The a,b,c are the values of ay,y,. Thus a,, =0 foralln > 1, a1 = a,a;n = b,am(m+1) =—c

whenever m > 1, and @y, —1) = ¢ whenever m > 2. The numbers next to the point are the
values of apy,. You see an, = 0 for all n, ay = a,a12 = b,apu, = ¢ for (m,n) on the line
y = 1 +x whenever m > 1, and ay, = —c for all (m,n) on the line y = x — 1 whenever
m>2.

Then Y, _am =aiftn=1%,_am=>b—cifn=2andifn>2,Y"_ au, =0.
Therefore,

Next observe that } > ap, =bif m=1,Y," jaum =a+cifm=2,and Y > apu, =01if
m > 2. Therefore,

mn:a+b—c.

||M8

o oo

Z Zamn=b+a+c

m=1n=1
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and so the two sums are different. Moreover, you can see that by assigning different values
of a,b, and c, you can get an example for any two different numbers desired.

It turns out that if a;; > 0 for all i, j, then you can always interchange the order of
summation. This is shown next and is based on the following lemma. First, some notation
should be discussed.

Definition 2.5.2 Let f(a,b) € [—c0,) for a € A and b € B where A, B are sets which
means that f (a,b) is either a number, o, or —eo. The symbol, 4o is interpreted as a point
out at the end of the number line which is larger than every real number. Of course there is
no such number. That is why it is called «. The symbol, —e is interpreted similarly. Then
Sup,ca f (a,b) means sup (Sp) where Sp = {f (a,b) :a € A}.

Unlike limits, you can take the sup in different orders.
Lemma 2.5.3 Let f(a,b) € [—oo,0] for a € A and b € B where A, B are sets. Then

supsup f (a,b) = supsup f (a,b).
acA beB beB acA

Proof: Note that for all a,b, f(a,b) < sup,cpsup,ca f (a,b) and therefore, for all a,
supyep f (a,b) < supycpsup,cy f (a,b). Therefore,

supsup f (a,b) < supsup f(a,b).
acA beB beB acA

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. H
Theorem 2.5.4 Leta;; > 0. Then Y2, Y5 aij = Y5 Y52 aij.

Proof: First note there is no trouble in defining these sums because the g;; are all
nonnegative. If a sum diverges, it only diverges to oo and so e is the value of the sum. Next
note that

ZZ“U > supZZa,J

Jj=ri=r Jj=ri=r

because for all j,}°  a;; > Y. a;;j. Therefore,

ZZ“U > supZZaU = supn%gn ZZa,]

j=ri=r j=ri=r Jj=ri=r

- sgpnllgn ZZa,] —supz lim Zall

i=r j=r noj="
= supZZa,J—’PmZZa,j —ZZaij
i=r j=r i=r j=r i=r j=r

Interchanging the i and j in the above argument proves the theorem. l
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2.6 lim sup and lim inf

Sometimes the limit of a sequence does not exist. For example, if a, = (—1)", then
lim,, . a, does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition. First review the definition
of inf and sup on Page 63 along with the simple properties of these things.

Definition 2.6.1 Denote by [—o0,00] the real line along with symbols o and —es. It
is understood that o is larger than every real number and —oo is smaller than every real
number. Then if {A,} is an increasing sequence of points of [—co, 00| , lim,,_,e A, equals o if
the only upper bound of the set {A} is oo. If {A,} is bounded above by a real number; then
lim,,, A, is defined in the usual way and equals the least upper bound of {A,}. If {An} is
a decreasing sequence of points of [—oe, 00|, limy,_,. A, equals —oo if the only lower bound
of the sequence {A,} is —oo. If {A} is bounded below by a real number, then lim,,_,. A, is
defined in the usual way and equals the greatest lower bound of {A,}. More simply, if {A,}
is increasing,lim,_, A, = sup{A, } and if {A,} is decreasing then lim,_,.. A, = inf{A,}.

Lemma 2.6.2 Let {a,} be a sequence of real numbers and let U, = sup{ay : k > n}.
Then {U,} is a decreasing sequence. Also if L, = inf{ay : k > n}, then {L,} is an increas-
ing sequence. Therefore, lim,_,. L, and lim,_,., U,, both exist.

Proof: Let W, be an upper bound for {a; : k > n}. Then since these sets are getting
smaller, it follows that for m < n, W, is an upper bound for {a; : k > n}. In particular if
Wy = Uy, then U, is an upper bound for {ay : k > n} and so U, is at least as large as Uy,
the least upper bound for {ay : k > n} . The claim that {L,} is decreasing is similar. l

From the lemma, the following definition makes sense.

Definition 2.6.3 Let {a,} be any sequence of points of [—eo, ]

lim sup a, = lim sup{ay : k > n}
n—soo n—oo

lim inf a, = lim inf{ay : k > n}.
n—soo n—soo
Theorem 2.6.4 Suppose {a,} is a sequence of real numbers and also that both
limsup,,_,,, a,,liminf, . a, are real numbers. Then lim, ... a, exists if and only if the two
numbers are equal and in this case, the limit and the each of limsup,_,, a, liminf, .. a,
are equal.

Proof: First note that sup {ay : k > n} > inf{a; : k > n} and so,

lim sup a, = lim sup{ay : k > n} > lim inf{ay : k > n} =lim inf aq,.
S0 n—soo n—soo n—soo

Suppose first that lim,_,.a, exists and is a real number a. Then from the definition of a
limit, there exists N corresponding to €/6 in the definition. Hence, if m,n > N, then

€ €

|an — am| < |ay —a| + |a— ay| <6+6: 3
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From the definition of sup {a; : k > N}, there exists n; > N such that
sup{ax: k> N} <a, +€/3.

Similarly, there exists n, > N such that inf {ay : k > N} > a,,, — /3. It follows that
; 2¢
sup{ax : k> N} —inf{ay : k> N} <|ay, 7an2‘+? <e.

Since the sequence, {sup{ay:k > N}}y_, is decreasing and {inf{a : k> N}}y_, is in-
creasing, it follows that

0< lim sup{a;:k >N} — lim inf{q;: k> N} <e€
N—o0 N—o0
Since ¢ is arbitrary, this shows
lim sup{a; :k >N} = lim inf{ay : k > N} 2.1
N—oo N—co
Next suppose 2.1 and both equal a € R. Then

]éim (sup{ay:k >N} —inf{ar:k>N})=0
—»00
Since sup{a; : k> N} > inf{ay : k > N}, it follows that for every € > 0, there exists N
such that sup{ay : k> N} —inf{a; : k > N} < €, and for every N,inf{a; :k >N} <a <
sup{a; : k> N}

inf{ay:k>N} <a<sup{ar:k>N}

Thus if n > N, |a — a,| < € which implies that lim,, . a, = a. In case

a=rco= lim sup{ay : k> N} = lim inf{a; : k > N}
N—roo N—oo

then if » € R is given, there exists N such that inf{a; : k > N} > r which is to say that
lim,,_,0 @, = o0. The case where a = —oo is similar except you use sup{a; : k > N}. B

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 2.6.5 Suppose {a,} is a sequence of points of [—eo,0|. Also define A =
limsup,,_,., a,. Then if b > A, it follows there exists N such that whenever n > N,a, < b.If
¢ < A, then a, > c for infinitely many values of n. Let y = liminf,, e a,.Then if d < 7,
it follows there exists N such that whenever n > N,a, > d. If e > 7, it follows a, < e for
infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 2.6.6 Letlim, ,..a, = a > 0. Then limsup,_... a,b, = alimsup,_,.. b,.

Proof: This follows from the definition. Let A, = sup {axby : k > n}. For all n large
enough, a, > a — € where € is small enough that a — € > 0. Therefore,

An > sup{by:k>n}(a—¢)
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for all n large enough. Then

lim sup a,b, = lim A, =lim sup a,b, > lgn (sup{by:k>n}(a—¢))
fi—yoo

n—oo h—beo n—soo
= (a—é¢)limsup b,
n—yoo
Similar reasoning shows limsup,,_,.,dnby, < (a+ €)limsup,_,.,b,. Now since € > 0 is
arbitrary, the conclusion follows. B

2.7 Nested Interval Lemma

The nested interval lemma is a simple and important lemma which is used later quite a bit.

Lemma 2.7.1 Let [a;,b;] D [ayi1,bri1] for all k =1,2,3,---. Then there exists a point
pin O [ak, by]. If limy_,e (b — ax) = 0, then there is only one such point

Proof: We note that for any k,/,a; < b;. Here is why. If kK <[, then a; < a; < b;. If
k > 1, then b; > by > a. It follows that for each /, sup; a; < b;. Hence sup; ay is a lower
bound to the set of all b; and so it is no larger than the greatest lower bound. It follows
that sup, a; < inf;b;. Pick x € [sup,ag,inf;b;]. Then for every k,a; < x < br. Hence
x €Ny lax, bi] -

To see the last claim, if g is another point in all the intervals, then both p and g are in
[ak,bi] and so |p — q| < (by —ay) < € if k is large enough. Since € is arbitrary, p=¢g. W

2.8 The Hausdorff Maximal Theorem

This major theorem, or something like it (Several equivalent statements are proved later.), is
either absolutely essential or extremely convenient. First is the definition of what is meant
by a partial order.

Definition 2.8.1 4 nonempty set % is called a partially ordered set if it has a partial
order denoted by <. This means it satisfies the following. If x <y and y < z, then x < z.
Also x < x. It is like C on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x <y
ory < x. A chain, denoted by € C % has the property that it is totally ordered meaning
that if x,y € €, either x <y ory < x. A maximal chain is a chain € which has the property
that there is no strictly larger chain. In other words, if x € F\UE, then €U{x} is no
longer a chain.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the x4 right at the beginning of the argument.

Theorem 2.8.2 Let 7 bea nonempty partially ordered set with order <. Then there
exists a maximal chain.

Proof: Suppose not. Then for ¢ a chain, let 8% denote ¢’ U {x¢ } . Thus for ¢ a chain,
0% is a larger chain which has exactly one more element of .%. Since . # 0, pick xy €
Z . Note that {xo} is a chain. Let 2" be the set of all chains % such that xy € U%". Thus
Z contains {xp}. Call two chains comparable if one is a subset of the other. Also, if .
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is a nonempty subset of .% in which all chains are comparable, then U.7 is also a chain.
From now on . will always refer to a nonempty set of chains in which any pair are
comparable. Then summarizing,

1. xo e UE forall 6 € Z .
2. {XO}G%
3. If 4 € % then 06 € 2.

4. If ¥ C Z thenU.¥ €¢ 2.

A subset % of 2" will be called a “tower” if % satisfies 1.) - 4.). Let % be the
intersection of all towers. Then % is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Zp would not be the smallest tower.

Claim 1: If 6) € % is comparable to every chain € € %), then if 6y C €, it must be
the case that 8% C . In other words, x, € U%". The symbol C indicates proper subset.

This is done by considering a set Z C % consisting of & which acts like % in the
above and showing that it actually equals % because it is a tower.

Proof of Claim 1: Consider Z= {2 € % : 9 C € or x4, € UZ}. Let % = %N AB.
I want to argue that %] is a tower. By definition all chains of %] contain x; in their unions.
f2e€e,is02eN? U S CH,isUS € #71s {x} € B?

{xo} cannot properly contain &y since xy € U%p. Therefore, €y 2 {xo} so {xo} € Z.

If ¥ C%,and 2 =U,is 9 € #? Since % is a tower, Z is comparable to %.
If 9 C 6o, then Z is in . Otherwise ¥ 2 %) and in this case, why is & in #8? Why is
xg, € UZ? The chains of . are in % so one of them, called % must properly contain %
and 50 x¢, € UZ C UZ. Therefore, 2 € BN % = %. 4.) holds. Two cases remain, to
show that %] satisfies 3.).

case 1: & 2 €. Then by definition of %, x¢, € UZ and so x4, € UBZ s0 09 € #.

case 2: 9 C 6. 02 € % so 07 is comparable to 6. First suppose 6 7 2 %6p. Thus
P2 C6 G 2U{xgp}.Ifx €% and x is not in & then ZU{x} C 6) C ZU{x5}. This
is impossible. Consider x. Thus in this case that 62 D %y, 2 = %p. It follows that
Xg = X4, € UBG) = UOY and so 07 € #1. The other case is that 07 C € so 09 € A
by definition. This shows 3.) so %] is a tower and must equal %.

Claim 2: Any two chains in % are comparable.

Proof of Claim 2: Let %] consist of all chains of % which are comparable to every
chain of #%. {xo} is in #] by definition. All chains of % have x¢ in their union. If
S C A, is U € #1? Given @ € % either every chain of . is contained in Z or at least
one contains Z. Either way & is comparable to U. so U.¥ € %. It remains to show 3.).
Let € € %) and & € %. Since ¥ is comparable to all chains in %, it follows from Claim
1 either € C 2 when xy € UZ and 06 C Z or ¢ 2 2 when 6% O 2. Hence %1 = %
because % is as small as possible.

Since every pair of chains in % are comparable and % is a tower, it follows that
U%0 € % so U% is a chain. However, 6 U % is a chain which properly contains U%j
and since % is a tower, 0 U%g € %. Thus U(0U %) 2 U(U%H) D U(O0UZ)) which is
a contradiction. Therefore, for some chain %’ it is impossible to obtain the xc described
above and so, this ¢ is a maximal chain. B
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If X is a nonempty set, < is an order on X if

x<x,
eitherx <yory<x
ifx<yandy<zthenx <z

and < is a well order if (X, <) if every nonempty subset of X has a smallest element. More
precisely, if S # @ and S C X then there exists an x € S such that x <y forally € S. A
familiar example of a well-ordered set is the natural numbers.

Lemma 2.8.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.

Proof: Let X be a nonempty set and let a € X. Then {a} is a well-ordered subset of X.
Let % = {S C X : there exists a well order for S}. Thus .% # 0. For S;, S; € .Z#, define
S| <8, if §1 C S, and there exists a well order for S,, <j such that (S, <;) is well-ordered
and if y € S5\ S; then x <, y forall x € S}, and if <;is the well order of S; then the two
orders are consistent on S;. Then observe that < is a partial order on .%. By the Hausdorff
maximal principle, let 4 be a maximal chain in .% and let X., = U% . Define an order, <,
on X, as follows. If x, y are elements of X.., pick S € € such that x, y are both in S. Then if
<s is the order on S, let x < y if and only if x <gy. This definition is well defined because
of the definition of the order, <. Now let U be any nonempty subset of X... Then SNU # 0
for some S € ¥. Because of the definition of <, if y € $2\ S1, S; € €, then x <y for all
x € Sy. Thus, if y € X..\ S then x <y for all x € S and so the smallest element of SNU
exists and is the smallest element in U. Therefore X.. is well-ordered. Now suppose there
exists z € X \ X... Define the following order, <i, on X, U {z}.

x <y yifand only if x <y whenever x,y € X.,

x <; z whenever x € X...

Let 4 = {S €€ or X..U{z}}. Then € is a strictly larger chain than % contradicting max-
imality of €. Thus X \ X.. = 0 and this shows X is well-ordered by <. B
With these two lemmas the main result follows.

Theorem 2.8.4 7ne following are equivalent.
The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It remains to show that the well-ordering principle implies the axiom of choice.
Let I be a nonempty set and let X; be a nonempty set for eachi € I. Let X = U{X;:i € I}
and well order X. Let f (i) be the smallest element of X;. Then f € [[;c; X;. B

The book by Hewitt and Stromberg [26] has more equivalences.



Chapter 3

Metric Spaces

3.1 Open and Closed Sets, Sequences, Limit Points

It is most efficient to discus things in terms of abstract metric spaces to begin with.

Definition 3.1.1 A non empty set X is called a metric space if there is a function
d : X x X — [0,00) which satisfies the following axioms.

1. d(x,y) =d(yx)
2. d(x,y) > 0and equals O if and only if x =y
3. d(x,y)+d(y,z) >d(x,z)
This function d is called the metric. We often refer to it as the distance also.
Definition 3.1.2 An open bail, denoted as B (x,r) is defined as follows.

B(x,r)={y:d(x,y) <r}
A set U is said to be open if whenever x € U, it follows that there is r > 0 such that

B(x,r) CU. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x—y|.
Then the first thing to show is the following.

Proposition 3.1.3 An open ball is an open set.

Proof: Suppose y € B(x,r). We need to verify that y is an interior point of B (x,r). Let
0 =r—d(x,y). Thenif z € B(y, ), it follows that

d(z,x) <d(z,y)+d(y,x) <8 +d(yx) =r—d(x,y) +d (y,x) =r

Thusy € B(y,6) C B(x,r). &

Definition 3.1.4 Let S be a nonempty subset of a metric space. Then p is a limit
point (accumulation point) of S if for every r > 0 there exists a point different than p in
B(p,r)NS. Sometimes people denote the set of limit points as S'.

The following proposition is fairly obvious from the above definition and will be used

whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 3.1.5 A point x is a limit point of the nonempty set A if and only if every
B (x,r) contains infinitely many points of A.

71
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Proof: < is obvious. Consider = . Let x be a limit point. Let r; = 1. Then B (x,r])
contains a; # x. If {ay,---,a,} have been chosen none equal to x and with no repeats in
the list, let 0 < r, < min (%,min{d (a;,x),i=1,2,---n}). Then let a,+1 € B(x,r,). Thus
every B(x,r) contains B(x,r,) for all n large enough and hence it contains a; for k > n
where the gy, are distinct, none equal to x. l

A related idea is the notion of the limit of a sequence. Recall that a sequence is really
just a mapping from N to X. We write them as {x,} or {x,}_, if we want to emphasize

the values of n. Then the following definition is what it means for a sequence to converge.

Definition 3.1.6 we say that x = lim,,_,. x,, when for every € > 0 there exists N such
that ifn > N, then
d(x,xn) <€

Often we write x, — x for short. This is equivalent to saying

r}l_r}r;d (x,x,) = 0.
Proposition 3.1.7 The limit is well defined. That is, if x,x' are both limits of a sequence,
thenx =x.

Proof: From the definition, there exist N, N’ such that if n > N, then d (x,x,) < €/2 and
ifn>N', thend (x,x,) < &/2. Then let M > max (N,N'). Let n > M. Then

E &
—+-=¢

d(x,x’) Sd(x,xn)—kd(xn,x/) < st+3=

Since ¢ is arbitrary, this shows that x = x’ because d (x,x') = 0. B
Next there is an important theorem about limit points and convergent sequences.

Theorem 3.1.8 et s % 0. Then p is a limit point of S if and only if there exists a
sequence of distinct points of S, {x,} none of which equal p such that lim,,_,e.x, = p.

Proof: = Suppose p is a limit point. Why does there exist the promissed convergent
sequence? Letx; € B(p,1)NS such thatx; # p. If x;,- - ,x, have been chosen, let x,, | # p
be in B(p, 8,+1) NS where

. 1 .
6n+1:m1n m;d<xi7l’)al:1a27"'7” .
Then this constructs the necessary convergent sequence.

<= Conversely, if such a sequence {x,} exists, then for every r > 0, B(p, r) contains
x, € S for all n large enough. Hence, p is a limit point because none of these x, are equal
top. l

Definition 3.1.9 A set H is closed means HE is open.

Note that this says that the complement of an open set is closed. If V is open, then the

complement of its complement is itself. Thus (VC)C =V an open set. Hence V¢ is closed.
Then the following theorem gives the relationship between closed sets and limit points.

Theorem 3.1.10 A set H is closed if and only if it contains all of its limit points.
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Proof: — Let H be closed and let p be a limit point. We need to verify that p € H. If
it is not, then since H is closed, its complement is open and so there exists & > 0 such that
B(p,0) NH = 0. However, this prevents p from being a limit point.

<= Next suppose H has all of its limit points. Why is H open? If p € HC then it is
not a limit point and so there exists § > 0 such that B(p, ) has no points of H. In other
words, HE is open. Hence H is closed. B

Corollary 3.1.11 A set H is closed if and only if whenever {hy} is a sequence of points
of H which converges to a point x, it follows that x € H.

Proof: —> Suppose H is closed and h, — x. If x € H there is nothing left to show. If
x ¢ H, then from the definition of limit, it is a limit point of H because none of the A, are
equal to x. Hence x € H after all.

<= Suppose the limit condition holds, why is H closed? Let x € H’ the set of limit
points of H. By Theorem 3.1.8 there exists a sequence of points of H, {h,} such that
h, — x. Then by assumption, x € H. Thus H contains all of its limit points and so it is
closed by Theorem 3.1.10. B

Next is the important concept of a subsequence.

Definition 3.1.12 rs {xn}_y be a sequence. Then if ny < np < --- is a strictly
increasing sequence of indices, we say {xnk }::1 is a subsequence of {x, }, ;.

The really important thing about subsequences is that they preserve convergence.

Theorem 3.1.13 L. {xnk} be a subsequence of a convergent sequence {x,} where
Xp — x. Then limy_,c0 X, = x also.

Proof: Let € > 0 be given. Then there exists N such that d (x,,x) < € if n > N. It
follows that if kK > N, then n; > N and so d (xnk,x) < g if k> N. This is what it means to
say limy_eox,, = x. B

3.2 Cauchy Sequences, Completeness

Of course it does not go the other way. For example, you could let x, = (—1)" and it has a
convergent subsequence but fails to converge. Here d (x,y) = |x —y| and the metric space
is just R.

However, there is a kind of sequence for which it does go the other way. This is called
a Cauchy sequence.

Definition 3.2.1 {xn} is called a Cauchy sequence if for every € > O there exists N
such that if m,n > N, then d (X, %) < €.

Now the major theorem about this is the following.

Theorem 3.2.2 Let {xn} be a Cauchy sequence. Then it converges if and only if any
subsequence converges.

Proof: —> This was just done above. <= Suppose now that {x, } is a Cauchy sequence
and limy_,e. X, = x. Then there exists Ny such that if k > Nj, then d (x,,,x) < €/2. From
the definition of what it means to be Cauchy, there exists N, such that if m,n > N;, then
d (Xm,xn) < €/2. Let N > max (N1,N,). Then if k > N, then ny > N and so d (x,x;) <
d (x,xnk) +d (x,,k ,xk) < 5+ £ = &. It follows from the definition that lim;_,c, x; = x. B
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Definition 3.2.3 A metric space is said to be complete if every Cauchy sequence
converges.

There certainly are metric spaces which are not complete. For example, if you consider
Q with d (x,y) = |x—y]|, this will not be complete because you can get a sequence which
is obtained as x, defined as the n decimal place description of /2. However, if a sequence
converges, then it must be Cauchy.

Lemma 3.2.4 ifx, — x, then {x,} is a Cauchy sequence.

Proof: Let € > 0. Then there exists ng such that if m > ng, then d (x,x,,) < €/2. If
m,k > ne, then by the triangle inequality, d (x,x) < d (X, x) +d (x, ;) < 5+ 5 =€
showing that the convergent sequence is indeed a Cauchy sequence as claimed. ll

Another nice thing to note is this.

Proposition 3.2.5 If{x,} is a sequence and if p is a limit point of the set S = U;>_; {x, },
then there is a subsequence {xnk} such that limg_ye X, = X.

Proof: By Theorem 3.1.8, there exists a sequence of distinct points of S denoted as
{y«} such that none of them equal p and lim;_,.. y;x = p. Thus B(p,r) contains infinitely
many different points of the set D, this for every r. Let x,, € B(p,1) where n; is the first
index such that x,,, € B(p,1). Suppose xp, ,- - ,Xn, have been chosen, the n; increasing and
let 1> 681> 8, >--- > 0, where x,, € B(p,6;). Then let

(1 _
6k+1 <mm{2k+1ad(l77xnj)76jd: 172 ,k}

Letx,,,, € B(p,011) where ny 1 is the first index such that x,, , is contained B (p, 0 1)-
Then limy e X, = p. B
Another useful result is the following.

Lemma 3.2.6 Suppose x, — x and y, — y. Then d (xn,y,) — d (x,y).
Proof: Consider the following.
d(x7y) S d('x7x") +d('xn7y) S d('xaxn) +d('xnayn) +d(yl’l7y)

sod (x,y) —d (xn,yn) <d (x,x,)+d (yn,y). Similar reasoning to what was just used shows
that d(XmYn) - d(x»)’) S d(x7xn) +d()7m)7) ) MY ‘d(XmYn) —d(x7Y)| S d(-xaxn) +d()’n7)’)
and the right side converges to 0 as n — co. ll

3.3 Closure of a Set

Next is the topic of the closure of a set.

Definition 3.3.1 et A be a nonempty subset of (X,d) a metric space. Then A is
defined to be the intersection of all closed sets which contain A. Note the whole space, X is
one such closed set which contains A. The whole space X is closed because its complement
is open, its complement being (. It is certainly true that every point of the empty set is an
interior point because there are no points of 0.
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Lemma 3.3.2 Let A be a nonempty set in (X,d). Then A is a closed set and A = AU
A'where A’ denotes the set of limit points of A.

Proof: First of all, denote by % the set of closed sets which contain A. Then A=n%
and this will be closed if its complement is open. However, A =u {HC tH e CK} . Each
HC€ is open and so the union of all these open sets must also be open. This is because if x is
in this union, then it is in at least one of them. Hence it is an interior point of that one. But
this implies it is an interior point of the union of them all which is an even larger set. Thus
A is closed.

The interesting part is the next claim. First note that from the definition, A C A so if
x €A, then x € A. Now considery € A’ but y ¢ A. If y ¢ A, a closed set, then there exists
B(y,r) C AS. Thus y cannot be a limit point of A, a contradiction. Therefore, AUA’ C A.

Next suppose x € A and suppose x ¢ A. Then if B (x, r) contains no points of A different
than x, since x itself is not in A, it would follow that B (x,r) NA = 0 and so recalling that
open balls are open, B(x,r)c is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x € A. Hence if x ¢ A, then x € A’ and so
AUA'DA N

3.4 Separable Metric Spaces

Definition 3.4.1 A metric space is called separable if there exists a countable dense
subset D. This means two things. First, D is countable, and second, that if x is any point
and r > 0, then B(x,r) D # 0. A metric space is called completely separable if there
exists a countable collection of nonempty open sets 94 such that every open set is the union
of some subset of PB. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of % namely the empty subset.

Theorem 3.4.2 A metric space is separable if and only if it is completely separable.

Proof: <= Let # be the special countable collection of open sets and for each B € 4,
let pp be a point of B. Then let & = {pg: B € A}. If B(x,r) is any ball, then it is the
union of sets of % and so there is a point of & in it. Since 4 is countable, so is 2.

= Let D be the countable dense set and let #Z ={B(d,r):d € D,r € QN [0,)}.
Then % is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y € B(y,8) C B(x,R). Then there exists d € B (y, %) .Let € € Q and % <e< g Then
y€B(d,e) € B. Is B(d,e) C B(x,R)? If so, then the desired result follows because this
would show that every y € B (x, R) is contained in one of these sets of 8 which is contained

in B (x,R) showing that B (x, R) is the union of sets of #. Letz € B(d,€) CB (a’, g) . Then

0 o O
d <d(y,d)+d(d —te<—+-<96
z)<d(vd)+d(d,z) < {gHe<{5+3 <
Hence B(d,e) C B(y,8) C B(x,r). Therefore, every ball is the union of sets of & and,
since every open set is the union of balls, it follows that every open set is the union of sets
of . R
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Corollary 3.4.3 If (X,d) is a metric space and S is a nonempty subset of X, then S is
also separable.

Proof: Let % be a countable basis for (X,d). Say s be those sets of % which
have nonempty intersections with S. By axiom of choice, there is a point in each of these
intersections. The resulting countable selection of points must be dense in S. Indeed, if
x € S, then B(x,r) is the union of sets of % and so some point just described is in B (x,r).
|

Definition 3.4.4 Let S be a nonempty set. Then a set of open sets € is called an
open cover of S if UE€ O .. (It covers up the set S. Think lilly pads covering the surface
of a pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 3.4.5 A metric space has the Lindeloff property if whenever € is an open
cover of a set S, there exists a countable subset of € denoted here by 9 such that A is also
an open cover of S.

Theorem 3.4.6 Every separable metric space has the Lindeloff property.

Proof: Let € be an open cover of a set S. Let # be a countable basis. Such exists by
Theorem 3.4.2. Let 4 denote those sets of % which are contained in some set of 4. Thus

4 is a countable open cover of S. Now for B € 4, let Up be a set of ¢ which contains B.
Letting ¥ denote these sets Up it follows that % is countable and is an open cover of S. B

Definition 3.4.7 A potish space is a complete separable metric space. These things
turn out to be very useful in probability theory and in other areas.

3.5 Compact Sets

As usual, we are not worrying about empty sets. Fussing over these is usually a waste of
time. Thus if a set is mentioned, the default is that it is nonempty.

Definition 3.5.1 A metric space K is compact if whenever € is an open cover of K,
meaning K C U%, there exists a finite subset of € {Uy,--- ,U,} such that K C U}_Uy. In
words, every open cover admits a finite sub-cover.

Directly from this definition is the following proposition.

Proposition 3.5.2 IfK is a closed, nonempty subset of a nonempty compact set H, then
K is compact.

Proof: Let 4 be an open cover for K. Then € U {Kc} is an open cover for H. Thus
there are finitely many sets from this last collection of open sets, Uy, - - - ,U,, which covers
H. Include only those which are in %". These cover K because K€ covers no points of K. ll

This is the real definition given above. However, in metric spaces, it is equivalent to
another definition called sequentially compact.
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Definition 3.5.3 A metric space K is sequentially compact means that whenever
{x.} C K, there exists a subsequence {xnk} such that limy_,.. x,, = x € K for some point x.
In words, every sequence has a subsequence which converges to a point in the set.

There is a fundamental property possessed by a sequentially compact set in a metric
space which is described in the following proposition. The special number described is
called a Lebesgue number.

Proposition 3.5.4 Let K be a sequentially compact set in a metric space and let € be
an open cover of K. Then there exists a number 8 > 0 such that whenever x € K, it follows
that B (x, 8) is contained in some set of €.

Proof: If % is an open cover of K and has no Lebesgue number, then for eachn € N, % is
not a Lebesgue number. Hence there exists x,, € K such that B (xn, %) is not contained in any
set of . By sequential compactness, there is a subsequence {xnk} such that x,, — x € K.
Now there is r > 0 such that B (x,r) CU € €. Let k be large enough that i < 5 and also

large enough that x,, € B(x,%). Then B (x,,k7 i) C B(xu,5) € B(x,r) contrary to the

requirement that B (xnk , ik) is not contained in any set of 7. B

In any metric space, these two definitions of compactness are equivalent.

Theorem 3.5.5 Let K be a nonempty subset of a metric space (X,d). Then it is
compact if and only if it is sequentially compact.

Proof: < Suppose K is sequentially compact. Let € be an open cover of K. By
Proposition 3.5.4 there is a Lebesgue number 6 > 0. Let x; € K. If B(x, 8) covers K, then
pick a set of ¥ containing this ball and this set will be a finite subset of 4 which covers
K. If B(x1,0) does not cover K, let xo ¢ B(x;,6). Continue this way obtaining x; such
that d (x;,xj) > & whenever k # j. Thus eventually {B(x;,8)}?_; must cover K because
if not, you could get a sequence {x;} which has every pair of points further apart than &
and hence it has no Cauchy subsequence. Therefore, by Lemma 3.2.4, it would have no
convergent subsequence. This would contradict K is sequentially compact. Now let U; € ¥
with U; D B(xi, 5) . Then U,r'llei oK.

= Now suppose K is compact. If it is not sequentially compact, then there exists a
sequence {x, } which has no convergent subsequence to a point of K. In particular, no point
of this sequence is repeated infinitely often. By Proposition 3.2.5 the set of points U, {x,}
has no limit point in K. (If it did, you would have a subsequence converging to this point
since every ball containing this point would contain infinitely many points of U, {x,}.)
Now consider the sets H, = Uy, {xx} UH’ where H' denotes all limit points of U, {x,} in
X which is the same as the limit points of Uy, {xx }. Therefore, each H,, is closed thanks to
Lemma 3.3.2. Now let U, = HS. This is an increasing sequence of open sets whose union
contains K thanks to the fact that there is no constant subsequence. However, none of these
open sets covers K because U, is missing x,, violating the definition of compactness. Next
is an alternate argument.

= Now suppose K is compact. If it is not sequentially compact, then there exists a
sequence {x,} which has no convergent subsequence to a point of K. If x € K, then there
exists B (x,r,) which contains x, for only finitely many . This is because x is not the limit
of a subsequence. Then {B (x;,r;)}Y_, is a finite sub-cover of K. If p is the largest index for
any x;, contained in U?’: B (xi,r;),letn > p and consider x,. It is a point in K but it can’t be
in any of the sets covering K. B
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Definition 3.5.6 x bve a metric space. Then a finite set of points {x1,-- ,X,} is
called an € net if X C U}_ B (xy,€). If, for every € > 0 a metric space has an € net, then
we say that the metric space is totally bounded.

Lemma 3.5.7 If a metric space (K,d) is sequentially compact, then it is separable and
totally bounded.

Proof: Pick x; € K. If B(x1,€) D K, then stop. Otherwise, pick x, ¢ B (x;, €) . Continue
this way. If {x;,---,x,} have been chosen, either K C U}_, B (x, €) in which case, you have
found an & net or this does not happen in which case, you can pick x,41 ¢ U}_, B (x, €).
The process must terminate since otherwise, the sequence would need to have a convergent
subsequence which is not possible because every pair of terms is farther apart than €. See
Lemma 3.2.4. Thus for every € > 0, there is an € net. Thus the metric space is totally
bounded. Let Ne denote an € net. Let D = U2 | N, Jok- Then this is a countable dense set. It
is countable because it is the countable union of finite sets and it is dense because given a
point, there is a point of D within 1/2% of it. W

Also recall that a complete metric space is one for which every Cauchy sequence con-
verges to a point in the metric space.

The following is the main theorem which relates these concepts.

Theorem 3.5.8 ror (X,d) a metric space, the following are equivalent.
1. (X,d) is compact.
2. (X,d) is sequentially compact.
3. (X,d) is complete and totally bounded.

Proof: By Theorem 3.5.5, the first two conditions are equivalent.

2.= 3. 1If (X,d) is sequentially compact, then by Lemma 3.5.7, it is totally bounded.
If {x,} is a Cauchy sequence, then there is a subsequence which converges to x € X by
assumption. However, from Theorem 3.2.2 this requires the original Cauchy sequence to
converge.

3.= 1. Since (X,d) is totally bounded, there must be a countable dense subset of X.
Just take the union of 1 /2k nets for each k € N. Thus (X,d) is completely separable by
Theorem 3.4.6 has the Lindeloff property. Hence, if X is not compact, there is a countable
set of open sets {U;};-; which covers X but no finite subset does. Consider the nonempty
closed sets F;, and pick x, € F,, where

X\UL, Ui =XN(U_U)° =F,

Let {x,’; }Z‘Zl be a 1/2% net for X. We have for some m, B (xquk, 1/2") contains x, for in-
finitely many values of n because there are only finitely many balls and infinitely many

indices. Then out of the finitely many {x%"} where B (x%,™,1/2*1) has nonempty in-
tersection with B (x5, ,1/2%), pick one xﬁﬁ , such that B (x’,‘,f]: v 2"“) contains x;, for

infinitely many n. Then obviously {xﬁqk }:: | is a Cauchy sequence because

11 1
k+1
d (fmkvxmm) S5 tomT S
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Hence for p < g,

] = ] 1
+1 _
d(x’,;p,x%,q) S;d(xfnkvxfnkﬂ) < kZ k=1 """ 9p-2
=p =p

Now take a subsequence x,, € B (xﬁlk,2_k) so it follows that limy_,c. X, = limy_e x’rjqk =
x € X. However, x € F,, for each n since each F, is closed and these sets are nested. Thus
x € Ny F, contrary to the claim that {U;};- | covers X. B

For the sake of another point of view, here is another argument, this time that 3.)=2.).
This will illustrate something called the Cantor diagonalization process.

Assume 3.). Suppose {x;} is a sequence in X. By assumption there are finitely many
open balls of radius 1/n covering X. This for each n € N. Therefore, for n = 1, there is one
of the balls, having radius 1 which contains x; for infinitely many k. Therefore, there is a
subsequence with every term contained in this ball of radius 1. Now do for this subsequence
what was just done for {x; }. There is a further subsequence contained in a ball of radius
1/2. Continue this way. Denote the ' subsequence as {x;;}7.,. Arrange them as shown

X11,X21,X31,X41 " "+
X12,X22,X32,X42 * -+
X13,X23,X33,X43 * * *

Thus all terms of {x;; },_, are contained in a ball of radius 1/i. Consider now the diagonal
sequence defined as y; = xy. Given n, each yy is contained in a ball of radius 1/n whenever
k > n. Thus {y;} is a subsequence of the original sequence and {y;} is a Cauchy sequence.
By completeness of X, this converges to some x € X which shows that every sequence in X
has a convergent subsequence. This shows 3.)=2.). &

Lemma 3.5.9 The closed interval [a,b] in R is compact and every Cauchy sequence in
R converges.

Proof: To show this, suppose it is not. Then there is an open cover ¥ which admits no
finite subcover for [a,b] = Iy. Consider the two intervals [a, 2], [f2,b]. One of these,
maybe both cannot be covered with finitely many sets of € since otherwise, there would
be a finite collection of sets from & covering [a,b]. Let I; be the interval which has no
finite subcover. Now do for it what was done for y. Split it in half and pick the half which
has no finite covering of sets of ¥’. Thus there is a “nested” sequence of closed intervals
Iy 21 2 I---, each being half of the preceding interval. Say I, = [a,,b,]. By the nested
interval Lemma, Lemma 2.7.1, there is a point x in all these intervals. The point is unique
because the lengths of the intervals converge to 0. This point is in some O € €. Thus
for some & > 0,[x — §,x+ ], having length 20, is contained in O. For k large enough,
the interval [ay,by] has length less than § but contains x. Therefore, it is contained in
[x—&,x+ 6] and so must be contained in a single set of ¢ contrary to the construction.
This contradiction shows that in fact [a, b] is compact.

Now if {x,} is a Cauchy sequence, then it is contained in some interval [a,b] which is
compact. Hence there is a subsequence which converges to some x € [a,b]. By Theorem
3.2.2 the original Cauchy sequence converges to x. ll
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3.6 Continuous Functions

The following is a fairly general definition of what it means for a function to be continuous.
It includes everything seen in typical calculus classes as a special case.

Definition 3.6.1 Let f: X — Y be a function where (X,d) and (Y,p) are metric
spaces. Then f is continuous at x € X if and only if the following condition holds. For
every € > 0, there exists 8 > 0 such that if d (£,x) < 8, then p (f(£),f(x)) <e. If fis
continuous at every x € X we say that f is continuous on X.

For example, you could have a real valued function f (x) defined on an interval [0, 1]. In
this case you would have X = [0,1] and ¥ = R with the distance given by d (x,y) = |x —y|.
Then the following theorem is the main result.

Theorem 3.6.2 Let f: X — Y where (X,d) and (Y, p) are metric spaces. Then the
following two are equivalent.

a f is continuous at x.

b Whenever x, — x, it follows that f (x,) — f(x).

Also, the following are equivalent.

¢ fis continuous on X.

d WheneverV is open in Y, it follows that f~' (V) = {x: f(x) €V} is open in X.

e Whenever H is closed in Y, it follows that f~' (H) = {x: f (x) € H} is closed in X.

Proof: a = b: Let f be continuous at x and suppose x, — x. Then let € > 0 be given.
By continuity, there exists 6 > 0 such that if d (£,x) < 8, then p (f(£),f(x)) < €. Since
Xn — x, it follows that there exists N such that if n > N, then d (x,,,x) < 6 and so, if n > N,
it follows that p (f (x,),f (x)) < €. Since € > 0 is arbitrary, it follows that f (x,) — f (x).

b = a: Suppose b holds but f fails to be continuous at x. Then there exists € > 0
such that for all 6 > 0, there exists £ such that d (£,x) < & but p (f (£),f(x)) > €. Letting
0 = 1/n, there exists x, such that d (x,,x) < 1/n but p (f(x,),f(x)) > €. Now this is a
contradiction because by assumption, the fact that x,, — x implies that f (x,) — f(x). In
particular, for large enough n, p (f (x,), f (x)) < € contrary to the construction.

c==d: LetVbeopeninY. Letx € f~! (V) so that f(x) € V. Since V is open, there
exists € > 0 such that B(f (x),€) C V. Since f is continuous at x, it follows that there exists
6 > 0 such that if £ € B(x,0), then f(£X) € B(f(x),e) CV.(f(B(x,0)) CB(f(x),¢))
In other words, B(x,8) C f~'(B(f (x),€)) C f~! (V) which shows that, since x was an
arbitrary point of f~! (V) every point of £~! (V) is an interior point which implies f~! (V)
is open.

d = e: Let H be closed in Y. Then f~! (H)¢ = f~! (H®) which is open by assump-
tion. Hence f~! (H) is closed because its complement is open.

e = d: LetV be openin Y. Then f~! (V)C =f! (VC) which is assumed to be closed.
This is because the complement of an open set is a closed set.

d = c: Let x € X be arbitrary. Is it the case that f is continuous at x? Let € > 0 be
given. Then B(f (x),¢€) is an open set in V and so x € f~! (B(f(x),€)) which is given
to be open. Hence there exists § > 0 such that x € B(x,8) C f~! (B(f(x),€)). Thus,
f(B(x,0)) CB(f(x),€)sop(f(X),f(x)) <e. Thus f is continuous at x for every x. Bl
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Example 3.6.3 x — d (x,y) is a continuous function from the metric space to the metric
space of nonnegative real numbers.

This follows from Lemma 3.2.6. You can also define a metric on a Cartesian product
of metric spaces.

Proposition 3.6.4 Let (X,d) be a metric space and consider (X x X,p) where
p((x,%),(»,5) =d(x,y)+d(%5).
Then this is also a metric space.

Proof: The only condition not obvious is the triangle inequality. However,

P ((x%),(39) +p((19),(z2) =d(xy)+d (%F) +d (,2) +d (7,2
2d(x,z)+d(%,2) =p((x,),(z,2) A
Definition 3.6.5 If you have two metric spaces (X,d) and (Y,p), a function f :

X — Y is called a homeomorphism if and only if it is continuous, one to one, onto, and its
inverse is also continuous.

Here is a useful proposition.

Proposition 3.6.6 Let (X,d) be a metric space and let S be a nonempty subset of X.
Define
dist(x,S) = inf{d (x,s) : s € S}

Then |dist (x,S) —dist (y,5)| < d (x,y) so x — dist(x,S) is continuous.

Proof: Say dist (x,S) > dist(y,S). Then there is s € S such that dist (y,S) + & > d (y,s).
Then

|dist (x,S) —dist (y,S)| = dist (x,S) — dist (y,5) < d (x,5) — (d (y,5) — €)

< d(x,y)+d(y7s) - (d(yvs) _8) = d(xvy)+£

Since € > 0 is arbitrary, this shows the claimed result. If dist(x,S) < dist(y,S), repeat
switching roles of x and y. B

3.7 Continuity and Compactness

How does compactness relate to continuity? It turns out that the continuous image of a
compact set is always compact. This is an easy consequence of the above major theorem.

Theorem 3.7.1 Let f: X — Y where (X,d) and (Y,p) are metric spaces and f is
continuous on X. Then if K C X is compact, it follows that f (K) is compact in (Y,p).

Proof: Let ¢ be an open cover of f(K). Denote by f~! (%) the sets of the form
{f7'(U):U €€} .Then ' (%) is an open cover of K. It follows there are finitely many
sets of the form {f~' (U}),---,f~" (U,)} which covers K. It follows that {U,,--,U,} is
an open cover for f(K). ®

The following is the important extreme values theorem for a real valued function de-
fined on a compact set.
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Theorem 3.7.2 LetK bea compact metric space and suppose f : K — R is a contin-
uous function. That is, R is the metric space where the metric is given by d (x,y) = |x—y|.
Then f achieves its maximum and minimum values on K.

Proof: Let A = sup{f(x):x € K}. Then from the definition of sup, you have the ex-
istence of a sequence {x,} C K such that lim,_,. f (x,) = A. There is a subsequence still
called {x,} which converges to some x € K. From continuity, A = lim,_e f (x,) = f (%)
and so f achieves its maximum value at x. Similar reasoning shows that it achieves its
minimum value on K. B

Definition 3.7.3 Le:f: (X,d) — (Y,p) be a function. Then it is said to be uniformly
continuous on X if for every € > 0 there exists a 0 > 0 such that whenever x, £ are two points
of X with d (x,%) < 6, it follows that p (f (x), f (%)) < €.

Note the difference between this and continuity. With continuity, the § could depend
on x but here it works for any pair of points in X.
There is a remarkable result concerning compactness and uniform continuity.

Theorem 3.7.4 Let £ (X,d) — (Y,p) be a continuous function and let K be a
compact subset of X. Then the restriction of f to K is uniformly continuous.

Proof: First of all, K is a metric space and f restricted to K is continuous. Now
suppose it fails to be uniformly continuous. Then there exists € > 0 and pairs of points x;,, X,
such that d (x,,,%,) < 1/nbut p (f (x,),f(£,)) > €. Since K is compact, it is sequentially
compact and so there exists a subsequence, still denoted as {x, } such that x, — x € K. Then
also £, — x also and so by Lemma 3.2.6, p (f (x),f (x)) = limyep (f (xn),f (£n)) > €
which is a contradiction. l

3.8 Lipschitz Continuity and Contraction Maps

The following may be of more interest in the case of normed vector spaces, but there is
no harm in stating it in this more general setting. You should verify that the functions
described in the following definition are all continuous.

Definition 3.8.1 rer f: X — Y where (X,d) and (Y,p) are metric spaces. Then
f is said to be Lipschitz continuous if for every x,£ € X, p (f (x),f (X)) < rd (x,%). The
function is called a contraction map if r < 1.

The big theorem about contraction maps is the following.

Theorem 3.8.2 Ler 1 : (X,d) — (X,d) be a contraction map and let (X,d) be
a complete metric space. Thus Cauchy sequences converge and also d (f (x),f (%)) <
rd (x,%) where r < 1. Then f has a unique fixed point. This is a point x € X such that
f(x) =x. Also, if xo is any point of X, then

d (xo, f (x0))

d <
(x0) < 1—r

Also, for each n,

and x = lim, e f" (x0).
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Proof: Pick xp € X and consider the sequence of the iterates of the mapf given by
x0,f (x0), f2 (x0),--- . We argue that this is a Cauchy sequence. For m < n, it follows from
the triangle inequality,

d(" () .S (x0)) < ): L4 (141 05 () < X (5 (0 0)
The reason for this last is as follows.
d (> (x0),f (x0)) < rd (f (x0),%0)
d(f* (x0),f* (x0)) < rd (f*(x0), f (x0)) < r*d(f (x0),%0)

and so forth. Therefore, by the triangle inequality,

Z d( k1 (XO))

< Z rd (f (x0) ,x0) < d (f (x0).%0) % (3.1
k=m

IN

d(f" (x0) /" (x0))

which shows that this is indeed a Cauchy sequence. Therefore, there exists x such that
lim,, e /™ (xo) = x. By continuity, f (x) = f (lim,_e £ (x0)) = lim,, e /7! (x0) = x.
Also note that, letting m = 0 in 3.1, this estimate yields

d (50, (1)) < L0:S0))

Now d (xg,x) < d (x0, " (x0)) +d (" (x0) ,x) and so
d (xo, f (x0))

1—r

d (x0,x) —d (f" (x0),x) <

Letting n — oo, it follows that d (xg,x) < Mhecause limy, e d (f" (x0) ,x) =d (x,x) =
0 by Lemma 3.2.6.

It only remains to verify that there is only one fixed point. Suppose then that x,x" are
two. Then

d (x,x’) =d (f(x) ,f(x’)) <rd (x/,x)

and so d (x,x') =0 because r < 1. W

The above is the usual formulation of this important theorem, but we actually proved a
better result.

Corollary 3.8.3 Let B be a closed subset of the complete metric space (X,d) and let
f B — X be a contraction map

d(f(x),f®) <rd(x2%), r<l1.

Also suppose there exists x, € B such that the sequence of iterates { f" (xo)},._, remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x € B such that f (x) = x. In the case that B = B (xy, 0), the sequence of iterates

satisfies the inequality
d (xo, f (x0))

1—r

d(f" (x0),%0) <

and so it will remain in B U‘M < 4.

r
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Proof: By assumption, the sequence of iterates stays in B. Then, as in the proof of the
preceding theorem, for m < n, it follows from the triangle inequality,

n—1
(" (0) S 0) < X d (£ (o) oS (v0) )
k=m

IN

m

ki *d (f (x0) ,%0) = 1ird(f(xo)>x0)

IN

Hence the sequence of iterates is Cauchy and must converge to a point x in X. However, B
is closed and so it must be the case that x € B. Then as before,
. H u T n+1 _ . 7 —
x = Tim /" (x0) = lim ! (x0) = f (lim 1" (x0) ) = £ (x)

As to the sequence of iterates remaining in B where B is a ball as described, the inequality
above in the case where m = 0 yields d (xo, f" (x0)) < 1d (f (x0) ,Xo) and so, if the right
side is less than &, then the iterates remain in B. As to the fixed point being unique, it is as
before. If x,x" are both fixed points in B, then d (x,x') = d (f (x), f (x')) < rd (x,x') and so
x=x.1

The contraction mapping theorem has an extremely useful generalization. In order to
get a unique fixed point, it suffices to have some power of f a contraction map.

Theorem 3.8.4 e 7: (X,d) — (X,d) have the property that for some n € N, f" is
a contraction map and let (X,d) be a complete metric space. Then there is a unique fixed
point for f. As in the earlier theorem the sequence of iterates { f" (xo)},_, also converges
to the fixed point.

Proof: From Theorem 3.8.2 there is a unique fixed point for f". Thus f” (x) = x Then

)= ) = f(x)

By uniqueness, f (x) = x.

Now consider the sequence of iterates. Suppose it fails to converge to x. Then there
is € > 0 and a subsequence ny such that d (f (xo),x) > €. Now ny = pgn+ ry where r
is one of the numbers {0, 1,2,--- ,n— 1}. It follows that there exists one of these numbers
which is repeated infinitely often. Call it r and let the further subsequence continue to be
denoted as ny. Thus d (fP"+" (x0),x) > €. In other words,

d(f™" (f" (x0)),x) = €

However, from Theorem 3.8.2, as k — oo, fPK" (f"(x)) — x which contradicts the above

inequality. Hence the sequence of iterates converges to x, as it did for f a contraction map.
|

3.9 Convergence of Functions

Next is to consider the meaning of convergence of sequences of functions. There are two
main ways of convergence of interest here, pointwise and uniform convergence.

Definition 3.9.1 rer f, : X — Y where (X,d), (Y,p) are two metric spaces. Then
{fn} is said to converge pointwise to a function f : X — Y if for every x € X, lim, e f;, (X) =
f(x). {fu} is said to converge uniformly if for all € > 0, there exists N such that ifn > N,
then SUPyex P (fn ()C) ’f(x)) <&
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Here is a well known example illustrating the difference between pointwise and uniform
convergence.

Example 3.9.2 Let f, (x) = x" on the metric space [0,1]. Then this function converges
pointwise to
[ 0on[0,1)
F) = { lat 1

but it does not converge uniformly on this interval to f.

Note how the target function f in the above example is not continuous even though
each function in the sequence is. The nice thing about uniform convergence is that it takes
continuity of the functions in the sequence and imparts it to the target function. It does this
for both continuity at a single point and uniform continuity. Thus uniform convergence is
a very superior thing.

Theorem 3.9.3 Let £, : X — Y where (X,d),(Y,p) are two metric spaces and sup-
pose each f, is continuous at x € X and also that f, converges uniformly to f on X. Then
f is also continuous at x. In addition to this, if each f, is uniformly continuous on X, then
the same is true for f.

Proof: Let € > 0 be given. Then

p(f (), f(8) <p(f(x),fu(x)+p (fa(x), fa (&) +p (fu (R), £ (£))

By uniform convergence, there exists N such that both p (£ (x), f, (x)),p (fx (£),f (X)) are
less than €/3 provided n > N. Thus picking such an n

P, F () < 54+ (). fo ()

From the continuity of f,, there exists a positive number 6 > 0 such that if d (x,£) < 0,
then p (f, (x), fn (£)) < €/3. Hence, if d (x,£) < &, then

2e €

P(f(x)»f(f))ﬁéj+p(ﬁ,(x),fn(ﬁ))<?+§:8

Hence, f is continuous at x.

Next consider uniform continuity. It follows from the uniform convergence that if x, %
are any two points of X, then if n > N, then, picking such an n,p (f (x),f (%)) < % +
p (fu (%), fn (X)) . By uniform continuity of f, there exists 0 such thatif d (x,£) < J, then the
term on the right in the above is less than £ /3. Hence if d (x,£) < 8, then p (f (x), f (%)) <€
and so f is uniformly continuous as claimed. ll

3.10 Compactness in C (X,Y) Ascoli Arzela Theorem

This will use the characterization of compact metric spaces to give a proof of a general
version of the Arzella Ascoli theorem. See Naylor and Sell [43] which is where I saw this
general formulation.

Definition 3.10.1 Ler (X,dx) be a compact metric space. Let (Y,dy) be another
complete metric space. Then C (X,Y) will denote the continuous functions which map X to
Y. Then p is a metric on C (X,Y) defined by p (f,g) = sup,ex dy (f (x),8(x)).
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Theorem 3.10.2 (C(X.Y),p) is a complete metric space where (X ,dx) is a com-
pact metric space

Proof: It is first necessary to show that p is well defined. In this argument, I will
just write d rather than dy or dy. To show this, note that from Lemma 3.2.6, if x,, — x,
and y, — y, then d (x,,y,) — d (x,y). Therefore, if f,g are continuous, and x, — x so
J () = f (x) and g (xn) — & (x), d (f (xn) , g (xn)) = d (f (x) & (x)) and so, p (f, &) is just
the maximum of a continuous function defined on a compact set. By Theorem 3.7.2, the
extreme values theorem, this maximum exists.

Clearly p (f,8) =p (g, f) and

p(f.8)+p(gh) supd (f (x), & (x)) +supd (g (x) . (x))

xeX xeX
> )sclel}g(d(f(x%g(X))er(g(X),h(x)))
> )sclelg(d(f(x)yh(x))ﬁp(f,h)

so the triangle inequality holds.

It remains to check completeness. Let {f,} be a Cauchy sequence. Then from the
definition, {f, (x)} is a Cauchy sequence in ¥ and so it converges to something called
f(x). By Theorem 3.9.3, f is continuous. It remains to show that p (f,, f) — 0. Letx € X.
Then from what was just noted,

d(fu(x),f(x)) = Wllgrgod(fn (x), fm (x)) < lim sup p (fy, fin)

m—yoo

since {f,} is given to be a Cauchy sequence, there exists N such that if m,n > N, then
P (fu, fm) < €. Therefore, if n > N,d (f,, (x), f (x)) <limsup,, .. P (fn, /m) < €. Since x is
arbitrary, it follows that p (f,, f) < ¢&,ifn>N. R

Here is a useful lemma.

Lemma 3.10.3 Lez S be a totally bounded subset of (X,d) a metric space. Then S is
also totally bounded.

Proof: Suppose not. Then there exists a sequence {p,} C S such that

d(pm;pn) > €

for all m # n. Now let g, € B (pn, %) N S. Then it follows that

€ €
3 +d(qn,qm) + 32 d(pnyqn) +d (qn:qm) +d (qm, Pm) = d (Pnyqm) > €
and so d (¢n,qm) > §. This contradicts total boundedness of S. H

Next, here is an important definition.

Definition 3.10.4 e o C C(X,Y) where (X,dx) and (Y,dy) are metric spaces.
Thus </ is a set of continuous functions mapping X to'Y. Then <7 is said to be equicontin-
uous if for every € > 0 there exists a 6 > 0 such that if dx (x1,x2) < 6 then for all f € <7,
dy (f (x1),f (x2)) < €. (This is uniform continuity which is uniform in < .) < is said to be
pointwise compact if { f (x) : f € &/} has compact closure in Y.
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Here is the Ascoli Arzela theorem.

Theorem 3.10.5 Le (X,dx) be a compact metric space and let (Y,dy) be a com-
plete metric space. Thus (C(X,Y),p) is a complete metric space. Let o/ C C(X,Y) be
pointwise compact and equicontinuous. Then <7 is compact. Here the closure is taken in

(CX,Y),p).

Proof: The more useful direction is that the two conditions imply compactness of .o7.
I prove this first. Since <7 is a closed subset of a complete space, it follows from Theorem
3.5.8, that o/ will be compact if it is totally bounded. In showing this, it follows from
Lemma 3.10.3 that it suffices to verify that <7 is totally bounded. Suppose this is not
so. Then there exists € > 0 and a sequence of points of <7, {f,} such that p (f,, fin) > €
whenever n # m.

By equicontinuity, there exists § > 0 such that if d (x,y) < &, then dy (f (x),f (v)) < §
forall f € o/. Let {x;}}"_, be a & net for X. Since there are only finitely many x;, it follows
from pointwise compactness that there exists a subsequence, still denoted by {f,,} which
converges at each x;. Now let x € X be arbitrary. There exists N such that for each x; in that
d net,

dy (f (xi), fin (xi)) < €/8 whenever n,m > N

Then for m,n > N,

dy (fu (x),dym (x))
< dy (fa () fu (i) +dy (fa (%) s fon (xi)) +dy (fn (%), fin ()
< dy (fn(x)afn(xi))JFS/SJFdY(fm(xi)vfm(x»

Pick x; such that d (x,x;) < 8. {x;}}_, is a & net and so this is surely possible. Then by
equicontinuity, the two ends are each less than €/8 and so for m,n > N,

dy (o) () < o
Since x is arbitrary, it follows that p (fy, fin) < 3€/8 < € which is a contradiction. It follows
that 7 and hence .«¢ is totally bounded. This proves the more important direction.

Next suppose <7 is compact. Why must . be pointwise compact and equicontinuous?
If it fails to be pointwise compact, then there exists x € X such that {f (x) : f € &/} is not
contained in a compact set of Y. Thus there exists € > 0 and a sequence of functions in .27
{fu} such that d (f,, (x), fu (x)) > €. But this implies p (f,n, f,) > € and so </ fails to be
totally bounded, a contradiction. Thus </ must be pointwise compact. Now why must it be
equicontinuous? If it is not, then for each n € N there exists € > 0 and x,,y, € X such that
d (xn,yn) < 1/n but for some f, € &, d (f, (xn), fu(yn)) > €. However, by compactness,
there exists a subsequence { f;, } such that limy_,. p (f;,,f) = 0 and also that x,,, yn, —
x € X. Hence

e < d(fu (o) S, ) < (foe (on) o f ()
+d (f () o f )+ (f ) s S, ()
<p (fuer )+ (f (one) o f Om)) +p (f Foe)

and now this is a contradiction because each term on the right converges to 0. The middle
term converges to 0 because f (xnk) f (ynk) — f(x). See Lemma 3.2.6. B
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3.11 Connected Sets

Stated informally, connected sets are those which are in one piece. In order to define what
is meant by this, I will first consider what it means for a set to not be in one piece. This is
called separated. Connected sets are defined in terms of not being separated. This is why
theorems about connected sets sometimes seem a little tricky.

Definition 3.11.1 4 set, S in a metric space, is separated if there exist sets A,B
such that B
S=AUB,A,B#0,and ANB=BNA=0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.
Remember A denotes the closure of the set A.

Note that the concept of connected sets is defined in terms of what it is not. This makes
it somewhat difficult to understand. One of the most important theorems about connected
sets is the following.

Theorem 3.11.2 Suppose % is a set of connected sets and that there exists a point
p which is in all of these connected sets. Then K = U% is connected.

Proof: The argument is dependent on Lemma 3.3.2. Suppose
K=AUB

where ANB =BNA =0,A+#0,B+# 0. Then p is in one of these sets. Say p € A. Then if
U € %, it must be the case that U C A since if not, you would have

U=(ANU)U(BNU)

and the limit points of ANU cannot be in B hence not in BN U while the limit points of
BNU cannot be in A hence notin ANU. Thus B = 0. It follows that K cannot be separated
and so it is connected.

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

Theorem 3.11.3 L. f : X =Y be continuous where Y is a metric space and X is
connected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that f (X) =
AUB where A and B separate f (X). Then consider the sets f ! (A) and £~ (B). If z
€ f~1(B), then f(2) € Band so f(z) is not a limit point of A. Therefore, there exists an
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open set, U containing f (z) such that U NA = 0. But then, the continuity of f and Theorem
3.6.2 implies that £~ (U) is an open set containing z such that £~ (U)N £~ (A) = 0.
Therefore, £~ (B) contains no limit points of £~ (A). Similar reasoning implies f ! (A)
contains no limit points of £~! (B). It follows that X is separated by £~ (A) and f~! (B),
contradicting the assumption that X was connected. ll

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 3.11.4 Let S be a set and let p € S. Denote by Cy, the union of all con-
nected subsets of S which contain p. This is called the connected component determined by

p.

Theorem 3.11.5 L« Cp be a connected component of a set S in a metric space.
Then Cp, is a connected set and if C, NCq # 0, then Cp, = Cq.

Proof: Let 4 denote the connected subsets of S which contain p. By Theorem 3.11.2,
U% = Cp is connected. If © € C, NCq, then from Theorem 3.11.2, C, O Cp, UCq and so
Cp 2 Cq4. The inclusion goes the other way by the same reason. B

This shows the connected components of a set are equivalence classes and partition the
set.

A set, I is an interval in R if and only if whenever x,y € I then [x,y] C I. The following
theorem is about the connected sets in R.

Theorem 3.11.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing to prove.
The interval is just [p, p] . Suppose p < g and p,q € C. You need to show (p,q) C C. If

x€(p,q)\C

let CN(—o0,x) = A, and CN (x,00) = B. Then C = AUB and the sets A and B separate C
contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose [ is separated by A and B. Pick x € A and
y € B. Suppose without loss of generality that x < y. Now define the set,

S={rexy :[xt] CA}

and let [ be the least upper bound of S. Then [ € A so [ ¢ B which implies / € A. But if
[ ¢ B, then for some § > 0,
(l,I+6)NB=0

contradicting the definition of / as an upper bound for S. Therefore, / € B which implies
[ ¢ A after all, a contradiction. It follows I must be connected.

This yields a generalization of the intermediate value theorem from one variable calcu-
lus.

Corollary 3.11.7 Let E be a connected set in a metric space and suppose f : E — R
and thaty € (f (e1), f (e2)) where e; € E. Then there exists e € E such that f (e) =y.

Proof: From Theorem 3.11.3, f(E) is a connected subset of R. By Theorem 3.11.6
f (E) must be an interval. In particular, it must contain y. This proves the corollary. l
The following theorem is a very useful description of the open sets in R.
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Theorem 3.11.8 Let U be an open set in R. Then there exist countably many dis-
joint open sets {(a;, b;)};- | such that U = U3 | (a;, b;).

Proof: Let p € U and let z € C,, the connected component determined by p. Since U
is open, there exists, § > 0 such that (z— 8,2+ 0) C U. It follows from Theorem 3.11.2
that (z—6,z+ 8) C Cp. This shows C,, is open. By Theorem 3.11.6, this shows C, is an
open interval, (a,b) where a,b € [—oo,00|. There are therefore at most countably many of
these connected components because each must contain a rational number and the rational
numbers are countable. Denote by {(a;,b;)};-, the set of these connected components. H

Definition 3.11.9 A set E in a metric space is arcwise connected if for any two
points, p,q € E, there exists a closed interval, [a,b] and a continuous function, y: [a,b] —
E such that vy (a) = p and v (b) = q.

An example of an arcwise connected metric space would be any subset of R” which is
the continuous image of an interval. Arcwise connected is not the same as connected. A
well known example is the following.

{(x,sin)lc) :xe(O,l]}U{(O,y):ye[—1,1]} (32)

You can verify that this set of points in the normed vector space R? is not arcwise connected
but is connected.

Lemma 3.11.10 in R?, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If &,y € B(z,r), then let vy (r) =
x+1t(y—ax)forre0,1].

e+ (y—z) - 2| (1 =1)(z—2)+1(y—2)|
(1=1) [l —z[| + [y — =]

(I=t)r+tr=r

ANVAN

showing ~ (¢) stays in B(z,r).l
Proposition 3.11.11 If X # 0 is arcwise connected, then it is connected.

Proof: Let p € X. Then by assumption, for any x € X, there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence C,, = X
and so X is connected. H

Theorem 3.11.12 et U be an open subset of RP. Then U is arcwise connected if
and only if U is connected. Also the connected components of an open set are open sets.

Proof: By Proposition 3.11.11 it is only necessary to verify that if U is connected and
open, then U is arcwise connected. Pick p € U. Say = € U satisfies & if there exists a
continuous function, v : [a,b] — U such that y(a) = p and 7 (b) = x.

A = {zx € U such that x satisfies 2.}
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If x € A, then Lemma 3.11.10 implies B(x,r) C U is arcwise connected for small
enough r. Thus letting y € B(x,r), there exist intervals, [a,b] and [c,d] and continuous
functions having values in U, v, n such that v (a) = p,y (b) =x,n(c) =x,and n (d) = y.
Then let 7, : [a,b+d —c] — U be defined as

B (r) ift € [a,b]
Y1 (’)_{ Z(;+1c—b) ifte[b,b+d—]

Then it is clear that =y, is a continuous function mapping p to y and showing that B (x,r) C
A. Therefore, A is open. A # 0@ because since U is open there is an open set, B(p,d)
containing p which is contained in U and is arcwise connected.

Now consider B = U \ A. I claim this is also open. If B is not open, there exists a
point z € B such that every open set containing z is not contained in B. Therefore, letting
B(z,8) be such that z € B(z,0) C U, there exist points of A contained in B(z,8). But
then, a repeat of the above argument shows z € A also. Hence B is open and so if B # 0,
then U = BUA and so U is separated by the two sets B and A contradicting the assumption
that U is connected. Note that, since B is open, it contains no limit points of A and since A
is open, it contains no limit points of B.

It remains to verify the connected components are open. Let z € C, where Cp, is the
connected component determined by p. Then picking B(z,0) C U, Cp, UB(2,9) is con-
nected and contained in U and so it must also be contained in Cp,. Thus z is an interior
point of Cp,.

As an application, consider the following corollary.

Corollary 3.11.13 Let f: Q — Z be continuous where Q is a connected nonempty
open set of a metric space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and [ # k. Then Q =
YO Uf'({meZ:m+#1}) and these are disjoint nonempty open sets which separate
Q. To see they are open, note

incaimaiy = oo s 1)

which is the inverse image of an open set while f~! (1) = f~! ((1— %,1+ 1)) also an open
set. l

3.12 Partitions of Unity in Metric Space
Lemma 3.12.1 Let X be a metric space and let S be a nonempty subset of X .
dist(z,8) = inf{d (x,2): 2 € S}

Then
|dist (z,S) —dist(y,S)| < d(x,y).

Proof: Say dist(x,S) > dist(y,S) . Then letting € > 0 be given, there exists z € S such
that d (y, z) < dist(y,S) + € Then

|dist (z,S) —dist (y,S)| = dist(x, S) —dist(y,S) < dist(x,S) — (d (y,2z) — €)
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Sd(a:,z)—(d(y,z)—s) Sd(w’y)+d(yaz)_d(y,z)+g:d($ay)+8

Since € is arbitrary, |dist (x,S) — dist(y,S)| < d (x,y). The situation is completely similar
if dist(x,S) < dist(y,S). W

Then this shows that & — dist(x, S) is a continuous real valued function.

This is about partitions of unity in metric space. Assume here that closed balls are
compact. For example, you might be considering R” with d (x,y) = |z — y|.

Definition 3.12.2 Define spt(f) (support of f) to be the closure of the set {x :
f(x) #£0}. If V is an open set, C.(V) will be the set of continuous functions f, defined
on Q having spt(f) C V.

Definition 3.12.3 If K is a compact subset of an open set, V, then K < ¢ <V if
o eC.(V), 9(K)={1}, ¢(Q) C [0, 1],where Q denotes the whole metric space. Also for
9€Ce(Q), K<9if¢p(Q) C[0,1]and ¢(K) =1.¢ <V if §(Q) S [0,1] and spt(9) S V.

Lemma 3.12.4 Let (Q,d) be a metric space in which closed balls are compact. Then if
K is a compact subset of an open set V, then there exists ¢ such that K < ¢ < V.

Proof: Since K is compact, the distance between K and V¢ is positive, § > 0. Other-
wise there would be x,, € K and y, € VC with d (x,,y,) < 1/n. Taking a subsequence, still
denoted with n, we can assume x;,, — x and y,, — x but this would imply x is in both K and
V€ which is not possible. Now consider {B (x,5/2)} for x € K. This is an open cover and
the closure of each ball is contained in V. Since K is compact, finitely many of these balls
cover K. Denote their union as W. Then W is compact because it is the finite union of the
closed balls. Hence K C W C W C V. Now consider

dist (x, W€)
dist (x, K) + dist (x, WC)

¢ (x)

the denominator is never zero because x cannot be in both K and W€. Thus ¢ is continuous
by Lemma 3.12.1. also if x € K, then ¢ (x) = 1 and if x ¢ W, then ¢ (x) =0. W

Theorem 3.12.5 (Partition of unity) Let K be a compact subset of a metric space
in which closed balls are compact and suppose K CV = U!_|V;, V; open. Then there exist
v, <ViwithY? v;(x) =1 forall x € K.

Proof: Let K; = K\ U?,V;. Thus K is compact and K; C V). Let K; C W, C W, C
V1 with W compact. To obtain W;, use Lemma 3.12.4 to get f such that K| < f < V; and let
Wi ={x: f(x) #0}.Thus W;,V5,-- -V, covers K and W CV;. Let K, = K\ (U_;V;UW)).
Then K; is compact and K, C V5. Let K C W> C W, C V, W5, compact. Continue this
way finally obtaining Wy,--- ,W,, K C W U---UW,, and W; C V; W; compact. Now let
W;CU; CU; CV;, U; compact.
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By Lemma 3.12.4, let U; < ¢, < V;, UL, W; < y < U™, U;. Define

Y()9;(x)/ L)y ¢,;(x) if Xy ¢,(x) #0,
Wi(x):{ 0if z';:,qufx)l:jo. (N

If x is such that }}_; ¢ ;(x) = 0, then x ¢ U, U;. Consequently ¥(y) = 0 for all y near x
and so y;(y) = 0 for all y near x. Hence y; is continuous at such x. If ¥.7_; ¢ ;(x) # 0, this
situation persists near x and so Y, is continuous at such points. Therefore y; is continuous.
If x € K, then y(x) =l and so Yj_; y;(x) = 1. Clearly 0 < y; (x) < 1 and spt(y;) C V;. B

3.13 Completion of Metric Spaces

Let (X,d) be a metric space X # 0. Perhaps this is not a complete metric space. In other
words, it may be that Cauchy Sequences do not converge. Of course if x € X and if x, = x
for all n then {x,} is a Cauchy sequence and it converges to x.

Lemma 3.13.1 Denote by x a Cauchy sequence x being short for {x,}+._,. Then if x,y
are two Cauchy sequences, limy,_sed (X, yn) exists.

Proof: Let € > 0 be given and let N be so large that whenever n,m > N, it follows that
d (xn,%m) sd (Yn,ym) < €/2. Then for such n,m

|d (Xn,yn) —d (X, ym)| < |d (X0, yn) — d (Xn, )|+ |d (X, ym) — d (X Ym )|
< d(yn,ym)'i'd(xmxm) <€

by Lemma 3.12.1. Therefore, {d (x,,y»)}, is a Cauchy sequence in R and so it converges.
|

Definition 3.13.2 etz ~ y when lim,,_od (X,,y,) = 0.
Lemma 3.13.3 ~ is an equivalence relation.

Proof: Clearly « ~ x and if  ~ y then y ~ . Suppose then that x ~ y and y ~ z. Is
T~ 2?7
d (xn,2n) < d (xp,yn) +d (Yn,2n)

and both of those terms on the right converge to 0. l

Definition 3.13.4 Denote by [x] the equivalence class determined by the Cauchy
sequence x. Let d ([x],[y]) = limy—ed (Xn,Vn) -

Theorem 3.13.5 Denote by X the set of equivalence classes. Then d defined above
is a metric, X with this is a complete metric space, and X can be considered a dense subset
of X.

Proof: That d just defined is a metric is obvious from the fact that the original metric d
satisfies the triangle inequality. It is also clear that d ([x],[y]) > 0 and that if [x] = [y] if
and only if d ([x], [y]) = 0.

It remains to show that (X,d) is complete. Let {[x],}, be a Cauchy sequence. From
Theorem 3.2.2 it suffices to show the convergence of a subsequence. There is a subse-
quence, denoted as {[x"]} where " is a representative of [z], such that d ([z"], [z"*1]) <
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47", Thus there is an increasing sequence {k,} such that d (x{,x}*') < 27" if k,1 > k,

where k;, is increasing in n. Let y = {xz } K For m > k, and the triangle inequality,
n n—=

m—1 )
d(m) = d () <d (dhod) +d (o h) <27+ Y d (] 77)
j=n

m

m—1
< 2" Y 2 <onqp ) < pm ()

j=n

Then y is a Cauchy sequence since it is a subsequence of one and also d ([z"], [y]) — O.

To show that X is dense in X, let [] be given. Then for m large enough, d (x;,x,) < €
whenever k > m. It suffices to let y be the constant Cauchy sequence always equal to x;,.
|

3.14 Exercises
1. Letd (x,y) = |x—y| for x,y € R. Show that this is a metric on R.

2. Now consider R". Let |||, = max {|x;| ,i=1,--- ,n}. Define d (x,y) = ||z —y||.. -
Show that this is a metric on R”. In the case of n = 2, describe the ball B (0, r). Hint:
First show that |z + y|| < ||z| + |y -

3. Let C([0,T]) denote the space of functions which are continuous on [0, 7] . Define

1Al =1fll = sup [f(5)] = max |f (1)l

1€[0,7] 1€[0,7]

Verify the following. || £+ g|| < ||f|l+ ||gl| - Then use to show thatd (f,g) = ||/ — g||
is a metric and that with this metric, (C([0,T]),d) is a metric space.

4. Recall that [a,b] is compact. Also, it is Lemma 3.5.9 above. Thus every open cover
has a finite subcover of the set. Also recall that a sequence of numbers {x,} is a
Cauchy sequence means that for every € > 0 there exists N such that if m,n > N, then
|x, — xm| < €. First show that every Cauchy sequence is bounded. Next, using the
compactness of closed intervals, show that every Cauchy sequence has a convergent
subsequence. By Theorem 3.2.2, the original Cauchy sequence converges. Thus
R with the usual metric just described is complete because every Cauchy sequence
converges.

5. Using the result of the above problem, show that (R”,||-||..) is a complete metric
space. That is, every Cauchy sequence converges. Here d (z,y) = ||z — y|..-

6. Suppose you had (X;,d;) is a metric space. Now consider the product space X =
IT., X; with d (x,y) = max{d (x;,y;),i=1---,n}. Would this be a metric space?
If so, prove that this is the case.

Does triangle inequality hold? Hint: For each i,
di (xi,2i) < di (xi,yi) + di (vi,zi) < d (x,y) +d (y,2)

Now take max of the two ends.
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In the above example, if each (X;,d;) is complete, explain why (X,d) is also com-
plete.

. Show that C ([0, T]) is a complete metric space. That is, show that if { f,,} is a Cauchy

sequence, then there exists f € C(]0,7]) such that
limd (f, f,) = lim ||f— fu|| =0
n—oo n—oo

This is just a special case of theorems discussed in the chapter.

Let X be a nonempty set of points. Say it has infinitely many points. Define d (x,y) =
lif x# yand d (x,y) = 0if x =y. Show that this is a metric. Show that in (X,d)
every point is open and closed. In fact, show that every set is open and every set is
closed. Is this a complete metric space? Explain why. Describe the open balls.

Show that the union of any set of open sets is an open set. Show the intersection of
any set of closed sets is closed. Let A be a nonempty subset of a metric space (X,d).
Then the closure of A, written as A is defined to be the intersection of all closed sets
which contain A. Show that A = A UA’. That is, to find the closure, you just take the
set and include all limit points of the set. It was proved in the chapter, but go over it
yourself.

Let A’ denote the set of limit points of A, a nonempty subset of a metric space (X,d).
Show that A’ is closed.

A theorem was proved which gave three equivalent descriptions of compactness of
a metric space. One of them said the following: A metric space is compact if and
only if it is complete and totally bounded. Suppose (X,d) is a complete metric space
and K C X. Then (K,d) is also clearly a metric space having the same metric as X.
Show that (K, d) is compact if and only if it is closed and totally bounded. Note the
similarity with the Heine Borel theorem on R. Show that on R, every bounded set is
also totally bounded. Thus the earlier Heine Borel theorem for R is obtained.

Suppose (X;,d;) is a compact metric space. Then the Cartesian product is also a
metric space. That is ([T7_; X;,d) is a metric space where d (x,y) = max {d; (x;,y:)}.
Show that ([T, X;,d) is compact. Recall the Heine Borel theorem for R. Explain
why [T, [ai, bi] is compact in R" with the distance given by

d(z,y) = max {|x; —yi|}

Hint: It suffices to show that ([T\_, X;,d) is sequentially compact. Let {™} _,
be a sequence. Then {x]'}"_, is a sequence in X;. Therefore, it has a subsequence

{xllq }k which converges to a point x; € X;. Now consider {xgl }k the second
1=1 1=

components. It has a subsequence denoted as k> such that {x/;z} converges to a
ky=1
point xp in X. Explain why limkzﬁm,x]](2 = x1. Continue doing this n times. Explain

why limknﬂmxf" = x; € X; for each [. Then explain why this is the same as saying
limy, e xf =z in ([T, X;,d).
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If you have a metric space (X,d) and a compact subset of (X,d) K, suppose that L is
a closed subset of K. Explain why L must also be compact. Hint: Use the definition
of compactness. Explain why every closed and bounded set in R” is compact. Here
the distance is given by d (x,y) = max;<j<, {|x; — yi|}.

Show that compactness is a topological property. If (X,d),(Y,p) are both metric
spaces and f : X — Y has the property that f is one to one, onto, and continuous, and
also f~! is one to one onto and continuous, then the two metric spaces are compact
or not compact together. That is one is compact if and only if the other is.

Consider R the real numbers. Define a distance in the following way. p (x,y) =
|arctan (x) — arctan (y)| Show this is a good enough distance and that the open sets
which come from this distance are the same as the open sets which come from the
usual distance d (x,y) = |x—y|. Explain why this yields that the identity mapping
f(x) = x is continuous with continuous inverse as a map from (R,d) to (R, p). To
do this, you show that an open ball taken with respect to one of these is also open
with respect to the other. However, (R,p) is not a complete metric space while
(R,d) is. Thus, unlike compactness. Completeness is not a topological property.
Hint: To show the lack of completeness of (R,p), consider x, = n. Show it is a
Cauchy sequence with respect to p.

If K is a compact subset of (X,d) and y ¢ K, show that there always exists x € K
such that d (x,y) = dist(y,K). Give an example in R to show that this might not be
so if K is not compact.

If S is a nonempty set, the diameter of S denoted as diam (S) is defined as follows.
diam (S) = sup{d (x,y) : x,y € S}. Suppose (X,d) is a complete metric space and
you have a nested sequence of closed sets whose diameters converge to 0. That
is, each A, is closed, - --A, D Ayt -+ and lim,_,. diam (A,) = 0. Show that there is
exactly one point p contained in the intersection of all these sets A,. Give an example
which shows that if the condition on the diameters does not hold, then maybe there
is no point in the intersection of these sets.

Two metric spaces (X,d), (Y, p) are homeomorphic if there exists a continuous func-
tion f : X — Y which is one to one onto, and whose inverse is also continuous one
to one and onto. Show that the interval [0, 1] is not homeomorphic to the unit circle.
Hint: Recall that the continuous image of a connected set is connected, Theorem
3.11.3. However, if you remove a point from [0, 1] it is no longer connected but
removing a single point from the circle results in a connected set.

Using the same methods in the above problem, show that the unit circle is not home-
omorphic to the unit sphere {x*+y*+z* = 1} and the unit circle is not homeomor-
phic to a figure eight.

The rational numbers Q@ and the natural numbers N have the property that there is a
one to one and onto map from N to Q. This is a simple consequence of the Schroeder
Bernstein theorem presented earlier. Both of these are also metric spaces with respect
to the usual metric on R. Are they homeomorphic? Hint: Suppose they were. Then
in Q consider (1,2), all the rationals between 1 and 2 excluding 1 and 2. This is not
a closed set because 2 is a limit point of the set which is not in it. Now if you have f
a homeomorphism, consider f((1,2)). Is this set closed?
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If you have an open set O in R, show that O is the countable union of disjoint open
intervals. Hint: Consider the connected components. Go over this for yourself. It is
in the chapter.

Addition and multiplication on R can be considered mappings from R x R to R as
follows. + (x,y) = x+y,-(x,y) = xy. Here the metric on R x R can be taken as
d((x,y),(%£,9)) = max (|x—2%|,|y—J|). Show these operations are continuous func-
tions.

Suppose K is a compact subset of a metric space (X,d) and there is an open cover
% of K. Show that there exists a single positive § > 0 such that if x € K,B(x, )
is contained in some set of €. This number is called a Lebesgue number. Do this
directly from the definition of compactness in terms of open covers without using the
equivalence of compactness and sequential compactness.

Show uniform continuity of a continuous function defined on a compact set where
compactness only refers to open covers. Use the above problem on existence of the
Lebesgue number.

Let f: D — R be a function. This function is said to be lower semicontinuous'

at x € D if for any sequence {x,} C D which converges to x it follows f(x) <
liminf, . f (x,). Suppose D is sequentially compact and f is lower semicontinu-
ous at every point of D. Show that then f achieves its minimum on D. Here D is
some metric space. Let f : D — R be a function. This function is said to be upper
semicontinuous at x € D if for any sequence {x,} C D which converges to x it fol-
lows f (x) > limsup,,_,.. f (x»). Suppose D is sequentially compact and f is upper
semicontinuous at every point of D. Show that then f achieves its maximum on D.

Show that a real valued function defined on a metric space D is continuous if and
only if it is both upper and lower semicontinuous.

Give an example of a lower semicontinuous function defined on R which is not con-
tinuous and an example of an upper semicontinuous function which is not continu-
ous.

More generally, one considers functions which have values in [—eo, 0] . Then f is up-
per semicontinuous if, whenever x, — x, f (x) > limsup,_,., f (x,) and lower semi-
continuous if whenever x, — x, f(x) < liminf, . f (x,;). Suppose {fo: o € A}
is a collection of continuous real valued functions defined on a metric space. Let
F (x) = inf{fq (x) : @ € A}. Show F is an upper semicontinuous function. Next let
G (x) =sup{fua (x): a € A}. Show G is a lower semicontinuous function.

The result of this problem is due to Hausdorff. It says that if you have any lower
semicontinuous real valued function defined on a metric space (X,d), then it is the
limit of an increasing sequence of continuous functions. Here is an outline. You
complete the details.

(a) First suppose f (x) > 0 for all x. Define f;, (x) = inf,ex {f (z) +nd (z,x)}. Then
f(x) > fu(x) and f, (x) is increasing in n. Also each f;, is continuous because

I'The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional

sets.
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Ja(x) < f(2) +nd(z,y) +nd (y,x). Thus f, (x) < fu (y) +nd (y,x). Why? It
follows that | f,, (x) — f, ()| < nd (y,x) . Why?

(b) Let i (x) = lim,_ye f, (x). Then ki (x) < f(x). Why? Now for each € > 0, and
fixed x, there exists z, such that f;, (x) + € > f (z,) + nd (z,,x) Why? Therefore,
Zn — X. Why?

(¢) Then
h)+e = lim fy(0)+& > lim inf (f (z) +nd (z,7))

> 1imnig£f(zn) > f(x)

Why? Therefore, i (x) > f (x) and so they are equal. Why?

(d) Now consider f : X — (—eo,o0) and is lower semicontinuous as just explained.
Consider Z + arctan f (x) = g (x). Then arctan f (x) € (—%, %) because f has
real values. Then g (x) is also lower semicontinuous having values in (0, 7).
Why? By what was just shown, there exists g, (x) 1 g (x) where each g, is
continuous. Consider f;, (x) = tan (g, (x) — %) . Then f, is continuous and in-
creases to f (x).

Generalize the above problem to the case where f is an upper semicontinuous real
valued function. That is, f (x) > limsup,_,., f (x,) whenever x,, — x. Show there are
continuous functions {f; (x)} such that f, (x) | f (x). Hint To save trouble, maybe
show that f is upper semicontinuous if and only if — f is lower semicontinuous. Then
maybe you could just use the above problem.

What if f is lower (upper) semicontinuous with values in [—oo,o0]? In this case, you
consider [—oo, o] as a metric space as follows:d (x,y) = |arctan (x) — arctan (y)|. Then
you can generalize the above problems to show that if f is lower semicontinuous
with values into [—oo, 00| then it is the increasing limit of continuous functions with
values in [—e0,o0]. Note that in this case a function identically equal to o would
be continuous so this is a rather odd sort of thing, a little different from what we
normally like to consider. Check the details and explain why in this setting, the lower
semicontinuous functions are exactly pointwise limits of increasing sequences of
continuous functions and the upper semicontinuous functions are exactly pointwise
limits of decreasing sequences of continuous functions.

This is a nice result in Taylor [57]. For a nonempty set 7,dT is the set of points p
such that B (p, r) contains points of 7 and points of 7€ for each r > 0. Suppose you
have T a proper subset of a metric space and S is a connected, nonempty set such
that SNT # 0,SNTC # 0. Show that S must contain a point of 97.

Zorn’s lemma is as follows: You have a nonempty partially ordered set .% with the
partial order denoted by < and suppose you have the property that every totally
ordered subset of .# has an upper bound. Show that it follows that there exists a
maximal element f € .% such that if f < g then f = g. Hint: Use the Hausdorff
maximal theorem to show this. In fact, this is equivalent to the Hausdorff maximal
theorem.



Chapter 4

Linear Spaces

The thing which is missing in the above material about metric spaces is any kind of algebra.
In most applications, we are interested in adding things and multiplying things by scalars
and so forth. This requires the notion of a vector space, also called a linear space. The
simplest example is R” which is described next.

In this chapter, F will refer to either R or C. It doesn’t make any difference to the
arguments which it is and so I is written to symbolize whichever you wish to think about.
When it is desired to emphasize that certain quantities are vectors, bold face will often be
used. This is not necessarily done consistently. Sometimes context is considered sufficient.

4.1 Algebra in ", Vector Spaces

There are exactly two algebraic operations done with elements of F”. One is addition and
the other is multiplication by numbers, called scalars. In the case of C” the scalars are
complex numbers while in the case of R” the only allowed scalars are real numbers. Thus,
the scalars always come from [ in either case.

Definition 4.1.1 If x € F" and a € F, also called a scalar, then ax € F" is defined
by
ar =a(xy, - ,x,) = (axy,- - ,axy,). 4.1

This is known as scalar multiplication. If ¢,y € F" then x +y € F" and is defined by

m-l_y:(xl?"'7x'1)+(y17"'7yn)
= (X1 +Y1, X0+ Yn) (4.2)

the points in F" are also referred to as vectors.

Actually, in dealing with vectors in ", it is more customary in linear algebra to write
them as column vectors. To save space, I will sometimes write (xi,-- - ,x,,)T to indicate
the column vector having x; on the top and x, on the bottom. With this definition, the
algebraic properties satisfy the conclusions of the following theorem. These conclusions
are called the vector space axioms. Any time you have a set and a field of scalars satisfying
the axioms of the following theorem, it is called a vector space or linear space.

Theorem 4.1.2 ror v,w € F" and a, B scalars, (real numbers), the following hold.

v4+w=w+w, 4.3)
the commutative law of addition,
(v4w)+z=v+(w+2), (4.4)
the associative law for addition,
v+0=wv, (4.5)
the existence of an additive identity,
v+ (~v) =0, (4.6)
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the existence of an additive inverse, Also

o(v+w)=av+ aw, 4.7
(a+pB)v=av+ P, (4.8)
a(fv)=apf(v), 4.9
lv =wv. (4.10)

In the above 0 = (0,--- ,0).

You should verify these properties all hold. For example, consider 4.7

a(v+w)=a(vi+wr, v +wy)
=(a(vi+wi), -, a(vyp+wy))
= (avi+owy, -, 0v, +owy,)
=(avy, - ,0v,) + (awy, -+, 0wy)
= ov+ odw.

As usual subtraction is defined as  —y = x+ (—y).

4.2 Subspaces Spans and Bases

As mentioned above, " is an example of a vector space. In dealing with vector spaces,
the concept of linear combination is fundamental. When one considers only algebraic
considerations, it makes no difference what field of scalars you are using. It could be R, C,
Q or even a field of residue classes. However, go ahead and think R or C since the subject
of interest here is analysis.

Definition 4.2.1 Le: {(L’l, ‘e ,IL’p} be vectors in a vector space Y having the field
of scalars F. A linear combination is any expression of the form Zf: L Ci; where the c; are
scalars. The set of all linear combinations of these vectors is called span(xi,---,x,). A
vector v is said to be in the span of some set S of vectors if v is a linear combination of
vectors of S. This means: finite linear combination. IfV CY, thenV is called a subspace
if it contains O and whenever o, 3 are scalars and u and v are vectors of V, it follows
ou+ Bv €V. That is, it is “closed under the algebraic operations of vector addition and
scalar multiplication” and is therefore, a vector space. A linear combination of vectors
is said to be trivial if all the scalars in the linear combination equal zero. A set of vectors
is said to be linearly independent if the only linear combination of these vectors which
equals the zero vector is the trivial linear combination. Thus {x|,--- ,x,} is called linearly
independent if whenever Yi_, cxxy = 0, it follows that all the scalars, ¢\ equal zero. A set
of vectors, {x1,--- ,x,}, is called linearly dependent if it is not linearly independent. Thus
the set of vectors is linearly dependent if there exist scalars, c;,i = 1,--- ,n, not all zero
such that ), cyxy = 0.

Lemma 4.2.2 A set of vectors {x1,--- ,x,} is linearly independent if and only if none
of the vectors can be obtained as a linear combination of the others.
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Proof: Suppose first that {x|,--- ,x,} is linearly independent. If

Ly = Z CiZj,
J#k
then 0 = lx; + ¥ ;4 (—c;j) x;, a nontrivial linear combination, contrary to assumption.
This shows that if the set is linearly independent, then none of the vectors is a linear com-
bination of the others.

Now suppose no vector is a linear combination of the others. Is {x1,---,x,} linearly
independent? If it is not, there exist scalars, ¢;, not all zero such that "7, c;x; = 0. Say
cx # 0. Then you can solve for x; as @ = Y. (—c;j/cx) @ contrary to assumption. This
proves the lemma. H

The following is called the exchange theorem.

Theorem 4.2.3 i1

span(uy,---,u,) Cspan(vy,---,v5) =V
and {uy,- - ,u,} are linearly independent, then r <s.
Proof: Suppose r > s. Let F), denote the first p vectors in {w,---,u,}. Let Fy denote
the empty set. Let E, denote a finite list of vectors of {vy,---,v,} and let |E p| denote the

number of vectors in the list. Note that, by assumption, span (Fy, Eg) =V. For 0 < p <, let
E, have the property span (F),,E,) =V and ‘Ep‘ is as small as possible for this to happen.
If |E,| = 0, then span (F,) = V which would imply that, since r > s > p,u, € span (F)
contradicting the linear independence of {u,---,u,}. Assume then that Ep] > (. Then
Upy1 € Span (Fp,Ep) and so there are constants, ¢y, ,cp and dy,- -+ ,dy, such that u, | =
Y2 ciui +XL diz;j for {z1,"*,2m} C{v1, -+ ,v5}. Then not all the d; can equal zero
because this would violate the linear independence of the {uy,-- ,u,}. Therefore, you can
solve for one of the z; as a linear combination of {ul, e ,up+1} and the other z;. Thus
you can change F), to F, | and include one fewer vector in E,, | with span (Fp;1,E,41) =V
and so ’Ep+1 | < ’Ep‘ contrary to the claim that ‘Ep| was as small as possible. Thus |Ep| =0
after all and so a contradiction results.

Alternate proof: Recall from linear algebra that if you have A an m X n matrix where
m < n so there are more columns than rows, then there exists a nonzero solution x to the
equation Az = 0. Recall why this was. You must have free variables. Then by assumption,
you have u; =Y ; a;jv;. If s < r, then the matrix (a;;) has more columns than rows and so
there exists a nonzero vector « € F” such that }_; a;;x; = 0. Then consider the following.

r r
ijuj = ij
j=1 j=1 i

and since not all x; = 0, this contradicts the independence of {uy,---,u,}. B

S

a,-jfvl- = ZZaijxjv,- = ZO'UJ' =0
1 J i

= i

Definition 4.2.4 A finite set of vectors, {x1,--- ,x,} is a basis for a vector space V
if

span(xy, -+, z,) =V
and{x1,--- ,x,} is linearly independent. Thus if v €V there exist unique scalars, vy,--- ,v,
such that v =Y, vix;. These scalars are called the components of v with respect to the
basis {xy, -+ ,x,} and {x\,--- ,x,} are said to “span” V.
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Corollary 4.2.5 Let {xy,---,z,} and {y,, - ,y,} be two bases' of F". Thenr=s=n.
More generally, if you have two bases for a vector space V then they have the same number
of vectors.

Proof: From the exchange theorem, Theorem 4.2.3, if

{wb'”?wr}a{ylv"'vys}

are two bases for V, then » < s and s < r. Now note the vectors,

1 is in the i

€; = (07 ,0,1,0"' 7O)T

slot

fori=1,2,---,n are a basis for . B
Lemma 4.2.6 Let {vy,---,v,} be a set of vectors. Then V = span(vy,---,v,) is a
subspace.

Proof: Suppose «, 3 are two scalars and let ;| cxvy and Y| dyvy are two elements
of V. What about Y ;_; cxvx + B Y;_; divi? Isitalsoin V?

r

r r
OCZCkvk-‘rﬁ devk: Z (ock + Bdy) v €V
k=1 k=1 k=1

so the answer is yes. It is clear that 0 is in span (v, - - - ,v,). This proves the lemma. l

Definition 4.2.7 Let V be a vector space. It is finite dimensional when it has a
basis of finitely many vectors. Otherwise, it is infinite dimensional. Then dim (V) read as
the dimension of V is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace of a finite di-
mensional vector space even has a basis. In fact it does and this is in the next theorem.
First, here is an interesting lemma.

Lemma 4.2.8 Suppose v ¢ span (uy,--- ,u;) and {u,,--- ,u;} is linearly independent.
Then {uy,--- ,ug,v} is also linearly independent.

Proof: Suppose Zf: (ciw; +dv = 0. It is required to verify that each ¢; = 0 and that
d = 0. But if d # 0, then you can solve for v as a linear combination of the vectors,
{ur, -, w}, v=—Y5, (%)w; contrary to assumption. Therefore, d = 0. But then
Y¥ | ciu; = 0 and the linear independence of {u,--- ,u;} implies each ¢; = 0 also. B

Theorem 4.2.9 Let v be a nonzero subspace of Y a finite dimensional vector space
having dimension n. Then'V has a basis.

I'This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as
in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Proof: Let v| € V where v| # 0. If span{v;} =V, stop. {v} is a basis for V. Oth-
erwise, there exists v € V which is not in span{v;}. By Lemma 4.2.8 {v{,v,} is a lin-
early independent set of vectors. If span{v,v,} =V stop, {v;,v,} is a basis for V. If
span{v,v,} # V, then there exists v3 ¢ span{v;,v,} and {v,v,,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n+ 1 steps
because if not, it would be possible to obtain n+ 1 linearly independent vectors contrary to
the exchange theorem, Theorem 4.2.3, and the assumed dimension of Y. B

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 4.2.10 LetV be a subspace of Y, a finite dimensional vector space of dimen-

sion n and let {v,--- ,v,} be a linearly independent set of vectors in V. Then either it is
a basis for V or there exist vectors, Vy41,- -+ , Vg such that
{'vlv' U Upgdy e 7vx}

is a basis for V.

Proof: This follows immediately from the proof of Theorem 4.2.9. You do exactly the
same argument except you start with {vy,--- v, } rather than {v;}. B
It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 4.2.11 Let V be a subspace of Y, a finite dimensional vector space of

dimension n and suppose span(u;---,u,) =V where the w; are nonzero vectors. Then
there exist vectors, {vy -+ ,v,} such that {v;--- ,v,} C {u1 ,up} and {vy---,v,} isa
basis for V.

Proof: Let r be the smallest positive integer with the property that for some set,
{vlv"' ,’Ur} c {’ul,-~- ,up},span(vl,--- 7fu,) =V.

Then r < p and it must be the case that {v;---,v,} is linearly independent because if it
were not so, one of the vectors, say vy would be a linear combination of the others. But
then you could delete this vector from {v;---,v,} and the resulting list of r — 1 vectors
would still span V contrary to the definition of . B

4.3 Inner Product and Normed Linear Spaces
4.3.1 The Inner Product in "

To do calculus, you must understand what you mean by distance. For functions of one
variable, the distance was provided by the absolute value of the difference of two numbers.
This must be generalized to F” and to more general situations.

Definition 4.3.1 Let z,y € F*. Thus @ = (xy,--- ,x,) where each x; € F and a
similar formula holding for y. Then the inner product of these two vectors is defined to be

(m,y) = ij)TjExl)Tl+' © X Yn-
j

Sometimes it is denoted as x - y.
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Notice how you put the conjugate on the entries of the vector y. It makes no differ-
ence if the vectors happen to be real vectors but with complex vectors you must involve
a conjugate. The reason for this is that when you take the inner product of a vector with
itself, you want to get the square of the length of the vector, a positive number. Placing the
conjugate on the components of y in the above definition assures this will take place. Thus
(T,x) =LjxX; =Y, |xj |2 > 0. If you didn’t place a conjugate as in the above definition,
things wouldn’t work out correctly. For example, (1+ i)2 +22 = 44 2i and this is not a
positive number.

The following properties of the inner product follow immediately from the definition
and you should verify each of them.

Properties of the inner product:

L. (u,v) =(v,u)
2. If a,b are numbers and u, v, z are vectors then ((au+bv),z) =a(u,z)+b(v,2).

3. (u,u) >0 and it equals 0 if and only if u = 0.

Note this implies (z,ay) = @ (x,y) because

(z,ay) = (ay,x) = a(y,z) = A (z,y)

The norm is defined as follows.

Definition 4.3.2 rorz c P, |z| = (Zzzl \xk|2) 2 = (w,w)l/z.

4.3.2 General Inner Product Spaces

Any time you have a vector space which possesses an inner product, something satisfying
the properties 1 - 3 above, it is called an inner product space.

Here is a fundamental inequality called the Cauchy Schwarz inequality which holds
in any inner product space. First here is a simple lemma.

Lemma 4.3.3 Ifz € F there exists 6 € F such that 0z = |z| and |6] = 1.
z

Proof: Let 0 = 1 if z =0 and otherwise, let 6 = —

El Recall that for z=x+iy,z =x—1iy
z

and 7z = |z|2. In case z is real, there is no change in the above. B

Theorem 4.3.4 (Cauchy Schwarz)Let H be an inner product space. The following
inequality holds for x and y € H.

(@,y)| < (@,2) (y,9)"/? @.11)
Equality holds in this inequality if and only if one vector is a multiple of the other.
Proof: Let 6 € F such that |6 = 1 and 0 (x,y) = |(x,y)|. Consider

p(t) = (z+6ry,x +10y)
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where ¢ € R. Then from the above list of properties of the inner product,

0 < p(t)=(z,2)+16(z,y) +16 (y,x) +1* (y,y)
(x,2)+10 (x,y) +10(x,y) +1* (y,y)
= (x,2)+2Re(0(x,y))+1(y,y)
= (z2)+2|(z,y)| +1° (y,9) (4.12)

and this must hold for all r € R. Therefore, if (y,y) = 0 it must be the case that |(x,y)| =
0 also since otherwise the above inequality would be violated. Therefore, in this case,
((z,y)| < (@,2)"? (y,y)"/?. On the other hand, if (y,y) # 0, then p(t) > 0 for all ¢
means the graph of y = p(¢) is a parabola which opens up and it either has exactly one
real zero in the case its vertex touches the ¢ axis or it has no real zeros. From the quadratic
formula this happens exactly when 4 |(z,y)|* — 4 (z,z) (y,y) < 0 which is equivalent to
4.11.

It is clear from a computation that if one vector is a scalar multiple of the other that
equality holds in 4.11. Conversely, suppose equality does hold. Then this is equivalent to
saying 4|(x,y)|* — 4 (z,2) (y,y) = 0 and so from the quadratic formula, there exists one
real zero to p (t) = 0. Call it #p. Then

p(t0) = (x4 oy, x +10y) = ]w+§ty‘2 =0

and so x = —0tyy. A

Note that in establishing the inequality, I only used part of the above properties of the
inner product. It was not necessary to use the one which says that if (x,x) =0 then z = 0.
That was only used to consider the case of equality.

Now the length of a vector can be defined.

Definition 4.3.5 etz € H. Then |z| = (z,z)]/2.
Theorem 4.3.6 ror length defined in Definition 4.3.5, the following hold.

|z| >0and |z| =0ifand only if z =0 (4.13)
If @ is a scalar, |az| = |o]|z| (4.14)
|z +w| < |z[+|w]. (4.15)

Proof: The first two claims are left as exercises. To establish the third,
|z—|—'w\2 = (z4+w,z+w)

(z,2)+ (w,w) + (w, 2) + (z,w)

= |z]*+|w|* +2Re (w, 2)

|21 + [w]* +2(w, 2)]

|21 + [w[? + 2 w] |z] = (|2] +[w])*.

[VARVAN

Note that in an inner product space, you can define d (x,y) = | — y| and this is a met-
ric for this inner product space. This follows from the above since d satisfies the conditions
for a metric,

d(z,y)=d(y,x), d(x,y) >0and equals O if and only if c = y
d(z,y)+d(y,z)=|lz—yl+|ly—2|>|z—y+y—z|=|z—2|=d(z,z2).

It follows that all the theory of metric spaces developed earlier applies to this situation.
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4.3.3 Normed Vector Spaces

The best sort of a norm is one which comes from an inner product. However, any vector
space V which has a function ||-|| which maps V to [0, o) is called a normed vector space if
||| satisfies 4.13 - 4.15. That is

|z|| > 0and ||z]| =0ifand only if z =0 (4.16)
If a is a scalar, ||az| = |a|||z]| 4.17)
124+ w| < lz] + [[wl]. (4.18)

The last inequality above is called the triangle inequality. Another version of this is

[lz]] = flw]l| < [[z —w]| (4.19)
To see that 4.19 holds, note ||z = ||z —w+w|| < ||z —w|| + ||w| which implies
||z]] = [Jw|| < ||z —w]| and now switching z and w, yields |w|| — ||z|| < ||z — w]|| which

implies 4.19.

Any normed vector space is a metric space, the distance given by d (z,y) = || — v
This satisfies all the axioms of a distance. Therefore, any normed linear space is a metric
space with this metric and all the theory of metric spaces applies.

Definition 4.3.7 When X is a normed linear space which is also complete, it is
called a Banach space.

A Banach space may or may not be finite dimensional but it is always a linear space or
vector space. The field of scalars will always be R or C at least in this book. More is said
about Banach spaces later.

4.3.4 The p Norms

Examples of norms are the p norms on C" for p # 2. These do not come from an inner
product but they are norms just the same.

Definition 4.3.8 Let z € C. Then define for p > 1,

n 1/p
I, = <): in”> :
i=1

The following inequality is called Holder’s inequality.

Proposition 4.3.9 For z,y € C",

n n Up /s, / 1/p
Y il lyil < (Z |xi|P> (Z |yi|p>
fny by =1

The proof will depend on the following lemma shown later.

Lemma 4.3.10 Ifa,b > 0 and p' is defined by %—l— % =1, then
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Proof of the Proposition: If x or y equals the zero vector there is nothing to prove.

1/p
Therefore, assume they are both nonzero. LetA = (Y7, |x;|” )1/ P and B = ( " il? ) .
Then using Lemma 4.3.10,

flibl o g1 ()L
b A B — =lp A P\ B
11 & 11 & /
= Yl Y il
pA”,; p’B”,;
1 1

p
1 / l/P/
and so T il [y <4B = (£, [ul") 7 (T nl?)

Theorem 4.3.11 7re p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that ||-||, does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||-[| in place of ||- , in
what follows. Note also that £ y =P 1. Then using the Holder inequality,

1 1
lz+yl” = |xl+yz|p<2|xl+}’l|p |x,|—|—2|x,—|—yl|p il

i=1 i=1

M:

Il
_

|
M:

|x; +yl|” |xl|+Z|x,+y,|l’ |yil
i=1

n 1/p' " 1/p " 1/p
<Z |xi+yi|p> (Z |xi|'7> + (Z |yz'|p>
i—1 i=1 i=1

= e +yl”” (Il +llyl, )

Il
-

IN

so dividing by ||z 4 yl|”/?’, it follows
lz+yl” lz+yl "7 =z +yl < =/, +yl,
[ _ 1 1
( p,—p(l p,) pl 1)..

It only remains to prove Lemma 4.3.10.
Proof of the lemma: Let p’ = g to save on notation and consider the following picture:
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ab < /atpfldt—l-/bxq*ldx = @ + %.
0 0 p q
Note equality occurs when a” = b?. B
Alternate proof of the lemma: First note that if either a or b are zero, then there is
nothing to show so we can assume b,a > 0. Let b > 0 and let
al? bl

e
fla)y="—"+"-—a

Then the second derivative of f is positive on (0,0) so its graph is convex. Also f(0) >0
and lim,_,. f (a) = e0. Then a short computation shows that there is only one critical point,
where f is minimized and this happens when a is such that a” = b4. At this point,

fla)=b7—b"Pb=p1 —pi~'h =0

Therefore, f (a) > 0 for all a and this proves the lemma. Hl
Another example of a very useful norm on F” is the norm |||, defined by

le].. = max {|x¢| : k=1,2,--- ,n}
You should verify that this satisfies all the axioms of a norm. Here is the triangle inequality.
o +yll. = max{yl} < max b+ il }
< max { b} +max{[yel} = |2, +[lyll..

It turns out that in terms of analysis, it makes absolutely no difference which norm you
use. This will be explained later. First is a short review of the notion of orthonormal bases
which is not needed directly in what follows but is sufficiently important to include.

4.3.5 Orthonormal Bases

Not all bases for an inner product space H are created equal. The best bases are orthonor-
mal.

Definition 4.3.12 Suppose {vi,---,v;} is a set of vectors in an inner product
space H. It is an orthonormal set if

Lifie i
('Uiavj)zéij:{ Ogi;ﬁj

Every orthonormal set of vectors is automatically linearly independent.

Proposition 4.3.13 Suppose {vy,--- ,vi} is an orthonormal set of vectors. Then it is
linearly independent.

Proof: Suppose Zf»‘zl ¢;jv; = 0. Then taking inner products with
v;,0=(0,v;) =} ci(vi,v)) = ) idij = ;.
i i

Since j is arbitrary, this shows the set is linearly independent as claimed. l
It turns out that if X is any subspace of H, then there exists an orthonormal basis for X.
The process by which this is done is called the Gram Schmidt process.
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Lemma 4.3.14 Let X be a subspace of dimension n which is contained in an inner
product space H. Let a basis for X be {xy, -+ ,x,}. Then there exists an orthonormal
basis for X, {u,--- ,u,} which has the property that for each k < n, span(xy,--- ,x;) =
span (wp, -, ).

Proof: Let {x), - ,x,} be abasis for X. Let w; = «;/|x;|. Thus for k =1,
span (u;) = span (x)

and {u, } is an orthonormal set. Now suppose for some k < n, u, - - -, u; have been chosen
such that (u;,u;) = 8 ; and span (x1,---, &) = span (uy,--- ,u;). Then define

k
Tit1 — L ($k+l7u')u'
Wit = =1 Lty (4.20)

Lf1 —21;:1 ($k+lvu/)u/

where the denominator is not equal to zero because the x; form a basis and so
Tpy1 ¢ span(xy,---,xy) =span(wy, -, uy)
Thus by induction,

Upy| € span (g, -+, Uy, Tgy1) = Span Ty, , T, Ti1) -

Also, @y, 1 € span(uy,--- ,ug, U1 ) Which is seen easily by solving 4.20 for ;.1 and it
follows
Span(wh' o 7wk7wk+l) = Span(uh' o 7uk7uk+l) .
~1
If [ <k, then denoting by C the scalar ‘le — ):’;-:1 (Tkr1,u)) uj‘

)
k
(wiy,ur) = C| (Trr1,w) Z Tiy1,uj) (w),up)

k
= C( Tpi1,Up) Z Tpi1,U;) 511)

= C((@rr1,ur) — (fck+1,u1)) =0.

The vectors, {u i}?:l , generated in this way are therefore an orthonormal basis because
each vector has unit length. l
The process by which these vectors were generated is called the Gram Schmidt process.

4.4 Equivalence of Norms

As mentioned above, it makes absolutely no difference which norm you decide to use. This
holds in general finite dimensional normed spaces. First are some simple lemmas featuring
one dimensional considerations. In this case, the distance is given by d (x,y) = |x —y| and
so the open balls are sets of the form (x — §,x+ 8).

Also recall the Lemma 3.5.9 which is stated next for convenience.

Lemma 4.4.1 The closed interval [a,b] is compact.
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Corollary 4.4.2 The set Q = [a,b] +i[c,d] C C is compact, meaning
{x+iy:x€la,b],y € c,d]}

Proof: Let {x,+iy,} be a sequence in Q. Then there is a subsequence such that
limy 0 X, =x € [a,D]. There is a further subsequence such that lim;_... Y, = € [e,d).
Thus, also limex,,k] = x because subsequences of convergent sequences converge to
the same point. Therefore, from the way we measure the distance in C, it follows that
lim; e (x,,k] —|—y,,k1) =x+iyeQ. 1

The next corollary gives the definition of a closed disk and shows that, like a closed
interval, a closed disk is compact.

Corollary 4.4.3 InC, let D(z,r) = {w € C:|z—w| <r}. Then D(z,r) is compact.
Proof: Note that
D(z,r) C[Rez—r,Rez+r]+i[lmz—r,Imz+r]

which was just shown to be compact. Also, if wy — w where wy € D(z,r), then by the
triangle inequality,
|z—w|=lim |z—w| <r
k—yoo

and so D (z,7) is a closed subset of a compact set. Hence it is compact by Proposition 3.5.2.
|

Recall that sequentially compact and compact are the same in any metric space which
is the context of the assertions here.

Lemma 4.4.4 Let K; be a nonempty compact set in F. Then P = [, K; is compact in
F".

Proof: Let {x;} be a sequence in P. Taking a succession of subsequences as in the
proof of Corollary 4.4.2, there exists a subsequence, still denoted as {x} such that if x; is
the i component of a, then limy_.. X} = x' € K;. Thus if « is the vector of P whose i

component is x',

A\
klglolokck—w\zklgg <Z’X5¢—x’|2> =0

It follows that P is sequentially compact, hence compact. B
A set K in F” is said to be bounded if it is contained in some ball B (0, r).

Theorem 4.4.5 A set k C F"* is compact if it is closed and bounded. If f : K — R,

then f achieves its maximum and its minimum on K.

Proof: Say K is closed and bounded, being contained in B (0,r). Thenif & € K, |x;| <r
where x; is the i component. Hence K C [J7_, D(0,r), a compact set by Lemma 4.4.4.
By Proposition 3.5.2, since K is a closed subset of a compact set, it is compact. The last
claim is just the extreme value theorem, Theorem 3.7.2. B
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Definition 4.4.6 L. {v1,-++,v,} be a basis for V where (V,||||) is a finite dimen-
sional normed vector space with field of scalars equal to either R or C. Define 6 : V — F”"
as follows.

n
— T
0 Zajvj :a:(ala"'aan)
j=1
Thus 6 maps a vector to its coordinates taken with respect to a given basis.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let

Z(X,"Ug
i

Then it is clear that f is a continuous function defined on F”. This is because o« — }; @;v;
is a continuous map into V and from the triangle inequality © — ||x|| is continuous as a
map from V to R.

fla)= = ||0_1a||

Lemma 4.4.7 There exists § > 0 and A > § such that
0 =min{f(a):|a|=1}, A=max{f () : |a|] =1}
Also,

le]
6 |6v|

6~ e < Alal 4.21)

<
< ol <Alov (4.22)

Proof: These numbers exist thanks to Theorem 4.4.5. It cannot be that § = 0 because if
it were, you would have |a| = 1 but 27:1 oxv; = 0 which is impossible since {vy,--- ,v,}

is linearly independent. The first of the above inequalities follows from & < HB’I ﬁ H =

f ( \%I) < A. The second follows from observing that 8 '« is a generic vector v in V. Bl

Note that these inequalities yield the fact that convergence of the coordinates with re-
spect to a given basis is equivalent to convergence of the vectors. More precisely, to say
that limy_,.. v¥ = v is the same as saying that limy_,.. 8v* = Qv. Indeed,

0|6v, —0v| < ||v,—v| <A|Ov, — 6v]
Now we can draw several conclusions about (V, ||-||) for V finite dimensional.

Theorem 4.4.8 Let (V,|-||) be a finite dimensional normed linear space. Then the
compact sets are exactly those which are closed and bounded. Also (V, ||-||) is complete. If
K is a closed and bounded set in (V,||-||) and f : K — R, then f achieves its maximum and
minimum on K.

Proof: First note that the inequalities 4.21 and 4.22 show that both 6~ and 6 are
continuous. Thus these take convergent sequences to convergent sequences.

Let {wy };_, be a Cauchy sequence. Then from 4.22, { 6wy },_, is a Cauchy sequence.
Thanks to Theorem 4.4.5, it converges to some 3 € F”". It follows that limy_.., 6! Owy =
limy_yoo Wy = 971/6 € V. This shows completeness.
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Next let K be a closed and bounded set. Let {w;} C K. Then {#w;} C 6K which
is also a closed and bounded set thanks to the inequalities 4.21 and 4.22. Thus there is a
subsequence still denoted with k such that Owy — 3 € F”. Then as just done, wy — 6! 3.
Since K is closed, it follows that 9’1[3 eK.

This has just shown that a closed and bounded set in V is sequentially compact hence
compact.

Finally, why are the only compact sets those which are closed and bounded? Let K be
compact. If it is not bounded, then there is a sequence of points of K,{k™}, _, such that
||E™| > sz’”*l || + 1. It follows that it cannot have a convergent subsequence because the
points are further apart from each other than 1/2. Indeed,

Hkm_km+1H > HkarIH _ ”km” > 1> 1/2

Hence K is not sequentially compact and consequently it is not compact. It follows
that K is bounded. If K is not closed, then there exists a limit point k which is not in K.
(Recall that closed means it has all its limit points.) By Theorem 3.1.8, there is a sequence
of distinct points having no repeats and none equal to k denoted as {k™}, _; such that
k™ — k. Then this sequence {k™} fails to have a subsequence which converges to a point
of K. Hence K is not sequentially compact. Thus, if K is compact then it is closed and
bounded.

The last part is the extreme value theorem, Theorem 3.7.2. l

Next is the theorem which states that any two norms on a finite dimensional vector
space are equivalent.

Theorem 4.4.9 L.t |||, IIl; be two norms on'V a finite dimensional vector space.
Then they are equivalent, which means there are constants 0 < a < b such that for all v,

alvll <llolly <]l

Proof: In Lemma 4.4.7, let 8,A go with ||| and §,A go with |-||,. Then using the
inequalities of this lemma,

A AA
[v] <Al6v| < 3 [vll; < 3 6o < 55 o]l

and so g [v|| < ||lv]l; < § [[v]l. Thus the norms are equivalent. B
It follows right away that the closed and open sets are the same with two different
norms. Also, all considerations involving limits are unchanged from one norm to another.

Corollary 4.4.10 Consider the metric spaces (V,|-|,),(V,||:|l,) where V has dimen-
sion n. Then a set is closed or open in one of these if and only if it is respectively closed or
open in the other. In other words, the two metric spaces have exactly the same open and
closed sets. Also, a set is bounded in one metric space if and only if it is bounded in the
other.

Proof: This follows from Theorem 3.6.2, the theorem about the equivalent formulations
of continuity. Using this theorem, it follows from Theorem 4.4.9 that the identity map
I (x) = x is continuous. The reason for this is that the inequality of this theorem implies that
if [[v™ —v||; — O then ||[v" —Iv||, = ||I (v —v)||, — 0 and the same holds on switching
1 and 2 in what was just written.
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Therefore, the identity map takes open sets to open sets and closed sets to closed sets.
In other words, the two metric spaces have the same open sets and the same closed sets.

Suppose S is bounded in (V,||-||;). This means it is contained in B(0,r), where the
subscript of 1 indicates the norm is ||-||,. Let &||-||; < [||l, < A||||; as described above.
Then S € B(0,r); € B(0,Ar), so S is also bounded in (V, ||-||,). Similarly, if § is bounded
in ||-||, then it is bounded in ||-||,. W

One can show that in the case of R where it makes sense to consider sup and inf, con-
vergence of Cauchy sequences can be shown to imply the other definition of completeness
involving sup, and inf.

4.5 Covering Theorems

These covering theorems make sense on any finite dimensional normed linear space. There
are two which are commonly used, the Vitali theorem and the Besicovitch theorem. The
first adjusts the size of balls and the second does not. Of the two, it is the Besicovitch
theorem which I will emphasize. However, the Vitali theorem is used more often and may
be a little easier. I decided to place these theorems early in the book to emphasize that they
only require a finite dimensional normed linear space.

4.5.1 Vitali Covering Theorem

The Vitali covering theorem is a profound result about coverings of a set in (X, ||-||) with
balls. Usually we are interested in R? with some norm. We will tacitly assume all balls
have positive radius. They will not be single points. Before beginning the proof, here is a
useful lemma.

Lemma 4.5.1 In a normed linear space, B(x,r) ={y: ||y —z| <r}.

Proof: It is clear that B(x,r) C {y: ||y —x|| < r} because if y € B(x,r), then there
exists a sequence of points of B(x,r),{x,} such that ||z, —y|| — 0, ||z,|| < r. However,
this requires that ||@,|| — ||y|| and so ||y|| < r. Now let y be in the right side. It suffices
to consider ||y — x| = 1. Then you could consider for 7 € (0,1), z+1(y —x) = = (¢).
Then ||z(t) —z|| =t||ly—x| = tr < r and so z(¢t) € B(x,r). But also, ||z (t) —y|| =
(I-1)ly—=z||=(1—1)rsolim_g|z(t) —y|| =0 showing that y € B(z,r). B

Thus the usual way we think about the closure of a ball is completely correct in a
normed linear space. Its limit points not in the ball are exactly y such that ||y — x| = r.
Recall that this lemma is not always true in the context of a metric space. Recall the
discrete metric for example, in which the distance between different points is 1 and distance
between a point and itself is 0. In what follows I will use the result of this lemma without
comment. Balls will be either open, closed or neither. I am going to use the Hausdorff
maximal theorem, Theorem 2.8.2 because it yields a very simple argument. It can be done
other ways however. In the argument, the balls are not necessarily open nor closed. vy is in
B(x,r) will mean that [|[y —z| <ror|y—z| =r.

Lemma 4.5.2 Let F be a nonempty collection of balls satisfying
o> M =sup{r:B(p,r) € Z} >0
and let k € (0,M) . Then there exists 9 C .F such that

IfB(p,r) € 9 then r > k, (4.23)
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IfB1,By €9 then BN B, = 0, (4.24)

4 is maximal with respect to 4.23 and 4.24. (4.25)

By this is meant that if 7€ is a collection of balls satisfying 4.23 and 4.24, then ¢ cannot
properly contain 4.

Proof: Let G denote a subset of .% such that 4.23 and 4.24 are satisfied. Since k < M,
4.23 is satisfied for some ball of &. Thus & # 0. Partially order & with respect to set
inclusion. Thus &7 < A for o/, 98 in G means that &7 C . By the Hausdorff maximal
theorem, there is a maximal chain in & denoted by €. Then let 4 be U%. If By, B; are in
&, then since ¥ is a chain, both By, B, are in some element of € and so B; N B, = 0. The
maximality of € is violated if there is any other element of & which properly contains ¥.
|

Proposition 4.5.3 Let 7 be a collection of balls, and let
A=U{B:Be Z}.

Suppose
o> M =sup{r:B(p,r) € F}>0.
Then there exists ¢ C .F such that 4 consists of balls whose closures are disjoint and
ACU{B:Bc %}
where for B =B (x,r) a ball, B denotes the open ball B (x,5r).

Proof: Let ¢, satisfy 4.23 - 4.25 for k = ZTM

Suppose ¥, -+ ,%,,—1 have been chosen for m > 2. Let . denote the collection of
closures of the balls of ¢;. Then let .%,, be those balls of .%, such that if B is one of these
balls, B has empty intersection with every closed ball of &; for each i < m — 1. Then using
Lemma 4.5.2, let 4, be a maximal collection of balls from .%,, with the property that each
ball has radius larger than (%)mM and their closures are disjoint. Let ¢ = U7 %;. Thus
the closures of balls in ¢ are disjoint. Let « € B(p,r) € .# \ 4. Choose m such that

2 m ) m—1
=] M<r<| 3 M
Then B (p,r) must have nonempty intersection with the closure of some ball from ¥ U

.-+ U%¥, because if it didn’t, then ¥, would fail to be maximal. Denote by B (py, rp) a ball
in% U---U%, whose closure has nonempty intersection with B (p, r). Thus both

2\" 2\"!' 3
ro,r > (3) M, sor< (3) M < Ero

Consider the picture, in which w € B (py,r0) NB(p,r).

N
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Then for x € B(p,r),
<rp

———
& —pol| < [l —pll+[p—w| +[lw—pol

<%r0
—_——

2 m—1 3
§r+r+ro§2(3) M+r0§2<270>+r0§4r0

Thus B (p,r) is contained in B (p,4ro). It follows that the closures of the balls of ¢4 are
disjoint and the set {1§ :Be %} coversA. W

Note that this theorem does not depend on the underlying space being finite dimen-
sional. However, it is typically used in this setting. The next theorem of Besicovitch
depends in an essential way on X being finite dimensional because it exploits compactness
and various constants originate explicitly from this compactness. However, no effort is
being made here to give the most general conditions under which such covering theorems
hold.

4.5.2 Besicovitch Covering Theorem

The covering theorems will have applications to measure theory presented later. In contrast
to the Vitali covering theorem, one does not enlarge the balls in the Besicovitch covering
theorem. This is extremely useful in the notion of general differentiation theorems for
measures other than Lebesgue measure. The proof of this major result has to do with
counting the number of times various balls can intersect. These estimates are used along
with the pigeon hole principle to prove the result. This principle says that if you have n
holes and m > n pigeons, each of which must go in a hole, then some hole has more than
one pigeon. In what follows a will continue to be in a normed linear space (X, ||-||) of
dimension p. This covering theorem is one of the most amazing and insightful ideas that I
have ever encountered. It is simultaneously elegant, elementary and profound. This section
is an attempt to present this wonderful result.

Here is a sequence of balls from . in the case that the set of centers of these balls is
bounded. I will denote by r (By) the radius of a ball By.

A construction of a sequence of balls
Lemma 4.5.4 Let F be a nonempty set of nonempty balls in X with
sup{diam(B):B€ .#} =D < oo

and let A denote the set of centers of these balls. Suppose A is bounded. Define a sequence
of balls from F, {B./'}jzl where J < oo such that

r(By) > %sup{r(B) :Be F} (4.26)

and if
Aw=A\(ULB) #0, 4.27)
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then B, € F is chosen with center in A, such that

3
r(Bm) > r(Bpy1) > Zsup{r:B(a,r) eEZ, achA,}. (4.28)
Then letting B; = B(aj,r;), this sequence satisfies {B(a;,r;/3) }izl are disjoint,.

A CUL,B;. (4.29)

Proof: First note that B, can be chosen as in 4.28. This is because the A,, are
decreasing and so

%sup{r:B(a,r) €ZF,acA,}

3
< Zsup{r:B(a,r) EF,ac€An_1}<r(Bm)
Thus the r (By) are strictly decreasing and so no By contains a center of any other B;.
If x € B(aj,rj/3) N B(a;,ri/3) where these balls are two which are chosen by the
above scheme such that j > i, then from what was just shown

laj—ad| < aj—=|+le—ail < L+ 2 < (241 )n=2n<n
3 3 3 3 3
and this contradicts the construction because a; is not covered by B (a;,r;).
Finally consider the claim that A C U{:lBi. Pick B satisfying 4.26. If

Blu"' 7Bm

have been chosen, and A, is givenin 4.27, then if A, = 0, it follows A C U2 | B;. SetJ =m.

Now let a be the center of B, € .#. If a € A, for all m,(That is a does not get covered
by the B;.) then 7,41 > %r(Ba) for all m, a contradiction since the balls B (a s %’) are
disjoint and A is bounded, implying that ; — 0. Thus a must fail to be in some A,, which
means it was covered by some ball in the sequence. B

The covering theorem is obtained by estimating how many B; can intersect By, for j < k.
The thing to notice is that from the construction, no B; contains the center of another B;.
Also, the r (By) is a decreasing sequence.

Let a > 1. There are two cases for an intersection. Either r (B;) > or (By) or or (By) >
r(Bj) > r(Bk).

First consider the case where we have a ball B(a,r) intersected with other balls of
radius larger than orr such that none of the balls contains the center of any other. This
is illustrated in the following picture with two balls. This has to do with estimating the
number of B; for j < k where r(B;) > our (By).
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Imagine projecting the center of each big ball as in the above picture onto the surface of
the given ball, assuming the given ball has radius 1. By scaling the balls, you could reduce
to this case that the given ball has radius 1. Then from geometric reasoning, there should
be a lower bound to the distance between these two projections depending on dimension.
Thus there is an estimate on how many large balls can intersect the given ball with no ball
containing a center of another one.

Intersections with relatively big balls

Lemma 4.5.5 Let the balls Bo,By,By be as shown, having radii r,ry,ry respectively.
Suppose the centers of By and By are not both in any of the balls shown, and suppose
r—a

ry > ry > or where o is a number larger than 1. Also let P, = a+ FW with Py being

defined similarly. Then it follows that ||Py — Py|| > g—;}r. There exists a constant L(p, o)

depending on o and the dimension, such that if B1,--- ,B,, are all balls such that any pair
are in the same situation relative to Bq as By, and By, thenm < L(p, ).

Proof: From the definition,

r—a y—a
1Pe — Pyll =1

‘y—an—yH%y—ﬁﬂw—aW%w—a)H

lz—al [ly—al

(z—a)l|y—al - (y—a)[z—al
@ —alllly —al

:r‘

lz—allly—al
dz—yllly—alllly —al |z —al
|z —al |z —allly—al
x—y r
A2 ly —al o all|. (@30)
lz—al [z—a
There are two cases. First suppose that ||y — a|| — || — a|| > 0. Then the above
lz—y r
o ly—all+7
lz—al [z—al

From the assumptions, ||z —y|| > r, and also ||y —a| < r+r,. Hence the above

b r (r4+r)+r=r— r

r — f—
lz—al |z—a | —all

r r 1 o—1
r{l——— ) 2>r(1—- >r({l——=)>r .
|z —all Iy o o+1

Y

The other case is that ||y — a|| — ||z — a|| < 0 in 4.30. Then in this case 4.30 equals

(1 - s e —al - [y —al)

|z—al [lz—a
.

m;:mO@*nywm*MFWy*MW
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Then since || —al| < r+ry, ||z —y|| > ry, ||y — a| > ry, and remembering that r, > r, >

ar,
> rx:_r(ry—(r—er)—kry) > e (ry—=(r+4ry)+ry)
> rx:_r(ry—r) > rx:_r(rx—r) > rerrérx (rx—;rx>
= m(l—l/a):%r
Replacing r with something larger, - = x 1s justified by the observation that x — g;ﬁ is

decreasing. This proves the estimate between P, and Py,.
Finally, in the case of the balls B; having centers at x;, then as above, let Py, = a +

ree—r Hw aH Then (P,, —a)r~! is on the unit sphere having center 0. Furthermore,

g oa-1 oa-1
r =

[(Pe; —a)r ™' = (Py,—a)r || =r"||Po, — a1l arl

Yi

How many points on the unit sphere can be pairwise this far apart? The unit sphere is
compact and so there exists a g ( all ) net having L(p, @) points. Thus m cannot be any
larger than L (p, ) because if it were, then by the pigeon hole principal, two of the points
(Ps; —a)r~" would lie in a single ball B (p,; (251)) so they could not be 2= apart. B
The above lemma has to do with balls which are relatively large intersecting a given
ball. Next is a lemma which has to do with relatively small balls intersecting a given ball.

First is another lemma.

Lemma 4.5.6 Let T > 1 and B(a,T'r) be a ball and suppose {B(x;,r;)}r, are balls
contained in B (a,I'r) such that r < r; and none of these balls contains the center of another
ball. Then there is a constant M (p,T") such that m <M (p,T).

Proof: Let z; = «; — a. Then B(z,,r,) are balls contained in B(0,I'r) with no ball
containing a center of another. Then B (1_' T ) are balls in B (0,1) with no ball contalmng

the center of another. By compactness, there is a g= net for B(0, 1), {y; } . Thus the

balls B (y;, g=) cover B(0,1). If m > M (p, ) then by the pigeon hole pr1n01ple one of
these B (yl, SF) would contain some rl and r— which requires H— — —H < 41- < 4rr S0
Z eB(E,{). Thusm<M(p,y,T). B

Intersections with small balls

Lemma 4.5.7 Let B be a ball having radius r and suppose B has nonempty intersection

with the balls By, - - - , By, having radii ry,- - - , 1y, respectively, and as before, no B; contains
the center of any other and the centers of the B; are not contained in B. Suppose o > 1
and r <min(ry,--- ,ry), each r; < ar. Then there exists a constant M (p, &) such that
m<M(p,o).

Proof: Let B= B(a,r). Then each B; is contained in B(a,2r+ ar-+ ar). This is
because if y € B; = B(x;,r;),

ly—al <lly -z +zi—al <ritr+rn<2r+artar
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Thus B; does not contain the center of any other Bj, these balls are each contained in
B(a,r(20t+2)), and each radius is at least as large as r. By Lemma 4.5.6 there is a
constant M (p, @) such thatm <M (p, o). B

Now here is the Besicovitch covering theorem. In the proof, we are considering the
sequence of balls described above.

e ere exists a constant N, depending only on p with the following
Theorem 4.5.8 7 ' N, depending onl ith the followi
property. If F is any collection of nonempty balls in X with

sup{diam (B) :B€ F} <D < o0

and if A is the set of centers of the balls in 7, then there exist subsets of %, 74, -+, %ﬁvp,
such that each 7 is a countable collection of disjoint balls from F (possibly empty) and

AcCuU

U{B:Be J}.

Proof: To begin with, suppose A is bounded. Let L(p, ) be the constant of Lemma
4.55andlet M, =L (p,o0)+M (p,a) + 1. Define the following sequence of subsets of .7,
G, ,%MF Referring to the sequence {B;} considered in Lemma 4.5.4, let B; € 4
and if By, - - -, B,, have been assigned, each to a ¢;, place By, in the first ¢; such that B,,,1
intersects no set already in ¢;. The existence of such a j follows from Lemmas 4.5.5 and
4.5.7 and the pigeon hole prmc1ple Here is why. By, can intersect at most L (p, &) sets of
{Bi1," -+ ,B} which have radii at least as large as otr (By,+1) thanks to Lemma 4.5.5. It can
intersect at most M (p, &) sets of {By,--, By} which have radius smaller than otr (Bp+1)
thanks to Lemma 4.5.7. Thus each ¥; con51sts of disjoint sets of .# and the set of centers
is covered by the union of these ¥;. ThlS proves the theorem in case the set of centers is
bounded.

Now let Ry = B(0,5D) and if R,, has been chosen, let
Ry+1=B(0,(m+1)5D)\ Ry,

Thus, if |k —m| > 2, no ball from .# having nonempty intersection with R, can inter-
sect any ball from .# which has nonempty intersection with R;. This is because all these
balls have radius less than D. Now let A,, = ANR,, and apply the above result for a
bounded set of centers to those balls of .# which intersect R, to obtain sets of disjoint balls
91 (Rn),% (Rn) -~ ,%m, (Ry) covering A,,. Then simply define &) = Uz %; (Rut) .9 =
Uk lg (RZk 1) Let Np = ZMP and

{%7 7%\/17} S5 {gl/f“ 7g]ll/[p7gla"' 7gMp}

Note that the balls in %J’ are disjoint. This is because those in &; (Ryx) are disjoint and if
you consider any ball in ¢; (Ra.,) , it cannot intersect a ball of & (Ry) for m # k because
|2k —2m| > 2. Similar considerations apply to the balls of ¢;. B

Of course, you could pick a particular &. If you make o larger, L(p, ) should get
smaller and M (p, o) should get larger. Obviously one could explore this at length to try
and get a best choice of «.
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4.6 Exercises

1. Let V be a vector space with basis {vi,---,v,}. For v € V, denote its coordinate
vector as v = (¢, -+, ®y,) where v =Y }_, axvx. Now define

V]| = max {|ay| : k=1,...,n}.
Show that this is anorm on V.

2. Let (X,]|]|) be a normed linear space. You can let it be (R",|]) if you like. Recall

|| is the usual magnitude of a vector given by |z| = /Y}_, xe|%. A set A is said to
be convex if whenever x,y € A the line segment determined by these points given
by tx+ (1 —t)y for ¢t € [0,1] is also in A. Show that every open or closed ball is
convex. Remember a closed ball is D (x,r) = {& : ||& — «|| < r} while the open ball
is B(x,r) ={&: ||& — | < r}. This should work just as easily in any normed linear
space with any norm.

3. This problem is for those who have had a course in Linear algebra. A vector v
is in the convex hull of S if there are finitely many vectors of S, {vy,---,v,,} and
nonnegative scalars {t,--- %, } such that v = Y | fxvg, Y5~ % = 1.Such a linear
combination is called a convex combination. Suppose now that § C V, a vector space
of dimension n. Show that if v = Y ;' | #vy is a vector in the convex hull for m >
n+ 1, then there exist other nonnegative scalars {t,’{} summing to 1 such that v =

21:_11 tvx.Thus every vector in the convex hull of S can be obtained as a convex
combination of at most n + 1 points of S. This incredible result is in Rudin [51].
Convexity is more a geometric property than a topological property. Hint: Consider
L:R"™ —V xRdefined by L(a) = (X" axvr, i ax) Explain why ker (L) # {0} .
This will involve observing that R™ has higher dimension that V x R. Thus L cannot
be one to one because one to one functions take linearly independent sets to linearly
independent sets and you can’t have a linearly independent set with more than n + 1
vectors in V x R. Next, letting a € ker (L) \ {0} and A € R, note that A a € ker (L).
Thus for all A € R, v = Y[' | (tx + Aag) vx. Now vary A till some # + Aa; = 0 for
some a; # 0. You can assume each #;, > 0 since otherwise, there is nothing to show.
This is a really nice result because it can be used to show that the convex hull of a
compact set is also compact. You might try to show this if you feel like it.

4. Show that the usual norm in F" given by |x| = (x,x) 1/2 satisfies the following iden-
tities, the first of them being the parallelogram identity and the second being the
polarization identity.

ety +lz -yl = 2z +2Jy]
1
Re(@y) = ;(le+y’~le—yf)
Show that these identities hold in any inner product space, not just .

5. Suppose K is a compact subset of (X,d) a metric space. Also let € be an open cover
of K. Show that there exists 6 > 0 such that for all x € K, B(x,0) is contained in a
single set of €. This number is called a Lebesgue number. Hint: For each x € K|
there exists B (x, ) such that this ball is contained in a set of €. Now consider
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10.

11.

the balls {B (x, 57*)} < Finitely many of these cover K. {B (xi, %) } 1Now
Xe =
consider what happens if you let § < min{%,i =1,2,--- ,n}. Explain why this

works. You might draw a picture to help get the idea.

Suppose € is a set of compact sets in a metric space (X,d) and suppose that the
intersection of every finite subset of % is nonempty. This is called the finite inter-
section property. Show that N%, the intersection of all sets of ¥ is nonempty.
This particular result is enormously important. Hint: You could let %/ denote the set
{KC 1K e ‘5} If NG is empty, then its complement is U% = X. Picking K € €,

it follows that % is an open cover of K. K C U™ K€ = (", K;)* Therefore, you
would need to have {ch, ‘e ,K,g} is a cover of K. In other words, Now what does
this say about the intersection of K with these K;?

If (X,d) is a compact metric space and f : X — Y is continuous where (Y,p) is
another metric space, show that if f is continuous on X, then it is uniformly contin-
uous. Recall that this means that if € > 0 is given, then there exists 6 > 0 such that
if d(x,£) < 8, then p (f (x),f (%)) < €. Compare with the definition of continuity.
Hint: If this is not so, then there exists € > 0 and x,,, £, such that d (x,,£,) < 1/n but
p (f (xn),f (%)) > €. Now use compactness to get a contradiction.

Prove the above problem using another approach. Use the existence of the Lebesgue
number in Problem 5 to prove continuity on a compact set K implies uniform conti-
nuity on this set. Hint: Consider ¢’ = { f~! (B(f (x),€/2)) : x € X } . This is an open
cover of X. Let § be a Lebesgue number for this open cover. Suppose d (x,£) < 6.
Then both x, £ are in B (x, §) and so both are in £~ (B (f (%), %)) . Hence

€ . _ £
PU(). /(D)< 5. (D), f () < 5.
Now consider the triangle inequality.

Let X be a vector space. A Hamel basis is a subset of X, A such that every vector of
X can be written as a finite linear combination of vectors of A and the vectors of A
are linearly independent in the sense that if {x;,---,x,} C A and ¥}, cxxx = O then
each ¢; = 0. Using the Hausdorff maximal theorem, show that every non-zero vector
space has a Hamel basis. Hint: Let x; # 0. Let .# denote the collection of subsets of
X, A containing x; with the property that the vectors of A are linearly independent.
Partially order .% by set inclusion and consider the union of a maximal chain.

Suppose X is a nonzero real or complex normed linear space and let
V =span (wi,...,wy)

where {w1,...,w;,} is a linearly independent set of vectors of X. Show that V is a
closed subspace of X with V C X. First explain why Theorem 4.2.11 implies any
finite dimensional subspace of X can be written this way. Hint: You might want to
use something like Lemma 4.4.7 to show this.

Suppose X is a normed linear space and its dimension is either infinite or greater than
m where V = span (w1, ...,wy,) for {wy,...,w,} an independent set of vectors of X.
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12.

13.

14.

15.

16.

17.
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Show X \ V is a dense open subset of X which is equivalent to V containing no ball
B(v,r),{w:|lw—v| < r}. Hint: If B(x,r) is contained in V, then show, that since V
is a subspace, B(0,r) is contained in V. Then show this implies X C V which is not
the case.

Show that if (X,d) is a metric space and H,K are disjoint closed sets, there are
open sets Uy,Ug such that H C Uy, K C Ug and Uy NUg = 0. Hint: Let k €
K. Explain why dist (k,H) = inf{||k—h|| : h € H} =26, > 0. Now consider Ux =
Ukek B (k, 8¢). Do something similar for 2 € H and consider Uy = UgenB (h, 8;,).

If, in a metric space, B(p,d) is a ball, show that
B(p,8) CD(p,8) = {x: |lv—pl < 5}

Now suppose (X,d) is a complete metric space and U,,,n € N is a dense open set in X.
Also let W be any nonempty open set. Show there exists a ball Bj = B(p;,r;) having
radius smaller than 2! such that B; C U; NW,. Next show there exists B, =B (p2,12)
such that B, C By NU, NW with the radius of B; less than 2~2. Continue this way.
Explain why {p,},_, is a Cauchy sequence converging to some p € W N (U, U,).
This is the very important Baire theorem which says that in a complete metric space,
the intersection of dense open sets is dense.

Suppose you have a complete normed linear space, (X, ||-||). Use the above problems
leading to the Baire theorem in 13 to show that if % is a Hamel basis for for X, then
2B cannot be countable. Hint: If 2 = {v;} - |, consider V,, = span (vy, ...,v,) . Then
use a problem listed above to argue that V¢ is a dense open set. Now apply Problem
13. This shows why the idea of a Hamel basis often fails to be very useful whereas,
in finite dimensional settings, it is just what is needed.

In any complete normed linear space which is infinite dimensional, show the unit
ball is not compact. Do this by showing the existence of a sequence which cannot
have a convergent subsequence. Hint: Pick ||x| = 1. Suppose xi,...,x, have been
chosen, each ||xz|| = 1. Then there is x ¢ span (x1,...,x,) = V,. Now consider v such
that [|x —v|| < 3 dist(x,V,) . Then argue that for k < n,

€V
—_——~
x— | v+ lx—v| x
dist (x,Vy) 2

X—V

f[x—v]| = (3/2)dist(x,V,) 3

2TV
[l =

Let X be a complete inner product space. Let % denote subsets B C X such that
whenever x,y € X, (x,y) =0 if x # y and (x,x) = 1 if x = y. Thus these 3 are or-
thonormal sets. Show there exists a maximal orthonormal set. If X is separable, show
that this maximal orthonormal set is countable. Hint: Use the Hausdorff maximal
theorem. The next few problems involve linear algebra.

Let X be a real inner product space and let {vy,...,v,} be vectors in X. Let G be the
n x nmatrix G;; = (v;,v;) . Show that G~! exists if and only if {v,...,v,} is linearly
independent. G is called the Grammian or the metric tensor.
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18.

19.

20.

21.

22.

TLet X be as above, a real inner product space, and let V = span (vy,...,v,) . Letu € X
and z € V. Show that |u—z| = inf{|u—v|:v €V} if and only if (u—z,v;) = 0 for
all v;. Note that the v; might not be linearly independent. Also show that |u — z|2 =
‘u|2 - (Za u) .

1 Let G be the matrix of Problem 17 where {vi,...,v,} is linearly independent and
V = span(vy,...,v,) C X, an inner product space. Let x = ¥, x'v;,y = ¥, y'v; be two
vectors of V. Show that (x,y) =Y, jxiGijx/ . Show that z = ¥,;7'v;,7 is closest to
u € X if and only if for all i = 1,...,n, (u,v;) = ¥;Gj;z’. This gives a system of
linear equations which must be satisfied by the z' in order that z just given is the best
approximation to u. Next show that there exists such a solution thanks to Problem
17 which says that the matrix G is invertible, and if G~! has ij"” component G/, one
finds that ¥ ; G (u,v;) = 7',

1 In the situation of the above problems, suppose A is an m X n matrix. Use Prob-
lem 18 to show that for y € R™, there always exists a solution  to the system of
equations ATy = AT Az. Explain how this is in a sense the best you can do to solve
y = Ax even though this last system of equations might not have a solution. Here A7
is the transpose of the matrix A. The equations A"y = AT Az are called the normal
equations for the least squares problem. Hint: Verify that (ATy,a:) = (y,Ax). Let
the subspace V be A (R"), the vectors spanning it being {Aey,...,Ae,}. From the
above problem, there exists Ax in V which is closest to y. Now use the character-
ization of this vector (y—Ax,Az) = 0 for all z € R",Az being a generic vector in
A(R").

TAs an example of an inner product space, consider C ([0, 1]) with the inner product
fol f(x) g (x) dx where this is the ordinary integral from calculus. Abusing notation,
let {xP1,...,xP} with —4 < pj < -+ < p, be functions, (vectors) in C ([0, 1]). Verify
that these vectors are linearly independent. Hint: You might want to use the Cauchy
identity, Theorem 1.9.28.

1As above, if {vi,...,v,} is linearly independent, the Grammian is G = G (v1, ..., vy),
Gij = (vi,vj), then if u ¢ span(vy,...,v,) =V you could consider G (vi,...,vn,u).
Then if d = min{|u—v|: v € span(v1,...,v,)}, show that d> = % Jus-

tify the following steps. Letting z be the closest point of V' to u, from the above,
(u— Y- Z'vi,vp) = 0 for each v, and so

(u,vp) =) (vp,vi) Z (*)

-

i=1

Also, since (u—z,v) =0forallve V,|ul* = lu—z+z* = lu—z|* + |z so

2
=d*+

2 2
juf* = +

n .
i=1

=())
—

=d? Jrzz (vj,v,‘)zizj =d? +Z (u,v.,-)zj
J

joi

n .
¥
i=1

n .
¥ o
i=1
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=d+y"z, y= (1), -, (), z= (Zl,"' .2

From *, Gz :y,( G(VIZ’/}"V") (]) ) ( ;2 ) = ( H"Z‘IHZ ) Now use Cramer’s

rule to solve for d? and get

det( G(VI"T'"VH) ‘y|2 ) d
2 Y u _ etG (Vi ..., Vi, U)

det(G(vi,---svn)) T detG(viy ey vp)

In the situation of Problem 21, let f; (x) = x* and let V = span (f,, ..., fp,)- give an
estimate for the distance d between f;,, and V for m a nonnegative integer and as in
the above problem —% < p1 < -+ < pn. Use Theorem 1.9.28 in the appendix and
the above problem with v; = f),, and v, 1 = f,,. Justify the following manipulations.
2
The numerator in the above formula for the distance is of the form 1Lzt (P=2i)
I j<nt1 (Piﬂ’jH)
2 2
_ [Tj<i<a (Pi — Pj) Tlj<u (m—pj)
[Tij<n (Pi+pj+ DITZy (pi+m+ DT (pj+m~+1) (2m+1)

. _ Mjciza(pi—py)’ _ j<n|m—p,]
While G (fp,, .-, fp,) = e Thus d = T e
Suppose Y ;g ait* = 0 for each ¢ € (—8,8) where a; € X, a linear space. Show that
each a; = 0.

Suppose A C R” is covered by a finite collection of Balls .%. Show that then there
exists a disjoint collection of these balls, {B;}- , such that A C U 1B where B; has
the same center as B; but 3 times the radius. Hint: Since the Collectlon of balls is
finite, they can be arranged in order of decreasing radius. Mimic the argument for
Vitali covering theorem.



Chapter 5

Functions on Normed Linear Spaces

This chapter is about the general notion of functions defined on normed linear spaces even
if the linear space is not finite dimensional.

51 Z(V,W) as a Vector Space

In what follows, V, W will be vector spaces.

Definition 5.1.1 7ne term & (V,W) signifies the set of linear maps from V to W.
This means that for vyu € V and o, 8 scalars from F,L (au+ Bv) = aL(u)+BL(v). Given
LM € £ (V,W) define a new element of £ (V,W), denoted by L+ M according to the
rule' (L+M)v = Lv+Mv. For « a scalar and L € £ (V,W), define oL € & (V,W) by
oL(v)=o(Lv).

Note that if you have V = R" and W = R™, an example of something in . (V,W) is
given by Tv = Av where A is a real m X n matrix.

You should verify that all the axioms of a vector space hold for . (V,W) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of Z(V,W)?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

Lemma 5.1.2 Let V and W be vector spaces and suppose {vy,--- ,v,} is a basis for V.
Thenif L:V — W is given by Lvy = wy, € W and L(Y}_ axvk) = Lj_; arlvi = Y} agwi
then L is well defined and is in £ (V,W) . Also, if L,M are two linear transformations such
that Lvy, = Mvy, for all k, then M = L.

Proof: L is well defined on V because, since {vy,---,v,} is a basis, there is exactly
one way to write a given vector of V as a linear combination. Next, observe that L is
obviously linear from the definition. If L,M are equal on the basis, then if Y}, axvy is
an arbitrary vector of V,L(¥}_, axvi) = Lj_; axlvi = Y} axMvi = M (¥}_, axvi) and so
L = M because they give the same result for every vectorin V. Bl

The message is that when you define a linear transformation, it suffices to tell what it
does to a basis.

Theorem 5.1.3 Let v and W be finite dimensional linear spaces of dimension n and
m respectively Then dim (£ (V,W)) = mn.

Proof: Let two sets of bases be {vy,---,v,} and {wy,--- ,wy, } for V and W respectively.
Using Lemma 5.1.2, let wv; € £ (V,W) be the linear transformation defined on the basis,
{1, vn}, by wiv (vj) = w;d jx where 0 = 1 if i = k and 0 if i # k. I will show that
L €. (V,W)is alinear combination of these special linear transformations called dyadics.

Then let L € £ (V,W). Since {wi,---,wy} is a basis, there exist constants, dj such
that Lv, = Z’;‘:] djw;j Now consider the following sum of dyadics. Z;“:] Y djiw;vi. Ap-
ply this to v,. This yields Z;-"Zl Yidjiiwivi(vy) = ’]’»’:1 Yidiiwidir= Z;”ZI dj;w; = Lv,.
Therefore, L= Y7 | ¥I' | djiw;v; showing the span of the dyadics is all of & (V,W).

INote that this is the standard way of defining the sum of two functions.
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Now consider whether these dyadics form a linearly independent set. Suppose that
Yixdixwivi = 0. Are all the scalars dy equal to 07 0 =Y, y dywivi (vi) = L2 dyyw; so,
since {wy, -+ ,wy,} is a basis, d; =0 foreach i = 1,--- ,m. Since [ is arbitrary, this shows
d;; = 0 for all i and [. Thus these linear transformations form a basis and this shows that
the dimension of .Z (V,W) is mn as claimed because there are m choices for the w; and n
choices for the v;. W

5.2 The Norm of a Linear Map, Operator Norm

Not surprisingly all of the above holds for a finite dimensional normed linear space. First
here is an easy lemma which follows right away from Theorem 3.6.2, the theorem about
equivalent formulations of continuity.

Lemma 5.2.1 Let (V,||-||y) and (W, ||-|ly,) be two normed linear spaces. Then a linear
map f:V — W is continuous if and only if it takes bounded sets to bounded sets. (f is
bounded) If'V is finite dimensional, then f must be continuous.

Proof: = Consider f(B(0,1)). If this is not bounded, then there exists ||V, < 1
but [[f ()|l > m. Then it follows that H 7 (%) HW > 1 which is impossible for all m

. Yy
SINCe || —
m

’ < % and so continuity requires that lim,,;,_co f % = 0 (Theorem 3.6.2). Thus

there exists M such that || f (v)|| < M whenever v € B(0, 1). In general, let S be a bounded
set. Then S C B(0,r) for large enough r. Hence, for v € B, it follows that v/2r € B(0,1).
It follows that || f (v/2r)|ly, <M and so ||f(v)||y, <2rM. Thus f takes bounded sets to
bounded sets.

<= Suppose f is bounded and not continuous. Then by Theorem 3.6.2 again, there
is a sequence v, — v but f (v,) fails to converge to f(v). Then there exists € > 0 and a
subsequence, still denoted as v, such that || f (v,) — f (V)| = || f (vo — v)|| > €. Then

Vp—V
‘ [[ve =i [[va =Vl

The right side is unbounded, but the left is bounded, a contradiction.

Consider the last claim about continuity. Let {v;,---,v,} be a basis for V. By Lemma
4.4.7,if y" — 0,in V for y" = Y/ _, y/'v.then it follows that lim,, .y}’ = 0 and conse-
quently, f(y") — f(0) = 0. In general, if y" — y, then (y" —y) — O and so f (y" —y) =
FO™) = f(y) = 0. Thatis, f (") = f(v). B

Definition 5.2.2 ror f: (v, I-ly) = (W, |I-|ly) continuous, it was just shown that
there exists M such that ||f (v)|| <M, v € B(0,1). It follows that, since m € B(0,1),
then || f (v)|| < 2M ||v|. Therefore, letting || f|| = supy, < | f (v)|| it follows that for all
veV, If W < IFIHvI -Thus a linear map is bounded if and only if || f|| < oo if and only if
[ is continuous. ‘The number ||f|| is called the operator norm. For X a real normed linear
space, X' denotes the space £ (X,R).

You can show that for .Z (V,W) the space of bounded linear maps from V to W,
% (V,W) becomes a normed linear space with this definition. This is true whether V, W are
finite or infinite dimensional. You can also show that if W is complete then so is . (V,W).
This is left as an exercise. Also, when the vector spaces are finite dimensional, Lemma
5.2.1 shows that any linear function f is automatically bounded, hence continuous, hence
|| £l exists. Here is an interesting observation about the operator norm.
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Lemma 5.2.3 Let f € £ (V,W) and let h € £ (W,Z) where X,Y,Z are normed vector
spaces. Then |[ho f| < [[a]|[|f]]-

Proof: This follows right away from the definition. If |[v|| < 1, then || f ()| < |If]|-
This explains the first inequality in the following.

sup [Jho fO) < sup [A(w) = sup Hh<f;”)HllfIISIIhIIIIfII

vii<1 Iwll<IfI Wl <71l

Theorem 5.2.4 L. (V,|I)l) be a normed linear space with basis {vi,---,v,} and
field of scalars F. Let f : (E",||-|) = (V,||ly) be any linear map which is one to one and
onto. Then both f and = are continuous. Also the compact sets of (V,|-||,,) are exactly
those which are closed and bounded.

Proof: Define another norm ||-||; on F” as follows. |||/, = ||f ()], . Since f is one
to one and onto and linear, this is indeed a norm. The details are left as an exercise. Then
from the theorem on the equivalence of norms, there are positive constants &,A such that
8|lz|| < [|f(x)]ly <Allx|. Since f is one to one and onto, this implies & ||/~ (v)|| <
lvlly <A Hf’l (’U)H . The first of these above inequalities implies f is continuous. The
second says || f~! (v)]| < % |v||, and so £~ ! is continuous. Thus, from the above theorems,
both f and f~! map closed sets to closed sets, compact sets to compact sets, open sets to
open sets and bounded sets to bounded sets.

Now let K C V be closed and bounded. Then from the above observations, f~! (K) is
also closed and bounded. Therefore, it is compact. Now f (f~' (K)) = K must be compact
because the continuous image of a compact set is compact, Theorem 3.7.1. Conversely,
if K C V is compact, then by the theorem just mentioned, f~! (K) is compact and so it is
closed and bounded. Hence f ( UK )) = K is also closed and bounded. l

This is a remarkable theorem. It says that an algebraic isomorphism is also a home-
omorphism which is what it means to say that the map takes open sets to open sets and
the inverse does the same. In other words, there really isn’t any algebraic or topological
distinction between a finite dimensional normed vector space of dimension n and F”*. Of
course when one considers geometry, this is not so.

Here is another interesting theorem about coordinate maps. It follows right away from
earlier theorems.

Theorem 5.2.5 e f: (v, II-1ly) = (W, |||ly) be a continuous function where here
(V. |I-ly) is a normed linear space and (W,||-|\y,) is a finite dimensional normed linear
space with basis {wy,--- ,wy,}. Thus f(v) = Y}_, fi W) wk. Then f is continuous if and
only if each fy is a continuous T valued map.

Proof: —> First, why is f; linear? This follows from

Y (o) + B = o Y flwe+ B Y fe(v)wy
=1 k=1 k=1

—af ()£ BF () = fautBr)= Y fi(outBr)my
k=1

Why is the coordinate function fj continuous? From Lemma 5.2.1, it suffices to verify that
fi is bounded. If this is not so, there exists vy, |[viu||, < 1 but |fi (V)| > m. It follows
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that | f; ()| > 1. Since f is continuous, and v,,/m — 0, it follows that f (%) — 0 in V.
However, by Lemma 4.4.7, fi (22) — 0, a contradiction.
<= If each coordinate function is continuous, then

n

Z W—Zﬁﬁ

1F V) =F O)llw =

n
Z (O 1wl

Since each f; is continuous, this shows that f is also. ll

5.3 Comparisons

Here are some useful lemmas about comparisons. Here |-| will be the usual norm but one
could generalize.

Lemma 5.3.1 Suppose S,T are linear;, defined on a finite dimensional normed linear
space, S~ exists, and let § € (0,1). Then whenever ||S—T|| is small enough, it follows
that

|Tv|

—e(1-6,1+6 5.1

Sv] ( +9) .1
for all v # 0. Similarly if T~ exists and ||S — T|| is small enough,

|Tv|

—ec(1-6,1+6

Sv] €(1-8,1+9)

Proof: Say S~! exists. Then v — |Sv| is a norm. Then by equivalence of norms,
Theorem 4.4.9, there exists 17 > 0 such that for all v, |Sv| > 1 |v|. Say [|T — S| <r< dn

To| _ [Sv—(S=T)v| _ [Sv[—[[T =Sl[[v] _ [Sv|—=dnlv| _ |Sv|—&]|Sv|

= =1-6
|Sv| |Sv| - |Sv| - |Sv| - |Sv|
|Tv| _ |Sv+ (T —S) v < [Sv|+||IT =S| |v| < [Sv|+6n|v] < |Sv|+ 6 |Sv| 14
|Sv| |Sv| |Sv| |Sv| |Sv|
Next suppose that 7! exists. Then, letting 5 be small enough, (l —3, 1 +3) -
(1%3’ ﬁ) From what was just shown, if ||S — 7’| is small enough,
S| ( A s 11 Tv|
PYL (1261 5)c , 1-6,1+5). m
To| © ) S\ 755 1=5) *° Jsu) ¢ +9)

In short, the above lemma says that if one of S, T is invertible and the other is close to it,
then it is also invertible and the quotient of |Sv| and |Tv]| is close to 1. Then the following
lemma is fairly obvious.

Lemma 5.3.2 Let S, T be n x n matrices which are invertible. Then
o(Tv)=0(Sv)=o0(v)
and if L is a continuous linear transformation such that for a < b,

Lv Lv
sup —— | | <b, inf ‘ | >a
v#£0 |S’U‘ v#£0 ‘S’U|
If ||S — T|| is small enough, it follows that the same inequalities hold with S replaced with
T. Here ||| denotes the operator norm.
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Proof: Consider the first claim. For

lo(Tv)| _ o(Tv)| [Tv| _ |o(Tv)| 7]
v To| o] = [Tv]

Thus o (Tv) = o(v). It is similar for T replaced with S.
Consider the second claim. Pick § sufficiently small. Then by Lemma 17.2.1

|Lv| |Lv| |Sv| |Lv|
sup — =sup —— < (I+8)sup — < b
v#0 |T'U| v#0 |Sv| |Tv| v#0 ‘S’U|

if 6 is small enough. The other inequality is shown exactly similar. H

5.4 Continuous Functions in Normed Linear Space

Of course not all functions are linear. Continuous functions have already been discussed
in general metric space, but now there are other considerations to consider due to the al-
gebra available in a normed linear space. The following theorem includes these kinds of
considerations for functions having values in a normed linear space.

Theorem 5.4.1 Let f,8& be continuous functions defined on D, a metric space. Also
let &, B be scalars. Then the following hold.

1. af + Bg is continuous.

2. If W, |||lw) is an inner product space, then (f,g) defined as
(f,8) (V)= (f(v),8(v)), then (f,g) is continuous.

3. If f has values in F and g has values in (W, |||, ) , then fg is continuous.

Proof: Say v, — v. Then

[(af +Bg) (va) — (af +Bg) W < el |lf (va) = f (W) I+ [Bllg (va) —g (W)

and the right side converges to 0 as n — oo so this shows 1.
This follows from an easy computation. From the Cauchy Schwarz inequality,

(f,8) (V) = (£,8) D) < [(f (), 8 (1) = (f (), g D) +[(f (v),8 (7)) = (f (7),8 (9))]
<llg) =g SO+ &) = D) lg D]

Now since g is continuous at v and so ||g (v) — g (9)|| < 1 provided d (v, ) is small enough.
Thus ||g (7)]] < |lg (v)||+ 1. Hence if d (v, $) is small enough,

((f:8) ) = (£:8) D) < Ug W+ D IF ) = F D+ I1f W)l lg () =g ()]

Thus, by continuity of f,g at v, if d (v, V) is sufficiently small, the right side is less than €
and so f - g is continuous at v. This shows 2. The proof of 3. is just like this. l

Of course there are other things like cross product and determinant and so forth which
are defined in terms of the component functions of f. Then these things will be continuous
by an application of Theorem 5.2.5.
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5.5 Polynomials

For functions of one variable, the special kind of functions known as a polynomial has a
corresponding version when one considers a function of many variables. This is found in
the next definition.

Definition 5.5.1 Let o be an n dimensional multi-index. The meaning of this term is
that o= (o, -+ , &ty) where each @; is a positive integer or zero. Also, let |a| =Y | |oy].
Then x%means x* = x?‘x‘;z . -x?” where each x; € F. An n dimensional polynomial of
degree m is a function of the form p (x) = Ylal<m dgx®. where the dy, are complex or real
numbers, more generally in some normed linear space X. Rational functions are defined as
the quotient of two real or complex valued polynomials. Thus these functions are defined
on F".

F o ) 4. s . xlx%+7x§x1 +x% .

or example, f (x) = x;x3 + 7x3x; is a polynomial of degree 5 and prerea oL

rational function.

Note that in the case of a rational function, the domain of the function might not be all
of F". For example, if f () = M

x5+3x7—4

such that x3 + 3x7 # 4.

By Theorem 3.6.2 all polynomials are continuous. To see this, note that the function,

7ty (x) = x; is a continuous function because of the inequality

,the domain of f would be all complex numbers

|7k () — 7 ()| = ke —yi| < e —yl.

Polynomials are simple sums of scalars times products of these functions. Similarly, by
this theorem, rational functions, quotients of polynomials, are continuous at points where
the denominator is non zero. More generally, if V is a normed vector space, consider a
V valued function of the form f(x) = Ylaj<m dgx® where dy €V, sort of a V valued
polynomial. Then such a function is continuous by application of Theorem 3.6.2 and the
above observation about the continuity of the functions 7.

Thus there are lots of examples of continuous functions. However, it is even better than
the above discussion indicates. As in the case of a function of one variable, an arbitrary
continuous function can typically be approximated uniformly by a polynomial. This is the
n dimensional version of the Weierstrass approximation theorem.

5.6 Weierstrass Approximation Theorem

An arbitrary continuous function defined on an interval can be approximated uniformly by
a polynomial, there exists a similar theorem which is just a generalization of this which will
hold for continuous functions defined on a box or more generally a closed and bounded set.
However, we will settle for the case of a box first. The proof is based on the following
lemma.

Lemma 5.6.1 The following estimate holds for x € [0,1] and m > 2.

y ( " )(k—mx)zxk(l—x)mk< %m

k=0
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Proof: First of all, from the binomial theorem,
. m t(k— m k_ ! m th) & m—k
Z(k)(e( mx))xk(l— WZ(k)<e )x(l—x)
k=0
= (1—xtxe)" =™ ()", g(0) = 1,¢'(0) =" (0) =x

Take a partial derivative with respect to ¢ twice.

- m k— mx)2 et k—m) k(g _ o m—k

Y () emm (1)

= () (1) + 2 (—mo) e mg (1) g (1)
e [m(m— 1) g (1) g/ (1) +mg (1) ¢ (1)

Now let # = 0 and note that the right side is m(x —x?) < m/4 for x € [0,1]. Thus

m

) ( ’;7: )(k—mx)2xk(1—x)mkZmX—mx2<m/4l

k=0

With this preparation, here is the first version of the Weierstrass approximation theorem.
I will allow f to have values in a complete, real or complex normed linear space. Thus,
f€C(0,1];X) where X is a Banach space, Definition 4.3.7. Thus this is a function which
is continuous with values in X as discussed earlier with metric spaces.

Theorem 5.6.2 Let f e C([0,1]:X) and let the norm on X be denoted by ||-|| .

2 m k m—k k i k
=1 (3 )¢t (5) = ()
Then these polynomials having coefficients in X converge uniformly to f on [0,1]. Also
q0(0) =1,g%(0) =0 for k £ 0, and g, (1) = 1 while q; (1) = 0 for k # m.

Proof: Let ||f||.. denote the largest value of ||f(x)||. By uniform continuity of f,
there exists a § > 0 such that if |x—x'| < 8, then || f (x) — f (+')|| < €/2. By the binomial

theorem,
e |<z( ) =yt f(’i)— £
) |Z|5< : >xk“_")mk ()10 +2”f”°°|:;§|za( b

Therefore,

sé(?ﬁ’)xm SUREEEI T (f;;)xk(l_x)mk

(k—mx)>>m?2 8>

€ 1 S m 2 m—k 1
< Z — < =
2+2|f”°°m252k20< k )(k mx)* 2k (1—x) +2||fHo<,4 75 <€
provided m is large enough. Thus ||p,, — f]|.. < € when m is large enough.
Note that we do not need to have X be complete in order for this to hold. It would have

sufficed to have simply let X be a normed linear space.
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Corollary 5.6.3 If f € C([a,b];X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The m™ term of this

sequence is Yo qi () f (1 (%)) where 1 : [0,1] — [a,b] be one to one, linear and onto and

qo(a) =1l and if k #0,q; (a) = 0 and g, (b) = 1 and if k # m, then q; (b) = 0.

Proof: Let [ : [0,1] — [a,b] be one to one, linear and onto. Then f o is continuous on
[0,1] and so if € > 0 is given, if m large enough, then for all x € [0, 1],

Yawr(i(5))-row

where §o (0) = 1 and g4 (0) = 0 for k # 0,4, (1) = 1,4, (1) = 0 if k # m. Therefore, for all
y € la,b],

<€

k

]g)ék ') s (l <m>) i)

Letgr(y) =g (1" (y)).
As another corollary, here is the version which will be used in Stone’s generalization
later.

<€

Corollary 5.6.4 Let f be a continuous function defined on [—M,M] with f(0) = 0.
Then there is a sequence of polynomials {pm}, pm (0) = 0 and

lim [[pm = flle =0

Proof: From Corollary 5.6.3 there exists a sequence of polynomials {p,,} such that
lPm = fll.« = 0. Simply consider p,, = pm — pm (0). B

5.7 Functions of Many Variables

First note thatif 4 : K X H — R is areal valued continuous function where K, H are compact
sets in metric spaces,

maxh(x,y) > h(x,y), so maxmaxh (x,y) > h(x,y)
xekK yeH xeK

which implies maxyey maxyex /1 (x,y) > max . y)ex<p 1 (x,y) . The other inequality is also
obtained.

Let f € C(Rp;X) where R, = [0,1]”. Then let &, = (x1,...,xp—1) . By Theorem 5.6.2,
if n is large enough,

31 (5) () a-sr s

k=0

<
c([0,1]771:x)

max
xpe(0,1]

N m

Now f (-, %) € C(Rp-1;X) and so by induction, there is a polynomial py (£,) such that
. n .k €

— , = <
e (1)1 (a3) ], < i

_max
waRp—l
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Thus, letting p (z) = Y}_opi (&) X% (1 —x,)"k

)

J— < ol . A
1P=Fllo(e,x) < max  max 1P (&p,xp) = f (&p,5p)| [ <€
where p is a polynomial with coefficients in X.

In general, if R, = [T¢_, [ax, bx], note that there is a linear function l : [0,1] — [ax, by]
which is one to one and onto. Thus I (x) = (/; (x1),...,[, (x,)) is a one to one and onto map
from [0,1]” to R,, and the above result can be applied to f ol to obtain a polynomial p with

_1 1. . .
lp— £ olllco,17x) < € Thus |pol™" — f||C(Rp;X) < eand pol ! is a polynomial. This
proves the following theorem.

Theorem 5.7.1 Ler f be a function in C (R;X) for X a normed linear space where
R= ngl [ak, D] . Then for any € > 0O there exists a polynomial p having coefficients in X
such that |p— fllcrx) < €

These Bernstein polynomials are very remarkable approximations. It turns out that if f
is C' ([0,1];X), then lim, e p/, (x) — f’ (x) uniformly on [0, 1]. This all works for func-
tions of many variables as well, but here I will only show it for functions of one variable.

m .
Lemma 5.7.2 Let f € C'([0,1]) and let py (x) =Y, ( v )xk(l —x)" £ (L) be

the m'" Bernstein polynomial. Then in addition to || py, — fllfo,) = 0. it also follows that
173 = Flljo.0) = ©-

Proof: From simple computations,

= (m—1—k)k! m
nl o m(m—1)! m—l— k
= (m—1—k)lk! =0 kf(m>
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e m-1 _ ik ) = (G)
‘k;o( ()R ( m )

By the mean value theorem w—f’(x ) E(ﬁ M) Now the desired
y ’ 1/m - km) s Xkm mo m ) INOW the desire

result follows as before from the uniform continuity of f* on [0,1]. Let § > 0 be such
that if [x —y| < 8, then |/’ (x) — f’ (y)| < € and let m be so large that 1/m < §/2. Then if
lx—£| < §/2, it follows that |x — x| < & and so

o S = F ()
f(x)_l/—m

< E.

|f/ (x) - f/ (xkﬁm) | =

Now as before, letting M > | f (x)| for all x,

m—1
= @I (" )R ) - @)

(e

om0 4 (k—mx)’ m—1—k
M X (1—x
g () (-9

m28>

< £+4M1m; = 8+ML <2
4" m2§> mé?
whenever m is large enough. Thus this proves uniform convergence. ll
There is a more general version of the Weierstrass theorem which is easy to get. It
depends on the Tietze extension theorem, a wonderful little result which is interesting for
its own sake.

5.8 A Generalization

This is an interesting theorem which holds in arbitrary normal topological spaces. In par-
ticular it holds in metric space and this is the context in which it will be discussed. First,
review Lemma 3.12.1.

Lemma 5.8.1 Let H,K be two nonempty disjoint closed subsets of X. Then there exists
a continuous function, g : X — [—1/3,1/3] such that g(H) = —1/3, g(K) =1/3,g(X) C
[—1/3,1/3].

dist(x,H)

Proof: Let f(x) = Tt B 1 @) The denominator is never equal to zero because
if dist(x,H) = 0, then x € H because H is closed. (To see this, pick hy € B(x,1/k)NH.
Then hj; — « and since H is closed, « € H.) Similarly, if dist(x,K) = 0, then € K and
so the denominator is never zero as claimed. Hence f is continuous and from its definition,
f=0onHand f =1 on K. Now let g(x) = %(f(w)—%) Then g has the desired
properties. l
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Definition 5.8.2 rorf:mcx =R, let | f1l2s =sup{|f (z)|: & € M}. This is just
notation. I am not claiming this is a norm.

Lemma 5.8.3 Suppose M is a closed set in X and suppose f: M — [—1,1] is continuous
at every point of M. Then there exists a function, g which is defined and continuous on all
of X such that || f — g||,; < %, g(X) C[—1/3,1/3]. If X is a normed vector space,and f is
odd, meaning that M is symmetric (x € M if and only if —x € M) and f(—x) = —f (x).
Then we can assume g is also odd.

Proof: Let H = f~! ([~1,—1/3]),K = £~ ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H, K are both nonempty. Then by Lemma 5.8.1 there exists g
such that g is a continuous function defined on all of X and g(H) = —1/3, g(K) = 1/3,
and g (X) C [-1/3,1/3]. It follows || f — g||,; < 2/3. If H = 0, then f has all its values in
[—1/3,1] and so letting g = 1/3, the desired condition is obtained. If K = 0, let g = —1/3.
Ifboth H,K =0, let g=0.

When M is symmetric and f is odd, g (z) = 1 S5tz )—dista,K)

(z,H
= 3 dist(z,H) +dist(z,K)
—di K . . di H
%% = —1. Then z € K, this gives %d:EE:H; = 1. Also g(H)=—1/3, f(H) C
[-1,—1/3] so forx € H,|g(x) — f (x)] < % It is similar for = € K. If x is in neither H
nor K, then g (x) € [~1/3,1/3] and sois f (z). Thus || f —g|,, < 3. Now by assumption,
since f is odd, H = —K. It is clear that g is odd because

. When x € H this gives

1 dist(—x,H) —dist(—x,K)  1dist(—x,—K)—dist(—x,—H)
3dist(—x,H) +dist(—x,K) 3 dist(—x, —K) + dist (—x, —H)
1 dist (z,K) —dist (x,H)

3 dist (z, K) +dist (z, H)

g(—x) =

=—g(x). N

Lemma 5.8.4 Suppose M is a closed set in X and suppose f : M — [—1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of X such that g = f on M and g has its values in [—1,1]. If X is a normed linear space
and f is odd, then we can also assume g is odd.

Proof: Using Lemma 5.8.3, let g; be such that g, (X) C [—1/3,1/3] and || f — g1, <
%. Suppose g1, - -, gm have been chosen such that g; (X) € [-1/3,1/3] and

mo/n i—1 m
Hf_Z@ 8i << ) : (5.2)
i=1

This has been done for m = 1. Then H (%)m (f— o (%)Flg,-)

(56"

can play the role of f in the first step of the proof. Therefore, there exists g,,+ defined and
continuous on all of X such that its values are in [—1/3,1/3] and

H (;)m (f_il (i)i_lgz) —gmi1

W

M

‘ <1 and so
M

2
< -.
-3

M
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(56) )] )

It follows there exists a sequence, {g;} such that each has its values in [—1/3,1/3] and for
every m 5.2 holds. Thenlet g (z) =Y, (2)#1 gi(x). It follows

3
m oo\
< ) Z—<ia
<%(3) 3
2\i—1 1

o /o -l
Z (3> gi(x)
and ‘(%)iil gi (:c)‘ < (5) 3 so the Weierstrass M test applies and shows convergence

Hence

g ()] <

i=1

is uniform. Therefore g must be continuous by Theorem 3.9.3. The estimate 5.2 implies
f =g on M. The last claim follows because we can take each g; odd. ll
The following is the Tietze extension theorem.

Theorem 5.8.5 Let M be a closed nonempty subset of a metric space X and let
f M — [a,b] be continuous at every point of M. Then there exists a function g continuous
on all of X which coincides with f on M such that g (X) C [a,b]. If [a,b] is centered on 0,
and if X is a normed linear space and f is odd, then we can obtain that g is also odd.

Proof: Let fi (x) = 1+ ;= (f(z) —b). Then f; satisfies the conditions of Lemma
5.8.4 and so there exists g; : X — [—1, 1] such that g is continuous on X and equals f} on
M. Let g(z) = (g1 () — 1) (%5%) + b. This works. The last claim follows from the same
arguments which gave Lemma 5.8.4 or the change of variables just given. B

Corollary 5.8.6 Let M be a closed nonempty subset of a metric space X and let f : M —
[a,D] be continuous at every point of M. Also let || f — g|| < €. Then there exists continuous
J extending f with f(X) C [a,b] and § extending g such that §(X) C [a—¢€,b+¢€]. Also
f-él <e

Proof: Let f be the extension of f from the above theorem. Now let F be the extension
of f — g with |F|| < &. Thenlet § = f — F. Then forx € M, g (x) = f (x) — (f (x) —g (x)) =
g (x). Thus it extends g and clearly g (X) C[a—¢,b+¢]. B

With the Tietze extension theorem, here is a better version of the Weierstrass approxi-
mation theorem.

Theorem 5.8.7 Let K be a closed and bounded subset of R? and let f : K — R be
continuous. Then there exists a sequence of polynomials {p,,} such that

Tim (sup {|/ () ~ pu ()| - € K}) = 0.
In other words, the sequence of polynomials converges uniformly to f on K.

Proof: By the Tietze extension theorem, there exists an extension of f to a continuous
function g defined on all R” such that g = f on K. Now since K is bounded, there exist
intervals, [ay, by] such that K C [1}_, [ax,bi] = R. Then by the Weierstrass approximation
theorem, Theorem 5.7.1 there exists a sequence of polynomials { p,, } converging uniformly
to g on R. Therefore, this sequence of polynomials converges uniformly to g = f on K as
well. This proves the theorem. H

By considering the real and imaginary parts of a function which has values in C one
can generalize the above theorem.
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Corollary 5.8.8 Let K be a closed and bounded subset of RP and let f : K — F be
continuous. Then there exists a sequence of polynomials {p,,} such that

nlliglw(supﬂf(a:) —pm(z)|:x €K}) =0.
In other words, the sequence of polynomials converges uniformly to f on K.

More generally, the function f could have values in R?. There is no change in the
proof. You just use norm symbols rather than absolute values and nothing at all changes
in the theorem where the function is defined on a rectangle. Then you apply the Tietze
extension theorem to each component in the case the function has values in R”.

5.9 An Approach to the Integral

With the Weierstrass approximation theorem, you can give a rigorous definition of the
Riemann integral without wading in to Riemann sums. This shows the integral can be
defined directly from very simple ideas. Firstis a short review of the derivative of a function
of one variable.

Definition 5.9.1 L f: [a,b] = R. Then f'(x) = limy_y W where h is
always such that x,x+ h are both in the interval [a,b] so we include derivatives at the right
and left end points in this definition.

The most important theorem about derivatives of functions of one variable is the mean
value theorem.

Theorem 5.9.2 Le f:[a,b] = R be continuous. Then if the maximum value of f
occurs at a point x € (a,b) , it follows that if f' (x) = 0. If f achieves a minimum at x € (a,b)
where f(x) exists, it also follows that f' (x) = 0.

Proof: By Theorem 3.7.2, f achieves a maximum at some point x. If /7 (x) exists, then

SO f ) )~ f ()
h—0+ h h—0— h

However, the first limit is non-positive while the second is non-negative and so f” (x) = 0.
The situation is similar if the minimum occurs at x € (a,b). B
The Cauchy mean value theorem follows. The usual one is obtained by letting g(x) = x.

Theorem 5.9.3 Let 7.g be continuous on [a,b] and differentiable on (a,b). Then
there exists x € (a,b) such that ' (x) (g(b) —g(a)) =g (x)(f (b) — f(a)). If g (x) =x, this
yields £ (6) — £ (a) = f'(x) (b~ a). also f (a)— f (5) = f' (x) (a—b).

Proof: Let i (x) =  (x) (g (b) — g (a) — g (x) (£ (b) — £ (a)) . Then

If h is constant, then pick any x € (a,b) and A’ (x) = 0. If & is not constant, then it has
either a maximum or a minimum on (a, b) and so if x is the point where either occurs, then
h' (x) = 0 which proves the theorem. B
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Recall that an antiderivative of a function f is just a function F such that F' = f.

1

. . . . nt1\/
You know how to find an antiderivative for a polynomial. (’,‘l T > =x"so [Yi_ aqxt =

Yio ak’,‘(kT+1I + C. With this information and the Weierstrass theorem, it is easy to define
integrals of continuous functions with all the properties presented in elementary calculus
courses. It is an approach which does not depend on Riemann sums yet still gives the
fundamental theorem of calculus. Note that if F’ (x) = 0 for x in an interval, then for x,y
in that interval, F (y) — F (x) = 0(y —x) so F is a constant. Thus, if ¥/ = G’ on an open
interval, F, G continuous on the closed interval, it follows that F — G is a constant and so
F(b)—F(a)=G(b)—G/(a).

Definition 5.9.4 For p(x) a polynomial on [a,b], let P’ (x) = p(x). Thus, by the
mean value theorem if P', P' both equal p, it follows that P (b) — P (a) = P (b) — P (a) . Then
define fabp (x)dx=P(b)—P(a). If f € C([a,b]), define fff(x) dx = lim, e fabp,, (x)dx
where

lim [|p, — f1| = ,}ggxgl[gi] If (x) = pn(x)[=0

Proposition 5.9.5 The above integral is well defined and satisfies the following prop-
erties.

1. fab fdx = f (%) (b— a) for some % between a and b. Thus

12 fax| < £l b—al.

2. If f is continuous on an interval which contains all necessary intervals,

/acfder/cbfdx:/abfdx, s0 /abfdeF/bafdxi/bbfdx:O

3. IfF(x) = [, fdt, Then F' (x) = f (x) so any continuous function has an antideriva-
tive, and for any a # b, jf fdx= G (b) — G (a) whenever G' = f on the open interval
determined by a,b and G continuous on the closed interval determined by a,b. Also,

/ab(af(x)+ﬁg(x))dx:a/abf(x)dx+[3/0[3g(x)dx

Ifa<b,and f(x) >0, then [? fdx > 0. Also

Ji fdx| <

121f1dx].
4. [Mldx=b—-a.

Proof: First, why is the integral well defined? With notation as in the above definition,
the mean value theorem implies

[ P =P )P = p(0)(0-a) (53)

where £ is between a and b and so ’fahp(x)dx’ <|plllb—al. If ||pn— f]| — O, then

limy 10 || Pn — Pl = 0 and so

b b
/a pn (x) dx — / P (5)dx| = (o (b) = Py (@) — (B (b) — P (a))]




5.9. AN APPROACH TO THE INTEGRAL 139

= [(Py(b) = Bu (b)) — (Pu(a) — B ( |—‘/ —Pm)dx| < ||pn— pul| |b—al

Thus the limit exists because { Ja pndx} is a Cauchy sequence and R is complete.

n
From 5.3, 1. holds for a polynomial p (x). Let || p, — f|| — 0. Then by definition,

b
/ fdx= hm/ Pudx = py (x,) (b—a) (5.4)

for some x, in the open interval determined by (a,b). By compactness, there is a fur-
ther subsequence, still denoted with n such that x, — x € [a,b]. Then fixing m such that
1f = pall < € whenever n > m, assume n > m. Then ||y — pall < [lpm — £+ |1 = pall <
2¢ and so

1 () = pn Cen) | < 1f () = Gan) |+ (n) = P () |+ [ P (3n) = P (32) |

<SUf ) = G|+ 1 = Pl + [[Pm = pall < 1f () = f (x0)[ + 3€

Now if n is still larger, continuity of f shows that | f (x) — p, (x,)| < 4€. Since ¢ is arbitrary,
Pu (x2) — f (x) and so, passing to the limit with this subsequence in 5.4 yields 1.
Now consider 2. It holds for polynomials p (x) obviously. So let ||p, — f|| — 0. Then

c b b
/ p,,dx+/ pndx:/ DPndx
a c a

Pass to a limit as n — oo and use the definition to get 2. Also note that f,f’ f(x)dx=0
follows from the definition.
Next consider 3. Let /& # 0 and let x be in the open interval determined by a and b. Then

for small &,
x+h)
PEEm =) _ L [ rwar= )

where x;, is between x and x + h. Let 1 — 0. By continuity of f, it follows that the limit of
the right side exists and so

lim F(x+h)—F (x)
h—0 h

= lim f (xp) = f (x)
h—0
If x is either end point, the argument is the same except you have to pay attention to the

sign of A so that both x and x+ & are in [a,b]. Thus F is continuous on [a,b] and F’ exists
on (a,b) so if G is an antiderivative,

The claim that the integral is linear is obvious from this. Indeed, if F' = f,G’ =g,

[ @@+ Bea = aF () +BG )~ (oF (@) +BG (@)
@ (F (b)~F (@) +B(G () ~G(@)

oc/abf(t)dt—i—B/abg(t)dt
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If f > 0, then the mean value theorem implies that for some

1 € (a,b),F (b)— F (a) :./a‘bfdx:f(t)(b—a) >0,
Thus ) ,
[ 1=pax=o, ["(s1+ndx=0

and so fab|f|dx2 fffdxand f: |f]dx > ffabfdx so this proves

fa"fdx‘ < [?|f|dx. This,
Ji1£1dx).

The last claim is obvious because an antiderivative of 1 is F (x) = x. B
Note also that the usual change of variables theorem is available because if F/ = f, then
flgx) g (x) = diF (g (x)) so that, from the above proposition,

X

along with part 2 implies the other claim that ‘ [ ab fdx‘ <

8(b)
Ple®) - Fle@) = [ 10y = [ e Wa

We usually let y = g (x) and dy = g’ (x) dx and then change the limits as indicated above,
equivalently we massage the expression to look like the above. Integration by parts also
follows from differentiation rules.

Consider the iterated integral ffl ... jfp” ox{t - xpdx, -+ dx;. It means just what it
meant in calculus. You do the integral with respect to x,, first, keeping the other variables
constant, obtaining a polynomial function of the other variables. Then you do this one with
respect to x,_1 and so forth. Thus, doing the computation, it reduces to

P by o D bOCk+1 aOCk+1
o x kdx; | =« -
kHl(/k k "> ,H(oc;ﬁ—l ock+1)
and the same thing would be obtained for any other order of the iterated integrals. Since

each of these integrals is linear, it follows that if (i1, --- ,i,) is any permutation of (1,---, p),
then for any polynomial g,

by bp biy bip
/ q(xt,.yxp)dxp - dxy :/ q(x1,..,%p) dxi, - - dx;,
ay a a;

P ip a; P

Now let f: ]_[f:l [ax,b] — R be continuous. Then each iterated integral results in a con-
tinuous function of the remaining variables and so the iterated integral makes sense. For

S Gy dy = [ f (2y)dy| =

example, by Proposition 5.9.5,

d
[ ) | < max 1 5) - £ (2] <e

if |x — %] is sufficiently small, thanks to uniform continuity of f on the compact set [a, b] X
[c,d]. Thus it makes perfect sense to consider the iterated integral | ab /! Cd S (x,y)dydx. Then
using Proposition 5.9.5 on the iterated integrals along with Theorem 5.7.1, there exists a
sequence of polynomials which converges to f uniformly {p,}. Then applying Proposition
5.9.5 repeatedly,

bi, biy, bi, biy,
/ .. f(w) dxp o .. dXI —_— / ... pn (m) dx]) .. d-xl
aip aip, ai

P dip
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P
<|If = pall [T 1bx = (5.5)
k=1
With this, it is easy to prove a rudimentary Fubini theorem valid for continuous functions.

Theorem 5.9.6 r: [1,_, lak, bx] — R be continuous. Then for (i,--- ,i,) any per-
mutation of (1,---,p),

i lp bl p
/ f x)dx;, - dx; = / f(x)dx,---dx

If f > 0, then the iterated integrals are nonnegative if each ay < by.

Proof: Let ||p, — le-[fﬂ by — O Where py is a polynomial. Then from 5.5,

i ,], biy biy,
/ )dxi dxi, = h_r)n D (w)dxipmdx,'l
bl aj, aj,
) by by by by
= lim pn(w)dxp-~~dx1:/ f(x)dx,---dx; A
n—e° Ja, ap aj Jap

You could replace f with fZ¢ where 2 () = 1 if € G and 0 otherwise provided each
section of G consisting of holding all variables constant but 1, consists of finitely many
intervals. Thus you can integrate over all the usual sets encountered in beginning calculus.

5.10 The Stone Weierstrass Approximation Theorem

There is a profound generalization of the Weierstrass approximation theorem due to Stone.
It has to be one of the most elegant things available. It holds on locally compact Hausdorff
spaces but here I will show the version which is valid on compact sets. Later the more
general version is discussed.

Definition 5.10.1 < isan algebra of functions if </ is a vector space and if when-
ever f,g € of then fg € of.

To begin with assume that the field of scalars is R. This will be generalized later.
Theorem 5.6.2 implies the following corollary. See Corollary 5.6.3.

Corollary 5.10.2 The polynomials are dense in C ([a, b]).

Here is another approach to proving this theorem. It is the original approach used by
Weierstrass. Let m € N and consider ¢, such that ],11 Cm (1 —xz)mdx = 1. Then

1 1
1:2/0 Cm(l—xz)mdeZC,n/o (1—x)'"dx=2c,nr“

SO ¢, <m—+1. Then

/cm — dx+/ l—x dx§2(m+l)(1—52)m
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which converges to 0. Thus

lim sup ¢y (1—2%)" =0 (5.6)
" kg [-6.6)

Now let ¢, (1) = ¢ (1—12)". Consider f € C([—1,1]) and extend to let f (x) = f(1) if
x> land f(x) = f(—1) if x < —1 and define p,, (x )Ef f(x—1)¢,, (¢t)dr. Then

pn )= = [ 7= =5 0], () <

/_11 258 (1) |f(x—f)—f(x)\¢m(f)df+/_ll Zap 6.8 O1f (x—1) = f ()] 9, (2)dt

Choose 6 so small that if |x —y| < &, then |f (x) — f (y)] < €. Also let M > max, |f (x)].
Then

1 1
Pn@) = F )< [ 0 Odr+2M [ 215 ()0, 0)ds

1
=€ +2M/_1 -1\ [-5.8] () 9,, (1) dt

From 5.6, The second term is no larger than 2M fil Zi-1.1)\[-8,5) (t) €dt < 4Me whenever
m is large enough. Hence, for large enough m, sup,c_; j|pm (x) — f (x)| < (1 +4M)e.
Since € is arbitrary, this shows that the functions p,, converge uniformly to f on [—1,1].
However, p,, is actually a polynomial. To see this, change the variables and obtain

x+1
= [, r@ o, —nar

which will be a polynomial. To see this, note that a typical term is of the form

x+1
/)H f()a(x—1)rdr

clearly a polynomial in x. This proves Corollary 5.10.2 in case [a,b] = [—1,1]. In the
general case, there is a linear one to one onto map [ : [—1, 1] — [a, b].

z(t):b;“(z+1)+a

Then if f € C([a,b]), fol € C([—1,1]). Hence there is a polynomial p such that

max [Fol()=p(0)] <

Then letting r = 7! (x) = % — 1, for x € [a,b] ,max,c |,y | f (x) —p (7" (x))| < & but
xX—p (l -1 (x)) is a polynomial. This gives an independent proof of that corollary.

The next result is the key to the profound generalization of the Weierstrass theorem due
to Stone in which an interval will be replaced by a compact and later a locally compact set
and polynomials will be replaced with elements of an algebra satisfying certain axioms.

Corollary 5.10.3 On the interval [—M,M], there exist polynomials p,, p, (0) =0, and
limy o0 || pn — ||| = 0. recall that || f||.. = sup,e(_ppn | f (2)]-



5.10. THE STONE WEIERSTRASS APPROXIMATION THEOREM 143

Proof: By Corollary 5.10.2 there exists a sequence of polynomials, {p,} such that
Pn — || uniformly. Then let p, (t) = p, (t) — pn (0). B

Definition 5.10.4 4x algebra of functions, <f defined on A, annihilates no point of
A if for all x € A, there exists g € &/ such that g(x) # 0. The algebra separates points if
whenever x| # xy, then there exists g € of such that g(x1) # g (x2).

The following generalization is known as the Stone Weierstrass approximation theorem.

Theorem 5.10.5 LetAbea compact topological space and let o7 C C(A;R) be an
algebra of functions which separates points and annihilates no point. Then <7 is dense in
C(A;R).

Proof: First here is a lemma.

Lemma 5.10.6 Let ¢ and c5 be two real numbers and let x| # x, be two points of A.
Then there exists a function fy,x, such that

fx1x2 (xl) =Cl, fxlxz (x2) = 2.

Proof of the lemma: Let g € &7 satisfy g(x|) # g(x2). Such a g exists because the
algebra separates points. Since the algebra annihilates no point, there exist functions 4 and
k such that i (x;) # 0, k(xp) # 0. Then let u = gh— g (xp) h, v = gk — g (x1) k. It follows
that u(x1) # 0 and u (x2) = 0 while v (x2) # 0 and v (x;) = 0. Let fy,y, = % + % This
proves the lemma. Now continue the proof of Theorem 5.10.5.

First note that <7 satisfies the same axioms as ./ but in addition to these axioms, <7 is
closed. The closure of &7 is taken with respect to the usual norm on C (A),

[[f]l.c = max {[f (x)|:x € A}.

Suppose f € <7 and suppose M is large enough that || f||., < M. Using Corollary 5.10.3, let
pn be a sequence of polynomials such that

1w = lll.. =0, pn(0) =0.

It follows that p, o f € </ and so | f| € &/ whenever f € /. Also note that

Therefore, this shows that if f,g € o/ then max (f,g), min(f,g) € /. By induction, if
fi,i=1,2,--- mare in &/ then

max (f;,i=1,2,---,m), min(f;,i=1,2,--- ,m) ced.

Now let & € C(A;R) and let x € A. Use Lemma 5.10.6 to obtain fi,, a function of of
which agrees with & at x and y. Letting € > 0, there exists an open set U (y) containing y
such that

fo(z) >h(z)—€ ifze U(y).
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Since A is compact, let U (y;),---,U (y;) cover A. Let

fx = max (fxyu s Jayas o vfxyl)'

Then f, € 7 and f, (z) > h(z) — & forall z € A and f, (x) = h(x). This implies that for each
X € A there exists an open set V (x) containing x such that for z € V (x), f;(z) < h(z) +e&.
Let V (x1),---,V (xn) cover A and let f = min(fy,, -, fx,). Therefore, f(z) < h(z)+¢€
for all z € A and since f; (z) > h(z) — € for all z € A, it follows f (z) > h(z) — € also and so
| (z) — h(z)| < € for all z. Since € is arbitrary, this shows & € < and proves o = C (A;R).
]

5.11 Connectedness in Normed Linear Space

The main result is that a ball in a normed linear space is connected. This is the next
lemma. From this, it follows that for an open set, it is connected if and only if it is arcwise
connected.

Lemma 5.11.1 In a normed vector space, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If @,y € B(z,r), then let v (t) =
x+1t(y—ax)forre0,1].

@+ (y —a)—z|| = [[(1-1) (- 2)+1(y — 2|

<(I-t)|le—z|+t|ly—z|<(1=t)r+tr=r

showing ~y (¢) stays in B(z,r).l
Proposition 5.11.2 IfX # 0 is arcwise connected, then it is connected.

Proof: Let p € X. Then by assumption, for any x € X, there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence C,, = X
and so X is connected. H

Theorem 5.11.3 Let U be an open subset of a normed vector space. Then U is
arcwise connected if and only if U is connected. Also the connected components of an open
set are open sets.

Proof: By Proposition 5.11.2 it is only necessary to verify that if U is connected and
open in the context of this theorem, then U is arcwise connected. Pick p € U. Say x € U
satisfies &7 if there exists a continuous function, « : [a,b] — U such that y(a) = p and
~(b) =x.

A = {x € U such that x satisfies &.}

If x € A, then Lemma 5.11.1 implies B («,r) C U is arcwise connected for small enough
r. Thus letting y € B(x,r), there exist intervals, [a,b] and [c,d] and continuous functions
having values in U, v, n such that v (a) = p,~v (b) = x,n(c) = x, and 1 (d) = y. Then let
~: : [a,b+d —c] = U be defined as

B (1) if t € [a,b]
") = { Z(H—c—b) ifr e [b,b+d—c|
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Then it is clear that v is a continuous function mapping p to y and showing that B (x,r) C
A. Therefore, A is open. A = @ because since U is open there is an open set, B(p,0)
containing p which is contained in U and is arcwise connected.

Now consider B = U \ A. I claim this is also open. If B is not open, there exists a
point z € B such that every open set containing z is not contained in B. Therefore, letting
B(z,8) be such that z € B(z,8) C U, there exist points of A contained in B(z,6). But
then, a repeat of the above argument shows z € A also. Hence B is open and so if B # 0,
then U = BUA and so U is separated by the two sets B and A contradicting the assumption
that U is connected.

It remains to verify the connected components are open. Let z € Cp, where G, is the
connected component determined by p. Then picking B(z,0) C U, C, UB(2,9) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior
point of Cp,. W

As an application, consider the following corollary.

Corollary 5.11.4 Let f: Q — 7 be continuous where Q is a connected open set in a
normed vector space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and [ # k. Then Q =
FHOUf'({meZ:m+#1}) and these are disjoint nonempty open sets which separate
Q. To see they are open, note

et (o)

which is the inverse image of an open set while £~ (1) = ! ((I— £,1+ %)) also an open
set. W

Definition 5.11.5 a» important concept in a vector space is the concept of con-
vexity. A nonempty set K is called convex if whenever x,y € K, it follows that for all
t €10,1],tx+ (1 —1)y € K also. That is, the line segment joining the two points x,y is in
K.

5.12 Saddle Points*

A very useful idea in nonlinear analysis is the saddle point theorem also called the min max
theorem. The proof of this theorem given here follows Brezis [8] which is where I found
it. A real valued function f defined on a linear space is convex if

JAx+(1=2)y) SAf(x)+(1=2)f ()

It is concave if the inequality is turned around. It can be shown that in finite dimensions,
convex functions are automatically continuous, similar for concave functions. Recall the
following definition of upper and lower semicontinuous functions defined on a metric space
and having values in [—oo, oo].

Definition 5.12.1 a Sfunction is upper semicontinuous if whenever x, — x, it follows
that f (x) > limsup,_,., f (x,) and it is lower semicontinuous if f (x) < liminf,_e f (x,) .

The following lemma comes directly from the definition.
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Lemma 5.12.2 [f .7 is a set of functions which are upper semicontinuous, then g (x) =
inf{f (x) : f € F} is also upper semicontinuous. Similarly, if & is a set of functions which
are lower semicontinuous, then if g(x) = sup{f(x): f € F} it follows that g is lower
Semicontinuous.

Note that in a metric space, the above definitions of upper and lower semicontinuity in
terms of sequences are equivalent to the definitions that

f 00 = limsup{f(y) :y € B(x,r)}, f(x) < liminf{f (y) :y € B(x,r)}

respectively.
Here is a technical lemma which will make the proof of the saddle point theorem
shorter. It seems fairly interesting also.

Lemma 5.12.3 Suppose H : A x B — R is strictly convex in the first argument and con-
cave in the second argument where A, B are compact convex nonempty subsets of Banach
spaces EF respectively and x — H (x,y) is lower semicontinuous while y — H (x,y) is
upper semicontinuous. Let

H(g(y),y) = minH (x,y)
X€A
Then g (y) is uniquely defined and also fort € [0,1],
limg (y+1(z—y)) =g().
t—0

Proof: First suppose both z,w yield the definition of g (y). Then

Z4+w 1 1
H(ZE “H “H
( 5 ,y><2 (z,y)+2 (w,y)

which contradicts the definition of g (y). As to the existence of g(y) this is nothing more
than the theorem that a lower semicontinuous function defined on a compact set achieves
its minimum.

Now consider the last claim about “hemicontinuity”, continuity along a line. For all
x € A, it follows from the definition of g that

H(g(y+t(z—y)),y+t(z—y)) <H(x,y+t(z—y))

By concavity of H in the second argument,

(1-=0)H (g(y+t(z—y)),y) +tH(g(y+t(z—y)),2) (5.7
< H(x,y+t(z—y)) (5-8)

Now let 7, — 0. Does g(y+1,(z—y)) — g (»)? Suppose not. By compactness, each of
g(y+1,(z—y)) is in a compact set and so there is a further subsequence, still denoted by
t, such that

gr+m(z—y)) > €A

Then passing to a limit in 5.8, one obtains, using the upper semicontinuity in one and lower
semicontinuity in the other the following inequality.

H (%,y) <lim inf (1—1,) H (g (y+1a (z=¥)),y) +
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lim inf 1,H (g (v +1a (2~ )) 2)
. (I—=t)H(g(y+1a(z—)),¥)
< lim ‘“f< +HaH (g (v +1a (2—)) 2) )
<limsup H (x,y+1,(z—y)) < H (x,y)

n—oo

n—soo

This shows that £ = g (y) because this holds for every x. Since #, — 0 was arbitrary, this
shows that in fact

Jim g(y+1(z—y)) =g(y) ®

Now with this preparation, here is the min-max theorem.

Definition 5.12.4 A norm is called strictly convex if whenever x # y,

x+y
2

[
<5

Theorem 5.12.5 L E ,F be Banach spaces with E having a strictly convex norm.
Also suppose that A C E,B C F are compact and convex sets and that H : A x B — R is
such that

x— H (x,y) is convex

y — H (x,y) is concave

Assume that x — H (x,y) is lower semicontinuous and y — H (x,y) is upper semicontinu-
ous. Then

minmax H (x,y) = maxminH (x

xeA yeB ( ’y) yEB x€A ( ’y)

This condition is equivalent to the existence of (xo,y0) € A X B such that
H (x0,y) < H (x0,y0) < H (x,y0) for all x,y (5.9)
called a saddle point.
Proof: One part of the main equality is obvious.

maxH (x,y) > H (x,y) > minH (x,y)
yeB X€EA

and so for each x,
max H (x,y) > maxminH (x,y)

yEB yEB Xx€A
and so
minmax H (x,y) > maxminH (x,y) (5.10)
X€A yeB YEB x€A

Next consider the other direction.
Define He (x,y) = H (x,y) + & ||x||* where £ > 0. Then H is strictly convex in the first
variable. This results from the observation that
2 2
x4y [l ]l + [l 1 ( 2 2)
- < - - - < — ,
2| < (B <5 (e
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Then by Lemma 5.12.3 there exists a unique x = g (y) such that

He (8(y),y) = min e (x,y)

and also, whenever y,z € A,
lim g(y+1(z— =g).
t10 8( (Z )’)) 8( )

Thus He (g (y),y) = minyeq He (x,y) . But also this shows that y — He (g (v),y) is the mini-
mum of functions which are upper semicontinuous and so this function is also upper semi-
continuous. Hence there exists y* such that

max He (g(y),y) = He (g (y*),y") = maxmin He (x,y) (5.11)
yeB YEB x€A

Thus from concavity in the second argument and what was just defined, for # € (0,1),
He (8(v"),y") 2 He (8 ((1=2)y" +1y),(1=1)y" +1y)
> (1=1)He (g((1—1)y" +1),y") +1He (g ((1 —1)y" +1y),y)
> (1—1)He (g(y),y") +1He (g (1 —1)y" +1y),y) (5.12)
This is because min, He (x,y*) = He (g (") ,y*) so
He (g((1—1)y"+1y),y") = He (8(y") ,)")

Then subtracting the first term on the right, one gets

tHe (g(y"),y") > tHe (g ((1—1)y" +1y),y)

and cancelling the ¢,

He (8(y"),y") > He (g (1 —1)y" +1y),y)

Now apply Lemma 5.12.3 and let r — 0+ . This along with lower semicontinuity yields

He (g(y"),y") > limt%gHe (g((1=1)y" +1y),y) =He (g(v").y) (5.13)

Hence for every x,y

He (x,y") > He (8("),y") > He (8(Y") 1)

Thus

minHe (x,y*) > He (8 (") ,)") > m;,lee (g0),y)

and so

maxminHe (x,y) > minHe (x,y") > He (g(y"),)")
yEB x€A X

Y

max H (g (y"),y) > minmax He (x,)
y x€A yeB
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Thus, letting C = max {||x|| : x € A}

€C? + maxminH (x,y) > minmaxH (x,y)
YEB x€A x€A yeB

Since & is arbitrary, it follows that

H > H
i H () 2 gk H (5

This proves the first part because it was shown above in 5.10 that

minmax H (x,y) > maxminH (x
minmax H (x,y) > maxminH (x,y)

Now consider 5.9 about the existence of a “saddle point” given the equality of min max
and max min. Let

o= H i H
R TR (02) = R ()

Then from

y— mmH(x y) and x — maé(H(x y)
ye

being upper semicontinuous and lower semicontinuous respectively, there exist yo and xg
such that

minimum of u.s.c maximum of Ls.c.

o =minH = in H =mi H = maxH
R 0) = g TR (60) = iR KA (63) = g ()

Then

o = maxH (xo,y) > H (x0,y0), & =minH (x,yo) < H (x0,)0)
yEB X€EA

so in fact & = H (x9,yo) and from the above equalities,

H (x0,y0) = a:IgEH(x,yo)SH(x7yo)
H (x0,y0) = azglgch(XO,y)ZH(on)

and so H (xg,y) < H (x0,y0) < H (x,y0). Thus if the minmax condition holds, then there
exists a saddle point, namely (xg, o).
Finally suppose there is a saddle point (xo,yo) where

H (xo,y) < H (x0,y0) < H (x,y0)
Then

minmax H (x,y) < maxH (xo,y) < H (x0,y0) < mlnH(x yo) < maxmlnH(x y)
XEA y€EB yeEB YEB x€A

However, as noted above, it is always the case that

maxminH (x,y) < minmaxH (x,y) B
YEB x€A X€EA yeB
What was really needed? You needed compactness of A, B and these sets needed to be in
a linear space. Of course there needed to be a norm for which x — ||x|| is strictly convex and
lower semicontinuous, so the conditions given above are sufficient but maybe not necessary.
You might try generalizing this much later after reading about weak topologies.
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5.13 Exercises

1. Consider the metric space C ([0, T],R") with the norm || f[| = max,cjo 7 | f ()., -
Explain why the maximum exists. Show this is a complete metric space. Hint: If you
have {f,,} a Cauchy sequence in C([0,7],RR"), then for each x, you have {f,, (x)}
a Cauchy sequence in R"”. Recall that this is a complete space. Thus there exists
f (x) =limp—w f,, (x). You must show that f is continuous. This was in the section
on the Ascoli Arzela theorem in more generality if you need an outline of how this
goes. Write down the details for this case. Note how f is in bold face. This means it
is a function which has values in R". f(z) = (f1 (), f2(t), -, fu ().

2. For f € C(]0,T],R"), you define the Riemann integral in the usual way using Rie-
mann sums. Alternatively, you can define it as

/O.tf(s)dS: (/Otfl (s)ds,/otfz(s)d&...7/()tfn(s)ds>

Then show that the following limit exists in R” for eachz € (0,T).

i J0 " f ($)ds — Jg f (s)ds
h—0 h

=5 0).

You should use the fundamental theorem of calculus from one variable calculus and
the definition of the norm to verify this. As a review, in case we don’t get to it in
time, for f defined on an interval [0,7] and s € [0,T], lim,_ f (f) = | means that
for all € > 0, there exists 6 > 0 such that if 0 < |r —s| < &, then || f (¢) —1]|., < €.

3. Suppose f:R — Rand f >0on[—1,1] with f (—1) = f (1) =0and f (x) <0 forall
x ¢ [—1,1]. Can you use a modification of the proof of the Weierstrass approximation
theorem for functions on an interval presented earlier to show that for all € > 0O there
exists a polynomial p, such that |p (x) — f(x)| < € forx € [—1,1] and p(x) <0 for
all x ¢ [—1,1]?

4. A collection of functions .# of C(]0,7],R") is said to be uniformly equicontinu-
ous if for every € > 0 there exists 0 > 0 such that if f € .% and |t —s| < J, then
Ilf (&) — £ (5)||.. < €. Thus the functions are uniformly continuous all at once. The
single & works for every pair ¢, s closer together than 6 and for all functions f € ..
As an easy case, suppose there exists K such that for all f € .7, || f (1) — f (5)]|.. <

K|t —s|. Show that .# is uniformly equicontinuous. Now suppose ¥ is a collection

of functions of C ([0, 7], R") which is bounded. Thatis, || || = max,c(o,7) | f (#)]|.. <

M < o for all f € 4. Then let .# denote the functions which are of the form

F(t) =y + [§ f (s)ds where f € 4. Show that .Z is uniformly equicontinuous.

Hint: This is a really easy problem if you do the right things. Here is the way

you should proceed. Remember the triangle inequality from one variable calcu-

lus which said that for a < b |[7 £ (s)ds| < [ 1f(s)|ds. Then || f (s)ds|| =

max; ‘fabf,- (s)ds‘ < max; fah |fi(s)|ds < fab Il £ (s)]|..ds. Reduce to the case just con-
sidered using the assumption that these f are bounded.

5. Suppose .Z is a set of functions in C([0,T],R") which is uniformly bounded and
uniformly equicontinuous as described above. Show it must be totally bounded.
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6. TIf A C (X,d) is totally bounded, show that A the closure of A is also totally bounded.
In the above problem, explain why .% the closure of .% is compact. This uses the
big theorem on compactness. Try and do this on your own, but if you get stuck,
it is in the section on Arzela Ascoli theorem. When you have done this problem,
you have proved the important part of the Arzela Ascoli theorem in the special case
where the functions are defined on an interval. You can use this to prove one of
the most important results in the theory of differential equations. This theorem is a
really profound result because it gives compactness in a normed linear space which
is not finite dimensional. Thus this is a non trivial generalization of the Heine Borel
theorem.

7. Let (X,]|]|) be a normed linear space. A set A is said to be convex if whenever z,y €
A the line segment determined by these points given by tx + (1 —7)y fort € [0,1] is
also in A. Show that every open or closed ball is convex. Remember a closed ball
isD(x,r) ={&:||& —=| < r} while the open ball is B(x,r) ={& : ||& — x| < r}.
This should work just as easily in any normed linear space with any norm.

8. Let K be a nonempty closed and convex set in an inner product space (X, |-|) which is
complete. For example, " or any other finite dimensional inner product space. Let
y¢ K and let A =inf{|y—x|:x € K}. Let {x,} be a minimizing sequence. That is
A =lim,_,e |y — x| . Explain why such a minimizing sequence exists. Next explain
the following using the parallelogram identity in the above problem as follows.

Xn+Xm2’an Y En|?
2 2 2 2 2
:_X_in_(X_@)’z LT RS N
‘2 » (5| Tl Syl
_ 2 2
Hence |37 = — [y — 25 " 3 [y —u* + 3y =l

1 1
< _3'2'1' 5 |y_xn|2+5 |y_xm|2

Next explain why the right hand side converges to 0 as m,n — . Thus {x,} is a
Cauchy sequence and converges to some x € X. Explain why x € K and |x—y| = A.
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two xj,x, and consider % using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

9. Let K be a closed convex nonempty set in a complete inner product space (H,||)
(Hilbert space) and let y € H. Denote the closest point to y by Px. Show that Px is
characterized as being the solution to the following variational inequality

Re(z—Py,y—Py) <0

for all z € K. That is, show that x = Py if and only if Re (z—x,y —x) < 0 for all
z€ K. Hint: Let x € K. Then, due to convexity, a generic thing in K is of the form
x+t(z—x),t €[0,1] for every z € K. Then

x+1(z—x)—y]* = [x—y]* + 2|z — x> —=12Re (z —x,y — x)
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11.

12.

13.
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If x = Px, then the minimum value of this on the left occurs when ¢ = 0. Function
defined on [0, 1] has its minimum at 7 = 0. What does it say about the derivative
of this function at + = 0?7 Next consider the case that for some x the inequality
Re (z —x,y —x) < 0. Explain why this shows x = Py.

Using Problem 9 and Problem 8 show the projection map, P onto a closed convex
subset is Lipschitz continuous with Lipschitz constant 1. That is |Px — Py| < |x —y|.

Suppose, in an inner product space, you know Re (x,y). Show that you also know
Im (x,y). That is, give a formula for Im (x,y) in terms of Re (x,y). Hint:

(x,iy) = —i(x,y) = —i(Re (x,y) +ilm (x,y)) = —iRe (x,y) +Im (x,y)

while, by definition, (x,iy) = Re (x,iy) +ilm (x,iy) . Now consider matching real and
imaginary parts.

Let & > 0 be given and let f (z,) € R" for each € R". Also let (,x) — f (¢, ) be
continuous and sup, , || f (z,2)]|., < C < e. Let @, (¢) be a solution to the following

||m

x; (1) :wo—&-/olf(s,:ch(s—h))ds

where xj, (s —h) = @ if s —h < 0. Explain why there exists a solution. Hint:
Consider the intervals [0, 4], [h,2h] and so forth. Next explain why these functions
{z1},~( are equicontinuous and uniformly bounded. Now use the result of Problem
6 to argue that there exists a subsequence, still denoted by x;, such that limy, .o x;, ==
in C([0,T];R") as discussed in Problem 5. Use what you learned about the Riemann
integral in single variable advanced calculus to explain why you can pass to a limit
and conclude that x () = zo + [ f (s, (s)) ds Hint:

H/otf(s,:c(s))ds—/otf(s,a:h(s_h))ds

=

=

< H/Otf(s,x(s))ds—/otf(s,:r,(s—h))ds

+ /Otf(s,a:(sfh))dsf/Otf(s,wh(sfh))ds

=

< [UF ) - Fswls—mlds

4[5 Gl - F (sl —m)ds

Now use Problem 2 to verify that ' = f (t,x), x (0) = xy. When you have done
this, you will have proved the celebrated Peano existence theorem from ordinary
differential equations.

Let || =Y, ;. Let ¢ denote all finite sums of functions of the form p (x) ¢alal’
where p(x) is a polynomial and @ > 0. If you consider all real valued continu-
ous functions defined on the closed ball B(0,R) show that if f is such a function,
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then for every € > 0, there exists g € ¢ such that ||f —g|., < € where ||A],, =
Max,, g6z |l (a)|. Thus, from multi-variable calculus, every continuous function f
is uniformly close to an infinitely differentiable function on any closed ball centered

at 0.

Suppose now that f € Cyp(R”). This means that f is everywhere continuous and
that 1im|z|| .. | f (z)| = 0. Show that for every € > 0 there exists g € ¢ such that
Sup,cre | f () —g ()| < €. Thus you can approximate such a continuous function
f uniformly on all of R” with a function which has infinitely many continuous partial
derivatives. I assume the reader has had a beginning course in multi-variable calcu-
lus including partial derivatives. If not, a partial derivative is just a derivative with
respect to one of the variables, fixing all the others.

In Problem 23 on Page 124, and V = span(f,, ..., fp,), fr(x) = x",x € [0,1] and
f% < p1 < p2 < --- with limy_,. pr = o0. The distance between f,,, and V is

! m—pi| _

Let d,, = d so more functions are allowed to be included in V. Show that }", p]—n =00
if and only if lim,_,.. d, = 0. Explain, using the Weierstrass approximation theorem
why this shows that if g is a function continuous on [0, 1], then there is a function
Xszlakfpk with ‘g—):kN:lakfpk’ < &£. Here |g|2 = jol lg (x)|2dx. This is Miintz’s
first theorem. Hint: d, — 0, if and only if Ind,, — —co so you might want to
arrange things so that this happens. You might want to use the fact that for x €
[0,1/2],—x >1In(1 —x) > —2x. See [10] which is where I read this. That product is

P B I i mepi| and so In of this expression is
Hf n (p +m+l) p
= j

Yin(1- o mopil
= (pj+m+1)
which is in the interval

oy (o dm=pil N g dmepil
[2;1(] (pj+m+1) )’ j; : (pj+m+1)

. oo ~mpy
and so d, — 0 if and only if Y7, (1 TortmtD)

= oo, Since p, — oo it suffices

to consider the convergence of ¥ ; < 1— M) =Y, (m) . Now recall
: j j

theorems from calculus.

12
For f € C([a,b];R), real valued continuous functions, let | f| = (fab \f(t)|2) =

(f, f)l/ 2 where (f,8) = fah f(x)g(x)dx. Recall the Cauchy Schwarz inequality
|(f,&)| < |f]lg|- Now suppose % < p1 < pp--- where limy_, py = . LetV, =
span (1, fp,, fpss---s fp,) - For ||-|| the uniform approximation norm, show that for ev-
ery g € C([0,1]), there exists there exists a sequence of functions, f,, € V,, such that
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llg = ful| = 0. This is the second Miintz theorem. Hint: Show that you can approxi-
mate x — x™ uniformly. To do this, use the above Miintz to approximate mx™ ! with

. . . _ 2
Y cxxP ! in the inner product norm. [ |mx™ 1 — Y cexPi ! |Tdx < €. Then

XM= Yy kP = [ (™! = YRy cut? ") dr. Then
n Cx X n 1 n
=Y = < / mt" =Y P dr < / Vm™ =Y et dt
k=1 Pk 0 k=1 0 k=1

Now use the Cauchy Schwarz inequality on that last integral to obtain

max
x€[0,1]

In case m = 0, there is nothing to show because 1 is in V,,. Explain why the result
follows from this and the Weierstrass approximation theorem.



Chapter 6

Fixed Point Theorems

This is on fixed point theorems which feature the Brouwer fixed point theorem. This next
block of material is a discussion of simplices and triangulations used to prove the Brouwer
fixed point theorem in an elementary way. It features the famous Sperner’s lemma and is
based on very elementary concepts from linear algebra in an essential way. However, it is
pretty technical stuff. This elementary proof is harder than those which come from other
approaches like integration theory or degree theory. These other shorter ways of obtaining
the Brouwer fixed point theorem from analytical methods are presented later. If desired, this
chapter could be placed after the easier to prove version of the Brouwer fixed point theorem,
Theorem 11.6.8 on Page 329 after sufficient integration theory has been presented. I like
the approach presented in this chapter which is based on simplices because it is elementary
and contains a method for locating a fixed point. It seems philosophically wrong to make
this theorem depend on integration theory.

6.1 Simplices and Triangulations

Definition 6.1.1 Define an n simplex, denoted by [xg,- - ,@y], to be the convex hull
of the n+ 1 points, {xo,- - , @, } where {x; — xo};_, are linearly independent. Thus

n n
[®0,- -, 2] = {Zfifb‘i Y =114 20}-
i=0 i=0

Note that {az i~ mm}j L AT€ also independent. I will call the {1;} just described the coor-
dinates of a point x.

To see the last claim, suppose ¥, ¢; (€ — &) = 0. Then you would have

co(xo—m) + Z cj(j—axm)=0

=co (xo— xm) + Z cj(a:j—:lzo)+< Z q) (o—xm) =0

J#m0 J#m,0

= Z cj(mj—mo)+ (Z Cj) (o — xm)
J#m,0 Jj#m

Then you get Y., ¢; = 0 and each ¢; = 0 for j # m,0. Thus co = 0 also because the sum
is 0 and all other ¢; = 0.

Since {@; — xo};_, is an independent set, the #; used to specify a point in the convex hull
are uniquely determined. If two of them are Y} t;x; = Y1y s;x;. Then Y7 ot; (x; — xo) =
Y osi(xi —xo) sot; =s; for i > 1 by independence. Since the s; and 7; sum to 1, it follows
that also sg = fp. If n < 2, the simplex is a triangle, line segment, or point. If n < 3, itis a
tetrahedron, triangle, line segment or point.

Definition 6.1.2 If S is an n simplex. Then it is triangulated if it is the union of
smller sub-simplices, the triangulation, such that if §1,S> are two simplices in the triangu-
lation, with

S1 = [z(l)v”’ ,Z}n], S = [Z%,"' azg):l

155
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S] mSZ = I:mk()a"' 7xkr:|

where [:cko, e ,fﬂk,] is in the triangulation and

{wko,7wkr}:{z(l)’,z:n}m{z(%’,z[2)}

or else the two simplices do not intersect.

The following proposition is geometrically fairly clear. It will be used without comment
whenever needed in the following argument about triangulations.

~

Proposition 6.1.3 Say [z, - ,x,],[#1, -

~

[wlv”’ ,(Br},[:lll,'”
and [z, ,z,,b] is an r+ 1 simplex and
[y17"' 7ys] = [CC],“-
where
{ylv"' ays}:{xla"'
Then
[wla"' awhb]ﬂ[ih"'

&), |21, , 2| are all r— 1 simplices and
7ir] c [zlv”' 7zr]

@], ) 6.

amr}m{"%lv"' a"ﬁr} (62)
airvb} = [yla"' aymb] (6.3)

Proof: If you have Y}, #;y; +#,11 b in the right side, the #; summing to 1 and nonneg-
ative, then it is obviously in both of the two simplices on the left because of 6.2. Thus

[mlv"' 7mr7b]m[‘%17"' 7:ir7b] 2 [y17"'

Yy, bl

Now suppose x; = ):;-:ltfzj,:f:k = Z;:lffzj, as usual, the scalars adding to 1 and

nonnegative.

Consider something in both of the simplices on the left in 6.3. Is it in the right? The

element on the left is of the form

a=1

r r
Z SqTo +Spp1b= Z SaZo +5r11b
a=1

where the s, are nonnegative and sum to one, similarly for §y. Thus

’
)3
la=1

r
Jj=

Now observe that

sat]‘»xzj +5,1b= Z Z §af]‘?‘zj + 841D

r r
(6.4)
a=1j=1

ZZsatj‘»x—Fer :ZZsat;x—l—er :ZSO‘ +501 = 1.
j o o a

A similar observation holds for the right side of 6.4. By uniqueness of the coordinates in

an r+ 1 simplex, and assumption that [z, - -

r

)y

a=1

Sa

xr
L —sr41

,Zr,b] is an r+ 1 simplex, §,4| = s,41 and so

" S‘\a ~

a1 =511
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where Y, I—szj+1 =Yq 1—?:“ = 1, which would say that both sides are a single element of

[Z1, 2N [&1, & = [yy,- -, Y, and this shows both are equal to something of the
form Y} | tiy;, Y ti = 1,t; > 0. Therefore,

r s r S
D ST (RN
i=1 a=1 i=1

=1 1 —sr41

IS

It follows that

Z Sa Lo +sr+1b Z 1_Sr+1)tly1+sl'+1b € [ylv o 7ysab]

a=1 i=1

which proves the other inclusion. B

Next I will explain why any simplex can be triangulated in such a way that all sub-
simplices have diameter less than €.

This is obvious if n < 2. Supposing it to be true for n — 1, is it also so for n? The
barycenter b of a simplex [xg, - ,x,] is 1%1 Y x;. This point is not in the convex hull of
any of the faces, those simplices of the form [xg,- -, &y, - ,x,] where the hat indicates
x; has been left out. Thus, placing b in the k" position, [xq,---,b, - ,x,] is a n simplex
also. First note that [xg, -+, &k, ,@,] is an n — 1 simplex. To be sure [xg, -+ ,b, -, x,]
is an n simplex, we need to check that certain vectors are linearly independent. If

O_ZCJ — X0 —l—ak( +1Zﬂ.’3, J:o)—i— Z d

Jj=k+1

then does it follow that ay =0 =¢; = d;?

O—ch —x) —|—ak (Z wo)>+ Z d
i=0 Jj=k+1
k—1 ax
0 = _
+ Zn: <d + 2k )(:c xo)
J J— 40
it n+1

Thus ;% = 0 and each ¢; + ;% = 0 = d; + ;% so each ¢; and d; are also 0. Thus, this is
also an n simplex.

Actually, a little more is needed. Suppose [yg,: - ,Y,_1] is an n— 1 simplex such that
(Yo, s Yn_1] C [®0,- -, &p, -+ ,@n] . Why is [yg, - ,Y,_1,b] an n simplex? We know the
vectors {y; — yo}:;: are independent and that y; = ¥, #/ x; where ¥, #/ = 1 with each
being nonnegative. Suppose

ch —yo) +cn(b—yo) =0 (6.5)

If ¢, = 0, then by assumption, each ¢; = 0. The proof goes by assuming ¢, # 0 and deriving
a contradiction. Assume then that ¢, # 0. Then you can divide by it and obtain modified
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constants, still denoted as c; such that

1 n n—1
= n+1§)$i=yo+j=zlcj(y

Thus

n—1 n—1 .
1 Z Zt :Bs) = Z Cj (yj - yO) - Z Cj (Zt{ms - Zt?mv>
n+ 1357k i s T 57k

anlcj'<ztsj($s—$o Zt —:)30)

j=1 s#k s#k
Modify the term on the left and simplify on the right to get

£ L 2o o020~ B (-

’H‘l, =057k = \oZk

Thus,

n

nlli(Zf?)m—ww S S

i=0s#£k

Sy (z 1) <ms—xo>)

j=1 s#k

Then, taking out the i = k term on the left yields

1
i (24) @ g (50w

S;'fk s;ék

n—1
ZZI s—x0)+ ), ¢ (Z (#—1)) (ws—wO))
’H'l i=0 57k = \oZk
That on the right is a linear combination of vectors (x, — x() for r # k so by independence,
Yk 10 = 0. However, each 0 > 0 and these sum to 1 so this is impossible. Hence ¢, = 0
after all and so each ¢; = 0. Thus [y¢,--- ,y,_1,b] is an n simplex.

Now in general, if you have an n simplex [z, - - - ,@,], its diameter is the maximum of
|z — x| for all k # [. Consider |b— ;] . It equals

Y (wi—z))| =), (xi—xj)| < diam (S).
=n+l iZin +1 1
Consider the k" face of S which is the simplex [xo,-- , &, - - ,a,]. By induction, it has a

triangulation into simplices which each have diameter no more than ;1 diam (S). Let these

} Then the simplices { [ ] }:n:klnlj:ll are a tri-

angulation of S such that diam ([S%, b]) < 25 diam (S). Do for [Sf?,b] what was just done
for S obtaining a triangulation of S as the union of what is obtained such that each simplex

n— 1 simplices be denoted by {S17 .

m k

. 2 .. o . .
has diameter no more than (L) diam (S). Continuing this way shows the existence of

the desired triangulation. You simply do the process k times where ( ) ) diam (S) < €.
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6.2 Labeling Vertices

Next is a way to label the vertices. Let pg,---,p, be the first n 4+ 1 prime numbers. All
vertices of a simplex S = [xo,- - ,@,] having {x; —xo};_, independent will be labeled
with one of these primes. In particular, the vertex x; will be labeled as py if the simplex is
[0, ,@,). The “value” of a simplex will be the product of its labels. Triangulate this S.
Consider a 1 simplex whose vertices are from the vertices of S, the original n simplex
[a:kl , a:kz] ,label xy, as py, and xy, as pg,. Then label all other vertices of this triangulation
which occur on [:ckl ,:ckz] either py, or py,. Note that by independence of {x; — Cltr}k#r,
this cannot introduce an inconsistency because the segment cannot contain any other vertex
of S. Then obviously there will be an odd number of simplices in this triangulation having
value py, py,, thatis a py, at one end and a py, at the other. Next consider the 2 simplices
Ty, , mkz,wk3] where the xy, are from S. Label all vertices of the triangulation which lie
on one of these 2 simplices which have not already been labeled as either py,, py,, or px,.
Continue this way. This labels all vertices of the triangulation of S which have at least one
coordinate zero. For the vertices of the triangulation which have all coordinates positive,
the interior points of S, label these at random from any of py,..., p,. (Essentially, this is
the same idea. The “interior” points are the new ones not already labeled.) The idea is
to show that there is an odd number of n simplices with value []7, p; in the triangulation
and more generally, for each m simplex [wkl s Tk, +1] ,m < n with the x, an original
vertex from S, there are an odd number of m simplices of the triangulation contained in
[@k,, -, @k, |, having value py, -+ py,.,. It is clear that this is the case for all such 1
simplices. For convenience, call such simplices [kal o, I m dimensional faces of S.

m+1 ]
An m simplex which is a subspace of this one will have the “correct” value if its value is

pkl o .pkm-%—l'

Suppose that the labeling has produced an odd number of simplices of the triangulation
contained in each m dimensional face of S which have the correct value. Take such an m
dimensional face [:cjl yeen ,Ll:ij] . Consider S =

[mjl o L ’wjk+2]

Then by induction, there is an odd number of k simplices on the 5" face

[wjlv""j’jsv"' 7wjk+2}

having value []; pj;. In particular, the face [x},,..., 2., &;,,,] has an odd number of
simplices with value [[;<x+1 pj;-

No simplex in any other face of § can have this value by uniqueness of prime factoriza-
tion. Pick a simplex on the face [@),,...,j,  &j.,| which has correct value [T+ pj;
and cross this simplex into §. Continue crossing simplices having value [];<;; pj; which
have not been crossed till the process ends. It must end because there are an odd number
of these simplices having value [];<x+; pj;- If the process leads to the outside of S, then
one can always enter it again because there are an odd number of simplices with value
[Li<k+1 pj; available and you will have used up an even number. Note that in this process,
if you have a simplex with one side labeled [[;<x4 pj;, there is either one way in or out
of this simplex or two depending on whether the remaining vertex is labeled pj,,. When
the process ends, the value of the simplex must be Hi‘:ﬂz pj; because it will have the addi-
tional label pj, e Otherwise, there would be another route out of this, through the other

side labeled [];<¢+ pj;- This identifies a simplex in the triangulation with value ]'[f‘:lz Dji-
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Then repeat the process with [T;<; pj; valued simplices on [xj,,...,;,,,,&),.,] which
have not been crossed. Repeating the process, entering from the outside, cannot deliver a
Hfilz pj; valued simplex encountered earlier because of what was just noted. There is either
one or two ways to cross the simplices. In other words, the process is one to one in select-
ing a [];<x+1 pj; simplex from crossing such a simplex on the selected face of S. Continue
doing this, crossing a [];<x4 pj; simplex on the face of S which has not been crossed pre-
viously. This identifies an odd number of simplices having value Hf‘ilz pj;- These are the
ones which are “accessible” from the outside using this process. If there are any which are
not accessible from outside, applying the same process starting inside one of these, leads to
exactly one other inaccessible simplex with value Hf*lz pj;- Hence these inaccessible sim-
plices occur in pairs and so there are an odd number of simplices in the triangulation having
value Hf‘ilz pj;- We refer to this procedure of labeling as Sperner’s lemma. The system of
labeling is well defined thanks to the assumption that {a; — 2o };_, is independent which
implies that {@y —x;}, i 18 also linearly independent. Thus there can be no ambiguity in
the labeling of vertices on any “face” the convex hull of some of the original vertices of S.
The following is a description of the system of labeling the vertices.

Lemma 6.2.1 Let [z, ,x,] be an n simplex with {xy, — x};_, independent, and let
the first n+ 1 primes be po,pi1,---,pn. Label x; as py and consider a triangulation of
this simplex. Labeling the vertices of this triangulation which occur on [:ckl o ,wkx] with
any of pi,,--- , Pk, beginning with all 1 simplices [a:k] ,ackz] and then 2 simplices and so
forth, there are an odd number of simplices [ykl S 77Jk5] of the triangulation contained in
[ack] e ,$k5] which have value py, --- py,. This for s =1,2,--- ,n.

A combinatorial method

We now give a brief discussion of the system of labeling for Sperner’s lemma from the
point of view of counting numbers of faces rather than obtaining them with an algorithm.
Let po,- -, py be the first n+ 1 prime numbers. All vertices of a simplex S = [z, - - -, @,]
having {x; —x};_, independent will be labeled with one of these primes. In particular,
the vertex x; will be labeled as p;. The value of a simplex will be the product of its labels.
Triangulate this S. Consider a 1 simplex coming from the original simplex [:l}kl ,mkz] , label
one end as py, and the other as py,. Then label all other vertices of this triangulation which
occur on [af;kl ,mkz] either py, or py,. The assumption of linear independence assures that
no other vertex of S can be in [wkl ,wkz] so there will be no inconsistency in the labeling.
Then obviously there will be an odd number of simplices in this triangulation having value
Dk, Pk,» that is a py, at one end and a py, at the other. Suppose that the labeling has been
done for all vertices of the triangulation which are on [sr: I +1] ,

{wjp---wij} C{xg,...xy}

any k simplex for k < n— 1, and there is an odd number of simplices from the triangulation
having value equal to [T*" p;,. Consider § = [z},,...;,.,,,2),.,]. Then by induction,

there is an odd number of k simplices on the s face

[wjlv""j’jsv"' 7wjk+l}

having value [T, pj,. In particular the face [@;,,..., @, ,&j,,,] has an odd number of
simplices with value H;‘Ll pj; = P,. We want to argue that some simplex in the triangu-
lation which is contained in S has value Py = Hf‘:lz pj.- Let Q be the number of k+1
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simplices from the triangulation contained in § which have two faces with value £ (A k+ 1
simplex has either 1 or 2 P faces.) and let R be the number of k + 1 simplices from the
triangulation contained in § which have exactly one B, face. These are the ones we want
because they have value Py, ;. Thus the number of faces having value P, which is described
here is 20 + R. All interior 7 faces being counted twice by this number. Now we count the
total number of Py faces another way. There are P of them on the face [z},,..., 2, ., &j,.,]
and by induction, P is odd. Then there are O of them which are not on this face. These
faces got counted twice. Therefore,

20+R=P+20

and so, since P is odd, so is R. Thus there is an odd number of P, ; simplices in .

We refer to this procedure of labeling as Sperner’s lemma. The system of labeling is
well defined thanks to the assumption that {@; — o };_, is independent which implies that
{z) — i}, i 1s also linearly independent. Thus there can be no ambiguity in the labeling
of vertices on any “face”, the convex hull of some of the original vertices of S. Sperner’s
lemma is now a consequence of this discussion.

6.3 The Brouwer Fixed Point Theorem

S=[zo, - ,x,] is a simplex in R". Assume {a; — x(}"_, are linearly independent. Thus a
typical point of S is of the form }? ,#;x; where the #; are uniquely determined and the map
x — t is continuous from S to the compact set

{teR™:Y i =1,4>0}

The map t — « is one to one and clearly continuous. Since S is compact, it follows that the
inverse map is also continuous. This is a general consideration but what follows is a short
explanation why this is so in this specific example.

To see this, suppose ¥ — x in S. Let 2% = Yo t!‘a:i with « defined similarly with t!‘
replaced with t;, © = Y t;z;. Then

n n n
:ck—:co = Ztika:,'— Zt,kwo = Zt,k (i —wo)
i=0 i=0 i=1

Thus

n

n
f—xy = Ztik(;c,»—a:o), xr—xo= Zti(l‘i*mO)
i=1 i=1

Say t{“ fails to converge to ¢#; for all i > 1. Then there exists a subsequence, still denoted
with superscript k such that for each i = 1,--- ,n, it follows that tl!‘ — s; where s; > 0 and
some s; # t;. But then, taking a limit, it follows that

ti (x; —x0)

™

n
z—xo =) si(xi—x0) =
i=1 1

which contradicts independence of the x; — xg. It follows that for all i > l,tf — t;. Since
they all sum to 1, this implies that also t(’)‘ — to. Thus the claim about continuity is verified.

Let f : S — S be continuous. When doing f to a point &, one obtains another point of
S denoted as Y/ s;x;. Thus in this argument the scalars s; will be the components after
doing f to a point of S denoted as Y./ t;x;.
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Consider a triangulation of S such that all simplices in the triangulation have diameter
less than €. The vertices of the simplices in this triangulation will be labeled from py, - - - , p,,
the first n+ 1 prime numbers. If [y, --,y,]| is one of these simplices in the triangulation,
each vertex is of the form Y} ,#x; where f; > 0 and },;# = 1. Let y; be one of these
vertices, y; = Y/ #x;, the ; being determined by y;. Define r; =s;/t; if t; > 0 and e
if 1; = 0. Then p (y;) will be the label placed on y;. To determine this label, let r; be the
smallest of these ratios. Then the label placed on y; will be p; where ry is the smallest of
all these extended nonnegative real numbers just described. If there is duplication, pick py
where k is smallest. The value of the simplex will be the product of the labels. What does
it mean for the value of the simplex to be B, = pop1 - -- p,? It means that each of the first
n+ 1 primes is assigned to exactly one of the n+ 1 vertices of the simplex so each r; >0
and there are no repeats in the r;.

Note that for the vertices which are on [x;,,-- - ,@;, ], these will be labeled from the list
{pi,, -, Pi, } because ty = 0 for each of these and so ry = oo unless k € {i1,---,in}. In
particular, this scheme labels x; as p;.

By the Sperner’s lemma procedure described above, there are an odd number of sim-
plices having value [, p; on the k" face and an odd number of simplices in the triangula-
tion of S for which the value of the simplex is pop; - - - pn = P,. Thus if [yg, - ,y,] is one
of these simplices, and p (y;) is the label for y;, [T p (y;) = IT}=op; = P

What is r¢, the smallest of those ratios in determining a label? Could it be larger than
1?7 ry is certainly finite because at least some ¢; # 0 since they sum to 1. Thus, if ry > 1,
you would have s; > . The s; sum to 1 and so some s; < ¢; since otherwise, the sum of the
t;j equalling 1 would require the sum of the s; to be larger than 1. Hence r; was not really
the smallest after all and so r; < 1. Hence s; < #;. Thus if the value of a simplex is P,, then
for each vertex of the simplex, the smallest ratio associated with it is of the form s; / ;<1
and each j gets used exactly once.

Let . = {S1,--,Sm} denote those simplices whose value is P,. In other words, if
{yo,- - ,y,} are the vertices of one of these simplices in ., and y, = Y7 (t’x;, ri, <7
forall j # kg and {ko, -+ ,k,} ={0,--- ,n}. Let b denote the barycenter of Sy = [yg, - , Y-
b=Yl, ﬁyi

Do the same system of labeling for each n simplex in a sequence of triangulations where
the diameters of the simplices in the k' triangulation are no more than 2. Thus each of
these triangulations has a n simplex having diameter no more than 2% which has value P,.
Let by, be the barycenter of one of these n simplices having value P,. By compactness, there
is a subsequence, still denoted with the index k such that by — @. This @ is a fixed point.

Consider this last claim. = = Y!' ,f;x; and after applying f, the result is Y (s;x;.
Then by is the barycenter of some 6 having diameter no more than 2% which has value
P,. Say oy is a simplex having vertices {y§, -+, 4%} and the value of [yf,--- yk] is P,.
Thus also limy_. yf = x. Re ordering these vertices if necessary, we can assume that the
label for yf is p; which implies that the smallest ratio ry is when k = i and as noted above,
this ratio is no larger than 1. Thus for each i =0,--- ,n,

Tt s<y

li
the i"* coordinate of f (y{‘) with respect to the original vertices of S decreases and each i
is represented for i = {0,1,---,n}. As noted above, y* — x and so the i"* coordinate of
y;‘,tl!‘ must converge to #;. Hence if the i’ coordinate of f (yf) is denoted by sf.‘ , s;‘ < t{‘.
By continuity of f, it follows that s{-‘ — s;. Thus the above inequality is preserved on taking
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k — oo and so 0 < s; <t; this for each i and these s;,#; pertain to the single point . But
these s; add to 1 as do the #; and so in fact, s; = f; for each i and so f (x) = x. This proves
the following theorem which is the Brouwer fixed point theorem.

Theorem 6.3.1 Let S bea simplex [z, - , @) such that {x; — xo}}_, are indepen-
dent. Also let f : S — S be continuous. Then there exists x € S such that f (x) = x.

Corollary 6.3.2 Let K be a closed convex bounded subset of R". Let f : K — K be
continuous. Then there exists x € K such that f (x) = .

Proof: Let S be a large simplex containing K and let P be the projection map onto K.
See Problem 10 on Page 152 for the necessary properties of this projection map. Consider
g(x) = f (Px). Then g satisfies the necessary conditions for Theorem 6.3.1 and so there
exists & € S such that g (x) = . But thissays x € K and so g (z) = f (). B

Definition 6.3.3 A set B has the fixed point property if whenever f : B — B for f
continuous, it follows that f has a fixed point.

The proof of this corollary is pretty significant. By a homework problem, a closed
convex set is a retract of R”. This is what it means when you say there is this continuous
projection map which maps onto the closed convex set but does not change any point in
the closed convex set. When you have a set A which is a subset of a set B which has the
property that continuous functions f : B — B have fixed points, and there is a continuous
map P from B to A which leaves points of A unchanged, then it follows that A will have the
same “fixed point property”. You can probably imagine all sorts of sets which are retracts
of closed convex bounded sets. Also, if you have a compact set B which has the fixed point
property and 4 : B — h(B) with h one to one and continuous, it will follow that #~! is
continuous and that / (B) will also have the fixed point property. This is very easy to show.
This will allow further extensions of this theorem. This says that the fixed point property
is topological.

Several of the following theorems are generalizations of the Brouwer fixed point theo-
rem.

6.4 The Schauder Fixed Point Theorem

First we give a proof of the Schauder fixed point theorem which is an infinite dimensional
generalization of the Brouwer fixed point theorem. This is a theorem which lives in Banach
space. Recal that one of these is a complete normed vector space. There is also a version
of this theorem valid in locally convex topological vector spaces where the theorem is
sometimes called Tychonoff’s theorem. In infinite dimensions, the closed unit ball fails to
have the fixed point property. Thus something more is needed to get a fixed point.

We let K be a closed convex subset of X a Banach space and let

f be continuous, f: K — K, and f(K) is compact.

Lemma 6.4.1 For each r > 0 there exists a finite set of points

{yla"' ayn} gf(K)
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and continuous functions y; defined on f (K) such that for x € f (K),

Y1, ©6)
i=1
v (x) =0ifx ¢ B(vi,r), ¥;(x) > 0ifx € B(y,r).
If
Fr(x) =)y (f (%)), 6.7)
i=1

then whenever x € K,

If () =fr @) <r

Proof: Using the compactness of f (K) which implies this set is totally bounded, there
exists an r net

1o} CF(K)CK

such that {B (y;,r)}._, covers f (K). Let
9:0)=(r—ly—yl)"

Thus ¢, (y) > 0ify € B(y;,r) and ¢, (y) =0if y ¢ B(y;,r). Forx € f(K), let

-1
v (x) =¢;(x) (Z,I‘Pj(x)) .
j=

Then 6.6 is satisfied. Indeed the denominator is not zero because x is in one of the B (y;,r).
Thus it is obvious that the sum of these y; (f (x)) equals 1 for x € K. Now let f, be given
by 6.7 for x € K. For such x,

Thus
fO-fi= Y  (F&)-»w(fH)
{i:f (x)eB(yir)}
+ )Y (f@-wwi(f)
{i:f () ¢B(vir)}
= ) (f () =y wi (f (x) =
{if (0)=yi€B(0.r)}
)y (fE@=y)y(fe)+ ) 0y (f(x) €B(0.r)
{if (x)~y;€B(0.r)} {if () ¢B(vir)}

because 0 € B(0,r), B(0,r) is convex, and 6.6. It is just a convex combination of things in
B(0,r). H

Note that we could have had the y; in f (K) in addition to being in f (K). This would
make it possible to eliminate the assumption that K is closed later on. All you really need
is that K is convex.

We think of f, as an approximation to f. In fact it is uniformly within » of f on K. The
next lemma shows that this f; has a fixed point. This is the main result and comes from the
Brouwer fixed point theorem in R”. This will be an approximate fixed point.
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Lemma 6.4.2 For each r > 0, there exists x, € convex hull of f (K) C K such that

fr () = X, || (%) = f (X)|| < 7 for all x

Proof: If f, (x;) =x, and x, =Y} | a;y; for ', a; = 1 and the y; described in the above
lemma, we need

fol) = iwi (f () = ily-""’f (f (zly» - ilafyf —x.
= Jj= i= Jj=

Also, if this is satisfied, then we have the desired approximate fixed point.
This will be satisfied if for each j=1,--- |n,

aj=y; <f (Z am) ) ; (6.8)
i=1

n
Enl—{aeR":Zai—LaiZO}

i=1

so, let

andleth:%,_| — X, | be given by

ha); =, <f (;y>>

Since 4 is a continuous function of a, the Brouwer fixed point theorem applies and there
exists a fixed point for 4 which is a solution to 6.8.
The following is the Schauder fixed point theorem.

Theorem 6.4.3 Let K be a closed and convex subset of X, a normed linear space.
Let f : K — K be continuous and suppose f (K) is compact. Then f has a fixed point.

Proof: Recall that f(x,) — f+ (x) € B(0,r) and f; (x,) = x, with x, € convex hull of
FK)CK.
_ There is a subsequence, still denoted with subscript  with » — 0 such that f (x,) = x €
f(K). Note that the fact that K is convex is what makes f defined at x,. x, is in the
convex hull of f(K) C K. This is where we use K convex. Then since f, is uniformly
close to f, it follows that f (x,) = x, — x also. Therefore,

Ff(x)=1lim f (x,) = lim f, (x,) = limx, = x. W
r—0 r—0 r—0

We usually have in mind the mapping defined on a Banach space. However, the com-
pleteness was never used. Thus the result holds in a normed linear space.

There is a nice corollary of this major theorem which is called the Schaefer fixed point
theorem or the Leray Schauder alterative principle [22].

Theorem 6.4.4 L. f X — X be a compact map. Then either

1. There is a fixed point for f for all t € [0,1] or
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2. Forevery r > 0, there exists a solution to x =t f (x) for t € (0,1) such that ||x|| > r.

Proof: Suppose there is 7y € [0,1] such that 7y f has no fixed point. Then # # 0. If
to = 0, then 7y f obviously has a fixed point. Thus #o € (0, 1]. Then let ry, be the radial
retraction onto B (0, M).

fx)
1F ()l

By Schauder’s theorem there exists x € B(0,M) such that fory f (x) = x. Then if || f (x)|| <
M, ry has no effect and so 7o f (x) = x which is assumed not to take place. Hence || f (x)]| >

M and so ||ryf (x)|| = M so ||x|| = toM. Also fyry f (x) = toM% =x and so x =

if(x),i= toﬁ < 1. Since M is arbitrary, it follows that the solutions to x =1 f (x) for

rmf(x)=M

t € (0,1) are unbounded. It was just shown that there is a solution to x = 7f (x), < 1 such
that ||x|| = 7oM where M is arbitrary. Thus the second of the two alternatives holds. B
As an example of the usefulness of the Schauder fixed point theorem, consider the
following application to the theory of ordinary differential equations. In the context of this
theorem, X = C ([0, T];R"), a Banach space with norm given by
lz|| = max {|x (¢)| : t € [0,T]}.

I assume the reader knows about the Riemann integral in what follows and the elementary
fundamental theorem of calculus. More general versions of these things are presented later
in the book.

Theorem 6.4.5 L f:[0,T] x R" — R" be continuous and suppose there exists
L > 0 such that for all A € (0,1), if

' =1ft,z), z(0)=mx (6.9)
forallt € [0,T], then ||x|| < L. Then there exists a solution to

' = f(t,x), z(0) =z (6.10)
fort€[0,T].

Proof: Let F : X — X where X described above.
t
Fy()= [ Fs.9()+a0)ds

Let B be a bounded set in X. Then | f (s, y (s) 4+ @o)| is bounded for s € [0,T] if y € B. Say
|f (s,y(s)+xo)| < Cp. Hence F (B) is bounded in X. Also, for y € B,s <1,

Py -Fy )< | [ £690) +20)ds| < Cali—s]

and so F (B) is pre-compact by the Ascoli Arzela theorem. By the Schaefer fixed point
theorem, there are two alternatives. Either there are unbounded solutions y to

AF(y)=y
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for various A € (0,1) or for all A € [0,1], there is a fixed point for AF. In the first case,
there would be unbounded vy, solving

v (=2 [ £(5.9, () +0)ds

Then let 2, (s) =y, (s) +xo and you get ||z, || also unbounded for various A € (0,1). The
above implies

- (t)—a:ozl/otf(s,a:,l (s))ds

so xhy = Af(t,xy),x,(0) = o and these would be unbounded for A € (0,1) contrary
to the assumption that there exists an estimate for these valid for all A € (0,1). Hence
the first alternative must hold and hence there is y € X such that Fy = y. Then letting
x (s) =y (s) + xo, it follows that

:c(t)—asoz/otf(s,ac(s))ds

and so x is a solution to the differential equation on [0,7]. B

Note that existence of a solution to the differential equation is not assumed, only esti-
mates of possible solutions. These estimates are called a-priori estimates. Also note this is
a global existence theorem, not a local one for a solution defined on only a small interval.

6.5 The Kakutani Fixed Point Theorem

Definition 6.5.1 irA:x — 2 (Y) is a set-valued map, define the graph of A by
G(A) ={(x,y) 1y € Ax}.
Consider a map A which maps CP to &7 (CP) which satisfies
Ax is compact and convex. (6.11)
and also the condition that if O is open and O O Ax, then there exists 8 > 0 such that if
Yy € B(z,8), then Ay C O. (6.12)

This last condition is sometimes referred to as upper semicontinuity. In words, A is upper
semicontinuous and has values which are compact and convex. This is equivalent to saying
that if Ax € O and x, — x, then for large enough n, it follows that Az, C O.

With this definition, here is a lemma which has to do with the situation when the graph
is closed.

Lemma 6.5.2 Let A satisfy 6.12. Then AK is a subset of a compact set whenever K is
compact. Also the graph of A is closed if Ax is closed.

Proof: Let x € K. Then Ax is compact and contained in some open set whose closure
is compact, U,. By assumption 6.12 there exists an open set V,, containing « such that if
y eV, thenAy CU,. Let Vg -+, Vy, cover K. Then AK C Ui”:lﬁma a compact set.

To see the graph of A is closed when Az is closed, let ¢, — =,y — y where y; € Axy.
Then letting O = A x+ B(0,r) it follows from 6.12 that y, € Az, C O for all k large
enough. Therefore, y € A x+ B(0,2r) and since r > 0 is arbitrary and Ax is closed it
follows y € Az. 1

Also, there is a general consideration relative to upper semicontinuous functions.



168 CHAPTER 6. FIXED POINT THEOREMS

Lemma 6.5.3 If f is upper semicontinuous on some set K and g is continuous and
defined on f (K), then g o f is also upper semicontinuous.

Proof: Let x, > z in K. Let U D go f(x).Is go f(x,) €U for all n large enough?
We have f (z) € g~ ! (U), an open set. Therefore, if n is large enough, f (z,) € g~ (U).
It follows that for large enough n, go f (x,) € U and so go f is upper semicontinuous on
K. n

The next theorem is an application of the Brouwer fixed point theorem. First define an
p simplex, denoted by [, -+, @], to be the convex hull of the p+ 1 points, {xo, -, @}
where {x; — xo}!_, are independent. Thus

p P
[w07"" 7"13[7] = {Ztimi : Z[i: 1, ti 20}
i=1 i=1

If p <2, the simplex is a triangle, line segment, or point. If p < 3, it is a tetrahedron,
triangle, line segment or point. A collection of simplices is a tiling of R? if R” is contained
in their union and if Sy, S, are two simplices in the tiling, with

— |yl j
S;= [EIZO,---,(B;,},

then
Sl ﬂSZ = I::Ekoa"' awk,-]

where
{wig i} € {wo, oy {ag, o)

or else the two simplices do not intersect. The collection of simplices is said to be locally
finite if, for every point, there exists a ball containing that point which also intersects only
finitely many of the simplices in the collection. It is left to the reader to verify that for each
€ > 0, there exists a locally finite tiling of R” which is composed of simplices which have
diameters less than €. The local finiteness ensures that for each € the vertices have no limit
point. To see how to do this, consider the case of R%. Tile the plane with identical small
squares and then form the triangles indicated in the following picture. It is clear something
similar can be done in any dimension. Making the squares identical ensures that the little
triangles are locally finite.

In general, you could consider [0, 1]”. The point at the center is (1/2,---,1/2). Then
there are 2p faces. Form the 2p pyramids having this point along with the 27~ ! vertices of
the face. Then use induction on each of these faces to form smaller dimensional simplices
tiling that face. Corresponding to each of these 2p pyramids, it is the union of the simplices
whose vertices consist of the center point along with those of these new simplicies tiling the
chosen face. In general, you can write any p dimensional cube as the translate of a scaled
[0,1]P. Thus one can express each of identical cubes as a tiling of m (p) simplices of the
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appropriate size and thereby obtain a tiling of R” with simplices. A ball will intersect only
finitely many of the cubes and hence finitely many of the simplices. To get their diameters
small as desired, just use [0, r]” instead of [0, 1]”.

Thus one can give a function any value desired on these vertices and extend appropri-
ately to the rest of the simplex and obtain a continuous function.

The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theo-
rem from continuous single valued maps to upper semicontinuous maps which have closed
convex values.

Theorem 6.5.4 Let K be a compact convex subset of R and let A : K — 2 (K)
such that Ax is a closed convex subset of K and A is upper semicontinuous. Then there
exists x such that x € Ax. This is the “fixed point”.

Proof: Let there be a locally finite tiling of R” consisting of simplices having diameter
no more than €. Let Px be the point in K which is closest to x. For each vertex xy, pick
A¢x) € APz and define A¢ on all of R” by the following rule. If

T € [Ty, -, xp),
sox =YY" tixit; €[0,1],Y;5 = 1,then
p
Acx = Z tAexy.
k=0

Now by construction Agx; € APx) € K and so A¢ is a continuous map defined on R” with
values in K thanks to the local finiteness of the collection of simplices. By the Brouwer
fixed point theorem A has a fixed point ¢ in K, A¢Te = x¢.

Le = ZEA8$I€7 Agxlf GAPm/f g K

p
k=0

where a simplex containing ;¢ is
. p
€ _ €,
[zg, - ,:Izp]7 Te = Ztkwk
k=0

Also, . € K and is closer than € to each wi so each wi is within € of K. It follows that for
each k, |Px; — x| < € and so

lim |Pxf — 28| =0

lim P — |

By compactness of K, there exists a subsequence, still denoted with the subscript of € such
that for each k, the following convergences hold as € — 0

1ty = tx, Ay — Yy, Pxy — 2k, T} — 2

Any pair of the a are within € of each other. Hence, any pair of the Px} are within € of
each other because P reduces distances. Therefore, in fact, z; does not depend on k.

P p
lim Pz} = lima} =z, limze=1lim Y ifof =) nz=z2
e—0 e—0 £— eﬂokzo =0
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By upper semicontinuity of A, for all € small enough,
APz CAz+B(0,r)
In particular, since A.x; € APz,
Aexj € Az+B(0,r) for € small enough

Since r is arbitrary and Az is closed, it follows y; € Az. It follows that since K is closed,
p p

hye e >0,) n=1
k=0 k=0

e —Z=
Now by convexity of Az and the fact just shown that y;, € Az,

z=) Ly, €Az

14
k=0

and so z € Az. This is the fixed point. B

One can replace R” with C? in the above theorem because it is essentially R?”. Also
the theorem holds with no change for any finite dimensional normed linear space since
these are homeomorpic to R” or C?.

6.6 Ekeland’s Variational Principle

Recall the notation X' = . (X,R), the continuous linear functions mapping X to R. This
section deals with real Banach spaces. If you had complex ones, X’ would denote . (X, C).

Definition 6.6.1 A function ¢ : X — (—o0,00] is called proper if it is not constantly
equal to . Here X is assumed to be a complete metric space. The function ¢ is lower
semicontinuous if

Xn — x implies ¢ (x) < lim”igiqb (xn)

It is bounded below if there is some constant C such that C < ¢ (x) for all x.

The variational principle of Ekeland is the following theorem [22]. You start with an
approximate minimizer xo. It says there is y; fairly close to xo such that if you subtract a
“cone” from the value of ¢ at y;, then the resulting function is less than ¢ (x) for all x # y; .

X0 YA

Theorem 6.6.2 LetX bea complete metric space and let ¢ : X — (—oo0, 00| be proper,
lower semicontinuous and bounded below. Let xy be such that

0 (x0) < inf ¢ (x) + &

Then for every A > 0 there exists a y;, such that
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1 ¢ (1) <9 (x0)
2. d(yr,x) <A
3.0 (ya) — 5d(x,y1) < ¢ (x) forall x # yy,

To motivate the proof, see the following picture which illustrates the first two steps.
The S;will be sets in X but are denoted symbolically by labeling them in X X (—oo, co].

Then the end result of this iteration would be a picture like the following.

Il
T

YA

Thus you would have ¢ (yy) — £d (y2,x) < ¢ (x) for all x which is seen to be what is
wanted.

Proof: Let x; = xo and define S} = {z € X : ¢ () < ¢ (x;) — 5$d (z,x1) }. Then S con-
tains x; so it is nonempty. It is also clear that Sy is a closed set. This follows from the lower
semicontinuity of ¢. Suppose

€
Si={zeX:9@) <o) - 7dx)
where x;, € S;_1. Pick x;4+1 € Sy and define Si4 similarly. Will this yield a nested sequence
of nonempty closed sets? Yes, it appears that it would because if z € Sy then
ESk-1

O (xx) — %d(&xk) < ((P (Xk—1) — %d(xkflaxk)) - Ed(z,xk)

¢ (2) 7
< ¢(xk71)—§d(Z,xk71)

IN

showing that z has what it takes to be in S;_;. Thus we would obtain a sequence of nested,
nonempty, closed sets according to this scheme.

Now here is how to choose the x; € Si_;. Let ¢ (x) < infyeg, | ¢ (x) + zik Then for
2E€ 811 S8, 0(2) <O (xny1) — $d(2,%041) and so

1
@) € 0() =9 (@) < inf 900+ 57 —0 ()
1

1
< ‘P(Z)*‘W—‘P(Z):Z,,H
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Thus every z € S, is within 2,1% of the single point x,,| and so the diameter of S,
converges to 0 as n — co. By completeness of X, there exists a unique y; € N,S,. Then it
follows in particular that for xo = x; as above, ¢ (y3) < ¢ (x0) — 5d (v, %0) < ¢ (xo) which
verifies the first of the above conclusions.

As to the second, ¢ (xo) < infyex ¢ (x) + € and so, for any x,

0(2) <9 (x0) — 2 (3,%0) < 9 () +€ = 2 d (33, %)

this being true for x =y, . Hence £d (y3,X0) < € and so d (yy,x0) < 7.

Finally consider the third condition. If it does not hold, then there exists z # y; such that
¢ (y2) > ¢ (z) + 5d (z,y3) so that ¢ (z) < ¢ (y5) — $d(z,y;) . But then, by the definition
of y; as being in all the S,,, ¢ (y2) < ¢ (x,) — £ (xn,y2) and so

¢(Z) < (P(xn)77(d(xnayl)+d(zvyl))

§ ¢(xn)*xd(xmz)

M | m

Since n is arbitrary, this shows that z € N,S,, but there is only one element of this intersec-
tion and it is y, so z must equal y; , a contradiction. ll

Note how if you make A very small, you could pick € very small such that the cone
looks pretty flat. Of course, you can always consider an equivalent metric d (x,y) =
£d (x,y) in all of these considerations.

6.6.1 Cariste Fixed Point Theorem

As mentioned in [22], the above result can be used to prove the Cariste fixed point theorem.

Theorem 6.6.3 L. ¢ be lower semicontinuous, proper, and bounded below on a
complete metric space X and let F : X — P (X) be set valued such that F (x) # 0 for all
x. Also suppose that for each x € X, there exists y € F (x) such that ¢ (y) < ¢ (x) —d (x,y).
Then there exists xo such that xy € F (xo).

Proof: In the above Ekeland variational principle, let € = 1 = A. Then there exists xg
such that for all y # xg

¢ (x0) —d (,x0) < (), s0 ¢ (x0) <9 (y)+d(y,%0) (6.13)

for all y # xo.



6.6. EKELAND’S VARIATIONAL PRINCIPLE 173

Suppose xp ¢ F (xp). From the assumption, there is y € F (xg) (so y # xo) such that
o (y) < ¢ (x0) —d(x0,y) . Since y # xy, it follows

¢ (y) +d (x0,y) < ¢ (x0) < ¢ (y)+d(yx)

a contradiction. Hence xg € F (xp) after all. B

It is a funny theorem. It is easy to prove, but you look at it and wonder what it says.
In fact, it implies the Banach fixed point theorem. If F' is single valued, you would need to
have a function ¢ such that for each x,

¢ (F(x) <¢(x)—d(x,y)

and if you have such a ¢ then you can assert there is a fixed point for F. Suppose F is
single valued and d (Fx,Fy) < rd (x,y),0 < r < 1. Of course F has a fixed point using
easier techniques. However, this also follows from this result. Let ¢ (x) = 1-d (x,F (x)).
Then is it true that for each x, there exists y € F' (x) such that the inequality holds for all x?
Is { !
S d(F (), F (F () < 1 d (0 F (3)) ~d (6 F (1)

Yes, this is certainly so because the right side reduces to t=.d (x,F (x)). Thus this fixed
point theorem implies the usual Banach fixed point theorem.

The Ekeland variational principle says that when ¢ is lower semicontinuous proper and
bounded below, there exists y such that

¢ (y)—d(x,y) < ¢(x) forallx#y

In fact this can be proved from the Cariste fixed point theorem. Suppose the variational
principle does not hold. This would mean that for all y there exists x # y such that ¢ (y) —
d(x,y) > ¢ (x). Thus, for all x there exists y # x such that ¢ (x) —d (x,y) > ¢ (y). The
inequality is preserved if x =y. Then let

F)={y#x:0(x)—d(xy) = ¢ ()} #0

by assumption. This is the hypothesis for the Cariste fixed point theorem. Hence there
exists xo such that xo € F (xo) = {y # x0 : ¢ (x0) —d (x0,y) > ¢ (y)} but this cannot happen

because you can’t have xy # xo. Thus the Ekeland variational principle must hold after all.

6.6.2 A Density Result

There are several applications of the Ekeland variational principle. For more of them, see
[22]. One of these is to show that there is a point where ¢’ is small assuming ¢ is bounded
below, lower semicontinuous, and Gateaux differentiable, meaning that there exists ¢’ (x) e
X’ such that if v € X, then

) —
0 () () = lim 2O =Wy o
h—0 h
Here X is a real Banach space.

Theorem 6.6.4 Let X be a Banach space and ¢ : X — R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Then for every € > 0 there exists x € X
such that

0 (xe) < inf ¢ (x) - and ¢’ (xe)|

X/Sg
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Proof: From the Ekeland variational principle with A = 1, there exists x¢ such that
O (xe) < ¢ (x0) <infyex ¢ (x)+ € and for all x, ¢ (xg) < ¢ (x) + €||x — x¢||. Then letting
X = xg + hv where ||v|]| = 1,0 (x¢ +hv) — ¢ (x¢) > —€|h|. Let h < 0. Then divide by it to
obtain w < € . Passing to a limit as & — 0 yields ¢’ (x) (v) < €. Now v was
arbitrary with norm 1 and so supy,_; [¢' (xe) (V)| = (|9’ (xe)[| < e W

There is another very interesting application of the Ekeland variational principle [22].

Theorem 6.6.5 Let X be a real Banach space and ¢ : X — R be Gateaux differen-
tiable, bounded from below, and lower semicontinuous. Also suppose there exists a,c > 0
such that

allx||—c< ¢ (x) forallx e X

Then {9’ (x) : x € X} is dense in the ball of X' centered at O with radius a. Here ¢’ (x) € X'
and is determined by
. + ) —¢ (x)
!/ = 1 ¢ (‘x
o () () = Jim PEFIIZOR)
Proof: Let x* € X', ||x*|| < a. Let y (x) = ¢ (x) —x* (x) . This is lower semicontinuous.
It is also bounded from below because

V(x) 2 ¢ (x) —alxl| = (allx]| —c) —allx]| = —¢

It is also clearly Gateaux differentiable and lower semicontinuous because the piece added
in is actually continuous. It is clear that the Gateaux derivative is just ¢’ (x) —x*. By
Theorem 6.6.4, there exists x, such that ||’ (x¢) —x*[| <& H

Thus this theorem says that if ¢ (x) > a||x|| — ¢ where ¢ has the nice properties of the
theorem, it follows that ¢’ (x) is dense in B(0,a) in the dual space X’. It follows that if for
every a, there exists ¢ such that ¢ (x) > a||x|| — ¢ for all x € X then {¢’ (x) : x € X } is dense
in X'. This proves the following lemma.

Lemma 6.6.6 Let X be a real Banach space and ¢ : X — R be Gateaux differentiable,
bounded from below, and lower semicontinuous. Suppose for all a > O there exists a ¢ > 0
such that ¢ (x) > a||x|| —c for all x. Then {¢' (x):x € X} is dense in X'.

If the above holds, then % >a— LH and so, since a is arbitrary, it must be the case

that .
0 _ ., (6.14)

(B ==

In fact, this is sufficient to conclude that for each a > 0 there is ¢ > 0 such that ¢ (x) >

a||x|| — c. If not, there would exist a > 0 such that ¢ (x,) < a|x,|| —n. Let —L be a lower

bound for ¢ (x). Then —L+n < a||x,|| and so ||x, || — eo. Now it follows that
¢ (xa) noS ¢ (xa)

a> + >
l[all el =l

(6.15)

which is a contradiction to 6.14. This proves the following interesting density theorem.

Theorem 6.6.7 Let X be a real Banach space and ¢ : X — R be Gateaux differen-
tiable, bounded from below, and lower semicontinuous. Also suppose the coercivity condi-

tion
¢ (x)

lll—eo [lx]l
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Then {¢' (x) : x € X} is dense in X'. Here ¢’ (x) € X' and is determined by

¢’ (x) (v) = lim o (x+hv)—¢(x)

h—0 h

6.7 Exercises

1. It was shown that in a finite dimensional normed linear space that the compact sets
are exactly those which are closed and bounded. Explain why every finite dimen-
sional normed linear space is complete.

2. In any normed linear space, show that span (xj,--- ,x,) is closed. That is, the span
of any finite set of vectors is always a closed subspace. Hint: Suppose you let
V =span(xy,---,x,) and let v — v be convergent sequence of vectors in V. What
does this say about the coordinate maps? Remember these are linear maps into I and
so they are continuous.

3. It was shown that in a finite dimensional normed linear space that the compact sets
are exactly those which are closed and bounded. What if you have an infinite di-
mensional normed linear space X? Show that the unit ball D (0,7) = {x: ||x|| < 1} is
NEVER compact even though it is closed and bounded. Hint: Suppose you have
{xi}i_, where Hxi —xjH > % Let y ¢ span(xj,---,x,), a closed subspace. Such a y
exists because X is not finite dimensional. Explain why dist (y, span (xj,--- ,x,)) > 0.
This depends on span (xy,---,x,) being closed. Let z € span (xj,---,x,) such that
Iy =zl < 2dist (y,span (x1,- -, x4)) . Let xn1.1 = 3. Then consider the following:
Iy = (24 lly = zl[x) |

~ 2dist(y,span (xq,- - ,x,))

y—(z+|ly—zllx)
lly =zl

S H

What of (z+ ||y — z|| xx)? Where is it? Isn’t it in span (xj,- - - ,x,)? Explain why this
yields a sequence of points of X which are spaced at least 1/2 apart even though they
are all in the closed unit ball.

4. Find an example of two 2 x 2 matrices A, B such that ||AB|| < ||A||||B||. This refers
to the operator norm taken with respect to the usual norm on R?. Hint: Maybe make
it easy on yourself and consider diagonal matrices.

5. Nowlet V =C([0,1]) and let T : V — V be given by T f (x) = [y f (¢) dr. Show that
T is continuous and linear. Here the norm is

1F]l = max{|f (x)| : x € [0,1]}.

Can you find ||T|| where this is the operator norm defined by analogy to what was
given in the chapter?

6. Show that in any metric space (X,d), if U is an open set and if x € U, then there
exists r > 0 such that the closure of B(x,r), B(x,r) C U. This says, in topological
terms, that (X,d) is regular. Is it always the case in a metric space that B(x,r) =
{y:d(y,x) <r} =D(0,r)? Prove or disprove. Hint: In fact, the answer to the last
question is no.
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10.

11.

12.

13.
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Let (X,d) be a complete metric space. Let {U,} be a sequence of dense open sets.
This means that B (x,r) NU, # 0 for every x € X, and r > 0. You know that N, U, is
not necessarily open. Show that it is nevertheless, dense. Hint: Let D = N,U,. You
need to show that B(x,r) N D # @. There is a point p; € Uy N B(x,r). Then there
exists 1 < 1/2 such that B(p1,r1) C Ui NB(x,r). From the above problem, you can
adjust r; such that B(py,r1) C Uy NB(x,r). Next there exists p» € B(py,r1) NUx.
Letr, < 1/22 be such that B(p2,r2) C B(p1,r1) NU; NU;. Continue this way. You
get a nested sequence of closed sets {By} such that the diameter of By is no more
than 1/2%~1, the k' being contained in B (py_1,7%_1) N ﬂf;ll U;. Explain why there is
a unique point in the intersection of these closed sets which is in B (x,7) NN} Uy.
Then explain why this shows that D is dense.

. The countable intersection of open sets is called a G§ set. Show that the rational

numbers QQ is NOT a G set in R. In fact, show that no countable dense set can be a
G set. Show that N is a G set. It is not dense.

You have a function f : (X,d) — (Y,p). Define

o5 f (x) =sup{p (f(2),f () : 2,y € B(x,8)}

Then explain why limg_, @5 f (x) = @ f (x) exists. Explain why a function is contin-
uous at x if and only if @f (x) = 0. Next show that the set of all x where @f (x) =0
is a G5 set. Hint: of (x) = 0 if and only if x is in something like this: N°°_, U,
[0 )f (0) < ﬂ . Explain this. Then explain why Uy, [0} /f (©) < %] is an open
set.

Prove or disprove.

(a) If A is compact, then R” \ A is connected. You might consider the case n > 1
and the case n = 1 separately.

(b) If A is connected in R, then R" \ A is also connected.
(c) If A is connected in R”, then either A is open or A is closed.

(d) R"\ B(0,1) is connected. Two cases to consider: n =1 and n > 1.

If A is a connected set in R”, and A is not a single point, show that every point of A
is a limit point of A.

Consider the Cantor set. This is obtained by starting with [0, 1] deleting (1/3,2,3)
and then taking the two closed intervals which result and deleting the middle open
third of each of these and continuing this way. Let J; denote the union of the 2¢
closed intervals which result at the k' step of the construction. The Cantor set is
J = N7, Jk. Explain why J is a nonempty compact subset of R. Show that every
point of J is a limit point of J. Also show there exists a mapping from J onto [0, 1]
even though the sum of the lengths of the deleted open intervals is 1. Show that the
Cantor set has empty interior. If x € J, consider the connected component of x. Show
that this connected component is just x.

You have a complete metric space (X,d) and a mapping T : X — X which satis-

fies d (Tx,Ty) < rd (x,y), 0 <r < 1. Show x,Tx,T?x,---. converges to a point

z € X such that Tz = z. Next suppose you only know @ < R and that on
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B(x,R),d(Tx,Ty) < rd(x,y) where r < 1 as above. Show that then z € B (x,R) and
that in fact each T*x € B (x,R). Show also there is no more than one such fixed point
zon B(x,R).

In Theorem 5.7.1 it is assumed f has values in . Show there is no change if f
has values in V, a normed vector space provided you redefine the definition of a
polynomial to be something of the form ¥ o<, aqx™ wWhere aq € V.

How would you generalize the conclusion of Corollary 5.8.8 to include the situation
where f has values in a finite dimensional normed vector space?

If f and g are real valued functions which are continuous on some set, D, show that
min (f,g), max (f,g) are also continuous. Generalize this to any finite collection of
continuous functions. Hint: Note max (f,g) = H#. Now recall the triangle
inequality which can be used to show |-| is a continuous function.

Find an example of a sequence of continuous functions defined on R” such that each
function is nonnegative and each function has a maximum value equal to 1 but the
sequence of functions converges to 0 pointwise on R"\ {0}, that is, the set of vectors
in R" excluding 0.

An open subset U of R” is arcwise connected if and only if U is connected. Consider
the usual Cartesian coordinates relative to axes xi,---,Xx,. A square curve is one
consisting of a succession of straight line segments each of which is parallel to some
coordinate axis. Show an open subset U of R” is connected if and only if every two
points can be joined by a square curve.

Let & — h(x) be a bounded continuous function. Show f is continuous for f () =

Yo h(nx) _

n=1",2

Let S be a any countable subset of R”. Show there exists a function, f defined on
R”" which is discontinuous at every point of S but continuous everywhere else. Hint:
This is real easy if you do the right thing. It involves the Weierstrass M test.

If f is any continuous function defined on K a sequentially compact subset of R”,
show there exists a series of the form }';>_| px, where each py is a polynomial, which
converges uniformly to f on [a,b]. Hint: You should use the Weierstrass approxi-
mation theorem to obtain a sequence of polynomials. Then arrange it so the limit of
this sequence is an infinite sum.

Let K be a sequentially compact set in a normed vector space V and let f: V — W be
continuous where W is also a normed vector space. Show f (K) is also sequentially
compact.

If f is uniformly continuous, does it follow that | f| is also uniformly continuous?
If |f| is uniformly continuous does it follow that f is uniformly continuous? An-
swer the same questions with “uniformly continuous” replaced with “continuous”.
Explain why.
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Suppose S, T are linear maps on some finite dimensional vector space, S~! exists and
let 0 € (0,1). Then whenever ||S — T'|| is small enough, it follows that

|Tv|

o] €(1-68,1+6) (6.16)

for all v # 0. Similarly if 7~! exists and ||S — || is small enough,

T
= €(1-98,149).
Hint: For the first part, consider the new norm ||v|| = ’S’1v| . Use equivalence of

norms and simple estimates to establish 6.16.

Let o be an r simplex. Then o, b] will consist of all (1 —A) o+ Ab where A € [0, 1].
If 6 =[x, ,x,], show that [0,b] = [z, -+ ,x,,b]. Now if 6;,0, C 0 where
[0,b] is an r+ 1 simplex and each o; is an r simplex, show that [o,b] N [02,b] =
[0'2 noy, b] .

Let A : R" — R” be continuous and let f € R". Also let (-, -) denote the standard inner
product in R". Letting K be a closed and bounded and convex set, show that there
exists ¢ € K such that forally € K, (f —Ax,y —x) <0. Hint: Show that this is the
same as saying P (f —Ax +x) = x for some x € K where here P is the projection
map discussed above in Problem 10 on Page 152. Now use the Brouwer fixed point
theorem. This little observation is called Browder’s lemma. It is a fundamental result
in nonlinear analysis.

1In the above problem, suppose that you have a coercivity result which is

(Az,x) _

] —e |2l

Show that if you have this, then you don’t need to assume the convex closed set is
bounded. In case K = R", and this coercivity holds, show that A maps onto R”".

Let f: X — [—o0,00] where X is a Banach space. This is said to be lower semi-
continuous if whenever x,, — x, it follows that f (x) < liminf,_ f (x,). Show that
this is the same as saying that the epigraph of f is closed. Here we can make
X X [—o0, 9] into a metric space in a natural way by using the product topology where
the distance on [—0, 0] will be d (0, o) = |arctan (o) — arctan (¢t)|. Here epi (f) =
{(x,0t) : ¢ > f(x)}. The function is upper semicontinuous if limsup,_,, f (x;) <
f(x). What is a condition for f to be upper semicontinuous? Do you need a Banach
space to do this? Would it be sufficient to let X be a metric space?

Explain why the supremum of lower semicontinuous functions is lower semicontin-
uous and the infimum of upper semicontinuous functions is upper semicontinuous.

Let K be a nonempty closed and convex subset of R". Recall K is convex means that
ifz,y €K, thenforalls € [0,1],tx+ (1 —1)y € K. Show that if © € R” there exists
a unique z € K such that | — z| = min{|x — y| : y € K} .This z will be denoted as
Px. Hint: First note you do not know K is compact. Establish the parallelogram
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identity if you have not already done so, |u—v|* + |u+v|* = 2|ul* +2|v|>. Then
let {z;} be a minimizing sequence,

lim |z —x|* = inf{|lz—y|:y €K} = 1.
k—yoo
Now using convexity, explain why

2
r—Z
2

7Zk+zm 2
2

2
Zk— Zm

2

x—z,

=2
2

+2

Jr‘ac

and then use this to argue {2} is a Cauchy sequence. Then if z; works for i = 1,2,
consider (z1 + z2) /2 to get a contradiction.

In Problem 30 show that Px satisfies and is in fact characterized as the solution to
the following variational inequality. (x—Px,y—Px) < 0 for all y € K. Then show
that |Px; — Px;| < || — 2| Hint: For the first part note that if y € K, the function
t — |z— (Pz +1 (y—Px))|* achieves its minimum on [0, 1] at 7 = 0. For the second
part,

($1 —PiEl) . (P:Bz —PSC]) <0, (:132 —sz) . (P:I)] —P:Bz) <0.

Explain why (x, — Pz — (€1 — Px))) - (Pxy — Px) > 0 and then use a some ma-
nipulations and the Cauchy Schwarz inequality to get the desired inequality. Thus P
is called a retraction onto K.

Browder’s lemma says: Let K be a convex closed and bounded set in R” and let
A : K — R" be continuous and f € R". Then there exists « € K such that for all
y ek,

(f —Az,y—x) <0

show this is true. Hint: Consider x — P (f — Ax 4 @) where P is the projection onto
K. If there is a fixed point of this mapping, then P(f —Ax + x) = . Now consider
the variational inequality satisfied. This little lemma is the basis for a whole lot of
nonlinear analysis involving nonlinear operators of various kinds.

Generalize the above problem as follows. Let K be a convex closed and bounded
setin R" and let A : K — &2 (R") be upper semi-continuous having closed bounded
convex values and f € R". Then there exists « € K and z € Ax such that for all
y €K, (f—z,y—x) <0 show this is true. Also show that if K is a closed convex
and bounded set in E a finite dimensional normed linear space and A: K — £ (E') is
upper semicontinuous having closed bounded convex values and f € E’, then there
exists x € K and z € Ax such that forall y € K, (f —z,y —x) < 0. Hint: Use the con-
struction for the proof of the Kakutani fixed point theorem and the above Browder’s
lemma.

This problem establishes a remarkable result about existence for a system of in-
equalities based on the min max theorem, Theorem 5.12.5. Let E be a finite dimen-
sional Banach space and let K be a convex and compact subset of E. A set valued
map A : D(A) C K — E' is called monotone if whenever v; € Au;, it follows that
(vi —va,u; —uz) > 0. The graph, denoted as ¢ (A) consists of all pairs [u,Vv] such
that v € Au. This is a monotone subset of E x E’. Let z € E’ be fixed. Show that
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for [u;,vi] € 4 (A), for i = 1,2,--- ,n there exists a solution x € K to the system of
inequalities
(z+viui—x) >0,i=1,2,-.n

Hint: Let P, be all 1= (A1,--,A,) such that each Ay >0 and Y7, A = 1. Let
H : P, x P, — R be given by

H(ﬁ,i) izzlpi<z+v,-,jzzlajujui> 6.17)

Show that it is both convex and concave in both arguments. Then apply the min max
theorem. Then argue that H (l,l) < 0 from monotonicity considerations. Letting

(ﬁo, 7Lo> be the saddle point, you will have

(o) < H(Hoko) <H (Hy 1)
H(fAo) < H(fg o) <H(Hy g <0
H(ﬁjvo) < 0

Now choose [i judiciously while allowing 10 to be used to define x which satisfies
all the inequalities.

11t gets even better. Let K, , = {x € K : (z+v,u—x) > 0}. Show that K,, , is compact
and that the sets K,,, have the finite intersection property. Therefore, there exists
X € Niyyew(a)Kuy- Explain why (z+v,u—x) >0 for all [u,v] € ¢ (A). What would
the inequalities be if —A were monotone?

Problem 33 gave a solution to the inequality (f —z,y —x) <0,z € Ax under the con-
dition that A is upper semicontinuous. What are the differences between the result in
the above problem and the result of Problem 33. You could replace A with —A in the
earlier problem. If you did, would you get the result of the above problem?

Are there convenient examples of monotone set valued maps? Yes, there are. Let X
be a Banach space and let ¢ : X — (—oo,00] be convex, lower semicontinuous, and
proper. See Problem 28 for a discussion of lower semicontinuous. Proper means that
¢ (x) < oo for some x. Convex means the usual thing. ¢ (tx+ (1—1)y) <t¢ (x)+
(1—1)¢ (y) where ¢ € [0,1]. Then x* € d¢ (x) means that

(z—x)<¢(z)—¢(x), forallze X

Show that if x* € d¢ (x), then ¢ (x) < oo. The set of points x where ¢ (x) < oo is
called the domain of ¢ denoted as D (¢). Also show that if [x,x*],[£,£*] are two
points of the graph of d¢, then (£* —x* £ —x) > 0 so that d¢ is an example of a
monotone graph. You might wonder whether this graph is nonempty. See the next
problem for a partial answer to this question. Of course the above problem pertains
to finite dimensional spaces so you could just take any ¢ : R” — R which is convex
and differentiable. You can see that in this case the subgradient coincides with the
derivative discussed later.
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Let ¢ : R" — R be convex, proper lower semicontinuous, and bounded below. Show
that the graph of d¢ is nonempty. Hint: Just consider ¥ (x) = |x|*> + ¢ () and
observe that this is coercive. Then argue using convexity that dy (x) = d¢ (x) + 2x.
(You don’t need to assume that ¢ is bounded below but it is convenient to assume
this.)

Suppose f : [0,T] x R" — R" is continuous and an estimate of the following form
holds. (f (r,z),z) < A+ B|x|* Show that there exists a solution to the initial value
problem ' = f (t,x), x (0) = ¢ fort € [0,T].

In the above problem, suppose that — f + al is monotone for large enough @ in
addition to the estimate of that problem. Show that then there is only one solution to
the problem. In fact, show that the solution depends continuously on the initial data.

It was shown that if f: X — X is locally Lipschitz where X is a Banach space. Then
there exists a unique local solution to the IVP

Y =f), y(0)=yo

If f is bounded, then in fact the solutions exists on [0, 7] for any 7' > 0. Show that it
suffices to assume that || f ()| < a+b|y|-

Suppose f (+,-) : R x R" — R”" is continuous and also that | f (¢,x)| < M for all (z,x).
Show that there exists a solution to the initial value problem

X =f(t,x), x(0) =xp € R"

for ¢t € [0,T]. Hint: You might consider T : C([0,T],R") — C(]0,T],R") given by
Fx(t) =xo+ [} f (s,x(s)) ds. Argue that F has a fixed point using the Schauder fixed
point theorem.

Remove the assumption that |f (¢,x)| < M at the expense of obtaining only a local
solution.

Hint: You can consider the closed set in R” B = B(x(,R) where R is some positive
number. Let P be the projection onto B.

In the Schauder fixed point theorem, eliminate the assumption that K is closed. Hint:
You can argue that the {y;} in the approximation can be in f (K).

Show that there is no one to one continuous function

F:00,1] = {(xy): 2 +y* <1}

such that f is onto.
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Chapter 7

The Derivative

7.1 Limits of a Function

As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points &, which are limit points of D (f) and this concept is defined next. In all that follows
(V,]I-]l) and (W, ||-||) are two normed linear spaces. Recall the definition of limit point first.

Definition 7.1.1 Ler A C W be a set. A point z, is a limit point of A if B(zx,r)
contains infinitely many points of A for every r > 0.

Definition 7.1.2 e £:D (f) CV — W be a function and let x be a limit point of
D(f). Then

lim f(y)=L

y—)m

if and only if the following condition holds. For all € > 0 there exists 8 > 0 such that if
O0<|ly—=x| <98, andy € D(f)

then,
IL-f(y)l <e.

Theorem 7.1.3 iflim, ., f (y) = L and lim, ., f (y) = L1, then L = L.

Proof: Let € > 0 be given. There exists § > 0 such that if 0 < [y— x| < § and y €
D(f), then ||f(y)—L| <e, ||f(y)— Li| < €. Pick such a y. There exists one because
z is a limit point of D (f). Then ||[L — L[| < |L— f(y)|| +[|f (y) — L1|| < e+ & =2e.
Since € > 0 was arbitrary, this shows L =L;. B

One can define what it means for lim, ., f () = £oo. as in the case of real valued
functions.

Definition 7.1.4 If f(z) € R, limy_,4 f () = oo if for every number 1, there exists
0 > 0 such that whenever ||y —x|| < 8 and y € D(f), then f(x) > [. Also the asser-
tion that limy_, 4 f (x) = —co means that for every number I, there exists 6 > 0 such that
whenever ||y — x|| < 8 and y € D(f), then f(x) <.

The following theorem is just like the one variable version of calculus.

Theorem 7.1.5 suppose f :D(f) CV — F™. Then for x a limit point of D (f),

limf(y)=L (7.1)
y—=X

if and only if
tim fi (y) = Ly (72)

Wheref(y) = (fl (y)’ afp(y)) and L = (le"' 7Lp)'

Suppose here that f has values in W, a normed linear space and

lim f(y) =L, limg(y) =K
y—x

}'*}1}

183
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where K,L € W. Then ifa, b € T,

lim (af (y) +bg (y)) = aL+ DK, (7.3)

y—x

If W is an inner product space,

lim (f,g) (v) = (L,K) (7.4)

y—Xx
If g is scalar valued with limy_,, g (y) = K,

limf (y)g (y) = LK. (7.5)

y—X
Also, if h is a continuous function defined near L, then

limho f(y) = h(L). (71.6)
y—x
Suppose limy_,, f (y) = L. If || f (v) — b|| < r for all y sufficiently close to &, then |L—b| <r
also.

Proof: Suppose 7.1. Then letting € > 0 be given there exists 0 > 0 such that if 0 <
lly—=x| < 8, it follows

) —Lel < F(v)— Ll <e

which verifies 7.2.

Now suppose 7.2 holds. Then letting € > 0 be given, there exists ; such that if 0 <
[ly —x|| < &k, then | fx (y) —Lx| < €. Let0 < 8 <min (1, --,8,). Thenif 0 < ||y —x|| < &,
it follows || f (v) — L||.. < €. Any other norm on F”* would work out the same way because
the norms are all equivalent.

Each of the remaining assertions follows immediately from the coordinate descriptions
of the various expressions and the first part. However, I will give a different argument for
these.

The proof of 7.3 is left for you. Now 7.4 is to be verified. Let € > 0 be given. Then by
the triangle inequality,

|(f58) ) = (LK) < [(f38) (v) = (f (), K) [+ |(F (¥) . K) = (LK)
<O ) =K+ KIS ) = LIl

There exists 81 such thatif 0 < ||y —x|| < 81 andy € D(f), then || f (y) — L|| < 1,and so for
such y, the triangle inequality implies, || f (y)|| < 1+]|L||. Therefore, for 0 < ||y —x|| < &1,

|(f58) ) = (LK) < (L+ (K] +IIL1D [llg () = K[+ [1f () = L[] (1.7
Now let 0 < 0 be such thatif y € D(f) and 0 < ||x —y|| < 92,

&
L+ [IKI+ L))

IFO Ll <5 i le0) Kl < 5

€
(L (K[ L]
Then letting 0 < 6 < min(81,0>), it follows from 7.7 that |(f,g) (v) — (L,K)| < € and this
proves 7.4.
The proof of 7.5 is left to you.
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Consider 7.6. Since h is continuous near L, it follows that for € > 0 given, there exists
n > 0 such thatif ||y — L|| < n, then || (y) —A(L)|| < €. Now since lim,_,, f (y) = L, there
exists 0 > 0 such that if 0 < ||y —x|| < 8, then || f (v) — L|| < n.Therefore, if 0 < ||y — x|| <
8, [ln(f(y)—h(L) <e.

It only remains to verify the last assertion. Assume ||f (y) —b|| < r. It is required to
show that ||L —b|| < r. If this is not true, then ||L—b|| > r. Consider B(L,|L—b| —r).
Since L is the limit of f, it follows f (y) € B(L,||L—b|| —r) whenever y € D (f) is close
enough to x. Thus, by the triangle inequality, || f (y) — L|| < ||L — b|| — r and so

r<L=bl[=f ) =L < [[lb=LI = [lf ) = LI < [b=F W,

a contradiction to the assumption that ||b— f (y)|| <r. B
The relation between continuity and limits is as follows.

Theorem 7.1.6 ror r: D (f) = W and x € D(f) a limit point of D(f), f is contin-
uous at x if and only if limy_,, f (y) = f (x).

Proof: First suppose f is continuous at x a limit point of D (f). Then for every € > 0
there exists 8 > 0 such that if |x—y|| < § and y € D(f), then |f(x)—f(y)] < €. In
particular, this holds if 0 < ||x—y|| < & and this is just the definition of the limit. Hence
f(x) =limy. f(y).

Next suppose x is a limit point of D (f) and limy_,, f (y) = f (x). This means that if £ >
0 there exists & > 0 such that for 0 < ||x—y|| < § and y € D (f), it follows | f (y) — f (x)| <
€. However, if y = x, then |f (y) — f (x)| = |f (x) — f (x)| = 0 and so whenever y € D (f)
and ||Jx —y|| < 8, it follows | f (x) — f ()| < &, showing f is continuous at x.

Example 7.1.7 Find lim( ) 5.1) (55.7):

Itis clear that lim(, ) ,(3.1) )%

(6,1).

=6 and lim(, ;) (3 1)y = 1. Therefore, this limit equals

Example 7.1.8 Find lim, ;0,0 %

First of all, observe the domain of the function is R?\ {(0,0)}, every point in R? except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take € = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.
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7.2 Basic Definitions

The concept of derivative generalizes right away to functions of many variables. However,
no attempt will be made to consider derivatives from one side or another. This is because
when you consider functions of many variables, there isn’t a well defined side. However,
it is certainly the case that there are more general notions which include such things. I will
present a fairly general notion of the derivative of a function which is defined on a normed
vector space which has values in a normed vector space. The case of most interest is that
of a function which maps F” to " but it is no more trouble to consider the extra generality
and it is sometimes useful to have this extra generality because sometimes you want to
consider functions defined, for example on subspaces of F"and it is nice to not have to
trouble with ad hoc considerations. Also, you might want to consider " with some norm
other than the usual one.

In what follows, X,Y will denote normed vector spaces. Thanks to Theorem 5.2.4 all
the definitions and theorems given below work the same for any norm given on the vector
spaces.

Let U be an open set in X, and let f : U — Y be a function.

Definition 7.2.1 A function g is o (v) if

g) _
Jvf—0 [lv]]

(7.8)

A function f : U — Y is differentiable at € U if there exists a linear transformation
Le % (X,Y) such that

f(@+v) = f(@)+Lv+o(v)

This linear transformation L is the definition of Df (x). This derivative is often called the
Frechet derivative.

Note that from Theorem 5.2.4 the question whether a given function is differentiable is
independent of the norm used on the finite dimensional vector space. That is, a function is
differentiable with one norm if and only if it is differentiable with another norm.

The definition 7.8 means the error f (x+wv) — f (x) — Lv converges to O faster than
||v||. Thus the above definition is equivalent to saying

L I @)= f (@)~ Lol|

=0 7.9
lv]l—0 o]l 79
or equivalently,
RS ly — ||

The symbol, o (v) should be thought of as an adjective. Thus, if # and k are constants,
o(v)=o0(v)+o(v), o(tv)=0(v), ko(v) =0 (v)
and other similar observations hold.

Theorem 7.2.2 The derivative is well defined.
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Proof: First note that for a fixed nonzero vector v, o (tv) = o(¢). This is because

t t
limio( v) =lim ||v|| o(tv) =
=0 |t\ 1—0 ||l"vH

Now suppose both L; and L, work in the above definition. Then let v be any vector and let
t be a real scalar which is chosen small enough that tv + @ € U. Then

fx+tv)=f(x)+Litv+o(tv), f(x+tv) = f(x)+Latv+o(rv).

Therefore, subtracting these two yields (L, — L) (tv) = o (tv) = o(¢). Therefore, dividing

by t yields (L, — L) (v) = @ Now let t — 0 to conclude that (L, — L) (v) = 0. Since

this is true for all v, it follows L, = L;. This proves the theorem. ll
In the following lemma, ||[Df (x)|| is the operator norm of the linear transformation,

Df (x).

Lemma 7.2.3 Let f be differentiable at x. Then f is continuous at  and in fact, there
exists K > 0 such that whenever ||v|| is small enough,

I (z+v) = f (@) <K|lv]
Also if f is differentiable at x, then
o(|lf (z+v)—f(z)) =o(v)
Proof: From the definition of the derivative,
f(x+v)—f(z)=Df (x)v+o(v).

Let ||v|| be small enough that ollvl) < 1 5o that |lo(v)]| < ||v||. Then for such v,

o]
If (®+v) = f ()| <|[Df (@) ]|+ [lo] < (IDF (@)]+ 1) ]

This proves the lemma with K = ||[Df (x)|| + 1. Recall the operator norm discussed in
Definition 5.2.2.
The last assertion is implied by the first as follows. Define

h(v) = { Wemfol 1 1f @)= £ (@)l #0

0if | f (z+v)—f(z)][=0

Then lim,, ok (v) = O from continuity of f at = which is implied by the first part. Also
from the above estimate, if ||v|| is sufficiently small,

o([[f(z+v)—f(z)]) |Hf(w+v)—f(w)||

o]l o]l

and limj,, |0 [|h (v)|| = 0. This establishes the second claim. B

H =l (@)l < Ik (@) (IDF (@)]+1)
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7.3 The Chain Rule

With the above lemma, it is easy to prove the chain rule.

Theorem 7.3.1 (The chain rule) Let U and V be open sets U C X andV CY. Sup-
pose f U — V is differentiable at * € U and suppose g : V — ¥ is differentiable at
f(x) €V. Then go f is differentiable at x and

D(go f)(xz)=Dg(f (z))Df (z).

Proof: This follows from a computation. Let B (x,r) C U and let r also be small enough
that for ||v|| < r, it follows that f (x 4 v) € V. Such an r exists because f is continuous at
x. For ||v]| < r, the definition of differentiability of g and f implies

g(f(x+v))—g(f(z)) =

Dy (f (z))(f (x+v) - f(2)) +o(f (®+v)-f(x))
= Dg(f (@) [Df (x)v+o(v)]+o(f(x+v)-f(z))
= D(g(f(2)D(f(z))v+o(v)+o(f(z+v)-f(z)) (7.11)
= D(g(f(2)D(f(z))v+o(v)

By Lemma 7.2.3. From the definition of the derivative D(go f) (x) exists and equals

D(g(f(z)D(f(x)). ®
7.4 The Matrix of the Derivative

The case of most interest here is the only one I will discuss. It is the case where X = R” and
Y = R"™, the function being defined on an open subset of R”. Of course this all generalizes
to arbitrary vector spaces and one considers the matrix taken with respect to various bases.
However, I am going to restrict to the case just mentioned here. As above, f will be defined
and differentiable on an open set U C R".

As discussed in the review material on linear maps, the matrix of Df () is the matrix
having the i’ column equal to D f (x) e; and so it is only necessary to compute this. Let ¢
be a small real number such that

f(x+ie)— f(x) —Df (z)(te)) _ o(t)

t t

Therefore,
flx+te)— f(x ot
@) 2@ _ pf @) e + 2
The limit exists on the right and so it exists on the left also. Thus
of @) _ . f(ztie)—f ()

8x,- t—0 t

=Df (z)(e:)

and so the matrix of the derivative is just the matrix which has the i’ column equal to the
th partial derivative of f. Note that this shows that whenever f is differentiable, it follows
that the partial derivatives all exist. It does not go the other way however as discussed later.
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Theorem 7.4.1 Let f:U CF" — F" and suppose f is differentiable at x. Then all
the partial derivatives f’( ) exist and if Jf (x) is the matrix of the linear transformation,

th

Df (x) with respect to the standard basis vectors, then the ij'" entry is given by % (x)
J

also denoted as f;j or fix;. It is the matrix whose i'" column is

2f(x) _ . fla+re)—f (@)

8x,- t—0 t

Of course there is a generalization of this idea called the directional derivative.
Definition 7.4.2 in general, the symbol D, f (x) is defined by

i & @+ 10) — f ()
t—0 t

where t € F. In case |v| = 1,F =R, and the norm is the standard Euclidean norm, this is
called the directional derivative. More generally, with no restriction on the size of v and in
any linear space, it is called the Gateaux derivative. f is said to be Gateaux differentiable
at x if there exists D, f (x) such that

i @ H10) ~ £ (@)

t—0 t

where v — D, f (x) is linear. Thus we say it is Gateaux diﬁerentiable if the Gateaux
derivative exists for each v and v — D,, f (x) is linear. Note that ( =D, f (x).

What if all the partial derivatives of f exist? Does it follow that f is differentiable?
Consider the following function, f:R?* — R,

Y 7 if (x,y) # (0,0)
7620={ S S0

Then from the definition of partial derivatives,

f(h,0)~f(0,0) . 0-0

li =0
hlg(l) h =0 h

and 0,h 0,0 0-0
h—0 h h—0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 7.2.3 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.

What if the one dimensional derivative in the definition of the Gateaux derivative exists
for all nonzero v? Is the function differentiable then? Maybe not. See Problem 12 in the
exercises for example.

René Gateaux was one of the many young French men killed in world war I. This derivative is named after
him, but it developed naturally from ideas used in the calculus of variations which were due to Euler and Lagrange
back in the 1700’s.
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7.5 A Mean Value Inequality

The following theorem will be very useful in much of what follows. It is a version of the
mean value theorem as is the next lemma. The mean value theorem depends on the function
having values in R and in the lemma and theorem, it has values in a normed vector space.

Lemma 7.5.1 LetY be a normed vector space and suppose h : [0,1] — Y is continuous
and differentiable from the right and satisfies | b’ (t)|| < M, M > 0. Then [|h (1) — h (0)|| <
M.

Proof: Let € > 0 be given and let
S={re0,1]: forall s € [0,7],||h(s) —h(0)]| < (M+¢)s}
Then O € S. Let t = supS. Then by continuity of h it follows
lh(t)—h(0)]| = (M+e)t (7.12)
Suppose ¢ < 1. Then there exist positive numbers, /; decreasing to O such that
[P (2 + i) = R (0)[| > (M + &) (1 + h)

and now it follows from 7.12 and the triangle inequality that

[Pt + ) = h (@) [+ (1R (1) = R (O)]]

= |h(+h)=h @)+ M+e)t > (M+e)(t+ )

Thus

[h(t+he) —h ()] > (M+€)hy
Now dividing by A and letting k — oo, Hh’ (1) || > M + €,a contradiction. Thus z = 1. Since
€ is arbitrary, the conclusion of the lemma follows.

Theorem 7.5.2 Suppose U is an open subset of X and f : U — Y has the property
that Df (x) exists for all x in U and that, x +t(y—x) € U for all t € [0,1]. (The line
segment joining the two points lies in U.) Suppose also that for all points on this line
segment, |Df (x+t(y—x))|| <M. Then ||f (y) — f (x)|| < M|y — x|. More generally if
Do f (y)|| < M for all y on the segment joining x and x + v, then || f (x + av) — f (z)|| <
Ma. Also Dy f () = aDy f (x) if a # 0.

Proof: Let h(t) = f(z +t(y —x)).Then by the chain rule applied to h (¢), b’ (t) =
Df(x+t(y—=z))(y—=x) and so

[P ()] = IDf (z+1 (y — =) (y — )| < M|y — |

by Lemma 7.5.1, ||k (1) = h (0)|| = || f (y) — f (x)|| < M ||y — x||. For the second part, let
h(t)= f (x+tav). Thenifa #0,

W (t) = ;mw E}lligg):—a(f(a:—i—tav—i—hav)—f(w—i—tav))

= Dyf(x+rtav)a.

This shows that D, f () = aD,, f (x) . Now for the inequality, there is nothing to show
if a =0 so assume a # 0. Then by assumption and Lemma 7.5.1, ||h (1) —h(0)]| =
I (@ +av)— f (@)] < Ma. W
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7.6 Existence of the Derivative, C! Functions

There is a way to get the differentiability of a function from the existence and continuity of
one dimensional directional derivatives. The following theorem is the main result. It gives
easy to verify one dimensional conditions for the existence of the derivative. The meaning
of ||-|| will be determined by context in what follows. This theorem says that if the Gateaux
derivatives exist for each vector in a basis and they are also continuous, then the function
is differentiable.

Theorem 7.6.1 Let X be a normed vector space having basis {v1,--- ,v,} and let
Y be another normed vector space. Let U be an open set in X and let f : U — Y have the
property that the one dimensional limits

Dot @) = tig L 100 @

exist and x — Do, f (x) are continuous functions of x € U as functions with values in'Y .
Then Df (x) exists and

n
Df (®)v =Y Dy f(x)a
k=1
where v =Y}, axvy. Furthermore, x — D f () is continuous; that is
lim [[Df (y) —Df (z)|| =
y—x

Proof: Letwv =Y} _, av; where all a; are small enough that for all k£ > 0,

k 0
:c—l—Zaj’vj € B(x,r)CU, Zakvk =0.
j=1 k=1

The mapping v — (ay,...,a,) is an isomorphism of V and F" and we can define a norm
as Y |ax| which is equivalent to the norm on V thanks to Theorem 5.2.4. Let hy () =

i (:n—l— Zl]‘.;{ ajvj) — f (). Then collecting the terms,

flx+v)— Z (hy (x4 apvi) — Z (x+apvr) — f(x)) (7.13)
k=1 k=1

Using Theorem 7.5.2,

HDak”khk (z +taxvy) H = HakD'Ukhk (z +tarvr) H

k—1
ay <kaf <oc—|- Zajvj+takvk> —kaf(:c—i-tak'uk)) H

Jj=1

< Clvlle

provided ||v|| is sufficiently small, thanks to the assumption that the D,,, f are continuous.
It follows, since € is arbitrary that the first sum on the right in 7.13 is o (v). Now

(f (x +arvr) = f (&) = Dy, f (2) ax =
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(@ +avr) — f ()

Ak

f (@ +avr) — (f () + Do, f () ar) = ax ( ka_f(a:)) =o0(v)

because

Ha" (f(fﬂ+akvk)—f(w) kaf(x)) H

’<f(m+akvk)f(fv)

Collecting terms in 7.13,

fl@+v)—f(@)=0(v)+ ) (f(@+awvy) —f () =0(v)+) Dy f(x)a
k=1 k=1

which shows that D f (x) (v) = ¥}_| Dy, f (x) ax where v = Y}, a;vy. This formula also
shows that & — D f () is continuous because of the continuity of these D,,, f. Bl

Note how if X = R” and the basis vectors are the e, then the a are just the components
of the vector v taken with respect to the usual basis vectors. Thus this gives the above result
about the matrix of Df (x).

This motivates the following definition of what it means for a function to be C!.

Definition 7.6.2 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U — Y another finite dimensional normed vector space. Then f
is said to be C' if there exists a basis for X,{vi, - ,v,} such that the Gateaux deriva-
tives,D., f (x) exist on U and are continuous functions of x.

Note that as a special case where X = R”, you could let the v; = e; and the condition
would reduce to nothing more than a statement that the partial derivatives ng, are all con-
tinuous. If X = R, this is not a very interesting condition. It would say the derivative exists
if the derivative exists and is continuous.

Here is another definition of what it means for a function to be C'.

Definition 7.6.3 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U — Y another finite dimensional normed vector space. Then f is said
to be C' if f is differentiable and x — D f () is continuous as a map from U to £ (X,Y).

Now the following major theorem states these two definitions are equivalent. This is
obviously so in the special case where X = R" and the special basis is the usual one because,
as observed earlier, the matrix of D f () is just the one which has for its columns the partial
derivatives which are given to be continuous.

Theorem 7.6.4 LetU bean open subset of a normed finite dimensional vector space
X and let f : U — Y another finite dimensional normed vector space. Then the two defini-
tions above are equivalent.

Proof: It was shown in Theorem 7.6.1, the one about the continuity of the Gateaux
derivatives yielding differentiability, that Definition 7.6.2 implies 7.6.3. Suppose then that
Definition 7.6.3 holds. Then if v is any vector,

limf(:c—l—tv) —f(=x) —im Df (x)tv+o(tv)

t—0 t t—0 t

:Df(m)v+}§%@ =Df (x)v
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Thus D, f (x) exists and equals Df () v. By continuity of @ — D f (x), this establishes
continuity of & — D,, f () and proves the theorem. H
Note that the proof of the theorem also implies the following corollary.

Corollary 7.6.5 Let U be an open subset of a normed finite dimensional vector space, X
andlet f : U — Y another finite dimensional normed vector space. Then if there is a basis of
X,{v1, - ,v,} such that the Gateaux derivatives, Dy, f () exist and are continuous, then
all Gateaux derivatives, Dy, f (x) exist and are continuous for all v € X. Also Df (x) (v) =

Dy f ().

From now on, whichever definition is more convenient will be used.

7.7 Higher Order Derivatives

If f: U CX — Y for U an open set, then @ — D f (x) is a mapping from U to .Z (X,Y), a
normed vector space. Therefore, it makes perfect sense to ask whether this function is also
differentiable.

Definition 7.7.1 7ne following is the definition of the second derivative. D* f (x) =
D(Df (x)).

Thus, Df (x 4+v) — Df (x) = D> f (z) v + o (v) .This implies
DXf (x) € £ (X2 (X,Y)), D*f () (w) (v) €,

and the map (u,v) — D*f () (u) (v) is a bilinear map having values in Y. In other words,
the two functions,
u— D’ f (z) (u) (v), v — D*f (x) (w) (v)

are both linear.

The same pattern applies to taking higher order derivatives. For example, D f (z) =
D (D?*f(x)) and D? f (z) may be considered as a trilinear map having values in Y. In
general D¥ f (x) may be considered a k linear map. This means

(wi, - ug) = DM () (wr) - (wg)

has the property w; — D* f (z) (u1) -+ (u;) - (wy) is linear.
Also, instead of writing D? f (x) (u) (v) , or D f (x) (u) (v) (w) the following notation
is often used.
D*f () (u,v) or D* f () (u, v, w)

with similar conventions for higher derivatives than 3. Another convention which is often
used is the notation D¥ f () v* instead of DX f () (v, -~ ,v).

Note that for every k, DX f maps U to a normed vector space. As mentioned above,
Df () has values in .Z (X,Y),D? f (x) has values in . (X,.Z (X,Y)), etc. Thus it makes
sense to consider whether DX f is continuous. This is described in the following definition.

Definition 7.7.2 Let U be an open subset of X, a normed vector space, and let
f:U =Y. Then f is CX(U) if f and its first k derivatives are all continuous. Also,
DX f (x) when it exists can be considered a Y valued multi-linear function. Sometimes
these are called tensors in case f has scalar values.
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7.8 Some Standard Notation

In the case where X = R” there is a special notation which is often used to describe higher
order mixed partial derivatives. It is called multi-index notation.

Definition 7.8.1 o« = (aq,---, ) for ay---a, positive integers is called a multi-
index, as before with polynomials. For o a multi-index, =a;+---+o,,andifx X,

T = (.XI,"' 7xn)u

and f a function, define

9l f ()

(03] (0%) oy *
dx;'dxy* - dxy

™ =x{1x5% x5 D™ f(x) =

Then in this special case, the following is another description of what is meant by a C*
function.

Definition 7.8.2 et U be an open subset of R" and let f : U — Y. Then for k a
nonnegative integer, a differentiable function f is C* if for every |a| < k, D* f exists and
is continuous.

Theorem 7.8.3 Let U be an open subset of R" and let f :U — Y. Then if D" f (x)
exists for r < k, then D" f is continuous at x for r < k if and only if D™ f is continuous at x
Sor each |or| < k.

Proof: First consider the case of a single derivative. Then as shown above, the matrix
of Df (x) is just

J@)=( @ - H@)

and to say that @ — Df () is continuous is the same as saying that each of these partial
derivatives is continuous. Written out in more detail,

Flo+0) -1 @) =Df @) v+ow) = ¥ T @ tow)

Thus Df (x)v =Y}, axk £ (2) vi. Now consider the second derivative.

D*f (z) (w) (v) =

and so D f (x) (w) (v) =¥« %wjvk. Hence D? f is continuous if and only if each of

2
these coefficients * — %Xf éfk) is continuous. Obviously you can continue doing this and
7 <

conclude that D¥ f is continuous if and only if all of the partial derivatives of order up to k
are continuous. ll
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In practice, this is usually what people are thinking when they say that f is C*. But as
just argued, this is the same as saying that the r linear form & — D" f (x) is continuous into
the appropriate space of linear transformations for each r < k.

Of course the above is based on the assumption that the first k derivatives exist and gives
two equivalent formulations which state that these derivatives are continuous. Can anything
be said about the existence of the derivatives based on the existence and continuity of the
partial derivatives? As pointed out, if the partial derivatives exist and are continuous, then
the function is differentiable and has continuous derivative. However, I want to emphasize
the idea of the Cartesian product.

7.9 The Derivative and the Cartesian Product

There are theorems which can be used to get differentiability of a function based on exis-
tence and continuity of the partial derivatives. A generalization of this was given above.
Here a function defined on a product space is considered. It is very much like what was
presented above and could be obtained as a special case but to reinforce the ideas, I will do
it from scratch because certain aspects of it are important in the statement of the implicit
function theorem.

The following is an important abstract generalization of the concept of partial derivative
presented above. Insead of taking the derivative with respect to one variable, it is taken with
respect to several but not with respect to others. This vague notion is made precise in the
following definition. First here is a lemma.

Lemma 7.9.1 Suppose U is an open set in X X Y. Then the set, Uy, defined by
Uy={xeX: (x,y) U}

is an open set in X. Here X XY is a finite dimensional vector space in which the vector
space operations are defined componentwise. Thus for a,b € T,

a(wlvyl)—’_b(mZ?yZ) = (a(BI +bw2,ay] +by2)

and the norm can be taken to be

(e, y)| = max ([|[], |y[])

Proof: Recall by Theorem 5.2.4 it does not matter how this norm is defined and the
definition above is convenient. It obviously satisfies most axioms of a norm. The only one
which is not obvious is the triangle inequality. I will show this now.

(@ +z1,y+y)|| = max ([l + 2], |y + i)
max ([ + [l [yl + [y 1)

max (|||, [ly[]) +max ([, [y )

(s y) [l + [z 9

(@, y) + (@191

IN A

Let ¢ € U,. Then (z,y) € U and so there exists r > 0 such that B ((x,y),r) € U. This
says that if (u,v) € X x Y such that ||(u,v) — (x,y)|| < r, then (u,v) € U. Thus if

I(w,y) = (@, y)l| = lu—z|x <r,
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then (u,y) € U. This has just said that B(x,r)y, the ball taken in X is contained in Uy,,.
This proves the lemma. l

Or course one could also consider U, = {y : (x,y) € U} in the same way and conclude
this set is open in Y. Also, the generalization to many factors yields the same conclusion.
In this case, for © € [TL; X;, let

Jl = max (Jlily, : @ = (@, ) )

Then a similar argument to the above shows this is a norm on [, X;. Consider the triangle
inequality.

@, @)+ (e )| = max (2 + willy, ) < max (Jl2illy, + llyilx,

< max (|12, ) +max (lyily, ) = =/l + 1y]
Corollary 7.9.2 Let U CT], X; be an open set and let

Ulw =z e (zy, 21, 2,® 0, @) EUS.

1= 1841, %

Then U4, is an open set in F'i.

ST &)

Proof: Let 2 €Uy, .. 2, @iy, wp)- THEN (X1, \Ti1,2, X4, ,Ty) =X €U by
definition. Therefore, since U is open, there exists r > 0 such that B(x,r) C U. It follows

that for B (z,r)x, denoting the ball in X;, it follows that B(z,7)x. C Uiz, . 2 | @iy 1, 2n)
because to say that ||z —w]|y <ris to say that
”(wlv"' yLi—1,29Ljq1," " 7wn) - (:121,~~ Yy Li—1, Wy Ljy 1, " 7wn)|| <r

and sow € U(ml-“'7ﬂif71-,wi+1wwwn)‘
Next is a generalization of the partial derivative.

Definition 7.9.3 L. g:UCII.,X; =Y, where U is an open set. Then the map
z—=g (@1, Ti1,2, T 1, s Tn)
is a function from the open set in X;,
{ziz=(x1,,®i1,2,%4 1, ,Tn) €U}

to Y. When this map is differentiable, its derivative is denoted by D;g (x). To aid in the
notation, for v € X;, let 0;v € [T, X; be the vector (0,--- ,v,---,0) where the v is in the
i'" slot and for v € [T, X, let v; denote the entry in the i'* slot of v. Thus, by saying

z %g(mla"' 7mi*17z7$i+17"’ 7mn)
is differentiable is meant that for v € X; sufficiently small,
g(r+0;v)—g(x)=Dig(x)v+o(v).

Note Dig (x) € Z (X;,Y).
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As discussed above, we have the following definition of C 1 U).

Definition 7.9.4 LetU C X be an open set. Then £ :U — Y is C! (U) if f is differ-
entiable and the mapping © — D f (x) , is continuous as a function from U to £ (X,Y).

With this definition of partial derivatives, here is the major theorem. Note the resem-
blance with the matrix of the derivative of a function having values in R™ in terms of the
partial derivatives.

Theorem 7.9.5 Le: 9,U,TT", X, be given as in Definition 7.9.3. Then g is C' (U)
if and only if D;g exists and is continuous on U for each i. In this case, g is differentiable
and

v) = ZDkg(w)vk (7.14)
K
where v = (vy,---,Vy).

Proof: Suppose then that D;g exists and is continuous for each i. Note Z’J‘-zl Ojv;=
(v1,-+,vk,0,---,0). Thus Y'i-1 6jv; =v and define Z?:] 0 jv; = 0. Therefore,

g(z4v)— Z[ <x+fejv,»> —g<x+kzlejvj>] (7.15)

=1 j=1

- o) esne) oo o) o)

+i (@+01v) — g ()

If hy(x)=g <w+2'j‘.;i ijj) — g (x) then the top sum is Y7_; hg (€ + 0xvi) — hy ()
and from the definition of hy, |[Dhy (x)|| < € a sufficiently small ball containing x. Thus

this top sum is dominated by € ||v|| whenever ||v|| is small enough. Since € is arbitrary, this
term is o (v) . The last term is i, Dxg () vx + 0 (vy) and so, collecting terms obtains

glx+v)— ZDkQ )vi+o(v)

which shows Dg (x) exists and equals the formula given in 7.14. Also x — Dg (x) is
continuous since each of the Dy g () are.

Next suppose g is C'. I need to verify that D;g (z) exists and is continuous. Let v € X;
sufficiently small. Then

g(x+6,v)—g(x) =Dg(x) v+ 0(0;v) =Dg(x)0v+o0(v)

since ||6;v|| = ||v]|. Then Dyg(x) exists and equals Dg (x) o 0. Now & — Dg (x) is
continuous. Since 6 is linear, it follows from Lemma 5.2.1 that 6 : X; — [Ti_, X; is also
continuous. W

Note that the above argument also works at a single point . That is, continuity at  of
the partials implies Dg () exists and is continuous at .
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The way this is usually used is in the following corollary which has already been ob-
tained. Remember the matrix of Df (). Recall that if a function is C! in the sense that
x — Df (x) is continuous then all the partial derivatives exist and are continuous. The next
corollary says that if the partial derivatives do exist and are continuous, then the function is
differentiable and has continuous derivative.

Corollary 7.9.6 Let U be an open subset of F" and let f : U — F™ be C! in the sense
that all the partial derivatives of f exist and are continuous. Then f is differentiable and

Fato) =@+ Y L @ntow).
k=1 9%k

Similarly, if the partial derivatives up to order k exist and are continuous, then the function
is C* in the sense that the first k derivatives exist and are continuous.

7.10 Mixed Partial Derivatives

Continuing with the special case where f is defined on an open set in F”, I will next con-
sider an interesting result which was known to Euler in around 1734 about mixed partial
derivatives. It was proved by Clairaut some time later. It turns out that the mixed partial
derivatives, if continuous will end up being equal. Recall the notation f, = % = D¢, f and

_ 9 _
fxy — Jyox Delezf-

Theorem 7.10.1 Suppose f: U CF? — R where U is an open set on which Jo Sy,
fry and fyy exist. Then if fi, and f are continuous at the point (x,y) € U, it follows

fx)’ (xay) :fyx (x’y>'

Proof: Since U is open, there exists > 0 such that B ((x,y),r) C U. Now let [t|,|s]| <
r/2,t,s real numbers and consider

h(t) h(0)

MG = TGyt Gt ) =t - ) (116)

Note that (x+¢,y+s) € U because
2
ot ty+9) = @) = 169 = (F+5)"
r2+r2 Vo, -
—+— =—<r
473 V2

As implied above, k(1) = f (x+1¢,y+5) — f (x+1,y). Therefore, by the mean value theo-
rem from one variable calculus and the (one variable) chain rule,

IN

a6 = L0~ h0) = L ey
= %(fx(erat,ers) — fr(x+at,y))

for some o € (0, 1). Applying the mean value theorem again,

A(Svt) :fxy (x+(xt,y+ﬁs)
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where a, § € (0,1).
If the terms f(x+¢,y) and f (x,y-+s) are interchanged in 7.16, A(s,?) is unchanged
and the above argument shows there exist ¥, 0 € (0, 1) such that

A(s,t) = fyx (x+v1,y+ 8s).

Letting (s,7) — (0,0) and using the continuity of fi, and fi. at (x,y),

lim  A(s,t) = foy (x,y) = fix (x,y) .0
(50)5(0.0) (s,1) Sy (x,y) Jyx (x,y)
The following is obtained from the above by simply fixing all the variables except for
the two of interest.

Corollary 7.10.2 Suppose U is an open subset of X and f : U — R has the property
that for two indices, k,1, fy, fx,fux, and fyy, exist on U and fy, and fyx, are both
continuous at © € U. Then fyx, (x) = fo (x).

By considering the real and imaginary parts of f in the case where f has values in C
you obtain the following corollary.

Corollary 7.10.3 Suppose U is an open subset of F* and f : U — F has the property
that for two indices, k,l, fv,, fy,fyx, and fyx exist on U and f,x, and fy,y, are both
continuous at © € U. Then fy,, () = fox, ().

Finally, by considering the components of f you get the following generalization.

Corollary 7.10.4 Suppose U is an open subset of F* and f : U — F™ has the property
that for two indices, k,l, f, fy,fyyxand [y, existonU and f, . and f, . are both
continuous at ¢ € U. Then [, () = f,, (T).

This can be generalized to functions which have values in a normed linear space, but
I plan to stop with what is given above. One way to proceed would be to reduce to a
consideration of the coordinate maps and then apply the above. It would even hold in
infinite dimensions through the use of the Hahn Banach theorem. The idea is to reduce to
the scalar valued case as above.

In addition, it is obvious that for a function of many variables you could pick any pair
and say these are equal if they are both continuous.

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [2].

Example 7.10.5 Let
2 i () £ 0.0)
ﬂL”_{o§3Jr4am

From the definition of partial derivatives it follows that £, (0,0) = £, (0,0) = 0. Using
the standard rules of differentiation, for (x,y) # (0,0),

P x4 dx2y? P x = dx2y?
:y77 = X
' 242> 7 (22 +2)
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Now .
0,y) — 0,0 —
fxy(0,0)Ehme( 7y) fx( i ) :llm y2 :71
y—0 y y—0 (yZ)
while .
,(x,0)— £,(0,0
fyx(o,O)zlimf’(x’ )= /00 _ ¥ S=1
x—0 X x—0 (x2)

showing that although the mixed partial derivatives do exist at (0,0), they are not equal
there.

Incidentally, the graph of this function appears very innocent. Its fundamental sickness
is not apparent. It is like one of those whited sepulchers mentioned in the Bible.

7.11 A Cofactor Identity

Lemma 7.11.1 Suppose det(A) = 0. Then for all sufficiently small nonzero €, it follows
that det (A+€I) # 0.

Proof: Let det (Al —A) = AP + g AP+ +ap_1A +a,. First suppose Aisa p x p
matrix. If det(A) # 0, this will still be true for all € small enough. Now suppose also that
det(A) = 0. Thus, the constant term of det (Al —A) is 0. Consider €I + A = A, for small
real €. The characteristic polynomial of A is

det(Al—Ag) =det((A—€)I—A)
This is of the form
A—e)f+ar(A—e)’ '+ +(A—€)"ay

where the a; are the coefficients in the characteristic polynomial for A and a; = 0 for
k > m,a,, # 0. The constant term of this polynomial in A must be nonzero for all € small
enough because it is of the form

(—1)" €™ ay, + (higher order terms in €) = €" [a,, (—1)" + €C (€)]

which is nonzero for all positive but very small €. Thus €/ + A is invertible for all € small
enough but nonzero. B
Recall that for A an p x p matrix, cof (A), ; is the determinant of the matrix which results

from deleting the " row and the j” column and multiplying by (—1)""/. In the proof and

in what follows, I am using Dg to equal the matrix of the linear transformation Dg taken
with respect to the usual basis on R?. Thus (Dg);; = dgi/dx; where g = }.; g;e; for the e;
the standard basis vectors.
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Lemma 7.11.2 Let g : U — R? be C* where U is an open subset of RP. Then

p
Z cof(Dg)ijﬁj =0,
j=1

where here (Dg);; = gi,j = gg, Also, cof (Dg);; adg;( 9),
i.j
Proof: From the cofactor expansion theorem,
8yjdet(Dg) = Z gixcof (Dg);; (7.17)

i=1

This is because if k # j, that on the right is the cofactor expansion of a determinant with
two equal columns while if £ = j, it is just the cofactor expansion of the determinant. In
particular,
ddet(Dg)
98i j
which shows the last claim of the lemma. Assume that Dg () is invertible to begin with.
Differentiate 7.17 with respect to x; and sum on j. This yields

= cof (Dg);; (7.18)

detD
¥ o, 2 1etDg) o =¥ iy (cof (Dg))y; + ¥ gixcof (Dg)y; ;-

s, J s ij ij
Hence, using 0xj = 0 if j # k and 7.18,

Z(COf(Dg))rsgr\k = Zgrks (cof (Dg)) rs +Zgl kcof Dg)l]j

rs ]

Subtracting the first sum on the right from both sides and using the equality of mixed
partials,

thk (Z (cof Dg))ij,j) =0.

Since it is assumed Dg is invertible, this shows }.; (cof (Dg));; ; = 0. If det(Dg) = 0, use
Lemma 7.11.1 to let g, (x) = g (x) + €& where &, — 0 and det(Dg + €,1) = det(Dg;,) #
0. Then

Z (cof (Dg));; ;= klglgoz (cof(Dgy));; ;=0
3 j

7.12 Newton’s Method

Remember Newton’s method from one variable calculus. It was an algorithm for finding the
zeros of a function. Beginning with x; the next iterate was x 1 = x¢ — f (x¢) ' (f (%)) .
Of course the same thing can sometimes work in R” or even more generally. Here you
have a function f(x) and you want to locate a zero. Then you could consider the se-
quence of iterates @y = @y — Df ()" (f (xx)). If the sequence converges to x then
you would have & = z—Df (z) ' (f (x)) and so you would need to have f () = 0. In the
next section, a modification of this well known method will be used to prove the Implicit
function theorem. The modification is that you look for a solution to the equation near
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x and replace the above algorithm with the simpler one x; | = zxy — D f (aco)f1 (f (xx)).
Then if T & = « — Df (x) ' (£ (x)), it follows that as long as  is sufficiently close to
xo,DT () =1 — Df (xy) ' Df (x) and the norm of this transformation is very small so
one can use the mean value inequality to conclude that T is a contraction mapping and
provide a sequence of iterates which converge to a fixed point. Actually, the situation will
be a little more complicated because we will do the implicit function theorem first, but this
is the idea.

7.13 Exercises

1. Here are some scalar valued functions of several variables. Determine which of these

functions are o (v). Here v is a vector in R”, v = (v, ,v,).
(@ viva € vi(vi+vy+axv3)
(b) vysin(vy) )
e’ —1—v
(C) V% +vy (f) ( 1)
(d) vasin(vy +v) (g) (z-v)[v|

2. Here is a function of two variables. f(x,y) = x?y +x*. Find Df (x,y) directly from
the definition. Recall this should be a linear transformation which results from mul-
tiplication by a 1 x 2 matrix. Find this matrix.

2

R

should be the linear transformation which results from multiplying by a 2 x 2 matrix.

Find this matrix.

> . Compute the derivative directly from the definition. This

4. You have h(x) = g(f (z)) Here © € R", f(z) € R” and g (y) € R?. where f,g
are appropriately differentiable. Thus Dh () results from multiplication by a matrix.
Using the chain rule, give a formula for the ij* entry of this matrix. How does this
relate to multiplication of matrices? In other words, you have two matrices which

correspond to Dg (f (x)) and Df (x) Call z =g (y),y = f (x). Then

dz Jz ] d
Dg(y):(Tyl S ),Df(a:):( ou .. af)

93 9y
ayk 8x_,-
of the way we multiply matrices. what is the i row of Dg (y) and the j”* column of

Df (x)?

5. Find f, fy, fz, feys fyx, Joy for the following. Verify the mixed partial derivatives are
equal.

Explain the manner in which the ij"" entry of Dh (x) is ¥ . This is a review

(a) x*y*z* +sin (xyz)
(b) sin (xyz) +x%yz

6. Suppose f is a continuous function and f : U — R where U is an open set and
suppose that & € U has the property that for all y near «, f (x) < f(y). Prove that
if f has all of its partial derivatives at «, then f;, () = 0 for each x;. Hint: Consider
f(x+rv)=h(t). Argue that &' (0) = 0 and then see what this implies about Df ().
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As an important application of Problem 6 consider the following. Experiments are
done at n times, 1,1, - ,t, and at each time there results a collection of numerical
outcomes. Denote by {(#;,x;)}/_, the set of all such pairs and try to find numbers a
and b such that the line x = ar + b approximates these ordered pairs as well as pos-
sible in the sense that out of all choices of a and b, Y7, (at; +b —x,-)2 is as small
as possible. In other words, you want to minimize the function of two variables
fla,b) =Y (ati+b —x;)°. Find a formula for ¢ and b in terms of the given or-
dered pairs. You will be finding the formula for the least squares regression line.

. Let f be a function which has continuous derivatives. Show that u (z,x) = f (x — ct)

solves the wave equation u;; —c?Au = 0. What about u (x,t) = f (x+ct)? Here Au =

Uy,

Show that if Au = Au where u is a function of only x, then e*Mu solves the heat
equation u; — Au = 0. Here Au = uy,.

Show that if f (x) = o (x), then f’(0) = 0.

Let f (x,y) be defined on R? as follows. f (x,x*) =1 if x # 0. Define f(0,0) =0,
and f (x,y) = 0 if y # x>. Show that f is not continuous at (0,0) but that

o £ (ha,1b) — £(0,0)

=0
h—0 h

for (a,b) an arbitrary vector. Thus the Gateaux derivative exists at (0,0) in every
direction but f is not even continuous there.

Let

o= S () #(0,0)
f ’y)_{ Oi?()@y):(0,0)

Show that this function is not continuous at (0,0) but that the Gateaux derivative

f(ha,hb)—£(0,0)
0 7

limy,_, exists and equals O for every vector (a,b).

Let U be an open subset of R” and suppose that f : [a,b] x U — R satisfies

(x,y) = 35 (x,3), (x,y) = f(x,y)

i

are all continuous. Show that | ab f(x,y)dx, jf ng, (x,y) dx all make sense and that in
fact

d ( /b ) baf

— x,y)dx | = —(x,y)dx

oy \ [, 7o) 5y, )

Also explain why y — [ b %_ (x,y)dx is continuous. Hint: You will need to use

a
the theorems from one variable calculus about the existence of the integral for a
continuous function. You may also want to use theorems about uniform continuity

of continuous functions defined on compact sets.
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14. I found this problem in Apostol’s book [1]. This is a very important result and is ob-

15.

16.

17.

18.

—x2 (1442
tained very simply. Read it and fill in any missing details. Let g (x) = 0] elii:)dt
—x2 (1442
and f(x) = ( ye! dt) . Note % (ep(r;)> = e < (1+7), Explain why this

is so. Also show the conditions of Problem 13 are satisfied so that

g (x)= /01 (—erfxz(]“z)) dt.

Now use the chain rule and the fundamental theorem of calculus to find 7 (x). Then
change the variable in the formula for f (x) to make it an integral from O to 1 and
show f’ (x) + g’ (x) = 0. Now this shows f (x) + g (x) is a constant. Show the constant
is /4 by letting x — 0. Next take a limit as x — oo to obtain the following formula

for the improper integral, [, e dt, (f0°° e_’zdt>2 = 1 /4. In passing to the limit in
the integral for g as x — o you need to justify why that integral converges to 0. To
do this, argue the integrand converges uniformly to O for ¢ € [0, 1] and then explain
why this gives convergence of the integral. Thus [;° e dt =T /2.

Recall the treatment of integrals of continuous functions in Proposition 5.9.5 or what
you used in beginning calculus. The gamma function is defined for x > 0 as I' (x) =
Jo e " dt = limg_yeo [¥ e "t*'dr. Show this limit exists. Note you might have to
give ameaning to [if e~'r*~'dt if x < 1. Also show that T'(x+ 1) = xI'(x), ['(1) = 1.
How does I' (n) for n an integer compare with (n — 1)!?

Show the mean value theorem for integrals. Suppose f € C ([a,b]) . Then there exists
€ (a,b), not just in [a,b] such that f(x)(b—a) = [’ f(t)dt. Hint: Let F (x) =
[ f (t) dr and use the mean value theorem, Theorem 5.9.3 along with F/ (x) = f (x).

Show, using the Weierstrass approximation theorem that linear combinations of the
form Y; ;a;jgi(s)h;(t) where g;,h; are continuous functions on [0,b] are dense in
C([0,b] x [0,D]), the continuous functions defined on [0,5] x [0, 5] with norm given
by
171l = max {|f (x,y)| - (x,y) € [0,5] < [0,b]}

Show that for , g continuous, fy [3 ¢ (s)h(t)dtds — [J [7 g (s)h(r)dsdt = 0. Now
explain why if f is in C([0,5] x [0,5]),

/O.b./o.sf(S,t)dtds—./()‘b./tbf(s,t)dsdt -

Let f (x) = ( y ”2dt) . Use Proposition 5.9.5 which includes the fundamental the-
orem of calculus and elementary change of variables, show that

fx) = 2¢ </0xe_t2dt) —2¢7 (/01 —(xs) xds) / 2xe* (155%)

Now show
/ / 2te 2 (145%) drdis.

Show limy e [ e dt = iﬁ
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Implicit Function Theorem

8.1 Statement and Proof of the Theorem

Recall the following notation. . (X,Y) is the space of bounded linear mappings from X to
Y where here (X,||-||x) and (Y,]|-||y) are normed linear spaces. Recall that this means that
for each L € Z (X,Y), ||L| = supjy<; [|[Lx]| < o. As shown earlier, this makes . (X,Y)
into a normed linear space. In case X is finite dimensional, .Z (X,Y) is the same as the
collection of linear maps from X to Y. This was shown earlier. In what follows X,Y will
be Banach spaces. If you like, think of them as finite dimensional normed linear spaces,
but if you like more generality, just think: complete normed linear space and £ (X,Y) is
the space of bounded linear maps. In either case, this symbol is given in the following
definition.

Definition 8.1.1 re: (x, IIllx) and (Y,||-|ly) be two normed linear spaces. Then
Z(X,Y) denotes the set of linear maps from X to Y which also satisfy the following con-
dition. ForLe £ (X,Y),
lim ||Lx||y = ||L|| < e
Jim L = ]
Recall that this operator norm is less than infinity is always the case where X is finite

dimensional. However, if you wish to consider infinite dimensional situations, you assume
the operator norm is finite as a qualification for being in £ (X,Y).

Definition 8.1.2 4 complete normed linear space is called a Banach space.
Theorem 8.1.3 IfY is a Banach space, then £ (X,Y) is also a Banach space.
Proof: Let {L,} be a Cauchy sequence in .Z(X,Y) and letx € X.
1Lnx = Linx|| <[]/ [|Ln — Ll -

Thus {L,x} is a Cauchy sequence. Let Lx = lim,,_,. L,x. Then, clearly, L is linear because
if x1,x, are in X, and a, b are scalars, then

L(ax; +bxy) = ’}ﬂLn (ax; +bxy) = ,}EEL (aLpx) +bLyxy)
= alxy+bLx;.

Also L is bounded. To see this, note that {||L,||} is a Cauchy sequence of real numbers
because |||Ly|| — ||Lm ||| < ||Ly — Lm||.- Hence there exists K > sup{||L,|| : n € N}. Thus, if
x€X, ||Lx|| = limy—eo || Lpx]] < K ||x||. W

The following theorem is really nice. The series in this theorem is called the Neuman
series.

Lemma 8.1.4 Let (X, |-||) is a Banach space, and if A € £ (X,X) and ||A|| = r < 1,
then (I—A)"' = Yo oAk € £ (X,X) where the series converges in the Banach space
Z(X,X). If O consists of the invertible maps in £ (X,X), then O is open and if J is the
mapping which takes A to A=, then J is continuous.

205
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Proof: First of all, why does the series make sense?

ZA" <ZHA"H<ZIIAH <zr <

1—r

and so the partial sums are Cauchy in . (X, X). Therefore, the series converges to some-
thing in .Z (X, X) by completeness of this normed linear space. Now why is it the inverse?

iAk(IfA)

k=0

0 k=1

n+1
k _ k k
,}gr;,ZA (I-4)= ,}gl;(ZA ZA)

= lim (I—A"“) =1

n—oo

because ||A"*!|| < [|A||""! < *1. Similarly,

(I—-A) ZAk—hm( —A") =1

n—»o0

and so this shows that this series is indeed the desired inverse.
Next suppose A € O so A~! € .Z(X,X). Then suppose ||A—B| < m,r < 1.

Does it follow that B is also invertible? B=A —(A—B) =A[I—A"'(A—B)]. Then
|A~"(A=B)|| < ||A7"|||A—B]| < r and so [I—A*I(A—B)r1 exists. Hence B~! =

[[-A"'(A-B)|" 'A=1. Thus O is open as claimed. As to continuity, let A, B be as just
described. Then using the Neuman series,

-1

|34 —3B|| = HA— [1—A"'(A-B)] A—1H
= A Y (@) A =Y (aa—B)a
=0 &

) k
< AT a=BF = a— B |ja™! Al ( )
< IO st = s £ O (e

1
< B-Alfla”| —

Thus J is continuous atA € 0. B
Next features the inverse in which there are two different spaces.

Lemma 8.1.5 Ler
O={Ac2(X,Y): A c 2(v,X)}

andlet3:0— £ (Y,X),JA=A""'. Then O is open and T is in C" (O) forallm=1,2,- --
Also
D3 (A) (B) = —3(A) (B) I (A). @.1)

In particular, J is continuous.
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Proof: Let A € O and let B € .Z (X,Y) with ||B|| < § ||A~! ||7l. Then
1
Ja-ta] < a1 i <

So by Lemma 8.1.4,

(A+B) = (1+A7'B) AT = i (-1)"(A7'B)" A
n=0

=[I-A"'B+o(B)]A™"

which shows that O is open and, also,

JA+B)-3(A) = i " (A7'B)"'A —A7!

n

=0
—A7'BA7 10 (B)
—J(A)(B)J(A)+0(B)

which demonstrates 8.1. The reason the left over material is o (B) follows from the obser-
vation that o (B) is ¥, (—1)" (A7'B)"A~! and so

Y (-
n=2

It follows from this that we can continue taking derivatives of J. For ||B;|| small,

> =1
<X sy < el s X o

—[D3(A+By)(B)—D3(A) (B)] =
J(A+B1)(B)I(A+B))—3(A)(B)I(A)
(A+B1)(B)J(A+B1)—T(A)(B)I(A+B1) +
(A)(B)I(A+B1)—T(A)(B)I(A)

) (B1)3(A) +0(B1)](B)I(A+B1)+
I(A)(B)[3(A) (B1)T(A) +0(B1)]

!—?L?

)
JA

and so
D*3(A)(B1)(B) =T (A)(B1)J(A) (B)I(A)+T(A)(B)T(A) (B1) I (A)

which shows J is C? (0). Clearly we can continue in this way which shows J is in C™ (O)
forallm=1,2,---. 1

Here are the two fundamental results presented earlier which will make it easy to prove
the implicit function theorem. First is the fundamental mean value inequality.
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Theorem 8.1.6 Suppose U is an open subset of X and f : U — Y s differentiable
onUand x+1t(y—x) €U forallt € [0,1]. (The line segment joining the two points lies
in U.) Suppose also that for all points on this line segment,

IDf (a4 (y—=))l| < M.

Then
If(y) = F(@)| <M|y—=z|.

Next recall the following theorem about fixed points of a contraction map. It was
Corollary 3.8.3.

Corollary 8.1.7 Let B be a closed subset of the complete metric space (X,d) and let
f : B — X be a contraction map

d(f(x),f®) <rd(x,%), r<l1.

Also suppose there exists xo € B such that the sequence of iterates { f" (xo) },_, remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x € B such that f (x) = x. In the case that B = B (xy,0), the sequence of iterates
satisfies the inequality

d (xo, f (x0))

1—r

d(f" (x0),x0) <

and so it will remain in B if

d (xo, f (x0)) <5

1—r

The implicit function theorem deals with the question of solving, f (x,y) = 0 for «
in terms of y and how smooth the solution is. It is one of the most important theorems
in mathematics. The proof I will give holds with no change in the context of infinite di-
mensional complete normed vector spaces when suitable modifications are made on what
is meant by .Z (X,Y). There are also even more general versions of this theorem than to
normed vector spaces.

Recall that for X,Y normed vector spaces, the norm on X X Y is of the form

(@, y)| = max ([]], ly]])-

Theorem 8.1.8 (implicit function theorem) Let X, Y, Z be finite dimensional normed
vector spaces and suppose U is an open set in X xY. Let f : U — Z be in C' (U) and
suppose

£ (z0,y0) =0, D1 f (z0,y0) ' € Z(Z,X). (8.2)

Then there exist positive constants, 8,1, such that for every y € B(yq,n) there exists a
unique x (y) € B(xo, ) such that

b (CL’ (y) ’y) =0. (8.3)

Furthermore, the mapping, y — x (y) is in C' (B (yq,n)).
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Proof: Let T (x,y) = « — D1 f (x0,y,) ' f (,y). Therefore, T (0, y,) = xo and

DT (z,y) =1—D: f (x0,y0) ' Di f (x,y). (8.4)

by continuity of the derivative which implies continuity of DT, it follows there exists
0 > 0 such that if || @ — || < 6 and ||y — yg|| < 8, then

1 _ .
DI T (x,y)| < 5 D f (z,y) " exists (8.5)

The second claim follows from Lemma 8.1.5. By the mean value inequality, Theorem
8.1.6, whenever z,z’ € B(x(,0) and y € B(y,,0),

1
|T (z,y)—T (',y) || SEHmf:c’H. (8.6)
Also, it can be assumed 6 is small enough that for some M and all such (x,y),

|D1F (@o,y0) ™| ID25 @) < M 8.7)

Next, consider only y such that ||y — y,|| < n where 1 < & is so small that

o
I 0, ) ~woll <
Then for such y, consider the mapping Ty, (x) = T (x,y). Thus by Corollary 8.1.7, for
eachn € N,
2o Ty (o) — ol
>8> ¥, 0
377 1—(1/2)
Then by 8.6, the sequence of iterations of this map T'y, converges to a unique fixed point
x (y) in the ball B (xg,06). Thus, from the definition of T', f (x (y),y) = 0. This is the
implicitly defined function.
Next we show that this function is Lipschitz continuous. For y, 9 in B(y,1),

> || Ty (o) — 0|

IT (2,9) - T (@,9) | = [[D1s (wo.p0) " £ @.y) D1 (@o.90) ™" £ (2.9)|
Myl

IN

thanks to the above estimate 8.7 and the mean value inequality, Theorem 8.1.6. Note
how convexity of B(yg,n) which says that the line segment joining y, ¥ is contained in
B(yg,n) is important to use this theorem. Then from this,

) -2@ = IT@w).5)-T(@).9)]<IT@E)y) T @),
T (().9) - T(@(5),9)]
<My -3+ = () -2 ()]

Hence,
lz(y) —= (@)l <2M|[ly — 7| (8.8)
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Finally consider the claim that this implicitly defined function is C!.

0 = flz(y+u),y+u)—f(z(y),vy)
= Dif(z(y),y)(x(y+u)—=x(y) +D2f (z(y),y)u
+o(z(y+u)—z(y),u) (8.9)

Consider the last term. o (z (y+u) —x (y),u) / ||ul| equals

{ H(:((;gflizi)c—(m)(y)su) max(\\w(y-i—ﬁt)im(y)||7Hu||) if [|(@(y+u) — (y),uw)|g,y #0

y)u)llxxy uw

0if [[(z(y+u)—z(y),u)lx.y =0

Now the Lipschitz condition just established shows that

max (|| (y +u) —z (y)|], lul)

[

is bounded for nonzero w sufficiently small that y,y + u € B(y,,n). Therefore,

Then 8.9 shows that

0=Dif(z(y),y)(x(y+u)—z(y)) +D2f (x(y),y)u+o(u)

Therefore, solving for « (y +u) —x (y), it follows that

zy+u)—z(y) = -Dif(x(y).y) ' Daf (z(y),y)ut+Dif(z(y),y)  o(u)
= -Dif(z(y),y) ' Dof (x(y).y)u+o(u)

and now, the continuity of the partial derivatives D f,D f, continuity of the map A — A~ !,
along with the continuity of y — @ () shows that y — x (y) is C! with derivative equal to

~Dif(z(y),y) ' Daf (x(y).y). W

The following is a nice result on functional dependence which is an application of the
implicit function theorem. See Widder [59].

Example 8.1.9 Suppose f,g are C' near (xo,y0) € R? and
Suppose f,g are C' and

fe(ey) frley) ) _
1. det( o (1.y) g; () )Onear (x0,¥0)

2. fe(x0,50) #0.

Then there is a C! function F such that g (x,y) = F (f (x,y)) for (x,y) near (xo, o).

Consider f(x,y) —z = 0 where z9 = f(x9,y0). By assumption and implicit func-
tion theorem, there is a C' function (y,z) — ¢ (y,z) so that for (y,z) near (yo,z) the
x which solves f(x,y) —z=0is x = ¢ (y,z). In particular, for (x,y) close to (xo,yo),

F (@0, f(x,)),y) = f(x,y) =0and so
¢ (v, f(x,y) =x (*)
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Also, for (y,z) near (yo,z0), it follows f; (¢ (y,2),y) #O0.
Since (¢ (v, f (x,)),y) =2=0, fx (¢ (2),) ¢, (v,2) + £ (¢ (»,2) ,y) = 0. It follows

from 1. that

;yg (¢ (3,2),y)

g (9 (12),y </>y(y7Z)+g>(¢( 2),y)

= —g(¢ y )+g> (0 (»2),y)

X

— 1 ( —8x(¢()’71)7y)fy(¢ (y,z),y) )0
fx(¢(y7Z)7y) +g}’(¢(yvz)7y)fx(¢ (y,z),y)

Therefore, g (¢ (y,z),y) does not depend on y near (yo,z0) = (Yo, f (x0,¥0)). Thus there
exists a C! function z — F (z) for z near f (xo,yo) such that g (¢ (y,z),y) = F (z) . From ,
for (x,y) near (xo,yo),

g(xvy) :g((P (y,f(x,y)),y) :F(f(xvy))

Note that if g (x,y) = F (f (x,y)), then (gx,&y) = F' (f (x,¥)) (fx, fy) and so the above
determinant will equal 0.

The next theorem is a very important special case of the implicit function theorem
known as the inverse function theorem. Actually one can also obtain the implicit function
theorem from the inverse function theorem. It is done this way in [36], [39] and in [2].

Theorem 8.1.10 (inverse function theorem) Let xo € U, an open set in X , and let
f:U =Y where X,Y are finite dimensional normed vector spaces. Suppose

FfisC'(U) , and Df(z0)™' € Z(V,X). (8.10)

Then there exist open sets W, and V such that

xoeW CU, (8.11)
f W — Visone to one and onto, (8.12)
fliscl, (8.13)

Proof: Apply the implicit function theorem to the function F' (x,y) = f (x) — y where
Yo = [ (x0). Thus the function y — @ (y) defined in that theorem is £~'. Now let W =
B(x0,8)Nf ' (B(yg,n)) and V = B(y,n) .This proves the theorem. W

8.2 More Derivatives

When you consider a C* function f defined on an open set U, you obtain the following
Df (x) € 2 (X.Y),D*f (x) € Z (X.Z (X,Y)),D’f () € £ (X,.Z (X,.Z (X.Y)))

and so forth. Thus they can each be considered as a linear transformation with values in
some vector space. When you consider the vector spaces, you see that these can also be
considered as multilinear functions on X with values in Y. Now consider the product of two
linear transformations A (y) B (y) w, where everything is given to make sense and here w
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is an appropriate vector. Then if each of these linear transformations can be differentiated,
you would do the following simple computation.

(A(y+u)B(y+u)—A(y)B(y)) (w)
=Ay+u)B(y+u)-A(y)B(y+u)+A(y)B(y+u)—A(y)B(y)) (w)
= ((DA(y)u+o(u))B(y+u)+A(y) (DB(y)u+o(u))) (w)

= (DA(y)(u)B(y+u)+A(y)DB(y) (u)+o(u)) (w)
= (DA(y)(u)B(y)+A(y)DB(y) (u)+o(u)) (w)
Then
u — (DA (y) (u) B(y) +A(y) DB (y) (u)) (w)
is clearly linear and

(u, w) — (DA (y) (u) B(y) +A(y) DB(y) (u)) (w)

is bilinear and continuous as a function of y. By this we mean that for a fixed choice
of (u,w) the resulting ¥ valued function just described is continuous. Now if each of
AB,DA,DB can be differentiated, you could replace y with y + 4 and do a similar com-
putation to obtain as many differentiations as desired, the k' differentiation yielding a k
linear function. You can do this as long as A and B have derivatives. Now in the case of the
implicit function theorem, you have

Dz (y)=-Dif(z(y),y) ' D2f (x(y),y). (8.14)

By Lemma 8.1.5 and the implicit function theorem and the chain rule, this is the situation
just discussed. Thus D*x (y) can be obtained. Then the formula for it will only involve Dz
which is known to be continuous. Thus one can continue in this way finding derivatives till
f fails to have them. The inverse map never creates difficulties because it is differentiable of
order m for any m thanks to Lemma 8.1.5. Thus one can conclude the following corollary.

Corollary 8.2.1 In the implicit and inverse function theorems, you can replace C' with
C* in the statements of the theorems for any k € N.

8.3 The Case of R”
In many applications of the implicit function theorem,
FUCR'XR" - R"

and f (xo,y) = 0 while f is C'. How can you recognize the condition of the implicit
function theorem which says D f (o, y,) ' exists? This is really not hard. You recall the
matrix of the transformation D; f (o, y,) with respect to the usual basis vectors is

fl,xl (wanO) fl,Xn (330»1‘/0)

fnm (wan0> T fn,xn (330790)

and so Dy f (xo, yo)fl exists exactly when the determinant of the above matrix is nonzero.
This is the condition to check. In the general case, you just need to verify Dy f (xo,y,) is
one to one and this can also be accomplished by looking at the matrix of the transformation
with respect to some bases on X and Z.



8.4. EXERCISES 213

8.4 Exercises

I. LetA € £ (X,Y). Let f(x) = Ax. Verify from the definition that Df (x) = A. What
if f(x) = y+Ax? Note the similarity with functions of a single variable.

2. You have a level surface given by

fxyz) =0, fisC'(U),(x,y,2) €U,

The question is whether this deserves to be called a surface. Using the implicit func-
tion theorem, show that if f (xo,yo0,z0) =0 and if 3—/; (x0,¥0,20) # 0 then in some open
subset of R3, the relation f (x,y,z) = 0 can be “solved” for z getting say z = z(x,y)
such that f (x,y,2 (x,y)) = 0. What happens if 5 (x0,y0,20) # 0 or 5L (x0,0,20) # 0?
Explain why z is a C! map for (x,y) in some open set.

3. Letx (t) = (x(1),y(t),z(t))" beavector valued function defined for 7 € (a,b) . Then
Dz (1) € £ (R,R?) . We usually denote this simply as @' (¢) . Thus, considered as a
matrix, it is the 3 x 1 matrix (¥’ (t),y (t),2 ())" the T indicating that you take the
transpose. Don’t worry too much about this. You can also consider this as a vector.
What is the geometric significance of this vector? The answer is that this vector is
tangent to the curve traced out by « (¢) for ¢ € (a,b). Explain why this is so using
the definition of the derivative. You need to describe what is meant by being tangent
first. By saying that the line = a + b is tangent to a parametric curve consisting
of points traced out by « (¢) for ¢ € (—5, 6) at the point @ = « (¢) which is on both
the line and the curve, you would want to have

lim x(t+u)— (a+bu)
u—0 u

=0

With this definition of what it means for a line to be tangent, explain why the line
x (1) +a' (t)u foru € (—6,0) is tangent to the curve determined by r — x (¢) at the
point x (7). So why would you take the above as a definition of what it means to be
tangent? Consider the component functions of « (). What does the above limit say
about the component functions and the corresponding components of b in terms of
slopes of lines tangent to curves?

4. Let f (x,y,z) be aC! function f : U — R where U is an open set in R3. The gradient
vector, defined as

T
J J J
( a—;\f (x,,2) 7; (x,3,2) aif (x,,2) )

has fundamental geometric significance illustrated by the following picture.

Vf(x07y0720)

' (10)

'’ (s0)
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The way we present this in engineering math is to consider a smooth C! curve
(x(2),y(t),z(t)) fort € (a,b) such that when ¢ =c € (a,b), (x(c),y(c),z(c)) equals
the point (x,y,z) in the level surface and such that (x(¢),y(¢),z(¢)) lies in this sur-
face. Then 0 = f(x(¢),y(t),z(¢)). Show, using the chain rule, that the gradient
vector at the point (x,y,z) is perpendicular to

(¥ (c) . (e),7 (e)).-
Recall that the chain rule says that for 4 (¢) = f (x(¢t),y(¢),z(t)),Dh(t) =

Since this holds for all such smooth curves in the surface which go through the given
point, we say that the gradient vector is perpendicular to the surface. In the picture,
there are two intersecting curves which are shown to intersect at a point of the sur-
face. We present this to the students in engineering math and everyone is happy with
it, but the argument is specious. Why do there exist any smooth curves in the surface
through a point? What would you need to assume to justify the existence of smooth
curves in the surface at some point of the level surface? Why?

This problem illustrates what can happen when the gradient of a scalar valued func-
tion vanishes or is not well defined. Consider the level surface given by

z—/ (x> 4+y?) =0.

Sketch the graph of this surface. Why is there no unique tangent plane at the origin
(0,0,0)? Next consider z> — (x?+y*) = 0. What about a well defined tangent plane
at (0,0,0)?

Suppose you have two level surfaces f (x,y,z) = 0 and g (x,y,z) = 0 which intersect
at a point (xo,0,20) , each f,gis C I, Use the implicit function theorem to give con-
ditions which will guarantee that the intersection of these two surfaces near this point
is a curve. Explain why.

. Let X,Y be Banach spaces and let U be an open subset of X. Let f: U — Y be C! (U),

let xo € U, and 6 > 0 be given. Show there exists € > 0 such that if x;,x, € B (xg, €),
then
1f (k1) = (f (2) + Df (x0) (x1 = x2)) | < & [lx1 — x|

Hint: You know f (x1) — f (x2) = Df (x2) (x1 —x2) 4+ 0 (x1 —x2). Use continuity.
1This problem illustrates how if Df (xp) is one to one, then near xj the same is true

of f. Suppose in this problem that all normed linear spaces are finite dimensional.
Suppose Df (xp) is one to one. Here f : U — Y where U C X.

(a) Show that there exists r > 0 such that ||Df (xo)x| > r|lx| . To do this, recall
equivalence of norms.

(b) Use the above problem to show that there is € > 0 such that f is one to one on
B(xg,€) provided Df (xp) is one to one.
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10.

11.

12.

13.

If U,V are open sets in Banach spaces X,Y respectively and f : U — V is one to one
and onto and both £, f~! are C!, show that Df (x) : X — Y is one to one and onto for
each x € U. Hint: fo f~! = identity. Now use chain rule.

A function f: U C C — C where U is an open set subset of the complex numbers C
is called analytic if

i L&)~ f ()

Y o ,
lim N =f(2), z=x+iy

exists and z — f’(z) is continuous. Show that if f is analytic on an open set U and if
f7(z) # 0, then there is an open set V containing z such that f (V) is open, f is one to
one, and f, f~! are both continuous. Hint: This follows very easily from the inverse
function theorem. Recall that we have allowed for the field of scalars the complex
numbers.

Problem 8 has to do with concluding that f is locally one to one if Df (xp) is only
known to be one to one. The next obvious question concerns the situation where
Df (xo) maybe is possibly not one to one but is onto. There are two parts, a linear
algebra consideration, followed by an application of the inverse function theorem.
Thus these two problems are each generalizations of the inverse function theorem.

(a) Suppose X is a finite dimensional vector space and M € .Z (X,Y) is onto Y.
Consider a basis for M (X) = Y,{Mxy,--- ,Mx,}. Verify that {x;,---,x,} is
linearly independent. Define X = span (x{,---,x,). Show that if M is the re-
striction of M to X, then M is one to one and onto Y.

(b) Now suppose f:U C X — Y is C! and Df (xo) is onto Y. Show that there is a
ball B(f (x0),€) and an open set V C X such that f (V) 2D B(f (xo),€) so that
if Df (x) is onto for each x € U, then f(U) is an open set. This is called the
open map theorem. You might use the inverse function theorem with the spaces
X,Y. You might want to consider Problem 1. This is a nice illustration of why
we developed the inverse and implicit function theorems on arbitrary normed
linear spaces. You will see that this is a fairly easy problem.

Recall that a function f: U C X — Y where here assume X is finite dimensional, is
Gateaux differentiable if

i G 1) = F ()

t—0 t

=Dyf (x)

exists. Here ¢ € R. Suppose that x — D, f (x) exists and is continuous on U. Show
it follows that f is differentiable and in fact D, f (x) = Df (x)v. Hint: Let g(y) =
S (X;yix;) and argue that the partial derivatives of g all exist and are continuous.
Conclude that g is C! and then argue that f is just the composition of g with a linear
map.

Let

(2) 0,0
Flow) =) (a0 £ 0.0
Lif (x,y) = (0,0)
Show that f is not differentiable, and in fact is not even continuous, but D,, f (0,0)
exists and equals O for every v # 0.
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14. Let

] i () #(0,0)
Ty {ome:mm

Show that f is not differentiable, and in fact is not even continuous, but D,, f (0,0)
exists and equals O for every v # 0.

8.5 The Method of Lagrange Multipliers

As an application of the implicit function theorem, consider the method of Lagrange mul-
tipliers from calculus. Recall the problem is to maximize or minimize a function subject to
equality constraints. Let f : U — R be a C' function where U C R” and let

gi(®)=0,i=1,,m (8.15)

be a collection of equality constraints with m < n. Now consider the system of nonlinear
equations

gile) = 0,i=1,---,m.

@ is a local maximum if f (x) > f (x) for all x near x( which also satisfies the constraints
8.15. A local minimum is defined similarly. Let F': U x R — R"*! be defined by

F(xz,a)= : . (8.16)

8m (33)

Now consider the m + 1 x n Jacobian matrix, the matrix of the linear transformation,
D1 F (x,a) with respect to the usual basis for R” and R"*!.

fo(®o) - fu (®0)
81x; (xo) o 8lxy, (580)
8mx; (330) o 8mxy (330)

If this matrix has rank m + 1 then some m + 1 X m + 1 submatrix has nonzero determinant.
It follows from the implicit function theorem that there exist m + 1 variables, x; -+, x;, |
such that the system

F(x,a)=0 (8.17)

specifies these m + 1 variables as a function of the remaining n — (m+ 1) variables and
a in an open set of R"™™. Thus there is a solution (x,a) to 8.17 for some x close to xg
whenever a is in some open interval. Therefore, x( cannot be either a local minimum or a
local maximum. It follows that if x is either a local maximum or a local minimum, then
the above matrix must have rank less than m + 1 which requires the rows to be linearly
dependent. Thus, there exist m scalars,

;{'la"' ,)Lm,
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and a scalar u, not all zero such that

S (:13()) 81x (130) 8mx, (130)
u : =1 : +-+ A, : . (8.18)
Ja (20) 81z, (o) 8mx, (Zo)
If the column vectors
81x (20) 8mx; (o)
: e : (8.19)
81z, (20) 8, (%0)
are linearly independent, then, gt ## 0 and dividing by u yields an expression of the form
fxl (iL‘o) 8lx; (:EO) 8mx; (:EO)
: =2 : +od A : (8.20)
fr (0) g1y, (To) gmx, (T0)

at every point o which is either a local maximum or a local minimum. This proves the
following theorem.

Theorem 8.5.1 Let U be an open subset of R" and let f : U — R be a C' function.
Then if xo € U is either a local maximum or local minimum of f subject to the constraints
8.15, then 8.18 must hold for some scalars W, A1, -+ , Ay not all equal to zero. If the vectors
in 8.19 are linearly independent, it follows that an equation of the form 8.20 holds.

8.6 The Taylor Formula

First recall the Taylor formula with the Lagrange form of the remainder. It will only be
needed on [0, 1] so that is what I will show.

Theorem 8.6.1 Leth:[0,1] = R have m+ 1 derivatives. Then there existst € (0,1)

such that
h(m+l) (I)

(m+1)!"

n pk) (0
h(l):h(0)+k; k!()+

Proof: Let K be a number chosen such that

h(1)— (h(0)+ y h(klifo) +K> ~0

k=1
Now the idea is to find K. To do this, let

m h(k) (l)
k!

(1_z)k+1<(1—z)m“>

Then F (1) = F (0) = 0. Therefore, by Rolle’s theorem or the mean value theorem, Theorem
5.9.3, there exists 7 between 0 and 1 such that F’ (1) = 0. Thus,

m 1 (k+1)
0 = —F'(t):h’(t)—l-];hk!(t)(l—t)k

1% (1)

k(1-0)'—K(m+1)(1—1)"
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And so
m h(k+1)(t) . m—lh(k+1)(t) .
= h'(x)+k;T(1—t) —];)T(l—t)

—K(m+1)(1—0)"

h(m+1) (t)

=h(t)+ -

(1=t~ (1) — K (m+1) (1 —1)"

dso K = 10 the th m
and So = W 1S prOVeS ¢ theorem.

Now let f: U — R where U C X a normed vector space and suppose f € C" (U) and
suppose D1 f(z) exists on U. Let € U and let r > 0 be such that
B(x,r) CU.

Then for ||v|| < r consider
f(x+tv) = f(@) =h(r)
for ¢ € [0, 1]. Then by the chain rule,
W (1) = Df (x+1v) (v): 1" (1) = D*f (x+1v) (v) (v)
and continuing in this way,
h8) (1) = DW f (z+1v) (v) (v) -+ (v) = DX f (z+1v) V5.
It follows from Taylor’s formula for a function of one variable given above that

B m D(k>f(:13) ok D("H'l)f(a:-i-t'v) oMt
f(xz+v) ff(:c)+k;1 o + CESH . (8.21)

This proves the following theorem.
Theorem 8.6.2 Let f:U — R and let f € C" (U). Then if
B(xz,r) CU,

and ||v|| < r, there exists t € (0,1) such that 8.21 holds.

8.7 Second Derivative Test

Now consider the case where U C R” and f: U — R is C* (U ). Then from Taylor’s theo-
rem, if v is small enough, there exists 7 € (0, 1) such that

D*f (z+tv)v?

f@+v) = f (@) +Df (@) vt —2

(8.22)

Consider

sz(a:—i—tv) (ei)(ej) = D(D(f(x+rv))ei)e;
2
D 8f(:c+t’u))ej:8f(:r,+t'u)

axi ax]'axi
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where e; are the usual basis vectors. Lettin v =Y, v;e;, the second derivative term in
8.22 reduces to

1 1
> Y D f (z+tv) (ei) (e)) viv = 3 L Hj (@+tv)viv,
L] 1,]

where *f ( )
f(x+tv
Hij(z+tv) = D*f (z+1v) (i) (e)) = “oxom
Definition 8.7.1 7The matrix whose i J™" entry is %i{gfc,)
denoted as H ().

is called the Hessian matrix,

From Theorem 7.10.1, this is a symmetric real matrix, thus self adjoint. By the conti-
nuity of the second partial derivative,

f(@+v) = f (@) +Df (@) vt 30 H (@) v+

1
3 (vT (H (x+tv) —H (x))v). (8.23)
where the last two terms involve ordinary matrix multiplication and
vT:( Vi Wy )

for v; the components of v relative to the standard basis.

Definition 8.7.2 Le: f D — R where D is a subset of some normed vector space.
Then f has a local minimum at x € D if there exists 8 > 0 such that for all y € B(x, )

fy) = f(z).

f has a local maximum at x € D if there exists 0 > 0 such that for all y € B(x,0)

fy) < f(@).

Theorem 8.7.3 If f : U — R where U is an open subset of R" and f is C?, suppose
Df (x) =0. Then if H(x) has all positive eigenvalues, x is a local minimum. If the
Hessian matrix H (x) has all negative eigenvalues, then x is a local maximum. If H (x)
has a positive eigenvalue, then there exists a direction in which f has a local minimum at
x, while if H (x) has a negative eigenvalue, there exists a direction in which H (x) has a
local maximum at x.

Proof: Since Df (x) = 0, formula 8.23 holds and by continuity of the second derivative,
H (x) is a symmetric matrix. Thus H () has all real eigenvalues. Suppose first that H ()
has all positive eigenvalues and that all are larger than 8% > 0. Then by Theorem 1.4.1,
H (z) has an orthonormal basis of eigenvectors, {v;};_, and if u is an arbitrary vector,

such that w = }}_ u;v; where u; = u-vj, then

n n
w'H@)u=Y ujwiH(x)Y ujwv;
=1 =1
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n n
=Y ;=8 Y ul =8 |ul’.
j=1 j=1

Jj=

From 8.23 and the continuity of H, if v is small enough,

2
Flatn) > f @)+ 38 o 182 ol = £ (@) + 2o

This shows the first claim of the theorem. The second claim follows from similar reason-
ing. Suppose H () has a positive eigenvalue A?. Then let v be an eigenvector for this
eigenvalue. Then from 8.23,

ltszH(:zc)'u—i-

f(z+tv) = f(z) + 5

%tz (v" (H (z+tv) —H (z))v)

which implies

Flatrv) = f(m)+%t2,12|v|2+%z2 (o (H (w+1v) — H () v)
> f(@)+ 32l

whenever ¢ is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. This proves
the theorem. M

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

filxy)= x* +y2, f(x,y) = —x* +y2.
Then Df; (0,0) = 0 and for both functions, the Hessian matrix evaluated at (0,0) equals
00
0 2

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

8.8 The Rank Theorem

This is a very interesting result. The proof follows Marsden and Hoffman. First here is
some linear algebra.

Theorem 8.8.1 et :R" — RY have rank m. Then there exists a basis

{UI,"' s Um s U1, 7“’”}

such that a basis for ker (L) is {tpi1,- Uy }.
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Proof: Since L has rank m, there is a basis for L (R") which is of the form
{LU] )T 7Lum}

Then if ) ;c;u; = 0 you can do L to both sides and conclude that each ¢; = 0. Hence
{ui, - ,up} is linearly independent. Let {v},---,v;} be a basis for ker (L) . Let x € R™.
Then Lz = Y7 | ¢c;Lu,; for some choice of scalars ¢;. Hence L(x—Y", c;u;) = 0 which
shows that there exist d; such that x = Y | c;u,; + Z’jzl djv; It follows that

span (wy,- - ,Up,v1, - ,v) =R"

Is this set of vectors linearly independent? Suppose Y | c;u; + ZI;‘:1 djv;=0Do L to both
sides to get Y/ | ¢;Lu; = 0 Thus each ¢; = 0. Hence Z’;zl djv ;=0 and so each d; = 0 also.
It follows that k = n — m and we can let

{vla'” 7vk} = {uerl;"' aun}~ u
Another useful linear algebra result is the following lemma.

Lemma 8.8.2 Let V C R" be a subspace and suppose A (x) € £ (V, RN ) for x in some
open set U. Also suppose x — A (x) is continuous for € U. Then if A (xy) is one to one
on'V for some xo € U, then it follows that for all x close enough to xq, A (x) is also one
tooneonV.

Proof: Consider V as an inner product space with the inner product from R” and
A(z)"A(z). Then A (z)"A(x) € £ (V,V) and x — A ()" A(x) is also continuous. Also
forveV,

(A(z)"A(z)v,v), = (A(x)v,A(2)V)py

14

If A(z0)* A (zo) v = 0, then from the above, it follows that A (xg) v = 0 also. Therefore,
v =0 and so A (x)"A () is one to one on V. For all  close enough to xy, it follows
from continuity that A (z)" A () is also one to one. Thus, for such x, if A (z) v = 0, Then
A(z)"A(z)v =0 and so v = 0. Thus, for x close enough to x, it follows that A (x) is
alsoonetooneonV.

Theorem 8.8.3 L f:ACR" = RN where A is open in R". Let f be a C" function
and suppose that Df (x) has rank m for all x € A. Let xo € A. Then there are open sets
U,V CR" with xg € V, and a C” function h : U — V with inverse h™':V = U also C"
such that f oh depends only on (x1,- -+ ,Xm).

Proof: Let L =D (xg), and Ny = ker L. Using the above linear algebra theorem, there
exists

{ula"' 7um}

such that {Lu,--- ,Lu,,} is a basis for LR". Extend to form a basis for R”,
{’u’lv" U, U1, 7un}
such that a basis for Ny = kerL is {41, ,u, . Let

M =span(uj, - ,Up).
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Let the coordinate maps be y, so that if x € R",
=y (T)ur -4y, (@) u,

Since these coordinate maps are linear, they are infinitely differentiable.
Next I will define coordinate maps for & € RY. Then by the above construction,
{Luy, - ,Lu,} is a basis for L(R"). Let a basis for RV be

{Lulv"' 7Luf117vm+1a"' ,’UN}

(Note that, since the rank of Df (x) = m you must have N > m.) The coordinate maps ¢,
will be defined as follows for & € RV.

€= ¢y (@) Luy+--- 9, () Lttm + 9,11 () Vi1 + -+ Oy (@) VN

Now define two infinitely differentiable maps G : R — R” and H : RV — R”,
G(IIJ) = (07 707Wm+1 (w)v Wy (x))

H(y)z((Pl(y),,d)m(y),O,,O)

Forx € A CR", let
g(x)=H(f(x))+G(x) €R"

Thus the first term picks out the first m entries of f () and the second term the last n —m
entries of . It is of the form

(¢1 (f (m))v 7¢m (f(m))an-ﬁ-l (CC), »Wn (.’B))

Then
Dg (zo) (v) =HL(v)+Gv=HLv+Gv (8.24)

which is of the form

Dg (CL’()) ('l)) = (¢1 (Lv) )t a¢m (Lv)7IVrn+1 ('U)?"' » Wy ('l)))

If this equals 0, then all the components of v, ¥, .| (v),---, V¥, (v) are equal to 0. Hence

But also the coordinates of Lv,§, (Lv),---,¢,, (Lv) are all zero so Lv =0 and so 0 =
Y, ciLu; so by independence of the Lu;, each ¢; = 0 and consequently v = 0.

This proves the conditions for the inverse function theorem are valid for g. Therefore,
there is an open ball U and an open set V, zp € V, such that g : V — U is a C" map and its
inverse g~! : U — V is also. We can assume by continuity and Lemma 8.8.2 that V and U
are small enough that for each & € V,Dg () is one to one. This follows from the fact that
x — Dg (x) is continuous.

Since it is assumed that Df () is of rank m,Df (x) (R") is a subspace which is m
dimensional, denoted as P,,. Also denote L(R") = L(M) as P.
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RV P,

Thus {Luy,---,Luy,} is a basis for P. Using Lemma 8.8.2 again, by making V,U
smaller if necessary, one can also assume that for each « € V, Df (x) is one to one on M
(although not on R") and HDf () is one to one on M. This follows from continuity and
the fact that L= D f () is one to one on M. Therefore, it is also the case that D f () maps
the m dimensional space M onto the m dimensional space P, and H is one to one on P,.
The reason for this last claim is as follows: If Hz = 0 where z € P, then HDf (x)w =0
where w € M and Df (x) w = z. Hence w = 0 because HDf (x) is one to one, and so
z = 0 which shows that indeed H is one to one on Pj,.

Denote as L, the inverse of H which is defined on R” x 0, L, : R”™ x 0 — P,. That 0
refers to the N — m string of zeros in the definition given above for H.

Define h = g~! and consider f, = f o h. It is desired to show that f, depends only on
X1, ,Xpm. Let Dy refer to (x1,- -+ ,x,) and let D, refer to (41, ,X»). Then f = f,0g
and so by the chain rule

Df (z)(y) = Df1 (g (x)) Dg () (y) (8.25)

Now as in 8.24, for y € R",
Dg(x)(y) = HDf (z)(y) + Gy
= (¢l (Df(iﬂ)y), ’(Pm (Df(w)y)’Werl (y)a 7Wn (y))
Recall that from the above definitions of H and G,

G(y) = (Oa"' 70’ Vil (y>’ s Wy (y>)
H(Df (x)(y)) = (¢, (Df (x)y), -9, (Df (x)y),0,---,0)

Let m; : R" — R™ denote the projection onto the first m positions and 7, the projection
onto the last n — m. Thus

mDg(z)(y) = (9,(Df(@)y). +.9,,(Df(z)y))
mDg (:l:) (y) = (Wm+1 (y) s Wy (y))

Now in general, for z € R",
Dfi(g(®))z=Difi(g(x))miz+D2f(g(x)) 22

Therefore, it follows that Df, (g (x)) Dg (x) (y) is given by

Df(x)(y) = Df(g(x))Dg(x)(y)
= Dif(g(x))mDg(x)(y)+D2f (g (x)) m2Dg () (y)
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=m1Dg(x)(y)

—_——
Df(x)(y) = Dfi(g9(x))Dg(x)(y)=Dif (g9(®))mHDf (z)(y)
+D2f1 (g (2)) 712Gy

We need to verify the last term equals 0. Solving for this term,

Dy f (g (x)) maGy = Df (x) (y) —D1f1 (g (x)) miHDf (x) (y)

As just explained, L, o H is the identity on P, the image of D f (). Then

D2f1(9(@)mGy = LooHDS (@)(y)—Dify(9(@) mHDS (@) (y)
—  (LaoHDf (@)~ D1 (g (@) mHDF (@) (y)

Factoring out that underlined term,

Daf1(9(®)) Gy = [Le — D1 f1 (g () ;]| HDf () (y)

Now Df (x):M — P, =D§f (x) (R") is onto. (This is based on the assumption that D f (x)
has rank m.) Thus it suffices to consider only y € M in the right side of the above. However,
for such y,m2Gy = 0 because to be in M,y (y) = 0 if k > m+ 1, and so the left side of
the above equals 0. Thus it appears this term on the left is 0 for any y chosen. How can
this be so? It can only take place if D, f, (g ()) = O for every @ € V. Thus, since g is
onto, it can only take place if D, f; () = 0 for all € U. Therefore on U it must be the
case that f; depends only on xy,- - ,x,, as desired. H

8.9 The Local Structure of C' Mappings

In linear algebra it is shown that every invertible matrix can be written as a product of
elementary matrices, those matrices which are obtained from doing a row operation to the
identity matrix. Two of the row operations produce a matrix which will change exactly one
entry of a vector when it is multiplied by the elementary matrix. The other row operation
involves switching two rows and this has the effect of switching two entries in a vector
when multiplied on the left by the elementary matrix. Thus, in terms of the effect on a
vector, the mapping determined by the given matrix can be considered as a composition of
mappings which either flip two entries of the vector or change exactly one. A similar local
result is available for nonlinear mappings. I found this interesting result in the advanced
calculus book by Rudin.

Definition 8.9.1 et U be an open set in R" and let G : U — R". Then G is called
primitive if it is of the form

Gx)=(x1 - o@) - x )T.

Thus, G is primitive if it only changes one of the variables. A function F : R" — R" is
called a flip if
T
F(Xl,"' s Xyt Xy axn) - (xlv"' s XLyttt 3 Xkt 7xn) .
Thus a function is a flip if it interchanges two coordinates. Also, form =1,2,--- n, define

Pm(a:)z(xl X - Xy 0 .- O)T
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It turns out that if h (0) = 0,Dh (0) " exists, and h is C! on U, then h can be written
as a composition of primitive functions and flips. This is a very interesting application of
the inverse function theorem.

Theorem 8.9.2 et h: U — R" be a C! function with h(0) = 0,Dh (0)~" exists.
Then there is an open set V C U containing 0, flips F'y,--- , F,_1, and primitive functions
G,,.G,_1, -+ ,G| such that for x €V,

h(x)=F 0---0F,_10G,0G,_10---0G/ ().
The primitive function G j leaves x; unchanged for i # j.
Proof: Let ,
hi(x)=h(x)=( ai(z) - au(z))
Dh(0)e;=( a11(0) - @, (0) )"

where o 1 denotes %—2‘1". Since Dh (0) is one to one, the right side of this expression cannot
be zero. Hence there exists some k such that o ; (0) # 0. Now define

Gi@)=(wm@) x» - x)

Then the matrix of DG (0) is of the form

ar1(0) - - 0gra(0)
0 1 0
0 0 - 1

and its determinant equals 0 | (0) # 0. Therefore, by the inverse function theorem, there
exists an open set Uy, containing 0 and an open set V, containing O such that G| (U;) =V,
and G is one to one and onto, such that it and its inverse are both C!. Let F'; denote the
flip which interchanges x; with x;. Now define

hz(y) EF[Oh] OG;I (y)

Thus
hz(Gl(:E)) = Flohl(il:) (8.26)
= (og(x) - (@) - (2 )T
Therefore,
Pihy (Gy (@)= (o (x) O --- 0)".
Also
P(Gi(@)=( og(x) 0 -~ 0)"

50 Pihy (y) = Py (y) for all y € V5. Also, hy (0) = 0 and Dh; (0) ' exists because of the
definition of h; above and the chain rule. Since F% = I, the identity map, it follows from
(8.26) that

h(.’l)):hl (w):FlohzoGl (:13) (827)
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Note that on an open set V, = G| (U)) containing the origin, h, leaves the first entry un-
changed. This is what P hy (G ()) = P; (G (x)) says. In contrast, b = h left possibly
no entries unchanged.

Suppose then, that for m > 2, h,, leaves the first m — 1 entries unchanged,

Pm,1 hm (ZC) = Pm,1 (.’I)) (828)

for all & € U,,, an open subset of U containing 0, and h,, (0) = 0, Dh,, (0)~" exists. From
(8.28), h,, (x) must be of the form

B (@)=(x1 - X1 (@) - au(x) )

where these o are different than the ones used earlier. Then

T

Dh, (0)en=(0 -+ 0 o1 n(0) -+ 0uw(0) ) #0

because Dh,, (0)~" exists. Therefore, there exists a k > m such that Om (0) # 0, not the

same k as before. Define
G (x) = ( X1 o Xpe1 Og(T) e X )T (8.29)

s0 a change in G,, occurs only in the m™ slot. Then G,, (0) = 0 and DG,, (0)™" exists
similar to the above. In fact

det (DG, (0)) = 0t (0).

Therefore, by the inverse function theorem, there exists an open set V,,1| containing 0 such
that V.11 = G, (Uy) with Gy, and its inverse being one to one, continuous and onto. Let
F',, be the flip which flips x,,, and x;. Then define h,,+1 on V,, | by

hpti (y) =F,ohy, OGyZI (y)

Thus for ¢ € U,,,
hpyi1 (G (x)) = (Frohy)(x). (8.30)

. 2
and consequently, since F';, =1,

Fpohyi10Gy () =hy(x) (8.31)
It follows
Buhpi1 (G(x)) = Pu(Frohy)(x)
= (xl o xm71 ak(m) 0 “e 0 )T
and
Pu(Gu(@)=(x - Xp1 og(x) 0 - 0)".

Therefore, for y € V11,
thm+1 (y) = Pn (y) .
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As before, R,y (0) = 0 and Dh,, 1 (0) " exists. Therefore, we can apply (8.31) repeat-
edly, obtaining the following:

h(zx) = FijohyoG(x)
= F]OF20h3OG20G1(CC)

= 'Fl o-oF,_joh,0Gy_10---0G(x)
where h,, fixes the first n — 1 entries,
P_1hy(x)=P,_1(x) = ( Xy - X—1 O )T,
and so h, (x) is a primitive mapping of the form
h,(z)= ( X1 o Xpm1 a(x) )T.

Therefore, define the primitive function G,, (x) to equal h,, (x). B

8.10 Invariance of Domain

As an application of the inverse function theorem is a simple proof of the important invari-
ance of domain theorem which says that continuous and one to one functions defined on an
open set in R” with values in R” take open sets to open sets. You know that this is true for
functions of one variable because a one to one continuous function must be either strictly
increasing or strictly decreasing. This will be used when considering orientations of curves
later. However, the n dimensional version isn’t at all obvious but is just as important if you
want to consider manifolds with boundary for example. The need for this theorem occurs
in many other places as well in addition to being extremely interesting for its own sake. The
inverse function theorem gives conditions under which a differentiable function maps open
sets to open sets. The following lemma, depending on the Brouwer fixed point theorem is
the thing which will allow this to be extended to continuous one to one functions. It says
roughly that if a continuous function does not move points near p very far, then the image
of a ball centered at p contains an open set.

Lemma 8.10.1 Let f be continuous and map B (p,r) C R" to R". Suppose that for all

x € B(p,r),|f (x) — x| < er. Then it follows that f (m) O B(p,(1—g)r)

Proof: This is from the Brouwer fixed point theorem, Corollary 6.3.2. Consider for
Yy EB(p,(l—&')l’),
h(z)=z—f(z)+y

Then h is continuous and for « € B(p,r),

|h(z)—p|=|x—f(x)+y—pl<ert+|ly—pl<er+(l1—¢)r=r

Hence h : B(p,r) — B(p,r) and so it has a fixed point « by Corollary 6.3.2 or Theorem
11.6.8. Thus
r—f(x)+y=2

sof(x)=y. 1
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The notation || f||x means supcx | f (2)|. If you have a continuous function h defined
on a compact set K, then the Stone Weierstrass theorem implies you can uniformly ap-
proximate it with a polynomial g. That is ||k — g||x is small. The following lemma says

that you can also have g (z) = h(z) and Dg(z)" exists so that near z, the function g
will map open sets to open sets as claimed by the inverse function theorem. First is a little
observation about approximating.

Lemma 8.10.2 Suppose det(A) = 0. Then for all sufficiently small nonzero €,
det(A+el) #0

Proof: First suppose A is a p X p matrix. Suppose also that det(A) = 0. Thus, the
constant term of det (A1 — A) is 0. Consider €] +A = A, for small real €. The characteristic
polynomial of Ag¢ is

det(AI —Ag) =det((A —€)I—A)

This is of the form
A—e)l +ap, 1 (A—e)" '+t (A—€)"an

where the a; are the coefficients in the characteristic equation for A and m is the largest such
that a,, # 0. The constant term of this characteristic polynomial for A, must be nonzero for
all € small enough because it is of the form

(—l)m €"ay, + (higher order terms in €)
which shows that €] + A is invertible for all € small enough but nonzero. l

Lemma 8.10.3 Let K be a compact set in R" and let h : K — R" be continuous, z € K
is fixed. Let & > 0. Then there exists a polynomial g (each component a polynomial) such
that

lg—hllx <8, g(z)=h(z), Dg(z)"" exists

Proof: By the Weierstrass approximation theorem, Corollary 5.8.8, or Theorem 5.10.5,
there exists a polynomial § such that

)
N
gl < 3

Then define for y € K
9(y)=4(y)+h(z)-§(2)

Then
g(z)=g(z)+h(z)-g(z)=h(2)
Also
lg(y)—h(y)| < [(gy)+h(z)-§(z))—h(y)
< 1) - h)l () -() <

and so since y was arbitrary,

26
lg—hllx <5 <8
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If Dg (z) " exists, then this is what is wanted. If not, use Lemma 8.10.2 and note that for
all 1 small enough, you could replace g with y — g (y) + 1 (y — z) and it will still be the
case that ||g — h||; < & along with g (z) = h(z) but now Dg (z) " exists. Simply use the
modified g. B

The main result is essentially the following lemma which combines the conclusions of
the above.

Lemma 8.10.4 Let f : B(p,r) — R" where the ball is also in R". Let f be one to one,
f continuous. Then there exists § > 0 such that

£ (Bwn) 2B(f (1))

In other words, f (p) is an interior point of f (B (p,r)).

Proof: Since f (B (p,r)) is compact, it follows that £~ ! : f (B (p,r)) — B(p,r) is
continuous. By Lemma 8.10.3, there exists a polynomial g : f (B (p,r)) — R" such that
Hg—flef(m) < ene<l, Dg(f(p)~"

exists,and g (f (p)) = f '(f(p)=p

From the first inequality in the above,
9(F @) -2l =g (f @)= F " (F@)| < lla— 5 sam) < &"

By Lemma 8.10.1,

gof (B(p) 2B(p.(1-)r) =B(g(f (p).(1-€)r)

Since Dg (f (p)) " exists, it follows from the inverse function theorem that g~ also exists
and that g, g~ are open maps on small open sets containing f (p) and p respectively. Thus
there exists 1 < (1 — &) r such that g~! is an open map on B (p,n) C B(p, (1 —¢)r). Thus

gof (Bp,r)) 2B(p,(1-€)) 2B(p,1)

So do g~!" to both ends. Then you have g~! (p) = f (p) is in the open set g~! (B (p,7n)).
Thus

f(Ben) 297 Bp.m) 2B(g7 (p).5) =B(f(p).5) W

B(p,(1-¢€)r) a0 (Blo.m))

p=q(f(p))

With this lemma, the invariance of domain theorem comes right away. This remarkable
theorem states that if f: U — R” for U an open set in R"” and if f is one to one and
continuous, then f (U) is also an open set in R”.
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Theorem 8.10.5 Let U be an open set in R" and let f : U — R" be one to one and
continuous. Then f (U) is also an open subset in R".

Proof: It suffices to show that if p € U then f (p) is an interior point of f(U). Let
B(p,r) CU.By Lemma 8.104, f(U) 2 f (B (p, r)) D B(f(p),d)so f(p) is indeed an
interior point of f (U). W

The inverse mapping theorem assumed quite a bit about the mapping. In particular it
assumed that the mapping had a continuous derivative. The following version of the inverse
function theorem seems very interesting because it only needs an invertible derivative at a
point.

Corollary 8.10.6 Let U be an open set in R? and let f : U — RP be one to one and con-
tinuous. Then, f~' is also continuous on the open set f (U). If f is differentiable at xy € U
and if Df (z1) " exists for &, € U, then it follows that Df ™" (f (x1)) = Df (@) ".

Proof: |-| will be a norm on R?, whichever is desired. If you like, let it be the Euclidean
norm. ||-|| will be the operator norm. The first part of the conclusion of this corollary is
from invariance of domain.

From the assumption that D f () and Df (1)~ exists,

y—f@)=Ff(F" (@)~ f@)=Df (@) (' ) —z1)+o(F ' (y)—z)
Since Df (z1) " exists,
Df (1) (y—f (@) =f " (y)—zi+o(f ' (y)—z1)

by continuity, if |y — f ()] is small enough, then | Fly) - ;| is small enough that in
the above,

o(F " (w)~)| < 3 |7 ()~

Hence, if |y — f (x1)] is sufficiently small, then from the triangle inequality of the form
Ip—al = 1lpl—lgll,

|pf @)1= 1 @)l = [pf @) - £ (@)

> |57 @) -] 5 1 )~ | = 516 ) -]
y—Fanl> [pr@n | 1 @) -l
It follows that for |y — f (x1)| small enough,
o(f 'w-—=)| _|o(f ' (y)—=) 2
O R e

Then, using continuity of the inverse function again, it follows that if |y — f (x1)] is
possibly still smaller, then f~! (y) — «; is sufficiently small that the right side of the
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above inequality is no larger than €. Since € is arbitrary, it follows o ( f! (y)— :1:1) =
o(y— f(x1)) Now from differentiability of f at x,

y—f(x) = F(F'W)—Ff@)=Df(x)(f ' (w)—x1)+o(f ' (y)—z1)
Df(z1) (f '(y)—z1) +o(y—f(x1))
= Df(x)) (f' (@) —F (£ (1) +o(y—f (1))

Therefore, solving for £~ (y) — f 1 (f (x1)),

F )~ (F (@) =Df (@) (y— f (1) +oly - f (1))

From the definition of the derivative, this shows that Df ' (f (z;)) = Df (). ®

8.11 Exercises

1. This problem was suggested to me by Matt Heiner. Earlier there was a problem in
which two surfaces intersected at a point and this implied that in fact, they inter-
sected in a smooth curve. Now suppose you have two spheres x> 4 y> +z> = 1 and
(x—2)* +y*+ 22 = 1. These intersect at the single point (1,0,0). Why does the
implicit function theorem not imply that these surfaces intersect in a curve?

2. Maximize 2x+y subject to the condition that % + % < 1. Hint: You need to consider
interior points and also the method of Lagrange multipliers for the points on the
boundary of this ellipse.

2
3. Maximize x + y subject to the condition that x> + % +2< 1.

4. Find the points on y?x = 16 which are closest to (0,0).

5. Use Lagrange multipliers to “solve” the following maximization problem. Maximize
xy?z3 subject to the constraint x +y+z = 12. Show that the Lagrange multiplier
method works very well but gives an answer which is neither a maximum nor a
minimum. Hint: Show there is no maximum by considering y = 12 — 5x,z = 4x and
then letting x be large.

6. Let f(x,y,z) = x> — 2yx + 27> — 4z + 2. Identify all the points where Df = 0. Then
determine whether they are local minima local maxima or saddle points.

7. Let f(x,y) = x* —2x2 +-2y? 4 1. Identify all the points where Df = 0. Then deter-
mine whether they are local minima local maxima or saddle points.

8. Let f(x,y,z) = —x* +2x> —y?> — 27> — 1. Identify all the points where Df = 0. Then
determine whether they are local minima local maxima or saddle points.

9. Let f:V — R where V is a finite dimensional normed vector space. Suppose f is
convex which means f(tx+ (1—1)y) <tf(x)+ (1—1t)f(y) whenever ¢ € [0,1].
Suppose also that f is differentiable. Show then that for every x,y € V,

(Df (x) =Df (y)) (x —y) 2 0.

Thus convex functions have monotone derivatives.
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Suppose B is an open ball in X and f : B — Y is differentiable. Suppose also there
exists L€ £ (X,Y) suchthat |Df (x) — L|| < k for all € B. Show thatif x|, x, € B,

|f (x1) = f(22) —L(z1 —x2)| < k| — ).
Hint: Consider Tx = f (x) — Lx and argue ||DT (x)|| < k.

Let f: U CX —Y, Df (x) exists for all & € U, B(xo,8) C U, and there exists
Le.Z(X,Y),suchthat L' € £ (¥,X), and for all x € B(x,5)
r

IDf () = L|| < o7, r < 1.
121l

Show that there exists € > 0 and an open subset of B(xo,d) called V, such that
f:V = B(f(x0),€) is one to one and onto. Also Df ! (y) exists for each y €

B(f (x0),€) and is given by the formula Df ! (y) = [Df (ffl ()] ~! Hint: Let

Ty(@) =T (z,y)=z—L " (f(x)—y)

18
for [y — f (wo)| < 2(|1|L_)1

tion theorem for f only differentiable, not C L

, consider {7,] (xzo)}. This is a version of the inverse func-

If f is one to one and C!, and Df (x¢) is invertible, then locally the function f is
one to one. Explain why this is, maybe using the above problem. However, this is a
strictly local result! Let f : R> — R? be given by

o= ( 222 )

e'siny

This clearly is not one to one because if you replace y with y + 27, you get the same
value. Now verify that Df (x,y) ! exists for all (x, y).

Show every polynomial, Y o<t da® is C* for every k. Show that if f is defined
and continuous on a compact set K, then there is an infinitely differentiable function
which is uniformly close to f on K.

Suppose U C IR? is an open set and f : U — R? is C!. Suppose Df (so,%o) has rank
two and
Flot)=(x yo 20 )"
Show that for (s,7) near (so,#), the points f(s,#) may be realized in one of the
following forms.
{30 (x,y)) : (x,) near (xo,y0)},

{(¢ (»,2),5,2) : (y,2) near (yo,20)},

{(x,¢ (x,2),2,) : (x,2) near (X07ZO)}.

This shows that parametrically defined surfaces can be obtained locally in a particu-
larly simple form.

Minimize }7}_, x; subject to the constraint };_, x? = a”. Your answer should be some

function of a which you may assume is a positive number.
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A curve is formed from the intersection of the plane, 2x + 3y +z = 3 and the cylinder
x? 4+ y? = 4. Find the point on this curve which is closest to (0,0,0).

A curve is formed from the intersection of the plane, 2x 4+ 3y + z = 3 and the sphere
x? 4+ y? 472 = 16. Find the point on this curve which is closest to (0,0,0).

Let A = (A;;) be an n x n matrix which is symmetric. Thus A;; = Aj; and recall
(Ax); = A;jx; where you sum over the repeated index. Show a% (Aijxx;) = 24A;jx;.
Show that when you use the method of Lagrange multipliers to maximize the func-
tion, A;;x;x; subject to the constraint, Z;le x? = 1, the value of A which corresponds
to the maximum value of this functions is such that A;;x; = Ax;. Thus Az = Ax.
Thus A is an eigenvalue of the matrix A.

Letxy,---,x5 be 5 positive numbers. Maximize their product subject to the constraint
that
X1 + 2xp + 3x3 + 4x4 + 5x5 = 300.

Let f(x1,-+,x,) =xx3 ' ---x}. Then f achieves a maximum on the set,

SE{wER”:Zix,»zlandeachxizo}.
i=1

i
If « € S is the point where this maximum is achieved, find x /x;,.

Maximize [J7_,x7 subject to the constraint, Y7, x? = r>. Show the maximum is

(r?/n)". Now show from this that ( f’:lxiz)l/ "< %Z;‘le% and finally, conclude
that if each number x; > 0, then

1/n
n 1 n
(M) <1f
i=1 i=1
and there exist values of the x; for which equality holds. This says the “geometric
mean” is always smaller than the arithmetic mean.

Show that there exists a smooth solution y = y (x) to the equation
xe’ +ye* =0

which is valid for x,y both near 0. Find y’ (x) at a point (x,y) near (0,0). Then find
y” (x) for such (x,y). Can you find an explicit formula for y (x)?

The next few problems involve invariance of domain. Suppose U is a nonempty open
setin R”, f : U — R" is continuous, and suppose that for each « € U, there is a ball
B, containing « such that f is one to one on B,. That is, f is locally one to one.
Show that f (U) is open.

1 In the situation of the above problem, suppose f : R” — R” is locally one to one.
Also suppose that lim ;| ., | f (z)| = oo. Show it follows that f (R") = R". That is,
f is onto. Show that this would not be true if f is only defined on a proper open
set. Also show that this would not be true if the condition lim|| .. | f ()| = o does
not hold. Hint: You might show that f (R") is both open and closed and then use
connectedness. To get an example in the second case, you might think of ¥+, It
does not include 0+ i0. Why not?
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1 Show that if f : R” — R" is C! and if Df (z) exists and is invertible for all = € R",
then f is locally one to one. Thus, from the above problem, if lim| g, | f ()] = o,

then f is also onto. Now consider f : R*> — R? given by

fxy) = < €008y )

e'siny

Show that this does not map onto R?. In fact, it fails to hit (0,0), but Df (x,y) is
invertible for all (x,y). Show why it fails to satisfy the limit condition.

You know from linear algebra that there is no onto linear mapping A : R” — R? for
p > m. Show that there is no locally one to one continuous mapping which will map
R™ onto R?.

In Example 8.1.9 on Page 210, could you replace y with y € R and obtain a modi-
fied version of this example?
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Chapter 9

Measures and Measurable Functions

The Lebesgue integral is much better than the Rieman integral. This has been known for
over 100 years. It is much easier to generalize to many dimensions and it is much easier to
use in applications. It is also this integral which is most important in probability. However,
this integral is more abstract. This chapter will develop the abstract machinery for this
integral.

The next definition describes what is meant by a ¢ algebra. This is the fundamental
object which is studied in probability theory. The events come from a ¢ algebra of sets.
Recall that 7 (Q) is the set of all subsets of the given set Q. It may also be denoted by 2
but I won’t refer to it this way.

Definition 9.0.1 7 c » (Q), the set of all subsets of Q, is called a ¢ algebra if
it contains 0,2, and is closed with respect to countable unions and complements. That
is, if {A,},,_, is countable and each A, € F, then U;_|A, € F also and if A € .F, then
Q\A € Z. Itis clear that any intersection of © algebras is a ¢ algebra. If # C P (Q),
o () is the smallest ¢ algebra which contains . In fact, the intersection of all 6
algebras containing ¥ is obviously a o algebra so this intersection is o ().

If .7 is a o algebra, then it is also closed with respect to countable intersections. Here
c
is why. Let {Fi};_, € .#. Then (ﬂka)C = UkaC € Z and so MiF, = ((ﬂka)C) =
(WFE)C e .
Example 9.0.2 You could consider N and for your ¢ algebra, you could have &7 (N). This

satisfies all the necessary requirements. Note that in fact, & (S) works for any S. However,
useful examples are not typically the set of all subsets.

9.1 Simple Functions and Measurable Functions

A o algebra is a collection of subsets of a set Q which includes 0,€, and is closed with
respect to countable unions and complements.

Definition 9.1.1 A measurable space, denoted as (Q,F), is one for which F is a
o algebra contained in & (Q). Let f : Q — X where X is a metric space. Then f is said to
be measurable means f~' (U) € .F whenever U is open.

It is important to have a theorem about pointwise limits of measurable functions. The
following is a fairly general such theorem which holds in the situations to be considered
in this book. First recall dist(x,S) in Lemma 3.12.1 which impliles that x — dist(x,S) is
continuous.

Theorem 9.1.2 L. {fu} be a sequence of measurable functions mapping € to the
metric space (X,d) where (Q,.F) is a measureable space. Suppose the pointwise limit
f(®) =lim, e f, (®) for all ®. Then f is also a measurable function.

Proof: It is required to show f~! (U) is measurable for all U open. Let

V= {er:dist(x,UC) > ’111}

237
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Thus, since dist is continuous, (Lemma 3.12.1), V,, C {x € U : dist (x,U) >

%}5 Vm g
Vin € Vius1, and UV, = U. Then since V,,, is open, £~ (V;,) = Un Niey, fk_1 (Vi)

and so

FHU) = Ui f V) = U U it (Vi)
C Upf ' (Vm)=r"U)

which shows f~! (U) is measurable. B

Important examples of a metric spaces are R, C,F", where F is either R or C. However,
it is also very convenient to consider the metric space (—eo, 0|, the real line with oo tacked
on at the end. This can be considered as a metric space in a very simple way.

p (x,y) = |arctan (x) — arctan (y)]

with the understanding that arctan (o) = 7/2. It is easy to show that this metric restricted
to R gives the same open sets on R as the usual metric given by d (x,y) = |x—y| but in
addition, allows the inclusion of that ideal point out at the end of the real line denoted as
oo, This is considered mainly because it makes the development of the theory easier. The
open sets in (—oo,o0| are described in the following lemma.

Lemma 9.1.3 The open balls in (—oo, | consist of sets of the form (a,b) for a,b real
numbers and (a,o|. This is a separable metric space.

Proof: If the center of the ball is a real number, then the ball will result in an interval
(a,b) where a,b are real numbers. If the center of the ball is oo, then the ball results in
something of the form (a,c]. It is obvious that this is a separable metric space with the
countable dense set being Q since every ball contains a rational number. l

If you kept both —eo and e with the obvious generalization that arctan (—o) = —7,
then the resulting metric space would be a complete separable metric space. However, it is
not convenient to include —oo, so this won’t be done. The reason is that it will be desired
to make sense of things like f + g.

Then for functions which have values in (—oo,0] we have the following extremely
useful description of what it means for a function to be measurable.

Lemma 9.1.4 Let f: Q — (—oo,00] where .F is a ¢ algebra of subsets of Q. Here
(—oo, 00| is the metric space just described with the metric given by

p (x,y) = |arctan (x) — arctan (y)| .
Then the following are equivalent.
1 ((d,]) € .Z . for all finite d,
F~((—o0,d)) € . for all finite d,
f1([d,]) € .Z,for all finite d,
! ((—o0,d]) € 7, for all finite d,
' ((a,b)) € F foralla < b,—e0 < a < b < oo.

Any of these equivalent conditions is equivalent to the function being measurable.



9.1. SIMPLE FUNCTIONS AND MEASURABLE FUNCTIONS 239

Proof: First note that the first and the third are equivalent. To see this, observe
F1([d, =) = Nz, £ 1((d — 1/n,0]), and so if the first condition holds, then so does the
third. f~1((d,0]) = U, f~1([d+1/n,o]), and so if the third condition holds, so does the
first.

Similarly, the second and fourth conditions are equivalent. Now from the definition
of inverse image, f~!((—o0,d]) = (f~!((d,]))¢ so the first and fourth conditions are
equivalent. Thus the first four conditions are equivalent and if any of them hold, then
for —co < a < b < oo, f~1((a,b)) = f~1((—o0,b)) N f~'((a,]) € .Z. Finally, if the last
condition holds, £~ ([d,]) = (Up_, f! ((fk+d,d)))c € % and so the third condition
holds. Therefore, all five conditions are equivalent.

Since (—oo,o0] is a separable metric space, it follows from Theorem 3.4.2 that every
open set U is a countable union of open intervals U = Uyl where Iy is of the form (a,b)
or (a,o] and, as just shown if any of the equivalent conditions holds, then f~!(U) =
Urf~ 1 (Iy) € Z. Conversely, if f~! (U) € .Z for any open set U € (—oo, 0], then in partic-
ular, f~!((a,b)) € .F which is one of the equivalent conditions and so all the equivalent
conditions hold. W

Note that if f is continuous and g is measurable, then f o g is always measurable. This
is because, for U open, (fog) ' (U) =g~ (f~' (U)) = g~" (open) which is measurable.

There is a fundamental theorem about the relationship of simple functions to measur-
able functions given in the next theorem.

Definition 9.1.5 L E € Z for F a o algebra. Then

_ | lifoeFE
‘%E(“’):{ Oifo¢E

This is called the indicator function of the set E. Let s : (Q,.%) — R. Then s is a simple
function if it is of the form

s(@) = ZI% (0)

where E; € & and c; € R, the E; being disjoint. Thus simple functions are those which have
finitely many values and are measurable. In the next theorem, it will also be assumed that
each c; > 0.

Each simple function is measurable. This is easily seen as follows. First of all, you can
assume the c; are distinct because if not, you could just replace those E; which correspond
to a single value with their union. Then if you have any open interval (a,b),s~! ((a,b)) =
U{E; : ¢; € (a,b)} and this is measurable because it is the finite union of measurable sets.

Theorem 9.1.6 L. f > 0 be measurable. Then there exists a sequence of nonnega-
tive simple functions {s,} satisfying

0 < su(®) ©.1)

s”(a)) Sanrl(w)"'
flo)= ’}ggosn(w)for all € Q. 9.2)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.
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Proof: Letting I = {® : f (®) = oo}, define

2 )
In(@) :kg(,);%f—l([k m>)(a’)+2 Zi1(o).

n’> n

Then t,(w) < f(w) for all @ and lim,_,«,(®) = f(®) for all @. This is because ¢, (©) =
2" for w € I and if f () € [0, #), then

0<f(0)—ta(0) < —. 9.3)

Thus whenever @ ¢ I, the above inequality will hold for all n large enough. Let
s1 =1, s, =max(f1,t), s3 =max (f],t5,13) .

Then the sequence {s,} satisfies 9.1-9.2. Also each s, has finitely many values and is
measurable. To see this, note that s, ! ((a,0]) = Uj_ 1, ((a,]) € F

To verify the last claim, note that in this case the term 2".2;(®) is not present and for
n large enough, 2" /n is larger than all values of f. Therefore, for all n large enough, 9.3
holds for all @. Thus the convergence is uniform.

The last claim follows right away from Theorem 9.1.2. B

There is a more general theorem which applies to measurable functions which have
values in a separable metric space. In this context, a simple function is one which is of the
form Y7, xx 2, (@) where the E are disjoint measurable sets and the x; are in X. I am
abusing notation somewhat by using a sum. You can’t add in a general metric space. The
symbol means the function has value x; on the set E;. However, if X were a vector space,
this notation would be a nice way to express what is meant.

Theorem 9.1.7 Let (Q,.%) be a measurable space and let f : © — X where (X,d)
is a separable metric space. Then f is a measurable function if and only if there exists a
sequence of simple functions,{ f,} such that for each ® € Q andn € N,

d(fu(®),f(®)) = d(fus1(0),f(@)) 94
and
lim d (f, (@), f (@) =0. 9.5)

Proof: Let D = {x;};_, be a countable dense subset of X. First suppose f is measur-
able. Then since in a metric space every closed set C is the countable intersection of open
sets,

C=nN{xeX  dist(x,C) < 1/k},

it follows f~! (closed set) € .Z. Now let D, = {x;};_, - Let
ar={0:a0m.s(0) =nind (.1 (@)}
= mZ=1 {(D : d(xkaf(w)) 7d(x17f(w)) 2 O}

That is, A; is those ® such that f(®) is approximated best out of D, by x;. Why is this a
measurable set? It is because @ — d (x¢, f () —d (x1, f (@)) is a real valued measurable
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function, being the composition of a continuous function, y — d (x;,y) — d (x1,y) and a
measurable function, ® — f (®) . Next let

ar={ 0 A dlon.f (@) = pind (5. (@)}

k

and continue in this manner obtaining disjoint measurable sets, {Ax};_, such that for @ €

Ay the best approximation to f (@) from D, is x¢. Then f, (0) = Y}_, x 24, (®) . Note
d(fy1(0).f (@)) = min d (x;,f (@) < mind (x;.f (@)) = d(f (0) .f (@))

and so this verifies 9.4. It remains to verify 9.5.

Let € > 0 be given and pick @ € Q. Then there exists x,, € D such that d (x,, f (®)) < €.
It follows from the construction that

d(f (), f (@) <d(x, f(®)<e.

This proves the first half.

Conversely, suppose the existence of the sequence of simple functions as described
above. Each f, is a measurable function because f, ! (U) = U{A; : x; € U}. Therefore,
the conclusion that f is measurable follows from Theorem 9.1.2 on Page 237. B

Another useful observation is that the set where a sequence of measurable functions
converges is also a measurable set.

Proposition 9.1.8 Let {f,} be measurable with values in a complete normed vector
space. Let A= {0 : {f,(®)} converges}. Then A is measurable.

Proof: The set A is the same as the set on which {f, (@)} is a Cauchy sequence. This

set is |
ﬁ;:1 L-J:=l mp,q>m pr ((D) _fq (w)H < ;

which is a measurable set thanks to the measurability of each f,,. B

9.2 Measures and their Properties

What is meant by a measure?

Definition 9.2.1 L. (Q,.F) be a measurable space. Here F is a © algebra of sets
of Q. Then 1 : F — [0, 9] is called a measure if whenever {F;}_" | is a sequence of disjoint
sets of F, it follows that

=)

p(UZ F) =) u(E)

i=1
Note that the series could equal . If 1L (Q) < oo, then U is called a finite measure. An
important case is when 1L (Q) = 1 when it is called a probability measure.

Note that u (0) = p (0U0) = p (0) + 1 (0) and so u (0) = 0.

Example 9.2.2 You could have & (N) = .% and you could define |1 (S) to be the number
of elements of S. This is called counting measure. It is left as an exercise to show that this
is a measure.
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Example 9.2.3 Here is a pathological example. Let Q be uncountable and % will be those
sets which have the property that either the set is countable or its complement is countable.
Let uW(E) =0 if E is countable and 1 (E) = 1 if E is uncountable. It is left as an exercise
to show that this is a measure.

Of course the most important measure in this book will be Lebesgue measure which
gives the “volume” of a subset of R". However, this requires a lot more work.

Lemma 9.2.4 If u is a measure and F; € F, then u (U2 | F) < Y2, u(F). Also if
F, € % and F, C F,| for all n, then if F = U, F;,
1 (F) = lim p (F,)

n—oo

IfFy O Fypy foralln, then if L (Fy) < oo and F = N, F,, then

W (F) = lim pu (F)

n—so0

Proof: Let G| = F; and if Gy,---,G, have been chosen disjoint, let G,y = Fyy1 \
U, G;. Thus the G; are disjoint. In addition, these are all measurable sets. Now

B (Gni1) + 1 (Fye1 0 (UL Gi)) = 1 (Fogr)

and so U (G,) < (F;). Therefore,

(UG = Y (G) < Y (F).

l

Now consider the increasing sequence of F,, € .%. If F C G and these are sets of .7,
then u (G) = u(F)+pu(G\F) so u(G) > u(F). Also F = U | (Fi41 \ F;) + Fi. Then

p(F) =Xy 0 (Fipa \F) + R (F). Now p(Fia \ F) + p(F) = p(Fig). If any p (Fr) =
oo, there is nothing to prove. Assume then that these are all finite. Then u (Fi+1 \ F;) =

1 (Fii1) — i (F;) and so

Y w(F) —p(F)+u(R)
i=1

= lim Y p(Fior) —p(F) +p (F) = lim p (Fuy1)
i=1

u(F)

Next suppose [ (F}) < oo and {F, } is a decreasing sequence. Then F} \ F,, is increasing
to Fi \ F and so by the first part,

H(F) — 1 (F) = (F \ F) = lim t (F1 \ Fy) = Tim (4t (Fy) — ()

This is justified because u (Fy \ F,) + pt (F,) = p (F1) and all numbers are finite by assump-
tion. Hence U (F) = lim,_,o U (F,). W

I like to remember this as E, T E = p(E,) T U (E) and E, | E = u(E,) | u(E) if
H(Er) <ee.

There is a monumentally important theorem called the Borel Cantelli lemma. This is
next.
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Lemma 9.2.5 If (Q,.7, 1) is a measure space and if {E;} C .F and ¥, 1 (E;) < oo,
then there exists a set N of measure 0 (L (N) = 0) such that if @ ¢ N, then ® is in only
finitely many of the E;.

Proof: The set of @ in infinitely many E; is N = N>_, Ug>, Ex because this consists
of those @ which are in some Ej, for k > n for any choice of n. Now pu (N) < Y2 1 (Ey)
which is just the tail of a convergent series. Thus, it converges to 0 as n — . Hence it is
less than € for n large enough. Thus u (N) is no more than € for any € > 0. B

9.3 Dynkin’s Lemma

Dynkin’s lemma is a very useful result. It is used quite a bit in books on probability. It
resembles an important result on monotone classes but seems easier to use.

Definition 9.3.1 Ler Q be a set and let ¢ be a collection of subsets of Q. Then &~
is called a 7 system if 0,Q € & and whenever A,B € JZ, it follows ANB € J£ .

The following is the fundamental lemma which shows these 7 systems are useful. This
is due to Dynkin.

Lemma 9.3.2 Let # be a & system of subsets of Q, a set. Also let 4 be a collection of
subsets of Q which satisfies the following three properties.

1. ¥ CY

2. IfA€ Y, then A€ c¢ ¥

3. If {Ai} | is a sequence of disjoint sets from & then U7 |A; € 9.

Then 9 D o ('), where o () is the smallest & algebra which contains ¢ .

Proof: First note that if
A ={¥:1-3allhold}

then N7 yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that ¢ is the smallest collection satisfying 1 - 3. Let A € % and define

G ={Bc9Y:ANBcY)}.

I want to show ¥4 satisfies 1 - 3 because then it must equal ¢ since ¢ is the smallest
collection of subsets of Q which satisfies 1 - 3. This will give the conclusion that for
A€ X and B€ ¥, ANB € ¥. This information will then be used to show thatif A,B € ¢4
then ANB € ¢4. From this it will follow very easily that ¢ is a o algebra which will imply
it contains ¢ (). Now here are the details of the argument.

Since . is given to be a 7 system contained in ¢, # C ¥4. Indeed, if C € £ then
ANC e X C¥Y soC e Yy. Property 3 is obvious because if {B;} is a sequence of disjoint
sets in ¢y, then

ANV Bi=UZ | ANB; €9

because AN B; € 4 and the property 3 of ¢4.
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It remains to verify Property 2 so let B € %4. I need to verify that B € ¢,. In other
words, I need to show that AN B¢ € 4. However,

ANBC = (ASUANB)) €9

Here is why. Since B € 94, ANB € ¢ and since A € # C ¥ it follows AC € ¢ by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, A and (AN B) is
in ¢4 and then from 2 the complement of their union is in ¢. Thus ¥, satisfies 1 - 3 and
this implies, since ¥ is the smallest such, that ¥4 O ¢. However, ¥4 is constructed as a
subset of ¢. This proves that for every B€ ¥ and A € #, ANB € 4. Now pick B € 4 and
consider

Ys={Ac9 ANBcY}.

I just proved J#~ C ¥5. The other arguments are identical to show ¥z satisfies 1 - 3 and is
therefore equal to ¢. This shows that whenever A, B € ¢ it follows ANB € ¥.

This implies ¢ is a ¢ algebra. To show this, all that is left is to verify ¢ is closed under
countable unions because then it follows ¢ is a o algebra. Let {A;} C %¢. Thenlet A} = A,
and

A1 = A1\ (UL1A) = At N (MELAT) = N1 (A NAT) €9

because finite intersections of sets of ¢ are in ¢. Since the Aﬁ» are disjoint, it follows
U2, A =Uz Al € 4. Therefore, ¥ D o (%). R

Corollary 9.3.3 Given 2, closed with respect to complements, the condition that 9 is
closed with respect to countable disjoint unions is equivalent to ¢ the condition that ¢ is
closed with respect to countable intersections.

Proof: = Consider N E where E, € 4. Then N E; = (UkE,f)C. Now the EkC are not
necessarily disjoint, but each is in ¢ and so one can use the scheme of the last part of the
proof of Lemma 9.3.2 to reduce to this case and conclude UkEkC € ¢. Then the countable
intersection is just the complement of this last set.

<« Suppose the countable intersection of sets of ¢ is in ¢ and consider a countable

union U E, of sets of 4. Then U E, = (ﬁkEkC)C cv. m

9.4 OQOuter Measures

There is also something called an outer measure which is defined on the set of all subsets.

Definition 9.4.1 Ler Q be a nonempty set and let A : 2 (Q) — [0,00) satisfy the
following:

L A®0) =0
2. IfAC B, then A (A) < A (B)
3. A(UZE) < X2, A (E)

Then A is called an outer measure.
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Every measure determines an outer measure. For example, suppose that u is a measure
on .# a o algebra of subsets of Q. Then define

gS)=inf{u(E):E2S,E€ ZF}.
This is easily seen to be an outer measure. Also, we have the following Proposition.

Proposition 9.4.2 Let u be a measure defined on a ¢ algebra of subsets .F of Q as
Jjust described. Then [i as defined above, is an outer measure and also, if E € F, then

B(E) = p(E).

Proof: The first two properties of an outer measure are obvious. What of the third? If
any fi (E;) = o, then there is nothing to show so suppose each of these is finite. Let F; D E;
such that F; € 7 and i (E;) + 5; > () . Then

R(UZLE) < 1 (UR,F) si i( ;)imam

Since ¢ is arbitrary, this establishes the third condition. Finally, if E € .%, then by defini-
tion, fi (E) < u (E) because E D E. Also, L (E) < u(F) forall F € % suchthat F D E. It
follows that pt (E) is a lower bound of all such y (F) andso i (E) > u (E).H

9.5 Measures From Quter Measures

Theorem 9.7.4 describes an outer measure on & (R). There is a general procedure for con-
structing a o algebra and a measure from an outer measure which is due to Caratheodory
about 1918.

Thus, when you have a measure on (£,.%), you can obtain an outer measure on
(Q, Z(Q)) from this measure as in Proposition 9.4.2, and if you have an outer measure on
(Q,Z(Q)), this will define a ¢ algebra .% and a measure on (Q,.%). This last assertion
is the topic of this section.

Definition 9.5.1 Let Q be a nonempty set and let - 2(Q) — [0,00] be an outer
measure. For E C Q, E is L measurable if for all S C Q,

1(S) = u(S\E)+u(SNE). (9.6)

To help in remembering 9.6, think of a measurable set E, as a process which divides a
given set into two pieces, the part in £ and the part not in £ as in 9.6. In the Bible, there
are several incidents recorded in which a process of division resulted in more stuff than
was originally present.! Measurable sets are exactly those which are incapable of such a
miracle. With an outer measure, it is always the case that u(S) < u(S\ E) +u(SNE).
The set is measurable, when equality is always obtained for any choice of § € & (Q). You
might think of the measurable sets as the non-miraculous sets. The idea is to show that
these sets form a ¢ algebra on which the outer measure U is a measure.

First here is a definition and a lemma.

Bl Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was
either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R? into five disjoint pieces and assemble the pieces to form two disjoint balls of the same size as
the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985.
It is known that all such examples must involve the axiom of choice.
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Definition 9.5.2 (u[5)(A) = u(SNA) for all A C Q. Thus 11|S is the name of a
new outer measure, called U restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 9.5.3 IfA is u measurable, then for any S, A is 1| S measurable.
Proof: Suppose A is 1 measurable. It is desired to to show that for all 7 C Q,

(U[S)(T) = (u[SHT NA) + (1[S)(T\A).
Thus it is desired to show
u(SNT) =pu(TNANS) +u(TNSNAS). 9.7)

But 9.7 holds because A is 4 measurable. Apply Definition 9.5.1 to SN T instead of S. W
If A is 1 | S measurable, it does not follow that A is t measurable. Indeed, if you believe
in the existence of non measurable sets which is discussed later, you could let A = S for
such a 1 non measurable set and verify that S is (| S measurable.
The next theorem is the main result on outer measures which shows that starting with
an outer measure you can obtain a measure.

Theorem 9.5.4 Let Q be a set and let U be an outer measure on & (Q). The col-
lection of UL measurable sets ., forms a ¢ algebra and

oo

IfFie ., FNF; =0, then u(UZ,F) =Y u(F). 9.8)
i=1

If---F,CF1 C---, thenif F = U, _|F, and F, € ., it follows that

“(F):J%U(Fn) 9.9)
If---F,DF 1 2, and if F =N_F, for F, € & then if W(Fy) < oo,
w(F)= lgn U(F,). (9.10)

This measure space is also complete which means that if W (F) = 0 for some F € . then
if G CF, it follows G € . also.

Proof: First note that @ and Q are obviously in .. Now suppose A, B € .. I will show
A\B=ANBCisin.7. To do so, consider the following picture.
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It is required to show that u (S) = u (S\ (A\B)) + u (SN(A\B)). First consider S\
(A\ B) . From the picture, it equals

(SNASNBC)U(SNANB)U(SNASNB)
Therefore, 1 (S) < pu (S\(A\B))+u(SN(A\B))

< u(SNASNBC)+u(SNANB)+u (SNASNB) +u(SN(A\B))
= u(SNANBY) +u(SNANB)+u (SNA“NB) +pu (SNANBC)

1 (SNASNB) +pu (SNANBS) + 1 (SNANB) + u (SNA“NB)
= u(SNBY)+u(SNB)=u(S)

and so this shows that A \ B € . whenever A,B € ..

Since Q € .7, this shows that A € . if and only if A€ € .. Now if A,B € ./, AUB =
(A°NBC)C = (A°\B)C € .. By induction, if Ay, -+ ,A, € .7, then so is U'_,A;. If
A,BE .7, withANB =0,

H(AUB) = u((AUB) NA) + 1((AUB)\ A) = u(4) + u(B).

By induction, if A;NA; =0 and A; € .7,

n

H(ULA) =Y u(A). (9.11)
i=1

Now let A = U |A; where A;NA; =0 fori # j. Y2, 1u(A;) > u(A) > p(Ur A;) =

" 1 1(A;). Since this holds for all n, you can take the limit as n — oo and conclude,
Y 1(A;) = u(A) which establishes 9.8.

Consider part 9.9. Without loss of generality pt (Fy) < oo for all k since otherwise there
is nothing to show. Suppose {F;} is an increasing sequence of sets of .. Then letting
Fy =0, {Fey1 \ Fx}p is a sequence of disjoint sets of .7 since it was shown above that
the difference of two sets of .# is in .. Also note that from 9.11

W (Frer1 \ Fie) + 1 (Fi) = 1 (Fies1)

and so if i (Fy) < o, then

W (Fer1 \ Fie) = p (Fi1) — 1 (Fi) -

Therefore, letting F = Uy, Fi, which also equals Uy, (Fiq1 \ Ft) , it follows from part 9.8
just shown that

o

Y u(Fn \F) = lim Y u(Fer \F)
k=0 k=0

1 (F)
= lim Y p(Fir) = (F) = lim p (Fsr).
n—>ook:0 n—yoo

In order to establish 9.10, let the F, be as given there. Then, since (F; \ F;,) increases to
(Fi\ F), 9.9 implies

lim (11 (F1) — 1 (Fy) = Tim 1 (F1\ Fy) = 1 (Fi \ F).

n—yoo



248 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

The problem is, I don’t know F € .¥ and so it is not clear that yt (Fi \ F) = u (F;) — u (F).
However, u (F{\F)+u(F) > u(Fy)andso u (Fi\F) > u(F)—u(F). Hence

im (u (F) —p (Fy) = p(F\F) 2 p(F)—p(F)

n—oo

which implies lim,_,e it (F,) < u(F). But since F C Fy, 1 (F) < lim,_ U (F,;) and this
establishes 9.10. Note that it was assumed u (F]) < oo because y (F;) was subtracted from
both sides.

It remains to show .¥ is closed under countable unions. Recall that if A € .7, then
A€ € .7 and . is closed under finite unions. Let A; € ./, A = U | A;, B, = U'_,A;. Then

w(S) = p(SNBy)+u(S\Bn) (9.12)
= (u1S)(Bn)+ (u[S)(BY)
By Lemma 9.5.3 B, is (1| S) measurable and so is BS. T want to show u(S) > u(S\A) +

W(SNA). If u(S) = oo, there is nothing to prove. Assume (L(S) < eo. Then apply Parts 9.10
and 9.9 to the outer measure g[S in 9.12 and let n — oo. Thus B, T A, BS | A€ and this

yields p(S) = (k[ S)(A) + (1 [S)(AC) = p(SNA) +u(S\A).
Therefore A € . and this proves Parts 9.8, 9.9, and 9.10.
It only remains to verify the assertion about completeness. Letting G and F be as
described above, let S C Q. I need to verify i (S) > u (SNG) + 1 (S\ G). However,
H(SNG)+u(S\G) < Wu(SNF)+u(S\F)+u(F\G)
= H(SNF)+p(S\F)=p(S)

because by assumption, 4 (F\G) <u(F)=0. &

Corollary 9.5.5 Completeness is the same as saying that if (E\ E')U(E'\E)CN € &
and W (N) =0, then if E € Z, it follows that E' € F also.

Proof: If the new condition holds, then suppose G C F where i (F) =0,F € .%. Then
=0

N . .
(G\F)U(F\G) CF and u (F) is given to equal 0. Therefore, G € Z.
Now suppose the earlier version of completeness and let

(E\E")U(E'\E)CNeZ

where it (N) =0 and E € .%. Then we know (E\ E’),(E'\ E) € ¥ and all have measure
zero. It follows E\ (E\E') = ENE' € %. Hence

E'=(ENE)U(E'\E)e.Z 1

9.6 Measurable Sets Include Borel Sets?

If you have an outer measure, it determines a measure. This section gives a very convenient
criterion which allows you to conclude right away that the measure is a Borel measure.

Theorem 9.6.1 L. W be an outer measure on the subsets of (X,d), a metric space.
If u(AUB) = u(A) + 1(B) whenever dist(A,B) > 0, then the © algebra of measurable sets
& contains the Borel sets.
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Proof: It suffices to show that closed sets are in ., the o-algebra of measurable sets,
because then the open sets are also in .% and consequently .% contains the Borel sets. Let
K be closed and let S be a subset of Q. Is u(S) > u(SNK)+ wu(S\ K)? It suffices to assume
1(S) < . Let K, = {x:dist(x,K) < 1}. By Lemma 3.12.1 on Page 91, x — dist (x,K)
is continuous and so K, is a closed set having K as a subset. That in K¢ is at a positive
distance from K. By the assumption of the theorem,

1(S) = p((SNK)U(S\Ky)) = u(SNK) + p(S\ Ky) (9.13)

Now
RS\ Ky) < u(S\K) < u(S\Kn) + pu((Kn \K)NS). (9.14)

If limy, 0 U((K,\ K)NS) =0 then the theorem will be proved because this limit along
with 9.14 implies lim,, . it (S\ K;;) = p(S\ K) and then taking a limit in 9.13, u(S) >
U(SNK)+ u(S\K) as desired. Therefore, it suffices to establish this limit.

Since K is closed, a point, x ¢ K must be at a positive distance from K and so

Ky \K = U, Kic \ K1

Therefore

=

1SN (K \K)) < Y p(SN (Ki\ Kii1))- (9.15)
k=n

If

[ agk

(SN (Ki \ Kiy1)) < oo, 9.16)

k=1

then u(SN (K, \ K)) — 0 because it is dominated by the tail of a convergent series so it
suffices to show 9.16.

Mz

U(SN (K \Kiy1)) =

k=1
Y BN(K\Ker))+ Y, SO (Ke\ Kigr))- (9.17)
k even, k<M kodd, k<M

By the construction, the distance between any pair of sets, SN (Kj \ K¢ ) for different even
values of k is positive and the distance between any pair of sets, SN (K \ Ky 1) for different
odd values of k is positive. Therefore,

Y BN \Ker))+ ) (SN (Ki\ K1) <
k even, k<M kodd, k<M

u( U (Sm(Kk\Kk+l))>+“< U (Sm(Kk\KkJrl)))

k even, k<M kodd, k<M

Sp(S)+u(S)=2u(S)
and so for all M, Y | (SN (Ki \ Kiy1)) < 24 (S) showing 9.16. B
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9.7 An Outer Measure on & (R)

A measure on R is like length. I will present something more general than length because
it is no trouble to do so and the generalization is useful in many areas of mathematics such
as probability.

Definition 9.7.1 7ne following definition is important.
F(xt) = lim F(y), Fx-)= lim F(y)

Thus one of these is the limit from the left and the other is the limit from the right.

In probability, one often has F (x) > 0, F is increasing, and F (x+) = F (x). This is the
case where F is a probability distribution function. In this case, F (x) = P (X < x) where
X is arandom variable. In this case, limy_,.. F (x) = 1 but we are considering more general
functions than this including the simple example where F (x) = x. This last example will
end up giving Lebesgue measure on R. Recall the following definition.

Definition 9.7.2 » (S) denotes the set of all subsets of S.
Also recall
Definition 9.7.3 For two sets, A, B in a metric space,
dist(A,B) =inf{d (x,y) :x €A,y € B}.

Theorem 9.7.4 LetF bean increasing function defined on R. This will be called an
integrator function. There exists a function | : & (R) — [0, 0] which satisfies the following
properties.

1. IfAC B, then0 < p(A) < p(B),u(0) =0.

2. u(UgA) ST u(Ay)

3. (la,b) = F ()~ F (a-).

4. p((a,)) = F(b—) - F (a+)

5. u((a,b])) =F (b+)—F (a+)

6. 1 (a,b)) = F (b-) — F (a-).

7. Ifdist(A,B) =0 >0, then u (AUB) = 1 (A)+ u (B).

Then the & algebra of L measurable sets F contains the Borel sets. This measure is
called Lebesgue Stieltjes measure.

Proof: First it is necessary to define the function p. This is contained in the following
definition.

Definition 9.7.5 roracRr

=

Il
—_

1

w(A) = inf{ (F(bi—)—F (ai+)):ACUZ, (ai,bl-)}
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In words, you look at all coverings of A with open intervals. For each of these open
coverings, you add the “lengths” of the individual open intervals and you take the infimum
of all such numbers obtained.

Then 1.) is obvious because if a countable collection of open intervals covers B, then
it also covers A. Thus the set of numbers obtained for B is smaller than the set of numbers
for A. Why is p (@) = 0? Pick a point of continuity of F. Such points exist because F
is increasing and so it has only countably many points of discontinuity. Let a be this
point. Then@ C (a—8,a+6)andsou (0) <F (a+ ) —F (a— §) forevery 0 > 0. Letting
6 — 0, it follows that u (0) = 0.

Consider 2.). If any p (A;) = oo, there is nothing to prove. The assertion simply is
oo < oo, Assume then that i (A;) < o for all i. Then for each m € N there exists a countable
set of open intervals, {(a}",b!")};" | such that

o

> Y (F(b'=) = F (a]'+)).

i=1

)
Am Am
H(Am) + 55

Then using Theorem 2.5.4 on Page 65,

p(Unoidn) <) (F (') =F(ai'+))

INGCEETENED WITHESES WZHER

m=1i=1

and since € is arbitrary, this establishes 2.).
Next consider 3.). By definition, there exists a sequence of open intervals, {(a;,b;)};;
whose union contains [a,b] such that

u([a,b)) +&> i (F (bi—) —F (ait)).

By Theorem 4.4.8, finitely many of these open intervals also cover [a,b]. It follows there

exist finitely many of these intervals, denoted as {(a;,b;)};_, , which overlap, such that a €

(a1,b1),by € (az,b2),-- ,b € (an,by). Therefore, u ([a,b]) <YL, (F (bi—)—F (a;i+)).
It follows

Y (FGm)-Flar) = e = Y (F o)~ Fars) -

Therefore, F (b+8) — F (a—8) > u([a,b]) > F (b+) — F (a—) — €. Letting 6 — 0,

F(b+)—F(a=) = p(la,b]) = F (b+) —F (a—) — ¢

Since € is arbitrary, this shows u ([a,b]) = ( +) — F (a—). This establishes 3.).
Consider 4.). For small § > 0,u ([a+ 8,b—8]) < u((a,b)) .Therefore, from 3.) and
the definition of u,

F((b—8))~F((a+8) <F((b—8)+)~F((a+3)-)
— u(fa+38,b—3)) < u((a,b) < F (b—) — F (a+)



252 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

the last inequality from the definition. Now letting 6 decrease to 0 it follows F (b—) —
F(a+) <u((a,b)) <F(b—)—F (a+). This shows 4.)
Consider 5.). From 3.) and 4.), for small é > 0,

F(b+)—F ((a+8)) <F(b+)—F ((a+8)—)
= u(fa+6,b]) <u((a,b]) <u((a,b+9))
F((b+6)—)—F(at+)<F(b+0)—F (at).

Now let & converge to O from above to obtain F (b+) — F (a+) = u ((a,b]). This estab-
lishes 5.) and 6.) is entirely similar to 5.).
Finally, consider 7.). Let

o
VU{B(x,lO) .xGAUB}.

Let AUB C U | (ai, b;) where

U(AUB)+¢€ > ZF(bi—) —F(ai+)

Then, taking the intersection of each of these intervals with V; it can be assumed that all of
the intervals are contained in V since such an intersection will only strengthen the above
inequality. Now refer to V as the union of these intervals, none of which can intersect
both A and B. Thus V consists of disjoint open sets, one containing A consisting of the
intervals which intersect A, Uy and the other consisting of those which intersect B, Up. Let
#4 denote the intervals which intersect A and let .#p denote the remaining intervals. Also
let A((a;,b;)) = F (bj—) — F (a;+) . Then from the above,

HAUB)+e> Y A(D)+ ), A(l) > u(A)+u(B) > u(AUB)
Ie gy Ie g

Since € > 0 is arbitrary, this shows 7.). That .% contains the Borel sets follows from 7.)
also. H

We have just shown that ¢ is an outer measure on & (R). Unlike what was presented
earlier, this outer measure did not begin with a measure.

9.8 Measures and Regularity

It is often the case that Q is not just a set. In particular, it is often the case that  is some sort
of topological space, often a metric space. In this case, it is usually if not always the case
that the open sets will be in the ¢ algebra of measurable sets. This leads to the following
definition.

Definition 9.8.1 A poiish space is a complete separable metric space. For a Polish
space E or more generally a metric space or even a general topological space, % (E)
denotes the Borel sets of E. This is defined to be the smallest 6 algebra which contains the
open sets. Thus it contains all open sets and closed sets and compact sets and many others.

For example, R is a Polish space as is any separable Banach space. Amazing things
can be said about finite measures on the Borel sets of a Polish space. First the case of a
finite measure on a metric space will be considered.
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It is best to not attempt to describe a generic Borel set. Always work with the definition
that it is the smallest ¢ algebra containing the open sets. Attempts to give an explicit
description of a “typical” Borel set tend to lead nowhere because there are so many things
which can be done.You can take countable unions and complements and then countable
intersections of what you get and then another countable union followed by complements
and on and on. You just can’t get a good useable description in this way. However, it is easy

c
to see that something like (ﬁ;"’:l U E j) is a Borel set if the E; are. This is useful. This

said, you can look at Hewitt and Stromberg [26] in their discussion of why there are more
Lebesgue measurable sets than Borel measurable sets to see the kind of technicalities which
result by describing Borel sets. This is an extremely significant result based on describing
Borel sets, so it can be done.

Definition 9.8.2 A measure u defined on a o algebra F which includes (E) will
be called inner regular on % if for all F € %,

W(F)=sup{u (K):K CF and K is closed} (9.18)
A measure, | defined on & will be called outer regular on F if for all F € F
w(F)=inf{u (V):V D F andV is open} 9.19)

When a measure is both inner and outer regular, it is called regular. Actually, it is more
useful and likely more standard to refer to | being inner regular as

w(F)=sup{u(K): K CF and K is compact} (9.20)

Thus the word “closed” is replaced with “compact”. A complete measure defined on a ©
algebra F which includes the Borel sets which is finite on compact sets and also satisfies
9.19 and 9.20 for each F € % is called a Radon measure. A Gg set, pronounced as G delta
is the countable intersection of open sets. An Fy set, pronounced F sigma is the countable
union of closed sets.

In every case which has ever been of interest to me, the measure has been ¢ finite.

Definition 9.8.3 If (X, ,) is a measure space, it is called o finite if there are
X, € Z with UpX,, =X and 1 (X,,) < .

For finite measures, defined on the Borel sets of a metric space X, %(X), the first
definition of regularity is automatic. These are always outer and inner regular provided
inner regularity refers to closed sets. Note that if A O B then A\ B = B¢\ AC.

Lemma 9.8.4 Let u be a finite measure defined on a o algebra F O % (X) where X is
a metric space. Then the following hold.

1. W is regular on B (X) meaning 9.18, 9.19 whenever F € 2 (X).

2. W is outer regular satisfying 9.19 on sets of % if and only if it is inner regular
satisfying 9.18 on sets of 7.

3. If W is either inner or outer regular on sets of F then if E is any set of ¥, there exist
F an Fg set and G a Gg set such that F CE C G and u (G\ F) =0.
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Proof: 1.) First note every open set is the countable union of closed sets and every
closed set is the countable intersection of open sets. Here is why. Let V be an open set and
let

K= {xeV dist(x,V) > 1/k}.
Then clearly the union of the K} equals V. Thus
u(V)=sup{u(K):KCV and K is closed} .
If U is open and contains V, then p (U) > p (V) and so
w(V)<inf{u(U):U DV, Uopen} <pu(V) sinceVCV.

Thus p is inner and outer regular on open sets. In what follows, K will be closed and V
will be open.

Let J# be the open sets. This is a 7 system since it is closed with respect to finite
intersections. Let

¢ ={E € #(X): uisinner and outer regularon E} so 4 2 ¥

ForE€¥,letV DE DK suchthat g (V\K)=u(V\E)+u(E\K) < €. Thus K¢ D E€
and so p (KC\ E€) = u(E\K) < &. Thus p is outer regular on E€ because

1K) = (EC) +p (KE\EC) < u (EC) +¢, K DEC
Also, E€ D V€ and p (E€\ V) = u(V\E) < & so p is inner regular on E€ and so ¢ is

closed for complements. If the sets of &4 {E;} are disjoint, let K; C E; C V; with u (V; \ K;) <
€27 Then for E = U;E;,and choosing m sufficiently large,

Zu i(,)+§

and so  is inner regular on E = U;E;. It remains to show that p is outer regular on E.
Letting V = U;V;,

™=

w(Ki) +2e = p (UL, Ki) + 2

i=1

w(V\E) <u(U;(V,\\E)) <Zez i—¢

Hence u is outer regular on E since 4t (V) = p(E)+pu(V\E)<u(E)+eandV D E.

By Dynkin’s lemma, 4 = ¢ () = £ (X).

2.) Suppose that u is outer regular on sets of % O % (X). Letting E € %, by outer
regularity, there exists an open set V 2 E€ such that u (V) — u (EC) < €. Since U is finite,
e>pu(V)—p(EC) =pn(V\EC) =p(E\VS) =p(E) —p (V) and VC is a closed set
contained in E. Therefore, if 9.19 holds, then so does 9.18. The converse is proved in the
same way.

3.) The last claim is obtained by letting G = N,V, where V, is open, contains E,
Vi 2 Vi1, and /,L( 4) < U (E)+ 1 and K, increasing closed sets contained in E such that
uE) <ulk )—|— Then let F = UF andG=n,V,. Then FCECGand u(G\F) <

uw(V,\K,) <2/n. 'm

Next is a lemma which allows the replacement of closed with compact in the definition

of inner regular.
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Lemma 9.8.5 Let u be a finite measure on a o algebra containing % (X), the Borel
sets of X, a separable complete metric space, Polish space. Then if C is a closed set,

w(C)=sup{u(K):K CC andK is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, [ is inner regular
in the sense that for all F € % (X),

U(F)=sup{u(K): K CF and K is compact}

Proof: Let {a;} be a countable dense subset of C. Thus U7, B (ax, 1) D C. Therefore,
there exists m,, such that

m 1 £ " 1
u <C\uk"13(ak7n)> =1(€\G) < g U8t =G

Now let K =CN(N5_,C,). Then K is a subset of C, for each n and so for each € > 0 there
exists an € net for K since C, has a 1/n net, namely ay,--- ,a;,. Since K is closed, it is
complete and so it is also compact since it is complete and totally bounded, Theorem 3.5.8.
Now

H(C\K) < 1 (U, (C\G) iziz

Thus i (C) can be approximated by u (K) for K a compact subset of C. The last claim
follows from Lemma 9.8.4. &

The next theorem is the main result. It says that if the measure is outer regular and u is
o finite then there is an approximation for £ € .% in terms of Fi and G sets in which the
F5 set is a countable union of compact sets. Also u is inner and outer regular on .%.

Theorem 9.8.6 suppose (X, %, 1), F DA (X) is a measure space for X a metric
space and | is © finite, X = U, X, wzth U (X,) < oo and the X, disjoint. Suppose also that |1
is outer regular. Then for each E € F, there exists F,G an F5 and Gg set respectively such
that FCE CGand u(G\F)=0. In particular, | is inner and outer regular on . In
case X is a complete separable metric space (Polish space), one can have F in the above
be the countable union of compact sets and [l is inner regular in the sense of 9.20.

Proof: Since p is outer regular and p (X,) < oo, there exists an open set V, 2 ENX,
such that

VR (ENX) = (V) — R (ENX,) < 5.

ThenletV =U,V, sothat V D E. Then £ = U,E N X, and so
€
1(V\E) < p(Un (Va\ (ENXy) <Zu \(ENX,)) <) 5 =¢
n

Similarly, there exists U,, open such that (Un\ (EC ﬁXn)) < 2%, U, DE°NX, soif U =
UnUn, 1t (U\E€) = (E\U®) < &.Now UC is closed and contained in E because U 2 E€.
Hence, letting € = %, there exist closed sets C,,, and open sets V,, such that C, C E C V,, and
p(Va\Cp) < Vi, F = UGy, F CEC Gand u (G\F) <u(V,\Cy) <

2,%1. Since n is arbitrary, 4 (G\ F) =0
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To finish the proof, I will use Lemma 9.8.5 in the case where X is a Polish space.

By the first part, i (G\ F) = 0 where F is the countable union of closed sets {Cy};_,
and F CE CG. Letting u,, (E) = u(ENX,), U, is a finite measure and so if Cy, is one of
those closed sets, Lemma 9.8.5 implies

U, (C) = pu(CenX,) =sup{u(KNX,): K CC, K compact}

Pick K} compact such that u,, (C; \ K) < z—i,Kk C Cy. Then letting £ = UKy, it follows F

is a countable union of compact sets contained in F' and

1 (F\F) = (UG \ (Uekr)) < (U (Ce\Ki)) <Y (G \Ki) < &
k

Therefore, letting £, be a countable union of compact sets contained in F for which
t (F\Fn) < 3=, let F = U, F,,. Then F is a countable union of compact sets and

1

w(F\F) <p(F\Fa) < 5

and so pt (F\ F) =0. Then

1 (G\F) =1 (G\F) + 1 (F\F) = £ (G\F) =0

so as claimed, one can have F in the first part be the countable union of compact sets.
Letting E € .7, it was just shown that there exist G a G5 set and F the countable union of
compact sets such that 4 (G\ F) =0,F C E C G. Therefore, u (E) = u (E\F)+u(F)=
U (F) and so this shows inner regularity in the sense of 9.20 because if I < u (E) = u (F),
one could include enough of the compact sets whose union is F to obtain a compact set K
for which u (K) > 1. 1

An important example is the case of a random vector and its distribution measure.

Definition 9.8.7 A measurable Sunction X : (Q, %, 0) — Z a metric space is called
a random variable when L (Q) = 1. For such a random variable, one can define a distri-
bution measure A x on the Borel sets of Z as follows. Ax (G) = (X_1 (G)). Thisis a
well defined measure on the Borel sets of Z because it makes sense for every G open and
Y= {G cz:X'G)e 9} is a ¢ algebra which contains the open sets, hence the Borel
sets. Such a random variable is also called a random vector when Z is a vector space.

Corollary 9.8.8 Let X be a random variable with values in a separable complete met-
ric space Z. Then A x is an inner and outer regular measure defined on B (Z).

One such example of a complete metric space and a measure which is finite on compact
sets is the following where the closures of balls are compact. Thus, this involves finite di-
mensional situations essentially. Note that if you have a metric space in which the closures
of balls are compact sets, then the metric space must be separable. This is because you can
pick a point & and consider the closures of balls B(&,n). Then B(€,n) is complete and
totally bounded so it has a countable dense subset D,,. Let D = U,,D,,.

Corollary 9.8.9 Let Q be a complete metric space which is the countable union of
compact sets K, and suppose, for |L a Borel measure, WL (K,) is finite. Then [ must be
regular on B (Q). In particular, if Q is a metric space and the closure of each ball is
compact, and |l is finite on balls, then | must be regular.
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Proof: Let the compact sets be increasing without loss of generality, and let i, (E) =
U (K,NE). Thus u, is a finite measure defined on the Borel sets of a Polish space so it
is regular. Letting I < p(E), there exists n such that [ < u, (E) < u(E). By what was
shown above in Lemma 9.8.5, there exists H compact, H C E such that also for a large n,
W, (H) > 1. Hence u (HNK,) > 1 and so u is inner regular. It remains to verify that u is
outer regular. If i (E) = oo, there is nothing to show. Assume then that y (E) < oo. LetV,, 2
E with i, (V,\ E) < €27 so also tt (V},) < eo. We can assume also that V,, D V,,; for all n.
Thus u (Vo \E)NK,) <27"€. Let G =N;V;. Then G CV, so u((G\E)NK,) <2 "¢.
Letting n — oo, i (G\ E) =0 and G D E. Then, since V; has finite measure, u (G\ E) =
lim,, e it (V,, \ E) and so for all n large enough, u (V,\E) < e so u(E)+€ > u(V,) and
so U is outer regular. In the last case, if the closure of each ball is compact, then Q is
automatically complete because every Cauchy sequence is contained in some ball and so
has a convergent subsequence. Since the sequence is Cauchy, it also converges by Theorem
3.2.2 on Page 73.

9.9 One Dimensional Lebesgue Stieltjes Measure

Now with these major results about measures, it is time to specialize to the outer measure of
Theorem 9.7.4. The next theorem gives Lebesgue Stieltjes measure on R. The conditions
9.21 and 9.22 given below are known respectively as inner and outer regularity.

Theorem 9.9.1 et 7 denote the o algebra of Theorem 9.5.4, associated with the
outer measure L in Theorem 9.7.4, on which W is a measure. Then every open interval is
in %. So are all open and closed sets and consequently all Borel sets. Furthermore, if E is
any set in F

U(E)=sup{p(K): K compact, K CE} 9.21)

w(E)=inf{u (V) :V is an open setV D E} (9.22)

IfE € .F, there exists F a countable union of compact sets, an Fgset and a set G a countable
intersection of open sets, a Gg set such that F CE C G but u (G\ F) = 0. Also [ is finite
on compact sets.

Proof: By Theorem 9.7.4 and Theorem 9.6.1 the ¢ algebra includes the Borel sets
2% (R). However, note that .% is complete and there is no such requirement for this measure
on %A (R). Thus it is reasonable to think that .% could be larger than % (R).

Now consider the last claim about regularity. The assertion of outer regularity on %
is not hard to get. Letting E be any set i (E) < oo, there exist open intervals covering E
denoted by {(a;,b;)};-, such that

=

W(E)+e> Y F (b—) — F(ait) = Y 1 (apb) > 1 (V)
i=1 i=1

where V is the union of the open intervals just mentioned. Thus
MWE)<p(V)<pu(E)+e.

This shows outer regularity. If yt (E) = oo, there is nothing to show. Since y is finite on
intervals, it is o finite. It follows from Theorem 9.8.6 that u is inner regular also and the
claim about approximation with F and G sets follows. l
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Definition 9.9.2 when the integrator function is F (x) = x, the Lebesgue Stieltjes
measure just discussed is known as one dimensional Lebesgue measure and is denoted as
m.

Proposition 9.9.3 For m Lebesgue measure, m([a,b]) = m((a,b)) = b —a. Also m is
translation invariant in the sense that if E is any Lebesgue measurable set, thenm (x+E) =

Proof: The formula for the measure of an interval comes right away from Theorem
9.7.4. From this, it follows right away that whenever E is an interval, m (x+E) = m(E).
Every open set is the countable disjoint union of open intervals, so if E is an open set, then
m(x+E) = m(E). What about closed sets? First suppose H is a closed and bounded set.
Then letting (—n,n) 2 H,

u(((=n,n) \H) +x) + p (H +x) = u((=n,n) +x)

Hence, from what was just shown about open sets,

pw(H) = p((=nn))—p((=nn)\H)
= p((=nn)+x) —pu(((=n,n) \H) +x) = (H +x)

Therefore, the translation invariance holds for closed and bounded sets. If H is an arbitrary
closed set, then
U(H~+x)=limpu(HN[—n,n]+x)=lim u(HN[—n,n]) = u(H).
n—soo n—soo
It follows right away that u is translation invariant on F5 and G sets. Now using Theorem

9.9.1, if E is an arbitrary measurable set, there exist an Fg set F' and a G set G such that
FCECGandm(F)=m(G)=m(E). Then

m(F)=mx+F)<m(x+E)<m(x+G)=m(G)=m(E)=m(F). &

9.10 Exercises

1. Show carefully that if G is a set whose elements are ¢ algebras which are subsets of
Z(Q), then NG is also a ¢ algebra. Now let 4 C &2 (Q) satisfy property P if 4
is closed with respect to complements and countable disjoint unions as in Dynkin’s
lemma, and contains @ and Q. If $ C ¢ is any set whose elements are subsets of
Z (Q) which satisfies property P, then N$) also satisfies property P. Thus there is a
smallest subset of ¢ satisfying P. In other words, verify the details of the proof of
Dynkin’s lemma.

2. The Borel sets of a metric space (X,d) are the sets in the smallest ¢ algebra which
contains the open sets. These sets are denoted as Z (X ). Thus % (X) = o (open sets)
where o (.%) simply means the smallest ¢ algebra which contains .%. Show that in
R", Z(R") = 6 (&) where & consists of the half open rectangles which are of the
form [T, [ai, b;).

3. Recall that f: (Q,.#) — X where X is a metric space is measurable means that
inverse images of open sets are in %. Show that if E is any set in % (X), then
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f~Y(E) € #. Thus, inverse images of Borel sets are measurable. Next consider
f:(Q,F) — X being measurable and g : X — Y is Borel measurable, meaning
that g~! (open) € % (X). Explain why go f is measurable. Hint: You know that
(gof)"' (U) = f" (g ' (U)). For your information, it does not work the other
way around. That is, measurable composed with Borel measurable is not necessarily
measurable. In fact examples exist which show that if g is measurable and f is
continuous, then g o f may fail to be measurable. An example is given later.

If you have X; is a metric space, let X =[], X; with the metric
d(z,y) = max{d; (x;,y:;),i=1,2,--- ,n}

You considered this in an earlier problem. Show that any set of the form

n
E,, E € B(X;)
i=1
is a Borel set. That is, the product of Borel sets is Borel. Hint: You might consider
the continuous functions 7; : [Tj_; X; — X; which are the projection maps. Thus
7; (x) = x;. Then 7r; ' (E;) would have to be Borel measurable whenever E; € % (X;).
Explain why. You know 7; is continuous. Why would ﬂfl (Borel) be a Borel set?
Then you might argue that [T, E; = N, 7, (E)).

l
You have two finite measures defined on % (X) u,v. Suppose these are equal on

every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

Show that (N, & (N), i) is a measure space where 1 (S) equals the number of el-
ements of S. You need to verify that if the sets E; are disjoint, then u (U7 E;) =

Yo ().

Let Q be an uncountable set and let .% denote those subsets of Q, F such that either
F or F€ is countable. Show that this is a o algebra. Next define the following
measure. (L (A) = 1if A is uncountable and p (A) = 0 if A is countable. Show that p
is a measure. This is a perverted example.

Let u(E)=1if0 € E and u (E) =0if 0 ¢ E. Show this is a measure on & (R).

Give an example of a measure i1 and a measure space and a decreasing sequence of
measurable sets {E;} such that lim,, e tt (E,) # 1 (N2 E;).

You have a measure space (Q,.%,P) where P is a probability measure on .%. Then
you also have a measurable function X : Q@ — Z where Z is some metric space. Thus
X~'(U) € # whenever U is open. Now define a measure on % (Z) denoted by
Ax and defined by Ax (E) = P({w: X (@) € E}). Explain why this yields a well
defined probability measure on % (Z) which is regular. This is called the distribution
measure.

Let K C V where K is closed and V is open. Consider the following function.
O dist(x,VO)
~ dist (x, K) +dist (x, VE)

Explain why this function is continuous, equals 0 off V and equals 1 on K.

fx)
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Let (©,.7) be a measurable space and let f : Q — X be a measurable function. Then
o (f) denotes the smallest o algebra such that f is measurable with respect to this ¢
algebra. Show that o (f) = {f ' (E):E € #(X)}.

Let (Q,.%, 1) be a measure space. A sequence of functions {f,} is said to converge
in measure to a measurable function f if and only if for each

e>0,lim (|, (0) - f ()] > &) =0.

Show that if this happens, then there exists a subsequence { S } and a set of measure
N such thatif @ ¢ N, then limy_,.. f, (@) = f (@). Also show that if lim,, . f, (®) =
f(®),and u (Q) < o, then f;, converges in measure to f. Hint:For the subsequence,
let (@ : | fu (@) = f (@) > &) <27* and use Borel Cantelli lemma.

Let X,Y be separable metric spaces. Then X X Y can also be considered as a metric
space with the metric p ((x,y), (£,9)) = max (dx (x,£),dy (y,9)). Verify this. Then
show that if J# consists of sets A x B where A, B are Borel sets in X and Y respec-
tively, then it follows that o (#") = Z (X xY), the Borel sets from X x Y. Extend
to the Cartesian product []; X; of finitely many separable metric spaces.

9.11 Completion of a Measure Space

Next is the notion of the completion of a measure space. The idea is that you might not
have completeness in your measure space but you can always complete it.

Definition 9.11.1 Recall that a measure space (Q,.F,A) is © finite if there is a
countable set {Q,},_, such that U,Q, = Q and A (Q,) < eo.

The next theorem is like some earlier ones related to regularity including the approxi-
mation with G5 and F sets. The arguments are similar.

Theorem 9.11.2 L (Q,.7,1) be a measure space. Then there exists a measure
space, (Q,9,A) satisfying

1.

2
3.
4

(Q,9,1) is a complete measure space.

. A=uon ¥

Yo7

. For every E € ¥ there exists G € F suchthat G D E and L (G) = A (E).

In addition to this, if (Q,.%,L) is © finite, then the following approximation result
holds.

For every E € ¢ there exists F € F and G € % such that F CE C G and
W(G\F)=A(G\F)=0 (9.23)

There is a unique complete measure space (Q,9,A) extending (Q,.% , ) which sat-
isfies 9.23. In particular, there are no new sets if the original measure space was
already complete.
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Proof: Define the outer measure
AA)=inf{u(E):E€ FEDA}, A(0)=0

Denote by ¢ the o algebra of A measurable sets. Then (Q,%, 1) is complete by the general
Caratheodory procedure presented earlier.
Iclaimthat A =pon #.IfA €. %

w(A) <inf{u(E):Ec.Z EDA =1 (A) < pu(A)

because A D A. Thus, these are all equal in the above and A = u on .%.
Why is .# C 4?7 Letting A (S) < oo, (There is nothing to prove if A (S) =o0.) let G € .7
be such that G DO S and A (S) = u (G) . This is possible because

AS)=inf{u(E):ED>SandE € #}.
Then ifA € F
A(S)

IN

A (SNA)+A (SNAC) <A (GNA)+A (GNAS)
= Wu(GNA)+u(GNAS) =u(G)=1(S).
Thus &% C 9.

Finally suppose (1 is o finite. Let Q = U}, | Q, where the Q, are disjoint sets of .F
and U (Q,) < oo. If the Q, are not disjoint, replace Q, with Q, \ UZ;}Qk. Letting A € ¢,
consider A, = ANQ,. From what was just shown, there exists G, 2 A°NQ,, G, CQ,
such that 1 (G,) = A (A°NQ,),G, € Z.

G,
Q,NAC

Q,NA

Since p (Q,) < oo, this implies
2 (Ga\ (A“NQ)) = A (Gy) — A (A°NQ,) = 0.

Now GS QAUQg but G, C Q, and so GS CAUQ,. Define F, = nggn CA, and it
follows A (A, \ F,) =

A(ANQ N\ (G5NQ,)) = A(ANQ,NG,) =L (ANG,) =1 (G, \A)
< (G, \(ACmQ)) 0.
Letting F = U, F;,, it follows that F € .% an

A(A\F) < i A(AC\F) =

Also, there exists G, 2 A, such that u (G,) = A (G,) = A (A,). Since the measures are
finite, it follows that A (G, \ A,) = 0. Then letting G = U;;_, G,,, it follows that G D A and
A(G\A) = A(ULiGr\ULiAn)

< AU (Ga\An)) i A (Gp\Ap)



262 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

Thus 1 (G\ F) = A (G\ F) = 1 (G\A) + A (A\ F) = 0.
If you have (A',4") complete and satisfying 9.23, then letting E € &', it follows from
5, that there exist F,G € .% such that

FCECG, u(G\F)=0=A(G\F).

Therefore, by completeness of the two measure spaces, E € ¢4. The opposite inclusion is
similar. Hence ¥ =%'. If E € 4, let F C E C G where tt (G\ F) = 0. Then

A (E) < u(G) = u(F) = A (F) < ' (E)

The opposite inequality holds by the same reasoning. Hence A = A'. If (Q,.%, u) is already
complete, then you could let this be (Q,%”,1") and find that ¥ = .7 =%'. W
Another useful result is the following.

Corollary 9.11.3 Suppose, in the situation of Theorem 9.11.2, f >0 and is G measur-
able. Then there exists g,0 < g < f and f = g for all ® off a set of measure zero.

Proof: Let s, T f where s, (0) = ¥, c; 2, (0) for @ € Q. Then by the regularity
assertion of this theorem, there exists F; € .% such that F; C E; and A (E;\ F;) = 0. Then
let §, (0) = ¥ ¢; ZF, (). Then §, < s, and letting N = U, {® : s, (0) # §, (o)}, it
follows that A (N) =0 and for ® ¢ N,
$n(@) = sn (@) = f(0) = g(@).

Now let g (@) = liminfy, e § (@) < lim,_ye 5 (®) = f () and g is .# measurable because
if g, (@) =inf {8 : k > n}, this is .# measurable since

ngI ((7(}0’“)) = Uk2n§1:1 (70050) €EF

Now g being the limit of these g,,, it follows that g is also .# measurable. B

This will show that in most situations, you can simply modify your function on a set of
measure zero and consider one which is .% measurable.

Recall Corollary 9.8.9 about regularity. Then there is an easy corollary.

Corollary 9.11.4 Let Q be a complete metric space which is the countable union of
compact sets K, and suppose, for |L a Borel measure, W (K,) is finite. Then [ must be
regular on B (Q). If (I1,9) is the completion, then [1 is inner and outer regular on sets of
Y. Also, if E € 9, there are Fs and G sets, F,G respectively such that i (G\ F) =0 and
FCECG.

9.12 Vitali Coverings

There is another covering theorem which may also be referred to as the Besicovitch cover-
ing theorem. At first, the balls will be closed but this assumption will be removed. Assume
the following: (X, 1) is a finite dimensional normed linear space of dimension p and i is
an outer measure on &2 (X). We really have in mind that X is R” with some norm. Assume
the following:

1. Let u the measure determined by [i on the ¢ algebra .’ which contains the Borel
sets.
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2. Or let u be a measure on . where . contains the Borel sets and fi is the outer
measure determined by u as described in Proposition 9.4.2. Always assume the
following:

3. u(B(x,r)) < eo.
4. If E € .7, then

L(E) = sup{u(K):K CE and K is compact}
u(E) = inf{u(V):V DO E andV isopen}

If this measure U is also complete, then recall it is termed a Radon measure.

Note that . is given to contain all closed sets and open sets. The above situation is
very common. See Corollary 9.8.9 which gives 4 follows from 3. In fact, the above is the
typical case for measures on finite dimensional spaces.

Definition 9.12.1 A coliection of balls, F covers a set E in the sense of Vitali if
whenever € E and € > 0, there exists a ball B € % whose center is x having diameter
less than €.

I will give a proof of the following theorem.

Theorem 9.12.2 Let E be a set with T (E) < o and either 1 or 2 along with the
regularity conditions 3 and 4. Suppose F is a collection of closed balls which cover E
in the sense of Vitali. Then there exists a sequence of disjoint balls {B;} C % such that

E(E\ULB) =0, N<e.

Proof: Let N, be the constant of the Besicovitch covering theorem, Theorem 4.5.8.
Choose r > 0 such that (1 —r)""' (1 - ﬁ) = A < L. If u(E) = 0, there is nothing to

prove so assume L (E) > 0. Let U; be an open set containing E with (1—r)u (U;) <
[ (E) and 2u(E) > u(Uy), and let %] be those sets of .# which are contained in U
whose centers are in E. Thus % is also a Vitali cover of E. Now by the Besicovitch cov-
ering theorem proved earlier, Theorem 4.5.8, there exist balls B, of .%; such that E C

Uﬁi’l {B:B €%} where ¥ consists of a collection of disjoint balls of #;. Therefore,
n(E) < Zﬁvjl Y ey, 1 (B) and so, for some i <N,

(Ny+1) Y w(B) > (E).
BeY;

It follows there exists a finite set of balls of ¢, {B,- -, By, } such that

mj

(Np+1) Y 1 (Bi) > E(E) (9.24)

i=1

and so
mj

(2N, +2) ) 1 (Bi) > 2E (E) > p (U)).
=1

14
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Now 9.24 implies

wU) _ 2E) EE) N
< - Ay
N, +2 = 2N, 42 N2+1<§;“(3’)

Also U; was chosen such that (1 —r)u (U;) < u(E), and so

AH(E) > A(1— ) (U)) = (I—ZN;H)u(Ul)

mp

>u(U)) - ;H(Bi) =u(U)—u (UTzllBj)

—u (UN\URLB) =1 (E\UR ;).

Since the balls are closed, you can consider the sets of % which have empty intersection
with U'}’:'IB ; and this new collection of sets will be a Vitali cover of E \ UT:'IB ;. Letting this

collection of balls play the role of .% in the above argument, and letting E \ U;';]lB ; play
the role of E, repeat the above argument and obtain disjoint sets of .7, {By, 41, - ,Bm, },
such that

A (ENURL ) > 1 ((ENURL B ) \U,, 4 B) =E (E\UP2,B)),

and so A’ (E) >0 (E \ USEIB j). Continuing in this way, yields a sequence of disjoint
balls {B;} contained in .% and [t (E \ UZJV:lBj) <u (E \ U;"" 1Bj) < AMI (E ) for all k. If

the process stops because E gets covered, then N is finite and if not, then N = oo. Therefore,
u (E \ U]}/:lB j) = 0 and this proves the Theorem. B
It is not necessary to assume [l (E) < oo. It is given that u (B(x,R)) < co. Letting

C(z,r) be all y with ||y — || = r. Then there are only finitely many r < R such that
u(C(x,r)) > % Hence there are only countably many r < R such that u (C(x,r)) > 0.

Corollary 9.12.3 Let E nonempty set and either 1 or 2 along with the regularity con-
ditions 3 and 4. Suppose .F is a collection of closed balls which cover E in the sense of
Vitali. Then there exists a sequence of disjoint balls {B;} C F such that

E(E\UYL,Bj) =0,N <oo

Proof: By 3, u is finite on compact sets. Recall these are closed and bounded. There
are at most countably many numbers, {b;};, such that i (C(0,b;)) > 0. It follows that
there exists an increasing sequence of positive numbers, {r,-};x’z1 such that lim; .. r; = oo
and i (C(0,r;)) = 0. Now let

D, = {z:|z|<n},Dr={z:r <|z| <rn},
Dy = Az <|lx|| <rm},oc.

Let .%,, denote those closed balls of .# which are contained in D,,. Then letting E,, denote
END,,, #, is a Vitali cover of E,,, [t (E;;) < e, and so by Theorem 9.12.2, there exists
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N

a countable sequence of balls from %, {B’/"} , such that & (Em \ UIJVZI ;") = 0. Then

J=1

consider the countable collection of balls, {B;” -
Jjm=

E(E\Up_ UYL BY) < H(UT,9B(0,r))+

+ Y H(En\UL,BY)
m=1

O, N<w N

If some E,, is empty, you could let your balls be the empty set.

You don’t need to assume the balls are closed. In fact, the balls can be open, closed
or anything in between and the same conclusion can be drawn provided you change the
definition of a Vitali cover a little. For each point of the set covered, the covering includes
all balls centered at that point having radius sufficiently small. In case that u (C(x,r)) =0
for all &, r where C (x,r) = {y : ||y — z| = r}, no modification is necessary. This includes
the case of Lebesgue measure. However, in the general case, consider the following modi-
fication of the notion of a Vitali cover.

Definition 9.12.4 Suppose % is a collection of balls which cover E in the sense
that for all € > 0 there are uncountably many balls of F centered at x having radius less
than €.

Corollary 9.12.5 Let 1 or 2 along with the regularity conditions 3 and 4. Suppose F
is a collection of balls which cover E in the sense of Definition 9.12.4. Then there exists a

sequence of disjoint balls, {B;} C .F such that i (E \ UIJVZIBJ») =0 for N < oo,

Proof: Let x € E. Thus « is the center of arbitrarily small balls from .%. Since u
is finite on compact sets, only countably many can fail to have p (dB(x,r)) = 0. Leave
the balls out which have p (dB(x,r)) > 0. Let %’ denote the closures of the balls of .%’.
Thus, for these balls, @ (dB(x,r)) = 0. Since for each x € E there are only countably
many exceptions, %’ is still a Vitali cover of E. Therefore, by Corollary 9.12.3 there is a

disjoint sequence of these balls of F#’, {E};l for which (E \ Uj}’: IE) = 0. However,

since their boundaries have ( measure zero, it follows [& (E \ UIJy:lB j> =0, N<o. N

9.13 Differentiation of Increasing Functions

As a spectacular application of the covering theorem, is the famous theorem that an increas-
ing function has a derivative a.e. Here the a.e. refers to Lebesgue measure, the Stieltjes
measure from the increasing function F (x) = x.

Definition 9.13.1 7he Dini derivates are as follows. In these formulas, f is a real
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valued function defined on R.

e = A0 =T iy g L0 =)
D7f(x) = lm <Oili§r p >11mtls;10;)+ , :
Dif(x) = lim ( ing L0 _f(x)> —lim inf LOTW S

r—0+ \ O<u<r u u—0+ u
Dif(x) = llm ( sup f(x)_f(x_u)> Ehm sup f(x)—f(x—u)7
0t O<usr u u—0+ u
D_f(x) = lim < inf W) —lim nf S W S0
r—0+ \ O<u<r u u—0+ u

Lemma 9.13.2 The function f: R — R has a derivative if and only if all the Dini
derivates are equal.

Proof: If D™ f (x) = D, f (x), then if u is small enough, let y, be a decreasing sequence
converging to x. Then

0=D"f(x) =D, f(x) > lim sup M —lim inf M

n—soo Yn—X n—beo Yn—X

and so the limit of the difference quotient exists for any such {y,}. Thus the derivative
from the right exists at x. Therefore, DT f(x) > D, f (x) if and only if there is no right
derivative. Similarly D™ f (x) > D_ f (x) if and only if there is no derivative from the left
at x. Also, there is a derivative if and only if there is a derivative from the left, right and
the two are equal. This happens when DT f (x) = D_ f (x) = D™ f (x) = D4 f (x) . Thus this
happens if and only if all Dini derivates are equal. ll

The Lebesgue measure of single points is 0 and so we do not need to worry about
whether the intervals are closed in using Corollary 9.12.3.

Let Af(I) = f(b) — f(x) or f(x)— f(a) if I is an interval having end points a < b
with x the midpoint. Now suppose {J j} are disjoint intervals contained in /. Then, since
f is increasing, Af (I) > ¥,;Af (J;). In this notation, the above lemma implies that if
D™ f(x) > b or D" f(x) > b, then for each € > 0 there is an interval J of length less than

Af(J
1/ {)(m)(f )
is the length of J. If either D_ f (x) or D4 f (x) < a, the above lemma implies that for each

€ > 0 there exists I centered at x with |/| < € and % < a. For example, if D™ f (x) < a,

€ which is centered at x and > b where m (J) is the Lebesgue measure of J which

there exists a sequence y, T x with

Jn)=fx)  fx)=f(n)

= <a
Yn—X X—=Yn

so let I, be the interval centered at x which has left end point y,,.

Note that the set of jumps J of an increasing function must be countable because these
jumps determine disjoint open intervals of the form (f (x—),f (x+)) for x € J and each
must contain a rational number of which, there are only countably many.

Lemma 9.13.3 An increasing function f is Borel measurable and its derivates are Borel
measurable functions.
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Proof: The set of jumps J is countable so it is a Borel set of measure zero, an Fy set.
Since f is increasing, its only points of discontinuity are points where it has a jump. Hence
it is continuous off this set J. f~!([c,0)) is an interval of the form [d, ) or (d,c). Thus

f is Borel measurable. Consider D* f for x ¢ J. Let g, (x) = supg_,<, Lot =/ )y jt

u
is the supremum of functions continuous on J¢. Hence if x € g, ! (¢,0),c >0, and x ¢ J,

M > ¢ for some 0 < u < r. It follows that, since f is continuous at x, if £ is close

enough to x, it is also true that M > ¢. Thusif x € ¢! (¢,00) NJC, then for some &,
small enough, (x — 8,,x+ 8,) C g, ' (c,). Hence, g, ! (c,%0) NJC is the intersection of an
open set, the union of the intervals (x — 8,,x+ &) for x € g, ! (¢,00) NJC, with JCa Borel
set. It follows that g, is decreasing in r and is measurable because, since J is countable,
[g- > ] is the union of a countable set with a Borel set. Thus for all x,

D F(x) = fim (Sup f(x+u)f(x)>

-1 — li
Jim (sup im (g7 () = lim g, (+

r—0+

where r,, is a decreasing sequence converging to 0. It follows that x — D™ f (x) is Borel
measurable as claimed because it is the limit of Borel measurable functions. Similar rea-
soning shows that the other derivates are measurable also. ll

Theorem 9.13.4 L. f:R = R be increasing. Then f'(x) exists for all x off a set

of measure zero.
Proof: Let N, for 0 < a < b denote either
{x:D+f()>b>a>D+f } {x D f(x >b>a>D,f(x)},

or
{x:D_f( Yy>b>a>Dif(x }{x DT f(x >b>a>D,f(x)}

From the above lemma, N, is measurable. Assume that N, is bounded and let V be open
with V. D Ny, m(Nyp)+€ > m(V). By Corollary 9.12.3 and the above discussion, there
are open, disjoint intervals {I,}, each centered at a point of N, such that

2Af (In)
m (In)

< a, m(Ng) =m(Ngp NUL) Zm NN ;)

Now do for Ny, NI; what was just done for N, and get disjoint intervals Jij contained in /;
with '
2Af (Jf )
()

a(m(Ng) +€) > am(V >a2m >22Af >ZZZAf()
>b22m(ﬂ)>b22m(ﬂmvab)_b2m o M) = b (Noy)

Since ¢ is arbitrary and a < b, this shows m (N,,) = 0. If N, is not bounded, apply the
above to N, N (—r,r) and conclude this has measure 0. Hence so does N.

> b, m(NyNI) Zm( abmmﬂ)

Then



268 CHAPTER 9. MEASURES AND MEASURABLE FUNCTIONS

The countable union of N, for a, b positive rational and N, defined in any of the above
ways is an exceptional set off which DT f(x) = D, f(x) > D™ f(x) > D_f(x) > DT f(x)
and so these are all equal. This shows that off a set of measure zero, the function has a
derivative a.c. B

9.14 Exercises

1. Suppose you have (X,.#,u) where . D % (X) and also U (B (xg,r)) < oo for all
r>0. Let S (xo,7) = {x € X :d (x,x0) = r}. Show that

{r>0:u(S(xo,r)) >0}

cannot be uncountable. Explain why there exists a strictly increasing sequence r,, —
oo such that p (x : d (x,x0) = r,) = 0. In other words, the skin of the ball has measure
zero except for possibly countably many values of the radius 7.

2. Lebesgue measure was discussed. Recall that m ((a,b)) = b — a and it is defined on
a o algebra which contains the Borel sets, more generally on & (R). Also recall
that m is translation invariant. Let x ~ y if and only if x —y € Q. Show this is an
equivalence relation. Now let W be a set of positive measure which is contained in
(0,1). For x € W, let [x] denote those y € W such that x ~ y. Thus the equivalence
classes partition W. Use axiom of choice to obtain a set S C W such that S consists of
exactly one element from each equivalence class. Let T denote the rational numbers
in [—1,1]. Consider T+ S C [—1,2]. Explain why T+ S 2> W. For T = {r;},
explain why the sets {rj +S }j are disjoint. Now suppose S is measurable. Then
show that you have a contradiction if m (S) = 0 since m (W) > 0 and you also have
a contradiction if m (S) > 0 because T + S consists of countably many disjoint sets.
Explain why S cannot be measurable. Thus there exists 7 C R such that m (T) <
m(TNS)+m(TNSC). Is there an open interval (a,b) such that if T = (a,b), then
the above inequality holds?

3. Consider the following nested sequence of compact sets, {P,}.Let P, = [0,1], P, =
[O, %] U [%, 1], etc. To go from P, to P,y, delete the open interval which is the
middle third of each closed interval in P,. Let P = N_, P,. By the finite intersection
property of compact sets, P # 0. Show m(P) = 0. If you feel ambitious also show
there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus, although P has measure zero, it has the same number of points in it as
[0,1] in the sense that there is a one to one and onto mapping from one to the other.
Hint: There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the topological properties of the Cantor set rather than some
silly representation in terms of sums of powers of two and three. All you need to do
is use the Schroder Bernstein theorem and show there is an onto map from the Cantor
set to [0,1]. If you do this right and remember the theorems about characterizations
of compact metric spaces, Proposition 3.5.8 on Page 78, you may get a pretty good
idea why every compact metric space is the continuous image of the Cantor set.

4. Consider the sequence of functions defined in the following way. Let fj (x) = x on
[0,1]. To get from f, to f,+1, let fu4+1 = f, on all intervals where f, is constant. If

S is nonconstant on [a,b], let f,11(a) = fu(a), fur1(b) = fu(b), fut1 is piecewise
linear and equal to 3(f,(a) + f,(b)) on the middle third of [a,b]. Sketch a few of



9.14. EXERCISES 269

these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

s

Show { f,} converges uniformly on [0, 1]. If f(x) = lim,_. f,(x), show that f(0) =
0, f(1) =1, f is continuous, and f’(x) =0 for all x ¢ P where P is the Cantor set of
Problem 3. This function is called the Cantor function.It is a very important example
to remember. Note it has derivative equal to zero a.e. and yet it succeeds in climbing
from O to 1. Explain why this interesting function cannot be recovered by integrating
its derivative. (It is not absolutely continuous, explained later.) Hint: This isn’t
too hard if you focus on getting a careful estimate on the difference between two
successive functions in the list considering only a typical small interval in which the
change takes place. The above picture should be helpful.

5. 1 This problem gives a very interesting example found in the book by McShane [40].
Let g(x) =x+ f(x) where f is the strange function of Problem 4. Let P be the Cantor
set of Problem 3. Let [0,1]\ P = UT_,/; where I; is open and I; NI = 0 if j # k.
These intervals are the connected components of the complement of the Cantor set.
Show m(g(1;)) = m(l;) so m(g(U_,1) = - m(g(1;)) = L7 m(I}) = 1. Thus
m(g(P)) = 1 because g([0,1]) = [0,2]. By Problem 2 there exists a set, A C g (P)
which is non measurable. Define ¢ (x) = Z4(g(x)). Thus ¢(x) = 0 unless x € P. Tell
why ¢ is measurable. (Recall m(P) = 0 and Lebesgue measure is complete.) Now
show that 24 (y) = ¢(g~'(y)) for y € [0,2]. Tell why g is strictly increasing and
g~ ! is continuous but ¢ o g~! is not measurable. (This is an example of measurable
o continuous # measurable.) Show there exist Lebesgue measurable sets which are
not Borel measurable. Hint: The function, ¢ is Lebesgue measurable. Now recall
that Borel o measurable = measurable.

6. Show that every countable set of real numbers is of Lebesgue measure zero.

7. Review the Cantor set in Problem 12 on Page 176. You deleted middle third open
intervals. Show that you can take out open intervals in the middle which are not
necessarily middle thirds, and end up with a set C which has Lebesgue measure
equal to 1 — €. Also show if you can that there exists a continuous and one to one
map f : C — J where J is the usual Cantor set of Problem 12 which also has measure
0.

8. Recall that every bounded variation function is the difference of two increasing func-
tions. Show that every bounded variation function has a derivative a.e. For a dis-
cussion of these, see Definition 11.15.1 on Page 348 below if you have not seen it
already.

9. Suppose you have a w system % of sets of Q and suppose ¢4 O ¥ and that ¢ is
closed with respect to complements and that whenever {F;} is a decreasing sequence
of sets of ¢ it follows that N F € ¢. Show that then ¢ contains ¢ (-#"). This is an
alternative formulation of Dynkin’s lemma. It was shown after the Dynkin lemma
that closure with respect to countable intersections is equivalent.
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11.

12.

13.

14.
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For € R” to be in Hle A;, it means that the i"" component of @, x; is in A; for each
i. Now for [17_, (a;,b;) =R, let V (R) =TI, (b; — a;) . Next, for A € & (R”) let

1L (A) Einf{ZV <Rk) AC UkRk}
k

This is just like one dimensional Lebesgue measure except that instead of open in-
tervals, we are using open boxes R¥. Show the following.

(a) W is an outer measure.

(b) w (T2, [ai,bi]) =TIE-, (bi—ai) = p (11, (ai, b)) -
(c) Ifdist(A,B) >0, then u (A)+u (B) = 4 (AUB) so B (RP) C .F the set of sets
measurable with respect to this outer measure L.

This is Lebesgue measure on R”. Hint: Suppose for some j,b; —a; < €. Show that
(T2, (ai,bi)) < €llizj (bi —a;). Now use this to show that if you have a covering
by finitely many open boxes, such that the sum of their volumes is less than some
number, you can replace with a covering of open boxes which also has the sum of
their volumes less than that number but which has each box with sides less than §.
To do this, you might consider replacing each box in the covering with 2” open
boxes obtained by bisecting each side m times where m is small enough that each
little box has sides smaller than 8 /2 in each of the finitely many boxes in the cover
and then fatten each of these just a little to cover up what got left out and retain the
sum of the volumes of the little boxes to still be less than the number you had.

1Show that Lebesgue measure defined in the above problem is both inner and outer
regular and is translation invariant.

Let (Q,.7, 1) be a measure space and let s (®) = Y ,¢; ZE, (0) where the E; are
distinct measurable sets but the ¢; might not be. Thus the ¢; are the finitely many
values of s. Say each ¢; > 0 and ¢y = 0. Define [sdu as Y c;u (E;). Show that this is
well defined and that if you have s (@) = YiL | ¢; 2, (0) .t (0) = L1, d; ZF,; (@),
then for a,b nonnegative numbers, as (@) + bt () can be written also in this form
and that [(as+bt)du = a[sdu +b [tdu. Hint: s(®) = Y, Y ;i ZEnr, () =
Zj Zi Ci%Eiij ((D) and (as+bt) (CO) = Zj Zi (ClC,’ -I—bdj) %EiﬂFj ((D)

THaving defined the integral of nonnegative simple functions in the above problem,
letting f be nonnegative and measurable. Define

/fduzsup{/sdu10<s<f,s simple}.

Show that if f, is nonnegative and measurable and n — f, (@) is increasing, show
that for f (@) = lim,_,e f, (@), it follows that [ fdu = lim,_,e [ fudu. Hint: Show
[ fudu is increasing to something o < oo. Explain why [ fdu > a. Now pick a
nonnegative simple function s < f. For r € (0,1),[f,, > rs] = E, is increasing in n
and U,E, = Q. Tell why [ f,du > [ 2, fudit > r [sdu. Let n — o and show that
o > r[sdu. Now explain why o > r [ fdu. Since r is arbitrary, o > [ fdu > a.

1Show that if f, g are nonnegative and measurable and a,b > 0, then

/(af—i—bg)du :a/fdu—i—b/gdu
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9.15 Multifunctions and Their Measurability

This is an introduction to the idea of measurable multifunctions. This is a very important
topic which has surprising usefulness in nonlinear analysis and other areas and not enough
attention is payed to it. As an application, I will give a proof of Kuratowski’s theorem and
also an interesting fixed point result in which the fixed point is a measurable function of
in a measure space. One of the main references for this material is the book Papageorgiu
and Hu [31] where you can find more of this kind of thing.

9.15.1 The General Case

Let X be a separable complete metric space and let (Q,.%) be a set and a ¢ algebra of
subsets of Q. A multifunction, is a map from € to the nonempty subsets of X. Thus I"is a
multifunction if for each @, I' (@) # 0. For more on the theorems presented in this section,
see [31].

Definition 9.15.1 Define I (S) = {w € Q: T (w) NS # 0} . When
I~ (U)e#
for all U open, we say that I is measurable.

More can be said than what follows, but the following is the essential idea for a mea-
surable multifunction.

Theorem 9.15.2 7he following are equivalent for any measurable space consisting
only of a set Q and a ¢ algebra F. Here nothing is known about T (®) other than that is
a nonempty set.

1. ForallU openinX,I'~ (U) € F whereI' (U)={w:T'(0)NU # 0}

2. There exists a sequence, {0, } of measurable functions satisfying o, (®) € I' (o)
such that for all ® € Q,T (@) = {0, (®) : n € N}. These functions are called mea-
surable selections.

Proof: First 1.) = 2.). A measurable selection will be obtained in I'(®). Let D =
{xx},,_, be a countable dense subset of X. For o € Q, let y, (®) = x, where n is the
smallest integer such that I" (@) N B (x,,1) # 0. Therefore, ¥, (w) has countably many
values, X, ,X,,, -+ where ny <ny <---. Now the set on which | has the value x, is as
follows: {@: vy, =x,} =

{0 :T(0)NB(x, 1) £ 0} N [Q\ Ugen {0 : T (@) N B (xy, 1) £ 0}] € 2.

Thus y, is measurable and dist(y, (@), I'(®)) < 1. Let @, = {w € Q: vy, (0) = x,}.
Then Q, € .# and Q,NQ,, =0 for n # m and U;;_, Q,, = Q because if o is given, I (®)
does intersect some B (x,, 1) . Let

Dy,={xt €D:x; €B(xy,1)}.

Now for each n, and @ € Q,,, let ¥, (@) = x; where k is the smallest index such that x; € D,,
and B (x¢, 1) NT (@) # 0. Thus

dist (1 () T(@)) < 5, (@), () < 1. 9.25)
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This defines y, (@) on Q, and so it defines y, on Q satisfying 9.25. Continue this way,
obtaining ¥, a measurable function such that

dist (v, (0),T (o)) < 2k—1_1 d(Yii1 (@), 9 (@) < %

Then for each ,{y, (w)} is a Cauchy sequence of measurable functions converging to
a point, 6 (@) € I'(®). This has shown that if I" is measurable, there exists a measurable
selection, 0 (@) € I'(w). Of course, if I' (@) is closed, then ¢ (w) € I'(@). Note that this
had nothing to do with any measure.

It remains to show that there exists a sequence of these measurable selections ¢, such

that the conclusion of 2.) holds. To do this define for a single @ € Q
L (@) z{ L(@NB(x,.2") it (@)N5 (x,,2°) 70

I' (w) otherwise when there is empty intersection
The following picture illustrates I';(®) when o is such that there is nonempty intersection.
Also, given x € I'(®), and i, there is x, from the countable dense set such that the situation
of the picture occurs.

Is I',;; measurable? If so, then from the above, it has a measurable selection ¢,; and
the set of these 0,; must have the property that {6,; ()}, ; is dense in I" (@) for each ®.
Let U be open. Then

{0:Tyi(0)NU #0} ={@:T(0)NB (x,,27)NU #0} U
[{0:T(0)NB(x,,27") =0} N{w: T (0)NU # 0}]
={0:T(®)NB(x,,27")NU #0}U
[(@\{®:T(®)NB (x,,27") #0}) N{w:T(0)NU # 0}],

a measurable set. Thus I';; is measurable as hoped.
By what was just shown, there exists G,,;, a measurable function such that ¢, (®) €

[y(w) CT (o) forall o € Q. If x € ['(w), then x € B (xn,Z*("“)) whenever x, is close

enough to x. Thus both x, 0, (®) are in B (x,,2~(1)) and so |6n(i+1> (0)—x| <27
It follows that condition 2.) holds with the countable dense subset of I' (@) being the
{0, (0)}. Note that this had nothing to do with a measure.

Now consider why 2.)=-1.). We have {0, (®)} C I'(®) and o, is measurable and

Un0, (@) equals T'(@). Why is I' a measurable multifunction? Let U be an open set

I (U)

{0:T(0)NU #0} = {w:mﬁU;é@}
Uo, ' (U)e 7 B
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For much more on multi-functions, you should see the book by Hu and Papageorgiou.
[31] The above proof follows the presentation in this book but there is more to be seen there
where complete measures are included in the theory and an equivalence is shown between
strong measurability, about to be discussed, and measurability without an assumption that
the multifunction has compact values.

9.15.2 A Special Case When I' (w) Compact

Measurability is a statement that I'~ (U) € .# whenever U is open.

Definition 9.15.3 A multifunction T is strongly measurable if T~ (F) € Z forall
F closed.

Observation 9.15.4 IfT is strongly measurable, then it is measurable because if you
have U open in a metric space, it is the countable union of closed sets F,,. Hence ' (U) =
UL~ (F) € £.

Now suppose I' (@) is compact for every @ and that T~ (U) € % for every U open.
Then let F be a closed set and let {U,} be a decreasing sequence of open sets whose
intersection equals F such that also, for all n, U, D U,+. Then

I'w)nF=n,T(0)NU,=nT(0)NU,

Now because of compactness, the set on the left is nonempty if and only if each set ' (@) N
U, on the right is also nonempty. Thus I'™ (F) = N,[~ (U,) € .Z. It follows that in this
speci